
Ray Tracing:
A Tool for All

Jon Peddie

Ray Tracing: A Tool for All

Jon Peddie

Ray Tracing: A Tool for All

123

Jon Peddie
Jon Peddie Research
Belvedere Tiburon, CA, USA

ISBN 978-3-030-17489-7 ISBN 978-3-030-17490-3 (eBook)
https://doi.org/10.1007/978-3-030-17490-3

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-17490-3

Foreword I

Shaded rendering has been one of the central topics of computer graphics research
since the 1960s. Over the following decades, researchers have developed rendering
techniques that evolved step-by-step from smooth shading to realistic reflections
and ultimately to a level of realism that allows us to ignore the fact that the rendered
images are not real.

Back in the early 1980s, Jon Peddie and I met for breakfast one weekend
morning to discuss ways to commercialize realistic rendering. At the time, the idea
seemed far-fetched. Today, it has become commonplace and it has found appli-
cations we had not imagined.

Making use of realistic rendering, whether for Hollywood special effects, video
games, or redecorating your living room still requires an understanding of what it is
and how it works. Papers, journals, books, and courses dive into the topic and open
up the world of rendering to the average programmer. But what if you are not a
programmer? Today, most of us want to use the technology without programming it
from scratch. Regardless, a sophisticated graphics system requires some under-
standing of the technology in order to get the most use from it. That’s where Jon
Peddie’s text comes into play.

Somewhere between the ten thousand foot overview and the vast collection of
GPU code hiding beneath the surface is a level of explanation and understanding
that provides a prospective user with enough background to get started. This book
covers that range in detail, but in a manner that can be understood without
reviewing graduate-level mathematics. It does a particularly good job of identifying
both hardware and software resources to enable a beginning practitioner to get up
and running.

To me personally, the most compelling sections of the book are the ones that fall
into the category labeled “I didn’t know that!” The number of contributors and the
diversity of approaches that have brought realistic rendering to its current state are
remarkable. Rather than attempting to condense this all into a summary, Jon has
opted for completeness and has given the reader a full view of the topic.

v

In essence, this book is a story. It explains the technology, the applications, and
the products, while also providing a history. You, the reader, don’t need to spend 40
years writing and reviewing technical papers on rendering and ray tracing. Just read
the book.

Chapel Hill, North Carolina Turner Whitted

vi Foreword I

Foreword II

Ray tracing is a topic that has inspired many engineers, artists, and storytellers. For
some, it is a computer graphics course; for others, it is a degree; and for many—an
entire career.

I count myself as one of those people so inspired. One day strolling through the
engineering library, I browsed through a book entitled simply “Introduction to Ray
Tracing.” It instantly captured my imagination. The images were strikingly beautiful
(compared to the state of the art the time), the math was approachable, and it only
took a few hours to produce a single image! I soon learned that I was not alone—
that other students and researchers were exploring the frontiers “photorealism,” or
the idea that a computer-generated image could be indistinguishable from a
photograph.

For me, this inspiration launched a career. I am now a Vice President at Nvidia
where I lead a team of dedicated engineers who are striving to make ray tracing fast
enough to be used in real-time computer graphics. The goal is to bring the tech-
niques that have brought advancements in visual effects and animation to gaming
and design. Many in the industry share that goal.

It was this role that introduced me to Jon Peddie and his vast sphere of influence.
I quickly learned that he travels the world in pursuit of technology, especially
computer graphics, and ray tracing in particular. He is always learning, asking
questions, probing technology, and getting all sides of a story. Along with Kathleen
Maher, Jon integrates this information into some of the most influential reports in
the computer graphics industry, including TechWatch and the JPR Workstation
report. In addition, Jon gives countless lectures, serves on advisory boards, and has
been recognized by ACM and CAAD for his efforts.

That is why I was intrigued when he told me of his plan to write a book on ray
tracing. Many technical books have covered this topic in great depth, and Jon
mentions many of them herein. However, “Ray Tracing: A Tool for All” brings an
entirely fresh perspective to the topic. While he covers the technology and business
in great depth, it is approachable by technical and non-technical readers alike.

vii

Ray tracing has roots in medieval times, but received first attention for computer
graphics via a paper by Turner Whitted at SIGGRAPH 1979. Ray tracing operates
by simulating the physics of light as particles that interact with various surfaces,
using very few simplifying assumptions. Because the human visual system is highly
attuned to lighting in the physical world, subtle details can make the difference
between an object looking “realistic” and “fake.” Ray tracing can capture these
effects, such as global illumination, soft shadows and accurate materials.
Consequently, ray tracing is nearly ubiquitous in computer animation and visual
effects industry. It is also rapidly becoming the standard in product design, mar-
keting, and even real-time gaming.

A ray tracing program can be simple enough to fit on a business card, but turning
it into a fully functional system (or renderer) results in very large sophisticated
software. The results can be undeniably beautiful, and this book highlights many
of these examples.

What Jon has done is take all of this technical excitement—the passions of
inventors, the curiosity of a student or researcher, the creativity of the artists—and
mapped it to the ecosystem and companies in the modern world. He covers the
businesses around ray tracing, the interplay between the technology and the com-
panies, and he speculates on what the future will bring to the industry. True to Jon’s
reputation, the book is filled with facts, data, and unique insight. It discusses the
history, the workflows, the research papers, the hardware, the start-ups, and the
primary technical challenges being tackled in the industry today.

Behind the technology and businesses, the primary goal of computer graphics is
to use a visual I illusion to tell a story. Whether used for entertainment, a product
introduction, or to gain insight—ray tracing has found application in a broad set of
industries. Jon outlines these applications and ecosystems in a clear manner.

I learned a lot from reading “Ray Tracing: A Tool for All.” It collects the
under-documented aspects of computer graphics and paints a portrait that blends
both technology and business. I expect that it will help inspire even more people to
join in the quest of photorealistic rendering.

Dr. Steven G. Parker
Vice President

Professional Graphics, Nvidia
Chapel Hill, North Carolina

viii Foreword II

Acknowledgements

How could anyone write a book like this without having too many friends? I’ve met
so many people over the years, starting with Turner Whited in 1979, who have
made incredible discoveries and inventions. And then, demonstrating their
extraordinary grace and charity, they took the time to edit (and mostly correct) the
material I sent to them—I am truly blessed.

I know I’m missing someone or two in this list, and to you, should you read this,
I am truly sorry—call me, I’ll make amends.

My benefactors and mentors—the folks who really know what ray tracing is
about, this book really would not exist without these people.

Helen Desmond, my patient and supportive editor at Springer
Alexander Keller, Nvidia—great comments and polite nudges
Alexandra Constantine, Autodesk
Ankit Patel, Nvidia
Brian Savery, AMD
Colin McLaughlin, Chaos—invaluable resource
Daniel Pohl, Intel—brilliant developer
David Harold, Imagination Technologies
David Laur, Pixar
David McGavran, Maxon
David Tracy, Chaos
Frederic Servant, Autodesk—a real pro
Glen Matthews, AMD
Henrik Edstrom, Autodesk
Igor Zanic, Houdini
Jama Jurabaev, Lucas Arts
John Hart, University Illinois
Joseph Taraborrelli, Sony
Josh Mings, Luxion
Katrina Felicano-Stoddard, Intel
Lon Grohs, Chaos

ix

Ludwig von Reiche, Nvidia
Lynette Clee, Chaos
Oliver Meiseberg, Maxon
Phillip Miller, Chaos
Rolf Herken, ViewMagic
Sean Morrison, BRL-CAD
Steven Parker, Nvidia—who didn’t sign up to be my editor and ended up reading
every word
Tom Svilans, 3D modeler
Ton Roosendaal, Blender
Turner Whited, Nvidia (ret)—a big debt

My colleagues and collaborators

Kathleen Maher—encouraged me to see it through
Ruchike Saini
Jaydeep Bhattacharjee
Robert Dow
Peter McGuinness

x Acknowledgements

Contents

1 Preface . 1
1.1 About the Cover . 3
1.2 Terminology and Definitions . 4

2 Introduction . 7
2.1 Who Needs It? . 8
2.2 Ray Tracing Isn’t New . 9
2.3 A Little History . 11
2.4 Ray Tracing not New . 12

2.4.1 From Humble Beginnings . 14
2.5 Realism, Accuracy, and Functionality . 15

2.5.1 Three Types of Realism in Computer Graphics 16
2.5.2 Stylistic Versus Photorealistic . 19

2.6 Technical Papers and Books . 23
2.7 Material Libraries Critical . 24
2.8 Rendering Becomes a Function of Price . 24
2.9 Shortcuts and Semiconductors—The Need for Speed 25
2.10 Challenges . 27
References . 27

3 The Rendering Industry . 29
3.1 Leading Companies Rendering in AEC and Product Design 30
3.2 The Future . 31

4 The Continuum . 33
4.1 The Rendering Equation . 35
4.2 Scanline Rendering . 36

4.2.1 Z-Buffering . 37
4.2.2 Painter’s Algorithm . 38

xi

4.3 Ray Tracing . 39
4.3.1 Path Tracing . 46
4.3.2 The Difference Between Path Tracing

and Ray Tracing . 47
4.3.3 Noise in Ray Tracing . 47
4.3.4 Global Illumination . 49
4.3.5 The Difference Between Ray Tracing and Ray

Casting . 49
4.3.6 Recursive Ray Tracing . 52

4.4 Photon Mapping . 53
4.5 Brute Force . 55
4.6 Radiosity . 56
4.7 Light-Field Rendering . 57

4.7.1 Voxels . 59
4.8 Problems Ray Tracing Doesn’t Solve . 61

4.8.1 Photorealism . 61
4.8.2 Surface Complexity . 62
4.8.3 Scale . 62

4.9 Summary . 63
References . 64

5 Work Flow and Material Standards . 65
5.1 Biased Versus Unbiased . 65

5.1.1 Biased Versus Consistent . 66
5.1.2 Radiosity . 66
5.1.3 Rasterization . 67

5.2 Importance of Material Library . 67
5.2.1 Standards (USPs, OSL, Etc.) . 69
5.2.2 Physically Based Rendering . 71
5.2.3 Allegorithmic’s Substance Designer 73
5.2.4 Everyday Material Collection . 75
5.2.5 MaterialX . 76
5.2.6 Nvidia’s MDL . 76
5.2.7 X-Rite’s AxF . 79

5.3 Quality Issues . 80
5.3.1 Skin and Subsurface Scattering . 81
5.3.2 Variance-Based Adaptive Sampling 83
5.3.3 Hybrid . 84
5.3.4 Summary . 84

5.4 Importance of HDR Monitors . 85
5.5 Importance of Full-Color Printers . 89
References . 90

xii Contents

6 Applications of Ray Tracing . 91
6.1 The Pipeline . 92

6.1.1 Conception—STAGE ONE . 93
6.1.2 Design and Engineering—STAGE TWO 111
6.1.3 Manufacturing and Production—STAGE THREE 119
6.1.4 Marketing—STAGE FOUR . 122

6.2 Summary . 127
References . 128

7 Ray-Tracing Hardware . 129
7.1 Shortcuts and Semiconductors—The Need for Speed 129
7.2 Local . 132

7.2.1 CPU . 132
7.2.2 GPU . 135
7.2.3 Dedicated . 153
7.2.4 RT on Mobiles . 157

7.3 Remote . 161
7.3.1 Cloud-Based Visualization . 162
7.3.2 Public Cloud Rendering Services 168
7.3.3 Private Rendering Services—Farms 171
7.3.4 Rendering Service Organizations 172

7.4 Benchmarking Ray Tracing . 173
7.4.1 SPEC . 173
7.4.2 Underwriter Labs Futuremark . 176
7.4.3 Blender’s Open Data Benchmark 176
7.4.4 Chaos Group . 178
7.4.5 Redshift Benchmark . 179
7.4.6 Summary . 179

References . 180

8 Ray-Tracing Programs and Plug-ins . 181
8.1 Stand-Alone Ray-Tracing Programs . 184

8.1.1 3Delight—Illumination Research 184
8.1.2 Appleseed . 187
8.1.3 Arnold—Autodesk (Solid Angle) 189
8.1.4 Cero—PTC . 194
8.1.5 Indigo Renderer—Glare Technologies 195
8.1.6 Cinema 4D—Maxon Computer . 199
8.1.7 Corona Renderer—Render Legion 203
8.1.8 Iray—Nvidia . 203
8.1.9 KeyShot—Luxion . 213
8.1.10 Lumion 8 and Pro—Act-3D B.V 216
8.1.11 Maxwell Render—Next Limit . 220
8.1.12 Mitsuba . 225

Contents xiii

8.1.13 Nebula Render . 228
8.1.14 OctaneRender—Otoy . 231
8.1.15 OSPRay—Intel . 233
8.1.16 Pica—SEED/Electronics Arts . 236
8.1.17 ProRender—AMD . 237
8.1.18 POV-Ray . 239
8.1.19 Redshift Renderer . 242
8.1.20 RenderMan—Pixar . 246
8.1.21 Rigid Gems—FerioWorks.LLC . 251
8.1.22 Tachyon . 252
8.1.23 V-Ray—Chaos Group . 253
8.1.24 VRED—Autodesk . 264
8.1.25 Other . 267
8.1.26 Lightworks Design . 267
8.1.27 Manuka—Weta . 269

8.2 Integrated (Programs with Native Ray Tracers) 272
8.2.1 Cycles—Blender . 272
8.2.2 Carrara—Daz 3D . 276
8.2.3 Dimension CC—Adobe . 279
8.2.4 Mantra—SideFX . 282
8.2.5 ART (Autodesk Ray Tracer) . 286
8.2.6 Unreal Studio—Epic Games . 287
8.2.7 Visualize—Dassault Systèmes/SolidWorks 290
8.2.8 PhotoView 360—Dassault Systèmes/SolidWorks 295

8.3 Plug-in Programs . 298
8.3.1 3Delight—Illumination Technologies 298
8.3.2 Arnold—Autodesk . 298
8.3.3 Corona Renderer—Chaos Group (Legion Team) 298
8.3.4 Cycles—Blender . 304
8.3.5 finalRender—Cebas . 304
8.3.6 Iray—Nvidia . 306
8.3.7 KeyShot—Luxion . 306
8.3.8 Lumion . 307
8.3.9 LuxCoreRender . 307
8.3.10 Maxwell . 309
8.3.11 ProRender . 310
8.3.12 Redshift . 310
8.3.13 V-Ray, Chaos Group . 310

8.4 Middleware . 313
8.4.1 Embree . 314
8.4.2 OptiX—Nvidia . 315
8.4.3 Radeon-Rays—AMD . 317

xiv Contents

8.5 Cloud-Based . 321
8.5.1 CL3VER—Cloud Rendering . 322
8.5.2 OneRender—Prefixa . 323
8.5.3 RealityServer—Migenius . 323

8.6 Other . 325
8.6.1 The Ray Tracer Challenge . 325
8.6.2 Tiny Ray Tracer Fits in 64 Bytes 326
8.6.3 A Ray Tracer for Bare Metal x86 327
8.6.4 Tiny Metaball Ray Tracer in x86/x87 Assembly 328

References . 329

Appendix A . 331

Glossary . 339

Index . 353

Contents xv

List of Figures

Fig. 1.1 Saya. Source Teruyuki and Yuki Ishikawa 2
Fig. 1.2 Rendered and photograph of the World Trade Center. 4
Fig. 2.1 BRL-CAD overview . 10
Fig. 2.2 Famous SGI cube logo was created using BRL-CAD

ray-tracing program. Credit Sean Morrison. 10
Fig. 2.3 Appel projected light at a 3D computer model and displayed

the results on a plotter using a form of tone mapping to create
light and dark areas. Source Arthur Appel 12

Fig. 2.4 Translucent Bradley fighting vehicle rendered in BRL-CAD.
Source Sean Morrison (2002) . 13

Fig. 2.5 Lightning McQueen in Cars 2—circa 2011.
Source Wikipedia . 15

Fig. 2.6 A hare versus a variation of the Utah teapot.
Source Wikipedia . 16

Fig. 2.7 In animation you want perfect reflections and shadows, but
the objects may be pure fantasy: Toy Story.
Source Pixar Wiki. 18

Fig. 2.8 Ray tracing used in stylistic fantasy film, “Terminator 6”.
Source Jama Jurabaev . 20

Fig. 2.9 Ray-traced robot before (left) and after environmental
layering (right). Source Jama Jurabaev 20

Fig. 2.10 Car design is one of the most popular and demanding
ray-tracing applications (Soviet Moskvich 412—1974,
Daniartist90) . 21

Fig. 2.11 Ray-tracing programs . 22
Fig. 2.12 Papers on ray tracing published in academic journals

since 1982. 23
Fig. 2.13 An example of various materials applied to the same object.

Source Epic . 25

xvii

Fig. 2.14 Use of variance-based adaptive sampling on this model of
Christmas cookies from Autodesk 3ds Max provided a better
final image in record time. Source Chaos Group 26

Fig. 4.1 The rendering equation describes how light behaves 35
Fig. 4.2 Scanline algorithm example . 37
Fig. 4.3 Example of the painter’s algorithm . 39
Fig. 4.4 Rays in ray tracing . 40
Fig. 4.5 Still life with RenderMan 20. Source Dylan Sisson

RenderMan community. 41
Fig. 4.6 Relative performance versus quality in various modes

of ray tracing . 42
Fig. 4.7 Star Wars stormtroopers rendered in real time with ray tracing

(Nvidia) . 43
Fig. 4.8 Crytek Sponza scene—a common scene for showcasing

global illumination (model from McGuire Graphics Data) 44
Fig. 4.9 This scene renders at about 30–40 fps using just one ray per

pixel. It is noisy but one can get a good sense of what the
image looks like. Source Notch . 48

Fig. 4.10 Iconic Wolfenstein 3D screenshot. Source Wikipedia 50
Fig. 4.11 Ray-traced image of glasses showing the perfect reflections

and refractions, as well as shadows. Source Gilles Tran 51
Fig. 4.12 Coffee room rendering using OneRender ray tracer.

Source OneRender . 53
Fig. 4.13 Zero GI bounces with photon mapping. 54
Fig. 4.14 Multiple and secondary GI bounces with photon mapping 55
Fig. 4.15 Scene rendered with radiosity renderer and visualizer

(By David Bařina, Kamil Dudka, Jakub Filák, Lukáš) 56
Fig. 4.16 Light-field rendering (IEEE VR 2003 tutorial) 57
Fig. 4.17 Field of voxel-rendered oranges was rendered and shown in

real time (25–40 fps at 768 lines) in 2009. Source Unlimited
detail . 59

Fig. 4.18 Point-to-voxels surfacing example. Source Nvidia 60
Fig. 4.19 Continuum of rendering . 63
Fig. 5.1 Light’s interaction with materials determines the image’s

believability . 68
Fig. 5.2 Materials are used in photorealistic and fantasy images.

Source Blender.org . 68
Fig. 5.3 Blender’s Cycles’ material library. Source Blender.org. 69
Fig. 5.4 Diffusion and reflections . 71
Fig. 5.5 Free PBR where you can download 100% free PBR materials

and texture files. Source FreePBR.com 72
Fig. 5.6 An example of materials from Allegorthmic’s substance

source library (image Raphael Rau) . 74

xviii List of Figures

Fig. 5.7 Greyscalegorilla material collection includes 12 different
categories of in-demand textures and shaders 75

Fig. 5.8 MaterialX has been used Lucas films (© and ™ 2017
Lucasfilm Ltd. all rights reserved) . 76

Fig. 5.9 Several different materials (Nvidia) . 77
Fig. 5.10 Realistic skin is rendered using subsurface scattering

and specific materials. Source Nvidia . 81
Fig. 5.11 Comparison of BRDF to BSSRDF reflections.

Source Mike Seymour . 82
Fig. 5.12 Translucent grapes. Source Pixar . 82
Fig. 5.13 Chaos Group says the use of variance-based adaptive

sampling on this model of Christmas cookies from Autodesk
3ds Max provided a better final image in record time.
Source Chaos Group . 83

Fig. 5.14 CIE 1931 chromaticity diagram (Wikipedia). 87
Fig. 5.15 Color/luminance volume: BT.2020 (10,000 nits) versus

BT.709 (100 nits); Yxy. Source Sony. 88
Fig. 5.16 Various gamma curves (Insight Media). 89
Fig. 5.17 The colors of CMYK . 90
Fig. 6.1 This is an example of a Boeing 797 blended wing concept

airplane that was never built - realistic looking isn’t it. Source
Wikipedia—Popular Science magazine 94

Fig. 6.2 The Ford GT90 was never built. Source Ford. 94
Fig. 6.3 241-floor, 3162-ft-high structure would be named

“The Bride” and sit in the middle of Basra, Iraq.
Courtesy of AMBS architects . 95

Fig. 6.4 Proposed Airbus A390. Source Airbus 95
Fig. 6.5 The most popular video games sold in the USA in 2017.

Source Statista . 97
Fig. 6.6 Wolfenstein 3D made use of ray casting algorithms in 1992.

Source Wikipedia . 99
Fig. 6.7 A scene from Schied’s ray-traced version of Quake II.

Source Christoph Schied (2018) . 100
Fig. 6.8 Ray-traced Quake: the water reflects the environment

and the player. Source Pohl (2006). 101
Fig. 6.9 Lara’s unrealistic dirty face and arms . 102
Fig. 6.10 Artyom’s perfectly clean mask and gun after a decade

of fighting in tunnels and snow storms 103
Fig. 6.11 Car reflecting a nearby fire in Battlefield V 103
Fig. 6.12 Perfectly flat, perfectly clean Dutch windows in WWII

Amsterdam . 104
Fig. 6.13 Market scene in Shadow of the Tomb Raider 105
Fig. 6.14 A ray-traced scene from A4’s “Metro Exodus”. 106

List of Figures xix

Fig. 6.15 Proposed mixed-use development. Source Tom Svilans,
rendered with Indigo Renderer . 107

Fig. 6.16 London’s 20 Fenchurch Street tower. Source Nvidia 108
Fig. 6.17 Doing the analysis before would have revealed the risk.

Source Nvidia . 108
Fig. 6.18 HBO logo ray-traced and animated as molten metal.

Source © HBO . 109
Fig. 6.19 Is this the future for automobiles?. 110
Fig. 6.20 Cut glass and jewelry design requires ray tracing to catch all

the reflections of the piece and show it off best (Rendered in
FluidRay RT, design by Manuel Angel Piñeiro Solsona) 113

Fig. 6.21 Marvelous Designer’s user interface and design tools.
Source Marvelous Designer . 115

Fig. 6.22 Fashion design with Clo3d. Source Clo3d 116
Fig. 6.23 Ray tracing used in packing design and marketing.

Source iC3D . 117
Fig. 6.24 LightTools’ illumination and lighting design.

Source LightTools. 121
Fig. 6.25 DIAL’s lighting design software user’s interface.

Source DIAL . 121
Fig. 6.26 Gran Turismo the Circuit de Barcelona-Catalunya.

Source Sony’s Polyphony Digital . 122
Fig. 6.27 Ray-tracing pipeline . 123
Fig. 6.28 Ray-traced car with neutral background; any scene could be

applied. Source Chevrolet . 124
Fig. 6.29 Modern office buildings. Source Mike Mareen 124
Fig. 6.30 Consumer product with neutral background. Source V-Ray . . . 125
Fig. 6.31 Ryff lets advertisers place any virtual object into commercials

and films. Source Ryff . 125
Fig. 6.32 Packaging complex, nonlinear reflective surface containers.

Source Creative Edge Software. 126
Fig. 6.33 Notch makes clever uses of denoising filters to produce

high-quality ray-traced videos in real time. Source Notch. 127
Fig. 7.1 Use of variance-based adaptive sampling on this model of

Christmas cookies from Autodesk 3ds Max provided a better
final image in record time. Source Chaos Group 130

Fig. 7.2 Workload distribution through the pipeline 132
Fig. 7.3 Amdahl’s Law. Source Wikipedia. 134
Fig. 7.4 Portion of a 600 x 400-pixel image from Parker’s system

ran at 15 frames per second. Source Steve Parker 138
Fig. 7.5 Nvidia’s last decade of GPUs, served more than just

graphics applications . 142
Fig. 7.6 RTX technology on Volta accelerates ray tracing through

machine learning. Source Nvidia . 144

xx List of Figures

Fig. 7.7 Fast 8- and 4-bit integer processing improves inferencing
performance and power efficiency. Source Nvidia 145

Fig. 7.8 Turing’s RT Core focuses on determination of cumbersome
ray/object intersection. Source Nvidia . 146

Fig. 7.9 Hybrid rendering pipeline . 148
Fig. 7.10 Blinn’s law of render time versus processor performance

over time. 152
Fig. 7.11 Real-time renderings on the RPU prototype using a single

FPGA running at 66 MHz and 512 � 384 resolution: SPD
Balls (1.2 fps, with shadows and refractions), a conference
room (5.5 fps, without shadows), reflective and refractive
spheres-RT in an office (4.5 fps), and UT2003 a scene from a
current computer game (7.5 fps, precomputed
illumination) . 155

Fig. 7.12 PowerVR ray tracing delivering real-time, photorealistic
rendering. 156

Fig. 7.13 Physically based rendering for the whole team: Nvidia’s 56
TFLOPS (and $50,000) Quadro VCA. Source Nvidia 158

Fig. 7.14 Dynamically aligned structures versus conventional
Path Tracing . 160

Fig. 7.15 Real-time ray-tracing performance comparison.
Source Adshir . 161

Fig. 7.16 Cloud-based visualization car design concept.
Source Autodesk. 162

Fig. 7.17 Rendering created in REDsdk 4.3; note the cloudy skies
in the background. Source intrimSIM . 164

Fig. 7.18 OSPRay parallel rendering on TACC’s 328 Megapixel
Stallion Tiled Display. Source Intel . 166

Fig. 7.19 Suplex development rendering. Source Super-Cheap
Architectural Renders . 172

Fig. 7.20 “Tribute to Myrna Loy” by Ive (2008). The figure is Vicky
4.1 from DAZ. The author, Ive, created it with Blender by
using all images of her that he could find as reference.
Rendered with POV-Ray beta 25 using 7 light sources
(and the “area_illumination” feature) . 174

Fig. 7.21 Scene from the updated LuxRender workload. 175
Fig. 7.22 Real-time ray tracing promises to bring new levels of realism

to in-game graphics. Source Underwriter Labs 177
Fig. 7.23 Blender’s Cycles six benchmark test scenes 178
Fig. 7.24 V-Ray benchmark tests. Source Chaos Group. 178
Fig. 8.1 Rendering in the cloud using GPUs. Source OneRender 182
Fig. 8.2 Ray-tracing taxonomy. 183

List of Figures xxi

Fig. 8.3 Start-up of ray-tracing companies over time 183
Fig. 8.4 An example of 3Delight capabilities. Source Illumination

Research . 185
Fig. 8.5 Country Kitchen by Blend Swap user Jay-Artist. 188
Fig. 8.6 Diffusion versus random subsurface scattering.

Source Autodesk. 191
Fig. 8.7 Creo Render Studio uses Luxion’s KeyShot (PTC) 194
Fig. 8.8 A demonstration of Indigo Renderer. Source Glare

Technologies/Indigo . 196
Fig. 8.9 A demonstration of fast flexible region rendering.

Source Glare Technologies/Indigo . 196
Fig. 8.10 RGB color curves. Source Glare Technologies/Indigo 197
Fig. 8.11 An example of sequence overrides which can render multiple

regions at once. Source Glare Technologies/Indigo. 198
Fig. 8.12 Maxwell’s ProRender comes with an extensive material

library (Maxwell) . 201
Fig. 8.13 Cinema 4D rendering in Vectorworks’ Renderworks

visualization program. Source Vectorworks 202
Fig. 8.14 A living room rendered using Iray. Source Nvidia 205
Fig. 8.15 Iray with artificial intelligence on and off. Source Nvidia 207
Fig. 8.16 Iray with virtual reality. Source Nvidia 207
Fig. 8.17 Physically based lighting. Source Nvidia 208
Fig. 8.18 Physically based material. Source Nvidia 208
Fig. 8.19 Changing impact of color control through a material.

Source Nvidia . 209
Fig. 8.20 Changing impact of distance control through material.

Source Nvidia . 209
Fig. 8.21 Changing impact of particle density. Source Nvidia 209
Fig. 8.22 Changing impact of change of index of refraction.

Source Nvidia . 210
Fig. 8.23 Comparison between photorealistic and interactive processes.

Source Nvidia . 210
Fig. 8.24 Light path expressions. Source Nvidia 211
Fig. 8.25 Nvidia’s ray-traced visualization of its proposed building

Endeavor. Source Nvidia . 212
Fig. 8.26 Abilities of the KeyShot program. The initial picture is the

input with the final picture being the last drawn image from
the tool. Source Luxion . 214

Fig. 8.27 KeyShot has increased stability and improved workflow
options. Source Specialized Levo by TB&O. 215

Fig. 8.28 Introductory image for Lumion 9. Source Act-3D B.V. 217
Fig. 8.29 Image showing the ability to use a hand-drawn outline.

Source Act-3D B.V. 218

xxii List of Figures

Fig. 8.30 Image showing the soft and fine shadows feature.
Source Act-3D B.V. 218

Fig. 8.31 Image showing the new grouping function of Lumion.
Source Act-3D B.V. 219

Fig. 8.32 Image showing the softening of hard images.
Source Act-3D B.V. 219

Fig. 8.33 Maxwell Studio has been used in several architectural
presentations . 223

Fig. 8.34 Before and after example of the denoising program.
Source Next Limit . 223

Fig. 8.35 Multilight offers the flexibility to change lights even without
a Maxwell license. Source Net Limit . 225

Fig. 8.36 Voxelized scarf model rendered using full multiple scattering
and an anisotropic scattering model (microflakes). Dataset
courtesy Jon Kaldoe and Manuel Vargas 227

Fig. 8.37 Golden dragon rendered with a model downloaded on
Archive 3D . 229

Fig. 8.38 Urban exterior modeled by Hai le. Sun and the sky are the
light sources. Cube map is courtesy of Spiney 229

Fig. 8.39 A BMW i8 downloaded model with an aluminum material.
Lightning is mainly from an environment map made by Emil
Persson . 230

Fig. 8.40 OctaneRender image of a living room. Source Otoy. 232
Fig. 8.41 OSPRay’s software stack (Intel) . 235
Fig. 8.42 Electronic Art’s SEEd Pico AI simulator using ray tracing.

Source EA . 237
Fig. 8.43 AMD’s out-of-core render (AMD) . 238
Fig. 8.44 AMD’s ProRender road map . 238
Fig. 8.45 A ray-traced image of glasses rendered in POV-Ray showing

the perfect reflections and refractions, as well as shadows.
Source Gilles Tran . 240

Fig. 8.46 Out-of-core geometry and textures. Source Redshift 243
Fig. 8.47 Without (left) and with (right) GI—notice the color bleeding.

Source Redshift. 244
Fig. 8.48 A scene out of Incredibles 2. Source Pixar/Disney 247
Fig. 8.49 Impact of MNEE on the image. Source Pixar/Disney 248
Fig. 8.50 Rendered by XPU, a massive scene from Coco (without

shaders and lights) . 250
Fig. 8.51 Sparkly ray-traced gems. Source FerioWorks 252
Fig. 8.52 Satellite tobacco mosaic virus molecular graphics produced in

VMD and rendered using Tachyon (John Stone) 253
Fig. 8.53 Architectural image rendered in V-Ray. Source Chaos 254
Fig. 8.54 Ray-traced image rendered in V-Ray for 3ds Max.

Source © Toni Bratincevic . 255

List of Figures xxiii

Fig. 8.55 Image rendered in V-Ray GPU. Source © Double Aye 257
Fig. 8.56 Screenshot of V-Ray for Unreal. Image courtesy

of Chaos Group . 259
Fig. 8.57 Screenshot of Project Lavina ray tracing 300 billion triangles

in real time. Image courtesy of Chaos Group 259
Fig. 8.58 Image rendered in V-Ray using VRscans scanned materials.

Source © Visual State. 260
Fig. 8.59 Procedural Stochastic Flakes material rendered in V-Ray.

Image courtesy of Chaos Group . 261
Fig. 8.60 Comparison of original versus denoised render using the

V-Ray Denoiser. Image courtesy of Chaos Group 262
Fig. 8.61 Image rendered in Corona. © Gustavo Coutinho Alves 263
Fig. 8.62 Fashion design firms use ray tracing and CAD mesh to design

perfectly fitting clothes. © 3D art-studio Pompidou 264
Fig. 8.63 Autodesk’s VRED supports ambient occlusions and baked

shadows. Source Autodesk . 265
Fig. 8.64 A frame from the War for the Planet of the Apes movie,

rendered in Manuka. Image courtesy of Weta Digital, ©2017
Twentieth Century Fox Film Corporation.
All rights reserved . 270

Fig. 8.65 Astro, Pratik Solanki. 272
Fig. 8.66 Cycles is used as a production rendering engine for animation

movies. Frame from “Agent 327, Operation Barbershop”—
by Blender’s animation studio . 273

Fig. 8.67 Blender was used for concept art in Jurassic World.
Source Jama Jurabaev . 276

Fig. 8.68 Daz 3D’s Genesis 8 figure platforms produces photorealistic
3D composition results. Source Daz 3D 277

Fig. 8.69 Daz 3D’s renderer is well known for its realistic human and
non-human figures. Source Daz 3D . 278

Fig. 8.70 Dimension enables people with absolutely no 3D skills to
create a composite shot of a 3D model within a 2D
environment. Source Adobe . 280

Fig. 8.71 (Left) Interactive view of the design mode canvas. (Middle)
The Render Preview window. (Right) A final render
produced from Render Mode. Source Adobe 281

Fig. 8.72 A demonstration of preview rendering. Source SideFx 283
Fig. 8.73 A demonstration of Mini Render. Source SideFx 283
Fig. 8.74 A demonstration of sampling. Source SideFx 284
Fig. 8.75 A demonstration of volume modification. Source SideFx 285
Fig. 8.76 Houdini’s white-water simulator renders video-realistic

waves that interact with rocks, sand, and one another.
Credit Igor Zanic . 285

xxiv List of Figures

Fig. 8.77 Unreal Studio has expanded its material library’s support.
Source Epic . 289

Fig. 8.78 Jacketing and defeaturing in Unreal Studio. Source Epic 290
Fig. 8.79 Ray tracing a model in Visualize. Source Dassault

Systèmes . 292
Fig. 8.80 Lighting makes all the difference in a rendering of a shiny

product with no flat surfaces . 293
Fig. 8.81 Dassault’s 3Dexperience UI logo . 295
Fig. 8.82 PhotoView 360 example rendering. Source SolidWorks 296
Fig. 8.83 Realistic ray-traced Corvette rendered using 3DEXCITE

Deltagen. Source Dassault Systèmes . 297
Fig. 8.84 Heterogeneous media shading. Source Corona Renderer. 301
Fig. 8.85 Old “on surface” versus new “inside volume”.

Source Corona Renderer . 302
Fig. 8.86 Material Library Update. Source Corona Renderer 303
Fig. 8.87 Motion blur example. Source Corona Renderer 303
Fig. 8.88 A soap bubble rendered with spectral wavelength rendering.

Source Cebas . 305
Fig. 8.89 Lux and Love by Charles Nandeya Ehouman (Sharlybg)

using BBBB and LuxCoreRender . 308
Fig. 8.90 Using Maxwell renderer in SketchUp. Source Next Limit 309
Fig. 8.91 Sample picture for V-Ray tool integration for 3ds Max.

Source Chaos Group . 311
Fig. 8.92 Sample picture for V-Ray tool integration for

SketchUp. Source Chaos Group . 312
Fig. 8.93 Progressive rendering of the imperial crown of Austria.

Model courtesy of Martin Lubich, http://www.loramel.net 315
Fig. 8.94 A Julia set drawn with Nvidia OptiX—this is a sample

of the SDK . 316
Fig. 8.95 Nvidia’s OptiX block diagram . 317
Fig. 8.96 Previous lightmapping solutions would take hours to compute

even moderate-sized scenes. Expansive outdoor
environments could take days. Source AMD 319

Fig. 8.97 Baking hardware performance comparison. Source AMD. 320
Fig. 8.98 Ray-tracing hardware performance comparison.

Source AMD. 321
Fig. 8.99 CL3VER real-time cloud rendering. 322
Fig. 8.100 How OneRender works. Source OneRender 323
Fig. 8.101 Before and after: a typical SketchUp architectural model

before (above) and after (below) using Bloom Unit.
Source Migenius . 324

Fig. 8.102 Video of 64-byte ray caster. Source Hellmood 327
Fig. 8.103 Bare metal x86 ray tracer . 328
Fig. 8.104 Meatball ray tracer . 329

List of Figures xxv

http://www.loramel.net

Fig. A.1 A young Hare but Albrecht Dürer, 1502.
Source Wikipedia . 333

Fig. A.2 Rendering examples using a hare: a shadow casting, b ray
casting, c Whitted ray tracing, and d Path Tracing.
Source Ray Tracing on Programmable Graphics Hardware
(Purcell et al. 2002) . 334

xxvi List of Figures

List of Tables

Table 5.1 Biased versus unbiased in different rendering schemes 67
Table 7.1 Lower-cost Turing spins leverage same proportion of Tensor

and RT Cores . 147
Table 8.1 Product comparison of RT 4 and Renderer 4

(Source Glare Technologies/Indigo). 198
Table 8.2 Cycle’s features by processor type . 274
Table 8.3 Software comparison . 278
Table 8.4 A table of programs [y] with plug-ins [x] 299
Table A.1 Ray tracing plug-in programs . 332
Table A.2 Technical papers on ray tracing published since 1982. 336
Table A.3 Books on ray tracing . 337

xxvii

Chapter 1
Preface

Abstract The goal of this book is to explain the many methods of rendering a
digital image in a computer and what is ray tracing. Ray tracing is one part of the
continuum of rendering solutions on the path to a perfect photorealistic image. Ray
tracing has several cousins with a similar name such as Path Tracing and ray
casting, which sometimes get used interchangeably; that is not correct and can be
confusing. One of the objectives of this book is to establish clear delineation
between those other technologies whose only common element is a word, but not
the technology, algorithm, or result. Ray tracing holds the promise of providing us
with the most cost-effective photorealistic images possible. The process has been
criticized for being such an enormous consumer of computer resources, but new
developments in hardware and algorithms are changing that and making real-time
ray tracing not only possible but practical.

The ambition of artists, film producers, product designers, and engineers has been
to simulate an image of a scene, a story, a product or a building before it was ever
actually constructed. Architects have built scale models of buildings, as have car
designers to convey the ideas they are trying to express. Film and game producers
and directors have used storyboards to try and convey the sense of the movie or the
game. And advertisers want to create perfect renditions of their product in the best
possible light. In addition, product and machinery designers want to find the
weaknesses in a design before it is ever built. Likewise, movie directors want to see
what the final imager will look like before the arduous task of postproduction or to
create a whole new world that does not actually exist. And marketers want to show
potential customers what a product will look like to stimulate demand for it. At the
same time, all these desires are also used for testing ideas. Should a character in a
movie have green skin, have long hair or no hair? Will the light reflect from the
windows of the proposed building blind its neighbors, or perhaps cast such a
shadow the neighbors will never see sunlight again? The testing of such ideas is
called virtual prototyping in manufacturing and pre-viz (previsualization) in the
movie and TV industry.

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-17490-3_1

All of those people, who are in various stages of the pipeline to bring the
consumer or customer the final product need photorealistic images to tell their story,
sell their project or sell their product. And they need those images, or video, in a
cost-effective and timely manner. Ray tracing can, and does do that, and as things
go faster, ray tracing will be called on more, by more people to do it more often.

There are two concepts presented in this book about visual perception. One is the
concept of a pipeline: proposal and presentation to sell the idea, design of the
proposed thing, manufacturing of the thing, and marketing of it. That last stage,
marketing of it, often runs in parallel with the manufacturing stage, so the
prospective customer is ready and hopefully anxious to see of getting the thing.
Think of how far in advance movie previews are now, or how far in advance a
skyscraper or bridge design is from the time it is built.

The other concept objective of the book is to explain that as good as ray tracing
is, and it is not the end point. It is but one step on the path to computer-generated
images that are so realistic, or fantastic that one can’t distinguish them from the real
or the imagined thing. The human visual system and supporting senses are the most
amazing detectors in the universe and can detect in a fraction of a section the
slightest mistake, this is sometimes referred to as the uncanny valley, but it goes
beyond that. Photorealistic, physically accurate ray-traced images are almost per-
fect, and yet, a trained eye can still spot the discrepancies, so we will continue down
the continuum in pursuit of the perfect image (Fig. 1.1).

Fig. 1.1 Saya. Source Teruyuki and Yuki Ishikawa

2 1 Preface

Teruyuki and Yuki Ishikawa are a husband-and-wife team of freelance 3D
computer graphics artists from Tokyo. One of their recent creations is a character
named Saya, and she is the star in the movie they are self-producing. According to
the artists, the hardest part was achieving the moist, soft, and translucent skin of
girls this age. However, the hair is not (yet) up to their expectations.

Every non-diagram image in this book is a ray-traced image, and it was difficult
to not just fill the book with beautiful illustrations.

This book will provide insight for technologists, marketing and management
people, educators, academics, and the public who are interested in photorealistic
concepts, history, and practice, and the visual and sensory science behind the
improvements in advanced display systems. From the explanation of the concepts
of rendering issues, through the detailing of visual display and informational access
systems, this book provides the reader an understanding of the issues related to
defining, building, and using (with respect to our senses), our perception of what is
represented, and ultimately, how we assimilate and react to this information.

The following chapters get a little technical but do not delve into the esoteric and
abstract mathematics of ray-tracing algorithms. This is not a math book.

Finally, there is a discussion on some of the suppliers, take note—there are too
many, over 70, to list and discuss them all. However, so many of the suppliers have
such fantastic software with such clever tricks they simply had to be included. My
apologies to those left out and to the customers and fans of those left out.

Ray tracing will touch all parts of our lives, our society, and if it is done right, we
will never be aware of it, the images will be so perfect, so natural we won’t even
think about them. In the case of fantasy, the images will be so beautiful we will fall
in love with them or scared out of our shoes. If fantasy images are so scary that we
suspend disbelief about how the image was constructed and instead see it as a
magical and scary monster, the artists can pat each other on the back and go have a
beer.

Studying ray tracing is like spiraling down a Mandelbrot that reveals progres-
sively ever-finer recursive detail. Down and down I go into the never-ending rabbit
hole, finding one thing, only to learn about three others and on and on it goes—Jon
Peddie.

1.1 About the Cover

The cover image is of the World Trade Center in New Your city and was created by
Ferran Traité born in Spain and now located and living in New Jersey.

In 2018, I took a picture of the World Trade Center building, and the two of
them are shown together in Fig. 1.2.

For many readers, if I hadn’t pointed out that the image on the left was computer
generated, it would have been assumed to be a photograph.

1 Preface 3

1.2 Terminology and Definitions

I have tried to avoid technobabble and geek-talk, and (hopefully) all acronyms are
explained the first time they are used. There is an extensive glossary in the appendix
which I encourage you to refer to if you encounter a word that is not familiar or
ambiguous to you. One of the difficulties of writing a book on a technical subject is
to make it as easy as possible for any reader, but not so laborious in explanations it
would bore a more sophisticated or technical reader. I’ll let you decide how well I
did.

One of the most commonly used words, which is not a technical term but used as
a modifier for technical descriptions is mapping or mapped.

Mapped A term that is used often in computer graphics, which loosely means to be
fitted to something. One maps to a spatial distribution of (something). A texture
map is a 2D image of something, bricks, or wood paneling for example.

Fig. 1.2 Rendered and photograph of the World Trade Center

4 1 Preface

Texture mapping is the electronic equivalent of applying wallpaper, paint, or
veneer to a virtual computer graphics object—where a 2D surface (the texture map)
is wrapped around (fitted to) a 3D object. Then, the 3D object acquires a surface
texture (appearance) of the 2D surface. So the texture was “mapped.”

Mapped is also used in the term, bitmapped. That is a way of describing a
surface, such as a computer screen (display) as having several bits or points that can
be individually illuminated, and at various levels of intensity. A bitmapped 4K
monitor would have over 8-million bits or pixels.

Bump-mapped is a technique for creating the appearance of depth from a 2D
image or texture map. Bump mapping gives the illusion of depth by adding surface
detail by responding to light direction—it assumes brighter parts are closer to the
viewer. It was developed by Jim Blinn and is based on Lambertian reflectance
which postulates the apparent brightness of a Lambertian surface to an observer is
the same regardless of the observer’s angle of view.

Normal maps can be referred to as a newer, better type of bump map. A normal
map creates the illusion of depth detail on the surface of a model, but it does it
differently than a bump map that uses grayscale values to provide either up or down
information. It is a technique used for faking the lighting of bumps and dents—an
implementation of bump mapping. It is used to add details without using more
polygons.

MIP-mapped. A mipmap is one of a series of different versions of the same
texture, each at a different resolution. The one closest to the viewing image is
chosen, which saves computation time.

1.2 Terminology and Definitions 5

Chapter 2
Introduction

Abstract Ray tracing isn’t new, nor is it the end-point in realistic, physically
accurate rendering. In fact, it is a subset of global illumination, and partner with
ray-casting, path-rendering, and other techniques. Ray tracing can be traced back to
the 1950s, and even further, but it came into its own in the 1980s with the
development of faster computers, more of them, and new algorithms and discov-
eries. As with many technologies, it got its start due to military research.

Ray tracing is the most essential general-purpose rendering technique available. It is
not the only rendering technique, nor is it the fastest, but it can be the most accurate
and can be the most photorealistic. It is one method within a continuum of methods
of rendering a computer-generated image, but it has revolutionized rendering for
art, gaming, engineering, and architecture.

Written for anyone who wants to learn about the ray-tracing market, this book
discusses the suppliers, the programs, and the technology. This book is not intended
as a tutorial on ray-tracing mathematics or physics, or how to use ray-tracing
software. It includes information on the many suppliers in the field who will affect
the way the rendering market will develop in the future. And, it includes some
historical backgrounding to explain how the technology has gotten to this point of
being a core piece of the rendering process and as a basis for our predictions of the
future of rendering.

Ray tracing isn’t just about shiny surfaces; there are all types of uses for and
styles of ray tracing; one researcher likens it to writing because it can accommodate
a wealth of different styles

Also, ray tracing, and rendering, in general, is used in all stages of a project or
product from concept selling/proposal, through manufacturing/production, to
marketing. Ray tracing gets used in every step of the pipeline.

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-17490-3_2

2.1 Who Needs It?

For certain types of design, ray tracing is not desirable but demanded. For example,
in the design of optical systems (lens, mirrors, and other components), jewelry
design, lighting fixtures, and lamp design. In addition to such physical designs,
there is a field of ray tracing for wave and field design in radio and acoustics. In
these examples, the design, and resultant images and data must be absolutely
physically accurate and depending upon the consumer of the data and images,
photorealistic.

Designers of almost any product need a physically accurate representation of a
design, both for the concept and production. From automotive, architecture, and
aerospace, to fashion, film, and furniture, from games, TV, and consumer products,
to packaging and medical diagnostics.

In the design of products from airplanes to jewels an engineer and some cases
also a scientist is involved. In advertising, film, TV, games and product packaging,
a 3D artist, CG artist, and a CG supervisor are involved, and a marketing people
and directors are looking over their shoulders making suggestions and asking
questions—lots of players get into the act in the pursuit of a beautiful image.

In the past 20 years or more in the film industry, a 3D render pipeline was
designed to deliver frames split up in layers or passes for the compositing
department. In the compositing stage, the passes then allowed artists and directors
to tweak (adjust) the lighting and looks of environments and layering of images to
allow or create effects like depth-of-field (DOF) and motion-blur to be applied
efficiently.

In the case of movies and TV, a beautiful picture doesn’t always mean it is
physically accurate or obeys the laws of physics other than light. A crazy-shaped
car, house, or airplane may defy gravity and credibility, but regardless, light has to
be reflected or absorbed physically correctly; so, viewers can buy into the fantasy.

For 3D animation and film, the main pipeline change thanks to affordable ray
tracing is that lighting artists and designers now can visualize and prepare shots
with high-quality light simulation and camera effects such as DOF and motion-blur
(Mblur) from suppliers like OTOY. That eliminates for a large part the need for
compositing—traditionally, the largest department in film production where
everything comes together. The concepts for M-blur in ray tracing are rooted in
interactive distribution ray tracing, which in turn trace their origin to Cook’s 1986
distributed ray-tracing paper.1

The animation film Piper (2017) made by Pixar was one of the first using this
technique.2 Blender did the same in some of their shorts such as Operation
Barbershop (2017).3 That means that most renders are, or will become single-pass

1Cook (1986).
2https://RenderMan.pixar.com/stories/piper.
3https://www.youtube.com/watch?v=mN0zPOpADL4.

8 2 Introduction

https://RenderMan.pixar.com/stories/piper
https://www.youtube.com/watch?v=mN0zPOpADL4

renders, with only some extra buffers saved for special effect compositing and color
grading. That will save time, the programs are easier to sue, and the costs of the
software are or will be less as well.

2.2 Ray Tracing Isn’t New

Ray tracing programs first appeared in 1979 with the (Army’s) Ballistic Research
Laboratories’ BRL CAD program developed by the US Army Research Laboratory
in at Aberdeen Proving Ground, Md.4

Part of BRL-CAD was lib—the library that contained the geometry support,
including data representations for the primitives, support for raytracing, and binary
I/O support for CSG geometric descriptions (Fig. 2.1).

The first public release BRL-CAD as a package was in 1984. BRL-CAD became
an open-source project in December 2004. The foundation for BRL-CAD dates to
the MAGIC system and Appel’s work in the late 1960s (see Sect. 2.2). BRL-CAD
is still in use and available as an open-source software program (Fig. 2.2).

BRL was disestablished in 1992 and its mission, personnel, and facilities were
incorporated into the newly created US Army Research Laboratory (ARL).
BRL-CAD ray tracing has been steadily developed and now includes advanced
features such as global illumination.

The first commercially available ray-tracing program was Mental Images’
mental ray program in late 1987 based on a patented deterministic quasi-Monte
Carlo sampling methodology which many think is superior to the stochastic-based
Monte Carlo methodology. Mental Images were founded in April 1986. Pixar
incorporated in February 1986, spinning off an existing group from Lucasfilm.
RenderMan became a public specification in 1988 and a commercial product
shortly thereafter.

From the video-side of the industry, LightWave 3D was an early 3D modeling,
animation, and rendering tool introduced by NewTek as part of its Video Toaster
product. LightWave 3D transformed TV graphics. The precursor to LightWave 3D
was Videoscape5 written by Allen Hastings and the 3D Modeler written by Stuart
Ferguson. Both programs were sold by Aegis Software. In 1987, Videoscape 3D
had “now with fast ray tracing like results” on the box. In 1990, Aegis Videoscape
for the Amiga, and Modeler, written by Stuart Ferguson and designed to work with
Videoscape, were integrated into the NewTek’s Video Toaster and rebranded
LightWave 3D. So, from the standpoint of LightWave 3D, ray tracing was always
in the product.

4BRL-CAD Overview https://brlcad.org/wiki/Overview.
5VideoScape3D, Personal Computer Museum, https://pcmuseum.ca/details.asp?id=37761&type=
software.

2.1 Who Needs It? 9

https://brlcad.org/wiki/Overview
https://pcmuseum.ca/details.asp?id=37761&type=software
https://pcmuseum.ca/details.asp?id=37761&type=software

Fig. 2.1 BRL-CAD overview

Fig. 2.2 Famous SGI cube
logo was created using
BRL-CAD ray-tracing
program. Credit Sean
Morrison

10 2 Introduction

2.3 A Little History

Undoubtedly, the rendering market is one of the more glamorous segments of the
computer industry. Rendering is the technology that underlies beautiful computer
graphics images, including TV and movie special effects, animations, games,
architectural renderings, design visualizations, scientific visuals, advertisements,
medical, and more. I like to say I follow the pixel. In the case of rendering, ray
tracing is the technology that polishes the pixels.

Rendering is a well-understood technology that benefits from continuous
fine-tuning and improvement. For more than 40 years, rendering has mainly been
limited by the hardware capabilities of computers and associated processors. In the
meantime, many good renderers have been developed. The trick has been to
develop and maintain software that works with the major content creation programs
(i.e., CAD, media and entertainment, etc.) while continuing to take advantage of
new technology (hardware and algorithms) as it is incorporated into such content
creation programs and people’s workflows.

Rendering has become the subject of renewed interest as dramatic performance
improvements have come from the hardware industry. Not only are processors
becoming more powerful, new programming methods are being developed to more
efficiently unlock the capabilities of parallel processors for repetitive jobs. The
arrival of multi-core processors and application program interfaces for graphics
processing units processing has opened the doors for increased interest in
ray-tracing technology. The basic technology isn’t new, but the combination of
clever programming and powerful hardware is bringing advanced rendering into the
mainstream. There have also been dedicated hardware ray-tracing processors
introduced into the market (APIs, GPU).

There are two primary types of rendering: rasterization (also known as scanline
or polygon rendering) and ray tracing. Both work with the same basic geometric
models. There are several companies offering ray-tracing software and hardware,
often with clever and unique procedures that differentiate based on performance,
speed, and rendering accuracy. All major programs for CAD and 3D modeling have
a built-in rasterization capability, and the suppliers are adding ray tracing. Many
application software suppliers also work with independent ray-tracing options.
Rasterization is well understood and considered the basic or primary technique. The
fundamental rasterization algorithms do not accurately display shadows, material
effects, and lighting in order to provide fast rendering of the image. Baked-in effects
are often used in game development to save compute time. Rasterization techniques
may be used in conjunction with ray tracing where they can add a pleasing quality
and/or save on rendering time.

Ray tracing is a rich, robust, and highly competitive market and is a subsegment
of other markets. No single ray-tracing program, whether independent or integrated,
is capable of serving all the application needs for ray tracing because of limitations
in material libraries and possible integration of global illumination and voxels.

2.3 A Little History 11

Therefore, the supplier(s) of ray-tracing software have to carefully pick and choose
their target markets to avoid wasting precious resources learning the hard way.

This book will not go into any of the mathematical basics for ray tracing or any
code (program) examples. History will only be discussed when necessary to make a
point, such as how long computer-based ray tracing has existed and how it may
have evolved.

2.4 Ray Tracing not New

As mentioned above, general credit for the first published use of ray-casting for
visualization is given to Arthur Appel for the work described in his paper, “Some
techniques for shading machine renderings of solids,” in May 1968, if anyone did it
before him, they did not publish their work (Fig. 2.3).6

And, the earliest recorded reference to ray-tracing system is the computerized
ray tracer used at the Ballistic Research Laboratory (BRL) for ballistic analysis
developed by Mathematical Applications Group, Inc. (MAGI).

The original MAGIC program (Mathematical Applications Group, Inc., code) is
described as, “A Geometric Description Technique Suitable for Computer Analysis

Fig. 2.3 Appel projected
light at a 3D computer model
and displayed the results on a
plotter using a form of tone
mapping to create light and
dark areas. Source Arthur
Appel

6Appel (1968).

12 2 Introduction

of Both the Nuclear and Conventional Vulnerability of Armored Military Vehicles”
published in August 1967 (Walter et al.).7 MAGI adapted MAGIC for visualization
and thus played an important role in the commercial development of using tracing
for visualization of combinatorial solid geometry in computer graphics
(CGI) (Fig. 2.4).

However, it should be pointed out Walter et al., were not trying to generate a
photorealistic image, but rather were trying to demonstrate the application of
computer analysis of both the nuclear and conventional vulnerability of armored
military vehicles, and the rays they were concerned with were gamma rays.

The Army’s Ballistic Research Laboratory continued its work and developed the
Geometric Information for Targets (GIFT). While developing the algorithms,
observers acknowledged that the techniques could be prohibitively expensive in the
required computing time.

Fig. 2.4 Translucent Bradley fighting vehicle rendered in BRL-CAD. Source Sean Morrison
(2002)

7Walter et al. (1968). Corporate Author: Mathematical Applications Group Inc White Plains NY,
Work Performed Under Contract No. DAAD05-67-C-0041 for the Department of the Army
Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland.

2.4 Ray Tracing not New 13

In addition computational ray tracing is used for optical design, radio signals,
electromagnetic effects, survivability, and to avoid the computational complexities
of Maxwell’s equations in 1962.8 It is probable that manual ray tracing (starting at a
point and drawing lines to simulate some a physical effect) began in the art
community to understand perspective.9

It is interesting and relevant to note that the initial application of ray-casting
algorithms were for visualizing difficult mathematical calculations because now that
computers have become fast enough to make the techniques practical, ray tracing is
being explored for scientific visualization and analysis once again (Refer to the
Continuum for brief explanation of the difference between ray casting and ray
tracing, Sect. 4.3.1.5).

In 1979, Turner Whitted would elaborate on the ray-casting algorithms developed
in the 60s to introduce recursive ray tracing.10 Whitted followed the path of a ray
beyond the initial surface it hits. He said after a ray hits an object, it generates three
new rays, a reflection, refraction, and shadow, which can also be traced to greatly
improve realism. Whitted’s paper can mark the beginning of the pursuit to use a
computer to generate photorealistic and physically accurate renditions of 3D objects
in 3D space.

2.4.1 From Humble Beginnings

The Commodore Amiga microcomputer was introduced in 1985 and as it was
developed it became an ideal platform for graphics and animation with an expansion
port for video devices—the video slot. The Amiga supported Newtek’s Video
Toaster, one of the first all-in-one graphics and video editing packages. Video
Toaster and the Amiga gave people working on TV a low cost, computer-based
alternative for television graphics. The later addition of the Video Flyer by Newtek
made possible the first nonlinear video editing program for the Amiga.

The Amiga made 3D ray-tracing graphics available for the masses with Sculpt
3D. Before the Amiga, ray tracing was only available for dedicated graphic systems
such as Ramtek, Jupiter Systems, and IBM (5080).

One of the earliest ray-tracing demos on the Amiga was Eric and Cathryn
Graham’s program “The Juggler.” Eric rendered the frames in a ray tracer he wrote
called ssg, a Sculpt precursor. The rendered images were encoded in the Amiga’s

8https://en.wikipedia.org/wiki/Ray_tracing_(physics).
9Massironi, Manfredo, “The Psychology of Graphic Images: Seeing, Drawing, Communicating”
(Volume in the University of Alberta, Department of Psychology, Distinguished Scholar Lecture),
pp 79–83.
10Whitted (1980).

14 2 Introduction

https://en.wikipedia.org/wiki/Ray_tracing_(physics)

HAM display mode and then assembled into a single data file using a lossless delta
compression scheme similar to the method that would later be adopted as the
standard in the Amiga’s ANIM file format.11

The Amiga brought 3D raytracing graphics to the masses for the first time—Jeff Atwood

The juggler may seem primitive by today’s standards. Maybe it is, but it was
revelatory back in 1986.

2.5 Realism, Accuracy, and Functionality

There are no definitions or metrics of functional realism in computer graphics, or
the relationship between accuracy and fidelity in computer graphics images.
Accuracy refers to the correctness of the image with respect to some physically
measurable property of the scene such as radiance. Fidelity, on the other hand,
means: does the image tell the truth? Does it allow the observer to perceive
important properties of the scene with the same certainty that they could in the real
world? Although it is possible to measure accuracy with instruments, the only way
to measure fidelity is to see how well observers are able to perform meaningful
visual tasks using different kinds of images.

But, what about fantasy? What about animations that use ray tracing for global
illumination, shadows, reflections, and ambience? What about Cars? The Cars
films, the studio’s REYES (Render Everything You’ve Ever Seen) algorithm (see
Sect. 8.1.20), mixed with some ray-tracing techniques, had been used to deal with
shiny car surfaces in 2006.12 In 2013, Walt Disney Animation Studios revealed its
Hyperion path-tracing Renderer at Eurograph (Fig. 2.5).13

Fig. 2.5 Lightning McQueen
in Cars 2—circa 2011. Source
Wikipedia

11https://blog.codinghorror.com/real-time-raytracing/.
12Christensen et al. (2006).
13Eisenacher et al. (2013).

2.4 Ray Tracing not New 15

https://blog.codinghorror.com/real-time-raytracing/

The point being that although ray tracing is often presented as being the best
physically accurate means of producing a photorealistic image, in the case of
animations, games, and some advertisements, the rendered objects are not physi-
cally accurate; however, the way light is reflected from them is physically accurate.

2.5.1 Three Types of Realism in Computer Graphics

Margaret Hagen14 introduced the concept that there are different methods of por-
traying realism in which certain properties of a scene are accurately represented,
and others are approximated, abstracted, or omitted (Varieties of Realism,
Cambridge Press, 1986).

The point of this idea is that pictures can be realistic in some respects and not in
others. For example, Dürer’s “A Young Hare (see Appendix: Sect. A.2.1) is
extremely realistic, but not photoaccurate. However, the iconic Utah teapot is
geometrically accurate. Rendering methods can make its rendering photoaccurate
but not necessarily realistic (Fig. 2.6).

Although Hagen focused primarily on how the geometric aspects of scenes are
represented by images (see Appendix: Sect. A.2.2), her basic concept has been
expanded to three varieties of realism in computer graphics, which are:

• Physical realism—in which the image provides the same visual stimulation as
the scene;

Fig. 2.6 A hare versus a variation of the Utah teapot. Source Wikipedia

14Hagen (1986).

16 2 Introduction

• Photorealism—in which the image produces the same visual response as the
scene; and

• Functional realism—in which the image provides the same visual information as
the scene.

Each of these descriptions uses different criteria to determine if an image is
realistic, and therefore each one places different demands on the image generation
process. Together, they provide an evaluation criterion that can be used to appraise
the realism of a computer graphics rendering.

Physical realism is accomplished with ray tracing. Ray tracing is accurate and
realistic. Rasterization (also known as scanline rendering) can be pseudo-realistic.
Ray tracing takes time to compute and render, rasterization can be done in
milliseconds and at high resolution with lots of colors.

Examples of realistic, but not accurate images are those found in simulators and
games, animations, and special effects. Realism is defined as the fidelity of the
information the image provides.

Functional realism is defined as having to provide the same visual information as
the actual scene. Information in this sense means knowledge about the meaningful
properties in a scene, such as their shapes, sizes, positions, motions, and materials
that allow the observer to make reliable visual judgments (Fig. 2.7).

An image is a visual representation of a scene; in that it represents selected
properties of the scene to the viewer with varying degrees of realism or accuracy.
No single rendering solution will satisfy all users’ needs, nor is there on single
“right” solution. Most of the interesting extensions for nearly any renderer will be to
its material library.

Correct material modeling plays a vital role in a virtual prototype or simulation;
however, finding the appropriate abstractions and mathematical models to describe
light interaction is a difficult task. As the famous British statistician, George E.
P. Box (October 18, 1919–March 28, 2013) noted: “Since all models are wrong the
scientist cannot obtain a ‘correct’ one by excessive elaboration”.15

Many common materials show a complex behavior, being partly diffuse, partly
specular, reflecting, or emissive. A material may additionally exhibit transparency,
both in a diffuse and/or specular way. On passing through transparent media, light
refraction, absorption, and scattering occur.

These effects can be described with a bi-directional, reflection, and transmission
distribution function (BRDF or BRTF) that produces reflection and transmission
dependent on both incidence and outgoing light direction. Employing such detailed
methods is only needed for special tasks such as simulation light-redirection ele-
ments in daylight design. The use of BRDF, BRTF is mandatory in Path Tracing, a
stochastic Monte Carlo method of rendering 3D images and scenes such that the
global illumination is faithful to reality. The concept stochastic sampling was
introduced to computer graphics by Robert Cook in 1984.16

15Box (1976).
16Cook (1986).

2.5 Realism, Accuracy, and Functionality 17

2.5.1.1 Monte Carlo

Monte Carlo is an umbrella term for various stochastic algorithms because they get
used in several different ways. If for example, one has a large and complicated
system that you are trying to model and analyze, and it has a large set of elements,
one can count up every point of data and draw a statistical conclusions (known as
the brute force way), or one can randomly select a few elements of the data set that
are representative of the whole. A common example is a randomized medical test of
a few thousand patients. One uses a smaller set of values (samples), and although it
won’t give the exact data that could be obtained by checking every patient of
interest, the sampling is a very close approximation when the results are analyzed.
The critical step is to make sure that one picks well distributed samples, so each
class is representative of a wide range of patients. The result is one gets essentially
the same result with a lot less work gathering and processing data. That’s the basic
concept of the Monte Carlo method (e.g., George E. P. Box’s quote above).

Tied to that, the other main part of the stochastic analysis is some randomization
—that is, the generation of sample noise. Noise is important because it breaks up
(disturbs) regular patterns in whatever one is sampling. If one samples something
that changes with a frequency similar to the sampling frequency, then the results
can become homogeneous, and details missed in-between. Monte Carlo sampling
helps prevent that. So, noise is employed to break up aliasing artifacts.

Fig. 2.7 In animation you want perfect reflections and shadows, but the objects may be pure
fantasy: Toy Story. Source Pixar Wiki

18 2 Introduction

For the most common cases of practical simulations, a set of straightforward
algorithms exists that treats each of the above-mentioned aspects separately.
Material description then can be done with a few parameters for diffuse reflection,
specularity, transparency, etc.

As mentioned, certain illumination algorithms and reflective or translucent
materials may require more rays to be recast into the scene. Material definitions
may also provide an emission function—i.e., radiation not just reflection or
refraction of light.

One place where stochastic sampling is employed is for hair where there are
more fine strands than one would like to calculate the geometry of, and which are
too small for individual pixels. It is used in image sampling techniques like shadow
filtering to generate the penumbra across multiple frames. Also, in screen-space
reflections, which is the form of 2D ray tracing.

So yes, a major focus of the renderer has been shifted to being more selective in
where to perform major and complex calculations, and a large amount of frame time
for filtering, denoising, and de-aliasing the in final image. And, this comes with the
benefit of allowing those calculations done less frequently, to be much more
sophisticated.

As CPU and GPU computing power increases, interactive ray tracing will be
able to provide higher visual quality. However, for that to be realized, interactive
and offline systems must have an identical description of materials.

2.5.2 Stylistic Versus Photorealistic

One of the main points about ray tracing is that ray-tracing produces physically
accurate images and that they can be photorealistic depending upon the desires of
the artist and producer. For example, BMW wants a perfectly accurate image that is
photorealistic. However, Pixar wants a physically accurate image (for the reflec-
tions off of their cars) and do not want it to be photorealistic, but rather stylistic.

Stylistic is possibly more challenging because if the image is not physically
accurate (to the fantasied model), then the results creep into the uncanny valley, the
illusion is broken, and disbelief sets in—the death of storytelling and
immersiveness.

Physically accurate means the light behaves correctly on the objects in a scene—
it doesn’t mean the scene is necessarily physically accurate. In an animation, or
special effects driven scenes, the laws of physics, especially gravity, may be
completely wrong. People and animals don’t walk on air for a few steps before
failing. Their bodies don’t stretch as a chasm opens up beneath them, and trucks
don’t flip up into the air.

2.5 Realism, Accuracy, and Functionality 19

2.5.2.1 Sometimes You Can’t See It

Jama Jurabaev the renowned artist from Tajikistan, and now at Lucas Arts, did a
series of treatments using 3D modeling assets from Terminator 6 (yes—six). The
images used Blender for the 3D modeling and Otoy’s GPU-enabled ray-tracing
program. Take a look—no reflections, but the light in the scene is physically
accurate, and the image is stylistic (Fig. 2.8).

You can see more of Jama’s work here: https://tinyurl.com/y7dskr5t. And in one
of his dark moody cuts, you can see shiny on a robot (Fig. 2.9).

However, what most people think of when the subject of ray tracing comes up is
either shiny spheres or a dazzling automobile. The options are actually much
broader.

Fig. 2.8 Ray tracing used in stylistic fantasy film, “Terminator 6”. Source Jama Jurabaev

Fig. 2.9 Ray-traced robot before (left) and after environmental layering (right). Source Jama
Jurabaev

20 2 Introduction

https://tinyurl.com/y7dskr5t

2.5.2.2 The Payoff of Ray Tracing

Ray tracing saves the automotive industry millions of dollars by avoiding photo-
shoots—the sheet metal and plastic panels that make a Mercedes look like a
Mercedes and not a Cadillac or Volvo, and vice versa.

The ability to create completely realistic content with ray tracing has forever
changed advertising allowing digital models to be used even before the real cars
comes off the assembly lines, putting cars in impossible situations, multiplying
them, anything the imagination demands. Cars are the most obvious example, but
the revolution is evident throughout advertising (Fig. 2.10).

Automobiles are perfect specimens for ray tracing because they do not have any
flat surfaces. Also, many automobiles have multi-layered paint which adds to the
complexity of creating a physically accurate representation of the vehicle.

2.5.2.3 The Need for Ray Tracing

In the movies, the FX scenes couldn’t be done without ray tracing. The animations
couldn’t be done. That is not to say animations aren’t done without ray tracing, just
that the big box office titles need and use ray tracing extensively.

Almost no consumer product is proposed, designed, virtually prototyped,
manufactured, or marketed without ray tracing.

Fig. 2.10 Car design is one of the most popular and demanding ray-tracing applications (Soviet
Moskvich 412—1974, Daniartist90)

2.5 Realism, Accuracy, and Functionality 21

There are over 69 ray-tracing programs. That leads to two conclusions:

1. There are too many suppliers and there will be consolidation—picking a winner
could be tricky.

2. The average age of the supplier companies is 18, not a start-up industry, so there
must be plenty of demand (Fig. 2.11).

Another point of view is there is no single answer, each program has some
feature (that the others don’t) and is valued. And, that is really the correct
conclusion. Many organizations, especially the film, TV, and advertising industries
use multiple ray-tracing programs in their productions. A scene, whether for a
movie, TV advertisement, or show, or an advertisement in a magazine, will have
multiple layers of effects. A layer for water, one for smoke, one for character’s skins
and another for their hair or eyes, and layers for the important objects in the scene.
Each item will have a different look and feel, and make use of a particular, and often
unique material, maybe one that isn’t from this planet. And no single ray-tracing
program has or will ever be able to get that span of elements, or materials. So,
several ray tracers get used for a single image, scene, or frame. There are ray-tracing
programs that are used exclusively for gems, some just for clothing and fashion, a
couple just for leather, and a couple for layered automotive paint as examples.
Furthermore, new ray-tracing techniques continue to be invented, with new aca-
demic publications appearing in multiple industry conferences each year. These
ideas help spur innovation and competition in the industry.

Fig. 2.11 Ray-tracing
programs

22 2 Introduction

The uniqueness of many of the programs ensures their survival, but at the same
time establishes the limit to their total available market and growth prospects. The
purveyors of ray-tracing software—and their users—are artisans. They are not, nor
will they ever be, mass producers like Microsoft, SAS, or Sales Force. That is the
charm, and the limitation of the segment—may it never change.

2.6 Technical Papers and Books

More papers, patents, and Ph.D.’s have been written and awarded on ray tracing
than any other computer graphic technique. I have identified 8 books and 786
papers that have been written on ray tracing since 1982 (see Appendix). The
number of papers peaked in 2007 (56), and the curve falls off in 2018, because I
stopped collecting data in late-2018. With the advent hardware, ray-tracing accel-
erators introduced I expect the paper submittals to increase (Fig. 2.12).

Ray tracing is a subset of the rendering market. The rendering market is a subset
of software for larger markets including Media and Entertainment (M&E),
Architecture, Engineering and Construction (AEC), computer-aided design (CAD),
scientific, entertainment content creation, and simulation-visualization. Not all users
who have rendering capabilities in their products use it. At the same time, some
products have been developed solely as rendering tools, and there are products that
include 3D modeling and animation and rendering capabilities, and they may be
used primarily for rendering, primarily for modeling, or primarily for animation.

Fig. 2.12 Papers on ray tracing published in academic journals since 1982

2.5 Realism, Accuracy, and Functionality 23

Because ray tracing is so vital, and at the same time computationally burden-
some, researchers and organizations have spent years and millions of dollars trying
to speed it up. A typical ray-traced scene on just an old-fashioned HD screen can
tax a CPU so heavily the image can only be updated maybe every second or two—
certainly not the 33 ms seconds needed for real-time rendering.

It used to be that GPUs couldn’t help much because one of the characteristics of
ray tracing is it has no memory, and every frame is a new frame, so the compu-
tational load is immutable. Also, the branching that occurs in ray tracing defeats the
power of a GPU’s similar-instruction, multi-data (SIMD) architecture. Things have
changed.

It’s not just about making things look better, but about communicating more effectively

This book is about geometry-based ray tracing and does not embrace field,
optical, audio, simulation, or other non-3D (virtual or real) ray-tracing applications
or software.

Ray tracing does occur during the simulation process in programs like Nvidia’s
OptiX. OptiX allows one to control which rays are traced, just not how they are
traced. Such programs are not by nature a modeling software, but a simulation
program where 2D patterns get rendered in the 3D plane. While one can import and
export 3D objects from the program, it is not like the modeling capabilities in
SolidWorks, Rhino, Maya, and others.

2.7 Material Libraries Critical

Before 2015, all ray tracer engines came with their own materials libraries.
Cataloging the characteristics of all the types of materials in the world is beyond the
resources of any company’s ability to develop and support. Moreover, the lack of
standards has held back any cooperative development in the industry; however, a
few companies have agreed to work together and share their libraries (Fig. 2.13).

I believe existing libraries will become more open and the most ray-tracing
engines will be able to avail themselves of a large library of materials. Some of the
methods and sources of material libraries are discussed further at Sect. 5.2.

2.8 Rendering Becomes a Function of Price

I expect to see 3D rendering become a capability offered as an online service. It is
not altogether clear what effect this will have on the market; however, I believe it
will result in increased use of ray tracing and lower the cost to an as-needed basis. It
also offers the promise of being able to apply vast quantities of processing power
limited only by the amount of money the user is willing to pay. Ray tracing will
become time (to render a scene) divided by cost.

24 2 Introduction

That will, and is today, bringing down the time to generate a ray-traced frame for
an animation for example, but not quite to real-time ray tracing at 4K or beyond just
yet—however, real-time is within our grasp today.

2.9 Shortcuts and Semiconductors—The Need for Speed

Who cares about ray tracing and whether it is fast or slow?
One of the main points about ray tracing is that ray tracing produces physically

accurate images and that they can be photorealistic depending upon the desires of
the artist and producer. For example, BMW wants a perfectly accurate image that is
photorealistic. However, Pixar wants a physically accurate image (for the reflec-
tions off of their cars) and do not want it to be photorealistic, but rather stylistic.

Stylistic is possibly more challenging because if the image is not physically
accurate (to the fantasied model) then the results creep into the uncanny valley, the
illusion is broken, and disbelief sets in—the death of storytelling and
immersiveness.

Physically accurate means the light behaves correctly on the objects in a scene—
it doesn’t mean the scene is necessarily physically accurate. In an animation, or
special effects driven scene the laws of physics, especially gravity, may be
completely wrong.

The Cost of Ray Tracing But, when comparing the computational and hardware
costs of ray tracing, some people have said, that using ray tracing simply to achieve
shininess is unnecessary given the excellent quality that precomputed “baked-in”
lighting techniques can produce.

Fig. 2.13 An example of various materials applied to the same object. Source Epic

2.8 Rendering Becomes a Function of Price 25

However, baked-in lighting does not move, it is static, it is only used for distance
shading or games where the time of day does not change.

One can also use environment probes which renders the environment from a
specific point in space. They are used to write the results to a texture map for an
overlay of reflective surfaces, like water or windows, but again it is static. If one has
a line of trees next to a body of water the fake reflections (of the tress and sky) only
line up from a very specific angle, if you move away from the scenery moves but
the reflection doesn’t.

The Payoff of Ray Tracing The advantage is for content creators. Not having to
create art with baked lighting and fake reflections, and workarounds for effects
saves a lot of time that can be dedicated elsewhere, thus improving the graphics in
other areas as well as giving us more accurate reflections and lighting.

Investigations to find clever ways to reduce the computational load by using
intelligent algorithms to examine a scene and deterministically allocate what objects
are visible, and which surfaces need rendering will continue.

Hybrid techniques are being improved and evolved where only certain portions
of a scene are ray traced. Objects in the distance, for example, don’t need to be ray
traced; flat, dull-colored objects don’t need it (Fig. 2.14).

Semiconductors are being developed that specifically accelerate ray tracing.
Imagination technologies has a ray-tracing engine that when combined with the
advanced techniques just described can render an HD scene with partial ray-traced
elements several times a second. Also, Nvidia has introduced ways to optimize a
standard GPU for ray tracing.

Fig. 2.14 Use of variance-based adaptive sampling on this model of Christmas cookies from
Autodesk 3ds Max provided a better final image in record time. Source Chaos Group

26 2 Introduction

All these ideas and developments will converge in the very near future, and
real-time, easy to use ray tracing will be realized.

2.10 Challenges

If carried out to the extreme ray tracing produces a perfect, physically accurate,
image, but it might take days or even weeks. One of the desires heard from users of
ray tracing is the need for ease of use. Smart, adaptive settings based on what the
artist is trying to do, or the available rendering resources can do, are being
investigated.

Another major inhibitor for ray tracing is the difficulty of creating 3D models
suitable for rendering in the first place. New approaches to modeling using pho-
togrammetric techniques and also building libraries of models are helping make
modeling and rendering more accessible. Some software tools are easier than others
and that is a continuously evolving front.

References

Appel A (1968) Some techniques for shading machine renderings of solids. In: AFIPS ‘68 (Spring)
proceedings of the April 30–May 2, 1968, spring joint computer conference, Atlantic City,
New Jersey, 30 Apr–02 May 1968, pp 37–45

Box GEP (1976) Science and statistics. J Am Stat Assoc 71:791–799. https://doi.org/10.1080/
01621459.1976.10480949

Christensen PH et al (2006) Ray tracing for the movie ‘Cars’. Pixar Animation Studios
Cook RL (1986) Stochastic sampling in computer graphics. ACM Trans Graph 5(1):51–72
Eisenacher C et al (2013) Sorted deferred shading for production path tracing. In: Eurographics

symposium on rendering 2013, vol 32, no 4
Hagen MA (1986) Varieties of realism: geometries of representational art. Cambridge University

Press, 31 May 1986
Walter et al (1968) A geometric description technique suitable for computer analysis of both the

nuclear and conventional vulnerability of armored military vehicles
Whitted T (1980) An improved illumination model for shaded display. Commun ACM 3(6):343–

349

2.9 Shortcuts and Semiconductors—The Need for Speed 27

http://dx.doi.org/10.1080/01621459.1976.10480949
http://dx.doi.org/10.1080/01621459.1976.10480949

Chapter 3
The Rendering Industry

Abstract The rending industry, and ray tracing specifically is an enigma in that it
looks like a start-up industry with dozens of supplies making it ripe for consoli-
dation, and yet it’s been in existence since the mid-1980s—hardly a start-up
situation. That is partially due to the relative ease of generating a ray tracing
program—the math is very straight forward and easy to understand and code. But
more so because of the quest for efficiency and the unending demand for material
libraries. One of the reasons there are so many ray tracing programs available is
because of the industry-specific material libraries each program has. Big companies
with CAD and 3D modeling main-line programs will have two to four in-house ray
tracing programs of their own, plus a half dozen plug-ins that work with the main
program. It’s not uncommon for a studio for example to employ four to six different
ray tracing programs in the production of the movie, using each one for a particular
look.

A land of enchantment and danger

The ray tracing rendering industry is well understood and venerable. It’s also wide
open and chaotic. In fact, it is one of the few industries that show all the charac-
teristics of a young, start-up market and also of a very stable, low growth mature
market. It’s not likely that the situation will settle out any time soon.

It’s obvious why the ray tracing industry has all the characteristics of a mature
market—it is mature at least when talking about production renderers used in
filmmaking and integrated renderers used with the leading 3D modeling and ani-
mation tools such as 3ds Max, Maya, Cinema 4D, Modo, Lightwave, and Blender.
The major markets for these tools are movies/TV/video and visualization for CAD,
medicine, and scientific exploration. There are strong products in each market, and
they all have their loyal customers who like the look they get and the ease with
which the tools fit into their workflow pipeline. The traditional rendering industry
has been defined by the expensive cost of rendering in terms of hardware resources.
As a result, expert programmers have developed software tricks that to produce
realistic (and fantastical) results while being able to lessen the load on rendering

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-17490-3_3

resources as much as possible. For much of the history of rendering—the hardware
requirements have been astronomic, and rendering has been a trade-off between
money and time.

It’s also obvious why the rendering industry can feel like a start-up industry
segment. It has seen several major inflection points that have completely changed
the nature of the industry. These inflection points have hit the market in three waves
as Moore’s Law has changed the equations and democratized rendering.

• Between 2002 and 2010, Moore’s Law had done its job sufficiently well that ray
tracing was no longer out of reach for 3D artists working in small companies or
even individuals. New companies appeared to challenge the incumbents
including Chaos Group, Solid Angle, and Cebas.

• In 2000, software prices for the leading modeling and animation products
plummeted. The effect has been to shove smaller companies out of business and
centralize the industry around a few leaders. Today Autodesk leads, followed by
The Foundry, Maxon, and Lightwave. A consumerist/low-end market struggles
to arrive.

• GPU compute has enabled the development of rendering programs that take
advantage of GPU cores—with the potential of turning even modest systems
into render farms.

• A complementary technology evolution has enabled cloud-based technologies,
which have the potential to transform the rendering industry in time.

Characteristics of the leading rendering companies in the movie business

• The leading companies providing rendering tools for TV/movies are augmenting
the rendering revenues with particle-based effect tools and physics.

• The leading companies work closely with their customers to define R&D goals.
• The majority of the work done on rendering is done in-house by studios that are

perfecting their own looks and developing their own shaders.
• The field of suppliers for rendering tools is narrow.

3.1 Leading Companies Rendering in AEC
and Product Design

Companies providing 3D visualization services in the CAD fields frequently work
with the leading modelers including 3ds Max, Maya, Cinema 4D, Modo, and
Rhino. They frequently rebuild models from scratch or find themselves reducing
CAD models to base geometry to remove difficult-to-render objects or reduce
model complexity.

Visualizations often combine several elements—stylized drawings, floor plans,
walk-throughs, light studies, etc. It’s not all about rendering.

There is a lot of opportunity opening up for visualization for design and AEC.
SketchUp has spurred numerous rendering start-ups and cloud-based rendering

30 3 The Rendering Industry

services. However, there is a bit of a race to the bottom. People who are using the
free version of SketchUp are not likely to spend a lot of money for a renderer.

As is the case with all visualization tools, interactive performance for ray tracing
is essential. Inexperienced customers will suffer frustration with cloud-based ren-
dering that doesn’t offer tools for prerendering, test renders, etc. Even then, many
customers will be reluctant to try cloud-based rendering if they’re not sure what the
end result will be. It’s important to offer value-add tools to stand out above the
crowd.

As an aside, one of the companies that were interesting was ThinkBox (acquired
by Amazon in 2017). The company builds tools for the movie and video industry,
including particle effects generators. Amazon is doing very well with the portal
feature Deadline, a render job scheduling tool. The company is also looking at
building tools for the AEC market, with its first product being Sequoia for creating
models from 3D scans. Another rising company is Cl3VER, which enables online
architectural walk-throughs with very stylish templates. The company introduced a
VR creation tool and partnerships with Chaos Group, Archvision, and IrisVR.

3.2 The Future

Some companies have survived on the basis of their breadth of services, including
training and support. They’re supporting all the major tools. Some are also sup-
porting several shaders and material libraries.

Material libraries offer an opportunity and a threat. The leading companies are
offering material library tools and formats and thus have a way to lock-in their
customers. Nvidia hopes to use its leverage with GPUs and marketing power to
widely disseminate their materials and tie customers to their libraries (and thus,
their hardware) through its MDL program; however, MDL is not specific to GPUs.

The successful companies will be those who can offer:

• Ease of use, including test images and production run progress monitoring
• Some guarantee of success
• Tweaks that enhance ray tracer performance. In general, physics-based optical

fidelity is not as valuable as “looks right.”
• Service and support

There is a shake-up coming in the rendering industry and those companies that
offer ray tracing and not much else will be the first to go. Some which can’t support
the costs of continuing R&D will just disappear as customers move on to the latest
ray tracing program. Others with interesting and novel capabilities, but insufficient
marketing skills or budgets will be acquired. The industry is evolving in a traditional
way, consolidating and favoring the larger firms.

3.1 Leading Companies Rendering in AEC and Product Design 31

Chapter 4
The Continuum

Abstract The use of a computer to generate a simulated image can be traced back
to the first games and CAD programs in the late 1970s. Simulations of weather
maps, circuit boards, mechanical drawing of automobiles (actually dating back to
the early 1960s) show the interest and unending quest for a faithful representation
of a physical thing, or a fantasy thing. Over the decades, brilliant computer sci-
entists from various disciplines as diverse as geographical information systems to
movie animations, and CAD drawings for giant buildings, bridges, and space ships
came up with clever ways to create amazing looking images—but they were for the
most part trickery, and not faithful to the physics of light. The difference between a
physically accurate photorealistic image and a clever approximation in terms of
computing workload is 100–10000 times. It is almost a law that as soon as new
more accurate rendering technique is developed, the workload to use it goes up by
orders of magnitude. Then, other clever researchers figure out ways to do it more
efficiently and the process becomes affordable in time and hardware and is adopted
for everyday use. That process is a continuum and doesn’t indicate any end point.

The rendering of images generated in or by a computer to obtain realistic and
accurate representations is a significant discussion and effort in computer graphics,
and probably will always be.

The quest has always been to obtain the most realistic looking image, in the
shortest amount of time at the highest resolution possible.

In the earliest days of computer graphics, the displays were vector scopes that
could only generate outlined images. The first computer graphics application was
computer-aided design—CAD, which was the use of a computer to create 2D,
three-view, and mechanical drawings.

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-17490-3_4

Raster graphics or scanline graphics were introduced in the early 1970s when A.
Michael Noll adopted TV displays for computer image generation while at Bell
Labs in the late 1960s.1

A raster graphics or bitmap image is a dot matrix data structure that represents a
generally rectangular grid of pixels (points of color) for creating characters. The
early microcomputers like the popular consumer computers such as the
Commodore PET 2001, and RadioShack TRS-80 used modified TV displays when
introduced, as did the Altair 8800, the creation of Albuquerque, N.M.’s Micro
Instrumentation and Telemetry Systems (MITS) that got Bill Gates and Paul Allen
so excited. Because of limited memory and processing power, the early machines
only generated dot matrix characters. However, clever ways were developed to turn
them into graphic images.

Memory got less expensive, faster, and more dense. Processors followed
Moore’s law, and by the late 1970s, we had 512 � 512 bitmapped raster-scan
computer graphics systems. That marked the beginning of the computer graphics
industry, and ACM—the American Computer Machinery organization’s Special
Interest Group on Computer Graphics—SIGGRAPH was formed in 1974. With it,
computer scientists from universities, the government, and few fledgling companies
began developing machines and software with the goal of making realistic images
or pictures. Over the 45 years, we saw new, clever techniques for trying to obtain
the holy grail of a synthesized image that was indistinguishable from the real thing.
Ray tracing was the best approach and was demonstrated by Turner Whitted at Bell
Labs in 1979. However, ray tracing was not the end, and equally smart techniques
were developed at Cornell University such as radiosity in the early 1980s. In the
mid-1990s, the concepts of light-field rendering were developed by Levoy2 and
Gotler3. By presenting a light field using technology that maps each sample to the
appropriate ray in physical space, one obtains an autostereoscopic visual effect akin
to seeing the original scene, and similar in viewing to a hologram.

These developments lead to the conclusion or awareness of a continuum of
image processing in the pursuit of a perfect synthesized image or picture, in real
time, on the highest resolution screen with the highest color reproduction capa-
bilities possible.

It all has to do with the understanding how light behaves and then mapping that
to limited capabilities of a computer.

1Noll (1971).
2Levoy and Hanrahan (1996).
3Gotler et al. (1996).

34 4 The Continuum

4.1 The Rendering Equation

In computer graphics, the rendering equation is an integral equation in which the
equilibrium radiance leaving a point is the sum of emitted plus reflected radiance
under a geometric optics approximation. There are various realistic rendering
techniques in computer graphics that attempt to solve this equations (Fig. 4.1).

The rendering equation describes the total amount of light emitted from a point x
along a particular viewing direction, given a function for incoming light and a
bidirectional reflectance distribution function (BRDF, see Glossary),

Where

x is the location in space
wo is the direction of the outgoing light
X is the unit hemisphere centered around {n} containing all possible values for

wi

wi is the weakening factor of outward irradiance due to the incident angle, as the
light flux spreads across a surface whose area is larger than the projected
area perpendicular to the ray, written usually as cos h i

The BRDF is a fundamental radiometric concept and accordingly is used in
computer graphics for photorealistic rendering of synthetic scenes.

Solving the rendering equation for any given scene is the primary challenge in
realistic rendering. One approach to solving the equation is based on finite element

Fig. 4.1 The rendering equation describes how light behaves

4.1 The Rendering Equation 35

methods, leading to the radiosity algorithm. Another approach using Monte Carlo
methods has led to many different algorithms including Path Tracing, photon
mapping, and Metropolis light transport, among others.4

Monte Carlo ray tracing requires a highly detailed and physically based scene
description as input. The algorithm applies the laws of physics to simulate the
propagation of light through the scene, rather than ad hoc approximations of visual
phenomena. This type of simulation requires extremely detailed geometric models
(engineering models, for example, are typically accurate to a fraction of a mil-
limeter). Because ray tracing is less performance sensitive to geometric complexity,
all surfaces can be finely tessellated. In addition to high geometric detail, photo-
realistic rendering requires that the physical properties of the material’s surface
appearance are modeled correctly. In contrast to rasterization, where shaders are
used to achieve certain visual effects, the materials in a photorealistic ray tracer
describe how light is scattered when striking a surface. A BRDF represents this
information. Their physical emission properties also describe light sources.
A common representation is the high dynamic range (HDR) environment light. It
models the lighting conditions of a real location in a single HDR image. This image
is considered as a light source in the rendering system. Virtual objects illuminated
by this light appear as if they were in the actual location.

4.2 Scanline Rendering

Scanline rendering is an algorithm for visible surface determination, in 3D com-
puter graphics, that works on a row-by-row basis rather than a polygon-by-polygon
or pixel-by-pixel basis.

All of the polygons to be rendered are sorted first by the top y-coordinate at
which they first appear. Then, each row or scanline of the image is computed using
the intersection of a scanline with the polygons on the front of the sorted list, while
the sorted list is updated to discard no-longer-visible polygons as the active scanline
advances down the image (Fig. 4.2).

The main advantage of this method is that sorting vertices along the normal of
the scanning plane reduces the number of comparisons between edges. Another
advantage is that it is not necessary to translate the coordinates of all vertices from
the main memory into the working memory—only vertices defining edges that
intersect the current scanline need to be in active memory, and only once is each
vertex read in. The main memory is often very slow compared to the link between
the central processing unit and cache memory, and thus, avoiding re-accessing
vertices in main memory can provide a substantial speedup.

4Kajiya (1986).

36 4 The Continuum

The main advantage of scanline rendering over z-buffering is that the processing
visible pixels is kept to the absolute minimum which is always one time if there are
no transparency effects used—a benefit for the case of high-resolution or expensive
shading computations.

Through rough front-to-back sorting (approaching the “reverse painter’s algo-
rithm”) used in modern z-buffer systems, one can realize similar benefits. Early
z-reject (in conjunction with hierarchical z) and less common deferred rendering
techniques are possible on programmable GPUs.

Scanline techniques, working on the raster, have the drawback that overload can
occure if not handled gracefully.

4.2.1 Z-Buffering

In computer graphics, z-buffering, also known as depth buffering, is the manage-
ment of image depth coordinates in 3D graphics, usually done in hardware,
sometimes in software. It is one solution to the visibility problem, which is the
problem of deciding which elements of a rendered scene are visible.

When projecting an object on the screen with a 3D-rendering engine, the depth
(z-value) of a generated pixel in the projected screen image gets stored in a buffer
(the z-buffer or depth buffer). A z-value is the measure of the perpendicular distance
from a pixel on the projection plane to its corresponding 3D-coordinate on a
polygon in world space.

The z-buffer has the same internal data structure as an image, namely a 2D-array,
with the only difference being that it stores a z-value for each screen pixel instead of
pixel data. It has the same dimensions as the screen buffer, except when multiple

Fig. 4.2 Scanline algorithm
example

4.2 Scanline Rendering 37

Z-buffers are used, such as in split-screen rendering. It operates in screen space and
takes as its input a projected image that originates from a projection of an object to
the screen.

Initial visibility tests (such as back-face culling) are completed before creating a
projection from world-space to screen-space conversion. Secondary visibility tests
(such as overlap checks and screen clipping) on objects’ vertices get conducted
before passing an image to the z-buffer. Primary and secondary visibility tests do
not require the checking of individual pixels, so the z-buffer is relieved of some
work.

When viewing an image containing partially or fully overlapping opaque objects
or surfaces, it is not possible to fully see those objects that are furthest away from
the viewer and behind other objects (i.e., some surfaces hidden behind others). The
identification and removal of these surfaces are called the hidden surface problem.
To improve rendering time, the hidden surfaces are removed before a projected
image of the surfaces is being passed to the z-buffer. The z-buffer calculates the
z-value of a pixel corresponding to the first object and compares it with the z-value
at the same pixel location in the z-buffer corresponding to the object that is known
to be closest to the viewer to check for overlap. If the calculated z-value is smaller
than the z-value already in the z-buffer, then the current z-value in the z-buffer is
replaced with the calculated value. That doesn’t necessarily mean that the first
object as a whole is closer to the viewer than the closest known object, but it does
mean that the z-values corresponding to 3D-point on the first object’s surface in
world space are closer to the viewer. In other words, the objects are intersecting,
and at least some part of the first object is closer and thus visible to the viewer. In
the end, the z-buffer allows correct reproduction of the general depth perception: A
close object hides one further away. That is called z-culling. z-buffering was first
described in 1974 by Wolfgang Straßer.5

The painter’s algorithm is another common solution which, though less efficient,
can also handle non-opaque scene elements. The z-buffer uses the image space
method for hidden surface detection. A z-buffer can refer to a data structure or to the
method used to perform operations on that structure.

4.2.2 Painter’s Algorithm

The painter’s algorithm, also known as a priority fill, is one of the most straight-
forward solutions to the visibility problem in 3D computer graphics. When pro-
jecting a 3D scene onto a 2D plane, it is necessary at some point to decide which
polygons are visible.

The name “painter’s algorithm” refers to the technique employed by many
painters for painting distant parts of a scene before parts which are nearer, thereby

5Straßer (1974).

38 4 The Continuum

covering some areas of distant parts. The painter’s algorithm sorts all the polygons
in a scene by their depth and then paints them in this order, farthest to closest. It
paints over the parts that are not visible—thus solving the visibility problem—at the
cost of having painted invisible areas of distant objects. The ordering used by the
algorithm is called a depth order and does not have to respect the numerical dis-
tances to the parts of the scene: The essential property of this ordering is that if one
object obscures a part of another, then the first object is painted after the object that
it obscures. Thus, valid ordering is described as a topological ordering of a directed
acyclic graph representing occlusion between objects (Fig. 4.3).

The distant mountains are painted first, followed by the closer meadows; finally,
the trees are painted. Although some trees are more distant from the viewpoint than
some parts of the meadows, the ordering (mountains, meadows, trees) forms a valid
depth order, because no object in the ordering obscures any part of an object painted
later.

A reverse painter’s algorithm may also be used, in which objects nearest to the
viewer are painted first—with the rule that one must never apply paint to parts of
the image that are already painted (unless they are partially transparent). In a
computer graphic system, this can be very efficient, since it is not necessary to
calculate the colors (using lighting, texturing and such) for parts of a much distant
scene that are hidden by nearby objects. However, the reverse algorithm suffers
from many of the same problems as the standard version.

4.3 Ray Tracing

Who uses photorealistic rendering? A wide range of applications use photorealistic
rendering. Designers and engineers use the technology to visualize virtual proto-
types. This usage reduces time to market and development cost by reducing the
number of physical prototypes required. In recent years, the quality of
computer-generated images has reached a level of realism, where renderings are
indistinguishable from photographs. That made it possible to replace photographs
by computer-generated pictures for marketing purposes. In the same way, architects
use rendering technology to visualize new buildings for their customers, and they

Fig. 4.3 Example of the painter’s algorithm

4.2 Scanline Rendering 39

use similar methods to model the interior lighting accurately. Photorealistic ren-
dering is also used extensively for visual effects and animated feature films by the
movie industry.

In computer graphics, ray tracing is a rendering technique for generating an
image by tracing the path of light as pixels in an image plane and simulating the
effects of its encounters with virtual objects. The technique can produce a very high
degree of visual realism, usually higher than that of typical scanline rendering
methods, but at a higher computational cost.

Advanced shading effects can make visualizations more effective. The advan-
tage, opportunity, and goal of ray tracing are to provide additional visual cues à
better convey 3D shape—it is not about looking better, but about more effective
communications.

There are at least four types of rays involved in ray tracing:

• Eye rays originate at the eye as depicted in Fig. 4.4.
• Shadow rays: from surface point toward light source
• Reflection rays: from surface point in mirror direction
• Transmission rays: from surface point in refracted direction

The ray-tracing algorithm calculates the ray from the viewer’s eye through each
pixel, computes the point of the closest intersection with a scene surface, then
shades that point by computing shadow rays, and spawns reflected and refracted
rays—repeats for the object(s) of interest, or the entire scene.

Recursive ray tracing simulates specular reflection and shadows through and off
of transparent surfaces (transmission with refraction). It can use or employ indirect

Fig. 4.4 Rays in ray tracing

40 4 The Continuum

illumination (a.k.a. global illumination), sometimes area light sources, and some-
times fog or other caustic influences.

As mentioned previously, Arthur Appel is given credit for being one, if not the
first one, to use ray casting for visualization.

Appel wrote at the time, “Some applications of computer graphics require a
vivid illusion of reality… If techniques for the automatic determination of chiar-
oscuro with good resolution should prove to be competitive with line drawings, and
this is a possibility, machine-generated photographs might replace line drawings as
the principal mode of graphical communication in engineering and architecture.”

The Army’s Ballistic Research Laboratory continued its work and developed the
Geometric Information for Targets (GIFT). While developing the algorithms,
observers acknowledged that the techniques could be prohibitively expensive in the
required computing time.

Ray tracing creates accurate reflections, refractions, shadows, and other features
that can make a scene look great (Fig. 4.5).

It is interesting and relevant to note that the initial application of ray-casting
algorithms was for visualizing difficult mathematical calculations because now that
computers have become fast enough to make the techniques practical, ray tracing is
being explored for scientific visualization and analysis once again. (Refer to the
appendix for a brief explanation of the difference between ray casting and ray
tracing, see Chap. 7).

Ray tracing, broadly speaking, can be segmented into three general categories:

1. Off-line
2. Interactive
3. Real-time

Fig. 4.5 Still life with RenderMan 20. Source Dylan Sisson RenderMan community

4.3 Ray Tracing 41

Off-line is used extensively by the cinema, ad-agencies, and in design studios. It
is the highest quality.

Interactive ray tracing reduces the number of rays and bounces in a compromise
to get a good-looking picture and still offers the user the ability to manipulate the
model.

Real-time ray tracing can be accomplished, with certain restrictions, and as of
March 2018, the assistance of a small supercomputer. I expect that requirement to
be relaxed due to clever software and processor improvements due to Moore’s law
(Fig. 4.6).

One of the tricks of ray tracing is to only ray trace certain elements or objects
within an image, for example, the fenders of a car, but not the tires, or maybe
headlamps. Although ray tracing, if done correctly, gives you a physically correct
image, it is dependent on the material library used. If, using the car example again,
you place the vehicle on a road with leaves or stones on it, that portion of the scene
will not benefit in realism if accurately ray traced and so it can be a simple texture
map.

In the image below, the background isn’t ray traced, nor does it need to be, but
the floor might be depending on what material the director wants to use (Fig. 4.7).

Ray tracing is capable of simulating a wide variety of optical effects, such as
reflection and refraction, scattering, and dispersion phenomena (such as chromatic
aberration).

The realism of all rendering methods can be evaluated as an approximation to
the equation. Ray tracing, if it is limited to Whitted’s algorithm, is not necessarily
the most realistic. Methods that trace rays, but include additional techniques
(photon mapping, Path Tracing), give a far more accurate simulation of real-world
lighting. Radiosity and light-field rendering may be the ultimate for realism.

Not perfect: Ray tracing by itself is not perfect. Basic ray-traced images are very
clean, so the alignment of objects and sampling can lead to unintended patterns
known as moiré patterns and aliasing.

Fig. 4.6 Relative performance versus quality in various modes of ray tracing

42 4 The Continuum

Ray tracing gives a color for every possible point in the image. However, a
square pixel contains an infinite number of points and those points may not all have
the same color. Sampling is used where a color of one point (typically center of
pixel) is chosen. But regular special sampling leads to aliasing, what is known as
jaggies, which can produce moiré patterns. Aliasing is one frequency (high) mas-
querading as another (low). An example is the strange effect of a wagon wheel
appearing to be rotating backward (aptly known as the wagon-wheel effect). The
problem is partially solved by super-sampling, firing more than one ray for each
pixel (subsampling the pixel) and then averaging the results. All that adds to the
computational load of ray tracing. A more sophisticated technique is to use adaptive
super-sampling (ASS). ASS sparsely samples areas with fairly constant appearance
and heavily samples areas with lots of variability. Even more sophisticated tech-
niques involve stochastic sampling—instead of a regular grid, the algorithm sub-
samples pixels randomly and then adaptively subsamples them.

The global illumination algorithm based on photon maps is a two-pass method.
The first pass builds the photon map by emitting photons from the light sources into
the scene and storing them in a photon map when they hit non-specular objects. The
second pass, the rendering pass, uses statistical techniques on the photon map to

Fig. 4.7 Star Wars stormtroopers rendered in real time with ray tracing (Nvidia)

4.3 Ray Tracing 43

extract information about incoming flux and reflected radiance at any point in the
scene. The photon map is decoupled from the geometric representation of the scene.
This is a key feature of the algorithm, making it capable of simulating global
illumination in complex scenes containing millions of triangles, instanced geome-
try, and complex procedurally defined objects (Fig. 4.8).

Compared with finite element radiosity, photon maps have the advantage that
no meshes are required. The radiosity algorithm is faster for simple diffuse scenes
but as the complexity of the scene increases, photon maps tend to scale better. Also,
the photon map method handles non-diffuse surfaces and caustics.6

Monte Carlo ray-tracing methods such as Path Tracing, bidirectional Path
Tracing, and Metropolis light transport (MLT) can simulate all global illumination
effects in complex scenes with very little memory overhead. A photon map has a
benefit compared with these methods of efficiency but needs extra memory to store
the photons. For most scenes, the photon map algorithm is significantly faster, and
the result looks better since the error in the photon map method is of low frequency
which is less noticeable than the high-frequency noise of general Monte Carlo
methods.7

The recent work in ray tracing has largely focused on minimizing the total
number of rays needed to render a high-fidelity image, or on improving the average
performance of traced rays (Glassner 1989; Havran 2000; Wald 2004).

Metropolis light transport, a variant of the Monte Carlo method, is the per-
turbing of previously found paths in order to increase performance for difficult
scenes, which was introduced in 1997 by Eric Veach and Leonidas J. Guibas.8

Fig. 4.8 Crytek Sponza scene—a common scene for showcasing global illumination (model from
McGuire Graphics Data)

6https://graphics.pixar.com/library/HQRenderingCourse/paper.pdf.
7Jensen (2001).
8Veach and Guibas (1997).

44 4 The Continuum

https://graphics.pixar.com/library/HQRenderingCourse/paper.pdf

Normal Path Tracing is slowed or confounded by optical phenomena such as
bright caustics, chromatic aberration, fluorescence, or iridescence. MLT works very
well on some of these shots, while being very complex to implement which is why
few people have tried it.

MLT can also be very fast on complex shots and yet more expensive to render
on others. For example, its approach of nodally mapping paths bidirectionally helps
it focus on the problem of light just coming through a keyhole in a door to a
darkened room or to produce very accurate caustics. But a full MLT can be slower
than other algorithms when rendering simple scenes. The power of Metropolis is in
exploring difficult occurrences, and its strongest point is sometimes its weakest
point when dealing with simple scenes.

Sometimes with an MLT, one cannot use the same sampling techniques used
with a Path Tracing system, at least not everywhere in the code. One cannot use
quasi-Monte Carlo, for example, in many places.

Distributed ray tracing, also called as stochastic ray tracing, is a refinement of
ray tracing that allows for the rendering of “soft” phenomena. It is a term originally
coined by Robert Cook9 in his 1984 paper. Cook’ s observation was that in order to
perform anti-aliasing in a ray tracer, the renderer needs to perform spatial upsam-
pling—that is, to take more samples (i.e., shoot more rays) than the number of
pixels in the image and combine their results. One way to do this is to shoot
multiple rays within a pixel and average their color values. However, if the renderer
is already tracing multiple rays per pixel anyway to obtain an anti-aliased image,
then these rays can also be distributed among additional dimensions than just the
pixel position to sample effects that could not be captured by a single ray. This
comes without any additional computational cost on top of spatial upsampling. If,
for example, one is shooting multiple rays within a pixel to compute an anti-aliased
result, then one can get motion blur for free by using a different time value for each
ray (or soft shadows if they connect to a different point on the light source, or depth
of field if they use a different starting point on the aperture, etc.).

Monte Carlo ray tracing is a term that is slightly ambiguous. In most cases, it
refers to rendering techniques that solve the rendering equation, introduced by Jim
Kajiya in 1986, using Monte Carlo integration.

Practically, all modern rendering techniques that solve the rendering equation,
such as Path Tracing, bidirectional Path Tracing, progressive photon mapping, and
VCM, can be classified as Monte Carlo ray-tracing techniques. The idea of Monte
Carlo integration is that we can compute the integral of any function by randomly
choosing points in the integration domain and averaging the value of the function at
these points. At a high level, in Monte Carlo ray tracing, we can use this technique
to integrate the amount of light arriving at the camera within a pixel in order to
compute the pixel value. For example, a path tracer does this by randomly picking a
point within the pixel to shoot the first ray and then continues to randomly pick a
direction to continue to the surface it lands on, and so forth. We could also

9Cook (1984).

4.3 Ray Tracing 45

randomly pick a position on the time axis if we want to do motion blur, or randomly
pick a point on the aperture if we want to do depth of field, or a random point on a
light source for soft shadows.

If this sounds very similar to distributed ray tracing, that’s because it is. We can
think of distributed ray tracing as a very informal description of a Monte Carlo
algorithm that samples certain effects like soft shadows. Cook’s paper lacks the
mathematical framework to really reason about it properly, but one could imple-
ment distributed ray tracing using a simple Monte Carlo renderer. It is worth noting
that distributed ray tracing lacks any description of global illumination effects,
which are naturally modeled in the rendering equation (it should be mentioned that
Kajiya’s paper was published two years after Cook’s paper).

You can think of Monte Carlo ray tracing as being a more general version of
distributed ray tracing. Monte Carlo ray tracing contains a general mathematical
framework that allows you to handle practically any effect, including those men-
tioned in the distributed ray-tracing paper.

Distributed ray tracing is not a term that is used to refer to the original algorithm.
More often, one will hear it in conjunction with distribution effects, which are
simply effects such as motion blur, depth of field, or soft shadows that cannot be
handled with a single-sample ray tracer.

In distributed ray tracing, one stochastically samples many rays in many direc-
tions which may or may not be preferred by the BRDF, whereas in Monte Carlo ray
tracing or simply Path Tracing, one samples only one ray in a direction preferred by
the BRDF. So, there are two obvious advantages Path Tracing would have:

Computationally less expensive: With the same computing power, one has the
freedom of calculating over more object hits as compared to distributed ray tracing
where there are multiple rays.

Less noise: Distributed ray tracing samples rays in directions that might not be
preferred by the BRDF, therefore introducing unwanted artifacts.

And so, Path Tracing would give one better results.

4.3.1 Path Tracing

Path Tracing is an extension of the ray-tracing algorithm. It simulates many light
paths per pixel and takes the average value to calculate the final color of each pixel.
Whenever a ray hits a surface, a new ray is traced from that hit point in a random
direction until the maximum path depth is reached or until a Russian roulette-like
mechanism kills the ray. As a result, Path Tracing can produce effects like diffuse
color bleeding, glossy (blurry) reflections, soft shadows, real area lights, true depth
of field.

Path Tracing uses random sampling (i.e., “Monte Carlo”—Russian roulette) to
incrementally compute a final image. The random sampling process makes it possible
to render some complex phenomena which are not handled in regular ray tracing, but
it generally takes a longer time to produce a high-quality path-traced image.

46 4 The Continuum

The random sampling in Path Tracing causes noise to appear in the rendered
image. The noise is removed by letting the algorithm generate more samples, i.e.,
color values resulting from a single ray. A more in-depth explanation of the Path
Tracing algorithm is given below.

Path Tracing should probably be attributed to Jim Kajiya in his 1986 paper, The
Rendering Equation.10 It uses some of the same mechanisms as Whitted’s style ray
tracing, but Path Tracing can be used to solve more complex lighting situations
(with diffuse interreflection or caustics) through the use of Monte Carlo integration
to solve an integral equation which represents light transport within a scene. It
represents a more disciplined approach to image generation, capable of reproducing
a richer set of light/surface interactions.

4.3.2 The Difference Between Path Tracing and Ray
Tracing

Path Tracing is physically based simulation of light that allows highly realistic
rendering. It is an elegant algorithm that can simulate many of the complex ways
that light travels and scatters in virtual scenes. Path Tracing uses ray tracing in order
to determine the visibility in-between scattering events. Ray tracing is a basic
operation that can be used for many things. Therefore, ray tracing alone does not
automatically produce realistic images. Light transport algorithms like Path Tracing
can be used for that. However, while elegant and very powerful, naive Path Tracing
is very costly and takes a long time to produce stable images. Adaptive filters have
been proposed that reuse as much information as possible across many frames and
pixels in order to produce robust and stable images.

4.3.3 Noise in Ray Tracing

Real-time GPU renderers use rasterization or what is known as scanline rendering.
GPUs have been great at doing rasterization for over twenty years and can
accomplish real-time rendering. To deliver real-time rendering, game engines and
other renderers use clever techniques, but they are fakes and approximations.
Anyone who uses such tools knows immediately what those limitations are and the
extra work that is needed to try and approximate the desired effects.

Real-time rasterization rendering can’t do real reflections, refractions, or light
bounces. To generate such lighting effects, the rendering programs have to
approximate/fake those effects. Ray tracing accomplishes the correct handling of
the lighting of them, but it takes time to accomplish. As a result, only off-line
renderers used ray tracing.

10Kajiya (1986).

4.3 Ray Tracing 47

Instead of tracing hundreds to thousands of rays per pixel, researchers developed
a technique known as denoising to save time. The concept is to trace a few rays and
then denoise the image; typically done in the past, but developments have moved
ray tracing more toward real time.

There are two methods of denoising: temporal and spatial.
Temporal denoising renders a few rays every frame; they are different, and over

time, they average out to give one a smooth result—a lot like how temporal
anti-aliasing works. For a still image, temporal denoising works well. For a moving
image, there are problems with ghosting.

Temporal denoising combines the results of multiple frames and accomplishes
iterative refining. For a still image, the refined image is as good as if one had used
hundreds of rays per pixel. For a moving image, it creates ghosts which have to be
culled using motion information and that leaves noise where culling occurs.

Spatial denoising is applied to the noisy areas and uses a smoothing filter on
them such as an edge blur. It doesn’t work well with animation, and it creates
moving splotches. It also removes the sharpness from objects that should be
sharp. Therefore, only in certain areas does spatial denoising get used.

Spatial denoising combines the results of multiple neighboring pixels like a blur
filter. However, it creates shimmering on moving images—splotches of blurred,
moving noise.

The problem with overblurring is that sampling over boundaries of objects
makes sharp things look blurry. Therefore, spatial denoising is used to fix problems
of temporal denoising where temporal denoise fails (Fig. 4.9).

Increasing the rays per pixel increases the rendering time proportionally. Using ten
rays per pixel takes ten times as long or render, yielding one-tenth of the

Fig. 4.9 This scene renders at about 30–40 fps using just one ray per pixel. It is noisy but one can
get a good sense of what the image looks like. Source Notch

48 4 The Continuum

frames-per-second, and the image still has noise in it. Applying temporal denoising to
that (10 rays per pixel) image is the finishing touch for a high-quality image—as long
as the camera doesn’t move. As soon as it does, temporal smears appear in the image.

In some areas, such as flat open spaces, the technique works well, but any
vertical or occulted parts suffer from smearing. To fix that problem, another filter is
employed which is called temporal ghost suppression. That results with noise
appearing around the vertical surfaces. If one uses spatial denoising, the places
where the vertical surfaces meet the floor are blurry. As a result, practitioners have
figured out how to use temporal and spatial denoising at the same time which for
most situations gives a really good result.

Denoising limitations: Denoising relies heavily on temporal refinement suc-
ceeding. It has problems with moving lights and some problems with moving
objects. It takes a long time to refine very glossy reflections and diffuse surfaces.

Denoising is not a magic or silver bullet. Any time anything in the scene is
moved, lights, objects, or the camera, it causes temporal denoising to fail. The
glossier a surface is or the more diffused it is, the noisier it will be and it will take
longer to refine or resolve to a satisfactory image quality.

Nonetheless, denoising is important and will influence how real-time workflows
with ray tracing are going to change, how and what one creates, and how one’s
image looks.

4.3.4 Global Illumination

Radiosity, ray tracing, beam tracing, cone tracing, Path Tracing, Metropolis light
transport, ambient occlusion, photon mapping, and image-based lighting are
examples of algorithms used in global illumination, some of which may be used
together to yield results that are not fast, but accurate.

Images rendered using global illumination algorithms often appear more photo-
realistic than images rendered using only direct illumination algorithms. However,
such images are computationally more expensive and consequently much slower to
generate. One common approach is to compute the global illumination of a scene and
store that information with the geometry, e.g., radiosity. That stored data can then be
used to generate images from different viewpoints for generating walk-throughs of a
scene without having to go through expensive lighting calculations repeatedly.

4.3.5 The Difference Between Ray Tracing and Ray Casting

Like ray casting, ray tracing “determines the visibility of surfaces by tracing
imaginary rays of light from viewer’s eye to the object in the scene” (Foley 70111).

11Foley, “Computer Graphics: Principles and Practice,” p701

4.3 Ray Tracing 49

Ray casting is faster than ray tracing.
Ray casting is faster because in its world it is limited by one or more geometric

constraints (simple geometric shapes); a ray-tracing world can be almost any shape.
Ray casting was developed in the early 1980s and was successfully exploited by
John Carmack in his groundbreaking 3D shooter, Wolfenstein 3D (id Software), in
199212. Ray casting is a technique that transforms a limited form of data (a very
simplified map or floor plan) into a 3D projection by tracing rays from the view-
point into the viewing volume (Fig. 4.10).

The term ray casting was first used in computer graphics in a 1982 paper by
Scott Roth13 to describe a method for rendering constructive solid geometry
models.

Ray casting is considered the most basic of computer graphics rendering algo-
rithms and uses the geometric algorithm of ray tracing. The first ray-casting algo-
rithm used for rendering was presented by Arthur Appel in 196814.

As mentioned above, ray casting is much faster than ray tracing. The speed and
simplicity of ray casting come from computing the color of the light without
recursively tracing additional rays that sample the radiance incident on the point
that the ray hits. That eliminates accurately rendering reflections, refractions, or the
natural falloff of shadows; however, all of these elements can be faked to a degree,
by the use of texture maps or other methods creatively, sometimes referred to as
hand baking. The high speed of calculation made ray casting a well-used rendering
tool in early real-time 3D video games.

Ray-tracing-based rendering algorithms operate in image order to render
three-dimensional scenes to two-dimensional images. Geometric rays are traced
from the eye of the observer to sample the light (radiance) traveling toward the
observer from the ray direction (Fig. 4.11).

Fig. 4.10 Iconic Wolfenstein
3D screenshot. Source
Wikipedia

12https://en.wikipedia.org/wiki/Wolfenstein_3D.
13Roth (1982).
14“Ray tracing and other Rendering Approaches” (PDF), lecture notes, MSc Computer Animation
and Visual Effects, Jon Macey, University of Bournemouth

50 4 The Continuum

https://en.wikipedia.org/wiki/Wolfenstein_3D

Ray tracing can generate a very high degree of visual realism, higher than that of
typical scanline rendering methods, but it uses a lot more computing cycles.
Therefore, ray tracing has been relegated to applications where the image can be
rendered slowly ahead of time and where highly accurate reflections and shadows
are needed. Ray tracing can be used for still images and film and television visual
effects and recently in real-time applications like video games where speed is
critical. Ray tracing is capable of simulating a wide variety of optical effects, such
as reflection and refraction, scattering, and dispersion phenomena (such as chro-
matic aberration).

Ray-tracing technology provides at least two principal operations: Tracing rays
to determine the first point seen from the origin of a ray into its direction, and
determining the mutual visibility of two points in space (a.k.a. shadow rays).

This is an oversimplified view of the things, but it is the principle. Ray tracing
per se deals with the geometry of things (only).

From there, one can build everything else. Simulating global illumination
comprises of sampling light transport paths that connect light sources and pixels
and sum up their contributions. One such algorithm is Path Tracing, which tries to
generate the paths starting from the camera. This is done by tracing one ray after
another. And then, the complication (or the art) starts: How efficient one’s renderer

Fig. 4.11 Ray-traced image of glasses showing the perfect reflections and refractions, as well as
shadows. Source Gilles Tran

4.3 Ray Tracing 51

is, is very much dependent on selecting whether to trace a ray scattered of a surface
(or in a volume) or whether to trace a shadow ray to connect to a light source.

Similarly, ray tracing can be used to create images that are super-sampled and/or
anti-aliasing.

The strength of ray tracing as compared to rasterization is that it is independent
of the screen resolution and/or the number of light sources in a scene. So, one can
work adaptively. This is not very feasible with rasterization.

Images rendered using global illumination algorithms often appear more pho-
torealistic than images rendered using only direct illumination algorithms.
However, such images are computationally more expensive and consequently much
slower to generate. One common approach is to compute the global illumination of
a scene and store that information with the geometry, e.g., radiosity. That stored
data can then be used to generate images from different viewpoints for generating
walk-throughs of a scene without having to go through expensive lighting calcu-
lations repeatedly.

One paradigm to face this challenge in rasterization is to do sparse shading, i.e.,
sharing shading computations across pixels. In early ray casting, it has been shaded
micropolygons (the Pixar REYES architecture). This principle survived until the
Manuka rendering technology by Weta was introduced.15 Instead of colors per
micropolygon, one stores bidirectional scattering distribution function (BSDF)
parameters per vertex of a micropolygon grid.

This is the principle of decoupling shading from anti-aliasing and thus from
resolution. The efficiency of this approach varies. If one has high details, then it
does not buy you much; however, in regions of low detail, it helps a lot. That is why
level of detail (LOD) is important. Again, this is simple in rasterization, but
unsolved in ray tracing (unless one goes really conservative and such as the
Manuka system).

4.3.6 Recursive Ray Tracing

The next major advancement with ray tracing was that of recursive ray tracing.
Older algorithms lacked realism because they didn’t account for reflections,
refractions, and shadows. This is because these older algorithms would simply
calculate the color upon hitting an object. Once that was accomplished, the tracing
process ended then and there. Turner Whitted, in 1979, decided to let the ray
continue even after hitting an object. Except now, the ray had three options. It could
generate up to three new types of rays, one for reflection, one for refraction, and one
for shadows. Reflection rays would travel back from an object. A refraction ray
could travel through an object but at an angle to mimic the refractive index of the
material. Lastly, a shadow ray would be traced toward the light source until it

15https://www.wetafx.co.nz/research-and-tech/technology/manuka/.

52 4 The Continuum

https://www.wetafx.co.nz/research-and-tech/technology/manuka/

collided with an opaque object. This way, the iterative method of tracing and then
breaking down the rays into the three categories allowed for a lot more realism to be
added to the rendered image.

Ray-tracing-based rendering algorithms operate in image order (from the screen
or viewer to the light source) to render three-dimensional scenes to two-dimensional
images. Geometric rays are traced from the eye of the observer to sample the light
(radiance) traveling toward the observer from the ray direction (Fig. 4.12).

Because ray tracing uses more computing cycles to generate a very high degree
of visual realism, it has been consigned to situation where the image can be ren-
dered slowly, that is, changing with the advent of specialized ray-tracing acceler-
ators and artificial reality (AI) techniques.

4.4 Photon Mapping

Ray tracing and photon mapping provide a practical way of efficiently simulating
global illumination including interreflections, caustics, color bleeding, participating
media, and subsurface scattering in scenes with complicated geometry and
advanced material models.

Ray tracing is one of the most popular and powerful techniques in the image
synthesis repertoire: It is simple, elegant, and easily implemented. [However], there
are some aspects of the real world that ray tracing doesn’t handle very well (or at
all!) as of this writing. Perhaps the most important omissions are diffuse
interreflections (e.g., the “bleeding” of colored light from a dull red file cabinet onto

Fig. 4.12 Coffee room rendering using OneRender ray tracer. Source OneRender

4.3 Ray Tracing 53

a white carpet, giving the carpet a pink tint), and caustics (focused light, like the
shimmering waves at the bottom of a swimming pool).

At the time of the development of the photon map algorithm in 1993, these
problems were still not addressed efficiently by any ray-tracing algorithm. The
photon map method offers a solution to both problems. The photon map algorithm
was developed in 1993–1994 and is a versatile algorithm capable of simulating
global illumination including caustics, diffuse interreflections, and participating
media in complex scenes. It provides the same flexibility as general Monte Carlo
ray-tracing methods using only a fraction of the computation time.

Among the techniques mentioned above, photon mapping is the only one that
works similarly to how lighting works in real life; i.e., it shoots photons from the
lights. All the other techniques work the reverse way: They shoot rays out of the
camera, bounce them around, and eventually hit a light.

When these camera rays hit an object, the primary GI engine is used. If GI
requires multiple bounces, the secondary GI engine is used for these bounces. The
figures below show how this happens when you enable “brute force” for both
primary and secondary GI engines.

Zero GI bounces: Camera shoots a ray and hits the wall (point “A”). The primary
GI engine is used and shoots another ray which is shown in red. This way, direct
lighting on the floor (point “B”) affects point “A” (Fig. 4.13).

One GI Bounce: The processing now goes a bit further. Point “B” uses the
secondary GI engine to gather illumination from the sphere by shooting a single ray
(shown in blue). This way, the direct lighting of the floor (point “B”) and the sphere
(point “C”) affects point “A” (Fig. 4.14).

Shooting photons from the lights or shooting rays from our eyes is, in some
ways, equivalent. If you flip the direction of all the arrows above, it is as if lighting
came from the light source, bounced off the sphere, floor, and wall, and then
reached the camera!

So why have separate primary and secondary GI engines? The results of primary
GI lighting are directly visible to the camera, so it needs to be as high quality as

Fig. 4.13 Zero GI bounces
with photon mapping

54 4 The Continuum

possible. Secondary GI lighting, on the other hand, often represents the smallest
part of the final lighting so it can afford to be of somewhat lower quality (think
“blurrier” or “noisier”) without introducing significant visual artifacts.
Approximating secondary GI like that has significant performance and, sometimes,
quality advantages.

This technique works similarly to how light behaves in real life. In one stage, it
shoots photons from light sources, bounces them around the scene, and stores them
on surfaces. Then, on the second stage, the renderer uses these photons to render the
final image. The technique provides a very good degree of control, and for rea-
sonable numbers of photons, it renders fast.

However, it is considered an outdated technique. Photons have to be stored in
GPU memory, so too many photons can be prohibitive in terms of memory usage.
There are a few settings to tweak, and some experimentation might be needed to get
a clean result, and processing time and storage may be wasted for photons that will
not end up being visible to the camera.

4.5 Brute Force

Brute force works the opposite way to photon mapping. Instead of shooting photons
from the light, it shoots several rays from each surface and bounces the rays around.
It can be very accurate, there is no flickering in animations, and it is easy as it only
has one setting to tweak (“Num Rays”). Also, it does not require any storage, so the
final image resolution and scene detail do not matter.

However, it is the slowest technique. And unless many rays are shot per pixel, it
can produce grainy images—especially in difficult lighting situations.

Fig. 4.14 Multiple and
secondary GI bounces with
photon mapping

4.3 Ray Tracing 55

4.6 Radiosity

In 3D computer graphics, radiosity is an application of the finite element method to
solving the rendering equation for scenes with surfaces that reflect light diffusely.
Unlike rendering methods that use Monte Carlo algorithms (such as Path Tracing
and ray tracing), which handle all types of light paths, typical radiosity only
accounts for paths which leave a light source and are reflected diffusely some
number of times before hitting the eye.

Radiosity is a global illumination algorithm in the sense that the illumination
arriving on a surface comes not just directly from the light sources, but also from
other surfaces reflecting light. Radiosity is viewpoint independent, which increases
the calculations involved, but makes them useful for all viewpoints (Fig. 4.15).

A general radiosity method accounting for all interreflections of light between
diffuse and non-diffuse surfaces in complex environments was introduced in 1986
by David Immel, Michael Cohen, and Donald Greenberg, at Cornell University 16.

Fig. 4.15 Scene rendered with radiosity renderer and visualizer (By David Bařina, Kamil Dudka,
Jakub Filák, Lukáš)

16Immel et al. (1986).

56 4 The Continuum

As contrasted with previous radiosity methods, surfaces are no longer required to
be perfectly diffuse reflectors and emitters. A complete, viewer-independent
description of the light leaving each surface in each direction is computed, allowing
dynamic sequences of images to be rendered with little additional computation per
image. Phenomena such as “reflection tracking” and reflections following a moving
observer across a specular surface are produced. Secondary light sources, such as
the light from a spotlight reflecting off a mirror onto a wall, are also accounted for.
The inclusion of radiosity calculations in the rendering process often lends an added
element of realism to the finished scene, because of the way it mimics real-world
phenomena.

Notable commercial radiosity engines are Enlighten by Geomerics (used for
games including Battlefield 3 and Need for Speed: The Run); 3ds Max; formZ;
LightWave 3D; and the Electric Image Animation System.

4.7 Light-Field Rendering

Light-field rendering is a method for generating new views from arbitrary camera
positions without depth information or feature matching, simply by combining and
resampling the available images.

Light-field rendering: By extracting appropriate 2D slices from the 4D light field
of a scene, one can produce novel views of the scene. Depending on the parame-
terization of the light field and slices, these views might be perspective, ortho-
graphic, crossed-slit (Zomet 2003), general linear cameras (Yu and McMillan
2004), multi-perspective (Rademacher 1998), or another type of projection.
Light-field rendering is one form of image-based rendering (Fig. 4.16).

Fig. 4.16 Light-field rendering (IEEE VR 2003 tutorial)

4.6 Radiosity 57

Light-field rendering in itself is not a new technique and has actually been
around for more than 20 years but has only recently become a viable rendering
technique. The first paper was released at SIGGRAPH 1996, and the method has
since been incrementally improved by others.17

In mid-2017, Google announced that “Seurat,” a novel surface light-field ren-
dering technology which would enable “real-time cinema-quality, photorealistic
graphics” on mobile VR devices, developed in collaboration with ILMxLAB.18 The
technology captures all light rays in a scene by prerendering it from many different
viewpoints. During runtime, entirely new viewpoints are created by interpolating
those viewpoints on the fly, resulting in photoreal reflections and lighting in real
time.

Disney also released a paper called “Real-time rendering with compressed
animated light fields,” demonstrating the feasibility of rendering a Pixar quality 3D
movie in real time where the viewer can actually be part of the scene and walk in
between scene elements or characters (according to a predetermined camera path).

One of the first movies that showed a practical use for light fields is The Matrix
from 1999, where an array of cameras firing at the same time (or in rapid suc-
cession) made it possible to pan around an actor to create a super slow-motion effect
(“bullet time”).

Rendering a light field is actually surprisingly easy with Blender’s Cycles and
doesn’t require much technical expertise (besides knowing how to build the
plug-ins).19

Special effects studio Otoy, has been a proponent of light-field rendering, and
likens it to holographic techniques. Holographic, virtual reality has been part of
popular culture ever since Gene Roddenberry introduced the Holodeck in Star Trek:
The Next Generation, in 1987. (The Holodeck was not in the Original Star Trek
Series it was first introduced in, Star Trek: The Animated Series, as Uhura, Sulu,
and McCoy get trapped in it in the animated episode, The Practical Joker.20)

Holographic video, or holographic light-field rendering as it is technically
known, produces stunningly realistic images that can be viewed from any vantage
point. Because of its computational complexity, commercial holographic video and
VFX have not been commercially viable. Otoy introduced a more affordable
light-field stage using GPU technology that they call the OctaneRender.

17Levoy and Hanrahan (1996).
18http://www.roadtovr.com/googles-seurat-surface-light-field-tech-graphical-breakthrough-
mobile-vr/.
19http://raytracey.blogspot.com/2017/05/practical-light-field-rendering.html.
20Peddie (2013).

58 4 The Continuum

http://www.roadtovr.com/googles-seurat-surface-light-field-tech-graphical-breakthrough-mobile-vr/
http://www.roadtovr.com/googles-seurat-surface-light-field-tech-graphical-breakthrough-mobile-vr/
http://raytracey.blogspot.com/2017/05/practical-light-field-rendering.html

4.7.1 Voxels

A voxel represents a value on a regular grid in three-dimensional space. As with
pixels in a bitmap, voxels themselves do not typically have their position (their
coordinates) explicitly encoded along with their values.

Voxels are frequently used in the visualization and analysis of medical and
scientific data. Some volumetric displays use voxels to describe their resolution. For
example, a display might be able to show 512 � 512 � 512 voxels.

The word voxel originated by analogy with the word “pixel,” with vo repre-
senting “volume” and el representing “element”; similar formations with el for
“element” include the words “pixel” and “texel” (a texture element).

Another technique for voxels involves raster graphics where one simply ray
traces every pixel of the display into the scene, tracking an error term to determine
when to step. A voxel represents a single sample, or data point, on a regularly
spaced, three-dimensional grid.

The planes of a light field can be the indices for the generation of voxels.
Light-field acquisition devices allow capturing scenes with unmatched
post-processing possibilities. However, the huge amount of high-dimensional data
poses challenging problems to light-field processing in interactive time. In order to
enable light-field processing with a tractable complexity, the concept of super-ray
has been introduced, which is a grouping of rays within and across views, as a key
component of a light-field processing pipeline (Fig. 4.17).

Fig. 4.17 Field of voxel-rendered oranges was rendered and shown in real time (25–40 fps at 768
lines) in 2009. Source Unlimited detail

4.7 Light-Field Rendering 59

The easiest way to think of a voxel is as a 3D pixel—a cube. As a cube, it has six
times as many surfaces to process than a simple pixel. Now, true that all six sides
can’t be seen, at least two of them can't, and usually only three of them can.

If ray casting takes one unit of time (to render a given image), ray tracing would
take 10–100 units of time. And a voxel rendering (done honestly) would take 1000
or more. Researchers have employed various tricks to make voxel rendering look as
if it was rendering faster. But like ray casting, they were tricks that brought with
them artifacts and inaccuracy. And usually, they were not even very attractive
(Fig. 4.18).

Voxels can be used for rendering clouds of smoke, ocean waves, and other
ultra-dynamic and usually non-predictive flows. They are also used for medical
imaging. Voxels are used to build the digital slices that make up tomograms and
magnetic resonance imaging (MRI).

In modern computer graphics, all three techniques can be used and often are
especially in cinema. The computer graphics toolbox is full of clever and useful
tools, and like any good mechanic or carpenter, one doesn’t try and use one tool for
all problems. So, the difference between ray casting, ray tracing, and voxels is speed
versus accuracy, and quality of the image. And just as Ray Charles would mess up
his music if he tried to play it at the wrong tempo, a computer image will be messed
up if the wrong tool is used in the name of speed. One must find the right tempo for
a given image.

Fig. 4.18 Point-to-voxels surfacing example. Source Nvidia

60 4 The Continuum

4.8 Problems Ray Tracing Doesn’t Solve

People get excited about modern hardware bringing us closer to the magical holy
grail of real-time ray tracing (RTRT). Some people think once we have RTRT, we
can fully simulate entire digital worlds, everything will be photorealistic, and
graphics will become a “solved problem”. This simply is not true and in fact
highlights several fundamental misconceptions about the problems faced by mod-
ern games and other interactive media.

Because most of the rays don’t actually hit the camera and are simply wasted, a
brute-force method is incredibly inefficient; therefore, many complex algorithms
(such as photon mapping and Metropolis light transport) have been developed to
yield approximations that make ray tracing vastly more efficient. These techniques
are almost always focused on attempting to find paths from the light source to the
camera, so rays can be cast in the reverse direction. Some early approximations
actually cast rays out from the camera until they hit an object and then calculated the
lighting information from the distance and angle, disregarding other objects in the
scene. While highly efficient, this method produced extremely inaccurate results.

It is with a certain irony that ray tracing is touted as being a precise,
super-accurate rendering method when all ray tracing is actually done via
approximations in the first place. Pixar uses photon mapping for its movies. Most
ray tracers operate on stochastic sampling approximations. We can do RTRT with
reasonable hardware if we allow approximations (biases); however, it is limited.
However, graphic development doesn’t stop when someone develops RTRT,
because there will always be a room for a better approximation and/or quality.

In computer graphics, too much is not enough—Jon Peddie, 1981.

4.8.1 Photorealism

The meaning of photorealism is difficult to define because the term is subjective.
Defining photorealism as rendering a virtual scene such that it is indistin-

guishable from a photograph of a similar scene has been the goal. This, however,
raises the issue of just how indistinguishable it needs to be. This is because there are
different degrees of “indistinguishable” due to the differences between people’s
observational capacities and the use case at hand. Many people will never notice a
slightly misaligned shadow or a reflection that is slightly too bright. For others, they
will stand out and completely destroy their suspension of disbelief (the goal of CG).

The human visual system spans a very large range of light levels. This gives rise
to high dynamic range (HDR) challenges in photography and image generation in
computers. Computer games, for example, will change the brightness of the entire
scene (called the gamma), instead of combining the brightness of multiple expo-
sures to brighten some areas and darken others in the same image (called gamut).

4.8 Problems Ray Tracing Doesn’t Solve 61

Therefore, creating a photorealistic image is not just a matter of being mathemat-
ically physically accurate, but also one of being able to faithfully produce an
accurate color and luminesce range image—with most of today’s limited (i.e., 8-bit)
display systems, it simply is not possible. However, with the advent of 4k screens
(UHD), and 10-bit Rec. 2020 or BT.2020 standards, the color fidelity of displays
will vastly improve and more fully exploit the benefits of physically accurate ray
tracing.

4.8.2 Surface Complexity

Ray tracing is often cited as allowing an order of magnitude in more detail in
models by being able to efficiently process many more polygons. That is true in
that ray tracing is not subject to the same computational constraints that rasteri-
zation is. Rasterization must render every single triangle in the scene, whereas ray
tracing is only interested in whether or not a ray hits a triangle. Unfortunately, it still
has to navigate through the scene representation. Even if a ray tracer could handle a
scene with a billion polygons efficiently, this raises completely unrelated problems
involving RAM access times and cache pollution that suddenly become actual
performance bottlenecks instead of micro-optimizations.

Ray-tracing approximation algorithms can take advantage of rays that degrade
quickly with few bounces before becoming immaterial such as in a city or a forest.
However, in an environment with highly reflective materials such as a kitchen, or an
automobile, the highly reflective materials slow down the ray tracer, because now
rays are bouncing hundreds of times off a myriad of surfaces instead of just a few.

4.8.3 Scale

As the depth of a scene increases from the viewer, the need and value of ray tracing
diminish. It is similar to tessellation of polygons—up close you want as many
polygons as possible to represent smooth and complex surfaces; in the distance, you
don’t need as many, your eye simply can’t resolve them. Ray tracing a star field, for
example, would be insidious and ridiculously time-consuming.

Therefore, user intervention is needed to maintain meaningful precision when
faced with astronomical scales, and that impacts the rendering pipeline and
throughput. These are problems that arise in any rendering pipeline, regardless of
what techniques it uses, due to fundamental limitations in our representations of
numbers.

62 4 The Continuum

4.9 Summary

From the 2D painter’s algorithm to scanline rendering and the z-buffer, computer
graphics made tremendous improvements in image quality. Due to limited com-
puting power, various clever shading tricks, texture-mapping schemes, and
shadow-mapping projections were used with scanline rendering that created
real-time life-like images that could easily fool most casual observers. However, it
became well understood in the 1980s that ray tracing was what had to be done for
physically accurate, synthesized images to look realistic (Fig. 4.19).

Ray tracing was employed but was (and still is) computationally burdensome.
For users who had the computing and time budget, beautiful images were created
using ray tracing on high-resolution screens. As processors got faster and not much
more expensive thanks to Moore’s law, it became possible to render ray-traced
images in real time (i.e., at 30 fps) on a HD (1920 � 1080) 30-bit deep screen.

Computer scientist, however, didn’t stop with ray tracing and went on to develop
images that employed global illumination techniques that are known as radiosity.
At the turn of the century, volumetric techniques were being explored.

The quest for the perfect picture will go on. In 2018, real-time ray tracing on a
PC was realized at HD resolution; in years to come, it will be possible on a 4K and
then an 8K screen. Suspension of disbelief will be a foregone conclusion.

Ray tracing can be found in other application areas such as optical design,
acoustic design, and radio-frequency design and analysis. According to Friedrich
Kittler’s Optical Media21, optical media faced their end with the emergence of
computer graphic techniques such as ray tracing and radiosity.

For the purpose of this book, I will concentrate on ray tracing as applied to
computer graphics.

Fig. 4.19 Continuum of rendering

21Kittler and Ogger (2001). The article is based on a talk he gave in 1998.

4.9 Summary 63

References

Cook R (1984) Distributed ray tracing, In: Proceedings of the 11th annual conference on
SIGGRAP’84 computer graphics and interactive techniques, ACM New York, NY, USA,
pp 137–145

Glassner A (1989) An introduction to ray tracing. Morgan Kaufmann
Gotler S, Grzeszczuk R, Szelinski R, Cohen M (1996) The lumigraph. In: Proceeding computer

graphics, ACM, 1996, pp 43–54
Havran V (2000) Heuristic ray shooting algorithms. Ph.D. thesis, Department of Computer

Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague

Immel DS, Cohen MF, Greenberg DP (1986) A radiosity method for non-diffuse environments
(PDF). In: SIGGRAPH 1986, p 133. https://doi.org/10.1145/15922.15901, ISBN
0-89791-196-2

Jensen HW (2001) Realistic image synthesis using photon mapping, AK Peters
Kajiya TJ (1986) The rendering equation (PDF). In: SIGGRAPH 1986, p 143. https://doi.org/10.

1145/15922.15902, ISBN 0-89791-196-2
Kittler F, Ogger S (2001) Computer graphics: a semi-technical introduction. Grey Room 02,

pp 30–45
Levoy M, Hanrahan P (1996) Light-field rendering. In: SIGGRAPH 1996. https://graphics.

stanford.edu/papers/light/light-lores-corrected.pdf
Noll AM (1971) Scanned-display computer graphics. Commun ACM 14(3):143–150. https://doi.

org/10.1145/362566.362567
Peddie J (2013) The history of visual magic in computers. Springer, London. https://doi.org/10.

1007/978-1-4471-4932-3
Roth SD (1982) Ray casting for modeling solids. Comput Graph Image Process 18(2):109–144.

https://doi.org/10.1016/0146-664X(82)90169-1
Straßer W (1974) Schnelle Kurven- und Flächendarstellung auf grafischen Sichtgeräten (PDF).

Berlin
Veach E, Guibas LJ (1997) Metropolis light transport. Computer Science Department, Stanford

University
Wald I (2004) Real-time ray tracing and interactive global illumination. Ph.D. thesis, Saarland

University

64 4 The Continuum

http://dx.doi.org/10.1145/15922.15901
http://dx.doi.org/10.1145/15922.15902
http://dx.doi.org/10.1145/15922.15902
https://graphics.stanford.edu/papers/light/light-lores-corrected.pdf
https://graphics.stanford.edu/papers/light/light-lores-corrected.pdf
http://dx.doi.org/10.1145/362566.362567
http://dx.doi.org/10.1145/362566.362567
http://dx.doi.org/10.1007/978-1-4471-4932-3
http://dx.doi.org/10.1007/978-1-4471-4932-3
http://dx.doi.org/10.1016/0146-664X(82)90169-1

Chapter 5
Work Flow and Material Standards

Abstract Although the basic ray racing algorithm is relatively straight forward, the
supporting components to produce a high-quality ray traced image are formidable.
How long an image is allowed to take to resolve brings into question the degree of
accuracy and fidelity desired, or acceptable. If a rendering is halted before it is fully
resolved, some practitioners says such a compromise results in a biased image.
Standards in libraries, APIs, shading languages and colors to mention a few have to
be taken into consideration. And finally, the quality of the display and/or printing
device to show the ray traced results. In an attempt to create an open workflow and
interchangeable files companies have promoted the idea of an open materials library
and a standard file format. Progress has been made in that effort, but there are
certain proprietary looks, that represent important product differentiation that
companies will never share.

Rendering is the process of generating an image from a 3D model using computer
graphics. This manner of visual communication aids customers, colleagues, and
suppliers in understanding one’s design or product. Rendering is usually thought of
as being at the end of a product design pipeline; however, with new high-speed
rendering capabilities, and interactivity, rendering has become a parallel operation
and even a leading function as visualization of the product is essential feedback to
the design. In film production, it is known as Pre-vis (pre-visualization).

5.1 Biased Versus Unbiased

As fast as modern ray tracing has become, simple shading is still useful for quick
looks at the product being designed. To speed up the rendering, some accuracy may
be compromised. Less accurate rendering is known as biased.

There are many potential sources of bias. A rendering algorithm is usually biased
because it ignores some type of lighting effect, it misrepresents the contributions of
various lighting effects to the image, or it simply computes some quantity of light

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3_5

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-17490-3_5

inaccurately. Most methods are biased because they ignore certain classes of light
paths (e.g., light which bounces of mirrors or is focused through glass). In this case,
the result is darker than the correct image and may lack important visual cues.
Real-time methods often skip visibility calculations required for correct shadowing,
yielding a result which is too bright. Other methods introduce bias by interpolating
among a sparse set of sample values, ignoring high-frequency features and giving
the image a blurry appearance. Geometric aliasing (e.g., approximating a smooth
surface with triangles) may also appear to be a source of bias.

One of the most challenging things for an unbiased renderer is subsurface
scattering (SSS). Many solutions are point-based. That is one of the biggest chal-
lenges for a ray tracer, trying to make something accurate and at the same time fast
enough to be used in real-life production. Most approaches are point-based.

5.1.1 Biased Versus Consistent

People often confuse the term unbiased with the term consistent; for example, you
may hear someone say (incorrectly), “photon mapping is unbiased since it con-
verges to the correct solution.” These two terms have two precise and different
meanings, and it is important to understand the difference. Consistency is easy to
understand: if an approximation approaches the correct solution as computation
time increases, then the method is consistent. However, merely knowing that a
method is consistent tells you very little. For instance, it does not tell you how
quickly the method converges to the correct solution, nor does it give any bound on
the error.

In other words, as more samples are taken the probability of the error is greater
than some fixed value # approaches zero. Most often, “consistent” just means
= 0, i.e., the estimator approaches the exact answer.

Bias is slightly subtler: a method is unbiased if it produces the correct answer on
average. An easy way to think about bias in rendering is to ask, “if I rendered the
same image millions of times using different random numbers, would averaging the
results give me the right answer?” If the answer is “no”, you probably have a biased
algorithm.

5.1.2 Radiosity

Standard radiosity considers only paths of light bounced diffusely from one surface
to another until it hits the eye. Additionally, irradiance is computed over a coarse
grid which does not properly capture occlusion (shadows). Although the latter
source of error disappears as grid resolution increases, radiosity will always neglect
certain types of light paths. Therefore, it is not consistent.

66 5 Work Flow and Material Standards

5.1.3 Rasterization

Most real-time rendering is done using an API such as Metal, DirectX, OpenGL, or
Vulkan which performs all shading based on the information passed to each triangle
by a rasterizer. Traditionally, this framework was limited to integration of paths
which bounce of a single diffuse surface before hitting the eye. Most images pro-
duced via rasterization will not produce the correct solution, regardless of the level
of quality (Table 5.1).

Modern real-time APIs are a mutant example of the tradeoff between speed and
robustness: nearly any effect can be achieved in real-time, at the cost of highly
special-purpose algorithms.

5.2 Importance of Material Library

When a scene is created using ray tracing, it involves producing an image that
faithfully represents the way light behaves. People refer to ray tracing as being
physically accurate, However, to be physically accurate does not just mean the
geometry of the scene is accurate, but that the way light behaves correctly, accu-
rately, when encountering the various surfaces in the scene. The surfaces may be
anything one can imagine from water to leather, to skin, to bricks, and everyone’s
favorite chrome and glass. Those surfaces are referred to as materials (Fig. 5.1).

Ray-tracing software providers have material libraries as part of their program,
regardless if it is a plug-in, an integrated, or a stand-alone ray-tracing program. The
extensiveness of that library is a qualifying function for whether a particular ray
tracer is used or not, and it is not uncommon for high-end ray tracer users like
movies studios to use several ray tracers for just that reason—to get the material
they desire for a scene or object in it.

Because of the expansion of use and interest in ray tracing, there has been a
movement by the ray tracer suppliers to incorporate material libraries from other
sources and supplier, because no single supplier could ever have every material
imaginable in their library. In this section, I list a few of the most popular or
well-known libraries and suppliers (Fig. 5.2).

Believability is a big part of making great looking scenes or images. And,
materials are a significant part of whether the final rendered image looks realistic or
not. This goes beyond just photorealism. It applies equally to stylized cartoony
images.

Table 5.1 Biased versus
unbiased in different
rendering schemes

Biased Consistent

Radiosity Y N

Rasterization Y N

Ray tracing N Y

Photon mapping N Y

5.1 Biased Versus Unbiased 67

Typically, when a company shows its material library, it will use a small ball,
usually on a little stand or platform, to show some of the materials available and
their surfaces, as illustrated in Fig. 5.3. The balls are often embossed with the
company’s logo or some other geometric form.

They are called shader balls and is designed to scrutinize the material under
various lighting conditions such as:

Fig. 5.1 Light’s interaction with materials determines the image’s believability

Fig. 5.2 Materials are used in photorealistic and fantasy images. Source Blender.org

68 5 Work Flow and Material Standards

• direct versus indirect
• concave versus convex
• the silhouette of the object (important for things like velvet)
• Parts of different thicknesses

It is not certain when it started in rendering, but automotive paint companies do
something similar—painting a sample with convex and concave regions.

5.2.1 Standards (USPs, OSL, Etc.)

Open Shading Language (OSL) is an open-source shader system was developed
by Sony Pictures Imageworks (SPI). They developed it for their in-house renderer
(which is a modified version of Arnold), and it was the exclusive shading system for
big VFX films.

The real strength of OSL is the ability to write one’s own shaders. One can create
materials, lights, displacement, or patterns in the OSL language itself. OSL’s

Fig. 5.3 Blender’s Cycles’ material library. Source Blender.org

5.2 Importance of Material Library 69

surface and volume shaders define how surfaces or volumes scatter light in a way
that allows for importance sampling; thus, it is well suited for physically based
renderers that support ray tracing and global illumination.

It is used in Blender’s Cycles ray-tracing program and Otoy’s OctaneRender.
OSL is available under the “New BSD” license and can be integrated into com-
mercial and free software applications. The source code is available on github.
There is also a good course from SIGGRAPH, on practical physically based
shading.1

The Unified Shader Model (known in Direct3D 10 as “Shader Model 4.0”)
refers to a form of shader hardware in a graphical processing unit (GPU) where all
of the shader stages in the rendering pipeline (geometry, vertex, pixel, etc.) have the
same capabilities.2

A shader is a piece of code that is executed on the graphics processing unit
(GPU), usually found on a graphics card, to manipulate an image before it is drawn
to the screen. Shaders allow for various kinds of rendering effect, ranging from
adding an X-ray view to adding cartoony outlines to rendering output.3

The history of shaders starts at LucasFilm in the early 1980s.4 LucasFilm hired
graphics programmers to computerize the special effects industry. This proved a
success for the film/rendering industry, especially at Pixar’s Toy Story movie
launch in 1995. RenderMan introduced the notion of Shaders;

The RenderMan Shading Language allows material definitions of surfaces to be described
in not only a simple manner but also highly complex and custom manner using a C-like
language. Using this method as opposed to a predefined set of materials allows for complex
procedural textures, new shading models and programmable lighting. Another thing that
sets the renderers based on the RenderMan Interface Specification, or RISpec apart from
many other renderers, is the ability to output arbitrary variables as an image—surface
normals, separate lighting passes and pretty much anything else can be output from the
renderer in one pass.

The term shader was first only used to refer to “pixel shaders,” but soon enough
new uses of shaders such as vertex and geometry shaders were introduced, making
the term shaders more general. Shaders have forced some important movements in
the video(card) hardware which will be further examined in the following sections.

1SIGGRAPH 2012 Course: “Practical Physically Based Shading in Film and Game Production”:
https://blog.selfshadow.com/publications/s2012-shading-course/.
2“Common Shader Core (DirectX HLSL)”. Microsoft. Retrieved 2008-08-17.
3Hergaarden (2011).
4“RenderMan shader history,” 2006. http://wiki.cgsociety.org/index.php/RenderMan.

70 5 Work Flow and Material Standards

https://blog.selfshadow.com/publications/s2012-shading-course/
http://wiki.cgsociety.org/index.php/RenderMan

5.2.2 Physically Based Rendering

Physically Based Rendering (PBR) means that materials reflect or absorb light like
how they would (approximately) in real life. A PBR object’s shading approximately
resembles what it would look like in the real world5 (Fig. 5.4).

The different properties that make a type of material are called material channels.
For instance, one type of material channel will determine the color of the material,
and another will determine how rough it is.

5.2.2.1 Physically Accurate?

Using a PBR shader does not mean one’s artwork is physically accurate. A PBR
system is a combination of physically accurate lighting, shading, and properly
calibrated art content.

5.2.2.2 Free PBR Sources

One can build a material’s library from PBR textures. Such textures are made
procedurally and from scans and contain information on both color and roughness
channels.

There are several sources of free PBR textures, a few are listed here (Fig. 5.5).

5.2.2.3 CC0 Textures

Physically based rendering allows for incredibly realistic surfaces, but generating a
good PBR texture is not easy: One must wait for good lighting conditions, go
outside and shoot the textures, stitch the images together and create all the maps.

Fig. 5.4 Diffusion and
reflections

5Russell (2015).

5.2 Importance of Material Library 71

That is why texture sites exist, allowing one to quickly get all the textures one
needs. But most of the time there is a catch. One can’t simply redistribute these
textures from other sites as files. You can simply take all the textures on this site,
include them in your project and distribute it, however, you like. You don’t even
need to give credit https://cc0textures.com/.

5.2.2.4 Cgbookcase

All of the 250+ textures on Dorian Zgraggen’s cgbookcase.com come with all the
different map types needed to create a beautiful material: Ambient Occlusion, Base
Color, Height, Metallic, Normal, Roughness, etc. One can use the textures to
commercial as well as non-commercial projects, one can publish and sell them as
part of a 3D model on TurboSquid or even resell the textures on their own. One can
also share them with one’s friends. One can literally do anything with them. Plus,
one doesn’t have to give credit. One can also request textures on https://www.
cgbookcase.com/request-a-texture/.

5.2.2.5 Free PBR

At Free PBR, one can download free PBR materials and texture files. FreePBR.com
is a site dedicated to the video game development and 3D community who are
looking for materials and texture maps to use in a PBR workflow. It was developed
and created by Brian Huebert to support indie game developers and 3D artists with
free content for their video games and projects. He uses a mix of photographs and
procedural workflows, depending on the material. I use Photoshop, Substance
Designer, Bitmap2Material, Quixel, and Marmoset Toolbag. Free PBR, or physi-
cally based rendering materials offer the metalness/roughness as well as the
metallic/smoothness workflow. The 2K texture maps can be used in Unreal
Engine, Unity, Blender, and more. There are 260 textures available for free with six
new textures being added every week. These PBR textures map sets are free to use

Fig. 5.5 Free PBR where you can download 100% free PBR materials and texture files. Source
FreePBR.com

72 5 Work Flow and Material Standards

https://cc0textures.com/
https://www.cgbookcase.com/request-a-texture/
https://www.cgbookcase.com/request-a-texture/

in one’s games with 3D with no cost involved. Even if one makes money off the
video game, the author’s only requirement is that you may not redistribute these
PBR file sets on other sites, file sharing sites, email, and so on https://freepbr.com/.

5.2.2.6 Khronos

API and middleware provider Khronos offer a physically based material resource in
glTF 2.0. It includes core support for materials that could be used for physically
based shading. Part of this process involved choosing technically accurate, yet
user-friendly, parameters for which developers and artists could use intuitively.
This resulted in the introduction of the metallic roughness material to glTF. These
parameters can be provided to the material in two ways. Either the parameters can
be given constant values, which would dictate the shading of an entire mesh uni-
formly, or textures can be provided that map varying values over a mesh. More
information can be found about glTF at its GitHub page.

5.2.2.7 Textures.Com

Founded in 2005 as CGTextures.com, Textures.com is a website that offers digital
pictures of all sorts of materials. The site has pictures of fabrics, wood, metal,
bricks, plastic, and many more. The images are textures and can be used for graphic
design, visual effects, in computer games and any other situation where one needs a
nice pattern or background image. One can download up to 15 images for free
every day. If one needs more or bigger images, one can purchase a credit pack or a
subscription. The How it works page has more information about download quotas
https://www.textures.com/about.

5.2.3 Allegorithmic’s Substance Designer

Clermont-Ferrand, France-based Allegorithmic has been involved with the process
of texture creation since 2003 and claims over 95% of AAA game studios use
Substance in their production pipelines.

In November 2016, Allegorithmic introduced Substance Source, a physically
based material library, featuring customizable assets that range from fully proce-
dural to fully scanned. It enabled artists to build off premade, curated content, using
or customizing materials to fit any creative vision. Substance Source is available to
Substance Live users at no extra charge. There are over 1500 PRB materials in the
library.

Physically based rendering is a method of shading and rendering that provides a
more accurate representation of how light interacts with surfaces. It can be referred
to as physically based rendering or physically based shading (PBS). One Substance

5.2 Importance of Material Library 73

https://freepbr.com/
https://www.textures.com/about

file contains outputs needed for most workflows: Classic, PBR Metallic,
Roughness, Specular and Gloss. The company says one can export materials at any
resolution and up to 8k to use in any situation or platform (Fig. 5.6).

According to Allegorithmic, one can create materials with full control and
infinite variations. A user can edit complete texture sets instantly and produce
Substance textures and MDL materials that will be directly handled in one’s ren-
derer or game engine. The company offers an excellent guide on physically based
rendering and shading.6

Substance Designer is a 3D material authoring and scan processing tool. It has
become popular in the entertainment industry for physically based rendering
material authoring.

Substance designer can accept scan processing. It can process scans through
filters and tools in an adapted to photogrammetry workflow. Substance Designer
has a set of software tools and filters including: Crop Tool, Color Equalizer Tool,
Extract Channels filters (Multi-angle to Albedo, Multi-angle to Normal, Normal to
Height), Smart Patch Clone Tool, Smart Auto Tile Tool.

Fig. 5.6 An example of materials from Allegorthmic’s substance source library (image Raphael
Rau)

6“The Theory of Physically Based Rendering And Shading,” https://www.allegorithmic.com/pbr-
guide.

74 5 Work Flow and Material Standards

https://www.allegorithmic.com/pbr-guide
https://www.allegorithmic.com/pbr-guide

5.2.4 Everyday Material Collection

Greyscalegorilla offers the Everyday Material Collection for Arnold, Octane, and
Redshift, Cinema 4D and other applications. Over 350 drag-and-drop materials for
Cinema 4D. According to the company, it is a simple material workflow to use
(Fig. 5.7).

The library contains over 362 materials delivered as .lib4d presets. There are 4K
tileable textures organized into folders by Material Name. There is also a
Bitmap-based shader library with Drag-and-drop use via C4D Content Browser.

The Everyday Material Collection was built for use in Cinema 4D R18+ using
either Arnold, Octane, or Redshift. (Physical and Standard renderers are not
supported.)

For advanced Houdini, Maya, or 3ds Max users, you are able to build PBR
materials using the EMC texture maps, but they do not offer technical support to
non-C4D users.

Fig. 5.7 Greyscalegorilla material collection includes 12 different categories of in-demand
textures and shaders

5.2 Importance of Material Library 75

5.2.5 MaterialX

MaterialX is an open standard for the transfer of rich material and look-development
content between applications and renderers. Originated at Lucasfilm in 2012,
MaterialX has been used by Industrial Light and Magic in feature films such as Star
Wars: The Force Awakens and Rogue One: A Star Wars Story, and by ILMxLAB in
real-time experiences such as Trials on Tatooine (Fig. 5.8).

Lucasfilm says MaterialX addresses the current lack of a common, open standard
for representing the data values and relationships required to transfer the complete
look of a computer graphics model from one application or rendering platform to
another, including shading networks, patterns and texturing, complex nested
materials and geometric assignments. To further encourage interchangeable CG
look setups, MaterialX also defines a complete set of data creation and processing
nodes with a precise mechanism for functional extensibility.

The MaterialX library, now at release v1.36.0, is an open-source project released
under a modified Apache license.

5.2.6 Nvidia’s MDL

Until 2015, all ray tracers had their own material libraries, a few programs could
use libraries from other ray tracers. When the ray hits an object, the material
properties of that object are evaluated to determine if it is reflective or diffuse, and
what color it is. The library of such objects is vast; it is the world, everything from
shiny automobile fenders to wisps of smoke, from rough wood to a baby’s skin.
The characteristics of all those materials are beyond the resources of any company
to develop and support. And, the lack of standards has held back any cooperative
development in the industry. Some companies have agreed to work together and
share their libraries.

Fig. 5.8 MaterialX has been used Lucas films (© and ™ 2017 Lucasfilm Ltd. all rights reserved)

76 5 Work Flow and Material Standards

The primary reason why materials have traditionally been locked to renderers,
and even to specific products, has mostly to do how materials have always refer-
enced shaders. Shaders usually included the rendering algorithm and were
renderer-specific. To get materials into another renderer, or even another product,
meant that you needed to port the shader—which is a large task, that requires the
shader source, someone intimate with the target renderer, and has to be done for
each shader in turn—only to find that what the shader was doing may be incom-
patible with the target renderer. This occurred now and then, but rarely, even when
all the source was within the same company (Fig. 5.9).

Material libraries are vast and vary from industry to industry. The libraries of
materials used in designing the painted surfaces of automobiles are drastically
different from the materials used in creating a human’s face or hair, which is totally
different from the materials used for clothing, etc. It is close to impossible for one
firm to have robust libraries in all segments ray tracing might be used. Therefore, a
ray-tracing supplier has to specialize to a certain degree, and that partially explains
why there are so many suppliers.

Nvidia is trying to change that with the introduction of their materials definition
language (MDL), which allows a ray-tracing program to share materials and lights
between different applications. They hope to establish a standard to describe digital
materials. They now claim to have over 100 materials in their library and are
offering MDL for free. This not only will improve performance, productivity, and
throughput but will also put these capabilities in the hands of millions of users.

The Nvidia Material Definition Language (MDL) offers one the ability to share
physically based materials and lights between supporting applications. For

Fig. 5.9 Several different materials (Nvidia)

5.2 Importance of Material Library 77

example, one can create an MDL material in an application like Allegorithmic
Substance Designer, save it to one’s library, then use it in Nvidia’s Iray or Chaos
Group’s V-Ray, or any other supporting application. Once a material is created, one
can be confident it will maintain its appearance as one moves it into any compatible
applications in the workflow. Such interchangeability is a valuable method to save
time and effort. Company’s products compatible with Nvidia’s MDL include
Siemen’s NX, Daz3d, ESI Group’s IC.IDO, Algorithmic, Chaos, and others.

Unlike a shading language that produces programs for a particular renderer,
Nvidia says materials in their MDL define the behavior of light at a high level.
Different renderers and tools may then interpret the light behavior and create the
best possible image, whether it is an OpenGL-based application or physically based
renderer like Iray.

Material definitions are constructed from physically based elements and func-
tions that may be layered to achieve a robust continuum of materials without the
need to program or compile. Output from leading measurement devices, like those
from X-Rite, can also be used as elements and customized with layers and functions
to greatly extend their usage range.

While MDL materials and lights can move easily between supporting applica-
tions, they require the MDL Material Exchange package or the Nvidia vMaterials
library7 to be installed for proper operation. Guides and tips on exchanging
materials are available in the Materials section of the Nvidia Advanced Rendering
Forum.8

Nvidia has established an MDL Advisory Board, consisting of partners devel-
oping applications with MDL guides and manages the development of the MDL
specification.

MDL was originally developed by Nvidia for its Iray ray-tracing program. MDL
defines the properties of materials for all rendering modes of Iray. Material prop-
erties range from the color of surfaces, to their reflection or refraction properties,
light emission of surfaces, scattering and absorption properties of volumes, and
even to additional geometric properties of surfaces, such as cutouts, displacements,
or bump maps, which are commonly not modeled in the primary geometric
description.

MDL changes the problem of porting by not including the rendering algorithm
and instead of defining only the materials with physically based building blocks.
Most any PBR renderer uses a similar approach and can thus match what is being
described in the MDL. And although each renderer’s building blocks will vary, they
will be very close and will result in a material that fits within that renderer’s
“world” so to speak. A renderer then adds MDL support by adding this translator/
compiler once, after which they can read any MDL written.

7Nvidia’s Materials library: https://www.nvidia.com/en-us/design-visualization/technologies/
vmaterials/.
8Nvidia’s advanced rendering forum: https://forum.nvidia-arc.com/.

78 5 Work Flow and Material Standards

https://www.nvidia.com/en-us/design-visualization/technologies/vmaterials/
https://www.nvidia.com/en-us/design-visualization/technologies/vmaterials/
https://forum.nvidia-arc.com/

MDL’s physically based hierarchical layered material model relies, at its core, on
the following:

• Bidirectional Scattering Distribution Functions (BSDF)9 (see Glossary)
• Emissive Distribution Functions (EDF)
• Volume Distribution Functions (VDF)

MDL describes what should be computed and the renderer, in turn, uses this
information to decide how to compute the image depending on the geometry,
lighting and camera settings.

Note that procedurals/functions (which are often part of materials) do include
their algorithm within them but that this is relatively easy to support as they define a
“map” that is fed to the renderer and isn’t part of the actual rendering algorithm
(how light is reflected, etc.). An interesting aspect is that these custom MDL
functions are pretty easy to write, and they can stay GPU accelerated without the
author doing anything extra.

In late 2015, Nvidia decided to make MDL an open software development kit
(SDK) and free. More information can be found here: http://www.nvidia-arc.com/
fileadmin/user_upload/iray_documentation/nvidia_mdl_introduction.140512.A4.pdf.

If MDL is adopted by users and other ray-tracing suppliers, the breadth and
spectrum of materials available will greatly increase and help expand the use of ray
tracing in more situations.

5.2.7 X-Rite’s AxF

Grand Rapids, MI-based X-Rite’s AxF is the foundational component of the
company’s Total Appearance Capture (TAC) Ecosystem. Founded in 1958, the
company says AxF files are used to capture, store, edit, and communicate material
characteristics throughout the digital design workflow.

Capturing material appearance data in a single, editable, portable file format is an
obstacle in the virtualization of products, especially when different formats are used
in parallel. This poses an issue when consistency in appearance must be achieved.
X-Rite claims AxF is a format designed for system-independent of communication
digital appearance.

X-Rite says AxF can deliver a standardized format for communicating material
appearance data. It has been used with a variety of CAD, PLM, 3D rendering
solutions. It has been used in product design, development, manufacturing, sales,
and marketing. The company says it reduces cycle time, control cost and ensure
consistency in color and appearance. X-Rite says AxF is a vendor-neutral

9Bartell et al. (1980).

5.2 Importance of Material Library 79

http://www.nvidia-arc.com/fileadmin/user_upload/iray_documentation/nvidia_mdl_introduction.140512.A4.pdf
http://www.nvidia-arc.com/fileadmin/user_upload/iray_documentation/nvidia_mdl_introduction.140512.A4.pdf

appearance format, is scalable, and extensible. Extensions can be defined without
harming existing support in third-party applications.

Capture
Capturing exact appearance characteristics is vital to improving quality and
speeding up time to market for products, factories, transport, and infrastructure.
X-Rite says their TAC7 Scanner can make physically accurate measurements so
that the virtual material has the same optical properties of its physical counterpart
under any lighting condition and in any scenario. This also allows reuse of materials
across multiple projects.
An AxF file made with a TAC7 has the exact same optical characteristics as the real
material. With more accurate material capture, key decisions about color and
material can be made earlier in the design process.

Communicate
X-Rite offers a viewer, the Pantora AxF Viewer. With it, says the company, one can
visualize and swap 3D materials in a controlled scene with real-time rendering. The
viewer has drag-and-drop capability of materials. It also supports Changes to the
lighting to see how a material would look under different conditions. Pantora acts as
a controlling hub among X-Rite TAC components, connecting digital material input
sources with output destinations such as X-Rite’s Virtual Light Booth, third-party
rendering software and PLM systems.

Visualize and Compare
The Virtual Light Booth provides the capability to accurately compare physical and
digital material samples under the same perceptual conditions—from illumination
to contextual to observational factors which allows a designer to make a more
informed material selection. That can reduce approval times, improve product
quality, and accelerate time to market.

5.3 Quality Issues

There are several reasons why people choose to use ray tracing: realistic reflections,
sharp or soft shadows, diffused reflections, and ambient occlusion. Ray tracing’s
popularity stems from its basis in a realistic simulation of lighting over other
rendering methods. Effects such as reflections and shadows, which are difficult to
simulate using other algorithms, are a natural result of the ray-tracing algorithm.

Ambient occlusion is widely used in movie production since it gives a good
indication of creases on surfaces and spatial proximity of objects and is a com-
putational easier (but crude) approximation of global illumination.

There are multiple layers of complexity in ray tracing. Methods that trace rays,
but include additional techniques (photon mapping, Path Tracing), give the far more
accurate simulation of real-world lighting. And they take longer to render, so it is
always a tradeoff.

80 5 Work Flow and Material Standards

Using ray tracing for faces requires subsurface scattering materials for the skin,
which add still more complexity and compute time.

5.3.1 Skin and Subsurface Scattering

Nvidia has improved its subsurface scattering (SSS) in Iray last year and will be
doing more going forward now that they have the likes of DAZ using Iray
(Fig. 5.10).

Bidirectional scattering-surface reflectance distribution function or B surface
scattering RDF (BSSRDF), describes the relation between outgoing radiance and
the incident flux, including the phenomena like subsurface scattering (SSS).
The BSSRDF describes how light is transported between any two rays that hit a
surface. It performs subsurface scattering, gives a softer visual effect than bidi-
rectional scattering distribution function (BRDF), which works on the surface of
objects. The academic research using BSSRDF delivers beautiful results (e.g., on
marvel statues), but as far as I know, it is not practical yet for commercial rendering.
The Directional Pole model gets them closer to become practical (Fig. 5.11).

Fig. 5.10 Realistic skin is
rendered using subsurface
scattering and specific
materials. Source Nvidia

5.3 Quality Issues 81

Subsurface scattering is an important effect for realistic rendering of translucent
materials such as skin, flesh, fat, fruits, milk, marble, and many others. (Fig. 5.12).

Subsurface scattering is responsible for effects like color bleeding inside mate-
rials, or the diffusion of light across shadow boundaries. The photograph below
shows an example of translucent objects.

Fig. 5.11 Comparison of
BRDF to BSSRDF
reflections. Source Mike
Seymour

Fig. 5.12 Translucent
grapes. Source Pixar

82 5 Work Flow and Material Standards

5.3.2 Variance-Based Adaptive Sampling

Chaos Group has developed an acceleration technique for its V-Ray add-in ren-
dering toolkit for Autodesk 3ds Max which the company claims provide 20–50%
faster rendering for most scenes. Described as a variance-based adaptive sampler
(VBAS) it provides a more uniform noise distribution, faster setup, and improved
imagery for VR, VFX, and architectural visualization workflows (Fig. 5.13).

VBAS provides:

• Better sampling of dark areas and faster sampling of over bright areas
• More consistent noise detection
• Final image quality is less dependent on materials and lights settings
• Improved alpha channel sampling, especially in scenes with depth of field and

motion blur
• Works in bucket and progressive rendering modes

The company says it will provide automatic sampling of lights and materials—
removing the need to set subdivisions manually.

Fig. 5.13 Chaos Group says the use of variance-based adaptive sampling on this model of
Christmas cookies from Autodesk 3ds Max provided a better final image in record time. Source
Chaos Group

5.3 Quality Issues 83

5.3.3 Hybrid

The mixing of ray tracing and scan-line rasterization is being employed by several
users. If a problem can be solved efficiently by rasterization one doesn’t need to
solve it with ray tracing unless it is proved that it would work out much better that
way.

However, how many users really only using scan-line? Very few (maybe no)
products offer only pure scan-line rendering. Many seem to be hybrid, where the
scan-line renders the majority of scene while utilizing selective ray tracing for those
features that need it (reflections/refractions, soft shadows, etc.). In some standard
renderers, the user can select the ray cast number. With a ray cast of 1, it is using
scan-line. Turn up the rays cast number or turn on refraction or glass index and now
the renderer is ray tracing.

3ds Max, for example, has a reflection setting in its scan-line dialog with a
“number of bounces” setting. Since scan-line by definition does not technically
bounce, turning up the number of reflective bounces means it is tapping into
selective ray tracing.

Hybrid complicates the problem because if it is hybrid, then how do we (they)
account for the RT portion since it will obviously take the majority of render time.

5.3.4 Summary

The market for ray-tracing engines is vast and complex. Because of the range of
materials, and the differences in approximations and tricks, no single ray-tracing
engine can satisfy all users. Even so, there are too many suppliers for such a market
regardless of the unusual numbers of niches that exist. Therefore, I believe there
will be a consolidation, which can already be seen with some of the acquisitions.

Given the entrenched position of the big players, newer developers of ray trace
engines and libraries, will have to find niches where they can stand out. These
niches might be an application area/industry, or a method of acceleration of ray
tracing for specific users. It could be possible to find success by defining a new
niche based on some specific area of expertise.

As mentioned throughout the book and in the appendix, the demand and burden
of a broad, accurate material library can’t be overstated. Look at how best to
support materials (including emerging standards). The established companies have
done extensive work on this front, competitors will be obliged to have some kind of
answer.

Companies developing ray-tracing software independently from the content
creation software companies have the option of:

• licensing their software to the content creation software companies,
• licensing it directly to the users of content creation software, and

84 5 Work Flow and Material Standards

• licensing it to service agencies who generate ray-traced images for content
creators who don’t have the skills or time to generate the desired ray-traced
images.

The successful companies will be those who can offer:

• Ease of use, including test images and production run progress monitoring
• Some guarantee of success
• Tweaks that enhance ray tracer performance. In general, physics-based optical

fidelity is not as valuable as “looks right”
• Service and support

And last but not least be on the lookout for custom hardware implementations
for ray-tracing acceleration. Moore’s Law will continue to offer opportunities to
clever designers in terms of computing density and the reduction in the cost of
transistors.

Prospective users/buyers of ray-tracing software are advised to:

• Consider materials and their support by the renderers (including possibly
emerging material standards)

• Support for non-Intel HW platforms (GPUs, ARM)
• Consider total cost of ownership (TOC), including SW license cost—but also

(and probably more important) availability of skills, materials, performance
(including on GPUs, if so available), HW cost, support of the RT software by
(cloud) render services for incremental demands (at least for peak demand that
your projects are likely to require)

The idea of real-time ray tracing is, of course, desirable, but not fundamental. As
has been demonstrated, rendering time is simply a function of economics—how
many processor cycles can you afford to apply to the problem. Remember Blinn’s
law, and Peddie’s axiom, rendering always takes the same amount of time, and in
computer graphics, too much is not enough.

5.4 Importance of HDR Monitors

High dynamic range (HDR) displays deliver better contrast and color accuracy, as
well as more vibrant colors, compared to standard dynamic range (SDR) displays.
As a result, HDR is gaining interest for a wide range of applications, including
movie viewing, gaming, and creation of photograph and videograph content.

HDR displays are a wonderful technology, but not something that ray tracing
itself is concerned with, but rather, the digital content creation (DCC) tool, which
must color manage the imagery being displayed.

Prior to HDR monitors and TV screens, tone mapping was used. Tone mapping
is a technique used in image processing and computer graphics to map one set of
colors to another to approximate the appearance of high-dynamic-range images in a

5.3 Quality Issues 85

medium that has a more limited dynamic range. If a scene or product was created in
30- or 36-bit color (10 or 12 bits per primary RGB channel) it will exceed the
display capability of a conventional 24-bit display. Typically, a simple (default)
tone mapping algorithm will compress the top (bright) one or two bits and the lower
(dark) one or two bits to fit the HDR image into a 24-bit device. Most of the time it
looks OK. Sometimes, however, the artist may want to accentuate the brighter (or
darker) shades or tones. Software exists (e.g., Photoshop) that will allow adjusting
the Gamut (tonal range) of the print on-screen and make further adjustments to
make sure that all the tones fit within the desires of the presenter. HDR and
professional color-grading monitors eliminate this process.

Computer monitors are starting to support high dynamic range (HDR), which
means they can handle more detail in the brightest and darkest parts of an image,
along with a wide color gamut. HDR has proven a revolution among HDTVs, and
every high-end television now supports it. While it still has issues with Windows, it
is definitely a feature people are looking for in high-end monitors today.

In mid-2017 that HDR monitors like Dell’s UltraSharp 27 4K started to appear.
Things changed (for the better) when VESA introduced a new standard,
DisplayHDR, which set a baseline for PC HDR displays.10 DisplayHDR is the
high-performance monitor and display specification that defines the display
industry’s open standard specifying HDR quality, including luminance, color
gamut, bit depth, and rise time.

The first release of the new specification, DisplayHDR version 1.0, focuses on
liquid crystal displays (LCDs), establishing three distinct levels of HDR system
performance to facilitate adoption of HDR throughout the PC market: DisplayHDR
400, DisplayHDR 600, and DisplayHDR 1000. The number (“400”, “600”, etc.)
refers to the brightness level and is expressed in candela per square meter (cd/m2) is
the derived SI unit of luminance, also referred to as Nits. Additional tiers are
expected to be added later to support continuous innovations and improvements in
display performance. All tiers require support of the industry standard HDR-10
format. The “-10” refers to 10 bits per primary (RGB). Most monitors in use today
are 8 bits per primary (or channel) which yields 16.7 million possible colors.
A 10-bit monitor can produce 1.07 billion possible colors.

Such monitors are calibrated on AdobeRGB and sRGB to an accuracy of
Delta-E less than 2, using, for example, Portrait Display’s CalMAN display cali-
bration software. CalMAN is the industry-leading solution used by nearly every
professional video calibrator, and by most users in broadcast, production,
post-production, and is the most popular solution for home video enthusiasts.11

Obviously if one wants to see a realistic ray-traced rendering of an image, then
one has to have the best display possible. Film and TV studios have professional
video monitors for on-set, editing, color grading, OB, studio and live production. In
Full HD, 4K and HDR.

10VESA DisplayHDR Specifications: https://displayhdr.org/
11CalMAN: https://calman.spectracal.com/feature-matrix.html

86 5 Work Flow and Material Standards

https://displayhdr.org/
https://calman.spectracal.com/feature-matrix.html

Dell has introduced a 10-bit 8K monitor (7680 � 4320) at 60 Hz with 400 cd/
m2 (Nits) brightness and although they don’t promote it as an HDR monitor, it in
fact is. Dell also has a Custom Color mode, the SDKi or the optional (Dell) X-rite
iDisplay Pro colorimeter.

Color standards vary depending upon who is quoting them. The most commonly
quoted color space is CIE 1931.

CIE colorimetry isn’t even half the story of color science, it is a tiny piece of the
huge puzzle of human perception and engineering that is color science. Don’t
confuse understanding it with understanding color perception. Colorimetry is
essentially algebra; human perception is much more complex.

CIE 1931 is a Color Matching System. Color matching does not attempt to
describe how colors appear to humans, color matching tells us how to numerically
specify a measured color, and then later accurately reproduce that measured color
(e.g., in print or digital displays) (Fig. 5.14).

The diagram shows the Rec. 2020 (UHDTV) color space in the triangle and the
location of the primary colors. Rec. 2020 uses Illuminant D65 for the white point.
Rec. 2020 defines a bit depth of either 10 bits per sample or 12 bits per sample
(Fig. 5.15).

Monitors for mastering HDR content need to support multiple gamma curves.
The most prevalent is the SMPTE 2084 standard called the Perceptual Quantizer or
PQ curve developed by Dolby. The chart below shows digital code values versus
luminance for several gamma curves.

Fig. 5.14 CIE 1931
chromaticity diagram
(Wikipedia)

5.4 Importance of HDR Monitors 87

The PQ curve not only covers a much large range of luminance values, but the
code values are locked to certain luminance values. That means a pixel that is
supposed to be at 100 nits will have a specific code value. That is not the case with
the other gamma curves where the code values can have different luminances
depending upon the range of the particular display (Fig. 5.16).

“We have developed new charts that allow you to visually evaluate how close
the monitor is to the PQ curve,” claimed SpectraCal President, L.A. Heberlein.
These can be shown in linear or logarithmic units.

CalMAN v5.6 with HDR support offers a direct-load 3D Look-Up Table (3D
LUT) calibration functions. Heberlein explained that LUTs were originally devel-
oped to create a certain “look” that the colorist wanted. But it has evolved since
then to be much more. “Instead of adjusting the monitor, we adjust the video stream
so that the final result is correct. This takes into account the whole delivery system
including coupling errors so that you always see a calibrated image. Such 3D LUTs
used to take hours and hours to set up, but now we can do it in 10 min,” explained
Heberlein.

Fig. 5.15 Color/luminance volume: BT.2020 (10,000 nits) versus BT.709 (100 nits); Yxy. Source
Sony

88 5 Work Flow and Material Standards

CalMAN v5.6 also offers Color Primary reference points for more than 20 color
gamuts, including both DCI P3 and Rec BT.2020, with different white points and
gamma curves to match commercial DCI, Dolby Vision, or HDR 10 formats.

Dolby Vision represents the most encompassing approach to HDR with lots of
capabilities and room for growth but less powerful versions are also going to come
to market as well. Here, the leading approach is called HDR10

As ray tracing becomes more popular and prevalent, the demand for HDR
monitors will increase with it. That includes not just the professional markets, but
gamers as well.

5.5 Importance of Full-Color Printers

Advertisers, public relation and marketing agencies, architects, and product
designers use printed materials to display and sell their products, projects, and
proposals. When the images are ray-traced rendering a full-color printer is used.
Full-color printers are often large, expensive, and difficult to operate and maintain.
Also, they are not used too frequently by a single company or department.
Therefore, they are usually owned and operated by service organizations, like
Kinkos.

Fig. 5.16 Various gamma curves (Insight Media)

5.4 Importance of HDR Monitors 89

Full color is the printer industry means more than 10 million different colors,
which is somewhere between 5.7 bits per primary and 6 bits per primary.

Terms like 4/4, 4/1, 4/0, etc. are a sort of printing industry shorthand to express
how many ink colors are applied to each side of a printed piece (Fig. 5.17).

4/4 is pronounced “four over four” and means there are four ink colors applied to
the front of the piece and four ink colors applied to the back. These four colors are
not just random colors—they are Cyan, Magenta, Yellow, and black, also known
collectively as CMYK. CMYK printing is also called four-color process or
four-color printing and is used to generate what we know as full-color printing. So,
a printed piece designated as 4/4 has the four CMYK ink colors applied to it on
both sides.

Adobe PostScript device-independent color, Apple ColorSync, CIE International
color standards, ICC

Color printers will have a print resolution of 600 � 600 dpi to as high as
9600 � 2400 dpi

References

Bartell FO, Dereniak EL, Wolfe WL (1980) The theory and measurement of bidirectional
reflectance distribution function (BRDF) and bidirectional transmittance distribution function
(BTDF). In: Proceedings of SPIE, Radiation scattering in optical systems, vol 257, pp 154–
160. https://doi.org/10.1117/12.959611. Retrieved 14 July 2014

Hergaarden M (2011) Graphics shaders. VU Amsterdam. http://files.m2h.nl/Literaturestudy
Shaders.pdf

Russell J (2015) Basic theory of physically-based rendering. Adv Tutor. https://marmoset.co/posts/
basic-theory-of-physically-based-rendering/

Fig. 5.17 The colors of
CMYK

90 5 Work Flow and Material Standards

http://dx.doi.org/10.1117/12.959611
http://files.m2h.nl/LiteraturestudyShaders.pdf
http://files.m2h.nl/LiteraturestudyShaders.pdf
https://marmoset.co/posts/basic-theory-of-physically-based-rendering/
https://marmoset.co/posts/basic-theory-of-physically-based-rendering/

Chapter 6
Applications of Ray Tracing

Abstract Ray tracing has been traditionally used with applications for media and
entertainment (3D animation, rendering), product development (CAD/CAM/CAE),
life sciences (medical, molecular), energy, and other operations. The ray-tracing
programs are used by engineers and artist proposing a project concept or new product
design, by designers who bring the first renditions of the project or product for eval-
uation, bymanufacturing people who build and test the project, or product virtually in
the computer. And then when everything is proven and acceptable, marketing people
use ray tracing to create images to sell the product. Ray tracing is used in all four stages
from project concept to fulfillment. The concept of virtual prototyping and in the film
industry pre-viz has been embraced by most industries and has saved millions of
dollars by eliminating redos and expensive after-sales repairs.

Ray tracing can be used in almost every industry, government agency, academic
institution, and even private parties. There are ray-tracing programs from over a
hundred sources, many of them are free, and new hardware and software devel-
opments have made the rendering time shorter than ever.

Ray tracing is used to design systems and to represent the data generated by
those systems, and it is used to conceptualize a product and then to sell the product.
It is used to create simulations of real-world situations and imaginary worlds. It is
used to model and visualize proteins and molecules and to design new compounds
that do not yet exist, and then, if created and manufactured, it is used to display the
pill, and the package it comes in, the store it is sold in, the trucks that deliver it, the
road the truck travels on, and all the components within all those elements. Ray
tracing is like electricity and air; it is used everywhere and can be found in
everything. How then does one categorize a ray-tracing application?

Some of the other applications for ray tracing are:

• Product design and virtual prototyping
• Engineering and architecture
• Advertising (print to video)
• Optical engineering and design
• Audio engineering and design

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3_6

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-17490-3_6

• Geophysical modeling and presentation
• Medical and scientific
• Entertainment (games to movies and TV)
• Simulations and visualizations
• Interference and design checking
• New media—e.g., VR.

This is not an exhaustive list, and the applications for ray tracing have steadily
increased over the years as techniques and processors have improved.

6.1 The Pipeline

I have approached it by visualizing a four-stage pipeline, starting with conceptu-
alization, into design, then manufacturing, and finally marketing.

And please note, by a product I mean, and include anything from a washing
machine to a movie, from a surgical training scenario to an analysis of a body scan,
from an airplane or car design to the simulation of the airplane flying or the car
crashing. Physically accurate modeling, virtual prototyping, and data analysis are
absolutely essential for product satisfaction, safety, reproducibility, and reliability.

When one has a target customer in mind, there is nothing better than presenting
in a virtual environment that allows the prospective customer or user to understand
how the product would fit in the real world. Ray tracing accomplishes this relatively
quickly and inexpensively, enriching design reviews and helping stakeholders
connect with the design.

The ability to show a physically accurate (or fantasy imagined) image, possibly
with animation, conveys the designer’s, the imaginer’s, and the support’s message
to levels not possible before. The famous saying—a picture is worth 1000 words—
is truly realized with a perfectly rendered image. And, unlike story boards, or artists
renditions, the customer or investor, gets what he or she bought—what you see is
what you get.

Since the design, the model, has been developed in a 3D domain, the renderings
of it are accurate to the design. That enables two benefits to the developers. First it
leads directly to virtual prototyping which is a genuine try it (fly it) before you buy
it. Virtual prototyping allows the developer or director to make tweaks, adjust-
ments, to realize their visualization, the thing they saw in their mind’s eye.

Production can take longer than expected, and even if it is done on time, the
marketing team needs as much lead time as possible to generate interest, excite-
ment, and ultimately the demand for the new product or movie. Therefore, taking
advantage of the digital model, final marketing material can be produced prior to
final products. That way consumers are primed and ready to buy when the product
is available. It is estimated 95% of the automobile commercials are simulations and
the cars they are showing haven’t been built at the time of the viewing. The same is
true of outtakes of movies and games, and other consumer products. This is cer-
tainly true of all space ventures and projects.

92 6 Applications of Ray Tracing

In the following sections of this chapter, I will describe the use of ray tracing in
the stages of development of a product in the four stages of the pipeline from idea to
consumer.

Later in this book, I discuss cloud-based visualization (CBV). Cloud-based
visualization can be used at the conception/proposal stage and the presentation
(selling) stage.

6.1.1 Conception—STAGE ONE

Ray tracing is used in the proposal and planning stage to visualize what the final
product should look like. This is often referred to virtual prototyping, and in the
movie industry as pre-vis (also known as pre-viz). Architects, automobile and
aerospace firms, consumer goods and clothing designers, and industrial machinery
designers to name a few use ray tracing to create concepts to sell the idea or product
to management, prospective customers or patients, and government agencies. In
some cases, in the very early brainstorming concept creation sessions, rasterization
rending is used in the interest of time. In the TV and movie industry, that is known
as storyboarding.

The concept starts with the construction of a 3D model. The model may not
(usually doesn’t) represent the final product and usually lacks detailed aspects
needed for manufacturing, testing, and certification. A building or car, for example,
will simply be a shell with none of the important parts underneath it.

The following are some of the popular examples of using ray tracing in the
concept stage.

6.1.1.1 Simulations of Things that Don’t Exist

Ray tracing is used for showing how a product might look. Buildings, airplanes,
automobiles, and even clothes are simulated and then rendered with ray tracing to
see how potential buyers will react. Almost all automobile ads, printed models, and
TV are computer-produced with ray tracing. Cars that aren’t built yet are shown to
dealers and as a teaser to TV viewers. The cost and delays associated with pho-
tographing a car are so great, and they are almost never used anymore. Obviously,
the skyscrapers being proposed couldn’t be built first. The use of scale models is
declining and is often replaced by 3D virtual and/or printed models. Ray-traced
models are being to show city planners and adjacent property owners how the
building will create shadows and reflect light over a 24-h period, and at various
seasons all are done using ray tracing.

Ray tracing is used to create models of simulations and of products or designs
not (yet) actually built.

6.1 The Pipeline 93

The following examples show some examples of things that were designed, but
not built, and yet the images are photorealistic and totally believable—not too
unlike the fantastic worlds that are created for special effects in the movies
(Figs. 6.1, 6.2, 6.3 and 6.4).

Fig. 6.1 This is an example of a Boeing 797 blended wing concept airplane that was never built -
realistic looking isn’t it. Source Wikipedia—Popular Science magazine

Fig. 6.2 The Ford GT90 was never built. Source Ford

94 6 Applications of Ray Tracing

Fig. 6.3 241-floor, 3162-ft-high structure would be named “The Bride” and sit in the middle of
Basra, Iraq. Courtesy of AMBS architects

Fig. 6.4 Proposed Airbus A390. Source Airbus

6.1 The Pipeline 95

Virtual prototyping is a method in the process of product development. It
involves using computer-aided design (CAD), computer-automated design
(CAutoD), and computer-aided engineering (CAE) software to validate a design
before committing to making a physical prototype. This is done by creating (usually
3D) computer-generated geometrical shapes (parts) and either combining them into
an “assembly” and testing different mechanical motions, fit and function. The
assembly or individual parts could be opened in CAE software to simulate the
behavior of the product in the real world.

Typically, virtual prototype models are actual CAD models, and when it comes
to rendering, the models are rebuilt in design products such as 3ds Max, Maya,
Modo, and Cinema 4D. Increasingly, the leading CAD programs have been
developing features that enable easier simplification of models for the purposes of
rendering (and analysis), but I believe there is still quite a bit of model rebuilding
and cleaning.

6.1.1.2 Animation Games and Simulation

Animation and games mostly use rasterization to portray the concept and action
scenes of a story. Occasionally, parts of a scene or frame will be ray-traced to
convey the feeling of the scene. The casting of shadows, lighting, and colors are
critical in getting the right mood conveyed, and artists and directors will spend days
tweaking elements to get it just right.

Gaming has the potential (in terms of users) of being the biggest market for ray
tracing.

Ray Tracing in Games

PC, console, and mobile games are available in several genres, and there is no
single list of them; rather, it is more like a matrix. It is beyond the scope of this
study to provide an exhaustive list, description, and taxonomy of all the gaming
genre, but a few need to be discussed to understand the role of ray tracing in games.

Ray tracing today is hard to use and expensive—more expensive than the
raster-based solutions we are used to. Tools and workflows exist to give a baked or
dynamic lighting as well as somewhat convincing reflections. These have arisen in
response to a demand for those effects, so they are wanted; it is just that they are
expensive and time consuming to produce, so they are the first to be thrown out
when gameplay (frame rate) is the priority.

If they were available at no performance or production cost, they would be
universally used and as a consequence would become an integral part of gameplay
(Fig. 6.5).

96 6 Applications of Ray Tracing

First-person shooter (FPS) is a video game genre centered around gun and other
weapon-based combat in a first-person perspective; that is, the player experiences
the action through the eyes of the protagonist. The genre shares common traits with
other shooter games, which in turn makes it fall under the heading action game and
is also referred to action-adventure (which gets confusing with adventure games).
Since the genre’s inception, advanced 3D and pseudo-3D graphics have challenged
hardware development.

FPS games are very fact action with severe win/lose consequences more often
described as kill or be killed. As such, the player has little to no time to carefully
observe the environment and therefore ray tracing has little value in an FPS. Also,
FPSs are the most demanding on the processors and any cannibalization of pro-
cessing cycles for pretty effects is undesirable by the players.

Sport games don’t seem to offer much opportunity for enhancement by ray tracing
other than maybe shadows and sun flare/glare. Uniforms and fields will not benefit
from ray tracing.
A role-playing game (RPG) also known as a computer role-playing game (CRPG)
is a video game genre where the player controls the actions of a character (and/or
several party members) immersed in some well-defined world. The world can be 2D
or 2.5D.
An adventure game is a video game in which the player assumes the role of a
protagonist in an interactive story driven by exploration and puzzle-solving.
Included in the adventure game genre is a category known as walking simulators.

Fig. 6.5 The most popular video games sold in the USA in 2017. Source Statista

6.1 The Pipeline 97

Walking simulators feature few or even no puzzles at all, and win/lose conditions
may not exist. Such games allow players to roam around the game environment and
discover objects like books, audio logs, or other clues that develop the story,
because they are based on 3D models, they are an example of a game that could
benefit from ray tracing.

Using ray tracing in games is controversial. Back in 1992, a few PC games used
ray-casting algorithms. That was quite an accomplishment given the level of pro-
cessor performance of that time.

Like ray casting, ray tracing “determines the visibility of surfaces by tracing
imaginary rays of light from viewer’s eye to the object in the scene” (Foley 7011).
Ray casting, however, is faster than ray tracing (see Sect. 4.3.5).

Ray casting is faster because its world is limited by one or more geometric
constraints (simple geometric shapes), a ray-tracing world can be almost any shape.
Ray casting was developed in the early 1980s and was successfully exploited by
John Carmack in his groundbreaking 3D shooter, Wolfenstein 3D (id Software) in
1992.2 Ray casting is a technique that transforms a limited form of data (a very
simplified map or floor plan) into a 3D projection by tracing rays from the view-
point into the viewing volume.

Early PC games such as Wolfenstein 3D and the Comanche series3 made use of
ray-casting algorithms. In Wolfenstein 3D, the world was built using a square-based
grid of walls which were of a uniform height. They were merged with solid colored
floors and ceilings. While illuminating the world, a single ray was traced for every
column of pixels on the screen. A vertical slice of the wall texture was then selected
and scaled based on where it collided with the ray. This way the distance could be
calculated, and the walls could be scaled accordingly. Since the ceiling and floors
were uniformly colored, there was no need to worry about them. That also reduced
the computational and memory overhead. The savings could then be utilized to
render the bodies which were in motion in the open areas of the map (Fig. 6.6).

The Comanche series handled ray casting in a slightly different manner.
Individual rays were traced for each column of screen pixels, and when the rays
interacted with an object, it was plotted against a height map. It was then possible to
determine which of the pixels were visible and which weren’t and then use a texture
map to pick the corresponding color for the pixel.

Ray Tracing in Contemporary Games

When Quake, a first-person shooter video game, developed by id Software and
published by GT Interactive came out in 1996, it was a breakthrough,

1Foley, “Computer Graphics: Principles and Practice,” p 701.
2https://en.wikipedia.org/wiki/Wolfenstein_3D.
3“Comanche,” was a series of simulation games published by NovaLogic. The goal of each of
these games is to fly military missions in a RAH-66 Comanche attack helicopter.

98 6 Applications of Ray Tracing

https://en.wikipedia.org/wiki/Wolfenstein_3D

transformative, disruptive milestone in PC gaming and has been a legend and
foundational example ever since.

Quake II release one year later had improved graphics and game mechanics and
was an all-time hit—run, shoot, duck, die.

Battlefield V has fantastic graphics and is almost totally outside (no small rooms
or long corridors like the original Quake), and yet the gameplay is almost exactly
the same. Run, shoot, duck, die.

But Battlefield V could brag about something Quake couldn’t—ray tracing. It
could, but it can’t anymore.

In 2017, Christoph Schied started adding ray tracing to Quake II as a spare-time
project to validate the results of his computer graphics research in an actual game
while at Karlsruher Institut für Technologie. The project was completed in 2018 and
encompasses 12K lines of code, completely replacing the original Quake II graphics
code. Take a look at the results in Fig. 6.7 and in this video (https://tinyurl.com/
y7v5le3g). The explosions may seem disappointing, but that is due to the limited
geometry in them, not the ray tracing.

However, Herr Schied was not the first to render a ray-traced version of Quake.
Countryman Daniel Pohl was experimenting and demonstrating using ray tracing in
real-time games, specifically Quake 3, in a cooperation of the Erlangen University
and Saarland University in Germany in 2008. Pohl’s work so impressed Intel, one
of the patrons of Saarland, that they hired him after his master’s thesis for the
Larrabee project. In 2009, Herr Pohl faced the crowds at Intel’s Research Day. But
even that wasn’t a first because as a student Herr Pohl was showing off his work at

Fig. 6.6 Wolfenstein 3D made use of ray casting algorithms in 1992. Source Wikipedia

6.1 The Pipeline 99

https://tinyurl.com/y7v5le3g
https://tinyurl.com/y7v5le3g

CeBit in 2007.4 He actually started working on ray tracing in games in 2004 as part
of his student research project under the guidance of graphics professor Philipp
Slusallek. As part of his studies and diploma thesis, Pohl rewrote parts 3 and 4 of
the first-person shooter Quake so that their graphics were calculated using the
ray-tracing method. The source for Q3 and Q4 was not available. He actually never
used the real Quake engine, and it was all rewritten from scratch to load the maps,
models, textures, sounds, animations, even up to some simple AI to make it feel like
a real game (Fig. 6.8).5

That was over 12 years before Nvidia showed their RTX-based Turing chip, and
Pohl’s results were not playable on a single PC. It took a high-end computer in the
Munich Intel test laboratory, equipped with the latest quad-core processor to get
barely 17 fps at 640 � 480—but the promise was there—Moore’s law would
prevail.

Pohl’s work was visionary, and one might say ahead of his or the times. Schied’s
work is more accessible and testable. You can download his code (https://tinyurl.
com/y7udr587), assemble it, and run the Q2VKPT game. If one has an
RTX-equipped Nvidia add-in board (AIB), you can actually play the game—with
real-time ray tracing turned on at greater than HD resolution.

Q2VKPT is implemented in the Vulkan API to be able to use the new
hardware-accelerated ray-tracing features that were made available earlier this year.
Thanks to those developments in 2017, the game could actually come close to

Fig. 6.7 A scene from Schied’s ray-traced version of Quake II. Source Christoph Schied (2018)

4Kremp (2007).
5Pohl (2008).

100 6 Applications of Ray Tracing

https://tinyurl.com/y7udr587
https://tinyurl.com/y7udr587

60 frames per second (fps) (2560 � 1440, RTX2080Ti), while being fully
ray-traced and dynamically shaded with realistic global lighting models in real time.

Using Path Tracing for fully dynamic lighting, says Schied, allows for a lot more
detail in the shading of game scenes, naturally producing complex interplay of hard
and soft shadows, glossy material appearances, and perspectively correct reflections
everywhere. Moreover, light can naturally flow anywhere, tying the scene together
in the ways we would expect from the real world. Traditional approaches like
precomputed lighting or coarse real-time raster approximations could never inter-
actively reach this detail at a comparable resolution, since full storage of this
lighting information would exceed any memory bounds.

The original Quake II engine uses precomputed light maps that contain soft
shadows and diffuse indirect illumination. In contrast, Q2VKPT entirely replaces
the static illumination using a fully dynamic simulation that unifies both the static
and dynamic light sources.

Besides the use of hardware-accelerated ray tracing, Q2VKPT mainly gains its
efficiency from an adaptive image filtering technique that intelligently tracks
changes in the scene illumination to reuse as much information as possible from
previous computations.

The first wave of PC games to employ some real-time ray tracing using DirectX
12 and Nvidia’s RTX and running on a Nvidia RTX 2070/80/Ti AIB were all AAA
first-person adventure shooters. As such with one notable exception, the ray tracing

Fig. 6.8 Ray-traced Quake: the water reflects the environment and the player. Source Pohl (2006)

6.1 The Pipeline 101

was actually wasted and not only didn’t enhance the game but was distracting and
silly.

The new Shadow of the Tomb Raider (SotTR) is an example of the issue and the
exception. As mentioned above, in an action game where its kill-or-be-killed one
doesn’t have time to look around at the scenery, which in many senses is a shame
because today’s games have amazing and beautiful artwork and gigantic world
models. The protagonist, the ever-suffering and indefatigable Lara Croft, quickly
gets mud on her face and arms from jumping, crawling, failing, and fighting. But
the mud is unrealistic, it looks like painted on makeup, and there is no depth or
texture to it (Fig. 6.9).

However, once one stops gawking at the scenery and character and gets into the
game, one no longer notices her mud (which comes and goes at odd times) or her
hair. When one pauses and looks around at the scenery, one marvels at: A. the
awesome size and complexity of the 3D models and map size and B. the textures
and artwork. This is a delightful game world to be in. But does it need ray tracing?
No. Would the game be any better with it? Not really. Except (read on).

I also looked at the demos of 4A’s Metro Exodus and EA/DICE’s Battlefield V
(Fig. 6.10).

Metro is one of our all-time favorites. Metro and Tomb Raider have a story and
really get one involved. As a take no prisoners, stressful game Battlefield, tests
one’s composure. There’s no time for gawking—gawk and die. So why then do we
need a ray-traced car that is in the middle of an intense sniper-filled house-to-house
cleanup mission? No. One doesn’t have time to look at it or appreciate it, and it
could just as well be a big black box (Fig. 6.11).

And where is a war-torn place like Amsterdam is one going to find a perfectly
clean, undamaged car with all its windows and no bullet holes?

Fig. 6.9 Lara’s unrealistic dirty face and arms

102 6 Applications of Ray Tracing

The scene in Battlefield V is in Amsterdam after many years of war, in the early
1940s. In the 1940s, in Holland, there was no such thing as flat glass like we have
today. It all had (and still does) ripples in it. Secondly, after many years of war
deprivation, there weren’t any clean windows. As fastidious as the Dutch are,
during the war they were being starved to death by the Germans and didn’t have

Fig. 6.10 Artyom’s perfectly clean mask and gun after a decade of fighting in tunnels and snow
storms

Fig. 6.11 Car reflecting a nearby fire in Battlefield V

6.1 The Pipeline 103

time or interest in washing their windows. Therefore, the depiction of perfectly
reflecting windows like mirrors in the Battlefield V is superfluous and gimmicky
(Fig. 6.12).

Rivers and pools of water, maybe, but you really don’t need ray tracing for that,
ray casting is fine, you’re not going to be there long enough to appreciate it, and it’s
just burning cycles.

Now, if someone were to make a truly interactive, non-cartoonish fantasy game
like Myst, that would invite you and let you wander around and discover things
without fear of someone killing you, then ray tracing could, and would, be really
great. But in action kill-or-be-killed games like Tomb Raider, Metro, or Battlefield,
forget it. Give back those cycles, so they can be used for better physics, mechanics,
and no latency, all with high frame rate and high resolution and FOV. Give better
bump maps, so the mud on Lara is caked, and Artyom’s stuff is dirty.

The Exception

There is one scene, the only scene, in SotTR where Lara is in a village, at night
during a festival. She is not being chased and is safe. She is following some men.
The village scene is very pretty with all the lights, their shadows, and reflections. In
this situation, ray tracing does add something (Fig. 6.13).

Fig. 6.12 Perfectly flat, perfectly clean Dutch windows in WWII Amsterdam

104 6 Applications of Ray Tracing

So why, if ray tracing isn’t really needed, plus it required a new and expensive
AIB, and the first implementations were not very realistic, were the suppliers doing
it? Because they could.

Computer graphics has always been about because we can. And, as has been
pointed out many times, it is going to take years for the game developers to figure
out what can (and what shouldn’t) be done with ray tracing.

However, another point of view is that it is not eye candy that ray tracing will
supply but visual cues to help gameplay. Reflections and shadows that alert gamers
to a developing situation is the obvious one. So as with all media, the content needs
to be more cleverly developed, and that just takes time as the developers figure out
how to use it. Remember however, they never figured out how to use stereo 3D and
as a result it died.

4A Games Metro Exodus

A4 has employed Nvidia’s GeForce RTX for real-time ray-traced global illumi-
nation in PC-based games.

Game developer 4A Games has a video (https://youtu.be/Ms7d-3Dprio) of
gameplay footage from its game, Metro Exodus. The story-driven first-person
shooter (FPS) was one of the first titles to support real-time ray tracing. The video is
narrated by Benjamin Archard, a rendering programmer at 4A Games. In it, he
explains some of the intricacies of real-time ray tracing and specifically global
illumination (Fig. 6.14).

Nvidia’s Turing-based add-in boards are designed to bring real-time ray tracing
to consumers. The GeForce RTX 2080 Ti, 2080, and 2070 feature Nvidia’s RT (ray
tracing) and Tensor (AI) Cores and are used in conjunction with Microsoft’s
DirectX Raytracing (DXR) API. This combination makes realistic lighting effects
attainable in gameplay.

Fig. 6.13 Market scene in Shadow of the Tomb Raider

6.1 The Pipeline 105

https://youtu.be/Ms7d-3Dprio

In the video referenced above, one can see several occasions where Nvidia’s
RTX ray-tracing operation is turned on and off to show what a difference real-time
ray tracing makes.

Nvidia explained in a blog post (https://www.nvidia.com/en-us/geforce/news/
metro-exodus-rtx-ray-traced-global-illumination-ambient-occlusion/), “By intro-
ducing real-time ray-traced global illumination (RTGI), 4A can have natural
lighting from the sun and moon realistically illuminate a scene and have it gen-
uinely affect the scene as the time of day changes. Before now, this was impossible
—GPUs lacked the necessary hardware and performance to calculate real-time ray
tracing, and no one had crafted technology and techniques to accelerate the process
to such a degree that it could be used in graphically complex games.”

Real-time ray-traced ambient occlusion (RTAO) can also be seen in the video.
RTAO enables developers to calculate and display AO’s contact shadowing based
on the geometry of the scene. This is a different approach than traditional rasteri-
zation rendering, which uses rough approximations to generate shadows sur-
rounding an object, rather than being based on an object’s specific size, shape, and
material construction.

The video also provides an indication of what kind of visuals GeForce RTX
graphics add-in board owners will experience.

6.1.1.3 Architecture

Often lumped together as architectural, engineering, and construction (AEC), I
make the distinction of not doing that because engineering and construction can be
considered design and manufacturing respectively.

Fig. 6.14 A ray-traced scene from A4’s “Metro Exodus”

106 6 Applications of Ray Tracing

https://www.nvidia.com/en-us/geforce/news/metro-exodus-rtx-ray-traced-global-illumination-ambient-occlusion/
https://www.nvidia.com/en-us/geforce/news/metro-exodus-rtx-ray-traced-global-illumination-ambient-occlusion/

Architectural conceptualization is what architects used to do with balsa wood
and cardboard models, to give the prospect and idea of what his or her building or
home would look like, or what a modification to a building, home, or garden would
(could) look like. Ray tracing adds the ability to show the design concept in all
hours of the day and all seasons, to show the secondary effects from the proposed
building (such as reflections and/or shadows cast by it) (Fig. 6.15).

It is very common that architecture offices need to make renderings during the
development of projects. For some stages and some types of projects, it makes
sense to hire the services of a professional rendering company. But sometimes, it is
too costly and the time consuming of the coordination doesn’t fit in a tight schedule
of a small project for example. However, even in these cases, one needs to be able
to communicate to the client or other members involved in the development of a
project how the space is going to look like.

Sun and Shadows

Because a ray-traced image is physically accurate and photorealistic, they are also
used to show the shadow and reflections from a proposed building. Sometimes,
such analysis is done after the fact. A classic case of doing the analysis afterward
occurred in 2015 (Fig. 6.16).

London’s 20 Fenchurch Street tower is known to Londoners as the
“Walkie-Talkie,” because if its concave shape. The glass-ensconced building has
long been controversial among residents and architects alike. Built with sweeping
curves, 20 Fenchurch inadvertently became the ideal platform for concentrating
solar energy. As a result, the unfortunate owner of a new Jaguar found the interior
of his car melted due to the concentration of sun rays from the building (Fig. 6.17).

Fig. 6.15 Proposed mixed-use development. Source Tom Svilans, rendered with Indigo Renderer

6.1 The Pipeline 107

However, 20 Fenchurch wasn’t the only building in the world to fall victim to its
own designs. Los Angeles’ Walt Disney Concert Hall has also been singled out for
its solar harnessing properties and so there are such buildings in Las Vegas and
other metropolises.

Fig. 6.16 London’s 20 Fenchurch Street tower. Source Nvidia

Fig. 6.17 Doing the analysis before would have revealed the risk. Source Nvidia

108 6 Applications of Ray Tracing

6.1.1.4 Film and TV

The film is similar to animations and games with regard to the use of ray tracing in
the conceptualization stage. In the case of TV, ray tracing of products, especially
products with shiny surfaces like ketchup bottles, clean floors, and even teeth, gives
the sponsor the exact look and feel of the proposed commercial (Fig. 6.18).

Pitchvis can be used to create a pre-vis trailer to show investors and production
companies that could help get one’s project funded or greenlit. As the name sug-
gests, Pitchvis is when one pre-visualizes some or all of a film, often for very
complex scenes. That can include using storyboards and animatics (as well as asset
building) to get a 3D visualization of the world of the story, therefore letting one try
out every angle before filming.

Fig. 6.18 HBO logo ray-traced and animated as molten metal. Source © HBO

6.1 The Pipeline 109

6.1.1.5 Medical and Scientific

Medical and scientific instruments have to be functional and at the same time
pleasing and attractive to look at. Whether it is a dentist’s chair, a full-body MRI
scanner, a blood analyzer, or an electronic testing device, every supplier has
competition and a differentiated and stylish look helps sell the product, makes the
user and patient feel good about it, and helps the supplier get the maximum price.
So, ray tracing contributes to the bottom line in several respects.

6.1.1.6 Vehicles

Automobiles, trucks, boats, airplanes, space ships, rovers, and satellites are all
conceptualized using ray tracing. After the design has been accepted, it is then
moved to final detailed engineering. During the presentation period, it is possible
with many programs to make changes in the rendered image and have them be
reflected back to the preliminary model. In the past, automobiles were conceptu-
alized with a clay model and then measurements were made from it to create the
manufacturing drawings. It was a very time-consuming and unreliable technique,
but one that was critical to convey the slopes, angles, and surfaces. Ray tracing has
all but eliminated the clay model practice (although it is still used in some cases).
The same is true in the aerospace sector, and physical miniature scale models are
still built for conceptualization. One person in the industry commented that people
in these industries just like to build models, and others like to look at them; that is
something ray tracing or any other computer simulation can never replace.

Autonomous vehicles however may pose a threat to the utilization of ray tracing
for automotive design.

In the future, when self-driving cars represent the majority of vehicles on the
road, car ownership and even driving licenses will be a thing of the past. If
driverless vehicles become on-call transportation pods, taxis, or minibuses, the
incentive to design beautifully looking vehicles will end. Consumers will no longer
be subjected to advertisements for slick-looking cars, and the need for ray tracing
and car designers will diminish (Fig. 6.19).

However, it will take decades for autodrive vehicles to replace the existing fleet
of cars in service, unless there are insurance pressures or government mandates to
accelerate the transition.

Fig. 6.19 Is this the future for automobiles?

110 6 Applications of Ray Tracing

And, while we may be seeing “peak cars” in our lifetime still, there are others
who do not subscribe to the dystopian view that all pods the world over will look
the same—on the contrary: services will likely distinguish themselves by offering
rides in very different vehicles.

6.1.1.7 Products in General

Consumer products like an electric toothbrush, shaver, milk or whiskey bottles,
lamps, and all sorts of other products used to be constructed with balsa wood, bits
of plastic, and even tinfoil to try and convey the proposed design concepts. They
were fragile and like the clay models of automobiles. They were time consuming to
construct and not very easy to translate into a manufactured product. Watches were
often built, a single copy, to show management and the sales department what could
be developed. Today, it is all done with computer simulation. Also, most of the
extraordinarily talented craftsman who handmade those models have died or retired
and a new class of such people has not been trained to do it. So, ray tracing and
computer simulation were essential in saving the watch design industry. Several
other industries have a similar debt to ray tracing.

6.1.2 Design and Engineering—STAGE TWO

Once the concept has been accepted, it can move to the final, accurate, and detailed
(including all subsystems) design. When a product, whether it’s a robotic vacuum
cleaner, a wing-tip fuel tank, or a 20 second TV commercial, manufacturing con-
straints, standards, and associated parts (including actors) will impact the design
and shift it from the original concept into what’s practical and possible. Now, the
engineers and designers have to render it accurately and show it once again to the
customer to get approval for the changes. If standards bodies are involved, the
approval may involve certifications. To satisfy all those requirements, the ray tracer
must be physically accurate and photorealistic.

Pre-visualization (also known as previs, pre-vis, pre-rendering, preview, or
wireframe windows) is the visualizing of complex scenes in a movie before filming.
It is also a concept in still photography. Pre-visualization is used to describe tech-
niques such as storyboarding or the planning and conceptualization of movie scenes.

6.1.2.1 Photorealistic

Photorealism would seem like a basic characteristic in ray tracing, and it is the
whole reason for ray tracing. However, many ray-tracing programs use the Monte
Carlo stochastic technique and can, depending upon how many rays are cast and
how long the ray tracer is allowed to run, give a slightly distorted representation

6.1 The Pipeline 111

known as biasing. Also, critically important is the material library used for the
model. If the product is to be a certain type of leather, then the material model used
has to be exactly that type of leather with exactly the correct tanning, dying, and
surface texture. Anything less is not photorealistically accurate.

Physically Accurate

Automobile headlamps today employ complex illumination optics and are using
projector-type headlamps which produce flexible and accurate illumination distri-
bution. Such projector-type lenses for headlamp have tiny features on the exit
surfaces to diverge a part of ray. Moreover, the headlamp light distribution is
regulated by law in each country.

Physically accurate should not be confused with physically based rendering.
Physically based refers to the fact that the algorithm in question is derived from
physically based principles. It is not physically correct, and some approximations
usually have to be made. In rendering, we always have to balance realism with
computational cost, and physically based rendering is used when such compromises
have to be made.

As mentioned above, a ray tracer can be biased. Nearly, every renderer is biased
to some extent. Unbiased basically means that no shortcuts are taken when cal-
culating a render. Every ray is treated equally, and there is no bias in terms of any
importance whatsoever. If one’s ray tracer is fast, it is more than likely biased. The
degree to which it is biased depends on the developers of the ray tracer as well as
the settings of the user.

6.1.2.2 Jewelry Design

Jewelers used to make elaborate multi-view drawings or revert to the actual con-
struction of jewelry prior to selling it. Now, they use ray tracing to design the ring,
necklace, brooch, or bracelet and make adjustments to suit the client before melting
one drop of gold or silver. This gives the client exactly what he or she wants and
eliminates very expensive waste (Fig. 6.20).

Ironically, Piñeiro Solsona worked so hard on the jewel and the diamonds and
doesn’t seem to have been interested in the band, which sadly detracts from the
whole image.

6.1.2.3 Fashion Design

Using ray tracing in fashion design seems like an obvious application. But the
dynamics of cloth and the many types of it is extremely challenging.

Design, development, and production in the fashion industry have largely relied
on the same, often manual, methods despite all the technological advances hap-
pening in the world outside of fashion and apparel.

112 6 Applications of Ray Tracing

Digital technologies in fashion are becoming more accessible, and now, any
creative with a basic knowledge of fashion design and computing can create con-
vincing still or animated 3D visualizations of styles, designs, and products. With
this technology, the designer can present a lifelike design that shows how the
fabrics will look and how the garment fits on the body. However, fashion designers
must now learn about 3D software and the principles of working in three dimen-
sions. They must learn about creating the mannequin avatar, garments, accessories,
and textures and how to present and publish the finished article.6

Various programs are available now including Clo3D and Marvellous Designer
for fashion-orientated design, and Maya, Mudbox, Rhino, and Photoshop for more
general digital design, visual effects, and rendering.

Virtual Simulation in the Fashion Industry

Ten years ago, academic research investigated clothing companies’ complaints on
the lack of effective garment-oriented CAD packages to design directly in 3D and
provide the model list with tools for shape modeling and cloth behavior simula-
tion.7 Although commonplace in other sectors, 3D virtual prototyping in the apparel
industry had been slow and complex.

Digital prototyping in the textile and clothing industry enables the process of
product development where various operators are involved in the different stages.

Fig. 6.20 Cut glass and
jewelry design requires ray
tracing to catch all the
reflections of the piece and
show it off best (Rendered in
FluidRay RT, design by
Manuel Angel Piñeiro
Solsona)

6Makryniotis (2015).
7Papachristou and Bilalis (2017).

6.1 The Pipeline 113

Taking into account the recent trends in the industry and using new and various
skills, and formalizing in a deterministic way the result of their activities, the
product development cycle, and the use of new digital technologies can overcome
the “typical cycle”.8

Design, development, and production have largely relied on the same, often
manual, methods despite all the technological advances happening in the world
outside of fashion. Today with the demand from better-educated consumers, mass
customization, e-commerce, and advances in virtual reality applications, the virtual
garment development is seeking to optimize the apparel industry’s design and
development processes.9 Although this is now commonplace in the aeronautical,
automotive, furniture, and shoe sectors, development in the apparel industry has
been slow and complex; mainly due to the dropping and stretching properties
inherent in fabric, which are not only radically different between different fabric
types and constructions, but also in the direction of weave or knit within the piece.

The 3D concept is an important development in the design process. It allows
designers to create real-life visualization of designs that could previously only be
imagined through 2D sketches. According to Dassault Systèmes though, many
processes still do not live up to their full potential. Creative 3D materials have
always been painful, whereas vendor software companies claim that with 3D vir-
tualization is a fantastic way of starting the process of apparel product development.

The clothing industry has been transformed from a traditional labor-intensive
industry into a highly automated and computer-aided one. However, the primary
drawback for most of the existing commercial CAD systems in the past was that
they relied on mere geometrical modeling and did not provide virtual simulation
tools (with few exceptions). 3D technology started to get in that market but needed
technological advancements to get there.10

Marvelous Designer offers the user the ability to create 3D virtual clothing with
its design software. From basic shirts to intricately pleated dresses and rugged
uniforms, one can, according to the company, virtually replicate fabric textures and
physical properties to the last button, fold, and accessory (Fig. 6.21).

The program offers compatibility with other 3D software and interactive design
interface so that one can instantaneously edit and drape garments onto 3D forms
with high-fidelity simulation.

The company says their pattern-based approach has been adopted by game
studios such as EA Konami and can be seen on the big screen in animation films
including The Hobbit and The Adventures of Tintin, created by Weta Digital.

Clo3d offers 3D garment visualization technologies that the company claims to
cultivate a more creative and sustainable landscape for the fashion and apparel

8Papachristou and Bilalis (2016).
9Fontana et al. (2005).
10Fontana et al. (2005).

114 6 Applications of Ray Tracing

industries. Boasting of over 15 years of extensive research and development, and
multiple successful enterprise-wide adoptions, the company has a policy of main-
taining a 1:1 ratio between expert engineers and fashion-industry veterans, which it
says brings together the best of both worlds to build a user experience that focuses
on the most essential element of one’s process (Fig. 6.22).

The company uses Chaos Group’s V-Ray ray-tracing engine for its final output.

6.1.2.4 Mechanical Engineering

3D simulation of ray-tracing model is developed for studying the radiation heat
transfer, associated with laser-based additive manufacturing, in both thick and thin
particulate beds by using the Monte Carlo method.

Another clever use of ray tracing was accomplished by Lunenburg Industrial
Foundry & Engineering (LIFE), a company situated in the town of Lunenburg,
Nova Scotia, that came up with a new geometry for solar concentrators to use solar
energy to melt metal in their Foundry, reducing at the same time their use of fossil
fuel.

Parabolic dish solar concentrator combined, and parabolic trough reflectors can
achieve temperatures in the 350–400 °C range, while a solar tower can achieve
temperature as high as 1000 °C but requires a large array of computer-controlled
mirrors making it expensive. LIFE used ray tracing to design the parabolic mirrors
and accomplish the concentration of solar radiation needed to melt metals (http://
tcsme.org/Papers/Vol34/Vol34No2Paper6.pdf).

Fig. 6.21 Marvelous Designer’s user interface and design tools. Source Marvelous Designer

6.1 The Pipeline 115

http://tcsme.org/Papers/Vol34/Vol34No2Paper6.pdf
http://tcsme.org/Papers/Vol34/Vol34No2Paper6.pdf

6.1.2.5 Molecular Modeling

Developed primarily for modeling and animation, ray tracing offers a high level of
flexibility with reference to photorealistic and surrealistic image rendering. Through
the use of existing software, the application of ray-tracing attributes to molecular
graphics is possible on a desktop computer. This application is especially pertinent
in view of rapid speed enhancements in PCs, which have enabled molecular
modeling and dynamics on such systems. In this regard, ray tracing provides
enhanced capabilities for molecular graphics rendering that are potentially equiv-
alent to those achieved by workstations.

These effects require almost no additional effort to implement and are guaranteed
to be precise, unlike similar techniques in rasterization. The impact of the light
effects on depth perception is one can see that without the light attenuation and

Fig. 6.22 Fashion design
with Clo3d. Source Clo3d

116 6 Applications of Ray Tracing

shadows, any sense of depth is completely lost. The presence of shadows helps to
clarify the relationship of the coils and molecule’s surfaces, as well as the position
of an ion or molecule attached to a metal atom by bonding (i.e., ligands) in binding
pockets in proteins.

6.1.2.6 Packaging Design

To achieve photographic renders, packaging professionals and brand owners have
relied on ray tracing, the current drawback being speed. This is especially notice-
able when the scene contains materials such as glass and liquids.

Creative Edge Software was the first company to deliver full ray-tracing capa-
bilities to all levels of packaging creatives with the launch of iC3D v4.0 in May
2016. By integrating ray-tracing technology into the iC3D all-in-one package,
creatives and brand owners were able to achieve photorealistic design mock-ups at
any stage without the need for specialist programs or third-party services
(Fig. 6.23).

With the development of the iC3D Real-Time Ray Tracer, Creative Edge
Software claims that they have succeeded in combining the speed benefits of
OpenGL technology, but using ray tracing to enable simultaneous photographic

Fig. 6.23 Ray tracing used in packing design and marketing. Source iC3D

6.1 The Pipeline 117

rendering of changes as they are made. This capability has the potential to replace
previous methods for achieving high-speed ray-traced renders, such as via a render
farm whereby the processing is shared between a group of top-specification
computers.

6.1.2.7 Geophysical

Seismic tomography is a major research topic on geophysics and concerns the
reconstruction of the Earth’s interior. Accurate Source: Localization is a critical
component of seismic monitoring. A seismic model accepts a description of the
subsurface of the Earth as input and produces a synthetic seismic record as output.
In raypath modeling, ray tracing is carried out for models of multilayered folded
structures so as to generate ray diagrams and synthetic time sections. The purpose
of seismic modeling is to provide the seismic interpreter with a tool to aid in the
interpretation of difficult geological structures. Over the past few decades, the
growing need for fast and accurate prediction of high-frequency wave properties
(most commonly travel time) in complex subterranean structures has spawned a
number of grid- and ray-based solvers. Traditionally, the method of choice has been
ray tracing, in which the trajectory of paths corresponding to wave front normals is
computed between two points. This approach is often highly accurate and efficient
and naturally lends itself to the prediction of various seismic wave properties.

6.1.2.8 Optical Design

Optical designers use ray tracing to visualize rays in a CAD design to check optical
properties, paths, and geometry. This improves optical performance and saves time
by eliminating manual tests of design iterations. Ray tracers, especially those
designed specifically for optical systems, provide analysis of multiple aspects of
imaging systems, including stray light and polarization effects. Bulk properties
including absorption, scattering, and fluorescence enable the design and analysis of
devices for a wide variety of applications. They can be used to simulate and
optimize light pipes, light guides, and non-imaging lenses and mirrors. Designers
can simulate surface effects including absorption, specular reflection and trans-
mission, and scattering.

6.1.2.9 Audio

Ray tracing has also been employed to visualize the acoustics of a space. Ray
tracing is a way of following the sonic energy that is emitted through space. Rays
are traced to generate an impulse response which represents the decay of sonic
energy in time at the place of the listener. The impulse responses are generated for
multiple frequency bands because material and air absorption parameters are

118 6 Applications of Ray Tracing

different in respect to different wavelengths. Sound propagation, direct and indirect
paths. Audio ray tracing takes into account occlusion for direct and indirect paths,
directionality/head-related transfer function (HRTF), attenuation, approximate
direct path diffraction, and material reflection, absorption, and transmission.

6.1.3 Manufacturing and Production—STAGE THREE

Virtual prototyping is not a new concept and dates back to the early 1990s.11

Virtual prototyping is a method in the process of product development. It
involves using CAD, computer-automated design (CAutoD), and computer-aided
engineering (CAE) software to validate a design before committing to making a
physical prototype. This is done by creating 3D computer-generated geometrical
shapes (parts) and either combining them into an assembly or testing different
mechanical motions, fit and function. The assembly or individual parts could be
opened in CAE software to simulate the behavior of the product in the real world.

In the movie industry, virtual prototyping is sometimes considered
pre-visualization, but that is an incorrect designation. Pre-vis is the trial and design
stage (see Sect. 6.1.2). Pre-vis often gets confused with virtual production.

The holy grail for filmmakers is to be able to work in real time, iterate in
photorealistic environments, and do anything you want at the moment. As the
technology of virtual production evolves and becomes more intuitive, the biggest
benefactor may be the indie director.

One can’t really discuss virtual production without discussing the stages that
lead up to, or follow, it. Filmmakers don’t often start production without a long
period of pre-production, and so virtual production is often preceded by pre-vis, a
world-building, planning aspect that is so closely linked to production that it is
often inseparable.

The product design and development process used to rely primarily on engi-
neers’ experience and judgment in producing an initial concept design. A physical
prototype was then constructed and tested in order to evaluate its performance.
Without any way to evaluate its performance in advance, the initial prototype was
highly unlikely to meet expectations. Engineers usually had to redesign the initial
concept multiple times to address weaknesses that were revealed in physical testing.
The world of virtual production is changing rapidly and getting faster.

Virtual Rapid Prototyping (VRP) is being opened up to all kinds of industries,
and in filmmaking, it is getting the industry closer to that real-time iteration. VRP is
a unique adaptation of the pre-vis process, accelerated with virtual production
techniques. Utilizing only a small crew and an actor in motion capture suit, a

11“Virtual Prototyping: Concept to Production,” Report of the DSMC 1992–93 Military Research
Fellows, Defense Systems Management College, March 1994, https://apps.dtic.mil/dtic/tr/fulltext/
u2/a279287.pdf.

6.1 The Pipeline 119

https://apps.dtic.mil/dtic/tr/fulltext/u2/a279287.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a279287.pdf

director can stage, shoot, and edit sequences in real time, sketching the sequence
quickly.

An entire film can be quickly and inexpensively pre-vised using VRP to test for
marketability, providing a feature-length Pitchvis. An incredibly scalable solution,
VRP can be executed with a compact team or full-scale production.

6.1.3.1 Fixture Design and Placement

Fixture design for interior spaces such as homes, lobbies, and conference rooms
requires multiple forms of lighting to meet different needs. Linear fluorescent lamp
fixtures commonly produce the general ambient light, and reflectorized halogen
lamp fixtures produce the directional lighting, while light fixtures with LEDs to
provide different beam distributions. Current lighting practice uses multiple light
source technologies and fixtures to achieve the required illumination for various
tasks. However, many light fixtures can create an unappealing architectural design,
especially in a small space, and multiple light source technologies can cause
maintenance difficulties.

Some companies such as Synopsys and DIAL specialized in the application of
lighting design.

LightTools is a 3D optical engineering and design software program from
Synopsys that supports virtual prototyping, simulation, optimization, and photo-
realistic renderings of illumination applications (Fig. 6.24).

DIAL develops DIALux—the world’s leading software for planning, calcula-
tion, and visualization of indoor and outdoor lighting (Fig. 6.25).

The company claims that their software makes professional lighting design
easier and accessible to everyone as a platform and tool that connects planners and
manufacturers.

6.1.3.2 Ray Tracing in Games’ Manufacturing

Several game developers have used ray tracing in the generation of images in the
game, then recorded those scenes or objects in the scene, and used them as texture
maps. That is known as baking from baking in the image.

Japanese game designer Polyphony Digital, founded in 1998, is a subsidiary of
Sony and the developer of the very popular racing game Gran Turismo for the
PlayStation console. Polyphony Digital has developed their own ray-tracing soft-
ware for in-house image generation and used it to create baked-in image that is
applied in real time when the game is playing (Fig. 6.26).12

12http://cdn2.gran-turismo.com/data/www/pdi_publications/cedec2018_raytracing.pdf.

120 6 Applications of Ray Tracing

http://cdn2.gran-turismo.com/data/www/pdi_publications/cedec2018_raytracing.pdf

The company and game are famous for beautiful exotic cars that the player can
race on a track like Nuremberg or through the streets of Tokyo and other cities or
places like the Circuit de Barcelona-Catalunya shown above.

Fig. 6.24 LightTools’
illumination and lighting
design. Source LightTools

Fig. 6.25 DIAL’s lighting
design software user’s
interface. Source DIAL

6.1 The Pipeline 121

Polyphony used Nvidia Quadro RTX AIBs to render the scenes and objects they
will place in the final game.

As mentioned in the hardware summary (Sect. 7.4.6), it doesn’t take specialized
hardware to do ray tracing. Polyphony did do ray tracing on the PS4, it is just a
matter of how quickly it could render a scene, and it is doubtful it could be
considered real time. However, a driving sim could do hybrid ray tracing in real
time more easily than a first-person shooter because the scenery doesn’t need to be
ray-traced, just the automobiles.

6.1.4 Marketing—STAGE FOUR

As illustrated in the ray-tracing pipeline shown below, the marketing of a product
using ray tracing can occur before the product is actually built. In the case of selling
automobiles, for example, this is almost essential. Likewise, in the case of archi-
tectural design it is necessary to use the image of the proposed building to sell it,
long before the building is built (Fig. 6.27).

In order to have customers lined up and hopefully prepaid, photorealistic images
are used ahead of production. In the case of buildings, and product design, such
rendering offers the opportunity of making changes before a design is committed to
production and manufacturing. The line between virtual prototyping and marketing
in some cases is very thin.

For most projects, marketing is done at the end, but for many projects, especially
big ones (big being measured in either dollars, actual physical size, or number of
units), marketing is done as soon as a design is finalized or almost finalized.

Fig. 6.26 Gran Turismo the Circuit de Barcelona-Catalunya. Source Sony’s Polyphony Digital

122 6 Applications of Ray Tracing

Typically, the images used for marketing are the same as those used for man-
ufacturing, why should they be any different. One of the advantages of a 3D model
and ray tracing is the reality of the result. However, products may be put in situa-
tions or scenes that are not real, or difficult to obtain as some of the illustrations in
the following paragraphs will reveal.

6.1.4.1 Advertising

In the case of product advertising, ray tracing is an advertiser’s dream come true. It
eliminates time-consuming product shoots which may be thwarted by weather,
difficult lighting, actors, and product availability. It allows the advertiser to
experiment and get just the image desired and at a fraction of the cost and time
(Fig. 6.28).

Almost 95% of all vehicle advertisements for print and TV are done using
ray-traced images of the vehicle which includes boats, buses, cars, forklifts, tanks,
and trucks to name a few. All architectural advertisements are done using ray
tracing which can be set at any time of day, with or without adjoining properties and
geographic features (Fig. 6.29).

New consumer products from white goods to electric toothbrushes and frying
pans are rendered for advertising using ray tracing. In several cases, the advertisers
never get to see the actual product (Fig. 6.30).

Clever product placement programs such as MirriAd and Ryft can put ray-traced
images in videos, movies, and games after the fact or in real time.

MirriAd is able to digitally place brand imagery into any video on demand and at
scale using computer-vision-based technology for mobile and TV advertising. The
software can replace a can of Coke with a can of Pepsi for instance or put a can of
Coke in a scene that didn’t have one (Fig. 6.31).

Ryff offers dynamic product placement in video streaming. Want to put a can of
Diet Coke in the hand of the president while he is giving a press conference? Ryff
can do that using AI-driven techniques; the company calls itself an “intelligent

Fig. 6.27 Ray-tracing pipeline

6.1 The Pipeline 123

image platform” company, which means the company does product placement in
live or prerecorded video broadcast content. What makes it unique is that content
can be placed dynamically, even changed. As a result, content can be tailored to the
audience.

Advertising agencies and the studios who work for them have become one of the
major customers of ray-tracing software and represent one of the growth segments
for the technology.

Fig. 6.28 Ray-traced car with neutral background; any scene could be applied. Source Chevrolet

Fig. 6.29 Modern office buildings. Source Mike Mareen

124 6 Applications of Ray Tracing

Fig. 6.30 Consumer product with neutral background. Source V-Ray

Fig. 6.31 Ryff lets advertisers place any virtual object into commercials and films. Source Ryff

6.1 The Pipeline 125

6.1.4.2 Packaging

Akin to and sometimes a subset of advertising is the packaging used for a product.
The box that a bottle of water or whiskey comes in is as important as the product
itself in attracting a consumer’s interest. Products that may not actually be shown,
such as flower or salt, will be sold often based on its package (Fig. 6.32).

Curved and odd-shaped packages which reflect light in interesting ways much as
an automobile’s fender does are primary candidates for ray tracing in packing
presentation.

6.1.4.3 Projection Mapping

Businesses and theatrical production companies have been using multi-projector
systems to light buildings, storefronts, and stages creating amazing and sometimes
startling images that delight audiences and passersby. The images have usually
been prerendered videos. With the advent of HDR and lasers in projectors, a new
quality capability presented itself for image projection and at 4K resolutions with up
to 32K across multiple projectors.

One of the leading companies in that segment is Notch which has done major
events at rock concerts, company presentation, museums, and events and offers
ray-tracing capabilities in its visual creation tool for interactive motion graphics
(Fig. 6.33).

Fig. 6.32 Packaging complex, nonlinear reflective surface containers. Source Creative Edge
Software

126 6 Applications of Ray Tracing

Notch’s content creation tool, Builder, allows creation from scratch as well as
the ability to import elements from other industry tools. The company claims that a
user can always see their final results in real time.

6.2 Summary

As the demand for photorealism continues to accelerate in all four stages, with no
real end in sight, the demand for high-quality ray tracing will continue to grow with
it. Anywhere that rendering is in use, ray tracing will be found. The users at all sizes
of companies and in all stages will have multiple choices for how they obtain and
employ ray tracing. And in many industries, the users in the pipeline, the four
stages, will employ different ray-tracing programs from various suppliers. The goal
and challenge for the supplier is to make the integrations with specific tools smooth
and provide support for specific workflows—the suppliers must work to remove
barriers to integration.

Speed Until recently, the primary barrier to wider ray-tracing adoption has been
the hardware limitations of CPU and GPU architectures. With the advent of
multi-core CPUs from Intel and AMD, as well as Nvidia’s latest Turing architec-
ture, those barriers are being eliminated, meaning that ray tracing will see even
greater adoption as the rendering times are reduced.

Fig. 6.33 Notch makes clever uses of denoising filters to produce high-quality ray-traced videos
in real time. Source Notch

6.1 The Pipeline 127

Materials The ray-tracing suppliers are continuing to expand their material’s
libraries, as well as opening them up for sharing with other programs and making
their own programs capable of accepting other libraries. Third-party material library
suppliers are also expanding. Materials are the black hole of ray tracing, and there
will never be enough. That suggests a meta-language, and taxonomy is needed to
classify and make materials easier to select. That will require a consortium to
balance open libraries from proprietary ambitions. Nonetheless, many suppliers will
always maintain their own material libraries as will various users who want a
differentiated look or have special paint, surface treatment, or characterization such
as in animations.

Presentation The results of a ray-tracing rendering will be restricted in its por-
trayal of realism, or fantasy, by the presentation device. Local screens on work-
stations and mobile devices have reached densities of one billion colors, and
68 billion colors are available on some devices. Projectors follow that development,
and printers do also. However, the presentation device will always be the limiting
factor in how an image looks.

Future Looking forward, I expect suppliers to begin to incorporate more extensive
techniques such as radiosity, light field, voxels, and other global illumination
techniques in the quest for the ultimate realism in rendering.

References

Fontana M, Rizzi C, Cugini U (2005) 3D virtual apparel design for industrial applications. Comput
Aided Des 37:609–622

Kremp M (2007) Cinematic-quality computer game graphics. Spiegel (online), Mar 2007. http://
www.spiegel.de/netzwelt/tech/virtuelle-lichtstrahlen-computerspiel-grafik-in-kinoqualitaet-a-
469418.html

Makryniotis T (2015) 3D fashion design: technique, design and visualization. Batsford, 17 Sept
2015

Papachristou E, Bilalis N (2016) Can 3D prototype conquer the apparel industry? J Fashion
Technol Text Eng 4:2

Papachristou E, Bilalis N (2017) 3D virtual prototyping traces new avenues for fashion design and
product development: a qualitative study. J Fashion Technol Text Eng 4

Pohl D (2008) Ray tracing and gaming—one year later. PC Perspective, 17 Jan 2008

128 6 Applications of Ray Tracing

http://www.spiegel.de/netzwelt/tech/virtuelle-lichtstrahlen-computerspiel-grafik-in-kinoqualitaet-a-469418.html
http://www.spiegel.de/netzwelt/tech/virtuelle-lichtstrahlen-computerspiel-grafik-in-kinoqualitaet-a-469418.html
http://www.spiegel.de/netzwelt/tech/virtuelle-lichtstrahlen-computerspiel-grafik-in-kinoqualitaet-a-469418.html

Chapter 7
Ray-Tracing Hardware

Abstract Ray tracing and its associative techniques are mathematical functions
and as such can be executed on any computational device. The question is how long
is one willing to wait for the results? General-purpose processors, CPUs, with their
large addressable memory space do an excellent job at ray tracing and are still the
primary engine for ray tracing. Graphics processor units, GPUs, have been used, but
the basic architecture of GPU isn’t particularly well-suited for ray tracing, and
GPUs have limited memory space. A new generation of specialized GPUs with
specific ray-tracing features has been introduced and except for the memory space
represents a real challenge to CPUs. Specialized, custom, application-specific
integrated circuits (ASICs) have also been developed in an attempt to speed up the
rendering time. None of them have had long-term success, and most have died
still-born.

Hardware used for ray tracing is as important as the software requirements which
are just as important as the need. Hardware is selected by the requirements of the
software, and the software is selected by the requirements of the user’s or the
project’s need. Most users won’t update hardware until it reaches a pain point, i.e.,
too slow, not enough storage, etc.

How critical is hardware to ray tracing? It depends where the user is in the need
to hardware spectrum.

7.1 Shortcuts and Semiconductors—The Need for Speed

Who cares about ray tracing and whether it is fast or slow?
Comparing the computational and hardware costs of ray tracing, some people

have said that shininess for shininess purposes only makes no difference compared
to some of the excellent quality that precomputed “baked-in” lighting techniques
can produce.

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3_7

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-17490-3_7

However, baked-in lighting does not move, it is static, and it is only used for
distance shading or games where the time of day does not change. It is also
primarily used for finite worlds where the storage capacity is bounded. Large,
dynamic worlds may require too much storage to hold precomputed lighting.

One can also use environment probes which renders the environment from a
specific point in space. They are used to write the results to a texture map for an
overlay of reflective surfaces, like water or windows, but again its static. If one has
a line of trees next to a body of water, the fake reflections (of the trees and sky) only
line up from a very specific angle if you move away from the scenery moves but the
reflection doesn’t.

The advantage is for the game artists and developers. Not having to create art
with baked lighting and fake reflections, and workarounds for effects saves a lot of
time that can be dedicated elsewhere, thus improving the graphics in other areas as
well as giving us more accurate reflections and lighting.

Investigations to find clever ways to reduce the computational load by using
intelligent algorithms to examine a scene and deterministically allocate what objects
are visible and which surfaces need rendering will continue.

Hybrid techniques are being improved and evolved where only certain portions
of a scene are ray-traced. Objects in the distance, for example, don’t need to be
ray-traced; flat, dull-colored objects don’t need it (Fig. 7.1).

Semiconductors are being developed that specifically accelerate ray tracing.
Imagination Technologies has a ray-tracing engine that when combined with the
advanced techniques just described can render an HD scene with partial ray-traced
elements several times a second. Also, Nvidia has introduced ways to make a
standard GPU more ray tracing friendly and faster.

Fig. 7.1 Use of variance-based adaptive sampling on this model of Christmas cookies from
Autodesk 3ds Max provided a better final image in record time. Source Chaos Group

130 7 Ray-Tracing Hardware

All these ideas and developments will converge in the very near future, and real
time, easy to use ray tracing will be realized.

Rendering is typically a stand-alone function because of the workload. However,
like everything else, there are always exceptions due to resource limitations and
project demands. With modern processors and modern software, users can model
and render almost simultaneously, work in one domain, and see the results in the
other.

There is no simple rule for rendering, each organization and user depending on
the project, the available hardware and age of the software determine the workload
protocol and procedure.

Ray tracing can be done with different processors and combinations of them:

• CPU only
• GPU only (regular GPU)
• CPU and GPU (Hybrid)
• GPU with ray-tracing hardware
• Dedicated ray-tracing processor (ASIC)
• CPU with ray-tracing acceleration using ASIC.

Obviously with so many options, there is no single best solution. In addition to
the above choices for where the ray-tracing software is run, the location of the
processor(s) is another variable as they can be:

• In a local workstation
• In a campus or departmental server
• In servers in the cloud.

And any combination of the above, ray tracing can be a distributed problem with
different parts of the scene rendered on different processors or systems and then
combined on a local system for viewing.

The industry has for some time been using third party suppliers in the cloud as it
has come to be called for quite some time. Specifically, firms have engaged in
independent rendering services from what are known as render farms.

Rendering is done on different platforms depending on where it is in the pipe-
line. In the concept stage, it is done on workstations and PCs because of the need
for intimacy and if possible, interactivity. In the design stage, the demand for scene
data and accuracy is required and the cloud is often used to off-load the local
system. In the manufacturing stage, where more elements may be involved such as
PLM and MIS aspects, more of the workload is sent to the clouds. And in the final
marketing stage where the image has to absolutely and literally be picture-perfect,
the work is sent to cloud (Fig. 7.2).

The transition between an on-premise local machine use for rendering and public
cloud usage of visualization solutions over time is moving more to the cloud due to
the savings in rendering time and cost, the cost of owning and maintaining software
licenses, and the capital equipment costs of local machines and their maintenance.

7.1 Shortcuts and Semiconductors—The Need for Speed 131

With improved bandwidth and virtual machine capability and ease of use, it is
easy to visualize all rendering moving to the cloud other than localized activity in a
trail-and-error development phase.

With the advent of real-time ray tracing on GPUs, the convenience of being able
to experiment with a concept on a local machine will never go away. As ray-tracing
programs improve the user interface and eliminate the clutter, and complexity of
creating a ray-traced image, increased usage of local machines can be envisioned. It
is a constant struggle for software developers to make the program so simple it is
one button “Push to Render” capability, to one where every parameter of the scene
and object can be tweaked. That is why there will never be a one-size-fits-all
ray-tracing program and one reason why we have over 70 choices in ray-tracing
programs.

7.2 Local

Local processing of ray-tracing workloads can be accomplished on PCs, worksta-
tions, and even tablets or smartphones in final or interactive situations. The pro-
cessors these platforms can employ for the ray-tracing workload vary considerably
from small (relatively speaking) ARM processors in SoCs such as a Qualcomm
Snapdragon, to giant GPUs like Nvidia’s Turing, or big CPUs like AMD’s Epyic,
Threadripper, and Intel’s Xeon, or core I series. Once again, in the case of ray
tracing, one size does not fit all.

7.2.1 CPU

Ray tracing only on the CPU one avoids bottlenecks and any intrinsic limitations of
GPU rendering, which include the unsuitability of GPU architectures for full global
illumination, limited memory, limited support for third-party plug-ins and maps,
unpredictability, the need for specialist knowledge or hardware to add nodes, high
cost, high heat and noise, and limited availability of render farms. Read our

Fig. 7.2 Workload distribution through the pipeline

132 7 Ray-Tracing Hardware

in-depth look at the advantages of CPU-based rendering. Of course, the GPU
providers and devotees would argue with most of those points, and that is how it
should be—there are no absolutes.

Up until recently almost all high-quality rendering for the film (at all the big
studios, with all the major renderers) has been CPU only. There are several reasons
why this is the case:

GPUs go fastest when everything is in memory. The biggest GPU add-in boards
have 48 GB (and the size increases every year), and it has to hold everything.
However, the studios routinely render scenes with 30 GB of geometry and 1 TB or
more of textures maps. So, GPUs are unable to deal with the biggest (or even
average) movie scenes. With CPU renderers, one can transfer pages from disk
whenever needed and that can be even accelerated using smart high-speed
solid-state memory (SSDs) that is tightly coupled to much larger (albeit slower)
hard drives (HDDs) using technologies like Intel’s Optane and Emotus FuzeDrive.

GPUs are great at highly coherent work (i.e., SIMD—doing the same process to
lots of data at once). Ray tracing is very incoherent (each ray can go a different
direction, intersect different objects, shade different materials, and access different
textures), and so this access pattern used to be a criticism of a GPU’s performance
(because of the time needed to flush and load a new kernel or microprogram);
however, newer GPU architectures have overcome that issue.

The Studio Point-of-View However, despite that recent GPU developments have
enabled the GPU to match the best CPU-based ray-tracing code, and even though in
some cases it has surpassed it, it is not by much, not enough to throw out all the old
code and encourage new code specifically for GPUs. Nonetheless, in studio work
the biggest, most expensive scenes are the ones where GPUs are only marginally
faster. Being faster on the easy scenes is not that important to the studios (e.g.,
Blinn’s law, see Conclusion under Sect. 7.2.2.7).

Studios with 50- or 100-man years of production-hardened CPU-based renderer
code won’t throw it out and start over in order to get a 2� speedup. The cost of
software engineering effort, stability, look and feel of the final product and fiefdoms
are more important.

Similarly, if a studio has an investment in a datacenter holding 20,000 CPU
cores, all in the smallest, most power and heat-efficient form factor you can, that is
also a sunk cost investment and one doesn’t just throw it away. Replacing them
with new machines containing top of the line GPUs vastly increases the cost of
one’s render farm.

Amdahl’s Law (1967)1 was used as an argument against massively parallel
processing. However, since 1988, Gustafson’s Law has been used to justify mas-
sively parallel processing (MPP). But most people agree that you can only take
multi-processing so far—how far has to do with the data structures being used and
efficiency in threading (Fig. 7.3).

1Amdahl (1967).

7.2 Local 133

In the case of a film, the actual rendering per se is only one stage in generating
the scenes. But what is different about games? Why are GPUs good for games but
not film?

When making a game it has to render in real time, no less than 30 frames per
second (fps), or 33 ms per frame, and often the quality of the artwork, or the
rendering features will be sacrificed to achieve that. In contrast, with film, the
unbreakable constraint is making the director and VFX supervisor happy with the
quality and look he or she wants, and how long it takes is (to a degree) secondary.

Also, with a game, you render frame after frame after frame, live in front of a
user. But with film, you effectively are rendering once, and what is delivered to
theaters is a movie file—so moviegoers never know or care if it took 10 h per
frame, but they will notice if it doesn’t look good. So again, there is less of a
penalty placed on those renders taking a long time if the image looks fabulous.

With a game, you don’t really know what frames you are going to render, since
the player may wander all around the world, view from just about anywhere. You
can’t and shouldn’t try to make it all perfect, and you just want it to be good enough
all the time. But for a film, the shots are all hand-crafted. A tremendous amount of
human time goes into composing, animating, lighting, coloring, and compositing
every shot, and then it only needs to be rendered it once. Think about the economics
—once 10 days of the calendar (and salary) has gone into lighting and compositing
the shot just right, the advantage of rendering it in an hour (or even a minute) versus
overnight, is small, and not worth any sacrifice of quality or achievable complexity
of the image.

Fig. 7.3 Amdahl’s Law. Source Wikipedia

134 7 Ray-Tracing Hardware

Most production renderers use CPUs. GPUs are incredibly powerful, and some
benchmarks show 400% speed improvements over CPU-based renderers. The
problem is though is that GPU-based renderers struggle with the scenes that are
used in production. Typical production scenes contain over 250 GB of textures and
over 10 s of GBs of geometry (pretessellation). This isn’t going to fit in the memory
of a GPU, and the GPU will spend most of the time loading assets from the hard
drive (or network).

A lot of production renderers use the CPU as well most Dreamworks Animation
and Pixar films are still mostly CPU-based rendered.

It is not that the studios are anti-GPU in any way, they just believe in using them
for what they are good at. Soon, we will see the GPU used for rendering in films,
just as we are seeing game engines being employed in pre-viz today. In-between we
are seeing GPUs being used in areas where the architecture excels. This will be in
functions like post-processing, e.g., Bloom & Glare, the generation of stochastic
features like smoke, flames, waves, and clouds where the predictable, self-similar
nature of each calculation can be shared between the processors in an efficient and
effective way.

7.2.2 GPU

The GPU has been used to accelerate production ray tracing since 2009. However,
the first application of ray tracing using a GPU was accomplished in 2002 by
Carr, Hall, and Hart,2 using an ATI Radeon 8500 AIB, and shortly after that
Purcell, Buck, Mark, and Hanrahan3 did a similar demonstration using an Nvidia
GeForce 3.

These were primitive demonstration cases using only vertex and fragment sha-
ders and simple instruction sets, integer-only (fixed-point) fragment shaders, a
limited number of instructions per program, a limited number of inputs and outputs,
and no loops, no conditional branching.

Dr. Professor, Alexander Keller, one of the developers of the Mental Image
ray-tracing programs, and director of research at Nvidia commented, “Carr et al.,
used a regular grid as an acceleration data structure, which is very limited. Purcell
et al. used a uniform grid (see Sect. 5: “In this research, we assumed a uniform grid.
Uniform grids, however, may fail for scenes containing geometry and empty-space
at many levels of detail. Since we view texture memory as random-access memory,
hierarchical grids could be added to our system.”)”.

There is no difference between a “regular grid” and a “uniform grid?” Both Carr
et al. and Purcell et al. used uniform grids, but Purcell admits that uniform grids

2Carr et al. (2002).
3Purcell et al. (2002).

7.2 Local 135

“may fail for scenes containing geometry and empty spaces at many levels of
detail.”

Keller agrees and said, “This is also a big difference to Carr, as Carr is not using
an acceleration data structure on the GPU.”

“So, in fact, this architecture does not have a chance to compete.” The end of
Sect. 5.2 in Purcell (rtongfx.pdf) provides the fact: “Carr et al. [2002] have inde-
pendently developed a method of using the GPU to accelerate ray tracing. In their
system, the GPU is only used to accelerate ray–triangle intersection tests.”

“[…] Our system differs from theirs in that we store all the scene triangles in a
3D grid on the GPU; theirs stores the acceleration structure on the CPU. We also
run the entire ray tracer on the GPU. Our system is much more efficient than theirs
since we eliminate the GPU-CPU communication bottleneck.”

“Both teams,” Dr. Keller continues, “were fair to each other, Carr at the end of
Sect. 3 cites rtongfx, arguing about the issues of idle threads, which became a real
issue with all GPU programming (divergence, etc.). Still, communicating with the
GPU for intersection only, of course, the ray engine had no chance to compete.”

Professor Dr. John Hart, at the University of Illinois, commented, “At the time,
we were using AGP and PCI Express to communicate between the CPU and GPU,
and we had really slow readback rates from the GPU to the CPU. Nowadays we
have single-chip processors with both CPU and GPU elements and shared memory.
Carr’s approach was to use the CPU for what the CPU did best in handling the
irregular program flow of ray management, and that approach may make better
sense now given the faster CPU-GPU handoffs possible in modern
system-on-a-chip architectures.”

“So,” said Keller, “I would conclude, they were independent at the same time -
both important, although Carr at that time was a little bit more advanced, while the
other predicted the coming problem. The one had all on the GPU, but no adaptive
acceleration data structure, but kernels. The other one had recognized the issue of
divergence, but lots of bandwidth limitations, which became more of a problem
later on, when adaptive acceleration data structures were used.”

“It depends a little bit on how far you want to take it, for example, in
Szirmay-Kalos, Purgathofer’s 1998 paper on global ray tracing,4 used graphics
hardware early to do ray tracing of ray bundles using parallel projection. That, of
course, meant that all rays of a generation have to go in the same direction, which
proved not to be practical, but it was ray tracing supported by the rasterizer. It had
not been efficient, and won’t be, as it touches all geometry all the time.

Attempts at using a GPU for real-time ray tracing date back 2009 or earlier.
Limited resolution (256 � 256, or 512 � 512) and negotiated definitions of what
constitutes real time: 24 fps as used by the cinema, 25 fps as used by European TV,
or higher? As Margaret Wolfe Hungerford said, “… it’s in the eye of the beholder.”

4Szirmay-Kalos and Purgathofer (1998).

136 7 Ray-Tracing Hardware

In 2018, Nvidia introduced a new GPU, the Turing, that the company claimed
could deliver real-time ray tracing (RT-RT), and some examples were shown at
SIGGRAPH 2018 to demonstrate it.

7.2.2.1 Real-Time Ray Tracing

Work on real-time ray tracing can be traced back to the REMRT/RT tools devel-
oped in 1986 by Mike Muuss for the BRL-CAD solid modeling system. Initially
published in 1987 at USENIX, the BRL-CAD ray tracer is the first known
implementation of a parallel network distributed ray-tracing system that achieved
several frames per second in rendering performance.5

BRL-CAD’s ray tracer, including REMRT/RT tools, continues to be available
and developed today as open-source software. OpenRT, OptiX, OpenRL, and many
other APIs have now risen to the challenge of enabling real-time ray tracing on
GPUs.

Since then, there have been considerable efforts and research toward imple-
menting ray tracing in real-time speeds for a variety of purposes on stand-alone. In
2001, Dr. Steven Parker while at the University of Utah used an SGI Origin 2000,
considered a supercomputer at the time, to demonstrate almost real-time ray tracing
at 15 fps (Fig. 7.4).

For real-time ray tracing, one would likely choose a GPU. However, as in all
things there are compromises, and in its first instantiation, the AI-equipped, Nvidia
Turing ray-tracing-accelerated GPU was limited to a lower scene complexity than
typically used for the film. Nonetheless, it was and is extremely well-suited for
ray-tracing prototyping, games, and pre-vis applications.

Ray tracing is a physics-based lighting system that does not require heavy
custom implementation for each scene. GPUs with their massive compute density
and low cost-per-GFLOP have been candidate for accelerating ray tracing, but the
cellular construct of multiple SIMD (shaders) per cell and the nature of having to
flush a kernel before a new one can be loaded has made using a GPU problematic.
Recognizing that in 2014 AMD and Nvidia began adding special features to make
the GPU more ray tracing friendly.

For a long time, hardware support for ray tracing has been held back by three
main issues:

1. a large amount of floating-point computations needed
2. support for flexible control flow including recursion and
3. branching (necessary for traversal of hierarchical index structures and shading

computations)

and finally the difficulty to handle the complex memory access patterns to an often
very large scene database.

53D Rendering, Editor: By Wikipedians https://tinyurl.com/y7jgy8jr.

7.2 Local 137

https://tinyurl.com/y7jgy8jr

The introduction of the highly parallelized SIMD architecture of the GPU,
combined with the development of unified shader architecture led to a revolution in
the computer industry. Since the task of tracing each ray is linear and repetitive, it is
the exact same parallelized workload that benefits the most from the thousands of
parallel cores (called shaders) in a GPU. However, ray tracing of a fixed scene is
relatively straight forward, even easy. Ray tracing of a dynamic scene with moving
objects is extremely challenging. The latter is much more intensive due to the
changing nature of the scene. This requires more shaders (cores) and specialized
algorithms that can compensate for the dynamic characteristics of the scene. Ray
tracing, a dynamic scene, such as found in a game, simulator, or TV advertisement,
has become a grand challenge known as real-time ray tracing—RT-RT. It has been
a sort of holy-grail pursuit in the industry since the late 1980s.

Fig. 7.4 Portion of a 600 x 400-pixel image from Parker’s system ran at 15 frames per second.
Source Steve Parker

138 7 Ray-Tracing Hardware

Real-time ray-tracing performance was actually accomplished on single
high-performance CPU by Ph.D. candidate (Saarland University) Ingo Wald in
20016; however, higher resolutions, complex scenes, and advanced rendering
effects still required a cluster of CPUs for real-time performance (Wald 2004). This
large number of CPUs is also the main drawback of these software solutions. The
large size and cost of these solutions are preventing more widespread adoption of
real-time ray tracing.

7.2.2.2 Vulkan API Extension

The Khronos Vulkan API is available for GPU ray tracing to reduce the visual
artifacts of CGI aliasing. Super-sampling consumes GPU processing cycles by
requiring multiple passes through all or part of the 3D rasterization pipeline, with a
different, shifted sample point per pass. Final pixel values are calculated through
blending or accumulation of each pass. With recent improvements in GPU per-
formance, mostly due to Moore’s law, super-sampling has gained popularity in its
usage.7

The AMD ray-tracing extension was introduced in September 2018 with the
premiere Radeon graphics AIBs. With Vulkan 1.1.91, the extension is renamed to
VK_AMD_memory_overallocation_behavior for ray tracing on the latest GPUs. It
allows defining whether explicit overallocation beyond the device memory’s heap
sizes are allowed by the driver or not.

The Nvidia VK_NVX_ray tracing extension was introduced in September 2018
with the Nvidia GeForce RTX graphics AIBs. With Vulkan 1.1.91, the extension is
renamed to VK_NV_ray_tracing for ray tracing on the latest GPUs.

DirectX and Vulkan

DirectX (DX) didn’t copy so much from Vulkan. Both Vulkan and DX derive from
AMD’s Mantle API. However, both APIs took things in their own direction in
significant ways. They are definitely not Mantle anymore—but you can tell they
have a common ancestor.

Apple’s Metal API is not derived from Vulkan—it is actually OpenCL with
added graphics (even some section numbers were the same as OpenCL in the first
versions of Metal). This is not so surprising when you realize OpenCL and Metal
shared the same spec editor. It is why Metal has C++ shaders and more integrated
compute. But is also not as full throttle “explicit” as Vulkan/DX12—which makes
it a little easier and familiar at first—but Metal hides the lowest level of control over
the GPU that game developers demanded to get the best performance from the
hardware.

6Wald et al. (2001).
7https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html.

7.2 Local 139

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html

Things are definitely more fragmented than in the good “ol OpenGL days”—
and definitely more fragmented when the industry had the truly universal (i.e., on
every desktop and mobile phone) OpenGL ES 2.0 and 3.0, which also inspired
WebGL 1.0 and 2.0 because of their ubiquity. However, things are not as bad as
they first seem—the emerging theme of 2018 at Khronos is “Deployment
Flexibility”: running Vulkan over Metal, running Vulkan over DX12, running
OpenGL over Vulkan, running DX12 over Vulkan, running OpenCL over Vulkan,
etc. This is an emerging trend because all these APIs are becoming increasingly
programmable—and so the layering is a trans-compilation exercise that can be
efficient and not add any runtime overhead.

This will make Vulkan pretty much universally available. Vulkan over Metal is
being used today to ship production applications at performance levels great than
using the Apple OpenGL drivers. Vulkan over DX12 for Xbox app is a possibility.

So, although the platform vendors are trying to ringfence their walled gardens—
Deployment Flexibility is fighting back.

7.2.2.3 AMD

At the Unite Berlin conference in the fall of 2018, AMD show ways developers
could add real-time ray-tracing effects with Radeon ProRender and Radeon Rays
software.

Radeon ProRender is a GPU and CPU renderer that handles ray casting and
shading and is a physically based renderer that outputs rendered images (targeted at
content creators and other developers.

Radeon ProRender supports hybrid rendering which combines ray tracing with
rasterization. Rasterization will be used for primary visibility and lighting, whereas
ray tracing will be used for secondary and complex effects.

In a hybrid mode, real-time ray tracing will be used for ambient occlusion,
glossy reflections, refractions, diffuse global illumination, and area lighting. These
effects will be handled by Radeon ProRender and can be turned on/off based on
hardware capabilities according to AMD.

AMD did not add special features to make GPU more ray tracing friendly, but
they did add general compute features that also help ray tracing.

In late 2017, ray tracing was still relatively new and isn’t even yet supported on
stable public versions Windows 10. At the time, AMD didn’t think ray-traced
games would become widespread until the technology was available on all tiers of
GPUs, not just the most expensive, high-end options. 2020 and beyond likely bring
more AIBs with ray tracing.

AMD has always looked to open standards, which always lags the proprietary
(e.g., CUDA) which is why Nvidia tends to get the lead. That said, given DX is
essentially an open standard (at least in respect to non-partisan adoption).

140 7 Ray-Tracing Hardware

7.2.2.4 Nvidia

Nvidia made big announcements at SIGGRAPH 2018, Game Developers
Conference and elsewhere about their new Turing GPU architecture with dedicated
ray-tracing accelerator cores, plus specialized AI software for denoising.

Nvidia’s RTX is showing a lot of promise in speeding up the ray-casting
portion of rendering for scenes with simpler shading/textures, especially for ren-
derers that are able to specifically utilize RT Cores (GPU/ray-tracing applications
do not automatically support RTX—they need to be programmed to take advantage
of it).

Turing followed a series of GPU developments by Nvidia, beginning with the
Fermi in 2010. It was a loaded device with special functions and features which
proved to not be the optimal fit, for graphics in particular. It hit solid performance
levels for 3D graphics, but it fell short in expectations in price/performance and
performance/watt metrics. Nvidia took note, and next-generation Kepler (2012)
adopted a different strategy.

With Kepler, Nvidia for the first time delivered two distinct flavors: what I (not
Nvidia) call “graphics-first” versions (starting with GK104) and heftier,
“compute-first” versions (starting with the “Big Kepler” GK110 and culminating
with the GK210). Compute-first chips weren’t necessarily exclusively used in
compute products (e.g., Tesla brand), and similarly, graphics-first chips weren’t
only built into graphics products (e.g., GeForce and Quadro brands). Still, with
Kepler, there was a clear change in tack from the all-in-one Fermi approach to one
pursuing two threads of products from the same GPU generation: one slanted
toward compute and datacenters and the other slanted toward for bread-and-butter
gaming and professional visual applications.

Next came Maxwell, which proved a bit of an anomaly in the context of both
Fermi and Kepler, for good reason (at least at the time). Overriding the pursuit of
the optimal graphics/compute balance came a different imperative: maximizing
performance per watt. At the time, Nvidia was still hot on mobile opportunities,
notably for automotive and mobile gaming applications (e.g., Shield) but also still
likely toying with the prospects of tablets and possibly still phones. With Maxwell,
Nvidia actually led with mobile GPU parts, later delivering higher performance
parts for desktop applications. A “Big Maxwell” did appear in the form of the
GM200 chip, but while it retained some of the lower-cost (or general-purpose)
compute-oriented goodness, it didn’t take on the big-cost compute-only features
like fast FP64, instead of serving more as a maxed-out graphics chip. In fact, from a
compute perspective, Maxwell stood out for its relatively paltry FP64 rates, com-
pared to both Kepler before it and Pascal after.

With 2016s Pascal, Nvidia returned to a dual-pronged GPU strategy: one prong
leaning toward compute and the other toward graphics, with both leveraging the
same core architecture. Out first was “Big Pascal” GP100 bringing back fast FP64
and other features that gave it a very clear compute-first positioning. The

7.2 Local 141

bifurcation of GPU products supporting compute versus graphics was pronounced,
setting the stage—and speculation—for what the next generation, Volta, would
bring (Fig. 7.5).

Things started to look different again with Volta, though we didn’t recognize it at
first. The Volta V100GPU was introduced in 2017 and seemed to fit Nvidia’s
established pattern: a big-time, no-holds-barred attack on compute-oriented appli-
cations. Nvidia gave “Big Volta” hefty FP64 support but took an even more
aggressive path veering away (it appeared at the time) from graphics. Nvidia
designed in features, cost and watts not only focusing on general compute-oriented
applications but very deliberately focusing on one subspace emerging as the most
interesting to the company (if not the computing industry as a whole): machine
learning. Nvidia designed in dedicated Tensor Cores, useful in accelerating both
training (the learning) and inference (the application of the learning for “judgment”)
applications.

Volta and Turing are shaped differently… but reflect a genuine, unifying inflection point
in the future of GPU design

While the makeup of Big Volta made sense given Nvidia’s aggressive push into
machine learning, it led to the obvious speculation on what a graphics-focused
Volta might end up looking like. What would Nvidia eliminate or trim from the
flagship V100 chip? Would Tensor Cores, non-trivial in cost and power, remain or
get the boot like high-performance FP64 has in past generations? We got a hint
about what was coming next with the Quadro GV100 add-in card GPU Nvidia
delivered in the spring of 2018. It leveraged the full-blown V100 chip, but pack-
aged in a $9K product, the chip still didn’t necessarily figure to be the eventual
version of Volta that Nvidia would rely on to drive into more mainstream gaming
and workstation-focused graphical markets.

Fig. 7.5 Nvidia’s last decade of GPUs, served more than just graphics applications

142 7 Ray-Tracing Hardware

Setting the stage for Turing was a new paradigm: RTX technology leveraging AI for
traditional graphics markets

But what the Quadro GV100 did show off was RTX, software technology that
harnessed Volta’s AI goodness—especially Tensor Cores—to a new confluence of
machine learning and graphics: AI-accelerated ray tracing. Nvidia’s new darling
market, machine learning, is finding compelling applications in virtually every
corner of the computing landscape, including its core gaming and workstation
applications. For the latter, consider machine intelligence used to generate the
internal composition of objects to be 3D printed, taking into account the printing
materials to create the optimal structure to balance weight, materials, and strength.
Or digging deeper into CAD workflows, AI is and will be taking on some of the
burdens in designing the form and function of the object itself. And the value of AI
to more quickly and thoroughly analyze 2D, 3D, and even 4D (3D over time)
imagery has obvious and compelling value in geoscience, surveillance, and medical
applications.

But now—most significantly—we can add a 3D rendering application to that list
of AI-assisted application. And we were not talking just any 3D rendering appli-
cation, but the 3D rendering application: ray tracing, the holy-grail method of
producing photorealistic images preferred by virtually every creator and consumer
of synthetic 3D imagery, including game developers, film studios, architects,
advertisers, and industrial designers alike. The Quadro GV100’s claim to fame was
not its economical price—far from it at $9000—it was the GPU’s ability to
ray-traced complex scenes with a credible level of detail at real-time speeds.
Moreover, it was the AI in RTX technology that was just as instrumental in getting
the GV100 to real-time status as any of the usual semiconductor-driven advance-
ments like transistor density and switching frequencies.

Specifically, RTX software exploiting Volta’s new Tensor Core hardware
incorporated a deep learning neural network (DNN) in the ray tracer to accelerate
image “convergence” by decreasing the computational load in the latter stages of
rendering. Once the image congeals into something it can recognize, AI fills in
remaining rays/pixels, denoising the image and wrapping up the time-consuming
rendering process far faster than requiring the full per-ray processing. Specifically,
think of this AI ray-traced acceleration as 2D image recognition implemented over
time, polishing the image without any temporal artifacts (that might emerge if you
individual processed each image independently without considering how the pre-
vious and following image pixels were filled in) (Fig. 7.6).

While the V100 chip was not the GPU Nvidia was optimizing for graphics/visual
processing, it did mark what will likely prove a pivotal moment in Nvidia’s
ever-evolving strategy of GPU development. It demonstrated that, unlike some
compute-specific features like FP64, those accelerating machine learning didn’t
have to be looked at as a cost-negative for a graphics product. On the contrary, it
turned out to be a critical linchpin in finally closing the real-time performance gap
for ray tracing. And that all leads up to the graphics-focused follow-on of 2018:
Turing.

7.2 Local 143

Nvidia’s Turing GPU: a Volta foundation optimized for visual processing

Proven by Volta, the applicability of machine learning on 3D visualization (ray
tracing, specifically) turned the traditional trade-offs of compute-versus-graphics
upside down. No longer did features that didn’t enhance the conventional 3D
graphics rasterization pipeline have to be considered a silicon tax to be eliminated
for graphics-focused applications. That key premise set the stage for what a
graphics-optimized Volta might look like, and while the premise held, the name did
not. A graphics-optimized version did emerge, but it didn’t come bearing the Volta
name.

Instead, in late 2018 Nvidia introduced Turing, in which Nvidia dedicated a
significant amount of effort and transistor budget to advancing the features GPUs
need to advance: 3D graphics performance for gaming and professional visual-
ization based on essentially the same rasterization pipeline the industry has always
relied on. Turing had several significant enhancements in its fundamental 3D
graphics programmable shader engine, the Streaming Multiprocessor (SM), espe-
cially in terms of chip registers and cache, and dialed up supporting infrastructure
including external memory bandwidth. But all that represents are expected steps
along the tried-and-true GPU evolution path, taking on cost and complexity for
features and performance the company was pretty certain independent software
vendors (ISVs) and end users alike would value in the near term, if not
immediately.

More noteworthy than the more conventional 3D graphics features Turing added
is what it didn’t subtract. Nvidia leveraged in Turing much of what Volta brought
forth, but without the assumed strip-down mandate for non-trivial AI acceleration
features that past strategy might have suggested. With Turing, Nvidia architects not
only didn’t strip out Tensor Cores, but they also improved on them, most notably
increasing performance for lower-precision 8- and 4-bit integer processing. Neither
datatype is critical in graphics (not any longer, anyway), but can be often be used in
place of 16-bit integer computation in AI inferencing. Adding lower-precision

Fig. 7.6 RTX technology on Volta accelerates ray tracing through machine learning. Source
Nvidia

144 7 Ray-Tracing Hardware

support is likely inexpensive to add and in place of 16-bit execution and would
certainly improve inferencing performance and/or reduce power consumption
(Fig. 7.7).

Nvidia didn’t stop with simply keeping in Volta’s Tensor Core, rather they took
the further step of adding multiple (one per SM) instances of an entirely new core
design: the RT Core. Short for ray tracing, the RT name signified a very deliberate
design addition, one intended to parlay Volta’s AI-spurred advancement for
ray-traced acceleration into real-time processing for more economical,
graphics-focused GeForce and Quadro GPU products.

The RT Core takes on critical ray-tracing computing tasks, which are inefficient
and time-intensive on conventual GPUs. Determining whether a ray (shot from a
viewport out into the scene) actually intersects an object (and which triangle on that
object’s surface) is one of those tasks that a traditional raster-based 3D shader
wasn’t designed for and therefore doesn’t do particularly well. With Turing, that job
was now assigned to the RT Cores, freeing up the SMs to spend cycles elsewhere,
on shader processing they were more adept at executing (Fig. 7.8).

Nvidia as would be expected introduced a family of Turing GPUs (Table 7.1).
No doubt enthused by the successful synergy of machine learning and graphics

with ray-tracing processing, Nvidia researchers searched for other ways to extract
more visual processing goodness out of Turing’s AI prowess. Extending on the
DNNs employed in ray-tracing denoising, Nvidia formalized NGX, an enhanced set
of DNN-driven image-enhancement features.

Fig. 7.7 Fast 8- and 4-bit integer processing improves inferencing performance and power
efficiency. Source Nvidia

7.2 Local 145

Fig. 7.8 Turing’s RT Core focuses on determination of cumbersome ray/object intersection.
Source Nvidia

146 7 Ray-Tracing Hardware

• Deep Learning Super-Sampling (DLSS—see Sect. 7.2.2.6)
• AI InPainting
• AI Super Rez
• AI Slow-Mo.

I have no doubt Nvidia sees NGX today as anything but a fixed set of features,
but rather an evolving and expanding toolbox of DNNs that can further harness
machine learning for the benefit of Nvidia’s traditional visual markets. For Turing’s
official launch, however, Nvidia’s pitching four specific NGX features exposed to
applications in the NGX API.

With the new Turing GPUs, the compute power and the ability to perform
real-time ray tracing is present. However, the algorithms have also increased in
complexity to account for greater realism. The number of rays that need to be cast
per pixel has now gone up based on the scene as well as the objects that it must
interact with. With the specialized ray tracing (RT) cores in the Turing GPU, along
with denoising filtering techniques, the number of rays needed to be cast has been
brought down to reasonable levels. Tracing every ray of light per pixel will provide
the highest realism; however, there is the rule of diminishing returns—when is
good, good enough. If the printed output or the display cannot reproduce the levels
of realism possible it is inefficient to spend the processing cycles.

Nvidia’s Turing GPUs accelerate ray tracing by using a combination of several
techniques. Not all of the techniques are employed during the rendering stage.

• Reflections and refractions
• Shadows and ambient occlusion
• Global illumination
• Instant and off-line lightmap baking
• Beauty shots and high-quality previews
• Primary rays for foveated VR rendering
• Occlusion culling
• Physics, collision detection, particle simulations
• Audio simulation

Table 7.1 Lower-cost Turing spins leverage same proportion of Tensor and RT Cores

Product RTX 8000 RTX 6000 RTX 5000 RTX 4000

CUDA cores
(% of RTX8000)

4608 4608 (100%) 3072 (75%) 2304 (50%)

SMs 72 72 48 36

Tensor Cores (per
SM)

576 (8) 576 (8) 384 (8) 288 (8)

RT Cores (per SM) 72 (1) 72 (1) 48 (1) 36 (1)

Memory size/type 48 GB GDDR6 24 GB GDDR6 16 GB GDDR6 8 GB GDDR6

Memory bandwidth
(GB/s)

672 672 448 416

Source Nvidia

7.2 Local 147

• AI visibility queries
• In-engine Path Tracing.

The RT cores accelerate bounding volume hierarchy (BVH) traversal and ray/
triangle intersection testing. These two processes need to be performed in an iter-
atively because the BVH traversal otherwise would need thousands of intersection
testing to finally calculate the color of the pixels. Since RT cores are specialized to
take on this load, this gives the shader cores in the streaming multiprocessor (a
subsection of the GPU) capacity for other aspects of the scene (Fig. 7.9).

Nvidia says the Pascal GPU can generate 1.1 Giga Rays/s, while Turing can
produce over 10 Giga Rays/s. That is accomplished because of the specialized RT
cores are and the hybrid rendering pipeline in the Turing architecture.

In order to attain real-time frame rates, Nvidia advises developers to incorporate
the hybrid rendering pipeline. Hybrid rendering is a multi-pass process that is
composed of raster passes, ray-tracing passes, and compute passes. Ray-tracing
passes can be used to add various lighting effects such as area light shadows,
ambient occlusion, global illumination, reflections, refractions, and caustics.
Compute is often used in denoising and compositing of lighting. For the ray-tracing
passes, due to the volume of work, a scheduler orchestrates the tracing of rays in RT
cores and shading work required to generate rays or use the results of ray-tracing
operations.

The ray-tracing hardware is only part of the equation. For it to be useful and
worth money to a consumer, there must be an infrastructure (APIs, operating
systems support), and content. Content will be the biggest challenge (see Ray
Tracing in Games under Sect. 6.1.1.2).

7.2.2.5 Denoising and Unbiased Ray Tracing

When a ray-tracing renderer uses machine learning (ML) or AI for denoising, it
changes from unbiased to biased. Technically, unbiased means that the solution
converges to the true answer in the limit. If one had a denoiser that made no

Fig. 7.9 Hybrid rendering pipeline

148 7 Ray-Tracing Hardware

changes to perfect limit images, then the output would be unbiased because the
input is unbiased. However, today’s AI denoisers will still meddle with perfect
images in some cases. Therefore, based on today’s implementations it does become
biased, but that is not a fundamental property of AI.

I explain it as being a biased first phase that gives one an 80–90% accurate
impression of what the image will be like in 50% of the time, and then, one lets it
resolve to the desired accuracy.

But the reality is, it is not that simple. The issue becomes biased versus unbiased
versus consistent: What one wants is a consistent algorithm. Consistent means that
it converges to the desired solution, i.e., the image that one wanted to compute.
Consistency is a strong mathematical notion. No matter, how much developers have
tried to educate the user that unbiased only converge on the average to the right
image. So in principle, you can have an unbiased algorithm, but never get a correct
image. Biased means that you may have a systematic error. But this error may
decrease with the number of samples taken. The important point is consistency
rules. Why? Because only convergence matters. For example, progressive photon
mapping is consistent but not unbiased and still one of the most powerful
algorithms.8

Convergence and ML The machine learning denoisers based on neural networks
may work on the average, however, there is no guarantee other than that “it always
worked so far.” So, one cannot give any probability percentage. That does not
exclude that hope that one day we may have a proof, but definitely not at this time.
However, there are other denoisers based on classic methods, where one can argue
in the sense of consistency as above. Therefore, there likely will not be any way
around denoisers (or considering images instead of pixels) the faster one wants to
create images. That is just because the convergence rate is limited, and denoising
can buy you order (or maybe more) of convergence rate.

7.2.2.6 Deep Learning Super-Sampling

Deep Learning Super-Sampling (DLSS) is an Nvidia RTX technology that uses the
power of AI to boost frame rates in games with graphically-intensive workloads.
With DLSS, gamers can use higher resolutions and settings while still maintaining
solid frame rates.

The DLSS team first extracts many aliased frames from a target game, and then
for each one generates a matching perfect frame using either super-sampling or
accumulation rendering. These paired frames are fed to Nvidia’s supercomputer.

8Keller, Alexander, Quasi-Monte Carlo Image Synthesis in a Nutshell, https://web.maths.unsw.
edu.au/*josefdick/MCQMC_Proceedings/MCQMC_Proceedings_2012_Preprints/100_Keller_
tutorial.pdf.

7.2 Local 149

https://web.maths.unsw.edu.au/%7ejosefdick/MCQMC_Proceedings/MCQMC_Proceedings_2012_Preprints/100_Keller_tutorial.pdf
https://web.maths.unsw.edu.au/%7ejosefdick/MCQMC_Proceedings/MCQMC_Proceedings_2012_Preprints/100_Keller_tutorial.pdf
https://web.maths.unsw.edu.au/%7ejosefdick/MCQMC_Proceedings/MCQMC_Proceedings_2012_Preprints/100_Keller_tutorial.pdf

The supercomputer trains the DLSS model to recognize aliased inputs and generate
high-quality anti-aliased images that match the perfect frame as closely as possible.
The company then repeat the process, but the next time they train the model to
generate additional pixels rather than applying anti-aliasing. This has the effect of
increasing the resolution of the input. Combining both techniques enables the GPU
to render the full monitor resolution at higher frame rates.

The results of DLSS vary a bit because each game has different characteristics
based on the game engine, the complexity of content, and the time spent on
training. Nvidia’s supercomputer never sleeps, and the company continues to train
and improve its deep learning neural network even after game’s launch. When the
company has improvements to performance or image quality ready, it provides
them to the user via Nvidia software updates.

7.2.2.7 GPUs for Rendering

Most users who must have high-quality rendering that purchases hardware exclu-
sively or primarily for rendering have done so on the server side or in a render farm
(via private datacenters, cloud outsourcing, or hybrid approaches). On the client
side, very few buyers of client-side workstations and workstation GPUs are con-
figuring for—and prepared to pay more—for either CPU or GPU-accelerated
ray-tracing rendering. That does not mean those professional users are not rendering
on their workstations as part of their workflow (regardless of time or volume of
rendering). Rather, the vast majority that do render on their client are getting
whatever performance they get, based on the machine they configured for more
conventional CAD and DCC tasks (e.g., animations, simulations, 3D graphics).

Local

One can expect the advance of GPU-based rendering in both the client and the
datacenter to boost rendering usage among both CAD, DCC, and other segments.
The client-side buyers are unlikely to dramatically change their budgets and buying
habits (average selling prices (ASPs) have been remarkably stable over the past
several years); However, the advent of GPUs such as Nvidia’s Turing that have an
ability for ray-tracing rendering will present a key differentiation to buyers of
workstations in the long term. In the short term, it will be uneven as ray-tracing
adoption among ISVs and users alike embrace the potential speedup alleged by the
new GPUs. By choosing the better raytracing performing GPU, users will be
participating as consumers in the rendering market and getting what they can for
free or close to free.

Dassault Systèmes and Autodesk, both big names in enterprise design, said they
would use Nvidia’s Turing-based GPU hardware for ray tracing. Autodesk’s pro-
duction ray tracer Arnold, previously CPU only, has been developed to make use of

150 7 Ray-Tracing Hardware

Turing hardware for GPU ray tracing, with Arnold GPU capabilities. And Dassault
Systèmes is using RTX GPUs in its 3Dexperience CATIA suite for design in
electrical, mechanical, systems, and fluid engineering—particularly for accelerating
VR rendering and design validation applications. Siemens NX is using Turing in its
PLM software for applications such as AI-based denoising as well as MDL support.

Remote

Second, and arguably more dramatic, is the growing synergy of CPU and GPU
rendering in the cloud and in the datacenter. The availability of more
render-accelerating GPUs will encourage more users to adopt of GPU-accelerated
rendering, which will in turn encourage more procurement of GPUs for rendering
duty, in the client as well. Rendering is already one of the key components of the
cloud computing landscape (e.g., Google Cloud/ZyncRender).

Most important when considering GPU-based rendering in the datacenter is the
realization that cloud providers (and perhaps some private datacenters) do not need
to justify GPU deployment strictly for rendering. The industry is at a point of
synergy creating an environment for GPU adoption and deployment in cloud dat-
acenters. Three trends are at a confluence:

1. GPU use for server-side general-purpose HPC (compute acceleration)
2. GPU use for machine learning and AI in both training and inference
3. GPU use for hosting remote graphics-intensive virtual machines (e.g., virtual

workstations).

GPU use for rendering specifically is a fourth.
First is the steadily growing and accepted use of GPUs to accelerate complex,

floating-point intensive applications that lend themselves to highly parallel pro-
cessing. Maximum throughput FP64 is critical for some of these applications. All of
the commercial cloud service providers (e.g., Amazon, Badu, Microsoft, etc.) are
offering GPUs.

Second is the more recent trend to employ servers as datacenter-resident hosts
for remote graphics desktops, including both physically and virtually hosted
desktops for gaming and professional usage. The growing appeal of
datacenter-based graphical desktops is being fueled by computing challenges that
have begun to overwhelm traditional client-heavy computing infrastructures suf-
fering (particularly) under the weight of exploding datasets and increasingly scat-
tered workforces.

A third example is the rendering farms where large quantities of GPUs can be
found and time on them can be rented for tenths of a penny per GFLOP second.

Now consider the procurement and investment decisions that both third party
and enterprise datacenter providers contend with. Relevant to this context is one in
particular: to what extent should an infrastructure build in GPU hardware? Should
GPUs be deployed broadly, with a wide range of product performance and

7.2 Local 151

capability points, or should they be selected for sparing deployment, justified by
specific demand and use cases? With the GPU’s ability for inferencing, compute
and hosting remote graphical desktops, those datacenters can justify the decision to
go forward with more GPUs rather than fewer.

Conclusion

I see 3D rendering becoming more common as rendering times pick up and cloud
resources become more accessible in terms of cost and ease of use. That is hap-
pening rapidly, and the synergy of cloud computing applications—for CPU-based
rendering, yes, but perhaps especially for GPU-accelerated rendering—will expand
the market in CAD and DCC.

But …

Blinn’s Law and the paradox of efficiency

Blinn’s Law asserts that rendering time tends to remain constant, even as computers
get faster. Animators prefer to improve quality, rendering more complex scenes
with more sophisticated algorithms, rather than using less time to do the same work
as before (Fig. 7.10).

For the past three decades, the number of transistors per microprocessor chip has
doubled about every two years, in step with Moore’s law (top). Processor perfor-
mance measured in GFLOPS has increased almost as quickly. Processors increased
their clock speed until 2004 when speed increases hit an asymptote due to power
consumptions and sequentially heat generation. The speed limit, which has been
pushed up more slowly, has been offset my adding cores to obtain more processing
performance.

Fig. 7.10 Blinn’s law of render time versus processor performance over time

152 7 Ray-Tracing Hardware

Rendering performance and ray tracing in particular have had steady but slow
(compared to Moore’s law) improvements. Rendering time has remained the same
because the artists make use of the increased performance in hardware and software
to make better-looking images. Such enhancements are often referred to as nice to
have but not critical. They become critical as artists and engineers get access to
them.

Improved access and pricing declines will bring the larger nice to have market
segments into more common usage. Therefore, rendering consumption will
increase. However, most of that increase will be due to price elasticity drawing in
those who will get as much as they can for free, or close to free.

Also, attitudes toward cloud use are changing among professionals. I see that
happening faster for smaller companies. I also see hotspots where the cloud is used
because the need is so critical, but users may be defying industry standards and
practices. For instance, the Motion Picture Association of America (MPAA) has
strong restrictions on the use of cloud-based tools, but contractors may sometimes
turn to rendering in the cloud and the industry is rapidly moving toward certification
for cloud-based workflows.

The CAD industry is moving more slowly on this, but I expect change to come
rapidly as the obstacles start to fall and experiences and sophistication replace
superstitious fears with facts.

With regard to GPU utilization for rendering, over 60% of the ray-tracing pro-
viders indicated they support a standard GPU (i.e., pre-Turing) for rendering. Of the
companies surveyed a large majority of them said they were planning to adopt GPU
supported rendering.

Consumer applications such as gaming have intermittently used ray tracing or
Path Tracing, but it has not been a consistent trend. As mentioned previously (see
Ray Tracing in Contemporary Games under Sect. 6.1.1.2), the type of game
influences the benefit of ray tracing to the experience. It is reasonable to assume the
game developers will embrace ray tracing in a hybrid fashion and use the benefits of
improved realistic images as a differentiator. As they do, the consumers will
embrace the hardware needed to realize it. Also, as future generations of GPUs
include ray-tracing acceleration as a standard feature, the end-user engagement will
approach 100%.

7.2.3 Dedicated

There have been a few attempts over the years to provide a dedicated ray-tracing
processor. The pioneer and longest term producer of a dedicated ray-tracing chip
was Advanced Rendering Technology (ART) in Cambridge UK, 1995.9 They

9Peddie (1996).

7.2 Local 153

ceased manufacturing in 2009 but continued as a company offering ray-tracing
software and services and 3D rendering software for SketchUp.10

In 1996, Researchers at Princeton University proposed using DSPs to build a
hardware unit for ray-tracing acceleration, named TigerSHARK,11 a hardware
accelerated ray-tracing engine.

Mitsubishi developed the VolumePro custom processor for volume rendering
using ray-tracing algorithms in 1999.12 Hanspeter Pfister13 and researchers at
Mitsubishi Electric Research Laboratories introduced the vg500/VolumePro
ASIC-based system in 2002 with FPGAs by researchers at the University of
Tubingen with VIZARD II. The chip’s ray-casting pipeline construction consists of
five basic stages:

• Data traversal for each pixel along a ray
• Resampling trilinear interpolation from eight surrounding pixels
• Classification assign RGBA to each sample
• Shading estimate gradients, per sample Phong illumination for depth cues
• Composition blend samples (along the ray) into pixel color.

The process is like ray tracing but does not have secondary or shadow rays.
In 2005, Mercury Computer Systems (founded in 1983), said it was entering

the content creation market with a new product based on IBM’s Cell processors.
At SIGGRAPH, Mercury announced an alliance with the German company InTrace
to create a ray-tracing product based on InTrace’s OpenRT.14 At the show, the
companies revealed plans to develop ray-tracing applications by integrating
OpenRT and SGI’s Open Inventor to create a customizable approach for “thousands
of existing applications” based on Open Inventor. Demonstrations at the show
included a rendering application for Maxon.

One of the first implementations of a dedicated processor for real-time ray tracer
was presented at the SIGGRAPH 2005 computer graphics conference. A custom
processor designated “The ray-tracing processor unit” (RPU), developed by Sven
Woop, Jorg Schmittler, and Philipp Slusallek from the Saarland University. It used
a single FPGA running at 66 MHz and drove a 512 � 384 resolution screen
(Fig. 7.11).15

Although running at only 66 MHz the prototype FPGA implementation, the
authors claimed it could render images at up to 20 fps, which in many cases beat the
performance of highly optimized software running on multi-GHz desktop CPUs.

10http://www.graphicshardware.org/previous/www_2001/presentations/Hot3D_Daniel_Hall.pdf.
11Humphreys, Greg, Ananian, Scott, C. (Independent Work), Department of Computer Science,
Princeton University, May 14, 1996, cscott.net.
12Peddie (1998).
13Pfister et al. (1999).
14Peddie (2005).
15Woop et al. (2005).

154 7 Ray-Tracing Hardware

http://www.graphicshardware.org/previous/www_2001/presentations/Hot3D_Daniel_Hall.pdf

Imagination Technologies introduced an IP block for a dedicated ray-tracing
processor, the PowerVR Wizard ray-tracing GPU based on technology from
Caustics, a company Imagination acquired in 2011.16 The company did not find any
customers and has stopped investing in it. An implementation of the design has
been shown at various conferences and provided some very impressive and
real-time demonstrations. The IP is still for sale.

Two years ago, Imagination technologies showed a demo of a real-time hybrid
ray-tracing demo (Fig. 7.12).

Imagination has been saying for a while that the PowerVR Wizard graphics IP
processors can enable more immersive games and apps with real-life dynamic
lighting models that produce advanced lighting effects, dynamic soft shadows, and
life-like reflections and transparencies, previously unachievable in a mobile form
factor.

As a by-product of the ray-tracing processor, Imagination Technologies’ Caustic
Professional division developed a ray-tracing API, OpenRL.

OpenRL is a flexible low-level interactive ray tracing API, available for download
as an SDK for accelerating ray tracing in both graphics and non-graphics (e.g.,
physics) applications. A free perpetual license of OpenRL is available for inte-
gration, with either commercial or non-commercial applications.

In OpenRL, acceleration structures are built and maintained transparently,
behind the scenes, and this eliminates the need for the client application to write any
code to create or traverse them. This also allows for ray-tracing hardware accel-
eration of the acceleration structure assembly.

OpenRT, introduced in 2012, was an offshoot of OpenRL. The goal of the
“OpenRT Real-time Ray Tracing Project” was to develop ray tracing to the point
where it offers an alternative to the current rasterization-based approach for inter-
active 3D graphics. Therefore, the project consisted of several parts: a highly
optimized ray-tracing core, the OpenRT-API, which is similar to OpenGL, and
many applications ranging from dynamically animated massive models and global
illumination, via high-quality prototype visualization to computer games.

Fig. 7.11 Real-time renderings on the RPU prototype using a single FPGA running at 66 MHz
and 512 � 384 resolution: SPD Balls (1.2 fps, with shadows and refractions), a conference room
(5.5 fps, without shadows), reflective and refractive spheres-RT in an office (4.5 fps), and UT2003
a scene from a current computer game (7.5 fps, precomputed illumination)

16Peddie (2010).

7.2 Local 155

OpenRT was not open source; it was intended to be an open API like OpenGL. It
was created and sponsored by Imagination Technologies.

In 2002, while at the Computer Graphics Group, Saarland University, Ingo Wald
and Carsten Benthin demonstrated examples of interactively rendering complex and
dynamic scenes with a ray-tracing-based renderer. The scenes show a prelighted
theatre, robots moving through a city, large numbers of moving trees with sharp
shadows, as well as the integration of volumes, light fields, and procedural shading
in an office environment. Those examples ran interactively at a resolution of
640 � 480 using four to eight dual PCs.

The researcher presented a new rendering engine for interactive 3D graphics
based on a fast, scalable, and distributed ray tracer. It offered an extended
OpenGL-like API, supports interactive modifications of the scene, handles complex
scenes with millions of polygons, and scales efficiently to many client machines.

Due to its superior scalability, usability, and efficiency, ray tracing was expected
to play an increasingly important role in future interactive graphics applications.
However, driving the technology with an API such as OpenGL would be com-
plicated due to OpenGL’s tight coupling to rasterization technology, which makes it
less suitable for ray tracing. Therefore, the researchers proposed a new application
programming interface called OpenRT.17

Siliconarts, founded in 2012, was a start-up in South Korea, developed a pro-
totype of their RayCore in 2014.18 However, the company couldn’t find any

Fig. 7.12 PowerVR ray tracing delivering real-time, photorealistic rendering

17Wald, Ingo; Benthin, Carsten, “A Flexible and Scalable Rendering Engine for Interactive 3D
Graphics,” Technical Report TR-2002-01, Computer Graphics Group, Saarland University.
18Peddie (2014).

156 7 Ray-Tracing Hardware

customers or additional investors to sustain the development. They gave a paper at
Hot-Chips and SIGGRAPH 2014 and showed demos. The company offered IP, not
a chip.

FPGAs There are and have been experimental ray-tracing processors build as
research prototypes using FPGAs. There are commercial dedicated hardware
ray-tracing processors available on the market as of this writing. However, if
Microsoft’s DXR ray-tracing extension is enabling, and Nvidia is successful in
convincing game developers to include ray tracing, that will create a user base that
may stimulate companies with ideas for a dedicated processor, but lacking the scale
needed to make one economically, to enter the market.

Nvidia introduced the concept of a dedicated ray-tracing appliance at Nvidia’s
GTC conference in 2014. The company called the rendering appliance the Iray
Visual Computing Appliance. It was designed to eliminate the costly, lengthy
process of building physical prototypes by rendering computer models with
extremely high visual fidelity (VCA).

The VCA sold for $50,000 and included eight Kepler-based GPUs, 12 GB of
memory per GPU, as well as two 1 GigE ports, two 10 GigE ports, and one
InfiniBand connection.

It may be a stretch to think many budgets would support a VCA for a single
designer’s workstation. Justifying one or two shared among other workstations
might make sense.

However, Nvidia had another thought on how to share a major investment in
VCA and PBR technology: the updated Quadro Visual Computing Appliance
(VCA). Announced at GTC 2015, the Quadro VCA houses twenty CPU cores,
256 GB of system memory, eight Quadro M6000s (for a grand total of 24,576
CUDA cores), the Quadro VCA will set back an IT budget the same $50,000. But
with support for renderers Iray 2015, OptiX, V-Ray ray tracing (and thereby all the
applications they support), it may be money well spent for a team of product
designers and stylists looking to minimize iteration time and maximize product
quality (Fig. 7.13).

The Iray VCA is sold through resellers CADnetwork, Fluidyna, IGI, and
migenius. The cost includes an Iray license and the first year of maintenance and
updates.

7.2.4 RT on Mobiles

Ray tracing has been one of the holy grails of computer graphics since the early
1980s. Always two years in the future, we have nonetheless seen it get faster, while
screen resolutions have also increased. In the 1990s, if you could render a
ray-traced 512 � 512 image in five to ten seconds you thought you really had
something. We did just such a thing using 16 transputers, a 32-bit processor con-
figured in a SIMD, cost a mere $10,000.

7.2 Local 157

The movie studios use ray tracing extensively as special effect using CG
becomes prevalent, so much so you no longer know when you are looking at a
simulation and the real thing. Those images are rendered in 5K or 8K and scaled
down to 4K for digital projectors in modern theaters—and one day your home. In
addition to super-high resolution, the film industry operates in a minimum of
10-bits per color channel, and most of the time in 12-bit color (30 or 36-bit RGB or
YCbCr) with a server that supports the DCI DCP. Rendering time at such a scale
can take an hour and half per frame.

But what about more everyday issues? The next step down could be a PC game
being displayed on a nice wide-screen 3440 � 1440 monitor, which currently is
limited to 8-bit color. Many games, in particular racing games, are using hybrid ray
tracing where just a portion (the shiny car bits) are ray-traced, and they manage to
run at 30–45 fps, which is quite satisfying. But racing games are in very con-
strained worlds with limited FOV and scope.

Ray tracing can, however, be employed in real time in a more practical appli-
cation, one that is near and dear to my heart—augmented reality. However, for AR,
you can’t use the brute-force techniques that are used in other applications.

Fig. 7.13 Physically based rendering for the whole team: Nvidia’s 56 TFLOPS (and $50,000)
Quadro VCA. Source Nvidia

158 7 Ray-Tracing Hardware

For some AR applications, the visual quality and full integration of augmented
content are critical for an immersive user’s experience. The superimposed content
over the real world must appear so realistic and integrative to be part of the
real-world scene. Unfortunately, with the conventional graphics, the photorealistic
AR visualization is still in its infancy. “People are using today AR primitive tools
because we’re still early on the journey to creating better tools. Tomorrow, AR is
going to help us mix the digital and physical in new ways” Mark Zuckerberg, April
2017.

Adshir in Tel Aviv has developed a new approach to an AR/VR oriented ray
tracing. If judiciously applied to an augmented object, it delivers real-time photo-
realistic ray tracing. It offers speedup of over 150� that of conventional approaches.

Similarly, to traditional ray tracers, it uses Path Tracing, which can provide
physically accurate results.

The most basic operation in Path Tracing is the solving for visibility between
each ray and millions of 3D scene polygons.

The cost of testing each ray against each polygon is prohibitive; therefore,
accelerating structures are used to reduce the number of ray/polygon intersection
tests. But still, traversals of billions of rays are the most expensive tasks in Path
Tracing, making it one of the most complex applications.

The human way of solving visibility is different. A simple sight toward an object
can tell whether it is visible or obstructed. The human sight can be simulated by the
prevalent graphics pipeline. Adshir invented a unique technology to exploit the
graphics pipeline in Path Tracing for visibility, replacing the expensive accelerating
structures. It has been applied in their LocalRay technology.

Adshir has developed a technique they call Dynamically Aligned Structures and
productized it into a toolkit they call LocalRay.

In LocalRay the costly traversals and reconstructions of acceleration structures
are replaced by Dynamically Aligned Structures (DAS), a proprietary software
mechanism based on graphics pipeline, for radical reduction of complexity
(Fig. 7.14).

The DAS is a novel method for seeking ray/polygon intersections, specifically
adjusted to augmented and virtual reality. It is based on a proprietary handling of
hundreds of rays, enabling high utilization of the massive parallelism of the GPU
graphics pipeline. Random samples assist in correctness of global illumination.

Key points of Adshir’s AR/VR path-tracing technology are:

1. Path Tracing.
Proprietary quasi-Monte Carlo ray-tracing technology, implementing global
illumination, produces photorealistic integration of augmented objects in real
life environment.

2. No traversals.
The conventional traversals of accelerating structures are replaced by a novel,
software based, ray hit mechanism (Dynamically Aligned Structures), gaining
reduced computational complexity, high performance, and low power
consumption.

7.2 Local 159

3. Fast animation.
There is no need to reconstruct acceleration structures for frequent scene
changes.

4. Image convergence.
Fast image convergence of milliseconds replaces the typical image convergence
of seconds and minutes.

5. Data space parallelism.
The ability to processing rays in data space, rather than in image space, highly
utilizes the GPU parallelism.

6. Performance.
The performance increases by two levels of magnitude over commercial ray
tracers, on consumer class computing devices.

7. Power consumption.
The energy consumption drops down, matching the power budget of consumer
devices.

The product is a software development kit, that was available in Q3 2018 and
function as a plug-into leading graphics platforms (Unity, Unreal, ARcore, ARKit,
etc.), enabling the developers to create an immersive user’s experience in VR/AR
applications. It runs 100% on the GPU.

The other aspect is “to deal with overmodeled geometry, huge numbers of
textures, sprawling shading networks, and massive datasets with large numbers of
lights.” The definition of “big data,” Dr. Reuven Bakalash, Founder and CEO of
Adshir Ltd and developer of LocalRay, believes that what is needed for rendering
of big data (*1 B and up of polygons) is a radically different parallel rendering
architecture, with minimized acceleration structures and maximized locality.

Fig. 7.14 Dynamically aligned structures versus conventional Path Tracing

160 7 Ray-Tracing Hardware

Recently, the company did a comparison between their ray-tracing algorithm,
LocalRay running on a tablet and Nvidia’s eight-GPU DX1 supercomputer running
real-time ray tracing.

LocalRay algorithms make smart use of the screen-space raster pipeline in
scene-space ray-tracing pipeline, achieving high coherence of secondary rays.

The lack of coherence in secondary rays has been always a problem in ray
tracing, as compared to high coherence of primary and shadow rays. High coher-
ency, along with massive parallelism of GPU, delivers outstanding performance
(Fig. 7.15).

Adshir says their demo platform has 1.6% of the computational capability and
operates at 2% of the power of Nvidia’s DGX system.

Real-time ray tracing is and by itself an amazing thing to contemplate. Running
on a smartphone seems almost like something out of StarTrek. Compromises will
have to be made (the model for instance was reduced from 40K+ polys to 20K and
the resolution has to be reduced, but those are parameters that are tied to Moore’s
law and will get better over time. And then there is the magic factor—Adshir could
just surprise us again and come up with a tweak to the algorithm and increase
everything. And lest we forget, this is a full-screen rendering, not a zonal rendering.

7.3 Remote

Remote ray tracing is that which is done in the cloud, either private or public, also
known as cloud services.

Fig. 7.15 Real-time ray-tracing performance comparison. Source Adshir

7.2 Local 161

7.3.1 Cloud-Based Visualization

Several of the big CAD and Media & Entertainment software suppliers are offering
their products and services as a cloud-based system. These are integrated
end-to-end systems and include powerful visualization capabilities. Visualization
systems typically employ large display systems in the form of wall-to-wall pro-
jectors, CAVES, or multi-monitor viewing walls. The visualization systems are
used for engineering, proposals, advertising, and marketing.

Autodesk acquired Lagoa in 2014, maker of a cloud-based visualization and
collaboration platform for product development. Lagoa has been rapidly building
out an online rendering and real-time visualization platform and struck early
partnership deals with SpaceClaim (since acquired by Ansys) and GrabCAD (since
acquired by Stratasys). Earlier in 2014, it showed a technology preview of a new
cloud-based MCAD tool based on the Parasolid 3D modeling kernel from
Siemens PLM.

Autodesk offers their VRED suite of 3D visualization and virtual prototyping
software as a local or cloud-based solution for automotive designers and digital
marketers to create and present product renderings, design reviews, and virtual
prototypes.

VRED came through the PiVR acquisition in 2013, primarily targeted at auto-
motive visualization. Through VRED, in addition to the in-product integrated
rendering, the company provides an on-premise interactive rendering cluster
offering, but no cloud-based rendering (Fig. 7.16).

In addition to these new Autodesk options, a wide array of competitors continues
to offer visualization solutions for both architecture and product design, including

Fig. 7.16 Cloud-based visualization car design concept. Source Autodesk

162 7 Ray-Tracing Hardware

plug-in support for Autodesk’s flagship products. As CPU cores become denser and
faster, and as cloud and GPU support become more common, the next couple of
years should be a time of rapid growth in the use of photorealistic rendering at all
stages of the design process.

Bentley Systems’ plans for becoming “the infrastructure digital twin company”
don’t end with those ambitions. The company acquired Stockholm-based Agency9,
a provider of city-scale digital twin cloud services for city planning and related
web-based 3D visualization.

Agency9 has already provided nearly half of Sweden’s larger municipalities with
city-scale digital twin cloud services for city planning and related web-based 3D
visualization. Since 2012, Agency9 has used reality meshes created by Bentley’s
ContextCapture reality modeling software as the digital context for visualizing
urban infrastructure assets represented in geographical information systems (GIS)
data, terrain surveys, and BIM models.

7.3.1.1 Cloud Rendering

Redway3D offers their REDsdk 4.3 visualization toolkit with ray-tracing solutions,
post-processing effects, as well as cloud-and-sky rendering.

REDsdk is a C++ graphics visualization toolkit that provides industrial
designers, architects, and other CAD professionals with a single multifaceted ren-
dering API. The REDsdk can be used for real-time 2D, 3D, and VR rendering and
simulation.

One of the notable features in REDsdk 4.3 is cloud rendering (the fluffy white
stuff, not the digital kind). This helps make any outdoor rendering look much more
realistic, with REDsdk capable of automatically generating cloudy skies based on
your prerequisites. This addition also affects indoor renderings, especially when
many reflective objects and/or windows are present (Fig. 7.17).

REDsdk 4.3 ships with two different cloud-generating algorithms, one to sim-
ulate “true volumetric clouds” and another for simpler background clouds.
Algorithm updates continue with new versions of three ray-tracing solutions:
multiple importance sampling; probabilistic light sampling; and adaptive ray trac-
ing. These serve to help increase the realism and efficiency of lighting simulations.

Designers will also be able to add a bit more shine to their work, with new
post-processing features which include “sharpen,” “glow,” “blur,” and
“depth-of-field” tools, as well as updated color manipulation tools to tweak the
brightness, contrast, and light saturation of images. Performance improvements are
also hidden under the hood, with enhanced GPU light rendering, as well as a new
error tracking feature included.

7.3 Remote 163

7.3.1.2 Block-Chain Render Farms

The concept of a distributed render farm is one based on block-chain. One example
is Render Token (RNDR), a distributed GPU rendering network and marketplace
powered by Ethereum. The RNDR Network released a Beta Interest survey to get
an idea of GPU supply and demand. The survey was quietly released to the RNDR
community during a brief period toward the end of July and prior to major tech-
nology previews at SIGGRAPH 2018. The survey was focused on users that both
provide and consume rendering power on the network—miner/users. The results
were surprising and illustrated the ability of a decentralized GPU compute network
to scale exponentially faster than centralized structures.

RNDR was able to accumulate over 14,000 unique GPUs with a total
OctaneBench power of over 1.5 million. The quality of the GPUs was also very
high, with over 40% of the GPUs as premium cards. RNDR allows miner/users to
contribute their idle GPU power to the network to earn tokens, which they can then
use when they are on a deadline or need to augment their local GPU capacity with
cloud nodes for high resolution jobs.

However, this only works for very small rendering packages. Many jobs require
thousands of small files and sometimes terabytes of data need to be transmitted to
get a frame rendered. When that much data is sent, the internet is corrupted, and the
rendering quite often fails.

Fig. 7.17 Rendering created in REDsdk 4.3; note the cloudy skies in the background. Source
intrimSIM

164 7 Ray-Tracing Hardware

CPUs in Visualization

CPU-based interactive and photorealistic rendering via SDV is (Software Defined
Visualization) with the open-source Intel Rendering Framework is supplanting
GPUs in many modern HPC supercomputing centers, asserted Intel in a guest post
in Inside HPC, October 2018.

The ability to run and visualize anywhere with SDVis solutions, regardless of the
scale of the visualization task and without requiring specialized hardware for
interactive response, is the reason HPC centers no longer need to procure GPUs for
visualization clusters.

Autodesk’s VRED 3D visualization and virtual prototyping software utilize
CPU-based ray-traced rendering with SDVis, while other software vendors such as
Altair, Eastern Graphics, Kitware, and SURVICE Engineering Company are
incorporating SDVis, claims Intel.19

“SDVis unlocks the full power of a compute node for visual analysis,” said Dan
Stanzione, Executive Director of the Texas Advanced Computing Center (TACC).
“With it, even a single node becomes a powerful platform for analysis, as the full
system memory is available to hold data.”

In particular, the TACC Frontera supercomputer, which will be the fastest
academic supercomputer in the USA when it becomes operational in 2019, will rely
on CPUs for visualization. “CPU-based SDVis will be our primary visual analysis
mode on Frontera, leveraging the Intel Rendering Framework stack,” according to
Paul Navrátil, Director of Visualization at TACC (Fig 7.18).

The Frontera design makes the switch from GPUs to CPUs for visualization
concrete. Frontera includes a GPU subsystem, but one that is designed to primarily
support compute codes that leverage single- and half-precision operations, partic-
ularly molecular dynamics (MD) codes and various machine learning stacks.

The “visualize anywhere” nature of SDVis means that visualizing locally or
remotely is possible on devices that can display from memory with no GPU
acceleration required. For researchers who want to enable visualization on super-
computers which are CPU-based, such a rendering framework would seem ideal.

“CPU-based SDVis will be our primary visual analysis mode on Frontera,
leveraging the Intel Rendering Framework stack,” said Paul Navrátil, Director of
Visualization at the Texas Advanced Computing Center (TACC).

HPC users can view results on their laptops and switch to display walls or a
cave. Professional visualization users literally see the same benefits regardless if
they are rendering on an institutional cluster or in the cloud.

By switching rendering backends, visualization tools in the HPC community
such as VisIt and ParaView allow users to switch between or even combine
triangle-based OpenGL rendering with Intel OpenSWR and photorealistic
ray-traced rendering with Intel OSPRay.

19https://itpeernetwork.intel.com/anyscale-visualization-intel-select-solutions/.

7.3 Remote 165

https://itpeernetwork.intel.com/anyscale-visualization-intel-select-solutions/

Jim Jeffers (Senior Director and Senior Principle Engineer, Intel Visualization
Solutions) notes that the interactive performance delivered by the Intel Rendering
Framework and SDVis “addresses the need and creates the want” for photorealistic
rendering. Succinctly, interactive ray tracing with its inherent lighting capability lets
scientists get more from their data. Again, this message has not been lost on the
professional rendering community like movie studios and CAD/CAM software
applications.

Navrátil notes, “We expect in situ workflows to become increasingly necessary
on Frontera and across all large-scale simulation science.” Pointing to the future he
states, “In-transit analysis will also play an increasing role as simulations improve
support for loosely coupled in situ frameworks. With an in-transit pathway, the
simulation resources do not need to be shared for analysis tasks, which is favorable
when the analysis is compute-intensive, or when the simulation requires all avail-
able resources itself.”

“There is a real pull from submarkets like CAD and automotive. Photorealism is
extremely important in improving ‘virtual’ vehicle design and manufacturing from
commercial airplanes to military vehicles. Meanwhile, there is increasing pull from
adjunct markets that include offline and interactive rendering for animation and
photoreal visual effects.” adds Jeffers.

Trillion triangle OpenGL hero runs performed by Kitware and the use of in situ
and in-transit techniques to render both OpenGL and ray-traced images are
examples of SDVis using visualization for peta- and exascale sized research efforts.
In situ simulation means that the rendering occurs on the same nodes that perform
the computation. This is the reason why Jim Jeffers states, “A picture is worth an

Fig. 7.18 OSPRay parallel rendering on TACC’s 328 Megapixel Stallion Tiled Display. Source
Intel

166 7 Ray-Tracing Hardware

exabyte,” as no data movement is required! Of course, the in situ technique benefits
commercial software vendors as well.

John Stone (Research Staff, The Beckman Institute) points out that improve-
ments in the AVX-512 instruction set in the Intel Xeon Phi (and latest generation
Intel Xeon processors) can deliver significant performance improvements for some
time-consuming molecular visualization kernels over most existing Intel Xeon
CPUs. Based on his recent results using the Intel Xeon Phi hardware exponential
instruction Stone notes, “At present, I can say that the Intel Xeon Phi processor is
the highest performance CPU result I’ve benchmarked for this molecular orbital
algorithm to date.” We discuss Stone’s results in greater detail in this article.

Stone’s results reflect a change in the visualization community where
CPU-based visualization is now both accepted and viewed as fixing a
community-wide problem. The 2016 University of Utah presentation, “Towards
Direct Visualization on CPU and Xeon Phi,”20 highlights this change in mindset by
noting that “if computing is the third pillar of science then visualization is the fourth
pillar” yet, “visualization currently can barely handle mid-gigascale data.” This
same presentation also notes that visualization “is two orders of magnitude and ten
years behind simulation”.

If computing is the third pillar of science, then visualization is the fourth pillar—John
Stone

The reason is that traditional view to run with OpenGL GPU-based rasterization
has been designed for millions of polygons while visualization needs to support
billions to trillions of elements. The solution is large-scale CPU-based ray tracing
using packages such as OSPRay running on big memory CPU nodes and the use of
in situ visualization. Memory capacity is very important, hence the need to use big
memory computational nodes. Thus, the mindset to “just use the same GPU
graphics we use for games” is disappearing to be replaced with CPU-based
Software Defined Visualization (SDVis).

Demonstrations at the Supercomputing 2017 and the Intel Developers
Conference in Denver, Colorado, showed that even a device that simply displays an
image in a framebuffer (e.g., that renders the image in memory and provides no
hardware acceleration) can be used to interactively visualize even the most complex
photorealistic images.

For OpenGL users, David DeMarle (visualization luminary and engineer at
Kitware) observes that, “CPU-based OpenGL performance does not trail off even
when rendering meshes containing one trillion (1012) triangles on the Trinity
leadership class supercomputer. Further, we might see a 10–20 trillion triangle per
second result as our current benchmark used only 1/19th of the machine.” The
researcher believes the ability of the CPU to access large amounts of memory is key
to realizing trillion triangle per second rendering capability.

20https://www.intel.com/content/dam/www/public/us/en/documents/presentation/sdvis-research-
university.pdf.

7.3 Remote 167

https://www.intel.com/content/dam/www/public/us/en/documents/presentation/sdvis-research-university.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/sdvis-research-university.pdf

However, this is an expensive operation and uses a lot of electricity to accom-
plish, so typically it is only the petroleum business or military that can afford it.

7.3.2 Public Cloud Rendering Services

Ray tracing is a compute-intensive process, prone to complexity.
With an increasing amount of digital content, the demand for 3D rendering from

automotive and aerospace manufacturers, consumer product designers, film studios,
graphic designers, animators, and special effects companies is growing rapidly, and
as these creative industries adopt ever-higher resolutions (e.g., the transition to 4K
video with 8K on the horizon), the compute-intensive nature of the rendering task
increases still further. For example, a single frame in an animated movie might take
several hours to render, for just one layer and 40 h for all the layers of a single
frame one it is composited with an entire feature-length film potentially requiring
millions of CPU hours to complete.

Some studios have made the decision to build on-premise render farms (a more
mission-specific version of the corporate datacenter), comprising thousands of
servers to handle this task—but that is not a cost-effective solution for all but the
largest organization to construct and run firsthand. There are also third-party
commercial services available that are running large infrastructure installations, but
this solution has up to this point suffered from unpredictable performance and
workload completion times, unclear total costs, and frequent occurrence of ren-
dering errors.

A public cloud provider like Amazon, Baidu, or Microsoft Azure has servers
with high-powered CPUs and GPUs, and most of the popular ray-tracing programs
which can be rented for an average cost of a half US penny per GHz hour.

I believe where the ray-tracing software resides and is run will shift to
off-premises. This will be due to ray tracing becomes more familiar and companies
seek to shift from capital expenses to operational expenses.

The move to the cloud and block-chain render farms will not happen rapidly.
There is still concern among many organizations about letting their intellectual
property out of their control; old attitudes die slowly.

As users of ray-tracing software send their projects to the cloud and service
bureaus, the suppliers of ray-tracing software will have to develop new pricing
models and learn how to sell to a different type of client.

The cloud will have the greatest growth in revenue but not the greatest value.
Render farms and cloud services providers seldom actually buy (license) a
ray-tracing program. The software suppliers charge them a dollar value times the
number of processors, per hour. The farms then charge by the clock speed of the
processor times the number of cores (within a processor) per minute. Because the
rendering farm market is so crowded and therefore competitive (with too many
providers chasing too few customers, and a highly irregular demand), the difference

168 7 Ray-Tracing Hardware

(their margin) between what the farms pay the software suppliers and what the
farms charge their customers is not very much.

After electricity, rent, internet (including Aspera) and the cost of servers, render
farm operators margins can be marginalized. Massive server farms run by AWS/
Google/Microsoft/IBM use excess capacity from other operations to offer cut-rate
server prices. Also, through their ability to negotiate preferential agreements with
software suppliers smaller render farms need to rely on personal service or specialty
rendering to compete. Companies like Scan in LA provide end-to-end VFX services
for large difficult jobs that are too challenging even for the big production studios.

Aspera is a data transport and streaming technology company that provides
high-speed data transfer solutions to send, share, stream, and sync large files and
datasets. Aspera belongs to the hybrid cloud business unit of IBM.

As the cloud market matured, the principles of highly scalable, on-demand
infrastructure capacity accessed on a pay-per-use basis became applicable to a
wider range of business processes. In the software-as-a-service (SaaS) market, the
infrastructure is already abstracted from the customer, who can potentially also
make use of a PaaS layer for further application extension or composition.

Platform as a Service (PaaS) or Application Platform as a Service (aPaaS) or
platform-based service is a category of cloud computing services that provides a
platform allowing customers to develop, run, and manage applications without the
complexity of building and maintaining the infrastructure typically associated with
developing and launching an app.

At the Infrastructure-as-a-Service (IaaS) layer, despite improvements in man-
agement tools and automation, customers must still deal with the provisioning and
management of the service. This has led to a rise in managed cloud services,
particularly for business-facing applications, whereby customers can take advantage
of the benefits of the cloud, without being concerned about the underlying
intricacies.

The first question one must ask when it comes to using the cloud for a render
farm is what cloud service provider to use?

There are many cloud providers to choose from, and typically each one provides
the necessary tools and infrastructure to set up a cloud-hosted render farm.
Examples can be found at Amazon EC2, Google Compute Engine, and Microsoft
Azure. Google, Amazon, and Azure offer Linux and Windows instances. None of
the providers offer Mac OS X instances.

Google has Preemptible Instances.21 They only run for 24 h and can be termi-
nated by Google prior to that.

Amazon has Spot Instances.22 These instances work on a bidding system.
Basically, when one starts an instance, they also set the maximum price they are
willing to pay for it. If the going rate of that instance type is lower than one’s bid,
then they will get the instance. One then gets charged the going rate of that instance

21https://cloud.google.com/compute/docs/instances/preemptible.
22https://aws.amazon.com/ec2/spot/.

7.3 Remote 169

https://cloud.google.com/compute/docs/instances/preemptible
https://aws.amazon.com/ec2/spot/

for an hour. At the start of the next instance hour, the bid price and going rate are
compared again. If one’s bid is lower than the going rate, then their instance will be
terminated. This might happen if other people are willing to pay more for the
instance type than the user. However, Spot Instances can be expensive during the
Christmas season when the extra capacity that Amazon has is taken up for its
primary purpose of Amazon sales.

If reliability is what one is looking for then bidding the On-Demand price should
be done as, Spot Instances won’t typically get that high. The user will get a discount
and get the instances.

One of, if not the most important question one needs to ask is how do I want this
to look? Will the cloud be used to supplement an existing render farm? Does one
want a separate render farm in the cloud to run alongside their local render farm? Or
does one not have a render farm and wants to create a farm in the cloud?

Don’t think about the cloud as a strange new platform. Think of it as a remote
office. Many of the concepts and considerations one would use when starting a
remote office also apply to the cloud.

7.3.2.1 Assets

Getting one’s assets to and from the cloud is an important step in the rendering
process. Assets are any files your jobs need to render. Assets are also any output
your jobs create. Getting your files up to the cloud and back down to your local
network is a key part of cloud rendering.

One can create a Virtual Private Network (VPN) between their local network and
the cloud network. The instances will be able to access one’s assets the same way
an on-premise node does.

Some companies do not allow for VPN use. In that case, one may have to move
all required assets to a file server that is shared out to one’s nodes. The files can be
manually moved up and down, and one can use a Dropbox, OneDrive type service.

Another option is to use cloud storage. All of the providers offer cloud storage as
a service, like Amazon S3 for example. They also charge for egress and ingress.
Having Aspera is a requirement to make sure there are no faults for moving really
big projects.

7.3.2.2 Render License

How does one license Deadline and all the software that is needed? Much like
assets, one can set up a VPN between their on-premise network and their cloud
network. With a VPN, one’s instances will be able to connect to their current
license server exactly like their on-premise machines do.

One can also put a license server in the cloud and have their instances get their
licenses from there; however, instances can be terminated (due to outages, etc.).
Restarting one’s license server could become a problem as most licenses use the

170 7 Ray-Tracing Hardware

MAC Address of the machine they are running on for authentication. A restarted
license server won’t have the same MAC Address as the old one, thus breaking
one’s licensing.

Another option is to use Deadline Usage Based Licensing. One only pays for the
render time used, one can start as many nodes as they want (one doesn’t need a
floating license for each node), and one doesn’t need a license server. One can use
Usage Based Licensing to license Deadline itself along with several third-party
rendering software. The Thinkbox Marketplace has pricing and availability.

Usage Based Licensing can also be used to supplement all of one’s existing
licenses. What’s good about that is that all of one’s on-premise render nodes can
use the permanent licenses they already have, while the cloud render nodes only use
what they need with Usage Based Licensing.

7.3.3 Private Rendering Services—Farms

A render farm is a high-performance computer system, e.g., a computer cluster,
built to render computer-generated imagery (CGI), typically for film and television
visual effects.

Render farm services are offered by private, third-party firms and individuals,
and by hardware and software suppliers. For example, hardware companies like HP
and Nvidia will sometimes make their render farms available to clients. Software
vendors like Chaos Group have a render farm serve for V-Ray.

The term render farm was born during the production of the Autodesk 3D Studio
animated short The Bored Room23 in July 1990 when, to meet an unrealistic
deadline, a room filled with Compaq 386 computers was configured to do the
rendering. At the time, the system wasn’t networked, so each computer had to be set
up by hand to render a specific animation sequence. The rendered images would
then be “harvested” via a rolling platform to a large-format optical storage drive,
then loaded frame by frame to a Sony CRV disk.

The Autodesk technician assigned to manage this early render farm (Jamie Clay)
had a regular habit of wearing farmer’s overalls and the product manager for the
software (Bob Bennett) joked that what Clay was doing was farming the frames and
at that moment he named the collection of computers a render farm.

This is also where the term render wrangler came from. These are the people
who keep the farm running and ensure that the frames are queued up with the
correct priority. Described as “the keeper of the render,” a render wrangler is the
last person who sees the animation before its final output to film and video.24

A list of rendering farms by country, software, and hardware can be found at
https://rentrender.com/all-render-farms-list/.

23https://www.youtube.com/watch?v=sCXqWO7FVzY.
24https://en.wikipedia.org/wiki/Render_farm.

7.3 Remote 171

https://rentrender.com/all-render-farms-list/
https://www.youtube.com/watch?v=sCXqWO7FVzY
https://en.wikipedia.org/wiki/Render_farm

7.3.4 Rendering Service Organizations

In addition to public and private rendering resources, organizations can employ a
service bureau to do the rendering for them. Such service bureaus have trained
experts in rendering in general and ray tracing specifically. They have most of the
leading ray-tracing programs and probably all of the free programs.

One such firm is VizSource in San Diego, which has successfully completed
thousands of projects and offers 3D renderings as low as $400 per rendering with a
5-day delivery of proof rendering.

Another rendering service organization is Super-Cheap Architectural
Renders, a dedicated architectural visualization team (Fig. 7.19).

The company states its mission as providing premium quality photorealistic
images at a fraction of the cost, with an exceptional level of customer service. The
company offers to help architects in the property market get ahead by benefiting
from the realism of images and taking advantage of the company’s price point. It is
a global company with offices in the USA, the UK, Dubai, Australia, and New
Zealand.

Such bureaus offer architectural renderings, interior design renderings, product
renderings, and more. Typically, one sends the bureau a CAD or hand drawing of
what is desired to be rendered.

Fig. 7.19 Suplex development rendering. Source Super-Cheap Architectural Renders

172 7 Ray-Tracing Hardware

7.4 Benchmarking Ray Tracing

Ray tracing, as everyone knows, is a simple algorithm that can totally consume a
processor. But how much a given processor is consumed is an unanswerable
question because it depends upon the scene and of course the processor itself. So,
approximations have to be made, and parameters fixed to get a consistent com-
parison. Then it is left to the buyer to extrapolate the results to his or her situation.

Ray tracing is done on three platforms and soon four. Ray tracing is run on
servers, workstations, and PCs, and has been demonstrated on tablets.
Non-geometric-based ray tracing is also run on supercomputers in field simulations
ranging from optical analysis to nuclear explosions and fusion reactions.

7.4.1 SPEC

At the workstation, server and supercomputing levels, the Standard Performance
Evaluation Corporation—SPEC—has offered benchmarks based on professional
applications since 1988.25 SPEC is a nonprofit corporation whose membership is
open to any company or organization that is willing to support the group’s goals
(and pay dues). Originally a bunch of people from hardware vendors devising CPU
metrics, SPEC has evolved into an umbrella organization encompassing four
diverse groups.

SPEC does not have a benchmark that focuses solely on ray tracing. That is
because all SPEC benchmarks are based on applications, not specific functionality
within applications. There are many tests within those application-based bench-
marks (especially those from the SPEC Graphics and Workstation Performance
Group—SPEC/GWPG) that test ray tracing functionality, but the performance
measurement is related to how an application performs as a whole on the system
being tested. These types of tests more accurately reflect what a user would
experience in the real world when running a professional application.

SPEC/GWPG produces benchmarks that work on top of actual applications
(SPECapc) and ones that are based primarily on traces of applications
(SPECviewperf for graphics performance and SPECworkstation for comprehensive
workstation performance). Members contributing to benchmark development
include AMD, Dell, Fujitsu, HP, Intel, Lenovo, and Nvidia (Fig 7.20).

In 2018, SPEC released SPECworkstation 3, comprising more than 30 work-
loads containing nearly 140 tests to exercise CPU, graphics, I/O, and memory
bandwidth. The workloads are divided by application categories that include media
and entertainment (3D animation, rendering), product development (CAD/CAM/
CAE), life sciences (medical, molecular), financial services, energy (oil and gas),
general operations, and GPU compute (Fig. 7.21).

25https://www.spec.org/spec/.

7.4 Benchmarking Ray Tracing 173

https://www.spec.org/spec/

Accurately representing GPU performance for a wide range of professional
applications poses a unique set of challenges for benchmark developers such as
SPEC/GWPG. Applications behave very differently, so producing a benchmark that

Fig. 7.20 “Tribute to Myrna Loy” by Ive (2008). The figure is Vicky 4.1 from DAZ. The author,
Ive, created it with Blender by using all images of her that he could find as reference. Rendered
with POV-Ray beta 25 using 7 light sources (and the “area_illumination” feature)

174 7 Ray-Tracing Hardware

measures a variety of application behaviors and runs in a reasonable amount of time
presents difficulties.

Even within a given application, different models and modes can produce very
different GPU behavior, so ensuring sufficient test coverage is a key to producing a
comprehensive performance picture.

Another major consideration is recognizing the differences between CPU and
GPU performance measurement. Generally speaking, the CPU has architecture with
many complexities that allow it to execute a wide variety of codes quickly.
The GPU, on the other hand, is purpose-built to execute pretty much the same set of
operations on many pieces of data, such as shading every pixel on the screen with
the same set of operations.

The SPECworkstation 3 suite for measuring GPU compute performance includes
three workloads. The ray-tracing test uses LuxMark, a benchmark based on the new
LuxCore physically based renderer, to render a chrome sphere resting on a grid of
numbers in a beach scene.

SPEC also offers viewsets within its SPECviewperf 13 and SPECworkstation 3
benchmarks that include ray-tracing functionality based on real-world application
traces. For example, the maya-05 viewset was created from traces of the graphics
workload generated by the Maya 2017 application from Autodesk.

Fig. 7.21 Scene from the updated LuxRender workload

7.4 Benchmarking Ray Tracing 175

The viewset includes numerous rendering modes supported by the application,
including shaded mode, ambient occlusion, multi-sample anti-aliasing, and trans-
parency. All tests are rendered using Viewport 2.0.

One thing to consider in benchmarking ray-tracing performance is that it doesn’t
happen in a void. Even in a SPEC test that is predominantly centered on ray tracing,
there is a lot of other stuff happening that impacts performance, including appli-
cation overhead, housekeeping, and implementation peculiarities. These need to be
considered for any performance measurement to be representative of what happens
in the real world.

In addition to benchmarks from consortiums such as SPEC, some ray-tracing
software suppliers offer their own benchmark programs.

7.4.2 Underwriter Labs Futuremark

For PCs, the leading benchmark supplier is Underwriter Labs Futuremark team.
Finland-based Futuremark has been making PC graphics benchmarks since 199726

and in 2018 announced their ray-tracing benchmark 3DMark Port Royal, the first
dedicated real-time ray-tracing benchmark for gamers. One can use Port Royal to
test and compare the real-time ray-tracing performance of any graphics AIB that
supports Microsoft DirectX ray tracing (Fig. 7.22).

Port Royal uses DirectX ray tracing to enhance reflections, shadows, and other
effects that are difficult to achieve with traditional rendering techniques.

As well as benchmarking performance, 3DMark Port Royal is a realistic and
practical example of what to expect from ray tracing in upcoming games—
ray-tracing effects running in real time at reasonable frame rates at 2560 � 1440
resolution.

3DMark Port Royal was developed with input from AMD, Intel, Nvidia, and
other leading technology companies. UL worked especially closely with Microsoft
to create an implementation of the DirectX ray tracing API.

Port Royal will run on any graphics AIB with drivers that support DirectX ray
tracing. As with any new technology, there are limited options for early adopters,
but more AIBs are expected to get DirectX ray-tracing support.

7.4.3 Blender’s Open Data Benchmark

Blender Institute prepared six Blender files for testing its ray-tracing program
Cycles. Rendering time with CPU and GPU, using various settings and design
styles but based on actual production setups, is used for the testing.

26https://en.wikipedia.org/wiki/Futuremark.

176 7 Ray-Tracing Hardware

https://en.wikipedia.org/wiki/Futuremark

The goal is to have an overview of systems that are used or tested by developers
of Cycles. Blender plans to update the benchmark regularly, when new hardware
comes in—and especially when render features improve in Cycles.

Most strikingly so-far is that the performance of CPUs is in a similar range as
GPUs, especially when compared to the costs of hardware. When shots get more
complex, CPUs win the performance battle.

“That confirms our own experience that fast GPU is great for previewing and
lighting work,” said Ton Roosendaal, Chairman of the Blender Organization. “A
fast CPU is great for the production rendering. But … who knows what the future
brings.”

The six scenes shown in Fig. 7.23 have been selected by the Blender team and
are based on production setups with various use cases; indoor, outdoor, characters
with hair, hard surface.

The benchmark consists of two parts: a downloadable package which runs
Blender and renders on several production files, and the Open Data portal on
blender.org, where the results can be (optionally) uploaded. All results are open
access and free to be shared.

The benchmark bundle is available for download on opendata.blender.org. Here,
also thousands of test results can be reviewed and downloaded.

Fig. 7.22 Real-time ray tracing promises to bring new levels of realism to in-game graphics.
Source Underwriter Labs

7.4 Benchmarking Ray Tracing 177

7.4.4 Chaos Group

Chaos Group has a V-Ray benchmark. The V-Ray benchmark is a free stand-alone
application to help users test how fast their hardware renders. The benchmark
includes two test scenes, one for GPUs and another for CPUs, depending on the
processor type you’d like to measure. V-Ray benchmark does not require a V-Ray
license to run.

One launches the application and runs the tests. After the tests are complete, the
user can share the results online and see how his or her hardware compares to others
at benchmark.chaosgroup.com. The company recommends noting any special
hardware modifications that have been made like water cooling or overclocking
(Fig. 7.24).

Fig. 7.23 Blender’s Cycles six benchmark test scenes

Fig. 7.24 V-Ray benchmark tests. Source Chaos Group

178 7 Ray-Tracing Hardware

Chaos Group says if one is looking to benchmark their render farm or cloud,
they can try the command-line interface to test without a GUI. V-Ray benchmark
runs on Windows, Mac OS, and Linux.

7.4.5 Redshift Benchmark

In 2017, the company introduced a benchmarking utility for its GPU-based pro-
duction renderer. The benchmark, which is built into the current release works with
the 3ds Max, Cinema 4D, and Houdini editions of the software, and with a little
tweaking on Windows, Linux, and macOS.

7.4.6 Summary

Benchmarking will always be a challenge. There are two classes of benchmarking,
synthetic or simulated, and application-based. SPEC uses application based, and
UL uses synthetic. The workload or script of a benchmark is always subject for
criticism, especially by suppliers whose products don’t do well in the tests. The
complaint is that the script (of actions in the application-based test) or the simu-
lation (in the synthetic tests) doesn’t reflect real-world workloads or usage. That is
statistically correct to a degree. However, SPEC benchmarks either run on top of
actual applications or are developed based on traces of applications performing the
same work as in the real world. Also, the organizations developing these bench-
marks have been doing this work, and only this work, for over two decades, longer
than the life of some of their critics, and over that period and with that
much-accumulated experience they can be considered experts.

Benchmarking is used to prove the performance of one processor over another.
Ray tracing does not need specific hardware to support it explicitly. Any processor
that can be programmed can execute a ray-tracing algorithm and produce a display
file.

In Nvidia’s case, they added RTX cores which are built in a way that makes
them more suited for the calculations necessary for ray tracing and are explicitly
supported it in their API. Including specialized processors just means one can do
more of these calculations on less space, using less power and less time. It does not
mean that hardware without these specialized processors can’t do it, or even that it
would be that much slower. In fact, GPUs are already pretty well-suited to this task
as-is.

7.4 Benchmarking Ray Tracing 179

References

Amdahl GM (1967) Validity of the single processor approach to achieving large-scale computing
capabilities. AFIPS conference proceedings 30:483–485. https://doi.org/10.1145/1465482.
1465560

Carr A, Hall JD, Hart JC (2002) The ray engine. In: Proceedings of graphics hardware 2002, Sept
2002, pp 37–46. Available from https://www.researchgate.net/publication/234783725_The_
Ray_Engine. Accessed 26 Jan 2019.

Peddie J (1996) Advance rendering technology ray-tracing chip. The PC graphics report, 2 Jan
1996, vol IX, no 1, p 5

Peddie J (1998) Mitsubishi real-time volume renderer—vg500. The Peddie report, 19 Oct 1998,
vol XI, no 41, p 1365

Peddie J (2005) Mercury takes off with new partners and cell processors. Jon Peddie’s TechWatch,
15 Aug 2005, vol 5, no 16, p 27

Peddie J (2010) Imagination technologies to acquire caustic graphics developer of real-time
ray-tracing graphics technology. Jon Peddie’s TechWatch, 21 Dec 2010, p 9

Peddie J (2014) Siliconarts’ RayCore ray-tracing processor. Jon Peddie’s TechWatch, 26 Aug
2014, vol 14, no 17, p 19

Pfister H et al (1999) The VolumePro real-time ray-casting system. Mitsubishi Electric Research
Laboratories, TR99, 19 Apr 1999. http://www.merl.com/publications/docs/TR99-19.pdf

Purcell TJ, Buck I, Mark WR, Hanrahan P (2002) Ray tracing on programmable graphics
hardware. In: Proceedings of SIGGRAPH, July 2002. ACM Trans Graph 21(3):703–712

Szirmay-Kalos L, Purgathofer W (1998) Global ray-bundle tracing with hardware acceleration. In:
Rendering techniques ‘98, proceedings of the Eurographics workshop in Vienna, Austria, 29
June–1 July 1998. Euro http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
5828E586A04A651093455F4332F5FF8D?doi=10.1.1.79.1717&rep=rep1&type=pdf

Wald I, Slusallek P, Benthin C, Wagner M (2001) Interactive rendering with coherent ray tracing.
Proceedings of EUROGRAPHICS. Comput Graph Forum 20(3):153–164

Woop S, Schmittler J, Slusallek P (2005) RPU: a programmable ray processing unit for real-time
ray tracing. ACM Trans Graph 24(3):434–444

180 7 Ray-Tracing Hardware

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
https://www.researchgate.net/publication/234783725_The_Ray_Engine
https://www.researchgate.net/publication/234783725_The_Ray_Engine
http://www.merl.com/publications/docs/TR99-19.pdf
http://citeseerx.ist.psu.edu/viewdoc/download%3bjsessionid%3d5828E586A04A651093455F4332F5FF8D%3fdoi%3d10.1.1.79.1717%26rep%3drep1%26type%3dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3bjsessionid%3d5828E586A04A651093455F4332F5FF8D%3fdoi%3d10.1.1.79.1717%26rep%3drep1%26type%3dpdf

Chapter 8
Ray-Tracing Programs and Plug-ins

Abstract There are 70 or so ray-tracing programs available, plus ray-tracing
capabilities in many major CAD, 3D modeling, and content creation programs. The
idea of creating a photorealistic, physically accurate synthetic image is so com-
pelling and exciting; literally, hundreds of people have tried to do over the past
60 years. It takes such specialized skill and such an extensive material library that
no single program can satisfy all the needs of all applications or stages of a project.
It is not uncommon for a film or design studio to employ two to five different
ray-tracing programs on one project. That reveals how vast the requirements are and
why there are so many programs. And many of the programs are free, so there is no
economic barrier to using ray tracing.

I look at ray tracing as being used in a pipeline. I have approached it by visualizing
a four-stage pipeline, starting with conceptualization, into the design, then manu-
facturing, and finally marketing. I see the use of ray tracing in the stages of
development of a product in the four stages of the pipeline from idea to consumer.
Moreover, please note, by a product I mean, and include anything from a washing
machine to a movie, from a medical training scenario to an analysis of a body scan,
from an airplane or car design to the simulation of the airplane flying or the car
crashing. Physically accurate modeling, virtual prototyping, and data analysis are
essential for product satisfaction, safety, reproducibility, and reliability.

• Stand-alone
• Integrated
• Plug-in
• Middleware
• Other

The market for ray tracing is entering a new phase. This is partially due to
improved and readily available low-cost processors (thank you Moore’s law), but
more importantly because of the demand and need for accurate virtual prototyping
and improved workflows (Fig. 8.1).

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3_8

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17490-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-17490-3_8

With any market, there is a 20/80 rule, where 20% of the suppliers represent
80% of the market. The ray-tracing market may be even more unbalanced. There
would appear to be too many suppliers in the market despite failures and merger
and acquisition activities. At the same time, many competing suppliers have been
able to successfully coexist by offering features customized for their most important
customers.

This section includes all the popular stand-alone ray-tracing programs. The
caveat “well-known” is used to excuse me if I missed a program that the reader
thought should be included. As mentioned earlier, this book is about
geometry-based ray tracing and does not embrace field, optical, audio, or other
non-3D (virtual or real) ray-tracing applications or software.

The programs are listed followed by the company name.
I have segmented the market into four categories: integrated (e.g., Autodesk’s

Raytracer), stand-alone (e.g., V-Ray), plug-in (almost everyone), and middleware
(e.g., OptiX). I have identified 71 ray-tracing programs from integrated to
stand-alone and plug-ins. Of that population, I have found 21 that are free.

In some cases, there is a version of a stand-alone program that is a plug-in. In a
few cases, some plug-ins are all that are offered by a supplier (Fig. 8.2).

In a few cases a supplier may offer a stand-alone, and integrated, and plug-in
versions, or a supplier that offers a stand-alone and plug-ins, may have their pro-
gram integrated into a modeling program. So just about every combination that can
be imagined found.

Many stand-alone ray-tracing programs are also available as a plug-in for other
applications. Therefore, they are listed twice, albeit briefly in the plug-in section.

Fig. 8.1 Rendering in the cloud using GPUs. Source OneRender

182 8 Ray-Tracing Programs and Plug-ins

On average, three ray-tracing companies a year have been started since 1968
amounting to 93 organizations totally. I plotted the start dates of the surviving 61
companies (Fig. 8.3).

The following sections list some of the more popular programs.

Fig. 8.2 Ray-tracing taxonomy

Fig. 8.3 Start-up of ray-tracing companies over time

8 Ray-Tracing Programs and Plug-ins 183

8.1 Stand-Alone Ray-Tracing Programs

Stand-alone software is any software application that does not come bundled with,
or require, another software package in order to run. Essentially, it is software that
can stand on its own without help from the Internet or another computer process.

The programs listed in this section are such stand-alone programs that create
ray-traced images from data files from other programs and put out an image file for
display and printing.

Many of the companies offering a stand-alone program also offer a plug-in
version.

8.1.1 3Delight—Illumination Research

It is founded by Pierre Lachapelle and Aghiles Kheffache in 1999. In 1985, when
computer-generated character animation was in its infancy, Lachapelle won inter-
national acclaim and a host of awards with his animated short, Tony de Peltrie,
which gave the world a look into the future of computer-generated characters. That
was a year before Pixar was spun out from Lucas as a private corporation.

Since then, Lachapelle has been actively building an elaborate 3D animation
studio in Montreal, further advancing state-of-the-art character animation. Some of
his accomplishments include many firsts: computer-animated crowd, hair, clothing,
and 3D paint.

3Delight runs on Microsoft Windows, OS X, and Linux. DNA Research
developed it and for a while was a subsidiary of Taarna Studios. In 2003, the
company renamed itself Illumination Research and left Taarna who had been an
early investor and customer. The administration/head office is in Singapore. A core
R&D team is in Montreal. Additional development contributors spread all over the
world.

The renderer became first publicly available in 2000 and was the first
RenderMan-compliant renderer combining the REYES algorithm with on-demand
ray tracing. The only other RenderMan-compliant renderer capable of ray tracing at
the time was BMRT. BMRT was not a REYES renderer though.

3Delight was meant to be a commercial product from the beginning. However,
DNA decided to make it available free of charge from August 2000 to March 2005
to build a user base.

Illumination Research specializes in rendering solutions for the VFX and ani-
mation production pipeline. 3Delight was their first program and introduced in
2002, and the company takes pride in the software was used in countless feature
films and commercials.

With 3Delight, one has the option to choose between two rendering engines:
Path Tracing (default) and REYES. The choice is made through the simple Render
Mode menu option in the render engine group of attributes of the render settings.

184 8 Ray-Tracing Programs and Plug-ins

Using REYES does not preclude one from using ray tracing, which can still run on
top of REYES for any secondary rays (Fig. 8.4).

Their current product line includes 3Delight, 3Delight for Daz Studio, Maya, and
3Delight for Katana. They also made public their upcoming rendering service in the
form of 3Delight Cloud which is still in testing.

3Delight Core technologies

3Delight is a unidirectional forward path tracer, said to be able to withstand the
needs of modern production rendering. The company mentions the software as
being able to render large scenes with an optimal memory footprint and efficient
processing scalability. To accommodate efficiency and versatility, 3Delight inter-
faces through the below technologies:

• Nodal Scene Interface—It enables 3Delight to be light and flexible in live
rendering. Additional functionality can be added easily to the open standard
API, making it usable for many programs and production needs.

• Open Shading Language—3Delight has the OSL technology at its core which
enables efficient coupling of shading and ray tracing.

Key features

Raytrace Motion Blur—Enables or disables motion blur for traced rays. For
example, a moving object as seen in a mirror shows motion blur only if this option
is enabled.

Raytrace Displacements—Enables or disables ray tracing of accurate geometric
displacements. The default is to ray-trace displacements as bump maps (a displaced

Fig. 8.4 An example of 3Delight capabilities. Source Illumination Research

8.1 Stand-Alone Ray-Tracing Programs 185

surface appears bump-mapped in a mirror reflection). Enabling this feature makes
ray tracing slower and forces 3Delight to use more memory so one should use this
option with care.

Raytrace Bias—It specifies a bias for rays starting point to avoid potentially
erroneous intersections with the emitting surface.

Unified sampling

3Delight has been equipped with a rapidly converging light sampling algorithm
which allows rendering large amounts of light sources. A multiple importance
sampling algorithm can combine samples from lights, materials, and environments
to produce anti-aliased images along with the earlier mentioned algorithm.
Volumes, such as atmospheres and OpenVDB (see Glossary), leverage from the
same technology. This results in a single point of control on shading quality. The
artist is thus happy not to be involved in sample count adjustments on both
materials and lights.

Cloud rendering

3Delight has cloud rendering integrated at the core which allows the user to decide
if the rendering is to occur through the CPU or remotely. 3Delight takes care of data
management where a registered user account is utilized with rendering credits with
the 3Delight Cloud rendering service.

Multi-light technology

3Delight can pass each light or group of lights through its own AOV/layer which
allows the correct light manipulation during compositing. These kinds of light
layers can also be the output to 3Delight Display for real-time interactive adjust-
ments in HD resolution.

Incandescence lights

3Delight has an option of incandescence lights which is used to the incandescence
of scene objects that are not originally illuminated. This functionality is also utilized
to light grouped objects using a single incandescence light and control their light
emission together.

Multi-camera rendering

3Delight can render a scene or image from multiple views simultaneously using
shared scene geometry which allows for efficient stereo rendering. Each of the
several cameras can have their own quality and color settings.

Precise geometric surfaces

3Delight renders curved surfaces free of faceting artifacts, while displaced
geometry is rendered to subpixel level. The absence of pretessellation geometry
leads to faster start-up times.

186 8 Ray-Tracing Programs and Plug-ins

Network caching

3Delight optimizes network traffic by caching of server-side textures and NSI
geometries into local storage without user intervention.

3Delight Cloud is a technology that allows artists to render interactively from
their workstation using thousands of cores, and 3DelightNSI is a fast and
simple-to-use path tracer built on top of the nimble Nodal Scene Interface (NSI) and
Open Shading Language (OSL).

3Delight Cloud and 3DelightNSI are available through artist-friendly integration
with Foundry’s Katana and Autodesk Maya.

3Delight Cloud features ease of use. It is as simple as selecting 3Delight Cloud
and pressing “Render.” No manual data upload or download is required. Also,
images render interactively with thousands of cores. An image that takes hours to
render on a powerful workstation renders in mere minutes using 3Delight Cloud. It
also features simple and affordable per-minute billing at a rate of two-cents per
minute per slice of 24 cores. There are no storage fees and no data transfer fees.

8.1.1.1 Summary

Being in the industry for a decent period and with the connections the company has
built over the years coupled with the technical superiorities, 3Delight has been a
successful product in the market. Users have been praising its operational speed and
rendering quality of complex objects like hairs, furs, etc. However, some people
feel that they should have more options particularly with the functions available to
the users particularly when compared to V-Ray and Indigo Renderer. As the
company brings out new versions, they will surely improve upon this function as
well.

Used mainly in Europe by people who liked the RenderMan style interface, it is
not supported by any render farms except maybe Rayvision in China, and
Rayvisiosn was just a small operation in 2019.

8.1.2 Appleseed

Appleseed was founded in May 2009 by François Beaune, a former rendering
engineer from the core R&D team at Mental Images.

In October 2011, the development of Appleseed benefited from a technology
sharing agreement with Jupiter Jazz Limited and received funding for one year.
Since October 2012, Appleseed relies on the continued effort of talented volunteers.
Appleseed is an open-source, physically based global illumination rendering engine
primarily designed for animation and visual effects.

Appleseed implements a modern workflow based on Path Tracing that enables
artifact-free, single-pass rendering with minimal technical tuning. It is

8.1 Stand-Alone Ray-Tracing Programs 187

simultaneously capable of strictly unbiased rendering when total accuracy matters,
and biased rendering when artistic freedom and shorter rendering time are para-
mount (Fig. 8.5).

Appleseed supports fully programmable shading via Sony Pictures Imageworks
Open Shading Language (OSL), RGB, and spectral rendering, fast and robust
transformation and deformation motion blur, ray-traced subsurface scattering,
exhaustive Python and C++ APIs, and many other production-oriented features.

The program has support for all kinds of motion blur on par with all kinds of
commercial renderers like V-Ray or mental ray. Appleseed supports transformation
motion blur with as many steps as one wants and also curved, plus deformation
motion blur with as many segments as desired, and it is fast.

Appleseed is a CPU renderer. The reason why it is CPU only is that it supports
programmable shading through OSL which is only available (currently) for the
CPU. It also supports other forms of programmability, for example, Disney SeExpr,
which allow it to combine layers with formulas. It does not run on the GPU, and if it
did run on the GPU, it is questionable whether it would be very efficient. The
organization doesn’t have plans for GPU support yet. The team is also interested in
rendering large scenes with lots of geometry and textures. Right now, one cannot do
that on the GPU unless one has expensive GPU with like 24 GB of RAM and there
are not so many on the market. Appleseed wants to support large scenes and lots of
flexibility by programmable shading which is not feasible on the GPU.

Regarding the market, it is true that GPU rendering is attractive for smaller
studios because it cuts rendering times by an order of magnitude. However, the
company believes there is a market for a more flexible renderer that can do things
you may not be able to do with a GPU renderer. You also have to keep in mind that
Appleseed is still kind of a hobby project which the developers do in their free time,

Fig. 8.5 Country Kitchen by Blend Swap user Jay-Artist

188 8 Ray-Tracing Programs and Plug-ins

and they don’t want to fight with GPU incompatibilities, driver problems, and
things like the split between OpenCL and CUDA. That is another reason why they
are not engaging with the GPU right now.

Along with the core renderer, the team is actively developing high-quality
integrations for common digital content creation applications:

• Appleseed for Maya
• Appleseed for 3ds Max
• Appleseed for Blender

Appleseed is also the default rendering engine of Image Engine’s Gaffer.
Appleseed is actively developed by a small, international team of volunteers

from the animation and VFX industry. Its core mission is to provide individuals and
small studios with a complete, reliable, fully open rendering package.

Over the years, Appleseed has been used on several projects including TV
documentaries, ads, promotional videos, and animation short.

Volume rendering is a major feature the team is developing. Just like for the rest
of Appleseed they want robust support for volumes in the sense that are fully
path-traced volumes, so the only bias they will get will be noise. Together with
subsurface scattering, volume and subsurface scattering are interconnected fields.
Subsurface scattering is a form of volume. A considerable research about fast
path-traced volumes has been published, some of it by Solid Angle, the makers of
Arnold.

8.1.2.1 Summary

Founder Beaune lives in Annecy; the town of the Annecy animation festival is a
large festival for animation with worldwide reach.

Somewhat similar to LuxRender, Appleseed is an open-source volunteer group
of CG enthusiasts who are contributing their time and passion to the development
of a powerful ray-tracing rendering tool. As mentioned elsewhere, “I have identified
21 organizations offering free ray-tracing software. However, although there are a
lot of open-source renderers on the market none of them,” says Beaune, “really
targets animation.”

In 2019, Autodesk added the toon shader to Arnold as part of a
non-photorealistic rendering (NPR) solution that is provided in combination with
the contour filter.

8.1.3 Arnold—Autodesk (Solid Angle)

One evening in 1999, Marcos after working with Station X Studios in Los Angeles,
he and two friends went to see an Arnold Schwarzenegger film, “End of Days.” His

8.1 Stand-Alone Ray-Tracing Programs 189

friends imitated the Arnold accent from the rear of the theater, cracking up the
audience. Marcos had never realized what a distinctive voice Schwarzenegger had
since he had only seen Arnold films in Spain, where US films are dubbed. Andy
Lesniak, one of the friends at the theater, suggested “Arnold” as a joke, and Marcos
liked it. Marcos then started showing images from Arnold on the Web. The code
name was picked up by people, so the name became permanent. He is thought of
choosing something more professional, but “Arnold” now has a reputation, so he
hasn’t changed it (yet).

Marcos Fajardo is the chief architect of Arnold. The beginnings of what is now
Arnold emerged in 1997 when Fajardo, 24 at the time, decided to write his own
renderer. That year, he attended SIGGRAPH, where his interest in stochastic ray
tracing (a foundational part of Arnold’s rendering technology) was piqued in dis-
cussions with friends attending the conference.

Arnold is an unbiased, physically based, ray-tracing 3D rendering application
created by the company Solid Angle. Solid Angle, and the Arnold Renderer were
acquired by Autodesk in 2016. As part of the ongoing integration process, Arnold
transitioned to the Autodesk Licensing Framework on July 25, 2017.

Arnold is an advanced unidirectional stochastic Monte Carlo ray-tracing ren-
derer targeted at animation and visual effect studios. Unlike RenderMan, Arnold
uses ray tracing for direct and indirect lighting. Arnold has about 200,000 lines of
highly optimized C++ code, and it is considered a very direct implementation
without a lot of software hacks or tricks.

Arnold has supported plug-ins available for Maya, Houdini, Cinema 4D, 3ds
Max, and Katana. The Arnold plug-in for Softimage is now available under an
Apache2.0 open-source license.

The program has evolved and had features added to it over the years including
hair and fur, a memory-efficient ray-traced curve primitive to help create complex
fur and hair renders, 3D motion blur that interacts with shadows, volumes, indirect
lighting, reflection, or refraction, and volumetric rendering for effects such as
smoke, clouds, fog, pyroclastic flow, and fire.

In the latest version, some of the highlights are:

• new path-traced, random walk SSS engine that provides more accurate results in
concavities and thin geometry

• frustum-based tessellation
• new car paint shader
• revamped and optimized triplanar
• flakes and shadow matte shaders
• improved UDIM accuracy
• AOV/alpha transmission, improved volume sampling of low-spread area lights
• big memory savings in procedural namespaces
• A new maketx binary (to convert images to tiled, MIP-mapped textures) with

optimizations and improved color space support.

190 8 Ray-Tracing Programs and Plug-ins

Random walk subsurface scattering

In 2017, Arnold introduced random walk subsurface scattering, a new, more
accurate way of calculating SSS. Unlike the empirical BSSRDF method (see
Glossary) based on diffusion theory, this method traces below the surface with a
random walk and makes no assumptions about the geometry being locally flat. This
means it can take into account anisotropic scattering like brute-force volume ren-
dering and produces better results around concavities and small details. It can also
be substantially faster for large scattering radius (i.e., large mean free path) com-
pared to the other methods (Fig. 8.6).

On the other hand, the new method can be slower in dense media and it does not
support blending two surfaces together, may require redialing materials to achieve a
similar look, and is more sensitive to non-closed meshes, “mouth bags,” eyeballs,
and internal geometry potentially casting shadows. The default is to use the old
empirical diffusion method in order not to break the look of the existing scenes.

Subdivision frustum culling

Arnold allows subdivision patches outside the view or dicing camera frustum to not
be subdivided. This is useful for any extended surface that is only partially visible
as only the directly visible part will be subdivided, potentially saving memory and
subdivision time in complex scenes. Similarly, no subdivision work will happen if a
mesh is not directly visible. This can be turned on globally and can be turned off for
specific meshes. The global option adds a world space padding to the frustum that
can be increased as needed to minimize artifacts from objects that straddle the
frustum boundaries.

Materials

The company currently provides a limited library of sample materials in its docu-
mentation, with many third-party vendors providing additional material libraries

Fig. 8.6 Diffusion versus random subsurface scattering. Source Autodesk

8.1 Stand-Alone Ray-Tracing Programs 191

(i.e., Greyscalegorilla). With material interoperability, Autodesk has been a strong
supporter of the MaterialX open-source material standard, contributing directly as
well as creating the ShaderX library to help facilitate MaterialX interop with other
3D DCC applications.

Car paint shader

A dedicated car paint shader has been added to the latest version of Arnold, which
can be thought of as the combination of a simplified version of shaders. This shader
can create a range of car paint looks without having to connect several nodes. For
example, a pearlescent effect can be added to both the specular and flakes layers by
tweaking a few parameters.

An arbitrary number of layers of flakes can be used. The flakes at a deep layer
are covered by the ones closest to the surface and more tinted by pigments.

GPU acceleration

Arnold GPU has run beta tests and is now getting it in the hands of users.
Arnold GPU makes full use of Nvidia’s RTX technology and says the company has
been developed in jointly with Nvidia.

Arnold GPU is built using Nvidia’s OptiX library and currently runs exclusively
on Nvidia hardware.

Typically, 30–50% is spent tracing rays; the rest is mostly shading. With RTX,
tracing time is cut in half and render time is now mostly shading.

Cached Playback

Autodesk offers a feature in Maya for fast viewport viewing called Cached
Playback. It isn’t really about real-time ray tracing, but it is about caching data in a
scene in advance, so it can be played back much faster than if Maya had to calculate
each frame in real time when the user clicks the play button.

Caching the individual frames would be more like what a Playblast does in Maya
—it renders a viewport camera video playback for each frame that is animated, so it
can be watched in real time. That means the one camera angle plays back and it is
not interactive, so changes cannot be made as you watch it.

Since Cached Playback is caching the data from a scene, it means the playback
can be watched within the actual viewport of Maya. The extension of this is that it is
possible to tumble or zoom the viewport camera, while the animation is playing
back to see it from different angles. It also means that the animator can interact with
the animated content (i.e., make changes) right away.

It is precaching the frames. Within Maya, the artist can see the progress of
Cached Playback as the little blue bar that progresses along the timeline. Blue (or
the set color) means that frame is cached. When a file is opened, it takes a moment
for Maya to cache the data. Then, when a change is made in the scene, the frame
will change from color to grayed out, and then back to color when it is recached.

192 8 Ray-Tracing Programs and Plug-ins

Sheen

Shader enhancements include a new Cell Noise shader and new Sheen function in
the Standard Surface shader to render cloth-like microfiber materials or the peach
fuzz on a face. Sheen layer can be used to approximate microfiber, cloth-like
surfaces such as velvet, and satin of varying roughness. Sheen is layered onto the
diffuse component, and its weight is determined with this attribute. Sheen can be
thought of as the density or the combination of the density and length of the fibers.
Sheen is an approximation in the sense that it does not model the fabric structure
itself but is nevertheless a good model for a large variety of cloth-like materials.

8.1.3.1 Summary

Autodesk recognized the importance of rendering and ray tracing specifically and
felt Arnold represented the right mix of proven technology with a great product
road map, as well as many happy users. It is also worth mentioning that the Arnold
team, from Marcos Fajardo to Fred Servant and everyone else on the team, are all
passionate about the art and science of rendering.

Ray-tracing technology has many applications. Arnold has been focused on the
M&E space, specifically VFX and animation, but with its integration with 3ds Max,
and Autodesk is seeing many new users in design (i.e., architectural visualization
and design visualization) who are adopting it. Pipelines vary across industries, but
Arnold’s architecture and API are very flexible, so expect Autodesk to integrate it in
other areas where it makes the most sense.

Some of the target markets are arch viz, industrial viz, motion graphics, and FX.
Before the acquisition by Autodesk, if one worked at a small studio and only does
furniture rendering for example, then Arnold may have been too expensive.
However, Arnold interactive rendering is now available for free in Maya and Max
makes it interesting for small studios, and more and more students are now trained
in Arnold because it is shipping with those DCCs by default. However, granted,
furniture rendering is not the company’s traditional market and is new for them.

If one does only FX, well then Arnold may be the right choice as is evidenced by
its use in Game of Thornes and X Men Apocalypse.

Ray tracers are often created to answer specific creative demands, and in the case
of Autodesk Arnold, to handle the demands of feature film-quality photorealistic
visual effects and animation. Any renderer, whether a ray tracer or otherwise, will
have to make design compromises according to the users that it is trying to serve.
With Arnold, Autodesk felt that its performance capabilities with very large datasets
gave it an excellent foundation on which to build for a broader range of industries.

However, it has been criticized as very difficult to use without a really good crew
of VFX people. It also has a host of other assets that need to be taken into con-
sideration. Significant training is required to make it work.

Originally co-developed with Sony Pictures Imageworks (and it is now their
main renderer), the company claims Arnold is used at over 300 studios worldwide

8.1 Stand-Alone Ray-Tracing Programs 193

including ILM, Framestore, MPC, The Mill, and Digic Pictures. Arnold was the
primary renderer on dozens of films from Monster House and Cloudy with a
Chance of Meatballs to Pacific Rim and Gravity. It is available as a stand-alone
renderer on Linux, Windows, and Mac OS X, with supported plug-ins for Maya,
3ds Max, Houdini, Cinema 4D, and Katana. It is the built-in interactive renderer for
Maya and 3ds Max.

8.1.4 Cero—PTC

PTC is a computer software and services company founded in 1985 and head-
quartered outside of Boston, Massachusetts. The company developed parametric,
associative feature-based, robust computer-aided design modeling software

Luxion’s KeyShot powers the Creo Render Studio Extension. With it, one can
produce photorealistic renderings with sophisticated handling of light, scenes, and
model appearances. It is fully integrated with Creo Parametric, so the user can move
between rendering and modeling modes without the need to exit the rendering
application. Moreover, with real-time ray tracing, one can leverage existing scenes
and appearances for their designs. The image is constantly rendering itself, so there
is no waiting (Fig. 8.7).

Creo Render Studio is fully integrated with Creo Parametric, so you can switch
between the rendering and modeling modes without the need to exit the rendering
application. See Luxion’s KeyShot description in the following section.

Fig. 8.7 Creo Render Studio uses Luxion’s KeyShot (PTC)

194 8 Ray-Tracing Programs and Plug-ins

8.1.4.1 Summary

PTC began developing Creo in 2009 and announced it using the code name Project
Lightning at Planet PTC Live, in Las Vegas, in June 2010. In October 2010, the
company unveiled the product name for Project Lightning to be Creo and released it
in June 2011.

Creo is part of a broader product development system developed by PTC. It
connects to PTC’s other solutions that aid product development, including
Windchill for Product Lifecycle Management (PLM), Mathcad for engineering
calculations, and Arbortext for enterprise publishing software.

8.1.5 Indigo Renderer—Glare Technologies

Nicholas Chapman, Managing Director of Glare Technologies, makes Indigo,
started in the late 2000s, based on code and research that he was doing on Monte
Carlo path tracers. “I was fascinated by the way such realistic images could be
generated with such relatively simple algorithms,” said Chapman.

Nicholas Chapman and Ralph Chapman started Glare Technologies Limited in
2008 in Wellington, New Zealand. It is the parent company of the Indigo Renderer
and Chaotica. The company is based in Wellington, New Zealand. Indigo Renderer
works as an unbiased, photorealistic GPU and CPU renderer which the company
claims to provide ultimate image quality.

Indigo Renderer is an unbiased, photorealistic GPU and CPU renderer aimed at
ultimate image quality, by accurately simulating the physics of light.
State-of-the-art rendering performance, materials, and cameras models—it is all
made simple through an interactive, photographic approach with few abstract set-
tings, says the company.

“In 2011, with Indigo 3.0, we added support for offloading ray tracing to the
GPU via CUDA and OpenCL,” added Chapman. It became clear to them that a full
GPU rendering solution (materials, ray tracing, lighting, etc., all running on the
GPU) was needed to exploit the performance available with GPUs. They started to
work on that, and now it is available with the release of Indigo 4.0. “This devel-
opment,” added Chapman, “has been worth it as Indigo now renders approximately
ten times faster on the GPU and that speedup increases when more GPUs are
added.”

The latest version in Indigo Rendering is Indigo 4 which was launched in early
2018 and has many benefits over the previous versions (Fig. 8.8):

Multi-GPU rendering

Indigo RT utilizes the new open CL-based GPU engine which provides their per-
formance for Nvidia and AMD graphics cards on all major operating systems. The
recent GPU boasts of a 10x faster speed compared to the CPU code of Indigo 3.8.

8.1 Stand-Alone Ray-Tracing Programs 195

More cards can be added to the computer and get the power to render 4K images
and animated movies.

Fast, flexible region rendering

Indigo Renderer 4 enables the user to render multiple regions at once by shift and
enable a transparent background with a single checkbox (Fig. 8.9).

Fig. 8.8 A demonstration of Indigo Renderer. Source Glare Technologies/Indigo

Fig. 8.9 A demonstration of fast flexible region rendering. Source Glare Technologies/Indigo

196 8 Ray-Tracing Programs and Plug-ins

Aperture controls

The tool allows the user to better render the image by controlling the aperture shape
with Indigo’s generated aperture. It even allows the addition of aperture maps as per
the requirement, and the camera lens needs to be covered by the maps to create
image flare.

RGB color curves

RGB color response curves are a great way to tweak the raw image to get photo-
graphic effects. Indigo’s native RGB curves are recommended for this as it means it
is done in high precision and doesn’t need to be repeatedly added in post-process
for multiple renders (Fig. 8.10).

Material preview window

Indigo 4 has a customizable material preview window for modifying the scene
materials in a neutral lighting environment. There are multiple sample objects
available, and the user can change resolution and render quality of the preview.

Sequence overrides

It is a new tool which is used for rendering batches of images and animations with
the render queue overriding to change render settings for all the frames in the
queue, on the fly (Fig. 8.11).

Product comparison
See Table 8.1.

Fig. 8.10 RGB color curves. Source Glare Technologies/Indigo

8.1 Stand-Alone Ray-Tracing Programs 197

Fig. 8.11 An example of sequence overrides which can render multiple regions at once. Source
Glare Technologies/Indigo

Table 8.1 Product comparison of RT 4 and Renderer 4 (Source Glare Technologies/Indigo)

198 8 Ray-Tracing Programs and Plug-ins

Materials

Indigo Renderer has a moderate collection of materials compared to some of its
competitors. They consist of:

Ceramic—22

Gemstones—26

Glass—44

Leather—12

Lights—16

Liquids—33

Metals—68

Plastics—30

Skin—5

Special paints—30

Stone—71

Textile—33

Vegetation—19

Wood—90

Chaotica is a fractal art application that is designed for both new and experienced
artists. Professional users are supposed to prefer the fast rendering engine from the
company which publicizes the high-quality animations and complex images for print
that are easily produced, with real-time imaging controls. Indigo is now available
commercially. After 5 years of development, Glare Technologies is releasing a
commercial version of Indigo and has made an intuitive user interface, and stability
improvements.

8.1.5.1 Summary

The product has been able to gather good support because of its better quality of output
and metal finish materials which are broad in variety compared to its competitors.
However, there are a few areas which drew criticism such as it is a little expensive
compared to its competitors of similar age and is not too easy to learn. However, as
more versions come, the company is expected to clear up these expectations from its
clients and will likely create a problematic arena for its competitors to sustain.

8.1.6 Cinema 4D—Maxon Computer

First released commercially in 1993 on the Amiga platform, Cinema 4D debuted on
Mac OS and Windows OS in 1996. In 2000, BodyPaint 3D followed, an innovative
3D painting application available as an integrated part of Cinema 4D or as a

8.1 Stand-Alone Ray-Tracing Programs 199

stand-alone product for use with other 3D applications. In early 2000, Maxon was
partially acquired by the Nemetschek Group.

Maxon introduced Cinema 4D release 20 at SIGGRAPH 2018. Cinema 4D’s
largest user base is 3D modeling and animation with a strong presence in the VFX
industry and for motion graphics artists mainly in European VFX houses. Rebus
farm is the main commercial supplier although when Maxon raised their price from
$5/node to $100/node, there were significant service interruptions. They now have a
GPU-based renderer which has been praised; however, it needs a plug-in for each
render node to make it work properly especially when doing tile rendering with
multiple nodes.

The company has added on to its capabilities with an expansion of its motion
graphics toolset, MoGraph, as well as new volume-based modeling tools, simplified
CAD files importing and a node-based material system.

Volume-based modeling—The OpenVBD-based Volume Builder and Mesher in
Cinema 4D R20 offers an entirely new procedural modeling workflow. Any
primitive or polygon object (including the new Fields objects) can be combined to
create complex objects using Boolean operations. Volumes created in R20 can be
exported sequentially in OpenVBD format and can be used in any application or
render engine that supports OpenVBD. Also, OpenVBD, is an open-source C++
library, part of the growing portfolio of open-source tools that the VFX community
is building for itself.

Dreamworks maintains OpenVBD, and many major software companies support
it. Houdini, Pixar’s RenderMan, Arnold Solid Angle, Next Limit RealFlow,
Clarisse, Guerilla Render, Maxwell Render, Foundry Modo V-Ray, OctaneRender,
and 3Delight are listed on the OpenVBD site.

Houdini requires a 10 GbE network or Mellanox to make this run in a render
farm and also needs an expensive storage server. It is designed for big studios and
has an expensive license.

File compatibility

Cinema 4D plays well with others: Third-party applications can read and write
native .c4d files. And formats such as .fbx, .dae (Collada), .dfx, and .dwf can be
used for seamless file exchange with Cinema 4D. File exchange is particularly easy
with CAD applications from the Nemetschek family of products, to which Maxon
also belongs. For example, a Cinema 4D visualization can be easily modified and
updated from within Allplan, ArchiCAD, or Vectorworks.

Node-based material system

More than 150 different node-based shaders offer customers a new and streamlined
workflow to quickly and conveniently create shading effects from simple reference
materials to highly complex shaders. The existing standard material system’s
interface can be used to get started with the new node-based workflow. Node-based
materials can be made available as parametric assets with a reduced interface. Each
node performs specific functions from color correction to camera distance, gener-
ating noises, gradients, patterns, flakes, or scratches.

200 8 Ray-Tracing Programs and Plug-ins

ProRender improvements

The GPU-based ProRender in Cinema 4D is a GPU-powered ray-tracing renderer
that can create physically accurate renders. In R20, key features such as subsurface
scattering, motion blur, and multi-passes are now available. Other enhancements in
ProRender include updated code, support for Apple’s Metal 2 graphics technology,
and the use of out-of-core textures (Fig. 8.12).

Out-of-Core Textures. The company claims that ProRender eliminates the
memory limits on the GPU and allows streaming of high-resolution textures to the
AIB on demand. It is also possible to optimize render speed and quality with
individual control over the diffuse, glossy, refraction, and shadow depths.

Global Illumination

Global illumination, which simulates diffused, reflected light, is essential for cre-
ating great-looking, realistic renderings. Cinema 4D offers a much greater diffuse
depth than CineRender, which gives interior spaces as well as exteriors a much

Fig. 8.12 Maxwell’s
ProRender comes with an
extensive material library
(Maxwell)

8.1 Stand-Alone Ray-Tracing Programs 201

more natural illumination and makes them look even more realistic —giving them
that extra edge for any visualization.

ArchiCAD

With the release of ArchiCAD 18, Graphisoft introduced Maxon’s CineRender for
its integrated visualizations. CineRender is Cinema 4D’s high-end render engine
and lets ArchiCAD users quickly and easily create compelling renderings.

Vectorworks

Vectorworks has licensed Maxon’s Cinema 4D rendering engine and integrated it
into their Renderworks visualization program (Fig. 8.13).

The company offers it to produce renderings and presentations. Renderworks is
fully integrated into the Vectorworks software interface, so it lets one seamlessly
visualize their work throughout the design process. The company also offers con-
nectivity with Maxon’s Cinema 4D Visualize.

Cinema 4D Visualize

Cinema 4D Visualize adds to the range of functions of the Prime version to help
you create perfect images for architecture or design visualizations and much more.
Cinema 4D Visualize offers huge libraries that provide you with high-end objects
and materials. Using the Physical Camera, one can simulate many of the optical
properties of an SLR or a film camera, including realistic lighting. This adds even
more realism to your images and animations.

8.1.6.1 Summary

Maxon’s parent company Nemetschek has always been an interesting company,
more a group of independent companies with a layer of infrastructure on top to
provide some management and bookkeeping. The structure has served the company
well since its founding.

Maxon is in Nemetschek’s Media and Entertainment group. In July 2018,
Nemetschek increased its share of Maxon from 70 to 100% of Maxon. At that time,

Fig. 8.13 Cinema 4D rendering in Vectorworks’ Renderworks visualization program. Source
Vectorworks

202 8 Ray-Tracing Programs and Plug-ins

David McGavran, an industry veteran who most recently worked at Adobe, was
appointed CEO and the company plans to increase its share in the AEC, AR, and
VR markets.

8.1.7 Corona Renderer—Render Legion

Corona Renderer is a new high-performance unbiased photorealistic renderer,
available for Autodesk 3ds Max and as a stand-alone CLI application, and in
development for Maxon Cinema 4D.

The company is described in the plug-in section on Sect. 8.3.3 because it is best
known as a plug-in for 3ds Max and Cinema 4D.

8.1.8 Iray—Nvidia

Who thought the study of theoretical physics was the way to make it in Hollywood?
Maybe Rolf Herken who once labored through a Ph.D. on quantum gravity did, and
that was why he started Mental Images to produce the mental ray tracing program.

“Artists like [Albrecht] Dürer and Leonardo da Vinci knew all about the con-
cepts of ray tracing—they just didn’t have computers,” said Herken, the former
CEO of Mental Images, which he founded in 1986.

“The idea behind ray tracing is that it should be entirely programmable and not
introduce any filter or artistic interpretation in the result,” says Herken, “Just like
you may tell the photographer from his pictures but not the camera he used.”

The company name is a reflection of Herken’s main interests. At that time, he
had been working as an artist for 17 years besides doing theoretical physics,
mathematics, and computer science with emphasis on complexity theory and arti-
ficial intelligence.

The first five years the company was self-funded by means of its professional
computer animation department with talent imported from the USA such as Stefen
Fangmeier, John Nelson, and John Berton.

The first major commercial software development and license agreement was
with Wavefront Technologies in 1991 to develop the universal .obj object file
format and a modeling library that could generate the free-form surfaces needed for
advanced industrial modeling and rendering, e.g., in automotive design. The format
is still widely used, and the modeling library became the mental matter product. It is
still contained in 3ds Max, for example.

Academy Award

In 2003, after being honored by the Academy of Motion Picture Arts and Sciences
with a Technical Achievement Award for its “mental ray” technology, the Wall

8.1 Stand-Alone Ray-Tracing Programs 203

Street Journal referred to the company as “The German Eggheads Who Stormed
Hollywood,” pitting the European upstarts against US-based Pixar Animation
Studios. At the time, mental ray had been used in 120 movies—including Star Wars
and Harry Potter films and thousands of television commercials, such as a Levi
Strauss & Co. advertisement featuring 600 stampeding bison. Executives at The
Mill, a London graphics firm that created the bison images, praise mental ray’s
ability to create lifelike hair on the beasts.

The former CEO of Mental Images and now CEO of MINE, a novel form of
incubator for the creation of new technologies and technology companies, whose
interest was born from his academic work on computer simulations the physical
world, says the [mental ray] software’s first incarnation took programmers working
in a 300 m2 Berlin flat three years to develop. Herken credits mental ray 0.1 as
being written by Robert Hoedicke, “an extremely talented mathematician with a
broad range of interests in computer science, in particular in novel approaches to
programming.”

“We bought the first Silicon Graphics workstations in Europe,” Herken recalls.
“That meant we had burned our entire first round of venture capital before we even
started working.”

Once that money was gone, funding came from computer-generated trailers and
television advertisements produced by special effects pioneers that Herken had
lured to Germany who doubled as test pilots for the program.

By the end of the last century, Herken predicted then that 90% of all visual
effects would use ray tracing under one guise or another. He recalled at the time of
the Academy Award that “we could produce any visual effect you might think of.
We had reached the point where, if it is unconvincing, it was due to financial rather
than technological constraints.” Thus, the best effects often go unnoticed. Special
effects generated in a computer allow camera movements that would not have been
possible to perform on a physical set. He cited one scene in The Matrix which
shows Keanu Reeves riding a bike on a busy motorway slaloming precariously
between cars that do not exist except as lines of code.

Mental images’ Ray was one of, if not, the first to patent and launch what we now
call cloud-based rendering. The goal was to allow users around the world to have
access to and manipulate three-dimensional scenes drawn from centrally stored data,
for instance, a maintenance manual for a nuclear submarine or the mathematical
description of a car prototype without having to download it on to their computers.
That would not only allow large numbers of people to use data without the need for
powerful local computers but would also enable companies to control its dissemi-
nation preventing intellectual property theft or accidental security leaks.

Herken knew at the time there that were obstacles, but he had made techno-
logical bets before such as his gamble that computers would be able to simulate
physical phenomena by the mid-1990s. So, he was confident that the demand would
be there, from online gaming to industrial design and sophisticated terrain-mapping
map-sharing for the military.

Despite the many question marks hanging over the project at the time, one thing
was certain to Herken: By the early 2000s, he saw enough growth potential in it to

204 8 Ray-Tracing Programs and Plug-ins

have ruled out selling his company for the foreseeable future, and instead new
several investors supported the company.

Four years later, Nvidia acquired Mental Images for $100 million—and a decade
later, cloud-based, multi-user ray-tracing applications have entered the mainstream.
(Rolf Herken stayed with the company until 2011 and then went on to found MINE,
a novel form of incubator for the creation of new technologies and technology
companies that he now heads as CEO.)

After Nvidia had acquired Mental Images, the company introduced Iray, an
unbiased ray-tracing program, and claimed it was the first fully GPU-accelerated,
commercially supported, turnkey rendering solution for a wide range of 3D
graphics application developers. Iray technology leveraged Nvidia’s GPUs and
promised to deliver fast photorealism to designers, engineers, visual artists, and
consumers (Fig. 8.14).

Watching Iray at work, the viewer sees a grainy image of the rendering almost
immediately. As time passes, the granularity resolves itself into a true-to-life image.
This process contrasts with earlier versions of Mental Images mental ray software
that rendered portions of an image in square tiles as it worked. The advantage of the
Iray approach is that users may be able to quickly see if colors or other settings are
not right, stop the rendering process, and change them.

In 2009, Dassault Systèmes, the global French leader of professional CAD and
PLM software that had used mental ray as the ray-tracing engine of its CATIA
product, licensed Iray (which is CATIA’s ray-tracing engine to this day).

In 2010, Bunkspeed, an independent U.S.K. developer of product visualization
applications (since 2013 owned by Dassault Systèmes’ SolidWorks unit)
ray-tracing rendering technology adapted its Shot program to be the first end-user
application to use Mental Images in Iray. In Shot, users can turn off ray tracing to
move the model around, set the scene and other functions, and then turn ray tracing
back on to begin the render. This kind of interaction is harder almost impossible to

Fig. 8.14 A living room rendered using Iray. Source Nvidia

8.1 Stand-Alone Ray-Tracing Programs 205

do if the rendering software displays the image in tiles, thus bringing ray tracing
into interactive workflows.

In 2013, Lightwork Design, an independent UK developer of ray-tracing ren-
dering technology company for CAD and 3D software developers (whose main
customer is Siemens’ Industrial Software/PLM unit who acquired Lightwork
Design in 2018; see Sect. 8.1.26), announced that it had formed a partnership with
Nvidia to bring its “Iray+” implementation to the market as a GPU-based
ray-tracing rendering SDK with enhanced shader handling workflows.

In Nov 2017, Nvidia transferred sales and support of the Iray plug-in products
for 3ds Max, Iray for Maya, Iray for Rhino, and Iray Server—to the Iray integration
partners (AKA Iray Plugins), Lightwork Design/Siemens PLM, migenius, in
Hawthorn, Australia, and [0x1] Software in Hamburg, Germany. In October 2018
migenius and Siemens PLM licensed the Iray SDK bought, and then Siemens
bought Lightworks, making them a partner, and the latter is also the depository and
store for Iray plug-ins, as well as Lightworks’ Iray+ customers via irayplugins.com.

At SIGGRAPH 2018, Nvidia introduced their new RTX GPU architecture with a
specific ray-tracing hardware accelerator called RT Core. The RT Core was
accessed by Nvidia’s RTX API and was exposed by Microsoft DirectX driver in
early October 2018, followed by Vulkan and a newer version of OptiX.

Nvidia says Iray runs on all current-generation (and Pascal) boards and sup-
ported RT Core later in 2019.

Iray has many features available in the latest version:

Iray with artificial intelligence: AI denoising

Iray with AI is bringing the power of deep learning to the frame and interactive
photorealistic rendering. This capability of Iray called “AI Denoising” enables the
completion of final output much faster and can be used to make interactive ren-
dering much smoother for complex images (Fig. 8.15).

Iray and virtual reality

Iray supports virtual reality (VR) presentations in head-mounted displays (HMD) in
both prerendered VR walkthroughs from panoramic snapshots and dynamic pre-
sentations based on light-field technology (Fig. 8.16).

Physically based lighting

Iray implements rendering technology that generates imagery by simulating the
physical behavior of light interaction with surfaces and volumes. Images are pro-
gressively refined to provide full global illumination including caustics, sun studies,
and luminance distributions (Fig. 8.17).

Physically based materials and MDL

Nvidia Material Definition Language (MDL) defines the properties of materials for
Iray and other rendering products that support this open language. These range from
the color of surfaces to their reflection or refraction properties, light emission of

206 8 Ray-Tracing Programs and Plug-ins

surfaces, scattering, absorption properties of volumes and geometric shapes and
cutouts (Fig. 8.18).

Materials

The Iray+ Material from Lightworks is a monolithic shader that is used to create a
majority of the other Iray materials. These materials, numbering nearly 100, are
under the groups of base components, decal components, coating components, and
surface components. There are also couples of groups of special materials named
ocean and metal categories.

Fig. 8.15 Iray with artificial intelligence on and off. Source Nvidia

Fig. 8.16 Iray with virtual reality. Source Nvidia

8.1 Stand-Alone Ray-Tracing Programs 207

Iray+ Ocean is a material designed for creating bodies of water that includes
particles and volumetric effects.

Volume: This function controls the color of the material (Figs. 8.19 and 8.20).
Distance: This scale maintains the overall strength of the subsurface absorption

and scattering effects.
Particle Density: This feature controls how much of the volume is taken up by

particles which controls the transparency of water (Figs. 8.21 and 8.22).
Refraction: The index of refraction controls the margin by which the material

refracts (or distorts) the transmitted light.

Fig. 8.17 Physically based lighting. Source Nvidia

Fig. 8.18 Physically based material. Source Nvidia

208 8 Ray-Tracing Programs and Plug-ins

Fig. 8.19 Changing impact of color control through a material. Source Nvidia

Fig. 8.20 Changing impact of distance control through material. Source Nvidia

Fig. 8.21 Changing impact of particle density. Source Nvidia

8.1 Stand-Alone Ray-Tracing Programs 209

Interactive 3D rendering

Iray provides interactive visual feedback throughout the entire design process. The
Iray interactive rendering mode uses approximation algorithms to mimic realism
while minimizing unwanted noise. This improves performance during interaction
(Fig. 8.23).

Light path expressions

Iray offers compositing elements that isolate lighting components, using a technique
called light path expressions (LPEs) rendered in parallel and saved to output buf-
fers. These LPEs are calculated on a per object and light basis, which allows for
complete control in post-processing (Fig. 8.24).

Fig. 8.22 Changing impact of change of index of refraction. Source Nvidia

Fig. 8.23 Comparison between photorealistic and interactive processes. Source Nvidia

210 8 Ray-Tracing Programs and Plug-ins

In 2015, Nvidia adopted Iray to plug-ins for tighter communications with 3D
modeling and design programs, beginning with 3ds Max, and today, there are over
a half dozen versions such as Max, Maya, Rhino, SketchUp in addition to CATIA,
SolidWorks Visualize, and Siemens NX.

Nvidia stopped developing the mental ray program in 2117 in favor of Iray,
primarily because the structure of the program did not offer any advantage via GPU
acceleration, and Iray did. Nonetheless, there are still tens of thousands of users of
mental ray around the world including many in North America. The program is now
royalty-free (albeit without any support), and the company has given free, unending
licenses to everybody who asked (including all preexisting users). Incidentally,
mental ray is still a favorite among Japanese Manga artists because of their specially
developed toon shaders.

8.1.8.1 Practicing What They Preach

In 2013, Nvidia began planning a new building. It was to be as eco-friendly as
possible and use as much natural light as possible. As might be expected, the design
was rendered in Iray to get physically correct lighting simulations (Fig. 8.25).

The building is triangular in shape, reflecting the basic GC element. Nvidia
people and the architecture firm Gensler accomplished the whole design process
with Iray. They used measured materials for the interior and verified physical
correctness by modeling existing premises and comparing their simulations of them
with real measurements. The company named the building Endeavor, after the
space shuttle. The story about how Iray was used for the design can be seen here:
https://tinyurl.com/ybfeda3v.

Fig. 8.24 Light path expressions. Source Nvidia

8.1 Stand-Alone Ray-Tracing Programs 211

https://tinyurl.com/ybfeda3v

However, the Iray plug-in program didn’t do that well for Nvidia, and so the
company decided in 2018 to transition it to other firms, such as Siemens’s
Lightworks team.

8.1.8.2 Summary

The mental ray program has been admired and is in daily use by tens of thousands
of professionals. Integrated with leading CAD products like CATIA, Siemens NX,
and SolidWorks Visualize and offering plug-in tools for Maya, 3ds Max, and
Rhino, Iray is a well-known and used program. People like the performance, quality
of rendering, and the image quality, particularly with photorealism. However, the
issue with GPU consumption during rendering is what people expect the company
to address. People somewhat absorb this issue but expect the company to develop a
more efficient product with future versions.

However, when Autodesk bought Arnold in 2016 and dropped Iray/mental ray
from being an integrated free resource, many others dropped it too, which lead to
Nvidia transferring sales and support of the Iray plug-ins to migenius, and [0x1]
Software in 2017. There are still several users in India who are using the old version
of mental ray in old versions of Maya/3ds Max to get it for free.

The name mental images reflect on the fact that there are no digital images, only
mental images. The tagline of the company was “Rendering Imagination Visible.”
The goal was to render anything that one can imagine as realistic or surrealistic as
desired with nature recorded with the highest-quality camera being the benchmark
for fidelity.

Fig. 8.25 Nvidia’s ray-traced visualization of its proposed building Endeavor. Source Nvidia

212 8 Ray-Tracing Programs and Plug-ins

Founded with the intent of developing fundamental technologies such as image
synthesis as well as for image understanding, mental images intended to go into
robotics and artificial intelligence. For that reason, its first computers were PCs with
Inmos Transputer networks. They were focusing on massively parallel computer
architectures for both purposes, looking at the human brain as guidance.
Unfortunately, those ideas were so far ahead of the times (and the computer
hardware development) that they had to abandon that part of the business for lack of
funding. (The original business plan could still be submitted unchanged today and
would most likely get funded given the attention and funding that is being directed
in that area of research now.)

Herken is proud of the name, and when he met Danny Hillis, founder of the
famous Thinking Machines, and gave Hillis his business card, Hillis said, “mental
images—that is also a good name for a company.”

8.1.9 KeyShot—Luxion

Henrik Wann Jensen is a Danish computer graphics researcher and is best known
for developing the photon mapping technique as the subject of his Ph.D. thesis, but
has also done significant research in simulating subsurface scattering and the sky.
He was awarded an Academy Award for Technical Achievement in 2004 toge-
ther with Stephen R. Marschner and Pat Hanrahan for pioneering research in
simulating subsurface scattering of light in translucent materials as presented in
their paper. A few years later, he helped form Luxion.

Luxion has been an erstwhile player in the usage of computer-based lighting
simulations for creating art. They take pride in being one of the leading developers
of 3D rendering animation and lighting technology including areas related to
daylighting (atmospheric scattering), light scattering by materials (BRDF, see
Glossary, and BSSRDF models), light transport algorithms such as photon map-
ping, and real-time rendering technology. The company is also into creating pro-
prietary applications and libraries for customers in need of software capable of
precisely calculating the scattering of light in complex 3D environments.

KeyShot

KeyShot is an application program from Luxion that makes the creation of 3D
renderings and animations fast and easy, with support for a wide number of 3D file
formats on both Mac and Windows. It is real-time rendering with every change
from material, lighting, cameras, or animation being seen simultaneously in a
viewport as work continues. The product has some of the key parameters such as
very good physical lighting and color combinations, patterns and image styles, and
good control and connectivity features. The animation features of the KeyShot are
also a thing to be looked at, and the company claims to have much better features
compared to its competitors (Fig. 8.26).

8.1 Stand-Alone Ray-Tracing Programs 213

The company recently launched the KeyShot 8 on October 8, 2018, with better
features over its previous versions.

Image styles

KeyShot 8 has introduced the image styles which allow the user to make photo-
graphic adjustments to the KeyShot scene in real time prior to or after rendering.
The tool also allows the creation of multiple image styles and is added to a list for a
range of different styles that can then be used in KeyShot Studios with adjustments
for tone mapping, curve control, color adjustments, and background color override
added to the image.

Cutaway

Cutaway is an innovative approach that allows the user to use parts and 3D
primitives to slice the image by geometry. The cutaway material also allows adding
and defining the cutaway Caps as a shaded color, the same material as the object to
be cut or as a custom material, including the elimination of all of them.

Scattering media

KeyShot 8 supports the creation of scattering media to simulate particle scattering
and volumetrics such as smoke and fog with physical lights for visualizing rays of
light. This comes with the additional option to add a density texture to any material.

Geometry nodes

The company claims to have added a new approach to apply geometry in KeyShot.
Using the options in the Material Graph, the user can have three new types of
geometry nodes to modify an object: displacement, bubbles, or flakes.

The latest version comes with other new features like:

• Faster movement through the process to make it easier for the user.
• Better visuals and enhanced color and light experience.
• Better style and control of image creation.

Fig. 8.26 Abilities of the KeyShot program. The initial picture is the input with the final picture
being the last drawn image from the tool. Source Luxion

214 8 Ray-Tracing Programs and Plug-ins

• Providing the user with the capabilities to fine-tune, controlling, or adjusting
shadows, mid-tones, and highlights separately.

• Removing the hassles of cutting and pruning the images before importing to the
tool.

• The company claims to create one of the best-finished images with various looks
like juicy, liquid shots, creation materials, or sparkle.

• Creation of amazing rays to create the magic of foggy morning or a forest cover.

GPU rendering

KeyShot was the first such real-time ray-tracing and global illumination program
that uses a physically correct rendering engine to be certified by the CIE
(International Commission on Illumination), employing the GPU.

Direct import

KeyShot directly imports over 40 different 3D file formats from 20+ 3D modeling
applications with no plug-in required. From the File menu, one selects Open or
Import to bring up unique options for the 3D data one needs to import. Direct
import of all major 3D modeling applications as well as generic 3D file formats is
included in KeyShot HD, Pro, and Enterprise.

KeyShot 8 was released with advanced rendering capabilities such as dis-
placement mapping, bubbles, and flakes, a unique approach to creating cutaways,
volumetric materials including volume caustics, and interactive image color and
intensity curve adjustments (Fig. 8.27).

Fig. 8.27 KeyShot has increased stability and improved workflow options. Source Specialized
Levo by TB&O

8.1 Stand-Alone Ray-Tracing Programs 215

KeyShot 8.1 introduced in-app problem reporting, 16-bit PSD (Photoshop
document) output, in-view indicators for geometry shader, full-resolution HDRI
update, and invert selection capabilities, along with many other improvements and
bug fixes.

8.1.9.1 Summary

KeyShot faces a fair amount of competition from the products like Maxwell
Renders, OctaneRender, V-Ray, and others in the market. The product commands a
little higher pricing from its competitors like Maxwell Renders; however, the users
are of the opinion that the program offers speed of operations. It can render difficult
images and shaders in real time without any noise, and the latest version KeyShot 8
has helped strengthen the reputation which the company has garnered from through
old versions. However, the product seems to be behind its competition with similar
price in terms of quality. The company has taken steps in that direction and
demonstrated a robust performance improvement in view of market competition.

KeyShot is one of the few programs that is integrated (into PTC Creo), is
stand-alone, and is also available as a plug-in; see Sect. 8.3.7.

8.1.10 Lumion 8 and Pro—Act-3D B.V

After years of experience creating 3D simulations, training tools, 3D movie tech-
nology, and architecture, Marcellis has steered the company specifically toward
architectural visualization and proudly boasts that 65% of the top 100 architectural
firms are using Lumion for their renderings.

“Software is not something architects necessarily love to work with,” says
Marcellis. “So, our goal from day one was to offer a design tool that doesn’t fight
you. Rather, it works with you as an architect to bring your ideas to life quickly and
easily with uncompromising style and precision.”

Act-3D was among the pioneers when the first 3D acceleration hardware became
commonplace. Lumion is a stand-alone ray-tracing program that is compatible with
all 3D design software programs, such as Revit, SketchUp, and ArchiCAD. It is
also available as a plug-in.

Act-3D was one among the pioneers of 3D acceleration and image rendering
when being developed. After years of experience in training, architecture, and
simulation, the company decided to focus on architectural visualization. Act-3D
developed multiple software solutions which are being used all over the world, and
Lumion is the most popular visualization solution among them. Lumion 9 was
launched in November 2018 and was available as a free update for Lumion licenses
(Fig. 8.28).

216 8 Ray-Tracing Programs and Plug-ins

According to the company, they have built the fastest 3D rendering software for
architects with Lumion. Within a concise amount of time, just a few seconds, the
user can visualize the CAD models in a video or image with true-life environments
or artistic designs. The company says not requiring training is one of their signif-
icant achievements. Act-3D claims that the ease of their rendering tool allows users
to create images, videos, and 360 panoramas very quickly (seconds for images and
minutes for videos). It is beneficial, says the company, for architects to collaborate
using different CAD software and bring landscapes, roads, buildings, or urban
constructions together into a Lumion render including real-time environments using
LiveSync.

Lumion and the later versions have several changes and improvements:

New Hand-drawn feature—Lumion 8 helps the user to demonstrate architectural
designs using the new “hand-drawn” feature (Fig. 8.29).
LiveSync for Lumion 8.3—Using the new LiveSync, Lumion allows the user to
set up a live visualization of the SketchUp or Revit model.
Sky Light—Sky Light is a daylight simulator used for softening and dispersing the
scene’s surrounding lights. The feature can be used in combination with soft
shadows and fine detail shadows.
Soft and fine shadows—Versions above the Lumion 8 allow the user to inject
realism into the render by turning on the soft shadows and fine detail shadows as
part of the shadow effect. Immediately, the shadows become softer with a growth in
their penumbras (Fig. 8.30).
Hyperlight for videos—Hyperlight increases the power for better lighting quality
and accuracy. With Lumion 8 and above, the user can apply the Hyperlight effect
when rendering videos or images.

Fig. 8.28 Introductory image for Lumion 9. Source Act-3D B.V.

8.1 Stand-Alone Ray-Tracing Programs 217

New grouping function—Lumion 8 and above enables the user to bunch multiple
objects together and control them all at once, be it trees, cars, people, or any other
objects (Fig. 8.31).
Mass placement for curved shapes—This is a functionality preferred by land-
scapers where they can use the mass placement feature to place multiple objects in
different shapes, including curves.

Fig. 8.29 Image showing the ability to use a hand-drawn outline. Source Act-3D B.V.

Fig. 8.30 Image showing the soft and fine shadows feature. Source Act-3D B.V.

218 8 Ray-Tracing Programs and Plug-ins

New tools for OpenStreetMap—OpenStreetMap is a tool for directly placing the
designs in a real-life environment. In Lumion 8, it becomes possible to put the
model in the center of a big city without any other buildings getting in view.
Softening of hard edges (Pro only)—The new edge slider in Lumion 8 allows the
user to make the surfaces appear a little rounded or worn to give it a more natural
and weathered feel (Fig. 8.32).

Fig. 8.31 Image showing the new grouping function of Lumion. Source Act-3D B.V.

Fig. 8.32 Image showing the softening of hard images. Source Act-3D B.V.

8.1 Stand-Alone Ray-Tracing Programs 219

New realistic materials—Lumion 8 has 168 new materials, including 100 HD
materials from Poliigon. The tool allows the user to add city sidewalks and streets
with realism and texture or structures with new materials.

168 new materials included in Lumion 8 Pro. Their key features are:

• 20 new water presets with specific color and style
• 17 new soil types which include gravel and pebbles
• 51 new metal materials
• 15 new concrete and 23 new stone materials
• 12 city street sidewalks
• 10 new wallpapers
• 1 wet glass (Pro only)

With the new additions, the total number of materials in Lumion 8 Pro is 1,019.

New objects in the content library (Pro only)

The features of the newly added content library include:

• 74 new tree species from across the globe.
• 595 indoor objects.
• 26 outdoor objects.
• 14 new vehicle models, including HD cars.

8.1.10.1 Summary

The tool is appreciated by architects for its photorealistic visualizations from a
rendering engine. It improved the quality of some images subtly, while for others, it
was dramatic. Speed and clarity were two of the most liked properties of the tool
and neutralized the higher price which the software makers charged from their
users. Another factor which attracted people is its ability to make it possible to use
rendering as a design option tool and not show directly as the final product. The
company’s strong customer support team is also applauded by its users. However,
there are a few shortcomings which the company has to work on like the menu
options where most of the drawing software appears hidden from the users and
viewports not being available for providing plan and positioning of objects.
However, the users appreciate the new features, and this goes in favor of the
company in their trade war against the Revit or 3ds Max/V-Ray.

8.1.11 Maxwell Render—Next Limit

Victor Gonzalez of Madrid, not be confused with the Mexican television director/
actor with the same name, founded Next Limit with his partner Ignacio Vargas in

220 8 Ray-Tracing Programs and Plug-ins

1998. In 2008, he was one of the co-awardees of the “Technical Achievement
Award” by the Academy of Motion Picture Arts and Sciences. The firm has
developed technologies in the field of digital simulation and visualization and
created RealFlow—a dynamics and fluid simulator for film production. RealFlow
which was used in the production of The Lord of the Rings: The Return of the
King.

The company also developed a division and computational fluid dynamics
program called XFlow and in December 2016 sold it to Dassault Systèmes.

However, the company is best known for the Maxwell Render—a physically
correct light simulator and render engine it introduced in 2004. It was the first
unbiased spectral physically based render engine available, inspiring others to
follow that vision. Maxwell Render was nominated twice to the Academy’s
Technical Achievement Awards.

The software was used to render the Waterfall for the Salesforce headquarters
lobby in San Francisco as well as the new MGM Cotai in Macau. Since it is a
progressive renderer, people use it to get amazingly precise renders trading off time
for beauty.

In 2018, Victor Gonzalez, who describes himself as a tech entrepreneur, fasci-
nated by computers and simulation from a very early age, became the sole owner of
the group, expanding the company portfolio toward new markets and industries.

Maxwell Render is a stand-alone unbiased 3D render engine, developed by Next
Limit Technologies in Madrid, Spain. This stand-alone software is used in the film,
animation, and VFX industry, as well as architectural and product design visual-
ization. It offers various plug-ins for 3D/CAD and postproduction applications.

Maxwell Render was released to the public as an early alpha in December 2004
(after 2 years of internal development) utilizing a global illumination (GI) algorithm
based on a Metropolis light transport variation. Next Limit Technologies released
Maxwell Render V3.2 in October 2015.

“The main aim of Maxwell is to make the most beautiful images ever,” says Juan
Cañada, the Head of Maxwell Render Technology. “That’s the main idea we had in
mind when we started the project. Apart from that, we wanted to create a very easy
to use the tool and make it very compatible, so everybody can use it no matter what
platform you wanted to use.”

Next Limit has been a pioneer in high-fidelity simulation and visualization
technologies with an aim to develop high-fidelity rendering, making artificial
intelligence more robust and safer, upgrading the data visualization and physical
simulation techniques. The company takes pride in its strong research and devel-
opment division which is a key to the company’s success and is in collaborative
touch with many public and private organizations. They have developed several
tools and products ranging from Maxwell Render for rendering, and RealFlow,
RealFlow 4D, and CaronteFX for the other operations and have generated a good
response from the market.

8.1 Stand-Alone Ray-Tracing Programs 221

Maxwell Render

Maxwell is a 3D rendering tool and a stand-alone, unbiased 3D render engine,
which finds the maximum applicability among the architects and designers. The
renderer is known for its quality, realism, and decent speed of operations. The latest
version 4.2 was launched in 2018 and has multiple improvement features over its
previous edition 4.1. Properties like having a powerful denoiser, optical memory
handling, and Maxwell multi-light are some of the updated features the latest
version possesses.

The algorithms of Maxwell use an advanced bidirectional Path Tracing with a
hybrid Metropolis implementation that is unique in the industry. Interestingly, in
the last few years, the whole industry has been moving more toward Maxwell’s
“physically based lighting and shading approach,” while the Next Limit engineers
have been making Maxwell Render faster and better using key technologies such as
MIS and multi-core threading to optimize the speed in real-world production
environments.

The software can fully capture all light interactions between the elements in a
scene, and all lighting calculations are performed using spectral information and
high dynamic range data; an excellent example of this is the sharp caustics which
can be rendered using the Maxwell bidirectional ray tracer with some Metropolis
light transport (MLT) approaches as well.

One of the most challenging things for an unbiased renderer is subsurface
scattering. As stated above, many solutions are point-based. In Maxwell, Act-3D
will not apply biased techniques, as it is important that Maxwell is used not only in
effects to create good images but also in a scientific way, producing predictable
results to help you with and guide the user in making real-world design decisions.

Maxwell Studio

Maxwell Studio is an independent scene editor with a full 3D environment that
offers an alternative workflow for those Maxwell Render users that work with 3D or
CAD applications for which the company does not currently offer a plug-in.

It is also useful as an MXS editing tool—an MXS file generated by any plug-in
currently offered by Next Limit can be imported into Maxwell Studio. For example,
if one’s scene is not rendering as intended, usually the most efficient way of seeing
what is wrong is opening the MXS in Maxwell Studio and checking that the scene
has been exported by the plug-in (cameras, materials, geometry, and others)
(Fig. 8.33).

The company claims that rendering in Maxwell is available for any 3D platform
through Studio. One can export one’s models in any of the compatible formats,
import them in Studio, and there adjust the cameras, assign and edit materials, set
up the environment and lighting, and launch the render. This product is also known
as Maxwell Render V4 and Maxwell Render Studio.

222 8 Ray-Tracing Programs and Plug-ins

Materials

The Maxwell materials gallery is an online library with thousands of free Maxwell
materials available for download.

The Material Editor is one of the most critical components of Maxwell Render. It
provides a robust set of parameters for advanced editing of a Maxwell material.
This panel in Studio is precisely the same as the stand-alone Material Editor
application (also named MXED, stands for Material Editor) that is also included
with the Maxwell installation.

Denoiser

Maxwell 4.2 can integrate a powerful denoiser from Innobright’s Altus technology,
to preserve the texture and geometric details to save time. It claims to be able to
save time to the tune of two to six times, depending on the complexity of the image.
The most significant advantage of this feature is to be able to keep the sampling
level low and allow the denoiser to accomplish the remainder of the job (Fig. 8.34).

Fig. 8.33 Maxwell Studio has been used in several architectural presentations

Fig. 8.34 Before and after example of the denoising program. Source Next Limit

8.1 Stand-Alone Ray-Tracing Programs 223

Denoiser integration to Maxwell is offered as a free solution for all customers
without any need for an extra license.

GPU—optimized handling memory

The company’s R&D team has done a few optimizations to the GPU which is now
a lot better in handling memory which means the device can render bigger and
complex images with much lesser utilization of GPU memory. The new device uses
a CUDA-capable Nvidia graphics card which uses all the power generated by the
GPU for the rendering process. The company claims to reduce GPU usage without
any effect on the rendering of the image. Using a GPU significantly speeds up ray
tracing by leveraging CUDA using proprietary acceleration techniques while pro-
viding physically correct fidelity (that is also why Dassault and Siemens picked it
for their CAD systems).

Maxwell multilight

Maxwell Multilight allows the user to avoid rerendering and save time and energy
in the process while getting the same quality output image as done through the
process of multiple rendering. It allows the user to play with the intensities of light
and scene emitters after the completion of the rendering process. However, the best
part is the avoidance of Maxwell tool for using the Maxwell Multilight; however, it
needs a stand-alone app and an MXI file. It has several benefits as follows:

• Tone mapping and camera response features which help fine-tune the look of the
images

• Indefinite lighting changes and setups in real time
• Quick and smart operations by editing lights before and after the render function
• Creation of a lighting catalog for the user’s client
• With various lighting positions and geometry, the catalog is updated directly.

Multilight is not a ray tracer but offers tone mapping and camera response
features, so you can fine-tune the look of your images. This, says the company,
offers limitless lighting setups in real time. One can create a lighting catalog for
one’s client and can automatically update one’s catalog with different lighting
positions or geometry.

The company advertises it as one render, multiple lights, no Maxwell needed
(Fig. 8.35).

One can tweak the lighting setup over and over, saving as many images of the
same scene as you like. Moreover, one does not need Maxwell. Multilight is a free
stand-alone program.

224 8 Ray-Tracing Programs and Plug-ins

8.1.11.1 Summary

Next Limit’s Maxwell renderer has been around for over 15 years and is one of the
most respected in the industry. It is affordable and compatible with over a dozen
other programs and is an unbiased stand-alone renderer. It competes favorably with
Arnold, V-Ray, and Iray.

However, some users are abandoning it for other options like Redshift, Octane,
Corona, and V-Ray. Next Limit’s move to a GPU version diluted their offering,
especially in being able to maintain feature parity between their CPU and GPU
offering. See chart here: http://www.nextlimit.com/maxwell/cpu_gpu_chart/.

8.1.12 Mitsuba

Mitsuba is the name of Japanese wild parsley and a large Japanese automotive
motor control company. Neither of them has anything to do with the Mitsuba ray
tracer.

Mitsuba is a research-oriented rendering system in the style of PBRT, from
which it derives much inspiration. It is written in portable C++, implements
unbiased and biased techniques, and contains heavy optimizations targeted toward
current CPU architectures.

Mitsuba is a personal project of Dr. Wenzel Jakob of Lausanne, Switzerland, and
consists of over 150K lines of code. It has been used in research projects at Cornell,
MIT, University of Virginia, Columbia University, UC Berkeley, NYU, Berlin, TU

Fig. 8.35 Multilight offers the flexibility to change lights even without a Maxwell license. Source
Net Limit

8.1 Stand-Alone Ray-Tracing Programs 225

http://www.nextlimit.com/maxwell/cpu_gpu_chart/

Dresden, Nvidia Research, Disney Research, Volvo Car Corporation, Square Enix,
and Weta Digital. Interestingly, Jakob worked at Weta Digital as an intern and has
screen credits in R&D in the first two Hobbit films, but he started writing Mitsuba
in 2007 and today does research. He is an assistant professor leading the Realistic
Graphics Lab at EPFL’s School of Computer and Communication Sciences.1

Mitsuba is extremely modular: It consists of a small set of core libraries and over
100 different plug-ins that implement functionality ranging from materials and light
sources to complete rendering algorithms.

In comparison with other open-source renderers, Mitsuba places a strong
emphasis on experimental rendering techniques, such as path-based formulations of
Metropolis light transport and volumetric modeling approaches. Thus, it may be of
genuine interest to those who would like to experiment with such techniques that
haven’t yet found their way into mainstream renderers, and it also provides a solid
foundation for research in this domain.

The renderer currently runs on Linux, macOS X, and Microsoft Windows and
makes use of SSE2 optimizations on x86 and x86_64 platforms. So far, its primary
use has been as a test bed for algorithm development in computer graphics, but
there are many other exciting applications.

Mitsuba comes with a command-line interface as well as a graphical frontend to
interactively explore scenes. While navigating, a rough preview is shown that
becomes increasingly accurate as soon as all movements are stopped. Once a
viewpoint has been chosen, a wide range of rendering techniques can be used to
generate images, and their parameters can be tuned from within the program.

Mitsuba instances can be merged into large clusters, which transparently dis-
tribute and jointly execute tasks assigned to them using only node-to-node com-
munication. It has successfully scaled to large-scale renderings that involved more
than 1000 cores working on a single image. Most algorithms in Mitsuba are written
using a generic parallelization layer, which can tap into this cluster-wide paral-
lelism. The principle is that if any component of the renderer produces work that
takes longer than a second or so, it at least ought to use all of the processing power
it can get.

The renderer also tries to be very conservative in its use of memory, which
allows it to handle large scenes (>30 million triangles) and multi-gigabyte
heterogeneous volumes on consumer hardware.

Mitsuba supports the most commonly used scattering models: Lambertian sur-
faces, ideal dielectrics, and mirrors as well as the Phong and anisotropic Ward
BRDFs.2 A range of microfacet models are also available, including rough glass,
plastic, and metal. Subsurface scattering can either be simulated using a BSSRDF
approach (see Glossary) or more rigorously using volumetric light transport.

For volumes, the supported scattering models are isotropic, Henyey–Greenstein,
Kajiya–Kay fiber scattering, and microflakes (Fig. 8.36).

1http://www.mitsuba-renderer.org/*wenzel/.
2Ward (1992).

226 8 Ray-Tracing Programs and Plug-ins

http://www.mitsuba-renderer.org/%7ewenzel/

Mitsuba can compute global illumination solutions in scenes containing large
isotropic or anisotropic participating media. The underlying volumes can be rep-
resented as sparse voxel octrees or as hierarchical grids, where grid cells are directly
mapped from files into memory.

Mitsuba internally uses a O(n log n) SAH kd-tree compiler with support for
primitive clipping (aka. perfect splits). The ray-tracing core is built on Havran’s fast
traversal algorithm. On Intel platforms, it is possible to trace coherent rays’ packets
using SSE2. Mitsuba supports analytic shapes such as cylinders and spheres and
makes use of additional SSE2 accelerations when working with triangle meshes,
which allows it to intersect up to four triangles at a time.

8.1.12.1 Summary

In comparison with other open-source renderers, Mitsuba places a strong emphasis
on experimental rendering techniques, such as path-based formulations of
Metropolis light transport and volumetric modeling approaches.

Mitsuba is a research renderer, rather than a production renderer, and uses the
CPU, not the GPU. Mitsuba lacks features that are necessary for production: There
is no proper support for hair (Mitsuba has a simple Kajiya–Kay shader and no

Fig. 8.36 Voxelized scarf model rendered using full multiple scattering and an anisotropic
scattering model (microflakes). Dataset courtesy Jon Kaldoe and Manuel Vargas

8.1 Stand-Alone Ray-Tracing Programs 227

specialized acceleration structure for ray intersections), there is no support for
subdivision surfaces, there is no support for displacement mapping, and there are
some other features necessary for production.

Mitsuba is excellent for research though. It has support for a lot of experimental
rendering algorithms (such as Metropolis light transport), which are not supported
in production renderers. Due to Mitsuba’s modular structure, it is also incredibly
easy to implement new algorithms, which makes Mitsuba an excellent framework
for comparing rendering algorithms. A lot of papers use Mitsuba to compare their
new algorithm to other algorithms.

8.1.13 Nebula Render

In the process of preparing this ray tracing and rendering book, I have searched for
all the ray-tracing programs and suppliers I could find.

One of the newest entries into this category is Nebula in Montreal, and the
developer Yann Clotioloman Yéo released the first version on GitHub in February
this year. Before working on Nebula, he was studying software engineering at Laval
University in Quebec and is currently working in the video game industry
(Fig. 8.37).

It is a physically based, unbiased stand-alone renderer with real-time DirectX 12
preview written in C++. It runs on Windows 10 (64-bit) and requires SSE4 to run.
However, it is a ground-up design and does not use Intel’s Embree middleware.
Nebula will automatically choose at runtime between SSE4 and AVX2 depending
on the device. The program uses Intel’s TBB—task scheduling framework
(Fig. 8.38).

General features:

• Intuitive user interface with multiple settings (materials, lights, and more)
• Create scenes from model files and save it in xml files
• Material import/export
• Free play camera
• Render photorealistic images.

The program supports refractive materials, depth of field, area lights, soft
shadows, ambient occlusion, subsurface scattering, homogeneous participating
medium, post-process denoising, standard image filtering (brightness, hue, bloom,
etc.) and allows to save renders to a file. Currently, there is no material library
supported. The Nvidia MDL is being considered (Fig. 8.39).

As an off-line renderer, it offers multi-threaded Path Tracing with two modes:

• Pure CPU intersection kernels. It is the default mode.
• Hybrid. Use the CPU for secondary rays and the GPU with AMD’s

Radeon-Rays for primaries.

228 8 Ray-Tracing Programs and Plug-ins

Fig. 8.37 Golden dragon rendered with a model downloaded on Archive 3D

Fig. 8.38 Urban exterior modeled by Hai le. Sun and the sky are the light sources. Cube map is
courtesy of Spiney

8.1 Stand-Alone Ray-Tracing Programs 229

Nebula comes with a fully featured editor. The application viewport uses the
DirectX 12 API. The software also supports real-time (progressive) ray tracing,
allowing users to interactively edit scenes and see a preview of the final result, and
finally launch a production render (with support for post-process denoising with
OpenCV).

The off-line and real-time renderer supports physically based rendering, direc-
tional and omnilights, cube maps, transparent materials, and normal mapping. Also,
it doesn’t do AI denoising since Nebula is an unbiased renderer.

The future

Yéo has a road map too and is planning the following additions:
For the general features, he wants to add an animation timeline and skeletal

animation. In the off-line renderer, he is looking at including The Open Shading
Language, heterogeneous participating medium, as well as other integrators: bidi-
rectional Path Tracing and photon mapping.

Moreover, for the real-time renderer, he plans to replace DirectX 12 by Vulkan
(for macOS) and add shadow mapping.

Nebula Render is free software, for both personal and commercial use.

Fig. 8.39 A BMW i8 downloaded model with an aluminum material. Lightning is mainly from an
environment map made by Emil Persson

230 8 Ray-Tracing Programs and Plug-ins

8.1.13.1 Summary

Nebula is currently a free and partially open-source project. For the future the
company is planning on making it a fully open-source project are options that are
being considered. Yéo originally developed Nebula to learn new technologies. In
the past, he only knew graphics programming using OpenGL. Then DirectX 12 and
Vulkan came out. Working on Nebula gave him the opportunity to learn DirectX, a
modern graphics API, and also CPU rendering.

So, just as many ray-tracing programs have found their origins as a graduate
project, or what is called a science project, Nebula is in a similar class. However,
such projects have yielded great successes like V-Ray and Arnold so who’s to say
Nebula couldn’t be the next big thing. At the very least, it could be a technology
pickup for a larger company and wouldn’t be the first time we have seen such a
thing happen.

8.1.14 OctaneRender—Otoy

OctaneRender is a real-time 3D unbiased GPU-based ray tracer that was started in
2010 by the New Zealand-based company Refractive Software Ltd. Otoy took over
the company in March 2012. The first non-beta stable version, v1.0, was released
on November 28, 2012, and later versions of OctaneRender continue to be deployed
as a Web release software.

Otoy claims that it is the first commercially available unbiased renderer to work
exclusively on the GPU and thus, due to the parallel processing power of the GPU,
can work in real time, or at least render faster than most CPU-based path tracers.
Using GPUs allows users to modify materials, lighting, and render settings “on the
fly” because the rendering viewport updates immediately whenever a change is
made. OctaneRender ran exclusively on Nvidia’s CUDA technology (which
restricted it to running on AIBs from Nvidia). In 2016, the company released
Octane 3.1 with cross-compilers for other AIBs.

Figure 8.40 is not a photograph. It is a ray-traced image created by artist Enrico
Cerica using OctaneRender software. Ray tracing allows for details such as dis-
tortion in the glass, light diffusion in the windows and floor, and realistic light
reflections of various objects. Now, imagine images and environments like this
being rendered in real time (Image source: Nvidia/Enrico Cerica).

Although the company says they already have an AMD-compatible alternative
to CUDA in the shape of OpenCL, the company felt the open standard has never
entirely made the headway within the DCC market that its supporters initially
hoped. While major apps do support OpenCLAdobe uses it for GPU acceleration in
Photoshop and Premiere Pro, and Autodesk uses it for Bullet physics in Maya—its
use in GPU-based renderers is spotty.

Otoy believes CUDA is superior to OpenCL and that it enables richer graphics
software, so it chose to develop a CUDA cross-compiler for non-Nvidia hardware.

8.1 Stand-Alone Ray-Tracing Programs 231

Each frame of video accurately simulates every ray of light in a given scene or
environment and every interaction that each light ray has with the surfaces and
materials therein. Every reflection, refraction, and absorption of that field of light is
modeled as it would be in the real world. Otoy’s GPU-based rendering and cloud
graphics platform further enables live post-processing, motion graphics, and
foveated compositing inside VR and light-field video content. The experience
works both off-line and for live-streaming holographic videos.

The company says it has a steady stream of R&D and is planning the following
features for Octane 4:

• Brigade Engine Integration Otoy’s real-time game engine has been integrated
into Octane, shrinking scene load times and expanding what you can do today.
You will enjoy a new game engine-like scene graph, and the ability to move
large meshes nearly instantly.

• Out-of-Core Geometry Support and Scene AI Octane 4 fully supports
out-of-core geometry and scene data, in addition to textures. All meshes and
textures can, if desired, be stored in CPU memory while rendering. Scene AI
models’ visibility of surfaces gets the maximum speed for out-of-core geometry.

• Spectral AI Denoiser and AI Light Denoise Both are used to create scenes
on-the-fly very quickly. Octane’s AI Denoiser operates on internal perceptual
models of material, spectral irradiance, and scene data deep in the engine.
Domain-specific denoisers help with glass, refraction, SSS, and other features.
AI Light complements the AI Denoiser; it is unbiased and tracks emissive points
live, in real time. It can be used in conjunction to reduce the number of samples
to work in photoreal precision.

Fig. 8.40 OctaneRender image of a living room. Source Otoy

232 8 Ray-Tracing Programs and Plug-ins

The company claims that OctaneRender can predetermine the necessary lighting
information for a given light field and retrieve it in real time on consumer VR
devices powered by mobile GPUs. Given the viewer’s position and orientation,
ORBX holographic video can turn a typical display screen into a virtual window,
projecting the proper light path from a curved or VR display directly into the
viewer’s eyes.

8.1.14.1 Summary

Otoy has been an adventurism company experimenting with and pushing the
boundaries of several technologies, intending to produce movies and games faster
and more efficiently. In addition to its rendering technology, Otoy has LightStage, a
facial scanning technology.

The company was the first company to demonstrate real-time light-field capture
for virtual reality. Its light-field sampler system rotates two cameras in a circle to
capture the light-field data of the entire spherical area around it. The data is pro-
cessed and rendered with Otoy’s technology to create a virtual environment that can
be explored by a user wearing a head-tracking HMD.

Otoy’s Octane is a cloud rendering platform that works directly within Autodesk
products such as Autodesk 3ds Maya and Autodesk 3ds Max. And the company
says it will make it much more comfortable and less expensive to create animated
films. Autodesk has invested an undisclosed amount in Otoy.

At the time, Otoy acquired Refractive Software, Otoy was also working on
Brigade. Brigade is a real-time fast GPU path tracer rendering engine for video
games. It provides global illumination and accurate reflections/refractions. Brigade
is now available in the first experimental release of Octane 4 and will be rolled into
all Octane 4 integrations.

8.1.15 OSPRay—Intel

OSPRay is an open-source, scalable, and portable ray-tracing engine for
high-performance, high-fidelity visualization on Intel Architecture (IA) CPUs.
OSPRay is released under the permissive Apache 2.0 license. Intel says it provides
high-performance kernels for CPU ray-tracing operations and specifically provides
high RT perf on Intel Xeon and Xeon Phi processors.

OSPRay is a library, with a low-level, C-style API. It primarily targets
visualization-style rendering. Its developers emphasize that it is not trying to
compete with GPUs in games or with global illumination renderers in production
rendering.

High fidelity is an option, but not required (one can always do GL-style shad-
ing). OSPRay was developed to focus on visualization-like capabilities (volumes,
large data, etc.), not pretty pictures. It is for visualization-style rendering.

8.1 Stand-Alone Ray-Tracing Programs 233

The developers say it aims at being a “workhorse” for visualization tools like the
Visualization Toolkit (VTK) and a scalable application built on VTK called
ParaView. ParaView runs on some of the largest supercomputers in the world. The
goal is to provide a free, open-source, high-fidelity alternative to GL.3

OSPRay provides the rendering layer on top of Embree (i.e., frame buffers,
geometry types, volume types, shading modes, Message Passing Interface (MPI),
and conflict of interest modes (COI modes) where required. All bounding volume
hierarchy (BVH) traversals and construction are done through Embree’s tree
structure on a set of geometric objects (see BVH, Glossary). All SIMD-relevant
code is written in Intel’s single program, multiple data (SPMD) program compiler
(ISPC). ISPC compiles a C-based SPMD programming language to run on the
SIMD units of CPUs and the Intel Xeon Phi architecture. All instruction set
architectures (ISA)-specifics are hidden by Embree and ISPC.

Interactive CPU rendering

OSPRay features interactive CPU rendering capabilities geared toward scientific
visualization applications. Advanced shading effects such as ambient occlusion,
shadows, and transparency can be rendered interactively, enabling new insights into
data exploration.

Global illumination

OSPRay includes a path tracer capable of interactively rendering photorealistic
global illumination.

Volume rendering

OSPRay supports high-fidelity interactive direct volume rendering with a number
of state-of-the-art features.

MPI distributed

OSPRay can run on large-scale distributed memory systems with a
high-performance MPI backend.

Visualization

OSPRay supports several visualization programs and is integrated into Kitware’s
ParaView implementation for VisIt, an open-source, interactive, scalable, visual-
ization, animation, and analysis tool that runs on Unix, Windows, and Mac.

Open source

OSPRay is open-sourced under the Apache 2.0 license.
The purpose of OSPRay is to provide an open, easy-to-use rendering library that

allows one to quickly build applications that use ray-tracing-based rendering for
interactive applications (including both surface- and volume-based visualizations).

3Wald et al. (2017).

234 8 Ray-Tracing Programs and Plug-ins

OSPRay is CPU-based and runs on anything from laptops, to workstations, to
compute nodes in high-performance computing systems (HPC).

OSPRay internally builds on top of Embree and Intel’s SPMD Program
Compiler and utilizes instruction sets like Intel SSE4, AVX, AVX2, and AVX-512
to for rendering performance; thus, a CPU with support for at least SSE4.1 is
required to run OSPRay (Fig. 8.41).

OSPRay is under continuing development, and the company does its best to
guarantee stable release versions a certain number of bugs, as-yet-missing features,
inconsistencies, or any other issues are still possible. Should one find any such
issues, they are reported to OSPRay’s GitHub Issue Tracker (https://github.com/
ospray/OSPRay/issues).

8.1.15.1 Summary

Intel launched its Larabee project in 2009, and ray tracing was chosen as one of the
showcase applications. The company hired experts in ray tracing and was engaged
with universities in developing the Embree kernels and sequentially the OSPRay
application to exhibit and exploit the benefits of a CPU for running ray-tracing
software. Due to the branching characteristics of ray tracing, the CPU with its large
memory area has been the processor of choice for most applications. Specialized
hardware features have been added to GPUs to minimize the CPU’s advantage
which has only served Intel to increase their developments. The net result is ray
tracing, in general, and has significantly benefited from this competition.

The Intel RenderingFramework includes high-performance, parallel software, ren-
deringlibrariessuchasIntelOpenSWR,IntelEmbree,IntelOSPRay,andIntelOpenImage
Denoise.These librarieshavebeencreatedusingamethodologyandopen-source com-
munity initiative known as Software Defined Visualization (SDVis) from Intel and
industrycollaborators.ThegoalofSDVistoimprovethevisualfidelity,performance,and
efficiencyofprominentvisualizationsolutions—withaparticularemphasisonsupporting
the rapidly growing big data usage onworkstations, 3Dmotion picture animation, and
visualeffectinfrastructures,andHPCsupercomputingclusterswithoutthememorylim-
itationsandcostofGPU-basedsolutions.Forexample,manyprimaryvisualizationtools
suchasParaView,VisIt (binarypackages), andVMDhaveadopted the IntelRendering
Frameworkaswellasprofessional,photorealisticrenderingsolutions likeDreamworks
MoonRayrenderer,andChaosGroupV-RayandCoronarenderingsolutions.

Fig. 8.41 OSPRay’s
software stack (Intel)

8.1 Stand-Alone Ray-Tracing Programs 235

https://github.com/ospray/OSPRay/issues
https://github.com/ospray/OSPRay/issues

8.1.16 Pica—SEED/Electronics Arts

At the start of 2018, Electronic Arts’ Dice division (acquired in 2006) was the
Swedish gaming sectors’ biggest employer, with over 700 employees in Sweden.
SEED is an internal incubator, focusing on high-technical innovation. The team is
based in Los Angeles and Stockholm and works on advanced subjects such as deep
learning, neural networks, and virtual humans.

SEED’s research into new technologies and development techniques support
EA’s other studios, with AI being just one of many areas which are being looked
into to enhance future games.

The Pica project was a real-time ray-tracing research effort done at SEED, a
cross-disciplinary team working on graphics technologies and creative experiences
at Electronic Arts. The Pica project also featured a mini-game for self-learning AI
agents in a procedurally assembled world. SEED used their “Halcyon” research
engine for the Pico ray-tracing demo.

Microsoft announced their DirectX Raytracing (DXR) extension; however,
EA SEED had already been working on software, looking into how it could be
applied in future games. The studio had already integrated ray tracing into their
Halcyon research engine, revealing how it can impact future games with enhanced
shadows, reflections, light refraction, and more, simulating light in a way that can’t
be replicated using traditional methods. DXR is only the start of ray tracing in
gaming

Pica features a hybrid rendering pipeline where rasterization, computation, and
ray tracing work together and enable real-time visuals with almost path-traced
quality. PICA is a mini-game that SEED built for AI agents rather than humans.
Using reinforcement learning, the agents learn to navigate and interact with the
environment. They run around and fix the various machines, so that conveyor belts
keep running efficiently.

SEED’s demo illustrates what can be expected in future games which will
exploit AI, ray tracing, and other technologies (Fig. 8.42).

SEED built the mini-game from the ground up using their Halcyon R&D
framework. The team had the opportunity to be involved with DirectX Raytracing,
with Nvidia and Microsoft, to explore some of the possibilities with the technology.
SEED decided to create something a bit different and unusual. For the demo, they
wanted cute visuals that would be clean and stylized yet grounded in physically
based rendering. The team wanted to showcase the strengths of ray tracing, while
also taking into account their small art department of two people. SEED used
procedural level generation with an algorithm that drove layout and asset
placement.

236 8 Ray-Tracing Programs and Plug-ins

8.1.17 ProRender—AMD

AMD introduced its Radeon FireRender in early 2016 as a physically based ren-
dering engine that can produce photorealistic images. In July 2016, at SIGGRAPH,
the company renamed it ProRender.

Built on the company’s Radeon-Rays middleware technology, Radeon
ProRender’s complete, scalable ray-tracing engine uses open industry standards to
harness GPU and CPU performance for swift, impressive results. AMD uses
Embree for the CPU implementation of ProRender.

Radeon-Rays is a GPU intersection acceleration library with support for
heterogeneous systems. It exposes a C++ API for scene construction and asyn-
chronous ray intersection queries. The current implementation is based on Metal for
Mac platforms, and for Windows and Linux platforms with OpenCL, and supports
execution on all platforms conforming to the OpenCL 1.2 standard. The company
says it is not limited to AMD hardware or a specific operating system (see
Sect. 8.4.3) (Fig. 8.43).

Radeon ProRender is a GPU-based ray-tracing renderer that offers features such
as ray casting and shading. It is a physically based renderer that outputs rendered
images and is targeted at M&E content creators and is also available for developers.

Materials

ProRender has an Uber shader which is adaptable to behave like Nvidia’s MDL,
Substance PBR maps, and other material standards such as MaterialX. The com-
pany’s goal is to have a system which can be a drop-in replacement for others. Also,
AMD is looking to add OSL support (for texture nodes) to the GPU renderer
(Fig. 8.44).

Fig. 8.42 Electronic Art’s SEEd Pico AI simulator using ray tracing. Source EA

8.1 Stand-Alone Ray-Tracing Programs 237

In the second half of 2018, AMD updated ProRender with several new features
including an enhanced Uber shader and an ambient occlusion node for enhanced
procedural texture workflows, such as making textures look dirty. Camera Motion
Blur was added to recreate accurately a moving camera when rendering animations.
Adaptive Subdivision, previously only available in the plug-in for Blender, has
been added to the 3ds Max and Maya 1 plug-ins, allowing artists to render complex
shapes from simple meshes.

Optimizations for plug-ins to accelerate multi-app workflows when working
with large and complex scenes, and the plug-in for 3ds Max was updated to support
3ds Max 2019.

Along with the plug-ins and add-ins currently available for many popular 3D
content creation applications, Radeon ProRender now offers open-source avail-
ability for developers.

Fig. 8.43 AMD’s out-of-core render (AMD)

Fig. 8.44 AMD’s ProRender road map

238 8 Ray-Tracing Programs and Plug-ins

The first content creation application to integrate ProRender natively was Maxon
Cinema 4D R19, released in 2017. Maxon recently announced that R20 has new
ProRender features such as subsurface scattering (SSS) for rendering
realistic-looking skin, motion blur for animations and deformations, and multi-pass
rendering for compositing.

The Foundry has also integrated ProRender natively into its Modo modeling
program.

In 2018, Pixar made an open-source Universal Scene Description
(USD) available for content creation pipelines with software that provides inter-
change and augments arbitrary 3D scenes that may be composed of many elemental
assets.

Part of the USD toolset is the USDView interactive viewport to preview com-
plex scenes. The Foundry has integrated this viewport into their Katana 3.0
application.

The PTC Creo plug-in supports exporting to Unreal Engine for VR visualization
when used with ProRender Game. The SolidWorks plug-in importer has the same
including decal support.

AMD released the code for open-source ProRender USD Hydra render delegate
plug-in on GitHub that adds path-traced rendering for accurate previews when
compared to the default OpenGL renderer. ProRender is open source via MIT
license https://github.com/GPUOpen-LibrariesAndSDKs/RadeonRays_SDK.

8.1.17.1 Summary

AMD developed ProRender because the company believes strongly that ray tracing
is the future and wants to bring it to as many users as possible in a way that is open.
The company doesn’t see themselves as a competitive product to traditional solu-
tions in the ray-tracing market. They believe everyone should be rendering and
hope to drive the adoption of rendering by as many users as possible so that they
can make decisions in real time; this is especially true in the product design space.

Their goal is to get people using higher-quality rendering that can run on any
hardware, but of course, preferably AMD’s hardware. They are working with ISVs
such as Maxon Cinema 4D to build that into Maxon’s software. AMD says they
would instead enable software providers such as Maxon or even other renderers to
work on all hardware. However, if that is not possible, AMD has Radeon
ProRender plug-ins that run just as well.

8.1.18 POV-Ray

As the story goes, it was in the 1980s that David Kirk Buck downloaded the source
code for a Unix ray tracer and ran it on his Amiga. It intrigued him, and he decided
to write his own ray tracer, calling it DKBTrace, his initials. In 1987, Aaron A.

8.1 Stand-Alone Ray-Tracing Programs 239

https://github.com/GPUOpen-LibrariesAndSDKs/RadeonRays_SDK

Collins downloaded DKBTrace and produced an x86-based port of it. He and Buck
then collaborated by adding more features. They posted results on the “You Can
Call Me Ray” bulletin board system in Chicago. The program proved to be more
popular than they expected, and they couldn’t keep up with the demand for more
features.

In July 1991, David turned the project over to a team of programmers working in
the GraphDev forum on CompuServe and renamed it the “Persistence of Vision
Raytracer”, or “POV-Ray.” Features of the application and a summary of its history
are discussed in an interview in February 2008 with David Kirk Buck and Chris
Cason on episode 24 of the free and open-source software (FLOSS) Weekly.

POV-Ray is a ray-tracing program that can generate images from a text-based
scene description and is available for several platforms. POV-Ray is free and
open-source software with the source code available under the AGPLv3.

In 2002, POV-Ray became the first ray tracer to render an image in orbit,
rendered by Mark Shuttleworth inside the International Space Station (Fig. 8.45).

POV-Ray has evolved and matured considerably since its beginning. The most
recent version contains a robust set of features including the following:

• Atmospheric effects such as fog and media (smoke, clouds)
• Image format support for textures and rendered output, including TGA, PNG,

JPEG, among others

Fig. 8.45 A ray-traced image of glasses rendered in POV-Ray showing the perfect reflections and
refractions, as well as shadows. Source Gilles Tran

240 8 Ray-Tracing Programs and Plug-ins

• Library of ready-made scenes, textures, and objects
• Radiosity
• Reflections, refractions, and light caustics using photon mapping
• Support for a number of geometric primitives and constructive solid geometry
• Surface patterns such as wrinkles, bumps, and ripples, for use in procedural

textures and bump mapping
• Turing—complete scene description language (SDL) that supports macros and

loops
• Various light sources.

Like Blender, one of the main benefits of POV-Ray’s is the ecosystem and
third-party support such as tools, textures, models, scenes, and tutorials.

The current official version of POV-Ray is 3.7. This version includes:

• 16- and 32-bit integer data to density file
• 64-bit compatibility
• Bounding using BSP trees
• High dynamic range imaging (HDRI), including the OpenEXR and radiance file

formats
• Symmetric multiprocessing (SMP), to allow the renderer to take advantage of

multiple processors
• UV mapping to more primitives
• Official POV-Ray versions currently do not support shader plug-ins.

In addition to standard geometric shapes like tori, spheres, and heightfields,
POV-Ray supports mathematically defined primitives. The primatives include
isosurface (a finite approximation of an arbitrary function), the polynomial primi-
tive (an infinite object defined by a 15th order or lower polynomial), the Julia fractal
(a three-dimensional slice of a four-dimensional fractal), the super-quadratic
ellipsoid (intermediate between a sphere and a cube), and the parametric primitive
(using equations that represent its surface, rather than its interior).

8.1.18.1 Summary

Official modifications to the POV-Ray source tree are done and approved by the
POV-Team. Most patch submission and bug reporting are done in the POV-Ray
newsgroups on the news.povray.org news server (with a Web interface also
available). Since POV-Ray’s source is available, there are unofficial forks and
patched versions of POV-Ray available from third parties; however, these are not
officially supported by the POV-Team.

POV-Ray can be ported to any platform which has a compatible C++ compiler.

8.1 Stand-Alone Ray-Tracing Programs 241

8.1.19 Redshift Renderer

Founded in 2012, Newport Beach-based Redshift claims that it has the world’s first
fully GPU-accelerated, biased renderer. The company offers a suite of features
integrated with industry standard CG applications. The company also offers
plug-ins for 3ds, Cinema 4D, Houdini, Katana, Maya, and Softimage.

Redshift Rendering Technologies was created with the ambition of developing a
production-level, GPU-accelerated renderer with ample support for biased global
illumination techniques that only ran on the CPU. With its latest version, the
company claims to have created the world’s first GPU-accelerated renderer which
can meet the specific needs of contemporary high-end rendering. Redshift offers a
lot of new features in the latest versions and helps to support the specific demands
of the rendering, including the complicated ones.

Instead of approaching the problem of GPU rendering from a production CPU
renderer perspective, the founders of Redshift come from a background in games
and the real-time GPU rendering requirements they have.

Robert Slater, one of the co-founders of Redshift, says that it is not just another
GPU renderer. The company’s goal was to create a final-frame production-ready
renderer that “brings the flexibility of biased CPU rendering to the power of the
GPU.” They have a flexible material system, multiple biased global illumination
modes for diffuse bounces and caustics and have full sampling controls for cleanup
of noise. However, the real magic is their memory management scheme.

One of the criticisms of using a GPU for ray tracing is the limited (relative to a
CPU) memory space. A CPU can be equipped with up to 256 GB of RAM, whereas
the largest GDDR memory available on an AIB is 32 GB. Redshift, says Panos
Zompolas, CTO and co-founder, can support a virtually unlimited number and size
of bitmap textures, which means an artist can render scenes containing a terabyte of
textures without running out of memory or crashing. They do this by using
out-of-core paging technology, meaning that all assets don’t need to be in GDDR at
once. They also have built-in UDIM (see Glossary) and UVTILE texture tile
support, which allows artists to efficiently texture tiles without having to rely on
complex shader node graphs.

GPU and biasing

The company says Redshift has the quality and features of a CPU renderer, but at
speeds which are identical to a GPU renderer. However, unlike the conventional
GPU renderer, Redshift is a biased renderer which enables the user to fine-tune the
settings of individual techniques to get the best possible performance to quality
ratio for their product. It uses approximation and interpolation techniques to achieve
noise-free results with relatively few samples, making it much faster than unbiased
rendering.

Redshift supports several biased global illumination techniques including:

• Brute-force GI
• Photon mapping (with caustics)

242 8 Ray-Tracing Programs and Plug-ins

• Irradiance cache (similar to irradiance map and final gather)
• Irradiance point cloud (similar to Importons and Light Cache).

Users choose the techniques that work best for their particular scene.
Benchmark—In 2017, the company introduced a benchmarking utility for its

GPU-based production renderer. The benchmark which is built into the current
release works with the 3ds Max, Cinema 4D, and Houdini editions of the software,
and with a little tweaking on Windows, Linux, and macOS.

Out-of-core geometry and textures

The memory management system allows rendering of scenes which contains
hundreds of millions of polygons and terabytes of texture information. Redshift
uses an out-of-core architecture for geometry and textures, allowing you to render
large scenes that would otherwise never fit in video memory (Fig. 8.46).

A common problem with GPU renderers is that they are limited by the available
memory (GDDR) on the AIB and can only render scenes where the geometry and
textures fit entirely in video memory. This poses a problem for rendering large
scenes with many millions of polygons and gigabytes of textures.

Burtnyk says with Redshift, one can render scenes with tens of millions of
polygons and a virtually unlimited number of textures with off-the-shelf hardware.

Global illumination

In real life, light photons originate from light sources, bounce off several surfaces,
have their colors modified by these surfaces, and eventually reach our eyes.

Fig. 8.46 Out-of-core geometry and textures. Source Redshift

8.1 Stand-Alone Ray-Tracing Programs 243

In computer graphics, global illumination (GI) attempts to simulate those photon
bouncing interactions. This simulation adds realism to lighting and helps achieve
more lifelike images. Burtnyk says Redshift Renderer can achieve fast indirect
lighting by utilizing biased point-based GI techniques, as well as brute-force GI
(Fig. 8.47).

GI can have a profound effect even on straightforward scenes, as shown above.
The light that reaches object surfaces without any bounces is referred to as direct
lighting. Once the light has bounced off one or more surfaces, it is referred to as
indirect lighting. So what GI essentially computes is indirect lighting.

Proxies

Redshift allows the user to export objects and lights to Redshift Proxy files, and
then other scenes can easily reference them. Proxies allow for powerful shader,
matte, and visibility flag overrides as often required in production. However, getting
the proxies to run in a render farm can be challenging, but possible.

Additional features that can be found in Redshift include the following:

Transformation and deformation blur—Redshift also supports multi-step
transformation blur and two-step deformation blur.
Volumetric rendering—Redshift supports OpenVDB (see Glossary) rendering in
each of the 3D apps and native volume rendering in Houdini. Redshift lights can
cast volumetric lighting around the images.
Hair rendering with “Min Pixel Width”—There is a possibility that thin hair can
generate noisy renders. Hence, Redshift supports “MPW” rendering which
smoothens the look of thin and hard-to-sample hairs.
Tessellation and displacement—Redshift’s tessellation supports edge and vertex
creasing with separate UV smoothing control.

Fig. 8.47 Without (left) and with (right) GI—notice the color bleeding. Source Redshift

244 8 Ray-Tracing Programs and Plug-ins

Per-object flexibility—Objects have advanced matte features and tracing options
such as self-shadowing and primary/secondary ray visibility.
Shading and Texturing—Redshift supports advanced shading networks and tex-
turing capabilities as needed for production-quality rendering. There can be dif-
ferent types of shading employed:

• Physically based materials
• Ray switches
• Hair shader
• Dedicated skin shaders
• Round corners
• Displacement mapping with “autobump”
• No texturing limitations
• Powerful shading attributes
• Sprite node
• A large variety of nodes.

Materials

There are 135 premade complex materials:

• Ten ceramic materials
• Eight concrete–asphalt materials
• Three emissive materials
• Seven fabric materials
• Four ground materials
• Four leather materials
• Twenty-one metal materials
• Two organic materials
• Four paint materials
• Ten paper materials
• Three plastic materials
• Eleven plastic–rubber materials
• Thirteen stone materials
• Two terracotta materials
• Eleven translucent materials
• Twenty wood material.

8.1.19.1 Summary

Though launched in 2012, the product has created a fan-following for itself with the
users up for praises for the speed and quality of the product. With the upcoming
versions, improvements like having more materials seem a norm. However, it can
be a little taxing for the GPU which the company needs to take care in the future
versions. So, while playing against the likes of V-Ray and Maxwell, Redshift has

8.1 Stand-Alone Ray-Tracing Programs 245

made its presence felt among the users and will surely be a steady company of the
future.

Redshift has been used for several Hollywood projects including one by
Nickelodeon. Redshift is fast and is helped by using the biggest GPU’s one can get
—up to eight times faster than a CPU doing the same work.

8.1.20 RenderMan—Pixar

The “group now known as Pixar” came together in about 1975 on Long Island and
had the original vision then to make a completely digital movie. They changed their
name several times but held the vision. Pixar began in 1979 as the Graphics Group,
part of the Lucasfilm computer division, before it was spin out as a private cor-
poration in 1986, with funding by Apple’s co-founder Steve Jobs, who became the
majority shareholder. Twenty years later in 2006, Disney purchased Pixar for $7.4
billion.

Pixar’s RenderMan (formerly PhotoRealistic RenderMan) is proprietary photo-
realistic 3D rendering software program produced by Pixar Animation Studios.
Pixar uses RenderMan to render their in-house 3D animated movie productions,
and it is also available as a commercial product and licensed to third parties.

On May 30, 2014, Pixar announced that it would offer a free non-commercial
version of RenderMan that would be available to download in August 2014. The
product’s release was postponed to early 2015. As of March 23, 2015, RenderMan
was available for free for non-commercial use. However, some users have com-
plained that it was difficult to use without a Pixar-sized team to do the shading,
lighting, and other functions.

Historically, RenderMan used the REYES algorithm to render images with
added support for advanced effects such as ray tracing and global illumination.
Support for REYES rendering and the RenderMan Shading Language were
removed from RenderMan in 2016. RenderMan currently uses Monte Carlo Path
Tracing to generate images. An excellent history of RenderMan can be found at
Fxguide.4 https://tinyurl.com/y7fuqh9p.

REYES (Renders Everything You Ever Saw) was the brainchild of Rob Cook,
Loren Carpenter, and Ed Catmull, and it is not actually ‘RenderMan’. It is a part of
the RenderMan-compliant renderer that Pixar has used and sold and predates what
might be thought of as RenderMan. It was in May 1988 when the original
RenderMan interface 3.0 was launched, but it was more than 25 years for the
REYES renderer which was released in 1984 and different from PRMan which was
released in 1989.

It was at SIGGRAPH 1987, Anaheim, that Cook, Carpenter, and Catmull
delivered the original paper the REYES image rendering architecture. The paper

4https://www.fxguide.com/featured/pixars-RenderMan-turns-25/.

246 8 Ray-Tracing Programs and Plug-ins

https://tinyurl.com/y7fuqh9p
https://www.fxguide.com/featured/pixars-RenderMan-turns-25/

was given at a time when a full ray-traced system just wasn’t viable. REYES
provided a way to render complex scenes, but it is just a component of what makes
RenderMan the powerhouse it is and has been for two and a half decades.

RenderMan has been developed using Pixar’s core rendering technology starting
32 years ago and is designed to meet the increasing challenges of 3D animation and
visual effects. The tool is utilized for all the rendering work from Pixar production,
including feature films, shorts video content, video materials for theme parks, and
marketing. The tool has been liked and appreciated by people across the world, and
this is visible from the success of various films which have used RenderMan. The
tool has been used in almost every Visual Effects Academy Award Winner and
Nominee for over 15 years (Fig. 8.48).

The latest release of RenderMan is version 22 which the company claims to have
a redesigned core for interactive rendering of shaders, lights, and geometry, as well
as new studio tools which provide cutting-edge pipeline groundwork. It has several
new features compared to the previous versions as follows:

Live rendering

The company says it rewrote each bridge product to provide an optimal user
experience for always-on live rendering.

Pixar unified

With this functionality, one can use the same advanced light integrator developed at
Pixar, which includes unique ways to employ indirect light. This integrator com-
bines different types of light transport in a single production-focused tool. Pixar
Unified offers unidirectional and bidirectional Path Tracing which can be controlled
on a per-light basis that allows usage of both. The tool also offers techniques based
on computer learning from Disney Research where indirect light is guided with
light paths. The Pixar Unified Integrator has been used on movies like Finding
Dory, Cars 3, Coco, and Incredibles 2.

Fig. 8.48 A scene out of Incredibles 2. Source Pixar/Disney

8.1 Stand-Alone Ray-Tracing Programs 247

Photorealism

Effects, such as caustics, are taken care of by Pixar Unified. The Pixar Unified
Integrator contains functionality for quickly resolving caustic paths, a technique
called Manifold Next Event Estimation (MNEE), allowing caustic paths to resolve
in a short time. This option allows for creating realistic eyes, which is required for
achieving realistic digital humans, as illustrated in the next image (Fig. 8.49).

Performance improvements

The company has worked on the performance and speed in their latest version.
Pixar claims that speed has gone up by almost 2X across the board and almost 6X
in curves and the company has thanked their architecture designs and new curved
description for this enhancement.

Performance breakdown

The performance is compared between RenderMan 21.5 versus 22.0:

• Faster overall—10% to 2x
• Memory reduction—10–30%
• Time to first pixel—from 20% to 10X
• New ray-tracing core—pure tracing 3X
• Light discovery—large numbers of lights render 25% faster
• Curve rewrite—from 2x to 6x faster and less memory
• Particle improvements—2X faster and 30% less memory
• Better sampling—convergence looks better, earlier.

Fig. 8.49 Impact of MNEE on the image. Source Pixar/Disney

248 8 Ray-Tracing Programs and Plug-ins

Preset browser upgrade and materials

Pixar says RenderMan has an improved Preset Browser which now supports new
features in all three bridges, which makes sharing assets (lights, shaders, and tex-
tures) between DCCs simple.

Rendering at Pixar

Pixar continues to elevate and enhance RenderMan and has introduced the
RenderMan XPU project. XPU is addressing the challenge of rendering Pixar-scale
production assets on systems with a mix of CPU and GPU capabilities. From a
single set of assets, XPU produces film-quality renderings by seamlessly using all
available compute cores concurrently. XPU is a single renderer that can operate on
a variety of systems, from render farm machines with mid-range CPUs only all the
way up to workstations or servers having many-core CPUs and multiple extreme
GPUs.

Scene complexity and artist dexterity

Demands on artists and tools continue to evolve, and scene complexity grows. Film,
television, and other formats call for more realism as well as more fantastic fictional
realms. With tighter production schedules, maximizing artist productivity is
essential. Artists require both greater interactivity and finer-grained control when
dealing with tremendous, high-quality assets. Artists are also more productive when
rendered previews accurately reflect the look of the final frames coming off the
farm.

The mission of XPU is to leverage available CPU automatically and GPU
compute power to provide artists with optimum performance and flexibility on
production scenes, all from within the art tools that they are already using. XPU is
in active development at Pixar and was available after the commercial release of
RenderMan 22.

At Pixar, each of their productions is more complex than the last, with unique
technical innovations required to allow their artists to create the richness and detail
that define each of the studio’s films. Artists demand speed and flexibility—re-
quiring the ability to tweak lighting and shading at the very last moment to enhance
an image in service of the story and the director’s vision. Many studios are familiar
with these demanding trends.

Today, it is common in VFX and animation to have to deal with overmodeled
geometry, vast numbers of textures, sprawling shading networks, and massive
datasets with large numbers of lights. Every part of the scene must be editable, so
artists can enhance a shot at any time up to final render, all in service of enhancing
the story (Fig. 8.50).

The average shot in Coco took 27 GB of memory with outliers requiring 70 GB
or more. There were shots with millions of point lights. RenderMan has always
been inspired by these technical challenges and is focused on providing
high-quality results, at any scale, with the most adaptable versatility, while
responding to the constantly evolving artistic landscape.

8.1 Stand-Alone Ray-Tracing Programs 249

Over the past several years, and predating the RenderMan XPU project, Pixar’s
internal tools team developed a GPU-based ray tracer, built on Nvidia’s CUDA and
OptiX. An application called Flow was built around that renderer to deliver a
real-time shading system to Pixar’s artists. To date, Flow has helped artists shade
hundreds of assets across several feature films like Coco and The Incredibles 2.

The Flow system was engineered so that the GPU renderer shares as much core
shading logic as possible with the final renders coming from RenderMan, making it
far easier for Pixar to keep the two renderers in sync. However, exact matching is
difficult since RenderMan has features and resources beyond what Flow was cur-
rently able to deliver on the GPU only.

This is interesting, though not new

One aspect is to enable running on CPU or GPU, or a mix of both. Renderers like
V-Ray or AMD FireRay (and others) do the same. However, maybe the XPU
delivers higher flexibility by rendering quickly on the artist desktop and rendering
quickly on farms. That render farm may be on a set of desktops running at night, a
rented rack with specialty GPUs, a dedicated on-premises CPU-based datacenter, or
in the cloud on a set of economically provisioned instances. In the latter two cases,
a GPU with the capacity to handle the complexity of production assets may not be
available.

8.1.20.1 Summary

The ray tracer, being from a company which has been around for 32 years and used
in so many movies, has built a strong confidence among the users of the program.
Its speed and efficiency are also appreciated; however, some users feel the lack of
user-friendliness and options as a point which the company can improve in, par-
ticularly when so many companies like Maxwell and Redshift have entered the
market in the last ten years.

The company acknowledges that mental ray was an early commercial ray-tracing
renderer although not certain if it was the first commercial ray tracer offered. And
they agree that RenderMan has never been a classic ray tracer. It started with

Fig. 8.50 Rendered by XPU, a massive scene from Coco (without shaders and lights)

250 8 Ray-Tracing Programs and Plug-ins

REYES instead, added an interesting hybrid tracer, and evolved into the sophisti-
cated path tracer available today.

One of the rationales for developing the REYES algorithm was to avoid the
slowness of ray tracing, while also having something that could scale to the
requirements of feature film animation—but still providing nearly photoreal lighting
and shading effects. Dynamic, programmable proceduralism for shading and
geometry creation was another part, that is distinct from the rendering algorithm
itself, but trickier to do well in a pure ray tracer. Therefore, the people at Pixar
bristle a little at RenderMan being described as “never capable of useful ray trac-
ing.” REYES was plenty useful and delivered hundreds of commercially successful
customer films, and classic ray tracing per se was never the end goal—that is the
all-important context.

8.1.21 Rigid Gems—FerioWorks.LLC

Yoshihiro Fukurono living in Ebisu, Tokyo, had been developing 3D graphics
program since he was 17 years old. Skipping college to pursue his dream, he made
a demonstration program to get a job; he thought it would be important to
demonstrate his skills. So, in 2008 he began developing a ray-tracing program to
present and presumably sell jewelry. Part of his inspiration came from Stéphane
Guy, and Cyril Soler’s paper in SIGGRAPH about presenting gems,5 and Arvo and
Kirk’s 1987 paper on ray tracing.6

Fukurono-san used assets from 3D Lapidary and TurboSquid to create his col-
lection. All of the software was written by Fukurono; he didn’t even use any kernels
such as Embree, OptiX, or Radeon-Rays, or any open-source ray-tracing software
(Fig. 8.51).

Because expensive equipment is was necessary to make it an off-line renderer.
The demo is able to run at 60 frames per second (fps) with the latest GPU. It is a
hybrid ray-tracing technique, and the non-critical part of the scene does not use ray
tracing. Fukurono-san started developing the hybrid software in 2010. Today,
hybrid is part of the latest API DirectX Raytracing. To keep the frame rate up, he
chose a fixed number of bounces, with some exceptions in highly faceted regions.
DirectX Raytracing technology is also in use.

FerioWorks offers a demo presentation program of their software http://www.
rigidgems.sakura.ne.jp/files/RigidGems2_2.zip which generates a small (855 kB)
program and a 35 mB data file. It contains about 12 examples of stone presentation
with reflections and caustics.

The company’s software has been used by other firms for displaying their
products.

5Stéphane and Cyril (2004).
6Arvo and Kirk (1987).

8.1 Stand-Alone Ray-Tracing Programs 251

http://www.rigidgems.sakura.ne.jp/files/RigidGems2_2.zip
http://www.rigidgems.sakura.ne.jp/files/RigidGems2_2.zip

8.1.22 Tachyon

When John Stone was at the University of Illinois, he developed a parallel
ray-tracing library in 1998 named Tachyon, for use on distributed memory parallel
computers, shared memory computers, and clusters of workstations. Stone is now
on the research staff at the Beckman Institute, but Tachyon lives on. Tachyon
supports Message Passing Interface (MPI) for distributed memory parallel com-
puters and threads for shared memory machines and can support both simultane-
ously for clusters of shared memory machines. Tachyon has been selected for
inclusion in the SPEC MPI2007 benchmark suite. Tachyon supports the typical ray
tracer features, most of the standard geometric primitives, shading and texturing
modes. It also supports fewer common features such as HDR image output, ambient
occlusion lighting, and support for various triangle mesh and volumetric texture
formats beneficial for molecular visualization (e.g., rendering VMD scenes)
(Fig. 8.52).

Tachyon is heavily used as a built-in ray-tracing engine within VMD, where it is
frequently used to render scenes containing hundreds of millions of objects, often
with ambient occlusion lighting, depth cueing, angle-modulated transparency, and
other features that are well suited for molecular visualization. Tachyon has been
used to render Volume Management Device (VMD) movies in parallel on the
NCSA Blue Waters supercomputer, on over 15,000 CPU cores. I’m currently
evaluating the use of GPU acceleration techniques for Tachyon, using Nvidia
OptiX as a backend, and possibly with the use of some custom CUDA/OpenCL
kernels.

Fig. 8.51 Sparkly ray-traced gems. Source FerioWorks

252 8 Ray-Tracing Programs and Plug-ins

8.1.23 V-Ray—Chaos Group

The Chaos Group began in 1997 as a 3D design and animation studio in Sofia,
Bulgaria. One of their early projects required them to render atmospheric effects,
but a proper plug-in wasn’t available, so they had to develop their own, and a few
years later Phoenix FD (originally called Atmos Blender) was born.

Later, needing a way to cast realistic shadows with Phoenix FD, they started
writing their own ray-tracing solution. Impressed by its speed, Peter and Vlado
realized it could be a tool other artists and designers might be interested in, and the
development of V-Ray officially began. In late 2001, Peter and Vlado release the
first public beta of V-Ray.

Chaos Group is a pioneer in the computer graphics industry and has a history of
helping artists and designers create photorealistic images and animation used for
design, television, and movies. The company takes pride in the diversity of their
markets, as it has grown to be a standard in leading design studios, architectural
firms, advertising agencies, and visual effect companies around the globe.

In March 2002, the Chaos Group released their first official version of V-Ray for
3ds Max and today provides ray-tracing software for thousands of customers across

Fig. 8.52 Satellite tobacco mosaic virus molecular graphics produced in VMD and rendered
using Tachyon (John Stone)

8.1 Stand-Alone Ray-Tracing Programs 253

a wide variety of content creation applications. While best known for its Academy
Award-winning V-Ray renderer, the company also produces Corona Renderer,
Phoenix FD for fluid dynamics, and VRscans, which is a patented material scanning
technology. In 2019, Chaos Group had over 300 employees worldwide and claims
to be the largest company solely dedicated to rendering research and development.

The company’s research and development division has been aggressive in
developing new designs and products in cloud rendering, material scanning, and
real time and is collaborating with various artists, industry leaders, and academic
researchers to advance ray tracing.

Chaos Group’s first rendering product, V-Ray for 3ds Max, has been one of the
most popular plug-ins of any kind developed for Autodesk’s 3ds Max. And the
company claims it is the renderer of choice for most 3ds Max-based visual effect
work and the leading renderer in architectural visualization (Fig. 8.53).7

The success of V-Ray for 3ds Max led to the development of V-Ray for addi-
tional digital content creation applications such as Maya, SketchUp, Rhino, Revit,
Modo, Nuke, Katana, Blender, Unreal Engine, and Houdini. Each version is custom
integrated to match the application’s native workflow as closely as possible. Also,
each version includes the ability to run V-Ray on a network, either as a host
application or as a command-line stand-alone version.

Chaos Group provides the V-Ray AppSDK for control of the rendering pipeline,
as well as for integrating V-Ray within custom applications. As examples, both
Adobe Dimension and formZ use a licensed version of V-Ray AppSDK for their
rendering.

Fig. 8.53 Architectural image rendered in V-Ray. Source Chaos

7Mottle (2018).

254 8 Ray-Tracing Programs and Plug-ins

Academy Award

In 2017, The Academy of Motion Picture Arts and Sciences presented Chaos Group
co-founder Vlado Koylazov with a Scientific and Engineering Award for the
“original concept, design and implementation of V-Ray.”8 The academy noted,
“V-Ray’s efficient production-ready approach to ray tracing and global illumina-
tion, its support for a wide variety of workflows, and its broad industry acceptance
were instrumental in the widespread adoption of fully ray-traced rendering for
motion pictures” (Fig. 8.54).

Since 2002, V-Ray has been used on over 200 feature films including Avengers:
Infinity War, Black Panther, and Ready Player One. V-Ray use is also widespread
on television and streaming productions, helping to increase ray-traced realism on
series like Game of Thrones, The Walking Dead, and Westworld.

V-Ray’s, ray-tracing technology

Over the years, the company has continuously updated and upgraded its program to
embrace the latest hardware and software developments.

Modular ray-tracing architecture

V-Ray was one of the first renderers to have a modular ray-tracing architecture.
While most renderers had relied on special hard-coded shaders, Chaos abstracted its
ray-tracing algorithms, separating them from the scene materials, objects, and light
sources. That provided a means to implement different ray-tracing methods such as
brute force, irradiance mapping, photon mapping, and the company’s proprietary
Light Cache technique. Also, to achieve cleaner, noise-free images, this modular

Fig. 8.54 Ray-traced image rendered in V-Ray for 3ds Max. Source © Toni Bratincevic

8“18 Scientific and Technical Achievements To Be Honored With Academy Awards,” January 4,
2017, https://www.oscars.org/news/18-scientific-and-technical-achievements-be-honored-
academy-awards-0.

8.1 Stand-Alone Ray-Tracing Programs 255

https://www.oscars.org/news/18-scientific-and-technical-achievements-be-honored-academy-awards-0
https://www.oscars.org/news/18-scientific-and-technical-achievements-be-honored-academy-awards-0

approach also allowed for the implementation of new and adaptive image samplers,
with V-Ray adopting variance-based image sampling with the release of V-Ray 3.3.

Adaptive ray tracing

Adaptive ray-tracing techniques such as variance-based adaptive sampling allow
V-Ray to optimize its calculations automatically, without custom input from the
user. Additional adaptive features had to be developed to make V-Ray more
automated. That put more of the analytic workload onto V-Ray and removing the
need for artists to control local values for lighting and materials. As part of this
trajectory, Chaos Group released Adaptive Lights in 2017, which dramatically
reduced the number of calculations required to render scenes with many lights.

Scene intelligence

Capping three years of R&D, Chaos Group introduced V-Ray Scene Intelligence,
an automatic scene analysis feature built on machine learning techniques. Inspired
by information gathered from V-Ray’s Light Cache global illumination algorithm,
scene intelligence automatically analyzes 3D scenes to produce faster, cleaner
renders. The technology debuted in V-Ray Next for 3ds Max and provides the
backbone for smart features like adaptive dome light, automatic exposure, and
automatic white balance.

Maximizing hardware

Chaos claim several hardware acceleration advancements with their program
including GPU, GPU and CPU, as well as distributed rendering.

GPU rendering

V-Ray has one of the longest histories with GPU ray tracing, showing its first
GPU-based renderer (V-Ray RT) at SIGGRAPH 2009 (Fig. 8.55).9

While V-Ray RT started as an interactive ray-tracing engine initially used for
look development, it has grown with successive editions into V-Ray GPU, a fully
featured production render, now included with every new version of V-Ray. V-Ray
GPU is optimized for Nvidia CUDA and was the first commercial renderer to
support Nvidia’s NVLink.

GPU + CPU hybrid rendering

In 2017, Chaos Group introduced GPU + CPU hybrid rendering, adding CPU
support to its Nvidia CUDA-powered GPU renderer. Using this method, artists
could utilize all available hardware by rendering scenes using GPUs, CPUs, or a
combination of both. For artists that have a GPU-powered workstation and a
CPU-based render farm, hybrid rendering has opened up more flexibility on pro-
duction workflows.

9Suarez (2009).

256 8 Ray-Tracing Programs and Plug-ins

Distributed rendering

In addition to standard network rendering, where a single computer renders one
image, V-Ray was one of the first to implement a distributed rendering system. In a
distributed rendering system, a single image is calculated across multiple com-
puters. By leveraging more compute capabilities, professional artists and production
teams have been able to be more responsive to requests for higher-resolution
imagery at a much faster pace.

Cloud rendering

Chaos Group entered the cloud rendering market through partnerships with Chaos’
service and Chaos Cloud. Chaos Group’s early partnerships with companies like
AWS Thinkbox Deadline and Google Cloud’s Zync made V-Ray accessible to
production artists on all major services and render farms. In 2012, Atomic Fiction
used a combination of Zync and V-Ray to render the first fully cloud-rendered film
in Flight. They followed this up with the second cloud-rendered film, The Walk, in
2015.

Fig. 8.55 Image rendered in
V-Ray GPU. Source ©
Double Aye

8.1 Stand-Alone Ray-Tracing Programs 257

However, Rebus Farms and many other small render farms did this before AWS
bought Thinkbox; even then, it took several years for AWS to figure out how to do
V-Ray. Ralph Alvarez’ SquidNet distributed computing software was doing V-Ray
well before then on a least 10 independent commercial render farms including
RenderStorm.

Chaos is stating that these are two important cloud rendering partnerships, rather
than the first relationships of its kind.

Introduced in 2017 and at SIGGRAPH 2018 Chaos Group partnered with
Google Cloud Platform (GCP) on Chaos Cloud and offered a free public version.
The GCP-built service is notable for simplifying the cloud rendering experience to a
single click. The goal is to open up a fast form of cloud rendering to professional
artists without the complexity of having to track assets, manage licenses, or set up
virtual machines. Chaos Cloud launched in Q1 of 2019.

Ray tracing meets real time

The launch of V-Ray for Unreal in 2018 was the first direct connection from an
off-line renderer to the popular game engine, effectively consolidating two work-
flows for artists and designers (Fig. 8.56).

For markets exploring immersive experiences, especially in the architectural and
design sectors, the requirement to learn how to navigate a game engine has proven
difficult. V-Ray for Unreal operates as a bridge, letting artists bring V-Ray scenes
into Unreal that feature fully baked lighting and global illumination. The bridge also
works in reverse, letting users render content from their experiences with full ray
tracing.

Real-time ray tracing and Project Lavina

Filmmaker Kevin Margo create a short film with real-time ray tracing was on the
CONSTRUCT project in 2014,10 which saw independent filmmaker Kevin Margo
create a short with the help of cutting-edge virtual production techniques. Chaos
Group designed a special prototype of V-Ray for Autodesk’s MotionBuilder,
enabling Margo to apply live motion capture to predesigned virtual characters in
real time.

In 2018, Chaos Group announced the world’s first real-time ray tracer.
Accelerated with Nvidia’s RTX ray-tracing-enabled GPUs, the Project Lavina
demo represented one of the first major applications for the technology and a course
change for real-time ray tracing, which until this announcement was assumed to
require a game engine. Game engines have shortcuts to accomplish real-time ren-
ders, which can affect the final look. Project Lavina, on the other hand, promises
direct compatibility and translation of V-Ray assets, so artists can see an immediate
representation of their vision with physically accurate lighting, reflections, and
global illumination (Fig. 8.57).

10Starr (2014).

258 8 Ray-Tracing Programs and Plug-ins

The Project Lavina demo depicted a massive forest scene with 300 billion
triangles and 80,000 instances running at 24–30 fps. Unlike game engine rendering,
there were no rasterized graphics or reduced level of detail.

The opportunity for Chaos Group is that they are taking over a significant piece
of the gaming engine value proposition and enabling different types of applications
to access real-time rendering. The company mentions applications such as virtual

Fig. 8.56 Screenshot of V-Ray for Unreal. Image courtesy of Chaos Group

Fig. 8.57 Screenshot of Project Lavina ray tracing 300 billion triangles in real time. Image
courtesy of Chaos Group

8.1 Stand-Alone Ray-Tracing Programs 259

productions and VR, 3D configurators and CAD walk-throughs, product demos,
etc., also fall into this category.

Material scanning, industry standards support, and research

Materials are critical to the success of a ray-traced image, and all of the ray-tracing
suppliers have spent great sums of time and money in developing their material
libraries and classification techniques.

VRscans

In 2016, Chaos Group announced VRscans, a patented material scanning tech-
nology that can produce an exact digital replica of a physical material with sub-mm
precision. VRscans is a combination of a hardware-based scanning service and a
software-based rendering plug-in that work together to create material properties for
realistic renderings, without the usual workflow of texture maps and shader settings
(Fig. 8.58).

The process begins with a scan of an existing real-world object surface. VRscans
uses bidirectional texture functions (BTFs) instead of typical BRDF approximations
(such as Phong, Blinn, and Ward) to capture a material’s true surface appearance,
texture data, and its unique response to light.

Stored in a proprietary VRscans material format, the scanned material is then
read into the CG scene using the VRscans plug-in and is ready for rendering
through V-Ray without much (if any) additional tweaking required to match the
original scanned material’s surface.

The company also introduced the VRscans library which included over 650
photorealistic materials for automotive, industrial design, and architectural projects.

Fig. 8.58 Image rendered in V-Ray using VRscans scanned materials. Source © Visual State

260 8 Ray-Tracing Programs and Plug-ins

Industry standards

While V-Ray comes with a library of materials, Chaos Group has shown a com-
mitment to supporting standard initiatives that seek to bring consistency to physi-
cally based rendering (PBR), visual effects, and design-based workflows
(Fig. 8.59).

That includes participation in TurboSquid’s StemCell Advisory Board11; support
for Nvidia’s Material Definition Language (MDL) format; support for Open
Shading Language (OSL); and compatibility with X-Rite’s AxF format and
Allegorithmic’s (Adobe) PBR-based substances. In 2018, Chaos Group added
direct PBR compatibility by adding a metalness12 reflection option to their standard
V-Ray material shader, further connecting real-time and ray-traced workflows.

Stochastic Flakes research

Research and development into the simulation of car paints, snow, and other glittery
materials led to a breakthrough in 2017 with the debut of the Stochastic Flakes
material in V-Ray 3.6.13 The material works by procedurally simulating the
aggregated effect of a large number of flakes scattered over the surface of an object
at render time.

Fig. 8.59 Procedural Stochastic Flakes material rendered in V-Ray. Image courtesy of Chaos
Group

11https://www.turbosquid.com/3d-modeling/stemcell/stemcell-advisory-board/.
12Nichols (2018).
13Seymour (2016).

8.1 Stand-Alone Ray-Tracing Programs 261

https://www.turbosquid.com/3d-modeling/stemcell/stemcell-advisory-board/

Denoising

V-Ray comes with two denoisers that help artists address different parts of the
rendering/denoising equation (Fig. 8.60).

The V-Ray Denoiser is the production option that allows users to render an
image up to a certain threshold or time limit and then lets V-Ray denoise the image
based on all available information coming in from the various render elements that
will make up the final composite.14

The AI Denoiser, based on Nvidia AI-accelerated denoising technology, is
designed specifically for non-final interactive rendering.15 Its speed and clarity
make it well suited for lighting and general scene composition. The AI component
was trained using thousands of 3D scenes and images and can dramatically reduce
the time it takes to render a noiseless image.

Acquisitions and investments

In August 2017, the Chaos Group acquired Prague-based Render Legion, creator
of the Corona Renderer (Fig. 8.61).

With this new product and Chaos’s V-Ray, the company was able to offer even
more rendering solutions for the architectural visualization industry. The Render
Legion acquisition was Chaos Group’s largest investment to date. It was the third
investment by the visualization company in the previous two years, including
interactive presentation platform CL3VER and virtual reality pioneer Nurulize.

Fig. 8.60 Comparison of original versus denoised render using the V-Ray Denoiser. Image
courtesy of Chaos Group

14Nichols (2018).
15Nichols (2017).

262 8 Ray-Tracing Programs and Plug-ins

8.1.23.1 Summary

Chaos’ V-Ray has found its way into dozens of specialized applications from movie
production to toothbrush ads, from clothing design and fitting to architectural
renderings.

Marianna Yakimova from an art studio “Pompidou” has recently presented a
stunning work with a girl in a pink dress. The artist and her team created the model
for a perfume ad with an idea of a dress looking like a blooming flower bud
(Fig. 8.62).

The artists used ZBrush for sculpting, Marvelous Designer for the dress,
Ornatrix for her hair, and V-Ray for the final render.

Looking at the future, Chaos’ approach to AI is not strictly machine learning and
doesn’t give the data to multiple machines to learn but does give the V-Ray Light
Cache capabilities to learn as much as possible from a scene. The first example of
this was in the version when Chaos added adaptive lights and the system could
learn where all the lights were in the scene. Another example was the introduction
of variance-based adaptive sampling. Chaos eliminated the need to set individual
subdivisions on materials and lights, or even camera effects like depth of field.

Fig. 8.61 Image rendered in Corona. © Gustavo Coutinho Alves

8.1 Stand-Alone Ray-Tracing Programs 263

8.1.24 VRED—Autodesk

VRED is the predecessor of Autodesk’s Showcase 3D visualization and 3D pre-
sentation software which the company stopped offering after March 2017.
Showcase was used in several industry categories from manufacturing to M&E and

Fig. 8.62 Fashion design firms use ray tracing and CAD mesh to design perfectly fitting clothes.
© 3D art-studio Pompidou

264 8 Ray-Tracing Programs and Plug-ins

automotive design, and Autodesk has now segmented applications for visualization
in those categories. However, VRED Design cannot open or import Showcase files.
Autodesk’s cloud-based rendering system is called A360.

VRED is a sophisticated real-time rendering engine Autodesk acquired from
Germany-based PI-VR in 2013 and is a high-end tool, intended for photorealistic
design visualization in product development. VRED supports pixel fidelity surface
display of native CAD data through unique support for interactive NURBS ren-
dering (Fig. 8.63).

PI-VR specialized in real-time visualization technology for product develop-
ment, primarily automotive. Software acquired included the VRED line of highly
realistic 3D visualization tools. Autodesk uses the acquired technology to enhance
its software for automotive design. Alias Studio is Autodesk’s flagship product in
automotive, but the new technology is also used in products including 3ds Max,
Maya, and Showcase.

In 2011, Autodesk acquired Numenus for its ray-tracing technology, at the time
also designated for automotive users first and foremost. And in April 2016, the
company acquired leading ray-tracing supplier Solid Angle, producer of the popular
Arnold ray tracer.

Autodesk’s goal with Arnold GPU is to have a single renderer, feature/pixel/API
compatible with the CPU. So, the GPU renderer will have no more bias than the
CPU one. Windows and Linux are supported now. Autodesk says they will support
Mac as soon as there is support for Nvidia eGPUs.

Autodesk doesn’t have any plans to implement bidirectional Path Tracing in
Arnold, at least not immediately. The company is looking at alternate light transport
techniques to tackle interior renders and caustics.

Renders can be completed locally or sent to a cloud service. The technology uses
CPUs, not GPUs, making it cheaper to run as a cloud option where time on GPU

Fig. 8.63 Autodesk’s VRED supports ambient occlusions and baked shadows. Source Autodesk

8.1 Stand-Alone Ray-Tracing Programs 265

clusters is more expensive. Autodesk places a heavy emphasis on VRED’s support
for the design tools in Autodesk Alias industrial design software, and its suitability
for quick turnaround of visual prototypes.

Autodesk’s history of ray tracing
2005—Autodesk acquired its first family of ray tracers with the acquisition of
Alias. Autodesk acquired Alias from Silicon Graphics in 2005. The Maya
software from the original Alias became a separate program within Autodesk
and the Wavefront software formed a new software group that Autodesk
called Showcase. Showcase was like Wavefront in that it was targeted at the
automotive industry.
1984—Wavefront was founded, the company began focusing on photoreal-
istic images of automobiles. It had a patented paint library combined with a
state-of-the-art ray tracer that put it in a unique position and made it a leader
in the field.
1995—Wavefront and Alias were acquired by Silicon Graphics and com-
bined into the division Silicon Graphics called Alias/Wavefront.
1983—Alias was founded and had been best known for its media enter-
tainment graphics program called Maya. SGI later combined the two com-
panies named just Alias.
1998—Opticore started in Sweden and known for its visualization software
2007—Opticore was acquired by Autodesk.
2009—A small German startup called Numenus was founded.
2011—Acquired and incorporated into Showcase.
2012—Lagoa was started and specialized in cloud-based visualization and
collaboration.
2014—Autodesk acquired Logoa and incorporated its technology into
Showcase.
2017—Autodesk ended the Showcase product line and initiated a new pro-
duct line called VRED, again targeted at the automotive industry as well as
others.
1997 in Madrid Spain Solid Angle was started and created the Arnold ray
tracing program. Arnold was a very successful ray tracing program used by
several companies and tens of thousands of users.
2016—Autodesk acquired Solid Angle and incorporated the Arnold ray tracer
into various other Autodesk products as well as continuing to offer the pro-
gram separately as a standalone and plug-in for other applications.

VRED has two modes of user interaction. In simple mode, it is a matter of letting
the software use default settings. For those ready to dig in deeper, the complex

266 8 Ray-Tracing Programs and Plug-ins

mode offers camera control, surface analysis, comprehensive material libraries,
real-time ray tracing, animation, and stereo display; the Professional version even
supports the Oculus Rift virtual reality headset.

VRED is sophisticated enough to allow selective resolution, where certain parts
of the model are rendered at a higher resolution as a special effect. This variable
resolution is handy for creating advertisements that draw the viewer’s eye to a
particular part of the image. Unlike most renderers, which work with the materials
data supplied from the CAD program (if available), VRED requires that the user
adds material designations, in addition to setting the lighting and scene conditions.

8.1.24.1 Summary

The addition of the VRED team brought new energy and high-end technology to
Autodesk’s visualization offerings and has contributed to the development of
Autodesk Raytracer, which is now packaged with its flagship products. As with
every technology, however, there are trade-offs. The addition of Raytracer makes
rendering part of the design workflow, but in a limited fashion; it lacks the bells and
whistles of a dedicated product. In contrast, VRED is a dedicated, full-featured
visualization engine, but it is not integrated into the design workflow. If something
changes in the product model, one has to start again with the VRED visualization.

8.1.25 Other

Radiosity, light-field, photon, etc., and historical.

8.1.26 Lightworks Design

Lightworks is one of the oldest ray-tracing companies in the industry, and has
undergone several transformations, partnerships, and sometimes ironic intercon-
nections. I’ve included it here in the integrated section, but it could have been in the
stand-alone or plug-in section a few months, or years ago.

Lightwork Design was founded in 1989 in Sheffield England. In 1994, it was
sold to Tektronix, who were not successful at developing the company’s products.
In 1999, it was sold on to the newly formed Lightworks Inc., then owned by
Fairlight Japan, and then purchased by Gee Broadcast in May 2004. In August
2009, the UK- and US-based company EditShare acquired Gee Broadcast and the
Lightworks editing platform.

The company developed a proprietary ray-tracing program for CAD software
companies including Autodesk, PTC, Siemens, and Dassault at one time or another.
The company did not sell its products directly to the end users.

8.1 Stand-Alone Ray-Tracing Programs 267

Lightwork Design supplied rendering technology to Siemens for over twenty
years. In 2013, the company stopped developing new ray-tracing software and
switched to Nvidia’s GPU-powered Iray ray-tracing program and created special-
ized visualization tools for its customers in the CAD industry. It also said it would
bring Iray+ to the market as a GPU-based ray-tracing rendering SDK.

In November 2017, Nvidia transferred sales and support of the Iray plug-in
products for 3ds Max, Iray for Maya, Iray for Rhino, and Iray Server—to the Iray
integration partners (AKA Iray Plugins), Lightworks. Then, in October 2018,
Siemens PLM bought Lightworks, making them a partner and depository for Iray
plug-ins, as well as Lightworks’ Iray+ customers. Iray+ is the full Iray toolkit from
Nvidia that Lightworks have wrapped in their own easy-to-integrate-and-support
API. See, Iray—Nvidia, Sect. 8.1.8 for additional background on Iray.

As an example of the type of work Lightworks Design has been doing with
Siemens, Lightworks introduced Slipstream in 2017. It is a tool that enables cus-
tomers to create a workflow for exporting complex models into game engines. The
same kind of procedural methods are required to enable models to be visualized,
analyzed, simulated, and mechanized. All the sort of things, Siemens and their
customers will need to realize the digital twin strategy.

Slipstream which Lightworks announced at SIGGRAPH 2017 isn’t so much a
product as a service bundle to address the same sorts of problems being addressed
by Epic’s Datasmith. Lightworks has a long history of providing integrated ren-
dering to PLM tools.

As a longtime provider of rendering backends, its own, and now Iray, the
company has integrated rendering in multiple PLM products. It did some of its early
development work for Slipstream with Siemens, which uses Lightworks Iray in its
CAD programs. Lightstream is familiar with CAD pipelines and understands the
complexities of the model.

As a result, Lightworks approached the creation of Slipstream as a service plus
technology depending on the end-user requirements and the types of models. At the
end of the process, customers then have an easy-to-use recipe for getting models out
of CAD and into a game engine. “The beauty of Slipstream,” says Lightworks CTO
David Hutchinson, “is that companies can work with their intellectual property,
without having to send it off to an agency to create a visualization or application
and they retain the ability to change up the work, redo, and repeat.”

Siemens acquires Lightworks

As mentioned above, In September 2018, Siemens announced the acquisition of
Lightwork Design. Lightworks began life as an OEM provider of rendering soft-
ware to many CAD companies including Autodesk, PTC, Siemens, and Dassault at
one time or another. The company did not make products that sold directly to
customers.

In a letter announcing the acquisition, Tony Hemmelgarn, president and CEO of
Siemens PLM Software, a business unit of the Siemens Digital Factory Division,
said that Siemens customers are increasingly making photorealistic rendering and

268 8 Ray-Tracing Programs and Plug-ins

visualizations. Also, the company sees opportunity in augmented reality, virtual
reality, model-based engineering, digital mock-ups, and mobile visualizations.

Lightworks Design will be combined with Siemens PLM Components business.
The company says more than 240 companies integrate Siemens PLM Software
technology into 350 commercial applications for six million end users.

The plan for Siemens is to continue to supply Iray+ to all the existing licensees
of the product and to include it within the Siemens PLM Components division
alongside programs like Parasolid. In addition, the plan is to include it in other
products across the Siemens PLM portfolio, but I cannot give more details of that.

Iray is used in Siemens NX, Dassault Catia, and SolidWorks—as such it
dominates the market in rendering for top end CAD.

8.1.26.1 Summary

Given the nature of its business, Lightworks Design is a company that stays in the
background, but throughout much of its history, CAD companies have chosen it as
their rendering engine. At one time, the company could claim more customers for
its rendering technology than any other product on the market because of the high
installed base of CAD users. That doesn’t mean everyone was using the tools, but
Lightworks’ rendering technology was accessible to the highest number of cus-
tomers. Lightworks footprints can be found in many companies and products from
CAD systems to game engines.

Rendering has become much more critical in the workflows of CAD customers.
The Lightworks team is battle-hardened, responsive, and adaptive. They should be
an asset within Siemens, and while Siemens is an enormous organism, it tends to
preserve the companies it assimilates.

8.1.27 Manuka—Weta

Weta of New Zealand is one of the most respected and admired special effects
companies in the world. The list of movies they have worked on is amazing.

In order to accomplish some of the astounding effects they create, the company
has developed an elaborate, and much envied, set of software tools, including a
world-class ray tracer. Mike Seymour of FX Guide wrote extensively in his 2014
article.16

Weta’s ray tracer Manuka is a physically based production renderer. Manuka
was a great development in that it produced accurate and beautiful scenes and

16https://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/.

8.1 Stand-Alone Ray-Tracing Programs 269

https://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/

managed the complex render requirements of the huge worlds and scenes in the big
movies (Fig. 8.64).17

The third Hobbit film was Weta Digital’s first major motion picture with
Manuka as the primary renderer. The renderer was put to the test in War for the
Planet of the Apes, with subtle things like snow in the fur of the apes.

Eric Veach’s Monte Carlo path-tracing work and Manuka were the most com-
plete implementation of this approach for physically based production rendering to
date. Manuka was started as a technical validation of the approach.

Manuka is focused on production, concerning both the controlling of a
real-world feature film production pipeline and allowing a much larger model
complexity to be rendered. One of the benefits from Weta’s work in real time was
the development of hardware GPU-based rendering that gave artists an accurate
preview of the final image.

A path-tracing ray tracer using Monte Carlo produces a noisy image at first and
then progressively improves it. That feature allows Manuka to be used as a pro-
gressive refinement Render Preview tool, leveraging an artist’s ability to work with
partially rendered images.

Fig. 8.64 A frame from the War for the Planet of the Apes movie, rendered in Manuka. Image
courtesy of Weta Digital, ©2017 Twentieth Century Fox Film Corporation. All rights reserved

17Fascione et al. (2018).

270 8 Ray-Tracing Programs and Plug-ins

Manuka is both a unidirectional and bidirectional path tracer and encompasses
multiple importance sampling (MIS). Interestingly, and importantly for production
character skin work, it was the first production renderer to incorporate spectral MIS
in the form of the hero spectral sampling technique.18

The term hero spectral samples comes from the film industry jargon of the hero
shot. Skin, for example, is handled very differently for different wavelengths. One
can deal with this in R, G, and B or in a proper light spectrum. The wavelength is
not a trivial distinction, not only for the accuracy of the results (less noise for the
similar effort) but to work one needs the pipeline spectral—including materials/
BSSRDF (see Glossary). A hero wavelength is the basis then for an MIS-style
directed spectrum.

The spectral work also helps match computer-generated objects to real ones,
more closely matching colors and responses—making CG objects ever more dif-
ficult to pick from reality.

Lighting is based on area lights and IBL/environment lighting. An arbitrary
shape can be a light source so that a fire simulation can be a light source. Any
volume or shape can be a full-area light emitter. The renderer was always designed
to handle a ridiculous amount of lights, more than say a million. Also, that allows
you to do all sorts of things, suddenly volumes, multi-colored lights, and textured
lights; it all just becomes a non-issue—and that is cool.

Weta Digital does not support Open Shading Language (OSL) as Manuka was
designed to work with the studio’s current shader pipeline. The studio needed to
make it a streamlined transition process. Essentially, both RenderMan and Manuka
can run on the same shaders with a minimal amount of additional Manuka specific
code.

A critical part of adding production value and scene complexity is volumetrics,
and there has been much research in this area. There are many solutions on offer,
namely photon-mapped volumes and beam solutions in addition to more brute-force
approaches. Various approaches have proven to provide other exciting speed/
quality trade-offs. Manuka can do full volumetric scattering simulations, which has
proven enormously useful in verifying and validating our other models and
approximations.

Regarding the pipeline, everything rendered at Weta was already completely
interwoven with their deep data pipeline. Manuka very much was written with deep
data in mind. Concerning camera models, Manuka offers orthographic and pro-
jection mapping. Manuka has a highly advanced depth of field and motion blur.

Manuka has instancing support, but it is different from most other production
renderers. Weta believes their implementation is extremely efficient but with certain
limitations and they are still investigating.

18Wilkie et al. (2014).

8.1 Stand-Alone Ray-Tracing Programs 271

8.1.27.1 Summary

To make Manuka, the Weta team worked for years on hardcore rendering research
with contributors and interns from around the world. They made some unexpected
and novel algorithmic choices, all with particular production biases in mind. At
Weta, the farm runs every night producing shots for dallies the next morning. The
challenge is one has to make sure the shots can render and be there in the morning
no matter how complex.

8.2 Integrated (Programs with Native Ray Tracers)

Some modeling and design programs have dedicated, built-in ray-tracing programs.
These ray-tracing programs are not sold separately and don’t offer plug-ins to other
design programs. However, the baseline modeling or design program may accept
plug-in renderers from other suppliers.

8.2.1 Cycles—Blender

The Blender Foundation is a nonprofit organization responsible for the development
of Blender, an open-source 3D content creation program (Fig. 8.65).

In 1988, Ton Roosendaal co-founded the Dutch animation studio NeoGeo which
became the largest 3D animation house in the Netherlands. In 1995, it was decided
that the current in-house 3D toolset needed to be rewritten from scratch. It was and
became Blender. In 1998, Roosendaal founded Not a Number (NaN) to market and
developed Blender. In early 2002, the NaN investors decided to shut down all
operations including the development of Blender.

Fig. 8.65 Astro, Pratik
Solanki

272 8 Ray-Tracing Programs and Plug-ins

Enthusiastic support from the user community and customers couldn’t justify
leaving Blender to disappear into oblivion. Since restarting a company with a
sufficiently large team of developers wasn’t feasible, in May 2002 Roosendaal
started the nonprofit Blender Foundation.

In 2011, the foundation introduced Cycles a new rendering engine built into
Blender. The developers claimed that it was flexible and fast and, above all else,
produced more realistic results (Fig. 8.66).

Although Blender and Cycles are tightly integrated, Cycles is also available as a
stand-alone library, which has been adopted by Rhino and Poser, and available as a
plug-in for Cinema 4D.

When Blender speaks about their render engine, they call it “Cycles.” For
mentioning it outside of Blender context, the name “Blender Cycles” is the pre-
ferred reference.

Cycles is an unbiased, physically based, path-tracing render engine that is
designed to be interactive and easy to use, while still supporting many production
features. It comes installed as an add-on that is available by default and can be
activated in the top header. It produces an image by tracing the paths of “rays”
through the scene. Specifically, Cycles is a “backward” path tracer, which means
that it traces light rays by sending them from the camera instead of sending them
from the light source(s). This is typical. Almost all path tracers do this.

GPU rendering

Cycles supports GPU rendering which is used to help speed up rendering times.
There are two GPU rendering modes: CUDA, which is the preferred method for
Nvidia graphics cards, and OpenCL, which supports rendering on AMD graphics
cards. Multiple GPUs are also supported, which can be used to create a render farm
—although having multiple GPUs doesn’t increase the available memory because
each GPU can only access its own memory (Table 8.2).

Fig. 8.66 Cycles is used as a production rendering engine for animation movies. Frame from
“Agent 327, Operation Barbershop”—by Blender’s animation studio

8.2 Integrated (Programs with Native Ray Tracers) 273

Integrator

The integrator is the rendering algorithm used for lighting computations. Cycles
currently supports a path-tracing integrator with direct light sampling. It works well
for various lighting setups but is not as suitable for caustics and some other
complex lighting situations. Rays are traced from the camera into the scene,
bouncing around until they find a light source such as a lamp, an object emitting
light, or the world background. To find lamps and surfaces emitting light, both
indirect light sampling (letting the ray follow the surface BSDF) and direct light
sampling (picking a light source and tracing a ray toward it) are used. Cycles
defines its materials in a BSDF.

There are two types of integrators:
Progressive Integrator. The default path-tracing integrator is a true path tracer.

At each hit, it bounces light in one direction and picks one light from which to
receive lighting. That makes each sample faster to compute but typically requires
more samples to clean up the noise.

Branched Path Integrator. The alternative is a branched path-tracing integrator
which at the first hit splits the path for different surface components and takes all
lights into account for shading instead of just one. That makes each sample slower,
but reduces noise, especially in scenes dominated by direct or one-bounce lighting.

Blender Internal

BI is a biased rasterization engine, which means that it works by calculating which
objects are visible to the camera and not by simulating the behavior of light.
Blender Internal has been removed per version 2.80 (November 2018). It has been
replaced with an OpenGL-based PBR render engine that runs in the 3D viewport
and tools environment in real time.

Table 8.2 Cycle’s features by processor type

Supported features

Feature CPU CUDA OpenCL

Basic shading Yes Yes Yes

Transparent shadows Yes Yes Yes

Motion blur (https://en.wikipedia.org/wiki/
Motion_blur)

Yes Yes Yes

Hair Yes Yes Yes

Volume Yes Yes Yes

Smoke/fire Yes Yes Yes

Subsurface scattering Yes Yes Yes

Open shading language (https://en.wikipedia.
org/wiki/Open_Shading_Language)

Yes No No

Correlated multi-jittered sampling Yes Yes Yes

Branched path integrator Yes Yes Yes

Displacement/subdivision (https://en.wikipedia.
org/wiki/Open_Shading_Language)

Experimental Experimental Experimental

274 8 Ray-Tracing Programs and Plug-ins

https://en.wikipedia.org/wiki/Motion_blur
https://en.wikipedia.org/wiki/Motion_blur
https://en.wikipedia.org/wiki/Open_Shading_Language
https://en.wikipedia.org/wiki/Open_Shading_Language
https://en.wikipedia.org/wiki/Open_Shading_Language
https://en.wikipedia.org/wiki/Open_Shading_Language

Open shading language

Blender users can create their own nodes using the Open Shading Language
although it is important to note that there is no support for it on GPUs yet.

Portal lamps

Portal lamps are a new feature in Blender 2.75 that help Blender understand your
scene and thus speed up rendering significantly. To create a portal, one adds an area
lamp and checks the “Portal” box in the lamp settings in UI. That tells Blender not
to emit any light from the area lamp, but instead use it to guide rays toward the
environment light. That usually means less noise in ones render, and thus, it can use
fewer samples and finish rendering sooner.

8.2.1.1 Summary

Blender has proven to be a popular, durable, and robust program and development
ecosystem. It has grown into a worldwide community and found its way into many
films and TV studios, most design and engineering offices, and game developers. It
is also popular with animators and amateurs.

One of the unique features of Blender is the massive community of users.
Although not too many VFX professionals are using Blender for their final work,
there are hundreds of thousands of amateurs and artists who use Blender as their
free tool of choice for VFX design and rendering.

It is an easy-to-use and very flexible tool that uses a CPU or GPU to render and
is easy to set up for distributed rendering. While its appeal is its popularity, Blender
also attracts a set of artists who are trying to either make their first mark as a VFX
Pro or students trying to complete a college course in animation or a hobbyist trying
to create a masterpiece.

The downside of this is the enormous amount of rendering that is required to
complete some of these projects which on a modest or even a single high-powered
computer would take a very long time for even a minute of the reel which requires
1800 frames (much more for a VR film).

That leads them to find alternative methods such as using commercial render
farms to accomplish their rendering quickly, but, since the farms are too expensive
for most students and first-time animation artists, they run out of funds well before
the project is complete. What follows then us the students try to use free render
credits whereever they are offered, and they leave behind a trail of their frames
across any render farm that offers Blender and a small number of trial credits. That
also takes up render farm storage, Internet bandwidth, and time cleaning it out
which render farms cannot afford to support.

The major VFX studios hardly use Blender, but small/mid-size ones do already.
A good example is Barnstorm VFX in LA; they used it for The Man in the High
Castle and Silicon Valley.

8.2 Integrated (Programs with Native Ray Tracers) 275

The famous artist Jama Jurabaev, Senior concept artist at Lucasfilm, used
Blender for pre-viz and story art on Solo and Jurassic world (Fig. 8.67).

Blender is used by every studio now. But it is rising for sure.
Render time is also more of a secondary thing for studios (to decide to use

Blender). The costs of render time are high, but it is also well possible to manage,
especially if one knows the renderer well. The decision for Bender or Cycles is
mostly beneficial in the production pipeline.

Google Cloud and Azure support Cycles render well on their infrastructure. It
doesn’t have to be free, and it can be managed efficiently, for example, using
preemptive rendering, which means one gets all the spare time on servers. For that
to be effective and efficient, the render should be able to stop (and save work)
within a 30 s notice. Cycles can do that.

8.2.2 Carrara—Daz 3D

Daz Productions, Inc., commonly known as Daz 3D, is a 3D content and software
company specializing in providing rigged 3D human models, associated accessory
content, and software to the hobbyist as well as the prosumer market.

The history of Carrara started in 1989 when a group of individuals founded Ray
Dream with the idea of creating graphics software for the new Mac computers with
color displays. Two years later, the first version of their new 3D graphics program
which they named Ray Dream Studio was released.

In 1996, Ray Dream, Inc. was sold to Fractal Design (then the developer of
Corel Painter and Poser). Fractal Design Corporation was in turn acquired by
MetaTools (developer of Bryce, KPT) shortly after that. The combination of the
two companies was given the new name MetaCreations. Around the same time,

Fig. 8.67 Blender was used for concept art in Jurassic World. Source Jama Jurabaev

276 8 Ray-Tracing Programs and Plug-ins

another 3D graphics program named Infini-D was acquired from Specular
International. Now owning two 3D graphics programs, MetaCreations decided to
merge Ray Dream and Infini-D into one application giving it the new name Carrara.

In 2000, when MetaCreations was divesting itself of most of its products, it sold
Carrara to a new company named Eovia founded by former employee Antoine
Clappier. Eovia developed Carrara for several versions culminating with version 5
in 2005. That same year, Eovia shipped a new 3D modeling application, Hexagon.

In 2006, Daz 3D (developers of Daz Studio and a line of articulated 3D figures)
acquired Eovia along with Carrara and Hexagon. Daz 3D was started in 2000 by
Dan Farr.

In May 2010, the company launched Carrara 8.0. Carrara is a full-featured 3D
computer graphics application featuring figure posing and editing, as well as nature
modeling, in addition to traditional modeling, animation, texturing, and rendering
(Fig. 8.68).

Notable new features for Carrara users that are now integrated into Carrara: GPU
rendering, unbiased rendering, HDR/EXR with multi-pass rendering.

The program even supports network rendering, dynamic hair rendering, IES
photometric lighting (excellent for architecture), and displacement vertex modeling.
Rendering wise, it supports OpenGL of course and ray tracing, global illumination,
ambient occlusion, caustics and irradiance maps, and more.

Carrara’s rendering process can create photorealistic images because it considers
all of the objects in a scene simultaneously and calculates not just forms, color, and
texture, but the interaction of lights and surfaces within the scene. Carrara rendering
options include soft shadows, blurred reflections, blurred transmission, correct
ambient lighting, caustics, global illumination, ambient occlusion, HDRI, motion
blur, subsurface scattering, shadow catch, transparency with absorption, depth of
field, and more. Using the program’s multi-pass rendering, one can retouch or edit
images without having to rerender.

MatCreator is a large material multi-pack library of material/shader presets for
Carrara.

Fig. 8.68 Daz 3D’s Genesis 8 figure platforms produces photorealistic 3D composition results.
Source Daz 3D

8.2 Integrated (Programs with Native Ray Tracers) 277

Grid for Carrara

The Grid site license enables one to build a render farm of up to 50 nodes with up to
100 CPU’s, $199.

Daz Studio

Daz Studio is a software application developed and offered for free by Daz 3D. Daz
Studio is a 3D scene creation and rendering application used to produce images as
well as video and is offered for free by Daz 3D.

Using Daz Studio, one can:

• Use 3D morphing, posing, animation, and rendering
• Get GPU-accelerated real-time rendering, photorealistic results.

Daz 3D offers the following comparison of their program to others (Table 8.3).
One of the main differences between Daz Studio and other software applications

such as Poser is that Daz 3D has also included support for its various generations of
the Genesis technology which is used as the basis for its human figures (Fig. 8.69).

The Genesis 8’s figure platforms are more than just a figure or a character. It is a
real character engine that allows one to choose the desired characters, modify and

Table 8.3 Software comparison

Software Modeling Texturing Scene
building

Rigging Morphing Animation Rendering Physically
based
rendering

Cost

Daz Studio Yes Yes Yes Yes Yes Yes $0.00

Poser Yes Yes Yes Yes Yes Yes $450.00

LightWave
3D

Yes Yes Yes Yes Yes Yes Yes Yes $1000.00

3ds Max Yes Yes Yes Yes Yes Yes Yes Yes $3600.00

Maya Yes Yes Yes Yes Yes Yes Yes Yes $3600.00

Source Daz 3D

Fig. 8.69 Daz 3D’s renderer is well known for its realistic human and non-human figures. Source
Daz 3D

278 8 Ray-Tracing Programs and Plug-ins

enhance them to meet one’s needs, or even mix and blend them with other char-
acters to create a unique vision. All of this while providing an extensive library of
content will adjust to fit characters and a global network of artists.

Daz 3D’s business model is to offer free SW and be paid for models and shaders.
The company also offers a rendering service.

LuxCoreRender

The LuxCoreRender engine is a Carrara plug-in and supports GPU-accelerated
rendering and interactive photorealistic rendering (IPR) inside Carrara. It works on
both AMD and Nvidia AIBs using the OpenCL language which requires updated
graphics drivers. It also runs on CPU which supports more functions than GPU
only.

Iray

Daz 3D has a license to embed Iray into any of their products. When Nvidia did the
agreement, they included Daz Studio.

The Iray Uber shader adds an extra layer in the Base > Diffuse > Overlay
group. This layer is useful for adding details like makeup or tattoos in the diffuse
section of the Iray Uber Material.

8.2.2.1 Summary

Daz Studio is a 3D scene creation and rendering application used to produce images
as well as video. Renders can be done by leveraging either in the 3Delight render
engine or the Iray render engine, both of which ship for free along with Daz Studio,
or with a variety of purchasable add-on render engine plug-ins for Daz Studio from
various vendors and companies.

Daz 3D follows the “Razor and blades business model”—Daz Studio is the
“razor” free-of-charge core program with the required features for the creation of
imagery and animations while relegating other features to the “blades” add-on
“plug-ins,” usually commercial, which the user may add. Initially, it was possible to
create new content in another DAZ program, Carrara easily. Beginning in 2017,
Daz 3D began offering another of their programs, Hexagon, and distributing that as
a package with Daz Studio.

8.2.3 Dimension CC—Adobe

Adobe Dimension is a 3D, photo-based mock-up editor, developed and published
by Adobe Systems for macOS and Windows. It started as Project Felix on March
2017 and became Dimension on October 2017. Unlike other modeling programs,
models are not created in Dimension. Users can import 3D models created in other

8.2 Integrated (Programs with Native Ray Tracers) 279

software, assign materials, textures, and HDRI lighting via a simple drag-and-drop
workflow, and render images as layered PSD files for post-processing in Photoshop.

Dimension CC is a design tool which provides access to high-quality 3D built
from the ground up for graphic designers. It cannot create custom shapes, only
either preloaded shapes or from the Adobe Stock library. However, one can import
custom shapes with.obj files created with another 3D software.

In January 2017, Adobe announced the public beta of Project Felix—a 3D
application for graphic designers with photoreal rendering powered by V-Ray.

Project Felix is a new type of 3D application, simple for anyone to use, and
targeted at 2D designers familiar with Photoshop. It sits alongside the photograph
editing software in Adobe’s Creative Cloud.

With Project Felix, users can place, scale and rotate 3D objects, select and
customize their materials, and alter the lighting. A real-time Render Preview shows
exactly how the final image will come together (Fig. 8.70).

In October 2017, Adobe added a native rendering engine to Dimension—
Adobe’s own, in-house developed, ray-tracing engine. According to the company,
the new engine offers “faster interaction and Render Preview times.”

Adobe says V-Ray remains in the product as an option, but that that new native
renderer can be used for final-quality output as well as preview work.

Nvidia has published a blog post announcing support for its RTX ray-tracing
technology within Dimension, promising over 10� faster performance on the firm’s
RTX graphics cards.

Dimension uses three types of rendering:

• Canvas. The canvas in design mode is fast, but it is not accurate. It is designed
for one to interact with the content to make selections, move objects, and assign

Fig. 8.70 Dimension enables people with absolutely no 3D skills to create a composite shot of a
3D model within a 2D environment. Source Adobe

280 8 Ray-Tracing Programs and Plug-ins

materials. Some effects like translucent glass, soft shadows, and reflections are
not displayed on the canvas.

• Render Preview. The Render Preview window gives one a real-time update of
how one’s final render looks, every time one edits the scene. The Render
Preview gives one a sense of the final lighting, shadows, reflections, and
translucency. However, it is limited on quality to preview the render faster.

• Render Mode. Render Mode allows one to configure one’s final render and
uses a production renderer to give one the best results. One can receive the
full-quality image after the rendering is complete (Fig. 8.71).

Rendering is a complex process, and the time for rendering to finish has many
contributing factors.

• Hardware. The most significant contributing factor to rendering time is the
hardware of the machine. Rendering requires many calculations that powerful
GPU and CPU components speed significantly. Review the system requirements
for minimum and recommended hardware setups.

• Resolution. The size of the render significantly impacts the time of renders. It is
recommended that one preview renders at a lower pixel size to get a sense of the
lighting before committing to a final resolution render. One can change the size
of the render in design mode.

• Materials. The combination of materials used in the scene has a high impact on
render times. Plastics, metals, and matte materials render quickly, while
translucent materials like glass, water, or gels render slower.

Adobe is offering a wealth of materials with their new standard format Adobe
Standard Material. The format is built on Nvidia’s free MDL material format which
is being widely used in the industry. Adobe Dimension supports the OBJ model
format, which is also a broad industry standard for content creation software. The
company is also offering models and materials through Adobe Stock. New materials
can be developed with Allegorithmic’s Substance Painter and captured using Adobe
Capture.

Fig. 8.71 (Left) Interactive view of the design mode canvas. (Middle) The Render Preview
window. (Right) A final render produced from Render Mode. Source Adobe

8.2 Integrated (Programs with Native Ray Tracers) 281

8.2.3.1 Summary

Rendering is the process of turning 3D information into a 2D image. To create
images that appear photorealistic, Dimension simulates how light behaves in the
real world. When one renders an image in Dimension, the computer starts running a
simulation which follows the paths of light rays from their sources (the sun, the sky,
lights in the scene).

Adobe’s Dimension CC technology enables artists to combine 3D content with
photographs or 2D content in a realistic way. True to Adobe’s roots in commercial
art, it is ideal for product placements and advertising pieces, but it is also fun and an
excellent entry for people who want to experiment with 3D work. Adobe has been
refining its 3D tools in Photoshop and Premiere, but Dimension is a function-built
tool that addresses this one challenge—compositing 3D and 2D content. It is an
app.

The interface is simple with just a few controls. The process is that users bring in
their desired image. What’s really beautiful about it though is that it enables the
non-artist and especially those who aren’t good at 3D content creation.

8.2.4 Mantra—SideFX

Beginning from Omnibus company, two animation experts Kim Davidson and Greg
undertook the production and wrote their software, creating visual effects for film
and broadcast, finally coming up with 3D graphics software in 1987. They
developed SideFx Software and released PRISMS which laid the groundwork for
Houdini. The Academy of Motion Pictures Arts and Sciences has recognized
SideFX’s Houdini four times in four years for its breakthrough procedural based
technology and awarded the firm the prestigious Award of Merit. The company has
also been recognized as being used by several movies in the Academy awards for
their visual effects.

Mantra is an advanced renderer included with Houdini. It is a multi-paradigm
renderer with scanline, ray tracing, and physically based rendering. Mantra has deep
integration with Houdini, such as an efficient rendering of packed primitives and
volumes. Mantra has got several features embedded in the latest version. They are:

Preview rendering

The Render view shows a rendered image that updates as the user moves lights and
objects, and other parameters (Fig. 8.72).

Mini render

The Render region tool lets the user outline a rectangle in the 3D viewer that acts as
a Mini Render view or viewport. It renders that part of the view and updates the
rendered rectangle as the changes are done (Fig. 8.73).

282 8 Ray-Tracing Programs and Plug-ins

Sampling and noise

When generating an image, Mantra determines a color value for each pixel by
examining the scene behind the image plane by sending out some rays from the
camera’s position until they hit an object in the scene and it returns some piece of
information, specifically the color of the object (Fig. 8.74).

Direct and indirect rays

When the need to send more direct rays in the renders arises, it can sometimes be
challenging to separate one source of noise from another. Adding the image plane
allows the user a view of the direct contribution of each component separately.
When attempting to optimize the number of direct rays in the scene, the “Direct
Samples” image plane can be added. This plane will show the number of direct rays
used throughout the image displayed as the intensity.

Indirect rays can be described as rays which deal with objects and their surface
properties. That means that rays travel from some position in the scene in directions
determined by the shader attached to the object. Similar challenges can be faced as

Fig. 8.72 A demonstration of preview rendering. Source SideFx

Fig. 8.73 A demonstration of Mini Render. Source SideFx

8.2 Integrated (Programs with Native Ray Tracers) 283

with the direct rays when evaluating the effect of sending more indirect rays in the
renders. When attempting to optimize the number of indirect rays in the image, the
“Indirect Samples” image plane can be added. This plane will show the number of
indirect rays used throughout the image.

Volumes

Even operating at low sampling rates, it can be costly to render clean images of
volumetric data due to the shading being made to run for every step through the
volume. However, Mantra has a variety of ways to optimize volume rendering
which can decrease render times without sacrificing detail (Fig. 8.75).

One optimization, called as stochastic transparency, decouples the accumulation
of density values from the shading samples.

Houdini

In late 2018, Toronto-based SideFX released the latest Banshee version of its
leading-edge Houdini procedural animation software, which handles the many
elements of physics in CGI entertainment. From scores of smaller digital effects
workshops, in movies to big studios like Disney/Pixar and Weta Digital as well as
video games from Bethesda, Sega, Gameloft, Xbox, and others, SideFX’s Houdini
effects engine is behind an extraordinary amount of the entertainment content.

Houdini focuses on the procedurally generated parts of the action, more than the
artists’ creations themselves, and Houdini touches many more parts of an animated
scene than is obvious. It is the engine behind hair and fur and feathers that react to
wind and rain, as well as to a character’s movements. It is the engine that lets one
drape muscle, skin, and clothes onto a model and have them each react to motion
captured animation in realistic ways, with finely tuned material properties that have
their inertia, bounce, stretchiness, and tendency to tear (Fig. 8.76).

Fig. 8.74 A demonstration of sampling. Source SideFx

284 8 Ray-Tracing Programs and Plug-ins

Fig. 8.75 A demonstration of volume modification. Source SideFx

Fig. 8.76 Houdini’s white-water simulator renders video-realistic waves that interact with rocks,
sand, and one another. Credit Igor Zanic

8.2 Integrated (Programs with Native Ray Tracers) 285

It handles particle animations to depict what would happen if one emptied a bag
of marbles or wet sand. It handles flames, smoke, mist, lighting, and magical
elements that don’t follow traditional physics.

It is also responsible for procedurally generated environments, literally simu-
lating the processes of hydro and thermal erosion to turn a wrinkled surface into a
set of mountains, valleys, and rolling hills that look and feel like they’ve been there
for millions of years. Procedurally generated terrain allows one to build a set of
lumps and then simulate the processes.

Houdini also handles water effects, from ripples and splashes to a newly
developed module that generates unbelievably realistic surf, complete with foam,
spray, and backwash patterns.

The program has been behind many of the most memorable and spectacular CG
visuals audiences seen.

8.2.4.1 Summary

With the company being around for 31 years and the integration of the software
with Houdini, there is decent support for Mantra. Its ability to render complex
images in acceptable time has been the significant advantages, so is the ability to
manage workloads by its adherence to Houdini. It has been compared to Arnold
which is a winner in the speed of operations; however, Mantra comes as the better
product when quality is of importance. Moreover, with more versions to come in
the future, improved and better products are expected from the company.

8.2.5 ART (Autodesk Ray Tracer)

For years, a network of third-party solutions (including V-Ray from Chaos Group,
AccuRender from Robert McNeel & Associates, and many others) has been pro-
viding alternatives to and augmenting the existing rendering and visualization
technology inside Autodesk applications such as AutoCAD, Inventor, and Revit.
Even Autodesk’s two best-known animation and visualization products, 3ds Max
and Maya, work with a variety of third-party rendering products.

ART, also known as RapidRT, is based on technology from the Autodesk’s
acquisition of Opticore in 2007. Since then, the renderer has been integrated into
Autodesk design products such as Showcase (2009), Inventor (2011), Revit (2011),
Fusion 360 (2013), Navisworks (2013), AutoCAD (2015), 3ds Max (2015), as well
as the Autodesk Cloud Rendering service (since 2017). The cloud rendering service
is integrated into, and accessible out-of-the-box from, AutoCAD, Revit, Fusion,
Navisworks, and 3ds Max.

At the time the rendering engine in Revit was Nvidia’s mental Ray and
Autodesk had to pay to use the program. Also, they were not able to change or
enhance it. Autodesk owns the ART engine and can be modified and enhanced as

286 8 Ray-Tracing Programs and Plug-ins

needed to parallel other changes in Autodesk’s offerings. This new technology is
also available in AutoCAD, Navisworks, and Showcase.

As of April 2017, Autodesk ended the sale of mental ray Standalone to new
customers of all Autodesk products. That change did not affect existing licenses of
mental ray Standalone. However, new licenses of mental ray Standalone would
have to be obtained directly from Nvidia. On November 20 2017, Nvidia discon-
tinued mental ray.

Autodesk ART is the in-product rendering engine, allowing one to create
high-quality rendered images and animations. It is a physically based and unbiased
rendering engine. The rendering process simulates the flow of light according to
physical equations and realistic shading/lighting models to accurately represent
real-world materials. As an unbiased renderer, ART calculates the path of light as
accurately as statistically possible.

Rendered scenes are based on physically accurate lights, materials, and reflected
light. Two essential terms of lighting, reflection, and diffusion describe the most
basic separation of surface/light interactions.

Reflection: When light hits a surface boundary, some of the light will reflect or
bounce off of the surface at an opposing angle.

Diffusion: Not all light reflects from a surface. In most cases, some light pen-
etrates the illuminated object. This light is either absorbed by the material or
scattered internally. The scattered light that makes its way back out of the surface
becomes visible once more to the eye and to cameras. This light is referred to as
diffusion or diffuse light.

Using physically based rendering, different types of surfaces (such as metal,
brick, plastic, and glass) should look “natural” because of the calculated way light
reflects off of the material, and the accuracy with which shadows are created.

8.2.5.1 Summary

Autodesk has two integrated ray tracers, VRED and Raytracer. It also has a
stand-alone ray tracer, Arnold. Also, there are several plug-in ray tracers like
Nvidia’s Iray, Chaos V-Ray, and others available to Autodesk users.

8.2.6 Unreal Studio—Epic Games

The latest version of Unreal Studio has several new features such as photorealistic
rendering. BY incorporating it, the company says one can eliminate the wait for
renderings and thereby achieve stunning photorealistic visuals in real time.

Features such as physically based rendering, area lights, advanced dynamic
shadow options, screen space reflections, and lighting channels are now available.

8.2 Integrated (Programs with Native Ray Tracers) 287

Datasmith for Revit

Through Unreal Studio Datasmith, Epic has supported high-fidelity autoconversion
of data import workflows for Autodesk, 3ds Max, SketchUp Pro, and a host of
CAD formats. The company has extended Unreal Studio Datasmith with a new
exporter for Autodesk Revit; new importers for DWG and Alias Wire formats;
improved VRED/Deltagen import. Plug-ins are supplied for the source applications
that write out data in a format directly understood by the source program. Datasmith
offers final conformation and translation of many popular CAD formats. One can
convert entire scenes into Unreal Engine, automating many of the time-intensive
processes involved with data prep.

Epic Unreal announced its acquisition of Datasmith at SIGGRAPH 2017. The
tool was originally introduced at SIGGRAPH 2016 as Motiva Unreal Scene (MUS).
Datasmith enables structured transfers of necessary data from CAD models to game
engines where the data can be used in content creation. It supports 20 CAD and
digital content creation sources as well as modeling and animation tools such as
Autodesk 3ds and Max. As an interesting side note, the Datasmith effort is being led
by former Autodesk director Ken Pimentel who has long experience in professional
visualization and animation.

Epic announced plans to offer the Datasmith toolbox through a private beta
program. Epic has been saying that the ability to work in real time with rendering is
the game changer for game engines, but without good ways to get and manage
content, the game never really gets started. At Autodesk University, where the
Unreal team pitched their engine for use with CAD data in manufacturing, AEC,
and content creation, Epic’s Mark Petit told the audience that Unreal customers
want real time in every aspect of content creation. “They don’t want V-Ray in real
time, they want everything: the physics, the materials, everything.” Moreover, that
means dealing with lots of data, but only the necessary data. Petit said they have
also found that customers don’t want to pay for services to get the data into for
Unreal Engine. “That’s why we bought Datasmith.”

Unreal has also been able to incorporate Alembic into its pipeline to deal with
assets from 3D animation.

Datasmith helps users to import models with all the necessary components
including assembly components, surfaces, materials, physics, animations, into
Unreal Engine with assets organized in a way the application understands and users
can also see and understand.

Enhanced 3ds Max material translation

The company claims that it has improved BRDF (see Glossary) matching from
V-Ray materials (especially for metal and glass) and added support for most
commonly used 3ds Max map (Fig. 8.77).

Also, the company has added the ability to translate 3ds Max material graphs to
Unreal graphs on export, making the materials more straightforward with which to
work and understand.

288 8 Ray-Tracing Programs and Plug-ins

Epic has also improved its Nvidia MDL and X-Rite AxF import capability and
improved the shading fidelity.

Jacketing and defeaturing

Traditionally, it can take a bit of work and time to prepare and optimize a complex
CAD model for real-time performance (Fig. 8.78).

With Unreal Studio, Epic has added features such as jacketing, which auto-
matically hides or removes unseen elements, and defeaturing, which lets one
remove unnecessary details—like through-holes, blind holes, and protrusions.

Sun position calculator

One can now set the azimuth and altitude of the Sun in Unreal Engine based on the
latitude and longitude of ones intended location, and for a specific time and date.
That enables the user to accurately visualize the lighting and shadowing effects the
Sun will have on their design and the surrounding environment.

8.2.6.1 Summary

Unreal Studio is a new real-time visualization product based on Unreal Engine and
its Datasmith toolkit. The toolset is primarily intended to provide architects and
designers with a more user-friendly way to produce photorealistic content. Unreal
Studio is the architectural workspace where one imports all the files and adds the
materials, and Unreal Engine is the renderer. However, one can also import

Fig. 8.77 Unreal Studio has expanded its material library’s support. Source Epic

8.2 Integrated (Programs with Native Ray Tracers) 289

materials and lights from 3ds Max too. Datasmith streamlines the process of
importing 3ds Max scenes and CAD data into Unreal Engine, so Unreal is a lot
more than a renderer.

8.2.7 Visualize—Dassault Systèmes/SolidWorks

Founded: 2002 by Philip Lunn (Bunkspeed)
CEO (now): Gian Paolo Bassi (SolidWorks)
Status: Public
Headquarters: Waltham MA
Number of employees: 1.790
2018 Revenue: $348.4M (est)
Price: $2995*

SolidWorks Visualize is a rendering tool offered by Dassault Systèmes that is
derived from Bunkspeed. Dassault has three ray-tracing renderers: 3Dexcit,
PhotoView 360, and Visualize; all three can be obtained in the company’s main
program 3Dexperience. SolidWorks Visualize is a stand-alone product *
SolidWorks Visualize Standard is available at no cost for SolidWorks Professional
and Premium customers on subscription and doesn’t tie up one’s SolidWorks CAD
license.

Fig. 8.78 Jacketing and defeaturing in Unreal Studio. Source Epic

290 8 Ray-Tracing Programs and Plug-ins

Dassault Systèmes acquired SolidWorks (founded in 1993) in 1997. SolidWorks
annualized revenues in 1997 were approximately $25 million.

Bunkspeed (founded in 2002 by Philip Lunn) was an independent privately held
ray-tracing company in Carlsbad, California, that offered a ray-tracing program the
company developed. The company’s customers in late 2013 included Audi, Cartier,
Dell, Ford Motor Company, Gensler, Gulfstream, Harley-Davidson, Honda, Jaguar,
Kohler, Land Rover, Newell-Rubbermaid, Nike, Nissan, Pininfarina, Procter &
Gamble, Siemens, similar to many of SolidWorks and Dassault’s. Bunkspeed
SHOT sold for $995, about the same as the competitive KeyShot ray tracer. Before
the acquisition, the company had 12 employees and did $650k in sales.

In July 2010, Bunkspeed released a revamped version of Shot, an application for
making realistic renderings quickly. It was the first end-user application of mental
images Iray interactive realistic rendering technology. Iray was able to employ
Nvidia GPUs to run ray-tracing algorithms. At the time, the company asserted ray
tracing provided the only physically correct rendering. Mental Images became a
subsidiary of graphics-chip maker Nvidia in December 2007.

In October 2013, Real-time Technologies (RTT) acquired Bunkspeed. RTT AG
was founded 1999 in Munich and was listed on the Frankfurt Stock Exchange.

Then, in December 2013, Dassault Systèmes acquired RTT. RTT also had a
similar customer base and some that used Siemen’s software. RTT’s customers at
the time consisted of Adidas, Audi, BMW, Daimler, EADS, Electrolux, Ferrari,
General Motors, Harley-Davidson, Porsche, The North Face, and Volkswagen. The
RTT Group employed over 750 staff at 15 locations in 2013.

Visualize

Dassault Systèmes added Bunkspeed rendering software to SoildWorks in 2015.
The company renamed the product Visualize as a stand-alone suite of rendering
tools included with SolidWorks 2016 Professional and Premium versions.
SolidWorks Visualize will be included in subscriptions. Based on Bunkspeed,
Visualize is designed for people who want “to take a picture” of their work
(Fig. 8.79).

Visualize already comes with an appearance library that is community-driven,
and new appearances are being added frequently. At the time of this writing,
visualize only recognizes the native “.svap” appearance file format. That means that
third-party appearances cannot be imported for use in Visualize.

However, there is a workaround process by which the Luxology Modo
appearances available in PhotoView 360 can be “imported” and saved to the
SolidWorks Visualize appearance library.

The latest release of the tool is its 2018 version which has a decent number of
additional features over their previous release like new area lights. Now, the user
can create light sources which can be simulated as rectangles, disks, spheres,
cylinders, and many more. With extreme efficiency of lighting the exact position the
user wants, these new area light sources are also available in “Fast mode” and can
replace the manual techniques available in the earlier versions. The latest versions

8.2 Integrated (Programs with Native Ray Tracers) 291

also boast of “on-the-fly” light creation which is synced with the camera’s position,
direction, or wherever the user wants the light to shine.

The latest version has several additions over the previous versions. They are:

Refreshed user interface

The first feature which catches the attention of every new user is the look and feel of
the interface in Visualize 2018. The buttons of the tool are mostly in the same
position though refreshed to give a new modern look and give the benefit of
touch-enabled devices to the customers. SolidWorks Visualize has the goal of being
sleek in the options provided to the user which the company claims makes its use
very comfortable. Several of the workflow issues brought out by their customers of
old versions have been resolved. Subtabs in the Palette keep settings and features
organized, which means less scrolling. There is a new View Presets button in the
Main Toolbar, with a lock and zoom to fit icons. The tool can also be themed either
Light or Dark.

Better integration with SolidWorks files

The SolidWorks files were not entirely integrated with the older SolidWorks
visualize tool, hence causing difficulty in importing cameras, lights and other
custom saved views. The 2018 version comes equipped with this feature and allows
the user to get the final image much faster than before. This new feature is handy for
the PhotoView 360 users as well. SolidWorks completely revamped the Decal
System allowing the user to import any decal types from their SolidWorks files.
Several other enhancements were also added, including better initial decal place-
ment, several masking options, reordering layered decals, and increased stability.

Fig. 8.79 Ray tracing a model in Visualize. Source Dassault Systèmes

292 8 Ray-Tracing Programs and Plug-ins

Create virtual reality content

Creating graphics content involves the final review process and finalizing it. With
the older version, having an issue with the review process, which involved the
annoying process in going through the entire visual tenure, the 2018 version comes
equipped with the ability to preview the image or graphics before rendering.
A proper stereo (left eye, right eye) can be created as well; however, it is not a must
for 360 VR content. An updated feature in the new tool is the ability to create
animations for VR with this new 360 camera.

Area lights with ease of placement

Visualize 2018 has introduced a new way of lighting places of the user’s choice.
This new functionality is known as the new “Area” lights which can be in multiple
shapes (sphere, plane, tube, disk) and can be used to recreate any real-world
lighting environment. These new area lights are said to cast shadows extremely well
which look much closer to the actual world than its older versions (Fig. 8.80).

These new area lights can work in “Fast” mode which can conduct 20 times
faster renders. That is a great parameter for many of the users.

Fast raytracing mode switch

SolidWorks Visualize includes an option on Fast Render Mode: Speed or Quality.
You can access this switch from the Main Toolbar.

Fast Render Mode includes photorealistic features found in Accurate mode, but
with the faster ray-tracing speeds of Fast mode. Fast Render Mode allows for
greater usage of Fast ray-tracing mode throughout more and more projects.
Accurate ray-tracing mode is only needed for interior scenes.

Fig. 8.80 Lighting makes all the difference in a rendering of a shiny product with no flat surfaces

8.2 Integrated (Programs with Native Ray Tracers) 293

• Speed: Recommended for fastest interactivity in the Viewport. Speed removes
self-shadowing and time-consuming reflections. Speed is ideal for projects
without glass, clear plastics, or transparent objects.

• Quality: Recommended for final renders.

Ray tracing is a technique for rendering 3D scenes. Ray tracing traces the path of
every ray of light from its source until it either leaves the scene or becomes too
weak to have an effect. The term also applies to the reverse method: tracing the path
of every ray of light from the camera back to the light source.

PowerBoost (available in SolidWorks’ Visualize Professional) provides a
Render Mode that streams ray tracing directly to your Visualize Viewport. An
Internet connection is required, and a multi-GPU machine for a Visualize Boost
computer or a Nvidia Quadro VCA is recommended for the best performance.

Plug-in capability with Iray support

Dassault Systèmes SolidWorks new photorealistic rendering software can also work
with Nvidia’s Iray technology, progressively refining its image through constant
feedback.

Visualize started as a third-party application; therefore, it can import more than
20 file types for other design tools including:

• 3ds Max
• Alias, Rhino Autodesk
• FBX
• Maya (binary)
• Pro/Engineer
• SketchUp

Several other CAD formats are also being added. Nvidia is happy with the move
because Bunkspeed is built on Nvidia’s Iray technology and optimized for Nvidia’s
GPUs. SolidWorks is also promoting rendering as part of the design process, a tool
that can validate design ideas before they are committed to prototype. Also, ren-
dered models of production designs can be delivered to marketing earlier, speeding
up the concept-to-design-to-market pipeline.

8.2.7.1 Summary

Although Dassault Systèmes offers three ray-tracing renderers (3Dexcit, PhotoView
360, and Visualize), it did not create any of them, and all are the result of acqui-
sitions or partnerships. However, all three can be obtained in the company’s main
program 3Dexperience (Fig. 8.81).

Dassault is a giant company (3.3 Billion Euro 2017), and its 3Dexperience
platform presents all the company’s brand applications, serving 12 industries, and
provides a portfolio of industry solution experiences. 3Dexperience is not a thing,
other than maybe a UI, and if you search for it, you won’t find a technical

294 8 Ray-Tracing Programs and Plug-ins

description of it. The platform is available on premise and on public or private
cloud. Enabled with our 3Dexperience platform, the platform is about eliminating
silos within companies, moving from a static, file-based world to a digitally con-
nected world, where live data drives innovation, processes, and business decisions.

8.2.8 PhotoView 360—Dassault Systèmes/SolidWorks

Visualize is not the only rendering tool in the SolidWorks arsenal, and PhotoView
360 has been around since the 2009 release. PhotoView 360 is a visualization and
rendering solution included with SolidWorks Professional and SolidWorks
Premium. Providing a highly interactive environment for viewing designs as well as
for creating photorealistic renderings can be used to showcase your designs.

Based on SolidWorks Intelligent Feature Technology (SWIFT), the software
helps CAD users of any level achieve expert results. Its simple-to-use progressive
rendering tools let users’ photorealistically render a scene while allowing the user to
continue working on the same scene, unlike software that forces users to wait until
scenes are complete.

PhotoView 360

PhotoView 360 tool for SolidWorks is built on Modo technology from The
Foundry. The news that Visualize was going to be widely available was met with
some apprehension by fans for PhotoView 360, which is lauded for its ease of use.
So far, though, SolidWorks is just adding on Visualize as another rendering option.

SolidWorks Visualize is a rebranded Bunkspeed, which Dassault Systèmes got
in late 2013 when it acquired RTT, whom earlier that year acquired Bunkspeed (see
Visualize—Dassault Systèmes/SolidWorks) (Fig. 8.82).

The Modo for SolidWorks kit is for design and engineering visualization pro-
fessionals wanting to import SolidWorks parts, bodies, and assemblies into Modo.

Fig. 8.81 Dassault’s 3Dexperience UI logo

8.2 Integrated (Programs with Native Ray Tracers) 295

The kit can be used to convert bodies and part to meshes or static meshes for further
editing, animation, or even dynamic simulation within Modo.

Proof sheets

Proof sheets have been added to PhotoView 360 within the options. Proof sheets
offer turnkey settings that optimize lighting options to ensure a quality rendering.
That is the type of thing that is easy to play with but hard to get exactly right, and
these proof sheets offer a compelling shortcut to making things look polished.

Dassault has three ray-tracing renderers: 3DEXCITE, PhotoView 360, and
Visualize; all three can be obtained in the company’s main program 3Dexperience.

3DEXCITE—Dassault Systèmes

In 2014, Dassault Systèmes created a new brand, 3DEXCITE, from the acquisition
of RTT providing professional high-end 3D visualization software, marketing
solutions, and computer-generated imagery services to extend the company’s
offerings to marketing professionals (Fig. 8.83).

Dassault acquired Munich-based Real-time Technologies (RTT) through a stock
buyout in 2013. At the time, Dassault said it planned to build a new brand to extend
its business into marketing, a long-held ambition of Dassault’s management. The
deal was reported to be valued at €179 million about 2.4x RTT’s revenues for
2012, and RTT was founded in 1999 and had seen steady growth. It reported €73.7
million in revenue for 2012, a 34% growth over 2011. With the acquisition,
Dassault got a complete product visualization business division with desktop ren-
dering from Bunkspeed and rendering and visualization tools and services from
RTT.

RTT’s technology included Deltagen and PictureBook, software used to create
visualizations for sales and marketing tools and also for product prototyping.

Fig. 8.82 PhotoView 360 example rendering. Source SolidWorks

296 8 Ray-Tracing Programs and Plug-ins

In 2014, 75% of the company’s business was in marketing, and 80% of their
business came from the automotive industry. Only about 25% of the company’s
business comes from software sales.

3DEXCITE Deltagen ray-tracing software has been positioned for realistic
display of 3D visualizations with real-time interaction. Dassault says it supports the
full value chain from design and engineering to marketing and sales. The company
claims that rapid virtual prototyping and validation provide earlier product maturity
using Deltagen.

With the launch of 2018X, 3DEXCITE debuts software tools for content cre-
ation and experience staging. The company says they have developed a simple,
intuitive interface that will be appreciated by its existing customers and in particular
the new users. Being hardware agnostic like other tools from 3ds/3Dexperience, it
allows the user to be logged on to any system without any special hardware
requirements.

Naturally, there was some overlap in the customer lists of Dassault and RTT in
automotive including Audi, BMW, Ferrari, Toyota, the Volkswagen Group, and
GM. Also GM is interesting because it is also a customer of Siemens. Siemens had
been working with RTT to integrate visualization tools into Siemens’ products.
Siemens held an equity position in RTT since August 2010, and in 2012, Ralf
Schnell of Siemens’ venture capital group took a seat on the RTT board.

The deal also tightened some relationships already in place. Nvidia had been
involved with RTT because RTT takes advantage of Nvidia’s technology on every
level, from CUDA to Grid. Also, Bunkspeed uses Nvidia’s Iray technology.
Dassault and Nvidia have demonstrated productivity gains with Nvidia’s Maximus
technology in rendering, design, and simulation. Bunkspeed’s business model
wasn’t working—they wanted more money for rendering than most people wanted
to pay—but as a tool for push-button rendering for consumers who might want to
try out different “looks” or for designers who want to demonstrate the superiority of
their design, it is an asset.

Fig. 8.83 Realistic ray-traced Corvette rendered using 3DEXCITE Deltagen. Source Dassault
Systèmes

8.2 Integrated (Programs with Native Ray Tracers) 297

8.3 Plug-in Programs

Included in this section are the most popular (but not exhaustively all) ray-tracing
programs that are plug-ins for other programs such as 3D modeling, medical, AEC,
CAD, and visualization. The following table summarizes the plug-ins and the
programs they are available for. This list changes monthly, and so this table should
be viewed as a snapshot and general view of the market and not a comparative or
shopping guide (Table 8.4).

Table 8.4 is a partial listing of the most popular programs.

8.3.1 3Delight—Illumination Technologies

Their current product line includes 3Delight, 3Delight for Daz Studio, Maya and
3Delight for Katana. They also made public their upcoming rendering service in the
form of 3Delight Cloud which is still in testing.

8.3.2 Arnold—Autodesk

Arnold has supported plug-ins available for Maya, Houdini, Cinema 4D, 3ds Max,
and Katana. The Arnold plug-in for Softimage is now available under an Apache2.0
open-source license.

The company points out that there are several players in the space, including
RenderMan, V-Ray, Redshift, Octane, and others. Autodesk DCC tools like Maya
and 3ds Max are built to make third-party rendering easy to implement, and the
company believes that the open ecosystem is essential, which is also why Arnold
licenses include a range of third-party plug-in integrations such as 3ds Max, Maya,
Cinema 4D, Houdini, and Katana.

The company points out that there are several players in the space, including
RenderMan, V-Ray, Redshift, Octane, and others. Autodesk DCC tools like Maya
and 3ds Max are built to make third-party rendering easy to implement and the
company believes that the open ecosystem is important, which is also why Arnold
licenses include a range of third-party plug-in integrations such as Cinema 4D,
Houdini, and Katana.

8.3.3 Corona Renderer—Chaos Group (Legion Team)

Corona Renderer is a photorealistic renderer which has the capacity of working in
biased and unbiased capacities. The tool is available for Autodesk 3ds Max, as a
stand-alone CLI application and Maxon Cinema 4D.

298 8 Ray-Tracing Programs and Plug-ins

T
ab

le
8.
4

A
ta
bl
e
of

pr
og

ra
m
s
[y
]
w
ith

pl
ug

-i
ns

[x
]

3D
el
ig
ht

C
yc
le
s

Pr
oR

en
de
r

A
rn
ol
d

C
or
on

a
Ir
ay

K
ey
Sh

ot
L
um

io
n

L
ux

C
or
eR

en
de
r

M
ax
w
el
l

R
ed
sh
if
t

V
-R
ay

A
rc
hi
C
A
D

Y

A
ut
od

es
k
3d

s
M
ax

Y
Y

Y
Y

Y
Y

Y

A
ut
od

es
k
K
at
an
a

Y
Y

Y
Y

A
ut
od

es
k
M
ay
a

Y
Y

Y
Y

Y
Y

Y
Y

A
ut
od

es
k
R
ev
it

Y
Y

B
en
tle
y
M
ic
ro
St
at
io
n

Y

B
le
nd

er
Y

Y
Y

Y

D
as
sa
ul
t
So

lid
W
or
ks

Y
Y

D
as
sa
ul
t
C
at
ia

Y

D
az

St
ud

io
Y

Y

E
pi
c

y

fo
rm

Z
Y

H
ou

di
ni

Y
Y

Y

L
um

is
ca
ph

e
Y

M
ax
on

C
in
em

a
4D

Y
Y

Y
Y

Y
Y

Y
Y

M
od

o
Y

Y
Y

N
uk

e
Y

Pi
xa
r’
s
U
SD

H
yd

ra
vi
ew

po
rt

Y

P
TC

C
re
o

Y

R
hi
no

Y
Y

Y
Y

Y
Y

Y

Si
em

en
s
N
X

Y
Y

Sk
et
ch
U
p

Y
Y

Y
Y

V
ec
to
rw

or
ks

Y

8.3 Plug-in Programs 299

The development of Corona Renderer started in 2009 as a solo student project of
Ondřej Karlík at Czech Technical University in Prague. Corona has since evolved
to a full-time commercial project after Ondřej established a company together with
the former CG artist Adam Hotový and Jaroslav Křivánek, Associate Professor and
Researcher at Charles University in Prague. In August 2017, the company became
part of Chaos Group, allowing for further expansion and growth.

Chaos Group positions its renderer as being “Proudly CPU Based.” The com-
pany states that the Corona Renderer does not need any special hardware to run. It
uses the CPU, and one can run it on any processor from Intel or AMD released in
the past decade.

Corona is intended mainly for use by power users and third-party plug-in
developers with particular exporters. It does not come in a “studio” version with
graphics interface. All from the host application properties are exported into Corona
Renderer, so developers of exporters have access to all features.

One cannot create a scene in a 3D application that does not have a Corona
Render plug-in and render that scene using Corona Standalone. The only option
available for now is to import the model to other supported application (3ds Max,
Cinema 4D, etc.), or to create an exporter script that saves the model, lights, and
materials as an OBJ file.

Corona Renderer 2.0 for 3ds Max came out in June 2018, while the previous
version 1.7 came in October 2017. The company claims to have focused on the
following points in the latest version:

• Heterogeneous media (FumeFX, OpenVDB, Phoenix FD)
• Initial steps in V-Ray compatibility
• About 110 new materials introduced in the material library
• The introduction of Corona toolbar
• An overall reduction in memory requirements by 5–10% in almost every scene
• Improved denoiser for bump mapping
• Updated material override functionality option to preserve predefined materials.

Corona Renderer does not need any special hardware to run. It uses the CPU and
can run on any processor from Intel or AMD released in the past decade. Corona
Renderer uses Intel’s Embree ray-tracing kernels.

Adding feature to heterogeneous media shading

A support feature was introduced for various volumes which include Phoenix FD,
FumeFX, OpenVDB (see Glossary), and 3ds Max texture maps.

Phoenix FD is a V-Ray feature that is characterized by the same technology
which lets Corona Renderer generate 3D volumes utilizing the corona volume
material. However, there are a few limitations that only Phoenix FD 3.10.00 or
newer support such as foam rendering and isosurface rendering modes which are
currently not supported by Corona.

FumeFX is similar to Phoenix FD. However, there are a few shortcomings as
well such as only FumeFX 5.0 or newer is being supported and options like Motion

300 8 Ray-Tracing Programs and Plug-ins

blur, space warps, illumination maps, and the channel data shader are not covered
by Corona 2 (Fig. 8.84).

Open VDB (see Glossary) support (Corona Volume Grid)—Open VDB files
allow the user to store voxels in a 3D grid, along with optional additional data such
as density, velocity, and temperature. These files can be created using a wide range
of software like SideFX Houdini and Phoenix FD and can be loaded and rendered
using the Corona Volume Grid Object, which then allows the properties of
absorption, scattering, and emission to be set and can be driven by the parameters of
density, velocity, temperature, etc.

3D volume materials

There are two nodes in the corona volume material—the old “on-surface” mode and
the new “inside volume” mode. The new mode permits the corona volume material
to render exact volumes inside the objects, in place of simple calculation of the
surface of the object. The tool can work with old versions of 3ds Max noise maps
which calculate noise in 3D space. The company claims that the uses of this tool are
tremendous which would allow one to create low-lying mist, clouds, ice, and other
atmospherics and used them either on its own or with other tools like Corona
distance map (Fig. 8.85).

Additional support for core V-Ray features

Corona Renderer can support V-Ray Light (plane, disk, mesh, and sphere) and
V-Ray MTL. However, there are a few limitations as well such as the renderer
supports only images created in V-Ray 3.60 or later and all the exclusion or
inclusion list of V-Ray light requires the installation of V-Ray.

Fig. 8.84 Heterogeneous media shading. Source Corona Renderer

8.3 Plug-in Programs 301

Corona Camera, new bokeh controls

The corona camera has been added with advanced bokeh controls for center bias,
vignetting, and anisotropy. Positive values of center bias expand the bokeh, while it
contracts with the negative scores. Similarly, positive values of vignetting presents
a harder outside edge to the bokeh, while negative values do the same toward the
center of the image (Fig. 8.86).

Corona Renderer has received many useful ideas and comments from its users.
Most of them prefer this tool because of its speed where it has earned much
applause. There are others who prefer it because of reduced dependency of GPU as
Corona is a CPU-based rendering tool (Fig. 8.87).

Users also like the quality of the output, and that is one reason for its growth in
the past years. However, there are a few areas of improvement suggested by the
users. Memory becomes an issue particularly in case of big/complex scenes with
frames over 4K which need lots of RAM, even 32 GB of RAM may not be enough.

8.3.3.1 Summary

Being a new player in the group, Corona Renderer has built a good market and
reputation for itself with its ability to handle operations with good speed and other
benefits. There is fierce competition with V-Ray, Arnold, and others, and even

Fig. 8.85 Old “on surface” versus new “inside volume”. Source Corona Renderer

302 8 Ray-Tracing Programs and Plug-ins

Fig. 8.86 Material Library Update. Source Corona Renderer

Fig. 8.87 Motion blur example. Source Corona Renderer

8.3 Plug-in Programs 303

though companies like Chaos Group/V-Ray have been in the market for more than
20 years, Corona Renderer can produce a decent level playing field for itself and its
products.

8.3.4 Cycles—Blender

The ray tracer found in Blender is also available as a plug-in for other programs.
Cycles is natively integrated into Blender, Poser, and Rhino. The Cycles 4D plug-in
for Cinema 4D and a plug-in for 3ds Max is available as well.

8.3.5 finalRender—Cebas

Cebas partners mainly with Autodesk and develops on Autodesk industry standard
3D software: 3ds Max. Autodesk has been incorporating cebas technologies into
their offerings for many years. finalRender is a ray-tracing program developed as a
plug-in renderer for 3ds Max.

Cebas says finalRender is the new breed of light simulation software offering
unique algorithms and approaches to light simulation not found in any other ren-
derer for 3ds Max. finalRender was the first renderer to practically apply exact
global illumination rendering to the large-scale vfx movie production with the film
2012.

finalRender uses spectral wavelengths in real-world physics, and Monte Carlo
sampling simulates light energy transport within a 3D scene that recreates optical
effects on materials which are impossible for older generation ray-tracing systems.
Cebas claims that spectral-based rendering, the way it is used in finalRender, is able
to simulate effects such as diffraction, dispersion, absorption, iridescence, and
interference (Fig. 8.88).

Cebas says finalRender serves to debunk the myth that unbiased rendering needs
unlimited random rays like natural light, resulting in speed lost and noise. Cebas
claims to have developed a solution that resolves the speed and the noise issue
while providing photorealistic accuracy. They call the technology Drop 1, and it
uses adaptive sampling and an AI Denoiser to interpret and recalculate pixels in a
complex feedback loop while staying faithful to unbiased rendering and physics
accuracy. Texture baking (render to texture) is now incorporated as well.

The company also claims that finalRender is the first renderer of its kind for 3ds
Max to offer a rendering engine that supports GPU rendering or pure CPU, as well
as both technologies at the same time. Cebas calls this feature trueHybrid tech-
nology and says it allows the user to experience all the power within one appli-
cation, no need for a separate GPU only product.

finalRender supports all of the standard lights in 3ds Max and comes with its
own optimized and fully multi-threaded IES light. This native area light is

304 8 Ray-Tracing Programs and Plug-ins

configurable and is meant to replace all light types one might need. Setting up lights
and especially changing light setups becomes as simple as clicking a button on the
mouse.

finalRender offers the benefit of multiple global illumination engines for artists
to choose from. The newest GI rendering method offers an unbiased, physically
accurate path-tracing method, with fast GPU-based global illumination.

Other options or methods include:

• Irradiance caching
• Unbiased rendering
• Light Cache rendering

Core render qualities (real time and non-real time):

• Newly developed: content-aware sampling (CAS)
• Physically based wavelength/spectral light transport
• Biased and unbiased rendering including direct lighting/ambient occlusion

support
• Full physically based IES light support
• Physically based material shading model
• Highly optimized geometry instancing for GPU and CPU.

One of the issues in GPU renders is noise or grain. Cebas developed a new
sampling method that smoothens out such renders and produces more even and
smoother results.

Fig. 8.88 A soap bubble rendered with spectral wavelength rendering. Source Cebas

8.3 Plug-in Programs 305

The program comes with dedicated materials and supports the thousands of
preset Autodesk materials in addition to the mental ray materials. However, to
deliver the best possible result with the utmost control, finalRender offers a dedi-
cated car paint material. It features metallic flakes, special coating, and a reflection
layer.

8.3.5.1 Summary

Cebas has proven that a company can specialize on a platform (3ds Max) and offer an
esoteric very technical product and do quite well. Many of its competitors offer
plug-ins for several programs and as such may be spread thin regarding support and
feature development. Furthermore, 3ds Max is a somewhat specialized program
appealing to a specific segment of themarket,mainlymedia and entertainment (M&E).

8.3.6 Iray—Nvidia

As mentioned above (see Sect. 8.1.8.2), in December 2015, Nvidia announced it
would enter the plug-in market with versions of Iray for popular design and
modeling programs.

Nvidia’s software integration partners have created state-of-the-art workflows
that give one access to Iray within popular 3D content creation applications such as
Autodesk Maya, Autodesk 3ds Max, and McNeel Rhinoceros.

8.3.7 KeyShot—Luxion

A KeyShot plug-in links the 3D modeling software and KeyShot together, rather
than putting KeyShot inside the modeling application. Plug-ins add a menu button to
one’s 3D software that transfers 3D data and other model information into KeyShot.

Luxion has one of the most extensive lists of plug-ins for KeyShot of all the
companies in the industry.

3D systems 3ds max Alibre AutoCAD 360 Cinema 4D

Creo Deadline Delcam ESKO Geomagic Design

IronCAD JewelCAD Maya NX Probeer

Rhinoceros SketchUp Solid Edge SolidThinking SolidWorks

SpaceClaim ZBrush ZW3D

Plug-ins are developed by Luxion or by its partners who distribute and support
them.

306 8 Ray-Tracing Programs and Plug-ins

8.3.8 Lumion

Lumion is both a plug-in and a stand-alone ray-tracing program and is discussed in
the stand-alone section above (Sect. 8.1.10). It is compatible with SketchUp, Revit,
ArchiCAD, MicroStation, Allplan, Vectorworks, Rhinoceros, and 3ds.

8.3.9 LuxCoreRender

LuxCoreRender is an open-source physically based renderer that began in 2007.
The program is an undertaking of hundreds of people sharing their knowledge in
computer graphics papers, books, Web sites, and university courses. Among all
these people, LuxCoreRender started particularly thanks to all involved in the
development of LuxRender v1.x, to Matt Pharr and Greg Humphreys and their
excellent book and project. LuxRender is based on PBRT, the unbiased ray tracer
developed by Matt Pharr and Greg Humphreys for academic use. Pharr and
Humphreys were kind enough to provide the source code of their program under the
terms of the GPL, thus making the program free software.

In 2007, a small group of programmers led by Terrence Vergauwen took on the
challenge to modify the program and make it suitable for artistic use. Late 2007, the
initial version of LuxRender was released. With the release of LuxRender 0.5 in
June 2008, the program was considered to be usable enough for general use. Since
then, the rendering speed and the number of features and available exporters have
been growing steadily.

During the 2017 winter, LuxCoreRender v2.0, the company defined it as the
LuxCore API render package, dropping all old code related to LuxRender v1.x.
A new Web site, forum, wiki, and Blender exporter were developed in order to
mark a new fresh project restart.

Lux(Core)Render is one of the oldest open-source projects (Fig. 8.89).
LuxCoreRender is a physically correct, unbiased rendering engine. There are

LuxCoreRender plug-ins for 3Ds Max, Blender, Maya, Modo, Cinema 4D, Daz
Studio, Poser, SketchUp. All the code included in LuxCore repository was released
under a new license: Apache License v2.0.

8.3.9.1 Summary

LuxRender was a free and open-source software rendering system for physically
correct image synthesis. The program runs on Linux, Mac OS X, and Microsoft

8.3 Plug-in Programs 307

Windows. The project changed the name in the last part of 2017 and restarted with
the name of LuxCoreRender.

LuxRender features a 3D renderer; it relies on other programs (3D modeling
programs) to create the scenes to render, including the models, materials, lights, and
cameras. This content is then exported from the application it was created in for
rendering using LuxRender. Fully functional exporters are available for Blender,
Daz Studio; partially functional ones for Cinema 4D, Maya, SketchUp, and XSI.
LuxRender is also fully supported as production renderer in 3ds Max.

LuxRender was very popular with Blender users. However, since Blender
developed its ray tracer, Cycles, Blender users have gravitated toward it. Luxrender
has a different approach than Cycles, so it always was two separate independent
projects; however, LuxRender is still available for Blender. https://www.blender.
org/download/external-renderers/.

Fig. 8.89 Lux and Love by Charles Nandeya Ehouman (Sharlybg) using BBBB and
LuxCoreRender

308 8 Ray-Tracing Programs and Plug-ins

https://www.blender.org/download/external-renderers/
https://www.blender.org/download/external-renderers/

8.3.10 Maxwell

Maxwell has a fully integrated workflow so that one can set up render scenes from
the comfort of your usual 3d/CAD platform. There is a wide range of Maxwell
plug-ins from Next Limit.

3ds Max ArchiCAD Softimage Bonzai3d Cinema 4D

formZ Houdini Lightwave Maya Modo

Revit Rhinoceros SketchUp SolidWorks Nuke

Photoshop After Effects

Maxwell SketchUp

The latest version of the Maxwell Sketchup was launched in early 2018. It allows
the user to work at ease within the SketchUp Make and Pro. This product has been
introduced for rendering in SketchUp with a simple but extensive Maxwell toolbar.
It brings on the table all the advanced features the new version of Maxwell in a
simple yet detailed manner (Fig. 8.90).

The Maxwell 4.2 has worked on several of the challenges their users faced
earlier. They became much faster than the older version, and they gave the option of
either CPU or GPU for rendering. That helps in the cost/speed ratio for the system.

Moreover, their introductions of multi-light stand-alone, new searchable library
and multiple host support are beneficial for the user. However, they lack regarding
GPU rendering support for MAC users. Maxwell always had a reputation for
delivering high quality, but their speed of operation had been an issue for them
which they have worked upon in Maxwell Renders 4.2. However, their usage

Fig. 8.90 Using Maxwell renderer in SketchUp. Source Next Limit

8.3 Plug-in Programs 309

remains simple but exhaustive and is supposed to be their biggest strength in the
years to come.

Maxwell targets their 3D rendering software at architects and designers.

8.3.11 ProRender

ProRender is both a plug-in and a stand-alone ray-tracing program and is discussed
in the stand-alone section above (Sect. 8.1.10). It is available as a plug-in for

Autodesk 3ds Max Autodesk
Maya

Blender Maxon Cinema
4D

Modo by
Foundry

Pixar’s USD Hydra
viewport

PTC Creo

8.3.12 Redshift

Redshift is both a plug-in and a stand-alone ray-tracing program and is discussed in
the stand-alone section above (Sect. 8.1.17). The company has plug-in for 3ds Max,
Cinema 4D, Houdini, Katana, Maya, and Softimage.

8.3.13 V-Ray, Chaos Group

V-Ray is both a plug-in and a stand-alone ray-tracing program and is discussed in
the stand-alone section (Sect. 8.1.23).

V-Ray is available as a plug-in for several popular programs:

V-Ray for 3ds Max V-Ray for Adobe CC
(Felix)

V-Ray for Maya V-Ray Render
Node

V-Ray for Cinema
4D

V-Ray for Modo V-Ray for Nuke V-Ray for Katana

V-Ray for formZ V-Ray for SketchUp V-Ray for Rhino V-Ray for Revit

V-Ray for Unreal V-Ray for Blender V-Ray for
Houdini

310 8 Ray-Tracing Programs and Plug-ins

V-Ray Next Scene Intelligence

V-Ray Next Scene Intelligence delivers faster ray tracing, cleaner sampling, and
more accurate rendering compared to its previous version. There are multiple
benefits to this version which are:

• Better lighting, shading, and rendering tools
• Can handle biggest projects without toughest scenes
• Less time consuming and allows more time being creative
• New versatile features
• Seamless Integration

Good acceptance among the top design firms.

New features in the support modules for various software

V-Ray 3.6 for 3ds Max (Fig. 8.91)

• Scene intelligence • Adaptive dome light

• Point-and-shoot camera • 2 times faster GPU rendering

• GPU volume rendering • Nvidia AI Denoiser

• Lighting analysis • Physical hair material

• Switch materials • Denoised render materials

• Layered Alembic workflows • Cloud-ready

• Metalness

Fig. 8.91 Sample picture for V-Ray tool integration for 3ds Max. Source Chaos Group

8.3 Plug-in Programs 311

V-Ray 3.6 for Modo

• GPU hybrid rendering • GPU device select without restarting

• Realistic grass and fur • Over 650 extremely realistic scanned materials

• Full light select render element • Cryptomatte render element

V-Ray 3.6 for SketchUp

• Viewport rendering • Powerful GPU rendering

• Hybrid GPU–CPU Rendering • Adaptive lights

• Smart UI • V-Ray color picker

• V-Ray scene import • Sunlight studies

• Implementing fog scenes • New texture maps

• 2D displacement • Animated proxy objects and proxy reviews

• Better viewport materials • Better denoising

Similar new features can be seen for the other software as well (Fig. 8.92).

Fig. 8.92 Sample picture for V-Ray tool integration for SketchUp. Source Chaos Group

312 8 Ray-Tracing Programs and Plug-ins

Applicability

The version 3.6 is applicable for multiple industries as follows:

• Architecture • Automotive

• Television VFX • Interior design

• Advertising • Film VFX

• Product design • Games

• Software development

8.3.13.1 Summary

The V-Ray software is used by many of its users for its fitment with various
programs, and this is a reason for its wide adaptability as well. However, there are a
few points which displease the users as well. Parameters such as the speed of
operations and the number of materials included in the latest version are not up to
the mark compared to the other competitive tools available in the market. So, while
V-Ray enjoys a good presence in the market, they need to work on these points to
counter the progress made by the new entrants like Corona and Redshift.

8.4 Middleware

Middleware is computer software that provides services to software applications
beyond those available from the operating system. It is e described as “software
glue.”

Middleware makes it easier for software developers to implement communica-
tion and input/output so that they can focus on the specific purpose of their
application. It gained popularity in the 1980s as a solution to the problem of how to
link newer applications to older legacy systems, although the term had been in use
since 1968. The term is used for software that enables communication and man-
agement of data in distributed applications.

8.3 Plug-in Programs 313

8.4.1 Embree

Introduced in 2011, Embree is a collection of ray-tracing kernels, developed at
Intel.

Embree is an open-source ray-tracing framework for x86 CPUs. Embree is
explicitly designed to achieve high performance in professional rendering envi-
ronments in which complex geometry and incoherent ray distributions are common.
Embree consists of a set of low-level kernels that maximize utilization of modern
CPU architectures and an API which enables usage of these kernels in existing
renderers with minimal programmer effort. The developers state that in secondary
rays, in particular, the performance of Embree is competitive with (and often higher
than) existing state-of-the-art methods on CPUs and GPUs.

The target users of Embree are graphics application engineers who want
improved performance of their photorealistic rendering application by using
performance-optimized ray-tracing kernels. Intel optimizes the kernels for the latest
Intel processors with support for SSE, AVX, AVX2, and AVX-512 instructions.
Embree supports runtime code selection to choose the traversal and build algo-
rithms that best matches the instruction set of one’s CPU. Intel recommends using
Embree through its API to realize the highest benefit from future improvements.
Embree is open-sourced under the Apache 2.0 license.

Intel Embree supports applications written with the Intel SPMD Program
Compiler (ISPC, https://ispc.github.io/) by also providing an ISPC interface to the
core ray-tracing algorithms. That makes it possible to write a renderer in ISPC that
automatically vectorizes and leverages SSE, AVX, AVX2, and AVX-512
instructions. ISPC also supports runtime code selection; thus, ISPC selects the
best code path for your application.

Embree contains algorithms optimized for incoherent workloads (e.g., Monte
Carlo ray-tracing algorithms) and coherent workloads (e.g., primary visibility and
hard shadow rays).

Embree provides a Monte Carlo ray tracer as an example. This renderer
demonstrates how an efficient rendering system is designed and implemented using
Embree’s key technologies. The renderer is also an excellent framework for eval-
uating and comparing different ray-tracing kernels in a realistic application
scenario.

In Fig. 8.93, a single machine with four Intel Xeon processors computes preview
images of this 3D model at interactive frame rates (left). The image converges to a
better solution within a few seconds (middle). A perfect image (right) only takes
about a minute to compute.

The single-ray traversal kernels of Embree provide high performance for inco-
herent workloads and are very easy to integrate into existing rendering applications.
Using the stream kernels, even higher performance for incoherent rays is possible,
but integration might require significant code changes to the application to use the
stream paradigm. In general, for coherent workloads, the stream mode with
coherent flag set gives the best performance.

314 8 Ray-Tracing Programs and Plug-ins

https://ispc.github.io/

Intel Embree also supports dynamic scenes by implementing high-performance
two-level spatial index structure construction algorithms.

Embree is not targeting the end users of rendering technology directly. Instead,
the kernels are for integration into existing and future rendering applications. By
using the open-source Embree ray-tracing kernels, researchers and developers can
achieve the highest level of performance on Intel CPUs.

8.4.1.1 Summary

Embree provides highly optimized ray-tracing kernels that speed photorealistic
rendering on Intel CPUs by up to 2x. Intel has released these kernels as open source
under the Apache 2.0 license.

Please visit the Embree project page http://Embree.github.io for more informa-
tion. Read the article: Embree: Photo-Realistic Ray Tracing Kernels (https://
software.intel.com/en-us/articles/embree-highly-optimized-visibility-algorithms-
for-monte-carlo-ray-tracing).

8.4.2 OptiX—Nvidia

Nvidia’s OptiX (OptiX Application Acceleration Engine) is a general-purpose
ray-tracing API for rendering, baking, collision detection, and AI queries.

OptiX is not a renderer but can implement many types of renderers; it imple-
ments a modern shader-centric, stateless, and bindless design. The computations are
offloaded to the GPUs through either the low-level or the high-level API introduced
with CUDA. CUDA is only available for Nvidia’s graphics products.

Nvidia OptiX is part of Nvidia DesignWorks. OptiX is a high-level or
“to-the-algorithm” API, meaning that it is designed to encapsulate the entire
algorithm of which ray tracing is a part, not just the ray tracing itself. That is meant
to allow the OptiX engine to execute the larger algorithm with great flexibility
without application-side changes.

Fig. 8.93 Progressive rendering of the imperial crown of Austria. Model courtesy of Martin
Lubich, http://www.loramel.net

8.4 Middleware 315

http://Embree.github.io
https://software.intel.com/en-us/articles/embree-highly-optimized-visibility-algorithms-for-monte-carlo-ray-tracing
https://software.intel.com/en-us/articles/embree-highly-optimized-visibility-algorithms-for-monte-carlo-ray-tracing
https://software.intel.com/en-us/articles/embree-highly-optimized-visibility-algorithms-for-monte-carlo-ray-tracing
http://www.loramel.net

OptiX is not a renderer, but renderer-enabling middleware. It provides a simple
framework for accessing the GPU’s massive ray-tracing power using
state-of-the-art GPU algorithms. Loosely inspired by the Manta interactive ray
tracer developed at University of Utah in 2006 by Steven Parker19,20 the program
has evolved extensively since then (Fig. 8.94).

OptiX works by using user-supplied instructions (in the form of CUDA kernels)
regarding what a ray should do in particular circumstances to simulate a complete
tracing process.

When a light ray or some other kinds of ray might have different behaviors when
hitting a particular surface rather than another one, OptiX allows one to customize
the hit conditions with user-provided programs. The programs are written in
CUDA C or directly in PTX code and are linked together when used by the OptiX
engine.

To use OptiX, a CUDA-capable GPU must be available on the system, and the
CUDA toolkit installed (Fig. 8.95).

The ray generation shader is the first thing invoked in a ray-tracing dispatch.
This function casts a single ray into the scene to search for intersections, triggering
other shaders in the process. Intersection and any hit shaders get invoked for
potential intersections between the ray and the scene. The intersection shader
determines whether the ray intersects an individual geometric primitive. The most
common type is, of course, triangles, for which the API offers special support
through a built-in, highly tuned intersection shader. Once an intersection is found,
the any hit shader may be used to process it further or potentially discard it. Any hit
shaders commonly implements alpha testing. Finally, either the closest hit or a
missed shader is invoked, depending on the outcome of the search. The closest hit
shader is typically where most shading operations take place: material evaluation,
texture lookups, and so on. The miss shader can be used to implement environment
lookups, for example. Both closest hit and miss shaders can recursively trace rays
by calling the ray generation program themselves.

Fig. 8.94 A Julia set drawn
with Nvidia OptiX—this is a
sample of the SDK

19Bigler et al. (2006).
20Stephens et al. (2006).

316 8 Ray-Tracing Programs and Plug-ins

Several examples for these programs are available with the program’s SDK
License: proprietary software, free-of-cost for non-commercial use.

8.4.2.1 Summary

According to Nvidia, OptiX is designed to be flexible enough for “procedural
definitions and hybrid rendering approaches.” Aside from computer graphics ren-
dering, OptiX also helps in optical and acoustical design, radiation and electro-
magnetic research, artificial intelligence queries, and collision analysis.

Nvidia OptiX is a ray-tracing API. The computations are offloaded to the GPUs
through either the low-level or the high-level API introduced with CUDA. CUDA
is only available for Nvidia’s graphics products. OptiX also utilizes RT Cores
introduced in the Turing architecture for ray-tracing acceleration.

8.4.3 Radeon-Rays—AMD

Radeon-Rays was released by AMD in 2015 and is a GPU intersection acceleration
library with necessary support for heterogeneous systems. AMD developed
Radeon-Rays to aid developers to exploit AMD GPUs and CPU or APUs and
eliminate the need to maintaining hardware-dependent code. Originally called
FireRays, AMD first demonstrated the ray-tracing kernels in a prototype form at
SIGGRAPH 2014.

Fig. 8.95 Nvidia’s OptiX block diagram

8.4 Middleware 317

Radeon-Rays is middleware for enabling renderers to run on GPUs and is
cross-platform based on standard programming APIs (OpenCL today, moving to
Vulkan next). FireRays 2.0 brings support for Windows, OSX, Linux, AMD, NV,
Intel GPUs and CPUs with many backends.

Radeon-Rays exposes a C++ API for scene construction and performing asyn-
chronous ray intersection queries. The current implementation is based on OpenCL
1.2 standard. It is not limited to AMD hardware or a specific operating system.
Radeon-Rays can be easily distributed and through its API helps assure compati-
bility and best performance across a wide range of hardware platforms.

Radeon-Rays 2.0 key features are

• Performance improvements on FATBVH for fast BVH
• Support for geometry and ray masks
• Ray filtering support
• Calc abstraction computation layer for low-level API support

Radeon-Rays is an open-source developer’s tool that conforms to the OpenCL
1.2 standard, so it can be deployed with non-AMD hardware and in multiple OS
environments. AMD’s Radeon-Rays (and the latest release of ProRender) can
support real-time GPU acceleration of ray-tracing techniques, mixed with tradi-
tional rasterization-based rendering on the Vulkan 1.1 API, which is fully supported
by GNC-based AMD GPUs loaded with the latest version of Radeon and
RadeonPro Software.

Radeon-Rays has a smaller feature set than AMD’s full ray tracing program,
Radeon Render Pro, and is only a ray intersection library. It is also cross-platform.

Game developers can use Radeon-Rays for real-time ray tracing in a hybrid
rendering method mixing ray tracing with rasterization. Rasterization is used for
primary visibility, lighting, and backgrounds, and ray tracing is used for secondary
and complex effects of specific objects.

In this hybrid mode, real-time ray tracing with Radeon-Rays is used for ambient
occlusion, glossy reflections, diffuse global illumination, and area lighting. These
effects are turned on/off based on hardware capabilities.

Radeon-Rays comes with an open-source stand-alone renderer and is available
for download on GPUOpen. Future versions will support the Vulkan API. The
Radeon-Rays SDK has the following requirements:

• A PC with 64-bit Windows 7, 8, 10, Linux, or Mac OS X installed.
• Any OpenCL 1.2-capable device
• Microsoft Visual Studio 2013 installed to compile the sample renderer.
• The Visual Studio 2013 redistributable is required to run precompiled SDK

sample binaries.

OpenCL, Vulkan, and C++ backends can be used as an important building block
of a renderer supporting global illumination on rendering, sound rendering (through
TrueAudio Next), and AI (Fig. 8.96).

318 8 Ray-Tracing Programs and Plug-ins

Unity announced GPU Progressive Lightmapper with AMD Radeon-Rays
integration claiming to revolutionize render times and workflows for realistic light
effects was one of the dominant themes at GDC 2018. The announcement of
AMD’s Radeon-Rays integration in Unity’s GPU Progressive Lightmapper should
be exciting to game developers looking to boost the visual fidelity of their games
assisted by an interactive baking workflow.

Powering the GPU Progressive Lightmapper is the integration with AMD’s
Radeon-Rays—an open-source GPU-accelerated ray-tracing engine for low
low-level engine developers and supporting OpenCL, Vulkan, and C++ backends.
Radeon-Rays can be used as an important building block of a renderer supporting
global illumination rendering, sound rendering (through TrueAudio Next), and AI.

Radeon-Rays can be used for lightmap baking and light probe calculation using
ray tracing and is being integrated by developers to improve the lighting effects in
their games.21

8.4.3.1 Rendering Times: CPU Versus GPU

Unity’s previous light mapping solutions were entirely CPU-based and could
require several hours to compute for a moderately sized scene. Expansive outdoor
environments could take days to lightmap. Unity said that by using Radeon-Rays
GPU acceleration sped up the process of tuning lights and baking up to 10� the
speed of CPU-based baking, giving instant feedback to the artist. The new
Lightmapper also adds an interactive baking mode which allows lighting artists to

Fig. 8.96 Previous lightmapping solutions would take hours to compute even moderate-sized
scenes. Expansive outdoor environments could take days. Source AMD

21Harada (2017).

8.4 Middleware 319

navigate the scene to see the baking process in real time. It also allows them to
change lighting and material and immediately see how it affects their bakes.

Just how much does GPU hardware accelerate the lightmapping process com-
pared to previous CPU-based methods? In benchmark tests run by AMD comparing
lightmapping hardware performance across models commonly used for benchmark
(the simple Cornell box, moderate sponza) and a production model (the complex
blacksmith), the difference was substantial. GPU-based lightmapping generated
close to 200 million rays/s, around 10� more than the level of CPU-based
approaches (Fig. 8.97).

With the new GPU-based Progressive Lightmapper, Unity says users can
achieve faster bakes on a Radeon Vega in their system. The tool enables a faster
workflow for artists to design while they bake. That means that when designers
make any changes to lighting, materials, and textures, they can immediately see
how that affects their baked global illumination quality. Because of the simple,
elegant API of Radeon-Rays, developers can focus on the actual algorithm of the
Lightmapper instead of spending time on the integration. That means more efficient
use of system resources, faster workflows, and overall better experience for Unity
users as they create better quality assets (Fig. 8.98).

The real-time ray tracing with GPU Progressive Lightmapper was released in
2018.22

Fig. 8.97 Baking hardware performance comparison. Source AMD

22https://gpuopen.com/.

320 8 Ray-Tracing Programs and Plug-ins

https://gpuopen.com/

8.4.3.2 Summary

AMD developed Radeon-Rays to help developers get the most out of AMD GPUs
and CPU or APUs, as well as save them from maintaining hardware-dependent
code. Radeon-Rays exposes a well-defined C++ API for scene construction and
performing asynchronous ray intersection queries. The current implementation is
based on OpenCL, which means Radeon-Rays supports execution on all platforms
conforming to the OpenCL 1.2 standard. It is not limited to AMD hardware or a
specific operating system. Radeon-Rays can be easily distributed and through its
API helps assure compatibility and best performance across a wide range of
hardware platforms.

8.5 Cloud-Based

Cloud-based rendering engines that create photorealistic images from one’s 3D
models became available in 2006, but so far are limited to two suppliers,
OneRender and RealityServer.

Cloud-based is different than using cloud services. For example, Chaos V-Ray
cloud which is integrated in V-Ray can render to the cloud. Chaos had designed fit
or fast and simple setup, with just a few settings for resolution and image format.
There is no hardware to configure or virtual machines to set up. The distinction here
is cloud only vs. cloud capable. OneRender is cloud only, whereas V-Ray (and
several others) is cloud capable.

Fig. 8.98 Ray-tracing hardware performance comparison. Source AMD

8.4 Middleware 321

8.5.1 CL3VER—Cloud Rendering

Barcelona-based CL3VER introduced a proprietary cloud solution based on
Nvidia’s RTX to visualize real-time 3D content directly in a Web browser
(Fig. 8.99).

This technology is based on CL3VER’s 3D ray-tracing engine that renders 3D
scenes, regardless of its complexity says the company, in the cloud, live-streaming
the visualization to the browser using standard H L5 technology compatible with
any recent device (desktop or mobile) without the need of any plug-in.

The company claims that the technology offers photorealistic results, immersive
3D navigation, fast loading times, and immediate changes, making it a choice for
Web-based 3D applications such as real estate and product configurators, training
and educational modules, interactive storytelling, and so on.

With this solution, CL3VER targets all types of companies that want to improve
engagement with their users, offering them a new way of interacting with their
products with improved visual quality.

“Our new solution is going to make a big impact in the market and lead the next
generation of 3D user experiences in the browser, helping companies to engage
their customer in ways they couldn’t even imagine before,” CL3VER’s CEO,
Daniel Iborra, said. “Seamless 3D navigation in the browser has been in the radar of
industrials, advertising agencies, video game companies and so on for many years
and now CL3VER finally delivers it to the user.”

CL3VER’s cloud solution is available through a variety of business models,
including a SaaS platform.

Fig. 8.99 CL3VER real-time cloud rendering

322 8 Ray-Tracing Programs and Plug-ins

CL3VER is also working on integrating this new technology into CL3VER
Presenter, its presentation authoring tool, which will allow 3ds Max and Revit users
to create photorealistic real-time 3D presentations from their 3D scenes and share
them, in a few clicks, without rendering times or any additional production time,
thanks to its compatibility with V-Ray content.

Founded in 2011 in Barcelona, CL3VER is a real-time rendering technology
company focused on bringing photorealism to mobile and Web-based applications.

8.5.2 OneRender—Prefixa

OneRender is a cloud-based render engine that creates photorealistic images from
your 3D models (Fig. 8.100).

The 3D CAD program Onshape, which can use Luxon’s KeyShot. Onshape is
only available from the cloud, but KeyShot is available in several forms (see
Sect. 8.1.8.2).

8.5.3 RealityServer—Migenius

In 2012, migenius of Melbourne began offering RealityServer, a software devel-
opment platform for integrating cloud-based photorealistic 3D rendering in appli-
cations. It provides Web services and API frameworks that developers can utilize to
easily integrate 3D rendering in any Web-based or desktop application.

RealityServer runs as a server, much like a standard Web server like Apache or
Microsoft IIS, it accepts requests and responds with streams of 3D rendered ima-
gery. RealityServer is provided for developers to install either on their servers or on
those of popular cloud providers. Continue reading to learn more about what makes
RealityServer different from conventional client-side rendering approaches.

RealityServer is built directly on Nvidia Iray, the very same rendering tech-
nology chosen by firms such as Dassault Systèmes, Siemens, and Allegorithmic to
power photorealistic rendering in their applications. Using the power of the GPU,
Iray provides multiple rendering modes to address a range of use cases.

Fig. 8.100 How OneRender works. Source OneRender

8.5 Cloud-Based 323

The Bloom Unit is a plug-in for SketchUp, offering interactive photorealistic
model rendering in real time using cloud computing. The rendering can be shared
with any device on the Internet through a browser; a copy of SketchUp on the
viewing end is not required (Fig. 8.101).

Iray delivers a uniform user experience while supporting the demands of both
interactive editing and final-frame, photorealistic rendering. Physically correct, Iray
can produce accurate simulations of the actual behavior of light in any scene and
does so with push-button simplicity.

8.5.3.1 Summary

The cloud-first nature of RealityServer makes it perfect for direct integration in
Onshape, the cloud-based CADA system.

migeniusRealityServer enables the development and deployment of interactive and
photorealistic applications and Web services, allowing product designers, architects,
and consumers to visualize 3D scenes with remarkable realism. The RealityServer
platform is a powerful combination of Nvidia GPUs and 3D Web services software
that delivers interactive, photorealistic applications over the Web. Migenius says

Fig. 8.101 Before and after: a typical SketchUp architectural model before (above) and after
(below) using Bloom Unit. Source Migenius

324 8 Ray-Tracing Programs and Plug-ins

RealityServer is the first Web services platform that enables anyone to interact
remotelywith complex, 3Dmodels and environments, from any perspective and under
customizable lighting conditions. Netbooks, and smartphones can use used thus
enabling 3DWeb applications to scale based on utilization requirements dynamically.

8.6 Other

Specialized ray tracers used for optical design and other applications are reviewed
in this section.

In addition to all the commercial and free professional ray-tracing programs, one
can experiment with some interesting ray-tracing tools and code.

8.6.1 The Ray Tracer Challenge

Can one build a photorealistic 3D renderer from scratch? It is easier than you think
says Jamis Buck the author of the book, The Ray Tracer Challenge: A Test-Driven
Guide to Your First 3D Renderer.23

23Buck (2019).

8.5 Cloud-Based 325

In just a couple of weeks, according to Buck, one can build a ray tracer that
renders beautiful scenes with shadows, reflections, brilliant refraction effects, and
subjects composed of various graphics primitives: spheres, cubes, cylinders, tri-
angles, and more. With each chapter, implement another piece of the puzzle and
move the renderer that much further forward. Do all of this in whichever language
and environment you prefer, and do it entirely test-first, so you know it is correct.
Recharge yourself with this project’s immense potential for personal exploration,
experimentation, and discovery.

Each chapter presents a bite-sized piece of the puzzle, building on earlier
chapters and setting the stage for later ones. Requirements are given in plain
English, which you translate into tests and code. When the project is complete, one
can look back and realize they have built an entire system test-first.

There is no research necessary—all the necessary formulas and algorithms are
presented and illustrated right there. Dive into interesting topics from fundamental
concepts such as vectors and matrices; to the algorithms that simulate the inter-
section of light rays with spheres, planes, cubes, cylinders, and triangles; to geo-
metric patterns such as checkers and rings. Lighting and shading effects, such as
shadows and reflections, make your scenes come to life, and constructive solid
geometry (CSG) enables you to combine your graphics primitives in simple ways to
produce complex shapes.

Aside from a computer, operating system, and programming environment, one
will need a way to display PPM image files. On Windows, programs like Photoshop
will work, or free programs like IrfanView. On Mac, no special software is needed,
as Preview can open PPM files.

Another interesting resource is Pete Shirley’s Ray Tracing in One Weekend.24

8.6.2 Tiny Ray Tracer Fits in 64 Bytes

People often try to make the biggest, or the fastest, or the smallest. The Hellmood
ray caster is in the latter category and proves it with a 64-byte interactive 3D
application for MS-DOS.

Since 2013, says the author, he tried several approaches in little intros for
MS-DOS, except for 3D ray casting. As a computer scientist with a specialization in
computer graphics, he just was not interested enough in manually asm-coding a
brute-force ray caster, about already existing, excellent examples like “Spongy”
(128b, TBC, 2009) and “Wolf128” (128b, Baudsurfer, 2014). However, he coded
several “2,5D” effects like “Lucy” (64b, 2014) and recently “Projektbeschreibung”
(32b, DESIRE, 2018). So naturally, at some point, he asked himself, what is the
smallest 3D ray caster which is perceived as one, being centered, having decent
textures and colors, and runs on all common systems (MS-DOS, FreeDos, WinXP

24Shirley (2018).

326 8 Ray-Tracing Programs and Plug-ins

Dos, Dosbox) while being smooth at least on real hardware? The (his) answer is: It
is a.COM file format is lean, and one can take over everything without much work.
If the program were massive, it wouldn’t be impressive. There are 64 shades of
gray; however, there are versions that use various color palettes, and each one fits in
64 bytes or less. There is even mouse control, and one can see the results in the
video below. https://youtu.be/hEmK64CKpP0 (Fig. 8.102).

If one gets the urge to do some MS-DOS programming, you can use gcc
although you will almost surely get bigger executables. If you are just nostalgic for
old games and software, you can run those in your browser. https://www.pouet.net/
prod.php?which=78044.

8.6.3 A Ray Tracer for Bare Metal x86

x86-ray-tracer is a ray tracer written in x86 assembler (with usage of SSE/SSE2
extensions) as a proof of concept raymarcher for bare metal x86_64 with an UEFI
firmware. It is full of rough edges but should render a sphere at 800 � 600 pixels
using a PBR shader (Fig. 8.103).

If you want to run it on real hardware, download the.efi and start it with the
UEFI shell or a bootloader of your choice. It is possible that your UEFI does not
support the requested video mode, in which case you have to build it by yourself.
That is required because the ray tracer does not use dynamic memory allocation.
https://github.com/mmha/efiraytracer.

Fig. 8.102 Video of 64-byte ray caster. Source Hellmood

8.6 Other 327

https://youtu.be/hEmK64CKpP0
https://www.pouet.net/prod.php?which=78044
https://www.pouet.net/prod.php?which=78044
https://github.com/mmha/efiraytracer

One needs Linux with a x86_64-w64-mingw32-g++ cross-compiler, GNU efilib,
and CMake. The build system will produce an EFI executable.

8.6.4 Tiny Metaball Ray Tracer in x86/x87 Assembly

This is a size-coding experiment. The author said, … “to see if I could write a 3D
metaball ray tracer in 256 bytes (spoilers: I can’t, it ended up around 1k)”. It runs in
16-bit real mode under DOS, although exit is the only DOS system call used, and
the program is compiled as a 16 bit flat binary, so DOS is used just for the
convenience of loading and running it.

This program runs in 320 � 200 16 bpp using VESA (VBE) 1.2, which should
work on most graphics AIBs. You can download the code from here: https://github.
com/jtsiomb/tinyblobray (Fig. 8.104)

There is a video of the ray tracer here: http://imgur.com/2XGEzZ8.

Fig. 8.103 Bare metal x86 ray tracer

328 8 Ray-Tracing Programs and Plug-ins

https://github.com/jtsiomb/tinyblobray
https://github.com/jtsiomb/tinyblobray
http://imgur.com/2XGEzZ8

References

Arvo J, Kirk D (1987) Fast ray tracing by ray classification. Comput Graph 21(4)
Bigler J, Stephens A, Parker SG (2006) Design for parallel interactive ray tracing systems. In:

proceedings of the IEEE Symposium on Interactive Ray Tracing
Buck J (2019) The ray tracer challenge: a test-driven guide to your first 3D renderer, 1st edn.

Pragmatic Bookshelf, Raleigh. ISBN-13: 978-1680502718
Fascione L, Hanika J, Leone M, Droske M, Schwarzhaupt J, Davidovič T, Weidlich A, Meng J

(2018) Manuka: a batch-shading architecture for spectral path tracing in movie production.
ACM Trans Graph 37(3), Article 31

Harada T (2017) Radeon-ProRender-and-Radeon-Rays-in-a-gaming-rendering-workflow,
GDC2017. https://gpuopen.com/gdc2017-radeon-prorender-and-radeon-rays-in-a-gaming-
rendering-workflow/

Mottle J (2018) Architectural visualization rendering engine survey—results. In: CGarchitect, 24
Feb 2018. http://www.cgarchitect.com/2018/02/2018-architectural-visualization-rendering-
engine-survey

Nichols C (2017) V-Ray next: experiments with the Nvidia Optix Denoiser, Dec 2017. https://
www.chaosgroup.com/blog/experiments-with-v-ray-next-using-the-nvidia-optix-denoiser

Nichols C (2018) V-Ray next: Denoising in production, June 2018. https://www.chaosgroup.com/
blog/v-ray-next-denoising-in-production

Seymour M (2016) V-Ray’s practical stochastic rendering of ‘spec-y’ things. Fxguide, Oct 2016.
https://www.fxguide.com/quicktakes/v-rays-practical-stochastic-rendering-of-spec-y-things/

Shirley P (2018) Ray tracing in one weekend. http://www.realtimerendering.com/raytracing/Ray%
20Tracing%20in%20a%20Weekend.pdf

Fig. 8.104 Meatball ray tracer

References 329

https://gpuopen.com/gdc2017-radeon-prorender-and-radeon-rays-in-a-gaming-rendering-workflow/
https://gpuopen.com/gdc2017-radeon-prorender-and-radeon-rays-in-a-gaming-rendering-workflow/
http://www.cgarchitect.com/2018/02/2018-architectural-visualization-rendering-engine-survey
http://www.cgarchitect.com/2018/02/2018-architectural-visualization-rendering-engine-survey
https://www.chaosgroup.com/blog/experiments-with-v-ray-next-using-the-nvidia-optix-denoiser
https://www.chaosgroup.com/blog/experiments-with-v-ray-next-using-the-nvidia-optix-denoiser
https://www.chaosgroup.com/blog/v-ray-next-denoising-in-production
https://www.chaosgroup.com/blog/v-ray-next-denoising-in-production
https://www.fxguide.com/quicktakes/v-rays-practical-stochastic-rendering-of-spec-y-things/
http://www.realtimerendering.com/raytracing/Ray%20Tracing%20in%20a%20Weekend.pdf
http://www.realtimerendering.com/raytracing/Ray%20Tracing%20in%20a%20Weekend.pdf

Starr M (2014) New mo-cap tech renders CG in real-time, Apr 2014. https://www.cnet.com/news/
new-mo-cap-tech-renders-cg-in-real-time/

Stéphane G, Cyril S (2004) Graphics gems revisited. ACM Trans Graph (Proceedings of the
SIGGRAPH conference—2004). http://maverick.inria.fr/Publications/2004/GS04/
GraphicsGemsRevisited.letter.pdf

Stephens A, Boulos S, Bigler J, Wald I, Parker SG (2006) An application of scalable massive
model interaction using shared memory systems. In: Proceedings of the Eurographics
Symposium on Parallel Graphics and Visualization

Suarez J (2009) V-Ray on the GPU. In: SIGGRAPH 2009. https://www.youtube.com/watch?v=
DJLCpS107jg

Wald I, Johnson GP, Amstutz J, Brownlee C, Knoll A, Jeffers J, Günther J, Navratil P (2017)
OSPRay—a CPU ray tracing framework for scientific visualization. IEEE Trans Vis Comput
Graph 23(1), pp 931–940 (2017)

Ward GJ (1992) Measuring and modeling anisotropic reflection. In: Proceedings of SIGGRAPH,
pp 265–272. https://doi.org/10.1145/133994.134078

Wilkie A, Nawaz S, Droske M, Weidlich A, Hanika J (2014) Hero wavelength spectral sampling.
In: Eurographics Symposium on Rendering 2014, vol 33, Number 4. https://cgg.mff.cuni.cz/
*wilkie/Website/EGSR_14_files/WNDWH14HWSS.pdf

330 8 Ray-Tracing Programs and Plug-ins

https://www.cnet.com/news/new-mo-cap-tech-renders-cg-in-real-time/
https://www.cnet.com/news/new-mo-cap-tech-renders-cg-in-real-time/
http://maverick.inria.fr/Publications/2004/GS04/GraphicsGemsRevisited.letter.pdf
http://maverick.inria.fr/Publications/2004/GS04/GraphicsGemsRevisited.letter.pdf
https://www.youtube.com/watch?v=DJLCpS107jg
https://www.youtube.com/watch?v=DJLCpS107jg
http://dx.doi.org/10.1145/133994.134078
https://cgg.mff.cuni.cz/%7ewilkie/Website/EGSR_14_files/WNDWH14HWSS.pdf
https://cgg.mff.cuni.cz/%7ewilkie/Website/EGSR_14_files/WNDWH14HWSS.pdf

Appendix A

In this section, you will find miscellaneous and related information and reference
material supporting various sections of the book.

The next page contains a sample of the view of all the ray tracing programs. The
accompanying spreadsheet is an in-depth database of those programs.

A.1. Ray-Tracing Programs and Plug-Ins

See Table A.1.

A.2. Early Photorealism—Who Invented Ray Tracing

Long before computers, and even before cameras, artists sought to create a pho-
torealistic image. One artist, Albrecht Dürer rendered with almost photographic
accuracy, A Young Hare. In addition to being a fine artist, Dürer wrote two books
that discussed geometry. In chapters of his books, he provides instructions for the
construction of perspective projections (also with lights and shadows). The meth-
ods, as they were described in his Underweysung der messung, book can be,
according to Georg Rainer Hofmann, clearly identified as “object scanning” and
“ray tracing.” Hofmann therefore concludes that the great Renaissance artist,
mathematician, and painter, Albrecht Dürer, who was responsible for two important
books published in Nuremberg, Germany, is the father of ray tracing.1

1Hofmann (1990).

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3

331

https://doi.org/10.1007/978-3-030-17490-3

Table A.1 Ray tracing plug-in programs

332 Appendix A

A.2.1. Young Hare

A Young Hare (German: Feldhase) is a 1502 watercolor and body color painting by
Albrecht Dürer. Painted in 1502 in his workshop, it is acknowledged as a masterpiece
of observational art alongside his Great Piece of Turf from the following year. The
subject is rendered with almost photographic accuracy, and although the piece is
normally given the title, “YoungHare,” the portrait is sufficiently detailed for the hare
to be identified as amature specimen—the German title translates as “Field Hare” and
the work is often referred to in English as the Hare or Wild Hare (Fig. A.1).

The subject was particularly challenging: The hare’s fur lay in different direc-
tions and the animal was mottled with lighter and darker patches all over, Dürer had

Fig. A.1 A young Hare but Albrecht Dürer, 1502. Source Wikipedia

Appendix A 333

to adapt the standard conventions of shading to indicate the outline of the subject by
the fall of light across the figure. Despite the technical challenges presented in
rendering the appearance of light with a multi-colored, multi-textured subject,
Dürer not only managed to create a detailed, almost scientific, study of the animal
but also infuses the picture with a warm golden light that hits the hare from the left,
highlighting the ears and the run of hair along the body, giving a spark of life to the
eye, and casting a strange shadow to the right.

This then should be the gold standard of realized photorealistic rendering, not a
chrome teapot (Fig. A.2).

It is ironic, and perhaps no coincidence that a young hare has been used as a
rendering model by several researchers.

A.2.2. Varieties of Realism; Geometries of Representational Art

Margaret A. Hagen’s “Varieties of Realism”2 argues that it is not possible to
represent the layout of objects and surfaces in space outside the dictates of formal
visual geometry, the geometry of natural perspective. The book examines most of
the world’s coherent representational art styles, both in terms of the geometry of
their creation and in terms of their perceptual effects on the viewer. A lucid
exposition of modern geometrical principles and relations, accessible to the non-
mathematical reader, is followed by an analysis of all known styles as variants of
natural perspective, as true varieties of realism. Delineating the physical and
mechanical constraints that determine the act of visual representation in painting
and drawing, the author traces the intimate relations among seemingly distant styles
and considers the kind of perceptual information about the world each can carry.
Margaret Hagen is a perceptual psychologist with an ecological point of view. Her
rigorous but readable presentation of visual theory and research offers provocative
new insights into the connections among vision, geometry, and art.

Fig. A.2 Rendering examples using a hare: a shadow casting, b ray casting, c Whitted ray
tracing, and d Path Tracing. Source Ray Tracing on Programmable Graphics Hardware (Purcell
et al. 2002)

2http://www.amazon.com/Varieties-Realism-Geometries-Representational-Cambridge/dp/
0521313295.

334 Appendix A

http://www.amazon.com/Varieties-Realism-Geometries-Representational-Cambridge/dp/0521313295
http://www.amazon.com/Varieties-Realism-Geometries-Representational-Cambridge/dp/0521313295

A.2.2.1. More About Bunnies Than You Probably Wanted to Know

The Stanford Bunny is one of the most commonly used test models in computer
graphics. It is a collection of 69,451 triangles, and it was assembled from range
images of a clay bunny that is roughly 7.5 in. high. Figure A.2 is a synthetic
rendering of the model, courtesy of Peter Lindstrom. This Web page describes
where the model came from, tells why it was created in the first place, discusses the
relative merits of using it as a test model in graphics research, and shows some
example images (https://www.cc.gatech.edu/*turk/bunny/bunny.html).

Durer was discovering linear perspective. Newton traced rays in Optiks, and
Feinman mentions a job opportunity he passed up ray tracing for a lens company in,
“Surely You’re Joking.” But to name anyone other than Turner as the Father of Ray
Tracing really diminishes one of the main contributions of computer graphics to all
of the sciences.

A.3. Biased Versus Unbiased Rendering

In computer graphics, unbiased rendering refers to a rendering technique that does
not introduce any systematic error, or bias, into the radiance approximation.
Because of this, it is often used to generate the reference image to which other
rendering techniques are compared. It is important to note that an unbiased tech-
nique may not consider all possible paths. Path Tracing cannot consistently handle
caustics generated from a point light source, as it is highly unlikely to randomly
generate the path that directly reflects into the point.

Unbiased renderers are usually physically based and photorealistic renderer
which simulates the physics of light to achieve near-perfect image realism. With an
advanced Physical Camera model, a super-realistic materials system and the ability
to simulate complex lighting situations through Metropolis Light Transport, Indigo
Renderer is capable of producing the highest levels of realism demanded by
architectural and product visualization.

A biased rendering method is not necessarily wrong, and it can still converge to
the correct answer if the estimator is consistent. It does, however, introduce a
certain bias error, usually in the form of a blur.

A.4. Technical Papers and Books on Ray Tracing

Looking at just the leading technical journals from ACM and IEEE, I found over
700 technical papers on ray tracing have been published since 1982 (Table A.2).

Appendix A 335

https://www.cc.gatech.edu/~turk/bunny/bunny.html

Table A.2 Technical papers on ray tracing published since 1982

Year SIGGRAPH SIGGRAPH Asia Eurograph IEEE

1982 1 1

1983 2 2

1984 6 2 5

1985 3 3 3

1986 3 3 6

1987 5 4 6

1988 4 4 5

1989 6 6 7

1990 8 6 11

1991 2 2 12

1992 3 8 4

1993 2 2 6

1994 3 5 6

1995 3 3 6

1996 1 3

1997 3 1 3

1998 4 1 4

1999 4 3 6

2000 1 3

2001 1 7 7

2002 7 5 4

2003 2 6 8

2004 8 5 7

2005 21 6 12

2006 13 6 25

2007 18 9 29

2008 12 9 31

2009 10 8 15

2010 10 2 9 17

2011 14 3 6 17

2012 7 1 8 15

2013 15 3 10 20

2014 6 4 6 16

2015 7 3 7 12

2016 8 2 10 7

2017 9 2 10 4

2018 6 1 2

Total 238 20 181 347

336 Appendix A

A.4.1. Books on ray tracing

See Table A.3.

Table A.3 Books on ray tracing

Last, first name Title Publisher Date Description

Glassner,
Andrew S.

An Introduction to Ray
Tracing

Academic
Press

1989 The first book on ray tracing, from 1989,
is now free to download http://www.
realtimerendering.com/raytracing/An-
Introduction-to-Ray-Tracing-The-
Morgan-Kaufmann-Series-in-Computer-
Graphics-.pdf

Shirley, Peter
Mr. Morley, R.
Keith Mr.

Realistic Ray Tracing A K Peters,
Ltd.

19-Dec-08 Concentrating on the “nuts and bolts” of
writing ray tracing programs, this book
emphasizes on practical and
implementation issues. It also takes the
reader through all the details needed to
write a modern rendering system. It also
adds many C++ code segments and adds
new details to provide the reader with a
better intuitive understanding of ray
tracing algorithms

Suffern, Kevin
Dr.

Ray Tracing from the
Ground Up

CRC Press 09-Mar-2016 This book takes readers through the whole
process of building a modern ray tracer
from scratch in C++. All concepts and
processes are explained in detail with the
aid of various diagrams, ray-traced
images, and sample codes

Tracy, E.
R. Brizard, A.
J. Richardson
A. S.

Ray Tracing and Beyond:
Phase Space Methods in
Plasma Wave Theory

Cambridge
University
Press

27-Dec-14 This book is a complete introduction to
the use of modern ray tracing techniques
in plasma physics. It describes the
powerful mathematical methods generally
applicable to vector wave equations in
non-uniform media and clearly
demonstrates the application of these
methods to simplify and solve important
problems in plasma wave theory. It also
covers variational principles, covariant
formulations, caustics, tunneling, mode
conversion, weak dissipation, wave
emission from coherent sources,
incoherent wave fields, and collective
wave absorption and emission, all within
an accessible framework using standard
plasma physics notation

Choudhury,
Balamati Dr.
Jha, Rakesh
Mohan Mr.

Refined Ray Tracing inside
Single- and
Double-Curvatured
Concave Surfaces

Springer 24-Sep-15 This book describes the ray tracing effects
inside different quadric surfaces such as
right circular cylinder, general paraboloid
of revolution (GPOR), GPOR frustum of
different shaping parameters and the
corresponding visualization of the ray path
details. Finally, ray tracing inside a typical
space module, which is a hybrid of a finite
segment of the right circular cylinder and
a frustum of GPOR, is analyzed for
practical aerospace applications

(continued)

Appendix A 337

http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf
http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf
http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf
http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf
http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf

References

Hofmann GR (1990) Who invented ray tracing? A historical remark. Vis Comput 6(3):120–124.
https://link.springer.com/article/10.1007/BF01911003

Purcell TJ, Buck I, Mark WR, Hanrahan P (2002) Ray tracing on programmable graphics
hardware. In: Proceedings of SIGGRAPH 2002. ACM Trans Graph 21(3):703–712

Table A.3 (continued)

Last, first name Title Publisher Date Description

Driemeyer,
Thomas Mr.

Rendering with mental
ray®

Springer 21-Dec-13 Mental ray is the leading rendering engine
for generating photorealistic images, built
into many 3D graphics applications. This
book gives a general introduction into
rendering with mental ray, as well as
step-by-step recipes for creating advanced
effects, and tips and tricks for professional
users. A comprehensive definition of
mental ray’s scene description language
and the standard shader libraries are
included and used as the basis for all
examples

Kulungowski,
Alexander Ward
Mr.

Ray tracing acceleration
techniques using k-d trees

University
of
California

2005 Many computer graphics rendering
algorithms and techniques use ray tracing
for the generation of natural and
photorealistic images. The efficiency of
the ray tracing algorithms depends, among
other techniques, upon the data structures
used in the background. kd-trees are some
of the most commonly used data
structures for accelerating ray tracing
algorithms. Data structures using cost
optimization techniques based upon
surface area heuristics (SAH) are
generally considered to be best and of
high quality. The book describes various
techniques to accelerate ray tracing with
the help of Kd-trees

Eric Haines and
Tomas
Akenine-Möller

Ray Tracing Gems Nvidia Mar-19 Real-time ray tracing—the holy grail of
graphics—is now possible for video
games. Thanks to advances in GPU
hardware and integration in standards like
DirectX, game developers will eagerly
add ray tracing to take the next step in
visual quality and ease of content creation

338 References

https://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01911003

Glossary

AFIPS The American Federation of Information Processing Societies (AFIPS) was
an umbrella organization of professional societies established on May 10, 1961,
and dissolved in 1990. Its mission was to advance knowledge in the field of
information science and to represent its member societies in international for-
ums. The IEEE-CS joined the ACM to form the Federation on Computing in the
United States (FOCUS) in 1991, to take the place of AFIPS as the US’ repre-
sentative in International Federation of Information Processing (IFIP).

AIB (Add-in board) An add-in board, also known as a card, is a board that gets
plugged into the PC. When an AIB contains a GPU and memory, it is known as
a graphics AIB or graphics card. It plugs into either PCI Express or the older bus
AGP.

Albedo Albedo is the base color input, commonly known as a diffuse map. An
albedo map defines the color of diffused light. One of the biggest differences
between an albedo map in a PBR system and a traditional diffuse map is the lack
of directional light or ambient occlusion. Directional light will look incorrect in
certain lighting conditions, and ambient occlusion should be added in the sep-
arate AO slot. The albedo map will sometimes define more than the diffuse color
as well, for instance, when using a metalness map, the albedo map defines the
diffuse color for insulators (non-metals) and reflectivity for metallic surfaces.

Alembic An interchange file format for computer graphics used by visual effects
and animation. Alembric is used for the interchange of geometry (models)
between different groups working on the same shots or the same assets in the
same company or different studios working on the same projects. Alembic
supports the common geometric representations used in the industry, including
polygon meshes, subdivision surface, parametric curves, NURBS patches, and
particles.

Ambient occlusion To create realistic shadowing around objects, developers use
an effect called ambient occlusion (AO); sometimes called “poor man’s ray

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3

339

https://doi.org/10.1007/978-3-030-17490-3

tracing.” AO can account for the occlusion of light, creating non-uniform
shadows that add depth to the scene. Most commonly, games use screen-space
ambient occlusion (SSAO) for the rendering of AO effects. There are many
variants, though all are based on early AO tech, and as such suffer from a lack of
shadow definition and quality, resulting in a minimal increase in image quality
(IQ) compared to the same scene without AO.

Anisotropic filtering (AF) A method of enhancing the image quality of textures
on the surfaces of computer graphics that are at oblique viewing angles with
respect to the camera where the projection of the texture (not the polygon or
other primitive on which it is rendered) appears to be non-orthogonal (thus the
origin of the word: “an” for not, “iso” for same, and “tropic” from tropism,
relating to direction; anisotropic filtering does not filter the same in every
direction).

Bidirectional reflectance distribution function (BRDF) A function of four real
variables that defines how light is reflected at an opaque surface. It is employed
in the optics of real-world light, in computer graphics algorithms, and in com-
puter vision algorithms. The function takes an incoming light direction, and
outgoing direction (taken in a coordinate system where the surface normal lies
along the z-axis) and returns the ratio of reflected radiance exiting to the irra-
diance incident on the surface from direction the light source. A BRDF is a
simplified BSSRDF, assuming that light enters and leaves at the same point.

Bidirectional scattering distribution function (BSDF) Introduced in 1980 by
Bartell, Dereniak, and Wolfe, it is often used to name the general mathematical
function which describes the way in which the light is scattered by a surface.
However, in practice, this phenomenon is usually split into the reflected and
transmitted components, which are then treated separately as BRDF (bidirec-
tional reflectance distribution function) and BTDF (bidirectional transmittance
distribution function). BSDF is a superset and the generalization of the BRDF
and BTDF.

340 Glossary

Bidirectional scattering-surface reflectance distribution function (BSSRDF) or
B surface scattering RDF describes the relation between outgoing radiance and
the incident flux, including the phenomena-like subsurface scattering (SSS).
The BSSRDF describes how light is transported between any two rays that hit a
surface.

Bidirectional texture functions (BTF) Bidirectional texture function is a
six-dimensional function depending on planar texture coordinates as well as on
view and illumination spherical angles. In practice, this function is obtained as a
set of several thousand color images of a material sample taken during different
camera and light positions.

Bilinear filtering When a small texture is used as a texture map on a large surface,
a stretching will occur, and large block pixels will appear. Bilinear filtering
smoothens out this blocky appearance by applying a blur.

Bokeh The aesthetic quality of the blur produced in the out-of-focus parts of an
image produced by a lens. Bokeh has been defined as “the way the lens renders
out-of-focus points of light.” Smartphone cameras have algorithms in their
processor that can create artificial bokeh on images when their lenses fail to
produce the effect.

Bounding volume hierarchy (BVH) A BVH is a tree structure on a set of geo-
metric objects. All geometric objects are wrapped in bounding volumes that
form the leaf nodes of the tree. These nodes are then grouped as small sets and
enclosed within larger bounding volumes.

Chrominance Chrominance (chroma or C for short) is the signal used in video
systems to convey the color information of the picture, separately from the
accompanying luma signal (or Y for short). Chrominance is usually represented
as two color difference components: U = B′ − Y′ (blue − luma) and V = R′
− Y′ (red − luma). Each of these different components may have scale factors
and offsets applied to it, as specified by the applicable video standard.

Complementary metal–oxide–semiconductor (CMOS) sensor A CMOS sensor
is an array of active pixel sensors in complementary metal–oxide–semiconductor
(CMOS) or N-type metal-oxide-semiconductor (NMOS, Live MOS)
technologies.

Color gamut The entire range of colors available on a particular device such as a
monitor or printer. A monitor, which displays RGB signals, typically has a
greater color gamut than a printer, which uses CMYK inks. Also, see Gamut and
wide color gamut.

Color space See color gamut and gamut.

Conservative raster When standard rasterization does not compute, the desired
result is shown, where one green and one blue triangle have been rasterized.
These triangles overlap geometrically, but the standard rasterization process does
not detect this fact.

Glossary 341

Comparing Standard and conservative rasterization

(a) (b)

With conservative rasterization, the overlap is always properly detected, no
matter what resolution is used. This property can enable collision detection.

Constant dither A constant dither is the application of a dither value which
doesn’t change over the course of a set of dithering operations.

Contrast ratio The contrast ratio is a property of a display system, defined as the
ratio of the luminance of the brightest color (white) to that of the darkest color
(black) that the system is capable of producing. A high contrast ratio is a desired
aspect of displays.

CNN (Convolutional neural network) A deep neural network (DNN) that has the
connectivity in one or more of its layers arranged so that each node in Layer N is
a convolution between a rectangular subset of the nodes in layer N − 1 and a
convolution kernel whose weights are found by training. The arrangement is
designed to mimic the human visual system and has proven to be very successful
at image classification as long as very large training datasets are available.

Direct3D Also known as D3D, Direct3D is the 3D graphics API that’s part of
Microsoft DirectX foundation library for hardware support. Direct3D actually
has two APIs, one which calls the other (called Direct3D Retained Mode or D3D
RM) and hides the complexity of the lower level API (called Direct3D
Immediate Mode or D3D IM). Direct3D is becoming increasingly popular as a
method used by games and application developers to create 3D graphics,
because it provides a reasonable level of hardware independence, while still
supporting a large variety of 3D graphics functionality (see “3D”).

Display Port Display Port is a VESA digital display interface standard for a digital
audio/video interconnect, between a computer and its display monitor, or a
computer and a home theater system. Display Port is designed to replace digital
(DVI) and analog component video (VGA) connectors in the computer monitors
and video cards.

EDF Emissive Distribution Functions.

342 Glossary

Electro-optical transfer function (EOTF) HDR provides a means by which to
describe and protect the content creator’s intentions via metadata. It contains in
essence a language used by the content creator to instruct the decoder. HDR
provides metadata about how content was created to a display device in an
organized fashion such that the display can maximize its own capabilities. As
displays evolve, HDR will allow existing devices to always make the best effort
in rendering images rather than running up against unworkable limitations.
A formula called the electro-optical transfer function (EOTF) has been intro-
duced to replace the CRT’s gamma curve. Some engineers refer to EOTF more
simply as perceptual quality or PQ. Whatever the name, it offers a far more
granular way of presenting the luminance mapping according to the directions
given by the content creator. EOTF is a part of the High-Efficiency Video
Coding (HEVC) standard.

Energy conservation The concept of energy conservation states that an object
cannot reflect more light than it receives.

Energy conservation scales

For practical purpose, more diffuse and rough materials will reflect dimmer and
wider highlights, while smoother and more reflective materials will reflect
brighter and more condensed highlights.

Fragment shader Pixel shaders, also known as fragment shaders, compute color
and other attributes of each fragment. The simplest kinds of pixel shaders output
one screen pixel as a color value; more complex shaders with multiple
inputs/outputs are also possible. Pixel shaders range from always outputting the
same color, to applying a lighting value, to doing bump mapping, shadows,
specular highlights, translucency, and other phenomena. They can alter the depth
of the fragment for z-buffering.

Frame buffer The separate and private local memory for a GPU on a graphics
AIB. The term frame buffer is a bit out of date since the GPU’s local memory
holds much more than just a frame or an image for the display as they did when
originally developed. Today the GPU’s local memory holds programs (known as
shaders) and various textures, as well as partial results from various calculations,
and two to three sets of images for the display as well as depth information
known as a z-buffer.

Gamma correction Gamma correction, gamma nonlinearity, gamma encoding, or
often simply gamma, is the name of a nonlinear operation used to code and decode
luminance or tristimulus values in video or still image systems. Gamma correction
is, in the simplest cases, defined by the following power-law expression.

Glossary 343

Plot of the sRGB standard gamma-expansion nonlinearity (red),
and its local gamma value, slope in log–log space (blue)

In most computer systems, images are encoded with a gamma of about 0.45 and
decoded with a gamma of 2.2. The sRGB color space standard used with most
cameras, PCs, and printers does not use a simple power-law nonlinearity as above
but has a decoding gamma value near 2.2 over much of its range. Gamma is
sometimes confused and/or improperly used as “Gamut”.

Gamut In color reproduction, including computer graphics and photography, the
gamut or color gamut is a certain complete subset of colors.The most common

Typical gamut map. The grayed-out horseshoe shape is the entire range
of possible chromaticities, displayed in the CIE 1931 chromaticity diagram format

344 Glossary

usage refers to the subset of colors which can be accurately represented in a
given circumstance, such as within a given color space or by a certain output
device.Also, see Color gamut and wide color gamut.

GDDR An abbreviation for double data rate-type six synchronous graphics
random-access memory is a modern type of synchronous graphics
random-access memory (SGRAM) with a high-bandwidth (“double data rate”)
interface designed for use in graphics cards, game consoles, and
high-performance computation.

Geometry shaders Geometry shaders, introduced in Direct3D 10 and OpenGL
3.2, generate graphics primitives, such as points, lines, and triangles, from
primitives sent to the beginning of the graphics pipeline. Executed after vertex
shader geometry, shader programs take as input a whole primitive, possibly with
adjacency information. For example, when operating on triangles, the three
vertices are the geometry shader’s input. The shader can then emit zero or more
primitives, which are rasterized, and their fragments ultimately passed to a pixel
shader.

Global illumination “Global illumination” (GI) is a term for lighting systems that
model this effect. Without indirect lighting, scenes can look harsh and artificial.
However, while light received directly is fairly simple to compute, indirect
lighting computations are highly complex and computationally heavy.

GPC A graphics processing cluster (GPC) is group, or collection, of specialized
processors known as shaders, or simultaneous multiprocessors, or stream pro-
cessors. Organized as a SIMD processor, they can execute (process) a similar
instruction (program or kernel) simultaneously or in parallel. Hence, they are
known as a parallel processor (A shader is a computer program that is used to do
shading: the production of appropriate levels of color within an image).

GPU (Graphics processing unit) The GPU is the chip that drives the display
(monitor) and generates the images on the screen (and has also been called a
visual processing unit or VPU). The GPU processes the geometry and lighting
effects and transforms objects every time a 3D scene is redrawn—these are
mathematically intensive tasks, and hence, the GPU has upwards to hundreds of
floating-point processors (also called shaders or stream processors). Because the
GPU has so many powerful 32-bit floating-point processors, it has been
employed as a special-purpose processor for various scientific calculations other
than display ad is referred to as a GPGPU in that case. The GPU has its own
private memory on a graphics AIB which is called a frame buffer. When a small
(less than five processors) GPU is put inside a northbridge (making it an IGP) the
frame buffer is dropped, and the GPU uses system memory. The GPU has to be
compatible with several interface standards including software APIs such as
OpenGL and Microsoft’s DirectX, physical I/O standards within the PC such as
Intel’s Accelerated Graphics Port (AGP) technology and PCI Express, and
output standards known as VGA, DVI, HDMI, and Display Port.

Glossary 345

GPU-Compute (GPGPU—General-Purpose Graphics Processor Unit) The
term “GPGPU” is a bit misleading in that general-purpose computing such as the
type an x86 CPU might perform cannot be done on a GPU. However, because
GPUs have so many (hundreds in some cases) powerful (32-bit) floating-point
processors, they have been employed in certain applications requiring massive
vector operations and mathematical intensive problems in science, finance, and
aerospace applications. The application of a GPU can yield several orders of
magnitude higher performance than a conventional CPU. These days, there is
not much that a GPU can’t do. The main missing piece is operating system work
(opening files and sockets).

GPU preemption The ability to interrupt or halt an active task (context switch) on
a processor and replace it with another task, and then later resume the previous
task this is a concept in the era of single-core CPUs preemption was how
multitasking was accomplished. Interruption in a GPU, which is designed for
streaming processing, is problematic in that it could necessitate a restart of a
process and thereby delay a job. Modern GPUs can save state and resume a
process as soon as the interruptive job is finished.

Graphics driver A device driver is a software stack that controls computer
graphics hardware and supports graphics rendering APIs and is released under a
free and open-source software license. Graphics device drivers are written for
specific hardware to work within the context of a specific operating system
kernel and to support a range of APIs used by applications to access the graphics
hardware. They may also control output to the display, if the display driver is
part of the graphics hardware.

G-Sync A proprietary adaptive sync technology developed by Nvidia aimed pri-
marily to eliminate screen tearing and the need for software deterrents such as
V-sync. G-Sync eliminates screen tearing by forcing a video display to adapt to
the frame rate of the outputting device rather than the other way around, which
could traditionally be refreshed halfway through the process of a frame being
output by the device, resulting in two or more frames being shown at once.

HBAO+ Developed by Nvidia, HBAO+ claims the company, improves upon
existing ambient occlusion (AO) techniques and adds richer, more detailed, more
realistic shadows around objects that occlude rays of light. Compared to pre-
vious techniques, Nvidia claims HBAO+ is faster, more efficient, and signifi-
cantly better.

HBM (High-Bandwidth Memory) HMB is a high-performance RAM interface
for 3D-stacked DRAM from AMD and Hynix. It is to be used in conjunction
with high-performance graphics accelerators and network devices. The first
devices to use HBM are the AMD Fiji GPUs.

HDMI (High-Definition Multimedia Interface) HDMI is a digital, point-to-point
interface for audio and video signals designed as a single-cable solution for
home theater and consumer electronics equipment and also supported in

346 Glossary

graphics AIBs and some PC motherboards. Introduced in 2002 by the HDMI
consortium, HDMI is electrically identical to video-only DVI.

Heterogeneous processors Heterogeneous computing refers to systems that use
more than one kind of processor or cores. These systems gain performance or
energy efficiency not just by adding the same type of processors, but by adding
dissimilar coprocessors, usually incorporating specialized processing capabilities
to handle particular tasks.

Luminance A photometric measure of the luminous intensity per unit area of light
traveling in a given direction. It describes the amount of light that passes
through, is emitted or reflected from a particular area, and falls within a given
Solid Angle. The SI unit for luminance is candela per square meter (cd/m2).
A non-SI term for the same unit is the “nit.” The CGS unit of luminance is the
stilb, which is equal to one candela per square centimeter or 10 kcd/m2.

MAGIC Mathematical Applications Group, Inc., code, a program developed for
ray tracing by MAGI corporation in 1968.

M&E Media and entertainment.

NURBS Non-uniform rational basis spline (NURBS) is a mathematical model
commonly used in computer graphics for generating and representing curves and
surfaces. It offers great flexibility and precision for handling both analytic
(surfaces defined by common mathematical formulae) and modeled shapes.

OLED (Organic light-emitting diode) A light-emitting diode (LED) in which the
emissive electroluminescent layer is a film of organic compound that emits light
in response to an electric current. This layer of organic semiconductor is situated
between two electrodes; typically, at least one of these electrodes is transparent.
OLEDs are used to create digital displays in devices such as television screens,
computer monitors, and portable systems such as mobile phones.

Open Graphics Library (OpenGL) A cross-language, cross-platform application
programming interface (API) for rendering 2D and 3D vector graphics. The API
is typically used to interact with a graphics processing unit (GPU), to achieve
hardware-accelerated rendering.

OpenRL A low-level interactive ray tracing API, available for download as an
SDK for accelerating ray tracing in both graphics and non-graphics (e.g., phy-
sics) applications. OpenRL was developed by the Caustic Professional division
of Imagination Technologies.

OpenVDB OpenVDB is an Academy Award-winning open-source C++ library
comprising a novel hierarchical data structure and a suite of tools for the efficient
storage and manipulation of sparse volumetric data discretized on
three-dimensional grids. It was developed by DreamWorks Animation for use in
volumetric applications typically encountered in feature film production and is

Glossary 347

now maintained by the Academy Software Foundation (ASWF). https://github.
com/AcademySoftwareFoundation/openvdb.

Penumbra The partially shaded outer region of the shadow cast by an opaque
object, such as the shadow cast by the earth or moon over an area experiencing a
partial eclipse.

Phong shading Refers to an interpolation technique for surface shading in 3D
computer graphics. It is also called Phong interpolation or normal-vector inter-
polation shading. Specifically, it interpolates surface normals across rasterized
polygons and computes pixel colors based on the interpolated normals and a
reflection model. Phong shading may also refer to the specific combination of
Phong interpolation and the Phong reflection model.

Reflective shadow maps Reflective shadow maps (RSMs) are an extension to a
standard shadow map, where every pixel is considered as an indirect light
source. The illumination due to these indirect lights is evaluated on the fly using
adaptive sampling in a fragment shader. By using screen-space interpolation of
the indirect lighting, it is possible to achieve interactive rates, even for complex
scenes. Since visualizations and games mainly work in screen space, the addi-
tional effort is largely independent of scene complexity. The resulting indirect
light is approximate but leads to plausible results and is suited for dynamic
scenes.

Relative luminance Relative luminance is formed as a weighted sum of linear
RGB components, not gamma-compressed ones. Even so, luma is often erro-
neously called luminance. SMPTE EG 28 recommends the symbol Y′ to denote
luma and the symbol Y to denote relative luminance.

Render farm A render farm is a high-performance computer system, e.g., a
computer cluster, built to render computer-generated imagery (CGI), typically
for film and television visual effects.

Resolution, screen resolution The number of horizontal and vertical pixels on a
display screen. The more pixels, the more information is visible without scrol-
ling. Screen resolutions have a pixel count such as 1600 � 1200, which means
1600 horizontal pixels and 1200 vertical pixels.

RGB Red, Green, and Blue. Color components of a pixel blended to create a
specific color on a display monitor. See “Color” for additional details.

ROP ROP stands for Raster Operator; Raster Operators (ROPs) handle several
chores near the end of the pixel pipeline. ROPs handle anti-aliasing, Z and color
compression, and the actual writing of the pixel to the output buffer.

RT Ray tracer or ray tracing.

SaaS Software as a service.

SAM Served available market.

348 Glossary

https://github.com/AcademySoftwareFoundation/openvdb
https://github.com/AcademySoftwareFoundation/openvdb

Scanline rendering An algorithm for visible surface determination, in 3D com-
puter graphics, that works on a row-by-row basis rather than a
polygon-by-polygon or pixel-by-pixel basis.

SDK Software development kit.

SECAM Analog TV system used in France and parts of Russia and the Mid-east.

SDR Standard Dynamic Range TV (Rec.601, Rec.709, Rec.2020).

Shaders Shaders is a broadly used term in graphics and can pertain to the pro-
cessing of specialized programs for geometry (known as vertex shading or
transform and lighting) or pixels shading.

SIMD Same Instruction Multiple Data describes computers with multiple pro-
cessing elements that perform the same operation on multiple data points
simultaneously. Such machines exploit data-level parallelism, but not concur-
rency: there are simultaneous (parallel) computations, but only a single process
(instruction) at a given moment. SIMD is particularly applicable to common
tasks like such as adjusting the contrast in a digital image.

Subdivision surface Subdivision smooths and adds extra resolution to curves and
surfaces at display and/or renders time. The renderer subdivides the surface until
it’s smooth down to the pixel level. The smooth surface can be calculated from
the coarse mesh as the limit of recursive subdivision of each polygonal face into
smaller faces that better approximate the smooth surface. This lets one work with
efficient low-polygon models and only add the smoothing “on demand” on the
graphics card (for display) or in the renderer. The trade-off is that subdivision
curves/surfaces take slightly longer to render. However, smoothing
low-resolution polylines using curve subdivision is still much faster than
working with inherently smooth primitives such as NURBS curves.

Subsurface scattering (SSS) Also known as subsurface light transport (SSLT), is
a mechanism of light transport in which light penetrates the surface of a
translucent object, is scattered by interacting with the material, and exits the
surface at a different point.

Subpixel Morphological Anti-aliasing (SMAA) This filter detects edges in a
rendered image and classifies edge crossings into various shapes and shades, in
an attempt to make the edges or lines look smoother. Almost every GPU
developer has their own version of anti-aliasing.

Super-ray A grouping of rays within and across views, as a key component of a
light-field processing pipeline.

TAM Total available market.

Tearing and frame dropping Vsync, where the monitor is synchronized to the
powerline frequency, can cause the screen to be refreshed halfway through the

Glossary 349

process of a frame being output by the GPU, resulting in two or more frames
being shown at once.

Texel Acronym for TEXture ELement or TEXture pixEL—the unit of data which
makes up each individually addressable part of a texture. A texel is the texture
equivalent of a pixel.

Texture mapping The act of applying a texture to a surface during the rendering
process. In simple texture mapping, a single texture is used for the entire surface,
no matter how visually close or distant the surface is from the viewer.
A somewhat more visually appealing form of texture mapping involves using a
single texture with bilinear filtering, while an even more advanced form of
texture mapping uses multiple textures of the same image but with different
levels of detail, also known as mipmapping. See also “Bilinear Filtering,” “Level
of Detail,” “Mipmap,” “Mipmapping,” and “Trilinear Filtering.”

Texture map Same thing as “Texture.”

Texture A texture is a special bitmap image, much like a pattern, but which is
intended to be applied to a 3D surface in order to quickly and efficiently create a
realistic rendering of a 3D image without having to simulate the contents of the
image in 3D space. That sounds complicated, but in fact it’s very simple. For
example, if you have a sphere (a 3D circle) and want to make it look like the
planet Earth, you have two options. The first is that you meticulously plot each
nuance in the land and sea onto the surface of the sphere. The second option is
that you take a picture of the Earth as seen from space, use it as a texture, and
apply it to the surface of the sphere. While the first option could take days or
months to get right, the second option can be nearly instantaneous. In fact,
texture mapping is used broadly in all sorts of real-time 3D programs and their
subsequent renderings, because of its speed and efficiency. 3D games are cer-
tainly among the biggest beneficiaries of textures, but other 3D applications,
such as simulators, virtual reality, and even design tools take advantage of
textures too.

Tile-Based Deferred Rendering (TBDR) defers the lighting calculations until all
objects have been rendered, and then it shades the whole visible scene in one
pass. This is done by rendering information about each object to a set of render
targets that contain data about the surface of the object this set of render targets is
normally called the G-buffer.

Tiled rendering The process of subdividing a computer graphics image by a
regular grid in optical space and rendering each section of the grid, or tile,
separately. The advantage of this design is that the amount of memory and
bandwidth is reduced compared to immediate mode rendering systems that draw
the entire frame at once. This has made tile rendering systems particularly
common for low-power handheld device use. Tiled rendering is sometimes
known as a “sort middle” architecture, because it performs the sorting of the
geometry in the middle of the graphics pipeline instead of near the end.

350 Glossary

Tone mapping A technique used in image processing and computer graphics to
map one set of colors to another to approximate the appearance of high-dynamic
range images in a medium that has a more limited dynamic range.

Trilinear Filtering A combination of bilinear filtering and mipmapping, which
enhances the quality of texture mapped surfaces. For each surface that is ren-
dered, the two mipmaps closest to the desired level of detail will be used to
compute pixel colors that are the most realistic by bilinearly sampling each
mipmap and then using a weighted average between the two results to produce
the rendered pixel.

UDIM An enhancement to the UV mapping and texturing workflow that makes
UV map generation easier and assigning textures simpler. The term UDIM
comes from U-Dimension and design UV ranges. UDIM is an automatic UV
offset system that assigns an image onto a specific UV tile, which allows one to
use multiple lower resolution texture maps for neighboring surfaces, producing a
higher resolution result without having to resort to using a single ultra-high
resolution image. UDIM was invented by Richard Addison-Wood and came
from Weta Digital (circa 2002).

Voxel A voxel is a value in three-dimensional space. Voxel is a combination of
“volume” and “pixel” where pixel is a combination of “picture” and “element.”
This is analogous to a texel, which represents 2D image data in a bitmap (also
referred to as a pixmap). Voxels are used in the visualization and analysis of
medical and scientific data (Some volumetric displays use voxels to describe
their resolution. For example, a display might be able to show 512 � 512 � 512
voxels). Both ray tracing and ray casting, as well as rasterization, can be applied
to voxel data to obtain 2D raster graphics to depict on a monitor.

VPU (Vector Processing Unit) A vector processor or array processor implements
an instruction set containing instructions that operate on one-dimensional arrays
of data called vectors.Today’s CPUs architectures have instructions for a form of
vector processing on multiple (vectorized) datasets, typically known as SIMD
(single instruction, multiple data). Common examples include Intel x86’s MMX,
SSE and AVX instructions, AMD’s 3DNow! Extensions as well as Arm’s Neon
and its scalable vector extension (SVE).

VXGI is a new approach to computing a fast, approximate form of global illu-
mination (GI) dynamically in real-time on the GPU. This new GI technology
uses a voxel grid to store scene and lighting information and a novel voxel cone
tracing process to gather indirect lighting from the voxel grid. The purpose for
VXGI is to run in real-time and doing full ray tracing of the scene is too
computationally intense, so approximations are required.

VXGI Voxel Global Illumination (VXGI), developed by Nvidia, features
one-bounce indirect diffuse, specular light, reflections, and area lights. It is an
advancement in realistic lighting, shading, and reflections. VGXI is a three-step

Glossary 351

process: Voxelization, light injection, and final gathering and is employed in the
next-generation games and game engines.

WCG Wide Color Gamut—anything wider than Rec.709, DCI P3, Rec.2020—See
wide color gamut.

Wide color gamut High Dynamic Range (HDR) displays a greater difference in
light intensity from white to black, Wide Color Gamut (WGC) provides a greater
range of colors. The wide-gamut RGB color space (or Adobe Wide Gamut
RGB) is an RGB color space developed by Adobe Systems that offers a large
gamut by using pure spectral primary colors. It is able to store a wider range of
color values than sRGB or Adobe RGB color spaces.Also see HDR, and Color
gamut.

Z-buffer A memory buffer used by the GPU that holds the depth of each pixel
(Z-axis). When an image is drawn, each (X–Y) pixel is matched against the
z-buffer location. If the next pixel in line to be drawn is below the one that is
already there, it is ignored.

352 Glossary

Index

A
AccuRender, 265
Act-3D, 216
Action game, 97
Adobe, 279
Adobe dimension, 254
AdobeRGB, 86
Adshir Ltd., 160
Advanced rendering technology, 153
Adventure game, 97
4A Games, 105
Agency9, 163
AI, 105
Aliasing, 42
Allegorithmic, 73, 261
Amazon, 168
Ambient occlusion, 80
AMD, 237, 317
American Computer Machinery (ACM), 34
Amiga, Commodore, 14
API, 11
Appel, Arthur, 12
Apple, 139
Appleseed, 187
Archard, Benjamin, 105
Arnold, 75, 190, 298
Aspera, 169
Atmos Blender, 253
Augusto, Ricardo Lipas, 307
AutoCAD, 286
Autodesk, 162, 190, 233
Autodesk Ray Tracer (ART), 286
Autonomous vehicles, 110
AxF, 79
AxF format, 261

B
Baidu, 168
Bakalash, Reuven, 160
Baked in lighting, 25, 129
Barnstorm VFX, 275
Bärtels, Uwe, 200
Battlefield V, 103
Beam tracing, 49
Beaune, François, 187
Beckman Institute, The, 167
Benchmark, Futuremark/Underwriter’s Labs,

176
Benchmarking, 173
Benchmark, Redshift, 179
Benchmark, SPEC, 173
Benchmark, V-Ray, 178
Benthin, Carsten, 156
Bentley Systems, 163
Biased, 148
Biased renderer, 242
Biased rendering, 335
Bidirectional Reflectance Distribution Function

(BRDF), 17, 35, 81
Bidirectional Reflectance Transmission

Function (BRTF), 17
Bidirectional Scattering Distribution Function

(BSDF), 52, 79
Bidirectional Scattering-Surface Reflectance

Distribution Function (BSSRDF), 81
Bit-mapped, 5
Blender, 176, 272
Blender Cycle, 58
Blinn’s law, 133, 152
Block-chain rendering, 164
Bloom Unit, 324

© Springer Nature Switzerland AG 2019
J. Peddie, Ray Tracing: A Tool for All,
https://doi.org/10.1007/978-3-030-17490-3

353

https://doi.org/10.1007/978-3-030-17490-3

Bounding volume hierarchy, 148, 234
Box, George E.P., 17
Brigade, 233
Brute force, 55
Bucciarelli, David, 307
Buck, David Kirk, 239
Buck, Jamis, 325
Bump-mapped, 5
Bunkspeed, 205, 291
Burtnyk, Nicolas, 242

C
CalMAN, 86
Candela per square meter, 86
Carpenter, Loren, 246
Carrara, 277
Cason, Chris, 240
Catmull, Ed, 246
Cebas, 304
Chaos Group, 286, 298, 310
Chaotica, 199
Chapman, Nicholas, 195
Chapman, Ralph, 195
CIE 1931, 87
Cinema 4D, 75, 199
Cinema 4D Visualize, 202
CineRender, 202
Clappier, Antoine, 277
Clo3D, 113
Cloud-based visualization, 93, 162
Cloud-hosted render farm, 169
CL3VER, 262, 322
Color gamut, 89
Color Matching System, 87
Computer-Aided Design (CAD), 33
Computer-Aided Engineering (CAE), 96, 119
Computer-Automated Design (CAutoD), 96
Cone tracing, 49
Conflict of interest modes, 234
Consistency, 149
Cook, Robert, 17, 45, 246
Corazza, Stefano, 280
Corona, 298
Corona Renderer, 262
Creative Edge Software, 117
Creo, 194
CUDA, 231, 256, 315
Cycles, 177, 273
Cycles4D, 304

D
Dassault Systèmes, 290
Datasmith, 268, 288
Daz 3D, 277

Daz Studio, 277
Deadline Usage Based Licensing, 171
Deep Learning Super-Sampling (DLSS), 145,

147, 149
3Delight, 184
Deltagen, 297
DeMarle, David, 167
Denoiser, 223, 262
Denoising, 48, 148
Depth-of-field, 8
3Dexcite, 296
DIALux, 120
DICE, 236
Diffuse reflection, 19
Digital Content Creation (DCC), 85
Dimension, 279
DirectX 12, 139
DirectX Raytracing (DXR), 105, 236
Disney SeExpr, 188
DisplayHDR, 86
Distributed ray tracing, 45
DKBTrace, 239
3DMark Port Royal, 176
Dolby Vision, 89
3ds Max, 265, 286, 304
Dürer, Albrecht, 16, 333

E
Egel, Harald, 200
Electronic Arts, 236
Embree, 234, 300, 314
Emissive Distribution Functions (EDF), 79
Emotus, 133
Environment probes, 26, 130
Eovia, 277

F
Fajardo, Marcos, 190
Farr, Dan, 276, 277
Fashion industry, 113
FinalRender, 304
Finite element radiosity, 44
Fire rays, 317
FireRender, 237
First-person shooter, 97, 105
FLOSS Weekly, 240
Flow, Pixar, 250
FormZ, 254
Forrester, David, 267
Foundry, 295
FPGA, 154
Fractal Design, 276
Free PBR, 72
Fukurono, Yoshihiro, 251

354 Index

Functional realism, 17
Fusion, 286
Futuremark, 176
FuzeDrive, 133

G
Gamma, 61
Gamut, 61, 87
GeForce RTX, 105, 147
Geisberg, Samuel, 194
Genesis, 278
Geographical Information Systems (GIS), 163
Glare Technologies, 195
Global illumination, 43, 80, 105
Gonzalez, Victor, 221
Google Cloud, 151
Gotler, S., 34
GPU Benchmark, 179, 243
GPU rendering, 215, 224
Grainger, Alissa, 231
Gran Turismo, 120
Graphical Processing Unit (GPU), 11, 133
Greyscalegorilla, 75, 192
Grimaldi, Jean-Philippe, 307
Guibas, Leonidas J., 44

H
Halcyon engine, EA SEED, 236
Hanrahan, Pat, 34
Hare, Young, 333
Heberlein, L.A., 88
Heid, Asbjorn, 307
Hemmelgarn, Tony, 268
Herken, Rolf, 203
Hidden surface problem, 38
High Dynamic Range (HDR), 36, 61, 86
Hoedicke, Robert, 204
Hofmann, Georg Rainer, 331
Holodeck, 58
Holographic, 58
Holy grail, 61
Hotový, Adam, 300
Houdini, 282, 284
Humphreys, Greg, 307
Hutchinson, David, 268
Hybrid rendering pipeline, 148

I
IBM, 169
IBM Cell, 154
Iborra, Daniel, 322
IC3D, 117
Id Software, 50, 98
Illumination Research, 184

Imagination Technologies, 155
Indigo Renderer, 195
Infini-D, 277
Infrastructure-as-a-Service (IaaS), 169
Innobright, 223
Intel, 233
Intel’s SPMD program complier, 234
InTrace, 154
Inventor, 286
Iray+, 205, 206, 268, 279, 291
Iray Plugins, 206

J
Jakob, Wenzel, 225
Jeffers, Jim, 166
Jensen, Claus Wann, 213
Jensen, Henrik Wann, 213
Jobs, Steve, 246
Jurabaev, Jama, 276

K
Kajiya, Ray, 47
Karlík, Ondřej, 300
KeyShot, 213, 306
Kheffache, Aghiles, 184
Khronos, 139
Kitware, 166
Koylazov, Vladimir, 253
Křivánek, Jaroslav, 300

L
Lagoa, 162
Larabee, 235
Levoy, Marc, 34
Light-field, 233
Light-field rendering, 57
LightStage, 233
Lightstream, 268
LightTools, 120
Lightwork Design, 206, 267
Lindstrom, Peter, 335
Look-Up Table (LUT), 88
Lucasfilm, 70, 76
Luminance, 88
Lumion, 216, 217, 307
Lunn, Philip, 291
LuxCoreRender, 279, 307
Luxion, 213, 306

M
Managed cloud services, 169
Manifold Next Event Estimation, 248
Mantle API, 139
Mantra, 282

Index 355

Manuka, 52, 269
Mapped, 4
Marcellis, Ferry, 216
Margaret A. Hagen, 16, 334
Marvellous Designer, 113
Materials Definition Language (MDL), 77, 78,

206
Materials libraries, 76
MaterialX, 76
Mathematical Applications Group, 12
Mathematical Applications Group, Inc.

(MAGI), 13
Maxon Computer, 200
Maxwell, 221, 309
Maxwell multilight, 224
Maxwell Render, 221
Maxwell Studio, 222
Maya, 265, 286
Mental images, 203, 291
Mental ray, 203, 287
Mercury Computer Systems, 154
Message Passing Interface, 234
MetaCreations, 276
Metal API, 139
MetaTools, 276
Metro Exodus, 102, 105
Metropolis light transport, 44, 49, 222
Microsoft Azure, 168
Migenius, 206, 323
MIP-mapped, 5
MirriAd, 123
Mitev, Peter, 253
Mitsuba, 225
Modo, 295
Moiré pattern, 42
Monte Carlo, 17, 36, 44
Moore’s Law, 30
Motion-blur, 8, 45, 83
Motiva Unreal Scene, 288

N
Navisworks, 286
Navrátil, Paul, 165
Nebula Render, 228
Nemetschek Group, 200
Newtek, 14
Next Limit, 221, 309
NGX, 145
Nits, 86
Noise, 18
Noll, A. Michael, 34
Non-Uniform Rational Basis Spline (NURBS),

265
Normal maps, 5

Notch, 126
Numenus, 265
Nurulize, 262
Nvidia, 78, 105, 268, 280, 287, 291, 315
NVLink, 256

O
Octane, 75, 233
OctaneBench, 164
OctaneRender, 58, 231
Omnibus, 282
One render, 323
OnShape, 323
OpenCL, 139
OpenGL, 140, 165
OpenRL, 137, 155
OpenRT, 137, 154, 155
Open Shading Language (OSL), 69, 188, 261
OpenSWR, 165
OpenVBD, 200
Optane, 133
Opticore, 286
OptiX, 24, 137, 192, 315, 317
OSPRay, 165, 233
Otoy, 58, 231

P
Painter’s algorithm, 38
Pantora, 80
ParaView, 165, 234
Parker, Steven, 316
Path tracer, 233
Path Tracing, 17, 44, 46, 49
Perceptual Quantizer, 87
Persistence of Vision Ray Tracer, 240
Petit, Mark, 288
Pharr, Matt, 307
Phoenix FD, 253
Photon mapping, 43, 49, 54
Photorealism, 17, 61
Photo View 360, 295
Physically-based rendering, 71
Physically based shading, 73
Physical realism, 16
Pica, 236
Pica project, 236
Pimentel, Ken, 288
Pitchvis, 109
PiVR, 162
Pixar, 246
Platform as a Service, 169
Pohl, Daniel, 100
Point-based, 66
Poliigon, 220

356 Index

Polygon rendering, 11
Polyphony Digital, 120
Portal lamps, 275
Portrait Display, 86
Poser, 304
POV-Ray, 240
PowerVR Wizard ray tracing GPU, 155
PQ curve, 87
Preemptible Instances, 169
Prefixa, 323
Pre-vis, 93, 111, 119
Previsualization, 111
Pre-viz, 93
PRISMS, 282
PRMan, 246
ProRender, 201, 237
PTC, 194

Q
Quake, 98

R
Radeon Rays, 317
Radiosity, 49, 56
RapidRT, 286
Ray casting, 14, 41, 50, 98, 237
RayCore, 156
Ray Dream, 276
Raypath modeling, 118
Ray Tracer Challenge, The, 326
Ray tracing, 40
Ray tracing inventor, 331
RealityServer, 323
Real-time ray Traced Ambient Occlusion

(RTAO), 106
Real-time ray Traced Global Illumination

(RTGI), 106
Real-Time Ray Tracing (RTRT), 61, 138
Real-Time Technologies (RTT), 291, 296
Rec. 2020, 87
Recursive ray tracing, 52
REDsdk, 163
Redshift, 75, 242, 310
Redway3D, 163
Refractive Software, 231
Render farms, 131
Rendering equation, The, 35
Render Legion, 262
RenderMan 22, 249
RenderMan, 70, 246
RenderMan Shading Language, 70
RenderMan XPU, 249

Renders Everything You Ever Saw (REYES),
246

Render Token, 164
Revit, 286
Rhino, 304
Robert McNeel & Associates, 286
Role-playing game, 97
Romang, Jean-Francois, 307
Roosendaal, Ton, 177, 272
Roth, Scott, 50
RT cores, 105, 317
RTX, 101, 141, 192, 206, 321
Russian roulette, 46
Ryff, 123

S
Saya, 3
Scan-line, 11
Scanline rendering, 36
Schied, Christoph, 99
Schneider, Harald, 200
Sculpt 3D, 14
SEED, 236
Self-driving cars, 110
Servant, Fred, 193
Shader, 70
Shader balls, 68
Shadow of the Tomb Raider, 102
Sheen, 193
Shot, 291
Showcase, 265
Shuttleworth, Mark, 240
SideFx, 282
Siemens, 268
Siemens PLM, 206
SIGGRAPH, 34
Siliconarts, 156
Similar-Instruction, Multi-Data (SIMD), 24,

133, 137, 138
Simulation, 24
SketchUp, 309
Slipstream, 268
Smith, Alvy Ray, 246
SMPTE 2084, 87
[0x1] Software, 206
Software-as-a-Service (SaaS), 169
Software Defined Visualization, 165
Software Development Kit (SDK), 79
Solid Angle, 190
SolidWorks, 290
Sony, 120
Sony Pictures Imageworks, 69, 188

Index 357

Spatial denoising, 48
SpectraCal, 88
Spectral wavelength rendering, 304
Specular International, 277
Specularity, 19
SPECworkstation, 175
Sport games, 97
Spot Instances, 170
SRGB, 86
SSD, 133
Standard Performance Evaluation Corporation,

173
Stanzione, Dan, 165
Startups, 183
Stem Cell Advisory Board, 261
Stone, John, 167, 252
Stylistic, 19
Subsampling, 43
Substance designer, 74
Substance source, 73
Subsurface scattering, 66, 81, 191, 222
Su, Lisa, 237
Super Cheap Architectural Renders, 172
Super-ray, 59
Super-sampling, 43
Sweeny, Tim, 287

T
TAC7, 80
Tachyon, 252
Taylor, Malcolm, 231
Temporal denoising, 48
Tensor cores, 105
Teruyuki and Yuki Ishikawa, 3
Texas Advanced Computing Center, 165
Texel, 59
Texture mapping, 5
Thinkbox, 257
Thinkbox Marketplace, 171
TigerSHARK, 154
Tonal range, 86
Tone-mapping, 85
Transparency, 19
Turing, Nvidia, 143

U
Unbiased rendering, 335
Underwriter Labs, 176
Unified Shader Model, 70

Unreal Studio, 287
Urbach, Jules, 231
Utah teapot, 16

V
Vargas, Ignacio, 220, 221
Variance-Based Adaptive Sampler (VBAS), 83
Variance-based Adaptive Sampling, 263
Veach, Eric, 44
VESA, 86
Vetorworks, 202
Viewport, 213, 231, 282
Virtual Light Booth, 80
Virtual Private Network, 170
Virtual-production, 119
Virtual prototyping, 92, 96, 119
Virtual Rapid Prototyping (VRP), 119
Virtual simulation, 113
Visual Computing Appliance (VCA), 157
Visualization Toolkit, 234
Visualize, 291
VizSource, 172
Volume Distribution Functions (VDF), 79
Voxel, 59
V-Ray, 265, 280, 301, 310
VRED, 162, 265
Vulkan API, 139

W
Wagon-wheel effect, 43
Wald, Ingo, 156
Walking simulators, 97
WebGL, 140
Weta, 52, 269
Whitted, Turner, 14, 34
Wolfenstein 3D, 50, 98

X
X-Rite, 79, 261
X-rite iDisplay, 87

Y
Yéo, Yann Clotioloman, 228

Z
Z-buffering, 37
Zync, 151, 257

358 Index

	Foreword I
	Foreword II
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Preface
	Abstract
	1.1 About the Cover
	1.2 Terminology and Definitions

	2 Introduction
	Abstract
	2.1 Who Needs It?
	2.2 Ray Tracing Isn’t New
	2.3 A Little History
	2.4 Ray Tracing not New
	2.4.1 From Humble Beginnings

	2.5 Realism, Accuracy, and Functionality
	2.5.1 Three Types of Realism in Computer Graphics
	2.5.1.1 Monte Carlo

	2.5.2 Stylistic Versus Photorealistic
	2.5.2.1 Sometimes You Can’t See It
	2.5.2.2 The Payoff of Ray Tracing
	2.5.2.3 The Need for Ray Tracing

	2.6 Technical Papers and Books
	2.7 Material Libraries Critical
	2.8 Rendering Becomes a Function of Price
	2.9 Shortcuts and Semiconductors—The Need for Speed
	2.10 Challenges
	References

	3 The Rendering Industry
	Abstract
	3.1 Leading Companies Rendering in AEC 	and Product Design
	3.2 The Future

	4 The Continuum
	Abstract
	4.1 The Rendering Equation
	4.2 Scanline Rendering
	4.2.1 Z-Buffering
	4.2.2 Painter’s Algorithm

	4.3 Ray Tracing
	4.3.1 Path Tracing
	4.3.2 The Difference Between Path Tracing and Ray Tracing
	4.3.3 Noise in Ray Tracing
	4.3.4 Global Illumination
	4.3.5 The Difference Between Ray Tracing and Ray Casting
	4.3.6 Recursive Ray Tracing

	4.4 Photon Mapping
	4.5 Brute Force
	4.6 Radiosity
	4.7 Light-Field Rendering
	4.7.1 Voxels

	4.8 Problems Ray Tracing Doesn’t Solve
	4.8.1 Photorealism
	4.8.2 Surface Complexity
	4.8.3 Scale

	4.9 Summary
	References

	5 Work Flow and Material Standards
	Abstract
	5.1 Biased Versus Unbiased
	5.1.1 Biased Versus Consistent
	5.1.2 Radiosity
	5.1.3 Rasterization

	5.2 Importance of Material Library
	5.2.1 Standards (USPs, OSL, Etc.)
	5.2.2 Physically Based Rendering
	5.2.2.1 Physically Accurate?
	5.2.2.2 Free PBR Sources
	5.2.2.3 CC0 Textures
	5.2.2.4 Cgbookcase
	5.2.2.5 Free PBR
	5.2.2.6 Khronos
	5.2.2.7 Textures.Com

	5.2.3 Allegorithmic’s Substance Designer
	5.2.4 Everyday Material Collection
	5.2.5 MaterialX
	5.2.6 Nvidia’s MDL
	5.2.7 X-Rite’s AxF

	5.3 Quality Issues
	5.3.1 Skin and Subsurface Scattering
	5.3.2 Variance-Based Adaptive Sampling
	5.3.3 Hybrid
	5.3.4 Summary

	5.4 Importance of HDR Monitors
	5.5 Importance of Full-Color Printers
	References

	6 Applications of Ray Tracing
	Abstract
	6.1 The Pipeline
	6.1.1 Conception—STAGE ONE
	6.1.1.1 Simulations of Things that Don’t Exist
	6.1.1.2 Animation Games and Simulation
	Ray Tracing in Games
	Ray Tracing in Contemporary Games
	The Exception
	4A Games Metro Exodus

	6.1.1.3 Architecture
	Sun and Shadows

	6.1.1.4 Film and TV
	6.1.1.5 Medical and Scientific
	6.1.1.6 Vehicles
	6.1.1.7 Products in General

	6.1.2 Design and Engineering—STAGE TWO
	6.1.2.1 Photorealistic
	Physically Accurate

	6.1.2.2 Jewelry Design
	6.1.2.3 Fashion Design
	Virtual Simulation in the Fashion Industry

	6.1.2.4 Mechanical Engineering
	6.1.2.5 Molecular Modeling
	6.1.2.6 Packaging Design
	6.1.2.7 Geophysical
	6.1.2.8 Optical Design
	6.1.2.9 Audio

	6.1.3 Manufacturing and Production—STAGE THREE
	6.1.3.1 Fixture Design and Placement
	6.1.3.2 Ray Tracing in Games’ Manufacturing

	6.1.4 Marketing—STAGE FOUR
	6.1.4.1 Advertising
	6.1.4.2 Packaging
	6.1.4.3 Projection Mapping

	6.2 Summary
	References

	7 Ray-Tracing Hardware
	Abstract
	7.1 Shortcuts and Semiconductors—The Need for Speed
	7.2 Local
	7.2.1 CPU
	7.2.2 GPU
	7.2.2.1 Real-Time Ray Tracing
	7.2.2.2 Vulkan API Extension
	7.2.2.3 AMD
	7.2.2.4 Nvidia
	7.2.2.5 Denoising and Unbiased Ray Tracing
	7.2.2.6 Deep Learning Super-Sampling
	7.2.2.7 GPUs for Rendering
	Local
	Remote
	Conclusion

	7.2.3 Dedicated
	7.2.4 RT on Mobiles

	7.3 Remote
	7.3.1 Cloud-Based Visualization
	7.3.1.1 Cloud Rendering
	7.3.1.2 Block-Chain Render Farms
	CPUs in Visualization

	7.3.2 Public Cloud Rendering Services
	7.3.2.1 Assets
	7.3.2.2 Render License

	7.3.3 Private Rendering Services—Farms
	7.3.4 Rendering Service Organizations

	7.4 Benchmarking Ray Tracing
	7.4.1 SPEC
	7.4.2 Underwriter Labs Futuremark
	7.4.3 Blender’s Open Data Benchmark
	7.4.4 Chaos Group
	7.4.5 Redshift Benchmark
	7.4.6 Summary

	References

	8 Ray-Tracing Programs and Plug-ins
	Abstract
	8.1 Stand-Alone Ray-Tracing Programs
	8.1.1 3Delight—Illumination Research
	8.1.1.1 Summary

	8.1.2 Appleseed
	8.1.2.1 Summary

	8.1.3 Arnold—Autodesk (Solid Angle)
	8.1.3.1 Summary

	8.1.4 Cero—PTC
	8.1.4.1 Summary

	8.1.5 Indigo Renderer—Glare Technologies
	8.1.5.1 Summary

	8.1.6 Cinema 4D—Maxon Computer
	8.1.6.1 Summary

	8.1.7 Corona Renderer—Render Legion
	8.1.8 Iray—Nvidia
	8.1.8.1 Practicing What They Preach
	8.1.8.2 Summary

	8.1.9 KeyShot—Luxion
	8.1.9.1 Summary

	8.1.10 Lumion 8 and Pro—Act-3D B.V
	8.1.10.1 Summary

	8.1.11 Maxwell Render—Next Limit
	8.1.11.1 Summary

	8.1.12 Mitsuba
	8.1.12.1 Summary

	8.1.13 Nebula Render
	8.1.13.1 Summary

	8.1.14 OctaneRender—Otoy
	8.1.14.1 Summary

	8.1.15 OSPRay—Intel
	8.1.15.1 Summary

	8.1.16 Pica—SEED/Electronics Arts
	8.1.17 ProRender—AMD
	8.1.17.1 Summary

	8.1.18 POV-Ray
	8.1.18.1 Summary

	8.1.19 Redshift Renderer
	8.1.19.1 Summary

	8.1.20 RenderMan—Pixar
	8.1.20.1 Summary

	8.1.21 Rigid Gems—FerioWorks.LLC
	8.1.22 Tachyon
	8.1.23 V-Ray—Chaos Group
	8.1.23.1 Summary

	8.1.24 VRED—Autodesk
	8.1.24.1 Summary

	8.1.25 Other
	8.1.26 Lightworks Design
	8.1.26.1 Summary

	8.1.27 Manuka—Weta
	8.1.27.1 Summary

	8.2 Integrated (Programs with Native Ray Tracers)
	8.2.1 Cycles—Blender
	8.2.1.1 Summary

	8.2.2 Carrara—Daz 3D
	8.2.2.1 Summary

	8.2.3 Dimension CC—Adobe
	8.2.3.1 Summary

	8.2.4 Mantra—SideFX
	8.2.4.1 Summary

	8.2.5 ART (Autodesk Ray Tracer)
	8.2.5.1 Summary

	8.2.6 Unreal Studio—Epic Games
	8.2.6.1 Summary

	8.2.7 Visualize—Dassault Systèmes/SolidWorks
	8.2.7.1 Summary

	8.2.8 PhotoView 360—Dassault Systèmes/SolidWorks

	8.3 Plug-in Programs
	8.3.1 3Delight—Illumination Technologies
	8.3.2 Arnold—Autodesk
	8.3.3 Corona Renderer—Chaos Group (Legion Team)
	8.3.3.1 Summary

	8.3.4 Cycles—Blender
	8.3.5 finalRender—Cebas
	8.3.5.1 Summary

	8.3.6 Iray—Nvidia
	8.3.7 KeyShot—Luxion
	8.3.8 Lumion
	8.3.9 LuxCoreRender
	8.3.9.1 Summary

	8.3.10 Maxwell
	8.3.11 ProRender
	8.3.12 Redshift
	8.3.13 V-Ray, Chaos Group
	8.3.13.1 Summary

	8.4 Middleware
	8.4.1 Embree
	8.4.1.1 Summary

	8.4.2 OptiX—Nvidia
	8.4.2.1 Summary

	8.4.3 Radeon-Rays—AMD
	8.4.3.1 Rendering Times: CPU Versus GPU
	8.4.3.2 Summary

	8.5 Cloud-Based
	8.5.1 CL3VER—Cloud Rendering
	8.5.2 OneRender—Prefixa
	8.5.3 RealityServer—Migenius
	8.5.3.1 Summary

	8.6 Other
	8.6.1 The Ray Tracer Challenge
	8.6.2 Tiny Ray Tracer Fits in 64 Bytes
	8.6.3 A Ray Tracer for Bare Metal x86
	8.6.4 Tiny Metaball Ray Tracer in x86/x87 Assembly

	References

	Appendix A
	Outline placeholder
	A.1. Ray-Tracing Programs and Plug-Ins
	A.2. Early Photorealism—Who Invented Ray Tracing
	A.2.1. Young Hare
	A.2.2. Varieties of Realism; Geometries of Representational Art
	A.2.2.1. More About Bunnies Than You Probably Wanted to Know

	A.3. Biased Versus Unbiased Rendering
	A.4. Technical Papers and Books on Ray Tracing
	A.4.1. Books on ray tracing

	Sec9

	Glossary
	Index

