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Abstract In the theory of Fourier transform some functions are said to be positive
definite based on the positive definiteness property of a certain class of matrices
associated with these functions. In the present article we consider how to define a
similar positive definiteness property for arithmetical functions, whose domain is
not the set of real numbers but merely the set of positive integers. After finding a
suitable definition for this concept we shall use it to construct a partial ordering on
the set of arithmetical functions. We shall study some of the basic properties of our
newly defined relations and consider a couple of well-known arithmetical functions
as examples.
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1 Introduction

A complex valued function f : R → C is said to be a positive definite
function if the matrix [f (xi − xj )] is positive semidefinite for all choices of
points {x1, x2, . . . , xn} ⊂ R and all n = 1, 2, . . .. A positive definite function is
under mild restrictions the Fourier transform of a nonnegative real-valued function
g : R → R≥0; see [3] or [5, Article 192B] for Bochner’s theorem (note that the
notion of a “positive semidefinite function” is not a term usually employed). By
using the definition it is possible to prove several basic properties for a positive
definite function f :

• f (−x) = f (x) for all x ∈ R

• f (0) ∈ R and f (0) ≥ 0
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• f is a bounded function, and |f (x)| ≤ f (0) ∀x ∈ R

• If f is continuous at 0, then it is continuous everywhere
• If f1, f2, . . . , fn are positive definite functions and a1, a2, . . . , an are nonnega-

tive real numbers, then the function a1f1+a2f2+· · ·+anfn is a positive definite
function

• If f is a positive definite function, then so are f and |f |2

Functions cos x (but not sin x), eaix (a ∈ R),
1

1 − ix
,

1

1 + x2
and

1

cosh x
are all

examples of positive definite functions (for more information, see [9, pp. 400–401]
and [3, Section 3]).

In this article we are interested in arithmetical functions, which are real-valued
(or sometimes complex-valued) functions on Z+ = {1, 2, 3, . . .}. There are various
operations defined on the set of arithmetical functions, see [2, 12]. For our purposes
the most important are:

• The usual sum: (f + g)(m) = f (m) + g(m) ∀m ∈ Z
+

• The usual product: (fg)(m) = f (m)g(m) ∀m ∈ Z
+

• The Dirichlet convolution: (f ∗ g)(m) =
∑

d | m
f (d)g

(m

d

)
∀m ∈ Z

+

One of the main goals of this article is to consider how to define positive
definiteness property for arithmetical functions. The original definition is a bit
problematic since it would require the function to be defined on negative integers as
well. There are a couple of ways how one may try to get around this problem, and
we shall discuss them in Sect. 2. In Sect. 3 we shall introduce our final definition and
in Sect. 4 we investigate some of the basic properties of our newly defined positive
definiteness concept. In Sect. 5 we use our positive definiteness relation to define
a partial order on the set of arithmetical functions and then study the properties
of this relation. We also present several examples concerning some fundamental
arithmetical functions. In Sect. 6 we give some concluding remarks.

2 Defining Positive Definiteness of Arithmetical Functions
by Using the Original Definition

The most obvious way to define positive definiteness for arithmetical functions
would be to expand the domain of arithmetical functions and to define the concept
by using the matrix [f (xi − xj )]. First it should be noted that without loss of
generality, we may assume that x1 < x2 < · · · < xn. If xi = xj for some indices i

and j with i 	= j , then the respective rows (and respective columns) are identical and
the multiplicity of eigenvalue zero is increased by one. After eliminating identical
rows and columns we can permute the rows and respective columns of the matrix
[f (xi − xj )] so that x1 < x2 < · · · < xn is satisfied and the eigenvalues are still the
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same (if P is any permutation matrix, then P−1 = PT and the matrices PT AP and
A share the same spectrum).

For an arithmetical function f it is customary to assume that f (x) = 0 whenever
x 	∈ Z

+. Under this assumption the matrix [f (xi − xj )] takes the form
⎡

⎢⎢⎢⎣

f (x1 − x1) f (x1 − x2) f (x1 − x3) . . .

f (x2 − x1) f (x2 − x2) f (x2 − x3) . . .

f (x3 − x1) f (x3 − x2) f (x3 − x3) . . .
...

...
...

. . .

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

0 0 0 . . .

f (x2 − x1) 0 0 . . .

f (x3 − x1) f (x3 − x2) 0 . . .
...

...
...

. . .

⎤

⎥⎥⎥⎦ .

But since the concept of positive definiteness is defined only on Hermitian matrices,
the positive definiteness of the above matrix actually implies that all the elements
of the matrix are equal to zero. Thus f must be the constant function 0, which is
the only positive definite function according to this definition. It appears that for
the purposes of arithmetical functions the classical definition of positive definite
function is quite useless.

If f is a real-valued arithmetical function, then another rather obvious attempt
would be to define f (−m) = f (m) for allm ∈ Z

+, which makes the matrix [f (xi −
xj )] symmetric. In this case the matrix [f (xi − xj )] takes the form

⎡
⎢⎢⎢⎣

f (0) f (x2 − x1) f (x3 − x1) . . .

f (x2 − x1) f (0) f (x3 − x2) . . .

f (x3 − x1) f (x3 − x2) f (0) . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦ .

This is still problematic since f (0) remains undefined. However, the value f (0) is
crucial to the positive definiteness of the matrix [f (xi − xj )]. As was the case with
the usual positive definite functions, also this definition implies that |f (i)| ≤ f (0)
for all i ∈ Z

+. It becomes quite clear that this approach does not work either,
and therefore there seems to be no natural way to define positive definiteness of
arithmetical functions by using the matrix [f (xi − xj )].

Since the two most natural ways to extend the domain of arithmetical functions
do not serve our purposes very well, it seems that we need to use a different class
of matrices in order to define positive definiteness for arithmetical functions. It
would also make sense to define this concept without extending the domain of
arithmetical functions, since many operations such as the Dirichlet convolution are
defined intrinsically only on Z+. These kind of technical difficulties can be avoided
if we base our definition on GCD matrices.
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3 Defining Positive Definiteness by Using GCD Matrices

LetA denote the set of arithmetical functions and let f ∈ A . Let

S = {x1, x2, . . . , xn}

be a finite subset of Z+ with x1 < x2 < · · · < xn. The GCD matrix (S)f of the set S
with respect to the function f is the n×n matrix with f (gcd(xi, xj )) as its ij entry.
This definition originates from the seminal paper [17] by H. J. S. Smith published
in 1876. For more information about GCD and related matrices, see [1, 8, 13, 16].

Definition 1 An arithmetical function f : Z
+ → R is positive definite if the

GCD matrix [f (gcd(xi, xj ))] is positive semidefinite for all choices of points
{x1, x2, . . . , xn} ⊂ Z

+ and all n = 1, 2, . . .

Remark 1 Arithmetical function f is positive definite if and only if the GCD matrix
(S)f succeeds the corresponding zero matrix with respect to the Löwner order for
all finite nonempty sets S ⊂ Z.

Example 1 Let δ ∈ A with δ(1) = 1 and δ(m) = 0 for all m > 1 (the function δ is
the identity element with respect to the Dirichlet convolution). Let S = {1, 2}. Then

(S)δ =
[
δ(gcd(1, 1)) δ(gcd(1, 2))
δ(gcd(2, 1)) δ(gcd(2, 2))

]
=

[
δ(1) δ(1)
δ(1) δ(2)

]
=

[
1 1
1 0

]
.

This matrix is not positive semidefinite, since det(S)δ = −1, and thus δ is not a
positive definite function.

Example 2 The Möbius function μ is defined as follows:

• μ(m) = (−1)k if p2
� m for any prime number p and k is the number of the

prime factors of m,
• μ(m) = 0 if p2 | m for some prime number p.

Take any prime number p and set S = {p}. We obtain (S)μ = [μ(p)] = [−1]. Thus
the function μ is not positive definite.

Example 3 Let α ∈ R. We define Nα(m) = mα for all m ∈ Z
+.

(a) Let α > 0. It is a well-known fact (see, e.g., [4]) that in this case the matrix
(S)Nα = [gcd(xi, xj )

α] is positive definite for all finite nonempty sets S ⊂ Z
+.

Thus Nα is a positive definite function for all α > 0.
(b) Let α < 0 and S = {x1, x2} with x1 | x2. In this case

(S)Nα =
[
Nα(x1) Nα(x1)

Nα(x1) Nα(x2)

]
=

[
xα
1 xα

1
xα
1 xα

2

]
.

Now det(S)Nα = (x1x2)
α − (x2

1)
α < 0. Thus Nα is not a positive definite

function for any α < 0.
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(c) For α = 0 we denote N0 = ζ and have ζ(m) = 1 for all m ∈ Z
+ (the

function ζ is the identity element with respect to the usual product). For any
finite nonempty set S ⊂ Z the matrix (S)ζ is an n × n matrix with all elements
equal to 1. It has two distinct eigenvalues: 0 with multiplicity n − 1 and n with
multiplicity 1. The matrix (S)ζ is positive semidefinite and thus ζ is a positive
definite function.

4 Positive Definiteness Properties for Arithmetical Functions

In this section we investigate various basic properties that follow directly from the
definition of a positive definite arithmetical function. We continue to assume that S
is ordered as in the previous section: x1 < x2 < · · · < xn.

Theorem 1 Let f ∈ A be a positive definite function. Then

(a) f (m) ≥ 0 for all m ∈ Z
+,

(b) k | m ⇒ f (k) ≤ f (m) for all k,m ∈ Z
+.

Proof Let m ∈ Z
+. The part (a) follows by setting S = {m}, which yields the 1× 1

GCD matrix (S)f = [f (m)]. This matrix needs to be positive semidefinite, and
therefore f (m) ≥ 0.

Next we prove part (b). Suppose that k | m. In this case we choose S = {k,m} to
obtain the GCD matrix

(S)f =
[
f (k) f (k)

f (k) f (m)

]
.

The determinant of this matrix is equal to f (k)f (m) − f (k)2 = f (k)(f (m) −
f (k)) ≥ 0. From this we deduce by distinguishing the cases in which f (k) is 0 and
	= 0, that f (m) ≥ f (k).

Corollary 1 If f ∈ A is a positive definite function, then f (m) ≥ f (1) ≥ 0 for
all m ∈ Z

+.

Theorem 2 A function f ∈ A is positive definite if and only if the GCD matrix
(Sm)f of the set Sm = {1, 2, . . . ,m} is positive semidefinite for all m = 1, 2, . . . .

Proof The implication ⇒ is trivial, and thus it suffices to show the direction ⇐.
Suppose that the matrix (Sm)f of the set Sm = {1, 2, . . . ,m} is positive semidefinite
for all m = 1, 2, . . . . Let S = {x1, x2, . . . , xn} be an arbitrary subset of Z+. Let m

be a positive integer with xn ≤ m. Now the GCD matrix (S)f of the set S is a
principal submatrix of the GCD matrix (Sm)f of the set {1, 2, . . . ,m}. Since every
principal submatrix of a positive semidefinite matrix is positive semidefinite, see [9,
Observation 7.1.2], we may deduce that the matrix (S)f is positive semidefinite.



66 M. Mattila and P. Haukkanen

Theorem 3 A function f ∈ A is positive definite if and only if (f ∗ μ)(k) ≥ 0 for
all k ∈ Z

+.

Proof By Theorem 2, it suffices to show that the GCD matrix (Sm)f of the set Sm =
{1, 2, . . . ,m} is positive semidefinite for all m ∈ Z

+ if and only if (f ∗ μ)(k) ≥ 0
for all k ∈ Z

+. Let m ∈ Z
+. First we recall the well-known factorization

(Sm)f = EDET ,

where E is the m × m matrix with

eij =
{
1 if j | i,
0 otherwise

andD = diag((f ∗μ)(1), (f ∗μ)(2), . . . , (f ∗μ)(m)). SinceE is a triangular matrix
with all of its diagonal elements equal to 1, by Sylvester’s Law of Inertia (see [9,
Theorem 4.5.8]) we may deduce that the matrix (Sm)f is positive semidefinite if
and only if the matrix D is positive semidefinite. The claim follows from this.

Remark 2 Neither the argument used in the proof of Theorem 2 nor the idea of using
LDLT factorization in determining the inertias of GCD type matrices is entirely
new—both of them appear in the article [14] from the year 2004 by J. S. Ovall. The
LDLT factorization itself originates from [15] and [4]. The factorization has also
other applications, see, e.g., [11].

Theorem 4 Let f, g ∈ A be positive definite functions. Then

(a) af is a positive definite function for all a ≥ 0,
(b) f + g is a positive definite function,
(c) fg is a positive definite function,
(d) f ∗ g is a positive definite function.

Proof It is clear that (S)af = a(S)f and (S)f +g = (S)f + (S)g . Thus parts (a)
and (b) follow from the fact that every nonnegative linear combination of positive
semidefinite matrices is positive semidefinite. Since (S)fg = (S)f ◦(S)g , the part (c)
follows from the observation that the Hadamard product of two positive semidefinite
matrices is positive semidefinite—see [9, Theorem 7.5.3]. We prove part (d) by
showing that ((f ∗ g) ∗ μ)(k) ≥ 0 for all k ∈ Z

+. The associativity of the Dirichlet
convolution yields

((f ∗ g) ∗ μ)(k) = (f ∗ (g ∗ μ))(k) =
∑

d | k
f (d)︸︷︷︸

≥0

(g ∗ μ)

(
k

d

)

︸ ︷︷ ︸
≥0

≥ 0.

Remark 3 It is easy to see that in the proof of Theorem 4 (d) it suffices that one of
the functions f and g is positive definite and the values of the other are nonnegative.
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The following corollary is an immediate consequence of Theorem 4.

Corollary 2 Suppose that f ∈ A is positive definite. Then the functions

f r = f · f · · · f︸ ︷︷ ︸
r times

and f ∗r = f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

are positive definite for all r = 1, 2, 3, . . . .

It is also interesting to consider how positive definiteness of arithmetical
functions behaves with respect to different inverse operations.

Theorem 5 Let f ∈ A be a positive definite function.

(a) If −f is also a positive definite function, then f (m) = 0 for all m ∈ Z
+.

(b) If f −1 = 1
f
exists and is also a positive definite function, then there exists a ∈ R

such that f (m) = a for all m ∈ Z
+.

(c) If f ∗(−1) (the Dirichlet inverse of f ) exists, then it cannot be positive definite.

Proof

(a) The first part follows directly from the simple fact that if both A and −A are
positive definite, then A must be equal to the zero matrix. And if the GCD
matrix of any finite nonempty set S ⊂ Z

+ with respect to the function f is the
zero matrix, then f must be the constant function zero.

(b) If the function 1
f
exists and is positive definite, then we must have f (m) > 0

for all m ∈ Z
+. Let m be an arbitrary integer greater than 1 and let S = {1,m}.

Since f and 1
f
are positive definite, both of the GCD matrices

(S)f =
[
f (1) f (1)
f (1) f (m)

]
and (S) 1

f
=

[
1

f (1)
1

f (1)
1

f (1)
1

f (m)

]

are positive semidefinite. The determinants of these matrices must be nonnega-
tive, in other words,

f (1)(f (m) − f (1)) ≥ 0 and
1

f (1)

(
1

f (m)
− 1

f (1)

)
≥ 0.

Since f (1) > 0, the first inequality yields f (m) ≥ f (1) and the second implies
that f (1) ≥ f (m). Thus we must have f (m) = f (1) for any positive integer
m.

(c) If f ∗(−1) exists and f is positive definite, then we have f (1) > 0 and
f ∗(−1)(1) = 1

f (1) > 0. If f (m) = 0 for all m > 1, then there exists a positive
real number a such that f = aδ, where δ is the arithmetical function defined in
Example 1. Like the function δ, the function f is not positive definite.
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Assume next that f (m) > 0 for some m > 1. Let m0 be the smallest positive
integer such that m0 > 1 and f (m0) > 0. We obtain

0 = δ(m0) = (f ∗ f ∗(−1))(m0) =
∑

d | m0

f (d)f ∗(−1)
(m0

d

)

= f (1)︸︷︷︸
>0

f ∗(−1)(m0) + f (m0)︸ ︷︷ ︸
>0

f ∗(−1)(1)︸ ︷︷ ︸
>0

.

This means that we must have f ∗(−1)(m0) < 0, and therefore f ∗(−1) cannot be
positive definite.

5 A Partial Order on the Set of Arithmetical Functions

Notation 1 Let f and g be arithmetical functions. If the function g − f is positive
definite, we shall write f  g.

Theorem 6 f  g if and only if the matrix (S)g − (S)f is positive semidefinite for
all finite nonempty sets S ⊂ Z

+ (in other words, f  g if and only if (S)f � (S)g
for all finite nonempty sets S ⊂ Z

+, where � is the Löwner order).

Proof By definition, g − f is positive definite if and only if the matrix (S)g−f =
(S)g − (S)f is positive semidefinite for all sets S = {x1, x2, . . . , xn} ⊂ Z

+ and
for all n = 1, 2, . . .. Furthermore, this is equivalent to the statement that the matrix
(S)f precedes the matrix (S)g in the sense of the Löwner order.

Theorem 7 The relation  is a partial order.

Proof

• For any f ∈ A the matrix (S)f − (S)f = 0 is positive semidefinite for all finite
nonempty sets S ⊂ Z

+. Thus  is reflexive.
• Suppose that f  g and g  f . Thus for any finite nonempty set S ⊂ Z

+ both
of the matrices (S)g − (S)f and (S)f − (S)g are positive semidefinite, which
implies that (S)f = (S)g . Therefore f (xi) = g(xi) for all xi ∈ S and we must
have f = g (since S is an arbitrary set). Thus  is symmetric.

• Suppose that f  g and g  h. Let S ⊂ Z
+. Now the matrices (S)g − (S)f and

(S)h − (S)g are positive semidefinite and

(S)h − (S)f = ((S)h − (S)g) + ((S)g − (S)f ).

Thus (S)h − (S)f is positive semidefinite and we must have f  h. Thus  is
transitive.

The following results now follow directly from Theorems 1 and 3.
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Corollary 3 Suppose that f  g. Then

(a) f (m) ≤ g(m) for all m ∈ Z
+,

(b) k | m ⇒ g(k) − f (k) ≤ g(m) − f (m) for all k,m ∈ Z
+.

Corollary 4 Function f  g if and only if

((g − f ) ∗ μ)(k) = (g ∗ μ)(k) − (f ∗ μ)(k) ≥ 0

for all k ∈ Z.

At this point it is natural to consider how our newly defined relation  relates to
different function operations.

Theorem 8 Suppose that 0  f1  g1 and 0  f2  g2. Then

(a) 0  f1f2  g1g2,
(b) 0  f1 ∗ f2  g1 ∗ g2.

Proof

(a) We need to show that for any finite nonempty set S ⊂ Z
+ the matrix

(S)f1f2 − (S)g1g2 = (S)f1 ◦ (S)f2 − (S)g1 ◦ (S)g2

is positive semidefinite. Since 0  (S)f1  (S)g1 and 0  (S)f2  (S)g2 , the
claim follows from [9, p. 475, Problem 4].

(b) In the second case it is more convenient to use Corollary 4 and show that for all
k ∈ Z

+ we have

((f1 ∗ f2) ∗ μ)(k) ≤ ((g1 ∗ g2) ∗ μ)(k).

Let k ∈ Z
+. By using the associativity of the Dirichlet convolution and

Corollaries 3 and 4 we obtain

((f1 ∗ f2) ∗ μ)(k) = (f1 ∗ (f2 ∗ μ))(k) =
∑

d | k

≥0︷ ︸︸ ︷
f1(d)︸ ︷︷ ︸
≤g1(d)

≥0︷ ︸︸ ︷
(f2 ∗ μ)

(
k

d

)

︸ ︷︷ ︸
≤(g2∗μ)

(
k
d

)

≤
∑

d | k
g1(d)(g2 ∗ μ)

(
k

d

)
= (g1 ∗ (g2 ∗ μ))(k) = ((g1 ∗ g2) ∗ μ)(k).

Thus we have shown that f1 ∗ f2  g1 ∗ g2. The property 0  f1 ∗ f2 follows
from Theorem 4.
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Corollary 5 Suppose that 0  f  g. Then for all r = 1, 2, . . . we have

(a) 0  f r  gr ,
(b) 0  f ∗r  g∗r .

Example 4 Recall that δ(1) = 1 and δ(m) = 0 for all m > 1 and that ζ(m) = 1
for all m ∈ Z

+. Since ζ(2) = 1 > 0 = δ(2), clearly ζ 	 δ. Let us show that also
δ 	 ζ . Consider the set S = {2, 3, 6}. We obtain

(S)ζ−δ = (S)ζ − (S)δ =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ −
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ =
⎡

⎣
1 0 1
0 1 1
1 1 1

⎤

⎦ .

The eigenvalues of this matrix are 1, 1+√
2, and 1−√

2 < 0. Therefore the matrix
(S)ζ−δ is not positive semidefinite and thus we cannot have δ  ζ . It is also possible
to consider the set S = {1, 2, 3, 4, 5, 6}. In this case

(S)ζ−δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 0 1 0 1
0 0 1 0 0 1
0 1 0 1 0 1
0 0 0 0 1 0
0 1 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The smallest eigenvalue of this matrix is approximately −0.4812, and therefore the
matrix is not positive semidefinite and we may deduce that δ 	 ζ .

Definition 2 Arithmetical function f is said to be multiplicative if

f (km) = f (k)f (m)

for all k,m ∈ Z
+ with gcd(k,m) = 1.

The values of a multiplicative function are completely determined by the values
on prime powers. In fact, if m = p

a1
1 p

a2
2 · · · par

r , then

f (m) = f (p
a1
1 p

a2
2 · · · par

r ) = f (p
a1
1 )f (p

a2
2 ) · · · f (par

r ).

The Möbius function μ is multiplicative, and the Dirichlet convolution of multi-
plicative functions is also multiplicative, see, e.g., [2, Section 2.10] and [12, Chapter
1]. Thus if f ∈ A is multiplicative and we wish to show that f is positive definite,
i.e. that (f ∗μ)(k) ≥ 0 for all k ∈ Z

+, then it suffices to show that (f ∗μ)(pa) ≥ 0
for any prime number p and for all a ∈ Z

+.
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Example 5 The Jordan totient function Jα is defined as

Jα(m) = mα
∏

p | m

(
1 − 1

pα

)
,

where m = p
a1
1 p

a2
2 · · ·par

r . If α ≥ 1, then for any a ≥ 2 we have

(Jα ∗ μ)(pa) =
∑

d | pa

Jα(d)μ

(
pa

d

)
= Jα(pa) − Jα(pa−1)

= pαa − pα(a−1) − pα(a−1) + pα(a−2) = pα(a−2)(p2α − 2pα + 1)

= pα(a−2)(pα − 1)2 ≥ 0

and for a = 1 we obtain

(Jα ∗ μ)(p) = Jα(p) − 1 = pα − 1 − 1 = pα − 2 ≥ 0.

By multiplicativity this shows that Jα is positive definite for α ≥ 1. In particular, the
Euler totient function φ = J1 is positive definite. Since (Jα ∗ μ)(2) = 2α − 2 < 0
for α < 1, we see that Jα is not positive definite for α < 1.

By utilizing multiplicativity in a similar manner it is possible to show that for
α, β ≥ 0,

Jα  Jβ ⇔ (Jα ∗ μ)(k) ≤ (Jβ ∗ μ)(k) ∀k ∈ Z
+ ⇔ α ≤ β.

Example 6 In Example 3 it was shown that the power function Nα is positive
definite for all α ≥ 0. With the aid of multiplicativity (as in Example 5) it is possible
to show that for α, β ≥ 0,

Nα  Nβ ⇔ α ≤ β.

Example 7 The divisor function σα is defined as σα(m) := ∑
d | m dα, or alterna-

tively σα = Nα ∗ ζ . The function σα is positive definite for all α ∈ R, and for any
α, β ∈ R we have

σα  σβ ⇔ α ≤ β.

The positive definiteness of the function σα can easily be shown by using Theorem3,
since

σα ∗ μ = (Nα ∗ ζ ) ∗ μ = Nα ∗ (ζ ∗ μ) = Nα
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and Nα(k) ≥ 0 for all α ∈ R and k ∈ Z
+. The other claim follows similarly, since

(σβ − σα) ∗ μ = (σβ ∗ μ) − (σα ∗ μ) = Nβ − Nα

and the values of this function are nonnegative if and only if α ≤ β.

Example 8 Let Ω(m) denote the total number of prime divisors of m each counted
according to its multiplicity (note thatΩ(1) = 0). We prove the positive definiteness
of the function Ω by showing that (Ω ∗ μ)(k) ≥ 0 for all k ∈ Z

+.
If k = 1, then (Ω ∗ μ)(k) = 0. Let k = p

a1
1 p

a2
2 · · · par

r 	= 1 (r ≥ 1) be the
canonical factorization of k. Then

(Ω ∗ μ)(k) = (μ ∗ Ω)(k) =
∑

d | k
μ(d)Ω

(
k

d

)

= (a1 + a2 + · · · + ar)

− ((a1 − 1) + a2 + · · · + ar) − (a1 + (a2 − 1) + · · · + ar) − · · ·
− (a1 + a2 + · · · + (ar − 1))

+ ((a1 − 1) + (a2 − 1) + a3 + · · · + ar) + · · ·
+ (a1 + · · · + ar−2 + (ar−1 − 1) + (ar − 1))

− · · ·

Denote s = a1 + a2 + · · · + ar . Then

(Ω ∗ μ)(k) = s −
(

r

1

)
(s − 1) +

(
r

2

)
(s − 2) + · · · + (−1)r

(
r

r

)
(s − r)

=
r∑

i=0

(−1)i
(

r

i

)
(s − i) = s

r∑

i=0

(−1)i
(

r

i

)
−

r∑

i=0

(−1)i
(

r

i

)
i.

By the binomial theorem,
∑r

i=0(−1)i
(
r
i

) = 0 (r ≥ 1) and by formula (1.69) of [7],

r∑

i=0

(−1)i
(

r

i

)
i =

{
−1 if r = 1,

0 if r ≥ 2

(this can also be shown by utilizing formula (5.6) of [6]). Thus (Ω ∗ μ)(k) = 1 if
r = 1 (i.e., k is a prime power ( 	= 1)), and (Ω ∗ μ)(k) = 0 otherwise.

Example 9 Also for the generalized Liouville function λα(m) = αΩ(m) it is
possible to show that λα is positive definite if and only if α ≥ 1 and that for α, β ≥ 1,

α ≤ β ⇔ λα  λβ.
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In particular, the usual Liouville function λ = λ−1 is not positive definite. These
results can be proved by utilizing multiplicativity. Since the function Ω is positive
definite by the previous example, the positive definiteness of λα for α ≥ 1 can also
be deduced from the results of [10, Section 6.3]. The Liouville function λ gives the
parity of the number of prime factors and is related, e.g., to the Riemann hypothesis.

Example 10 For the generalized Dedekind function Ψα = Nα ∗ μ2, where μ2 =
μ ·μ = |μ|, it can be shown that Ψα is positive definite if and only if α ≥ 0 and that
for α, β ≥ 0,

α ≤ β ⇔ Ψα  Ψβ.

In particular, the usual Dedekind function Ψ = Ψ1 is positive definite. Also these
results can be shown by using multiplicativity. The function Ψ was introduced by
Richard Dedekind in connection with modular functions. It has also connections to
the Riemann hypothesis.

Example 11 For α ≥ 0, we have

Jα  Nα  Ψα  σα.

For α ≥ 1, we obtain

λα  Jα  Nα  Ψα  σα.

These can be verified by applying the multiplicativity of the functions λα ∗μ, Jα ∗μ,
Nα ∗ μ = Jα , Ψα ∗ μ and σα ∗ μ. In particular (for α = 1),

φ(= J1)  N(= N1)  Ψ (= Ψ1)  σ(= σ1).

6 Conclusions

As we saw in Sect. 2, defining positive definiteness of arithmetical functions by
using GCD matrices appears to be the best way to proceed. Positive definite
arithmetical functions seem to possess several properties that one could expect them
to have. For example, addition, usual multiplication, and Dirichlet convolution all
preserve positive definiteness. On the other hand, in some cases positive definiteness
of arithmetical functions behaves quite unexpectedly (for example, the function δ is
not positive definite, although it is the identity element with respect to the Dirichlet
convolution). Positive definiteness also makes it possible to define a partial order on
the set of arithmetical functions, and by making use of multiplicativity we are able
to compare various fundamental arithmetical functions with each other.
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The study of positive definiteness of arithmetical functions offers many possibil-
ities for further research. One could analyze thoroughly the properties of positive
definite arithmetical functions, and there might still be a possibility to utilize some
other matrix class and find an alternative definition for positive definite arithmetical
functions. Yet another possibility would be to generalize the concept of positive
definiteness on real-valued functions defined on any meet semilattice P . In this case
one only needs to consider the so-called meet matrix of the set S with respect to the
function f (instead of GCD matrix).
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