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Abstract In the last four decades, there has been an increasing interest in
developing survival models appropriate for multiple event data and, in particular, for
recurrent event data. For these situations, several extensions of the Cox’s regression
model have been developed. Some of the most known models were suggested by:
Prentice, Williams, and Peterson (PWP); Andersen and Gill (AG); Wei, Lin, and
Weissfeld (WLW); and Lee, Wei, and Amato (LWA). These models can handle with
situations where exist potentially correlated lifetimes of the same subject (due to
the occurrence of more than one event for each subject) which is common in this
type of data.

In this chapter we present a new model, which we call hybrid model, with
the purpose of minimizing some limitations of PWP model. With this model we
obtained an improvement in the precision of the parameters estimates and a better
fit to the simulated data.

Keywords Correlated observations · Extensions of Cox model · Hybrid model ·
Recurrent events · Survival analysis

1 Introduction

A historical landmark that has revolutionized the survival analysis took place in
1972, when Sir David Cox [3] proposed a regression model capable of including
factors that are assumed to affect the lifetime of the subjects (known as prognostic
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or risk factors), which are represented by covariates. Based on this model, new
extensions and approaches that seek to respond to the most varied problems have
been developed.

Over the last few years there has been an increasing interest in studying the
time until the observation of various events that may occur more than once for a
given subject. The main feature of multiple events data is the observation of more
than one lifetime for each subject, which makes the direct application of the Cox’s
regression model unfeasible. Therefore, several extensions of the Cox model have
been suggested to analyze multiple events, in particular a single type of events
that occurs more than once for the same subject. Such outcomes have been termed
recurrent events. For these situations, the most applied extensions of the Cox model
were suggested by: Prentice, Williams, and Peterson (PWP) [10]; Andersen and
Gill (AG) [1]; Wei, Lin, and Weissfeld (WLW) [15]; and Lee, Wei, and Amato
(LWA) [6].

According to Kelly and Lim [5], these models can be classified based on the
dependency structure between events (of the same subject). The PWP and AG
models have a conditional dependency structure, since subjects are not considered at
risk for a given event unless the previous one has occurred. On the other hand, WLW
and LWA models have a marginal dependency structure, by reason of it is considered
that subjects are simultaneously at risk for the occurrence of any of events from
the initial time, i.e., the occurrence of each event is not conditioned on the prior
occurrence of any others. Therefore, the first two models are most appropriate to
analyze recurrent events, since they allow to accommodate the orderly nature of
such data.

One of the major problems in the application of these four models is related to
the strong possibility of occurring within-subject correlation. In the Cox model and
its extensions the estimation of regression parameters is made assuming that the
observations are independent. In other words, we ignore the existence of within-
subject correlation. For this reason, from the point of view of the estimation
of the parameters, all of these extensions are also called marginal models [13].
Several authors [1, 7, 15] have proven that, under certain regularity conditions, the
maximum likelihood estimator obtained thereby is still consistent and with the same
asymptotic properties, even in the presence of correlated lifetimes.

Consequently, the estimate of variance for the regression parameters also treats
each observation as independent. This means that, when the lifetimes are correlated,
the usual estimate of the variance does not correctly evaluate the accuracy of
estimated regression parameters. In order to offset this aspect, an adjustment in the
estimation of variance should take place. Then, a robust estimator of covariance
matrix—“sandwich” estimator—was developed to take that correlation into account
[8, 15].

In this chapter we present a hybrid model that will focus on the two models that
have a conditional dependency structure between events. The purpose of this hybrid
model is an attempt to overcome two limitations pointed out by some authors [2, 13]
about the PWP model: (1) the loss of heterogeneity throughout the study; and (2) the
violation of the missing completely at random (MCAR) condition. Therefore, in the
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next section we present the situations where the PWP and AG models are applied
and, afterwards, we formalize the new hybrid model. In Sect. 3, the performance of
the hybrid model is analyzed. For this purpose, the simulation of recurrent events
was carried out through the R statistical software [11]. Finally, some considerations
about the application of this model are discussed.

2 Methodology

The PWP and AG models will be formalized to subsequently construct the PWP-AG
hybrid model. The characteristics of each model will be examined in order to
understand in which situations the application of each of them is more appropriate.
In the first instance, it is necessary to introduce some notation which will enable the
construction of these survival models.

2.1 Notation

Suppose that there are n subjects in study and each subject can experience a maxi-
mum of S failures. Let Tis = min

{
Xis, Cis

}
be the observation time, where Xis

and Cis represent the true lifetime and the censoring time of the sth event (s =
1, . . . , S) in the ith subject (i = 1, . . . , n), respectively. Define δis = I (Xis ≤
Cis) as being the indicator censoring variable, where I (E) = 1 when the event E

holds, and I (E) = 0 otherwise. It is assumed that censoring is non-informative. Let
zis(t) = (

zis1(t), . . . , zisp(t)
)′ represent the p-vector of time-dependent covariates

for the ith subject with respect to the sth event and zi (t) = (
z′
i1(t), . . . , z

′
iS(t)

)

denote his overall covariate vector. The true lifetime vector Xi = (Xi1, . . . , XiS)′
and the censoring time vector Ci = (Ci1, . . . , CiS)′ are assumed to be independent
conditional on the overall covariate vector zi (t). If Xis or zis is missing, we set
Cis = 0, which ensures that Tis = 0 and δis = 0. We require that such cases are
MCAR.

2.2 Prentice, Williams, and Peterson (PWP) Model

In 1981, Prentice et al. [10] suggested one of the earliest extensions of the Cox
model for the analysis of multiple events and it is often labeled as the PWP model.
This model applies to the situations in which events occur in an orderly way, where
it is considered that a subject cannot be at risk for the sth event until he has
experienced the s − 1 order event (Fig. 1). Therefore, it means that the risk set is
restrictive.
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Fig. 1 Schematic representation of the PWP model

Furthermore, it is assumed that the risk of occurrence of the following event is
modified by the occurrence of the previous one. This means that it is necessary to
stratify the subjects according to the order in which events occur. Thus, if it has been
observed s events, then there will be s ordered strata, wherein each of them will be
associated a different baseline hazard function h0s (t), t ≥ 0 and s = 1, . . . , S.

The authors of PWP model have suggested two possible time scales to construct
the risk intervals: counting process or gap time formulation. We will only consider
the first formulation. Then the hazard function of the ith subject for the sth event is
defined as

h
(
t; zis(t)

) = h0s (t) exp
(
β ′zis (t)

)
, t ≥ 0, (1)

where h0s(t) ≥ 0 is the event-specific baseline hazard function and β =
(β1, . . . , βp)′ is the p × 1 overall vector of unknown regression parameters.

The regression parameters are estimated through the partial likelihood function,
where we admit that the observations within the same subject are independent. For
a model with stratification, this function is given by

L(β) =
n∏

i=1

S∏

s=1

[
exp

(
β ′zis (tis )

)

∑n
j=1 Yjs(tis) exp

(
β ′zjs(tis )

)

]δis

, (2)

where Yis(t) = I
(
ti(s−1) < t ≤ tis

)
is the risk set indicator which represents the

counting process formulation and tis is the observation time of the ith subject with
respect to the sth event.

Conventionally, the overall maximum likelihood estimator ̂β is obtained by
adjusting a single vector of covariates, that in this case is the overall covariate vector
zi (t). However, since there is stratification, it is also possible to obtain the event-
specific vector of unknown regression parameters βs = (βs1, . . . , βsp)′, one for
each s stratum [7]. For this purpose, it is required to adjust the event-specific covari-
ate vector of each stratum, in such a way that zi (t) = (

0, . . . , 0, zis (t), 0, . . . , 0
)′

,

towards s = 1, . . . , S. Thus, we obtain the event-specific estimates ̂β1, ̂β2 . . . , ̂βS .
In the PWP model, the set of subjects at risk is restricted in the sense that subjects

who have not experienced the sth event may not be included in the analysis of the
s + 1 order event. In this way, the risk set will gradually decrease over the study,
revealing increasingly less heterogeneous. Consequently, the event-specific parame-
ters estimates will become unreliable. Therneau and Grambsch [13] presented two
options to solve this limitation: (1) truncate the data set exactly in the event where
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the number of subjects at risk is considered too small; or (2) agglomerate the final
strata, starting from that one is considered to have a small number of subjects at
risk. The latter option is more attractive, because it has the advantage of not wasting
information that may be critical for the analysis.

In addition to the loss of heterogeneity, in a restrictive risk set the choice of
subjects that will be at risk for a given event does not occur randomly, because it is
determined by observation of the previous event. This leads to another limitation—
the violation of the MCAR assumption [2].

2.3 Andersen and Gill (AG) Model

In 1982, Andersen and Gill [1] proposed a simple model for the analysis of recurrent
events, usually referred to as AG model. This model was suggested in the same
line of reasoning of the previous model but has stronger assumptions. The main
assumption concerns with the independence of times between events within a
subject.

In this model, the events follow a given order, but it is assumed that the events
have equal risk of occurring (Fig. 2). Thus, there will be a common hazard function,
h0(t), t ≥ 0, to all events.

The AG model was conceived for the case where the occurrence of each event
does not depend on time elapsed since the last observation, nor the number of
events observed previously. This means that although the occurrence of each event
is conditioned to the occurrence of previous events, it is considered that the times
between the events are independent.

The authors of this model only considered the counting process formulation to
construct the risk intervals. The hazard function for the ith subject with respect to
the sth event is defined as

h
(
t; zis (t)

) = h0(t) exp
(
β ′zis (t)

)
, t ≥ 0, (3)

where h0(t) ≥ 0 is the common baseline hazard function and β = (β1, . . . , βp)′ is
the p × 1 overall vector of unknown regression parameters.

Fig. 2 Schematic
representation of the AG
model
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As in this case there is no stratification, the parameters are estimated through the
following partial likelihood function

L(β) =
n∏

i=1

S∏

s=1

[
exp

(
β ′zis (tis )

)

∑n
j=1

∑S
l=1 Yjl(tis ) exp

(
β ′zj l(tis )

)

]δis

, (4)

where Yis(t) = I
(
ti(s−1) < t ≤ tis

)
is the risk set indicator and tis is the observation

time of the ith subject with respect to the sth event. Since this model has a common
hazard function to all events, it is only possible to obtain the overall maximum
likelihood estimator ̂β.

When the PWP and AG models have been suggested, they did not present any
adjustment for the within-subject correlation. However, the authors of these models
were conscious of this strong possibility and recommended attempt to capture this
correlation including time-dependent covariates on the model. A few years later, it
was realized that it was possible to take advantage of the fact that these two models
are also classified as marginal models from the point of view of the parameters
estimation. From this point, the robust estimator of the covariance matrix was
applied to take the within-subject correlation into account [7, 13].

In contrast with the previous model, the AG model reveals neither loss of the
heterogeneity nor the violation of the MCAR condition because the set of subject at
risk is unrestrictive. This means that all risk intervals of all subjects may contribute
to the risk set for any given event, regardless of the number of events observed
previously for each subject [5].

2.4 PWP-AG Hybrid Model

In order to overcome the limitations pointed for the PWP model, we present a
slightly different option from those presented in [13].

In fact, there may exist another reason to agglomerate the final strata. Suppose
that, initially, the PWP model has a very heterogeneous risk set, whereby the
differences between the hazard functions of the various subjects are due, in
particular, to the effect of several covariates with quite different values for each
of them. Suppose that the risk set related to the second event (which contains only
the subjects that had suffered the first event) no longer contains the subjects who
belong to a certain category of a covariate. This means that, in addition to subjects
being less heterogeneous, this covariate is no longer important to the model. Thus,
its effect on the survival shall be embedded in the baseline hazard functions, which
necessarily have to be different from the baseline hazard function of the first event.
With that in mind, assume that after a certain event, denoted by S∗, the subjects at
risk will be more homogeneous, in such a way that the baseline hazard functions
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Fig. 3 Schematic representation of the PWP-AG hybrid model

for each event no longer have to be different. Then, instead of continuing to apply
the PWP model, the AG model can be implemented after the observation of the S∗
event, as illustrated in Fig. 3.

In general, the events 1, 2, . . . , S∗ are analyzed with the PWP model (1) and the
events S∗ + 1, S∗ + 2, . . . , S are analyzed with the AG model (3). The proposal
to agglomerate the final strata gives rise to the PWP-AG hybrid model that, as far
as we know, has not yet been mathematically formalized in the available literature.
Therefore, considering the counting process formulation, the hazard function for the
ith subject regarding the sth event is defined as

h
(
t; zis (t)

) =
⎧
⎨

⎩

h0s(t) exp
(
β ′zis(t)

)
, 0 < s ≤ S∗

h0(t) exp
(
β ′zis (t)

)
, S∗ < s ≤ S

, t ≥ 0.

where h0s(t) ≥ 0 is the event-specific baseline hazard function, h0(t) ≥ 0 is the
common baseline hazard function, and β = (β1, . . . , βp)′ is the p×1 overall vector
of unknown regression parameters.

Similarly it is necessary to adapt the partial likelihood functions of PWP (2) and
AG (4) models to this situation. Admitting that the observations within the same
subject are independent, the overall maximum likelihood estimator ̂β is obtained
through the following function:

L(β) =
n∏

i=1

S∏

s=1

[
exp

(
β ′zis (tis )

)

Qs (β, tis )
Δs Q(β, tis )

1−Δs

]δis

,

where Qs (β, t) = ∑n
j=1 Yjs(t) exp

(
β ′zjs(t)

)
, Q(β, t) = ∑S

s=1 Qs (β, t) and
Δs = I (s ≤ S∗) denote the indicator model variable which takes the value Δs = 1
when the PWP model is considered (0 < s ≤ S∗) and Δs = 0 when the AG model
is considered (S∗ < s ≤ S). It should be noted that Δs does not depend on the i

index, which means that for all subjects we define that the AG model is applied from
the S∗ event. Furthermore, it is noteworthy that when Δs = 1 we can also obtain
the event-specific estimators ̂β1, ̂β2, . . . , ̂βS∗ . The estimation of the event-specific
regression parameters is performed by the same procedure described in Sect. 2.2.
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3 PWP-AG Hybrid Model with Simulated Data

The application of the marginal models can be easily accomplished by R, S-Plus, or
SAS statistical software. In this contribution we used the R statistical software [11],
version 3.4.0, where for the analysis we used the survival package [12].

In order to evaluate the performance of the PWP-AG hybrid model, we proceeded
with the simulation of a recurrent event data, bearing in mind the characteristics
of the situations where this model is applied. The data set was simulated with
survsim package [9], where we considered that the time to right censoring
and to events follows a Weibull distribution. The values of the covariates were
simulated from Bernoulli distribution (with probability of success p = 0.5),
uniform distribution (that takes values in the range [0, 1]), and standard gaussian
distribution. Let them be denoted by x, x.1 and x.2, respectively. The procedure
used for the simulation of this data set was recently presented by Ferreira [4].

Before applying any model, we decided to analyze the evolution of the risk for
each event over time. The cumulative hazard functions from Kaplan-Meier estimates
on the left side of Fig. 4 show that the first four events have different risks of
occurring, but after that the risk is more similar. This was the main reason why
we considered the PWP-AG hybrid model with S∗ = 4 (right side of Fig. 4). Also,
in Table 1 it can be seen the number of subjects at risk and observed events in each
event number, where the decreasing over the strata becomes obvious. This means
that if we want to calculate the event-specific estimates for the PWP model, these
will be unreliable or even missing.

The implementation code of the PWP-AG hybrid model is very similar to the
code of the PWP model [13, 14], the only difference lies in the way that we define
the stratification variable. For the hybrid model it is necessary to define a new
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Fig. 4 Cumulative hazards from Kaplan-Meier estimates of the first 6 events (left) and of the first
4 events with the following ones agglomerated in the last stratum (right)
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Table 1 Number of subjects at risk and observed events

Event number

1 2 3 4 5 6 7 8 9 10

Subjects at risk 1000 365 162 87 48 27 15 10 6 3

Observed events 365 162 87 48 27 15 10 6 3 0

Table 2 Overall estimates of the various parameters associated with each model

Covariate/Model β̂j exp(β̂j ) se(β̂j ) ser (β̂j ) p-value

x

PWP 0.52734 1.69442 0.08076 0.08624 9.66e−10

PWP-AG 0.52234 1.68598 0.07998 0.08615 1.33e−09

x.2

PWP 0.67673 1.96742 0.04759 0.05003 <2e−16

PWP-AG 0.67702 1.96800 0.04694 0.04943 <2e−16

stratification variable, where we specified that after the S∗ = 4 event the last strata
are agglomerate in the S∗ + 1 = 5 event number. So, in the stratification variable of
the PWP-AG hybrid model the first four strata remain unchanged and the last strata
are agglomerated in the stratum number five. Consequently, there will be an event-
specific baseline hazard function for the first four events and a common baseline
hazard function for the subsequent events.

The analysis revealed that the covariate x.1 was not significant in both
models (p-value=0.553 and p-value=0.403 in PWP and PWP-AG hybrid models,
respectively). Therefore, in Table 2 we present the results of the models with the
remaining two covariates. The parameters estimates were similar but the standard
errors were slightly smaller in PWP-AG hybrid model, thus improving the accuracy
of the estimates. For both models, the robust standard errors were inflated compared
to the usual ones. This observed inflation suggests that there is less variation within-
subjects than between-subjects [5].

In addition, the value of concordance for both models is 0.722. However, the
value of R2 is better for PWP-AG hybrid model (R2 = 0.131 vs R2 = 0.129).

4 Conclusions and Future Work

The proposed PWP-AG hybrid model revealed to be an alternative to the PWP
model. The decision of gathering the last events was mainly based on the similarity
of the cumulative hazard functions and not only on the dimension of the risk
set. The fact that subjects become more homogeneous does not ensure that the
hazard functions corresponding to the subsequent events are the same because the
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mechanism that triggers such events may cause differences in these functions. This
is the reason why it is important to represent the cumulative hazard function of each
event.

On the other hand, the simulation showed that the parameters estimates become
more accurate. Moreover, in this case the PWP-AG hybrid model has resulted in a
better fit to the simulated data.

Although the PWP-AG hybrid model may not completely overcome the limita-
tions of the PWP model (the loss of heterogeneity and the violation of the MCAR
assumption), nevertheless these limitations are reduced. Therefore, the PWP-AG
hybrid model is a compromise between PWP and AG models, which allows to
compile the features of each of them.

Further work is required with this model, namely a simulation study, which can
clarify when this model is more appropriate than the other models for recurrent
events.
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