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Chapter 6

Challenges, Regulations and Future
Actions in Biofertilizers in the European
Agriculture: From the Lab to the Field

Marcia Barquero, Raquel Pastor-Buies, Beatriz Urbano,
and Fernando Gonzalez-Andrés

Abstract Microorganisms have been used in agriculture for more than a century,
beginning with the rhizobia inoculants and, more recently, the so-called plant
growth-promoting rhizobacteria (PGPR). Generally, bacteria have proven to be a
valid and useful biotechnology for crop production. In spite of the existing knowl-
edge about functional aspects of the interaction between microorganisms and plants
and their effects on plants growth, adoption of such products by farmers is still
incipient in some regions of the world, especially in industrialised areas While in
Asia and Latin America they are widespread, in Europe they are still emerging. This
chapter analyses the challenges of the European sector, including: (i) avoiding
inconsistences in field performance, and (ii) informing and training farmers about
this technology. Emerging regulation in Europe are also examined. Last, it discusses
the prospective actions to help overcome challenges while also staying within the
current regulation guidelines, including: (i) searching for autochthonous strains, (ii)
optimisation of the industrial production and formulation, (iii) development of tech-
niques for precise strain identification in products, especially for non-sterile carri-
ers, (iv) field experiments at the “farmers scale,” and (v) screening action mechanisms
from a genetic viewpoint. This chapter reviews the scientific information about field
trials from a critical standpoint.
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6.1 The Challenges for Microorganism-Based Products
in Agriculture

Products based on plant growth-promoting rhizobacteria (PGPR), or plant growth-
promoting bacteria (PGPB) for use in agriculture have received widespread atten-
tion in recent years (Pastor-Bueis et al. 2017). It has been demonstrated that these
kind of products lead to an increase in crop yields when used properly, which results
in a reduced need for chemicals (Bhardwaj et al. 2014). This technology is compat-
ible with, and may be complementary to, conventional technologies based on min-
eral, synthetic or organic products. Eventually, microorganism-based products
could partially, or even totally replace conventional agricultural products. However,
microbial products face several challenges, which pose a threat towards their more
generalised use in agriculture (Fig. 6.1).

Avoiding the well-known inconsistences in the performance of microorganisms
on the field scale is one of the most important challenges (Morrissey et al. 2004;
Vejan et al. 2016). The success of microorganisms in the field depends on the

CHALLENGES
of microbial based productos in the transfer process from the lab to the famer

v v

To avoid inconsistences in field To inform and train farmers about the
performance technology

Adequate formulacién
to attain plant
colonization

Unraveling action Transparency about Management of
mechanisms microbial biofertiizers biofertilizers

v

Identification and characterization of microorganisms

Demonstration of the agronomic efficiency

Search for Industrial Strains Field Screening of action
autochthonous production and identification in experiments at mechanisms
strains formulation the product “farmers scale” (genes expression)

Fig. 6.1 Addressing the challenges of using microorganisms in agriculture, the emerging regula-
tions in Europe, and prospective actions to overcome challenges while also staying within the
current regulation guidelines
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effective plant colonisation of bacteria, which is influenced by the intrinsic bacterial
properties, as well as the physical, chemical and biological nature of the environment.
Among the factors affecting bacterial colonisation, some of the most significant are
soil particle aggregation, quantity and quality of available carbon, temperature and
pH (Timmusk et al. 2017), as well as the ability to interact with indigenous soil
microflora (Martinez-Viveros et al. 2010). Usually, populations of inoculated
bacteria decline rapidly after initial inoculation. Consequently, they do not attain a
sufficient number of viable cells to successfully colonise the root and thus cannot
trigger a plant response. Therefore, many efforts are being concentrated in
overcoming this issue (Herrmann and Lesueur 2013). Keeping a sufficient number
of viable cells is imperative, and preparing the correct bio-formulation is a key
challenge. The microorganisms must be prepared methodically in order to provide
an appropriate micro-environment, including physical protection for a sustained
period of time to avoid decline (Bashan et al. 2016; Timmusk et al. 2017).
Unfortunately, there is a lack of available scientific knowledge about the formulation
of biofertilisers. In fact, most of this information is either patented or declared an
industrial secret. However, even taking into account the significant efforts of private
companies in formulation development, the existing information is far from being
optimised.

Another contribution to the apparently inconsistent effects of these kind of prod-
ucts from the farmer’s viewpoint is given by the diversity of the modes of action
(Choudhary et al. 2011; Vejan et al. 2016). For example, a single microorganism can
have multiple simultaneous actions in a crop, and can also exhibit multiple
mechanisms for a given action (Etesami and Maheshwari 2018). This effect can
make it sometimes difficult to identify the action of a given product in the crop, and
ultimately confuses the farmer.

A third challenge involves the information that farmers receive and their training
in this technology. The rhizobia for legumes, and the PGPR or PGPB, either directly
or indirectly facilitate or promote plant growth under nutritional, abiotic or biotic
stress conditions. In the last case they are called biocontrol-PGPB (Cassan et al.
2014). When the primary action mode is nutritional or relates to abiotic stress, the
microorganism-based products are generally called biofertilisers or microbial-
biofertilisers (Pastor-Bueis et al. 2017). However, there is general confusion about
what a biofertiliser is. Frequently, anaerobic digestates and their derivatives (Mekki
et al. 2017; Du et al. 2018), along with several kinds of composts, are wrongly
considered biofertilisers, solely due to the fact that they have a high microbial load
(Mulas et al. 2013). Instead, microbial biofertilisers are products that contain
specific bacteria strains, which have been carefully selected after the isolation and
the biochemical and/or genomic processes of identification and characterization.
Afterwards, the products are tested in plants, including crop testing in field situations.
Such confusion has been detrimental to the image of microbial biofertilisers and
may preclude the use of appropriate products. Therefore, another challenge is to
provide a clear explaination to farmers about the differences between organic
fertilisers and microbial biofertilisers, along with what they can expect from these
products and how they must manage them. Such products consist in fact of living
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organisms, and their management requires specific care. Moreover, it is unlikely
that farming practices will significantly change to accommodate biofertiliser
requirements. Therefore, more effort must be put towards developing farmer-
friendly products (Bashan et al. 2014). Private companies play an important role in
transferring knowledge to farmers. Thus they need to train technicians and sales
agents in such products. Regardless, a lack of responsibility in the commercial
distribution of microorganism-based products in the past also contributed to a
general distrust among farmers.

Finally, the “Nagoya Protocol on Access to Genetic Resources” pursues a fair
and equitable sharing of the benefits arising from the utilization of genetic resources,
including access to these resources, technology transfer and funding (IEEP, Ecologic
and GHK 2012). However, it poses a threat regarding the bureaucratic procedures,
which can become a hindrance for the development of new and more effective
products, if based on new isolates.

6.2 Regulations on Microorganism-Based Products
in European Agriculture

Products based on PGPR burst into the market in the decade 1980-1990, but their
presence was dramatically reduced shortly thereafter. Among other reasons, this
was due to the lack of formal and standard regulation of the sector, which resulted
in situations of poor quality and low efficiency in the field. Currently, the quality is
still far from being adequate, and in some cases it is considered poor. In order to
increase the agricultural use of microorganism-based products, the desired quality
and stability should be maintained (Bashan et al. 2014, Stamenkovi¢ et al. 2018).

Nevertheless, during the last decade, microorganism-based products have made
a strong comeback in certain regions, such as Latin America and southern Asia
(Bashan et al. 2014). Conversely, Europe has always been reluctant to use microbial
products in agriculture because of the strength of the chemical industry, which until
a few years ago did not show interest in microorganism-based products because
they were outside of their scope. Still, the most important companies in agricultural
enterprise are currently creating production lines for microbial products, and several
small or medium sized companies are entering into the business as well.

A key aspect of the safe commercialisation of products based on microorgan-
isms, as well as for the safeguard of the farmers and the consumers’ rights, is the
development of standard regulations. Hence, Europe has been conscious of the
interest of small and large companies in this business and has started creating a
regulation to define rules for the availability of microorganism-based products on
the market of what is called “CE-marked fertilising products”. This new regulation
will replace (EC) No 2003/2003 (the existing “Fertilisers Regulation™), and it will
amend two other regulations, including (EC) No 1107/2009 concerning the
placement of plant protection products on the market. The proposal of the European
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Parliament and the Council of the European Union is still in draft form (No
2016/0084, COD), but it already allows for an understanding of the forthcoming
regulation. On the one hand, it considers the biocontrol-PGPB agents, which will be
out of the range of the new regulation on marked fertilising products. Moreover, it
recognises that substances, mixtures and microorganisms commonly referred to as
plant biostimulants are not as such nutrients, but nevertheless stimulate the plants
nutrition processes. The draft indicates that since such products are aimed solely at
improving the plants nutrient use efficiency, tolerance to abiotic stress, or crop
quality traits, they are by nature more similar to fertilising products than to other
categories of plant protection products. These products should therefore be eligible
for CE-marking under the regulation on CE-marked fertilising products, and
excluded from the scope of Regulation (EC) No 1107/2009 of the European
Parliament and of the Council on plant protection products.

Some European Union countries already regulate the sector, such as Spain for
example, with the RD 999/2017 about fertilising products. This regulation includes
a special section for “special products with micro-organisms,” which includes
(Spain 2017): (i) mycorrhizal fungi, (ii) fertiliser with mycorrhizal fungi, (iii) non-
mycorrhizal microorganisms, (iv) fertiliser with non-mycorrhizal microorganisms,
(v) a mix of mycorrhizae and non-mycorrhizal microorganisms, and (vi) a mix of
fertilisers with mycorrhizae and non-mycorrhizal microorganisms. According to the
European regulations, the key aspects required to register a microorganism-based
product by manufactures are: (i) the identification and characterisation of the
microorganisms, and (ii) the demonstration of its agronomic efficiency.

6.2.1 Identification and Characterisation of Microorganisms

At the moment, no specific list of accepted microorganisms taxa exists. The
European regulation draft tentatively includes nitrogen fixing bacterial (Azospirillum,
Azotobacter and Rhizobium) and mycorrhizal fungi. In any case, any addition to the
component material category (CMC) will include the following data on the new
microorganism: (i) name, (ii) taxonomic classification, (iii) historical data of safe
production and use, (iv) taxonomic relation to micro-organism species, which
fulfills the requirements for the Qualified Presumption of Safety as established by
the European Food Safety Agency, (v) information on the residue levels of toxins,
(vi) information on the production process, and (vii) information on the identity of
residual intermediates or microbial metabolites in the component material. The
identification of the microorganisms included in a registered product must be based
on molecular sequences, such as the 16S rRNA ribosomal gene in bacteria and the
ITS-18S rRNA in the case of mycorrhizal fungi.

The minimum microorganism concentration has been tackled by the Spanish
regulation, and for bacteria it has been set at 10’ CFU/ml or 107 CFU/g, depending
on the product formulation. The regulation does not take into account the estimated
final number of microorganisms per plant in the field, as other regulations do
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(Herrmann and Lesueur 2013), but only the concentration in the product. However,
the Spanish regulation accepts products with a lower concentration of bacteria,
provided that their effectiveness is proven with statistical significance in two
different microcosm experiments (one experiment with one crop, and another with
a second crop, or two different experiments with the same crop).

6.2.2 Demonstration of the Agronomic Efficiency

A vital aspect of the successful registration of a microbial biostimulant is proving
its agronomic proficiency in field experiments, using the necessary controls and an
adequate experimental design, with a statistical evaluation of results. According to
the Spanish regulation, a different experiment is necessary for each group of crops
(i.e. horticultural crops, open field crops, trees, products for plants nurseries, etc.),
and the registration of products in different groups will follow parallel processes.

6.3 Field Evidences in Scientific and Academic Literature
of Effective Microorganisms for Agricultural Use

Multiple advanced “-omics” technologies have enabled us to gain insights into the
structure and function of plant-associated microbes (Quin et al. 2016), as the number
of scientific and academic studies in such disciplines does not stop growing. The
evaluation of biofertilisers and strain selection still chiefly remains in controlled
environments rather than under field conditions, whereas scientifically sound field
experiments are a necessary step in the development of innovative products based
on microorganisms (Herrmann and Lesueur 2013). Table 6.1 gathers recent existing
worldwide information about field experiments on microorganism-based products
on a medium or large scale. As can be observed in the Table 6.1, there is a broad
range of microorganisms used in inoculants, including PGPR, PGP, rhizobia as
N-fixing with legumes and mycorrhizal fungi. Likewise, the field assays include
inoculations with only one microorganism and those with cocktails containing two
or more microorganisms. Although a few of the experiments tested commercial
inoculants, most of them reflected the results of the initial stage of strains testing,
which are applied directly to the seed (not formulated). In other cases, the
microorganisms have been mixed (formulated) with a carrier, such as peat or
compost, but a microbial protectant has not been added, and the survival of the
inoculum has not been evaluated. Even though the product is tested in the field,
rarely its expiry date has been appraised, nor the shelf-life of the product in which
its efficiency and quality can be assured. What this means is that such products
cannot be released from the commercial viewpoint.
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Of the 37 studies, published between 2015 and the present moment, in the first or
second quartile of the Journal Citation Index, and which performed PGPR or mycor-
rhizal fungi field tests, only seven were tested in the EU. Thus, it is necessary for
European scientists to increase the efforts in formulating products based on native
microbes, in order to design successful products that are ready-to-market under the
EU regulations.

6.4 Prospective Actions for a Microorganism-Based
Agriculture in Europe

The EU is emerging regarding the use of microorganisms for agriculture. The
European regulations on “plant biostimulants”, which, independently of the prod-
ucts nutrient content, aim to improve the efficiency of nutrients uptake, the tolerance
to abiotic stress, and/or the crop quality traits, is the starting point for a promising
future of this kind of products. In light of the challenges posed in Sect. 6.1 and the
new regulation, the prospective lines of action are discussed below and shown in
Fig. 6.1.

One important line of action is the use of autochthonous strains. The advantages
of using autochthonous microorganisms is still a controversial aspect, even though
there is enough scientific evidence to verify the better adaptation and field perfor-
mance of autochthonous microorganisms (Mulas et al. 2013). For instance, in
Phaseolus vulgaris L. the use of allochthonous rhizobia usually does not produce a
response to inoculation (Rodriguez-Navarro et al. 2000; Daza et al. 2000), while the
use of autochthonous strains have produced a good response in field studies in South
America (Motasso et al. 2002; Hungria et al. 2003; Diaz-Alcantara et al. 2014),
Africa (Mrabet et al. 2005), and Europe (Mulas et al. 2011, 2015).

The genes encoding an adaptation to a given environment are generally located
in the bacterial chromosome (Garcia-Fraile et al. 2010; Mulas et al. 2011; Cao et al.
2017). It has been demonstrated that native rhizobia strains, which are well adapted
to environmental conditions, incorporated the plasmid containing the nodC gene
typical of biovar phaseoli into their genome (Garcia-Fraile et al. 2010; Mulas et al.
2011, 2015; Diaz Alcantara et al. 2014). This plasmid comes from America, the
centre of origin of the common bean, and was persistently transferred to the native
rhizobia species, up to date. Such a plasmid confers to the native rhizobia the ability
to successfully fix nitrogen. According to manufacturing companies, the main
drawback of using autochthonous strains is the increase of the portfolio, as it is
necessary to design several products for the same crop, depending on the geographic
region. An alternative solution is to use multi-strain inoculants; however, even
though there are many laboratory-based studies describing the advantages of strain
combinations, there is still a lack of information about the performance of these
kind of formulations, on the field scale (Bashan et al. 2014).
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Another aspect is to define the range of autochthony, that is the adaptation ranges
of each strain. There is a lack of information about this issue. Unraveling this
question would involve testing each strain in a set of field experiments in the same
and different agroclimatic regions. A study by Marcano et al. (2016) showed that
within the same agroclimatic region in a transect of 150 km, the biodiversity of
cultivable soil bacteria was mainly located within populations, indicating
homogeneity between populations in the agroclimatic region. However, Marasco
et al. (2013) observed a broader transect of 1000 km across the agroclimatic region
known as the “Mediterranean basin” and found greater diversity between distantly
located populations in the transect. Hence, the bacterial diversity across different
regions depends not only on the agroclimatic region, but also on the transect length
and plant genotype. This must be taken into account when designing biofertilisers
based on autochthonous bacteria because locations that are very far apart, but which
belong to the same agroclimatic region, could need different strains in order for
them to be considered autochthonous.

Another action line is the optimisation of the fermentative process for microor-
ganism production and the formulation at an industrial scale (Bashan et al. 2014).
The cost of the growth media for microorganisms needs to be feasible, and for this
reason the use of residues has been proposed as a cheap option (Pastor-Bueis et al.
2017). More basic research is needed to develop formulations that maximise the
shelf life of the microorganisms, while also optimising plant colonisation.

One important bottleneck in research is identifying the inoculated strain or
strains in a product in order to count the CFU per g or ml, as requested by the
regulation. This is especially important when the carrier is not sterile, for instance
in the mix of a fertiliser with microorganisms. In addition, another major point for
microorganism tracking in the field is the development of specific strain markers.
Even if the regulations do not require this assessment at this moment, it is of high
interest to control the populations change in soils and survival across the different
growth stages of the crop. In such cases, it is necessary to have a strain-specific
marker to precisely identify the inoculated strain and to distinguish it from other
resident microorganisms, even from the same species. Moreover, the identification
system must be cheap and effective. For this reason, it has been proposed to design
a Sequence Characterized Amplified Region (SCAR) marker for each strain (Reddy
Priya et al. 2016), although due to the decrease of the price in genome sequencing,
in the future it will be more feasible to find distinctive sequences, based on the
analysis of the full genome.

Finally, future research has to be carried out under field situations in order to
concentrate the efforts only on those strains which are consistently effective in field
conditions. Theoretically, it is possible to achieve a very large range of responses in
plants using adequate microorganisms (Etesami and Maheshwari 2018). However,
at this moment it is sometimes difficult to see the effects of some actions at the field
scale, even if it has been observed in crop tests, at the lab scale or in controlled
conditions. Moreover, it is necessary to gain a better understanding of the
mechanisms of action of the microorganisms in the plant. Frequently, several
mechanisms are working simultaneously. Presently, several studies have sequenced
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and characterised the plant genes whose expression is affected by interactions with
PGPRs, resulting in an improved plant performance in stress situations. For example,
studies by Kaushal and Wani (2016), Jatan et al. (2018) and Tiwari et al. (2017)
identified several drought stress-related genes that were up-regulated in plants
inoculated with PGPR, which resulted in a growth promotion under drought and
salinity stress. Similarly, nitrate, ammonium and phosphorus transporter genes in
wheat were up-regulated after inoculation with PGPR and mycorrhizal fungi (Saia
et al. 2015a). The list of known genes is continuously increasing, and therefore, in
the near future it will be relatively easy to screen for the molecular mechanisms of
action for a given strain.

6.5 Conclusion

This chapter reviews the challenges facing microorganism-based products in the
market of agricultural inputs, such as products for improving the plants efficiency of
nutrient uptake, the tolerance to abiotic stress, and the quality traits of crops. Main
challenges of using microbial stimulants reside in overcoming the inconsistences in
field response and in adequately informing and training farmers. The response of
the EU regulation to tackle such challenges was discussed. Such regulations aim to
guarantee the quality of the product and their effectiveness in the field, as well as
defining what has to be demonstrated in field experiments. In this scenario, the
following prospective lines of action are discussed: (i) searching for autochthonous
strains, (ii) optimising industrial production and formulation, (iii) developing
techniques for precise strain identification in the product, (iv) performing field
experiments at the “farmer’s scale”, and (v) screening action mechanisms from a
genetic viewpoint.
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