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Abstract A linear statistic Fy, where F is an f × n matrix, is called linearly
sufficient for estimable parametric function Kβ under the modelM = {y,Xβ,V},
if there exists a matrix A such that AFy is the BLUE for Kβ. In this paper we
consider some particular aspects of the linear sufficiency in the partitioned linear
model where X = (X1 : X2) with β being partitioned accordingly. We provide
new results and new insightful proofs for some known facts, using the properties of
relevant covariance matrices and their expressions via certain orthogonal projectors.
Particular attention will be paid to the situation under which adding new regressors
(in X2) does not affect the linear sufficiency of Fy.

Keywords Best linear unbiased estimator · Generalized inverse · Linear model ·
Linear sufficiency · Orthogonal projector · Löwner ordering · Transformed linear
model

1 Introduction

In this paper we consider the partitioned linear model y = X1β1 + X2β2 + ε, or
shortly denoted

M12 = {y, Xβ, V} = {y, X1β1 + X2β2, V} , (1)

where we may drop off the subscripts fromM12 if the partitioning is not essential in
the context. In (1), y is an n-dimensional observable response variable, and ε is an
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unobservable random error with a known covariance matrix cov(ε) = V = cov(y)
and expectation E(ε) = 0. The matrix X is a known n × p matrix, i.e., X ∈ R

n×p ,
partitioned columnwise as X = (X1 : X2), Xi ∈ R

n×pi , i = 1, 2. Vector β =
(β ′

1,β
′
2)

′ ∈ R
p is a vector of fixed (but unknown) parameters; here, symbol ′ stands

for the transpose. Sometimes we will denote μ = Xβ, μi = Xiβi , i = 1, 2.
As for notations, the symbols r(A), A−, A+, C (A), and C (A)⊥ denote,

respectively, the rank, a generalized inverse, the Moore–Penrose inverse, the column
space, and the orthogonal complement of the column space of the matrix A. By
A⊥ we denote any matrix satisfying C (A⊥) = C (A)⊥. Furthermore, we will
write PA = PC (A) = AA+ = A(A′A)−A′ to denote the orthogonal projector
(with respect to the standard inner product) onto C (A). In particular, we denote
M = In − PX, Mi = In − PXi

, i = 1, 2.
In addition to the full model M12, we will consider the small models Mi =

{y, Xiβi , V}, i = 1, 2, and the reduced model

M12·2 = {M2y, M2X1β1, M2VM2} , (2)

which is obtained by premultiplying the model M12 by M2 = In − PX2 . There is
one further model that takes lot of our attention, it is the transformed model

Mt = {Fy, FXβ, FVF′} = {Fy, FX1β1 + FX2β2, FVF
′} , (3)

which is obtained be premultiplyingM12 by matrix F ∈ R
f×n.

We assume that the models under consideration are consistent which in the case
ofM means that the observed value of the response variable satisfies

y ∈ C (X : V) = C (X : VX⊥) = C (X) ⊕ C (VX⊥) , (4)

where “⊕” refers to the direct sum of column spaces.
Under the model M , the statistic Gy, where G is an n × n matrix, is the best

linear unbiased estimator, BLUE, of Xβ if Gy is unbiased, i.e., GX = X, and it
has the smallest covariance matrix in the Löwner sense among all unbiased linear
estimators of Xβ; shortly denoted

cov(Gy) ≤L cov(Cy) for all C ∈ R
n×n : CX = X . (5)

The BLUE of an estimable parametric function Kβ, where K ∈ R
k×p , is defined

in the corresponding way. Recall that Kβ is said to be estimable if it has a linear
unbiased estimator which happens if and only if C (K′) ⊂ C (X′), i.e.,

Kβ is estimable underM ⇐⇒ C (K′) ⊂ C (X′) . (6)

The structure of our paper is as follows. In Sect. 2 we provide some preliminary
results that are not only needed later on but they also have some matrix-algebraic
interest in themselves. In Sects. 3 and 4 we consider the estimation of μ = Xβ and
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μ1 = X1β1, respectively. In Sect. 5 we study the linear sufficiency under M1 vs.
M12. We characterize the linearly sufficient statistic Fy by using the covariance
matrices of the BLUEs under M12 and under its transformed version Mt . In
particular, certain orthogonal projectors appear useful in our considerations. From a
different angle, the linear sufficiency in a partitioned linear model has been treated,
e.g., in Isotalo and Puntanen [10, 11], Markiewicz and Puntanen [16], and Kala and
Pordzik [13]. Baksalary [1, 2, §3.3, §5] considered linear sufficiency underM12 and
M1 assuming that V = In. Dong et al. [6] study interesting connections between
the BLUEs under two transformed models using the so-called matrix-rank method.

2 Some Preliminary Results

For the proof of the following fundamental lemma, see, e.g., Rao [22, p. 282].

Lemma 1 Consider the general linear model M = {y,Xβ,V}. Then the statistic
Gy is the BLUE for Xβ if and only if G satisfies the equation

G(X : VX⊥) = (X : 0) , (7)

in which case we denote G ∈ {PX|VX⊥}. The corresponding condition for By to be
the BLUE of an estimable parametric function Kβ is

B(X : VX⊥) = (K : 0) . (8)

Two estimators G1y and G2y are said to be equal (with probability 1) whenever
G1y = G2y for all y ∈ C (X : V) = C (X : VX⊥). When talking about the equality
of estimators we sometimes may drop the phrase “with probability 1”. Thus for
any G1,G2 ∈ {PX|VX⊥} we have G1(X : VX⊥) = G2(X : VX⊥), and thereby
G1y = G2y with probability 1.

One well-known solution for G in (7) (which is always solvable) is

PX;W− := X(X′W−X)−X′W−, (9)

whereW is a matrix belonging to the set of nonnegative definite matrices defined as

W = {
W ∈ R

n×n : W = V + XUU′X′, C (W) = C (X : V)} . (10)

For clarity, we may use the notation WA to indicate which model is under
consideration. Similarly, WA may denote a member of class WA . We will also
use the phrase “WA is a W-matrix under the modelA ”.
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For the partitioned linear model M12 we will say that W ∈ W if the following
properties hold:

W = V + XUU′X′ = V + (X1 : X2)
(U1U′

1 0
0 U2U′

2

)(X′
1

X′
2

)

= V + X1U1U′
1X

′
1 + X2U2U′

2X
′
2 , (11a)

Wi = V + XiUiU′
iX

′
i , i = 1, 2, (11b)

C (W) = C (X : V) , C (Wi ) = C (Xi : V) , i = 1, 2. (11c)

For example, the following statements concerningW ∈ W are equivalent:

C (X : V) = C (W), C (X) ⊂ C (W), C (X′W−X) = C (X′) . (12)

Instead of W , several corresponding properties also hold in the extended set

W∗ = {
W ∈ R

n×n : W = V + XNX′, C (W) = C (X : V)} , (13)

whereN ∈ R
p×p can be any (not necessarily nonnegative definite) matrix satisfying

C (W) = C (X : V). However, in this paper we consider merely the set W . For
further properties of W∗, see, e.g., Puntanen et al. [21, §12.3] and Kala et al. [15].

Using (9), the BLUEs of μ = Xβ and of estimable Kβ, respectively, can be
expressed as

BLUE(Xβ | M ) = μ̃(M ) = X(X′W−X)−X′W−y, (14a)

BLUE(Kβ | M ) = K(X′W−X)−X′W−y, (14b)

whereW belongs to the classW . The representations (14a)–(14b) are invariant with
respect to the choice of generalized inverses involved; this can be shown using (12)
and the fact that for any nonnull A and C the following holds [Rao and Mitra [23,
Lemma 2.2.4]]:

AB−C = AB+C for all B− ⇐⇒ C (C) ⊂ C (B) and C (A′) ⊂ C (B′) . (15)

Notice that part X(X′W−X)−X′ of PX;W− in (9) is invariant with respect to the
choice of generalized inverses involved but

PX;W+ = X(X′W+X)+X′W+ = X(X′W−X)−X′W+ (16)

for any choice ofW− and (X′W−X)−.
The concept of linear sufficiency was introduced by Baksalary and Kala [3]

and Drygas [7] who considered linear statistics, which are “sufficient” for Xβ

underM , or in other words, “linear transformations preserving best linear unbiased
estimators”. A linear statistic Fy, where F ∈ R

f×n, is called linearly sufficient for
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Xβ under the model M if there exists a matrix A ∈ R
n×f such that AFy is the

BLUE for Xβ. Correspondingly, Fy is linearly sufficient for estimable Kβ, where
K ∈ R

k×p, if there exists a matrix A ∈ R
k×f such that AFy is the BLUE for Kβ.

Sometimes we will denote shortly Fy ∈ S(Xβ) or Fy ∈ S(Xβ | M ), to indicate
that Fy is linearly sufficient for Xβ under the modelM (if the model is not obvious
from the context).

Drygas [7] introduced the concept of linear minimal sufficiency and defined it as
follows: Fy is linearly minimal sufficient if for any other linearly sufficient statistics
Sy, there exists a matrix A such that Fy = ASy almost surely.

In view of Lemma 1, Fy is linearly sufficient for Xβ if and only if the equation

AF(X : VM) = (X : 0) (17)

has a solution for A. Baksalary and Kala [3] and Drygas [7] proved part (a) and
Baksalary and Kala [4] part (b) of the following:

Lemma 2 Consider the modelM = {y,Xβ,V} and letKβ be estimable. Then:

(a) The statistic Fy is linearly sufficient for Xβ if and only if

C (X) ⊂ C (WF′) , whereW ∈ W . (18)

Moreover, Fy is linearly minimal sufficient for Xβ if and only if C (X) =
C (WF′).

(b) The statistic Fy is linearly sufficient for Kβ if and only if

C [X(X′W−X)−K′] ⊂ C (WF′) , where W ∈ W . (19)

Moreover, Fy is linearly minimal sufficient for Kβ if and only if equality holds
in (19).

Actually, Kala et al. [15] showed that in Lemma 2 the class W can be replaced
with the more general class W∗ defined in (13). For further related references, see
Baksalary and Mathew [5] and Müller [19].

Supposing that Fy is linearly sufficient for Xβ, one could expect that both M
and its transformed version Mt = {Fy,FXβ,FVF′} provide the same basis for
obtaining the BLUE of Xβ. This connection was proved by Baksalary and Kala
[3, 4]. Moreover, Tian and Puntanen [24, Th. 2.8] and Kala et al. [14, Th. 2] showed
the following:

Lemma 3 Consider the model M = {y,Xβ,V} and Mt = {Fy,FXβ,FVF′},
and let Kβ be estimable under M12 and Mt . Then the following statements are
equivalent:

(a) Fy is linearly sufficient for Kβ.
(b) BLUE(Kβ | M ) = BLUE(Kβ | Mt ) with probability 1.
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(c) There exists at least one representation of BLUE of Kβ under M which is the
BLUE also under the transformed modelMt .

Later we will need the following Lemma 4. The proofs are parallel to those
in Puntanen et al. [21, §5.13] and Markiewicz and Puntanen [17, Th. 5.2]. In
this lemma the notation A1/2 stands for the nonnegative definite square root of a
nonnegative definite matrix A. Similarly A+1/2 denotes the Moore–Penrose inverse
of A1/2. Notice that in particular PA = A1/2A+1/2 = A+1/2A1/2.

Lemma 4 Let W,W1 andW2 be defined as in (11a)–(11c). Then:

(a) C (VM)⊥ = C (WM)⊥ = C (W+X : QW), where QW = In − PW,
(b) C (W1/2M)⊥ = C (W+1/2X : QW) ,

(c) C (W1/2M) = C (W+1/2X : QW)⊥ = C (W+1/2X)⊥ ∩ C (W) ,

(d) PW1/2M = PW − PW+1/2X = PC (W)∩C (W+1/2X)⊥ .

Moreover, in (a)–(d) the matrices X, M andW can be replaced with Xi , Mi

andWi , i = 1, 2, respectively, so that, for example, (a) becomes
(e) C (VMi )

⊥ = C (WiMi )
⊥ = C (W+

i Xi : QWi
), i = 1, 2.

Similarly, reversing the roles of X andM, the following, for example, holds:
(f) C (W+X)⊥ = C (WM : QW) and C (W+X) = C (VM)⊥ ∩ C (W).

Also the following lemma appears to be useful for our considerations.

Lemma 5 Consider the partitioned linear model M12 and suppose that F is an
f × n matrix andW ∈ W . Then

(a) C (F′QFX2) = C (F′) ∩ C (M2), where QFX2 = If − PFX2 ,
(b) C (WF′QFX2) = C (WF′) ∩ C (WM2) ,
(c) C (W1/2F′QFX2) = C (W1/2F′) ∩ C (W1/2M2) ,

(d) F′QFX2 = M2F′QFX2 .

Proof In light of Rao and Mitra [23, Complement 7, p. 118], we get

C (F′) ∩ C (M2) = C [F′(FM⊥
2 )

⊥] = C (F′QFX2) , (20)

and so (a) is proved. In view of Lemma 4, we have C (W1/2M2)
⊥ = C (W+1/2X2 :

QW) , and hence

C (W1/2F′) ∩ C (W1/2M2) = C
{
W1/2F′[FW1/2(W1/2M2)

⊥]⊥}

= C
{
W1/2F′[FW1/2(W+1/2X2 : QW)]⊥}

= C [W1/2F′(FX2)
⊥] = C (W1/2F′QFX2) . (21)

Obviously in (21) W1/2 can be replaced with W. The statement (d) follows
immediately from the inclusion C (F′QFX2) ⊂ C (M2). �

Next we present an important lemma characterizing the estimability under M12
andMt .
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Lemma 6 Consider the models M12 and its transformed version Mt and let F be
an f × n matrix. Then the followings statements hold:

(a) Xβ is estimable underMt if and only if

C (X′) = C (X′F′), i.e., C (X) ∩ C (F′)⊥ = {0} . (22)

(b) X1β1 is estimable underM12 if and only if

C (X′
1) = C (X′

1M2) , i.e., C (X1) ∩ C (X2) = {0} . (23)

(c) X1β1 is estimable underMt if and only if

C (X′
1) = C (X′

1F
′QFX2) , (24)

or, equivalently, if and only if

C (X′
1) = C (X′

1F
′) and C (FX1) ∩ C (FX2) = {0} . (25)

(d) β is estimable underM12 if and only if r(X) = p.
(e) β1 is estimable underM12 if and only if r(X′

1M2) = p1.
(f) β1 is estimable underMt if and only if r(X′

1F
′QFX2) = r(X1) = p1.

Proof In view of (6), Xβ is estimable under Mt if and only if C (X′) ⊂ C (X′F′),
i.e., C (X′) = C (X′F′). The alternative claim in (a) follows from

r(FX) = r(X) − C (X) ∩ C (F′)⊥, (26)

where we have used the rank rule of Marsaglia and Styan [18, Cor. 6.2] for the
matrix product. For the claim (b), see, e.g., Puntanen et al. [21, §16.1]. To prove (c),
we observe that X1β1 = (X1 : 0)β is estimable underMt if and only if

C

(
X′
1
0

)
⊂ C

(
X′
1F

′
X′
2F

′
)
, i.e., X′

1 = X′
1F

′A and 0 = X′
2F

′A , (27)

for some A. The equality 0 = X′
2F

′A means that A = QFX2B for some B, and
thereby X′

1 = X′
1F

′QFX2B which holds if and only if C (X′
1) = C (X′

1F
′QFX2) .

Thus we have proved condition (24). Notice that (24) is equivalent to

r(X′
1) = r(X′

1F
′QFX2) = r(X′

1F
′) − dimC (FX1) ∩ C (FX2)

= r(X1) − dimC (X1) ∩ C (F′)⊥ − dimC (FX1) ∩ C (FX2) , (28)

which confirms (25). The proofs of (d)–(f) are obvious. �
For the proof Lemma 7, see, e.g., Puntanen et al. [21, p. 152].
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Lemma 7 The following three statements are equivalent:

PA − PB is an orthogonal projector, PA − PB ≥L 0, C (B) ⊂ C (A). (29)

If any of the above conditions holds, then PA − PB = PC (A)∩C (B)⊥ = P(I−PB)A .

3 Linearly Sufficient Statistic for μ = Xβ inM12

Let us consider a partitioned linear model M12 = {y, X1β1 + X2β2, V} , and
its transformed version Mt = {Fy, FX1β1 + FX2β2, FVF

′}. Choosing W =
V + XUU′X′ ∈ W , we have, for example, the following representations for the
covariance matrix of the BLUE for μ = Xβ:

cov(μ̃ | M12) = V − VM(MVM)−MV = W − WM(MWM)−MW − T

= W1/2(In − PW1/2M)W1/2 − T = W1/2PW+1/2XW
1/2 − T

= X(X′W+X)−X′ − T = X(X′W+1/2W+1/2X)−X′ − T , (30)

where T = XUU′X′. Above we have used Lemma 4d which gives

In − PW1/2M = QW + PW+1/2X . (31)

Consider then the transformed modelMt and assume that Xβ is estimable under
Mt , i.e., (22) holds. UnderMt we can choose theW-matrix as

WMt
= FVF′ + FXUU′X′F′ = FWF′ ∈ WMt

, (32)

and so, denoting T = XUU′X, we have

μ̃(Mt ) = BLUE(Xβ | Mt ) =: Gty

= X[X′F′(FWF′)−FX]−X′F′(FWF′)−Fy , (33)

cov(μ̃ | Mt ) = X[X′F′(FWF′)−FX]−X′ − T

= X(X′W+1/2PW1/2F′W+1/2X)−X′ − T . (34)

Of course, by the definition of the BLUE, we always have the Löwner ordering

cov(μ̃ | M12) ≤L cov(μ̃ | Mt ) . (35)

However, it is of interest to confirm (35) algebraically. To do this we see at once that

X′W+1/2W+1/2X ≥L X′W+1/2PW1/2F′W+1/2X . (36)
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Now (36) is equivalent to

(X′W+1/2W+1/2X)+ ≤L (X′W+1/2PW1/2F′W+1/2X)+. (37)

Notice that the equivalence of (36) and (37) holds in view of the following result:
Let 0 ≤L A ≤L B. Then A+ ≥L B+ if and only if r(A) = r(B) ; see Milliken and
Akdeniz [20]. Now r(X′W+X) = r(X′W) = r(X), and

r(X′W+1/2PW1/2F′W+1/2X) = r(X′W+1/2PW1/2F′)

= r(X′PWF′) = r(X′F′) = r(X) , (38)

where the last equality follows from the estimability condition (25). Now (37)
implies

X(X′W+1/2W+1/2X)−X′ ≤L X(X′W+1/2PW1/2F′W+1/2X)−X′, (39)

which is just (35).
Now E(Gty) = Xβ, and hence by Lemma 3, Fy is linearly sufficient for Xβ if

and only if

cov(μ̃ | M12) = cov(μ̃ | Mt ) . (40)

Next we show directly that (40) is equivalent to (18). First we observe that (40)
holds if and only if

X(X′W+1/2W+1/2X)−X′ = X(X′W+1/2PW1/2F′W+1/2X)−X′. (41)

Pre- and postmultiplying (41) by X+ and by (X′)+, respectively, and using the fact
that PX′ = X+X, gives an equivalent form to (41):

(X′W+1/2W+1/2X)+ = (X′W+1/2PW1/2F′W+1/2X)+. (42)

Obviously (42) holds if and only if C (W+1/2X) ⊂ C (W1/2F′), which further is
equivalent to

C (X) ⊂ C (WF′) , (43)

which is precisely the condition (18) for Fy being linearly sufficient for Xβ. As a
summary we can write the following:

Theorem 1 Let μ = Xβ be estimable underMt and letW ∈ W . Then

cov(μ̃ | M12) ≤L cov(μ̃ | Mt ) . (44)
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Moreover, the following statements are equivalent:

(a) cov(μ̃ | M12) = cov(μ̃ | Mt ),
(b) X(X′W+X)−X′ = X(X′W+1/2PW1/2F′W+1/2X)−X,
(c) X′W+X = X′W+1/2PW1/2F′W+1/2X,
(d) C (W+1/2X) ⊂ C (W1/2F′),
(e) C (X) ⊂ C (WF′),
(f) Fy is linearly sufficient for μ = Xβ underM12.

4 Linearly Sufficient Statistic for μ1 = X1β1 in M12

Consider then the estimation of μ1 = X1β1 underM12. We assume that (23) holds
so thatμ1 is estimable underM12. Premultiplying the modelM12 byM2 = In−PX2

yields the reduced model

M12·2 = {M2y, M2X1β1, M2VM2} . (45)

Now the well-known Frisch–Waugh–Lovell theorem, see, e.g., Groß and Puntanen
[8], states that the BLUEs of μ1 under M12 and M12·2 coincide (with probability
1):

BLUE(μ1 | M12) = BLUE(μ1 | M12·2) . (46)

Hence, we immediately see thatM2y is linearly sufficient for μ1.
Now any matrix of the form

M2VM2 + M2X1U1U′
1X

′
1M2 (47)

satisfying C (M2V : M2X1U1) = C (M2V : M2X1) , is a W-matrix in M12·2. We
may denote this class asWM12·2 , and

WM12·2 = M2WM2 = M2W1M2 ∈ WM12·2 , (48)

whereW andW1 are defined as in (11a)–(11c).
It is interesting to observe that in (47) the matrix U1 can be chosen as a null

matrix if and only if

C (M2X1) ⊂ C (M2V) , (49)

which can be shown to be equivalent to

C (X1) ⊂ C (X2 : V) . (50)
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Namely, it is obvious that (50) implies (49) while the reverse implication follows
from the following:

C (X1) ⊂ C (X1 : X2) = C (X2 : M2X1) ⊂ C (X2 : M2V) = C (X2 : V) . (51)

This means that

M2VM2 ∈ WM12·2 ⇐⇒ C (X1) ⊂ C (X2 : V) . (52)

One expression for the BLUE of μ1 = X1β1, obtainable fromM12·2, is

BLUE(μ1 | M12) = μ̃1(M12) = X1(X′
1Ṁ2WX1)

−X′
1Ṁ2Wy , (53)

where

Ṁ2W = M2W−
M12·2M2 = M2(M2WM2)

−M2 . (54)

In particular, if (50) holds then we can chooseWM12·2 = M2VM2, and

Ṁ2W = M2(M2VM2)
−M2 =: Ṁ2 . (55)

Notice that by Lemma 4d, we have

PWṀ2WPW = PWM2(M2WM2)
−M2PW

= W+1/2PW1/2M2
W+1/2

= W+1/2(PW − PW+1/2X2
)W+1/2

= W+ − W+X2(X′
2W

+X2)
−X′

2W
+, (56)

and hence, for example,

WṀ2WX1 = W[W+ − W+X2(X′
2W

+X2)
−X′

2W
+]X1

= [In − X2(X′
2W

+X2)
−X′

2W
+]X1 . (57)

Observe that in (54), (56) and (57) the matrix W can be replaced with W1. For a
thorough review of the properties of Ṁ2W , see Isotalo et al. [12].

In the next theorem we collect some interesting properties of linearly sufficient
estimators of μ1.

Theorem 2 Let μ1 = X1β1 be estimable under M12 and let W ∈ W . Then the
statistic Fy is linearly sufficient for μ1 underM12 if and only if

C (WṀ2WX1) ⊂ C (WF′) , (58)
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or, equivalently,

C {[In − X2(X′
2W

+X2)
−X′

2W
+]X1} ⊂ C (WF′) , (59)

where Ṁ2W = M2(M2WM2)
−M2. Moreover,

(a) M2y is linearly sufficient for μ1.
(b) Ṁ2Wy = M2(M2WM2)

−M2y is linearly sufficient for μ1.
(c) X′

1Ṁ2W y is linearly minimal sufficient for μ1.
(d) If C (X1) ⊂ C (X2 : V), (58) becomes

C (WṀ2X1) ⊂ C (WF′) , where Ṁ2 = M2(M2VM2)
−M2 . (60)

(e) If V is positive definite, (58) becomes C (Ṁ2X1) ⊂ C (F′).
(f) If β1 is estimable underM12, then

Fy ∈ S(X1β1 | M12) ⇐⇒ Fy ∈ S(β1 | M12) . (61)

Proof The sufficiency condition (58) was proved by Kala et al. [15, §3], and, using
a different approach, by Isotalo and Puntanen [10, Th. 2]. Claims (a), (b), (c) and (e)
are straightforward to confirm and (d) was considered already before the Theorem.
Let us confirm part (f). If Fy ∈ S(X1β1 | M12), then there exists a matrix A such
that

AF(X1 : X2 : VM) = (X1 : 0 : 0) . (62)

Because of the estimability of β1, the matrix X1 has a full column rank. Premulti-
plying (62) by (X′

1X1)
−1X′

1 yields

BF(X1 : X2 : VM) = (Ip1 : 0 : 0) , (63)

where B = (X′
1X1)

−1X′
1A, and thereby Fy ∈ S(X1β1 | M12) implies Fy ∈ S(β1 |

M12). The reverse direction can be proved in the corresponding way. Thus we have
confirmed that claim (e) indeed holds. �

The covariance matrix of the BLUE of μ1 = X1β1 underM12 can be expressed
as

cov(μ̃1 | M12) = X1(X′
1Ṁ2WX1)

−X′
1 − T1

= X1[X′
1M2(M2WM2)

−M2X1]−X′
1 − T1

= X1[X′
1W

+1/2PW1/2M2
W+1/2X1]−X′

1 − T1 , (64)

where T1 = X1U1U′
1X

′
1 andW can be replaced with W1.
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Remark 1 The rank of the covariance matrix of the BLUE(β), as well as that of
BLUE(Xβ), underM12 is

r[cov(β̃ | M12)] = dimC (X) ∩ C (V) ; (65)

see, e.g., Puntanen et al. [21, p. 137]. Hence for estimable β,

C (X) ⊂ C (V) ⇐⇒ cov(β̃ | M12) is positive definite. (66)

Similarly, for estimable β1,

r[cov(β̃1 | M12)] = r[cov(β̃1 | M12·2)] = dimC (M2X1) ∩ C (M2VM2)

= dimC (M2X1) ∩ C (M2V) ≤ r(M2X1) . (67)

The estimability of β1 means that r(M2X1) = p1 and thereby

r[cov(β̃1 | M12)] = p1 ⇐⇒ C (M2X1) ⊂ C (M2V) . (68)

Thus, by the equivalence of (49) and (50), for estimable β1 the following holds:

C (X1) ⊂ C (X2 : V) ⇐⇒ cov(β̃1 | M12) is positive definite. � (69)

What is the covariance matrix of the BLUE of μ1 = X1β1 under Mt? First we
need to make sure that X1β1 is estimable underMt , i.e., (24) holds.

Let us eliminate the FX2β2-part by premultiplyingMt by QFX2 = If − PFX2 .

Thus we obtain the reduced transformed model

Mt ·2 = {QFX2Fy, QFX2FX1β1, QFX2FVF
′QFX2}

= {N′y,N′X1β1,N
′VN} , (70)

where N = F′QFX2 ∈ R
n×f , and, see Lemma 5, the matrix N has the property

C (N) = C (F′) ∩ C (M2) . (71)

Notice also that in view of (71) and part (c) of Lemma 6,

r(N′X1) = r(X1) − dimC (X1) ∩ C (N)⊥

= r(X1) − dimC (X1) ∩ C [(F′)⊥ : X2] = r(X1) , (72)

so that

r(X′
1W

+1/2PW1/2NW
+1/2X1) = r(X′

1W
+1/2W1/2N) = r(X′

1N) = r(X1) . (73)
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Correspondingly, we have

r(X′
1W

+1/2PW1/2M2
W+1/2X1) = r(X1) . (74)

TheW-matrix underMt ·2 can be chosen as

WMt·2 = QFX2FW1F′QFX2 = N′W1N , (75)

where W1 can be replaced with W. In view of the Frisch–Waugh–Lowell theorem,
the BLUE of μ1 = X1β1 is

μ̃1(Mt ) = μ̃1(Mt ·2) = X1[X′
1N(N

′WN)−N′X1]−X′
1N(N

′WN)−N′y , (76)

while the corresponding covariance matrix is

cov(μ̃1 | Mt ) = X1[X′
1N(N

′WN)−N′X1]−X′
1 − T1

= X1(X′
1W

+1/2PW1/2NW
+1/2X1)

−X′
1 − T1 , (77)

where T1 = X1U1U′
1X

′
1 (andW can be replaced withW1).

By definition we of course have

cov(μ̃1 | M12) ≤L cov(μ̃1 | Mt ) , (78)

but it is illustrative to confirm this also algebraically. First we observe that in view
of Lemma 5,

C (W1/2F′QFX2) = C (W1/2F′) ∩ C (W1/2M2) , (79)

and thereby Lemma 7 implies that PW1/2M2
− PW1/2F′QFX2

= PZ, where

C (Z) = C (W1/2M2) ∩ C (W+1/2F′QFX2)
⊥. (80)

Hence we have the following equivalent inequalities:

X′
1W

+1/2(PW1/2M2
− PW1/2F′QFX2

)W+1/2X1 ≥L 0 , (81)

X′
1W

+1/2PW1/2M2
W+1/2X1 ≥L X′

1W
+1/2PW1/2F′QFX2

W+1/2X1 , (82)

(X′
1W

+1/2PW1/2M2
W+1/2X1)

+ ≤L (X′
1W

+1/2PW1/2F′QFX2
W+1/2X1)

+. (83)

The equivalence between (82) and (83) is due to the fact that the matrices on each
side of (82) have the same rank, which is r(X1); see (73) and (74). The equivalence
between (83) and (78) follows by the same argument as that between (41) and (42).
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The equality in (82) holds if and only if

PZW
+1/2X1 = (PW1/2M2

− PW1/2F′QFX2
)W+1/2X1 = 0 , (84)

which is equivalent to

W1/2(PW1/2M2
− PW1/2F′QFX2

)W+1/2X1 = 0 . (85)

Writing up (85) yields

WṀ2WX1 = WM2(M2WM2)
−M2X1 = WN(N′WN)−NX1 . (86)

We observe that in view of (80) we have

C (Z)⊥ = C (W+1/2X2 : QW : W1/2F′QFX2) , (87)

where we have used the Lemma 4 giving us C (W1/2M2)
⊥ = C (W+1/2X2 : QW) .

Therefore (84) holds if and only if

C (W+1/2X1) ⊂ C (Z)⊥ = C (W+1/2X2 : QW : W1/2F′QFX2) . (88)

Premultiplying the above inclusion byW1/2 yields an equivalent condition:

C (X1) ⊂ C (X2 : WF′QFX2) = C (X2 : M2WF′QFX2)

= C (X2) ⊕ [C (WF′) ∩ C (WM2)] . (89)

Our next step is to prove the equivalence of (89) and the linear sufficiency
condition

C (WṀ2WX1) ⊂ C (WF′) . (90)

The equality (85), which is equivalent to (89), immediately implies (90). To go the
other way, we observe that (90) implies

C [WM2(M2WM2)
−M2X1] ⊂ C (WF′) ∩ C (WM2) = C (WF′QFX2) , (91)

where we have used Lemma 5. Premultiplying (91) byM2 and noting that

M2WM2(M2WM2)
+ = PM2W (92)

yields

C (PM2WM2X1) = C (M2X1) ⊂ C (M2WF′QFX2) . (93)
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Using (93) we get

C (X1) ⊂ C (X1 : X2) = C (X2 : M2X1) ⊂ C (X2 : M2WF′QFX2) , (94)

and thus we have shown that (90) implies (89).
Now we can summarize our findings for further equivalent conditions for Fy

being linearly sufficient for X1β1:

Theorem 3 Let μ1 = X1β1 be estimable under M12 and Mt and let W ∈ W .

Then

cov(μ̃1 | M12) ≤L cov(μ̃1 | Mt ) . (95)

Moreover, the following statements are equivalent:

(a) cov(μ̃1 | M12) = cov(μ̃1 | Mt ).
(b) C (WṀ2WX1) ⊂ C (WF′).
(c) C (X1) ⊂ C (X2 : WF′QFX2) = C (X2 : M2WF′QFX2).
(d) C (X1) ⊂ C (X2) ⊕ [C (WF′) ∩ C (WM2)].
(e) WM2(M2WM2)

−M2X1 = WN(N′WN)−NX1, where N = F′QFX2.
(f) The statistic Fy is linearly sufficient for X1β1 underM12.

If, in the situation of Theorem 3, we request Fy to be linearly sufficient for X1β1
for any X1 (expecting thoughX1β1 to be estimable), we get the following corollary.

Corollary 1 Let μ1 = X1β1 be estimable under M12 and Mt and let W ∈ W .

Then the following statements are equivalent:

(a) The statistic Fy is linearly sufficient for X1β1 underM12 for any X1.
(b) C (W) ⊂ C (X2 : WF′QFX2) = C (X2) ⊕ C (WF′) ∩ C (WM2).

Proof The statistic Fy is linearly sufficient for X1β1 under M12 for any X1 if and
only if

W+1/2PZW+1/2 = 0 . (96)

Now (96) holds if and only if

C (W+1/2) ⊂ C (Z)⊥ = C (W+1/2X2 : QW : W1/2F′QFX2) . (97)

Premultipying (97) byW1/2 yields an equivalent form

C (W) ⊂ C (X2 : WF′QFX2) = C (X2) ⊕ C (WF′) ∩ C (WM2) . (98)

�
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5 Linear Sufficiency Under M1 vs. M12

Consider the small modelM1 = {y, X1β1, V} and full modelM12 = {y, X1β1 +
X2β2, V}. Here is a reasonable question: what about comparing conditions for

Fy ∈ S(μ1 | M1) versus Fy ∈ S(μ1 | M12) . (99)

For example, under which condition

Fy ∈ S(μ1 | M1) �⇒ Fy ∈ S(μ1 | M12) . (100)

There is one crucial matter requiring our attention. Namely in the small modelM1
the response y is lying in C (W1) but in M12 the response y can be in a wider
subspace C (W). How to take this into account? What about assuming that

C (X2) ⊂ C (X1 : V) ? (101)

This assumption means that adding the X2-part into the model does not carry y out
of C (W1) which seems to be a logical requirement. In such a situation we should
find conditions under which

C (X1) ⊂ C (W1F′) (102)

implies

C (W1Ṁ2WX1) ⊂ C (W1F′) . (103)

We know that under certain conditions the BLUE of X1β1 does not change
when the predictors in X2 are added into the model. It seems obvious that in such
a situation (102) and (103) are equivalent. Supposing that (101) holds, then, e.g.,
according to Haslett and Puntanen [9, Th. 3.1],

μ̃1(M12) = μ̃1(M1) − X1(X′
1W

+
1 X1)

−X′
1W

+
1 μ̃2(M12) , (104)

and hence

μ̃1(M12) = μ̃1(M1) (105)

if and only if X′
1W

+
1 μ̃2(M12) = 0, i.e.,

X′
1W

+
1 X2(X′

2Ṁ1X2)
−X′

2Ṁ1y = 0 . (106)

Requesting (106) to hold for all y ∈ C (X1 : V) and using the assumption C (X2) ⊂
C (X1 : V), we obtain

X′
1W

+
1 X2(X′

2Ṁ1X2)
−X′

2Ṁ1X2 = 0 , (107)
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i.e.,

X′
1W

+
1 X2PX′

2
= X′

1W
+
1 X2 = 0 , (108)

where we have used the fact C (X′
2Ṁ1X2) = C (X′

2). Thus we have shown the
equivalence of (105) and (108).

On the other hand, (102) implies (103) if and only if C (W1Ṁ2WX1) ⊂ C (X1) ,

which is equivalent to

C (W1Ṁ2WX1) = C (X1) , (109)

because we know that r(W1Ṁ2WX1) = r(X1). Hence neither column spaces in
(109) can be a proper subspace of the other. Therefore, as stated by Baksalary [1,
p. 23] in the case of V = In, either the classes of statistics which are linearly
sufficient for μ1 are in the models M1 and M12 exactly the same, or, if not, there
exists at least one statistic Fy such that Fy ∈ S(μ1 | M1) but Fy /∈ S(μ1 | M12)

and at least one statistic Fy such that Fy ∈ S(μ1 | M12) but Fy /∈ S(μ1 | M1).
Now (102) and (103) are equivalent if and only if (109) holds, i.e.,

M1W1Ṁ2WX1 = 0 . (110)

Using (57), (110) becomes

M1X2(X′
2W

+
1 X2)

−X′
2W

+
1 X1 = 0 . (111)

Because r(M1X2) = r(X2), we can cancel, on account of Marsaglia and Styan [18,
Th. 2], the matrixM1 in (111) and thus obtain

X2(X′
2W

+
1 X2)

−X′
2W

+
1 X1 = 0 . (112)

Premultiplying (111) by X′
2W

+
1 shows that (109) is equivalent to

X′
2W

+
1 X1 = 0 . (113)

In (113) of course W+
1 can be replaced with any W−

1 . Thus we have proved the
following:

Theorem 4 Consider the models M12 and M1 and suppose that μ1 = X1β1 is
estimable under M12 and C (X2) ⊂ C (X1 : V). Then the following statements are
equivalent:

(a) X′
1W

+
1 X2 = 0,

(b) BLUE(μ1 | M1) = BLUE(μ1 | M12) with probability 1,
(c) Fy ∈ S(μ1 | M1) ⇐⇒ Fy ∈ S(μ1 | M12).
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Overlooking the problem for y belonging to C (X : V) or to C (X1 : V), we can
start our considerations by assuming that (100) holds, i.e.,

C (X1) ⊂ C (W1F′) �⇒ C (WṀ2WX1) ⊂ C (WF′) . (114)

Choosing F′ = W−
1 X1 we observe that Fy ∈ S(μ1 | M1) for any choice of W−

1 .
Thus (114) implies that we must also have

C (WṀ2WX1) ⊂ C (WW−
1 X1) . (115)

According to Lemma 3 of Baksalary and Mathew [5], (for nonnull WṀ2WX1 and
X1) the inclusion (115) holds for anyW

−
1 if and only if

C (W) ⊂ C (W1) (116)

holds along with

C (WṀ2WX1) ⊂ C (WW+
1 X1) . (117)

Inclusion (116) means that C (X2) ⊂ C (X1 : V), i.e., C (W) = C (W1), which is
our assumption in Theorem 4. Thus we can also conclude the following.

Corollary 2 Consider the models M12 and M1 and suppose that μ1 = X1β1 is
estimable underM12. Then the following statements are equivalent:

(a) X′
1W

+
1 X2 = 0 and C (X2) ⊂ C (X1 : V).

(b) Fy ∈ S(μ1 | M1) ⇐⇒ Fy ∈ S(μ1 | M12).

We complete this section by considering the linear sufficiency of Fy versus that
of FM2y.

Theorem 5 Consider the models M12 and M12·2 and suppose that μ1 = X1β1 is
estimable underM12. Then

(a) Fy ∈ S(μ1 | M12) �⇒ FM2y ∈ S(μ1 | M12).
(b) The reverse relation in (a) holds ⇐⇒ C (FM2W) ∩ C (FX2) = {0}.

Moreover, the following statements are equivalent:
(c) FM2y ∈ S(X1β1 | M12),
(d) FM2y ∈ S(X1β1 | M12·2),
(e) FM2y ∈ S(M2X1β1 | M12·2).

Proof To prove (a), we observe that Fy ∈ S(μ1 | M12) implies (91), i.e.,

C (WṀ2WX1) ⊂ C (WF′QFX2) . (118)

Now on account Lemma 5d, we have M2F′QFX2 = F′QFX2. Substituting this into
(118) gives C (WṀ2WX1) ⊂ C (WM2F′QFX2), and so

C (WṀ2WX1) ⊂ C (WM2F′) , (119)
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which is the condition for FM2y ∈ S(μ1 | M12), thus confirming our claim (a). For
an alternative proof of (a), see Isotalo and Puntanen [10, Cor. 1].

The reverse relation in (a) holds if and only if (119) implies (118), i.e.,

C (WM2F′) ⊂ C (WM2F′QFX2) , (120)

where of course only the equality is possible. Now

r(WM2F′QFX2) = r(WM2F′) − dimC (FM2W) ∩ C (FX2) , (121)

and hence (120) holds if and only if C (FM2W) ∩ C (FX2) = {0} which proves our
claim (b).

The condition (c), FM2y ∈ S(μ1 | M12), holds if and only if

C [WM2(M2WM2)
−M2X1] ⊂ C (WM2F′) . (122)

Premultiplying (122) byM2 yields

C (M2X1) ⊂ C (M2WM2F′) , (123)

which means that (e) holds. Premultiplying (123) byWM2(M2WM2)
− yields (122)

thus confirming the equivalence of (c) and (e).
Applying Lemma 2b we observe that (d) holds if and only if

C {M2X1[X′
1M2(M2WM2)

−M2X1]−X′
1M2} ⊂ C (M2WM2F′) . (124)

The fact that the left-hand side of (124) is C (M2X1) shows the equivalence of (d)
and (c), and thus the proof is completed. �

6 Conclusions

If our interest is in all estimable parametric functions of β1, as in Groß and Puntanen
[8], Markiewicz and Puntanen [16], and Kala and Pordzik [13], then we could
concentrate on estimatingM2X1β1. This is due to the fact thatK1β1 is estimable if
and only if C (K′

1) ⊂ C (X′
1M2); see, e.g., Groß and Puntanen [8, Lemma 1]. Hence,

the BLUE for an arbitrary estimable vectorK1β1 may easily be computed from the
BLUE ofM2X1β1. We may also mention that in the corresponding way, Baksalary
[1, 2, §3.3, §5] considered the linearly sufficient statistics forX′

1M2X1β1 underM1
andM12 when V = In.

Our interest in this paper has been focused on the estimation of μ = Xβ

and μ1 = X1β1 under the linear model M12 = {y,X1β1 + X2β2,V}. Here
we need to assume that X1β1 is estimable (and thereby also X2β2 is estimable).
We have characterized the linearly sufficient statistic Fy by using the covariance
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matrices of the BLUEs under M12 and under its transformed version Mt =
{Fy,FX1β1 + FX2β2,FVF

′}. In particular, certain orthogonal projectors appear
useful in our considerations. We have obtained new interesting proofs for some
known results, like Lemma 2, and presented some new properties related to linear
sufficiency. Particular attention has been paid to the condition under which adding
new regressors (inX2) does not affect the linear sufficiency of Fy. Similarly we have
characterized linear sufficiency of Fy versus that of FM2y under the models M12
andM12·2.

As one of the referees of this paper stated, our considerations are based on
effective matrix and column space properties and hence its relevance for applied
data analysts may be a bit limited. However, we believe that in the long run the given
column space properties may provide some new insights into the linear estimation
theory.
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