
Learning Büchi Automata
and Its Applications

Yong Li1,2 , Andrea Turrini1,3(B) , Yu-Fang Chen4 , and Lijun Zhang1,2,3

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{turrini,zhanglj}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Institute of Intelligent Software, Guangzhou, China
4 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. In this work, we review an algorithm that learns a Büchi
automaton from a teacher who knows an ω-regular language; the algo-
rithm is based on learning a formalism named family of DFAs (FDFAs)
recently proposed by Angluin and Fisman. We introduce the learning
algorithm by learning the simple ω-regular language (ab)ω: besides giv-
ing the readers an overview of the algorithm, it guides them on how the
algorithm works step by step. Further, we demonstrate how the learn-
ing algorithm can be exploited in classical automata operations such as
complementation checking and in the context of termination analysis.

1 Introduction

Model checking is a widely used technique in the verification of hardware and
software systems, scaling from case studies in academic publications to real sys-
tems in industry; the importance of model checking has been recognized by
means of the 2007 Turing award, which has been assigned to Edmund M. Clarke,
E. Allen Emerson, and Joseph Sifakis for “their roles in developing model check-
ing into a highly effective verification technology, widely adopted in the hardware
and software industries”.

Large systems are usually obtained by developing several small components
that interact concurrently with each other so to globally achieve the desired func-
tionality. The main obstacle in applying model checking to concurrent systems is
the well-known state explosion problem [31]. The number of global states of such
systems can be enormous: it is actually of the form np where p is the number of
processes and n is the number of states in each process. There have been several
approaches proposed in literature to combat the state explosion problem, such as
symbolic model checking based on BDDs [78], bounded model checking [18], and
learning-based compositional verification [34]. The latter approach, the learning-
based compositional verification, tries to learn models of the single components
that are smaller than the original processes while preserving their behavior. The
learning algorithm used in [34] is the well-known L∗ algorithm proposed by Dana
Angluin [8], which allows one to learn deterministic finite automata (DFAs).
c© Springer Nature Switzerland AG 2019
J. P. Bowen et al. (Eds.): SETSS 2018, LNCS 11430, pp. 38–98, 2019.
https://doi.org/10.1007/978-3-030-17601-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17601-3_2&domain=pdf
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0003-4343-9323
http://orcid.org/0000-0003-2872-0336
http://orcid.org/0000-0002-3692-2088
https://doi.org/10.1007/978-3-030-17601-3_2

Learning Büchi Automata and Its Applications 39

Automata learning algorithms have received significant attention from the
verification community in the past two decades. Besides being used to improve
the efficiency and scalability of compositional verification, automata learning has
also been successfully applied in other aspects of verification: among others, it has
been used to automatically generate interface models of computer programs [7],
to learn a model of the traces of the system errors for diagnosis purposes [27], to
find bugs in the implementation of network protocols [88], to extract behavior
model of programs for statistical program analysis [29], and to do model-based
testing and verification [81,107]. Later in 2017, Frits Vaandrager [103] surveyed
the concept of model learning used in the above applications.

In order to be of practical use, the learning algorithms have to be computa-
tionally efficient and easily adaptable to the different learning scenarios. On the
one hand, with more complex tasks at hand, some researchers have proposed sev-
eral optimizations to improve the efficiency of finite automata learning, such as
learning algorithms based on classification trees [59,63], efficient counterexample
analysis for learning algorithms [87], learning algorithm NL∗ for nondetermin-
istic finite automata (NFAs) [20], and learning algorithms for alternating finite
automata [10].

On the other hand, due to the demands from the different verification tasks,
some researchers also develop and apply learning algorithms for richer models.
For example, there are learning algorithms for I/O automata [2], event-recording
automata [50], register automata [57,58], timed systems [75], probabilistic sys-
tems [43], and nominal automata [79]. Specially, van Heerdt et al. in [53] pro-
posed an automata learning framework based on category theory which unifies
the learning of several automata including DFAs and weighted automata.

However, aforementioned learning algorithms are all designed for the
automata accepting finite words; those automata are used to model the finite
behaviors of the systems, which are usually characterized by safety properties
expected to hold. For instance, one can use a DFA to recognize all possible bad
behaviors, i.e., behaviors leading in a finite number of steps to a state violating a
safety property. Instead, for characterizing the infinite behaviors of the systems,
generally corresponding to liveness properties, automata accepting infinite words
are used.

In his seminal work [25], Büchi introduced automata accepting infinite words
to prove the decidability of a restricted monadic second order (MSO) logic; now
such automata are widely known as Büchi automata (BA). A Büchi automaton
has the same structure as an NFA, except that it operates on infinite words:
instead of accepting a finite word if it leads the run of the automaton to end in
an accepting state, a BA accepts an infinite word if it leads the automaton to visit
an accepting state infinitely often. Büchi automata are nowadays very popular
in the model checking field, in particular when the specification is given by a
linear temporal logic (LTL) formula; see the introductory paper by Vardi [104]
on the use of BAs for LTL analysis.

Besides being used in LTL verification and synthesis, Büchi automata have
been also used as a standard model to describe the liveness properties of dis-
tributed systems [6]. Therefore, in order to verify whether a concurrent system

40 Y. Li et al.

satisfies a liveness property, one can model every process of the system as a
Büchi automaton. It follows that if one can learn smaller Büchi automata for
the processes, then performing compositional verification on the given concur-
rent system can become less expensive, similarly to the DFA case. Motivated by
that, Farzan et al. presented in [42] the first learning algorithm for the complete-
class of ω-regular languages represented as Büchi automata; the algorithm is able
to extract automatically a Büchi automaton as an assumption from a compo-
nent of concurrent systems for compositional verification. Note that already in
1995 Maler and Pnueli [76] introduced the first learning algorithm for Büchi
automata, but it learns Büchi automata accepting only a proper subset of ω-
regular languages. In 2014, Angluin and Fisman proposed in [11] a learning
algorithm for the ω-regular languages by means of a formalism called a family
of DFAs (FDFAs). Later in [73], Li et al. proposed to use classification trees to
learn FDFAs rather than observation tables used by Angluin and Fisman. Learn-
ing algorithms based on classification trees usually need less runtime memory
and can be much more efficient when compared to its observation table based
counterparts [59]. Further, Li et al. presented in [73] a more efficient learning
algorithm for Büchi automata based on FDFAs and classification trees compared
to the learning algorithm in [42].

There are already a few learning algorithms for Büchi automata available
in the literature, yet the learning algorithms are not widely used in the model
checking community. One reason for this is that the learning algorithms are quite
technically demanding and not so easy to follow and understand; in this paper we
give a simple presentation of one BA learning algorithm, with simple but com-
plete examples, to introduce the reader to such learning framework. Another
reason is that there are fewer learning libraries available for Büchi automata
compared to those implemented for learning automata accepting finite words:
for instance, for learning automata accepting finite words there are robust and
publicly available libraries such as libalf [21] and LearnLib [60]. To the best of
our knowledge, there is, however, only one publicly available library for learn-
ing Büchi automata named ROLL [73] which implements also the BA learning
algorithm described in this paper.

In this paper, we review the BA learning algorithm proposed in [73] by learn-
ing the simple ω-regular language (ab)ω: besides giving the reader an overview
of the algorithm, it guides them on how the algorithm works step by step. Our
main goal in this work is to give an intuitive explanation of the different learn-
ing algorithms for both finite and ω-regular languages; in this way the reader
can get the ideas underlying the learning algorithms before getting involved in
their formalism, presented in the related literature; we achieve this by means
of the examples we carefully chose so to be simple but still exposing the differ-
ent challenges the learning algorithms for Büchi automata face and the solution
techniques that have been adopted.

Further, we discuss two possible interesting applications of the BA learn-
ing algorithms. The complementation problem for Büchi automata is a chal-
lenging problem in the research community both in theory and practice. We

Learning Büchi Automata and Its Applications 41

show that the BA learning algorithm can be easily applied to complement Büchi
automata. Experimental results show that the learning-based complementation
algorithm of Büchi automata can yield much smaller complement automata for
some cases than classical algorithms. Lastly, we discuss how the learning algo-
rithms can be also applied in proving the termination of C programs. Heizmann
et al. in [55] proposed a novel termination analysis algorithm based on Büchi
automata. Interestingly, the efficiency and scalability of this termination analy-
sis algorithm highly depend on getting smaller complement automata of Büchi
automata, where one naturally can use the learning based complementation
algorithm.

Organization of the Paper. We first set up some notions and notations for this
work in Sect. 2. We then introduce some basic operations on Büchi automata
in Sect. 3, together with their complexity analysis, before turning to the learn-
ing algorithms in the following sections. In order to ease the presentation, we
first present the learning algorithm for DFAs in Sect. 4 and then move onto
the learning of Büchi automata in Sect. 5. After that, we show how to apply
our learning algorithm to the complementation problem of Büchi automata in
Sect. 6. Before concluding the paper in Sect. 8, we consider the application of BA
learning algorithm to program termination analysis in Sect. 7.

2 Preliminaries

Let X and Y be two sets; we use X � Y to denote their symmetric difference,
i.e., the set (X \ Y) ∪ (Y \ X). We use [i · · · j] to denote the set {i, i + 1, . . . , j}.

Let Σ denote a finite non-empty set of letters called alphabet. A word is a
finite or infinite sequence w = w1w2 · · · of letters in Σ; we denote by |w| the
length of the word w, i.e., the number letters in w. If w is infinite, then |w| = ∞,
and we call it an ω-word. We use ε to denote the word of length 0, i.e., the
empty word. We denote by Σ∗ and Σω the sets of all finite and infinite words,
respectively. Moreover, we use Σ+ to represent the set Σ∗ \ {ε}.

We denote by w[i] the i-th letter of a word w. We use w[i..k] to denote the sub-
word of w starting at the i-th letter and ending at the k-th letter, inclusive, when
i ≤ k and the empty word ε when i > k. For u ∈ Σ∗, we denote by Pref(u) the set
of its prefixes, i.e., Pref(u) = {ε, u[1], u[1..2], . . . , u[1..|u|]}. Similarly, we denote
by Suf(u) the set of its suffixes, i.e., Suf(u) = {u[1..|u|], u[2..|u|], . . . , u[|u|], ε}.
Given a finite word u = u1 · · · uk and a word w, we denote by u · w the concate-
nation of u and w, i.e., the finite or infinite word u ·w = u1 · · · ukw1 · · · . We may
just write uw instead of u · w.

Definition 1. An acceptor automaton is a tuple A = (Σ,Q, q̄, δ, F) consisting
of the following components: a finite alphabet Σ, a finite set Q of states, an initial
state q̄ ∈ Q, a transition relation δ ⊆ Q × Σ × Q, and an accepting condition F .

For convenience, we also use δ(q, a) to denote the set { q′ ∈ Q | (q, a, q′) ∈ δ }.

42 Y. Li et al.

In the remainder of the paper, we assume that all automata share the same
alphabet Σ, which we may omit from their definitions.

A run of an acceptor automaton on a finite word v = a1a2a3 · · · an, n ≥ 1,
is a sequence of states q0, q1, . . . , qn such that q0 = q̄ and (qi, ai+1, qi+1) ∈ δ
for every 0 ≤ i < n; similarly, a run of an acceptor automaton on an infinite
word w = a1a2a3 · · · is a sequence of states q0, q1, . . . such that q0 = q̄ and
(qi, ai+1, qi+1) ∈ δ for each i ∈ N. The run on a word is accepting if it satisfies
the accepting condition F . A word is accepted by an acceptor automaton A if
A has an accepting run on it.

A finite language is a subset of Σ∗ while an ω-language is a subset of Σω;
the language of an acceptor automaton A, denoted by L(A), is the set {u ∈
Σ∗ ∪ Σω | u is accepted by A }.

A deterministic acceptor automaton is an acceptor automaton such that
|δ(q, a)| ≤ 1 for any q ∈ Q and a ∈ Σ. For deterministic acceptor automata,
we may write δ(q, a) = q′ instead of δ(q, a) = {q′}. The transition relation of
a deterministic acceptor automaton can be lifted to finite words by defining
δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v) for each q ∈ Q, a ∈ Σ, and v ∈ Σ∗. We
also use A(v) as a shorthand for δ(q̄, v).

A finite automaton (FA) is an acceptor automaton where F ⊆ Q and a finite
word v is accepted if there is a run q0, q1, . . . , qn on v such that qn ∈ F ; no infinite
word is accepted. A deterministic finite automaton (DFA) is a FA which is also
a deterministic acceptor automaton. A complement DFA AC of a DFA A is a
DFA such that L(AC) = Σ∗ \ L(A). Complementing a DFA is easy: it is enough
to add an accepting sink state collecting all missing transitions and complement
the original set of accepting states. Let A and B be two FAs; one can construct
a product FA, denoted by A × B, accepting the language L(A) ∩ L(B) using a
standard product construction; see, e.g., [56].

A Büchi automaton (BA) is an acceptor automaton where F ⊆ Q and an
infinite word w is accepted if there is a run ρ = q0, q1, . . . on w such that for
each i ∈ N, there exists j > i such that ρ[j] ∈ F ; no finite word is accepted.
Intuitively, an infinite word w is accepted by a BA if there exists a run on w
visiting at least one accepting state in F infinitely often. A deterministic Büchi
automaton (DBA) is a BA which is also a deterministic acceptor automaton.

A BA is a limit deterministic Büchi automaton (LDBA) if its set of states Q
can be partitioned into two disjoint sets QN and QD, such that (1) δ(q, a) ⊆ QD

and |δ(q, a)| ≤ 1 for each q ∈ QD and a ∈ Σ, and (2) F ⊆ QD. It is trivial to
note that each DBA is also an LDBA, by taking QN = ∅ and QD = Q.

Example 1. As examples of Büchi automata, consider the two automata shown
in Fig. 1. The automaton A is a DBA with alphabet Σ = {a, b}, set of states Q =
{q0, q1}, initial state q̄ = q0 (marked by the small incoming arrow), transition
relation δ = {(q0, a, q1), (q0, b, q0), (q1, a, q1), (q1, b, q0)}, and F = {q1} (denoted
as a double-circled state). The language accepted by A is the ω-regular language
L(A) = {w ∈ Σω | w has infinitely many a’s }.

Learning Büchi Automata and Its Applications 43

q0 q1

A
b

a
a

b

L(A) = { w | w has infinitely many a’s }

q0 q1

B
a

b

b

b

L(B) = { w | w has finitely many a’s }

Fig. 1. Examples of Büchi automata and their accepted languages

The automaton B is an NBA that accepts the language L(B) = {w ∈ Σω |
w has finitely many a’s}, which is the complement of L(A). Note that B is also
a limit deterministic Büchi automaton, where the corresponding partition of Q
is given by QN = {q0} and QD = {q1}.

We call the language of an FA a regular language. An ω-language L ⊆ Σω

is ω-regular if there exists a BA A such that L = L(A). Words of the form
uvω, where u ∈ Σ∗ and v ∈ Σ+, are called ultimately periodic words. We use
a pair of finite words (u, v) to denote the ultimately periodic word w = uvω.
We also call (u, v) a decomposition of w; note that an ultimately periodic word
can have several decompositions: for instance (u, v), (uv, v), and (u, vv) are all
decompositions of uvω. For an ω-language L, let UP(L) = {uvω ∈ L | u ∈
Σ∗, v ∈ Σ+ } denote the set of all ultimately periodic words in L. Note that the
set of ultimately periodic words of an ω-regular language L can be seen as the
fingerprint of L, as stated by the following theorem.

Theorem 1 (Ultimately Periodic Words of ω-Regular Languages [25,
26]). (1) Every non-empty ω-regular language L contains at least one ultimately
periodic word. (2) Let L, L′ be two ω-regular languages. Then L = L′ if and only
if UP(L) = UP(L′).

We refer interested reader to [25,26] for the proof of Theorem 1. An immediate
consequence of Theorem 1 is that, for any two ω-regular languages L and L′,
if L �= L′ then there must exist some ultimately periodic word uvω ∈ UP(L) �
UP(L′).

3 Operations on Büchi Automata

In this section we present how nondeterministic Büchi automata support the
standard set operations on their languages, namely, union, intersection, and
complementation, as well as derived operations and decision problems. The main
result is that nondeterministic Büchi automata are closed under such operations,
e.g., giving two Büchi automata A0 and A1, we can construct another Büchi
automaton A such that L(A) = L(A0) ∩ L(A1). Deterministic Büchi automata,
however, are strictly less expressive than nondeterministic ones, since there are
ω-regular languages accepted by a nondeterministic BA for which there does

44 Y. Li et al.

not exist a deterministic BA accepting them; DBAs are also not closed under
complementation, i.e., there is a DBA whose complement language can only be
accepted by a nondeterministic BA.

There are several resources available in literature for the readers interested
in more details on ω-languages and their automata; see, e.g., [30,32,49,62,94,
96,97].

3.1 Union of Büchi Automata

Given two Büchi automata A0 and A1, it is rather easy to construct a Büchi
automaton A0∪1 such that L(A0∪1) = L(A0)∪L(A1). In fact, since by definition
of language of a Büchi automaton, a word w belongs to its language if there
exists an accepting run on w, it is enough to create an automaton having all
runs of A0 and A1: this can be easily achieved by just considering A0 and A1 as
a single automaton, up to some minor adaptation on the initial state.

Proposition 1. Given two Büchi automata A0 = (Q0, q̄0, δ0, F0) and A1 =
(Q1, q̄1, δ1, F1) such that Q0 ∩ Q1 = ∅, let A0∪1 = (Q, q̄, δ, F) be the Büchi
automaton whose components are defined as follows:

– Q = Q0 ∪ Q1 ∪ {q̄} where q̄ is a fresh state such that q̄ /∈ Q0 ∪ Q1,
– δ = δ0 ∪ δ1 ∪ { (q̄, a, q0) | q0 ∈ δ0(q̄0, a) } ∪ { (q̄, a, q1) | q1 ∈ δ1(q̄1, a) }, and
– F = F0 ∪ F1.

Then, L(A0∪1) = L(A0) ∪ L(A1) with |Q| = |Q0| + |Q1| + 1.

The proof of the above proposition is rather trivial: given an ω-word w, except
for the initial state q̄, a run on w of the automaton A0∪1 is identical to a run on
w of either A0 or A1.

Note that the requirement that A0 and A1 must have disjoint sets of states
can be easily fulfilled by simply renaming their states, since actual state names
play no role in accepting a word. Moreover, if we would have allowed a set of
initial states instead of a single initial state, then the union automaton would
be just the component-wise union of the two given Büchi automata.

3.2 Intersection of Büchi Automata

The construction of a Büchi automaton accepting the intersection of the lan-
guages of A0 and A1 is slightly more involved than their union. The main idea
underlying the intersection construction is to run on the input word in parallel
in both A0 and A1, by means of a product construction similar to the one for the
intersection of finite automata; as accepting condition, we require that we reach
the accepting states of A0 and A1 in an alternating mode, i.e., every time we
reach an accepting state in Ac for c ∈ {0, 1}, then we have to reach an accepting
state in A1−c. If we can alternate infinitely often, then both automata accept
the input word, i.e., it is in the intersection of their languages; if we alternate
only finitely often, this means that the BA where we get stuck is not accepting

Learning Büchi Automata and Its Applications 45

such a word, so the intersection automaton must reject the word as well. This
is different from the accepting condition for finite automata, where a product
state is accepting if both states in the pair are accepting: in fact, for infinite
words it does not matter whether the two BAs reach an accepting state exactly
at the same moment, since it can also be the case that both automata accept an
ω-word w but A0 reaches an accepting state only once every ten times A1 has
reached an accepting state.

Proposition 2. Given two Büchi automata A0 = (Q0, q̄0, δ0, F0) and A1 =
(Q1, q̄1, δ1, F1), let A0∩1 = (Q, q̄, F, δ) be the Büchi automaton whose components
are defined as follows:

– Q = Q0 × Q1 × {0, 1};
– q̄ = (q̄0, q̄1, 0);
– δ = { ((q0, q1, c), a, (q′

0, q
′
1,next(q0, q1, c))) | q′

0 ∈ δ0(q0, a), q′
1 ∈ δ1(q1, a) }

where next : Q0 × Q1 × {0, 1} → {0, 1} is defined as

next(q0, q1, c) =

{
1 − c if qc ∈ Fc,

c otherwise;

– F = F0 × Q1 × {0}.

Then, L(A0∩1) = L(A0) ∩ L(A1) with |Q| = 2 · |Q0| · |Q1|.

The above construction is based on the transformation of generalized Büchi
automata to Büchi automata. Generalized BAs differ from BAs only on the fact
that they have multiple accepting sets; an ω-word w is accepted if there exists a
run on w reaching a state in each accepting set infinitely often. Since generalized
BAs have the same expressive power as ordinary BAs and are not used in this
work, we refer the interested reader to, e.g., [32] for more details.

3.3 Complementation of Büchi Automata

Complementing Büchi automata is the most difficult operation on their lan-
guages. First of all, the usual subset construction used for converting nondeter-
ministic finite automata to equivalent deterministic finite automata and then
easily complement the resulting DFAs can not be adapted to Büchi automata
since DBAs are strictly less expressive than BAs:

Proposition 3 (cf. [68]). There exists an ω-regular language L that is recog-
nizable by a BA but not by a DBA.

This means that for such a language L, we can find a BA A such that L(A) = L
but there does not exist a DBA D such that L(D) = L. As a consequence,
applying a subset construction to A does not lead to a DBA accepting the same
language.

Note that the language witnessing the correctness of the above result is rather
simple: L = Σ∗ ·bω, that is, L is the language of all words having only b occurring
infinitely often. For Σ = {a, b}, this language is recognized by the BA B shown

46 Y. Li et al.

in Fig. 1; its complement, i.e., the language whose words contain infinitely many
a, is easily recognized by the DBA A also shown in Fig. 1. This means that
DBAs are not closed under complementation, while BAs are indeed closed, as
witnessed by the several complementation algorithms that have been proposed
in literature.

Before presenting such algorithms, we want to introduce the main result
about the complexity of complementing Büchi automata.

Proposition 4 (cf. [90]). Given a BA A with n states, it is possible to construct
a BA AC such that L(AC) = Σω \L(A) whose number of states is in Ω(tight(n−
1)) and O(tight(n + 1)), where tight(n) ≈ (0.76n)n.

In practice, the above is the best known complexity result for the complementa-
tion of Büchi automata, where the lower- and upper-bounds about the number
of states of the complement Büchi automaton have a minor gap lying in O(n2).

There are mainly four types of complementation algorithms, according to the
classification proposed in [19,98]: Ramsey-based [24,25,93], rank-based [46,51,
65,90], determinization-based [44,82,89,91], and slice-based [5,61,98,106] com-
plementation. A complementation construction unifying the rank-based and
slice-based approaches can be found in [45]. All these algorithms construct the
complement Büchi automata based on the transition structures of the input
Büchi automata. Besides the complementation algorithm proposed for nonde-
terministic Büchi automata, there are also complementation algorithms special-
ized for limit deterministic Büchi automata [19,28] and for deterministic Büchi
automata [66].

Given the highly demanding technicalities involved in the above complemen-
tation algorithms for Büchi automata, we refer the interested reader to the cited
literature for more details on the different approaches and algorithms.

3.4 Difference of Büchi Automata

The BA language difference operation is tightly connected to the complementa-
tion operation, from which it derives its super-exponential complexity, as stated
by the following proposition.

Proposition 5. Given two BAs A0 and A1 with n0 and n1 states, respectively,
it is possible to construct a BA A0\1 such that L(A0\1) = L(A0) \ L(A1) whose
number of states is in Ω(n0 · tight(n1 − 1)) and O(n0 · tight(n1 + 1)).

The language difference operation is based on the complementation operation:
in order to get an automaton A0\1 such that L(A0\1) = L(A0) \ L(A1), it is
enough to construct the automaton for the language L(A0) ∩ L(AC

1). Thus, the
complexity result follows from Propositions 2 and 4.

Note that we can not improve the complexity of the language difference
operation to be better than Ω(tight(n1−1)), since otherwise we would be able to
improve the complexity of the complementation operation as well, since trivially
we have that L(AC

1) = Σω \ L(A1) where Σω is the language of the BA A0

having exactly one state, the initial state, being accepting with only self-loops
as transitions, so in Proposition 8 we would have n0 = 1.

Learning Büchi Automata and Its Applications 47

3.5 Decision Problems on Büchi Automata

Besides the three main operations presented above, namely union, intersection,
and complementation, there are three main decision problems relative to the
languages of Büchi automata: emptiness, universality, and language inclusion.

Given a BA A, the emptiness problem is relative to decide whether L(A) = ∅
while the universality problem refers to the equality L(A) = Σω. Finally, the
language inclusion problem requires to decide whether L(A0) ⊆ L(A1) for the
given BAs A0 and A1. These problems have different complexity results, which
are summarized by the following propositions. The corresponding proofs can be
found in the cited papers or in [32, Sect. 4.4].

Proposition 6 (cf. [40,41,93]). Given a BA A, the emptiness problem L(A) =
∅ is decidable in linear time and is NLOGSPACE-complete.

The proof of the linear time complexity is based on finding a strongly connected
component, i.e., a set of states each one reachable from each other, which is
reachable from the initial state and contains a state in F . This can be easily
done by a simple graph exploration based on depth-first visit. In theory, we can
also nondeterministically find an accepting state and the accepting run of A
visiting the accepting state infinitely often, which is in NLOGSPACE. In fact, it
is enough to guess an accepting state qf ∈ F and two paths: a stem path from
q̄ to qf and a lasso path from qf to qf itself, both of them with length at most
|Q|. Clearly storing qf ∈ F requires a space that is logarithmic in |Q|; for the
paths, it is enough to store the current state q and a counter cnt to keep track
of the length of the path so far; both require logarithmic space.

The algorithm works as follows: initially, q = q̄ and the following steps are
repeated to find a stem path from q̄ to qf : (1) from q, a successor is chosen
nondeterministically and cnt is increased; (2) if cnt exceeds |Q|, then “no” is
returned; (3) if q = qf and cnt ≤ |Q|, then the algorithm turns to look for a
lasso path. Starting with q = qf , the following steps are repeated to find a lasso
path from qf to qf itself: (1) from q, a successor is chosen nondeterministically
and cnt is increased; (2) if cnt exceeds |Q|, then “no” is returned; (3) if q = qf

and cnt ≤ |Q|, then “yes” is returned. We refer interested reader to [40,41,93]
for the proof of the NLOGSPACE-hardness result.

Proposition 7 (cf. [93]). Given a BA A, the universality problem L(A) = Σω

is decidable in exponential time and is PSPACE-complete.

The universality problem is decided by means of a reduction to the emptiness
problem: in order to decide L(A) = Σω, it is enough to check L(AC) = ∅, where
AC is the complement BA of A. Since AC is exponentially larger than A, the
complexity results follow from Proposition 6.

Proposition 8 (cf. [93]). Given two BAs A0 and A1, the language inclu-
sion problem L(A0) ⊆ L(A1) is decidable in exponential time and is PSPACE-
complete.

48 Y. Li et al.

w ∈? L

L(A) =? L

TeacherLearner

e1 e2 · · ·
v1 0 1 · · ·
v2 0 0 · · ·
v3 1 1 · · ·
...

...
w1 · · ·
w2 · · ·
w3 · · ·
...

...

Observation table MQ(w)

yes/no

EQ(A)

noCE: w ∈ L � L(A) yes

Output automaton A

Fig. 2. DFA active automata learning framework

The language inclusion problem is decided by means of a reduction to the empti-
ness problem: in order to decide L(A0) ⊆ L(A1), it is enough to check whether
L(A0)∩L(AC

1) = ∅, where AC
1 is the complement BA of A1. Since AC

1 is exponen-
tially larger than A1, the complexity results follow from Propositions 2 and 6.

4 Learning Finite Automata

In this section, we present a variant of the learning algorithm for finite automata
used in [11]. In 1987, in her seminal work [8], Angluin proposed the L∗ algorithm
to learn a DFA accepting a target regular language; L∗ belongs to the class of
active automata learning algorithms [103], in which the learner can interact with
an oracle until the correct automaton is constructed.

4.1 Overview of the DFA Learning Algorithm

As depicted in Fig. 2, in the active automata learning setting presented in [8],
there is a teacher and a learner. The teacher knows the target language L which
can be a regular language or an ω-regular language. The learner wants to learn
the target language, represented by an automaton, from the teacher by means of
two kinds of queries: membership queries and equivalence queries. A membership
query MQ(w) asks whether a word w belongs to L while an equivalence query
EQ(A) asks whether the conjectured automaton A accepts L. Depending on
whether the conjectured automaton A is correct, the teacher replies with either
“yes” or“no”. In case of a positive answer, the learner outputs A and completes
his job. For the negative answer, the teacher provides as well a witness w ∈
L�L(A) which allows the learner to further refine the conjectured automaton A.

Learning Büchi Automata and Its Applications 49

q0 q1

q2q3

a

b

a

b

a

b

a

b

M ε bab ab
ε 0 0 0
b 0 1 0

bb 0 0 1
bbb 1 0 0

a 0 0 0
ba 0 1 0

bba 0 0 1
bbba 1 0 0
bbbb 0 0 0

T

R = {u ∈ {a, b}+ | the number of b in u is 4n+ 3, for some n ∈ N }

Fig. 3. A DFA M, its regular language R, and an observation table T for R

In this paper, the learner uses a data structure called observation table to
store all answers to the membership queries, since it is easy to present and
understand. We remark that observation tables have been originally adopted by
Angluin for her L∗ algorithm [8]. Instead of observation tables, the learner can
use a tree-based data structure called classification tree to store such answers,
which is usually more compact than observation tables; we refer the interested
reader to [59,63,73] for the details on classification trees.

In the following, we play the role of the learner to learn a regular language
represented by a DFA from a teacher. Regular language learning is actually a
procedure for a learner to gradually identify the states in the minimal DFA
M recognizing the target language. As an example, consider the regular lan-
guage R accepted by the DFA M shown in Fig. 3, where R = {u ∈ {a, b}+ |
the number of b in u is 4n + 3 for some n ∈ N }. We observe that for any pair

of words u1, u2 ∈ {a, b}∗, M(q0, u1) �= M(q0, u2) if there exists some word
v ∈ {a, b}∗ such that M(q0, u1v) = q3 while M(q0, u2v) �= q3. That is, in the DFA
M, for any pair of words u1, u2 ∈ {a, b}∗, if there exists some word v ∈ {a, b}∗

such that u1v ∈ L(M) while u2v /∈ L(M), then M(q0, u1) and M(q0, u2) must
be two different states. Our goal is to develop a learner who can identify the
states in the DFA M; using such a word extension v to distinguish words u1 and
u2 is a good means to identify two different states in M.

4.2 Right Congruences and Myhill-Nerode Theorem

This idea of distinguishing words by extensions is formalized by the notion of
right congruence. A right congruence is an equivalence relation � on Σ∗ such
that x � y implies xv � yv for every x, y, v ∈ Σ∗. The right congruence relation
is the theoretical foundation for the DFA learning algorithms to discover the
states in a target DFA M.

50 Y. Li et al.

We denote by |�| the index of �, i.e., the number of equivalence classes of
�. We use Σ∗/� to denote the equivalence classes of the right congruence �. A
finite right congruence is a right congruence with a finite index. The following
theorem guarantees that every regular language has a right congruence relation
of finite index.

Theorem 2 (Myhill-Nerode Theorem [56]). For a language R over Σ, the
following statements are equivalent:

1. R is a regular language.
2. R is the union of some equivalence classes of a right congruence equivalence

relation of finite index.
3. The right congruence relation �R is of finite index, where x �R y if and only

if for each v ∈ Σ∗, xv ∈ R ⇐⇒ yv ∈ R.

The theorem basically states that given a regular language R over Σ, the
whole set of finite words Σ∗ can be partitioned into a finite number of equivalence
classes by the right congruence relation �R. For a word u ∈ Σ∗, we denote by
[u]� the equivalence class of the right congruence � u belongs to.

Given a right congruence relation �R for the language R, we can construct
an automaton accepting R by means of �R: as set of states Q, we just use the
equivalence classes induced by �R; the initial state q̄ is simply the class of the
empty word ε; the transition relation just considers as the a-successor of the
class of u the class of ua; finally, the accepting states F are the classes of the
words in R.

Definition 2 (DFA induced by �R). Given a right congruence relation �R

for the language R, the corresponding DFA A�R
is the tuple A�R

= (Q, q̄, δ, F)
where

– Q = Σ∗/�R
;

– q̄ = [ε]�R
;

– for each u ∈ Σ∗ and a ∈ Σ, δ([u]�R
, a) = [ua]�R

; and
– F = { [u]�R

∈ Q | u ∈ R }.

As an example, consider the regular language R shown in Fig. 3; we have four
equivalence classes in Σ∗/�R

, namely [ε]�R
, [b]�R

, [bb]�R
, and [bbb]�R

, which
intuitively correspond to how many b’s have been seen so far, modulo 4; in
particular, the regular language R is exactly the equivalence class [bbb]�R

. The
automaton constructed from �R is M, whose states q0, q1, q2, and q3 represent
the four equivalence classes [ε]�R

, [b]�R
, [bb]�R

, and [bbb]�R
, respectively.

We can use the word bab to distinguish the words in the equivalence class
[b]�R

from the words in the other three equivalence classes [ε]�R
, [bb]�R

, and
[bbb]�R

. For instance, ε · bab /∈ R while b · bab ∈ R, hence ε ��R b. One can
check, as hinted by the column headers of the table in Fig. 3, that it is enough
to use the word extensions ε, bab, and ab to distinguish the words from the
four equivalence classes in Σ∗/�R

. We can use any other word as extension, as
long as it distinguishes words: for instance, we could use (aba)12 instead of ε

Learning Büchi Automata and Its Applications 51

or a(ababa)300b instead of ab. Note however that longer extensions slow down
the learning algorithm, whose complexity depends also on the length of the
distinguishing words (cf. Theorem 4).

Assume that we want to design a learner to learn the regular language R =
{u ∈ {a, b}+ | the number of b in u is 4n+3, for some n ∈ N }, i.e., to discover
all states in the target automaton M as shown in Fig. 3. By Theorem 2, we know
that the right congruence relation �R, by means of word extensions, can help
us to distinguish the equivalence classes of Σ∗ generating R, which intuitively
correspond to the states of M. However, we do not know R and we also do not
know �R; in order to learn them, the idea is to ask for a few words whether
they belong to R, and use the obtained information to conjecture a DFA which
is supposed to accept R. Yet there are still several things we are missing:

1. How does an observation table organize the results of membership queries we
have collected so far?

2. How can we build a DFA from an observation table correctly?
3. How can we update an observation table and discover new states from the

returned counterexample if the conjectured DFA is incorrect?

The answers to the three questions are the key cornerstones of the DFA
learning algorithm. In the following, we first show how an observation table
organizes the results of membership queries. Then we show how to build a DFA
from an observation table. Afterwards we explain how to analyze a returned
counterexample to update an observation table so to discover new states in
target DFA M. At last, we present our DFA learner for regular languages.

4.3 Observation Tables

An observation table is a tuple T = (U, V, T) where U is a prefix-closed set of
words called access strings, V is a set of words called experiments, and T : (U ∪
UΣ)V → {0, 1} is a total mapping.

As the name suggests, an observation table T is represented by a table,
where rows and columns are labelled with words taken from U ∪ UΣ and V ,
respectively, and the table entries are the value assigned by T to them. Consider
for instance the observation table T = (U, V, T) shown in Fig. 3; the labels of the
four rows in the upper part of the table correspond to the set U = {ε, b, bb, bbb};
the labels of the five rows in the bottom part of the table are those in UΣ \ U ,
so U ∪ UΣ is exactly the set of labels of the rows of the table; the labels of
the three columns in the table correspond to the set V = {ε, bab, ab}. The entry
value of row u and column v represents the value assigned by T (·) to the word
uv, i.e., T (uv); such a value is 1 if uv ∈ R and 0 otherwise. As depicted in Fig. 3,
the entry value of row b and column bab is T (bbab) = 1 since b · bab ∈ R, while
the entry value of row b and column ab is T (bab) = 0 since b · ab /∈ R.

Given an observation table for a language R with right congruence �R, like
the one in Fig. 3, we can see that every equivalence class [u]�R

of Σ∗/�R
has a

representative word u in U . Therefore we also use the representative word such

52 Y. Li et al.

as ε to represent the equivalence class [ε]�R
. A word in V is a word extension

or experiment used to distinguish the words belonging to different equivalence
classes. For instance, consider the column ab in Fig. 3: the entry value at row ε
is 0 while the entry value at row bb is 1, which indicates that the words from
those two equivalence classes can be distinguished by the word ab. Hence any
two rows with different entry values in the table are classified to be different
equivalence classes while any two rows with the same entry values are seen as
one equivalence class. For instance, in Fig. 3, row b in the upper table and row
ba in the lower table are seen as one equivalence class since they have the same
entry values for each experiment.

We remark that those rows which are currently seen as one equivalence class
may later be classified into different equivalence classes, as result of a counterex-
ample returned by the teacher.

The domain of the mapping T also contains the set UΣ, i.e., there are also
some rows labelled by the words from UΣ in the table. The existence of this set
UΣ of rows in the table makes it possible for the learner to look for the next
equivalence class or the successor state [ua]�R

in the DFA construction after
reading a letter a ∈ Σ at the equivalence class or state [u]�R

, where u ∈ U . For
example, suppose that we want to compute the a-successor of state ε in Fig. 3:
the expected successor is ε · a. In order to find its actual representative, we first
look for the row ε · a in the table and then get the successor state ε ∈ U which
has the same entry values as row ε·a. From the table we see that the row ε·a = a
has entry values 000; the same entry values occur for the row ε ∈ U , thus the
a-successor of ε is ε itself.

In order to efficiently check whether two rows represent the same equivalence
class, we formally define the rows as the total function row : (U ∪ UΣ) → (V →
{0, 1}). To a word u ∈ U ∪ UΣ we assign a total function row(u) : V → {0, 1}
such that row(u)(v) = T (uv) for each v ∈ V . We call such a function a row
of T and we denote by Rows(T) the set of rows of T ; similarly, we denote by
Rowsupp(T) = { row(u) | u ∈ U } the set of rows in the “upper” part of the
table and Rows low (T) = { row(u) | u ∈ UΣ \ U } the set of rows appear-
ing in the “lower” part. Consider again the observation table in Fig. 3: we
have Rows low (T) = {row(a), row(ba), row(bba), row(bbba), row(bbbb)}, where,
e.g., row(a) is the constant function row(a)(v) = 0 for each v ∈ V . In prac-
tice, we can identify each function row(u) : V → {0, 1} with the content of T in
the row labelled by u.

In the learning framework depicted in Fig. 2, the learner can ask the teacher
two types of queries, namely, membership and equivalence queries. In order to
pose an equivalence query, the learner has to generate a DFA from the informa-
tion stored in the observation table, which has to contain all information that
is needed to build such a DFA. As Angluin proposed in [8], a table has such a
needed information when it is closed and consistent.

A table T is closed if for any u ∈ U and a ∈ Σ, there exists u′ ∈ U such
that row(ua) = row(u′); similarly, a table is consistent if for any u1, u2 ∈ U
and a ∈ Σ, row(u1) = row(u2) implies row(u1a) = row(u2a). Intuitively, the

Learning Büchi Automata and Its Applications 53

ε
ε 0
a 0
b 0

T0

ε

a

b

A0

Fig. 4. Table T0 and DFA A0

closeness of a table makes sure that every successor of a state is in the set of
discovered states while the consistency of a table ensures that those words which
have been classified into the same equivalence class should behave consistently,
i.e., they have the same successor equivalence classes, when extended with the
same letter.

We now present how the learner proceeds in the learning algorithm to learn
the target language R represented by a DFA. Let the alphabet be Σ = {a, b}.
At the beginning, the learner has no information, so he initializes both U and
V to {ε} and defines T (uv) for every u ∈ U ∪ UΣ and v ∈ V according to
the results of membership queries, that is, he asks the teacher the membership
queries MQ(ε), MQ(a), and MQ(b); the teacher answers “no” to all of them, so
the learner sets T (·) to be the constant function 0. The result is shown as T0 in
Fig. 4. Since T0 is closed and consistent, we can build the DFA A0, also depicted
in Fig. 4, according to Definition 3.

In case the current T is not closed, the learner makes it closed by repeatedly
updating T as follows: he looks for a word u ∈ UΣ such that there is no u′ ∈ U
with row(u) = row(u′); then moves u to U and for every a ∈ Σ, he adds ua to UΣ
whenever needed while setting T (uav) for each v ∈ V by means of membership
queries. According to [11], whenever T is closed, it is also consistent since by
construction there do not exist u1, u2 ∈ U , u1 �= u2, with row(u1) = row(u2).

Instead of moving a single word u from UΣ to U when T is not closed, the
learner can also add all its prefixes Pref(u) to U just as the L∗ algorithm does
in [8]. This may result in a quicker growth of T , which anyway does not change
the correctness (cf. Theorem 3) and complexity (cf. Theorem 4) of the DFA
learning algorithm.

4.4 DFA Construction from an Observation Table

Definition 3 answers the second question about how to build a conjecture DFA
A from an observation table correctly.

Definition 3 (DFA of a Table). Let T be a closed and consistent observation
table. We can construct a DFA A = (Q, q̄, δ, F) from T as follows.

– Q = Rowsupp(T) = {row(u) | u ∈ U},
– q̄ = row(ε),
– δ(row(u), a) = row(ua), and
– F = { row(u) ∈ Rowsupp(T) | row(u)(ε) = 1 }.

54 Y. Li et al.

Consider the observation table T0 shown in Fig. 4. The learner can construct
from T0 the DFA A0 = (Q0, q̄, δ0, F0) where Q0 = {row(ε) = 0}, q̄ = row(ε),
F0 = ∅, and δ0 as depicted in Fig. 4. Note that in the whole paper we use
the representative words u ∈ U instead of the row functions row(u) defined in
Definition 3 to mark the states in a DFA; for instance, we mark the single state
of A0 with the representative word ε instead of the row function row(ε). In this
way, it is easier for the reader to relate the equivalence classes to the states in
the conjectured automaton.

Now the conjectured DFA A0 is constructed and the learner can pose the
equivalence query EQ(A0) to the teacher. A0 is clearly not the right conjecture,
so the teacher answers “no” together with a counterexample, say bbab ∈ L(M)�
L(A0). In the following we provide the answer to the third question, that is, how
to update the observation table from the received counterexample.

4.5 Counterexample Analysis

On receiving the counterexample w, the learner has to analyze w in order to
update the observation table; this would then allow the learner to expand the
conjectured DFA by adding new states to correctly classify the received coun-
terexample. To discover new states in M, we essentially need new experiments
for the table; the following lemma provides a way to find such new experiments.

Lemma 1. Let R be the target language and A be the conjectured DFA. On
receiving a counterexample v ∈ R � L(A), we can always find an experiment
v′ ∈ Suf(v), words u, u′ ∈ U , and letter a ∈ Σ such that row(ua) = row(u′) and
uav′ ∈ R ⇐⇒ u′v′ /∈ R.

As a notation, we use MQ(s, w) to denote the membership query MQ(s · w)
in order to give a clear presentation of the analysis procedure on the returned
counterexample v as explained in the following. On receiving a counterexample
v ∈ R and v /∈ L(A), the learner can check whether the membership queries
return different results for v and ṽ where ṽ = A(v). Let n = |v| and for i ∈
[1 · · · n], let si = A(v[1..i]) be the state reached after reading the first i letters
of v. Recall that si ∈ U is the representative word of that state in the upper
part of the observation table. In particular, s0 = ε. Therefore, ṽ = sn and
there is a sequence of membership queries MQ(s0, v[1..n] = v), MQ(s1, v[2..n]),
MQ(s2, v[3..n]), and so on, up to MQ(sn, ε) = MQ(ṽ, ε). This sequence has
different results for the first and the last query since s0 · v ∈ R while ṽ · ε /∈ R
by the assumption. It follows that there exists an experiment v[i + 1..n] for the
earliest 1 ≤ i ≤ n distinguishing si−1a

′ from si. Let u = si−1, u′ = si, a = a′,
and v′ = v[i + 1..n]. According to Definition 3, we have row(ua) = row(u′) since
A(si−1a) = A(ua) = u′ = si and uav′ ∈ R while u′v′ /∈ R. The handling for the
other case when v /∈ R and v ∈ L(A) is symmetric.

According to Lemma 1, on receiving a counterexample bbab ∈ R � L(A0),
the learner poses a sequence of membership queries MQ(s0 = ε, bbab), MQ(s1 =

Learning Büchi Automata and Its Applications 55

ε bab
ε 0 0
a 0 0
b 0 1

T ′
0

ε bab
ε 0 0
b 0 1
a 0 0

ba 0 1
bb 0 0

T1

ε b

a
b

a

b

A1

Fig. 5. Tables T ′
0 , T1, and DFA A1

ε, bab), MQ(s2 = ε, ab), MQ(s3 = ε, b), and MQ(s4 = ε, ε); it is easy to check
that the experiment v[2..4] = bab distinguishes s0b = b from s1 = ε. Therefore,
the learner adds bab into the set V and updates the mapping T via membership
queries, until obtaining the observation table T ′

0 shown in Fig. 5. As T ′
0 is not

closed since there is no u ∈ U such that row(u) = row(b), the learner moves the
row b to the upper table, i.e., to the set U , and adds the rows ba and bb—the
one letter extensions of b—to the lower part of the table as mentioned before.
The learner then fills the missing entry values by means of membership queries;
the resulting observation table is T1 shown in Fig. 5. As T1 is closed and also
consistent, the learner can build the DFA A1 from T1, depicted in Fig. 5.

We remark that instead of finding just one experiment v′ ∈ Suf(v), our
learner may also add all its suffixes Suf(v) into V just as the algorithm does
in [76]. This may also result in a quicker grown of T , which anyway does not
change the correctness (cf. Theorem 3) and complexity (cf. Theorem 4) of the
DFA learning algorithm we are presenting.

The learner poses now the equivalence query EQ(A1) to the teacher; since
L(A1) �= R, the teacher returns “no” and a counterexample, say again bbab ∈
L(M) � L(A1). Similarly to the previous counterexample analysis, the learner
asks the sequence of membership queries MQ(s0 = ε, bbab), MQ(s1 = b, bab),
MQ(s2 = ε, ab), MQ(s3 = ε, b), and MQ(s4 = ε, ε), which allows the learner to
find the experiment w[3..4] = ab to distinguish s1b = bb from s2 = ε. The learner
adds ab into the set V and updates T by further membership queries, resulting
in the observation table T ′

1 shown in Fig. 6.
T ′
1 is not closed, since there is no row in the upper part corresponding to

row(bb), so the learner moves bb to the upper part, adds bba and bbb to the
lower part, and fills the content of the table by means of membership queries.
The result of these operations is table T ′′

1 which is still not closed since there
does not exist u ∈ U such that row(bbb) = row(u). Therefore, as before, the
learner moves bbb to the upper part, adds the missing words bbba and bbbb to
the lower part, and fills the content, obtaining the table T2 depicted in Fig. 6,
which is now closed. The DFA A2 constructed from T2 is depicted in Fig. 6 and
the learner gets the answer “yes” from the teacher after posing the equivalence
query EQ(A2), which means that he has completed his learning task.

56 Y. Li et al.

ε bab ab
ε 0 0 0
b 0 1 0
a 0 0 0

ba 0 1 0
bb 0 0 1

T ′
1

ε bab ab
ε 0 0 0
b 0 1 0

bb 0 0 1
a 0 0 0

ba 0 1 0
bba 0 0 1
bbb 1 0 0

T ′′
1

ε bab ab
ε 0 0 0
b 0 1 0

bb 0 0 1
bbb 1 0 0

a 0 0 0
ba 0 1 0

bba 0 0 1
bbba 1 0 0
bbbb 0 0 0

T2

ε b

bbbbb

a

b

a

b

a

b

a

b

A2

Fig. 6. Tables T ′
1 , T ′′

1 , T2, and DFA A2

Algorithm 1. The DFA Learner
1 Initialize table T = (T, U, V) with U = {ε} and V = {ε};
2 CloseTable(T , MQ(·)) and let A = Aut(T);
3 Let (a, v) be the teacher’s response on EQ(A);
4 while a = “no” do
5 V = V ∪ FindDistinguishingExperiment(v);
6 CloseTable(T , MQ(·)) and let A = Aut(T);
7 Let (a, v) be the teacher’s response on EQ(A);

8 return A;

4.6 The Learner

In the previous part of this section we have introduced a regular language learn-
ing algorithm by means of a running example. We now give the formal definition
of the learner by means of Algorithm 1 for completeness of presentation; we can
see that it agrees with the learning procedure we presented above. The function
CloseTable is responsible for closing a table T , so it needs to perform mem-
bership queries MQ(·) to fill the missing entry values in T . Moreover, as we
have seen, it may repeatedly move rows from the lower to the upper part of the
input table and add new rows to the lower part, until the table becomes closed.
All conjectured DFAs are constructed from the table T by calling the function
Aut(T) based on Definition 3. On receiving a counterexample v, the function
FindDistinguishingExperiment(v) gets a new experiment which is later added
into the set V . The refinement loop of the conjecture A terminates once we get
a positive answer from the teacher.

The soundness and completeness of Algorithm 1 is guaranteed by Theorem 3.

Theorem 3. Assume that R is the target regular language. Algorithm 1 termi-
nates and returns a DFA A such that L(A) = R.

The returned DFA A from Algorithm 1 is a correct conjecture automaton
simply because the teacher has approved it. The remaining problem is how we

Learning Büchi Automata and Its Applications 57

show the termination of Algorithm 1. The reason why Algorithm 1 terminates is
that: (1) by Lemma 1, we can discover new states, i.e., new equivalence classes in
Σ∗/�R

, whenever receiving a counterexample from the teacher and (2) the index
of �R is finite according to Theorem 2. It follows immediately the complexity
result in Theorem 4.

Theorem 4. Let R be the target regular language and n = |�R|; let m be the
maximum length of any counterexample returned by the teacher.

1. Algorithm 1 terminates on receiving at most n counterexamples.
2. The number of membership queries is in O(n2 · |Σ| + n · m).

5 Learning Büchi Automata

After presenting the DFA learning algorithm in Sect. 4, we are now ready to
introduce the learning algorithm for Büchi automata. Throughout this section,
except stated otherwise, we let the ω-regular language L be the target language.

We have seen that, for learning a regular language R, the right congruence
relation �R plays an important role in identifying the equivalence classes in
Σ∗/�R

, so we could consider to extend such an approach to the ω-regular lan-
guage setting. It would be easy to learn ω-regular languages by means of BAs
if we can characterize them by a right congruence relation �L of finite index
for each given ω-regular language L. There are, however, few questions to be
answered for such an extension:

– How can we use finite memory to represent an ω-word, which has infinite
length?

– Is there a right congruence relation �L of finite index for a given ω-regular
language L?

The answer to the first question is easy: we only need to learn the set of ultimately
periodic words UP(L) for a given ω-regular language L, since by Theorem 1 the
set UP(L) is the fingerprint of L; given that every ultimately periodic word w
can be written as a pair of finite words (u, v) with w = uvω, only finite memory
is needed for storing w.

5.1 Right Congruences for ω-Regular Languages

In contrast, the answer to the second question is more tricky: a first proposal
for extending the right congruence relation �R with respect to the ω-regular
language L replaces the extension v ∈ Σ∗ with the ultimately periodic extension
xyω for x ∈ Σ∗ and y ∈ Σ+.

Definition 4. Let u1 and u2 be words in Σ∗. u1 �L u2 if and only if for every
x ∈ Σ∗ and y ∈ Σ+, u1xyω ∈ L ⇐⇒ u2xyω ∈ L.

58 Y. Li et al.

Based on the right congruence �L, Maler and Pnueli [76] introduced a learning
algorithm to learn a strict subset of ω-regular languages. Nonetheless, the right
congruence relation �L is in general not enough to learn an ω-regular language
L, as the following example shows.

Example 2. Assume L = {a, b}∗ · bω. The index of �L is 1 and the only equiv-
alence class is [ε]�L

. This follows from the fact that for any u ∈ Σ∗, we have
u · xyω ∈ L if yω = bω, otherwise u · xyω /∈ L. Therefore, we only have one state
with self-loops in the conjectured BA A which certainly does not recognize the
target language L, since A accepts either Σω or ∅, depending on whether the
single state is accepting or not, respectively.

The reason why it is so difficult to learn ω-regular languages via Büchi
automata is that there is a lack of right congruence for Büchi automata com-
pared to DFAs and regular languages. Farzan et al. in [42] proposed the first
learning algorithm to learn the complete class of ω-regular languages by means
of Büchi automata; their algorithm circumvents the lack of right congruence by
first using L∗ to learn the DFA D$, as defined in [26], and then transforming D$

to a BA. Basically, the DFA D$ captures the set of ultimately periodic words of
L by means of the regular language L(D$) = {u$v | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L },
where $ /∈ Σ.

Another way to solve the lack of right congruence is to define a Myhill-
Nerode like theorem for ω-regular languages. Inspired by the work of Arnold [12],
Maler and Staiger [77] proposed the notion of family of right-congruences (FORC
for short) and presented a “Myhill-Nerode” theorem for ω-languages. The idea
underlying the definition of FORC is based on the fact that every ω-regular
language L can be written in the form of an ω-regular expression

⋃n
i=1 Ui · V ω

i

for some n ∈ N, where for any i ∈ [1 · · · n], Ui and Vi are regular languages. So
the intuition of using FORC is to first define a right congruence � to distinguish
all finite word prefixes, and then define a right congruence ≈u for the finite word
periods for each equivalence class [u]� of the finite word prefixes. Hence we see
that [ui]� = Ui with ui ∈ Ui being an equivalence class in Σ∗/� and [vi]≈ui

= Vi

being an equivalence class in Σ∗/≈ui
such that ui · V ω

i ⊆ L.

5.2 Family of Deterministic Finite Automata

Based on this idea of FORC, Angluin and Fisman [11] recently proposed to
learn ω-regular languages via a formalism called family of DFAs (FDFA for
short), in which every DFA corresponds to a right congruence of finite index.
Further, Angluin et al. [9] suggest to use FDFAs as language acceptors of ω-
regular languages. The BA learning algorithm described in this section first
learns an FDFA and then transforms it to a BA. The formal definition of an
FDFA is as follows.

Definition 5 (Family of DFAs [9]). A family of DFAs F = (M, {Aq}) con-
sists of a leading DFA M = (Q, q̄, δ, ∅) and a set of progress DFAs {Aq =
(Qq, q̄q, δq, Fq) | q ∈ Q }.

Learning Büchi Automata and Its Applications 59

ε ε a

a

b

a, b
a

b

M Aε

Fig. 7. An example of an FDFA F = (M, {Aε})

An example of FDFA F is depicted in Fig. 7 where the leading DFA M has
only one state ε and the progress DFA corresponding to the state ε is Aε.

Each FDFA F characterizes a set of ultimately periodic words UP(F) by the
acceptance condition defined as follows.

Definition 6 (Acceptance condition of FDFA). Let F = (M, {Aq}) be a
FDFA and w be an ultimately periodic word. We say that

– w is accepted by F if there exists a decomposition (u, v) of w accepted by F ;
– a decomposition (u, v) is accepted by F if M(uv) = M(u) and the decompo-

sition (u, v) is captured by F ; and
– a decomposition (u, v) is captured by F if v ∈ L(Aq) where q = M(u).

Consider the FDFA F in Fig. 7: (ab)ω is accepted by F since there exists
the decomposition (a, ba) of (ab)ω such that M(a · ba) = M(a) = ε and ba ∈
L(AM(a)) = L(Aε). Note that the decomposition (ab, ab) of (ab)ω is not accepted
by F since (ab, ab) is not captured by F , i.e., ab /∈ L(AM(ab)) = L(Aε).

In the following, we recall the definition of the complement of an FDFA F .

Definition 7 (Complement of FDFA [9]). Given an FDFA F = (M, {Aq}),
the complement FC of F is the FDFA FC = (M, {(Aq)C}).

It is easy to see that the complement FDFA FC captures every decomposition
(u, v) in Σ∗ × Σ+ which is not captured by F .

It is shown in [11] that for every ω-regular language L, there exists an FDFA
F such that UP(F) = UP(L). More precisely, Angluin and Fisman [11] suggest
to use three kinds of FDFAs as canonical representations of ω-regular languages,
namely periodic FDFAs, syntactic FDFAs, and recurrent FDFAs. In this work,
we only consider the periodic FDFAs to simplify the presentation of the BA
learning algorithm; we refer the interested reader to [11,73] for more details on
the other two canonical FDFAs.

The definition of periodic FDFAs provided in [11] is given in terms of right
congruences.

Definition 8 (Periodic FDFA [11]). Let L be an ω-regular language.
Given u ∈ Σ∗, the periodic right congruence ≈u

P is an equivalence relation
on Σ∗ such that for each x, y ∈ Σ∗, x ≈u

P y if and only if for each v ∈ Σ∗, it
holds u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L.

The periodic FDFA F of L is the FDFA F = (M, {Au}) where:

– the DFA M = (Σ∗/�L
, [ε]�L

, δ, ∅) is the leading DFA, where δ([u]�L
, a) =

[ua]�L
for each u ∈ Σ∗ and a ∈ Σ;

60 Y. Li et al.

ε

a

b

a

b

b a

a, b

M

�L (ε, ab) (ε, ba)
ε 1 0
a 0 1
b 0 0

aa 0 0
ab 1 0
ba 0 0
bb 0 0

T

ε a

b ab

a

b a b

a, b

a

b

Aε

≈ε
P ε ab b
ε 0 1 0
a 0 0 1
b 0 0 0

ab 1 1 0
aa 0 0 0
ba 0 0 0
bb 0 0 0

aba 0 0 1
abb 0 0 0

Tε

ε b

a ba

b

a b a

a, b

b

a

Aa

≈a
P ε ba a
ε 0 1 0
a 0 0 0
b 0 0 1

ba 1 1 0
aa 0 0 0
ab 0 0 0
bb 0 0 0

baa 0 0 0
bab 0 0 1

Ta

ε

a

b

Ab

≈b
P ε
ε 0
a 0
b 0

Tb

Fig. 8. A periodic FDFA F = (M, {Aε, Aa, Ab}) with UP(F) = (ab)ω

– for each [u]�L
∈ Σ∗/�L

, the DFA Au = (Σ∗/≈u
P
, [ε]≈u

P
, δu, Fu) is a progress

DFA, where δu([v]≈u
P
, a) = [va]≈u

P
for each v ∈ Σ∗ and a ∈ Σ, and Fu =

{ [v]≈u
P

∈ Σ∗/≈u
P

| uvω ∈ L }.

As shown in [11], given an ω-regular language L, �L and ≈u
P for any u ∈ Σ∗

are all right congruences of finite index, so DFAs can be built from them.
We remark that the set of ultimately periodic words UP(F) accepted by the

periodic FDFA F is consistent with those characterized by the regular language
L(D$) defined in [26].

Consider the periodic FDFA F depicted in Fig. 8 where F characterizes the
ω-regular language L = (ab)ω. The leading DFA M of F has three states, namely
ε, a, and b which correspond to the equivalence classes [ε]�L

, [a]�L
, and [b]�L

,
respectively, given by the upper part U of T . The set of experiments V contains
decompositions of ultimately periodic words, which play the role of x and y in
Definition 4 introducing �L. As shown in table T for M , the experiments (ε, ab)
and (ε, ba) are enough to distinguish the equivalence classes in Σ∗/�L

. In fact,
for any u1, u2 ∈ Σ∗, an experiment xyω for which xyω �= ((ab)+)ω and xyω �=
((ba)+)ω cannot distinguish u1 and u2, since for sure we have u1 · xyω /∈ L and
u2 · xyω /∈ L. Since the leading DFA has three states ε, a, and b, there are three
progress DFAs in F associated to them, namely Aε, Aa, and Ab, respectively.

In the following, we show how the periodic FDFA F corresponds to the ω-
regular expression ε(ab)∗ · ((ab)+)ω ∪ a(ba)∗ · ((ba)+)ω ∪ {b, a(ba)∗a}{a, b}∗ · ∅,
where for clarity of presentation we use ∪ instead of the usual symbol + to
distinguish the different ω-regular expressions.

Learning Büchi Automata and Its Applications 61

Let us consider the first part of the ω-regular expression, i.e., ε(ab)∗ ·((ab)+)ω,
which corresponds to the state ε of M and its progress DFA Aε, whose lan-
guage is clearly L(Aε) = (ab)+. Let the components of M be (Q, ε, δ, ∅) and
consider the DFA Mε = (Q, ε, δ, {ε}) obtained by setting the accepting set of
M to {ε}. It is easy to see that L(Mε) = ε(ab)∗. Let U1 = L(Mε) = ε(ab)∗

and V1 = L(Aε) = (ab)+. It follows that the expression U1 · V ω
1 is exactly

ε(ab)∗ · ((ab)+)ω. Similarly we can get the other two ω-regular expressions
a(ba)∗ · ((ba)+)ω and {b, a(ba)∗a}{a, b}∗ · ∅ from the remaining two states a and
b of M and their corresponding progress DFAs Aa and Ab, respectively. Note
that ε(ab)∗ · ((ab)+)ω ∪ a(ba)∗ · ((ba)+)ω ∪ {b, a(ba)∗a}{a, b}∗ · ∅ = (ab)ω, that
is, the induced ω-regular expression corresponds to the language accepted by F .
In general, we can construct from the periodic FDFA F accepting L a unique
ω-regular expression representing L.

We remark that by fixing a state of M , say state ε, the right congruence ≈ε
P is

actually the same as the right congruence �R for the regular language R = V1.
Recall that the idea underlying FORC is to first define a right congruence �
distinguishing all finite word prefixes, and then define, for each equivalence class
[u]� of the finite word prefixes, a right congruence ≈u for the finite word periods.
Thus after fixing the equivalence class [ε]�L

for the finite word prefixes of L, we
can define the right congruence �R for the regular language R = V1 of finite
word periods defined as { v ∈ {a, b}+ | ε · vω ∈ L } and call it ≈ε

P . These right
congruences allow for the development of a learning algorithm for ω-regular
languages represented by FDFAs, where the FDFA learner can be seen as a
procedure to simultaneously run an instance of the DFA learner for each DFA
in the FDFA. In the remaining part of this section we first introduce a periodic
FDFA learner and then present the learning algorithm for BAs.

5.3 Learning a Family of DFAs

In order to present the periodic FDFA learner, we need first introduce the obser-
vation tables for each internal DFA learner. In this work, we often use FDFA
learner as a shorthand for the periodic FDFA learner since we only consider
periodic FDFAs. We remark that the FDFA learner introduced in this section is
specialized for the periodic FDFAs which differs from the FDFA learner specified
in [11,73] by requiring the received counterexamples satisfying Definition 9.

Observation Tables for a Family of DFAs. An observation table T for
the leading DFA learner, called leading table, has the same structure (U, V, T)
as the one for the DFA learner presented in Sect. 4.3 except that T and V are
adapted to handle ω-regular words: V is a set of decompositions rather than
a set of finite words; T : (U ∪ UΣ)V → {0, 1} is still a mapping but the entry
value of row u and column (x, y), denoted by T (u, (x, y)), is 1 if uxyω ∈ L and
0 otherwise. Consider for instance the leading table T shown in Fig. 8: we have
that V = {(ε, ab), (ε, ba)} is the set of experiments and T (a, (ε, ab)) = 0 since
a · ε · (ab)ω /∈ L while T (a, (ε, ba)) = 1 since a · ε · (ba)ω ∈ L. The row function

62 Y. Li et al.

(ε, ε)
ε 0
a 0
b 0

T

ε

a

b

M
≈ε

P ε
ε 0
a 0
b 0

Tε

ε

a

b

Aε

Fig. 9. The initial FDFA F0 and its corresponding tables while learning (ab)ω

remains unchanged, thus we still have row : (U ∪ UΣ) → (V → {0, 1}) being a
total function such that for each word u ∈ U ∪ UΣ, row(u) : V → {0, 1} is a
total function defined as row(u)(x, y) = T (u, (x, y)) for each (x, y) ∈ V .

For every u ∈ U of the leading table T , there exists an observation table
Tu for the progress DFA learner called progress table. Tu has the same structure
(Uu, Vu, Tu) as the one for the DFA learner (cf. Sect. 4.3) except that the entry
value of row x and column v, denoted by Tu(x, v), is 1 if u · (xv)ω ∈ L and 0
otherwise. Consider for instance the table Ta shown in Fig. 8: Ta(ε, ba) = 1 since
a · (εba)ω ∈ L while Ta(ε, a) = 0 since a · (εa)ω /∈ L.

Unless stated otherwise, all remaining notions for the table of a DFA learner
can be also directly applied to the leading table and progress tables, such as the
DFA construction from a table and the closeness and consistency of a table.

The Learning Procedure of the FDFA Learner. After the introduction
of the observation tables for the FDFA learner, we are now ready to give the
intuition about how the FDFA learner works by learning the ω-regular language
L = (ab)ω over Σ = {a, b}.

As for the DFA learner, at the beginning the FDFA learner has no information
so he initializes the components U and V of the leading table T to {ε} and
{(ε, ε)}, respectively. Then he turns to fill the content of T , so for each u ∈
U ∪ UΣ and (x, y) ∈ V , he makes a membership query MQ(u · x, y) whose
answer is stored as T (u, (x, y)); the membership query MQ(f, g) is used to asks
the FDFA teacher whether the word fgω belongs to L.

Once T is fully defined, the learner checks whether T is closed; if it is not
closed, he repeatedly moves rows from the lower part to the upper part, adds
the new rows in UΣ as needed, and fills T , as done by the DFA learner (see
Sect. 4.3), until T becomes closed.

As soon as T is closed, the learner constructs the corresponding leading
DFA M and then turns to the progress tables: for each u ∈ U of T , he first
creates a progress table Tu and then initializes both Uu and Vu to {ε}. For every
x ∈ Uu ∪ UuΣ and v ∈ Vu, Tu(x, v) is defined according to the result of the
membership query MQ(u, xy). Then the learner makes sure that each progress
table Tu is closed before constructing the corresponding progress DFA Au. Once
all DFAs are constructed, he is ready to pose the first equivalence query EQ(F0)
for the conjectured F0 to the FDFA teacher; F0 is shown in Fig. 9 together with
its corresponding tables.

Learning Büchi Automata and Its Applications 63

On receiving EQ(F), the teacher has to decide whether the conjectured FDFA
F is an appropriate periodic FDFA of the target language L. F0 = (M, {Aε}) is
clearly not the right conjecture so she answers “no” and provides a counterexam-
ple, say the decomposition (ε, ab). Note that the counterexample (x, y) returned
by the teacher is not just an ultimately periodic word xyω ∈ UP(F) � UP(L),
but it needs to satisfy additional requirements given in the following definition,
in order to be useful for the learner to refine the conjectured FDFA.

Definition 9 (Counterexample for the FDFA learner). Let L be the tar-
get language and F be the conjectured FDFA. We say that a counterexample
(u, v) is

– positive if (u, v) is not captured by F and uvω ∈ UP(L), and
– negative if (u, v) is captured by F and uvω /∈ UP(L).

Remark 1. Besides the periodic FDFAs, Angluin and Fisman [11] introduced also
the recurrent and the syntactic FDFAs, which make use of a different definition
of right congruence. Similarly to the periodic case, also for these two FDFAs it
is possible to define positive and negative counterexamples, which are however
more involved. We refer the interested reader to [73] for more details on these
two other types of FDFAs.

Refinement of the Conjectured FDFA F . In order to decide which DFA
in the conjectured F has to be refined, the learner acts differently depending on
whether the received counterexample (u, v) is positive or negative.

If (u, v) is a positive counterexample, the learner proceeds as follows: let
ũ = M(u); if ũ · vω ∈ UP(L), then the progress DFA Aũ is refined, otherwise
the leading DFA M is refined. In case (u, v) is a negative counterexample, the
learner just acts symmetrically: if ũ · vω ∈ UP(L), then M is refined, otherwise
Aũ is refined.

Consider again the conjectured FDFA F shown in Fig. 9 and the returned
counterexample (ε, ab): (ε, ab) is clearly a positive counterexample so the con-
jectured progress DFA Aε has to be refined since ũ = ε = M(ε) and ε · (ab)ω ∈
UP(L).

Refinement of the Progress DFA Aũ. Assume that (u, v) is a positive counterex-
ample: by definition we have that ũ · vω ∈ UP(L) and Aũ has to be refined so to
accept v.

The counterexample analysis is similar to Lemma 1 due to the close relation
of ≈u

P with �R: let n = |v| and for each i ∈ [1 · · · n], let si = Aũ(v[1..i]) be
the state in Aũ after reading the first i letters of v; recall that s0 = ε. There
exists a sequence of membership queries MQ(ũ, s0 · v[1..n]), MQ(ũ, s1 · v[2..n]),
and so on, up to MQ(ũ, sn · ε). By assumption we have ũ · (s0 · v[1..n])ω ∈ L
while ũ · (sn · ε)ω /∈ L due to the fact that (u, v) is not captured by F and
thus sn is not an accepting state. Recall that by Definition 8, the accepting set
Fũ of the progress DFA Aũ is the set of equivalence classes { [v]≈ũ

P
| ũ · vω ∈

64 Y. Li et al.

(ε, ε)
ε 0
a 0
b 0

T

ε

a

b

M
≈ε

P ε b
ε 0 0
a 0 1

ab 1 0
b 0 0

aa 0 0
aba 0 1
abb 0 0

Tε

ε a

ab

b
a

a

ba
b

Aε

Fig. 10. The refined FDFA F1 and its corresponding tables while learning (ab)ω

L }. Therefore, the learner can find the first experiment v[j + 1..n] such that
ũ · (sj−1v[j] · v[j + 1..n])ω ∈ L while ũ · (sj · v[j + 1..n])ω /∈ L; this means that
sj−1v[j] and sj do not represent the same equivalence class and must be split.

Consider again the conjectured FDFA F0 shown in Fig. 9 that has to be
refined by means of the positive counterexample (ε, ab), which requires to refine
the progress Aε: from the sequence of membership queries MQ(ε, 〈s0 = ε〉 · ab),
MQ(ε, 〈s1 = ε〉 · b), and MQ(ε, 〈s2 = ε〉 · ε), the learner finds the experiment
b distinguishing ε · a from ε. So he first adds b to Vε of table Tε, then fills the
missing entries, makes the table Tε closed, and constructs from Tε a new FDA
Aε, resulting in a new conjectured FDFA F1, shown in Fig. 10.

With F1 at hand, the learner can ask the teacher the equivalence query
EQ(F1); she answers “no” with for instance the counterexample (ε, bab). Accord-
ing to Definition 9, (ε, bab) is a negative counterexample, since it is captured by
F1 but clearly ε(bab)ω /∈ L = (ab)ω. The learner has to refine again the progress
DFA Aε: after asking the sequence of membership queries MQ(ε, 〈s0 = ε〉 · bab),
MQ(ε, 〈s1 = ε〉 · ab), MQ(ε, 〈s2 = a〉 · b), and MQ(ε, 〈s3 = ab〉 · ε), he finds the
experiment ab distinguishing ε · b from ε. In general, on receiving a negative
counterexample (u, v), the sequence of membership queries has different results
for the first query (ũ, ε · v) and the last query (ũ, Aũ(v) · ε). This is because
ũ · (ε · v)ω /∈ L by assumption while ũ · (Aũ(v) · ε)ω ∈ L since Aũ(v) is an accept-
ing state. The learner thus uses the experiment ab to update the table Tε as
seen before and constructs a new progress DFA Aε out of Tε, which are shown
in Fig. 11.

The learner is ready to ask the equivalence query EQ(F2) obtaining yet
another time “no” as answer, together with a counterexample, say (a, ab), which
is again a negative counterexample. Since ũ = M(a) = ε and ε · (ab)ω ∈ L, the
learner this time has to refine the leading DFA M .

Refinement of the Leading DFA M . Assume that the learner has received a neg-
ative counterexample (u, v); the case of positive counterexamples is symmetric
and thus omitted here. Let ũ = M(u); by definition we have uvω /∈ L while
ũvω ∈ L. Let n = |u| and for every i ∈ [1 · · · n], let si = M(u[1..i]) be the state

Learning Büchi Automata and Its Applications 65

(ε, ε)
ε 0
a 0
b 0

T

ε

a

b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

Fig. 11. The intermediate FDFA F2 and its corresponding tables while learning (ab)ω

in M after reading the first i letters of u. In particular, s0 = ε. As in the pre-
vious analyses, there is the sequence of membership queries MQ(s0 · u[1..n], v),
MQ(s1 · u[2..n], v), and so on, up to MQ(sn · ε, v). This sequence has different
results for the first and the last query since s0 ·u[1..n] ·vω /∈ L while sn ·ε·vω ∈ L.
Therefore, the learner can find the first experiment (u[j + 1..n], v) such that
sj−1 · u[j] · u[j + 1..n] · vω /∈ L while sj · u[j + 1..n] · vω ∈ L, which means that
the experiment (u[j + 1..n], v) can be used to distinguish sj−1 · u[j] from sj .

Consider again the FDFA F2 shown in Fig. 11 and the negative counterex-
ample (a, ab): the learner finds the experiment (ε, ab) to distinguish ε · a from ε.
As usual, after updating the leading table T by adding the experiment (ε, ab)
and closing T , the learner constructs a new conjecture leading DFA M , which is
depicted in Fig. 12. Moreover, for every new state u ∈ U of T , he initializes a new
progress table Tu and builds the corresponding progress DFA Au as before; see
for example the progress table Ta and the progress DFA Aa depicted in Fig. 12.

The learner asks the teacher whether F2 is correct. Assume that the teacher
answers “no” with the counterexample (bb, ab) which is negative. By following
the same procedure as above, he finds the experiment (b, ab) to distinguish ε · b
from a, which is used to update the leading table T with experiment (b, ab) and
to add the new progress DFA Ab for the state b of M , obtaining the FDFA F4

shown in Fig. 13.
By comparing the leading DFA M in F4 in Fig. 13 with the one in Fig. 7, we

can see that they are the same, so M is not going to be changed anymore since
it is already consistent with the one induced by �L in Definition 8. However, the
progress DFA Aa is still not correct so the teacher answers “no” to the equiva-
lence query EQ(F4) posed by the learner. Assume that the teacher returns the
counterexample (a, ba) which is positive. The learner then finds the experiment
a to refine the progress DFA Aa and finally he generates the new conjectured
FDFA F5 depicted in Fig. 14.

66 Y. Li et al.

(ε, ε) (ε, ab)
ε 0 1
a 0 0
b 0 0

aa 0 0
ab 0 1

T

ε

a

a, b

a

b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

≈a
P ε
ε 0
a 0
b 0

Ta

ε

a

b

Aa

Fig. 12. The intermediate FDFA F3 and its corresponding tables while learning (ab)ω

(ε, ε) (ε, ab) (b, ab)
ε 0 1 0
a 0 0 1
b 0 0 0

aa 0 0 0
ab 0 1 0
ba 0 0 0
bb 0 0 0

T

ε

a

b

a

b

b a

a, b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

≈a
P ε
ε 0
a 0
b 0

Ta

ε

a

b

Aa

≈b
P ε
ε 0
a 0
b 0

Tb

ε

a

b

Ab

Fig. 13. The FDFA F4 and its corresponding tables while learning (ab)ω

The FDFA F5 is still not the right conjecture and the teacher answers again
“no” to the equivalence query for it. Assume that the returned counterexample
is (a, aba) which is clearly negative. As before, the learner refines the progress
DFA Aa and gets a new conjecture FDFA F6 shown in Fig. 15.

The teacher now answers “yes” to the equivalence query EQ(F6) and the
learner has completed his job.

The FDFA Learner. By means of the previous example, we have introduced
informally the ω-regular language learning algorithm, which is formalized in
Algorithm 2 as the periodic FDFA learner. We can note that the learning pro-
cedure we described in the running example follows exactly the steps of the
algorithm. In Algorithm 2 we have functions acting on DFAs that are special-
ized for the leading DFA M (whose with subscript l) and functions specialized

Learning Büchi Automata and Its Applications 67

(ε, ε) (ε, ab) (b, ab)
ε 0 1 0
a 0 0 1
b 0 0 0

aa 0 0 0
ab 0 1 0
ba 0 0 0
bb 0 0 0

T

ε

a

b

a

b

b a

a, b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

≈a
P ε a
ε 0 0
b 0 1

ba 1 0
a 0 0
bb 0 0

baa 0 0
bab 0 1

Ta

ε b

ba

a
b

b

ab
a

Aa

≈b
P ε
ε 0
a 0
b 0

Tb

ε

a

b

Ab

Fig. 14. The intermediate FDFA F5 and its corresponding tables while learning (ab)ω

for the progress DFAs (whose with subscript p). Since for the refinement of the
progress DFA Aũ the learner does not need the word u but just ũ, function
FindDistinguishingExperimentp takes the parameter instance ũ instead of u.

The soundness and completeness of Algorithm 2 are guaranteed by Theo-
rem 5.

Theorem 5. Assume that L is the target ω-regular language. Algorithm 2 ter-
minates and returns a periodic FDFA F capturing the set of decompositions
{ (u, v) ∈ Σ∗ × Σ+ | uvω ∈ L }.

Clearly, the FDFA F returned by Algorithm 2 is a correct conjecture because
the teacher has approved it; Algorithm 2 terminates because: (1) we can discover
new states, i.e., new equivalence classes in Σ∗/�L

or in Σ∗/≈ũ
P
, whenever receiv-

ing a counterexample (u, v) from the teacher, where ũ = M(u) (cf. [72]); and (2)
�L and ≈ũ

P for any u ∈ Σ∗ are all right congruences of finite index (cf. [11]).
The complexity of Algorithm 2 is stated in Theorem 6; let the length of a

decomposition (u, v) be the sum of the lengths of u and v, i.e., |(u, v)| = |u|+ |v|.

Theorem 6. Given a target ω-regular language L, let n be the sum of the
indexes of the right congruences, i.e., n = |�L| +

∑
[u]�L

∈Σ∗/�L
|≈u

P |, and m

be the maximum length of any counterexample (u, v) returned by the teacher.

1. Algorithm 2 terminates on receiving at most n counterexamples.
2. The number of membership queries is in O(n2 · |Σ| + n · m).

The reason why Algorithm 2 terminates on receiving at most n counterexamples
is obvious since there are n states in the periodic FDFA of L. The reason why

68 Y. Li et al.

(ε, ε) (ε, ab) (b, ab)
ε 0 1 0
a 0 0 1
b 0 0 0

aa 0 0 0
ab 0 1 0
ba 0 0 0
bb 0 0 0

T

ε

a

b

a

b

b a

a, b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

≈a
P ε a ba
ε 0 0 1
b 0 1 0

ba 1 0 1
a 0 0 0
bb 0 0 0

baa 0 0 0
bab 0 1 0
aa 0 0 0
ab 0 0 0

Ta

ε b

a ba

a

b

b a

a, b

b

a

Aa

≈b
P ε
ε 0
a 0
b 0

Tb

ε

a

b

Ab

Fig. 15. The final FDFA F6 and its corresponding tables while learning (ab)ω

the number of membership queries is in O(n2 · |Σ| + n · m) is the following:
let l be the number of states in the leading DFA M and p1, p2, . . . , pl be the
number of states in the progress DFAs, respectively; we have l +

∑l
i=1 pi = n.

By Theorem 4, a DFA with k1 states and longest counterexample of length k2
can be learned by at most k2

1 · |Σ| + k1 · k2 membership queries, thus we need at
most l2 · |Σ| + l · m +

∑
i=1(p

2
i · |Σ| + pi · m) ∈ O(n2 · |Σ| + n · m) membership

queries.

5.4 Learning Büchi Automata

In the previous section we presented the FDFA learning algorithm, which is our
secret ingredient in learning a BA: we first learn an FDFA F and then transform
the learned F to a BA. This is just one sentence introduction to the BA learning
algorithm; there are however several details than need to be concretized in order
to get a working algorithm.

Overview of the BA Learning Framework. In the following we begin with
an introduction of the framework presented in [73] for learning BA as depicted in
Fig. 16. In this section, we let the ω-regular language L be the target language
and we assume that we already have a BA teacher who knows the language
L and can answer membership and equivalence queries about L. In order to
distinguish membership and equivalence queries posed by the FDFA learner and
the BA learner, we use a superscript like FDFA and BA to mark queries from the

Learning Büchi Automata and Its Applications 69

Algorithm 2. The Periodic FDFA Learner
1 Initialize leading table T = (U, V, T) with U = {ε} and V = {(ε, ε)};
2 CloseTablel(T , MQ(·)) and let M = Aut l(T);
3 foreach u ∈ U do
4 Initialize progress table Tu = (Uu, Vu, Tu) with Uu = {ε} and Vu = {ε};
5 CloseTablep(Tu, MQ(·)) and let Au = Autp(Tu);

6 Let (a, (u, v)) be the teacher’s response on EQ(F);
7 while a = “no” do
8 Let ũ = M(u);
9 if MQ(ũ, v) �= MQ(u, v) then

10 V = V ∪ FindDistinguishingExperiment l(u, v);
11 CloseTablel(T , MQ(·)) and let M = Aut l(T);
12 foreach newly added u ∈ U do
13 Initialize progress table Tu = (Uu, Vu, Tu) with Uu = {ε} and

Vu = {ε};
14 CloseTablep(Tu, MQ(·)) and let Au = Autp(Tu);

15 else
16 Vũ = Vũ ∪ FindDistinguishingExperimentp(ũ, v);

17 CloseTablep(Tũ, MQ(·)) and let Aũ = Autp(Tũ);

18 Let (a, (u, v)) be the teacher’s response on EQ(F);

19 return F ;

FDFA learner and the BA learner, respectively. For instance, the membership
query MQFDFA(·) is posed by the FDFA learner while MQBA(·) is asked by the
BA learner.

The BA learner, shown in Fig. 16 surrounded by the dashed box, has three
components, namely the FDFA learner, the component transforming an FDFA
F to a BA BF , and the counterexample analysis component. The BA learner
first uses the FDFA learner to learn an FDFA F by means of membership and
equivalence queries. This makes some problem the BA learner has to solve: on
the one side, in order to answer queries posed by the FDFA learner, the BA
learner needs an FDFA teacher to answer membership and equivalence queries
about the target periodic FDFA of L; one the other side, there is only a BA
teacher who can answer queries about the target language.

In this situation, the BA learner acts as an interface between the FDFA
teacher and the FDFA learner and tries to pretend to be an FDFA teacher when
he has to answer the queries from the FDFA learner. In other words, the BA
learner becomes the FDFA teacher by interacting with the BA teacher. To that
end, the FDFA teacher answers to a membership query MQFDFA(u, v) by simply
forwarding the answer to the membership query MQBA(uvω) obtained from the
BA teacher to the FDFA learner, which is trivial.

It is, however, more tricky for the FDFA teacher to answer an equivalence
query EQFDFA(F) posed by the FDFA learner. The FDFA teacher first needs to
transform the conjectured FDFA F to a BA BF and then poses the equivalence
query EQBA(BF) to the BA teacher. If the BA teacher answers “yes”, the BA

70 Y. Li et al.

F
D
FA

le
ar
ne
r

FDFA F to BA BF

CE Analysis

B
A

te
ac

h
er

BA learner
FDFA teacher

Output BF

MQFDFA(u, v) MQBA(uvω)

yes/no

EQFDFA(F) EQBA(BF)

F

no + uvωno + (u′, v′)

yes

Fig. 16. Overview of the BA learning framework based on FDFA learning

learner first receives the answer and then outputs the BA BF as he has com-
pleted the learning task. Otherwise the BA teacher returns “no” together with a
counterexample uvω given as a decomposition (u, v). The BA learner then per-
forms the counterexample analysis and, by acting as an FDFA teacher, he feeds
the FDFA learner with a valid decomposition (u′, v′) which satisfies Definition 9,
so that the FDFA learner can further refine the current FDFA F .

Note that in Fig. 16 there is a dashed arrow labeled with F entering the
counterexample analysis block: it indicates the fact that the FDFA teacher needs
to use the current conjectured FDFA F in the analysis of the counterexample, as
we will see later. We want to remark that, according to Fig. 16, the BA teacher is
oblivious of the FDFA learner, since she only sees a BA learner interacting with
her and similarly, the FDFA learner does not know that there is a BA teacher
since it is the FDFA teacher that is answering his queries.

From the framework depicted in Fig. 16, we get the rough idea about how
to build a BA learner out of an FDFA learner. Yet there are still few details we
have to sort out:

– How can we transform an FDFA F to a BA BF?
– How can we get a valid counterexample (u′, v′) for the FDFA learner out of

a counterexample (u, v) returned by the BA teacher?

The answers to the above questions are the missing bricks we need to build
a BA learner based on an FDFA learner. In the following, we first answer the
question on how to do the transformation from an FDFA to a BA and then
introduce the counterexample analysis through an example.

From FDFA F to BA BF . Assume that we want to learn a BA which accepts
the ω-regular language L = (ab)ω over Σ = {a, b}. To that end, the BA learner
first initializes an FDFA learner which constructs the initial conjectured FDFA

Learning Büchi Automata and Its Applications 71

ε

M
a

b

ε

a

b

Aε a

b

b

a

a, b

Fig. 17. An FDFA F such that UP(F) does not characterize an ω-regular language

F0 as depicted in Fig. 9 via membership queries. On receiving the conjectured
FDFA F0, the BA learner has to construct a BA BF0 from F0 which we illustrate
in the following.

To answer an equivalence query EQFDFA(F), the BA learner needs fist to
covert F into a BA BF in order to exploit the BA teacher to answer the query.
The first question one may ask in doing this is:

– Is it possible to construct a precise BA BF for each given FDFA F such that
UP(L(BF)) = UP(F)?

The answer is actually no, as the following example shows.

Example 3 (Non-regular ω-language accepted by an FDFA [73]). Consider the
FDFA F depicted in Fig. 17 where UP(F) =

⋃∞
n=0{a, b}∗ · (abn)ω. Assume that

UP(F) characterizes an ω-regular language L. It is claimed in [11] that for every
ω-regular language, there exists a periodic FDFA recognizing it and the index
of each right congruence of the periodic FDFA is finite. Therefore we let F ′ be
the periodic FDFA of L and we know that the right congruence ≈ε

P of F ′ is of
finite index. However, we can show that the right congruence ≈ε

P of F ′ has to
be of infinite index. Observe that abk �≈ε

P abj for any k, j ≥ 1 and k �= j, since
ε · (abk · abk)ω ∈ UP(F) and ε · (abj · abk)ω /∈ UP(F) according to Definition 8.
It follows that ≈ε

P is of infinite index. Contradiction. Thus we conclude that
UP(F) cannot characterize an ω-regular language.

Therefore, in general, one can not construct a BA BF from an FDFA F such
that UP(L(BF)) = UP(F). The authors of [73] suggested two BA construc-
tions to approximate the set of ultimately periodic words UP(F): the under-
approximation and the over-approximation construction. In this work, we only
introduce the under-approximation construction from [73], which produces a BA
BF that under-approximates UP(F), i.e., UP(L(BF)) ⊆ UP(F). This construc-
tion was originally proposed by Calbrix et al. in [26].

We first give the main idea behind the under-approximation method and
then give its formal definition. Let F be the FDFA F = (M, {Au}) with M =
(Q, q̄, δ, ∅) and Au = (Qu, su, δu, Fu) for each u ∈ Q. Let Ms

v = (Q, s, δ, {v})
and (Au)s

v = (Qu, s, δu, {v}) be the DFAs obtained from M and Au by setting
their initial state and accepting states to s and {v}, respectively. We define
N(u,v) = { vω | M(uv) = M(u)∧ v ∈ L((Au)su

v) }, which contains only the words

72 Y. Li et al.

v ∈ L((Au)su
v) such that u = M(u) = M(uv). Recall that we use words u and

v to represent the states in the DFAs. Therefore, according to the acceptance
condition of FDFAs in Definition 6, we have that UP(F) =

⋃
u∈Q,v∈Fu

L(M q̄
u) ·

N(u,v) where L(M q̄
u) contains the set of finite prefixes and N(u,v) contains the

set of finite periodic words for every state pair (u, v).
We construct BF by approximating the set N(u,v), i.e., the set of finite peri-

odic words. We first define the FA P(u,v) = (Q(u,v), s(u,v), δ(u,v), {f(u,v)}) =
Mu

u × (Au)su
v × (Au)v

v and let N (u,v) = L(P(u,v))ω. Recall that the notation
× here is the intersection operation of FAs. Then we can construct the BA
(Q(u,v) ∪{f}, s(u,v), δ(u,v) ∪δf , {f}) recognizing N (u,v) where f is a “fresh” state
and δf = {(f, ε, s(u,v)), (f(u,v), ε, f)}. Note that ε transitions can be taken with-
out consuming any letters and can be removed by standard methods in automata
theory, see, e.g., [56]. Intuitively, we under-approximate the set N(u,v) as N (u,v)

by only keeping vω ∈ N(u,v) if Au(v) = Au(v · v) where v ∈ Σ+.
In Definition 10 we provide the construction procedure for a BA BF such

that UP(L(BF)) =
⋃

u∈Q,v∈Fu
L(M q̄

u)·N (u,v) =
⋃

u∈Q,v∈Fu
L(M q̄

u)·(L(P(u,v)))ω,
as originally proposed in [26].

Definition 10 ([73]). Let F = (M, {Au}) be an FDFA where M = (Q, q̄, δ, ∅)
and Au = (Qu, su, δu, Fu) for each u ∈ Q. Let (Q(u,v), s(u,v), δ(u,v), {f(u,v)})
be a BA recognizing N (u,v). Then the BA BF is defined as the tuple BF =
(QBF , q̄BF , δBF , FBF) where

– QBF = Q ∪
⋃

u∈Q,v∈Fu

Q(u,v),

– q̄BF = q̄,
– δBF = δ ∪

⋃
u∈Q,v∈Fu

δ(u,v) ∪
⋃

u∈Q,v∈Fu

{(u, ε, s(u,v))}, and

– FBF =
⋃

u∈Q,v∈Fu

{f(u,v)}

Intuitively, we connect the leading DFA M to the BA recognizing N (u,v) by
linking the state u of M and the initial state s(u,v) of the BA with an ε-transition
for every state pair (u, v) where v ∈ Fu.

We now present Lemma 2 which is used later for the counterexample analysis.

Lemma 2 (cf. [73, Lemma 4]). Let F be an FDFA, and BF be the BA con-
structed from F according to Definition 10. If (u, vk) is accepted by F for every
k ≥ 1, then uvω ∈ UP(L(BF)).

The following theorem is the main result of our BA construction. We refer
the interested reader to [72] for the proofs of Lemma 2 and Theorem 7.

Theorem 7 (cf. [73, Lemma 3]). Let F be the current conjectured FDFA and
BF be the BA constructed from F according to Definition 10. Let n and k be
the number of states in the leading DFA and the largest progress DFA of F ,
respectively. Then

– the number of states in BF is in O(n2k3);

Learning Büchi Automata and Its Applications 73

ε

a

b

BF0

Fig. 18. The BA BF0 constructed for answering the equivalence query EQFDFA(F0),
with F0 shown inFig. 9

– UP(L(BF)) ⊆ UP(F);
– UP(L(BF)) = UP(F) if F is the periodic FDFA accepting UP(F).

For instance, the initial BA BF0 constructed from the FDFA F0 shown in
Fig. 9 is depicted in Fig. 18. The state space of Q(u,v) of BF0 defined in Defini-
tion 10 is empty since Fε of Aε in F0 is empty.

The BA BF0 is clearly not a right conjecture so the BA teacher answers
“no” for the equivalence query EQBA(BF0) together with a counterexample, say
(ab)ω ∈ L(BF0) � L, given by the decomposition (ε, ab). Since the counterex-
ample (ε, ab) from the BA teacher is a positive counterexample for the FDFA
learner, according to Definition 9, the FDFA teacher who is disguised by the BA
learner just sets (u′, v′) to be (ε, ab) in the counterexample analysis and returns
it to the FDFA learner as counterexample for the “no” answer. We remark
that if the BA learner applies the counterexample analysis to the valid positive
counterexample (ε, ab) for the FDFA learner, the procedure also outputs a valid
positive counterexample which satisfies Definition 9. In other words, in practice
the counterexample analysis on the received counterexample directly generates
a valid counterexample, so the BA learner does not have to decide whether the
counterexample received from the BA teacher is valid for the FDFA learner.

Since he has received a negative answer with a counterexample for the equiva-
lence query EQFDFA(F0), the FDFA learner refines the current FDFA F0 accord-
ing to the received counterexample, as we have seen in Sect. 5.3, and then poses
the equivalence query EQFDFA(F1) for the new conjectured FDFA F1, which is
shown in Fig. 10.

The BA learner then builds from F1 the under-approximation BA BF1 , which
is depicted in Fig. 19: observe that the ω-word (bab)ω ∈ L(BF1) is accepted by
F1 since the decomposition (ε, bab) is accepted by F1; the BA N (ε,ab) is defined
as the DFA Mε

ε × (Aε)ε
ab × (Aε)ab

ab augmented with an extra state f and it is
shown in the dashed box in Fig. 19.

Again, the conjectured BA BF1 is not the right conjecture. The BA teacher
answers the equivalence query for the BA BF1 with “no” and, say, the coun-
terexample (bab)ω ∈ L(B1) � L, given as the decomposition (b, abb).

The counterexample (b, abb) is however not a valid counterexample for the
FDFA learner according to Definition 9 since (bab)ω /∈ UP(L) and (b, abb) is not
captured by the current FDFA F1. Suppose that the BA learner feeds the FDFA
learner with the counterexample (b, abb); it is easy to verify that he is not able to

74 Y. Li et al.

ε

a

b

BF1

q0

q1

q2 q3

f

b

a

b

a
b

a
b

a

ε

εε

N (ε,ab)

Fig. 19. The BA BF1 constructed for answering the equivalence query EQFDFA(F1),
with F1 shown in Fig. 10

identify new states with the help of (b, abb), so he is going to conjecture again the
FDFA F1. Therefore, if the FDFA learner repeatedly poses the equivalence query
EQFDFA(F1) for F1 and the BA teacher always answers (b, abb), the learning
procedure is going to get stuck in an infinite loop. This motivates the need of
the counterexample analysis, which ensures that the counterexample returned by
the BA teacher can be adapted to a valid counterexample for the FDFA learner
which allows him to refine the conjectured FDFA.

Counterexample Analysis for the FDFA Teacher. In order to ensure
the termination of the learning procedure, the BA learner has to execute the
counterexample analysis so to get a valid counterexample for the FDFA learner
out of (b, abb).

To distinguish the different counterexamples from the different teachers, we
define the counterexample from the BA teacher as follows.

Definition 11 (Counterexample for the FDFA teacher). Let L be the
target ω-regular language and BF be the current conjectured BA. We say a coun-
terexample (u, v) with uvω ∈ L(BF) � L is

– positive if uvω ∈ L and uvω /∈ L(BF), and
– negative if uvω /∈ L and uvω ∈ L(BF).

This is a symmetric definition when compared with the counterexample for the
FDFA learner given in Definition 9.

We call a positive counterexample uvω spurious if uvω ∈ UP(F). A spurious
positive counterexample (u, v) witnesses that UP(L(BF)) ⊂ UP(F) holds; the
reason for this is that: according to Theorem7, we have UP(L(BF)) ⊆ UP(F);
by the definition of positive counterexample for the FDFA teacher, we have
uvω /∈ UP(L(BF)) yet uvω ∈ UP(F) holds.

In order to analyze the counterexample (u, v), it is useful to know how the
received counterexample relates with the conjectured FDFA F . For instance, it

Learning Büchi Automata and Its Applications 75

LBF

F

uvω

uvω uvω

Fig. 20. The cases for the counterexample analysis

may be that F captures (u, v) but uvω is not in the target language, so (u, v)
should be rejected; symmetrically, we can have that F rejects any decompo-
sition of uvω but uvω is in the target language, so at least (u, v) should be
captured; moreover, it may be that F rejects just (u, v) while capturing another
decomposition (u′, v′) of uvω, but BF does not accept (u′, v′). To distinguish the
above cases, which are shown in Fig. 20, we use three DFAs accepting different
decompositions of uvω.

Let F = (M, {Au}) be the current conjectured FDFA. In order to analyze
the counterexample (u, v) for the FDFA teacher, we define the following three
DFAs, where $ is a letter not in Σ.

– a DFA D$ with L(D$) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, u′v′ω = uvω },
– a DFA D1 with L(D1) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ∗, v′ ∈ L(AM(u′)) }, and
– a DFA D2 with L(D2) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ∗, v′ /∈ L(AM(u′)) }.

Intuitively, D$ accepts every possible decomposition (u′, v′) of uvω; D1 recog-
nizes every decomposition (u′, v′) which is captured by F ; and D2 accepts every
decomposition (u′, v′) which is not captured by F .

The DFA D$ can be constructed according to the procedure presented in [26,
72]; the DFA D1 can be obtained from F by simply connecting each state u of M
to the initial state su of Au via letter $; finally, the construction of the DFA D2 is
similar to the one of the DFA D1 except that we use the complement FDFA FC

of F instead of F . Note that the DFAs D1 and D2 in this section are specialized
for the periodic FDFA which are different from those defined for all three kinds
of FDFAs in [73]. We refer the interested reader to [73] for more details on the
different constructions of D1 and D2 for the recurrent and syntactic FDFAs.

The analysis for the returned counterexample has first to identify the kind
of counterexample it is analyzing and then to deal with it accordingly. More
concretely, the three kinds of counterexamples, shown in Fig. 20 by means of
different shapes, are the following:

case U1: uvω ∈ UP(L) while uvω /∈ UP(F) (square). The ω-word uvω is a
positive counterexample for the FDFA teacher since uvω /∈ UP(L(BF)). On
the one hand, uvω ∈ UP(L) holds and all decompositions of uvω should be
accepted by F ; on the other hand, uvω /∈ UP(F) holds, which indicates that

76 Y. Li et al.

no decomposition of uvω is accepted by F . Therefore, in order to further
refine F , the FDFA learner needs to make F accept at least one decompo-
sition (u′, v′) of uvω. That is, the analysis has to find a valid positive coun-
terexample (u′, v′) out of uvω for the FDFA learner such that v′ /∈ L(AM(u′)).
This can be easily done by taking a word u′$v′ ∈ L(D$) ∩ L(D2). This fol-
lows from the fact that DFA D$ accepts every decomposition of uvω and D2

accepts all decompositions which are not accepted by F . Therefore, a word
u′$v′ ∈ L(D$) ∩ L(D2) is a valid positive counterexample for the FDFA
learner. Note that the analysis tries to find a decomposition (u′, v′) which is
not captured by F instead of a decomposition not accepted by F . The reason
is that a decomposition (u′, v′) not captured by F is also a decomposition
which is not accepted by F according to Definition 6. We refer interested
reader to [72, Appendix D.3] for more details on case U1.

case U2: uvω /∈ UP(L) while uvω ∈ UP(F) (circle). The ω-word uvω is a
negative counterexample for the FDFA teacher since uvω ∈ UP(L(BF)). It
follows that F should reject every decomposition of uvω since uvω /∈ UP(L).
In other words, in order to further refine F , the FDFA learner needs to
make F not capture at least one decomposition (u′, v′) of uvω. Therefore,
the analysis needs to find a valid negative counterexample (u′, v′) out of uvω

for the FDFA learner that is accepted by F . This can be done by taking a
word u′$v′ ∈ L(D$) ∩ L(D1).

case U3: uvω ∈ UP(L) and uvω ∈ UP(F) (diamond). The ω-word uvω is a
spurious positive counterexample since uvω ∈ UP(F) but uvω /∈ UP(L(BF)).
On the one hand, this case is quite similar to case U1 since uvω ∈ UP(L)
and normally we should make F accept uvω; on the other hand, however,
differently from U1, F already accepts at least one decomposition of uvω

in this case. Suppose that the decomposition (x, y) of uvω is accepted by
F ; according to Lemma 2, there must exist some k ≥ 1 such that (x, yk) is
not accepted by F since otherwise we would have uvω ∈ L(B). Therefore,
similar to case U1, it is possible for the analysis to find a valid positive
counterexample (u′, v′) out of uvω for the FDFA learner such that v′ /∈
L(AM(u′)). The word u′$v′ can also be taken from L(D$) ∩ L(D2). We refer
interested reader to [72, Appendix D.3] for more details on case U3.

We remark that from an implementation point of view, checking whether
uvω ∈ UP(L) can be replaced by a membership query MQBA(u, v) while testing
whether uvω ∈ UP(F) reduces to checking whether u$v ∈ L(D1).

Consider again the conjectured FDFA F1 and the counterexample (b, abb)
returned by the BA teacher, which is a negative counterexample since b·(abb)ω /∈
L. The counterexample (b, abb) falls into case U2 since b · (abb)ω /∈ UP(L) while
b ·(abb)ω ∈ UP(F1). In order to analyze it, the BA learner needs to construct the
DFAs D$ and D1, which are depicted in Fig. 21. For completeness of presentation,
Fig. 21 shows also the DFA D2, so to allow the reader to compare it with D1.
Assume that the BA learner gets the word ε$bab ∈ L(D$) ∩ L(D1), which gives
a negative counterexample (ε, bab) for the FDFA learner.

Learning Büchi Automata and Its Applications 77

q0

q1

q2

b

b

a

q0,0 q0,1 q0,2 q0,3
$ b a b

b

q1,0 q1,1 q1,2 q1,3
$ b b a

b

q2,0 q2,1 q2,2 q2,3
$ a b b

a

D$

ε ε a ab

a

b

b
a

a

b

a

b

$
D1

ε ε a ab

a

b

b
a

a

b

a

b

$
D2

Fig. 21. The three DFAs D$, D1, and D2 for the FDFA F1 from Fig. 10 and the
counterexample (b, abb)

As seen in Sect. 5.3, with the negative counterexample (ε, bab) at hand, the
FDFA learner is able to get the refined conjecture F2 depicted in Fig. 11. To
answer the equivalence query EQFDFA(F2), the BA learner has again to construct
a BA BF2 , depicted in Fig. 22, from F2; then he poses the equivalence query
EQBA(BF2) to the BA teacher. Note that we have UP(F2) = UP(L(BF2)) =
{a, b}∗(ab)ω for the constructed BA BF2 . This follows from the fact that F2 is a
periodic FDFA accepting {a, b}∗(ab)ω, which results in UP(F2) = UP(L(BF2))
according to Theorem 7.

The BA teacher answers again “no” with a counterexample, say (a, ab), which
is already a negative counterexample for the FDFA learner. However, the BA
learner is not aware of this fact, thus he performs a counterexample analysis on
(a, ab). In order to analyze the counterexample a · (ab)ω, the BA learner first
builds the two DFAs D$ and D1 shown in Fig. 23.

Suppose that this time the BA learner takes the word a$ab ∈ L(D$) ∩ L(D1),
which means that the counterexample the FDFA learner receives is again (a, ab).
After the refinement of the FDFA F2, the FDFA learner now asks an equivalence

78 Y. Li et al.

ε

a

b

BF2

q0

q1

q2 q3

f

b

a

a, b

b
a

b

a

ε

εε

Fig. 22. The BA BF2 constructed for answering the equivalence query EQFDFA(F2),
with F2 shown in Fig. 11

q0

q1

q2

a

ab

q1,0

q1,1 q1,2

$

a

b

a

q2,0 q2,1

q2,2

$ b

a b

D$

ε ε

a

b

ab

a

b

a

b

a

b

a, b

a

b

$
D1

Fig. 23. The DFAs D$ and D1 for the FDFA F2 from Fig. 11 and the counterexample
(a, ab)

query for the FDFA F3 shown in Fig. 12. On receiving the query EQFDFA(F3),
the BA BF3 given in Fig. 24 is constructed by the BA learner to ask the BA
teacher another equivalence query.

Clearly, BF3 is not a right conjecture and the BA teacher returns “no” as
well as a counterexample, say (bba, ba), which is a negative counterexample for
the FDFA teacher. The BA learner builds the two DFAs D$ and D1 depicted
in Fig. 25 in order to get a valid counterexample for the FDFA learner from
L(D$) ∩ L(D1).

Assume that the FDFA learner receives the counterexample (bb, ab) from the
FDFA teacher disguised by the BA learner. The FDFA learner is now able to
get the refined FDFA F4 shown in Fig. 13, so he can ask EQFDFA(F4). As usual,
the BA learner constructs a BA from F4 in order to solve the equivalence query
EQFDFA(F4) posed by the FDFA learner.

The BA BF4 constructed by the BA learner is shown in Fig. 26 and we can
see that BF4 exactly accepts the target language L = (ab)ω, which means that
BF4 is already a right conjecture. Therefore, the BA teacher answers positively

Learning Büchi Automata and Its Applications 79

ε

a

a, bb

a

BF3

q0

q1

q2 q3

f

b

a

a, b

b
a

b

a

ε

εε

Fig. 24. The BA BF3 constructed for answering the equivalence query EQFDFA(F3),
with F3 shown in Fig. 12

q0

q1 q2

q3

b

b

ab

q2,0

q2,1 q2,2

$

a

b

a

q3,0 q3,1

q3,2

$ b

a b

D$

ε

a

ε

a

b

ab

ε

a, bb

a

a

b

a

b

a, b

a

b

$

$
a, b

D1

Fig. 25. The DFAs D$ and D1 for the FDFA F3 from Fig. 12 and the counterexample
(bba, ba)

with “yes” to the BA learner as the result of the equivalence query EQBA(BF4).
The BA learner then outputs the learned BA BF4 as he has finally completed
the learning task.

We notice that the current FDFA F4 is still not a periodic FDFA of L yet we
can build a BA such that L(BF4) = L. In practice, the BA learning algorithm
very often infers a BA recognizing L before converging to a periodic FDFA of L.
In the worst case, the FDFA learner inside the BA learner has to learn a periodic
FDFA of L in order to get a right conjectured BA according to Theorem 7.

The BA Learner. By means of the previous example, we have introduced
informally the ω-regular language learning algorithm, which is formalized in
Algorithm 3 as the BA learner. We can note that the learning procedure we
described in the running example follows exactly the steps of Algorithm 3. The
function constructBA is an implementation of the under-approximation BA con-
struction and ceAnalysis is the procedure for analyzing counterexamples from
the BA teacher. The refinement loop of the conjecture BF terminates once we
get a positive answer from the teacher.

80 Y. Li et al.

ε

a b

a b

a

b

a, b

BF4

q0

q1

q2 q3

f

b

a

a, b

b
a

b

a

ε

εε

Fig. 26. The BA B4 constructed for answering the equivalence query EQFDFA(F4),
with F4 shown in Fig. 13

Algorithm 3. The BA Learner
1 Initialize an FDFA learner Lω and get the conjectured FDFA F ;
2 BF = constructBA(F);

3 Let (a, (u, v)) be the BA teacher’s response on EQBA(BF);
4 while a = “no” do
5 (u′, v′) = ceAnalysis((u, v), F);
6 Call Lω to refine F with (u′, v′) and get the new conjectured FDFA F ;
7 BF = constructBA(F);

8 Let (a, (u, v)) be the BA teacher’s response on EQBA(BF);

9 return BF ;

As discussed before, we can construct from an FDFA F a BA BF such that
UP(F) = UP(L(BF)) if F is a periodic FDFA of UP(F). Thus in the worst
case, the FDFA learner inside the BA learner needs to learn a periodic FDFA
of target language L in order to get a right conjectured BA. The main result of
this section then follows.

Theorem 8 (Correctness and Termination). The BA learning algorithm
based on the FDFA learner and the under-approximation BA construction always
terminates and returns a BA recognizing the target ω-regular language L in poly-
nomial time.

6 Learning to Complement Büchi Automata

As we have seen in Sect. 3.3, the complementation of Büchi automata [25] is a
classic problem that has been extensively studied for more than half a century;
see [105] for a survey. The complementation of Büchi automata is a valuable tool
in formal verification (cf. [67]), in particular when the property to be satisfied

Learning Büchi Automata and Its Applications 81

uvω /∈? L(A)

L(BF) ∩ L(A) =? ∅

L(BFC) ⊆? L(A)C
E

an
al
ys
is

Teacher

complement BF

Learner

F
D
FA

le
ar
ne

r

MQ(u, v)

yes/no

EQ(F)

noxyω yes

noxyω

yes

CE: (u, v)

Fig. 27. The learning framework for complementing a Büchi automaton A

by a model is given by means of a Büchi automaton, in the program termi-
nation analysis (cf. Sect. 7), and when studying language inclusion problems of
ω-regular languages [1,3,4]. As Proposition 4 shows, the complementation of
Büchi automata is super-exponential, i.e., it can be really expensive in practice
as well. While this is generally unavoidable [108], we believe that there is no
inherent reason to assume that the complement language is harder than the ini-
tial language: in model checking, when the property is given as a formula φ, the
typical approach assumes that the translation into a Büchi automaton is equally
efficient for the formula and its negation, so instead of translating φ to Aφ and
then complementing Aφ, it first negates φ and then translates ¬φ to A¬φ so that
L(A¬φ) = Σω \ L(Aφ). Would the complement language of φ be indeed more
complex than the language of φ, this approach would suffer in translating the
negation of the formula, since such a negation corresponds to the complement
of the original property’s language. Besides this, we have that complementing
twice a language L gives L itself, while complementing a Büchi automaton twice
would generate an automaton of incredible size: for instance, complementing
twice a BA with 10 states would result in a BA accepting the same language
with roughly at least 107·107 states, according to the approximation given by
Proposition 4.

This begs to ask the question, whether we can disentangle the complement
BA from the syntactic representation of the BA accepting the language we want
to complement. By taking inspiration from the regular languages setting, where
the minimal DFA accepting a given regular language can be learned by the DFA
learning algorithm, in this section we show how we can learn a BA accepting the
complement of a given target ω-regular language L.

82 Y. Li et al.

6.1 The Complement BA Learning Framework

The learning framework for complementing a Büchi automaton is shown in
Fig. 27 and it has been proposed in [74], to which we refer the interested reader
for more details. It is based on a variation of the FDFA learning algorithm to
learn F , explained in Sects. 4 and 5. As we can see from Fig. 27, the learner
is exactly the FDFA learner used to learn BAs (cf. Fig. 16). This means that
the learner first uses membership queries for F until a consistent automaton is
created and then he turns to equivalence queries, while being oblivious of the
fact that he is actually learning Σω \ L(A) instead of L(A). The difference with
the learning algorithm for BAs shown in Fig. 16 lies completely in the teacher:
for membership queries, the teacher uses—cheap—standard queries [11,73]; the
real novelty is in a careful design of the answer to the equivalence queries that
makes use of cheap operations whenever possible.

These equivalence queries are not executed with the FDFA F and its com-
plement FC , but with the Büchi automata BF and BFC that under-approximate
them. The teacher first checks whether L(BF) is disjoint from L(A) we want to
complement. This step is cheap, and if the answer is negative, then she returns
to the learner an ultimately periodic word uvω ∈ L(A), where at least some
decomposition of uvω is (wrongly) accepted by F .

In case L(BF) ∩ L(A) = ∅, the teacher checks whether the language of BFC is
included in the language of A. This is an interesting twist, since language inclu-
sion is one of the traditional justifications for complementing Büchi automata, as
mentioned in Sect. 3.5. But while the problem is PSPACE complete (cf. Proposi-
tion 8), it can usually be handled well by using efficient tools like RABIT [1,3,4].
In particular, RABIT makes use of a powerful set of computationally effective
preprocessing and automata-exploration based heuristics that usually allow the
language inclusion problem to be answered very efficiently.

Non-inclusion comes with a witness in the form of an ultimately periodic
word xyω accepted by BFC , but not by A. Thus, some decomposition (u, v)
of xyω is (incorrectly) rejected by F and she returns it to the learner. In case
L(BFC) ⊆ L(A) holds, the teacher then concludes that L(BF) = Σω \ L(A)
and terminates the algorithm with BF as the complement of A. Note that the
learner is not required to construct an FDFA F such that L(F) = Σω \ L(A);
it is enough that L(BF) = Σω \ L(A), which can save the framework to manage
further membership and equivalence queries.

More details about the correctness of the proposed complementation frame-
work, its complexity, and its experimental evaluation can be found in [74]. We
want, however, to give some more detail about the use of RABIT to solve the
language inclusion problem the teacher may need to answer in an equivalence
query EQ(F). As said above, RABIT is equipped with a powerful set of heuris-
tics; among others, RABIT makes use of the following ones, in an increasing order
of their efficacy and amount of computation they need: (1) try simple automata-
pruning algorithms, which help in reducing the size of the considered automata;
(2) try delayed simulations, which is intended to prove the language inclusion
by analyzing the structure of the automata; (3) if inclusion was not established

Learning Büchi Automata and Its Applications 83

in step 2 then try to find a counterexample to inclusion by the Ramsey-based
method [3,4] with a small timeout value; (4) if no counterexample was found in
step 3 then try the automata minimization algorithms proposed in [33], which
simplify the two automata by changing their languages while preserving their
language inclusion relationship.

Since these heuristics are not complete, RABIT uses as the last resort the
Ramsey-based inclusion testing algorithms already used in step 3, this time
without timeout, to finally decide whether the language inclusion holds. From
the experimental evaluation presented in [74] we can see that the learning-based
complementation algorithm is really effective in getting the complement automa-
ton, in particular when the automaton to be complemented is of large size. One
interesting thing we noted in the experiments is that the automaton BF used in
the check L(BF) ∩ L(A) = ∅ can change sensibly between an equivalence query
and the following one, which makes it difficult to predict how much RABIT is
able to exploit its heuristics. Anyway, in very few cases RABIT needed to use
the Ramsey-based inclusion testing algorithms to finally decide whether the lan-
guage inclusion holds, which usually consumes most of the running time in the
corresponding experiment.

6.2 The Complement BA Learning Framework in Action

Suppose that we want to learn the complement of the NBA B depicted in Fig. 1;
recall that L(B) = Σ∗ · bω. The learning algorithm works as follows: the learner
first poses several membership queries and constructs the initial conjectured
FDFA F1 shown in Fig. 28.

ε

M1

F1

a

b

ε

Aε
1

a

b

ε

q1

q2

BF1

a, b a, b

a, b

a, b

a, ba, b

Fig. 28. Initial FDFA F1 = (M1, {Aε
1}) and the corresponding under-approximation

Büchi automaton BF1 .

Afterwards, the learner performs the equivalence query EQ(F1) to verify
whether F1 is correct. In order to answer this equivalence query, the teacher first
constructs the Büchi automaton BF1 , also shown in Fig. 28, and then checks the
emptiness of L(BF1) ∩ L(B). This check fails: assume that the teacher gets the
ω-word b(bb)ω ∈ L(BF1) ∩ L(B); by means of the counterexample analysis, the
teacher is able to answer negatively to the query EQ(F1) posed by the learner
by returning the negative counterexample (ε, b), a decomposition of b(bb)ω.

84 Y. Li et al.

ε

M2

F2

a

b

ε b

Aε
2

a

b
b

a
ε

q1

q2 q3

BF2

a, b

a

a

b

a

b

a

a

b
b

a
a

Fig. 29. Second FDFA F2 = (M2, {Aε
2}) and the corresponding under-approximation

Büchi automaton BF2 .

Upon receiving (ε, b), the learner refines the current FDFA F1 to F2, shown
in Fig. 29, by means of membership queries; then it poses the equivalence query
EQ(F2) for F2. As before, the teacher first transforms F2 to BF2 and then
checks for the emptiness of L(BF2) ∩ L(B). It is easy to see that L(BF2) is
indeed disjoint from L(B). Therefore, the teacher has first to compute the Büchi
automaton BFC

2
under-approximating FC

2 , shown in Fig. 30, and then to check
the language inclusion L(BFC

2
) ⊆ L(B); this check fails.

Assume that the teacher finds b(ab)ω ∈ L(BFC
2
) \ L(B); she then answers

negatively to EQ(F2) by means of the positive counterexample (b, ab) obtained
from b(ab)ω.

ε

q1

q2 q3

BFC
2

a, b

b

a

b

a

b

a

b

b
b

a
b

ε

q1

q2

BFC
3

a, b b

b

b

b

b

Fig. 30. Under-approximation Büchi automata BFC
2

and BFC
3

for FC
2 (depicted in

Fig. 29) and FC
3 (shown in Fig. 31), respectively

The learner uses the received counterexample (b, ab) to further refine the
current FDFA F2; after asking several membership queries, he generates the
candidate FDFA F3 and then asks an equivalence query for it. As in the previous
cases, the teacher starts by constructing the Büchi automaton BF3 for F3, shown
in Fig. 31. Since L(BF3) ∩ L(B) is empty, the teacher proceeds to the second
check, so she constructs the BA BFC

3
, shown in Fig. 30, and then proceeds to

Learning Büchi Automata and Its Applications 85

perform the last check, i.e., whether L(BFC
3
) ⊆ L(B), which is obviously the case.

Thus, the teacher terminates the learning algorithm by returning BF3 , shown in
Fig. 31, as the complement of B.

ε

M3

F3

a

b

ε

f

t

Aε
3 a

b

a, b

b

a ε

q1

q2 q3

BF3

a, b

b

a

a

b a

a

b

a

a, b

a, b

Fig. 31. Final FDFA F3 = (M3, {Aε
3}) and the corresponding under-approximation

Büchi automaton BF3

6.3 Experimental Evaluation

To support our claim that there is no actual super-exponential dependency
between the language L we want to complement and the size of the comple-
ment AC of the BA A such that L(A) = L, we briefly recall the experiments
we conducted in [74], where the complementation learning framework has been
presented.

There we implemented our learning approach as Buechic, based on the ROLL
learning library [73]; the inclusion check L(BFC) ⊆ L(A) (cf. Fig. 27) is del-
egated to RABIT [1,3,4]. In the experiments, we compared Buechic with two
tools: GOAL [99], which is a mature and well-known tool for manipulating Büchi
automata, for which we consider four different implemented complementing algo-
rithms; and SPOT [39], which is the state-of-the-art platform for manipulat-
ing ω-automata, including Büchi automata. All tools accept as input automata
represented in the Hanoi Omega-Automata (HOA) format [13]. Recall that
SPOT does not provide a complementation function for generic Büchi automata
directly, thus we first use SPOT to get a deterministic automaton from the
given NBA, then complement the resulting deterministic automaton (for parity
automata this just means adding 1 to all priorities), and finally transform the
resulting complement automaton to an equivalent NBA. Since SPOT is a highly
optimized tool that uses effective heuristics, it very often produces very small
automata, but the heavy use of heuristics makes the comparison lopsided. More-
over, SPOT uses symbolic data structures called OBDDs which provide a more
efficient way to manipulate automata compared to GOAL and Buechic.

Table 1 reports the results of the complementation on the automata from
Büchi Store [100], which contains 295 NBAs with 1 to 17 states and with 0 to
123 transitions. However, since one of such automata has only one state without
transitions and GOAL fails in recognizing it as a Büchi automaton, we decided
to exclude it from the experiments and consider only the remaining 294 cases.

86 Y. Li et al.

Table 1. Comparison between GOAL, SPOT, and Buechic on complementing
Büchi Store. Note that the transitions in SPOT are represented denser—the same
automaton attracts a lower transitions count.

Block Experiments

(States, Transitions)

GOAL Buechic SPOT

Ramsey Determinization Rank Slice

1 287 NBAs (928, 2071) |Q| 21610 3919 21769 4537 2428 1629

|δ| 964105 87033 179983 125155 35392 13623

tc 992 300 203 204 105 6

2 5 NBAs (55, 304) |Q| –to– 926 38172 1541 165 495

|δ| 21845 384378 50689 5768 4263

tc 28 42 12 474 <1

3 2 NBAs (20, 80) |Q| –to– –to– 27372 11734 96 2210

|δ| 622071 1391424 6260 102180

tc 56 152 7 1

100 101 102 103 104 105 106
100

101

102

103

104

105

106

States by SPOT

St
at
es

by
B
ue
ch
ic

100 101 102 103 104 105 106
100

101

102

103

104

105

106

Transitions by SPOT

T
ra
ns
it
io
ns

by
B
ue
ch
ic

Fig. 32. Comparison between the number of states and transitions of automata gen-
erated by SPOT and Buechic on 72 automata corresponding to formulas from [92].

By inspecting the entries in Table 1 we can see that our learning based com-
plementation method always outperforms the complementation methods offered
by GOAL when we consider the number of states and transitions. When com-
pared with SPOT, we see that the optimizations in SPOT are really effective,
in both runtime and size of generated automata, for the small input automata
(cf. block 1), but the transformation to parity automata starts to show its effects
for larger automata (cf. blocks 2 and 3).

We have also considered 72 further Büchi automata generated from 72 formu-
las from [92]. In summary, Ramsey-based, Determinization-based, Rank-based,
and Slice-based GOAL approaches solve 49, 58, 61, and 62 complementation
tasks, respectively, within 5 min, while SPOT solves 66 tasks and Buechic solves
65 tasks. Among these, there are 64 tasks solved by both SPOT and Buechic,
while the remaining cases are disjoint, which implies that our algorithm comple-
ments existing complementation approaches very well.

Learning Büchi Automata and Its Applications 87

1 2 3 4 5 6 7

101

102

103

104

k

St
at
es

Ramsey Determinisation Rank
Slice SPOT Buechic

Fig. 33. States comparison of GOAL, SPOT, and Buechic on the formula pattern∧k
i=1(GFai) → GFb

In Fig. 32, relative to the 64 commonly solved tasks, the coordinate values
of the y axis and x axis are the corresponding number of states (respectively,
transitions) in the complement automata of Buechic and SPOT, respectively.
All points below the dotted diagonal indicate that the complement automata
learned by our algorithm have smaller values than the complement automata
constructed by SPOT, which is the case for almost all large examples. We recall
that SPOT merges transitions that share the same source state and target state
as one transition, so in the right scatter plot of Fig. 32, many points are above
the diagonal line. Nevertheless, we can learn from the plots that only SPOT
produces those automata with more than 103 states or 104 transitions, which
indicates that the reduction optimizations of SPOT do not work well on large
automata and our algorithm performs much better on large automata.

In order to show how the growing trend of the number of states in the com-
plement automata of the complementation algorithms behaves when we increase
the size of the given Büchi automata in some cases, we take the generated Büchi
automata for the formula pattern

∧k
i=1(GFai) → GFb. The growing trend of the

number of states in the complement automata for the approaches in GOAL,
SPOT, and Buechic are plotted in Fig. 33. The number of states in the com-
plement automaton constructed by GOAL and SPOT is growing exponentially
with respect to the parameter k, while the number of states in the complement
automaton learned by our algorithm grows linearly. The experimental results
show that the performance of our algorithm can be much more stable for some
automata with their growth of the states. Thus an advantage of our learning app-
roach is that it has potentially better performance on large automata compared
to classic complementation techniques.

88 Y. Li et al.

Program P and uvω ∈ L(AP) Prove the termination of uvω.

An approach to generalize uvω

to a certified module (AM , f, I).

Automata algorithms to
find a word uvω in the
uncertified part of P .

P always terminates

uvω

uvω with a proof

AM

uvω

Fig. 34. The flow of the automata-based termination analysis

7 Application of Büchi Automata in Termination
Analysis

In this section we present how Büchi automata and their complements are used
in practice for complex verification tasks, like in program termination analysis.

Termination analysis of programs is a challenging area of formal verification,
which has attracted the interest of many researchers approaching the problem
from different angles; see, e.g., [14,22,36–38,47,48,52,55,64,69,70,80,84–86,95,
101,102]. In general, while analyzing the termination of a program, we need to
deal with the following challenge: when a program contains loops with branching
or nesting, how can we devise a termination argument that holds for any possible
interleaving of the different paths through the loop body?

Due to the difficulty of solving the general problem, many researchers have
focused on its simplified version that addresses only lasso-shaped programs, i.e.,
programs where the control flow consists of a stem followed by a simple loop
without any branching. Proving termination for this class of programs can be
done rather efficiently [15–17,23,35,54,71,83], but its extension to general pro-
grams is not easy.

7.1 Automata-Based Termination Analysis

In order to simplify our presentation, we consider only C programs without func-
tion calls and pointers; the variable updates are restricted to linear combinations.
Since our goal in this section is to describe the modular termination analysis for
a given program P , we assume that every sampled path can be proved to be
terminating. Therefore, in the end, we can prove that P always terminates.

The approach of Heizmann et al. [55] proposes a modular construction of ter-
mination proofs for a general program P from termination proofs of lasso-shaped
programs obtained from its concrete paths as depicted in Fig. 34. On a high level,
the approach repeatedly performs the following sequence of operations: first, it
samples a path τ = uvω from the possible behaviours of P and attempts to
prove its termination [15–17,23,35,54,71,83] by using an off-the-shelf termina-
tion checker, like LassoRanker, part of the Ultimate Automizer suite [55].

Learning Büchi Automata and Its Applications 89

program insertionSort(int a[], int n):
�1: int i:=1

�2: while (i<n)

�3: int k:=a[i]

�4: int j:=i-1

�5: while (j>=0 && a[j]>k):

�6: a[j+1]:=a[j]

�7: j--

�8: a[j+1]:=k

�9: i++

(a) Program P ins

�1

�2

�3

�4

�5

�6 �7

�8

�9

i:=1

i<n

k:=a[i]

j:=i-1j<0 || a[j]<=k

j>=0 && a[j]>k

a[j+i]:=a[j]

j--

a[j+1]:=k

i++

(b) The BA AP ins

Fig. 35. An example of program and its BA representation

The returned result of this step is possibly a termination argument of the sam-
pled path, a non-termination argument of the sampled path, or “unknown” which
indicates that the termination checker failed to decide the termination of the
sampled path. Second, it generalizes τ into a (potentially infinite) set of paths
M, called a certified module, that all share the same termination proof with τ .
Finally, it checks whether the behaviour of P contains a path τ ′ not covered by
any certified module generated so far and, if so, the procedure is repeated. This
sequence is repeated until either a non-terminating path is found, “unknown” is
returned, or all behaviours of P are covered by the modules.

7.2 Automata-Based Termination Analysis: An Example

As an example of the above approach, consider the insertion sort program P ins

shown in Fig. 35(a); Fig. 35(b) shows the control flow graph (CFG) of P ins as a
Büchi automaton AP ins

.
The alphabet of AP ins

is the set of all statements occurring in P ins, like
assignments and guards, while the states of AP ins

are the locations of P ins;
the initial state is the first location of the program, i.e., its entry point. The
transitions connect states according to the way each location is reachable from
another: for instance, we have the transition from
1 to
2 with action i:=1

since
2 is reached after such initialization in location
1; similarly, we have a
transition from
5 to
8 with action j<0 || a[j]<=k since
8 is reached when the
guard j>=0 && a[j]>k of the while statement at location
5 is not satisfied. All
states of AP ins

are accepting so each feasible infinite sequence of statements of
the program corresponds to an infinite word in the language L(AP ins

).

90 Y. Li et al.

The aim of the termination analysis is to cover the executions of AP ins

by
the accepted words of a finite set of BAs {A1, . . . ,An} such that L(AP ins

) ⊆
L(A1) ∪ · · · ∪ L(An) which is reduced to checking whether L(AP ins

) ∩ L(AC
1) ∩

· · · ∩ L(AC
n) = ∅, as we have seen in Sect. 3.5. If we can prove that each BA Ai

represents a program with a termination argument, then since every execution
of P ins is represented by a word in AP ins

, P ins is guaranteed to terminate by
the arguments for the single BAs Ai.

q1

{oldrnk = ∞}
q2

{oldrnk = ∞}
q3

{oldrnk = ∞}
q4

{oldrnk = ∞}
q5

{j < oldrnk}
q6

{0 ≤ j ≤ oldrnk}

q7

{0 ≤ j ≤ oldrnk}

i:=1 i<n k:=a[i] j:=i-1

j>=0 && a[j]>k

a[j+1]:=a[j]

j--

Fig. 36. A certified module for the lasso word uvω = i:=1 · i<n · k:=a[i] · j:=i-1 ·

(j>=0 && a[j]>k · a[j+i]:=a[j] · j--)ω

In order to have a termination argument, each BA Ai is associated with a
ranking function fi and a rank certificate Ii mapping each state to a predicate
over the program variables. The triple Mi = (Ai, fi, Ii) is called a certified mod-
ule. The construction of the set {M1, . . . ,Mn} is progressive (see Fig. 34). First,
we sample an ultimately periodic word uvω ∈ L(AP ins

)—which is essentially a
lasso-shaped program—and use an off-the-shelf tool to check if it corresponds
to a terminating argument. In our example, we start with sampling the word
uvω = i:=1 · i<n · k:=a[i] · j:=i-1 · (j>=0 && a[j]>k · a[j+i]:=a[j] · j--)ω . We can

prove termination of the path corresponding to uvω by finding, e.g., the ranking
function f1(i, j, n) = j+ 1, for which it holds that at each iteration of the inner
loop, the value of f1(i, j, n) decreases since j is decreased by 1. The resulting
certified module is shown in Fig. 36, where oldrnk is a fresh variable used to keep
track of the value of the ranking function at the previous visit of the accepting
state.

In the following, we denote the inner loop of AP ins

as Inner = j>=0 && a[j]>k ·

a[j+i]:=a[j] · j-- and its outer loop as Outer = j<0 || a[j]<=k · a[j+1]:=k ·

i++ · i<n · k:=a[i] · j:=i-1 . We can observe that f1 is also a ranking func-

tion for the set of paths obtained by generalizing uvω into the set of words
that correspond to all paths that eventually stay in the inner loop, i.e., words
from L1 = i:=1 · i<n · k:=a[i] · j:=i-1 · (Inner+Outer)∗ ·Innerω . The lan-

guage L1 together with a ranking function f1 and a rank certificate I1 can be
represented by the certified module M1 = (A1, f1, I1), depicted in Fig. 37; the

Learning Büchi Automata and Its Applications 91

q1

{oldrnk = ∞}
q2

{oldrnk = ∞}
q3

{oldrnk = ∞}
q4

{oldrnk = ∞}
q′
4

{oldrnk = ∞}
q5

{j < oldrnk}
i:=1 i<n k:=a[i] j:=i-1

j:=i-1

Inner,Outer

Inner

Outer
Inner

Fig. 37. The certified module M1 for the language L1 = i:=1 · i<n · k:=a[i] ·

j:=i-1 (Inner+Outer)∗ · Innerω

transitions labelled with action Inner or Outer are a shorthand for the cor-
responding sequences of transitions and states: for instance, the self-loop on q5
with action Inner stands for the states and transitions reachable from q5 in
Fig. 36.

q1

{oldrnk = ∞}
q2

{oldrnk = ∞}
q3

{oldrnk = ∞}
q4

{oldrnk = ∞}
q5

{n − i < oldrnk}
i:=1 i<n k:=a[i] j:=i-1

Outer

Fig. 38. A certified module for the lasso word i:=1 · i<n · k:=a[i] · j:=i-1 ·Outerω

We proceed by removing all paths covered by L1 from AP ins

to know
which paths still need to be examined. The removal can be performed by exe-
cuting a BA difference algorithm, presented in Sect. 3.4, followed by check-
ing language emptiness (potentially finding a new counterexample uvω on fail-
ure). In our example, the difference corresponds to the (non-empty) language
L(AP ins

|A1
) = i:=1 · i<n · k:=a[i] · j:=i-1 ·(Inner∗·Outer)ω represented by AP ins

|A1
.

Suppose the next sampling gives us uvω = i:=1 · i<n · k:=a[i] · j:=i-1 ·Outerω
,

for which, e.g., the ranking function f2(i, j, n) = n − i is applicable; the corre-
sponding certified module is shown in Fig. 38.

q1

{oldrnk = ∞}
q2

{oldrnk = ∞}
q3

{oldrnk = ∞}
q4

{oldrnk = ∞}
q5

{n − i < oldrnk}

q′
5

{0 ≤ n − i ≤ oldrnk}
i:=1 i<n k:=a[i] j:=i-1

Outer

Inner

Inner
Outer

Fig. 39. The certified module M2 for the language L2 = i:=1 · i<n · k:=a[i] ·

j:=i-1 · (Inner∗ ·Outer)ω

92 Y. Li et al.

Note that f2 is also a valid ranking function for all paths taking the outer
while loop infinitely often, i.e., all paths corresponding to words from L2 =
i:=1 · i<n · k:=a[i] · j:=i-1 · (Inner∗ ·Outer)ω. We represent these paths by

the certified module M2 = (A2, f2, I2) where L(A2) = L2, shown in Fig. 39.
After removing the words of A2 from L(AP ins

|A1
), we, finally, obtain the BA

AP ins

|A1,A2
, whose language is empty. This means that the modules M1 and M2

cover all possible paths of the program P ins and, because each of them comes
with a termination argument, we can conclude that all paths of P ins are guar-
anteed to terminate.

7.3 Automata-Based Termination Analysis: Difficulties

As we have seen in the example above, the general termination analysis involves
several operations based on Büchi automata, like emptiness check and comple-
mentation or language difference. While emptiness is really cheap (cf. Proposi-
tion 6), complementation or language difference are in general extremely expen-
sive (cf. Propositions 4 and 5), so it would be better to limit their number as
much as possible.

Note however that the complementation of a lasso-shaped automaton corre-
sponding to a lasso-shaped word is really easy: it is enough to add an accepting
sink state collecting all missing transitions and make the original accepting state
no more accepting. While this is cheap, the net effect in the termination analysis
is really limited: in this way we remove only one infinite word at a time, so there
is a negligible progress in the termination analysis.

The generalizations we have seen before are useful to avoid such negligible
progress, since they allow us to remove a possibly very large set of words at each
iteration. This comes at the expense of the complexity of complementing the cor-
responding Büchi automaton, which now can suffer from the super-exponential
complexity of the language difference or complementation operations.

It is easy to recognize that there is a trade-off between the size of the set
of paths of the program P covered by current certified module Mi and the
complexity of complementing Mi itself. There are several techniques to balance
these two aspects, together with specialized algorithms for them; see [28] for more
details on the different generalization techniques, their effectiveness in covering
the paths of the input program, and further explanations and references about
the creation of certified modules from a lasso-shaped word.

We are confident that learning the complement of Büchi automata, shown
in Sect. 6, is a useful technique that can complement the existing proposals, in
particular for tackling the more challenging cases where the ordinary techniques
start suffering from the super-exponential grown of the complement BA. This is
left to future work.

Learning Büchi Automata and Its Applications 93

8 Conclusion

In this work, we have presented a learning algorithm for Büchi automata by
means of its learning of the simple ω-regular language (ab)ω. We have also demon-
strated how the learning algorithm can be used in classical automata operations
such as complementation checking and in the termination analysis context. We
believe that with the intuitive explanation of the different learning algorithms for
both finite and ω-regular languages, it will benefit both the learning community
and the model checking community.

Acknowledgement. This work has been supported by the National Natural Science
Foundation of China (Grant Nos. 61532019, 61761136011), and by the CAP project
GZ1023.

References

1. RABIT tool. http://languageinclusion.org/doku.php?id=tools
2. Aarts, F., Vaandrager, F.W.: Learning I/O automata. In: Gastin, P., Laroussinie,

F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4 6

3. Abdulla, P.A., et al.: Simulation subsumption in ramsey-based Büchi automata
universality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 14

4. Abdulla, P.A., et al.: Advanced ramsey-based Büchi automata inclusion testing.
In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6 13

5. Allred, J.D., Ultes-Nitsche, U.: A simple and optimal complementation algorithm
for Büchi automata. In: LICS, pp. 46–55 (2018)

6. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

7. Alur, R., Černỳ, P., Madhusudan, P., Nam, W.: Synthesis of interface specifica-
tions for Java classes. In: POPL, pp. 98–109 (2005)

8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

9. Angluin, D., Boker, U., Fisman, D.: Families of DFAs as acceptors of omega-
regular languages. In: MFCS, pp. 11:1–11:14 (2016)

10. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating
automata. In: IJCAI, pp. 3308–3314 (2015)

11. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016)

12. Arnold, A.: A syntactic congruence for rational ω-languages. Theor. Comput. Sci.
39, 333–335 (1985)

13. Babiak, T., et al.: The hanoi omega-automata format. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 31

14. Ben-Amram, A.M.: Size-change termination, monotonicity constraints and rank-
ing functions. Log. Methods Comput. Sci. 6 (2010)

http://languageinclusion.org/doku.php?id=tools
https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1007/978-3-319-21690-4_31

94 Y. Li et al.

15. Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-
constraint loops. In: POPL, pp. 51–62. ACM, New York (2013)

16. Ben-Amram, A.M., Genaim, S.: Complexity of bradley-manna-sipma lexico-
graphic ranking functions. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 304–321. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21668-3 18

17. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601–620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 32

18. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS, pp. 193–207 (1999)

19. Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.-H.: Comple-
menting semi-deterministic Büchi automata. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 770–787. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 49

20. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: IJCAI, pp. 1004–1009 (2009)

21. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 32

22. Borralleras, C., et al.: Proving termination through conditional termination. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99–117.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 6

23. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504.
Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 48

24. Breuers, S., Löding, C., Olschewski, J.: Improved ramsey-based Büchi comple-
mentation. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 150–164.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 10

25. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Inter-
national Congress on Logic, Methodology and Philosophy of Science, pp. 1–11
(1962)

26. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-
languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58027-1 27

27. Chapman, M., Chockler, H., Kesseli, P., Kroening, D., Strichman, O., Tautschnig,
M.: Learning the language of error. In: ATVA, pp. 114–130 (2015)

28. Chen, Y.F., et al.: Advanced automata-based algorithms for program termination
checking. In: PLDI, pp. 135–150 (2018)

29. Chen, Y.F., et al.: PAC learning-based verification and model synthesis. In: ICSE,
pp. 714–724 (2016)

30. Choueka, Y.: Theories of automata on ω-tapes: a simplified approach. J. Comput.
Syst. Sci. 8(2), 117–141 (1974)

31. Clarke, E.M.: Model checking – my 27-year quest to overcome the state explosion
problem. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 182–182. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 13

32. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/978-3-642-28729-9_10
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/978-3-540-89439-1_13
https://doi.org/10.1007/978-3-540-89439-1_13
https://doi.org/10.1007/978-3-319-10575-8

Learning Büchi Automata and Its Applications 95

33. Clemente, L., Mayr, R.: Advanced automata minimization. In: Proceedings of
POPL 2013, pp. 63–74. ACM (2013)

34. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

35. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. Formal Methods Syst. Des. 43(1), 93–120 (2013)

36. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code.
In: PLDI, pp. 415–426. ACM, New York (2006)

37. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

38. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 4

39. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

40. Emerson, E.A., Lei, C.: Modalities for model checking: branching time strikes
back. In: POPL, pp. 84–96 (1985)

41. Emerson, E.A., Lei, C.: Modalities for model checking: branching time logic strikes
back. Sci. Comput. Program. 8(3), 275–306 (1987)

42. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 2

43. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic
systems using learning. In: QEST, pp. 133–142 (2010)

44. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word
automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)

45. Fogarty, S., Kupferman, O., Wilke, T., Vardi, M.Y.: Unifying Büchi complemen-
tation constructions. Log. Methods Comput. Sci. 9(1) (2013)

46. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter.
In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 64–78. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30476-0 10

47. Ganty, P., Genaim, S.: Proving termination starting from the end. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 397–412. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 27

48. Giesl, J., et al.: Analyzing program termination and complexity automatically
with AProVe. J. Autom. Reason. 58, 3–31 (2017)

49. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

50. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theor. Comput. Sci. 411(47), 4029–4054 (2010)

51. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing
nondeterministic Büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003.
LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39724-3 10

https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/978-3-540-30476-0_10
https://doi.org/10.1007/978-3-642-39799-8_27
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-540-39724-3_10
https://doi.org/10.1007/978-3-540-39724-3_10

96 Y. Li et al.

52. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1 19

53. van Heerdt, G., Sammartino, M., Silva, A.: CALF: categorical automata learning
framework. In: CSL, pp. 29:1–29:24 (2017)

54. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365–380. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8 26

55. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning ter-
minating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 797–813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 53

56. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2006)

57. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27940-9 17

58. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

59. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

60. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

61. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp.
724–735. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-
8 59

62. Kaminski, M.: A classification of ω-regular languages. Theor. Comput. Sci. 36,
217–229 (1985)

63. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning The-
ory. MIT Press, Cambridge (1994)

64. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14295-6 9

65. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Logic 2(3), 408–429 (2001)

66. Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time.
J. Comput. Syst. Sci. 35(1), 59–71 (1987)

67. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The
Automata-theoretic Approach. Princeton University Press, Princeton (1994)

68. Landweber, L.H.: Decision problems for ω-automata. Math. Syst. Theory 3(4),
376–384 (1969)

69. Le, T.C., Qin, S., Chin, W.: Termination and non-termination specification infer-
ence. In: PLDI, pp. 489–498. ACM, New York (2015)

https://doi.org/10.1007/978-3-642-15769-1_19
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-642-14295-6_9

Learning Büchi Automata and Its Applications 97

70. Lee, W., Wang, B.-Y., Yi, K.: Termination analysis with algorithmic learning.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 88–104.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 12

71. Leike, J., Heizmann, M.: Ranking templates for linear loops. Log. Methods Com-
put. Sci. 11(1) (2015)

72. Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for Büchi
automata based on family of DFAs and classification trees. CoRR abs/1610.07380
(2016). http://arxiv.org/abs/1610.07380

73. Li, Y., Chen, Y.-F., Zhang, L., Liu, D.: A novel learning algorithm for Büchi
automata based on family of DFAs and classification trees. In: Legay, A., Mar-
garia, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 208–226. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54577-5 12

74. Li, Y., Turrini, A., Zhang, L., Schewe, S.: Learning to complement Büchi
automata. In: VMCAI, vol. 10747, pp. 313–335 (2018)

75. Lin, S.W., André, E., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for
compositional verification of timed systems. IEEE Trans. Softw. Eng. 40(2), 137–
153 (2014)

76. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995)

77. Maler, O., Staiger, L.: On syntactic congruences for omega-languages. In: STACS,
pp. 586–594 (1993)

78. McMillan, K.L.: Symbolic Model Checking. Kluwer (1993)
79. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nom-

inal automata. In: POPL, pp. 613–625 (2017)
80. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing

liveness to safety in first-order logic. ACM Program. Lang. 2(POPL), 26:1–26:33
(2018)

81. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata Lang.
Comb. 7(2), 225–246 (2002)

82. Piterman, N.: From nondeterministic Büchi and streett automata to deterministic
parity automata. In: LICS, pp. 255–264 (2006)

83. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

84. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE
Computer Society, Washington, DC (2004)

85. Podelski, A., Rybalchenko, A., Wies, T.: Heap assumptions on demand. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70545-1 31

86. Popeea, C., Rybalchenko, A.: Compositional termination proofs for multi-
threaded programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol.
7214, pp. 237–251. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28756-5 17

87. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
In: STOC, pp. 411–420 (1989)

88. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
USENIX, pp. 193–206 (2015)

89. Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327 (1988)
90. Schewe, S.: Büchi complementation made tight. In: STACS. LIPIcs, vol. 3, pp.

661–672 (2009)

https://doi.org/10.1007/978-3-642-31424-7_12
http://arxiv.org/abs/1610.07380
https://doi.org/10.1007/978-3-662-54577-5_12
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-70545-1_31
https://doi.org/10.1007/978-3-642-28756-5_17
https://doi.org/10.1007/978-3-642-28756-5_17

98 Y. Li et al.

91. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de
Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00596-1 13

92. Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi
automata for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 312–332. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41540-6 17

93. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with appplications to temporal logic. Theor. Comput. Sci. 49, 217–237
(1987)

94. Staiger, L.: Research in the theory of omega-languages. Elektronische Informa-
tionsverarbeitung und Kybernetik 23(8/9), 415–439 (1987)

95. Ströder, T., et al.: Automatically proving termination and memory safety for
programs with pointer arithmetic. J. Autom. Reason. 58, 33–65 (2017)

96. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Com-
puter Science, vol. B: Formal Models and Sematics, chap. 4, pp. 133–192 (1990)

97. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 7

98. Tsai, M., Fogarty, S., Vardi, M.Y., Tsay, Y.: State of Büchi complementation.
Log. Methods Comput. Sci. 10(4) (2014)

99. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–
889. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 62

100. Tsay, Y.-K., Tsai, M.-H., Chang, J.-S., Chang, Y.-W.: Büchi store: an open repos-
itory of Büchi automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011.
LNCS, vol. 6605, pp. 262–266. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19835-9 23

101. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
54–70. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 4

102. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking func-
tions. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412–431. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 22

103. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
104. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,

F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

105. Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70918-3 2

106. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas], pp. 629–736
(2008)

107. Wang, F., Wu, J.-H., Huang, C.-H., Chang, K.-H.: Evolving a test oracle in black-
box testing. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol.
6603, pp. 310–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19811-3 22

108. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata
technique. Log. Methods Comput. Sci. 4(1:5) (2008)

https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1007/978-3-642-39799-8_62
https://doi.org/10.1007/978-3-642-19835-9_23
https://doi.org/10.1007/978-3-642-19835-9_23
https://doi.org/10.1007/978-3-662-49674-9_4
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/978-3-540-70918-3_2
https://doi.org/10.1007/978-3-540-70918-3_2
https://doi.org/10.1007/978-3-642-19811-3_22
https://doi.org/10.1007/978-3-642-19811-3_22

	Learning Büchi Automata and Its Applications
	1 Introduction
	2 Preliminaries
	3 Operations on Büchi Automata
	3.1 Union of Büchi Automata
	3.2 Intersection of Büchi Automata
	3.3 Complementation of Büchi Automata
	3.4 Difference of Büchi Automata
	3.5 Decision Problems on Büchi Automata

	4 Learning Finite Automata
	4.1 Overview of the DFA Learning Algorithm
	4.2 Right Congruences and Myhill-Nerode Theorem
	4.3 Observation Tables
	4.4 DFA Construction from an Observation Table
	4.5 Counterexample Analysis
	4.6 The Learner

	5 Learning Büchi Automata
	5.1 Right Congruences for -Regular Languages
	5.2 Family of Deterministic Finite Automata
	5.3 Learning a Family of DFAs
	5.4 Learning Büchi Automata

	6 Learning to Complement Büchi Automata
	6.1 The Complement BA Learning Framework
	6.2 The Complement BA Learning Framework in Action
	6.3 Experimental Evaluation

	7 Application of Büchi Automata in Termination Analysis
	7.1 Automata-Based Termination Analysis
	7.2 Automata-Based Termination Analysis: An Example
	7.3 Automata-Based Termination Analysis: Difficulties

	8 Conclusion
	References

