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�Introduction

Urinary stone disease (USD) is frequently encountered in United States healthcare 
with an estimated lifetime prevalence of 10.6% in men and 7.1% in women [1]. The 
prevalence of urinary stone disease has doubled over the last 15 years, with increases 
more pronounced in historically less affected groups, such as children and women 
[1, 2]. Moreover, the risk of recurrence is significant with 39% of first time stone 
formers having a second episode within 15 years of follow up [3]. The economic 
burden of USD in the United States is immense, resulting in over 600,000 emer-
gency room visits and $2 billion in annual expenditures [4].

The role of bacteria in USD has historically been limited to the association 
between urease-splitting organisms and magnesium-ammonium-phosphate (stru-
vite) stones, as discussed in previous chapters. However, infection stones make up 
only 4% of stones with calcium-based stones (calcium oxalate (CaOx) and calcium 
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phosphate (CaPhos)) constituting the majority. Other more common stones include 
uric acid and mixed composition stones [5]. The role of bacteria in non-infection 
stone disease has not been well defined, but mounting evidence indicates that bac-
teria may play an important role.

�Evidence of Bacteria in Non-infection Urinary Stone Disease

�Urinary Tract Infection and Urinary Stone Disease

The concurrent presentation of urinary tract infections with USD for both obstruct-
ing and non-obstructing stones is a common clinical occurrence. In a cohort of 1325 
Scandinavian patients with USD, 28% had a positive standard urine culture. Of the 
535 patients with calculi available for analysis, 31% had a positive standard urine 
culture at the time of presentation, regardless of stone composition [6]. This asso-
ciation was true in Japanese patients as well; 7% of stone forming patients had a 
positive standard urine culture within 1 month of surgical intervention [7]. In the 
pediatric population of Taiwan with newly diagnosed USD, the most commonly 
associated condition was a history of urinary tract infection at 34.1% (23.5% of 
males, 43.9% of females) [8].

Outside of clinical presentation and association, many patients with recurrent 
UTIs have resolution of bacteriuria on standard urine culture after stone removal. In 
an analysis of 120 patients with recurrent UTI and asymptomatic, non-obstructing 
renal calculi, Omar and colleagues found that 48% of patients were infection free at 
an average follow up of 14  months. The majority of stone compositions were 
calcium-based, while only 6 (5%) patients had struvite stones [9]. Oliver and col-
leagues looked at a similar cohort of 103 patients with positive preoperative stan-
dard urine culture (79%) or recurrent UTIs with negative preoperative standard 
urine culture (21%). Following ureteroscopy, 70.7% of patients were infection-free 
at 12 month with most stones (74%) being composed of calcium oxalate. Moreover, 
80% of patients with stone recurrence also had recurrent infections, suggesting an 
association between the recurrent infection and the recurrent stone [10].

Infectious complications are a known hazard of USD management for all stone 
compositions. The American Urological Association and European Association of 
Urology recommend the routine use of preoperative standard urine culture and pro-
phylactic antibiotics prior to any surgical stone manipulation [11, 12]. Despite this 
practice, sepsis occurs in 4.7% of patients undergoing percutaneous nephrolithot-
omy (PCNL) [13]. In reviews from the Endourological Society, 8.8% of patients 
with negative preoperative standard urine culture undergoing PCNL developed 
fever [14]. Though infectious complications are more commonly associated with 
infection stones [15], the development of systemic inflammatory response syn-
drome (SIRS) has been demonstrated in up to 5.3% of patients with non-infection 
stones [16]. Similarly, Rivera and colleagues reviewed their experience in 227 
patients undergoing PCNL for management of USD; infectious complications (UTI/
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SIRS/Fever/Sepsis) occurred in 37 patients (16%). Overall, 73% of patients experi-
encing infectious complications had non-struvite stone composition [17].

�Bacteria Can Be Cultured from Non-infection Stones

In addition to the association with UTI and infectious complications, multiple stud-
ies have demonstrated the ability to culture bacteria from urinary stones (Table 16.1) 
[18–25]. Depending on the study, bacteria have been isolated from urinary stones in 
7% to 75% of stone cultures. When limiting to non-infection stones, positive culture 
results have been obtained in 5–33% of stones. Pure calcium stones (CaOx or 
CaPhos) are culture positive in up to 44% of cases. Moreover, these stone cultures 
contain bacterial isolates of both non-urease splitting and urease splitting organ-
isms. Figure 16.1 [18, 21, 26, 27] demonstrates the frequency of primary isolates 
from 455 positive urinary stone cultures. Commonly implicated urease splitting 
bacterial genera include Staphylococcus, Proteus, Klebsiella, Pseudomonas, and 
Providencia. However, non-urease splitting bacteria also have been isolated, includ-
ing known uropathogens Escherichia coli and Enterococcus spp.

�Enhanced Culture Techniques and 16S rRNA Sequencing 
of Urinary Stones

The previous studies relied on culture protocols similar to techniques popularized by 
Stamey and colleagues in the 1970s [25]. These culture protocols involve washing 
the stones in saline and crushing, prior to plating on standard culture media. However, 
these protocols are not designed to isolate the slow growing, fastidious organisms 
that make up a majority of urinary biomass [28]. The recent use of enhanced culture-
based methods, such as enhanced quantitative urine culture (EQUC), and culture-
independent methods, such as 16S rRNA gene sequencing, have demonstrated the 
existence of resident microbes in the urinary bladder (called the urinary microbiome 
or urobiome) and debunked the historical view that the bladders of women and men 
are sterile [28–31]. EQUC utilizes increased urine volumes, longer incubation time, 
multiple media types, and a variety of atmospheric conditions to isolate slower grow-
ing bacteria [29]. 16S rRNA sequencing allows for the identification of bacteria that 
cannot be cultured (e.g., those exposed to antibiotics prior to collection). In initial 
experiments utilizing 16S rRNA sequencing on five kidney stones from calcium oxa-
late stone-formers, our group identified members of several bacterial taxa, including 
Pseudomonas, Gardnerella, Lactobacillus, Enterobacteriaceae, Bradyrhizobium, 
Phyllobacterium, and Brucella. As stones represent a low biomass medium, avail-
able in limited quantities, strategies to determine which sequenced bacteria are truly 
stone associated are ongoing. The incorporation of EQC, a stone-relevant derivative 
of EQUC, allowed for the isolation of live Pseudomonas and E. coli strains in two of 
the stones collected. In each case, this was concordant with the dominant organism 
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identified by 16S sequencing [32]. Analysis of 52 additional kidney stones obtained 
via ureteroscopy identified 29 (55.7%) sequence positive stones (Fig. 16.2). 16/29 
(55%) were composed entirely of non-infection stone compositions, while only one 
stone contained elements of struvite. Furthermore, EQC was able to isolate bacteria 
from 11/29 (37.9%) of sequenced stones [33]. These results reflect the idea that live 
bacteria are associated with non-infection stones, regardless of antibiotic exposure.
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Fig. 16.1  Frequency of bacterial isolates from positive urinary stone culture (Stone sam-
ples = 1283; positive culture = 455) [18, 21, 26, 27]
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�Contribution of Bacteria to Urinary Stone Disease

It is now clear that bacteria are associated with stones of all compositions. Patients 
with USD often have concomitant UTI or infectious complications following inter-
vention, and bacteria are readily sequenced and cultured from stone samples. 
Though the presence of bacteria in non-infection stones is apparent, it is unclear 
whether a causal relationship exists.

�Supersaturation and Bacteria as a Modifier of Urinary 
Composition

Supersaturation of urinary solutes has long been recognized as a major pathophysio-
logic factor in USD. As the concentration of urinary components, mainly calcium and 
oxalate, reach their limits of solubility, crystallization can occur resulting in stone 
formation [34, 35]. Historically, the understanding of bacterial contribution to urinary 
solutes has focused on the intestinal microbiota; specifically, the role of Oxalobacter 
formigenes, which metabolizes dietary oxalate, reducing oxalate concentration of the 
urine, and providing a protective effect for recurrent CaOx stone formation [36, 37]. 
The role of O. formigenes in CaOx stone formation is discussed in depth in other 
chapters; notably, however, its role as a probiotic to protect against CaOx stone forma-
tion has been of limited success [38–40]. Oxalobacter does not commonly inhabit the 
genitourinary tract. However, other oxalate-degrading bacteria have been identified in 
the mammalian gut including Lactobacillus, Enterococcus, Bifidobacterium, and 
Streptococcus; microbiota that are more routinely isolated from the genitourinary 
tract [41]. The role of these bacteria in the urine is not currently understood.

Outside of oxalate-degrading bacteria, the gut microbiome appears to have a 
complex relationship with urinary solute concentration. Stern and colleagues, inves-
tigated the gut microbiome of 11 stone formers and their 24 h urine collection. They 
found an inverse relationship between Escherichia and urinary citrate; as well as an 
inverse relationship between Eubacterium and urinary oxalate [42].

Though the relationship is complex, the gut microbiome may have a protective 
role in USD formation. However, as previously discussed, urinary bacteria appear 
to be strongly associated with urinary stone formation. Hypocitraturia is a known 
risk factor for calcium stone formation. Urinary citrate is a strong inhibitor of stone 
formation as it binds to free calcium, reducing urinary calcium concentration, mak-
ing urinary calcium less available to complex with oxalate [34]. Urinary bacteria 
may contribute to stone formation by metabolizing citrate, lowering urinary citrate 
concentration, thereby promoting calcium oxalate supersaturation and urinary crys-
tal formation. In a study of idiopathic calcium stone formers, De Ferrari and col-
leagues noted significantly decreased urinary citrate concentrations in 17 urine 
culture positive patients compared to standard urine culture negative patients. These 
standard urine cultures grew Escherichia, Streptococcus, Staphylococcus, 
Pseudomonas and Citrobacter species [43]. Moreover, using in vitro urinary mod-
els, E. coli, both pathogenic and non-pathogenic, decreases urine citrate levels, pro-
moting crystallization [44, 45].
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�Bacteria as Crystal Aggregator

Bacterial modification of urinary solute concentrations potentiates known risk fac-
tors of nephrolithiasis. However, supersaturation of urinary solutes alone does not 
always result in USD, as there is considerable variation in urine chemistries between 
stone formers and non-stone formers [46, 47]. As such, bacteria may play a role in 
crystal adherence, acting as a nidus and promoting crystal deposition in patients 
with stone solutes. Using an in  vivo murine model, our group induced a CaOx 
nephropathy and uropathogenic E. coli (UPEC) pyelonephritis in ten mice. There 
was a significantly higher number of CaOx deposits in the CaOx and UPEC inocu-
lated mice compared to CaOx or UPEC inoculated mice alone [32]. Similarly, crys-
tals have been shown to aggregate on both Gram-negative and Gram-positive 
bacteria. Chutipongtanate and colleagues analyzed strains of E. coli, K. pneumoniae, 
S. aureus, and S. pneumoniae, finding increased CaOx crystal growth and aggrega-
tion with all four bacteria compared to controls [48].

There also is the possibility that bacteria may play an indirect role in crystal 
aggregation. In addition to crystals, urinary stones contain a protein matrix that 
frequently contains innate immune proteins [49]. Urinary stones create an inflam-
matory response that results in the release of inflammatory proteins and cytokines. 
This promotes the growth and adhesion of CaOx and uric acid crystals [50–53]. In 
our study, mice inoculated with CaOx and UPEC had an increased expression of 
inflammatory and stone matrix protein genes compared to inoculation with either 
substance alone [32]. Therefore, it is reasonable to believe that the presence of bac-
teria may work synergistically with CaOx to potentiate stone formation and aggre-
gation. This is similar to findings in vascular calcifications in which bacteria 
potentiate atherosclerotic plaque formation [54–56].

�Conclusion

The role of bacteria in non-infection USD is complex and poorly understood rela-
tive to that of infection stones, but the association of bacteria with all stone com-
positions is undeniable. Patients with non-infection stones present with UTIs, 
experience infectious complications after stone procedures despite negative stan-
dard urine culture, and have positive stone cultures. The use of 16S rRNA sequenc-
ing and enhanced culture techniques has expanded our knowledge of 
stone-associated bacteria and allowed for isolation of these bacteria. The mecha-
nism by which bacteria promote stone formation in non-infection stone formation 
is an area of active research. Going forward, it is important that we further inves-
tigate this association by sequencing and isolating a larger number of stone bacte-
ria from a diverse patient population, evaluating the genomic and proteomic 
capacities of these bacterial isolates, and determining their effect on stone contri-
bution via in vitro and in vivo models.
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