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To Ingram Olkin



Preface

The 25th International Workshop on Matrices and Statistics (IWMS-2016) was held
in the city of Funchal on the beautiful Madeira Island, the Pearl of the Atlantic, on
6–9 June 2016.

The purpose of this workshop was to bring together researchers sharing an
interest in a variety of aspects of statistics and its applications as well as matrix
analysis and its applications to statistics and to offer them a possibility to discuss
current developments in these subjects. The workshop contributed to bridge the gap
among statisticians, computer scientists, and mathematicians in understanding each
other’s tools.

The Local Organizing Committee was chaired by Francisco Carvalho (Tomar,
Portugal) and the International Organizing Committee by Simo Puntanen (Tampere,
Finland), while George P. H. Styan (Montréal, Québec, Canada) was the Honorary
Chair.

IWMS-2016 was organized by the Instituto Politécnico de Tomar and Uni-
versidade da Madeira and was supported by the CMA (Centro de Matemática
e Aplicações) (FCT, UNL), CIMA (Centro de Investigação em Matemática e
Aplicações) (UE), PSE (Produtos e Serviços de Estatística), INE (Instituto Nacional
de Estatística), FLAD (Fundação Luso-Americana para o Desenvolvimento), Delta
Cafés, and Associação de Promoção da Madeira.

The workshop comprised invited talks, contributed talks, and special sessions;
for the details, see the conference report on IWMS-2016 in IMAGE, The Bulletin
of the International Linear Algebra Society, Issue Number 57, pp. 18–19. The final
program and the Book of Abstracts, edited by Daniel Klein and Francisco Carvalho,
are online on the IWMS-2016 website.

For previous IWMS workshops, see the IWMS-website, from where, for exam-
ple, “a short history of the International Workshop on Matrices and Statistics”
can be downloaded: online pdf. The 26th International Workshop on Matrices and
Statistics was held in Montréal, Québec, Canada, in 2018, and the 27th International
Workshop on Matrices and Statistics will be held in Shanghai, China, in 2019.

vii

http://www.iwms.ipt.pt/download/program%2007Jun2016.pdf
http://www.iwms.ipt.pt/download/book%2009Jun2016%20(v04).pdf
http://www.iwms.ipt.pt/?page=home
http://www.sis.uta.fi/tilasto/iwms/
http://www.sis.uta.fi/tilasto/iwms/IWMS-history.pdf


viii Preface

This volume, Matrices, Statistics, and Big Data, in the series Contributions to
Statistics published by Springer, comprises selected refereed papers presented at
the IWMS-2016.

We would like to thank all the authors for their valuable contributions to this
volume. Our special thanks go to all the reviewers for their diligent reviews.

St. Catharines, ON, Canada S. Ejaz Ahmed
Tomar, Portugal Francisco Carvalho
Tampere, Finland Simo Puntanen
October 2018
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Further Properties of the Linear
Sufficiency in the Partitioned Linear
Model

Augustyn Markiewicz and Simo Puntanen

Abstract A linear statistic Fy, where F is an f × n matrix, is called linearly
sufficient for estimable parametric function Kβ under the model M = {y, Xβ, V},
if there exists a matrix A such that AFy is the BLUE for Kβ. In this paper we
consider some particular aspects of the linear sufficiency in the partitioned linear
model where X = (X1 : X2) with β being partitioned accordingly. We provide
new results and new insightful proofs for some known facts, using the properties of
relevant covariance matrices and their expressions via certain orthogonal projectors.
Particular attention will be paid to the situation under which adding new regressors
(in X2) does not affect the linear sufficiency of Fy.

Keywords Best linear unbiased estimator · Generalized inverse · Linear model ·
Linear sufficiency · Orthogonal projector · Löwner ordering · Transformed linear
model

1 Introduction

In this paper we consider the partitioned linear model y = X1β1 + X2β2 + ε, or
shortly denoted

M12 = {y, Xβ, V} = {y, X1β1 + X2β2, V} , (1)

where we may drop off the subscripts from M12 if the partitioning is not essential in
the context. In (1), y is an n-dimensional observable response variable, and ε is an
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2 A. Markiewicz and S. Puntanen

unobservable random error with a known covariance matrix cov(ε) = V = cov(y)

and expectation E(ε) = 0. The matrix X is a known n × p matrix, i.e., X ∈ R
n×p ,

partitioned columnwise as X = (X1 : X2), Xi ∈ R
n×pi , i = 1, 2. Vector β =

(β ′1,β ′2)′ ∈ R
p is a vector of fixed (but unknown) parameters; here, symbol ′ stands

for the transpose. Sometimes we will denote μ = Xβ, μi = Xiβi , i = 1, 2.

As for notations, the symbols r(A), A−, A+, C (A), and C (A)⊥ denote,
respectively, the rank, a generalized inverse, the Moore–Penrose inverse, the column
space, and the orthogonal complement of the column space of the matrix A. By
A⊥ we denote any matrix satisfying C (A⊥) = C (A)⊥. Furthermore, we will
write PA = PC (A) = AA+ = A(A′A)−A′ to denote the orthogonal projector
(with respect to the standard inner product) onto C (A). In particular, we denote
M = In − PX, Mi = In − PXi

, i = 1, 2.

In addition to the full model M12, we will consider the small models Mi =
{y, Xiβi , V}, i = 1, 2, and the reduced model

M12·2 = {M2y, M2X1β1, M2VM2} , (2)

which is obtained by premultiplying the model M12 by M2 = In − PX2 . There is
one further model that takes lot of our attention, it is the transformed model

Mt = {Fy, FXβ, FVF′} = {Fy, FX1β1 + FX2β2, FVF′} , (3)

which is obtained be premultiplying M12 by matrix F ∈ R
f×n.

We assume that the models under consideration are consistent which in the case
of M means that the observed value of the response variable satisfies

y ∈ C (X : V) = C (X : VX⊥) = C (X)⊕ C (VX⊥) , (4)

where “⊕” refers to the direct sum of column spaces.
Under the model M , the statistic Gy, where G is an n × n matrix, is the best

linear unbiased estimator, BLUE, of Xβ if Gy is unbiased, i.e., GX = X, and it
has the smallest covariance matrix in the Löwner sense among all unbiased linear
estimators of Xβ; shortly denoted

cov(Gy) ≤L cov(Cy) for all C ∈ R
n×n : CX = X . (5)

The BLUE of an estimable parametric function Kβ, where K ∈ R
k×p , is defined

in the corresponding way. Recall that Kβ is said to be estimable if it has a linear
unbiased estimator which happens if and only if C (K′) ⊂ C (X′), i.e.,

Kβ is estimable under M ⇐⇒ C (K′) ⊂ C (X′) . (6)

The structure of our paper is as follows. In Sect. 2 we provide some preliminary
results that are not only needed later on but they also have some matrix-algebraic
interest in themselves. In Sects. 3 and 4 we consider the estimation of μ = Xβ and
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μ1 = X1β1, respectively. In Sect. 5 we study the linear sufficiency under M1 vs.
M12. We characterize the linearly sufficient statistic Fy by using the covariance
matrices of the BLUEs under M12 and under its transformed version Mt . In
particular, certain orthogonal projectors appear useful in our considerations. From a
different angle, the linear sufficiency in a partitioned linear model has been treated,
e.g., in Isotalo and Puntanen [10, 11], Markiewicz and Puntanen [16], and Kala and
Pordzik [13]. Baksalary [1, 2, §3.3, §5] considered linear sufficiency under M12 and
M1 assuming that V = In. Dong et al. [6] study interesting connections between
the BLUEs under two transformed models using the so-called matrix-rank method.

2 Some Preliminary Results

For the proof of the following fundamental lemma, see, e.g., Rao [22, p. 282].

Lemma 1 Consider the general linear model M = {y, Xβ, V}. Then the statistic
Gy is the BLUE for Xβ if and only if G satisfies the equation

G(X : VX⊥) = (X : 0) , (7)

in which case we denote G ∈ {PX|VX⊥}. The corresponding condition for By to be
the BLUE of an estimable parametric function Kβ is

B(X : VX⊥) = (K : 0) . (8)

Two estimators G1y and G2y are said to be equal (with probability 1) whenever
G1y = G2y for all y ∈ C (X : V) = C (X : VX⊥). When talking about the equality
of estimators we sometimes may drop the phrase “with probability 1”. Thus for
any G1, G2 ∈ {PX|VX⊥} we have G1(X : VX⊥) = G2(X : VX⊥), and thereby
G1y = G2y with probability 1.

One well-known solution for G in (7) (which is always solvable) is

PX;W− := X(X′W−X)−X′W−, (9)

where W is a matrix belonging to the set of nonnegative definite matrices defined as

W = {
W ∈ R

n×n : W = V+ XUU′X′, C (W) = C (X : V)
}
. (10)

For clarity, we may use the notation WA to indicate which model is under
consideration. Similarly, WA may denote a member of class WA . We will also
use the phrase “WA is a W-matrix under the model A ”.
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For the partitioned linear model M12 we will say that W ∈ W if the following
properties hold:

W = V+ XUU′X′ = V+ (X1 : X2)
(U1U′1 0

0 U2U′2

)(X′1
X′2

)

= V+ X1U1U′1X′1 + X2U2U′2X′2 , (11a)

Wi = V+ XiUiU′iX′i , i = 1, 2, (11b)

C (W) = C (X : V) , C (Wi ) = C (Xi : V) , i = 1, 2. (11c)

For example, the following statements concerning W ∈ W are equivalent:

C (X : V) = C (W), C (X) ⊂ C (W), C (X′W−X) = C (X′) . (12)

Instead of W , several corresponding properties also hold in the extended set

W∗ =
{
W ∈ R

n×n : W = V+ XNX′, C (W) = C (X : V)
}
, (13)

where N ∈ R
p×p can be any (not necessarily nonnegative definite) matrix satisfying

C (W) = C (X : V). However, in this paper we consider merely the set W . For
further properties of W∗, see, e.g., Puntanen et al. [21, §12.3] and Kala et al. [15].

Using (9), the BLUEs of μ = Xβ and of estimable Kβ, respectively, can be
expressed as

BLUE(Xβ |M ) = μ̃(M ) = X(X′W−X)−X′W−y, (14a)

BLUE(Kβ |M ) = K(X′W−X)−X′W−y, (14b)

where W belongs to the class W . The representations (14a)–(14b) are invariant with
respect to the choice of generalized inverses involved; this can be shown using (12)
and the fact that for any nonnull A and C the following holds [Rao and Mitra [23,
Lemma 2.2.4]]:

AB−C = AB+C for all B− ⇐⇒ C (C) ⊂ C (B) and C (A′) ⊂ C (B′) . (15)

Notice that part X(X′W−X)−X′ of PX;W− in (9) is invariant with respect to the
choice of generalized inverses involved but

PX;W+ = X(X′W+X)+X′W+ = X(X′W−X)−X′W+ (16)

for any choice of W− and (X′W−X)−.
The concept of linear sufficiency was introduced by Baksalary and Kala [3]

and Drygas [7] who considered linear statistics, which are “sufficient” for Xβ

under M , or in other words, “linear transformations preserving best linear unbiased
estimators”. A linear statistic Fy, where F ∈ R

f×n, is called linearly sufficient for
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Xβ under the model M if there exists a matrix A ∈ R
n×f such that AFy is the

BLUE for Xβ. Correspondingly, Fy is linearly sufficient for estimable Kβ, where
K ∈ R

k×p, if there exists a matrix A ∈ R
k×f such that AFy is the BLUE for Kβ.

Sometimes we will denote shortly Fy ∈ S(Xβ) or Fy ∈ S(Xβ |M ), to indicate
that Fy is linearly sufficient for Xβ under the model M (if the model is not obvious
from the context).

Drygas [7] introduced the concept of linear minimal sufficiency and defined it as
follows: Fy is linearly minimal sufficient if for any other linearly sufficient statistics
Sy, there exists a matrix A such that Fy = ASy almost surely.

In view of Lemma 1, Fy is linearly sufficient for Xβ if and only if the equation

AF(X : VM) = (X : 0) (17)

has a solution for A. Baksalary and Kala [3] and Drygas [7] proved part (a) and
Baksalary and Kala [4] part (b) of the following:

Lemma 2 Consider the modelM = {y, Xβ, V} and let Kβ be estimable. Then:

(a) The statistic Fy is linearly sufficient for Xβ if and only if

C (X) ⊂ C (WF′) , where W ∈ W . (18)

Moreover, Fy is linearly minimal sufficient for Xβ if and only if C (X) =
C (WF′).

(b) The statistic Fy is linearly sufficient for Kβ if and only if

C [X(X′W−X)−K′] ⊂ C (WF′) , where W ∈ W . (19)

Moreover, Fy is linearly minimal sufficient for Kβ if and only if equality holds
in (19).

Actually, Kala et al. [15] showed that in Lemma 2 the class W can be replaced
with the more general class W∗ defined in (13). For further related references, see
Baksalary and Mathew [5] and Müller [19].

Supposing that Fy is linearly sufficient for Xβ, one could expect that both M
and its transformed version Mt = {Fy, FXβ, FVF′} provide the same basis for
obtaining the BLUE of Xβ. This connection was proved by Baksalary and Kala
[3, 4]. Moreover, Tian and Puntanen [24, Th. 2.8] and Kala et al. [14, Th. 2] showed
the following:

Lemma 3 Consider the model M = {y, Xβ, V} and Mt = {Fy, FXβ, FVF′},
and let Kβ be estimable under M12 and Mt . Then the following statements are
equivalent:

(a) Fy is linearly sufficient for Kβ.
(b) BLUE(Kβ |M ) = BLUE(Kβ |Mt ) with probability 1.
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(c) There exists at least one representation of BLUE of Kβ under M which is the
BLUE also under the transformed modelMt .

Later we will need the following Lemma 4. The proofs are parallel to those
in Puntanen et al. [21, §5.13] and Markiewicz and Puntanen [17, Th. 5.2]. In
this lemma the notation A1/2 stands for the nonnegative definite square root of a
nonnegative definite matrix A. Similarly A+1/2 denotes the Moore–Penrose inverse
of A1/2. Notice that in particular PA = A1/2A+1/2 = A+1/2A1/2.

Lemma 4 Let W, W1 and W2 be defined as in (11a)–(11c). Then:

(a) C (VM)⊥ = C (WM)⊥ = C (W+X : QW), where QW = In − PW,
(b) C (W1/2M)⊥ = C (W+1/2X : QW) ,

(c) C (W1/2M) = C (W+1/2X : QW)⊥ = C (W+1/2X)⊥ ∩ C (W) ,

(d) PW1/2M = PW − PW+1/2X = PC (W)∩C (W+1/2X)⊥ .

Moreover, in (a)–(d) the matrices X, M and W can be replaced with Xi , Mi

and Wi , i = 1, 2, respectively, so that, for example, (a) becomes
(e) C (VMi )

⊥ = C (WiMi )
⊥ = C (W+

i Xi : QWi
), i = 1, 2.

Similarly, reversing the roles of X and M, the following, for example, holds:
(f) C (W+X)⊥ = C (WM : QW) and C (W+X) = C (VM)⊥ ∩ C (W).

Also the following lemma appears to be useful for our considerations.

Lemma 5 Consider the partitioned linear model M12 and suppose that F is an
f × n matrix and W ∈ W . Then

(a) C (F′QFX2) = C (F′) ∩ C (M2), where QFX2 = If − PFX2 ,
(b) C (WF′QFX2) = C (WF′) ∩ C (WM2) ,
(c) C (W1/2F′QFX2) = C (W1/2F′) ∩ C (W1/2M2) ,

(d) F′QFX2 = M2F′QFX2 .

Proof In light of Rao and Mitra [23, Complement 7, p. 118], we get

C (F′) ∩ C (M2) = C [F′(FM⊥
2 )⊥] = C (F′QFX2) , (20)

and so (a) is proved. In view of Lemma 4, we have C (W1/2M2)
⊥ = C (W+1/2X2 :

QW) , and hence

C (W1/2F′) ∩ C (W1/2M2) = C
{
W1/2F′[FW1/2(W1/2M2)

⊥]⊥}

= C
{
W1/2F′[FW1/2(W+1/2X2 : QW)]⊥}

= C [W1/2F′(FX2)
⊥] = C (W1/2F′QFX2) . (21)

Obviously in (21) W1/2 can be replaced with W. The statement (d) follows
immediately from the inclusion C (F′QFX2) ⊂ C (M2). �

Next we present an important lemma characterizing the estimability under M12
and Mt .
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Lemma 6 Consider the models M12 and its transformed version Mt and let F be
an f × n matrix. Then the followings statements hold:

(a) Xβ is estimable underMt if and only if

C (X′) = C (X′F′), i.e., C (X) ∩ C (F′)⊥ = {0} . (22)

(b) X1β1 is estimable underM12 if and only if

C (X′1) = C (X′1M2) , i.e., C (X1) ∩ C (X2) = {0} . (23)

(c) X1β1 is estimable underMt if and only if

C (X′1) = C (X′1F′QFX2) , (24)

or, equivalently, if and only if

C (X′1) = C (X′1F′) and C (FX1) ∩ C (FX2) = {0} . (25)

(d) β is estimable underM12 if and only if r(X) = p.
(e) β1 is estimable underM12 if and only if r(X′1M2) = p1.
(f) β1 is estimable underMt if and only if r(X′1F′QFX2) = r(X1) = p1.

Proof In view of (6), Xβ is estimable under Mt if and only if C (X′) ⊂ C (X′F′),
i.e., C (X′) = C (X′F′). The alternative claim in (a) follows from

r(FX) = r(X)− C (X) ∩ C (F′)⊥, (26)

where we have used the rank rule of Marsaglia and Styan [18, Cor. 6.2] for the
matrix product. For the claim (b), see, e.g., Puntanen et al. [21, §16.1]. To prove (c),
we observe that X1β1 = (X1 : 0)β is estimable under Mt if and only if

C

(
X′1
0

)
⊂ C

(
X′1F′
X′2F′

)
, i.e., X′1 = X′1F′A and 0 = X′2F′A , (27)

for some A. The equality 0 = X′2F′A means that A = QFX2B for some B, and
thereby X′1 = X′1F′QFX2B which holds if and only if C (X′1) = C (X′1F′QFX2) .

Thus we have proved condition (24). Notice that (24) is equivalent to

r(X′1) = r(X′1F′QFX2) = r(X′1F′)− dimC (FX1) ∩ C (FX2)

= r(X1)− dimC (X1) ∩ C (F′)⊥ − dimC (FX1) ∩ C (FX2) , (28)

which confirms (25). The proofs of (d)–(f) are obvious. �
For the proof Lemma 7, see, e.g., Puntanen et al. [21, p. 152].
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Lemma 7 The following three statements are equivalent:

PA − PB is an orthogonal projector, PA − PB ≥L 0, C (B) ⊂ C (A). (29)

If any of the above conditions holds, then PA − PB = PC (A)∩C (B)⊥ = P(I−PB)A .

3 Linearly Sufficient Statistic for μ = Xβ in M12

Let us consider a partitioned linear model M12 = {y, X1β1 + X2β2, V} , and
its transformed version Mt = {Fy, FX1β1 + FX2β2, FVF′}. Choosing W =
V + XUU′X′ ∈ W , we have, for example, the following representations for the
covariance matrix of the BLUE for μ = Xβ:

cov(μ̃ |M12) = V− VM(MVM)−MV = W−WM(MWM)−MW− T

= W1/2(In − PW1/2M)W1/2 − T = W1/2PW+1/2XW1/2 − T

= X(X′W+X)−X′ − T = X(X′W+1/2W+1/2X)−X′ − T , (30)

where T = XUU′X′. Above we have used Lemma 4d which gives

In − PW1/2M = QW + PW+1/2X . (31)

Consider then the transformed model Mt and assume that Xβ is estimable under
Mt , i.e., (22) holds. Under Mt we can choose the W-matrix as

WMt
= FVF′ + FXUU′X′F′ = FWF′ ∈ WMt

, (32)

and so, denoting T = XUU′X, we have

μ̃(Mt ) = BLUE(Xβ |Mt ) =: Gty

= X[X′F′(FWF′)−FX]−X′F′(FWF′)−Fy , (33)

cov(μ̃ |Mt ) = X[X′F′(FWF′)−FX]−X′ − T

= X(X′W+1/2PW1/2F′W
+1/2X)−X′ − T . (34)

Of course, by the definition of the BLUE, we always have the Löwner ordering

cov(μ̃ |M12) ≤L cov(μ̃ |Mt ) . (35)

However, it is of interest to confirm (35) algebraically. To do this we see at once that

X′W+1/2W+1/2X ≥L X′W+1/2PW1/2F′W
+1/2X . (36)
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Now (36) is equivalent to

(X′W+1/2W+1/2X)+ ≤L (X′W+1/2PW1/2F′W
+1/2X)+. (37)

Notice that the equivalence of (36) and (37) holds in view of the following result:
Let 0 ≤L A ≤L B. Then A+ ≥L B+ if and only if r(A) = r(B) ; see Milliken and
Akdeniz [20]. Now r(X′W+X) = r(X′W) = r(X), and

r(X′W+1/2PW1/2F′W
+1/2X) = r(X′W+1/2PW1/2F′)

= r(X′PWF′) = r(X′F′) = r(X) , (38)

where the last equality follows from the estimability condition (25). Now (37)
implies

X(X′W+1/2W+1/2X)−X′ ≤L X(X′W+1/2PW1/2F′W
+1/2X)−X′, (39)

which is just (35).
Now E(Gty) = Xβ, and hence by Lemma 3, Fy is linearly sufficient for Xβ if

and only if

cov(μ̃ |M12) = cov(μ̃ |Mt ) . (40)

Next we show directly that (40) is equivalent to (18). First we observe that (40)
holds if and only if

X(X′W+1/2W+1/2X)−X′ = X(X′W+1/2PW1/2F′W
+1/2X)−X′. (41)

Pre- and postmultiplying (41) by X+ and by (X′)+, respectively, and using the fact
that PX′ = X+X, gives an equivalent form to (41):

(X′W+1/2W+1/2X)+ = (X′W+1/2PW1/2F′W
+1/2X)+. (42)

Obviously (42) holds if and only if C (W+1/2X) ⊂ C (W1/2F′), which further is
equivalent to

C (X) ⊂ C (WF′) , (43)

which is precisely the condition (18) for Fy being linearly sufficient for Xβ. As a
summary we can write the following:

Theorem 1 Let μ = Xβ be estimable underMt and let W ∈ W . Then

cov(μ̃ |M12) ≤L cov(μ̃ |Mt ) . (44)
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Moreover, the following statements are equivalent:

(a) cov(μ̃ |M12) = cov(μ̃ |Mt ),
(b) X(X′W+X)−X′ = X(X′W+1/2PW1/2F′W

+1/2X)−X,
(c) X′W+X = X′W+1/2PW1/2F′W

+1/2X,
(d) C (W+1/2X) ⊂ C (W1/2F′),
(e) C (X) ⊂ C (WF′),
(f) Fy is linearly sufficient for μ = Xβ underM12.

4 Linearly Sufficient Statistic for μ1 = X1β1 in M12

Consider then the estimation of μ1 = X1β1 under M12. We assume that (23) holds
so that μ1 is estimable underM12. Premultiplying the modelM12 by M2 = In−PX2

yields the reduced model

M12·2 = {M2y, M2X1β1, M2VM2} . (45)

Now the well-known Frisch–Waugh–Lovell theorem, see, e.g., Groß and Puntanen
[8], states that the BLUEs of μ1 under M12 and M12·2 coincide (with probability
1):

BLUE(μ1 |M12) = BLUE(μ1 |M12·2) . (46)

Hence, we immediately see that M2y is linearly sufficient for μ1.
Now any matrix of the form

M2VM2 +M2X1U1U′1X′1M2 (47)

satisfying C (M2V : M2X1U1) = C (M2V : M2X1) , is a W-matrix in M12·2. We
may denote this class as WM12·2 , and

WM12·2 = M2WM2 = M2W1M2 ∈ WM12·2 , (48)

where W and W1 are defined as in (11a)–(11c).
It is interesting to observe that in (47) the matrix U1 can be chosen as a null

matrix if and only if

C (M2X1) ⊂ C (M2V) , (49)

which can be shown to be equivalent to

C (X1) ⊂ C (X2 : V) . (50)
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Namely, it is obvious that (50) implies (49) while the reverse implication follows
from the following:

C (X1) ⊂ C (X1 : X2) = C (X2 : M2X1) ⊂ C (X2 : M2V) = C (X2 : V) . (51)

This means that

M2VM2 ∈ WM12·2 ⇐⇒ C (X1) ⊂ C (X2 : V) . (52)

One expression for the BLUE of μ1 = X1β1, obtainable from M12·2, is

BLUE(μ1 |M12) = μ̃1(M12) = X1(X′1Ṁ2W X1)
−X′1Ṁ2W y , (53)

where

Ṁ2W = M2W−
M12·2M2 = M2(M2WM2)

−M2 . (54)

In particular, if (50) holds then we can choose WM12·2 = M2VM2, and

Ṁ2W = M2(M2VM2)
−M2 =: Ṁ2 . (55)

Notice that by Lemma 4d, we have

PWṀ2W PW = PWM2(M2WM2)
−M2PW

= W+1/2PW1/2M2
W+1/2

= W+1/2(PW − PW+1/2X2
)W+1/2

= W+ −W+X2(X′2W+X2)
−X′2W+, (56)

and hence, for example,

WṀ2W X1 = W[W+ −W+X2(X′2W+X2)
−X′2W+]X1

= [In − X2(X′2W+X2)
−X′2W+]X1 . (57)

Observe that in (54), (56) and (57) the matrix W can be replaced with W1. For a
thorough review of the properties of Ṁ2W , see Isotalo et al. [12].

In the next theorem we collect some interesting properties of linearly sufficient
estimators of μ1.

Theorem 2 Let μ1 = X1β1 be estimable under M12 and let W ∈ W . Then the
statistic Fy is linearly sufficient for μ1 underM12 if and only if

C (WṀ2W X1) ⊂ C (WF′) , (58)
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or, equivalently,

C {[In − X2(X′2W+X2)
−X′2W+]X1} ⊂ C (WF′) , (59)

where Ṁ2W = M2(M2WM2)
−M2. Moreover,

(a) M2y is linearly sufficient for μ1.
(b) Ṁ2W y = M2(M2WM2)

−M2y is linearly sufficient for μ1.
(c) X′1Ṁ2W y is linearly minimal sufficient for μ1.
(d) If C (X1) ⊂ C (X2 : V), (58) becomes

C (WṀ2X1) ⊂ C (WF′) , where Ṁ2 = M2(M2VM2)
−M2 . (60)

(e) If V is positive definite, (58) becomes C (Ṁ2X1) ⊂ C (F′).
(f) If β1 is estimable underM12, then

Fy ∈ S(X1β1 |M12) ⇐⇒ Fy ∈ S(β1 |M12) . (61)

Proof The sufficiency condition (58) was proved by Kala et al. [15, §3], and, using
a different approach, by Isotalo and Puntanen [10, Th. 2]. Claims (a), (b), (c) and (e)
are straightforward to confirm and (d) was considered already before the Theorem.
Let us confirm part (f). If Fy ∈ S(X1β1 | M12), then there exists a matrix A such
that

AF(X1 : X2 : VM) = (X1 : 0 : 0) . (62)

Because of the estimability of β1, the matrix X1 has a full column rank. Premulti-
plying (62) by (X′1X1)

−1X′1 yields

BF(X1 : X2 : VM) = (Ip1 : 0 : 0) , (63)

where B = (X′1X1)
−1X′1A, and thereby Fy ∈ S(X1β1 |M12) implies Fy ∈ S(β1 |

M12). The reverse direction can be proved in the corresponding way. Thus we have
confirmed that claim (e) indeed holds. �

The covariance matrix of the BLUE of μ1 = X1β1 under M12 can be expressed
as

cov(μ̃1 |M12) = X1(X′1Ṁ2W X1)
−X′1 − T1

= X1[X′1M2(M2WM2)
−M2X1]−X′1 − T1

= X1[X′1W+1/2PW1/2M2
W+1/2X1]−X′1 − T1 , (64)

where T1 = X1U1U′1X′1 and W can be replaced with W1.



Linear Sufficiency 13

Remark 1 The rank of the covariance matrix of the BLUE(β), as well as that of
BLUE(Xβ), under M12 is

r[cov(β̃ |M12)] = dimC (X) ∩ C (V) ; (65)

see, e.g., Puntanen et al. [21, p. 137]. Hence for estimable β,

C (X) ⊂ C (V) ⇐⇒ cov(β̃ |M12) is positive definite. (66)

Similarly, for estimable β1,

r[cov(β̃1 |M12)] = r[cov(β̃1 |M12·2)] = dimC (M2X1) ∩ C (M2VM2)

= dimC (M2X1) ∩ C (M2V) ≤ r(M2X1) . (67)

The estimability of β1 means that r(M2X1) = p1 and thereby

r[cov(β̃1 |M12)] = p1 ⇐⇒ C (M2X1) ⊂ C (M2V) . (68)

Thus, by the equivalence of (49) and (50), for estimable β1 the following holds:

C (X1) ⊂ C (X2 : V) ⇐⇒ cov(β̃1 |M12) is positive definite. � (69)

What is the covariance matrix of the BLUE of μ1 = X1β1 under Mt? First we
need to make sure that X1β1 is estimable under Mt , i.e., (24) holds.

Let us eliminate the FX2β2-part by premultiplying Mt by QFX2 = If − PFX2 .

Thus we obtain the reduced transformed model

Mt ·2 = {QFX2Fy, QFX2FX1β1, QFX2FVF′QFX2}
= {N′y, N′X1β1, N′VN} , (70)

where N = F′QFX2 ∈ R
n×f , and, see Lemma 5, the matrix N has the property

C (N) = C (F′) ∩ C (M2) . (71)

Notice also that in view of (71) and part (c) of Lemma 6,

r(N′X1) = r(X1)− dimC (X1) ∩ C (N)⊥

= r(X1)− dimC (X1) ∩ C [(F′)⊥ : X2] = r(X1) , (72)

so that

r(X′1W+1/2PW1/2NW+1/2X1) = r(X′1W+1/2W1/2N) = r(X′1N) = r(X1) . (73)
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Correspondingly, we have

r(X′1W+1/2PW1/2M2
W+1/2X1) = r(X1) . (74)

The W-matrix under Mt ·2 can be chosen as

WMt·2 = QFX2FW1F′QFX2 = N′W1N , (75)

where W1 can be replaced with W. In view of the Frisch–Waugh–Lowell theorem,
the BLUE of μ1 = X1β1 is

μ̃1(Mt ) = μ̃1(Mt ·2) = X1[X′1N(N′WN)−N′X1]−X′1N(N′WN)−N′y , (76)

while the corresponding covariance matrix is

cov(μ̃1 |Mt ) = X1[X′1N(N′WN)−N′X1]−X′1 − T1

= X1(X′1W+1/2PW1/2NW+1/2X1)
−X′1 − T1 , (77)

where T1 = X1U1U′1X′1 (and W can be replaced with W1).
By definition we of course have

cov(μ̃1 |M12) ≤L cov(μ̃1 |Mt ) , (78)

but it is illustrative to confirm this also algebraically. First we observe that in view
of Lemma 5,

C (W1/2F′QFX2) = C (W1/2F′) ∩ C (W1/2M2) , (79)

and thereby Lemma 7 implies that PW1/2M2
− PW1/2F′QFX2

= PZ, where

C (Z) = C (W1/2M2) ∩ C (W+1/2F′QFX2)
⊥. (80)

Hence we have the following equivalent inequalities:

X′1W+1/2(PW1/2M2
− PW1/2F′QFX2

)W+1/2X1 ≥L 0 , (81)

X′1W+1/2PW1/2M2
W+1/2X1 ≥L X′1W+1/2PW1/2F′QFX2

W+1/2X1 , (82)

(X′1W+1/2PW1/2M2
W+1/2X1)

+ ≤L (X′1W+1/2PW1/2F′QFX2
W+1/2X1)

+. (83)

The equivalence between (82) and (83) is due to the fact that the matrices on each
side of (82) have the same rank, which is r(X1); see (73) and (74). The equivalence
between (83) and (78) follows by the same argument as that between (41) and (42).
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The equality in (82) holds if and only if

PZW+1/2X1 = (PW1/2M2
− PW1/2F′QFX2

)W+1/2X1 = 0 , (84)

which is equivalent to

W1/2(PW1/2M2
− PW1/2F′QFX2

)W+1/2X1 = 0 . (85)

Writing up (85) yields

WṀ2W X1 = WM2(M2WM2)
−M2X1 = WN(N′WN)−NX1 . (86)

We observe that in view of (80) we have

C (Z)⊥ = C (W+1/2X2 : QW : W1/2F′QFX2) , (87)

where we have used the Lemma 4 giving us C (W1/2M2)
⊥ = C (W+1/2X2 : QW) .

Therefore (84) holds if and only if

C (W+1/2X1) ⊂ C (Z)⊥ = C (W+1/2X2 : QW : W1/2F′QFX2) . (88)

Premultiplying the above inclusion by W1/2 yields an equivalent condition:

C (X1) ⊂ C (X2 : WF′QFX2) = C (X2 : M2WF′QFX2)

= C (X2)⊕ [C (WF′) ∩ C (WM2)] . (89)

Our next step is to prove the equivalence of (89) and the linear sufficiency
condition

C (WṀ2W X1) ⊂ C (WF′) . (90)

The equality (85), which is equivalent to (89), immediately implies (90). To go the
other way, we observe that (90) implies

C [WM2(M2WM2)
−M2X1] ⊂ C (WF′) ∩ C (WM2) = C (WF′QFX2) , (91)

where we have used Lemma 5. Premultiplying (91) by M2 and noting that

M2WM2(M2WM2)
+ = PM2W (92)

yields

C (PM2WM2X1) = C (M2X1) ⊂ C (M2WF′QFX2) . (93)
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Using (93) we get

C (X1) ⊂ C (X1 : X2) = C (X2 : M2X1) ⊂ C (X2 : M2WF′QFX2) , (94)

and thus we have shown that (90) implies (89).
Now we can summarize our findings for further equivalent conditions for Fy

being linearly sufficient for X1β1:

Theorem 3 Let μ1 = X1β1 be estimable under M12 and Mt and let W ∈ W .

Then

cov(μ̃1 |M12) ≤L cov(μ̃1 |Mt ) . (95)

Moreover, the following statements are equivalent:

(a) cov(μ̃1 |M12) = cov(μ̃1 |Mt ).
(b) C (WṀ2W X1) ⊂ C (WF′).
(c) C (X1) ⊂ C (X2 : WF′QFX2) = C (X2 : M2WF′QFX2).
(d) C (X1) ⊂ C (X2)⊕ [C (WF′) ∩ C (WM2)].
(e) WM2(M2WM2)

−M2X1 = WN(N′WN)−NX1, where N = F′QFX2.
(f) The statistic Fy is linearly sufficient for X1β1 underM12.

If, in the situation of Theorem 3, we request Fy to be linearly sufficient for X1β1
for any X1 (expecting though X1β1 to be estimable), we get the following corollary.

Corollary 1 Let μ1 = X1β1 be estimable under M12 and Mt and let W ∈ W .

Then the following statements are equivalent:

(a) The statistic Fy is linearly sufficient for X1β1 underM12 for any X1.
(b) C (W) ⊂ C (X2 : WF′QFX2) = C (X2)⊕ C (WF′) ∩ C (WM2).

Proof The statistic Fy is linearly sufficient for X1β1 under M12 for any X1 if and
only if

W+1/2PZW+1/2 = 0 . (96)

Now (96) holds if and only if

C (W+1/2) ⊂ C (Z)⊥ = C (W+1/2X2 : QW : W1/2F′QFX2) . (97)

Premultipying (97) by W1/2 yields an equivalent form

C (W) ⊂ C (X2 : WF′QFX2) = C (X2)⊕ C (WF′) ∩ C (WM2) . (98)

�
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5 Linear Sufficiency Under M1 vs. M12

Consider the small model M1 = {y, X1β1, V} and full model M12 = {y, X1β1 +
X2β2, V}. Here is a reasonable question: what about comparing conditions for

Fy ∈ S(μ1 |M1) versus Fy ∈ S(μ1 |M12) . (99)

For example, under which condition

Fy ∈ S(μ1 |M1) �⇒ Fy ∈ S(μ1 |M12) . (100)

There is one crucial matter requiring our attention. Namely in the small model M1
the response y is lying in C (W1) but in M12 the response y can be in a wider
subspace C (W). How to take this into account? What about assuming that

C (X2) ⊂ C (X1 : V) ? (101)

This assumption means that adding the X2-part into the model does not carry y out
of C (W1) which seems to be a logical requirement. In such a situation we should
find conditions under which

C (X1) ⊂ C (W1F′) (102)

implies

C (W1Ṁ2W X1) ⊂ C (W1F′) . (103)

We know that under certain conditions the BLUE of X1β1 does not change
when the predictors in X2 are added into the model. It seems obvious that in such
a situation (102) and (103) are equivalent. Supposing that (101) holds, then, e.g.,
according to Haslett and Puntanen [9, Th. 3.1],

μ̃1(M12) = μ̃1(M1)− X1(X′1W+
1 X1)

−X′1W+
1 μ̃2(M12) , (104)

and hence

μ̃1(M12) = μ̃1(M1) (105)

if and only if X′1W+
1 μ̃2(M12) = 0, i.e.,

X′1W+
1 X2(X′2Ṁ1X2)

−X′2Ṁ1y = 0 . (106)

Requesting (106) to hold for all y ∈ C (X1 : V) and using the assumption C (X2) ⊂
C (X1 : V), we obtain

X′1W+
1 X2(X′2Ṁ1X2)

−X′2Ṁ1X2 = 0 , (107)
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i.e.,

X′1W+
1 X2PX′2 = X′1W+

1 X2 = 0 , (108)

where we have used the fact C (X′2Ṁ1X2) = C (X′2). Thus we have shown the
equivalence of (105) and (108).

On the other hand, (102) implies (103) if and only if C (W1Ṁ2W X1) ⊂ C (X1) ,

which is equivalent to

C (W1Ṁ2W X1) = C (X1) , (109)

because we know that r(W1Ṁ2W X1) = r(X1). Hence neither column spaces in
(109) can be a proper subspace of the other. Therefore, as stated by Baksalary [1,
p. 23] in the case of V = In, either the classes of statistics which are linearly
sufficient for μ1 are in the models M1 and M12 exactly the same, or, if not, there
exists at least one statistic Fy such that Fy ∈ S(μ1 | M1) but Fy /∈ S(μ1 | M12)

and at least one statistic Fy such that Fy ∈ S(μ1 |M12) but Fy /∈ S(μ1 |M1).
Now (102) and (103) are equivalent if and only if (109) holds, i.e.,

M1W1Ṁ2W X1 = 0 . (110)

Using (57), (110) becomes

M1X2(X′2W+
1 X2)

−X′2W+
1 X1 = 0 . (111)

Because r(M1X2) = r(X2), we can cancel, on account of Marsaglia and Styan [18,
Th. 2], the matrix M1 in (111) and thus obtain

X2(X′2W+
1 X2)

−X′2W+
1 X1 = 0 . (112)

Premultiplying (111) by X′2W+
1 shows that (109) is equivalent to

X′2W+
1 X1 = 0 . (113)

In (113) of course W+
1 can be replaced with any W−

1 . Thus we have proved the
following:

Theorem 4 Consider the models M12 and M1 and suppose that μ1 = X1β1 is
estimable under M12 and C (X2) ⊂ C (X1 : V). Then the following statements are
equivalent:

(a) X′1W+
1 X2 = 0,

(b) BLUE(μ1 |M1) = BLUE(μ1 |M12) with probability 1,
(c) Fy ∈ S(μ1 |M1) ⇐⇒ Fy ∈ S(μ1 |M12).
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Overlooking the problem for y belonging to C (X : V) or to C (X1 : V), we can
start our considerations by assuming that (100) holds, i.e.,

C (X1) ⊂ C (W1F′) �⇒ C (WṀ2W X1) ⊂ C (WF′) . (114)

Choosing F′ = W−
1 X1 we observe that Fy ∈ S(μ1 | M1) for any choice of W−

1 .
Thus (114) implies that we must also have

C (WṀ2W X1) ⊂ C (WW−
1 X1) . (115)

According to Lemma 3 of Baksalary and Mathew [5], (for nonnull WṀ2W X1 and
X1) the inclusion (115) holds for any W−

1 if and only if

C (W) ⊂ C (W1) (116)

holds along with

C (WṀ2W X1) ⊂ C (WW+
1 X1) . (117)

Inclusion (116) means that C (X2) ⊂ C (X1 : V), i.e., C (W) = C (W1), which is
our assumption in Theorem 4. Thus we can also conclude the following.

Corollary 2 Consider the models M12 and M1 and suppose that μ1 = X1β1 is
estimable underM12. Then the following statements are equivalent:

(a) X′1W+
1 X2 = 0 and C (X2) ⊂ C (X1 : V).

(b) Fy ∈ S(μ1 |M1) ⇐⇒ Fy ∈ S(μ1 |M12).

We complete this section by considering the linear sufficiency of Fy versus that
of FM2y.

Theorem 5 Consider the models M12 and M12·2 and suppose that μ1 = X1β1 is
estimable underM12. Then

(a) Fy ∈ S(μ1 |M12) �⇒ FM2y ∈ S(μ1 |M12).
(b) The reverse relation in (a) holds ⇐⇒ C (FM2W) ∩ C (FX2) = {0}.

Moreover, the following statements are equivalent:
(c) FM2y ∈ S(X1β1 |M12),
(d) FM2y ∈ S(X1β1 |M12·2),
(e) FM2y ∈ S(M2X1β1 |M12·2).

Proof To prove (a), we observe that Fy ∈ S(μ1 |M12) implies (91), i.e.,

C (WṀ2W X1) ⊂ C (WF′QFX2) . (118)

Now on account Lemma 5d, we have M2F′QFX2 = F′QFX2. Substituting this into
(118) gives C (WṀ2W X1) ⊂ C (WM2F′QFX2), and so

C (WṀ2W X1) ⊂ C (WM2F′) , (119)
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which is the condition for FM2y ∈ S(μ1 |M12), thus confirming our claim (a). For
an alternative proof of (a), see Isotalo and Puntanen [10, Cor. 1].

The reverse relation in (a) holds if and only if (119) implies (118), i.e.,

C (WM2F′) ⊂ C (WM2F′QFX2) , (120)

where of course only the equality is possible. Now

r(WM2F′QFX2) = r(WM2F′)− dimC (FM2W) ∩ C (FX2) , (121)

and hence (120) holds if and only if C (FM2W) ∩ C (FX2) = {0} which proves our
claim (b).

The condition (c), FM2y ∈ S(μ1 |M12), holds if and only if

C [WM2(M2WM2)
−M2X1] ⊂ C (WM2F′) . (122)

Premultiplying (122) by M2 yields

C (M2X1) ⊂ C (M2WM2F′) , (123)

which means that (e) holds. Premultiplying (123) by WM2(M2WM2)
− yields (122)

thus confirming the equivalence of (c) and (e).
Applying Lemma 2b we observe that (d) holds if and only if

C {M2X1[X′1M2(M2WM2)
−M2X1]−X′1M2} ⊂ C (M2WM2F′) . (124)

The fact that the left-hand side of (124) is C (M2X1) shows the equivalence of (d)
and (c), and thus the proof is completed. �

6 Conclusions

If our interest is in all estimable parametric functions of β1, as in Groß and Puntanen
[8], Markiewicz and Puntanen [16], and Kala and Pordzik [13], then we could
concentrate on estimating M2X1β1. This is due to the fact that K1β1 is estimable if
and only if C (K′1) ⊂ C (X′1M2); see, e.g., Groß and Puntanen [8, Lemma 1]. Hence,
the BLUE for an arbitrary estimable vector K1β1 may easily be computed from the
BLUE of M2X1β1. We may also mention that in the corresponding way, Baksalary
[1, 2, §3.3, §5] considered the linearly sufficient statistics for X′1M2X1β1 under M1
and M12 when V = In.

Our interest in this paper has been focused on the estimation of μ = Xβ

and μ1 = X1β1 under the linear model M12 = {y, X1β1 + X2β2, V}. Here
we need to assume that X1β1 is estimable (and thereby also X2β2 is estimable).
We have characterized the linearly sufficient statistic Fy by using the covariance



Linear Sufficiency 21

matrices of the BLUEs under M12 and under its transformed version Mt =
{Fy, FX1β1 + FX2β2, FVF′}. In particular, certain orthogonal projectors appear
useful in our considerations. We have obtained new interesting proofs for some
known results, like Lemma 2, and presented some new properties related to linear
sufficiency. Particular attention has been paid to the condition under which adding
new regressors (in X2) does not affect the linear sufficiency of Fy. Similarly we have
characterized linear sufficiency of Fy versus that of FM2y under the models M12
and M12·2.

As one of the referees of this paper stated, our considerations are based on
effective matrix and column space properties and hence its relevance for applied
data analysts may be a bit limited. However, we believe that in the long run the given
column space properties may provide some new insights into the linear estimation
theory.
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Hybrid Model for Recurrent Event Data

Ivo Sousa-Ferreira and Ana Maria Abreu

Abstract In the last four decades, there has been an increasing interest in
developing survival models appropriate for multiple event data and, in particular, for
recurrent event data. For these situations, several extensions of the Cox’s regression
model have been developed. Some of the most known models were suggested by:
Prentice, Williams, and Peterson (PWP); Andersen and Gill (AG); Wei, Lin, and
Weissfeld (WLW); and Lee, Wei, and Amato (LWA). These models can handle with
situations where exist potentially correlated lifetimes of the same subject (due to
the occurrence of more than one event for each subject) which is common in this
type of data.

In this chapter we present a new model, which we call hybrid model, with
the purpose of minimizing some limitations of PWP model. With this model we
obtained an improvement in the precision of the parameters estimates and a better
fit to the simulated data.

Keywords Correlated observations · Extensions of Cox model · Hybrid model ·
Recurrent events · Survival analysis

1 Introduction

A historical landmark that has revolutionized the survival analysis took place in
1972, when Sir David Cox [3] proposed a regression model capable of including
factors that are assumed to affect the lifetime of the subjects (known as prognostic
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or risk factors), which are represented by covariates. Based on this model, new
extensions and approaches that seek to respond to the most varied problems have
been developed.

Over the last few years there has been an increasing interest in studying the
time until the observation of various events that may occur more than once for a
given subject. The main feature of multiple events data is the observation of more
than one lifetime for each subject, which makes the direct application of the Cox’s
regression model unfeasible. Therefore, several extensions of the Cox model have
been suggested to analyze multiple events, in particular a single type of events
that occurs more than once for the same subject. Such outcomes have been termed
recurrent events. For these situations, the most applied extensions of the Cox model
were suggested by: Prentice, Williams, and Peterson (PWP) [10]; Andersen and
Gill (AG) [1]; Wei, Lin, and Weissfeld (WLW) [15]; and Lee, Wei, and Amato
(LWA) [6].

According to Kelly and Lim [5], these models can be classified based on the
dependency structure between events (of the same subject). The PWP and AG
models have a conditional dependency structure, since subjects are not considered at
risk for a given event unless the previous one has occurred. On the other hand, WLW
and LWA models have a marginal dependency structure, by reason of it is considered
that subjects are simultaneously at risk for the occurrence of any of events from
the initial time, i.e., the occurrence of each event is not conditioned on the prior
occurrence of any others. Therefore, the first two models are most appropriate to
analyze recurrent events, since they allow to accommodate the orderly nature of
such data.

One of the major problems in the application of these four models is related to
the strong possibility of occurring within-subject correlation. In the Cox model and
its extensions the estimation of regression parameters is made assuming that the
observations are independent. In other words, we ignore the existence of within-
subject correlation. For this reason, from the point of view of the estimation
of the parameters, all of these extensions are also called marginal models [13].
Several authors [1, 7, 15] have proven that, under certain regularity conditions, the
maximum likelihood estimator obtained thereby is still consistent and with the same
asymptotic properties, even in the presence of correlated lifetimes.

Consequently, the estimate of variance for the regression parameters also treats
each observation as independent. This means that, when the lifetimes are correlated,
the usual estimate of the variance does not correctly evaluate the accuracy of
estimated regression parameters. In order to offset this aspect, an adjustment in the
estimation of variance should take place. Then, a robust estimator of covariance
matrix—“sandwich” estimator—was developed to take that correlation into account
[8, 15].

In this chapter we present a hybrid model that will focus on the two models that
have a conditional dependency structure between events. The purpose of this hybrid
model is an attempt to overcome two limitations pointed out by some authors [2, 13]
about the PWP model: (1) the loss of heterogeneity throughout the study; and (2) the
violation of the missing completely at random (MCAR) condition. Therefore, in the
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next section we present the situations where the PWP and AG models are applied
and, afterwards, we formalize the new hybrid model. In Sect. 3, the performance of
the hybrid model is analyzed. For this purpose, the simulation of recurrent events
was carried out through the R statistical software [11]. Finally, some considerations
about the application of this model are discussed.

2 Methodology

The PWP and AG models will be formalized to subsequently construct the PWP-AG
hybrid model. The characteristics of each model will be examined in order to
understand in which situations the application of each of them is more appropriate.
In the first instance, it is necessary to introduce some notation which will enable the
construction of these survival models.

2.1 Notation

Suppose that there are n subjects in study and each subject can experience a maxi-
mum of S failures. Let Tis = min

{
Xis, Cis

}
be the observation time, where Xis

and Cis represent the true lifetime and the censoring time of the sth event (s =
1, . . . , S) in the ith subject (i = 1, . . . , n), respectively. Define δis = I (Xis ≤
Cis) as being the indicator censoring variable, where I (E) = 1 when the event E

holds, and I (E) = 0 otherwise. It is assumed that censoring is non-informative. Let
zis(t) =

(
zis1(t), . . . , zisp(t)

)′ represent the p-vector of time-dependent covariates
for the ith subject with respect to the sth event and zi (t) =

(
z′i1(t), . . . , z′iS(t)

)

denote his overall covariate vector. The true lifetime vector Xi = (Xi1, . . . , XiS)′
and the censoring time vector Ci = (Ci1, . . . , CiS)′ are assumed to be independent
conditional on the overall covariate vector zi (t). If Xis or zis is missing, we set
Cis = 0, which ensures that Tis = 0 and δis = 0. We require that such cases are
MCAR.

2.2 Prentice, Williams, and Peterson (PWP) Model

In 1981, Prentice et al. [10] suggested one of the earliest extensions of the Cox
model for the analysis of multiple events and it is often labeled as the PWP model.
This model applies to the situations in which events occur in an orderly way, where
it is considered that a subject cannot be at risk for the sth event until he has
experienced the s − 1 order event (Fig. 1). Therefore, it means that the risk set is
restrictive.
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Fig. 1 Schematic representation of the PWP model

Furthermore, it is assumed that the risk of occurrence of the following event is
modified by the occurrence of the previous one. This means that it is necessary to
stratify the subjects according to the order in which events occur. Thus, if it has been
observed s events, then there will be s ordered strata, wherein each of them will be
associated a different baseline hazard function h0s (t), t ≥ 0 and s = 1, . . . , S.

The authors of PWP model have suggested two possible time scales to construct
the risk intervals: counting process or gap time formulation. We will only consider
the first formulation. Then the hazard function of the ith subject for the sth event is
defined as

h
(
t; zis(t)

) = h0s (t) exp
(
β ′zis (t)

)
, t ≥ 0, (1)

where h0s(t) ≥ 0 is the event-specific baseline hazard function and β =
(β1, . . . , βp)′ is the p × 1 overall vector of unknown regression parameters.

The regression parameters are estimated through the partial likelihood function,
where we admit that the observations within the same subject are independent. For
a model with stratification, this function is given by

L(β) =
n∏

i=1

S∏

s=1

[
exp

(
β ′zis (tis )

)

∑n
j=1 Yjs(tis) exp

(
β ′zjs(tis )

)

]δis

, (2)

where Yis(t) = I
(
ti(s−1) < t ≤ tis

)
is the risk set indicator which represents the

counting process formulation and tis is the observation time of the ith subject with
respect to the sth event.

Conventionally, the overall maximum likelihood estimator ̂β is obtained by
adjusting a single vector of covariates, that in this case is the overall covariate vector
zi (t). However, since there is stratification, it is also possible to obtain the event-
specific vector of unknown regression parameters βs = (βs1, . . . , βsp)′, one for
each s stratum [7]. For this purpose, it is required to adjust the event-specific covari-
ate vector of each stratum, in such a way that zi (t) =

(
0, . . . , 0, zis (t), 0, . . . , 0

)′
,

towards s = 1, . . . , S. Thus, we obtain the event-specific estimates ̂β1, ̂β2 . . . , ̂βS .
In the PWP model, the set of subjects at risk is restricted in the sense that subjects

who have not experienced the sth event may not be included in the analysis of the
s + 1 order event. In this way, the risk set will gradually decrease over the study,
revealing increasingly less heterogeneous. Consequently, the event-specific parame-
ters estimates will become unreliable. Therneau and Grambsch [13] presented two
options to solve this limitation: (1) truncate the data set exactly in the event where
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the number of subjects at risk is considered too small; or (2) agglomerate the final
strata, starting from that one is considered to have a small number of subjects at
risk. The latter option is more attractive, because it has the advantage of not wasting
information that may be critical for the analysis.

In addition to the loss of heterogeneity, in a restrictive risk set the choice of
subjects that will be at risk for a given event does not occur randomly, because it is
determined by observation of the previous event. This leads to another limitation—
the violation of the MCAR assumption [2].

2.3 Andersen and Gill (AG) Model

In 1982, Andersen and Gill [1] proposed a simple model for the analysis of recurrent
events, usually referred to as AG model. This model was suggested in the same
line of reasoning of the previous model but has stronger assumptions. The main
assumption concerns with the independence of times between events within a
subject.

In this model, the events follow a given order, but it is assumed that the events
have equal risk of occurring (Fig. 2). Thus, there will be a common hazard function,
h0(t), t ≥ 0, to all events.

The AG model was conceived for the case where the occurrence of each event
does not depend on time elapsed since the last observation, nor the number of
events observed previously. This means that although the occurrence of each event
is conditioned to the occurrence of previous events, it is considered that the times
between the events are independent.

The authors of this model only considered the counting process formulation to
construct the risk intervals. The hazard function for the ith subject with respect to
the sth event is defined as

h
(
t; zis (t)

) = h0(t) exp
(
β ′zis (t)

)
, t ≥ 0, (3)

where h0(t) ≥ 0 is the common baseline hazard function and β = (β1, . . . , βp)′ is
the p × 1 overall vector of unknown regression parameters.

Fig. 2 Schematic
representation of the AG
model

ℎ ( )
Event 
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As in this case there is no stratification, the parameters are estimated through the
following partial likelihood function

L(β) =
n∏

i=1

S∏

s=1

[
exp

(
β ′zis (tis )

)

∑n
j=1

∑S
l=1 Yjl(tis ) exp

(
β ′zj l(tis )

)

]δis

, (4)

where Yis(t) = I
(
ti(s−1) < t ≤ tis

)
is the risk set indicator and tis is the observation

time of the ith subject with respect to the sth event. Since this model has a common
hazard function to all events, it is only possible to obtain the overall maximum
likelihood estimator ̂β.

When the PWP and AG models have been suggested, they did not present any
adjustment for the within-subject correlation. However, the authors of these models
were conscious of this strong possibility and recommended attempt to capture this
correlation including time-dependent covariates on the model. A few years later, it
was realized that it was possible to take advantage of the fact that these two models
are also classified as marginal models from the point of view of the parameters
estimation. From this point, the robust estimator of the covariance matrix was
applied to take the within-subject correlation into account [7, 13].

In contrast with the previous model, the AG model reveals neither loss of the
heterogeneity nor the violation of the MCAR condition because the set of subject at
risk is unrestrictive. This means that all risk intervals of all subjects may contribute
to the risk set for any given event, regardless of the number of events observed
previously for each subject [5].

2.4 PWP-AG Hybrid Model

In order to overcome the limitations pointed for the PWP model, we present a
slightly different option from those presented in [13].

In fact, there may exist another reason to agglomerate the final strata. Suppose
that, initially, the PWP model has a very heterogeneous risk set, whereby the
differences between the hazard functions of the various subjects are due, in
particular, to the effect of several covariates with quite different values for each
of them. Suppose that the risk set related to the second event (which contains only
the subjects that had suffered the first event) no longer contains the subjects who
belong to a certain category of a covariate. This means that, in addition to subjects
being less heterogeneous, this covariate is no longer important to the model. Thus,
its effect on the survival shall be embedded in the baseline hazard functions, which
necessarily have to be different from the baseline hazard function of the first event.
With that in mind, assume that after a certain event, denoted by S∗, the subjects at
risk will be more homogeneous, in such a way that the baseline hazard functions
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Fig. 3 Schematic representation of the PWP-AG hybrid model

for each event no longer have to be different. Then, instead of continuing to apply
the PWP model, the AG model can be implemented after the observation of the S∗
event, as illustrated in Fig. 3.

In general, the events 1, 2, . . . , S∗ are analyzed with the PWP model (1) and the
events S∗ + 1, S∗ + 2, . . . , S are analyzed with the AG model (3). The proposal
to agglomerate the final strata gives rise to the PWP-AG hybrid model that, as far
as we know, has not yet been mathematically formalized in the available literature.
Therefore, considering the counting process formulation, the hazard function for the
ith subject regarding the sth event is defined as

h
(
t; zis (t)

) =
⎧
⎨

⎩

h0s(t) exp
(
β ′zis(t)

)
, 0 < s ≤ S∗

h0(t) exp
(
β ′zis (t)

)
, S∗ < s ≤ S

, t ≥ 0.

where h0s(t) ≥ 0 is the event-specific baseline hazard function, h0(t) ≥ 0 is the
common baseline hazard function, and β = (β1, . . . , βp)′ is the p×1 overall vector
of unknown regression parameters.

Similarly it is necessary to adapt the partial likelihood functions of PWP (2) and
AG (4) models to this situation. Admitting that the observations within the same
subject are independent, the overall maximum likelihood estimator ̂β is obtained
through the following function:

L(β) =
n∏

i=1

S∏

s=1

[
exp

(
β ′zis (tis )

)

Qs (β, tis )
Δs Q(β, tis )

1−Δs

]δis

,

where Qs (β, t) = ∑n
j=1 Yjs(t) exp

(
β ′zjs(t)

)
, Q(β, t) = ∑S

s=1 Qs (β, t) and
Δs = I (s ≤ S∗) denote the indicator model variable which takes the value Δs = 1
when the PWP model is considered (0 < s ≤ S∗) and Δs = 0 when the AG model
is considered (S∗ < s ≤ S). It should be noted that Δs does not depend on the i

index, which means that for all subjects we define that the AG model is applied from
the S∗ event. Furthermore, it is noteworthy that when Δs = 1 we can also obtain
the event-specific estimators ̂β1, ̂β2, . . . , ̂βS∗ . The estimation of the event-specific
regression parameters is performed by the same procedure described in Sect. 2.2.
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3 PWP-AG Hybrid Model with Simulated Data

The application of the marginal models can be easily accomplished by R, S-Plus, or
SAS statistical software. In this contribution we used the R statistical software [11],
version 3.4.0, where for the analysis we used the survival package [12].

In order to evaluate the performance of the PWP-AG hybrid model, we proceeded
with the simulation of a recurrent event data, bearing in mind the characteristics
of the situations where this model is applied. The data set was simulated with
survsim package [9], where we considered that the time to right censoring
and to events follows a Weibull distribution. The values of the covariates were
simulated from Bernoulli distribution (with probability of success p = 0.5),
uniform distribution (that takes values in the range [0, 1]), and standard gaussian
distribution. Let them be denoted by x, x.1 and x.2, respectively. The procedure
used for the simulation of this data set was recently presented by Ferreira [4].

Before applying any model, we decided to analyze the evolution of the risk for
each event over time. The cumulative hazard functions from Kaplan-Meier estimates
on the left side of Fig. 4 show that the first four events have different risks of
occurring, but after that the risk is more similar. This was the main reason why
we considered the PWP-AG hybrid model with S∗ = 4 (right side of Fig. 4). Also,
in Table 1 it can be seen the number of subjects at risk and observed events in each
event number, where the decreasing over the strata becomes obvious. This means
that if we want to calculate the event-specific estimates for the PWP model, these
will be unreliable or even missing.

The implementation code of the PWP-AG hybrid model is very similar to the
code of the PWP model [13, 14], the only difference lies in the way that we define
the stratification variable. For the hybrid model it is necessary to define a new
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Fig. 4 Cumulative hazards from Kaplan-Meier estimates of the first 6 events (left) and of the first
4 events with the following ones agglomerated in the last stratum (right)
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Table 1 Number of subjects at risk and observed events

Event number

1 2 3 4 5 6 7 8 9 10

Subjects at risk 1000 365 162 87 48 27 15 10 6 3

Observed events 365 162 87 48 27 15 10 6 3 0

Table 2 Overall estimates of the various parameters associated with each model

Covariate/Model β̂j exp(β̂j ) se(β̂j ) ser (β̂j ) p-value

x

PWP 0.52734 1.69442 0.08076 0.08624 9.66e−10

PWP-AG 0.52234 1.68598 0.07998 0.08615 1.33e−09

x.2

PWP 0.67673 1.96742 0.04759 0.05003 <2e−16

PWP-AG 0.67702 1.96800 0.04694 0.04943 <2e−16

stratification variable, where we specified that after the S∗ = 4 event the last strata
are agglomerate in the S∗ + 1 = 5 event number. So, in the stratification variable of
the PWP-AG hybrid model the first four strata remain unchanged and the last strata
are agglomerated in the stratum number five. Consequently, there will be an event-
specific baseline hazard function for the first four events and a common baseline
hazard function for the subsequent events.

The analysis revealed that the covariate x.1 was not significant in both
models (p-value=0.553 and p-value=0.403 in PWP and PWP-AG hybrid models,
respectively). Therefore, in Table 2 we present the results of the models with the
remaining two covariates. The parameters estimates were similar but the standard
errors were slightly smaller in PWP-AG hybrid model, thus improving the accuracy
of the estimates. For both models, the robust standard errors were inflated compared
to the usual ones. This observed inflation suggests that there is less variation within-
subjects than between-subjects [5].

In addition, the value of concordance for both models is 0.722. However, the
value of R2 is better for PWP-AG hybrid model (R2 = 0.131 vs R2 = 0.129).

4 Conclusions and Future Work

The proposed PWP-AG hybrid model revealed to be an alternative to the PWP
model. The decision of gathering the last events was mainly based on the similarity
of the cumulative hazard functions and not only on the dimension of the risk
set. The fact that subjects become more homogeneous does not ensure that the
hazard functions corresponding to the subsequent events are the same because the
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mechanism that triggers such events may cause differences in these functions. This
is the reason why it is important to represent the cumulative hazard function of each
event.

On the other hand, the simulation showed that the parameters estimates become
more accurate. Moreover, in this case the PWP-AG hybrid model has resulted in a
better fit to the simulated data.

Although the PWP-AG hybrid model may not completely overcome the limita-
tions of the PWP model (the loss of heterogeneity and the violation of the MCAR
assumption), nevertheless these limitations are reduced. Therefore, the PWP-AG
hybrid model is a compromise between PWP and AG models, which allows to
compile the features of each of them.

Further work is required with this model, namely a simulation study, which can
clarify when this model is more appropriate than the other models for recurrent
events.
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A New Look at Combining Information
from Stratum Submodels

Radosław Kala

Abstract If an experiment possesses the property of orthogonal block structure,
the information contained in the experimental observations can be divided into
uncorrelated parts represented by separate stratum submodels. The paper shows
that this property is sufficient to obtain the results identical with those established
by Nelder (J R Stat Soc Ser B 30:303–311, 1968) under the additional property of
general balance. The approach proposed here is direct, quite general, and mainly
geometrical.

Keywords Mixed linear models · Treatment contrasts · Stratum submodels ·
General balance

1 Introduction

The main principles improving the objectivity of inference from planned experi-
ments consist of blocking the experimental units, sampling or randomizing pro-
cesses, and replications of treatments on which the interest of the experimenter
is focused. These principles determine a model of observations resulting from the
experiment. The model with fixed effects of treatments and with random effects
of various levels of blocking is classified as a mixed model. This paper deals
with the issue of combining information on treatment comparisons following from
several submodels, also known as stratum models, induced by the orthogonal block
structure, possible when some additional assumptions are fulfilled.

The approach proposed here is quite general and mainly geometrical, which
simplifies the considerations. In the next section, the basic concepts concerning
the treatment parameters in the standard fixed model are recalled. In Sect. 3, the
specific and well-known property of the orthogonal block structure, being the source

R. Kala (�)
Department of Mathematical and Statistical Methods, Poznań University of Life Sciences,
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of many stratum submodels, is presented. It is shown that this property is sufficient
to justify the Nelder equations for estimating the variance components. Section 4
is devoted to the problem of combining information when the design possesses the
property of general balance. In the next section three simple but illustrative examples
are presented. Some concluding remarks are provided in the final section.

2 Fixed Models

Information delivered by any planned experiment is contained in a set of observa-
tions, forming a vector random variable y, in a design determining the expectation
of y, E(y), and in the dispersion matrix of y, D(y). These three elements form the
model of observations,

{y, E(y), D(y)}. (1)

Usually the expectation of an n-dimensional vector y is directly connected with the
set of p treatments through an n× p design matrix X, i.e.,

E(y) = μ = Xβ, (2)

where β is a p-dimensional vector of fixed treatment parameters. Let the range of
X, R(X), be called the expectation subspace.

On the dispersion matrix we assume that it belongs to a suitably parametrized set
V of the nonnegative definite matrices of order n, D(y) ∈ V . In a simplest, but not
trivial, fixed model the set V takes the form V = {σ 2F }, where σ 2 is an unknown
positive scalar, interpreted as a variance of errors, while F is a known nonnegative
definite matrix, F ≥ 0. Such a model is represented by the triplet

{y, Xβ, σ 2F }. (3)

If F is not of full rank, the model is termed singular. If, in addition, the expectation
subspace R(X) is contained in R(F ), the model is called weakly singular. Such
models are of interest in this paper.

If the design matrix X is not of full column rank, only some linear functions
of treatment parameters, c′β, are estimable. This concept, introduced by Bose [7],
means that there exists a linear function of y, s′y, such that E(s′y) = c′β. Of
course, the expectation of y, i.e., the vector μ = Xβ, is composed of n estimable
functions (it is so, because E(y) = μ by the model definition). Because each
estimable function c′β can be replaced by s′Xβ = s′μ, i.e., by a linear function
of the expectation of y, we can focus our attention on the estimation of μ. For this,
it will be convenient to express the model in the form,

{y, Pμ, σ 2F }, (4)
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where P is the orthogonal projector on R(X), i.e., P 2 = P = P ′ and PX = X. In
result, Pμ = Xβ.

Although the vector y is an unbiased estimator of μ, it is far from being the
best. By the best linear unbiased estimator (BLUE) we mean such a linear unbiased
statistic which has, irrespective of the unknown variance σ 2, the smallest dispersion
matrix according to the Löwner order. Under the conditionR(X) ⊂ R(F ) (i.e., that
the model is weakly singular), the best linear unbiased estimator of μ is obtainable
through a solution of the normal equations, which can be expressed as

PF+Pμ = PF+y, (5)

where F+ denotes the Moore–Penrose inverse of F . In consequence, the BLUE of
μ takes the form μ̂ = P Fy, where

P F = P (PF+P )+PF+. (6)

Having the BLUE of μ, one can obtain the BLUE of any estimable function c′β.
Indeed, if c′β is estimable, then c′β = s ′Xβ = s′μ for some s, which, by the
linearity property, implies that ĉ′β is equal to s′μ̂.

The matrix P F is idempotent (i.e., P FP F = P F ), P FP = P , and P FF together
with F+P F are symmetric matrices. The first and second property means that P F

is a projector on the expectation subspace, because R(P ) = R(X). This operator
projects along the complementary subspaceR(I−P F), where I denotes the identity
matrix, here of order n. The third property has a geometrical sense. Because (I −
P F)′F+P = 0, the operator P F is the orthogonal projector on R(X) under the
semi-inner product defined with the use of F+.

The operator

R = I − P F (7)

is also a projector such that RF = FR′ and RP = 0. It produces the vector of
residuals if applied to the vector y. The squared length of the vector of residuals
under the aforementioned semi-inner product,

RSS = y′R′F+Ry, (8)

is known as the residual sum of squares.
The expectation of the RSS can be easily calculated as

E(RSS) = σ 2tr(FR′F+R)+ μ′R′F+Rμ = σ 2tr(FF+R) = σ 2d, (9)

where d = rank(F )−rank(X). In consequence, the mean square error (i.e., the RSS
divided by the degrees of freedom d) provides the well-known unbiased estimator
of the error variance σ 2.
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A replacement of the matrix F in the model (3) by the identity matrix I results
in so-called the simple model {y, Xβ, σ 2I }. This replacement means that the
observations given in y are uncorrelated. In this case the projector (6) reduces to
P which depends only on the matrix spanning the expectation subspace.

The projector P , ignoring the form of the dispersion matrix, can be applied also
in the model (3). Then the estimator Py is unbiased for μ, but is not the BLUE. Its
dispersion matrix, σ 2PFP , is greater, in the Löwner order, than that of the BLUE
for μ, D(μ̂) = σ 2P (PF+P )+P , which means that PFP − P (PF+P )+P ≥ 0.
The statistic Py is called the least squares estimator, LSE. The problem of equality
between the BLUE and LSE focused the attention of many authors [1, 17, 19–21].
A more complete review of the results concerning this issue is presented in the paper
by Baksalary et al. [6]. One of such results states that the BLUE of μ coincides with
the LSE of μ if and only if the expectation subspace is an invariant subspace of
the dispersion matrix F , the condition of which can be expressed by the equality
PF = FP (see, e.g., [5]).

3 Mixed Models

The mixed models differ from fixed models in forms of the dispersion matrices. The
model is termed variance component model if the set of dispersion matrices has the
form

V = {V = α1V 1 + α2V 2 + · · · + αlV l ≥ 0}, (10)

where V 1,V 2, . . . ,V l are known nonnegative definite matrices, while α1, α2, . . . ,

αl are unknown positive scalars. Usually, the matrix V l = I , and then the
component αl = σ 2 is interpreted as the error variance of measurements. In
designed experiments, the other matrices V i , i = 1, 2, . . . , l − 1, reflect the
randomization processes in relation with the structure of blocking of experimental
units.

Under a specific condition satisfied by the matrices V i , i = 1, 2, . . . , l, the set V
can be reparametrized in such a way that

V = {F = σ 2
1 φ1 + σ 2

2 φ2 + · · · + σ 2
k φk}, (11)

where σ 2
1 , σ 2

2 , . . . , σ 2
k are linear functions of α1, α2, . . . , αl and φ1,φ2, . . . ,φk are

mutually orthogonal projectors and such that

φ1 + φ2 + · · · + φk = I . (12)

A design with such property is said that it possesses the orthogonal block
structure (OBS) (see [2, 3, 12–14]). The resulting model may be written in a form
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similar to the fixed model, i.e.,

{y, Pμ, σ 2Fδ}. (13)

where δ = (σ 2
1 /σ 2, σ 2

2 /σ 2, . . . , σ 2
k /σ 2)′ and Fδ = δ1φ1 + δ2φ2 + · · · + δkφk . Of

course, for any positive scalar σ 2, we have σ 2Fδ = F , where F is defined in (11).
The existence of the BLUE for μ under the model (13) is very limited. Actually,

for any given vector δ with positive entries, the triplet (13) defines a fixed model. In
each such fixed model the BLUE of μ exists, but it is a local BLUE, because it is
determined by the value of δ. In view of (12), the vector δ = (1, 1, . . . , 1)′ induces
the simple model {y, Pμ, σ 2I } in which the BLUE and the LSE for μ are the same
statistics. Of course none of the local BLUE, as dependent on δ, is the overall BLUE
in the model (13).

The OBS property provides another possibility. Post-multiplying (12) by y leads
to the equality

y = y1 + y2 + · · · + yk, (14)

where yj = φjy, j = 1, 2, . . . , k, are uncorrelated random variables. This means
that the information contained in the vector y is divided into uncorrelated parts. The
part j , represented by the vector yj , leads to the model

{yj , φjPμ, σ 2
j φj }, (15)

in which the expectation subspace R(φjP ) = R(φjX) is the projection of R(X)

by the projector φj while the dispersion matrix follows from the symmetric
transformation: σ 2Fδ → φjFφj = σ 2

j φj.
The triplet (15) represents the so-called j th stratum submodel. Its expectation

subspace is contained in the range of the singular dispersion matrix, R(φj), which
means that the model is weakly singular. The BLUE of the expectation in this model
can be obtained by solving the normal equation, which is presented here in the form
as in Houtman and Speed ([12] equation NEα),

PφjPμ = Pφjy. (16)

Actually, such stratum BLUE follows by the least squares procedure, because for
each stratum submodel the expectation subspace R(φjP ) is an invariant subspace
of the corresponding dispersion matrix φj .

Now, let us assume that the entries of δ are known. Then, one can pose the
question, how to combine the information from the various strata to obtain the
BLUE of μ in the overall model (13). The answer is easy. It was exploited by many
authors (see, e.g., [8–12]). Actually, it is sufficient to note that the weighted sum of
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the normal equations related to all strata,

k∑

j=1

δ−1
j PφjPμ =

k∑

j=1

δ−1
j Pφjy, (17)

leads to the overall normal equations

PF+δ Pμ = PF+δ y, (18)

because

k∑

j=1

δ−1
j φj = F+

δ
. (19)

This property suggests that the optimal estimator of μ, even if the vector δ is
unknown, should also be delivered by the projector of the form (6) with F+ replaced
by F+

δ
. Of course, the vector δ should be chosen properly. This issue means a

necessity of estimating the stratum variances, what was exactly stated in Nelder
[15, at the end of Section 2].

To this aim, let us consider the overall residual sum of squares. It takes the form

RSS = y′R′δF
+
δ Rδy, (20)

where Rδ = I − P Fδ . Of course, its expectation follows as in (9), i.e., E(RSS) =
σ 2tr(FδF

+
δ Rδ). Now, let us assume that all δ’s, except δj , in the matrix Fδ

converge to zero. Then Fδ converges to δjφj , i.e., to the matrix proportional to
the dispersion matrix of the j th stratum submodel. In consequence,

RSS = y ′R′δF
+
δ
Rδy → δ−1

j y′R′δφjRδy, (21)

and

E(RSS) = σ 2tr(FδF
+
δ
Rδ) → σ 2tr(φjRδ). (22)

Comparing the right-hand sides of (21) and (22), also for the other subscripts j , i.e.,
with respect to all stratum submodels, leads to a system of k nonlinear equations

y ′R′δφjRδy = σ 2
j tr(φjRδ), j = 1, 2, . . . , k, (23)

written also as

∥
∥φjRδy

∥
∥2 = σ 2

j tr(φjRδ), j = 1, 2, . . . , k.
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They are actually the same as those first established by Nelder [15] in the context
of the generally balanced designs if, however, the simplification following from
Lemma (ii) in Houtman and Speed [12] is taken into account. They also coincide, as
it was observed by Patterson and Thompson [16], with the equations following from
their maximum likelihood approach under the assumption that y has a multivariate
normal distribution.

Equations (23) can also be established directly by considering the orthogonal
projections of the residual vector Rδy onto the subspaces R(φj), j = 1, 2, . . . , k.
The quadratic length of each such vector takes the form

RSSj = y′R′δφjRδy. (24)

Its expectation can be obtained exactly in the same way as in (9), i.e.,

E(RSSj) = σ 2tr(FδR
′
δφjRδ)+ μ′R′δφjRδμ = σ 2

j tr(φjRδ), (25)

because FδR
′
δ is a symmetric matrix and Fδφj = δjφj . In consequence, it appears

that for any fixed vector δ, the expectation of the right-hand side in (21) really equals
to the right-hand side in (22), which again justifies Eq. (23).

The set of Eqs. (23) can be solved iteratively starting with any initial values of
δ’s in the residual projector Rδ . The simplest starting point is δ = (1, 1, . . . , 1).
This choice means that the initial projector Rδ coincides with I − P , where P

is the simple least squares operator. The iteration process is continued until its
convergence.

When the final values σ 2
j , j = 1, 2, . . . , k, are correctly established, then

summing up Eqs. (23) premultiplied by δ−1
j , j = 1, 2, . . . , k, respectively, leads

to the equality

y ′R′δ

⎛

⎝
k∑

j=1

δ−1
j φj

⎞

⎠Rδy = σ 2tr

⎛

⎝Rδ

k∑

j=1

φj

⎞

⎠ ,

which, in view of (12) and (19), can be written as

y ′R′δF
+
δ
Rδy = σ 2tr (Rδ) . (26)

This equality holds for any positive σ 2. Taking σ 2 = 1 leads to the conclusion
that the mean square error in the model with estimated variance components from
Eqs. (23) is equal to one. This fact may be utilized to control the convergence of the
iteration process.

Finally note that Eqs. (23) give a reasonable bases for estimating the unknown
stratum variances even if the design is not generally balanced [see, e.g. 9, Sec-
tion 3.2]. The evaluation presented here is fully geometrical, distribution free and
requires only that the design has the orthogonal block structure.
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4 Generally Balanced Designs

The property of general balance can be characterized simply as a commutativity
of the information matrices of the stratum submodels, i.e., the design is generally
balanced if and only if the matrices PφiP and PφjP commute, for all i, j =
1, 2, . . . , k, i �= j . This condition means that all these matrices have a set of
common eigenvectors.

However, in view of Eq. (12), pre- and post-multiplied by P , the following
equality

Pφ1P + Pφ2P + · · · + PφkP = P (27)

holds. Because the projector P also commutes with all matrices on the left-hand
side of (27), each common eigenvector qs fulfills the equality

Pφ1Pqs + Pφ2Pqs + · · · + PφkPqs =
= εs1qs + εs2qs + · · · + εskqs = Pqs = qs �= 0, (28)

where εsj is the eigenvalue of PφjP corresponding to the eigenvector qs . In
consequence, if εsj = 0, then PφjPqs = 0, i.e., φjqs = 0, because Pqs = qs

for all non-zero qs . Actually, the number of non-zero eigenvectors qs is equal to
r = rank(X), because P has the eigenvalue equal to one with multiplicity equal to
rank(X). The latter property implies that

εi1 + εi2 + · · · + εik = 1, (29)

for all i = 1, 2, . . . , r . These eigenvalues, summing up to one, are considered as the
efficiency factors measuring the usefulness of each stratum submodel in estimation
of a given linear function q ′sμ.

Now, come back to Eq. (17). Taking into account the simultaneous spectral
decomposition of all matrices PφjP , one obtains

k∑

j=1

δ−1
j

r∑

i=1

εij qiq
′
iμ =

r∑

i=1

γiqiq
′
iμ =

k∑

j=1

δ−1
j Pφjy (30)

where

γi =
k∑

j=1

δ−1
j εij . (31)
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In consequence, the projector P Fδ takes the form

P Fδ = P

(
r∑

i=1

γiqiq
′
i

)+ k∑

j=1

δ−1
j Pφj . (32)

If some εsl = 1, then the lth stratum submodel is the only one in which the
function q ′sμ is estimated with full efficiency. The equality εsl = 1 implies that
γs = δ−1

l . In result, the statistic q ′sμ̂ reduces as follows:

q ′sP Fδy = q ′sP
(

r∑

i=1

γ−1
i qiq

′
i

)
k∑

j=1

δ−1
j Pφjy =

= δl q
′
s

k∑

j=1

δ−1
j φjy = δl q

′
sδ
−1
l φly = q ′syl = q ′sy, (33)

where the final equalities take place as φlqs = qs and φjqs = 0 for j �= s.
Therefore, the statistic q ′sy l = q ′sy is the local BLUE for q ′sμ in the lth stratum
submodel and, simultaneously, is the BLUE for q ′sμ in the overall model. The
last conclusion can also be confirmed by the criterion of Zyskind [21] that q ′sy
is the BLUE for its expectation if and only if the vector Fδqs is contained in the
expectation subspace of the model. It is so, because Fδqs = Fδφlqs = δlφlqs =
δlqs ∈ R(P ).

The variances of q ′sy l and of q ′sy are obviously the same,

var(q ′sy l ) = σ 2
l = var(q ′sy).

The estimate of σ 2
l can be obtained from the lth Eq. in (23),

y′R′δφlRδy = σ 2
l tr(φlRδ),

or from the similar equation related to the lth stratum submodel,

y′Rly = σ 2
l tr(Rl),

where Rl = φl − φlP (PφlP )+Pφl is the corresponding residual projector. These
equations do not lead, however, to the same solution. It can be shown that R′δφlRδ−
Rl ≥ 0 and, simultaneously, tr(φlRδ) ≥ tr(Rl). In consequence, it is not possible
to predict which model provides the smaller estimate of σ 2

l .
When εsl is less than one, the information about q ′sμ splits into at least two

stratum submodels and the estimation of all variance components is necessary
to obtain a reasonable estimate. The estimates of variance components can be
obtained by solving Eqs. (23). The final estimator is not the BLUE, but it combines
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information from various strata taking into account their efficiency factors as well
as stratum variances. Another question is, whether the function q ′sP Fδy brings an
interesting information about the treatment comparisons. It depends on the blocking
structure of the design. A comprehensive discussion on this topic is contained in the
paper by Bailey [4]. Some simple examples in the next section exhibit some aspects
of this issue.

5 Three Examples

The examples require some computations. In this matter, it is important to note
that in almost all formulas instead of the Moore–Penrose inverse one can use any
g-inverse. This follows from the invariance property as, e.g., in Rao and Rao [18,
Corollary 8.2.5]. Moreover, instead of solving Eqs. (5), (16), or (18) with respect to
μ, it is easier to solve the standard normal equations with respect to β. Similarly,
Eq. (27) can be replaced by the equivalent equation

X′φ1X +X′φ2X + · · · +X′φkX = X′X. (34)

In this case, the commutativity of the matrices X′φjX, j = 1, 2, . . . , k, with respect
to the inverse of X′X is the necessary and sufficient condition for the general
balance property. In consequence, the simultaneous spectral decomposition of all
matrices X′φjX, j = 1, 2, . . . , k, is based on the set of common eigenvectors
considered with respect to X′X. Such approach reduces the order of matrices
involved to the number of fixed parameters.

After the above remarks, it is worth to consider the simple but instructive
examples. The first two follow from the mixed model of the form

{y, Xβ, σ 2
b ZDZ′ + σ 2

0 I }, (35)

where Z represents a design matrix for blocks, D, being a diagonal matrix with
non-zero entries related to the block sizes, represents a dispersion matrix for
block effects, while σ 2

b and σ 2
0 are the variances of random block effects and

measurements, respectively. This model has the form parallel to that of Patterson
and Thompson [16] with D = γ I and σ 2

b = γ σ 2
0 .

In the first example, it is assumed that

y =

⎡

⎢
⎢
⎣

10
14
15
9

12

⎤

⎥
⎥
⎦ , X =

⎡

⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0

⎤

⎥
⎥
⎦ , Z =

⎡

⎢
⎢
⎣

1 0
1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎦ , D =

[
2 0
0 3

]
, (36)
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i.e., the design relates five observations of three treatments with two blocks, one
complete and the other without the third treatment. Such design has the orthogonal
block structure with φ1 = Z(Z′Z)−1Z′, σ 2

1 = 6σ 2
b+σ 2

0 , φ2 = I−φ1, and σ 2
2 = σ 2

0 .
Moreover, this design is generally balanced. In this place, it is worth to note that any
design with orthogonal block structure and only two strata possess generally balance
property.

As a consequence, the information matrices of the intra-block and inter-block
stratum of the model (36) have the simultaneous spectral decomposition leading to
the following basic contrasts and their efficiencies:

Basic contrasts Inter-block eff. Intra-block eff.

c1 = (1, −1, 0)′ ∗ 1√
5 c2 = (1, 1, −2)′ 1/6 5/6

As it is easy to observe, only the basic contrast c′1β can be estimated with full
efficiency. This can be done in the intra-block stratum. The information about the
other contrast, c′2β, splits into both strata.

To illustrate the considerations of the previous sections, the estimates of the basic
and elementary contrasts together with their variances were obtained. The results
following from the both strata as well as those generated by the proposed direct
iteration procedure, utilizing the approach of Nelder [15] and of Houtman and Speed
[12] (denoted here as NHS iteration), are presented in the following table:

Contrasts Inter-block Intra-block Simple model NHS iteration

β2 − β1 3.500 0.250 3.500 1.250 3.500 0.250

β2 − β3 −2.000 1.875 −1.333 0.431

β3 − β1 5.500 1.875 4.833 0.431

β1 + β2 − 2β3 −15.000 * −6.000 1.500 −7.500 6.250 −6.167 1.472

In the inter-block stratum the residual sum of squares is equal to zero. It is
so, because in this simple model the vector of transformed observations belongs
directly to the expectation subspace. In consequence, the corresponding estimate of
variance is denoted by the asterisk. In the intra-block stratum the variance of errors
is estimated with only one degree of freedom. The first contrast estimated here is
also the BLUE in the overall model. The next set of results represents the first step
in the NHS iteration. Actually, the estimates obtained here correspond to the simple
model, i.e., a model in which the blocks are ignored. The last set contains the final
estimates. They were obtained after fourth step of iteration when the precision up to
10−4 was achieved.
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In the second example there are also five observations and three treatments. The
treatments were allocated into three blocks, two of size two and one with only one
treatment. The vector of observations and the matrices describing the model are as
follows:

y =

⎡

⎢⎢
⎣

11
15
17
18
12

⎤

⎥⎥
⎦ , X =

⎡

⎢⎢
⎣

1 0 0
0 1 0
0 1 0
0 0 1
1 0 0

⎤

⎥⎥
⎦ , Z =

⎡

⎢⎢
⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

⎤

⎥⎥
⎦ , D =

[
1 0 0
0 1 0
0 0 2

]

. (37)

This design has also the orthogonal block structure, is generally balanced and the
information matrices of the intra-block and inter-block stratum have two common
basic contrasts. They are presented below with their efficiency factors:

Basic contrasts Inter-block eff. Intra-block eff.
√

15− 5
√

5 c1 = (
√

5− 3, 2, 1−√5 )′ (3−√5)/8 (5 +√5)/8
√

15+ 5
√

5 c2 = (−√5− 3, 2, 1+√5 )′ (3+√5)/8 (5 −√5)/8

It is easy to notice that both contrasts c′1β and c′2β are far from elementary and
the combination of information from both strata is necessary. The results are as
follows:

Contrasts Inter-block Intra-block Simple model NHS iteration

β2 − β1 4.500 1.250 4.055 0.109

β2 − β3 −2.000 1.875 −1.056 0.112

β3 − β1 6.500 1.875 5.111 0.216

−0.8β1 + 2β2 − 1.2β3 −7.125 * 1.820 * 0.966 4.775 1.792 0.229

−5.2β1 + 2β2 + 3.2β3 33.125 * 24.180 * 30.034 32.725 24.650 3.909

In the inter-block stratum as well as in the intra-block stratum there are no enough
degrees of freedom for estimating the error variance. In the simple model the results
are overestimated. The NHS iteration gives the results after very long process of 39
steps, giving precision up to 10−3. This is due to very unusual form of the basic
contrasts which seems to be hardly acceptable by the experimenter. Fortunately, the
design used in this model is also far from the standards.

The last example is based on the row-column design mentioned in Bailey [4,
p. 176]. This design supplemented by a vector of observations, indispensable for
illustrative purposes, leads to the following mixed model

{y, Xβ, σ 2
r RR′ + σ 2

c CC′ + σ 2
0 I }, (38)
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where

y =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

47
48
44
30
44
31
30
45
49

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, X =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 0 1
0 1 0
1 0 0

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, R =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, C =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

. (39)

This design relates nine observations of three treatments with three rows and
three columns. It has orthogonal block structure but is not generally balanced.
The stratum contrasts and their efficiency factors, as established in Bailey [4], are
presented in the following table:

Contrasts Row eff. Column eff. Plot eff.

β1 − β3 4/9 ∗ ∗
β2 − β3 ∗ 4/9 ∗
β1 − β2 ∗ ∗ 7/9

β1 + β2 − 2β3 ∗ ∗ 3/9

It is easy to notice that each elementary contrast is estimated in separate stratum
and that the plot stratum provides the information about two contrasts. The detailed
results after seventh iteration are as follows:

Contrasts Rows Columns Plots Simple model NHS iteration

β1 − β3 17.00 1.33 17.667 0.370 17.566 0.155

β2 − β3 15.00 1.33 14.000 0.370 13.494 0.162

β1 − β2 4.14 0.11 3.667 0.370 4.072 0.095

β1 + β2 − 2β3 31.00 0.76 31.667 1.111 31.061 0.540

Simple comparisons of the estimated variances show that in this generally
unbalanced case the smallest variances for all contrasts were obtained from the NHS
iteration. It is worth also to notice that the simple least squares approach gives here
better results than that following from the rows stratum and the columns stratum
treated separately. It is not the case for the comparison β1 − β2 in the plots stratum
submodel where the efficiency factor is the largest.
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6 Concluding Remarks

The considerations conducted in the previous sections supported by the three simple
examples lead to some final conclusions. First of all, it should be noted that for
applying the direct approach to estimate the variance components it is sufficient that
the design has the orthogonal block structure. The property of the general balance is
not necessary. However, if the design is generally balanced, the usefulness of each
stratum with respect to each basic contrast can be evaluated and the existence of the
BLUE for some contrasts may be uncovered. On the other hand, the basic contrasts,
as it is well known and also confirmed here in the second example, may not be
satisfactory to the experimenter.

The NHS iteration may also be applied when the block designs have unequal
block sizes, similarly as in the maximum likelihood method of Patterson and
Thompson [16]. But the present approach is distribution free as it uses only
geometrical arguments.

The iteration process leading to the final empirical estimates is simple. In each
step all stratum variances are directly established, giving the base for the next step
with no need of evaluation of any weights as in the original Nelder [15] approach
(see also [11] where real experimental data generated from the nested block design
were analyzed).

The rate of convergence of the iteration process depends heavily on the property
of the design. Only if the design is regular, with equal replications and equal block
sizes on various blocking levels, one can expect that the iteration process will
terminate rapidly. Otherwise, the iteration can last much longer, as happened in the
second example.
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Ingram Olkin (1924–2016):
An Appreciation for a People Person

Simo Puntanen and George P. H. Styan

Abstract Ingram Olkin, Professor Emeritus of Statistics and Education at Stanford
University, Master of multivariate statistical analysis, linear algebra, inequalities,
majorization, and meta-analysis, passed away on 28 April 2016 at home in Palo
Alto, California, after complications from colon cancer. In the words of his daughter
Julia Olkin [7]

My father, Ingram Olkin, died peacefully on Thursday evening, April 28, 2016, with
his daughter Rhoda and wife Anita by his side. He had absolutely no regrets . . . both
personally and professionally, and led a full, wonderful life. He valued all his friendships
with everyone. Thank you for being a part of his life . . .

Richard W. Cottle, Professor Emeritus of Management Science & Engineering
and a close friend of Olkin, said [4]:

He was a man of remarkable intelligence and affability. His nearly boundless energy was
generously used for the welfare of others. It is hard to capture in words the goodness that
Ingram showed in his everyday life.

In the conversation part of the Olkin Festschrift [8], Ingram described himself:

You also know that I’m generally a people person, which is one of the reasons why I’ve
enjoyed students and collaborators. Over the years, the professional contacts have merged
with the personal contacts.

We deeply miss you, a truly outstanding and unforgettablePeople Person, Ingram
Olkin.
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1 IWMS

Now let’s go back to some personal memories of Ingram and memorable experi-
ences that we shared with him. One important activity for us was his role in the
International Workshop on Matrices and Statistics (IWMS) series [29]. Ingram was
a frequent participant at IWMS meetings, and at the IWMS-2004 in Poland we
celebrated Ingram’s 80th Birthday. On 4 June 2003 his reply to our invitation was
this e-mail [Ingram usually used only lowercase letters in his e-mails.]:

dear all . . . wow !!!! how about celebrating my 80th but call it my 60th . . . thanks so much
to all of you . . . would be pleased to attend.

When Ingram learnt that the IWMS-2014 was to be held in Ljubljana, he
immediately, on 22 October 2013, sent this e-mail:

. . . in any case next year is my 90th and what better than to visit ljubljana . . . so i do hope to
attend. as i see my strength at this point i should be in good shape by then. so please include
me in the program.
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It was always great news for the event organizers to have Ingram around: a
guarantee of lively colorful sessions, Ingram sitting in the front row and asking
questions after each talk. Ingram’s role in meetings is nicely described in the Olkin-
biography article [9]:

At most statistics meetings, you will find Ingram in constant conversation—perhaps
promoting a new journal, encouraging progress of a key committee, or giving advice about
seeking grants or allocating funds. His public accomplishments are many and impressive,
but equally important are his behind-the-scenes contributions.

The first IWMS was held in Tampere, Finland, 6–8 August 1990. Ingram gave an
invited talk entitled Interface between statistics and linear algebra, which was one
of his favorite topics and he practically knew everything about it [22, 24]. For the
IWMS-2013 in Toronto he prepared an excellent “linear algebra biography,” which
was presented there as a poster; see also [25]:

I gave a brief biography of my introduction to linear algebra and my interaction with some
of the linear algebraists at that time.

At the IWMS-1990 in Tampere, Ingram also gave a talk about Gustav Elfving
(1908–1984), a famous Finnish statistician, probabilist, and mathematician who was
a frequent visitor to Stanford. For more about Elfving, see Nordström [19]. On 19
March 2013 Ingram sent this e-mail to Simo:

i am cleaning my files and i found folder marked elfving which contains mimeographed
notes entitled bayes statistics. it consists of about 40 pages . . . so one possibility is that i
scan these and send to you . . . assuming you want this material . . . please advise.

Elja Arjas then found out that these notes were a basis for Elfving’s paper [5]
published in Skandinavisk Aktuarietidskrift in 1968.

As for Elfving, on 20 May 2011 Ingram wrote the following:

. . . my only concern is how to handle the mixture of beer and aquavit. I don’t have the right
DNA. I once visited gustav elfving and he took me to a meeting of students where they
drank beer and aquavit and talked and drank and sang and drank . . . i barely made it back to
the hotel. So Finland can be a very dangerous country . . . but i am willing to take a chance.

Ingram’s performances in Tampere in 1990 can be seen in videos online at
YouTube [38]. When we asked for Ingram’s permission to show these videos, he
replied:

these are wonderful . . . an absolutely great addition to the conference archives. however,
you ask for me to give permission to make these public. the answer is in the negative unless
you can add some hair and make me look more like james bond. of course, if you do that
then i would be glad to grant permission !!!!!

Kimmo Vehkalahti had agreed to host Ingram and Michael Greenacre in
Helsinki, 1–3 July 2011, directly after the IWMS-2011 in Tartu, Estonia. With the
kind courtesy of Kimmo, we copy here part of Ingram’s travelling protocol.

dear kimmo: on the basis of my previous experiences in finland I suggest that we just go to a
Sauna, drink some beer and listen to michael [Greenacre] sing some of his compositions.. . .
meanwhile my very best,
ingram.
ps. michael . . . why don’t you write a song with the first three words: sauna, sauna, sauna.
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Before coming to Tartu in June 2011, Ingram first went to Vilnius, Lithuania. Just
recently, on 27 June 2016, when Simo was leaving for the 10th Tartu Multivariate
Conference, he received the following email from Remigijus Leipus:

Browsing the Tartu conference program I found out that Ingram Olkin is not with us
anymore. This was sad news also for Lithuanian mathematicians. In June 2011 Ingram
visited Vilnius University where he presented two talks on June 21 and 22. As you know,
Ingram’s father came from Vilnius, and his mother from Warsaw (later they met there, in
Warsaw).

During his stay in Vilnius, with Ingram we were trying to find out information about his
father. We visited a Jewish community center and a Jewish cultural center in Vilnius. It was
difficult to find any data in such a short time. . . . In any case, the time we spent with Ingram
in Vilnius was very interesting, I will never forget his energy, sense of humor, attention. . . .

The IWMS-2008 was held in Tomar, Portugal (22–26 July 2008) in celebration
of the 90th birthday of T. W. Anderson, mentor of George and grand-mentor of
Simo, and a long-time Stanford colleague of Ingram’s. We invited Ingram as an
after-dinner speaker. On 8 April 2008 he wrote:

i replied that i didn’t want to give an after-dinner talk. i was going over my files and i found
the after-dinner talk that i gave in 1998 in florida . . . so what would you think if i gave the
same talk . . . maybe with some modest updates. i also kept the photos on transparencies
which are different from what simo has.

Unfortunately Ingram was unable to attend the IWMS-2008 in Tomar. On 7 July
2008 he wrote to the IWMS organizers:

i think that it may make it easier for everyone if i send you the after-dinner speech that i
had in mind. simo is pretty [serious a guy compared with the others]1 so he may be a good
choice [to present this after-dinner speech].

Let us borrow a paragraph from Ingram’s after-dinner speech:

I was once interviewed and asked who makes the decisions in our family. I knew the answer
in a flash—I make all the big decisions, Anita makes all the small decisions. The only
problem is that we haven’t had a big decision yet in my 63 years of marriage.

Ingram’s title for his (technical) invited talk in Tomar was Moment Inequalities,
Mean Inequalities, Matrix Inequalities, and Probability Inequalities: An Inequality
Bouillabaisse. Ingram, if anybody, was a Michelin-calibre chef able to cook a
delicious Inequality Bouillabaisse!

Section 20.5 in our 2011 Matrix Tricks book [32] deals with How Deviant Can
You Be?— the deviation of any particular observation from the mean, building on
Ingram’s paper [23], Jensen and Styan [14] and Samuelson [34].

In December 2011 we (Simo and George) had an interesting and pleasant task:
we were to prepare a supporting letter to nominate Ingram Olkin for the Hans
Schneider Prize in Linear Algebra. For additional support, we contacted Grace
Wahba, Professor of Statistics at the University of Wisconsin–Madison, and on 31

1Wording changed.
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December 2011 she wrote us:

I wholeheartedly support the proposal that Ingram Olkin be considered for the Hans
Schneider Prize in Linear Algebra. Absolutely he has to get it!

Though Ingram did not ultimately receive this particular Prize, on 2 August 2012,
he kindly sent us a thank-you e-mail:

simo: thanks for your message and in particular i forgot about the award . . . however, i am
signing George up to write my obituary (assuming he outlives me !!!!!!!) . . . I can always
count on him. my best, ingram.

In the IWMS-2013 in Toronto, Ingram was supposed to be the first speaker on
Monday, 12 August. However, on Saturday, 10 August, we received the following
email from Ingram:

dear simo and ejaz: it is now 4 p.m. in california and it is evident that i am not in condition
to travel. i don’t have a life threatening problem, but i do have a problem . . . one of which
is that they are not sure what is causing the problem.

i apologize for all the trouble this will cause you. if you do decide to have someone read
the talk and i can help, please do let me know.

please convey my regrets to all my friends . . . i had looked forward to once again seeing
everyone.

my best, ingram

George presented Ingram’s talk in Toronto.

2 Inequalities: Theory of Majorization

In our supporting letter for the Hans Schneider Prize we pointed out that in
our view Ingram’s most significant contribution in linear algebra was the book
Inequalities: Theory of Majorization and Its Applications, with Albert W. Marshall,
first published in 1979 [17]. We now have the second edition, with Barry Arnold
[18], of the highly praised classic, without which we know that some people never
leave home: now these faithful ones must take into account that the second edition
has 909 pages (vs. 569) and its shipping weight is 3.2 pounds (vs. 2.2).

At the end of the first edition of Inequalities: Theory of Majorization and Its
Applications [17] there is a section on “Biographies” with a photograph of Issai
Schur (1875–1941) on page 525. This was the first photograph of Schur that we
found and George used it, with the permission of the “publisher and the authors” of
[17], in his article on “Schur complements and linear statistical models” [36]; see
also [27, 28].

Fuzhen Zhang wrote us on 11 May 2016:

Dating back to 1984, I went to Beijing Normal University as a graduate student. The first
math book in English we used as a text was Ingram’s (with Marshall), the 1st edition. I
learned and benefited so much from the book. The book has become classical, famous and
standard as a reference in this area of research. In 2012, I had the privilege of writing a
review for the 2nd edition of the book (published in [39]).
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In passing we may mention that Simo wrote of brief review [26] of [18].
Ingram had a number of Chinese connections, among them was Kai-Tai Fang. In

[16, p. 16], which appears in [13], he tells the following, which is a nice example of
Ingram’s organizational generosity!

During my visit to Stanford University (1981–1982), Professor Ingram Olkin organized
a small seminar group on ‘multivariate multiple comparisons’ which met every week. The
participants included T. W. Anderson, Mary Ellen Bock, Zhongguo Cheng and me. . . . Then
in 1985–1986, upon Professor Ingram Olkin’s recommendation, I taught two subjects in the
Swiss Federal Institute (ETH, Zürich) as a Guest Professor.

As a further interesting link between Ingram Olkin and Kai-Tai Fang we wish
to mention Pao-Lu Hsu, a UK-educated Chinese mathematician, who changed the
course of probability and statistics in China; see [3]. To go back a little, Hsu was
employed at the University of North Carolina at Chapel Hill in 1946–1947, then
returned to China. In 1948–1951 Ingram was working for his Ph.D. dissertation
[20] at Chapel Hill. His supervisors were S. N. Roy and Harold Hotelling, and as
Ingram says in the interview part of [8], “Chapel Hill had a galaxy of stars on the
faculty.” In [33] and [25] Ingram says:

I had never taken multivariate. I had no idea why I wanted to take multivariate, but I did.
I went to Hotelling and I told him that I wanted to take multivariate, and he said, ‘Well,
why don’t you get P. L. Hsu’s notes from last year, and study them on your own’. . . . Hsu’s
proofs were elegant examples of the use of linear algebra in statistics. My thesis in 1951
came out of these lectures.

Interestingly, Pao-Lu Hsu was a supervisor of Kai-Tai Fang in Beijing in the early
1960s. In [16] Kai-Tai Fang tells how Hsu’s insistence in fulfilling his teaching
obligations, despite his weak physical condition, and his dedication to research
exerted a great influence on his own future academic career.

George thinks that he first met Ingram at a colloquium in the Department
of Mathematical Statistics at Columbia University in the mid-1960s and at that
time may well have served Ingram a cup of tea! Ingram then introduced George
to “correlation structure,” such as when all the correlation coefficients are equal
(intraclass correlation) but the variances are not necessarily all equal. This led to
George’s Ph.D. thesis [35]. See also Ingram’s paper on “correlations revisited” (with
discussion) [21].

George spent the summer of 1970 at Stanford and he believes it was probably
there that Ingram introduced him to the seminal paper by Fan and Hoffman [6] in
which it is proved that for any n× n matrix A

chj (A+ A∗)/2 ≤ ch1/2
j (AA∗), j = 1, 2, . . . , n. (1)

Here chj denotes the j th largest eigenvalue. See also Marshall and Olkin [17, p. 240,
eq. 4]. The inequalities (1) were then used by Grossman and Styan in their article
on Theil’s BLUS residuals [10]. And last, but not least, George is most grateful to
Ingram for supporting George’s appointment as Editor of The IMS Bulletin, 1987–
1992 [37].
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3 Fire and a Good Story

Here is a descriptive piece of conversation between the interviewer Allan R.
Sampson and Ingram Olkin, see [33]:

Sampson: You’ve been involved with these various forms of applied problems for
a long time. But what keeps you still so fired-up?

Olkin: This question about the “fire” is one I have trouble answering.
Sampson: It may precede your beginnings in statistics—perhaps something in

your upbringing.
Olkin: I suspect that’s true. My mother had fire until she was 98.
Sampson: Amen!
Olkin: The “fire” was mostly addressed to me. And I think there may be

some genetics because my daughters have a certain amount of that
transmitted.

Sampson: When you were a child, were you as intense and as passionate in
whatever you were doing then as you are now?

Olkin: Let me put it this way . . .

In the “Biographies” section (pp. 528–529) of Inequalities: Theory of Majoriza-
tion and Its Applications [17] there are three photographs of Godfrey Harold Hardy
(1877–1947), who with John Edensor Littlewood (1885–1977) and George Pólya
(1887–1985) wrote the seminal book Inequalities [11], first published in 1934. G.
H. Hardy is featured in TheManWho Knew Infinity [2], a recent British biographical
drama film based on the book [15] by Robert Kanigel. The film stars Dev Patel as
Srinivasa Ramanujan (1887–1920) and Jeremy Irons as G. H. Hardy. George E.
Andrews in his review [1] wrote: “I sincerely hope that every mathematician goes
to see this movie,” while Allan Hunter [12] in his review of the movie wrote

It tells such a good story that it is hard to resist.

We agree! Would a movie about Ingram, The Man Who Knew Inequalities:
Theory of Majorization, similarly make a good story, hard to resist?

Acknowledgements Warm thanks go to Elja Arjas, Kai-Tai Fang, Michael Greenacre, Harold V.
Henderson, Jeffrey J. Hunter, Remigijus Leipus, Peter Šemrl, Evelyn Matheson Styan, Kimmo
Vehkalahti, Grace Wahba, and Fuzhen Zhang for their help.

Photographs: Top left p11 at IWMS-1990 Tampere (with Jerzy K. Baksalary and Yadolah
Dodge, photograph courtesy University of Tampere); top right p12 at IWMS-1995 Montréal (with
Gene H. Golub and T. W. Anderson, photograph by Simo Puntanen); bottom left p21 at IWMS-
2011 Tartu, Estonia (photograph by Jeffrey J. Hunter); bottom right p22 at IWMS-1995 Montréal
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The original, shorter version of this appreciation of Ingram Olkin appeared in [30]. A shortened
version also appeared in [31].
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A Notion of Positive Definiteness
for Arithmetical Functions

Mika Mattila and Pentti Haukkanen

Abstract In the theory of Fourier transform some functions are said to be positive
definite based on the positive definiteness property of a certain class of matrices
associated with these functions. In the present article we consider how to define a
similar positive definiteness property for arithmetical functions, whose domain is
not the set of real numbers but merely the set of positive integers. After finding a
suitable definition for this concept we shall use it to construct a partial ordering on
the set of arithmetical functions. We shall study some of the basic properties of our
newly defined relations and consider a couple of well-known arithmetical functions
as examples.

Keywords Arithmetical function · GCD matrix · Positive definite function ·
Positive semidefinite ordering · Dirichlet convolution · Möbius function

1 Introduction

A complex valued function f : R → C is said to be a positive definite
function if the matrix [f (xi − xj )] is positive semidefinite for all choices of
points {x1, x2, . . . , xn} ⊂ R and all n = 1, 2, . . .. A positive definite function is
under mild restrictions the Fourier transform of a nonnegative real-valued function
g : R → R≥0; see [3] or [5, Article 192B] for Bochner’s theorem (note that the
notion of a “positive semidefinite function” is not a term usually employed). By
using the definition it is possible to prove several basic properties for a positive
definite function f :

• f (−x) = f (x) for all x ∈ R

• f (0) ∈ R and f (0) ≥ 0
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• f is a bounded function, and |f (x)| ≤ f (0) ∀x ∈ R

• If f is continuous at 0, then it is continuous everywhere
• If f1, f2, . . . , fn are positive definite functions and a1, a2, . . . , an are nonnega-

tive real numbers, then the function a1f1+a2f2+· · ·+anfn is a positive definite
function

• If f is a positive definite function, then so are f and |f |2

Functions cos x (but not sin x), eaix (a ∈ R),
1

1− ix
,

1

1+ x2
and

1

cosh x
are all

examples of positive definite functions (for more information, see [9, pp. 400–401]
and [3, Section 3]).

In this article we are interested in arithmetical functions, which are real-valued
(or sometimes complex-valued) functions on Z

+ = {1, 2, 3, . . .}. There are various
operations defined on the set of arithmetical functions, see [2, 12]. For our purposes
the most important are:

• The usual sum: (f + g)(m) = f (m)+ g(m) ∀m ∈ Z
+

• The usual product: (fg)(m) = f (m)g(m) ∀m ∈ Z
+

• The Dirichlet convolution: (f ∗ g)(m) =
∑

d |m
f (d)g

(m

d

)
∀m ∈ Z

+

One of the main goals of this article is to consider how to define positive
definiteness property for arithmetical functions. The original definition is a bit
problematic since it would require the function to be defined on negative integers as
well. There are a couple of ways how one may try to get around this problem, and
we shall discuss them in Sect. 2. In Sect. 3 we shall introduce our final definition and
in Sect. 4 we investigate some of the basic properties of our newly defined positive
definiteness concept. In Sect. 5 we use our positive definiteness relation to define
a partial order on the set of arithmetical functions and then study the properties
of this relation. We also present several examples concerning some fundamental
arithmetical functions. In Sect. 6 we give some concluding remarks.

2 Defining Positive Definiteness of Arithmetical Functions
by Using the Original Definition

The most obvious way to define positive definiteness for arithmetical functions
would be to expand the domain of arithmetical functions and to define the concept
by using the matrix [f (xi − xj )]. First it should be noted that without loss of
generality, we may assume that x1 < x2 < · · · < xn. If xi = xj for some indices i

and j with i �= j , then the respective rows (and respective columns) are identical and
the multiplicity of eigenvalue zero is increased by one. After eliminating identical
rows and columns we can permute the rows and respective columns of the matrix
[f (xi − xj )] so that x1 < x2 < · · · < xn is satisfied and the eigenvalues are still the
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same (if P is any permutation matrix, then P−1 = PT and the matrices PT AP and
A share the same spectrum).

For an arithmetical function f it is customary to assume that f (x) = 0 whenever
x �∈ Z

+. Under this assumption the matrix [f (xi − xj )] takes the form

⎡

⎢
⎢⎢
⎣

f (x1 − x1) f (x1 − x2) f (x1 − x3) . . .

f (x2 − x1) f (x2 − x2) f (x2 − x3) . . .

f (x3 − x1) f (x3 − x2) f (x3 − x3) . . .
...

...
...

. . .

⎤

⎥
⎥⎥
⎦
=

⎡

⎢
⎢⎢
⎣

0 0 0 . . .

f (x2 − x1) 0 0 . . .

f (x3 − x1) f (x3 − x2) 0 . . .
...

...
...

. . .

⎤

⎥
⎥⎥
⎦

.

But since the concept of positive definiteness is defined only on Hermitian matrices,
the positive definiteness of the above matrix actually implies that all the elements
of the matrix are equal to zero. Thus f must be the constant function 0, which is
the only positive definite function according to this definition. It appears that for
the purposes of arithmetical functions the classical definition of positive definite
function is quite useless.

If f is a real-valued arithmetical function, then another rather obvious attempt
would be to define f (−m) = f (m) for all m ∈ Z

+, which makes the matrix [f (xi−
xj )] symmetric. In this case the matrix [f (xi − xj )] takes the form

⎡

⎢
⎢
⎢
⎣

f (0) f (x2 − x1) f (x3 − x1) . . .

f (x2 − x1) f (0) f (x3 − x2) . . .

f (x3 − x1) f (x3 − x2) f (0) . . .
...

...
...

. . .

⎤

⎥
⎥
⎥
⎦

.

This is still problematic since f (0) remains undefined. However, the value f (0) is
crucial to the positive definiteness of the matrix [f (xi − xj )]. As was the case with
the usual positive definite functions, also this definition implies that |f (i)| ≤ f (0)

for all i ∈ Z
+. It becomes quite clear that this approach does not work either,

and therefore there seems to be no natural way to define positive definiteness of
arithmetical functions by using the matrix [f (xi − xj )].

Since the two most natural ways to extend the domain of arithmetical functions
do not serve our purposes very well, it seems that we need to use a different class
of matrices in order to define positive definiteness for arithmetical functions. It
would also make sense to define this concept without extending the domain of
arithmetical functions, since many operations such as the Dirichlet convolution are
defined intrinsically only on Z

+. These kind of technical difficulties can be avoided
if we base our definition on GCD matrices.
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3 Defining Positive Definiteness by Using GCD Matrices

Let A denote the set of arithmetical functions and let f ∈ A . Let

S = {x1, x2, . . . , xn}

be a finite subset of Z+ with x1 < x2 < · · · < xn. The GCD matrix (S)f of the set S

with respect to the function f is the n×n matrix with f (gcd(xi, xj )) as its ij entry.
This definition originates from the seminal paper [17] by H. J. S. Smith published
in 1876. For more information about GCD and related matrices, see [1, 8, 13, 16].

Definition 1 An arithmetical function f : Z
+ → R is positive definite if the

GCD matrix [f (gcd(xi, xj ))] is positive semidefinite for all choices of points
{x1, x2, . . . , xn} ⊂ Z

+ and all n = 1, 2, . . .

Remark 1 Arithmetical function f is positive definite if and only if the GCD matrix
(S)f succeeds the corresponding zero matrix with respect to the Löwner order for
all finite nonempty sets S ⊂ Z.

Example 1 Let δ ∈ A with δ(1) = 1 and δ(m) = 0 for all m > 1 (the function δ is
the identity element with respect to the Dirichlet convolution). Let S = {1, 2}. Then

(S)δ =
[
δ(gcd(1, 1)) δ(gcd(1, 2))

δ(gcd(2, 1)) δ(gcd(2, 2))

]
=
[
δ(1) δ(1)

δ(1) δ(2)

]
=
[

1 1
1 0

]
.

This matrix is not positive semidefinite, since det(S)δ = −1, and thus δ is not a
positive definite function.

Example 2 The Möbius function μ is defined as follows:

• μ(m) = (−1)k if p2
� m for any prime number p and k is the number of the

prime factors of m,
• μ(m) = 0 if p2 |m for some prime number p.

Take any prime number p and set S = {p}. We obtain (S)μ = [μ(p)] = [−1]. Thus
the function μ is not positive definite.

Example 3 Let α ∈ R. We define Nα(m) = mα for all m ∈ Z
+.

(a) Let α > 0. It is a well-known fact (see, e.g., [4]) that in this case the matrix
(S)Nα = [gcd(xi, xj )

α] is positive definite for all finite nonempty sets S ⊂ Z
+.

Thus Nα is a positive definite function for all α > 0.
(b) Let α < 0 and S = {x1, x2} with x1 | x2. In this case

(S)Nα =
[
Nα(x1) Nα(x1)

Nα(x1) Nα(x2)

]
=
[
xα

1 xα
1

xα
1 xα

2

]
.

Now det(S)Nα = (x1x2)
α − (x2

1)α < 0. Thus Nα is not a positive definite
function for any α < 0.
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(c) For α = 0 we denote N0 = ζ and have ζ(m) = 1 for all m ∈ Z
+ (the

function ζ is the identity element with respect to the usual product). For any
finite nonempty set S ⊂ Z the matrix (S)ζ is an n× n matrix with all elements
equal to 1. It has two distinct eigenvalues: 0 with multiplicity n− 1 and n with
multiplicity 1. The matrix (S)ζ is positive semidefinite and thus ζ is a positive
definite function.

4 Positive Definiteness Properties for Arithmetical Functions

In this section we investigate various basic properties that follow directly from the
definition of a positive definite arithmetical function. We continue to assume that S

is ordered as in the previous section: x1 < x2 < · · · < xn.

Theorem 1 Let f ∈ A be a positive definite function. Then

(a) f (m) ≥ 0 for all m ∈ Z
+,

(b) k |m⇒ f (k) ≤ f (m) for all k,m ∈ Z
+.

Proof Let m ∈ Z
+. The part (a) follows by setting S = {m}, which yields the 1× 1

GCD matrix (S)f = [f (m)]. This matrix needs to be positive semidefinite, and
therefore f (m) ≥ 0.

Next we prove part (b). Suppose that k |m. In this case we choose S = {k,m} to
obtain the GCD matrix

(S)f =
[
f (k) f (k)

f (k) f (m)

]
.

The determinant of this matrix is equal to f (k)f (m) − f (k)2 = f (k)(f (m) −
f (k)) ≥ 0. From this we deduce by distinguishing the cases in which f (k) is 0 and
�= 0, that f (m) ≥ f (k).

Corollary 1 If f ∈ A is a positive definite function, then f (m) ≥ f (1) ≥ 0 for
all m ∈ Z

+.

Theorem 2 A function f ∈ A is positive definite if and only if the GCD matrix
(Sm)f of the set Sm = {1, 2, . . . ,m} is positive semidefinite for all m = 1, 2, . . . .

Proof The implication ⇒ is trivial, and thus it suffices to show the direction ⇐.
Suppose that the matrix (Sm)f of the set Sm = {1, 2, . . . ,m} is positive semidefinite
for all m = 1, 2, . . . . Let S = {x1, x2, . . . , xn} be an arbitrary subset of Z+. Let m

be a positive integer with xn ≤ m. Now the GCD matrix (S)f of the set S is a
principal submatrix of the GCD matrix (Sm)f of the set {1, 2, . . . ,m}. Since every
principal submatrix of a positive semidefinite matrix is positive semidefinite, see [9,
Observation 7.1.2], we may deduce that the matrix (S)f is positive semidefinite.
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Theorem 3 A function f ∈ A is positive definite if and only if (f ∗ μ)(k) ≥ 0 for
all k ∈ Z

+.

Proof By Theorem 2, it suffices to show that the GCD matrix (Sm)f of the set Sm =
{1, 2, . . . ,m} is positive semidefinite for all m ∈ Z

+ if and only if (f ∗ μ)(k) ≥ 0
for all k ∈ Z

+. Let m ∈ Z
+. First we recall the well-known factorization

(Sm)f = EDET ,

where E is the m×m matrix with

eij =
{

1 if j | i,
0 otherwise

and D = diag((f ∗μ)(1), (f ∗μ)(2), . . . , (f ∗μ)(m)). Since E is a triangular matrix
with all of its diagonal elements equal to 1, by Sylvester’s Law of Inertia (see [9,
Theorem 4.5.8]) we may deduce that the matrix (Sm)f is positive semidefinite if
and only if the matrix D is positive semidefinite. The claim follows from this.

Remark 2 Neither the argument used in the proof of Theorem 2 nor the idea of using
LDLT factorization in determining the inertias of GCD type matrices is entirely
new—both of them appear in the article [14] from the year 2004 by J. S. Ovall. The
LDLT factorization itself originates from [15] and [4]. The factorization has also
other applications, see, e.g., [11].

Theorem 4 Let f, g ∈ A be positive definite functions. Then

(a) af is a positive definite function for all a ≥ 0,
(b) f + g is a positive definite function,
(c) fg is a positive definite function,
(d) f ∗ g is a positive definite function.

Proof It is clear that (S)af = a(S)f and (S)f+g = (S)f + (S)g . Thus parts (a)
and (b) follow from the fact that every nonnegative linear combination of positive
semidefinite matrices is positive semidefinite. Since (S)fg = (S)f ◦(S)g , the part (c)
follows from the observation that the Hadamard product of two positive semidefinite
matrices is positive semidefinite—see [9, Theorem 7.5.3]. We prove part (d) by
showing that ((f ∗ g) ∗ μ)(k) ≥ 0 for all k ∈ Z

+. The associativity of the Dirichlet
convolution yields

((f ∗ g) ∗ μ)(k) = (f ∗ (g ∗ μ))(k) =
∑

d | k
f (d)
︸︷︷︸
≥0

(g ∗ μ)

(
k

d

)

︸ ︷︷ ︸
≥0

≥ 0.

Remark 3 It is easy to see that in the proof of Theorem 4 (d) it suffices that one of
the functions f and g is positive definite and the values of the other are nonnegative.
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The following corollary is an immediate consequence of Theorem 4.

Corollary 2 Suppose that f ∈ A is positive definite. Then the functions

f r = f · f · · · f
︸ ︷︷ ︸

r times

and f ∗r = f ∗ f ∗ · · · ∗ f
︸ ︷︷ ︸

r times

are positive definite for all r = 1, 2, 3, . . . .

It is also interesting to consider how positive definiteness of arithmetical
functions behaves with respect to different inverse operations.

Theorem 5 Let f ∈ A be a positive definite function.

(a) If −f is also a positive definite function, then f (m) = 0 for all m ∈ Z
+.

(b) If f−1 = 1
f
exists and is also a positive definite function, then there exists a ∈ R

such that f (m) = a for all m ∈ Z
+.

(c) If f ∗(−1) (the Dirichlet inverse of f ) exists, then it cannot be positive definite.

Proof

(a) The first part follows directly from the simple fact that if both A and −A are
positive definite, then A must be equal to the zero matrix. And if the GCD
matrix of any finite nonempty set S ⊂ Z

+ with respect to the function f is the
zero matrix, then f must be the constant function zero.

(b) If the function 1
f

exists and is positive definite, then we must have f (m) > 0

for all m ∈ Z
+. Let m be an arbitrary integer greater than 1 and let S = {1,m}.

Since f and 1
f

are positive definite, both of the GCD matrices

(S)f =
[
f (1) f (1)

f (1) f (m)

]
and (S) 1

f
=
[

1
f (1)

1
f (1)

1
f (1)

1
f (m)

]

are positive semidefinite. The determinants of these matrices must be nonnega-
tive, in other words,

f (1)(f (m)− f (1)) ≥ 0 and
1

f (1)

(
1

f (m)
− 1

f (1)

)
≥ 0.

Since f (1) > 0, the first inequality yields f (m) ≥ f (1) and the second implies
that f (1) ≥ f (m). Thus we must have f (m) = f (1) for any positive integer
m.

(c) If f ∗(−1) exists and f is positive definite, then we have f (1) > 0 and
f ∗(−1)(1) = 1

f (1)
> 0. If f (m) = 0 for all m > 1, then there exists a positive

real number a such that f = aδ, where δ is the arithmetical function defined in
Example 1. Like the function δ, the function f is not positive definite.
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Assume next that f (m) > 0 for some m > 1. Let m0 be the smallest positive
integer such that m0 > 1 and f (m0) > 0. We obtain

0 = δ(m0) = (f ∗ f ∗(−1))(m0) =
∑

d |m0

f (d)f ∗(−1)
(m0

d

)

= f (1)
︸︷︷︸
>0

f ∗(−1)(m0)+ f (m0)︸ ︷︷ ︸
>0

f ∗(−1)(1)
︸ ︷︷ ︸

>0

.

This means that we must have f ∗(−1)(m0) < 0, and therefore f ∗(−1) cannot be
positive definite.

5 A Partial Order on the Set of Arithmetical Functions

Notation 1 Let f and g be arithmetical functions. If the function g − f is positive
definite, we shall write f � g.

Theorem 6 f � g if and only if the matrix (S)g − (S)f is positive semidefinite for
all finite nonempty sets S ⊂ Z

+ (in other words, f � g if and only if (S)f � (S)g
for all finite nonempty sets S ⊂ Z

+, where � is the Löwner order).

Proof By definition, g − f is positive definite if and only if the matrix (S)g−f =
(S)g − (S)f is positive semidefinite for all sets S = {x1, x2, . . . , xn} ⊂ Z

+ and
for all n = 1, 2, . . .. Furthermore, this is equivalent to the statement that the matrix
(S)f precedes the matrix (S)g in the sense of the Löwner order.

Theorem 7 The relation � is a partial order.

Proof

• For any f ∈ A the matrix (S)f − (S)f = 0 is positive semidefinite for all finite
nonempty sets S ⊂ Z

+. Thus � is reflexive.
• Suppose that f � g and g � f . Thus for any finite nonempty set S ⊂ Z

+ both
of the matrices (S)g − (S)f and (S)f − (S)g are positive semidefinite, which
implies that (S)f = (S)g . Therefore f (xi) = g(xi) for all xi ∈ S and we must
have f = g (since S is an arbitrary set). Thus � is symmetric.

• Suppose that f � g and g � h. Let S ⊂ Z
+. Now the matrices (S)g − (S)f and

(S)h − (S)g are positive semidefinite and

(S)h − (S)f = ((S)h − (S)g)+ ((S)g − (S)f ).

Thus (S)h − (S)f is positive semidefinite and we must have f � h. Thus � is
transitive.

The following results now follow directly from Theorems 1 and 3.
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Corollary 3 Suppose that f � g. Then

(a) f (m) ≤ g(m) for all m ∈ Z
+,

(b) k |m⇒ g(k)− f (k) ≤ g(m)− f (m) for all k,m ∈ Z
+.

Corollary 4 Function f � g if and only if

((g − f ) ∗ μ)(k) = (g ∗ μ)(k)− (f ∗ μ)(k) ≥ 0

for all k ∈ Z.

At this point it is natural to consider how our newly defined relation � relates to
different function operations.

Theorem 8 Suppose that 0 � f1 � g1 and 0 � f2 � g2. Then

(a) 0 � f1f2 � g1g2,
(b) 0 � f1 ∗ f2 � g1 ∗ g2.

Proof

(a) We need to show that for any finite nonempty set S ⊂ Z
+ the matrix

(S)f1f2 − (S)g1g2 = (S)f1 ◦ (S)f2 − (S)g1 ◦ (S)g2

is positive semidefinite. Since 0 � (S)f1 � (S)g1 and 0 � (S)f2 � (S)g2 , the
claim follows from [9, p. 475, Problem 4].

(b) In the second case it is more convenient to use Corollary 4 and show that for all
k ∈ Z

+ we have

((f1 ∗ f2) ∗ μ)(k) ≤ ((g1 ∗ g2) ∗ μ)(k).

Let k ∈ Z
+. By using the associativity of the Dirichlet convolution and

Corollaries 3 and 4 we obtain

((f1 ∗ f2) ∗ μ)(k) = (f1 ∗ (f2 ∗ μ))(k) =
∑

d | k

≥0
︷ ︸︸ ︷
f1(d)
︸ ︷︷ ︸
≤g1(d)

≥0
︷ ︸︸ ︷

(f2 ∗ μ)

(
k

d

)

︸ ︷︷ ︸
≤(g2∗μ)

(
k
d

)

≤
∑

d | k
g1(d)(g2 ∗ μ)

(
k

d

)
= (g1 ∗ (g2 ∗ μ))(k) = ((g1 ∗ g2) ∗ μ)(k).

Thus we have shown that f1 ∗ f2 � g1 ∗ g2. The property 0 � f1 ∗ f2 follows
from Theorem 4.



70 M. Mattila and P. Haukkanen

Corollary 5 Suppose that 0 � f � g. Then for all r = 1, 2, . . . we have

(a) 0 � f r � gr ,
(b) 0 � f ∗r � g∗r .

Example 4 Recall that δ(1) = 1 and δ(m) = 0 for all m > 1 and that ζ(m) = 1
for all m ∈ Z

+. Since ζ(2) = 1 > 0 = δ(2), clearly ζ �� δ. Let us show that also
δ �� ζ . Consider the set S = {2, 3, 6}. We obtain

(S)ζ−δ = (S)ζ − (S)δ =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦−
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ =
⎡

⎣
1 0 1
0 1 1
1 1 1

⎤

⎦ .

The eigenvalues of this matrix are 1, 1+√2, and 1−√2 < 0. Therefore the matrix
(S)ζ−δ is not positive semidefinite and thus we cannot have δ � ζ . It is also possible
to consider the set S = {1, 2, 3, 4, 5, 6}. In this case

(S)ζ−δ =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 0 0 0 0 0
0 1 0 1 0 1
0 0 1 0 0 1
0 1 0 1 0 1
0 0 0 0 1 0
0 1 1 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

.

The smallest eigenvalue of this matrix is approximately−0.4812, and therefore the
matrix is not positive semidefinite and we may deduce that δ �� ζ .

Definition 2 Arithmetical function f is said to be multiplicative if

f (km) = f (k)f (m)

for all k,m ∈ Z
+ with gcd(k,m) = 1.

The values of a multiplicative function are completely determined by the values
on prime powers. In fact, if m = p

a1
1 p

a2
2 · · ·par

r , then

f (m) = f (p
a1
1 p

a2
2 · · ·par

r ) = f (p
a1
1 )f (p

a2
2 ) · · · f (par

r ).

The Möbius function μ is multiplicative, and the Dirichlet convolution of multi-
plicative functions is also multiplicative, see, e.g., [2, Section 2.10] and [12, Chapter
1]. Thus if f ∈ A is multiplicative and we wish to show that f is positive definite,
i.e. that (f ∗μ)(k) ≥ 0 for all k ∈ Z

+, then it suffices to show that (f ∗μ)(pa) ≥ 0
for any prime number p and for all a ∈ Z

+.
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Example 5 The Jordan totient function Jα is defined as

Jα(m) = mα
∏

p |m

(
1− 1

pα

)
,

where m = p
a1
1 p

a2
2 · · ·par

r . If α ≥ 1, then for any a ≥ 2 we have

(Jα ∗ μ)(pa) =
∑

d |pa

Jα(d)μ

(
pa

d

)
= Jα(pa)− Jα(pa−1)

= pαa − pα(a−1) − pα(a−1) + pα(a−2) = pα(a−2)(p2α − 2pα + 1)

= pα(a−2)(pα − 1)2 ≥ 0

and for a = 1 we obtain

(Jα ∗ μ)(p) = Jα(p)− 1 = pα − 1− 1 = pα − 2 ≥ 0.

By multiplicativity this shows that Jα is positive definite for α ≥ 1. In particular, the
Euler totient function φ = J1 is positive definite. Since (Jα ∗ μ)(2) = 2α − 2 < 0
for α < 1, we see that Jα is not positive definite for α < 1.

By utilizing multiplicativity in a similar manner it is possible to show that for
α, β ≥ 0,

Jα � Jβ ⇔ (Jα ∗ μ)(k) ≤ (Jβ ∗ μ)(k) ∀k ∈ Z
+ ⇔ α ≤ β.

Example 6 In Example 3 it was shown that the power function Nα is positive
definite for all α ≥ 0. With the aid of multiplicativity (as in Example 5) it is possible
to show that for α, β ≥ 0,

Nα � Nβ ⇔ α ≤ β.

Example 7 The divisor function σα is defined as σα(m) := ∑
d |m dα, or alterna-

tively σα = Nα ∗ ζ . The function σα is positive definite for all α ∈ R, and for any
α, β ∈ R we have

σα � σβ ⇔ α ≤ β.

The positive definiteness of the function σα can easily be shown by using Theorem 3,
since

σα ∗ μ = (Nα ∗ ζ ) ∗ μ = Nα ∗ (ζ ∗ μ) = Nα
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and Nα(k) ≥ 0 for all α ∈ R and k ∈ Z
+. The other claim follows similarly, since

(σβ − σα) ∗ μ = (σβ ∗ μ)− (σα ∗ μ) = Nβ −Nα

and the values of this function are nonnegative if and only if α ≤ β.

Example 8 Let Ω(m) denote the total number of prime divisors of m each counted
according to its multiplicity (note that Ω(1) = 0). We prove the positive definiteness
of the function Ω by showing that (Ω ∗ μ)(k) ≥ 0 for all k ∈ Z

+.
If k = 1, then (Ω ∗ μ)(k) = 0. Let k = p

a1
1 p

a2
2 · · ·par

r �= 1 (r ≥ 1) be the
canonical factorization of k. Then

(Ω ∗ μ)(k) = (μ ∗Ω)(k) =
∑

d | k
μ(d)Ω

(
k

d

)

= (a1 + a2 + · · · + ar)

− ((a1 − 1)+ a2 + · · · + ar)− (a1 + (a2 − 1)+ · · · + ar)− · · ·
− (a1 + a2 + · · · + (ar − 1))

+ ((a1 − 1)+ (a2 − 1)+ a3 + · · · + ar)+ · · ·
+ (a1 + · · · + ar−2 + (ar−1 − 1)+ (ar − 1))

− · · ·

Denote s = a1 + a2 + · · · + ar . Then

(Ω ∗ μ)(k) = s −
(

r

1

)
(s − 1)+

(
r

2

)
(s − 2)+ · · · + (−1)r

(
r

r

)
(s − r)

=
r∑

i=0

(−1)i
(

r

i

)
(s − i) = s

r∑

i=0

(−1)i
(

r

i

)
−

r∑

i=0

(−1)i
(

r

i

)
i.

By the binomial theorem,
∑r

i=0(−1)i
(
r
i

) = 0 (r ≥ 1) and by formula (1.69) of [7],

r∑

i=0

(−1)i
(

r

i

)
i =

{
−1 if r = 1,

0 if r ≥ 2

(this can also be shown by utilizing formula (5.6) of [6]). Thus (Ω ∗ μ)(k) = 1 if
r = 1 (i.e., k is a prime power ( �= 1)), and (Ω ∗ μ)(k) = 0 otherwise.

Example 9 Also for the generalized Liouville function λα(m) = αΩ(m) it is
possible to show that λα is positive definite if and only if α ≥ 1 and that for α, β ≥ 1,

α ≤ β ⇔ λα � λβ.
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In particular, the usual Liouville function λ = λ−1 is not positive definite. These
results can be proved by utilizing multiplicativity. Since the function Ω is positive
definite by the previous example, the positive definiteness of λα for α ≥ 1 can also
be deduced from the results of [10, Section 6.3]. The Liouville function λ gives the
parity of the number of prime factors and is related, e.g., to the Riemann hypothesis.

Example 10 For the generalized Dedekind function Ψα = Nα ∗ μ2, where μ2 =
μ ·μ = |μ|, it can be shown that Ψα is positive definite if and only if α ≥ 0 and that
for α, β ≥ 0,

α ≤ β ⇔ Ψα � Ψβ.

In particular, the usual Dedekind function Ψ = Ψ1 is positive definite. Also these
results can be shown by using multiplicativity. The function Ψ was introduced by
Richard Dedekind in connection with modular functions. It has also connections to
the Riemann hypothesis.

Example 11 For α ≥ 0, we have

Jα � Nα � Ψα � σα.

For α ≥ 1, we obtain

λα � Jα � Nα � Ψα � σα.

These can be verified by applying the multiplicativity of the functions λα ∗μ, Jα ∗μ,
Nα ∗ μ = Jα , Ψα ∗ μ and σα ∗ μ. In particular (for α = 1),

φ(= J1) � N(= N1) � Ψ (= Ψ1) � σ(= σ1).

6 Conclusions

As we saw in Sect. 2, defining positive definiteness of arithmetical functions by
using GCD matrices appears to be the best way to proceed. Positive definite
arithmetical functions seem to possess several properties that one could expect them
to have. For example, addition, usual multiplication, and Dirichlet convolution all
preserve positive definiteness. On the other hand, in some cases positive definiteness
of arithmetical functions behaves quite unexpectedly (for example, the function δ is
not positive definite, although it is the identity element with respect to the Dirichlet
convolution). Positive definiteness also makes it possible to define a partial order on
the set of arithmetical functions, and by making use of multiplicativity we are able
to compare various fundamental arithmetical functions with each other.
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The study of positive definiteness of arithmetical functions offers many possibil-
ities for further research. One could analyze thoroughly the properties of positive
definite arithmetical functions, and there might still be a possibility to utilize some
other matrix class and find an alternative definition for positive definite arithmetical
functions. Yet another possibility would be to generalize the concept of positive
definiteness on real-valued functions defined on any meet semilattice P . In this case
one only needs to consider the so-called meet matrix of the set S with respect to the
function f (instead of GCD matrix).

Acknowledgement The authors wish to thank the reviewers for valuable comments and sugges-
tions that helped us to improve this paper.
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Some Issues in Generalized Linear
Modeling

Alan Agresti

Abstract This chapter discusses cautions, questions, challenges, and proposals
regarding five issues that arise in generalized linear modeling. With primary
emphasis on categorical data, we summarize (1) bias that can occur in using ordinary
linear models with ordinal response variables, (2) a new proposal about simple ways
to interpret effects in generalized linear models that use nonlinear link functions,
(3) problems with using Wald significance tests and confidence intervals, (4) a
question about the behavior of residuals for generalized linear models, and (5) a new
approach in using generalized estimating equations (GEE) methods for marginal
multinomial models.

Keywords GEE methods · Multinomial models · Ordinal models · Residuals ·
Wald inference

1 Introduction

This chapter discusses several issues about generalized linear models that I believe
deserve more attention, either in terms of additional research or greater awareness
of already existing literature. I discuss these issues, with primary emphasis on
categorical data, in the style of cautions, questions, challenges, and proposals.
I became aware of these issues in recent years while writing a book on linear
and generalized linear models [4] and while revising two books on categorical data
analysis [1, 3].

Section 2 explains the floor and ceiling bias that can occur with modeling
ordinal response variables by assigning scores to the outcome categories and using
ordinary linear models. Section 3 proposes a simple way to interpret effects in
generalized linear models that use nonlinear link functions, by comparing groups
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using a probability summary about the higher response. Section 4 summarizes
problems with using Wald significance tests and confidence intervals in modeling
binary response variables and suggests related research for other types of response
variables. Section 5 raises questions about the behavior of ordinary residuals for
generalized linear models, and argues that a standardized residual is more relevant
than the popular Pearson residual. Section 6 summarizes some awkward aspects of
standard generalized estimating equations (GEE) methods for marginal multinomial
models and presents a recently proposed approach that is now available with R
software.

Most of this chapter has the style of a tutorial or survey paper. But it is hoped
that the material is relevant for a conference that has general consideration of topics
related to linearity and modeling.

2 Bias in Ordinary Linear Modeling of Ordinal Responses

Ordinal categorical response variables are common in many disciplines, especially
the social sciences with sample survey data. An example is one’s report of political
ideology, selected from the categories (very liberal, slightly liberal, moderate,
slightly conservative, very conservative). Many ordinal variables have a rather
subjective outcome choice, such as in medical assessments of patient quality of life
(excellent, good, fair, poor) or amount of pain (none, little, considerable, severe).

With ordinal response variables, many methodologists assign monotone scores to
the ordered outcome categories and then apply ordinary regression methods. That is,
they use least squares to estimate parameters in a linear model for the mean response
for the chosen scores. This is sometimes problematic because of requiring the choice
of scores, which can be quite unclear when the categories are highly subjective. Are
categories such as (excellent, good, fair, poor) equally distant, and if not, how does
one decide on relative distances? But here we discuss a less known but perhaps more
worrisome problem, that floor effects or ceiling effects due to the boundedness of the
discrete ordinal scale can result in seriously biased estimates of effect magnitudes.

We illustrate this potential problem using an example with an assumed con-
nection between an observed ordinal variable and an underlying continuous latent
variable. For an ordinal response variable y, it is often realistic to assume the
existence of an underlying continuous latent variable y∗ that we would ideally
observe if we could measure the response in a more refined manner. For instance, for
variables such as political ideology or quality of life, there is nothing sacred about
a particular choice of categories, and it’s easy to imagine increasing the number of
categories until the variable becomes essentially continuous. Our example uses the
simple normal linear latent variable model for observation i,

y∗i = 20.0+ 0.6xi − 40zi + εi
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in which we take xi ∼ uniform(0, 100), P(zi = 0) = P(zi = 1) = 0.50
independent of xi , and εi ∼ N(0, 102). We randomly generate n = 100 observations
from this model and focus on the issue of comparing the two groups represented by
the values of z in terms of the effect of the covariate x.

Now, suppose that the variable we actually observe for subject i is directly related
to this latent variable by

yi = 1 if y∗i ≤ 20, yi = 2 if 20 < y∗i ≤ 40, yi = 3 if 40 < y∗i ≤ 60,

yi = 4 if 60 < y∗i ≤ 80, yi = 5 if y∗i > 80.

That is, cutpoints chop up the continuous scale for y∗, yielding five ordered
categories with corresponding values for the observed y. Figure 1 shows the
connection between the observed variable y and the latent variable y∗. The first
scatterplot in the figure shows the 100 observations on y∗ and x, each data point
labelled by the category for z. The plot also shows the regression lines that generated
the data.
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Fig. 1 Ordered categorical data (in second panel) for which ordinary regression suggests inter-
action, because of a floor effect, but ordinal modeling does not. The data were generated (in first
panel) from a normal main-effects regression model with continuous (x) and binary (z) explanatory
variables. When the continuous response y∗ is categorized and y is measured as (1, 2, 3, 4, 5), the
observations labelled ‘1’ for the category of z have a linear x effect with only half the slope of the
observations labelled ‘0’ for the category of z
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Now, for the observed data, suppose we fit the linear model

yi = α + β1xi + β2zi + β3(xi · zi)+ εi

using the scores (1, 2, 3, 4, 5), to study the effect of x for the two groups and to
analyze whether interaction occurs between x and z in their effects on y. The right
panel of the figure shows the result, plotting the least squares fit. For the observed
response, the slope of the line is about twice as high when z = 0 as when z =
1. Why? When xi < 50 with zi = 1, P(y∗i ≤ 20) = P(yi = 1) is relatively
high. As x gets lower, the underlying value y∗ can continue to tend to get lower,
but the observed ordinal response cannot fall below 1, resulting in a floor effect.
This interaction effect is caused by the observations when z = 1 tending to fall in
category y = 1 whenever x takes a relatively low value.

For the observed data, the interaction is statistically and practically significant.
Analyzing the data with an ordinary linear model, we would conclude that an effect
exists that actually does not. Such spurious effects would not occur if we instead
fitted a proper ordinal model, such as the cumulative logit model

logit[P(yi ≤ j)] = αj + β1xi + β2zi

or the cumulative probit model

Φ−1[P(yi ≤ j)] = αj + β1xi + β2zi

with Φ being the standard normal cdf, with j = 1, 2, 3, 4 for the four cumulative
probabilities. In fact, we’ll note in the next section that such models are implied
for this latent variable model. The models account for the ordinality by using
cumulative probabilities for y without needing to assign scores and assume linearity
on that scale.

We are not suggesting that it is always inappropriate to use ordinary linear models
with ordinal response variables. With several outcome categories and observations
spread among them without high concentrations in boundary categories, such
a model can be adequate. Using such a model can be helpful for relatively
unsophisticated methodologists who may be comfortable with linear modeling but
not with models that imply more complex effect summaries, such as odds ratios.
However, in using this strategy, one should be aware of the potential bias that can
result.
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3 Interpreting Effects in GLMs with Nonlinear Link
Function

For an n × 1 vector y of response observations with μ = E(y), consider a
generalized linear model

g(μ) = Xβ

for link function g and model matrix X with a set of explanatory variables. For
many standard link functions, the interpretation of β is difficult for non-statisticians
and for methodologists who are mainly familiar with ordinary linear models.

For instance, suppose y is ordinal as we considered in the previous section. Let c

denote the number of outcome categories for y. For observation i, let xik denote the
value of explanatory variable k. Consider the cumulative link model

link[P(yi ≤ j)] = αj +
∑

k

βkxik, j = 1, . . . , c − 1,

for links such as the logit, probit, or complementary log-log. For the probit link (i.e.,
the inverse of the standard normal cdf), βk represents the change in Φ−1[P(yi ≤ j)]
for a 1-unit increase in xk , adjusting for the other explanatory variables. This is a
rather obscure interpretation, as very few people can make sense of effects on the
scale of an inverse of a cdf.

One way used to interpret such effects relies more on using means for underlying
latent variable models. For the observed ordinal response y and for an underlying
continuous response y∗, suppose we assume that y∗i = βT xi + εi , where εi has
some parametric cdf G with mean 0. Suppose that there are thresholds (cutpoints)
−∞ = α0 < α1 < . . . < αc = ∞ such that

yi = j if αj−1 < y∗i ≤ αj .

Then, at a fixed value x,

P(yi ≤ j) = P(y∗i ≤ αj ) = P(y∗i − βT xi ≤ αj − βT xi )

= P(εi ≤ αj − βT xi ) = G(αj − βT xi ).

This implies the model

G−1[P(yi ≤ j | xi )] = αj − βT xi

with G−1 as the link function. In particular, one obtains the cumulative probit model
when G is the standard normal cdf Φ; then Φ−1 is the probit link. (In practice,
whether we use + or − for the coefficient of the linear predictor βT xi merely
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affects the sign of the estimates, and varies among the common software packages.)
Thus, the cumulative probit model fits well when an ordinary normal linear model
holds for an underlying continuous response variable. For this model, βk has the
interpretation that a 1-unit increase in xk corresponds to a change in E(y∗) of βk

standard deviations, adjusting for the other explanatory variables [9, 20]. But this
interpretation can still be rather obscure for non-methodologists who do not think
of effects in terms of multiples of standard deviations. Moreover, the latent variable
model may not be appropriate in some applications.

We suggest next a simpler interpretation, proposed by Agresti and Kateri [6].
We formulate it in terms of a summary for comparing two groups, adjusting for the
other explanatory variables. Let z be an indicator variable for the two groups. At
any potential setting (x1, . . . , xp) of p explanatory variables, let y∗1 and y∗2 denote
independent latent variables when z = 1 and when z = 0, respectively. For the
latent variable model that generates the cumulative probit model

Φ−1[P(y ≤ j)] = αj − βz− β1x1 − · · · − βpxp,

the difference between the conditional means of y∗1 and y∗2 is β, and

P(y∗1 > y∗2 ) = P [(y∗1 − y∗2 ) > 0]

= P

[
(y∗1 − y∗2 )− β√

2
>
−β√

2

]
= 1− Φ(−β/

√
2) = Φ(β/

√
2).

That is, P(y∗1 > y∗2 ) = Φ(β/
√

2) at any setting of the p explanatory variables.
Differences between the normal conditional means for the two groups of β =
(0, 0.5, 1, 2, 3) standard deviations correspond to P(y∗1 > y∗2 ) values of (0.50, 0.64,
0.76, 0.92, 0.98).

In practice, the probit link is used much less than the logit link, especially in
biostatistics. The cumulative logit model

logit[P(y ≤ j)] = αj − βz− β1x1 − · · · − βpxp

is implied when an underlying latent variable has a logistic distribution. The
derivation just shown for a normal latent variable does not have an exact analog for a
logistic latent variable, as the difference between two independent standard logistic
random variables does not have a logistic distribution. However, the distribution can
be very closely approximated by the logistic with mean 0 and double the variance.
This generates the approximation

P(y∗1 > y∗2 ) ≈ exp(β/
√

2)

[1+ exp(β/
√

2)]
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in terms of the β parameter from the cumulative logit model. This approximation
is adequate for practical application. Because of the very close similarity of logit
and probit models, another good approximation is to fit also the cumulative probit
model and use the exact expression P(y∗1 > y∗2 ) = Φ(β/

√
2) for the β parameter

from that model.
In practice, it is often sensible to assume a latent variable distribution that, unlike

the normal and the logistic, is skewed and has a long tail. For the ordinal model
with log-log link, the underlying latent variable has the extreme-value (Gumbel)
distribution. The difference between two independent random variables of this type
has the standard logistic distribution. So, in this case,

P(y∗1 > y∗2 ) = exp(β)

[1+ exp(β)]
in terms of the β parameter for the cumulative link model with log-log link.

For any of these cumulative link models, ordinary confidence intervals for the β

coefficient of the indicator variable induce confidence intervals for P(y∗1 > y∗2 ). The
measures and the related inferences are presented by Agresti and Kateri [6]. They
also proposed analogous measures for the observed ordinal scale that do not require
a latent variable connection, and they have available R functions for confidence
intervals for the measures.

Such probability-based measures may be especially helpful for practitioners who
cannot easily interpret odds ratios and other measures that result from nonlinear
link functions. For instance, for a medical researcher, reading that at fixed values
for the explanatory variables, the estimated probability the response to drug (z = 1)
is better than response to placebo (z = 0) is 0.72 probably has greater meaning
than reading that (1) the estimated cumulative odds for drug is exp(β̂) = 2.7
times the estimated cumulative odds for placebo (i.e., the interpretation for the
cumulative logit model), or (2) that the estimated cumulative probits differ by
β̂ = 0.8 or an underlying mean for drug is β̂ = 0.8 standard deviations better than
for placebo (i.e., the interpretation for the cumulative probit model), or (3) that the
estimated probability that the response for drug is worse than a particular outcome
category is the power exp(β̂) = 1.7 of the estimated probability that response for
placebo is worse than that category (i.e., interpretation of cumulative link model
with complementary log-log link).

This type of probability measure for comparing groups is also relevant for
ordinary normal linear models. With constant error variance σ 2 and potential
response outcomes (y1, y2) for two groups at some setting of explanatory variables,
the corresponding measure is

P(y1 > y2) = Φ

(
β√
2σ

)
,

for coefficient β of the indicator variable for the two groups. This would seem to
be a useful summary in many applications. For two groups with no explanatory
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variables, a related popular effect size measure is β/σ = (μ1 − μ2)/σ [13]. One
can derive a confidence interval for β/σ in linear models with explanatory variables
using the noncentral t distribution, and such an interval induces one for P(y1 > y2).
For details and an example using R, see Agresti and Kateri [6].

4 Wald Inference When Effects for Binary Data Are Large

To introduce this topic, we start with a toy example that illustrates an awkward
aspect that often occurs in using logistic regression, namely that at least one of the
maximum likelihood (ML) estimates of model parameters is infinite. This happens
when complete separation or quasi-complete separation occurs in the space of the
explanatory variables [7].

For six observations, suppose that y = 1 at x = 1, 2, 3, and y = 0 at x = 4, 5, 6,
a simple example of complete separation. When we use R to fit the ordinary logistic
regression model, logit[P(y = 1)] = α + βx, we obtain:

-----------------------------------------------------------
> x <- c(1,2,3,4,5,6); y <- c(1,1,1,0,0,0)
> fit <- glm(y ~ x, family = binomial(link = logit))

> summary(fit)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 165.3 407521.4 0 1
x -47.2 115264.4 0 1

Number of Fisher Scoring iterations: 25
-----------------------------------------------------------

After 25 iterations, Fisher scoring converges, as the log-likelihood function is
essentially flat at that stage. The fit looks nearly identical to a step function that
takes value 1 below x = 3.5 and takes value 0 above x = 3.5. The maximized
log-likelihood value is essentially 0, reflecting the basically perfect fit. Although in
fact β̂ = −∞, R reports β̂ = −47.2. R also reports a huge standard error, reflecting
that the unrestricted ML estimate of the standard error (SE) is based on the Fisher
information, which summarizes the curvature of the log-likelihood function at β̂.
A perhaps surprising consequence is that z = β̂/SE = 0, yielding a P -value of
1.0 when we use this ratio as a test statistic for testing H0: β = 0. By contrast, the
model fit gives evidence of a potentially very strong effect. The likelihood-ratio test
statistic equals 8.32 with df = 1 and yields P -value = 0.004.

The statistic z = β̂/(SE) is an example of a Wald test. This approach uses the fact
that an ML estimator has an asymptotic normal distribution by testing H0: β = 0
with z = β̂/(SE), or else treating z2 as an approximate chi-squared random variable
with, df = 1. The corresponding confidence interval has the form β̂ ± z(SE) for
the appropriate standard normal percentile z, for instance with z = 1.96 for 95%
confidence. A classic result shown by Hauck and Donner [14] is that as |β| in a
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logistic regression model increases (for fixed n), the Fisher information decreases
so quickly that SE grows faster than β. The result is poor performance of Wald
methods when effects are large.

The poor performance of Wald methods shows up even in very simple contexts,
such as a single binomial response variable without any explanatory variables. For
a binomial random variable y based on n independent trials with parameter π , in
the context of logistic regression the model is logit(π) = β. To test H0: β = 0 (i.e.,
π = 0.50), β̂ = logit(π̂) with π̂ = y/n has asymptotic variance [nπ(1 − π)]−1.
The Wald chi-squared statistic is

(β̂/SE)2 = [logit(π̂)]2[nπ̂(1− π̂)].

Now, suppose n = 25. For testing H0: π = 0.50, π̂ = 24
25 is stronger evidence

against H0 than π̂ = 23
25 . Yet the Wald statistic equals 9.7 when π̂ = 24/25 and

equals 11.0 when π̂ = 23/25. By comparison, the likelihood-ratio statistic takes
values 26.3 and 20.7.

With large or infinite effects, likelihood-ratio (LR) tests and test-based con-
fidence intervals remain valid and behave well because of the concavity of the
log-likelihood function. For example, when β̂ = −∞, a confidence interval consists
of a range of plausible values from −∞ to some finite upper bound. With infinite
ML estimates, one can alternatively smooth the data and produce finite estimates and
finite endpoints of intervals using a Bayesian approach. Or, one can use a penalized
likelihood approach with the aim of reducing bias [11], which corresponds to using
a Bayesian posterior mode with Jeffreys prior to generate a point estimate.

The poor performance of the Wald test implies poor performance also of
corresponding confidence intervals. This has been shown for a variety of measures
for categorical data, such as proportions, differences of proportions, odds ratio, and
relative risk, particularly when probabilities are near 0 or 1. For a summary of these
and various other cases involving categorical data, see Agresti [2]. For example,
again for a single binomial parameter π , the 95% Wald confidence interval for π is

π̂ ± 1.96
√

π̂(1− π̂ )/n.

In terms of achieving close to the nominal coverage probability, this interval
performs much worse than the interval based on inverting a likelihood-ratio test
or inverting the score test of H0: π = π0, which has test statistic

z = π̂ − π0√
π0(1− π0)/n

.

It also behaves much more poorly than a simple approximation to the score
confidence interval that (in the 95% case) adds 2 “successes” and 2 “failures” before
forming the Wald confidence interval [5].
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An important question that could be addressed in future research is whether the
poor Wald performance for binary data holds also for various other generalized
linear models for other types of data, with nonlinear link functions. For some
theoretical work in this direction, see Brown et al. [10].

5 Behavior of Residuals for GLM Fits

For an n × 1 vector y of response observations with μ = E(y), V = var(y),
consider an arbitrary generalized linear model

η = g(μ) = Xβ

with link function g and model matrix X. Denote the maximum likelihood fitted
values by μ̂.

The ordinary linear model uses identity link μ = Xβ, and assumes V = σ 2I .
For that model, standard results exploit the orthogonal decomposition

y = μ̂+ (y − μ̂) (i.e., data = fit + residual).

With generalized linear models, μ̂ and (y − μ̂) are not orthogonal when we
depart from identity link and constant variance. Then, Pythagoras’s Theorem does
not apply, because maximizing the likelihood does not correspond to minimizing
‖y − μ̂‖. With a nonlinear link function, although the space of linear predictor
values η that satisfy a particular model is a linear vector space, the corresponding
set of μ = g−1(η) values is not.

Despite the lack of orthogonality, conventional wisdom seems to be that as n

increases, (y − μ̂) is asymptotically uncorrelated with μ̂. If this truly holds, then
one can obtain an asymptotic covariance matrix for the residuals, because then

V = var(y) ≈ var(μ̂)+ var(y − μ̂).

It then follows from standard results using the delta method (e.g., see [4, p. 136])
that

var(y − μ̂) ≈ V 1/2[I −H ]V 1/2,

where H is a generalized hat matrix

H = W 1/2X(XT WX)−1XT W 1/2

incorporating a diagonal weight matrix

W = diag{(∂μi/∂ηi)
2/var(yi)}.
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But why, and under what conditions, is (y − μ̂) asymptotically uncorrelated
with μ̂? And for small-to-moderate n, is corr(y − μ̂, μ̂) close enough to 0 that
we can safely ignore it? When I was recently writing a book on generalized linear
models [4], I was surprised not to find literature about this. It seems that we should
consider two types of asymptotics: Traditional asymptotics with n → ∞, and the
alternative with n fixed and asymptotics applying to individual components, such
as binomial indices and Poisson expected counts in a contingency table. For the
alternative (called small-dispersion asymptotics by Jørgensen [15]), with individual
yi asymptotically normal, (y − μ) and (μ̂ − μ) jointly have an asymptotic normal
distribution, as does their difference.

When I asked several statisticians if they knew of the existence of a general result
about residuals and fitted values being asymptotically uncorrelated, G. Lovison
gave me a heuristic solution. In Lovison [19], he discussed this point in an article
that dealt with analogs of linear model results for generalized linear models. He
argued that if (y − μ̂) and μ̂ were not asymptotically uncorrelated, one could
construct an asymptotically unbiased and more efficient estimator of μ using
μ̂
∗ = [μ̂ + L(y − μ̂)] for a matrix L. But this would then contradict the ML

estimator μ̂ being asymptotically efficient. This argument is sort of an asymptotic
version for ML estimators of one in the Gauss–Markov Theorem that unbiased
estimators other than least squares estimator have difference from that estimator
that is uncorrelated with it. The Lovison argument is heuristic, not distinguishing
between the two possible types of asymptotics, and there still seems to be scope for
a formal proof of the general result.

Interestingly, in his article, Lovison shows that a weighted version of adjusted
responses that has approximately constant variance has orthogonality of fitted values
and residuals. On the original scale, such a residual is the “Pearson residual” ei =
(yi−μ̂i)/

√
v(μ̂i ) for variance function v evaluated at the model fit. For contingency

tables, the Pearson residual is popular, because it results from the decomposition of
the Pearson chi-squared statistic. For example, with Poisson counts {yi}, the Pearson
statistic satisfies

X2 =
∑

i

(yi − μ̂i )
2

μ̂i

=
∑

i

e2
i with ei = yi − μ̂i√

v(μ̂i )
= yi − μ̂i√

μ̂i

.

As an editorial comment, however, I believe it is strongly preferable to use
standardized residuals rather than Pearson residuals. The standardized residual is

ri = yi − μ̂i

std. error(yi − μ̂i )
= yi − μ̂i√

v(μ̂i )(1− ĥii )

= ei√
1− ĥii

for “leverage” ĥii from the estimated hat matrix Ĥ . For small-dispersion asymp-
totics, ri is asymptotically standard normal when the model holds. This is not
true of the Pearson residual ei , because the denominator ignores the fact that
μ̂i is random. The standardized residual appropriately recognizes redundancies in
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data. For example, for the independence model assuming Poisson or multinomial
sampling for a 2× 2 table of counts {yij }, the fitted values are

{μ̂ij = npi+p+j } for pi+ = (
∑

j

yij )/n, p+j = (
∑

i

yij )/n,

and so these two forms of residual then have expressions

eij = yij − μ̂ij√
μ̂ij

, rij = yij − μ̂ij√
μ̂ij (1− pi+)(1− p+j )

.

For 2×2 tables, df = 1, reflecting that all four |yij − μ̂ij | are identical, so it seems
sensible to have a single value for lack of fit. Yet, all four Pearson residuals can take
different values. By contrast, r11 = −r12 = −r21 = r22 and each r2

ij = X2.

6 Improved Marginal Modeling of Multinomial Data

The final topic we consider deals with analyzing correlated observations using
marginal models. Suppose that each subject has a cluster of correlated observations
yi = (yi1, yi2, . . . , yiT )T , such as in a longitudinal study or an experiment with
repeated measures. (The dimension T could vary by cluster, but for simplicity
our notation uses a common value.) For each yit marginally, we assume a model
g(μit ) = xT

itβ.
For discrete data, ML for such a model is awkward because of the lack of a

simple multivariate distribution that is characterized by pairwise correlations. For
E(yi ) = μi and var(yi ) = V i , it is common in practice to use estimates that are
solutions of generalized estimating equations (GEE),

n∑

i=1

DT
i V −1

i (yi − μi ) = 0.

with Di = ∂μi/∂β. The GEE provide a multivariate generalization of quasi-
likelihood methods, generalizing likelihood equations for univariate response with-
out specifying a full multivariate distribution. Such an approach is useful when
one’s primary interest is modeling the marginal distribution of each yit in terms of
explanatory variables, rather than modeling dependence among (yi1, yi2, . . . , yiT ).

In the estimating equations, in V i GEE methods assume a “working” correlation
structure (e.g., exchangeable, autoregressive) for yi . The resulting estimate of β

is consistent even if the correlation structure is misspecified, when the marginal
model is correct. However, standard errors are not appropriate. The method uses
empirical robust estimates of the standard errors that are valid even when the
correlation structure is misspecified, based on a “sandwich” covariance matrix. The
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GEE method was originally specified by Liang and Zeger [16] for univariate yit

(e.g., binomial, Poisson), but extensions exist for multinomial models with c > 2
response categories. This has mainly been for ordinal responses, as in Lipsitz et al.
[17].

In the multinomial context, let yijt = 1 if subject i makes response j for obser-
vation t . Then, for each pair (s, t) of times, one chooses a working corr(yijs, yikt ),
such as exchangeable (= ρjk for all s, t). However, Touloumis et al. [21] showed
that certain correlation patterns do not correspond to a legitimate joint multinomial
distribution, especially with large c. They argued that it is more sensible to model
the covariance based on structure for local odds ratios, both for ordinal and nominal
responses. In the binary case, this was suggested by Lipsitz et al. [18]. Structure
specified in terms of local odds ratios using adjacent rows and adjacent columns is
compatible with all possible multinomial joint distributions and their margins, and
it can be used both with ordinal and nominal response variables.

Specifically, for any s < t , one supposes that the marginal P(yias = 1, yibt = 1)

has expected frequencies

log μ
(st)
ab = λ(st) + λ(s)

a + λ
(t)
b + β(st)uaub,

for some set of scores {uj }. This is a special case of the linear-by-linear association
loglinear model, in which row and column scores are identical. For this model, the
local log odds ratios satisfy

log

[
μ

(st)
ab μ

(st)
a+1,b+1

μ
(st)
a,b+1μ

(st)
a+1,b

]
= β(st)(ua+1 − ua)(ub+1 − ub).

For an ordinal response variable, one takes {ua} to be fixed, monotone scores. For
example, scores {ua = a} imply a uniform local log odds ratio that is merely
β(st) (the so-called uniform association model). Exchangeable structure for the T

responses then uses the same β(st) for each s, t . For a nominal response variable,
one treats {ua} as parameters. This pairwise association structure is then a special
case of Goodman’s [12] RC model and relates to Anderson’s [8] stereotype model.

With this multinomial GEE approach, Touloumis et al. noted strong efficiency
gains over an independence working structure for studies with strong correlation
and time-varying covariates. Touloumis has implemented ordinal and nominal local
odds ratio structures with his recently developed multgee R package. See

http://cran.r-project.org/web/packages/multgee/multgee.pdf.

This package seems to have convergence problems and improper results much
less often than existing R multinomial GEE routines. Also, other existing GEE
multinomial packages in R do not handle nominal responses.

http://cran.r-project.org/web/packages/multgee/multgee.pdf
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Orthogonal Block Structure
and Uniformly Best Linear Unbiased
Estimators

Sandra S. Ferreira, Dário Ferreira, Célia Nunes, Francisco Carvalho,
and João Tiago Mexia

Abstract Models with orthogonal block structure, OBS, have variance covariance
matrices that are linear combinations

∑m
j=1 γjQj of known pairwise orthogonal–

orthogonal projection matrices that add up to In. We are interested in characterizing
such models with least square estimators that are best linear unbiased estimator
whatever the variance components, assuming that γ ∈ ∇≥, with ∇≥ the set of
vectors with nonnegative components of a subspace ∇. This is an extension of the
usual concept of OBS in which we require γ ∈ R

m≥. Thus as we shall see it is usual
when we apply our results to mixed models.

Keywords Best linear unbiased estimator · Least square estimators · Orthogonal
block structure · Uniformly minimum variance unbiased estimator

1 Introduction

If a model has the family

ν =
{

w∑

i=1

θiM i; θ ∈ Θ

}
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of variance–covariance matrices it suffices that T , the projector onto the column
space of matrix X0, commutes with M1, . . . ,Mw for the least square estimators,
LSE, to be best linear unbiased estimator, BLUE, whatever θ = θ1, . . . , θw.
Following [12] and [11], we say that, then, the LSE are uniformly best linear
unbiased estimator, UBLUE.

When the model has only one variance component θ, then having variance–
covariance matrix θM, T commuting with M is, see [13] and [14], a necessary
and sufficient condition for the LSE to be UBLUE. Then matrix M has the spectral
decomposition

M =
m∑

j=1

bjQj (2)

with Q1, . . . ,Qm pairwise orthogonal–orthogonal projection matrices, POOPM,
and the family of variance–covariance matrices can be written as

ν =
⎧
⎨

⎩

m∑

j=1

γjQj ; γ ∈ R(b)≥

⎫
⎬

⎭
, (3)

where R(U ) is the range space of matrix U , b [γ ] has components b1, . . . , bm

[γ1, . . . , γm] and �≥ is the family of vectors of subspace � with nonnegative
components. We say that those models have rank 1, since rank(b) = 1. We intend
to extend the necessary and sufficient conditions obtained for rank 1 models to
models with

ν =
⎧
⎨

⎩

m∑

j=1

γjQj ; γ ∈ �≥
⎫
⎬

⎭
, (4)

where dim(�) = r ≥ 1. These models will have rank r. When � = R
m all the

matrices
∑m

j=1 γjQj with nonnegative coefficients may be variance–covariance
matrices and we say the model is full rank. Moreover if

m∑

j=1

Qj = In (5)

the model will have orthogonal block structure, OBS, see [8, 9]. These models
continue to play a prominent role in the theory of randomized block designs, see
[2, 3].

An interesting case studied by [1] is the case where the family of possible
variance–covariance matrices, while still commutative, no longer forms an orthog-
onal block structure.
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In the next section we present results on commutative Jordan algebras (of
symmetric matrices), CJA, and describe the algebraic structure of the model. Finally,
in the third section, we characterize the models with OBS whose LSE are UBLUE,
this is they are BLUE whatever the variance components.

2 Algebras and Structure

A CJA is a linear space constituted by symmetric matrices that commute and
containing the squares of its matrices. Each one of these algebras, say A, has a
unique basis, the principal basis, pb(A), constituted by POOPM, see [10]. For
a family W = {W 1, . . . ,Wu} of symmetric matrices to be contained in a CJA,
see, e.g., [5], it is necessary and sufficient that its matrices commute. Moreover,
intersecting all the CJA that contain W we obtain the least CJA, A(W ), that contains
W , this will be the CJA generated by W . If the n × n matrices in pb(A) add up to
In, the CJA will be complete. For a CJA to contain invertible matrices it is necessary
and sufficient that it is complete, see [5].

Let us consider the mixed model

Y =
w∑

i=0

Xiβ i , (6)

where β0 is fixed and the β1, . . . ,βw are random, independent, with null mean
vectors and variance–covariance matrices θ1I c1, . . . , θwI cw . If the matrices M i =
XiX

 
i , i = 1, . . . , w commute, they will generate A = A(M), where M =

{M1, . . . ,Mw}. With Q = {Q1, . . . ,Qm} = pb(A), we will have

M i =
m∑

j=1

bi,jQj , i = 1, . . . , w (7)

and so we will have the variance–covariance matrices

V (θ) =
w∑

i=1

θiM i =
m∑

j=1

(
w∑

i=1

bi,j θi

)

Qj =
m∑

j=1

γjQj = V (γ ), (8)

with

γ j =
w∑

i=1

bi,j θi, j = 1, . . . ,m, (9)

and so γ ∈ R(B )≥, where B = [bi,j ].
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Let us establish

Proposition 1 If R([X1 . . .Xw]) = R
n and the matrices M i , i = 1, . . . , w,

commute, the model has OBS.

Proof Since the Q1, . . . ,Qm are POOPM we have only to show that
∑m

j=1 Qj =
In, this is that A is complete. Now

rank

(
w∑

i=1

M i

)

= rank(R[X1 . . .Xw]) = n,

so
∑w

i=1 M i , being an n× n matrix with rank n, is invertible and since
∑w

i=1 M i ∈
A, A is complete. �

We point out that V (θ1) = V (θ2) implies θ1 = θ2 if and only if the matrices
M1, . . . ,Mw are linearly independent so the row vectors of matrix B. From now
on we make this assumption of linear independence so B will be a w × m matrix
with rank w.

If the model has OBS and T commutes with M, the model will have commuta-
tive OBS and we say that it has COBS. The models with COBS were introduced in
[6]. We now have the

Proposition 2 A model with OBS has COBS if and only if T commutes with the
Q1, . . . ,Qm.

Proof We have only to establish the part of the thesis for COBS since the proof
for OBS is identical. For this, it is sufficient to show that T commutes with
M1, . . . ,Mw if and only if it commutes with Q1, . . . ,Qm. Now, if T and the
M1, . . . ,Mw commute, the matrices of M∗ = {T ,M1, . . . ,Mw} generate a CJA,
A∗, that contains A(M), since M ⊆ M∗. Namely we will have T ,Q1, . . . ,Qm ∈
A∗ so T Qj = QjT , j = 1, . . . ,m. The inverse is easy to establish since
M i = ∑m

j=1 bi,jQj , i = 1, . . . , w, thus T Qj = QjT , j = 1, . . . ,m implies
T M i = M iT , i = 1, . . . , w. �
Corollary 1 A model with OBS has COBS if and only if their matrices Q∗

j =
QjT , j = 1, . . . ,m, are orthogonal projection matrices (we point out that 0n×n

is an orthogonal projection matrix).

Proof The thesis follows directly from Proposition 2 since the Q∗
j are symmetric

and idempotent if and only if QjT = T Qj , j = 1, . . . ,m. We point out that,
see [7], pb(A∗) is constituted by the nonnull matrices T Qj and (In − T )Qj , j =
1, . . . ,m. �

Let the gj row vectors of matrix Aj constitute an orthonormal basis for ∇j =
R(Qj ). Now

ψ̃ = UY
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is an LSE estimator of its mean vector

ψ = Uμ,

if and only if

UT = U .

We now have

Theorem 1 The OBS whose LSE are UBLUE are the COBS.

Proof As for Proposition 2 we have only to establish the first part of the thesis. In
COBS we have, whatever γ , T V (γ ) = V (γ )T as well as T cV (γ ) = V (γ )T c,

with T c = In − T . Putting UΩ = UT and UΩ⊥ = UT c we get

Cov(UY ) = UV (γ )U = (UΩUΩ⊥)V (γ )(U ΩU 
Ω⊥) =

= UΩV (γ )U 
Ω⊥UΩV (γ )U 

Ω⊥ ,

since UΩV (γ )U 
Ω⊥ = UT V (γ )T cU = UV (γ )T T cU = 0n×n and, likewise

UΩ⊥V (γ )U Ω = 0n×n, considering Cov the covariance matrix.
Given another linear unbiased estimator ψ∗ = LY of ψ we have Lμ = Uμ, so
(LΩ −UΩ)X0 = (L−U )T X0 = 0n×k since the row vectors of (L−U)T belong
to Ω = R(X0) and are orthogonal to Ω.

Thus LΩ = LT = UT = UΩ, so

Cov(LY ) ≥ Cov(LΩY ) = Cov(UΩY ) = Cov(ψ̃),

and the proof is complete. �
We now look for an expression to ψ̃ which exhibits the algebraic structure of

models with COBS. Let the gj row vectors of Aj constitute an orthonormal basis
for R(Qj ), so that we have

AjA
 
j = Igj , A j Aj = Qj , j = 1, . . . ,m,

we put X0,j = AjXj and represent by P j the orthogonal projection matrix on
Ωj = R(X0,j ), j = 1, . . . ,m. If, with pj = rank(P j ), the pj row vectors of W j

constitute an orthonormal basis for Ωj, we will have

W jW
 
j = Ipj , W 

j W j = P j , j = 1, . . . ,m.

When pj = 0 we assume that I 0 = [0] and that P j = 0n×n.
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We now establish

Proposition 3 In models with COBS, the Q̇j = QjT and the Q̈j = A j P jAj are
identical orthogonal projection matrices with rank pj , j = 1, . . . ,m.

Proof If pj = 0 we have Q̇j = Q̈j = 0n×n. We saw that in models with COBS
the Q̇j , j = 1, . . . ,m are orthogonal projection matrices it being straightforward

to show that the Q̈j , j = 1, . . . ,m, also are. Moreover

R(Q̇j ) = R(QjT ) = QjR(T ) = QjR(X0) = A j AjR(X0) =
A j R(AjX0) = A j R(X0,j ) = A j R(P j ) = R(A j P j ) = R((A j P j )(A

 
j P j )

 )

= R(A j P jAj ) = R(Q̈j ), thus Q̇j = Q̈j and rank(Q̈j ) = rank(Q̇j ). Now

P j = AjQ̈jA
 
j , so pj = rank(P j ) = rank(Q̈j ) = rank(Q̇j ) and the proof is

complete. �
Corollary 2 In models with COBS and matrix X0 with k linearly independent
column vectors we have k =∑m

j=1 pj .

Proof We have k = rank(X0) = rank(T ) so the thesis follows from

T = InT =
⎛

⎝
m∑

j=1

Qj

⎞

⎠T =
m∑

j=1

Q̇j

and from the Q̇1, . . . , Q̇m being pairwise orthogonal so that rank
(∑m

j=1 Q̇j

)
=

(∑m
j=1 rank(Q̇j )

)
=∑m

j=1 pj . �
Let us have pj > 0 if and only if j ≤ l, with l ≤ m, and put Y j = AjY and

Zj = W jY j , j = 1, . . . , l. Since Q̇j = 0n×n, if j > l, whenever l < m, we have

T =
l∑

j=1

QjT =
l∑

j=1

Q̇j =
l∑

j=1

Q̈j =
l∑

j=1

A j P jAj ,

as well as, since P j =W 
j W j , j = 1, . . . , l

μ̃ = T Y =
l∑

j=1

A j P jAjY =
l∑

j=1

A j P jY j =

=
l∑

j=1

A j W 
j W jY j =

l∑

j=1

A j W 
j Zj

so that μ̃ =∑l
j=1 U jZj , with U j = A j W 

j , j = 1, . . . , l.
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3 Model Characterization

We now characterize models whose LSE are UBLUE. The estimable vectors of a
model with mean vector μ = X0βo are the

ψ = Uμ.

The corresponding linear unbiased estimators are the ψ∗ = LY with

L ∈ [ψ] = {L : E(LY ) = ψ},

where E(.) indicates mean vector. We now establish

Lemma 1 We have E(L1Y ) = E(L2Y ) if and only if L1T = L2T .

Proof Since E(LlY ) = Llμ = LlT μ, l = 1, 2, the sufficient condition
is established. Inversely, if E(L1Y ) = E(L2Y ) we will have, whatever β0,

L1T X0β0 = L2T X0β0 so that L1T X0 = L2T X0 and that (L1T −L2T )X0 = 0,

where 0 denotes a null matrix. Thus the row vectors of W = L1T − L2T =
(L1 −L2)T have to be orthogonal to Ω = R(X0), but these vectors also belong to
Ω so they are null which gives L1T −L2T = 0 and so L1T = L2T as we wanted
to established. �

Now the LSE for ψ = Uμ is

ψ̃ = L(ψ)Y

with L(ψ) = UT and μ̃ = T Y . We see that L(ψ) ∈ [ψ], since

E(ψ̃) = L(ψ)μ = UT X0β0 = Uμ = ψ,

besides this, according to Lemma 1, L ∈ [ψ] if and only if

LT = L(ψ)T = UT T = UT = L(ψ).

Putting T c = In − T we have, with L ∈ [ψ],

L = LT +LT c = L(ψ)+ rB,

with −∞ < r < +∞ and B = 1
r
LT c. Thus,

Covθ (LY ) = Covθ (L(ψ)Y )+ 2rCovθ(L(ψ)Y ,BY )+ r2Covθ (BY )

it being easy to see that we have, whatever r ∈] −∞;+∞[,

Covθ (ψ̃) = Covθ (L(ψ)Y ) ≤ Covθ (LY )
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if and only if Covθ (L(ψ)Y ,BY ) = 0. Since B = 1
r
LT c we get

Covθ (LT Y ,LT cY ) = 0,

whenever

Covθ (L(ψ)Y ,BY ) = 0.

Now

Covθ (LT Y ,LT cY ) = LT V (θ)T cL =

L[T V (θ)(In − T )]L = L[T V (θ)− T V (θ)T )]L ,

so that to have

Covθ (ψ̃) ≤ Covθ (LY )

for every θ , if and only if T V (θ) − T V (θ)T = T V (θ)T c = 0, which gives
T V (θ) = T V (θ)T and

V (θ)T = (T V (θ)) = (T V (θ)T ) = T V (θ)T = T V (θ),

also for every θ .

We now establish

Theorem 2 The LSE are UBLUE if and only if, for every θ , T commutes with V (θ),

Proof The preceding discussion establishes the necessary condition. To complete
the proof we point out that, when T commutes with V (θ) we have

Covθ (LT Y ,BY ) = rCovθ (LT Y ,
1

r
LT cY ) = LT V (θ)T cL = 0n×n,

and so

Covθ (LY ) = Covθ (L(ψ)Y )+ r2Covθ (BY ) ≥ CovθL(ψ) = Covθ (ψ̃).

�
Now the models with OBS where T commutes with the M1, . . . ,Mw and so

with V (θ), whatever θ , are those with COBS so these are the models with OBS
whose LSE are UBLUE.

Corollary 3 Models with OBS have LSE that are UBLUE if and only if they have
COBS.
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In establishing Theorem 2, we did not require that

V (θ) =
w∑

i=1

θiM i

in order to widen the class of models to which our results applies. Moreover, as we
stated in the introduction, when we restrict ourselves to OBS, assuming that

V (γ ) =
m∑

j=1

γjQj

with γ ∈ ∇≥, our result holds whatever the dimension (≤ m) of ∇.

4 Final Remarks

The models we considered have variance–covariance matrices V (γ ) =∑m
j=1 γjQj

where the Q1, . . . ,Qm are POOPM that add up to In, and γ ∈ ∇ with dim(∇) =
r ≥ 1. We discussed the role played by T , the orthogonal projection matrix on the
space spanned by the mean vector, commuting with the Q1, . . . ,Qm in the LSE
of estimable vectors being UBLUE, this is, being BLUE whatever γ . Namely we
showed that commutativity characterizes the models, in the class we consider, whose
LSE are UBLUE. We point out that in our mixed models we had γ ∈ R(B )≥. To
have, as required in [8, 9], the γ ∈ R

m≥, matrix B would have to have rank m and
thus being invertible. This condition holds when M is a basis for M , we then say,
see [4], that the family M is perfect.
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3. Caliński, T., & Kageyama, S. (2003). Block designs: a randomization approach (Vol. II)
Design. Lecture Notes in Statistics, 170. New York: Springer-Verlag.

4. Ferreira, S. S., Ferreira, D., Fernandes, C., & Mexia, J. T. (2007). Orthogonal Mixed Models
and Perfect Families of Symmetric Matrices. 56th Session of the International Statistical
Institute, Book of Abstracts, ISI, Lisboa, 22 a 29 de Agosto.



98 S. S. Ferreira et al.
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Hadamard Matrices on Error Detection
and Correction: Useful Links to BIBD

Carla Francisco, Teresa A. Oliveira, Amílcar Oliveira,
and Francisco Carvalho

Abstract In the areas of Computer Science and Telecommunications there is a
huge amount of applications in which error control, error detection and error
correction are crucial tools to enable reliable delivery of digital data over unreliable
communication, thus providing quality of service. Hadamard matrices can almost
directly be used as an error-correcting code using an Hadamard code, generalized in
Reed-Muller codes. Advances in algebraic design theory by using deep connections
with algebra, finite geometry, number theory, combinatorics and optimization
provided a substantial progress on exploring Hadamard matrices. Their construction
and its use on combinatorics are crucial nowadays in diverse fields such as:
quantum information, communications, networking, cryptography, biometry and
security. Hadamard matrices give rise to a class of block designs named Hadamard
configurations and different applications of it based on new technologies and codes
of figures such as QR Codes are present almost everywhere. Some connections to
Balanced Incomplete Block Designs are very well known as a tool to solve emerging
problems in these areas. We will explore the use of Hadamard matrices on QR Codes
error detection and correction. Some examples will be provided.
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1 Hadamard Matrices

An Hadamard1 matrix is a square matrix Hn of order n with entries ±1 and whose
rows (or columns vice versa) are mutually orthogonal, see Seberry [24]. If Hn is
Hadamard matrix, then HnH n = nIn. An Hadamard matrix remains so when any
row or column is multiplied by −1. Having this into consideration, one can always
write an Hadamard matrix with its first row and first column having only +1’s, that
it is the normal form of an Hadamard matrix, see Sylvester [26].

If Hn exists for n = 1, then H2 can be written like the one below:

H2 =
[

1 1
1 −1

]
.

More examples of Hadamard matrices:

H4 =

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 1 1 1
1 −1 1 −1

1 1 −1 −1
1 −1 −1 1

⎤

⎥
⎥
⎥⎥
⎥
⎦
; H8 =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

4× 4 Hadamard matrix 8× 8 Hadamard matrix

The necessary condition for the existence of an Hadamard matrix Hn, n > 2 is
that n ≡ 0(mod4); more about this can be found on Hall [8]. Hadamard matrices
for all permissible values of n ≤ 100, with the exception of n = 92 can be found on
Plackett and Burman [18]. Only later on Baumert et al. [1] presented an Hadamard
matrix of order 92.

According to Hedayat and Wallis [9] and to Sawade [23] Hadamard matrices
have their existence confirmed for all permissible values of n ≤ 424.

If Hm and Hn are Hadamard matrices of orders m and n, respectively, then their
tensor product Hm ⊗ Hn is an Hadamard matrix of order mn, where ⊗ denotes
the Kronecker matrix product. So, in particular, an Hadamard matrix Hn of order n

where n = 2s and s ≥ 2 is an integer can be built by taking the s-fold tensor product

1Jacques Hadamard (1865–1963).
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of H2 with itself, as it is given below:

H2s = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸
s times

.

Hadamard matrices are very well known because of the wide range of appli-
cations, not only in several areas of mathematics, but also in other sciences and
mainly those connected with new technological advances, like cryptography Ogata
et al. [15], image analysis, signal processing, coding theory and algorithm design,
see e.g. Francisco [6]. In Statistics, Combinatorial Designs and Experimental design
the Hadamard matrices play a key role in the block design construction. We refer to
Din and Mavron [5] and to Koukouvinos [11] where one can see how these matrices
are useful for the construction of BIBD (balanced incomplete block design)—see
Sect. 2—, and for designs and secret sharing schemes, respectively.

2 Relationship Between Hadamard Matrices and BIBD

Consider now an Hadamard matrix H4u, which without loss of generality is assumed
to be in its normal form. Delete from H4u, its first row and first column of all ones,
thus obtaining a matrix A of order (4u− 1)× (4u− 1).

Taking A we can define N = 1
2 (A+ J4u−1), where Ju = 1u1 u .

This means that N is obtained from A, by replacing the −1’s in A by zero and
keeping +1’s unaltered. Then, it is easy to see that N is the incidence matrix of a
balanced incomplete block design (BIBD) with parameters:

v = 4u− 1 = b ; r = 2u− 1 = k ; λ = u− 1 (1)

as presented by Yates, see [28], in his agriculture experiments, where these
parameters would stand for v varieties in b blocks of size k, so that each variety
occurs exactly r times along the blocks and every pair of varieties concurs in exactly
λ blocks, see Raghvarao [19].

Conversely, if N is the incidence matrix of a BIBD with parameters given by (1),
then by replacing the 0’s in N by −1 and bordering the resultant matrix by a row
and column of all ones, one gets an Hadamard matrix of order 4u.

We thus have the following theorem

Theorem 1 The existence of an Hadamard matrix of order 4u is equivalent to the
existence of a BIBD with parameters given by (1).
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Example 1 Consider an Hadamard matrix H16 which can be obtained by forming
the tensor product H4 ⊗H4, where H4 is as below:

H4 =

⎡

⎢
⎢
⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥
⎥
⎦

Following the construction method described above, we get a solution of a BIBD
with parameters v = 15 = b, r = 7 = k, λ = 3.

A review of several construction methods to synthesize these matrices was
presented by Oliveira [16, 17], namely Paley Matrices, Sylvester Matrices and
Kronecker recursive product. We also refer to Stinson [25] and Cameron [4], as
well as to the webpage

http://mathworld.wolfram.com/HadamardMatrix.html
for more examples of such matrices.
Now consider the BIBD (7,7,3,3,1) and the BIBD(13,13,4,4,1). If we add a row

and a column of 1’s, and if we replace all the null entrances in the matrix by (1), we
obtain the following Hadamard matrices:

H7 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

1 −1 −1 −1 1 −1 1 1
1 1 1 −1 −1 1 −1 1

−1 1 1 −1 −1 −1 1 1
1 −1 1 1 −1 −1 −1 1

−1 1 −1 1 1 −1 −1 1
−1 −1 −1 1 −1 1 1 1

1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

H13 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1
1 −1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 −1
1 −1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 −1
1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 −1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 −1 −1 −1 1 1 −1 1 −1
1 −1 −1 −1 1 −1 −1 1 1 −1 −1 −1 1 −1
1 −1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1 −1
1 −1 −1 −1 1 −1 1 −1 −1 1 −1 −1 −1 1
1 −1 1 −1 −1 −1 −1 1 −1 −1 1 −1 −1 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

http://mathworld.wolfram.com/HadamardMatrix.html
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Fig. 1 BIBD (7,7,3,3,1)

Fig. 2 BIBD (13,13,4,4,1)

Sometimes in the literature Hadamard matrices are represented by a square in
black and white, as we can have for our examples. Using this form, in figures, see
Figs. 1 and 2, we present Hadamard matrices corresponding to the BIBD(7,7,3,3,1)
and BIBD (13,13,4,4,1), from [16, 17].

3 BIBD and R Project for Statistical Computing

As stated before, a BIBD is an arrangement of v treatments (varieties) in b blocks,
each of size k(< v), where each variety occurs exactly r times and every pair of
varieties concurs in exactly λ blocks. The necessary, but not sufficient conditions
for the existence of a BIBD are:

⎧
⎨

⎩

v < b

vr = bk

λ(v − 1) = r(k − 1)

In order to generate BIBD with the aid of the computational statistical program
‘R’, we can use the extra ‘package’, ‘crossdes’. This ‘package’ includes several
functions that assist in building balanced designs. Each BIBD produced with the aid
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of this ‘package’ has five parameters described above. To install the ‘package’ the
command ‘install.packages (“crossdes”)’ is used. To load the ‘package’ in order to
be able to use the functions contained herein, the command ‘library (“crossdes”)’
is used. The ‘find.BIB’ function is used to generate a block design with a specific
number of treatments, blocks (which correspond to the lines of the generated design)
and elements per block (corresponding to the columns of the generated design). It
is also possible to use another function to test if the generated design meets the
conditions to be a BIBD. For instance, to create a design with five treatments in four
blocks of three elements the function is as follows (Fig. 3):

> find.BIB(5, 4, 3)
The corresponding ‘R’ output is:
The resulting structure is not a BIBD because the treatments are not all repeated

the same number of times. This observation can be confirmed by using the ‘isGYD’
function as follows: ‘isGYD (find.BIB (5, 4, 3))’. The result of executing this
function in ‘R’ is (Fig. 4):

Consider now another example, this time with seven treatments and seven blocks
of three elements (Fig. 5):

It is confirmed through the use of the ‘isGYD’ function that this experimental
design is indeed a BIBD:

Another useful ‘package’ to generate outlines designs for BIBDs is the ‘dae’.
As the one above, this package has several different functions targeted to aid in

[,1]
[1,]
[2,]
[3,]
[4,]

[,2] [,3]
2

21
3

31

3
4

4

5

5
5

Fig. 3 Output of instruction find.BIB(5,4,3)

> isGYD (find.BIB (5,  4,  3) )

[1] The  design  is  neither  balanced  w. r. t.  rows  nor  w. r. t.  columns.

Fig. 4 Output of instruction isGYD(find.BIB(5,4,3))

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]

[,1] [,2] [,3]
1 2 6

6
7
7

7

4
5

5
6
3
3
4
5

3
4
2
1
2
1

> outro . plano  =  find. BIB (7,  7,  3) 
> outro . plano 

Fig. 5 Output of instruction find.BIB(7,7,3)



Hadamard Matrices on Error Detection and Correction: Useful Links to BIBD 105

[1] The  design  is  a  balanced  incomplete  block  design  w. r. t.  rows.

isGYD (find.BIB (7,7,3) )>

Fig. 6 Output of instruction isGYD(find.BIB(7,7,3))

> BIBD.unit<-list(Blocks=4, Plots=3)

> BIBD.nest<-list(Plots=”Blocks”)

> Treats<-factor(c(1,2,3, 1,2,4, 1,3,4, 2,3,4), labels=c(”A”,”B”,”C”,”D”))

> BIBD.lay<-fac.layout(unrandomized=BIBD.unit, nested.factors=BIBD.nest, randomized=Treats,  seed=987)

> BIBD.lay

     Units Permutation Blocks Plots Trats

1        1           2      1     1     C

2        2           3      1     2     A

3        3           1      1     3     B

4        4          10      2     1     B

5        5          12      2     2     C

6        6          11      2     3     D

7        7           9      3     1     C

8        8           7      3     2     D

9        9           8      3     3     A

10      10           4      4     1     A

11      11           5      4     2     D

12      12           6      4     3     B

> |

Fig. 7 Randomized factors BIBD with 3 treatments and 4 blocks

obtaining experimental designs. The following example illustrates the use of one of
the features of “dae”, the “fac.layout” to generate an experiment of BIBD consisting
of randomized factors (Fig. 6):

A page from CRAN—The Comprehensive R Archive Network—aggregates all
the existing information about the various ‘packages’ related to experimental design
with the aid of the ‘R’. This page can be found at the url: http://cran.r-project.org/
web/views/ExperimentalDesign.html.

This page presents first the general-purpose packages and proceeds with those
that perform more specific tasks such as the ones used in the design of experiments
for agriculture, industry and clinical trials among others (Fig. 7).

4 Application of Hadamard Matrices to Error Correction

Reed–Muller codes, see Reed [20] and Muller [14], are a family of linear error-
correcting codes that were first used in communications.

Special cases of Reed–Muller codes include the Hadamard code, the Walsh–
Hadamard code and the Reed–Solomon code, see Wicker and Bhargava [27].

http://cran.r-project.org/web/views/ExperimentalDesign.html
http://cran.r-project.org/web/views/ExperimentalDesign.html
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The Hadamard code is an error-correcting code that is used for error detection
and correction when transmitting messages over very noisy or unreliable channels.
A famous application of the Hadamard code was the NASA space probe Mariner 9
in 1971, where the code was used to transmit photos of Mars.

Generalized Hadamard codes are obtained from an n × n Hadamard matrix H.
In particular, the 2n codewords of the code are the rows of H and the rows of H. To
obtain a code over the alphabet {0, 1}, the mapping 1 $→ 1, 1 $→ 0, or, equivalently,
x $→ (1x)/2, is applied to the matrix elements. That the minimum distance of the
code is n/2 follows from the defining property of Hadamard matrices, namely that
their rows are mutually orthogonal.

To get the punctured Hadamard code with n = 2k−1 the chosen Hadamard matrix
H has to be of Sylvester type, see [13], which gives rise to a message length of
log2(2n) = k.

Quick response codes (QR-Codes) contain codewords that are 8 bits long and use
the Reed–Solomon error correction algorithm with four different error correction
levels. It is well known that higher the error correction level, the less the available
storage capacity there is.

The Reed-Solomon algorithm was created by Irving Reed and Gustave Solomon,
both engineers at MIT’s Lincoln Labs, and their work, see Reed and Solomon [21],
led to the extent of and later on used with the creation of the QR code in 1994 for the
Japanese automotive industry by Denso Wave, a subsidiary that produces automatic
identification products.

Since its debut a long way was overcome and the amount of information that a
QR code may store is massive. The four levels of security, that include redundant
information, may go up to 30%, allowing the retrieval of information even when the
QR code is damaged and thus giving space for error correction.

Below some examples of the relation between QR codes and information
capacity (Figs. 8, 9 and 10).

Crossing the level of information redundant and the number of characters,
Version 1, will allow 41 characters at his lowest and 17 on its highest level. Version
40 allows 7089 numerical characters.

Fig. 8 Version 1, 21 × 21
blocks
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Fig. 9 Version 1, 25 × 25
blocks

Fig. 10 Version 40, 117 ×
117 blocks

Reed-Solomon codes are of the same family of error correcting codes as the
Hadamard codes. The rows of a k × v generating matrix, for a generalized Reed-
Solomon code GRk(c, 1), where c = (1, c, . . . , cv−1) for some c ∈ GF(q), of order
v, are rows of a cocyclic matrix. For v = p, an odd prime number, the resulting
Reed-Solomon codes are cocyclic Hadamard codes. So Reed-Solomon codes are
closely related to Hadamard matrices as well.

5 Biometry

In information technology, biometrics refers technologies to identify human body
characteristics, such as fingerprints and iris, see Jain et al. [10]. However, there
is a tremendous amount of research that demonstrates biometrics can be easily
faked. There are several examples on the Internet on how to make false fingerprints
or forge iris images, big companies like Facebook are making efforts to develop
both hardware tokens and software-based authentication for their social network.
Software code generation like QR Codes seem to offer a preferable solution, rather
than biometric recognition, thanks to their mathematical properties, see Gonçalves
[7].

Gregg Stefancik, a Facebook engineer has stated in an interview that he would
like his company to eventually move away from using passwords, but opposes
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Fig. 11 Damaged QR code

the use of biometrics. However biometrics security can be leveraged with a two-
factor authentication solution, ensuring that alphanumeric passwords or generated
codes enter the authentication steps, see Anongporn [22]. A combination of voice
recognition based, for example, on a phrase, along with a generated QR Code is an
extremely strong authentication solution, see Lakshmanaswamy et al. [12].

Lumidigm, an ATM manufacturer, is already using this principle on their
machines. Their ATMs use biometrics and QR Codes for secure cash withdrawals.

6 Considerations and Remarks

The QR Codes are 2-dimensional bar codes that can be easily read by a device
capable of image capture, as is the case of most existing mobile phones. These
codes can represent text, an address for a web site (URL), a phone number, a geo-
referenced location, an email, a contact or an SMS.

QR codes have, as the base of their error correcting structure, Hadamard
matrices. The mathematical properties jointly with the new technological advances
allow simple figures to contain and transmit a huge amount of information. The
mathematical properties that are intrinsic to these structures will allow great
advances for error detection and correction, in huge amounts of information.
Potential developments using well-studied properties of randomized block designs,
namely with Orthogonal Block Designs, see, e.g., Calinski and Kageyama [2] and
Calinski and Kageyama [3], will create a vast spectrum of research (Fig. 11).

Acknowledgements This research was partially sponsored by national funds through the
FCT—Fundação para a Ciência e Tecnologia, Portugal—FCT under the project PEst-
OE/MAT/UI0006/2013 (CEAUL).
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Covariance Matrix Regularization
for Banded Toeplitz Structure via
Frobenius-Norm Discrepancy

Xiangzhao Cui, Zhenyang Li, Jine Zhao, Defei Zhang, and Jianxin Pan

Abstract In many practical applications, the structure of covariance matrix is
often blurred due to random errors, making the estimation of covariance matrix
very difficult particularly for high-dimensional data. In this article, we propose a
regularization method for finding a possible banded Toeplitz structure for a given
covariance matrix A (e.g., sample covariance matrix), which is usually an estimator
of the unknown population covariance matrix Σ . We aim to find a matrix, say B,
which is of banded Toeplitz structure, such that the Frobenius-norm discrepancy
between B and A achieves the smallest in the whole class of banded Toeplitz
structure matrices. As a result, the obtained Toeplitz structured matrix B recoveries
the underlying structure behind Σ . Our simulation studies show that B is also more
accurate than the sample covariance matrix A when estimating the covariance matrix
Σ that has a banded Toeplitz structure. The studies also show that the proposed
method works very well in regularization of covariance structure.

Keywords Covariance matrix structure · Frobenius norm · Regularization ·
Toeplitz structure

1 Introduction

Estimation of covariance matrices is important in many application fields including
spectroscopy, functional magnetic resonance imaging, text retrieval, gene array,
climate study and imaging analysis. This problem has been widely researched in
statistics. The traditional “Burg technique”, which is to find the maximum likelihood
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estimator of a covariance matrix, needs to provide the sample covariance matrix and
pre-specify the structure of the unknown population covariance matrix [3]. However,
it is well known that the sample covariance matrix performs poorly for high-
dimensional data, where the number of variables is bigger than the sample size [11].
Further, the underlying structure of the sample covariance matrix is usually blurred
because of random noises from different sources.

For high-dimensional data, methods of covariance matrix regularization were
developed in the literature, including hard-thresholding [2, 9], soft-thresholding
and its various generalizations [18], and adaptive thresholding [4], among many
others, but threshold estimators may have negative eigenvalues in finite samples. To
overcome this difficulty, Rothman proposed a Lasso-type penalty based method to
encourage sparsity and used a logarithmic barrier function to enforce the positive-
definiteness [17]. Xue et al. [20] considered an alternating direction method to
ensure the positive-definiteness of Lasso penalty covariance estimator. However,
all such regularization approaches require a tuning parameter, and how to choose an
appropriate tuning parameter remains a very challenging problem.

For covariance matrix estimation, it has recently attracted more attention on reg-
ularizing an estimated covariance matrix so that the underlying structure becomes
clear [14, 16]. Recently, the technique based on entropy loss function aiming to
avoid the selection of tuning parameter has been proposed to regularize an estimated
covariance matrix into one of the structured covariance matrices: MA(1), CS,
AR(1) and banded Toeplitz [12]. However, the technique cannot handle a high-
dimensional data set, since the inverse of the sample covariance matrix does not
exist. Very recently, the method of regularizing an estimated covariance matrix into
the one with structures MA(1), CS, AR(1) and ARMA(1, 1) via Frobenius-norm
discrepancy was developed by [6, 7]. Although this method avoids the use of the
inverse of the sample covariance matrix, it only considered the above four candidate
covariance structures, that is, MA(1), CS, AR(1), ARMA(1, 1). It is well known
that banded Toeplitz covariance matrices are very common in practice, in particular,
it is commonly used in time series. For example, in signal processes the covariance
matrix of Gauss-Markov random process or cyclostationary process often displays
a banded Toeplitz structure [5, 13, 19]. On the other hand, all the four structures,
i.e., MA(1), CS, AR(1) and ARMA(1, 1), are a special case of banded Toeplitz
structures.

In order to study a more general structure, in this paper we consider the
regularization problem for covariance matrix with banded Toeplitz structures. The
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m×m covariance matrix is of the form

B(σ 2, c1, · · · , cp) = σ 2

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1 c1 c2 · · · cp 0 · · · 0

c1 1 c1
. . .

. . .
. . .

. . .
...

c2 c1 1
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
. . . cp

cp
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 1 c1 c2
...

. . .
. . .

. . .
. . . c1 1 c1

0 · · · 0 cp · · · c2 c1 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

(1)

where σ 2 > 0, c1, c2, . . . , cp (m > p) are nonzero and all other off-diagonal

elements are zero. Define q(t) = 1 + 2
p∑

k=1
ck cos(kt), then B is positive-definite

if and only if q(t) ≥ 0, q(t) �≡ 0, for all t ∈ R [15].
The outline of the paper is as follows. In Sect. 2, we transform the regularization

problem into an optimization problem in numerical analysis and explore its general
properties. In Sect. 3, we discuss the problem of finding the optimal structure from
a class of banded Toeplitz structures, in the sense of minimizing the square of the
Frobenius-norm discrepancy. In Sect. 4, we conduct simulation studies to measure
the performance and effectiveness of the proposed approach. In Sect. 5, a brief
discussion is provided.

2 Problem of Interest

In order to transform the regularization problem into an optimization problem, we
suppose A is an available m×m estimator of a covariance matrix, for example, the
sample covariance matrix. Note that it may also be one of those obtained by using
SQRT-Lasso [1], matrix-logarithm transformation [8] and thresholding principal
orthogonal complements [10] among many others. Let Ω be the set of all m × m

positive definite covariance matrices with banded Toeplitz structure. A discrepancy
between the given covariance matrix A and the set Ω is defined by

D(A,Ω) := min
B∈Ω

L(A,B), (2)

where L(A,B) is a measure of the distance between the two m×m matrices A and
B, defined by the square of the Frobenius-norm. In other words,

L(A,B) := tr((A− B)T (A− B)). (3)
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Note that f (B) := L(A,B) = tr((A−B)T (A−B)) is a strictly convex function
of B [7]. Also, the set Ω is obviously convex. Since Ω is the set of all positive
definite matrices having a banded Toeplitz structure, the optimization problem in
(2) is convex and so it has a unique solution.

The idea is that, in this set Ω , the matrix B which satisfies the above equality can
be considered as the regularized version of A. In other words, the matrix B with a
banded Toeplitz structure is considered to have the underlying structure of Ω .

We remark that the matrix A does not require a non-singularity, meaning that it
applies to the case when the matrix A is singular, for example, A is the sample
covariance matrix for high-dimensional data. In other words, even if the given
covariance matrix A is singular, we can find a covariance matrix B which has a
nonsingular banded Toeplitz structure, such that the F -norm discrepancy function
L(A,B) achieves its smallest among the class of banded Toeplitz matrices.

3 Solution of Problem

The matrix B in (1) can be rewritten as

B(σ 2, c1, · · · , cp) = σ 2(I +
p∑

i=1

ciTi),

where Ti is a symmetric matrix with ones on the ith superdiagonal and subdiagonal
and zeros elsewhere.

The discrepancy function in (3) is now

f (σ 2, c1, · · · , cp)=tr(AAT )+σ 4(m+2
p∑

i=1

(m−i)c2
i )−2σ 2(tr(A)+

p∑

i=1

ci tr(ATi)).

It follows that

∇f :=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

∂f

∂(σ 2)
∂f

∂c1
...

∂f

∂cp

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎢
⎣

2σ 2(m+ 2
p∑

i=1
(m− i)c2

i )− 2(tr(A)+
p∑

i=1
ci tr(ATi))

4σ 4(m− 1)c1 − 2σ 2tr(AT1)
...

4σ 4(m− p)cp − 2σ 2tr(ATp)

⎤

⎥
⎥⎥
⎥
⎥
⎦

,
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and

∇2f :=

⎡
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⎢
⎣

∂2f

∂(σ 2)2

∂2f

∂(σ 2)∂c1
· · · ∂2f

∂(σ 2)∂cp
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∂c1∂(σ 2)

∂2f

∂c2
1

· · · ∂2f

∂c1∂cp

· · · · · · · · · · · ·
∂2f

∂cp∂(σ 2)

∂2f
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· · · ∂2f

∂c2
p
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⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦
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⎢
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⎢
⎢
⎣

2m+ 4
p∑

i=1

(m− i)c2
i 8σ 2(m− 1)c1 − 2tr(AT1) · · · 8σ 2(m− p)cp − 2tr(ATp)

8σ 2(m− 1)c1 − 2tr(AT1) 4σ 4(m− 1) · · · 0

· · · · · · · · · · · ·
8σ 2(m− p)cp − 2tr(ATp) 0 · · · 4σ 4(m− p)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Hence the stationary points (σ 2, c1, · · · , cp) must satisfy the following equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mσ 2 + 2σ 2
p∑

i=1
(m− i)c2

i − tr(A)−
p∑

i=1
ci tr(ATi) = 0

2σ 2(m− 1)c1 − tr(AT1) = 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
2σ 2(m− p)cp − tr(ATp) = 0.

(4)

Thus a unique stationary point is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ 2 = tr(A)

m

c1 = mtr(AT1)

2(m− 1)tr(A)

· · · · · · · · · · · · · · · · · ·
cp = mtr(ATp)

2(m− p)tr(A)
.

(5)

Since

∇2f |(σ 2,c1,··· ,cp) :=

⎡

⎢⎢
⎢
⎢
⎢
⎣

2m+ 4
p∑

i=1

(m− i)c2
i 4σ 2(m− 1)c1 · · · 4σ 2(m− p)cp

4σ 2(m− 1)c1 4σ 4(m− 1) · · · 0
· · · · · · · · · · · ·

4σ 2(m− p)cp 0 · · · 4σ 4(m− p)

⎤

⎥⎥
⎥
⎥
⎥
⎦

,
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the k × k leading principal minor of matrix ∇2f |(σ 2,c1,··· ,cp) is given by

Wk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2m+ 4
p∑

i=1
(m− i)c2

i k = 1

(2m+ 4
p∑

i=k

(m− i)c2
i )

k−1∏

i=1
4σ 4(m− i) k = 2, · · · , p

2m
p∏

i=1
4σ 4(m− i) k = p + 1.

Recalling that σ 2 > 0, p ≤ m− 1, c1, c2, . . . , cp are nonzero, we have Wk > 0.
The Hessian matrix ∇2f |(σ 2,c1,··· ,cp) is then positive definite, so that its stationary
point is really a minimum point. This point, however, may be a local minima of
f (B). It is well-known that if the function is convex then the local minimum is
actually the global minimum, but it is difficult to check if f (B) is convex with
respect to (c1, · · · , cp) here due to its complexity. We suggest to compare the
function values at all the local minima so that the global minimum can be achieved.

We summarize the discussion above in the following theorem.

Theorem 1 For a given estimatorA of anm×m covariancematrix, define f (B) :=
L(A,B) where B is a positive definite covariance matrix with a banded Toeplitz
structure. Then the local or global minimum of f (B) can be achieved as the solution
of (5).

4 Simulation Studies

To check the actual performance of the proposed regularization method, we carry
out intensive simulation studies in this section. All the calculations are done using
MATLAB R2012b, and we apply fzero and fsolve to find roots.

In the process of the simulation, we first generate an m × m covariance matrix
Σ which has one of the following structures: order-1 moving average structure
(MA(1)), compound symmetry structure (CS), order-1 autoregressive structure
(AR(1)), order-1 autoregressive moving average structure (ARMA(1, 1)), cf. [6, 7],
and a banded Toeplitz structure. We assume an m dimensional zero mean vector
μ = 0. We take a random sample of size n from multivariate normal distribution
Nm(0,Σ) and then calculate the sample covariance matrix A. In the end, we find
matrix B which has a banded Toeplitz structure mentioned above, achieving the
minimum of the Frobenius-norm.

We need to state the following facts.

1. We only need to find the desired matrix among the ones which have the same
structure as the correct covariance structure, because for the cases of MA(1),
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CS, AR(1) or ARMA(1, 1) [6, 7] already showed that the matrix B that has the
minimum F-norm remains the same structure as the true covariance matrix.

2. Since the function L(A,B) measures the absolute difference between matrices
A and B, it can make the value of L(A,B) too large. To reduce the influence of
the dimension of covariance matrix and its elements on L(A,B), we re-define
the following function to replace L(A,B)

L∗(A,B) := tr((A− B)T (A− B))/tr(AT A), (6)

which does not affect the finding of the optimal matrix B.

We will use the following notations:

• Σ: the true covariance matrix being tested;
• A: the covariance matrix obtained from sample;
• B: the matrix which minimizes L∗(A,B) and has a structure of MA(1), CS,

AR(1), ARMA(1, 1) or banded Toeplitz;
• L∗Σ,A, L∗A,B and L∗Σ,B : the difference functions L∗(Σ,A), L∗(A,B) and

L∗(Σ,B), respectively.

For Σ having MA(1), CS or AR(1) structure, we set the sample size n =
100, matrix dimension m = 10, 20, 50, 100, 200, 500, 1000, σ 2 = 0.5, 1, 2, 4,
parameter c = 0.25, 0.5, 0.75. For Σ having ARMA(1, 1) structure, in addition
to the above values, we set r = 0.1, 0.35, 0.6 when c = 0.25; r = 0.2, 0.45, 0.75
when c = 0.5; and r = 0.25, 0.5, 0.8 when c = 0.75.

We apply the method proposed in [6, 7] to find the matrix B which has MA(1),
CS, AR(1) or ARMA(1, 1) structure and has the minimum F-norm difference. We
also apply the method proposed in this paper for the case when the matrix has a
banded Toeplitz structure with p = m− 1.

Tables 1, 2, 3 and 4 give the average results for 100 run simulations. In each of
those tables, the first column provides the structure of the true covariance matrix Σ ,
the second column presents the F-norm difference between the sample covariance
matrix A and Σ; the third and fourth columns give the F-norm differences between
B and A, Σ , respectively, where B is obtained by using the same structure as Σ;
the fifth and sixth columns provide the F-norm differences between B and A, Σ ,
respectively, where B is obtained by assuming a banded Toeplitz structure.

To save space, in Tables 1, 2, 3 and 4 we only report simulation results for
m = 50, 100, 500 and 1000 with c = 0.5. Other numerical results can be provided
through contacting the corresponding author (J. Pan) but they are very similar to
these reported here. From these tables, we can draw the following observations.

1. For the matrix B obtained by using either the same structure as Σ or a banded
Toeplitz structure, the F-norm discrepancy between B and the real covariance
matrix Σ is very small. It implies that the resulting covariance matrices have
the same structure, and the minor difference is mainly due to random errors and
computing errors.



118 X. Cui et al.

Table 1 Simulation results with m = 50; c = 0.5

B

Same structure Toeplitz

Σ L∗Σ,A L∗A,B L∗Σ,B L∗A,B L∗Σ,B

σ 2 = 0.50

MA(1) 0.2584 0.2577 0.0006 0.2438 0.0146

CS 0.0500 0.0284 0.0216 0.0278 0.0222

AR(1) 0.2399 0.2383 0.0016 0.2247 0.0152

ARMA-r= 0.2 0.3184 0.3173 0.0012 0.3053 0.0131

ARMA-r= 0.45 0.2539 0.2524 0.0016 0.2397 0.0143

ARMA-r= 0.75 0.1772 0.1749 0.0023 0.1607 0.0165

σ 2 = 1

MA(1) 0.2590 0.2582 0.0007 0.2436 0.0154

CS 0.0528 0.0284 0.0243 0.0278 0.0250

AR(1) 0.2406 0.2390 0.0016 0.2257 0.0149

ARMA-r= 0.2 0.3187 0.3176 0.0012 0.3056 0.0132

ARMA-r= 0.45 0.2553 0.2538 0.0016 0.2402 0.0151

ARMA-r= 0.75 0.1785 0.1765 0.0020 0.1628 0.0157

σ 2 = 2

MA(1) 0.2591 0.2585 0.0006 0.2440 0.0151

CS 0.0430 0.0282 0.0148 0.0277 0.0153

AR(1) 0.2395 0.2375 0.0020 0.2242 0.0153

ARMA-r= 0.2 0.3185 0.3173 0.0012 0.3045 0.0140

ARMA-r= 0.45 0.2534 0.2512 0.0022 0.2386 0.0148

ARMA-r= 0.75 0.1772 0.1746 0.0026 0.1605 0.0167

σ 2 = 4

MA(1) 0.2593 0.2587 0.0006 0.2449 0.0144

CS 0.0451 0.0284 0.0167 0.0278 0.0173

AR(1) 0.2426 0.2409 0.0017 0.2273 0.0153

ARMA-r= 0.2 0.3195 0.3182 0.0013 0.3053 0.0142

ARMA-r= 0.45 0.2544 0.2523 0.0020 0.2392 0.0151

ARMA-r= 0.75 0.1771 0.1744 0.0027 0.1607 0.0164

2. There is no doubt that the matrix B obtained using a banded Toeplitz structure
has a smaller F-norm difference than those using MA(1), CS, AR(1) or
ARMA(1, 1) structures. This is because all those four cases are special cases
of banded Toeplitz structures. The bigger the definition area, the smaller the
optimal function value. However, the difference in their F-norms is rather small,
implying that the identified Toeplitz structure actually reduces to one of the
special structures.

3. The F-norm discrepancy between B obtained from our proposed method and the
true covariance matrix Σ is smaller than the F-norm discrepancy between A and
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Table 2 Simulation results with m = 100; c = 0.5

B

Same structure Toeplitz

Σ L∗Σ,A L∗A,B L∗Σ,B L∗A,B L∗Σ,B

σ 2 = 0.50

MA(1) 0.4069 0.4067 0.0002 0.3949 0.0120

CS 0.0521 0.0296 0.0225 0.0293 0.0229

AR(1) 0.3832 0.3825 0.0007 0.3711 0.0121

ARMA-r= 0.2 0.4793 0.4789 0.0004 0.4688 0.0105

ARMA-r= 0.45 0.4000 0.3993 0.0008 0.3882 0.0118

ARMA-r= 0.75 0.2945 0.2936 0.0009 0.2808 0.0136

σ 2 = 1

MA(1) 0.4074 0.4072 0.0002 0.3960 0.0114

CS 0.0459 0.0297 0.0162 0.0293 0.0165

AR(1) 0.3825 0.3817 0.0007 0.3698 0.0127

ARMA-r= 0.2 0.4810 0.4805 0.0005 0.4705 0.0105

ARMA-r= 0.45 0.4003 0.3997 0.0006 0.3878 0.0125

ARMA-r= 0.75 0.2956 0.2945 0.0011 0.2814 0.0141

σ 2 = 2

MA(1) 0.4067 0.4064 0.0002 0.3942 0.0125

CS 0.0512 0.0291 0.0221 0.0288 0.0224

AR(1) 0.3822 0.3816 0.0006 0.3699 0.0123

ARMA-r= 0.2 0.4804 0.4799 0.0005 0.4699 0.0105

ARMA-r= 0.45 0.4006 0.4000 0.0007 0.3887 0.0120

ARMA-r= 0.75 0.2937 0.2928 0.0009 0.2797 0.0139

σ 2 = 4

MA(1) 0.4062 0.4059 0.0003 0.3946 0.0116

CS 0.0512 0.0284 0.0228 0.0281 0.0231

AR(1) 0.3823 0.3818 0.0005 0.3701 0.0122

ARMA-r= 0.2 0.4803 0.4798 0.0005 0.4695 0.0108

ARMA-r= 0.45 0.4011 0.4002 0.0009 0.3884 0.0126

ARMA-r= 0.75 0.2928 0.2919 0.0009 0.2792 0.0136

Σ . It implies that the proposed method reduces random noises, so that a better
estimator of the covariance matrix is obtained.

Since the real covariance matrix Σ is unknown in practice, the F-norm discrep-
ancy between B and the sample covariance matrix A becomes very important in
finding the underlying structure of Σ .

For Σ having a banded Toeplitz structure, apart from the above values of n,m, σ 2

we actually randomly generate parameters c1, c2, · · · , cp from uniform distribution
U(0, 1) but require the positive definiteness of covariance matrix Σ , where we
choose p = m − 1. The results are presented in Table 5, where similarly each
value is the average after repeating 100 times of simulations. The first column gives
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Table 3 Simulation results with m = 500; c = 0.5

B

Same structure Toeplitz

Σ L∗Σ,A L∗A,B L∗Σ,B L∗A,B L∗Σ,B

σ 2 = 0.50

MA(1) 0.7716 0.7716 0.0000 0.7670 0.0047

CS 0.0493 0.0307 0.0186 0.0306 0.0187

AR(1) 0.7527 0.7526 0.0001 0.7476 0.0050

ARMA-r= 0.2 0.8206 0.8206 0.0000 0.8170 0.0036

ARMA-r= 0.45 0.7669 0.7668 0.0001 0.7622 0.0046

ARMA-r= 0.75 0.6702 0.6701 0.0001 0.6637 0.0065

σ 2 = 1

MA(1) 0.7719 0.7719 0.0000 0.7674 0.0046

CS 0.0596 0.0303 0.0293 0.0302 0.0294

AR(1) 0.7523 0.7523 0.0000 0.7473 0.0050

ARMA-r= 0.2 0.8208 0.8208 0.0000 0.8172 0.0036

ARMA-r= 0.45 0.7673 0.7672 0.0001 0.7626 0.0047

ARMA-r= 0.75 0.6699 0.6699 0.0001 0.6633 0.0067

σ 2 = 2

MA(1) 0.7716 0.7715 0.0000 0.7670 0.0045

CS 0.0543 0.0306 0.0237 0.0305 0.0238

AR(1) 0.7530 0.7529 0.0001 0.7480 0.0050

ARMA-r= 0.2 0.8204 0.8204 0.0000 0.8168 0.0036

ARMA-r= 0.45 0.7671 0.7670 0.0000 0.7624 0.0047

ARMA-r= 0.75 0.6705 0.6704 0.0001 0.6639 0.0066

σ 2 = 4

MA(1) 0.7717 0.7717 0.0000 0.7671 0.0045

CS 0.0547 0.0304 0.0244 0.0303 0.0244

AR(1) 0.7529 0.7529 0.0001 0.7479 0.0050

ARMA-r= 0.2 0.8208 0.8207 0.0000 0.8171 0.0036

ARMA-r= 0.45 0.7669 0.7669 0.0000 0.7623 0.0047

ARMA-r= 0.75 0.6701 0.6700 0.0001 0.6635 0.0066

the dimension of the true covariance matrix Σ , the second column provides the F-
norm discrepancy between the sample covariance matrix A and Σ , the rest columns
present the F-norm discrepancy between A, Σ and the matrix B obtained using the
specified structures indicated in the second line, respectively.

Form Table 5 we make conclusions below.

1. The matrix B having the minimum F-norm difference satisfies L∗(Σ,B) <

L∗(Σ,A), meaning that the estimator B obtained using the proposed regular-
ization method removes the random noise in the sample covariance matrix A, so
that a better estimator of the covariance matrix Σ is obtained.
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Table 4 Simulation results with m = 1000; c = 0.5

B

Same structure Toeplitz

Σ L∗Σ,A L∗A,B L∗Σ,B L∗A,B L∗Σ,B

σ 2 = 0.50

MA(1) 0.8709 0.8709 0.0000 0.8683 0.0026

CS 0.0525 0.0308 0.0217 0.0308 0.0217

AR(1) 0.8587 0.8586 0.0000 0.8558 0.0028

ARMA-r= 0.2 0.9014 0.9014 0.0000 0.8994 0.0020

ARMA-r= 0.45 0.8678 0.8678 0.0000 0.8651 0.0027

ARMA-r= 0.75 0.8022 0.8022 0.0000 0.7983 0.0039

σ 2 = 1

MA(1) 0.8709 0.8709 0.0000 0.8683 0.0026

CS 0.0550 0.0306 0.0244 0.0306 0.0245

AR(1) 0.8586 0.8586 0.0000 0.8558 0.0029

ARMA-r= 0.2 0.9014 0.9014 0.0000 0.8994 0.0020

ARMA-r= 0.45 0.8680 0.8680 0.0000 0.8654 0.0026

ARMA-r= 0.75 0.8020 0.8020 0.0000 0.7980 0.0040

σ 2 = 2

MA(1) 0.8709 0.8709 0.0000 0.8683 0.0026

CS 0.0525 0.0302 0.0223 0.0301 0.0224

AR(1) 0.8586 0.8586 0.0000 0.8557 0.0029

ARMA-r= 0.2 0.9013 0.9013 0.0000 0.8993 0.0020

ARMA-r= 0.45 0.8678 0.8678 0.0000 0.8652 0.0026

ARMA-r= 0.75 0.8018 0.8018 0.0000 0.7978 0.0040

σ 2 = 4

MA(1) 0.8709 0.8709 0.0000 0.8683 0.0026

CS 0.0555 0.0309 0.0245 0.0309 0.0245

AR(1) 0.8585 0.8585 0.0000 0.8557 0.0028

ARMA-r= 0.2 0.9013 0.9013 0.0000 0.8993 0.0020

ARMA-r= 0.45 0.8679 0.8679 0.0000 0.8652 0.0027

ARMA-r= 0.75 0.8021 0.8020 0.0000 0.7981 0.0040

2. The matrix B having the minimum F-norm difference and obtained by using a
banded Toeplitz structure has a small value of L∗(Σ,B). Hence, we can really
find the structure of the true covariance matrix Σ through B which uses the
information of the sample covariance matrix A.

It is worth noting that conclusions made in this section are valid for all the studied
structures of Σ and all the settings of parameters n, m, σ 2, c, r , c1, c2, · · · , cp. Thus,
the proposed method is reliable in this sense. Especially, the proposed regularization
method works very well even for high-dimensional covariance matrix, where we
considered the cases for the sample size n = 100 and the dimension of the
covariance matrix m = 100, 200, 500 and 1000, respectively.
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5 Discussion

For an estimator A of the covariance matrix Σ , we propose a new regularization
method to find the matrix B that has a banded Toeplitz structure. By doing so, we
not only find the structure of Σ but also a better estimator B in the sense of F-
norm difference function. The method reveals the underlying covariance/correlation
structure of the random process, and also reduces random noises.

We choose the sample covariance matrix A as the estimator of Σ in the
simulations. Actually, we do not always have to choose the sample covariance
matrix. Theoretically, the matrix A can be taken as any other reasonable estimators
obtained using certain statistical method. Once matrix A is obtained, we can
always do the regularization using the proposed method, so that the estimation
can be improved in the sense of F-norm difference. Note that there is no strict
condition imposed to the symmetric matrix A, which may be singular and/or high-
dimensional. Also, the distribution of data which formulates the estimator A might
be unknown. Hence the proposed method is more flexible in this sense.

Our simulation studies only considered the data having Gaussian distribution
and the paper only studied the F-norm discrepancy. In practice, there are other
distributions and other loss functions such as quadratic loss function. The study
of such issues may be challenging but important. We will investigate this in our
follow-up work.

Acknowledgements We gratefully acknowledge very constructive comments and suggestions by
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Penalized Relative Error Estimation
of a Partially Functional Linear
Multiplicative Model

Tao Zhang, Yuan Huang, Qingzhao Zhang, Shuangge Ma, and S. Ejaz Ahmed

Abstract Functional data become increasingly popular with the rapid technological
development in data collection and storage. In this study, we consider both scalar
and functional predictors for a positive scalar response under the partially linear
multiplicative model. A loss function based on the relative errors is adopted, which
provides a useful alternative to the classic methods such as the least squares.
Penalization is used to detect the true structure of the model. The proposed method
can not only identify the significant scalar variables but also select the basis
functions (on which the functional variable is projected) that contribute the response.
Both estimation and selection consistency properties are rigorously established.
Simulation is conducted to investigate the finite sample performance of the proposed
method. We analyze the Tecator data to demonstrate application of the proposed
method.
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1 Introduction

With rapid technological development in data collection and storage, functional
data are commonly encountered with a dense sampling of observations over time
and space. Recently popularized wearable devices generate functional data where
tracking data are collected in continuous time. In signal processing and spectral
analysis, data that take the form of curves and images are of a functional nature.
In classical longitudinal studies, data that are measured at a dense grid can be
considered as functional. Regression models with functional explanatory variables
have been extensively studied over the past two decades. The most popular one is the
functional linear model. Later extensions include the generalized functional linear
model, functional quadratic model, single-index functional regression model, and
others. We refer to [13] and references therein for a more comprehensive review of
the field.

In many applications, the response variable is positive, such as life time data
which are particularly common in economic and biomedical studies. Zhang et
al. [17] proposed a functional multiplicative model to study the scalar response
with functional predictors. As also noted by many researches concerning scalar
predictors [2, 3, 16], the multiplicative model is useful and more flexible in
analyzing data with positive responses. In practice, a response is related to not only
functional variables but also scalar variables. Therefore, a model that considers both
types of predictors is more general and more widely applicable.

Let Y ∈ R
+ be the positive scalar response of interest, Z ∈ R

q be the q-
dimensional scalar variables, and X be a non-stationary smooth random function
in L2(T ) on a finite domain T with a smooth mean function μX(s) = EX(s). In
this study, we consider the partially functional linear multiplicative model

Y = exp

(
Z θ +

∫

T

γ (t)Xc(t)dt

)
ε, (1)

where Xc(s) = X(s) − μX(s), θ ∈ R
q is the regression parameter vector, γ (t) is

the smooth and square integrable regression function, and ε is the random error with
P(ε > 0) = 1. By taking a logarithmic transformation, model (1) reduces to the
partially functional linear model, which has been studied by [7, 12] and others.

For estimation, absolute errors are the most popular choices for defining loss
functions, such as the least squares. In some scenarios, loss functions based on
relative errors may be more appropriate and provide a useful alternative to the
absolute error-based criteria in general [14, 17]. Relative errors have been proposed
and studied in literature. There are two types of relative errors, relative to target
Y and relative to the prediction of Y . Narula and Wellington [10] and Park and
Stefanski [11] developed the relative error criteria with respect to target for statistical
inference in linear models and non-linear models. Chen et al. [2] showed that this
relative error could be inappropriate in some cases and proposed the least absolute
relative errors criterion (LARE) using both types of relative errors for the linear
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multiplicative model. Consistency and asymptotic normality of the LARE estimator
have been well established. In addition, the LARE criterion is scale free, which
plays a particularly important role in applying this criterion to certain types of data.
We refer to [3, 16] for its extensions.

In the analysis of functional data, variable selection has been commonly con-
ducted. Inclusion of many irrelevant variables in the regression model may compro-
mise estimation and prediction accuracy, as well as model interpretability. Variable
selection identifies variables that are truly associated with the response and usually
leads to a sparser model. Penalization is a popular technique for variable selection.
A penalization approach considers the objective function

Q(β; λ) = L(β)+ λρ(β), (2)

where L(β) is the loss function, ρ(β) is the penalty function, and λ(>0) is a
data-dependent tuning parameter that controls the amount of penalization. A large
number of penalty functions have been developed, including Lasso (and its variants
such as adaptive Lasso), MCP, SCAD, and many others. We refer to [1] and others
for detailed discussions on penalization methods.

In this study, we consider the modeling of a positive scalar response variable
with both scalar and functional predictors under the partially linear multiplicative
model. Working with both types of predictors makes the proposed method more
general and more widely applicable in practice. The multiplicative model can be
more flexible for a positive response variable. We propose a penalized relative
errors criterion based on LARE to estimate the parametric vector θ and regression
function γ (t) in model (1). The relative error approach offers a useful alternative
to the classic methods such as the least squares. The built-in variable selection
functionality allows the proposed method to handle a relatively high dimensional
scenario and identify variables that contribute to the response variable. To the best
of our knowledge, there is a lack of study simultaneously examining the relative
error-based criterion and variable selection under the functional data settings.
The proposed method is theoretically grounded. Both estimation and selection
consistency properties are rigorously established. It is notable that the proposed
method can not only identify the significant scalar covariates but also select the
basis functions that contribute to the response.

The rest of this article is organized as follows. In Sect. 2, we propose the penal-
ization method for estimation and establish the theoretical properties, following a
presentation of data and model. In Sect. 3, we conduct simulation to evaluate the
finite sample performance of the proposed method. In Sect. 4, we apply the proposed
method to the Tecator data. The article concludes with discussion in Sect. 5. Proofs
are provided in Appendix.
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2 Method

2.1 Model

Suppose that we have n independent and identically distributed observa-
tions {(X1, Z1, Y1), . . . , (Xn,Zn, Yn)}. For s1, s2 ∈ T , let GX(s1, s2) =
Cov(Xi(s1),Xi(s2)) be the covariance function. With the Karhunen-Loève
expansion,

Xi(s) = μX(s)+
∞∑

j=1

ηij φj (s),

where {φj (s), j = 1, 2, · · · } are orthogonal eigenfunctions of GX(s1, s2) with
corresponding non-increasing eigenvalues {νj , j = 1, 2, · · · }, and scores ηij are
uncorrelated random variables with mean E(ηij ) = 0 and variance Var(ηij ) = νj .
Since {φj (s), j = 1, 2, · · · } defines a complete basis, γ (t) can be represented as

γ (t) =
∞∑

j=1

βjφj (t),

with
∑

j βj < ∞. Applying the orthogonality property of eigenfunctions, we have
that model (1) can be alternatively expressed as

Yi = exp(Z i θ +
∞∑

j=1

ηij βj )εi . (3)

Truncating with a positive number K , we obtain a truncated basis representation of
the functional predictor as

β = (β1, β2, · · · , βK) , Ui = (ηi1, ηi2 · · · , ηiK ) .

Then model (3) reduces to

Yi = exp(Z i θ + U i β)ε̃i, (4)

where ε̃i = exp
(∑∞

j=K+1 bjηij

)
εi . Scores ηij and eigenfunctions φj (t) are

usually unknown and need to be estimated. The most common technique is the
functional principal component analysis (FPCA). We refer to [15] for a detailed
description. Following [15], we can obtain φ̂j (t) and Ûi = (η̂i1, · · · , η̂iK) .
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2.2 Estimation

For estimating model (3), we propose the following objective function

Qn(β, θ) = 1

n

n∑

i=1

{∣∣
∣
∣
∣
Yi − exp(Z i θ + Û i β)

Yi

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
Yi − exp(Z i θ + Û i β)

exp(Z i θ + Û i β)

∣
∣
∣
∣
∣

}

+
q∑

k=1

ξk |θk| +
K∑

j=1

λj |βj |, (5)

where ξk and λj (k = 1, · · · , q and j = 1, · · · ,K) are tuning parameters
that control the degree of penalization. Estimators β̂j and θ̂k can be obtained by
minimizing Qn(β, θ), and estimator γ̂ (t) can be obtained by γ̂ (t) =∑K

j=1 β̂j φ̂j (t).

The first part of Qn(β, θ) is LARE, which uses relative errors with respect to
both the target and predictor, i.e.,

Yi − exp(Z i θ + Û i β)

Yi

and
Yi − exp(Z i θ + Û i β)

exp(Z i θ + Û i β)
.

As pointed out in [2], using only one of the two is inadequate and may lead to biased
estimation. The rest of Qn(β, θ) consists of two penalty terms such that selection
is conducted on both scalar variables and the basis functions for the functional
variable. Variable selection on scalar variables is commonly used in practice. We
also consider variable selection for the functional data part with the consideration
that K is determined for a better approximation of X, without considering the
association between X and the response. For practical use, it is desirable to use a
large K and conduct variable selection to retain the ones that are the most relevant to
the response. In this study, we use the adaptive Lasso penalty which is representative
of the Lasso family and enjoys good properties [18]. With the adaptive Lasso,

λj = λ/|β̃j | and ξk = ξ/|θ̃k|,

where β̃ = (β̃1, · · · , β̃K) and θ̃ = (θ̃1, · · · , θ̃q) are the unpenalized estimators.

Tuning Parameters Tuning parameters λ and ξ can be obtained by minimizing
BIC. Let df be the number of non-zero coefficients {β̂, θ̂}. We consider

BIC = log σ̂ 2
n +

log(n)

n
df,
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where

σ̂ 2
n =

1

n

n∑

i=1

{∣∣∣
∣
∣
Yi − exp(Z i θ̂ + Û i β̂)

Yi

∣
∣∣
∣
∣
+
∣
∣∣
∣
∣
Yi − exp(Z i θ̂ + Û i β̂)

exp(Z i θ̂ + Û i β̂)

∣
∣∣
∣
∣

}

.

In simulation, we provide two estimators based on the proposed method. The first
one, PBIC1, sets both tuning parameters equal and uses BIC to determine the value.
The second one, PBIC2, chooses λ and ξ on a two-dimensional grid.

2.3 Statistical Properties

Let A = {j : |βj | �= 0} and B = {k : |θk| �= 0}. To derive the asymptotic properties
of the estimators, we make the following assumptions:

(C1) Xi has a finite fourth order moment.
(C2) There exist positive constants C and α > 1 such that

νk − νk+1 ≥ C−1K−α−1, k = 1, 2, . . . .

(C3) There exist positive constants c and b > 1 such that |βj | ≤ cj−b.
(C4) n−1K2α+3 → 0.

(C5) Let Wi = (Z i , U i ) . Define matrices V1 = E(
WiW

 
i

ε2
i

) and V2 =
E(WiW

 
i ε2

i ). There exist constants c1, c2, c3, and c4, such that 0 < c1 <

ρmin(V1) ≤ ρmax(V1) < c2 < ∞ and 0 < c3 < ρmin(V2) ≤ ρmax(V2) < c4 <

∞, where ρmin(·) and ρmax(·) are the minimum and maximum eigenvalues.
(C6) The matrices D1 = E{WW ε} and D2 = E{WW 1

ε
} are positive definite.

(C7) Denote λn = max{λj , j ∈ A} and ξn = max{ξk, k ∈ B}, √nKλn → 0 and√
nKξn → 0.

(C8) Denote λ∗n = min{λj , j ∈ Ac} and ξ∗n = min{ξk, k ∈ Bc},√nKλ∗n →∞ and√
nKξ∗n →∞.

Remark (C1) is a regular condition in functional data analysis. (C2) requires that
the spacings between eigenvalues are not too small. It implies that each νk is greater
than a constant multiple of k−α . This condition is needed to obtain the bound of
φ̂j (t) − φj (t) and η̂j − ηj , j = 1, · · · ,K . (C3) prevents the coefficients βj from
decreasing too slowly. This condition is imposed to control the tail behavior for a
large K and so is not as restrictive as it appears. (C4) is the sparsity assumption that
requires the number of functional principal components cannot be too large. (C7) is
imposed for estimation consistency, and (C8) is imposed for selection consistency.

Theorem 1 establishes the consistency of estimators βj , j = 1, · · · ,K and
θk, k = 1, · · · q . Let Ân = {j : |β̂j | �= 0} and B̂n = {k : |θ̂k| �= 0}.
Theorem 2 establishes selection consistency. Proofs of these theorems are provided
in Appendix.
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Theorem 1 Under (C1)–(C7), we have

‖γ̂ − γ ‖ = op(1), θ̂k − θk = op(1), k ∈ {1, 2, . . . , q}

where ‖γ̂ − γ ‖ = (
∫
T
(γ̂ − γ )2dt)1/2.

Theorem 2 Under (C1)–(C8) , we have

P(Ân = A)→ 1, P (B̂n = B)→ 1.

3 Simulation

In this section, we conduct simulation to evaluate the finite sample performance of
the proposed method. We consider two examples. In both examples, the response
variables are randomly generated from Yi = exp(Z i θ + U i β + ei), where
ei ∼ N(0, σ 2) and σ 2 ∈ {0.1, 1}, with sample size n ∈ {50, 100, 200}. The
scalar variable Zi is a q-dimensional vector generated from a multivariate normal
distribution with mean 0 and auto-regressive covariance where cov(Zij1, Zij2 ) =
0.5|j1−j2| for 1 ≤ j1, j2 ≤ q . Functional data are generated from the process
Xi(s) = ∑L

j=1 ηij φj (s), where φ2l−1(s) = −√2 cos{(2l − 1)πs} and φ2l(s) =
−√2 sin{(2l)πs} with s ∈ [0, 1] for l = 1, · · · , (L/2). ηij are independent and
identically distributed as N(0, νj ). Other specifications and evaluation criteria are
further introduced below in each example.

In Example 1, we design a relatively low-dimensional setup for which we
compare the variable selection and prediction performance. In Example 2, we use
a higher dimension for which we compare the variable selection and estimation
performance. We compare the proposed estimators with the alternative penalization
estimators, LBIC1 and LBIC2, which are adaptive Lasso estimators based on the
partially functional linear model log Yi = Z i θ + U i β + ei. LBIC1 corresponds to
PBIC1 and sets the two tuning parameters equal. LBIC2 corresponds to PBIC2 and
determines the two tuning parameters separately. For prediction, we additionally
consider the oracle estimator (based on the true model, denote as “OE”) and
unpenalized estimator (based on the full model, denote as “UE”). All results are
based on 500 replicates.

Example 1 For the scalar variable part, q = 4, and θ = (2, 1, 0, 0, 0, 0, 0). For
the functional variable part, L = 4, and the corresponding eigenvalues are ν1 = 2,
ν2 = 1, ν3 = 0.5, and ν4 = 0.1. Ui = (ηi1, · · · , ηi4), and β = (2, 1.5, 0, 0).

To assess variable selection performance, we report the percentage of correctly
identified models (“C”), the percentage of over-fitted models (“O”) in which all
the significant scalar variables and basis functions are identified with at least one
spurious scalar variable or basis function included, and average model size (“M”)
which counts the number of non-zero coefficients. To evaluate prediction, a testing
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Table 1 Summary of variable selection and prediction performance for Example 1

σ 2 = 0.1 σ 2 = 1

n Method C O M RPE C O M RPE

50 OE − − − 0.511 − − − 0.500

UE − − − 0.495 − − − 0.498

PBIC1 0.664 0.168 5.384 0.497 0.450 0.378 5.692 0.496

PBIC2 0.704 0.128 5.332 0.499 0.472 0.356 5.642 0.508

LBIC1 0.624 0.376 5.522 0.619 0.402 0.594 5.946 0.642

LBIC2 0.582 0.418 5.568 0.641 0.410 0.586 5.916 0.645

100 OE − − − 0.338 − − − 0.354

UE − − − 0.342 − − − 0.361

PBIC1 0.824 0.058 5.190 0.337 0.584 0.298 5.478 0.352

PBIC2 0.838 0.044 5.174 0.336 0.624 0.258 5.424 0.350

LBIC1 0.720 0.280 5.332 0.396 0.578 0.422 5.554 0.395

LBIC2 0.682 0.318 5.364 0.397 0.592 0.408 5.528 0.397

200 OE − − − 0.364 − − − 0.334

UE − − − 0.375 − − − 0.344

PBIC1 0.976 0.004 5.024 0.372 0.838 0.146 5.180 0.333

PBIC2 0.978 0.002 5.022 0.372 0.858 0.126 5.158 0.333

LBIC1 0.702 0.298 5.316 0.490 0.708 0.292 5.338 0.334

LBIC2 0.684 0.316 5.332 0.490 0.710 0.290 5.332 0.335

“C”,“O”, “M”, and “RPE” are the percentage of correctly identified models, percentage of over-
fitted models, average model size, and average median relative prediction errors, respectively, based
on 500 replicates. “−” if not applicable

sample of size 100 is generated on which the median relative prediction error
(“RPE”) is calculated as median{(Yi − Ŷi)

2/Y 2
i }100

i=1.
Table 1 presents the summary evaluation of variable selection and prediction

performance. In terms of variable selection, the proposed method outperforms the
alternative penalization method with a higher percentage of correctly identified
models, a smaller percentage of over-fitted models, and an overall smaller model
size. For example, when n = 50 and σ 2 = 1, the percentages of correctly
identified and over-fitted models are 0.472 and 0.356 for PBIC2, compared to
0.410 and 0.586 for LBIC2, respectively. In this case, the average model sizes
for PBIC2 and LBIC2 are 5.642 and 5.916, respectively. In terms of prediction,
performance of the proposed method is the closest to the oracle. Such satisfactory
performance demonstrates advantages of the proposed method over the alternative
penalization method. Compared with the unpenalized method under the full model,
the proposed method improves prediction by reducing model complexity, indicating
the importance of variable selection.

Example 2 For the scalar variable part, q = 15, and θ = (2 5 , 0 10). For the
functional variable part, L = 10, and the corresponding eigenvalues are νj =
9j−2, j = 1, · · · , 10. Ui = (ηi1, · · · , ηi10), and β = (2 5 , 0 5 ).
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Table 2 Summary of variable selection and prediction performance for Example 2

n Method FNs FPs FNf FPf MSEs MSEf

σ 2 = 0.1

50 PBIC1 0.050 1.772 0.476 0.602 0.023 0.422

PBIC2 0.018 1.408 0.456 0.640 0.024 0.422

LBIC1 0.040 0.516 0.132 4.406 0.000 211.7

LBIC2 0.040 0.540 0.142 4.208 0.000 201.7

100 PBIC1 0.006 0.936 0.180 0.098 0.006 0.052

PBIC2 0.004 0.774 0.178 0.110 0.006 0.048

LBIC1 0.000 0.360 0.084 4.568 0.000 249.3

LBIC2 0.000 0.370 0.090 4.384 0.000 245.1

200 PBIC1 0.000 0.298 0.082 0.012 0.003 0.020

PBIC2 0.000 0.252 0.078 0.008 0.003 0.020

LBIC1 0.000 0.188 0.104 4.582 0.000 528.7

LBIC2 0.000 0.196 0.104 4.436 0.000 505.6

σ 2 = 1

50 PBIC1 0.056 2.166 0.540 0.734 0.040 0.454

PBIC2 0.028 1.796 0.514 0.752 0.045 0.451

LBIC1 0.012 1.752 0.274 3.420 0.028 153.1

LBIC2 0.010 1.940 0.268 3.424 0.029 132.3

100 PBIC1 0.000 1.690 0.130 0.236 0.012 0.070

PBIC2 0.000 1.446 0.144 0.238 0.013 0.066

LBIC1 0.000 1.056 0.132 3.454 0.009 255.7

LBIC2 0.000 1.180 0.132 3.464 0.010 237.5

200 PBIC1 0.000 0.966 0.016 0.042 0.005 0.024

PBIC2 0.000 0.838 0.012 0.046 0.004 0.023

LBIC1 0.000 0.574 0.098 3.510 0.004 415.1

LBIC2 0.000 0.636 0.100 3.526 0.004 361.4

“FN”, “FP”, and “MSE” are average number of false negatives, average number of false positives,
and average mean square errors of estimated coefficients, respectively. The results are reported
separately for the scalar variable part and functional variable part, based on 500 replicates

Under this higher dimensional setup, we evaluate the performance of variable
selection and estimation by examining the scalar variable part and functional
variable part separately. For each part, we report the average number of false
negatives (“FN”) and average number of false positives (“FP”) for assessing variable
selection. For evaluating estimation accuracy, we consider the mean squared errors
MSEs = 1

15

∑15
j=1(θ̂j − θj )

2 and MSEf = 1
10

∑10
j=1(β̂j − βj )

2. Summary results
are reported in Table 2.

For the scalar variable part, the alternative penalization method has slightly better
performance in both selection and estimation. However, the advantage diminishes
with increasing sample sizes. In general, the proposed method is quite competitive.
For example, we examine PBIC2 and LBIC2 under n = 50 and σ 2 = 1. In this case,
the average number of false negatives, false positives, and mean square errors are
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0.028, 1.796, and 0.045 for PBIC2, compared to 0.010, 1.940, and 0.029 for LBIC2.
Still with σ 2 = 1, when n increases to 200, the average number of false negatives
and mean square errors of both PBIC2 and LBIC2 reduce to 0 and 0.004.

For the functional variable part, the proposed method significantly outperforms
the alternative penalization method with a smaller number of false positives and
smaller mean square errors. Performance of the proposed method improves with
increasing sample sizes, resulting in more obvious advantages in both selection and
estimation. We note that the number of false positives and the mean square errors
stay almost the same for the alternative method with increasing sample sizes. For
example, when σ 2 = 1, the numbers of false positives stay roughly around 3.5.
We suspect that this poor performance may be caused by the measurement errors in
functional principal scores under the high-dimensional setup. The proposed method
survives in this case by taking advantages of relative errors.

4 Application

In this section, we demonstrate application of the proposed method to the Tecator
data which is available at http://lib.stat.cmu.edu/datasets/tecator. The data contain
215 meat samples. For each sample, the contents of fat, moisture, and protein are
measured. In addition, the data consists of a 100-channel spectrum of absorbances
recorded on a Tecator Infratec Food and Feed Analyzer working in the wavelength
range 850–1050 nm. More detailed information is available at the aforementioned
website. The goal is to estimate the fat content given moisture, protein, and
spectrometric curve.

The 100-channel spectrum measured over the wavelength range 850–1050nm
provides a dense measurement spaced 2 nm apart that can be considered as
functional data. We denote it as {x1, . . . , x100}. Figure 1 plots 30 randomly selected
spectrometric curves. For the functional data part, we select the first four estimated
eigenfunctions which explain more than 95% of the total variation. We plot the four
selected eigenfunctions in Fig. 2. The contents of moisture and protein are scalar
variables. Inspired by the work of [5], we also consider x45, x49, and x53 as scalar
variables, which are the most predictive design covariates to optimize the prediction.
Additionally, we include x92, x96, and x100, which are near the border of range and
may have some useful information. Totally, we have an 8-dimensional scale vector:
content of moisture, content of protein, x45, x49, x53, x92, x96, and x100.

We randomly generate a training sample of size 160 and a testing sample of size
55. We apply the proposed and an alternative penalization methods as described
in simulation to the training data. Table 3 presents the estimated coefficients of
both scalar variable part and functional data part. For PBIC1 and PBIC2, x49 is a
significant variable as suggested in [5]. x92, x96, and x100 are not selected, which
is consistent with [8] where only the most informative part of the spectra with
wavelengths ranging from 902 to 1028 nm is considered. For selection with the
basis functions, PBIC2 selects only the first one, the same as the result of [8].

http://lib.stat.cmu.edu/datasets/tecator
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Fig. 1 Functional predictor trajectories of 30 randomly selected meat specimens. The red line
denotes the location of x49
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Fig. 2 Plots of the first four eigenfunctions
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Table 3 Analysis of the Tecator data: estimated regression coefficients with the training data

Moisture Protein x45 x49 x53 x92 x96 x100

PBIC1 −0.057 −0.022 0.001 2.046 0 0 0 0

PBIC2 −0.062 0 0 1.992 0 0 0 0

LBIC1 −0.097 −0.066 0 0 2.295 39.562 −67.349 28.158

LBIC2 −0.101 −0.077 0 −5.211 4.446 72.745 −125.472 56.174

η1 η2 η3 η4

PBIC1 −0.135 −0.002 0 0

PBIC2 −0.135 0 0 0

LBIC1 −0.205 0.186 0 1.166

LBIC2 −0.204 0.592 0 0

LBIC1 and LBIC2 in general select more variables. For example, in the scalar
variable part, x92, x96, and x100 are selected by LBIC1 and LBIC2. To evaluate
prediction performance, we apply the estimated coefficients to the testing sample
and obtain the median relative prediction errors. For both the proposed and alterna-
tive penalization methods, we consider the corresponding unpenalized counterparts
as well. The values for PBIC1, PBIC2, and the unpenalized counterpart are 0.032,
0.021, and 0.094, respectively. The values for LBIC1, LBIC2, and the unpenalized
counterpart are 0.015, 0.011, and 0.149, respectively. Prediction of the proposed
method is comparable to the alternative penalization method and both outperform
the unpenalized counterparts.

5 Discussion

As functional data become more commonly encountered, there is an increasing
interest in modeling this type of data. Regression models with functional explana-
tory variables have been extensively studied. In this study, we consider a special
case with a positive response for which we use the partially functional linear
multiplicative model, an alternative to the popular linear models. For estimation, a
relative error-based loss function is proposed with penalization to conduct variable
selection. The purpose is not to challenge the absolute error-based criteria, but
to provide an alternative perspective to examine data. In practice, whether or not
to use the relative error-based loss functions may also depend on the purpose of
studies. One contribution of the proposed method is conducting variable selection
that can not only identify significant scalar covariates but also select the basis
functions that contribute to the response. We note that this is extremely helpful under
the functional data setup due to the truncated basis representation. With variable
selection functionality, a larger number of basis functions can be retained among
which the informative ones are kept during estimation. The proposed method still
requires that the number of scalar variables and the number of basis functions to
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be estimated is less than the sample size, which excludes the high-dimensional
variables such as“-omics” measurements. Extension to those high-dimensional
scenarios will be examined in the future.
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Appendix

Denote δ = (θ , β ) and δ̂ = (θ̂ , β̂ ) . To facilitate proof of the theorems,
we introduce Lemmas 1–3 where proof of Lemmas 1 and 2 can be found in [7] and
proof of Lemma 3 can be found in [9].

Lemma 1 Under (C1), (C2), and (C5), we have

n−1 ∑n
i=1(η̂ij η̂ik − ηij ηik) = Op(jα/2+1n−1/2 + kα/2n−1/2),

n−1 ∑n
i=1(η̂ij − ηij )zik = Op(jα/2+1n−1/2).

Lemma 2 Under (C1)–(C5), we have

n−1
n∑

i=1

∞∑

j=K+1

ηij βj zil = Op(n−1/2).

Lemma 3 Under (C1) and (C2), we have

|η̂ij − ηij | = Op(Kα+1/
√

n),

‖φ̂j − φj‖ = Op(K2α+2/n).

Proof of Theorem 1 Let αn = √
K/n. We first show that ‖δ̂ − δ‖ = Op(αn).

Following [4], it is sufficient to show that, for any given ε > 0, there exists a large
constant C, such that

P { inf‖u‖=C
Qn(δ + αnu)) > Qn(δ))} = 1− ε,

where δC = {δ∗ = δ + αnu, ‖u‖ = C} for C > 0. This implies that, with
probability 1 − ε, there exists a minimum in the ball δC . Hence, the consistency
of δ is established.
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By some simplifications, we have

ψn(u) = Qn(δ + αnu))−Qn(δ))

=
n∑

i=1

{|1− Y−1
i exp{Ŵ 

i (δ + αnu)}| − |1− Y−1
i exp(Ŵ 

i δ)|}

+
n∑

i=1

{|1− Yi exp{−Ŵ 
i (δ + αnu)}|] − |1− Yi exp{−Ŵ 

i δ}|}

+n

q∑

l=1

{ξl |θl + ulαn| − ξl |θl|} + n

K∑

j=1

{λj |βj + uj+qαn| − λj |βj |}

≡ I1 + I2 + I3 + I4. (6)

For I1, by applying the identity in [6],

|x − y| − |x| = −y[I (x > 0)− I (x < 0)] + 2
∫ y

0
[I (x ≤ s)− I (x ≤ 0)]ds,

which is valid for x �= 0, we have

I1 = −
n∑

i=1

w1i[I (1− Y−1
i exp(Ŵ 

i δ) > 0)− I (1 − Y−1
i exp(Ŵ 

i δ) < 0)]

+2
n∑

i=1

∫ w1i

0
[I (1 − Y−1

i exp(Ŵ 
i δ) ≤ s)− I (1 − Y−1

i exp(Ŵ 
i δ) ≤ 0)]ds

≡ I11 + I12,

where

w1i = Y−1
i {exp(Ŵ 

i (δ + αnu))− exp(Ŵ 
i δ)}.

By Taylor expansion, we have

I11 =
n∑

i=1

αnuŴ 
i Y−1

i exp(Ŵ 
i δ)sgn(1 − Y−1

i exp(Ŵ 
i δ))

+α2
nu
 {

n∑

i=1

Ŵ 
i ŴiY

−1
i exp(ξ

[1]
i )sgn(1 − Y−1

i exp(Ŵ 
i δ))}u/2

≡ I111 + I112,

where ξ
[1]
i lies between Ŵ 

i (δ + αnu) and Ŵ 
i δ.
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For I111, by Lemma 2, we have

I111 =
n∑

i=1

αnuŴ 
i

1

εi
sgn(1 − Y−1

i exp(Ŵ 
i δ))

+
n∑

i=1

α2
nu
 1

εi

Ŵ 
i Ŵiusgn(1 − Y−1

i exp(Ŵ 
i δ))+ op(1)

≡ I1111 + I1112 + op(1).

It follows directly from Lemma 1 and (C5) that I1111 = Op(1)‖αnu‖. Moreover,
under (C5), I1112 = α2

nu
 D2u/2 and I112 = α2

nu
 D2u/2+ op(1)‖αnu‖2.

Hence,

I11 = Op(1)‖αnu‖ + α2
nu
 Du/2+ op(1)‖u‖.

For I12, denote c1i = exp(Ŵ 
i δ̂ − W 

i δ − H), c2i = exp(Ŵ 
i δ −W 

i δ − H)

and τ = sεi , then

I12 = 2
n∑

i=1

∫ w1i

0
[I (1 − ε−1

i c2i ≤ s)− I (1 − ε−1
i c2i ≤ 0)]ds

= 2
n∑

i=1

∫ c1i−c2i

0
ε−1
i [I (εi ≤ c2i + δ)− I (εi ≤ c2i)]dδ

= 2
n∑

i=1

∫ c1i−c2i

0
Eε|X{ε−1

i [I (εi ≤ c2i + τ )− I (εi ≤ c2i)]}dτ + op(1)

= 2
n∑

i=1

∫ c1i−c2i

0
Eε|X{[I (εi ≤ c2i + τ )− I (εi ≤ c2i)]}dδ

+2
n∑

i=1

∫ c1i−c2i

0
Eε|X{(ε−1

i − 1)[I (εi ≤ c2i + τ )− I (εi ≤ c2i )]}dδ + op(1)

= α2
nu
 

n∑

i=1

ŴiŴ
 
i u[1+ op(1)]

= α2
nu
 D2u+ op(1)‖αnu‖2.

Therefore, we have

I1 = Op(1)‖αnu‖ + α2
nu
 D2u/2+ op(1)‖u‖. (7)
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Similarly, it can be shown that

I2 = Op(1)‖αnu‖ + α2
nu
 D1u/2+ op(1)‖u‖. (8)

Adopting the approach in [6], we have

|θl + ulαn| − |θl| → αn{ulsgn(θl)I (θl �= 0)+ |ul|I (θl = 0)},
|βj + uj+qαn| − |βj | → αn{uj+qsgn(βj )I (βj �= 0)+ |uj+q |I (βj = 0)}.

According to (C7), we have

I3 > O(1)‖u‖ (9)

and

I4 > O(1)‖u‖. (10)

Combining (6)–(10), for a sufficiently large C, we have ψn(u) > 0. Therefore,
‖δ̂ − δ‖ = Op(

√
K/n).

Next we show ‖γ̂ (t)− γ (t)‖ = op(1). In fact,

‖γ̂1(t)− γ1(t)‖ ≤
K∑

j=1

‖β̂j φ̂j (t)− βjφj (t)‖ + ‖
∑

j>K

βjφj (t)‖

≤
K∑

j=1

[|β̂j − βj |‖φj (s)‖ + |β̂j − βj |‖φ̂j (s)− φj (s)‖ + |βj |‖φ̂j (s)− φj (s)‖]

+‖
∑

j>K

βjφj (s)‖

≡ F1 + F2.

By result of the first part and Lemma 3, we can obtain

F1 = Op(
K2α+3

n
).

By the square integrable property of γ (t), we have F2 = op(1). From the above
results and condition (C4), we obtain

‖γ̂ (t)− γ (t)‖ = op(1).

This completes the proof of Theorem 1. �
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Proof of Theorem 2 For j ∈ A and k ∈ B, the consistency result in Theorem 1
indicates that θ̂ → θ and β̂ → β in probability. Therefore, P(j ∈ Ân) → 1 and
P(k ∈ B̂n) → 1. Then it suffices to show that P(j ∈ Ân) → 0 for ∀j �∈ A and
P(k ∈ B̂n)→ 0 for ∀k �∈ B.

For ∀j ∈ Ân and ∀k ∈ B̂n, we have

0 = ∂ψn(u)

∂u
=

n∑

i=1

{|1− Y−1
i exp{Ŵ 

i (δ)}| − |1− Y−1
i exp(Ŵ 

i δ)|}Ŵijk

+
n∑

i=1

{|1− Yi exp{−Ŵ 
i (δ)}|] − |1− Yi exp{−Ŵ 

i δ}|}Ŵijk

+
n∑

i=1

{|1− Y−1
i exp{Ŵ 

i (δ)}| − |1− Y−1
i exp(Ŵ 

i δ)|}ŴijkŴ
 
i u

+
n∑

i=1

{|1− Yi exp{−Ŵ 
i (δ)}|] − |1− Yi exp{−Ŵ 

i δ}|}ŴijkŴ
 
i u

+nαnξj sgn(θj )+ nαnλksgn(βk)

≡ N1 +N2 +N3 + N4 +N5 +N6.

By similar arguments with Theorem 1, we have

Nk = Op(1), k = 1, · · · , 4.

According to (C8), we have

Nk →∞, k = 5, 6.

Consequently, we must have P(j ∈ Ân) → 0 and P(k ∈ B̂n) → 0 for ∀j �∈ A

and ∀k �∈ B. This completes the proof Theorem 2. �
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High-Dimensional Regression Under
Correlated Design: An Extensive
Simulation Study

S. Ejaz Ahmed, Hwanwoo Kim, Gökhan Yıldırım, and Bahadır Yüzbaşı

Abstract Regression problems where the number of predictors, p, exceeds the
number of responses, n, have become increasingly important in many diverse fields
in the last couple of decades. In the classical case of “small p and large n,” the
least squares estimator is a practical and effective tool for estimating the model
parameters. However, in this so-called Big Data era, models have the characteristic
that p is much larger than n. Statisticians have developed a number of regression
techniques for dealing with such problems, such as the Lasso by Tibshirani (J R Stat
Soc Ser B Stat Methodol 58:267–288, 1996), the SCAD by Fan and Li (J Am Stat
Assoc 96(456):1348–1360, 2001), the LARS algorithm by Efron et al. (Ann Stat
32(2):407–499, 2004), the MCP estimator by Zhang (Ann Stat. 38:894–942, 2010),
and a tuning-free regression algorithm by Chatterjee (High dimensional regression
and matrix estimation without tuning parameters, 2015, https://arxiv.org/abs/1510.
07294). In this paper, we investigate the relative performances of some of these
methods for parameter estimation and variable selection through analyzing real and
synthetic data sets. By an extensive Monte Carlo simulation study, we also compare
the relative performance of proposed methods under correlated design matrix.
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1 Introduction

There are a host of buzzwords in today’s data-centric world. We encounter data
in all walks of life, and for analytically- and objectively-minded people, data is
crucial to their goals. However, making sense of the data and extracting meaningful
information from it may not be an easy task. The rapid growth in the size and
scope of data sets in a variety of disciplines have naturally led to the usage of the
term, Big Data. The word Big Data is nebulously defined. Generally speaking, it
is often used to denote a dataset containing a large number of sample observations
with factors that could induce significant problems when analyzing it. Due to these
barriers when analyzing data, statisticians could play a vital role in the data world.
A variety of statistical and computational tools are needed to reveal the story that
is contained in the data and statisticians should fulfill expectations on a need for
innovative statistical strategies for understanding and analyzing them.

Among many problems arisen from Big Data, in the realm of statistics, many
people worked on the so-called high dimensional data (HDD), which are data
sets containing larger number of predictors than the number of observations. The
analysis of HDD is important in multiple research fields such as engineering, social
media networks, bioinformatics and medical, environmental, and financial studies
among others. There is an increasing demand for efficient prediction strategies and
variable selection procedures for analyzing HDD. Some examples of HDD that have
prompted demand are gene expression arrays, social network modeling and clinical,
genetic, and phenotypic data. Developing innovative statistical learning algorithms
and data analytic techniques play a fundamental role for the future of research in
these fields. More public and private sectors are now acknowledging the importance
of statistical tools and its critical role in analyzing HDD.

The challenges are to find novel statistical methods to extract meaningful
conclusions and interpretable results from HDD. The classical statistical strategies
do not provide solutions to such problems. Traditionally, statisticians used best-
subset selection or other variable selection procedures to choose predictors that
are highly correlated with the response variable. Based on the selected predictors,
statisticians employed classical statistical methods to analyze HDD. However,
with a huge number of predictors, implementing a best-subset selection is already
computationally burdensome. On top of that, these variable selection techniques
suffer from high variability due to their nature. To resolve such issues, a class
of penalized estimation methods have been proposed. They are referred to as
penalized estimation methods since they share the idea to estimate parameters in
a model using classical least squares approach with an additional penalty term.
Some of these methods not only perform variable selection and parameter estimation
simultaneously, but also are extremely computationally efficient.

There are two main objectives of this paper. First is to give an idea how existing
HDD methods perform on datasets when the correlations among response variables
are present. Many statisticians studied HDD methods under the assumption that
response variables are independent. This assumption certainly allowed statisticians
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to develop more complex estimation methods and provided practitioners with cau-
tionary aspects when dealing with datasets containing non-independent variables.
However, the assumption is not realistic, which necessitates statistical methods not
relying on independence assumption. By examining how existing HDD method
works on non-independent setting, we expect to gain some insights on developing
novel estimation strategies and variable selection procedures for the datasets with
non-independent variables. In addition to that many existing HDD analysis methods
rely on a tuning parameter, which is burdensome to calibrate. It makes harder for
non-technical scientists to analyze HDD and further, even for technical scientists,
tuning parameter brings difficulty in reproducing research outcomes. Recently
original methods that don’t require tuning parameter when analyzing HDD were
introduced. In this paper, we also compare the performance of these new methods
with the ones using tuning parameters in a variety of different settings.

The rest of the paper is organized as follows: In Sect. 2, we review the definitions
and basic properties of the regression methods which we will mainly focus on.
In Sect. 3, we explain our simulation set-up for synthetic data and present the
simulation results. Sect. 4 shows an application of the methods to two real data
sets, prostate data and riboflavin production in Bacillus subtilis data. We finish the
paper by Sect. 5 with some concluding remarks and future research directions.

2 Penalized Regression Methods

Consider the following linear model

Y = Xβ + ε, (1)

where Y = (y1, y2, . . . , yn)
′ is a vector of responses, X = [xij ] is an n × p

fixed design matrix, β = (β1, . . . , βp)′ is an unknown vector of parameters, and
ε = (ε1, ε2, . . . , εn)

′ is the vector of unobserved random errors. We assume that
coordinates of the error vector ε are i.i.d. normally distributed with mean zero and
variance σ 2. For the rest of the paper, without loss of generality, we assume that
the predictors and responses in (1) are standardized so that

∑n
i=1 yi = 0 and∑n

i=1 xij = 0,
∑n

i=1 x2
ij = 1, for all j.

For a given model as in (1), there are three main tasks that need to be performed
by a practitioner:

1. Parameter estimation: Finding an estimator β̂ for β.

2. Variable selection or model selection: Selecting the non-zero entries of β

accurately.
3. Prediction: Estimating Xβ.
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For the case n > p, the classical estimator of β is the ordinary least square estimator
(OLS), which is obtained by minimizing the residual sum of squares. It is given by

β̂
OLS = (X′X)−1X′Y.

However, in the high-dimensional setting, where p > n, the inverse of the
Gram matrix, (X′X)−1, does not exist. More precisely, there will be infinitely
many solutions for the least squares minimization, hence there is no well-defined
solution. In fact, even in the case p ≤ n and p close to n, the OLS estimator is not
considered very useful because standard deviations of estimators are usually very
high. In many regression models, in particular for the high dimensional case, only
some of the predictors have a direct significant effect on the response variables.
Therefore it is convenient to assume that the underlying true model is sparse; that
is, the true model has only a relatively small number of non-zero predictors. The
sparsity induced methods also play an important role in high dimensional statistics
because they induce interpretable models. It is well-known that the least squares
estimation procedure is unlikely to yield zero estimates for many of the model
coefficients. There are many alternatives to the least square estimation such as subset
selection, dimension reduction, and penalization methods. Each of them has its own
advantages and disadvantages. For a thorough exposition, see [1, 14].

In this paper, we consider the penalized least square regression methods to obtain
estimators for the model parameters in (1). The key idea in penalized regression
methods is minimizing an objection function Lρ,λ in the form of

Lρ,λ(β) = (Y− Xβ)′(Y− Xβ)+ λρ(β) (2)

to obtain an estimate for the model parameter β. The first term in the objective
function is the sum of the squared error loss, the second term ρ is a penalty function,
and λ is a tuning parameter which controls the trade-off between two components
of Lρ,λ.

The penalty function is usually chosen as a norm on R
p, in most cases an lq -

norm, which can be written as

ρq(β) =
p∑

j=1

|βj |q, q > 0. (3)

The class of estimators employing the above type of penalties are called the bridge
estimators, proposed by Frank and Friedman [11].

The ridge regression [11, 17] minimizes the residual sum of squares subject to
an l2-penalty, that is,

β̂
Ridge = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xijβj )
2 + λ

p∑

j=1

β2
j

⎫
⎬

⎭
, (4)
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where λ is a tuning parameter. Although the ridge estimator is a continuous
shrinkage method and has a better prediction performance than OLS through bias-
variance trade-off, it does not set any OLS estimates to zero, so obtaining a sparse
model is not possible. However, in the case of lq -penalty with q ≤ 1, some
coefficients are set exactly to zero. And the optimization problem for (2) becomes
a convex optimization problem, which can be easily solved, for the case q ≥ 1.

Therefore, l1-penalty is special for both reasons.
There are other penalized regression methods with more sophisticated penalty

functions which not only shrink all the coefficients toward zero, but also set some
of them exactly to zero. As a result, this class of estimators usually produce biased
estimates for the parameters due to the shrinkage, but have some advantages such as
producing more interpretable submodels and reducing the variance of the estimator.

Several penalty estimators have been proposed in the literature for linear and
generalized linear models. In this paper, we only consider the least absolute shrink-
age and selection operator (Lasso) [26], the smoothly clipped absolute deviation
(SCAD) [9], the adaptive Lasso (aLasso) [30], and the minimax concave penalty
(MCP) method [29]. These methods perform parameter estimation and model
selection simultaneously. In addition to these penalty estimators, we also consider
the tuning-free regression method (CTFR) which has been recently proposed by
Chatterjee in [6].

It is known that as the prediction performance of Ridge, Bridge, and Lasso
are compared, none of them uniformly dominates others [12]. But the Lasso
has a significant advantage over ridge and bridge estimators in terms of variable
selection performance, see [12] and [26]. Another important advantage of penalized
regression techniques is that they can be used when the number of predictors, p, is
much larger than the number of observations, n. However, in an effort to achieve
meaningful estimation and selection properties, most penalized regression methods
make some important assumptions on both the true model and the designed matrix.
We refer to [5] and [14] for more insights.

2.1 Lasso

The Lasso was proposed by Tibshirani [26], which performs variable selection and
parameter estimation simultaneously, thanks to the l1-penalty. The Lasso estimator
is defined by

β̂
Lasso
n = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xij βj )
2 + λ

p∑

j=1

|βj |
⎫
⎬

⎭
. (5)

Note that for the high-dimensional case, p > n, there might be multiple solutions of

(5); nevertheless for any two solutions β̂
1
n, β̂

2
n, we have Xβ̂

1
n = Xβ̂

2
n which implies

that all solutions have the same prediction performance [27].
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In order to understand the role of the penalty function in shrinkage, it is
instructive to consider the orthogonal design, that is, n = p and the design matrix
X = In is the identity matrix [19]. In this case, the OLS solution minimizes

p∑

i=1

(yi − βi)
2

and the estimates are given by

β̂ OLS
i = yi for all 1 ≤ i ≤ p.

The ridge regression solution minimizes

p∑

i=1

(yi − βi)
2 + λ

p∑

i=1

β2
i

and hence the estimates are given by

β̂
Ridge
i = yi/(1+ λ) for all 1 ≤ i ≤ p.

Similarly, the Lasso solution minimizes

p∑

i=1

(yi − βi)
2 + λ

p∑

i=1

|βi |

and the estimates take the form

β̂ Lasso
i =

⎧
⎪⎪⎨

⎪⎪⎩

yi − λ/2 if yi > λ/2;
yi + λ/2 if yi < −λ/2;
0 if |yi| ≤ λ/2.

We see that the shrinkage applied by Ridge and Lasso affect the estimated
parameters differently. In the Lasso solution, the least square coefficients with
absolute value less than λ/2 are set exactly equal to zero, and other least squares
coefficients are shrunken towards zero by a constant amount, λ/2. As a result,
sufficiently small coefficients are all estimated as zero. On the other hand, the ridge
regression shrinks each least squares estimate towards zero by multiplying each one
by a constant proportional to 1/λ. For more general design matrix, we do not have
explicit solutions for the estimates, but the effect of the shrinkage is similar as in
orthogonal design case, see [14, 15] and [19] for more on this topic.
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Originally, the Lasso solutions were obtained via quadratic programming by
Tibshirani [26]. Later, Efron et al. proposed Least Angle Regression (LARS)
algorithm, which is a homotopy method that constructs a piece-wise linear solution
path in an effective way [8] . Coordinate descent algorithms, which use the sparsity
assumption, are also simple and very fast to compute for the Lasso estimator [10].
The popular glmnet package of R language implements coordinate descent for the
Lasso solution [10]. Further, the Lasso estimator remains numerically feasible for
dimensions of p that are much higher than the sample size n.

Tuning parameter plays a very crucial role for the performance of the Lasso as
well. Meinshausen and Bühlmann [23] showed that if the penalty parameter λ is
tuned to obtain optimal prediction, then consistent variable selection cannot hold:
the Lasso solution includes many noise variables besides the true signals. Leng et
al. [22] proved this fact in a short argument by considering a model with orthogonal
design. Thus, we can say that variable selection and parameter estimation are closely
related but different problems.

There has been significant progress on the theoretical properties of Lasso’s
performance for parameter estimation and prediction in the last two decades. It
was first proved by Knight and Fu [20] that the estimator β̂ is consistent when p

is fixed and n tends to infinity provided that the tuning parameter satisfies a growth
condition. Under the assumption that

1

n
X′X → C

where C is a positive definite matrix, Knight and Fu also [20] proved that the Lasso
solution has the following properties depending on how the tuning parameter is
chosen. Consider

β̂n = arg min
β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xijβj )
2 + λn

p∑

j=1

|βj |
⎫
⎬

⎭
. (6)

Then

(a) If λn/n→ λ0 ≥ 0, then β̂n

p−→ arg min V1 where

V1(u) = (u− β)′C(u− β)+ λ0

p∑

i=1

|ui |.

(b) If λn/
√

n→ λ0 ≥ 0, then
√

n(β̂n − β)
d−→ arg min V2 where

V2(u) = −2uT W + uT Cu+ λ0

p∑

i=1

[uisgn(βi)Iβi �=0 + |ui |Iβi=0].
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The results above imply that when λn = O(
√

n), the Lasso estimator cannot
recover the true signals with a positive probability, and λn = o(n) is sufficient
for consistency.

It is well-known that with non-singular C, the OLS estimator is consistent when
p is fixed and n tends to infinity, and

√
n(β̂

OLS
n − β)→d N(0, σ 2C−1).

In the regime where both n and p tend to infinity, the standard consistency
definition is not valid for any estimator β̂. Greenshtein and Ritov [13] introduced the
“persistency” concept in this setting as an analogue of consistency of an estimator,
and proved that the Lasso estimator is persistent under some assumptions on the
design matrix. Since the Lasso automatically sets some components of β̂ to zero,
model selection consistency for the Lasso estimator is a crucial problem. In the
case that the tuning parameter is chosen by a deterministic rule, under a couple
of assumptions on the design matrix and sparsity of β, it is known that the Lasso
estimator recovers the true parameter set, see [3, 5]. Even though these theoretical
results are satisfactory, the assumption that the tuning parameter is to be chosen
deterministically does not shed light on practical applications of the Lasso, because
in most applications the tuning parameter is chosen using some data-driven methods
such as cross-validation. There are only few theoretical results on the Lasso when
the tuning parameter is chosen in a data-dependent way, see the recent result of [7]
and the references therein. For an in-depth study of Lasso, see two recent excellent
books [5] and [15].

In many diverse applications of regression, it is not realistic to assume that the
predictors are independent. Therefore the influence of correlations among predictors
on parameter estimation and prediction is an important problem. In general, it
was believed that there would be large prediction errors when the predictors are
correlated. However, recent results in [16] show that this is not necessarily true,
and they argue that for correlated designs, small tuning parameters can be chosen
so that some satisfactory error bounds on the prediction error can be achieved.
Their theoretical arguments and simulation results show that Lasso performs well
under any degree of correlations if the tuning parameter is chosen suitably. Besides
this fact, they show that choosing λ proportional to

√
n log p and ignoring the

correlations in the design is not favorable. In the next section, we present our
simulation results on the cross-validated Lasso’s prediction performance under
correlated design.

2.2 aLasso

Zhou [30] introduced the adaptive Lasso (aLasso) by modifying the Lasso penalty
by using adaptive weights on the l1-penalty. In the same paper, it has been shown
theoretically that the adaptive Lasso estimator is able to identify the true model
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consistently, and has the so-called oracle property. An estimator is said to have
oracle property if asymptotically the method performs as well as if the statistician
had known which coefficients were non-zero and which were zero in advance.

The aLasso β̂ aLasso is obtained by

β̂
aLasso = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xijβj )
2 + λ

p∑

j=1

ŵj |βj |
⎫
⎬

⎭
, (7)

where the weight function is

ŵj = 1

|β̂∗j |γ
; γ > 0,

and β̂∗j is a root-n-consistent estimator of β. The minimization procedure for the
aLasso solution does not induce any computational difficulty and can be solved
very efficiently, for the details see section 3.5 in [30], see and [18]. Zhou [30] also
proved that if λn/

√
n → 0 and λnn

(γ−1)/2 → ∞, the aLasso estimates have the
following properties:

1. aLasso has variable selection consistency with probability one as n tends to
infinity.

2.

√
n(β̂

aLasso
n − β)→d N(0, σ 2C−1

11 )

where C−1
11 is the submatrix of C which corresponds to the non-zero entries of β.

2.3 SCAD

Although the Lasso method does both shrinkage and variable selection due to the
nature of the l1-penalty by setting many coefficients identically to zero, it does
not possess oracle properties, as discussed in [9]. To overcome the inefficiency
of traditional variable selection procedures, Fan and Li [9] proposed SCAD
to select variables and estimate the coefficients of variables automatically and
simultaneously. In the same paper, they proved that SCAD has oracle property
as well. This method not only retains the good features of both subset selection
and ridge regression, but also produces sparse solutions, ensures continuity of the
selected models (for the stability of model selection), and has unbiased estimates
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for large coefficients. The estimator is obtained by

β̂
SCAD = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xij βj )
2 +

p∑

j=1

pγ,λ(|βj |)
⎫
⎬

⎭
. (8)

Here pγ,λ(·) is the smoothly clipped absolute deviation penalty which is defined on
[0,∞) by

pγ,λ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

λx, if x ≤ λ,
γ λx−0.5(x2+λ2)

γ−1 if λ < x ≤ γ λ,

λ2(γ 2−1)
2(γ−1)

if x > γλ

where λ ≥ 0 and γ > 2. Note that SCAD is identical with the Lasso for |x| ≤
λ, then continuously changes to a quadratic function until |x| = γ λ, and then it
remains constant for all |x| > γλ. The lower values of γ produce more variable but
less biased estimates. For γ = ∞, the SCAD penalty is equivalent to the l1-penalty.

2.4 MCP

Zhang [28] introduced a new penalization method for variable selection, which is
given by

β̂
MCP = arg min

β

⎧
⎨

⎩

n∑

i=1

(yi −
p∑

j=1

xij βj )
2 +

p∑

j=1

pγ,λ(|βj |)
⎫
⎬

⎭
,

where the MCP penalty pγ,λ(·) is given by

pγ,λ(x) =
{

λ|x| − x2

2γ
, if |x| ≤ γ λ,

1
2γ λ2 if |x| > γλ,

where γ > 1 and λ are regularization parameters. The MCP has the threshold value
γ λ. The penalty is a quadratic function for values less than the threshold and is
constant for values greater than it. The parameter γ > 0 controls the convexity and
therefore the bias of the estimators. The lower values of γ give us more variable
but less biased estimates. By controlling the parameter γ , under less restricted
assumptions than those required by the Lasso, one can reduce almost all the bias
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of the estimators and obtain consistent variables. The MCP solution path converges
to Lasso path as γ → ∞. Zhang [29] proves that the estimator possesses selection
consistency at the universal penalty level λ = σ

√
2/n log p under the sparse Riesz

condition on the design matrix X. It has been proven that the MCP has oracle
property, for more on the properties of the estimator, see [28, 29].

2.5 CTFR

Chatterjee [6] introduced a general theory for Gaussian mean estimation that,
when applied to the linear regression problem, only requires the design matrix
and the response vector as input and hence no tuning parameter is required. In [6],
Chatterjee showed that the proposed estimator is adaptively minimax rate-optimal
in high-dimensional regression case. We call this estimator Chatterjee’s tuning-free
regression, CTFR in short, in this paper. The estimator β̂ is obtained by

β̂
CTFR = arg min

β∈Rp

{|β|1 : ||Y′ − Xβ||22 ≤ kσ̂ 2}

where k is the rank of X, Y′ is the projection of Y onto the column space of X, and
σ̂ is a randomized estimator of σ introduced in the same paper. For the details, see
the paper [6]. The following result from the same paper gives an upper bound on the
expected mean squared prediction error of β̂:

E||Xβ̂ − Xβ||22
nσ 2 ≤ C

(

r + r2 +
√

log(p + n)

n
+ log(p + n)

n

)

where r = |β|1γ
σ

√
log(p+n)

n
, γ = max1≤j≤p ||Xj ||/√n, and C is a universal

constant.
Chatterjee [6] compared his proposed estimator’s performance with the 10-fold

cross validated Lasso. The proposed estimator has generally higher prediction error
than the 10-fold cross-validated Lasso. On the other hand, the proposed estimator
has better performance at model selection: the number of false positives returned by
the proposed estimator is significantly less than that of the 10-fold cross-validated
Lasso. See the next section, for more simulation results.

2.6 TREX

Lederer and Muller [21] introduced another tuning-free regression method, TREX,
which is obtained by a careful analysis of Square-Root Lasso [2]. They showed
that TREX can outperform a cross-validated Lasso in terms of variable selection
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and computational efficiency through a detailed numeric study. The estimator is
defined as

β̂
TREX ∈ arg min

β∈Rp

{ ||Y− Xβ||22
1
2 ||X′(Y− Xβ)||∞

+ |β|1}.

For some numerical results on the variable selection performance of the estimator,
see [21].

3 Experimental Study

3.1 Simulation Setup

We consider the model

Y = Xβ + ε (9)

where X is n × p dimensional predictor matrix, Y is the n-dimensional response
vector, and ε is the n-dimensional unobserved error vector. β is a p-dimensional
vector of coefficients. Each component of ε is generated from standard normal
distribution.

In our simulation study, we basically follow the simulation set-up of [24]. All
simulations were based on a sample size of n = 100. We considered two different
values for the number of predictor variables: p = 500 and p = 1000. Entries of the
predictor matrix X were randomly sampled from the standard normal distribution.
Correlation between columns of X is set to ρ, where ρ ∈ {0, 0.2, 0.4, 0.6, 0.8}.

The number of non-zero elements of β was set to &nα', where α controls the
sparsity of β. We chose α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We picked &nα' number of
indices randomly. For these indices, the coordinates of β were sampled from a
Laplace(1) distribution while the rest of the coordinates of β were set to zero.
The resulting β vector was rescaled according to the pre-specified signal-to-noise

ratio, snr , defined as β
′
Σβ

σ 2 , where snr ∈ {0.5, 1, 2, 5, 10, 20}. Here Σ is the
covariance matrix of the predictors. We assumed homoscedasticity condition where
σ 2 is the error variance of each predictor variables. We assume that σ = 1 in all our
simulations.

We investigate the relative performance of the following five estimators:

1. Lasso
2. aLasso
3. CTFR
4. SCAD
5. MCP
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Tuning parameters for the above methods, except for CTFR, were chosen to
minimize 10-fold cross validation error. For aLasso, we used the obtained Lasso
estimate as the weight for the penalty term. In the simulation tables, we summarize
our simulation results by comparing the performance of estimator CTFR, SCAD,
MCP, and aLasso with relative to Lasso. The performance was measured based on
the following metrics, respectively:

(a) TP = the number of true positives
(b) FP = the number of false positives
(c) PE = the prediction error

We define the relative number of true positives of listed methods to Lasso as:

RT P = number of true positives of any method in the list

number of true positives of Lasso
.

Clearly the value greater than one, which is shown as bold in Tables 1–10,
will indicate the superiority of the suggested method over Lasso in selecting true
positives, otherwise Lasso is relatively performing well. For instance, in Table 1,
for p = 500 and parameters (ρ, α, snr) = (0, 0.1, 0.5), the value 0.712 in RTP of
CTFR is computed by

number of true positives of CTFR

number of true positives of Lasso
= 0.712.

Similarly two other relative measures RFP and RPE are, respectively, defined as:

RFP = number of false positives of any method in the list

number of false positives of Lasso
.

RPE = prediction error of any method in the list

prediction error of Lasso
.

For our simulations, we used a cv.glmnet function in the glmnet package in R
language for Lasso and aLasso, and a cv.ncvreg function in the ncvreg package for
SCAD and MCP methods. The implementation of CTFR is done in R language, and
it can be provided upon request.

3.2 Simulation Results

In this section, we present our simulation results (Tables 2, 3, 4, 5, 6, 7, 8, 9, 10).
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Table 1 Simulation results for p = 500 and ρ = 0

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.712 0.227 0.679 0.475 0.907 0.926 0.220 0.193 1.155 1.089
MCP 0.619 1.258 0.450 0.530 0.608 0.473 1.981 0.197 0.572 1.680
SCAD 0.443 1.000 2.364 0.434 1.291 0.577 1.045 2.056 0.658 0.971

aLasso 0.500 0.608 1.711 1.970 1.079 0.176 1.155 0.911 5.630 1.023
RFP CTFR 0.105 0.108 0.225 0.130 0.170 0.027 0.038 0.029 0.164 0.158

MCP 0.233 0.320 0.268 0.205 0.135 0.155 0.414 0.142 0.232 0.357

SCAD 0.500 0.872 0.903 0.500 0.738 0.572 0.820 0.849 0.633 0.498

aLasso 1.200 0.625 1.416 0.742 1.198 0.497 1.731 0.551 1.666 1.012
RPE CTFR 1.587 0.837 0.936 1.283 1.979 2.542 0.843 0.902 3.439 3.212

MCP 0.496 0.900 0.795 1.017 1.020 0.312 1.003 0.302 1.149 2.813
SCAD 0.309 0.812 1.596 1.117 0.856 0.288 0.630 1.276 0.925 1.166
aLasso 1.114 1.323 2.868 3.250 1.619 0.759 2.234 1.623 4.947 1.313

snr = 2 snr = 5

RTP CTFR 0.970 0.171 0.312 0.628 1.109 0.820 0.199 0.320 0.717 1.115
MCP 0.781 1.140 0.235 0.673 1.500 0.500 2.000 0.367 0.744 1.280
SCAD 0.556 0.945 1.750 0.486 1.394 0.301 1.000 3.260 0.706 0.954

aLasso 0.306 0.711 1.391 3.150 0.986 0.149 0.602 1.640 6.450 0.936

RFP CTFR 0.001 0.002 0.006 0.031 0.102 0.002 0.001 0.008 0.043 0.059

MCP 0.156 0.165 0.109 0.170 0.342 0.084 0.189 0.157 0.163 0.171

SCAD 0.620 0.451 0.577 0.541 0.547 0.229 0.423 1.042 0.575 0.378

aLasso 0.604 1.047 0.921 1.411 0.934 0.430 0.849 0.967 1.967 0.842

RPE CTFR 3.712 1.040 1.954 3.231 6.045 5.945 1.745 3.441 7.927 12.286
MCP 0.284 0.469 0.295 0.811 2.743 0.185 0.418 0.161 1.179 4.221

SCAD 0.289 0.437 0.984 0.501 1.611 0.139 0.351 0.977 0.597 2.011
aLasso 1.108 1.606 2.169 3.538 1.148 0.731 1.551 2.164 3.674 0.831

snr = 10 snr = 20

RTP CTFR 0.520 0.102 0.222 0.429 1.140 1.000 0.084 0.307 0.574 1.437
MCP 0.667 1.470 0.399 0.713 1.135 0.508 1.930 0.347 0.857 1.157
SCAD 0.241 1.007 4.130 0.662 0.957 0.228 0.995 4.450 0.635 0.930

aLasso 0.140 0.361 2.767 6.930 0.946 0.127 0.449 2.213 7.74 0.955

RFP CTFR 0.000 0.000 0.002 0.013 0.029 0.000 0.000 0.001 0.011 0.071

MCP 0.098 0.274 0.139 0.150 0.176 0.067 0.279 0.090 0.113 0.160

SCAD 0.305 0.487 1.389 0.402 0.403 0.176 0.637 0.989 0.412 0.303

aLasso 0.323 0.639 1.316 2.645 0.862 0.256 0.641 1.374 3.304 0.881

RPE CTFR 8.631 2.160 3.318 10.859 22.52 17.507 2.128 9.489 19.077 48.814
MCP 0.208 0.521 0.289 1.231 3.826 0.127 0.726 0.164 0.775 10.836
SCAD 0.168 0.497 1.665 1.009 1.454 0.118 0.529 1.701 0.268 6.561
aLasso 0.411 1.078 2.678 4.806 0.874 0.631 1.122 2.446 4.640 0.598
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Table 2 Simulation results for p = 500 and ρ = 0.2

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.658 0.190 0.425 0.441 0.873 0.697 0.389 0.210 0.846 0.589

MCP 0.944 0.816 0.463 0.438 0.294 0.678 1.414 0.341 0.476 0.669

SCAD 0.574 1.042 1.737 0.546 0.781 0.728 1.027 1.212 0.845 0.72

aLasso 0.500 0.544 2.028 2.237 1.083 0.350 1.081 0.993 3.01 1.21
RFP CTFR 0.141 0.064 0.145 0.158 0.309 0.024 0.123 0.045 0.173 0.097

MCP 0.281 0.16 0.287 0.179 0.143 0.124 0.262 0.177 0.161 0.112

SCAD 0.696 0.951 0.621 0.539 0.511 0.615 0.625 0.497 0.838 0.353

aLasso 1.511 0.758 1.974 0.985 1.068 0.857 1.286 0.812 1.376 1.387
RPE CTFR 1.436 0.653 1.016 1.553 2.837 2.496 0.793 0.918 2.585 2.74

MCP 0.666 0.460 0.571 1.029 1.656 0.292 0.84 0.316 1.127 2.565
SCAD 0.453 0.666 1.314 0.804 1.136 0.371 0.632 1.070 0.757 1.314
aLasso 1.232 1.420 3.455 2.746 1.397 1.026 1.981 1.780 3.287 1.086

snr = 2 snr = 5

RTP CTFR 0.970 0.232 0.469 0.720 0.725 0.670 0.062 0.280 0.569 2.367
MCP 0.529 1.730 0.389 0.650 1.081 1.000 0.740 0.336 0.723 0.963

SCAD 0.474 0.995 2.100 0.635 1.071 0.283 0.796 3.230 0.624 0.958

aLasso 0.282 0.886 1.095 3.470 0.967 0.181 0.283 3.643 5.410 0.968
RFP CTFR 0.036 0.036 0.122 0.121 0.087 0.002 0.000 0.056 0.029 0.213

MCP 0.052 0.316 0.209 0.224 0.139 0.169 0.120 0.141 0.126 0.160

SCAD 0.248 0.592 1.213 0.840 0.385 0.291 0.386 0.947 0.413 0.375

aLasso 0.673 0.985 1.185 2.15 0.933 0.510 0.608 2.307 2.117 0.903

RPE CTFR 4.165 1.074 1.611 3.687 5.036 5.894 1.105 2.275 6.683 13.925
MCP 0.165 1.107 0.226 0.972 3.298 0.410 0.851 0.444 0.891 3.595
SCAD 0.176 0.631 1.290 0.486 1.943 0.252 0.731 2.233 0.513 2.038
aLasso 0.833 1.993 1.657 4.283 1.069 0.599 0.944 2.748 4.194 0.926

snr = 10 snr = 20

RTP CTFR 0.980 0.128 0.266 0.603 2.257 1.000 0.153 0.206 0.759 1.420
MCP 0.329 2.941 0.303 0.677 1.256 0.500 2.000 0.266 0.762 1.405
SCAD 0.159 0.993 6.118 0.779 0.756 0.316 1.000 3.040 0.610 0.895

aLasso 0.064 0.475 2.105 15.412 0.949 0.130 0.633 1.575 7.540 0.963

RFP CTFR 0.000 0.001 0.046 0.032 0.371 0.000 0.001 0.001 0.068 0.103

MCP 0.073 0.144 0.096 0.094 0.279 0.067 0.064 0.070 0.100 0.140

SCAD 0.147 0.190 1.220 0.390 0.322 0.147 0.154 0.582 0.344 0.271

aLasso 0.259 0.780 1.326 3.922 0.893 0.300 0.794 1.204 2.866 0.898

RPE CTFR 11.352 2.611 2.308 18.033 15.039 21.037 2.078 6.812 18.013 46.238
MCP 0.125 0.442 0.310 1.403 4.361 0.134 0.249 0.069 1.176 13.914
SCAD 0.091 0.192 2.381 1.139 1.655 0.100 0.175 0.830 0.471 4.997
aLasso 0.398 1.509 2.044 7.357 0.994 0.506 1.363 2.264 5.146 0.619
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Table 3 Simulation results for p = 500 and ρ = 0.4

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.838 0.268 0.421 0.598 0.761 0.904 0.357 0.323 0.736 0.673

MCP 0.540 1.368 0.369 0.443 0.472 0.354 2.654 0.333 0.423 0.557

SCAD 0.504 0.973 1.574 0.556 0.793 0.393 0.98 2.365 0.813 0.517

aLasso 0.479 0.882 1.310 2.559 1.293 0.187 1.050 0.98 5.846 1.365
RFP CTFR 0.184 0.155 0.201 0.263 0.224 0.041 0.104 0.250 0.099 0.153

MCP 0.145 0.189 0.204 0.176 0.098 0.072 0.225 0.341 0.094 0.091

SCAD 0.466 0.573 0.606 0.735 0.371 0.245 0.528 1.140 0.734 0.252

aLasso 1.531 1.126 1.468 1.550 1.294 0.575 0.955 1.696 2.014 1.533
RPE CTFR 1.678 0.992 1.657 1.120 1.686 2.367 1.006 0.764 3.500 3.079

MCP 0.358 1.442 0.729 1.095 1.522 0.291 0.930 0.363 1.097 3.059
SCAD 0.346 0.846 1.801 0.559 1.793 0.334 0.576 1.269 0.860 1.197
aLasso 1.769 1.837 2.115 3.028 1.460 0.676 2.440 2.037 4.562 1.091

snr = 2 snr = 5

RTP CTFR 1.000 0.187 0.351 0.769 0.900 0.554 0.206 0.255 0.621 1.188
MCP 0.550 1.560 0.283 0.488 0.726 0.466 1.913 0.417 0.472 0.592

SCAD 0.427 0.978 1.930 0.422 0.997 0.277 0.984 3.685 0.558 0.689

aLasso 0.298 0.786 1.267 3.490 0.987 0.173 0.551 1.806 5.511 1.049
RFP CTFR 0.098 0.045 0.024 0.211 0.153 0.000 0.022 0.002 0.255 0.151

MCP 0.080 0.136 0.059 0.146 0.101 0.054 0.106 0.088 0.129 0.086

SCAD 0.247 0.470 0.426 0.415 0.364 0.216 0.254 0.700 0.611 0.240

aLasso 1.152 0.999 1.097 1.570 0.970 0.380 0.854 1.045 2.307 1.157
RPE CTFR 2.591 1.006 2.454 2.395 5.005 5.673 1.737 4.061 4.630 8.596

MCP 0.212 1.201 0.335 1.243 2.896 0.296 0.626 0.360 1.363 3.855
SCAD 0.153 0.759 1.379 0.666 2.156 0.222 0.353 1.882 0.636 2.792
aLasso 1.072 1.460 2.278 3.410 1.045 0.735 1.223 2.203 4.195 0.798

snr = 10 snr = 20

RTP CTFR 1.000 0.130 0.249 0.586 1.240 1.000 0.118 0.310 0.338 1.096
MCP 0.649 1.480 0.282 0.633 0.703 0.532 1.930 0.297 0.637 0.960

SCAD 0.283 0.961 3.390 0.584 0.569 0.266 1.043 3.620 0.516 0.720

aLasso 0.127 0.433 2.273 7.650 0.967 0.131 0.519 1.989 7.380 0.918

RFP CTFR 0.006 0.019 0.012 0.018 0.070 0.001 0.002 0.049 0.007 0.065

MCP 0.038 0.093 0.044 0.076 0.088 0.053 0.053 0.038 0.066 0.082

SCAD 0.109 0.316 0.478 0.242 0.150 0.103 0.296 0.386 0.223 0.167

aLasso 0.508 0.957 1.311 2.270 0.904 0.559 0.657 1.365 2.000 0.830

RPE CTFR 7.373 0.999 4.014 14.454 30.866 11.127 1.383 6.855 22.267 50.654
MCP 0.145 0.533 0.175 1.623 10.358 0.158 0.562 0.106 1.583 15.923
SCAD 0.114 0.429 1.305 0.746 5.527 0.109 0.396 1.064 0.681 7.130
aLasso 0.566 1.092 2.844 4.668 0.718 0.546 1.199 2.298 4.481 0.652
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Table 4 Simulation results for p = 500 and ρ = 0.6

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.627 0.287 0.296 0.537 0.841 0.897 0.256 0.348 0.521 0.816

MCP 1.111 0.72 0.336 0.211 0.317 0.816 0.586 0.189 0.247 0.326

SCAD 0.988 0.952 0.773 0.510 0.634 0.549 0.855 1.161 0.469 0.511

aLasso 0.620 0.805 1.524 2.227 1.65 0.374 0.514 1.974 2.874 1.142
RFP CTFR 0.077 0.099 0.151 0.166 0.346 0.211 0.330 0.302 0.178 0.101

MCP 0.058 0.069 0.058 0.087 0.119 0.085 0.075 0.144 0.071 0.048

SCAD 0.358 0.272 0.310 0.342 0.620 0.304 0.367 0.452 0.384 0.177

aLasso 1.356 1.254 1.647 1.336 1.766 1.531 1.354 1.774 1.136 1.202
RPE CTFR 1.587 1.649 0.908 2.012 1.636 1.729 0.497 0.879 2.911 5.476

MCP 0.767 0.517 0.993 1.208 1.172 0.999 0.820 0.524 1.247 3.192
SCAD 0.528 0.601 0.824 2.327 0.476 0.562 0.868 1.435 0.854 1.517
aLasso 1.190 1.901 2.819 2.828 2.869 1.028 1.669 3.480 3.521 1.190

snr = 2 snr = 5

RTP CTFR 0.788 0.238 0.260 0.602 1.648 0.682 0.080 0.324 0.748 0.993

MCP 0.615 0.750 0.289 0.402 0.388 0.449 1.261 0.176 0.453 0.458

SCAD 0.347 0.780 1.700 0.810 0.443 0.307 0.913 2.080 0.367 0.481

aLasso 0.188 0.454 2.308 5.012 1.283 0.165 0.605 1.681 5.852 0.947

RFP CTFR 0.192 0.174 0.144 0.064 0.316 0.033 0.003 0.195 0.054 0.103

MCP 0.040 0.073 0.054 0.035 0.060 0.033 0.035 0.032 0.031 0.031

SCAD 0.127 0.265 0.394 0.291 0.271 0.126 0.277 0.273 0.115 0.118

aLasso 0.866 1.121 1.753 1.703 1.599 0.959 0.837 1.701 1.407 0.906

RPE CTFR 3.057 1.029 1.198 4.154 4.341 3.621 0.957 1.399 6.32 15.521
MCP 0.609 0.998 0.952 1.473 1.617 0.504 0.851 0.337 1.413 7.398
SCAD 0.278 0.642 2.473 1.827 0.839 0.278 0.746 1.738 0.895 3.342
aLasso 0.731 1.362 3.509 5.013 1.509 0.753 1.445 2.473 3.838 0.888

snr = 10 snr = 20

RTP CTFR 0.515 0.196 0.233 0.578 1.686 1.000 0.139 0.252 0.409 0.930

MCP 0.635 1.515 0.37 0.669 0.537 0.500 2.000 0.398 0.715 0.631

SCAD 0.311 0.962 2.949 0.710 0.436 0.225 1.000 4.290 0.665 0.555

aLasso 0.140 0.478 2.051 7.000 0.957 0.120 0.449 2.215 8.080 0.958

RFP CTFR 0.000 0.120 0.009 0.039 0.328 0.017 0.011 0.011 0.014 0.070

MCP 0.029 0.025 0.015 0.039 0.075 0.016 0.019 0.013 0.027 0.038

SCAD 0.089 0.094 0.149 0.156 0.175 0.037 0.057 0.172 0.147 0.098

aLasso 0.359 0.908 1.576 2.354 0.919 0.533 0.734 1.401 2.641 0.890

RPE CTFR 8.243 1.327 6.267 13.243 14.622 9.918 2.532 12.086 27.137 39.189
MCP 0.267 0.269 0.193 1.420 3.765 0.160 0.287 0.122 1.539 9.805
SCAD 0.118 0.297 0.930 1.110 2.468 0.090 0.152 1.187 0.430 4.786
aLasso 0.732 1.070 3.361 4.406 1.028 0.518 1.208 2.533 5.022 0.655
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Table 5 Simulation results for p = 500 and ρ = 0.8

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.727 0.364 0.580 0.276 0.926 0.891 0.191 0.218 0.752 1.737

MCP 0.185 0.818 0.227 0.140 0.161 0.860 0.855 0.093 0.183 0.381

SCAD 0.230 0.796 1.212 0.227 1.040 0.476 0.842 1.055 0.350 0.341

aLasso 0.600 0.678 1.852 2.424 2.173 0.234 0.590 2.035 5.509 1.191
RFP CTFR 0.390 0.322 0.268 0.340 0.483 0.195 0.155 0.275 0.124 0.290

MCP 0.110 0.068 0.092 0.067 0.068 0.024 0.036 0.065 0.042 0.021

SCAD 0.265 0.306 0.396 0.412 0.416 0.047 0.146 0.483 0.171 0.123

aLasso 1.896 1.330 2.135 2.038 2.113 1.181 0.976 2.789 2.391 1.333
RPE CTFR 1.826 1.741 3.041 0.686 1.304 2.472 1.015 0.809 2.897 3.735

MCP 1.401 1.317 2.374 1.323 0.844 0.409 0.613 0.994 1.269 1.407
SCAD 0.674 1.177 2.083 0.889 1.224 0.253 0.572 1.896 2.012 0.639

aLasso 4.137 1.879 4.102 3.505 4.485 0.843 1.471 4.418 5.314 1.850
snr = 2 snr = 5

RTP CTFR 0.850 0.249 0.163 0.213 0.688 0.515 0.289 0.185 0.629 1.619
MCP 0.351 1.633 0.588 0.332 0.130 0.730 0.598 0.263 0.402 0.404

SCAD 0.217 0.786 3.033 0.763 0.215 0.636 0.659 1.134 0.735 0.290

aLasso 0.148 0.542 1.799 7.500 1.163 0.155 0.768 1.452 6.216 1.237
RFP CTFR 0.057 0.022 0.007 0.013 0.314 0.000 0.456 0.025 0.033 0.460

MCP 0.015 0.088 0.052 0.035 0.046 0.035 0.098 0.028 0.028 0.120

SCAD 0.048 0.141 0.185 0.138 0.184 0.085 0.278 0.081 0.107 0.165

aLasso 0.516 0.763 1.174 2.276 1.425 0.336 2.441 1.227 2.419 1.512
RPE CTFR 2.954 3.133 1.966 4.271 2.185 5.646 1.478 1.187 13.083 5.675

MCP 0.388 1.844 1.661 1.701 1.042 0.621 1.530 0.627 1.834 2.417
SCAD 0.224 0.983 3.186 3.348 0.668 0.272 1.467 1.351 3.054 0.942

aLasso 0.574 1.201 2.521 5.198 1.854 0.579 1.684 2.702 4.246 1.425
snr = 10 snr = 20

RTP CTFR 0.825 0.151 0.160 0.323 0.986 0.725 0.092 0.146 0.367 0.699

MCP 0.392 1.587 0.247 0.554 0.695 0.355 1.912 0.184 0.547 1.097
SCAD 0.176 0.937 3.062 0.538 0.386 0.227 0.928 2.712 0.478 0.442

aLasso 0.100 0.416 2.350 9.600 0.938 0.094 0.601 1.633 10.325 0.965

RFP CTFR 0.108 0.167 0.001 0.005 0.121 0.052 0.001 0.037 0.003 0.037

MCP 0.018 0.068 0.017 0.064 0.067 0.024 0.023 0.029 0.030 0.056

SCAD 0.028 0.094 0.118 0.078 0.070 0.050 0.029 0.138 0.060 0.053

aLasso 0.581 0.843 1.314 3.154 0.866 0.586 0.594 1.272 2.431 0.857

RPE CTFR 7.220 0.955 6.125 19.082 27.456 8.939 1.910 3.453 38.43 62.878
MCP 0.515 1.482 0.389 2.041 4.982 0.474 0.630 0.158 1.997 17.944
SCAD 0.233 0.795 3.028 1.335 2.709 0.312 0.347 1.947 0.684 7.063
aLasso 0.550 1.183 2.885 6.099 0.971 0.574 1.406 2.095 5.125 0.607
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Table 6 Simulation results for p = 1000 and ρ = 0

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.759 0.626 0.556 0.459 0.368 0.735 0.331 0.299 0.770 1.039
MCP 0.481 1.379 0.929 0.563 0.215 1.197 0.704 0.669 0.692 0.587

SCAD 0.452 1.009 2.086 1.091 0.476 0.778 1.013 1.276 1.364 0.564

aLasso 0.468 0.807 1.292 2.103 1.081 0.419 0.595 1.645 2.378 1.214
RFP CTFR 0.057 0.204 0.244 0.118 0.196 0.033 0.022 0.030 0.128 0.192

MCP 0.174 0.342 0.446 0.304 0.058 0.206 0.192 0.361 0.233 0.188

SCAD 0.453 0.896 0.935 0.945 0.439 0.687 0.734 0.836 1.327 0.337

aLasso 1.175 0.675 1.416 0.806 0.998 0.724 0.843 1.166 1.262 1.229
RPE CTFR 1.491 0.888 0.900 1.231 1.387 2.105 0.648 1.109 2.353 4.058

MCP 0.335 1.591 0.660 1.008 1.225 0.480 0.518 0.316 0.983 2.523
SCAD 0.337 0.975 1.514 0.938 1.018 0.415 0.630 1.048 0.642 1.475
aLasso 1.035 1.555 1.870 3.003 1.320 1.022 1.755 2.943 3.191 1.094

snr = 2 snr = 5

RTP CTFR 0.735 0.213 0.326 0.582 0.662 0.530 0.085 0.257 0.503 2.944
MCP 0.444 1.809 0.671 0.620 0.470 1.796 0.510 0.566 0.772 0.746

SCAD 0.259 0.985 3.912 0.914 0.685 0.287 0.944 3.590 0.776 0.866

aLasso 0.183 0.526 1.902 5.603 0.931 0.196 0.158 6.278 4.970 0.952

RFP CTFR 0 0.001 0.011 0.130 0.120 0.000 0.000 0.005 0.030 0.239

MCP 0.053 0.392 0.242 0.162 0.177 0.351 0.122 0.213 0.157 0.117

SCAD 0.121 0.692 2.271 0.580 0.438 0.248 0.585 1.423 0.636 0.383

aLasso 0.326 0.837 1.078 2.730 0.933 0.418 0.319 3.034 2.428 0.914

RPE CTFR 4.262 0.837 1.353 3.693 5.560 5.893 0.768 2.886 5.751 28.943
MCP 0.226 1.057 0.269 1.239 3.184 0.763 0.292 0.263 1.152 4.738
SCAD 0.146 0.627 1.982 0.951 1.324 0.226 0.55 1.904 0.619 2.354
aLasso 0.431 1.336 2.230 5.961 1.046 0.546 0.748 5.573 4.379 0.809

snr = 10 snr = 20

RTP CTFR 0.980 0.143 0.243 0.625 1.079 1.000 0.200 0.375 0.289 0.965

MCP 0.329 2.922 0.441 0.886 1.262 0.505 1.990 0.599 0.802 0.923

SCAD 0.156 0.987 6.314 0.914 0.956 0.220 1.005 4.640 0.768 1.045
aLasso 0.083 0.472 2.099 11.941 0.964 0.168 0.436 2.268 5.840 0.947

RFP CTFR 0.000 0.000 0.000 0.032 0.051 0.000 0.000 0.002 0.002 0.044

MCP 0.091 0.166 0.170 0.129 0.170 0.108 0.176 0.116 0.134 0.141

SCAD 0.098 0.484 1.683 0.571 0.375 0.109 0.509 0.947 0.446 0.416

aLasso 0.253 0.615 1.487 3.27 0.873 0.432 0.576 1.400 2.026 0.890

RPE CTFR 9.020 1.403 3.391 13.554 28.543 15.614 2.076 9.076 13.473 41.154
MCP 0.164 0.438 0.132 1.117 6.171 0.143 0.443 0.115 1.044 7.410
SCAD 0.073 0.440 1.498 0.519 2.170 0.067 0.404 1.362 0.308 3.708
aLasso 0.361 1.159 2.822 5.423 0.691 0.653 1.039 2.358 3.825 0.540
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Table 7 Simulation results for p = 1000 and ρ = 0.2

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.885 0.447 0.604 0.566 0.581 0.926 0.447 0.411 0.462 0.579

MCP 0.581 1.500 0.582 0.414 0.475 0.376 2.370 0.941 0.598 0.401

SCAD 0.515 0.965 2.038 0.589 1.072 0.274 1.023 3.796 1.082 0.548

aLasso 0.468 0.970 1.337 2.404 1.326 0.247 0.675 1.534 4.593 1.165
RFP CTFR 0.213 0.106 0.268 0.267 0.330 0.028 0.075 0.085 0.158 0.170

MCP 0.213 0.428 0.186 0.143 0.339 0.079 0.327 0.322 0.214 0.122

SCAD 0.641 0.804 1.324 0.416 1.010 0.407 0.670 1.114 1.070 0.291

aLasso 0.940 2.095 1.501 1.963 1.524 0.784 1.124 0.986 2.347 1.296
RPE CTFR 1.983 1.033 0.914 1.327 1.822 2.179 1.011 1.564 1.797 2.534

MCP 0.348 1.478 0.939 0.988 1.043 0.171 1.007 0.564 1.090 1.741
SCAD 0.291 0.903 2.507 1.283 0.693 0.201 0.671 1.998 0.700 1.506
aLasso 0.897 1.536 2.567 4.958 1.983 0.984 1.510 1.950 3.868 1.115

snr = 2 snr = 5

RTP CTFR 0.820 0.299 0.474 0.612 0.944 0.505 0.095 0.210 0.879 0.955

MCP 0.794 1.06 0.761 0.678 0.616 0.752 1.232 0.283 0.730 1.226
SCAD 0.380 0.937 2.710 0.855 0.941 0.503 0.962 1.899 0.842 0.759

aLasso 0.329 0.456 2.063 3.240 1.186 0.191 0.693 1.617 5.152 1.005
RFP CTFR 0.008 0.066 0.049 0.128 0.143 0.000 0.000 0.006 0.106 0.112

MCP 0.122 0.191 0.305 0.182 0.151 0.157 0.245 0.086 0.143 0.207

SCAD 0.358 0.552 1.109 0.757 0.589 0.405 0.624 0.680 0.548 0.358

aLasso 0.825 1.207 1.252 1.763 1.450 0.496 1.002 1.860 2.350 0.959

RPE CTFR 3.771 1.030 2.273 2.335 4.520 5.604 0.933 1.905 8.132 14.42
MCP 0.239 0.653 0.537 1.138 1.636 0.276 0.841 0.216 1.069 5.701
SCAD 0.174 0.545 1.648 0.870 1.190 0.268 0.765 1.376 0.586 2.383
aLasso 1.034 1.239 2.743 3.355 1.140 0.657 1.357 2.453 3.867 0.762

snr = 10 snr = 20

RTP CTFR 1.000 0.165 0.403 0.579 1.224 0.500 0.133 0.289 0.525 0.780

MCP 0.641 1.460 0.569 0.803 0.449 0.524 1.870 0.480 0.829 0.796

SCAD 0.255 0.949 3.950 0.707 0.771 0.268 1.010 3.780 0.767 0.836

aLasso 0.212 0.408 2.487 4.770 0.994 0.169 0.512 1.932 5.88 0.969

RFP CTFR 0.001 0.001 0.027 0.061 0.156 0.000 0.000 0.004 0.042 0.067

MCP 0.055 0.180 0.115 0.147 0.072 0.110 0.176 0.097 0.116 0.101

SCAD 0.129 0.429 0.890 0.453 0.368 0.258 0.587 0.786 0.404 0.333

aLasso 0.783 1.119 1.452 2.005 0.966 0.842 0.631 1.492 1.922 0.904

RPE CTFR 8.882 0.78 4.895 6.526 24.055 10.489 1.118 6.953 14.263 49.102
MCP 0.115 0.729 0.127 1.010 11.007 0.285 0.612 0.05 1.025 17.04
SCAD 0.089 0.628 1.562 0.265 5.789 0.195 0.483 0.843 0.227 6.902
aLasso 0.618 1.139 2.416 3.732 0.591 0.559 1.243 2.278 3.743 0.524
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Table 8 Simulation results for p = 1000 and ρ = 0.4

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.804 0.600 0.413 0.693 0.288 0.839 0.377 0.534 0.662 1.049
MCP 0.538 1.625 0.678 0.433 0.307 0.505 1.500 0.503 0.437 0.531

SCAD 0.853 0.952 1.393 1.033 0.673 0.438 1.039 1.887 0.814 0.908

aLasso 0.606 1.413 0.740 2.339 1.678 0.362 0.908 1.379 3.161 1.344
RFP CTFR 0.096 0.184 0.115 0.168 0.175 0.084 0.141 0.138 0.355 0.340

MCP 0.122 0.226 0.257 0.169 0.196 0.056 0.133 0.137 0.209 0.225

SCAD 0.631 0.562 0.833 0.668 0.711 0.308 0.468 0.647 0.748 0.724

aLasso 1.351 1.388 1.011 1.380 2.037 1.612 1.971 1.744 2.607 1.898
RPE CTFR 1.721 1.083 0.922 1.685 1.478 1.923 1.727 1.795 1.785 1.637

MCP 0.335 1.201 0.644 0.992 1.436 0.193 1.078 0.935 1.193 1.268
SCAD 0.389 0.712 1.309 1.115 0.846 0.198 0.661 1.539 0.931 1.092
aLasso 1.256 2.169 1.840 3.910 1.692 1.965 1.958 2.004 4.032 2.062

snr = 2 snr = 5

RTP CTFR 0.610 0.369 0.235 0.600 0.538 0.797 0.179 0.431 0.627 0.948

MCP 0.503 1.86 0.439 0.477 0.432 0.273 2.922 0.487 0.636 0.448

SCAD 0.526 0.959 1.810 0.833 0.514 0.204 0.995 4.031 0.571 0.911

aLasso 0.310 1.037 0.954 3.290 1.167 0.208 0.699 1.418 5.328 1.157
RFP CTFR 0.012 0.019 0.010 0.111 0.065 0.004 0.003 0.009 0.083 0.212

MCP 0.045 0.126 0.117 0.104 0.063 0.019 0.169 0.073 0.09 0.085

SCAD 0.386 0.315 0.488 0.624 0.252 0.064 0.418 0.791 0.336 0.434

aLasso 0.826 1.576 0.613 1.155 1.224 1.234 0.776 1.235 2.666 1.446
RPE CTFR 3.331 0.968 1.354 4.099 3.961 5.762 1.190 4.086 3.541 8.023

MCP 0.164 0.737 0.300 1.300 4.057 0.177 1.029 0.212 1.137 4.446
SCAD 0.200 0.448 1.241 0.795 1.746 0.124 0.457 2.027 0.449 3.143
aLasso 0.766 2.062 1.619 3.412 0.879 0.784 1.297 1.976 5.084 0.659

snr = 10 snr = 20

RTP CTFR 0.760 0.266 0.295 0.449 1.234 1.000 0.218 0.199 0.819 0.625

MCP 0.543 1.670 0.668 0.776 0.598 0.500 2.000 0.403 0.699 0.734

SCAD 0.245 0.946 4.070 0.963 0.669 0.292 1.000 3.190 0.544 0.984

aLasso 0.169 0.453 2.196 5.750 1.105 0.223 0.585 1.695 4.740 0.964

RFP CTFR 0.000 0.001 0.011 0.013 0.136 0.000 0.000 0.004 0.219 0.042

MCP 0.027 0.063 0.080 0.053 0.052 0.043 0.032 0.073 0.069 0.065

SCAD 0.067 0.147 0.638 0.337 0.238 0.094 0.150 0.567 0.282 0.261

aLasso 0.358 0.630 1.369 2.511 1.330 0.534 0.739 1.377 2.538 0.929

RPE CTFR 9.362 2.832 5.703 10.875 10.578 17.463 1.954 5.972 6.616 43.547
MCP 0.089 0.599 0.287 0.996 3.081 0.142 0.211 0.127 1.025 14.857
SCAD 0.084 0.348 1.510 0.552 1.855 0.080 0.190 1.500 0.212 8.766
aLasso 0.550 1.100 2.085 3.886 0.702 0.779 1.208 2.117 3.327 0.533
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Table 9 Simulation results for p = 1000 and ρ = 0.6

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.640 0.234 0.606 0.333 1.111 0.942 0.295 0.560 0.489 1.172
MCP 2.167 0.135 0.449 0.212 0.158 0.781 1.058 0.337 0.213 0.259

SCAD 0.754 0.861 0.978 0.505 0.485 0.370 0.984 1.788 0.554 0.716

aLasso 0.929 0.316 3.556 1.697 1.140 0.369 0.526 2.438 4.000 1.488

RFP CTFR 0.084 0.651 0.113 0.274 0.186 0.071 0.030 0.322 0.231 0.289

MCP 0.063 0.116 0.098 0.079 0.039 0.037 0.033 0.117 0.093 0.052

SCAD 0.353 0.668 0.278 0.745 0.150 0.141 0.285 0.471 0.613 0.345

aLasso 0.935 2.771 1.444 2.399 1.363 1.779 1.265 3.143 2.200 1.985
RPE CTFR 1.491 0.556 1.456 0.984 4.102 1.850 0.752 1.252 2.103 4.051

MCP 1.19 0.815 0.841 1.145 1.405 0.253 0.546 0.661 1.382 2.295
SCAD 0.344 1.148 1.430 0.555 1.706 0.185 0.484 1.821 0.815 1.574
aLasso 1.847 1.598 4.677 2.539 1.432 1.353 1.716 3.678 3.777 1.204

snr = 2 snr = 5

RTP CTFR 0.840 0.158 0.320 0.610 1.821 1.000 0.300 0.315 0.403 0.540

MCP 1.071 0.667 0.441 0.270 0.300 0.495 1.970 0.612 0.525 0.332

SCAD 0.340 0.893 2.240 0.450 0.504 0.270 0.995 3.510 0.614 0.483

aLasso 0.273 0.280 3.750 3.840 1.196 0.202 0.541 1.830 4.910 0.958

RFP CTFR 0.181 0.062 0.024 0.280 0.223 0.093 0.066 0.014 0.020 0.053

MCP 0.026 0.029 0.047 0.067 0.058 0.024 0.010 0.031 0.033 0.028

SCAD 0.197 0.138 0.343 0.393 0.215 0.084 0.073 0.245 0.209 0.145

aLasso 1.687 1.710 1.550 2.162 1.528 0.947 0.756 1.308 1.632 0.998

RPE CTFR 2.758 0.522 2.149 2.399 8.809 3.585 1.405 3.76 6.616 11.561
MCP 0.581 0.310 0.385 1.558 3.064 0.167 0.316 0.209 1.587 4.892
SCAD 0.249 0.287 1.802 0.783 2.235 0.105 0.220 1.320 0.821 2.827
aLasso 1.189 1.446 4.137 4.281 0.963 0.706 1.135 2.268 4.001 0.759

snr = 10 snr = 20

RTP CTFR 1.000 0.293 0.245 0.473 1.411 1.000 0.167 0.284 0.404 2.381
MCP 0.613 1.510 0.415 0.570 0.566 0.952 1.000 0.547 0.563 0.406

SCAD 0.388 0.939 2.31 0.846 0.421 0.257 0.962 3.610 0.896 0.393

aLasso 0.166 0.624 1.571 5.810 1.118 0.138 0.270 3.676 7.130 1.080
RFP CTFR 0.000 0.180 0.043 0.020 0.282 0.008 0.022 0.048 0.017 0.191

MCP 0.021 0.018 0.029 0.027 0.055 0.036 0.020 0.014 0.028 0.022

SCAD 0.064 0.076 0.246 0.199 0.149 0.064 0.123 0.180 0.174 0.123

aLasso 0.361 1.757 1.318 2.505 1.386 0.866 0.908 1.974 1.721 1.116
RPE CTFR 12.338 1.191 2.573 16.630 10.936 8.255 0.762 6.301 23.682 34.628

MCP 0.161 0.265 0.228 1.703 4.286 0.360 0.291 0.150 2.436 8.167
SCAD 0.112 0.219 1.008 1.353 1.777 0.132 0.368 1.246 1.142 3.267
aLasso 0.509 1.614 2.451 3.982 0.807 0.461 1.050 3.556 4.045 0.512
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Table 10 Simulation results for p = 1000 and ρ = 0.8

α 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

snr = 0.5 snr = 1

RTP CTFR 0.582 0.268 0.697 0.170 1.033 0.833 0.511 0.197 1.000 0.655

MCP 2.733 0.143 0.427 0.091 0.107 0.483 1.062 0.223 0.202 0.164

SCAD 0.759 0.633 0.505 0.293 0.576 0.745 0.879 0.875 0.691 0.197

aLasso 1.470 0.286 4.033 1.044 2.012 0.202 1.127 1.328 5.104 1.638
RFP CTFR 0.065 0.468 0.096 0.310 0.309 0.278 0.067 0.228 0.159 0.340

MCP 0.036 0.037 0.040 0.056 0.048 0.046 0.027 0.060 0.018 0.118

SCAD 0.064 0.403 0.073 0.402 0.206 0.377 0.054 0.264 0.097 0.299

aLasso 0.991 1.968 1.305 1.972 2.809 1.341 2.514 1.936 1.401 2.072
RPE CTFR 1.502 1.170 1.705 0.667 2.097 1.834 2.234 0.477 6.729 1.310

MCP 1.150 0.610 2.362 0.911 0.628 0.840 0.647 1.513 1.281 1.856
SCAD 0.398 0.988 1.710 1.042 0.734 1.031 0.347 1.092 4.971 0.274

aLasso 2.057 1.376 4.975 2.465 2.898 0.814 3.821 2.565 5.006 3.550
snr = 2 snr = 5

RTP CTFR 0.906 0.382 0.383 0.508 1.103 0.825 0.140 0.623 0.939 2.294
MCP 0.552 0.938 0.491 0.336 0.230 0.735 0.825 0.229 0.353 0.521

SCAD 0.272 0.828 2.094 0.382 0.510 0.307 0.794 1.905 0.355 0.66

aLasso 0.409 0.487 2.322 2.875 1.467 0.288 0.485 2.765 4.016 1.101
RFP CTFR 0.268 0.285 0.025 0.204 0.188 0.143 0.018 0.283 0.281 0.262

MCP 0.025 0.029 0.033 0.043 0.037 0.009 0.015 0.036 0.035 0.036

SCAD 0.097 0.147 0.083 0.227 0.126 0.051 0.046 0.248 0.159 0.146

aLasso 1.692 1.414 1.431 2.054 1.93 1.564 1.151 2.919 2.468 1.227
RPE CTFR 2.688 0.926 3.577 1.259 4.694 3.573 1.127 2.03 2.677 6.923

MCP 0.560 1.216 0.900 1.235 1.378 0.307 0.618 0.599 1.491 2.622
SCAD 0.254 1.053 2.655 0.725 1.873 0.197 0.534 2.194 0.813 2.224
aLasso 1.869 1.158 3.204 4.027 1.362 1.414 1.723 3.468 4.318 1.200

snr = 10 snr = 20

RTP CTFR 0.633 0.388 0.194 0.212 1.217 0.680 0.227 0.240 0.376 1.617
MCP 0.416 1.127 0.829 0.419 0.207 0.599 1.400 0.813 0.525 0.163

SCAD 0.207 0.807 4.266 0.898 0.231 0.243 0.898 3.760 0.712 0.395

aLasso 0.127 0.418 2.255 8.316 1.048 0.170 0.417 2.431 5.820 1.041
RFP CTFR 0.000 0.298 0.009 0.006 0.503 0.000 0.030 0.017 0.063 0.534

MCP 0.020 0.122 0.017 0.025 0.046 0.011 0.020 0.015 0.029 0.071

SCAD 0.046 0.226 0.084 0.074 0.167 0.012 0.044 0.039 0.054 0.283

aLasso 0.300 1.106 1.875 3.584 1.277 0.488 0.755 1.424 2.096 1.264
RPE CTFR 6.281 1.475 6.634 15.067 6.288 16.466 3.31 12.632 13.979 5.139

MCP 0.688 1.860 0.435 2.743 1.850 0.132 0.796 0.443 1.520 1.732
SCAD 0.265 1.516 1.271 3.562 1.096 0.065 0.450 1.012 2.413 1.076
aLasso 0.544 1.187 3.235 4.389 1.295 0.580 1.044 2.128 3.466 1.353
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3.3 Observations

In this section, we briefly summarize our simulation study in three aspects.

3.3.1 In terms of True Positives

– We see from simulation results that the performance of Lasso is superior to
CTFR, MCP, and SCAD in terms of selecting true parameters when the true
model is very sparse, the signal-to-noise ratio is low, and the predictors are
uncorrelated.

– When the predictors are uncorrelated, as the model gets less sparse (for larger α)
the TP performance of CTFR improves and in some cases outperforms Lasso.

– As the number of predictors increases, the true positive value of Lasso and MCP
decreases. To put it differently, the variable selection performance of Lasso and
MCP decreases under the higher dimensional settings.

– Overall, adaptive Lasso had better performance in variable selection compared
to Lasso, but its performance was still inferior to that of CTFR and MCP.

3.3.2 In terms of False Positives

– CTFR and MCP outperformed Lasso in terms of FP under any sparsity, signal-to-
noise ratio, and the correlation between predictors cases. This reflected the fact
that a cross-validated Lasso tends to over select.

– SCAD also outperformed Lasso in terms of FP unless signal-to-noise ratio and
the correlation between predictors are high. Therefore, for a two-stage variable
selection procedure, applying CTFR or MCP in the second stage after applying
Lasso in the first stage would help to eliminate the noise variables selected by
Lasso.

– Under the presence of high correlation between predictors, FP of MCP was
smaller than that of CTFR. In other words, MCP had better performance in
screening out irrelevant variables than CTFR when predictors were highly
correlated to each other.

3.3.3 In terms of Prediction Errors

– Lasso outperformed CTFR and aLasso under almost all simulation set-ups.
– Lasso’s prediction performance is significantly better than CTFR as the model

became less sparse, with higher signal-to-noise ratio, and greater correlation
value in the design.
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– In real data examples it is usually assumed that there are some signals in the
data and predictors are not independent to each other. For this parameter range
(ρ = 0.2 and snr = 2 or 5), MCP exhibits a better performance than Lasso in
terms of false positive selection and prediction error performance.

3.4 Non-normal Error Distributions

In this section, we compare the variable selection and prediction performance of the
Lasso and CTFR when the errors in the linear model, with n = 100 and p = 500,
have a heavier tail. We only consider Cauchy and t-distribution with a degree of
freedom 2.

In Table 11, we summarize the simulation results for some selected parameters
when the errors come from Cauchy distribution. We observe that CTFR is no longer
better than Lasso in terms of FP regardless of the sparsity level of model, signal-to-
noise ratio and correlation level among predictors. On the other hand, it outperforms
Lasso in terms of variable selection performance. CTFR has much lower prediction
error than that of Lasso in all cases except the case that the model is very sparse and
has high signal-to-noise ratio.

In Table 12, we summarize the simulation results for some selected parameters
when the errors come from t-distribution with two degrees of freedom. When we
compare the results in these two tables, we see that the prediction errors significantly
decrease as the tail properties of the error distribution get closer to the normal
distribution. In various combinations of sparsity level and the value of correlation
among predictors, as long as signal-to-noise ratio increases, CTFR performs better
than Lasso in terms of false positive selection; that is, it selects fewer noise variables.

Table 11 Errors in the linear models are Cauchy distributed

Cauchy distribution

True Positive False Positive Prediction Error

(α,ρ,snr) Lasso CTFR Lasso CTFR Lasso CTFR

(0.1,0.0,0.5) 0.08 0.34 3.10 56.22 2872 122

(0.1,0.0,20) 0.90 1.44 5.66 48.92 19, 632 70, 573

(0.1,0.8,0.5) 0.00 0.26 2.64 65.80 32, 902 488

(0.1,0.8,20) 0.46 0.90 4.76 55.54 1, 115, 701 21, 232

(0.5,0.0,0.5) 0.12 1.16 5.00 51.40 1662 108

(0.5,0.0,20) 1.26 2.52 7.12 40.08 1499 116

(0.5,0.8,0.5) 0.12 1.40 2.74 63.06 50, 765 986

(0.5,0.8,20) 0.42 1.66 6.42 54.50 6871 168
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Table 12 Errors in the linear models are t-distributed with two degrees of freedom

t distribution with two degrees of freedom

True Positive False Positive Prediction Error

(α,ρ,snr) Lasso CTFR Lasso CTFR Lasso CTFR

(0.1,0.0,0.5) 0.56 0.84 10.34 18.26 6.95 3.89

(0.1,0.0,20) 1.98 2.00 14.00 4.68 6.51 8.54

(0.1,0.8,0.5) 0.18 0.34 5.38 31.44 10.87 3.81

(0.1,0.8,20) 1.16 1.02 13.28 11.24 10.8 6.32

(0.5,0.0,0.5) 0.72 1.26 7.66 21.40 6.78 4.08

(0.5,0.0,20) 6.02 4.28 25.24 5.26 16.31 14.38

(0.5,0.8,0.5) 0.40 0.64 10.40 27.38 8.79 3.62

(0.5,0.8,20) 2.60 2.22 16.60 12.30 6.75 6.03

4 Real Data Examples

In this section we apply the regression methods considered in this paper to two real
data sets and summarize their results.

4.1 Prostate Data

In this section, we provide an application of each regression methods we studied
in this paper on prostate cancer data. The data come from a study conducted by
Stamey et al. [25]. The predictors in the data are log of cancer volume (lcavol),
log of prostate weight (lweight), age, log of benign prostatic hyperplasia amount
(lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason
score (gleason), and percentage Gleason scores 4 or 5 (pgg45). The response of
interest is log of prostate specific antigen (lpsa). The total number of observations
in the dataset is 97. All the regression methods were applied after standardizing
predictors.

In Table 13, we report estimated coefficients by different methods for the prostate
data. Further, the average prediction errors (APEs) are shown therein. According to
these results, the CTFR picks up four response variables; the Lasso, SCAD, and
MCP do not eliminate any response variables but aLasso eliminates only one. We
also observe that the aLasso has the minimum APE and then CTFR, MCP, Lasso,
and SCAD follow, respectively. From Fig. 1, it looks like error distributions are
symmetric, and inter-quartile ranges are almost the same for each method.
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Table 13 Estimated
coefficients and APEs for
prostate data

Lasso CTFR SCAD MCP aLasso

(Intercept) 2.478 2.478 2.478 2.478 2.478

lcavol 0.655 0.512 0.670 0.665 0.647

lweight 0.263 0.090 0.264 0.266 0.265

age −0.148 0.000 −0.156 −0.158 −0.118

lbph 0.135 0.000 0.141 0.140 0.115

svi 0.305 0.115 0.312 0.315 0.276

lcp −0.124 0.000 −0.147 −0.148 −0.044

gleason 0.032 0.000 0.005 0.036 0.067

pgg45 0.116 0.000 0.146 0.126 0.000

APE 0.589 0.527 0.593 0.574 0.511
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Fig. 1 Comparison of the estimators through prediction errors for prostate data

4.2 Production of Riboflavin in Bacillus subtilis Data

In [4], Bühlmann et al. made a data set on riboflavin production with Bacillus
subtilis publicly available. In the data set, the logarithm of the riboflavin production
rate is considered as the response variable corresponding to 4088 predictors which
measure the logarithm of the expression level of 4088 genes. There are n = 71
samples. Therefore the design matrix for the dataset is X ∈ R

71×4088. We performed
Lasso, SCAD, MCP, CTFR, aLasso to select a small subset of genes as the most
important predictors for the model.

In Table 14, for each penalty estimator, we list the top 20 genes. Magnitude
(absolute value) of the coefficient estimate was accompanied by each selected gene.
For instance, in the case of CTFR, the absolute value of the coefficient estimate for
the gene XHLA is 0.18. The table displays genes in a decreasing order with respect
to their corresponding estimated values. As one can see, Lasso, SCAD, and aLasso
selected more than 20 genes, while CTFR and MCP only selected 7 and 8 genes,
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Table 14 Top 20 genes selected by each regression method from riboflavin data and their
corresponding estimates

Lasso CTFR SCAD MCP aLasso

gene β̂ gene β̂ gene β̂ gene β̂ alasso-gene β̂

YOAB 0.81 YOAB 0.23 YOAB 1.41 YOAB 1.45 YXLE 1.74

YEBC 0.53 XHLA 0.18 YHDZ 0.84 YHDZ 0.99 YXLF 1.25

LYSC 0.30 YXLD 0.13 SPOVAA 0.58 YXLD 0.46 YOAC 0.91

SPOVAA 0.26 YCKE 0.09 YEBC 0.51 SPOVAA 0.44 AADK 0.56

YQJU 0.23 LYSC 0.02 YXLD 0.44 CARA 0.39 PRKA 0.55

YXLD 0.22 YDAR 0.01 ARGF 0.36 XHLA 0.25 SPOVAB 0.54

YCLB 0.19 XTRA 0.01 XHLB 0.22 YSHB 0.06 YDDM 0.51

ARGF 0.19 YCGN 0.00 YTET 0.11 YEBC 0.04 YQJV 0.47

XHLB 0.16 AADK 0.00 YDDJ 0.08 AADK 0.00 YMFF 0.45

YFHE 0.15 AAPA 0.00 YQJU 0.08 AAPA 0.00 YYDB 0.44

YFIO 0.15 ABFA 0.00 YESJ 0.06 ABFA 0.00 PKSB 0.41

YHDS 0.14 ABH 0.00 YACN 0.06 ABH 0.00 YCLG 0.38

DNAJ 0.14 ABNA 0.00 YVDI 0.05 ABNA 0.00 ARGG 0.38

YBFI 0.14 ABRB 0.00 PTA 0.05 ABRB 0.00 YFIQ 0.36

YDDK 0.12 ACCA 0.00 YJCL 0.05 ACCA 0.00 YCLC 0.33

YKBA 0.11 ACCB 0.00 SPOIIAA 0.03 ACCB 0.00 YKVK 0.25

YYDA 0.11 ACCC 0.00 YHDS 0.02 ACCC 0.00 YCGP 0.25

PRIA 0.10 ACDA 0.00 YQIQ 0.02 ACDA 0.00 YLXX 0.24

YXLE 0.09 ACKA 0.00 YIST 0.02 ACKA 0.00 DNAK 0.22

YLXW 0.07 ACOA 0.00 KINA 0.02 ACOA 0.00 YQJU 0.19

APE 0.264 0.406 0.321 0.322 0.863

respectively. Lasso had the lowest average prediction errors among all five different
penalty estimators.

From Fig. 2, we see that the error distributions are symmetric for Lasso, SCAD,
and MCP, but it is left-skewed for CTFR and aLasso. CTFR and aLasso have a
significantly larger inter-quartile range than those of Lasso, SCAD, and MCP.

Figure 3 depicts variable selection results for each penalty estimators. The blue
line represents a general trend of the number of selected predictors by Lasso
estimator for a given tuning parameter value. Each colored point represents the
number of selected predictors with the corresponding tuning parameter value, which
minimizes cross validation error. For instance, in the case of SCAD estimator, the
estimator selected 26 predictors to minimize cross validation error. As CTFR’s
variable selection result is independent of the value of tuning parameter, the
graph does not include it. However, from Table 14, one can observe that CTFR
selected seven predictors, which is the least among all five penalty estimators of
consideration.
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Fig. 2 Comparison of the estimators through prediction errors for Riboflavin data
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Fig. 3 The number of selected variables of each penalty estimators for the riboflavin data

5 Concluding Remarks and Future Research Directions

We have investigated the relative performance of high-dimensional regression
strategies under the correlated design matrix and various signal-to-noise ratios. We
have conducted an extensive simulation study to investigate the performance of the
suggested strategies in terms of variable selection and prediction performance. The
simulation results clearly demonstrate that none of the estimators considered here
are better than their competitors under all possible correlation and signal-to-noise
ratio scenarios.
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As a future research project, one could investigate the distribution of the
estimated parameters in CTFR and construction of confidence intervals for the
estimated parameters. There are no theoretical results for CTFR in terms of variable
selection performance so it is another research direction which needs to be explored.
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An Efficient Estimation Strategy
in Autoregressive Conditional Poisson
Model with Applications to Hospital
Emergency Department Data

S. Ejaz Ahmed, Khalifa Es-Sebaiy, Abdulkadir Hussein, Idir Ouassou,
and Anne Snowdon

Abstract Data in the form of time series of counts appear in a number of important
applications such as health care services, financial markets, disease surveillance,
and internet traffic modeling. One of the attractive models for this type of data
is the so-called autoregressive conditional Poisson model (ACP). In this work, we
propose a Stein-type shrinkage estimation strategy for the regression coefficients of
the ACP model. The proposed estimators are expected to improve over the existing
maximum partial likelihood estimators (MPLE) in terms of efficiency. We illustrate
the usefulness of the proposed methods by using a data set on the daily number
of patients at the Emergency Department (ED) of a hospital at eight o’clock in the
morning, recorded over a period of 7 years.

Keywords Integer-valued time series · Conditional autoregressive Poisson
regression · Emergency department data · Shrinkage estimation

1 Introduction

An emerging area of research in statistics is the modeling and analysis of integer-
valued time series. For instance, time series of counts, which is the topic of this
work, appears in many fields of applications such as health care performance
analysis (e.g., analysis of number of patients served at the ED of a hospital
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or admitted to the hospital); monitoring of environmental pollutants; analysis of
data from financial markets (e.g., counts of daily transactions for a given stock);
public health surveillance (e.g., surveillance of cause-specific mortality), among
many other fields of applications. In the past two decades, the statistical analysis
and modeling of such data has attracted a large host of researchers. For detailed
discussions of this growing field of methodology and applications, we refer the
reader to the recent handbook of [8].

Regression models for time series of counts can be classified into two main
classes: parameter-driven (P-D) and observation-driven (O-D) models [5]. Gener-
ally speaking, a P-D model assumes that the temporal correlations in a time series
of counts are driven by a latent random process (temporal random effect) while the
O-D approach assumes that the dependence of the current observation on the past
ones can be explained by including explicit functions of the past observed data in
the model. For instance, [16] proposed a P-D model in which the conditional mean
of the counts is specified as the product of a deterministic exponential function of
known covariates and a latent stationary process with mean one. Zeger proposed an
estimating equations approach for carrying out the inferences for his P-D model.
However, the estimating equations approach of Zeger is numerically difficult to
implement (see [4, 12]). In the observation-driven realm, a class of autoregressive
conditional models studied by Kedem and Fokianos [13] among others handles
the temporal dependence through a log-linear autoregressive specification of the
conditional mean. In this model, in addition to the effects of known covariates,
autoregressive and moving average components of some functions of the past
responses as well as past conditional means are also included in the mean model.
This class of O-D models is quite general and represents the temporal influence
of the past observations by using an ARMA(p,q)-like specification. However, in
many practical situations, the full ARMA(p,q) turns out to be over-parameterized
and only the AR(p) portion is enough to explain the temporal dependence in the
data. Furthermore, the effects of the various covariates in the full ARMA(p,q)
model are not easily interpretable due to the moving average feedback process
[10]. Another class of O-D models has been recently proposed by Davis et al.
[7] where the conditional mean of the counts is modeled as an ARMA(p,q) series
based on the model residuals, instead of the past observations of the process itself.
Other approaches to the analysis of time series of counts are: the thinning operator
approach, which transfers the usual Gaussian time series structures (e.g., ARMA,
GARCH, etc.) to integer-valued observations (see [14]); and the recent approach
of [6], which employs super-positioned renewal processes to produce a series of
correlated counts with Poisson marginal distributions. Detailed review of these
methodologies can be found in [9, 14].

In this paper we consider the autoregressive O-D Poisson regression model
of [13] and propose a Stein-type shrinkage estimation strategy for the regression
coefficients in the model. Besides many other examples that are available in the
literature, our study was motivated by a data set on the number of patients at the ED
of a hospital at eight o’clock in the morning, recorded for a period of 7 years. At
some point in time, the hospital implemented an intervention aimed at improving
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the flow of patients throughout the system and the hospital administration wanted to
examine the effect of the intervention. In addition to conceivable factors (covariates)
such as seasonal factors and factors related to the hospital services, the number
of patients at an ED may also depend on the past history of the process itself
for some latent reasons. For instance, the number of patients at the ED at 8 am
in a given day may depend on the counts in days preceding. This gives rise to a
possible autoregressive structure with a large number of autoregressive terms in
addition to the known covariates. In many practical situations, the investigators may
have some idea about the relevance of the various covariates based on subjective
prior knowledge of the phenomena at hand. This may often encourage investigators
to screen out some covariates and fit just a small model that seems appropriate
based on their subjective judgement. Alternatively, one may develop a small and
parsimonious regression model by using model selection techniques such as the
lasso family or stepwise selection approaches based on AIC and BIC criteria.
However, such model selection practices often lead to a full model (unrestricted)
and a reduced submodel (restricted), leaving the investigators perplexed in choosing
either of the two models. In fact, submodels, whether chosen by subjective screening
or by model selection techniques, are prone to selection biases and inefficiencies
thereof. Also, many recent selection methods tend to screen out covariates with
weak effects on the response variable. However, when the discarded covariates
are collectively significant, the selected submodel may be extremely inefficient.
A way out of this dilemma is to use a shrinkage estimation strategy whereby the
restricted and the unrestricted model estimators are combined in an attempt to
obtain estimators that are more efficient than either of the merged estimators. Such
strategies have been recently developed for many areas of applications. For instance,
[2] studied shrinkage estimation strategies in the field of survival data analysis
while [3] applied such strategies in linear regression models using M-estimators.
A discussion of the shrinkage estimation methodologies and their relative merits
can be found in [1]. In this latter reference, among other techniques, the author
considered also a shrinkage and pre-test estimation approaches in Poisson regression
with independent observations.

The rest of this paper is organized as follows: in Sect. 2, we will introduce
our proposed shrinkage estimation strategies and discuss some of their analytical
relative performances. In Sect. 3, we will carry out a simulation study to assess the
performance the proposed estimators and illustrate their utility by analyzing the
daily count of patients at the ED of a hospital. Finally, in Sect. 4, we will give some
concluding remarks and future possible extensions.

2 The ACP Model and the Proposed Estimation Strategies

Following [13], let {yt }, t = 1, 2, . . . , n, denote a time series of counts, and let μt >

0 denote the conditional mean process of yt given the past information, Ft−1. At
every given time point, t , we assume that Ft−1 is a σ–Algebra generated by the past
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observations of the process yt as well as the current values of covariate processes
denoted by xt = (x1t , x2t , . . . , xpt ). That is, by setting zt−1 = {xt , yt−1, yt−2, . . .},
the past history that is available at time t is Ft−1 = σ {xt , yt−1, yt−2, . . .} =
σ {zt−1}, where z0 = 0. The ACP model which we consider in this paper assumes
that yt |Ft ∼ Poisson(μt ) where λt = ln(μt ) =∑p

i=1 xitβi +∑q
j=1 αj yt−j . The

past observations may also be transformed (e.g., log transformed) before entering
them to the model to avoid numerical instabilities. Now, we compact all the param-
eters in the model in a vector θ = [(β1, β2, . . . , βp), (α1, . . . , αq)]. Therefore, the
Poisson log-partial likelihood for this model, given the past information, can be
expressed as

l(θ) = ln(

n∏

t=1

f (yt ;μt(θ)|Ft−1)) (1)

∝
n∑

t=1

yt ln(μt (θ))−
n∑

t=1

μt (θ)

=
n∑

t=1

ytθzt−1 −
n∑

t=1

exp(θzt−1).

The MPLEs of the parameters in the model can be obtained numerically as a
solution (if any exists) to the score estimating equations that result from the log-
partial likelihood

Sn =
n∑

t=1

zt−1(yt − exp(θzt−1) = 0.

The solution of this equation (if the solution exists), in a model which contains
all possible covariates, will be called the unrestricted maximum partial likelihood
(UMPLE) estimator and it will be denoted by θ̂U . Under some regularity conditions
(assumption A in [13], pp. 16), these UMPLEs are consistent and asymptotically
normal. That is,

√
n(θ̂U − θ) → Np+q(0,G−1(θ)) and θ̂ → θ in probability, as

n → ∞, where G(.) is the limiting information matrix of the normalized partial
observed Fisher information. That is, 1

n
Gn(θ) = ∑n

t=1 z
′
t−1zt−1 exp(θzt−1) →

G(θ).

Now suppose that, in general, one has p + q covariates which constitute the
largest affordable model and a smaller submodel is contemplated by using either
a subjective judgement or a data-driven approach (such as AIC, BIC, and lasso
criteria). Here, we will assume that the submodel is built on a smaller number
of covariates and a smaller number of autoregression terms than the unrestricted
model by setting some components of the vector θ to zero. In this ACP model,
this would lead to partitioning the parameter space into zero and non-zero parts:
θ = (β1, β2, α1, α2) and one would set β2 = 0, α2 = 0. This can be expressed in
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the form of a hypothesis such as H0 : β2 = 0 and α2 = 0 versus the alternative
Ha : β2 �= 0 or α2 �= 0. Here we assume that β1, β2 have, respectively, p1, p2
dimensions so that p = p1 + p2 and similarly, q1 and q2 are the dimensions of
the partitioned α with q = q1 + q2. A more general contrast formulation of the
submodel is usually preferable, which includes as special cases the hypotheses of
the type described above, by setting H0 : Hθ = h vs Ha : Hθ �= h, where H is a
(p2+ q2)× (p+ q) full-rank matrix of known contrasts, and h is a ((p2 + q2)× 1)

vector of known constants. Under such restriction, one can fit a reduced model
whereby the above partial likelihood function is maximized only over the restricted
space given by this null hypothesis. Let us denote the generic vector of model
parameters under the restriction by θ1 and denote the MPLE obtained under the
restriction by θ̂R

1 . Let also θ̂U
1 denote the UMPLE of the θ1. This simply amounts

to applying the contrast matrix H to the UMPLE θ̂U . That is, θ̂U
1 = Hθ̂U . The

hypothesis that the submodel is the true model can be tested by using a Wald-type
test statistic given by Tn = (H θ̂U − h)

′
(HG−1(θ)H

′
)−1(H θ̂U − h) where the

parameter θ is eventually replaced by its restricted estimator. It turns out that this
statistic follows a chi-squared distribution with b = p2 + q2 degrees of freedom
[13].

In order to borrow strength from the unrestricted model and bring it to the smaller
and more parsimonious model (which is represented by the null hypothesis above),
we propose a Stein-type shrinkage estimator and its positive variant to estimate the
parameter vector θ1 as follows:

θ̂ S
1 = θ̂R

1 +
(
θ̂U

1 − θ̂R
1

) {
1− (p2 + q2 − 2)T −1

n

}
, p2 + q2 ≥ 3. (2)

θPS
1 = θ̂R

1 +
(
θ̂U

1 − θ̂R
1

)
{1− (p2 + q2 − 2)T −1

n

}+
, (3)

where a+ = max{0, a}.
These two estimators are known in the literature as the shrinkage and the positive

shrinkage estimators, respectively. The rationale behind the second version is that,
in some data sets, the shrinkage estimator suffers from a phenomenon known as
over-shrinkage, whereby negative coordinates of θ̂U

1 are obtained whenever (Tn <

p2 + q2− 2). This problem is solved by truncating the weight function at zero, thus
avoiding negative values of the combining weights.

The relative performance of shrinkage estimators with respect to the unrestricted
and reduced model estimators is studied via their asymptotic quadratic risks (AQR).
Such risks are calculated analytically as sample size increases under a sequence of
local alternatives H(an) defined as:

H(an) : Hθ = h+ δ√
n
, (4)
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where δ is (p2+ q2) vector of constants. For any estimator θ̂∗1 of θ1, let Q(x) be the
asymptotic distribution function of

√
n(θ̂∗1 − θ1) under the local alternatives in (4).

That is,

Q(x) = lim
n→∞PH(an)

(√
n(θ̂∗1 − θ1) ≤ x

)
. (5)

Define also a weighted quadratic loss function

L(θ∗1 , θ1) = n(θ∗1 − θ1)
′M(θ∗1 − θ1)

= tr

{
M

(
n(θ∗1 − θ1)(θ

∗
1 − θ1)

′)
}
, (6)

where M is a (p1 + q1) × (p1 + q1) positive definite weight matrix. If
√

n(θ∗1 −
θ1)

D−→ T ∗, then the AQR is defined as

AQR(θ∗1 ,M) = E{T ∗′MT ∗}

=
∫ (

x ′Mx
)
dQ(x). (7)

In general, the theory of the ACP, as described in [13], states that the conditional
observed Fisher information matrix of the ACP model converges in probability to
the unconditional Fisher information. This ensures that the asymptotic theory of the
ACP model coincides with that of the usual Poisson regression. As a consequence
of this fact, the AQR of the shrinkage estimators proposed above is identical to
those described in [1]. Therefore, we will not re-iterate such risk expressions, while
we expect that the above two estimators will have better performance in terms of
asymptotic risks than the UMPLE (θ̂U

1 ) in a neighborhood of the submodel and are
as good as the UMPLE in the alternative parameter spaces, represented by Han. On
the other hand, the asymptotic risk behavior of the submodel estimator, θ̂R

1 , is well
known in the literature. Intuitively, such an estimator is expected to outperform both
of the shrinkage estimators above as well as the UMPLE near the submodel (i.e., in
a neighborhood of the parameter space described by H0). However, the performance
of θ̂R

1 deteriorates quickly as the true data generating model moves away from the
submodel parameter space. This makes the restricted estimator unreliable, as one
does not know a priori the true parameter space of the data generating process.
The proposed shrinkage estimators can, however, provide safety in terms of overall
AQR, regardless of the true parameter space on which the data generating process
is based. It is worth noting here that the measure of closeness to the submodel space
of the parameters is the Mahalanobis distance defined as Δ = δ′(HG−1(θ)H

′
)−1δ.

In the next section we will illustrate the performance of the proposed shrinkage
estimators by using a simulation study as well as the emergency department data set
described earlier.
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3 Numerical Studies

3.1 Simulation Study

In this section, we carry out a simulation study to examine the empirical perfor-
mance of the shrinkage estimators when compared to the unrestricted and restricted
model estimators. Our data generating model is the ACP with n = 50, 150
p = 10, 15 and q = 10, 15, 20. While the number of non-zero coefficients in the
β vector was kept at p1 = 4, the dimension of the non-zero coefficients in the
autoregressive part, α, was varied over q1 = 4, 10, 15, 20, in order to examine the
effect of the autoregressive components on the performance of the estimators. The
model intercept was set to β1 = 0.5 while the rest of the non-zero coefficients in the
β vector were all set to 1. The non-zero autoregressive coefficients were set to 0.001
so that their sum does not exceed unity. The latter is a condition for the validity of the
asymptotic results for the ACP model. The zero coefficients are then increased by
small increments so that the Mahalanobis distance, Δ, varies in (0, 0.5) with steps
of 0.01. In the autoregressive terms we used the log transformation ln(yt−i + 1)

to avoid numerical issues due to exponentially increasing counts. In all cases, the
relative mean squared error (RMSE) of each estimator with respect to the UMPLE
is computed based on 2000 Monte Carlo simulations. The results of these RMSEs
are displayed in Figs. 1 and 2, where an RMSE greater than one indicates that the
considered estimator is more efficient than the UMPLE. As theoretically expected,
the restricted estimator (RE) for the submodel is the best in terms of MSE when the
true model parameters are in a neighborhood of the null hypothesis. That is, when
the submodel is nearly the true data generating model. However, as the true model
moves away from the submodel space, the RE deteriorates rapidly and its RMSE
approaches zero. This pattern is persistent throughout all the scenarios displayed
in Figs. 1 and 2. On the other hand, the shrinkage and the positive shrinkage
estimators (SE, PSE) are slightly less efficient than the RE but more efficient than
the UMPLE near the submodel space. As we move away from the submodel, the
shrinkage estimators become as efficient as the UMPLE. Figure 1 shows the effect
of increasing the number of the zero elements in the vector α of the autoregressive
coefficients from q2 = q − q1 = 10 − 4 = 6 to q2 = q − q1 = 15 − 4 = 11,

for fixed sample sizes of n = 50 in the first row and n = 150 in the second row.
Both panels show that the proposed estimators become more efficient for larger q2,
while increasing the sample size improves the UMPLE, which becomes comparable
to the shrinkage estimators. That is, the shrinkage effect is more pronounced at
small sample sizes. This is also intuitively expected, as for large sample sizes the
UMPLE becomes more precise even for parameter components corresponding to the
submodel, and hence the shrinkage effect will eventually fade out, and both SE and
PSE become as efficient as the UMPLE. In other words, the interval of shrinkage
estimators’ dominance over the UMPLE becomes smaller and smaller. However,
for obvious reasons, the same is not true for the submodel estimator when the true
data generating process is not the submodel. Figure 2 reports simulation results
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Fig. 1 Simulated RMSE of the restricted, and shrinkage estimators with respect to the UMPLE.
Results for n = 50, 150 are, respectively, in the first and second rows of the figure

aimed at examining the performance of the SE and PSE with respect to the UMPLE
when the number of non-zero components in the autoregressive vector, α, increases.
For this part of the simulations, we fixed n = 150, p = 10, p1 = 4, q = 20
and varied q1 = 4, 10, 15, 20. The pattern here is quite simple: as the number
of non-zero autoregressive components increases the efficiency of the estimators
decreases, while maintaining the same relative dominance picture discussed earlier.
For instance, when q1 = 20, we can see that all the estimators start as efficient
as the UMPLE and, while the SE and PSE remain as efficient as the UMPLE,
the relative performance of the RE drops quickly. Therefore, we can conclude that
high dimensional autoregression components can reduce the overall efficiency of
all the estimators, regardless of the true data generating process, but the relative
performance of the shrinkage estimators remains as theoretically predicted.
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Fig. 2 Simulated RMSE of the restricted, and shrinkage estimators with respect to UMPLE. Here
n = 150 and p = 10, q = 20, p1 = 4 are fixed and q1 is varied over the set 4, 10, 15, 20

3.2 Application to Emergency Department Data

To illustrate the practical use of the proposed estimation strategies, we consider
a data set on patient flow at the ED of the Southlake Hospital in the province
of Ontario, Canada. The hospital implemented a new technology that identified
patient care status on monitors mounted throughout the hospital so that staff could
readily see how many patients were waiting in the ED department for either
treatments, admission, or other procedures like diagnostic imaging. The technology
provided “visibility” of patient status to staff with the goal of informing staff who
where patients were waiting for care in the hospital, so they could intervene more
quickly to complete care procedures to support a more streamlined efficient flow
of patients through the hospital system. The hospital’s aim was to improve patient
flow efficiency to increase capacity to treat patients with reduced wait times which
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is an important key performance indicator (KPI) of hospital performance—ED wait
times in particular is a KPI for hospitals in Ontario. The hospital administration
wanted to examine the impact of the visibility technology solution on a number
of important KPIs. Here we consider only one of the KPIs analyzed in the larger
study. Namely, we will consider the number of patients at the ED at eight o’clock
in the morning. Therefore, the main outcome in the data set to be analyzed here is
yt , the daily number of patients at the ED at eight o’clock in the morning, recorded
over 7 years (t = 1, 2, . . . , 2436 = n). The visibility technology (intervention)
was implemented at some point in time when t = 1756. In addition to the
intervention variable, the outcome yt can be affected by many other factors such
as seasonal variations (e.g., many admissions for falls during the winter months,
admissions due to flu season), days of the week (e.g., weekends are busy due to
primary care offices being closed), and seasonal variations such as holidays when
other clinics or offices are unavailable and the only option for patients is to seek
emergency department services. Beyond these conceivable covariates, the outcome
may also depend on the past history of patient flow at the ED due to some latent
reasons. Therefore, the data set in consideration had yt as its main outcome, and the
intervention indicator (interv), defined as zero for data before the intervention and
one for data collected afterwards, as its main independent variable. In addition to
these two key variables, we also defined the following groups of covariates: (1) Six
dummy variables (Mon-Sat) with values 0 or 1 to indicate the day of the week
(while assuming Sunday to be our baseline day); (2) Sine and cosine variables
to tackle possible seasonal patterns in the counts. These variables were defined
separately for yearly, quarterly, and monthly seasonality as siny = sin(2πt/365),
sinq = sin(2πt/120) and sinm = sin(2πt/30), respectively. The cosine functions
were defined in a similar way; (3) Linear and quadratic time trends, normt, normt2
based on normalized time variable; (4) Autoregressive terms up to order seven,
Y7 = ln(yt−7 + 1), . . . , Y1 = ln(yt−1 + 1).

As the autoregressive variables are usually not associable to apparent reasons,
they can be legitimately considered as nuisance factors, which are needed to adjust
the overall variability although the practitioners are not interested in their estimation.
Therefore, it is always good practice to initially try out only a smaller number
of autoregressive terms in the regression model, which justifies our choice of the
autoregressive model with q = 7. Another appeal is our suspicion that dependence
of the counts on its past history may go back only for a period of a week. An initial
model (model #1) with all the above variables was fitted and reported below. This
model seems to support the following significant effects: the indictors of the day of
the week, the intervention variable (interv), the linear and quadratic time trends, the
yearly cosine function, the yearly and quarterly sine functions, the autoregressive
variables Y1, Y2, Y3, Y6, and Y7.

Since the effects of Y6 and cosy are marginally significant, we fitted a second
model (Model #2 below) in which these two variables along with Y7 and the rest of
the nonsignificant effects were removed. Although Y7 was statistically significant in
Model #1, it is not really intuitive or interpretable when past observations between
the 3rd and the 7th are not significant. In other words, it is easier to convey that
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Table 1 Estimated regression coefficients by using positive shrinkage strategy

Variable Intercept Mon Tue Wed Thu Fri Sat Interv

Coef 0.82 0.22 0.22 0.10 0.10 0.06 −0.31 −0.09

Variable normt normt2 siny sinq Y1 Y2 Y3

Coef −0.25 0.35 −0.02 −0.03 0.40 0.10 0.04

the number of patients at the ED on any given day depends on the counts of the
immediate past 3 days, than conveying that it also depends on the 7th day as well!

Now, in order to recover some efficiency from Model #1, we used our proposed
shrinkage estimators and calculated their relative efficiency (with respect to the
estimators of Model #1) by using a parametric bootstrapping based on the GLM
residuals. The resulting bootstrapped relative efficiencies of the submodel (Model
#2), the SEs and PSEs are, respectively, 0.9148982, 1.0059393, 1.0059393. Thus,
the proposed shrinkage estimators are as efficient as those from the larger Model
#1 and approximately 9% more efficient than the estimator obtained by just fitting
the smaller Model #2. It is worth mentioning here that, while the bootstrapped
relative efficiency may be reliable, the variances estimated via such bootstrapping
in a GLM are not in general as reliable. A future research task to take up may be
the development of methods for bootstrapping variances of the shrinkage estimators
in the context of the ACP model. In any case, for this data set, we only report the
coefficient estimators based on the positive shrinkage, which happen to coincide
with those of the shrinkage strategy. These coefficient estimators are rounded to the
second decimal place and reported in Table 1 below. We can see that the intervention
was effective to some extent as the coefficient of its indicator variable is −0.09.
This means that, if everything else is held fixed, the post-intervention period has
approximately 10% smaller overall mean (exponential of the intercept) as compared
to the pre-intervention period. Also, we can see that the average number of patients
at the ED in weekdays is less than in weekends (Saturdays and Sundays). The peak
days seem to be Mondays and Tuesdays and then it trends downward until it reaches
its lowest on Saturdays.

Model #1:
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.803186 0.049873 16.104 < 2e-16
mon 0.215468 0.025916 8.314 < 2e-16
tue 0.214688 0.026426 8.124 4.50e-16
wed 0.093726 0.026701 3.510 0.000448
thu 0.093426 0.026801 3.486 0.000490
fri 0.057099 0.026905 2.122 0.033817
sat -0.304198 0.028392 -10.714 < 2e-16
interv -0.085096 0.033869 -2.512 0.011989
normt -0.237698 0.103780 -2.290 0.021998
normt2 0.340894 0.125257 2.722 0.006498
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siny -0.018497 0.009335 -1.982 0.047527
sinq -0.024775 0.009212 -2.689 0.007160
Y1 0.401944 0.013919 28.878 < 2e-16
Y2 0.092629 0.013974 6.629 3.38e-11
Y3 0.036040 0.013789 2.614 0.008959
Y7 0.060107 0.012730 4.722 2.34e-06
Y6 0.022753 0.013590 1.674 0.094085
cosy -0.016058 0.009242 -1.738 0.082296
cosm -0.009082 0.009065 -1.002 0.316442
cosq -0.005399 0.009165 -0.589 0.555794
sinm -0.003106 0.009144 -0.340 0.734062
Y4 0.001535 0.013564 0.113 0.909888
Y5 0.019218 0.013485 1.425 0.154136
---
AIC: 15147

Model #2:
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.955275 0.044034 21.694 < 2e-16
mon 0.237052 0.025594 9.262 < 2e-16
tue 0.246324 0.025856 9.527 < 2e-16
wed 0.114243 0.025977 4.398 1.09e-05
thu 0.099690 0.025386 3.927 8.60e-05
fri 0.051522 0.025589 2.013 0.044064
sat -0.321918 0.028125 -11.446 < 2e-16
interv -0.111673 0.033201 -3.364 0.000770
normt -0.310959 0.102416 -3.036 0.002396
normt2 0.446304 0.122729 3.636 0.000276
siny -0.023223 0.009297 -2.498 0.012496
sinq -0.031211 0.009168 -3.404 0.000664
Y1 0.411477 0.013861 29.687 < 2e-16
Y2 0.100278 0.013888 7.220 5.18e-13
Y3 0.055145 0.012653 4.358 1.31e-05
---
AIC: 15189

4 Conclusion

In this work, we have explored the benefits of using a shrinkage strategy for
estimating the regression coefficients in an ACP model for the analysis of time
series of counts. We have indicated that the theoretical performance of the Stein-type
shrinkage estimators, which has been proven elsewhere for the Poisson regression
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with independent counts, holds also in the case of the ACP models. We have used
a Monte Carlo simulation to confirm such performance and concluded that the
autoregression in the GLM under the assumption of conditional Poisson model may
reduce the overall efficiency at small sample sizes, but the relative performance
of the shrinkage-type estimators, with respect to the unrestricted and restricted
estimators, remains as theoretically expected. The proposed shrinkage estimators
are useful in minimizing the loss of efficiency that may result from preferring a
small and parsimonious model over a larger over-parameterized model. In such
cases, the shrinkage estimators proposed in this work would borrow efficiency from
the larger model while estimating only the smaller submodel, thus allowing better
interpretation of the results. In this work we have used a parametric bootstrapping
method, based on the GLM residuals. Although this approach may be useful in
assessing the relative efficiencies of the various estimators considered in this work,
it was not giving reasonable variances for the estimators. Finally, we illustrated the
methodology by using data on the daily number of patients at the ED of a hospital
over a period of 7 years. A future investigation shall undertake the task of developing
a reasonable bootstrapping strategy for computing the variances of the shrinkage
estimators. Unlike the case of independent counts’ GLM, the task of bootstrapping
an ACP model estimators is not straightforward, due to the temporal dependence of
the counts. Instead of bootstrapping, one may also consider adopting a new post-
selection estimation strategy which has been recently developed by Gao et al. [11].
A referee has also pointed out that there is a contemporary work that we were not
aware of, which uses the general form of the autoregressive GLM and proposes a
class of shrinkage estimators [15].
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