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Abstract Regression problems where the number of predictors, p, exceeds the
number of responses, n, have become increasingly important in many diverse fields
in the last couple of decades. In the classical case of “small p and large n,” the
least squares estimator is a practical and effective tool for estimating the model
parameters. However, in this so-called Big Data era, models have the characteristic
that p is much larger than n. Statisticians have developed a number of regression
techniques for dealing with such problems, such as the Lasso by Tibshirani (J R Stat
Soc Ser B Stat Methodol 58:267–288, 1996), the SCAD by Fan and Li (J Am Stat
Assoc 96(456):1348–1360, 2001), the LARS algorithm by Efron et al. (Ann Stat
32(2):407–499, 2004), the MCP estimator by Zhang (Ann Stat. 38:894–942, 2010),
and a tuning-free regression algorithm by Chatterjee (High dimensional regression
and matrix estimation without tuning parameters, 2015, https://arxiv.org/abs/1510.
07294). In this paper, we investigate the relative performances of some of these
methods for parameter estimation and variable selection through analyzing real and
synthetic data sets. By an extensive Monte Carlo simulation study, we also compare
the relative performance of proposed methods under correlated design matrix.
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1 Introduction

There are a host of buzzwords in today’s data-centric world. We encounter data
in all walks of life, and for analytically- and objectively-minded people, data is
crucial to their goals. However, making sense of the data and extracting meaningful
information from it may not be an easy task. The rapid growth in the size and
scope of data sets in a variety of disciplines have naturally led to the usage of the
term, Big Data. The word Big Data is nebulously defined. Generally speaking, it
is often used to denote a dataset containing a large number of sample observations
with factors that could induce significant problems when analyzing it. Due to these
barriers when analyzing data, statisticians could play a vital role in the data world.
A variety of statistical and computational tools are needed to reveal the story that
is contained in the data and statisticians should fulfill expectations on a need for
innovative statistical strategies for understanding and analyzing them.

Among many problems arisen from Big Data, in the realm of statistics, many
people worked on the so-called high dimensional data (HDD), which are data
sets containing larger number of predictors than the number of observations. The
analysis of HDD is important in multiple research fields such as engineering, social
media networks, bioinformatics and medical, environmental, and financial studies
among others. There is an increasing demand for efficient prediction strategies and
variable selection procedures for analyzing HDD. Some examples of HDD that have
prompted demand are gene expression arrays, social network modeling and clinical,
genetic, and phenotypic data. Developing innovative statistical learning algorithms
and data analytic techniques play a fundamental role for the future of research in
these fields. More public and private sectors are now acknowledging the importance
of statistical tools and its critical role in analyzing HDD.

The challenges are to find novel statistical methods to extract meaningful
conclusions and interpretable results from HDD. The classical statistical strategies
do not provide solutions to such problems. Traditionally, statisticians used best-
subset selection or other variable selection procedures to choose predictors that
are highly correlated with the response variable. Based on the selected predictors,
statisticians employed classical statistical methods to analyze HDD. However,
with a huge number of predictors, implementing a best-subset selection is already
computationally burdensome. On top of that, these variable selection techniques
suffer from high variability due to their nature. To resolve such issues, a class
of penalized estimation methods have been proposed. They are referred to as
penalized estimation methods since they share the idea to estimate parameters in
a model using classical least squares approach with an additional penalty term.
Some of these methods not only performvariable selection and parameter estimation
simultaneously, but also are extremely computationally efficient.

There are two main objectives of this paper. First is to give an idea how existing
HDD methods perform on datasets when the correlations among response variables
are present. Many statisticians studied HDD methods under the assumption that
response variables are independent. This assumption certainly allowed statisticians
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to develop more complex estimation methods and provided practitioners with cau-
tionary aspects when dealing with datasets containing non-independent variables.
However, the assumption is not realistic, which necessitates statistical methods not
relying on independence assumption. By examining how existing HDD method
works on non-independent setting, we expect to gain some insights on developing
novel estimation strategies and variable selection procedures for the datasets with
non-independent variables. In addition to that many existing HDD analysis methods
rely on a tuning parameter, which is burdensome to calibrate. It makes harder for
non-technical scientists to analyze HDD and further, even for technical scientists,
tuning parameter brings difficulty in reproducing research outcomes. Recently
original methods that don’t require tuning parameter when analyzing HDD were
introduced. In this paper, we also compare the performance of these new methods
with the ones using tuning parameters in a variety of different settings.

The rest of the paper is organized as follows: In Sect. 2, we review the definitions
and basic properties of the regression methods which we will mainly focus on.
In Sect. 3, we explain our simulation set-up for synthetic data and present the
simulation results. Sect. 4 shows an application of the methods to two real data
sets, prostate data and riboflavin production in Bacillus subtilis data. We finish the
paper by Sect. 5 with some concluding remarks and future research directions.

2 Penalized Regression Methods

Consider the following linear model

Y = Xβ + ε, (1)

where Y = (y1, y2, . . . , yn)
′ is a vector of responses, X = [xij ] is an n × p

fixed design matrix, β = (β1, . . . , βp)′ is an unknown vector of parameters, and
ε = (ε1, ε2, . . . , εn)

′ is the vector of unobserved random errors. We assume that
coordinates of the error vector ε are i.i.d. normally distributed with mean zero and
variance σ 2. For the rest of the paper, without loss of generality, we assume that
the predictors and responses in (1) are standardized so that

∑n
i=1 yi = 0 and∑n

i=1 xij = 0,
∑n

i=1 x2
ij = 1, for all j.

For a given model as in (1), there are three main tasks that need to be performed
by a practitioner:

1. Parameter estimation: Finding an estimator β̂ for β.

2. Variable selection or model selection: Selecting the non-zero entries of β

accurately.
3. Prediction: Estimating Xβ.
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For the case n > p, the classical estimator of β is the ordinary least square estimator
(OLS), which is obtained by minimizing the residual sum of squares. It is given by

β̂
OLS = (X′X)−1X′Y.

However, in the high-dimensional setting, where p > n, the inverse of the
Gram matrix, (X′X)−1, does not exist. More precisely, there will be infinitely
many solutions for the least squares minimization, hence there is no well-defined
solution. In fact, even in the case p ≤ n and p close to n, the OLS estimator is not
considered very useful because standard deviations of estimators are usually very
high. In many regression models, in particular for the high dimensional case, only
some of the predictors have a direct significant effect on the response variables.
Therefore it is convenient to assume that the underlying true model is sparse; that
is, the true model has only a relatively small number of non-zero predictors. The
sparsity induced methods also play an important role in high dimensional statistics
because they induce interpretable models. It is well-known that the least squares
estimation procedure is unlikely to yield zero estimates for many of the model
coefficients. There are many alternatives to the least square estimation such as subset
selection, dimension reduction, and penalization methods. Each of them has its own
advantages and disadvantages. For a thorough exposition, see [1, 14].

In this paper, we consider the penalized least square regression methods to obtain
estimators for the model parameters in (1). The key idea in penalized regression
methods is minimizing an objection function Lρ,λ in the form of

Lρ,λ(β) = (Y − Xβ)′(Y − Xβ) + λρ(β) (2)

to obtain an estimate for the model parameter β. The first term in the objective
function is the sum of the squared error loss, the second term ρ is a penalty function,
and λ is a tuning parameter which controls the trade-off between two components
of Lρ,λ.

The penalty function is usually chosen as a norm on R
p, in most cases an lq -

norm, which can be written as

ρq(β) =
p∑

j=1

|βj |q, q > 0. (3)

The class of estimators employing the above type of penalties are called the bridge
estimators, proposed by Frank and Friedman [11].

The ridge regression [11, 17] minimizes the residual sum of squares subject to
an l2-penalty, that is,

β̂
Ridge = argmin

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xijβj )
2 + λ

p∑

j=1

β2
j

⎫
⎬

⎭
, (4)
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where λ is a tuning parameter. Although the ridge estimator is a continuous
shrinkage method and has a better prediction performance than OLS through bias-
variance trade-off, it does not set any OLS estimates to zero, so obtaining a sparse
model is not possible. However, in the case of lq -penalty with q ≤ 1, some
coefficients are set exactly to zero. And the optimization problem for (2) becomes
a convex optimization problem, which can be easily solved, for the case q ≥ 1.
Therefore, l1-penalty is special for both reasons.

There are other penalized regression methods with more sophisticated penalty
functions which not only shrink all the coefficients toward zero, but also set some
of them exactly to zero. As a result, this class of estimators usually produce biased
estimates for the parameters due to the shrinkage, but have some advantages such as
producing more interpretable submodels and reducing the variance of the estimator.

Several penalty estimators have been proposed in the literature for linear and
generalized linear models. In this paper, we only consider the least absolute shrink-
age and selection operator (Lasso) [26], the smoothly clipped absolute deviation
(SCAD) [9], the adaptive Lasso (aLasso) [30], and the minimax concave penalty
(MCP) method [29]. These methods perform parameter estimation and model
selection simultaneously. In addition to these penalty estimators, we also consider
the tuning-free regression method (CTFR) which has been recently proposed by
Chatterjee in [6].

It is known that as the prediction performance of Ridge, Bridge, and Lasso
are compared, none of them uniformly dominates others [12]. But the Lasso
has a significant advantage over ridge and bridge estimators in terms of variable
selection performance, see [12] and [26]. Another important advantage of penalized
regression techniques is that they can be used when the number of predictors, p, is
much larger than the number of observations, n. However, in an effort to achieve
meaningful estimation and selection properties, most penalized regression methods
make some important assumptions on both the true model and the designed matrix.
We refer to [5] and [14] for more insights.

2.1 Lasso

The Lasso was proposed by Tibshirani [26], which performs variable selection and
parameter estimation simultaneously, thanks to the l1-penalty. The Lasso estimator
is defined by

β̂
Lasso
n = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xij βj )
2 + λ

p∑

j=1

|βj |
⎫
⎬

⎭
. (5)

Note that for the high-dimensional case, p > n, there might be multiple solutions of

(5); nevertheless for any two solutions β̂
1
n, β̂

2
n, we have Xβ̂

1
n = Xβ̂

2
n which implies

that all solutions have the same prediction performance [27].
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In order to understand the role of the penalty function in shrinkage, it is
instructive to consider the orthogonal design, that is, n = p and the design matrix
X = In is the identity matrix [19]. In this case, the OLS solution minimizes

p∑

i=1

(yi − βi)
2

and the estimates are given by

β̂ OLS
i = yi for all 1 ≤ i ≤ p.

The ridge regression solution minimizes

p∑

i=1

(yi − βi)
2 + λ

p∑

i=1

β2
i

and hence the estimates are given by

β̂
Ridge
i = yi/(1 + λ) for all 1 ≤ i ≤ p.

Similarly, the Lasso solution minimizes

p∑

i=1

(yi − βi)
2 + λ

p∑

i=1

|βi |

and the estimates take the form

β̂ Lasso
i =

⎧
⎪⎪⎨

⎪⎪⎩

yi − λ/2 if yi > λ/2;
yi + λ/2 if yi < −λ/2;
0 if |yi| ≤ λ/2.

We see that the shrinkage applied by Ridge and Lasso affect the estimated
parameters differently. In the Lasso solution, the least square coefficients with
absolute value less than λ/2 are set exactly equal to zero, and other least squares
coefficients are shrunken towards zero by a constant amount, λ/2. As a result,
sufficiently small coefficients are all estimated as zero. On the other hand, the ridge
regression shrinks each least squares estimate towards zero by multiplying each one
by a constant proportional to 1/λ. For more general design matrix, we do not have
explicit solutions for the estimates, but the effect of the shrinkage is similar as in
orthogonal design case, see [14, 15] and [19] for more on this topic.
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Originally, the Lasso solutions were obtained via quadratic programming by
Tibshirani [26]. Later, Efron et al. proposed Least Angle Regression (LARS)
algorithm, which is a homotopy method that constructs a piece-wise linear solution
path in an effective way [8] . Coordinate descent algorithms, which use the sparsity
assumption, are also simple and very fast to compute for the Lasso estimator [10].
The popular glmnet package of R language implements coordinate descent for the
Lasso solution [10]. Further, the Lasso estimator remains numerically feasible for
dimensions of p that are much higher than the sample size n.

Tuning parameter plays a very crucial role for the performance of the Lasso as
well. Meinshausen and Bühlmann [23] showed that if the penalty parameter λ is
tuned to obtain optimal prediction, then consistent variable selection cannot hold:
the Lasso solution includes many noise variables besides the true signals. Leng et
al. [22] proved this fact in a short argument by considering a model with orthogonal
design. Thus, we can say that variable selection and parameter estimation are closely
related but different problems.

There has been significant progress on the theoretical properties of Lasso’s
performance for parameter estimation and prediction in the last two decades. It
was first proved by Knight and Fu [20] that the estimator β̂ is consistent when p

is fixed and n tends to infinity provided that the tuning parameter satisfies a growth
condition. Under the assumption that

1

n
X′X → C

where C is a positive definite matrix, Knight and Fu also [20] proved that the Lasso
solution has the following properties depending on how the tuning parameter is
chosen. Consider

β̂n = arg min
β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xijβj )
2 + λn

p∑

j=1

|βj |
⎫
⎬

⎭
. (6)

Then

(a) If λn/n → λ0 ≥ 0, then β̂n

p−→ arg minV1 where

V1(u) = (u − β)′C(u − β) + λ0

p∑

i=1

|ui |.

(b) If λn/
√

n → λ0 ≥ 0, then
√

n(β̂n − β)
d−→ arg minV2 where

V2(u) = −2uT W + uT Cu + λ0

p∑

i=1

[uisgn(βi)Iβi �=0 + |ui |Iβi=0].
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The results above imply that when λn = O(
√

n), the Lasso estimator cannot
recover the true signals with a positive probability, and λn = o(n) is sufficient
for consistency.

It is well-known that with non-singular C, the OLS estimator is consistent when
p is fixed and n tends to infinity, and

√
n(β̂

OLS
n − β) →d N(0, σ 2C−1).

In the regime where both n and p tend to infinity, the standard consistency
definition is not valid for any estimator β̂. Greenshtein and Ritov [13] introduced the
“persistency” concept in this setting as an analogue of consistency of an estimator,
and proved that the Lasso estimator is persistent under some assumptions on the
design matrix. Since the Lasso automatically sets some components of β̂ to zero,
model selection consistency for the Lasso estimator is a crucial problem. In the
case that the tuning parameter is chosen by a deterministic rule, under a couple
of assumptions on the design matrix and sparsity of β, it is known that the Lasso
estimator recovers the true parameter set, see [3, 5]. Even though these theoretical
results are satisfactory, the assumption that the tuning parameter is to be chosen
deterministically does not shed light on practical applications of the Lasso, because
in most applications the tuning parameter is chosen using some data-drivenmethods
such as cross-validation. There are only few theoretical results on the Lasso when
the tuning parameter is chosen in a data-dependent way, see the recent result of [7]
and the references therein. For an in-depth study of Lasso, see two recent excellent
books [5] and [15].

In many diverse applications of regression, it is not realistic to assume that the
predictors are independent. Therefore the influence of correlations among predictors
on parameter estimation and prediction is an important problem. In general, it
was believed that there would be large prediction errors when the predictors are
correlated. However, recent results in [16] show that this is not necessarily true,
and they argue that for correlated designs, small tuning parameters can be chosen
so that some satisfactory error bounds on the prediction error can be achieved.
Their theoretical arguments and simulation results show that Lasso performs well
under any degree of correlations if the tuning parameter is chosen suitably. Besides
this fact, they show that choosing λ proportional to

√
n logp and ignoring the

correlations in the design is not favorable. In the next section, we present our
simulation results on the cross-validated Lasso’s prediction performance under
correlated design.

2.2 aLasso

Zhou [30] introduced the adaptive Lasso (aLasso) by modifying the Lasso penalty
by using adaptive weights on the l1-penalty. In the same paper, it has been shown
theoretically that the adaptive Lasso estimator is able to identify the true model
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consistently, and has the so-called oracle property. An estimator is said to have
oracle property if asymptotically the method performs as well as if the statistician
had known which coefficients were non-zero and which were zero in advance.

The aLasso β̂ aLasso is obtained by

β̂
aLasso = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xijβj )
2 + λ

p∑

j=1

ŵj |βj |
⎫
⎬

⎭
, (7)

where the weight function is

ŵj = 1

|β̂∗
j |γ ; γ > 0,

and β̂∗
j is a root-n-consistent estimator of β. The minimization procedure for the

aLasso solution does not induce any computational difficulty and can be solved
very efficiently, for the details see section 3.5 in [30], see and [18]. Zhou [30] also
proved that if λn/

√
n → 0 and λnn

(γ−1)/2 → ∞, the aLasso estimates have the
following properties:

1. aLasso has variable selection consistency with probability one as n tends to
infinity.

2.

√
n(β̂

aLasso
n − β) →d N(0, σ 2C−1

11 )

where C−1
11 is the submatrix of C which corresponds to the non-zero entries of β.

2.3 SCAD

Although the Lasso method does both shrinkage and variable selection due to the
nature of the l1-penalty by setting many coefficients identically to zero, it does
not possess oracle properties, as discussed in [9]. To overcome the inefficiency
of traditional variable selection procedures, Fan and Li [9] proposed SCAD
to select variables and estimate the coefficients of variables automatically and
simultaneously. In the same paper, they proved that SCAD has oracle property
as well. This method not only retains the good features of both subset selection
and ridge regression, but also produces sparse solutions, ensures continuity of the
selected models (for the stability of model selection), and has unbiased estimates
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for large coefficients. The estimator is obtained by

β̂
SCAD = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xij βj )
2 +

p∑

j=1

pγ,λ(|βj |)
⎫
⎬

⎭
. (8)

Here pγ,λ(·) is the smoothly clipped absolute deviation penalty which is defined on
[0,∞) by

pγ,λ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

λx, if x ≤ λ,
γ λx−0.5(x2+λ2)

γ−1 if λ < x ≤ γ λ,

λ2(γ 2−1)
2(γ−1) if x > γλ

where λ ≥ 0 and γ > 2. Note that SCAD is identical with the Lasso for |x| ≤
λ, then continuously changes to a quadratic function until |x| = γ λ, and then it
remains constant for all |x| > γλ. The lower values of γ produce more variable but
less biased estimates. For γ = ∞, the SCAD penalty is equivalent to the l1-penalty.

2.4 MCP

Zhang [28] introduced a new penalization method for variable selection, which is
given by

β̂
MCP = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xij βj )
2 +

p∑

j=1

pγ,λ(|βj |)
⎫
⎬

⎭
,

where the MCP penalty pγ,λ(·) is given by

pγ,λ(x) =
{

λ|x| − x2

2γ , if |x| ≤ γ λ,

1
2γ λ2 if |x| > γλ,

where γ > 1 and λ are regularization parameters. The MCP has the threshold value
γ λ. The penalty is a quadratic function for values less than the threshold and is
constant for values greater than it. The parameter γ > 0 controls the convexity and
therefore the bias of the estimators. The lower values of γ give us more variable
but less biased estimates. By controlling the parameter γ , under less restricted
assumptions than those required by the Lasso, one can reduce almost all the bias
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of the estimators and obtain consistent variables. The MCP solution path converges
to Lasso path as γ → ∞. Zhang [29] proves that the estimator possesses selection
consistency at the universal penalty level λ = σ

√
2/n logp under the sparse Riesz

condition on the design matrix X. It has been proven that the MCP has oracle
property, for more on the properties of the estimator, see [28, 29].

2.5 CTFR

Chatterjee [6] introduced a general theory for Gaussian mean estimation that,
when applied to the linear regression problem, only requires the design matrix
and the response vector as input and hence no tuning parameter is required. In [6],
Chatterjee showed that the proposed estimator is adaptively minimax rate-optimal
in high-dimensional regression case. We call this estimator Chatterjee’s tuning-free
regression, CTFR in short, in this paper. The estimator β̂ is obtained by

β̂
CTFR = arg min

β∈Rp

{|β|1 : ||Y′ − Xβ||22 ≤ kσ̂ 2}

where k is the rank of X, Y′ is the projection of Y onto the column space of X, and
σ̂ is a randomized estimator of σ introduced in the same paper. For the details, see
the paper [6]. The following result from the same paper gives an upper bound on the
expected mean squared prediction error of β̂:

E||Xβ̂ − Xβ||22
nσ 2 ≤ C

(

r + r2 +
√
log(p + n)

n
+ log(p + n)

n

)

where r = |β|1γ
σ

√
log(p+n)

n
, γ = max1≤j≤p ||Xj ||/√n, and C is a universal

constant.
Chatterjee [6] compared his proposed estimator’s performance with the 10-fold

cross validated Lasso. The proposed estimator has generally higher prediction error
than the 10-fold cross-validated Lasso. On the other hand, the proposed estimator
has better performance at model selection: the number of false positives returned by
the proposed estimator is significantly less than that of the 10-fold cross-validated
Lasso. See the next section, for more simulation results.

2.6 TREX

Lederer and Muller [21] introduced another tuning-free regression method, TREX,
which is obtained by a careful analysis of Square-Root Lasso [2]. They showed
that TREX can outperform a cross-validated Lasso in terms of variable selection
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and computational efficiency through a detailed numeric study. The estimator is
defined as

β̂
TREX ∈ arg min

β∈Rp

{ ||Y − Xβ||22
1
2 ||X′(Y − Xβ)||∞

+ |β|1}.

For some numerical results on the variable selection performance of the estimator,
see [21].

3 Experimental Study

3.1 Simulation Setup

We consider the model

Y = Xβ + ε (9)

where X is n × p dimensional predictor matrix, Y is the n-dimensional response
vector, and ε is the n-dimensional unobserved error vector. β is a p-dimensional
vector of coefficients. Each component of ε is generated from standard normal
distribution.

In our simulation study, we basically follow the simulation set-up of [24]. All
simulations were based on a sample size of n = 100. We considered two different
values for the number of predictor variables: p = 500 and p = 1000. Entries of the
predictor matrix X were randomly sampled from the standard normal distribution.
Correlation between columns of X is set to ρ, where ρ ∈ {0, 0.2, 0.4, 0.6, 0.8}.

The number of non-zero elements of β was set to �nα�, where α controls the
sparsity of β. We chose α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We picked �nα� number of
indices randomly. For these indices, the coordinates of β were sampled from a
Laplace(1) distribution while the rest of the coordinates of β were set to zero.
The resulting β vector was rescaled according to the pre-specified signal-to-noise

ratio, snr , defined as β
′
Σβ

σ 2 , where snr ∈ {0.5, 1, 2, 5, 10, 20}. Here Σ is the
covariance matrix of the predictors. We assumed homoscedasticity condition where
σ 2 is the error variance of each predictor variables. We assume that σ = 1 in all our
simulations.

We investigate the relative performance of the following five estimators:

1. Lasso
2. aLasso
3. CTFR
4. SCAD
5. MCP
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Tuning parameters for the above methods, except for CTFR, were chosen to
minimize 10-fold cross validation error. For aLasso, we used the obtained Lasso
estimate as the weight for the penalty term. In the simulation tables, we summarize
our simulation results by comparing the performance of estimator CTFR, SCAD,
MCP, and aLasso with relative to Lasso. The performance was measured based on
the following metrics, respectively:

(a) TP= the number of true positives
(b) FP = the number of false positives
(c) PE= the prediction error

We define the relative number of true positives of listed methods to Lasso as:

RT P = number of true positives of any method in the list

number of true positives of Lasso
.

Clearly the value greater than one, which is shown as bold in Tables 1–10,
will indicate the superiority of the suggested method over Lasso in selecting true
positives, otherwise Lasso is relatively performing well. For instance, in Table 1,
for p = 500 and parameters (ρ, α, snr) = (0, 0.1, 0.5), the value 0.712 in RTP of
CTFR is computed by

number of true positives of CTFR

number of true positives of Lasso
= 0.712.

Similarly two other relative measures RFP and RPE are, respectively, defined as:

RFP = number of false positives of any method in the list

number of false positives of Lasso
.

RPE = prediction error of any method in the list

prediction error of Lasso
.

For our simulations, we used a cv.glmnet function in the glmnet package in R
language for Lasso and aLasso, and a cv.ncvreg function in the ncvreg package for
SCAD andMCP methods. The implementation of CTFR is done in R language, and
it can be provided upon request.

3.2 Simulation Results

In this section, we present our simulation results (Tables 2, 3, 4, 5, 6, 7, 8, 9, 10).
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Table 1 Simulation results for p = 500 and ρ = 0

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.712 0.227 0.679 0.475 0.907 0.926 0.220 0.193 1.155 1.089
MCP 0.619 1.258 0.450 0.530 0.608 0.473 1.981 0.197 0.572 1.680
SCAD 0.443 1.000 2.364 0.434 1.291 0.577 1.045 2.056 0.658 0.971

aLasso 0.500 0.608 1.711 1.970 1.079 0.176 1.155 0.911 5.630 1.023
RFP CTFR 0.105 0.108 0.225 0.130 0.170 0.027 0.038 0.029 0.164 0.158

MCP 0.233 0.320 0.268 0.205 0.135 0.155 0.414 0.142 0.232 0.357

SCAD 0.500 0.872 0.903 0.500 0.738 0.572 0.820 0.849 0.633 0.498

aLasso 1.200 0.625 1.416 0.742 1.198 0.497 1.731 0.551 1.666 1.012
RPE CTFR 1.587 0.837 0.936 1.283 1.979 2.542 0.843 0.902 3.439 3.212

MCP 0.496 0.900 0.795 1.017 1.020 0.312 1.003 0.302 1.149 2.813
SCAD 0.309 0.812 1.596 1.117 0.856 0.288 0.630 1.276 0.925 1.166
aLasso 1.114 1.323 2.868 3.250 1.619 0.759 2.234 1.623 4.947 1.313

snr = 2 snr = 5

RTP CTFR 0.970 0.171 0.312 0.628 1.109 0.820 0.199 0.320 0.717 1.115
MCP 0.781 1.140 0.235 0.673 1.500 0.500 2.000 0.367 0.744 1.280
SCAD 0.556 0.945 1.750 0.486 1.394 0.301 1.000 3.260 0.706 0.954

aLasso 0.306 0.711 1.391 3.150 0.986 0.149 0.602 1.640 6.450 0.936

RFP CTFR 0.001 0.002 0.006 0.031 0.102 0.002 0.001 0.008 0.043 0.059

MCP 0.156 0.165 0.109 0.170 0.342 0.084 0.189 0.157 0.163 0.171

SCAD 0.620 0.451 0.577 0.541 0.547 0.229 0.423 1.042 0.575 0.378

aLasso 0.604 1.047 0.921 1.411 0.934 0.430 0.849 0.967 1.967 0.842

RPE CTFR 3.712 1.040 1.954 3.231 6.045 5.945 1.745 3.441 7.927 12.286
MCP 0.284 0.469 0.295 0.811 2.743 0.185 0.418 0.161 1.179 4.221

SCAD 0.289 0.437 0.984 0.501 1.611 0.139 0.351 0.977 0.597 2.011
aLasso 1.108 1.606 2.169 3.538 1.148 0.731 1.551 2.164 3.674 0.831

snr = 10 snr = 20

RTP CTFR 0.520 0.102 0.222 0.429 1.140 1.000 0.084 0.307 0.574 1.437
MCP 0.667 1.470 0.399 0.713 1.135 0.508 1.930 0.347 0.857 1.157
SCAD 0.241 1.007 4.130 0.662 0.957 0.228 0.995 4.450 0.635 0.930

aLasso 0.140 0.361 2.767 6.930 0.946 0.127 0.449 2.213 7.74 0.955

RFP CTFR 0.000 0.000 0.002 0.013 0.029 0.000 0.000 0.001 0.011 0.071

MCP 0.098 0.274 0.139 0.150 0.176 0.067 0.279 0.090 0.113 0.160

SCAD 0.305 0.487 1.389 0.402 0.403 0.176 0.637 0.989 0.412 0.303

aLasso 0.323 0.639 1.316 2.645 0.862 0.256 0.641 1.374 3.304 0.881

RPE CTFR 8.631 2.160 3.318 10.859 22.52 17.507 2.128 9.489 19.077 48.814
MCP 0.208 0.521 0.289 1.231 3.826 0.127 0.726 0.164 0.775 10.836
SCAD 0.168 0.497 1.665 1.009 1.454 0.118 0.529 1.701 0.268 6.561
aLasso 0.411 1.078 2.678 4.806 0.874 0.631 1.122 2.446 4.640 0.598
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Table 2 Simulation results for p = 500 and ρ = 0.2

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.658 0.190 0.425 0.441 0.873 0.697 0.389 0.210 0.846 0.589

MCP 0.944 0.816 0.463 0.438 0.294 0.678 1.414 0.341 0.476 0.669

SCAD 0.574 1.042 1.737 0.546 0.781 0.728 1.027 1.212 0.845 0.72

aLasso 0.500 0.544 2.028 2.237 1.083 0.350 1.081 0.993 3.01 1.21
RFP CTFR 0.141 0.064 0.145 0.158 0.309 0.024 0.123 0.045 0.173 0.097

MCP 0.281 0.16 0.287 0.179 0.143 0.124 0.262 0.177 0.161 0.112

SCAD 0.696 0.951 0.621 0.539 0.511 0.615 0.625 0.497 0.838 0.353

aLasso 1.511 0.758 1.974 0.985 1.068 0.857 1.286 0.812 1.376 1.387
RPE CTFR 1.436 0.653 1.016 1.553 2.837 2.496 0.793 0.918 2.585 2.74

MCP 0.666 0.460 0.571 1.029 1.656 0.292 0.84 0.316 1.127 2.565
SCAD 0.453 0.666 1.314 0.804 1.136 0.371 0.632 1.070 0.757 1.314
aLasso 1.232 1.420 3.455 2.746 1.397 1.026 1.981 1.780 3.287 1.086

snr = 2 snr = 5

RTP CTFR 0.970 0.232 0.469 0.720 0.725 0.670 0.062 0.280 0.569 2.367
MCP 0.529 1.730 0.389 0.650 1.081 1.000 0.740 0.336 0.723 0.963

SCAD 0.474 0.995 2.100 0.635 1.071 0.283 0.796 3.230 0.624 0.958

aLasso 0.282 0.886 1.095 3.470 0.967 0.181 0.283 3.643 5.410 0.968
RFP CTFR 0.036 0.036 0.122 0.121 0.087 0.002 0.000 0.056 0.029 0.213

MCP 0.052 0.316 0.209 0.224 0.139 0.169 0.120 0.141 0.126 0.160

SCAD 0.248 0.592 1.213 0.840 0.385 0.291 0.386 0.947 0.413 0.375

aLasso 0.673 0.985 1.185 2.15 0.933 0.510 0.608 2.307 2.117 0.903

RPE CTFR 4.165 1.074 1.611 3.687 5.036 5.894 1.105 2.275 6.683 13.925
MCP 0.165 1.107 0.226 0.972 3.298 0.410 0.851 0.444 0.891 3.595
SCAD 0.176 0.631 1.290 0.486 1.943 0.252 0.731 2.233 0.513 2.038
aLasso 0.833 1.993 1.657 4.283 1.069 0.599 0.944 2.748 4.194 0.926

snr = 10 snr = 20

RTP CTFR 0.980 0.128 0.266 0.603 2.257 1.000 0.153 0.206 0.759 1.420
MCP 0.329 2.941 0.303 0.677 1.256 0.500 2.000 0.266 0.762 1.405
SCAD 0.159 0.993 6.118 0.779 0.756 0.316 1.000 3.040 0.610 0.895

aLasso 0.064 0.475 2.105 15.412 0.949 0.130 0.633 1.575 7.540 0.963

RFP CTFR 0.000 0.001 0.046 0.032 0.371 0.000 0.001 0.001 0.068 0.103

MCP 0.073 0.144 0.096 0.094 0.279 0.067 0.064 0.070 0.100 0.140

SCAD 0.147 0.190 1.220 0.390 0.322 0.147 0.154 0.582 0.344 0.271

aLasso 0.259 0.780 1.326 3.922 0.893 0.300 0.794 1.204 2.866 0.898

RPE CTFR 11.352 2.611 2.308 18.033 15.039 21.037 2.078 6.812 18.013 46.238
MCP 0.125 0.442 0.310 1.403 4.361 0.134 0.249 0.069 1.176 13.914
SCAD 0.091 0.192 2.381 1.139 1.655 0.100 0.175 0.830 0.471 4.997
aLasso 0.398 1.509 2.044 7.357 0.994 0.506 1.363 2.264 5.146 0.619
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Table 3 Simulation results for p = 500 and ρ = 0.4

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.838 0.268 0.421 0.598 0.761 0.904 0.357 0.323 0.736 0.673

MCP 0.540 1.368 0.369 0.443 0.472 0.354 2.654 0.333 0.423 0.557

SCAD 0.504 0.973 1.574 0.556 0.793 0.393 0.98 2.365 0.813 0.517

aLasso 0.479 0.882 1.310 2.559 1.293 0.187 1.050 0.98 5.846 1.365
RFP CTFR 0.184 0.155 0.201 0.263 0.224 0.041 0.104 0.250 0.099 0.153

MCP 0.145 0.189 0.204 0.176 0.098 0.072 0.225 0.341 0.094 0.091

SCAD 0.466 0.573 0.606 0.735 0.371 0.245 0.528 1.140 0.734 0.252

aLasso 1.531 1.126 1.468 1.550 1.294 0.575 0.955 1.696 2.014 1.533
RPE CTFR 1.678 0.992 1.657 1.120 1.686 2.367 1.006 0.764 3.500 3.079

MCP 0.358 1.442 0.729 1.095 1.522 0.291 0.930 0.363 1.097 3.059
SCAD 0.346 0.846 1.801 0.559 1.793 0.334 0.576 1.269 0.860 1.197
aLasso 1.769 1.837 2.115 3.028 1.460 0.676 2.440 2.037 4.562 1.091

snr = 2 snr = 5

RTP CTFR 1.000 0.187 0.351 0.769 0.900 0.554 0.206 0.255 0.621 1.188
MCP 0.550 1.560 0.283 0.488 0.726 0.466 1.913 0.417 0.472 0.592

SCAD 0.427 0.978 1.930 0.422 0.997 0.277 0.984 3.685 0.558 0.689

aLasso 0.298 0.786 1.267 3.490 0.987 0.173 0.551 1.806 5.511 1.049
RFP CTFR 0.098 0.045 0.024 0.211 0.153 0.000 0.022 0.002 0.255 0.151

MCP 0.080 0.136 0.059 0.146 0.101 0.054 0.106 0.088 0.129 0.086

SCAD 0.247 0.470 0.426 0.415 0.364 0.216 0.254 0.700 0.611 0.240

aLasso 1.152 0.999 1.097 1.570 0.970 0.380 0.854 1.045 2.307 1.157
RPE CTFR 2.591 1.006 2.454 2.395 5.005 5.673 1.737 4.061 4.630 8.596

MCP 0.212 1.201 0.335 1.243 2.896 0.296 0.626 0.360 1.363 3.855
SCAD 0.153 0.759 1.379 0.666 2.156 0.222 0.353 1.882 0.636 2.792
aLasso 1.072 1.460 2.278 3.410 1.045 0.735 1.223 2.203 4.195 0.798

snr = 10 snr = 20

RTP CTFR 1.000 0.130 0.249 0.586 1.240 1.000 0.118 0.310 0.338 1.096
MCP 0.649 1.480 0.282 0.633 0.703 0.532 1.930 0.297 0.637 0.960

SCAD 0.283 0.961 3.390 0.584 0.569 0.266 1.043 3.620 0.516 0.720

aLasso 0.127 0.433 2.273 7.650 0.967 0.131 0.519 1.989 7.380 0.918

RFP CTFR 0.006 0.019 0.012 0.018 0.070 0.001 0.002 0.049 0.007 0.065

MCP 0.038 0.093 0.044 0.076 0.088 0.053 0.053 0.038 0.066 0.082

SCAD 0.109 0.316 0.478 0.242 0.150 0.103 0.296 0.386 0.223 0.167

aLasso 0.508 0.957 1.311 2.270 0.904 0.559 0.657 1.365 2.000 0.830

RPE CTFR 7.373 0.999 4.014 14.454 30.866 11.127 1.383 6.855 22.267 50.654
MCP 0.145 0.533 0.175 1.623 10.358 0.158 0.562 0.106 1.583 15.923
SCAD 0.114 0.429 1.305 0.746 5.527 0.109 0.396 1.064 0.681 7.130
aLasso 0.566 1.092 2.844 4.668 0.718 0.546 1.199 2.298 4.481 0.652
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Table 4 Simulation results for p = 500 and ρ = 0.6

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.627 0.287 0.296 0.537 0.841 0.897 0.256 0.348 0.521 0.816

MCP 1.111 0.72 0.336 0.211 0.317 0.816 0.586 0.189 0.247 0.326

SCAD 0.988 0.952 0.773 0.510 0.634 0.549 0.855 1.161 0.469 0.511

aLasso 0.620 0.805 1.524 2.227 1.65 0.374 0.514 1.974 2.874 1.142
RFP CTFR 0.077 0.099 0.151 0.166 0.346 0.211 0.330 0.302 0.178 0.101

MCP 0.058 0.069 0.058 0.087 0.119 0.085 0.075 0.144 0.071 0.048

SCAD 0.358 0.272 0.310 0.342 0.620 0.304 0.367 0.452 0.384 0.177

aLasso 1.356 1.254 1.647 1.336 1.766 1.531 1.354 1.774 1.136 1.202
RPE CTFR 1.587 1.649 0.908 2.012 1.636 1.729 0.497 0.879 2.911 5.476

MCP 0.767 0.517 0.993 1.208 1.172 0.999 0.820 0.524 1.247 3.192
SCAD 0.528 0.601 0.824 2.327 0.476 0.562 0.868 1.435 0.854 1.517
aLasso 1.190 1.901 2.819 2.828 2.869 1.028 1.669 3.480 3.521 1.190

snr = 2 snr = 5

RTP CTFR 0.788 0.238 0.260 0.602 1.648 0.682 0.080 0.324 0.748 0.993

MCP 0.615 0.750 0.289 0.402 0.388 0.449 1.261 0.176 0.453 0.458

SCAD 0.347 0.780 1.700 0.810 0.443 0.307 0.913 2.080 0.367 0.481

aLasso 0.188 0.454 2.308 5.012 1.283 0.165 0.605 1.681 5.852 0.947

RFP CTFR 0.192 0.174 0.144 0.064 0.316 0.033 0.003 0.195 0.054 0.103

MCP 0.040 0.073 0.054 0.035 0.060 0.033 0.035 0.032 0.031 0.031

SCAD 0.127 0.265 0.394 0.291 0.271 0.126 0.277 0.273 0.115 0.118

aLasso 0.866 1.121 1.753 1.703 1.599 0.959 0.837 1.701 1.407 0.906

RPE CTFR 3.057 1.029 1.198 4.154 4.341 3.621 0.957 1.399 6.32 15.521
MCP 0.609 0.998 0.952 1.473 1.617 0.504 0.851 0.337 1.413 7.398
SCAD 0.278 0.642 2.473 1.827 0.839 0.278 0.746 1.738 0.895 3.342
aLasso 0.731 1.362 3.509 5.013 1.509 0.753 1.445 2.473 3.838 0.888

snr = 10 snr = 20

RTP CTFR 0.515 0.196 0.233 0.578 1.686 1.000 0.139 0.252 0.409 0.930

MCP 0.635 1.515 0.37 0.669 0.537 0.500 2.000 0.398 0.715 0.631

SCAD 0.311 0.962 2.949 0.710 0.436 0.225 1.000 4.290 0.665 0.555

aLasso 0.140 0.478 2.051 7.000 0.957 0.120 0.449 2.215 8.080 0.958

RFP CTFR 0.000 0.120 0.009 0.039 0.328 0.017 0.011 0.011 0.014 0.070

MCP 0.029 0.025 0.015 0.039 0.075 0.016 0.019 0.013 0.027 0.038

SCAD 0.089 0.094 0.149 0.156 0.175 0.037 0.057 0.172 0.147 0.098

aLasso 0.359 0.908 1.576 2.354 0.919 0.533 0.734 1.401 2.641 0.890

RPE CTFR 8.243 1.327 6.267 13.243 14.622 9.918 2.532 12.086 27.137 39.189
MCP 0.267 0.269 0.193 1.420 3.765 0.160 0.287 0.122 1.539 9.805
SCAD 0.118 0.297 0.930 1.110 2.468 0.090 0.152 1.187 0.430 4.786
aLasso 0.732 1.070 3.361 4.406 1.028 0.518 1.208 2.533 5.022 0.655
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Table 5 Simulation results for p = 500 and ρ = 0.8

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.727 0.364 0.580 0.276 0.926 0.891 0.191 0.218 0.752 1.737

MCP 0.185 0.818 0.227 0.140 0.161 0.860 0.855 0.093 0.183 0.381

SCAD 0.230 0.796 1.212 0.227 1.040 0.476 0.842 1.055 0.350 0.341

aLasso 0.600 0.678 1.852 2.424 2.173 0.234 0.590 2.035 5.509 1.191
RFP CTFR 0.390 0.322 0.268 0.340 0.483 0.195 0.155 0.275 0.124 0.290

MCP 0.110 0.068 0.092 0.067 0.068 0.024 0.036 0.065 0.042 0.021

SCAD 0.265 0.306 0.396 0.412 0.416 0.047 0.146 0.483 0.171 0.123

aLasso 1.896 1.330 2.135 2.038 2.113 1.181 0.976 2.789 2.391 1.333
RPE CTFR 1.826 1.741 3.041 0.686 1.304 2.472 1.015 0.809 2.897 3.735

MCP 1.401 1.317 2.374 1.323 0.844 0.409 0.613 0.994 1.269 1.407
SCAD 0.674 1.177 2.083 0.889 1.224 0.253 0.572 1.896 2.012 0.639

aLasso 4.137 1.879 4.102 3.505 4.485 0.843 1.471 4.418 5.314 1.850
snr = 2 snr = 5

RTP CTFR 0.850 0.249 0.163 0.213 0.688 0.515 0.289 0.185 0.629 1.619
MCP 0.351 1.633 0.588 0.332 0.130 0.730 0.598 0.263 0.402 0.404

SCAD 0.217 0.786 3.033 0.763 0.215 0.636 0.659 1.134 0.735 0.290

aLasso 0.148 0.542 1.799 7.500 1.163 0.155 0.768 1.452 6.216 1.237
RFP CTFR 0.057 0.022 0.007 0.013 0.314 0.000 0.456 0.025 0.033 0.460

MCP 0.015 0.088 0.052 0.035 0.046 0.035 0.098 0.028 0.028 0.120

SCAD 0.048 0.141 0.185 0.138 0.184 0.085 0.278 0.081 0.107 0.165

aLasso 0.516 0.763 1.174 2.276 1.425 0.336 2.441 1.227 2.419 1.512
RPE CTFR 2.954 3.133 1.966 4.271 2.185 5.646 1.478 1.187 13.083 5.675

MCP 0.388 1.844 1.661 1.701 1.042 0.621 1.530 0.627 1.834 2.417
SCAD 0.224 0.983 3.186 3.348 0.668 0.272 1.467 1.351 3.054 0.942

aLasso 0.574 1.201 2.521 5.198 1.854 0.579 1.684 2.702 4.246 1.425
snr = 10 snr = 20

RTP CTFR 0.825 0.151 0.160 0.323 0.986 0.725 0.092 0.146 0.367 0.699

MCP 0.392 1.587 0.247 0.554 0.695 0.355 1.912 0.184 0.547 1.097
SCAD 0.176 0.937 3.062 0.538 0.386 0.227 0.928 2.712 0.478 0.442

aLasso 0.100 0.416 2.350 9.600 0.938 0.094 0.601 1.633 10.325 0.965

RFP CTFR 0.108 0.167 0.001 0.005 0.121 0.052 0.001 0.037 0.003 0.037

MCP 0.018 0.068 0.017 0.064 0.067 0.024 0.023 0.029 0.030 0.056

SCAD 0.028 0.094 0.118 0.078 0.070 0.050 0.029 0.138 0.060 0.053

aLasso 0.581 0.843 1.314 3.154 0.866 0.586 0.594 1.272 2.431 0.857

RPE CTFR 7.220 0.955 6.125 19.082 27.456 8.939 1.910 3.453 38.43 62.878
MCP 0.515 1.482 0.389 2.041 4.982 0.474 0.630 0.158 1.997 17.944
SCAD 0.233 0.795 3.028 1.335 2.709 0.312 0.347 1.947 0.684 7.063
aLasso 0.550 1.183 2.885 6.099 0.971 0.574 1.406 2.095 5.125 0.607
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Table 6 Simulation results for p = 1000 and ρ = 0

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.759 0.626 0.556 0.459 0.368 0.735 0.331 0.299 0.770 1.039
MCP 0.481 1.379 0.929 0.563 0.215 1.197 0.704 0.669 0.692 0.587

SCAD 0.452 1.009 2.086 1.091 0.476 0.778 1.013 1.276 1.364 0.564

aLasso 0.468 0.807 1.292 2.103 1.081 0.419 0.595 1.645 2.378 1.214
RFP CTFR 0.057 0.204 0.244 0.118 0.196 0.033 0.022 0.030 0.128 0.192

MCP 0.174 0.342 0.446 0.304 0.058 0.206 0.192 0.361 0.233 0.188

SCAD 0.453 0.896 0.935 0.945 0.439 0.687 0.734 0.836 1.327 0.337

aLasso 1.175 0.675 1.416 0.806 0.998 0.724 0.843 1.166 1.262 1.229
RPE CTFR 1.491 0.888 0.900 1.231 1.387 2.105 0.648 1.109 2.353 4.058

MCP 0.335 1.591 0.660 1.008 1.225 0.480 0.518 0.316 0.983 2.523
SCAD 0.337 0.975 1.514 0.938 1.018 0.415 0.630 1.048 0.642 1.475
aLasso 1.035 1.555 1.870 3.003 1.320 1.022 1.755 2.943 3.191 1.094

snr = 2 snr = 5

RTP CTFR 0.735 0.213 0.326 0.582 0.662 0.530 0.085 0.257 0.503 2.944
MCP 0.444 1.809 0.671 0.620 0.470 1.796 0.510 0.566 0.772 0.746

SCAD 0.259 0.985 3.912 0.914 0.685 0.287 0.944 3.590 0.776 0.866

aLasso 0.183 0.526 1.902 5.603 0.931 0.196 0.158 6.278 4.970 0.952

RFP CTFR 0 0.001 0.011 0.130 0.120 0.000 0.000 0.005 0.030 0.239

MCP 0.053 0.392 0.242 0.162 0.177 0.351 0.122 0.213 0.157 0.117

SCAD 0.121 0.692 2.271 0.580 0.438 0.248 0.585 1.423 0.636 0.383

aLasso 0.326 0.837 1.078 2.730 0.933 0.418 0.319 3.034 2.428 0.914

RPE CTFR 4.262 0.837 1.353 3.693 5.560 5.893 0.768 2.886 5.751 28.943
MCP 0.226 1.057 0.269 1.239 3.184 0.763 0.292 0.263 1.152 4.738
SCAD 0.146 0.627 1.982 0.951 1.324 0.226 0.55 1.904 0.619 2.354
aLasso 0.431 1.336 2.230 5.961 1.046 0.546 0.748 5.573 4.379 0.809

snr = 10 snr = 20

RTP CTFR 0.980 0.143 0.243 0.625 1.079 1.000 0.200 0.375 0.289 0.965

MCP 0.329 2.922 0.441 0.886 1.262 0.505 1.990 0.599 0.802 0.923

SCAD 0.156 0.987 6.314 0.914 0.956 0.220 1.005 4.640 0.768 1.045
aLasso 0.083 0.472 2.099 11.941 0.964 0.168 0.436 2.268 5.840 0.947

RFP CTFR 0.000 0.000 0.000 0.032 0.051 0.000 0.000 0.002 0.002 0.044

MCP 0.091 0.166 0.170 0.129 0.170 0.108 0.176 0.116 0.134 0.141

SCAD 0.098 0.484 1.683 0.571 0.375 0.109 0.509 0.947 0.446 0.416

aLasso 0.253 0.615 1.487 3.27 0.873 0.432 0.576 1.400 2.026 0.890

RPE CTFR 9.020 1.403 3.391 13.554 28.543 15.614 2.076 9.076 13.473 41.154
MCP 0.164 0.438 0.132 1.117 6.171 0.143 0.443 0.115 1.044 7.410
SCAD 0.073 0.440 1.498 0.519 2.170 0.067 0.404 1.362 0.308 3.708
aLasso 0.361 1.159 2.822 5.423 0.691 0.653 1.039 2.358 3.825 0.540
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Table 7 Simulation results for p = 1000 and ρ = 0.2

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.885 0.447 0.604 0.566 0.581 0.926 0.447 0.411 0.462 0.579

MCP 0.581 1.500 0.582 0.414 0.475 0.376 2.370 0.941 0.598 0.401

SCAD 0.515 0.965 2.038 0.589 1.072 0.274 1.023 3.796 1.082 0.548

aLasso 0.468 0.970 1.337 2.404 1.326 0.247 0.675 1.534 4.593 1.165
RFP CTFR 0.213 0.106 0.268 0.267 0.330 0.028 0.075 0.085 0.158 0.170

MCP 0.213 0.428 0.186 0.143 0.339 0.079 0.327 0.322 0.214 0.122

SCAD 0.641 0.804 1.324 0.416 1.010 0.407 0.670 1.114 1.070 0.291

aLasso 0.940 2.095 1.501 1.963 1.524 0.784 1.124 0.986 2.347 1.296
RPE CTFR 1.983 1.033 0.914 1.327 1.822 2.179 1.011 1.564 1.797 2.534

MCP 0.348 1.478 0.939 0.988 1.043 0.171 1.007 0.564 1.090 1.741
SCAD 0.291 0.903 2.507 1.283 0.693 0.201 0.671 1.998 0.700 1.506
aLasso 0.897 1.536 2.567 4.958 1.983 0.984 1.510 1.950 3.868 1.115

snr = 2 snr = 5

RTP CTFR 0.820 0.299 0.474 0.612 0.944 0.505 0.095 0.210 0.879 0.955

MCP 0.794 1.06 0.761 0.678 0.616 0.752 1.232 0.283 0.730 1.226
SCAD 0.380 0.937 2.710 0.855 0.941 0.503 0.962 1.899 0.842 0.759

aLasso 0.329 0.456 2.063 3.240 1.186 0.191 0.693 1.617 5.152 1.005
RFP CTFR 0.008 0.066 0.049 0.128 0.143 0.000 0.000 0.006 0.106 0.112

MCP 0.122 0.191 0.305 0.182 0.151 0.157 0.245 0.086 0.143 0.207

SCAD 0.358 0.552 1.109 0.757 0.589 0.405 0.624 0.680 0.548 0.358

aLasso 0.825 1.207 1.252 1.763 1.450 0.496 1.002 1.860 2.350 0.959

RPE CTFR 3.771 1.030 2.273 2.335 4.520 5.604 0.933 1.905 8.132 14.42
MCP 0.239 0.653 0.537 1.138 1.636 0.276 0.841 0.216 1.069 5.701
SCAD 0.174 0.545 1.648 0.870 1.190 0.268 0.765 1.376 0.586 2.383
aLasso 1.034 1.239 2.743 3.355 1.140 0.657 1.357 2.453 3.867 0.762

snr = 10 snr = 20

RTP CTFR 1.000 0.165 0.403 0.579 1.224 0.500 0.133 0.289 0.525 0.780

MCP 0.641 1.460 0.569 0.803 0.449 0.524 1.870 0.480 0.829 0.796

SCAD 0.255 0.949 3.950 0.707 0.771 0.268 1.010 3.780 0.767 0.836

aLasso 0.212 0.408 2.487 4.770 0.994 0.169 0.512 1.932 5.88 0.969

RFP CTFR 0.001 0.001 0.027 0.061 0.156 0.000 0.000 0.004 0.042 0.067

MCP 0.055 0.180 0.115 0.147 0.072 0.110 0.176 0.097 0.116 0.101

SCAD 0.129 0.429 0.890 0.453 0.368 0.258 0.587 0.786 0.404 0.333

aLasso 0.783 1.119 1.452 2.005 0.966 0.842 0.631 1.492 1.922 0.904

RPE CTFR 8.882 0.78 4.895 6.526 24.055 10.489 1.118 6.953 14.263 49.102
MCP 0.115 0.729 0.127 1.010 11.007 0.285 0.612 0.05 1.025 17.04
SCAD 0.089 0.628 1.562 0.265 5.789 0.195 0.483 0.843 0.227 6.902
aLasso 0.618 1.139 2.416 3.732 0.591 0.559 1.243 2.278 3.743 0.524
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Table 8 Simulation results for p = 1000 and ρ = 0.4

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.804 0.600 0.413 0.693 0.288 0.839 0.377 0.534 0.662 1.049
MCP 0.538 1.625 0.678 0.433 0.307 0.505 1.500 0.503 0.437 0.531

SCAD 0.853 0.952 1.393 1.033 0.673 0.438 1.039 1.887 0.814 0.908

aLasso 0.606 1.413 0.740 2.339 1.678 0.362 0.908 1.379 3.161 1.344
RFP CTFR 0.096 0.184 0.115 0.168 0.175 0.084 0.141 0.138 0.355 0.340

MCP 0.122 0.226 0.257 0.169 0.196 0.056 0.133 0.137 0.209 0.225

SCAD 0.631 0.562 0.833 0.668 0.711 0.308 0.468 0.647 0.748 0.724

aLasso 1.351 1.388 1.011 1.380 2.037 1.612 1.971 1.744 2.607 1.898
RPE CTFR 1.721 1.083 0.922 1.685 1.478 1.923 1.727 1.795 1.785 1.637

MCP 0.335 1.201 0.644 0.992 1.436 0.193 1.078 0.935 1.193 1.268
SCAD 0.389 0.712 1.309 1.115 0.846 0.198 0.661 1.539 0.931 1.092
aLasso 1.256 2.169 1.840 3.910 1.692 1.965 1.958 2.004 4.032 2.062

snr = 2 snr = 5

RTP CTFR 0.610 0.369 0.235 0.600 0.538 0.797 0.179 0.431 0.627 0.948

MCP 0.503 1.86 0.439 0.477 0.432 0.273 2.922 0.487 0.636 0.448

SCAD 0.526 0.959 1.810 0.833 0.514 0.204 0.995 4.031 0.571 0.911

aLasso 0.310 1.037 0.954 3.290 1.167 0.208 0.699 1.418 5.328 1.157
RFP CTFR 0.012 0.019 0.010 0.111 0.065 0.004 0.003 0.009 0.083 0.212

MCP 0.045 0.126 0.117 0.104 0.063 0.019 0.169 0.073 0.09 0.085

SCAD 0.386 0.315 0.488 0.624 0.252 0.064 0.418 0.791 0.336 0.434

aLasso 0.826 1.576 0.613 1.155 1.224 1.234 0.776 1.235 2.666 1.446
RPE CTFR 3.331 0.968 1.354 4.099 3.961 5.762 1.190 4.086 3.541 8.023

MCP 0.164 0.737 0.300 1.300 4.057 0.177 1.029 0.212 1.137 4.446
SCAD 0.200 0.448 1.241 0.795 1.746 0.124 0.457 2.027 0.449 3.143
aLasso 0.766 2.062 1.619 3.412 0.879 0.784 1.297 1.976 5.084 0.659

snr = 10 snr = 20

RTP CTFR 0.760 0.266 0.295 0.449 1.234 1.000 0.218 0.199 0.819 0.625

MCP 0.543 1.670 0.668 0.776 0.598 0.500 2.000 0.403 0.699 0.734

SCAD 0.245 0.946 4.070 0.963 0.669 0.292 1.000 3.190 0.544 0.984

aLasso 0.169 0.453 2.196 5.750 1.105 0.223 0.585 1.695 4.740 0.964

RFP CTFR 0.000 0.001 0.011 0.013 0.136 0.000 0.000 0.004 0.219 0.042

MCP 0.027 0.063 0.080 0.053 0.052 0.043 0.032 0.073 0.069 0.065

SCAD 0.067 0.147 0.638 0.337 0.238 0.094 0.150 0.567 0.282 0.261

aLasso 0.358 0.630 1.369 2.511 1.330 0.534 0.739 1.377 2.538 0.929

RPE CTFR 9.362 2.832 5.703 10.875 10.578 17.463 1.954 5.972 6.616 43.547
MCP 0.089 0.599 0.287 0.996 3.081 0.142 0.211 0.127 1.025 14.857
SCAD 0.084 0.348 1.510 0.552 1.855 0.080 0.190 1.500 0.212 8.766
aLasso 0.550 1.100 2.085 3.886 0.702 0.779 1.208 2.117 3.327 0.533
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Table 9 Simulation results for p = 1000 and ρ = 0.6

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.640 0.234 0.606 0.333 1.111 0.942 0.295 0.560 0.489 1.172
MCP 2.167 0.135 0.449 0.212 0.158 0.781 1.058 0.337 0.213 0.259

SCAD 0.754 0.861 0.978 0.505 0.485 0.370 0.984 1.788 0.554 0.716

aLasso 0.929 0.316 3.556 1.697 1.140 0.369 0.526 2.438 4.000 1.488

RFP CTFR 0.084 0.651 0.113 0.274 0.186 0.071 0.030 0.322 0.231 0.289

MCP 0.063 0.116 0.098 0.079 0.039 0.037 0.033 0.117 0.093 0.052

SCAD 0.353 0.668 0.278 0.745 0.150 0.141 0.285 0.471 0.613 0.345

aLasso 0.935 2.771 1.444 2.399 1.363 1.779 1.265 3.143 2.200 1.985
RPE CTFR 1.491 0.556 1.456 0.984 4.102 1.850 0.752 1.252 2.103 4.051

MCP 1.19 0.815 0.841 1.145 1.405 0.253 0.546 0.661 1.382 2.295
SCAD 0.344 1.148 1.430 0.555 1.706 0.185 0.484 1.821 0.815 1.574
aLasso 1.847 1.598 4.677 2.539 1.432 1.353 1.716 3.678 3.777 1.204

snr = 2 snr = 5

RTP CTFR 0.840 0.158 0.320 0.610 1.821 1.000 0.300 0.315 0.403 0.540

MCP 1.071 0.667 0.441 0.270 0.300 0.495 1.970 0.612 0.525 0.332

SCAD 0.340 0.893 2.240 0.450 0.504 0.270 0.995 3.510 0.614 0.483

aLasso 0.273 0.280 3.750 3.840 1.196 0.202 0.541 1.830 4.910 0.958

RFP CTFR 0.181 0.062 0.024 0.280 0.223 0.093 0.066 0.014 0.020 0.053

MCP 0.026 0.029 0.047 0.067 0.058 0.024 0.010 0.031 0.033 0.028

SCAD 0.197 0.138 0.343 0.393 0.215 0.084 0.073 0.245 0.209 0.145

aLasso 1.687 1.710 1.550 2.162 1.528 0.947 0.756 1.308 1.632 0.998

RPE CTFR 2.758 0.522 2.149 2.399 8.809 3.585 1.405 3.76 6.616 11.561
MCP 0.581 0.310 0.385 1.558 3.064 0.167 0.316 0.209 1.587 4.892
SCAD 0.249 0.287 1.802 0.783 2.235 0.105 0.220 1.320 0.821 2.827
aLasso 1.189 1.446 4.137 4.281 0.963 0.706 1.135 2.268 4.001 0.759

snr = 10 snr = 20

RTP CTFR 1.000 0.293 0.245 0.473 1.411 1.000 0.167 0.284 0.404 2.381
MCP 0.613 1.510 0.415 0.570 0.566 0.952 1.000 0.547 0.563 0.406

SCAD 0.388 0.939 2.31 0.846 0.421 0.257 0.962 3.610 0.896 0.393

aLasso 0.166 0.624 1.571 5.810 1.118 0.138 0.270 3.676 7.130 1.080
RFP CTFR 0.000 0.180 0.043 0.020 0.282 0.008 0.022 0.048 0.017 0.191

MCP 0.021 0.018 0.029 0.027 0.055 0.036 0.020 0.014 0.028 0.022

SCAD 0.064 0.076 0.246 0.199 0.149 0.064 0.123 0.180 0.174 0.123

aLasso 0.361 1.757 1.318 2.505 1.386 0.866 0.908 1.974 1.721 1.116
RPE CTFR 12.338 1.191 2.573 16.630 10.936 8.255 0.762 6.301 23.682 34.628

MCP 0.161 0.265 0.228 1.703 4.286 0.360 0.291 0.150 2.436 8.167
SCAD 0.112 0.219 1.008 1.353 1.777 0.132 0.368 1.246 1.142 3.267
aLasso 0.509 1.614 2.451 3.982 0.807 0.461 1.050 3.556 4.045 0.512
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Table 10 Simulation results for p = 1000 and ρ = 0.8

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.582 0.268 0.697 0.170 1.033 0.833 0.511 0.197 1.000 0.655

MCP 2.733 0.143 0.427 0.091 0.107 0.483 1.062 0.223 0.202 0.164

SCAD 0.759 0.633 0.505 0.293 0.576 0.745 0.879 0.875 0.691 0.197

aLasso 1.470 0.286 4.033 1.044 2.012 0.202 1.127 1.328 5.104 1.638
RFP CTFR 0.065 0.468 0.096 0.310 0.309 0.278 0.067 0.228 0.159 0.340

MCP 0.036 0.037 0.040 0.056 0.048 0.046 0.027 0.060 0.018 0.118

SCAD 0.064 0.403 0.073 0.402 0.206 0.377 0.054 0.264 0.097 0.299

aLasso 0.991 1.968 1.305 1.972 2.809 1.341 2.514 1.936 1.401 2.072
RPE CTFR 1.502 1.170 1.705 0.667 2.097 1.834 2.234 0.477 6.729 1.310

MCP 1.150 0.610 2.362 0.911 0.628 0.840 0.647 1.513 1.281 1.856
SCAD 0.398 0.988 1.710 1.042 0.734 1.031 0.347 1.092 4.971 0.274

aLasso 2.057 1.376 4.975 2.465 2.898 0.814 3.821 2.565 5.006 3.550
snr = 2 snr = 5

RTP CTFR 0.906 0.382 0.383 0.508 1.103 0.825 0.140 0.623 0.939 2.294
MCP 0.552 0.938 0.491 0.336 0.230 0.735 0.825 0.229 0.353 0.521

SCAD 0.272 0.828 2.094 0.382 0.510 0.307 0.794 1.905 0.355 0.66

aLasso 0.409 0.487 2.322 2.875 1.467 0.288 0.485 2.765 4.016 1.101
RFP CTFR 0.268 0.285 0.025 0.204 0.188 0.143 0.018 0.283 0.281 0.262

MCP 0.025 0.029 0.033 0.043 0.037 0.009 0.015 0.036 0.035 0.036

SCAD 0.097 0.147 0.083 0.227 0.126 0.051 0.046 0.248 0.159 0.146

aLasso 1.692 1.414 1.431 2.054 1.93 1.564 1.151 2.919 2.468 1.227
RPE CTFR 2.688 0.926 3.577 1.259 4.694 3.573 1.127 2.03 2.677 6.923

MCP 0.560 1.216 0.900 1.235 1.378 0.307 0.618 0.599 1.491 2.622
SCAD 0.254 1.053 2.655 0.725 1.873 0.197 0.534 2.194 0.813 2.224
aLasso 1.869 1.158 3.204 4.027 1.362 1.414 1.723 3.468 4.318 1.200

snr = 10 snr = 20

RTP CTFR 0.633 0.388 0.194 0.212 1.217 0.680 0.227 0.240 0.376 1.617
MCP 0.416 1.127 0.829 0.419 0.207 0.599 1.400 0.813 0.525 0.163

SCAD 0.207 0.807 4.266 0.898 0.231 0.243 0.898 3.760 0.712 0.395

aLasso 0.127 0.418 2.255 8.316 1.048 0.170 0.417 2.431 5.820 1.041
RFP CTFR 0.000 0.298 0.009 0.006 0.503 0.000 0.030 0.017 0.063 0.534

MCP 0.020 0.122 0.017 0.025 0.046 0.011 0.020 0.015 0.029 0.071

SCAD 0.046 0.226 0.084 0.074 0.167 0.012 0.044 0.039 0.054 0.283

aLasso 0.300 1.106 1.875 3.584 1.277 0.488 0.755 1.424 2.096 1.264
RPE CTFR 6.281 1.475 6.634 15.067 6.288 16.466 3.31 12.632 13.979 5.139

MCP 0.688 1.860 0.435 2.743 1.850 0.132 0.796 0.443 1.520 1.732
SCAD 0.265 1.516 1.271 3.562 1.096 0.065 0.450 1.012 2.413 1.076
aLasso 0.544 1.187 3.235 4.389 1.295 0.580 1.044 2.128 3.466 1.353
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3.3 Observations

In this section, we briefly summarize our simulation study in three aspects.

3.3.1 In terms of True Positives

– We see from simulation results that the performance of Lasso is superior to
CTFR, MCP, and SCAD in terms of selecting true parameters when the true
model is very sparse, the signal-to-noise ratio is low, and the predictors are
uncorrelated.

– When the predictors are uncorrelated, as the model gets less sparse (for larger α)
the TP performance of CTFR improves and in some cases outperforms Lasso.

– As the number of predictors increases, the true positive value of Lasso and MCP
decreases. To put it differently, the variable selection performance of Lasso and
MCP decreases under the higher dimensional settings.

– Overall, adaptive Lasso had better performance in variable selection compared
to Lasso, but its performance was still inferior to that of CTFR and MCP.

3.3.2 In terms of False Positives

– CTFR and MCP outperformedLasso in terms of FP under any sparsity, signal-to-
noise ratio, and the correlation between predictors cases. This reflected the fact
that a cross-validated Lasso tends to over select.

– SCAD also outperformed Lasso in terms of FP unless signal-to-noise ratio and
the correlation between predictors are high. Therefore, for a two-stage variable
selection procedure, applying CTFR or MCP in the second stage after applying
Lasso in the first stage would help to eliminate the noise variables selected by
Lasso.

– Under the presence of high correlation between predictors, FP of MCP was
smaller than that of CTFR. In other words, MCP had better performance in
screening out irrelevant variables than CTFR when predictors were highly
correlated to each other.

3.3.3 In terms of Prediction Errors

– Lasso outperformed CTFR and aLasso under almost all simulation set-ups.
– Lasso’s prediction performance is significantly better than CTFR as the model

became less sparse, with higher signal-to-noise ratio, and greater correlation
value in the design.
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– In real data examples it is usually assumed that there are some signals in the
data and predictors are not independent to each other. For this parameter range
(ρ = 0.2 and snr = 2 or 5), MCP exhibits a better performance than Lasso in
terms of false positive selection and prediction error performance.

3.4 Non-normal Error Distributions

In this section, we compare the variable selection and prediction performance of the
Lasso and CTFR when the errors in the linear model, with n = 100 and p = 500,
have a heavier tail. We only consider Cauchy and t-distribution with a degree of
freedom 2.

In Table 11, we summarize the simulation results for some selected parameters
when the errors come from Cauchy distribution. We observe that CTFR is no longer
better than Lasso in terms of FP regardless of the sparsity level of model, signal-to-
noise ratio and correlation level among predictors. On the other hand, it outperforms
Lasso in terms of variable selection performance. CTFR has much lower prediction
error than that of Lasso in all cases except the case that the model is very sparse and
has high signal-to-noise ratio.

In Table 12, we summarize the simulation results for some selected parameters
when the errors come from t-distribution with two degrees of freedom. When we
compare the results in these two tables, we see that the prediction errors significantly
decrease as the tail properties of the error distribution get closer to the normal
distribution. In various combinations of sparsity level and the value of correlation
among predictors, as long as signal-to-noise ratio increases, CTFR performs better
than Lasso in terms of false positive selection; that is, it selects fewer noise variables.

Table 11 Errors in the linear models are Cauchy distributed

Cauchy distribution

True Positive False Positive Prediction Error

(α,ρ,snr) Lasso CTFR Lasso CTFR Lasso CTFR

(0.1,0.0,0.5) 0.08 0.34 3.10 56.22 2872 122

(0.1,0.0,20) 0.90 1.44 5.66 48.92 19, 632 70, 573

(0.1,0.8,0.5) 0.00 0.26 2.64 65.80 32, 902 488

(0.1,0.8,20) 0.46 0.90 4.76 55.54 1, 115, 701 21, 232

(0.5,0.0,0.5) 0.12 1.16 5.00 51.40 1662 108

(0.5,0.0,20) 1.26 2.52 7.12 40.08 1499 116

(0.5,0.8,0.5) 0.12 1.40 2.74 63.06 50, 765 986

(0.5,0.8,20) 0.42 1.66 6.42 54.50 6871 168
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Table 12 Errors in the linear models are t-distributed with two degrees of freedom

t distribution with two degrees of freedom

True Positive False Positive Prediction Error

(α,ρ,snr) Lasso CTFR Lasso CTFR Lasso CTFR

(0.1,0.0,0.5) 0.56 0.84 10.34 18.26 6.95 3.89

(0.1,0.0,20) 1.98 2.00 14.00 4.68 6.51 8.54

(0.1,0.8,0.5) 0.18 0.34 5.38 31.44 10.87 3.81

(0.1,0.8,20) 1.16 1.02 13.28 11.24 10.8 6.32

(0.5,0.0,0.5) 0.72 1.26 7.66 21.40 6.78 4.08

(0.5,0.0,20) 6.02 4.28 25.24 5.26 16.31 14.38

(0.5,0.8,0.5) 0.40 0.64 10.40 27.38 8.79 3.62

(0.5,0.8,20) 2.60 2.22 16.60 12.30 6.75 6.03

4 Real Data Examples

In this section we apply the regression methods considered in this paper to two real
data sets and summarize their results.

4.1 Prostate Data

In this section, we provide an application of each regression methods we studied
in this paper on prostate cancer data. The data come from a study conducted by
Stamey et al. [25]. The predictors in the data are log of cancer volume (lcavol),
log of prostate weight (lweight), age, log of benign prostatic hyperplasia amount
(lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason
score (gleason), and percentage Gleason scores 4 or 5 (pgg45). The response of
interest is log of prostate specific antigen (lpsa). The total number of observations
in the dataset is 97. All the regression methods were applied after standardizing
predictors.

In Table 13, we report estimated coefficients by different methods for the prostate
data. Further, the average prediction errors (APEs) are shown therein. According to
these results, the CTFR picks up four response variables; the Lasso, SCAD, and
MCP do not eliminate any response variables but aLasso eliminates only one. We
also observe that the aLasso has the minimum APE and then CTFR, MCP, Lasso,
and SCAD follow, respectively. From Fig. 1, it looks like error distributions are
symmetric, and inter-quartile ranges are almost the same for each method.
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Table 13 Estimated
coefficients and APEs for
prostate data

Lasso CTFR SCAD MCP aLasso

(Intercept) 2.478 2.478 2.478 2.478 2.478

lcavol 0.655 0.512 0.670 0.665 0.647

lweight 0.263 0.090 0.264 0.266 0.265

age −0.148 0.000 −0.156 −0.158 −0.118

lbph 0.135 0.000 0.141 0.140 0.115

svi 0.305 0.115 0.312 0.315 0.276

lcp −0.124 0.000 −0.147 −0.148 −0.044

gleason 0.032 0.000 0.005 0.036 0.067

pgg45 0.116 0.000 0.146 0.126 0.000

APE 0.589 0.527 0.593 0.574 0.511
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Fig. 1 Comparison of the estimators through prediction errors for prostate data

4.2 Production of Riboflavin in Bacillus subtilis Data

In [4], Bühlmann et al. made a data set on riboflavin production with Bacillus
subtilis publicly available. In the data set, the logarithm of the riboflavin production
rate is considered as the response variable corresponding to 4088 predictors which
measure the logarithm of the expression level of 4088 genes. There are n = 71
samples. Therefore the design matrix for the dataset is X ∈ R

71×4088. We performed
Lasso, SCAD, MCP, CTFR, aLasso to select a small subset of genes as the most
important predictors for the model.

In Table 14, for each penalty estimator, we list the top 20 genes. Magnitude
(absolute value) of the coefficient estimate was accompanied by each selected gene.
For instance, in the case of CTFR, the absolute value of the coefficient estimate for
the gene XHLA is 0.18. The table displays genes in a decreasing order with respect
to their corresponding estimated values. As one can see, Lasso, SCAD, and aLasso
selected more than 20 genes, while CTFR and MCP only selected 7 and 8 genes,
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Table 14 Top 20 genes selected by each regression method from riboflavin data and their
corresponding estimates

Lasso CTFR SCAD MCP aLasso

gene β̂ gene β̂ gene β̂ gene β̂ alasso-gene β̂

YOAB 0.81 YOAB 0.23 YOAB 1.41 YOAB 1.45 YXLE 1.74

YEBC 0.53 XHLA 0.18 YHDZ 0.84 YHDZ 0.99 YXLF 1.25

LYSC 0.30 YXLD 0.13 SPOVAA 0.58 YXLD 0.46 YOAC 0.91

SPOVAA 0.26 YCKE 0.09 YEBC 0.51 SPOVAA 0.44 AADK 0.56

YQJU 0.23 LYSC 0.02 YXLD 0.44 CARA 0.39 PRKA 0.55

YXLD 0.22 YDAR 0.01 ARGF 0.36 XHLA 0.25 SPOVAB 0.54

YCLB 0.19 XTRA 0.01 XHLB 0.22 YSHB 0.06 YDDM 0.51

ARGF 0.19 YCGN 0.00 YTET 0.11 YEBC 0.04 YQJV 0.47

XHLB 0.16 AADK 0.00 YDDJ 0.08 AADK 0.00 YMFF 0.45

YFHE 0.15 AAPA 0.00 YQJU 0.08 AAPA 0.00 YYDB 0.44

YFIO 0.15 ABFA 0.00 YESJ 0.06 ABFA 0.00 PKSB 0.41

YHDS 0.14 ABH 0.00 YACN 0.06 ABH 0.00 YCLG 0.38

DNAJ 0.14 ABNA 0.00 YVDI 0.05 ABNA 0.00 ARGG 0.38

YBFI 0.14 ABRB 0.00 PTA 0.05 ABRB 0.00 YFIQ 0.36

YDDK 0.12 ACCA 0.00 YJCL 0.05 ACCA 0.00 YCLC 0.33

YKBA 0.11 ACCB 0.00 SPOIIAA 0.03 ACCB 0.00 YKVK 0.25

YYDA 0.11 ACCC 0.00 YHDS 0.02 ACCC 0.00 YCGP 0.25

PRIA 0.10 ACDA 0.00 YQIQ 0.02 ACDA 0.00 YLXX 0.24

YXLE 0.09 ACKA 0.00 YIST 0.02 ACKA 0.00 DNAK 0.22

YLXW 0.07 ACOA 0.00 KINA 0.02 ACOA 0.00 YQJU 0.19

APE 0.264 0.406 0.321 0.322 0.863

respectively. Lasso had the lowest average prediction errors among all five different
penalty estimators.

From Fig. 2, we see that the error distributions are symmetric for Lasso, SCAD,
and MCP, but it is left-skewed for CTFR and aLasso. CTFR and aLasso have a
significantly larger inter-quartile range than those of Lasso, SCAD, and MCP.

Figure 3 depicts variable selection results for each penalty estimators. The blue
line represents a general trend of the number of selected predictors by Lasso
estimator for a given tuning parameter value. Each colored point represents the
number of selected predictors with the corresponding tuning parameter value, which
minimizes cross validation error. For instance, in the case of SCAD estimator, the
estimator selected 26 predictors to minimize cross validation error. As CTFR’s
variable selection result is independent of the value of tuning parameter, the
graph does not include it. However, from Table 14, one can observe that CTFR
selected seven predictors, which is the least among all five penalty estimators of
consideration.
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Fig. 2 Comparison of the estimators through prediction errors for Riboflavin data
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Fig. 3 The number of selected variables of each penalty estimators for the riboflavin data

5 Concluding Remarks and Future Research Directions

We have investigated the relative performance of high-dimensional regression
strategies under the correlated design matrix and various signal-to-noise ratios. We
have conducted an extensive simulation study to investigate the performance of the
suggested strategies in terms of variable selection and prediction performance. The
simulation results clearly demonstrate that none of the estimators considered here
are better than their competitors under all possible correlation and signal-to-noise
ratio scenarios.
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As a future research project, one could investigate the distribution of the
estimated parameters in CTFR and construction of confidence intervals for the
estimated parameters. There are no theoretical results for CTFR in terms of variable
selection performance so it is another research direction which needs to be explored.
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