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Abstract. This tutorial introduces the basic ideas of software speci-
fication and verification, which are important techniques for assuring
the quality of software and eliminating common kinds of errors such as
buffer overflow. The tutorial takes a practical hands-on approach using
the Whiley language and its verifying compiler. This verifying compiler
uses an automated proof engine to try to prove that the code will exe-
cute without errors and will satisfy its specifications. Each section of the
tutorial includes exercises that can be checked using the online Whiley
Labs website.

1 Background

In our modern world, software is a trusted part of many aspects of our lives.
Unfortunately, the impact and significance of software failures has increased dra-
matically over the last decade [15,40]. A study into software problems between
1980–2012 concluded “About once per month on average, the news reports death,
physical harm, or threatened access to food or shelter due partly to software
problems” [40]. One study found that more than one-third of water, gas and
electricity failures were caused by software faults [53]. A modern automobile
has an estimated 100M lines of computer code [14], which makes them vulner-
able to software faults. In 2003, a blackout caused by software failure lasted 31
hours and affected around 50 million people in the US/Canada [58]. In 2015, a
software bug was discovered in the Boeing 787 despite over a decade of devel-
opment by that point and ≈300 planes in operation [35]. To mitigate the risk of
catastrophic mid-flight failure, the US Federal Aviation Administration issued
a directive, instructing airlines to reboot the control units on all Boeing 787s
at least once every 248 days. Other similar examples include: the Therac-25
computer-operated X-ray machine, which gave lethal doses to patients [47]; the
1991 Patriot missile which hit a barracks, killing several people [32]; and the Ari-
ane 5 rocket which exploded shortly after launch, costing the European Space
Agency an estimated $500 million [1].

Software is also important for our privacy and security. Black hats are hackers
who break into computer systems for criminal purposes, such as stealing credit
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card numbers. Many attacks on computer systems are enabled because of hidden
software bugs. One such example was the infamous Heartbleed bug disclosed in
2014 [10,25]. This was a relatively simple software bug (in fact, a buffer overrun)
found in the widely used OpenSSL cryptography library. There was concern
across the internet for several reasons: firstly, a large number of people were
affected (at the time, around half a million secure web servers were believed
to be vulnerable); secondly, OpenSSL was an open source project but the bug
had gone unnoticed for over two years. Joseph Steinberg of Forbes wrote, “Some
might argue that [Heartbleed] is the worst vulnerability found (at least in terms of
its potential impact) since commercial traffic began to flow on the Internet” [55].

Given the woeful state of much of the software we rely on every day, one
might ask what can we as computer scientists do about it? Of course, we want
to ensure that software is correct. But how? To answer this, we need to go back
and rethink what software development is. When we write a program, we have
in mind some idea of what this means. When we have finished our program, we
might run it to see whether it appears to do the right thing. However, as anyone
who has ever written a program will know: this is not always enough! Even if
our program appears to work after a few tests, there is still a good chance it will
go wrong for other inputs we have not yet tried. The question is: how can we be
sure our program is correct?

2 Specification and Verification

In trying to determine whether our program is correct, our first goal is to state
precisely what it should do. In writing our program, we may not have had a clear
idea of this from the outset. Therefore, we need to determine a specification for
our program. This is a precise description of what the program should and should
not do. Only with this can we begin to consider whether or not our program
actually does the right thing. If we have used a modern programming language,
such as Java, C# or C++, then we are already familiar with this idea. These
languages require a limited specification be given for functions in the form of
types. That is, when writing a function in these languages we must specify the
permitted type of each parameter and the return. These types put requirements
on our code and ensure that certain errors are impossible. For example, when
calling a function we must ensure that the argument values we give have the
correct type. If we fail to do this, the compiler will complain with an error
message describing the problem, which we must fix before the program will
compile.

Software verification is the process of checking that a program meets its spec-
ification. In this chapter we adopt a specific approach referred to as automated
software verification. This is where a tool is used to automatically check whether
a function meets its specification or not. This is very similar to the way that com-
pilers for languages like Java check that types are used correctly. The tool we
choose for this is a programming language called Whiley [52], which allows us
to write specifications for our functions, and provides a special compiler which
will attempt to check them for us automatically.
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This chapter gives an introduction to software verification using Whiley.
Whiley is not the only tool we could have chosen, but it has been successfully
used for several years to teach software verification to undergraduate software
engineering students. Other tools such as Spark/ADA, Dafny, Spec#, ESC/-
Java provide similar functionality and could also be used with varying degrees
of success.

3 Introduction to Whiley

The Whiley programming language has been in active development since 2009.
The language was designed specifically to help the programmer eliminate bugs
from his/her software. The key feature is that Whiley allows programmers to
write specifications for their functions, which are then checked by the compiler.
For example, here is the specification for the max() function which returns the
maximum of two integers:

� �

1 function max(int x, int y) => (int z)

2 // must return either x or y
3 ensures x == z || y == z

4 // return must be as large as x and y
5 ensures x <= z && y <= z:

6 // implementation
7 if x > y:

8 return x

9 else:

10 return y

� �

Here, we see our first piece of Whiley code. This declares a function called
max which accepts two integers x and y , and returns an integer z . The body
of the function simply compares the two parameters and returns the largest. The
two ensures clauses form the function’s post-condition, which is a guarantee
made to any caller of this function. In this case, the max function guarantees to
return one of the two parameters, and that the return will be as large as both
of them. In plain English, this means it will return the maximum of the two
parameter values.

3.1 Whiley Syntax

Whilst a full introduction to the Whiley language is beyond this tutorial, we
provide here a few notes relevant to the remainder. A more complete description
can be found elsewhere [51].

– Indentation Syntax. Like Python, Whiley uses indentation to identify block
structure. So a colon on the end of a line indicates that a more heavily
indented block of statements must follow.
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– Equality. Like many popular programming languages, Whiley uses a double
equals for equality and a single equals for assignment. But in mathematics and
logic, it is usual to use a single equality sign for equality. In this paper, we shall
use the Whiley double-equals notation within Whiley programs (generally
typeset in rectangles) and within statements S in the middle of Hoare triples
{P} S {Q}, but just a single-equals for equality when we are writing logic or
maths.

– Arrays. The size of an array aa is written as |aa| in Whiley, and array
indexes range from 0 upto |aa|-1 .

– Quantifiers. In Whiley, quantifiers are written over finite integer ranges.
For example, a universal quantifier all {i in a..b | P} ranges from the
lower bound a up to (but not including) the upper bound b . For exam-
ple, we can specify that every item in an array aa is positive with
all {i in 0..|aa| | aa[i] > 0} .

When verification is enabled the Whiley compiler will check that every func-
tion meets its specification. For our max() function, this means it will check
that the body of the function guarantees to return a value which meets the func-
tion’s postcondition. To do this, it will explore the two execution paths of the
function and check each one separately. If it finds a path which does not meet
the postcondition, the compiler will report an error. In this case, the max()

function above is implemented correctly and so it will find no errors. The advan-
tage of providing specifications is that they can help uncover bugs and other,
more serious, problems earlier in the development cycle. This leads to software
which is both more reliable and more easily maintained (since the specifications
provide important documentation).

4 Writing Specifications

Specifying a program in Whiley consists of at least two separate activities.
Firstly, we provide appropriate specifications (called invariants) for any data
types we have defined (we will discuss this further in Sect. 4.4). Secondly, we
provide specifications in the form of preconditions and postconditions for any
functions or methods defined—which may involve defining additional data types
and properties. In doing this, we must acknowledge that precisely describing a
program’s behaviour is extremely challenging and, oftentimes, we want only to
specify some important aspect of its permitted behaviour. This can give us many
of the benefits from specification without all of the costs.

4.1 Specifications as Contracts

A specification is a contract between two parties: the client and supplier. The
client represents the person(s) using a given function (or method or program),
whilst the supplier is the person(s) who implemented it. The specification ties
the inputs to the outputs in two ways:
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– Inputs. The specification states what is required of the inputs for the function
to behave correctly. The client is responsible for ensuring the correct inputs
are given. If an incorrect input is given, the contract is broken and the function
may do something unexpected.

– Outputs. The specification states what outputs must be ensured by a cor-
rectly behaving function. The supplier is responsible for ensuring all outputs
meet the specification, assuming that correct inputs were provided.

From this, we can see that both parties in the contract have obligations they
must meet. This also allows us to think about blame. That is, when something
goes wrong, who is responsible? If the inputs to our function were incorrect
according to the specification, we can blame the client. On the other hand if the
inputs were correct, but the outputs were not, we can blame the supplier.

An interesting question arises about who the client and supplier are, exactly.
A common scenario is where they are different people. For example, the supplier
has written a library that the client is using. However, this need not be the case
and, in fact, they can be the same person. For example, consider a program
with one function f() that calls another g(), both of which were written by
the same person. In this case, that person acts as both client and supplier:
first as a client of g() (i.e. because their function f() calls g() and relies on its
specification); second, they are a supplier of g() because they implemented it and
are responsible for it meeting its specification. Finally, we note the special case
of the top level function of a program (e.g. main())) which is called the language
runtime. If this function has a precondition, then it is the responsibility of the
runtime to ensure this is met. A good example of this is when an array of strings
are passed to represent command-line arguments. In such case, there may be a
precondition that the array is not null.

Example. As an example, let us consider a function for finding the maximum
value from an array of integers. Here is an informal specification for this function:
� �

1 // REQUIRES: At least one item in items array
2 // ENSURES: Item returned was largest item in items array
3 function max([int] items) -> (int item)

� �

We have specified our function above using comments to document: firstly, the
requirements needed for the inputs—that the array must have at least one ele-
ment; and, secondly, the expectations about the outputs—that it returns the
largest element in the array. Thus, we could not expect the call max([]) to
operate correctly; likewise, if the call max([1,2]) returned 3 we would say the
implementation was incorrect. �

4.2 Specifying Functions

To specify a function or method in Whiley we must provide an appropriate
precondition and postcondition. A precondition is a condition over the input
parameters of a function that is required to be true when the function is called.
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The body of the function can use this to make assumptions about the possi-
ble values of the parameters. Likewise, a postcondition is a condition over the
return values of a function that is required to be true after the function body is
executed.

Example. As a very simple example, consider the following specification for our
function which finds the maximum value from an array of integers:
� �

1 function max([int] items) => (int item)

2 // At least one item in items array
3 requires |items| > 0

4 // Item returned as large as largest in items array
5 ensures all { i in 0 .. |items| | items[i] <= item }

6 // Item returned was in items array
7 ensures exists { i in 0 .. |items| | items[i] == item }

� �

Here, the requires clause gives the function’s precondition, whilst the ensures

clauses give its postcondition. This specification is largely the same as that given
informally using comments before. However, we regard this specification as being
formal because, for any set of inputs and outputs, we can calculate precisely
whether the inputs or outputs satsify these specifications.

For example, consider the call max([]) . We can say that the inputs to this
call are incorrect, because |[]| > 0 evaluates to false . For the informal ver-
sion given above, we cannot easily evaluate the English comments to determine
whether they were met or not. Instead, we rely on our human judgement for
this—but, unfortunately, this can easily be wrong! �

When specifying a function in Whiley, the requires clause(s) may only
refer to the input parameters, whilst the ensures clause(s) may also refer to
the return parameters. Note, however, that the ensures clause(s) always refers
to the values of the parameters on entry to the function, not those which might
hold at the end.

Exercise: Absolute Value.
Give suitable precondition(s) and postcondition(s) for the following Whiley
function, which returns the absolute value of x . To check the answer, use
the online Whiley Labs system at http://whileylabs.com.
� �

1 function abs(int x) -> (int r)

2 requires ???

3 ensures ???:

4 //
5 if x < 0:

6 return -x

7 else:

8 return x

� �

http://whileylabs.com
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4.3 Contractual Obligations

The main benefit of adding specification clauses ( requires and ensures ) to a
function is that it gives us a precise contract that acts as an agreement between
the client and the supplier of the function. We can now be more precise about
the obligations and benefits for both parties.

– The client, who calls the function, must make certain that every input value
satisfies the requires conditions (Obligation); and, can assume every output
of the function satisfies the ensures conditions (Benefit).

– The supplier, who implements the function, must ensure all returned values
satisfy the ensures conditions (Obligation); but, may assume that every
input will satisfy the requires conditions (Benefit).

In both cases, the Whiley verifying compiler will check these obligations and
display an error message such as “postcondition may not be satisfied” if its
automatic prover cannot prove that the obligation is satisfied. This could mean
either that:

– the proof obligation is false, so the code is incorrect; or
– the automatic prover is not powerful enough to prove the obligation.

In general, software correctness proofs are undecidable, especially when they
involve non-trivial multiplications or other non-linear functions, so the automatic
prover has a timeout (typically 10 s) after which it reports that it cannot prove
the proof obligation. So when the Whiley compiler reports an error, it could mean
an error in the code, or just that something is too hard to prove automatically.
To help decide which is the case, one can ask the Whiley verifier to generate
a counter-example. If it is able to generate counter-example values, then this
can be inspected to see why the proof obligation is false - it could be due to
an error in the code or in the specification. If the Whiley verifier cannot find
any counter-example values, then it is possible that the proof obligation is too
complex for the verifier to be able to prove within its timeout limit. In this case
one can: increase the timeout; or, simplify the code and specifications to make
the proof obligation more obvious; or, mark this proof obligation as needing
further inspection and verification by humans.

Exercise: Specify Binary Minimum.
Add specifications to the following min() function that determines the
minimum of its two arguments, by completing the ensures predicate.
� �

1 function min(int x, int y) -> (int r)

2 ensures ???:

3 if x < y:

4 return x

5 else:

6 return y

� �
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Exercise: Generate Counterexample.
The following function contains a bug and fails verification. Using the coun-
terexample feature of Whiley, identify an input which illustrates the problem.
� �

1 // Read an item from the buffer, or null if it doesn’t exist
2 function read(int[] buffer, int index) -> (int|null r):

3 if index < 0 || index > |buffer|:

4 return null

5 else:

6 return buffer[index]

� �

4.4 Specifying Data Types

In Whiley, a data type is simply a set of values. Practically, the usual structured
types are supported (arrays and records), as well as various primitive types such
as integer and boolean. In addition, the Whiley type system allows users to
specify data invariants as part of a type definition. For example, we could define
a type called pos that is the strictly positive integers, or a type percent that
can range only from 0 . . . 100. The following example shows how we can define
a rectangle type that is restricted to only allow non-empty rectangles.
� �

1 type pos is (int x) where x > 0

2 type Rectangle is { int x, int y, pos width, pos height }

3

4 function area(Rectangle r) -> (pos a):

5 return r.width * r.height

� �

Exercise: Rectangle Containment.
Complete the implementation of the following function by writing its code
body. Use multiple simple if statements that return true or false. To make
the exercise more challenging, check one condition at a time, and do not
use logical conjunction or disjunction operators.
� �

1 type pos is (int x) where x > 0

2 type Rect is { int x, int y, pos width, pos height }

3

4 // Does rectangle a contain rectangle b?
5 function contains(Rect a, Rect b) -> (bool r)

6 ensures r == ( a.x <= b.x &&

7 b.x + b.width <= a.x + a.width &&

8 a.y <= b.y &&

9 b.y + b.height <= a.y + a.height):

10 return true // TODO: code this using if-else statements.

� �
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5 Verifying Loop-Free Code

In this section we will practice verifying simple non-looping programs that
contain just: assignment statements, variable declarations, if-else conditionals,
return statements, and assertions. A key challenge here lies in understanding
how the automated verification tool works. To help, we will introduce some
theory—called Hoare logic—which provides a mathematical background for ver-
ification [34]. Whilst the verification tools can be used without understanding
all the details of this theory, it is recommended to work through Sects. 5.1 to 5.4
to get a deeper understanding.

5.1 Motivating Example

We shall start with a brain teaser. Here is some Whiley code (adapted from an
example by Back and von Wright [4, page 97–98]) that does some kind of trans-
formation of two values. Try to work out what it does, and write a specification
of its input-output behavior by completing the ensures predicate.

� �

1 function f(int x, int y) -> (int r, int s)

2 ensures r == ??? && s == ???:

3 x = 2 * x + y

4 y = x - y

5 x = x - y

6 return x, y

� �

This example shows that it can be quite complex to reason about a sequence
of assignments. It is not always obvious what state the variables should be in
between two statements. In fact, the specification of this code is remarkably sim-
ple and this will become apparently shortly. But this probably was not obvious
from the rather convoluted code, which was designed to swap two variables (and
double one of them) without using any temporary storage – such code was useful
when embedded computers had extremely limited memory, but is rarely needed
these days.

Software verification tools can sometimes immediately verify our code, even
when it does have a complex sequence of assignments like this. But when there
is a problem, we will sometimes need to ‘debug’ our program or our verification,
step by step, which requires that we understand the intermediate states. So we
need intermediate predicates between statements to say what should be true at
that point. Whiley provides two kinds of statements which can help:

– assert e to check if e is true at that point. The verifier will attempt to
prove that e is satisfied at that point and will give an error if it is not prov-
able. Adding assertions makes the verifier work a little harder, but will never
destroy the soundness of the verification.
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– assume e to add an (unproven) assumption. The verifier will not attempt to
prove e, but will simply assume that it is true at that point, and will use it to
help verify subsequent proof obligations. Assumptions can be useful for per-
forming ‘what if’ experiments with the verifier, or for helping the verifier to
overcome difficult proofs that it cannot do automatically. However, assump-
tions allow one to override the usual verification process, so care must be taken
not to introduce unsound verifications by adding incorrect assumptions.

By inserting assertions and assumptions at various points in our program, we
can check our understanding of what should be true and, if necessary, can prove
one scenario at a time. For example, we could use assume statements to focus on
particular input values such as x == 10 and y == 11, and an assert statement
to check that we have done the correct calculation for those values.

� �

1 function f(int x, int y) -> (int r, int s):

2 assume x == 10

3 assume y == 11

4 //
5 x = 2 * x + y

6 y = x - y

7 x = x - y

8 //
9 assert x == 11 && y == 2 * 10

10 return x, y

� �

But how can we find, or design, these intermediate assertions? This is where
Hoare logic comes in. But, before we get to that, here is the solution for our
brain teaser.
� �

1 function f(int x, int y) -> (int r, int s)

2 ensures r == y && s == 2 * x:

3 x = 2 * x + y

4 y = x - y

5 x = x - y

6 return x, y

� �

Now let’s investigate the three ways that we can calculate intermediate asser-
tions for complex sequences of code.

5.2 Hoare Logic

Hoare Logic [34] is a well-known system for proving the correctness of programs.
Figure 1 presents Hoare Logic rules for the basic statements in Whiley. Note that
p[e/x] means replace all free occurrences of the variable x in p by the expression



An Introduction to Software Verification with Whiley 11

e. Unlike Hoare’s original logic, Fig. 1 includes assert and assume statements,
and loops have explicit loop invariants.

The rules are presented in terms of correctness assertions (also known as
Hoare triples of the form:

{
p
}
s

{
q
}

, where p is a precondition, s is a Whiley
statement, and q is a postcondition. A Hoare triple is true if whenever the
precondition is true, then executing the statement establishes the postcondition.
For example, consider the following Hoare triple:

{
x ≥ 0

}
x = x + 1

{
x > 0

}

Here we see that, if x ≥ 0 holds immediately before the assignment then, as
expected, it follows that x > 0 holds afterwards. However, whilst this is intu-
itively true, it is not so obvious how this triple satisfies the rules of Fig. 1.
For example, as presented it does not immediately satisfy H-Assign. However,
rewriting the triple is helpful here:

{
x + 1 > 0

}
x = x + 1

{
x > 0

}

The above triple clearly satisfies H-Assign since (x > 0)[x + 1/x] simplifies
to x+1 > 0, which is the same as our precondition. Furthermore, we can obtain
the original triple from this triple via H-Consequence (i.e. since x+1 > 0 =⇒
x ≥ 0).

5.3 Calculating Backwards Through Assignments

The rules of Fig. 1 naturally give rise to an approach where we calculate pre-
conditions from postconditions. Whilst this may seem unnatural at times, it is
rather convenient. We can take this further and consider the weakest precondi-
tion that can be calculated. This is the weakest condition p that guarantees that
if it is the case that statement s terminates, then the final state will satisfy q.
The rule H-Assign for assignment statements demonstrates this most clearly.
Consider the following:

{
???

}
x = y + 1

{
x > 0

}

To apply rule H-Assign here, we simply substitute all occurrences of x in
the postcondition with y + 1 (i.e. the expression being assigned) to give:

{
y + 1 > 0

}
x = y + 1

{
x > 0

}

At this point, we have a simple mechanism for calculating the weakest pre-
condition for a straight-line sequence of statements.
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p =⇒ e{
p
}
assert e

{
p
} (H-Assert) {

p
}
assume e

{
p ∧ e

} (H-Assume)

{
p[e/x]

}
x = e

{
p
} (H-Assign)

{
p
}
s1

{
r
} {

r
}
s2

{
q
}

{
p
}
s1 s2

{
q
} (H-Sequence)

{
p1

}
s

{
q1

}

p2 =⇒ p1 q1 =⇒ q2{
p2

}
s

{
q2

} (H-Consequence)

{
p ∧ e1

}
s1

{
q
}

{
p ∧ ¬e1

}
s2

{
q
}

{
p
}
if(e1) (s1) else (s2)

{
q
} (H-If)

{
e1 ∧ e2

}
s

{
e2

}
{
e2

}
while(e1) where e2 (s)

{
¬e1 ∧ e2

} (H-While)

Fig. 1. Extended rules of Hoare Logic.

Exercise: Calculating Backwards.
Work backwards from the through the following sequence of Hoare triples
calculating the weakest precondition before each assignment. Upon reaching
the start, one should find the precondition simplifies to true.

{
???

}
a = (2 ∗ x) + y

{
???

}
b = a − y

{
(a − b) == y ∧ b == 2 ∗ x

}

Variable Versions. Since Whiley is an imperative language, it permits vari-
ables to be assigned different values at different points. Whilst the rules of Hoare
logic accomodate this quite well, there are some limitations. In particular, we
often want to compare the state of a variable before and after a given statement.

The following illustrates this:
� �

1 function increment(int x) -> (int y)

2 ensures y > x:

3 x = x + 1

4 return x

� �

We can express the above program as a straight line sequence of Hoare triples
where the return x is represented as y = x (i.e it is treated as an assignment
to the return variable):

{
???

}
x = x + 1

{
x > x

}
y = x

{
y > x

}
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However, there must be a problem since the intermediate assertion x > x is
clearly false. So what went wrong? The problem lies in our formulation of the
postcondition in the final assertion. Specifically, in the final assertion, x refers to
the value of variable x at that point. However, in the ensures clause, x refers
to the value of x on entry.

In order to refer to the value of a variable on entry, we can use a special
version of it. In this case, let x0 refer to the value of variable x on entry to the
function. Then, we can update our Hoare triples as follows:

{
x + 1 > x0

}
x = x + 1

{
x > x0

}
y = x

{
y > x0

}

By assuming that x = x0 on entry to the function, we can see the weakest
precondition calculated we’ve calculated above is satisfied.

5.4 Calculating Forwards Through Assignments

An alternative approach is to propagate predicates forward through the program.
For a given precondition, and a statement s, we want to find the strongest
postcondition that will be true after s terminates. This turns out to be a little
more challenging than calculating weakest preconditions. Consider this program:

{
0 ≤ x ≤ y

}
x = 1

{
???

}

From the precondition to this statement, one can infer that y is non-negative.
But, how to update this and produce a sensible postcondition which retains this
information? The problem is that, by assigning to x, we are losing information
about its original value and relationship with y. For example, substituting x
for 1 as we did before gives 0 ≤ 1 ≤ y which is certainly incorrect, as this now
implies y cannot be zero (which was permitted before). The solution is to employ
Floyd’s rule for assignments [30]:

{
p
}
x = e

{
∃v.(p[v/x]) ∧ x = e[v/x]

}

This introduces a new variable v to represent the value of x before the assign-
ment and, hence, provide a mechanism for retaining all facts known beforehand.
For above example, this looks like:

{
0 ≤ x ≤ y

}
x = 1

{
∃v.(0 ≤ v ≤ y) ∧ x = 1

}

With this postcondition, we retain the ability to infer that y is non-negative.
Unfortunately, the postcondition seems more complex. To simplify this, we can
employ the idea of variable versioning from before:

{
0 ≤ x ≤ y

}
x = 1

{
0 ≤ x0 ≤ y ∧ x = 1

}

Here, x0 represents the value of x before the assignment. We are simply giving
a name (x0) to the value that Floyd’s Rule claims to exist. Technically this
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is called ‘skolemization’. Observe that, with multiple assignments to the same
variable, we simply increment the subscript of that variable each time it appears
on the left-hand side of an assignment statement. The following illustrates this:
{
0 ≤ x

}
x = x+1

{
0 ≤ x0 ∧ x = x0+1

}
x = 0

{
0 ≤ x0 ∧ x1 = x0+1 ∧ x = 0

}

Exercise: Calculating Forwards.
Work forwards through the following Hoare triples for a sequence of assign-
ment statements, calculating the strongest postcondition after each assign-
ment.

{
true

}
x = (2 ∗ x) + y

{
???

}
y = x − y

{
???

}
x = x − y

{
???

}

Doing this, it should be possible to establish the postcondition for the
function f() above.

This approach of strongest postconditions with variable versions is essentially
how the Whiley verifier analyzes each path through the Whiley code. In fact,
when looking at a counter-example from the verifier for a proof that fails (for
whatever reason), one will sometimes see numbered versions of some variables,
referring to their intermediate values. One reason for using this strongest post-
condition approach in preference to the weakest precondition approach is that
the strongest postcondition approach typically generates multiple smaller proof
obligations rather than one large proof obligation, which helps to make error
messages more precise and helpful.

5.5 Reasoning About Control-Flow

Reasoning about conditional code, such as if-else statements, is similar to rea-
soning about a single sequence of code, except that we now have two or more
possible execution sequences. So we must reason about each possible sequence.
To do this, we use the following three principles:

– Within the true branch the condition is known to hold;
– Within the false branch the condition is known to not hold;
– Knowledge from each branch can be combined afterwards using disjunc-
tion.

The following illustrates what assertions are true at each point in the code.
Note how the assertion after the whole if-else block is simply the disjunction
of both branches, and from this disjunction we are able to prove the desired
postcondition z ≥ 0.
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� �

1 assume y >= 0

2 //
3 if x >= 0:

4 // {x ≥ 0 ∧ y ≥ 0}
5 z = x + y

6 // {x ≥ 0 ∧ y ≥ 0 ∧ z == x + y}
7 else:

8 // {x < 0 ∧ y ≥ 0}
9 z = y - x

10 // {x < 0 ∧ y ≥ 0 ∧ z == y − x}
11 //
12 // {(x ≥ 0 ∧ y ≥ 0 ∧ z == x + y) ∨ (x < 0 ∧ y ≥ 0 ∧ z == y − x)}
13 assert z >= 0

� �

A return statement terminates a function and returns to the calling function.
Since execution does not continue in the function after the return, our reasoning
about sequences of code also stops at each return statement. At that point,
we must prove that the postcondition of the whole function is satisfied. The
following example illustrates this:
� �

1 function abs(int x) -> (int r)

2 ensures r >= 0:

3 //
4 if x >= 0:

5 // {x ≥ 0}
6 return x

7 //
8 // {x < 0}
9 return -x

� �

Exercise: Return Statement.
Answer the following questions about this Whiley program. (After having
written the answers, sample solutions are available in Appendix A.)
� �

1 function inc(int x) -> (int r)

2 ensures x < r:

3 x = x + 1

4 return x

� �

– Q) What knowledge do we have at the point of return?

– Q) Is this enough to establish the postcondition?
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5.6 Reasoning About Expressions

Our next example (see Fig. 2) illustrates a more complex function example that
uses conditionals and recursion to sum an array of integers. Note that variable
declarations in Whiley are typed like in Java and C, so int x = . . . declares
and initializes the variable x.

One issue that arises in this example is that whenever the code indexes into an
array, we need to check that the index is a valid one. Checks like this ensure that
buffer overflows can never occur, thereby eliminating a major cause of security vul-
nerabilities. To ensure that the array access in line 14 is valid, we must prove that
at that point the index i is within bounds. This introduces the following proof
obligation—or verification condition—for our program (we use a bold implies to
clearly separate the assumptions of the proof obligation from the conclusions):

0 ≤ i ≤ |items| ∧ i 	= |items| implies 0 ≤ i < |items|
The Whiley verifier can easily prove this verification condition holds true

and, hence, that the array access is within bounds.
More generally, many inbuilt functions have preconditions that we need to

check. For example, the division operator a/b is only valid when b 	= 0. And
user-defined functions have preconditions, which must be satisfied when they
are invoked, so the verifier must generate verification conditions to check their
arguments. Here is a list of the verification conditions that Whiley generates and
checks to verify code:

1. Before every function call, the function’s precondition is true;
2. Before every array access, arr[i], the index i is within bounds;
3. Before every array generator, [v; n], the size n is non-negative;

1 function sum(int[] items, int i) -> (int r)
2 // All elements of items are natural
3 requires all { k in 0..|items| | items[k] >= 0 }
4 // Index is at most one past bounds of array
5 requires 0 <= i && i <= |items|
6 // Result is natural
7 ensures r >= 0:
8 // {0 ≤ i ≤ |items| ∧ ∀k. 0 ≤ k < |items| =⇒ items[k] ≥ 0

)}
9 if i == |items|:

10 // {i == |items| ∧ ...}
11 return 0
12 else:
13 // {0 ≤ i < |items| ∧ i �= |items| ∧ ∀k. 0 <= k < |items| =⇒ items[k] ≥ 0

)}
14 int x = items[i]
15 // {x ≥ 0 ∧ 0 ≤ i < |items| ∧ i �= |items| ∧ ∀k. ...)}
16 int y = sum(items,i+1)
17 // {y ≥ 0 ∧ x ≥ 0 ∧ 0 ≤ i < |items| ∧ i �= |items| ∧ ∀k. ...)}
18 return x + y

Fig. 2. A recursive function for summing an array of integers
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4. Before every integer division a/b, it is true that b 	= 0;
5. Every assert statement is true;
6. in assignment statements, each right-hand-side result satisfies the type con-

straints of the corresponding left-hand-side variable;
7. At each return, the ensures conditions are true.

These conditions apply to the recursive invocation of sum(. . .) on Line 16 as
well. We must prove that the precondition of sum(. . .) is satisfied just before it
is called. In this case this means proving:

– 0 ≤ i ≤ |items| ∧ i 	= |items| implies 0 < i+1 ≤ |items|
– ∀k.(0 ≤ k < |items| =⇒ items[k] >= 0

)
implies

∀k.(0 ≤ k < |items| =⇒ items[k] >= 0
)
.

Note that if we wanted to prove termination, to ensure that this function does
not go into infinite recursion, we would also need to define a decreasing variant
expression and prove that each recursive call strictly decreases the value of that
expression towards zero. However, the current version of Whiley only proves
partial correctness, so does not generate proof obligations to ensure termination.
This may be added in the future.

5.7 Reasoning About Function Calls

Correctly reasoning about code which calls another function can be subtle. In
our recursive sum example we glossed over this by simply applying the postcon-
dition for sum(int[],int) directly. Sometimes we need to reason more carefully.
It is important to understand that the verifier never considers the body of func-
tions being called, only their specification. This makes the verification modular.
Consider the following simple function:
� �

1 function id(int x) -> (int r):

2 return x

� �

This is the well-known identity function which simply returns its argument
untouched. However, even with this simple function, it is easy to get confused
when reasoning. For example, we might expect the following to verify:
� �

1 assert id(0) == 0

� �

Whilst it is easy to see this must be true, the verifier rejects this because the
specification for id() does not relate the argument to its return value. Remem-
ber, the verifier is ignoring the body of function id() here. This is because the
details of how the specification for id() is met should not be important (and the
implementation can change provided the specification is still met). However, the
verifier will accept:
� �

1 assert id(0) == id(0)

� �
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This may seem confusing since it appears that the verifier is considering the
body of function id(). However, in fact, it is only reasoning about the property
of pure functions—namely, that given the same input, they produce the same
output.

Exercise: Specification versus Implementation.
Consider these two functions:
� �

1 function increment(int x) -> (int y)

2 ensures y > x:

3 return x+1

4

5 function test(int x):

6 int z = increment(x)

7 assert z == x + 1

� �

Check that this program fails to verify and use the counterexample feature
to find values which illustrate the problem. Answer the following questions:

– Q) Do these values satisfy the specification of increment()?
– Q) Do these values satisfy the implementation of increment()?

Finally, weaken the assert statement so that it establishes the strongest
property regarding the relationship between variable x and z.

6 Verifying Loops

Verifying looping code is more complex than verifying non-looping code, since
execution may pass through a given point in the loop many times, so the asser-
tions at that point must be true on every iteration. Furthermore, we do not
always know beforehand how many times the loop will iterate – it could be zero,
one, or many times.

To make loops more manageable, the usual technique is to introduce a loop
invariant predicate. For example, in the following simple program, one property
that is clearly always true as we execute the loop is i >= 0 .1 Another loop invari-
ant is prod == i * n , since n is added to prod each time that i is incremented.
Yet another loop invariant is i <= n . However, i < n is not a loop invariant since
the last iteration of the loop will increment i to be equal to n .

� �

1 function sq(int n) -> (int r)

2 requires n > 0

3 ensures r == n * n:

4 int i = 0

5 int prod = 0

1 This holds because integers are unbounded in Whiley.
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6 //
7 while i < n:

8 i = i + 1

9 prod = prod + n

10 //
11 return prod

� �

If we use all three of these loop invariants to analyze this program, and note
that when the loop exits the guard must be false , which means that i >= n ,
then we have both i >= n and i <= n . This implies that i == n . Combining
this with the third loop invariant prod == i * n , we can prove the postcondition
of the whole function: r == n * n .

Let us define this concept of loop invariant more precisely, so that we can
understand how tools like the Whiley verifying compiler use loop invariants to
prove loops correct.

6.1 Loop Invariants

A loop invariant is a predicate which holds before and after each iteration of the
loop. The three rules about loop invariants are:

1. Loop invariants must hold before the loop.
2. Loop invariants must be restored. That is, within the loop body, the loop

invariant may temporarily not hold, but it must be re-established at the end
of the loop body.

3. The loop invariant and the negated guard are the only properties that are
known to be true after the loop exits, so they must be sufficiently strong to
allow us to verify the code that follows the loop.

The following diagram illustrates these three rules graphically, for a loop
occurring within a function body.

return ...

2

1

3

while C where I:
    //

//

function f() requires R ensures E:

We can explain the three loop invariant loops more precisely, using the nota-
tion of Hoare triples.
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1. Loop Invariants must hold before the loop.
function f() requires R ensures E:

1

while C where I:
    //

Informally: Information known at the start of loop must imply the loop

invariant. Formally, we can express this as:
{
R

}
S1

{
P

}
implies (P =⇒ I)

where S1 represents all statements before the loop.
2. Loop Invariants must be maintained.

2

while C where I:
    //

//

Informally: Assuming only the loop invariant I and the loop condition C hold
at the start of the loop body, the information known at the end of the loop
body must imply the loop invariant I. Formally:

{
I ∧ C

}
S

{
P

}
implies (P =⇒ I)

where S represents the loop body.
3. Loop Invariants hold after the loop.

3

//

return ...

Informally: We can assume that the loop invariant and the negated condition
hold after the loop terminates. From just those two assumptions, we must be
able to prove that the code after the loop is correct. Formally:

{
I ∧¬C

}
S2

{
E

}

where S2 represents all statements after the loop; and E is the postcon-
dition.

The following function, which just counts up to 10, illustrates a very sim-
ple loop invariant that captures some information about the range of the loop
variable i.
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� �

1 function g(int i) => (int r)

2 //
3 requires i >= 0

4 ensures r >= 10:

5

6 // {i ≥ 0}
7 while(i < 10) where i >= 0:

8 // {i < 10 ∧ i ≥ 0}
9 i = i + 1

10 // {i ≥ 0}
11

12 // {i ≥ 10 ∧ i ≥ 0}
13 return i

14 }

� �

To help relate the Whiley code to the Hoare triples that we are discussing, we
show various intermediate assertions that would appear in the Hoare triples
for this program. Such intermediate assertions are not normally written in a
Whiley program (because the Whiley verifier calculates them automatically), so
we show them here as Whiley comments. This provides an outline of a Hoare-
style verification that this function meets its specification. Note that this does
not prove the function terminates (although we can see that it does) and, in
general, this is not our concern here.

Here is another example of a simple loop that sums two arrays pair-wise into an
output array. What would be a suitable loop invariant for the loop in this function?

� �

1 function sum(int[] v1, int[] v2) -> (int[] v3)

2 // Input vectors must have same size
3 requires |v1| == |v2|

4 // Result has same size as input
5 ensures |v1| == |v3|

6 // Each element of result is sum of corresponding elements in inputs
7 ensures all { i in 0..|v1| | v3[i] == v1[i] + v2[i] }:

8 //
9 int i = 0

10 int[] old_v1 = v1

11 //
12 while i < |v1|

13 where ??? TODO: relate v1 to old_v1 and v2 somehow ???:

14 v1[i] = v1[i] + v2[i]

15 i = i + 1

16 //
17 return v1

� �

6.2 Ghost Variables and Loop Invariants

A ghost variable is any variable introduced specifically to aid verification in
some way, but is unnecessary to execute the program. In the vector sum example
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above, variable old_v1 is a ghost variable, because we can implement the
solution without it, but we cannot verify the solution without it! Here is the
loop invariant for the vector sum example, showing how we need to use old_v1

in the loop invariant to refer to the original contents of the v1 vector:
� �

1 //
2 while i < |v1|

3 where 0 <= i && i <= |v1|

4 where |v1| == |old_v1|

5 where all { j in 0..i | v1[j] == old_v1[j] + v2[j] }

6 where all { j in i..|v1| | v1[j] == old_v1[j] }:

7 v1[i] = v1[i] + v2[i]

8 i = i + 1

9 //

� �

Recall that Rule 3 for loops says that the only thing known after a loop
is the loop invariant and the negated loop guard. In theory, this means that
our loop invariant should include all known facts about all the variables in the
function. So perhaps we should add predicates like |v2| == |old_v1| into the
loop invariant above, even though neither of these variables are changing within
the loop? This would become very verbose and tedious - it is a very common
case that some variables are not changed at all within a loop.

Fortunately, Whiley uses an extended form of Rule 3 for variables not mod-
ified in a loop: all information about them from before loop is automatically
retained. This generally includes all ghost variables (since they typically just
capture the previous values of some variable), but also variables like v2 in the
vector sum example above, because there is no assignment to it in the loop. So
for a predicate that does not mention any variables changed by the loop, it is not
necessary to include that predicate in the loop invariant, as it will automatically
be preserved across the loop.

6.3 Example: Reversing an Array (Implementation)

Now that we have all the necessary tools, such as loop invariants and ghost
variables, let us consider what loop invariant is needed to verify the following
program, which reverses the contents of an array in-place.

� �

1 // In-place reverse of items in an array
2 function reverse(int[] xs) -> (int[] ys)

3

4 ensures |xs| == |ys|

5 // All items in return array in reversed order
6 ensures all { i in 0..|xs| | xs[i] == ys[|xs|-(i+1)]}:

7 int i = 0

8 int j = |xs| - 1

9 while i < j

10 where ???:
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11 int tmp = xs[i]

12 xs[i] = xs[j]

13 xs[j] = tmp

14 j = j - 1

15 i = i + 1

16 return xs

� �

To help visualize the required invariant, imagine that we are half way through
reversing the array. The region between i and j remains to be reversed.

1 20 3 4 5− 4− 3− 2− 1−

i j

Exercise: Reversing Array Invariant.
Find a suitable loop invariant to verify this reverse function, using as few
of the following hints as possible:

1. start with a loop invariant that is a weakened version of the postcondi-
tion;

2. weaken it so it applies to just the part of the array that has been reversed;
3. add lower and upper bounds for i and j, since they are changing;
4. remember to say that the unprocessed region of the array is unchanged—

that is, is still equal to the original array;
5. introduce a ghost variable for the initial value of the xs array;
6. remember to say that the length of xs is the same as its original length.

Exercise: Find the index.
Verify the following indexOf() function, by finding a suitable loop invari-
ant.
� �

1 function indexOf(int[] items, int item) -> (int r)

2 ensures r >= 0 ==> items[r] == item

3 ensures r >= 0 ==> all { i in 0 .. r | items[i] != item }

4 ensures r < 0 ==> all { i in 0 .. |items| |

5 items[i] != item }:

6 //
7 int i = 0

8 while i < |items|:

9 if items[i] == item:
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10 return i

11 i = i + 1

12 //
13 return -1

� �

6.4 Example: Dutch National Flag

We now consider a more complex example, due to the famous Dutch computer
scientist Edsger Dijkstra:

“Given a quantity of items in three colours of the Dutch National flag,
partition the items into three groups such that red items come first, then
white items and, finally, blue items.”

This can be thought of as a special case of sorting, and is very similar to the
“split/partition” part of quicksort. Unlike the real Dutch flag, we don’t know
how many of each colour there are, so we can’t use that to predetermine where
the three regions should be. Also, we are required to do this in-place, without
using additional arrays.

Rather than give the algorithm and then show how to verify it, we will use
this problem to illustrate the approach to programming advocated by Dijkstra,
in which programs are constructed from their specifications in a way that guar-
antees their correctness. In particular, loops are designed by first choosing a loop
invariant, by weakening the postcondition of the loop, and then designing the
loop body so as to maintain the loop invariant while making progress towards
termination. This refinement approach to developing programs [48] develops the
code step-by-step guided by the specifications, so it typically leads to code that
is easier to verify than code just written directly by a programmer without con-
sidering the specifications. As functions become larger and more complex, we
recommend that a refinement approach should be used, which is why we demon-
strate this approach in this final example of this chapter.

In this case, our postcondition is that the array be a permutation of the
original, and that it be arranged into three regions containing red, white and
blue elements, respectively. Let us introduce two markers, lo and hi to mark
the ends of these regions—more specifically, to mark the first and elements of the
white region. Thus, the final state looks like this (we will explain mid shortly):
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We can describe this more formally using Whiley syntax:
� �

1 0 <= lo && lo <= hi && hi <= |cols|

2 all { i in 0..lo | cols[i] == RED }

3 all { i in lo..hi+1 | cols[i] == WHITE }

4 all { i in hi+1..|cols| | cols[i] == BLUE }

� �

The first line specifies the ranges of lo and hi . The remaining lines say
that each of the three regions contains only values of the appropriate colour.
We will omit the permutation condition, since it is easy to verify, and focus on
these conditions. The precondition is that the array initially contains only three
distinct values:
� �

1 all { i in 0..|cols| |

2 cols[i] == RED || cols[i] == WHITE || cols[i] == BLUE }

� �

Our algorithm needs to build these three regions incrementally as it inspects
each element of the array. So at an arbitrary point in the process, we will have
three regions containing the red, white and blue elements we’ve already seen. We
will also have a fourth region containing the elements we haven’t inspected yet.

The algorithm will consist of a loop in which elements are successively taken
from the “unseen” region and added to one of the other regions according to its
colour. We could keep the “unseen” region to the left of the red region, between
the red and white or white and blue regions, or to the right of the blue regions. We
will make an arbitrary choice, and keep it between the white and blue regions, and
introduce another marker, mid , to mark the start of the “unseen” region, which
means that cols[mid] is the next element to be put into the correct region.

Again, we can describe this situation formally using Whiley notation:
� �

1 0 <= lo && lo <= mid && mid <= hi+1 && hi < |cols|

2 all { i in 0..lo | cols[i] == RED }

3 all { i in lo..mid | cols[i] == WHITE }

4 all { i in hi+1..|cols| | cols[i] == BLUE }

� �
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Again, the first line defines the ranges of the marker variables, and the
remaining lines say that the red, white and blue regions only contain values of
the appropriate colour. This condition now gives our loop invariant. We can now
design the loop around this invariant. Initially, no elements have been inspected,
so the red, white and blue regions are empty, and the “unseen” region is the
whole array.

So, our initialisation must establish the condition:
� �

1 lo == 0 && mid == 0 && hi == |cols|-1

� �

This is the precondition for the loop, and we can easily verify that it implies
the loop invariant.
� �

1 lo == 0 && mid == 0 && hi == |cols|-1

2 implies

3 0 <= lo && lo <= mid && mid <= hi+1 && hi < |cols| &&

4 all { i in 0..lo | cols[i] == RED } &&

5 all { i in lo..mid | cols[i] == WHITE } &&

6 all { i in hi+1..|cols| | cols[i] == BLUE }

� �

The algorithm will terminate when the “unseen” region is empty, i.e. when
mid is greater that hi (as shown in the first diagram), so the loop guard is
mid ≤ hi.

We can easily check that the postcondition will hold when the loop invariant
is true and the loop guard is false:

� �

1 0 <= lo && lo <= mid && mid <= hi+1 && hi < |cols| &&

2 all { i in 0..lo | cols[i] == RED } &&

3 all { i in lo..mid | cols[i] == WHITE } &&

4 all { i in hi+1..|cols| | cols[i] == BLUE } &&

5 !(mid <= hi)

6 implies

7 0 <= lo && lo <= hi && hi <= |cols| &&

8 all { i in 0..lo | cols[i] == RED } &&

9 all { i in lo..hi+1 | cols[i] == WHITE } &&

10 all { i in hi+1..|cols| | cols[i] == BLUE }

� �
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Notice that we have already proved two of the correctness conditions for the
loop, and we haven’t even written the loop body yet! Now let us consider the
loop body. The loop body has to reduce the size of the “unseen” region—this
guarantees that we make progress towards termination. We will take the easy
approach of reducing by one. Thus, we need to reduce hi-lo , which may happen
either by increasing lo or by decreasing hi .

The key part of the algorithm is now to determine how we can take the next
element from the “unseen” part of the array and add it to one of the other three
regions, according to its colour. We want to write something like:
� �

1 if mid[i] == RED:

2 add cols[i] to red region

3 else if cols[i] == BLUE:

4 add cols[i] to blue region

5 else:

6 add cols[i] to white region

� �

Adding cols[i] to the white region is simple: is it already in the next
available place for white, so we just need to increment mid . Adding cols[i]

to the blue region is also quite easy. We need to put it just to the left of the
existing blue region, in the last location of the “unseen” region. But what do
we do with the element that is there? We need to swap with the element at
cols[i] , since that location is about to be “vacated”. So in this case we make
progress by decreasing hi .

The last case is to add cols[i] to the red region. This is a bit harder,
because (in general), the space to the right of lo is already part of the white
region. But if we swap cols[i] with that element, this will add cols[i] to
the red region, and effectively move the white region one place to the right, so
we can increment both lo and mid .

And we are done, the final algorithm is given in Fig. 3. Note: on the Whiley Labs
website there is a time limit of 10 s for the whole verification. This program may
take a little longer than that to verify, so you might need to verify this program
on your own computer with a longer timeout.
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1 function partition(Color[] cols) -> (Color[] ncols)
2 // Must have at least one colour in the input array
3 requires |cols| > 0
4 // Output array same size and input array
5 ensures |ncols| == |cols|
6 // Resulting array is sorted
7 ensures all { k in 1..|ncols| | ncols[k-1] <= ncols[k] }:
8 nat lo = 0
9 nat mid = 0

10 int hi = |cols|
11 // copy output to input
12 ncols = cols
13 //
14 while mid < hi
15 // size of cols does not change
16 where |cols| == |ncols|
17 // invariants between markers
18 where lo <= mid && hi <= |cols|
19 // All elements up to lo are RED
20 where all { i in 0 .. lo | ncols[i] == RED }
21 // All elements between lo and mid are WHITE
22 where all { i in lo .. mid | ncols[i] == WHITE }
23 // All elements from hi upwards are BLUE
24 where all { i in hi .. |ncols| | ncols[i] == BLUE }:
25 //
26 if ncols[mid] == RED:
27 ncols[mid] = ncols[lo]
28 ncols[lo] = RED
29 lo = lo + 1
30 mid = mid + 1
31 else if ncols[mid] == BLUE:
32 hi = hi - 1
33 ncols[mid] = ncols[hi]
34 ncols[hi] = BLUE
35 else:
36 mid = mid + 1
37 //
38 return ncols

Fig. 3. Algorithm for solving the Dutch National Flag problem

Exercise: Palindrome.
The following program returns true if the given array of characters contains
a palindrome. That is, a word that has the same sequence of characters
reading from left to right as it does reading from right to left. So the word
reversed is the same as the original word.
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Verify this program by writing a suitable loop invariant.
� �

1 function isPalindrome(int[] chars) -> (bool r)

2 ensures r <==> all { k in 0..|chars| |

3 chars[k] == chars[|chars|-(k+1)] }:

4 int i = 0

5 int j = |chars|

6 while i < j:

7 j = j - 1

8 if chars[i] != chars[j]:

9 return false

10 i = i + 1

11 return true

� �

7 Related Work

We discuss several related tools which provide similar functionality and operation
to Whiley. In addition, we examine some of the techniques that underpin these
tools.

7.1 Tools

ESC/Java & JML. The Extended Static Checker for Java (ESC/Java) is one of
the most influential tools in the area of verifying compilers [28]. The ECS/Java
tool was based on earlier work that developed the ESC/Modula-3 tool [23].
The tool provides a verifying compiler for Java programs whose specifications
are given as annotations in a subset of JML [12,41]. The following illustrates a
simple method in JML which ESC/Java verifies as correct:
� �

1 /∗@ requires n >= 0;
2 @ ensures \result >= 0;
3 @∗/
4 public static int method(int n) {

5 int i = 0;

6 /∗@ maintaining i >= \old(i); ∗/
7 while(i < n) { i = i + 1; }

8 return i;

9 }

� �

Here, we can see preconditions and postconditions are given for the method,
along with an appropriate loop invariant. Recalling our discussion from Sect. 6.2,
\old(i) refers to i on entry to the loop and, hence, we have \old(i)==0 holds
in this case.

The ESC/Java tool makes some unsound assumptions when verifying pro-
grams. In particular, arithmetic overflow is ignored and loops are treated
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unsoundly by simply unrolling them for a fixed number of iterations. The tool
also provides limited support for reasoning about dynamic memory through
the use of ownership annotations and assignable clauses for expressing frame
conditions. ESC/Java has been demonstrated in some real-world settings. For
example, Cataño and Huisman used it to check specifications given for an inde-
pendently developed implementation of an electronic purse [11]. Unfortunately
the development of JML and its associated tooling has stagnated over the last
decade, although has more recently picked up again through the OpenJML ini-
tiative [17,18,54].

Spec#. This system followed ESC/Java and benefited from many of the insights
gained in that project. Spec# added proper support for handling loop invari-
ants [6], for handling safe object initialisation [26] and allowing temporary vio-
lations of object invariants through the expose keyword [45]. The latter is nec-
essary to address the so-called packing problem which was essentially ignored by
ESC/Java [7]. Another departure from ESC/Java was the use of the BOOGIE
intermediate language for verification (as opposed to guarded commands) [5],
and the Z3 automated theorem prover (as opposed to Simplify) [49]. Both of
these mean that Spec# is capable of verifying a wider range of programs than
ESC/Java.

Although the Spec# project has now finished, the authors did provide some
invaluable reflections on their experiences with the project [6]. Amongst many
other things, they commented that:

“Of the unsound features in ESC/Java, many were known to have solu-
tions. But two open areas were how to verify object invariants in the pres-
ence of subclassing and dynamically dispatched methods (. . . ) as well as
method framing.”

A particular concern was the issue of method re-entrancy, which is particularly
challenging to model correctly. Another interesting insight given was that:

“If we were to do the Spec# research project again, it is not clear that
extending an existing language would be the best strategy.”

The primary reason for this was the presence of constructs that are difficult for
a verifier to reason about, and also the challenge for a small research group in
maintaining compatibility with a large and evolving language.

Finally, the Spec# project lives on in various guises. For example, VCC
verifies concurrent C code and was developed by reusing much of the tool chain
from Spec# [16]. VCC has been successfully used to verify Microsoft’s Hyper-V
hypervisor. Likewise, Microsoft recently introduced a Code Contracts library in
.NET 4.0 which was inspired by the Spec# project (though mostly focuses on
runtime checking).

Dafny. This is perhaps the most comparable related work to Whiley, and was
developed independently at roughly the same time [43,44]. That said, the goals
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of the Dafny project are somewhat different. In particular, the primary goal
of Dafny to provide a proof-assistant for verifying algorithms rather than, for
example, generating efficient executable code. In contrast, Whiley aims to gen-
erate code suitable for embedded systems [50,56,57]. Dafny is an imperative
language with simple support for objects and classes without inheritance. Like
Whiley, Dafny employs unbound arithmetic and distinguishes between pure and
impure functions. Dafny provides algebraic data types (which are similar to
Whiley’s recursive data types) and supports immutable collection types with
value semantics that are primarily used for ghost fields to enable specification of
pointer-based programs. Dynamic memory allocation is possible in Dafny, but
no explicit deallocation mechanism is given and presumably any implementation
would require a garbage collector.

Unlike Whiley, Dafny also supports generic types and dynamic frames [38].
The latter provides a suitable mechanism for reasoning about pointer-based
programs. For example, Dafny has been used successfully to verify the Schorr-
Waite algorithm for marking reachable nodes in an object graph [44]. Finally,
Dafny has been used to successfully verify benchmarks from the VSTTE’08 [46],
VSCOMP’10 [39], VerifyThis’12 [36] challenges (and more).

7.2 Techniques

Hoare provided the foundation for formalising work in this area with his seminal
paper introducing Hoare Logic [34]. This provides a framework for proving that
a sequence of statements meets its postcondition given its precondition. Unfor-
tunately Hoare logic does not tell us how to construct such a proof; rather, it
gives a mechanism for checking a proof is correct. Therefore, to actually verify a
program is correct, we need to construct proofs which satisfy the rules of Hoare
logic.

The most common way to automate the process of verifying a program is
with a verification condition generator. As discussed in Sect. 5.4, such algorithms
propagate information in either a forwards or backwards direction. However, the
rules of Hoare logic lend themselves more naturally to the latter [31]. Perhaps
for this reason, many tools choose to use the weakest precondition transformer.
For example, ESC/Java computes weakest preconditions [28], as does the Why
platform [27], Spec# [8], LOOP [37], JACK [9] and SnuggleBug [13]. This is
surprising given that it leads to fewer verification conditions and, hence, makes
it harder to generate useful error messages (recall our discussion from Sect. 5.4).
To workaround this, Burdy et al. embed path information in verification condi-
tions to improve error reporting [9]. A similar approach is taken in ESC/Java,
but requires support from the underlying automated theorem prover [22]. Den-
ney and Fischer extend Hoare logic to formalise the embedding of information
within verification conditions [21]. Again, their objective is to provide useful
error messages.

A common technique for generating verification conditions is to transform
the input program into passive form [8,23,28,33]. Here, the control-flow graph
of each function is converted using standard techniques into a reducible (albeit
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potentially larger) graph. This is then further reduced by eliminating loops to
leave an acyclic graph, before a final transformation into Static Single Assign-
ment form (SSA) [19,20]. The main advantage is that, after this transforma-
tion, generating verification conditions becomes straightforward. Furthermore,
the technique works well for unstructured control flow and can be tweaked to
produced compact verification conditions [2,3,29,42].

Dijkstra’s Guarded Command Language provides an alternative approach to
the generation of verification conditions [24]. In this case, the language is far
removed from the simple imperative language of Hoare logic and, for example,
contains only the sequence and non-deterministic choice constructs for handling
control-flow. There is rich history of using guarded commands as an intermediate
language for verification, which began with the ECS/Modula-3 tool [23]. This
was continued in ESC/Java and, during the later development of Spec#, a richer
version (called Boogie) was developed [5]. Such tools use guarded commands as
a way to represent programs that are in passive form (discussed above) in a
human-readable manner. As these programs are acyclic, the looping constructs
of Dykstra’s original language are typically ignored.

Finally, it is worth noting that Frade and Pinto provide an excellent survey
of verification condition generation for simple While programs [31]. They pri-
marily focus on Hoare Logic and various extensions, but also explore Dijkstra’s
Guarded Command Language. They consider an extended version of Hoare’s
While Language which includes user-provided loop invariants. They also present
an algorithm for generating verification conditions based on the weakest precon-
dition transformer.

8 Conclusions

In this chapter we have introduced the basic ideas of verifying simple imperative
code. With just the executable code, a verifying compiler does not know what
the program is intended to do, so all it can verify is that the code will execute
without errors such as: array indexes out of bounds, division by zero.

But if we add some specification information, such as preconditions to express
the input assumptions and postconditions to express the desired results, then
the verifying compiler can check much richer properties. If the postconditions
are strong enough to express the complete desired behavior of the function, then
the verifying compiler can even check full functional correctness.

In practice, the reasoning abilities of verifying compilers are gradually
improving with time, and at the current point in time it is usually necessary
to annotate our programs with extra information to aid verification, such as
loop invariants and data invariants. One can argue that it is good engineering
practice to document these properties for other human readers anyway, even if
the verifying compiler did not need them. But in the future, we envisage that
verification tools will become smarter about inferring obvious invariants, which
will gradually reduce the burden on human verifiers.
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Appendix A: Sample Answers to Selected Exercises

This appendix gives sample solutions to the exercises that cannot be checked
using the online Whiley Labs website.

Answer: Return Statement.
– Q1) What knowledge do we have at the point of return?
– A1) At the point of return the final value of x is returned, so we know

that r == x0 + 1, where x0 is the initial value of the input parameter x.

– Q2) Is this enough to establish the postcondition?
– A2) Yes, because r == x0 + 1 implies r > x0, which is equivalent to the

desired postcondition.

Answer: Specification versus Implementation.
– Q1) Do these values satisfy the specification of increment()?
– A1) Yes. For example x=0, y=2 satisfies the ensures clause.

– Q2) Do these values satisfy the implementation of increment()?
– A2) No. The counterexample values are do not satisfy y=x+1, even

though that is what the implementation does. This is because the verifier
only uses the published specification properties of the function to help
verify function calls, not the extra details of the function implementa-
tion. This separation of concerns makes modular verification possible.
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