
Jonathan P. Bowen
Zhiming Liu
Zili Zhang (Eds.)

Tu
to

ria
l

LN
CS

 1
14

30

4th International School, SETSS 2018
Chongqing, China, April 7–12, 2018
Tutorial Lectures

Engineering Trustworthy
Software Systems

 123

Lecture Notes in Computer Science 11430

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jonathan P. Bowen • Zhiming Liu •

Zili Zhang (Eds.)

Engineering Trustworthy
Software Systems
4th International School, SETSS 2018
Chongqing, China, April 7–12, 2018
Tutorial Lectures

123

Editors
Jonathan P. Bowen
London South Bank University
London, UK

Zhiming Liu
Southwest University
Chongqing, China

Zili Zhang
Southwest University
Chongqing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17600-6 ISBN 978-3-030-17601-3 (eBook)
https://doi.org/10.1007/978-3-030-17601-3

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Academic supervisor tree for Alan Turing. LNCS 11430, p. 213, used with permission.
Photograph on p. xiii: The photograph of the group was taken by Hui Xiang, used with permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8748-6140
https://orcid.org/0000-0001-9771-3071
https://doi.org/10.1007/978-3-030-17601-3

Preface

The 4th School on Engineering Trustworthy Software Systems (SETSS 2018) was held
during April 7–12, 2018, at Southwest University, Chongqing, China. It was aimed at
PhD and Master students in particular, from around China and elsewhere, as well as
being suitable for university researchers and industry software engineers. This volume
contains tutorial papers related to a selection of the lecture courses and evening sem-
inars delivered at the school.

SETSS 2018 was organized by the School of Computer and Information Science, in
particular the Centre for Research and Innovation in Software Engineering (RISE), at
Southwest University, providing lectures on leading-edge research in methods and
tools for use in computer system engineering. The school aimed to enable participants
to learn about state-of-the-art software engineering methods and technology advances
from experts in the field.

The opening session was chaired by Prof. Guoqiang Xiao. A welcome speech was
delivered by the Vice President of Southwest University, Prof. Yanqiang Cui, followed
by an introductory briefing for SETSS 2018 by Prof. Zhiming Liu. The session finished
with a photograph of participants at the school.

The following lecture courses (each consisting of six hour-long lecture sessions,
with breaks) were delivered during the school, chaired by Jonathan Bowen, Zhiming
Liu, Zhendong Su, and Shmuel Tyazberwicz:

– Mark Utting: An Introduction to Software Verification with Whiley
– Wang Yi: Model-Based Design of Real-Time Systems: From Timed Automata

to Di-Graph and Back
– Zhendong Su: Randomized and Systematic Testing of Software
– Lijun Zhang: Omega-Automata Learning Algorithms and Its Application
– Jorge Cuellar: Securing the Future IoT Application
– Nikolaj Bjørner: Programming Constraint Services with Z3

In addition, there were two evening seminars:

– Yu Jiang: Fuzzing Testing in Theory and Practice
– Jonathan P. Bowen: From Alan Turing to Formal Methods

These additional presentations complemented the longer lecture courses.

Courses

An Introduction to Software Verification with Whiley

Lecturer: Dr. Mark Utting, University of the Sunshine Coast, Australia

Biography: Mark Utting is a senior lecturer in ICT at the University of the Sunshine
Coast (USC), in Queensland, Australia. Prior to joining USC, he worked at UQ, QUT,
and Waikato University in academic positions, and he has also worked in industry,
developing next-generation genomics software and manufacturing software. Mark is
passionate about designing and engineering good software that solves real-world
problems, and has extensive experience with managing software development projects
and teams both in academia and industry. He is author of the book Practical
Model-Based Testing: A Tools Approach, as well as of more than 50 publications on
model-based testing, verification techniques for object-oriented and real-time software,
and language design for parallel computing.

Overview: This course introduced students to the fundamental ideas of software veri-
fication for imperative programming. It covered basic specification techniques, how to
use preconditions and postconditions, the relationship between specifications and code,
techniques for verifying conditional code, loops, arrays, records, and functions. The
course included a series of hands-on verification exercises using the Whiley pro-
gramming language and its online verification tool.

Model-Based Design of Real-Time Systems: From Timed Automata
to Di-Graph and Back

Lecturer: Prof. Wang Yi, Uppsala University, Sweden

Biography: Wang Yi received a PhD in Computer Science from Chalmers University
of Technology in 1991. He was appointed Professor of Embedded Systems at Uppsala
University, Sweden, in 2000, and Distinguished Professor at North Eastern University,
China, in 2007. He is a fellow of the IEEE and member of the Academy of Europe. His
interests include embedded systems and formal verification. He was the recipient of the
CAV 2013 Award for the development of UPPAAL, Best Paper Awards at RTSS17,
RTSS15, RTSS09, ECRTS15, DATE13, and Outstanding Paper Award at ECRTS12.
He is a board member of ACM SigBed and Award Committee Chair of the ACM
SigBed Caspi Dissertation Award. He is a Steering Committee Co-chair of EMSOFT,
and Steering Committee member of ESWEEK, FORMATS, LCTES, and SETTA. He
is editor for the journals ACM Transactions on Embedded Computing and Systems,
IEEE Embedded Systems Letters, IEEE Design and Test, and the Journal of Computer
Science and Technology. Recent keynote talks were given at ETAPS15, SIES16,
APSEC17, and ICFEM17.

vi Preface

Overview: The first part of my lecture focused on modeling and verification of
real-time systems in the framework of timed automata, covering the theoretical foun-
dation, modeling, and specification languages, as well as the central algorithms of
UPPAAL, a tool developed jointly by Uppsala and Aalborg University. The second
part of my lecture was based on our recent work on real-time scheduling and timing
analysis. I presented a new graph-based model for timed systems, that allows us to
precisely capture the timing behavior of real-time software and yet keep the analysis
problems tractable. For the theoretically intractable cases of interest, we presented a
refinement technique, which allows for effective guidance to significantly prune away
the global search space and to efficiently verify the desired timing properties in real
applications.

Randomized and Systematic Testing of Software

Lecturer: Prof. Zhendong Su, ETH Zürich, Switzerland

Biography: Zhendong Su received his PhD from the University of California, Berkeley,
and until recently he was a professor and chancellor’s fellow at the University of
California Davis, before taking up a professorial position at ETH Zürich, Switzerland.
His research focuses on methodologies, techniques, and tools for improving software
quality and programming productivity. His work has been recognized with best paper
awards from EAPLS, SIGSOFT, OOPSLA and PLDI, CACM Research Highlight,
NSF CAREER Award, UC Davis Outstanding Engineering Faculty Award, and
industrial research awards (Cisco, Google, IBM, Microsoft, Mozilla). He served as
Associate Editor for ACM TOSEM, program (co-)chair SAS (2009), ISSTA (2012),
and FSE (2016), and serves on the Steering Committees of ESEC/FSE and ISSTA.

Overview: Random testing (aka fuzzing) has been remarkably successful in finding
important software flaws and vulnerabilities. There is also much exciting recent pro-
gress in developing more advanced systematic techniques and adapting them to dif-
ferent domains. This set of lectures introduced and highlighted several of these
important advances, including EMI and SPE testing for compilers and interpreters, and
mathematical execution for solving floating-point constraints and analyzing numerical
software. It also discussed key open technical challenges and promising new
applications.

Omega-Automata Learning Algorithms and Its Application

Lecturer: Prof. Lijun Zhang, State Key Laboratory of Computer Science, Institute
of Software Chinese Academy of Sciences, China

Biography: Lijun Zhang is a research professor at State Key Laboratory of Computer
Science, Institute of Software Chinese Academy of Sciences. Before this he was an

Preface vii

associate professor at the Language-Based Technology section, DTU Compute,
Technical University of Denmark. He was a postdoctoral researcher at the University of
Oxford and obtained gained a diploma degree and a PhD (Dr. Ing.) at Saarland
University. His research interests include: probabilistic models, simulation reduction,
decision algorithms for probabilistic simulation preorders, abstraction, and model
checking. His recent work is in combining automata learning techniques with model
checking. He is leading the development of the model checker IscasMC.

Overview: Learning-based automata inference techniques have received significant
attention from the community of formal system analysis. In general, the primary
applications of automata learning in the community can be categorized into two groups:
improving efficiency and scalability of verification and synthesizing abstract system
model for further analysis. Most of the results in the literature focus on checking safety
properties or synthesizing finite behavior models of systems/programs. On the other
hand, Büchi automaton is the standard model for describing liveness properties of
distributed systems. Unlike the case for finite automata learning, learning algorithms
for Büchi automata are very rarely used in our community. In this talk, we present
algorithms to learn a Büchi automaton from a teacher who knows an omega-regular
language. The algorithm is based on learning a formalism named family of DFAs
(FDFAs) recently proposed by Angluin and Fisman. The main catch is that we use a
classification tree structure instead of the standard observation table structure. The
worst-case storage space required by our algorithm is quadratically better than the
table-based algorithm. We implement the first publicly available library ROLL (Reg-
ular Omega Language Learning), which consists of all omega-regular learning algo-
rithms available in the literature and the new algorithms proposed in this paper. Further,
with our tool, we demonstrate how our algorithm can be exploited in classic automata
operations such as complementation checking and in the model-checking context.

Securing the Future IoT Application

Lecturer: Prof. Dr. Jorge Cuellar, Siemens AG and University of Passau, Germany

Biography: Jorge Cuellar is a principal research scientist at Siemens AG. He was
awarded the DI-ST Award for the best technical achievement for his work on modeling
of operating systems and transaction managers. He has worked in several topics,
including performance analysis, on learning algorithms, hand-writing recognition,
formal verification of distributed system design, and security and he has co-authored 50
publications. He has done technical standardization work on privacy and security
protocols at the IETF, 3GPP, and the Open Mobile Alliance. He has worked in several
EU-funded research projects, mostly on security topics. He regularly serves in Program
Committees for international conferences and he has held many short-term visiting
teaching positions, in different universities around the world.

Overview: In the near future, computing devices – belonging to different owners with
competing expectations and diverse security goals – will be embedded into all sort of

viii Preface

commonplace objects, including smart surfaces or devices in buildings and at home,
wearables, city and transportation infrastructure, etc. The IoT promise is that those
“things” will talk to each other and will create self-configuring systems. There is a need
to negotiate compromises (“contracts”) that manage their interactions and interoperate
the security policies and functionality goals.

We require a formal language for specifying the possible interactions and contracts
and to enforce the agreements reached. We propose to use Petri nets, smart contracts,
and a public ledger (like a blockchain or a Merkle tree). The system resembles in some
aspects Bitcoins, Etherum, or other cryptocurrencies, but instead of coins, the tokens
represent mostly permissions (“authorization tokens”) or information. To allow veri-
fication, we avoid Turing-complete contracts, but construct smart contracts using Petri
nets based on building blocks with cryptographic functionality (secure or fair inter-
actions) or guarded commands.

In this short course, we reviewed how to construct and to use authorization tokens for
IoT, how to create workflows as Petri nets, how to define and implement basic cryp-
tographic building blocks, how to use them to create more complex smart contracts, and
how to use a public ledger for common information and for resolving disputes.

Programming Constraint Services with Z3

Lecturer: Dr. Nikolaj Bjørner, Microsoft Research, USA

Biography: Nikolaj Bjørner is a principal researcher at Microsoft Research, Redmond,
USA, working in the area of automated theorem proving and network verification. His
current main line of work with Leonardo de Moura, Lev Nachmanson, and Christoph
Wintersteiger is on the state-of-the-art theorem prover Z3, which is used as a foun-
dation of several software engineering tools. Z3 received the 2015 ACM SIGPLAN
Software System Award, most influential tool paper in the first 20 years of TACAS in
2014, and the 2017 Skolem Award for the 2007 paper on Efficient E-matching for SMT
Solvers. Another main line of activity is focused on network verification with col-
leagues in Azure, Karthick Jayaraman, and academia, George Varghese. Previously, he
developed the DFSR, Distributed File System Replication, part of Windows Server
since 2005, and before that worked on distributed file sharing systems at a startup,
XDegrees, and program synthesis and transformation systems at the Kestrel Institute.
He received his Master’s and PhD degrees in computer science from Stanford
University, and spent the first three years of university at DTU and DIKU in Denmark.

Overview: Many program verification, analysis, testing, and synthesis queries reduce to
solving satisfiability of logical formulas. Yet, there are many applications where sat-
isfiability, and optionally a model or a proof, is insufficient. Examples of useful
additional information include interpolants, models that satisfy optimality criteria,
generating strategies for solving quantified formulas, enumerating and counting solu-
tions. The lectures describe logical services from the point of view of the Satisfiability
Modulo Theories solver Z3. We cover their foundations, algorithmics, and ways to put
these features to use.

Preface ix

As an overview, we provide a few types of queries below.

The first type of query is the most typical query posed to SMT solvers: whether a
formula u is satisfiable and a corresponding yes/no/don’t know answer. This conveys
some information, but applications typically need to retrieve additional output. At the
very least they may need a certificate. An assignment of values to variables for sat-
isfiable formulas, e.g., a model is very commonly used. Dually, proofs or cores for
unsatisfiability can be used for unsatisfiability formulas. Other queries include asking to
find models that optimize objective values, finding formulas that are consequences,
count or enumerate models.

Seminars

Fuzzing Testing in Theory and Practice

Lecturer: Dr. Yu Jiang, Tsinghua University, China

Biography: Yu Jiang received his PhD degree in computer science from Tsinghua
University in 2015, worked as a postdoc at the University of Illinois at
Urbana-Champaign in 2016, and is currently an assistant professor at Tsinghua
University in Beijing, China. His research focuses on safety and security assurance of
modern software systems such as deep learning systems and big data systems, and
proposed systematic methods for the reliability analysis and testing of those systems,
which has been applied in the design and mass production of train control system
(MVB/WTB) of CRRC. He has published 40+ papers in international journals (TPDS,
TC, TCPS, etc.) and conferences (ICSE, ASE, ICCAD, etc.). He won the China
Computer Association Outstanding Doctoral Dissertation Award in 2015, and the
Excellent Guide Teacher Award for a national software test competition in 2017.

Abstract: Fuzzing is a widely used software testing technique for bug and vulnerability
detection, and the testing performance is greatly affected by the quality of initial seeds
and the effectiveness of mutation strategy. In this presentation, we introduced some

Type of Query Query in symbolic form

Satisfiability ϕ � sat, unsat, timeout
Certificates ϕ � model, proof, unsat core

Interpolation ϕ[x, y] → I[x] → ψ[x, z]
Optimization max x | ϕ
Consequences ϕ → ϕ1 ∧ . . . ∧ ϕn

Sat subsets ψ1 ∧ ψ2, ψ1 ∧ ψ3
Unsat cores ¬(ψ1 ∧ ψ2), ¬(ψ1 ∧ ψ3)

Model counting |{x | ϕ}|
All models Ideal(ϕ), M1 |= ϕ, M2 |= ϕ, . . .

Model probability . . .

x Preface

basic concepts about fuzzing and then presented SAFL, an efficient fuzzing testing tool
augmented with qualified seed generation and efficient coverage-directed mutation.
After conducting thoroughly repeated evaluations on real-world program benchmarks
against state-of-the-art versions of fuzzing tools, we also presented the obstacles
encountered in industrial practice, and how we finally solved these obstacles to detect
real-world vulnerabilities. Finally, we described some potential domains where fuzzing
can be applied and customized.

From Alan Turing to Formal Methods

Lecturer: Prof. Jonathan P. Bowen, Southwest University, China

Biography: Jonathan Bowen, FBCS FRSA, is Adjunct Professor in the Centre for
Research and Innovation in Software Engineering (RISE) at Southwest University,
Chongqing, China. He is also Chairman of Museophile Limited (founded in 2002) and
Emeritus Professor of Computing at London South Bank University in the UK, where
he established and headed the Centre for Applied Formal Methods from 2000. Pre-
viously, he worked at Imperial College London, the Oxford University Computing
Laboratory, the University of Reading, and Birmingham City University, as well as in
industry. He has been a visitor at the United Nations University (Macau) and East
China Normal University (Shanghai). His interests have ranged from software engi-
neering, formal methods, safety-critical systems, the Z notation, provably correct
systems, rapid prototyping using logic programming, decompilation, hardware com-
pilation, software/hardware co-design, linking semantics, and software testing, to the
history of computing, museum informatics, and virtual communities. In 2017, he
co-authored The Turing Guide, a book on the work of the computing pioneer
Alan Turing.

Abstract: Alan Turing (1912–1954) has been increasingly recognized as an important
mathematician and philosopher, who despite his short life developed ideas that have led
to foundational aspects of computer science and related fields, such as the Turing
machine and the Turing test. This seminar talk provided an overview of the diverse
aspects related to Turing’s remarkable achievements, in the context of the production of
a book, The Turing Guide, a collected volume of 42 chapters, published by Oxford
University Press in 2017. In particular, the talk considered Turing’s foundational work
with respect to the development of formal methods. Although the story of Turing is
partly one of tragedy, with his life cut short while still at the height of his intellectual
powers, just short of his 42nd birthday, from a historical viewpoint Turing’s contri-
bution to science and even culture has been triumphant.

Preface xi

From the courses and seminars, a record of the school has been distilled in five chapters
in this volume as follows:

– David J. Pearce, Mark Utting, and Lindsay Groves: An Introduction to Software
Verification with Whiley

– Yong Li, Andrea Turrini, Yu-Fang Chen, and Lijun Zhang: Learning Büchi
Automata and Its Applications

– Prabhakaran Kasinathan and Jorge Cuellar: Securing Emergent IoT Applications
– Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph M.

Wintersteiger: Programming Z3
– Jonathan P. Bowen: The Impact of Alan Turing: Formal Methods and Beyond

For further information on SETSS 2018, including lecture material, see:
http://www.swu-rise.net.cn/SETSS2018

SETSS 2018 was supported by IFIP Working Group 2.3 on Programming Method-
ology. The aim of WG 2.3 is to increase programmers’ ability to compose programs,
which fits very well with the themes of SETSS.

We would like to thank the lecturers and their co-authors for their professional
commitment and effort, the reviewers for their help in improving the papers in this
volume, the strong support of Southwest University, and the enthusiastic work of the
local organization team, without which SETSS 2018 and these proceedings would not
have been possible. Finally, we are grateful for the support of Alfred Hofmann and
Anna Kramer of Springer’s Lecture Notes in Computer Science (LNCS) in the pub-
lication of this volume.

February 2019 Jonathan P. Bowen
Zhiming Liu
Zili Zhang

xii Preface

http://www.swu-rise.net.cn/SETSS2018

Group photograph at SETSS 2018. Front row, left to right: Zhiping Shi (attendee), Bo Liu (organizer),
Weiwei Chen (attendee), Zhiming Liu (organizer), Jonathan Bowen (organizer, lecturer), Yanqiang
Cui (Vice President, SWU), Zili Zhang (Dean, SWU), Mark Utting (lecturer), Jorge Cuellar (lecturer),
Shmuel Tyazberwicz (organizer), Guogiang Xiao (Dean, SWU), Maoling Zhang (attendee)

Organization

School Chairs

Zili Zhang Southwest University, China
Guoquiang Xiao Southwest University, China

Academic Instructors

Jonathan P. Bowen RISE, Southwest University, China
and London South Bank University, UK

Zhiming Liu RISE, Southwest University, China

Organizing Committee

Bo Liu (Chair) RISE, Southwest University, China
Rao Dan RISE, Southwest University, China
Huazhen Liang RISE, Southwest University, China
Xiao Qin RISE, Southwest University, China
Shmuel Tyszberowicz RISE, Southwest University, China

and Tel Aviv University, Israel
Qing Wang RISE, Southwest University, China
Xia Zeng RISE, Southwest University, China
Tingting Zhang RISE, Southwest University, China
Yukun Zhang RISE, Southwest University, China
Hengjun Zhao RISE, Southwest University, China

School Academic Committee

Michael Butler University of Southampton, UK
Yixiang Chen East China Normal University, China
Zhi Jin Peking University, China
Zhiming Liu RISE, Southwest University, China
Cong Tian Xi’Dian University, China
Ji Wang National University of Defence Science and Technology,

China
Yi Wang Uppsala University, Sweden

and Northeast University, China
Jim Woodcock University of York, UK
Jianhua Zhao Nanjing University, China

Paper Reviewers

Troy Astarte Newcastle University, UK
Nikolaj Bjørner Microsoft Research, USA
Jorge Cuellar Siemens AG, Germany

and University of Passau, Germany
Bo Liu RISE, Southwest University, China
Andrea Turrini Institute of Software, China
Shmuel Tyszberowicz RISE, Southwest University, China

and Tel Aviv University, Israel
Mark Utting University of the Sunshine Coast, Australia
Hengjun Zhao RISE, Southwest University, China

xvi Organization

Contents

An Introduction to Software Verification with Whiley 1
David J. Pearce, Mark Utting, and Lindsay Groves

Learning Büchi Automata and Its Applications . 38
Yong Li, Andrea Turrini, Yu-Fang Chen, and Lijun Zhang

Securing Emergent IoT Applications . 99
Prabhakaran Kasinathan and Jorge Cuellar

Programming Z3. 148
Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson,
and Christoph M. Wintersteiger

The Impact of Alan Turing: Formal Methods and Beyond 202
Jonathan P. Bowen

Author Index . 237

An Introduction to Software Verification
with Whiley

David J. Pearce1 , Mark Utting2(B) , and Lindsay Groves1

1 Victoria University of Wellington, Wellington, New Zealand
{david.pearce,lindsay}@ecs.vuw.ac.nz

2 University of the Sunshine Coast, Sunshine Coast, QLD, Australia
utting@usc.edu.au

Abstract. This tutorial introduces the basic ideas of software speci-
fication and verification, which are important techniques for assuring
the quality of software and eliminating common kinds of errors such as
buffer overflow. The tutorial takes a practical hands-on approach using
the Whiley language and its verifying compiler. This verifying compiler
uses an automated proof engine to try to prove that the code will exe-
cute without errors and will satisfy its specifications. Each section of the
tutorial includes exercises that can be checked using the online Whiley
Labs website.

1 Background

In our modern world, software is a trusted part of many aspects of our lives.
Unfortunately, the impact and significance of software failures has increased dra-
matically over the last decade [15,40]. A study into software problems between
1980–2012 concluded “About once per month on average, the news reports death,
physical harm, or threatened access to food or shelter due partly to software
problems” [40]. One study found that more than one-third of water, gas and
electricity failures were caused by software faults [53]. A modern automobile
has an estimated 100M lines of computer code [14], which makes them vulner-
able to software faults. In 2003, a blackout caused by software failure lasted 31
hours and affected around 50 million people in the US/Canada [58]. In 2015, a
software bug was discovered in the Boeing 787 despite over a decade of devel-
opment by that point and ≈300 planes in operation [35]. To mitigate the risk of
catastrophic mid-flight failure, the US Federal Aviation Administration issued
a directive, instructing airlines to reboot the control units on all Boeing 787s
at least once every 248 days. Other similar examples include: the Therac-25
computer-operated X-ray machine, which gave lethal doses to patients [47]; the
1991 Patriot missile which hit a barracks, killing several people [32]; and the Ari-
ane 5 rocket which exploded shortly after launch, costing the European Space
Agency an estimated $500 million [1].

Software is also important for our privacy and security. Black hats are hackers
who break into computer systems for criminal purposes, such as stealing credit
c© Springer Nature Switzerland AG 2019
J. P. Bowen et al. (Eds.): SETSS 2018, LNCS 11430, pp. 1–37, 2019.
https://doi.org/10.1007/978-3-030-17601-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17601-3_1&domain=pdf
http://orcid.org/0000-0003-4535-9677
http://orcid.org/0000-0003-3134-6306
https://doi.org/10.1007/978-3-030-17601-3_1

2 D. J. Pearce et al.

card numbers. Many attacks on computer systems are enabled because of hidden
software bugs. One such example was the infamous Heartbleed bug disclosed in
2014 [10,25]. This was a relatively simple software bug (in fact, a buffer overrun)
found in the widely used OpenSSL cryptography library. There was concern
across the internet for several reasons: firstly, a large number of people were
affected (at the time, around half a million secure web servers were believed
to be vulnerable); secondly, OpenSSL was an open source project but the bug
had gone unnoticed for over two years. Joseph Steinberg of Forbes wrote, “Some
might argue that [Heartbleed] is the worst vulnerability found (at least in terms of
its potential impact) since commercial traffic began to flow on the Internet” [55].

Given the woeful state of much of the software we rely on every day, one
might ask what can we as computer scientists do about it? Of course, we want
to ensure that software is correct. But how? To answer this, we need to go back
and rethink what software development is. When we write a program, we have
in mind some idea of what this means. When we have finished our program, we
might run it to see whether it appears to do the right thing. However, as anyone
who has ever written a program will know: this is not always enough! Even if
our program appears to work after a few tests, there is still a good chance it will
go wrong for other inputs we have not yet tried. The question is: how can we be
sure our program is correct?

2 Specification and Verification

In trying to determine whether our program is correct, our first goal is to state
precisely what it should do. In writing our program, we may not have had a clear
idea of this from the outset. Therefore, we need to determine a specification for
our program. This is a precise description of what the program should and should
not do. Only with this can we begin to consider whether or not our program
actually does the right thing. If we have used a modern programming language,
such as Java, C# or C++, then we are already familiar with this idea. These
languages require a limited specification be given for functions in the form of
types. That is, when writing a function in these languages we must specify the
permitted type of each parameter and the return. These types put requirements
on our code and ensure that certain errors are impossible. For example, when
calling a function we must ensure that the argument values we give have the
correct type. If we fail to do this, the compiler will complain with an error
message describing the problem, which we must fix before the program will
compile.

Software verification is the process of checking that a program meets its spec-
ification. In this chapter we adopt a specific approach referred to as automated
software verification. This is where a tool is used to automatically check whether
a function meets its specification or not. This is very similar to the way that com-
pilers for languages like Java check that types are used correctly. The tool we
choose for this is a programming language called Whiley [52], which allows us
to write specifications for our functions, and provides a special compiler which
will attempt to check them for us automatically.

An Introduction to Software Verification with Whiley 3

This chapter gives an introduction to software verification using Whiley.
Whiley is not the only tool we could have chosen, but it has been successfully
used for several years to teach software verification to undergraduate software
engineering students. Other tools such as Spark/ADA, Dafny, Spec#, ESC/-
Java provide similar functionality and could also be used with varying degrees
of success.

3 Introduction to Whiley

The Whiley programming language has been in active development since 2009.
The language was designed specifically to help the programmer eliminate bugs
from his/her software. The key feature is that Whiley allows programmers to
write specifications for their functions, which are then checked by the compiler.
For example, here is the specification for the max() function which returns the
maximum of two integers:

� �

1 function max(int x, int y) => (int z)

2 // must return either x or y
3 ensures x == z || y == z

4 // return must be as large as x and y
5 ensures x <= z && y <= z:

6 // implementation
7 if x > y:

8 return x

9 else:

10 return y

� �

Here, we see our first piece of Whiley code. This declares a function called
max which accepts two integers x and y , and returns an integer z . The body
of the function simply compares the two parameters and returns the largest. The
two ensures clauses form the function’s post-condition, which is a guarantee
made to any caller of this function. In this case, the max function guarantees to
return one of the two parameters, and that the return will be as large as both
of them. In plain English, this means it will return the maximum of the two
parameter values.

3.1 Whiley Syntax

Whilst a full introduction to the Whiley language is beyond this tutorial, we
provide here a few notes relevant to the remainder. A more complete description
can be found elsewhere [51].

– Indentation Syntax. Like Python, Whiley uses indentation to identify block
structure. So a colon on the end of a line indicates that a more heavily
indented block of statements must follow.

4 D. J. Pearce et al.

– Equality. Like many popular programming languages, Whiley uses a double
equals for equality and a single equals for assignment. But in mathematics and
logic, it is usual to use a single equality sign for equality. In this paper, we shall
use the Whiley double-equals notation within Whiley programs (generally
typeset in rectangles) and within statements S in the middle of Hoare triples
{P} S {Q}, but just a single-equals for equality when we are writing logic or
maths.

– Arrays. The size of an array aa is written as |aa| in Whiley, and array
indexes range from 0 upto |aa|-1 .

– Quantifiers. In Whiley, quantifiers are written over finite integer ranges.
For example, a universal quantifier all {i in a..b | P} ranges from the
lower bound a up to (but not including) the upper bound b . For exam-
ple, we can specify that every item in an array aa is positive with
all {i in 0..|aa| | aa[i] > 0} .

When verification is enabled the Whiley compiler will check that every func-
tion meets its specification. For our max() function, this means it will check
that the body of the function guarantees to return a value which meets the func-
tion’s postcondition. To do this, it will explore the two execution paths of the
function and check each one separately. If it finds a path which does not meet
the postcondition, the compiler will report an error. In this case, the max()

function above is implemented correctly and so it will find no errors. The advan-
tage of providing specifications is that they can help uncover bugs and other,
more serious, problems earlier in the development cycle. This leads to software
which is both more reliable and more easily maintained (since the specifications
provide important documentation).

4 Writing Specifications

Specifying a program in Whiley consists of at least two separate activities.
Firstly, we provide appropriate specifications (called invariants) for any data
types we have defined (we will discuss this further in Sect. 4.4). Secondly, we
provide specifications in the form of preconditions and postconditions for any
functions or methods defined—which may involve defining additional data types
and properties. In doing this, we must acknowledge that precisely describing a
program’s behaviour is extremely challenging and, oftentimes, we want only to
specify some important aspect of its permitted behaviour. This can give us many
of the benefits from specification without all of the costs.

4.1 Specifications as Contracts

A specification is a contract between two parties: the client and supplier. The
client represents the person(s) using a given function (or method or program),
whilst the supplier is the person(s) who implemented it. The specification ties
the inputs to the outputs in two ways:

An Introduction to Software Verification with Whiley 5

– Inputs. The specification states what is required of the inputs for the function
to behave correctly. The client is responsible for ensuring the correct inputs
are given. If an incorrect input is given, the contract is broken and the function
may do something unexpected.

– Outputs. The specification states what outputs must be ensured by a cor-
rectly behaving function. The supplier is responsible for ensuring all outputs
meet the specification, assuming that correct inputs were provided.

From this, we can see that both parties in the contract have obligations they
must meet. This also allows us to think about blame. That is, when something
goes wrong, who is responsible? If the inputs to our function were incorrect
according to the specification, we can blame the client. On the other hand if the
inputs were correct, but the outputs were not, we can blame the supplier.

An interesting question arises about who the client and supplier are, exactly.
A common scenario is where they are different people. For example, the supplier
has written a library that the client is using. However, this need not be the case
and, in fact, they can be the same person. For example, consider a program
with one function f() that calls another g(), both of which were written by
the same person. In this case, that person acts as both client and supplier:
first as a client of g() (i.e. because their function f() calls g() and relies on its
specification); second, they are a supplier of g() because they implemented it and
are responsible for it meeting its specification. Finally, we note the special case
of the top level function of a program (e.g. main())) which is called the language
runtime. If this function has a precondition, then it is the responsibility of the
runtime to ensure this is met. A good example of this is when an array of strings
are passed to represent command-line arguments. In such case, there may be a
precondition that the array is not null.

Example. As an example, let us consider a function for finding the maximum
value from an array of integers. Here is an informal specification for this function:
� �

1 // REQUIRES: At least one item in items array
2 // ENSURES: Item returned was largest item in items array
3 function max([int] items) -> (int item)

� �

We have specified our function above using comments to document: firstly, the
requirements needed for the inputs—that the array must have at least one ele-
ment; and, secondly, the expectations about the outputs—that it returns the
largest element in the array. Thus, we could not expect the call max([]) to
operate correctly; likewise, if the call max([1,2]) returned 3 we would say the
implementation was incorrect. �

4.2 Specifying Functions

To specify a function or method in Whiley we must provide an appropriate
precondition and postcondition. A precondition is a condition over the input
parameters of a function that is required to be true when the function is called.

6 D. J. Pearce et al.

The body of the function can use this to make assumptions about the possi-
ble values of the parameters. Likewise, a postcondition is a condition over the
return values of a function that is required to be true after the function body is
executed.

Example. As a very simple example, consider the following specification for our
function which finds the maximum value from an array of integers:
� �

1 function max([int] items) => (int item)

2 // At least one item in items array
3 requires |items| > 0

4 // Item returned as large as largest in items array
5 ensures all { i in 0 .. |items| | items[i] <= item }

6 // Item returned was in items array
7 ensures exists { i in 0 .. |items| | items[i] == item }

� �

Here, the requires clause gives the function’s precondition, whilst the ensures

clauses give its postcondition. This specification is largely the same as that given
informally using comments before. However, we regard this specification as being
formal because, for any set of inputs and outputs, we can calculate precisely
whether the inputs or outputs satsify these specifications.

For example, consider the call max([]) . We can say that the inputs to this
call are incorrect, because |[]| > 0 evaluates to false . For the informal ver-
sion given above, we cannot easily evaluate the English comments to determine
whether they were met or not. Instead, we rely on our human judgement for
this—but, unfortunately, this can easily be wrong! �

When specifying a function in Whiley, the requires clause(s) may only
refer to the input parameters, whilst the ensures clause(s) may also refer to
the return parameters. Note, however, that the ensures clause(s) always refers
to the values of the parameters on entry to the function, not those which might
hold at the end.

Exercise: Absolute Value.
Give suitable precondition(s) and postcondition(s) for the following Whiley
function, which returns the absolute value of x . To check the answer, use
the online Whiley Labs system at http://whileylabs.com.
� �

1 function abs(int x) -> (int r)

2 requires ???

3 ensures ???:

4 //
5 if x < 0:

6 return -x

7 else:

8 return x

� �

http://whileylabs.com

An Introduction to Software Verification with Whiley 7

4.3 Contractual Obligations

The main benefit of adding specification clauses (requires and ensures) to a
function is that it gives us a precise contract that acts as an agreement between
the client and the supplier of the function. We can now be more precise about
the obligations and benefits for both parties.

– The client, who calls the function, must make certain that every input value
satisfies the requires conditions (Obligation); and, can assume every output
of the function satisfies the ensures conditions (Benefit).

– The supplier, who implements the function, must ensure all returned values
satisfy the ensures conditions (Obligation); but, may assume that every
input will satisfy the requires conditions (Benefit).

In both cases, the Whiley verifying compiler will check these obligations and
display an error message such as “postcondition may not be satisfied” if its
automatic prover cannot prove that the obligation is satisfied. This could mean
either that:

– the proof obligation is false, so the code is incorrect; or
– the automatic prover is not powerful enough to prove the obligation.

In general, software correctness proofs are undecidable, especially when they
involve non-trivial multiplications or other non-linear functions, so the automatic
prover has a timeout (typically 10 s) after which it reports that it cannot prove
the proof obligation. So when the Whiley compiler reports an error, it could mean
an error in the code, or just that something is too hard to prove automatically.
To help decide which is the case, one can ask the Whiley verifier to generate
a counter-example. If it is able to generate counter-example values, then this
can be inspected to see why the proof obligation is false - it could be due to
an error in the code or in the specification. If the Whiley verifier cannot find
any counter-example values, then it is possible that the proof obligation is too
complex for the verifier to be able to prove within its timeout limit. In this case
one can: increase the timeout; or, simplify the code and specifications to make
the proof obligation more obvious; or, mark this proof obligation as needing
further inspection and verification by humans.

Exercise: Specify Binary Minimum.
Add specifications to the following min() function that determines the
minimum of its two arguments, by completing the ensures predicate.
� �

1 function min(int x, int y) -> (int r)

2 ensures ???:

3 if x < y:

4 return x

5 else:

6 return y

� �

8 D. J. Pearce et al.

Exercise: Generate Counterexample.
The following function contains a bug and fails verification. Using the coun-
terexample feature of Whiley, identify an input which illustrates the problem.
� �

1 // Read an item from the buffer, or null if it doesn’t exist
2 function read(int[] buffer, int index) -> (int|null r):

3 if index < 0 || index > |buffer|:

4 return null

5 else:

6 return buffer[index]

� �

4.4 Specifying Data Types

In Whiley, a data type is simply a set of values. Practically, the usual structured
types are supported (arrays and records), as well as various primitive types such
as integer and boolean. In addition, the Whiley type system allows users to
specify data invariants as part of a type definition. For example, we could define
a type called pos that is the strictly positive integers, or a type percent that
can range only from 0 . . . 100. The following example shows how we can define
a rectangle type that is restricted to only allow non-empty rectangles.
� �

1 type pos is (int x) where x > 0

2 type Rectangle is { int x, int y, pos width, pos height }

3

4 function area(Rectangle r) -> (pos a):

5 return r.width * r.height

� �

Exercise: Rectangle Containment.
Complete the implementation of the following function by writing its code
body. Use multiple simple if statements that return true or false. To make
the exercise more challenging, check one condition at a time, and do not
use logical conjunction or disjunction operators.
� �

1 type pos is (int x) where x > 0

2 type Rect is { int x, int y, pos width, pos height }

3

4 // Does rectangle a contain rectangle b?
5 function contains(Rect a, Rect b) -> (bool r)

6 ensures r == (a.x <= b.x &&

7 b.x + b.width <= a.x + a.width &&

8 a.y <= b.y &&

9 b.y + b.height <= a.y + a.height):

10 return true // TODO: code this using if-else statements.

� �

An Introduction to Software Verification with Whiley 9

5 Verifying Loop-Free Code

In this section we will practice verifying simple non-looping programs that
contain just: assignment statements, variable declarations, if-else conditionals,
return statements, and assertions. A key challenge here lies in understanding
how the automated verification tool works. To help, we will introduce some
theory—called Hoare logic—which provides a mathematical background for ver-
ification [34]. Whilst the verification tools can be used without understanding
all the details of this theory, it is recommended to work through Sects. 5.1 to 5.4
to get a deeper understanding.

5.1 Motivating Example

We shall start with a brain teaser. Here is some Whiley code (adapted from an
example by Back and von Wright [4, page 97–98]) that does some kind of trans-
formation of two values. Try to work out what it does, and write a specification
of its input-output behavior by completing the ensures predicate.

� �

1 function f(int x, int y) -> (int r, int s)

2 ensures r == ??? && s == ???:

3 x = 2 * x + y

4 y = x - y

5 x = x - y

6 return x, y

� �

This example shows that it can be quite complex to reason about a sequence
of assignments. It is not always obvious what state the variables should be in
between two statements. In fact, the specification of this code is remarkably sim-
ple and this will become apparently shortly. But this probably was not obvious
from the rather convoluted code, which was designed to swap two variables (and
double one of them) without using any temporary storage – such code was useful
when embedded computers had extremely limited memory, but is rarely needed
these days.

Software verification tools can sometimes immediately verify our code, even
when it does have a complex sequence of assignments like this. But when there
is a problem, we will sometimes need to ‘debug’ our program or our verification,
step by step, which requires that we understand the intermediate states. So we
need intermediate predicates between statements to say what should be true at
that point. Whiley provides two kinds of statements which can help:

– assert e to check if e is true at that point. The verifier will attempt to
prove that e is satisfied at that point and will give an error if it is not prov-
able. Adding assertions makes the verifier work a little harder, but will never
destroy the soundness of the verification.

10 D. J. Pearce et al.

– assume e to add an (unproven) assumption. The verifier will not attempt to
prove e, but will simply assume that it is true at that point, and will use it to
help verify subsequent proof obligations. Assumptions can be useful for per-
forming ‘what if’ experiments with the verifier, or for helping the verifier to
overcome difficult proofs that it cannot do automatically. However, assump-
tions allow one to override the usual verification process, so care must be taken
not to introduce unsound verifications by adding incorrect assumptions.

By inserting assertions and assumptions at various points in our program, we
can check our understanding of what should be true and, if necessary, can prove
one scenario at a time. For example, we could use assume statements to focus on
particular input values such as x == 10 and y == 11, and an assert statement
to check that we have done the correct calculation for those values.

� �

1 function f(int x, int y) -> (int r, int s):

2 assume x == 10

3 assume y == 11

4 //
5 x = 2 * x + y

6 y = x - y

7 x = x - y

8 //
9 assert x == 11 && y == 2 * 10

10 return x, y

� �

But how can we find, or design, these intermediate assertions? This is where
Hoare logic comes in. But, before we get to that, here is the solution for our
brain teaser.
� �

1 function f(int x, int y) -> (int r, int s)

2 ensures r == y && s == 2 * x:

3 x = 2 * x + y

4 y = x - y

5 x = x - y

6 return x, y

� �

Now let’s investigate the three ways that we can calculate intermediate asser-
tions for complex sequences of code.

5.2 Hoare Logic

Hoare Logic [34] is a well-known system for proving the correctness of programs.
Figure 1 presents Hoare Logic rules for the basic statements in Whiley. Note that
p[e/x] means replace all free occurrences of the variable x in p by the expression

An Introduction to Software Verification with Whiley 11

e. Unlike Hoare’s original logic, Fig. 1 includes assert and assume statements,
and loops have explicit loop invariants.

The rules are presented in terms of correctness assertions (also known as
Hoare triples of the form:

{
p
}
s

{
q
}

, where p is a precondition, s is a Whiley
statement, and q is a postcondition. A Hoare triple is true if whenever the
precondition is true, then executing the statement establishes the postcondition.
For example, consider the following Hoare triple:

{
x ≥ 0

}
x = x + 1

{
x > 0

}

Here we see that, if x ≥ 0 holds immediately before the assignment then, as
expected, it follows that x > 0 holds afterwards. However, whilst this is intu-
itively true, it is not so obvious how this triple satisfies the rules of Fig. 1.
For example, as presented it does not immediately satisfy H-Assign. However,
rewriting the triple is helpful here:

{
x + 1 > 0

}
x = x + 1

{
x > 0

}

The above triple clearly satisfies H-Assign since (x > 0)[x + 1/x] simplifies
to x+1 > 0, which is the same as our precondition. Furthermore, we can obtain
the original triple from this triple via H-Consequence (i.e. since x+1 > 0 =⇒
x ≥ 0).

5.3 Calculating Backwards Through Assignments

The rules of Fig. 1 naturally give rise to an approach where we calculate pre-
conditions from postconditions. Whilst this may seem unnatural at times, it is
rather convenient. We can take this further and consider the weakest precondi-
tion that can be calculated. This is the weakest condition p that guarantees that
if it is the case that statement s terminates, then the final state will satisfy q.
The rule H-Assign for assignment statements demonstrates this most clearly.
Consider the following:

{
???

}
x = y + 1

{
x > 0

}

To apply rule H-Assign here, we simply substitute all occurrences of x in
the postcondition with y + 1 (i.e. the expression being assigned) to give:

{
y + 1 > 0

}
x = y + 1

{
x > 0

}

At this point, we have a simple mechanism for calculating the weakest pre-
condition for a straight-line sequence of statements.

12 D. J. Pearce et al.

p =⇒ e{
p
}
assert e

{
p
} (H-Assert) {

p
}
assume e

{
p ∧ e

} (H-Assume)

{
p[e/x]

}
x = e

{
p
} (H-Assign)

{
p
}
s1

{
r
} {

r
}
s2

{
q
}

{
p
}
s1 s2

{
q
} (H-Sequence)

{
p1

}
s

{
q1

}

p2 =⇒ p1 q1 =⇒ q2{
p2

}
s

{
q2

} (H-Consequence)

{
p ∧ e1

}
s1

{
q
}

{
p ∧ ¬e1

}
s2

{
q
}

{
p
}
if(e1) (s1) else (s2)

{
q
} (H-If)

{
e1 ∧ e2

}
s

{
e2

}
{
e2

}
while(e1) where e2 (s)

{
¬e1 ∧ e2

} (H-While)

Fig. 1. Extended rules of Hoare Logic.

Exercise: Calculating Backwards.
Work backwards from the through the following sequence of Hoare triples
calculating the weakest precondition before each assignment. Upon reaching
the start, one should find the precondition simplifies to true.

{
???

}
a = (2 ∗ x) + y

{
???

}
b = a − y

{
(a − b) == y ∧ b == 2 ∗ x

}

Variable Versions. Since Whiley is an imperative language, it permits vari-
ables to be assigned different values at different points. Whilst the rules of Hoare
logic accomodate this quite well, there are some limitations. In particular, we
often want to compare the state of a variable before and after a given statement.

The following illustrates this:
� �

1 function increment(int x) -> (int y)

2 ensures y > x:

3 x = x + 1

4 return x

� �

We can express the above program as a straight line sequence of Hoare triples
where the return x is represented as y = x (i.e it is treated as an assignment
to the return variable):

{
???

}
x = x + 1

{
x > x

}
y = x

{
y > x

}

An Introduction to Software Verification with Whiley 13

However, there must be a problem since the intermediate assertion x > x is
clearly false. So what went wrong? The problem lies in our formulation of the
postcondition in the final assertion. Specifically, in the final assertion, x refers to
the value of variable x at that point. However, in the ensures clause, x refers
to the value of x on entry.

In order to refer to the value of a variable on entry, we can use a special
version of it. In this case, let x0 refer to the value of variable x on entry to the
function. Then, we can update our Hoare triples as follows:

{
x + 1 > x0

}
x = x + 1

{
x > x0

}
y = x

{
y > x0

}

By assuming that x = x0 on entry to the function, we can see the weakest
precondition calculated we’ve calculated above is satisfied.

5.4 Calculating Forwards Through Assignments

An alternative approach is to propagate predicates forward through the program.
For a given precondition, and a statement s, we want to find the strongest
postcondition that will be true after s terminates. This turns out to be a little
more challenging than calculating weakest preconditions. Consider this program:

{
0 ≤ x ≤ y

}
x = 1

{
???

}

From the precondition to this statement, one can infer that y is non-negative.
But, how to update this and produce a sensible postcondition which retains this
information? The problem is that, by assigning to x, we are losing information
about its original value and relationship with y. For example, substituting x
for 1 as we did before gives 0 ≤ 1 ≤ y which is certainly incorrect, as this now
implies y cannot be zero (which was permitted before). The solution is to employ
Floyd’s rule for assignments [30]:

{
p
}
x = e

{
∃v.(p[v/x]) ∧ x = e[v/x]

}

This introduces a new variable v to represent the value of x before the assign-
ment and, hence, provide a mechanism for retaining all facts known beforehand.
For above example, this looks like:

{
0 ≤ x ≤ y

}
x = 1

{
∃v.(0 ≤ v ≤ y) ∧ x = 1

}

With this postcondition, we retain the ability to infer that y is non-negative.
Unfortunately, the postcondition seems more complex. To simplify this, we can
employ the idea of variable versioning from before:

{
0 ≤ x ≤ y

}
x = 1

{
0 ≤ x0 ≤ y ∧ x = 1

}

Here, x0 represents the value of x before the assignment. We are simply giving
a name (x0) to the value that Floyd’s Rule claims to exist. Technically this

14 D. J. Pearce et al.

is called ‘skolemization’. Observe that, with multiple assignments to the same
variable, we simply increment the subscript of that variable each time it appears
on the left-hand side of an assignment statement. The following illustrates this:
{
0 ≤ x

}
x = x+1

{
0 ≤ x0 ∧ x = x0+1

}
x = 0

{
0 ≤ x0 ∧ x1 = x0+1 ∧ x = 0

}

Exercise: Calculating Forwards.
Work forwards through the following Hoare triples for a sequence of assign-
ment statements, calculating the strongest postcondition after each assign-
ment.

{
true

}
x = (2 ∗ x) + y

{
???

}
y = x − y

{
???

}
x = x − y

{
???

}

Doing this, it should be possible to establish the postcondition for the
function f() above.

This approach of strongest postconditions with variable versions is essentially
how the Whiley verifier analyzes each path through the Whiley code. In fact,
when looking at a counter-example from the verifier for a proof that fails (for
whatever reason), one will sometimes see numbered versions of some variables,
referring to their intermediate values. One reason for using this strongest post-
condition approach in preference to the weakest precondition approach is that
the strongest postcondition approach typically generates multiple smaller proof
obligations rather than one large proof obligation, which helps to make error
messages more precise and helpful.

5.5 Reasoning About Control-Flow

Reasoning about conditional code, such as if-else statements, is similar to rea-
soning about a single sequence of code, except that we now have two or more
possible execution sequences. So we must reason about each possible sequence.
To do this, we use the following three principles:

– Within the true branch the condition is known to hold;
– Within the false branch the condition is known to not hold;
– Knowledge from each branch can be combined afterwards using disjunc-
tion.

The following illustrates what assertions are true at each point in the code.
Note how the assertion after the whole if-else block is simply the disjunction
of both branches, and from this disjunction we are able to prove the desired
postcondition z ≥ 0.

An Introduction to Software Verification with Whiley 15

� �

1 assume y >= 0

2 //
3 if x >= 0:

4 // {x ≥ 0 ∧ y ≥ 0}
5 z = x + y

6 // {x ≥ 0 ∧ y ≥ 0 ∧ z == x + y}
7 else:

8 // {x < 0 ∧ y ≥ 0}
9 z = y - x

10 // {x < 0 ∧ y ≥ 0 ∧ z == y − x}
11 //
12 // {(x ≥ 0 ∧ y ≥ 0 ∧ z == x + y) ∨ (x < 0 ∧ y ≥ 0 ∧ z == y − x)}
13 assert z >= 0

� �

A return statement terminates a function and returns to the calling function.
Since execution does not continue in the function after the return, our reasoning
about sequences of code also stops at each return statement. At that point,
we must prove that the postcondition of the whole function is satisfied. The
following example illustrates this:
� �

1 function abs(int x) -> (int r)

2 ensures r >= 0:

3 //
4 if x >= 0:

5 // {x ≥ 0}
6 return x

7 //
8 // {x < 0}
9 return -x

� �

Exercise: Return Statement.
Answer the following questions about this Whiley program. (After having
written the answers, sample solutions are available in Appendix A.)
� �

1 function inc(int x) -> (int r)

2 ensures x < r:

3 x = x + 1

4 return x

� �

– Q) What knowledge do we have at the point of return?

– Q) Is this enough to establish the postcondition?

16 D. J. Pearce et al.

5.6 Reasoning About Expressions

Our next example (see Fig. 2) illustrates a more complex function example that
uses conditionals and recursion to sum an array of integers. Note that variable
declarations in Whiley are typed like in Java and C, so int x = . . . declares
and initializes the variable x.

One issue that arises in this example is that whenever the code indexes into an
array, we need to check that the index is a valid one. Checks like this ensure that
buffer overflows can never occur, thereby eliminating a major cause of security vul-
nerabilities. To ensure that the array access in line 14 is valid, we must prove that
at that point the index i is within bounds. This introduces the following proof
obligation—or verification condition—for our program (we use a bold implies to
clearly separate the assumptions of the proof obligation from the conclusions):

0 ≤ i ≤ |items| ∧ i 	= |items| implies 0 ≤ i < |items|
The Whiley verifier can easily prove this verification condition holds true

and, hence, that the array access is within bounds.
More generally, many inbuilt functions have preconditions that we need to

check. For example, the division operator a/b is only valid when b 	= 0. And
user-defined functions have preconditions, which must be satisfied when they
are invoked, so the verifier must generate verification conditions to check their
arguments. Here is a list of the verification conditions that Whiley generates and
checks to verify code:

1. Before every function call, the function’s precondition is true;
2. Before every array access, arr[i], the index i is within bounds;
3. Before every array generator, [v; n], the size n is non-negative;

1 function sum(int[] items, int i) -> (int r)
2 // All elements of items are natural
3 requires all { k in 0..|items| | items[k] >= 0 }
4 // Index is at most one past bounds of array
5 requires 0 <= i && i <= |items|
6 // Result is natural
7 ensures r >= 0:
8 // {0 ≤ i ≤ |items| ∧ ∀k. 0 ≤ k < |items| =⇒ items[k] ≥ 0

)}
9 if i == |items|:

10 // {i == |items| ∧ ...}
11 return 0
12 else:
13 // {0 ≤ i < |items| ∧ i �= |items| ∧ ∀k. 0 <= k < |items| =⇒ items[k] ≥ 0

)}
14 int x = items[i]
15 // {x ≥ 0 ∧ 0 ≤ i < |items| ∧ i �= |items| ∧ ∀k. ...)}
16 int y = sum(items,i+1)
17 // {y ≥ 0 ∧ x ≥ 0 ∧ 0 ≤ i < |items| ∧ i �= |items| ∧ ∀k. ...)}
18 return x + y

Fig. 2. A recursive function for summing an array of integers

An Introduction to Software Verification with Whiley 17

4. Before every integer division a/b, it is true that b 	= 0;
5. Every assert statement is true;
6. in assignment statements, each right-hand-side result satisfies the type con-

straints of the corresponding left-hand-side variable;
7. At each return, the ensures conditions are true.

These conditions apply to the recursive invocation of sum(. . .) on Line 16 as
well. We must prove that the precondition of sum(. . .) is satisfied just before it
is called. In this case this means proving:

– 0 ≤ i ≤ |items| ∧ i 	= |items| implies 0 < i+1 ≤ |items|
– ∀k.(0 ≤ k < |items| =⇒ items[k] >= 0

)
implies

∀k.(0 ≤ k < |items| =⇒ items[k] >= 0
)
.

Note that if we wanted to prove termination, to ensure that this function does
not go into infinite recursion, we would also need to define a decreasing variant
expression and prove that each recursive call strictly decreases the value of that
expression towards zero. However, the current version of Whiley only proves
partial correctness, so does not generate proof obligations to ensure termination.
This may be added in the future.

5.7 Reasoning About Function Calls

Correctly reasoning about code which calls another function can be subtle. In
our recursive sum example we glossed over this by simply applying the postcon-
dition for sum(int[],int) directly. Sometimes we need to reason more carefully.
It is important to understand that the verifier never considers the body of func-
tions being called, only their specification. This makes the verification modular.
Consider the following simple function:
� �

1 function id(int x) -> (int r):

2 return x

� �

This is the well-known identity function which simply returns its argument
untouched. However, even with this simple function, it is easy to get confused
when reasoning. For example, we might expect the following to verify:
� �

1 assert id(0) == 0

� �

Whilst it is easy to see this must be true, the verifier rejects this because the
specification for id() does not relate the argument to its return value. Remem-
ber, the verifier is ignoring the body of function id() here. This is because the
details of how the specification for id() is met should not be important (and the
implementation can change provided the specification is still met). However, the
verifier will accept:
� �

1 assert id(0) == id(0)

� �

18 D. J. Pearce et al.

This may seem confusing since it appears that the verifier is considering the
body of function id(). However, in fact, it is only reasoning about the property
of pure functions—namely, that given the same input, they produce the same
output.

Exercise: Specification versus Implementation.
Consider these two functions:
� �

1 function increment(int x) -> (int y)

2 ensures y > x:

3 return x+1

4

5 function test(int x):

6 int z = increment(x)

7 assert z == x + 1

� �

Check that this program fails to verify and use the counterexample feature
to find values which illustrate the problem. Answer the following questions:

– Q) Do these values satisfy the specification of increment()?
– Q) Do these values satisfy the implementation of increment()?

Finally, weaken the assert statement so that it establishes the strongest
property regarding the relationship between variable x and z.

6 Verifying Loops

Verifying looping code is more complex than verifying non-looping code, since
execution may pass through a given point in the loop many times, so the asser-
tions at that point must be true on every iteration. Furthermore, we do not
always know beforehand how many times the loop will iterate – it could be zero,
one, or many times.

To make loops more manageable, the usual technique is to introduce a loop
invariant predicate. For example, in the following simple program, one property
that is clearly always true as we execute the loop is i >= 0 .1 Another loop invari-
ant is prod == i * n , since n is added to prod each time that i is incremented.
Yet another loop invariant is i <= n . However, i < n is not a loop invariant since
the last iteration of the loop will increment i to be equal to n .

� �

1 function sq(int n) -> (int r)

2 requires n > 0

3 ensures r == n * n:

4 int i = 0

5 int prod = 0

1 This holds because integers are unbounded in Whiley.

An Introduction to Software Verification with Whiley 19

6 //
7 while i < n:

8 i = i + 1

9 prod = prod + n

10 //
11 return prod

� �

If we use all three of these loop invariants to analyze this program, and note
that when the loop exits the guard must be false , which means that i >= n ,
then we have both i >= n and i <= n . This implies that i == n . Combining
this with the third loop invariant prod == i * n , we can prove the postcondition
of the whole function: r == n * n .

Let us define this concept of loop invariant more precisely, so that we can
understand how tools like the Whiley verifying compiler use loop invariants to
prove loops correct.

6.1 Loop Invariants

A loop invariant is a predicate which holds before and after each iteration of the
loop. The three rules about loop invariants are:

1. Loop invariants must hold before the loop.
2. Loop invariants must be restored. That is, within the loop body, the loop

invariant may temporarily not hold, but it must be re-established at the end
of the loop body.

3. The loop invariant and the negated guard are the only properties that are
known to be true after the loop exits, so they must be sufficiently strong to
allow us to verify the code that follows the loop.

The following diagram illustrates these three rules graphically, for a loop
occurring within a function body.

return ...

2

1

3

while C where I:
 //

//

function f() requires R ensures E:

We can explain the three loop invariant loops more precisely, using the nota-
tion of Hoare triples.

20 D. J. Pearce et al.

1. Loop Invariants must hold before the loop.
function f() requires R ensures E:

1

while C where I:
 //

Informally: Information known at the start of loop must imply the loop

invariant. Formally, we can express this as:
{
R

}
S1

{
P

}
implies (P =⇒ I)

where S1 represents all statements before the loop.
2. Loop Invariants must be maintained.

2

while C where I:
 //

//

Informally: Assuming only the loop invariant I and the loop condition C hold
at the start of the loop body, the information known at the end of the loop
body must imply the loop invariant I. Formally:

{
I ∧ C

}
S

{
P

}
implies (P =⇒ I)

where S represents the loop body.
3. Loop Invariants hold after the loop.

3

//

return ...

Informally: We can assume that the loop invariant and the negated condition
hold after the loop terminates. From just those two assumptions, we must be
able to prove that the code after the loop is correct. Formally:

{
I ∧¬C

}
S2

{
E

}

where S2 represents all statements after the loop; and E is the postcon-
dition.

The following function, which just counts up to 10, illustrates a very sim-
ple loop invariant that captures some information about the range of the loop
variable i.

An Introduction to Software Verification with Whiley 21

� �

1 function g(int i) => (int r)

2 //
3 requires i >= 0

4 ensures r >= 10:

5

6 // {i ≥ 0}
7 while(i < 10) where i >= 0:

8 // {i < 10 ∧ i ≥ 0}
9 i = i + 1

10 // {i ≥ 0}
11

12 // {i ≥ 10 ∧ i ≥ 0}
13 return i

14 }

� �

To help relate the Whiley code to the Hoare triples that we are discussing, we
show various intermediate assertions that would appear in the Hoare triples
for this program. Such intermediate assertions are not normally written in a
Whiley program (because the Whiley verifier calculates them automatically), so
we show them here as Whiley comments. This provides an outline of a Hoare-
style verification that this function meets its specification. Note that this does
not prove the function terminates (although we can see that it does) and, in
general, this is not our concern here.

Here is another example of a simple loop that sums two arrays pair-wise into an
output array. What would be a suitable loop invariant for the loop in this function?

� �

1 function sum(int[] v1, int[] v2) -> (int[] v3)

2 // Input vectors must have same size
3 requires |v1| == |v2|

4 // Result has same size as input
5 ensures |v1| == |v3|

6 // Each element of result is sum of corresponding elements in inputs
7 ensures all { i in 0..|v1| | v3[i] == v1[i] + v2[i] }:

8 //
9 int i = 0

10 int[] old_v1 = v1

11 //
12 while i < |v1|

13 where ??? TODO: relate v1 to old_v1 and v2 somehow ???:

14 v1[i] = v1[i] + v2[i]

15 i = i + 1

16 //
17 return v1

� �

6.2 Ghost Variables and Loop Invariants

A ghost variable is any variable introduced specifically to aid verification in
some way, but is unnecessary to execute the program. In the vector sum example

22 D. J. Pearce et al.

above, variable old_v1 is a ghost variable, because we can implement the
solution without it, but we cannot verify the solution without it! Here is the
loop invariant for the vector sum example, showing how we need to use old_v1

in the loop invariant to refer to the original contents of the v1 vector:
� �

1 //
2 while i < |v1|

3 where 0 <= i && i <= |v1|

4 where |v1| == |old_v1|

5 where all { j in 0..i | v1[j] == old_v1[j] + v2[j] }

6 where all { j in i..|v1| | v1[j] == old_v1[j] }:

7 v1[i] = v1[i] + v2[i]

8 i = i + 1

9 //

� �

Recall that Rule 3 for loops says that the only thing known after a loop
is the loop invariant and the negated loop guard. In theory, this means that
our loop invariant should include all known facts about all the variables in the
function. So perhaps we should add predicates like |v2| == |old_v1| into the
loop invariant above, even though neither of these variables are changing within
the loop? This would become very verbose and tedious - it is a very common
case that some variables are not changed at all within a loop.

Fortunately, Whiley uses an extended form of Rule 3 for variables not mod-
ified in a loop: all information about them from before loop is automatically
retained. This generally includes all ghost variables (since they typically just
capture the previous values of some variable), but also variables like v2 in the
vector sum example above, because there is no assignment to it in the loop. So
for a predicate that does not mention any variables changed by the loop, it is not
necessary to include that predicate in the loop invariant, as it will automatically
be preserved across the loop.

6.3 Example: Reversing an Array (Implementation)

Now that we have all the necessary tools, such as loop invariants and ghost
variables, let us consider what loop invariant is needed to verify the following
program, which reverses the contents of an array in-place.

� �

1 // In-place reverse of items in an array
2 function reverse(int[] xs) -> (int[] ys)

3

4 ensures |xs| == |ys|

5 // All items in return array in reversed order
6 ensures all { i in 0..|xs| | xs[i] == ys[|xs|-(i+1)]}:

7 int i = 0

8 int j = |xs| - 1

9 while i < j

10 where ???:

An Introduction to Software Verification with Whiley 23

11 int tmp = xs[i]

12 xs[i] = xs[j]

13 xs[j] = tmp

14 j = j - 1

15 i = i + 1

16 return xs

� �

To help visualize the required invariant, imagine that we are half way through
reversing the array. The region between i and j remains to be reversed.

1 20 3 4 5− 4− 3− 2− 1−

i j

Exercise: Reversing Array Invariant.
Find a suitable loop invariant to verify this reverse function, using as few
of the following hints as possible:

1. start with a loop invariant that is a weakened version of the postcondi-
tion;

2. weaken it so it applies to just the part of the array that has been reversed;
3. add lower and upper bounds for i and j, since they are changing;
4. remember to say that the unprocessed region of the array is unchanged—

that is, is still equal to the original array;
5. introduce a ghost variable for the initial value of the xs array;
6. remember to say that the length of xs is the same as its original length.

Exercise: Find the index.
Verify the following indexOf() function, by finding a suitable loop invari-
ant.
� �

1 function indexOf(int[] items, int item) -> (int r)

2 ensures r >= 0 ==> items[r] == item

3 ensures r >= 0 ==> all { i in 0 .. r | items[i] != item }

4 ensures r < 0 ==> all { i in 0 .. |items| |

5 items[i] != item }:

6 //
7 int i = 0

8 while i < |items|:

9 if items[i] == item:

24 D. J. Pearce et al.

10 return i

11 i = i + 1

12 //
13 return -1

� �

6.4 Example: Dutch National Flag

We now consider a more complex example, due to the famous Dutch computer
scientist Edsger Dijkstra:

“Given a quantity of items in three colours of the Dutch National flag,
partition the items into three groups such that red items come first, then
white items and, finally, blue items.”

This can be thought of as a special case of sorting, and is very similar to the
“split/partition” part of quicksort. Unlike the real Dutch flag, we don’t know
how many of each colour there are, so we can’t use that to predetermine where
the three regions should be. Also, we are required to do this in-place, without
using additional arrays.

Rather than give the algorithm and then show how to verify it, we will use
this problem to illustrate the approach to programming advocated by Dijkstra,
in which programs are constructed from their specifications in a way that guar-
antees their correctness. In particular, loops are designed by first choosing a loop
invariant, by weakening the postcondition of the loop, and then designing the
loop body so as to maintain the loop invariant while making progress towards
termination. This refinement approach to developing programs [48] develops the
code step-by-step guided by the specifications, so it typically leads to code that
is easier to verify than code just written directly by a programmer without con-
sidering the specifications. As functions become larger and more complex, we
recommend that a refinement approach should be used, which is why we demon-
strate this approach in this final example of this chapter.

In this case, our postcondition is that the array be a permutation of the
original, and that it be arranged into three regions containing red, white and
blue elements, respectively. Let us introduce two markers, lo and hi to mark
the ends of these regions—more specifically, to mark the first and elements of the
white region. Thus, the final state looks like this (we will explain mid shortly):

An Introduction to Software Verification with Whiley 25

We can describe this more formally using Whiley syntax:
� �

1 0 <= lo && lo <= hi && hi <= |cols|

2 all { i in 0..lo | cols[i] == RED }

3 all { i in lo..hi+1 | cols[i] == WHITE }

4 all { i in hi+1..|cols| | cols[i] == BLUE }

� �

The first line specifies the ranges of lo and hi . The remaining lines say
that each of the three regions contains only values of the appropriate colour.
We will omit the permutation condition, since it is easy to verify, and focus on
these conditions. The precondition is that the array initially contains only three
distinct values:
� �

1 all { i in 0..|cols| |

2 cols[i] == RED || cols[i] == WHITE || cols[i] == BLUE }

� �

Our algorithm needs to build these three regions incrementally as it inspects
each element of the array. So at an arbitrary point in the process, we will have
three regions containing the red, white and blue elements we’ve already seen. We
will also have a fourth region containing the elements we haven’t inspected yet.

The algorithm will consist of a loop in which elements are successively taken
from the “unseen” region and added to one of the other regions according to its
colour. We could keep the “unseen” region to the left of the red region, between
the red and white or white and blue regions, or to the right of the blue regions. We
will make an arbitrary choice, and keep it between the white and blue regions, and
introduce another marker, mid , to mark the start of the “unseen” region, which
means that cols[mid] is the next element to be put into the correct region.

Again, we can describe this situation formally using Whiley notation:
� �

1 0 <= lo && lo <= mid && mid <= hi+1 && hi < |cols|

2 all { i in 0..lo | cols[i] == RED }

3 all { i in lo..mid | cols[i] == WHITE }

4 all { i in hi+1..|cols| | cols[i] == BLUE }

� �

26 D. J. Pearce et al.

Again, the first line defines the ranges of the marker variables, and the
remaining lines say that the red, white and blue regions only contain values of
the appropriate colour. This condition now gives our loop invariant. We can now
design the loop around this invariant. Initially, no elements have been inspected,
so the red, white and blue regions are empty, and the “unseen” region is the
whole array.

So, our initialisation must establish the condition:
� �

1 lo == 0 && mid == 0 && hi == |cols|-1

� �

This is the precondition for the loop, and we can easily verify that it implies
the loop invariant.
� �

1 lo == 0 && mid == 0 && hi == |cols|-1

2 implies

3 0 <= lo && lo <= mid && mid <= hi+1 && hi < |cols| &&

4 all { i in 0..lo | cols[i] == RED } &&

5 all { i in lo..mid | cols[i] == WHITE } &&

6 all { i in hi+1..|cols| | cols[i] == BLUE }

� �

The algorithm will terminate when the “unseen” region is empty, i.e. when
mid is greater that hi (as shown in the first diagram), so the loop guard is
mid ≤ hi.

We can easily check that the postcondition will hold when the loop invariant
is true and the loop guard is false:

� �

1 0 <= lo && lo <= mid && mid <= hi+1 && hi < |cols| &&

2 all { i in 0..lo | cols[i] == RED } &&

3 all { i in lo..mid | cols[i] == WHITE } &&

4 all { i in hi+1..|cols| | cols[i] == BLUE } &&

5 !(mid <= hi)

6 implies

7 0 <= lo && lo <= hi && hi <= |cols| &&

8 all { i in 0..lo | cols[i] == RED } &&

9 all { i in lo..hi+1 | cols[i] == WHITE } &&

10 all { i in hi+1..|cols| | cols[i] == BLUE }

� �

An Introduction to Software Verification with Whiley 27

Notice that we have already proved two of the correctness conditions for the
loop, and we haven’t even written the loop body yet! Now let us consider the
loop body. The loop body has to reduce the size of the “unseen” region—this
guarantees that we make progress towards termination. We will take the easy
approach of reducing by one. Thus, we need to reduce hi-lo , which may happen
either by increasing lo or by decreasing hi .

The key part of the algorithm is now to determine how we can take the next
element from the “unseen” part of the array and add it to one of the other three
regions, according to its colour. We want to write something like:
� �

1 if mid[i] == RED:

2 add cols[i] to red region

3 else if cols[i] == BLUE:

4 add cols[i] to blue region

5 else:

6 add cols[i] to white region

� �

Adding cols[i] to the white region is simple: is it already in the next
available place for white, so we just need to increment mid . Adding cols[i]

to the blue region is also quite easy. We need to put it just to the left of the
existing blue region, in the last location of the “unseen” region. But what do
we do with the element that is there? We need to swap with the element at
cols[i] , since that location is about to be “vacated”. So in this case we make
progress by decreasing hi .

The last case is to add cols[i] to the red region. This is a bit harder,
because (in general), the space to the right of lo is already part of the white
region. But if we swap cols[i] with that element, this will add cols[i] to
the red region, and effectively move the white region one place to the right, so
we can increment both lo and mid .

And we are done, the final algorithm is given in Fig. 3. Note: on the Whiley Labs
website there is a time limit of 10 s for the whole verification. This program may
take a little longer than that to verify, so you might need to verify this program
on your own computer with a longer timeout.

28 D. J. Pearce et al.

1 function partition(Color[] cols) -> (Color[] ncols)
2 // Must have at least one colour in the input array
3 requires |cols| > 0
4 // Output array same size and input array
5 ensures |ncols| == |cols|
6 // Resulting array is sorted
7 ensures all { k in 1..|ncols| | ncols[k-1] <= ncols[k] }:
8 nat lo = 0
9 nat mid = 0

10 int hi = |cols|
11 // copy output to input
12 ncols = cols
13 //
14 while mid < hi
15 // size of cols does not change
16 where |cols| == |ncols|
17 // invariants between markers
18 where lo <= mid && hi <= |cols|
19 // All elements up to lo are RED
20 where all { i in 0 .. lo | ncols[i] == RED }
21 // All elements between lo and mid are WHITE
22 where all { i in lo .. mid | ncols[i] == WHITE }
23 // All elements from hi upwards are BLUE
24 where all { i in hi .. |ncols| | ncols[i] == BLUE }:
25 //
26 if ncols[mid] == RED:
27 ncols[mid] = ncols[lo]
28 ncols[lo] = RED
29 lo = lo + 1
30 mid = mid + 1
31 else if ncols[mid] == BLUE:
32 hi = hi - 1
33 ncols[mid] = ncols[hi]
34 ncols[hi] = BLUE
35 else:
36 mid = mid + 1
37 //
38 return ncols

Fig. 3. Algorithm for solving the Dutch National Flag problem

Exercise: Palindrome.
The following program returns true if the given array of characters contains
a palindrome. That is, a word that has the same sequence of characters
reading from left to right as it does reading from right to left. So the word
reversed is the same as the original word.

An Introduction to Software Verification with Whiley 29

Verify this program by writing a suitable loop invariant.
� �

1 function isPalindrome(int[] chars) -> (bool r)

2 ensures r <==> all { k in 0..|chars| |

3 chars[k] == chars[|chars|-(k+1)] }:

4 int i = 0

5 int j = |chars|

6 while i < j:

7 j = j - 1

8 if chars[i] != chars[j]:

9 return false

10 i = i + 1

11 return true

� �

7 Related Work

We discuss several related tools which provide similar functionality and operation
to Whiley. In addition, we examine some of the techniques that underpin these
tools.

7.1 Tools

ESC/Java & JML. The Extended Static Checker for Java (ESC/Java) is one of
the most influential tools in the area of verifying compilers [28]. The ECS/Java
tool was based on earlier work that developed the ESC/Modula-3 tool [23].
The tool provides a verifying compiler for Java programs whose specifications
are given as annotations in a subset of JML [12,41]. The following illustrates a
simple method in JML which ESC/Java verifies as correct:
� �

1 /∗@ requires n >= 0;
2 @ ensures \result >= 0;
3 @∗/
4 public static int method(int n) {

5 int i = 0;

6 /∗@ maintaining i >= \old(i); ∗/
7 while(i < n) { i = i + 1; }

8 return i;

9 }

� �

Here, we can see preconditions and postconditions are given for the method,
along with an appropriate loop invariant. Recalling our discussion from Sect. 6.2,
\old(i) refers to i on entry to the loop and, hence, we have \old(i)==0 holds
in this case.

The ESC/Java tool makes some unsound assumptions when verifying pro-
grams. In particular, arithmetic overflow is ignored and loops are treated

30 D. J. Pearce et al.

unsoundly by simply unrolling them for a fixed number of iterations. The tool
also provides limited support for reasoning about dynamic memory through
the use of ownership annotations and assignable clauses for expressing frame
conditions. ESC/Java has been demonstrated in some real-world settings. For
example, Cataño and Huisman used it to check specifications given for an inde-
pendently developed implementation of an electronic purse [11]. Unfortunately
the development of JML and its associated tooling has stagnated over the last
decade, although has more recently picked up again through the OpenJML ini-
tiative [17,18,54].

Spec#. This system followed ESC/Java and benefited from many of the insights
gained in that project. Spec# added proper support for handling loop invari-
ants [6], for handling safe object initialisation [26] and allowing temporary vio-
lations of object invariants through the expose keyword [45]. The latter is nec-
essary to address the so-called packing problem which was essentially ignored by
ESC/Java [7]. Another departure from ESC/Java was the use of the BOOGIE
intermediate language for verification (as opposed to guarded commands) [5],
and the Z3 automated theorem prover (as opposed to Simplify) [49]. Both of
these mean that Spec# is capable of verifying a wider range of programs than
ESC/Java.

Although the Spec# project has now finished, the authors did provide some
invaluable reflections on their experiences with the project [6]. Amongst many
other things, they commented that:

“Of the unsound features in ESC/Java, many were known to have solu-
tions. But two open areas were how to verify object invariants in the pres-
ence of subclassing and dynamically dispatched methods (. . .) as well as
method framing.”

A particular concern was the issue of method re-entrancy, which is particularly
challenging to model correctly. Another interesting insight given was that:

“If we were to do the Spec# research project again, it is not clear that
extending an existing language would be the best strategy.”

The primary reason for this was the presence of constructs that are difficult for
a verifier to reason about, and also the challenge for a small research group in
maintaining compatibility with a large and evolving language.

Finally, the Spec# project lives on in various guises. For example, VCC
verifies concurrent C code and was developed by reusing much of the tool chain
from Spec# [16]. VCC has been successfully used to verify Microsoft’s Hyper-V
hypervisor. Likewise, Microsoft recently introduced a Code Contracts library in
.NET 4.0 which was inspired by the Spec# project (though mostly focuses on
runtime checking).

Dafny. This is perhaps the most comparable related work to Whiley, and was
developed independently at roughly the same time [43,44]. That said, the goals

An Introduction to Software Verification with Whiley 31

of the Dafny project are somewhat different. In particular, the primary goal
of Dafny to provide a proof-assistant for verifying algorithms rather than, for
example, generating efficient executable code. In contrast, Whiley aims to gen-
erate code suitable for embedded systems [50,56,57]. Dafny is an imperative
language with simple support for objects and classes without inheritance. Like
Whiley, Dafny employs unbound arithmetic and distinguishes between pure and
impure functions. Dafny provides algebraic data types (which are similar to
Whiley’s recursive data types) and supports immutable collection types with
value semantics that are primarily used for ghost fields to enable specification of
pointer-based programs. Dynamic memory allocation is possible in Dafny, but
no explicit deallocation mechanism is given and presumably any implementation
would require a garbage collector.

Unlike Whiley, Dafny also supports generic types and dynamic frames [38].
The latter provides a suitable mechanism for reasoning about pointer-based
programs. For example, Dafny has been used successfully to verify the Schorr-
Waite algorithm for marking reachable nodes in an object graph [44]. Finally,
Dafny has been used to successfully verify benchmarks from the VSTTE’08 [46],
VSCOMP’10 [39], VerifyThis’12 [36] challenges (and more).

7.2 Techniques

Hoare provided the foundation for formalising work in this area with his seminal
paper introducing Hoare Logic [34]. This provides a framework for proving that
a sequence of statements meets its postcondition given its precondition. Unfor-
tunately Hoare logic does not tell us how to construct such a proof; rather, it
gives a mechanism for checking a proof is correct. Therefore, to actually verify a
program is correct, we need to construct proofs which satisfy the rules of Hoare
logic.

The most common way to automate the process of verifying a program is
with a verification condition generator. As discussed in Sect. 5.4, such algorithms
propagate information in either a forwards or backwards direction. However, the
rules of Hoare logic lend themselves more naturally to the latter [31]. Perhaps
for this reason, many tools choose to use the weakest precondition transformer.
For example, ESC/Java computes weakest preconditions [28], as does the Why
platform [27], Spec# [8], LOOP [37], JACK [9] and SnuggleBug [13]. This is
surprising given that it leads to fewer verification conditions and, hence, makes
it harder to generate useful error messages (recall our discussion from Sect. 5.4).
To workaround this, Burdy et al. embed path information in verification condi-
tions to improve error reporting [9]. A similar approach is taken in ESC/Java,
but requires support from the underlying automated theorem prover [22]. Den-
ney and Fischer extend Hoare logic to formalise the embedding of information
within verification conditions [21]. Again, their objective is to provide useful
error messages.

A common technique for generating verification conditions is to transform
the input program into passive form [8,23,28,33]. Here, the control-flow graph
of each function is converted using standard techniques into a reducible (albeit

32 D. J. Pearce et al.

potentially larger) graph. This is then further reduced by eliminating loops to
leave an acyclic graph, before a final transformation into Static Single Assign-
ment form (SSA) [19,20]. The main advantage is that, after this transforma-
tion, generating verification conditions becomes straightforward. Furthermore,
the technique works well for unstructured control flow and can be tweaked to
produced compact verification conditions [2,3,29,42].

Dijkstra’s Guarded Command Language provides an alternative approach to
the generation of verification conditions [24]. In this case, the language is far
removed from the simple imperative language of Hoare logic and, for example,
contains only the sequence and non-deterministic choice constructs for handling
control-flow. There is rich history of using guarded commands as an intermediate
language for verification, which began with the ECS/Modula-3 tool [23]. This
was continued in ESC/Java and, during the later development of Spec#, a richer
version (called Boogie) was developed [5]. Such tools use guarded commands as
a way to represent programs that are in passive form (discussed above) in a
human-readable manner. As these programs are acyclic, the looping constructs
of Dykstra’s original language are typically ignored.

Finally, it is worth noting that Frade and Pinto provide an excellent survey
of verification condition generation for simple While programs [31]. They pri-
marily focus on Hoare Logic and various extensions, but also explore Dijkstra’s
Guarded Command Language. They consider an extended version of Hoare’s
While Language which includes user-provided loop invariants. They also present
an algorithm for generating verification conditions based on the weakest precon-
dition transformer.

8 Conclusions

In this chapter we have introduced the basic ideas of verifying simple imperative
code. With just the executable code, a verifying compiler does not know what
the program is intended to do, so all it can verify is that the code will execute
without errors such as: array indexes out of bounds, division by zero.

But if we add some specification information, such as preconditions to express
the input assumptions and postconditions to express the desired results, then
the verifying compiler can check much richer properties. If the postconditions
are strong enough to express the complete desired behavior of the function, then
the verifying compiler can even check full functional correctness.

In practice, the reasoning abilities of verifying compilers are gradually
improving with time, and at the current point in time it is usually necessary
to annotate our programs with extra information to aid verification, such as
loop invariants and data invariants. One can argue that it is good engineering
practice to document these properties for other human readers anyway, even if
the verifying compiler did not need them. But in the future, we envisage that
verification tools will become smarter about inferring obvious invariants, which
will gradually reduce the burden on human verifiers.

An Introduction to Software Verification with Whiley 33

Acknowledgements. Thanks to all the students and researchers who have con-
tributed to the development of Whiley. The slides used to present this tutorial at
SETSS were based on David Pearce’s slides for the SWEN224 (Software Correctness)
course at Victoria University of Wellington, 2015-2016. Thanks to the students of those
classes for their feedback and comments. Thanks to Professor Zhiming LIU for organ-
ising SETSS 2018.

Appendix A: Sample Answers to Selected Exercises

This appendix gives sample solutions to the exercises that cannot be checked
using the online Whiley Labs website.

Answer: Return Statement.
– Q1) What knowledge do we have at the point of return?
– A1) At the point of return the final value of x is returned, so we know

that r == x0 + 1, where x0 is the initial value of the input parameter x.

– Q2) Is this enough to establish the postcondition?
– A2) Yes, because r == x0 + 1 implies r > x0, which is equivalent to the

desired postcondition.

Answer: Specification versus Implementation.
– Q1) Do these values satisfy the specification of increment()?
– A1) Yes. For example x=0, y=2 satisfies the ensures clause.

– Q2) Do these values satisfy the implementation of increment()?
– A2) No. The counterexample values are do not satisfy y=x+1, even

though that is what the implementation does. This is because the verifier
only uses the published specification properties of the function to help
verify function calls, not the extra details of the function implementa-
tion. This separation of concerns makes modular verification possible.

References

1. European Space Agency: Ariane 5: Flight 501 failure. Report by the Enquiry Board
(1996)

2. Babić, D., Hu, A.J.: Exploiting shared structure in software verification conditions.
In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 169–184. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77966-7 15

3. Babić, D., Hu, A.J.: Structural abstraction of software verification conditions.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 366–378.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3 41

https://doi.org/10.1007/978-3-540-77966-7_15
https://doi.org/10.1007/978-3-540-73368-3_41

34 D. J. Pearce et al.

4. Back, R.J.R., von Wright, J.: Refinement Calculus: A Systematic Approach. Grad-
uate Texts in Computer Science. Springer, New York (1998). https://doi.org/10.
1007/978-1-4612-1674-2

5. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

6. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

7. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. J. Object Technol. 3(6), 27–56 (2004)

8. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Proceedings of the Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE), pp. 82–87. ACM Press (2005)

9. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: a developer-oriented
approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol.
2805, pp. 422–439. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45236-2 24

10. Carvalho, M., DeMott, J., Ford, R., Wheeler, D.: Heartbleed 101. IEEE Secur.
Priv. 12(4), 63–67 (2014)

11. Cataño, N., Huisman, M.: Formal specification and static checking of gemplus’
electronic purse using ESC/Java. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME
2002. LNCS, vol. 2391, pp. 272–289. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45614-7 16

12. Chalin, P., Rioux, F.: JML runtime assertion checking: improved error reporting
and efficiency using strong validity. In: Cuellar, J., Maibaum, T., Sere, K. (eds.)
FM 2008. LNCS, vol. 5014, pp. 246–261. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68237-0 18

13. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weakest
preconditions. In: Proceedings of the ACM conference on Programming Language
Design and Implementation (PLDI), pp. 363–374. ACM Press (2009)

14. Charette, R.: This car runs on code. IEEE Spectr. 46, 3 (2009)
15. Charette, R.N.: Why software fails. IEEE Spect. 42(9), 42–49 (2005)
16. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,

S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

17. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

18. Cok, D.R.: OpenJML: Software verification for Java 7 using JML, OpenJDK, and
eclipse. In: Proceedings of the Workshop on Formal Integrated Development Envi-
ronment (F-IDE), vol. 149, pp. 79–92 (2014)

19. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.K.: An efficient method
of computing static single assignment form. In: Proceedings of the ACM symposium
on the Principles Of Programming Languages (POPL), pp. 25–35 (1989)

20. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-45236-2_24
https://doi.org/10.1007/978-3-540-45236-2_24
https://doi.org/10.1007/3-540-45614-7_16
https://doi.org/10.1007/3-540-45614-7_16
https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35

An Introduction to Software Verification with Whiley 35

21. Denney, E., Fischer, B.: Explaining verification conditions. In: Meseguer, J., Roşu,
G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 145–159. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79980-1 12

22. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

23. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking.
SRC Research Report 159, Compaq Systems Research Center (1998)

24. Dijkstra, E.W.: Guarded commands, nondeterminancy and formal derivation of
programs. Commun. ACM 18, 453–457 (1975)

25. Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of Internet Mea-
surement Conference (IMC), pp. 475–488. ACM Press (2014)

26. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: Proceedings of the ACM conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), pp. 302–312. ACM
Press (2003)

27. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73368-3 21

28. Flanagan, C., Leino, K., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: Proceedings of the ACM conference on Programming
Language Design and Implementation (PLDI), pp. 234–245 (2002)

29. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: Proceedings of the ACM symposium on the Principles Of
Programming Languages (POPL), pp. 193–205. ACM Press (2001)

30. Floyd, R.W.: Assigning meaning to programs. In: Proceedings of Symposia in
Applied Mathematics, vol. 19, pp. 19–31. American Mathematical Society (1967)

31. Frade, M.J., Pinto, J.S.: Verification conditions for source-level imperative pro-
grams. Comput. Sci. Rev. 5(3), 252–277 (2011)

32. Software problem led to system failure at dhahran, saudi arabia, gao report #b-
247094 (1992)

33. Grigore, R., Charles, J., Fairmichael, F., Kiniry, J.: Strongest postcondition of
unstructured programs. In: Proceedings of the Workshop on Formal Techniques
for Java-like Programs (FTFJP), pp. 6:1–6:7. ACM Press (2009)

34. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12, 576–580
(1969)

35. Holzmann, G.J.: Out of bounds. IEEE Softw. 32(6), 24–26 (2015)
36. Huisman, M., Klebanov, V., Monahan, R.: Verifythis verification competition 2012

- organizer’s report (2013)
37. Jacobs, B.: Weakest pre-condition reasoning for Java programs with JML annota-

tions. J. Log. Algebr. Program. 58(1–2), 61–88 (2004)
38. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing

without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006). https://doi.org/10.
1007/11813040 19

39. Klebanov, V., et al.: The 1st verified software competition: experience report. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 154–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 14

https://doi.org/10.1007/978-3-540-79980-1_12
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/978-3-642-21437-0_14

36 D. J. Pearce et al.

40. Ko, A.J., Dosono, B., Duriseti, N.: Thirty years of software problems in the news.
In: Proceedings of the 7th International Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE 2014, Hyderabad, India, 2–3 June 2014.
ACM Press (2014)

41. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of
JML accommodates both runtime assertion checking and formal verification. Sci.
Comput. Program. 55(1–3), 185–208 (2005)

42. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288
(2005)

43. Rustan, K., Leino, M.: Developing verified programs with Dafny. In: Joshi, R.,
Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, p. 82. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27705-4 7

44. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

45. Leino, K.R.M., Müller, P.: Using the Spec# language, methodology, and tools
to write bug-free programs. In: Müller, P. (ed.) LASER 2007–2008. LNCS, vol.
6029, pp. 91–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13010-6 4

46. Leino, K.R.M., Monahan, R.: Dafny meets the verification benchmarks challenge.
In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol.
6217, pp. 112–126. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15057-9 8

47. Leveson, N., Turner, C.: An investigation of the Therac-25 accidents. IEEE Com-
put. 26(7), 18–41 (1993)

48. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Sad-
dle River (1994)

49. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

50. Pearce, D.J.: Integer range analysis for Whiley on embedded systems. In: Proceed-
ings of the IEEE/IFIP Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems, pp. 26–33 (2015)

51. Pearce, D.J.: The Whiley Language Specification (Updated, 2016)
52. Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification.

In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
238–248. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 13

53. Rahman, H.A., Beznosov, K., Mart́ı, J.R.: Identification of sources of failures and
their propagation in critical infrastructures from 12 years of public failure reports.
Int. J. Crit. Infrastruct. 5(3), 220–244 (2009)

54. Sánchez, J., Leavens, G.T.: Static verification of PtolemyRely programs using
OpenJML. In: Proceedings of the Workshop on Foundations of Aspect-Oriented
Languages (FOAL), pp. 13–18. ACM Press (2014)

55. Steinberg, J.: Massive internet security vulnerability - here’s what you need
to do (2014). https://www.forbes.com/sites/josephsteinberg/2014/04/10/massive-
internet-security-vulnerability-you-are-at-risk-what-you-need-to-do. Accessed 12
Jan 2019

56. Stevens, M.: Demonstrating Whiley on an embedded system. Technical report,
School of Engineering and Computer Science, Victoria University of Wellington
(2014). http://www.ecs.vuw.ac.nz/∼djp/files/MattStevensENGR489.pdf

https://doi.org/10.1007/978-3-642-27705-4_7
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-13010-6_4
https://doi.org/10.1007/978-3-642-13010-6_4
https://doi.org/10.1007/978-3-642-15057-9_8
https://doi.org/10.1007/978-3-642-15057-9_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-02654-1_13
https://www.forbes.com/sites/josephsteinberg/2014/04/10/massive-internet-security-vulnerability-you-are-at-risk-what-you-need-to-do
https://www.forbes.com/sites/josephsteinberg/2014/04/10/massive-internet-security-vulnerability-you-are-at-risk-what-you-need-to-do
http://www.ecs.vuw.ac.nz/~djp/files/MattStevensENGR489.pdf

An Introduction to Software Verification with Whiley 37

57. Weng, M.H., Pfahringer, B., Utting, M.: Static techniques for reducing memory
usage in the C implementation of Whiley programs. In: Proceedings of the Aus-
tralasian Computer Science Week Multiconference, ACSW 2017, pp. 15:1–15:8.
ACM, New York (2017). https://doi.org/10.1145/3014812.3014827

58. White, D., Roschelle, A., Peterson, P., Schlissel, D., Biewald, B., Steinhurst, W.:
The 2003 blackout: solutions that won’t cost a fortune. Electr. J. 16(9), 43–53
(2003)

https://doi.org/10.1145/3014812.3014827

Learning Büchi Automata
and Its Applications

Yong Li1,2 , Andrea Turrini1,3(B) , Yu-Fang Chen4 , and Lijun Zhang1,2,3

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{turrini,zhanglj}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Institute of Intelligent Software, Guangzhou, China
4 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. In this work, we review an algorithm that learns a Büchi
automaton from a teacher who knows an ω-regular language; the algo-
rithm is based on learning a formalism named family of DFAs (FDFAs)
recently proposed by Angluin and Fisman. We introduce the learning
algorithm by learning the simple ω-regular language (ab)ω: besides giv-
ing the readers an overview of the algorithm, it guides them on how the
algorithm works step by step. Further, we demonstrate how the learn-
ing algorithm can be exploited in classical automata operations such as
complementation checking and in the context of termination analysis.

1 Introduction

Model checking is a widely used technique in the verification of hardware and
software systems, scaling from case studies in academic publications to real sys-
tems in industry; the importance of model checking has been recognized by
means of the 2007 Turing award, which has been assigned to Edmund M. Clarke,
E. Allen Emerson, and Joseph Sifakis for “their roles in developing model check-
ing into a highly effective verification technology, widely adopted in the hardware
and software industries”.

Large systems are usually obtained by developing several small components
that interact concurrently with each other so to globally achieve the desired func-
tionality. The main obstacle in applying model checking to concurrent systems is
the well-known state explosion problem [31]. The number of global states of such
systems can be enormous: it is actually of the form np where p is the number of
processes and n is the number of states in each process. There have been several
approaches proposed in literature to combat the state explosion problem, such as
symbolic model checking based on BDDs [78], bounded model checking [18], and
learning-based compositional verification [34]. The latter approach, the learning-
based compositional verification, tries to learn models of the single components
that are smaller than the original processes while preserving their behavior. The
learning algorithm used in [34] is the well-known L∗ algorithm proposed by Dana
Angluin [8], which allows one to learn deterministic finite automata (DFAs).
c© Springer Nature Switzerland AG 2019
J. P. Bowen et al. (Eds.): SETSS 2018, LNCS 11430, pp. 38–98, 2019.
https://doi.org/10.1007/978-3-030-17601-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17601-3_2&domain=pdf
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0003-4343-9323
http://orcid.org/0000-0003-2872-0336
http://orcid.org/0000-0002-3692-2088
https://doi.org/10.1007/978-3-030-17601-3_2

Learning Büchi Automata and Its Applications 39

Automata learning algorithms have received significant attention from the
verification community in the past two decades. Besides being used to improve
the efficiency and scalability of compositional verification, automata learning has
also been successfully applied in other aspects of verification: among others, it has
been used to automatically generate interface models of computer programs [7],
to learn a model of the traces of the system errors for diagnosis purposes [27], to
find bugs in the implementation of network protocols [88], to extract behavior
model of programs for statistical program analysis [29], and to do model-based
testing and verification [81,107]. Later in 2017, Frits Vaandrager [103] surveyed
the concept of model learning used in the above applications.

In order to be of practical use, the learning algorithms have to be computa-
tionally efficient and easily adaptable to the different learning scenarios. On the
one hand, with more complex tasks at hand, some researchers have proposed sev-
eral optimizations to improve the efficiency of finite automata learning, such as
learning algorithms based on classification trees [59,63], efficient counterexample
analysis for learning algorithms [87], learning algorithm NL∗ for nondetermin-
istic finite automata (NFAs) [20], and learning algorithms for alternating finite
automata [10].

On the other hand, due to the demands from the different verification tasks,
some researchers also develop and apply learning algorithms for richer models.
For example, there are learning algorithms for I/O automata [2], event-recording
automata [50], register automata [57,58], timed systems [75], probabilistic sys-
tems [43], and nominal automata [79]. Specially, van Heerdt et al. in [53] pro-
posed an automata learning framework based on category theory which unifies
the learning of several automata including DFAs and weighted automata.

However, aforementioned learning algorithms are all designed for the
automata accepting finite words; those automata are used to model the finite
behaviors of the systems, which are usually characterized by safety properties
expected to hold. For instance, one can use a DFA to recognize all possible bad
behaviors, i.e., behaviors leading in a finite number of steps to a state violating a
safety property. Instead, for characterizing the infinite behaviors of the systems,
generally corresponding to liveness properties, automata accepting infinite words
are used.

In his seminal work [25], Büchi introduced automata accepting infinite words
to prove the decidability of a restricted monadic second order (MSO) logic; now
such automata are widely known as Büchi automata (BA). A Büchi automaton
has the same structure as an NFA, except that it operates on infinite words:
instead of accepting a finite word if it leads the run of the automaton to end in
an accepting state, a BA accepts an infinite word if it leads the automaton to visit
an accepting state infinitely often. Büchi automata are nowadays very popular
in the model checking field, in particular when the specification is given by a
linear temporal logic (LTL) formula; see the introductory paper by Vardi [104]
on the use of BAs for LTL analysis.

Besides being used in LTL verification and synthesis, Büchi automata have
been also used as a standard model to describe the liveness properties of dis-
tributed systems [6]. Therefore, in order to verify whether a concurrent system

40 Y. Li et al.

satisfies a liveness property, one can model every process of the system as a
Büchi automaton. It follows that if one can learn smaller Büchi automata for
the processes, then performing compositional verification on the given concur-
rent system can become less expensive, similarly to the DFA case. Motivated by
that, Farzan et al. presented in [42] the first learning algorithm for the complete-
class of ω-regular languages represented as Büchi automata; the algorithm is able
to extract automatically a Büchi automaton as an assumption from a compo-
nent of concurrent systems for compositional verification. Note that already in
1995 Maler and Pnueli [76] introduced the first learning algorithm for Büchi
automata, but it learns Büchi automata accepting only a proper subset of ω-
regular languages. In 2014, Angluin and Fisman proposed in [11] a learning
algorithm for the ω-regular languages by means of a formalism called a family
of DFAs (FDFAs). Later in [73], Li et al. proposed to use classification trees to
learn FDFAs rather than observation tables used by Angluin and Fisman. Learn-
ing algorithms based on classification trees usually need less runtime memory
and can be much more efficient when compared to its observation table based
counterparts [59]. Further, Li et al. presented in [73] a more efficient learning
algorithm for Büchi automata based on FDFAs and classification trees compared
to the learning algorithm in [42].

There are already a few learning algorithms for Büchi automata available
in the literature, yet the learning algorithms are not widely used in the model
checking community. One reason for this is that the learning algorithms are quite
technically demanding and not so easy to follow and understand; in this paper we
give a simple presentation of one BA learning algorithm, with simple but com-
plete examples, to introduce the reader to such learning framework. Another
reason is that there are fewer learning libraries available for Büchi automata
compared to those implemented for learning automata accepting finite words:
for instance, for learning automata accepting finite words there are robust and
publicly available libraries such as libalf [21] and LearnLib [60]. To the best of
our knowledge, there is, however, only one publicly available library for learn-
ing Büchi automata named ROLL [73] which implements also the BA learning
algorithm described in this paper.

In this paper, we review the BA learning algorithm proposed in [73] by learn-
ing the simple ω-regular language (ab)ω: besides giving the reader an overview
of the algorithm, it guides them on how the algorithm works step by step. Our
main goal in this work is to give an intuitive explanation of the different learn-
ing algorithms for both finite and ω-regular languages; in this way the reader
can get the ideas underlying the learning algorithms before getting involved in
their formalism, presented in the related literature; we achieve this by means
of the examples we carefully chose so to be simple but still exposing the differ-
ent challenges the learning algorithms for Büchi automata face and the solution
techniques that have been adopted.

Further, we discuss two possible interesting applications of the BA learn-
ing algorithms. The complementation problem for Büchi automata is a chal-
lenging problem in the research community both in theory and practice. We

Learning Büchi Automata and Its Applications 41

show that the BA learning algorithm can be easily applied to complement Büchi
automata. Experimental results show that the learning-based complementation
algorithm of Büchi automata can yield much smaller complement automata for
some cases than classical algorithms. Lastly, we discuss how the learning algo-
rithms can be also applied in proving the termination of C programs. Heizmann
et al. in [55] proposed a novel termination analysis algorithm based on Büchi
automata. Interestingly, the efficiency and scalability of this termination analy-
sis algorithm highly depend on getting smaller complement automata of Büchi
automata, where one naturally can use the learning based complementation
algorithm.

Organization of the Paper. We first set up some notions and notations for this
work in Sect. 2. We then introduce some basic operations on Büchi automata
in Sect. 3, together with their complexity analysis, before turning to the learn-
ing algorithms in the following sections. In order to ease the presentation, we
first present the learning algorithm for DFAs in Sect. 4 and then move onto
the learning of Büchi automata in Sect. 5. After that, we show how to apply
our learning algorithm to the complementation problem of Büchi automata in
Sect. 6. Before concluding the paper in Sect. 8, we consider the application of BA
learning algorithm to program termination analysis in Sect. 7.

2 Preliminaries

Let X and Y be two sets; we use X � Y to denote their symmetric difference,
i.e., the set (X \ Y) ∪ (Y \ X). We use [i · · · j] to denote the set {i, i + 1, . . . , j}.

Let Σ denote a finite non-empty set of letters called alphabet. A word is a
finite or infinite sequence w = w1w2 · · · of letters in Σ; we denote by |w| the
length of the word w, i.e., the number letters in w. If w is infinite, then |w| = ∞,
and we call it an ω-word. We use ε to denote the word of length 0, i.e., the
empty word. We denote by Σ∗ and Σω the sets of all finite and infinite words,
respectively. Moreover, we use Σ+ to represent the set Σ∗ \ {ε}.

We denote by w[i] the i-th letter of a word w. We use w[i..k] to denote the sub-
word of w starting at the i-th letter and ending at the k-th letter, inclusive, when
i ≤ k and the empty word ε when i > k. For u ∈ Σ∗, we denote by Pref(u) the set
of its prefixes, i.e., Pref(u) = {ε, u[1], u[1..2], . . . , u[1..|u|]}. Similarly, we denote
by Suf(u) the set of its suffixes, i.e., Suf(u) = {u[1..|u|], u[2..|u|], . . . , u[|u|], ε}.
Given a finite word u = u1 · · · uk and a word w, we denote by u · w the concate-
nation of u and w, i.e., the finite or infinite word u ·w = u1 · · · ukw1 · · · . We may
just write uw instead of u · w.

Definition 1. An acceptor automaton is a tuple A = (Σ,Q, q̄, δ, F) consisting
of the following components: a finite alphabet Σ, a finite set Q of states, an initial
state q̄ ∈ Q, a transition relation δ ⊆ Q × Σ × Q, and an accepting condition F .

For convenience, we also use δ(q, a) to denote the set { q′ ∈ Q | (q, a, q′) ∈ δ }.

42 Y. Li et al.

In the remainder of the paper, we assume that all automata share the same
alphabet Σ, which we may omit from their definitions.

A run of an acceptor automaton on a finite word v = a1a2a3 · · · an, n ≥ 1,
is a sequence of states q0, q1, . . . , qn such that q0 = q̄ and (qi, ai+1, qi+1) ∈ δ
for every 0 ≤ i < n; similarly, a run of an acceptor automaton on an infinite
word w = a1a2a3 · · · is a sequence of states q0, q1, . . . such that q0 = q̄ and
(qi, ai+1, qi+1) ∈ δ for each i ∈ N. The run on a word is accepting if it satisfies
the accepting condition F . A word is accepted by an acceptor automaton A if
A has an accepting run on it.

A finite language is a subset of Σ∗ while an ω-language is a subset of Σω;
the language of an acceptor automaton A, denoted by L(A), is the set {u ∈
Σ∗ ∪ Σω | u is accepted by A }.

A deterministic acceptor automaton is an acceptor automaton such that
|δ(q, a)| ≤ 1 for any q ∈ Q and a ∈ Σ. For deterministic acceptor automata,
we may write δ(q, a) = q′ instead of δ(q, a) = {q′}. The transition relation of
a deterministic acceptor automaton can be lifted to finite words by defining
δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v) for each q ∈ Q, a ∈ Σ, and v ∈ Σ∗. We
also use A(v) as a shorthand for δ(q̄, v).

A finite automaton (FA) is an acceptor automaton where F ⊆ Q and a finite
word v is accepted if there is a run q0, q1, . . . , qn on v such that qn ∈ F ; no infinite
word is accepted. A deterministic finite automaton (DFA) is a FA which is also
a deterministic acceptor automaton. A complement DFA AC of a DFA A is a
DFA such that L(AC) = Σ∗ \ L(A). Complementing a DFA is easy: it is enough
to add an accepting sink state collecting all missing transitions and complement
the original set of accepting states. Let A and B be two FAs; one can construct
a product FA, denoted by A × B, accepting the language L(A) ∩ L(B) using a
standard product construction; see, e.g., [56].

A Büchi automaton (BA) is an acceptor automaton where F ⊆ Q and an
infinite word w is accepted if there is a run ρ = q0, q1, . . . on w such that for
each i ∈ N, there exists j > i such that ρ[j] ∈ F ; no finite word is accepted.
Intuitively, an infinite word w is accepted by a BA if there exists a run on w
visiting at least one accepting state in F infinitely often. A deterministic Büchi
automaton (DBA) is a BA which is also a deterministic acceptor automaton.

A BA is a limit deterministic Büchi automaton (LDBA) if its set of states Q
can be partitioned into two disjoint sets QN and QD, such that (1) δ(q, a) ⊆ QD

and |δ(q, a)| ≤ 1 for each q ∈ QD and a ∈ Σ, and (2) F ⊆ QD. It is trivial to
note that each DBA is also an LDBA, by taking QN = ∅ and QD = Q.

Example 1. As examples of Büchi automata, consider the two automata shown
in Fig. 1. The automaton A is a DBA with alphabet Σ = {a, b}, set of states Q =
{q0, q1}, initial state q̄ = q0 (marked by the small incoming arrow), transition
relation δ = {(q0, a, q1), (q0, b, q0), (q1, a, q1), (q1, b, q0)}, and F = {q1} (denoted
as a double-circled state). The language accepted by A is the ω-regular language
L(A) = {w ∈ Σω | w has infinitely many a’s }.

Learning Büchi Automata and Its Applications 43

q0 q1

A
b

a
a

b

L(A) = { w | w has infinitely many a’s }

q0 q1

B
a

b

b

b

L(B) = { w | w has finitely many a’s }

Fig. 1. Examples of Büchi automata and their accepted languages

The automaton B is an NBA that accepts the language L(B) = {w ∈ Σω |
w has finitely many a’s}, which is the complement of L(A). Note that B is also
a limit deterministic Büchi automaton, where the corresponding partition of Q
is given by QN = {q0} and QD = {q1}.

We call the language of an FA a regular language. An ω-language L ⊆ Σω

is ω-regular if there exists a BA A such that L = L(A). Words of the form
uvω, where u ∈ Σ∗ and v ∈ Σ+, are called ultimately periodic words. We use
a pair of finite words (u, v) to denote the ultimately periodic word w = uvω.
We also call (u, v) a decomposition of w; note that an ultimately periodic word
can have several decompositions: for instance (u, v), (uv, v), and (u, vv) are all
decompositions of uvω. For an ω-language L, let UP(L) = {uvω ∈ L | u ∈
Σ∗, v ∈ Σ+ } denote the set of all ultimately periodic words in L. Note that the
set of ultimately periodic words of an ω-regular language L can be seen as the
fingerprint of L, as stated by the following theorem.

Theorem 1 (Ultimately Periodic Words of ω-Regular Languages [25,
26]). (1) Every non-empty ω-regular language L contains at least one ultimately
periodic word. (2) Let L, L′ be two ω-regular languages. Then L = L′ if and only
if UP(L) = UP(L′).

We refer interested reader to [25,26] for the proof of Theorem 1. An immediate
consequence of Theorem 1 is that, for any two ω-regular languages L and L′,
if L �= L′ then there must exist some ultimately periodic word uvω ∈ UP(L) �
UP(L′).

3 Operations on Büchi Automata

In this section we present how nondeterministic Büchi automata support the
standard set operations on their languages, namely, union, intersection, and
complementation, as well as derived operations and decision problems. The main
result is that nondeterministic Büchi automata are closed under such operations,
e.g., giving two Büchi automata A0 and A1, we can construct another Büchi
automaton A such that L(A) = L(A0) ∩ L(A1). Deterministic Büchi automata,
however, are strictly less expressive than nondeterministic ones, since there are
ω-regular languages accepted by a nondeterministic BA for which there does

44 Y. Li et al.

not exist a deterministic BA accepting them; DBAs are also not closed under
complementation, i.e., there is a DBA whose complement language can only be
accepted by a nondeterministic BA.

There are several resources available in literature for the readers interested
in more details on ω-languages and their automata; see, e.g., [30,32,49,62,94,
96,97].

3.1 Union of Büchi Automata

Given two Büchi automata A0 and A1, it is rather easy to construct a Büchi
automaton A0∪1 such that L(A0∪1) = L(A0)∪L(A1). In fact, since by definition
of language of a Büchi automaton, a word w belongs to its language if there
exists an accepting run on w, it is enough to create an automaton having all
runs of A0 and A1: this can be easily achieved by just considering A0 and A1 as
a single automaton, up to some minor adaptation on the initial state.

Proposition 1. Given two Büchi automata A0 = (Q0, q̄0, δ0, F0) and A1 =
(Q1, q̄1, δ1, F1) such that Q0 ∩ Q1 = ∅, let A0∪1 = (Q, q̄, δ, F) be the Büchi
automaton whose components are defined as follows:

– Q = Q0 ∪ Q1 ∪ {q̄} where q̄ is a fresh state such that q̄ /∈ Q0 ∪ Q1,
– δ = δ0 ∪ δ1 ∪ { (q̄, a, q0) | q0 ∈ δ0(q̄0, a) } ∪ { (q̄, a, q1) | q1 ∈ δ1(q̄1, a) }, and
– F = F0 ∪ F1.

Then, L(A0∪1) = L(A0) ∪ L(A1) with |Q| = |Q0| + |Q1| + 1.

The proof of the above proposition is rather trivial: given an ω-word w, except
for the initial state q̄, a run on w of the automaton A0∪1 is identical to a run on
w of either A0 or A1.

Note that the requirement that A0 and A1 must have disjoint sets of states
can be easily fulfilled by simply renaming their states, since actual state names
play no role in accepting a word. Moreover, if we would have allowed a set of
initial states instead of a single initial state, then the union automaton would
be just the component-wise union of the two given Büchi automata.

3.2 Intersection of Büchi Automata

The construction of a Büchi automaton accepting the intersection of the lan-
guages of A0 and A1 is slightly more involved than their union. The main idea
underlying the intersection construction is to run on the input word in parallel
in both A0 and A1, by means of a product construction similar to the one for the
intersection of finite automata; as accepting condition, we require that we reach
the accepting states of A0 and A1 in an alternating mode, i.e., every time we
reach an accepting state in Ac for c ∈ {0, 1}, then we have to reach an accepting
state in A1−c. If we can alternate infinitely often, then both automata accept
the input word, i.e., it is in the intersection of their languages; if we alternate
only finitely often, this means that the BA where we get stuck is not accepting

Learning Büchi Automata and Its Applications 45

such a word, so the intersection automaton must reject the word as well. This
is different from the accepting condition for finite automata, where a product
state is accepting if both states in the pair are accepting: in fact, for infinite
words it does not matter whether the two BAs reach an accepting state exactly
at the same moment, since it can also be the case that both automata accept an
ω-word w but A0 reaches an accepting state only once every ten times A1 has
reached an accepting state.

Proposition 2. Given two Büchi automata A0 = (Q0, q̄0, δ0, F0) and A1 =
(Q1, q̄1, δ1, F1), let A0∩1 = (Q, q̄, F, δ) be the Büchi automaton whose components
are defined as follows:

– Q = Q0 × Q1 × {0, 1};
– q̄ = (q̄0, q̄1, 0);
– δ = { ((q0, q1, c), a, (q′

0, q
′
1,next(q0, q1, c))) | q′

0 ∈ δ0(q0, a), q′
1 ∈ δ1(q1, a) }

where next : Q0 × Q1 × {0, 1} → {0, 1} is defined as

next(q0, q1, c) =

{
1 − c if qc ∈ Fc,

c otherwise;

– F = F0 × Q1 × {0}.

Then, L(A0∩1) = L(A0) ∩ L(A1) with |Q| = 2 · |Q0| · |Q1|.

The above construction is based on the transformation of generalized Büchi
automata to Büchi automata. Generalized BAs differ from BAs only on the fact
that they have multiple accepting sets; an ω-word w is accepted if there exists a
run on w reaching a state in each accepting set infinitely often. Since generalized
BAs have the same expressive power as ordinary BAs and are not used in this
work, we refer the interested reader to, e.g., [32] for more details.

3.3 Complementation of Büchi Automata

Complementing Büchi automata is the most difficult operation on their lan-
guages. First of all, the usual subset construction used for converting nondeter-
ministic finite automata to equivalent deterministic finite automata and then
easily complement the resulting DFAs can not be adapted to Büchi automata
since DBAs are strictly less expressive than BAs:

Proposition 3 (cf. [68]). There exists an ω-regular language L that is recog-
nizable by a BA but not by a DBA.

This means that for such a language L, we can find a BA A such that L(A) = L
but there does not exist a DBA D such that L(D) = L. As a consequence,
applying a subset construction to A does not lead to a DBA accepting the same
language.

Note that the language witnessing the correctness of the above result is rather
simple: L = Σ∗ ·bω, that is, L is the language of all words having only b occurring
infinitely often. For Σ = {a, b}, this language is recognized by the BA B shown

46 Y. Li et al.

in Fig. 1; its complement, i.e., the language whose words contain infinitely many
a, is easily recognized by the DBA A also shown in Fig. 1. This means that
DBAs are not closed under complementation, while BAs are indeed closed, as
witnessed by the several complementation algorithms that have been proposed
in literature.

Before presenting such algorithms, we want to introduce the main result
about the complexity of complementing Büchi automata.

Proposition 4 (cf. [90]). Given a BA A with n states, it is possible to construct
a BA AC such that L(AC) = Σω \L(A) whose number of states is in Ω(tight(n−
1)) and O(tight(n + 1)), where tight(n) ≈ (0.76n)n.

In practice, the above is the best known complexity result for the complementa-
tion of Büchi automata, where the lower- and upper-bounds about the number
of states of the complement Büchi automaton have a minor gap lying in O(n2).

There are mainly four types of complementation algorithms, according to the
classification proposed in [19,98]: Ramsey-based [24,25,93], rank-based [46,51,
65,90], determinization-based [44,82,89,91], and slice-based [5,61,98,106] com-
plementation. A complementation construction unifying the rank-based and
slice-based approaches can be found in [45]. All these algorithms construct the
complement Büchi automata based on the transition structures of the input
Büchi automata. Besides the complementation algorithm proposed for nonde-
terministic Büchi automata, there are also complementation algorithms special-
ized for limit deterministic Büchi automata [19,28] and for deterministic Büchi
automata [66].

Given the highly demanding technicalities involved in the above complemen-
tation algorithms for Büchi automata, we refer the interested reader to the cited
literature for more details on the different approaches and algorithms.

3.4 Difference of Büchi Automata

The BA language difference operation is tightly connected to the complementa-
tion operation, from which it derives its super-exponential complexity, as stated
by the following proposition.

Proposition 5. Given two BAs A0 and A1 with n0 and n1 states, respectively,
it is possible to construct a BA A0\1 such that L(A0\1) = L(A0) \ L(A1) whose
number of states is in Ω(n0 · tight(n1 − 1)) and O(n0 · tight(n1 + 1)).

The language difference operation is based on the complementation operation:
in order to get an automaton A0\1 such that L(A0\1) = L(A0) \ L(A1), it is
enough to construct the automaton for the language L(A0) ∩ L(AC

1). Thus, the
complexity result follows from Propositions 2 and 4.

Note that we can not improve the complexity of the language difference
operation to be better than Ω(tight(n1−1)), since otherwise we would be able to
improve the complexity of the complementation operation as well, since trivially
we have that L(AC

1) = Σω \ L(A1) where Σω is the language of the BA A0

having exactly one state, the initial state, being accepting with only self-loops
as transitions, so in Proposition 8 we would have n0 = 1.

Learning Büchi Automata and Its Applications 47

3.5 Decision Problems on Büchi Automata

Besides the three main operations presented above, namely union, intersection,
and complementation, there are three main decision problems relative to the
languages of Büchi automata: emptiness, universality, and language inclusion.

Given a BA A, the emptiness problem is relative to decide whether L(A) = ∅
while the universality problem refers to the equality L(A) = Σω. Finally, the
language inclusion problem requires to decide whether L(A0) ⊆ L(A1) for the
given BAs A0 and A1. These problems have different complexity results, which
are summarized by the following propositions. The corresponding proofs can be
found in the cited papers or in [32, Sect. 4.4].

Proposition 6 (cf. [40,41,93]). Given a BA A, the emptiness problem L(A) =
∅ is decidable in linear time and is NLOGSPACE-complete.

The proof of the linear time complexity is based on finding a strongly connected
component, i.e., a set of states each one reachable from each other, which is
reachable from the initial state and contains a state in F . This can be easily
done by a simple graph exploration based on depth-first visit. In theory, we can
also nondeterministically find an accepting state and the accepting run of A
visiting the accepting state infinitely often, which is in NLOGSPACE. In fact, it
is enough to guess an accepting state qf ∈ F and two paths: a stem path from
q̄ to qf and a lasso path from qf to qf itself, both of them with length at most
|Q|. Clearly storing qf ∈ F requires a space that is logarithmic in |Q|; for the
paths, it is enough to store the current state q and a counter cnt to keep track
of the length of the path so far; both require logarithmic space.

The algorithm works as follows: initially, q = q̄ and the following steps are
repeated to find a stem path from q̄ to qf : (1) from q, a successor is chosen
nondeterministically and cnt is increased; (2) if cnt exceeds |Q|, then “no” is
returned; (3) if q = qf and cnt ≤ |Q|, then the algorithm turns to look for a
lasso path. Starting with q = qf , the following steps are repeated to find a lasso
path from qf to qf itself: (1) from q, a successor is chosen nondeterministically
and cnt is increased; (2) if cnt exceeds |Q|, then “no” is returned; (3) if q = qf

and cnt ≤ |Q|, then “yes” is returned. We refer interested reader to [40,41,93]
for the proof of the NLOGSPACE-hardness result.

Proposition 7 (cf. [93]). Given a BA A, the universality problem L(A) = Σω

is decidable in exponential time and is PSPACE-complete.

The universality problem is decided by means of a reduction to the emptiness
problem: in order to decide L(A) = Σω, it is enough to check L(AC) = ∅, where
AC is the complement BA of A. Since AC is exponentially larger than A, the
complexity results follow from Proposition 6.

Proposition 8 (cf. [93]). Given two BAs A0 and A1, the language inclu-
sion problem L(A0) ⊆ L(A1) is decidable in exponential time and is PSPACE-
complete.

48 Y. Li et al.

w ∈? L

L(A) =? L

TeacherLearner

e1 e2 · · ·
v1 0 1 · · ·
v2 0 0 · · ·
v3 1 1 · · ·
...

...
w1 · · ·
w2 · · ·
w3 · · ·
...

...

Observation table MQ(w)

yes/no

EQ(A)

noCE: w ∈ L � L(A) yes

Output automaton A

Fig. 2. DFA active automata learning framework

The language inclusion problem is decided by means of a reduction to the empti-
ness problem: in order to decide L(A0) ⊆ L(A1), it is enough to check whether
L(A0)∩L(AC

1) = ∅, where AC
1 is the complement BA of A1. Since AC

1 is exponen-
tially larger than A1, the complexity results follow from Propositions 2 and 6.

4 Learning Finite Automata

In this section, we present a variant of the learning algorithm for finite automata
used in [11]. In 1987, in her seminal work [8], Angluin proposed the L∗ algorithm
to learn a DFA accepting a target regular language; L∗ belongs to the class of
active automata learning algorithms [103], in which the learner can interact with
an oracle until the correct automaton is constructed.

4.1 Overview of the DFA Learning Algorithm

As depicted in Fig. 2, in the active automata learning setting presented in [8],
there is a teacher and a learner. The teacher knows the target language L which
can be a regular language or an ω-regular language. The learner wants to learn
the target language, represented by an automaton, from the teacher by means of
two kinds of queries: membership queries and equivalence queries. A membership
query MQ(w) asks whether a word w belongs to L while an equivalence query
EQ(A) asks whether the conjectured automaton A accepts L. Depending on
whether the conjectured automaton A is correct, the teacher replies with either
“yes” or“no”. In case of a positive answer, the learner outputs A and completes
his job. For the negative answer, the teacher provides as well a witness w ∈
L�L(A) which allows the learner to further refine the conjectured automaton A.

Learning Büchi Automata and Its Applications 49

q0 q1

q2q3

a

b

a

b

a

b

a

b

M ε bab ab
ε 0 0 0
b 0 1 0

bb 0 0 1
bbb 1 0 0

a 0 0 0
ba 0 1 0

bba 0 0 1
bbba 1 0 0
bbbb 0 0 0

T

R = {u ∈ {a, b}+ | the number of b in u is 4n+ 3, for some n ∈ N }

Fig. 3. A DFA M, its regular language R, and an observation table T for R

In this paper, the learner uses a data structure called observation table to
store all answers to the membership queries, since it is easy to present and
understand. We remark that observation tables have been originally adopted by
Angluin for her L∗ algorithm [8]. Instead of observation tables, the learner can
use a tree-based data structure called classification tree to store such answers,
which is usually more compact than observation tables; we refer the interested
reader to [59,63,73] for the details on classification trees.

In the following, we play the role of the learner to learn a regular language
represented by a DFA from a teacher. Regular language learning is actually a
procedure for a learner to gradually identify the states in the minimal DFA
M recognizing the target language. As an example, consider the regular lan-
guage R accepted by the DFA M shown in Fig. 3, where R = {u ∈ {a, b}+ |
the number of b in u is 4n + 3 for some n ∈ N }. We observe that for any pair

of words u1, u2 ∈ {a, b}∗, M(q0, u1) �= M(q0, u2) if there exists some word
v ∈ {a, b}∗ such that M(q0, u1v) = q3 while M(q0, u2v) �= q3. That is, in the DFA
M, for any pair of words u1, u2 ∈ {a, b}∗, if there exists some word v ∈ {a, b}∗

such that u1v ∈ L(M) while u2v /∈ L(M), then M(q0, u1) and M(q0, u2) must
be two different states. Our goal is to develop a learner who can identify the
states in the DFA M; using such a word extension v to distinguish words u1 and
u2 is a good means to identify two different states in M.

4.2 Right Congruences and Myhill-Nerode Theorem

This idea of distinguishing words by extensions is formalized by the notion of
right congruence. A right congruence is an equivalence relation � on Σ∗ such
that x � y implies xv � yv for every x, y, v ∈ Σ∗. The right congruence relation
is the theoretical foundation for the DFA learning algorithms to discover the
states in a target DFA M.

50 Y. Li et al.

We denote by |�| the index of �, i.e., the number of equivalence classes of
�. We use Σ∗/� to denote the equivalence classes of the right congruence �. A
finite right congruence is a right congruence with a finite index. The following
theorem guarantees that every regular language has a right congruence relation
of finite index.

Theorem 2 (Myhill-Nerode Theorem [56]). For a language R over Σ, the
following statements are equivalent:

1. R is a regular language.
2. R is the union of some equivalence classes of a right congruence equivalence

relation of finite index.
3. The right congruence relation �R is of finite index, where x �R y if and only

if for each v ∈ Σ∗, xv ∈ R ⇐⇒ yv ∈ R.

The theorem basically states that given a regular language R over Σ, the
whole set of finite words Σ∗ can be partitioned into a finite number of equivalence
classes by the right congruence relation �R. For a word u ∈ Σ∗, we denote by
[u]� the equivalence class of the right congruence � u belongs to.

Given a right congruence relation �R for the language R, we can construct
an automaton accepting R by means of �R: as set of states Q, we just use the
equivalence classes induced by �R; the initial state q̄ is simply the class of the
empty word ε; the transition relation just considers as the a-successor of the
class of u the class of ua; finally, the accepting states F are the classes of the
words in R.

Definition 2 (DFA induced by �R). Given a right congruence relation �R

for the language R, the corresponding DFA A�R
is the tuple A�R

= (Q, q̄, δ, F)
where

– Q = Σ∗/�R
;

– q̄ = [ε]�R
;

– for each u ∈ Σ∗ and a ∈ Σ, δ([u]�R
, a) = [ua]�R

; and
– F = { [u]�R

∈ Q | u ∈ R }.

As an example, consider the regular language R shown in Fig. 3; we have four
equivalence classes in Σ∗/�R

, namely [ε]�R
, [b]�R

, [bb]�R
, and [bbb]�R

, which
intuitively correspond to how many b’s have been seen so far, modulo 4; in
particular, the regular language R is exactly the equivalence class [bbb]�R

. The
automaton constructed from �R is M, whose states q0, q1, q2, and q3 represent
the four equivalence classes [ε]�R

, [b]�R
, [bb]�R

, and [bbb]�R
, respectively.

We can use the word bab to distinguish the words in the equivalence class
[b]�R

from the words in the other three equivalence classes [ε]�R
, [bb]�R

, and
[bbb]�R

. For instance, ε · bab /∈ R while b · bab ∈ R, hence ε ��R b. One can
check, as hinted by the column headers of the table in Fig. 3, that it is enough
to use the word extensions ε, bab, and ab to distinguish the words from the
four equivalence classes in Σ∗/�R

. We can use any other word as extension, as
long as it distinguishes words: for instance, we could use (aba)12 instead of ε

Learning Büchi Automata and Its Applications 51

or a(ababa)300b instead of ab. Note however that longer extensions slow down
the learning algorithm, whose complexity depends also on the length of the
distinguishing words (cf. Theorem 4).

Assume that we want to design a learner to learn the regular language R =
{u ∈ {a, b}+ | the number of b in u is 4n+3, for some n ∈ N }, i.e., to discover
all states in the target automaton M as shown in Fig. 3. By Theorem 2, we know
that the right congruence relation �R, by means of word extensions, can help
us to distinguish the equivalence classes of Σ∗ generating R, which intuitively
correspond to the states of M. However, we do not know R and we also do not
know �R; in order to learn them, the idea is to ask for a few words whether
they belong to R, and use the obtained information to conjecture a DFA which
is supposed to accept R. Yet there are still several things we are missing:

1. How does an observation table organize the results of membership queries we
have collected so far?

2. How can we build a DFA from an observation table correctly?
3. How can we update an observation table and discover new states from the

returned counterexample if the conjectured DFA is incorrect?

The answers to the three questions are the key cornerstones of the DFA
learning algorithm. In the following, we first show how an observation table
organizes the results of membership queries. Then we show how to build a DFA
from an observation table. Afterwards we explain how to analyze a returned
counterexample to update an observation table so to discover new states in
target DFA M. At last, we present our DFA learner for regular languages.

4.3 Observation Tables

An observation table is a tuple T = (U, V, T) where U is a prefix-closed set of
words called access strings, V is a set of words called experiments, and T : (U ∪
UΣ)V → {0, 1} is a total mapping.

As the name suggests, an observation table T is represented by a table,
where rows and columns are labelled with words taken from U ∪ UΣ and V ,
respectively, and the table entries are the value assigned by T to them. Consider
for instance the observation table T = (U, V, T) shown in Fig. 3; the labels of the
four rows in the upper part of the table correspond to the set U = {ε, b, bb, bbb};
the labels of the five rows in the bottom part of the table are those in UΣ \ U ,
so U ∪ UΣ is exactly the set of labels of the rows of the table; the labels of
the three columns in the table correspond to the set V = {ε, bab, ab}. The entry
value of row u and column v represents the value assigned by T (·) to the word
uv, i.e., T (uv); such a value is 1 if uv ∈ R and 0 otherwise. As depicted in Fig. 3,
the entry value of row b and column bab is T (bbab) = 1 since b · bab ∈ R, while
the entry value of row b and column ab is T (bab) = 0 since b · ab /∈ R.

Given an observation table for a language R with right congruence �R, like
the one in Fig. 3, we can see that every equivalence class [u]�R

of Σ∗/�R
has a

representative word u in U . Therefore we also use the representative word such

52 Y. Li et al.

as ε to represent the equivalence class [ε]�R
. A word in V is a word extension

or experiment used to distinguish the words belonging to different equivalence
classes. For instance, consider the column ab in Fig. 3: the entry value at row ε
is 0 while the entry value at row bb is 1, which indicates that the words from
those two equivalence classes can be distinguished by the word ab. Hence any
two rows with different entry values in the table are classified to be different
equivalence classes while any two rows with the same entry values are seen as
one equivalence class. For instance, in Fig. 3, row b in the upper table and row
ba in the lower table are seen as one equivalence class since they have the same
entry values for each experiment.

We remark that those rows which are currently seen as one equivalence class
may later be classified into different equivalence classes, as result of a counterex-
ample returned by the teacher.

The domain of the mapping T also contains the set UΣ, i.e., there are also
some rows labelled by the words from UΣ in the table. The existence of this set
UΣ of rows in the table makes it possible for the learner to look for the next
equivalence class or the successor state [ua]�R

in the DFA construction after
reading a letter a ∈ Σ at the equivalence class or state [u]�R

, where u ∈ U . For
example, suppose that we want to compute the a-successor of state ε in Fig. 3:
the expected successor is ε · a. In order to find its actual representative, we first
look for the row ε · a in the table and then get the successor state ε ∈ U which
has the same entry values as row ε·a. From the table we see that the row ε·a = a
has entry values 000; the same entry values occur for the row ε ∈ U , thus the
a-successor of ε is ε itself.

In order to efficiently check whether two rows represent the same equivalence
class, we formally define the rows as the total function row : (U ∪ UΣ) → (V →
{0, 1}). To a word u ∈ U ∪ UΣ we assign a total function row(u) : V → {0, 1}
such that row(u)(v) = T (uv) for each v ∈ V . We call such a function a row
of T and we denote by Rows(T) the set of rows of T ; similarly, we denote by
Rowsupp(T) = { row(u) | u ∈ U } the set of rows in the “upper” part of the
table and Rows low (T) = { row(u) | u ∈ UΣ \ U } the set of rows appear-
ing in the “lower” part. Consider again the observation table in Fig. 3: we
have Rows low (T) = {row(a), row(ba), row(bba), row(bbba), row(bbbb)}, where,
e.g., row(a) is the constant function row(a)(v) = 0 for each v ∈ V . In prac-
tice, we can identify each function row(u) : V → {0, 1} with the content of T in
the row labelled by u.

In the learning framework depicted in Fig. 2, the learner can ask the teacher
two types of queries, namely, membership and equivalence queries. In order to
pose an equivalence query, the learner has to generate a DFA from the informa-
tion stored in the observation table, which has to contain all information that
is needed to build such a DFA. As Angluin proposed in [8], a table has such a
needed information when it is closed and consistent.

A table T is closed if for any u ∈ U and a ∈ Σ, there exists u′ ∈ U such
that row(ua) = row(u′); similarly, a table is consistent if for any u1, u2 ∈ U
and a ∈ Σ, row(u1) = row(u2) implies row(u1a) = row(u2a). Intuitively, the

Learning Büchi Automata and Its Applications 53

ε
ε 0
a 0
b 0

T0

ε

a

b

A0

Fig. 4. Table T0 and DFA A0

closeness of a table makes sure that every successor of a state is in the set of
discovered states while the consistency of a table ensures that those words which
have been classified into the same equivalence class should behave consistently,
i.e., they have the same successor equivalence classes, when extended with the
same letter.

We now present how the learner proceeds in the learning algorithm to learn
the target language R represented by a DFA. Let the alphabet be Σ = {a, b}.
At the beginning, the learner has no information, so he initializes both U and
V to {ε} and defines T (uv) for every u ∈ U ∪ UΣ and v ∈ V according to
the results of membership queries, that is, he asks the teacher the membership
queries MQ(ε), MQ(a), and MQ(b); the teacher answers “no” to all of them, so
the learner sets T (·) to be the constant function 0. The result is shown as T0 in
Fig. 4. Since T0 is closed and consistent, we can build the DFA A0, also depicted
in Fig. 4, according to Definition 3.

In case the current T is not closed, the learner makes it closed by repeatedly
updating T as follows: he looks for a word u ∈ UΣ such that there is no u′ ∈ U
with row(u) = row(u′); then moves u to U and for every a ∈ Σ, he adds ua to UΣ
whenever needed while setting T (uav) for each v ∈ V by means of membership
queries. According to [11], whenever T is closed, it is also consistent since by
construction there do not exist u1, u2 ∈ U , u1 �= u2, with row(u1) = row(u2).

Instead of moving a single word u from UΣ to U when T is not closed, the
learner can also add all its prefixes Pref(u) to U just as the L∗ algorithm does
in [8]. This may result in a quicker growth of T , which anyway does not change
the correctness (cf. Theorem 3) and complexity (cf. Theorem 4) of the DFA
learning algorithm.

4.4 DFA Construction from an Observation Table

Definition 3 answers the second question about how to build a conjecture DFA
A from an observation table correctly.

Definition 3 (DFA of a Table). Let T be a closed and consistent observation
table. We can construct a DFA A = (Q, q̄, δ, F) from T as follows.

– Q = Rowsupp(T) = {row(u) | u ∈ U},
– q̄ = row(ε),
– δ(row(u), a) = row(ua), and
– F = { row(u) ∈ Rowsupp(T) | row(u)(ε) = 1 }.

54 Y. Li et al.

Consider the observation table T0 shown in Fig. 4. The learner can construct
from T0 the DFA A0 = (Q0, q̄, δ0, F0) where Q0 = {row(ε) = 0}, q̄ = row(ε),
F0 = ∅, and δ0 as depicted in Fig. 4. Note that in the whole paper we use
the representative words u ∈ U instead of the row functions row(u) defined in
Definition 3 to mark the states in a DFA; for instance, we mark the single state
of A0 with the representative word ε instead of the row function row(ε). In this
way, it is easier for the reader to relate the equivalence classes to the states in
the conjectured automaton.

Now the conjectured DFA A0 is constructed and the learner can pose the
equivalence query EQ(A0) to the teacher. A0 is clearly not the right conjecture,
so the teacher answers “no” together with a counterexample, say bbab ∈ L(M)�
L(A0). In the following we provide the answer to the third question, that is, how
to update the observation table from the received counterexample.

4.5 Counterexample Analysis

On receiving the counterexample w, the learner has to analyze w in order to
update the observation table; this would then allow the learner to expand the
conjectured DFA by adding new states to correctly classify the received coun-
terexample. To discover new states in M, we essentially need new experiments
for the table; the following lemma provides a way to find such new experiments.

Lemma 1. Let R be the target language and A be the conjectured DFA. On
receiving a counterexample v ∈ R � L(A), we can always find an experiment
v′ ∈ Suf(v), words u, u′ ∈ U , and letter a ∈ Σ such that row(ua) = row(u′) and
uav′ ∈ R ⇐⇒ u′v′ /∈ R.

As a notation, we use MQ(s, w) to denote the membership query MQ(s · w)
in order to give a clear presentation of the analysis procedure on the returned
counterexample v as explained in the following. On receiving a counterexample
v ∈ R and v /∈ L(A), the learner can check whether the membership queries
return different results for v and ṽ where ṽ = A(v). Let n = |v| and for i ∈
[1 · · · n], let si = A(v[1..i]) be the state reached after reading the first i letters
of v. Recall that si ∈ U is the representative word of that state in the upper
part of the observation table. In particular, s0 = ε. Therefore, ṽ = sn and
there is a sequence of membership queries MQ(s0, v[1..n] = v), MQ(s1, v[2..n]),
MQ(s2, v[3..n]), and so on, up to MQ(sn, ε) = MQ(ṽ, ε). This sequence has
different results for the first and the last query since s0 · v ∈ R while ṽ · ε /∈ R
by the assumption. It follows that there exists an experiment v[i + 1..n] for the
earliest 1 ≤ i ≤ n distinguishing si−1a

′ from si. Let u = si−1, u′ = si, a = a′,
and v′ = v[i + 1..n]. According to Definition 3, we have row(ua) = row(u′) since
A(si−1a) = A(ua) = u′ = si and uav′ ∈ R while u′v′ /∈ R. The handling for the
other case when v /∈ R and v ∈ L(A) is symmetric.

According to Lemma 1, on receiving a counterexample bbab ∈ R � L(A0),
the learner poses a sequence of membership queries MQ(s0 = ε, bbab), MQ(s1 =

Learning Büchi Automata and Its Applications 55

ε bab
ε 0 0
a 0 0
b 0 1

T ′
0

ε bab
ε 0 0
b 0 1
a 0 0

ba 0 1
bb 0 0

T1

ε b

a
b

a

b

A1

Fig. 5. Tables T ′
0 , T1, and DFA A1

ε, bab), MQ(s2 = ε, ab), MQ(s3 = ε, b), and MQ(s4 = ε, ε); it is easy to check
that the experiment v[2..4] = bab distinguishes s0b = b from s1 = ε. Therefore,
the learner adds bab into the set V and updates the mapping T via membership
queries, until obtaining the observation table T ′

0 shown in Fig. 5. As T ′
0 is not

closed since there is no u ∈ U such that row(u) = row(b), the learner moves the
row b to the upper table, i.e., to the set U , and adds the rows ba and bb—the
one letter extensions of b—to the lower part of the table as mentioned before.
The learner then fills the missing entry values by means of membership queries;
the resulting observation table is T1 shown in Fig. 5. As T1 is closed and also
consistent, the learner can build the DFA A1 from T1, depicted in Fig. 5.

We remark that instead of finding just one experiment v′ ∈ Suf(v), our
learner may also add all its suffixes Suf(v) into V just as the algorithm does
in [76]. This may also result in a quicker grown of T , which anyway does not
change the correctness (cf. Theorem 3) and complexity (cf. Theorem 4) of the
DFA learning algorithm we are presenting.

The learner poses now the equivalence query EQ(A1) to the teacher; since
L(A1) �= R, the teacher returns “no” and a counterexample, say again bbab ∈
L(M) � L(A1). Similarly to the previous counterexample analysis, the learner
asks the sequence of membership queries MQ(s0 = ε, bbab), MQ(s1 = b, bab),
MQ(s2 = ε, ab), MQ(s3 = ε, b), and MQ(s4 = ε, ε), which allows the learner to
find the experiment w[3..4] = ab to distinguish s1b = bb from s2 = ε. The learner
adds ab into the set V and updates T by further membership queries, resulting
in the observation table T ′

1 shown in Fig. 6.
T ′
1 is not closed, since there is no row in the upper part corresponding to

row(bb), so the learner moves bb to the upper part, adds bba and bbb to the
lower part, and fills the content of the table by means of membership queries.
The result of these operations is table T ′′

1 which is still not closed since there
does not exist u ∈ U such that row(bbb) = row(u). Therefore, as before, the
learner moves bbb to the upper part, adds the missing words bbba and bbbb to
the lower part, and fills the content, obtaining the table T2 depicted in Fig. 6,
which is now closed. The DFA A2 constructed from T2 is depicted in Fig. 6 and
the learner gets the answer “yes” from the teacher after posing the equivalence
query EQ(A2), which means that he has completed his learning task.

56 Y. Li et al.

ε bab ab
ε 0 0 0
b 0 1 0
a 0 0 0

ba 0 1 0
bb 0 0 1

T ′
1

ε bab ab
ε 0 0 0
b 0 1 0

bb 0 0 1
a 0 0 0

ba 0 1 0
bba 0 0 1
bbb 1 0 0

T ′′
1

ε bab ab
ε 0 0 0
b 0 1 0

bb 0 0 1
bbb 1 0 0

a 0 0 0
ba 0 1 0

bba 0 0 1
bbba 1 0 0
bbbb 0 0 0

T2

ε b

bbbbb

a

b

a

b

a

b

a

b

A2

Fig. 6. Tables T ′
1 , T ′′

1 , T2, and DFA A2

Algorithm 1. The DFA Learner
1 Initialize table T = (T, U, V) with U = {ε} and V = {ε};
2 CloseTable(T , MQ(·)) and let A = Aut(T);
3 Let (a, v) be the teacher’s response on EQ(A);
4 while a = “no” do
5 V = V ∪ FindDistinguishingExperiment(v);
6 CloseTable(T , MQ(·)) and let A = Aut(T);
7 Let (a, v) be the teacher’s response on EQ(A);

8 return A;

4.6 The Learner

In the previous part of this section we have introduced a regular language learn-
ing algorithm by means of a running example. We now give the formal definition
of the learner by means of Algorithm 1 for completeness of presentation; we can
see that it agrees with the learning procedure we presented above. The function
CloseTable is responsible for closing a table T , so it needs to perform mem-
bership queries MQ(·) to fill the missing entry values in T . Moreover, as we
have seen, it may repeatedly move rows from the lower to the upper part of the
input table and add new rows to the lower part, until the table becomes closed.
All conjectured DFAs are constructed from the table T by calling the function
Aut(T) based on Definition 3. On receiving a counterexample v, the function
FindDistinguishingExperiment(v) gets a new experiment which is later added
into the set V . The refinement loop of the conjecture A terminates once we get
a positive answer from the teacher.

The soundness and completeness of Algorithm 1 is guaranteed by Theorem 3.

Theorem 3. Assume that R is the target regular language. Algorithm 1 termi-
nates and returns a DFA A such that L(A) = R.

The returned DFA A from Algorithm 1 is a correct conjecture automaton
simply because the teacher has approved it. The remaining problem is how we

Learning Büchi Automata and Its Applications 57

show the termination of Algorithm 1. The reason why Algorithm 1 terminates is
that: (1) by Lemma 1, we can discover new states, i.e., new equivalence classes in
Σ∗/�R

, whenever receiving a counterexample from the teacher and (2) the index
of �R is finite according to Theorem 2. It follows immediately the complexity
result in Theorem 4.

Theorem 4. Let R be the target regular language and n = |�R|; let m be the
maximum length of any counterexample returned by the teacher.

1. Algorithm 1 terminates on receiving at most n counterexamples.
2. The number of membership queries is in O(n2 · |Σ| + n · m).

5 Learning Büchi Automata

After presenting the DFA learning algorithm in Sect. 4, we are now ready to
introduce the learning algorithm for Büchi automata. Throughout this section,
except stated otherwise, we let the ω-regular language L be the target language.

We have seen that, for learning a regular language R, the right congruence
relation �R plays an important role in identifying the equivalence classes in
Σ∗/�R

, so we could consider to extend such an approach to the ω-regular lan-
guage setting. It would be easy to learn ω-regular languages by means of BAs
if we can characterize them by a right congruence relation �L of finite index
for each given ω-regular language L. There are, however, few questions to be
answered for such an extension:

– How can we use finite memory to represent an ω-word, which has infinite
length?

– Is there a right congruence relation �L of finite index for a given ω-regular
language L?

The answer to the first question is easy: we only need to learn the set of ultimately
periodic words UP(L) for a given ω-regular language L, since by Theorem 1 the
set UP(L) is the fingerprint of L; given that every ultimately periodic word w
can be written as a pair of finite words (u, v) with w = uvω, only finite memory
is needed for storing w.

5.1 Right Congruences for ω-Regular Languages

In contrast, the answer to the second question is more tricky: a first proposal
for extending the right congruence relation �R with respect to the ω-regular
language L replaces the extension v ∈ Σ∗ with the ultimately periodic extension
xyω for x ∈ Σ∗ and y ∈ Σ+.

Definition 4. Let u1 and u2 be words in Σ∗. u1 �L u2 if and only if for every
x ∈ Σ∗ and y ∈ Σ+, u1xyω ∈ L ⇐⇒ u2xyω ∈ L.

58 Y. Li et al.

Based on the right congruence �L, Maler and Pnueli [76] introduced a learning
algorithm to learn a strict subset of ω-regular languages. Nonetheless, the right
congruence relation �L is in general not enough to learn an ω-regular language
L, as the following example shows.

Example 2. Assume L = {a, b}∗ · bω. The index of �L is 1 and the only equiv-
alence class is [ε]�L

. This follows from the fact that for any u ∈ Σ∗, we have
u · xyω ∈ L if yω = bω, otherwise u · xyω /∈ L. Therefore, we only have one state
with self-loops in the conjectured BA A which certainly does not recognize the
target language L, since A accepts either Σω or ∅, depending on whether the
single state is accepting or not, respectively.

The reason why it is so difficult to learn ω-regular languages via Büchi
automata is that there is a lack of right congruence for Büchi automata com-
pared to DFAs and regular languages. Farzan et al. in [42] proposed the first
learning algorithm to learn the complete class of ω-regular languages by means
of Büchi automata; their algorithm circumvents the lack of right congruence by
first using L∗ to learn the DFA D$, as defined in [26], and then transforming D$

to a BA. Basically, the DFA D$ captures the set of ultimately periodic words of
L by means of the regular language L(D$) = {u$v | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L },
where $ /∈ Σ.

Another way to solve the lack of right congruence is to define a Myhill-
Nerode like theorem for ω-regular languages. Inspired by the work of Arnold [12],
Maler and Staiger [77] proposed the notion of family of right-congruences (FORC
for short) and presented a “Myhill-Nerode” theorem for ω-languages. The idea
underlying the definition of FORC is based on the fact that every ω-regular
language L can be written in the form of an ω-regular expression

⋃n
i=1 Ui · V ω

i

for some n ∈ N, where for any i ∈ [1 · · · n], Ui and Vi are regular languages. So
the intuition of using FORC is to first define a right congruence � to distinguish
all finite word prefixes, and then define a right congruence ≈u for the finite word
periods for each equivalence class [u]� of the finite word prefixes. Hence we see
that [ui]� = Ui with ui ∈ Ui being an equivalence class in Σ∗/� and [vi]≈ui

= Vi

being an equivalence class in Σ∗/≈ui
such that ui · V ω

i ⊆ L.

5.2 Family of Deterministic Finite Automata

Based on this idea of FORC, Angluin and Fisman [11] recently proposed to
learn ω-regular languages via a formalism called family of DFAs (FDFA for
short), in which every DFA corresponds to a right congruence of finite index.
Further, Angluin et al. [9] suggest to use FDFAs as language acceptors of ω-
regular languages. The BA learning algorithm described in this section first
learns an FDFA and then transforms it to a BA. The formal definition of an
FDFA is as follows.

Definition 5 (Family of DFAs [9]). A family of DFAs F = (M, {Aq}) con-
sists of a leading DFA M = (Q, q̄, δ, ∅) and a set of progress DFAs {Aq =
(Qq, q̄q, δq, Fq) | q ∈ Q }.

Learning Büchi Automata and Its Applications 59

ε ε a

a

b

a, b
a

b

M Aε

Fig. 7. An example of an FDFA F = (M, {Aε})

An example of FDFA F is depicted in Fig. 7 where the leading DFA M has
only one state ε and the progress DFA corresponding to the state ε is Aε.

Each FDFA F characterizes a set of ultimately periodic words UP(F) by the
acceptance condition defined as follows.

Definition 6 (Acceptance condition of FDFA). Let F = (M, {Aq}) be a
FDFA and w be an ultimately periodic word. We say that

– w is accepted by F if there exists a decomposition (u, v) of w accepted by F ;
– a decomposition (u, v) is accepted by F if M(uv) = M(u) and the decompo-

sition (u, v) is captured by F ; and
– a decomposition (u, v) is captured by F if v ∈ L(Aq) where q = M(u).

Consider the FDFA F in Fig. 7: (ab)ω is accepted by F since there exists
the decomposition (a, ba) of (ab)ω such that M(a · ba) = M(a) = ε and ba ∈
L(AM(a)) = L(Aε). Note that the decomposition (ab, ab) of (ab)ω is not accepted
by F since (ab, ab) is not captured by F , i.e., ab /∈ L(AM(ab)) = L(Aε).

In the following, we recall the definition of the complement of an FDFA F .

Definition 7 (Complement of FDFA [9]). Given an FDFA F = (M, {Aq}),
the complement FC of F is the FDFA FC = (M, {(Aq)C}).

It is easy to see that the complement FDFA FC captures every decomposition
(u, v) in Σ∗ × Σ+ which is not captured by F .

It is shown in [11] that for every ω-regular language L, there exists an FDFA
F such that UP(F) = UP(L). More precisely, Angluin and Fisman [11] suggest
to use three kinds of FDFAs as canonical representations of ω-regular languages,
namely periodic FDFAs, syntactic FDFAs, and recurrent FDFAs. In this work,
we only consider the periodic FDFAs to simplify the presentation of the BA
learning algorithm; we refer the interested reader to [11,73] for more details on
the other two canonical FDFAs.

The definition of periodic FDFAs provided in [11] is given in terms of right
congruences.

Definition 8 (Periodic FDFA [11]). Let L be an ω-regular language.
Given u ∈ Σ∗, the periodic right congruence ≈u

P is an equivalence relation
on Σ∗ such that for each x, y ∈ Σ∗, x ≈u

P y if and only if for each v ∈ Σ∗, it
holds u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L.

The periodic FDFA F of L is the FDFA F = (M, {Au}) where:

– the DFA M = (Σ∗/�L
, [ε]�L

, δ, ∅) is the leading DFA, where δ([u]�L
, a) =

[ua]�L
for each u ∈ Σ∗ and a ∈ Σ;

60 Y. Li et al.

ε

a

b

a

b

b a

a, b

M

�L (ε, ab) (ε, ba)
ε 1 0
a 0 1
b 0 0

aa 0 0
ab 1 0
ba 0 0
bb 0 0

T

ε a

b ab

a

b a b

a, b

a

b

Aε

≈ε
P ε ab b
ε 0 1 0
a 0 0 1
b 0 0 0

ab 1 1 0
aa 0 0 0
ba 0 0 0
bb 0 0 0

aba 0 0 1
abb 0 0 0

Tε

ε b

a ba

b

a b a

a, b

b

a

Aa

≈a
P ε ba a
ε 0 1 0
a 0 0 0
b 0 0 1

ba 1 1 0
aa 0 0 0
ab 0 0 0
bb 0 0 0

baa 0 0 0
bab 0 0 1

Ta

ε

a

b

Ab

≈b
P ε
ε 0
a 0
b 0

Tb

Fig. 8. A periodic FDFA F = (M, {Aε, Aa, Ab}) with UP(F) = (ab)ω

– for each [u]�L
∈ Σ∗/�L

, the DFA Au = (Σ∗/≈u
P
, [ε]≈u

P
, δu, Fu) is a progress

DFA, where δu([v]≈u
P
, a) = [va]≈u

P
for each v ∈ Σ∗ and a ∈ Σ, and Fu =

{ [v]≈u
P

∈ Σ∗/≈u
P

| uvω ∈ L }.

As shown in [11], given an ω-regular language L, �L and ≈u
P for any u ∈ Σ∗

are all right congruences of finite index, so DFAs can be built from them.
We remark that the set of ultimately periodic words UP(F) accepted by the

periodic FDFA F is consistent with those characterized by the regular language
L(D$) defined in [26].

Consider the periodic FDFA F depicted in Fig. 8 where F characterizes the
ω-regular language L = (ab)ω. The leading DFA M of F has three states, namely
ε, a, and b which correspond to the equivalence classes [ε]�L

, [a]�L
, and [b]�L

,
respectively, given by the upper part U of T . The set of experiments V contains
decompositions of ultimately periodic words, which play the role of x and y in
Definition 4 introducing �L. As shown in table T for M , the experiments (ε, ab)
and (ε, ba) are enough to distinguish the equivalence classes in Σ∗/�L

. In fact,
for any u1, u2 ∈ Σ∗, an experiment xyω for which xyω �= ((ab)+)ω and xyω �=
((ba)+)ω cannot distinguish u1 and u2, since for sure we have u1 · xyω /∈ L and
u2 · xyω /∈ L. Since the leading DFA has three states ε, a, and b, there are three
progress DFAs in F associated to them, namely Aε, Aa, and Ab, respectively.

In the following, we show how the periodic FDFA F corresponds to the ω-
regular expression ε(ab)∗ · ((ab)+)ω ∪ a(ba)∗ · ((ba)+)ω ∪ {b, a(ba)∗a}{a, b}∗ · ∅,
where for clarity of presentation we use ∪ instead of the usual symbol + to
distinguish the different ω-regular expressions.

Learning Büchi Automata and Its Applications 61

Let us consider the first part of the ω-regular expression, i.e., ε(ab)∗ ·((ab)+)ω,
which corresponds to the state ε of M and its progress DFA Aε, whose lan-
guage is clearly L(Aε) = (ab)+. Let the components of M be (Q, ε, δ, ∅) and
consider the DFA Mε = (Q, ε, δ, {ε}) obtained by setting the accepting set of
M to {ε}. It is easy to see that L(Mε) = ε(ab)∗. Let U1 = L(Mε) = ε(ab)∗

and V1 = L(Aε) = (ab)+. It follows that the expression U1 · V ω
1 is exactly

ε(ab)∗ · ((ab)+)ω. Similarly we can get the other two ω-regular expressions
a(ba)∗ · ((ba)+)ω and {b, a(ba)∗a}{a, b}∗ · ∅ from the remaining two states a and
b of M and their corresponding progress DFAs Aa and Ab, respectively. Note
that ε(ab)∗ · ((ab)+)ω ∪ a(ba)∗ · ((ba)+)ω ∪ {b, a(ba)∗a}{a, b}∗ · ∅ = (ab)ω, that
is, the induced ω-regular expression corresponds to the language accepted by F .
In general, we can construct from the periodic FDFA F accepting L a unique
ω-regular expression representing L.

We remark that by fixing a state of M , say state ε, the right congruence ≈ε
P is

actually the same as the right congruence �R for the regular language R = V1.
Recall that the idea underlying FORC is to first define a right congruence �
distinguishing all finite word prefixes, and then define, for each equivalence class
[u]� of the finite word prefixes, a right congruence ≈u for the finite word periods.
Thus after fixing the equivalence class [ε]�L

for the finite word prefixes of L, we
can define the right congruence �R for the regular language R = V1 of finite
word periods defined as { v ∈ {a, b}+ | ε · vω ∈ L } and call it ≈ε

P . These right
congruences allow for the development of a learning algorithm for ω-regular
languages represented by FDFAs, where the FDFA learner can be seen as a
procedure to simultaneously run an instance of the DFA learner for each DFA
in the FDFA. In the remaining part of this section we first introduce a periodic
FDFA learner and then present the learning algorithm for BAs.

5.3 Learning a Family of DFAs

In order to present the periodic FDFA learner, we need first introduce the obser-
vation tables for each internal DFA learner. In this work, we often use FDFA
learner as a shorthand for the periodic FDFA learner since we only consider
periodic FDFAs. We remark that the FDFA learner introduced in this section is
specialized for the periodic FDFAs which differs from the FDFA learner specified
in [11,73] by requiring the received counterexamples satisfying Definition 9.

Observation Tables for a Family of DFAs. An observation table T for
the leading DFA learner, called leading table, has the same structure (U, V, T)
as the one for the DFA learner presented in Sect. 4.3 except that T and V are
adapted to handle ω-regular words: V is a set of decompositions rather than
a set of finite words; T : (U ∪ UΣ)V → {0, 1} is still a mapping but the entry
value of row u and column (x, y), denoted by T (u, (x, y)), is 1 if uxyω ∈ L and
0 otherwise. Consider for instance the leading table T shown in Fig. 8: we have
that V = {(ε, ab), (ε, ba)} is the set of experiments and T (a, (ε, ab)) = 0 since
a · ε · (ab)ω /∈ L while T (a, (ε, ba)) = 1 since a · ε · (ba)ω ∈ L. The row function

62 Y. Li et al.

(ε, ε)
ε 0
a 0
b 0

T

ε

a

b

M
≈ε

P ε
ε 0
a 0
b 0

Tε

ε

a

b

Aε

Fig. 9. The initial FDFA F0 and its corresponding tables while learning (ab)ω

remains unchanged, thus we still have row : (U ∪ UΣ) → (V → {0, 1}) being a
total function such that for each word u ∈ U ∪ UΣ, row(u) : V → {0, 1} is a
total function defined as row(u)(x, y) = T (u, (x, y)) for each (x, y) ∈ V .

For every u ∈ U of the leading table T , there exists an observation table
Tu for the progress DFA learner called progress table. Tu has the same structure
(Uu, Vu, Tu) as the one for the DFA learner (cf. Sect. 4.3) except that the entry
value of row x and column v, denoted by Tu(x, v), is 1 if u · (xv)ω ∈ L and 0
otherwise. Consider for instance the table Ta shown in Fig. 8: Ta(ε, ba) = 1 since
a · (εba)ω ∈ L while Ta(ε, a) = 0 since a · (εa)ω /∈ L.

Unless stated otherwise, all remaining notions for the table of a DFA learner
can be also directly applied to the leading table and progress tables, such as the
DFA construction from a table and the closeness and consistency of a table.

The Learning Procedure of the FDFA Learner. After the introduction
of the observation tables for the FDFA learner, we are now ready to give the
intuition about how the FDFA learner works by learning the ω-regular language
L = (ab)ω over Σ = {a, b}.

As for the DFA learner, at the beginning the FDFA learner has no information
so he initializes the components U and V of the leading table T to {ε} and
{(ε, ε)}, respectively. Then he turns to fill the content of T , so for each u ∈
U ∪ UΣ and (x, y) ∈ V , he makes a membership query MQ(u · x, y) whose
answer is stored as T (u, (x, y)); the membership query MQ(f, g) is used to asks
the FDFA teacher whether the word fgω belongs to L.

Once T is fully defined, the learner checks whether T is closed; if it is not
closed, he repeatedly moves rows from the lower part to the upper part, adds
the new rows in UΣ as needed, and fills T , as done by the DFA learner (see
Sect. 4.3), until T becomes closed.

As soon as T is closed, the learner constructs the corresponding leading
DFA M and then turns to the progress tables: for each u ∈ U of T , he first
creates a progress table Tu and then initializes both Uu and Vu to {ε}. For every
x ∈ Uu ∪ UuΣ and v ∈ Vu, Tu(x, v) is defined according to the result of the
membership query MQ(u, xy). Then the learner makes sure that each progress
table Tu is closed before constructing the corresponding progress DFA Au. Once
all DFAs are constructed, he is ready to pose the first equivalence query EQ(F0)
for the conjectured F0 to the FDFA teacher; F0 is shown in Fig. 9 together with
its corresponding tables.

Learning Büchi Automata and Its Applications 63

On receiving EQ(F), the teacher has to decide whether the conjectured FDFA
F is an appropriate periodic FDFA of the target language L. F0 = (M, {Aε}) is
clearly not the right conjecture so she answers “no” and provides a counterexam-
ple, say the decomposition (ε, ab). Note that the counterexample (x, y) returned
by the teacher is not just an ultimately periodic word xyω ∈ UP(F) � UP(L),
but it needs to satisfy additional requirements given in the following definition,
in order to be useful for the learner to refine the conjectured FDFA.

Definition 9 (Counterexample for the FDFA learner). Let L be the tar-
get language and F be the conjectured FDFA. We say that a counterexample
(u, v) is

– positive if (u, v) is not captured by F and uvω ∈ UP(L), and
– negative if (u, v) is captured by F and uvω /∈ UP(L).

Remark 1. Besides the periodic FDFAs, Angluin and Fisman [11] introduced also
the recurrent and the syntactic FDFAs, which make use of a different definition
of right congruence. Similarly to the periodic case, also for these two FDFAs it
is possible to define positive and negative counterexamples, which are however
more involved. We refer the interested reader to [73] for more details on these
two other types of FDFAs.

Refinement of the Conjectured FDFA F . In order to decide which DFA
in the conjectured F has to be refined, the learner acts differently depending on
whether the received counterexample (u, v) is positive or negative.

If (u, v) is a positive counterexample, the learner proceeds as follows: let
ũ = M(u); if ũ · vω ∈ UP(L), then the progress DFA Aũ is refined, otherwise
the leading DFA M is refined. In case (u, v) is a negative counterexample, the
learner just acts symmetrically: if ũ · vω ∈ UP(L), then M is refined, otherwise
Aũ is refined.

Consider again the conjectured FDFA F shown in Fig. 9 and the returned
counterexample (ε, ab): (ε, ab) is clearly a positive counterexample so the con-
jectured progress DFA Aε has to be refined since ũ = ε = M(ε) and ε · (ab)ω ∈
UP(L).

Refinement of the Progress DFA Aũ. Assume that (u, v) is a positive counterex-
ample: by definition we have that ũ · vω ∈ UP(L) and Aũ has to be refined so to
accept v.

The counterexample analysis is similar to Lemma 1 due to the close relation
of ≈u

P with �R: let n = |v| and for each i ∈ [1 · · · n], let si = Aũ(v[1..i]) be
the state in Aũ after reading the first i letters of v; recall that s0 = ε. There
exists a sequence of membership queries MQ(ũ, s0 · v[1..n]), MQ(ũ, s1 · v[2..n]),
and so on, up to MQ(ũ, sn · ε). By assumption we have ũ · (s0 · v[1..n])ω ∈ L
while ũ · (sn · ε)ω /∈ L due to the fact that (u, v) is not captured by F and
thus sn is not an accepting state. Recall that by Definition 8, the accepting set
Fũ of the progress DFA Aũ is the set of equivalence classes { [v]≈ũ

P
| ũ · vω ∈

64 Y. Li et al.

(ε, ε)
ε 0
a 0
b 0

T

ε

a

b

M
≈ε

P ε b
ε 0 0
a 0 1

ab 1 0
b 0 0

aa 0 0
aba 0 1
abb 0 0

Tε

ε a

ab

b
a

a

ba
b

Aε

Fig. 10. The refined FDFA F1 and its corresponding tables while learning (ab)ω

L }. Therefore, the learner can find the first experiment v[j + 1..n] such that
ũ · (sj−1v[j] · v[j + 1..n])ω ∈ L while ũ · (sj · v[j + 1..n])ω /∈ L; this means that
sj−1v[j] and sj do not represent the same equivalence class and must be split.

Consider again the conjectured FDFA F0 shown in Fig. 9 that has to be
refined by means of the positive counterexample (ε, ab), which requires to refine
the progress Aε: from the sequence of membership queries MQ(ε, 〈s0 = ε〉 · ab),
MQ(ε, 〈s1 = ε〉 · b), and MQ(ε, 〈s2 = ε〉 · ε), the learner finds the experiment
b distinguishing ε · a from ε. So he first adds b to Vε of table Tε, then fills the
missing entries, makes the table Tε closed, and constructs from Tε a new FDA
Aε, resulting in a new conjectured FDFA F1, shown in Fig. 10.

With F1 at hand, the learner can ask the teacher the equivalence query
EQ(F1); she answers “no” with for instance the counterexample (ε, bab). Accord-
ing to Definition 9, (ε, bab) is a negative counterexample, since it is captured by
F1 but clearly ε(bab)ω /∈ L = (ab)ω. The learner has to refine again the progress
DFA Aε: after asking the sequence of membership queries MQ(ε, 〈s0 = ε〉 · bab),
MQ(ε, 〈s1 = ε〉 · ab), MQ(ε, 〈s2 = a〉 · b), and MQ(ε, 〈s3 = ab〉 · ε), he finds the
experiment ab distinguishing ε · b from ε. In general, on receiving a negative
counterexample (u, v), the sequence of membership queries has different results
for the first query (ũ, ε · v) and the last query (ũ, Aũ(v) · ε). This is because
ũ · (ε · v)ω /∈ L by assumption while ũ · (Aũ(v) · ε)ω ∈ L since Aũ(v) is an accept-
ing state. The learner thus uses the experiment ab to update the table Tε as
seen before and constructs a new progress DFA Aε out of Tε, which are shown
in Fig. 11.

The learner is ready to ask the equivalence query EQ(F2) obtaining yet
another time “no” as answer, together with a counterexample, say (a, ab), which
is again a negative counterexample. Since ũ = M(a) = ε and ε · (ab)ω ∈ L, the
learner this time has to refine the leading DFA M .

Refinement of the Leading DFA M . Assume that the learner has received a neg-
ative counterexample (u, v); the case of positive counterexamples is symmetric
and thus omitted here. Let ũ = M(u); by definition we have uvω /∈ L while
ũvω ∈ L. Let n = |u| and for every i ∈ [1 · · · n], let si = M(u[1..i]) be the state

Learning Büchi Automata and Its Applications 65

(ε, ε)
ε 0
a 0
b 0

T

ε

a

b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

Fig. 11. The intermediate FDFA F2 and its corresponding tables while learning (ab)ω

in M after reading the first i letters of u. In particular, s0 = ε. As in the pre-
vious analyses, there is the sequence of membership queries MQ(s0 · u[1..n], v),
MQ(s1 · u[2..n], v), and so on, up to MQ(sn · ε, v). This sequence has different
results for the first and the last query since s0 ·u[1..n] ·vω /∈ L while sn ·ε·vω ∈ L.
Therefore, the learner can find the first experiment (u[j + 1..n], v) such that
sj−1 · u[j] · u[j + 1..n] · vω /∈ L while sj · u[j + 1..n] · vω ∈ L, which means that
the experiment (u[j + 1..n], v) can be used to distinguish sj−1 · u[j] from sj .

Consider again the FDFA F2 shown in Fig. 11 and the negative counterex-
ample (a, ab): the learner finds the experiment (ε, ab) to distinguish ε · a from ε.
As usual, after updating the leading table T by adding the experiment (ε, ab)
and closing T , the learner constructs a new conjecture leading DFA M , which is
depicted in Fig. 12. Moreover, for every new state u ∈ U of T , he initializes a new
progress table Tu and builds the corresponding progress DFA Au as before; see
for example the progress table Ta and the progress DFA Aa depicted in Fig. 12.

The learner asks the teacher whether F2 is correct. Assume that the teacher
answers “no” with the counterexample (bb, ab) which is negative. By following
the same procedure as above, he finds the experiment (b, ab) to distinguish ε · b
from a, which is used to update the leading table T with experiment (b, ab) and
to add the new progress DFA Ab for the state b of M , obtaining the FDFA F4

shown in Fig. 13.
By comparing the leading DFA M in F4 in Fig. 13 with the one in Fig. 7, we

can see that they are the same, so M is not going to be changed anymore since
it is already consistent with the one induced by �L in Definition 8. However, the
progress DFA Aa is still not correct so the teacher answers “no” to the equiva-
lence query EQ(F4) posed by the learner. Assume that the teacher returns the
counterexample (a, ba) which is positive. The learner then finds the experiment
a to refine the progress DFA Aa and finally he generates the new conjectured
FDFA F5 depicted in Fig. 14.

66 Y. Li et al.

(ε, ε) (ε, ab)
ε 0 1
a 0 0
b 0 0

aa 0 0
ab 0 1

T

ε

a

a, b

a

b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

≈a
P ε
ε 0
a 0
b 0

Ta

ε

a

b

Aa

Fig. 12. The intermediate FDFA F3 and its corresponding tables while learning (ab)ω

(ε, ε) (ε, ab) (b, ab)
ε 0 1 0
a 0 0 1
b 0 0 0

aa 0 0 0
ab 0 1 0
ba 0 0 0
bb 0 0 0

T

ε

a

b

a

b

b a

a, b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

≈a
P ε
ε 0
a 0
b 0

Ta

ε

a

b

Aa

≈b
P ε
ε 0
a 0
b 0

Tb

ε

a

b

Ab

Fig. 13. The FDFA F4 and its corresponding tables while learning (ab)ω

The FDFA F5 is still not the right conjecture and the teacher answers again
“no” to the equivalence query for it. Assume that the returned counterexample
is (a, aba) which is clearly negative. As before, the learner refines the progress
DFA Aa and gets a new conjecture FDFA F6 shown in Fig. 15.

The teacher now answers “yes” to the equivalence query EQ(F6) and the
learner has completed his job.

The FDFA Learner. By means of the previous example, we have introduced
informally the ω-regular language learning algorithm, which is formalized in
Algorithm 2 as the periodic FDFA learner. We can note that the learning pro-
cedure we described in the running example follows exactly the steps of the
algorithm. In Algorithm 2 we have functions acting on DFAs that are special-
ized for the leading DFA M (whose with subscript l) and functions specialized

Learning Büchi Automata and Its Applications 67

(ε, ε) (ε, ab) (b, ab)
ε 0 1 0
a 0 0 1
b 0 0 0

aa 0 0 0
ab 0 1 0
ba 0 0 0
bb 0 0 0

T

ε

a

b

a

b

b a

a, b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

≈a
P ε a
ε 0 0
b 0 1

ba 1 0
a 0 0
bb 0 0

baa 0 0
bab 0 1

Ta

ε b

ba

a
b

b

ab
a

Aa

≈b
P ε
ε 0
a 0
b 0

Tb

ε

a

b

Ab

Fig. 14. The intermediate FDFA F5 and its corresponding tables while learning (ab)ω

for the progress DFAs (whose with subscript p). Since for the refinement of the
progress DFA Aũ the learner does not need the word u but just ũ, function
FindDistinguishingExperimentp takes the parameter instance ũ instead of u.

The soundness and completeness of Algorithm 2 are guaranteed by Theo-
rem 5.

Theorem 5. Assume that L is the target ω-regular language. Algorithm 2 ter-
minates and returns a periodic FDFA F capturing the set of decompositions
{ (u, v) ∈ Σ∗ × Σ+ | uvω ∈ L }.

Clearly, the FDFA F returned by Algorithm 2 is a correct conjecture because
the teacher has approved it; Algorithm 2 terminates because: (1) we can discover
new states, i.e., new equivalence classes in Σ∗/�L

or in Σ∗/≈ũ
P
, whenever receiv-

ing a counterexample (u, v) from the teacher, where ũ = M(u) (cf. [72]); and (2)
�L and ≈ũ

P for any u ∈ Σ∗ are all right congruences of finite index (cf. [11]).
The complexity of Algorithm 2 is stated in Theorem 6; let the length of a

decomposition (u, v) be the sum of the lengths of u and v, i.e., |(u, v)| = |u|+ |v|.

Theorem 6. Given a target ω-regular language L, let n be the sum of the
indexes of the right congruences, i.e., n = |�L| +

∑
[u]�L

∈Σ∗/�L
|≈u

P |, and m

be the maximum length of any counterexample (u, v) returned by the teacher.

1. Algorithm 2 terminates on receiving at most n counterexamples.
2. The number of membership queries is in O(n2 · |Σ| + n · m).

The reason why Algorithm 2 terminates on receiving at most n counterexamples
is obvious since there are n states in the periodic FDFA of L. The reason why

68 Y. Li et al.

(ε, ε) (ε, ab) (b, ab)
ε 0 1 0
a 0 0 1
b 0 0 0

aa 0 0 0
ab 0 1 0
ba 0 0 0
bb 0 0 0

T

ε

a

b

a

b

b a

a, b

M
≈ε

P ε b ab
ε 0 0 1
a 0 1 0

ab 1 0 1
b 0 0 0

aa 0 0 0
aba 0 1 0
abb 0 0 0
ba 0 0 0
bb 0 0 0

Tε

ε a

b ab

a

b a b

a, b

a

b

Aε

≈a
P ε a ba
ε 0 0 1
b 0 1 0

ba 1 0 1
a 0 0 0
bb 0 0 0

baa 0 0 0
bab 0 1 0
aa 0 0 0
ab 0 0 0

Ta

ε b

a ba

a

b

b a

a, b

b

a

Aa

≈b
P ε
ε 0
a 0
b 0

Tb

ε

a

b

Ab

Fig. 15. The final FDFA F6 and its corresponding tables while learning (ab)ω

the number of membership queries is in O(n2 · |Σ| + n · m) is the following:
let l be the number of states in the leading DFA M and p1, p2, . . . , pl be the
number of states in the progress DFAs, respectively; we have l +

∑l
i=1 pi = n.

By Theorem 4, a DFA with k1 states and longest counterexample of length k2
can be learned by at most k2

1 · |Σ| + k1 · k2 membership queries, thus we need at
most l2 · |Σ| + l · m +

∑
i=1(p

2
i · |Σ| + pi · m) ∈ O(n2 · |Σ| + n · m) membership

queries.

5.4 Learning Büchi Automata

In the previous section we presented the FDFA learning algorithm, which is our
secret ingredient in learning a BA: we first learn an FDFA F and then transform
the learned F to a BA. This is just one sentence introduction to the BA learning
algorithm; there are however several details than need to be concretized in order
to get a working algorithm.

Overview of the BA Learning Framework. In the following we begin with
an introduction of the framework presented in [73] for learning BA as depicted in
Fig. 16. In this section, we let the ω-regular language L be the target language
and we assume that we already have a BA teacher who knows the language
L and can answer membership and equivalence queries about L. In order to
distinguish membership and equivalence queries posed by the FDFA learner and
the BA learner, we use a superscript like FDFA and BA to mark queries from the

Learning Büchi Automata and Its Applications 69

Algorithm 2. The Periodic FDFA Learner
1 Initialize leading table T = (U, V, T) with U = {ε} and V = {(ε, ε)};
2 CloseTablel(T , MQ(·)) and let M = Aut l(T);
3 foreach u ∈ U do
4 Initialize progress table Tu = (Uu, Vu, Tu) with Uu = {ε} and Vu = {ε};
5 CloseTablep(Tu, MQ(·)) and let Au = Autp(Tu);

6 Let (a, (u, v)) be the teacher’s response on EQ(F);
7 while a = “no” do
8 Let ũ = M(u);
9 if MQ(ũ, v) �= MQ(u, v) then

10 V = V ∪ FindDistinguishingExperiment l(u, v);
11 CloseTablel(T , MQ(·)) and let M = Aut l(T);
12 foreach newly added u ∈ U do
13 Initialize progress table Tu = (Uu, Vu, Tu) with Uu = {ε} and

Vu = {ε};
14 CloseTablep(Tu, MQ(·)) and let Au = Autp(Tu);

15 else
16 Vũ = Vũ ∪ FindDistinguishingExperimentp(ũ, v);

17 CloseTablep(Tũ, MQ(·)) and let Aũ = Autp(Tũ);

18 Let (a, (u, v)) be the teacher’s response on EQ(F);

19 return F ;

FDFA learner and the BA learner, respectively. For instance, the membership
query MQFDFA(·) is posed by the FDFA learner while MQBA(·) is asked by the
BA learner.

The BA learner, shown in Fig. 16 surrounded by the dashed box, has three
components, namely the FDFA learner, the component transforming an FDFA
F to a BA BF , and the counterexample analysis component. The BA learner
first uses the FDFA learner to learn an FDFA F by means of membership and
equivalence queries. This makes some problem the BA learner has to solve: on
the one side, in order to answer queries posed by the FDFA learner, the BA
learner needs an FDFA teacher to answer membership and equivalence queries
about the target periodic FDFA of L; one the other side, there is only a BA
teacher who can answer queries about the target language.

In this situation, the BA learner acts as an interface between the FDFA
teacher and the FDFA learner and tries to pretend to be an FDFA teacher when
he has to answer the queries from the FDFA learner. In other words, the BA
learner becomes the FDFA teacher by interacting with the BA teacher. To that
end, the FDFA teacher answers to a membership query MQFDFA(u, v) by simply
forwarding the answer to the membership query MQBA(uvω) obtained from the
BA teacher to the FDFA learner, which is trivial.

It is, however, more tricky for the FDFA teacher to answer an equivalence
query EQFDFA(F) posed by the FDFA learner. The FDFA teacher first needs to
transform the conjectured FDFA F to a BA BF and then poses the equivalence
query EQBA(BF) to the BA teacher. If the BA teacher answers “yes”, the BA

70 Y. Li et al.

F
D
FA

le
ar
ne
r

FDFA F to BA BF

CE Analysis

B
A

te
ac

h
er

BA learner
FDFA teacher

Output BF

MQFDFA(u, v) MQBA(uvω)

yes/no

EQFDFA(F) EQBA(BF)

F

no + uvωno + (u′, v′)

yes

Fig. 16. Overview of the BA learning framework based on FDFA learning

learner first receives the answer and then outputs the BA BF as he has com-
pleted the learning task. Otherwise the BA teacher returns “no” together with a
counterexample uvω given as a decomposition (u, v). The BA learner then per-
forms the counterexample analysis and, by acting as an FDFA teacher, he feeds
the FDFA learner with a valid decomposition (u′, v′) which satisfies Definition 9,
so that the FDFA learner can further refine the current FDFA F .

Note that in Fig. 16 there is a dashed arrow labeled with F entering the
counterexample analysis block: it indicates the fact that the FDFA teacher needs
to use the current conjectured FDFA F in the analysis of the counterexample, as
we will see later. We want to remark that, according to Fig. 16, the BA teacher is
oblivious of the FDFA learner, since she only sees a BA learner interacting with
her and similarly, the FDFA learner does not know that there is a BA teacher
since it is the FDFA teacher that is answering his queries.

From the framework depicted in Fig. 16, we get the rough idea about how
to build a BA learner out of an FDFA learner. Yet there are still few details we
have to sort out:

– How can we transform an FDFA F to a BA BF?
– How can we get a valid counterexample (u′, v′) for the FDFA learner out of

a counterexample (u, v) returned by the BA teacher?

The answers to the above questions are the missing bricks we need to build
a BA learner based on an FDFA learner. In the following, we first answer the
question on how to do the transformation from an FDFA to a BA and then
introduce the counterexample analysis through an example.

From FDFA F to BA BF . Assume that we want to learn a BA which accepts
the ω-regular language L = (ab)ω over Σ = {a, b}. To that end, the BA learner
first initializes an FDFA learner which constructs the initial conjectured FDFA

Learning Büchi Automata and Its Applications 71

ε

M
a

b

ε

a

b

Aε a

b

b

a

a, b

Fig. 17. An FDFA F such that UP(F) does not characterize an ω-regular language

F0 as depicted in Fig. 9 via membership queries. On receiving the conjectured
FDFA F0, the BA learner has to construct a BA BF0 from F0 which we illustrate
in the following.

To answer an equivalence query EQFDFA(F), the BA learner needs fist to
covert F into a BA BF in order to exploit the BA teacher to answer the query.
The first question one may ask in doing this is:

– Is it possible to construct a precise BA BF for each given FDFA F such that
UP(L(BF)) = UP(F)?

The answer is actually no, as the following example shows.

Example 3 (Non-regular ω-language accepted by an FDFA [73]). Consider the
FDFA F depicted in Fig. 17 where UP(F) =

⋃∞
n=0{a, b}∗ · (abn)ω. Assume that

UP(F) characterizes an ω-regular language L. It is claimed in [11] that for every
ω-regular language, there exists a periodic FDFA recognizing it and the index
of each right congruence of the periodic FDFA is finite. Therefore we let F ′ be
the periodic FDFA of L and we know that the right congruence ≈ε

P of F ′ is of
finite index. However, we can show that the right congruence ≈ε

P of F ′ has to
be of infinite index. Observe that abk �≈ε

P abj for any k, j ≥ 1 and k �= j, since
ε · (abk · abk)ω ∈ UP(F) and ε · (abj · abk)ω /∈ UP(F) according to Definition 8.
It follows that ≈ε

P is of infinite index. Contradiction. Thus we conclude that
UP(F) cannot characterize an ω-regular language.

Therefore, in general, one can not construct a BA BF from an FDFA F such
that UP(L(BF)) = UP(F). The authors of [73] suggested two BA construc-
tions to approximate the set of ultimately periodic words UP(F): the under-
approximation and the over-approximation construction. In this work, we only
introduce the under-approximation construction from [73], which produces a BA
BF that under-approximates UP(F), i.e., UP(L(BF)) ⊆ UP(F). This construc-
tion was originally proposed by Calbrix et al. in [26].

We first give the main idea behind the under-approximation method and
then give its formal definition. Let F be the FDFA F = (M, {Au}) with M =
(Q, q̄, δ, ∅) and Au = (Qu, su, δu, Fu) for each u ∈ Q. Let Ms

v = (Q, s, δ, {v})
and (Au)s

v = (Qu, s, δu, {v}) be the DFAs obtained from M and Au by setting
their initial state and accepting states to s and {v}, respectively. We define
N(u,v) = { vω | M(uv) = M(u)∧ v ∈ L((Au)su

v) }, which contains only the words

72 Y. Li et al.

v ∈ L((Au)su
v) such that u = M(u) = M(uv). Recall that we use words u and

v to represent the states in the DFAs. Therefore, according to the acceptance
condition of FDFAs in Definition 6, we have that UP(F) =

⋃
u∈Q,v∈Fu

L(M q̄
u) ·

N(u,v) where L(M q̄
u) contains the set of finite prefixes and N(u,v) contains the

set of finite periodic words for every state pair (u, v).
We construct BF by approximating the set N(u,v), i.e., the set of finite peri-

odic words. We first define the FA P(u,v) = (Q(u,v), s(u,v), δ(u,v), {f(u,v)}) =
Mu

u × (Au)su
v × (Au)v

v and let N (u,v) = L(P(u,v))ω. Recall that the notation
× here is the intersection operation of FAs. Then we can construct the BA
(Q(u,v) ∪{f}, s(u,v), δ(u,v) ∪δf , {f}) recognizing N (u,v) where f is a “fresh” state
and δf = {(f, ε, s(u,v)), (f(u,v), ε, f)}. Note that ε transitions can be taken with-
out consuming any letters and can be removed by standard methods in automata
theory, see, e.g., [56]. Intuitively, we under-approximate the set N(u,v) as N (u,v)

by only keeping vω ∈ N(u,v) if Au(v) = Au(v · v) where v ∈ Σ+.
In Definition 10 we provide the construction procedure for a BA BF such

that UP(L(BF)) =
⋃

u∈Q,v∈Fu
L(M q̄

u)·N (u,v) =
⋃

u∈Q,v∈Fu
L(M q̄

u)·(L(P(u,v)))ω,
as originally proposed in [26].

Definition 10 ([73]). Let F = (M, {Au}) be an FDFA where M = (Q, q̄, δ, ∅)
and Au = (Qu, su, δu, Fu) for each u ∈ Q. Let (Q(u,v), s(u,v), δ(u,v), {f(u,v)})
be a BA recognizing N (u,v). Then the BA BF is defined as the tuple BF =
(QBF , q̄BF , δBF , FBF) where

– QBF = Q ∪
⋃

u∈Q,v∈Fu

Q(u,v),

– q̄BF = q̄,
– δBF = δ ∪

⋃
u∈Q,v∈Fu

δ(u,v) ∪
⋃

u∈Q,v∈Fu

{(u, ε, s(u,v))}, and

– FBF =
⋃

u∈Q,v∈Fu

{f(u,v)}

Intuitively, we connect the leading DFA M to the BA recognizing N (u,v) by
linking the state u of M and the initial state s(u,v) of the BA with an ε-transition
for every state pair (u, v) where v ∈ Fu.

We now present Lemma 2 which is used later for the counterexample analysis.

Lemma 2 (cf. [73, Lemma 4]). Let F be an FDFA, and BF be the BA con-
structed from F according to Definition 10. If (u, vk) is accepted by F for every
k ≥ 1, then uvω ∈ UP(L(BF)).

The following theorem is the main result of our BA construction. We refer
the interested reader to [72] for the proofs of Lemma 2 and Theorem 7.

Theorem 7 (cf. [73, Lemma 3]). Let F be the current conjectured FDFA and
BF be the BA constructed from F according to Definition 10. Let n and k be
the number of states in the leading DFA and the largest progress DFA of F ,
respectively. Then

– the number of states in BF is in O(n2k3);

Learning Büchi Automata and Its Applications 73

ε

a

b

BF0

Fig. 18. The BA BF0 constructed for answering the equivalence query EQFDFA(F0),
with F0 shown inFig. 9

– UP(L(BF)) ⊆ UP(F);
– UP(L(BF)) = UP(F) if F is the periodic FDFA accepting UP(F).

For instance, the initial BA BF0 constructed from the FDFA F0 shown in
Fig. 9 is depicted in Fig. 18. The state space of Q(u,v) of BF0 defined in Defini-
tion 10 is empty since Fε of Aε in F0 is empty.

The BA BF0 is clearly not a right conjecture so the BA teacher answers
“no” for the equivalence query EQBA(BF0) together with a counterexample, say
(ab)ω ∈ L(BF0) � L, given by the decomposition (ε, ab). Since the counterex-
ample (ε, ab) from the BA teacher is a positive counterexample for the FDFA
learner, according to Definition 9, the FDFA teacher who is disguised by the BA
learner just sets (u′, v′) to be (ε, ab) in the counterexample analysis and returns
it to the FDFA learner as counterexample for the “no” answer. We remark
that if the BA learner applies the counterexample analysis to the valid positive
counterexample (ε, ab) for the FDFA learner, the procedure also outputs a valid
positive counterexample which satisfies Definition 9. In other words, in practice
the counterexample analysis on the received counterexample directly generates
a valid counterexample, so the BA learner does not have to decide whether the
counterexample received from the BA teacher is valid for the FDFA learner.

Since he has received a negative answer with a counterexample for the equiva-
lence query EQFDFA(F0), the FDFA learner refines the current FDFA F0 accord-
ing to the received counterexample, as we have seen in Sect. 5.3, and then poses
the equivalence query EQFDFA(F1) for the new conjectured FDFA F1, which is
shown in Fig. 10.

The BA learner then builds from F1 the under-approximation BA BF1 , which
is depicted in Fig. 19: observe that the ω-word (bab)ω ∈ L(BF1) is accepted by
F1 since the decomposition (ε, bab) is accepted by F1; the BA N (ε,ab) is defined
as the DFA Mε

ε × (Aε)ε
ab × (Aε)ab

ab augmented with an extra state f and it is
shown in the dashed box in Fig. 19.

Again, the conjectured BA BF1 is not the right conjecture. The BA teacher
answers the equivalence query for the BA BF1 with “no” and, say, the coun-
terexample (bab)ω ∈ L(B1) � L, given as the decomposition (b, abb).

The counterexample (b, abb) is however not a valid counterexample for the
FDFA learner according to Definition 9 since (bab)ω /∈ UP(L) and (b, abb) is not
captured by the current FDFA F1. Suppose that the BA learner feeds the FDFA
learner with the counterexample (b, abb); it is easy to verify that he is not able to

74 Y. Li et al.

ε

a

b

BF1

q0

q1

q2 q3

f

b

a

b

a
b

a
b

a

ε

εε

N (ε,ab)

Fig. 19. The BA BF1 constructed for answering the equivalence query EQFDFA(F1),
with F1 shown in Fig. 10

identify new states with the help of (b, abb), so he is going to conjecture again the
FDFA F1. Therefore, if the FDFA learner repeatedly poses the equivalence query
EQFDFA(F1) for F1 and the BA teacher always answers (b, abb), the learning
procedure is going to get stuck in an infinite loop. This motivates the need of
the counterexample analysis, which ensures that the counterexample returned by
the BA teacher can be adapted to a valid counterexample for the FDFA learner
which allows him to refine the conjectured FDFA.

Counterexample Analysis for the FDFA Teacher. In order to ensure
the termination of the learning procedure, the BA learner has to execute the
counterexample analysis so to get a valid counterexample for the FDFA learner
out of (b, abb).

To distinguish the different counterexamples from the different teachers, we
define the counterexample from the BA teacher as follows.

Definition 11 (Counterexample for the FDFA teacher). Let L be the
target ω-regular language and BF be the current conjectured BA. We say a coun-
terexample (u, v) with uvω ∈ L(BF) � L is

– positive if uvω ∈ L and uvω /∈ L(BF), and
– negative if uvω /∈ L and uvω ∈ L(BF).

This is a symmetric definition when compared with the counterexample for the
FDFA learner given in Definition 9.

We call a positive counterexample uvω spurious if uvω ∈ UP(F). A spurious
positive counterexample (u, v) witnesses that UP(L(BF)) ⊂ UP(F) holds; the
reason for this is that: according to Theorem7, we have UP(L(BF)) ⊆ UP(F);
by the definition of positive counterexample for the FDFA teacher, we have
uvω /∈ UP(L(BF)) yet uvω ∈ UP(F) holds.

In order to analyze the counterexample (u, v), it is useful to know how the
received counterexample relates with the conjectured FDFA F . For instance, it

Learning Büchi Automata and Its Applications 75

LBF

F

uvω

uvω uvω

Fig. 20. The cases for the counterexample analysis

may be that F captures (u, v) but uvω is not in the target language, so (u, v)
should be rejected; symmetrically, we can have that F rejects any decompo-
sition of uvω but uvω is in the target language, so at least (u, v) should be
captured; moreover, it may be that F rejects just (u, v) while capturing another
decomposition (u′, v′) of uvω, but BF does not accept (u′, v′). To distinguish the
above cases, which are shown in Fig. 20, we use three DFAs accepting different
decompositions of uvω.

Let F = (M, {Au}) be the current conjectured FDFA. In order to analyze
the counterexample (u, v) for the FDFA teacher, we define the following three
DFAs, where $ is a letter not in Σ.

– a DFA D$ with L(D$) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, u′v′ω = uvω },
– a DFA D1 with L(D1) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ∗, v′ ∈ L(AM(u′)) }, and
– a DFA D2 with L(D2) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ∗, v′ /∈ L(AM(u′)) }.

Intuitively, D$ accepts every possible decomposition (u′, v′) of uvω; D1 recog-
nizes every decomposition (u′, v′) which is captured by F ; and D2 accepts every
decomposition (u′, v′) which is not captured by F .

The DFA D$ can be constructed according to the procedure presented in [26,
72]; the DFA D1 can be obtained from F by simply connecting each state u of M
to the initial state su of Au via letter $; finally, the construction of the DFA D2 is
similar to the one of the DFA D1 except that we use the complement FDFA FC

of F instead of F . Note that the DFAs D1 and D2 in this section are specialized
for the periodic FDFA which are different from those defined for all three kinds
of FDFAs in [73]. We refer the interested reader to [73] for more details on the
different constructions of D1 and D2 for the recurrent and syntactic FDFAs.

The analysis for the returned counterexample has first to identify the kind
of counterexample it is analyzing and then to deal with it accordingly. More
concretely, the three kinds of counterexamples, shown in Fig. 20 by means of
different shapes, are the following:

case U1: uvω ∈ UP(L) while uvω /∈ UP(F) (square). The ω-word uvω is a
positive counterexample for the FDFA teacher since uvω /∈ UP(L(BF)). On
the one hand, uvω ∈ UP(L) holds and all decompositions of uvω should be
accepted by F ; on the other hand, uvω /∈ UP(F) holds, which indicates that

76 Y. Li et al.

no decomposition of uvω is accepted by F . Therefore, in order to further
refine F , the FDFA learner needs to make F accept at least one decompo-
sition (u′, v′) of uvω. That is, the analysis has to find a valid positive coun-
terexample (u′, v′) out of uvω for the FDFA learner such that v′ /∈ L(AM(u′)).
This can be easily done by taking a word u′$v′ ∈ L(D$) ∩ L(D2). This fol-
lows from the fact that DFA D$ accepts every decomposition of uvω and D2

accepts all decompositions which are not accepted by F . Therefore, a word
u′$v′ ∈ L(D$) ∩ L(D2) is a valid positive counterexample for the FDFA
learner. Note that the analysis tries to find a decomposition (u′, v′) which is
not captured by F instead of a decomposition not accepted by F . The reason
is that a decomposition (u′, v′) not captured by F is also a decomposition
which is not accepted by F according to Definition 6. We refer interested
reader to [72, Appendix D.3] for more details on case U1.

case U2: uvω /∈ UP(L) while uvω ∈ UP(F) (circle). The ω-word uvω is a
negative counterexample for the FDFA teacher since uvω ∈ UP(L(BF)). It
follows that F should reject every decomposition of uvω since uvω /∈ UP(L).
In other words, in order to further refine F , the FDFA learner needs to
make F not capture at least one decomposition (u′, v′) of uvω. Therefore,
the analysis needs to find a valid negative counterexample (u′, v′) out of uvω

for the FDFA learner that is accepted by F . This can be done by taking a
word u′$v′ ∈ L(D$) ∩ L(D1).

case U3: uvω ∈ UP(L) and uvω ∈ UP(F) (diamond). The ω-word uvω is a
spurious positive counterexample since uvω ∈ UP(F) but uvω /∈ UP(L(BF)).
On the one hand, this case is quite similar to case U1 since uvω ∈ UP(L)
and normally we should make F accept uvω; on the other hand, however,
differently from U1, F already accepts at least one decomposition of uvω

in this case. Suppose that the decomposition (x, y) of uvω is accepted by
F ; according to Lemma 2, there must exist some k ≥ 1 such that (x, yk) is
not accepted by F since otherwise we would have uvω ∈ L(B). Therefore,
similar to case U1, it is possible for the analysis to find a valid positive
counterexample (u′, v′) out of uvω for the FDFA learner such that v′ /∈
L(AM(u′)). The word u′$v′ can also be taken from L(D$) ∩ L(D2). We refer
interested reader to [72, Appendix D.3] for more details on case U3.

We remark that from an implementation point of view, checking whether
uvω ∈ UP(L) can be replaced by a membership query MQBA(u, v) while testing
whether uvω ∈ UP(F) reduces to checking whether u$v ∈ L(D1).

Consider again the conjectured FDFA F1 and the counterexample (b, abb)
returned by the BA teacher, which is a negative counterexample since b·(abb)ω /∈
L. The counterexample (b, abb) falls into case U2 since b · (abb)ω /∈ UP(L) while
b ·(abb)ω ∈ UP(F1). In order to analyze it, the BA learner needs to construct the
DFAs D$ and D1, which are depicted in Fig. 21. For completeness of presentation,
Fig. 21 shows also the DFA D2, so to allow the reader to compare it with D1.
Assume that the BA learner gets the word ε$bab ∈ L(D$) ∩ L(D1), which gives
a negative counterexample (ε, bab) for the FDFA learner.

Learning Büchi Automata and Its Applications 77

q0

q1

q2

b

b

a

q0,0 q0,1 q0,2 q0,3
$ b a b

b

q1,0 q1,1 q1,2 q1,3
$ b b a

b

q2,0 q2,1 q2,2 q2,3
$ a b b

a

D$

ε ε a ab

a

b

b
a

a

b

a

b

$
D1

ε ε a ab

a

b

b
a

a

b

a

b

$
D2

Fig. 21. The three DFAs D$, D1, and D2 for the FDFA F1 from Fig. 10 and the
counterexample (b, abb)

As seen in Sect. 5.3, with the negative counterexample (ε, bab) at hand, the
FDFA learner is able to get the refined conjecture F2 depicted in Fig. 11. To
answer the equivalence query EQFDFA(F2), the BA learner has again to construct
a BA BF2 , depicted in Fig. 22, from F2; then he poses the equivalence query
EQBA(BF2) to the BA teacher. Note that we have UP(F2) = UP(L(BF2)) =
{a, b}∗(ab)ω for the constructed BA BF2 . This follows from the fact that F2 is a
periodic FDFA accepting {a, b}∗(ab)ω, which results in UP(F2) = UP(L(BF2))
according to Theorem 7.

The BA teacher answers again “no” with a counterexample, say (a, ab), which
is already a negative counterexample for the FDFA learner. However, the BA
learner is not aware of this fact, thus he performs a counterexample analysis on
(a, ab). In order to analyze the counterexample a · (ab)ω, the BA learner first
builds the two DFAs D$ and D1 shown in Fig. 23.

Suppose that this time the BA learner takes the word a$ab ∈ L(D$) ∩ L(D1),
which means that the counterexample the FDFA learner receives is again (a, ab).
After the refinement of the FDFA F2, the FDFA learner now asks an equivalence

78 Y. Li et al.

ε

a

b

BF2

q0

q1

q2 q3

f

b

a

a, b

b
a

b

a

ε

εε

Fig. 22. The BA BF2 constructed for answering the equivalence query EQFDFA(F2),
with F2 shown in Fig. 11

q0

q1

q2

a

ab

q1,0

q1,1 q1,2

$

a

b

a

q2,0 q2,1

q2,2

$ b

a b

D$

ε ε

a

b

ab

a

b

a

b

a

b

a, b

a

b

$
D1

Fig. 23. The DFAs D$ and D1 for the FDFA F2 from Fig. 11 and the counterexample
(a, ab)

query for the FDFA F3 shown in Fig. 12. On receiving the query EQFDFA(F3),
the BA BF3 given in Fig. 24 is constructed by the BA learner to ask the BA
teacher another equivalence query.

Clearly, BF3 is not a right conjecture and the BA teacher returns “no” as
well as a counterexample, say (bba, ba), which is a negative counterexample for
the FDFA teacher. The BA learner builds the two DFAs D$ and D1 depicted
in Fig. 25 in order to get a valid counterexample for the FDFA learner from
L(D$) ∩ L(D1).

Assume that the FDFA learner receives the counterexample (bb, ab) from the
FDFA teacher disguised by the BA learner. The FDFA learner is now able to
get the refined FDFA F4 shown in Fig. 13, so he can ask EQFDFA(F4). As usual,
the BA learner constructs a BA from F4 in order to solve the equivalence query
EQFDFA(F4) posed by the FDFA learner.

The BA BF4 constructed by the BA learner is shown in Fig. 26 and we can
see that BF4 exactly accepts the target language L = (ab)ω, which means that
BF4 is already a right conjecture. Therefore, the BA teacher answers positively

Learning Büchi Automata and Its Applications 79

ε

a

a, bb

a

BF3

q0

q1

q2 q3

f

b

a

a, b

b
a

b

a

ε

εε

Fig. 24. The BA BF3 constructed for answering the equivalence query EQFDFA(F3),
with F3 shown in Fig. 12

q0

q1 q2

q3

b

b

ab

q2,0

q2,1 q2,2

$

a

b

a

q3,0 q3,1

q3,2

$ b

a b

D$

ε

a

ε

a

b

ab

ε

a, bb

a

a

b

a

b

a, b

a

b

$

$
a, b

D1

Fig. 25. The DFAs D$ and D1 for the FDFA F3 from Fig. 12 and the counterexample
(bba, ba)

with “yes” to the BA learner as the result of the equivalence query EQBA(BF4).
The BA learner then outputs the learned BA BF4 as he has finally completed
the learning task.

We notice that the current FDFA F4 is still not a periodic FDFA of L yet we
can build a BA such that L(BF4) = L. In practice, the BA learning algorithm
very often infers a BA recognizing L before converging to a periodic FDFA of L.
In the worst case, the FDFA learner inside the BA learner has to learn a periodic
FDFA of L in order to get a right conjectured BA according to Theorem 7.

The BA Learner. By means of the previous example, we have introduced
informally the ω-regular language learning algorithm, which is formalized in
Algorithm 3 as the BA learner. We can note that the learning procedure we
described in the running example follows exactly the steps of Algorithm 3. The
function constructBA is an implementation of the under-approximation BA con-
struction and ceAnalysis is the procedure for analyzing counterexamples from
the BA teacher. The refinement loop of the conjecture BF terminates once we
get a positive answer from the teacher.

80 Y. Li et al.

ε

a b

a b

a

b

a, b

BF4

q0

q1

q2 q3

f

b

a

a, b

b
a

b

a

ε

εε

Fig. 26. The BA B4 constructed for answering the equivalence query EQFDFA(F4),
with F4 shown in Fig. 13

Algorithm 3. The BA Learner
1 Initialize an FDFA learner Lω and get the conjectured FDFA F ;
2 BF = constructBA(F);

3 Let (a, (u, v)) be the BA teacher’s response on EQBA(BF);
4 while a = “no” do
5 (u′, v′) = ceAnalysis((u, v), F);
6 Call Lω to refine F with (u′, v′) and get the new conjectured FDFA F ;
7 BF = constructBA(F);

8 Let (a, (u, v)) be the BA teacher’s response on EQBA(BF);

9 return BF ;

As discussed before, we can construct from an FDFA F a BA BF such that
UP(F) = UP(L(BF)) if F is a periodic FDFA of UP(F). Thus in the worst
case, the FDFA learner inside the BA learner needs to learn a periodic FDFA
of target language L in order to get a right conjectured BA. The main result of
this section then follows.

Theorem 8 (Correctness and Termination). The BA learning algorithm
based on the FDFA learner and the under-approximation BA construction always
terminates and returns a BA recognizing the target ω-regular language L in poly-
nomial time.

6 Learning to Complement Büchi Automata

As we have seen in Sect. 3.3, the complementation of Büchi automata [25] is a
classic problem that has been extensively studied for more than half a century;
see [105] for a survey. The complementation of Büchi automata is a valuable tool
in formal verification (cf. [67]), in particular when the property to be satisfied

Learning Büchi Automata and Its Applications 81

uvω /∈? L(A)

L(BF) ∩ L(A) =? ∅

L(BFC) ⊆? L(A)C
E

an
al
ys
is

Teacher

complement BF

Learner

F
D
FA

le
ar
ne

r

MQ(u, v)

yes/no

EQ(F)

noxyω yes

noxyω

yes

CE: (u, v)

Fig. 27. The learning framework for complementing a Büchi automaton A

by a model is given by means of a Büchi automaton, in the program termi-
nation analysis (cf. Sect. 7), and when studying language inclusion problems of
ω-regular languages [1,3,4]. As Proposition 4 shows, the complementation of
Büchi automata is super-exponential, i.e., it can be really expensive in practice
as well. While this is generally unavoidable [108], we believe that there is no
inherent reason to assume that the complement language is harder than the ini-
tial language: in model checking, when the property is given as a formula φ, the
typical approach assumes that the translation into a Büchi automaton is equally
efficient for the formula and its negation, so instead of translating φ to Aφ and
then complementing Aφ, it first negates φ and then translates ¬φ to A¬φ so that
L(A¬φ) = Σω \ L(Aφ). Would the complement language of φ be indeed more
complex than the language of φ, this approach would suffer in translating the
negation of the formula, since such a negation corresponds to the complement
of the original property’s language. Besides this, we have that complementing
twice a language L gives L itself, while complementing a Büchi automaton twice
would generate an automaton of incredible size: for instance, complementing
twice a BA with 10 states would result in a BA accepting the same language
with roughly at least 107·107 states, according to the approximation given by
Proposition 4.

This begs to ask the question, whether we can disentangle the complement
BA from the syntactic representation of the BA accepting the language we want
to complement. By taking inspiration from the regular languages setting, where
the minimal DFA accepting a given regular language can be learned by the DFA
learning algorithm, in this section we show how we can learn a BA accepting the
complement of a given target ω-regular language L.

82 Y. Li et al.

6.1 The Complement BA Learning Framework

The learning framework for complementing a Büchi automaton is shown in
Fig. 27 and it has been proposed in [74], to which we refer the interested reader
for more details. It is based on a variation of the FDFA learning algorithm to
learn F , explained in Sects. 4 and 5. As we can see from Fig. 27, the learner
is exactly the FDFA learner used to learn BAs (cf. Fig. 16). This means that
the learner first uses membership queries for F until a consistent automaton is
created and then he turns to equivalence queries, while being oblivious of the
fact that he is actually learning Σω \ L(A) instead of L(A). The difference with
the learning algorithm for BAs shown in Fig. 16 lies completely in the teacher:
for membership queries, the teacher uses—cheap—standard queries [11,73]; the
real novelty is in a careful design of the answer to the equivalence queries that
makes use of cheap operations whenever possible.

These equivalence queries are not executed with the FDFA F and its com-
plement FC , but with the Büchi automata BF and BFC that under-approximate
them. The teacher first checks whether L(BF) is disjoint from L(A) we want to
complement. This step is cheap, and if the answer is negative, then she returns
to the learner an ultimately periodic word uvω ∈ L(A), where at least some
decomposition of uvω is (wrongly) accepted by F .

In case L(BF) ∩ L(A) = ∅, the teacher checks whether the language of BFC is
included in the language of A. This is an interesting twist, since language inclu-
sion is one of the traditional justifications for complementing Büchi automata, as
mentioned in Sect. 3.5. But while the problem is PSPACE complete (cf. Proposi-
tion 8), it can usually be handled well by using efficient tools like RABIT [1,3,4].
In particular, RABIT makes use of a powerful set of computationally effective
preprocessing and automata-exploration based heuristics that usually allow the
language inclusion problem to be answered very efficiently.

Non-inclusion comes with a witness in the form of an ultimately periodic
word xyω accepted by BFC , but not by A. Thus, some decomposition (u, v)
of xyω is (incorrectly) rejected by F and she returns it to the learner. In case
L(BFC) ⊆ L(A) holds, the teacher then concludes that L(BF) = Σω \ L(A)
and terminates the algorithm with BF as the complement of A. Note that the
learner is not required to construct an FDFA F such that L(F) = Σω \ L(A);
it is enough that L(BF) = Σω \ L(A), which can save the framework to manage
further membership and equivalence queries.

More details about the correctness of the proposed complementation frame-
work, its complexity, and its experimental evaluation can be found in [74]. We
want, however, to give some more detail about the use of RABIT to solve the
language inclusion problem the teacher may need to answer in an equivalence
query EQ(F). As said above, RABIT is equipped with a powerful set of heuris-
tics; among others, RABIT makes use of the following ones, in an increasing order
of their efficacy and amount of computation they need: (1) try simple automata-
pruning algorithms, which help in reducing the size of the considered automata;
(2) try delayed simulations, which is intended to prove the language inclusion
by analyzing the structure of the automata; (3) if inclusion was not established

Learning Büchi Automata and Its Applications 83

in step 2 then try to find a counterexample to inclusion by the Ramsey-based
method [3,4] with a small timeout value; (4) if no counterexample was found in
step 3 then try the automata minimization algorithms proposed in [33], which
simplify the two automata by changing their languages while preserving their
language inclusion relationship.

Since these heuristics are not complete, RABIT uses as the last resort the
Ramsey-based inclusion testing algorithms already used in step 3, this time
without timeout, to finally decide whether the language inclusion holds. From
the experimental evaluation presented in [74] we can see that the learning-based
complementation algorithm is really effective in getting the complement automa-
ton, in particular when the automaton to be complemented is of large size. One
interesting thing we noted in the experiments is that the automaton BF used in
the check L(BF) ∩ L(A) = ∅ can change sensibly between an equivalence query
and the following one, which makes it difficult to predict how much RABIT is
able to exploit its heuristics. Anyway, in very few cases RABIT needed to use
the Ramsey-based inclusion testing algorithms to finally decide whether the lan-
guage inclusion holds, which usually consumes most of the running time in the
corresponding experiment.

6.2 The Complement BA Learning Framework in Action

Suppose that we want to learn the complement of the NBA B depicted in Fig. 1;
recall that L(B) = Σ∗ · bω. The learning algorithm works as follows: the learner
first poses several membership queries and constructs the initial conjectured
FDFA F1 shown in Fig. 28.

ε

M1

F1

a

b

ε

Aε
1

a

b

ε

q1

q2

BF1

a, b a, b

a, b

a, b

a, ba, b

Fig. 28. Initial FDFA F1 = (M1, {Aε
1}) and the corresponding under-approximation

Büchi automaton BF1 .

Afterwards, the learner performs the equivalence query EQ(F1) to verify
whether F1 is correct. In order to answer this equivalence query, the teacher first
constructs the Büchi automaton BF1 , also shown in Fig. 28, and then checks the
emptiness of L(BF1) ∩ L(B). This check fails: assume that the teacher gets the
ω-word b(bb)ω ∈ L(BF1) ∩ L(B); by means of the counterexample analysis, the
teacher is able to answer negatively to the query EQ(F1) posed by the learner
by returning the negative counterexample (ε, b), a decomposition of b(bb)ω.

84 Y. Li et al.

ε

M2

F2

a

b

ε b

Aε
2

a

b
b

a
ε

q1

q2 q3

BF2

a, b

a

a

b

a

b

a

a

b
b

a
a

Fig. 29. Second FDFA F2 = (M2, {Aε
2}) and the corresponding under-approximation

Büchi automaton BF2 .

Upon receiving (ε, b), the learner refines the current FDFA F1 to F2, shown
in Fig. 29, by means of membership queries; then it poses the equivalence query
EQ(F2) for F2. As before, the teacher first transforms F2 to BF2 and then
checks for the emptiness of L(BF2) ∩ L(B). It is easy to see that L(BF2) is
indeed disjoint from L(B). Therefore, the teacher has first to compute the Büchi
automaton BFC

2
under-approximating FC

2 , shown in Fig. 30, and then to check
the language inclusion L(BFC

2
) ⊆ L(B); this check fails.

Assume that the teacher finds b(ab)ω ∈ L(BFC
2
) \ L(B); she then answers

negatively to EQ(F2) by means of the positive counterexample (b, ab) obtained
from b(ab)ω.

ε

q1

q2 q3

BFC
2

a, b

b

a

b

a

b

a

b

b
b

a
b

ε

q1

q2

BFC
3

a, b b

b

b

b

b

Fig. 30. Under-approximation Büchi automata BFC
2

and BFC
3

for FC
2 (depicted in

Fig. 29) and FC
3 (shown in Fig. 31), respectively

The learner uses the received counterexample (b, ab) to further refine the
current FDFA F2; after asking several membership queries, he generates the
candidate FDFA F3 and then asks an equivalence query for it. As in the previous
cases, the teacher starts by constructing the Büchi automaton BF3 for F3, shown
in Fig. 31. Since L(BF3) ∩ L(B) is empty, the teacher proceeds to the second
check, so she constructs the BA BFC

3
, shown in Fig. 30, and then proceeds to

Learning Büchi Automata and Its Applications 85

perform the last check, i.e., whether L(BFC
3
) ⊆ L(B), which is obviously the case.

Thus, the teacher terminates the learning algorithm by returning BF3 , shown in
Fig. 31, as the complement of B.

ε

M3

F3

a

b

ε

f

t

Aε
3 a

b

a, b

b

a ε

q1

q2 q3

BF3

a, b

b

a

a

b a

a

b

a

a, b

a, b

Fig. 31. Final FDFA F3 = (M3, {Aε
3}) and the corresponding under-approximation

Büchi automaton BF3

6.3 Experimental Evaluation

To support our claim that there is no actual super-exponential dependency
between the language L we want to complement and the size of the comple-
ment AC of the BA A such that L(A) = L, we briefly recall the experiments
we conducted in [74], where the complementation learning framework has been
presented.

There we implemented our learning approach as Buechic, based on the ROLL
learning library [73]; the inclusion check L(BFC) ⊆ L(A) (cf. Fig. 27) is del-
egated to RABIT [1,3,4]. In the experiments, we compared Buechic with two
tools: GOAL [99], which is a mature and well-known tool for manipulating Büchi
automata, for which we consider four different implemented complementing algo-
rithms; and SPOT [39], which is the state-of-the-art platform for manipulat-
ing ω-automata, including Büchi automata. All tools accept as input automata
represented in the Hanoi Omega-Automata (HOA) format [13]. Recall that
SPOT does not provide a complementation function for generic Büchi automata
directly, thus we first use SPOT to get a deterministic automaton from the
given NBA, then complement the resulting deterministic automaton (for parity
automata this just means adding 1 to all priorities), and finally transform the
resulting complement automaton to an equivalent NBA. Since SPOT is a highly
optimized tool that uses effective heuristics, it very often produces very small
automata, but the heavy use of heuristics makes the comparison lopsided. More-
over, SPOT uses symbolic data structures called OBDDs which provide a more
efficient way to manipulate automata compared to GOAL and Buechic.

Table 1 reports the results of the complementation on the automata from
Büchi Store [100], which contains 295 NBAs with 1 to 17 states and with 0 to
123 transitions. However, since one of such automata has only one state without
transitions and GOAL fails in recognizing it as a Büchi automaton, we decided
to exclude it from the experiments and consider only the remaining 294 cases.

86 Y. Li et al.

Table 1. Comparison between GOAL, SPOT, and Buechic on complementing
Büchi Store. Note that the transitions in SPOT are represented denser—the same
automaton attracts a lower transitions count.

Block Experiments

(States, Transitions)

GOAL Buechic SPOT

Ramsey Determinization Rank Slice

1 287 NBAs (928, 2071) |Q| 21610 3919 21769 4537 2428 1629

|δ| 964105 87033 179983 125155 35392 13623

tc 992 300 203 204 105 6

2 5 NBAs (55, 304) |Q| –to– 926 38172 1541 165 495

|δ| 21845 384378 50689 5768 4263

tc 28 42 12 474 <1

3 2 NBAs (20, 80) |Q| –to– –to– 27372 11734 96 2210

|δ| 622071 1391424 6260 102180

tc 56 152 7 1

100 101 102 103 104 105 106
100

101

102

103

104

105

106

States by SPOT

St
at
es

by
B
ue
ch
ic

100 101 102 103 104 105 106
100

101

102

103

104

105

106

Transitions by SPOT

T
ra
ns
it
io
ns

by
B
ue
ch
ic

Fig. 32. Comparison between the number of states and transitions of automata gen-
erated by SPOT and Buechic on 72 automata corresponding to formulas from [92].

By inspecting the entries in Table 1 we can see that our learning based com-
plementation method always outperforms the complementation methods offered
by GOAL when we consider the number of states and transitions. When com-
pared with SPOT, we see that the optimizations in SPOT are really effective,
in both runtime and size of generated automata, for the small input automata
(cf. block 1), but the transformation to parity automata starts to show its effects
for larger automata (cf. blocks 2 and 3).

We have also considered 72 further Büchi automata generated from 72 formu-
las from [92]. In summary, Ramsey-based, Determinization-based, Rank-based,
and Slice-based GOAL approaches solve 49, 58, 61, and 62 complementation
tasks, respectively, within 5 min, while SPOT solves 66 tasks and Buechic solves
65 tasks. Among these, there are 64 tasks solved by both SPOT and Buechic,
while the remaining cases are disjoint, which implies that our algorithm comple-
ments existing complementation approaches very well.

Learning Büchi Automata and Its Applications 87

1 2 3 4 5 6 7

101

102

103

104

k

St
at
es

Ramsey Determinisation Rank
Slice SPOT Buechic

Fig. 33. States comparison of GOAL, SPOT, and Buechic on the formula pattern∧k
i=1(GFai) → GFb

In Fig. 32, relative to the 64 commonly solved tasks, the coordinate values
of the y axis and x axis are the corresponding number of states (respectively,
transitions) in the complement automata of Buechic and SPOT, respectively.
All points below the dotted diagonal indicate that the complement automata
learned by our algorithm have smaller values than the complement automata
constructed by SPOT, which is the case for almost all large examples. We recall
that SPOT merges transitions that share the same source state and target state
as one transition, so in the right scatter plot of Fig. 32, many points are above
the diagonal line. Nevertheless, we can learn from the plots that only SPOT
produces those automata with more than 103 states or 104 transitions, which
indicates that the reduction optimizations of SPOT do not work well on large
automata and our algorithm performs much better on large automata.

In order to show how the growing trend of the number of states in the com-
plement automata of the complementation algorithms behaves when we increase
the size of the given Büchi automata in some cases, we take the generated Büchi
automata for the formula pattern

∧k
i=1(GFai) → GFb. The growing trend of the

number of states in the complement automata for the approaches in GOAL,
SPOT, and Buechic are plotted in Fig. 33. The number of states in the com-
plement automaton constructed by GOAL and SPOT is growing exponentially
with respect to the parameter k, while the number of states in the complement
automaton learned by our algorithm grows linearly. The experimental results
show that the performance of our algorithm can be much more stable for some
automata with their growth of the states. Thus an advantage of our learning app-
roach is that it has potentially better performance on large automata compared
to classic complementation techniques.

88 Y. Li et al.

Program P and uvω ∈ L(AP) Prove the termination of uvω.

An approach to generalize uvω

to a certified module (AM , f, I).

Automata algorithms to
find a word uvω in the
uncertified part of P .

P always terminates

uvω

uvω with a proof

AM

uvω

Fig. 34. The flow of the automata-based termination analysis

7 Application of Büchi Automata in Termination
Analysis

In this section we present how Büchi automata and their complements are used
in practice for complex verification tasks, like in program termination analysis.

Termination analysis of programs is a challenging area of formal verification,
which has attracted the interest of many researchers approaching the problem
from different angles; see, e.g., [14,22,36–38,47,48,52,55,64,69,70,80,84–86,95,
101,102]. In general, while analyzing the termination of a program, we need to
deal with the following challenge: when a program contains loops with branching
or nesting, how can we devise a termination argument that holds for any possible
interleaving of the different paths through the loop body?

Due to the difficulty of solving the general problem, many researchers have
focused on its simplified version that addresses only lasso-shaped programs, i.e.,
programs where the control flow consists of a stem followed by a simple loop
without any branching. Proving termination for this class of programs can be
done rather efficiently [15–17,23,35,54,71,83], but its extension to general pro-
grams is not easy.

7.1 Automata-Based Termination Analysis

In order to simplify our presentation, we consider only C programs without func-
tion calls and pointers; the variable updates are restricted to linear combinations.
Since our goal in this section is to describe the modular termination analysis for
a given program P , we assume that every sampled path can be proved to be
terminating. Therefore, in the end, we can prove that P always terminates.

The approach of Heizmann et al. [55] proposes a modular construction of ter-
mination proofs for a general program P from termination proofs of lasso-shaped
programs obtained from its concrete paths as depicted in Fig. 34. On a high level,
the approach repeatedly performs the following sequence of operations: first, it
samples a path τ = uvω from the possible behaviours of P and attempts to
prove its termination [15–17,23,35,54,71,83] by using an off-the-shelf termina-
tion checker, like LassoRanker, part of the Ultimate Automizer suite [55].

Learning Büchi Automata and Its Applications 89

program insertionSort(int a[], int n):
�1: int i:=1

�2: while (i<n)

�3: int k:=a[i]

�4: int j:=i-1

�5: while (j>=0 && a[j]>k):

�6: a[j+1]:=a[j]

�7: j--

�8: a[j+1]:=k

�9: i++

(a) Program P ins

�1

�2

�3

�4

�5

�6 �7

�8

�9

i:=1

i<n

k:=a[i]

j:=i-1j<0 || a[j]<=k

j>=0 && a[j]>k

a[j+i]:=a[j]

j--

a[j+1]:=k

i++

(b) The BA AP ins

Fig. 35. An example of program and its BA representation

The returned result of this step is possibly a termination argument of the sam-
pled path, a non-termination argument of the sampled path, or “unknown” which
indicates that the termination checker failed to decide the termination of the
sampled path. Second, it generalizes τ into a (potentially infinite) set of paths
M, called a certified module, that all share the same termination proof with τ .
Finally, it checks whether the behaviour of P contains a path τ ′ not covered by
any certified module generated so far and, if so, the procedure is repeated. This
sequence is repeated until either a non-terminating path is found, “unknown” is
returned, or all behaviours of P are covered by the modules.

7.2 Automata-Based Termination Analysis: An Example

As an example of the above approach, consider the insertion sort program P ins

shown in Fig. 35(a); Fig. 35(b) shows the control flow graph (CFG) of P ins as a
Büchi automaton AP ins

.
The alphabet of AP ins

is the set of all statements occurring in P ins, like
assignments and guards, while the states of AP ins

are the locations of P ins;
the initial state is the first location of the program, i.e., its entry point. The
transitions connect states according to the way each location is reachable from
another: for instance, we have the transition from
1 to
2 with action i:=1

since
2 is reached after such initialization in location
1; similarly, we have a
transition from
5 to
8 with action j<0 || a[j]<=k since
8 is reached when the
guard j>=0 && a[j]>k of the while statement at location
5 is not satisfied. All
states of AP ins

are accepting so each feasible infinite sequence of statements of
the program corresponds to an infinite word in the language L(AP ins

).

90 Y. Li et al.

The aim of the termination analysis is to cover the executions of AP ins

by
the accepted words of a finite set of BAs {A1, . . . ,An} such that L(AP ins

) ⊆
L(A1) ∪ · · · ∪ L(An) which is reduced to checking whether L(AP ins

) ∩ L(AC
1) ∩

· · · ∩ L(AC
n) = ∅, as we have seen in Sect. 3.5. If we can prove that each BA Ai

represents a program with a termination argument, then since every execution
of P ins is represented by a word in AP ins

, P ins is guaranteed to terminate by
the arguments for the single BAs Ai.

q1

{oldrnk = ∞}
q2

{oldrnk = ∞}
q3

{oldrnk = ∞}
q4

{oldrnk = ∞}
q5

{j < oldrnk}
q6

{0 ≤ j ≤ oldrnk}

q7

{0 ≤ j ≤ oldrnk}

i:=1 i<n k:=a[i] j:=i-1

j>=0 && a[j]>k

a[j+1]:=a[j]

j--

Fig. 36. A certified module for the lasso word uvω = i:=1 · i<n · k:=a[i] · j:=i-1 ·

(j>=0 && a[j]>k · a[j+i]:=a[j] · j--)ω

In order to have a termination argument, each BA Ai is associated with a
ranking function fi and a rank certificate Ii mapping each state to a predicate
over the program variables. The triple Mi = (Ai, fi, Ii) is called a certified mod-
ule. The construction of the set {M1, . . . ,Mn} is progressive (see Fig. 34). First,
we sample an ultimately periodic word uvω ∈ L(AP ins

)—which is essentially a
lasso-shaped program—and use an off-the-shelf tool to check if it corresponds
to a terminating argument. In our example, we start with sampling the word
uvω = i:=1 · i<n · k:=a[i] · j:=i-1 · (j>=0 && a[j]>k · a[j+i]:=a[j] · j--)ω . We can

prove termination of the path corresponding to uvω by finding, e.g., the ranking
function f1(i, j, n) = j+ 1, for which it holds that at each iteration of the inner
loop, the value of f1(i, j, n) decreases since j is decreased by 1. The resulting
certified module is shown in Fig. 36, where oldrnk is a fresh variable used to keep
track of the value of the ranking function at the previous visit of the accepting
state.

In the following, we denote the inner loop of AP ins

as Inner = j>=0 && a[j]>k ·

a[j+i]:=a[j] · j-- and its outer loop as Outer = j<0 || a[j]<=k · a[j+1]:=k ·

i++ · i<n · k:=a[i] · j:=i-1 . We can observe that f1 is also a ranking func-

tion for the set of paths obtained by generalizing uvω into the set of words
that correspond to all paths that eventually stay in the inner loop, i.e., words
from L1 = i:=1 · i<n · k:=a[i] · j:=i-1 · (Inner+Outer)∗ ·Innerω . The lan-

guage L1 together with a ranking function f1 and a rank certificate I1 can be
represented by the certified module M1 = (A1, f1, I1), depicted in Fig. 37; the

Learning Büchi Automata and Its Applications 91

q1

{oldrnk = ∞}
q2

{oldrnk = ∞}
q3

{oldrnk = ∞}
q4

{oldrnk = ∞}
q′
4

{oldrnk = ∞}
q5

{j < oldrnk}
i:=1 i<n k:=a[i] j:=i-1

j:=i-1

Inner,Outer

Inner

Outer
Inner

Fig. 37. The certified module M1 for the language L1 = i:=1 · i<n · k:=a[i] ·

j:=i-1 (Inner+Outer)∗ · Innerω

transitions labelled with action Inner or Outer are a shorthand for the cor-
responding sequences of transitions and states: for instance, the self-loop on q5
with action Inner stands for the states and transitions reachable from q5 in
Fig. 36.

q1

{oldrnk = ∞}
q2

{oldrnk = ∞}
q3

{oldrnk = ∞}
q4

{oldrnk = ∞}
q5

{n − i < oldrnk}
i:=1 i<n k:=a[i] j:=i-1

Outer

Fig. 38. A certified module for the lasso word i:=1 · i<n · k:=a[i] · j:=i-1 ·Outerω

We proceed by removing all paths covered by L1 from AP ins

to know
which paths still need to be examined. The removal can be performed by exe-
cuting a BA difference algorithm, presented in Sect. 3.4, followed by check-
ing language emptiness (potentially finding a new counterexample uvω on fail-
ure). In our example, the difference corresponds to the (non-empty) language
L(AP ins

|A1
) = i:=1 · i<n · k:=a[i] · j:=i-1 ·(Inner∗·Outer)ω represented by AP ins

|A1
.

Suppose the next sampling gives us uvω = i:=1 · i<n · k:=a[i] · j:=i-1 ·Outerω
,

for which, e.g., the ranking function f2(i, j, n) = n − i is applicable; the corre-
sponding certified module is shown in Fig. 38.

q1

{oldrnk = ∞}
q2

{oldrnk = ∞}
q3

{oldrnk = ∞}
q4

{oldrnk = ∞}
q5

{n − i < oldrnk}

q′
5

{0 ≤ n − i ≤ oldrnk}
i:=1 i<n k:=a[i] j:=i-1

Outer

Inner

Inner
Outer

Fig. 39. The certified module M2 for the language L2 = i:=1 · i<n · k:=a[i] ·

j:=i-1 · (Inner∗ ·Outer)ω

92 Y. Li et al.

Note that f2 is also a valid ranking function for all paths taking the outer
while loop infinitely often, i.e., all paths corresponding to words from L2 =
i:=1 · i<n · k:=a[i] · j:=i-1 · (Inner∗ ·Outer)ω. We represent these paths by

the certified module M2 = (A2, f2, I2) where L(A2) = L2, shown in Fig. 39.
After removing the words of A2 from L(AP ins

|A1
), we, finally, obtain the BA

AP ins

|A1,A2
, whose language is empty. This means that the modules M1 and M2

cover all possible paths of the program P ins and, because each of them comes
with a termination argument, we can conclude that all paths of P ins are guar-
anteed to terminate.

7.3 Automata-Based Termination Analysis: Difficulties

As we have seen in the example above, the general termination analysis involves
several operations based on Büchi automata, like emptiness check and comple-
mentation or language difference. While emptiness is really cheap (cf. Proposi-
tion 6), complementation or language difference are in general extremely expen-
sive (cf. Propositions 4 and 5), so it would be better to limit their number as
much as possible.

Note however that the complementation of a lasso-shaped automaton corre-
sponding to a lasso-shaped word is really easy: it is enough to add an accepting
sink state collecting all missing transitions and make the original accepting state
no more accepting. While this is cheap, the net effect in the termination analysis
is really limited: in this way we remove only one infinite word at a time, so there
is a negligible progress in the termination analysis.

The generalizations we have seen before are useful to avoid such negligible
progress, since they allow us to remove a possibly very large set of words at each
iteration. This comes at the expense of the complexity of complementing the cor-
responding Büchi automaton, which now can suffer from the super-exponential
complexity of the language difference or complementation operations.

It is easy to recognize that there is a trade-off between the size of the set
of paths of the program P covered by current certified module Mi and the
complexity of complementing Mi itself. There are several techniques to balance
these two aspects, together with specialized algorithms for them; see [28] for more
details on the different generalization techniques, their effectiveness in covering
the paths of the input program, and further explanations and references about
the creation of certified modules from a lasso-shaped word.

We are confident that learning the complement of Büchi automata, shown
in Sect. 6, is a useful technique that can complement the existing proposals, in
particular for tackling the more challenging cases where the ordinary techniques
start suffering from the super-exponential grown of the complement BA. This is
left to future work.

Learning Büchi Automata and Its Applications 93

8 Conclusion

In this work, we have presented a learning algorithm for Büchi automata by
means of its learning of the simple ω-regular language (ab)ω. We have also demon-
strated how the learning algorithm can be used in classical automata operations
such as complementation checking and in the termination analysis context. We
believe that with the intuitive explanation of the different learning algorithms for
both finite and ω-regular languages, it will benefit both the learning community
and the model checking community.

Acknowledgement. This work has been supported by the National Natural Science
Foundation of China (Grant Nos. 61532019, 61761136011), and by the CAP project
GZ1023.

References

1. RABIT tool. http://languageinclusion.org/doku.php?id=tools
2. Aarts, F., Vaandrager, F.W.: Learning I/O automata. In: Gastin, P., Laroussinie,

F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4 6

3. Abdulla, P.A., et al.: Simulation subsumption in ramsey-based Büchi automata
universality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 14

4. Abdulla, P.A., et al.: Advanced ramsey-based Büchi automata inclusion testing.
In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6 13

5. Allred, J.D., Ultes-Nitsche, U.: A simple and optimal complementation algorithm
for Büchi automata. In: LICS, pp. 46–55 (2018)

6. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

7. Alur, R., Černỳ, P., Madhusudan, P., Nam, W.: Synthesis of interface specifica-
tions for Java classes. In: POPL, pp. 98–109 (2005)

8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

9. Angluin, D., Boker, U., Fisman, D.: Families of DFAs as acceptors of omega-
regular languages. In: MFCS, pp. 11:1–11:14 (2016)

10. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating
automata. In: IJCAI, pp. 3308–3314 (2015)

11. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016)

12. Arnold, A.: A syntactic congruence for rational ω-languages. Theor. Comput. Sci.
39, 333–335 (1985)

13. Babiak, T., et al.: The hanoi omega-automata format. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 31

14. Ben-Amram, A.M.: Size-change termination, monotonicity constraints and rank-
ing functions. Log. Methods Comput. Sci. 6 (2010)

http://languageinclusion.org/doku.php?id=tools
https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1007/978-3-319-21690-4_31

94 Y. Li et al.

15. Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-
constraint loops. In: POPL, pp. 51–62. ACM, New York (2013)

16. Ben-Amram, A.M., Genaim, S.: Complexity of bradley-manna-sipma lexico-
graphic ranking functions. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 304–321. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21668-3 18

17. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601–620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 32

18. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS, pp. 193–207 (1999)

19. Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.-H.: Comple-
menting semi-deterministic Büchi automata. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 770–787. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 49

20. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: IJCAI, pp. 1004–1009 (2009)

21. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 32

22. Borralleras, C., et al.: Proving termination through conditional termination. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99–117.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 6

23. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504.
Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 48

24. Breuers, S., Löding, C., Olschewski, J.: Improved ramsey-based Büchi comple-
mentation. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 150–164.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 10

25. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Inter-
national Congress on Logic, Methodology and Philosophy of Science, pp. 1–11
(1962)

26. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-
languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58027-1 27

27. Chapman, M., Chockler, H., Kesseli, P., Kroening, D., Strichman, O., Tautschnig,
M.: Learning the language of error. In: ATVA, pp. 114–130 (2015)

28. Chen, Y.F., et al.: Advanced automata-based algorithms for program termination
checking. In: PLDI, pp. 135–150 (2018)

29. Chen, Y.F., et al.: PAC learning-based verification and model synthesis. In: ICSE,
pp. 714–724 (2016)

30. Choueka, Y.: Theories of automata on ω-tapes: a simplified approach. J. Comput.
Syst. Sci. 8(2), 117–141 (1974)

31. Clarke, E.M.: Model checking – my 27-year quest to overcome the state explosion
problem. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 182–182. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 13

32. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/978-3-642-28729-9_10
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/978-3-540-89439-1_13
https://doi.org/10.1007/978-3-540-89439-1_13
https://doi.org/10.1007/978-3-319-10575-8

Learning Büchi Automata and Its Applications 95

33. Clemente, L., Mayr, R.: Advanced automata minimization. In: Proceedings of
POPL 2013, pp. 63–74. ACM (2013)

34. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

35. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. Formal Methods Syst. Des. 43(1), 93–120 (2013)

36. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code.
In: PLDI, pp. 415–426. ACM, New York (2006)

37. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

38. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 4

39. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

40. Emerson, E.A., Lei, C.: Modalities for model checking: branching time strikes
back. In: POPL, pp. 84–96 (1985)

41. Emerson, E.A., Lei, C.: Modalities for model checking: branching time logic strikes
back. Sci. Comput. Program. 8(3), 275–306 (1987)

42. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 2

43. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic
systems using learning. In: QEST, pp. 133–142 (2010)

44. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word
automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)

45. Fogarty, S., Kupferman, O., Wilke, T., Vardi, M.Y.: Unifying Büchi complemen-
tation constructions. Log. Methods Comput. Sci. 9(1) (2013)

46. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter.
In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 64–78. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30476-0 10

47. Ganty, P., Genaim, S.: Proving termination starting from the end. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 397–412. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 27

48. Giesl, J., et al.: Analyzing program termination and complexity automatically
with AProVe. J. Autom. Reason. 58, 3–31 (2017)

49. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

50. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theor. Comput. Sci. 411(47), 4029–4054 (2010)

51. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing
nondeterministic Büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003.
LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39724-3 10

https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/978-3-540-30476-0_10
https://doi.org/10.1007/978-3-642-39799-8_27
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-540-39724-3_10
https://doi.org/10.1007/978-3-540-39724-3_10

96 Y. Li et al.

52. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1 19

53. van Heerdt, G., Sammartino, M., Silva, A.: CALF: categorical automata learning
framework. In: CSL, pp. 29:1–29:24 (2017)

54. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365–380. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8 26

55. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning ter-
minating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 797–813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 53

56. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2006)

57. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27940-9 17

58. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

59. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

60. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

61. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp.
724–735. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-
8 59

62. Kaminski, M.: A classification of ω-regular languages. Theor. Comput. Sci. 36,
217–229 (1985)

63. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning The-
ory. MIT Press, Cambridge (1994)

64. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14295-6 9

65. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Logic 2(3), 408–429 (2001)

66. Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time.
J. Comput. Syst. Sci. 35(1), 59–71 (1987)

67. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The
Automata-theoretic Approach. Princeton University Press, Princeton (1994)

68. Landweber, L.H.: Decision problems for ω-automata. Math. Syst. Theory 3(4),
376–384 (1969)

69. Le, T.C., Qin, S., Chin, W.: Termination and non-termination specification infer-
ence. In: PLDI, pp. 489–498. ACM, New York (2015)

https://doi.org/10.1007/978-3-642-15769-1_19
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-642-14295-6_9

Learning Büchi Automata and Its Applications 97

70. Lee, W., Wang, B.-Y., Yi, K.: Termination analysis with algorithmic learning.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 88–104.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 12

71. Leike, J., Heizmann, M.: Ranking templates for linear loops. Log. Methods Com-
put. Sci. 11(1) (2015)

72. Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for Büchi
automata based on family of DFAs and classification trees. CoRR abs/1610.07380
(2016). http://arxiv.org/abs/1610.07380

73. Li, Y., Chen, Y.-F., Zhang, L., Liu, D.: A novel learning algorithm for Büchi
automata based on family of DFAs and classification trees. In: Legay, A., Mar-
garia, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 208–226. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54577-5 12

74. Li, Y., Turrini, A., Zhang, L., Schewe, S.: Learning to complement Büchi
automata. In: VMCAI, vol. 10747, pp. 313–335 (2018)

75. Lin, S.W., André, E., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for
compositional verification of timed systems. IEEE Trans. Softw. Eng. 40(2), 137–
153 (2014)

76. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995)

77. Maler, O., Staiger, L.: On syntactic congruences for omega-languages. In: STACS,
pp. 586–594 (1993)

78. McMillan, K.L.: Symbolic Model Checking. Kluwer (1993)
79. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nom-

inal automata. In: POPL, pp. 613–625 (2017)
80. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing

liveness to safety in first-order logic. ACM Program. Lang. 2(POPL), 26:1–26:33
(2018)

81. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata Lang.
Comb. 7(2), 225–246 (2002)

82. Piterman, N.: From nondeterministic Büchi and streett automata to deterministic
parity automata. In: LICS, pp. 255–264 (2006)

83. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

84. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE
Computer Society, Washington, DC (2004)

85. Podelski, A., Rybalchenko, A., Wies, T.: Heap assumptions on demand. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70545-1 31

86. Popeea, C., Rybalchenko, A.: Compositional termination proofs for multi-
threaded programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol.
7214, pp. 237–251. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28756-5 17

87. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
In: STOC, pp. 411–420 (1989)

88. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
USENIX, pp. 193–206 (2015)

89. Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327 (1988)
90. Schewe, S.: Büchi complementation made tight. In: STACS. LIPIcs, vol. 3, pp.

661–672 (2009)

https://doi.org/10.1007/978-3-642-31424-7_12
http://arxiv.org/abs/1610.07380
https://doi.org/10.1007/978-3-662-54577-5_12
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-70545-1_31
https://doi.org/10.1007/978-3-642-28756-5_17
https://doi.org/10.1007/978-3-642-28756-5_17

98 Y. Li et al.

91. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de
Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00596-1 13

92. Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi
automata for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 312–332. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41540-6 17

93. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with appplications to temporal logic. Theor. Comput. Sci. 49, 217–237
(1987)

94. Staiger, L.: Research in the theory of omega-languages. Elektronische Informa-
tionsverarbeitung und Kybernetik 23(8/9), 415–439 (1987)

95. Ströder, T., et al.: Automatically proving termination and memory safety for
programs with pointer arithmetic. J. Autom. Reason. 58, 33–65 (2017)

96. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Com-
puter Science, vol. B: Formal Models and Sematics, chap. 4, pp. 133–192 (1990)

97. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 7

98. Tsai, M., Fogarty, S., Vardi, M.Y., Tsay, Y.: State of Büchi complementation.
Log. Methods Comput. Sci. 10(4) (2014)

99. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–
889. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 62

100. Tsay, Y.-K., Tsai, M.-H., Chang, J.-S., Chang, Y.-W.: Büchi store: an open repos-
itory of Büchi automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011.
LNCS, vol. 6605, pp. 262–266. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19835-9 23

101. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
54–70. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 4

102. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking func-
tions. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412–431. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 22

103. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
104. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,

F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

105. Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70918-3 2

106. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas], pp. 629–736
(2008)

107. Wang, F., Wu, J.-H., Huang, C.-H., Chang, K.-H.: Evolving a test oracle in black-
box testing. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol.
6603, pp. 310–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19811-3 22

108. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata
technique. Log. Methods Comput. Sci. 4(1:5) (2008)

https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1007/978-3-642-39799-8_62
https://doi.org/10.1007/978-3-642-19835-9_23
https://doi.org/10.1007/978-3-642-19835-9_23
https://doi.org/10.1007/978-3-662-49674-9_4
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/978-3-540-70918-3_2
https://doi.org/10.1007/978-3-540-70918-3_2
https://doi.org/10.1007/978-3-642-19811-3_22
https://doi.org/10.1007/978-3-642-19811-3_22

Securing Emergent IoT Applications

Prabhakaran Kasinathan1,2(B) and Jorge Cuellar1,2

1 Siemens AG, CT, IT Security, Munich, Germany
{prabhakaran.kasinathan,jorge.cuellar}@siemens.com

2 University of Passau, Passau, Germany

Abstract. Attacks on IoT, Cyber-Physical-Systems (CPS), and other
computing systems are evolving rapidly. As a result, IoT devices used
in critical infrastructures such as energy, health-care, and water supply
systems are vulnerable to attacks. A successful attack on such safety-
critical infrastructures may have life-threatening consequences. On the
other hand, existing security mechanisms are not enough to protect con-
strained IoT devices. Therefore, we need better security mechanisms and
tools to manage and protect IoT devices from malicious use.

In emerging paradigms like Internet-of-Things (IoT) platforms, Indus-
try 4.0, collaborative portals, and many others, we deal with a multi-
tenant architecture. In a multi-tenant architecture, the owners want to
secure their own integrity, confidentiality, and functionality goals with-
out being concerned about the goals of other entities. In this paper,
we present a framework to negotiate, compromise, and inter-operate
between different services or platforms to fulfill a purpose. Furthermore,
to ensure correct and safe operation of IoT systems, we must assure that
the integrity of the underlying systems and processes is properly executed
as intended i.e., the processes cannot be changed in an unauthorized way.

In this paper, we present our Petri Net based workflow specification
and enforcement framework to realize workflow-aware access control and
to protect the process integrity of IoT applications. The Petri Net mod-
els are amenable to formal verification. The resulting workflows have
other properties such as the ability to recover from error conditions. In
addition, we present a method to achieve distributed access control and
accountability integrated with our framework. We allow practitioner-
friendly tools to collect requirements and goals to design secure IoT sys-
tems and processes. Finally, we present a guide to implement our frame-
work with existing development environments and validate the method-
ology using concrete use case scenarios.

1 Introduction

The EU Research Cluster on IoT (IERC) [68] defines Internet of Things (IoT)
as “an infrastructure with self-configuring capabilities based on standard and
interoperable communication protocols where physical and virtual things have
identities, physical attributes, and virtual personalities and use intelligent inter-
faces, and are seamlessly integrated into the information network”.
c© Springer Nature Switzerland AG 2019
J. P. Bowen et al. (Eds.): SETSS 2018, LNCS 11430, pp. 99–147, 2019.
https://doi.org/10.1007/978-3-030-17601-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17601-3_3&domain=pdf
http://orcid.org/0000-0002-5814-7406
https://doi.org/10.1007/978-3-030-17601-3_3

100 P. Kasinathan and J. Cuellar

Constrained IoT devices are categorized by their ability to process and store
data, energy consumption, and communication capabilities (see [12]). Class 0
devices are really constrained sensor-like motes with less than 10 KB of RAM
and 100 KB of flash memory. Class 1 devices are quite constrained, and cannot
use standard Internet Protocol stack; however, class 1 devices support protocols
designed for constrained devices. Class 2 devices are less constrained, can sup-
port some security functionalities specifically designed for constrained devices.
Finally, the devices with capabilities beyond class 2 support most of the tradi-
tional Internet and security protocols like HTTP and TLS; however, they can still
be constrained by limited energy supply. Generally, IoT devices use both long
and short-range communication technologies such as Zigbee, Bluetooth, LTE,
etc. combined with constrained communication protocols such as Constrained
Application Protocol (CoAP) for Internet connectivity. Constrained IoT devices
are cheap, compact, easy to deploy, and consume less energy. Recently, orga-
nizations use data collected from IoT devices to get insights, predict, and to
optimize their services with the help of Artificial Intelligence (AI) technolo-
gies. This approach is used in various applications such as smart manufacturing,
industrial control systems, financial services, retail, intelligent logistics, trans-
portation, medical and healthcare applications, smart grid, intelligent traffic,
environmental monitoring, smart home, assisted living, agriculture, and many
more.

Constrained IoT devices are vulnerable to attacks because existing state-of-
the-art security mechanisms do not fit within the constrained devices and often
they can be accessed physically by an attacker. For example, modern remote
attestation technique is difficult to achieve in constrained IoT devices because
of the lack of space and processing power [13,61]. Implementing secure key gen-
eration and key storage in constrained IoT devices are hard (see guidelines from
Trusted Computing Group [71]) because these devices lack sufficient entropy to
generate random numbers and are prone to side-channel attacks. Several attacks
on industrial IoT devices are presented in [61]. Due to the vulnerabilities, hack-
ers frequently target IoT devices to escalate attacks on valuable assets. The
21st century has seen a sudden rise of insecure IoT devices in an unexpected
scale which require immediate attention i.e., we must secure those emergent IoT
devices. Now, since IoT devices are used in critical infrastructures, it is evident
that we need better security mechanisms and tools to protect them. Researchers
in academia and industry are working together to secure emergent IoT devices,
protocols, and applications. Furthermore, IoT devices collect personal informa-
tion or data that can be used to infer private activities or habits without proper
consent. As a consequence, the European Union’s privacy regulation GDPR (see
[22]) has enforced strict regulations for handling private information of users.

In emergent IoT applications, the multi-tenant architecture is more promi-
nent. In such applications, different entities provide and consume services from
one another and each entities might want to enforce their own integrity, confiden-
tiality or functionality goals on other entities consuming his service. The main
problem with multi-tenant systems and architecture is the “trust problem”: in

Securing Emergent IoT Applications 101

order to achieve his goals, each party requires that the others behave in a par-
ticular way. Ideally, the party would like to specify a “contract” that declares
his assumptions about the behavior of other entities as well as the guarantees
that he offers to them about his actions. But how can he trust other parties to
behave according to the contract? How can he be sure that they do not “cheat”?
In this paper, we investigate a way to automatically enforce a contract.

This is the purpose of a “smart contract”: it declares what happens if some of
the parties misbehave and what will happen in case of other error or unexpected
conditions. Each party imposes his rules on entities while they interact with his
services. In the case of electronic money, this is easier to enforce: the party that
cheats lose money. In the case where money is not available directly, it may be
difficult to penalize a party that is not complying with the stipulated rules. In
general, those sequences of interactions defined by “smart contracts” may be
seen as a set of allowed actions, or in other words, a workflow. Clearly, there is a
need to negotiate, compromise, and inter-operate the tasks to be completed by
the different entities within such a system.

To enforce such tasks to be executed in a particular order we need a workflow
specification and enforcement method. It is important to notice that securing
the assumption-commitment semantics of a smart contract is also the key for its
verification. The smart contracts are given as a refinement of Petri Nets, which
are subject to verification, see [59].

More specifically, we use the Petri Net based Workflow Specification and
Enforcement method presented in [39,40] to write such smart contracts which
guarantee the integrity of processes. The method also supports dynamic work-
flows that adapt to error conditions by allowing services to create on the fly
sub-workflows. Furthermore, the framework provides accountability and trans-
parency without assuming a central authority.

1.1 Security and Privacy Challenges in IoT

Security and Privacy challenges in IoT and Industrial Internet of Things (IIoT)
are discussed in [61,66,76] where the authors discuss technical, financial and
legal issues involved in IoT and existing solutions. In this paper, we discuss the
technical aspects of security and privacy challenges in IoT/IIoT. The OWASP
(Open Web Application Security Project) presented the Top 10 IoT vulnerabil-
ities and attack surfaces (see [47]), we discuss the topics relevant to this paper
here:

– Authentication and Authorization: the goal of an authentication system is
to verify that entities are correctly identified [11]. After authenticating an
entity, the security mechanism of verifying whether the entity is allowed to
perform certain actions is known as authorization. Existing state-of-the-art
authentication and authorization mechanisms do not fit in constrained IoT
devices; academic and industrial researchers are working towards addressing
them (see IETF ACE working group [32]). Since IoT devices are cheap, they
do not have interactive interfaces to implement traditional authentication

102 P. Kasinathan and J. Cuellar

mechanisms such as a display to present security info to the user, or a keypad
to enter passwords. Sometimes, even when proper security mechanisms are in
place, users do not use them properly. For example, the default password for
many IoT devices is not changed by their users because of its complexity i.e.,
the user needs to connect the device to the local network and login into it via
a web interface using default credentials to change it. For instance, hackers
have used this vulnerability to mount denial-of-service attacks on popular
websites by sending remote commands to billions of IoT devices - see Mirai
botnet attack [4]. On the other hand, most IoT devices implement single-
factor authentication such as the username and password, and authorization
does not consider the context of activities involved like tasks in a workflow.

– Confidentiality and privacy : IoT devices can collect sensitive information,
including personal data. Therefore, the data subjects want their information
to be confidential. Constrained IoT devices cannot use standard encryption
mechanisms, such as Transport Layer Security (TLS). Light-weight proto-
cols, such as Datagram Transport Layer Security (DTLS) over CoAP (See
[24]) have been designed to support the confidentiality and integrity of trans-
ported data. One of the challenges is that for instance, class 1 devices cannot
properly support DTLS, and therefore, packet losses will result in retrans-
mission of messages, affecting the performance of battery powered devices.
Compromised devices holding private data will expose information about the
private life of the data subjects. This demands the need for privacy-preserving
(enhancing) and confidentiality mechanisms integrated with the IoT device
communication [76].

– Integrity : there are at least three aspects of integrity. First, we have data
integrity – the assurance that the data transferred from one entity to another
has not been altered or tampered with. Second, we have the integrity of data
stored in memory – this includes, firmware, key material, data, or programs
stored in memory – is not altered. Third, we have process integrity. A busi-
ness/technical process specified must be executed as it is specified i.e., no one
is able to change, add additional steps or skip steps defined in the process.
This property is called “process integrity”, and it is discussed in detail below.
Security mechanisms such as Message Authenticate Code (MAC) exist to
ensure data integrity, and hardware or software attestation techniques exist
to ensure the integrity of firmware or application code. But achieving process
integrity is difficult, and no solutions exist to enforce it. One of the main goals
of this paper is to specify a process and ensure that it is properly enforced
on the entities executing it.

– Interoperability : IoT devices are heterogeneous in terms of processing power,
memory capacity, and communication technologies. Some IoT devices may
or may not operate with each other because of non-interoperable standards.
Different organizations collaborate to create interoperable standards such as
the Alliance for the Internet of Things Innovation (AIOTI) (see [3]). Also, the
research community such as ACE (see [32]) is working towards standardizing
security protocols to make IoT devices interoperable and secure. In particular,

Securing Emergent IoT Applications 103

we need interoperable security mechanisms that can be implemented on the
majority of IoT devices.

– Self-Configuration and Multi-Tenancy : is evident that IoT devices are get-
ting powerful, cheaper, (see Moore’s law [63]) and energy-efficient day-by-day.
Installing and configuring such advanced IoT devices with existing IoT appli-
cations should not require too much human involvement. The IoT devices
should have self-configuring features i.e., backward compatibility, resilient to
connection loses and device failures, etc. In such error cases, the IoT sys-
tem must re-adapt to the changes and work normally. Multi-tenancy refers
to the fact that devices or services belong to different owners with different
or competing goals. Those parties prefer to cooperate by exchanging infor-
mation with each other such that both parties will profit from information or
activities exchanged. IoT devices need to support such kind of multi-tenant
features without losing the security requirements of parties involved.

Protecting the Process Integrity of IoT Applications. A process is a
set of interrelated activities or tasks that must be carried out to accomplish a
goal [11]. A business/technical process is also called a workflow, but we use the
two words as synonymous. Different owners/stakeholders of devices or services
will probably try optimizing their own results and to secure their own integrity,
confidentiality or functionality goals, without really being concerned about the
goals of other entities. We call this property as Multi-Tenancy. We need a method
to protect the integrity of business processes of each owner/stakeholder without
compromising the integrity of the process of other involved entities.

A workflow can be defined as a pattern of activities or tasks to be completed
in a particular partial order by the involved entities, following predefined rules,
in order to accomplish a specific goal or subgoal. A workflow must be executed
as it is specified i.e., ensuring process-integrity. During the execution of the work-
flow, the participants may exchange with each other documents, information, see
[77]. Confidentiality is not as important as the availability and integrity of the
cybersecurity processes, which is mission-critical. Achieving process integrity of
different owners/stakeholders collaborating with each other is the main focus of
the paper.

We describe a small case study to gather the requirements, study the chal-
lenges, and to formulate the goals of our work. Let us consider the following use
case scenario (UC1): a manufacturing company requires continuous monitoring
and maintenance of equipment in its factory. For example, IoT devices are used
to monitor temperature, smoke, and fire, etc. IoT devices can also be used as
actuators to control access to doors, equipment, and emergency exits. The prove-
nance of IoT devices, quality, and maintenance of the manufacturing plant are
strictly enforced by predefined processes (workflows) defined by the manufactur-
ing owner. The integrity of such processes must be enforced to ensure quality
products being produced in the plant. Usually, a manufacturing plant consists
of different equipment or systems from different manufacturers, each will have
their own maintenance processes. If the production stops because of an equip-
ment malfunction or a supply chain problem or a worker who failed to follow

104 P. Kasinathan and J. Cuellar

the predefined rules, etc., then the problem must be identified and addressed as
soon as possible. To ensure the integrity of the processes strict access control
methods must be used. With this use case, we will formulate the requirements,
challenges, and goals of our work.

1.2 Goals of Our Framework

We want our framework to have a workflow-driven access control in contrast
to the commonly used mandatory (MAC), discretionary (DAC), or role-based
access control (RBAC), which have been well-studied in the literature, see [62].
Thus, the goals of our framework are:

– To provide a generic, interoperable, and distributed workflow-aware access
control method that restricts the entities to execute tasks in a predefined
order defined in the workflow. By doing this, we can guarantee the process
integrity of that particular workflow.

– Our Petri Net based workflow specification and enforcement method should
be interoperable i.e., it should support existing authorization standards such
as OAuth.

– Our method should support dynamic workflows that adapt to error conditions
i.e., allowing services to interact with each other and create on the fly sub-
workflows without changing the objective of the main workflow.

– Our framework should be extendable and support the integration of
practitioner-friendly tools.

– Our framework should support distributed accountability i.e., when necessary,
we can prove the actions of entities executing the workflow.

In this paper, we extend our Petri Net based workflow specification and
enforcement framework presented in [39,40] to present a comprehensive access
control security framework for the Internet of Things (IoT); however, this app-
roach can be applied to any generic computing system. The main contributions
of this paper are: first, we summarize our Petri Net extensions such as timeout
transitions contracts and open Petri Net places; second, we extend our frame-
work to support requirement elicitation methods with practitioner-friendly tools,
distributed accountability, and generation of Petri Net based smart contracts for
Blockchain; third, we use our framework to solve three use case scenarios; finally,
we present a high-level guide to implement our framework with existing systems.

To summarize, we present a method:

– To specify processes as workflows that can be created in a stepwise man-
ner using standard software engineering processes and tools. Such workflows
specified as Petri Nets are amenable to formal verification.

– To constrain an entity using an application/services to obey a prescribed
workflow with fine-grained authorization constraints based on least privilege
and need to access principle.

– That allows entities participating in a workflow to have a choice, for example,
to accept (or reject) “contracts” or conditions.

Securing Emergent IoT Applications 105

– That allows services and entities executing a workflow to handle error con-
ditions by supporting the creation of dynamic workflows, and that provides
accountability without assuming a central authority.

– To exchange authorization tokens in a secure and privacy-enhanced way. Note:
this method can also be used to transfer other tokens (such as money, infor-
mation, etc.) not just authorization tokens.

– To support distributed accountability while executing the workflow i.e.,
actions executed by entities executing the workflow is recorded in an
immutable database.

– To support the generation of Petri Net based smart contracts to be deployed
in a Blockchain.

The Rest of the Paper is Organized as Follows: Section 2 describes secu-
rity and privacy requirements of IoT and motivates the need for advanced secu-
rity mechanisms such as workflow-aware access control methods for emergent
IoT applications; Sect. 3 describes the evolution and background of Petri Nets;
Sect. 4 describes the existing background work published in the literature; Sect. 5
presents the contributions of our work; Sect. 6 describes three different use case
scenarios where we apply our method and solve them; Sect. 7 describes a high-
level summary of our method and a guide to implement our method with existing
systems; finally, we present limitations of our approach in Sect. 8 and conclusion
in Sect. 9.

2 Security and Privacy Requirements for IoT
Applications

The technical challenges of securing emerging IoT applications were described
in Sect. 1.1. Now, we discuss the relevant security and privacy requirements for
securing the emergent IoT applications. In particular, we refer to the mainte-
nance of manufacturing plant use case scenario UC1 to formulate the following
requirements.

2.1 Requirements Elicitation

The requirements engineering process can be divided into four tasks namely the
elicitation, negotiation, specification/documentation, and verification/validation
of requirements [55]. When we want to solve a problem, first, we need to gather
more information about the problem i.e., elicitation of the requirements, needs,
and constraints about the system. Often, information about the problem (or sys-
tem) is distributed among many stakeholders i.e., the knowledge is not available
from one source (user or customer). Therefore, the identification of the rele-
vant sources during the elicitation task is crucial. Modern tools such as Unified
Modeling Language (UML) or Systems Modeling Language (SysML) allow us
to collect requirements, use cases, draw activity diagrams, and finally to val-
idate requirements of a complete system. In particular, SysML provides tight

106 P. Kasinathan and J. Cuellar

integration of both software and hardware components. Thus, requirement elic-
itation is important to understand the problem and to gather requirements. For
example, in UC1, we need to understand which processes are critical and the
actors involved in the manufacturing plant. A detailed interview with managers
and workers handling the production equipment and IoT devices will give the
required information to define a workflow.

2.2 Distributed Authorization

Distributed authorization mechanisms are important to support a growing num-
ber of IoT devices. Authorization in distributed systems is complex to achieve
[25] as the resources are spread across a network of devices under different
domains, multi-tenant systems, and they might know each other or not. As
described earlier in the introduction, this is a trust problem. A smart lock
installed in a smart home opens or closes the door based on the access con-
trol (AC) policies defined by the owner. The owner may use his smartphone
to present his credentials to the smart lock. The smart lock may use OAuth
based mechanism to verify authorization tokens and update its AC policies peri-
odically. From the perspective of an IoT device (i.e., smart lock), whenever a
request from a Client (i.e., in this case, the owner’s smartphone) arrives, the IoT
device evaluates the authorization token attached with the request and sends
an appropriate response. This standard approach (for instance, IETF ACE [32])
ensures interoperability. In our work, we introduce changes only to the clients
and to the authorization service, but not to the IoT devices. For example, in
UC1 there could be several scenarios where we need distributed authorization.
For example, scenario 1: a worker wants to update some software in an IoT
device; for this purpose, the administrator authorizes the worker. Scenario 2: an
IoT device needs to authenticate, present authorization credentials to a secured
server to write some data; for this purpose, the IoT device needs to get an autho-
rization token from an authorization server. The role of the client and resource
server from the context of OAuth ACE protocol changes depending on the use
case but clearly we need distributed authorization. More information about this
topic is presented in Sect. 4.1.

2.3 Device Commissioning and Secure Software Updates

Often, IoT devices are deployed in large scale. To protect that infrastructure,
it is important to deploy devices with unique authentication credentials. Secure
device commissioning i.e., key-provisioning, device hardening, etc. helps to pro-
tect the device from attacks, and also perform secure software updates. Software
updates are often required to fix the software bugs or vulnerabilities in any com-
puter software. In particular, firmware updates can patch vulnerable IoT devices,
but an update from an untrusted source can install a Trojan or malware into
the device. Various commercial software update solutions exist, but they are not
interoperable and may not work with constrained devices. The IETF working

Securing Emergent IoT Applications 107

group - ‘software updates for IoT’ [72] is working towards creating an interoper-
able and secure software update solution for IoT devices (class 1 or above) with
approximately 100 KB of flash memory. Commissioning a large number of IoT
devices is still a challenge, we need automated tools, protocols for secure device
commissioning (see Enrollment over Secure Transport (EST) is used as a certifi-
cate provisioning protocol over HTTPS [67]. For example, in UC1, secure device
commissioning is crucial to ensure that deployed manufacturing equipment and
IoT devices are malware free, credentials provisioned are safe, etc. After deploy-
ing the equipment or IoT device, it is important to have the ability to provide
updates i.e., for introducing new features, roll back to the previous stable state,
or apply security-patches for the existing software, etc.

2.4 Attack Escalation Resilience

Compromising one IoT device means that the attacker can escalate the attack on
other IoT devices or systems connected to the same network. Attack escalation
is a serious problem, and we need resilience mechanisms. Authorization coupled
with the context of task execution workflow stops the attack escalation problem.
In this work, we describe a workflow-aware access control method which pre-
vents attack escalation to an extent. On the other hand, when multicast security
is used i.e., a group key is used for controlling a set of IoT devices. The IETF
RFC [26] specifies requirements and security considerations for generic group key
management protocols. The IETF draft [74] specifies a secure group communi-
cation for IoT devices that use the Constrained Application Protocol (CoAP).
In this work, we do not focus on multicast security. For example, in UC1, let us
assume that one of the IoT devices is physically accessible at the perimeter of
the manufacturing plant and the IoT device is compromised by an attacker (how
it is compromised is out of scope). For instance, the attacker may plan to esca-
late the attack by accessing other devices via the network. Therefore, we need
proper security mechanisms to restrict the attacker from compromising other
devices or equipment via a weak compromised device. Let us assume that there
exists a workflow for initializing software update or updating the configuration
of devices inside the manufacturing plant, then the attacker cannot perform his
attack unless he was able to execute that workflow and reach the state which
allows him to perform a software update. Note: at the first place, we should
have proper access control and authorization mechanisms for initializing and
executing the workflow.

2.5 Fine-Grained Access Control

In common Access Control (AC) methods such as role-based access control
(RBAC) see [62], access control and authorization is given to an entity based on
a Role. A role like admin is very powerful and has (almost all) permissions such
as to change, add, and delete features of a system. If such an entity (with admin
role) is compromised, then the attacker can do a lot of damage. Therefore, we
want to limit the set of permissions (fine-grained) given to an entity based on

108 P. Kasinathan and J. Cuellar

a workflow i.e., an entity can complete/execute a legitimate set of actions/tasks
in a particular order defined in the workflow. This motivates the need for a fine-
grained access control model such as the workflow-aware access control. Such
access control methods can protect the assets to an extent even if an entity is
compromised i.e., the entity should be executing the workflow in order to access
a particular service. For example, in UC1, it is a bad idea to give access to all
equipment and IoT devices to one single administrator account, because if that
admin credential is stolen or misused, then the attacker is able to access entire
system associated with the credential.

To achieve this, we need a least privilege principle for task authorizations
within each workflow. The least privilege principle is a security concept where
every computer module (such as a process, user, or program, depending on the
subject) may be able to access only the information and resources that are
necessary for its legitimate purpose. As a particular case, the principle “Need
to Know” is a confidentiality policy which states that no subject should be able
to read objects unless reading them is necessary for that subject to perform its
functions [11]. What we need is a similar policy, but regarding integrity. We
call this principle “Need to Access”: it states that no subject should be able to
write or change objects unless it is necessary to complete the required task of
a process or workflow at that particular state. By enforcing the need to access
principle, an entity can get privileges to execute a task only at the required step
of the workflow. This provides workflow-driven (workflow-aware) access control.

The workflow-aware access control needs an error-free workflow (free from
deadlocks) and a device to execute it. A powerful computing device like a smart-
phone is used to execute the workflow, not a constrained IoT device. Any generic
application logic or process that we want to enforce is represented as one or more
workflows. We elaborate further the requirements of the workflow-aware access
control below.

Verification of Workflows. Formal methods refer to mathematically rigor-
ous techniques and tools for specification, design, verification of software and
hardware systems. Formal verification is the act of proving or disproving the
correctness of a system with respect to a certain formal specification or property
[82]. A verified system may satisfy safety and liveness properties such as no dead-
locks, mutual exclusion is satisfied, each request will have a response, freedom
from starvation, etc. Therefore, we need a modeling language with which we
can verify some properties such as deadlocks in a workflow. A survey of formal
verification of business process modeling is presented in [49].

Adapt and Recover from Error Situations. An error-resilient IoT appli-
cation should be capable of recovering from unforeseen error situations to an
extent. Therefore, it is important to allow human interaction to solve a problem
that cannot be fixed by the system itself. A workflow may allow the owner of the
services to create on the fly sub-workflows without changing the main workflow
to recover from error conditions. This requirement is necessary to build a usable
security in an IoT application.

Securing Emergent IoT Applications 109

2.6 Distributed Accountability

Accountability is a fact or condition where an entity is accountable for actions
committed directly or indirectly. To enforce accountability in a system, we must
record (e.g., log) all important actions/interactions of an entity with the sys-
tem, including solicitation and execution. Logging is a standard feature in many
computing systems, it records system activities, process executions, user inter-
actions, etc. with relevant information such as timestamps and user identifier.
Thus, logging helps to achieve accountability. An accountability system needs
more than just logging i.e, it should satisfy integrity requirements of logs gener-
ated and stored by all processes. For example, the logs cannot be tampered or
destroyed in case of an attack i.e., mirroring logs on different servers or backup
solutions is necessary. Such accountability information is commonly used to per-
form various analysis such as auditing and forensic security analysis. Auditing is
an independent analysis of accounting records i.e., in a computer system, it can
be a program trace, log information, etc. Forensic security analysis is performed
to investigate a computer attack i.e., to find bugs in software processes, irreg-
ularities, and frauds committed by people, malware, etc. For example, in UC1,
in case of an attack or system/equipment failure, the production plant auditors
must have the capability to find the root cause of the incident. For this purpose,
we need proper accountability mechanisms by default. An accountability system
records every major decision (e.g., change logs, etc.) taken by the administrators
or workers.

3 Evolution of Petri Nets

In this section, we introduce Petri Nets and evolution over the decades since
their inception on the year 1966. In traditional Petri Nets (PN) (see [54]), there
are places, tokens, and transitions.

A place in a traditional Petri Net can hold one or more tokens (markings)
of the same type. A transition may have one or more input and output places.
A transition fires if its input places have sufficient tokens and as a result, it
produces tokens in output places. We recall the classical definition of a Petri
Net (P/T net) from [60,78]:

A Petri Net is a triple (P, T, F), where

– P is a finite set of places,
– T is a finite set of transitions (P ∩ T = �)
– F ⊆ (P × T) ∪ (T × P) is a finite set of arcs (the flow relation)

A transition t has input and output places. A place p is input or output for
transition t based on the directed arc from p to t or from t to p. A place can
contain zero or more tokens. A token is represented by a black dot •. The global
state of a Petri Net, also called a marking, is the distribution of tokens over
places. Formally, a state or marking M is a function M : P → N that assigns to
every place p the number of tokens M (p) that reside in p. We use the notation

110 P. Kasinathan and J. Cuellar

LEGEND

a place

a transition an activated transition

PN − step(a)

t2t1

PN − step(b)

t2t1

Fig. 1. PN-Step(a) shows the initial state of a Petri Net and PN-Step(b) shows the
state of the Petri Net after transitions t1 and t2 have fired.

•t to denote the set of input places for a transition t ; similarly, t•, •p and p•.
Figure 1 shows a simple Petri Net in two steps: first, in step(a) transitions t1 and
t2 are activated because •t1 and •t2 have sufficient tokens; second, in step(b) t1
and t2 fire to produce tokens in output places of t1• and t2•.

Several extensions of Petri Nets such as Time Petri Nets and Colored Petri
Nets have enabled us to model different constraints such as time and types of
tokens, and so on. Thus, Petri Nets were widely used in various application
areas to verify network protocols, supply chain, etc. For a deeper understanding
of Petri Nets, we recommend the book of Reisig [60] to the readers. We briefly
present the most important extensions of Petri Net relevant for our work below.

Time Petri Nets (TPN) is used to model and simulate real systems as it is
often important to describe the temporal behavior of the system, i.e., we need
a way to model duration and delays (time) of transition firing (see [46]). The
classical Petri Net is not capable of handling this.

Colored Petri Nets (CPN) is an extension of Petri Nets where different
types of tokens can exist in the same place (see [34,35]). In a colored Petri
Net, each token is represented by specific colors (types). CPN have the same
kind of concurrency properties as Place/Transition Nets. Different tools such as
CPN-Tools [37] are available to model and validate concurrent systems.

High-level Petri Nets simplify the process of creating complex workflows by
breaking them into smaller partial workflows. At a high-level, it provides an
overall description of the process without considering all details. As we navigate
to a lower level, it provides in-depth description that particular component. The
extension of Petri Net with color, time and hierarchy allows us to model complex

Securing Emergent IoT Applications 111

industrial systems with several layers of hierarchy without losing the details (see
[2,36]).

Workflow Nets (WF-net) are used to model a typical business process work-
flow using Petri Nets. Research advancements in the area of workflow nets con-
tributed to our research. Most of the research discusses about mapping workflow
concepts such as task execution, synchronization (split and join) actions, etc. into
Petri Nets (see [1,78]). Workflow Nets showed that Petri Nets can be used to
design and model complex workflows. In addition, Petri Net tools can be used
to verify traditional Petri Net properties such as liveness, etc. in Workflow Nets.

Open Petri Nets provide interfaces that enable two or more workflows to
exchange information in the form of tokens. Open Petri Nets provide entry and
exit points via Open Petri Net places to exchange information between workflows
(see [27]). One of the goals of this work is to support multi-tenancy, i.e., to
support activities, tasks from different organizations. Composition is a common
approach in software engineering i.e., to assemble small systems into larger ones.
Reisig in [60] describes the composition of nets using interfaces that can be used
for asynchronous and directed communication between Petri Nets.

Petri Nets and its applications are well studied in the literature. Petri Nets
enable us to create verified workflows with properties like guaranteed termina-
tion, separation-of-duties, reachability, liveness (deadlock-free), and coverability
[1,19,51]. In this section, we presented the important extensions of Petri Net
that help us to specify and verify workflows. By enforcing verified workflows
with fine-grained access control, we achieve workflow-aware access control.

4 Background Work

In this section, we present relevant background and existing work on the three
topics we focus in this paper.

4.1 Authorization for Constrained IoT Devices

Authorization mechanisms are important to restrict or allow an entity to access
a resource in an IoT device. One of the important goals of our workflow-aware
access control is to use appropriate authorization tokens within the workflow.
Therefore, we present the state-of-the-art authorization methods for IoT in this
section.

The OAuth 2.0 was developed for the web to create and transfer authoriza-
tion tokens to an authenticated entity that wants to access a resource from the
server. For instance, a browser is typically the client and a resource in OAuth
2.0 can be a restricted web-page (that needs special access rights) hosted on a
server. The IETF working group (WG) Authentication and Authorization for
constrained devices (ACE) [32] is specifying a framework for authentication and
authorization in IoT environments called “ACE-OAuth” [65].

112 P. Kasinathan and J. Cuellar

Legend

{..Encrypted MSG..}

Resource
Server

Authorization
Server

Client

K

Resource Request

{Resource Response}

1

2
3

4

5

Fig. 2. An example ACE-OAuth scenario and actors involved. The numbers explain
the sequence of an authorization process and resource request between three actors.
Notations: K is a shared secret and {encrypted message}.

ACE-OAuth is based on OAuth 2.0 and CoAP. The motivation of ACE-
OAuth is to create an authorization solution suitable for IoT devices. To describe
the ACE-OAuth actors, let us consider an example use case. John owns a smart-
watch (a typical IoT consumer device), and with that he wants to track, store
his steps, heartbeat, etc. John wants complete control over his data i.e., deleting
information stored on the device or in the cloud. John uses his smartphone to
access or modify information stored on his smartwatch. For special access i.e.,
deleting information or changing the owner information on his smartwatch, John
needs an access token from the cloud service provided by the smartwatch man-
ufacturer. Thus, we can map the use case actors with the ACE-OAuth actors:
the smartphone is a client (C), the smartwatch is the resource server (RS), the
cloud service is the authorization server (AS), and John is the resource owner
(RO). Below, we describe the simple ACE-OAuth messages exchanges to create
the access token required by the client to access a resource on a resource server.

In Fig. 2, we show three important actors of ACE scenario. ACE-OAuth uses
the term Resource Server (RS) to represent an IoT Device with several resources,
i.e., typically sensors such as temperature, heartbeat recognizing sensor, gyro-
scope, etc. A smart lock, smart bulb, or a building automation device is a typical
example of a resource server. The term Client (C) is used to represent the device
that the resource owner (RO) uses to access the resource on an IoT device. Some-
times, simple client functionalities are embedded into the IoT device itself. For
example, a user can access or modify certain functions on his smartwatch via
the on-board display. Typically, an authorization server (AS) creates an access
token and transfers it to the client. Now, we describe a particular ACE scenario
as shown in Fig. 2: to access a resource on a Resource Server (RS), a Client (C)
should request an access-token (AT) from AS, either directly or using its Client

Securing Emergent IoT Applications 113

Authorization Server (CAS). For the sake of simplicity, we do not consider intro-
spective calls between the resource server and the authorization server or client
authorization server.

Based on the above described scenario, a simple ACE OAuth message flow
as shown in Fig. 2 can be described as follows:

– A C may perform a resource-request to RS without a valid access-token, then
RS will reject, and it may provide AS information to the C in the response.
Such that, the C may go to the AS to get a valid access-token. The Resource
Owner (RO) may define access control policies on the Authorization Server
(AS) describing who can access the resources on a RS.

– (1) A common secret (k) is shared between the AS and RS while device
commissioning. We assume that RS stays offline after deployment and cannot
perform introspective calls to AS to verify the access token presented by the
C.

– (2) The C performs an Access-Request to AS to ask for an access token (AT)
that allows accessing the required resource (R) on RS. The AS checks if C
can access the resource (R) on RS or not, based on permissions assigned by
the RO.

– (3) If C has sufficient permissions, then AS generates an Access-Token (AT)
plus a proof-of-possession (PoP) key bounded to the access-token and the
secret (k). AS sends both the AT and the PoP key to C via a secure encrypted
channel.

– (4) After receiving AT and PoP key, C performs a resource-request to RS by
ACE-OAuth token construction method defined in one of the ACE profiles.
For example, the client may use privacy enhanced token construction method
as described below.

– (5) The RS can reconstruct the PoP key from the AT and verifies the received
AT. If it is valid, RS encrypts the response with the PoP key.

In the ACE working group, several other proposals with different profiles
exist to solve specific problems. One of the proposed profile is Privacy-Enhanced
Authorization token (PAT) profile. Note: at the time of writing this paper PAT
profile was expired.

Privacy-Enhanced Authorization tokens (PAT) is a profile specified for
ACE-OAuth [16] with a special focus on creating privacy-enhanced unlinkable
authorization tokens. The PAT profile for ACE-OAuth provides unlinkability
features even when a client performs non-encrypted authorization requests (i.e.,
sending request without network or transport layer encryption such as DTLS).
PAT was designed such that the Resource Server (RS) is able to verify the access
tokens without performing the introspective call to the Authorization server (AS)
to verify and validate the client authorization token.

History based Capability systems for IoT (HCAP) proposes a history-
based capability system for enforcing permission sequencing constraints in a
distributed authorization environment [70]. The authors formally establish the
security guarantees of HCAP, and empirically evaluate its performance. In their

114 P. Kasinathan and J. Cuellar

work, permission sequencing constraints are encoded as a Security Automaton
and embedded in a capability.

4.2 Modeling Workflows for Access Control Systems

In the literature, we can find extensive work on the specification and enforcement
of workflows; in particular, Bertino et al. [10] studied how to model and enforce
workflow authorization constraints such as separation-of-duties in workflows,
but using a centralized workflow management system. Workflow based access
control is also well-known (Knorr [41] calls them “Dynamic access control”), but
this requires a centralized WF enforcement engine. Basin et al. [9] model the
business process activities as workflows with a special focus on optimizing the
authorizations permissions.

Petri Nets [54] provide a graphical modeling tool used to describe pro-
cesses performing an orchestrated activity, or in other words, a workflow [1,78].
Petri Nets have the advantage that many properties such as liveness (deadlock-
freeness), reachability are easy to verify [19,51,58]. Atluri et al. [5,6] studied
how to model workflows using Petri Nets, but did not describe the implemen-
tation details. Huang et al. [28] presented a web-enabled workflow management
system, and Compagna et al. [15] presented an automatic enforcement of secu-
rity policies based on workflow-driven web application, but both work presented
a centralized architecture. Heckel [27] showed how open Petri Nets are suit-
able for modeling workflows spanning different enterprises. No existing work
discusses about how to handle error conditions during workflow execution, sup-
port or integrate practitioner-friendly design and specification tools, enforcing
cross-organizational agreements or commitments (i.e., process integrity) and to
enforce them to achieve workflow-aware access control with a special focus on
modern IoT systems.

Wolter et al. [79] showed a model-driven transformation approach from mod-
eled security goals in the context of business process models into concrete security
implementation. Their work focuses on service-oriented architecture. The secu-
rity annotated business processes are transformed into platform specific security
access control or policy languages such as XACML; in particular, they consid-
ered security goals such as confidentiality, authentication, and data integrity.
Basin et al. [44] presented SecureUML, an UML based modeling language for
model-driven security, their approach is based on role-based access control with
additional support for specifying authorization constraints. Similarly, Jürjens
[38] presented UMLsec (an extension of UML) for secure software development.

Mortensen [50] presented a method for automatic implementation of systems
based on Colored Petri Nets (CP-nets or CPN) models. The paper does not
describe the algorithms and data structures used to implement the code gener-
ation tool, but rather the context of the tool. The paper shows that the method
introduced reduces the development time and cost compared with prevailing sys-
tem development methods where system implementation is accomplished man-
ually by evaluating it on a real-world access control system. We refer to the

Securing Emergent IoT Applications 115

concepts presented in this work for generating smart contract code from our
Petri Net workflows.

Linhares et al. in [43] presented an empirical evaluation of OMG SysML’s
to model an industrial automation unit using the open source modeling tool
Modelio [48] but not in the context of modeling workflows for access control.

4.3 Distributed Accountability and Smart Contracts

To achieve accountability in a system, we need to record all system activities
and store them in a database with data properties such as availability, integrity,
persistence, and consistency. Distributed database management systems (DDBS)
provide data consistency, reliability, and availability (see [53]). In addition, with
strong access control systems integrated with a DDBS, we could enforce who
can access (read and write) the database. Just integrating access control is not
enough to provide accountability in a system i.e., a person with access to the
database may insert/update/delete malicious data into the database. Such that
the person with access to the DDBS could tamper the data without being noticed
by other entities.

The Blockchain technology provides availability, data integrity, non-
repudiation (if public-key signatures are used), and persistence properties i.e.,
once a data block is added by a user and becomes a valid block of the Blockchain,
it is impossible to update/delete it without being noticed by others participat-
ing in the Blockchain. There are two main types of Blockchain: permissioned
and permissionless. A permissioned Blockchain includes an access control layer
that can enforce who can read, publish, or approve transactions in a block chain
(see IBM Hyperledger [29]). A classic example of permissionless Blockchain is
bitcoin [52] i.e., anyone can participate (publish and verify transactions) in the
Blockchain. To approve a transaction or a block consisting of many transactions
different consensus methods exist such as proof-of-work, but it is not the focus
of the paper.

Smart Contracts, introduced in [69], have become popular with the advance-
ments in Blockchain technology. Smart contracts are often written to ensure fair-
ness between participating entities even when one entity may attempt to cheat
the other entity in arbitrary ways (see [17]). Smart contracts (SC) deployed in a
Blockchain can be seen as arbitrary code expressing one or more business logic,
and they are automatically triggered if some preconditions defined in the SC
match. A smart contract is executed, the results are verified by the nodes par-
ticipating in the Blockchain. In [14] and [7] an example of an IoT application
using Smart Contracts and Blockchains is presented. The Bitcoin blockchain
has a simple stack language to express the rules and conditions for a successful
transaction and how new coins are produced and consumed. Ethereum, which
has popularized the use of smart contracts, uses a Turing complete language to
specify them. In [45], the authors have studied the security of running smart con-
tracts based on Ethereum, and presented some problems in Ethereum’s smart
contract language solidity; they also show some ways to enhance the operational
semantics of Ethereum to make smart contracts less vulnerable.

116 P. Kasinathan and J. Cuellar

5 Contributions

In this paper, we present a security framework that addresses the follow-
ing security requirements of constrained IoT environment described in Sect. 2:
distributed authorization, requirements elicitation, fine-grained access control,
secure software updates, attack escalation resilience, and distributed account-
ability.

We present a security framework to design, specify, verify, and enforce IoT
processes or workflows using Petri Nets. Our framework adapts to error condi-
tions during workflow execution, supports the integration of practitioner-friendly
design and specification tools, and enforces cross-organizational agreements or
commitments (i.e., the process integrity) as workflows. Thereby, we achieve
workflow-aware access control for multi-tenant IoT systems.

We presented our Petri Net based Workflow Specification and Enforcement
framework earlier in [39,40]. In this paper, besides summarizing the basic ideas,
we extend our framework to support the generation of blockchain-based smart
contracts from Petri Nets and to achieve distributed accountability. Furthermore,
we demonstrate the applicability of the method by solving three use cases. We
also present a high-level guide to implement the framework with practitioner-
friendly tool and development systems.

5.1 Petri Nets for Workflow Specification

We use Petri Nets and its extensions for specifying workflows. Existing solutions
and methods for modeling workflows are described in Sect. 4.2. Petri Nets were
chosen to specify workflows for the following advantages and properties. Petri
Nets (PN)provide the formal semantics for designing workflows such that PN
workflows are amenable to verification of certain properties such as being dead-
lock free. The expressiveness of Petri Nets and the state-transition model of Petri
Nets support all primitives needed to model a workflow process precisely. Exten-
sions of Petri Nets enable us to specify and model complex workflows by solving
different workflow issues including concurrent task execution and separation-of-
duties between different processes interacting with each other. Petri Nets are a
graphical language and as a result, it is simple to design workflows using graph-
ical tools. Also, other practitioner-friendly tools that collect requirements and
create activity diagrams can be integrated to generate Petri Net workflows. Petri
Nets workflows are technology or platform-independent, therefore, it can be used
to implement and integrate platform or technology dependent multi-tenant pro-
cesses. Overall, it satisfies all requirements that we need to achieve the integrity
of the process. Thus, we use Petri nets to enforcing workflow-aware access control
(Fig. 3).

In addition to the classical and existing Petri Net extensions, we introduce
additional concepts in our Petri Net model:

– Permissions, endorsements, money (crypto coins), signature, or any informa-
tion that is required for the workflow execution can be represented as tokens

Securing Emergent IoT Applications 117

LEGEND

a place an oracle

a transition an activated transition

WF-step(a) WF-step(b)

Fig. 3. WF-step(a) shows the initial state of a Petri Net workflow specification with
an Oracle. WF-step(b) shows the state of the workflow after the first two activated
transitions have fired.

within the Petri Net. Thanks to CPN, different types of tokens can be used
in the same Petri Net to model workflows where entities exchange different
information between them. In particular, OAuth tokens are used to enforce
access control in a stepwise manner as specified in the workflow.

– An Oracle is a type of place, represented in star shape that can receive tokens
(as described earlier) from an external source. In classical Petri Nets, places
are represented as circles and always receive tokens from a transition. An
oracle is drawn on the boundary of a Petri Net to represent that it receives
information from an external source. Note: the term oracle is used in different
computer science fields including cryptography, blockchain, and smart con-
tracts, etc. Our concept of an Oracle is similar to the Oracles introduced in
Ethereum blockchain, i.e., it is used to receive external information into a
blockchain smart contract. The difference is: an Oracle in our method need
not be a contract that is accessed by other contracts to pull information as
described in [8,83]. If blockchain is implemented in an IoT application as a
back end distributed database, then an external service can push some infor-
mation into the blockchain. The published information in the blockchain can
be accessed by the Oracle via a predefined URL. Note: it is critical to enforce
strict access control that restricts who can publish such information in the
blockchain.

Our PN workflows are designed to solve use cases that include interaction
with real world IoT devices and actors. In such cases, a workflow should handle
error conditions or unexpected situations to an extent. We introduce dynamic

118 P. Kasinathan and J. Cuellar

Workflows to handle such special situation with authorized user decisions and
so on. Note: such dynamic workflows must also be verified together with the
main workflow (at least during its creation) i.e., without changing the goal or
purpose of the main workflow. Protecting the integrity of the processes and
allowing dynamic workflows may be competing goals, but, it must be assured
that only “authorized” entity can create dynamic workflow and any misuse must
be penalized. Therefore, we also need a system to provide accountability of
actions performed by the participants executing the workflow.

LEGEND
a place

an open place

an oracle

a transition

an activated transition
WF (a)

=
oa

=
ob

WF (b)

Fig. 4. Two different workflows WF (a) and (b) exchange information using Open Petri
Net places (oa and ob)

Thanks to Open Petri Nets (see [27]), we apply this concept to create an entry
and exit points i.e., Open Petri Net places to exchange information between
Petri Net workflows. Exchanging information in the form of tokens simplifies
the integrating of two or more PN workflows. Open Petri Nets enable to satisfy
one of our goal i.e., interaction between different stakeholders’ processes. For
instance, Fig. 4 shows two different workflows WF (a) and WF (b) exchanging
tokens via the open place (oa and ob). An open place exists on the boundary of
the workflow, and the equivalence (=) sign identifies the entry and exit places
between two workflows. The open place (oa) is an exit place for WF (a) and
entry place for WF (b). The main difference between an oracle and an open
place is: an oracle can receive information from external sources whereas, the
open places are mainly used to exchange tokens between workflows. Open Petri
net places are particularly useful when creating a dynamic workflow to exchange
information with the main workflow.

We showed how workflows can be specified using Petri Nets, but we need
a mechanism to enforce them on entities executing it. For this purpose, we use
small smart contracts written in the transitions of Petri Net. A brief introduction
of Smart Contracts is presented in the previous Sect. 4.3. For our requirements

Securing Emergent IoT Applications 119

a b

o

c

d e

|cond → action

TC(a)

|cond → action-1
|else → action-2

TC(b)

T1

T2

Fig. 5. Petri Net with transition contracts t1 and t2.

both Bitcoin and Ethereum languages are not suitable. Bitcoin’s stack language
is not flexible therefore, we cannot express workflow conditions on it. Ethereum’s
solidity language could be vulnerable (see [45]), and we cannot verify such con-
tracts. Therefore, a smart contract language that is flexible to specify conditions
and at the same time verifiable is required. To clarify, a complete Petri Net
workflow can be seen as a big smart contract comparable to a blockchain based
smart contract. The conditions that are written in the transitions of Petri Nets
workflows are called transition contract.

5.2 Transition Contracts

To implement a workflow-driven access control system in Petri Nets, the tran-
sitions should be able to verify conditions and evaluate information encoded in
the tokens. The conditions written on a single transition using a simple smart
contract language is called a transition contract. We use a simple guarded com-
mand (a conditionally executed statement) language (similar to [18]) to write
transition contracts.

Figure 5 shows a simple Petri Net where two transitions (T1 and T2) have a
pointer to the transition contracts (TC (a) and TC (b)) respectively. Note: smart
contracts do not always have to run on blockchain, they can also be implemented
between two or more parties without blockchain technology.

The properties (or rules) for each transition can be seen as small smart
contracts that restrict the choices of the participants of the workflow for this
step, or they impose additional conditions. The combination of a few transition
contracts allows us to create multi-step smart contracts: say, the first transition
creates a token based on some conditions (which may verify authentication or
authorization status of participants), and then the second transition produces
an OAuth token that can only be used in a subsequent transition in a particular
way. The allowed actions, permissions of workflow participants are determined
by the Petri Net and the next transition contracts. We use the combination

120 P. Kasinathan and J. Cuellar

(WF − step1)

ab

c

t1

t2

(WF − step2)

LEGEND

a place

an oracle

a transition

an activated transition

a timeout transition

an activated timeout transition

ab

c

t1

t2

Fig. 6. Timeout transitions in Petri Net workflows

of Petri Nets and transition contracts to specify, enforce sequences of atomic
transitions (transactions), and properties that must be satisfied in a workflow.

A transition performs three steps before firing:

– First, it takes tokens from the input places (could be a normal place, open
place, or an oracle).

– Next, it verifies the validity, properties of input tokens.
– Finally, it evaluates the conditions described (as guarded commands) in the

transition contract and produces the output tokens in output places (could
be a normal place, open place, or an oracle).

An output produced by the transition contract can be a token representing
information or a workflow for one or more entities. When our workflow-aware
access control method is used, compromising one device may not compromise
other devices. To explain, let us consider a workflow that is defined by a com-
pany for updating Firmware on its IoT devices. Assume that the devices could be
triggered to update its Firmware Over-the-Air (OTA) whenever a new Firmware
is available. Assume that an attacker compromises one device (how he compro-
mises is not relevant here) and updates a malicious firmware on it. The attacker
broadcast the new (malicious) firmware to other legitimate devices such that he
could take control over other devices too. This attack is mitigated because the
corresponding firmware update workflow as specified by the company must be
initiated and a legitimate service person needs to do several steps (for exam-
ple, provide authorization credentials) before the devices may get into the state
where it will accept firmware via the broadcasts channel.

By default, the Petri Net transitions fire when the input places have enough
tokens. In many real-world use cases, it is important to have the notion of time
required for a task completion. Some tasks in the real-world might require just
10 min, and others might need some hours. If a transition is waiting for a token
to arrive in one of its input places, probably it does not want to wait indefinitely.

Securing Emergent IoT Applications 121

Timeout Transitions are required to stop transitions from waiting indefinitely.
Sometimes, a user or an entity may fail to complete a task in a workflow that
is expected to be completed within a certain time. That transition may wait
forever to get a token in one of its input places. To solve this, we introduce
timeout transitions i.e., after a predefined time expires, the timeout transition
executes set of predefined timeout conditions (in contrast to the regular condi-
tions) and fires a timeout token in its output place. These timeout tokens may
contain or invoke the dynamic workflows. It is important to specify when the
timeout timer should start and stop in the timeout transition. If all the input
tokens are available before the timeout occurs, then conditions of regular transi-
tion contract is executed to produce tokens. Therefore, every timeout transition
has two instructions: first, a timeout instruction (timeout contract) is enforced
when timeout occurs and some of the input tokens are not available; second, a
regular instruction (transition contract) is enforced when all the input tokens
are available before timeout.

The example workflow is shown in Fig. 6 explains a simple use case of a
timeout transition. Consider that the task t2 must be completed within some
time (x minutes) after the task t1 is completed. When task t1 is completed,
then transition t1 produces a token in place (a). A token in place (a) triggers
the timer to start in transition t2. Now, the timeout transition t2 executes one
of the three possible cases:

– Case 1: the timer expires after x minutes (timeout) and place (b) has no
token then, the timeout transition contract is executed. A timeout transition
contract is similar to a traditional contract but is used only to defined what
happens after a timeout.

– Case 2: the timer has not expired and place (b) has a token then, the regular
transition contract is executed.

– Case 3: place (b) has already a token before task t1 is completed then, the
transition t2 waits until task t1 is completed. When both the input tokens (a
and b) are available, the regular transition contract is executed.

5.3 Systems Modeling Language (SysML) - Activity Diagram

We investigated how a practitioner (a software developer or engineer) could use
our method with existing and familiar tools. It could be complex to design and
model a multi-organizational, human interactive process that includes different
software and hardware components using Petri Net tools only. Therefore, an
existing practitioner-friendly tool is used to model a high-level activity diagram
of complex processes and systems. Later, this activity diagram is translated into
Petri Net workflows.

Software developers, engineers, and similar practitioners are familiar with
UML, since, SysML is an extension to UML, it is easy to understand and learn
SysML’s notations. The generally accepted method is to refine the specifica-
tion in a stepwise manner using software engineering tools such as the object

122 P. Kasinathan and J. Cuellar

management group (OMG) system modeling language’s (SysML) activity dia-
gram presented in [73]. The Object Management Group’s OMG SysML [73] is
a general-purpose graphical modeling language that supports the specification,
design, analysis, and verification of systems that may include different software
and hardware components, people, tasks, and other entities. SysML supports
the practice of model-based systems engineering (MBSE) and is an extension of
Unified Modeling Language (UML) version 2.

SysML is used to develop system solutions to solve technologically challenging
problems. One of the challenges is interconnectivity among systems. Therefore,
systems can no longer be treated as stand-alone, but behave as part of a larger
ecosystem including humans. Such complex systems are known as the system of
systems (SoS) [23].

SysML can represent different aspects of systems, components, and other
entities [23] such as:

– Structural composition, interconnection, and classification.
– Function-based, message-based, and state-based behavior.
– Constraints on the physical and performance properties.
– Allocations between behavior, structure, and constraints.
– Requirements and their relationship to other requirements, design elements,

and test cases.

SysML uses nine diagrams including the Activity diagram to represent the
relationships between entities in a complex SoS. In particular, the SysML Activ-
ity diagram (modified from UML) represents the business/technical process in
a defined order i.e., a sequence of actions to be executed based on the availabil-
ity of their inputs, outputs, and control. Moreover, SysML’s activity diagram
describes how the actions transform the inputs to outputs. As this is a stan-
dardized approach, it is easy for practitioners to use SysML Activity to describe
complex systems and processes (both technical and business).

Furthermore, SysML activities are based on token-flow semantics related
to Petri-Nets [59]. Thus, SysML provides a semantic foundation for modeling
system requirements, and the SysML’s activity diagram can be transformed
intuitively into a Petri Nets model. The Petri Net tokens hold the values of
inputs, outputs, and controls that flow from one action to another. Therefore,
it is easy to transfer the SysML activity diagram into Petri Net workflows. For
our purposes, we use only the SysML’s activity diagram to model the process or
workflow.

We use the open source modeling tool known as “Modelio” [48] to draw
SysML activity diagrams. Modelio implements all SysML features according to
the OMG’s specification, and it can also be used to model BPMN and UML
diagrams. An example screenshot of the Modelio tool is presented in Fig. 10.

The requirements and SysML activity diagrams lack mathematical semantics
to check for inconsistencies, but the SysML activity diagrams can be converted
into Petri Nets (for example, colored) and then can be verified using model
checking tools [33,57].

Securing Emergent IoT Applications 123

5.4 Petri Net Execution Engine

We use the open source Python library called “Snakes” [56] to implement basic
Petri Net functions. We extended the Petri Net library to represent different
types of tokens, places, and conditions. Furthermore, we present future require-
ments to extend the standard Petri Net Markup Language (PNML) exchange
format. Similarly, there are several Petri Net libraries available for other pro-
gramming languages such as Java, C, etc.

We implemented and evaluated the core part of the above simple use case
scenario application using Snakes and other Python library. For doing this, we
have extended the Snakes library to realize additional functions and modules
that can recognize our new types of tokens, places, and conditions (guarded
expressions). The Snakes library is extended to support features such as oracles,
open places, timeout transitions, and different types of tokens. The Petri Net
workflow evaluates transitions with conditions – for example, validates security
tokens from an oracle –, and if necessary, produce tokens in a specific format
that will be required for subsequent transitions. The prototype implementation
was developed with Ubuntu operating system and Python libraries for imple-
menting REST services, and Petri Net functions. In our current implementation,
the transition contracts are expressed with limited features of Snakes library’s
arc notations, expressions. Note: extreme caution must be taken to avoid side
effects – by calling native Python functions to evaluate input tokens and pro-
duce required tokens. Further implementation work is required to realize a smart
phone application with an integrated Petri Net execution engine.

We need additional XML tags to represent workflow and its rules i.e., expres-
sions and conditions written in a Transition, token types, open Petri Net places,
and how they could interact or interface with dynamic or sub-workflows. We
implemented a part of building automation use case presented in Sect. 5.6. Our
future work is to extend the standard PNML with additional tags for exchanging
Petri Net workflows between different entities and users of any platform.

5.5 Petri Net Based Smart Generation Framework

In our next investigation, we looked at various problems in traditional Blockchain
based Smart Contracts. We noticed that we could use our method to create
safe and understandable Smart Contracts (SC). In this section, we introduce
a framework that can create Blockchain based smart contracts from Petri Net
workflows.

Blockchain-based applications use open source blockchain implementations
such as IBM’s Hyperledger Fabric [30], and Ethereum [21]. The corresponding
business logic is written using Smart Contracts (SC) in their respective languages
i.e., Chaincode [31], and Solidity [20]. Solidity is a Turing-complete computer
programming language specifically designed to write Smart Contracts (i.e., to
write the business logic). Chaincode is (used synonymous with Smart Contracts)
also used to write smart contracts for IBM’s Hyperledger Fabric. But, Chaincode
can be written using popular Turing complete languages such as GO, Java, etc.

124 P. Kasinathan and J. Cuellar

Fig. 7. Components of Blockchain based Smart Contract generation framework

Turing complete languages are known to have problems such as undecidability
[17].

With Petri Net workflows (which can be seen as high level Smart Contracts),
it is possible to check the properties such as deadlock, etc. Therefore, if a Petri
Net is verified (properties are checked), then translating the verified Petri Net
into a solidity code is also safe. We present the software prototype architecture
below.

The requirements of a smart contract (SC) should be as follows:

– A SC should be easy to understand and write.
– A SC should be amenable to verification of process integrity i.e., it should

only allow what it is specified to do.
– If necessary, the SC should support human interaction for example, to approve

or reject conditions specified in a SC. Also, the smart contracts should allow
recovering from error conditions by allowing dynamic workflows.

The Smart Contract can be a standalone contract, or a part of a big con-
tract consisting of many small SCs. Our proposed Blockchain based SC genera-
tion framework consists of three main modules: Petri Net workflow specification
GUI, Petri Net verification engine and the Petri Net translation engine into
Smart Contract translation engine. Figure 7 shows the main components of the
proposed Framework.

In this paper, we provide a brief overview of our proposed framework. In
our forthcoming paper, we will describe the specifics of implementation, user
interfaces, etc. in detail.

Petri Net Workflow Specification GUI provides the user with a simplified
GUI interface to the practitioners. The GUI interface consists of places, tran-
sitions, and arcs to connect places and transitions. PNML is the standard and
recognized format for exchanging Petri Nets.

Securing Emergent IoT Applications 125

Petri Net verification engine simulates and evaluates whether the Petri Net
satisfies the properties such as no deadlocks, etc. We propose to use any standard
Petri Net tool or library to implement this functionality.

Petri Net to Smart Contract Translation Engine works by mapping places
and transitions from the specified Petri Net into blockchain based smart con-
tracts. We are currently working on a prototype that can translate a PN workflow
into an Ethereum’s based Solidity code - details will be discussed in our forth-
coming paper. Nevertheless, the translation engine can be extended to translate
the Petri Net smart contracts into other types of blockchain executable smart
contact code (executable byte-code = compiled smart contract) such as IBM’s
Hyperledger fabric’s chain code.

Once the Petri Net is translated into a Smart Contract (SC), a workflow
expert reviews the generated SC code and published it in the blockchain.

5.6 Distributed Accountability and Access Control

Our framework uses a distributed blockchain network for achieve accountability
and transparency. A private blockchain is used to set access control restrictions
i.e., who can participate in the blockchain. For instance, the user publishes the
status of every task when he/she is executing the workflow – i.e., the state of the
Petri Net workflow – in the private blockchain. The stakeholders will verify and
approve the transactions in the blockchain, and this provides transparency and
accountability in an immutable database without assuming a trusted centralized
entity.

Distributed access control is achieved by enforcing token validation on the
handhelds. Usually, a PN workflow is executed by one or more entities with the
help of a handheld or more powerful device capable of executing a Petri Net
workflow. We use a trusted application installed on entity’s handheld enforcing
the validity of the tokens generated and received. Sometimes, the handhelds may
also delegate some tasks to a cloud service, for example, to check the blockchain
for updates, or, to pull information tokens from an oracle, etc.

Distributed access control is generally used in web technologies. Typically,
a browser is a client accessing a service hosted on (cloud based) web servers.
For instance, in an IoT scenario, the authorization server (AS) evaluates (or
delegates evaluation of) the client credentials – the user submits the credentials
to AS via a handheld device – and if those client credentials are valid, then the
AS presents the client with an authorization token to access the IoT device (or
its services).

Our method introduces Workflow aware access control, and it is enforced by
restricting the users to perform tasks as specified (in an order) in the workflow.
Each user uses a handheld device to execute the workflow. The user executing
the workflow needs to authenticate to the App (i.e., to prove that the user can
execute the workflow). The handheld uses an App that binds a secret with a
workflow – note: we assume that the client is not able to extract this secret from
the handheld or the workflow. The IETF draft “Privacy Enhanced Tokens” a

126 P. Kasinathan and J. Cuellar

profile for OAuth 2.0 for constrained devices [16] provides an example of how
these proof-of-possession tokens can be generated using the secret. Some actions
or tasks that the user needs to perform are enforced on the resource servers. The
resource server can verify the tokens without having to communicate with the
authorization server.

Publishing and distributing the Workflow or Smart contracts through a
contract store (i.e., a distributed database) similar to existing smartphone app
store or browser add-on/extensions store. The users can download preferred
Petri Net workflows and contracts from the Petri Net smart contract store – we
use a single contract store based on one distributed database technology. The
contract store enforcing a strict process that analyses and validates the contract
before publishing it. The distributed database similar to a blockchain can be
used to store the Petri Net workflows based smart contracts. We propose to use
a single blockchain for publishing contracts. If necessary, access to these contracts
may also be restricted by using a permissioned blockchain. For example, IBM’s
Hyperledger can be deployed as a permissioned blockchain where entities require
permissions to access and publish information in the blockchain.

Verification of Petri Net Workflow : we use the term verification in terms of
verifying the properties of the workflow by simulation, model checking, theo-
rem proving, etc. Verification of Petri Nets must not be confused with validity
checking (=validation) of validity tokens as described in Sect. 5.6.

The author of the Petri Net workflow is responsible for verifying the cor-
rectness of the workflow’s application or the process itself. The Petri Net (PN)
engine assists the authors while creating the Workflow in terms of simulating
and verifying Petri Net properties. The PN engine simulates the workflow after
saving and provides a comprehensive report to the author about potential prob-
lems such as deadlocks, etc. via a notification panel. This feature minimizes the
errors while creating the workflow and provides a detailed analysis when the
workflow is completed.

Workflow expert : the author requests to publish the PN workflow through a
process. The objective of the workflow expert is to have “/Quality Control/”. A
trusted entity (a workflow expert) checks whether the workflow is designed prop-
erly and represents the process defined. Additionally, the workflow expert may
use automated tools to check whether the contract follows standard guidelines
or not.

Even when the properties of the Petri Nets satisfy, the workflow could per-
form unnecessary steps not related to the goal of the process. So far, the best
process to solve this human problem is to use the four-eyes principle [80,81].
The four-eyes principle means that a certain activity, i.e., a decision, transac-
tion, etc., must be approved by at least two people with expertise. Therefore,
before publishing the contract, a workflow expert analyses the process or activ-
ity requirements, and verifies whether the designed workflow does the same as
described.

Enforcing AC, validating tokens and conditions by delegation is a valid-
ity checking process that includes checking the validity of an access token, vali-

Securing Emergent IoT Applications 127

Fig. 8. Building automation - Petri Net workflow enforcement - access denied or
granted based on the workflow specification.

dating the signature, integrity checks, etc. By enforcing proper validity checking
we enforce access control. Some IoT applications perform this process by dele-
gating validation tasks to trusted (more powerful) devices. We call those devices
handhelds. Handhelds are more powerful in terms of connectivity, power supply
and processing capacity than constrained IoT devices.

Consider a simple use case where a building owner delegates installation
or maintenance work to a contracting company. The RFC 7744 [64], provides
a summary of authorization problems that emerge during the device life-cycle
(commissioning, maintenance, re-commissioning, decommissioning). In addition
to the authorization problems, the building owners may wish to ensure that only
products with a certain provenance or quality are installed, and that the process
complies to standard operating procedures. The building owner may also wish
that the contractor obeys other conditions written on a contract. This use case
is described in detail in Sect. 6.

The workflow (WF) is created and signed by the building owner. Next, the
WF is provided to the contractor. The contractor uses his handheld device as
shown in Fig. 8 to execute the WF. The workflow contains a secret material with
which the authorization tokens are constructed, please refer to [16] for more
details on token construction. We assume that the secret cannot be extracted by
the contractor. The building automation devices use the standard ACE-OAuth
[32] protocol to validate the token that it receives, and if the tokens are valid,
then access to resource is granted otherwise not. If the IoT device receives a
request that it is unable to process, it may also delegate this request to an
authorization server or other trusted entity. All these three types of response
are shown in Fig. 8. The IoT devices can evaluate the validity of the proof-of-
possession tokens (i.e., whether this token is constructed based on the shared
secret or not) and can respond appropriately to the client device.

Enforcing Accountability using Blockchain is possible with our method.
When some tasks of a workflow are executed, all information related to that

128 P. Kasinathan and J. Cuellar

task including who is executing the task, when it started, when it stopped, and
what were the outcomes of the tasks must be logged for future reference. It is
important that only authorized persons can write into the log, and no one can
tamper with the logging information. For this purpose, we propose to enable the
workflow execution application to append relevant logging information into the
blockchain.

6 Use Cases

6.1 Connected Mobility Lab (CML)

The Connected Mobility Lab (CML) is a public funded project that integrates
the services from different stakeholders – such as mobility, financial, and IT
services – to provide a comprehensive mobility solution by seamlessly exchanging
data and analytics (see [42]). The CML has core services such as IT security,
accounting, data management, and identity management that integrate data and
processes from different mobility providers. The CML mobile application (CML
App) assists users (i.e., travelers) to experience the CML mobility solution with
an intuitive user interface. A complete overview of CML is shown in Fig. 9.

The users of CML can be private persons or employees of a company that
has a service agreement with the CML. A user may want to use different mobil-
ity services to complete one single journey. In CML, different mobility service
providers have different specifications and implement “equivalent” tasks differ-
ently. For example, validating a ticket or a payment is done differently by each
mobility service provider. It is important to guarantee the process integrity of
such processes defined by each service provider therefore, we need a workflow-
driven access control and a high-level workflow specification language to express
those processes.

Consider a simple use case: a user might use a car sharing service from his
home to the main train station, then park the car in one of the available parking
lots and take a train to reach the final destination. During the trip, the user must
obey the rules and conditions specified by that particular mobility provider. The
CML mobility service enforces a global workflow specified using our method.

Now, let us consider a more complex business mobility use case scenario: two
companies A and B decide to use the mobility services offered by CML to enforce
some public funded project-specific travel restrictions on its employees. The use
case requirements are:

– Every business travel must be approved by the respective managers of partic-
ipating companies, and in special cases, the public funding project manager
approval is also required.

– Special conditions whenever necessary could be inserted by authorized per-
sons (i.e., the Managers)

– Travelers/Users using CML should be able to recover from error conditions,
for instance, if a train or flight is canceled then rebooking should be possible.

– Reimbursement of travel cost after a successful trip should be automated.

Securing Emergent IoT Applications 129

Connected
Mobility

LAB

Users /
CML
App

Core
Services

Data

Mobility
Services,
Partners

Fig. 9. The Connected Mobility Lab (CML) offers a comprehensive mobility service
by integrating different mobility service provides, partners using its core services and
CML App.

– Actions executed by the users/travelers must be recorded in a distributed
immutable database for accountability.

As the first step, the requirement engineering experts perform the elicitation
process i.e., to collect information from the involved stakeholders. The business
mobility process and conditions are defined after consulting with participating
companies (A and B) and the public funding project manager. The collected
use case requirements are used to create the OMG SysML’s activity diagram.
The open-source modeling tool “Modelio”, for example, can be used to create
a SysML activity diagram. Figure 10 shows the SysML activity diagram of the
above mentioned CML business mobility use case. An employee (e) is able to
make a travel request which can be approved or rejected by his manager (mA).
In case of a special request, the public funded project manager (mP) must also
approve. The CML calendar service provides information about the meeting such
as location, time, etc. If the trip is approved, then the employee (i.e., the traveler)
may choose the transportation type (for example, public transport, car sharing,
and so on) and get the tickets from the CML App. Finally, when the trip comes
to an end, the reimbursement process is initiated. Later, the workflow expert
transforms the SysML activity diagram into a Petri Net workflow specification
as shown in Fig. 11. Finally, the Petri Net workflow is executed by the employee
using the CML App.

Let us assume the following:

– The CML App has access to CML core services including the CML calendar
service.

130 P. Kasinathan and J. Cuellar

Fig. 10. SysML activity diagram of the CML business mobility use case

– The WF (a), (b) and (c) as shown in Fig. 11 are the resulting Petri Net
workflow created by the workflow experts and are available in the central
CML repository or the Contract Store. These PN workflows can be accessed
by CML App i.e., the users are able to download the required workflows and
execute them in the CML App. The sub-workflow (c) is a dynamic workflow
and can be invoked to manage unexpected (error) situations. Notice that

Securing Emergent IoT Applications 131

WF (a)

e mA

cal

=
oa

=
ob

tkserr

travel

=
oc

=
od

end

at1

at2

at3

at4

WF (b)

mP

cal

bt1

Dynamic WF(c)

Services

ct1

Fig. 11. Petri Net workflows of the business mobility use case

all three workflows are pre-defined, the workflow experts have created one
sub-workflow to manage all unexpected (or error) situations.

– The CML services (such as mobility, parking, etc.) provide tickets, parking
lot information, visiting passes for authorized requests similar to an OAuth
resource request.

We use the following notations in Fig. 11: employee as e, manager of company
A, B, and public funded project as mA, mB, and mP respectively, and CML
calendar service as cal. The Petri Net places and transitions are marked with
corresponding identifiers such as at1 for WF (a) transition 1 and bt1 for WF
(b) transition respectively. Below, we describe step by step process the business
mobility use case involving three workflows (a), (b) and (c) as shown in Fig. 11.
Assume that the employee (e) from company A wants to attend a business
meeting organized by the manager (mB) in company B.

– The project manager of company B (mB) creates a meeting with an identifier
(mID) in the CML calendar. This identifier is required by the employee (e)
of company A to initiate the travel request using the CML App.

– The employee (e) of Company A makes a travel request using the meeting
identifier mID in his CML App.

– When a travel request is raised, the CML App executes the WF (a) as shown
in Fig. 11 i.e., it sends an approval request to his manager (mA).

132 P. Kasinathan and J. Cuellar

– The manager (mA) approves the request by placing a token in the place mA
in Fig. 11.

– Next, the Oracle place cal performs a GET request with meeting mID to the
CML calendar service’s REST interface to retrieve event information such as
location, time, etc.

– Assuming that all input tokens are available for the transition (at1) of WF
(a), transition at1 evaluates whether the mID, employee email address, and
approval from his manager are valid or not. Assume that this is a special
trip that requires additional approval from mP. Given this special case, the
transition (at1) executes the transition contract that fires a token in the open
place (oa) and in the normal output place as shown in Fig. 11.

– Alternatively, if this trip doesn’t require additional approval, then transition
at1 generates a token only in the normal out place and not in the open place
(oa). The token generated by at1 has information for next transition at2 e.g.,
oAuth token with a secret with which that transition at2 doesn’t need a token
from open place (ob). Therefore, the transition at2 fires only with its normal
input place. Similarly, it is possible to execute WF (a) without invoking WFs
(b and c). This scenario describes that was no need for a special approval and
there was no error. Note: the tokens generated by each transition contain the
information for the next transition i.e., whether the next transition should
expect tokens from its respective open places or not.

– Note: we continue the discussion considering that this trip needs a special
approval from mP as described earlier.

– The CML workflow enforcement engine processes the token from the WF (a)
open place (oa) and downloads the workflow WF (b) from CML repository to
be executed in special cases. The project manager (mP) approves or rejects
the trip request. As a result, WF (b) transition contract (bt1) evaluates and
fires output tokens in the open place (ob).

– The token in place (ob) provides a secret (similar to an OAuth access-token)
required by the transition at2 to get the tickets from CML mobility services.

– In case of unforeseen circumstances (delay or cancellation of chosen mobility
service), the traveler can request an alternative transportation option via
CML App. The oracle place (err) monitors the information of selected train
from the mobility service provider. The transition (at3) evaluates the error
token, if the traveler wants to end the trip, then it places a token in place
(end) and places a cancellation/new tickets request in open place (oc).

– If the traveler requests alternative tickets, then transition (at3) places this
request in the open place (oc). This token is processed by a dynamically gen-
erated WF (c) of the mobility service provider. If the error conditions cannot
be solved in an automated fashion, then a human intervention is invoked.
Thus, new tickets are delivered via the open place (od). Note: Fig. 11 shows
the workflow only until this stage, the rest of the workflow steps can be exe-
cuted with more transitions and places.

– Thanks to the transition contracts in Petri Net based workflows, fine-grained
access – such as, temporary access valid during the meeting period – can be
granted to enter company B (for example, access to meeting rooms), reim-

Securing Emergent IoT Applications 133

bursements can be automated i.e., after a successful trip a waiting time is
introduced using timeout transition, if the trip is not successful then a default
process is initiated.

– In the end, the organizer of the meeting mB can confirm the attendees through
his CML mobile App, therefore the payment transition is activated such that
payment to mobility providers, reimbursements to the employees can be han-
dled appropriately.

A private blockchain can be used in the CML for accountability. Every Petri
Net transitions’ input and output tokens are recorded as transactions on the
blockchain. This feature provides data immutability and opportunity for future
auditing in case of any fraud without a centralized trusted entity. There are
several advantages for companies to enforce such business mobility conditions
on its employees. The companies could restrict its employees from using trans-
portation service for private purposes. Further, the employees can only use the
cost-effective transportation available. By automating this process, the over-
head for the employees and its managers is reduced. The companies can satisfy
regional policies such as reducing the carbon footprint.

6.2 Building Automation

Modern buildings use building automation systems to control lighting, heat-
ing, ventilation, and physical safety systems within the building. These building
automation systems consist of embedded devices equipped with sensors and actu-
ators, and can collaborate autonomously. For example, the lighting system can
adjust the light intensity and color of a room based on the ambient light avail-
able in the room; the security system can alert the nearest emergency responders
or fire-stations in case of an emergency. In such a scenario, often it is required
to perform software-updates, quality-control inspection, fix security patches and
upgrade the firmware on the devices. Usually, the building owner delegates the
installation or maintenance work to a contracting company. The RFC 7744 [64],
provides a summary of authorization problems that emerge during the device
life-cycle (commissioning, maintenance, recommissioning, decommissioning). In
addition to the authorization problems, the building owners may wish to ensure
that only products with a certain provenance or quality are installed, and that
the process complies to standard operating procedures.

The building owner also wants that the contractor to obey the conditions
agreed in the contract, for instance, the building owner:

– Wants to track the status of the work in progress remotely.
– Wants to configure the installed devices with custom-rules such that the newly

installed devices are interoperable with existing systems and devices.
– Automatically enforce the contract conditions agreed with the contractor.

For instance, a penalty if the contractor breaks any agreed condition, or a
complete payment if agreed conditions were satisfied.

– Wants to control authorization permissions given to the contractors enforcing
fine-grained access control i.e., the least privilege principle.

134 P. Kasinathan and J. Cuellar

Fig. 12. SysML activity diagram of building automation

First, the requirements elicitation process is conducted to gather the require-
ments; second, as a result, a SysML activity diagram is created as shown in
Fig. 12.

Finally, the building owner with the help of workflow experts has created the
Petri Net workflow (BA) as shown in Fig. 13. The workflow is published in a
private blockchain i.e., in a decentralized contract store as described in Sect. 5.6
after performing strict evaluation. The workflow mobile application certified by
the building is downloaded and used by the contractor to execute the workflow.
We refer to the similar example described earlier in Fig. 8, where the person
executing the workflow gets (security access) tokens for accessing services which
are otherwise restricted.

Securing Emergent IoT Applications 135

WF − (BA)

COBO

Xa a

b

=

op1

c

d2 d3d1

etest

=

op2

pXp

T1

T2

T3

T4 T5 T6

T7

WF − (contractor)

CO

d3.2 d3.3d3.1

e

T8

T9

Fig. 13. Open PN workflow of building automation

Below, we explain the steps involved in the workflow:

– Once the contract is published, the contractors can evaluate the contract,
the workflow, and the requirements to decide whether to participate in the
workflow or not. The interested contractor places his decision as a token using
the mobile application. The contractor signs the token using his private key,
this signed-token is placed in the place (CO).

– Next, let us assume that the building owner selects one of the contrac-
tors based on provenance and credibility of the contractor. The building
owner uses the mobile application to approve the selected contractor to begin
the work. This event creates a token signed by the building owner in the
place (BO). The token contains information about the chosen contractor and
enables a transition (T1).

– The transition (T1) verifies the tokens in the input places (BO and CO), verify
the signature of the token using pre-configured certificates. If both tokens are
valid, then T1’s transition contract creates an OAuth-token in place (a). This
token in place (a) permits the contractor to access the devices for maintenance
purposes as defined in the next steps of the workflow. As expected, only one
contractor can be selected i.e., the T1 places the input tokens of contractors
not chosen in the output place (Xa).

136 P. Kasinathan and J. Cuellar

– A valid token in place (a) triggers Transition (T2). T2 verifies token in place
(a). Now, the selected contractor once again confirms by placing a signed
token in place (c). By doing this he/she binds to the agreed conditions and
begins the work. The transition (T3) requires a token from the selected con-
tractor and creates proof-of-possession OAuth ACE tokens in places (d1, d2,
and d3). Tokens in d1, d2, and d3 gives the contractor access to three differ-
ent tasks/services in the devices, for example, d1 token to perform tests, d2
token to perform firmware updates, and d3 token to configure.

– The Contractor may also delegate one or more tasks to his employees or
subordinates by creating his own dynamic workflow. The tokens of completed
tasks are exchanged to the main workflow using open places pointing to the
transitions expecting the task completion tokens. For example, in the Fig. 13
task d3’s token is expected by transition T6. Task d3 is split into three sub-
tasks (d3.1, d3.2, and d3.3) and delegated to the subordinates via open place
(op1). After completion, the resulting tokens are given as input tokens to the
transition T6 via the open place (op2).

– Once all the tasks are completed, the transitions (T4, T5 and T6) evaluate
the input tokens and place three tokens in the place (e). The oracle place
(test) has a valid token if the automated tests results are successful. If the
places (e, and test) have valid tokens then transition (T7) can trigger the
payment for the contractor in place (p). If tests were not successful, a token
in place (Xp) is placed and requires external evaluation.

The contracting company might want to enforce specific conditions by creat-
ing dynamic workflows on their employees (to handle special or error conditions).
The open places introduced in the main contract must not change the main
objective of the workflow. To enable this feature, the building owner may allow
some transitions (for example, T3 and T6 in Fig. 13) to allow open places from
authorized participants. Figure 13 shows the owner of the task (the contractor)
can create dynamic workflows for other entities to complete a task or resource
that he owns. In this way, we have realized a distributed workflow management
system. This use case shows how we can execute and enforce a workflow in a
distributed setting.

6.3 Car Sharing

Car sharing services such as DriveNow and Car2Go are popular for short-term
car rental. For instance, DriveNow and Car2Go have their own workflow to rent
a car, finish the rental, and for payment. A customer must first register to the
service with his/her driving license, proof of address, payment method (credit
card or bank account details), and personal identity. The customer is provided
with either a card, login credentials, or other means of authentication credentials
to access the service. Most car sharing services provide a web-service and mobile
application.

Our aim was to apply our framework and methods to solve a real use case.
Therefore, as an example, we chose the car hire process of DriveNow and applied

Securing Emergent IoT Applications 137

Fig. 14. SysML activity diagram of DriveNow car sharing platform

our methods to solve it. Note: the rental process described in this use case is
only based on our experience, and this process can be updated (or outdated)
anytime by the service provider and might not be valid anymore. A SysML
activity diagram describing the rental process of DriveNow is shown in Fig. 14.

We translate the SysML activity diagram of DriveNow car hire process into
our Petri Network workflows as shown in Fig. 15.

The customer chooses one of the two available methods to rent a car: (a)
using the DriveNow card; (b) using the DriveNow mobile application (App).

138 P. Kasinathan and J. Cuellar

LEGEND
a place

an open place

an oracle

a transition

an activated transition

WF (a)

car cus

apn

=
oa

=
ob

drv

endprk

=
oc

=
od

inv

at1

at2

at3

at4
WF (b)

dnw

bt1

bt2

Fig. 15. Petri Net workflow specification of DriveNow use case

– Method(a): the customer finds a DriveNow car in the street with Green LED
blinking on car’s windshield. Green LED means the DriveNow car is avail-
able and Red LED means it is not available. Now, the customer can use his
DriveNow card to open the car.

– Method(b): the customer can plan ahead, reserve a DriveNow car for 15 min
using his DriveNow mobile application (App). First, an available car is
selected in the App. Second, the customer must use his login credentials to
authenticate and reserve the car for 15 min. The customer should open the
reserved car within 15 min otherwise the reservation is canceled.

– Step1: Assume that the customer used one of the two available methods (a or
b) as described above to get inside the car. This action is depicted as placing
a token at place cus by the customer in Fig. 15. The Transition (at1) process
this token in place (cus), availability of the car (with inbuilt car information)
in place (car) and opens the door.

– Step2: The customer must enter his secondary authentication PIN in place
(apn) using the car’s touch interface in the dashboard. The transition (at2)
checks the PIN entered via the information available from DriveNow server.
If the PIN is valid, transition at2 places the token in place (drv). Now, the
customer can start and use the car.

Securing Emergent IoT Applications 139

– Dashboard information for the driver: if the car leaves the DriveNow business
area of city it belongs to, then a warning notification appears on the dash-
board i.e., it is not possible to end the rental outside the business area – park
and keep option is allowed, but with probably different charges. DriveNow
is also offering rental packages for hours and days and with this contract
business area restriction does not apply.

– Step3: the customer can park and keep the car or end the car rental via
the App or car’s dashboard. This decision is recorded and processed by the
transition (at3).

• Step3.1: if the customer parks and keeps the car using park and keep
option, then he can re-enter the car using his App or DriveNow card
using the same steps described in step1 to continue.

• Step3.2: Note: this step is not available within the described car sharing
service. We included this to show that our method can handle error con-
ditions. Assume an error condition such as breakdown or malfunction,
the transition at3 allows the customer to report it via the App and that
can be processed by DriveNow to allow new business logic that can help
the customer to reach his destination via other methods, etc.

– Step4: the customer can end car rental if the car is in the business area (geo-
fenced area). If the conditions are valid, then transition (at4) allows to end
the rental and places a token in place (inv). The trip invoice is calculated and
sent to his email based on his usage. If automatic payment is enabled, then
the amount is billed to his credit card.

Figure 15 shows the Petri Net workflow of DriveNow use case. The interaction
between the customer and a DriveNow car is described on WF (a), and WF (b)
describes the DriveNow (DN) server processing the car sharing requests (i.e., in
the form of tokens) from WF (a) via open Petri Net places. As you can see, when
using a particular service the customer must download an application provided
by that particular service provider. If our method is applied, a common workflow
application can be used to rent cars from different service providers - only the
car hire process and their specific workflows must be modeled and provided to
our workflow application.

7 A High-Level Summary and Implementation Guide

So far, we presented our method and solved some specific use cases using our
framework. Now, we want to summarize the ideas, present a simple guide for
solving any generic use case, and a high-level guide to implementation.

First, a use case that one wants to implement must be identified. Next, the
process including technical and business details is discussed and finalized with
relevant stakeholders. Once the process is defined, an engineer uses a SysML
activity diagram using tools such as Modelio to describe the process. Later, this
activity diagram can be exported to a Petri Net workflow. Next, a Petri Net
simulator is used to check properties of the exported Petri Net Workflow such as

140 P. Kasinathan and J. Cuellar

deadlocks, etc. Then a Petri Net library such as Snakes can be used for imple-
menting Petri Net functionalities into the existing software application. After
this, a workflow expert should check if the Petri Net workflow and the tran-
sition contract conditions represent the process defined. Now, this verified PN
workflow is published in a distributed database with appropriate access control
such that only authorized persons can access the PN workflow. Now, an entity
that needs to execute the process should download the corresponding PN work-
flow and the workflow execution application. With our framework, we provide
workflow-aware access control by enforcing the process integrity. Additionally,
for blockchain based solutions, we presented a framework to translate verified
Petri Net workflow into Blockchain based smart contracts.

To explain a simple implementation guide, consider a simple use case that
includes one or more stakeholders. All stakeholders provide their services as
Representational State Transfer (REST) based web services. The workflows are
created by practitioners (for example, engineers) and are verified by workflow
experts, and finally, approved by the stakeholders. The approved workflow is
available within a centralized (or a distributed) repository. A participant can
download the application (Trusted App) in his handheld and the required work-
flow from the repository, and then he may start executing the workflow. The
APP provides the communication interface with the core services – standard
security protocols are used to protect the communication channel. How partici-
pants authenticate with the back end is out of scope. A secret material is used
to verify the validity tokens and to create tokens to represent the entity that is
executing the workflow, how this secret material is delivered to the App is out
of scope. The enforcement of the Petri Net tokens is implemented in the App.
We suggest using the ACE-OAuth based protocol to create such tokens. These
proof-of-possession tokens are used by the client to prove to the resource server
that the client is the valid entity to access the resources. The workflows are
executed i.e., transitions and tokens are precisely processed in the Trusted Exe-
cution Environment (TEE) of the handheld. We assume that the participants
are not able to extract or modify any secrets from the workflow. The Snakes
Python library is used in the App to execute the Petri Nets workflows. Weber
et al. [75] introduced Petri Net Markup Language (PNML) which is based on
XML, and in this work, we propose to use PNML to express Petri Net workflows.

8 Limitations of Our Approach

8.1 Error Free Petri Net Workflow vs Design Flaw in the Process

A Petri Net simulator cannot detect a design problem or a flaw in the process
itself. For example, assume that a Petri Net workflow is developed to protect
some assets in the building. For instance, if the process does not include closing
the secure door after accessing the assets, so this is a major design flaw and
cannot be detected by the Petri Net. Therefore, designing workflows using Petri
Nets does not guarantee error freeness.

Securing Emergent IoT Applications 141

WF (a)

oa

ob
t2

WF (b)

oa

ob

WF (c)

ob
t1

Fig. 16. The token in open place ob of WF (b) can be consumed either by t2 of WF
(a) or t1 of WF (c). This prevents either WFs (a or c) to proceed forward.

The four-eyes principle is used to verify any process designed using another
expert in the same field. This approach could find significant obvious problems
in the process itself. The process can be improved without errors when it is
reviewed by several experts. Once the process is designed without obvious design
flaws, then it can be evaluated with Petri Nets simulators for properties such as
deadlocks, etc.

8.2 Open Petri Nets and Deadlocks by Merging Different Processes

Consider three small individual processes a, b, and c designed and verified for
Petri Nets properties. We can use open Petri Nets to create interfaces between
those three different processes a, b and c. This enables us to create a main
workflow consisting of two or three sub-workflows.

It is possible to have deadlocks when merging two or more sub-workflows
without proper validation. For example, when we combine only two of them (a
and b) or (b or c) then there may not be any deadlock but, when all three
workflows (a, b, and c) are combined then there could be a deadlock. Figure 16
shows such an example with three WFs a, b, and c where the WF(b) is in a
state after producing a token in its open place ob, then the token in ob can be
either consumed by WF(a) via transition t2 or WF(c) via transition t1. If one

142 P. Kasinathan and J. Cuellar

WF consumes the token in ob then the other WF cannot proceed. Therefore, it
is important to validate and verify the properties before merging sub-workflows
with the main workflow.

9 Conclusion

In this paper, we presented the Petri Net based workflow specification and
enforcement framework and extended it to support emergent IoT applications.
We demonstrated how the method can protect the integrity of processes defined
as Petri Nets, and how it can be applied to solve different use cases.

We showed that access control permissions should be granted to entities in
the form: ‘You are allowed to execute this task in this workflow ’ instead of ‘You
are authorized to access this service during this period of time’. The permission
to execute a step in a workflow depends on having executed the required previous
steps (i.e., based on the history).

We extended the framework to integrate with practitioner-friendly tools, to
support the generation of blockchain based smart contracts from Petri Nets, and
to achieve distributed accountability. We showed how the workflow specified in
Petri Nets may handle error situations by exchanging information via open Petri
Net places. Finally, we demonstrated that our framework provides workflow-
aware access control and also enforces the integrity of processes specified as
Petri Nets.

Acknowledgements. We thank Professor Jonathan P. Bowen for his suggestions and
reviewing this article.

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63139-9 48

2. van der Aalst, W.M.P.: Putting high-level Petri nets to work in industry. Comput.
Ind. 25(1), 45–54 (1994). https://doi.org/10.1016/0166-3615(94)90031-0

3. AIOTI: The Alliance for the Internet of Things Innovation (2018). https://aioti.
eu/. Accessed Dec 2018

4. Antonakakis, M., et al.: Understanding the Mirai Botnet. In: 26th USENIX
Security Symposium, pp. 1092–1110 (2017). https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

5. Atluri, V., Huang, W.-K.: An authorization model for workflows. In: Bertino, E.,
Kurth, H., Martella, G., Montolivo, E. (eds.) ESORICS 1996. LNCS, vol. 1146,
pp. 44–64. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61770-1 27

6. Atluri, V., Huang, W.: A Petri net based safety analysis of workflow authorization
models. J. Comput. Secur. 8(2/3), 209–240 (2000). http://content.iospress.com/
articles/journal-of-computer-security/jcs113

7. Bahga, A., Madisetti, V.K.: Blockchain platform for industrial internet of things.
J. Softw. Eng. Appl. 9, 533–546 (2016). https://doi.org/10.4236/jsea.2016.910036

https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1016/0166-3615(94)90031-0
https://aioti.eu/
https://aioti.eu/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://doi.org/10.1007/3-540-61770-1_27
http://content.iospress.com/articles/journal-of-computer-security/jcs113
http://content.iospress.com/articles/journal-of-computer-security/jcs113
https://doi.org/10.4236/jsea.2016.910036

Securing Emergent IoT Applications 143

8. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0 31

9. Basin, D., Burri, S.J., Karjoth, G.: Optimal workflow-aware authorizations. In:
ACM Symposium on Access Control Models and Technologies (SACMAT 2012),
pp. 93–102 (2012). https://doi.org/10.1145/2295136.2295154

10. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-
tion constraints in workflow management systems. ACM Trans. Inf. Syst. Secur.
2(1), 65–104 (1999). https://doi.org/10.1145/300830.300837

11. Bishop, M.: Computer Security: Art and Science. Addison-Wesley, Boston (2002).
https://doi.org/10.1093/toxsci/kft059. https://books.google.de/books?id=b4gcs
wEACAAJ

12. Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks.
Technical report, IETF, May 2014. https://doi.org/10.17487/rfc7228

13. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: Proceedings of the 16th ACM
conference on Computer and communications security - CCS 2009, p. 400. ACM
Press, New York (2009). https://doi.org/10.1145/1653662.1653711

14. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet
of things. IEEE Access 4, 2292–2303 (2016). https://doi.org/10.1109/ACCESS.
2016.2566339. http://ieeexplore.ieee.org/document/7467408/

15. Compagna, L., dos Santos, D.R., Ponta, S.E., Ranise, S.: Aegis: automatic enforce-
ment of security policies in workflow-driven web applications. In: Proceedings of
ACM on Conference on Data and Application Security and Privacy - CODASPY
2017, pp. 321–328 (2017). https://doi.org/10.1145/3029806.3029813

16. Cuellar, J., Kasinathan, P., Calvo, D.: Privacy-enhanced-tokens (PAT) profile
for ACE. Technical report, IETF (2018). https://datatracker.ietf.org/doc/draft-
cuellar-ace-pat-priv-enhanced-authz-tokens/

17. Delmolino, K., Arnett, M., Kosba, A.E., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
IACR Cryptology ePrint Archive 2015, 460 (2015). https://doi.org/10.1007/978-
3-662-53357-4 6. https://eprint.iacr.org/2015/460.pdf

18. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975). https://doi.org/10.1145/360933.
360975

19. Esparza, J.: Decidability and complexity of Petri net problems—an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

20. Ethereum: Solidity—Solidity (2018). https://solidity.readthedocs.io/en/develop/.
Accessed Aug 2018

21. Ethereum: What Are Smart Contracts - EthereumWiki (2018). http://www.
ethereumwiki.com/ethereum-wiki/smart-contracts/. Accessed Mar 2018

22. European Union (EU): EU GDPR Information Portal (2018). https://www.eugdpr.
org/. Accessed July 2018

23. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML, 3rd edn. Mor-
gan Kaufmann, San Francisco (2008). https://doi.org/10.1016/B978-0-12-374379-
4.X0001-X

https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1145/2295136.2295154
https://doi.org/10.1145/300830.300837
https://doi.org/10.1093/toxsci/kft059
https://books.google.de/books?id=b4gcswEACAAJ
https://books.google.de/books?id=b4gcswEACAAJ
https://doi.org/10.17487/rfc7228
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
http://ieeexplore.ieee.org/document/7467408/
https://doi.org/10.1145/3029806.3029813
https://datatracker.ietf.org/doc/draft-cuellar-ace-pat-priv-enhanced-authz-tokens/
https://datatracker.ietf.org/doc/draft-cuellar-ace-pat-priv-enhanced-authz-tokens/
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://eprint.iacr.org/2015/460.pdf
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/3-540-65306-6_20
https://solidity.readthedocs.io/en/develop/
http://www.ethereumwiki.com/ethereum-wiki/smart-contracts/
http://www.ethereumwiki.com/ethereum-wiki/smart-contracts/
https://www.eugdpr.org/
https://www.eugdpr.org/
https://doi.org/10.1016/B978-0-12-374379-4.X0001-X
https://doi.org/10.1016/B978-0-12-374379-4.X0001-X

144 P. Kasinathan and J. Cuellar

24. Gerdes, S., Bergmann, O., Bormann, C., Selander, G., Seitz, L.: Datagram Trans-
port Layer Security (DTLS) Profile for Authentication and Authorization for Con-
strained Environments (ACE) (2018). https://tools.ietf.org/html/draft-ietf-ace-
dtls-authorize-03. Accessed Mar 2018

25. Hardt, D.: The OAuth 2.0 Authorization Framework (2012). https://tools.ietf.org/
html/rfc6749. Accessed Dec 2017

26. Harney, H., Muckenhirn, C.: Group Key Management Protocol (GKMP) Specifi-
cation, July 1997. https://doi.org/10.17487/rfc2093

27. Heckel, R.: Open Petri nets as semantic model for workflow integration. In:
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 281–294. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-40022-6 14

28. Huang, W.K., Atluri, V.: SecureFlow: a secure web-enabled workflow management
system. In: Proceedings of the Fourth ACM Workshop on Role-Based Access Con-
trol - RBAC 1999, pp. 83–94 (1999). https://doi.org/10.1145/319171.319179

29. IBM: Energy-Blockchain Labs and IBM Create Carbon Credit Management Plat-
form Using Hyperledger Fabric on the IBM Cloud, pp. 2–3. IBM Press Release
(2017). https://www-03.ibm.com/press/us/en/pressrelease/51839.wss

30. IBM: Hyperledger Fabric – Hyperledger (2018). https://www.hyperledger.org/
projects/fabric. Accessed Aug 2018

31. IBM: Hyperledger-Smart Contract Language – Chaincode (2018). https://
hyperledger-fabric.readthedocs.io/en/release-1.2/blockchain.html. Accessed Aug
2018

32. IETF ACE Working Group: Authentication and Authorization for Con-
strained Environments (ACE) (2017). https://datatracker.ietf.org/doc/draft-ietf-
ace-oauth-authz/. Accessed Dec 2017

33. Jamal, M., Zafar, N.A.: Transformation of activity diagram into coloured Petri
nets using weighted directed graph. In: 2016 International Conference on Frontiers
of Information Technology (FIT), pp. 181–186. IEEE, December 2016. https://doi.
org/10.1109/FIT.2016.041. http://ieeexplore.ieee.org/document/7866750/

34. Jensen, K.: Coloured Petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets: Central Models and Their Properties. LNCS, vol. 254, pp. 248–299.
Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0046842

35. Jensen, K.: Coloured Petri nets: a high level language for system design and analy-
sis. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 342–416. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-53863-1 31

36. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science. An EATCS Series, vol. 1, 2nd
edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03241-1

37. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri nets and CPN tools for
modelling and validation of concurrent systems. STTT 9(3–4), 213–254 (2007).
https://doi.org/10.1007/s10009-007-0038-x

38. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X 32

39. Kasinathan, P., Cuéllar, J.: Securing the integrity of workflows in IoT. In: Pro-
ceedings of the 2018 International Conference on Embedded Wireless Systems and
Networks, EWSN 2018, Madrid, Spain, 14–16 February 2018, pp. 252–257 (2018).
http://dl.acm.org/citation.cfm?id=3234908

https://tools.ietf.org/html/draft-ietf-ace-dtls-authorize-03
https://tools.ietf.org/html/draft-ietf-ace-dtls-authorize-03
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://doi.org/10.17487/rfc2093
https://doi.org/10.1007/978-3-540-40022-6_14
https://doi.org/10.1145/319171.319179
https://www-03.ibm.com/press/us/en/pressrelease/51839.wss
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://hyperledger-fabric.readthedocs.io/en/release-1.2/blockchain.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/blockchain.html
https://datatracker.ietf.org/doc/draft-ietf-ace-oauth-authz/
https://datatracker.ietf.org/doc/draft-ietf-ace-oauth-authz/
https://doi.org/10.1109/FIT.2016.041
https://doi.org/10.1109/FIT.2016.041
http://ieeexplore.ieee.org/document/7866750/
https://doi.org/10.1007/BFb0046842
https://doi.org/10.1007/3-540-53863-1_31
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/3-540-45800-X_32
http://dl.acm.org/citation.cfm?id=3234908

Securing Emergent IoT Applications 145

40. Kasinathan, P., Cuellar, J.: Workflow-aware security of integrated mobility ser-
vices. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099,
pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1 1

41. Knorr, K.: Dynamic access control through Petri net workflows. In: 16th
Annual Computer Security Applications Conference (ACSAC 2000), New Orleans,
Louisiana, USA, 11–15 December 2000, pp. 159–167 (2000). https://doi.org/10.
1109/ACSAC.2000.898869

42. Krebs, B., BMW: connected mobility lab – center digitization.bayern (2017).
https://zentrum-digitalisierung.bayern/connected-mobility-lab/. Accessed Oct
2018

43. Linhares, M.V., da Silva, A.J., de Oliveira, R.S.: Empirical evaluation of SysML
through the modeling of an industrial automation unit. In: 2006 IEEE Conference
on Emerging Technologies and Factory Automation, pp. 145–152. IEEE, Septem-
ber 2006. https://doi.org/10.1109/ETFA.2006.355190. http://ieeexplore.ieee.org/
document/4178305/

44. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45800-X 33

45. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS 2016, pp. 254–269. ACM Press, New York (2016).
https://doi.org/10.1145/2976749.2978309

46. Merlin, P.M., Farber, D.J.: Recoverability of communication protocols-implications
of a theoretical study. IEEE Trans. Commun. (1976). https://doi.org/10.1109/
TCOM.1976.1093424

47. Miessler, D., Smith, C., Haddix, J.: OWASP Internet of Things Top Ten Project
(2014). Accessed Dec 2017

48. Modelio – Open Source Tool: Modelio – the open source modeling tool. https://
www.modelio.org/. Accessed Aug 2018

49. Morimoto, S.: A survey of formal verification for business process modeling. In:
Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS,
vol. 5102, pp. 514–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-69387-1 58

50. Mortensen, K.H.: Automatic code generation method based on coloured Petri net
models applied on an access control system. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 367–386. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44988-4 21

51. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989). https://doi.org/10.1109/5.24143. http://ieeexplore.ieee.org/
document/24143/

52. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed Oct 2018

53. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.
Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8834-8

54. Petri, C.A.: Communication with automata (1966). http://edoc.sub.uni-hamburg.
de/informatik/volltexte/2010/155/

55. Pohl, K.: Requirements Engineering: An Overview. RWTH, Fachgruppe
Informatik, Aachen (1996). ftp://ftp8.de.freebsd.org/pub/packages/CREWS/
CREWS-96-02.pdf

https://doi.org/10.1007/978-3-319-98989-1_1
https://doi.org/10.1109/ACSAC.2000.898869
https://doi.org/10.1109/ACSAC.2000.898869
https://zentrum-digitalisierung.bayern/connected-mobility-lab/
https://doi.org/10.1109/ETFA.2006.355190
http://ieeexplore.ieee.org/document/4178305/
http://ieeexplore.ieee.org/document/4178305/
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/TCOM.1976.1093424
https://doi.org/10.1109/TCOM.1976.1093424
https://www.modelio.org/
https://www.modelio.org/
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1007/3-540-44988-4_21
https://doi.org/10.1007/3-540-44988-4_21
https://doi.org/10.1109/5.24143
http://ieeexplore.ieee.org/document/24143/
http://ieeexplore.ieee.org/document/24143/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-1-4419-8834-8
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2010/155/
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2010/155/
ftp://ftp8.de.freebsd.org/pub/packages/CREWS/CREWS-96-02.pdf
ftp://ftp8.de.freebsd.org/pub/packages/CREWS/CREWS-96-02.pdf

146 P. Kasinathan and J. Cuellar

56. Pommereau, F.: SNAKES: a flexible high-level Petri nets library (tool paper). In:
Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 254–265.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19488-2 13

57. Rahim, M., Boukala-Ioualalen, M., Hammad, A.: Petri nets based approach for
modular verification of SysML requirements on activity diagrams. In: Proceedings
of the International Workshop on Petri Nets and Software Engineering (PNSE),
Tunis, Tunisia, 23–24 June 2014, pp. 233–248 (2014). http://ceur-ws.org/Vol-
1160/paper14.pdf

58. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-
642-69968-9

59. Reisig, W.: A Primer in Petri Net Design. Springer Compass International.
Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-75329-9

60. Reisig, W.: Understanding Petri Nets – Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

61. Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in
industrial internet of things. In: Proceedings of the 52nd Annual Design Automa-
tion Conference on - DAC 2015, pp. 1–6. ACM Press, New York (2015). https://
doi.org/10.1145/2744769.2747942

62. Sandhu, R.S., Samarati, P.: Access control: principles and practice. IEEE
Commun. Mag. 32(9), 40–48 (1994). https://doi.org/10.1109/35.312842.
http://ieeexplore.ieee.org/document/312842/

63. Schaller, R.: Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59
(1997). https://doi.org/10.1109/6.591665

64. Seitz, L., Gerdes, S., Selander, G., Mani, M., Kumar, S.: Use cases for authen-
tication and authorization in constrained environments (2016). ISSN 2070-1721.
https://tools.ietf.org/html/rfc7744

65. Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., Tschofenig, H.: Authentica-
tion and authorization for constrained environments (ACE) using the OAuth 2.0
framework (ACE-OAuth). Technical report, IETF (2018)

66. Sicari, S., Rizzardi, A., Grieco, L., Coen-Porisini, A.: Security, privacy and trust in
internet of things: the road ahead. Comput. Netw. 76, 146–164 (2015). https://doi.
org/10.1016/J.COMNET.2014.11.008. https://www.sciencedirect.com/science/
article/pii/S1389128614003971

67. van der Stok, P., Kampanakis, P., Kumar, S., Richardson, M., Furuhed, M., Raza,
S.: EST over secure CoAP (EST-coaps). Technical report, IETF (2018). https://
datatracker.ietf.org/doc/draft-ietf-ace-coap-est/

68. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S. (eds.): Vision and Challenges
for Realising the Internet of Things. Publications Office of the European Union,
Luxembourg (2010). https://doi.org/10.2759/26127

69. Szabo, N.: Smart contracts: building blocks for digital markets, 1996. EXTROPY:
The Journal of Transhumanist Thought (2001). http://www.fon.hum.uva.nl/rob/
Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.
best.vwh.net/smart contracts 2.html

70. Tandon, L., Fong, P.W.L., Safavi-Naini, R.: HCAP: a history-based capability
system for IoT devices. In: Proceedings of the 23nd ACM on Symposium on Access
Control Models and Technologies, SACMAT 2018, Indianapolis, IN, USA, 13–15
June 2018, pp. 247–258 (2018). https://doi.org/10.1145/3205977.3205978

https://doi.org/10.1007/978-3-319-19488-2_13
http://ceur-ws.org/Vol-1160/paper14.pdf
http://ceur-ws.org/Vol-1160/paper14.pdf
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-75329-9
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1145/2744769.2747942
https://doi.org/10.1145/2744769.2747942
https://doi.org/10.1109/35.312842
http://ieeexplore.ieee.org/document/312842/
https://doi.org/10.1109/6.591665
https://tools.ietf.org/html/rfc7744
https://doi.org/10.1016/J.COMNET.2014.11.008
https://doi.org/10.1016/J.COMNET.2014.11.008
https://www.sciencedirect.com/science/article/pii/S1389128614003971
https://www.sciencedirect.com/science/article/pii/S1389128614003971
https://datatracker.ietf.org/doc/draft-ietf-ace-coap-est/
https://datatracker.ietf.org/doc/draft-ietf-ace-coap-est/
https://doi.org/10.2759/26127
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://doi.org/10.1145/3205977.3205978

Securing Emergent IoT Applications 147

71. TCG WG: TCG guidance for securing resource-constrained devices. Technical
report, Trusted Computing Group (TCG) (2017). https://trustedcomputinggroup.
org/wp-content/uploads/TCG-Guidance-for-Securing-Resource-Constrained-Dev
ices-v1r22.pdf

72. Thaler, D., Waltermire, D., Housley, R.: Software Updates for Internet of Things
(suit) (2018). https://datatracker.ietf.org/wg/suit/about/. Accessed Oct 2018

73. The Official OMG SysML site: What Is OMG SysML? (2012). http://www.
omgsysml.org/. Accessed Apr 2018

74. Tiloca, M., Selander, G., Palombini, F., Park, J.: Secure group communication
for CoAP (2018). https://datatracker.ietf.org/doc/draft-tiloca-core-multicast-
oscoap/. Accessed Oct 2018

75. Weber, M., Kindler, E.: The Petri net markup language. In: Ehrig, H., Reisig, W.,
Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based
Systems. LNCS, vol. 2472, pp. 124–144. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-40022-6 7

76. Weber, R.H.: Internet of things – new security and privacy challenges. Comput.
Law Secur. Rev. 26(1), 23–30 (2010). https://doi.org/10.1016/J.CLSR.2009.11.
008. https://www.sciencedirect.com/science/article/pii/S0267364909001939

77. WfMC: Workflow Management Coalition (2009). http://www.wfmc.org/. Accessed
July 2017

78. Van der Aalst, W.M.P.: The application of Petri nets to workflow man-
agement. J. Circuits Syst. Comput. 08(01), 21–66 (1998). https://doi.org/10.
1142/S021812669800004. http://www.worldscientific.com/doi/abs/10.1142/S0218
126698000043

79. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven
business process security requirement specification. J. Syst. Arch. 55(4),
211–223 (2009). https://doi.org/10.1016/J.SYSARC.2008.10.002. https://www.sci
encedirect.com/science/article/pii/S1383762108001471

80. Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in BPMN.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0 5

81. Wolter, C., Schaad, A., Meinel, C.: Task-based entailment constraints for basic
workflow patterns. In: Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies - SACMAT 2008, p. 51. ACM Press, New York (2008).
https://doi.org/10.1145/1377836.1377844

82. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41(4), 1–36 (2009). https://doi.org/10.1145/
1592434.1592436

83. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town Crier: an authen-
ticated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pp. 270–282.
ACM, New York (2016). https://doi.org/10.1145/2976749.2978326

https://trustedcomputinggroup.org/wp-content/uploads/TCG-Guidance-for-Securing-Resource-Constrained-Devices-v1r22.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Guidance-for-Securing-Resource-Constrained-Devices-v1r22.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Guidance-for-Securing-Resource-Constrained-Devices-v1r22.pdf
https://datatracker.ietf.org/wg/suit/about/
http://www.omgsysml.org/
http://www.omgsysml.org/
https://datatracker.ietf.org/doc/draft-tiloca-core-multicast-oscoap/
https://datatracker.ietf.org/doc/draft-tiloca-core-multicast-oscoap/
https://doi.org/10.1007/978-3-540-40022-6_7
https://doi.org/10.1007/978-3-540-40022-6_7
https://doi.org/10.1016/J.CLSR.2009.11.008
https://doi.org/10.1016/J.CLSR.2009.11.008
https://www.sciencedirect.com/science/article/pii/S0267364909001939
http://www.wfmc.org/
https://doi.org/10.1142/S021812669800004
https://doi.org/10.1142/S021812669800004
http://www.worldscientific.com/doi/abs/10.1142/S0218126698000043
http://www.worldscientific.com/doi/abs/10.1142/S0218126698000043
https://doi.org/10.1016/J.SYSARC.2008.10.002
https://www.sciencedirect.com/science/article/pii/S1383762108001471
https://www.sciencedirect.com/science/article/pii/S1383762108001471
https://doi.org/10.1007/978-3-540-75183-0_5
https://doi.org/10.1145/1377836.1377844
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/2976749.2978326

Programming Z3

Nikolaj Bjørner1(B), Leonardo de Moura1, Lev Nachmanson1,
and Christoph M. Wintersteiger2

1 Microsoft Research, Redmond, USA
nbjorner@microsoft.com

2 Microsoft Research, Cambridge, UK

Abstract. This tutorial provides a programmer’s introduction to the
Satisfiability Modulo Theories Solver Z3. It describes how to use Z3
through scripts, provided in the Python scripting language, and it
describes several of the algorithms underlying the decision procedures
within Z3. It aims to broadly cover almost all available features of Z3
and the essence of the underlying algorithms.

1 Introduction

Satisfiability Modulo Theories (SMT) problem is a decision problem for logical
formulas with respect to combinations of background theories such as arith-
metic, bit-vectors, arrays, and uninterpreted functions. Z3 is an efficient SMT
solver with specialized algorithms for solving background theories. SMT solving
enjoys a synergetic relationship with software analysis, verification and symbolic
execution tools. This is in many respects thanks to the emphasis on support-
ing domains commonly found in programs and specifications. There are several
scenarios where part of a query posed by these tools can be cast in terms of
formulas in a supported logic. It is then useful for the tool writer to have an
idea of what are available supported logics, and have an idea of how formulas
are solved. But interacting with SMT solvers is not always limited to posing a
query as a single formula. It may require a sequence of interactions to obtain
a usable answer and the need emerges for the tool writer for having an idea of
what methods and knobs are available. In summary, this tutorial aims to answer
the following types of questions through examples and a touch of theory:

– What are the available features in Z3, and what are they designed to be used
for?

– What are the underlying algorithms used in Z3?
– How can I program applications on top of Z3?

Figure 1 shows an overall systems diagram of Z3, as of version 4.8. The top
left summarizes the interfaces to Z3. One can interact with Z3 over SMT-LIB2
scripts supplied as a text file or pipe to Z3, or using API calls from a high-level
programming language that are proxies for calls over a C-based API. We focus

c© Springer Nature Switzerland AG 2019
J. P. Bowen et al. (Eds.): SETSS 2018, LNCS 11430, pp. 148–201, 2019.
https://doi.org/10.1007/978-3-030-17601-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17601-3_4&domain=pdf
http://orcid.org/0000-0003-0102-4381
https://doi.org/10.1007/978-3-030-17601-3_4

Programming Z3 149

Fig. 1. Overall system architecture of Z3

on using the Python front-end as a means of interfacing with Z3, and start out
describing the abstract syntax of terms and formulas accepted by Z3 in Sect. 2.
Formulas draw from symbols whose meaning are defined by a set of Theories,
Sect. 3. Solvers, Sects. 4, 5 and 6, provide services for deciding satisfiability of
formula. Tactics, Sect. 7, provide means for pre-processing simplification and
creating sub-goals. Z3 also provides some services that are not purely satisfi-
ability queries. Optimization, Sect. 8, services allow users to solve satisfiability
modulo objective functions to maximize or minimize values. There are also spe-
cialized procedures for enumerating consequences (backbone literals) described
in Sect. 4.6.6.

1.1 Resources

The main point of reference for Z3 is the GitHub repository
https://github.com/z3prover/z3

There is an interactive tutorial using the SMT-LIB2 front-end on
https://rise4fun.com/Z3/tutorial/guide

Examples from this tutorial that are executable can be found on
https://github.com/Z3Prover/doc/tree/master/programmingz3/code

https://github.com/z3prover/z3
https://rise4fun.com/Z3/tutorial/guide
https://github.com/Z3Prover/doc/tree/master/programmingz3/code

150 N. Bjørner et al.

There are several systems that program with Z3. They use a variety of front-ends,
some use OCaml, others C++, and others use the SMT-LIB2 text interfaces. A
few instances that use the Python front-end include

– Dennis Yurichev assembled a significant number of case studies drawn from
puzzles and code analysis and presents many of the examples using the Python
front-end https://yurichev.com/writings/SAT_SMT_by_example.pdf.

– The Ivy system is written in Python and uses Z3
https://github.com/Microsoft/ivy.

– The binary analysis kit Angr system is written in Python and uses Z3
https://docs.angr.io/.

– There was an online interactive Python tutorial. It is discontinued as it ended
up being a target for hacks. A snapshot of the web pages, including the non-
interactive examples can be found at

http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py

1.2 Sources

The material in this tutorial is assembled from several sources. Some of the
running examples originate from slides that have circulated in the SAT and SMT
community. The first SAT example is shamelessly lifted from Armin Biere’s SAT
tutorials and other examples appear in slides by Natarajan Shankar.

2 Logical Interfaces to Z3

Z3 takes as input simple-sorted formulas that may contain symbols with pre-
defined meanings defined by a theory. This section provides an introduction to
logical formulas that can be used as input to Z3.

As a basis, propositional formulas are built from atomic variables and logical
connectives. An example propositional logical formula accepted by Z3 is:

from z3 import *
Tie, Shirt = Bools(’Tie Shirt’)
s = Solver()
s.add(Or(Tie, Shirt),

Or(Not(Tie), Shirt),
Or(Not(Tie), Not(Shirt)))

print(s.check())
print(s.model())

The example introduces two Boolean variables Tie and Shirt. It then creates a
Solver object and adds three assertions.

(Tie ∨ Shirt) ∧ (¬Tie ∨ Shirt) ∧ (¬Tie ∨ ¬Shirt)

https://yurichev.com/writings/SAT_SMT_by_example.pdf
https://github.com/Microsoft/ivy
https://docs.angr.io/
http://www.cs.tau.ac.il/{~}msagiv/courses/asv/z3py

Programming Z3 151

The call to s.check() produces a verdict sat; there is a satisfying assignment
for the formulas. A satisfying model, where Tie is false and Shirt is true, can be
extracted using s.model(). For convenience the Python front-end to Z3 contains
some shorthand functions. The function solve sets up a solver, adds assertions,
checks satisfiability, and prints a model if one is available.

Propositional logic is an important, but smaller subset of formulas handled
by Z3. It can reason about formulas that combine symbols from several theories,
such as the theories for arrays and arithmetic:

Z = IntSort()
f = Function(’f’, Z, Z)
x, y, z = Ints(’x y z’)
A = Array(’A’, Z, Z)
fml = Implies(x + 2 == y, f(Store(A, x, 3)[y - 2]) == f(y - x + 1))
solve(Not(fml))

The formula fml is valid. It is true for all values of integers x, y, z, array A, and no
matter what the graph of the function f is. Note that we are using array[index]
as shorthand for Select(array, index). We can manually verify the validity
of the formula using the following argument: The integer constants x and y are
created using the function Ints that creates a list of integer constants. Under
the assumption that x + 2 = y, the right side of the implication simplifies to

f(Store(A, x, 3)[x]) == f(3)

as we have replaced occurrences of y by x - 2. There are no restrictions on what
f is, so the equality with f on both sides will only follow if the arguments to f
are the same. Thus, we are left to establish

Store(A, x, 3)[x] == 3

The left side is a term in the theory of arrays, which captures applicative maps.
Store updates the array A at position x with the value 3. Then ...[x] retrieves
the contents of the array at index x, which in this case is 3. Dually, the negation
of fml is unsatisfiable and the call to Z3 produces unsat.

Formulas accepted by Z3 generally follow the formats described in the SMT-
LIB2 standard [3]. This standard (currently at version 2.6) defines a textual
language for first-order multi-sorted logic and a set of logics that are defined by
a selection of background theories. For example, the logic of quantifier-free linear
integer arithmetic, known in SMT-LIB2 as QF_LIA, is a fragment of first-order
logic, where formulas are quantifier free, variables range over integers, interpreted
constants are integers, the allowed functions are +, −, integer multiplication,
division, remainder, modulus with a constant, and the allowed relations are,
besides equality that is part of every theory, also <, <=, >=, >. As an example,
we provide an SMT-LIB and a Python variant of the same arbitrary formula:

(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)

152 N. Bjørner et al.

(assert (> (+ (mod x 4) (* 3 (div y 2))) (- x y)))
(check-sat)

Python version:

solve((x % 4) + 3 * (y / 2) > x - y)

It is also possible to extract an SMT-LIB2 representation of a solver state.

from z3 import *
x, y = Ints(’x y’)
s = Solver()
s.add((x % 4) + 3 * (y / 2) > x - y)
print(s.sexpr())

produces the output

(declare-fun y () Int)
(declare-fun x () Int)
(assert (> (+ (mod x 4) (* 3 (div y 2))) (- x y)))

2.1 Sorts

Generally, SMT-LIB2 formulas use a finite set of simple sorts. It includes the
built-in sort Bool, and supported theories define their own sorts, noteworthy
Int, Real, bit-vectors (_ BitVec n) for every positive bit-width n, arrays
(Array Index Elem) for every sort Index and Elem, String and sequences
(Seq S) for every sort S. It is also possible to declare new sorts. Their domains
may never be empty. Thus, the formula

S = DeclareSort(’S’)
s = Const(’s’, S)
solve(ForAll(s, s != s))

is unsatisfiable.

2.2 Signatures

Formulas may include a mixture of interpreted and free functions and con-
stants. For example, the integer constants 0 and 28 are interpreted, while
constants x, y used in the previous example are free. Constants are treated
as nullary functions. Functions that take arguments can be declared, such as
f = Function(’f’, Z, Z) creates the function declaration that takes one inte-
ger argument and its range is an integer. Functions with Boolean range can be
used to create formulas.

2.3 Terms and Formulas

Formulas that are used in assertions or added to solvers are terms of Boolean
sort. Otherwise, terms of Boolean and non-Boolean sort may be mixed in any
combination where sorts match up. For example

Programming Z3 153

B = BoolSort()
f = Function(’f’, B, Z)
g = Function(’g’, Z, B)
a = Bool(’a’)
solve(g(1+f(a)))

could produce a solution of the form

[a = False, f = [else -> 0], g = [else -> True]]

The model assigns a to False, the graph of f maps all arguments to 0, and the
graph of g maps all values to True. Standard built-in logical connectives are
And, Or, Not, Implies, Xor. Bi-implication is a special case of equality, so
from Python, when saying a == b for Boolean a and b it is treated as a logical
formula for the bi-implication of a and b.

A set of utilities are available to traverse expressions once they are created.
Every function application has a function declaration and a set of arguments
accessed as children.

x = Int(’x’)
y = Int(’y’)
n = x + y >= 3
print("num args: ", n.num_args())
print("children: ", n.children())
print("1st child:", n.arg(0))
print("2nd child:", n.arg(1))
print("operator: ", n.decl())
print("op name: ", n.decl().name())

2.4 Quantifiers and Lambda Binding

Universal and existential quantifiers bind variables to the scope of the quantified
formula. For example

solve([y == x + 1, ForAll([y], Implies(y <= 0, x < y))])

has no solution because no matter what value we assigned to x, there is a value
for y that is non-positive and smaller than that value. The bound occurrence
of y is unrelated to the free occurrence where y is restricted to be x + 1. The
equality constraint y == x + 1 should also not be mistaken for an assignment
to y. It is not the case that bound occurrences of y are a synonym for x + 1.
Notice that the slightly different formula

solve([y == x + 1, ForAll([y], Implies(y <= 0, x > y))])

has a solution where x is 1 and the free occurrence of y is 2.
Z3 supports also λ-binding with rudimentary reasoning support based on a

model-constructing instantiation engine. λs may be convenient when expressing
properties of arrays and Z3 uses array sorts for representing the sorts of lambda
expressions. Thus, the result of memset is an array from integers to integers,

154 N. Bjørner et al.

that produces the value y in the range from lo to hi and otherwise behaves
as m outside the range. Z3 reasons about quantifier free formulas that contains
memset by instantiating the body of the λ.

m, m1 = Array(’m’, Z, Z), Array(’m1’, Z, Z)
def memset(lo, hi, y, m):

return Lambda([x], If(And(lo <= x, x <= hi), y, Select(m, x)))
solve([m1 == memset(1, 700, z, m), Select(m1, 6) != z])

Lambda binding is convenient for creating closures. Recall that meaning of
Lambda([x,y], e), where e is an expression with free occurrences of x and
y is as a function that takes two arguments and substitutes their values for x
and y in e. Z3 uses Lambda lifting, in conjunction with Reynold’s defunctional-
ization, to reduce reasoning about closures to universally quantified definitions.
Z3 treats arrays as general function spaces. All first-order definable functions
may be arrays. Some second-order theorems can be established by synthesizing
λ terms by instantiation. Thus,

Q = Array(’Q’, Z, B)
prove(Implies(ForAll(Q, Implies(Select(Q, x), Select(Q, y))),

x == y))

is provable. Z3 synthesizes an instantiation corresponding to Lambda(z, z == x)
for Q.

3 Theories

We will here summarize the main theories supported in Z3. In a few cases we
will give a brief taste of decision procedures used for these theories. Readers who
wish to gain a more in-depth understanding of how these decision procedures
are implemented may follow some of the citations.

3.1 EUF: Equality and Uninterpreted Functions

The logic of equality and uninterpreted function, EUF, is a basic ingredient for
first-order predicate logic. Before there are theories, there are constants, func-
tions and predicate symbols, and the built-in relation of equality. In the following
example, f is a unary function, x a constant. The first invocation of solve is
feasible with a model where x is interpreted as an element in S and f is an iden-
tify function. The second invocation of solve is infeasible; there are no models
where f maps x to anything but itself given the two previous equalities.

S = DeclareSort(’S’)
f = Function(’f’, S, S)
x = Const(’x’, S)
solve(f(f(x)) == x, f(f(f(x))) == x)
solve(f(f(x)) == x, f(f(f(x))) == x, f(x) != x)

Programming Z3 155

Decision procedures for quantifier-free EUF formulas are usually based on union-
find [57] to maintain equivalence classes of terms that are equated. Pictorially, a
sequence of equality assertions a = b, b = c, b = s produce one equivalence class
that captures the transitivity of equality.

a = b, b = c, d = e, b = s, d = t : a, b, c, s d, e, t

It is possible to check for satisfiability of disequalities by checking whether the
equivalence classes associated with two disequal terms are the same or not.
Thus, adding a �= d does not produce a contradiction, and it can be checked
by comparing a’s class representative with d’s representative.

a = b, b = c, d = e, b = s, d = t, a �= d : a, b, c, s d, e, t

On the other hand, when asserting c �= s, we can deduce a conflict as the two
terms asserted to be disequal belong to the same class. Class membership with
union-find data-structures is amortized nearly constant time.

a = b, b = c, d = e, b = s, d = t, c �= s : a, b, c, s d, e, t

Union-find alone is insufficient when function symbols are used, as with the
following example,

a = b, b = c, d = e, b = s, d = t , f (a, g(d)) �= f (b, g(e))

In this case decision procedures require reasoning with the congruence rule

x1 = y1 · · · xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

As a preparation for solving our example, let us introduce constants that can
be used as shorthands for sub-terms. Thus, introduce constants v1, v2, v3, v4 as
representatives for the four compound sub-terms.

a = b, b = c, d = e, b = s, d = t, v3 �= v4 v1 := g(e), v2 := g(d), v3 :=
f(a, v2), v4 := f(b, v1)

Having only the equality information available we obtain the equivalence
classes:

a, b, c, s d, e, t v1 v2 v3 v4

Working bottom-up, the congruence rule dictates that the classes for v1 and v2
should be merged. Thus,

e = d ⇒ g(e) = g(d)

156 N. Bjørner et al.

implies the following coarser set of equivalences.

a, b, c, s d, e, t v1, v2 v3 v4

At this point, the congruence rule can be applied a second time,

a = b, v2 = v1 ⇒ f(a, v2) = f(b, v1)

producing the equivalence classes

a, b, c, s d, e, t v1, v2 v3, v4

The classes for v3 and v4 are now merged. As our original formula required
these to be distinct, congruence closure reasoning determines that the formula
is unsatisfiable.

3.1.1 Congruence Closure
We have implicitly used the notion of congruence closure [20] to check satisfi-
ability of equalities. Let us more formally define this notion. Let T be a set of
terms and E set of equalities over T . A congruence closure over T modulo E is
the finest partition cc of T , such that:

– if (s = t) ∈ E , then s, t are in the same partition in cc.
– for s := f(s1, . . . , sk), t := f(t1, . . . , tk) ∈ T ,

• if si, ti are in same partition of cc for each i = 1, . . . k,
• then s, t are in the same partition under cc.

Definition 1. cc : T → 2T , maps term to its equivalence class.

3.1.2 EUF Models
A satisfiable version of the running example is:

a = b, b = c, d = e, b = s, d = t, f(a, g(d)) �= f(g(e), b)
It induces the following definitions and equalities: a = b, b = c, d = e, b =

s, d = t, v3 �= v4
v1 := g(e), v2 := g(d), v3 := f(a, v2), v4 := f(v1, b) and we can associate a
distinct value with each equivalence class.

�0 : a, b, c, s �1 : d, e, t �2 : v1, v2 �3 : v3 �4 : v4

When presenting the formula to Z3 as

Programming Z3 157

S = DeclareSort(’S’)
a, b, c, d, e, s, t = Consts(’a b c d e s t’, S)
f = Function(’f’, S, S, S)
g = Function(’g’, S, S)
solve([a == b, b == c, d == e, b == s,

d == t, f(a, g(d)) != f(g(e), b)])

it produces a model, that may look as follows:

[s = S!val!0, b = S!val!0, a = S!val!0,
c = S!val!0, d = S!val!1, e = S!val!1, t = S!val!1,
f = [(S!val!2, S!val!0) -> S!val!4, else -> S!val!3],
g = [else -> S!val!2]]

In the model the value S!val!0 is a fresh constant that is distinct from S!val!1.
The graph for f maps the arguments (S!val!2, S!val!0) to S!val!4. All other
arguments are mapped by the else clause to S!val!3. The else clause is used as
the default interpretation of arguments that are not listed in the interpretation.
The interpretation of S is a finite set

{S!val!0, S!val!1, S!val!2, S!val!3, S!val!4}.

3.2 Arithmetic

Arithmetical constraints are nearly ubiquitous in software models. Even though
mainstream software operates with finite precision arithmetic, that is modeled
precisely using bit-vectors, arithmetic over unbounded integers can often be used
in a sound way to model software. Furthermore, arithmetic over the reals has
been used for diverse areas such as models of cyber-physical systems or for
axiomatic economics.

3.2.1 Solving LRA: Linear Real Arithmetic
We provide an outline of Z3’s main procedure for solving formulas over linear real
arithmetic [21]. It maintains a (dual) Simplex tableau that encodes equalities of
the form Ax = 0. Feasibility of the equalities depends on bounds, loj ≤ xj ≤ hij ,
currently associated with the variables. For the following formula

x, y = Reals(’x y’)
solve([x >= 0, Or(x + y <= 2, x + 2*y >= 6),

Or(x + y >= 2, x + 2*y > 4)])

Z3 introduces auxiliary variables s1, s2 and represents the formula as

s1 ≡ x + y , s2 ≡ x + 2y ,
x ≥ 0, (s1 ≤ 2 ∨ s2 ≥ 6), (s1 ≥ 2 ∨ s2 > 4)

Only bounds (e.g., s1 ≤ 2) are asserted during search.
The first two equalities form the tableau. Thus, the definitions s1 ≡ x+y, s2 ≡

x + 2y produce the equalities

s1 = x + y, s2 = x + 2y

158 N. Bjørner et al.

They are equivalent to the normal form:

s1 − x − y = 0, s2 − x − 2y = 0

where s1, s2 are basic (dependent) and x, y are non-basic. In dual Simplex
tableaux, values of a non-basic variable xj can be chosen between loj and hij .
The value of a basic variable is a function of non-basic variable values. It is
the unique value that satisfies the unique row where the basic variable occurs.
Pivoting swaps basic and non-basic variables and is used to get values of basic
variables within bounds. For example, assume we start with a set of initial values
x = y = s1 = s2 = 0 and bounds x ≥ 0, s1 ≤ 2, s1 ≥ 2. Then s1 has to be 2 and
it is made non-basic. Instead y becomes basic:

y + x − s1 = 0, s2 + x − 2s1 = 0

The new tableau updates the assignment of variables to x = 0, s1 = 2, s2 =
4, y = 2. The resulting assignment is a model for the original formula.

3.2.2 Solving Arithmetical Fragments
The solvers available to reason about arithmetical constraints are wildly different
depending on what fragments of arithmetic is used. We summarize the main
fragments, available decision procedures, and examples in Table 1 where x, y
range over reals and a, b range over integers.

There are many more fragments of arithmetic that benefit from special-
ized solvers. We later discuss some of the fragments where integer variables
are restricted to the values {0, 1} when describing Pseudo-Boolean constraints.
Other fragments that are not currently handled in Z3 in any special way include
fragments listed in Table 2.

Table 1. Arithmetic theories

Logic Description Solver Example

LRA Linear Real Arithmetic Dual simplex [21] x+ 1
2
y ≤ 3

LIA Linear Integer Arithmetic Cuts + Branch a+ 3b ≤ 3

LIRA Mixed Real/Integer [7,11,13,19,21] x+ a ≥ 4

IDL Integer Difference Logic Floyd-Warshall a − b ≤ 4

RDL Real Difference Logic Bellman-Ford x − y ≤ 4

UTVPI Unit two-variable/inequality Bellman-Ford x+ y ≤ 4

NRA Polynomial Real Arithmetic Model based CAD
[34]

x2 + y2 < 1

NIA Non-linear Integer Arithmetic CAD + Branch [33]
Linearization [14]

a2 = 2

Programming Z3 159

Table 2. Fragments of arithmetic

Description Example

Horn Linear Real Arithmetic
at most one variable is positive

3y + z − 1
2
x ≤ 1

Two-variable per inequality [15] 3x+ 2y ≥ 1

Min-Horn [17] x ≥ min(2y + 1, z)

Bi-linear arithmetic 3xx′ + 2yy′ ≥ 2

Transcendental functions e−x ≥ y

Modular linear arithmetic a+ 3b+ 2 ≡ 0 mod 5

A user of Z3 may appreciate that a domain can be modeled using a frag-
ment of the theory of arithmetic that is already supported, or belongs to a class
where no special support is available. On a practical side, it is worth noting
that Z3 uses infinite precision arithmetic by default. Thus, integers and ratio-
nals are represented without rounding. The benefit is that the representation
ensures soundness of the results, but operations by decision procedures may end
up producing large numerals taking most of the execution time. Thus, users
who produce linear arithmetic constraints with large coefficients or long decimal
expansions may face performance barriers.

3.3 Arrays

The declaration

A = Array(’A’, IntSort(), IntSort())

introduces a constant A of the array sort mapping integers to integers. We can
solve constraints over arrays, such as

solve(A[x] == x, Store(A, x, y) == A)

which produces a solution where x necessarily equals y.
Z3 treats arrays as function spaces, thus a function f(x, y) can be converted

to an array using a λ

Lambda([x, y], f(x, y))

If f has sort A × B → C, then Lambda([x, y], f(x, y)) has sort
Array(A, B, C). A set of built-in functions are available for arrays. We sum-
marize them together with their representation using Lambda bindings.

a[i] # select array ’a’ at index ’i’
Select(a, i)

Store(a, i, v) # update array ’a’ with value ’v’ at index ’i’
= Lambda(j, If(i == j, v, a[j]))

160 N. Bjørner et al.

K(D, v) # constant Array(D, R), where R is sort of ’v’.
= Lambda(j, v)

Map(f, a) # map function ’f’ on values of ’a’
= Lambda(j, f(a[j]))

Ext(a, b) # Extensionality
Implies(a[Ext(a, b)] == b[Ext(a, b)], a == b)

3.3.1 Deciding Arrays by Reduction to EUF
Formulas using the combinators Store, K, Map, Ext are checked for satisfia-
bility by expanding the respective λ definitions on sub-terms. We illustrate how
occurrences of Store produce constraints over EUF. In the following, assume we
are given a solver s with ground assertions using arrays.

For each occurrence in s of Store(a, i, v) and b[j], add the following
assertions:

– s.add(Store(a, i, v)[j] == If(i == j, v, a[j]))
– s.add(Store(a, i, v)[i] == v)

The theory of arrays is extensional. That is, two arrays are equal if they behave
the same on all selected indices. When Z3 produces models for quantifier free
formulas in the theory of extensional arrays it ensures that two arrays are equal in
a model whenever they behave the same on all indices. Extensionality is enforced
on array terms a, b in s by instantiating the axiom of extensionality.

– s.add(Implies(ForAll(i, a[i] == b[i]), a == b))

Since the universal quantifier occurs in a negative polarity we can introduce a
Skolem function Ext that depends on a and b and represent the extensionality
requirement as:

– s.add(Implies(a[Ext(a, b)] == b[Ext(a, b)], a == b))

We can convince ourselves that asserting these additional constraints force mod-
els of a solver s to satisfy the array axioms. Suppose we are given a model
M satisfying all the additional asserted equalities. These equalities enforce the
axioms for Store on all indices that occur in s. They also enforce extensionality
between arrays: Two arrays are equal if and only if they evaluate to the same
value on all indices in s.

3.4 Bit-Vectors

Let us play with some bit-fiddling. The resource

https://graphics.stanford.edu/~seander/bithacks.html,

https://graphics.stanford.edu/{~}seander/bithacks.html

Programming Z3 161

Fig. 2. Bit-vector addition circuit

lists a substantial repertoire of bit-vector operations that can be used as alter-
natives to potentially more expensive operations. Note that modern compilers
already contain a vast set of optimizations that automatically perform these con-
versions and Z3 can be used to check and synthesize such optimizations [38]. For
example, to test whether a bit-vector is a power of two we can use a combination
of bit-wise operations and subtraction:

def is_power_of_two(x):
return And(x != 0, 0 == (x & (x - 1)))

x = BitVec(’x’, 4)
prove(is_power_of_two(x) == Or([x == 2**i for i in range(4)]))

The absolute value of a variable can be obtained using addition and xor with a
sign bit.

v = BitVec(’v’,32)
mask = v >> 31
prove(If(v > 0, v, -v) == (v + mask) ^ mask)

Notice that the Python variable mask corresponds to the expression v >> 31,
the right arithmetic (signed) shift of v. Notice also, that in classical first-order
logic, all operations are total. In particular, for bit-vector arithmetic -v is fully
specified, in contrast to, say C, which specifies that -v is undefined when v is a
signed integer with the value −231.

3.4.1 Solving Bit-Vectors
Z3 mostly uses a bit-blasting approach to deciding bit-vectors. By bit-blasting we
refer to a reduction of bit-vector constraints to propositional logic by treating

162 N. Bjørner et al.

each bit in a bit-vector as a propositional variable. Let us illustrate how bit-
vector addition is compiled to a set of clauses. The expression v + w, where v
and w are bit-vectors is represented by a vector out of output bits. The relation
between v, w and out is provided by clauses the encode a ripple-carry adder seen
in Fig. 2. The encoding uses an auxiliary vector of carry bits that are internal to
the adder.

3.4.2 Floating Point Arithmetic
Floating points are bit-vectors with an interpretation specified by the IEEE
floating point standard.

x = FP(’x’, FPSort(3, 4))
print(10 + x)

It declares a floating point number x with 3 bits in the exponent and 4 for the
significand. The result of adding 10 to x is 1.25*(2**3) + x. We see that 10 is
represented as a floating point number with exponent 3, that is the bit-vector
011. The significand is 1010.

3.5 Algebraic Datatypes

The theory of first-order algebraic data-types captures the theory of finite trees.
It is characterized by the properties that:

– All trees are finite (occurs check).
– All trees are generated from the constructors (no junk).
– Two trees are equal if and only if they are constructed exactly the same way

(no confusion).

A basic example of a binary tree data-type is given in Fig. 3.
It may produce the solution

[t = Node(Empty, 0, Empty)]

Similarly, one can prove that a tree cannot be a part of itself.

prove(t != Tree.Node(t, 0, t))

Fig. 3. Binary tree datatypes

Programming Z3 163

3.6 Sequences and Strings

The theory of strings and sequences extend on the theory of the free monoid
with a few additional functions that are useful for strings and sequences. A
length operation is built-in for strings and sequences, and there are operations
for converting strings to natural numbers and back.

If the lengths of a prefix and suffix of a string add up to the length of the
string, the string itself must be the concatenation of the prefix and suffix:

s, t, u = Strings(’s t u’)
prove(Implies(And(PrefixOf(s, t), SuffixOf(u, t),

Length(t) == Length(s) + Length(u)),
t == Concat(s, u)))

One can concatenate single elements to a sequence as units:

s, t = Consts(’s t’, SeqSort(IntSort()))
solve(Concat(s, Unit(IntVal(2))) == Concat(Unit(IntVal(1)), t))
prove(Concat(s, Unit(IntVal(2))) != Concat(Unit(IntVal(1)), s))

There are two solvers available in Z3 for strings. They can be exchanged by
setting the parameter

– s.set("smt.string.solver","seq") with contributions by Thai Trinh, or
– s.set("smt.string.solver","z3str3") by Murphy Berzish.

4 Interfacing with Solvers

Solvers maintain a set of formulas and supports satisfiability checking, and scope
management: Formulas that are added under one scope can be retracted when
the scope is popped. In this section we describe the interface to solvers. Section 5
provides a set of use cases and Sect. 6 describes the underlying solver implemen-
tations available in Z3.

4.1 Incrementality

Solvers can be used to check satisfiability of assertions in an incremental way.
An initial set of assertions can be checked for satisfiability followed by additional
assertions and checks. Assertions can be retracted using scopes that are pushed
and popped. Under the hood, Z3 uses a one-shot solver during the first check.
If further calls are made into the solver, the default behavior is to switch to an
incremental solver. The incremental solver uses the SMT core, see Sect. 6.1.1,
by default. For use-cases that don’t require all features by the SMT core, it may
be beneficiary to use specialized solvers, such as solvers for finite domains (bit-
vectors, enumeration types, bounded integers, and Booleans) as specified using
the QF_FD logic.

164 N. Bjørner et al.

4.2 Scopes

The operations push and pop create, respectively revert, local scopes. Asser-
tions that are added within a push are retracted on a matching pop. Thus, the
following session results in the verdicts sat, unsat, and sat.

p, q, r = Bools(’p q r’)
s = Solver()
s.add(Implies(p, q))
s.add(Not(q))
print(s.check())
s.push()
s.add(p)
print(s.check())
s.pop()
print(s.check())

4.3 Assumptions

Alternative to scopes, it is possible to check satisfiability under the assumption
of a set of literals. Thus, the session

s.add(Implies(p, q))
s.add(Not(q))
print(s.check(p))

also produces the verdict unsat as the conjunction of p → q, ¬q, p is
unsat. The method assert_and_track(q, p) has the same effect of adding
Implies(p, q), and it adds p as an implicit assumption. Our running example
becomes

p, q = Bools(’p q’)
s = Solver()
s.add(Not(q))
s.assert_and_track(q, p)
print(s.check())

4.4 Cores

We can extract a subset of assumptions used to derive unsatisfiability. Such
subsets of assumptions are known as unsatisfiable cores, or simply as a core.
In the following example, the unsatisfiable core has the single element p. The
unrelated assumption v does not appear in the core.

p, q, r, v = Bools(’p q r v’)
s = Solver()
s.add(Not(q))
s.assert_and_track(q, p)
s.assert_and_track(r, v)

Programming Z3 165

print(s.check())
print(s.unsat_core())

Note that we invoke s.check() prior to extracting a core. Cores are only avail-
able after the last call to s.check() produced unsat.

By default solvers do not return minimal cores. A core is minimal if there is
no proper subset that is also a core. The default behavior can be changed when
the solver corresponds to either the SMT Core or SAT Core (if the underlying
solver is created from a sequence of pre-processing tactics, core minimization
is not guaranteed to take effect). To force core minimization users can rely on
setting the following parameters:

def set_core_minimize(s):
s.set("sat.core.minimize","true") # For Bit-vector theories
s.set("smt.core.minimize","true") # For general SMT

4.5 Models

When s.check() returns sat Z3 can provide a model that assigns values to the
free constants and functions in the assertions. The current model is accessed
using s.model() and it offers access to an interpretation of the active assertions
in s. Consider the example:

f = Function(’f’, Z, Z)
x, y = Ints(’x y’)
s.add(f(x) > y, f(f(y)) == y)
print(s.check())
print(s.model())

A possible model for s is:

[y = 0, x = 2, f = [0 -> 3, 3 -> 0, else -> 1]]

You can access models. They have a set of entries. Each entry maps a constant
or function declaration (constants are treated as nullary functions) to an inter-
pretation. It maps constants to a constant expression and it maps functions to
a function interpretation. The stub

m = s.model()
for d in m:

print(d, m[d])

iterates over the assignments in a model and produces the output

y 0
x 2
f [0 -> 3, 3 -> 0, else -> 1]

Function interpretations comprise a set of entries that specify how the func-
tion behaves on selected argument combinations, and a else_value that covers
arguments not listed in the entries.

166 N. Bjørner et al.

num_entries = m[f].num_entries()
for i in range(num_entries):

print(m[f].entry(i))
print("else", m[f].else_value())

It produces the output

[0, 3]
[3, 0]
else 1

The easiest way to access a model is to use the eval method that lets you
evaluate arbitrary expressions over a model. It reduces expressions to a constant
that is consistent with the way the model interprets the constants and functions.
For our model from above

print(m.eval(x), m.eval(f(3)), m.eval(f(4)))

produces the output 2, 0, 1.

4.6 Other Methods

4.6.1 Statistics
You can gain a sneak peak at what the solver did by extracting statistics. The
call

print(s.statistics())

displays values of internal counters maintained by the decision procedures. They
are mostly valuable when coupled with a detailed understanding of how the
decision procedures work, but may be used as an introductory view into the
characteristics of a search.

4.6.2 Proofs
Proof objects, that follow a natural deduction style, are available from the Solver
interface [42]. You have to enable proof production at top level in order to retrieve
proofs.

s.set("produce-proofs", True)
s.add(ϕ)
assert unsat == s.check()
print(s.proof())

The granularity of proof objects is on a best-effort basis. Proofs for the SMT
Core, are relatively fined-grained, while proofs for procedures that perform quan-
tifier elimination, for instance QSAT described in Sect. 6.4, are exposed as big
opaque steps.

Programming Z3 167

4.6.3 Retrieving Solver State
You can retrieve the current set of assertions in a solver using s.assertions(),
the set of unit literals using s.units() and literals that are non-units using
s.non_units(). The solver state can be printed to SMT-LIB2 format using
s.sexpr().

4.6.4 Cloning Solver State
The method s.translate(ctx) clones the solver state into a new solver based
on the context that is passed in. It is useful for creating separate non-interfering
states of a solver.

4.6.5 Loading Formulas
The methods s.from_file and s.from_string adds constraints to a solver state
from a file or string. Files are by default assumed to be in the SMT2 format. If a
file name ends with dimacs they are assumed to be in the DIMACS propositional
format.

4.6.6 Consequences
Product configuration systems use constraints to describe the space of all legal
configurations. As parameters get fixed, fewer and fewer configuration options
are available. For instance, once the model of a car has been fixed, some options
for wheel sizes become unavailable. It is furthermore possible that only one
option is available for some configurations, once some parameters are fixed. Z3
can be used to answer queries of the form: Given a configuration space of values
V , when fixing values V0 ⊆ V , what is the largest subset V0 ⊆ V1 ⊆ V of values
that become fixed? Furthermore, for some value v1 that is fixed, provide an
explanation, in terms of the values that were fixed in V0, for why v1 got fixed.
The functionality is available through the consequences method.

a, b, c, d = Bools(’a b c d’)

s = Solver()
s.add(Implies(a, b), Implies(c, d)) # background formula
print(s.consequences([a, c], # assumptions

[b, c, d])) # what is implied?

produces the result:

(sat, [Implies(c, c), Implies(a, b), Implies(c, d)])

In terms for SAT terminology, consequence finding produces the set of all back-
bone literals. It is useful for finding fixed parameters [29] in product configuration
settings.

Z3 relies on a procedure that integrates tightly with the CDCL, Conflict
Driven Clause Learning [56], algorithm, and it contains two implementations

168 N. Bjørner et al.

Fig. 4. Basic cube and conquer

of the procedure, one in the SAT core, another in the SMT core. Section 6.1.1
expands on CDCL and integrations with theories (Fig. 4).

4.6.7 Cubes
You can ask Z3 to suggest a case split or a sequence of case splits through
the cubing method. It can be used for partitioning the search space into sub-
problems that can be solved in parallel, or alternatively simplify the problem for
CDCL engines.

When the underlying solver is based on the SAT Core, see Sect. 6.2, it uses
a lookahead solver to select cubes [25]. By default, the cuber produces two
branches, corresponding to a case split on a single literal. The SAT Core based
cuber can be configured to produce cubes that represent several branches. An
empty cube indicates a failure, such as the solver does not support cubing (only
the SMT and SAT cores support cubing, and generic solvers based on tactics
do not), or a timeout or resource bound was encountered during cubing. A cube
comprising of the Boolean constant true indicates that the state of the solver is
satisfiable. Finally, it is possible for the s.cube() method to return an empty
set of cubes. This happens when the state of s is unsatisfiable. Each branch is
represented as a conjunction of literals. The cut-off for branches is configured
using

– sat.lookahead.cube.cutoff

Programming Z3 169

Table 3. Lookahead parameters

sat.lookahead Used when
cube.cutoff is

Description

cube.depth 1 depth A fixed maximal size of cubes is
returned

cube.freevars 0.8 freevars The depth of cubes is governed
by the ratio of non-unit literals
in a branch compared to
non-unit variables in the root

cube.fraction 0.4 adaptive_freevars
adaptive_psat

Adaptive fraction to create
lookahead cubes

cube.psat.
clause_base

2 psat Base of exponent used for clause
weight

We summarize some of the configuration parameters that depend on the value
of cutoff in Table 3.

Heuristics used to control which literal is selected in cubes can be configured
using the parameter:

– sat.lookahead.reward

5 Using Solvers

We now describe a collection of algorithms. They are developed on top of the
interfaces described in the previous section.

5.1 Blocking Evaluations

Models can be used to refine the state of a solver. For example, we may wish to
invoke the solver in a loop where new calls to the solver blocks solutions that
evaluate the constants to the exact same assignment.

def block_model(s):
m = s.model()
s.add(Or([f() != m[f] for f in m.decls() if f.arity() == 0]))

5.2 Maximizing Satisfying Assignments

Another use of models is to use them as a guide to a notion of optimal model. A
maximal satisfying solution, in short mss, for a set of formulas ps is a subset of
ps that is consistent with respect to the solver state s and cannot be extended to
a bigger subset of ps without becoming inconsistent relative to s. We provide a
procedure, from [40], for finding a maximal satisfying subset in Fig. 5. It extends
a set mss greedily by adding as many satisfied predicates from ps in each round

170 N. Bjørner et al.

Fig. 5. An algorithm for computing maximal satisfying subsets

as possible. If it finds some predicate p that it cannot add, it notes that it is
a backbone with respect to the current mss. As a friendly hint, it includes the
negation of p when querying the solver in future rounds.

Exercise 5a: Suppose ps is a list corresponding to digits in a binary number
and ps is ordered by most significant digit down. The goal is to find an mss
with the largest value as a binary number. Modify get_mss to produce such a
number.

5.3 All Cores and Correction Sets

The Marco procedure [37] combines models and cores in a process that enumer-
ates all unsatisfiable cores and all maximal satisfying subsets of a set of formulas
ps with respect to solver s. It maintains a map solver that tells us which subsets
of ps are not yet known to be a superset of a core or a subset of an mss.

Efficiently enumerating cores and correction sets is an active area of research.
Many significant improvements have been developed over the above basic imple-
mentation [1,2,40,49,53].

5.4 Bounded Model Checking

Figure 7 illustrates a bounded model checking procedure [4] that takes a tran-
sition system as input and checks if a goal is reachable. Transition systems are
described as

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/mss.py

Programming Z3 171

Fig. 6. The MARCO algorithm for computing cores and maximal satisfying assign-
ments

〈Init ,Trans,Goal ,V,Y〉
where Init is a predicate over V, that describes the initial states, Trans is a tran-
sition relation over V × Y × V ′. The set of reachable states is the set inductively
defined as valuations s of V, such that either s |= Init or there is a reachable
s0 and values v for Y, such that s0, v, s |= Trans. A goal is reachable if there is
some reachable state where s |= Goal (Fig. 6).

In Python we provide the initial condition as init, using variables xs, the
transition trans that uses variables xs, xns, fvs, and goal using variables
xs. Bounded model checking unfolds the transition relation trans until it can
establish that the goal is reachable. Bounded model checking diverges if goal is
unreachable. The function substitute(e, subst) takes an expression e and a
list of pairs subst of the form [(x1, y1), (x2, y2),..] and replaces variables
x1, x2,.. by y1, y2,.. in e.

Example 1. Let us check whether there is some k, such that 3 + 3 + . . . + 3
︸ ︷︷ ︸

k

=

10 when numbers are represented using 4 bits. The corresponding transition
system uses a state variable x0 which is named x1 in the next state. Initially
x0 == 0 and in each step the variable is incremented by 3. The goal state is
x0 == 10.

x0, x1 = Consts(’x0 x1’, BitVecSort(4))
bmc(x0 == 0, x1 == x0 + 3, x0 == 10, [], [x0], [x1])

Bounded model checking is good for establishing reachability, but does not
produce certificates for non-reachability (or safety). The IC3 [9] algorithm is

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/marco.py

172 N. Bjørner et al.

Fig. 7. Bounded model checking of a transition system

complete for both reachability and non-reachability. You can find a simplistic
implementation of IC3 using the Python API online

https://github.com/Z3Prover/z3/blob/master/examples/python/mini_ic3.py

5.5 Propositional Interpolation

It is possible to compute interpolants using models and cores [12]. A procedure
that computes an interpolant I for formulas A, B, where A ∧ B is unsatisfiable
proceeds by initializing I = true and saturating a state �A,B, I� with respect
to the rules:

�A, B , I � =⇒ �A, B , I ∧ ¬L� if B � ¬L, A ∧ I �� ¬L

I if A � ¬I

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/bmc.py
https://github.com/Z3Prover/z3/blob/master/examples/python/mini_ic3.py

Programming Z3 173

The partial interpolant I produced by pogo satisfies B � I. It terminates when
A � ¬I. The condition A∧I �� ¬L ensures that the algorithm makes progress and
suggests using an implicant L′ ⊇ L of A ∧ I in each iteration. Such an implicant
can be obtained from a model for A ∧ I (Fig. 8).

Fig. 8. Propositional interpolation

Example 2. The (reverse) interpolant between A : x1 = a1 �= a2 �= x2 and
B : x1 = b1 �= b2 = x2 using vocabulary x1, x2 is x1 �= x2. It is implied by B and
inconsistent with A.

A = SolverFor("QF_FD")
B = SolverFor("QF_FD")
a1, a2, b1, b2, x1, x2 = Bools(’a1 a2 b1 b2 x1 x2’)
A.add(a1 == x1, a2 != a1, a2 != x2)
B.add(b1 == x1, b2 != b1, b2 == x2)
print(list(pogo(A, B, [x1, x2])))

5.6 Monadic Decomposition

Suppose we are given a formula ϕ[x, y] using variables x and y. When is it
possible to rewrite it as a Boolean combination of formulas ψ1(x), . . . , ψk(x) and
θ1(y), . . . , θn(y)? We say that the formulas ψj and θj are monadic; they only
depend on one variable. An application of monadic decomposition is to convert
extended symbolic finite transducers into regular symbolic finite transducers.
The regular versions are amenable to analysis and optimization. A procedure
for monadic decomposition was developed in [58], and we here recall the Python
prototype (Fig. 9).

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/interp.py

174 N. Bjørner et al.

Fig. 9. Monadic decomposition

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/mondec.py

Programming Z3 175

Example 3. A formula that has a monadic decomposition is the bit-vector
assertion for x, y being bit-vectors of bit-width 2k.

y > 0 ∧ (y&(y − 1)) = 0 ∧ (x&(y%((1 � k) − 1))) �= 0

We can compute the monadic decomposition

def test_mondec(k):
R = lambda v:And(v[1] > 0, (v[1] & (v[1] - 1)) == 0,

(v[0] & (v[1] % ((1 << k) - 1))) != 0)
bvs = BitVecSort(2*k) #use 2k-bit bitvectors
x, y = Consts(’x y’, bvs)
res = mondec(R, [x, y])
assert(isUnsat(res != R([x, y]))) #check correctness
print("mondec1(", R([x, y]), ") =", res)

test_mondec(2)

6 Solver Implementations

There are five main solvers embedded in Z3. The SMT Solver is a general purpose
solver that covers a wide range of supported theories. It is supplemented with
specialized solvers for SAT formulas, polynomial arithmetic, Horn clauses and
quantified formulas over theories that admit quantifier-elimination.

6.1 SMT Core

The SMT Solver is a general purpose solver that covers a wide range of sup-
ported theories. It is built around a CDCL(T) architecture where theory solvers
interact with a SAT + EUF blackboard. Theory solvers, on the right in Fig. 10,
communicate with a core that exchanges equalities between variables and assign-
ments to atomic predicates. The core is responsible for case splitting, which is
handled by a CDCL SAT solver, and for letting each theory learn constraints
and equalities that are relevant in the current branch.

To force using the SMT solver a user can create a simple solver using the
function SimpleSolver.

The SMT solver integrates two strategies for quantifier instantiation. By
default, both strategies are enabled. To disable them, one has to disable auto-
matic configuration mode and then disable the instantiation strategy:

s.set("smt.auto_config", False) # disable automatic SMT core
configuration

s.set("smt.mbqi", False) # disable model based
quantifier instantiation

s.set("smt.ematching", False) # disable ematching based
quantifier instantiation

176 N. Bjørner et al.

Fig. 10. Architecture of Z3’s SMT core solver.

6.1.1 CDCL(T): SAT + Theories
The architecture of mainstream SMT solvers, including Z3’s SMT core, uses
a SAT solver to enumerate combinations of truth assignments to atoms. The
truth assignments satisfy a propositional abstraction of the formula. Theory
solvers are used to check if assignment admit a model modulo the theories. The
resulting architecture is known as DPLL(T) [52], but we refer to this as CDCL(T)
because it really relies on SAT solvers that incorporate Conflict Driven Clause
Learning [56], which goes beyond the algorithm associated with DPLL [18].
Importantly, CDCL supplies facilities for learning new clauses during search. The
learned clauses block future case splits from exploring the same failed branches.
Take the following example

s.add(x >= 0, y == x + 1, Or(y > 2, y < 1))

by introducing the names:

p1, p2, p3, p4 = Bools(’p1 p2 p3 p4’)
= x >= 0, y == x + 1, y > 2, y < 1

we obtain a propositional formula

And(p1, p2, Or(p3, p4))

It is satisfiable and a possible truth assignment is

p1, p2, p3, p4 = True, True, False, True

It requires satisfiability of the following conjunction:

Programming Z3 177

Fig. 11. Simple CDCL(T)

x >= 0, y == x + 1, Not(y > 2), y < 1

It is already the case that

x >= 0, y == x + 1, y < 1

is unsat. To avoid this assignment we require also satisfying the blocking clause

Or(Not(p1), Not(p2), Not(p4))

The new truth assignment

p1, p2, p3, p4 = True, True, True, False

produces

x >= 0, y == x + 1, y > 2, Not(y < 1)

which is satisfiable. The example illustrates the steps used in a CDCL(T) integra-
tion where the Theory Solver processes the final result of a SAT Solver. We can
simulate this procedure using Z3’s API. Figure 11 shows a CDCL(T) solver that
leverages a propositional solver prop to check a propositional abstraction and a
theory solver theory whose role is to check conjunctions of literals produced by
prop. Figure 12 lists auxiliary routines required to create the abstraction.

We call it a simple CDCL(T) solver as it does not expose important features
to drive performance. Importantly, efficient CDCL(T) solvers integrate theory

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/cdclT.py

178 N. Bjørner et al.

Fig. 12. Auxiliary routines for lazy CDCL(T)

propagation that let theories interact with the SAT solver to propagate assign-
ments to atoms. Instead of adding blocking clauses by the time the SAT solver is
done the theory solver interacts tightly with the SAT solver during back-jumping.

Exercise 6a

Dual Propagation and Implicants: The propositional assignment produced
by prop is not necessarily minimal. It may assign truth assignments to literals
that are irrelevant to truth of the set of clauses. To extract a smaller assignment,
one trick is to encode the negation of the clauses in a separate dual solver. A truth
assignment for the primal solver is an unsatisfiable core for the dual solver. The
exercise is to augment simple_cdclT with a dual solver to reduce assignments
sent to the theory solver.

6.1.2 Theories + Theories
In practice we need to solve a combination of theories. The formulas we used in
the initial example

x + 2 == y, f(Store(A, x, 3)[y - 2]) != f(y - x + 1)

Programming Z3 179

integrate several theory solvers. For modularity, it is desirable to maintain sep-
arate solvers per theory. To achieve this objective the main questions that an
integration needs to address are:

– Determine when the union of two theories T1 ∪ T2 is consistent.
– Given solvers for T1 and T2, how can we build a solver for T1 ∪ T2.

We can address this objective when there is an effective theory T0 over the shared
signature of T1, T2, that when embedable into T1, T2 implies T1∪ T2 is consistent.
Sufficient conditions for this setting were identified by Nelson and Oppen [50]:

Theorem 1. The union of two consistent, disjoint, stably infinite theories is
consistent.

Let us define the ingredients of this theorem.

Disjoint Theories. Two theories are disjoint if they do not share func-
tion/constant and predicate symbols. = is the only exception. For example,

– The theories of arithmetic and arrays are disjoint.
• Arithmetic symbols: 0, -1, 1, -2, 2, +, -, *, >, <, ==, >=.
• Array symbols: Select, Store

The process of purification can be used as a formal tool to bring formulas into
signature-disjoint form. It introduces fresh symbols for shared sub-terms. A puri-
fied version of our running example is:

Functions: f(v1) != f(v2)
Arrays: v1 == v3[v4], v3 == Store(x, y, v5)
Arithmetic: x + 2 == y, v2 == y - x + 1, v4 == y - 2, v5 == 2

In reality, purification is a no-op: the fresh variables correspond directly to nodes
in the abstract syntax trees for expressions.

Stably Infinite Theories. A theory is stably infinite if every satisfiable quantifier-
free formula is satisfiable in an infinite model.

– EUF and arithmetic are stably infinite.
– Bit-vectors are not.

Nelson-Oppen Combination. Let T1 and T2 be consistent, stably infinite theo-
ries over disjoint (countable) signatures. Assume satisfiability of conjunction of
literals can be decided in O(T1(n)) and O(T2(n)) time respectively. Then

1. The combined theory T is consistent and stably infinite.
2. Satisfiability of quantifier free conjunction of literals can be decided in O(2n

2×
(T1(n) + T2(n))).

3. If T1 and T2 are convex, then so is T and satisfiability in T can be decided in
O(n3 × (T1(n) + T2(n))).

180 N. Bjørner et al.

Convexity. A theory T is convex if for every finite sets S of literals, and every
disjunction a1 = b1 ∨ . . . ∨ an = bn:

S |= a1 = b1 ∨ . . . ∨ an = bn iff S |= ai = bi for some 1 ≤ i ≤ n.

Many theories are convex and therefore admit efficient theory combinations

– Linear Real Arithmetic is convex.
– Horn equational theories are convex.

• Horn equations are formulas of the form a1 �= b1 ∨ . . . an �= bn ∨ a = b.

Finally note that every convex theory with non trivial models is stably infinite.
But, far from every theory is convex. Notably,

– Integer arithmetic
• 1 ≤ a ≤ 2, b = 1, c = 2 implies a = b ∨ a = c.

– Real non-linear arithmetic
• a2 = 1, b = 1, c = −1 implies a = b ∨ a = c.

– The theory of arrays
• Store(a, i, v)[j] == v implies i == j or a[j] == v.

A Reduction Approach to Theory Combination[35,43]. Theory Combination in
Z3 is essentially by reduction to a set of core theories comprising of Arithmetic,
EUF and SAT. Bit-vectors and finite domains translate to propositional SAT.
Other theories are reduced to core theories. We provided an example of this
reduction in Sect. 3.3.

6.1.3 E-Matching Based Quantifier Instantiation
E-matching [46] based quantifier instantiation uses ground terms to find candi-
date instantiations of quantifiers. Take the example

a, b, c, x = Ints(’a b c x’)
f = Function(’f’, Z, Z)
g = Function(’g’, Z, Z, Z)
prove(Implies(And(ForAll(x, f(g(x, c)) == a), b == c, g(c, b) == c),

f(b) == a))

The smallest sub-term that properly contains x is g(x, c). This pattern contains
all the bound variables of the universal quantifier. Under the ground equality
b == c and instantiation of x by c, it equals g(c, b). This triggers an instan-
tiation by the following tautology

Implies(ForAll(x, f(g(x, c)) == a), f(g(c, c)) == a))

Chasing the equalities f(g(c, c)) == a, g(c, b) == c, b == c we derive
f(b) == a, which proves the implication.

The example illustrated that E-matching takes as starting point a pattern
term p, that captures the variables bound by a quantifier. It derives an substitu-
tion θ, such that pθ equals some useful term t, modulo some useful equalities. A

Programming Z3 181

useful source of useful terms are the current ground terms T maintained during
search, and the current asserted equalities during search may be used as the
useful equalities. The congruence closure structure cc introduced in Sect. 3.1.1
contains relevant information to track ground equalities. For each ground term
it represents an equivalence class of terms that are congruent in the current con-
text. Now, given a pattern p we can compute a set of substitutions modulo the
current congruence closure by invoking

⋃

t∈T
match(p, t, ∅)

where E-matching is defined by recursion on the pattern p:

match(x , t , S) = { θ[x �→ t] | θ ∈ S , x �∈ θ}
∪ { θ | θ ∈ S , x ∈ θ, θ(x) ∈ cc(t) }

match(c, t , S) = ∅ if c �∈ cc(t)
match(c, t , S) = S if c ∈ cc(t)
match(f (p), t , S) =

⋃

f (t) ∈cc(t) match(pn , tn , . . . , match(p1, t1, S))

It is not always possible to capture all quantified variables in a single pattern.
For this purpose E-matching is applied to a sequence of patterns, known as a
multi-pattern, that collectively contains all bound variables.

The secret sauce to efficiency is to find instantiations

– with as little overhead as possible,
– across large sets of terms, and
– incrementally.

Z3 uses code-trees [54] to address scale bottlenecks for search involving thousands
of patterns and terms.

6.1.4 Model-Based Quantifier Instantiation
E-matching provides a highly syntactic restriction on instantiations. An alterna-
tive to E-matching is based on using a current model of the quantifier-free part
of the search state. It is used to evaluate the universal quantifiers that have to
be satisfied in order for the current model to extend to a full model of the con-
junction of all asserted constraints. We call this method Model-Based Quantifier
Instantiation [8,22,47,59]. Take the following example:

from z3 import *
Z = IntSort()
f = Function(’f’, Z, Z)
g = Function(’g’, Z, Z)
a, n, x = Ints(’a n x’)
solve(ForAll(x, Implies(And(0 <= x, x <= n), f(x + a) == g(x))),

a > 10, f(a) >= 2, g(3) <= -10)

It may produce a model of the form

182 N. Bjørner et al.

Fig. 13. Model-Based Quantifier Instantiation algorithm. Notice that this proto-
algorithm code is not directly executable.

[a = 11,
n = 0,
f = [else -> 2],
g = [3 -> -10, else -> f(Var(0) + 11)]]

The interpretation of g maps 3 to −10, and all other values x are mapped to
however f(11 + x) is interpreted (which happens to be the constant 2).

The method that allowed finding this satisfying assignment is based on a
model evaluation loop. At a high level it can be described as the following pro-
cedure, which checks satisfiability of

ψ ∧ ∀x . ϕ[x]

where ψ is quantifier free and for sake of illustration we have a single quantified
formula with quantifier free body ϕ. The Model-Based Quantifier Instantiation,
MBQI, procedure is described in Fig. 13:

We use the notation tM to say that t is partially evaluated using interpreta-
tion M , for example:

– Let M := [y �→ 3, f(x) �→ if x = 1 then 3 else 5], and
– t := y + f(y) + f(z), then
– tM = 3 + 5 + if z = 1 then 3 else 5

For our example formula assume we have a model of the quantifier-free con-
straints as follows

[a = 11, n = 0, f = [else -> 2], g = [else -> -10]]

The negated body of the quantifier, instantiated to the model is

And(0 <= x, x <= 0, [else -> 2](x + 11) != [else -> -10](x))

Programming Z3 183

It is satisfied with the instantiation x = 0, which is congruent to n under the
current model. We therefore instantiate the quantifier with x = n and add the
constraint

Implies(And(0 <= n, n <= n), f(n + a) == g(n))

But notice a syntactic property of the quantifier body. It can be read as a
definition for the graph of g over the range 0 <= x, x <= n. This format is an
instance of guarded definitions [28]. Hence, we record this reading when creating
the next model for g. In the next round, a, n, and f are instantiated as before, and
g(3) evaluates to −10 as before, but elsewhere follows the graph of f(x + a),
and thus the model for g is given by [3 -> -10, else -> f(11 + Var(0))].

Model-Based Quantifier Instantiation is quite powerful when search space for
instantiation terms is finite. It covers many decidable logical fragments, including
EPR (Effectively Propositional Reasoning), UFBV (uninterpreted functions and
bit-vectors), the Array property fragment [10] and extensions [22]. We will here
only give a taste with an example from UFBV [59]:

Char = BitVecSort(8)
f = Function(’f’, Char, Char)
f1 = Function(’f1’, Char, Char)
a, x = Consts(’a x’, Char)
solve(UGE(a, 0), f1 (a + 1) == 0,

ForAll(x, Or(x == a + 1, f1(x) == f(x))))

The following model is a possible solution:

[a = 0, f = [else -> 1], f1 = [1 -> 0, else -> f(Var(0))]]

UFBV is the quantified logic of uninterpreted functions of bit-vectors. All sorts
and variables have to be over bit-vectors, and standard bit-vector operations are
allowed. It follows that the problem is finite domain and therefore decidable.
It isn’t easy, however. The quantifier-free fragment is not only NP hard, it is
NEXPTIME hard; it can be encoded into EPR [55]. The quantified fragment
is another complexity jump. Related to UFBV, decision procedures for quantified
bit-vector formulas were developed by John and Chakraborty in [31,32], and by
Niemetz et al. in [51].

Recall that EPR is a fragment of first-order logic where formulas have the
quantifier prefix ∃x∀y, thus a block of existential quantified variables followed
by a block of universally quantified variables. The formula inside the quantifier
prefix is a Boolean combination of equalities, disequalities between bound vari-
ables and free constants as well as predicate symbols applied to bound variables
or free constants. Noteworthy, EPR formulas do not contain functions. It is easy
to see that EPR is decidable by first replacing the existentially quantified vari-
ables by fresh constants and then instantiate the universally quantified variables
by all combinations of the free constant. If the resulting ground formula is satis-
fiable, we obtain a finite model of the quantified formula by bounding the size of
the universe by the free constants. The formula ∃x∀y.(p(x, y) ∨ q(a, y) ∨ y = a),
where a is a free constant, is in EPR.

184 N. Bjørner et al.

6.2 SAT Core

The SAT Core is an optimized self-contained SAT solver that solves proposi-
tional formulas. It takes advantage of the fact that it operates over propositional
theories and performs advanced in-processing steps. The SAT solver also acts
as a blackboard for select Boolean predicates that express cardinality and arith-
metical (pseudo-Boolean) constraints over literals.

Generally, theories that are finite domain, are solved using the SAT solver.
Z3 identifies quantifier-free finite domain theories using a designated logic QF_FD.
It supports propositional logic, bit-vector theories, pseudo-Boolean constraints,
and enumeration data-types. For example, the following scenario introduces an
enumeration type for color, and bit-vectors u, v. It requires that at least 2 out
of three predicates u + v <= 3, v <= 20, u <= 10 are satisfied.

from z3 import *
s = SolverFor("QF_FD")
Color, (red, green, blue) = EnumSort(’Color’, [’red’,’green’,’blue’])
clr = Const(’clr’, Color)
u, v = BitVecs(’u v’, 32)
s.add(u >= v,

If(v > u + 1, clr != red, clr != green),
clr == green,
AtLeast(u + v <= 3, v <= 20, u <= 10, 2))

print(s.check())
print(s.model())

is satisfiable, and a possible model is:

[v = 4, u = 2147483647, clr = green]

Figure 14 shows the overall architecture of Z3’s SAT solver.
There are four main components. Central to the SAT solver is an engine that

performs case splits, lemma learning and backtracking search. It is the main
CDCL engine and is structured similar to mainstream CDCL solvers. It can
draw on auxiliary functionality.

6.2.1 In-processing
In-processing provides a means for the SAT solver to simplify the current set of
clauses using global inferences. In-processing is performed on a periodic basis. It
integrates several of the techniques that have been developed in the SAT solving
literature in the past decade, known as Blocked Clause Elimination, Asymmetric
Literal Addition, Asymmetric Covered Clause Elimination, Subsumption, Asym-
metric Branching [24].

6.2.2 Co-processing
A set of co-processors are available to support alternative means of search. The
SAT Core solver can also be a co-processor of itself.

Programming Z3 185

Fig. 14. Architecture of Z3’s SAT Solver

– s.set("sat.local_search_threads", 3) spawns 3 concurrent threads that
use walk-sat to find a satisfying assignment while the main CDCL solver
attempts to find either a satisfying assignment or produce an empty clause.

– s.set("sat.threads", 3) spawns 2 concurrent threads, in additional to the
main thread, to find a proof of the empty clause or a satisfying assignment.
The threads share learned unit literals and learned clauses.

– s.set("sat.unit_walk_threads", 1) spawns 1 concurrent thread that uses
a local search heuristic that integrates unit propagation.

– s.set("sat.lookahead_simplify", True) enables the lookahead solver as
a simplifier during in-processing. It enables slightly more powerful techniques
for learning new units and binary clauses.

The lookahead solver is used to find case splits through the Cube features,
described in Sect. 4.6.7.

6.2.3 Boolean Theories
Three classes of Boolean functions are supported using specialized Boolean the-
ory handlers. They are optional, as many problems can already be solved using
the SAT core where the functions have been clausified. The cardinality and
Pseudo-Boolean theory handlers are suitable for constraints where the encoding
into clauses causes a significant overhead. The Xor solver is unlikely to be worth
using, but is available for evaluation.

186 N. Bjørner et al.

Cardinality Constraints. Cardinality constraints are linear inequalities of the
form

n
∑

i=1

Fi ≥ k,

n
∑

i=1

Fi ≤ k

where Fi are formulas and k is a constant between 1 and n. They say that at
least k of the Fi;s have to hold, and at most k of the Fi’s hold, respectively.
Cardinality constraints do not have to appear at top-level in formulas. They can
be nested in arbitrary sub-formulas and they can contain arbitrary formulas. For
instance,

p, q, r, u = Bools(’p q r u’)
solve(AtMost(p, q, r, 1), u,

Implies(u, AtLeast(And(p, r), Or(p, q), r, 2)))

has no solution.
The cardinality solver is enabled by setting the parameter

– s.set("sat.cardinality.solver", True)

If the parameter is false, cardinality constraints are compiled to clauses. A few
alternative encoding methods are made available, and they can be controlled
using the parameter sat.cardinality.encoding.

Pseudo-Boolean Constraints. Pseudo-Boolean constraints generalize cardinality
constraints by allowing coefficients in the linear inequalities. They are of the
form

n
∑

i=1

aiFi ≥ k,

n
∑

i=1

aiFi ≤ k

where ai are positive natural numbers. A value of ai above k is legal, but can be
safely truncated to k without changing the meaning of the formulas.

The constraints

p + 2q + 2r ≤ 2 ∧ p + 2u + 3r ≥ 4 ∧ u

can be written as

solve(PbLe([(p,1),(q,2),(r,2)], 3),
PbGe([(p,1),(u,2),(r,3)], 4),
u)

and have a solution

[q = False, u = True, r = True]

The pseudo-Boolean solver is enabled by setting the parameter

– s.set("sat.pb.solver", "solver")

Other available options for compiling Pseudo-Boolean constraints are circuit,
sorting, and totalizer. They compile Pseudo-Booleans into clauses.

Programming Z3 187

6.3 Horn Clause Solver

The Horn Solver contains specialized solvers for Constrained Horn Clauses
[5,23,26,27,39]. As a default it uses the SPACER Horn clause solver by Arie
Gurfinkel to solve Horn clauses over arithmetic [36]. A Constrained Horn Clause
is a disjunction of literals over a set of uninterpreted predicates and interpreted
functions and interpreted predicates (such as arithmetical operations + and rela-
tions <=). The uninterpreted predicates, may occur negatively without restric-
tions, but only occur positively in at most one place.

The solver also contains a Datalog engine that can be used to solve Datalog
queries (with stratified negation) over finite domains and “header spaces” that
are large finite domains, but can be encoded succinctly using ternary bit-vectors.
The Fixedpoint context contains facilities for building Horn clauses, and gen-
erally a set of stratified Datalog rules, and for querying the resulting set of rules
and facts. Additional information on the Fixedpoint engine can be found on
https://rise4fun.com/z3/tutorial/fixedpoints.

We provide a very simple illustration of Horn clause usage here. McCarthy’s
91 function illustrates nested recursion in a couple of lines, but otherwise makes
no sense: It computes a function that can be described directly as

If(x > 101, 91, x - 10).

We will pretend this is a partial and interesting specification and prove this
automatically using Horn clauses.

def mc(x):
if x > 100:

return x - 10
else:

return mc(mc(x + 11))

def contract(x):
assert(x > 101 or mc(x) == 91)
assert(x < 101 or mc(x) == x - 10)

Rewriting the functional program into logical form can be achieved by introduc-
ing a binary relation between the input and output of mc, and then representing
the functional program as a logic program, that is, a set of Horn clauses. The
assertions are also Constrained Horn Clauses: they contain the uninterpreted
predicate mc negatively, but have no positive occurrences of mc.

s = SolverFor("HORN")
mc = Function(’mc’, Z, Z, B)
x, y, z = Ints(’x y z’)
s.add(ForAll(x, Implies(x > 100, mc(x, x - 10))))
s.add(ForAll([x, y, z],

Implies(And(x <= 100, mc(x + 11, y), mc(y, z)),
mc(x, z))))

s.add(ForAll([x, y], Implies(And(x <= 101, mc(x, y)), y == 91)))
s.add(ForAll([x, y], Implies(And(x >= 101, mc(x, y)), x == y + 10)))
print(s.check())

https://rise4fun.com/z3/tutorial/fixedpoints

188 N. Bjørner et al.

Fig. 15. Given a supply of 5 and 7 cent stamps. Is there a lower bound, after which
all denominations of stamps can be produced? Thus, find v, such that every u larger
or equal to v can be written as a non-negative combination of 5 and 7.

Fig. 16. The set of reals is dense

Z3 finds a solution for mc that is a sufficient invariant to establish the assertions.
We get a better view of the invariant for mc by evaluating it on symbolic

inputs x and y.

print(s.model().eval(mc(x, y)))

produces the invariant

And(Or(Not(y >= 92), Not(x + -1*y <= 9)),
Not(x + -1*y >= 11),
Not(y <= 90))

6.4 QSAT

The QSAT Solver is a decision procedure for satisfiability of select theories that
admit quantifier elimination. It can be used to check satisfiability of quantified
formulas over Linear Integer (Fig. 15), Linear Real (Fig. 16), Non-linear (poly-
nomial) Real arithmetic (Fig. 17), Booleans, and Algebraic Data-types (Fig. 18).
It is described in [6]. It is invoked whenever a solver is created for one of the
supported quantified logics, or a solver is created from the qsat tactic.

Figure 18 encodes a simple game introduced in [16]. There is no SMT-LIB2
logic for quantified algebraic data-types so we directly instantiate the solver
that performs QSAT through a tactic. Section 7 provides a brief introduction to
tactics in Z3.

Programming Z3 189

Fig. 17. Quantified non-linear real polynomial arithmetic

Fig. 18. Checking for winning positions in a game of successors

The solver builds on an abstraction refinement loop, originally developed for
quantifier elimination in [41]. The goal of the procedure is, given a quantifier-
free f , find a quantifier free G, such that G ≡ ∃v . F . It assumes a tool, project,
that eliminates v from a conjunction M into a satisfiable strengthening. That
is, project(v,M) ⇒ ∃v . M . The procedure, uses the steps:

– Initialize: G ← ⊥
– Repeatedly: find conjunctions M that imply F ∧ ¬G
– Update: G ← G ∨ project(v,M).

An algorithm that realizes this approach is formulated in Fig. 19.
QESTO [30] generalizes this procedure to nested QBF (Quantified Boolean

Formulas), and the implementation in Z3 generalizes QESTO to SMT. The
approach is based on playing a quantifier game. Let us illustrate the game for
Boolean formulas. Assume we are given:

190 N. Bjørner et al.

Fig. 19. Quantifier elimination by core extraction and projection. Notice that this
proto-algorithm code is not directly executable

G = ∀u1, u2 ∃e1, e2 . F

F = (u1 ∧ u2 → e1) ∧ (u1 ∧ ¬u2 → e2) ∧ (e1 ∧ e2 → ¬u1)

Then the game proceeds as follows:

– ∀: starts. u1, u2, e1, e2 |= ¬F .
– ∃: strikes back. u1, u2, e1, e2 |= F .
– ∀: has to backtrack. It doesn’t matter what u1 is assigned to. It is already

the case that u2, e1, e2 |= F .
– ∀: learns ¬u2.
– ∀: u2, u1, e1, e2 |= ¬F .
– ∃: counters - u2, u1, e1, e2 |= F .
– ∀: has lost!. It is already the case that u2, e1, e2 |= F .

To summarize the approach:

– There are two players
• ∀ - tries to satisfy ¬F
• ∃ - tries to satisfy F

– Players control their variables. For example, take ∃x1∀x2∃x3∀x4 . . . F at
round 2:

• value of x1 is already fixed,
• ∀ fixes value of x2,
• ∀ fixes value of x4, but can change again at round 4,
• ∀ can guess values of x3 to satisfy ¬F .

Programming Z3 191

– Some player loses at round i + 2:
• Create succinct no-good to strengthen F resp. ¬F depending on who lost.
• Backjump to round i (or below).

The main ingredients to the approach is thus projection and strategies.

– Projections are added to learn from mistakes. Thus, a player avoids repeating
same losing moves.

– Strategies prune moves from the opponent.

We will here just illustrate an example of projection. Z3 uses model based pro-
jection [36,44] to find a satisfiable quantifier-free formula that implies the exis-
tentially quantified formula that encodes the losing state.

Example 4. Suppose we would want to compute a quantifier-free formula that
implies ∃x . (2y ≤ x ∧ y − z ≤ x ∧ x ≤ z). Note that the formula is equivalent to
a quantifier free formula:

∃x . (2y ≤ x ∧ y − z ≤ x ∧ x ≤ z) ≡ (y − z ≤ 2y ≤ z) ∨ (2y ≤ y − z ≤ z)
but the size of the equivalent formula is quadratic in the size of the original

formula. Suppose we have a satisfying assignment for the formula inside of the
existential quantifier. Say M = [x �→ 3, y �→ 1, z �→ 6]. Then 2yM = 2 and
(y − z)M = −5, and therefore 2y > y − z under M . The greatest lower bound
for x is therefore 2y and we can select this branch as our choice for elimination
of x. The result of projection is then y − z ≤ 2y ≤ z.

6.5 NLSat

The solver created when invoking SolverFor(’QF_NRA’) relies on a self-
contained engine that is specialized for solving non-linear arithmetic formulas
[34]. It is a decision procedure for quantifier-free formulas over the reals using
polynomial arithmetic.

s = SolverFor("QF_NRA")
x, y = Reals(’x y’)
s.add(x**3 + x*y + 1 == 0, x*y > 1, x**2 < 1.1)
print(s.check())

The NLSat solver is automatically configured if the formula is syntactically in
the QF_NRA fragment. So one can directly use it without specifying the specialized
solver:

set_option(precision=30)
print "Solving, and displaying result with 30 decimal places"
solve(x**2 + y**2 == 3, x**3 == 2)

192 N. Bjørner et al.

7 Tactics

In contrast to solvers that ultimately check the satisfiability of a set of assertions,
tactics transform assertions to sets of assertions, in a way that a proof-tree is
comprised of nodes representing goals, and children representing subgoals. Many
useful pre-processing steps can be formulated as tactics. They take one goal and
create a subgoal.

7.1 Tactic Basics

You can access the set of tactics

print(tactics())

and for additional information obtain a description of optional parameters:

for name in tactics():
t = Tactic(name)
print(name, t.help(), t.param_descrs())

We will here give a single example of a tactic application. It transforms a goal to a
simplified subgoal obtained by eliminating a quantifier that is trivially reducible
and by combining repeated formulas into one.

x, y = Reals(’x y’)
g = Goal()
g.add(2 < x, Exists(y, And(y > 0, x == y + 2)))
print(g)

t1 = Tactic(’qe-light’)
t2 = Tactic(’simplify’)
t = Then(t1, t2)
print(t(g))

Additional information on tactics is available from [45], https://rise4fun.com/
Z3/tutorial/strategies and http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/
strategies-examples.htm.

7.2 Solvers from Tactics

Given a tactic t, the method t.solver() extracts a solver object that applies
the tactic to the current assertions and reports sat or unsat if it is able to
reduce subgoals to a definite answer.

7.3 Tactics from Solvers

There is no method that corresponds to producing a tactic from a solver. Instead
Z3 exposes a set of built-in tactics for the main solvers. These are accessed
through the names sat, smt, qsat (and nlqsat for quantified non-linear real
arithmetic, e.g., the logic NRA), qffd for QF_FD and nlsat for QF_NRA.

https://rise4fun.com/Z3/tutorial/strategies
https://rise4fun.com/Z3/tutorial/strategies
http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/strategies-examples.htm
http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/strategies-examples.htm

Programming Z3 193

7.4 Parallel Z3

The parameter set_param("parallel.enable", True) enables Z3’s parallel
mode. Selected tactics, including qfbv, that uses the SAT solver for sub-goals
the option, when enabled, will cause Z3 to use a cube-and-conquer approach
to solve subgoals. The tactics psat, psmt and pqffd provide direct access to
the parallel mode, but you have to make sure that "parallel.enable" is true
to force them to use parallel mode. You can control how the cube-and-conquer
procedure spends time in simplification and cubing through other parameters
under the parallel name-space.

The main option to toggle is parallel.threads.max. It caps the maximal
number of threads. By default, the maximal number of threads used by the
parallel solver is bound by the number of processes.

8 Optimization

Depending on applications, learning that a formula is satisfiable or not, may not
be sufficient. Sometimes, it is useful to retrieve models that are optimal with
respect to some objective function. Z3 supports a small repertoire of objective
functions and invokes a specialized optimization module when objective func-
tions are supplied. The main approach for specifying an optimization objective
is through functions that specify whether to find solutions that maximize or
minimize values of an arithmetical (in the case of Z3, the term has to a lin-
ear arithmetic term) or bit-vector term t. Thus, when specifying the objective
maximize(t) the solver is instructed to find solutions to the variables in t that
maximizes the value of t. An alternative way to specify objectives is through soft
constraints. These are assertions, optionally annotated with weights. The objec-
tive is to satisfy as many soft constraints as possible in a solution. When weights
are used, the objective is to find a solution with the least penalty, given by the
sum of weights, for unsatisfied constraints. From the Python API, one uses the
Optimize context to specify optimization problems. The Optimize context relies
on the built-in solvers for solving optimization queries. The architecture of the
optimization context is provided in Fig. 20.

The Optimize context provides three main extensions to satisfiability
checking:

o = Optimize()

x, y = Ints(’x y’)
o.maximize(x + 2*y) # maximizes LIA objective

u, v = BitVecs(’u v’, 32)
o.minimize(u + v) # minimizes BV objective

o.add_soft(x > 4, 4) # soft constraint with
optional weight

194 N. Bjørner et al.

Fig. 20. Optimization engines in Z3

Using soft assertions is equivalent to posing an 0-1 optimization problem. Thus,
the following formulations are equivalent and Z3 detects the second variant and
turns it into a set of weighted soft assertions.

a, b = Bools(’a b’)
o.add_soft(a, 3)
o.add_soft(b, 4)

is equivalent to

o.minimize(If(a, 0, 3) + If(b, 0, 4))

8.1 Multiple Objectives

It is possible to add multiple objectives. There are three ways to combine objec-
tive functions.

Box(x, y) vx := max{x | ϕ(x, y)}
vy := max{y | ϕ(x, y)}

Lex(x, y) vx := max{x | ϕ(x, y)}
vy := max{y | ϕ(vx, y)}

Pareto(x, y)
{

(vx, vy) | ϕ(vx, vy), ∀x, y.
ϕ(x, y) → x ≤ vx ∨ y ≤ vy

}

For instance, Pareto objectives can be specified as follows:

x, y = Ints(’x y’)
opt = Optimize()
opt.set(priority=’pareto’)
opt.add(x + y == 10, x >= 0, y >= 0)
mx = opt.maximize(x)
my = opt.maximize(y)
while opt.check() == sat:

print (mx.value(), my.value())

Programming Z3 195

8.2 MaxSAT

The conventional definition of MaxSAT is to minimize the number of violated
soft assertions. There are several algorithms for MaxSAT, and developing new
algorithms is a very active area of research. We will here describe MaxRes from
[48]. It is also Z3’s default solver for MaxSAT/MaxSMT problems. As an illus-
tration assume we are given an unweighted (all soft constraints have weight 1)
MaxSAT problem F, F1, . . . , F5, where the first four soft constraints cannot be
satisfied in conjunction with the hard constraint F . Thus, we have the case:

A : F, F1, F2, F3, F4
︸ ︷︷ ︸

core

, F5

The system is transformed to a weakened MaxSAT problem as follows:

A′ : F, F2 ∨ F1, F3 ∨ (F2 ∧ F1), F4 ∨ (F3 ∧ (F2 ∧ F1)), F5

The procedure is formalized in Fig. 21. We claim that by solving A′, we can find
an optimal solution to A. For this purpose, consider the cost of a model with
respect to a MaxSAT problem. The cost, written cost(M,A) is the number of
soft constraints in A that are false under M . More precisely,

Lemma 1. For every model M of F , cost(M,A) = 1 + cost(M,A′)

Proof (of Lemma 1). To be able to refer to the soft constraints in the trans-
formed systems A′ we will give names to the new soft constraints, such that F ′

1 is
a name for F2∨F1, F ′

2 names F3∨(F2∧F1), F ′
3 is the name for F4∨(F3∧(F2∧F1))

and F ′
4 is the new name of F5.

Consider the soft constraints in the core. Since it is a core, at least one has
to be false under M . Let j be the first index among where M(Fj) is false. Then
M evaluates all other soft constraints the same, e.g., ∀i < j : M(F ′

i) = M(Fi),
and ∀i > j : M(F ′

i−1) = M(Fi). �

Thus, eventually, it is possible to satisfy all soft constraints (weakening could
potentially create 0 soft constraints), and a solution to the weakened system is
an optimal solution.

Weighted assertions can be handled by a reduction to unweighted MaxSAT.
For example,

a, b, c = Bools(’a b c’)
o = Optimize()
o.add(a == c)
o.add(Not(And(a, b)))
o.add_soft(a, 2)
o.add_soft(b, 3)
o.add_soft(c, 1)
print(o.check())
print(o.model())

196 N. Bjørner et al.

Fig. 21. Core based MaxSAT using MaxRes

Efficient implementations of MaxSAT flatten weights on demand. Given a core of
soft constraints it is split into two parts: In one part all soft constraints have the
same coefficient as the weight of the soft constraint with the minimal weight.
The other part comprises of the remaining soft constraints. For our example,
a, b is a core and the weight of a is 2, while the weight of b is 3. The weight of
b can therefore be split into two parts, one where it has weight 2, and the other
where it has weight 1. Applying the transformation for the core we obtain the
simpler MaxSAT problem:

a, b, c = Bools(’a b c’)
o = Optimize()
o.add(a == c)
o.add(Not(And(a, b)))
o.add_soft(Or(a, b), 2)
o.add_soft(b, 1)
o.add_soft(c, 1)
print(o.check())
print(o.model())

9 Summary

This tutorial has presented an overview of main functionality exposed by Z3.
By presenting some of the underlying algorithms in an example driven way we
have attempted to give a taste of the underlying decision procedures and proof

https://github.com/Z3Prover/doc/blob/master/programmingz3/code/maxres.py

Programming Z3 197

engines. By presenting examples of programming queries on top of Z3 we have
attempted to provide an introduction to turning SMT solving into a service
for logic queries that go beyond checking for satisfiability of a single formula.
Tuning extended queries on top of the basic services provided by SAT and SMT
solvers is a very active area of research with new application scenarios and new
discoveries.

References

1. Alviano, M.: Model enumeration in propositional circumscription via unsatisfiable
core analysis. TPLP 17(5–6), 708–725 (2017)

2. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In: Quim-
per, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 35–44. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33954-2_3

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

4. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009). https://doi.org/10.3233/
978-1-58603-929-5-457

5. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2

6. Bjørner, N., Janota, M.: Playing with alternating quantifier satisfaction. In: LPAR
Short Presentation Papers (2015)

7. Bjørner, N., Nachmanson, L.: Theorem recycling for theorem proving. In: Kovács,
L., Voronkov, A. (eds.) Vampire 2017, Proceedings of the 4th Vampire Workshop.
EPiC Series in Computing, vol. 53, pp. 1–8. EasyChair (2018). https://doi.org/10.
29007/r58f, https://easychair.org/publications/paper/qGfG

8. Bonacina, M.P., Lynch, C., de Moura, L.M.: On deciding satisfiability by theorem
proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011)

9. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of counterex-
amples to induction. In: Formal Methods in Computer-Aided Design, 7th Interna-
tional Conference, FMCAD 2007, Austin, Texas, USA, 11–14 November 2007, Pro-
ceedings, pp. 173–180 (2007). https://doi.org/10.1109/FAMCAD.2007.15

10. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Veri-
fication, Model Checking, and Abstract Interpretation, 7th International Confer-
ence, VMCAI 2006, Charleston, SC, USA, 8–10 January 2006, Proceedings, pp.
427–442 (2006). https://doi.org/10.1007/11609773_28

11. Bromberger, M., Weidenbach, C.: New techniques for linear arithmetic: cubes and
equalities. Form. Methods Syst. Des. 51(3), 433–461 (2017). https://doi.org/10.
1007/s10703-017-0278-7

12. Chockler, H., Ivrii, A., Matsliah, A.: Computing interpolants without proofs. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 72–85. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3_12

13. Christ, J., Hoenicke, J.: Cutting the mix. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 37–52. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21668-3_3

https://doi.org/10.1007/978-3-319-33954-2_3
www.SMT-LIB.org
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.29007/r58f
https://doi.org/10.29007/r58f
https://easychair.org/publications/paper/qGfG
https://doi.org/10.1109/FAMCAD.2007.15
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/s10703-017-0278-7
https://doi.org/10.1007/s10703-017-0278-7
https://doi.org/10.1007/978-3-642-39611-3_12
https://doi.org/10.1007/978-3-319-21668-3_3
https://doi.org/10.1007/978-3-319-21668-3_3

198 N. Bjørner et al.

14. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
solving nonlinear integer arithmetic with incremental linearization. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 383–398. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_23

15. Cohen, E., Megiddo, N.: Improved algorithms for linear inequalities with two vari-
ables per inequality. SIAM J. Comput. 23(6), 1313–1347 (1994). https://doi.org/
10.1137/S0097539791256325

16. Colmerauer, A., Dao, T.-B.-H.: Expressiveness of full first order constraints in the
algebra of finite or infinite trees. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894,
pp. 172–186. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45349-
0_14

17. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988_46

18. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5, 394–397 (1962)

19. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique
for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4_20

20. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27(4), 758–771 (1980). https://doi.org/10.1145/322217.322228

21. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963_11

22. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_25

23. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012, Beijing, China, 11–16 June
2012, pp. 405–416 (2012). https://doi.org/10.1145/2254064.2254112

24. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015). https://doi.org/10.1613/
jair.4694

25. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34188-5_8

26. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

27. Hoder, K., Bjørner, N., de Moura, L.: µz– an efficient engine for fixed points
with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_36

https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1137/S0097539791256325
https://doi.org/10.1137/S0097539791256325
https://doi.org/10.1007/3-540-45349-0_14
https://doi.org/10.1007/3-540-45349-0_14
https://doi.org/10.1007/11513988_46
https://doi.org/10.1007/978-3-642-02658-4_20
https://doi.org/10.1007/978-3-642-02658-4_20
https://doi.org/10.1145/322217.322228
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1613/jair.4694
https://doi.org/10.1613/jair.4694
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-22110-1_36

Programming Z3 199

28. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifica-
tion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
265–281. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-
3_19

29. Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of
propositional formulae. AI Commun. 28(2), 161–177 (2015). https://doi.org/10.
3233/AIC-140640

30. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 325–331 (2015). http://ijcai.
org/Abstract/15/052

31. John, A.K., Chakraborty, S.: A quantifier elimination algorithm for linear modular
equations and disequations. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_39

32. John, A.K., Chakraborty, S.: A layered algorithm for quantifier elimination from
linear modular constraints. Form. Methods Syst. Des. 49(3), 272–323 (2016).
https://doi.org/10.1007/s10703-016-0260-9

33. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 330–346. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_18

34. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

35. Kapur, D., Zarba, C.: A reduction approach to decision procedures. Techni-
cal report, University of New Mexico (2006). https://www.cs.unm.edu/~kapur/
mypapers/reduction.pdf

36. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_2

37. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible mus enumer-
ation. Constraints 21(2), 223–250 (2016)

38. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of
peephole optimizations with alive. Commun. ACM 61(2), 84–91 (2018). https://
doi.org/10.1145/3166064

39. McMillan, K.L.: Lazy annotation revisited. In: Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, 18–22 July 2014, Proceedings, pp. 243–259 (2014).
https://doi.org/10.1007/978-3-319-08867-9_16

40. Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 1973–1979
(2015). http://ijcai.org/Abstract/15/280

41. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol.
5330, pp. 243–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89439-1_18

https://doi.org/10.1007/978-3-540-78800-3_19
https://doi.org/10.1007/978-3-540-78800-3_19
https://doi.org/10.3233/AIC-140640
https://doi.org/10.3233/AIC-140640
http://ijcai.org/Abstract/15/052
http://ijcai.org/Abstract/15/052
https://doi.org/10.1007/978-3-642-22110-1_39
https://doi.org/10.1007/978-3-642-22110-1_39
https://doi.org/10.1007/s10703-016-0260-9
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-642-31365-3_27
https://www.cs.unm.edu/~kapur/mypapers/reduction.pdf
https://www.cs.unm.edu/~kapur/mypapers/reduction.pdf
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1145/3166064
https://doi.org/10.1145/3166064
https://doi.org/10.1007/978-3-319-08867-9_16
http://ijcai.org/Abstract/15/280
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-89439-1_18

200 N. Bjørner et al.

42. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P.,
Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the LPAR
2008 Workshops, Knowledge Exchange: Automated Provers and Proof Assistants,
and the 7th International Workshop on the Implementation of Logics, Doha, Qatar,
22 November 2008, CEUR Workshop Proceedings, vol. 418. CEUR-WS.org (2008).
http://ceur-ws.org/Vol-418/paper10.pdf

43. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15–18 November 2009, Austin, Texas, USA, pp.
45–52 (2009). https://doi.org/10.1109/FMCAD.2009.5351142

44. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_1

45. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 15–44. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8_2

46. de Moura, L., Bjørner, N.: Efficient E-Matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3_13

47. de Moura, L., Bjørner, N.: Bugs, moles and skeletons: symbolic reasoning for soft-
ware development. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI),
vol. 6173, pp. 400–411. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14203-1_34

48. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSat
resolution. In: Brodley, C.E., Stone, P. (eds.) AAAI 2014, 27–31 July 2014, Quebec
City, Quebec, Canada, pp. 2717–2723. AAAI Press (2014)

49. Narodytska, N., Bjørner, N., Marinescu, M., Sagiv, M.: Core-guided minimal cor-
rection set and core enumeration. In: Lang, J. (ed.) Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–
19 July 2018, Stockholm, Sweden, pp. 1353–1361. ijcai.org (2018). https://doi.org/
10.24963/ijcai.2018/188

50. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979). https://doi.org/10.1145/
357073.357079

51. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified
bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10982, pp. 236–255. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96142-2_16

52. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

53. Previti, A., Mencía, C., Järvisalo, M., Marques-Silva, J.: Improving MCS enumera-
tion via caching. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
184–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_12

54. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 1853–
1964. Elsevier and MIT Press (2001)

http://ceur-ws.org/Vol-418/paper10.pdf
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-642-14203-1_34
https://doi.org/10.1007/978-3-642-14203-1_34
https://doi.org/10.24963/ijcai.2018/188
https://doi.org/10.24963/ijcai.2018/188
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-66263-3_12

Programming Z3 201

55. Seidl, M., Lonsing, F., Biere, A.: qbf2epr: a tool for generating EPR formulas from
QBF. In: Third Workshop on Practical Aspects of Automated Reasoning, PAAR-
2012, Manchester, UK, 30 June–1 July 2012, pp. 139–148 (2012). http://www.
easychair.org/publications/paper/145184

56. Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satis-
fiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

57. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975). https://doi.org/10.1145/321879.321884

58. Veanes, M., Bjørner, N., Nachmanson, L., Bereg, S.: Monadic decomposition. J.
ACM 64(2), 14:1–14:28 (2017). https://doi.org/10.1145/3040488

59. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. Form. Methods Syst. Des. 42(1), 3–23 (2013)

http://www.easychair.org/publications/paper/145184
http://www.easychair.org/publications/paper/145184
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/3040488

The Impact of Alan Turing:
Formal Methods and Beyond

Jonathan P. Bowen1,2(B)

1 Faculty of Computer and Information Science,
Centre for Research and Innovation in Software Engineering (RISE),

Southwest University, Chongqing 400715, China
2 School of Engineering, London South Bank University,

Borough Road, London SE1 1AA, UK
jonathan.bowen@lsbu.ac.uk

http://www.jpbowen.com

Abstract. In this paper, we discuss the influence and reputation of Alan
Turing since his death in 1954, specifically in the field of formal meth-
ods, especially for program proving, but also in a much wider context.
Although he received some recognition during his lifetime, this image
was tarnished by the controversy at the time of his death. While he was
known and appreciated in scientific circles, he did not enter the pub-
lic’s consciousness for several decades. A turning point was the definitive
biography produced by Andrew Hodges in 1983 but, even then, the tide
did not turn very rapidly. More recent events, such as the celebrations
of his birth centenary in 2012 and the official British royal pardon in
2013, have raised Turing’s fame and popularity among the informed gen-
eral public in the United Kingdom and elsewhere. Cultural works in the
arts featuring Turing have enhanced his profile still further. Thus, the
paper discusses not only Turing’s scientific impact, especially for formal
methods, but in addition his historical, cultural, and even political sig-
nificance. Turing’s academic ‘family tree’ in terms of heritage and legacy
is also covered.

1 Background

Alan Turing (1912–1954) has a rightful claim to the title of “Founder of Com-
puter Science” [30]. He has also been called the “Father of Computer Science”
[65]. Before World War II, Turing laid the theoretical groundwork for a univer-
sal machine that models a computer in its most general form. During the War,
Turing was instrumental in developing and influencing actual computing devices
that have been said to have shortened the War by up to two years by decoding
encrypted enemy messages that were generally believed to be unbreakable [57].
Unlike some theorists he was willing to be involved with practical aspects and
was as happy to wield a soldering iron as he was to wrestle with a mathematical
problem, normally from a unique angle.

c© Springer Nature Switzerland AG 2019
J. P. Bowen et al. (Eds.): SETSS 2018, LNCS 11430, pp. 202–235, 2019.
https://doi.org/10.1007/978-3-030-17601-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17601-3_5&domain=pdf
http://orcid.org/0000-0002-8748-6140
https://doi.org/10.1007/978-3-030-17601-3_5

The Impact of Alan Turing: Formal Methods and Beyond 203

With hindsight, Turing’s 1936 seminal paper on computable numbers [154]
foretold the capabilities of the modern computer. The War then brought about
a radical, but perhaps fortuitous, change of direction in Turing’s career, as his
unique mathematical abilities were recognized during his time at Cambridge and
he was invited to join Bletchley Park, the secret centre of the United Kingdom’s
efforts, to break German codes [116]. Decryption by hand was too laborious
and time-consuming to succeed in the acutely limited time available. Turing
recognized that machines, together with great human ingenuity, could tackle the
problem far more quickly and reliably.

Despite his success in decryption, Turing was a victim of the times in which
he happened to live. Homosexuality was illegal, remaining so in the United King-
dom until 1967. A mere fifteen years after Turing’s arrest and prosecution, the
atmosphere had become very different. But in the somewhat stifling and rigid
Britain of the early 1950s, which was also the period of McCarthyism in Amer-
ica, a maverick and rather näıve person such as Turing was living in a dangerous
world, unprotected by any public reputation. First and foremost, the secrecy sur-
rounding his wartime work meant that public knowledge of his national impor-
tance was severely limited. Secondly, his ground-breaking 1936 paper would have
seemed abstruse and not very relevant in a still largely pre-computer age to most
scientists. Lastly, his later work on early artificial intelligence and morphogenesis
made little practical impact in his lifetime, even among his closest colleagues.

1.1 Polymath

Alan Turing’s interests were wide-ranging. This leads to the question of his field.
Was Alan Turing a:

mathematician? He was certainly educated as a mathematician at Cambridge
University and many of his papers were highly mathematical.

philosopher? His early ideas culminating in his 1952 paper on Artificial Intel-
ligence (machine intelligence, as he called it) and the concept of the Turing
test are admired by many philosophers.

computer scientist? His 1936 paper introducing the Turing machine, a simple
generic model for an abstract computing device, is considered foundational
for the discipline by many computer scientists. That said, the field was not
formally recognized as an academic discipline until the 1960s [27].

codebreaker? His wartime work during World War II (1939–1945) on breaking
the German Enigma code using the bombe machine is what he is best known
for by many members of the general public.

biologist/chemist? His 1952 paper on morphogenesis has “chemical” in the
title and is foundational for mathematical biology, a very active field cur-
rently with the concept of Turing patterns [43] in biological organisms and
even elsewhere in nature.

The polymathic Turing is claimed by all these fields to a greater or lesser extent.
He is known to have influenced people in many different fields, even in digital art

204 J. P. Bowen

using mathematical techniques inspired by his ideas on morphogenesis [29,39].
He is known to have been considering quantum effects towards the end of his
life and perhaps physicists would claim him as well had he lived longer.

1.2 Genius

The term ‘genius’ is difficult to define precisely, but Alan Turing is generally
acknowledged to be one. The 2010 book Genius of Britain accompanied a Chan-
nel 4 television series in the UK on scientists that changed the world [163] and
Turing appears prominently in a chapter on The Expediency of War.

The mathematician Peter Hilton (1923–2010), a colleague of Alan Turing at
Bletchley Park, wrote of Turing [90]:

. . . the experience of sharing the intellectual life of a genius is entirely
different; one realizes that one is in the presence of an intelligence, a sensi-
tivity of such profundity and originality that one is filled with wonder and
excitement.

Andrew Robinson has posited that it normally takes around a decade to become
a genius [136]. In Turing’s case, his first work of real genius was his 1936 paper
[154], introducing what has become known as a Turing machine, an abstract
version of a computer, at the age of 24. A decade earlier in the late 1920s, he was
at Sherborne School, where at the age of 15 he handwrote a paper on Albert
Einstein’s Theory of Relativity, demonstrating an understanding of Einstein’s
ideas [153].

In a Lent Term 1927 Sherborne School report for Turing [145], at the age of
14, he was top of the form in mathematics with the comment:

Very good. He has considerable powers of reasoning and should do well if
he can quicken up a little and improve his style.

Under Natural Science, it states “Chemistry. Good.” But Turing’s housemaster
comments:

He is frankly not one who fits comfortably for himself into the ordinary
life of the place – on the whole I think he is tidier.

At the bottom of the one-page report is a summary comment from Nowell Smith,
in his last year as Headmaster of Sherborne:

He should do very well when he finds his métier: but meantime he would
do much better if he would try to do his best as a member of this school
– he should have more esprit de corps.

The following year in Michaelmas Term 1928, his young mathematics teacher,
Donald Eperson, only eight years older than Turing, comments [25]:

The Impact of Alan Turing: Formal Methods and Beyond 205

He thinks very rapidly & is apt to be “brilliant”, but unsound in some of
his work. He is seldom defeated by a problem, but his methods are often
crude, cumbersome & untidy. But thoroughness & polish will no doubt
come in time.

The new Headmaster, Charles L.F. Boughey, comments more optimistically than
his predecessor that “This report is full of promise.” With hindsight, these com-
ments are particularly apposite and some are farsighted, especially with respect
to his powers of reasoning, finding his métier, increasing speed at mathematics,
his brilliance, and promise, all indicative of Turing’s embryonic genius.

2 Scientific Impact

Turing received an OBE (Officer of the Order of the British Empire) honour
from the United Kingdom government for his codebreaking work at Bletchley
Park in World War II and was made a Fellow of the Royal Society, the UK’s
foremost scientific society, in 1951 [125]. However, the real recognition of his con-
tribution came long after his death with the development of computer science
[27] and as the truth of his crucial wartime role at Bletchley Park was gradually
revealed. It is notable that Turing’s three most cited papers by far (by an order
of magnitude compared to others, with more than 10,000 citations each in sub-
sequent publications according to Google Scholar [78]) were published in 1936
[154], 1950 [157], and 1952 [159]. Each of these was foundational in the fields
of theoretical computer science, artificial intelligence, and mathematical biology
respectively. Without Turing’s premature death in 1954, soon after two of his
three most influential publications, it is highly likely that he would have gone
on to produce further inspirational ideas.

A lasting scientific memorial to Turing is the Association for Computing
Machinery (ACM) A.M. Turing Award [4], presented to one and sometimes up to
three leading computer scientists each year since 1966 by the world’s foremost
computing association [42]. This is the highest scientific honour available to a
computer scientist, widely considered as the equivalent to the Nobel Prize in the
field. Many of the award winners have worked in areas for which Alan Turing was
foundational, such as artificial intelligence and formal methods (the application
of mathematics to software engineering).

33 Turing Award winners attended the ACM A.M. Turing Centenary Cele-
bration on 15–16 June 2012 in San Francisco, USA, to honour Turing’s anniver-
sary [2]. A.M. Turing Award winners are listed chronologically on the ACM
website [5] and some who have worked in areas related to Turing’s interests are
recorded in sections below. Although Turing died before the existence of com-
puter science’s highest annual award, it is likely that most computer scientists
would agree that he would have been very deserving of it [165].

2.1 Theoretical Computer Science

In theoretical computer science, the idea of a ‘Turing machine’ [66], a mathemat-
ical model of computation in the form of an abstract machine with an infinite

206 J. P. Bowen

memory tape that can be read and written by the machine, has continued to
be important in discussing what is and is not computable [83]. In addition, the
related ‘halting problem’ on determining whether or not a given program termi-
nates, building on the concept of the Turing machine, is a fundamental issue of
reasoning about programs and a canonical problem in computer science [40,146].
It is a decision problem that has proved to be undecidable in the general case.
Certainly Christopher Strachey (1916–1975), who knew Turing since they were
both at King’s College, Cambridge, and was an expert programmer of both the
Pilot ACE and Manchester Mark 1 computers, knew this as part of program-
ming folklore even in the 1950s. He recounted how Turing gave him a verbal
proof in a railway carriage in 1953 [128]. Strachey went on to found the Pro-
gramming Research Group (PRG) at Oxford University, which became leading
site for formal methods research.

The halting problem relates to program loops that may or may not con-
tinue forever. When proving programs correct, the concepts of partial and total
correctness are important. The former only proves the program correct if it ter-
minates whereas the latter also proves that the program does terminate, which
requires additional effort for programs that include looping constructs. Hoare
logic, devised by C.A.R. Hoare (born 1934, the 1980 A.M. Turing Award winner,
who took over at the head of the PRG at Oxford after Christopher Strachey’s
death), building on the ideas of Robert Floyd (1936–2001, the 1978 A.M. Tur-
ing Award winner) [75], provides a mathematical framework using an axiomatic
approach that allows reasoning about the correctness of programs [93]. Turing
himself published a very early proof of program correctness in 1949 (arguably the
first) and this work was rediscovered and appreciated much later after his death
[122]. Even computing developments since Turing’s death such as quantum com-
puting [18] still rely on the concept of the Turing machine [67]. Turing machines
have also influenced philosophy and the general concept of computability [59].

2.2 Artificial Intelligence

As well as theoretical computer science, Alan Turing can be considered a found-
ing father for the field of Artificial Intelligence (AI) with his 1950 paper [157],
although he himself used the term ‘machine intelligence’ and ‘AI’ was coined two
years after Turing’s death, in 1956 by John McCarthy of Stanford University
(1927–2011, the 1971 A.M. Turing Award winner) [84]. McCarthy emphasised
the use of mathematical logic [115], leading to the Lisp functional program-
ming language and the Prolog logic programming language, where programming
is brought to the level of mathematical functions and relations, which surely
would have been appreciated by Turing.

Marvin Minsky of MIT (1927–2016, the 1969 A.M. Turing Award winner)
was also a leading light in the AI community and was influenced by Turing
[89]. He discovered a four-symbol seven-state universal Turing machine in 1962.
Donald Michie (1923–2007) [147], who himself worked at Bletchley Park contem-
poraneously with Alan Turing and Max Newman (1897–1984), Turing’s mentor
at Cambridge in the 1930s [79]). He worked in the ‘Testery’ (a section named

The Impact of Alan Turing: Formal Methods and Beyond 207

after the founder, Major Ralph Tester) and discussed early ideas of problem
solving using searching techniques with Turing at Bletchey Park, in the form
of early AI [55]. Michie later established himself as a leading AI researcher at
the University of Edinburgh, where the field remains a speciality to this day. He
developed an early example of machine learning, based on the game of noughts
and crosses (aka Tic-Tac-Toe), in the early 1960s and also founded the Turing
Institute in Glasgow, which was active during 1983–94 as an applied AI research
laboratory.

During the 1980s, there was a perceived threat from Japan due to signifi-
cant funding in AI and the ‘Fifth Generation’ of computing [74]. This helped
to prompt the funding of the UK Alvey Programme for Advanced Information
Technology that supported collaborative projects between academia and indus-
try. AI continues to be of wide interest, with attempts to perform the Turing test
successfully [12] and interest in the idea of ‘superintelligence’ where machines
can outperform humans in their general intelligence [24].

Developments in deep learning, based on machine learning using learning
data representations rather than task-specific algorithms (e.g., learning to play
games in general rather than just a specific game like chess for example) using
approaches such as neural networks are now proving to be increasingly possible
in practice [63]. Deep learning is an area that most likely would be of interest to
Turing and to which he could have contributed his ideas.

2.3 Mathematical Biology

Turing’s 1952 paper on morphogenesis [159] was foundational in the field of
mathematical biology; it demonstrated that relatively simple mathematics can
generate seemingly complex biological patterns and shapes through chemical
reactions. In fact, according to Google Scholar [78], this is Turing’s most cited
paper, with over 600 citations annually in recent years. The approach has become
increasingly important in the understanding of biological processes. It is interest-
ing to note that Turing’s original paper cited only two references, whereas nowa-
days it is normal to include far more citations, including foundational papers,
such as those produced by Turing. This was not uncommon for innovative papers
in the past; for example, Albert Einstein included no citations in his 1905 paper
on relativity.

2.4 General Computer Science

The Hungarian-American mathematician John von Neumann (1903–1957) was
another great foundational figure of modern computing. The term ‘von Neumann
architecture’ is used to describe the standard architecture of a computer, as
described by him in 1945. This is often compared with a Turing machine, but
the two serve very different purposes. A Turing machine is a theoretical model to
aid in reasoning about computation, whereas the von Neumann architecture is
a more practical description of the configuration of a standard electronic digital

208 J. P. Bowen

computer. Von Neumann knew of and acknowledged Turing’s pioneering work.
A colleague of von Neumann at Los Alamos, Stan Frankel, noted [134]:

I know that in or about 1943 or ’44 von Neumann was well aware of
the fundamental importance of Turing’s paper of 1936 . . . Von Neumann
introduced me to that paper and at his urging I studied it with care. Many
people have acclaimed von Neumann as the “father of the computer” (in
a modern sense of the term) but I am sure that he would never have made
that mistake himself. He might well be called the midwife, perhaps, but he
firmly emphasized to me, and to others I am sure, that the fundamental
conception is owing to Turing – in so far as not anticipated by Babbage,
Lovelace, and others.

So, the main contender to Turing’s impact with respect to the foundations of
computing acknowledged the leading role of Turing and the scientific debt due
to him.

Turing was a mathematician and philosopher at a time when computer sci-
ence did not exist as a separate discipline [27]. As well as being foundational for
a new discipline, Turing has also been highly influential in mathematics and phi-
losophy. Perhaps a leading example is the provocative 1989 book The Emperor’s
New Mind by the Oxford mathematician and philosopher of science Roger Pen-
rose born 1931) [130]. The first two chapters on ‘Can a computer have a mind?’
and ‘Algorithms and Turing machines’ are largely based around Turing’s 1936
and 1950 papers [154,157]. The book goes on to cover the philosophical ‘mind-
body problem’, attempting to explain how mental states, events, and processes
are related to physical manifestations of these. Penrose’s subsequent 1994 book
Shadows of the Mind [131] later argues that human consciousness is not algorith-
mic and thus cannot be modelled by a Turing machine. He posits that quantum
effects may be a critical part of consciousness and that the human mind has
qualities that no Turing machine can possess. With Turing’s interest in quan-
tum mechanics, he could well have contributed to Penrose’s debate.

Subsequent models of computation have all been related to Turing machines
in some way. John Conway’s ‘Game of Life’ introduced in 1970 is an example of a
two-dimensional space forming a cellular automaton with very simple rules that
has the potential to produce complex patterns and undertake computation, with
the power of a universal Turing machine. It can even be used to model a Turing
machine visually [29,135]. Stephen Wolfram has studied cellular automata exten-
sively, as covered in his 2002 book A New Kind of Science [169]. This includes
much material on Turing machines in particular, as well as other ideas conceived
by Turing.

The two-volume set The Legacy of Turing of 1996 covers aspects of artificial
intelligence and computer science in Volume I, together with philosophy and
cognitive science in Volume II, with an extensive set of contributors [119]. In
2004, some of Turing’s most important scientific contributions, with annotations,
were compiled and annotated by Jack Copeland in The Essential Turing [54]. An
archive of Turing-related material by the same editor is also available online [60].

The Impact of Alan Turing: Formal Methods and Beyond 209

The centenary of Turing’s birth in 2012 led to a number of special issues
and articles in scientific journals themed around the achievements of Turing.
The leading scientific journal in the world, Nature, featured Turing on the front
cover during 2012 for a special issue entitled Alan Turing at 100 [123]. One of
the foremost professional magazines in computing, the Communications of the
ACM, also had a special article on Turing in 2012 and featured a slate sculpture
by Stephen Kettle of Turing at Bletchley Park [108] on the front cover [50].
The year of 2012 was obviously a highpoint for interest in Turing, scientific
and otherwise, but still his importance to computer science, mathematics and
philosophy remains undiminished.

2.5 Formal Methods and Program Proving

The application of mathematics to the specification and development of
computer-based systems, especially software, but also hardware, has been
dubbed ‘formal methods’ [36] since around the late 1970s. The term has been
borrowed from the field of mathematical logic (e.g., see the 1962 book on logic
by Evert Willem Beth entitled Formal Methods [20]). Beth used the term even
earlier in his 1955 book Semantic Entailment and Formal Derivability [19].

Much earlier in 1910, Paul Carus wrote in conclusion on the Saxon term
‘kenlore’, describing the process of cognition, in the context of epistemology [47]:

From this norm which dominates the world and which is reconstructed in
our mind we derive those principles of all our purely formal methods, our
principles of logic and logical necessity, of universality, of our fundamental
conditions for mathematical thought and geometrical constructions, and
here accordingly lies the corner stone of kenlore.

The term was also used by Bertrand Russell in the context of logic in 1912 [142].
Alan Turing wrote what can be considered the first ‘formal methods’ paper

in the context of program proving in 1949, in a short (three-page) paper entitled
Checking a Large Routine for a Conference on High Speed Automatic Calculating
Machines at Cambridge [156]. This has subsequently been examined in detail
in 1984 [122]. Although it contains minor errors in the detail, not atypical for
Turing, the overall idea presented was correct. The following are some short
extracts from Turing’s 1949 paper [156] with some relevant words emphasised;

– “In order to assist the checker, the programmer should make assertions
about the various states that the machine can reach.”

– “The checker has to verify that the . . . initial condition and the stopped
condition agree with the claims that are made for the routine as a
whole.”

– “He has also to verify that each of the assertions . . . is correct.”
– “Finally the checker has to verify that the process comes to an end.”

None of these comments would be out of place in a formal methods paper of
today, except that the “checker” would most likely now be computer-based soft-
ware (perhaps with human guidance) rather than a human alone. The paper also
states:

210 J. P. Bowen

The following convention is used:
(i) a dashed letter indicates the value at the end of the process represented

by the box;
(ii) an undashed letter represents the initial value of a quantity.

This could be describing an operation schema box in the modern-day Z nota-
tion [28]. Further work on Turing’s 1949 paper and its impact has been under-
taken more recently by Cliff Jones [104–106].

The Dutch mathematician and early computer scientist Aad van Wijngaar-
den (1916–1987), a pioneer of programming language grammars (after whom
the term ‘Wijngaarden grammar’ was coined for his two-level approach to gram-
mars) was at the 1949 Cambridge meeting where Turing presented his pioneering
paper on program proving [156], but it had no great influence on his research
at the time [105]. Only by the 1960s is there evidence of influence [104]. Peter
Naur (1928–2016, the 2005 ACM A.M. Turing Award winner), best known for
BNF notation (Backus-Naur Form) with John Backus (1924–2007) for the formal
description of programming language syntax, considered proofs of algorithms in
1966 [124].

Robert W. (Bob) Floyd (1936–2001) and others rediscovered ideas for pro-
gram proving similar to those of Turing in the 1960s [75]. C.A.R. (Tony) Hoare
developed these further with his axiomatic approach based on assertions [93].
Had Turing lived longer, perhaps formal methods (in particular, program prov-
ing) would have developed more rapidly, rather than being rediscovered more
than a decade later. As with most of Turing’s research interests, he was well
ahead of his time compared with others because of his novel approach to prob-
lems, working from first principles.

Turing’s 1949 paper was essentially ignored during the 1950s. However, by the
1960s, Turing’s ideas on program proving were being rediscovered independently.
Figure 1 shows some key publications in formal methods with respect to proving
programs correct from Turing’s 1949 paper onwards during the second half of
the 20th century [122].

Publications in the 1960s relating to formal methods were mainly founda-
tional research papers. Later key publications were mostly works leading on
from these papers in the form of tutorial-style books. In the 1970s, structured
programming became prominent, as extolled by Ole-Johan Dahl (1931–2002),
Edsger W. Dijkstra (1930–2002), and Tony Hoare [61] (all ACM A.M. Turing
Award winners in 2001, 1972, and 1980 respectively). The Science of Program-
ming book [81] by David Gries (born 1939) builds on Dijkstra’s book A Disci-
pline of Programming [68], which concentrates on abstraction, suggesting that a
program and its proof of correctness should be developed in tandem. The 1986
book Systematic Software Development Using VDM by Cliff Jones (born 1944)
provides an approach to refinement from a formal specification towards a pro-
gram in the context of VDM (Vienna Development Method), an early formal
method.

The paper Laws of Programming presents some general algebraic laws for
imperative programming languages [94]. The work of Carroll Morgan (born 1952)

The Impact of Alan Turing: Formal Methods and Beyond 211

1949: Alan Turing, Checking a Large Routine [156].

1966: Peter Naur, Proof of Algorithms by General Snapshots [124].

1967: Robert Floyd, Assigning Meaning to Programs [75].

1969: Tony Hoare, An Axiomatic Basis for Computer Programming [93].

1972: Ole-Johan Dahl et al., Structured Programming [61].

1976: Edsger Dijkstra, A Discipline of Programming [68].

1981: David Gries, The Science of Programming [81].

1986: Cliff Jones,Systematic Software Development Using VDM [103].

1987: Tony Hoare et al., Laws of Programming [94].

1990: Carroll Morgan, Programming from Specifications [121].

1996: Jean-Raymond Abrial, The B-Book [1].

1998: Tony Hoare & He Jifeng, Unifying Theories of Programming [95].

Fig. 1. Some key 20th-century publications on program proving.

on Programming from Specifications [121] explicitly depends on [68,75,93], as
stated in the book’s preface. Jean-Raymond Abrial (born 1938), progenitor of
the Z notation [28], later produced The B-Book: Assigning Programs to Meanings
[1] on the B-Method to derive a program from a formal specification in a rigorous
manner with tool support.

The book on Unifying Theories of Programming (UTP) [95] by Hoare and
the Chinese computer scientist He Jifeng (born 1943) aims to provide a coher-
ent formal basis for the specification, design, and implementation of programs,
using denotational, algebraic, and operational styles of semantics in a unified
framework. It has spawned an international research community with its own
regular UTP conference that is still active after 20 years of the existence of UTP.
The bibliography in the book cites all the previous publications listed in Fig. 1,
including the 1949 Turing paper [156].

Turing made significant contributions to mathematics, philosophy, computer
science, and even mathematical biology. His multifarious interests extended to
what is now known as formal methods, especially with respect to proving pro-
grams correct. Developments have continued in proving computer systems at
various levels of abstraction [91], yet there are still significant issues, such as
scaling to handle large systems.

Despite their benefits, not all have been convinced that formal methods are
worthwhile in practice [35]. However, formal methods communities continue [31,
38], especially for application in high-integrity systems where safety or security
is important [37]. The state of the art moves on [22] and increasingly complex
systems can be tackled using formal methods [92]. Most comprehensive books
on software engineering include a section on formal methods [152].

212 J. P. Bowen

3 Academic Legacy and Heritage

3.1 Family Scientific Heritage

The Turing family itself, apart from Alan Turing, has been undistinguished scien-
tifically, although there is a Turing Baronetcy, created in 1638. The 12th Baronet,
Sir John Dermot Turing (born 1961), a solicitor, is a nephew of Alan Turing and
has written a 2015 biography about him [161]. However, Alan Turing’s mother
was Ethel Sara Turing (née Stoney, 1881–1976), who herself wrote a biography
of her son, originally published in 1959 and republished for Turing’s centenary
in 2012 [162]. Her father was Edward Waller Stoney (1844–1931), chief engineer
of the Madras Railways in India.

The Anglo-Irish Stoney family included George Johnstone Stoney FRS
(1826–1911), an Irish physicist most famous for suggesting the term ‘electron’
(initially ‘electrine’) [161], highly apt with respect to Turing’s early pioneering
work on electronic computers. His brother was Bindon Blood Stoney FRS (1828–
1909), an engineer and astronomer. His children included George Gerald Stoney
FRS (1863–1942), a mechanical engineer, Edith Anne Stoney (1869–1938), a
medical physicist, and Florence Ada Stoney OBE (1870–1932), a radiologist. The
Stoney family genes meant that Turing’s family heritage included both scientists
and engineers, an excellent grounding for Turing’s combination of theoretical and
practical genius.

3.2 Academic Background

Academically, after studying mathematics at King’s College, Cambridge, as an
undergraduate, Turing was then supervised by the mathematician and logician
Alonzo Church (1903–1995) for his PhD studies at Princeton University in the
United States, which he completed in 1938 [155] (see Fig. 2) with less than two
years of study [133]. Alan Turing himself only supervised two PhD students,
both at the University of Cambridge, according to the Mathematics Genealogy
Project [118]. His most famous student was the mathematician and logician
Robin Gandy (1919–1995), who subsequently moved to the University of Oxford.

Dana Scott (born 1932, the joint 1976 A.M. Turing Award winner with
Michael O. Rabin) was a later PhD student of Alonzo Church at Princeton
who was also based at Oxford from 1972 to 1981. He worked with Christopher
Strachey (1916–1975), a former colleague of Turing at the University of Manch-
ester, on the denotational semantics of programming languages, which became
dubbed the Scott-Strachey approach [148]. One of Dana Scott’s students at
Oxford was the philosopher Jack Copeland (born 1950), subsequently a lead-
ing Turing scholar [54,56,58–60], based at the University of Canterbury in New
Zealand. He was also a colleague of Robin Gandy at Oxford as indicated by the
additional horizontal arrow link in Fig. 2.

As well as Robin Gandy, Turing co-supervised Beatrice Worsley (1921–1972)
at Cambridge, with the mathematician and physicist Douglas Hartree (1897–
1958) in the EDSAC group of Maurice Wilkes (1913–2010, the 1967 ACM A.M.

The Impact of Alan Turing: Formal Methods and Beyond 213

Douglas Hartree
Cambridge (1926)

Beatrice Worsley
Cambridge (1952)

Alan Turing
Cambridge (1934)
Princeton (1938)

Robin Gandy
Cambridge (1953)

Mike Yates
Manchester (1963)

Barry Cooper
Leicester (1971)

21 students
at Leeds

Martin Hyland
Oxford (1975)

Andrew Pitts
Cambridge (1982)

10 students
at Cambridge

20 other students
at Cambridge

25 other students
(180+ total
descendants)

33 other students
(4,869+ total
descendants)

Dana Scott
Princeton (1958)

Jack Copeland
Oxford (1979)

48 other students
(478+ total
descendants)

Max Newman
Cambridge (1921)

Alonzo Church
Princeton (1927)

Oswald Veblen
Chicago (1903)

Hastings Moore
Yale (1885)

Hubert Newton
Yale (1850)

Michel Chasles
École Polytechnique

(1814)

Siméon Poisson
École Polytechnique

(1800)

Joseph-Louis
Lagrange

Università di Torino
(1754)

Giovanni Beccaria
(no dissertation)

Leonhard Euler
Universität Basel

(1726)

Johann Bernoulli
Universität Basel
(1690 & 1694)

Jacob Bernoulli
Universität Basel
(1676 & 1684)

Peter Werenfels
Universität Basel

(1649)

Theodor Zwinger
the Younger

Universität Basel
(1630)

Nicolas
Malebranche

Université Paris
(1672)

Gottfried Leibniz
Universität

Leipzig & Altdorf
(1666 & 1667)

Nikolaus Eglinger
Universität Basel
(1660 & 1661)

Johann Bauhin
Universität Basel

(1649)

Emmanuel
Stupanus

Universität Basel
(1613)

Pierre-Simon
Laplace

Université de Caen
(1769)

Jean le Rond
d’Alembert

Collège Mazarin
(1735)

Fig. 2. Academic supervisor tree for Alan Turing [118].

214 J. P. Bowen

Turing Award winner). This was arguably the first computer science doctorate,
entitled Serial Programming for Real and Idealised Digital Calculating Machines
and submitted in May 1952 [170]. Worsley helped to write the first program to
run on the EDSAC computer at Cambridge. She was subsequently a very early
computer science academic based in Canada before her premature death in 1972
at only 50 years old [44]. Douglas Hartree was himself supervised by the eminent
New Zealand physicist Ernest Rutherford (1871–1937, discoverer of the proton
and known as the father of nuclear physics), who in turn was supervised by
Joseph Thomson (1856–1940, discoverer of the electron), both at Cambridge and
both Nobel prize winners, so Beatrice Worseley had an outstanding supervision
pedigree.

Robin Gandy supervised 27 students, three at the University of Manchester
and the rest at Oxford. Of these, the mathematical logician and theoretical
computer scientist Martin Hyland had 21 doctoral students, all at Cambridge,
including the theoretical computer scientist Andrew Pitts, also based at Cam-
bridge. Another student, at Manchester, was Mike Yates, who himself super-
vised the mathematician and computability theorist Barry Cooper (1943–2015)
at Leicester, later Professor of Pure Mathematics at the University of Leeds.
Barry Cooper was a major instigator of the 2012 centenary celebrations for
Alan Turing in the United Kingdom, including at Manchester [51], resulting in
a later publication [52].

3.3 Mathematics Genealogy Project

The ancestry for Alan Turing’s line of supervisors can be traced back on
the Mathematics Genealogy Project website [118]. Turing’s supervisor Alonzo
Church was supervised by the mathematician, geometer, and topologist, Oswald
Veblen (1880–1960), at Chicago. It has been claimed that Veblen, rather than
Church or Turing for example, was responsible for the start of computing at
Princeton University [71]. Veblen taught mathematics at Princeton between 1905
and 1932. He was one of the two original faculty members in the Institute for
Advanced Study (IAS), along with Albert Einstein (1879–1955).

In 1930, Veblen invited John von Neumann (1903–1957), then aged 27, to
join Princeton as a lecturer in quantum statistics. Von Neumann joined the IAS
itself in 1933 and was of course highly influential in early computing with his
von Neumann architecture for a computer, a more practical model than the
theoretically oriented Turing machine. Sharing an interest in topology, Veblen
was also helpful in encouraging Max Newman to visit Princeton as early as 1928
[166]. This in turn led to Newman encouraging Turing, while both at Cambridge,
to study for his PhD at Princeton under Church. So, Veblen was indirectly
responsible for Turing’s presence at Princeton, as well as von Neumann.

Newman spent six months at Princeton in 1937 when Turing was working on
his PhD there. However, later during World War II, Veblen opposed Newman
visiting Princeton due to wartime considerations [126]. This was fortuitous for
Britain’s wartime effort since although Newman was initially reticent, due to
his German background on his father’s side (despite being of Jewish origin), he

The Impact of Alan Turing: Formal Methods and Beyond 215

joined Bletchley Park in 1942, where Turing was already based. There he led the
‘Newmanry’, which worked on breaking the German Lorenz cipher, for which
the Colossus computers were developed [53].

3.4 Historic Academic Lineage

Turing’s academic pedigree can be traced back more historically, as covered in
this subsection for the interested reader.

Veblen was supervised by the mathematician Eliakim ‘Hastings’ Moore
(1862–1932) at the University of Chicago. Moore was supervised by the
astronomer and mathematician Hubert Anson Newton (1830–1896), at Yale Uni-
versity. Newton, also at Yale, studied under the French mathematician Michel
Floréal Chasles (1793–1880).

Then the line moves from the United States to France with Michel Chasles
who studied under the mathematician, engineer, and physicist, Siméon Denis
Poisson (1781–1840) at the École Polytechnique in Paris. Poisson is known for
Poisson’s equation, a partial differential equation that is useful in mechanical
engineering and theoretical physics, and the Poisson distribution in probabil-
ity theory and statistics, among other contributions to mathematics. Poisson
studied under the Italian-Frenchman Joseph-Louis Lagrange (1736–1813) and
Pierre-Simon Laplace (1749–1827) at the École Polytechnique, both very emi-
nent mathematicians, and both also with an interest in astronomy. Lagrange
is known for the reformulation of classical (Newtonian) mechanics, Lagrangian
mechanics, using Lagrange equations, among other mathematical contributions.
Laplace is especially known for the Laplace transform, used in the transformation
of integrals.

Laplace’s adviser was Jean-Baptiste le Rond d’Alembert (1717–1783), the
polymathic French mathematician, mechanician, philosopher, music theorist,
and physicist. According to the Mathematics Genealogy Project, d’Alembert’s
adviser is unknown so the lineage cannot be traced back further. Lagrange’s advi-
sor was the Italian physicist Giovanni Battista (Giambattista) Beccaria (1716–
1781) in Turin. Beccaria’s adviser is unknown, and no dissertation is known.
However, Laplace also worked with and was highly influenced by the Swiss
astronomer, engineer, logician, mathematician, and physicist, Leonhard Euler
(1707–1783), largely through correspondence by letter. Laplace wrote: “Read
Euler, read Euler, he is the master of us all” [69].

Euler undertook his doctorate with the Swiss mathematician Johann
Bernoulli (1667–1748) as his advisor at Basel. Johann Bernoulli undertook two
dissertations, one under Jacob Bernoulli (1655–1705) and another under Niko-
laus Eglinger (1645–1711), both at Basel. Jacob Bernoulli studied under the
Swiss theologian Peter Werenfels (1627–1703) and the French priest and ratio-
nalist philosopher Nicolas Malebranche (1638–1715) for two dissertations, both
at Basel. Peter Werenfels studied under the preacher and theology professor,
Theorode Zwinger the Younger (1597–1654) at Basel. Nicolas Malebranche met
the renowned German polymath, mathematician and philosopher, Gottfried
Wilhelm Leibniz (1646–1716) in Paris and they corresponded after this. They

216 J. P. Bowen

discussed the laws of motion extensively. Leibniz conceived differential and inte-
gral calculus, independently of Isaac Newton (1642–1726/27). Leibniz’s notation
for calculus has become the accepted notation by mathematicians.

Nikolaus Eglinger studied under the Swiss physician Emmanuel Stupanus
(1587–1664, aka Stuppan) and the Swiss botanist and physician Johann Bauhin
(1541–1613) for two dissertations, both at Basel. Bauhin himself also studied
under Stupenus at Basel.

Thus, Turing’s academic lineage goes back to Euler and Leibniz, two of the
most renowned mathematicians in history, and beyond, as well as Lagrange,
Laplace, and two members of the Bernoulli family. Turing’s supervisor lineage,
both historically and for those after him, is illustrated in Fig. 2.

3.5 Turing’s Mentor

Although not officially his supervisor, Max Newman was a great mentor for
Turing [79], both early on at Cambridge and later at Manchester, as well as at
Bletchley Park during World War II. Newman’s 1935 lectures on the founda-
tions and mathematics at Cambridge inspired Turing to write his 1936 paper
introducing the concept of Turing machines [154], which Newman recognized as
a novel and important piece of work. Without Newman, it could well have not
been published and Turing’s genius might not have been recognized so quickly.
Newman himself never studied for a doctorate.

Newman was a ‘Wrangler’ (gaining a first-class undergraduate degree in
mathematics) at St John’s College, Cambridge, in 1921. He wrote a thesis on
using ‘symbolic machines’ to make physical predictions, a precursor to his inter-
est in computing later in his career [126]. Newman spent 1922–3 at the University
of Vienna [79], but returned to Cambridge in 1923 with a Fellowship at St John’s
College. He became a lecturer in mathematics for Cambridge University in 1927
and his 1935 lectures were attended by the young Turing. Later it was New-
man who encouraged Turing to join Manchester University after World War II,
working on early computers there.

4 Turing Eponyms

Alan Turing’s name is associated with a number of different concepts and ideas
related to his work. Many of these are notable enough to have their own indi-
vidual entries on Wikipedia [167].

‘Turing machine’ and ‘Turing test’ are well-known Turing terms resulting
from the ideas in Turing’s 1936 and 1950 papers [154,157], with many specialized
versions of both [167]. Increasingly in use is the term ‘Turing pattern’, often used
in the plural, to describe the complex patterns generated by mathematics based
on that presented in his 1952 paper on morphogenesis [159] (e.g., see [43]).

The previously mentioned ‘Turing Institute’ (1983–94) was an AI labora-
tory in Glasgow, Scotland, established by Donald Michie, a wartime colleague

The Impact of Alan Turing: Formal Methods and Beyond 217

of Turing. The newer and unrelated ‘Alan Turing Institute’ is a national govern-
mental data sciences institute in the United Kingdom, founded in 2015, located
in London, and overseen by a group of leading UK universities.

There are a number of roads, streets, and buildings named after Turing in
the UK and elsewhere, especially in locations associated with him. Examples
include Alan Turing Buildings in Guildford and Manchester, Alan Turing Roads
in Guildford and Loughborough, and Alan Turing Way in Manchester. There
are a Turing Drive in Bracknell, Turing Gate near Bletchley Park, and Turing
Roads in Biggleswade and Teddington, west London, the latter very near the
National Physical Laboratory where Turing worked after World War II.

The BCS (British Computer Society), the professional IT association in the
UK, holds an annual Turing Lecture jointly with the IET (Institution of Engi-
neering and Technology). Finally, and most internationally, as mentioned earlier
in this paper, Turing is honoured by the annual ‘ACM A.M. Turing Award’, the
world’s highest award in computer science, and a fitting tribute to Turing for
providing the foundations of the discipline.

More recently, a 2017 law in England and Wales that pardons gay people
for what were historically offences has been dubbed the ‘Alan Turing law’, also
just ‘Turing law’ or ‘Turing’s law’ [14,120]. This will be discussed in more detail
later in the paper. Further Turing terms are presented in [30] and many more
eponyms can be found on Wikipedia citewik18 for the interested reader.

5 Historical Impact

Turing is considered an important figure in the overall history of science. For
example, the 1991 book A History of Knowledge attempts to cover the entire
range of human invention and creativity, and yet devotes a section to Alan Turing
and Turing machines even in such an all-encompassing book [164]. The Oxford
Companion to the History of Modern Science (2003) naturally includes an entry
for ‘Computer Science’ [27], but also a separate entry for ‘Artificial Intelligence’,
and both cover Turing’s foundational role [85]. In addition, there is a specific
entry for Turing himself, which notes presciently that “Turing’s status as a cult
hero will undoubtedly increase”.

Any book covering the history of computing would be incomplete without an
explanation of Turing’s role in it. The 1979 book The Mighty Micro on the impact
of the computer revolution by the British computer scientist and psychologist
Christopher Evans (1931–1979) has many entries in the index for Alan Turing
and the Turing test but interestingly not specifically for the Turing machine
[73]. There is a concentration on whether machines can think, with Evans’ psy-
chological background, including reference to Turing’s 1950 paper on machine
intelligence [157]. Simon Lavington’s 1980 book on Early British Computers nat-
urally has multiple entries on Turing. It includes a chapter on the development
of Turing’s ACE computer and a photograph of the eventually constructed Pilot
ACE on the back cover [110].

The detailed biography Alan Turing: The Enigma by Andrew Hodges dating
from 1983 and reissued in 2012 for Turing’s centenary has played a significant

218 J. P. Bowen

part in increasing Turing’s visibility over the years since it originally appeared,
when the secrecy surrounding the wartime Bletchley Park had only relatively
recently started to be lifted in the 1970s [96]. It remains the definitive account
of Turing’s life, from both professional and personal viewpoints, with which other
biographies of Turing have difficulty in competing [149]. Hodges also produced
an early website on Turing associated with his book in the early 1990s [98], linked
with the online Virtual Museum of Computing, and still in existence today [32].

Figure 3 shows a graph of mentions of Alan Turing in books digitized on
Google Books, using the online Ngram Viewer facility, which has a database of
phrases mentioned in books by year (apart from the most recent decade). Since
the late 1970s, after the significance of Bletchley Park began to be revealed,
there has been a steady rise in mentions of Alan Turing in books over the years.
There was a very significant peak in 1983, the original year of publication of
Andrew Hodges biography of Turing [96]. It will be interesting to see the peak
that is likely around the 2012 centenary of Turing when this is available.

Fig. 3. Graph of mentions of ‘Alan Turing’ in books (1960–2005). (Ngram Viewer,
Google Books: http://books.google.com/ngrams.)

The practically oriented and wide-ranging book Bit by Bit on the history
of computers by the American author Stan Augarten in 1984 has a significant
section on Alan Turing and Turing machines [8]. The Silicon Idol, also pub-
lished in 1984, covered the microprocessor revolution and its social impact [143].
Despite its relatively modern focus on the recent period before its publication,
Alan Turing features a number of times in sections on thinking machines and
the origins of computing.

The 1991 book The Dream Machine was associated with a BBC television
series in the United Kingdom covering the computer age, including multiple
references to Alan Turing [129]. In 1997, Darwin Among the Machines covered
the emergence of thinking machines, in which Turing played a key early part
[70]. All of Turing’s most significant achievements are included in the book. The
Code Book by Simon Singh in 1999 surveyed the history of secret messages from
the days of Ancient Egypt to the use of quantum cryptography [144]. Turing is

http://books.google.com/ngrams

The Impact of Alan Turing: Formal Methods and Beyond 219

mentioned extensively along the way, mainly with respect to the breaking of the
Enigma code using the Bombe machines.

In 1999, Time magazine published The Great Minds of the Century (Time
100) [151], covering the 20th century, including Alan Turing among its selection,
labelled as a ‘computer scientist’ [80]. The mathematician Kurt Gödel, whose
ideas influenced Turing (introduced to him through Max Newman’s lectures in
Cambridge), and the philosopher Ludwig Wittgenstein, whose lectures Turing
attended at Cambridge, were also listed, together with John von Neumann, who
acknowledged and appreciated Turing’s contribution to computing ideas. The
only more recent computer scientist (trained as a physicist) to be included was
Tim Berners-Lee (born 1955), inventor of the World Wide Web.

Turing’s impact is also felt in all the institutions for which he worked. The
National Physical Laboratory (NPL), where the Pilot ACE computer was pro-
duced based on Turing’s ACE designs, continued pioneering work, most notably
with computer communications and the development of packet-switching in the
1960s, led by Donald W. Davies (1924–2000), a colleague of Turing [171]. King’s
College, Cambridge, where Turing studied as a student and was later a Fellow,
holds an extensive archive of Turing-related material, some of which is available
online in the Turing Digital Archive [109]. The 2007 Alan Turing Building at
the University of Manchester houses the School of Mathematics there.

Some accounts of Turing and his contemporaries, with regard to building
early computers, appeared for the 2012 centenary of Turing’s birth in a collection
of contributions edited by the British historian of computing Simon Lavington
[111]. The collection includes a section covering the legacy of Turing in the
context of early British computers [112].

The 2012 Alan Turing Year [51], led by the mathematician and computabil-
ity theorist Barry Cooper (1943–2015), with the help of others, coordinated a
significant number of celebratory events, especially at institutions associated
with Turing and during the month of June. Many of the authors in the volume
were associated with three of these meetings on successive weekends in June
2012: ACE 2012 (Alan Turing’s 100th Birthday Party) was held at King’s Col-
lege, Cambridge, Turing’s college; Turing’s Worlds took place at Rewley House,
Oxford, in association with the British Society for the History of Mathematics
(BSHM); and the Turing Educational Day (TED) was held at Bletchley Park.
A major event at the University of Manchester with over 70 leading experts led
to an associated book, Alan Turing: His Work and Impact, providing in-depth
coverage of Turing’s scientific influence [52].

More recent accounts of the history of computers [45] and computer science
[62] continue to devote significant space to Turing’s ideas. Even though computer
science can be considered to have started with Charles Babbage, there was a
significant reawakening of ideas in modern computing through the work of Turing
that continues to be important today, especially at the theoretical level.

The London Science Museum has the original Pilot ACE computer, developed
at the National Physical Laboratory (NPL) from Turing’s more ambitious ACE
design, on permanent display in the Information Age gallery [21]. This gallery

220 J. P. Bowen

Fig. 4. An exhibit on Alan Turing and Claude Shannon, in the Information Age gallery
[21] at the Science Museum, London. (Photograph by Jonathan Bowen).

includes a showcase (see Fig. 4) featuring both Alan Turing and Claude Shannon
(1916–2001), considered by many to be the “father of information theory”. The
showcase includes the following apt quotation:

“The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done
by a human computer.” – Alan Turing (see Fig. 4)

Turing and Shannon met during World War II at Bell Labs in New York [77] and
discussed ideas such as machine intelligence. Turing also features in the recently
updated mathematics gallery at the museum, especially with respect to his work
on breaking the German Enigma code at Bletchley Park during World War II
[141]. Turing himself visited the Science Museum in 1951 and was fascinated by
an electromechanical cybernetic ‘tortoise’ (a small autonomous robot) on display
that could detect and respond to its surroundings [88,102].

During 2012–13 for the Turing centenary celebrations, a special exhibition,
Codebreaker – Alan Turing’s Life and Legacy [140], was held at the Science
Museum, featuring the Pilot ACE, Enigma machines, and other Turing-related
items, including the ‘tortoise’ that he viewed in 1951 [87]. The Pilot ACE was
used in calculations concerning the fatal flaw in the rectangular windows of
the early Comet passenger jet aircraft of the 1950s. The exhibition covered
such historical impact and overall was a fitting celebration of Turing’s life and
achievements.

The Impact of Alan Turing: Formal Methods and Beyond 221

Fig. 5. Slate sculpture of Alan Turing with an Enigma machine at Bletchley Park, by
Stephen Kettle [29,108]. (Photograph by Jonathan Bowen).

6 Popular and Cultural Impact

Turing’s life, cut short as it was at the age of 41, has attracted works from the
arts, including the 1986 play Breaking the Code by Hugh Whitemore, the 1995
novel Enigma by Robert Harris, A Man from the Future in 2014 by the Pet Shop
Boys, and scultures in Manchester and at Bletchley Park (see Fig. 5), to name
but a few examples [30].

Alan Turing’s life was dramatized in the 2014 film The Imitation Game,
especially with respect to his codebreaking work during World War II [99]. Since
then, the 2015 biographical film Steve Jobs directed by Danny Boyle featured
Turing in background pictures [49]. The bitten apple used by Steve Jobs as his
Apple company logo has been linked with Turing, even if erroneously [76,100].
The film alludes to this in a passage in which Steve Jobs admits that it is not
so, but wishes that it were true [138].

6.1 Memorabilia

Items associated with Alan Turing have become increasingly valuable, especially
his papers and notes. Google helped Bletchley Park acquire preprints of papers
by Turing owned by Max Newman, some annotated by Turing, for a significant
sum in 2011 and these are now on display there [117]. In 2015, a 56-page note-
book by Alan Turing, subsequently owned by his student and close friend Robin

222 J. P. Bowen

Gandy, sold at auction in New York for more than a million dollars [86]. This is
the only known extensive handwritten manuscript by Turing, which he authored
at Bletchley Park in 1942.

In May 2017, a filing cabinet at the University of Manchester was found
to contain around 150 documents relating to Turing, dating from 1949 until
his death in 1954 [15]. They provide some insight into his personal views as
well as his professional life at Manchester. One briefly documents a debate on
whether machines can think, opened by Max Newman following by Turing, with
Richard Braithwaite and Douglas Hartree also contributing [114]. R.B. Braith-
waite (1900–1990), a Fellow at King’s College, Cambridge, was a philosopher
with an interest in science and religion.

A similar debate was recorded by the BBC on 10 January 1952 for broadcast
twice on the radio later that month [160]. This was opened and led by Braith-
waite. Instead of Hartree, Sir Geoffrey Jefferson (1886–1961), a neurologist and
pioneering neurosurgeon based at the University of Manchester, contributed to
this discussion. Although the original recording has been lost, a transcript has
survived [160]. Turing’s ideas on whether machines can think raised much debate
in the early 1950s, although not all were convinced. For example, see an article
by Maurice Wilkes [168], who was not completely enamoured of Turing and his
ideas.

Turing also delivered a 1951 BBC radio broadcast on thinking machines, in a
series with other scientists [101,102], entitled Can Digital Computers Think?.
Turing’s original typewritten transcript still exists [158]. The broadcast was
heard by Christopher Strachey, who was prompted to write to Turing on the
subject [7]. Despite the fact that Turing was broadcast on the radio, it is unfor-
tunate that there is no known audio or film recording of him, or even a colour
photograph, in existence.

In November 2017, a handwritten and autographed two-page letter by Alan
Turing was sold for UK £75,000 at Bonhams in London [23]. The letter was
written by Turing from his home in Wilmslow around 1950 (although the let-
ter is undated) to his former mathematics teacher at Sherborne School, Donald
Eperson (1904–2001) [127], who had by then become vicar at the church in the
village of Charminster, Dorset, in southern England not far from Sherborne.
They shared an interest in the puzzles and logic of Charles Lutwidge Dodg-
son (1832–1898), aka Lewis Carroll, author of the ‘Alice in Wonderland’ books.
Eperson studied mathematics as an undergraduate at Christ Church, Oxford,
the same college were Dodgson studied and had also been a Fellow.

Turing is known to have read Lewis Carroll’s 1886 book The Game of Logic
[46] at school. Eperson wrote a book in 1948 on Lewis Carroll puzzles [72] and
Turing was writing for two copies of a new edition, enclosing a cheque for 7
shillings (35 UK pence). In the letter, Turing states that he has joined Manch-
ester University and is working on “the use of electronic computers”. He mentions
that there is the possibility of exhibiting a computer at the Festival of Britain
(held in London during 1951). He opines [23]:

The Impact of Alan Turing: Formal Methods and Beyond 223

It is most entertaining work: one can make these machines do almost
anything one wants, at any rate anything which one could explain rules
for working out.

He goes on to mention a recent visit with his PhD student Robin Gandy to Cerne
in Dorset, not far from Eperson, regretting that he did not know that Eperson
was in Dorset at the time. Gandy’s parents lived in Dorset, a likely reason for
the visit. Overall, the letter gives the impression that Turing is enjoying his new
life based at Manchester University.

In summary, Turing’s memory has entered the cultural consciousness of the
British public and the wider public around the world through the many faceted
aspects of his life and work, bringing together a number of communities in a
united respect for him. Artefacts such as manuscripts associated with Turing
are increasingly valuable as a result, but are very limited in number. Although
interest may have peaked especially for his 2012 centenary, it is likely to continue
to increase over time.

7 Political Impact

The British wartime leader Winston Churchill (1874–1965) recognized the role
of Alan Turing and others at Bletchley Park in winning World War II as the “the
geese who laid the golden eggs and never cackled” [113]. However, the secrecy
around Bletchley Park meant that Turing only received an OBE award, whereas
in other circumstances a knighthood could have been expected. Turing’s subse-
quent arrest for “gross indecency” in 1952 only lowered his esteem in political
eyes after the War. It was not until much later after the decriminalisation of
homosexuality in 1967 and the lifting of secrecy around Bletchley Park in the
1970s that it became possible for Turing to be truly politically acceptable and
appreciated.

By 1998, at the unveiling of the blue plaque marking the birthplace of Turing
in Maida Vale, west London (see Fig. 6), during an oration by Turing’s biogra-
pher Andrew Hodges, Chris Smith, one of the first openly gay UK Members of
Parliament, was able to send the following message [97]:

Alan Turing did more for his country and for the future of science than
almost anyone. He was dishonourably persecuted during his life; today let
us wipe that national shame clean by honouring him properly.

In a wider context, the 2006 book rebutting religion, The God Delusion, by
the Oxford biologist and declared atheist Richard Dawkins includes mention
of Turing in the context of his homosexuality and persecution due to religious
legacy [64]. Dawkins notes:

As the pivotal intellect in the breaking of the German Enigma codes,
Turing arguably made a greater contribution to defeating the Nazis than
Eisenhower or Churchill. . . . he should have been knighted and feted as a
saviour of his nation. Instead this gentle, stammering, eccentric genius was
destroyed, for a ‘crime’, committed in private, which harmed nobody.

224 J. P. Bowen

Fig. 6. The mathematician and Turing biographer, Andrew Hodges, unveiling the
English Heritage blue plaque at Turing’s birthplace, now the Colonnade Hotel, Lon-
don, on 23 June 1998, exactly 86 years after Turing’s birth. (Photograph by Jonathan
Bowen).

The UK computer scientist John Graham-Cumming led a campaign for a
governmental apology for Turing’s treatment at the hands of British justice. The
campaign received the backing of a wide range of people, including the scientist
Richard Dawkins, the writer Ian McEwan, and the gay rights campaigner Peter
Tatchell. In 2009, after a petition on the prime ministerial website, Gordon
Brown, then Prime Minister of the UK, delivered an official apology from the
British Government for the treatment of Alan Turing in his final years [9]. Brown
wrote in The Daily Telegraph UK newspaper [41]:

While Turing was dealt with under the law of the time and we can’t put the
clock back, his treatment was of course utterly unfair and I am pleased
to have the chance to say how deeply sorry I and we all are for what
happened to him. . . . This recognition of Alan’s status as one of Britain’s
most famous victims of homophobia is another step towards equality, and
long overdue.

In 2011, an e-petition on a UK government website requested an official
pardon. The request was rejected in 2012, Turing’s centenary year, by Lord
McNally, the Justice Secretary, who stated that Turing was “properly convicted”
[10]. However, on 24 December 2013, after much campaigning, Queen Elizabeth

The Impact of Alan Turing: Formal Methods and Beyond 225

II issued an official posthumous royal pardon for Alan Turing, in recognition for
his wartime contributions [150]:

Now know ye that we, in consideration of circumstances humbly repre-
sented to us, are graciously pleased to grant our grace and mercy unto the
said Alan Mathison Turing and grant him our free pardon posthumously
in respect of the said convictions; and to pardon and remit unto him the
sentence imposed upon him as aforesaid; and for so doing this shall be a
sufficient Warrant.

It was granted under the Royal Prerogative of Mercy, on request from the UK
Justice Minister at the time, Chris Grayling, who stated [11]:

Turing deserves to be remembered and recognised for his fantastic con-
tribution to the war effort and his legacy to science. A pardon from the
Queen is a fitting tribute to an exceptional man.

A general pardon for convicted homosexuals in the UK was delayed, no doubt
due to the fear of compensation costs. However, in 2016, new law in England
and Wales, through amendment of the Policing and Crime Act, was initiated,
widely called the ‘Alan Turing law’ [13]. This received Royal Assent for approval
as law on 31 January 2017 [14]. The new Justice Minister stated [120]:

This is a truly momentous day. We can never undo the hurt caused, but we
have apologised and taken action to right these wrongs. I am immensely
proud that ‘Turing’s Law’ has become a reality under this government.

Similar changes in Scottish law were announced later in 2017 [6]. It is to be hoped
for the future that this could have a wider impact to laws in other countries
around the world.

8 Conclusion

Andrew Hodges’ 1983 biography of Turing was updated with a new edition for
the 2012 centenary [96] and has inspired a number of works, including a play, film,
and music [30]. A more recent edited book in 2017, The Turing Guide, provides
an accessible and comprehensive guide to Turing’s work [58]. This book has been
of interest for a number of fields including computer science [107], philosophy
[132], physics [48], and even digital humanities [82]. Whereas the Hodges book
is a single-author biography that covers Turing’s work, [58] is an edited volume
with 33 contributing authors covering the many aspects of Turing’s work and
research interests, complementing the biographical work [139].

Sadly, Turing lived too early for the change in the UK law to decriminalize
homosexuality in 1967, but as Sir Dermot Turing, Alan Turing’s nephew, notes
in the conclusion of his own 2015 book on Turing [161]:

226 J. P. Bowen

Alan Turing’s life was not, except perhaps towards the end, governed by
his sexuality. The dominant passion in his life was his ideas; it is those for
which he should be remembered.

So, on a brighter note, Turing was selected as one of 43 top scientists of all time
in the 2012 book The Scientists edited by Andrew Robinson [137], fortuitously
published during the year of Turing’s centenary. John von Neumann was also
selected, but with an entry of half the length of that of Turing. Naturally the
celebrated theoretical physicist Albert Einstein, who died in 1955, a year after
Turing but following a much longer life, was also included in the book. It is
interesting to speculate on the relative stature of Einstein and Turing, who
overlapped in Princeton during the late 1930s and may have even met there,
for example through Max Newman. Of course, Einstein has had a head start
and is probably the most well-known scientist in the world, but as this paper
has illustrated, Turing has been rapidly rising in the public’s consciousness not
only in the UK but worldwide. Alan Turing’s place in the historical pantheon of
scientists is now assured.

In the field of formal methods, although there is apparently no direct link
from Turing’s early interest in program proving, with hindsight it can be seen
that Turing’s ideas are highly relevant to this domain. Had Turing lived longer
as the interests of other researchers caught up with those of Turing in the 1960s,
it is quite possible that he could have been involved in the early formation of
the formal methods community [31,38].

In 2019, the BBC held a public vote for the greatest person of the 20th cen-
tury under a BBC Two programme series named ICONS [16]. This included
seven categories presented week by week, namely leaders, explorers, scientists,
entertainers, activists, sports, and artists/writers. As well as Turing, the short-
listed scientists for selection were the Polish physicist and chemist Marie Curie
(1867–1934), Albert Einstein, and the Chinese pharmaceutical chemist and 2015
Nobel Laureate Tu Youyou (, born 1930), known for a breakthrough in
the treatment of malaria. Turing won the scientist category and went on to
the final, against the finalists in the other categories, namely Muhammad Ali,
David Bowie, Martin Luther King Jr, Nelson Mandela, Pablo Picasso, and Ernest
Shackleton. The naturalist and broadcaster Chris Packham gave an impassioned
and rousing speech supporting Alan Turing in the live final on 6 February
2019, which Turing duly won. Packham has Asperger’s syndrome, so is able
to empathise with Turing on both a scientific and personal level. He said that
Turing was “a genius, a savour, but he was also autistic and gay” [17]. He
continued:

The scientists are the only ones that are going to save us and they are
armed with Alan Turing’s legacy. [applause] I’ve got an idea. Get your
phones out of your pocket, and turn them on, and hold them up, just
so that they can sparkle. In each of your hands, you hold a little bit of
Alan Turing. He’s with us when we wake up, he’s with us when we go
to bed at night, and he’s with us when we talk to our loved ones. He’s

The Impact of Alan Turing: Formal Methods and Beyond 227

Fig. 7. Posters displayed during the SETSS 2018 Spring School at Southwest Univer-
sity, Chongqing, including a young Turing, publicizing the ACM TURC 2018 Turing
Celebration Conference in Shanghai, China, 19–20 May 2018 [3]. (Photograph by
Jonathan Bowen).

beautiful, isn’t he, glistening in our darkest hour. You see, Alan Turing’s
legacy hasn’t passed, he’s not a relic of the 20th century, his gift to us is
our future. Thank you.

9 Postscript

In 1994, a formal methods meeting, the Z User Meeting, was held in Cambridge
[34], 45 years to the week after the 1949 Cambridge meeting organized by Mau-
rice Wilkes at which Turing presented his pioneering program proving paper
[156]. The 1949 meeting was mentioned in the opening remarks of the 1994 Z
User Meeting (ZUM) proceedings [26] and Wilkes, who led the Computer Lab-
oratory in Cambridge until 1980, gave the after-dinner speech for the ZUM’94
conference. It could have been even more appropriate if Alan Turing, who would
have been 82 years old in 1994 had he lived (almost exactly a year older than
Wilkes), could have delivered the speech. Sadly of course he died aged 41, half
the age that he would have been in 1994. We can only imagine, if he had lived
a further 41 years, how he could have contributed to the development of formal
methods in particular and computer science in general – and most likely beyond,
as we have seen in this paper that he did in any case, scientifically, culturally,
and politically.

228 J. P. Bowen

Acknowledgments. Parts of this paper are based on an earlier version of a book
chapter [33]. Thank you especially to Troy Astarte, and also to Andrew Robinson and
Tula Giannini, for comments on earlier drafts. The author is grateful to Southwest
University and Museophile Limited for financial support in attending the SETSS 2018
Spring School (see Fig. 7).

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (1996)

2. ACM: ACM A.M. Turing centenary celebration. Association for Computing
Machinery (2012). http://turing100.acm.org

3. ACM: ACM Turing Celebration Conference – China (ACM TURC 2018, ACM

). Association for Computing Machinery (2018). http://china.acm.
org/TURC/2018/

4. ACM: A.M. Turing Award. Association for Computing Machinery. http://
amturing.acm.org

5. ACM: Chronological listing of A.M. Turing Award winners by year. Association
for Computing Machinery. http://amturing.acm.org/byyear.cfm

6. Adams, L: Gay men to receive ‘Turing Law’ pardons. BBC News, BBC Scotland,
31 August 2017. http://www.bbc.com/news/uk-scotland-41108768

7. Alton, J., Weiskittel, H., Latham-Jackson, J.: Catalogue of the papers and corre-
spondence of Christopher Strachey, 1930–1983. Department of Special Collections,
Bodleian Library, University of Oxford, UK (2016). http://www.bodley.ox.ac.uk/
dept/scwmss/wmss/online/modern/strachey-c/strachey-c.html

8. Augarten, S.: Bit by Bit: An Illustrated History of Computers, pp. 142–148. Tic-
knor & Fields (1984)

9. BBC: PM apology after Turing petition, BBC News, 11 September 2009. http://
news.bbc.co.uk/1/hi/technology/8249792.stm

10. BBC: Government rejects pardon request for Alan Turing. BBC News, 8 March
2012. http://www.bbc.co.uk/news/technology-16919012

11. BBC: Royal pardon for codebreaker Alan Turing. BBC News, 24 December 2013.
http://www.bbc.co.uk/news/technology-25495315

12. BBC: Computer AI passes Turing test in ‘world first’. BBC News, 9 June 2014.
http://www.bbc.co.uk/news/technology-27762088

13. BBC: ‘Alan Turing law’: Thousands of gay men to be pardoned. BBC News, 20
October 2016. http://www.bbc.co.uk/news/uk-37711518

14. BBC: Thousands of gay men pardoned for past convictions. BBC News, 31 Jan-
uary 2017. http://www.bbc.co.uk/news/uk-38814338

15. BBC: Turing letters found in old filing cabinet. BBC News, 19 August 2017.
http://www.bbc.co.uk/news/technology-41082391

16. BBC: ICONS. BBC Two (2019). http://www.bbc.co.uk/programmes/b0by86tp
17. BBC: Chris Packham on Alan Turing. ICONS, BBC Two, 6 February 2019.

http://www.bbc.co.uk/programmes/p0704h04
18. Berma, P., Doolen, G.D., Mainieri, R., Tsifrinovich, V.I.: Turing machines. In:

Introduction to Quantum Computers, chap. 2, pp. 8–12. World Scientific (1998)
19. Beth, E.W.: Semantic Entailment and Formal Derivability. Noord-Hollandsche

(1955)
20. Beth, E.W.: Formal Methods. Gordon & Breach, New York (1962)

http://turing100.acm.org
http://china.acm.org/TURC/2018/
http://china.acm.org/TURC/2018/
http://amturing.acm.org
http://amturing.acm.org
http://amturing.acm.org/byyear.cfm
http://www.bbc.com/news/uk-scotland-41108768
http://www.bodley.ox.ac.uk/dept/scwmss/wmss/online/modern/strachey-c/strachey-c.html
http://www.bodley.ox.ac.uk/dept/scwmss/wmss/online/modern/strachey-c/strachey-c.html
http://news.bbc.co.uk/1/hi/technology/8249792.stm
http://news.bbc.co.uk/1/hi/technology/8249792.stm
http://www.bbc.co.uk/news/technology-16919012
http://www.bbc.co.uk/news/technology-25495315
http://www.bbc.co.uk/news/technology-27762088
http://www.bbc.co.uk/news/uk-37711518
http://www.bbc.co.uk/news/uk-38814338
http://www.bbc.co.uk/news/technology-41082391
http://www.bbc.co.uk/programmes/b0by86tp
http://www.bbc.co.uk/programmes/p0704h04

The Impact of Alan Turing: Formal Methods and Beyond 229

21. Blyth, T. (ed.): Information Age: Six Networks that Changed the World. Scala
Arts & Heritage Publishers (2014)

22. Boca, P.P., Bowen, J.P., Siddiqi, J.I.: Formal Methods: State of the Art and New
Directions. Springer, London (2010). https://doi.org/10.1007/978-1-84882-736-3

23. Bonhams: Lot 103 - Turing (Alan). Fine Books, Atlases, Manuscripts and Pho-
tographs. Bonhams, London, 15 November 2017

24. Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University
Press, Oxford (2014)

25. Boughey, C.L.F., et al.: Upper School, Form V a (Group III), Name Turing, Age
16. School report. Sherborne School, UK (Michaelmas Term (1928)

26. Bowen, J.P.: Introductory and opening remarks. In: Bowen, J.P., Hall, J.A. (eds.)
[34], pp. v–vii (1994)

27. Bowen, J.P.: Computer science. In: Heilbron, J.L. (ed.) [85], pp. 171–174 (2003)
28. Bowen, J.P.: The Z notation: whence the cause and whither the course? In: Liu,

Z., Zhang, Z. (eds.) SETSS 2014. LNCS, vol. 9506, pp. 103–151. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29628-9 3

29. Bowen, J.P.: Alan Turing: virtuosity and visualisation. In: Bowen, J.P., Diprose,
G., Lambert, N. (eds.) EVA London 2016: Electronic Visualisation and the Arts,
pp. 197–205. BCS, Electronic Workshops in Computing (eWiC) (2016). https://
doi.org/10.14236/EVA2016.40

30. Bowen, J.P.: Alan Turing: founder of computer science. In: Bowen, J.P., Liu, Z.,
Zhang, Z. (eds.) SETSS 2016. LNCS, vol. 10215, pp. 1–15. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56841-6 1

31. Bowen, J.P.: Provably correct systems: community, connections, and citations. In:
Hinchey, M.G., et al. (eds.) [91], pp. 313–328 (2017)

32. Bowen, J.P., et al.: The development of science museum websites: case studies.
In: Hin, L.T.W., Subramaniam, R. (eds.) E-learning and Virtual Science Centers,
chap. XVIII, pp. 366–392. Idea Group Publishing (2005)

33. Bowen, J.P., Copeland, B.J.: Turing’s legacy. In: Copeland, J., et al. [58], chap.
42, pp. 463–474 (2017)

34. Bowen, J.P., Hall, J.A. (eds.): Z User Workshop, Cambridge 1994. Workshops in
Computing. Springer, London (1994). https://doi.org/10.1007/978-1-4471-3452-
7

35. Bowen, J.P., Hinchey, M.G., Glass, R.L.: Formal methods: point-counterpoint.
Computer 29(4), 18–19 (1996)

36. Bowen, J.P., Hinchey, M.G.: Formal methods. In: Gonzalez, T., et al. (eds.) [152],
part VIII, Programming Languages, chap. 71, pp. 71-1–71-25 (2014)

37. Bowen, J.P., Hinchey, M.G., Janicke, H., Ward, M., Zedan, H.: Formality, agility,
security, and evolution in software engineering. In: Software Technology: 10 Years
of Innovation in IEEE Computer, chap. 16, pp. 282–292. Wiley/IEEE Computer
Society Press (2018)

38. Bowen, J.P., Reeves, S.: From a community of practice to a body of knowledge: a
case study of the formal methods community. In: Butler, M., Schulte, W. (eds.)
FM 2011. LNCS, vol. 6664, pp. 308–322. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21437-0 24

39. Bowen, J.P., Trickett, T., Green, J.B.A., Lomas, A.: Turing’s genius – defining an
apt microcosm. In: Bowen, J.P., Weinel, J., Diprose, G., Lambert, N. (eds.) EVA
London 2018: Electronic Visualisation and the Arts, pp. 155–162. BCS, Electronic
Workshops in Computing (eWiC) (2018). https://doi.org/10.14236/EVA2018.31

https://doi.org/10.1007/978-1-84882-736-3
https://doi.org/10.1007/978-3-319-29628-9_3
https://doi.org/10.14236/EVA2016.40
https://doi.org/10.14236/EVA2016.40
https://doi.org/10.1007/978-3-319-56841-6_1
https://doi.org/10.1007/978-1-4471-3452-7
https://doi.org/10.1007/978-1-4471-3452-7
https://doi.org/10.1007/978-3-642-21437-0_24
https://doi.org/10.1007/978-3-642-21437-0_24
https://doi.org/10.14236/EVA2018.31

230 J. P. Bowen

40. Brattka, V.: Computability and analysis, a historical approach. In: Beckmann, A.,
Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 45–57. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40189-8 5

41. Brown, G.: I’m proud to say sorry to a real war hero. The Telegraph, 10 September
2009

42. Bullynck, M., Daylight, E.G., De Mol, L.: Why did computer science make a hero
out of Turing? Commun. ACM 58(3), 37–39 (2015). https://doi.org/10.1145/
2658985

43. Campagna, R., Cuomo, S., Giannino, F., Severino, G., Toraldo, G.: A semi-
automatic numerical algorithm for Turing patterns formation in a reaction-
diffusion model. IEEE Access 6, 4720–4724 (2017). https://doi.org/10.1109/
ACCESS.2017.2780324

44. Campbell, S.: Beatrice Helen Worsley: Canada’s female computer pioneer. IEEE
Ann. Hist. Comput. 25(4), 51–62 (2003). https://doi.org/10.1109/MAHC.2003.
1253890

45. Campbell-Kelly, M., Aspray, W., Ensmenger, N., Yost, J.R.: Computer: A History
of the Information Machine, 3rd edn. Westview Press, Boulder (2014)

46. Carroll, L.: The Game of Logic. Macmillan & Co., London (1886). http://archive.
org/details/gameoflogic00carrrich

47. Carus, P.: Formal thought the basis of kenlore. The Monist 20(4), 574–584 (1910).
https://doi.org/10.5840/monist191020428

48. Cerf, V.: The man behind the machine. Physics World, pp. 38–39 (2018). http://
physicsworld.com/a/the-man-behind-the-machine/

49. Collins, R.: Steve Jobs review: ‘manically entertaining’. The Telegraph, 12 Novem-
ber 2015. http://www.telegraph.co.uk/film/steve-jobs/review

50. Cooper, S.B.: Turing’s titanic machine? Commun. ACM 55(3), 74–83 (2012).
https://doi.org/10.1145/2093548.2093569

51. Cooper, S.B.: The Alan Turing Year: A Centenary Celebration of the Life and
Work of Alan Turing. School of Mathematics, University of Leeds, UK (2012).
http://www.turingcentenary.eu

52. Cooper, S.B., van Leeuwen, J. (eds.): Alan Turing: His Work and Impact. Elsevier
Science (2013)

53. Copeland, B.J. (ed.): Colossus: The Secrets of Bletchley Park’s Codebreaking
Computers. Oxford University Press, Oxford (2006)

54. Copeland, B.J. (ed.): The Essential Turing. Oxford University Press, Oxford
(2004)

55. Copeland, B.J.: Artificial intelligence. In: Copeland, B.J. (ed.) [54], pp. 353–361
(2004)

56. Copeland, B.J.: Turing: Pioneer of the Information Age. Oxford University Press,
Oxford (2012)

57. Copeland, B.J.: Alan Turing: The codebreaker who saved ‘millions of lives’. BBC
News, 19 June 2012. http://www.bbc.co.uk/news/technology-18419691

58. Copeland, B.J., Bowen, J.P., Sprevak, M., Wilson, R., et al.: The Turing Guide.
Oxford University Press, Oxford (2017)

59. Copeland, B.J., Posy, C.J., Shagrir, O.: Computability: Turing, Gödel, Church,
and Beyond. MIT Press, Cambridge (2013)

60. Copeland, B.J., Proudfoot, D.: The Turing Archive for the History of Computing.
http://www.alanturing.net

61. Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programing. Academic
Press, Cambridge (1972)

https://doi.org/10.1007/978-3-319-40189-8_5
https://doi.org/10.1145/2658985
https://doi.org/10.1145/2658985
https://doi.org/10.1109/ACCESS.2017.2780324
https://doi.org/10.1109/ACCESS.2017.2780324
https://doi.org/10.1109/MAHC.2003.1253890
https://doi.org/10.1109/MAHC.2003.1253890
http://archive.org/details/gameoflogic00carrrich
http://archive.org/details/gameoflogic00carrrich
https://doi.org/10.5840/monist191020428
http://physicsworld.com/a/the-man-behind-the-machine/
http://physicsworld.com/a/the-man-behind-the-machine/
http://www.telegraph.co.uk/film/steve-jobs/review
https://doi.org/10.1145/2093548.2093569
http://www.turingcentenary.eu
http://www.bbc.co.uk/news/technology-18419691
http://www.alanturing.net

The Impact of Alan Turing: Formal Methods and Beyond 231

62. Dasgupta, S.: It Began with Babbage: The Genesis of Computer Science. Oxford
University Press, Oxford (2014)

63. Davis, M.: Turing’s vision and deep learning. In: Manea, F., Miller, R.G.,
Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 146–155. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94418-0 15

64. Dawkins, R.: The God Delusion, p. 289. Bantam Press, London (2006)
65. Daylight, E.G.: Towards a historical notion of ‘Turing–the father of computer

science’. Hist. Philos. Logic 36(3), 205–228 (2015). https://doi.org/10.1080/
01445340.2015.1082050

66. De Mol, L.: Turing machines. In: Zalta, E.N. (ed.) Stanford Encyclopedia of
Philosophy. Stanford University, USA, 24 September 2018. http://plato.stanford.
edu/entries/turing-machine

67. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal
quantum computer. Proc. R. Soc. London A 400, 97–117 (1985). https://doi.
org/10.1098/rspa.1985.0070

68. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

69. Dunham, W.: Euler: The Master of Us All. Mathematical Association of America
(1999)

70. Dyson, G.: Darwin Among the Machines. The Penguin Press (1997)
71. Edwards, J.R.: An early history of computing at Princeton. Priceton Alumni

Weekly, 4 April 2012. http://paw.princeton.edu/article/early-history-computing-
princeton

72. Eperson, D.B: The Lewis Carroll Puzzle Book: Containing over 1,000 posers from
Alice in Wonderland and other books by Lewis Carroll. Appeal Office (1948)

73. Evans, C.: The Mighty Micro: The Impact of the Computer Revolution. Victor
Gollancz (1979)

74. Feigenbaum, E.A., McCorduck, P.: The Fifth Generation: Artificial Intelligence
and Japan’s Computer Challenge to the World. Addison Wesley, Boston (1983)

75. Floyd, R.W.: Assigning meaning to programs. In: Schwartz, S.T. (ed.) Mathe-
matical Aspects of Computer Science. American Mathematical Society (1967).
https://doi.org/10.1007/978-94-011-1793-7 4

76. Frith, H.: Unraveling the tale behind the Apple logo. CNN, 7 October 2011.
http://edition.cnn.com/2011/10/06/opinion/apple-logo

77. Giannini, T., Bowen, J.P.: Life in code and digits: when Shannon met Turing.
In: Bowen, J.P., Diprose, G., Lambert, N. (eds.) EVA London 2017: Electronic
Visualisation and the Arts, pp. 51–58. BCS, Electronic Workshops in Computing
(eWiC) (2017). https://doi.org/10.14236/EVA2017.9

78. Google: Alan Turing. Google Scholar. http://scholar.google.com/citations?
user=VWCHlwkAAAAJ

79. Grattan-Guinness, I.: Turing’s mentor, Max Newman. In: Copeland, B.J., et al.
[58], chap. 40, pp. 437–442 (2017)

80. Gray, P.: Computer scientist: Alan Turing. Time 153(12) (1999). http://content.
time.com/time/subscriber/article/0,33009,990624-2,00.html

81. Gries, D.: The Science of Programming. Texts and Monographs in Computer
Science. Springer, New York (1981). https://doi.org/10.1007/978-1-4612-5983-1

82. Han, B.: [trans.: Shackles and
gifts – Know the real Turing, a mystery puzzler]. WeChat, 3 April 2018. http://
mp.weixin.qq.com/s/JcdromoslivadmFmEf8SVQ

https://doi.org/10.1007/978-3-319-94418-0_15
https://doi.org/10.1080/01445340.2015.1082050
https://doi.org/10.1080/01445340.2015.1082050
http://plato.stanford.edu/entries/turing-machine
http://plato.stanford.edu/entries/turing-machine
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
http://paw.princeton.edu/article/early-history-computing-princeton
http://paw.princeton.edu/article/early-history-computing-princeton
https://doi.org/10.1007/978-94-011-1793-7_4
http://edition.cnn.com/2011/10/06/opinion/apple-logo
https://doi.org/10.14236/EVA2017.9
http://scholar.google.com/citations?user=VWCHlwkAAAAJ
http://scholar.google.com/citations?user=VWCHlwkAAAAJ
http://content.time.com/time/subscriber/article/0,33009,990624-2,00.html
http://content.time.com/time/subscriber/article/0,33009,990624-2,00.html
https://doi.org/10.1007/978-1-4612-5983-1
http://mp.weixin.qq.com/s/JcdromoslivadmFmEf8SVQ
http://mp.weixin.qq.com/s/JcdromoslivadmFmEf8SVQ

232 J. P. Bowen

83. Harel, D.: Computers Ltd.: What They Really Can’t Do. Oxford University Press,
Oxford (2000)

84. Hayes, P.J., Morgenstern, L.: On John McCarthy’s 80th birthday, in honor of
his contributions. AI Mag. 28(4), 93–102 (2007). https://doi.org/10.1609/aimag.
v28i4.2063

85. Heilbron, J.L. (ed.): The Oxford Companion to the History of Modern Science.
Oxford University Press, Oxford (2003)

86. Hickey, S.: Alan Turing notebook sells for more than $1m at New York auction.
The Guardian, 13 April 2015

87. Highfield, R.: Codebreaker wins Great Exhibition Award. Science Museum, Lon-
don, 17 December 2012. http://blog.sciencemuseum.org.uk/codebreaker-wins-
great-exhibition-award

88. Highfield, R.: What to think about machines that think. Science Museum, Lon-
don, 11 December 2015. http://blog.sciencemuseum.org.uk/what-to-think-about-
machines-that-think

89. Hillis, D., et al.: In honor of Marvin Minsky’s contributions on his 80th birthday.
AI Mag. 28(4), 103–110 (2007). https://doi.org/10.1609/aimag.v28i4.2064

90. Hilton, P.: Meeting a genius. In: Copeland, J., et al. [58], chap. 3, pp. 31–34 (2017)
91. Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.): Provably Correct Systems.

NASA Monographs in Systems and Software Engineering. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-48628-4

92. Hinchey, M.G., Coyle, L. (eds.): Conquering Complexity. Springer, London (2012).
https://doi.org/10.1007/978-1-4471-2297-5

93. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

94. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686
(1987). https://doi.org/10.1145/27651.27653

95. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science (1998)

96. Hodges, A.: Alan Turing: The Enigma. Burnett/Simon and Schuster (1983); Cen-
tenary edition, Princeton University Press (2012)

97. Hodges, A.: Oration at Alan Turing’s birthplace. Alan Turing: The Enigma, 23
June 1998. http://www.turing.org.uk/publications/oration.html

98. Hodges, A.: Alan Turing: The Enigma. http://www.turing.org.uk
99. IMDb: The Imitation Game. IMDb (2014). http://www.imdb.com/title/

tt2084970
100. Isaacson, W.: Steve Jobs, p. xvi. Simon & Schuster/Little, Brown (2011)
101. Jones, A.: Five 1951 BBC broadcasts on automatic calculating machines. IEEE

Ann. Hist. Comput. 26(2), 3–15 (2004). https://doi.org/10.1109/MAHC.2004.
1299654

102. Jones, A.: Brains, tortoises, and octopuses: postwar interpretations of mechanical
intelligence on the BBC. Inf. & Cult. 51(1), 81–101 (2016). https://doi.org/10.
7560/IC51104

103. Jones, C.B: Systematic Software Development Using VDM. Prentice Hall Inter-
national Series in Computer Science (1986)

104. Jones, C.B.: Turing’s “checking a large routine”. In: Cooper, S.B., van Leeuwen,
J. (eds.) Alan Turing - His Work and Impact, pp. 455–461. Elsevier (2013)

105. Jones, C.B.: Turing and Software Verification. Technical report CS-TR-1441,
Newcastle University, December 2014. http://homepages.cs.ncl.ac.uk/cliff.jones/
publications/NU-TRs/CS-TR-1441.pdf

https://doi.org/10.1609/aimag.v28i4.2063
https://doi.org/10.1609/aimag.v28i4.2063
http://blog.sciencemuseum.org.uk/codebreaker-wins-great-exhibition-award
http://blog.sciencemuseum.org.uk/codebreaker-wins-great-exhibition-award
http://blog.sciencemuseum.org.uk/what-to-think-about-machines-that-think
http://blog.sciencemuseum.org.uk/what-to-think-about-machines-that-think
https://doi.org/10.1609/aimag.v28i4.2064
https://doi.org/10.1007/978-3-319-48628-4
https://doi.org/10.1007/978-1-4471-2297-5
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/27651.27653
http://www.turing.org.uk/publications/oration.html
http://www.turing.org.uk
http://www.imdb.com/title/tt2084970
http://www.imdb.com/title/tt2084970
https://doi.org/10.1109/MAHC.2004.1299654
https://doi.org/10.1109/MAHC.2004.1299654
https://doi.org/10.7560/IC51104
https://doi.org/10.7560/IC51104
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/NU-TRs/CS-TR-1441.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/NU-TRs/CS-TR-1441.pdf

The Impact of Alan Turing: Formal Methods and Beyond 233

106. Jones, C.B.: Turing’s 1949 paper in context. In: Kari, J., Manea, F., Petre, I.
(eds.) CiE 2017. LNCS, vol. 10307, pp. 32–41. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58741-7 4

107. Jones, C.B.: The Turing guide. Formal Aspects Comput. 29, 1121–1122 (2017).
https://doi.org/10.1007/s00165-017-0446-y

108. Kettle, S.: Alan Turing. http://www.stephenkettle.co.uk/turing.html
109. King’s College: The Turing Digital Archive. King’s College, Cambridge, UK.

http://www.turingarchive.org
110. Lavington, S.: The ACE, the ‘British National Computer’. Early British Com-

puters, chap. 5, pp. 23–30. Manchester University Press (1980)
111. Lavington, S. (ed.): Alan Turing and his Contemporaries: Building the World’s

First Computers. BCS, The Chartered Institute for IT (2012)
112. Lavington, S: Hindsight and foresight: the legacy of Turing and his contempo-

raries. In: Lavington, S., (ed.) [111], chap. 8, pp. 79–84 (2012)
113. Lewin, R.: Ultra Goes to War, p. 64. Grafton (1978)
114. Manchester University: Lost Turing letters give unique insight into his academic

life prior to death. Discover/News. The University of Manchester, UK, 25 August
2017. http://www.manchester.ac.uk/discover/news/

115. McCarthy, J.: A basis for a mathematical theory of computation. In: Braffort P.,
Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70.
North-Holland (1963). https://doi.org/10.1016/S0049-237X(08)72018-4

116. McKay S.: The Secret Life of Bletchley Park. Aurum (2011)
117. McKay, S.: How Alan Turing’s secret papers were saved for the nation. The Tele-

graph, 30 July 2011
118. MGP: Alan Mathison Turing. Mathematics Genealogy Project. Department of

Mathematics, North Dakota State University, USA. http://www.genealogy.ams.
org/id.php?id=8014

119. Millican, P.J.A., Clark, A. (eds.): The Legacy of Alan Turing. Oxford University
Press. Volume I: Machines and Thought; Volume II: Connectionism, Concepts
and Folk Psychology (1996)

120. Ministry of Justice, Gyimah, S.: Thousands officially pardoned under ‘Turing’s
Law’. UK Government, 31 January 2017. http://www.gov.uk/government/news/
thousands-officially-pardoned-under-turings-law

121. Morgan, C.C.: Programming from Specifications. Prentice Hall International
Series in Computer Science (1990). 2nd edition (1994)

122. Morris, F.L., Jones, C.B.: An early program proof by Alan Turing. IEEE Ann.
Hist. Comput. 6(2), 139–143 (1984). https://doi.org/10.1109/MAHC.1984.10017

123. Nature: Alan Turing at 100. Nature 482, 450–465 (2012). http://www.nature.
com/news/specials/turing

124. Naur, P.: Proof of algorithms by general snapshots. BIT 6, 310–316 (1966).
https://doi.org/10.1007/BF01

125. Newman, M.H.A.: Alan Mathison Turing, 1912–1954. Biogr. Mem. Fellows R.
Soc. 1, 253–263 (1955). https://doi.org/10.1098/rsbm.1955.0019

126. Newman, W.: Max Newman-Mathematician, codebreaker, and computer pioneer.
In: Copeland, B.J. (ed.) [53], chap. 14, pp. 176–188 (2006)

127. O’Connor, J.J., Robertson, E.F.: Donald Birkby Eperson. MacTutor. School
of Mathematics and Statistics, University of St Andrews, Scotland, May 2017.
http://www-history.mcs.st-and.ac.uk/Biographies/Eperson.html

128. Page, C., Richards, M.: A letter from Christopher Strachey. Resurrection: J. Com-
put. Conserv. Soc. 73, 22–24 (2016). http://www.computerconservationsociety.
org/resurrection/res73.htm#d

https://doi.org/10.1007/978-3-319-58741-7_4
https://doi.org/10.1007/978-3-319-58741-7_4
https://doi.org/10.1007/s00165-017-0446-y
http://www.stephenkettle.co.uk/turing.html
http://www.turingarchive.org
http://www.manchester.ac.uk/discover/news/
https://doi.org/10.1016/S0049-237X(08)72018-4
http://www.genealogy.ams.org/id.php?id=8014
http://www.genealogy.ams.org/id.php?id=8014
http://www.gov.uk/government/news/thousands-officially-pardoned-under-turings-law
http://www.gov.uk/government/news/thousands-officially-pardoned-under-turings-law
https://doi.org/10.1109/MAHC.1984.10017
http://www.nature.com/news/specials/turing
http://www.nature.com/news/specials/turing
https://doi.org/10.1007/BF01
https://doi.org/10.1098/rsbm.1955.0019
http://www-history.mcs.st-and.ac.uk/Biographies/Eperson.html
http://www.computerconservationsociety.org/resurrection/res73.htm#d
http://www.computerconservationsociety.org/resurrection/res73.htm#d

234 J. P. Bowen

129. Palfreman, J., Swade, D.: The Dream Machine: Exploring the Computer Age.
BBC Books (1991)

130. Penrose, R.: The Emperor’s New Mind: Concerning Computer, Minds, and the
Laws of Physics. Oxford University Press, Oxford (1989)

131. Penrose, R.: Shadows of the Mind: A Search for the Missing Science of Conscious-
ness. Oxford University Press, Oxford (1994)

132. Petrocelli, C.: The Turing Guide, by Jack Copeland, Jonathan Bowen, Mark
Sprevak, and Robin Wilson. Nuncius 33(1), 166–168 (2018). https://doi.org/10.
1163/18253911-03301015

133. Princeton: Alan M. Turing. Office of the Executive Vice President, Princeton
University, USA (2018). http://evp.princeton.edu/people/alan-m-turing

134. Randell, B.: On Alan Turing and the origins of digital computers. In: Meltzer,
B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 3–20. Edinburgh University
Press (1972). http://www.cs.ncl.ac.uk/research/pubs/books/papers/126.pdf

135. Rendell, P.: Game of Life - Universal Turing Machine, YouTube (2010, uploaded
2012). http://www.youtube.com/watch?v=My8AsV7bA94

136. Robinson, A.: Sudden Genius: The Gradual Path to Creative Breakthroughs.
Oxford University Press, Oxford (2010)

137. Robinson, A. (ed.): The Scientists: An Epic of Discovery. Thames& Hudson (2012)
138. Robinson, A.: Film: reality and check. The Lancet 386, 2048 (2015)
139. Robinson, A.: The Turing Guide: last words on an enigmatic codebreaker? New

Sci. 3107, 42–43 (2017). http://www.newscientist.com/article/mg23331072-700
140. Rooney, D.: Codebreaker - Alan Turing’s life and legacy. Science Museum, Lon-

don. YouTube, 19 June 2012. http://www.youtube.com/watch?v=I3NkVMHh0
Q

141. Rooney, D.: Mathematics: How it Shaped our World. Scala Arts & Heritage Pub-
lishers (2016)

142. Russell, B.: What is logic. In: The Collected Papers of Bertrand Russell, vol. 6:
Logical and Philosophical Papers, 1909–13. Part I: Logic and the Philosophy of
Mathematics. Routledge (1912)

143. Shallis, M.: The Silicon Idol: The Micro Revolution and its Social Implications.
Oxford University Press, Oxford (1984)

144. Singh, S.: The Code Book: The Science of Secrecy from Ancient Egypt to Quan-
tum Cryptography. Forth Estate, London (1999)

145. Smith, C.N., et al.: Form IV b (i), Name Turing, Average Age 14.6, Age 14.8.
School report. Sherborne School, UK (1927)

146. Soare, R.I.: History of computability. In: Soare, R.I. (ed.) Turing Computability.
TAC, pp. 227–249. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
642-31933-4 17

147. Srinivasan, A. (ed.): Donald Michie: On Machine Intelligence. Biology & More.
Oxford University Press, Oxford (2009)

148. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, Cambridge (1977)

149. Sumner, J.: Turing today. Notes Rec. R. Soc. Lond. 66(3), 295–300 (2012). http://
www.jstor.org/stable/41723310

150. Swinford, S.: Alan Turing granted Royal pardon by the Queen. The Telegraph,
24 September 2013

151. Time: The great minds of the century. Time 153(12) (1999). http://content.time.
com/time/magazine/article/0,9171,990608,00.html

https://doi.org/10.1163/18253911-03301015
https://doi.org/10.1163/18253911-03301015
http://evp.princeton.edu/people/alan-m-turing
http://www.cs.ncl.ac.uk/research/pubs/books/papers/126.pdf
http://www.youtube.com/watch?v=My8AsV7bA94
http://www.newscientist.com/article/mg23331072-700
http://www.youtube.com/watch?v=I3NkVMHh0_Q
http://www.youtube.com/watch?v=I3NkVMHh0_Q
https://doi.org/10.1007/978-3-642-31933-4_17
https://doi.org/10.1007/978-3-642-31933-4_17
http://www.jstor.org/stable/41723310
http://www.jstor.org/stable/41723310
http://content.time.com/time/magazine/article/0,9171,990608,00.html
http://content.time.com/time/magazine/article/0,9171,990608,00.html

The Impact of Alan Turing: Formal Methods and Beyond 235

152. Gonzalez, T., Diaz-Herrera, J., Tucker, A.B. (eds.): Computing Handbook, 3rd
edn. Volume I: Computer Science and Software Engineering. Chapman and
Hall/CRC Press (2014)

153. Turing, A.M.: Précis of the Theory of Relativity by Albert Einstein. In: The
Turing Digital Archive [109], AMT/K/2 (1927). http://www.turingarchive.org/
viewer/?id=449&title=1

154. Turing, A.M.: On computable numbers with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. (Ser. 2) 42(1), 230–265 (1936). https://
doi.org/10.1112/plms/s2-42.1.230

155. Turing, A.M.: The purpose of ordinal logics. Ph.D. thesis, Princeton University,
USA (1938)

156. Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67–69. Mathematical Laboratory, Univer-
sity of Cambridge, UK (1949). http://www.turingarchive.org/browse.php/b/8

157. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460
(1950). https://doi.org/10.1093/mind/LIX.236.433

158. Turing, A.M.: Can digital computers think? In: The Turing Digital Archive [109],
AMT/B/5, May 1951. http://www.turingarchive.org/viewer/?id=449&title=1
(see also 2018 transcription under http://aperiodical.com/wp-content/uploads/
2018/01/Turing-Can-Computers-Think.pdf)

159. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond.
237(641), 37–72 (1952). https://doi.org/10.1098/rstb.1952.0012

160. Turing, A.M., Braithwaite, R.B., Jefferson, G., Newman, M.: Can automatic cal-
culating machines be said to think? (1952). In: Copeland, B.J. (ed.) [54], chap.
14, pp. 487–506 (2004)

161. Turing, D.: Prof Alan Turing Decoded: A Biography. The History Press (2015)
162. Turing, S.: Alan M. Turing: Centenary Edition. Cambridge University Press,

Cambridge (2012)
163. Uhlig, R.: Genius of Britain: The Scientists who Changed the World. Harper-

Collins (2010)
164. van Doren, C.: A History of Knowledge: Past, Present, and Future. Ballantine

Books (1991)
165. Vardi, M.Y.: Would turing have won the turing award? Commun. ACM 60(11),

7 (2017). https://doi.org/10.1145/3144590
166. Veblen, O.: Letter to M. H. A. Newman, esq. Janus Catalogue Item 2-1-13. The

Max Newman Digital Archive, University of Brighton, UK, 4 May 1928. http://
www.cdpa.co.uk/Newman/MHAN

167. Wikipedia: List of things named after Alan Turing. Wikipedia, Wikimedia Foun-
dation. http://en.wikipedia.org/wiki/List of things named after Alan Turing

168. Wilkes, M.V.: Automatic calculating machines. J. R. Soc. Arts 100(4862), 56–90
(1951). http://www.jstor.org/stable/41365298

169. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)
170. Worsley, B.H.: Serial programming for real and idealised digital calculating

machines. Ph.D. thesis, University of Cambridge, UK, May 1952. Also. In:
Archives Center, National Museum of American History, Smithsonian Institution,
USA. http://sova.si.edu/details/NMAH.AC.0237#ref29

171. Yates, D.M.: Turing’s Legacy: A history of computing at the National Physical
Laboratory 1945–1995. Science Museum, London (1997)

http://www.turingarchive.org/viewer/?id=449&title=1
http://www.turingarchive.org/viewer/?id=449&title=1
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
http://www.turingarchive.org/browse.php/b/8
https://doi.org/10.1093/mind/LIX.236.433
http://www.turingarchive.org/viewer/?id=449&title=1
http://aperiodical.com/wp-content/uploads/2018/01/Turing-Can-Computers-Think.pdf
http://aperiodical.com/wp-content/uploads/2018/01/Turing-Can-Computers-Think.pdf
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1145/3144590
http://www.cdpa.co.uk/Newman/MHAN
http://www.cdpa.co.uk/Newman/MHAN
http://en.wikipedia.org/wiki/List_of_things_named_after_Alan_Turing
http://www.jstor.org/stable/41365298
http://sova.si.edu/details/NMAH.AC.0237#ref29

Author Index

Bjørner, Nikolaj 148
Bowen, Jonathan P. 202

Chen, Yu-Fang 38
Cuellar, Jorge 99

de Moura, Leonardo 148

Groves, Lindsay 1

Kasinathan, Prabhakaran 99

Li, Yong 38

Nachmanson, Lev 148

Pearce, David J. 1

Turrini, Andrea 38

Utting, Mark 1

Wintersteiger, Christoph M. 148

Zhang, Lijun 38

	Preface
	Courses
	An Introduction to Software Verification with Whiley
	Model-Based Design of Real-Time Systems: From Timed Automata to Di-Graph and Back
	Randomized and Systematic Testing of Software
	Omega-Automata Learning Algorithms and Its Application
	Securing the Future IoT Application
	Programming Constraint Services with Z3
	Seminars
	Fuzzing Testing in Theory and Practice
	From Alan Turing to Formal Methods

	Organization
	Contents
	An Introduction to Software Verification with Whiley
	1 Background
	2 Specification and Verification
	3 Introduction to Whiley
	3.1 Whiley Syntax

	4 Writing Specifications
	4.1 Specifications as Contracts
	4.2 Specifying Functions
	4.3 Contractual Obligations
	4.4 Specifying Data Types

	5 Verifying Loop-Free Code
	5.1 Motivating Example
	5.2 Hoare Logic
	5.3 Calculating Backwards Through Assignments
	5.4 Calculating Forwards Through Assignments
	5.5 Reasoning About Control-Flow
	5.6 Reasoning About Expressions
	5.7 Reasoning About Function Calls

	6 Verifying Loops
	6.1 Loop Invariants
	6.2 Ghost Variables and Loop Invariants
	6.3 Example: Reversing an Array (Implementation)
	6.4 Example: Dutch National Flag

	7 Related Work
	7.1 Tools
	7.2 Techniques

	8 Conclusions
	References

	Learning Büchi Automata and Its Applications
	1 Introduction
	2 Preliminaries
	3 Operations on Büchi Automata
	3.1 Union of Büchi Automata
	3.2 Intersection of Büchi Automata
	3.3 Complementation of Büchi Automata
	3.4 Difference of Büchi Automata
	3.5 Decision Problems on Büchi Automata

	4 Learning Finite Automata
	4.1 Overview of the DFA Learning Algorithm
	4.2 Right Congruences and Myhill-Nerode Theorem
	4.3 Observation Tables
	4.4 DFA Construction from an Observation Table
	4.5 Counterexample Analysis
	4.6 The Learner

	5 Learning Büchi Automata
	5.1 Right Congruences for -Regular Languages
	5.2 Family of Deterministic Finite Automata
	5.3 Learning a Family of DFAs
	5.4 Learning Büchi Automata

	6 Learning to Complement Büchi Automata
	6.1 The Complement BA Learning Framework
	6.2 The Complement BA Learning Framework in Action
	6.3 Experimental Evaluation

	7 Application of Büchi Automata in Termination Analysis
	7.1 Automata-Based Termination Analysis
	7.2 Automata-Based Termination Analysis: An Example
	7.3 Automata-Based Termination Analysis: Difficulties

	8 Conclusion
	References

	Securing Emergent IoT Applications
	1 Introduction
	1.1 Security and Privacy Challenges in IoT
	1.2 Goals of Our Framework

	2 Security and Privacy Requirements for IoT Applications
	2.1 Requirements Elicitation
	2.2 Distributed Authorization
	2.3 Device Commissioning and Secure Software Updates
	2.4 Attack Escalation Resilience
	2.5 Fine-Grained Access Control
	2.6 Distributed Accountability

	3 Evolution of Petri Nets
	4 Background Work
	4.1 Authorization for Constrained IoT Devices
	4.2 Modeling Workflows for Access Control Systems
	4.3 Distributed Accountability and Smart Contracts

	5 Contributions
	5.1 Petri Nets for Workflow Specification
	5.2 Transition Contracts
	5.3 Systems Modeling Language (SysML) - Activity Diagram
	5.4 Petri Net Execution Engine
	5.5 Petri Net Based Smart Generation Framework
	5.6 Distributed Accountability and Access Control

	6 Use Cases
	6.1 Connected Mobility Lab (CML)
	6.2 Building Automation
	6.3 Car Sharing

	7 A High-Level Summary and Implementation Guide
	8 Limitations of Our Approach
	8.1 Error Free Petri Net Workflow vs Design Flaw in the Process
	8.2 Open Petri Nets and Deadlocks by Merging Different Processes

	9 Conclusion
	References

	Programming Z3
	1 Introduction
	1.1 Resources
	1.2 Sources

	2 Logical Interfaces to Z3
	2.1 Sorts
	2.2 Signatures
	2.3 Terms and Formulas
	2.4 Quantifiers and Lambda Binding

	3 Theories
	3.1 EUF: Equality and Uninterpreted Functions
	3.1.1 Congruence Closure
	3.1.2 EUF Models

	3.2 Arithmetic
	3.2.1 Solving LRA: Linear Real Arithmetic
	3.2.2 Solving Arithmetical Fragments

	3.3 Arrays
	3.3.1 Deciding Arrays by Reduction to EUF

	3.4 Bit-Vectors
	3.4.1 Solving Bit-Vectors
	3.4.2 Floating Point Arithmetic

	3.5 Algebraic Datatypes
	3.6 Sequences and Strings

	4 Interfacing with Solvers
	4.1 Incrementality
	4.2 Scopes
	4.3 Assumptions
	4.4 Cores
	4.5 Models
	4.6 Other Methods
	4.6.1 Statistics
	4.6.2 Proofs
	4.6.3 Retrieving Solver State
	4.6.4 Cloning Solver State
	4.6.5 Loading Formulas
	4.6.6 Consequences
	4.6.7 Cubes

	5 Using Solvers
	5.1 Blocking Evaluations
	5.2 Maximizing Satisfying Assignments
	5.3 All Cores and Correction Sets
	5.4 Bounded Model Checking
	5.5 Propositional Interpolation
	5.6 Monadic Decomposition

	6 Solver Implementations
	6.1 SMT Core
	6.1.1 CDCL(T): SAT + Theories
	6.1.2 Theories + Theories
	6.1.3 E-Matching Based Quantifier Instantiation
	6.1.4 Model-Based Quantifier Instantiation

	6.2 SAT Core
	6.2.1 In-processing
	6.2.2 Co-processing
	6.2.3 Boolean Theories

	6.3 Horn Clause Solver
	6.4 QSAT
	6.5 NLSat

	7 Tactics
	7.1 Tactic Basics
	7.2 Solvers from Tactics
	7.3 Tactics from Solvers
	7.4 Parallel Z3

	8 Optimization
	8.1 Multiple Objectives
	8.2 MaxSAT

	9 Summary
	References

	The Impact of Alan Turing: Formal Methods and Beyond
	1 Background
	1.1 Polymath
	1.2 Genius

	2 Scientific Impact
	2.1 Theoretical Computer Science
	2.2 Artificial Intelligence
	2.3 Mathematical Biology
	2.4 General Computer Science
	2.5 Formal Methods and Program Proving

	3 Academic Legacy and Heritage
	3.1 Family Scientific Heritage
	3.2 Academic Background
	3.3 Mathematics Genealogy Project
	3.4 Historic Academic Lineage
	3.5 Turing's Mentor

	4 Turing Eponyms
	5 Historical Impact
	6 Popular and Cultural Impact
	6.1 Memorabilia

	7 Political Impact
	8 Conclusion
	9 Postscript
	References

	Author Index

