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Abstract The chapter deals with the model problem of finding the effective moduli
of a nanoporous elastic material, in which the surface stresses are defined on the
pore surface to reflect the size effect using the Gurtin–Murdoch model. One cell
of a porous material in the form of a cube with one pore located in the center is
considered. The objective of the study is to assess the influence of the pore shape and
the magnitude of the scale factors on the effective moduli of the composite material.
The homogenization problem is formulated within the framework of the effective
moduli method, and to find its solution, the finite element method and the ANSYS
software package are used. In the finite element model, the surface stresses are taken
into account by membrane elements covering the pore surfaces and conformable
with the finite element mesh of bulk elements. Numerical experiments carried out
for pores of cubic and spherical shapes show the cumulative significant effect of pore
geometry and scale factors on the effective elastic moduli.

1 Introduction

The problems of nanomechanics remain extremely relevant for the last few years.
Numerous studies have revealed a scale effect, which consists in changing the effec-
tive stiffness and other material moduli for nanoscale bodies in comparison with the
corresponding values for bodies of usual macro-dimensions. A number of theories
have been developed to explain the scale factor. One of these widely used theories
is the model of surface elasticity. There are a number of reviews [10, 16, 35, 36]
devoted to research on the surface theory of elasticity and its applications. In turn,
among the theories of surface elasticity, the most popular is the Gurtin–Murdoch
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model [15]. The use of this model actually leads to the fact that the boundaries of the
nano-sized body are covered with elastic membranes, the internal forces in which are
determined by surface stresses. Elastic membranes can be placed at the interphase
boundaries inside the body with nanoscale inclusions, which makes it possible to
simulate imperfect interface boundaries with stress jumps [3–5, 7, 8, 14, 24].

The Gurtin–Murdoch model was repeatedly used to describe elastic nanostruc-
tured composites. Thus, in [1, 2, 6–9, 11, 22, 23, 31] and others, within the frame-
work of the theory of elasticity with surface stresses, the mechanical properties of
composites with spherical nanoinclusions (nanopores), as well as fibrous and other
nanocomposites, were investigated. Techniques of finite element approximation for
elastic materials with surface effects and examples of calculations are presented in
[12, 13, 17–21, 26–28, 32, 34] and others.

In this paper, we study the effective stiffness properties of a nanoporous isotropic
elastic material for various forms of pores. Porousmaterial is considered as a limiting
case of a two-phase mixed composite, when the material of inclusions has negligibly
small stiffness moduli. The nano-dimensionality at the boundaries of the material
with pores was taken into account using the Gurtin–Murdoch surface stress model.
This paper is a continuation of research [26–30]. In the development of the above-
mentioned paper, the scale factor is associated with the pore size and the effect of
pore shape on the effective composite properties is studied.

2 Mathematical Problem Statement

Let Ω be a unit cubic cell of elastic porous material with one pore of cubic or
spherical form; a is the cubic cell side; Ω = Ω(1) ∪ Ω(2); Ω(1) is the part of Ω with
main elastic material; Ω(2) is the pore; Γ = ∂Ω is the external boundary of the cell;
Γ s = ∂Ω(2) is the boundary of the pore; nk are the components of the unit normal
vector external with respect to the volume of the main elastic material Ω(1).

The unit cell Ω is linked to the Cartesian coordinate system Ox1x2x3 so that it
occupies the region |xk | ≤ a/2. Then, in the case of a cubic pore with side b (b < a),
the domain Ω(2) will be defined by the inequalities |xk | ≤ b/2, and in the case of
a spherical pore with radius R, the domain Ω(2) is given by the inequality r ≤ R,

r =
√
x21 + x22 + x23.

Wewill assume that in the volumeΩ the system of equations of the static theory of
elasticity is satisfied with respect to the components uk = uk(x) of the displacement
vector

∂σij/∂xj = 0, σij = λεkkδij + 2μεij, εij = (∂ui/∂xj + ∂uj/∂xi)/2, (1)

where σij and εij are the components of the stress and strain tensors, respectively; λ,
μ are the Lame’s coefficients; δij is the Kronecker symbol.
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Here we consider the pore as an elastic material with negligible Lame’s coeffi-
cients. Thus, the system of equations (1) is satisfied in Ω , with λ = λ(m), μ = μ(m)

for x ∈ Ω(m); λ(2) � λ(1), μ(2) � μ(1).
We will accept that the poreΩ(2) is nanosized and in accordance with the Gurtin–

Murdoch model, at its boundary Γ s the surface stresses σ s
ij exist, and the following

equations hold
nj[σij] = ∂sσ s

ij/∂xj, x ∈ Γ s, (2)

σ s
ij = λsεskkδij + 2μsεsij, εsij = (∂susi /∂xj + ∂susj /∂xi)/2, (3)

∂s/∂xj = ∂/∂xj − nj(nk∂/∂xk), usi = (δik − nink)uk , (4)

where [σij] = σ
(1)
ij − σ

(2)
ij is the stress jump over the boundary Γ s between the vol-

umes with different materials; ∂s/∂xj are the components of the surface nabla-
operator; λs, μs are the surface Lame’s coefficients; εsij are the surface strains; usi
are the surface displacements.

In the rectangular local coordinate system, attached with tangent orts ẽ1 = τ 1,
ẽ2 = τ 2 and normal ẽ3 = n, the sets of the values ũsi , ε̃

s
ij, σ̃

s
ij are pertaining to surface,

i.e. ũs3 = 0, ε̃s13 = ε̃s23 = ε̃s33 = 0, σ̃ s
13 = σ̃ s

23 = σ̃ s
33 = 0.

Note that aswe can see fromEq. (1) the surface stressesσ s
ij have the dimensionality

(N/m) different from the dimensionality (N/m2) of usual bulk stresses σij. Also the
surface Lame’s coefficients λs, μs have the dimensionality (N/m) different from the
dimensionality (N/m2) of usual bulk Lame’s coefficients λ, μ.

When calculating the effective moduli of a porous elastic material with surface
stresses, we will find the basic moduli that are important for practical applications.
As is well known, for elastic isotropic materials such moduli are the stiffness moduli
c11, c12, the Young’s modulus E, the Poisson’s ratio ν, the shear modulus G = μ =
c44, and the bulk modulus K . These moduli can be expressed through the Lame’s
coefficients by the following formulae

c11 = λ + 2μ, c12 = λ, E = μ(3λ + 2μ)

λ + μ
, ν = λ

2(λ + μ)
, K = λ + 2

3
μ, (5)

or through the Young’s modulus and the Poisson’s ratio

λ = νE

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
, K = E

3(1 − 2ν)
. (6)

Similarly, instead of the surface Lame’s coefficients λs and μs we can use other
surface moduli. For example, we can introduce the surface Young’s modulus Es and
the surface Poisson’s ratio νs having expressed from the first formula (3) the surface
strains εsij through the surface stresses σ s

ij in a form similar to the standard Hooks’s
law for the three-dimensional theory of elasticity
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εsij = − νs

Es
σ s
kkδij +

(1 + νs)

Es
σ s
ij. (7)

Since in (3) and in (7) the surface quantities are related, the expressions for the
surface moduli will differ from (5), (6) [19]

cs11 = λs + 2μs, cs12 = λs, Es = 4μs(λs + μs)

λs + 2μs
, νs = λs

λs + 2μs
, Ks = λs + μs,

(8)

λs = νsEs

1 − (νs)2
, μs = Es

2(1 + νs)
, Ks = Es

2(1 − νs)
. (9)

Here, in (8), (9) we define the surface compression modulus Ks in the form
corresponding to [1, 19, 24] and differ from [6–8] and others.

Thus, a nanoporous composite with surface stresses on the pore boundaries is
characterized by four elastic moduli, for example, E(1), ν(1), Es and νs (E(2) ≈ 0).
We will assume that the “equivalent” homogeneous material will be isotropic and
will be characterizes by two independent moduli, for example, by c eff

11 and c eff
12 . In

order to find these effective moduli, it is enough to solve the problem (1)–(4) in the
unit cell Ω with the boundary conditions

u1 = ε0x1, u2 = u3 = 0, x ∈ Γ, (10)

where ε0 = const.
After solving the problem (1)–(4), (10) similar to [26–29], we can calculate the

effective stiffness moduli by using the formulae

c eff
11 = 〈σ11〉/ε0, c eff

12 = 〈σ22〉/ε0, (11)

where the angle brackets 〈(•)〉 denote the averaged integral volume and interface
values [3, 4, 18, 19]

〈(•)〉 = 1

|Ω|
( ∫

Ω

(•) d Ω +
∫

Γ s

(•)s d Γ
)
. (12)

We can check that the homogenized material will be isotropic, if for the solution
of the problem (1)–(4), (10) we verify that c eff

12 ≈ 〈σ33〉/ε0; 〈σjk〉 ≈ 0, j 	= k. For
additional control we can solve the shear problem (1)–(4) with boundary conditions:
u1 = 0, u2 = ε0x3/2, u3 = ε0x2/2, x ∈ Γ . From the solution of this problem we
can anew calculate the shear modulus c eff

44 = 〈σ23〉/ε0, and this modulus should be
approximately equal to c eff

44 ≈ (c eff
11 − c eff

12 )/2 , where the stiffness moduli c eff
11 and

c eff
12 are found from the solution of the problem (1)–(4), (10).
In conclusion of this section, we note that the model of the pore as an elastic

material gives some error, but since λ(2) ≈ 0, μ(2) ≈ 0, we should expect that the
stress components in the pore region will also be small σ (2)

ij ≈ 0.
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3 Finite Element Results and Discussion

The boundary problems (1)–(4), (10) were solved numerically in the ANSYS finite
element package.

By virtue of the problem symmetry and for the convenience of analyzing the fields
inside the volume, a quarter of the cell {−a ≤ x1 ≤ a, 0 ≤ x2 ≤ a, 0 ≤ x3 ≤ a} was
considered with symmetry conditions on the faces x2 = 0, x3 = 0. Inside the cell,
as a pore either a quarter cube {−b ≤ x1 ≤ b, 0 ≤ x2 ≤ b, 0 ≤ x3 ≤ b} (case 1), or
a quarter ball {r ≤ R, 0 ≤ x2, 0 ≤ x3} (case 2) were set. The 10-node tetrahedral
structural SOLID92 elements were used as volumetric elements. The presence of
surface stresses was modelled with 8-node SHELL281 elements with the option of
membrane stresses and with degenerate triangular 6-node shapes. The shell elements
were covered the inner boundary of the pore and were located on the triangular faces
of the corresponding bulk tetrahedral elements, which ensured the conformality of
the finite element mesh consisting of bulk and shell elements.

The grid of bulk finite elements was created in ANSYS with a limit on the max-
imum size of elements equal to â/10, where â is the dimensionless cell size. Bulk
elements inherit the material properties of the main elastic material and pore asso-
ciated with a quarter of the volumes Ω(1) and Ω(2). Then, shell finite elements were
created automatically on the elements faces located on the inner surface of the pore.
Variants of the constructed finite element meshes without elements with the material
properties of pores are shown in Fig. 1 for the case of cubic pores (a) and spherical
pores (b). Shell elements in Fig. 1 highlighted in a darker, and porosity p is the same
and equal to 40%.

We considered steel as themainmaterial with the following elastic moduli:E(1) =
2 · 1011 (N/m2), ν(1) = 0.3. In the pore volume, we set negligible stiffness moduli
using the formulae: E(2) = κE(1), κ = 10−10, ν(2) = ν(1).

For surface moduli we accept the following formulae: Es = dsE(1), νs = ν(1),
ds = 10−10 (m). Note that, unfortunately, so far there are very few data on surface
moduli, and they are quite contradictory. Therefore, in a large number of theoretical
papers, the same values of surface moduli from [25, 33] are used, which greatly
differ in different crystallographic planes and some are negative. In this regard, here
we use the model values of the surface moduli.

Analogously to [26, 27], we model in ANSYS the surface effects by using shall
finite elements with the membrane stress option. For these elements we specify
the Young’s modulus Em, the Poisson’s ratio νm and thickness hm. In order for the
membrane element can be used as a surface element, we must accept: Es = hmEm,
νs = νm [26, 27].Wealso assume thathm = b,Em = ksE,where ks is a dimensionless
coefficient. Then, b = ds/ks, and therefore the coefficient ks is inversely proportional
to the size b of cubic pore.

In the calculations, we determined the pore size as dimensionless, with the side
of cubic pore b̂ being equal to 1. We set the dimensionless radius R̂ = (3π/4)1/3 so
that the volume of the spherical pore is equal to the volume of the cubic pore. The



222 A. V. Nasedkin and A. S. Kornievsky

Fig. 1 Finite element mesh for two cases of quarter unit cell without pore elements

dimensionless cell size â for both cases was determined depending on the specified
percentage of porosity p: â = (p/100)−1/3b̂ = (p/100)−1/3.

We analysed the influence of the pore forms, the percentage of porosity and the
surface stresses on the effective moduli. We varied the percentage of porosity p from
0 to 50%, the multiplier value for surface stresses ks, and the pore form (cube or
sphere).

The results of the calculations are presented in Figs. 2, 3, 4, 5, 6 and 7. Here
r(. . .) designates the relative value of the effective modulus, with respect to the
value of the corresponding modulus for main elastic material without pore. Thus,
r(c11) = c eff

11 /c(1)
11 , where c

eff
11 is the effective stiffnessmodulus for the porousmaterial

with or without interface stresses, c(1)
11 is the value of the corresponding stiffness

modulus for the dense main material, and so on. The curves 1 correspond to the case
of porous material without surface stresses, when ks = 0; the curves 2 correspond to
the case of porous material with small surface stresses, when ks = 0.1; the curves 3
correspond to the case of porous material with large enough surface stresses, when
ks = 0.5, and the curves 4 correspond to the case of porous material with very large
surface stresses, when ks = 1. Figures2, 3, 4, 5, 6 and 7 on the left (a) show graphs
for the case of a cubic pore, and on the right (b) show similar curves for the case of
a spherical pore.

Figures2, 3, 4, 5, 6 and 7 demonstrate an essential dependence of the effective
moduli, both on the pore shape and on the coefficient of surface stresses ks. These
dependencies also differ by module type. So, for moduli characterizing uniaxial
tension, shear and transversal deformations, these dependences are different.
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Fig. 2 Dependencies of the relative effective Young’s modulus E versus porosity

Fig. 3 Dependencies of the relative effective shear modulus G versus porosity

Fig. 4 Dependencies of the relative effective stiffness modulus c11 versus porosity
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Fig. 5 Dependencies of the relative effective stiffness modulus c12 versus porosity

Fig. 6 Dependencies of the relative effective bulk modulus K versus porosity

In the absence of surface stresses (curves 1), all moduli decrease with increasing
porosity, and the shapes of the pores have a certain effect, though it is not so extensive.
The presence of surface stresses radically changes the pattern of dependencies. All
moduli can be subdivided into two groups, in which the dependencies of the moduli
on porosity and on the shape of the pores aremost similar to each other. Thefirst group
includes themoduli characterizing uniaxial tension: theYoung’smodulusE, the shear
modulusG, and the stiffnessmodulus c11 (Figs. 2, 3 and4).The secondgroup includes
the moduli characterizing transverse deformations and uniform compression: the
stiffness modulus c12, the bulk modulus K , and the Poisson’s ratio ν (Figs. 5, 6
and 7).

For very large coefficients ks for a cubic pore, as the porosity increases, theYoung’s
modulus E and shear modulus G grow faster than in the case of a spherical pore. On
the contrary, the stiffness modulus c11 for large ks grows faster for a spherical pore.

Meanwhile, for the stiffness modulus c12, the bulk modulus K , and the Poisson’s
ratio ν, these behaviours differ significantly from porosity. For all used coefficients
ks, these moduli decrease with increasing porosity for a cubic pore. However, for a
spherical pore, these moduli increase for large ks (curves 4). In this case, the most
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Fig. 7 Dependencies of the relative effective Poisson’s ratio ν versus porosity

Fig. 8 Stresses σ22 in membrane elements for cubic pore (a) and for spherical pore (b)

interesting is the behaviour of the Poisson coefficient ν, which for a cubic pore
not only decreases with increasing porosity, but this decrease becomes stronger with
increasing ks, which differs from the corresponding behavior of the stiffnessmodulus
c12 and the bulk modulus K .

Such differences can be explained by the fact that for a cubic pore under extension
along the x1 axis, the stressesσ22 (and similarly forσ33) inmembrane elements change
sign, and on edges perpendicular to the axis x2 do not occur. In the case of a spherical
pore, membrane elements are located on curved surfaces. Therefore, with uniaxial
tension in membrane elements, the various stress components arise, and the main
stresses σ11 on a curved surface significantly affect to the stresses σ22 and σ33. As
can be seen from Fig. 8, the stresses σ22 in membrane elements on the sphere surface
do not change sign, and their maximum values are almost five times larger than for
a cubic pore. Since the stiffness modulus c12 according to (11), (12) is calculated
by integrating the stresses σ22 both by volume elements and surface elements, then
it is clear that the surface stresses for a spherical pore increase the modulus c12
significantly more than for a cubic pore.
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Similar reasoning is true for the bulk modulusK , and it is obvious that the sphere-
shaped pore reinforced over the surface gives a more rigid structure for a full com-
pression in the composite than the cubic pore reinforced over the surface.

Thus, summarizing the above, we can conclude that the shape of the pores has a
significant influence on the effective moduli of the porous material, especially when
taking into account surface stresses for nanoscale pores.

Finally,we cannote thewell-known fact that for a nanoporousmaterial its effective
moduli may be larger than for a solid material. As can be seen in Figs. 2, 3, 4, 5,
6 and 7, these situations occur when the values of the relative effective moduli are
greater than 1 (i.e. the curves 3 or 4 turn out to be above the dashed line r(. . .) = 1).
An explanation of this can be found in many papers [9–11, 26, 27] and therefore is
not repeated here.

Further studies can be aimed at solving the problems with periodic boundary
conditions, with representative volumes with a large number of pores of different
shapes and with the definition of surface moduli by using different formulae that was
accepted in this paper.
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