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Preface

This volume builds on a collaborative research project about algebra learning in 
four countries, Finland, Norway, Sweden, and the USA (California). The idea of 
the project was to document and analyze the first lessons when students are intro-
duced to algebra. In concrete terms, each country team contacted teachers and 
asked them for permission to video record the lessons when they introduced the 
curricular unit of algebra. The choice of the topic of algebra was motivated not 
only by our joint interest in teaching and learning in this domain, but also by the 
observations reported in much of the literature that algebra is a hurdle for many 
students. Concepts such as variable, unknowns, and equivalence and the solving of 
equations represent activities that many find challenging, and the aim of the proj-
ect has been to see how instruction is organized, and how students approach, strug-
gle with, and appropriate basic algebraic symbols and modes of thinking. This 
implies that the spirit of the project has been to explore the perspectives and ratio-
nalities of the participants, students, and teachers, as they engage in algebra in 
regular instructional settings.

As the reader of this volume, and other reports that have been produced in the 
project, will see, there are both similarities in and variations between the ways in 
which algebra is introduced in the classrooms we have documented. We are well 
aware that our empirical materials do now allow us to make strong generalizations 
in a statistical sense about how algebra is introduced in different countries. The 
specific background of this volume is that during the extensive discussions over 
several years in the distributed project group about our data and analyses, we 
decided to try to pick out elements of introducing algebra that we found character-
istic of our respective materials, i.e., elements that stood out as characteristic when 
compared to what we saw in the materials from the other countries. Thus, each 
team was encouraged to select one topic or feature of the teaching and learning 
documented that they perceived as typical of their own educational traditions and 
of how algebra is introduced in the lessons documented. The empirical chapters 
(4–7) present these case studies from the respective countries. In the case of 
Sweden, the focus is on how children participate in teaching and learning when 
algebra is introduced. In the case of Norway, the focus is on the nature of tasks and 
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examples that teacher use and produce to help clarifying basic algebraic concepts 
and modes of reasoning. In the chapter from Finland, the ways in which students 
approach equation solving are explored, and in the US chapter consistencies 
between teachers’ conceptions of what it means to learn mathematics/algebra, on 
the one hand, and the instruction they engage in, on the other hand, are analyzed. 
Chapter 8, the final empirical section, reports a comparative analysis of how stu-
dents in the four different countries solve a patterning task given after the first four 
lessons of algebra. A patterning task, thus, potentially involves modeling and using 
algebraic reasoning in order to make mathematical sense of a situation where stu-
dents have to oscillate between, on the one hand, concrete observations of a pattern 
that they can see in front of them and, on the other hand, attempts to represent this 
pattern in mathematical terms. The task itself is taken from an international com-
parative study of mathematics achievement, and it proved to be an interesting test 
bed for studying learning trajectories.

The project itself has been an exciting and truly international collaboration 
between the four teams. Representatives of teams have met physically on a few 
occasions, but most of the collaboration has taken place through videoconferencing 
where we have taken decisions on how to proceed with the research at various stages 
and where we have discussed our data, analyses, and findings. This work has been 
conducted in real time, which has meant that the members of the team in California 
had to be ready for academic exercises very early in the morning, while the Finnish 
team members had to stay in their offices after regular working hours. The fact that 
it is possible to conduct research seminars under these conditions, including activi-
ties such as projecting data to be discussed on a shared screen and scrutinizing 
analyses suggested, has been both rewarding and inspirational. And we are very 
satisfied that this idea, built into the design of the project, turned out to work very 
well technically as well as academically.

The project was originally initiated as a Nordic research project by Roger 
Säljö, Sweden, Maria Luiza Cestari, Norway, and Ole Björkqvist, Finland, in 
collaboration with Jim Stiegler, USA. The practical work of collecting empirical 
data, transcribing, coding, and analyzing was conducted in each country by a 
team of researchers. In addition to all those participating as authors in this book, 
we would like to acknowledge the contributions of Rimma Nyman, Anna 
Lundberg, and Elisabeth Rystedt, three PhD students who joined the project at 
different times, providing input and new perspectives. Our special thanks go to 
all the teachers who opened their classrooms for us, allowing us to document 
their practices on video, and who also willingly took part in individual and focus 
group interviews.

The project has been funded by the Joint Committee for Nordic Research 
Councils for the Humanities and Social Sciences (grant 2135-08-210321), and we 
are very grateful for this possibility to do comparative research in algebra learning, 
while at the same time testing the possibilities for academic work across time and 
space. The research teams would also like to express their thanks to the administra-
tive staff at the four universities for their support. The core person in the compli-
cated sub-project of handling resources, overheads, currency fluctuations, and other 
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facts of academic life has been Mrs. Doris Gustafson at the University of Gothenburg. 
Doris Gustafson has an incredible experience in the administrative sides of research 
collaborations, national as well as international, and without her skilled support and 
problem-solving capacities we would not even have been able to put together a 
coherent application.

Gothenburg, Sweden� Cecilia Kilhamn
� Roger Säljö
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Chapter 1
School Algebra

Cecilia Kilhamn, Ann-Sofi Röj-Lindberg, and Ole Björkqvist

�Introduction

There is no single program for learning algebra through the expression of generality. It is a 
matter of awakening and sharpening sensitivity to the presence and potential for algebraic 
thinking. (Mason, 1996, p. 65)

The role of algebra within school mathematics reflects very well its central posi-
tion within mathematics itself. While the historical development of algebra was a 
major achievement as such (see Varadarajan, 1998), it is also easily appreciated as 
the starting point for many more advanced topics. In particular, the shift from rhe-
torical to symbolic algebra has had a great influence on the development of mathe-
matics. In most parts of the world, a significant proportion of lower secondary 
school curricula in mathematics is devoted to algebra (Leung, Park, Holton, & 
Clarke, 2014), and mastery of the foundations of algebra, especially the awareness 
of generality, is in general argued to be a necessary prerequisite for successful study 
of mathematics at upper school levels.

A common feature of mathematics is its tendency to give precedence to mathe-
matical objects over mathematical actions (nouns over verbs), e.g. the act of divid-
ing one number with another is preferably called a division, affording the possibility 
to discuss properties of divisions as a mathematical object. Many mathematical top-
ics similarly involve the introduction of object-like concepts based on procedures, 
and there may be stages of importance in this kind of development (Sfard, 1991). It 
seems appropriate to analyze school algebra in terms of mathematical concepts and 
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procedures that may be deemed as characteristic for it, which is a standard way of 
looking at school mathematics (Lesh & Landau, 1983). Thus, school algebra can be 
seen as a showcase for school mathematics.

The explicit introduction of algebra within the study of mathematics has tradi-
tionally been postponed until the study of arithmetic has been brought to an assumed 
conclusion, and it has been customary in many countries to begin formal algebra at 
lower secondary school. For some decades, however, this type of artificial division 
in time between arithmetic and algebra has been rejected, and it is now quite gener-
ally accepted that supporting algebraic thinking and the use of algebraic tools as 
early as in the first grades is beneficial to both the learning of arithmetic and the 
learning of algebra (Britt & Irwin, 2011; Cai & Moyer, 2008; Hewitt, 2014; Kaput, 
Carraher, & Blanton, 2008; Kieran, 2018; Kieran, Pang, Schifter, & Ng, 2016). 
Although algebraic reasoning without the use of written symbols constitutes the 
core of what is called “early algebra”, developing fluency in written representations 
is ultimately an essential part of algebra. Early algebra builds on contexts of prob-
lems, interweaves algebraic reasoning with existing topics of early mathematics and 
gradually introduces and extends students’ own representations into formal sym-
bolic representations (Carraher, Schliemann, & Schwartz, 2008; Kieran, 2018; 
Radford, 2011, 2018). In Davydov’s curriculum, extensive work is done already in 
the first years at school to represent part-whole relationships visually and symboli-
cally, before introducing specific numbers (Davydov, Gorbov, Mikulina, & Savaleva, 
1999; Schmittau, 2011).

The introduction of algebra has thus been spread out in time, and the approaches 
to teaching and learning algebra in the early grades vary significantly. Hence, alge-
bra can be approached from different perspectives using different points of departure 
(Bednarz, Kieran, & Lee, 1996). Furthermore, the teachers’ interpretations of cur-
ricula and textbooks are certain to introduce even more variability. At the heart of it 
all is the fact that algebra has many faces, and whatever the teacher momentarily 
attends to may either support or obscure another aspect of algebra. What is dealt 
with during a single lesson can reflect momentary learning goals, while it at the 
same time has a bearing on the long-term learning of mathematics. Both the order 
and the depth of the treatment of the topics are important, and so is the character of 
the particular mathematical tools and representations in use during the lessons.

In the VIDEOMAT research project, which is the basis for this book, an over-
view of the national curricular documents of the four participating countries/states 
was initiated, i.e. Sweden, Norway, Finland and California, USA. All of these docu-
ments describe a similar shift in the teaching of school algebra. In the early years, 
algebraic content is described in terms of algebraic thinking: dealing with relation-
ships, regularities and patterns without any formalized symbolic notation apart from 
an emphasis on the equal sign. At around the age of 12, students are expected to start 
solving equations using variables, expressions and formulas. This can be interpreted 
as an indication that, although algebraic thinking may have been an issue at an early 
age and in various ways, a more formalized symbolic language is introduced to 
students at around the same age in the four countries. Hence, this phase of school 
algebra was identified as the “introduction of variables in algebra”, or the introduction 
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to letter-symbolic algebra. The five empirical chapters in this book document how 
this introduction is organized in classroom practices in the four contexts.

�School Algebra: What Is It?

Against the background of the several mathematical faces of the basic concepts of 
algebra, it is hardly surprising that many practitioners engaged in algebra teaching 
and learning find it quite hard to describe what school algebra really is (Kendal & 
Stacey, 2004). An important feature of algebra is the possibility to represent abstract 
ideas so that they are easier to access and to use in a routine-like manner. A central 
idea in algebra is generality. Generality presupposes the existence of a great number 
of specific instances that can be summarized in a concise way, e.g. utilizing the let-
ter n to serve as an index of the instances, while it also appears as a variable in a 
mathematical expression based on any of the instances. Generality may be estab-
lished through recognition of patterns, which means identification of that which is 
constant from instance to instance, as well as that which constitutes variation 
between instances. Established generalities regarding mathematical structures are 
starting points for new explorations in mathematics, reliable tools for mathematical 
problem solving and the formal basis for deductive reasoning.

In an attempt to cover the many faces of algebra, Usiskin (1988) identifies four 
main categories of school algebra: (1) generalized arithmetic; (2) a way to solve 
certain types of problems; (3) a study of relationships among quantities; and (4) a 
study of structures. In recent research about algebraic thinking among 5–12-year-
olds, there is a strong emphasis on the structural aspects of algebra (Kieran, 2018). 
Focusing more on activities related to the use of variables and the art of generaliza-
tion, Mason (1996) describes four principal roots of algebra as: (1) generalized 
arithmetic, where letters are used to express the rules of arithmetic; (2) expressing 
generality; (3) possibilities and constraints, to support awareness of variables; and 
(4) rearrangement and manipulation, to support understanding why multiple expres-
sions can represent the same thing. When planning classroom activities, an algebra 
teacher may choose to focus more on some aspects of algebra and less on others, 
ultimately taking different approaches to the topic. Activities that students com-
monly engage in during algebra lessons have been categorized by Kieran (1992, 
1996) on the basis of many years of research and a thorough overview of the research 
field. Kieran describes algebraic activities as comprising three core activities: gen-
erational activity, transformational activity and global/meta-level activity. 
Generational activities of algebra involve the forming of expressions and equations 
that include variables and unknowns, representing problem situations, geometric 
patterns, numerical sequences and relationships. Transformational activities are 
rule-based activities, often related to equation solving and changing the form of an 
expression while maintaining equivalence. Global/meta-level activities refer to 
those where algebra is used as a tool for mathematical activities such as “problem 
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solving, modeling, noticing structure, studying change, generalizing, analyzing 
relationships, justifying, proving, and predicting” (Kieran, 2004, p. 142).

While transformational activities have often been the focus of algebra courses in 
Western countries, Japanese teaching has emphasized more generational and global/
meta-level activities. As an example, Watanabe (2011) describes the concept of 
Shiki in the Japanese curriculum. Shiki stands for all mathematical expressions such 
as: 3  +  5 or x −  4 or □  ÷  3, as well as mathematical sentences, equalities and 
inequalities, such as: 3 + 5 = 8 or x – 4 = 7 or □ ÷ 3 = 7 or x + 5 > 2. Students are 
engaged in activities that enhance the ability to construct, interpret and compare 
mathematical expressions, with less focus on computational proficiency. According 
to the Japanese curriculum, ideas related to Shiki and the study of functional rela-
tionships are the two pillars of elementary school mathematics.

The distinction between arithmetic and algebra is not clear-cut or distinct, per-
haps not even possible to make in an obvious way. It may not be evident in a task 
itself whether or not a student will be engaged in arithmetic or algebraic thinking 
when working with it. The mathematician Keith Devlin has discussed at length the 
distinction between arithmetic and algebra on his blog,1 where he separates arithme-
tic, where you calculate, from algebra, where you reason logically. He writes:

•	 Arithmetic involves quantitative reasoning with numbers.
•	 Algebra involves qualitative reasoning about numbers.

Arithmetic involves working with numbers or quantities using clearly defined 
operations with certain properties. In basic arithmetic, the operations are addition, 
subtraction, multiplication and division. An arithmetic expression includes numbers 
and operations, whether or not these numbers are known. Reasoning about unknown 
or generalized numbers in expressions and equalities is labeled “generalized arith-
metic” and is included as one aspect of algebra (e.g. Blanton et al., 2015; Kieran, 
2004; Mason, 1996; Usiskin, 1988). The term “arithmetic expression” is also used 
in programming where it often includes unknown numbers, describing what is to 
happen when the input is a specific number in a pre-defined set. In this book, we use 
the term algebraic expression for an expression involving at least one variable, in 
contrast to a numerical expression, where only specific numbers are included.

In an attempt to define algebraic thinking in the early grades, Kieran describes it 
as involving “the development of ways of thinking within activities for which letter-
symbolic algebra can be used as a tool but which are not exclusive to algebra and 
which could be engaged in without using any letter-symbolic algebra at all” (Kieran, 
2004, p. 149). In recent years, studies of algebraic thinking in the early years have 
produced varying results concerning the introduction of letter-symbolic notation 
(Kieran et  al., 2016). A discussion has therefore evolved around when and how 
symbolic notation is to be introduced in classrooms (Radford, 2018). Against this 
background, the research focus of the project reported in this book is the point in 
school algebra when letter-symbolic algebra is explicitly introduced, not separated 
from, but preceded and accompanied by algebraic thinking.

1 https://profkeithdevlin.org/2011/11/20/what-is-algebra/ (retrieved 15 Dec. 2017).
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�The Use of Variables

Originally, the term variable was introduced by Leibnitz (1646–1716) to represent a 
varying quantity linked to the notion of function (Philipp, 1992). However, in cur-
ricular texts of today the term variable is used both on a meta level to mean the use 
of letters in algebra in general, and on a more specific level representing quantities 
that vary in a functional manner (Cai & Knuth, 2011). The use of variables is quite 
different within different conceptions of algebra. According to Usiskin (1988), it is 
only in the study of relationships that letters, i.e. alphanumerical symbols, are used 
to actually represent quantities that vary. In addition to this varying aspect, algebraic 
letters can also take on the roles of labels, constants, unknowns, generalized num-
bers, parameters and abstracts symbols (Bush & Karp, 2013).

Students’ understanding and use of algebraic letters have been the subject of 
research in numerous studies (e.g. Carraher & Schliemann, 2007; Kaput, Blanton, 
& Moreno, 2008; Küchemann, 1981; MacGregor & Stacey, 1997; Philipp, 1992). In 
a classic study using a written algebra test involving 51 items completed by 3000 
students aged 13–15, Küchemann (1978, 1981) found that students interpreted and 
used letters in algebra at six different levels that are progressively related. These 
were, in hierarchical order starting with the least sophisticated:

–– letters evaluated, i.e. interpreted as numerical values through trial and error
–– letters not used, i.e. interpreted as irrelevant
–– letters used as objects or labels
–– letters used as specific unknowns
–– letters used as generalized numbers
–– letters used as variables, i.e. interpreted with awareness of functional 

relationships

Different items invoked different meanings, and the students produced a high 
percentage of correct results on items where a less sophisticated interpretation of 
letters was sufficient. For example, an item interpreted as “letter evaluated” is the 
question “What can you say about a if a + 5 = 8”, where 92% of the students cor-
rectly responded that a = 3 (Küchemann, 1981, p. 105). The most difficult items 
required algebraic reasoning using letters as variables. For example, only 6% of the 
students responded correctly to the question “Which is larger, 2n or n + 2? Explain” 
(p. 111).

Many later studies have built on, or referred to, Küchemann’s categories, for 
example MacGregor and Stacey (1997) who investigated 2000 students of age 
11–12, before their first introduction to algebra in school. Although that study also 
drew on written answers, it differed from Küchemann’s study in the sense that the 
questions were posed in real-world contexts, like “Sue weighs 1 kg less than Chris. 
Chris weighs y kg. What can you write for Sue’s weight?” (MacGregor & Stacey, 
1997, p. 5). Students’ answers were categorized in relation to the interpretation of 
the letter, as inferred by the researchers. One student may have ignored the letter, 
another may have assigned it a specific numeric value. MacGregor and Stacy 
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identified six different interpretations, where the first five are problematic in a math-
ematical context and often produce incorrect answers. The answer “Sue’s weight is 
(y − 1) kg” was categorized as the most advanced interpretation of the letter as an 
unknown quantity. In contrast to what was the case in Küchemann’s study, these 
were interpretations made by different students dealing with the same item, rather 
than different items invoking different interpretations. Where Küchemann showed 
that an unsophisticated interpretation of an algebraic letter was sufficient and gave 
a correct answer on many items, MacGregor and Stacey only used items where such 
interpretations did not suffice. In a study by Rystedt, Kilhamn, and Helenius (2016) 
most of the previously identified interpretations emerged in a discussion among 
three 12-year-old students when they tried to understand an algebraic expression in 
an item similar to the one above from MacGregor and Stacey’s (1997) study. Their 
results imply that students will employ all resources they have available, mathemat-
ical and non-mathematical, to make sense of letters in algebra, and that many of the 
less sophisticated interpretations will be tried and discarded when they fail to make 
sense.

It is well known that students struggle with algebraic expressions and the mean-
ing of variables in expressions (Bush & Karp, 2013). In particular, students seem 
reluctant to accept a “lack of closure” (Collis, 1975), e.g. they are unwilling to 
accept an expression such as (y − 1) as representing a quantity and as being the 
answer to a question. Instead of dealing solely with expressions, it could be argued 
that expressions, and the variables in them, make better sense to students in the 
context of equations or functions. Since equations build on the important concept of 
equality, dealing with equations requires a structural understanding of the equal sign 
(Bush & Karp, 2013; Kieran, 1992, 1996, 2004). When the equal sign is read as 
“gives” or “yields”, students may understand it as a command to calculate. This 
might lead the student to accept sequences of operations like, e.g. 12 − 5 = 7 + 8 = 15, 
but reject an arithmetical decomposition of a number into an operation, such as 
7 = 12 − 5 (Herscovics & Linchevski, 1994, p. 65).

Another aspect of letters in equations concerns the ability to operate on them 
without evaluating them. Through a historical-epistemological analysis of thir-
teenth- to fifteenth-century pre-symbolic algebra textbooks, Gallardo (2001) 
describes what she calls a didactic cut between arithmetic and algebra. The cut 
describes a change; FROM working with an unknown on only one side of the equal 
sign when it is enough to “undo” the indicated operation (1.1); TO dealing with 
equations where the unknown appears on both sides and therefore has to be oper-
ated on (1.2), as shown below (ibid., p. 127).

(a, b and c are constants and x is a variable)

	 FROM : ; ; / ; / /ax b c a bx c d x a b x a b c± = ±( ) = = = 	 (1.1)

	 TO : ;ax b cx ax b cx d± = ± = ± 	 (1.2)

The same distinct cut was also found among 12–13-year-olds learning algebra 
(Gallardo, 2001). To separate these two types of equations, the terms arithmetic 
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equation (1.1) and algebraic equation (1.2) have been suggested by Filloy and 
Rojano (1989). From a student’s point of view, following Balacheff (2001), the shift 
from an arithmetical to an algebraic interpretation of equality corresponds to a 
needed shift of emphasis related to the validation of the problem solution: from a 
pragmatic control where the solution is validated arithmetically with reference to 
the initial context of the problem; to a theoretical control where the solution is vali-
dated with reference to mathematical principles (ibid., p. 256). In a classroom situ-
ation, this means that a student may learn to follow procedures for manipulating the 
operations of solving an equation. But as long as an arithmetically validated solu-
tion is more economical from the student’s point of view, the reasoning of the stu-
dent may stay within the arithmetical domain. Chapter 6 in this volume, analyzing 
Finnish classrooms, documents classroom situations where this supposedly is the 
case.

School algebra includes illuminating examples of both vertical and horizontal 
mathematization, as theoretically developed within the Dutch Wiskobas Project 
(Treffers, 1987). The representation of numbers by letters implies an increasing 
level of abstraction within mathematics itself (vertical mathematization). It encom-
passes the possibility to interpret a number as: “any number” (generality) or a num-
ber that may take different values (variability), without loss of the possibility to 
interpret it as a particular number (specificity) or a number that does not change 
(constancy), even if we do not know its value. The integration of the different inter-
pretations of algebraic letters is a considerable didactical challenge when teaching 
school algebra at the introductory level. A critical aspect of this challenge is to make 
the activities where letters are introduced into an algebraic activity. One way for-
ward is to deliberately support students in noticing regularities, articulating gener-
alizations, explaining and proving conjectures (Kieran et al., 2016) and to choose 
proper tools and representations for such activities.

�Tools and Representations

When solving mathematical problems choices need to be made with respect to con-
cepts, procedures and tools. It is common to speak of the problem as represented in 
one way or another, and to work within the affordances and limitations of a specific 
representation. The standard example is to be found in algebra, with the letter x 
representing, for example, an unknown quantity to be determined in a problem situ-
ation. There are also different modes of representing mathematical concepts and 
procedures. Lesh, Post, and Behr (1987) distinguish between experience-based situ-
ations, manipulative models, pictures or diagrams, spoken language and written 
symbols. When Vergnaud (1998) developed what he called A Comprehensive 
Theory of Representation for Mathematics Education, he emphasized the impor-
tance of language and symbols, but pointed out that mediation also occurs without 
spoken language. Teachers are mediators, Vergnaud argues, whose role is to provide 
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students with fruitful situations and help them develop their repertoire of 
representations.

When introducing and working with school algebra, a teacher will use a mixture 
of the available standard modes of representation, adding less formal representa-
tions as needed. Radford (2011) highlighted the fruitful interplay between different 
modes of representation such as speech, visualization, gestures and tactility. 
Studying young children as they engaged in patterning activities in primary school, 
he noticed how new relationships between embodiment, perception and symbol-use 
emerged. All the teachers in the project reported in this book made frequent use of 
different modes of representation alongside alphanumerical symbols. Specific 
examples of the use of embodied representations appear in several of the chapters in 
this book. For example, in Chap. 5, with data from a Norwegian classroom, the 
concept of variable is represented by walking, using different strides of different 
lengths. Chapter 4, reporting on Swedish material, includes data from a lesson when 
hands-on manipulations of boxes and beans are used to represent equations and 
equation solving (see also Chap. 8 for a more in-depth discussion of Radford’s 
approach to the role of representations and modalities in learning about patterns).

In addition to embodied representations and manipulatives, different types of 
symbolic representations and models of concepts and procedures play an important 
role from the point of view of algebra and higher mathematics. In addition to lan-
guage, and alphanumerical symbols, there is a wide range of pictorial models com-
monly used in school algebra. One such example is the balance model to represent 
the solving of linear equations (e.g. Da Rocha Falcão, 1995; Vlassis, 2002, cf. 
Chap. 6 in this volume for further discussion). Another example is the bar model 
method used in Singapore (Ng, 2004), where relations within and between rectan-
gular bars represent algebraic expression. Ng describes the model, as “a structure 
comprised of rectangles and numerical values that represent all the information and 
relationships presented in a given problem. The rectangles replace the unknown 
represented by letters in equations.” (Ng, 2004, p.  42). This model is said to be 
especially useful for the development of proportional reasoning. Through the model 
method, students with no knowledge of formal algebra are provided with a tool to 
construct pictorial equations. The assumption is that students, when given such 
means to visualize problems, will come to see their structural underpinnings. 
However, the conscious link from solving particular problems with manipulative 
and pictorial models to “the theoretical solving scheme of algebra” (Balacheff, 
2001, p. 250) must still be established.

Since the early digital days of the Logo Maths Project (Sutherland, 1987, 1993), 
there has been an impressive development of digital environments. Many of these 
still align with the theoretical assumption of the Logo project that students can learn 
mathematics through active construction of their own knowledge, facilitated by an 
iterative process of conjecture and feedback in a computer environment. However, 
when reanalyzing data from three such research projects, Sutherland found that 
students’ unassisted use of variables was strongly related to their first assisted use 
of the idea (Sutherland, 1993, p. 110), thus highlighting the role of the teacher also 
when digital interactive representations are used. In the footsteps of the development 
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of computers and the Internet, much work today is put into creating interactive envi-
ronments combining algebraic symbolic representations with pictorial geometric 
representations using a variety of dynamic tools (e.g.Hewitt, 2014; Hohenwarter & 
Jones, 2007). However, the incorporation of such environments in school practices 
is a slow process, and, as an illustration of this, there was no trace of dynamic digital 
tools used in any of the classrooms in the four countries represented in the 
VIDEOMAT project.

The idea of representing concepts and procedures, thus, must be seen as a very 
general one, allowing the use of a wide range of tools in teaching and learning math-
ematics. Representations involve a correspondence between a represented world 
(the domain of mathematical ideas) and a representing world (the domain of spoken 
or written language, or some sort of visible objects/entities). They also involve deci-
sions regarding what aspects of the represented world that are represented, and what 
aspects of the representing world that are utilized (Kaput, 1987). The noun “repre-
sentation”, however, also has a more restricted interpretation as something existing 
in the representing world, a structure that is the result of a process of representing. 
Mathematical representations very often have a two-way nature (Goldin & 
Shteingold, 2001) making it possible to exchange the interpretations. It does not 
necessarily matter if one of the two worlds lies outside formal mathematics—repre-
senting an outside world with mathematical concepts and procedures, or represent-
ing mathematical concepts and procedures with objects and actions belonging to the 
outside world. Both these perspectives are quite acceptable in an educational con-
text. In fact, they relate to abstractions as part of development in mathematics and 
applications of mathematics, respectively. Representations are thus central to both 
the internal structure of mathematics, and to the relationships between mathematics 
and the outside world. In the educational context both of these aspects are devel-
oped and used as support for each other, and the possibilities they offer, as well as 
the difficulties that may be involved, are essential features of school mathematics.

A particular problem, recurring in different areas of school mathematics, has to 
do with the order in which different representations are introduced and used to pro-
mote learning. When several approaches are available, the outcomes in terms of 
knowledge of representations and flexibility in translations between representations 
may be quite different (Even, 1998). In the case of school algebra, there exists a 
variety of approaches that are significantly different in terms of the emphasis they 
put on different representations and on the order in which they are to be used 
(Bednarz et al., 1996). Another aspect has to do with the quality and suitability of 
the representations that are used in school mathematics. In a classroom practice, 
efforts to make representations accessible to students may or may not preserve 
important features of the corresponding mathematical world, or may relate to other 
representations that the students have not yet met. This does not exclude the possi-
bility that it may be advantageous to develop different representations in parallel. In 
fact, to the extent that different parallel representations exist as part of formal math-
ematics, achieving flexibility in translation between them can be seen as a learning 
goal in itself.

1  School Algebra
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�School Algebra as Classroom Practice

In an educational context the learning of algebra is highly dependent on the interac-
tive processes in which the teacher(s) and the students take part, and more generally, 
on the kinds of established institutional practices that exist for teaching and learning 
mathematics in a particular classroom. This involves a number of conventions that 
have emerged over long time, and which are only partially determined by mathe-
matics itself or by curriculum materials such as the textbook (see Chaps. 2 and 3). 
Other determining factors are for example what conceptions of mathematics and 
mathematical concepts dominate among the students, the knowledge and curricu-
lum orientation of the teacher, and the school culture. Yackel and Cobb (1996) 
coined the term sociomathematical norms to describe the specific norms that are 
established within a particular mathematics classroom relating to the core ideas of 
mathematics. Such norms include what is considered a valid argument when draw-
ing conclusions and making claims. If, for instance, a student is asked to verify a 
solution, different types of arguments produced in support of a claim could be: (a) 
to reach the same answers as everyone else, (b) to get the teacher’s approval, (c) to 
show the specific situation using manipulatives, (d) to show it using a picture or a 
diagram, (e) to reason logically starting with clear assumptions, or (f) to construct 
an algebraic proof. The sociomathematical norms of a classroom may vary depend-
ing on the mathematical topic, the age of the students and on the beliefs about 
mathematics held by the teacher and the students. In Chap. 7, a detailed comparison 
between the teaching of two teachers is made, concluding that the teachers’ 
approaches to instruction reflect their different conceptions of what it means to learn 
and understand algebra.

In relation to teaching and learning of school algebra, classroom practices may 
be seen as a context for apprenticeship in how to handle conventional mathematical 
tools and representations. Mason (1996) highlights the teacher’s way of acting 
mathematically, when he describes the “cultural shift” that needs to happen in a 
classroom when students become “enculturated into mathematical thinking and 
expression just as naturally as they are into listening to and speaking their native 
tongue” (p. 66). What is meant by mathematical concepts and mathematical proce-
dures in a particular classroom is something that is shaped only gradually as that 
enculturation proceeds. Some of the classroom communication going on in a par-
ticular lesson may very well be described as involving “pseudo-mathematical” con-
cepts and procedures (without any derogatory connotations). Tools and 
representations, and especially the role of natural language to support the process of 
generalizing, are paramount (Kieran et al., 2016), and hence the approach to algebra 
chosen by a particular teacher may include communicative tools that are meant to 
evolve over time into a more rigorous set of mathematical/algebraic tools.

The empirical chapters of this book invite us into classrooms in four different 
countries. They illustrate both how teachers introduce students to basic algebraic 
ideas and modes of reasoning through a range of procedures and resources, and how 
students, using their previous experiences and insights into mathematics and 
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problem solving, engage with tasks that are intended to open up the field of algebra. 
As is evident from the above, there are many ways into algebra and many goals of 
learning that are central, all the way from understanding how to use concepts, con-
ventions and procedures in productive ways, to grasping how algebraic resources 
can be used for modeling the world and for understanding patterns and relationships 
of abstract or concrete entities. As a background to the empirical chapters, we would 
like to emphasize that what we are studying is the very beginning of a long journey 
where the students get the opportunity to taste, as it were, algebra. The teachers we 
have followed have made choices that they consider productive to instruct and guide 
the students, and our analytical point of departure is that they are rational within the 
curricular and other constraints they are operating under. In a similar vein, the stu-
dents are rational in the sense that they are trying to contribute and fulfill their 
obligations, even when they sometimes seem to lose focus and/or have difficulties 
understanding what they are supposed to do, or temporarily fail to realize what the 
goal of an activity is. The point of analyzing the difficulties that both parties occa-
sionally run into is not to suggest short-cuts, but rather to document and reflect on 
some of the obstacles and hurdles that appear during the first few lessons of algebra 
learning. Hopefully, insights into what these hurdles are will facilitate the under-
standing of how they may be overcome.

1  School Algebra
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Chapter 2
Researching Classrooms in Search 
of Learning: Theoretical 
and Methodological Considerations

Roger Säljö and Maria Luiza Cestari

�Introduction

Classrooms have existed some 5000 years. The particular communicative format in 
which one teacher lectures to and interacts with a group of pupils, thus, is one of the 
oldest and most established modes of institutional communication in society, per-
haps almost as old as the sermon. Today, classrooms are well established communi-
cative frameworks in most parts of the world, and a growing proportion of children 
spend an increasing number of years in such environments (Roser & Ortiz-Ospina, 
2017; UNESCO, 2015). The first schools appeared in the so-called city states of 
Mesopotamia in present-day Iraq (Kramer, 1981, p. 3ff.). The major motive behind 
the establishment of schools was the profound social transformation taking place in 
this part of the world through the emergence of the so-called city states. Here a more 
diverse economy developed, people were buying and selling goods, they lived in 
houses and they were dependent on roads, a defense of the city, a legal system and 
many other social arrangements that had not existed in previous, pre-urban life 
forms. For trade to function successfully, contracts had to be written and receipts 
issued. In this new environment, taxes had to be collected, which, in turn, presup-
poses records of people, their houses and other assets.

What we see is the emergence of “document societies” (Thomas, 1992), where 
social life was coordinated through the technology of writing. Literacy (and here we 
include early forms of numeracy and uses of other symbolic systems) was a new, 
and quite abstract, intellectual technology, and it had to be taught to young people 
in order to cover the needs of skilled labor in a society where trade and commerce 
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played a significant role. And this is where scribal schools with classrooms, teach-
ers, headmasters, academic subjects, breaks, homework, tests and many of the other 
elements that we still recognize as constitutive of schooling emerged (Lundgren & 
Säljö, 2017; Kramer, 1963, 1981).

This is not the place to expand on the history of schooling, but it is worth consid-
ering that the specific institutional arrangements that classrooms represent imply 
that we are in a communicative environment with particular entitlements and obli-
gations about who does what and when, and for what purposes. In the words of 
Edwards and Mercer (1989), there are “ground rules” about how to “do” schooling, 
and mastering those ground rules is an important prerequisite for being successful. 
Teaching and learning are predominantly linguistic activities; in class, children 
learn mostly through talking, reading (in a broad sense of this term, including atten-
tion to a broad range of representations) and writing about the world. This heavy 
reliance on language inevitably implies that some of the activities that are central to 
classroom life sometimes will appear abstract to children. But this, in one sense, is 
very much the point of schooling. Children should be exposed to knowledge and 
experiences that are different from what they encounter in everyday life. They are 
to familiarize themselves with what Vygotsky (1987) refers to as “scientific (or 
academic) concepts”, i.e. insights and knowledge that have been generated in soci-
ety, sometimes over centuries or even millennia, and that make up important parts 
of our cultural memory (Donald, 2018). Algebra is a very good example of this 
move from a world of “spontaneous concepts”, acquired through everyday interac-
tion, to academic concepts that are seldom developed spontaneously, but which 
presuppose systematic instruction and guidance in order to be mastered. We will 
come back to this.

There is also a range of specific assumptions and ground rules about how to 
behave and contribute to classroom activities: how to ask and respond to questions, 
how to solve various kinds of tasks, when to call for help and how to collaborate 
with fellow students. As we have already alluded to in the review in Chap. 1, there 
are also specific norms regarding what qualifies as an answer to a question as illus-
trated in our empirical material by students’ unwillingness to consider an expres-
sion such as (y − 1) as an adequate answer to a question posed. Children also have 
to learn how to sit and follow activities that go on for a long time, which may be a 
challenge for many. Most likely, many of the problems that are referred to as learn-
ing difficulties in modern society have their origin in difficulties of living up to such 
institutional norms. Thus, the role expectations that apply to being a “pupil” or a 
“student” are different from those that apply to being a “child”, and, in some sense, 
it is easier to be a child than a pupil. Of course, the role expectations of what it 
implies to be a student will differ in different pedagogical traditions and arrange-
ments and between schools and classrooms across the world, but they will always 
be there.
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�Researching Classrooms

The amount of research on classroom activities, teaching and learning, and interac-
tional practices is, as may be expected, enormous, especially during the last three 
decades. Methodologically this research is very diverse, and most of the methods 
available in the social science tool kit have been used to document and analyze what 
goes on in such settings: from ethnographies and micro-sociological studies of the 
activities of single children in classrooms, to large-scale comparative research 
building on surveys and/or observations using various kinds of classification sys-
tems and, in recent decades, even video recordings of naturally occurring interac-
tion. In some research, the focus is on teaching and teacher practices, sometimes 
student activities constitute the research object, and some research attempts to con-
nect these objects of inquiry by analyzing how teaching styles or teacher practices 
may be related to learning outcomes, student motivation or other relevant outcome 
measures.

The foci of research interests also vary. Some research follows a classical social 
science approach by observing, analyzing and explaining patterns of success and 
failure, while other studies, especially in recent decades, are interventions or action 
research where specific ideas and arrangements are implemented and analyzed. The 
latter kind of research has grown in importance since teachers came to be more 
actively involved in research in the late twentieth century (cf. e.g. Hopkins, 2014), 
and since the interest in various kinds of design-based research emerged in the 
1990s (Brown, 1992).

A classroom, in many respects, may be seen as a microcosm of society. The rich-
ness in research approaches utilized and issues addressed testifies to this complexity 
and the number of perspectives that may be applied. The ethnographic approach to 
analyzing classroom activities has a long history that goes back at least to the so-
called Chicago school of sociology, which took an interest in life in urban societies 
and in the organization of social institutions in such complex surroundings (Waller, 
1932). Somewhat later representatives of this tradition, such as Becker, Geer, and 
Hughes (1968) studying teaching and learning at college level, showed how stu-
dents adapt to college life and to the expectations they perceive. Through their expe-
riences of classroom practices and tests, they learn what it means to be a student and 
to learn in this context. Thus, teaching and learning are not given entities, nor are 
they defined by the official curricular documents or course presentations. Rather, 
the approaches that students develop to learning are—to paraphrase the authors—
responses to how the educational institutions “do business.”

One of the most famous, and most discussed, ethnographies of education in his-
tory is Philip Jackson’s Life in Classrooms (1968). Following the logic of an ethno-
graphic approach, Jackson attempted to describe and understand classroom activities 
in their own right without accepting the institutional definitions of teaching and 
learning as premises for the analyses. Jackson focused on how teachers developed 
skills in “crowd control” as they sought to manage the classroom and “as many as 
1000 interpersonal exchanges” during a school day. He also showed how students 
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learned one of the most important skills in this particular social setting: how to wait 
patiently. They waited for their turn, for assignments to be handed out, for teacher 
attention, for the lesson to be over and so on. Jackson, allegedly, was the first to coin 
the term “the hidden curriculum” (p. 33), a concept that was to have a considerable 
influence on research and on the public discussion of schooling. The concept of a 
hidden curriculum refers not to the official curriculum or the academic subjects 
students struggle with, but, rather, it points to the wider socialization that takes 
place as students encounter and adapt to the values, norms and expectations of 
classrooms and schooling. These values and expectations thus are not taught explic-
itly, but rather transmitted as an invisible element of classroom practices. Through 
participation, students learn subtle skills about how to interact with others and how 
to comply with (or, sometimes, oppose) the tacit institutional expectations. They 
also learn about themselves, their performance and how it is perceived by teachers 
and by the institution.

The idea of the hidden curriculum is a good example of how a particular concept 
may contribute to revising our understanding of a seemingly well-known and highly 
recognizable activity. An intense discussion and a large number of studies was car-
ried out to further inquire into the nature of such implicit socialization patterns and 
their implications for what students learn and how successful they are at school (cf. 
e.g. Giroux & Purpel, 1983; Kentli, 2009; Snyder, 1971). Several authors also 
argued that such implicit socialization serves as important mechanisms for repro-
ducing social privileges and the class structure of a society (cf. Giroux, 2001; Willis, 
1977). Thus, what happens in interactions at the micro-level reflects institutional 
and societal priorities and constraints.

The motives for engaging in classroom ethnography, as we have done in the 
project reported here, is to achieve “thick descriptions” (Geertz, 1973) of classroom 
life and culture, of the routines and daily practices that participants engage in 
(Hammersley, 1990). A contextual understanding of how such settings are orga-
nized, and an in-depth exploration of the nature of the implicit and explicit rules 
that regulate the activities, are central to such approaches, as is the attention to the 
perspectives of the participants themselves (Watson-Gegeo, 1999). Beyond these 
general features of ethnographies, the theoretical orientations of scholars are far 
from uniform and represent as diverse traditions as symbolic interactionism, marx-
ist/neomarxist perspectives, sociocultural approaches, conversation analysis and 
several others. Many of these studies have also been influenced by the “ethnogra-
phy of communication” tradition that followed the pioneering work in sociolinguis-
tics on language norms and language use by Dell Hymes and others (Gumperz & 
Hymes, 1972).

A rather different tradition of classroom research emerged in the 1950s and 
1960s. Here the idea was one of attempting to classify interactional patterns in 
classrooms in order to search for regularities and to discern the modes of communi-
cation that resulted in effective learning. These traditions relied on classification 
schemes, where communicative “moves” such as questioning, responding, explain-
ing and so on characterizing teacher and student behaviors, were used (cf., e. g., 
Bellack, 1969; Flanders, 1964). A firm conclusion from this line of research, later 
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confirmed in studies across the world (Lundgren, 1972), is the systematic domi-
nance by teachers of classroom communication. The so-called “rule of two-thirds” 
applies at several levels (Bellack, Kliebard, Hyman, & Smith, 1966; Flanders, 1970; 
Westbury & Bellack, 1971). In classrooms, talk takes up two-thirds of the time. Of 
this time, the teacher talks two-thirds of the time, and two-thirds of this talk, in turn, 
is used for presenting information, giving instructions, asking questions and for 
controlling student attention. This mode of communicating is typical of the one-to-
many format of classroom communication, and the possibilities for individual stu-
dents to actively participate and contribute are generally small and, furthermore, 
unevenly distributed. In a video-based, longitudinal study in science (physics) 
teaching by Sahlström and Lindblad (1998), for instance, it was shown that the 
uneven distribution of participation in the shared discourse in the science class-
rooms observed implied that some students contributed very little to the public 
activities. These research findings clearly illustrate that we are dealing with institu-
tional traditions for communication, which, in many respects, are special to 
schooling.

But it is not only these quantitative patterns that testify to the existence of a spe-
cific institutional tradition of communicating. Also, the manner in which communi-
cation proceeds reflects institutional traditions. The research shows that 
predominantly teachers ask questions that they know the answers to themselves. 
The pedagogical roles represent a pattern where “[t]he teacher explains content and 
asks questions, the student answers and the teacher reacts” (Lundgren, 1977, 
p. 149). This dominance in traditional teaching of the so-called I-R-E (Initiative-
Response-Evaluation) or I-R-F (Feedback) structure has been documented and 
explored in research using different analytical and theoretical approaches (cf. 
Cazden, 1988; Sinclair & Coulthard, 1975). Perhaps the most profound study of this 
specific mode of interaction is Hugh Mehan’s (1979) Learning lessons. Mehan fol-
lowed an ethnomethodological and conversational analytic approach to classroom 
interaction inspired by the work of Harvey Sacks (Sacks & Jefferson, 1995) and 
Harold Garfinkel (1967). The point of ethnomethodology is to understand the 
“methods” that participants use as they engage in social activities and as they pro-
duce social order. Consequently, these traditions emphasize detailed description of 
social practices in order to access the methods people use to contribute to and repro-
duce such practices. Mehan’s study was thus an explicit reaction against what he 
held to be theoretically and methodologically vague ethnographies and research that 
utilized complex, but highly ambiguous and a-theoretical, classification schemes of 
communication of the kind mentioned above. In his analyses, Mehan gives a detailed 
presentation and analysis of the regulative function of such interactive IRE-patterns 
and how the orderliness of classrooms is maintained through the predominance of 
this pattern of communication. Inspired by this methodological approach, several 
scholars have continued to explore the nature and consequences of this type of com-
municative patterns for student learning and participation (cf. e. g. Cestari, 1998; 
Clarke, Howley, Resnick, & Penstein Rosé, 2016; Wells & Mejia Arauz, 2006).

There is thus a rich repertoire of theoretical perspectives and methodological 
procedures that has been applied for studying classrooms. And there is also 
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considerable knowledge about central features of the communicative practices that 
characterize education both in more traditional teacher-led instruction and in more 
student-centered settings (Edwards & Mercer, 1989). However, there is one techni-
cal development that has had a significant impact on research on learning and 
instruction in recent decades, both in a methodological and theoretical sense, and 
this is the emerging use of video documentation.

�Video in Classroom Research: Analytical Challenges 
and Potentials

Since the 1950s, recording technologies have developed rapidly. New technologies 
of audio and video recording have been invented, and these technologies have 
become increasingly user-friendly, portable and cheap. These developments have 
had implications for research in the human and social sciences, and many scholars 
in a range of disciplines have begun to make use of such methods of documentation. 
Hand-held video cameras can now be used for documenting social practices at 
work-places, in science laboratories, and in fieldwork in classrooms and other set-
tings, and the recordings may be carried out in fairly unobtrusive manners. In a rela-
tively short time, large amounts of data that document not just verbal interaction but 
also gestures, posture and bodily movements and other features of situations may be 
collected (see Goodwin & LeBaron, 2011; Heath, Hindmarsh, & Luff, 2010). In 
order to cope with such large data sets, there is also an intense development of soft-
ware that may be used to organize materials and facilitate analysis.

These developments have had a significant impact in the learning sciences and 
neighboring fields, and they have also triggered methodological and theoretical 
debates and advances (see Goldman, Pea, Barron, & Derry, 2007). It is now pos-
sible to follow learning (or any other) practices in detail, and to discern elements 
of collective and individual action. Empirical observations of naturally occurring 
talk and interaction may be inspected repeatedly, even frame by frame if relevant, 
and it is also possible for researchers to work collectively when analyzing materi-
als. So-called data sessions have become a frequent practice in research units and 
at conferences. Such sessions in themselves also constitute productive sites for 
learning among young scholars engaged in developing a theoretically relevant ana-
lytical gaze.

Video data are often relatively easy to collect, at least in the technical sense, but 
call for theoretical and methodological awareness when analyzed. The researcher 
has to be aware of the “unit of analysis” (Säljö, 2009) that is relevant when studying 
teaching and learning in a specific theoretical perspective. Cognitive phenomena 
generally are not visible, one cannot see learning, conceptual change or develop-
ment happening. Such central features of human life remain covert. We have to 
work with indicators—performance on a test, contributions to a problem-solving 
situation or the use of a specific form of argumentation in a discussion—and frame 
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these observations in theoretical terms where the significance of the observations as 
signs of learning may be clarified and argued for. For research on situated practices, 
and the interaction and learning that take place, video data play an increasingly 
important role. Of course, video documentation may also be complemented with 
other types of data such as interviews, written tests or observations depending on 
the nature of the research questions.

A rich array of methodological approaches has emerged to cope with the analyti-
cal challenges presented by video documentation. Many, if not most, of these 
approaches imply some form of discourse or interaction analysis (Jordan & 
Henderson, 1995), where the focus is on how people interact and engage in meaning-
making in joint practices. But the theoretical perspectives in which discourse analy-
ses are carried out differ widely. The units of analysis in conversation analysis (CA) 
and ethnomethodology are different from those that characterize cognitive, prag-
matic, dialogical, social-semiotic or sociocultural traditions, to mention just a few 
contrasts. Of course, this theoretical variation in approaches to analysis is to be 
expected, since the different traditions build on different theoretical premises, and, 
consequently, the video data will be explored from these conceptual frameworks. 
Perhaps a common feature of much video research, though, is an interest in articu-
lating participant perspectives, i.e. analyzing how participants contribute to social 
interaction as members of a community or when involved in some kind of joint 
activity.

In research on learning and instruction in mathematics, video analyses have been 
used successfully in a broad variety of settings, all the way from case studies of 
individual learners, via explorations of small group learning and classroom prac-
tices up to international comparisons of instructional traditions of societies. Perhaps 
the most well-known example of the latter type of studies is the work carried out 
within the TIMSS1 video studies where mathematics instruction and learning across 
countries have been analyzed (Stevenson & Stigler, 1992; Stigler, Gonzales, 
Kawanaka, Knoll, & Serrano, 1999). In these comparative analyses, several inter-
esting differences in organizing classroom activities have been observed. For 
instance, Stigler and Hiebert (1999) showed how the expectations regarding how to 
organize mathematics teaching differ between societies. In the US, and in many 
other countries, the expectation is that there is a teaching cycle where the teachers 
introduce concepts and procedures and show how to solve a particular class of prob-
lems. The role of the student, then, is to work on the problems assigned in order to 
master this particular type of mathematical procedure. In Japan, on the other hand, 
it is not unusual that “teachers give students problems to work on that they have not 
seen before”, and they do this under the assumption that “it is good for students to 
struggle with something they have not been taught” since this will “develop their 
thinking skills” (Stigler, Gallimore, & Hiebert, 2000, p. 88). In a US context, how-
ever, such an initiative by teachers may be seen as a violation of a rather fundamen-
tal pillar of the established “didactic contract” (Brosseau, 1997) and the tacit 
taken-for-granted assumption that students should not encounter problems they 

1 TIMSS: Trends in International Mathematics and Science Study.
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have not been explicitly taught. The TIMSS video studies corpus has been used in a 
range of further analyses (cf. edited volume by Kaiser, Luna, & Huntley, 1999) 
scrutinizing differences between countries in terms of instructional practices, text-
book design, curricula and other features of mathematics instruction. At the meth-
odological level, the findings illustrate the power of video analyses when it comes 
to understanding cultural and institutional patterns of activity. Mathematics as a 
school subject may have considerable commonalities between countries, and the 
classrooms may also look alike in many respects, but the teaching practices reflect 
assumptions about learning, classrooms and children that differ. An important cor-
ollary of this observation is that instructional practices do not follow directly from 
the subject matter as such. Rather, they are mediated through cultural and institu-
tional assumptions regarding how to teach, the role expectations on teachers and 
students and other factors that may well be invisible to the participants themselves. 
This analytical premise has guided the work that will be reported in this volume.

There have been several other analyses of classroom practices and learning pat-
terns specifically in mathematics education. One of the most ambitious and interest-
ing ones is the Learner’s Perspective Study (LPS) comparing mathematics 
instruction in eighth grade in 12 countries and conducted by researchers from the 
respective countries (cf. e.g. Clarke, Keitel, & Shimizu, 2006; Shimizu, Kaur, 
Huang, & Clarke, 2010; Kaur, Anthony, Ohtani, & Clarke, 2013). The overall aim 
of the LPS project has been to pursue “a practice-oriented approach” to mathemat-
ics teaching and learning “which situates mathematical activity in relation to the 
social settings with which the project is fundamentally concerned”, and, therefore, 
“it allows us to interrogate those settings with respect to the practices they afford 
and constrain” (Clarke et al., 2006, p. 3). LPS has used a range of methods such as 
video documentation, interviews with teachers and students, data on performance 
and questionnaires. And, as we have done in the project to be reported here, 
sequences of lessons have been recorded. A feature of the LPS project is also that it 
involves “insiders” in the analytical practices in the sense that researchers with an 
in-depth understanding of the sociocultural traditions of a country and its educa-
tional system are involved as analysts. But, in addition, the students are also consid-
ered as insiders in these practices that they know well, and the documentation of 
student activities is much more in-depth than in the TIMSS studies. This was 
achieved by using a student camera that followed focus students throughout their 
work (in TIMSS only one camera was used to document activities). This arrange-
ment illustrates how a methodological approach is important in giving voice to a 
group—the students—who also tend to be very diverse in their orientations, an 
observation which is confirmed by the data of the VIDEOMAT project.

Again, the impression in these extensive studies of classroom practices, teacher 
and student contributions, textbooks, normative assumptions, tasks presented and 
other features of mathematics instruction is the obvious diversity in conditions for 
teaching and learning. In some settings, the mathematics classrooms are heavily 
dominated by teacher control of the agenda and progress of instruction (Mook, 
2006), while in other settings students are given greater room and responsibility for 
implementing tasks, receiving less explicit guidance about mathematical content 
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(Emanuelsson & Sahlström, 2008). However, and as is emphasized in much of the 
reporting from LPS, this must not be read in a simplistic manner as one approach 
being better or more efficient than the other. Both students and teachers are accus-
tomed to certain practices, and their criteria for engaging in work reflect their expec-
tations and previous experiences. Also, as in Mook (2006) and Hoon, Kaur, and 
Kiam (2006), teacher dominance can still incorporate attention to the needs of indi-
vidual students. Thus, “teacher dominance need not be equated with student pas-
siveness” (Hoon et al., 2006, p. 163). In the study by Emanuelsson and Sahlström 
(2008), it is shown how active participation in classroom dialog by students to some 
extent is achieved at a cost: the mathematics content tends to disappear in the inter-
action or be at the periphery of the argumentation. In this sense, there is “a price of 
participation” as the researchers put it in the title of their article. And, as yet another 
example of the embeddedness of teaching practices in traditions and taken-for-
granteds, a study of instruction in a German setting within the LPS project (Begehr, 
2006, p. 180) concludes that “teachers “outtalk” the students, seemingly without 
being conscious of the fact.” The “verbal guidelines set by the teacher impeded 
students in their efforts to come to grips with the mathematical content”, “since the 
learners only expressed themselves in disjointed fragments” that had little, if any-
thing, to do with the ability to understand mathematical reasoning. And the conclu-
sion by the author is that teachers of “mathematics classes must evidently learn to 
‘let go’, that is, not to guide their students along a narrow, predefined path, but to 
grant them the space, including the verbal space, to develop and express their own 
thoughts.” Thus, the difficulties in learning mathematics observed in student-
centered learning cultures of Emanuelsson and Sahlström (2008) seem to show 
similarities, at least at a general level, with those observed in instructional traditions 
that are characterized by teachers “outtalking” their students when lecturing.

In our opinion, these observations of the complexities of understanding teaching 
and learning pointed to by the LPS project are extremely interesting. For the devel-
opment of instructional practices, it is pointless, perhaps even dangerous, to argue 
for more teacher centeredness or more student centeredness, as if these were oppos-
ing poles. The more interesting agenda to pursue in research is to look at comple-
mentarities between the parties involved in what they do and try to achieve during 
mathematics instruction. It is also important to realize that the fact that the instruc-
tional patterns and normative assumptions differ between countries is not surprising 
given how different countries are in other respects. The road ahead clearly is not 
attempting to achieve uniformity but rather to systematically develop instructional 
practices in ways recognized as relevant by teachers, students, the curriculum and 
the wider public.
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Chapter 3
The VIDEOMAT Project: Theoretical 
Considerations and Methodological 
Procedures

Roger Säljö

�Introduction

As we have already pointed out, the ambition of the research reported here has been 
to shed light on how students encounter introductory algebra in the classroom, and 
how they understand and begin to appropriate mathematical tools and modes of rea-
soning. Algebra is a distinctive activity that we learn in school. There are very few, if 
any, contexts outside classrooms where children develop these kinds of skills, at least 
in a systematic sense. It has also been well documented in the literature, as we have 
alluded to in the previous two chapters, that algebra is a hurdle for many students who 
never seem to grasp the potentials of algebraic modes of thinking and reasoning.

Thus, the basic idea of the project has been to analyze lessons and lesson activi-
ties where students are first introduced to algebra. The approach we chose was 
empirical in the sense that we contacted teachers and asked if we could record the 
first lessons of school algebra, more precisely the lessons when they first introduce 
variables in algebra. The teachers, after having decided to be a part of the project, 
were asked to contact the research teams when they planned to start algebra teaching 
so that we could document the first lessons. This implies that our documentation of 
lessons represents the first phases of school algebra teaching and learning as the 
teachers in the participating schools interpret this curricular unit. There is a number 
of ways in which one could understand the first introduction to algebra (cf. Chap. 1). 
For instance, there are various kinds of pre-algebra curricular units where students 
are asked to fill in missing numbers (2 + _ = 5) and to engage in solving other tasks 
that may be seen as preparatory for algebra. In textbooks in some of the countries 
involved in this study, such tasks are included as a part of pre-algebra activities 
(Reinhardtsen, 2012). It is, of course, also a challenging philosophical question to 
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establish exactly when a pedagogical activity may be seen as an introduction to 
algebra learning. However, in the project we intentionally took a pragmatic approach 
and decided to let the teachers define when they saw themselves starting with alge-
bra teaching. Some additional information on the specific procedures of how teach-
ers were contacted and enrolled will be given in the empirical chapters from the 
respective countries.

The empirical materials consist of four consecutive introductory lessons in each 
country. Four or five classes/teachers in each country were included. This implies 
that the empirical materials consist of at least 16 recorded lessons from each coun-
try, 69 lessons in all. In the analysis of data presented in this volume, we focus on 
specific aspects of algebra teaching and learning, activities such as using letters, 
formulating and using mathematical expressions and solving equations. In addition 
to this material, we recorded a fifth lesson in each classroom in all countries. In this 
lesson, the students engaged in group work. The idea behind including this fifth les-
son was that we wanted to make sure that the project would include data where the 
students were active and engaged in tasks where their understanding of early forms 
of algebraic reasoning would surface. In this fifth lesson, the students in all the 
classes worked with three selected problems that are interesting from the point of 
view of learning algebra. One of the tasks in this lesson—a pattern task taken from 
an international comparative study—turned out to be particularly rich when it comes 
to understanding student meaning-making and the problems they struggled with. 
The problem-solving activities generated by this task in the four countries will be 
analyzed in Chap. 7. This implies that the total classroom material involves record-
ings of 80 lessons, and this is a very extensive corpus of recordings. In addition, 
there are recorded interviews with teachers and students, which makes the recorded 
material even more extensive.

�Recording Lessons

For the recordings we used three different cameras documenting different types of 
activities. One camera recorded the whole classroom from a set position, one fol-
lowed the teacher to capture whole class instruction as well as teacher-student inter-
action with groups or individuals. The third camera followed a student 
group—referred to as a focus group—capturing the peer-to-peer interaction when 
the students worked individually or with group assignments handed out by the 
teacher (see Fig. 3.1). The extent to which teachers mixed lecturing styles of teach-
ing with group (and individual) work varied in the different classrooms, as would be 
expected. The fifth lesson, however, was specifically set up to document student 
activities in groups, designating two of the cameras as focus group cameras and one 
as a teacher camera, with a few local deviations from the general camera set-up. 
Additional information regarding the specifics of the recordings will be given in the 
introduction of each of the empirical chapters.
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�Research Ethics

When contacts with teachers and schools had been established and their collabora-
tion secured, the project and its basic interests were introduced to the schools and to 
the parties concerned: headmasters, fellow teachers, parents and students. In all four 
countries, ethical clearance of the project activities took place. The details of these 
procedures differ somewhat between countries but the general principles are simi-
lar, for instance informed consent by parents had to be secured. The research ethics 
has been evaluated by local ethics committees in the four countries.

In the contacts with the teachers, we emphasized that the purpose was not to 
evaluate the teaching. Our interest was in a comparison of how algebra is introduced 
in different countries. Names of schools or participants would not be mentioned, 
and only the researchers in the teams would be given access to the data. We have 
used fictive names for participants and the images and photos have been stylized 
through the use of software.

Fig. 3.1  Camera set-up for data collection (picture: Thomas Hillman)
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�A Note on Theory: Learning Through Interaction

In Chap. 1, we presented a review of some of the literature on algebra teaching and 
learning. Research in this field represents a variety of research approaches in terms 
of the theoretical orientations and methodological procedures. In the present proj-
ect, and as we pointed out above, the empirical material is extensive and the analy-
ses require an explicit theoretical framework. The analyses are data driven and focus 
on meaning-making and interaction in a sociocultural and dialogical perspective 
(Bakhtin, 1986; Vygotsky, 1978, 1987). This implies that the focus is on the situated 
activities that participants engage in; their verbal interaction, gestures (for instance, 
hand-raising, and other bodily contributions such as pointing and writing in books 
or on the whiteboard), and the use of artifacts present in the situation (matchsticks, 
paper and pencil, etc.). In other words, we treat cognition as embodied and as 
“stretched out” (Lave, 1988) between participants, and between participants and the 
artifacts that serve as resources for meaning-making.

In sociocultural perspectives, learning is understood in terms of the appropria-
tion of cultural tools (Wertsch, 2002; Wertsch & Addison Stone, 1985). Appropriation, 
which is a concept taken from Bakhtin (1981), implies that a person encounters a 
concept or a symbol and begins to use it as a tool for thinking and reasoning. Even 
a cursory glance at our videos documenting early algebra teaching and learning 
testifies to an environment that is rich in thinking tools that may be appropriated: 
concepts (variable, unknown number) and symbols (letters representing numbers or 
variables, the equal sign) as well as procedures (how to solve simple equations or 
recognize patterns). Furthermore, the tools appear both in talk and in written form, 
and there are also images, drawings and artifacts that play a vital role in the meaning-
making. Several of these tools and procedures appear unknown to the children, 
while some of them—for instance the idea that x may be used as a representation of 
a number—the children, or at least some of them, report having encountered 
previously.

Appropriation is a gradual process that generally presupposes exposure to, and 
use of, a concept or a cultural tool over a number of situations where the tool is put 
to use in different contexts and for various purposes. Such prolonged and varied 
exposure, most likely, would be the rule for successful appropriation in this particu-
lar setting where the tools are quite dense. To appropriate something—i.e. to 
“absorb” it and make it “one’s own”, to borrow Bakhtin’s (1981) expressions—is an 
activity that requires conscious effort by the individual, it is not a passive or abstract 
process of conceptual change. The process of appropriation also has no end, cultural 
tools are never completely mastered as Wertsch (1998) points out. There is always 
space for re-specification and novel modes of using them.

A central assumption of this Vygotskian-Bakhtinian framework for understand-
ing learning is that we often use cultural tools before we fully understand them (cf. 
Daniels, 2008, pp. 66–67, for a discussion). In this sense, we may say more than we 
know when we put a particular cultural tool to use, as Wertsch and Kazak (2011) 
show. In the algebra lessons, this perspective is important to keep in mind. Students 
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are engaging in problem-solving activities where they are operating at the boundary 
of their competences, and where they are expected to use cultural tools that they are 
not completely familiar with. But it is precisely through participation in such prac-
tices that they eventually may make the specific mathematical tools “their own.”

This view of learning, in turn, builds on Vygotsky’s concept of semiotic media-
tion and processes he referred to as externalization and internalization (1978, 
pp. 54–57). In this perspective, learning takes place through social interaction where 
individuals adapt to and mentally reconstruct tools and operations that they encoun-
ter in joint activities. Thus, in socially shared activities individuals will be exposed 
to concepts and categories that are transformed into tools that the individual later 
will use when thinking. This is part of the famous Vygotskian (1981) “genetic law 
of cultural development” where cultural tools appear on “two planes”, first between 
people in social interaction (inter-psychological tools), and then within people as 
tools for thinking (intra-psychological categories). Language is the most significant 
means of mediation; we mediate the world for each other through the categories that 
we use in social interaction. But mediation also takes place through many other 
resources such as texts and artifacts of various kinds. Materiality, thus, is an impor-
tant aspect of mediation. Artifacts “are simultaneously ideal (conceptual) and mate-
rial” as Cole (1996, p.  117) puts it, and using artifacts is a way of coming into 
contact with and utilizing concepts for solving problems (Säljö, 2019).

In the dialogical version of sociocultural theory inspired by Bakhtin, the empha-
sis is on how people in communicative practices share knowledge and experiences 
through joint activity. In this epistemology, and in this approach to studying learn-
ing and development, situated communicative practices make up the most signifi-
cant setting in which knowledge is displayed, produced, understood and recycled. 
As Linell (1998, p. 277) puts it, dialogism “construe[s] practices and interactions as 
primary entities, and seeks to explicate how language, traditions, routines, roles, 
knowledge, theories etc. are embodied as aspects pertaining to the continuity of 
praxis”, and, we might add, to innovation and learning. Thus, learning is an emer-
gent phenomenon which may be studied by focusing on how participants in interac-
tion make concepts, ideas and other features of life understandable and learnable for 
others.

A corollary of this Vygotskian-Bakhtinian position, thus, is that we do not con-
sider the individual as the privileged unit of analysis for understanding learning. Of 
course, whether individuals learn early algebra or not, is a primary knowledge inter-
est of the work presented here. However, the focus on interactional practices seeks 
to explore the opportunities for learning that children are offered, and that they are 
able to make use of. The ability to contribute to classroom practices, to ask ques-
tions and to offer solutions, tentative as they may be, in themselves represent knowl-
edge that paves the way for appropriation of concepts and procedures. Thus, our 
prime interest is in the processes that make up the contexts for learning early alge-
bra, and to see what students encounter, and how far they get toward realizing some 
of the potentials of algebra.

Instruction in the context of schooling is, as has been mentioned, an institutional 
activity with specific obligations and entitlements for those who participate. 
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Lessons, the prototypical form in which instruction is organized around the world, 
may be thought of as a continuous reproduction of this institution and its roles. 
Thus, and as we have pointed out, students have to know both how to learn and what 
to learn. The reflexive elements of learning in institutional settings may be under-
stood in terms of the “double dialogicality” (Linell, 1998, p. 132 et passim) that 
pertains to communication in such settings. Thus, the communication, and the con-
tributions by the participants, must be relevant to the local setting in which the 
interaction takes place, and they must be understood in this specific context. The 
students, for instance, have to have some understanding of what are relevant man-
ners of making meaning in this particular setting when encountering artifacts 
(matchsticks to count or figures to interpret) and letters (x) and mathematical expres-
sions (y − 3). And the teachers have to realize in situ the problems that students may 
have in this respect and provide assistance so that they can continue their work. At 
this level, meaning-making is situated and local, subject to a range of factors that 
evolve in the specific context.

However, meaning-making in this context also takes place in the framework of a 
set of established communicative routines and practices that are anchored in a wider 
cultural understanding of what a classroom is, what it implies to be a teacher or a 
student and what it means to learn. There are, to use Linell’s (1998) terminology, 
situation transcending elements of these instructional projects which suggest ways 
of talking and behaving that make these situations into what we perceive as instruc-
tion or schooling. An interesting example of such situation transcending features of 
the classroom interaction that will be explored and commented on in some of the 
empirical sections concerns the nature of the sociomathematical norms (Yackel & 
Cobb, 1996) that are established and adhered to by the participants. Thus, to what 
extent are the classroom activities, and the meaning-making that goes on, conducive 
to learning specific mathematical modes of reasoning and arguing? To what extent 
do the students learn to argue from within mathematics and its conceptual frame-
works? These are questions that concern the culture of learning that is established 
and the extent to which it supports specific modes of meaning-making that eventu-
ally will be productive for doing mathematics. These are some of the questions 
addressed in the empirical analyses that follow in the chapters to come.

�The First Encounters with Algebra: A Guide to the Empirical 
Sections

As we have pointed out, the VIDEOMAT project has been an international collabo-
ration between research groups in four countries/settings. The planning of the activ-
ity of following and analyzing the first encounters with algebra in the different 
settings was done in collaboration between all groups and resulted in an application 
to the funding agency. In the preparatory phases, the project groups agreed on a 
common approach to the collection of data and the general design of the project. 
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The decision was to have parallel data sets from classrooms and, as we have already 
mentioned, the data consist of recordings of the initial lessons of algebra in the 
schools contacted in each country.

The analyses of this material have been done partially within each of the research 
teams, and partially in collaboration between the teams. The collaboration between 
the teams is rather interesting in its own right since it was carried out largely by 
means of videoconferencing in principle once a month during term time for the 
duration of the project. The groups were also able to meet physically on two occa-
sions during the project period, but most of the interaction took place through video 
link. During the videoconferences and the physical meetings, the various groups 
presented their work and their analyses, and together we took decisions on how to 
deal with the various practical, methodological and substantive problems that inevi-
tably occur in such a comparative undertaking. Among the issues that we discussed 
were: When does algebra teaching begin? Is pre-algebra algebra? We also had to 
consider the fact that algebra teaching starts at different grades in different school 
systems, and, in addition, children also start school at different ages, which, in turn, 
means that the ages at which they start studying algebra will be different. Also, the 
curricula and text books differ in various respects.

As we pointed out above, our solution to these, and other, problems was that we 
contacted teachers teaching at the middle-school level and asked them if they were 
willing to let us record their first lessons of algebra. This pragmatic approach implies 
that we did not engage in any philosophical debate about exactly what algebra is and 
when teaching of this particular area starts. Or, to be more accurate, we did discuss 
such issues at some length, but after consulting the literature and reviewing the cur-
ricula in the four countries (cf. Reinhardtsen, 2012), we decided rather quickly that 
it would not be possible to find one unequivocal definition that could guide how data 
should be generated. Instead, we turned to the teachers, and they defined when they 
would start with the topic of algebra in their class. However, in all countries there is 
a change in school systems at about this time, where teachers in the lower grades 
have a generalist training, teaching many school subjects to the same group of chil-
dren, and teachers in the higher grades have a specialist training as mathematics 
teachers, teaching mathematics to different groups of children. We decided there-
fore to approach teachers on both sides of this point of change. A consequence of 
this approach, and the differences between the settings in terms of when algebra 
teaching (as the teachers see it) begins, is that the data sets come from classrooms 
in different grades: grades 7 and 8  in Norway, and grades 6 and 7, in Finland, 
Sweden and the USA. In this context, it is interesting to observe that in spite of these 
differences, the outcome of this procedure is that the mathematical contents of the 
introductory lessons are fairly similar. The teachers introduce students to unknown 
numbers (and/or remind them that they had encountered such numbers, represented 
by an x, previously), they introduce a static interpretation of the equal sign and 
equations (through various pedagogical arrangements), and they show how simple 
linear equations can be solved. They also touch upon, although more or less clearly, 
the idea of what constitutes a mathematical expression. Thus, the mathematical sub-
stance, i.e. the “what” of instruction and learning, is fairly similar across the settings, 
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while the approaches to communicating early algebra show both similarities and 
differences, as will be evident below. In addition to the video documentation, we 
also generated other material such as interviews with teachers and students, lesson 
plans, work material that the students used during class, and we scrutinized the 
curricula.

All four teams had access to the video documentation (and other materials) from 
all classes. The languages of instruction are English, Norwegian and Swedish. Thus, 
in Finland the recordings were made in Swedish speaking classes in a Swedish 
speaking part of Finland. Swedish is a national language in Finland and there are 
textbooks and curricula in Swedish. The teachers have been trained in teacher train-
ing at a university where Swedish is the language of instruction. These decisions 
resulted in a situation where the teams from Finland, Norway and Sweden were able 
to read everything that was collected and understand all the recordings. For the 
benefit of the U.S. team, the first lesson from all countries was translated into 
English for the preliminary analyses. As the analyses proceeded, sections of the 
materials that were interesting from an analytical point of view were also translated 
for purposes of comparison.

�The Idea Behind This Volume

As the analysis of the empirical materials continued, the idea of putting together this 
volume emerged. Thus, the point of the book is to present significant illustrations of 
how students in contemporary Western societies with different school systems and, 
perhaps also different instructional cultures, are introduced to algebra. Given the 
design of our project, we cannot argue that the observations we report are typical of 
the various countries in a statistical sense, i.e. that our classrooms demonstrate how 
algebra is taught in the four settings. Indeed, the very idea that there are commonali-
ties within countries that do not overlap with differences between countries at the 
level of detail that we study meaning-making and conceptual understanding is not 
credible. However, as the work progressed it became clear that teaching and learn-
ing is organized differently in some respects; in the materials there seem to be 
slightly different instructional cultures where, for instance, the role expectations on 
teachers and students are slightly different. Thus, in the classrooms teachers and 
students “do” mathematics teaching and learning slightly differently. Again, we do 
not want to claim that these different patterns characterize the educational systems 
in the respective countries. But the variations we observed are interesting and reflect 
different traditions and assumptions that most likely exist within the countries as 
well.

In concrete terms, the preparation of this volume has been guided by an interest 
in singling out features that the four teams found characteristic of their own classes/
schools/teachers/students in the light of what they could see in the other materials 
from the other three countries. An initial overview analysis was done of all the 
teacher-planned lessons by coding each 30 s of each lesson using a coding system 
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of mutually exclusive coverage codes (described in more detail in Kilhamn & Röj-
Lindberg, 2013). The codes were then used to produce lesson graphs in which each 
lesson was summarized and visualized on one page. (See Chap. 5 for some exam-
ples of lesson graphs.) Observations of candidate features of differences in the orga-
nization of teaching and learning algebra were discussed during the videoconferences 
and physical meetings, and the groups then outlined to the other teams what they 
wanted to focus on in this volume. The result of these deliberations were that the 
teams would focus on slightly different themes, but still try to capture some of the 
elements of cultures of learning that seem familiar in the educational system they 
know very well. An important, and joint, premise of the analytical ambitions 
throughout the project has been to include and give recognition to the perspectives 
of the participants, i.e. the students and teachers who together produce the instruc-
tional activities that are consequential for learning. The focus is on how they work 
and what they are trying to accomplish during the lessons.

The joint decision was that the Swedish team would focus on issues of mathema-
tization and participation in classroom discourse during algebra teaching with a 
particular focus on what is referred to as the participation frameworks and the 
opportunities for learning algebra they afford (Chap. 4). In the Norwegian material, 
the design and use of instructional examples and illustrations by teachers used to 
help students realize what algebra is all about stood out as interesting from a more 
general point of view (Chap. 5). In the Finnish material, the focus is on the introduc-
tion of how to solve equations and to understand the principles of equality (Chap. 
6). In the material from California, case studies of the relationships between teach-
ers’ beliefs about what algebra (and mathematics more generally) is, and how it 
should be taught, and the instructional activities that follow from these beliefs are in 
focus (Chap. 7). In the final empirical chapter, there is a comparative analysis of 
how students during the fifth lesson solve the matchstick task mentioned above. 
Thus, in this chapter we tried to trace elements of the teaching that students had just 
been involved in in order to see to what extent it would be consequential for how 
they engage in a patterning task that invites algebraic reasoning. The materials used 
in this chapter come from all four countries (Chap. 8).

�Format of the Empirical Chapters and Transcription 
Conventions

The general approach of the project work, in terms of theory and empirical work, 
has been described above. The empirical chapters, however, refer to slightly differ-
ent issues, and for each of these issues there is a research literature that is relevant 
in the vast field of research that concerns itself with algebra learning. Therefore, the 
chapters contain a short introduction to research that situates the issues and the 
analyses in the international literature. Also, some information on when and how 
algebra is introduced in the curriculum is included. Furthermore, an analysis of the 
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differences between textbooks in the four countries has been carried out within the 
project and reported by Reinhardtsen (2012).

The presentation of data in the chapters through excerpts from the classrooms 
follows a pattern where all data are written in this specific typeface. Uses 
of this typeface thus consistently signal that the utterances are from the par-
ticipants. In some cases this typeface also indicates that the text is a descrip-
tion of what happens in the classroom during a specific sequence, for instance 
signaling non-verbal behavior, [teacher points at the drawing on the 
whiteboard], or that some passage is [inaudible]. In some cases, the typeface 
is used in a summary of what happens immediately before or after an excerpt. This 
will be evident as the excerpts will be read. In addition to spoken language, a num-
ber of mathematical symbols are used in the classrooms. In order to make use of 
authentic teacher and student writing we have stayed within the symbolic conven-
tions of each country. As a consequence, there are a few differences in notation in 
the different chapters. Most obvious is the symbol for multiplication, which is · in 
the Nordic countries and × in the US.

As for the transcriptions, we are well aware of the fact that transcribing per se is 
a theoretical enterprise, and that there are many alternatives when it comes to repre-
senting spoken language in writing. This insight, that transcription is a theoretical 
enterprise, was formulated in a distinctive way a long time ago by Ochs (1979) in a 
seminal text. Subsequently, we have seen a whole literature appearing about how to 
transcribe interactional practices in accordance with the expectations of various 
research traditions, such as ethnomethodology, conversation analysis and a range of 
ethnographic approaches.

Realizing that transcription implies abstraction and a partial representation of 
spoken interaction, and furthermore that the procedures adopted are relative to 
research interests as Linell (2011, p. 129ff) points out, we have chosen not to make 
very detailed transcriptions marking overlaps, prosody and other linguistic details. 
An additional issue here is that in three of the empirical materials, the excerpts are 
translations from Norwegian and Swedish, respectively. Rather, the transcriptions 
are at an intermediate level where it is possible for readers interested in learning and 
instruction in mathematics to follow the contents that the conversations and activi-
ties are about. Some significant elements of the interaction such as pausing and uses 
of non-verbal communication, for instance, using fingers when counting, pointing 
at the blackboard or to representations in textbooks, etc., are indicated. In the activi-
ties we study, symbolic and material artifacts, such as drawings on blackboards, 
objects to count, etc., play an important role, and such elements of the communica-
tion are represented both in pictures and by comments/explanations inserted in the 
transcripts. At a general level, our data testify to the fact that teaching and learning 
mathematics are very much multimodal activities. References to physical objects, 
images, formulas and pieces of texts are constitutive elements of the meaning-
making in almost all the conversations we have documented.
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Chapter 4
Participation and Mathematization 
in Introductory Algebra Classrooms: 
The Case of Sweden

Cecilia Kilhamn, Thomas Hillman, and Roger Säljö

�Introduction

During an algebra lesson, the teacher picks up a box in which an unknown number 
of beans is hidden. Shaking the box, she says:
Teacher:	 It can be any number, as long as they can fit in the box. 

But it can’t be zero.

Student:	 No.

Teacher:	 Because then we wouldn’t, have heard when it rattled.

Student:	 Here it’s five and here it’s five. And here, it can be 

anything, but you say it has to be something 

particular…

This dialog is a snapshot from a Swedish Grade 6 algebra lesson on the use of 
variables and equation solving. The situation engages students in active hands-on 
investigations and conversations about mathematical ideas, in this case based on 
handling boxes with beans representing unknown numbers. But, in spite of the high 
level of student participation, mathematical ideas seem at the same time evasive, 
and the whole discussion is strongly tied to examples and materials present in the 
situation. One aspect of the Swedish data that stood out in comparison to the other 
countries in the project was the relation between participation and mathematization, 
where a strong emphasis on participation and attention to student thinking seemed 
not to support or enhance student’s opportunities for mathematizing.
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In the Swedish classrooms observed as part of this study, teachers valued student 
participation and student engagement in mathematical activities, giving students 
many opportunities to express their thinking. Students were often asked to share 
their work with the whole class, which they seemed happy to do, and they were 
praised by the teachers for their good work and participation. Mathematical tasks 
and activities offered students opportunities to discuss in small groups, to investi-
gate using manipulatives and to engage in creative processes. However, we saw lit-
tle evidence of the process of mathematizing in terms of making connections and 
conjectures, and there were few occasions where the participants attempted to see 
the general in the specific.

In this chapter, the reader will be given insights into activities in three Grade 6 
classrooms where the focus was the introduction of variables. Each activity will be 
described and analyzed in terms of (a) the nature of mathematizing that takes place, 
and (b) the kinds of participation that could be observed.

�Mathematizing

When we look at excerpts from the Swedish classrooms, we use the term mathema-
tizing to describe mathematics as an activity in line with Freudenthal (1991). 
Mathematizing, in the sense that Freudenthal uses the term, is an inclusive term 
describing mathematics as an activity rather than as a closed system of already pre-
formulated and reified forms of knowledge. Systematization, for example, is one of 
the fundamental aspects of mathematizing, and what students need to learn is the 
activity of systematizing (Freudenthal, 1968). Mathematizing includes attending to 
form, such as axiomatizing and formalizing, as well as to aspects of content; what 
Freudenthal called schematizing, but what is now often referred to as modeling. 
Mathematizing particularly refers to the activity of looking for essentials within and 
across contexts to discover similarities, analogies and isomorphisms as a way of 
generalizing through progressive formalizing and symbolizing. In addition, 
Freudenthal highlights that mathematization is a reflective activity, claiming that “A 
particularly important aspect of mathematizing is that of reflecting on one’s own 
activities, which may instigate a change of perspective.” (Freudenthal, 1991, p. 36).

The terms horizontal and vertical mathematization (Freudenthal, 1991; Treffers, 
1987) distinguish between two slightly different mathematical activities. 
Horizontal mathematization describes activities that lead from the world of life to 
the world of symbols, where “real world” objects and events are modeled using the 
language of mathematics. Although real world situations are a starting point in 
horizontal mathematization, it is the activity of mathematizing and the mathemat-
ics involved that are in focus. Systematizations and generalizations across real 
world contexts are possible as a result of this mathematization. Vertical mathema-
tization involves activities within the world of symbols: shaping, reshaping and 
manipulating different sets of symbols mechanically, comprehendingly and 
reflectingly (Freudenthal, 1991).

C. Kilhamn et al.



35

Algebra, and particularly the use of variables, is very much a literate practice 
where inscriptions and the use of symbols play an important role both as a means to 
learning and as end products. This literate nature of algebra directs our attention to 
the uses of documentation, and to the correspondence between what is said and 
what is written in instructional practices. Written signs (inscriptions) provide sig-
nificant anchor points for understanding algebra at the same time as they force 
learners to externalize their thinking with the precision required when using sym-
bols in writing. Inscriptions, furthermore, have a permanent character that verbal 
communication does not have, providing rich opportunities in instructional settings 
for questions, reflections and meta-level discussions as the work progresses.

We look at the learning of mathematics as the use of one’s powers of imagining, 
generalizing, abstracting, specializing, conjecturing and convincing (Mason & 
Johnston-Wilder, 2004). Algebra is a field of mathematics where generalizing is the 
most important feature. Algebraic thinking is to a large extent the recognition and 
articulation of generality, of seeing the general through the particular and of seeing 
the particular in the general (Mason, Graham, & Johnston-Wilder, 2005; cf. Chap. 
1). When we look at the episodes to be presented in this chapter, we look to see in 
what ways learners have the opportunity to discern similarities and differences, to 
systematize and reflect, and to recognize and articulate generality. In short, we look 
to see in what ways they have the opportunity to mathematize.

�Participation

A core element of learning analytical skills is participation in collective practices, where 
concepts and modes of reasoning are encountered and put to use for specific purposes. 
Participation is a broad concept that can be understood in many different ways, but for 
the purposes of this study we draw on three key theoretical constructs that help to inter-
pret the collective practices in the Swedish classrooms. To identify and describe forms 
and shifts in participation we draw on the notion of a “participation framework” 
(Goffman, 1981). This notion describes the interactional roles held by the circle of par-
ticipants within a particular situation. It acknowledges that participation frameworks are 
dynamic, and that participants’ roles are defined by their relationship to the utterances 
and actions that take place within a particular interactional frame as the collaboration 
evolves. These roles change as new frames are established. In the shifts, participation 
frameworks become especially visible, and thus available for analysis.

Within the participation frameworks established in the classrooms, we draw 
upon the idea of sociomathematical norms (Yackel & Cobb, 1996) to examine the 
mathematical character of the collective practices. This idea brings into focus the 
differences between the general social norms established through the practices of 
teachers and students, and those that are mathematical in nature, such as norms that 
govern what constitutes acceptable mathematical explanations and justifications. To 
illuminate this distinction, Yackel and Cobb (1996, p.  461) offer the following 
examples:
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The understanding that students are expected to explain their solutions and their ways of 
thinking is a social norm, whereas the understanding of what counts as an acceptable math-
ematical explanation is a sociomathematical norm. Likewise, the understanding that when 
discussing a problem students should offer solutions different from those already contrib-
uted is a social norm, whereas the understanding of what contributes mathematical differ-
ence is a sociomathematical norm.

Attending to the enactment of sociomathematical norms in relation to the more 
general social norms negotiated by teachers and students provides a way of identify-
ing, examining and characterizing the specific aspects of the classroom practices 
conducive to learning mathematics.

To examine the establishment of, and adherence to, sociomathematical norms 
through the practices of teachers and students in relation to mathematical learning, 
we draw upon Gresalfi, Martin, Hand, and Greeno’s (2008) notion of construction 
of competence. This notion challenges the idea that competence is a characteristic 
of an individual and instead proposes that it is an attribute of participation in a par-
ticular setting. As teachers and students engage in collective practices, they con-
struct a system of competence that comes to define mathematical competence in 
that context:

This system of competence gets constructed as students and the teacher negotiate (1) the 
kind of mathematical agency that the task and the participation structure afford, (2) what the 
students are supposed to be accountable for doing, and (3) whom they need to be account-
able to in order to participate successfully in the classroom activity system. (Gresalfi et al., 
2008, p. 52)

By examining the practices of teachers and students, the enacted forms of mathe-
matical competence in a classroom can be discerned, and through an analysis of the 
particular sociomathematical norms and participation frameworks established and 
endorsed, the character of participation in a mathematics classroom can be under-
stood. Drawing on these theoretical constructs, we unpack the participation in the 
episodes from the Swedish classrooms in this study in relation to the mathematical 
activity that takes place.

�Background: A Brief Note on Early Algebra Teaching 
in Sweden

In general terms, the Swedish school system is organized into primary school 
including grades K-6, lower secondary school for grades 7–9 and upper secondary 
school for grades 10–12. In primary school the teachers are educated as generalist 
teachers, often certified to teach all subjects. This implies that teachers have limited 
university training in mathematics or mathematics education. Most frequently, one 
teacher stays with a class for 3  years (grades 1–3 or 4–6) teaching all subjects. 
Hence, a teacher for grades 4–6 revisits Grade 6 mathematics only once every 
3 years.

C. Kilhamn et al.



37

Sweden has a long tradition of compulsory schooling, and since the comprehen-
sive school reform in 1962, all children are obliged to attend school for 9 years 
(extended to 10  years in 2018 when preschool class, i.e. grade K, became 
compulsory). Ideals of equity and equal access to high-quality education are high on 
the political agenda, and schools preferably should have a mix of students in terms 
of gender and socioeconomic backgrounds. In its time, i.e. in the post-war period, 
this reform was seen as important in the ambitions of educating democratic citizens 
within a society with egalitarian ideals. During the last 50 years globalization has 
affected Sweden, and one of the consequences has been a more diverse student 
population. All the schools included in this study are public schools with students of 
mixed backgrounds, gender and ability.

Since 1842 Sweden has had a national curriculum prescribed by the state. 
Although the details of state regulation have varied over the years, central features 
of school life such as organization, curriculum, grading and other elements have 
been centrally controlled. Since the reform of 1962, the national curriculum has 
changed almost every 10 years (1962, 1969, 1980, 1994 and 2011) as a result of 
political intervention following rapid social transformations caused by changes in 
the labor market and increasing globalization. New educational ideals and political 
ambitions about citizenship in a modern democratic society have also played a role 
in the frequent revisions of the curriculum. Since 1989, when much of the responsi-
bility for administering public schools was decentralized, shifting from the national 
to the municipal level, the diversity in schools has increased, and recently equity in 
the current educational system has been questioned by many parties, including state 
authorities (Kilhamn & Hillman, 2015; Skolverket, 2012).

Mathematics teaching in Sweden is often described as relying heavily on text-
books (Hansson, 2011; Johansson, 2006; Skolverket, 2012) with extensive use of 
independent desk work. Many have argued that this implies that the responsibility 
for learning has been handed over to the students (Carlgren, Klette, Mýrdal, 
Schnack, & Simola, 2006; Hansson, 2010). Government control of textbooks ceased 
in 1992, and since then textbooks are sold on a free market, leaving teachers, head-
masters and municipalities the responsibility to guarantee quality. As a reaction to 
this, there is a current movement, mainly in grades 1–6, to increase hands-on mate-
rial and problem-solving activities, and as a result many schools have established 
what they call “mathematics workshops.” Considerable government and other 
resources have been invested into these workshops equipping schools with concrete 
materials suitable for hands-on activities intended to make the subject more attrac-
tive and enjoyable and to promote learning (Skolverket, 2003). However, an evalu-
ation of these initiatives has shown that most schools failed to combine purchases of 
materials with sufficient teacher in-service training about how to make use of the 
teaching resources offered (Skolverket, 2011b). In two of the three classrooms 
described in this chapter, the textbook has been replaced by a number of hands-on 
activities and worksheets for the topic of algebra.

In the current national curriculum (Skolverket, 2011a), the mathematics syllabus 
for grades one through nine is described on 14 pages. Aligned with research con-
cerning mathematical competences (Niss, 2003), the general aims of the subject are 
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described in terms of specific “abilities” students should be given the opportunity to 
develop. Such abilities are, for example, the ability to formulate and solve problems, 
to apply and follow mathematical reasoning, to use and analyze mathematical 
concepts and relationships, and to use mathematical forms of expression. Core 
mathematical content is outlined for 3-year periods (i.e. for grades 1–3, 4–6 and 
7–9, respectively). In connection to this, knowledge requirements that relate to the 
abilities are defined. The core algebra content for grades 4–6 is described as follows 
(Skolverket, 2011a):

•	 Unknown numbers and their properties and also situations where there is a need 
to represent an unknown number by a symbol.

•	 Simple algebraic expressions and equations in situations that are relevant for 
pupils.

•	 Methods of solving simple equations.
•	 How patterns in number sequences and geometrical patterns can be constructed, 

described and expressed.

�Participants

The episodes analyzed in this chapter originate from three Grade 6 classrooms in 
two schools (A and B) in municipalities just outside a big city. Both schools are 
public schools following the regular curriculum, and the student groups in the catch-
ment areas are diverse in terms of their backgrounds. All students participating 
spoke Swedish, although there were some students with Swedish as a second lan-
guage in every class. The three teachers are certified generalist teachers, who said 
they planned their teaching on the basis of the national curriculum, and the text-
book, which was the same in all classes (Carlsson, Liljegren, & Picetti, 2004). 
However, school A had recently invested in an “algebra activity box” (the so-called 
NTA-box designed by a national science agency to reform teaching and learning in 
mathematics and natural science), containing teaching materials supporting hands-
on algebra and patterning activities. This led to the decision by the two teachers in 
school A not to use the textbook at all for the unit on algebra.

While there was considerable similarity between the three classes, they differed 
in two important ways. First, class size varied among the classes, with 13 students 
in class A1, 18 in class A2 and 30 in class B. The large variability in class size is a 
result of decentralized resource allocation within the Swedish school system, where 
schools may decide to split classes for specific activities. Second, teaching experi-
ence varied considerably among the teachers with 3  years of experience for the 
teacher in class A1, 22 years of experience for the teacher in class A2 and 10 years 
for the teacher in class B. Since teaching experience and class size may be important 
background factors to consider in terms of how teaching is organized, this differ-
ence should be kept in mind.
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�Results

The prime purpose of this section is to present an empirical study of introductory 
algebra teaching in Swedish schools. Of course, and as may be seen from the les-
sons we have recorded, there is no unified mode of introducing algebra. The varia-
tions in approaches to teaching and learning are considerable, as they are in other 
subjects. Also, teaching is a performative activity where communicative patterns are 
never entirely parallel or simply repeated. Rather, such activities are embedded and 
enacted in an intricate web of assumptions, obligations and situated affordances that 
will co-determine the nature of participation and the outcomes in terms of learning. 
The point of this analysis is to present excerpts that document some features of what 
we see as characteristic manners of introducing new topics in teaching and learning 
in a Swedish context. The sample is small and cannot be generalized in the statisti-
cal sense as we have pointed out earlier, but the aspects of algebra teaching brought 
up in this chapter stood out as different from what was seen in the algebra class-
rooms in the other three countries and therefore worthwhile to report. Thus, our 
ambition is to provide substantive insights into teaching practices that allow for 
conceptual comparisons, generalizations and analyses.

�Using Symbols Instead of Numbers (Class A1)

The first example is an activity in Class A1 (see Fig. 4.1) at the start of the second 
lesson dealing with the introductory algebra unit. The task is introduced after a rep-
etition of the use of the equal sign from the lesson before, when the students created 
different numerical equalities. In that lesson the equal sign was referred to through 
the metaphor of a “balance”, the point repeatedly made that each side “weighs 
even” or “has the same value” as the other.

Fig. 4.1  Class A1
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�Introducing the Task

The teacher starts by introducing three symbols, cut from paper and put on the board 
(Fig. 4.2).

Excerpt 1
Teacher: 	 Today I thought that we would exchange some digits or 

numbers for symbols instead. And it is to get some 

sort of brain-exercise, to challenge the brain a bit, 

to think differently.

Teacher: 	 This is what we will do, you don’t need to care about, 

these aren’t worth any particular numbers, now when 

we are playing with them. You will get to play too. 

This is what we will do. [Puts the first example on 

the board: yellow polygon times yellow polygon equals 

36] (see Fig. 4.3)
Teacher:	 What number can I use there, to make it the same on 

the other side? [Points first to 36 and then to the 

yellow polygons on the left side of the equal sign]. 

Tom?

Tom: 	 six times six

Teacher: 	 good six times six. How about if I do this? [Puts the 

next example on the board: [yellow polygon times pink 

smiley equals 70]

In Excerpt 1, the teacher presents three examples on the board. In the first equa-
tion she points out that two identical symbols represent the same number, in this 
case six. Then she contrasts this to a second equation, where she tells the students to 
think of two different numbers. A student asks if the yellow polygon can be another 
number now, and the solution 7 · 10 = 70 is suggested and written underneath the 
figures. In the third equation, the teacher repeats that two instances of the same 
symbol represent the same number. The students suggest two different solutions 
here: 1 · 1 + 11 = 12 and 2 · 2 + 8 = 12, which are both written on the board but not 
further commented on.

The teacher then hands out note paper, instructing the students to work in pairs 
making up challenges for their peers (see Excerpt 2). She cleans the board leav-
ing only the paper symbols.

Fig. 4.2  Symbols for 
numbers—a round pink 
smiley, a yellow polygon 
and a green triangle
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Excerpt 2
Teacher:	 Write some numbers, with a few triangles, or, with 

these here figures that I’ve made today. And then 

you’ll get a chance to come forward yourselves and 

challenge your friends. You can work two and two. And 

then you make a small challenge. It shouldn’t be too 

difficult. That I am choosing rather low numbers on 

purpose is not because you’re bad at maths or some-

thing like that. Rather, low numbers can, can be dif-

ficult, too. Am I right? Don’t make too big challenges, 

so that they get too long, so that it gets too tricky. 

And we’ll let a few of you come forward later, and 

test them out. Mm. Hans?

Hans: 	 there are some or there are some very low... for 

instance minus numbers.

Teacher:	 minus numbers, yes of course you may use anything you 

can, sort of

Hans: 	 it is quite easy, sort of

Teacher: 	 all four rules of arithmetic that you’ve learned

Per: 	 are we supposed to use the symbols then?

Teacher: 	 yes, and then you come forward and use the symbols. 

So, it is good if you draw the symbols here.

In this introduction, we see that the mathematical terms equation, expression and 
variable are not used. A symbol is treated as something that stands for an unknown 
number (but known by the person who designed the challenge). The terms used to 
describe the activity are: sum, to mean the value of a numerical expression, or the 
answer to the calculation; equality to mean equality/equation; and challenge or 
number to mean the equation created.1 Formal mathematical terminology is rare, 
and the activity is introduced and framed as a game-like project by the teacher 
pointing out that you will get to play too. It is also apparent that the stu-
dents are somewhat uncertain about the grammar of the exercise, i.e. what numbers 
and symbols they should use and how. For example, when Hans points out that 
there are some very low minus numbers, and when Tom asks if they are 
supposed to use the symbols.

1 In Swedish mathematics classrooms the term number is commonly used to mean exercise, for 
example when talking about what exercise (or task) a student is working on in the book.

Fig. 4.3  First example on 
the board
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�Student Work

Following Excerpt 2, students spend around 6 min working in pairs with the task, 
while the teacher circulates in the classroom scaffolding and encouraging them to 
be creative and to draw and write their challenges on paper. The teacher is not 
very specific about how they should document their work and some student-pairs 
chose to record their work individually, while others produce shared inscriptions. 
We can see from the students’ work (see Fig. 4.4) that they produce examples of 
equations with one unknown as well as equations with two or more variables. All 
the equations have an expression on the left side and a number on the right side of 
the equal sign.

The teacher prioritizes the students’ opportunities to express themselves freely, 
sometimes at the expense of developing the theme of the lesson. For example, when 
Anna wants to use two different symbols to represent the same number (see Fig. 4.5), 
the teacher discusses this with her but lets her decide what to do (see Excerpt 3).

Excerpt 3
Teacher: 	 mm, two of the same

Anna: 	 that’s 40

Teacher: 	 do you want, okay, we can take. 40. Plus 40 then

Anna: 	 40 plus 40 [the teacher shows Anna how to write the 

numbers under the symbols and tries to engage Laura 

as well, who is working with Anna]

Anna: 	 plus eh, 10

Teacher: 	 plus 10. What have you come up to now?

Anna: 	 [mumbles, writing 40+40+10-10=80]

Teacher: 	 but then those two [polygon and triangle] mean the 

same number. Don’t you think that will confuse them a 

bit?

Anna: 	 but that’s the whole point

Teacher: 	 oh. Okay.

Anna: 	 [giggles]

Fig. 4.4  Student work using symbols to represent numbers
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Teacher: 	 yes well that was a good number in that case. But then 

you will need to explain, that two can be, that two 

of your signs are the same.

As can be seen, the complexity Anna introduces when designing a challenge, 
and that she describes as the whole point of her suggestion, involves allowing 
two different symbols to represent the same number. From the perspective of the 
participation framework that Anna adheres to, her proposal may be understood as an 
instance of a challenge in the sense that it makes the task tricky for her friends, but 
as an instance of mathematizing and learning about variables or the equal sign, the 
specific point of this proposal is ambiguous and not further developed in the conver-
sation with the teacher or in the following whole class discussion (see Excerpt 4).

�Follow-Up on the Board with Students Showing Their Examples

Following student work, 12 min are spent on whole class interaction where the stu-
dents show their examples on the board, challenging their peers to find the numbers. 
The students who have produced a “challenge” also act as teachers when it is shown 
on the board, the teacher stepping back to leave the floor to the students. Each 
example is erased when showing the next one, so no comparison of different equa-
tions can be made as the work progresses. Most of the challenges involve several 
symbols and could have many solutions. The first one can be seen in Fig. 4.6a, with 
the solution 44 + 1 − 2 = 43 suggested by a student. Another student makes a con-
jecture that there are many solutions, and the teacher says: yes it can be done 
in many ways and yes, just change the numbers a little. She asks 
the students who produced the challenge to give their solution: 40 + 6 − 3 = 43 and 
responds yes, that’s a solution. There is no comment about the relationship 
between the different solutions or the variables in the equation. Thus, this opportu-
nity to systematize, make conjectures and express generalities is not made use of. 
The claims that the tasks can be done in many ways, and that one can change 
the numbers a little, are not explored as, or converted into, explicit forms of 
mathematization.

When Anna comes up with her challenge, where two symbols represent the same 
number (Fig. 4.6b), the teacher intervenes, describing it as something individually 
connected to that student, rather than as a particular case of the general idea of vari-
able and how values may be represented (see Excerpt 4).

Fig. 4.5  Anna’s work 
using symbols to represent 
numbers
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Excerpt 4
Teacher: 	 Oh, this is going to be hard. And then you have a sum 

there, we’ve got to have that. mm [Anna writes = 80]

Teacher: 	 80. Does anybody... [points to the polygon and the 

triangle but then moves the finger to the two 

circles]

Teacher: 	 are these the same, these numbers?

Anna: 	 yes

Teacher: 	 yes, and are those different? [points to the polygon 

and the triangle while looking at A]

Anna: 	 no

Teacher: 	 no [turns to the class] Because this is how it was: 
this is a small riddle Anna has. She chose to have, 

they have the same value these two

Hans: 	 but then she can put the triangle on that one too

Teacher: 	 yes, but she wanted to have it that way. So that’s why 

I said we have to be clear, to explain

When the teacher here ends by saying, we have to be clear, to explain, 
her comment concerns the fact that Anna has used different symbols for the same 
number, but, again, there is no obvious reference to relevant mathematical concepts, 
nor to what a variable is and what values it may assume. The example is treated as 
an isolated case where a particular symbolic representation introduced for instruc-
tional purposes is focused, and there is no visible attempt to go further.

�Closing of the Activity

After 20 min the teacher rounds up the activity by telling the students that they had 
been very clever during this exercise. Then she tells them that symbols can be 
letters, and that next time they will be working with the letter x to replace 
numbers.

Fig. 4.6  (a) Two different solutions to the same equation; (b) Two symbols represent the same 
number
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Excerpt 5
Teacher: 	 mm, can we do it another way [turns to the class] No, 

well in any case I think that was the most suitable. 

Good. You’ve been very clever.

Teacher: 	 Now you have seen, now you have had these... In the 

past, a long long time ago, there were a lot of pro-

fessors who played around with numbers. And, Per, 

when yesterday, you showed instead, instead of making 

a symbol? [interrupted by a student arriving late]

Teacher: 	 you could do an x [gestures x with her finger in the 

air] Why, why did you come up and write an x?

Per: 	 Because, you can do it.

Teacher: 	 yes

Per: 	 but, eh, 5 times x will... is equal to 25.

Teacher: 	 Yes, precisely. It’s the same. And, why do you think, 

well why did you choose x?

Per: 	 you can just as well take anything

Teacher: 	 yes, you can just as well use any letter. And, that’s 

what we will work with next time we meet here. Then 

we will work with x. x-values instead.

After this, the lesson moves on to a different activity solving a magical square, 
and no reference is made to the first activity as the work continues. The papers 
where the students had written their equations are disposed of. There is no home-
work given. There is no explicit closing, summarizing what was expected to be 
learned through the activity, no conjectures have been made and discussed, no math-
ematical arguments are given, and no documentation of the work is saved for future 
use. The activity appears as an exercise about combining numbers and using figures 
as representations, and this is also the manner in which the students contribute 
within this participation framework. The point of this activity as a step into the use 
of mathematical language and relationships is not made explicit.

�Teacher Comments and Student Reflections

In a short post lesson interview, the teacher repeats that she thinks the students were 
very clever. When planning for this class she says that they sometimes have a dif-
ferent mathematics teacher, and that this teacher had already done much of 
the fun activities in the algebra box. She has problems finding some-
thing the students had not already done. When questioned why the activities need 
to be new, she does not give an answer. The following two lessons are spent working 
on hands-on activities constructing equations with one variable using “boxes and 
beans” that will be described in the next section. In the last lesson, the students are 
asked to describe an equation using boxes and beans and to represent it by also 
using numbers, words and algebra/equation. The teacher does not produce lesson 
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plans and, thus, it is not possible to see how the exercises relate to her ideas about 
the progress into algebra.

At the end of the four lessons, the students are encouraged by the teacher to 
reflect in writing on what they have learned and how they felt about it. Most of the 
students, in quite general terms, express that the four lessons had been fun and 
quite easy, and that they learned more about the equal sign and more 
about calculations. Only two students mention equations: I have learned how 
to work with equations. One student writes, don’t know, and another one 
that he did not learn anything.

�Analysis of Class A1

�The Nature of Mathematizing

The activity engages students in constructing equations to understand the idea of 
working with symbols for numbers, and to understand the correct way of using the 
equal sign. The task is a good example of vertical mathematization, where one set 
of symbols (numbers) is translated into another set of symbols (geometric figures). 
The new symbols create equations on a more general level. The activity affords pos-
sibilities for learning through creative investigation, through seeing similarities and 
differences, and through systematizing and reflecting in order to articulate general 
principles. There are many important algebraic ideas buried in the activity that come 
up in the introduction and in the equations created by the students, for example the 
difference between equations with one unknown and equations with several vari-
ables, and in what cases different symbols represent different numbers. Both inter-
nal relationships between variables within equations and relationships between 
equations could be highlighted. The task obviously is rich in terms of possible 
insights into the concept of variable, unknown number and equation, and the use of 
symbols to represent numbers.

However, it is clear that these issues are not exploited, and there are no obvious 
signs that the activity moves from “doing” to “mathematizing.” The lack of a sys-
tematic closure of the task, the sparse use of mathematical terminology, the absence 
of mathematical conjectures, and the fact that all the examples presented and solved 
on the board are erased straight away so that they cannot be compared and therefore 
no generalizations are voiced, lead to the conclusion that the lesson is more focused 
on the activity as such than on the conceptual ideas that the activity was intended to 
introduce. This interpretation is strengthened by the fact that the teacher does not 
have a lesson plan other than the decision to do the activities she had chosen, and 
she talks about the mathematics lessons as a collection of activities that are done 
rather than as a sequence of activities with specific objectives of learning that con-
cern mathematics and mathematization. Communication is mostly about each given 
example and the calculations done. When referring to what they have learned during 
four lessons on introductory algebra, the students mostly produce very general 
statements about learning more, mainly mentioning calculations (arithmetic) and 
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the equal sign, with no mention of symbols, unknown numbers or variables. Since 
each presented equation is treated as unique, the students are left on their own to 
discover generalities through the particulars.

The written work in this lesson appears to play the role of creating a temporarily 
shared representation of the activity or task during the process, but it does not seem 
to be intended for further reflection, nor does it serve such a role. Examples are writ-
ten on the board so that all can see them while they are worked on. They are then 
erased directly afterwards. The student pairs collaborate and draw and write on a 
common piece of paper while they create their challenges. At the end of the les-
son the paper has played out its role and is disposed of. In other words, the perma-
nent character of inscriptions is not taken advantage of in the teaching and learning 
activity. The written work serves as a representation of their equation, but does not 
serve as a model for thinking mathematically on a more general level or for reflect-
ing on the nature of algebra. We see no evidence of inscriptions serving as tools for 
mathematization.

�The Nature of Participation

The social norms of the classroom allow the students to collaborate and to engage 
in a creative process, this is obvious. Students work in pairs facilitating mathemati-
cal communication. The equations they come up with are all given attention, and 
students exercise agency in relation to their solutions. The students are given much 
praise on a general level as being clever, and their confidence and motivation are 
most likely strengthened through this. There is no, or very little, hesitation from the 
students to show their equations on the board and “play teacher”, and students listen 
respectfully to each other during the whole class interaction. In their reflections 
after the four algebra lessons, the students write that mathematics is fun and easy. 
The framing of the activities in this classroom implies that the tasks are presented as 
exercises for the brain. The students are expected to produce challenges 
for their classmates, and they get to play too, as the teacher puts it. Inclusive and 
respectful social norms are established supporting collaboration and sharing of 
ideas, and the students make use of these opportunities for active participation 
throughout the lessons.

In terms of the sociomathematical norms endorsed, each task is attended to and 
discussed as a separate and self-sustained unit. Considerable time is spent on dis-
cussing the representations and the numbers, but the potentials of them as tools for 
mathematization are not explicitly attended to. Concepts such as variable, general-
ization and others that are essential for learning about algebra are not used to any 
significant extent. The written work that students engage in is not discussed in terms 
of its mathematical content but is seen as a report of the work. It is not used as a 
means for clarifying mathematical relationships and patterns. When equations are 
written on the board or on paper, there is no evidence that these are seen as instances 
of mathematical ideas and concepts that are more general. We will return to these 
observations.
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�Creating Equations Using Boxes and Beans (Class A2)

The second example is an activity spanning over three lessons as an introduction to 
the algebra unit in class A2 (see Fig. 4.7). The class is in the same school as class 
A1, and students have access to the same material in the algebra activity box. The 
activity utilizes concrete material in the shape of boxes and beans to illustrate equa-
tions with one variable. The aim of the activity is to introduce (a) equations as 
equalities with expressions on both sides, and (b) equation solving as doing the 
same on both sides.

�Lesson One

After briefly introducing the topic of algebra as being about using expressions, for-
mulas and letters, particularly x, the teacher starts the lesson by focusing on the 
equal sign, asking the students about it and ending with the definition the value 
of one side is equal to the value of the other side. The teacher 
emphasizes the two different interpretations of the equal sign as dynamic (gives the 
answer) and as static (is equal value). After this, the boxes-and-beans activity is 
introduced. Students are engaged in understanding the activity. At first they engage 
in tasks presented by the teacher. Then they make up tasks for each other to solve. 
The lesson ends when time is up, and the activity is continued the next day.

Fig. 4.7  Boxes and beans exercise in Class A2
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�Introducing the Activity

The teacher brings out beans and matchboxes prepared with the same number of 
beans in each. She puts a string on the table, and on each side of the string she places 
boxes with beans inside and/or outside on the table (see Figs. 4.7 and 4.8). Each box 
holds the same number of beans and the aim is to find out how many beans are in 
the boxes under the condition that the total number of beans on each side of the 
string is the same. Each task is prepared in advance so that the boxes can be opened 
to uncover the correct number of beans.

Excerpt 6
Teacher: 	 And then I’ll put some string, what do you think the 

string is supposed to symbolize? Freddy?

Freddy: 	 Equal sign!

Teacher: 	 Eq– Equal sign yes. And on the other side I’ll put, 

one matchbox, and three spare beans.

Teacher: 	 Now you’ll need your pencil, and you’ll need your 

eraser. And I want you to think about: how many beans 

could there be in each matchbox? And then it’s like 

this that there are as many beans in this one, as 

there are in this one, as there are in this one. The 

same amount of beans in all of them. How many beans? 

Do y– do you see from there? Otherwise you’ll have to 

go up and, check what it looks like.

S1: 	 Should we, draw it although–

Teacher: 	 You can draw it, I think that’s a good idea.

S2: 	 Should we write?

Teacher: 	 Write or draw. Then you’ll have to stand up if you 

can’t see.

S3: 	 Should we write or draw?

Teacher: 	 You can write or draw.

Fig. 4.8  The first 
boxes-and-beans equation 
on the table: two boxes on 
one side and one box and 
three beans on the other 
side
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In Excerpt 6 we see that the teacher lets the students begin to negotiate the frame 
of participation by accepting their suggestions of drawing and writing. The teacher 
emphasizes the importance of looking closely at the arrangement. As the students 
work individually or in pairs to figure out how many beans there are in the boxes, 
the teacher circulates the room, probing students for answers and justifications (see 
Excerpt 7). When uncertain, the students are encouraged to test their conjectures, 
using the material or their drawing to see if the equality is true given the number of 
beans they think is in each box. The mathematical work is expected to be mental, 
and the material and inscriptions are used to check and justify. The teacher does not 
introduce the word equation nor any algebraic notation, but talks about the specific 
concrete situation in terms of boxes, beans and that there should be the same on 
both sides. Excerpt 7 shows an interaction between the teacher and two students, 
and Fig. 4.9 shows the documentation produced by some students. In the students’ 
inscriptions, the beans are sometimes drawn and sometimes represented by a 
number.

Excerpt 7
Teacher: 	 Have you got it yet?

Daniel: 	 No.

Teacher: 	 No?

S2: 	 I think it’s three.

Teacher: 	 Why do you think that?

Daniel: 	 I think it’s two.

Teacher: 	 Why do you think it’s three?

Daniel: 	 I think it’s two.

Daniel: 	 No, I just feel it.

Teacher: 	 You’ve got a feeling. Well, if you draw it with two 

beans here in each, can you see if it goes together 

then? So you draw–

Daniel: 	 Should it be the same amount on each side?

Teacher: 	 Yes. Exactly, this is like–

Sara: 	 It’s three.

Teacher: 	 Yes, you did think two.

Daniel: 	 So I should write two?

Fig. 4.9  Two students’ 
inscriptions representing 
the first task
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Teacher: 	 Well, if you test it, does it work out with two in 

each then? You, don’t l– don’t look that much now, 

think of you’re saying that you think there’s two in 

each. Try it. Does it work out then?

�Student Work

After this, several tasks are presented one at a time, and the students work individu-
ally, drawing them on their papers and solving them by figuring out the number of 
beans in the boxes. In Fig. 4.10, we see more of the students’ work of representing 
and solving equations described in terms of boxes and beans on two sides of a 
string. One student exchanges the string for an equal sign (Fig. 4.10b). Some stu-
dents make a drawing which does not represent equal numbers of beans on each side 
(Fig. 4.10c).

During the last 5 min of the lesson the students are asked to create similar situa-
tions for each other to solve. Each pair of students is given a tray to place their boxes 
and beans on. Instead of a string, the boxes and beans are placed on two sides of a 
drawn line. Initially this is done without documentation, but when time is running 
out the students with tasks that are yet unsolved are asked to draw them to be able 
to reconstruct them during the next lesson.

Excerpt 8
Teacher: 	 And then I’ve done like this, that I took a ma– a tray 

to use as a mat to make it easier to set up, these, 

eh, matchsticks and beans, so that you won’t drop 

them on the floor when you move them, and you’ll then 

choose to: well, maybe should have two boxes on this 

side, and one spare, and then I’ll have four spares, 

and one match– matchstick box on that side. And 

instead of string, what have I done? Yes, I’ve drawn 

lines with the ruler here then. So that it’s that 

that’s the equal sign. So your group, your pair, 

should make a task that someone else should then 

Fig. 4.10  (a) Representation of three boxes = two boxes and four beans; (b) Representation using 
an equal sign instead of a string; (c) Representation without equality between the sides

4  Participation and Mathematization in Introductory Algebra Classrooms: The Case…



52

solve. And then, the rules are: there’s the same 

amount on each side of the line, there’s the same 

number of beans in each box. Have you understood the 

task? Good.

At this point some students are quite inventive. One pair of students comes up 
with an equality that has many solutions by setting up the following situation: two 
boxes and five beans on each side of the line (Fig. 4.11). When the teacher comes, 
they discuss possible solutions for this task (Excerpt 9).

Excerpt 9
Linda: 	 It could be... It could be one in there, there could 

be two in there, there could be three in there, heh…

Teacher: 	 mm, Exactly. It can be any number, as long as they can 

fit in the box.

Teacher: 	 But it can’t be zero.

Linda: 	 No.

Teacher: 	 Because then we wouldn’t, have heard it rattle.

Linda: 	 Here it’s five and here it’s five. And here, it can 

be anything, but you say it has to be something 

particular…

Freddy: 	 It can be anything here

Teacher: 	 yes, mm

Linda: 	 ... but you can’t figure that out

Freddy: 	 Yes.

Linda: 	 what in particular it should be

Teacher: 	 mm

Freddy: 	 You can figure it out. [shakes the box and looks 

inside]

Teacher: 	 Mm. Yes you can look yes, exactly.

Linda: 	 But we’re not allowed to do that. That’s just it.

Teacher: 	 Though, you could write that eh, it’s…

Freddy: 	 Five! Five, five! I’m writing five.

Teacher: 	 yes, it could be five in there.

Linda: 	 yes

Freddy: 	 I’m drawing

Fig. 4.11  Setting up boxes 
and beans on a tray
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Teacher: 	 mm, well there could be seven in there, there could 

be eleven in there…

Linda: 	 It could be… It could be one in there, there could be 

two in there, there could be three in there, heh…

Teacher: 	 mm, exactly. It can be any number, as long as they can 

fit in the box

Teacher: 	 But it can’t be zero

Linda: 	 No

Teacher: 	 Because then we wouldn’t have heard it rattle.

In their discussion, the students and the teacher are closely tied to the particular 
example of the concrete material in front of them on the table. Although they realize 
that the two sides are equal for any number of beans in the boxes, they agree that the 
number has to fit into the box, and it cannot be zero because they can hear it rattle 
when they shake the box. While there are many solutions in theory, the aim of the 
task is still to find out the exact number in the box, and when in doubt the teacher 
suggests they look into the box. During this first lesson the students are expected to 
come up with solution strategies themselves, no set strategy is presented, and the 
justification for success is found in the concrete situation. The different strategies 
are not evaluated. The example is the problem, and there is no evidence in the dis-
cussion that the more general properties of the task are attended to.

�Lesson Two

The activity continues during the second lesson. First some of the student tasks from 
lesson one are solved in a whole class discussion, where several students are asked 
to suggest solution strategies. Most strategies are presented through a guess and 
check process. One student, Pete, solves a task by removing the same number of 
boxes and beans on each side until he has only beans on one side and only boxes on 
the other. This strategy is not picked up by anyone else and not developed further by 
the teacher. The impression is that all suggested solution strategies are accepted as 
equally relevant. The lesson continues with two new tasks presented by the teacher. 
This time there are many boxes, and she presents a shorter way of symbolizing the 
situation, drawing only one box and one bean on each side using numbers to show 
how many of each there are (see Fig. 4.12).

Fig. 4.12  A shorter way of 
representing large numbers 
of boxes and beans
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Despite the large numbers, most of the students make drawings of the boxes, but 
in most cases the beans are represented only by numbers (see Fig. 4.13).

Towards the end of the lesson, there is a whole class round-up where several 
students are called to the board to show their solutions. All the presented solutions 
use a guess and check strategy, looking for relations between the numbers.

One of the solutions that come up on the board shows a misuse of the equal sign 
when the student writes: 25 · 2 = 50 + 100 = 150 and 50 · 2 = 100 + 50 = 150. The 
teacher points to the mistake but does not explain the nature of it, nor does she show 
a correct notation. The strategy of solving by subtracting the same number of boxes 
and the same number of beans on both sides, presented by Pete at the beginning of 
the lesson, is not brought up again. But after the lesson, Pete goes to the board and 
shows a few other students who stay behind how to solve the equation using that 
method.

�Lesson Three

At the start of this lesson the teacher introduces the equal sign and the standard solu-
tion algorithm of doing the same on both sides. She goes back to drawing all boxes 
and beans and then, step by step, she removes or crosses out the same number of 
beans and boxes on each side until she only has one box on one side and beans on 
the other (Fig. 4.14). When doing so she makes a note of how many are left but does 
not connect to the inverse operation subtraction.

When the solution is shown on the board, students look away and do not pay 
much attention. Finally, the teacher introduces an algebraic representation, writing 
the following equation below her drawing: 4x + 4 = 2x + 8. At this point one student 
exclaims Yes! as if feeling relieved and/or enlightened. Now the teacher introduces 
the term equation. As a next task the teacher draws a line with two boxes and 10 
beans on one side and one box and 13 beans on the other, asking the students to 
write this as an equation (see Fig. 4.15). Although the algebraic notation is intro-

Fig. 4.13  Student 
representation of the situation 
25 boxes and 100 beans = 50 
boxes and 50 beans
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duced, the formal notation for the crossing out strategy (inverse operation) is not, 
and the strategy is presented more as a procedure connected to the boxes and beans 
than as an algebraic procedure.

�Closing of the Activity

A worksheet is handed out and students are asked to solve the following four 
equations:

	(a)	 x + 5 = 13
	(b)	 9 = 12 − x
	(c)	 4x + 6 = 3x + 8
	(d)	 5x + 5 = 3x + 15

Fig. 4.14  In the third 
lesson the teacher presents 
the solution strategy of 
crossing out the same on 
both sides, and then writes 
the corresponding equation

Fig. 4.15  Students’ algebraic representation of the situation 2 boxes and 10 beans = 1 box and 13 
beans under the heading Equation
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The students are encouraged to draw each equation as boxes and beans if they 
find it helpful, but most of the students only write answers using trial-and-error 
solution strategies. Some students make drawings removing equal amounts on both 
sides, as shown in Fig. 4.16.

The equations in Fig. 4.16 include only addition and multiplication. Equations 
including subtraction turn out to cause some problems for students who attempt to 
represent them as boxes and beans (see Fig. 4.17). Visualizing and drawing the sub-
traction of a box is a difficult, if not impossible, task. It is up to the students to make 
a transfer of the procedure of taking away the same number of boxes and beans from 
each side to the more general idea of doing the same operation on each side of an 
equation. In this case the process has been carried out using concrete materials and 
drawings, but no real mathematical interpretation of it has been articulated. In the 
interview after the lesson, the teacher expresses surprise that the subtraction task 
was so much more difficult to solve. For students not bothering about connecting to 
the boxes-and-beans activity, the equation was an easy missing value problem. It 
seems as if the activity made an easy problem complicated, and the teacher had not 
thought about how to show a subtraction using the concrete material.

Fig. 4.16  Some students draw the equations as boxes and beans solving them by crossing out the 
same number on each side

Fig. 4.17  Student’s work trying to represent subtraction using boxes and beans
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�Analysis of Class A2

�The Nature of Mathematizing

As in the first example, the gist of this activity is based on the idea that students 
themselves should construct equations. Several aspects of algebraic equations are 
built into the activity (see Table 4.1). However, the activity also constrains the learn-
ing of equation solving to equations involving addition and multiplication (not sub-
traction or division), limiting the value of the variable to a whole number between 
one and what fits in the box, and always gives the variable in the algebraic expres-
sion ax + b the role of being the multiplicand. The number of boxes is known, and 
the unknown number in each box is the variable x. When later confronted with a 
problem of solving the equation 150 = 4x + 30 in a context where x was the multi-
plier, some students from this group immediately found x = 30, but could not inter-
pret the meaning of x in the question posed because they kept thinking of it as “the 
number of beans in one box” (Rystedt, Kilhamn, & Helenius, 2016).

Another feature of the activity is that it could serve as an introduction to the 
standard algorithm for solving equations through a series of simplifications produc-
ing equivalent equations by means of doing the same operation on each side of the 
equal sign. By starting the activity in situations using concrete material, it provides 
a potential for horizontal mathematization. The object of our analysis is the extent 
to which mathematics and mathematization are in focus during the activities.

The analysis shows that the mathematical interpretations of the issues described 
in Table 4.1 are not made explicit in the lessons. During the first two lessons, math-
ematical terminology is rare and mathematical notation is absent. Time is spent 
manipulating the materials and making drawings, and, throughout, the particular 
concrete real world situations are focused and discussed rather than more general 
features of the equality. Possibilities afforded by the activity are not taken up, such 
as comparing equations and solutions to make conjectures of a general kind based 
on the specific examples. Formalizing, symbolizing and mathematical modeling are 
scarce and not a joint, public concern. The teacher waits for the students to come up 
with ways of symbolizing. Using mathematical notation such as plus sign and equal 
sign is done by a few students but not expanded by the teacher. The teacher leaves 

Table 4.1  Aspects of algebraic equations implicitly present for horizontal mathematization

Situation Mathematical interpretation

Equal number of beans on both sides Equal value on both sides of the equal sign
Equal number of beans in each box if there is 
more than one box

A variable has the same value if it appears 
several times in one equation

Boxes and beans can appear on both sides Expressions including both numbers and 
variables can be on both sides of the equal 
sign

The unknown number of beans in the boxes is a 
specific number although for some equations this 
specific number can be any number

A variable represents a number; sometimes 
this number can be an arbitrary number or 
assume a range of values
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the responsibility for mathematizing to the students. Instead of encouraging math-
ematical reasoning the teachers suggest they use the concrete material or drawings 
to justify and check their results within the context of the objects and drawings 
themselves. During the whole boxes-and-beans activity only straightforward addi-
tion problems are posed and solved. When the teacher finally introduces the word 
equation and algebraic notation in the third lesson, we can see from the students’ 
solutions of the worksheet tasks that they have problems generalizing the ideas from 
the boxes-and-beans activity, for instance, they do not manage to apply them to a 
simple subtraction task. There is no evidence of transfer here, and those who solve 
the problems treat them as missing value tasks.

In this classroom the teacher expects each student to make individual documen-
tation of his/her work, but the nature of that documentation is negotiable. The writ-
ten work mostly consists of drawings and serves the purpose of symbolizing the 
concrete situation, helping students to visualize the beans hidden in the boxes. From 
an analytical point of view, the inscriptions can be seen as an intermediate step, an 
alternative form of mediation (Vygotsky, 1978) that bridges between the concrete 
situations and mathematical notation. In this activity, the drawings are a representa-
tion of concrete equality situations and a representation of the process of eliminat-
ing equal amounts on both sides. They could very well serve as a tool for 
mathematizing if embedded in a richer mathematical terminology and notation.

�The Nature of Participation

In this classroom, much of the mathematical work is expected to be carried out by 
the students. The students are asked to be inventive and they are encouraged to come 
up with solution strategies themselves. Only during the third lesson does the teacher 
suggest a strategy compatible with the standard algorithm. All student solution 
strategies are commented on as valuable. As was the case in class A1, the social 
norms of the classroom encourage the students to collaborate, to take initiatives and 
to engage in a creative process constructing tasks for each other. Students are given 
a lot of time for the activity, there is no hurry and a few times we see students who 
are well ahead of the teacher, patiently waiting for more substantial things to work 
with.

The framing of the activities during these lessons is similar to what we found in 
the previous example, with the possible exception that the game-like quality of the 
tasks is not present to the same extent. Inclusive and respectful social norms prevail, 
and they clearly encourage collaboration and sharing of ideas and proposals for how 
to work with the tasks. The approach to learning is inductive, students are supposed 
to generate understandings of the tasks that make it possible for them to solve the 
problems they are assigned. However, again, there is little overt and public mathe-
matization where the conceptual potentials of the materials, for instance the use of 
the boxes and the beans, are exploited. The concept of variable—what Vygotsky 
(1978) would refer to as a typical instance of a scientific concept—is not introduced 
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as a means for communicating about the objects in situ. The idea that dominates is 
that the boxes contain a certain number of beans, and this number is to be found in 
each and every instance. No discussion that provides continuity between the exam-
ples and their mathematical interpretation is carried out, and there is also no sum-
mary of the activities where it is made clear what was to be learned.

�Introducing Variables Through Group Discussions (Class B)

The third example is drawn from the first of five consecutive days of observation 
and filming in class B (see Fig. 4.18). This lesson explicitly introduced the concept 
of variable and the use of letters. During the first part of the lesson, the teacher 
focuses on algebraic notation as a textual practice by giving students several tasks 
involving the translation of expressions from spoken language to written algebraic 
notation. Later, the teacher introduces the concept of variable and the notion “to 
vary”, and the students work on problem-solving tasks that involve interpreting 
algebraic expressions. Throughout this work, the teacher makes extensive use of an 
interactive whiteboard (IWB) with a document camera attached. She uses this 
arrangement to display the tasks in the textbook along with solutions suggested by 
the students.

The first task the teacher assigns to the class is one in which students are asked 
to calculate the age of two people in relation to a third whose age is given (Carlsson 
et al., 2004, p. 100: Task 27). When presenting the task, the teacher uses the docu-

Fig. 4.18  Interactive whiteboard activity in Class B
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ment camera to photograph the textbook page and chooses to show only the relevant 
section on the IWB (see Fig. 4.19).

In the task, students are given the relationship between the age of Mohammed 
and that of Osman who is 3 years older and Leyla who is 5 years younger. For each 
question in the task, students are given Mohammed’s age and asked to determine the 
age of one of the other two people. After reading the task aloud to the class, the 
teacher asks the students to work in groups of four or five and to produce a joint 
document showing their work.

Fig. 4.19  Age task displayed in (a) the IWB, and (b) in stylized version (translated by the authors)
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�Collecting and Discussing Student Work on the IWB

After a few minutes of working on the task, one group raise their hands and tell the 
teacher that they are done. The teacher listens to their explanation of the solution 
and reminds the class that she would like them to document their work, not just the 
answers. She says I want you to fill in how you have reasoned using 
a variable. You don’t need to erase, rather you add that, your 

reasoning. And keep in mind that I want not just one, I want a 

twofold result, one could say. I want to know how old Osman is, 
but I also want to find out how you got hold of Osman’s age. Thus, 
the teacher explicitly points out that she wants the product as well as a documenta-
tion of the process of producing a mathematical expression. Following several more 
minutes of group work, the teacher asks the students to present their documents so 
that she can photograph them with the document camera and arrange them across 
several pages on the interactive whiteboard. As it is not possible to find space to 
display all the group work at the same time, the teacher organizes those solutions 
she wants to be visible and starts a whole class discussion:

Excerpt 10
Teacher: 	 we couldn’t find room for all the solutions you have 

come up with on one single page, but I will try to 

collect it if we start, since on this here first page 

all think the same thing for both a b and c do they 

agree?

Anders:	 ehh

Teacher: 	 here it says 13 right?

Anders: 	 13

Bea: 	 15

Carl: 	 15 it says 15 there

Teacher: 	 10 15 30 right? Or was it Osman you were finding out?

Bea: 	 oh but [inaudible] where does it start

Carl: 	 you must, now it’s wrong

Anders: 	 no it says there

Teacher: 	 but what did you say?

Bea: 	 just look at the task [laughing] it was all written 

there

Anders: 	 no but it says when Mohamed is 15 years Osman is

Bea:	 it says 13 years underneath

Dana: 	 it says 18 there

Anders:	 it’s wrong

Teacher: 	 ah okay ah and here 13 18

Anders: 	 but in, here in the calculation it’s wrong, but in the 

answer it says 33 no 38 oh then we took that, it was 

wrong
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Teacher:	 ah then you had it, what information did you use to 

solve this task, if we look at the last there? noth-

ing? So you also meet 18 and 33 if we return to the 

task itself what information do you use to work out 

what Osman was? Edvin

Edvin: 	 how old the others were

Teacher: 	 and how did you find that out then? Frans

Frans: 	 it’s in the text

Teacher: 	 it’s in the text

In Excerpt 10, we can see that many of the students solve the task as an arithme-
tic task, using only the information in the text where the relationship between the 
children’s ages was expressed in words. They do not find any need to introduce the 
idea of a variable into their own work to find the answers. One group uses an x in 
the place of the sum (the answer), which is not consistent with what x represents in 
the textbook picture of the task shown in Fig. 4.19.

�One Student Group Presenting Their Work

Following this initial discussion, the teacher switches pages on the IWB back to the 
image of the textbook task and asks one group to come up to the front of the class-
room to explain their solutions. The students in this particular group have chosen to 
use algebraic notation when documenting their work:

Excerpt 11
Teacher: 	 there was a group who discussed something else on 

this page can anybody see-, did anyone use anything 

else on this page than just what it says right here? 

Frans [pointing at the text block in textbook task]

Frans: 	 the three pictures

Teacher: 	 was there any group who explained the ages in this 
way? [pointing at expression under the picture of 

Osman] when you tried to work out how old Osman was?

Carl: 	 no

Teacher: 	 you did it [pointing at a student group] why did you 

do it?

Gunnar: 	 that’s how we wanted to do it

Hilda: 	 we just did it

Teacher: 	 you just did it?

Gunnar:	 yeah

Hilda: 	 we just worked it out

Teacher: 	 here it’s like this [pointing to the picture of Osman] 

that for each task you do the same [touches IWB at 
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task c] but one thing varies [touches IWB at task a] 

that’s why they have been a bit nice there helping you 

[pointing at the expressions under the pictures] 

because once you’ve worked this out it is quite quick 

[pointing at the tasks] and those of you who decided 

that we will use- how how did you work from there 

[pointing at the  expression under the picture of 

Mohammed] if we look at that group, those who use what 

it says there, can one of you explain a bit how you 

did, can’t Gunnar, can you come here and just show us 

here when you discussed

Gunnar: 	 but Hilda can

At this point, the teacher switches to a page on the IWB that displays the solution 
documented by the group she has asked to come up to the front of the room and 
explain their work (see Fig. 4.20).

With their work visible on the IWB, the group of students, while being prompted 
by the teacher, explain how they arrived at a solution. The teacher sees and alludes 
to a connection between the students’ work and the algebraic expressions in the 
textbook. The students claim that they first checked what the x was and then did the 
calculation, but the teacher points out that first there has to be an expression involv-
ing x. The dialog is characterized by everyday language referring to something, 
this, and pointing at the IWB. The students speak of the variable as the sign.

Excerpt 12
Teacher: 	 ahh come up the whole group

Teacher: 	 what was the first thing you did?

Hilda: 	 mm wrote who they were or something or we wrote 

something

Teacher: 	 you wrote what was in the pictures

Dana: 	 I can’t hear

Fig. 4.20  Page of student solutions that use variables displayed (a) on the IWB, and (b) in stylized 
version (translated by the authors). The solution is discussed in Excerpt 12
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Teacher: 	 we have to speak up, we can turn facing out so you 
don’t speak into the board then you need to speak even 

louder than necessary

Inge: 	 I need to check that

Hilda: 	 umm we checked what the x:s mean and calculated it

Dana: 	 can’t hear

Teacher: 	 what you want to say is that x had, it was the same 

on those different, when you looked at the different 

figures, was that what you did or did you make your 

own first?

Gunnar: 	 we didn’t look at the figures before we worked this 

out this

Teacher: 	 mmm

Gunnar: 	 that we really were supposed to use the sign, no

Teacher: 	 no you found out that it said there what you had 

worked out if we return to the picture, what really 

happened was that you didn’t look at the pictures but 

[changes the IWB screen to show the textbook task] the 
first thing you did was to decide this [pointing at x 

under the picture of Osman] because that’s really 

what it says Osman is 3 years younger than Mohammed, 

Leila what was she?

Hilda: 	 5 years younger

Gunnar: 	 5 years younger

Teacher: 	 Inge

Inge: 	 5 years younger

As can be seen in the discussion in these two excerpts, the interpretive work the 
students engage in involves identifying the value of x (Mohammed’s age) and add-
ing or subtracting from that. They thus show that they have understood the picture 
and the operations they have to perform to find the answer to the specific questions 
asked. This is also recognized by the teacher when she pushes them to begin to use 
the concept of variable.

�Finishing the Activity

After guiding the student group in discussing how they had decided to use a variable 
to describe the relative ages of the children in the task, the teacher then connects 
their approach to the approach she wants to see in solutions to the next task:

Excerpt 13
Teacher: 	 good so the first thing you did was you simply wanted 

to find out [points at x under picture of Mohammed] 

what this was. This is what you shall try in the next 
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task, number 28 has basically the same thing because 

it is about the same but for the next task I would 

like you to write using a variable when you describe 

how you know

Here the teacher expresses that in the continuation of their work on a task that has 
basically the same thing because it is about the same, students 
should use a variable in order to describe how they know. Thus, here she points 
out that the concept/idea of a variable should be part of the solution and a part of 
how you know. However, she does not connect this to the idea of formulating a 
mathematical expression that is generative and that helps you to “know” in a math-
ematical sense, nor does she explain that addressing this issue is somewhat different 
from establishing the ages of the persons in the example. Also, it is interesting to 
note that she says a variable without connecting this to forming a mathematical 
expression, and it is far from clear if the students grasp this shift in discourse where 
a generalization involving mathematical expressions is being made, and when the 
specific ages of persons in the example in a sense no longer are the topic of 
discussion.

�Analysis of Class B

�The Nature of Mathematizing

This activity engages students in small group discussions concerning a task about 
age relations. The task is easy to solve arithmetically without introducing the con-
cept of a variable. However, the task is framed by the book, and even more so by the 
teacher, to be about using a variable, and writing that variable as x. The task itself 
does not supply opportunities for learning about variables, since the questions can 
be answered through straightforward arithmetic procedures. And, from an everyday 
perspective, the students’ approach to the task and their calculations make perfect 
sense; they find what is being asked for.

The teacher tries to make use of the affordances of the task by making it a ques-
tion to be discussed in groups, and she tries to turn the focus away from the immedi-
ate numerical answers to other aspects of the problem. However, there is no 
indication that the students understand this intended shift in the level of discourse. 
Throughout this work, they do not appear to see any point in using the idea of a 
variable to deal with the task, nor do they seem to think in terms of the generalities 
and potentials of forming mathematical expressions when dealing with problems of 
this kind. When the teacher closes the activity, and points out that in the next round 
the students should use a variable to describe how you know, she is saying 
something that is very fundamental from the point of view of learning. Here you 
should “know” in a specific manner and by means of a particular conceptual 
resource. But this is mentioned implicitly, and so far in the discussion there is no 
indication that the students have realized the opportunities for mathematizing and 
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for learning about variables and expressions in these tasks. The “x” is still treated as 
a number that stands for a real age that is fixed and that should be found. They 
address the problems through “everyday concepts” in the Vygotskian sense, and 
they calculate the answers that are asked for in an accurate manner and as you 
would if the main purpose of the task was to establish the ages of the persons.

�The Nature of Participation

Again, we find that the students are active and contribute willingly to the discus-
sions. They come up with suggestions and they co-construct the dialog. This testi-
fies that the students know how to form a culture of participation when solving 
problems in school. The social norms of how to collaborate seem well established 
and are adhered to. In this flow of the conversation, the sociomathematical norms 
are not very explicit. Or to put it differently, the norms that are followed imply that 
you solve the problems that are presented one by one by providing the information 
asked for. The discourse does not imply that students are aware of the nature of the 
communication expected where the specific information provided is to be used as a 
means of mathematizing in a specific manner by using variables and formulating 
mathematical expressions. Thus, it is not that they would not understand this idea, 
the issue is more that this level of discourse—involving the potential use of “scien-
tific concepts”—is not established in an explicit manner.

�Discussion

The empirical illustrations we have offered here seem to indicate a fairly consistent 
pattern in terms of how participation frameworks are established, how the interac-
tion is coordinated and the nature of mathematizing that goes on. In the first exam-
ple, the activity is rich, with many opportunities for learning about variables in 
expressions and equations, but most of these opportunities are not exploited for this 
purpose. Little overt mathematization takes place. In the second classroom the 
mathematical activity is focused around manipulatives. A lot of time is spent work-
ing with these and talking in pairs, but the activity itself is limited to certain types of 
equations, and there is no transition from solving these particular equations to equa-
tion solving in general. In the third case, the problem also triggers student actions of 
counting and calculating, but the task in itself appears to be so simple that there is 
no functional need on the part of the students to engage with the concept of variable. 
The problem is easily solved through simple arithmetic.

The point of our analysis is not to make any evaluative claims about whether the 
teaching we have observed is particularly good or bad. We assume that the partici-
pants, teachers and students, are rational in the sense that they adapt to the expecta-
tions about how to proceed when learning mathematics in classroom contexts. Also, 
we do not know what happens after the lessons we have recorded, and to what 
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extent what we have documented is taken further. As can be seen, a culture of par-
ticipation that includes collaboration and sharing of ideas in the classrooms has 
been established in these classrooms. The students know how to formulate ideas, 
listen to and respond to suggestions from their fellow students and the teacher, in 
whole class situations as well as in group work or pair talk. They engage in the 
exercises presented and they exert agency. In other words, they are very competent 
at this level and they know how to “interthink” (Littleton & Mercer, 2013) and to 
produce coherent and accountable talk when facing problems.

If we look at the lessons as steps toward mathematization and algebra learning, 
it is obvious that the excerpts provide little evidence that the conversations adhere to 
sociomathematical norms, i.e. norms typical of mathematical communities (Yackel 
& Cobb, 1996). Overall, there is a low level of mathematization, and the students 
hardly ever engage in discussions where mathematical argumentation and justifica-
tions are expected. Each problem is treated as unique, and all solutions producing 
expected answers are accepted as equally valid. There is little continuity between 
tasks in terms of mathematical properties. In all the tasks we have used as illustra-
tions, ideas of what constitutes a mathematical expression, what a variable is and 
how one uses the equal sign in equations are potentially there, but there is little 
evidence that students see these connections. For instance, when using the beans 
and the boxes, there are no obvious signs that the students realize that the beans in 
the boxes can be conceptualized in terms of the concept of variable. Nor is it clear 
if students understand the idea of a mathematical expression. When interviewed, 
very few students talk about their activities during these lessons using these terms 
as glosses to what took place.

In terms of instruction, the activities seem to represent an inductive approach to 
teaching, where it is expected that mathematization follows from engaging with the 
tasks. Students successfully manipulate concrete objects and find the information 
asked for, but they do this without attending to the mathematical concepts and pro-
cedures which the specific exercises are intended to exemplify. They do this by 
using arithmetic or solving a problem as a missing value task. Thus, following our 
findings, there is little evidence that students learn much about how to argue within 
the context of sociomathematical norms during these lessons. The tasks are easily 
solved without invoking algebraic concepts and ways of reasoning, and they do not 
force students to go outside what they already know.

To some extent our findings are similar to those reported by Emanuelsson and 
Sahlström (2008) on what they call the price of participation. They argue that par-
ticipation comes at the expense of the acquisition of mathematical content knowl-
edge in the Swedish context. Our findings seem to support this assertion, but they 
also complicate the argument by highlighting the importance of the particular 
frameworks of participation in mathematics classrooms. Without consistent and 
explicit attention to mathematization, the kinds of sociomathematical norms needed 
to support mathematically productive participation do not seem to be established. 
What Wood, Cobb, and Yackel (1991) describe as engaging students in “genuine 
conversations” about mathematics does not only imply that students talk about 
mathematics, but also that teachers take students’ ideas seriously and support con-
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ceptual learning. Kazemi and Stipek (2001) described four sociomathematical 
norms that worked together to create a press for conceptual learning among fourth 
and fifth graders:

(a) an explanation consists of a mathematical argument, not simply a procedural descrip-
tion; (b) mathematical thinking involves understanding relations among multiple strategies; 
(c) errors provide opportunities to reconceptualise a problem, explore contradictions, and 
pursue alternative strategies; and (d) collaborative work involves individual accountability 
and reaching consensus through mathematical argumentation. (pp. 77–78)

For Kazemi and Stipek, the presence of these sociomathematical norms indicate “an 
intellectual climate characterized by argument and justification” (p. 79). Without 
the clear establishment of such sociomathematical norms, our data suggest that it is 
the nature of participation in the classrooms rather than the focus on participation 
itself that is of most concern. The students in these classrooms do not get enough 
support to shift the level of discourse from engaging in the activity of finding correct 
answers to specific items, to talking about the mathematical ideas involved. They 
need to begin talking about how the problems they work with may be addressed 
through the “scientific concepts” of algebra.

The situation described in these three Swedish classrooms also resonates well 
with findings in a Swedish study about primary school mathematics teachers’ pro-
fessional identity development (Palmér, 2013). Based on in-depth interviews with 
novice teachers just before graduation, Palmér found that they shared a distinct and 
concurrent picture of how mathematics teaching should be managed. Their stories 
about good and less good mathematics teaching presented a dichotomy in which 
good mathematics teaching was described in terms of reformative, creative, student-
focused, cooperative and active instruction; in contrast to less good mathematics 
teaching which was described as conservative, text-book-focused, repetitive and 
passive (ibid., p  105). Thus, there is a consistent picture of teachers valuing the 
participatory aspects of mathematical teaching. However, in Palmér’s study, math-
ematics itself was in “good mathematics teaching” described as reality-based, con-
crete and hidden, i.e. children were expected to learn mathematics by engaging in 
mathematical activities in situations where mathematics was not made explicit and 
clearly visible, as if a clear mention of mathematics would make it more frighten-
ing, less compelling and, consequently, harder to learn. Less good mathematics 
teaching was characterized as reality-distanced, abstract and visible. Palmér writes:

The focus of the respondents is on how and why, not on what and why. When they talk 
about examples of good and less good mathematics teaching they focus on how the lesson 
is taught and experienced by the students but not on the mathematics content in the lesson 
or how it was understood. (ibid., p. 106)

Thus, what we find in empirical research seems to be a fairly consistent picture that 
may provide a background for discussing how sociomathematical norms should be 
made explicit to students, and how they should learn to mathematize. Mathematization 
of the kind expected here, involving formulating mathematical expressions, identi-
fying variables and working with structural aspects of equations and equation solv-
ing, does not seem to emerge spontaneously, not even when problems have this 

C. Kilhamn et al.



69

potential and students engage actively in the tasks at hand. They clearly need a push 
where a more “knowledgeable” partner points out how such concepts and opera-
tions are illustrated by, and relevant for, dealing with specific kinds of problems. 
There is no indication in our data that students would not be able to put such a con-
ceptual frame on what they see in front of them, if they were more clearly encour-
aged to do so. Identifying and adhering to more sophisticated sociomathematical 
norms in this case requires more than being able to solve equations and calculate the 
number of beans; one must learn to reflect on and talk about what one is doing in 
mathematically relevant conceptual terms.
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Chapter 5
Designed Examples as Mediating Tools: 
Introductory Algebra in Two Norwegian 
Grade 8 Classrooms

Unni Wathne, Jorunn Reinhardtsen, Hans Erik Borgersen, 
and Maria Luiza Cestari

�Introduction

The teachers Kari and Ola are introducing algebra in two Grade 8 classrooms. Kari 
holds up a set of large playing cards and she writes on the blackboard what is writ-
ten in the corner of the cards. Ola gets the attention of the students and carefully 
starts walking in one direction in the classroom, asking the students to describe 
what he is doing. These are the starting points of two examples that each teacher has 
designed as a tool for communicating and explaining new algebraic ideas in their 
respective classrooms.

The aim of this chapter is to investigate two introductory algebra lessons. The 
passage from arithmetic to algebra in school mathematics is known to be challeng-
ing for students as has been pointed out repeatedly in this volume. The learning of 
algebra includes new symbols, new concepts and also new ways of thinking (Berg, 
2009). In the two lessons, the teachers are presenting algebraic concepts through 
examples, using them as mediating devices, bridging between new concepts, on the 
one hand, and familiar situations and prior knowledge of the students, on the other 
hand. The purpose of our analysis is to capture how the teachers approach the com-
plexity students meet in such learning situations and how they support learning. 
Both teachers introduce and illustrate the concepts of variable and algebraic expres-
sion and demonstrate processes of simplification and substitution in the introduc-
tory lesson. The topics coincide with the textbook; however, the teachers have 
chosen to design their own examples in order to engage the students in algebra.
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Examples play a central role in the teaching and learning of mathematics as 
described by, among others, Bills et al. (2006) and Rowland (2008). Paying atten-
tion to how examples are used offers both a practical and a theoretical perspective 
on the design of teaching activities and on the professional development of 
mathematics teachers. The whole point of giving worked out examples is that stu-
dents appreciate them as generic, and even internalize them as templates so that they 
have general tools for solving classes of problems (Bills et al., 2006).

Bills et al. (2006) give a historical account and a categorization of the use of 
examples from the perspective of the mathematics teacher. They refer to Rissland-
Michner’s (1978) four epistemological classes of examples (not necessarily entirely 
separate): (a) start-up examples, which help motivate basic definitions and results; 
(b) reference examples, which are mentioned repeatedly in different situations; (c) 
model examples, which are generic examples, indicative of the general case; and, 
finally, (d) counterexamples. These classes represent what Rowland (2008) refers to 
as inductive examples for the purpose of abstraction. “Exercises”, on the other hand, 
are examples used for practicing and rehearsal.

The worked out examples in this study have features that the literature points out 
as important. They provide an opportunity for the students to experience the math-
ematization of familiar situations (Bills et al., 2006; see also Chap. 4), including 
transactions with semiotic means such as spoken language, inscriptions (e.g. num-
bers, words, and items belonging to the algebraic symbol system), and gestures, to 
interpret and express mathematical meaning (Fried, 2009; Radford, 2003). They 
have epistemological qualities as they motivate basic definitions and concepts, they 
model central ideas in algebra, and they are referred to more than once and in dif-
ferent situations. Both are inductive examples in Rowland’s (2008) sense, and 
mainly start-up and reference examples, and to a certain extent model examples 
applying Rissland-Michener’s (1978) epistemological classes.

The concepts of mediation and mediating tool (Carlsen, 2010; Säljö, 2006; 
Wertsch, 1991; cf. Chap. 3, this volume) are central for the analysis of our empirical 
material. Leont’ev (1981) considers the use of artifacts and tools as mediational 
means and emphasizes that tools connect “humans not only with the world of objects 
but also with other people” (p. 56). The theoretical term of mediating tool facilitates 
our analysis in making a distinction between, on the one hand, the tools (designed 
examples, concretes and semiotic means) that the teachers employ in their interac-
tion with the students and, on the other hand, the educational goals of the lessons 
(including the mathematical objects of variable and algebraic expressions).

In this chapter, we will use the term semiotic mediation, introduced by Vygotsky 
(1978), when we discuss the teachers’ use of semiotic means in the designed exam-
ples. John-Steiner and Mahn (1996) refer to semiotic mediation as one of three 
major themes1 in Vygotsky’s theory regarding the interrelationship between the 
social and individual processes of knowledge co-construction. The semiotic means 
play a central role in the designed example as they are physical links (can be seen or 

1 Based on Wertsch (1991) who highlighted these three themes: social sources of development, 
semiotic mediation and genetic analysis (the method for investigating the former).
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heard) between the students and the mathematical objects that the teachers are try-
ing to explain. The semiotic means are not neutral but add meaning to the activity; 
however, they are also given meaning through the activity.

In the following, the reader is invited into two Norwegian Grade 8 classrooms to 
observe the practices of two colleagues; how they start their lesson, how they 
approach introductory algebra, and how they interact with their students. The pur-
pose is to make visible the complexity of the learning situation and teachers’ inge-
nuity in trying to make algebra accessible to their students. Our attempt to show this 
important interactive and instructional work has guided the organization and pre-
sentation of the empirical material. The object of inquiry is the teachers’ introduc-
tion of algebra, and we focus our analysis on how the teachers mediate the new 
concepts through their designed examples. More specifically, we ask: Which 
approaches do the teachers use to introduce the concept of algebraic expressions?

�National Curriculum, Classroom Environment and Textbook

Compulsory schooling in Norway starts at the age of six. Algebra enters the curricu-
lum as part of the main subject area, Numbers and algebra, in grades 5–7. This 
continues to be a subject area throughout primary education, where algebra in 
school is described as generalized arithmetic. The curriculum lists specific educa-
tional goals in each subject area after 2nd, 4th, 7th and 10th grade. The goals refer-
ring to algebra state that the students shall be able to:

•	 explore and describe structures and changes in simple geometric patterns and num-
ber patterns (Grade 7)

•	 process and factor simple algebraic expressions, and carry out calculations with 
formulas, parentheses and fraction expressions with a single term in the denomina-
tor (Grade 10)

•	 solve equations and inequalities of the first order and simple equation systems with 
two unknowns (Grade 10)

•	 use, with and without digital aids, numbers and variables in exploration, experimen-
tation, practical and theoretical problem solving and technology and design projects 
(Grade 10)

(The Ministry of Education and Research, 2013)

In Norway, most students go to comprehensive school until the age of 16 (Grade 10) 
and are taught in mixed-ability groups. According to Pepin (2011) there appears to 
be particular “customary ways” of conducting the teaching of mathematics in 
Norwegian classrooms. For example, most teachers ask their students to work on 
exercises from the textbook for a considerable amount of time during a lesson, so 
that the students can practice what has been explained, and the teacher can monitor 
the students’ understanding. The textbook used in the classroom and at home is 
chosen by the school, which furthermore provides a copy for each student.

There are many textbooks available in the market, and they differ with respect to 
the grade in which algebra is introduced and also on the number of pages dedicated 
to this topic. Many textbook series only produce textbooks for grades 1–7 or 8–10, 
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which mirrors a shift in the Norwegian educational system, in teachers’ education 
and in the classroom culture. Although letters appear as variables, mainly in geom-
etry chapters, in 6th grade textbooks, they are often not introduced as such. Some of 
the 7th grade textbooks have algebra as a specific topic but vary in the extent to 
which it is covered, from only a few pages to a whole chapter. It is more common to 
find an algebra chapter in 8th grade textbooks, though there are exceptions.

The two Grade 8 classrooms presented in this chapter are from the same junior 
high school (“ungdomsskole”, grades 8–10). The textbook used by all mathematics 
teachers in the school is Faktor (Hjardar & Pedersen, 2006), which is widely used 
in Norway. Faktor 1 (the book for Grade 8) has a separate chapter called Numbers 
and Algebra. The title reflects the subject area introduced in the National Curriculum. 
In the textbook analysis done by Reinhardtsen (2012), Faktor is interpreted as 
reflecting the traditional view of learning by instruction. Each subchapter first pres-
ents a kernel (definitions, procedures, etc.), an example and then tasks that are simi-
lar to the one presented in the example. This is a teaching and learning cycle that is 
common in many educational systems.

The goals for the teachers’ presentations in this study concern processing simple 
algebraic expressions and carrying out calculations with formulas, as formulated in 
the second point in the National Curriculum, and treated in the first section on alge-
bra in the textbook Faktor 1. The teachers follow the textbook in this respect.

�Methods

In order to accomplish the aims of this study, we use a qualitative approach to collect 
and analyze the empirical data grounded in a sociocultural perspective on learning. 
The data have been collected according to the VIDEOMAT design (see Chap. 3, this 
volume): as in the other countries, we observed the first five algebra lessons in each 
classroom (videotaping), interviewed the teachers after the fifth lesson (audiotaping) 
and collected written material used in the classrooms (teacher and student materials). 
As a first analytical approach to the collected data, lesson graphs for each lesson were 
produced, and the first lesson in all classrooms was transcribed.

In this chapter, we have used an inductive approach to the video analysis as defined 
by Derry et al. (2010, p. 9), which is suitable when: “a minimally edited video corpus 
is collected and/or investigated with broad questions in mind but without a strong 
orienting theory.” The two episodes presented and analyzed in this chapter were cho-
sen from the lesson graphs and after several viewings of the video material. The 
designed examples stood out as unique in the international video material. In addi-
tion, the examples used are referred to in later lessons by the teachers, and they there-
fore play an important role in the introduction of algebra in these two classrooms.

The episodes, as part of the first lesson in each classroom, have been transcribed 
in their entirety. The national curriculum and the textbook are viewed as integrated 
parts of the classroom practice, and the designed examples are analyzed and related 
to these important didactical documents.
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�Participants and Context of Research

The two Norwegian Grade 8 classrooms (A and B), as mentioned earlier, are from 
the same junior high school. It is the main school at this level in the local commu-
nity and has about 500 students. The school is located at the center of this commu-
nity, which is situated outside a larger city. The main income in the area is from 
industries, trade and services.

In classroom A there are 21 students (age 13–14), 11 girls and 10 boys (the class 
holds 29 students but eight were not present at the time of the observation). The 
teacher is an experienced female teacher (with 9 years of experience). She has a 
master’s degree in pedagogy and a specialization in mathematics. In classroom B 
there are 25 students, 14 girls and 11 boys (27 in the class, with two students not 
present at the time of the observation). The male teacher has 4 years of experience 
and was at the time when the recordings were made taking additional courses in 
mathematics. He has been educated as a general teacher (4 years, including half a 
year of mathematics).

�Analytical Framework

According to the theoretical and methodological constructs used for analyzing talk-
in-interaction, Linell (1998) identifies two building blocks of a dialog, namely turns 
and idea units. A turn is basically a period of time when one speaker holds the floor, 
while an idea unit refers to, as the name indicates, a specific idea within a turn. A 
turn can include several idea units. In line with the sequential organization of a dia-
log, each turn should be interpreted and understood in relation to the prior dis-
course, as well as being seen as creating conditions for the ongoing dialog.

A number of turns form larger units, which Linell (1998) refers to as topical 
episodes. We choose to call these units “episodes”, and we divide an episode into 
fragments

.

Each episode in this chapter contains all the turns in a period of time (which are 
numbered chronologically), and each fragment constitutes a continuous flow of 
turns and idea units as methodological constructs used for structuring the data. The 
analysis performed does not focus on the constructs of the dialog. However, the 
ideas emerging in the classroom discussion are understood and presented within the 
analytical framework of Linell. The unit of analysis is the introductory algebra 
example as realized in the interaction between teacher and students.
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�Findings: The First Minutes of Algebra

The data is organized in two episodes taken from Classroom A and Classroom B, 
respectively. Each episode starts with the lesson graph from the first lesson, and is 
divided into fragments with headings that characterize the content. We have chosen 
to present the complete dialog of the episodes intertwined with short descriptions 
and limited analyses in order to preserve for the reader a more genuine experience 
of the teachers’ examples. Further analyses will follow at the end of each episode. 
The chapter ends with a comparison between the two episodes.

�Episode 1: Classroom A

This episode is chosen from the very beginning of the first lesson on variable expres-
sion in classroom A. The teacher, Kari, uses playing cards to introduce the idea of 
using letters for numbers. The rest of the lesson is dedicated to an algebra game (see 
Table 5.1). The teacher returns to the playing cards in lessons 2 and 4. In the lesson 
graph (Table 5.1) the flow of the entire lesson 1 is presented.

In Fragments 1 to 7 we will present the full teacher-student conversation that 
takes place during the first 13 min of the lesson.

Fragment 1: Introduction of the Lesson

1. T: I know that you have been a little excited, because I 

have said that no, we will not begin with algebra 

before this week. Now we will start. But I have been 

asking whether anyone has had any experience with 

algebra before. There have been no hands raised, but 

perhaps you have some experience, only you don’t know 

that it is algebra. And, among other things, we have 

indeed started ahead a little, for you have been doing 

some algebra, probably a lot, but at least one lesson, 

that we had two weeks ago. Do you remember? I think it 

was two weeks ago, that you brought some playing cards, 

and then we worked with those cards. We worked with 

positive and negative numbers first, then you got some 

cards and counted how many points you had. And the ones 

who got the highest number won. Do you remember that? 

(.) And then, afterwards, we played with the black 

cards as positive numbers and the red cards as negative 

numbers. And then you were to find out who came closest 

to zero when you added them together. Do you remember 

that? Yes, but then there was something else we also 

had to do when we were calculating with the cards…
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Table 5.1  Lesson graph showing classroom A (lesson 1, 40 min)

[40 min]
00:00

13 min

Whole class: ITS
Introducing new topic, algebra. The teacher shows some large playing cards and asks

the students if they remember how they used them when working with negative numbers.

The teacher holds a hand of five cards and writes down what it says in the corner of each

card. With the help of the students the letters are given a value. Then she makes an addition

task replacing letters for numbers. She then picks a new hand of cards. Simplifies the

expression with letters. The order of operations is mentioned. The teacher shows two sheets

of paper with the letter a on one and b on the other. She makes the expression a+b, and then

evaluates the expression for different values of the letters. Talks briefly about negative

numbers

13:13

6 min

Whole class: IT
Introducing an algebra game. Handing out the game which is a printed sheet of paper to each pair of students.

Explains the game (a is a white [hvit] dice, b is a red [rød]). Instructs the students to think out loud so the other

student can hear their reasoning. A student asks what the expression 2a means. The teacher explains with the 

help of another student

19:40

16 min
35:30
2 min

Whole class: FTS. The teacher tells the students that she is happy with their work and that she has heard them

explain their thinking while playing the game. She then asks for comments from the students about the game

37:01

3 min

No mathematics: NM
Cleaning up. Preparing for the next lesson; finding the books and putting them on their desks

Student work: SGN
The students play the game

•

The teacher starts the lesson by relating algebra to prior activities in the class-
room. She reminds the students that they used playing cards in a game where they 
performed calculations with negative and positive numbers. The teacher emphasizes 
the new topic, saying the word algebra four times. At the same time, she initiates the 
use of playing cards as a tool to appropriate algebra. She connects the word algebra 
to their work with whole numbers and operations with such numbers. In this way, 
she connects the word algebra with arithmetic, using playing cards as a mediating 
tool. The teacher does not explicitly mention her goals for the lesson, but implicitly 
she follows those of the textbook.
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Fragment 2: Numbers and Letters in Playing Cards

1. T: … When we added the cards, I don’t know if you at the 

back [of the classroom] can see, but here I have 

[showing the cards] an eight, or we can begin with a 

two, and then I have a four, and then I have an A, and 

then I have an eight, and then I have a K [writes on 

the blackboard: 2 4 A 8 K]. Do you see that? Here we 

operated [referring to a prior lesson] with both 

numbers and letters. We have an A, and we have a K. 

How did you do it, when you calculated how much you 

had altogether? Does anyone remember? Ola?

2. S: The A was one.
3. T: We said that the A was equal to one, yes. Great! So A 

is equal to one, [writes: A = 1] we said. Really, the 

A was one or fourteen. We could choose, but then 

everyone wanted to use A equal to one. I don’t know if 

it is because it is easier to calculate with one or 

if that is the most common, that A equals one. Anyway, 

we used A equal to one. What about this K then? Alf?
4. S: Thirteen.

5. T: We said it was equal to thirteen, yes. The king was 

equal to thirteen [writes: K = 13]…

The teacher shows a hand of five large playing cards and asks the students what 
is written in the corner of each card. Some of the cards have numbers and some have 
letters. With the help of the students, the teacher reveals the hidden numbers behind 
the letters. The teacher carefully writes it all on the blackboard.

Fragment 3: Numerical Expression and Calculation

5. T: … And then, when you calculated [referring to the 

prior lesson], what did you do then to find out how 

many you had altogether? Do you remember that? What 

did you do to count them together? Ina?

6. S: We added all the numbers.

7. T: We added them all together. So we took two plus four 

plus A?
8. S We had said that it was one, so therefore we added 

one.
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9. T: Great! So instead of A we put one, plus eight and 

then plus K? And that was thirteen. So instead of K we 

put in the number thirteen. Good! And then we 

calculated how much it was. Two plus four plus one 

plus eight plus thirteen [writes: 2 + 4 + 1 + 8 + 

13]. It is? Kim?

10. S: It is (…) twenty-five.

11. T: Yes, seven, fifteen, it will be more.

12. S: I mean twenty-six.

13. T: Even more.

14. S: Twenty-seven.

15. T: He, he, he, even more.

16. S: Twenty-eight.

17. T: Yes, work it through one more time and see if you 

don’t get twenty-eight (…) it could be that I’m also 

doing some wrong calculations, you know.

18. S: Twenty-six then.

19. T: Did you say twenty-six? Two plus four is six, plus 

one is seven.

20. S Twenty-eight.

21. T: Yes, plus eight is fifteen, plus thirteen is twenty-

eight [writes: = 28]. Good! So then you see, when 

you added together, you put in, you replaced A with 

one. You replaced K with thirteen. Look here. You 

replaced a letter with a number. Good! We will erase 

this and then we will do another one…

In the dialogues in Fragments 2 and 3, the teacher identifies letters and numbers on 
the cards. Then she assigns fixed values (hidden numbers) to the letters and thus 
makes a correspondence between letters and numbers (see Fig. 5.1). The numbers 
and hidden numbers are arranged in a numerical expression, for which the sum is 
calculated.

Fig. 5.1  Overview of what 
the teacher has written on 
the blackboard in 
Fragments 2 and 3 (letter 
K referring to King)
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Fragment 4: Algebraic Expression

21. T: … Let’s see if we can find some new cards here. 

Let’s see, I think I will choose these cards [showing 

the cards]. Here I have, for those of you who cannot 

see, I have a six, then I have two queens and then I 

have two kings. Mmm. A six, two queens and two 

kings. So I have six plus queen plus queen plus king 

plus king. [Writes: 6 + D + D + K + K] If you are to 

calculate how much this is altogether, how should we 

calculate this? (.) Six plus queen plus queen plus 

king plus king. Ina?

22. S: The queen is twelve.
23. T: Great! The queen is twelve. So we write [writes: D = 

12], we replace the queen with twelve. Good!

24. S: Then you add six plus twelve plus twelve, and then 

comes thirteen plus thirteen.

25. T: [writes: 6 + 12 + 12 + 13 + 13] Great! Good! …

The teacher picks a new set of cards and creates an algebraic expression. With 
the help of the students the letters are given values and the algebraic expression is 
made into a numerical expression without solving the addition task (see Fig. 5.2).

Fragment 5: Simplification of an Algebraic Expression

25. T: … If we now were to simplify these, now we are 

looking at the top one again, okay? Six plus D plus D 

plus K plus K. If we only were to add those, what 

would we get then? Tor?

26. S: Fifty-six.

27. T: Yes, and if we added, or if we add these together, a 

little more, but if we look at, if we have the number 

six [writes: = 6], and then we are to add queen and 

queen. Can we write it differently than D plus D? Ina?
28. S: D2

Fig. 5.2  Overview of what 
the teacher has written on 
the blackboard in Fragment 
4 (letters D referring to 
Queen [Dame in 
Norwegian] and K to 
King)
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29. T: Right, two times queen, for there are two queens 

[writes: + 2·D]. Good. Plus…
30. S Two times king.

31. T: Two times king, oi. Good! Two times king [writes: + 

2·K]. It is, do you agree that twelve plus twelve is 
the same as if we now put it in here then, equals 

six plus two times twelve plus two times thirteen 

[writes: = 6 + 2·12 + 2·13]. Do you see that I 
replaced the queen with twelve and the king with 

thirteen? Do you see here that twelve plus twelve, 

do you agree that it is two times twelve? It is 

twelve two times. And thirteen plus thirteen, 

another way of writing that is two times thirteen. 

Right? It is the same that we are writing. But if we 

are to calculate this now, six plus two times twelve 

plus two times thirteen. Do you remember the order 

of operations when we were to calculate with 

addition, subtraction, multiplication and division 

in one expression? Arne?

32. S: (…) the multiplications first.

33. T: You have to do the multiplications first. And here 

we see clearly that the two queens belong together, 

because there are two of them. And the two kings 

belong together, because there are two of them. So 

we do the multiplications first. So it equals six 

plus, two times twelve, that is? Twenty-four, good, 

plus two times thirteen, yes. Six plus twenty-four 

plus twenty-six [writes: = 6 + 24 + 26], it equals?

34. S: Fifty-six.

35. T: Fifty-six. [writes: = 56] That is good. Great! Mm. 

So this was a little repetition, right. That we do 

the multiplication and the division first, and then 

the addition afterwards. And here we see clearly 

that the two queens belong together. The two kings 

belong together. Okay…

The teacher returns to the algebraic expression created in Fragment 4 and prepares 
a simplification. One student, Tor, responds to the teacher’s question regarding how 
to simplify (25) by calculating the sum of the numerical expression, which is fifty 
six (26). The teacher does not follow up  this response and instead starts to add 
the letters. 

The teacher and the students replace the letters in the simplified algebraic expres-
sion with numbers, and simultaneously the teacher makes the link between addition 
and multiplication explicit (31). So, the teacher makes clear that the numerical 
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expression (31) is the same as the one developed in Fragment 4 (25). They calculate 
the sum (33, 34, 35) and get the same answer as Tor gave in (26) (see Fig. 5.3).

The choice of cards in Fragment 4, which includes two queens and two kings, 
gives an expression with two Ds and two Ks. The teacher follows the same approach 
of substituting the letters with fixed numbers as in fragments 2 and 3, but, in addi-
tion, she introduces an intermediate step of simplifying the algebraic expression. In 
doing both a vertical (on the blackboard, see Fig. 5.3) translation from an algebraic 
to a numerical expression and a horizontal translation to a simplified algebraic 
expression, the teacher sets the stage for showing the relationship between addition 
and multiplication and between the different numerical and algebraic expressions.

Fragment 6: Variables (on Sheets of Paper)

35. T: … Now I’m wondering, if I now had, instead, these 

are not playing cards [Shows two sheets of paper]. 

But if I, instead of D and D and K and K, which 

represent king and queen, if I now had an a and a b, 

do you see it, no perhaps you don’t see it. But we 

have an a here and a b here.
36. S: Yes, we know that a is one (…) and b could be any 

number.

37. T: Great! You do know, good. If we now are to add these 

two cards, an a and a b [writes: a + b], then yes, we 

have said here that a is one, but letters can be 

variables and we can replace them with any number. 

So a is not always one. We can choose the numbers we 

want to replace the letters. So if I now say that we 

have the expression a plus b and then I erase this 

[erase: A = 1, K = 13, D = 12]. And now I put in 

that, for example, now we want a equals three, and b 

equals two [writes: a = 3 b = 2]. Can I now 

calculate how, what a plus b equals? If we have a plus 

b, and then I say that a equals three and b equals 

two, can you do this calculation? Ann?

Fig. 5.3  Overview of what 
the teacher has written on 
the blackboard in 
Fragments 4 and 5
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38. S: Five.

39. T: You replaced a with, instead of a you put in?
40. S: Three.

41. T: Great, and you replaced b with two, and then you 

found that it was equal to five [writes: 3 + 2 = 5]. 

Good. Great. But if I now choose that a will equal 4, 

and then, oh, I want b to equal five [writes: a = 4 b 

= 5]. What do we get now? If a equals four and b 

equals five? Ulf?

42. S: Nine.

43. T: Because you replaced a with?
44. S: Four.

45. T: And what did you replace b with? And then, four plus 

five equals nine [writes 4 + 5 = 9]. Good…

The teacher shows two sheets of paper with the letter a on one of them and the letter 
b on the other. The teacher writes the expression a + b on the blackboard, and intro-
duces the term variables (37). She explains variables in this manner: ...letters 
can be variables and we can replace them with any number (37). 
Rather than further elaborating the concept of variable, she continues by giving the 
letters different values (a = 3, b = 2 and a = 4, b = 5) and calculates the sum in both 
cases (see Figs. 5.4 and 5.5).

Fig. 5.5  Overview of what 
the teacher has written on 
the blackboard in the last 
part of Fragment 7

Fig. 5.4  Overview of what 
the teacher has written on the 
blackboard in Fragment 6
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Fragment 7: Different Algebraic Expressions

45. T: … Great! What if I changed the expression to b minus 

a? [writes: b - a] b minus a. Ina?
46. S: Then b is five, so then (…) minus four, and that is 

one.

47. T: Great. b was equal to five, and a was equal to four. 

Five minus four equals one [writes: 5 – 4 = 1]. 

Good. If we did the opposite then, and used a minus 

b, how do we calculate that? Per?

48. S: Four minus five.

49. T: Yes. Then we get a, we replace a with four, and we 

replace b with five [writes: 4 – 5 =]. And four 

minus five, what is that? Ole?

50. S: Minus one.

51. T: It is minus one, yes [writes: -1]. Do you see that 

we have more negatives than we have positives? So 

then the answer has to be negative. It was the same 

with the cards, right? We added together, how many 

black we had, and how many red [the teacher uses 

her hands]...

And the red was negative. So when we had most of 

those, we knew that the answer had to be negative. 

Good. Do you think this seems okay, or what? It 

wasn’t so difficult to calculate with letters 

anyway. Was it difficult to calculate with letters, 

yes? Fortunately we will try this out now, because 

it is important to see how much of this you are 

able to do, and what I need to tell you more about.

At the end, the teacher varies the algebraic expressions and evaluates each one for 
the same set of values. It does not seem to confuse the students that the teacher again 
refers to the earlier use of the playing cards in relation to negative numbers. By 
introducing the two sheets of paper, the teacher extracts the letters a and b from the 
context of the cards. At this point she operates with independent letters and refers to 
them explicitly as variables.
The teacher continues the lesson by introducing the algebra game (see Table 4.1). 
The variables a and b, which have been replaced by different numbers, are now 
given additional meaning in the sense that they are explicitly connected to the num-
ber of eyes on the white and the red dice, respectively. The expressions on the game 
board determine how many steps a player can move in one turn. The evaluations of 
the expressions vary and depend on each throw of the dice.
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�Analysis: Classroom A

Our object of inquiry has been the teacher’s introduction of algebra. More specifically, 
we asked: Which are the teacher’s approaches when introducing the concept of alge-
braic expression? Although the teacher does not mention the textbook in the introduc-
tion, it is evident that she has considered it as she planned the first lesson in algebra. The 
algebra chapter opens with a repetition of numerical expressions with a focus on the 
order of operations, and it continues with an introduction to variables, algebraic expres-
sions and then to equations. In line with the textbook’s sequencing of algebraic topics, 
the teacher started by introducing the concepts of variable and algebraic expression, 
including demonstrations of simplification and substitution. But how she did this devi-
ates from the activity in the textbook. Her mediating tool is a designed example, and we 
will focus our analysis on four concerns: (a) the manner in which the teacher introduces 
her lesson, (b) how she mediates her designed example, (c) what semiotic means she 
uses to introduce the concept of variable, and (d) how she interacts with the students.

�Introduction of the Lesson

In the very beginning (Fragment 1), the teacher repeats the word algebra four times 
in order to emphasize the coming topic. Then she reminds the students that they 
have done algebra before (maybe without knowing it) in connection with an activity 
of adding positive and negative whole numbers by using playing cards. So, she 
brings the word algebra, calculation with whole numbers (arithmetic), and playing 
cards to the forefront of the students’ attention. These are central elements in the 
coming activity with the designed example.

�Mediating Function of Designed Example

The activity is based on a carefully designed example which is not taken from the text-
book, but created by the teacher herself. Fragments 2 to 7 illustrate how the designed 
example is operationalized as a mediating tool for the teacher and the students in the 
learning situation. As well-known artifacts, the teacher uses playing cards and sheets of 
paper to bridge numerical and algebraic expressions. The approach used by the teacher 
to introduce algebraic expressions is intended to present the different components 
which constitute such expressions (numbers, letters as variables, operational signs) one 
by one. She is all the time linking the algebraic expressions with the numeric ones by 
substituting values for the variables and calculating the numerical expressions. So, 
together with the students she develops the concept of algebraic expression from 
numerical ones, as it is done in the textbook. The example plays several roles in the 
classroom, and we use Rissland-Michner’s (1978) epistemological classes of examples 
to examine those. It is a start-up example as it motivates the basic algebraic ideas of 
performing operations on letters and that a letter can represent any number. The teach-
er’s choice of designing an example to introduce the topic of algebra is also an effort to 
get the students’ attention and a way of marking the shift from arithmetic to algebra.
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In the first five fragments, the mediating tool of playing cards is used and the 
activity including them can work as a model example for letters representing num-
bers and the activity of developing expressions including letters. However, the let-
ters on the playing cards are not variables but hidden numbers, and therefore the 
activity involving those cannot function as a model example for the notion of a 
variable. The teacher changes her mediating tool to sheets of paper featuring an a 
and a b, respectively, before discussing the concept of a variable which is first men-
tioned in Fragment 6. A student response shows that the transition from the playing 
cards and hidden numbers to letters as variables is not trivial (36): Yes, we know 
that a is one (…) and b could be any number. The teacher answers (37): 
then yes, we have said here that a is one, but letters can be 
variables and we can replace them with any number. The activity with 
the sheets of paper can play the role as a model example for the notion of variable 
as long as the difference between the two mediating tools is made clear. However, 
the shortcomings of playing cards as a model example may inhibit the conceptual 
development of students.
The designed example also plays the role of a reference example in the classroom 
as the teacher has used playing cards as the basis for an earlier activity. The cards 
are used again and in different contexts at the beginning of lessons 2 and 4. In lesson 
2, the word variable is not mentioned in relation to the playing cards and the letters 
are assigned their numbers by the teacher: We know now, I’m certain that 
you remember this now, but I write it anyway. J equals 11 and 

D equals 12. The teacher then focuses on the rules of operations. In lesson 4, the 
cards are used to write an expression and again assigned their numbers however this 
time the teacher emphasizes that: but such letters we call variables, 
right, we can put in almost what we want normally for letters, 

so that varies. She lifts up the playing cards as a special case where the letters 
are assigned specific numbers. It is again clear that the activity with the playing 
cards does not function as a model example as it is not indicative of the general case.

�Semiotic Mediation: Concrete Materials—Numbers—Variables

To interpret the steps taken by the teacher in a form of dialog when introducing 
variables, we use the concept of semiotic mediation to explain the passage between 
arithmetic and algebra, from numbers to variables. First of all she introduces play-
ing cards, including letters and numbers, as a mediating tool. The material is suit-
able, as numbers and letters are part of the semiotic repertoire from algebra. 
Secondly, the teacher makes the values explicit for every letter (for example: K=13) 
as if the numbers are hidden. Thirdly, she introduces numerical expressions includ-
ing numbers and operation signs and, then, fourthly, she calculates the sum. Only at 
the fifth step does she introduce algebraic expressions including both numbers and 
letters. Next, the teacher simplifies, adding similar terms and turning repeated addi-
tion into multiplication. Finally, she picks two sheets of paper with letters on (one 
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a, and one b). She uses letters as independent entities. She substitutes a and b with 
different sets of values, objectifying in this way the idea of variables. And, at the 
very end, she varies the algebraic expressions as well. The teacher does not publicly 
elaborate on the concept of variable. In this example, the teacher is using numbers 
in a purely mathematical context. The variables a and b are substituted with num-
bers when first introduced in the classroom, but later, in relation to the algebra 
game, the variables are connected to quantities, i.e. the number of dots on the red 
and the white dice. Variables are, in this sense, therefore introduced in the classroom 
in an abstract, mathematical context and only later given a more concrete meaning 
for the algebra game.

�Student-Teacher Interaction

Focusing on the teacher’s role in the classroom interaction, we have identified the 
following steps:

•	 The teacher presents (verbally and visually) playing cards and two blank sheets 
of paper with only a and b written on them, respectively.

•	 She writes numbers, letters, operations and equal signs on the blackboard.
•	 The teacher poses mostly checking and controlling questions to the students.
•	 The students give short answers.
•	 The teacher writes the students’ answers on the blackboard only if they are cor-

rect and proposed in a timely manner in order not to interrupt the flow of her 
presentation.

•	 The teacher openly asks (at the end): was it or wasn’t it difficult to calculate with 
letters? And she announces that there are more exercises to come, so that she can 
see how much they can do themselves and what she needs to say more about.

We did not observe students taking notes or the teacher encouraging them to do so.
The teacher seems to follow her plan for the presentation, and she keeps the stu-
dents’ attention by asking checking and controlling questions that mostly are 
returned with yes/no answers or facts. Even when a student gives an unexpected 
(but relevant) answer (as in turn 26), she neither comments on it nor follows up the 
possibilities it offers. Questions that require answers that the teacher has thought out 
in advance are, by Myhill and Dunkin (2005), referred to as closed questions, facili-
tating a procedurally oriented approach to teaching.

�Episode 2: Classroom B

This episode is chosen from the very start of the first lesson on algebra in classroom 
B.  The teacher,  Ola, introduces the students to algebraic expressions and vari-
ables using body movements. The teacher continues the lesson with other examples 
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Table 5.2  Lesson graph showing classroom B (lesson 1, 42 min)

00:00

17 min

Whole class
General information. New chapter: Algebra. Reading out aloud the goals for the 
chapter that are written in the textbook. The teacher does a demonstration of movement 
in the classroom and asks the students to describe what he did. The teacher writes it on 
the blackboard and comments that now they have done algebra. Then he adds to the 
procedure and writes it in the expression he is developing on the blackboard. The units 
he is using are “steps” and “foot”. The teacher asks the students to write the expression 
in their notebooks, and elaborates on the notion of an expression. The teacher then asks 
the students if the expression can be written differently, shorter. He then demonstrates 
the movement again and takes note of where he ends up in the classroom. He simplifies 
the expression and then demonstrates that he ends up at the same place. The next step is 
that “skritt” and “fot” are shortened to s and f. The teacher asks the students that if one 
of them had done the movements would they end up in the same position, called s and f 
variables. The teacher then writes up the approximate sizes of his “skritt” and his “fot” 
in cm. The last step is to substitute those measurements for the s and f in the 
expression. The teacher then presents another example involving age differences. The 
students are given a task to discuss in pairs: a neighbor is 5 years older than me, write 
an expression that describes that the neighbor is 5 years older than me

16:42 Student work
17:14

9 min

Whole class
The teacher asks the students for the solution. A student answers x + 5. The teacher 
reminds the students of a project they did some time ago involving wages. He gives another 
example, making an expression for how much someone would earn, working different 
numbers of hours, with an hourly wage. He also gives another example involving boxes of 
strawberries and making expressions. He refers to the x as an unknown. The teacher talks 
about the commutative property of multiplication and refers to the multiplication tables. 
Explains the invisible multiplication sign between the number and the letter

26:18

10 min

Student work
In response to students’ question, the teacher explains to the whole class the notion of a 
sum and a difference. The students work with tasks from the textbook Faktor 1 
(6.9–6.14).

6.10
Lotte is x years. Write an expression that shows how old
(a) she was 5 years ago
(b) she will be in 5 years

36:20

5 min

Whole class: Writes out the solution to some of the tasks from the textbook with the 
help of students

involving expressions, and then the students work with tasks from the textbook. The 
textbook exercises will not be presented here. The flow of the lesson is described in 
the lesson graph (Table 5.2).

In fragments 1 to 8 we will present the full teacher-student discourse that takes 
place during the first 17 min of the lesson.
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Fragment 1: Introduction of the Lesson

1. T: First of all, before I forget, you see that you have 

got a red folder on your desk, in front of you, 

everyone. You are to use that instead of your workbook 

this week, and you can write everything you do in 

school in it, and you can also take it home as a 

workbook and do homework in it. And then there are some 

cameras in here, but we are having a regular 

mathematics lesson, so nothing special besides that. 

And today we will start with a new topic, and that is 

Chap. 6, and it is called algebra. It is a chapter that 

we skipped that we are now going back to. If you turn 

to page one hundred and eighty-one, the one that looks 

like this, numbers and algebra it says. Then we will 

have a brief look at the goals for the chapter before 

we get started. In algebra we use letters as symbols 

for numbers. The value for the symbols can vary. 

Therefore we name the symbols variables. This may sound 

unfamiliar now, but we will talk a lot about variables 

in this chapter and what that means. Numbers that vary. 

And the goal for this chapter is that you will learn 

about simple, algebraic expressions, calculations with 

expressions or formulas and solutions of equations. 

This is the goal of the chapter. And here there were 

probably many unfamiliar words, but we will work with 

them in the following lessons this week, and I think we 

will use three or four weeks on this. Now everyone must 

pay attention to me and see what I’m doing now. It is a 

little, I will do it with my legs, but you have to see 

what I’m doing anyway. And then you will need to 

describe it afterwards. If I do this. Now you can see 

well enough. Are you ready?

The teacher starts the lesson with practical information regarding artifacts to be 
used (notebook, textbook), and he also informs the students to expect a regular les-
son in spite of the cameras present. He introduces the new topic, algebra, by refer-
ring the students to Chap. 6, Numbers and algebra, in the textbook. He proceeds to 
talk about variables and introduces the term as follows: In algebra we use 
letters as symbols for numbers. The value for the symbols can 

vary. This is why we call symbols variables. Then the teacher again 
turns to the textbook and reads out aloud the goals for the chapter (see Fig. 5.6).

The teacher attempts to defuse the unfamiliar words by saying that they will be 
working with them over the next three or four weeks. The teacher continues by 
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introducing an activity, which we will follow in the next seven fragments. He 
informs the students that he is going to use his legs and that they need to follow 
closely what he does.

Fragment 2: Bodily Number Line; Unit (Step) and Direction

2. S: Yes!

3. T: What did I do now? Per?

4. S: You walked.

5. T: Yes, I walked. How did I walk?

6. S: Forward.

7. T: Forward. Yes?

8. S And then you first took three steps, and then two.

9. T: First I took three steps. Now I write exactly what 

you said. First three steps, and then two. Can I 

write plus then? [writes: 3 skritt + 2 skritt]. 

Will it be the same?

10. S: Yes.

11. T: I can write plus two steps…

The teacher performs a demonstration of body movements in the classroom. He 
walks three steps along a line in parallel with the blackboard, stops, walks two steps 
forward and stops again. Then he asks the students to describe what he did. The 
teacher formulates it as an expression on the blackboard. “Step” (“skritt”) is the 
quantitative unit he is using, and he writes out the word in his expression. Thus, the 
teacher is constructing an imaginary number line indicating unit and direction with 
his body.

Mål 

I dette kapitelet vil du få lære om

● enkle algebraiske uttrykk

● regning med uttrykk eller former

● løsning av likninger

Goals

In this chapter you will learn about

● simple algebraic expressions

● calculation with expressions or formulas

● solving equations

Fig. 5.6  The goals for Chap. 6 in textbook Factor 8
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Fragment 3: Doing and Speaking Algebra; Expression in Words (One Unit)

11. T: … Now you have to pay attention. Now I will do the 

same again. Now I will do exactly what it says there 

[walks]. What did I do in addition now? (…) what 

happened? Pia?

12. S: You took one step back.

13. T: Yes. First I did that, and then I took one step 

back. Can I write it as minus? [writes: 3 skritt + 2 

skritt – 1 skritt]

14. S: Yes.

15. T: Now you have done algebra. Now I speak 

algebraically. Three steps plus two steps minus one 

step…

The teacher performs the same body movements again and adds one more step. 
He walks three steps forward, stops, walks two steps forward, stops, and walks one 
step back. Then he asks the students to describe what he did. The teacher adds 
another element to the former walking procedure and also includes it in the expres-
sion he is developing on the blackboard. He comments that now they have done 
algebra, and that he is talking algebra.

Fragment 4: Expression in Words (Two Units, Step and Foot)

15. T: … Did everyone follow what I have done now? Now I 

will do one more thing. (…) Now I first walked like 

this, and then I made it to here. And then I will do 

something quite smart here, but I will count aloud. 

One, two, three, and then I’m moving all the way up 

to the camera, four. What did I do now then? Was 

there any difference now?

16. S: (…) four.

17. T: I took four, what was it?

18. S: Steps!

19. T: Yes, but was it steps like before?

20. S: Half.

21. T: Half steps?

22. S: Feet? Foot lengths?

23. T: Feet? Mouse steps? Can I call it a foot? That was a 

nice example. Plus four feet. [writes: 3 skritt + 2 

skritt – 1 skritt + 4 fot] Write it in your 

notebook. When you have written it, that expression, 

I call it an expression now. We can call every 

calculation task an expression…
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The teacher makes exactly the same body movements as earlier and then takes 
some additional steps, and finally he takes some small steps in which he places one 
foot in front of the other (feet). He walks three steps, stops, walks two steps forward, 
stops, walks one step back, and walks four feet forward. Then he asks the students 
to describe what he did. The teacher again adds to the walking procedure and mod-
els it in the expression he is developing on the blackboard. The units he is using are 
“steps” and “feet”2 (“skritt” and “fot”). The teacher then asks the students to write 
the expression in their notebooks. He elaborates on the notion of an expression by 
explaining that We can call every calculation task an expression.

Fragment 5: Simplification of Expressions; Letters for Words

23. T: … When you have written that expression, then you 

look at it and see if you can do something with it, 

so that it becomes a little shorter. Is it possible 

to shrink it so that it doesn’t take up so much 

space? Write it differently? It is really another 

description so that I arrive at exactly the same 

position. Very open question. (…) Has everyone 

written it down? Good. Now I will walk down here, 

because there was not enough room here. Now I’m 

walking. First the three steps, two more, three plus 

two steps, one step back, and then four feet. One, 

two, three, four. Now I ended up about here. Ida, are 

you watching to make sure that it was right next to 

that stool?

24. S: Yes!

25. T: Three steps, plus two steps, minus one step. Is that 

the same distance as something else? Can I say that 

it is four steps?

26. S: Yes!

27. T: Three plus two steps, that is five steps total, 

minus the one [He gestures an equal sign after the 

expression 3 skritt + 2 skritt – 1 skritt + 4 fot]. 

Then I say that I have walked four steps and four 

feet. [writes: 4 skritt + 4 fot]. I start at the 

same place. One two three four one two three four. 

So, roughly, Ida. What is it?

28. S: You moved a little further.

2 Not to be confused with the unit foot in the U.S. customary system of measurement.
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29. T: I think I started a little further out. I should 

have marked where I started. But you agree that if I 

take four steps at once, or if I take five steps 

forward and then go back one, then I should end up 

at the same position. It is a little difficult to 

make exactly the same steps every time. Four feet, 

is it possible to shorten that expression? (…) Yes.

30. S: You can make feet into something else.

31. T: Is it possible to make feet into something else? 

Perhaps four feet are one step. It could be, but I 

don’t know that. I have not measured it. So I don’t 

know it. So I cannot do that. Perhaps I could have 

done it this way [writes: 4s + 4f]. But in addition 

I don’t know how long a step is, or I don’t know how 

long a foot is. Now I write down the equal signs 

[writes: = (after the expression 3 skritt + 2 

skritt – 1 skritt + 4 fot); writes: = (between the 

expressions 4 skritt + 4 fot and 4s + 4f)], because 

now I see that this expression is equal to that 

expression. So, if you haven’t written down the two 

expressions, then write them down in your notebook 

(…) It becomes a treasure hunt. One could have used 

a map, right? Then I could have said: four steps and 

then four feet and then you would end up where the 

treasure is, and then dig it out. I could have made 

infinite variations with this as long as the total 

was four steps in the end…

The teacher asks if the expression can be written differently, shorter. He then demon-
strates the body movement again, now along a new “imaginary number line” between 
two rows of student desks, and takes note of where he ends up in the classroom. He 
simplifies the expression and then demonstrates that he ends up at the same place. He 
writes it on the blackboard. Then “steps” and “feet” are shortened to s and f (see Fig. 5.7).

The teacher simplifies the first expression (the first expression in the second line 
in Fig. 5.7). As a second step, he abbreviates the terms using only their first letters. 
The result is an expression that looks algebraic; however, the letters are still con-
nected to the teacher’s “steps” and “feet”, and the expression is a mathematization 
of his movements in the classroom related to a specific distance. On the other hand, 
“steps” and “feet” are general terms which vary in lengths in relation to different 
people, and they can be talked about and operated on without first knowing their 
exact lengths. In this way, Ola develops the concept of variable from the students’ 
everyday life. The teacher uses treasure hunt as a metaphor to explain the equivalent 
expressions. He does not comment on the contradiction the metaphor is to the devel-
opment of the concept of variable; such a map is supposed to lead the readers to the 
same position i.e. all steps and feet are of equal length.
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Fragment 6: Expression as Recipe; Variable and Constant

31. T: … Would it be the same if I do it as if… eh, Kai, if 

you do it? Would we end up at the same spot?

32. S: No.

33. T: Why not?

34. S: Your steps are longer than mine.

35. T: Are my steps longer than yours? Yes, Mia, would we 

end up in the same spot?

36. S: No.

37. T: Odd, me and you then? You are pretty tall.

38. S: Yes, that could be.

39. T: Could you say approximately?

40. S: Yes…

41. S: You and Pål.

42. T: Perhaps me and Pål, yes. And it is like this, 

someone might be walking a little like this, while 

another person takes shorter steps. And feet also, 

perhaps different shoe sizes. So that number, it 

can vary. Right? This number and this number, we 

call them a variable. [writes: variable] Because it 

doesn’t need to be the same every time. It depends 

who is doing it, whether it is Kai, Mia, Oda or 

Pål, so it will never be exactly the same. A little 

different. But that, it is a constant. It is the 

same every time. The recipe is four steps plus four 

feet, no matter what…

The teacher asks the students whether, if one of them had done the walking, they 
would end up in the same position (31), and they answer No (32). The teacher asks 
for an explanation (33), and one student answers that the teacher’s steps are longer 
than his (34). The teacher elaborates on the variations of the length of peoples’ steps 
(35), and ends the discussion by labeling s and f as variables and 4 as a constant (see 
Fig. 5.8).

Fig. 5.7  Overview of what 
the teacher has written on 
the blackboard in 
Fragments 2 to 5
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The teacher approaches the concept of variable by comparing steps and feet of 
students with his own. The students agree that the length of steps and feet varies 
among different people. To further exemplify the unique characteristic of variables, 
i.e. that they can take on different values, he points to the number 4 and names it a 
constant. He also makes an analogy between the expression and a recipe to further 
explain what remains the same and what varies; the constant and the algebraic 
expression in its entirety stay the same, while the variables s and f vary with the 
person who walks. Again, Ola relates expressions to a known concept from students’ 
everyday life.

Fragment 7: From Algebraic to Numerical Expression; Letters to Values

42. T: … And then we will end up at different positions 

because the variables, which are the length of legs 

or lengths of the steps,

are different for each of us. I could have made 

calculations if I say that one step for me was 

seventy centimeters, and one foot was twenty 

centimeters [writes: s = 70cm f = 20cm].

43. S: You need to know the shoe size?

44. T: The shoe size?

45. S: It is different.

46. T: Yes, but it is not marked in centimeters.

47. S: It is!

48. T: It is?

49. S: Yes!

Fig. 5.8  Overview of what 
the teacher has written on 
the blackboard in 
Fragments 2 to 6
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50. T: Now I will not look so carefully at it. Twenty 

centimeters, I say that it is twenty centimeters, I 

have not measured, but yes, it is probably not 

enough.

51. S: It is forty-two.

52. T: If we say four steps plus four feet [writes: 4s + 

4f], four, then I must multiply by seventy, right? 

Because I take four steps which are seventy 

centimeters plus four feet which are twenty 

centimeters [writes: 4·70cm + 4·20cm]. And then we 
have really made a calculation task of it. We have 

replaced the variables, replaced the s, because we 

know that one step was seventy centimeters for me. 

If it had been Mia, it would have been something 

different. Perhaps it would have been sixty, fifty.

(…) Do you follow so far? Now I write an equal sign 

(.). Write it down in your book (…). [writes: 280cm 

+ 80cm = 360cm] Two hundred and eighty centimeters. 

I walked with the four steps, plus the eighty 

centimeters I walked with the four feet. Did you 

follow that, the distance from here and down became 

about three hundred and sixty centimeters? Any 

questions? …

The teacher suggests approximate lengths of his “steps” and “feet” in centime-
ters (cm) and writes these on the blackboard. This provokes a student to request 
further accuracy and he suggests using the size of the teacher’s shoe (43). Ola 
explains that the shoe size is not marked in centimeters but fails to convince the 
student. The teacher continues by substituting s and f for the given values in the 
expression. He bridges the algebraic and the numerical expressions by connecting 
the values to his prior walk. He also underlines that s is a variable by saying that the 
value would have been different if Mia had been walking (52). Ola calculates the 
numerical expression in two steps and continues by making explicit the connections 
between the numbers on the blackboard, the lengths of his steps and feet, and the 
previously marked distance in the classroom. The distance that was previously 
measured in steps and feet (Fragment 5, 25) is now described by the standard unit 
cm (see Fig. 5.9).

For the first time the teacher is not waiting for the students to respond to his ques-
tion: Any questions? (52). He continues the lesson, introducing a new example 
presented in Fragment 8.
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Fragment 8: From Expression and Recipe to Formula—Same Approach

52. T: … Now I’m starting to erase this, but you have 

written it down, so that will be fine. I have a 

little sister. She is seven years younger than me. 

Does anyone remember how old I am? Last time you 

guessed that I was about thirty-five, which was 

pretty rude. Do you remember?

53. S: Twenty-six.

54. T: Yes, that was rather young, which was nice of you. 

But I’m a little older. I’m twenty-seven.

55. S: Big difference!

56. T: Big difference. But I said that she is seven years 

younger than me. If I say that I’m twenty-seven, 

then you can easily calculate that she is…?

57. S: Twenty.

58. T: Twenty. Yes. Twenty-seven minus seven. Next year, 

how old am I then? You can also calculate that. 

Tonje?

59. S: Twenty-eight.

60. T: Yes, how old is she then?

61. S: Twenty-one.

Fig. 5.9  Overview of what the teacher has written on the blackboard in Fragments 2 to 7
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62. T: Yes, twenty-eight minus seven. So, it is really my 

age minus seven [writes: min alder - 7]. Do you agree? 

This is the formula all the time. The expression is 

like this. And then I get my sister’s age as an answer 

[writes: = søsters alder]. If you didn’t know how old 

she was - now you knew approximately - then we could 

have said that my age was unknown, you don’t know what 

it is, we could have called it x [writes: x]. Mister x. x 

is the, eh, letter we normally use in algebra, most 

often, when we have an unknown, something that we 

don’t know the value of. So really it just means that 

we don’t know that number. We only know that it is a 

number. But we know that my sister was seven years 

younger than me [writes: -7], and then you are able 

to calculate anyway. Should we put in twenty-eight? 

That becomes twenty-eight minus seven. Now I’m fifty, 

fifty minus seven. (…) Now you will get the next task. 

That one you will (…), now you are sitting two and 

two. You can turn around to the person sitting next 

to you also. I have a neighbor, a good neighbor; we 

live right next to each other. He is five years older 

than me. Can you try, two and two, to write down an 

expression like the one here which describes that my 

neighbor is five years older than me? You can talk 

across to each other here. You will not get much time.

This example is chosen from the textbook and mathematizes the relationship 
between the ages of two people. It is a regular paper and pencil problem that the 
teacher personalizes by using his own and his sister’s ages as variables. He first 
models the relationship  with an equation including  words (“min alder”, “søsters 
alder”), naming the expression on the left side of the equal sign a formula for his 
sister’s age (see Fig. 5.10), which he then expresses in terms of the letter x. However, 
he first establishes a constant relationship between the ages by performing calcula-
tions with specific values for his own age. Then the lesson continues with the stu-
dents working, in groups of two, on modeling a proposed problem of the same 
nature.
The teacher reconnects with the textbook by discussing one of its examples. There 
is a correspondence between the two introductory examples. Again, Ola writes the 
algebraic expression rhetorically before using letters as variables. And here, too, the 
variables represent quantities, which in this case have the inherent quality of chang-
ing with time. However, the two examples conceptualizes algebraic expressions 
differently. In the latter example, the two quantities are connected by a constant, and 
if one of them is given, the other can be found. This example features a special kind 
of algebraic expression in the context of an equation. The teacher also briefly talks 
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about the x as an unknown, even though the task is focused on writing expressions. 
There is also a difference in how the two examples are mediated. In the latter exam-
ple, Ola goes from the specific by comparing specific ages, to the general, writing 
an algebraic expression. While in the first example he did the opposite, moving from 
the general to the specific.

�Analysis: Classroom B

Our object of inquiry has been the teacher’s introduction of algebra. As was the case 
in the analysis of classroom A, we asked more specifically: Which are the teacher's 
approaches when introducing the concept of algebraic expression? Unlike Kari, Ola 
starts the lesson by having the students open the textbook to the new chapter called 
Numbers and algebra, and then he reads aloud the learning goals written there. He 
proceeds by introducing the same topics as Kari: the concepts variable and alge-
braic expression, and he also provides demonstrations of simplification and substi-
tution. And, as Kari did, he designs his own example as a mediating tool. In order to 
compare the two designed examples, we will look at the same analytical concerns 
as previously presented: (a) the manner in which the teacher introduces his lesson, 
(b) how he mediates his designed example, (c)  what semiotic means  he uses to 
introduce the concept of variable, and (d) and how he interacts with the students.

�Introduction of the Lesson

The teacher starts his lesson by giving practical information. He reminds the stu-
dents about writing notes in the special folders handed out, and he urges them to 
write down everything done in school for later use, e.g. when doing homework. He 
also reassures the students regarding the cameras present, emphasizing that it is a 
regular lesson. He then continues by announcing that they will start with a new topic 
called algebra, and refers to the page and chapter in the textbook where the topic is 
presented. He points to the goals for the chapter, but before reading them aloud he 
explains the role of letters in algebra and why they are called variables. Reading the 
goals in the textbook aloud, he lists the contents to be dealt with in the coming three 
to four weeks, that is simple algebraic expressions, calculations with expressions or 
formulas, and equation solving. Finally, he asks for the students’ attention, telling 
them that he will move his legs and that he expects them to observe carefully so that 

Fig. 5.10  Overview of 
what the teacher has 
written on the blackboard 
in Fragment 8 (my 
age—7 = sister’s age)
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they can describe what he did subsequently. In short, the teacher prepares the stu-
dents for his introduction of algebra in the coming weeks and finally for the lesson 
of the day. He shows consideration for the students’ feelings as they are asked to par-
ticipate in a new domain of mathematics, and he is explicit about what he expects 
from them, both in taking notes and in interacting with him in a specific way. The 
textbook has a clear role in the classroom and dictates the content of the lesson. 
However, the teacher adds what he thinks is important and his designed example 
shows an attempt to facilitate learning by relating to everyday experiences.

�Mediating Function of Designed Example

The activity presented in fragments 2–7 is based on a designed example, which is 
not taken from the textbook, but created by the teacher himself. The teacher uses 
walking procedures to establish successively more extensive expressions, as he 
moves along an imaginary number line. These algebraic expressions are developed 
in interaction with the students, verbally and by writing the expressions in words 
(the units “step” and “foot”) on the board and in their notebooks. In the same man-
ner, a simplification of the final expression is also completed before the words are 
shortened to letters (s, f). Finally, in Fragment 7, the letters are given values, bridg-
ing algebraic and numerical expressions. The teacher uses the terms expression, 
recipe, and formula synonymously.

In moving along an imaginary number line, using his steps and feet to designate 
distance, the teacher operates with quantities and develops an understanding of vari-
ables and operations without using numbers and numerical expressions as motiva-
tors. Instead, he models the distance walked in the classroom with an algebraic 
expression that builds on relationships between quantities. He is therefore touching 
what Davydov, Gorbov, Mikulina, and Savaleva (1999) do in their approach to alge-
bra in school, where algebra is introduced through working with quantities. The 
Russian curriculum developed by Davydov and his colleagues introduces algebra 
and its symbolism from first grade with numbers following as concrete applications 
of algebraic generalizations (Schmittau & Morris, 2004).

After having presented the concept of algebraic expression in terms of quantities, 
the teacher shows that numerical expressions are special cases of these. At the very 
end (Fragment 8), the teacher connects his way of introducing algebraic expressions 
with how it is done in a standard textbook problem, and thus bridges his own pre-
sentation and that of the textbook.

As Kari’s designed example, Ola’s example plays several roles in the classroom. 
It is a start-up example that motivates the use of the concepts algebraic expression 
and variable. The example signals a shift in the mathematics classroom in modes of 
working where numbers no longer have the central role and are replaced by letters 
as variables. The activity with the mediating tools of steps and feet can work as a 
model example for the concept of variable and also for building algebraic expres-
sions and operating with letters. The image of how the length of steps and feet vary 
between different people is a very tangible reference for the meaning of variable. 
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The movements of the teacher in the classroom are described and written down as 
an expression of physical length in the classroom. The teacher walking a simplified 
version of the expression, and showing that it corresponds to the same length as the 
first one, is a physical demonstration that one can operate with letters (quantities). 
The example is also a reference example as the teacher uses this example again in 
Lesson 3, having a student perform the movements this time. The teacher marks the 
length in the classroom which corresponds to his own movements, and then he does 
the same for the student and shows that the lengths are different even though they 
made the same movements. The activity thus becomes a model example also in the 
sense that an algebraic expression can represent different lengths.

�Semiotic Mediation: Body Movements—Quantities—Variables

To interpret the steps taken by the teacher in a form of dialog when introducing vari-
ables, we use the concept of semiotic mediation to explain the passage from body 
movement to variable. Firstly, the teacher demonstrates, by a walking procedure, an 
imaginary number line with direction (forward) and a unit (step). Movement (walk-
ing), is thus the first semiotic element that emerges. Secondly, the teacher repeats the 
students’ description of his movement, and he formulates it as an expression on the 
blackboard (inscription). The semiotic means are spoken and written words, num-
bers, quantity (step), and plus and minus signs. Thirdly, the teacher adds a new unit 
(foot) first in his walking procedure and then on the blackboard. Fourthly, the teacher 
starts to operate with all the symbols and signs in order to simplify the algebraic 
expression. At this point the teacher abbreviates step and foot with the letters s and f. 
Fifthly, he points out s and f as variables. The teacher makes a connection between 
the concept of variable and letters in algebraic expressions through his inscriptions 
on the blackboard. So, altogether, he has made a passage from steps and feet as mea-
suring units to seeing these units as variables, i.e. step, foot →s, f→ variables, medi-
ated through body movements, spoken and written words, and inscriptions. At the 
end the teacher attributes values to letters/variables (measured in cm), showing that 
a numerical expression is a special case of an algebraic expression.

�Student-Teacher Interaction

The teacher’s way of interacting with the students goes through the following steps:

•	 The teacher walks back and forth along an imaginary number line indicating 
direction and units (step and foot).

•	 The teacher poses checking and controlling questions to the students.
•	 The students answer the specific questions from the teacher, and they describe 

the teacher's movements.
•	 The teacher writes the students’ description of his walking procedure on the 

blackboard.
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•	 The teacher and the students interact in dialogical modus at the end of the lesson 
(from Fragment 6).

•	 The students copy in their notebooks what the teacher has written on the board.
•	 The teacher summarizes and concludes what they have achieved together.

The teacher keeps the students’ attention by asking checking and controlling ques-
tions and by challenging them to describe his movements. The last part of the epi-
sode is more like a dialog. They are asking and answering each other’s questions. 
The teacher is specifically following up some of the students’ responses (30, 43), 
but only for a short time before he brings the class back on track again. Only once 
does the teacher rush on to the next task without waiting for the students’ response 
(52), which he had invited them to give. Following Myhill and Dunkin (2005), Ola 
used both closed questions, mostly returned with yes/no answers or facts, and open 
questions that invite the students to explore and investigate, the latter type facilitat-
ing a conceptual approach to teaching.

�Comparison

From the interviews with the teachers, it is obvious that both teachers are interested 
in developing their mathematical competencies. They are also concerned with hav-
ing a practical approach to the teaching and learning of mathematics, i.e. connecting 
mathematics to the everyday life of students. The female teacher, Kari, has 9 years 
of experience, and she is a coordinator between the leadership and the mathematics 
teachers in the school. The male teacher, Ola, has 4 years of experience, and he was 
at the time of data collection taking additional courses in mathematics. Ola was also 
involved in a national project which focuses on low-performing students in mathe-
matics. Both teachers refer to professional development courses they have attended 
when explaining their viewpoints. In their mathematics teaching, they use the text-
book, but often also other resources such as games, booklets, books, internet and 
digital tools (spreadsheets and GeoGebra).

Our focus has been on how the teachers introduce and mediate algebra through 
their designed examples. Their introductions of algebra have been analyzed with 
specific focus on four issues: introduction of the lesson, the mediating functions of 
designed examples, semiotic mediation in relation to the concept of variables and 
student-teacher interaction. In this section, the two approaches to introduce the con-
cepts of variable and algebraic expression are compared.

�Introduction of the Lesson

The two teachers introduce their lessons quite differently. Kari (the female teacher 
in classroom A) brings the word algebra, calculation with whole numbers, and play-
ing cards to the forefront of the students’ attention, providing only the information 
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they need in order to follow the planned activity based on her designed example. 
Ola (the male teacher in classroom B) has a broader approach in his starting lesson. 
He introduces the new terms the students are expected to become acquainted with 
in the coming weeks by reading the goals of the algebra chapter, before narrowing 
down and focusing on the concepts for the actual lesson of the day.

Kari does not mention the textbook in the introduction of the lesson, and she does 
not bring it up after presenting the designed example. Instead, she provides copies of 
an algebra game as a group activity where the students work with the new concepts. 
Ola introduces his lesson by showing the students where they are in the textbook, 
and he points out what the students are expected to learn in the coming lessons by 
referring to the learning goals provided there. After the activity based on his designed 
example, he returns to the textbook by presenting one of its examples, and then the 
students work individually with tasks in the textbook. Although Kari does not use the 
textbook directly in her lesson, the content is the same as in Ola’s lesson, and the 
same as the first algebraic topic in the textbook. In the interviews, the teachers do not 
refer to the national curricula when commenting on their teaching of algebra. The 
textbook is therefore interpreted as the enacted curriculum in the two lessons.

The role of affective factors in the learning of mathematics has been documented 
in research. It has been consistently shown that while confidence has a positive cor-
relation with mathematical performance, mathematical anxiety has a negative effect 
(Schoenfeld, 1989). In the introductions of a new topic, both teachers address this 
aspect of learning. Kari only articulates a positive emotion when she says that she 
knows the students have been excited (Classroom A, Fragment 1) to start with 
algebra. However, as she continues it becomes clear that she has been preparing the 
students for this coming topic, i.e. she has previously asked them whether anyone 
has had any experiences with algebra. And now she reassures them that they prob-
ably have done a lot of algebra before without knowing it. She then proceeds to 
mention a specific example related to cards and negative numbers. In this manner, 
she attempts to address the feelings of anxiety students may have when a new branch 
of mathematics is introduced in the classroom. Ola also shows awareness about the 
issue of students’ anxiety when encountering new concepts and terms. He says that 
now these words may appear unfamiliar but assures them that they will work a lot 
with them in the coming weeks.

Kari moves ahead with her designed example without making explicit her expec-
tations about the students’ role in the activity. Ola, however, explains what he is 
expecting from the students: they should take notes during the activity and observe, 
in order to describe afterwards, his exact movements as he walks in the classroom.

�The Mediating Function of Designed Examples

Both teachers have chosen to follow the topical sequencing of the algebra chapter in 
the textbook and to introduce variables and algebraic expressions during the first 
lesson. However, they do not follow how this is done in the algebra chapter. Instead, 
they design their own examples as mediating tools in their presentations.

5  Designed Examples as Mediating Tools: Introductory Algebra in Two Norwegian…



104

Kari has chosen playing cards, which the students are familiar with (she has used 
them earlier for adding whole numbers), in order to illustrate that letters can stand 
for numbers and be included in mathematical operations. The playing cards and two 
sheets of paper with the letters a and b respectively, are used to carefully develop 
algebraic expressions from numerical ones. Therefore, Kari’s introduction is inter-
preted as an inductive approach to algebra that reflects the textbook's view of alge-
bra as generalized arithmetic.

In the interview, Kari justifies her way of introducing algebra by underlining the 
importance of a practical approach. So basically, I always think that 
I will follow the textbook, but this time I found the text-

book’s presentation of the algebraic concepts problematic. She 
continues by explaining that she wanted to be more practical, as opposed to 
being theoretical, in her approach, especially since it is the students’ first encounter 
with algebra: … I said in the beginning also that I felt like, as 
a first approach [to algebra; as done in the textbook], that it 
was perhaps not the one I would have chosen, that it is very 

theoretical… in a way a little abstract in that they had not 

put it in an everyday context… but then again algebra [as a 
subject] is abstract. It is (.) but still I think the way it 

is done [in the textbook] is perhaps too theoretical and 

abstract in the way they have presented it. This is my initial 

impression.

Kari explains that she therefore looked elsewhere for ideas: and therefore I 
used something I have found in mathematics journals. She mentions 
Tangenten, a Norwegian journal for mathematics teachers, as the inspirational 
source for using playing cards as concrete objects in her designed example: When I 
read it I thought it looked like a nice approach and I decided 

to test it to see if it works. Kari says that she does this a lot: I have 
used ideas from different professional courses and from the 

specializing in mathematics (.) ... if I have learned some-

thing new I test it out and use it.
Ola carefully establishes an imaginary number line with direction and two differ-

ent units (step and foot), which allows him to introduce addition and subtraction of 
these quantities without using numbers. In their responses, the students appear to be 
able to follow the rather complex reasoning of the teacher, and we conjecture that 
this is facilitated by his pedagogical choices of mediating his ideas. That is, choos-
ing  the familiar activity of  walking, involving the students in describing his 
movements, and writing their responses on the blackboard. In addition, he encour-
ages the students to copy from the blackboard into their notebooks. Thus, Ola intro-
duces algebraic expressions directly in terms of mathematizing a situation involving 
distance without first involving numerical expressions. At the end of his presenta-
tion he shows that numerical expressions are special cases of algebraic expressions. 
Ola’s designed example is therefore interpreted as a deductive approach. In the last 
fragment from classroom B, Ola presents a new example inspired by the textbook 
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as a part of his introduction. In this way he connects his designed example to the 
textbook’s presentation of variables and algebraic expressions.

In the interview, Ola (like Kari) justifies his way of introducing algebra by under-
lining the importance of a practical approach. I try to use examples that 
are realistic and that they can understand (.) Present exam-

ples that they can associate with daily life.
Ola did not use any of the introductory examples in the textbook as he thinks they 

are too theoretical and artificial: When I’m planning to teach a topic I 
tend to look in the textbook (.) I look at how it is organized, 

and I look through the examples to see if they are good (.) and 

decide whether I want to use any of them (.) This time I chose 

not to do it as in the textbook (.) I slightly rearranged the 

sequencing of concepts as I felt it would be a more appropriate 

way of doing it (.) Eh, additionally I have tried to use sev-

eral other examples that are not in Faktor (.) I think the 

examples are too theoretical and artificially constituted, and 

they did not work for me as I wanted to find something that 

students can understand and that involves algebra, which is 

often a difficult and somewhat vague topic for them.
Following the epistemological classification of Rissland-Michner (1978), both 

examples play several roles in the classroom; as start-up examples in which they 
introduce the definitions of variable and algebraic expression; and as reference 
examples since they are referred to in different contexts. However, the activity with 
the mediating tool of playing cards, in which the letters represent fixed numbers, 
cannot work as a model example for the concept of variable. The activity with the 
sheets of paper, which could play this role, seems to lack permanence (in the class-
room) as they are only brought out briefly and not mentioned again. In contrast, the 
playing cards are familiar objects to the students; they are used repeatedly in the 
classroom, and have a central role in the designed example. Thus, the designed 
example dominated by the playing cards may not work effectively as a model exam-
ple for the concept of variable. Ola’s movements in the classroom, and the descrip-
tive quantities of step and foot, which vary between different people, have qualities 
that correspond with variables and algebraic expressions. When used in the third 
lesson as a reference example, in which a student also walks in the classroom, it is 
used to deepen the understanding of algebraic expressions. Ola’s designed example 
has the qualities of a model example in that it is indicative of the general nature of 
variables and algebraic expressions. This can be summarized by Mason’s (1996) 
well-cited phrase of “seeing the general through the particular.”

�Semiotic Mediation of the Concept of Variable

The paths the teachers follow in order to develop the concept of variable are quite 
different. Kari starts by introducing playing cards, a concrete object, including let-
ters and numbers, as a mediating tool. On the other hand, Ola walks along an 
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imaginary number line, and it is the body movement that are intended to mediate the 
algebraic concept. The mediating tools the teachers use, concrete objects and the 
body, have different representational qualities involving affordances and constraints; 
in Kari’s example the playing cards are only an entry point and the letters are not 
truly variables but hidden numbers (that do not vary); in Ola’s example the move-
ments in the classroom remain a visual demonstration of the work done on the 
blackboard, and the units step and foot used to describe the movements are variables 
from the very beginning. As we can see, the teachers use different semiotic means 
as starting points.

Secondly, Kari identifies hidden numbers represented by the letters in the cards. 
Immediately following this, she introduces numerical expressions from the hand of 
cards and then calculates the sum. Ola writes an expression on the blackboard 
related to his walking procedure. He introduces two units (step and foot). Ola takes 
account of the semiotic elements of an algebraic expression and operates with 
the letters (simplification). At this point Ola abbreviates step and foot as s and f, and 
then calls them variables (he also writes variable on the blackboard). He has made 
a passage of units: step, foot → s, f → variables. However, Kari follows the opposite 
approach, introducing the semiotic elements one by one, and develops algebraic 
expressions from the numerical ones.

Kari introduces algebra using playing cards, substituting letters for numeric val-
ues. The example works for evaluating expressions and for combining terms. 
However, the letters in this case are known values that do not vary. As an introduc-
tory example, they have the potential to create misconceptions among students if the 
teacher does not reflect on the concept of variable. There seems to be very little 
effort made by the teacher to address this possibility. In Fragment 6 (37), the teacher 
explains that we have said here that a is one, but letters can be 
variables and we can replace them with any number. This is a critical 
clarification in need of further elaborations.

As we have seen, these two teachers follow different semiotic pathways to intro-
duce variables. Kari goes from the elements to the expression using an inductive 
approach, while Ola takes into account the whole expression, not pointing out the 
various elements until the end. We can characterize this as a deductive approach. 
Another difference is that while Kari’s designed example only operates with 
numbers as mathematical objects in themselves, Ola operates with quantities and 
numbers that have a meaning.

�Student-Teacher Interaction

When we compare these two lessons, some interactional features emerge clearly. 
For example, in the case of Kari, she made a lesson plan, and followed it carefully, 
using checking and controlling questions which require yes/no answers. Meanwhile, 
Ola also follows his plan and questioning mode. However, in addition, he also asks 
students to describe his movements, and they do that. In this way Ola goes further 
in the interaction by asking questions which require a more descriptive answer. He 
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involves the students in the sense of stimulating them to find adequate words and to 
intuitively grasp the number line idea (including direction and units).

Both teachers use the blackboard for their inscriptions. Kari shows large playing 
cards and writes the numbers and letters included in the illustrations on the board. 
She asks the students what the hidden values of the letters are, and, after a brief 
discussion, she writes them in a separate place on the blackboard. She adds alge-
braic signs to the row of numbers and letters in order to create a numerical expres-
sion and then calculates the sum. Ola writes the students’ answers systematically on 
the blackboard, thus acknowledging their contributions, and he also asks them to 
write what he has written on the blackboard in their notebooks. In Kari’s class, the 
students are not required to make notes.

Both teachers initiate their lesson by speaking at length, leading and monitoring 
the discourse (an asymmetric interactional pattern). In Kari’s case, this pattern con-
tinues throughout the whole episode. However, Ola changes his pattern by inviting 
more student input (transforming the relation into a more symmetric one) towards 
the end.

�Conclusion

The aim of this analysis has not been to propose how algebra should be introduced 
in the classroom, but to carefully study how it is done in two specific cases. The 
analysis illuminates the complexity students meet when facing introductory algebra 
in school, and the challenge it is for teachers to make algebra accessible for all stu-
dents. The main approach of the teachers has been to design and use examples, 
mediating the passage from the students’ real world experiences, as well as the 
school mathematics they know, to algebra. There are similarities and differences in 
these teachers’ ways of introducing algebra. We would like to close this chapter by 
answering the research question and pointing out implications for teaching: Which 
approaches do the teachers use when introducing the concept of algebraic 
expression?

The two teachers both design introductory examples that are used as their central 
means for explaining the same mathematical  concepts (variable and algebraic 
expression). The examples are easily distinguishable in their use of concrete materi-
als (playing cards versus the body); however, there are more fundamental differ-
ences in the example structures. Kari starts with numbers, number operations, and 
numerical expressions, and, based on their prior work in class, she makes general-
izations introducing algebraic expressions. She continually connects the numerical 
and the algebraic elements, and explains variables as numbers. She goes from the 
specific to the general, and follows an inductive approach to introduce algebraic 
expressions (which adheres to the way it is done in the textbook). Ola, on the other 
hand, establishes an algebraic expression directly from the imaginary number line 
with given direction and units (first step, then foot) without using numbers. He 
builds the algebraic expression through a transformation chain following this path: 

5  Designed Examples as Mediating Tools: Introductory Algebra in Two Norwegian…



108

bodily movement—words—abbreviations—variables, and he sees variables as 
quantities. We are instantly immersed in algebra in general, with very little abstrac-
tion. Later he shows that numerical expressions are specific examples of more gen-
eral algebraic expressions (Classroom B, Fragment 7). In this manner, he moves 
from the general to the specific. Therefore, Ola is following a deductive approach 
when introducing algebraic expressions.

In a summary of research addressing the teaching and learning of algebra in the 
elementary grades, Kieran (2007a) points out that the majority of this work is situ-
ated within the curricular approach of developing algebra from the experience of 
numbers and their operations. This body of work is mainly concerned with issues of 
how to engage  students in the early grades in  algebra  thinking, with or without 
introducing formal algebraic notations. The Russian curriculum developed by 
Davydov and his colleagues represents an alternative position in which the study of 
algebra precedes the study of numbers and introduces algebraic notations in first 
grade. Schmittau and Morris, reporting on their study of Davydovs’ curriculum and 
their adaption and implementation of it in a US school setting, explain that “algebra 
is developed from an exploration of quantitative relationships” (Schmittau & 
Morris, 2004, p. 61). As mentioned earlier, it is in this aspect that Ola in his designed 
example (unknowingly) touches the ideas of Davydov as he develops the algebraic 
concepts from quantities and not from numbers. In addition, introducing concepts 
by going from the general to the specific is also a trademark of the Russian curricu-
lum, which is what Ola does in this specific example. The implications for student 
learning later in the curriculum are beyond the scope of this chapter but certainly in 
need of further exploration.

The teachers’ strategy of designing their own examples as a first introduction to 
algebra has specific implications for their teaching. The teachers’ use of concrete 
objects and body movements can make introductory algebra accessible to students 
by linking students’ observations of real world activities to school mathematics. The 
examples themselves are well thought through. The teachers do not run into unfore-
seen limitations regarding their use of concrete objects and body movements, as is 
illustrated in the chapter from Sweden (see Chap. 4). Even if the presentations of the 
examples are well prepared, the teachers’ flexibility is challenged when meeting the 
students’ questions/answers. In her interaction with the students’, Kari mainly uses 
questions that emphasize a procedurally oriented approach to teaching, and Ola 
mainly uses questions that emphasize a conceptually oriented approach.

Bills et al. (2006, p. 10) point out that “the art of constructing an explanation for 
teaching is a highly demanding task.” In order to create the designed examples, it is 
evident that the teachers have reflected on the content they are about to teach and 
what they want the students to learn. The strength of Kari’s example is the familiar-
ity of the playing cards as she connects to the prior experiences of the students. 
While Ola’s insistence on involving the students in developing his example is 
important as he directs the attention of the students to the creative process of build-
ing an algebraic expression and the meaning of its elements. Our data show that 
these examples become anchor points for the teaching of algebra in the sense that 
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the teachers return to the examples in the following lessons. This in turn may be a 
product of the teachers’ personal investment in the examples.

Our analysis is a response to what stood out as characteristic of the Norwegian 
classrooms in the international data of algebra teaching. We have discussed in detail 
the elements of the designed examples. The analysis has provided insights into the 
complexity of introducing algebra in the classroom. However, the phenomenon of 
teachers designing their own examples especially fitted for their classrooms deserves 
further attention from the research community: the role of this activity in the profes-
sional development of teachers; and which role these types of examples, with spe-
cific epistemological qualities as in start-up, model and reference examples, should 
play in student’s concept formation. Discussing and comparing the epistemological 
underpinnings of examples as mediating tools in the learning process seem to be 
critical for advancing a shared understanding among teachers of how algebraic con-
cepts can be made accessible to students.
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Chapter 6
Learning to Solve Equations in Three 
Swedish-Speaking Classrooms in Finland

Ann-Sofi Röj-Lindberg and Anna-Maija Partanen

�Introduction

The basic premise for this volume is that learning to solve equations is a critical 
moment in the school mathematical experiences of a student in many educational 
systems. A student may perhaps be able to figure out the missing value in an equa-
tion written as an open number sentence, but without understanding how and why 
the standard algorithm works for solving the very same equation. This particular 
situation has been shown to be associated with how student understand equality 
(Falkner, Levi, & Carpenter, 1999; Kieran, 1981; Knuth, Alibali, McNeil, Weinberg, 
& Stephens, 2011; Knuth, Stephens, McNeil, & Alibali, 2006; Vieira, Gimenez, & 
Palhares, 2013). Successful equation solving is connected to a relational meaning of 
the equal sign and to understanding the notion of an equation as a statement about 
an equivalence structure (Stacey & MacGregor, 2000).

In this chapter, we draw on video recorded episodes occurring in three Swedish-
speaking Grade 6 classrooms in Finland. We follow what happens when the three 
teachers Anna, Bror, and Cecilia in different ways try to account for the solving of 
arithmetic equations, where the unknown appears on one side of the equal sign.1 We 
introduce the viewpoints of the teachers, and we will also reflect on how the teach-
ers could have utilized the instances that appeared in the classrooms to bring their 
students’ understanding of equality further. And finally, we comment on the 
approach to learning equation solving on which the textbook series used in the three 
classrooms seems to rely.

1 The term arithmetic equation here used as proposed by Filloy and Rojano (1989).
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�Three Perspectives on Teaching for Learning Equation 
Solving

In the literature, it is possible to discern three general perspectives on how to teach 
mathematics in general. These are (a) a procedures-first perspective, (b) a concepts-
first perspective, and (c) a balanced approach. According to Rittle-Johnson, Siegler, 
and Alibali (2001) the procedures-first perspective and the concepts-first perspec-
tive are closely connected to the sharp distinction that traditionally has been made 
between two types of mathematical knowledge, procedural knowledge and concep-
tual knowledge (see, e.g., Hiebert, 1986), and to the competing theories that have 
been proposed regarding the developmental relations between these two types of 
knowledge.

From a “procedures-first perspective,” a student who first develops procedural 
knowledge for equation solving, will over time develop a conceptual understanding 
from repeated experiences of solving different types of equations. Simply put, the 
assumption is that the student’s understanding of the mathematical concepts will 
eventually emerge as the student grapples to make sense of why the procedures 
work, for instance by comparing solution methods to equations (Rittle-Johnson & 
Star, 2009).

From a “concepts-first perspective,” the student’s learning should start from 
developing conceptual knowledge, that is, knowledge of why procedures for solving 
equations work as intended. As this type of knowledge is flexible, and not tied to any 
specific type of equation, it is assumed that the student will be able to apply his or 
her conceptual knowledge to generate the proper procedures related to solving 
equations in general.

Advocates of a “balanced approach” argue that procedural flexibility and con-
ceptual knowledge are aspects so closely related to each other that the procedural-
conceptual dichotomy should be discarded. Kieran (2014) argues that there are 
conceptual components of procedures, and that even skilled procedural performance 
is constantly being updated by the conceptual. According to Kieran the very process 
of elaborating a procedure is a conceptually oriented activity. In relation to equation 
solving a balanced approach could support the students to see through the changes 
when the unknown is solved for, and contribute to increasing their capacity to rea-
son about and explain the changes and to justify them mathematically (e.g., Anthony 
& Burgess, 2014).

�Solving Linear Equations

A distinction can be made between an arithmetic and an algebraic notion of equality 
and a corresponding difference in arithmetical and algebraic understanding. 
Following Filloy and Rojano (1989) and Vlassis (2002), if the unknown in a linear 
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equation appears on one side of the equal sign only, e.g., x  +  5  =  8, 13x  =  39, 
6(x + 3) = 48, the student has less need to operate on or with the unknown, or to deal 
with the equivalence structure of the expressions on both sides of the equal sign. For 
equations of this arithmetical type, the student manages to find the value of the 
unknown by applying known number facts or inverse operations, i.e., only working 
arithmetically (as is shown in the other empirical chapters in this volume). However, 
when the unknown appears on both sides of the equal sign, arithmetical understand-
ing is no longer enough. Neither is arithmetical understanding enough in the abstract 
type of arithmetical equations where certain algebraic manipulations are needed, for 
example in the case of the presence of negative integers or subtracting the variable 
(e.g., 2 − x = 7) or several occurrences of the unknown (e.g., 6x + 5 − 7x = 27) (see 
Vlassis, 2002, p. 351). When solving such more abstract equations, a student with 
an algebraic understanding of equality first of all acknowledges that the expressions 
on both sides of the equal sign represent equal values, next that the solving process 
involves mathematical actions which preserve this balance and produce equivalent 
equations. Vlassis (2002) noted that concrete representations of equalities, like the 
two-pan balance model, may act as good tools for learning how to solve linear equa-
tions, but Vlassis also points at their limitations. For example, the balance model 
cannot represent the negatives in an equation. More generally, a true algebraic 
understanding of equation solving implies that the student can see through the equa-
tion as representing a concrete problem situation (for instance, that the expressions 
on both sides represent equal weights) and start to understand the equation as an 
equivalence structure maintained by the operations one has to apply on both sides to 
solve for the unknown. In arithmetic it is often enough to interpret the equal sign as 
an operator, as a do something-signal (Kieran, 1981). In algebra, however, the stu-
dent should interpret equality between two expressions as an equivalence relation 
that does not change.

When problems situated in “day-to-day situations” (an expression used in the 
curriculum, National Board of Education, 2004) are used to introduce students to 
the standard algorithm of solving equations, students need to refrain from an arith-
metical interpretation of the problem, a situation we will see appearing in the epi-
sodes discussed later. When solutions to these problems are found through the 
syntax of algebra, the meaning of the equal sign changes from announcing results to 
stating equivalences. Within an arithmetical interpretation, the meaning of the equal 
sign is dynamic, indicating that the problem has been solved. Within an algebraic 
interpretation the meaning of the equal sign is relational (Kieran, 1981), signaling 
an equivalence structure. Hence, the equal sign then carries a structural meaning as 
well. Furthermore, an algebraic interpretation implies that a student is able to refrain 
from immediately attributing a concrete meaning to a letter appearing in an equa-
tion. Instead, the student should interpret a letter as an unknown number, the value 
of which is not significant at the moment the equivalence structure is set up and 
manipulated (Vlassis, 2002).
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�The Notion of Equation in Curriculum and Textbooks

The mathematics syllabus in the current Finnish national curriculum for grades 1–9 
is quite general (National Board of Education, 2004). It does not stipulate any par-
ticular teaching approach but, rather, gives overall comments related to the import 
of meaning to mathematics from applied contexts and external domains. For exam-
ple, the syllabus highlights “day-to-day situations” as useful tools for developing 
mathematical knowledge, and it describes “concrete situations” as an aid for bring-
ing together the students’ experiences and systems of thought with the abstract sys-
tem of mathematics (ibid., p. 158). The curriculum defines the core mathematical 
content separately for grades 1–2, grades 3–5, and grades 6–9 and thus overlaps the 
boundary between primary school with generalist teachers (grades 1–6, students 
from 7 to 13 years of age) and lower secondary school with subject teachers (grades 
7–9, students from 13 to 16 years of age). The notion of equation appears in the cur-
riculum for grades 3–5 as seeking solutions to equations by deduction, and for 
grades 6–9 as solving of linear equations, solving of incomplete quadratic equations 
and solving of pairs of equations algebraically and graphically. The teacher and the 
local school authorities have a common responsibility for deciding on the mathe-
matical content for each grade. As a result, it is often the textbook and the teacher 
guide that actually define the mathematical content taught (Törnroos, 2001).

In the following, we briefly attend to how the notion of equation is approached in 
the textbook series used by the three teachers Anna, Bror, and Cecilia whom we 
meet later in this chapter. In this textbook series, each textbook section starts with a 
theoretical part, in the teacher guide described as a “box for teaching.” Here we find 
examples and explanations (see Fig. 6.1).

An equation consists of two expressions and an equal 
sign between them
Equation [x + 8 = 15]
Expression [x + 8]
Expression [15]

We form an equation from the picture and calculate the 
value of x. 
7 kg + x = 12 kg

x = 12 kg – 7 kg
x = 5 kg

Check: 7 kg + 5 kg = 12 kg

· The value of the unknown term x is found by 
subtracting the other term, i.e. 7 kg, from 12 kg. 

· You can check the solution of an equation by placing 
the number you got for x in the equation.
Example: x + 4 = 9 

x = 9 – 4 
x = 5.                  Check: 5 + 4 = 9

Fig. 6.1  The box for teaching which begins the section “Addition with one term unknown” 
(Asikainen et al., 2008a, p. 160, our translation)
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Each box for teaching is then followed by exercises to work on during the lesson 
and homework tasks, as well as supplementary tasks. To every textbook there is a 
teacher guide, which recommends the teacher to cover one textbook section each 
lesson. The teacher guide presents the main mathematical content, provides a sug-
gested lesson plan as well as activities for each lesson.

In the Grade 5 material (Asikainen et al., 2007a, 2007b), the notion of equation 
is formally introduced only in the teacher guide and as consisting of “an expression, 
the equal sign = and the value of this expression” (Asikainen et al., 2007b, p. 98). 
With a few exceptions, all equations in the Grade 5 book are of a concrete arithmeti-
cal type, i.e., with a single occurrence of the unknown and only integers (Vlassis, 
2002). On the right side of the equal sign there is always a single number. The num-
bers are small and the unknown can be found by applying known number facts or 
inverse operations. The Grade 5 book illustrates equality iconically as quantitative 
sameness with both two-pan balance scales and digital scales. The student is told to 
find the unknown intuitively by figuring out the weight of an unknown that 
keeps a two-pan scale in balance (see the example in Fig. 6.2), or that gives a certain 
numerical value for the digital scale (see the example in Fig. 6.3). The student is 
then asked to validate the solution of the equation by substitution as the following 
text exemplifies: “The solution to the equation 2 ⋅ x = 12 is x = 6 because 2 ⋅ 6 = 12” 
(Asikainen et al., 2007a, p. 187).

In the Grade 6 textbook, the content related to equation solving is divided into 
four sections (Asikainen et al., 2008a). The notion of equation is formally defined 
in terms of expressions and by reference to a relational meaning of the equal sign 
(Kieran, 1981) as consisting of “two expressions with an equal sign in between” 
(Asikainen et al., 2008a, p. 160). However, the example given to illustrate the defini-
tion is clearly an arithmetic equation. The separation of equation solving into four 
sections is based on the different roles of the specific unknown number in the equa-
tion: as an unknown term in expressions with addition, as an unknown term in 
expressions with subtraction, as an unknown factor in multiplication, and as an 
unknown dividend or divisor in division. Each type of equation is presented together 
with specific strategies for solving each type. Altogether six strategies are modeled 
in the “boxes for the teaching” of the four sections. For example, students are 
advised to use subtraction as a method when solving for the unknown term in 
expressions with addition (see Fig. 6.1). “You get the value for the unknown term x 
by subtracting the other term, that is 7 kg, from 12 kg” (ibid., p. 160). As an alterna-
tive method, the teacher guide says: “We can also subtract 7 kg from both sides of 

Fig. 6.2  Equation 
illustrated by means of a 
two-pan scale
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the equation. Then x is left on one side and 5kg on the other side” (Asikainen et al., 
2008b, p. 83). The Grade 6 textbook also asks students to set up equations from 
word problems as well as from iconic representations. Most word problems invite 
the student to generate equations using a phrase-by-phrase translation from natural 
language to an algebraic syntax, for example “Write down the equation which cor-
responds to: the number x divided by the number 6 is equal to 9” (Asikainen et al., 
2008a, p. 84).

In the Grade 6 textbook, the iconic representations appear as both digital scales 
and two-pan balance scales where equality is pictured as quantitative sameness. The 
balance model is used to represent equations where addition or multiplication is 
present, such as x + 375 = 530 (see Fig. 6.4) and 9 ⋅ x = 63 (see Fig. 6.5). A digital 
scale is used to represent equations where subtraction is present, for example 
20 – x = 11 (see Fig. 6.6) and x – 5 = 13 (see Fig. 6.7). Students are expected to infer 
the quantitative sameness from a problem situation represented with a digital scale 
together with a narrative that corresponds to the problem situation. But the quantita-
tive sameness is expected to be transformed into a particular equation, one where 
subtraction is present. For example, for Fig. 6.6 the problem situation is described 
in the following way: “Sand has been taken away from the sack on the scale. When 
the sack was full its weight was 20 kg. Now the weight of the sack is 11 kg. How 
much sand has been taken from the sack?” and the expected equation is 20 kg – 
x = 11 kg. The teacher guide recommends subtraction as the solution method as 
follows: “From the original weight of the sack 20 kg you subtract 11 kg, which is 
20 kg – 11 kg” (Asikainen et al., 2008b, p. 84).

The equations in the Grade 6 textbook continue to be predominantly concrete 
and arithmetical with a single occurrence of the unknown on the left side and one 
natural, fairly small, number on the right side of the equation. In general, the equa-
tions can be solved by figuring out the unknown value at a purely numerical level. 
Neither the textbook nor the teacher guide presents doing the same to both sides as 
a general strategy. The equations in the textbook do not put the teachers and students 
in situations where there is any obvious need to apply algebraic thought or to assume 
a more conceptual perspective in order to validate the solutions with reference to 
mathematical principles of solving equations.

Fig. 6.3  Equation 
illustrated by means of a 
digital scale

Fig. 6.4  Balance model 
illustrating addition

A.-S. Röj-Lindberg and A.-M. Partanen



117

�Participating Schools, Teachers, and Students

In this chapter of the book, we will visit three schools and Grade 6 classrooms in the 
Swedish-speaking community of Finland. As in the other countries, consecutive les-
sons on equation solving were videotaped and transcribed. The teachers answered a 
few clarifying questions immediately after each lesson and participated in formal 
interviews after the last (fifth) videotaped lesson. The participating students speak 
Swedish and most of them have Swedish as their first language. Two schools, here 
called A and B, are situated in the countryside. School C is situated in a small town. 
The schools have between 100 and 250 students and are of an average size in relation 
to other primary schools in the Swedish speaking parts of Finland. The group size in 
the three Grade 6 classrooms varies from 27 students in school A to 17 and 16 students 
in schools B and C. However, in school A the group was split into halves for three out 
of four mathematics lessons each week, and in school C four students were regularly 
taught mathematics by a special education teacher. In Finland decisions about split-
ting classes as well as about allocation of special education resources are made by the 
municipalities as a result of the decentralized national system for funding schools.

The three teachers, Anna in School A, Bror in School B, and Cecilia in School C, 
voluntarily participated in the study. The teachers have similar educational back-
grounds and have graduated from the same university as certified generalist teachers 

Fig. 6.5  Balance model 
illustrating multiplication

Fig. 6.6  Digital scale 
representing subtraction

Fig. 6.7  Digital scale 
representing subtraction
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and Masters of Pedagogy. In addition, Cecilia is specialized in sloyd education 
(handicraft). At the time of our visits their teaching experiences varied from Bror’s 
5 years of experience, to Cecilia’s seven and Anna’s 15 years of experience. They 
have all stayed with their classes for at least one and a half year, teaching also other 
subjects besides mathematics. Hence, they know their students well. Since a teach-
er’s relationship with his or her students is a critical factor in the students’ learning, 
this is important to keep in mind (Black, Mendick, & Solomon, 2009).

�Teaching Equation Solving from the Teachers’ Perspectives

According to Anna, her students were a little bit withdrawn during the first recorded 
lesson. She thinks that, because of the video cameras, some very competent 

students did not dare to say anything in whole-class discussions even though she 
noticed that they sometimes looked perplexed. Anna describes her group as a mix of 
strong and weak students with no really, really weak ones. According to 
Anna the group is on average really good in mathematics.

Bror describes his students as very silent during mathematics lessons, some 
students are strong while others are weak. Although the students sit pairwise in 
the classroom, they often work individually and silently in mathematics. Two of the 
students used to get remedial teaching in mathematics but were at the time of our 
visits integrated into the regular teaching. Bror says that he attends more closely to 
the progress of these two students.

According to Cecilia, the 13 students in her mathematics group are competent 
with good work ethics as they get a section done each lesson. The stu-
dents are talkative, they ask questions and give comments, and, contrary to the 
students in Anna’s group, even more so because of the presence of video cameras.

In the following, we present the three teachers’ accounts of how they teach equa-
tion solving in more detail. The presentations are based on the individual interviews 
the first author did with the teachers after the fifth video recorded lesson.

�Anna’s Account of Her Teaching

Anna describes flexibility and variation as aims for the affordances she makes avail-
able for her students. She wants to adapt to the reactions of her class. She cannot 
recall any school time memories related to equation solving, and normally she fol-
lows the textbook quite closely, however not slavishly. She seldom uses the 
teacher guide because, in her opinion, the guide frees a teacher from think-
ing. Every now and then she asks her students to practice mathematics with math-
ematical games or problem solving in small groups or individually on laptops.
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I try to teach without book sometimes; make it possible for 

the students to work with many different aspects. I want 

them to talk. There is not so much problem solving in the 

book, not so much text. I want them to work more with that, 

and also play games.

As Anna wants her students to talk during mathematics lessons, the exceptional 
silence she met during the first video recorded lesson on linear equations bothered 
her. But clearly this was not her only concern, and in hindsight she is critical toward 
the way she approached the lesson content. Equation solving was introduced by a 
substitute teacher the lesson before, and she was unsure about what the students 
actually knew about the topic. When asked if she would do anything differently if 
she taught the same algebra content again, she answers:

Knowing what I know now I would have changed the first les-

son completely. There were problems with the model of how to 

work with equations. They had not written any equations and 

the numbers were so easy. They immediately saw the value of 

x and just wrote ‘x equals’. I would have made the first les-

son much simpler. [During the interview it remained unclear 

what she meant by “simpler”]

�Bror’s Account of His Teaching

In his teaching Bror wants to support the mathematical thinking of all the students and 
he asks them to talk about their solutions. It is important for him to turn school math-
ematics into sense-making experiences and not into a subject where clarifying ques-
tions like: Why is it like this? are never asked. This goal is especially important for him 
in relation to the teaching of equations. Grappling with understanding the procedures 
for solving an equation was not an explicit issue during his own learning of mathemat-
ics at school, Bror argues. To solve an equation by transposition of terms from one 
side to the other and changing the corresponding signs was a technical procedure; the 
mathematical meaning of this activity, however, was not clear to him at that time.

For me it has been like if you move x to this side it becomes 

plus. I was always, already in upper secondary school, often 

the one who asked why this works. But no teacher had the time 

to answer my question. Since then I have cared very much 

about, and as far as I have been able to, to try to create 

some sort of meaning in mathematics. Not turn it into some-
thing because it has to be. And of course this is easier on 
this level than on the upper secondary level; to always try 

to connect to some sort of reality.
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When asked why he chose to work the way he did, he refers to having both the 
textbook and the teacher guide as his starting points for planning and executing his 
teaching. But as he finds the textbook too limited with how it connects 
to reality in terms of the tasks presented, he often starts a lesson with solving 
problems belonging to the everyday of the kids. This was also the case 
in the video-recorded lessons when he utilized such problems to introduce an alge-
braic interpretation of equation solving.

I often try to start from something belonging to the every-

day of the kids, like prices or fruit in a bowl, the prices 

of things and such. I try to at least. Sometimes my teaching 

gets mechanical and abstract. If you just start from equa-

tions it easily gets “numberish”, but starting as I did you 

might get a broader understanding of the use of and where 

equations come from.

�Cecilia’s Account of Her Teaching

Cecilia is convinced that deviations from the usual school mathematical practice 
where a section each lesson sets the teaching pace would be confusing for her stu-
dents. In her planning, she attends closely to the voice of the teaching guide as it 
tells her what you are supposed cover with the kids. However, it is also 
important for her to attend closely to the voices of her students. In her answer to the 
question How did the students engage in the tasks you gave them?, she refers to 
capitalizing on the range of contributions from students that occurred during the 
video recorded lessons.

In some way they talked a little bit more (mathematics) than 

they usually do. They are of course quite talkative but 

there were students, who normally don’t talk much and who 

don’t put their hands up so often, who now perhaps were a 

little bit more active (mathematically). I think this is 

good because often the same ones talk, give answers, express 

opinions, reason and ask questions and they might perhaps 

express a reasoning which I would not have accounted for in 

my teaching. In some sense they go a bit further on. I think 

this is good.

Cecilia describes a mismatch between the learning goals she has set up for her 
students in relation to equation solving and her own school mathematical experi-
ences. Now, from her perspective as a mathematics teacher, a first step in the 
students’ learning of how to solve equations is to unlearn their use of equality to 
represent a string of calculations.
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First they solve a task, and then they write the equal sign, 

then the answer, maybe add something on and a new equal sign, 

then they divide etc.

The next step is to get the students to understand the equal sign as representing 
an equivalence structure. They should, she says, understand that there has 
to be equal weights on both sides of the equal sign and that 

the letter is arbitrary. It doesn’t have to be the letter x. 
Cecilia remembers how she solved equations herself as a student by indicating 
inverse operations with a short vertical line at the right end of the equation. She 
describes this method as useful, but it did not carry any mathematical significance, 
and she does not connect it to a focus on the transformed equations as equivalent 
equalities.

This was the way in the book, and this is what the teacher 

did. I don’t know why you write that line, no idea. If you 

multiply you write a line and times 2 or with addition plus 

2 or subtraction minus 2 on both sides of that vertical line. 

I can’t remember why the line appeared. But I have used it 

when I have had to solve equations myself. It is hard to know 
which way is the smarter. But for these students it was less 
abstract to do it the way we did.

�Introducing Methods for Solving Linear Equations

Since solving linear equations appears in the curriculum and in the textbooks for 
Grade 6, primary school teachers have to make decisions about how to introduce 
this topic to their students. In the following, we attend closely to what happens when 
the three teachers Anna, Bror, and Cecilia in different ways try to introduce how to 
solve linear equations to their students, emphasizing slightly different aspects of the 
equation solving procedures.

�Why Can 7 + x = 12 Be Solved by Rewriting It as x = 12 − 7?

We start from an episode recorded in Bror’s classroom in school B. As a part of the 
research project on which this book is based, each teacher was asked, on the basis 
of their recorded lessons, to formulate questions to be discussed with the other proj-
ect teachers and to choose episodes to illustrate their particular concerns. Bror was 
especially puzzled by the method of solving equations when terms from one side of 
the equation are moved to the other while changing the corresponding signs. He 
wondered whether his students could grasp this procedure more deeply than just 
knowing how to execute the procedure. He asked himself if his students understood 
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why x in the equation 7 + x = 12 could be found using subtraction, that is, x = 12 – 7. 
However, he framed his concern in the episode we will discuss next, Episode 1, in 
more general terms. He asked: Is it necessary to explain the meaning of mathemati-
cal rules to students? And how can this be done?

In the beginning of the first video recorded lesson, Bror announced equations as 
the theme of the week and asked the students to recall and remember the definition 
of an equation as We calculate with letters representing something 
unknown. He then wrote on the whiteboard four uncomplicated and logically simi-
lar “day-to-day situations” as problems to be solved. The first problem situation 
was: There are seven fruits in a basket altogether. And four of 
the fruits are apples, the rest are pears followed by a question How 
many pears are there in the basket? Bror asked some students to give 
answers to the questions and then to explain how they got their answers. The first 
two explanations were given in the form of open number sentences, like Emmi’s 
Four plus something becomes seven. The other two explanations were 
directly expressed as subtractions of two numbers, like I took seventeen minus 
eight. Bror then asked Emmi if the word something in her explanation could be 
replaced. Emmi suggested: with x. During the following minutes, Bror and his 
students, again, represented the four problems, now by equations written in a table 
on the whiteboard (see Fig. 6.8). Each equation was then solved by subtracting the 
number added to x from the number on the right side of the equal sign. Finally the 
answers were checked by substitution.

So far, the lesson had progressed smoothly. All four problem situations were 
modeled as additions with one unknown and a resulting value on the right side of 
the equal sign. The students answered Bror’s questions, and they did not seem to be 
intrigued by the construction of the equations and the method of solving by subtrac-
tion. After getting the answers and explanations to the four questions, Bror focused 
his students’ attention on the content of the box in the beginning of the textbook 
section (see Fig. 6.1). Bror read the text in the box, which defines an equation as 
equality of two expressions. He then described the problem situation represented as 
a scale in balance, as well as the corresponding equation 7 kg + x = 12 kg and its 
solution. He continued by drawing the students’ attention to the method for solving 
this particular type of equation. The method was described in the box as you get 
the value of the unknown term by subtracting the other term, 

which is 7  kg, from 12  kg. After stating: this might sound like 

1 2 3 4

Equation 4 + x = 7 15 + x = 21 x + 8 = 17 x + 25 = 39

Solution x = 7 – 4

x = 3

x = 21 – 15

x = 6

x = 17 – 8

x = 9

x = 39 – 25

x = 14

Check 4 + 3 = 7 15 + 6 = 21 9 + 8 = 17 14 + 25 = 39

Fig. 6.8  Equation table written on the whiteboard by the teacher. Exactly the same table appears 
in the teacher guide (Asikainen et al., 2008b, p. 83)
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Hebrew, but we shall have a look at it, Bror started explaining why, in 
the equation 7 + x = 12, the unknown x can be found through a subtraction, x = 12 – 7.

Episode 1
In the beginning of this episode, through a series of questions, Bror tries to make his 
students notice what happens to the number seven when the equation 7 + x = 12 is 
solved. He wants the students to notice and formulate that this number has moved 
from the left side to the right side of the equal sign.

	 1.	 Bror: We have seven plus x and that equals twelve [Bror 
writes the equation on the whiteboard] And how do we get 

the answer? Once more, Lovisa?

	 2.	 Lovisa: Twelve minus seven.
	 3.	 Bror: Um. Does someone see something special when I do it 

this way (…) I mean, what is it that we actually do here? 

What happens to this seven? That is what I would like to 

discuss. What happens to this seven? Monika?

	 4.	 Monika: It was put last.
	 5.	 Bror: Yes. If we, if you say, with respect to the equal sign, 

what happens to it?

	 6.	 Monika: It goes beside twelve, no?
	 7.	 Bror: Yes, but with respect to the equal sign (…) Now you 

have seven there but then you have seven there. [Bror 

points to the sides of the equation.]

	 8.	 Monika: [inaudible]
	 9.	 Bror: What did you say?
	10.	 Monika: Well, that you have taken it away.
	11.	 Bror: Um. You, you think, or you, you mean the right thing, 

for sure, but you don’t say it the way that I would like 

you to say it. [he laughs]. What I would like you to say is 

that we have seven (…) then we put it on the other side of 

the equal sign. First you have seven on the left side of 

the equal sign, but then you have it on the right side of 

the equal sign. [Pointing to the whiteboard] That is what 

happens.

After getting to a conclusion about the new position of the number seven, Bror 
continues in the same utterance by focusing on its sign.

But what else happens to this seven? It changes place.

Leif, stop calculating, you will have enough time after-

wards. [Leif was working in his notebook.]

What else happens to this seven? (…) No hands.

This seven has changed place. [Bror points to the 

whiteboard.]

Don’t you see anything else? [Two students raise their 

hands.]
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Two see something else.

Maja, does the seven look like the same on the right side 

of the equal sign?

	12.	 Maja: Yes, but it is minus
	13.	 Bror: Yes! Good! It becomes minus. And this is the way we 

solve equations.

Maja noticed that the number 7 now was preceded by a minus sign, and Bror 
elevated her answer into a general description of a method for solving equations. He 
then attempts to explain the observation that the sign of the number seven changes 
from plus to minus when the number moves from one side to the other. Bror clearly 
has a particular explanation in his mind as he continues.

If you, you put it, maybe a little bit carelessly, yes, 

seven moves to the right side of the equal sign and then it 

becomes minus. [Bror points to the whiteboard.]

But why does it happen (…)

Why is it so?

	14.	 Monika: Because it always, when it is twelve minus seven, 
then twelve is a bigger number than seven, for that reason 

it must be minus

	15.	 Bror: Um. But it’s not for that reason that it becomes, that 
I must change its sign.

Bror then rejects Monika’s arithmetical interpretation without any further com-
ment and changes the focus of his questioning to the meaning of the equal sign.

Well, what if we say that on the left side and the right 

side of the equal sign. This here and this here. [Pointing 

to the equation on the whiteboard.]

What can you say about it?

What is on the left side and what is on the right side of 

the equal sign (…)

What must they be like? It is self-evident, isn’t it? Equal 

sign. What must they be like, those which are on the left 

side and on the right side of the equal sign? Yes, they must 

be (…) [Only a few students raise their hands.]

Now I want to have more hands raised. Wille, you haven’t 

said anything today.

	16.	 Willie: Oh
	17.	 Bror: What must they be like (…) if I put an equal sign?
	18.	 Willie: Oh … like
	19.	 Bror: If I have an equal sign, what does it mean? [Pointing 

to the equal sign in the equation on the whiteboard.]

	20.	 Willie: What the answer was.
	21.	 Bror: What did you say?
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	22.	 Wille: What will be the answer.
	23.	 Bror: Um. Yes, we are used to put, we are used to put it there 

to write our answer. But what (…) What is on the left side 

and what is on the right side of the equal sign, they must 

be then? [Bror points with his pen, first to the equation 

on the whiteboard and then to the students.]

	24.	 Leif: Equal

Leif filled in with the word equal which Bror wanted to hear. Then Bror contin-
ues his questioning. He wants the students to notice that to preserve the equality, if 
you do something to the one side of the equation, you have to do the same thing to 
the other side as well.

	25.	 Bror: Equal. That’s what I was searching for, Wille. They 
must be equal, mustn’t they?

And if we take, what we have done here with this expression, 

seven plus x. [Bror sweeps with the pen towards the left 

side of the equation on the whiteboard.]

So what have we done here to get x alone. [Bror points to 

the x.]

What have we done to get x alone, what have we done? Monika 

(…)

How are these two different? This here and this here. [Bror 

draws a red circle around 7 + x and around x on the 

whiteboard.]

What’s the difference?

	26.	 Monika: I don’t know [Monika smiles.]
	27.	 Bror: Yes you do know.
	28.	 Monika: No.
	29.	 Bror: So seven plus x, what’s the difference between seven 

plus x and x? (.) I have taken away

	30.	 Monika: Seven [Monika laughs a bit.]
	31.	 Bror: I’ve taken away seven. From this expression, I have 

taken away seven and got x. Well, then, it means that if 

this still should be true, I have to do the same thing on 

the other side as well. Right?

Are you following? Um (…) Somewhat uncertain. So if I take 

away seven from this expression, it means that I have to, 

so that it still would be true, so that I can still put the 

equal sign, then I must take away seven from the other side 

as well. [Bror sweeps with his hand towards the equation on 

the whiteboard.]

Now it seems, contrary to what happened at the beginning of the lesson, that 
there is an emerging mismatch between the expectations of Bror and the participa-
tion of the students in answering his questions (utterances 3, 11, 13, 15, 19, and 25). 
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As it seems from the interaction, the students tried hard to answer the questions 
posed to them, but they did not succeed in producing the kind of answers that Bror 
was satisfied with. A few times, by giving hints, Bror narrows his demands in order 
to get the desired answer from the students (utterances 5, 11, 15, and 23). When he 
finally asks the students whether they had been following his teaching, he gets 
responses which he interprets as expressions of uncertainty. Immediately after the 
end of the episode, Bror continues by stating that he made the situation very difficult 
for the students because he wanted to explain why we can do it this 
way (i.e., use subtraction to find the value of x).

So what happened in this episode? Why did the students not participate in a man-
ner Bror seemed to expect, and as they did at the beginning of the lesson? When 
solving the equations at the beginning of the lesson, the class used subtraction, 
which is the inverse operation of addition, to find the value of the unknown. In many 
cases the solution was also easy to see, to deduce from the situation. The students’ 
interpretations of the equal sign can be seen as purely arithmetical; there was no real 
need to refrain from seeing the equal sign as a symbol for announcing a result. In 
their answers, the students referred several times to the equal sign as a do something-
signal like in the answers Four plus something becomes seven and What 
will be the answer. The students in this class were familiar with arithmetical 
equations where the unknown appears on the left side only and with just one number 
on the right side. This is obvious also in the equations the students themselves 
designed during the second video recorded lesson (see extract from Alf’s notebook 
in Fig. 6.9). The equations constructed by the students were to a large extent more 
diverse than the textbook equations with both small and large numbers and a variety 
of operations, but all were of the arithmetical type.

However, the explanation given by Bror referred to the algebraic way of inter-
preting equations which is known to be based on a very different conceptualization 
of equality than the arithmetic one (Herscovics & Linchevski, 1994). Even when 
algebraic methods for solving equations are the main topic of teaching, students 
often have difficulties in realizing the conceptions needed (Filloy & Rojano, 1989; 
Herscovics & Linchevski, 1994; Knuth et al., 2006), and intentional and extensive, 
even innovative, teaching is recommended to bridge the gap. The students in this 
class, during this particular lesson, met the algebraic way of interpreting equations 
suddenly and they were unprepared. They were not given a chance to be involved in 
reasoning about different ways to represent the same problem situation in the form 
of equalities, and Bror’s attempt to support his students in making sense of the 
method of solving an equation with addition ended up in the mismatch observed. 
Rittle-Johnson and Star (2009) argue that comparing essential features in solution 
methods to the same problem may be a good way to support a student’s mathemati-
cal competence related to equation solving.

One can also wonder whether the students were motivated at all to make sense of 
the new complicated way of thinking about equations, since the solutions to the 
problem situations in the beginning of the lesson were obtained more economically 
by arithmetical means. In fact, the equations were never used by the students to find 
solutions to the problems they presented. Thus, it was of no advantage to take theo-
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retical control by validating the solutions algebraically. Stacey and MacGregor 
(2000) emphasize that from the students’ point of view, using algebra to solve easy 
arithmetical problems is an “extra difficulty imposed by the teachers for no obvious 
purpose” (p. 165). To appreciate the value of algebra as a problem-solving tool, they 
argue, students should work on problems which are not easily solved without alge-
bra and ask several questions about one problem instead of changing the problem 
situation (ibid., p. 165).

�“How Can I Get Plus Twelve to Zero?”

Our second example is from Anna’s classroom in school A, where the first video 
recorded lesson started with Anna approaching equations arithmetically: she wrote 
an open number sentence on the whiteboard: 4 + _ = 9. As answers to Anna’s ques-
tions about the missing value, the students answered with the missing number, and 
they named the object on the board an equation. Then Anna gave a rather abstract, 
lecture-type introduction to equations using a ready-made presentation on the 
whiteboard. She read aloud: An equation is an equality between two 
mathematical expressions, which are called the left side and 

the right side. It includes one or more unknown numbers. If 

there is one unknown number, you normally use the letter x. She 
then filled the place holder in the open number sentence already written on the 
board with the letter x.

Fig. 6.9  A page in Alf’s notebook. To the left are equations constructed by Alf; to the right are 
textbook equations
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Next, Anna continued to read aloud the text on the whiteboard: An equation 
is an equality between two sides. The two sides are separated 

by an equal sign. She illustrated this statement with the eq. 4 + x = 9 and 
emphasized that both sides of the equation must be equal. In her presentation, she 
then pointed to a numerical equality, 4 + 2 = 7 − 1, and stated that the value of both 
sides is six. Then Anna asked the students to solve two open number sentences and 
stated that instead of a place holder, you can use a question mark or the letter x. She 
continued to talk about the convention of using the letters x, y, or z for an unknown. 
All the equations she has shown to her students so far included only one number on 
the right side, except for the equality 4 + 2 = 7 – 1, which she used to indicate a new 
meaning of the equal sign: the equal sign as a signal of an equivalence structure.

Before the start of the following episode, Anna has referred to the procedure of 
solving equations step by step as a mathematical strategy. She writes the 
equation x + 12 = 18 on the whiteboard and starts describing the procedure for solv-
ing it.

Episode 2
The first step is to get x alone on the left side.

	 1.	 Anna: An example. x (…) plus (…) twelve is equal to eighteen 
[writes on the whiteboard], and we know that x should be 

six, this is what we know. But also this way of thinking 

about how to do it. What we have to aim at is, I want to 

have (…)

If I have an equal sign in the middle, then I shall aim at 

having x alone in the left side (…) But now I have plus 

twelve there, what do you think, the way of thinking, how 

can I get this plus twelve away from there? I want to have 

x alone on the left side of the equal sign. How can I get 

it away? Janne

	 2.	 Janne: Eighteen minus twelve
	 3.	 Anna: Oh yeah, but (…) now I have it there. What should I 

do, just to fling it away? How can I get plus twelve to 

zero? How can I get plus twelve to zero? Well (…) Nelli.

	 4.	 Nelli: Maybe add [inaudible]
	 5.	 Anna: No, if I have, how can I make plus twelve into zero?
	 6.	 Anna: How shall I get plus twelve to zero, nothing? Olle
	 7.	 Olle: Maybe change it to x [inaudible]
	 8.	 Anna: No. Helena
	 9.	 Helena: [inaudible]
	10.	 Anna: How shall I get plus twelve to zero? [Anna draws a 

minus sign after the number 12 on the left side of the equa-

tion.] I have helped you a little bit on the way. Nelli.

	11.	 Nelli: Minus twelve.
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The message is: what you have done on the one side, you also must do on the 
other side.

	12.	 Anna: Minus twelve. But twelve minus twelve is zero, isn’t 
it? But now the thing here, now I had, when I do something 

on the left side, so what do you think I should do on the 

right side? (…) Tor

	13.	 Tor: Take away from there, that twelve
	14.	 Anna: What did you say?
	15.	 Tor: Take away the twelve from there
	16.	 Anna: Exactly. I have to do the same thing here, now I have 

got eighteen, what should I also do then, here, on the right 

side? Well, now, Mimmi

	17.	 Mimmi: Minus eighteen.
	18.	 Anna: No, not minus eighteen, the same thing as on the left 

side. Mimmi.

	19.	 Mimmi: Minus twelve.
	20.	 Anna: Minus twelve, well let’s check, x, twelve minus twelve 

is zero, so then, now I’ve got x on the left side, eighteen 

minus twelve is (…) quickly Mimmi

	21.	 Mimmi: Six.
	22.	 Anna: Six. Now I have, stepwise, through mathematical steps, 

done this equation. You could quickly see that it must be 

six. You could do it just like that. But now I have shown 

how it actually goes step by step. I want to have x alone 

on the left side, so that I get that x equals to. And then, 

I just have to look what I have on that side, what I need 

to do. In this case, I had plus twelve, then I have to take 

minus twelve so that it becomes zero. But when I do some-

thing on the left side, I also have to do the same thing on 

the right side. Do you understand? Did you follow?

	23.	 Students: Yeah, um.

In this episode we can see the same phenomenon occurring as in Bror’s class, 
maybe it is now a little bit less dramatic. When Anna starts teaching the steps of 
solving the equation x + 12 = 18 (see Fig. 6.10), the students do not contribute with 
the answers she seems to expect (utterances 1, 4, and 9). The answers the students 
give also show some uncertainty: two students start their answers with maybe. After 
receiving a hint from Anna in the form a minus sign drawn after number twelve in 
the equation, Nelli gives the expected answer, minus twelve (utterances 11, 12). 
Like in Bror’s class, solving an equation by algebraic means, and with an algebraic 
interpretation of equality, is unfamiliar to the students who most obviously are 
thinking about equations in an arithmetic way. They, however, try to fulfill Anna’s 
expectations when answering her questions.
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Immediately after the previous episode, Anna and her students started solving 
the equation y – 6 = 11. In the following episode, the steps in the procedure for solv-
ing a linear equation are repeated and the importance of “doing the same on both 
sides” is stressed again.

Episode 3
	 1.	 Anna: y minus six equals eleven, an equation. Now, I know 

that you can, you’re quick, you know the answer. But, now, 

we shall think about the mathematical steps. What do I 

want, I’ll put the equal sign here, what do I want to have 

alone on this side of the equation? What am I aiming at?

	 2.	 Sofia: x
	 3.	 Anna: In this case?
	 4.	 Sofia: y
	 5.	 Anna: y, okay, I’ve got y there. But it is not yet ready, 

I’ve got the minus six, what shall I do then, what do I want 

to do then? Now I’ve got minus six. Cecilia.

	 6.	 Cecilia: You want to make it zero.
	 7.	 Anna: And how can I get it?
	 8.	 Cecilia: Plus six.
	 9.	 Anna: Plus six. Okay. And then on the right side I had 

eleven. Are we finished with it, or shall I still do 

something?

	10.	 Anna: What does Janne say?
	11.	 Janne: Plus six.
	12.	 Anna: Plus six, too. Why Janne, plus six there too?
	13.	 Janne: We have to do the same thing on both sides.
	14.	 Anna: The same thing on the left and right sides. What I do 

on the left side, the same thing on the right side, or on 

the right and left sides. And it’s plus six, now, because 

I had minus six. Okay. Then I have got y. Those two cancel 

each other out. Yes, then I’ve got y there. And what will 

there be on the right side (…) Vanja

	15.	 Vanja: Seventeen
	16.	 Anna: Seventeen. And I know that you could have been able, 

you could find it already in a few seconds, but now we did 

the mathematical steps, again. Are you following? [The 

Fig. 6.10  Solving 
x + 12 = 18 on the board

A.-S. Röj-Lindberg and A.-M. Partanen



131

three equalities y – 6 = 11, y – 6 + 6 = 11 + 6, y = 17 are 

now written beneath each other on the blackboard.]

	17.	 Students: Yeah, yeah.
	18.	 Anna: Beginning to understand this, although these are easy 

numbers (…) This is what you will practice in the book. This 

is then, now you have solved equations, easy equations. 

Later, there will be a little bit harder ones, but now we’ll 

begin with these.

In this second episode from Anna’s classroom, we can notice how the students 
and Anna use the same wordings as when solving the equation x  +  12  =  18  in 
Episode 2. In her first utterance in Episode 2 Anna states her expectation very 
clearly when she says: I want to have x alone on the left side of the 
equal sign. Now in this second episode she formulates the same expectation as a 
question to the students: What do I want to have alone on this side of 
the equation? The student Sofia remembers that the teacher wants to have x 
alone, but in this case the letter happens to be y (2). In the second episode Anna 
asked many times: How shall I get plus twelve to zero? In this episode 
she asks (5): What do I want to do then. Now I’ve got minus six. And 
Cecilia answers (6): You want to make it zero. In her summary at the end of 
Episode 2, Anna reminded the students that when I do something on the left side, I 
also have to do the same thing on the right side. In this episode Janne repeats that: 
We have to do the same thing on both sides (13), and Anna confirms 
that Janne remembers correctly when she says The same thing on the left 
and right sides. What I do on the left side, the same thing on 

the right side, or on the right and left sides (14).
Through the two episodes above, we see how teacher Anna and her students are 

using language, key terms, and phrases, to support the recall of the procedure for 
solving this type of equations. Language functions as a tool for memorizing the 
procedure. Although Anna repeatedly emphasized that you have to do the same 
thing to both sides of the equation, she did not focus on the mathematical reasons 
for doing this. There is a strong procedural emphasis (Hiebert, 1986; Kieran, 2014; 
Rittle-Johnson et al., 2001) in her teaching, and she does not, in this sequence, offer 
possibilities for her students to construct mathematical meaning for the steps. There 
is the possibility that the activity was reduced to performing operations on symbols 
the students did not understand (Herscovics & Linchevski, 1994). And when the 
only option is to memorize a series of rules, students are highly likely to forget them 
or remember them incorrectly at some later point in time (Falkner et al., 1999).

An analysis of the students’ notebooks reveals that only a few students used add-
ing or subtracting the same number on both sides as an equation solving method. 
The method was used only for equations in which a number was subtracted from the 
variable (e.g., x  –  10  =  15), indicating that those who adopted the new method 
assimilated it into their existing idiosyncratic repertoire for finding an unknown 
number in an equation. Anna’s communication with her students did lead the stu-
dents into an algebraic way of solving equations.
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�To Know the Amount of Sand Used, We Have to Subtract

The third approach to equations comes from a lesson in school C taught by Cecilia. 
She started the first video recorded lesson by discussing the meaning of the equal 
sign with her students. She referred back to the mathematics test she had just marked, 
and told the students that they, again, had forgotten something. She wrote an equal 
sign on the blackboard and asked what it means (see Fig. 6.11). A student answered 
that it means that there is the same number on both sides, so 
that it is the same thing, and another student added they must weigh 
the same. As a response to a further question posed by Cecilia, a student read the 
sign as is equal to (in Swedish: är lika med). Cecilia then wrote this below 
the equal sign and drew an arrow from the text to the sign.

Cecilia continued with an explanation of what she meant by her comment that 
the students had forgotten something. On the blackboard she copied a solution to a 
task where the students were asked to calculate the area of a triangle (see Fig. 6.12): 
3 m · 4.2 m = 12.6 m2/2 = 6,3 m2. She asked the students to comment on the solution. 
A student answered that the text on the board tells that three meters times 
four point two meters equals six point three meters and continued 
it is not true. Cecilia asked how they could correct the statement, and a stu-
dent suggested that you should start writing a new row with 12.6 m2 divided by two. 

Fig. 6.11  Connecting “Is 
equal to” to the sign =

Fig. 6.12  Discussing expressions relevant for calculating the area of the triangle
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Cecilia insisted that she wanted to do the correction in the expressions already writ-
ten on the board, and a student suggested that 3 m · 4.2 m should be divided by two. 
Cecilia agreed and emphasized that because the area of a triangle is base times 
height divided by two, it should already be there in the first expression. And, she 
continued; now that they are beginning to study equations, the students should not 
by any means forget what the equal sign written on the board means. Otherwise 
there will be problems, she warned.

After the discussion about the equal sign, Cecilia wrote the equation x + 8 = 15 
around the equal sign already existing on the blackboard. She named the parts in the 
equation by pointing to the different sides and the equal sign and saying this 
expression is equal to this expression as well as rounding the whole 
equation by her hand and saying then this is an equation. One student was 
ready to offer a solution to the equation and suggested that to get to know the 
answer for x we have to take eight minus fifteen which is seven. 
Cecilia wondered if it was possible to take eight minus fifteen. The student cor-
rected her answer to be fifteen minus eight. Together with the student, Cecilia con-
cluded that it must be fifteen minus eight, because otherwise the answer would be 
negative. After a short discussion about the right way of writing the solution, Cecilia 
asked the class to check the solution.

Cecilia also illustrated equality by a two-pan balance scale. She placed five blue 
and five pink blocks in one pan and ten green blocks in the other pan. A student sud-
denly added a rubber gum to the pan with the green blocks. Cecilia wrote on the 
board the contents of the pans of the balance: 10 green +1 rubber gum and 5 
blue +5 pink. She asked the students: What went wrong? The students 
answered that the rubber gum is wrong. It made the other side too much. Cecilia 
asked the student to take the rubber gum away and illustrated equality as balance. 
She then said ten here and ten here, raised up the blocks, and kept them up 
in front of the pupils. Five plus five equals ten, they must weigh the 
same.

After demonstrating with the balance scale, Cecilia told the students to start 
working with an exercise including similar addition equations as in the previous 
example (x + 8 = 15), giving instructions to write down the solution. She stressed 
that the students should write the original equation in their notebooks, and that they 
also should write all the steps, just like in the example on the board. Only an answer 
was not sufficient. After some negotiation about the accepted way of writing down 
the solution the students started working.

In line with her goal to help the students unlearn their earlier use of the equal sign 
to represent a string of calculations, Cecilia focused on the relational meaning of the 
equal sign in several ways: by discussing it explicitly with her students, by referring 
to a solution a student had made in the test, and by representing both inequality and 
equality with a balance scale. These situations were familiar to the students, who 
also participated in the corresponding discussions in seemingly relevant ways. An 
explicit attention to the equal sign in teaching materials offers students possibilities 
to develop their understanding of the equal sign as expressing a relation (Knuth 
et  al., 2006). Especially, the balance scale model as an analogy for an equation 
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allows students to form strong and long-lasting mental images of equality and of the 
operations that can be applied to both sides of the equal sign to maintain the equality 
(Vlassis, 2002).

The introduction to equations in Cecilia’s class might well have functioned as a 
starting point for introducing algebraic methods for solving equations. However, 
Cecilia did not utilize these ideas in the solution procedure of the addition equations 
in this lesson. As in the introductory example x + 8 = 15, all the exercises included 
only expressions with addition of one unknown, and they were solved through arith-
metical means, by subtracting the known term in the expression on the left side from 
the number on the right side, without any further discussions.

Immediately after the first lesson about addition equations with one unknown, 
Cecilia taught another lesson focusing on subtraction equations. In the textbook, 
they are separated into two types and exemplified by the following equations (see 
also Figs. 6.6 and 6.7):

	1.	 20 kg − x = 11 kg, which is solved as x = 20 kg – 11 kg
	2.	 x – 5 kg = 13, which is solved as x = 13 kg + 5 kg.

While teaching methods for solving the two different types of subtraction equa-
tions, Cecilia grounds her discussion on the context of taking sand or concrete pow-
der out of a sack.

Episode 4
Cecilia starts by presenting the problem situation depicted in the box for teaching 
(see Fig. 6.6), posing the corresponding question.

	1.	 Cecilia: When you look at that blue box, you can see that there 
is a sack on a scale, and that the original weight of the 

sack was 20 kg. They had 20 kilos sand in it, and now it 

weighs 11 kilos, and we would like to know.

	2.	 Student 1: No, this is difficult.
	3.	 Student 2: No, it isn’t
	4.	 Cecilia: What, what
	5.	 Viktor: [inaudible] 20 kilos and on that 11 [Viktor refers to 

the scale], it makes 31 kilos.

	6.	 Student: No, but that,

Viktor does not interpret the problem in an expected way, and Cecilia illustrates 
the situation in words and by drawing on the blackboard.

	 7.	 Cecilia: No Viktor, think about it this way. [Cecilia draws on 
the board.] We buy a sack of sand from a shop; it weighs 20 

kilos when we buy it, right?

	 8.	 Viktor: And then it is.
	 9.	 Cecilia: And you put sand in the ground, right? You put sand 

there (…)

	10.	 Viktor: Well, this is for real.
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	11.	 Cecilia: And then you put it on a scale. [She draws the scale.] 
We have a digital scale today, and you put it there.

	12.	 Viktor: Yes, and there it says 20 kilos, so it has to be 20.
	13.	 Cecilia: And it still says 20 kilos sand here, but you have 

just put sand on your pathway so that you wouldn’t slip and 

get wet trousers.

	14.	 Viktor: What is that 11 then?
	15.	 Cecilia: And now when you have it on the scale, you want to 

know how much sand I have left in my sack.

	16.	 Viktor: Yes, so it is 11 kilos.
	17.	 Cecilia: Then it weighs 11 kilos, that sack, now, right? How 

much sand did you use to put on your pathway? Elli?

	18.	 Elli: [inaudible]
	19.	 Cecilia: What did you say?
	20.	 Elli: Nine.

Elli answers the question correctly and Cecilia writes the equation 
20 kg – x = 11 kg to describe the situation and starts discussing the solution process 
of the equation (see Fig. 6.13).

In her explanation, Cecilia uses the method for solving addition equations as a 
starting point and shows to her students that now they cannot solve the equation in 
the same way.

	21.	 Cecilia: If I put (…), aa, I can’t, now if we do it the same 
way like when we added, that we put, put this way. [Cecilia 
writes x = 11 kg - 20 kg.]

	22.	 Student: But it says that we have to
	23.	 Student: But shouldn’t you now put?
	24.	 Cecilia: What’s wrong here? [Cecilia points to the equation 

x = 11 kg - 20 kg written on the board.]

	25.	 Student: It becomes negative.
	26.	 Cecilia: Yes.

Fig. 6.13  The situation on the blackboard after utterance 35
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	27.	 Student: But then it must be 20 minus 11, otherwise.
	28.	 Cecilia: Um, exactly. [Cecilia wipes out 11 kg - 20 kg.] So we 

have to switch

	29.	 Student: But we did that also when we did plus.
	30.	 Cecilia: No [Cecilia writes 20 kg - 11 kg on the board.]
	31.	 Student: [inaudible]
	32.	 Cecilia: And what does x become then?
	33.	 Student: [inaudible]
	34.	 Student: Nine kilos
	35.	 Cecilia: Um, [Cecilia writes on the board.] nine kilos. Now we 

know that we have used nine kilos of sand on our pathway. 

Um.

After this, Cecilia, together with her students, solves the other problem from the 
box for teaching (see Fig. 6.7). The problem situation is that 5 kg concrete powder 
has been taken away from a sack and there is 13 kg left. How much concrete powder 
was there originally in the sack? Cecilia presents the problem as an equation 
x – 5 kg = 13 kg and, again, she illustrates the situation by drawing and explaining 
it thoroughly. One student volunteers to answer and says that to know the original 
amount of concrete powder they have to add 13 kg and 5 kg. Cecilia agrees, but 
wonders why now, suddenly, they have to add although in the previous example they 
had to subtract (see Fig. 6.14).

	36.	 Cecilia: What makes the difference between this equation here 
and this equation here [Cecilia points to the two equations 

on the board] is that here we know how much we had in the 

sack from the beginning, we have used x kilos and we have 

11 kilos left. For that reason we have to subtract what is 

left from the original to get to know how much sand we have 

Fig. 6.14  Cecilia explains why the unknown is solved by subtraction
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used. Here, we don’t know how much we had in the beginning, 

but we know that we took 5 kilos from the sack and have 13 

kilos left, and then we have to add (…) Do you follow?

	37.	 Students: [both yes and no-answers]

When concluding her teaching, Cecilia justifies the use of different methods for 
solving the two subtraction equations by referring to the necessities of the real-
world situations. The students did not, however, enter into any discussion about the 
underlying principles. Balacheff (2001) refers to this kind of approach as symbolic 
arithmetic. Typical of that genre is that arithmetical problems are symbolized in 
algebraic form, but a parallel relationship between the symbolic manipulation and 
the referent world is maintained as long as possible. Thus, the problem solution is 
validated through a pragmatic control; it is justified by the initial contexts of the 
problem. This approach is in line with the syllabus which describes “concrete situ-
ations” as an aid in bringing together the student’s experiences and systems of 
thought with the abstract system of mathematics (National Board of Education, 
2004). However, as Balacheff (2001) reminds us, symbolic arithmetic is not enough 
to help students enter the world of algebra.

In the beginning of her introduction to equations, Cecilia grounded the algebraic 
way of interpreting equations through activities that the students readily contributed 
to. But her teaching of methods for equation solving relied heavily on either the 
inverse operations or features of a particular problem situation.

�Discussion

All the three teachers took initiatives to lead their students forward, from an arith-
metic, and everyday, interpretation of equations to an algebraic way of solving 
them. Bror and Anna tried to teach according to the strategy of doing the same 
thing to both sides of the equation, and Cecilia emphasized the neces-
sity of understanding the structural meaning of the equal sign. However, in general, 
the discussion of the topic in the lessons we have recorded, and the tasks given to 
the students by the teachers, did not consistently support moving to an algebraic 
way of understanding and solving equations. Despite the relational definition in the 
Grade 6 book of an equation as “two expressions with an equal sign in between,” the 
analyses indicate that the textbook continues to expect equation solving to proceed 
within an arithmetic domain where the equal sign is interpreted operationally as a 
dynamic “do something-signal” (Kieran, 1981) and as indicating the answer to a 
problem. The book presents arithmetic equations which are logical equivalents of 
missing value problems. In these arithmetic equations, the unknown is always on 
one (mostly the left) side and there is a single number on the other side.

Neither the teachers, nor the authors of the Grade 6 textbook, seem to be aware 
of the underlying conceptual differences between solving equations within an arith-
metical interpretation of equality as opposed to an algebraic interpretation. The dif-
ficulties of appropriating algebraic ideas from the teaching illustrate why a transition 
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from arithmetic to algebra may not proceed as smoothly as intended. The students 
had encountered missing value problems in the textbooks every now and then from 
the first grade onward. They are familiar with the logic of that type of task. When 
introducing equations, the Grade 6 textbook writers seem to build on this basis. 
However, the students’ earlier firm conceptions about equations were not chal-
lenged in the teaching observed. There was no real need for students to adopt alge-
braic ways of thinking about equations. At best, solving equations by adding or 
subtracting the same term from both sides of the equation seems to be used by stu-
dents as one procedure among others and applied solely to one particular type of 
equation. Thus, the data indicated that the students did not experience a need for an 
algebraic interpretation of the equal sign to solve the tasks, and the book did not 
explicitly encourage students to expand their mathematical knowing into operating 
with or on the unknown. Instead of a smooth transition from arithmetic to algebra, 
Balacheff (2001) recommends that students should experience a clear rupture 
between arithmetic and algebra. The rupture might, for example, be introduced 
through a strong emphasis of the newness of the situation or by giving more com-
plex equations to be solved.

Even first and second graders have been observed to construct the structural 
meaning of the equal sign when presented to suitable missing number problems and 
given the possibility to discuss their interpretations of the tasks (Falkner et  al., 
1999). Carraher, Schliemann, Brizuela, and Earnest (2006) found that students in 
grades 2 to 4 in their study could learn to construct and compare additive algebraic 
expressions and develop an algebraic interpretation of a variable as a general num-
ber. We hypothesize that in many cases minor changes and extensions in the types 
of tasks presented to children in the elementary school arithmetic, and the whole 
class discussions held, can help young children construct important ideas behind 
solving equations in algebra. Instead of “operation on two numbers equals an 
answer”-type of equalities, children should meet versatile missing value problems 
(such as 5 = 12 – _, 5 + 7 = _ + 6, and 2 + _ = _ – 4) presented using multiple repre-
sentations, e.g., manipulatives, drawings, and symbolic expressions. The structural 
meaning of the equal sign should be discussed in making sense of those situations. 
If children are asked to investigate and construct true and false equalities of different 
types with two-pan balance scales, they could investigate how a true equality 
remains true when the same number is added to both sides or subtracted from both 
sides, and they could investigate the influence on the equation of multiplying and 
dividing both sides by the same number. With game-like activities, the concept of 
variable could be developed. Affording the children investigations of series of arith-
metic tasks with a pattern and discussing the pattern would raise the level of discus-
sion in the classroom and help children to think generally about numbers. With 
Schliemann, Carraher, and Brizuela (2013), we call for teaching experiments and 
research on Early Algebra Education, aimed at laying a foundation for algebra 
already when very young children study arithmetic.
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Chapter 7
How Teachers Introduce Algebra and How 
It Might Affect Students’ Beliefs About 
What It Means to “Do” Mathematics

Karen B. Givvin, Emma H. Geller, and James W. Stigler

�Introduction

When we think of the learning that takes place in classrooms, we normally think 
first of content knowledge—the knowledge of facts, concepts, theories, and princi-
ples. And, indeed, it is normally this kind of subject-matter knowledge that we 
assess on exams. However, what students learn in school includes also attitudes and 
values associated with the content. In mathematics, for instance, they learn what it 
means to do mathematics. We assume that students’ beliefs about mathematics and 
how to learn it are, at least in part, a consequence of the socialization they receive 
through participation in classroom mathematics. Mathematics—as distinct from 
some other school subjects— is primarily learned in school. So it is in school, we 
believe, that students are most likely to develop their views of mathematics. These 
views might be inferred from the kinds of tasks they are assigned, the expectations 
set for how they should work on the tasks, or the kinds of feedback they receive for 
their performance; or they might be explicitly taught, by a teacher or by peers 
(Cobb, 1987; Franke & Carey, 1997; Schoenfeld, 1983; Stodolsky, 1985; Stodolsky, 
Salk, & Glaessner, 1991; Yackel & Cobb, 1996).

Beliefs about what mathematics is and how it should be done might have conse-
quences for students’ long-term learning and retention. In the U.S., students enter-
ing community college take placement tests in mathematics. Based on these tests, 
59% of these students nationwide—most of whom are high school graduates—are 
deemed unprepared for college-level mathematics (Bailey, Jeong, & Chi, 2009). 
They are placed into remedial classes where they repeat the mathematics they 
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presumably have already been taught: beginning algebra, pre-algebra, and even 
basic arithmetic. Most of these students never make it into a college-level mathe-
matics course or graduate from college.

When we interviewed a group of these students in order to better understand their 
beliefs and what they do and do not know about mathematics (Givvin, Stigler, & 
Thompson, 2011), we found three things: First, even when these students can pro-
duce a correct answer to a mathematical question, further probing reveals a funda-
mental lack of understanding of even basic mathematical concepts. Most of what 
they know, it seems, was learned by rote, unsupported by conceptual understanding. 
Second, we found this lack of conceptual understanding to be associated with a 
fragile and bug-ridden knowledge of mathematical procedures, which the students 
often applied inaccurately and inappropriately. Third, we found that most students 
share a disturbing view of what it means to do and learn mathematics.

The majority of students we interviewed view mathematics as a collection of 
procedures to be applied and rules to be memorized, not as something that can be 
figured out by effort and thinking. They discount the value of conceptual under-
standing and reasoning—indeed, they do not appear to expect mathematics to make 
sense—and show a compulsion to calculate, even when calculation is unnecessary. 
When asked what their instructors could do to better help them learn, they never 
mentioned explanation or understanding. Instead, they suggested that procedures be 
broken down into smaller steps, demonstrated at a slower pace, and repeated more 
times. Beliefs and actions similar to these are not limited to college students or those 
struggling with mathematics. They have been found across grades and skill levels 
and exist not only among students, but among teachers as well (Dossey, Mullis, 
Lindquist, & Chambers, 1988; Frank, 1988; Garofalo, 1989; Schoenfeld, 1989; 
Stipek, Givvin, Salmon, & MacGyvers, 2001; Stodolsky et al., 1991).

These views of what it means to do and learn mathematics would seem to be 
highly detrimental to students’ mathematical futures; one can only go so far in 
mathematics through memorization alone. Our interviews convince us that these 
students are capable of thinking and making sense of mathematics, yet they some-
how do not see such behavior as necessary or appropriate in a mathematics class-
room. Which raises the question: Where do these maladaptive beliefs come from?

We have argued elsewhere that the views we see expressed by struggling com-
munity college students are the result of a socialization process that begins in ele-
mentary and middle school mathematics classrooms. Students enter school with the 
expectation that the world—including mathematics—will make sense. However, 
when they encounter teaching that focuses on procedures disconnected from the 
concepts that underlie them, things begin to go awry (Givvin et al., 2011). Such 
experiences of mathematics—as a bunch of rules, procedures, and notations that 
need to be remembered but not necessarily understood—lead students to give up on 
the idea that mathematics is supposed to make sense. Conceptual explanations are 
seen increasingly as a waste of time, not nearly as important as getting the right 
answer. Eventually, even the basic understandings of mathematics students had 
developed prior to entering school, atrophy, leaving students with an ever-increasing 
(and ever-degrading) collection of disconnected facts to remember.

K. B. Givvin et al.
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In this chapter, we take an up-close look at the kinds of socialization processes 
we presume are leading to the outcomes we have observed. As part of the 
VIDEOMAT project, we decided to focus on the initial introduction of algebra as a 
topic in school mathematics. Algebra is a key stumbling block for the students we 
have described. Yet the introduction of algebra offers great potential for students to 
have a fresh start in their study of mathematics. Taught well, algebra “opens the 
door to organized abstract thinking and supplies a tool for logical reasoning” (Stacey 
& MacGregor, 1997, p. 253). However, algebra, with its heavy emphasis on nota-
tion, also has the potential to heighten the focus of both teachers and students on the 
learning of rules for their own sake. Algebra could become a tool for reasoning, but 
it also could become one more domain for which a new collection of rules needs to 
be memorized (a tension that is discussed in the other chapters in this volume as 
well).

Using a qualitative case study approach, we studied two U.S. middle school 
classrooms at the very beginning of their study of algebra—the point in time when 
the door is first opened into the world of variables, expressions, and equations. We 
videotaped each teacher for five consecutive lessons, just as they formally intro-
duced algebra for the first time. For the first four lessons, we asked teachers to teach 
as they normally would. At the conclusion of the fourth lesson, we provided teach-
ers with a set of three mathematics problems to assign students during the fifth les-
son. We also administered a questionnaire before we recorded the first lesson and 
interviewed the teachers after the last lesson. All of this was done in parallel across 
the four countries participating in the VIDEOMAT collaboration. Although we do 
not directly compare across countries in this chapter, our observations were no 
doubt colored and refined by the regular discussions we had with researchers in 
Finland, Norway, and Sweden.

In describing each case, we focus on three questions. First, what are teachers’ 
conceptions of algebra as a subject matter? Second—and where we place the bulk 
of our attention—how do teachers introduce algebra to students? And third, how do 
students apply their early learning? Our small case-study design does not enable us 
to directly connect what we observe in the classrooms to student beliefs and learn-
ing outcomes. What we can do, however, is develop a rich understanding for these 
particular teachers of how their own conceptions of algebra and their instructional 
methods impact the learning opportunities they create for their students, and we can 
generate hypotheses to guide future, larger scale studies.

�Participants

The two teachers who are the focus in this chapter were part of a larger study for 
which a total of four U.S. teachers were recruited, two at each of two middle schools. 
The sample was strictly one of convenience; we recruited teachers based on prior 
relationships with their school principals and mathematics departments. All four 
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were volunteers, comfortable with us recording their instruction for a week. From 
the four, we selected the two teachers for the current chapter whose instructional 
approaches most differed from each other, thus giving us the widest possible range 
of approaches in our small sample. In spite of their differences, based on many years 
of work in U.S. classrooms, we would judge both of these teachers to be typical in 
terms of the instruction we see in American classrooms.

Ms. A taught seventh grade in a suburban middle school, composed of just over 
1000 sixth- through eighth-grade students. The student body’s ethnic make-up was 
mixed, but predominantly White. Seventeen percent of students at the school were 
classified as socioeconomically disadvantaged (i.e., eligible for the free or reduced-
price lunch program). There were 35 students in her Mathematics 7 class, which 
was part of the college preparatory track. The class met daily for 50 min. Ms. A had 
a Bachelor’s degree in Liberal Studies and a Master’s in Education Technology. She 
had a multiple subject credential and 19 years of teaching experience, the last 12 of 
which were spent teaching mathematics.

Ms. B taught sixth grade in an urban setting. Like Ms. A, her middle school was 
composed of sixth- through eighth-grade. The student population was just over 
1500 and was mostly Hispanic, but with large percentages of White and African-
American students, as well. Forty-seven percent of students at the school were clas-
sified as socioeconomically disadvantaged. Her mathematics class (i.e., Mathematics 
6) was mixed in terms of ability level and there were 30 students in it. The school 
worked on a “block schedule.” On Mondays they met for 47 min and on Wednesdays 
and Fridays they met for 90 min. For the purpose of our work, we treated Wednesday 
and Friday as two lessons, each. Ms. B had a Bachelor’s degree in mathematics and 
economics and a multiple subject teaching credential. She had been teaching for 16 
years, all of which were spent teaching mathematics.

From our observation, both teachers appeared to have a good rapport with their 
students and to genuinely care about their students and the quality of instruction 
they provided. Engagement across all lessons was high; classroom management 
problems were virtually absent.

�Teachers’ Conceptions of Algebra

In a pre-survey given to each teacher, we asked, “What, in your opinion, does the 
introduction of algebra include? How much algebra is covered in your course?” 
Their answers were as follows:

Ms. A: Strong basic mathematics skills in the four operators 

(add, subtract, multiply, and divide). Knowledge and common 

usage of order of operations. Strong skills and facility 

with integer operations. Strong knowledge of vocabulary 

terms and their meaning.

K. B. Givvin et al.
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Ms. B: An introduction to algebra includes:

•	 Developing students’ understanding of patterns and func-

tional relationships using words, tables, graphs, visual 
representations, and/or symbols.

•	 Developing an understanding of equality.

•	 Building an understanding of the concept of variable, 
including evaluating expressions and solving equations.

Algebra is embedded throughout our entire Mathematics 6 course. 

There is explicit instruction of the concept of variable, 

generating and evaluating expressions, pattern explorations 

leading to generalizations, and solving basic equations in 

the beginning of the school year. As students learn about 

different mathematical concepts (such as integers, frac-

tions, proportional relationships, percents, etc.), connec-

tions are naturally made to how these concepts relate to 

variables, expressions, equality, and equations.

Ms. A’s description included a strong emphasis on operations with mention also 
of basic skills and vocabulary. Furthermore, she discussed these things in terms of 
usage and facility with. The definition provided by Ms. B, in contrast, was 
much more conceptual. Her emphasis was on things like patterns and functional 
relationships leading to generalizations, the concepts of equality and variable, and 
of making connections. She discussed these things in terms of developing 
understanding and building understanding. Both teachers’ beliefs were 
reflected in the way they introduced algebra, as described below.

�Introduction to Algebra in Ms. A’s Classroom

�Rules About Mathematical Notation

Ms. A had barely begun her introduction of algebra before rules about notation 
became the object of discussion. Just 12 min into her first lesson and after having 
only discussed basic vocabulary (i.e., variables, expressions, and equations), Ms. A 
brought up possible errors in convention. For instance, she stated that it is incorrect 
to write x as 1x and 4x as x4. The rationale she provided students for the latter was 
that 4 is the coefficient and, by definition, a coefficient is the the number in 
front of the variable. She continued the rationale with:

00:15:49 Ms. A: The number in front of the variable automati-

cally means to multiply. So remember, mathematics people, 

they like it neat, and clean, and tight with as little writ-

ing as possible. So 4 · x would actually be incorrect right 
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here. Now technically, does it mean the same thing? Take 4 

and times it by x? Yeah, it means exactly the same thing, but 
it is not correct. Beginner move, right? So beginner. By the 

same token, 4(x) is not correct, even though it does mean 4 
times x. It means exactly the same thing, but there is a cer-
tain way of doing algebra. Neat and clean and tight. Now x4 
is just, “I missed the boat completely. I was there with you, 

but I didn’t get your meaning.” OK? Because this is just 

totally, just conceptually, incorrect. Number, letter. 

Number, letter. Always it’s going to be number, then 

letter.

00:18:35 Ms. A: And then we went over 1. 1x. So, I’m going to 

give you a little bit of time to kind of get this down; but 

by half way through the school year if I see 1x, I’m going 

to have to mark it incorrect. But for our purposes right now, 

we’re just kind of getting there. We’re just learning it, so 

I’ll kind of, I’ll give it to you for a little while. But at 

a certain point, if you have the one, I’m going to have to 

mark it wrong. Right? Again, it means I kind of get it but 

not really.

The statements above illustrate that the teacher holds fast to rigid rules of math-
ematical notation, placing such a high value on them that they are almost the first 
things students hear when algebra is introduced. Ironically, the rules she conveys 
might lead a student to form a misconception of the meaning of the equal sign. If 
two values are equal (e.g., 4 · x = 4x), but only one of the two (i.e., 4x) is correct, 
what does the equal sign mean?

Ms. A’s emphasis on standard notation continued similarly in the second lesson. 
When she then discussed the product of p and 12, she stated that she would 
have to mark 12 · p wrong and characterized it as a beginner move.

00:38:20 Ms. A: When a number touches a letter it already means 

to multiply. So [12 · p] is redundant. It’s saying “12 times 
times p.” Think about math people. They like it neat and 
clean and tidy. Is [12(p)] neat and clean? No. Is [12 · p]? 
No. Okay now technically, mathematically, do they all mean 

the same thing? Take this and times it by that? Yes. But the 

mathematical conventions, right? They supersede that and we 

have to put things in a certain such kind of order that makes 

sense. Okay. Okay and this is common usage. You go to Asia, 

Europe, [Africa], this is how you do it.

Ms. A was unwavering about the importance of standard notation, herself stating 
that its use supersedes mathematical meaning.

K. B. Givvin et al.
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�Mathematical Procedures

Ms. A emphasized not only the importance and universality of notational rules (as 
illustrated above), but also the importance and universality of mathematical proce-
dures. In Lesson 1, the class spent time evaluating algebraic expressions. Ms. A 
presented a ritualized approach for doing so and addressed the importance of the 
rituals she used, as for example in the following excerpt evaluating x + 5 (Fig. 7.1).

00:19:45 Ms. A: Okay now, right here, x + 5. Something plus 
five. Okay? And I know, you guys are like, “Oh my gosh [Ms. 

A]. I can do this in my head without even writing it down.” 

This is true; but later your work is going to get very com-

plex. And if you’re doing the technique I’m showing you 

right now, your life later will be so much easier. Okay? So 

you should be using parentheses every single time you sub-

stitute, even on these simple problems. Do we even have to 

write it down? I know. It seems ridiculous. What I’m trying 

to do is teach you the process, not just, “Hey give me an 

answer.” Because you could be done just like that [snaps]. 

The process: copy the problem, show your work, and then put 

your answer. Notice, everything goes under, under, under, 

under. Skip a line [before the next problem]. Do you notice? 

Substitute then solve. Okay? It looks a certain way. It is 

done a certain way. This is the way of algebra. And I know 

some of you are like, “Oh no, this is just [Ms. A’s] way. 

She’s like a control freak. She is making us do it.” No, no. 

If you go to Asia, if you go to Europe, if you go to [Africa], 

they all do it like this. So this is the way. It’s not mine. 
Ok? I’m just trying to show you the way. Substitute, then 
solve. So there’s a procedure for doing this. That’s what 

I’m trying to teach you. And most of you have found already 

if you show all your work you will not be making the errors. 

Okay? So the difference between an A student, in my mind, 

and everybody else, the A student is meticulous in their 

work. They write down all these details. That, by first 

glance, they look really unnecessary. You’re looking at this 

Fig. 7.1  On the board 
when evaluating the 
expression x + 5
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going “Why? Why do you need parenthesis? I can do it in my 

head.” Okay? But the A student, they will write down all 

these details.

In Lesson 2, Ms. A elaborated on the procedure for writing algebraic expres-
sions, including not only the procedure to follow but also all of the exceptions to it. 
Ms. A began by soliciting from students the words that came to mind for each of the 
basic operations. For example, for subtraction, students supplied: minus, 
decreased by, subtraction, less than, difference, subtracted from, 
and take away. She continued:

00:27:55 Ms. A: So we’re going to be turning the words into a 

mathematics problem. Now how do you do this? Well the stan-

dard operating procedure, everything goes in order from left 

to right. Just kind of like reading. Again you have to know 

a little bit of English to do a little bit of math. So every-

thing goes in order from left to right, and in life aren’t 

there always exceptions? So we do have a few exceptions. 

“Less than.” “More than.” “Added to.” “Subtracted from.” And 

then, of course, “increased by.” “Increased by” and “decreased 

by.” So everything will go in order from left to right. 

Except, when you see the words “less than,” “more than.” 

Except when you see the words “added to” or “subtracted 

from” or “increased by.” And so these are the fine nuances 

of understanding English, and then translating it into a 

math problem. Oh, one other thing. This one: “sum.” 

“Difference.” And in my head I kind of see those two within 

parenthesis. Why? It’s because in order to get the sum you 

have to add first, or to get the difference you have to sub-

tract first.

Ms. A then demonstrated with the sentence 4 times the difference of n 
and 2, and noted that it includes one of the exceptions (i.e., the difference indi-
cates that parentheses are necessary). She continued with “1 more than the 
product of p and 12.” She pointed out that it, too, has an exception (Fig. 7.2).

00:37:00 Ms. A: So everything goes in order from left to right, 

except I see an exception. Do you notice? So do I start with 

[1 more than]? Or do I end with [1 more than]? Standard oper-

Fig. 7.2  On the board 
when demonstrating how 
to write an expressions
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ating procedure says “no.” You start with [1 more than] but 

then you go, “Wait a minute, this is an exception.” Therefore, 

just like Zach said, you would have to end with [1 more 

than]. One more than something. In order to have more, don’t 

you have to know what you started with first? Because oth-

erwise you don’t know if you have more or not. Fine nuances 

of the language.

The class continued writing algebraic expressions from verbal expressions the 
following day. When Ms. A asked students to write an expression for 1 more than 
the quotient of 21 and b, a student offered 1 + (21 x b), Ms. A responded

00:45:32 Ms. A: Okay standard operating procedure. Everything 

goes in order from left to right except, except “less than,” 
“more than.” And if it’s an exception do we start with it? 

Or do we end with it? So I have 1 more than some thing.

Ms. A made no comment about the student’s confusion of product and quotient, 
and instead focused on the placement of the “+1.” Interestingly, the class had 
recently reviewed the commutative property of addition, but the teacher made no 
mention of the order of the addends having no effect on the value. Again, her atten-
tion to rules/procedures had the potential to lead to confusion about equality. And, 
like notation, the need to follow particular rules/procedures superseded mathemati-
cal reasoning.

In Lesson 4, Ms. A was specific about the steps involved in checking an answer 
with substitution and about how those steps were to be written out. There were, it 
seemed, three lines of work necessary to qualify as complete (Fig. 7.3).

00:35:25 Ms. A: Now some of you, your check yesterday was on 

one line and that [8(4) = 32] is what you did. In my mind, 

that is kind of ripping me off a little bit, okay? So I saw 

many people who had work of a very high quality. “Here is 

how [Ms. A] says to do it and I just do it. It is not [Ms. 

A’s] way, it is the way.” Some of you are a little resistant, 
but this is the way.

In sum, Ms. A presented the process of writing algebraic expressions in a very 
procedural way. According to Ms. A, there is a “standard operating procedure” for 
evaluating algebraic expressions: numeric values must be placed in parentheses. 
There is also a standard procedure for writing them: record from left to right, and be 
on the lookout for a series of exceptions (which, in fact, were evident in nearly every 

Fig. 7.3  Example of a 
student’s correct solution 
of 8x = 32, what Ms. A 
called “the way” to do it
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example students saw). There is also a standard procedure for checking for accu-
racy: copy the original equation, substitute (complete with parentheses), and state 
the equality. Nowhere did she draw students’ attention to the meaning conveyed by 
the words and how that meaning might be represented in mathematical notation. 
Nor did she discuss what the value of the variable means.

Finally, Ms. A promoted a clear procedure for solving equations. When she 
described it, she began by writing x – 7 = 13 on the board and next to it the steps 
necessary to solve it. The steps were as follows:

	1.	 Isolate the variable
	2.	 Do the inverse operation
	3.	 Do it to both sides
	4.	 Cancel cancel (zero-sum pair)
	5.	 Solve

She used the steps to solve x – 7 = 13 and three other, similar problems. For none of 
the problems did she provide a conceptual explanation for either “do the inverse 
operation” or “do it to both sides.” She explained “cancel cancel (zero-sum pair)” 
with “What is 7 dollars minus 7 dollars?...” If it’s really plus 
0, it’s like doing nothing. During this demonstration, Ms. A conveyed the 
necessity of completing each of the five steps. She went through each step publicly, 
then asked if anyone got to the answer before she did. Several students raised their 
hands and she responded, “Are you doing your steps? Because that’s 
really important to me. Because that’s how you’re going to get 

credit.”
Ms. A then assigned four problems for students to work on independently and 

stated:

00:33:14 Ms. A: I know you can get the answer. What I want to 

see on your paper is the procedure. How many of you would 

agree these are not hard mathematics problems? Okay, because 

we use baby steps to teach you the procedure. Some of you, 

you’re stuck up on the answer. ‘Oh I already got the answer.’ 

No. No, no, no. That’s not all I’m trying to share with you, 

okay? I need you to get the procedure, not just the answer.

Ms. A then worked through each of the four problems at the board and demon-
strated how to substitute the solution into the initial equation to check. She informed 
students that they won’t get credit if they don’t show their work and show their 
check. Students were expected to use the solution steps on problems assigned for 
homework, and instruction on the following day began with Ms. A asking students 
to list the steps of the solution procedure, without referring to their notes.

It was possible for each of the four, simple problems to be solved by students 
through reasoning, thus enabling students to forego the steps Ms. A had listed. She 
made clear, though, that that approach was unacceptable. It was instead critical in 
her class to use these simple problems to practice procedures, the steps of which 
were disconnected from meaning.
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�Praise for Speed and Neatness

In classrooms (and elsewhere) values are often conveyed through praise. The two 
things that received praise most frequently in the lessons we observed in Ms. A’s 
classroom were speed and neatness. Ms. A made several comments on the desir-
ability of working quickly. For instance, in Lesson 1, when she assigned students a 
set of problems to complete on their own, she instructed them to do them as fast 
as you can. When she circulated the room as they worked, she said approvingly 
to one student (but at a volume audible to the class), “speedy, speedy.” In Lesson 
3, during private work, she commented to a student, “Nice, nice. Wow you’re 
speedy.” In Lesson 4, when she assigned a set of problems, she commented, “And 
there is a certain amount of speed and accuracy that goes along 

with this. Because if you know what you’re doing you can just 

crunch it out crunch, crunch, crunch. If you are stuck some-

where, then it goes a little bit slower, I think.”
As illustrated in the subsections above, Ms. A indicated that mathematicians like 

things “neat and clean” and she valued that in her students’ work, as well. She spoke 
often of the need for students to be meticulous and fastidious. Ms. A also made 
repeated, vague comments about the desirability of “work of a high quality.” 
In looking at the student work as she provided praise of this sort, we speculate that 
she was commenting on some combination of neatness, completeness, and gener-
ally following the steps provided. In Lesson 4, she commented to a student “Wow, 
your work is so neat and extremely organized. Very nice Caitlin. 

That is going to take you far in and of itself.”
At no point did we hear Ms. A praise students for their attempts to find mathe-

matical meaning in what they were doing (though admittedly, there were few oppor-
tunities to do so given the tasks assigned).

�Mistakes

Rules, procedures, speed, and neatness all had a place in Ms. A’s classroom. 
Mistakes did not. Student errors were rarely discussed, even when the opportunity 
to do so presented itself. For instance, in going over homework problems in Lesson 
2, when students had errors they were directed to find the source of their error on 
their own. In Lesson 4, when the teacher called on a student to answer a homework 
problem and he answered it incorrectly, Ms. A simply moved to the next student. 
This was the case even when multiple wrong answers were provided to a single 
problem (which happened three times). Indeed, this was a consistent pattern 
throughout the lessons we observed. At best, mistakes received a “no,” and at worst 
they received an “OK.” In either case, Ms. A would then simply call on the next 
student. At no point did we see Ms. A take advantage of a student error to explore a 
mathematical misconception.
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Through her comments as she distributed graded quizzes, students would have 
learned of her approval of high grades and correctness. As she returned the quizzes, 
for each that had earned an A (i.e., 90% correct), she announced to the class “big, 
fat A.” Those students who scored 100% were greeted with a public “flawless”  
as they received their quizzes. When asked in the post interview what she looks for 
in high quality student work, she responded

I think attention to detail and precision will get you accu-

racy. You know if you’re kind of haphazard, you know and your 

work is not of a high quality. And I don’t really mean neat-

ness per se, although that is a huge factor. But I mean in 

the way of how you set it up, how you present it. The pro-

cedures and the quality of it I think will lead to greater 

accuracy. Or, I should say, less opportunity for error. So 

to me, it’s a big deal. I mean that’s one of the differences 

between an A student and a B or C student. You know we have 

kids of all similar test scores and similar grades, and yet, 

how come some of them get A’s when their same, smart peer is 

getting a B? And if you actually look at the quality of their 

work, the students who are fastidious in their work just 

write everything down. Everything. They’re going to be the 

ones who, consistently, get the A’s.

�Ms. A: Post-interview

At the end of the week, in individual post-interviews, we asked teachers why they 
chose to introduce variables and expressions in the way that they did.

Ms. A: My initial response is that’s just how it’s been done. 

We have these textbooks and they’re organized in a certain 

order. We adopted the textbooks, meaning we’ve previewed 

this one and that one. We chose this one, and so for our 

district, do the book.

The general content and order of Ms. A’s introductory lessons indeed match 
closely the textbook adopted for the class (i.e., Bennett et al., 2008). The first chap-
ter (“Principles of Algebra”) has subsections for Evaluating Algebraic Expressions, 
Writing Algebraic Expressions, Solving Equations by Adding or Subtracting, and 
Solving Equations by Multiplying or Dividing, which mapped exactly onto the top-
ics of the first 4 days of our video recording. The sample problems she used were 
similar to or the same as those in the book and the problems assigned to students 
were either from the text or its accompanying workbook. In that sense, as Ms. A 
indicated in her post-interview, she did “do the book.” However, nowhere in those 
sections did the text describe nonstandard (and therefore “incorrect”) notation, the 
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use of parentheses when substituting, or a standard left-to-right procedure for writ-
ing algebraic expressions. In fact, it is noted in the text that because addition is 
commutative “1 more than the product of 12 and p” can be expressed either as 
12p + 1 or 1 + 12p.

�Introduction to Algebra in Ms. B’s Classroom

�Representing Patterns

The differences between Ms. A and Ms. B were evident from the start. Ms. A’s defi-
nition of algebra made reference to fluency with operations. Ms. B’s definition, on 
the other hand, was much more conceptual. As was the case with Ms. A, Ms. B’s 
definition was very much in line with her instruction. Over the course of 4 days, the 
class completed several examples of patterns, both with and without visual repre-
sentations, and generated algebraic expressions to describe them.

She started her first lesson by stating that

00:33:14 Ms. B: Today we’re going to look at number patterns. 

And, in fact, this whole week we’re going to be exploring 

different types of patterns. But today we’re going to focus 

specifically on ones that are represented as numbers to 

begin with. And then what I hope to do is to take these pat-

terns, and be able to write them as variable expressions.

After a brief discussion about the definitions of “variable expressions” and 
“numerical expressions,” Ms. B assigned two problems on which students were to 
work independently.

Figure out the next three numbers in the sequence. Explain how you determined 
these numbers.

	1.	 4, 8, 12, 16, ___, ___, ___
	2.	 9, 14, 19, 24, ___, ___, ___

Ms. B began public work on the problems by calling on students to complete the 
pattern in problem 1. The student who named the numbers to fill in the blanks added 
that the numbers were multiples of 4. Ms. B then created a function chart in which 
students were to rewrite the pattern. She created also a function machine and 
described how it works with, “So if I put the number 1 into my machine, 
out comes the first number in my sequence. So out comes 4.” 
Students then helped to complete the function chart, from 2 to 6 (Fig. 7.4). She then 
asked students,

00:24:16 Ms. B: When we put a number into our machine, what are 

we doing to it in this machine before it spits out? In other 

words, if I put 1 in, what’s happening here so that the 4 
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comes out? And if I put a 2 in, what’s going on in here, so 

that I get an 8 out? What’s happening in this machine that 

represents this number sequence?

Students were asked to briefly share with a neighbor their thoughts about what 
was happening in the function machine. When the class resumed public discussion, 
a student was called upon and stated that what goes in is multiplied by 4, and the 
class confirmed that that is the case for all numbers in their function chart. Ms. B 
then asked the class what comes out if 7 and 10 are put in, and the class responded 
in chorus. The class then considered 20 as an input and the student called upon 
replied that it would be 80. Finally, Ms. B asked, “What if I put in any num-
ber?” and added n to the “in” column of the function chart. She asked students to 
think back to what they did the prior week, to write 4 times any number, and asked 
students to talk it over with a neighbor. When they reconvened, a student offered 4n 
as the answer. Ms. B accepted it as correct and a brief discussion of multiplication 
notation ensued. Ms. B referred to a poster on the bulletin board indicating that 
7 × 5 = 7(5) = 7 × 5. She stated that any of those forms could be used, but that 4n is 
the standard algebraic form. Ms. B pointed out that they had written a variable 
expression and reminded them that that was the goal for the day.

Thirty minutes into the first lesson, discussion turned to the second problem (i.e., 
the number sequence 9, 14, 19, 24, ___, ___, ___). The class discussed patterns 
students had seen and then the teacher created a function chart and function machine. 
When they turned to writing the corresponding expression, the teacher began,

00:35:52 Ms. B: Ok, this one’s a little trickier. What’s hap-

pening? Well, do you guys remember what we did last time 

where we plugged the number in and we said we thought last 

time we were multiplying by 4? Did you remember that? And, 

Fig. 7.4   Function chart 
and function machine 
representing the same 
number sequence
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did you remember this time we said there’s something to do 

with 5? Five is being added over and over and over again? 

Did you notice that? So there’s something going on with 5, 

isn’t there? You agree with me? Ok. Well, let’s see if it’s 

just multiplying by 5. If I have a number, and I multiply it 

by 5, let’s see if we get what we want to get. So let’s try 

the first one. I plug a 1 in. What is 1 times 5?

Ss: 5.

Ms. B: Am I getting what I want to get?

Ss: No.

Ms. B: How much more do I need to get there?

Ss: 4.

Ms. B: I need 4 more, so I have to, if I multiply by 5, and 

then I add 4, am I going to get what I need?

S: Yes.

After testing with inputs of 2, 3, and 4, as a class, Ms. B and her students sum-
marized that each time they multiplied by 5, then added 4. Ms. B had students talk 
with their neighbor briefly about how that would look as a variable expression, and 
then stated (and wrote) publicly that the variable expression is 5n + 4. Finally, the 
class checked the expression with an input of 5.

The next class period was a double lesson and it continued in the same vein. It 
began with students working independently on the following questions:

	1.	 Determine the next three numbers in the sequence. 3, 7, 11, 15, __, __, __
	2.	 Describe the patterns you notice.
	3.	 Make an “IN/OUT” function table for this data. Can you determine a variable 

expression for the sequence? How?

Ms. B began the discussion by asking students about the patterns they saw. The 
first student on whom she called said that she had seen the addition of 4 and as a 
class they confirmed its accuracy, using the rule also to identify the missing values. 
Ms. B indicated that, like yesterday, they had a pattern with 4. Ms. B then rewrote 
the pattern into a function table, and pointed out that the “IN” column indicated the 
values’ place in the sequence. She asked the class for help completing the “OUT” 
column and they answered in chorus. With the values in a chart, she asked students 
if they saw new patterns. The first student called upon took a long time (27 s) to 
think before she answered that every time you add four to the number 
(the same pattern that had been identified earlier). The teacher praised her thinking 
and confirmed that the pattern can be seen in this representation as well. Ms. B fol-
lowed this with

00:22:15 Ms. B: One of the things we were working on yesterday 

is trying to create a variable expression. And since we know 

that four is happening over and over and over again, we’re 

adding four each time, we know our variable expression is 

going to have something to do with four. Right? Does that 
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make sense? Okay. So it’s going to have something to do with 

four. What do we do next? How do we start figuring out what’s 

going on in this pattern? How do we figure it out? Danny what 

do you think?

S: Well, I was actually thinking of all of them, then I figured 

it out. You do: times 4, minus 1 and you get the other 

number.

Ms. B: So you’re sort of thinking about our function machine 

from yesterday, maybe? And how we put a number in, which is 

the first column, and out comes something and in between 

that there’s something going on. And you’re feeling like 

it’s what’s happening there?

S: Times 4, minus 1.

Ms. B: You’re noticing a times 4, minus 1 pattern. Can you talk 

us through a little bit about how you got that?

S: Well, um, I did, um, 4 times 1 equals—

Ms. B: Okay let me write that here. Okay so 4x1=4.

S: And then 4 minus 1 equals 3.

Ms. B: But—okay so if we just did times one we’d only get four 

and we really want to get an answer of three.

S: So you subtract one.

The class then tested Danny’s rule with 2 and 3 (Fig. 7.5).
When Ms. B asked about writing an algebraic expression, which she explained 

as an expression that represents any number in the sequence, the student she called 
upon readily responded 4n – 1. Ms. B asked students to use the expression to find 
the 20th term. They were to do so privately, in their notes, before checking with their 
neighbors. One student was then asked to describe what he did. The students 
responded quickly, in chorus, when the teacher asked what the 100th and 1000th 
terms would be. Ms. B then pointed out that the latter questions are made much 
easier when you know the rule to the pattern.

After completing three patterns problems that included only lists of numbers, 
Ms. B turned to sequences that were represented by visual representations. For one 
of these problems (Fig. 7.6), one student, Hannah, volunteered to have her work 
projected as the class discussed their work. Students were to have figured out the 
pattern of the number of small squares in each figure.

Fig. 7.5  Testing Danny’s 
rule of multiplying by 4 
and subtracting 1
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In completing the corresponding function table, one student pointed out that he 
added 2 each time. Referring to Hannah’s work, Ms. B led a discussion of how to 
find the algebraic expression for the pattern:

00:13:50 Ms. B: You’re noticing we’re adding 2 each time? 

Great. All the way through, right? Can we expect that that’s 

going to continue? Will that keep going on? If we made big-

ger and bigger figures, wouldn’t that keep happening?

S: Yeah.

Ms. B: Absolutely, okay. So 2… There’s a lot of 2’s here. Yeah? 

So we come down to this part of the problem, where we’re hav-

ing to write an expression. Hannah’s remembering [shown in 

her writing of n x 2 – 1] that it’s got to have something to 
do with 2. Because that’s the pattern we’re noticing over 

and over again. And so what she said was it’s 2 times the 

number that we’re working with, the figure number, and then 

she also has this minus 1 here. So Hannah, I want to explore 

just a little bit as to how you got [n x 2 – 1]. Do you remem-
ber how?

S: Um, I tried it, I kind of did, um. I don’t know how to 

explain it but I started with doing multiplying it by 1 and 

adding 2, but it didn’t work. So I tried multiplying by 2 

and subtracting 1.

Ms. B: Okay, so were you looking back at your numbers [in the 

function table]?

S: Yeah.

Ms. B: All right, so let’s look at the numbers and maybe we can 

recreate some of the thought that Hannah went through. So, 

if she knows that it has something to do with 2, let’s say 

she just tried 2 times the number and saw if that worked. So 

for every time I want put a number in for n, we’re going to 
use the figure numbers over here. Let’s start with the first 

Fig. 7.6  Sequence of L-shapes
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one, It’s the easiest one, right David? If I put a 1 in here 

David, what’s 2 times 1?

S: 2.

Ms. B: Equals 2. Okay, so if we try, test out the number 1, 2 

times 1 equals 2. Is that the answer we want to get for the 

first figure?

S: No.

Ms. B: No. What do we want to get?

S: 1.

Ms. B: Okay, how do we get to 1 from here?

S: Um, 2 minus 1.

Ms. B: We have to take away 1, okay. So let’s take away 1. And 

that’ll give us our 1. Okay, great, that one worked.

The class then checked the expression for the second and third figures and used 
it to find how many small squares would be needed to build Fig. 20. In explaining 
how to represent the repeated addition of a number in an expression, Ms. B stated 
that if we do something over and over and over and over again, 
a faster way than adding the same number over and over and over 

again is to just multiply by that number. At no point, though, did the 
class identify how the values in their algebraic expression related to the figures it 
represented.

Ms. B then presented the following diagram (Fig. 7.7):
Working in groups, students were to record the perimeter of the first three hexa-

gon trains, use manipulatives to build the fourth train, and describe the fifth train. 
They were to then complete a function chart, search for patterns, and identify the 
variable expression. In giving instructions, Ms. B explained:

Ms. B: Well today I’m stepping back a bit. Today is your day 

to do similar things with a new assignment. Same type of 

stuff, but today I’m not going to be leading you through it. 

Today you’re working with your group to work on this. And 

you’re going to be guiding each other.

As students worked, Ms. B circulated to ask and answer questions. She reminded 
several groups of what they had done with the repeated addition of 2 in order to cre-
ate an expression for the homework problem and asked them to use that knowledge 
to create an expression for the hexagon trains.

Fig. 7.7  Hexagon train
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After 14 min of private work, public discussion resumed. With repeated student 
input, the teacher created a function table and called attention to the repeated addi-
tion of 4.

00:47:24 Ms. B: How does it help us create a variable expres-

sion, knowing that this pattern of 4 is going to keep going 

over and over and over again? Danny, what do we do?

S: Since you know you’re using 4, you know that you have to use 

4 in your equation.

Ms. B: Okay, good.

S: And since we’re going, we’re going up, so its 

multiplication.

Ms. B: Okay.

S: So we have 4 times.

Ms. B: So we’re going to start with our 4 times a number and 

see if that works. Okay. So let’s look at the first n. What 
if n = 1? David, if n = 1, what’s 4 times 1?

S: 4.

Ms. B: And is that the answer we want? What do we want?

S: 6.

Ms. B: So what else do we have to do to get there?

S: plus 2.

Ms. B: Add 2. Let’s try it. So we’re saying, maybe we’ll try 

this expression. 4 x 1 = 4, + 2 is 6. It worked. Um, can—

Lily, can you tell me if it works for the second example?

The class confirmed that the same expression works for the second, third, and 
seventh trains and they were convinced. Finally, they used the expression to find the 
10th and 100th trains.

�Lost Opportunities for Conceptual Connections

A commonality across both teachers was that they prescribed a solution procedure 
and they presented well-organized steps for executing it. Ms. A went so far as to 
write the steps on the board. Ms. B never made the solution steps so explicit, but it 
was clear from multiple enactments what they were:

	1.	 Complete the pattern
	2.	 Create a function chart
	3.	 Create a function machine (sometimes)
	4.	 Find the pattern by looking at the numbers
	5.	 Write general rule as variable expression

7  How Teachers Introduce Algebra and How It Might Affect Students’ Beliefs About…



158

It was in Steps 4 and 5 that Ms. B lost opportunities for conceptual connections. 
When it came to finding the pattern and representing it as a variable expression, the 
process seems to have been (1) identify a value that you see repeatedly and multiply 
your variable by that value, and (2) if the result of your multiplication is not the 
desired value, add or subtract the appropriate amount. Ms. B conveyed these steps 
via multiple uses of statements like, “there’s something to do with 5” or 
“there’s something to do with 4.” Only once, in the last lesson, was there 
a mention that we use multiplication to represent repeated addition. It is clear that 
students adopted Ms. B’s practice without understanding it. Recall one student’s 
explanation that “Since you know you’re using 4, you know that you 
have to use 4 in your equation. And since we’re going, we’re 

going up, so its multiplication.” The explanation for the use of multipli-
cation to represent repeated addition is a particularly unfortunate omission, given 
the availability of the visual materials that accompanied the patterns. Ms. B might 
have used them to show why the value of an output increased by a particular amount 
each time the value of an input increased by one. Similarly, there was no discussion 
about why students should expect to add to/subtract from the product (e.g., 2 added 
to the product of 4 and n), if it did not yield the value they sought. Ms. B simply 
asked “how much more do I need to get there?” and the class followed 
along, not questioning why the addition/subtraction would be a sensible operation. 
Again, she might have used the visual representation of the pattern to explain the 
addition/subtraction of a constant. Students are likely to have come away from the 
series of lessons with a single image of what an expression looks like. When asked 
to create an expression, they could identify the coefficient as whatever number was 
recurring in the pattern and could use trial and error to determine the rest.

�Ms. B: Post-interview

It came out in the individual post-interview that Ms. B had reviewed vocabulary 
with the students in lessons that preceded those that we captured. She had also spent 
time translating verbal phrases into algebraic notation, which is what we saw Ms. A 
do in her first videotaped lesson.

Ms. B: I find that when kids at this age first come in contact 

with variables, … they have a lot of questions about what is 

even happening. There is a lot of confusion, I think, around 

seeing letters now in their mathematics problems, and so I 

find that starting off early with this idea of patterns—with 

something that they can really grab onto and notice what’s 

happening and then be able to explain sort of what’s happen-

ing—in the future, tends to be a really nice way to bring in 

that idea of variable. What’s happening with the nth number? 
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… They haven’t thought about it that way, but I can lead them 

to that pretty easily. … [In the lessons before this study 

began], we spent some time talking about how to look at ver-

bal phrases and translate them into symbols. We’re talking 

about how mathematicians often times take ideas that are 

there but symbolize it and use the symbols for their work. 

So, breaking down common vocabulary words … but also and 

then looking at verbal sentences and bringing it into numer-

ical expressions, but also what happens if there are some 

unknowns in there and so we kind of introduce the idea, the 

specific idea of variable, right prior to doing the pattern 

work.

�A Brief Summary of the Two Classrooms

The teachers we observed took very different approaches to introducing algebra to 
their students. Ms. A’s instruction heavily emphasized mathematical notation and 
procedures, with very prescriptive rules for “the way” to do mathematics. She 
praised her students for speed and neatness, but mostly ignored their mistakes, nei-
ther reprimanding nor exploring them. The focus of her lessons was on the correct 
way to write algebraic expressions and the solution procedure for solving algebraic 
equations.

Ms. A’s lessons were entirely teacher-directed. Public student talk was minimal. 
The few questions students were asked to answer publicly were mostly ones that 
asked them to provide a numeric answer and nothing more. A few required a brief, 
procedural explanation. The work students completed privately began only after 
examples had been provided by the teacher.

In contrast, Ms. B focused on representing geometric patterns algebraically. She 
guided students through the process of identifying patterns in numeric and visual 
representations and then generating algebraic expressions for those patterns. She 
also structured her class differently, incorporating student work and public 
discussion.

Ms. B’s recurring strategy for organizing students’ work on problems involved 
posing a problem, allowing a brief period for students to chat with their neighbor at 
an adjoining desk (which, it should be noted, they all actively did), they then resum-
ing public work. Ms. B frequently called on students randomly to share their 
answers. Those answers often required that students explain their thinking and 
sometimes involved projection of their work for the whole class to see. Ms. B pro-
vided correction, where necessary. But in spite of her attempts to make meaning of 
algebra, there were lost opportunities to make critical connections between ideas 
that may have limited the impact of Ms. B’s efforts.
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�What We Might Speculate About Students’ Early Learning

The activities described above were those that occurred in the first four lessons that 
comprised these students’ introduction to algebra. In order to assess their students’ 
learning at this point, we asked that both teachers give their students the same set of 
three problems to work on during Lesson 5. The way the students dealt with these 
problems reveals the early impact these two different classrooms had on students’ 
learning. Here, we will limit our discussion to the first and third problems of that set, 
which represent problems both typical (problem 1) and atypical (problem 3) of U.S. 
classroom instruction. The problems were as described in Fig. 7.8.

In both the classrooms, students worked in groups of three or four. Problem 1 
was an extension of the work Ms. A’s students had done in Lesson 3 and Lesson 4. 
They had not yet discussed two-step equations, but students used what they knew 
about solving equations with addition and multiplication to figure out the problem. 
All of Ms. A’s students had the correct answer in their written work (although only 
four students produced the check that had been required of the teacher on prior 
assignments).

Unlike Ms. A’s class, the work Ms. B’s students had completed on previous days 
led more toward an understanding of the third problem (on turning a pattern into an 
expression) than it did to the first problem (on solving a two-step equation). None 
of the groups in Ms. B’s class were able to identify the correct solution to problem 
1. Of the seven groups in the class, one failed to reach an answer. Students in another 
group answered 630, having multiplied 150 by 4 and adding 30 to it. Students in a 
third group answered 120, having identified the value of x in the equation, but mis-
interpreting its meaning. Students in the remaining four groups identified 30 g as the 

Fig. 7.8  Two problems for group work during Lesson 5
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weight of the package. None of them reached an answer via formal steps. Rather, 
they informally “unwound” the problem, as can be seen in the student work in 
Fig. 7.9.

On problem 3, four groups in Ms. A’s class reached the correct answer (i.e., 24) 
through arithmetic reasoning. That is, they either (a) subtracted the initial 13 
matches from 73, divided the resulting 60 by 3, and added to it the initial 4 squares, 
or (b) subtracted the 4 matches that composed the initial square from 73, divided the 
resulting 69 by 3, and added the initial square. Two of these groups followed up 
their work with algebraic notation, albeit with the assistance of the teacher. Another 
group obtained 24 by dividing 73 by 3 and disregarding the remainder. The remain-
ing four groups used arithmetic to arrive at an incorrect answer or no answer at all.

For the students in Ms. B’s class, problem 3 should have looked familiar and they 
might have been predicted to perform well on it. Overall, though, they struggled. 
Students in only one of the seven groups made a function table. Those students not 
only identified that 24 squares could be made from 73 matches, but also arrived at 
3n + 1. One other group identified 24 as the answer, having found it by counting in 
threes. And members of two other groups found this answer by drawing out the 
matchsticks and counting them. The remaining three groups used an ineffective 
arithmetic strategy (e.g., 74/4).

In sum, given their work on the prior days, we expected students of Ms. A to have 
an advantage over students of Ms. B on the problem that involved solving an equa-
tion. In fact, all student groups in Ms. A’s class solved the equation correctly. Just 
over half of the student groups in Ms. B’s class did so. On the problem that involved 
the recognition of a pattern we expected the reverse to be true. In fact, four of the 
nine student groups in Ms. A’s class reasoned their way to an answer. Just over half 
of the student groups in Ms. B’s class arrived at the correct answer, but most found 
it through less mathematically sophisticated means (i.e., through counting).

What can we take away from these findings? Two patterns emerge: (1) at this early 
stage of learning about algebra, students are still willing to reason about mathemat-
ics, and (2) instruction that attempts to build reasoning skills has a tendency to none-
theless become quite procedural. It should be no surprise that Ms. A’s students—who 
had spent four lessons practicing “the steps” of solving algebraic equations—were 
able to carry out those steps in a new problem. To enact this procedure does not 
require a deep understanding of what one is doing conceptually; strict adherence to a 
set of rules will lead to a correct answer, and this is exactly what they were being 
trained to do. However, when faced with a situation that did not obviously call for 

Fig. 7.9  Student solution 
of the equation 
150 = 4x + 30
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enacting those rules, Ms. A’s beginning algebra students were still willing to reason 
about a pattern using appropriate logical inferences. This is further evidence that 
students are willing to reason about mathematics when problems do not obviously 
demand strict procedural approaches.

The more surprising findings come from Ms. B’s classroom. If we suppose that 
building an understanding of mathematics by studying patterns should generalize to 
other patterns, their performance on the third problem presents somewhat of a 
conundrum. However, there is reason to think that what students had been doing 
was not so much reasoning as following a different kind of procedure. All of the 
problems Ms. B’s students studied in their first four lessons fit the same general 
pattern: discover the output given the input, and then write an expression for the nth 
output. Problem 3 posed a different task: discover the input given the output. This is 
not a trivial difference. In all their earlier problems, students were provided with 
several examples of inputs and outputs and could use the same general solution 
strategy of finding the common difference between the outputs. When they were 
presented with a single data pair (4 squares and 13 matches), there was no obvious 
difference to identify. It also may not have been clear to those students what the 
inputs and outputs were. The inputs student encountered to that point could be rea-
sonably interpreted to refer to the serial position of the number or drawing. It is 
telling that the only group to arrive at the solution was also the only group to gener-
ate a function table, which could provide them with the input/output system they 
had been using.

In spite of Ms. B’s attempts to build a connection between patterns and expres-
sions, she may have inadvertently communicated to her students that only certain 
kinds of problems can be solved using the “procedure” she taught them. When faced 
with a problem that is superficially different from those they had been studying, 
students may have abandoned previous reasoning strategies, believing that they no 
longer apply. In order to develop a deeper conceptual understanding of patterns and 
functions, students might need a better grasp on how one identifies inputs and out-
puts, as well as the “reversibility” of the function (i.e., that one could identify an 
input based on the output). Up to this point their instruction had not addressed those 
ideas, so it should not be surprising that they struggled to find an appropriate solu-
tion method.

�Discussion

Our interest in the introduction of algebra stemmed from a desire to investigate how 
teachers inducted their students into a way of thinking about the content. Algebra, 
because it marks a shift in students’ mathematics education, presents an opportunity 
for a new beginning. We sought to articulate what the teachers valued, as conveyed 
to us directly and to their students via assignments themselves, work on them, and 
commentary that accompanied their work. Our own and others’ studies have found 
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that U.S. students think of mathematics as a collection of rules and procedures and 
our assumption was, because teachers are a primary socializing agent, that we 
would see evidence of these ideas in their classrooms.

The two teachers whose classrooms we observed had different conceptions of 
algebra as a subject matter. In her description of it, Ms. A emphasized operations, 
basic skills, and vocabulary. In observing Ms. A’s introduction of algebra, a few 
themes emerged. Most conspicuous was her emphasis on rules and procedures and 
“the way” of mathematics. Her pedagogical moves reflected an attempt to teach 
rules and procedures in a way that was clear and accurate and could be remembered 
by students. She gave the bulk of her attention to explaining the steps to solving 
various types of problems and checked that students could reproduce those steps. 
Also evident was repeated praise for speed and neatness. She never discussed stu-
dent errors and it seemed that they were something to be avoided also by her stu-
dents. She was the clear authority figure in the classroom and students were expected 
to passively follow along as she worked. We speculate that students in her class, 
completing their first week of algebra, would be developing a belief that algebra is 
a rigid set of steps and notations, and that their only access to them is through their 
teacher. Students’ role, it would seem, is to memorize and reproduce them as quickly 
and thoroughly as possible.

In contrast, Ms. B’s definition of algebra emphasized patterns, functional rela-
tionships, and making connections. Consistent with her definition, she used tables 
and visual representations in an effort to develop an understanding of functional 
relationships. She walked students through the process of identifying the pattern in 
the representation she provided and helped students arrive at a general rule for it. 
Students frequently discussed with each other their thinking about a step of the solu-
tion process. However, key connections were consistently missing. We speculate 
that students in her class had, in the end, limited opportunity to develop the under-
standing of functional relationships that was her goal. It is more likely that they took 
away from the many pattern problems a belief that the expressions used to represent 
patterns are discovered through a combination of a little magic mixed with trial and 
error. Though rules and procedures were not emphasized in Ms. B’s class the way 
that they were in Ms. A’s, neither were they wholly replaced by sense-making.

Students practice particular cultural routines in their classrooms and they get 
good at them. Assuming some of what we saw is consistent with the experiences of 
the community college students we interviewed, it is understandable that sixth- and 
seventh-grade students would come away thinking of mathematics as a collection of 
rules and procedures. If we are unhappy with U.S. students’ performance in interna-
tional comparisons, or the high rates of community college placement in develop-
mental courses, or the low levels of quantitative literacy in members of the work 
force, perhaps U.S. teachers’ conception of mathematics is a contributing cause. 
Less than desirable outcomes on achievement measures might be due not to poor 
teaching or poor student learning in the U.S., but rather to what we think it is that 
we ought to be teaching.

7  How Teachers Introduce Algebra and How It Might Affect Students’ Beliefs About…
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Chapter 8
The Fifth Lesson: Students’ Responses 
to a Patterning Task Across the Four 
Countries

Jorunn Reinhardtsen and Karen B. Givvin

�Introduction

In the prior chapters we have encountered different classrooms in Finland, Norway, 
Sweden, and the U.S. as teachers and students embark on the topic of algebra. We 
have seen how classroom cultures and the specific topics of the lessons both vary 
across classrooms of the same country and across countries, but that there are appar-
ent similarities as well. In this chapter we wish to turn another stone and investigate 
the ways in which students are able to participate in the algebraic discourse.

In the VIDEOMAT project, five consecutive lessons in classrooms in the four 
countries were observed and video recorded. In the first four lessons the teachers 
proceeded with the teaching as they had planned, as has been shown in chapters four 
to seven. However, in the fifth lesson the teachers were asked to assign to their stu-
dents three algebraic tasks adapted from the released set of TIMSS 2007 eighth-
grade mathematics problems (TIMSS & PIRLS, 2009). Teachers were asked to 
have their students work on the tasks in groups. One of these tasks, a patterning task 
called the matchstick task, resulted in especially lengthy discussions among the stu-
dents and will serve as the object of analysis in this chapter. In each of the four 
participating countries we examined four classrooms, and within each of those 
classrooms we focused on the work of a single group of students.

The interactions among the students in the target groups are interesting in three 
ways. First, a shared feature of the response to this task is that it, as we already 
mentioned, spurred an intense problem solving activity among the students—even 
among students in the U.S. classrooms for whom, based on their work in the 
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preceding days, such a task might have been expected to have become routine (see 
Chap. 7). Second, the students’ work with the matchstick task resulted in approaches 
ranging from basic ones (e.g., counting) to more sophisticated ones (i.e., algebraic). 
Third, because the students approached the task predominantly with the experiences 
and knowledge from arithmetic, the discussions offer an opportunity to analyze how 
the discourses sometimes became more formal—sometimes even algebraic. On all 
three counts we have looked for differences and similarities in the interaction of the 
different groups across countries.

In this chapter a four-part analysis will be presented. The first part will focus on 
the varied problem-solving approaches the students used as they tackled the match-
stick task and on the progression of approaches within the student groups. In the 
second part we do an in-depth discourse analysis of four groups in which we sepa-
rate the student’s argumentations into different thematic discourses according to 
their focal objects. Part three juxtaposes the groups with respect to similarities and 
differences in the groups’ thematic discourses. In part four we summarize and syn-
thesize the prior analyses.

On an empirical level, it is interesting to observe that the approaches used in the 
different countries were similar, and, generally, one can find a group in one country 
that resembles groups in other countries in terms of the reasoning performed. As 
they solved the matchstick task, the students rarely applied, either spontaneously or 
at the suggestion of the teacher, the algebraic procedures and reasoning methods 
presented in the prior four lessons. Instead, they frequently used mathematics that 
they had previously internalized through their years of schooling (i.e., arithmetic). 
We therefore interpret this task not as an assessment of what the students had 
recently learned, but instead as offering a glimpse of the students’ capabilities for 
mathematical reasoning and their level of mathematical discourse at a certain point 
in their learning trajectory/development: at the critical moment when they are 
expected to make the transition from arithmetic to algebra.

�Methodological and Theoretical Considerations

Our main approach to the data is discourse analysis. The methodological and theo-
retical considerations in this chapter are based on Radford’s theory of Knowledge 
Objectification (2002) and Sfard’s theory of Commognition1 (2008). Sfard’s and 
Radford’s theories are concerned with interactional forms of learning and build on 
a Vygotskian view of learning and development. We follow Radford in his attentive-
ness to the active relationship between words, gestures, and artifacts in the learning 
of mathematics, and we include this awareness into a Commognitive analysis of the 
students’ discourse. Particularly, our method of transcribing the video recordings 
has its roots in Radford’s conceptualization of learning processes.

1 Sfard coined the term commognition to signal the close relationship between communication and 
cognition in her socio-cultural framework for the learning of mathematics.
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Based on the theoretical underpinnings of Knowledge Objectification, we have 
identified the multimodal elements that play a role in the problem solving process 
of the groups (Reinhardtsen, Carlsen, & Säljö, 2015). The transcriptions include 
three categories of semiotic means: inscriptions such as drawings, texts, numbers, 
arithmetic, algebraic (including variable/s); concrete material (i.e., matchsticks); 
gestures such as pointing, tracing in air/figure/table, glance, raising hand. We view 
the activity of transcribing as a first step in the analytical process.

Sfard’s theory of Commognition offers terminology regarding human thinking, 
which is operationalized in ways that are relevant for analyzing mathematical dis-
course. Sfard defines thinking “as an individualized version of (interpersonal) com-
munication—as a communicative interaction in which one person plays the role of 
all interlocutors” (2008, p. 81). Thinking (i.e., cognitive processes) and communica-
tion are simply different manifestations of the same phenomenon—a phenomenon 
referred to as commognition. Commognition is defined as a patterned collective 
activity which involves reacting to certain actions in a distinct manner. These pat-
terns are historically and culturally shaped. Discourses are defined as different types 
of commognition distinguishable by their objects, types of mediators used, and the 
rules followed by the participants (Sfard, 2008).

In Commognition, mathematics is defined as a discourse with unique qualities. 
Although mathematical discourses may differ strongly from one another, Sfard 
(2008) describes what she calls the “family resemblances” of these. The mathemati-
cal discourse is made distinct by the use of words, the visual mediators employed, 
the narratives endorsed, and the routines that are frequently practiced: The key-
words in mathematical discourses often signify quantities and shapes and are used 
in a disciplined way. In the commognitive perspective of learning, word use is 
important as “it is responsible for what the user is able to say about (and thus to see 
in) the world” (op. cit, p. 133); Visual mediators are visible objects that are operated 
on in the process of communication. Colloquial discourses are often mediated 
through the image of material objects; however, mathematical discourses are medi-
ated through signifiers of objects that exist only in that particular discourse. 
Mathematical objects or ideas are often mediated through algebraic notations or 
graphs; Narratives are series of utterances, written or spoken, about objects, rela-
tionship between objects or processes with or by objects; Routines are repetitive 
patterns in the discourse. There are explicit object-level routines, such as the dis-
tributive law in multiplication, and there are more implicit meta-level routines that 
make assertions about the discourse as a whole. The introduction of algebra in 
school represents a change in meta-level routines—for example in arithmetic there 
is a focus on processes of calculations and finding correct numerical answers, while 
in algebra one is required to reflect on numerical processes and describe these alge-
braically. These are very different ways of working with numbers.

In this chapter, we focus on the (mainly informal) discourse employed by stu-
dents as they work with the matchstick task. Gestures and the figure provided in the 
task seem to play prominent roles in the problem-solving process. In order to scru-
tinize the dynamics of the semiotic resources in a local (both in time and content) 
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learning process, we find it useful to incorporate Radford’s (2002) multi-semiotic 
perspective.

On the other hand, Sfard’s conceptualizations of the mathematical discourse and 
the process of discourse development provide a broader frame for the analysis of the 
students’ discussions of the matchstick task. In particular, we interpret our data in 
light of a discursive model, developed by Caspi and Sfard (2012), which aims to 
depict the development of algebraic thinking in school. The concept of a multi-
semiotic analysis, the model by Caspi and Sfard, and how we use these ideas in 
analyzing our data will be explained in Part Two.

In this chapter, we have a dual focus as we explore the groups’ discussions of the 
matchstick task from two points of view. First, in a larger, developmental perspec-
tive, we see our data as a sample of classroom mathematical discourse at the time 
when students are about to make the transition from arithmetic to algebra. Our aim 
is to describe critical features of this transition. Second, in the short time span (i.e., 
8–15 min) that the students discuss the task, there is a “local” discourse develop-
ment and our interest is to explain the dynamics of this process.

In analyzing data from different countries there is a comparison aspect, and our 
initial response to managing and exploring the data was to identify the students’ 
solution approaches to the task. Our findings are presented in Part One. Based on 
these, we chose four groups in Part Two, one from each country, for an in-depth 
discourse analysis. Furthermore, in Part Three we juxtapose the four groups. And, 
finally, in Part Four we summarize and synthesize our findings. Our first analytical 
steps are illustrated in Fig. 8.1. The terms are explained in their respective sections 
(Part One and Part Two):

Fig. 8.1  Overview of analytical approach step by step
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�Part One: Student Approaches to the Patterning Task

Patterns and functions are recurring topics in students’ elementary and secondary 
education across the participating countries. Young students may be asked to gener-
ate, describe, and extend patterns with numbers and shapes. With the onset of alge-
bra, students are asked to translate patterns into expressions and equations with 
unknowns. The matchstick task that we asked teachers to present to their students 
offered an opportunity for students to make use of what they might have learned 
from the prior days’ algebra instruction, yet not be stymied by the task if they failed 
to find an algebraic solution approach. The task itself is presented in Fig. 8.2.

Across the four participating countries, we identified a number of solution 
approaches from students’ group discussions and written work. The matchstick task 
can be solved by brute force, as it were, extending the drawing until 73 matchsticks 
are used. We saw students in each country—indeed in all but 2 of our 16 target 
groups—use a drawing at some point in their discussion. Students frequently spoke 
of it as the easier way to solve the problem. However, there seemed to be a general 
impression among the students that the intent was that the problem be solved by 
something more sophisticated than a drawing. As an extreme example, one US stu-
dent said to a group member concerning her drawing, No offense, but your 
answer is pathetic. The first student then sought an arithmetic approach. 
However rudimentary a drawing may have appeared, it frequently helped illuminate 
for students the “+3” pattern in the figure, a notion that then sometimes helped them 
arrive at successful arithmetic approaches. None of this is to say that students always 
used a drawing effectively. Some students’ drawings formed a block of squares, 
rather than a single, long row, clearly illustrating their misunderstanding of the task. 
One group used an approach akin to drawing. They used toothpicks to replicate and 
expand the figure. The effectiveness of this approach was limited in that the group 
spent much of their time distracted from the task, making different patterns with the 
toothpicks.

Kaput (2000) describes algebra as the generalization and formalization of pat-
terns, that is, explicitly identifying and exposing commonality across cases and then 
rendering them in some form. Although the matchstick task does not necessitate an 
algebraic solution, it does require that students recognize a repeating pattern, even 
when they solve it arithmetically. The approaches we saw across the 16 target 

How many squares in a row can be made in this way using 73 matches?

In the figure below, 13 matches were used to make 4 squares in a row.

How do you know?

Fig. 8.2  The matchstick task (Adapted from the released set of TIMSS 2007 eighth-grade math-
ematics problems (TIMSS & PIRLS, 2009))
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groups represented various attempts to generalize the pattern and, when a correct 
generalization was “seen” by students, different degrees of success in formalizing it 
mathematically.

The algebraic equation for the task (i.e., 3x + 1 = 73) exposes the critical ele-
ments of the generalized pattern. Students must identify that for each square (x) 
there are three matchsticks, and one additional matchstick is required to close the 
final square. None of the target groups produced the full, algebraic equation to rep-
resent the pattern, but one came close. That group omitted mention of the one, 
additional matchstick and produced 3x = 72 (As will be seen below, the “1” in the 
pattern proved troublesome for most groups.). Three other groups made use of an 
unknown in some way, but without success. They produced the following 
equations:

3 · x = 73

4 · x = ?

13 · ? = 73

Each of these approaches suffered from either confusion about the one, addi-
tional matchstick or a misunderstanding of the repeating value in the pattern. When 
we coded these approaches, we included them among others with similar misunder-
standings, rather than creating a coding category for erroneous algebraic 
expressions.

Many students saw the pattern in the matchstick figure and were able to formal-
ize it arithmetically. Their renderings took a number of forms. Some students saw 
an initial, single matchstick:

73 – 1 = 72

72 / 3 = 24

Some students saw an initial, single square:

73 – 4 = 69

69 / 3 = 23

23 + 1 = 24

Still other students saw a complete, initial figure:

73 – 13 = 60

60 / 3 = 20

20 + 4 = 24

In each case, students took the number of matchsticks that remained after the 
initial unit was removed and divided it by 3, thereby determining how many squares 
could be created with the remainder. In Fig. 8.3, these three successful approaches 
are referred to as “single matchstick, +3,” “single square, +3,” and “complete figure, 
+3,” respectively.

Although not by itself a complete solution, we also noted when groups were able 
to articulate the repeating (i.e., +3) pattern in words, whether or not they were able 
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to communicate it with mathematical notation. For example, You have 4 and 
keep adding 3. In Fig. 8.3, this is referred to as “1 (or 4) and keep adding 3”.

One group recognized that a larger quantity (i.e., groups of 12 matchsticks) could 
be repeated. In Fig. 8.3, this is referred to as “single matchstick, +12”.

73 – 1 = 72

72 / 12 = 6

6 · 4 = 24

Of course, not all of the approaches students used led to a correct answer. 
Students sometimes produced a variety of inchoate approaches—approaches that 
were imperfectly formed but that might be developed into a successful approach. 
For instance, not all students who recognized multiples fully understood the pattern. 
As was suggested above, it was fairly common for students to see a repeating 3, but 
either not see or not know how to account for the additional 1 matchstick, as with 
the following five approaches. In Fig. 8.4, these are referred to as “See +3, but con-
fused by or ignore 1.”

73 / 3 = 24

73 / 3 = 24.333

73 / 3 = 24 R1

73 / 3 – 1 = 24

73 / 3 + 1 = 25

Other approaches reflected a recognition that something is repeated, but a misunder-
standing about what that quantity was, whether it be 4, 13, or some combination of 
the two, as with the following seven approaches:

73 / 4 = 18

73 / 4 = 18.25

73 / 4 = 18 R1

Fig. 8.3  Frequency of successful approaches to the matchstick task (i.e., approaches that lead to a 
correct answer) within each target group, by country
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4x = 73

73 / 13

13 · ? = 73

13 · 5 + 3 + 3 = 71

In Fig. 8.4, these approaches are referred to as “confused about repeating (4),” 
“confused about repeating (13),” and “confused about repeating (4 & 13)”, 
respectively.

The student approaches furthest from being successful were those that reflected 
efforts to take significant values from the problem (i.e., 3, 4, 12, 13, 73) and com-
bine them with various operations, as with the following two approaches. In Fig. 8.4, 
this is referred to as “combining significant values.”

4 · 73 = 292

13/73

Use of the numbers 3 and 12 is more likely to represent some valid understand-
ing of the task than use of the numbers 73, 13 and 4, which are all numbers given in 
the text of the problem. It is possible, of course, that in groups in which students’ 
reasoning could not be verified through their discourse, the approaches identified 
further above (e.g., 73/3 and 73/4) represent also random attempts to combine 
significant values, and that by indicating that the approaches reflect an understand-
ing of a repeated pattern, we may overstate somewhat students’ understanding.

From this assembly of student approaches, two questions arise:

	1.	 Did the incidence of each type vary across countries?
	2.	 Were there patterns in the orders in which the approaches appeared over time, 

within group discussions?

Fig. 8.4  Frequency of inchoate approaches to the matchstick task (i.e., approaches that are imper-
fectly formed but might be developed into a successful approach) within each target group, by 
country

J. Reinhardtsen and K. B. Givvin



173

�Comparing Student Approaches by Country

As we have seen across the prior chapters of this volume, algebra is introduced dif-
ferently in the four participating countries. So, given brief exposure to those differ-
ing forms of instruction—just four lessons—did students from the different 
countries approach differently a problem for which they could draw on their bur-
geoning understanding of algebra? If we organize students’ work on the problem in 
line with the approaches described above, the answer appears to be “no.”

We drew on both the videos of the target groups as they worked on the match-
stick task and on copies of their written work to code each approach as it arose. We 
then tallied the number of target groups in each country that utilized each approach 
at some point during their work. In all countries, except Norway, drawing was the 
most frequently used among the approaches that resulted in a correct answer (see 
Fig. 8.3). Verbalizing the pattern of repeatedly adding three was another commonly 
used approach. Among the inchoate approaches used by students, confusion in the 
target groups primarily concerned what quantity was being repeated (see Fig. 8.4). 
Recognizing the correct repeating pattern, but being confused by the single match-
stick or not included in it, was also common across the countries.

�Order of Student Approaches

All of the student groups in the study tried more than one approach when attempting 
to solve the matchstick task. That is, the thinking exposed within each group 
changed over time. The classroom videos allowed us to investigate the order in 
which the various approaches appeared in students’ work.

Of the 16 target groups, only one failed to identify a successful approach. One 
other group identified only successful approaches. The remaining 14 groups dis-
cussed a combination of successful and inchoate approaches. Interestingly, in all of 
those 14 groups, students continued to work with inchoate approaches even after a 
successful approach had been considered. Some groups identified what would be a 
successful approach but abandoned work on it in favor of using an inchoate one—
sometimes revisiting the first approach and sometimes not. Other groups reached an 
answer with a successful approach and continued their work, exploring other 
approaches to the problem—some of which were themselves successful, others not. 
What the groups did not do was simply find a successful approach, carry it through 
to an answer, and halt their work on the task. Their work cannot be characterized as 
consistent progress toward a final, correct answer.

We repeatedly saw a pattern of problem solving that might explain this finding. 
Students with successful approaches frequently had difficulties convincing their 
peers of the value of their suggested approach, sometimes even after multiple 
attempts to explain their ideas. It may be that the task requires a degree of intellec-
tual investment in order to make sense of it, and that this can be achieved only 
through wrestling with it personally. In some cases, students blindly followed the 
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work of someone whom they saw as a more competent student, and in these cases it 
often appeared that they did not understand the solution they copied.

Nine of the focus groups identified more than one successful approach (with 
three groups identifying three successful approaches and one group identifying 
four). When groups identified more than one approach that led to a correct answer, 
making a drawing—the most frequent of the successful approaches—was very 
often one of them (i.e., seven of the nine student groups). The placement of making 
a drawing within the sequence of the groups’ successful approaches was interesting. 
For three of the groups, a drawing was followed next by a verbal articulation of the 
pattern. For two other groups, the reverse was true: Their verbal articulation of the 
pattern was followed next by a drawing. Thus, for some groups, the drawing seems 
to have led to the discovery of the repeating pattern, and for others it served as a way 
to confirm the discovery. With respect to the latter, the incorporation of a drawing 
(or gesturing as an imitation of the drawing) appeared to provide an element of 
certainty among students and confidence in their solution. When the problem was 
solved correctly without at some point using a drawing, students were more prone 
to ask the teacher for confirmation. There was no detectable pattern in the sequences 
of less frequent, successful approaches.

Also of interest are the inchoate approaches students tried before a successful 
approach had been identified. Were there inchoate approaches that served as bridges 
to successful ones? Six of the groups tried inchoate approaches of some kind before 
trying a successful one. With so small a sample, it was difficult to detect a pattern. 
Among these six groups, students’ last inchoate approach was, to the same extent, 
confusion over whether the repeating quantity was 4, whether the repeating quantity 
was 13, and how to manage the 1 matchstick that remains with a repeating quantity 
of 3. Half of these inchoate approaches led directly to a resolution by means of a 
drawing. Another two led to a successful verbalization of the pattern. In the end, this 
may indicate nothing more than that the highest frequency inchoate approaches 
were followed by the highest frequency successful approaches.

�Part Two: An in-Depth Discourse Analysis of Four Groups

The approaches to the matchstick problem discussed above are part of and have 
been extracted from the discourse of the 16 groups from the four countries. There 
are two findings from the prior section that will form the background for the follow-
ing analysis:

	1.	 The students mainly use mathematics (arithmetic) they have previously internal-
ized and not the algebra introduced in the four prior lessons

	2.	 The groups, in spite of coming from different countries, apply similar approaches 
to the task.

Applying the theoretical framework of commognition (Sfard, 2008), the dis-
course of the groups is analyzed in a developmental perspective that explains 
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learning as growth in discourse. Algebraic discourse can be either informal or for-
mal, which is paralleled with the historical distinction between rhetoric and sym-
bolic algebra (recognizing that the use of symbols is only one of a series of changes 
that are made in this transition). Caspi and Sfard (2012) argue that it is more likely 
for students who retain a connection between informal and formal algebraic dis-
course to learn algebra meaningfully than for students who do not (i.e., the latter 
might be able to manipulate symbols but not understanding the meaning of those 
actions). Students’ learning of algebra is seen as a process of individualizing the 
formalized algebraic discourse they are exposed to in school.

A commognitive tenet is that mathematical discourses develop by formalizing 
and annexing their own meta-discourses. Following this, Caspi and Sfard (2012) 
define school algebra as a meta-arithmetical discourse described as “a sub-category 
of mathematical discourse that people employ while reflecting on arithmetic rela-
tions and processes” (p. 45). Our previous analysis, Part One, shows that the stu-
dents mainly use arithmetic to solve the matchstick problem. However, in order to 
use multiplication/division correctly, they have to generalize the pattern and relate 
quantities of two different dimensions (one-dimensional matchsticks and two-
dimensional squares). Thus, the students working with the matchstick task do at 
times engage in a meta-arithmetical discourse.

Given the similarity of student responses to the task, we have chosen four groups, 
one from each country, for an in-depth discourse analysis. These groups have been 
chosen for the purpose of illustrating and characterizing the meta-arithmetical dis-
course employed by the students of different classrooms as they discuss the match-
stick task. We are also looking for patterns in a local (in time and content) discourse 
development in algebra.

There is a large body of research in school algebra (cf. Chap. 1). Here, we only 
touch the surface and bring to mind some well-documented issues. There are differ-
ing views regarding how to conceptualize the relationship between arithmetic and 
algebra in school and several different approaches to school algebra have been pro-
posed and investigated, including functional, problem-solving, and generalized 
arithmetic (Carraher & Schliemann, 2007; Kieran, 2007b). The discussion also 
involves instructional timing. Stephens, Ellis, Blanton, and Brizuela (2017) argue 
that algebra should be considered a K-12 topic and proposes algebra in the early 
grades mainly in terms of generalized arithmetic. This contrasts with earlier propos-
als of pre-algebra approaches that are aimed at the middle grades in order to allevi-
ate transitional issues as the students move from arithmetic to algebra (Kieran, 
1992). The establishment of early algebra as its own field of research has further 
enriched the discussion on defining algebraic thinking as the use of alphanumerical 
signs is not necessarily involved (Kieran, 2018). This study follows the tradition of 
viewing arithmetic and algebra as two distinct and rich topics of school mathemat-
ics, in which there is an agenda to define and empirically explicate the nature of 
algebraic thinking as differentiable from arithmetic ways of working mathemati-
cally in school (Bednarz & Janvier, 1996; Filloy & Rojano, 1984; Radford, 2018; 
Vergnaud, 1982). We consider the use of algebraic symbols as the most visible 
change when algebra is introduced in the middle school classroom, but argue that 
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there are many, more fundamental, changes that the students need to attune to in 
order to be successful in algebra.

Radford (2010) summarizes research on algebraic thinking in the 1980s and 
1990s and proposes that although a minimal set of characteristics was not agreed 
upon, there was general consensus regarding two points: (1) algebraic thinking 
involves objects of an indeterminate nature such as unknown, variable, parameter, 
etc., and (2) these are dealt with in analytic ways. Radford (op. cit.) proposes that 
there are several semiotic ways of expressing indeterminacy, other than, and along 
with, algebraic symbols. From an ontological standpoint, Radford (op. cit.) advo-
cates the usefulness of investigating what he calls the zone of emergence of alge-
braic thinking, instead of equating symbols with algebra.

Berg (2009), investigating the development of algebraic thinking of mathematics 
teachers at a lower secondary school, highlights the importance of the “discovery, 
exploration and investigation of patterns, aiming to grasp and express some alge-
braic structure” (p. 271), in this process. Further, she reflects on the role of algebraic 
symbols and characterizes the ability to use these to express observed structure as 
“a result of algebraic thinking and not as a condition sine qua non for it” (op. cit., 
p. 271).

Mason (1996) has proposed the activity of generalizing as the essence of algebra 
and as a route to learning. He describes it as “detecting sameness and difference, 
making distinctions, repeating and ordering, classifying and labeling” (p. 83). These 
generalizing activities express an attempt to minimize demands of attention. Further, 
he proposes that students must develop interpretative flexibility regarding symbols 
which he calls necessary shifts of attention: (1) as expressions and as value; (2) as 
object and as process. The difficulty students have with seeing the duality of math-
ematical objects (as process and as object) has also been elaborated on by others 
(Gray & Tall, 1994; Sfard, 1991).

The central question is how to structure lessons in algebra so that the students 
can adopt its cultural ways of thinking and the algebraic syntax embedded in mean-
ing. Some research has pointed out the important role of natural language in the 
learning of algebra (Freudenthal, 1983; Radford, 2000; Carraher, Martinez, & 
Schliemann, 2008). In the same vein, but put in a systematic structure, Caspi and 
Sfard (2012) propose that informal, meta-arithmetical discourse can provide the 
necessary background for a meaningful development of a formal algebraic 
discourse.

Caspi and Sfard (2012) present a hierarchical model for the development of alge-
braic discourse. The model is a discursive version of one elaborated earlier (Sfard & 
Linchevski, 1994) and is informed by historical, logical, and empirical consider-
ations. Explaining the growth of algebraic discourse in school (informal and for-
mal), using the metaphor of a tree trunk, it is separated into distinct layers according 
to what the specific discourse is about. Each layer is the meta-discourse of the pre-
ceding layer, and the layers represent rising levels of complexity; thus these discur-
sive layers are described as levels of algebraic discourse. The main idea behind the 
model is the duality of mathematical objects—processes and objects. Sfard and 
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Linchevski (1994) argue that the processual use of mathematical objects must be 
developmentally prior to the objectified use of them.

Caspi and Sfard (2012) describe five levels of algebraic discourse as an attempt 
to depict school algebra (primary and secondary). The three lower levels are pre-
sented as constant value algebra in which the signifiers used for objects are inter-
preted as specific numbers, either known or unknown: (1) Processual level in which 
the focus is on numerical calculations that are described in the order of their execu-
tion. Examples are equations of the form ax + b = c, which are solved by the simple 
“undoing,” and rules for patterns explained by listing calculations in their sequential 
order; (2) Granular level is also about numerical calculations but instead of focusing 
only on calculations one step at a time (73 – 4 = 69, 69/3 = 23, 23 + 1 = 24), it is a 
reflection on these calculations, in which some calculations are lumped together and 
bypassed (69 divided by 3 and add 1). Caspi and Sfard (op. cit.) explain that

such expressions can be metaphorically called granular, because they can be seen as a result 
of shortcutting the chain of basic operations by tying parts of this chain into ‘knots’ or 
‘granules.’ The granules are to be interpreted as results of auxiliary calculations rather than 
calculations themselves, that is, as objects rather than processes. (p. 50).

However, at this level, these objects only have a transient existence and even when 
expressed symbolically, they are not seen as legitimate answers to problems; (3) 
Objectified level is reached when complex algebraic expressions (verbal or sym-
bolic) have the same status as a number and are used to describe relations between 
objects. The last two levels of algebraic discourses are described as variable value 
algebra and are developed as a response to the need for modeling processes of 
change; the objects of the discourse are variables and functions. Level 4 discourses 
are concerned with processes and level 5 discourses describe functions as objects.

The elements of each layer in the model increase with respect to their general-
izing power (i.e., 3n + 1 versus f(n) = an + b). It is a theoretical presupposition that 
in order for students to learn algebra meaningfully they have to pass through these 
levels, through a process of reification—replacement of talk about processes with 
talk about objects.

The model aims at including and depicting the spontaneously developed infor-
mal algebraic discourse at its lower levels. Two types of tasks are considered to give 
rise to this kind of meta-arithmetical discourse (Caspi & Sfard, 2012): (1) Questions 
about numerical patterns, and (2) Questions regarding unknown quantities involved 
in computations whose result is given.

Caspi and Sfard (2012) conducted task-based interviews with pairs of Grade 5 
and Grade 7 students. In order to discern the developmental level of the students’ 
informal algebraic discourse, the students’ written and spoken formulations regard-
ing a rule for a pattern were investigated in several aspects. Those included means 
for saming (expressing generality), types of actions described (algebraic operations 
versus actions such as finding, using, etc.), ways of dealing with intermediary 
results in complex calculations (listing calculations linearly or bypassing some cal-
culations by using granules stated as for example: the product of a and b), signifiers 
used for constants and variables (evaluated regarding ambiguity), the extent of 
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involvement of a human actor in the verbalizations, and the lengths (number of 
words used) of the replies. Task 1 and students’ written responses to the last ques-
tion posed are presented below (Caspi & Sfard, 2012, pp. 54 and 59):

Task 1, Type: (Informal, Generalizing, Abstract)

Given the sequence: 4, 7, 10, 13, 16 ….

	1.	 Write the next three elements of the sequence
	2.	 What number appears in the 20th place in the sequence?
	3.	 What number appears in the 50th place in the sequence?
	4.	 Write a rule for calculating any number [literally: a number that appears in 

any place] in the sequence

Two Written Rules by Seventh Grade Students:

	1.	 To find a certain place in the sequence I need the place that I found (it better be 
round) and then the regularity (3 or any other number that is the regularity) times 
what must be added to the number you have now and then to add the number you 
have now and the product of the regularity and what you still need, and that’s it.

	2.	 Rule: place · regularity of the sequence +1
□ × 3 + 1

Two Written Rules by Fifth Grade Students:

	3.	 Rule—you need to start from the highest number you see (16) (the fifth in the 
sequence) and then you need to see which place you want to find (20th in the 
sequence). You do [the exercise of] subtraction between the highest place and the 
place you want to get to (20 − 5 = 15) and then you multiply the result you get 
by 3 (15 × 3 = 45). In the end you take the number you got and add it to the high-
est number you see (45 + 16 = 61).

	4.	 3 1× = + =

The two student groups in Caspi and Sfard’s (2012) study had similar means for 
saming (mostly verbal and rather ambiguous); the solutions proposed were much 
the same, and the human actor often remained visible in the students’ replays. 
However, several differences were documented: the rules of the seventh graders 
were shorter (thus more condensed), less processual (intermediary calculations 
momentarily bypassed by using granules), and the use of ideographs was more fre-
quent; the fifth graders sometimes used a specific “generic” number instead of a 
variable and more frequently used verbs in their solutions. These differences Caspi 
and Sfard (op. cit.) interpret as marking the development of spontaneously devel-
oped meta-arithmetical discourse over the course of 2 years. They conclude that the 
seventh graders’ rules are close to the second, granular level of algebraic discourse, 
while the fifth graders rules are characteristic of the first, processual level of alge-
braic discourse.

The matchstick task is similar, regarding mathematical content, to the task pre-
sented above. However, it also differs in several aspects: (1) it involves the same 
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numerical structure, but it has to be applied to a geometrical figure; (2) the task is 
contextual in that it includes matchsticks, squares, and a geometrical figure; and (3) 
only one question is posed and therefore the task does not offer prompts that lead 
the students on a step-by-step journey from the specific to the general. The match-
stick task includes a generalizing aspect (pattern) inserted into a question about an 
unknown quantity (number of squares) involved in calculations whose result is 
given (3x + 1 = 73). In comparison to the study by Caspi and Sfard (2012), our data 
are of a different nature as the students work in groups, organized by their teachers, 
in their ordinary classroom settings (as opposed to task-based interviews).

In the present study, we will focus on the three lower levels (constant value alge-
bra) of Caspi and Sfard (2012) as our data may contribute to shed light on the early 
developments of algebraic thinking. A table exemplifying how we interpret the 
algebraic levels in relation to our empirical material is presented below (Table 8.1). 
Our table is based on the main ideas of Caspi and Sfard (2012) and Sfard and 
Linchevski (1994). However, focusing on one section of the discursive model, con-
stant value algebra, we have attempted to add a dimension of algebraic thinking 
within a problem-solving context; when scrutinizing the meaning-making process, 
rather than its results only, we find it useful to look at how the students model the 
problem and how relevant mathematical objects (to the problem posed) are evoked.

Caspi and Sfard (2012) exemplify the three lower levels of algebraic discourse 
through descriptions of a computational process (column 2). We have sought to 
mirror this within models of a text problem (column 3). Caspi and Sfard (op. cit.) 
include the activity of generalizing in their description of constant value algebra. As 
an important aspect of algebraic thinking, we look at how students generalize rela-
tions between objects when only using signifiers that refer to specific numbers, in 
column 4. The ideas drawn upon here have been developed by Radford (2010) and 
will be explained later in this chapter. The last column (5) focuses on the relevant 
mathematical objects (algebraic) and their role within the problem-solving process. 
Rather than being a general table as the one presented in Caspi and Sfard (2012), 
our table emphasizes the particular problem posed and includes examples from the 
students’ discussions. Even so, we see it as a part of the general mapping of elemen-
tary algebraic thinking.

We aim to further investigate informal algebraic reasoning using the work of 
Caspi and Sfard (2012) as a starting point and we ask:

	1.	 What is the nature of the groups’ argumentations regarding the matchstick task?

In addition, we also see the groups’ work with the matchstick task as instances 
of (local) discourse development, of which we will explore the dynamics:

	2.	 What characterizes the groups’ processes of learning as they are introduced to 
algebraic ideas in a problem-solving setting?

In contrast to the study by Caspi and Sfard (2012), in which they describe 
changes in the discourse over a long period of time (2 years), our analysis maps 
changes in the discourse within a short period of time (i.e., 8–15 min.). A multi-
semiotic analysis (Radford, 2002) is incorporated in order to shed light on the role 
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of different semiotic means in a process of knowledge objectification. Radford’s 
theory of Knowledge Objectification includes ideas which are linked to embodied 
cognition, which advocates that (1) sensory-motor experiences form the basis for 
abstract mathematical reasoning, and (2) gestures play an important role in the 
learning process (Hitt & González-Martín, 2016). Additionally, Radford (2002) 
emphasizes the role of history, and conceptualizes the learning of mathematics as 
becoming aware of the knowledge accumulated in the culture through social 
processes.

Radford (2002) proposes that knowledge objectification2 happens through semi-
otic activity, that is, through “objects, artifacts, linguistic devices and signs that are 
intentionally used by individuals in social processes of meaning production, in 
order to achieve a stable form of awareness, to make apparent their intentions and to 
carry out their actions” (p.  14). The different semiotic means of objectification 
mediate activity, but are not equitable and play different roles in the learning pro-
cess. A mathematical object may be referred to by a gesture or a drawing, phrased 
in natural language, and also implied by the use of mathematical terms and writing. 
However, that does not mean that the signs are equivalent. The semiotic systems 
include different modes of signifying and are thereby unique, i.e., the meaning 
encapsulated within one semiotic system is not directly translated into another one, 
but rather there is a transformation accomplished which includes an alteration (to 
varying extent) of meaning. Radford (2010) argues that the mode of signifying 
“characterizes the form and generality of the algebraic thinking that is thus elicited” 
(p. 2). The purpose of a semiotic analysis is to disentangle the dynamics of the semi-
otic means and shed light on the linking between them.

We see the theories of Sfard (2008) and Radford (2002) as both intertwined and 
complementary. Commognition conceptualizes mathematics as a discourse with 
distinct features, investigates student learning as an internalization of this discourse, 
and naturally emphasizes the particulars of discourse that are retained and refined 
through time. The theory recognizes that gestures play a role in the learning process, 
but these acts are not substantially theorized. The particulars of discourse are pat-
terns of actions, and word use is one of the main categories. Radford (2009) points 
out that language has a “unique capacity for creating sustainable reference points 
with which to organize experience” (p. 124). Sfard (2008) has a well-defined and 
theoretically rooted analytical tool kit for investigating the use of words. The theory 
of knowledge objectification offers the possibility to investigate gestures as inven-
tive and creative acts as they appear in interplay with different semiotic means in the 
students’ discourse. De Freitas and Sinclair (2012, p. 138) highlight the creative role 
of gestures referring to the work of Châtelet: “The gesture is more than simply an 
intention translated into spatial displacement, for there is a sense that ‘one is infused 
with the gesture before knowing it’.” Radford (2010, p. 113) considers gestures as 

2 Radford (2002) use the wording objectification in a more general sense than Sfard (2008). The 
process of knowledge objectification that Radford delineates is an ongoing process of becoming 
aware of cultural ways of reasoning. However, Sfard uses objectification in order to describe the 
movement from talking about mathematical objects as processes to explaining them as objects.
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“genuine constituents of thinking.” However, gestures are often momentary. They 
may only occur once, or be repeated throughout certain learning sequences, but 
ultimately the experiences culminate into patterns of actions (word use, use of visual 
mediators, routines and narratives) as defined by Sfard (2008). Radford’s (2014, 
2018) multi-semiotic investigations of the immediate learning process show that 
these patterns of actions are deeply rooted in material and sensuous experiences.

As a first step, and in order to capture the significant changes in the groups’ dis-
courses as they evolve, the analysis will focus on the main objects of the discourse 
at different segments. The naturally occurring talk will be separated into different 
thematic discourses according to their focal objects. These will be further investi-
gated regarding word use combined with a semiotic analysis focusing on the linking 
between the different semiotic means. The thematic discourses will also be evalu-
ated according to the levels of algebraic discourse as proposed in the table presented 
above (Table 8.1). See Fig. 8.1 for an overview of the analytical process.

We will also be attentive to the initiation of discursive shifts. The term, discursive 
shifts, is used in Nardi, Ryve, Stadler and Viirman (2014) and is defined in a very 
broad sense as “the changes to the mathematical perspectives of those who act” 
(p. 182) and refers to changes in forms of discourse. We have defined discursive shifts 
in the context of our present study as the replacement of talk about one type of objects 
with talk about another. However, this replacement also includes changes in forms of 
discourse. For example, the talk about concrete objects is dominated by an extensive 
colloquial discourse, while the talk about numerical patterns is concise and centered 
on numbers. Therefore, our use of the term discursive shifts does not strongly deviate 
from its previous application and can be seen as a particular type of discursive shifts.

The excerpts will be introduced with a small summary of (1) what the students 
have been working with in the preceding four algebra lessons; and (2) a description 
of how the matchstick task was introduced to them. In the presentation of excerpts, 
we have attempted to preserve the naturally occurring discourse development within 
the groups.

�Norwegian Group (N1): “Oh, You! 73 Divided by 3 and Then 
You Just Add 1!”

The group of students (Grade 8, 13 years), Ben (A), Ann (B), Trish (C), and Sam 
(D) presented here is part of one of the Norwegian classrooms. In the prior lessons 
in algebra, the teacher has been focusing on the concept of a variable, often as an 
unknown appearing in equations or expressions.3 The students are arranged into 
groups and the teacher hands out one task at a time. The matchstick task is the last 
one and the group is given only two copies of the task. The teacher does not give any 
specific instructions regarding this particular task but hands out toothpicks as a con-

3 See Chap. 5, this volume, classroom B for more information.
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crete material the students may use in order to solve the problem. Only Ann writes 
on the task paper. The group spends in total about 8 min working with this task 
(Fig. 8.5).

Ann and Trish read the problem out aloud, and their first approach to the task is 
making use of the numbers provided within the task statement. They discuss divid-
ing 73 by 4 or 13 and decide on dividing by 13. Ann explains …if we divide by 
thirteen we find out if it becomes more, if it works. Trish adds 
to the explanation: how many more rows we can make. The boys, at first, are 
distracted by a pen, and they do not yet take part in the discussion. Ann is struggling 
with performing the division, and when the teacher hands out the toothpicks, Trish 
suggests using them as another approach for solving the task.

	23.	 Trish: We can make them [squares] on the desk. But should we 
just use these or? [Trish shakes the can of toothpicks she 

is holding in her hand].

	24.	 Ann: But see, we get 7.1 [Ann points to the division, 73 
divided by 13, she has been working on], then if you have 

taken ( ) then you get 7.1 squares. 1, 2, 3, 4, 5, 6, 7 [Ann 
points at the squares in the task paper as she counts them 

and continues by pointing at imaginary squares until she 

reaches 7]. So then you get less than sev…then we get, if 

we make 7 squares. Ok, 4. [The girls try to add a square to 

the figure using the toothpicks. They give it up quickly as 

they notice that the dimensions are different].

	25.	 Trish: Ha…ha
	26.	 Ann: You, this didn’t work
	27.	 Trish: We’ll draw it.

Ann, in turn (24), is not willing to give up on their first idea and tries to make sense 
of her answer 7.1 by adding squares to the drawing. She relates the answer she 
found to single squares instead of rows of four squares. As she starts to draw, she 
seems to leave the first approach behind and does not bring up the number 7.1 again.

Fig. 8.5  Norwegian group working their solution to the matchstick problem
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	28.	 Ann: [She adds a square to the figure by drawing three sides 
in one motion, she then points at each square as she counts 

them] 1, 2, 3, 4…[adds another square in the same manner], 

5. [starts counting the matchsticks making up the squares] 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14… 17, 18. Ok, 

but see…ah…I got a good idea…look [Now she only counts the 

horizontal matchsticks] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12…[adds more squares using the same motion] 13, 14…15, 

16…17, 18…19, 20. So if we take [She now counts the squares] 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10. When we have 20 rows we have 

[writes 20 and then counts the vertical matchsticks 

silently]…((then we have…then we have)) =

	29.	 Sam: ((But what are we going to do with them…Ann?)).
	30.	 Ann: = When we have 20 we have 50 pieces [writes 50. It is 

unclear how she finds the number 50]. Or, when we have 20, 

when we have 20 such things… [she points or taps repeatedly 

at the figure].

	31.	 Sam: It is those [Sam holds up a toothpick].
	32.	 Ann: Yes, matchsticks, then we have 50 altogether [points to 

the number written], used 50 such matchsticks [points back 

at the figure] and we are going to use 73, right? =

	33.	 Sam: Just make…
	34.	 Ann: = So then…
	35.	 Trish: ((really one more will be 53 and then 56))
	36.	 Ben: ((We are going to use…))
	37.	 Ann: No, if we have one more with 10 in it, then it becomes… 

=

	38.	 Sam: ((Yes because it is 4 in one)).
	39.	 Ann: = So, then we get 20 more and it becomes 70 [writes 70]. 

((It is 1, 2, 3…so then we get 70… No, now there is too much 

here)) =
	40.	 Ben: [looks at Sam and responds to his comment] ((No, it is 

3, it is 4 in one and 3…1, 2, 3, 4, 5, 6, 7, 8, 9))

	41.	 Ann: = I think I sort of lost count of it.

Ann continues to take the lead in the problem-solving process as she adds squares 
to the figure, counts out aloud, and attempts to find a relationship between numbers 
of matchsticks and numbers of squares. She continues to confuse different units, 
now numbers of single matchsticks and numbers of squares. Sam is getting involved 
by asking questions (29). In turn 35, Trish makes a comment in which she converts 
the structure observed in the figure into a numerical sequence: one more will be 
53 and then 56. This idea initiates a discursive shift as Sam follows her line of 
thought and says yes because there is four in one. Ben, in turn 40, cor-
rects Sam’s statement, combines Trish and Sam’s observations, and makes explicit 
the numerical properties of the figure (40): it is 3; it is 4 in one and 3. 
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The objects of the discourse are no longer matchsticks and the processes of drawing 
and counting these, but the numerical structure of the figure, which takes the form of 
a numerical pattern. Ann appears unaware of the new discourse that has grown out 
of the one she initiated. Below, Trish attempts to include Ann in the discovery of the 
4 3 3 3 structure by verbalizing the numerical sequence, which continually rises with 
3 (42), then pointing out the numerical properties of the figure (44) and at last trying 
to get Ann to count the number of matchsticks in the second square in the figure 
(46).

	42.	 Trish: No, 70, and then you should have 1 thing more and then 
it becomes exactly 73.

	43.	 Ann: Ah, but see, oh yes because 20…
	44.	 Trish: It is really only 3 in each, it is only the first there 

is 4 in, and then there is only 3 in each the whole time 

[points at the figure while she explains].

	45.	 Ann: But see…
	46.	 Trish: If you do like that then…4 [she holds her finger over 

the first square]

	47.	 Ann: 1, 2, 3. [counts three matchsticks in the first square, 
then pushes away Trish’s finger and starts counting follow-

ing the procedure she has developed, horizontal matchsticks 

first and then the vertical ones] Ok, 1, 2, 3, 4, 5, 6, 7, 

8, 9 ( ) 18, 19. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 16, 17, 18, 19, 20. 20. 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11. 11. [While Ann is counting, Ben and Sam start pay-

ing attention to something that is going on in the class-

room which is not relevant for the mathematical discussion. 

When the teacher approaches the group, the boys attend to 

solving the task again]

	48.	 Trish: [She traces the matchsticks in the squares using the 
same motion as Ann used earlier when drawing new squares, 

however she does not trace the first vertical matchstick] 

3, 6, 9, 12. Oh, you! 73 divided by 3 and then you just add 

one more! [she picks up her calculator]

	49.	 Ann: There you said one. [While Trish is working on the cal-
culator, Ann traces first the four matchsticks in the first 

square and then the 3 matchsticks in each of the following 

squares. She is using the same motion as earlier when draw-

ing the squares].

	50.	 Trish: No. [The teacher comes over to the group, but Trish 
looks only at the calculator while she speaks] 73 divided 

((by 3, plus 1, 25)).

	51.	 Ann: [Ann looks at the teacher] ((divided by…3. Is that 
right?))
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When the teacher comes over to the group, Ann asks him if Trish’s suggestion of 
how to solve the task is correct. The teacher fails to approve her approach and the 
group gives up on it. Ann resumes her approach of drawing and counting and finds 
that one can make 24 squares using 73 matches. Trish is unable to convince Ann to 
change her thinking. However, continuing her own line of thought in turn 48, after 
tracing squares and quietly listing the numerical sequence of continually adding 3, 
she excitingly exclaims: Oh, you! 73 divided by 3 and then you just 
add 1! This is a new change in the discourse. The pattern is no longer the object of 
discourse. The new object is a complex numerical expression which includes the 
coefficient (3) and the irregularity (add one) of a functional discourse.

�The Meaning-Making Process

The discourse of the group is meta-arithmetical as the students attempt to relate 
numbers of matchsticks to numbers of squares (number of rows of 4 squares at the 
very beginning). This proportional reasoning is warranted in the text of the task, as 
4 squares are related to 13 matchsticks. However, there are significant changes in 
the discussion as the students go from using the numbers provided in the text in a 
numerical expression, to drawing and counting, to the discovery of a pattern, and 
then using the coefficient and the irregularity from the pattern in a numerical 
expression.

Three thematic discourses have been discerned according to their focal objects: 
(1) matchsticks and squares in the procedures of drawing and counting; (2) the 
numerical pattern as a mathematical object; (3) a complex verbal expression which 
includes a coefficient and a constant term, as a mathematical object. Although the 
discourse is interpreted to be about the mathematical objects as listed above, no 
claim can be made that the students are aware of these in a general sense. On the 
contrary, the students are concerned with solving the problem and use the means 
readily available to them (arithmetic), and so they seem to be spontaneously touch-
ing mathematical objects of a discourse not yet individualized (functional).

The word use accompanying the process of drawing involves only basic arithme-
tic and is closer to a colloquial discourse (everyday talk) than it is to formal, math-
ematical discourse, as it includes an extended use of pronouns (I, we, you) and 
non-mathematical verbs (take, have, use). The conversation is extensive, with more 
than 200 words employed. It includes the physical movement of drawing first the 
top horizontal match, from left to right, then the vertical right match, and, finally, 
the bottom horizontal match in one motion as each new square is added to the figure. 
The students who are not drawing start to discuss the structure of the figure as Ann 
continues to draw and count. A discourse on a numerical pattern therefore seems to 
grow out of the discourse on matches and squares.

The mathematical object of a numerical pattern makes its first appearance in the 
discussion as a process of adding 3 to the prior number in a sequence, and is a 
response to Ann’s drawing and counting process: really one more will be 53 
and then 56 (Trish, 35). This utterance initiates a discussion about the numerical 
structure that can be observed in the figure: Yes because it is 4 in one (Ben, 
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38); No, it is 3, it is 4 in one and 3 (Sam, 40); It is really only 
3 in each, it is only the first there is 4 in, and then there 

is only 3 in each the whole time (Trish, 44). The utterances are short and 
precise. All, but one (turn 48), are contextual; although the students do not directly 
refer to matches and squares they do so implicitly, using the words in one and in 
each. The students are looking at the figure as they discuss the pattern. Trish also 
traces the matches as she verbalizes the numerical sequence of continually adding 3 
to the prior term in turn 48: 3, 6, 9, 12 (Trish). In this group, the pattern dis-
course involves both noticing numerical structure in the evolving figure (turn 38, 40, 
and 44), and expressing it as a numerical process of continually adding 3 (turn 35, 
42, and 48). Noticing numerical structure in the figure is contextual, it retains in 
some sense the spatial properties of it. However the numerical sequence 3 6 9 12 is 
relational.

The numerical expression is verbalized as Trish reflects on the task involving 
elements from the prior thematic discourses: [She traces the matchsticks 
in the squares using the same motion as Ann used earlier when 

drawing new squares, however she does not trace the first ver-

tical matchstick] 3, 6, 9, 12. Oh, you! 73 divided by 3 and 

then you just add 1 more! The gesture is the same motion as Ann used when 
drawing new squares and represents a more material and bodily insight into the 
problem. The numerical pattern verbalized as a process of continually adding 3 is its 
abstraction. The gesturing and the numerical pattern relay the significance of the 
number 3, which in a functional discourse is the rate of change. Trish continues by 
giving the coefficient a correct role in her expression.

The activity (coordination of gestures and verbal activity) taking place before 
Trish exclaims Oh, you! (turn 38), is what Radford (2009) has termed a semiotic 
node, i.e., “pieces of the students’ semiotic activity where action, gesture, and word 
work together to achieve knowledge objectification” (p. 121). Trish saw something 
new regarding the problem, and she was able to formulate her idea in mathematical 
terms. Radford (op. cit) identifies this type of situation as an “Aha! Moment,” that 
can be explained as a first rough idea of how to solve a problem; in this case, how to 
use the dynamics of the evolving figure and the numerical pattern to solve the task 
mathematically. Thus, in terms of early algebraic thinking Trish becomes aware of 
the role of the number 3 through the semiotic node. In a physical manner Trish 
grapples with the notion of rate of change. Expressed through gestures, the verbal-
ization of a numerical sequence, and finally in an expression, the notion of rate of 
change is not general as in a functional discourse but instead sensual and contextual, 
i.e., rooted in the immediate experience with the problem at hand. Therefore, we 
evaluate the discourse regarding rate of change as being at a granular level of con-
stant value algebra. The object is momentarily present in the discourse, however not 
explicitly verbalized as one and eventually only used in an expression—not as an 
algebraic model of the pattern but as a means to finding a numerical answer to the 
problem. According to Radford (op. cit.) the appropriation of cultural tools is an 
ongoing process and we interpret the objectification identified here as a step in the 
process of becoming aware of the cultural notion of rate of change.
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Not concerned with calculations at this stage, Trish models the problem using a 
granule (73 divided by 3) in her expression, as explained by Caspi and Sfard 
(2012). The irregularity is included in the latter part of the expression: add one 
more. The expression is contextual and ambiguous as one more is a referent not 
only to a number but to a matchstick or a square. From her previous tracing of 
squares, in which she leaves the first match out, it is likely that it is the one match-
stick she has in mind. However, when performing the calculations in turn 50, she 
adds one whole square. The verbal expression is interpreted as a granular informal 
algebraic discourse (level 2).

�American Group (A2): “Each Box Also Is Interconnected 
with One”

There are three girls, Leah (A), Rachel (B), Christy (C) and one boy, Aron (D), in 
the group (Grade 7, 12 years) presented from the American classrooms. In the prior 
lessons the class has been working with algebraic expressions and equations.4 The 
teacher hands out the three tasks at the same time and instructs the students that they 
need to work together and share their ideas with the group. She also says that they 
need to write down everything on their own paper. The group spends about 10 min 
solving the matchstick task. We have chosen to present Leah’s solution-paper as she 
leads the discussion on the problem (Fig. 8.6).

	 1.	 Christy: Thirteen matches were used to make up four squares in 
a row [She reads the task out aloud].

	 2.	 Leah: How many squares in a row can be made in this way 
using 73 matches [She continues the reading of the task].  
( ) It’s just am…each square is out of four matches [she 

points at the drawing with her pencil] …but they are all 

interconnected so how many matches would it make…((well…

how))

	 3.	 Rachel: ((I was thinking we divide it)). [Rachel has been 
writing on her paper while the others read the problem].

	 4.	 Leah: how many boxes would 73 matches make if they are made 
out of four?

	 5.	 Christy: Oh.
	 6.	 Leah: So ((13 equals 4)).
	 7.	 Rachel: ((So that would mean that)) there be three boxes 

that were four [She holds up four fingers] and one box left 

that is just one. ( ) Because you will not get an even 
amount [She stretches out her hand and draws it back sup-

porting her meaning of even].

4 See Chap. 7 in this volume, Miss A’s classroom for more information.
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	 8.	 Leah: Well yea, but you can keep on adding boxes of matches 
[She draws squares in the air with her pencil as if she was 

adding them to the figure: first the top horizontal, then 

the vertical one on the right side and then the bottom hori-

zontal in one movement. She continues to use exactly this 

motion when she traces 3 matches in the air throughout the 

problem solving process].

	 9.	 Aron: *Inaudible*
	10.	 Leah: Yea you add on 3 until you get to 73…
	11.	 Rachel: Oh [She erases what she had written on the paper].
	12.	 Leah: … and then you count how many boxes you made out of 

[She draws squares in the air with her pencil] … but that 

would take too long I think, ha [She smiles].

Leah’s first reaction to the task is to analyze the figure and incorporate what she 
sees into what she knows from the written text. She looks at the figure and notices 
two important features: 1 square is made of 4 matches; and the squares are inter-
connected (turn 2). Rachel, however, suggests an approach for solving right away, 
by using division (turn 3). In response to Leah’s reframing of the question in the text 
(turn 4), she points out that if there are 4 matches in each square, then there must be 
one square that is made out of 1 match (turn 7); because 13 is not divisible by 4. 
Leah accepts this observation but is not willing to look at the case of only 4 squares 
and expands the figure verbally to include all the 73 matches (turns 8 and 10). In 
imagining the extended figure, by the use of words and gestures, Leah becomes 
aware that they add on 3 matches for each new square. She also realizes that a draw-
ing of the completed figure would provide a solution but does not consider it appro-
priate as it would take too long (turn 12). Rachel initiates a shift in the discourse 
as she suggests an numerical expression as a solution to the task.

	13.	 Rachel: So would you say 73 divided by 4?
	14.	 Leah: I’d say 73 divided by 13… [Rachel starts writing] but 

I don’t think that would be correct. ( )
	15.	 Aron: *Inaudible*
	16.	 Leah: Yea, 73 divided by 4.
	17.	 Rachel: Yea [She erases what she has just been writing].
	18.	 Leah: Wait.

Fig. 8.6  American group working and Lea’s solution to the matchstick problem
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The students now focus on how to find the number of squares that can be made 
using 73 matches. Two numerical expressions are suggested; 73/4 and 73/13. The 
discourse is short and decontextualized. It is interesting to note that the two first 
utterances are personalized: So would you say 73 divided by 4 (Rachel, 
turn 13), and I’d say 73 divided by 13 … but I don’t think that 
would be correct (Leah, turn 14). The students are uncertain and hesitant to 
make direct statements. Then Leah says Yea, 73 divided by 4 (turn 16), but 
right after she says wait (turn 18). The uncertainty regarding the value by which to 
divide 73 makes the students return to the figure.

	19.	 Rachel: Each box would have… [As Leah interrupts her she lis-
tens to her for a while and then starts to work on her own 

paper. She underlines the numbers in the text and then taps 

her pencil inside the squares in the figure, one by one from 

left to right, she repeats this three times].

	20.	 Leah: yea, but each box also is interconnected with one, so 
that’d be 3, it’d be like 4 and then 3 and then 3 and then 

3[She traces in the air with her pencil the 4 matches in 

the first square and then the 3 and 3 matches making up the 

squares in the figure], not 4 and 4 and 4 [She traces the 

squares now with an almost circular motion signaling 4 

matches in each square].

	21.	 Christy: That match has to be with this box [She points to the 
figure on Leah’s paper].

	22.	 Leah: So like if this was 4 [She runs her finger (left hand) 
over the 4 matches that makes up the first square in the 

figure and holds one finger on the match that connects to 

the next square, then she traces the 3 matches that makes 

up the next square with her pencil (right hand)], then this 

would already be used and this would be 3. *Inaudible* …

(the turn continues below)

The students’ discussion here is similar to the one in the beginning, but there is a 
slight change both in context and in topic: previously, the discourse was focused on 
making sense of the task, now it centers on how to solve it; before the number 3 was 
mentioned as the number of matches that was added for each new square until all 73 
matches were used, now it is seen as the repeating number in a number sequence 
that reflects the geometrical pattern Leah sees in the figure: but each box also 
is interconnected with one, so that’d be 3, it’d be like 4 and 

then 3 and then 3 and then 3 (turn 20). Again she uses the word intercon-
nected and this time she specifies with one (turn 20). The objects of this dis-
course are the geometrical pattern that is transformed into a numerical sequence. 
After explaining to Christy the numerical properties of the figure as she sees it, Leah 
immediately suggests a solution to the task in the form of a verbal expression.

	22.	 …Let’s do 73 divided by 3 and then minus 4. [Then she says 

in a low voice, as if to herself] Would that be right?
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The expression in its written form is 73/3 − 4. It is incorrect, but it includes key 
elements of the algebraic rule for the pattern 3(n − 1) + 4. In a discourse on func-
tions, the 3 is a coefficient and the 4 is a constant term. The rule describes the rela-
tionship between the number of single matchsticks to the number of squares (n). 
Although Leah is not aware of a functional relationship, she assigns the number 3 
and the number 4 the correct roles in the expression (coefficient and constant term, 
respectively) based on her understanding of the geometrical pattern.

Leah divides 73 by 3 on her paper. She gets the answer 24 with a reminder of 1. 
She pauses but seems unable to make sense of her answer and is quiet for a while. 
The two other girls also write on their paper. Christy stops as Leah stops. Rachel 
writes a little longer but stops and looks at Leah. Aron is not writing but seems to 
study the task. The group is quiet for about 30 s. Then Rachel turns to Aron who 
starts explaining what he is thinking. However Leah finds a way to avoid a complex 
expression in solving the problem.

	23.	 Rachel: Do you have an idea?
	24.	 Aron: I want to keep adding 3 on this side (inaudible) so 

it’d be 12 divided by 3 because you only need 1 of these.
	25.	 Leah: 13 plus 60 equals 73 [She says it in a low voice, as 

talking to herself], oh! [She looks up]. I got it. It is 24 

[She points to the division she has performed on her paper].

	26.	 Rachel: It is?
	27.	 Leah: Yeah because 13, ‘cause we already have 13 [she runs 

her pencil back and forth above the figure, then she writes 

numbers in the air with her pencil while she talks], plus 

60 equals 73 and so that’d be 60 divided by 4 for each box 

and that’d be 20- wait wait, how did I do that? No, that’d 

be 60 divided by … wait a second. Let me think about that 

one. (16 seconds)

	28.	 Rachel: *inaudible* but you’re using 13.
	29.	 Leah: Well 13 plus 60 equals 73, so that’d be 13 plus 60 more 

[She traces 3 and 3 matches in the air]

	30.	 Rachel: Wait what did you say? 13 times…
	31.	 Leah: 13 plus 60 is 73 [She writes on her paper]
	22.	 Rachel: 73
	23.	 Leah: Yeah and so then that means, so this 13 we would have 

to add 60 more … [She points to the figure and then traces 

3 and 3 matches in the air as if she is adding squares to 

the figure] 60 more 3 matches.

	24.	 Rachel: 3?
	25.	 Leah: Yeah 60 more squares [Most likely she means matches] 

and each square is made up of 3 matches connected to the 

last one. So 60 divided by 3 is 20 and 20 plus the 4 that’s 

already here [She points her pencil one time at each square 

in the figure] is 24.
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Leah calculates 73/3 and when the division leaves a remainder, she rethinks the 
problem. She realizes that by subtracting 13 from 73 she gets the number 60, which 
is divisible by 3. By doing this she avoids the troublesome irregularity and its place-
ment in an expression. She finds, indeed, a geometrical solution by dealing with the 
figure as a special case in which the multiplicative approach of 3 does not work, 
however she can easily see that the 13 matches make 4 squares. She then divides 60 
by 3 and finds that the rest of the matches will make 20 new squares. She adds the 
squares and finds that one can make 24 squares using 73 matches. The objects of 
this discourse are matches, squares, and the figure. She keeps the coefficient from 
the expression and includes it in her calculations. Although Leah has presented a 
successful approach to the problem, the group keeps discussing it; there are a total 
of 80 turns in the group’s discussion of the problem. Leah explains her approach in 
its complete form twice again. Aron uses a different approach to solve the problem 
based on adding new units of 4 squares.

	38.	 Aron: What I’m thinking is if you take 13 and 13 you get 26 
then you have a double line [He points to the end of the 

figure and traces two matches next to each other] since you 

have another one of those [lifts his hands as if he picks 

up the row of 4 squares and put it down again next to the 

original one]. But then you have a double line right there 

and it kind of makes the shape uneven, two lines there, 

shape uneven *inaudible* unless you draw it like this … [He 

draws on his paper]

Aron solves the problem of getting 2 matches next to each other by using 12, and 
not 13, as a coefficient. He identifies the irregularity in turn 24, and although he 
does not use 3 as a coefficient, he acknowledges that there are 3 matches in each 
added square: I want to keep adding 3 on this side (inaudible) so 
it’d be 12 divided by 3 because you only need 1 of these. He 
subtracts one match from the total of 73, to account for the first 4 squares, which 
need 13 matches. On his paper, he writes 72/12 and gets 6, which he then multiplies 
by 4 and finds the solution of 24 squares. However, he is not able to fully explain his 
thought process to the other students and says: I just found 24 boxes. Can 
we just put that as our answer? (turn 63). Rachel listens to both Aron and 
Leah but is not able to make sense of their approaches. In the end, she instead 
checks the answer agreed upon by both Leah and Aron (i.e., 24 squares). First, she 
takes 24 times 4 and finds that it is 96, but with help from Leah, she then writes 
down 24 times 3 plus 1 and concedes, as she finds it is 73.

�The Meaning-Making Process

In the first section of the discussion (turns 1–12), the task itself is the main object of 
discourse. After reading the problem, Leah reframes the question from the text and 
incorporates information from the figure (turn 4): how many boxes would 73 
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matches make if they are made out of four? The students then contem-
plate the relationship between numbers of matchsticks and numbers of squares 
(turns 6 and 7). At the end of this section, Leah uses gestures and words to conjure 
up an image of a figure that is composed of all 73 matches. The act of conjuring up 
an image seems to play a role similar to the activity of drawing seen in the Norwegian 
group. Through it, Leah becomes aware that one adds 3 matches for each new 
square.

The discussion in the group is mainly meta-arithmetical throughout the problem-
solving process, as the students focus on finding the relationship between single 
matchsticks and squares. However, the acts of imagining the completed figure (turns 
8, 10, and12) are closer to a colloquial discourse than it is to formal, mathematical 
discourse, as it is about concrete objects. It is also personal, as it includes the pro-
nouns “you” five times and “I” one time. Therefore, the acts of imagining the com-
pleted figure do not only play the same role in the problem-solving process as does 
the drawing, but also include the same type of word use as employed in the drawing 
approach.

Following the sense making section discussed above, four thematic discourses 
have been identified according to their focal objects: (1) The two numerical expres-
sions (73/4, 73/13) as mathematical objects; (2) a geometrical pattern transformed 
into a numerical sequence as a mathematical object; (3) a more complex numerical 
expression, including the coefficient and the irregularity (73/3 − 4) as a mathemati-
cal object; and (4) the figure combined with an numerical expression that includes 
the coefficient from the prior expression as an object.

Rachel suggests a multiplicative approach very early in the problem-solving pro-
cess: I was thinking we divide it (turn 3). However, Leah leads the group 
in a sense making discussion of the problem and Rachel’s idea is put on hold until 
turn 13, when she suggests a numerical expression: So would you say 73 

divided by 4? Leah responds: I’d say 73 divided by 13. The expressions 
are decontextualized and suggested without explanations. The statements are per-
sonal and the word use would you say and I’d say underlines the uncertainty 
of the students. Leah hesitates and returns to the figure. The question of what to 
divide 73 with initiates a pattern discourse in the group.

The students discuss the structure of the figure already in turn 2, when Leah says: 
each square is out of four matches [she points at the drawing 

with her pencil] … but they are all interconnected. The word use 
in this utterance is geometrical rather than numerical. Leah has also previously 
explained the nature of the problem as a physical process (turn 10): you add on 3 
until you get to 73. She had therefore already identified the number 3 as 
having a role in the problem. Again, Leah uses the word interconnected before 
she describes the figure as a numerical sequence in turn 20: but each box also 
is interconnected with one, so that’d be 3, it’d be like 4 and 

then 3 and then 3 and then 3. In her next utterance, Leah proposes a com-
plex numerical expression. Thus, the discourse development is a movement toward 
abstraction, which is necessary if the students are to solve the task mathematically. 
However, there seem to be remnants of the prior, more concrete, discourses which 
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are carried along and play important roles in the continued meaning-making 
process.

In turns 20 and 22 we observe the same type of intense action as we identified as 
a semiotic node in the previous group (N1). Leah is tracing the squares and verbal-
izing the numerical structure of the figure before she immediately suggests a numer-
ical expression that includes the coefficient and the irregularity: Let’s do 73 
divided by 3 and then minus 4. This is similar in its form to the one that 
appeared in the Norwegian group: 73 divided by 3 and then you just add 
1 more. Both include a granule. However, Leah’s expression does not include a 
human actor or any referent to the context. Leah’s numerical expression is also 
interpreted to be at a granular level of algebraic discourse (level 2), although it is 
slightly more reified. Leah writes and performs the calculation 73/3 and finds 24 
with a rest of 1. She then abandons her complex expression and finds a geometrical 
and processual solution that includes the coefficient: 73 −  13  =  60, 60/3  =  20, 
20 + 4 = 24. Leah explains why she subtracts 13 from 73 in turn 27: ‘cause we 
already have 13 [she runs her pencil back and forth above the 

figure …]. It is clear to her that the 13 matches make four squares, and then she 
only needs to worry about the 60 that are to be added to it. Thus, including the figure 
as part of her solution, she avoids modeling the irregularity of the pattern. The cal-
culations here are performed in their linear order and therefore this type of discourse 
is at a processual level of algebraic discourse (level 1).

When trying to explain her solution to the other students, Leah gets confused 
about the value by which to divide 60, and, following the group’s discussion in turns 
27, 29, 33, and 35, the gesture of repeatedly tracing 3 matches seems to have become 
an embodied part of her thinking, signifying the coefficient 3.

The same  gesture is identified to play an important role in group N1. 
However, Leah’s (A2) repeated use of the specific motion allows for a more vivid 
elaboration of its meaning in this particular group. Early in the meaning-making 
process it signifies the process of physically adding squares to the figure (turn 8). 
Later, the gesture is part of a semiotic node through which an (incorrect) complex 
expression is created (turns 20 and 22). Leah struggles to backtrack her steps after 
having confirmed 24 as the correct solution and uses the gesture actively in the con-
tinued meaning-making process: Well 13 plus 60 equals 73, so that’d 
be 13 plus 60 more [She traces 3 and 3 matches in the air] (turn 
29); and, Yeah and so then that means, so this 13 we would have 
to add 60 more…[She points to the figure and then traces 3 and 

3 matches in the air as if she is adding squares to the figure] 

60 more 3 matches (turn 33).
The gesture is here part of a second semiotic node through which the role of the 

number 3 is brought to further light. What stands out as important in discerning the 
role of the gesture is how Leah struggles to express her insights about the problem 
verbally. The sentences immediately before the gesturing are complete in them-
selves and explain the roles of the numbers 73, 13, and 60 in the solution of the 
problem. Thus, the gesture does not appear as a replacement for a missing word but 
rather seems to refer to a bodily insight of the nature of the problem. Leah tries to 
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decide what to divide 60 by, and lacking words to organize her thinking, she resorts 
to using the particular gesture. She finally uses the number 3 as part of a verbalization 
60 more 3 matches (turn 33). However, the wording is awkward and we interpret 
it, not as expressing the meaning of the gesture, but rather as a means by which to 
bring a deeper insight into the nature of the problem (the gesture as an embodiment 
of the rate of change) down to something concrete, which she is able to verbalize. 
The next utterance further contextualizes the number 3: ( ) and each square is 
made up of 3 matches connected to the last one… (turn 35). Finally, 
Leah uses the number 3 in her calculations: ( ) So 60 divided by 3 is 20… 
(turn 35).

It is interesting to note that the three students, Leah, Rachel, and Aron have dif-
ferent closures to the problem. And, although Leah explains her solution three times 
in full, there is no direct transfer to the other students. Even Rachel, who often takes 
part in dialog with Leah by asking questions or making suggestions, do not accept 
Leah’s solution based on the reasoning provided by Leah. However, it is also evi-
dent that the students’ utterances are contingent on each other, and that there is a 
shared pool of ideas among them. First, the students pursue a multiplicative approach 
(using division). Second, the squares are connected, and therefore one has to take 
into account that one matchstick is a part of two squares: the squares are inter-
connected (Leah) or, in Aron’s words, if you put two rows next to each other you 
will get a double line. Therefore, one needs to subtract 1, and the resulting coef-
ficients in this group are 3 or 12. Leah makes sense of Aron’s approach in turn 62: 
Yeah, like you added 4 more [squares] and then you took like 1 

[matchstick] from each one.

Another point that deserves attention is how the students deal with the irregular-
ity. Leah finds a geometrical solution that helps her avoid the problem of modeling 
it mathematically. However, in helping Rachel check the answer, she is able to make 
an expression that includes both the coefficient and the irregularity (turn 70): it’s 
24 times 3 plus 1. Again, we observe Leah using a granule in her expression; 
24 times 3. Aron subtracts 1 from 73, but no explanation is given, either orally or 
in written form.

�Finnish Group (F3): “So It Is Just 4 Plus 3 Plus 3 Plus 3…It 
Is 4!”

In the group chosen from the Finnish material there are two girls, Lana (A) and 
Sarah (B), and one boy, Bjorn (C) (Grade 7, age 13). The focus in the prior lessons 
has been on solving equations and the meaning of the equal sign. The teacher gives 
the instructions that the students are to work together and gives them the choice of 
submitting one common paper or one paper each. The groups of students are given 
one task at a time, which they complete and hand in to the teacher before starting on 
the next task. The matchstick task is the last one given and the group spends about 
9 min solving it. In the transaction of papers, some confusion arises and the girls 
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sort it out with the teacher. Meanwhile, Bjorn has been thinking about the task 
(Fig. 8.7).

	22.	 Bjorn: 73! Fock me [in English] ( )It is very difficult.
	23.	 Sarah: (inaudible)[She starts to read out aloud but contin-

ues to read the task silently]

	24.	 Lana: [she points her finger to the matches in the figure 
and counts them, first the ones making up the perimeter of 

the figure and then the 3 inside the figure] Where are the 

squares? Aha.

	25.	 Sarah: Mm It is just to start drawing [She starts to draw]. 
In case no one can do it mentally, which no one can.

	26.	 Lana: Oh my God, 73 matchsticks.
	27.	 Bjorn: 73 divided by 13?
	28.	 Lana: That is twenty…three or four. Ok, I’m going to draw 

too [she starts to draw, horizontal matches in a row first, 

then another row in a line underneath. She counts them and 

then draws the vertical ones so that it becomes squares in 

a row. She counts all the matches and then continues to 

draw]

[Bjorn writes 73/13 on his paper (in three different places) 

but is unable to perform the division.]

The students read the task separately. Bjorn and Lana seem overwhelmed with 
the number of matches in consideration (turns 22 and 26). Lana pays attention to the 
figure and explores the connection between it and the text and it takes her a minute 
to see the squares in the figure (turn 24). Sarah has quickly decided that it is too dif-
ficult to solve the task using only mathematics and suggests they draw it all up 
(turn 25). However, Bjorn proposes an expression as an approach to solving the 
problem (turn 27): 73 divided by 13. Lana considers it for a moment but decides 
to start drawing, just as Sarah is doing. The main focus of this section is the task and 
the two approaches suggested: drawing and a multiplicative approach.

Fig. 8.7  Finnish group and one of their solutions to the matchstick problem
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The three students concentrate on their own papers for about a minute. Lana 
counts the matches in her drawing. First, she counts all of the upper horizontal ones 
and writes down the number 17. Then she counts the vertical ones (turn 18) and 
writes it down. She takes 17 times 2 and finds 34. Bjorn stops and looks up into the 
classroom. He talks to another student. Then he looks at what Lana is doing.

	29.	 Bjorn: No, 34? Hah.
	30.	 Lana: [Sarah looks over at Lana’s paper] Don’t look at my 

calculations because they are too bad for you, hah! Wait 

now [Bjorn and Sarah turn to their papers]

	31.	 Bjorn: Hello, you divide 73 by 4. Then we include all the 
sides.

	32.	 Lana: No, that does not work. You can’t do such a thing.
	33.	 Sarah: You can’t do it, because there are 3 [She holds 3 

fingers up] in some and 4 in some.

	34.	 Lana: No there are 4 in two of them and that is at the ends.
	35.	 Bjorn: Oh no, that is impossible to do. [He looks up from 

his paper and points his pencil to Lana’s drawing and seems 

to be counting the matches in it]

Bjorn is still searching for an approach to solve the problem other than drawing. 
This time he proposes the expression: 73/4. The students then discuss not only the 
viability of this expression but also the applicability of a multiplicative approach: 
you can’t do such a thing (Lana, turn 32), You can’t do it (Sarah, turn 
33) and that is impossible to do (Bjorn, turn 34). The girls point out that 
the expression and the approach cannot work as there are 3 in some and 4 in 
some (Sarah, turn 33). Lana makes it more precise and says No there are 4 in 
two of them and that is at the ends (turn 34). It is likely that the girls 
have gained these insights through the process of drawing. The students agree that 
the expression Bjorn suggested cannot work as the squares are made of different 
numbers of matches. The effort to disprove the expression leads to a discussion of 
the structures in the figure. This is a forerunner to the discussion of a pattern, which 
is initiated in turn 45. However, first they discuss how to interpret the task.

	36.	 Sarah: It is easier if you just draw it, but it takes a 
fairly long time.

	37.	 Bjorn: 10 [He moves his pencil along Lana’s drawing]
	38.	 Lana: Now there are 52 matchsticks here.
	39.	 Sarah: Mm.
	40.	 Lana: Sarah, they don’t say… one could do it like this too 

[She draws several squares that are not connected to each 

other on her paper. Bjorn and Sarah are looking at what she 

is doing] And then you do one more… and here.

	41.	 Sarah: But it is ((in a row))!
	42.	 Bjorn: ((In a row))! ( ) Nice row.
	43.	 Lana: But there is not enough space to continue making one 

row, but, Sarah can you continue?
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Lana has run into a problem with her drawing, as she has reached the edge of her 
paper, and she has drawn only 52 matches. In contemplating how to proceed, she 
questions whether or not they have understood the task correctly (turn 40). However, 
Bjorn and Sarah use the wording in the task In a row (turn 41) to confirm that the 
squares are supposed to be connected to each other. Bjorn returns to his desk and 
looks at the task paper before he again turns to Lana to share a newfound insight 
regarding the structure of the figure.

	44.	 Bjorn: So it is just 4 plus 3 plus 3 plus 3…it is 4! [He 
points his pencil towards Lana and in the excitement he 

drops his pencil on the floor, which he ignores and keeps 

talking] So see, 4 it is one square and then you only need 

to make 3 [He points his finger to the figure and traces 

the 3 matches that make up a square in the row. With one 

movement he traces first the top horizontal one, then the 

right vertical one and finally the bottom horizontal one],do 

you get it? [He says it with a big smile]

	45.	 Lana: No [She starts to draw a new row of squares]
	46.	 Sarah: Ok, Bjorn (inaudible)[She is smiling and seems to 

enjoy Bjorn’s enthusiasm]

	47.	 Bjorn: Look, look, “kato, kato kun minä” (in Finnish5: look, 

look when I) (inaudible)…look, you can first make a square 

with 4…

	48.	 Sarah: Mm
	49.	 Bjorn: Then you just need to make 3 when there is that one 

there “valmiiks” (in Finnish: ready) so you can take 4 

plus…

	50.	 Sarah: It is like 4, 4 [holds up her left hand and then her 
right hand; implying one square with 4 matches at each end 

of the row] and 3, 3, 3, 3, 3 [moves her left hand in a 

rhythmic movement towards the right one which she holds 

still, signaling that the squares in between are made out 

of 3 matches]

Bjorn has discovered that there are 4 in the first square and then one needs to only 
make 3 matches to add another one. He is beaming with excitement as he 
says: So it is just 4 plus 3 plus 3 plus 3…it is 4! (turn 44). It is 
worth noting that he uses the same gesture, tracing a square, as was part of the dis-
course in both the previous groups discussed. Lana is not interested and continues 
her approach of drawing all the 73 matches. Sarah is willing to engage in Bjorn’s 
approach but retains the idea that there are 2 squares with 4 matches (see turns 33 
and 34). Through her gestures and her words she is able to imagine the completed 
figure of 73 matches. Bjorn describes the numerical properties he sees in the figure 

5 These students normally speak Swedish, so the inclusion of Finnish words is a break in the ordi-
nary discourse.
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as a process of continually adding 3; 4 + 3 + 3 + 3, while Sarah describes it as a 
numerical sequence (an object); 4, 3, 3, 3, …, 4. Following the discussion of a pat-
tern, Bjorn and Sarah both make calculations in order to find how many squares can 
be made using 73 matches.

	51.	 Bjorn: 3, 60…3 divided by 69 [He is probably thinking 69/3, 
but expresses it in reversed order]

	52.	 Sarah: It is [She holds her hands in the same manner as in 
prior turn] 73, 72, 71 of those with 3 [She seems to mix up 

the units and instead of subtracting two squares from 24 

she subtracts 2 matches from 73]…71

	53.	 Bjorn: No, but really one takes 4 minus…
	54.	 Sarah: wait, wait, wait [On Lana’s paper she performs the 

calculation 71·3 = 213 and then she adds on the two squares 

with 4 matches (according to her prior explanation) and 

finds that 213 + 4 + 4 = 221]

	55.	 Bjorn: …73, because you already have made one there ( ) 69. 
But Lana, that takes such a long time [He looks at Lana’s 

paper as she is drawing squares]

	56.	 Lana: You think so.
	57.	 Sarah: Hello. You can’t make more squares than you have 

matchsticks [She gives up on her calculations and returns 

to her drawing]

Unlike the two prior groups, in which the students proposed expressions that 
included both the coefficient and the constant (irregularity), Bjorn and Sarah assign 
these objects their correct roles and use them directly in calculations. Bjorn sub-
tracts the irregularity from the total (73 minus 4) and finds 69, which he then uses to 
suggest the expression 69 divided by 3. Bjorn does not pursue a solution using this 
approach, opting to follow what Sarah is doing on Lana’s paper. Sarah writes down 
her own calculations, based on the structure she sees in the figure, but in addition to 
mixing up the units (squares and single matchsticks), she also uses multiplication 
instead of division and finds the number 221. She decides that this value does not 
make sense (turn 58) and abandons the multiplicative approach.

While Bjorn and Sarah discuss how to use a multiplicative approach to solve the 
problem, Lana has made a new row of squares and she pauses when she reaches 52 
matches, which was how far she came in her first drawing.

	58.	 Lana: look, Sarah, look, here we have 52… [Bjorn listens to 
Lana and looks at her drawing but Sarah is busy with her 

own drawing]

	59.	 Sarah: mm
	60.	 Lana: …matchsticks
	61.	 Sarah: mm
	62.	 Lana: …sooo [She draws another square]
	63.	 Sarah: Wait, I shall draw this.
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	64.	 Bjorn: 21…7 times 3…7, 7 squares more [Bjorn is excited and 
points in Lana’s drawing], 7 squares more…7 squares more, 

yes, look

	65.	 Lana: No
	66.	 Bjorn: Yes, because when you have made 52, you just need to 

put 3 matchsticks for one square now. Do you get it? Look, 

now you have made 50 53

	67.	 Lana: I have made 55
	68.	 Bjorn: Have you?
	69.	 Lana: Mmm. I have used 55 matchsticks.
	70.	 Bjorn: Oh no ( ) and 73
	71.	 Lana: But you just have to continue, just continue, now it 

works to go on [This time she has drawn the squares smaller 

so that she has room for more of them in one row]

	72.	 Bjorn: 18
	73.	 Lana: 56, 57, 58, 59, 60, 61 [She continues to draw squares]
	74.	 Bjorn: No, but ((we get 18 divided by 3))
	75.	 Lana: ((62, 63, 64)) [Lana keeps drawing and ignores Bjorn 

who is getting frustrated]

	76.	 Bjorn: 6 squares more
	77.	 Lana: 65, 66, 67
	78.	 Bjorn: oh,((don’t you get it))!
	79.	 Lana: ((68, 69, 70) now we have, [She starts to count the 

squares that she has made using 73 matchsticks]1, 2, 3, 4, 

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 22, 23, 24. We get 24! Celia [the teacher], we are 

ready!

	80.	 Sarah: Wait.[She quietly counts] 1, 2, 3, 4, 5, 6, 7, 8
	81.	 Bjorn: Yes, do you get it? ((Because it was))
	82.	 Lana: ((It is 24))It is 24 [she rises her hand] Celia 

[teacher], we are ready

	83.	 Sarah: Wait, I just have to look, ((1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14, 15, 16, 17))

	84.	 Bjorn: ((I would have known a much simpler way to calculate 
it than what they did)) [Bjorn talks to the teacher]

Bjorn does not attempt to find the answer to the problem posed in the task imme-
diately following the approach suggested in turn 52. Instead, he tries to convince the 
two girls that his approach is valid. When Lana announces that she has drawn 52 
matches, Bjorn uses his method to find how many more she needs to draw. He takes 
73 minus 52, which is 21, and then he divides 21 by 3 and says 7 squares more. 
As she draws another square, he does the same and finds that she needs 6 squares 
more. Lana gives him only a short moment to explain, and then quickly returns to 
her drawing. By drawing and counting she finds she can make 24 squares. Lana’s 
discourse consists mainly of counting the matchsticks she’s drawn, while Bjorn is 
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verbalizing expressions that include the coefficient and performing mental 
calculations.

The teacher comes over to the group and she asks Bjorn about his approach to the 
problem. Sarah did not find the same answer as Lana in her first attempt of counting, 
and the girls are busy counting while Bjorn explains his thinking to the teacher. She 
encourages him to write his calculations on the paper and then compare his solution 
with the one the girls find.

	123.	 Bjorn: 73 minus 4[He starts to write down his 

calculations]

	124.	 T: Yes and that is?
	125.	 Bjorn: 69
	126.	 T: mmm, and what did you do then after that
	127.	 Bjorn: 69 divided by
	128.	 Lana: [The two girls agree on an answer after Sarah has 

counted first 73 matches and then 24 squares in Lana’s 

drawing] Celia [teacher], but we have, now we have the 

right answer at least. It is the right answer? [She points 

to her paper. The teacher only glances over to her paper 

but mainly ignore her]

	129.	 Bjorn: Twenty…twenty-three
	130.	 T: mmm, and what is it you have calculated here?
	131.	 Lana: It took ((quite a while to draw that))
	132.	 Bjorn: How many…
	133.	 T: Now I want, now I want, Bjorn
	134.	 Bjorn: 23 plus one … and then one [Excited he turns toward 

the teacher who is standing behind him]

	135.	 T: Good!
	136.	 Bjorn: 23 plus one, 24. [He writes it on his paper] Oh! Look, 

look at what a short way I did it [He holds his paper in 

front of Lana]

Bjorn writes and performs the calculations in the order of their execution (see 
Fig. 8.8): 73 minus 4 (turn 123), 69 (turn 125), 69 divided by (turn 127), 
Twenty…twenty-three (turn 129), 23 plus one…and then one (turn 134), 
23 plus one, 24 (turn 136). When he finally writes up his solution, he has the 
units (squares and single matches) under control and he also accounts for the irregu-
larity and uses the coefficient correctly and without hesitation.

�The Meaning-Making Process

In this group, the two approaches (drawing and the multiplicative) run parallel 
throughout the problem-solving discussion, although not as separate processes. 
Bjorn refuses to draw 73 matches and continues to look for an arithmetic expression 
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as a route to solving the problem. He tests his ideas on the girls, Lana and Sarah, 
who are in the middle of the drawing process. It is through the interaction between 
the two approaches (Bjorn discussing with the girls and tracing the drawings) that a 
discourse on a numerical pattern evolves in the group. The discourse of the girls as 
they draw involves only basic arithmetic and is mainly colloquial. However, when 
the students involve themselves in contemplating the structure of the figure and spec-
ifying a  numerical pattern, they are modeling a relationship between quantities. 
Therefore, the students are engaging in a meta-arithmetic discourse as defined by 
Caspi and Sfard (2012).

The thematic discourses identified in the discussion of the group have been sepa-
rated according to these focal objects: (1) matchsticks and the figure as concrete 
objects in the process of drawing and counting; (2) the mathematical objects of the 
expressions 73/13 and 73/4; (3) the mathematical object of the numerical structure 
of the geometrical figure that is transformed into a numerical sequence; and (4) the 
mathematical objects of arithmetic expressions that include a constant and a 
coefficient.

The girls decide to draw the 73 matches shortly after reading the task. They 
mostly work in silence but are interrupted by Bjorn and discuss the problem with 
him, sharing their insights about the numerical structure of their evolving figures. 
Lana uses addition to keep track of her counting; she writes down the number of 
horizontal matches and then adds the number of vertical ones. She runs into a prob-
lem as she reaches the edge of her paper and has drawn only 52 matches. She ques-
tions whether or not the squares have to be drawn in a row. Corrected by Bjorn and 
Sarah, she starts a new drawing in which the squares are made smaller. When she 

Fig. 8.8  Björn’s solution to the matchstick problem

J. Reinhardtsen and K. B. Givvin



203

again reaches the number of 52 drawn matches, she announces it to the group (turn 
58). Bjorn tries to engage her in his approach by calculating how many more squares 
she needs to draw, but she brushes him off as this time she has room enough to 
complete her figure. She now counts out aloud as she draws the matches and thereby 
verbalizes the approach. Sarah has not found the same answer and the girls engage 
in an intense counting process that goes on until the girls agree. Meanwhile, Bjorn 
has explained his solution to the teacher and written it up in his paper. The discourse 
of the students as they pursue the drawing approach consists mainly of counting 
words and non-mathematical verbs and is therefore close to a colloquial discourse. 
It also includes written numbers as aids in keeping count.

It is mainly Bjorn who pursues a multiplicative approach to the problem. In turn 
27 he suggests the numerical expression 73/13. He writes it in three places on his 
paper but is unable to calculate it. Later in turn 31 he offers a different expression 
73/4 and explains it saying [t]hen we include all the sides. He wants to 
divide 73 by 4 because 1 square is made up of 4 matches. He is thus modeling a 
relationship of the total number of matches to the total number of squares, using the 
number of matches in one square, and is therefore engaging in a meta-arithmetical 
discourse. The suggestion of this expression initiates a discourse on the structure of 
the figure.

As a response to Bjorn’s expression, the girls insist that a simple expression can-
not work as there are: 3 [She holds 3 fingers up] in some and 4 in 
some (Sarah, turn 33). Lana makes a more precise statement about the structure of 
the figure: No there are 4 in two of them and that is at the ends 
(turn 34). Bjorn accepts their objections and returns to the figure. He points his 
pencil to Lana’s drawing and counts the matches (turns 35 and 37) and then studies 
the figure on his own paper before he says: So it is just 4 plus 3 plus 3 
plus 3…it is 4 (turn 44). We interpret this as a discovery made possible through 
a semiotic node even though the process of coming to see the pattern is prolonged 
as he partakes in a discussion about Lana’s drawing. In the semiotic node the pro-
cess of counting successively the matches in the figure is aligned with the previ-
ously observed recurring numbers 4 and 3 and the observed structure of the figure. 
The connection made between these elements results in a new insight of the nature 
of the problem. In comparison with the semiotic nodes identified in the other groups, 
this one is different as the new insight is first verbalized followed by intense activity, 
which also include the familiar motion of tracing additional squares.

The number 4 and the following repetition of the number 3 signify and make 
existent the abstract object of a numerical pattern in the discourse. Sarah picks up 
on it and describes the numerical pattern she sees in turn 50: It is like 4, 4 
[holds up her left hand and then her right hand; implying one 

square with 4 matches at each end of the row] and 3, 3, 3, 3, 

3. These utterances are decontextualized and appear as an abstraction of the discus-
sion about the structure of the figure. Bjorn describes the numeric pattern recur-
sively as a process of continually adding 3, while Sarah describes the geometrical 
structure she sees as a numerical sequence in which 3 is the repeating number. The 
mathematical object of a numerical pattern appears in the discourse as the result of 
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a process of noticing structure. In the following discussion, they use the coefficient 
and also the irregularity/constant in calculations.

In turn 51 Bjorn suggests the expression 69/3 which includes the coefficient and 
also, implicitly, the irregularity, as he has already subtracted 4 from 73. Instead of 
pursuing his approach in order to solve the problem, he uses it to predict how many 
more squares Lana has to make in her drawing. He performs these calculations cor-
rectly. When the teacher comes to the group, Bjorn finally writes down his solution 
as a linear process (listing the calculations in the order of their execution): 
73 − 4 = 69, 69/3 = 23, 23 + 1 = 24. Sarah also makes use of the coefficient and the 
irregularity in calculations but mixes up the units and uses multiplication instead of 
division: 73 − 2 = 71, 71 · 3 = 213, 213 + 4 + 4 = 221. In this group, the arithmetic 
expressions are used only in linear calculations and the discourse is therefore inter-
preted to be at a processual level of informal algebraic discourse. In this group, the 
discourse on arithmetic expressions is mainly short, concise, decontextualized, and 
impersonal.

�Swedish Group (S4): “First You Take 3…Times…x Equals…73”

In the Swedish target group (Grade 6, age 12) there are two girls, Lori (A) and Tina 
(B) and two boys, Lars (C) and Ali (D). They have been working with variables in 
expressions and equations in the four prior lessons. The teacher hands out one task 
at a time. Before giving the students the matchstick task, the teacher says: The 
last task can be conveniently solved by using an equation. You 

can solve it by drawing and trying different ideas but if you 

think about it for a while it is actually an equation that is 

the quicker solution even here. The group spends about 12 min solving 
the task. Tina is on task continually, while the other students seem to partly rely on 
her to figure it out and then copy her. However, Lars and Lori do at times involve 
themselves in solving the problem. Ali is mainly off task, but asks other students 
(including students from other groups) for help. Lars’ paper is presented in Fig. 8.9 
and Tina’s paper is presented at the end of the group analysis.

	1.	 Tina: In the figure, 13 matchsticks are used to make 4 squares 
in a row. How many squares… ((squares in a row can you make 

using 73 matchsticks)).

	2.	 Lars: ((how many squares in a row can you make using 73 match-
sticks? How do you know?)) 73 … 13 times 4 what is that?

	3.	 Lori: 13 times 4
	4.	 Lars: 40 40 49
	5.	 Tina: Wait, you ((have to))
	6.	 Lars: ((Wait wait 51 52))
	7.	 Tina: Wait. 13 to 4 [she writes it on her paper]. First you 

take 3 … times … x equals … 73 [she writes it down as she 

speaks]
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The students do not discuss the problem but quickly propose ways of solving it. 
Lars appears to be using two numbers from the text and multiplies them. Tina takes 
more time before she expresses what she has understood of the problem. Using the 
same numbers from the text as Lars did, she focuses on the relationship between 
them: 13 to 4 (turn 7), implying that it takes 13 matchsticks to make 4 squares. 
Her equation 3 · x = 73 (turn 7) is likely to be based in the proportional reasoning 
displayed in her first statement, only here she relates 3 matchsticks to 1 square. A 
later statement indicates that she is using the x to represent the unknown (number of 
squares that can be made using 73 matchsticks) as she says: That’s what we 
have to calculate (turn 22). She equates finding the value of x with solving the 
problem. However, the equation itself is incorrect, as it does not account for the 
additional match that is needed to form one square made out of four matches. The 
object of this discourse is the algebraic equation, which includes an unknown. In the 
next excerpt, Tina focuses on how to solve her equation.

	19.	 Tina: How many times can you do 3 in order to get 73?
	20.	 Ali: ((Do I have muscles here))?
	21.	 Lars: ((Inaudible))
	22.	 Tina: That’s what we ((have to calculate)).
	23.	 Lori: ((No, here)).
	24.	 Lars: 73 divided by something is 3.
	25.	 Tina: 60, how many times do you take … 20 [writes in her 

paper].

	26.	 Lars: 20?
	27.	 Tina: Then we get 20 and 10[A paper airplane comes flying and 

lands next to Ali. He gets up and walks over to another 

student group]

	28.	 Lars: We get 23 [He stretches out his hand and puts it down 
on the table]

	29.	 Tina: It becomes a decimal number.
	30.	 Lars: What?
	31.	 Tina: It becomes a decimal number.

Fig. 8.9  Swedish group and Lars’s solution to the matchstick problem
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	32.	 Lars: It does?
	33.	 Tina: Yes, it does.
	34.	 Lori: [She pulls on Tina’s shirt to get her attention and she 

talks about what Ali is doing] (inaudible) pull pants (inau-

dible) very funny. [She starts to write on her paper. Ali 

comes back to his group]

	35.	 Tina: Wait, 12, that is 3 times 4 then it becomes plus 4 [She 
starts writing on her paper] plus 4.

	36.	 Lars: 13 before 4 [He leans over in order to see what Tina 
has written]

	37.	 Tina: And then point 3 ((3 3 3 3 3))

In this section, Tina is focused on determining the value of x, and Lars engages 
in the same pursuit. When finding it hard to determine a multiple of 3 that goes into 
73, Tina chooses to find a multiple of 3 that is 60, which gives her the number 20 
(turn 25). Lars has a different approach and says: 73 divided by something is 
3 (turn 24). He finds the number 23 (turn 28), but Tina has become aware that 73 is 
not divisible by 3, and that the equation will give them a decimal number (turn 29). 
Again, she finds a number, 12, that is a multiple of 3, which gives her the number 4. 
She adds 20 and 4 (turn 35) and then she knows that 1 divided by 3 becomes 
0.333333. She finds that x = 24.333333. The discussion in the group continues as 
the other students want to copy Tina’s work. However, she tells them to think for 
themselves. When the conversation again returns to mathematics, Tina and Lars 
discuss the nature of the number she has found. Tina is not satisfied with simply 
writing 24.333333, so instead writes infinity after it.

Tina does not seem concerned with how this number fits as an answer to the 
question: How many squares in a row can you make using 73 matches? In making 
the equation 3 · x = 73, Tina makes the problem mathematical and abstract. Trusting 
that her equation is correct, she does not return to the context from which it was 
extracted until she tries to explain her solution. She then turns her attention to the 
second question in the text and says: Ok how do you know?

Tina works on her paper in silence and writes an explanation for her algebraic 
equation: one needs 3 because one uses the prior edge. Then one 
takes 3x = 73, then one starts with 60 = 20 squares. She returns 
to the context only in order to explain the number 3. Meanwhile, Ali, Lars, and Lori 
are off task. The teacher comes over to the group. She relates the answer they have 
found to the context of the problem posed, and then she leads them in a discussion 
of the pattern in the figure:

	70.	 Teacher: How is it going?
	71.	 Tina: I think it is going really well [She finishes writing 

and pushes her paper towards the teacher. The teacher only 

glances at it but does not offer any comments].

	72.	 Lars: I think something is good. I calculated (inaudible) 
that is nothing [He crosses it out with his pencil].

	73.	 Teacher: You have chosen to divide 73 by 3.
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	74.	 Lars: No.
	75.	 Teacher: [She points to his paper] It says there 3 times x 

will be 73.

	76.	 Lars: Yes.
	77.	 Teacher: So how are you thinking? So it won’t be a whole num-

ber of, eh squares?

	78.	 Tina: No.
	79.	 Teacher: Does it become a strange square that does not tie 

together in the end?

	80.	 Tina: Yes [Smiles].
	81.	 Teacher: Aha, how many toothpicks [sic] do you use in each 

square?

	82.	 Tina: ((3))
	83.	 Lars: ((4))
	84.	 Teacher: Is there any time when you use more than 3?
	85.	 Lars: Yes, you have to make a square.
	86.	 Teacher: No, then you just put 3. Think about what happens 

when you put down the first square?

	87.	 Tina: Then you put down 4. [Lars starts to look at and draw 
on the figure in the paper]

	88.	 Teacher: Aha. ((So we have done something wrong there))
	89.	 Lori: ((And then you just put 3))
	90.	 Teacher: The first time you need 4, how many ((times))…
	91.	 Lars: ((3)) [Lars says 3 every time he adds a new square to 

the figure]

	92.	 Teacher: how many toothpicks [sic] do you need after that?
	93.	 Tina: ((3))
	94.	 Lori: ((3)) 3 3
	95.	 Teacher: How would you calculate an even number of squares?
	96.	 Lars: 3
	97.	 Teacher: One more time.

Tina’s reply to the teacher; I think it is going really well (turn 71) 
implies that she has confidence in her approach and in her answer. Lars is more 
uncertain (turn 72), and as he cannot answer the teacher’s questions it becomes clear 
that although he has participated in parts of Tina’s reasoning, he has not been able 
to follow her train of thought. Tina shows that she is aware that there are 3 matches 
in each square (turn 82) (which is anticipated in her equation). Lars returns to the 
figure on the paper and starts to add new squares in order to explore the pattern. 
With the help of the teacher, Tina, Lars, and Lori seem to agree that the numerical 
properties of the figure can be described by the numerical sequence: 4 3 3 3. The 
teacher leaves the group with the challenge of calculating the whole number of 
squares.

The teacher initiates a new type of discourse in the group after pointing out that 
the approach proposed does not make sense when put in the context of the problem. 
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This discourse is about new objects that have not been visible in the prior discussion 
of the group: a geometrical pattern that is transformed into a numerical pattern in 
the form of a number sequence.

When the teacher leaves the group, Lori and Ali look to Tina, but she tells them 
to wait because she needs to think about it. Lars continues to draw and count match-
sticks. Ali asks a student, Carl, who is walking past the group for help.

	113.	 Ali: What did you get? Come, come help me Carl.
	114.	 Carl: 72 divided by 4
	115.	 Ali: Come here, come. What did you say? What did you say?
	116.	 Lori: 72 divided by
	117.	 Ali: [He writes on his paper] Divided by?
	118.	 Tina: 3 toothpicks [sic]

Carl offers an expression as a solution to the task without any explanation and 
thus initiates a shift in the discourse of the group. Lori and Ali are trying to register 
what he says, however Tina seems to contemplate the expression and incorporates it 
into her understanding of the problem. She gives a contextual answer to the other 
students’ question regarding what number to divide 72 by: 3 toothpicks [sic] 
(turn 12). In the continuing discussion the students keep debating using 73 or 72 
divided by 4 or 3.

Carl and another student, Tim, come over to Lars who is count-

ing the matchsticks in his drawing and pointing his pencil 

to them as he counts.

	119.	 Tim: What are you doing Lars?
	120.	 Lori: Oi 73 I mean. Did you say 73?
	121.	 Tim: There is a much, much easier way then yours, really.
	122.	 Lori: But it is 73 matchsticks. That is what she says [She 

holds out her hand towards Tina]

	123.	 Lars: But you have math-geniuses you two [He points out in 
the classroom]

	124.	 Tim: What math-geniuses? ((Sarah and Lori? Number one; it 
was me who worked it out))

	125.	 Tina: I understand how you think. Do it like this. [She puts 
her pencil to the paper] And then you do minus one. Because 

that one should be saved for the one with 4 isn’t it? [She 

looks at Lori, then she writes 3x = 72 to the right in her 

paper]

	126.	 Carl: It is 72 divided by 4
	127.	 Lars: She is a math-genius. [He points to Tina] ((She works 

out everything)).

	128.	 Lori: ((I’m done now)) [She picks up her paper and puts it 
back, face down]

	129.	 Ali: Me too [He picks up his paper and puts it face down]
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	130.	 Tim: (Inaudible)[Tim and Lars have turned to Tina and look 
at what she is doing on her paper]

	131.	 Lars: Hello. She calculates in a good way, so that you get 
something.

	132.	 Carl: Lars says that you divide 73 by 3?
	133.	 Tina: ((But it is really that and then it becomes plus one 

at the end in addition? [She looks at the two boys, Lars 

and Carl]

	134.	 Tim: But ((73 divided by))… it is 72 divided by 3.
	135.	 Tina: Thank you Tim.
	136.	 Tim: 72 divided by 3 equals 24

The group now has three different accounts of how to solve the problem: 73 divided 
by 3, 72 divided by 4, and 72 divided by 3. Lori does not attempt to make sense of 
the expressions suggested by looking at the problem. Instead, she asks the other 
students to clarify and make a decision (turns 120 and 122). When this is not pro-
vided, she gives up on writing a solution for the problem (turn 128). Ali follows her 
example (turn 129). Tina is contemplating why one should divide 72 and not 73 by 
3 and says: I understand how you think. Do it like this. [She puts 
her pencil to the paper] And then you do minus one. Because 

that one should be saved for the one with 4 isn’t it? (turn 125). 
She makes sense of the number 72 by connecting it to the square made of 4 matches, 
however, later in the discussion it becomes clear that she has not solved the issue of 
modeling the irregularity.

The numerical expressions mentioned above are the objects of the discourse as 
long as the two boys are part of the group discussion. A discourse about the irregu-
larity is developing intertwined with the one about the expressions. It first appears 
in the discussion of the numerical pattern, but now it plays a crucial role in deter-
mining which expression to use.

The two boys go away but return shortly. Carl is bringing a 

calculator. The students in the group want the two boys to 

leave them alone.

	137.	 Tina: You know what? Find some other place to be. [She 
clearly wants the boys to go away]

	138.	 Lars: 73 divided by something.
	139.	 Tim: No, because in the first there are 4, aren’t there?
	140.	 Carl: 72 divided by 3 equals 24 [He enters the numbers into 

the calculator and shows the answer to Lars]

	141.	 Tim: Idiot [He gives Lars’s hat a light knock]
	142.	 Lars: Yes, I know!
	143.	 Tim: You said 73, so you did really know that
	144.	 Lars: [The two boys walk away] Orrrh! We will do it in our 

own way.
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	145.	 Tina: Wait a bit. And then you have to take away one to save 
it for later isn’t it?

	146.	 Lars: Maybe.
	147.	 Tina: Yes, you have to.

Lars does not continue to draw and count after the interruption by the two boys. He 
tries to engage in the discussion of an approach using division and says: 73 divided 
by something (turn 137). The two boys aggressively point out that one is not to 
divide 73 but 72 by a number and they explain this indirectly by referring to the first 
square, which is made up of 4 matchsticks (turns 139 and 141). Carl then uses the 
calculator to show that 72/3 = 24, implying that this proves they are right. Tina is 
still contemplating the connection between using 72 and the irregularity of the first 
square, and she repeats her prior conclusion: And then you have to take 
away one to save it for later isn’t it? (turn 145); Yes, one must 
(turn 147). Tina tries out her ideas by sharing them with Lars but he does not offer 
any clarification.

	149.	 Tina: 73 minus 1 becomes 72. [In her paper, she erases the 
3 in the number 73 and replaces it with 2] How many times 

does 3 go into 72? That makes 60, 20. [She writes in her 

paper] 20. 4 and then the last one is left.

Tina now concentrates on working out her new ideas on the paper. When writing, 
Tina incorporates the discourse about the different numerical expressions into 
the prior, formal algebraic one, as she changes her previous algebraic equation 
into 3 · x = 72. Applying her previous method of division (60/3 = 20 and 12/3 = 4), 
she finds a whole number of squares, 24. On her paper she adds a sentence to her 
explanation: Then 4 because 4 · 3 = 12 then 20 + 4. However, she is still 
uncertain about the matchstick she has saved for later: and then the last one 
is left (see Fig. 8.10).

Tina is quiet for a while, and studies the problem. The other 

three are off task talking about other things. She then 

writes + 1 in her paper and places it in the middle of the 
table.

	150.	 Tina: Ok I’m ready.
The other students are still talking about other things and do 

not pay attention. After a while, Lars takes an interest in 

her solution. He grabs the paper, but Tina takes it back and 

puts it under her elbow.

	151.	 Lars: ((Let me see))
	152.	 Tina: ((You can write)) your own calculations. You don’t 

think the same way I do.

	153.	 Lars: No, because I can’t think math.
	154.	 Tina: No, but think for yourself.
	155.	 Lars: But why?
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Fig. 8.10  (a) Tina’s 
worksheet for the 
matchstick task, and  
(b) English translation
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	156.	 Tina: Because we think differently. ( ) Ok, you solve it like 
this. You have to take 73 and minus 1 [She writes it on the 

desk as she explains] which you save for later, because 

there is going to be 4 in one. Then it becomes 72 and then 

you have to take 3 times something equals 72. What is the 

something?

	157.	 Lars: 24 ((24)).
	158.	 Tina: ((You take)) 60 divided by 3 which is 20. And then you 

get 12 and then it becomes plus 4 and then you get 24.

	159.	 Lars: So that is like they told us?
	160.	 Tina: Aha.
	161.	 Lars: So then you can just write x, so then you can just 

write eh write that [He points to what she has written on 

the table]

	162.	 Tina. No. You have to explain how you think when you 

calculate.

Tina is satisfied with her approach. She has shown on paper how she finds 24 (even 
though she does not write the answer), and she seems to be confident that it is cor-
rect. She is still bothered by the one matchstick that she subtracted from the 73 but 
resolves it by simply writing +1 at the very end of her solution. Tina explains to Lars 
how she solved the task. He recognizes the solution as identical to the one that the 
two boys, Tim and Carl, proposed (turn 159). And when Tina asks him: Then it 
becomes 72 and then you have to take 3 times something equals 

72. What is the something? (turn 156); he immediately replies 24. He finds 
Tina’s method of division an unnecessary step, as he already knows that 72/3 = 24. 
She insists that it is important to show your calculations in your written work.

�The Meaning-Making Process

This group work is different from those described from Norway, the U.S., and 
Finland, in that the teacher has suggested that the students should use an equation to 
solve the problem. The initial responses to the task differs: the students in N1, A2, 
and F3 struggle to make sense of the problem mathematically and search for ways 
to model it; however, Tina creates an equation immediately after having read the 
task. The group work is also influenced by other prompts. It is the teacher who 
points out that the first square is different from the following (when presented with 
the group’s solution), and then she tells the students to find a whole number of 
squares. In addition, two boys from other groups suggest and argue for the use of the 
two expressions 72/4 and 72/3. The process of solving in this group therefore is in 
some sense “jolted” by specific clues. Characteristics of this group’s work are the 
use of formal algebraic discourse and a lengthy discussion of the irregularity.

The discourse of the group is meta-arithmetical throughout the discussion as the 
students are concerned with relationships between quantities. Four different types 

J. Reinhardtsen and K. B. Givvin



213

of discourse according to their focal objects have been discerned: (1) the mathemat-
ical objects of an unknown in an algebraic equation; (2) the mathematical objects of 
a geometrical pattern transformed into a numerical sequence; (3) the mathematical 
objects of three numerical expressions: 72/4, 73/3, and 72/3; and (4) the mathemati-
cal object of the irregularity.

Tina’s sense making of the problem seems to be based in the equation as an alge-
braic object and three numerical relationships which model geometrical ones: 13 to 
4, 73 to x and 3 to 1. Tina’s first sentence: 13 to 4 (turn 7) states a static relation-
ship between two quantities (13 single matchsticks equal 4 squares). Her equation 
(which is her next utterance) is more complex as it combines 2 numerical relation-
ships into a third one (73 to x, 3 to 1 ≥ 3 · x = 73).

Tina verbalizes and symbolizes (on paper) the inchoate algebraic equation 
3 · x = 73. The x is a referent to an unknown, specific number and so the discourse 
belongs to the first three levels of algebraic discourse; constant value algebra. Tina 
is able to make sense of the problem in terms of an equation and thereby uses the 
cultural tool in an objectified way. Therefore, her discussion of the task is evaluated 
as an objectified algebraic discourse (level 3). Tina later changes her equation (turn 
149) to 3x = 72 by replacing 73 with 72 in her previously written one, and she finds 
the solution of 24 squares. However, it no longer fully models the problem and she 
struggles with how to account for the matchstick she has subtracted from 73.

The pattern discourse in this group is very limited and is initiated by the teacher. 
It appears in the students’ discussion as noticing structure and is verbalized as a 
numerical sequence in which 3 is the repeating number (by the contribution of sev-
eral students): 4 3 3 3. Tina, early in the discussion, formulated the algebraic expres-
sion 3 · x = 73 in which she already identified the number 3 as playing an important 
role in the problem. Therefore, the discussion of the pattern is mainly helpful in 
identifying the irregularity.

The numerical expressions in the discussion of this group play a different role in 
the problem-solving process than they did in the other groups. When Tina suggests 
her algebraic equation 3 · x = 73  in turn 7, she already presents a multiplicative 
approach to the problem. The numerical expressions (72/4 and 72/3) suggested by 
the two boys who are not part of the group have an effect mainly on how the irregu-
larity is included in the calculations and modeled by the group.

After the two boys enter the group discussion (turn 119), the irregularity becomes 
a central topic of the group discussion. Tina struggles to make sense of why she 
needs to use 72 in her equation instead of 73: And then you do minus 1. 
Because that one should be saved for the one with 4 isn’t it? 
(turn 125); But it is really that and then it becomes plus 1 at 
the end in addition? (turn 133); Wait a bit. And then you have to 
take away one to save it for later isn’t it? (Turn 145); 73 minus 
1 becomes 72 […] then the last one is left (Turn 149). The irregular-
ity is referred to as the square with 4 matches and as the one that is subtracted from 
73, often in a combination where the square made out of 4 matches is the explana-
tion for why one should subtract 1 from the total number of matches. Tina changes 
her equation to 3x = 72 and finds the answer 24. Although Tina appears to be satis-
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fied with her solution, the role of the irregularity in the problem and how to model 
it seem to remain a puzzle for her as she finalizes her written answer by simply 
writing +1 at the end of her solution. The irregularity is accounted for in the calcula-
tions; however, it is not modeled as a constant term in a rule and thus the discourse 
regarding it is evaluated to be at a processual level of algebraic discourse (level 1).

�Part Three: Juxtaposing the Four Groups

The in-depth discourse analysis of the four groups from different school systems, 
Norwegian (N1), American (A2), Finnish (F3), and Swedish (S4), shows that the 
meaning-making processes of the different groups all have their own characteristics. 
Upon this acknowledgement, we find the similarities observed all the more intrigu-
ing. The work of the three groups presented first (N1, A2, and F3) is developing 
without prompts, and shares features that are worth further contemplation. In par-
ticular, in each, there is movement from a discourse about concrete objects such as 
matchsticks and figure, to a discourse about a geometrical/numerical pattern, and 
finally a discourse that includes complex expressions and calculations. Additionally, 
features of prior thematic discourses in the problem-solving process play prominent 
roles and mediate meaning in the critical moments of discursive shifts. The group 
S4 provides a contrast as we can observe the effects of specific prompts in a 
meaning-making process—and particularly how a student is able to use the concept 
of algebraic equation in solving the problem.

Part One did not show a consistent movement between approaches described, 
across the 16 target groups. This does not mean that our findings are contradictory, 
but rather it reveals important differences in the two ways of looking at the data. 
First, in Part One, we looked at the approaches to finding an answer; while in Part 
Two we focused on the way students find meaning. Second, there are multiple 
approaches that fall under “discourse about concrete objects” and multiple others 
that fall under “geometrical/numerical pattern,” etc. This slightly larger grain size 
brings a trajectory to light. Third, in the analysis of approaches, we reported them 
completely linearly, from the introduction of one, discrete approach to the introduc-
tion of the next (without taking into account whether students went back and forth). 
However, in Part Two, we looked at how discourse builds upon itself in a more 
general sense applying analytical tools of Commogniton (Sfard, 2008) and the 
Theory of Knowledge Objectification (Radford, 2002).

In this section we will focus on the features of the meaning-making processes of 
the groups that show similarity in order to point out patterns of a learning process in 
algebra. Another objective is to describe and evaluate the discourse of the students 
according to the model of constant value algebra described previously (Table 8.1). 
In order to address these issues we will now present and discuss under one heading 
the thematic discourses identified separately in the four groups.
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�Common Characteristics of Thematic Discourses and Discursive 
Shifts

The discourse of the students has been categorized into five thematic discourses 
merging the ones occurring in the different groups that are similar:

	1.	 Concrete objects: matchsticks, the figure; often involve drawing and counting 
but also include gesturing and word use in order to imagine a completed figure.

	2.	 Pattern: numerical and geometrical patterns described in many different ways, 
for example: 4 + 3 + 3 + 3; 4 3 3 3; 3 6 9 12; 4 in one and then 3 3 3.

	3.	 Arithmetic (numerical) expressions: expressions that include the coefficient and/
or the constant from a pattern and those that do not.

	4.	 Algebraic equation
	5.	 The irregularity

�Concrete Objects

This thematic discourse emerges for different reasons in the groups N1, A2, F3, and 
S4. However, it comes to play a similar and important role within their meaning-
making processes. Recall from Part One that a drawing was used by ¾ of the groups 
in the full sample. N1 tries to find a numerical relationship between numbers of 
matches and numbers of squares while drawing and counting. Ultimately, this 
becomes the route to solving the problem (after giving up on their complex numeri-
cal expression), as is the case with F3 from the very beginning (the girls in F3 plan 
to draw all the matches in order to solve the problem). A2 imagines a completed 
figure using gestures and words when analyzing the task (Leah). Also, Aron (A2) 
uses this type of discourse later in the group work when he explains his thinking 
using a mix of gestures, drawings, and words. A discourse about concrete objects 
plays a limited role in S4, as only one student draws for a short period of time, initi-
ated while the group discusses the pattern. The words used for the concrete objects 
are varied: matchsticks, squares, boxes, such things, rows, pieces, double line, one 
of those (referring to the figure), and uneven shape. It is clear that although the stu-
dents are looking at the exact same figure what they see is not the same.

The discourse about the concrete objects often addresses actions and involves an 
extended use of verbs together with human actors: we can make (N1, turn 23), we 
get (N1, turn 24), if you have taken (N1, turn 24), if we take (N1, turn 28), 
when we have (N1, turns 28, 30, 32). Aron, in turn 38 (A2), uses these wordings: 
if you take… you get… then you have… you draw. The utterances that 
accompany the gestures as Leah is imagining a complete figure are similar: you 
can keep on adding boxes of matches (A2, turn 8), you add on 3 until 
you get to 73 (A2, turn 10), you count how many boxes you made (A2, 
turn 12). Counting is part of the drawing process, and therefore the discourse 
becomes very extensive if that is the main approach applied and discussed in the 
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group. Written calculations (i.e., addition) are also often part of this type of dis-
course, as the students count horizontal and vertical matchsticks separately, write 
down the numbers, and then add them (N1, F3).

The drawing on the paper, and the motions as students draw new squares, seem 
to be consequential for the development of a discourse about the numerical pattern 
in the groups. The observing students benefit from watching the evolution of the 
figure, in that they become aware of its numerical structure (N1, F3). The gesturing 
of tracing squares as if she adds them to the figure is part of Leah’s (A2) awareness 
that one adds 3 matches for each new square. It is noteworthy that Trish (N1) and 
Bjorn (F3) use the exact same motion (as Leah) as part of their meaning-making 
process.

The type of discourse described here is mainly colloquial. It includes only basic 
arithmetic, such as counting and adding. In the groups N1, A2, and F3, the discourse 
on concrete objects forms the background for a discourse that indeed is an abstrac-
tion of the prior: the structure of the figure is discussed in numerical terms, forming 
the notion of a pattern. The transition between these different types of discourse is 
better described as fluid than distinct. The discursive shift is initiated as the students 
engage in and reflect on the process of adding new squares to the figure. That is, 
students look at the figure, often tracing the squares with their finger, or imitating 
the motion of adding new squares using gestures (N1, A2, F3). It sometimes also 
involves a different engagement with an ongoing counting process, i.e., counting by 
three, 53, 56 (N1), rather than counting by one. These reflections also seem to be 
spurred and influenced by the question of what to divide 73 by (A2, F3). Matches 
and boxes reside in the background, as something of an abstract nature comes to the 
forefront of the discussion and is described numerically. Although the students often 
look for a relationship between numbers of matchsticks and numbers of squares as 
they engage in a drawing and counting approach, there is no explicit evidence in the 
students’ discourse that they are looking for a pattern. Indeed, not one of these 
groups uses the word “pattern” or a word that is synonymous. Yet, they describe the 
geometrical figures using numbers in several different ways and identify regularities 
and patterns observed.

�Pattern

The geometrical pattern in the figure provided in the task is described numerically 
by the groups both as a process and as static properties of it. As the students engage 
in a discourse about a pattern, they focus on the paper. The semiotic means include: 
the figure provided in the problem; inscriptions, i.e., the extended figure in the forms 
of student-produced drawings; and gestures, i.e., tracing squares on paper or in the 
air, and also rhythmic hand movements representing squares in a row (which thereby 
also extends the original figure). In particular, the motion of first tracing an upper 
horizontal match, then a vertical right match and finally a bottom horizontal match, 
appears as an instance of embodied cognition, which relays the pattern as a process 
(N1, A2, F3).
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In comparison with the discourse on concrete objects, the discourse on pattern is 
short and concise. It is descriptive rather than action-oriented, and the human actor 
is removed from the discourse: the pronouns I, you, we are not used. About half of 
the utterances regarding the pattern are contextual and describe objects in space. 
Even though the words “matches” or “boxes” are not used, they are indirectly 
referred to: in some, in each, in them. Often, these types of descriptions pre-
cede the utterances that are more strictly listing numbers such as 4 3 3 3, 4 + 3 + 3 + 3 
and 3 6 9 12 (N1 and F3). The listing of the numbers 4 and 3 retains the spatial 
properties of the figure and therefore preserves a direct link to it. While the sequence 
3, 6, 9, 12, (N1), leaving the first matchstick unaccounted for, translates the geo-
metrical pattern into a numerical sequence which encompasses a functional rela-
tionship, i.e., the number of matchsticks vis-à-vis the number of squares. In the 
groups N1 and F3 the latter verbalizations of a numerical pattern are immediately 
followed by numerical expressions and calculations in the groups’ discussions.

The mathematical object of a numerical pattern seems to appear in the discus-
sions of the students (N1, A2, and F3) almost by coincidence. Its materialization 
(spoken words and gestures) in the group discussions seems more due to a need for 
making mathematical meaning through ordering, using numbers, than to students’ 
awareness of the mathematical object of numerical patterns. This interpretation is 
supported by the fact that the students neither use the word “pattern” nor refer to 
similar mathematical problems in their discussions. If the students made this refer-
ence, tacitly, it is likely that it would initiate a certain course of action—formulating 
a rule for the pattern. No such attempts are found in the students’ discussions. The 
mathematical object of a numerical pattern is evoked in the students’ discussions 
through processes of noticing structure of the figure. The figure remains the object 
of the students’ discussions, while the numerical patterns exist as momentary 
objects in the discourse and are not talked about as objects in themselves. We there-
fore evaluate the students’ discourse about pattern to be at a granular level of alge-
braic discourse (level 2).

In N1 the discursive shift from a pattern discourse to numerical expressions and 
calculations is initiated by a semiotic node: tracing the figure while verbalizing a new 
numerical sequence in which the consecutive terms rises with 3. Bjorn, in F3, also 
looks at the figure, verbalizes the pattern as a process of continually adding 3, 4 
plus 3 plus 3 plus 3 (turn 44), and traces the figure, immediately before sug-
gesting arithmetic calculations. However, all groups, on several occasions, discuss 
the question of what to divide 73 by, and it seems to remain as an underlying force 
for discourse development in the groups, throughout their meaning-making process.

�Arithmetic Expressions

The proposals of different arithmetic expressions represent, to a large extent, the 
students’ attempt to use previously internalized mathematics to solve the problem. 
There are two main categories of arithmetic expressions, those that include the coef-
ficient and the irregularity from a pattern discussion and those that do not. The first 
type of expressions is often suggested immediately following a semiotic node, 
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which signifies 3 as a coefficient through which numbers of matches and numbers 
of squares can be related to each other. The latter expressions are arguably a product 
of limited meaning-making of the problem and putting the numbers in the text to 
use. In A2 and F3 the suggestions of this type of expressions initiate discussions 
about the structure of the figure.

If we look at Fig. 8.4, Frequency of inchoate approaches to the matchstick task 
(cf. p. 172), we find a high frequency of approaches that include the expressions 
73/13, 73/4, and 73/3. The first expression differs in that it considers the complete 
(original) figure as a unit, while the other two use a square. However, all three 
expressions seem to be motivated by direct proportion and are simpler mathematical 
models than the correct one. Stacey (1989) problematizes what she sees as students’ 
intuitive familiarity, from quite a young age, with the relations connected to direct 
proportion. Her mixed-method study of students’ work with patterns includes stu-
dents from ages 9 to 13, and she explains (op. cit., p. 160):

The qualitative similarity in the responses of the primary and secondary students indicates 
that well before the formal study of relevant topics (ratio, linear functions and the distribu-
tive law), students have built up an understanding of certain nodes in the complex web of 
relationships that apply to direct proportion and linear and affine functions. In particular 
they overgeneralize these properties and employ them inappropriately.

Recall that we previously observed how Tina (S4) made her inchoate equation based 
on proportions: 13 to 4 [she writes it on her paper]. First you 
take 3…times…x equals…73 [she writes it down as she speaks] (S4, 
turn 7). The implicit proportions involved are 3 (matches) to 1 (square) and 73 
(matches) to x (squares). The students’ intuitive tendency for using direct proportion 
that Stacy describes seems to permeate the students’ initial work with the match-
stick task, even when the students use formal algebraic syntax. However, the nature 
of the students’ argumentations changes as they focus on the structure of the figure 
and grapple with the role of the number 3 in the problem.

In the complex expressions, the number 3, signified by the specific gesture, is 
reminiscent of a coefficient (rate of change) of a functional discourse as it signifies 
change—how the figure evolves. However, as the students in the groups N1, A2, and 
F3 do not attempt to formulate a rule for the pattern, there is no explicit evidence of 
an objectified use of the coefficient as rate of change. The coefficient is only evoked 
in processes, as part of numerical expressions and calculations, as the students dis-
cuss the problem.

Although students do not formulate a rule for the pattern, Bjorn (F3) develops 
what Radford (2010) has identified as an in-action-formula. In commenting on 
another student’s evolving drawing and counting efforts, he calculates how many 
more squares that can be made using 73 matchsticks, if one subtracts the ones 
already used: 73 − 52 = 21, 21/3 = 7; and 73 −55 = 18, 18/3 = 6 (turns 64–76). 
Finally, he uses the “formula” to calculate the answer to the problem, subtracting 
the one square made up of four matches and then adding it at the end: 73 − 4 = 69, 
69/3 = 23, 23 + 1 = 24. Radford (op. cit.) explains this type of formula as an “embod-
ied ‘function’ or ‘predicate’ with a tacit variable” (p. 7). A variable is implicitly 
present through some of its particular instances (52, 55, and 4). Bjorn’s in-action-
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formula, (73 − a)/3, is limited in generality as it only applies to the particular case 
of 73 matchsticks, and the number that varies, a, is restricted to being a member of 
the numerical sequence described by the formula a = 3n + 1, n < 24. In the group 
discussion the formula is, in actuality, restricted to drawn and counted matchsticks, 
which further highlights the situated and concrete form of Bjorn’s algebraic dis-
course. The in-action-formula exemplifies a type of generalization which belongs to 
constant value algebra as indeterminacy is not explicitly part of the discourse.

Across the groups, the students’ discourse on arithmetic expressions is mainly at 
a processual level of algebraic discourse (level 1) as the students are focused on 
linear calculations. However, there are exceptions as Trish (N1) and Leah (A2) 
model the problem using granules in their verbal expressions before doing any 
actual calculations: 73 divided by 3 and then you just add 1 more and 
73 divided by 3 and then minus 4. The calculations are still listed in the 
order of intended execution, however, in the sentence the result of 73 divided by 3 
is bypassed and the next operation is listed as if the granule is a number, i.e., an 
object. The granule is created by the use of a preposition (divided by) which seems 
to signify both an action and its result. This seems to be an example of presentation 
by prepositions, one of two ways of dealing with intermediate results in complex 
expressions, identified in the study of Caspi and Sfard (2012). The other one is pre-
sentation by nominalization; the replacement of a verb, for example multiply, in a 
verbal/written expression with its nominalization, the noun product.

The result of using prepositions is that it gives the sentences (expressions) recur-
sive depth. Caspi and Sfard (op. cit., p. 58) define recursive depth of a sentence as 
“the length of the longest branch in the parsing tree of this sentence,” as measured 
by the number of segments that constitutes this branch. The recursive depth of the 
students’ granulated expressions in our study is 2 (see Fig. 8.11). Caspi and Sfard 
(op. cit) found that students employing a spontaneously developed meta-arithmetical 

“73 divided by 3 and then minus 4”
73/3 – 4

a. depth of noun clause: 2

Not found in our data
4 + 3(n – 1)

b. depth of noun clause: 3

−

:

+

x

−73 3

4 4

3

n 1

Fig. 8.11  The recursive depth of the expressions 73/3 + 4 and 4 + 3(n − 1), based on Caspi and 
Sfard (2012, p. 58)
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discourse created rules in which the recursive depth never exceeded 2. This may 
indicate that there are limitations regarding the complexity that students are able to 
handle analytically when employing this type of discourse.

Also, as the matchstick problem includes geometrical units; single matches (one-
dimensional) and squares (two-dimensional), our data offer a contextual perspective 
on the students’ expressions. In the granules above (73 divided by 3), the actions are 
performed with matches; however, the results are squares. In examining the stu-
dents’ discourse prior to the verbalizations we find that the second parts of these 
expressions seemingly also signify matches and not squares. If we now think of 
using an equation (3x + 1 = 73) to model the problem, the granule created here, 3x, 
would refer to matches; as in Tina’s equation (3 times x). Similarly, we find the same 
in the expression Leah creates after having found the unknown; it’s 24 times 
3 plus 1: the granule (24 times 3) and the second part of the expression both refer 
to matches. Using the cultural tool of an equation in solving this problem thus 
relieves the demands of attention in the particular manner described above. The 
second part of Trish’s expression, then you just add 1 more, includes a 
human actor, and is ambiguous as it is unclear from the expression whether add 1 
more refers to one match or one square. Leah’s expression is slightly more reified; 
however, we evaluate both these expressions to be at a granular level of algebraic 
discourse (level 2, see Table 8.1).

�Algebraic Equation

Only one of the four groups uses an algebraic equation6 to solve the problem. The 
group (S4) belongs to the Swedish classroom where the teacher explicitly told the 
students, before handing out the task, that the problem could be solved most 
efficiently by making an equation: an equation (…)is the fastest solu-
tion even here. Tina makes an (incorrect) equation shortly after reading the 
task; 3 · x = 73. Using the algebraic symbol for an unknown in an equation, Tina 
employs a formal algebraic discourse as she solves the task.

The letter x is used to represent the unknown in calculations for which the result 
is given and the unknown is thereby used in an objectified way. As explained previ-
ously, the number 3 in Tina’s equation seems to stem from an assumption of direct 
proportion (Stacey, 1989). In a sense, the discourse regarding the role of 3 lacks the 
dynamic quality that students in the other groups experience as they add 3 and 3 
matches to the figure for each new square, which is an empirical example of the 
notion of rate of change. Tina’s 3 appears rather as a static ratio between the two 
quantities single matches and squares. The prompt given (of making an equation) 
seems to guide the focus of this group and form the meaning-making process. A 
result is that the “equation part” of the problem is prominent while the functional 

6 Here the term “algebraic equation” is defined as an equation involving at least one alpha-numer-
ical letter (variable).
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aspect (pattern) resides in the background. In the other groups we see the opposite 
tendency.

The irregularity/constant term is not accounted for in Tina’s first equation as she 
does not seem to be aware that one needs four matches to make the first square. 
After the teacher has pointed this out to the group, and the two students from other 
groups have given the prompt of using the number 72 instead of 73, Tina changes 
her equation to 3x = 72. Thus, the algebraic equation provides a permanent platform 
for processing new information. The equation as an algebraic object guides the solv-
ing process. However, the students are following the teacher’s instructions and do 
not apply the cultural tool on their own accord. Additionally, the students do not 
create an equation which fully models the problem. Their discussion is therefore 
evaluated to be only partly at the level of objectified algebraic discourse (level 3).

�The Irregularity

As noted also in Part One, the irregularity of the numerical pattern is a point of 
struggle for all the groups and this is a very decisive element of the difficulties that 
the groups run into. Initially, it is the matter of identifying a pattern. To make the 
first (or final) square, one needs four matches, and in making all the others, one 
needs only three matches. Most of the groups come to this conclusion. However, to 
include the irregularity in mathematical models of the problem appears to be chal-
lenging for the students. In comparison, the coefficient 3, once identified, is usually 
applied correctly in calculations (as a multiplicative factor, times 3, in Tina’s equa-
tion, or it’s inverse, divided by 3). The irregularity is usually identified in the pattern 
discourse of the groups as 4, but modeled and accounted for in the calculations in 
several different ways.

In the group N1, the irregularity is modeled in the numerical expression 73 
divided by 3 and then you just add one more. The expression add one 
more is ambiguous, and, as explained earlier, Trish’s gestures immediately before 
making this point indicate that it may refer to one match while in her calculations 
she adds one whole square. Group A2 creates a complex, numerical expression 
similar to that of N1, but accounts for the irregularity by subtracting four: 73 
divided by 3 and then minus 4. Both these complex numerical expressions 
are incorrect. The students’ expressions show that they struggle (1) to correctly 
include two operations in one expression; and (2) to keep track of the different units. 
However, the type of problem posed (including calculations with an unknown for 
which results are given) also seems to play a role, as Leah (A2) is able to create the 
correct expression 24 · 3 + 1 after having identified the unknown. Although it might 
be a matter of making the numbers fit (i.e., 24 · 3 = 72, and so one has to add 1 in 
order to get 73), this model seems to correspond with Leah’s meaning-making of 
the problem (see A2, turn 62).

Leah (A2) avoids the difficulty of modeling the irregularity by dealing with the 
original figure as a special case, in which division by 3 does not give a whole num-
ber of squares, but in which she can easily tell that 13 matches are needed to make 
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4 squares. She then finds the answer by doing the calculations 73 −  13  =  60, 
60/3 = 20, 20 + 4 = 24. Bjorn, in F3, accounts for the irregularity in his calculations 
in the same manner, except that he subtracts 4 (instead of 13) from the total number 
of matches and then adds 1 square (instead of 4) at the end of his calculations: 
73 − 4 = 69, 69/3 = 23, 23 + 1 = 24. Although this strategy of modeling the irregu-
larity (subtracting a number of matches and then adding the corresponding number 
of squares) works well in finding the unknown, it is cumbersome in a generalizing 
aspect, as it would produce rather complex rules for the pattern of which the recur-
sive depth exceeds 2 (see Fig. 8.11): 13 + 3(n − 4), 4 + 3(n − 1). These may be 
unattainable for the students. Indeed, in the study of Caspi and Sfard (2012) stu-
dents modeled the irregularity in the same manner when writing a rule for the pat-
tern (first subtracting parts of the number sequence and then adding it at the end of 
the calculations; see p. 178 in the text). These students did not use algebraic syntax 
when expressing the rule but instead explained it as a sequence of actions using 
many words. However, the rule of the seventh grader, in which the irregularity is 
modeled as +1, is closer to an algebraic rule.

In group S4, Tina starts the solving process by making the equation 3 · x = 73, in 
which the irregularity of the pattern is not included. The group does not become 
aware of the irregularity until the teacher points it out to them. Before Tina has time 
to incorporate this new insight into her solution, two boys from other groups insist 
that one must divide 72 by 3 (or 4), and not 73. Although correctly connecting the 
subtraction of 1 from 73 to the square with 4 matches (the irregularity), and accept-
ing 24 as a correct solution, she is still confused about the 1 match she subtracted 
and seems to leave it as a reminder, which she signifies by writing +1 at the end of 
her written solution.

The irregularity is an element of the problem that adds complexity and takes the 
students into unfamiliar territory. In group F3 the girls insist that the task cannot be 
solved using a simple expression because there are 3 [She holds 3 fin-
gers up] in some and 4 in some (F3, turn 33). The students who pursue a 
mathematical solution have to identify a common numerical property of the squares 
in the geometrical pattern and thereby also in what way this commonality does not 
hold for all the squares. In calculations, the students are successful when they sepa-
rate one square or the complete figure (i.e., four squares) from the pattern in order 
to find a solution. It appears to be challenging for the students to think about the 
irregularity in terms of one additional matchstick in the first square (which would be 
the most efficient way of describing the pattern in order to make a rule for it). 
Stacy’s (1989) observation that students in Grades 7 and 8, working with patterns, 
more frequently make mistakes in b than in a when using linear methods (an + b, 
b ≠ 0), supports our findings that the constant term is more difficult for the students 
to model correctly than the coefficient.

Our study shows that the meaning-making processes of the students—all the way 
from a discourse on concrete objects, to a pattern discourse and to a discourse 
including numerical expressions—provide support and meaning for the coefficient 
but do not include a similar process of abstraction and refinement for the constant 
term. The students find contextual solutions in order to account for the irregularity 
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and it remains in their discussions as numerical properties of concrete objects rather 
than, through processes of abstraction, becoming associated with a constant term in 
an algebraic rule for the pattern.

�Part Four: Syntheses of the Analyses

In this study we have investigated the approaches taken of 16 groups, and the 
meaning-making processes of four groups, from different countries (Finland, 
Norway, Sweden, and USA), working with one specific patterning task; the match-
stick task. Part One, in which we looked at the group work from the analytical level 
of approaches, shows the iterative nature of problem-solving processes. However, 
the in-depth discourse analyses in Part Two, which discuss how discourse builds 
upon itself in a more general sense, reveal that the discourse developments occur-
ring in the groups N1, A2, and F3, follow a specific order. In this section we attempt 
to gather the different features that will help us substantiate what we see as patterns 
of a learning process in algebra. We also summarize our findings regarding the 
nature of the students’ argumentations and discuss how these relate to formal alge-
braic discourse.

�Patterns of a Learning Process in Algebra: Creating Algebraic 
Objects from Concrete Ones

The three groups (N1, A2, F3) that did not receive any particular prompts regarding 
how to solve the task engage in meaning-making processes that share similar fea-
tures. In this summarizing section we will systematize these similarities while 
focusing on the construction of mathematical objects through discursive processes 
as elaborated by Sfard (2008).

Sfard (2008) proposes three different constructs through which discursive objects 
arise in discourse: by saming, by encapsulating, and by reifying. The manner in 
which these constructs are defined is influenced by Sfard’s emphasis on word use, 
i.e., “it is responsible for what the user is able to say about (and thus to see) in the 
world” (op. cit., p. 133). As discussed in the theoretical introduction to Part Two, 
word use is crucial in the long-term development of discourse as one is able to com-
municate, relate, and generalize particular experiences accumulated over time.

However, investigating a local discourse development which is multimodal in 
nature (Radford, 2014), we will add a multimodal view to Sfard’s (2008) constructs. 
The semiotic means identified to play central roles in the objectification process are 
the discursive actions of drawing (extending the figure), gesturing (tracing squares 
in the air or on paper), use of linguistic classification categories (vocally creating 
numerical patterns), and modeling the problem in arithmetic calculations and 
expressions (vocal and written). We have identified Aha-moments in the students’ 
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discussions where several of these semiotic means are linked together and form 
semiotic nodes, through which a new objectification is accomplished. Keeping in 
mind that the semiotic node is a more general construct through which higher levels 
of awareness are reached, we also propose to include the construct of a semiotic 
node as a fourth discursive process through which mathematical objects arise in 
discourse.

Saming—the process of giving a number of things that have hitherto been seen as 
different the same name. We propose that this can also be evidenced in discursive 
procedures which are repeated in similar but different situations, even though it 
is not given a specific name by the interlocutors, i.e., in-action-formula.

Encapsulation—is the act of giving one name to a number of members of one spe-
cific set so that the stories that have previously been told in plural can now be told 
in singular, i.e., the counting of 3 matches in different squares is replaced by the 
noun 3 in each.

Reification—is achieved when talk about processes is replaced by talk about objects. 
We suggest that this achievement can also be evidenced in gestures, i.e., the 
drawing and tracing of squares as a process of (physically or imagining) adding 
squares to the figure becomes a gesture that signify 3 as the rate of change.

Semiotic node—represents “pieces of the students’ semiotic activity where action, 
gesture and word work together to achieve knowledge objectification” (Radford, 
2009, p. 121).

Sfard (2008) defines mathematical objects as abstract, discursive objects 
(D-objects). Primary objects (P-objects) can be seen, heard or touched, and exist 
outside of discourse. D-objects exist only in discourse but are also conceived of by 
the senses (heard or seen). P-objects are therefore not separated from D-objects 
ontologically, but they are linked through discursive processes. Concrete D-objects 
include all the P-objects and all the nouns which arise through saming and encapsu-
lating familiar P-objects (naming, e.g., Tom, cat, animal). Concrete D-objects are 
those that only involve saming and encapsulating while abstract D-objects also 
involve reification.

Figure 8.12 identifies the main features of the groups’ discourse development 
systematized in four categories: discursive processes, modalities, word use, and dis-
cursive objects. The figure is three-dimensional in order to demonstrate how dis-
course builds upon itself. The three layers in Fig. 8.12 parallel the three first thematic 
discourses listed in Part Three: discourse on concrete objects (layer 1), pattern dis-
course (layer 2), and discourse including complex numerical expressions (layer 3). 
In the figure, the discussions of the three groups are presented in a compressed 
format, available by the prior analyses done, in the two categories: modalities (col-
umn 2) and word use (column 3). The figure summarizes our findings and includes 
a theoretically sharpened focus on discernable patterns of discourse, i.e., the cre-
ation of algebraic objects from concrete ones. Column 1, discursive processes, 
explains through theoretical constructs how the abstract objects (column 4) arise in 
the groups’ discourse. We have also included the elements of discourse which initi-
ate discursive shifts in the groups’ discussions.
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Figure 8.12 shows how students go from drawing and counting matches and 
squares to engaging in a more mathematical discourse in which numerical patterns 
emerge as objects. The discursive shift is initiated either by; students seeking a 
mathematical solution to the problem asking what to divide 73 by, or by; students 
engaging differently in the drawing and counting approach.

The discursive processes of drawing and counting which are creating new squares 
on paper are replaced by processes of reification and encapsulation, which result in 
the abstract objects of numerical patterns. Through reification the process of count-

Fig. 8.12  Creating abstract objects from concrete ones
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ing matches in each square is replaced by the numbers 4 3 3 3, which together form 
a numerical sequence in which 3 is the repeating number. The squares that were 
previously counted one at the time are now, through encapsulation, brought together 
and described by the same sentence: 3 in each. Students are then able to talk about 
the figure using only two numbers, the 4 and the 3. Another numerical sequence is 
created through a second reification in which the process of continually adding 3 
produces the pattern 3 6 9 12.

The process of drawing new squares is replaced by tracing the squares in the 
figure, using the same motion. And, in one group, a student simultaneously verbal-
izes a numerical pattern which rises with 3. The motion is interpreted as a bodily 
knowledge of the problem, and signifies the additive 3 as an embodied rate of 
change. Through a semiotic node, i.e., the coordination of these semiotic means, a 
new objectification is achieved: students are able to create complex expressions and 
calculations, in which the numbers 4 and 3 are given new roles.

In one group, which creates an in-action-formula, the 4 becomes a particular 
instance of indeterminacy. And, in this formula the repeated addition of 3, 4 plus 
3 plus 3 plus 3 (F3, turn 44), is reified to 3 as a coefficient in its inverse form: 
73 − 4 = 69, 69/3 = 23. The in-action-formula is created through saming: recogniz-
ing that similar questions, involving different numbers, can be solved by applying 
the same calculation procedure. The motion, of tracing squares in the air (or in the 
figure), is now used as a support in formulating expressions and calculations. The 
motion/gesture is reified as it no longer signifies the process of physically adding 
new squares to the figure, neither does it signify a repeated addition of 3, but instead 
the coefficient 3 as a contextual and embodied rate of change. We thus argue that 
reification is not limited to language as is claimed in the elaboration of Sfard’s 
(2008) definition of the notion. The coefficient 3 is now the means by which the 
students relate the given number of matchsticks to the unknown number of squares.

We will suggest that the patterns of a learning process documented, rather than 
being the only way to learn, are describing learning in direct communication with 
peers in a problem-solving situation. It is inductive as the students start with the 
concrete and move toward abstraction. The constructs of saming, encapsulating, 
reification, and semiotic node seem as viable descriptions of discursive forces that 
achieve objectification and explain how compression and abstraction of discourse is 
achieved, i.e., how a discourse builds on itself.

�The Nature of the Students’ Argumentations

The analysis of a learning process in algebra described above gives credit to stu-
dents as capable and inventive mathematical problem solvers. The students are able 
to transform a geometrical relationship (single matches versus squares) into a 
numerical relationship through the creation of numerical patterns. Furthermore, the 
students engage in an analytical practice with numbers, in which the same numbers 
are used in very different ways.
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Recall from Part Two that we build our study on the definition of school algebra 
as a meta-arithmetical discourse that people employ while reflecting on arithmetic 
processes and relationships (Caspi & Sfard, 2012). Radford’s (2010) summary, of 
what algebraic thinking entails, specifies the objects of this meta-arithmetical dis-
course: objects of an indeterminate nature (unknowns, parameters, variable) that are 
dealt with in analytic ways. From an ontological perspective, our findings show that 
students are able to participate in an algebraic discourse without using algebraic 
symbols. And, the students’ algebraic thinking, as portrayed in this study, did not 
occur on the basis of goal-directed teaching, but rather as a result of students apply-
ing, in new ways, an already internalized arithmetical discourse. Our findings there-
fore supplement our knowledge of a spontaneously developed meta-arithmetical 
discourse, identified by Caspi and Sfard (2012).

In Table 8.1, Levels of elementary algebra discourse (p. 24), we attempt to sketch 
the development of constant value algebra through three different levels: processual 
(level 1), granular (level 2), and objectified (level 3). The significance of these levels 
of algebraic discourse, regarding the learning of algebra, is that the analytical pos-
sibilities, and, at the same time, the ability to handle complexity, rise with each 
level. In the students’ discussions we see how they struggle to keep track of different 
units (squares and matchsticks) and the order in which to apply the different alge-
braic operations. Our analyses show that momentary mathematical objects arise in 
the students’ discourse, through word use and other semiotic means. It is by using 
these objects that the students are able to solve the problem mathematically. 
Although these objects are of an algebraic nature, they are not recognized, described, 
or applied in the solving process as general algebraic objects. In Table 8.1, we iden-
tify three aspects of the students’ discourse through which we can relate the stu-
dents’ argumentations to school algebra: (1) how a problem is modeled (how are 
expressions and calculations verbalized/written); (2) how relations are generalized; 
and (3) how algebraic objects are evoked in the solving process. In Part Two and 
Part Three we have referred to Table 8.1 as we analyze the students’ discussions. We 
will now attempt to “flesh out” the levels of constant value algebra as we summarize 
these findings.

�Processual Level

We find that several of the groups model the problem through linear calculations. 
Bjorn, in group F3, models the problem on paper writing the following sequence of 
calculations: 73 − 4 = 69, 69/3 = 23, 23 + 1 = 24. The calculations are described and 
performed in a linear order and all intermediate results are listed. One could even 
discuss whether or not this model is meta-arithmetical. We will argue that it is 
because of how it arose in the discourse of the group; as shown previously, the 
model is part of an in-action-formula which is a product of reflection on numerical 
processes and relations. Leah’s (A2) final solution is of the same nature: 73 − 13 = 60, 
60/3 = 20, 20 + 4 = 24. The models describe numerical relationships in the form of 
linear calculations (that are not previously described in any other form) and thereby 
exemplify the first level of constant value algebra.
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The in-action-formula is not in any way discussed as an object, nonetheless it is 
embodied in the three calculation processes described previously. The in-action-
formula is not the only type of generalization that we have identified in our material 
at this level. The students do generalize the one-to-one relationship between the two 
units, matches, and squares, through verbally listing numbers, 4 3 3 3, 4 + 3 + 3 + 3 
and by contextual utterances such as 4 in one and 3 in each. The verbalization 
of the inaccurate sequence, 3 6 9 12, goes one step further and is similar to the in-
action formula in that it does not only consider the relationship between the two 
numbers [unknown number of squares, 73], but several of the pairs to which the 
same relationship exists [(1, 3), (2, 6), (3, 9), (4, 12)]. However, instead of consider-
ing the relationship through a complex calculations process, it is here simplified 
(ignoring the irregularity) and considered recursively; applying the one operation, + 
3, to the prior element of the sequence. Also, this relationship is only made explicit 
through gestures, i.e., tracing the matches in the figure synchronized with the listing 
of numbers. At this level, where processes are the main focus, mathematical objects 
of discourse are mainly numbers, often connected by actions, i.e., algebraic opera-
tions. However, intermediacy (variable) is present through some of its particular 
instances as they are listed in the calculation processes that embody the 
in-action-formula.

�Granular Level

In groups N1 and A2 the students suggest complex verbal expressions before 
attempting to calculate a numerical answer: 73 divided by 3 and then you 
just add 1 (N1); 73 divided by 3 minus 4 (A2). These utterances are also 
about calculations; however, they bypass intermediate results using granules. In 
contrast to the models described above, no calculations are actually performed at 
this moment. We also found another expression that includes a granule in the work 
of the group A2. The verbal expression, 24 times 3 plus 1, is created after the 
students have found that they can make 24 squares; and so the expression is a reflec-
tion on how the two numbers 24 and 73 relate to each other.

In the three expressions listed the granules are created by the use of the preposi-
tions divided by and times. Although these expressions are only slightly granu-
lated, we argue that there is a significant difference between the linear calculations 
and the complex verbal expressions listed here. There is a shift of focus that enables 
the students to model the problem, including all relevant numbers and operations at 
once, without getting involved with actual processes of calculations. The students 
only use these expressions as prescriptions for calculations and do not return to 
them when their calculations fail to bring acceptable numerical answers to the task. 
However, the ability to create such expressions does offer analytical possibilities 
that do not seem available when a problem is modeled through calculation pro-
cesses only.

In the study of Caspi and Sfard (2012) the students created rules (complex 
expressions) as they reflected on processes of calculations they had already per-
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formed, however, in the present study the students created their complex expres-
sions as they reflected on numerical processes and relationships prior to performing 
the calculations these describe. Looking at the two research studies combined we 
find that students in this age group (12–13 years) use granules in varying mathemat-
ical situations. Additionally, the study of Caspi and Sfard (2012) reports, as a main 
difference between the discourse of fifth graders and seventh graders, that the use of 
prepositions was frequent among the seventh graders; however, rare with the fifth 
graders. These findings seem to support the idea of a spontaneously developed 
meta-arithmetical discourse and document the granulation of complex expressions 
as a prominent aspect of it.

To solve the matchstick task, it is not necessary to generalize relations, i.e., to 
formulate a rule for the pattern (although it would be very helpful in order to create 
a correct equation), and we do not find any students’ talk regarding rules. 
Generalizations at this level would be granular descriptions of for example the rela-
tionship displayed in the in-action-formula. The study of Caspi and Sfard (2012) 
provides empirical examples of these.

In this study we have discovered that the students create momentary objects of 
an algebraic nature that they use to solve the problem mathematically: numerical 
patterns and rate of change. The sequence 4 3 3 3 retains the spatiality of the figure 
while in the sequence 3 6 9 12 the functional relationship, f(n) = 3n, can be observed. 
These patterns only appear as objects through these verbal listing of numbers. The 
students do not talk about the patterns as objects nor do they describe them in the 
form of rules. Also, the gesture of tracing a square (on paper or in the air), is inter-
preted to embody the number 3 as rate of change. The coefficient 3 is later, in the 
context of discourse regarding arithmetic expressions, made permanent through 
writing; however, it only connects the two numbers 73 and 24. Rate of change is 
considered only in terms of processes and not as an object in itself. The objects 
described here are results of reflections on numerical relationships and processes, 
and they are contextual, situated, and momentary, i.e., not general algebraic objects. 
We evaluate the discourse in which these objects become visible and are applied to 
be at a granular level of constant value algebra. We suggest that objects of this 
nature are an important part of the spontaneously developed meta-arithmetical 
discourse.

�Objectified Level

Tina (S4) models the problem using an algebraic equation; 3 · x = 73. In that class-
room, the teacher told the students that using an equation is the most efficient way 
of solving the matchstick problem. In our data, we have found that none of the stu-
dents do this on their own initiative, even though several of the classrooms were 
working with equations in the four prior lessons. However, this is not surprising at 
this early stage in the learning of algebra. The act of recognizing that the matchstick 
problem involves a question about an unknown, involved in calculations whose 
result is given, is an advanced form of algebraic thinking. That is, determining 
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which cultural tool applies on the basis of discerning relational structures in a prob-
lem. The teacher does this for Tina. However, Tina is able to participate in a formal 
algebraic discourse regarding equation, i.e., her argumentation is not only rooted in 
a spontaneously developed meta-arithmetical discourse. Tina’s first response to the 
task is to create the equation; 3x = 73. As explained earlier the use of the number 3 
arguably stems from direct proportion, which in this case is an overgeneralization 
and a simplification of the problem, similar in this way to the simple numerical 
expressions discussed in the other groups. The difference between the two forms of 
discourse is that in the case of the numerical expressions the intermediacy is implic-
itly present through the answer sought. However, in the equation it is made explicit 
by the use of x and it can therefore be part of an expression. Additionally, in creating 
an equation, Tina cannot focus only on calculation processes but has to structure her 
expressions in the form of an equivalence.

Tina clearly knows the basic structure of an equation and also correctly 
names the indeterminacy x. The equation is written down, revisited, and changed 
(3 · x = 73 → 3 · x = 72) during the solving process and thereby is not a tempo-
rary object as is often the case at a granular level of algebraic discourse.

The use of algebraic syntax appears to have several effects, more alienated dis-
course (no human actor), disambiguation, and abstraction (no contextual refer-
ences). These combined may be the explanation why Tina, in contrast to students in 
other groups when performing the same calculations, does not seem concerned by 
the appearance of a decimal number in the solution. Additionally, the equation built 
on the relational idea of direct proportion, both in its own right and as an approach 
confirmed by the teacher, is likely to present itself as a strong and convincing argu-
ment. Stacey (1989, p. 162) explains that:

The models associated with direct proportion suggest themselves to students for strong 
cognitive reasons. When such an idea is found, students may be reluctant to question it, both 
because its effectiveness in supplying answers (and any answer is better than none!) and 
because of its simplicity.

We notice that Tina’s arguments, after the teacher has pointed out her mistakes, are 
similar in their form to the other groups’ discussions as they include contextual 
references and often a human actor. Furthermore, she is as much at loss for how to 
deal mathematically with a problem that demands a linear model including two 
operations, as the students of the other groups.

Although Tina is able to participate in a discourse that is partly at an objectified 
level of constant value algebra regarding an equation, she mainly follows the rou-
tines (meta-level rules) of arithmetic: (1) she focuses on a correct numerical answer 
rather than creating an equation that correctly models the numerical relationships in 
the problem; and (2) she insists that it is important to show the process of calcula-
tion, i.e., 60 divided by 3 which is 20. And then you get 12 and 
then it becomes plus 4 and then you get 24. However, it would have 
been acceptable to write 72/3 = 24 as Lars in her group suggests. She thus appears 
to be more concerned with processes than with objects at this stage.
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�Pedagogical Implications and Looking Ahead

We will consider our last point of discussion, pedagogical implications, as we 
examine limitations and possibilities of the spontaneously developed meta-
arithmetical discourse. We have only analyzed data from students’ working with 
one particular task and do not expect to have exhausted the qualities of this type of 
discourse. On the other hand, our data includes students and classrooms from four 
different countries and our analyses therefore point to some common characteristics 
of students’ discourse as they are entering the mathematical domain of algebra. 
Additionally, we have documented patterns of an inductive learning process in alge-
bra which have implications for teaching. The issues raised in this section are 
brought to light through our analyses, however, in need of further investigations.

Radford (2010), investigating students’ generalizations, argues that “the mathe-
matical situation and the semiotic resources that are mobilized to tackle it in ana-
lytic ways characterize the form and generality of the algebraic thinking thus 
elicited” (p. 15). The matchstick task includes a geometrical figure and references 
to the extra mathematical objects of matchsticks. We have shown that in this particu-
lar situation students create contextual, situated and momentary algebraic objects 
that are signified through inscriptions, word use, and gestures. We have argued that 
the students’ generalizations, regarding this task, are at a processual level of alge-
braic discourse. Also, the granulation of expressions appears to be a prominent fea-
ture of this type of discourse. These findings point to qualities of the spontaneously 
developed meta-arithmetical discourse: (1) it is mainly concerned with calculation 
processes; and (2) it employs a wide range of signs that are not part of the standard-
ized mathematical discourse but which instead are closely connected to the particu-
lar problem at hand. Thus, it is questionable if a spontaneously developed 
meta-arithmetical discourse can reach the level of objectified constant value alge-
bra, i.e., a discourse concerned with general algebraic objects. Rather, we suggest 
an initial approach to school algebra in terms of formalizing students’ developing 
meta-arithmetical discourse, arguing that it offers possibilities for a meaningful 
learning of algebra.

Recall that we defined the learning of algebra in school as the individualization 
of the algebraic discourse employed in the classroom; in which formal algebraic 
syntax is inherent. We will now consider how the spontaneously developed meta-
arithmetical discourse can serve as a platform for the growth of a formal algebraic 
discourse. However, we will not neglect the continued importance of natural lan-
guage in the learning of formal algebra in school, as was pointed out in our literature 
review (Part Two). Caspi and Sfard (2012) suggest that the introduction to formal 
algebra may spur a growth in the informal discourse, and that maintaining connec-
tions between the two can ensure a meaningful learning of algebra. An important 
issue in this context seems to be in which ways the use of algebraic syntax changes 
the spontaneously developed meta-arithmetical discourse. In our data, we observed 
that Tina’s use of an equation when solving the matchstick problem, in comparison 
to the other groups, altered the discourse employed: intermediacy made explicit, a 

8  The Fifth Lesson: Students’ Responses to a Patterning Task Across the Four Countries



232

focus on equivalence, and decontextualized arguments. Rather than exploring the 
issue posed above, Tina’s equation provides one example that includes both changes 
and continuities (oversimplification using proportional reasoning) between the two 
types of discourse.

The majority of the students participating in our study expected direct proportion 
to be a relevant model for the problem and encountered difficulties in solving the 
problem mathematically when it did not work. The discussions show that the stu-
dents cope with the unexpected complexity of the problem in different ways. Many 
students, like the girls in group F3 who said that such a model (of direct proportion) 
won’t work, decide to draw and count. The creation of numerical patterns and the 
use of a gesture that signifies how the figure evolves have been interpreted as stu-
dents’ explorations of the mathematical structure of the task at hand (non-
proportional linear function). The complex expressions suggested and the proces-
sual generalizations made, in immediate relation to these explorations, are 
interpreted as examples of students thrusting into a new domain of mathematics. 
However, as a linear model including two operations (a cultural notion that the stu-
dents are likely to be unaware of) seems to be out of students’ reach, they resort to 
contextual and processual solutions. The students are satisfied as they find numeri-
cal answers that are confirmed as correct. For many students, participating in the 
arithmetical discourse, this has been the main objective of their mathematization 
thus far.

Indeed, with the introduction of algebra the rules of school mathematics change. 
School algebra is less about specific numbers and processes of calculation, and 
more about making mathematical generalizations and chasing algebraic objects. 
From a historical perspective the development of algebraic syntax can be seen as a 
response to rising levels of complexity in problems i.e., problems in which algebraic 
objects support their solution or problems which solutions even necessitate their 
use. If students keep chasing numbers as their main mathematical objects they will 
struggle to participate in the algebraic discourse. It is of importance for the teaching 
and learning of algebra to explore how students may become aware of these changes 
in meta-rules. We will not attempt to tackle this issue here but rather use our analy-
ses to highlight some aspects of it.

The characteristics of the students’ responses to the matchstick problem are 
signs that the students engage in meta-level learning. Particularly as they intuitively 
apply an argument based on a strong association between multiplication and direct 
proportion that is not viable in the discourse in which they are to become partici-
pants. Our study shows that students’ intuitive responses to the matchstick task 
often involve an application of multiplication that assumes a relationship of direct 
proportion. This expectation seems to drive the meaning-making process in the 
groups and at the same time leads to simplified conclusions regarding the problem. 
These conflicting arguments (direct proportion and a non-proportional linear model) 
can be interpreted as a rupture between arithmetic and algebraic thinking. It seems 
to be of importance to the introductory algebra classroom that the differences 
between the two types of arguments are explored. And further, to build an argument 
for the usefulness of applying a linear model in this type of problem.
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Having considered some limitations of the spontaneously developed meta-
arithmetical discourse, we will now return to discussing how it can play an impor-
tant role in the introductory algebra classroom. The inductive learning process in the 
algebraic context allowed for students to explore new numerical relations with the 
means available, i.e., previously internalized mathematics. It thus appears as one 
way of breaking the inherent circularity of the learning of new mathematical objects 
(Nachlieli & Tabach, 2012), i.e., one can only come to know a new mathematical 
object by participating in its discourse, however, how can one participate in a dis-
course about objects one is not aware of? The analysis of patterns of a learning 
process in algebra identifies discursive forces (saming, encapsulation, reification, 
and semiotic node) through which in situ algebraic objects are created in the stu-
dents’ discussions.

Caspi and Sfard (2012) explain the formalization of the algebraic discourse his-
torically as consisting of three processes: regulation, reification, and symbolization. 
The goal of formalization is to maximize the effectiveness of mathematical com-
munication and the three processes respond to different needs. Regulation, the intro-
duction of explicit discursive rules, prevents ambiguity and creates a standardized 
algebra. Reification, replacing talk about processes with talk about objects, achieves 
compression. Symbolization is an effective tool for both compression and standard-
ization of a mathematical discourse.

In our analysis of patterns of a learning process we find that the students sponta-
neously create algebraic objects through processes of reification. However, if the 
students are to become full participants of the algebraic discourse in school, their 
talk about algebraic objects needs to change, from temporary, contextual, and situ-
ated descriptions, to become descriptions of general objects. By using granules in 
complex expressions the students achieved compression. We have shown that these 
expressions are often ambiguous. The historic analysis presented by Caspi and 
Sfard (2012) suggests that the response to the students’ spontaneously developed 
meta-arithmetical discourse should be thought of in terms of regulating and symbol-
izing this discourse.

An investigation of the textbooks used in the classrooms of this present study 
(Reinhardtsen, 2012) shows that the algebraic syntax is often introduced in the form 
of simple problems. Problems that the students can easily solve without using alge-
bra, and indeed the use of these cultural tools must appear as unnecessary, and as 
complicating, instead of aiding their solutions. Our study shows that the students are 
able to handle complex problems by the use of meta-arithmetical discourse. Further, 
complex task of an algebraic and problem-solving nature, can stimulate students’ 
discussions which in turn provide ample discursive entry points. These are defined 
by Remillard (2014, p. 105) as following:

That is, there are distinct characteristics of novice discourse that may lend themselves espe-
cially well to expert intervention. Utterances or patterns of utterances that indicate such 
intervention potential are herein named discursive entry points. Discursive entry points may 
represent valuable opportunities for helping novices to refine their discourse and advance 
their mathematical thinking.
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The students’ verbalizations of numerical sequences and the granulated expres-
sions, the processual generalizations made and the gesture which embody the rate 
of change seem to be opportunities for an expert interlocutor to talk about general 
algebraic objects. Additionally, the inductive learning process allows the students to 
experience the shortcomings of their available mathematical arguments and may 
thereby motivate the learning of algebra.

However, as we recall the effects of teachers’ comments in groups N1 and S4, 
these types of intervention should be approached with caution and respect for the 
processes of learning that students are engaged with. In N1 we observed the stu-
dents’ vulnerability as they explored unfamiliar numerical relationships and were 
dependent on an expert interlocutor to confirm their ideas. When the teacher failed 
to do so, the students abandoned their work. In S4 the teacher’s prompt of using an 
equation seems to have entirely altered the students’ experience with the task.

Our study suggests a democratized form of teaching in which student talk is 
allowed to shape and inform the introductory algebra classroom. Moreover, the 
study shows affordances of small-group work in a problem-solving setting. It makes 
evident how the students pool their ideas by verbally engaging with the problem, 
including raising and answering questions—a process that allows for the discourse 
in the different groups to build on itself. Particularly, we documented the students’ 
observation of their peers’ drawing process as playing an important role in the 
advancement of a mathematical solution of the problem. However, the analyses 
done also revealed that the students in one and the same group do not reach the same 
discursive level regarding the matchstick task. In adopting small-group work for 
teaching purposes one needs to consider how to alleviate this observed progressive 
unevenness. The students’ spontaneously developed meta-arithmetical discourse 
appears to be an untapped source for the promotion of a meaningful learning of 
algebra. Our study has described features of this type of discourse and even pointed 
out what appears to be discursive entry points. However, how to intervene in a man-
ner that initiates sustained changes in the students’ discourse—toward further 
sophistication—remains an open question.

J. Reinhardtsen and K. B. Givvin



235© Springer Nature Switzerland AG 2019 
C. Kilhamn, R. Säljö (eds.), Encountering Algebra, 
https://doi.org/10.1007/978-3-030-17577-1_9

Chapter 9
Encountering Algebraic Reasoning 
in Contemporary Classrooms: Epilogue

Roger Säljö and Cecilia Kilhamn

R. Säljö (*)
Department of Education, Communication and Learning, University of Gothenburg, 
Gothenburg, Sweden
e-mail: roger.saljo@gu.se

C. Kilhamn
Department of Pedagogical, Curricular and Professional Studies, University of Gothenburg, 
Gothenburg, Sweden

In the preceding chapters, we have met students and teachers in four different coun-
tries as they begin engaging with algebra and algebraic thinking. Our ambition has 
been to focus on the participants’ perspectives and activities as they—students and 
teachers—embark on this intellectual journey where both parties are challenged and 
have to learn; students about algebraic reasoning and teachers about how to instruct 
and guide students on a topic that for many present obstacles.

As we have pointed out, there are both similarities and differences between class-
rooms in different countries. Textbooks and curricula vary between the countries, but 
also within countries there are obvious variations. In the American data, for instance, 
we saw two teachers with markedly different conceptions of what it means to learn 
algebra, and mathematics more generally, and these differences correspond to rather 
different teaching strategies where the expectations about what students are supposed 
to do to learn algebra differ. Such variations in teachers’ conceptions of what it means 
to learn mathematics and algebra, most likely, were present in the other countries as 
well. But, on the whole, the classrooms documented look familiar, and many people, 
also outside mathematics teacher circles, would agree that they correspond to what 
one would expect to find in contemporary Western societies.

As for the general instructional strategies, we see teachers engaging in a range of 
activities. They lecture in front of the whole class as they present concepts and pro-
cedures of early algebra. They assign tasks and exercises to groups that they interact 
with during the lesson. The exercises, taken from textbooks or, in some cases, 
designed by teachers, are from familiar everyday situations following the spirit of 
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the curricula, and, when mathematized, they are intended to serve as bridges to 
elementary forms of algebraic reasoning. In addition, teachers interact with indi-
vidual students who are asking questions or struggling to come to grips with the 
concepts, notations, and formulas.

Another observation regarding the teaching is that there are similar ideas about 
instructional strategies suited to the teaching of introductory algebra and equations. 
For instance, the balance model appears in several classrooms communicating the 
idea that if something is added or removed on one side, the other side has to change as 
well. Although the balance model has some limitations, it serves well when reasoning 
about equivalence structures (Vlassis, 2002). However, though widely used in school 
algebra and in textbooks, it might not build on everyday experiences for students of 
today, since balance scales are rarely encountered in the digital era and may them-
selves appear quite abstract. Consequently, we may well ask if school algebra could 
benefit from incorporating other models or metaphors. The function machine, used in 
one of the US classrooms, is a model aligned with the industrial world of the twentieth 
century, and it is not obvious that this is a metaphor that enlightens students. Today, 
computer systems digital interfaces and algorithms dominate our everyday life. A 
challenge for future algebra teaching is to find ways of bridging this contemporary 
reality of young people with century-old algebraic thinking. Which are the models and 
metaphors from this era that could make their way into algebra teaching in the future? 
How will computational thinking relate to algebraic thinking? In what way will the 
introduction of variables in school algebra change when the most common use of the 
concept of variables is the one related to computer programming?

An interesting difference in the teaching strategies in terms of mathematical 
meaning-making between the classrooms is represented by the tension between an 
inductive and a deductive approach to algebra learning, respectively. This tension 
appears in several settings. In the Norwegian classrooms (Chap. 5), for instance, 
this is clearly illustrated in the nature of examples introduced to support learning. 
Both teachers introduce designed examples to mediate between the students’ every-
day experiences and algebraic expressions. These designed examples obviously are 
grounded in their previous experiences of teaching introductory algebra, and in this 
sense they represent a reflected alternative for achieving specific teaching goals. In 
addition, both teachers use physical resources (playing cards vs. the body) to bridge 
between an everyday interpretation of a problem situation and an algebraic one. 
But, in spite of this similarity in teaching, the approach to what it means to learn 
algebra is different. One of the teachers uses an inductive approach starting with 
numbers, numerical expressions and operations, and from this platform she general-
izes to algebraic expressions and numbers. This inductive approach emphasizes the 
continuities between arithmetic and algebraic thinking, which is clearly in line with 
the predominant mode of reasoning observed among the students. The dilemma 
observed here, as well as in the other empirical settings (cf. the case of Sweden in 
Chap. 4), is that the concept of variable as a representation of a (given and hidden) 
number seems to be reinforced rather than challenged. The second Norwegian 
teacher, however, proceeds in a more deductive manner when attempting to com-
municate the concept of variable. In one example he moves from bodily movements 

R. Säljö and C. Kilhamn



237

(walking) to words (“steps” and “feet”), then to abbreviations (i.e., symbolic repre-
sentations “s” and “f”), and further on to the concept of variable, which through the 
demonstration is a unit that may vary in terms of length, i.e., it has no fixed value. 
This fact that the value is not fixed is explicitly addressed as a topic of communica-
tion with the students, and in this sense a more generalized interpretation of what a 
variable may be is invoked. In the other example, he introduces the topic of how the 
comparison in age between himself and his sister can be represented by means of an 
algebraic expression. In both cases, the conceptual meaning of a variable and an 
algebraic expression is emphasized and provides the entry point into algebraic rea-
soning. It could also be seen that in these cases, the teacher attempted to maintain 
the conceptual focus of the argumentation and physical activity by trying to get the 
students to co-construct (a) how to model his walking in the classroom, and (b) the 
relationship between the ages of two persons.

To what extent this difference in approach has consequences for the appropria-
tion of further elements of algebraic reasoning is an empirical question. As we have 
emphasized repeatedly, we have only been able to follow the first few hours of 
teaching and learning. Nevertheless, it is interesting to observe that such conceptual 
differences in mathematizing and instruction co-exist, and this also testifies to the 
considerable space which teachers have in organizing teaching and deciding on 
what challenges students should encounter in order to appropriate algebraic 
reasoning.

In the observed lessons, we have seen the students, mostly willingly, putting in 
considerable effort to understand and master concepts and procedures in what, for 
most of them, is unfamiliar territory. We also saw students occasionally distancing 
themselves from the ongoing problem-solving with their fellow students, talking 
off-task about things that temporarily occupied their minds or simply sitting pas-
sive. Engaging with abstractions and keeping focus over long stretches of time are 
challenging for many. We saw obvious differences between students in their prepa-
ration for algebraic concepts and procedures. Some, already at an early stage, come 
close to operating on the pattern task with matchsticks in Chap. 8 by focusing on 
transforming what they saw in front of them in the pictures to relevant objectified 
algebraic concepts. For other students this did not happen, and they attempted to 
follow their fellow students who were more active and conceptually prepared. Thus, 
inter-individual differences are a real part of classrooms and learning. All of these 
observations are expected features of classrooms.

But, in passing, there are also a few observations about what we did not see that 
are worth mentioning. One such observation is that the classroom work involved 
very little use of digital technologies. There were no traces of calculators, tablets, or 
computers in the activities and exercises. Even though such resources were not 
used, we know from our recordings, teacher interviews, and our observations that 
they were around in most cases. In most classrooms, there were interactive white-
boards, but they were hardly central for the instruction that took place. Rather, they 
were used as traditional blackboards for writing and drawing. The only relatively 
recent technology that played a visible role was the use of document cameras in 
some classrooms, which allowed student work to be easily presented to the whole 
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class. However, even when this was done, we saw little use of such opportunities to 
extend and deepen the mathematical conversation about student solutions. Teachers 
across most of the classrooms and countries preferred the instruction for this par-
ticular curricular unit to be carried out in a traditional teaching format with lectur-
ing, group work, individual instruction, and textbooks as core elements. In most of 
the classes, the textbook played a very central role. This is especially clear in the 
Finnish setting where the contingencies between the textbook and classroom prac-
tices are apparent. The Finnish curriculum gives ample space for local decisions 
about when and how to teach specific curricular units, and here it seems as if the 
textbook becomes the enacted curriculum. Obvious signs of this can be found in the 
other countries as well. But we also saw classrooms where the textbook was not at 
the center of attention during the lessons. In two of the Swedish classrooms, the 
textbook for this unit had been replaced by an “algebra activity box” providing 
resources for hands on and student active learning, designed by a major national 
(and international) project. Group work was a prominent feature also in one of the 
other Swedish classrooms where tasks from the textbook were used to initiate group 
discussions.

In the following discussion, we will comment on some of the major observations 
that follow from our study, while avoiding to repeat the analyses and syntheses that 
conclude the empirical chapters. We divide this discussion into three sections. The 
first section relates to the distinction made by Yackel and Cobb (1996) between vari-
ous sociomathematical norms followed in the activities we have observed. This 
implies analyzing how students work, and the meaning-making they engage in. In 
this case, it is interesting to see what students bring with them into the classroom 
activities and the mathematical meaning-making that takes place in the classroom 
conversations. In the second section we discuss the meaning of the concept of vari-
able that was made available for the students to learn in these classrooms. As a third 
topic, we want to raise the issue of the learning trajectories that can be observed. In 
other words, how far do the students get during the introductory lessons we have 
observed?

�Student Engagement and Mathematical Meaning-Making

As we pointed out, in the classrooms we have documented students are active. They 
listen, ask questions, and discuss rather freely with the teacher and their fellow stu-
dents. The social distance between the teachers and the students appears small in 
most cases. Thus, in terms of participation as a precondition for learning, all class-
rooms are characterized by a willingness to be involved and to share knowledge. 
The questions and comments students make also indicate that they understand that 
they are going to learn something new, a new kind of mathematical activity. Some 
of them report being familiar with elements of algebra symbolism, for instance that 
x can refer to an unknown number, but the general picture of the classrooms docu-
mented is that most of what is presented is new to the majority of the students.
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It is clear that students in all classrooms rely on their experiences and knowledge 
of arithmetic and bring these with them into the lessons and group activities. They 
know how to add, subtract and so on, and they use these concepts and procedures as 
they take on the tasks presented to them. It is also obvious that many of the exercises 
and problems they meet during these lessons can be relatively easily solved through 
simple arithmetic procedures. In the extensive analysis of student work with the 
pattern task in Chap. 8, it is shown that some groups solve the problem of how many 
boxes can be made using 73 matches by extending the drawing and counting how 
many boxes you get. Given the focus on finding a result, this strategy is easy to 
understand and rational. This is also evident from the Finnish material when the 
students work with the balance model of an equation; they realize through arithme-
tic procedures what the expected answer is, and that in a practical sense concludes 
the task as a problem to be solved. In one of the Swedish classrooms, the boxes and 
beans supply a representation of equations limited to (small) whole numbers and the 
operations addition and multiplication. Although the equations the students create 
are algebraic in the sense that the variable appears on both sides (as described by 
Filloy & Rojano, 1989), they are solved by simple arithmetic procedures of using 
inverse operations. Thus, and as we have pointed out, the problems that are used to 
introduce algebraic reasoning do not really require algebraic solutions or thinking. 
If the focus is on finding a result, what the students already know is sufficient. This 
dilemma, that arithmetical procedures suffice, has been well documented in the lit-
erature for a long time, but these insights do not seem to have reached teachers. To 
function well, the problems, illustrations, and the instruction have to be understood 
as pointing more clearly to a different kind of activity where the goal is rather to 
discover patterns and express relationships.

The shift from arithmetic thinking to algebraic thinking, or, using the words of 
Keith Devlin,1 from quantitative reasoning with numbers to qualitative reasoning 
about numbers, entails a shift in sociomathematical norms. In their seminal work 
from 1996, Yackel and Cobb describe the nature of sociomathematical norms and 
the difficult process of changing such norms. They write:

What counts as mathematically different, mathematically sophisticated, mathematically 
efficient and mathematically elegant in classrooms are sociomathematical norms. Similarly, 
what counts as an acceptable mathematical explanation and justification is a sociomathe-
matical norm. (Yackel & Cobb, 1996, p. 461)

What we see in all the chapters of this book are examples of classrooms where stu-
dents are attuned to well-established sociomathematical norms related to arithmetic. 
In most of their previous experiences, they have been expected to complete calcula-
tions, focusing on numerical answers to clearly posed questions, and they operate 
within this established framework. Most likely, this attitude to how to approach 
mathematical tasks is grounded in an even broader everyday understanding of what 
mathematics is for; you calculate to arrive at numerical answers. Now the students 
are expected to engage in activities of representing and modeling, they are expected 

1 Keith Devlin, https://profkeithdevlin.org/2011/11/20/what-is-algebra/ (retrieved 15 Dec. 2017).
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to reason about numbers rather than with numbers. In most of the classrooms, the 
teachers do not seem to lead the way here in a distinct way in order to make this shift 
in level of reasoning clear. Except for the introduction of variables through designed 
examples in one of the Norwegian classrooms (e.g., when referring to a variable [a 
step] that is agreed upon as not having a fixed value), the introductory algebra exam-
ples and tasks deal with specific numbers, albeit sometimes momentarily unknown 
and represented by a letter. This entry into algebra implies following the kind of 
arithmetical approach that students are already familiar with, and in this sense there 
is little incentive to go in a different direction. For example, in the Swedish material 
in Chap. 4 the two teachers in school A keep referring the students back to the spe-
cific numbers behind the symbols (class A1) and inside the boxes (class A2) rather 
than attempting to initiate a discussion about the structure of the equation and pos-
sible solutions or variations of it. Consequently, the goal of the mathematical activ-
ity is restricted to finding a numerical answer, and the reasoning is carried out in 
terms of calculations that provide answers, i.e., operating on numbers to generate 
numbers. The most important sociomathematical norm is perhaps the agreement of 
what counts as acceptable mathematics explanation and justification. Moving from 
arithmetic to algebraic thinking ought to entail attempting to move away from 
empirical justification, i.e., using specific numbers and particular cases to justify a 
generality inductively, toward justification based on logic and deduction. None of 
the classrooms in the VIDEOMAT material show clear signs of this change occur-
ring or even explicitly attempted. Whenever a generality has been achieved, it is 
consistently justified through checking with specific numbers.

The question of what is mathematically different is an intriguing issue. In alge-
braic thinking sameness is a key aspect of generalization, sameness against a back-
ground of difference (Mason, 1996). Sameness appears in various ways. First, an 
equation is a statement that two different expressions are equal. What equality 
means here is that both expressions, on either side of the equal sign, can represent 
the same quantity, a statement we can check by transforming one into the other by 
following a set of pre-established arithmetical rules. Second, functions are defined 
for many, or at least several, values of an independent variable, and equations with 
two or more variables can have more than one solution, which effectively means 
that several different specific situations can have the same algebraic representation. 
Third, the same situation, for example the L-shapes and the hexagon train in Chap. 
7 and the matchstick pattern in Chap. 8, can be represented in several different 
ways. Reasoning logically about these instances of sameness and difference is a 
truly algebraic activity, but does not occur unless the students are explicitly guided 
toward looking for sameness and difference. In their arithmetic experiences, they 
may have been used to seeing a different solution as a sign of error. Changing the 
norm to make differences and sameness in algebraic structure the focus of attention 
is therefore a challenging but important instructional enterprise, where the input of 
the teacher is necessary.

In the empirical chapters, we see several opportunities for teachers to initiate a 
renegotiation of sociomathematical norms in favor of more algebraic thinking about 
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what is mathematically different. For example in class A1 in a Swedish classroom 
(Chap. 4), when one equation with three variables is produced by the student Anna: 
a + a + b – c = 80 (using geometric shapes instead of letters), the teacher chooses 
to explain that Anna has decided to use b and c to represent the same number. 
Consequently, she takes away the opportunity for the students to discuss the struc-
ture of the equation. Although the teacher does acknowledge several solutions to the 
problem, she is satisfied and moves on when Anna has revealed her solution. Thus, 
the conclusion is that there was a “correct” solution even when another solution was 
suggested. A different approach to Anna’s equation could have been to discuss 
whether b and c would need to represent the same number, or, if not, what other 
possibilities there are. Posing such questions would have disrupted the dominant 
sociomathematical norm that every question has a correct answer consisting of spe-
cific numbers. The students initiate a shift in the norms through the conjecture that 
there could be many solutions, but without support from the teacher such ideas fail 
to flourish when arithmetical thinking is the norm. Perhaps the teacher herself was 
unprepared to change the sociomathematical norms, or, at least, she did not notice 
that there was an opening for addressing this critical issue.

Another example of a dominating arithmetical norm is visible in the two 
American classrooms in Chap. 7. Although quite different in many respects, both 
teachers seem to emphasize rules and procedures, directing the students to “the way 
of mathematics” (Ms. A), and teaching procedural steps to find “the general expres-
sion” of a pattern (Ms. B). The perimeter of the hexagon train that the students 
worked on in Ms. B’s classroom (Fig. 9.1) could, depending on how the pattern is 
discovered and in which order the sides are counted, for example be represented by 
any one of the following expressions, where n is the number of hexagons in the 
train:

4n + 2 [4 on each of the hexagons and one on each end]
4(n − 2) + 5 + 5 [5 on the end hexagons and 4 on each of the others]
2(2n) + 2 [2 rows, top and bottom, with 2 on each hexagon and one on each end]
6n − 2(n − 1) [6 on each hexagon minus all the middle edges]

But, although the students take the pictures of the hexagon trains as a point of 
departure for their work, they are taught to use the numbers in their function chart 
(t-chart) to find the correct expression through predetermined steps of reasoning.

A discussion about what could be seen as mathematically sophisticated, effi-
cient, or elegant does not appear very often in the material described in the five 

Fig. 9.1  Hexagon train (see also Fig. 7.7)
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empirical chapters. When such evaluations do surface, the norm seems to be that 
using algebraic notation and learned procedures in a “correct” manner is more 
important than finding an efficient or elegant solution. One example of this is found 
in Chap. 4, where class A2 spends three lessons working with manipulatives in the 
form of boxes and beans to create and solve simple equations. This results in a situ-
ation where several students are unable to solve the equation 9 = 12 − x, which they 
should have been able to solve at a glance if they asked themselves what the number 
x must represent. The question is not any more about solving this equation effi-
ciently, or actually understanding the equivalence, but about working out how to 
apply the method of representing it as boxes and beans. The procedure taught is 
neither sophisticated, nor efficient, and what is meant as a concrete illustration 
becomes an obstacle. The students seem to get lost in their attempts to move between 
the equations and the boxes and beans.

Algebra as an efficient problem-solving tool does not come across in these intro-
ductory lessons. For example, the students in class B in Chap. 4 in Sweden are told 
to use a variable although they see no use for it. The teacher says she wants a two-
fold result, asking the students to produce answers to the questions, but also to 
write down how they reasoned using a variable. The teacher conveys that 
the goal of the lesson is to learn to use algebra to solve a task for which they already 
have a solution. When she asks the students to write using a variable when 
you describe how you know, the arithmetic norm that mathematics is about 
quickly and efficiently finding a correct solution is violated. Instead, the teacher 
initiates a negotiation of a new norm, a norm that gives algebraic notation a value in 
itself, even when it does not make the solution of a problem more efficient. In Chap. 
7, Ms. A makes this new norm explicit when she talks about the importance of 
learning the procedures even when the problems are easy. She says: I know you 
can get the answer. What I want to see on your paper is the 

procedure. How many of you would agree these are not hard math-

ematics problems? Okay, because we use baby steps to teach you 

the procedure. Some of you, you’re stuck up on the answer. […] 

I need you to get the procedure, not just the answer. By using 
simple problems, the students do not get to experience that the goal of algebra could 
be to make mathematics more efficient. That remains a very distant goal. This is an 
example of when teaching violates what Harel (2000) calls the necessity principal: 
“For students to learn, they must see a need for what they are intended to be taught” 
(Harel, 2000, p.  185). According to Balacheff (2001), students are not likely to 
move beyond the arithmetic domain as long as an arithmetically validated solution 
is more economic from their point of view. The tension here lies between introduc-
ing small steps and simple examples that students can comprehend, and challenging 
students with problems where algebra shows its potential of being an efficient prob-
lem-solving tool.
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�The Meaning of the Concept of Variable

When viewing all introductory examples chosen by the teachers described in the 
empirical chapters, we notice that they rarely introduce students to the more 
advanced meanings of variables identified by Küchemann (1978, 1981) and 
described in Chap. 1. In Küchemann’s studies, students achieved high scores on 
tasks which could be solved using less sophisticated interpretations of variable and 
low scores on tasks where more advanced meanings were necessary. Most of the 
examples and tasks described in the empirical chapters can be solved without the 
more sophisticated interpretation of letters as proper variables.

In the three Swedish examples (Chap. 4), all the tasks are solved by either evalu-
ating the letter, giving the letter a specific value or ignoring it altogether. In the 
Norwegian case (Chap. 5), Kari’s use of playing cards treats only variables as spe-
cific unknowns. In Ole’s lesson, the letters s and f, used for steps and feet respec-
tively, and their varying lengths are discussed, but since the questions only concern 
how to write and simplify an expression, it is possible to interpret the variables sim-
ply as objects or labels. Only when he moves on to the example of the relationship 
between two sisters described in a formula, (Chap. 5, Fig. 5.10) are students required 
to see the letter x as a variable since it clearly appears in a functional relationship. 
Both the Finnish teachers (Chap. 6) focus on equation solving where the letter is a 
specific unknown. In the American case (Chap. 7) the first teacher (Mrs. A) gives 
examples of creating expressions, evaluating expressions and solving equations. In 
all these examples, the letter can be understood as evaluated, a specific unknown or 
an object. The second teacher (Mrs. B) generates expressions in a functional setting 
where the variable is used as a generalized number. Although opportunities appeared 
in the Swedish classrooms, there were never any discussions about variables in 
terms of possibilities and constraints related to the domain and range of variation 
(cf. Mason, 1996). The variability and generality of a variable was clearly not paid 
much attention, and thus, the increase in the level of abstraction related to variables 
described by Treffers (1987) as vertical mathematization did not occur. Against this 
background, we wonder if a learning trajectory for conceptions of variable needs to 
go from less sophisticated to more sophisticated, or if more sophisticated uses of 
variable could serve as a productive entry point by emphasizing the conceptual 
dimension.

Using Usiskin’s four conceptions of school algebra and use of variables to look 
at the introduction of variables in our data, we can identify some instances of gen-
eralized arithmetic in the construction of algebraic expressions and equations, i.e., 
translating from words to symbols. Usiskin writes: “The key instructions for the 
students in this conception of algebra are translate and generalize.” (1988, p. 9). 
The translating part was much in focus, but the generalizing part was generally not 
attended to. Generating variable expressions could be used as an entry point to dis-
cuss arithmetic properties such as how addition and subtraction relate to each other, 
or why and how the distributive property works. The second conception, related to 
algebra as a study of procedures for solving certain types of problems, was visible 
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in the equation solving procedures where variables were used as unknowns or con-
stants. Also, the work with functional relationships in the American classroom was 
steered toward a procedure describing how to use the function chart to generate a 
variable expression. The study of relationships among quantities was touched upon 
in two different problem types: describing the relationship between the ages of two 
people, and describing the relationship between a term and the number of that term 
in a sequence. However, such problem types supply opportunities to study relation-
ships between numerical quantities and to generalize them only if the variables are 
allowed to vary, and if that variation is also made a focus of attention in the 
instruction.

In addition, it is relevant to note in this context that, in recent decades, computer 
science has come to permeate all levels of society, with students growing up more 
accustomed to handling digital tools than writing with pens on paper. We have com-
mented on this in the context of some of the illustrations introducing central con-
cepts in early algebra, such as the balance scale as a representation of equality and 
equations, perhaps appearing somewhat unfamiliar to young generations. Also, 
ideas about computational thinking in the context of programming and design activ-
ities represent an important competence that is slowly being incorporated into 
school curricula (cf. Mannila et  al., 2014; Wing, 2006). Even though the exact 
meaning of what constitutes computational thinking is disputed (Grover & Pea, 
2013), the ideas, practices, and language of programming, which is an interface 
between human thinking and machines, are spreading. This implies that school 
algebra in the future will need to consider more closely the meanings of the concept 
of variable in computer science, and the ways in which variables are used in pro-
gramming. Already in 1988, when describing conceptions of school algebra and the 
use of variables, Usiskin brought up the different syntax for variables used in com-
puter science, where it is quite meaningful to write x = x + 2. Since this represents 
an equation without solution in traditional algebra, it would not be accepted as a 
correct way to write an equation in school algebra. Incorporating also the computer 
science use of variables in school algebra would imply rethinking the meaning of 
the equal sign as well as the meaning of variable. We see new challenges ahead as 
the teaching of algebra, what constitutes school algebra and what meanings students 
make of algebraic concepts and symbols, move further into the twenty-first century, 
where computational thinking and programming are incorporated into curricula and 
present competing uses of central terms and concepts.

�Teaching and Learning Trajectories

One of the most interesting questions in the context of our documentation of the 
students and the classrooms in the different countries is what we can say about 
learning trajectories on the basis of the five lessons. What signs are there of students 
making progress in relation to understanding the central concepts and procedures 
they are to learn during these initial encounters with algebra? This is most clearly 
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visible in the comparative analyses in Chap. 8. At a very basic level, and as is illus-
trated in Fig. 8.12 when the students are placed in a challenging situation, they real-
ize that they can solve the problem by making a drawing which allows them to count 
the sticks. In this sense they show that they understand that the task can be solved in 
this concrete manner. This is a shared platform for how to operate in all groups. 
There are also indications in some of the groups that students realize that this is not 
the expected way in which a problem of this kind should be solved during a math-
ematics lesson. It is most clearly expressed in one of the American groups when one 
of the members tells a fellow student trying this concrete approach that this way of 
solving the problem is pathetic. This is an interesting expression, since it signals 
a value statement where the appropriateness and elegance of a suggested solution 
are questioned in a rather blunt way. Although there is a lot of drawing and even 
building with matchsticks going on, the assumption that this is not the expected 
manner of dealing with the problem is evident in the other groups as well since they 
all engage in attempts to find more sophisticated alternatives.

At the next level, the groups intuitively realize that there are numerical patterns 
and regularities involved, and that some semiotic work is expected and necessary. In 
this sense, they achieve some level of reification and encapsulation, where they 
transform the object of their discussion into numerical patterns and regularities, for 
instance by arguing that there are three in each square. In most of the groups, a 
substantial proportion of the discussion is at this level, and the discussion goes back 
and forth, sometimes in an objectified manner, sometimes by returning to the con-
crete level of matches and squares. The observation that the students struggle with 
the problem of how to mathematize the pattern in an appropriate manner indicates 
that they are working in some kind of zone of proximal development (Vygotsky, 
1978), where they are operating at the boundaries of their knowledge. They have an 
intuitive understanding of where they should be heading, but they are uncertain 
about how to achieve their goal.

An obvious hurdle in the argumentation in relation to the particular matchstick 
problem is how to handle the observation the groups make that one side can be part 
of two squares, i.e., even though one square has four sides, one only has to add three 
matches to have a new square. Understanding how to model this irregularity is an 
obstacle in all groups, even in the Swedish group where the teacher at the start of the 
group work explicitly suggests that the problem should be solved through an equa-
tion, which also one of the students picks up by writing 3 · x = 73 (cf. Figs. 8.9 and 
8.10). However, even when beginning the work at this level, it is obviously difficult 
at this stage of the students’ learning trajectory to take that added step of introduc-
ing an expression that will take what is observed about the squares into consider-
ation. It is interesting to note that this irregularity represents such a distinct challenge 
which is commented upon in many groups but not solved in a distinctive manner. 
We may speculate that if the teacher would have intervened at the particular point 
where the work with the equation goes on, the students would have been able to 
understand in what sense the equation would have to be modified in order to accom-
modate to what they have no difficulty observing.

9  Encountering Algebraic Reasoning in Contemporary Classrooms: Epilogue
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�To Learn, Unlearn and Relearn

To conclude, we would like to emphasize that the introduction of algebra seems to 
be a situation where students have to learn, unlearn, and relearn. They have to 
unlearn some of the deeply held habits in the contexts of solving mathematical 
problems that they have developed during schooling, where they assume that arriv-
ing at a correct numerical result is the expected endpoint of engaging in mathemat-
ics, and where the correct answer concludes the engagement with the tasks. As we 
have shown, a dilemma here is that the problems they encounter in the instruction 
we have documented can be solved by means of the arithmetical procedures they 
already know. The problems are not challenging enough in the sense of turning the 
attention to the modeling necessary for successfully solving the problems as 
instances of algebra. They have to relearn in the sense that modeling a problem situ-
ation per se is an important element in algebra and algebraic reasoning. This shift in 
focus of attention obviously takes time and exercise, and, most likely, for most stu-
dents it will require extensive teacher support.

Also teachers in their work of introducing algebra are faced with situations 
where they have to learn. We have seen how they struggle with several dilemmas: 
the tension of choosing between clear examples that can be successfully handled by 
students, or introducing challenging problems that make algebra useful; the tension 
between letting students explore and notice relatively freely or telling them early on 
what they are expected to see and learn; the tension between introducing and illus-
trating variables as entities that may take on different values, or verifying by using 
fixed values, i.e., the tension between the general and the particular, which is at the 
very core of algebra. As part of the data collection in the project, teachers were 
interviewed several times, first individually after completing the recordings in each 
class, and later in focus group interviews where they were invited to discuss aspects 
of their algebra teaching based on the recordings of their lessons (see Nyman & 
Kilhamn, 2014, for more details). Given the opportunity to reflect on their teaching, 
the teachers gave voice to some of the learning they experienced. We will here let 
some teacher’s voices round off the stories of teaching and learning introductory 
algebra told in this book.

Several teachers reflected on the instruction vs. exploration dilemma. For exam-
ple, a Swedish grade 7 teacher highlighted the difficulty of focusing generality and 
structure in student-generated examples: When students create math prob-
lems for their peers it turns into guess work. Like, ‘no I 
didn’t do x+13-2, I did x+11’. Well, the mathematics is correct, 
but all the same, for the students it’s different. Then it is 

not the mathematics that’s in focus, but more of a guessing 

task. This quote relates to the necessary re-negotiation of sociomathematical 
norms, which at least some of the teachers pointed to. As one teacher said: You 
want the students to understand that algebra can be used to 

interpret reality, but the problem is students only want to 

R. Säljö and C. Kilhamn
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calculate to get a numerical answer. The challenge for this teacher was 
how to go about this re-negotiation in order to get students into algebra.

Some of the teachers were quite explicit about what they learned, in particular 
after having watched the recorded lessons and, so to speak, become observers of 
their own lessons. For example, the Swedish teachers described in Chap. 4, who 
chose, in the focus group discussion, to highlight what they would want to change 
in their lessons. The teacher in class A2, who spent several lessons working with 
manipulatives creating equations using boxes and beans, exclaimed: I feel I 
simply get stuck somehow, in this manipulative swamp. I don’t 

go on. That’s what I feel when I see this—I’m stuck in those 

damn boxes the whole time. The teacher in class B realized that the tasks she 
used were far too trivial: Every task I chose missed the target I had 
for the lesson - to understand the usefulness of algebra. If I 

had been more alert I could have turned it around, but I didn’t 

manage that here. This remark touches upon the very complexity of the teach-
ing profession. In the very moment of teaching there are so many things to be aware 
of. When given the opportunity to step back, observe, and reflect, as these teachers 
were doing when watching their recorded lessons, new insights can be made. One 
of the Swedish teachers chose to discuss an episode when she was trying to help a 
student, saying that she only realized what the student’s problem really was when 
she watched the video. She said: I think that I have some golden oppor-
tunities here to increase understanding of her ways of think-

ing, but I don’t take them. What that teachers learned was that she had to 
try to listen more closely to the students, or, as another teacher put it: After 
watching all my videos I realize I really must give my students 

more time to work things out by themselves before I help them. 

[...] I need to slow down around each student. Teaching is more than 
instructing, it also involves bringing forth and relying on the students’ own 
powers.

Content related dilemmas of teaching algebra conceptually or procedurally, 
issues about whether to be concrete or abstract, general or specific, were brought up 
in all focus group discussions. A Finnish teacher said about teaching equation solv-
ing that: You have to decide in the moment of teaching if you 
first should teach how to do it mechanically, the procedure, 

and then think about why. Or should you teach how and why in 

parallel. A Swedish teacher summarized what she had come to think about 
teaching algebra with the words: It’s easier to understand when it 
becomes more abstract. [...] Algebra becomes more accessible 

when it becomes more abstract somehow. [...] It’s easier to 

play around with numbers than with objects. Perhaps more of “playing 
around” with numbers and varying quantities could be a fruitful way of moving 
forward when attempting to bring across some of the basic ideas of how to engage 
in algebra.

9  Encountering Algebraic Reasoning in Contemporary Classrooms: Epilogue
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