
The Rewrite Engines Competitions:
A RECtrospective

Francisco Durán1 and Hubert Garavel2(B)

1 Universidad de Málaga, Málaga, Spain
duran@lcc.uma.es

2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
hubert.garavel@inria.fr

Abstract. Term rewriting is a simple, yet expressive model of com-
putation, which finds direct applications in specification and program-
ming languages (many of which embody rewrite rules, pattern match-
ing, and abstract data types), but also indirect applications, e.g., to
express the semantics of data types or concurrent processes, to specify
program transformations, to perform computer-aided verification, etc.
The Rewrite Engines Competition (REC) was created under the aegis
of the Workshop on Rewriting Logic and its Applications (WRLA) to
serve three main goals: (i) being a forum in which tool developers and
potential users of term rewrite engines can share experience; (ii) bringing
together the various language features and implementation techniques
used for term rewriting; and (iii) comparing the available term rewriting
languages and tools in their common features. The present article pro-
vides a retrospective overview of the four editions of the Rewrite Engines
Competition (2006, 2008, 2010, and 2018) and traces their evolution over
time.

1 Introduction

When searching Google for “rewrite engine”, most of the references are about
Apache web servers and rewrite engines for URLs. Such engines perform string
rewriting, which is a particular case of term rewriting [1,3], a very general model
of computation based on the repeated application of simplification rules. Despite
its simplicity, term rewriting has shown itself a suitable paradigm for express-
ing fundamental concepts of logics, mathematics, and computer science (e.g.,
concurrency, communication, interaction, etc.).

Beyond such theoretical aspects, the ideas of term rewriting influenced the
design of specification and programming languages, many of which incorporate
algebraic terms and rewrite rules. Software implementations of term rewriting
have been developed including, of course, rewrite engines, but also a large variety
of tools for compiler construction, program transformation, and formal verifica-
tion by theorem proving or model checking.

In order to evaluate and compare the various rewrite engines available, a
software competition named REC (Rewrite Engines Competition) was created
c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 93–100, 2019.
https://doi.org/10.1007/978-3-030-17502-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-17502-3_6


94 F. Durán and H. Garavel

in 2006. Organized together with WRLA (Workshop on Rewriting Logic and
its Applications), REC provides a forum for sharing experiences among tool
developers and potential users. Four editions of this competition have taken
place so far: REC1 (2006), REC2 (2008), REC3 (2010), and REC4 (2018).

The present article, which is part of the TOOLympics project to celebrate
the 25th anniversary of the TACAS conference by gathering numerous software
competitions at ETAPS, provides a retrospective overview of past editions of the
REC competition. Section 2 summarizes the developments of the competition;
Sect. 3 lists all tools that have been assessed, and Sect. 4 presents the collection
of benchmarks accumulated during the successive editions; finally, Sect. 5 draws
perspectives for future editions of the REC competition.

2 Evolution of REC Competitions

In the mid-2000’s, it became manifest that the term-rewriting community was
lacking a comparative study of the different rewrite engines available. The fol-
lowing excerpt, quoted from [11], articulates the motivation for such a study:

“The idea of organizing a rewrite competition arose from noticing various
applications of rewriting in different areas and by different categories of
researchers, many of them manifesting a genuine and explicit interest in
term rewriting. We believe that many of us can benefit from such rewrite
engine competitions, provided that they are fair and explicitly state what
was tested in each case. For example, users of rewrite engine can more
informatively select the right rewrite engine for their particular applica-
tion. On the other hand, for rewrite engine developers, such events give
them ideas on how to improve their tools and what to prioritize, as well
as a clearer idea of how their engine compares to others.”

It was not clear, however, how to conduct such a study. The abstract and gen-
eral nature of term rewriting has given birth to a great diversity in software
implementations. General-purpose rewrite engines differ in the various forms of
rewriting they support (conditional, nondeterministic, context-sensitive, etc.).
Many other rewrite engines are specialized for particular problems and embed-
ded into programming languages, theorem provers, environments for compiler
construction and program transformation, etc. (see Sect. 3 for examples).

REC1 [11] faced such doubts about the right approach to follow and decided
to focus on efficiency, measured in terms of CPU time and memory use. Only two
tools participated in this first edition of the competition, organized together with
WRLA 2006. A collection of benchmarks, namely term rewrite systems sorted
in four categories (see Sect. 4), was produced. Each benchmark was translated
by hand into the input language of each participating tool, and revised by tool
developers to make sure this code was optimal for their tools.

REC2 [15] expanded on the ideas of REC1, with a double goal: (i) broaden
the comparison by assessing the efficiency of a larger number of rewrite engines—
indeed, five tools participated in REC2; and (ii) being a showcase for the



The Rewrite Engines Competitions: A RECtrospective 95

term-rewriting community, with a dedicated session at WRLA 2008, where all
participating tools were presented by their developers, who exposed the features
and strengths of each tool and discussed the outcomes of the competition. Tool
developers actively participated in the whole process of REC2, not merely for
adapting competition benchmarks to the tools, but also for exchanging views on
how to organize the competition and present its results. As a result of fruitful
discussions, several changes were implemented, such as the design of a common
language for expressing the benchmarks (see Sect. 4 below).

REC3 [14] followed the same approach as REC2, with a greater emphasis on
automation and a larger set of term-rewriting benchmarks—including problems
related to program transformation, a key application area of term rewriting. The
developers of all the participating tools were involved in this competition, orga-
nized together with WRLA 2010. The reported results indicate the computation
time spent by each tool on each benchmark.

REC4 [17] was the result of a long-term effort undertaken in 2015 and pre-
sented at WRLA 2018. The competition’s scope was broadened away from tra-
ditional rewrite engines to include functional and object-oriented languages. As
a consequence, REC4 did not consider particular features implemented only in
some tools, but focused instead on basic features common to all tools, namely
term rewrite systems that are confluent and terminating, with free construc-
tors and conditional rules. Tool execution and comparison of results was fully
automated, making it unnecessary to include tool developers directly in the
competition—although they were contacted by email, in case of problems, before
the presentation of the results. A Top-5 podium was produced to indicate which
tools can tackle the most problems within a given amount of time and memory.

3 Tools Assessed

So far, not fewer than 18 tools have been assessed during the REC competitions,
as shown by Table 1. This table lists which tools participated in which editions of
the competition. Not all tools have been assessed in all editions, as it happened,
e.g., for prominent tools such as ELAN [4] and ASF+SDF [6], the development
of which halted before or just after REC1.

It is worth pointing out the versatility of term rewriting and the diversity of
its implementations. It is used in both specification and programming languages.
These languages can be algebraic (e.g., CafeOBJ, LOTOS, Maude, mCRL2,
Stratego/XT, etc.), functional (e.g., Clean, Haskell, LNT, OCaml, SML, etc.),
or object-oriented (e.g., Rascal, Scala, Tom, etc.), and certain languages combine
several of these traits, such as Opal, which is both algebraic and functional, or
OCaml, which is both functional and object-oriented. Some languages also sup-
port higher-order programming (e.g., Haskell, OCaml), while others have built-in
support for concurrency (e.g., LOTOS, LNT, Maude, mCRL2, etc.). Implemen-
tations encompass compilers and interpreters, certain languages (e.g., OCaml or
Rascal) offering both, while other approaches (e.g., Tom) enable term rewrite
systems to be embedded in general-purpose languages such as C or Java. Finally,



96 F. Durán and H. Garavel

Table 1. Languages and tools considered in the Rewrite Engines Competitions

language (tool) web site rec1 rec2 rec3 rec4

ASF+SDF [6] http://www.meta-environment.org × × ×
CafeOBJ [12] http://cafeobj.org ×
Clean [26] http://clean.cs.ru.nl ×
Haskell (GHC) [22] http://www.haskell.org ×
LNT (CADP) [8,16] http://cadp.inria.fr ×
Lotos (CADP) [16,19] http://cadp.inria.fr ×
Maude [9] http://maude.cs.illinois.edu × × × ×
mCRL2 [18] http://www.mcrl2.org ×
OCaml [21] http://www.ocaml.org ×
Opal (OCS) [25] http://github.com/TU-Berlin/opal ×
Rascal [5] http://www.rascal-mpl.org ×
Scala [24] http://www.scala-lang.org ×
SML (MLton) [23] http://www.mlton.org ×
SML (SML/NJ) [23] http://www.smlnj.org ×
Stratego/XT [7] http://www.metaborg.org × × ×
TermWare [13] http://gradsoft.ua/index eng.html ×
Tom [2] http://tom.loria.fr × × ×
TXL [10] http://txl.ca ×

some implementations (ASF/SDF, Stratego/XT, etc.) provide rich environments
for language design, including support for lexical/syntactic analysis, construction
and traversal of abstract syntax trees, as well as program transformations.

4 REC Benchmarks

As a byproduct of the efforts made in organizing the four REC competitions, a
collection of benchmarks has been progressively accumulated1.

REC1 [11] set up the foundations of this collection, by gathering 41 term
rewrite systems, split into four distinct categories: unconditional term rewrite
systems (in which no rewrite rule has Boolean premises), conditional term rewrite
systems (in which some rewrite rules have Boolean premises), rewriting mod-
ulo axioms (in which rewriting relies on certain axioms, such as commutativ-
ity and/or associativity), and rewriting modulo strategies (in which rewriting is
context sensitive, guided by local strategies). Several REC1 benchmarks were
derived from generic benchmarks parameterized by variables (e.g., the param-
eter of function computing the factorial of a natural number, the length of a
list to be sorted, etc.) by giving particular values to these variables. Follow-
ing the terminology used for the Model Checking Contest [20], we distinguish
1 These are available from http://rec.gforge.inria.fr.

http://www.meta-environment.org
http://cafeobj.org
http://clean.cs.ru.nl
http://www.haskell.org
http://cadp.inria.fr
http://cadp.inria.fr
http://maude.cs.illinois.edu
http://www.mcrl2.org
http://www.ocaml.org
http://github.com/TU-Berlin/opal
http://www.rascal-mpl.org
http://www.scala-lang.org
http://www.mlton.org
http://www.smlnj.org
http://www.metaborg.org
http://gradsoft.ua/index_eng.html
http://tom.loria.fr
http://txl.ca
http://rec.gforge.inria.fr


The Rewrite Engines Competitions: A RECtrospective 97

between models, which are generic benchmarks, and instances, which are bench-
marks derived from generic benchmarks by giving actual values to parameters;
the remaining benchmarks, which are not parameterized, are counted both as
models and instances.

REC2 [15] brought a significant evolution: in REC1, each benchmark was
specified in the input language of each tool, which was only feasible as the num-
ber of tools was small. REC2 introduced, to express its benchmarks, a common
language, which we name REC-2008 and which was inspired by the TPDB lan-
guage used at that time by the Termination Competition (the Confluence Com-
petition uses a similar language). Several tools were adapted to accept this new
language REC-2008 as input; for the other tools, translation was done manually.

REC3 [14] pursued in the same vein as REC2, while increasing the number of
instances. REC3 also tried to expand the scope of the competition by introduc-
ing a separate collection of benchmarks meant for program transformation and
expressed in an imperative language named TIL; however, this initiative was left
with no follow-through.

REC4 [17], in order to address a larger set of specification and program-
ming languages, introduced a new language REC-2017 derived from REC-2008
with additional restrictions ensuring that benchmarks are deterministic (hence,
confluent), terminating, and free from equations between constructors. Conse-
quently, the 3rd and 4th categories (rewriting modulo equations and rewriting
modulo strategies) were removed, and the 1st and 2nd categories (uncondi-
tional and conditional rewriting) were merged into a single one, as most lan-
guages do not make such a distinction. The remaining REC-2008 benchmarks
were upgraded to the REC-2017 language, and many new, significantly complex
benchmarks were added to the collection. To provide for an objective compar-
ison, scripts were developed to translate REC-2017 specifications to the input
languages of all tools under assessment.

Table 2 gives a quantitative overview of the evolution of the REC benchmark
collection; each cells having the form “(m) n” denotes m models and n instances.

Table 2. Benchmarks considered in the Rewrite Engines Competitions

category rec1 rec2 rec3 rec4

source language tool-specific rec-2008 rec-2008 rec-2017

unconditional term rewrite systems (5) 7 (5) 12 (7) 26 (19) 43

conditional term rewrite systems (9) 25 (8) 18 (6) 17 (24) 42

rewriting modulo equations (4) 9 (4) 6 (4) 6 (0) 0

rewriting modulo strategies (0) 0 (1) 1 (1) 3 (0) 0

total (18) 41 (18) 37 (18) 52 (43) 85



98 F. Durán and H. Garavel

5 Conclusion

Term rewriting is a fundamental topic with many applications, as illustrated by
the multiplicity of term-rewriting implementations in compilers and interpreters.

The Rewrite Engines Competitions (REC), the evolutions of which have been
reviewed in the present article, stimulate the research interest in this field. One
main lesson to be retained from these competitions is that performance of term
rewriting significantly differs across implementations: there is room for enhance-
ments and, following the latest REC competition (2018), three developer teams
already reported plans to improve their tools to take into account the REC
results.

Future REC competitions should address at least two points: (i) more lan-
guages should be assessed, inviting recent tools in the competition and keeping in
mind that some tools may disappear if they are no longer maintained; (ii) more
benchmarks should be considered, which will require dedicated effort to develop
new benchmarks, given the lack of large, computationally intensive term rewrit-
ing systems freely available on the Web, and the subtle semantic differences that
exist between the various flavours of term rewrite systems.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: Piggybacking
rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9 5

3. Bezem, M., Klop, J., de Vrijer, R., Terese (group) (eds.): Term Rewriting Systems.
Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University
Press, Cambridge (2003)

4. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.E., Ringeissen, C.: An
overview of ELAN. Electron. Notes Theor. Comput. Sci. 15, 55–70 (1998)

5. van den Bos, J., Hills, M., Klint, P., van der Storm, T., Vinju, J.J.: Rascal: from
algebraic specification to meta-programming. In: Durán, F., Rusu, V. (eds.) Pro-
ceedings of the 2nd International Workshop on Algebraic Methods in Model-based
Software Engineering (AMMSE 2011), Zurich, Switzerland. Electronic Proceedings
in Theoretical Computer Science, vol. 56, pp. 15–32, June 2011

6. van den Brand, M., Heering, J., Klint, P., Olivier, P.A.: Compiling language defini-
tions: the ASF+SDF compiler. ACM Trans. Program. Lang. Syst. 24(4), 334–368
(2002)

7. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17 – a
language and toolset for program transformation. Sci. Comput. Program. 72(1–2),
52–70 (2008)

8. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LNT to LOTOS Trans-
lator (Version 6.6), INRIA, Grenoble, France, February 2017

https://doi.org/10.1007/978-3-540-73449-9_5


The Rewrite Engines Competitions: A RECtrospective 99

9. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., Talcott, C.L.: Maude Manual (Version 2.7.1), July 2016

10. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program.
61(3), 190–210 (2006)

11. Denker, G., Talcott, C.L., Rosu, G., van den Brand, M., Eker, S., Serbanuta, T.F.:
Rewriting logic systems. Electron. Notes Theor. Comput. Sci. 176(4), 233–247
(2007)

12. Diaconescu, R., Futatsugi, K.: CafeOBJ Report – The Language, Proof Techniques,
and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in
Computing, vol. 6. World Scientific (1998)

13. Doroshenko, A.E., Shevchenko, R.: A rewriting framework for rule-based program-
ming dynamic applications. Fundam. Inform. 72(1–3), 95–108 (2006)

14. Durán, F., Roldán, M., Bach, J.C., Balland, E., van den Brand, M., Cordy, J.R.,
Eker, S., Engelen, L., de Jonge, M., Kalleberg, K.T., Kats, L.C.L., Moreau, P.E.,
Visser, E.: The third Rewrite Engines Competition. In: Ölveczky, P.C. (ed.) WRLA
2010. LNCS, vol. 6381, pp. 243–261. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16310-4 16

15. Durán, F., Roldán, M., Balland, E., van den Brand, M., Eker, S., Kalleberg,
K.T., Kats, L.C.L., Moreau, P.E., Schevchenko, R., Visser, E.: The second Rewrite
Engines Competition. Electron. Notes Theor. Comput. Sci. 238(3), 281–291 (2009)

16. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Springer Int. J. Softw. Tools
Technol. Transf. (STTT) 15(2), 89–107 (2013)

17. Garavel, H., Tabikh, M.-A., Arrada, I.-S.: Benchmarking implementations of
term rewriting and pattern matching in algebraic, functional, and object-oriented
languages—The 4th Rewrite Engines Competition. In: Rusu, V. (ed.) WRLA 2018.
LNCS, vol. 11152, pp. 1–25. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-99840-4 1

18. Groote, J., Mousavi, M.: Modeling and Analysis of Communicating Systems. The
MIT Press, Cambridge (2014)

19. ISO/IEC: LOTOS – A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization – Information Processing Systems – Open Sys-
tems Interconnection, Geneva, September 1989

20. Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel, L., Rodŕıguez, C.,
Hulin-Hubard, F.: MCC’2015 – the fifth Model Checking Contest. In: Koutny, M.,
Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Con-
currency XI. LNCS, vol. 9930, pp. 262–273. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53401-4 12

21. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
System Release 4.04 – Documentation and User’s Manual. INRIA, Paris, France,
March 2016

22. Marlow, S. (ed.): Haskell 2010 Language Report, April 2010
23. Milner, R., Tofte, M., Harper, R., MacQueen, D.: Definition of Standard ML

(Revised). MIT Press, Cambridge (1997)
24. Odersky, M., Altherr, P., Cremet, V., Dubochet, G., Emir, B., Haller, P., Miche-

loud, S., Mihaylov, N., Moors, A., Rytz, L., Schinz, M., Stenman, E., Zenger, M.:
The Scala Language Specification – Version 2.11. Programming Methods Labora-
tory, EPFL, Switzerland, March 2016

https://doi.org/10.1007/978-3-642-16310-4_16
https://doi.org/10.1007/978-3-642-16310-4_16
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.1007/978-3-662-53401-4_12
https://doi.org/10.1007/978-3-662-53401-4_12


100 F. Durán and H. Garavel

25. Pepper, P., Lorenzen, F. (eds.): The Programming Language Opal – 6th Corrected
Edition. Department of Software Engineering and Theoretical Computer Science,
Technische Universität Berlin, Germany, October 2012

26. Plasmeijer, R., van Eekelen, M., van Groningen, J.: Clean Version 2.2 Language
Report. Department of Software Technology, University of Nijmegen, The Nether-
lands, December 2011

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	The Rewrite Engines Competitions: A RECtrospective
	1 Introduction
	2 Evolution of REC Competitions
	3 Tools Assessed
	4 REC Benchmarks
	5 Conclusion
	References




