®

Check for
updates

ESBMC v6.0: Verifying C Programs
Using k-Induction and Invariant Inference
(Competition Contribution)

Mikhail R. Gadelha!®™ Felipe Monteiro?, Lucas Cordeiro®, and Denis Nicole*

1 SIDIA Instituto de Ciéncia e Tecnologia, Manaus, Brazil
m.gadelha@samsung.com
2 Federal University of Amazonas, Manaus, Brazil
felipemonteiro@ufam.edu.br
3 University of Manchester, Manchester, UK
lucas.cordeiro@manchester.ac.uk
4 University of Southampton, Southampton, UK
dan@ecs.soton.ac.uk

Abstract. ESBMC v6.0 employs a k-induction algorithm to both fal-
sify and prove safety properties in C programs. We have developed a
new interval-invariant generator that pre-processes the program, infer-
ring invariants based on intervals and introducing them in the program as
assumptions. Our experiments show that ESBMC v6.0 using k-induction
can prove up to 7% more programs when the invariant generation is
enabled.

1 Overview

The k-induction algorithm is an effective verification technique implemented in
various software model checkers with the goal of proving partial correctness over
a large number of different programs and properties [1-3]. Typical k-induction-
based verifiers use iterative deepening and repeatedly unwind the program to
produce the verification results; its incremental nature means that it always
finds the smallest falsification [2]. In SV-COMP’19, we have implemented a new
interval-invariant generator that runs as a pre-processing step in ESBMC [4]. In
this implementation, invariants based on intervals are automatically introduced
in the program as assumptions and, although the implementation has some lim-
itations in keeping track of the relations between variables (i.e., our abstract
domain is non-relational), it significantly strengthens the k-induction algorithm
results; in particular, we have observed that the use of invariants increases the
number of correct proofs by about 7% over the SV-COMP benchmarks.

M. R. Gadelha—Jury member.

© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 209-213, 2019.
https://doi.org/10.1007/978-3-030-17502-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-17502-3_15

210 M. R. Gadelha et al.

2 Verification Approach

ESBMC uses a k-induction algorithm [2] to verify and falsify properties over
C programs. Let a given C program P under verification be a finite transition
system M, where we define:

— I(syp) and T(sp, Sn+1) as the formulae over program’s state variable set s;
constraining the initial states and transition relations of M;

— ¢(s) as the formula encoding states satisfying a required safety property;

— 1(s) as the formula encoding states satisfying the completeness threshold, i.e.
states corresponding to termination. v (s) will contain unwindings no deeper
than the maximum number of loop-iterations occurring in the program.

Note that, in our notation, termination and error are mutually exclusive:
@(s) Ap(s) is by construction unsatisfiable; s is a deadlock state if T'(s, s’) V ¢(s)
is unsatisfiable.

In each step k of the k-induction algorithm, three checks are performed: the
base case B(k), the forward condition F(k) and the inductive step S(k) [2].
B(k) is the standard bounded model checking and it is satisfiable iff P has a
counterexample of length % or less:

k—1 k
B(k) = I(Sl) A /\ T(Si, 5i+1) A \/ _‘(25(81'). (1)

The forward condition checks for termination, i.e. whether the completeness
threshold (s) must hold for the current k. If F(k) is unsatisfiable, P has ter-
minated:

k—1
F(k)=1I(s1) A /\ T(s;,8i41) A —b(sp). (2)

No safety property ¢(s) is checked in F(k) as they were checked for the
current k in the base case. Finally, the inductive condition S(k) is unsatisfiable
if, whenever ¢(s) holds for k£ unwindings, it also holds after the next unwinding

of P:
n+k—1

S(k) =3n € NT. /\ (¢(si) AT (54, 8i41)) A =d(Snr)- (3)

Here T"(s;, s;1+1) is the transition relation after havocking the loop variables [2].
Through B(k), F'(k), and S(k), the k-induction algorithm at a given k is:

P contains a bug, if B(k) is satisfiable,
kind(P, k) = { P is correct, if B(k) V [F(k) A S(k)] is unsatisfiable, (4)
kind(P,k + 1), otherwise.

2.1 Invariant Inference Based on Interval Analysis

Our major new feature is a new interval invariant generator for integer vari-
ables; it computes for every integer variable a lower and an upper bound of

ESBMC v6.0: Verifying C Programs 211

possible values. These intervals are injected into the program as assumptions
(constraints) to address a limitation of the k-induction: when trying to check
S(k), the inductive step may find spurious counterexamples if the T”(s;, $i+1)
over-approximation is unconstrained. This is because we havoc the variables that
are written in a loop, i.e. all loop variables are assigned non-deterministic values.
The effect can be seen in Eq. (3): the inductive step checks if whenever ¢ holds
for k — 1 unwindings, it also holds in the current unwinding of the system. In
Eq. (3), the state space is only constrained using the properties in the program;
these are (usually) not strong enough to prove program correctness.

Several authors address this problem by generating program invariants to rule
out unreachable regions of the state space, either as a pre-processing step where
invariants are introduced in the program before verification [3], or during the
verification itself [1,5]. Similarly to Rocha et al. [3], we perform a static analysis
prior to loop unwinding and (over-)estimate the range that a variable can assume.
In contrast to Rocha et al., we do not rely on external tools to infer polyhedral
constraints (e.g., ax + by < ¢, where a, b, and ¢ are constants and = and y are
variables) over C programs. Instead, we implement a “rectangular” invariant
generation based on interval analysis (e.g. a < & < b) as a pre-processing step
of the verification, i.e., before the program is symbolically executed and the
resulting formulae are checked by an SMT solver.

Here we use the abstract-interpretation component from CPROVER [6]. This
implements an abstract domain based on expressions over intervals; these con-
straints associate each variable with an upper and lower bound. The algorithm
starts by assuming an unbounded interval for each variable in the program and
follows the reachable instructions from the main function while updates the inter-
vals, merging them if necessary. When loops are found, an widening operation
is applied, in order to accelerate the generation process [7].

Our tool generates new invariants ¢(s,) and changes Eq. (3) to use them as
assumptions during verification, such that the new inductive step is defined as:

n+k—1
S'(k) = 3n e N*. p(s,) A /\ (¢(si) ANT' (i, 8i41)) A =(sptk). (5)

i=n

The k-induction algorithm of Eq. (4) now uses the inductive step from Eq. (5)
to participate in all categories with C programs of SV-COMP’19.

3 Strengths and Weaknesses

We have observed that the use of invariants increases the number of correct
proofs in ESBMC by about 7%. This, however, comes at a cost: due to bugs
in the invariant generator, the number of incorrect proofs is trebled if these
invariants are used. In particular, we do not track intervals of variables changed
through pointers and nor if the intervals are defined in terms of other variables.
For this we would need a relational analysis that can keep track of relations
between variables. As a result, with the interval invariants enabled, ESBMC
becomes a (better) bug-finding tool rather than one delivering proofs of guaran-
teed soundness.

212 M. R. Gadelha et al.

In SV-COMP’19, ESBMC correctly claims 3556 benchmarks correct and finds
existing errors in 1753. Sadly, it also finds unexpected errors for 14 benchmarks
and fails to find the expected errors in another 41, which impacts its over-
all performance. The failures are mostly concentrated in the MemSafety and
ConcurrencySafety categories and are mainly due to: (1) our non-relational
abstract domain, (2) an internal bug in ESBMC (since corrected) which did
not track variables going out of scope, and (3) an incomplete modelling of
some pthread functions. ESBMC’s performance has improved greatly since
SV-COMP’18 (v4.60): the number of errors detected has increased by 36% and
the number of correct-true results increased by 32%. The biggest improvements
are reflected in the categories ReachSafety and FalsificationOverall.

4 Tool Setup and Configuration

In order to run our esbmc-wrapper . py script!, one must set the architecture (i.e.,
32 or 64-bit), the competition strategy (k-induction, falsification or incremental
BMC), the property file path, and the benchmark path, as:

esbmc-wrapper.py [-h] [-a {32,64}] [-p PROPERTY_FILE]
[-s {kinduction,falsi,incr}]
[benchmark]

where -a sets the architecture, -p sets the property file path, and -s sets the
strategy, in this case, kinduction for k-induction.

Internally, by choosing the k-induction strategy, the following options are
set for every property when executing ESBMC-kind: --no-div-by-zero-check,
which disables the division by =zero check (required by SV-COMP);
--k-induction, which enables the k-induction; --floatbv, which enables
floating-point SMT encoding; ——unlimited-k-steps, which removes the upper
limit of iteration steps in the k-induction algorithm; --witness-output,
which sets the witness output path; --force-malloc-success, which sets
that all dynamic allocations succeed (also an SV-COMP requirement); and
--interval-analysis, which enables the invariant generation. In addition,
ESBMC-kind sets further options depending on the property that needs to be
checked: —-no-pointer-check and --no-bounds-check for reachability verifi-
cation; —-memory-leak-check for memory verification; and --overflow-check
for overflow verification. The Benchexec tool info module is named esbmc . py and
the benchmark definition file is esbmc-kind.xml. For SV-COMP’19, ESBMC-
kind uses Boolector v2.4.1 [8] and competes in all categories with C programs.

5 Software Project

The ESBMC source code is available for downloading at https://github.com/
esbmc/esbmce, while self-contained binaries for ESBMC v6.0 64-bit can be

! https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/esbmc-kind
.zZip.

https://github.com/esbmc/esbmc
https://github.com/esbmc/esbmc
https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/esbmc-kind.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/esbmc-kind.zip

ESBMC v6.0: Verifying C Programs 213

downloaded from https://github.com/esbmc/esbme/releases. ESBMC is publicly
available under the terms of the Apache License 2.0. Instructions for building
ESBMC from source are given in the file BUILDING (including the description
of all dependencies). ESBMC is a joint project with the Federal University of
Amazonas (Brazil), University of Southampton (UK), University of Manchester
(UK), and University of Stellenbosch (South Africa).

References

1. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Kroening, D., Paséreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
622-640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_42

2. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97-114 (2017)

3. Rocha, W., Rocha, H., Ismail, H., Cordeiro, L., Fischer, B.: DepthK: a k-induction
verifier based on invariant inference for C programs. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10206, pp. 360-364. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5_23

4. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: ASE, pp. 888-891.
IEEE/ACM (2018)

5. Malik, V., Marticek, S., Schrammel, P., Srivas, M., Vojnar, T., Wahlang, J.: 2LS:
memory safety and non-termination. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 417-421. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3_24

6. Kroening, D.: CProver Manual (2018). http://www.cprover.org/cprover-manual/.
Accessed Feb 2019

7. Yamaguchi, T., Brain, M., Ryder, C., Imai, Y., Kawamura, Y.: Application of
abstract interpretation to the automotive electronic control system. In: Enea, C.,
Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 425-445. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11245-5_20

8. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. J. Satisfiability
Boolean Model. Comput. 9, 53-58 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://github.com/esbmc/esbmc/releases
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1007/978-3-319-89963-3_24
https://doi.org/10.1007/978-3-319-89963-3_24
http://www.cprover.org/cprover-manual/
https://doi.org/10.1007/978-3-030-11245-5_20
http://creativecommons.org/licenses/by/4.0/

	ESBMC v6.0: Verifying C Programs Using k-Induction and Invariant Inference
	1 Overview
	2 Verification Approach
	2.1 Invariant Inference Based on Interval Analysis

	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project
	References

