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Foreword

There is a growing current interest in the production, design, and analysis of
structural elements made from metamaterials. Metamaterials are called new, mostly
artificial materials, the properties of which are determined mainly by their structure,
and not by the properties of the constituent material components. Examples of such a
metamaterial are acoustic materials with internal resonators; see [Liu, Z., Zhang, X.,
Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally resonant
sonic materials. Science, 289 (5485), 1734–1736]. The material considered is a
matrix with embedded rubber spheres and is an acoustic insulator. Unusual prop-
erties with the presence of specific frequency intervals, “cutoff” and “transmission,”
occur both for regular and for stochastic internal structures.

The papers presented in this book are devoted to the study of the following
aspects in the dynamics of metamaterials:

– Analysis of wave propagation and wave processes in general in materials with
internal resonators, both three-dimensional and thin-walled.

– Analysis of the intrinsic instabilities inherent in such materials, in any case, to
some, based both on the applied theories of plates and shells, and on the
three-dimensional nonlinear theory of elasticity.

– Development of “effective” models of metamaterials based on one or another
method of averaging and solution to the corresponding initial-boundary value
problems for homogeneous media with effective properties.

– Development of new methods and technologies for modeling the behavior of
nanostructured materials, taking into account the surface properties and the
determination of the effective properties of the material at the macrolevel.

The developed models are focused on their practical use. That is why the authors
of the contributions use semi-analytical, numerical, and experimental methods in
solving dynamic problems for metamaterials. The papers are characterized by the
following features relevant to the study of acoustically and electrically active
deformable metamaterials and devices made from these materials at the macro-,
micro-, and nano-levels:
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– Modern and actual related problems of the theory of elasticity (piezoelectricity
or electroelasticity, thermoelectroelasticity, flexoelectricity, models for envi-
ronments with low porosity); coupled problems of interaction of deformable
bodies made of electrically active materials with acoustic media; models of the
mechanics of composite electrically active metamaterials with a periodic and
quasi-periodic structure.

– Development of the models for description of the behavior of electrically active
materials and devices at the macro-, micro-, and nano-levels.

– Development of basic approaches for the modeling at the micro- and
nano-levels: a multiscale analysis with the study of micro- and nanostructures;
taking into account the surface effects (based on various models of surface
elasticity) and the dimensional factors.

– An important algorithmic and software component of the project is in the use of
finite element methods for discretization of continual problems for electrically
active materials at different scale levels. The finite element algorithms are
applied with the symmetric quasi-defined matrices; development of specific
software for ANSYS, ABAQUS, COMSOL, and FlexPDE software systems.

– Focusing on computer simulation models and methods for the practical appli-
cations: the study of effective and important metamaterials and devices with the
elements from electrically active materials (helicoidal objects, layered spiral
piezoelectric shells, tubular piezotransducers with spiral electrodes, micro- and
nano-sensors, actuators, composite piezogenerators, tunable terahertz metama-
terials, and piezoelectric metamaterials having periodic and quasi-periodic
structure) at different scale levels.

– The development of analytical methods of wave dynamics is applied for the
problems of propagation of the acoustic waves through the internal structures of
metamaterials. It includes obtaining explicit approximate solutions and quali-
tative analysis of the mechanisms of “suppression” and transmission from
explicit analytical solutions.

– Continuous and discrete models of solids are developed (including
multi-particle models of low and highly molecular systems with complicated
strain interactions) as well as the structures taking into account surface elasticity
and real properties of materials at the macrolevel.

– Theoretical and experimental approaches are obtained for the problems of
acoustic control of active metamaterials of complex internal structure (doubly
and threefold systems of internal inclusions, periodic epoxy-based structures,
and others).
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This book is a logical continuation and further development of the ideas and
methods presented in the monograph: Wave Dynamics and Composite Mechanics
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On Anti-Plane Surface Waves
Considering Highly Anisotropic Surface
Elasticity Constitutive Relations

Victor A. Eremeyev

Abstract Within the framework of highly anisotropic surface elasticity model we
discuss the propagation of new type of surface waves that are anti-plane surface
waves. By the highly anisotropic surface elasticity model we mean the model with a
surface strain energy density which depends on incomplete set of second derivatives
of displacements. From the physical point of view thismodel corresponds to a coating
madeof a family of parallel longfiberswhichposses bending and extensional stiffness
in one direction only. As for other models with surface energy there exist anti-plane
surface waves. In the paper the dispersion relation is derived and dependence on the
material parameters is analyzed.

1 Introduction

Surfacewaves constitute awell-knownand rather developedbranchof themechanics.
They play an important role in the both solid and fluid mechanics, see, e.g., Achen-
bach [2], Whitham [35], Goldstein and Maugin [21]. For example, such waves are
used in acoustoelectronics as they may bring information on the material structure
and its properties in the vicinity of the free surface, see Ewing et al. [17], Überall
[32]. Thank to recent advances in nanotechnologies the interest to modelling of ma-
terials and structures at the nanoscale is growing. Among various extensions of the
standard continuummechanics the surface elasticity models by Gurtin and Murdoch
[23, 24] and by Steigmann and Ogden [28, 29] found many applications, see, e.g.,
Duan et al. [8], Wang et al. [34], Eremeyev [9], Han et al. [25], Zemlyanova and
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Mogilevskaya [37]. Within these models the surface stresses are introduced which
generalize the surface tension for solids. As for many generalized media models, the
surface stresses may significantly change the mathematical properties of solutions
of corresponding boundary-value problems, see Eremeyev and Lebedev [13].

The paper is organized as follows. First,motivating by discretemodel of polymeric
brushes consisted of rigid chains, see the seminal paper by Stockmayer [30] and
recent works by Gerasimov et al. [18–20], we propose the so-called reduced surface
elasticity model. Then we recall the solution form for anti-plane deformations of a
half-space. It is well-known that within the classic linear elasticity anti-plane surface
waves in an elastic halfspace do not exist, see, e.g., Achenbach [2]. For extended
models of continua such waves may exist, see Eremeyev et al. [14, 16] for the
surface elasticity and Vardoulakis and Georgiadis [33], Yerofeyev and Sheshenina
[36], Gourgiotis and Georgiadis [22] for the strain gradient elasticity. Using the
least action principle, we derive the corresponding boundary conditions. Finally, we
present the dispersion relations.

2 Constitutive Relations

Let us consider an elastic solid occupying volume V with the boundary S = ∂V . In
what follows we consider infinitesimal deformations, so the kinematics is based on
the displacement field

u = u(x, t), (1)

where x is the position vector and t is time. In Cartesian coordinates xk , k = 1, 2, 3,
(1) takes the form

uk = u(x1, x2, x3, t)

with u = uk ik . Here ik are Cartesian base vectors and the Einstein summation rule
is utilized. In what follows we use the direct (coordinate-free) tensor analysis as
described in Lebedev et al. [26], Eremeyev et al. [15].

For simplicity we consider an isotropic material in the bulk. So we have the
following constitutive equations

W =μe : e + 1

2
λ(tr e)2, (2)

K =1

2
ρu̇ · u̇, (3)

σσσ ≡∂W

∂e
= 2μe + λ I tr e, (4)
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whereW andK are the strain energy and kinetic energy densities, λ andμ are Lamé
elastic moduli, σσσ is the stress tensor, e is the linear strain tensor,

e = 1

2

(∇u + (∇u)T
)
, ∇u = ∂uj

∂xi
ii ⊗ ij,

“tr ” is the trace operator, and ρ is the mass density. The overdot stands for the
derivative with respect to t, the superscript “T” means the transpose operation,“:”
denotes the scalar product of second-order tensors, ∇ is the 3D nabla operator, and
“⊗” stands for dyadic product. In what follows for brevity we use the notation
∂

∂xj
= ∂j, so, for example, ∇u = ∂juiij ⊗ ii.
Within the surface elasticity in addition to the constitutive equations in the bulk,

we introduce the surface strain energy and the surface kinetic energy. For example,
within the Gurtin–Murdoch linear isotropic model the strain energy is given by

Ws = μsεεε : εεε + 1

2
λs(tr εεε)

2, (5)

s ≡ ∂Ws

∂εεε
= μsεεε + λs(tr εεε)P, (6)

εεε = 1

2

(
P · (∇su) + (∇su)T · P)

, (7)

where λs and μs are the surface elastic moduli called also surface Lamé moduli,
∇s ≡ P · ∇ is the surface nabla operator, P ≡ I − n ⊗ n is the surface unit second-
order tensor, n is the unit vector of outer normal to S, andεεε is the infinitesimal surface
strain tensor, see Gurtin and Murdoch [23].

The linear isotropic model by Steigmann–Ogden is based on the following con-
stitutive equation

Ws = μsεεε : εεε + 1

2
λs(tr εεε)

2 + κsκκκ : κκκ + 1

2
ζs(trκκκ)2, (8)

s ≡ ∂Ws

∂εεε
= μsεεε + λs(tr εεε)P, m ≡ ∂Ws

∂κκκ

= κsκκκ + ζs(trκκκ)P, (9)

κκκ = 1

2
(∇sϑϑϑ · A + A · ∇sϑϑϑ

T ), ϑϑϑ = ∇sw + B · u, (10)

where κs and ζs are additional surface stiffness parameters related to the surface
bending stiffness, s and m are the surface stress and surface couple stress tensors,
respectively, w = u · n and B = −∇sn is the tensor of curvature, see, e.g., Eremeyev
and Lebedev [13], Zemlyanova and Mogilevskaya [37], Han et al. [25].

In this paper we use another model of surface elasticity. We consider an elastic
coatingmade of ordered polymeric chains attached along the surface. Chains interact
each other and with the substrate according to the Stockmayer potential introduced
by Stockmayer [30]. For the theory of polymeric brushes we refer to the recent works
by Gerasimov et al. [18–20] and the reference therein. From the mechanical point
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of view such coating can be represented as a discrete system of parallel long chains
connected through elastic hinges or long flexible fibers. For simplicity let us assume
that the fibers are oriented along x1-axis. Using the same argumentation as presented
by Boutin et al. [5], dell’Isola et al. [6], Placidi et al. [27], Turco [31], dell’Isola et al.
[7] we obtain the surface strain energy density in the form

Ws = 1

2
κκκ : Ks : κκκ + 1

2
∇s∇su ∴ Ks ∴ ∇s∇su, (11)

where “∴” is the triple contraction operation, Ks and Kb are the stiffness tensors of
fourth- and six-order, respectively. Ks and Kb relate to the extension/compression
and bending stiffness properties, respectively. Here these tensors are singular and the
surface energy density is degenerated as in the 3D reduced strain gradient elasticity,
see Eremeyev and dell’Isola [12]. So we may call the proposed model the reduced
surface strain gradient elasticity.

In order to describe surface dynamics, we take into account the mass density
associated with the surface where surface stresses are defined, as in Gurtin and
Murdoch [24]. So the dynamic properties are described through the surface kinetic
energy density given by

Ks = 1

2
mu̇ · u̇∣∣

x∈S , (12)

where m is the surface mass density of S. Equation (12) means that we neglect here
the rotatory inertia related to the surface elasticity.

The motion equations and natural boundary equations can be derived using the
Hamilton variational principle

δH = 0 (13)

with the functional

H =
∫ T

0

∫

V
(K − W ) dV dt +

∫ T

0

∫

∂V
(Ks − Ws) da dt, (14)

see Berdichevsky [4] for the general statements, and Abali et al. [1], Auffray et al.
[3], Eremeyev et al. [14, 16] for generalized continua with surface energy. In what
follows we consider the boundary-value problems for the anti-plane deformations.

3 Anti-plane Motions of an Elastic Half-Space

In order to demonstrate some peculiarities of the model let us consider the propa-
gation of the surface anti-plane waves. Earlier such analysis was performed within
the Gurtin–Murdoch model by Eremeyev et al. [14] and it was compared with the
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Toupin–Mindlin strain gradient elasticity by Eremeyev et al. [16]. Following these
works, let us consider an elastic half-space x3 ≤ 0. The anti-plane motions have one
of the forms, see Achenbach [2],

u = u1(x2, x3, t)i1, or u = u2(x1, x3, t)i2, (15)

which correspond two different direction of wave propagation.
With (15) the general motion equations reduce into two wave equations with

respect to u1 and u2, respectively,

μ(∂2
2 + ∂2

3 )u1 = ρ∂2
t u1, (16)

μ(∂2
1 + ∂2

3 )u2 = ρ∂2
t u2. (17)

Here ∂t stands for the derivative with respect to t.
Making standard assumption on steady-state behaviour, we are looking for solu-

tion of (16) and (17) in the form

uα = Uα(xβ, x3) exp(iωt), α = 1, 2, β = 2, 1, (18)

where ω is a circular frequency, i is the imaginary unit, and Uα is a amplitude. As a
result, (16) and (17) transform into

μ(∂2
2 + ∂2

3 )U1 = −ρω2
t U1, (19)

μ(∂2
1 + ∂2

3 )U2 = −ρω2U2. (20)

Decaying with the depth solutions of (19) and (20) are given by the following
formulae

U1 = U01 exp(κx3) exp(ikx2), U2 = U02 exp(κx3) exp(ikx1), (21)

where

κ = κ(k, ω) ≡
(
k2 − ρ

μ
ω2

)1/2

,

k is a wavenumber andU0α are constants. Nontrivial solutions (21) exist if they verify
the corresponding boundary conditions at x3 = 0. The latter will lead to a dispersion
relation that is a certain relation between k and ω. For example, for the classic linear
elasticity we have the boundary condition

μ∂3uα = 0, (22)

from which it follows that U0α vanish and so anti-plane surface waves do not exist,
see Achenbach [2].
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The situation with the surface anti-plane waves is completely different for the
media with surface energy, see Vardoulakis and Georgiadis [33], Gourgiotis and
Georgiadis [22], Eremeyev et al. [14, 16]. Under the anti-plane deformations Ws

takes the simpler form

Ws = 1

2
Ks[(∂2u1)2 + (∂1u2)

2] + 1

2
Kb(∂

2
1u2)

2, (23)

whereas the kinetic energy is given by

Ks = m

2

[
(∂tu1)

2 + (∂tu2)
2
]
. (24)

In (23) we chosen x1-axis as the direction of chains. So the highly anisotropic prop-
erties of the medium is obvious.

Using the least action principle in the form (13) and (14) with constitutive func-
tions (23) and (24) we get the following natural boundary conditions for anti-plane
motions

μ∂3u1 = − m∂2
t u1 + Ks∂

2
2u1, (25)

μ∂3u2 = − m∂2
t u2 + Ks∂

2
2u2 − Kb∂

4
2u2, (26)

which correspond to (16) and (17), respectively. Note that with Ks = μs Eq. (25)
corresponds to the Gurtin-Murdoch model in the case of of anti-plane deforma-
tions, see Eremeyev et al. [14], whereas with Kb = ζs Eq. (26) includes additional
term describing the bending energy as in the linear Steigmann–Ogden model, cmp.
Steigmann and Ogden [28]. Equation (26) is a special case of the weakly nonlo-
cal models of surface elasticity introduced in Eremeyev [10]. So we have different
boundary conditions at the free surface depending on the direction of the surface
wave propagation.

In order to derive the dispersion relations we substitute (21) into (25) and (26)
and get

μκ(k, ω) =mω2 − Ksk
2, (27)

μκ(k, ω) =mω2 − Ksk
2 + Kbk

4. (28)

Introducing the phase velocity c = ω/k we transform (27) and (28) into

c2 =c2s + μ

m

1

|k|

√

1 − c2

c2T
, (29)

c2 =c2s + Kb

m
k2 + μ

m

1

|k|

√

1 − c2

c2T
, (30)
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Fig. 1 Dispersion curves.
Curves 1 and 2 correspond to
Eqs. (29) and (30),
respectively

c

k

cT

cS

0

where cT = √
μ/ρ is the phase velocity of transverse waves and cs = √

Ks/m is
the shear wave velocity in the thin film associated with the Gurtin–Murdoch model.
Dispersion relations (29) and (28)were analyzed in details byEremeyev et al. [14] and
by Eremeyev [10], respectively. Let us note that the presence of the termKbk4 in (28)
changes dramatically the behaviour of dispersion curves, see Fig. 1 for details. Here
Kb is normalized dimensionless value of the bending stiffness. In Fig. 1Kb = 0.0001.

4 Conclusions

Here we discuss the propagation of anti-plane surface waves in media with highly
anisotropic surface energy.Unlike themodels byGurtin andMurdoch [23, 24] and by
Steigmann and Ogden [28, 29] the considered model constitute an intermediate class
of surface elasticity constitutive equations. It can be treated as as one-dimensional
extension of the Gurtin-Murdoch model towards Steigmann-Ogden model of surface
elasticity. Indeed, here the surface strain energy is similar to one-dimensional version
of the Steigmann-Ogden model but applied to two-dimensional structure. Following
Eremeyev and dell’Isola [12] it could be called the two-dimensional reduced strain
gradient model. Such model was applied to modeling of pantographic beam lattices,
see, e.g., Boutin et al. [5], dell’Isola et al. [6], and current reviews by Placidi et al.
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[27], dell’Isola et al. [7]. Considering anti-plane motions within the proposed model
the dispersion relations are derived. In particular, it was shown that the dispersion
properties depend on the direction of the wave propagation. Some preliminary results
were discussed by Eremeyev [11].

Acknowledgements The author acknowledges financial support from theRussianScience Founda-
tion under the grant “Methods of microstructural nonlinear analysis, wave dynamics and mechanics
of composites for research and design of modern metamaterials and elements of structures made
on its base” (No. 15-19-10008-P).
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Periodic Problem for a Plane Composed
of Two-Layer Strips with a System
of Longitudinal Internal Inclusions
and Cracks

V. N. Hakobyan, A. V. Sahakyan and K. L. Aghayan

Abstract The paper considers plane deformation state of a piecewise homogeneous
uniformly layered plane of two dissimilar materials, when there is a system of cracks
on the midlines of layers made of one material, and layers made of the other material
are reinforced by a system of elastic inclusions also located on themidlines. A system
of governing equations of the problem is obtained in the form of a system of singular
integral and integro-differential equations for the dislocation function of the points
of the cracks faces and tangential contact stresses acting on the long sides of the
inclusions. The solutions of the obtained systems are constructed by the method
of mechanical quadrature. A numerical calculation was carried out and the laws of
change in the coefficients of concentration of destructive stresses at the end points of
cracks and contact stresses were studied depending on the mechanical and geometric
parameters of the problem.

1 Introduction

The study of the plane deformation state of an elastic homogeneous plane with
periodic and doubly periodic defects of the type of cracks, fully or partially linked
to the matrix of elastic or absolutely rigid inclusions, has been the subject of many
works. This direction in the field of mixed and contact problems of the theory of
elasticity began to develop in the second half of the twentieth century. On the basis of
powerful methods of themathematical theory of elasticity andmathematical physics,
closed or effective solutions were obtained for a number of important periodic and
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doubly periodic problems. The main results in this direction are summarized in
monographs [1–3].

As for the study of periodic and doubly periodic problems for piecewise-
homogeneous, uniformly layered bodies with interfacial or internal defects, which,
in our opinion, are currently very relevant from the point of view of layered com-
posites, as we know, not so much work is devoted. Of these, we point out the works
[4–8], which are closely related to the studies conducted here. In [4] constructed dis-
continuous solutions of the equations of the plane theory of elasticity for a piecewise
homogeneous layered plane containing interface doubly periodic defects, on the basis
of which the plane deformation state was considered to be piecewise homogeneous
layered plane with a doubly periodic system of interface cracks. A similar problem
in the case of a doubly periodic system of absolutely rigid inclusions was studied in
[5]. In [6], the plane deformation state of a piecewise-homogeneous layered plane
with a periodic system of parallel internal cracks was investigated. The interaction
of stringers with an infinite plate weakened by a doubly periodic system of cracks
was investigated in [8].

2 Problem Statement and Derivation of the Governing
Equations

Suppose we have a piecewise-uniform elastic plane, made by alternately connect-
ing layers of thickness 2h from two dissimilar materials. The abscissa axis of the
Cartesian coordinate system Oxy is directed along the dividing line of materials.
On median lines of dissimilar layers y = (4n + 1)h and y = (4n − 1)h(n ∈ Z)

on systems of intervals L1 = ⋃N
j=1

(
a j , b j

)
and L2 = ⋃M

j=1

(
c j , d j

)
are

located cracks and elastic thin inclusions of thickness h j and reduced elastic mod-

uli E ( j)
I = E j /

(
1 − v2

j

)
( j = 1, M) respectively. We assume that the plane is

deformed under the influence of distributed loads p j (x), applied to the cracks
(
a j , b j

)
( j = 1, N ), concentrated loads P ( j)

0 ( j = 1, M) applied to inclusions at

points x ( j)
0 ∈ [c j , d j

]
( j = 1, M) and uniformly distributed loads q1 and q2, applied

to the layers at infinity (Fig. 1).
Obviously, with this formulation of the problem, the lines y = (2n + 1)h (n ∈ Z)

are lines of symmetry. As a result, the stated problem can be formulated as a
problem for a piecewise homogeneous layer (base cell) occupying the region
�{−∞ < x < ∞; |y| ≤ h}, on the boundaries y = ±h of which outside cracks
and inclusions, symmetry conditions are specified, on L1 normal stresses are spec-
ified, and on L2 contact conditions of inclusion with a base are specified. Here, the
inclusions are interpreted as one-dimensional continua, which under the influence of
concentrated loads applied to them and tangential contact stresses are in a uniaxial
stress state [9]. Also, we assume that due to the smallness of the thickness of inclu-
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sions and the symmetry of the problem with respect to the axes of the inclusions, the
vertical displacements of the points of the inclusions are zero.

The task is to determine the patterns of change in the tangential contact stresses
acting on the long sides of the inclusions, crack opening and intensity factors of the
fracture stresses at the end points of the cracks depending on the mechanical and
geometric parameters.

Based on this assumptions, we will have the following conditions on L1 and L2:

τ (1)
xy (x, h) = 0; σ (1)

y (x, h) = −p j (x)
(
a j < x < b j , j = 1, N

)
(1)

V2(x,−h) = 0; dU2(x,−h)

dx
= ε j (x)

(
c j < x < d j , j = 1, M

)
(2)

where τ(1)
xy (x, y) and σ(1)

y (x, y)—are the stress components in the upper layer,
V2(x, y) and U2(x, y)—are vertical and horizontal displacements of points of the
lower layer, ε j (x)—is the axial deformation jth inclusion.

To derive the system of governing equations of the problem, we introduce into
consideration the unknown functions of displacements of the crack edge V (x)
and tangential contact stresses acting on the long sides of inclusions τ(x), and
express the normal stresses and horizontal displacements of the points of the upper
(y = h; x ∈ L1) and lower (y = −h; x ∈ L2) sides of the composite layer using
these functions. To this end, using first conditions from (1) and (2), we consider the
following auxiliary boundary value problem:

σ (1)
y (x, 0) = σ (2)

y (x, 0); τ (1)
xy (x, 0) = τ (2)

xy (x, 0); (−∞ < x < ∞)

U1(x, 0) = U2(x, 0); V1(x, 0) = V2(x, 0); (−∞ < x < ∞)

V1(x, h) = −V (x); (x ∈ L1); V1(x, h) = 0; (x /∈ L1)

τ (1)
xy (x, h) = 0; (−∞ < x < ∞)

τ (2)
xy (x, h) = τ(x) (x ∈ L2); τ (2)

xy (x,−h) = 0 (x /∈ L2);
V2(x,−h) = 0 (−∞ < x < ∞), (3)

1c 1d
( )1
00.5P ( )1

0x
2c 2d
( )2
00.5P ( )2

0x
nc nd

( )
00.5 nP ( )

0
nx

h

h

1q
1q

2q 2q

y

x1 1,E ν

2 2,E ν

1a 2a na1b 2b nb

( )1p x ( )2p x ( )np x

Fig. 1 Schematic representation of the problem
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Here, the index j = 1, 2 denotes the components of displacements and stresses,
respectively, in the upper and lower layers.

To solve the auxiliary boundary-value problem (3), we represent the biharmonic
stress functions for each of the heterogeneous layers in the form of Fourier integrals

Fj (x, y) =
∞∫

−∞

[
A j (s)ch sy + Bj (s)sh sy + sy

(
C j (s)ch sy + Dj (s)sh sy

)]
eisxds

+ q j

2
y2; (−∞ < x < ∞; 0 ≤ (−1) j+1y ≤ h; j = 1, 2

)
, (4)

where A j , Bj , Dj ,C j ( j = 1, 2)—are unknown coefficients to be determined.
Using thewell-known relations connecting the biharmonic functions with stresses

and displacements, we satisfy conditions (3) and determine unknown coefficients
through the Fourier transforms of the derivative of the crack opening V̄ ′(s) and
tangential contact stresses τ(s), we obtain:

A1(s) = A2(s) = −2(1 − ν1)

1 − μ∗
D1(s) + 2μ∗(1 − ν2)

1 − μ∗
D2(s);

B1(s) = 1 − 2ν1 + μ∗
1 − μ∗

C1(s) − 2μ∗(1 − ν2)

1 − μ∗
C2(s);

B2(s) = 2(1 − ν1)

1 − μ∗
C1(s) − 1 + μ∗(1 − 2ν2)

1 − μ∗
C2(s);

C1(s) = − iμ1

s2�1(s)ch hs

[
hs(μ∗ − 1)cth hs + μ∗ + 1 − 2ν1

1 − ν1
sV̄ ′(s) − μ∗

τ̄(s)

μ1

]

;

C2(s) = 2μ1i

s2�2(s)ch hs

{

sV̄ ′(s) + τ̄(s)

4μ1

[

hscth hs
μ∗ − 1

1 − ν2
+ 1 − 2ν2 − μ∗(3 − 4ν2)

1 − ν2

]}

;

D1(s) = − iμ1

s2�1(s)sh hs

{

2sV̄ ′(s)
[

1 − μ∗ − 1

2(1 − ν1)
hs th hs

]

+ μ∗
τ̄(s)

μ1

}

;

D2(s) = iμ1

s2�2(s)sh hs

{

2sV̄ ′(s) + τ̄(s)

μ1

[

1 − 1 − μ∗
2(1 − ν2)

hs th hs

]}

;

where

�1(s) = (μ∗ − 1)
2hs

sh 2hs
+ μ∗ + κ1; μ∗ = μ1

μ2
;

�2(s) = (μ∗ − 1)
2hs

sh 2hs
− 1 − μ∗κ2; κ j = 3 − 4ν j ; j = 1, 2;

V̄ ′(s) = 1

2π

∞∫

−∞
V ′(x)e−isxdx; τ̄(s) = 1

2π

∞∫

−∞
τ(x)e−isxdx
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Note that the loads q1 and q2 must also satisfy the compatibility condition for the
deformations of heterogeneous layers at infinity. In this case, it can be written in the
form:

m1q1 = m2q2
(
m j = (

1 − ν2
j

)
/E j ; j = 1, 2

)
. (5)

Based on the obtained relations, we write out representations for normal stresses
on the line y = h and for the derivative of horizontal displacements on the line
y = −h, which are necessary to satisfy the boundary conditions on the cracks and
the sides of the inclusions:

σ (1)
y (x, h) = λ1

π

∫

L1

V ′(s)ds
s − x

+
∫

L1

R11(x − s)V ′(s)ds +
∫

L2

R12(x − s)τ(s)ds;

(6)
dU2(x,−h)

dx
= −λ2

π

∫

L2

τ(s)ds

s − x
+
∫

L1

R21(x − s)V ′(s)ds

−
∫

L2

R22(x − s)τ(s)ds + m2q2 (7)

Here the following notations are introduced:

Ri j (t) = 1

π

∞∫

0

Ki j (ξ) sin(ξt)dξ; λ1 = μ1

1 − ν1
; λ2 = μ∗κ2

4μ1(1 − ν2)
(i, j = 1, 2);

K11(s) = μ1

(1 − ν1)

[
2(hs)2(μ∗ − 1)

sh 2hs�1(s)
− 16μ∗(1 − ν1)(1 − ν2)[1 − ν1 + μ∗(1 − ν2)]

(μ∗ − 1)�1(s)�2(s)
th hs

+ 4(1 − ν1)(1 − ν2)

(
1 − ν1

1 − ν2
+ μ∗

)
sh 2hs + 2hs

(ch 2hs − 1)�1(s)�2(s)

− th hs
(μ2∗ + (1 − 2ν1)2 + 2μ∗((1 − 2ν1)(2 − ν2) + 1 − ν2))

(μ∗ − 1)�1(s)
+ 1

]

K12(s) = − 4μ∗(1 − ν2)

�1(s)�2(s)sh2hs

(

�1(s) −
(

μ∗ + 1 − ν1

1 − ν2

)

(1 + 2hscth2hs)

)

K21(s) = − 2μ∗
sh2hs

[
1

�1
+ κ2

�2
+
(

μ∗ + κ1

�1
+ 1 + μ∗κ2

�2

)
ch2hs

1 − μ∗

]

K22(s) = μ∗
μ1(μ∗ − 1)

[
(hs)2(μ∗ − 1)2 + 1

2μ2∗κ22 + 1 − ν2 + 1
2κ2(1 − 2ν2)(1 − 2μ∗)

(1 − ν2)�2sh2hs

+ 4μ∗(1 − ν1)

�1sh2hs
− (μ∗ − 1)κ2(1 + μ∗κ2)

2(1 − ν2)�2
coth 2hs + (1 − μ∗)κ2

2(1 − ν2)

]
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We now turn to the derivation of the system of governing equations of the problem.
For this, we use relations (6) and (7), and satisfy second parts of conditions on the
crack (1) and inclusion (2).

As a result, taking into account that axial deformations of inclusions from loads
applied at points x ( j)

0 are determined by the formula [9]:

ε j (x) = 1

h j E
( j)
I

⎡

⎢
⎣P( j)

0 H
(
x − x ( j)

0

)
− 2

x∫

c j

τ(s)ds

⎤

⎥
⎦

(
c j ≤ x, x ( j)

0 ≤ d j , j = 1, M
)
, (8)

we come to the following system from N + M singular integral and integro-
differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1

π

∫

L1

V ′(s)ds
s − x

+
∫

L1

R11(x − s)V ′(s)ds +
∫

L2

R12(x − s)τ(s)ds

= −p j (x)
(
a j < x < b j , j = 1, N

)

− λ2

π

∫

L2

τ(s)ds

s − x
+
∫

L1

R21(x − s)V ′(s)ds +
∫

L2

R22(x − s)τ(s)ds + m2q2

= 1

h j E
( j)
I

⎡

⎢
⎣P( j)

0 H
(
x − x ( j)

0

)
− 2

x∫

c j

τ(s)ds

⎤

⎥
⎦

(
c j ≤ x, x ( j)

0 ≤ d j , j = 1, M
)

(9)

Considering that V ′(x) and τ(x) are piecewise unknown functions with N and
M components, the resulting system together with the conditions of continuity of
displacements at the tips of cracks and the equilibrium conditions of inclusions

b j∫

a j

V ′(s)ds = 0; ( j = 1, N );
d j∫

c j

τ j (s)ds = P ( j)
0 /2; ( j = 1, M) (10)

form a closed system for determining unknown components of functions V ′(x) and
τ(x).

3 Solution of the System of Governing Equations

Solution of the system of Eq. (9) under conditions (10) can be constructed using the
method of Chebyshev orthogonal polynomials, by reducing it to a quasi-completely
regular system of algebraic equations [9]. However, more effective, in our opinion,
is the method of mechanical quadratures [10], which we will use. Without loss of
generality, we will assume that there is one crack and one inclusion in the base cell,
which occupy intervals (a, b) and (c, d).

Turning to dimensionless quantities and introducing the notation
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a∗ = (b − a)/2h; b∗ = (b + a)/2h; c∗ = (d − c)/2h; d∗ = (d + c)/2h;

ϕ1(t) = V ′(h(a∗t + b∗)); ϕ2(t) = c∗τ(h(c∗t + d∗))
μ1

;

R∗
11(t, ξ) = a∗

λ1

∞∫

0

K11(ζ) sin(ζa∗(t − ξ))dζ;

R∗
12(t, ξ) = (1 − ν1)

∞∫

0

K12(ζ) sin(ζ(a∗t + b∗ − c∗ξ − d∗))dζ;

R∗
21(t, ξ) = −4a∗c∗(1 − ν2)

μ∗κ2

∞∫

0

K21(ζ) sin(ζ(c∗t + d∗ − a∗ξ − b∗))dζ;

R∗
22(t, ξ) = − c∗

λ2

∞∫

0

K22(ζ) sin(ζc∗(t − ξ))dζ;

f1(t) = −πp1[h(a∗t + b∗)]/λ1; f2(t) = 2πc∗q2
(
1 − ν22

)

æ2μ1
;

P∗
0 = P (1)

0

hμ1
; ϑ∗ = 2πh(1 − ν2)c∗E2

h1E
(1)
I (1 + ν2)æ2

,

we obtain the following system of defining equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1∫

−1

ϕ1(ξ)dξ

ξ−t +
1∫

−1
R∗
11(t, ξ)ϕ1(ξ)dξ +

1∫

−1
R∗
12(t, ξ)ϕ2(ξ)dξ = f1(t)

1∫

−1

ϕ2(ξ)dξ

ξ−t +
1∫

−1
R∗
21(t, ξ)ϕ1(ξ)dξ +

1∫

−1
R∗
22(t, ξ)ϕ2(ξ)dξ = f2(t)

−ϑ∗

[

P∗
0 H(t − t0) − 2

t∫

−1
ϕ2(τ)dτ

]

(−1 < t < 1)

(11)

under conditions

1∫

−1

ϕ1(s)ds = 0;
1∫

−1

ϕ2(s)ds = P∗
0

2
. (12)

It is easy to establish that the desired functions at the end points of the integration
interval have a root singularity. Therefore, they can be represented as:

ϕ j (t) = ϕ∗
j (t)√
1 − t2

( j = 1, 2), (13)
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where ϕ∗
j (t)( j = 1, 2) are continuous smooth functions bounded up to the ends of

the interval [−1, 1], and can be replaced by interpolation polynomials of order n−1

ϕ∗
1(t) = 1

n

n∑

i=1

XiTn(t)

(t − xi )Un−1(xi )
; ϕ∗

2(t) = 1

n

n∑

i=1

Yi Tn(t)

(t − xi )Un−1(xi )
(14)

here Xi ,Yi
(
i = 1, n

)
are unknown coefficients, xi = cos (2i−1)π

2n

(
i = 1, n

)
are the

roots of Chebyshev polynomial of the first kind Tn(x).
Further, according to the standard procedure from [10], we obtain the following

closed system of linear algebraic equations for coefficients Xi and Yi
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

[(
1

xi − yk
+ R∗

11(yk , xi )

)

Xi + R∗
12(yk , xi )Yi

]

= n

π
f1(yk)

n∑

i=1

[(
1

xi − yk
+ Q∗

22(yk , xi )

)

Yi + R∗
21(yk , xi )Xi

]

= n

π

(
f2(yk) − ϑ∗H

(
yk − t0

))

n∑

i=1

Xi = 0
(
k = 1, n − 1

)

π

n

n∑

i=1

Yi = 1

2

(15)

where yk = cos kπ
n

(
k = 1, n − 1

)
are the roots of Chebyshev polynomial of the

second kind Un−1(x),

Q∗
22(yk , xi ) = R∗

22(yk , xi ) − 2ϑ∗
π

(

arcsin yk + π

2
− 2

√
1 − y2k

n−1∑

m=1

Tm(xi )Um−1(yk)

m

)

.

After determining the coefficients Xi ,Yi
(
i = 1, n

)
from the system (15), it is

more convenient to restore the polynomials (14), interpolating functions ϕ∗
j (t), by

the formulas

ϕ∗
{1,2}(t) = 1

n

n∑

i=1

{Xi ,Yi }
[

1 + 2
n−1∑

m=1

Tm(t)Tm(xi )

]

(16)

Further, by means of the obtained analytical representations it is possible to deter-
mine all the components of the stress-strain field in the two-component layer. In
particular, to determine the dimensionless intensity factor of destructive stresses at
the tips of the crack, we obtain the expressions:

K ∗
I (±1) = KI (±1)

E1
=

√
2π

E1
lim

η→±1±0

√|t ∓ 1|σ(1)
y (t, 0) = ∓

√
π

2
(
1 − ν21

)ϕ∗
1(±1)

(17)
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3.1 Numerical Analysis

The numerical analysis is conducted based on the formulas of the preceding para-
graph. It is assumed that the crack has a constant length equal to a quarter of the
half-thickness of the layer h, and is located symmetrically about the axis Oy, i.e.
a∗ = 0.25, b∗ = 0. The location of the inclusion, whose length is equal to the length
of the crack, can vary and is determined by the parameter l, which is the coordinate
of the left end of the inclusion, i.e. c∗ = a∗, d∗ = l + a∗. In order to determine the
effect of inclusion on the crack opening and on stress intensity factors (SIF) at its
ends, we take the forces acting on the crack faces and the forces at infinity equal to
zero (p1 = 0, q2 = 0). The force applied to the left end of the inclusion (t0 = −1),
the ratio of the thickness of the inclusion to the half-thickness of the layer and the
ratio of the Young’s modulus of the stringer to E2 will be considered constants with
values: P∗

0 = 0.25, h1/h = 0.01, E (1)
I /E2 = 5.

The calculations show that crack opens only when inclusion is located to the right
of certain point, in other cases part of the crack is closed and the formulation of the
problem is not valid. Note that the crack begins to close from the right end. The
location of the above mentioned point can be found by equating the SIF at the right
end of the crack to zero and it essentially depends only on the length of the inclusion.
So, for example, if the inclusion length is equal to a∗, this point is in the vicinity of
the point −0.8a∗. If the inclusion length is equal to 2a∗ the point is around −2.4a∗,
and if the inclusion length is 0.5a∗ the point is around −0.1a∗. Figure 2 shows the
graphs of SIF at the right end of the crack depending on parameter l for different
values of the elastic constants of layers.

In Fig. 2, curve 1 corresponds to a homogeneous layer with ν1 = ν2 = 0.25,
curves 2, 3, 4—correspond to inhomogeneous layers with parameters E1/E2 = 1,

1 2 3 4 5 6

0.005

0.010

0.015
( )* 1IK +

l

2

1
4
3

Fig. 2 Dependence of SIF at the right end of the crack on the parameter l
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ν1 = 0.25, ν2 = 0.35; E1/E2 = 3, ν1 = ν2 = 0.25 and E1/E2 = 1/3, ν1 =
0.25, ν2 = 0.35 respectively.

From Fig. 2, we note that SIF acquires the maximum value, when the inclusion is
at a distance of about four times the crack half-length. This pattern is also preserved
for inclusions longer than a crack, for shorter inclusions this distance increases. The
SIF at the left end shows a similar behavior, with the only difference that the initial
value differs from zero. It is interesting that the SIF tends to a constant value when
the inclusion gets farther away from the crack, and both SIFs tend to the same value.
This is explained by the periodicity of the problem, which leads to the restriction
of freedom of movement of the boundary points of the base layer in the transverse
direction.

After determining the coefficients Xi
(
i = 1, n

)
, crack opening can be calculated

by the formula [11]

V∗(t) = V (x)

(b − a)
= 1

n

n∑

k=1

Xk

[

arcsin t + π

2
− 2

√
1 − t2

n−1∑

m=1

Tm(xk)Um−1(t)

m

]

(18)

Figure 3 shows the form of crack opening for an inhomogeneous layer with elastic
characteristics E1/E2 = 3, ν1 = 0.35, ν2 = 0.25 at varying locations of inclusion:
l = −0.8a∗; a∗; 3a∗. It should be noted that when the values of elastic characteristics
change, the presented curves practically experience only a scale change.

Calculations show that the distribution of contact stresses under the inclusion
practically depend neither on the elastic characteristics of the inhomogeneous layer,
nor on the location of the inclusion relative to the crack. It essentially depends on the
length of the inclusion, the ratio of the thickness of the inclusion to the half-thickness
of the layer h1/h and the ratio of Young’s modulus of inclusion and the adjacent

layer E (1)
I

/
E2.

Fig. 3 Form of crack
opening
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4 Conclusion

The plane deformation state of a piecewise homogeneous uniformly layered plane
of two dissimilar materials, when there is a system of cracks on the midlines of
layers made of one material, and layers made of the other material are reinforced
by a system of elastic inclusions also located on the midlines is studied. For the
base cell of the posed periodic problem, a system of governing equations is obtained
in the form of a system of singular integral and integro-differential equations for
dislocations of the edges of cracks and tangential contact stresses acting on the long
sides of the inclusions. The solution of the defining system can be obtained by the
method ofmechanical quadratures. In the particular casewhere there is one crack and
one inclusion, this solution is presented. A sufficiently detailed numerical analysis of
the dependence of the sought functions—crack opening and contact stresses—on the
geometric parameters of the problem and the elastic characteristics of the component
layers was carried out. In particular, it is shown that, in contrast to the non-periodic
problem, when we have only one crack and one inclusion, the influence of even an
infinitely remote inclusion does not tend to zero.
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An Experimental Model of the Acoustic
Wave Propagation Through a Cascading
Triple-Periodic Array of Cylindrical
Holes

Vladimir M. Zotov, Vitaly V. Popuzin and M. Y. Remizov

Abstract We study experimental acoustic properties of the meta-materials made as
aluminumparallelepipedswith a crossed periodic systemof through round holes. The
experiments have been made with the use of industrial ultrasonic flaw detectors by
the through-transmission technique in a wide interval of the ultrasonic frequencies.
There is performed the analysis of the obtained temporary and spectral characteristics
of the through-transmitted signal.

1 Introduction

In [1, 2] there is studied a problem on wave propagation of the acoustic signal in bod-
ies with periodic systems of holes; there is performed numerical and experimental
analysis of the influence of the structure of the through-transmitted acoustic signal
to the filtration properties. The problem there can be reduced to a two-dimensional
case since the most part of samples have the same cross-section in a certain direc-
tion, among other three ones. To study wave properties in the more complex three-
dimensional case we investigate the specimen with a crossed system of cylindrical
holes (perforations). For this aim, the direction of the drilling, analogous to those
considered in [1, 2], is taken alternate, so that every next row can be obtained from
the previous one by a 90° rotation around the axis of propagation of the ultrasonic
impulse. Figure 1 demonstrates a photo of the samples produced in this manner.

In this figure at the left we show a sample free of any perforation, we mark it
with the number 0. The sample number 1 has been produced with the help of drilling
described above, with the diameter of the through hole being equal to 4 mm, the
horizontal and the vertical distances between the centers of the two neighbor parallel
holes is 8 mm. Such a geometry allows us to put an additional hope between the pair
of existing neighbors. The second family of holes possess the same geometry and
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Fig. 1 Experimental samples with respective enumeration

the same structure. The sample number 2 has the holes analogous to the one with
number 1, with the only difference that each second unidirectional row is shifted
to the distance 4 mm. This guarantees that any vertical ray emitted from the top
to the bottom certainly meets a hole over its path, that cannot be guaranteed for
the previous sample. Sample number 3 is made to study the influence of the vertical
distance between the rows to the through-transmitted signal. The distance in this case
is twice greater, being 16 mm between the centers of the neighboring unidirectional
holes. The 4th sample is similar to the previous one, with a different diameter of
perforation which is 5 mm, and the distance between the rows is 20 mm. It should
be noted that with such a geometry the horizontal distance between the neighbor
unidirectional holes reduces significantly, spacing for the US beam only very narrow
free distance. All samples, except the first one, have the cross-section 40 × 40 mm,
begin made of aluminum, where the wave speed of the longitudinal elastic wave is
around 6260–6400 m/s.

2 Applied Instrumentation

We use two industrial US flaw detectors USD60-N and UD9812, shown in Fig. 2.
The low-frequency flaw detector USD60-N permits measurements in the frequency
range 0.02–2.5MHz in the two regimes—the through-transmissionmethod and echo-
method. There is a possibility to display the full signal, the detected signal, as well
as its spectrum. The second flaw detector UD9812 has the working frequency range
0.6–12 MGc, and we use it to perform measurements at frequencies higher than
2.5 MHz. The both flaw detectors permit the transmission of the recorded data to a
PC with the help of a special software. In the case of USD60-N for this aim one can
use the network interface Ethernet, while the UD9812 can be attached to the PC with
a USB 2.0.

As the generator and the receiver of US signals we use available US transducers
of various frequencies and diameters.

Let us note that the values reflected in Table 1 are related to themaximumworking
frequency of the US transducer, while the spectrum generated by the probe contains
a set of frequencies around the indicated carrier frequency. The measurements are
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Fig. 2 Flaw detectors used for measurements. Left—low-frequency flaw detector USD60-N,
right—UD9812

Table 1 Upper line—carrier frequencies (MHz), lower line—diameter (mm) of the US probe

0.04 0.06 0.08 0.1 0.2 0.4 0.6 1.25 1.8 2.5 5 10

20 20 20 20 20 20 14 25 20 14 20 8

carried out by the through-transmitted method, when the radiating probe is placed on
the top of the sample and another probe—on its bottom. To provide a good contact,
we used a lubricating layerwhich permits the transition of themechanical oscillations
of the piezo-element inside the specimen at hand (Fig. 3).

A laboratory setup has been equipped to provide the experiments, see Fig. 4,
which is a device to fix the US probes and the sample. The device is a rack with three
clamps. The first two clamps fix the receiving and radiated US transducers, between
them there is a fixed sample for measurements, the third clamp fixes a spring which
provides reliable contact between the transducers and the sample.

All experiments were performed without any additional amplifier with a fixed
amplitude of 50 V. The following filtration bands was applied to the received signal:
at the frequency up to 0.2 MHz we used a filtration over the interval 20–300 kHz; for
the frequencies 0.4 and 0.6 MHz we put the filtration for the receiver 200–1250 kHz;
the frequencies 1.25, 1.8, 2.5 MHz were measured in the pass band 400–2500 kHz
for the frequencies 5 and 10 MHz—the frequency band 0.8–12 MHz.

The goal of the first series of experiments is to analyze the through-transmitted
amplitude of the signal on the carrier frequencies of the US transducers. The mea-
sured data show that the frequencies lower than 0.4 MHz pass without any change
in the amplitude, with minimal variation of the shape of the acoustic signal. Obvi-
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Fig. 3 The set of US probes used in experiments

Fig. 4 Laboratory setup with a sample and a pair of US transducers
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ously, for such low frequencies the relative size of the obstacles is so small that the
propagating wave passes through the cracked medium unchecked, “not feeling” the
internal structure of the material.

The filtration property becomes noticeable for frequencies higher than 0.4 MHz.
The change of the shape of the through-transmitted signal is demonstrated in Fig. 5,
where each line represents a sample corresponding to respective number, and vertical
rows correspond to carrier frequencies of the used US probes. To draw the diagrams,
there are used the time delay of 6 mks and the sweep of 200 mks. The exception is
for the frequencies equal 1.8, 2.5, 5.0 MHz, where for the sake of obviousness the
sweep is 70 mks. It is clear from the presented diagrams that re-reflections of the
acoustic wave from the system of obstacles has significant effect on the shape of the
through-transmitted signal.

Fig. 5 The shape of the received US signals for samples 0–4 at various frequencies
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3 Results of the Measurements

The amplitude characteristics are presented in the Table 2. The analysis of the
obtained data shows that obvious filtration properties of first, second and third sam-
ples begin after the frequency 0.6 MHz. The increase of the distance between the
rows, used in the third sample, has no effect on the through-transmitted amplitude in
the latter case; however an obvious change of the impulse shape is quite clear, much
more notable than for the first two samples. One may conclude that the increase in
the distance between the rows complicated the diffraction field inside the sample.
The fourth sample begins to demonstrate its filtration properties just at the frequency
of 0.4 MHz, that is obviously connected with smaller ratio of the US wave length
above the size of the obstacle.

The preliminary investigations [1, 2] show that after the first filtration strip there
is a strip of almost perfect transmission. As can be seen from Fig. 5 and Table 2, for
the first three samples such a frequency strip begins from 1.8MHz. This effect is less
pronounced for the fourth sample, though the amplitude of the through-transmitted
signal is still higher than at the frequency 1.25 MHz.

Analyzing the table, one may conclude that the increase of the size of the holes
(the fourth sample) results in the worst through-transmission in the meta-material,
cutting off more than 90% of energy, beginning from the frequency ~1 MHz. The
increase of the distance between the rows along the wave propagation also reduces
the carrying capacity for higher frequencies, and the passage to the first filtration
band becomes smoother (which is obvious for the frequency equal to 0.6 MHz,
where the sample 3 demonstrates the best through-transmission). The shift of the
rows in the second sample has not so strong effect at low frequencies, and in some

Table 2 Maximal amplitude of the passed signal, measured in dB, in percents with respect the size
of the display

f (MHz) Passed signal amplitude

Sample 0 Sample 1 Sample 2 Sample 3 Sample 4

0.4 42.1 dB 42.1 dB 42.1 dB 42.0 dB 37.4 dB

128% 127% 127% 126% 74%

0.6 42.1 dB 31.8 dB 32 dB 33.4 dB 31.8 dB

128% 39% 40% 47% 39%

1.25 42.9 dB 28 dB 32 dB 21.6 dB 15.6 dB

140% 25% 40% 12% 6%

1.8 43.8 dB 39.6 dB 38.8 dB 34 dB 22.3 dB

154% 95% 87% 50% 13%

2.5 44.3 dB 35.7 dB 26 dB 20 dB 9.5 dB

164% 61% 20% 10% 3%

5 38 dB 26.8 dB 0 dB 9.5 dB 0 dB

79% 22% 0% 3% 0%

10 −20 dB −58 dB −65 dB −56 dB −66 dB
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cases even improves the through-transmission of the US signal, as can be seen for
example, for the frequency 1.25 MHz. Nevertheless, for higher frequencies one can
see a significant suppression of the transmission, which may be connected with a
complex structure of the re-reflections inside the meta-material.

For these frequencies the wave radiated by the US probe demonstrates its “ray”
nature, hence the obstacles met across its path have significant influence on its tra-
jectory. This is clearly seen at frequencies 5 and 10 MHz for the second and the
fourth samples. It should also be noted that at higher frequencies the lower through-
transmission of the elastic wave is connected with a higher attenuation, which is
typically out of the consideration in numerical or analytical simulation.

As discussed above, the US probes radiate not a single fixed frequency but a
spectrum of frequencies located in the band containing the one claimed by the pro-
ducer. Therefore, for a detailed analysis we studied the spectral characteristics of the
received signals.

The flow detector USD60-N permits measurements of the spectral characteristic
on the chosen temporary interval, in the frequency range up to 1 MHz, with the
characteristics being normalized by maximal amplitude and viewed on display. The
obtained diagrams are shown in Fig. 6, where white curve is related to the spectrum
of the signal in the standard specimen, and black curves—in the specimen at hand,
whose numbers are indicated above the figure. The temporary interval of the spectrum
measurement is related to the sweeps discussed above, for each carrier frequency. The
three last rows in Fig. 6 are to be analyzed together with Fig. 5 and Table 2, because
of the automatic normalization of the amplitude performing by the flaw detector. For
other diagrams the amplitude of the passed signal remains unchanged. In common,
the spectral characteristic confirm the filtration band on the interval 0.6–1 MHz. The
envelope of the measured spectra are demonstrated in Fig. 7.

4 Conclusion

– It is shown that the acoustic meta-materials with a crossed periodic system of
through holes demonstrate filtration properties very closed to those inherent in the
meta-materials with non-crossed periodic systems, previously studied in [1, 2].

– The increase of the holes diameter decreases the initial frequency of the first
filtration interval and significantly decreases the passage of the US impulse for
higher frequencies.

– The shift of the rows realized in the sample number 2 has weak influence on
filtration characteristics in the low-frequency US interval, and this begins visible
only for higher frequencies, when the US wave begins to work like the “ray”
propagation.

– The increase of the distance between the crossed rows may shift the initial fre-
quency of the first filtration interval and may strengthen the filtration properties
above this frequency. This is connected with the complicated structure of the
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Fig. 6 Comparison of spectra for samples 1–4 (black line) with the standard specimen 0 (white
line) at various frequencies
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Fig. 7 The envelope lines of
the measured spectra

internal diffraction, which is clearly seen from the changed form of the through-
transmitted impulse.
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Simulation of the Surface Structure
of Ferroelectric Thin Films

Olga G. Maksimova, Tatiana O. Petrova, Victor A. Eremeyev,
Vladislav I. Egorov, Alexandr R. Baidganov, Olga S. Baruzdina
and Andrei V. Maksimov

Abstract Metropolis and Wang-Landau algorithms are described and illustrated
on the base two-dimensional Ising model. The influence of the ferroelectric film
thickness and the depolarizing field on the spontaneous polarization and the order
parameter of the film has been investigated by means of the Monte-Carlo method.
Dependences of the polarization of the thin film on the temperature are calculated
at different values of its thickness and the potential well depth of the Lennard-Jones
potential. To investigate the geometrical and optical properties of textured coatings
the anisotropic three-dimensional model based on the fractal plurality of Julia is
used. The developed method allows to determine the values of the model parameters
for a number of coating samples of steel sheet obtained under different conditions
of their formation. The fractal dimension of the objects obtained on the base of this
model is determined.

1 Introduction

The main trend in modern micro- and optoelectronics, optics and a number of other
fields of technics is the tendency to reduce the size of electronic devices. The use of
thin films in n integral devices and sensors requires the creation of new composite
materials, as well as investigation of the film structure s for the rational use and the
control of their specific properties.

High efficiency of application of the films and coatings is achieved only by the
right choice of design parameters of surface layers, that meet the specified operating
conditions, as well as the development of optimal methods for the forming of such
layers (in terms of achieving the required properties) [1, 2]. Therefore, the adhe-
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sive, strength, optical, deformational, insulating and other surface properties of the
polymer coatings of solids are studied at the junction of different fields of science:
thermodynamics, physical chemistry and chemistry of high-molecular compounds,
solid state physics, metallurgy, classical mechanics, physical and chemical mechan-
ics, mathematical statistics, etc. [3–6].

The study of fundamental properties of thin films and their application are one of
the urgent problems ofmodern research due to a number of reasons.With the decrease
in sample size, there comes a moment when any significant size becomes less than
a certain characteristic length, and the sample “turns” into a film. It is important that
each physical phenomenon is characterized by own characteristic length, when the
sample turns into a film, then the phenomenon under study proceeds fundamentally
in a different way. There arises an interest to the properties characteristic of bodies in
the film form, which may differ significantly from the properties of massive samples.
Such research include, for example, the study of optical, electrical, magnetic, and
superconducting properties, the study of structural ordering, dislocations, migration
phenomena, phase transitions, various surface reactions, and surface phenomena.

Currently, there is great interest in studying the properties of ferroelectrics near
the phase transition (PT) region, where a sharp change in the crystal structure of
a substance is observed. Near the PT point, the materials significantly change their
properties under the influence of electric fields, uniform and non-uniformmechanical
stresses, and other external influences. Under the influence of uniaxial pressure and
changes, the temperature shift of the first and second order PT in depending on the
film thickness is experimentally detected in. Therefore, it is possible to effectively
change the structure of a substance by mechanical a action, that is relevant for prac-
tical applications. Besides, the introduction of ferroelectric oxide films into modern
microelectronic devices, combined with restrictions on reducing the size of the base
element, revive the interest to old question of possible existence of the critical film
thickness necessary for the emergence of ferroelectricity.

In recent years there has been a considerable interest to polymers with electrical
(ferroelectric) and mechanical (ferroelastic) properties [7–9]. These properties are
determined by the occurrence of spontaneous polarization or deformation respec-
tively during the phase transitions from an isotropic state to an ordered one. The
greatest prospects for the use of polymer ferroelectrics and ferroelastics are asso-
ciated with the creation of controlled fundamentally new devices for processing
acoustoelectric, optical, and other signals.

It is worth to note the predominant number of experimental studies of thin films, in
comparison with theoretical studies. Therefore, a sufficiently complete and rigorous
theory of accounting surface effects in low-molecular and polymer ferroelectrics cur-
rently does not exist. During the last decade, significant progress has been observed
in understanding of the mechanisms of phase transitions in different ferroelectric
materials, but serious theoretical studies of the surface properties of ferroelectric
films and coatings are not sufficient, although this class of problems is the most
promising for their practical use.

The main problem of the theories describing the equilibrium properties of
monomers or fragments of polymer chains (links, etc.) in extended and finite low-
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molecular and polymer systems (domains, layers etc.) is the need to take into account
correctly intermolecular boundary conditions (interactions with the substrate, orien-
tational interactions etc.). It is both about the interaction with the environment, for
example with a solvent, the surface of the solid phase, that is, with particles in the
system, and etc., and about intra- and inter-component interaction.

The strong difference in the properties of bulk materials and bodies under condi-
tions of limited geometry is determined by a significant increase in the proportion of
surface atoms and, therefore, the role of the surface becomes defining. The search
of the free surface requires needs a special study of two-dimensional (2d) systems.
The surface model presented in this paper has a rigorous mathematical description.
Herewith, it is taken into account that the equations obtained are deduced depending
on the ordering of molecules in the bulk of the film. The surfaces of the membranes,
films and coatings of solids are somehow rough; there are big problem in the electro-
dynamics related with statistical modeling of the geometric properties of the surface.

To describe the ordered state in ferroelectric three-dimensional systems, analyt-
ically solvable phenomenological theories have been developed in sufficient detail.
For example, in the theory of ferroelectricity, a phenomenological description of
phase transitions based on the Landau—Devonshire potential is widely used. This
theory is successfully applied, for example, to estimate temperature behavior of
BaTiO3 [10], PbTiO3 [11] and other ferroelectrics. However, Landau’s theory is a
mean field theory; therefore it does not take into account fluctuations of the spon-
taneous polarization. In the quasi-two-dimensional case, such fluctuations are not
small. Therefore, it is’n use for the description of phase transitions in thin ferroelec-
tric films [12]. In this paper, wewill considerer a discretemodel of the ferroelectric, in
which the dimensions of the crystal lattice are not specified, but they are determined
in the process of calculation taking into account boundary effects.

The solution of three-dimensional problem seems to be not possible; therefore,
it is necessary to apply computer simulation methods. Some authors [13, 14] as
well use lattice models and the Monte Carlo (MC) method for the study of low-
molecular ferroelectrics. However, when studying the properties of polymers, the
Metropolis procedure quickly loses its effectivenesswith an increase in the number of
intramolecular degrees of freedom. This problem is especially actually for continual
models of polymers [15]. Besides, the standardMetropolis algorithm is poorly suited
for the study of systemswith a complex energy landscapewith a large number of local
minima. Therefore, currently, the Wang-Landau algorithm is more successful [16],
which is an implementation of the entropy modeling method. The main advantage
of this algorithm is the ability of direct calculation of the entropy and free energy for
a wide temperature range by means of one simulation [17].

2 Simulation Method Using the Wang-Landau Algorithm

Monte-Carlomethod use broad class of computational algorithmswhich are based on
random walks. The typical problem in statistical physics that can be solved by these
method is calculatingmean values ofmacroscopic variables (energy, order parameter,
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etc.) at different temperatures for systems which follows Boltzmann statistics. There
are some techniques for Monte-Carlo method: Metropolis [18], Wolff [19], Lee [20],
Wang-Landau algorithms [21], parallel tempering [22]. In this section, Metropolis
and Wang-Landau algorithms are described and illustrated on the example of two-
dimensional Ising model.

The Ising model consists of spins which have two possible orientations. Origi-
nally developed for simulation of ferromagnetic materials, now, this model has many
applications including the simulation of ferroelectrics [23], spin glasses [24], image
data processing [25], neuroscience, etc. In 1944, the two-dimensional Ising model
on a square lattice was analytically solved by Onsager [26]. The Hamiltonian of this
model is determined by the formula:

E = −J
∑

〈i, j〉

−→
Si

−→
Sj − −→

H
∑

i

−→
Si , (1)

where
−→
Si is the value of spin located in site i, the symbol 〈i, j〉 denotes the pairs of

nearest-neighbor segments, J is a parameter of spin interactions,
−→
H is the external

magnetic field strength.
The Metropolis algorithm generates the sequence of states at a predetermined

temperature using the probability distribution for the system. For the Ising model,
the Metropolis algorithm should be applied as follows:

1. A random spin is chosen and rotated.
2. The new system configuration is accepted with probability:

P = min
(

− �E
kBT

, 1
)
, (2)

where�E is energy change due to the spin rotation, kB is theBoltzmann constant,
T is the temperature.

3. Steps 1 and 2 are repeated.

The results of simulation for the two-dimensional Ising model with periodic
boundary conditions obtained by means of the Metropolis algorithm are presented
in Fig. 1. The heat capacity was determined by the formula:

C =
〈
E2

〉 − 〈E〉2
kBT 2

. (3)

The number of Monte-Carlo steps for each temperature was equal to N2 × 104,
where N is the linear size of the lattice. It is seen that the temperature of phase
transition becomes closer to the theoretically predicted value 2.269 with increasing
lattice sizes.

TheMetropolis algorithm isn’t appropriate for systems with multiple local energy
minima like in the Potts model. The sequence of states generated by this technique
can be trapped in these minimums at low temperatures. Therefore, other approaches
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Fig. 1 The Metropolis algorithm. The average energy (a) and the heat capacity (b, c) versus the
renormalized temperatureT* = kBT/J for the two-dimensional Isingmodelwith lattice sizes 16× 16
(1), 32× 32 (2) and 100× 100 (3) in the absence of external fields. dThe temperature corresponding
the maxima of heat capacity versus the linear size of lattice. The black line is theoretically predicted
value of the critical temperature

(Lee or Wang-Landau algorithms) should be used for systems with a rough energy
landscape. Lee and Wang-Landau algorithms are used in Monte-Carlo method for
estimating the density of states g(E) which is the number of system states with
energy E. From the density of states, the canonical distribution may be built for any
temperatures:

P(E) =
g(E) exp

(
− E

kBT

)

∑
i
g(Ei ) exp

(
− Ei

kBT

) . (4)

The Wang-Landau algorithm for determination the density of states consists of
following steps:

1. Firstly, we set initial values of density of states (g(E) = 1 for all configurations),
a zero histogram h(E) and an initial modification factor f = e.

2. A random selected rotator is rotated that changes the ith system state from to jth
one. The new configuration is accepted with probability:
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P = min
(

g(Ei )

g(E j )
, 1

)
. (5)

3. Then, independently from the new configuration was accepted or not, the his-
togram and the density of states are updated by a rule:

4.

h(Ek) → h(Ek) + 1,

g(Ek) → g(Ek) f, (6)

where k is the current system configuration.
5. After 10,000 Monte-Carlo steps 2–3, the flatness of the histogram is checked. A

flatness criterion in our work means that the histogram for all possible E is not
less than 80% of the average histogram. If the criterion is satisfied, the histogram
is reset and the modification factor f is updated: f → √

f . The simulation
continues before the modification factor becomes less than f f inal = exp(10−10).

6. Then, the density of states should be reweighted taking into account the consid-
eration that the density of states is equal to 2 for the ground state of the Ising
model.

The accuracy of results depends on flatness criteria and the final value of the
modification factor. The Wang-Landau algorithm for lattices 100 × 100 and greater
requires huge computational time. For accelerating calculations, the random walk
may be divided in some energy domains. A more detailed description of this paral-
lelization technique is reported in the work [27]. The results of simulation for the
two-dimensional Ising model with periodic boundary conditions obtained by means
of the Wang-Landau algorithm are presented in Fig. 2.

To obtain the probability distribution not only for the energy but also for other
parameter such asmagnetization, a two-dimensional or joint density of states (JDOS)
should be estimated by randomwalkmethod both in the energy and in this parameter.
For the Ising ferromagnetic model, values of the order parameter for the whole
temperature range and the external magnetic field may be calculated by means of
JDOS g(E, m), where E is the energy in the absence of external field, and m is
the order parameter [28]. However, such calculations require much more time than
calculations for the ordinary density of states. Dependencies of the order parameter
obtained by JDOS are presented in Fig. 3. JDOSwas calculated by theWang-Landau
algorithm.

Summarize, the Wang-Landau algorithm gives more accurate results than the
Metropolis one and appropriates for systems with the rough energy landscape. In
addition, the free energy and the entropy may be calculated directly by this method.
However, obtaining JDOS byWang-Landau algorithm has huge computational cost.
Therefore, the Metropolis algorithm is more appropriate for calculating such quan-
tities as the magnetization, the order parameter, the susceptibility, etc.
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Fig. 2 TheWang-Landau algorithm. The average energy (a) and the heat capacity (b, c) versus the
renormalized temperature T* = kBT/J for the two-dimensional Ising model with lattice sizes 16 ×
16 (1), 32× 32 (2) and 64× 64 (3) in the absence of external fields.dThe temperature corresponding
the maxima of heat capacity versus the linear size of lattice. The black line is theoretically predicted
value of critical temperature

Fig. 3 The Wang-Landau algorithm for the joint state density. The order parameter versus the
temperature and the external magnetic field for the Ising model with 10 × 10 (a) and 16 × 16
(b) lattices
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3 Investigation of the Influence of Bulk Properties
on the Surface Ones of Ferroelectric Systems

The surface properties of layers are determined not only by chemical composition
of the substance, but also by their physical structure and the orientational order of
polymer chains [29]. Intermolecular orientation interactions are much weaker than
valence interactions; therefore, the self-organization of the system with the given
chemical structure is determined by intermolecular interactions. In this chapter, we
consider the equilibrium properties and phase transitions on the surface of ferroelec-
tric polymer system, in which orientational interactions both between the surface
molecules and molecules located in the bulk are taken into account.

Model. Usually, polymer chains have predominantly planar orientation relatively
to the interphase boundary [30]. Therefore, in this paper, to describe the surface of
ferroelectric polymer systems, we use a two-dimensional model, which consist ofM
freely-jointed chains, each of which is a sequence of N connected rigid segments,
located in parallel to the surface (Fig. 4).

The main quantitative characteristic of the polymer chain flexibility is the persis-
tent length a, which is related with the energetic constant of intrachain orientation
interaction K1 by the ratio:

K1 = a · kBT
2

. (7)

Fig. 4 The layer model of a ferroelectric polymer system
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Similar to the persistent lengtha, we introduce the interchain interaction parameter
of b. The orientation interaction of neighboring polymer chain elements is described
by the energy constant K2,

K2 = b · kBT
2

. (8)

To take into account the interaction of surface molecules with molecules located
in the bulk of the film, we use the mean field constant V and the dimensionless mean
field parameter q:

q = V

kBT
. (9)

The internal energy in the low-temperature approximation can be represented as:

H = 1

2
K1

N ,M∑

n,m=1

(
ϕn,m − ϕn−1,m

)2 + 1

2
K2

N ,M∑

n,m=1

(
ϕn,m − ϕn,m−1

)2

− μV
N ,M∑

n,m=1

cos
(
ϕn,m

)
, (10)

whereμ is the long-range orientation order parameter, which is defined as the average
cosine of the angle between the directions of chain rigid element and the director,
i.e. μ = 〈cosϕ�n〉.
Free energy and order parameter

To calculate the free energy, the quadratic form (10) by means of variables trans-
formation (Fourier series expansion)

ϕ�n =
∑

�ψ
ei �n �ψ Q �ψ, (11)

may be reduced to a diagonal form, that is, to the sum of the squares of normal
coordinates Q �ψ . The components of two-dimensional vector �ψ = ( �ψ1, �ψ2) depend
on the size of the system and the type of boundary conditions. For an infinitely
extended system, the valuesψ1 andψ2 are continuous quantities lying in the interval
(0;π). For finite system, the values ψ1 and ψ2 are discrete ones and they depend on
the type of boundary conditions.

Expressions for the free energy have the form,
for infinitely extended system

F̃(μ) = kBT

2π2

π∫

0

π∫

0

ln[μq + a(1 − cos x) + b(1 − cos y)]dxdy
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+ 1

2
kBTqμ2 − kBTqμ, (11.1)

for free boundary conditions

F̃(μ) = kBT

2πN

N−1∑

y=0

π∫

0

ln[μq + a(1 − cos x) + b(1 − cos y)]dx

+ 1

2
kBTqμ2 − kBTqμ, (11.2)

for fixed boundary conditions

F̃(μ) = kBT

2πN

N∑

y=1

π∫

0

ln[μq + a(1 − cos x) + b(1 − cos y)]dx

+ 1

2
kBTqμ2 − kBTqμ, (11.3)

where the quantities a, q, b are determined by the formulas (7)–(9). By the derivation
of the formulas, it is assumed that the polymer chains are sufficiently long, so the
quantity x is continuous.

The equilibrium value of the orientation order parameter is determined by the
condition of minimum of the free energy:

f (μ) = ∂ F̃

∂μ
= 0; ∂2 F̃

∂μ2
> 0. (12)

Figure 5 shows the dependence of the free energy derivative f (μ) = ∂ F̃(μ)

∂μ
of an

infinitely extended system on the parameter of long-range orientational order μ for
different values of the persistent length a and fixed values of the interchain interaction
parameters b and mean field values q.

Fig. 5 Dependence of the

free energy derivative ∂ F̃(μ)
∂μ

for an infinitely extended
system versus the long-range
order parameter μ for values
of the persistent length a =
0.2 (1), 0.4417 (2), 0.7 (3),
b = 1, q = 1
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The curve 1 (at a = 0.2) corresponds to the case when Eq. (12) has two roots μ1

and μ2. If the value μ = μ1 the derivative of the free energy changes the sign from
«+» to «−» therefore, this value corresponds to the maximum of the free energy, in
contrast to the value μ2, which is the value of the order parameter of the polymer
system. The curve 2 (at a = 0.4417) corresponds to the critical value μ = μc, when,
Eq. (12) has one root. The value of the persistent length in this case is critical, since
the value of the order parameter varies abruptly from μc to 0. The curve 3 (at a =
0.7) corresponds to the case of increase of the free energy, that is, the minimum value
of the order parameter is μ = 0, the system is disordered.

When solving Eq. (12) considering Eqs. (11.1)–(11.3), the equations for calculat-
ing the long-range orientational order parameter depending on the energy constants
of interactions and temperature are obtained.

For an infinitely extended system, these equations have the form:

1

π

√
1

n + √
n2 − cd

· K
⎛

⎝
√

2
√
n2 − cd

n + √
n2 − cd

⎞

⎠ + μ − 1 = 0, (13.1)

for free boundary conditions

1

π

√
1

n + √
n2 − cd

· F
(
arctg

(√
d

n + √
n2 − cd

tg

(
π(M − 1)

M

))
;

√
2
√
n2 − cd

n + √
n2 − cd

⎞

⎠ + μ − 1 = 0, (13.2)

for fixed boundary conditions

1

π
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1

n + √
n2 − cd

· F
(
arctg
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d

n + √
n2 − cd

tg

(
πM
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⎞

⎠ − 1

π
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1
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(
arctg

(√
d

n + √
n2 − cd

tg

(
π

2(M + 1)

))
;
√

2
√
n2 − cd

n + √
n2 − cd

⎞

⎠ + μ − 1 = 0, (13.3)

where the quantities n = μ2q2 + 2μq(a + b) + 2ab; c = μ2q2 + 2aμq; d =
μ2q2 + 4b(a + b) + 2μq(a + 2b). The quantity K is complete elliptic integral of
the first kind. The function F(a; x) is incomplete elliptic integral.

When M → ∞, formulas (13.2) and (13.3) convert into Eq. (13.1).
Figures 6 and 7 show the behavior of solutions of Eq. (13.1) for calculating

the long-range orientational order parameter on the surface for different values of
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Fig. 6 The long-range
orientational order parameter
(continuous line) μ of
infinitely extended system
versus the interchain
interaction parameter b for
the given value of the
persistent length a = 1 and
different values of the
mean-field parameter q =
0.5 (1), 0.1 (2)

Fig. 7 The order
orientational parameter
(continuous line) μ of
infinitely extended system
versus the persistent length a
for the given value of the
mean-field parameter q = 1
and different values of the
parameter of interchain
interactions b = 0.5 (1), 0.1
(2)

the parameters a, b, q. The long-range orientational order decreases also with the
decrease in interchain interactions (parameter b) (the solid line in Fig. 6). The phase
transition occurs at a certain value of the parameter b, when the value μ changes
abruptly. As the interaction between molecules located on the surface and in the bulk
decreases (parameter q), the phase transition occurs at higher values bc, and the value
of the jump for the order parameter decreases. In the absence of the bulk (q = 0),
the long-range order does not exist in such system, that is in full accordance with the
Mermin-Wagner-Hohenberg theorem.

Similar results were obtained for the dependence of the orientational order param-
eter on the values of the persistent length a (Fig. 7). At certain value of the persistent
length ac, the phase transition occurs and the value μ changes abruptly. When the
value of the interchain interaction parameter decreases, the phase transition occurs
at higher values ac, and the value of the jump in the order parameter decreases.

Figure 8 shows the dependence of the long-range orientational order parameter
on the mean-field parameter under different boundary conditions. The curve 1 cor-
responds to the sufficiently extended system, that is, the quantity μ is a solution of
Eq. (13.1). The curve 2 is calculated under free boundary conditions [solution of
Eq. (13.2)], and the curve 3 is calculated at fixed boundary conditions [Eq. (13.3)].
When introducing free boundary conditions, the order parameter decreases, and the
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Fig. 8 a, b The long-range orientational order parameter versus the mean-field parameter for
infinitely extended system (1), and systems with free (2) and fixed (3) boundary conditions. The
parameters a = 1, b = 1, the number of chains M = 20 (a), 100 (b)

Fig. 9 The interchain interactions parameter b at the phase transition point versus the persistent
length a at a constant average field parameter q = 0.1, 0.5

critical value of the mean field increases. Conversely, the systemwith fixed boundary
conditions has a larger order and a lower critical value of the mean field.

Figure 9 shows the dependence of the critical value of the parameter of interchain
interactions bc at the phase transition point on the critical value of the persistent
length ac for different values of the mean-field parameter q = 0.1, 0.5 for infinitely
extended system.

The properties of the surface layers differ from the internal bulk parts of the film.
The phase transition point on the surface is determined not only by the persistent
length and the interchain interaction parameter, but also by the interaction with the
bulk, which is the determining one. The value of the interaction is determined by the
distance between the layers of the polymer system. As the distance between layers
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decreases, the value of the mean field decreases, leading to the decrease of the phase
transition temperature.

4 Effect of Thickness on the Magnitude of Spontaneous
Polarization in Thin Ferroelectric Films

To describe properties of the ferroelectric films and to study of ordering effects we
use a three-dimensional lattice model (Fig. 10), consisting of N1, N2 and N3 nodes
along the respective axes of the Cartesian coordinate system. The position of the
lattice node is characterized by the set of three numbers

⇀

n = (n1, n2, n3).
In this paper, the interaction energy of dipoles is described by a potential that takes

into account the energy of orientation interactions (as in the classical Ising model)
and the additional term representing the Lennard-Jones potential:

H = Hor +
∑

→
n ,

→
m

ε

⎛

⎝ r120
r12→
n ,

→
m

− 2r60
r6→
n ,

→
m

⎞

⎠, (14)

where ε is the potential well depth of the Lennard-Jones potential, r�i, �j is the distance
between the dipoles, r0 is average distance in the absence of orientation interactions.

Fig. 10 The
three-dimensional lattice
model of the thin
ferroelectric film
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The second term of Eq. (14) does not depend on the temperature and the polar-
ization, in contrast to the first term.

When the polarization decreases, therefore, we must take into account that the
distance between the dipoles changes in transverse dimensions N2 and N3 of film.
The potential of orientation interactions Hor is represented by the formula:

Hor = −
∑

→
n

K1Sn1,n2,n3 Sn1−1,n2,n3−
∑

→
n

K2
r30
r3

Sn1,n2,n3 Sn1,n2−1,n3

−
∑

→
n

K2
r30
r3

Sn1,n2,n3 Sn1,n2,n3−1 + p
∑

→
n

S�n Ed , (15)

where the quantity S�n takes only two values +1 and −1, K1 is the coefficient of
exchange interactions in the longitudinal direction, p is the dipole moment, K2 is the
constant of exchange interactions between the dipoles in the transverse direction, Ed

is the projection of the vector of the depolarizing field strength on the direction N1.
The short-range orientation order parameters in the longitudinal and transverse

directions μ|| and μ⊥ are determined by the following formulas, correspondingly:

μ|| = 1

N1N2N3

(
∑

�n
Sn1,n2,n3 Sn1−1,n2,n3

)
, (16a)

μ⊥ = 1

2N1N2N3

(
∑

�n
Sn1,n2,n3 Sn1,n2−1,n3 +

∑

�n
Sn1,n2,n3 Sn1,n2,n3−1

)
. (16b)

To simplify the calculations the variable x3 = r0
r was introduced. The values μ||

and μ⊥ depend on the variable x. As an example, Fig. 11 shows the dependence of
the short-range orientation order parameter μ⊥ on the variable x at different reduced
temperatures.

Fig. 11 The short-range
orientation order parameter
μ⊥ versus the variable x at
different the reduced
temperature kBT /K1 = 15
(1), 20 (2), 25 (3)
ε/K1 = 0.01, K2/K1 = 1
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In contrast to the classical Ising model, the interaction between dipoles in the
model considered depends on the distance, so for this it was necessary to calculate
the mean value of the distance at which the potential energy experiences a minimum.

The mean distance between dipoles has been determined by finding the minimum
of the function:

h = 4ε

(
r120
r12

− 2r60
r6

)
− 2K1μ|| − 4K2μ⊥

r30
r3

. (17)

The differentiation of Eq. (4) with respect to r leads to the equation:

ε
(
4x3 − 4x

) − 1

2
K1

∂μ||(x)
∂x

− K2
∂μ⊥(x)

∂x
x − K2xμ⊥(x) = 0. (18)

To solve Eq. (18) the functions μ||(x) and μ⊥(x) were calculated by the Monte
Carlo method, these functions were approximated by the function er f

(
x−m

σ

)
, where

m and σ are fitting coefficients.
The change of properties of the system under an external action is described as

its response to this action: for example, the dielectric susceptibility:

χ = 1

kBT

[〈
S2�n

〉 − 〈S�n〉2
]
, (19)

reflects the polarization change upon the application of an electric field.
Figure 12 shows the dependence of the mean distance between the dipoles (a)

and the susceptibility of the ferroelectric system (b) on the reduced temperature for
different values of the potential well depth in the absence of the depolarizing field.

We see that as the temperature is increased, the mean distance near the phase tran-
sition point increases abruptly. At high temperatures, the distance between dipoles
r → r0. With a decrease in the of the potential well depth of the Lennard-Jones
potential, the mean distance between the dipoles decreases, which leads to a shift of
the phase transition point to higher temperatures.

Influence of depolarizing field

Under the action of an internal electric field caused by the spontaneous polariza-
tion, free particles move to the outer surfaces of the film and create an additional
depolarizing field which depends on the value of the long-range orientation order:

Ed(n1) = E0μ
(
e−λ(N1−n1)Sn1,n2,n3 + e−λ(n1−1)Sn1,n2,n3

)
, (20)

where E0 and λ are constants determined by the number of free carriers in the film,
μ is the long-range order parameter in the ferroelectric system, which is determined
by the following formula:
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Fig. 12 The mean distance between the dipoles r/r0 (a) and the susceptibility of the ferroelectric
system χ/χmax(b) versus the reduced temperature kBT/K1 for values of the potential well depth
ε/K1 = 1 (*), 0.1 (+), 0.01 (o) in the absence of the depolarizing field

Fig. 13 The long-range orientational order parameter μ versus the reduced temperature kBT/K1
without the depolarizing field (1), at different values of the reduced field pEd/K1 = 5 (2), 10 (3)
and the potential well depth ε/K1 = 0.01

μ = 1

N1N2N3

(
∑

�n
S�n

)
. (21)

Figure 13 shows the dependence of the long-range orientational order parame-
ter µ on the reduced temperature kBT/K1 for different values of the depolarizing
field. It is shown that the inclusion of a depolarizing field leads to a decrease in the
order parameter and to a shift of the phase transition point to the region of lower
temperatures.
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Fig. 14 The long-range
order parameter μ versus the
thickness of the ferroelectric
film N1 at different the
reduced temperatures
kBT/K1 = 2 (1), 7 (2), 10
(3) and the potential well
depth ε/K1 = 0.01

Fig. 15 The long-range
order parameter μ versus the
thickness of the ferroelectric
film N1 at different the
potential well depth ε/K1 =
0.01 (1), 1 (2) and the
reduced temperature
kBT/K1 = 5

Figures 14 and 15 show the dependence of the long-range order parameter on
the thickness of the ferroelectric film (N1) at the different t reduced temperatures
and the potential well depth. As the thickness of the film decreases, the polarization
decreases, and it decreases sharply to zero at a certain thickness. In sufficiently thin
films, the polarization is not observed even at low temperatures. This resulted may be
explained by the fact that its thickness is less than two values of the thickness of the
“dead” layer. The double thickness of the “dead” layer is considered as the critical
size of ferroelectric film, at which the ferroelectric loses its ferroelectric properties,
and becomes a linear dielectric. As shown in Figs. 14 and 15, the thickness of the
“dead” layer is 2–10 unit cells. The critical thickness NC increases with decrease in
the well depth of the potential of Lennard-Jones (Fig. 14) and increasing temperature
(Fig. 15). Experimental techniques allowed to investigate the perovskite ferroelectric
film with a thickness of 40 Å (ten unit cells) [31]. The authors of ref. [32] identified
a critical thickness of about three unit cells, below which there was no ordering at
low temperatures. The difference in the experimental results can be explained by the
difference of the potential well depth and the concentration of free carriers in the
materials considered.

The correlation effect in thin ferroelectric films leads to ordering, which in turn
leads to the appearance of a surface charge density, the depolarizing field, and also
to the presence of the “dead” layer.
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5 Modeling of Geometric and Optical Properties
of Textured Coatings of Steel Sheet with Anisotropic
Defects

The solution of the problem of creating surfaces with certain properties is necessary
both for stable functioning of products and technological control of the surface qual-
ity of such products [33]. The use of the fractal approach to describe structural in
homogeneities, aswell as the justification of general regularities, is one of themodern
scientific trends in the surface physics and the chemistry of solids. At present, various
mathematical models of fractals (Sierpinski rug, Mandelbrot set), describe well the
real imperfections (Brownian) surfaces of metal layers, dielectric layers [34], semi-
conductor surfaces [35] those have defects of a symmetric type [36, 37]. However,
when examining the surface of polymer coatings of metal sheet, the detected defects
are anisotropic (Fig. 16a); therefore, these models cannot be used to describe their
structure. In this paper, the three-dimensional anisotropic model based on the Julia
set will be used to construct a fractal model of the surface.

Algorithm of creating of the fractals

To construct fractal surfaces of the extured polymer coating of sheet metal
(Fig. 16a, b), the following algorithm was used:

1. The area in which the fractal is created is divided into 1000 × 1000 rectangles.
Each rectangle is characterized by the coordinates

(
Xr,s,Yr,s

)
of its center.

2. A sequence is defined by the recurrence formula [38].

Z (n)
r,s = (

Z (n−1)
r,s

)2 + p + iq, (22)

where values p and q are parameters of the fractal function (22). The first term
of the sequence is defined as

Z (1)
r,s = Xr,s + iYr,s .

3. The value of H is select inversely to the rate of increase of the modulus of the
sequence term (1).H is equal to the smallest number of the sequence term, when
| zi | > Q. In our calculations, we assumed that the value is Q = 106.

The examples of fractal functions obtained are shown in Fig. 16c, d.

Determining the geometrical parameters of the fractal functions

The type of defects (grooves) in the textured coatings depends on conditions of
its formation. The surface relief images of two samples coated by the same polyester
material are shown In Fig. 16a, b. The coating of the sample 2 was formed at a higher
temperature, which affected the parameters of the grooves. Table 1 presents the mean
parameters of the “grooves” on the surface of the samples 1 and 2. To determine
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Fig. 16 The pictures of samples surfaces 1 and 2 obtained by then optical microscope method
(a and b) and their fractal models (c and d correspondingly)

the parameters of the fractal model p and q, the constructed fractal functions were
compared with the surface images (Table 1).

To determine the scale ratiom = L/L0, the middle length L0 of grooves measuring
by the optical microscope method (see Fig. 16a, b) and the length of the median
line of the fractal function L (see Fig. 17b) were compared. For this purpose, at the
construction of fractals, we used the cubic polynomial approximation (Fig. 17a) and
calculated its length L.

The width d is defined by dividing the polygon fractal area and the length L. The
radius of curvature R is determined as the mean radius of curvature of the median
line.
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Table 1 The parameters of textured coatings measured with an optical microscope and parameters
of their fractal models

No. Average values of furrows parameters Model parameters

Width d
(µm)

Length
(µm)

Height
(µm)

Radius of
curvature
(µm)

p q Scale m =
L/L0
(µm−1)

1 34.7 545 36.2 1378 −0.55375 0.55008 0.945

2 28.5 523 31.3 1371 −0.57125 0.55047 0.985

Fig. 17 The construction of the median line (a). The length of the median line (b), the mean width
of the polygon (c) and the average curvature (d) versus the parameter p for different values of the
parameter q

Figure 16c, d show fractal functions for samples 1 and 2, under which the exper-
imental and theoretical parameters coincide. Figure 17c, d show the dependences of
the values of d and R on the parameters p and q of the fractal function (1).

The fractal dimension was calculated using the following algorithm:

• A cube is constructed in the three-dimensional N × M space, where N andM are
the numbered points of the fractal surface. The size of the cube edge must be a
factor of the smallest unit of the fractal surface.

• It is checked, whether the constructed cube locates particularly or fully in the
fractal figure.

• If it locates, then the number of cubes is increased by one.
• The neighboring cube is constructed.
• Firstly, the bottom level of the surface is filled, and then the next level is filled, etc.
• If at some level, no cube enters in the fractal (the empty space), then the cycle is
finished.
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Fig. 18 Determination of
the fractal dimension. The
points represent the
modeling data; the solid line
is the corresponding linear
regression

Fig. 19 A schematic
representation of the light
scattering experiment

The dependence ln
(
Mξ

)
on ln ξ is shown in Fig. 18. Here Mξ is the number of

cubes entering in the fractal, and ξ is the cube edge. From the slope of this dependence
we obtained the value of fractal dimension k = 2, 29.

Study of optical properties of textured surfaces

The scattering of light is associated with a number of structural features of poly-
mers, and it is widely used for their investigation [39–41]. In this paper, it was
assumed that light falls on a rough surface S at a given angle of falling light θ1,
and it is scattered in all directions. The scattered wave is characterized by the polar
angle θ2 and the azimuthal angle θ3 (Fig. 19). The intensity of light scattered in the
direction (θ2, θ3) is measured by the detector D.

Using the basic formulas of the Kirchhoff method, the strength of scattered field
is calculated under the following conditions:

• the incident wave is monochromatic and flat;
• the scattering surface is rough inside the rectangle under consideration and smooth
beyond the boundaries;

• the size of the rough surface is much larger than the length of the incident wave;
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Fig. 20 The reduced intensity of scattered light versus the polar θ2 and horizontal θ3 angles for
the samples being considered. θ1 = 45°

• the scattering field is observed in thewave zone, i.e., far enough from the scattering
surface.

To study the scattering of light, we used the formulas given in ref. [41]. The
dependence of the reduced intensity of scattered of light I/I0 on the angles θ2 and θ3

at θ1 = 45° for the red light is shown in Fig. 20. Here I0 is the maximum calculated
value for the sample 1.

The intensity of the light scattered by the surface of sample 2, formed at a higher
temperature, is less by 21%. For experimental verification of the results obtained, the
gloss of the samples under study was measured. Experimental study has shown that
at the same angle of incident light, the gloss of sample 2 is 18% less than for sample
1. The difference between theoretical and experimental results may be explained by
the fact that photometric instruments in studying such textured coatings have large
errors due to strong scattering of light on them.

6 Conclusion

In this work, by means of analytical methods and computer simulation we have
investigated some properties of metamaterials.

Recently, the development of fast algorithms for the JDOS (the joint density of
states) calculation is an actual problem. In this work, we employ themodified parallel
Wang-Landau algorithm for JDOS, which combines ideas of global updates and
two level methods. The algorithm for fast determination of JDOS is proposed. This
algorithm combines ideas of global updates consideration and two level methods.
The method is analyzed and validated for the two-dimensional ferromagnetic Ising
model.

In this work, we considered the equilibrium properties and phase transitions on the
surface of ferroelectric polymer system, in which orientational interactions are taken
into account both between the surface molecules and molecules located in the bulk.
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The properties of the surface layers differ from the internal bulk parts of the bodies.
The phase transition point on the surface is determined not only by the persistent
length and the interchain interaction parameter, but also by the interaction with the
bulk which is the determining one. The value of the interaction is determined by the
distance between the layers of the polymer system. As the distance between layers
decreases, the value of the mean field decreases, leading to the decrease in the phase
transition temperature.

The research results concerning in thin ferroelectric films showed that correlation
effects related with the ordering in films lead to the appearance of a surface charge
density, the depolarizing field, and also to the presence of the “dead” layer.

It is shown that the depolarizing field decreases the polarization of the film and
shifts the phase transition point to the region of lower temperatures. The polarization
in sufficiently thin films is not observed even at low temperatures. This result can
be explained by the fact that its size is less than double thickness of the “dead”
layer that is considered as the critical size of the film, at which its ferroelectric
properties disappear, and the film becomes a usual dielectric material. The value
of the critical thickness increases with decrease in the well depth of the potential of
Lennard-Jones and increasing temperature. In the frame of approach proposed in this
paper, such difference in the experimental results can be explained by the difference
of the potential well depths and the concentrations of free carriers in the materials
considered.

Surfaces of textured polymer coatings of metal sheet are rough and can change
their shape under different conditions of their formation. The texture of such rough
surfaces of polymer coatings seems chaotic, so a theoretical study of the phenomena
occurring on them (for example, the scattering of light, color, and gloss) is difficult.
However, applying this technique, we can select the appropriate fractal function and
apply standard methods for various kinds of research.

The physical phenomena occurring on these surfaces cannot be described in terms
of the standard deviation of the peak height of the correlation function for them. Real
surfaces are most adequately described by fractal functions that are confirmed by
experimental results on the scattering of light. These results can be used to study
other physical phenomena on the surfaces described, such as friction, electrical con-
ductivity, and capacity.

Acknowledgements The work is performed within the framework of the project “Methods of
microstructural nonlinear analysis, wave dynamics and mechanics of composites for research and
design of modern metamaterials and elements of structures made on its base” (grant No. 15-19-
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Diffraction of the High-Frequency Waves
by Arrays of Obstacles
in the Two-Dimensional Elastic Medium,
with Multiple Reflections
and Transformations

Nikolay V. Boyev

Abstract Within the geometric theory of diffraction, the problem of the propaga-
tion of ultrasonic waves through array of obstacles in an infinite two-dimensional
elastic medium is investigated. A tonal impulse of a time-harmonic longitudinal or
transverse plane elastic high-frequency wave of several wave-lengths is introduced
through the array of obstacles, and in a certain domain inside the elastic medium the
through-transmitted wave with arbitrary reflections and transformations is received.
Some integral representations for displacement in the reflected waves are written out
on the basis of the Kirchhoff physical diffraction theory. With the use of an asymp-
totic estimate of multiple diffraction integrals by the multidimensional stationary
phase method we have written out explicitly the geometric-theory approximation for
displacements in the multiply reflected and transformed waves.

1 Introduction

Metamaterials, which are solid inclusions, usually located in the nodes of the periodic
lattice and rigidly adhered to the elastic matrix, have important acoustic properties,
including filtration ones. The latter are confirmed experimentally [1] and in the acous-
tic approximation theoretically [2]. The theoretical basis for studying the acoustic
properties of such materials is the solution of the problem of the short-wave diffrac-
tion of longitudinal and transverse elastic waves on the array of obstacles in an elastic
medium, taking into account their various reflections and transformations at mirror
reflection points. Single and double reflections and transformations of short acoustic
and elastic waves were investigated in [3–6]. An explicit form of the geometric-
optical approximation of displacements is obtained for multiple reflections of longi-
tudinal waves from the triple-periodic system of solid round inclusions in the elastic
matrix of themetamaterial [2]. The present paper is devoted to the development of the
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ray diffraction theory with respect to arbitrary (nonconvex) smooth two-dimensional
obstacles in an elastic medium. Within the geometric theory of diffraction, high-
frequency waves are scattered on array of obstacles in a two-dimensional elastic
medium, taking into account all possible multiple reflections and transformations.

2 Problem Formulation

In an infinite two-dimensional elastic medium there is an array of obstacles. The
obstacles can be of two types: absolutely solid and voids. In the array of obstacles, a
pulse is introduced with a tonal filling by several periods of a planar high-frequency,
monochromatic longitudinal or transverse elastic wave, and in a certain region of
the elastic medium, a transmitted wave with any possible reflections (longitudinal
wave to longitudinal one, transverse wave to transverse one) and transformations
(longitudinal wave to transverse one, transverse wave to longitudinal one).

The aim of the study is to obtain analytical expressions for displacements in the
transmitted longitudinal or transverse wave.

3 Method of Solution

The structure of the input pulse makes it possible to investigate the problem in the
regime of harmonic oscillations. The incident plane elastic wave is replaced by a set
of point sources of cylindrical waves. Each cylindrical wave propagating in an angle
with a vertex in the source directed toward the obstacles and a contracted semi-circle
is replaced by a system of corresponding radial propagation rays of the elastic wave.
Thus, the problem is reduced to a problem of short-wave diffraction of elastic waves
in a local formulation. The total field in the region of reception of propagating elastic
waves is composed of rays transmitted through a system of obstacles, which can be
of the three types: rays transmitted through the obstacle system without diffraction;
rays reflected from the system once or a finite number of times.

4 The Study of the Problem in the Local Formulation

Let a circular monochromatic high-frequency wave fall from the point x0 of the
infinite elastic plane to the boundary contour l of an obstacle or a system of obstacles
in it. The wave is generated by the force Qeiωt located at point x0, where ω is the
oscillation frequency. In this case, the displacements at the point y of the elastic plane
are determined by the Kupradze matrix [7].

The aim is to study the amplitude characteristics of the scattered field by the
contours of obstacles in the through-transmitted elastic wave.
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In the directions q1 and q2 we have asymptotic representations of the amplitudes
of displacements in the incident wave

u(p)
q (y) = Qq

4μ
q i

k2p
k2s

√
2

πkp
e−i π

4
eikp R0

√
R0

[
1 + O

((
1

kp R0

))]
, Qq = (Q, q), (1)

u(s)
q1 (y) = Qq1

4μ
q1 i

√
2

πks
e−i π

4
eiks R0

√
R0

[
1 + O

(
1

ks R 0

)]
, Qq1 = (Q, q1

)
. (2)

Here the tangential direction q1 is perpendicular to q. Qq and Qq1 are the pro-
jections of the force Q on the directions q and q1. Here ρ is the mass density, λ, μ
are the Lamè coefficients, kp = ω/cp, ks = ω/cs , cp and cS are the wave numbers
and the velocities of the longitudinal and transverse waves. The components of the
displacement vector in the reflected wave from the free boundary contour at the point
x of the elastic plane are determined by the following integral [8]

uk(x) =
∫
l

Ty
[
U(k)(y, x)

] · u(y) dl, k = 1, 2, (3)

Ty
[
U(k)(y, x)

] = 2μ
∂U(k)

∂n
+ λn div

(
U(k)
)+ μ

(
n × rot

(
U(k)
))

, (4)

where the Kupradze matrix U(k)(y, x) is obtained from the matrix U(k)(y, x0) by
replacing x0 by x and R 0 by R = | y − x |. Ty is the force vector at the point y, u(y)
is the vector of the total displacement field on the boundary surface, n is the outer
unit normal to the contour l, directed toward the elastic medium.

In the vector of total displacement on the boundary contour and in the vector
Ty at the point y we select the terms determined by the longitudinal (p-wave) and
transverse (s-wave) waves.

uk(x) =
∫
l

{
Ty
[
U(k)

p (y, x)
]+ Ty

[
U(k)

s (y, x)
]} · [u(y; p) + u(y; s)] dly (5)

uk(x) =
∫
l

Ty
[
U(k)

p (y, x)
] · u(y; p) dly +

∫
l

Ty
[
U(k)

s (y, x)
] · u(y; p) dly

+
∫
l

Ty
[
U(k)

p (y, x)
] · u(y; s) dly +

∫
l

Ty
[
U(k)

s (y, x)
] · u(y; s) dly (6)

The first and last terms describe p–p and s–s reflections, and the second and the
third ones p–s and s–p transformations.

As in the classical geometric theory of diffraction developed in scalar acoustics [9]
and developed in the dynamic theory of elasticity [10], it is necessary to distinguish
the asymptotics in the local and global sense. In the global formulation, the problem
is to calculate the total field at the point x of the elastic plane. In this case, on the basis
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of the representation (6), the total field at the point x of the elastic medium is made
up of four integral terms and an incident circular wave, as represented in (6). The
asymptotic solution constructed below has a local character and gives the leading
asymptotic term of the amplitude of the diffracted field in a small neighborhood
of any ray emerging from the point x0, reflected from the boundary contour of the
obstacle at the point y∗, and arriving at the point x. Obviously, such rays can exist
only if both points y∗ and x lie in the illuminated region.

5 Two-Fold Reflection of Elastic Waves on the Plane
Contours of Obstacles Taking into Account Possible
Transformations

This section is devoted to the development of the ray diffraction theory with respect
to arbitrary (nonconvex) smooth two-dimensional obstacles in an elastic medium.
Double re-reflection of the high-frequency wave, taking into account possible trans-
formations, can be formed both within the contour of one obstacle (Fig. 1) and
two different obstacles (Fig. 2). Numerical investigation of the problems of high-
frequency scattering of elastic waves is considerably complex if the wavelength is
much smaller than the average size of the scatterer. There are some known numerical
methods—the finite element method, the method of boundary elements, all require
in this case a large number of nodes on the grid. This leads to instability of the cal-
culation. To calculate the displacement amplitude in a multiply re-reflected wave, it
is possible to use the Keller geometric theory of diffraction (GTD) [11], based on
the use of divergence coefficients, which is rather cumbersome. If we investigate
the problem of the reflection of a high-frequency wave from an obstacle contour in
an elastic medium with various possible wave transformations of an arbitrary finite
number of times N, then it is more convenient to start from the estimate of the N-fold
multiple diffraction integral by the multidimensional stationary phase method. The
basis for the investigation of the general case of an arbitrary number of re-reflections
is the solution of the problem of double reflection (Figs. 1 and 2), to which we turn.

The direct usage of the integral representation (3) over the entire “light” zone for
reflected waves is impossible [9], since it does not describe multiply reflected waves.
If one substitutes to the Green’s formula (3) the solution of [12] for local problems
(8) and (10) and as the primary field takes the total field u(y), then the integral
formula (3) gives only a single-reflected wave. A doubly reflected wave is obtained
only when the values of u(y) include both the primary field and its single reflection.
To solve the problem of double re-reflection, we start from the modification [9] of
the integral formula (3). Following this modification, the doubly reflected waves will
be found by integrating along the neighborhood l∗2 of the second mirror reflection
point y∗

2 the rays obtained upon single reflection from the neighborhood l∗1 of the
first mirror reflection point y∗

1 . Such a modification means that when finding the
leading term of the asymptotics of the double diffraction integral, we stay within the



Diffraction of the High-Frequency Waves by Arrays of Obstacles … 63

Fig. 1 Two-fold p–s–p transformation of a high-frequency longitudinal wave along the ray x0 −
y∗
1 − y∗

2 − x3 on the boundary contour of one obstacle in an elastic medium

Fig. 2 Two-fold p–s–p transformation of a high-frequency longitudinal wave along the ray x0 −
y∗
1 − y∗

2 − x3 on the boundary contours of two obstacles in an elastic medium
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framework of the calculation of the displacement amplitude in a doubly reflected
wave in accordance with the GTD.

We consider the reflection of a high-frequency wave using the example of the
repeated reflection of a ray x0 − y∗

1 − y∗
2 − x3 emitted from a point x0 [p-wave (1)]

and received at a point x3 with a possible transformation p–s–p (Figs. 1 and 2).
The components of the displacement vector of the p-wave at the point x3 are given

by the following formula

u(p)
k (x3) =

∫
l∗2

Ty2

[
U(k)

p (y2, x3)
] · u(y2; s) dl2. (7)

Here, u (y2; s) is the vector of the complete displacement at the point y2 ∈ l∗2 of
the neighborhood of the specular reflection point y∗

2 , which is determined after the
first p–s transformation at the neighborhood of l∗1 of the specular reflection point y∗

1 .
In the asymptotic estimate of the Kirchhoff integral in (7), the components of the

displacement vector uk(y2; s), k = 1, 2, under the integral sign should be chosen
as the solution of the local diffraction problem for the reflection of a plane incident
s-wave [12] formedwhen p–s transforms at a neighborhood l∗1 of themirror reflection
point y∗

1 .

u1(y2; s) = (Vss(y2) − 1 − tgγ1Vsp(y2)
)
u(s)
1 (y2),

u2(y2; s) =
(
Vss(y2) + 1 + kp

ks sin γ1

√
1 − k2s

k2p
sin2 γ1 Vsp(y2)

)
u(s)
2 (y2), (8)

where Vss(y2) and Vsp(y2) are the reflection coefficients s–s and s–p are the trans-
formation coefficients [12, 13].

At the same time, the components of the displacement vector u(s)
k (y2), k = 1, 2

themselves are expressed by a similar formula

u(s)
k (y2) =

∫
l∗1

Ty1

[
U(k)

s (y1, y2)
] · u(y1; p) dl1, (9)

where the vector of the total displacement field u ( y1; p) at points y1 ∈ l∗1 of the
neighborhood of y∗

1 , should be chosen as the solution of the local diffraction problem
on the reflection of a plane incident wave (1) [12]

u1(y; p) =
⎛
⎝1 + Vpp(y) − ks

kp sin γ

√
1 − k2p

k2s
sin2 γ Vps(y)

⎞
⎠u(p)

1q (y),

u2(y; p) = (1 − Vpp(y) − tg γ Vps(y)
)
u(p)
2q (y), (10)
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where Vpp and Vps are the coefficients of p–p reflection and p–s transformations [12,
13], u(p)

1q (y) and u(p)
2q (y) are the components of the displacement vector u(p)

q (y) in
the incident p-wave (1).

After substituting (10) into (9), (9) into (8), and (8) into (7) and passing to the local
polar coordinate system r, θ at the point y∗

2 , we obtain the displacement components
at the point x3:

u(p)
r (x3) = − Qq

4πμ

(
kp
ks

)2
2ks

√
2

πks

kp
2ks

(
− kp
2ks

)
e−i π

4
cos γ1 cos γ3√

L0L1L2

× Vps
(
y∗
1

)
Vsp
(
y∗
2

) ∫
l∗2

∫
l∗1

eikpφpsp dl1dl2, (11)

u(p)
θ (x3) = 0,

φpsp = |x0 − y1| + ks
kp

|y1 − y2| + |y2 − x3|,
L0 = ∣∣x0 − y∗

1

∣∣, L1 = ∣∣y∗
1 − y∗

2

∣∣, L2 = ∣∣y∗
2 − x3

∣∣. (12)

At the points of direct mirror reflection y∗
1 ∈ l∗1 and y∗

2 ∈ l∗2 , the neighbor-
hoods of these points are related to the Cartesian coordinate systems O1X

( 1)
1 X ( 1)

2

and O2X
( 2)
1 X ( 2)

2 , determined by the normals n1 = O1X
( 1)
2 and n2 = O2X

(2)
2 and

tangent to the contour of the obstacle, as indicated in Figs. 1 and 2. Along these
contours, let us count the length of the arc 
s1 from the mirror-reflection point y∗

1
over a neighborhood of l∗1 , and the length of the arc
s2 from the mirror-reflection y∗

2
over the neighborhood of l∗2 . For small 
s1 and 
s2, let us write out the expressions
for the first and the third term of the phase φpsp, up to small quantities of the second
order, inclusively:

|x0 − y1| = L0 + 
s1 sin γ
(p)
1 + 0.5

(
L−1
0 cos2 γ

(p)
1 + cos γ

(p)
1

ρ1

)
(
s1)

2, (13)

|y2 − x3| = L2 − 
s2 sin γ
(p)
2 + 0.5

(
L−1
2 cos2 γ

(p)
2 + cos γ

(p)
2

ρ2

)
(
s2)

2. (14)

For p–s–p transformation,
{
− sin γ

(p)
1 , − cos γ

(p)
1

}
is the vector which deter-

mines the direction of the p-wave (1), and
{
− sin γ

(s)
1 , cos γ

(s)
1

}
is the direction of

the reflected wave relatively the coordinate system O1X
( 1)
1 X ( 1)

2 at the point y∗
1 , and{

− sin γ
(s)
2 , − cos γ

(s)
2

}
is the vector determining the direction of incidence of the

s-wave reflected at point y∗
1 with respect to the coordinate system O2X

( 2)
1 X ( 2)

2 at the

point y∗
2 ; while

{
− sin γ

(p)
2 , cos γ

(p)
2

}
is the direction of the reflected p-wave at the

point y∗
2 .
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Let us find the term |y1 − y2| = |y2y1| in the phase φpsp (12). The points y1 ∈ l∗1
and y2 ∈ l∗2 in the local Cartesian coordinate systems O1X

( 1)
1 X ( 1)

2 and O2X
( 2)
1 X ( 2)

2

have the coordinates y1
(
−
s1,− (
s1)

2

2ρ1

)
and y2

(
−
s2,− (
s2)

2

2ρ2

)
, where ρi are the

radii of curvature of the boundary contours l1 and l2 of the two obstacles, respec-
tively, at points y∗

1 and y∗
2 . The distance |y1 − y2| is considered in the coordinate

system O2X
( 2)
1 X ( 2)

2 . In this coordinate system we denote the coordinates of the
points y1(ξ1, η1), y2(ξ2, η2), y∗

1

(
ξ 0
1 , η0

1

)
. Taking this into account, we represent the

vector y2y1 in the form:

y2y1 = y∗
2y

∗
1 + Ay∗

1y1 − y∗
2y2,

y2y1 = {ξ1 − ξ2, η1 − η2}, y∗
2y

∗
1 = {ξ 0

1 , η0
1

}
. (15)

Here A = (ai j), i, j = 1, 2 is the orthogonal transition matrix from the basis

of the Cartesian coordinate system O2X
( 2)
1 X ( 2)

2 at the point y∗
2 to the basis of the

Cartesian coordinate system O1X
( 1)
1 X ( 1)

2 at the point y∗
1 . The matrix A has the form

(see Figs. 1 and 2)

A =
(
cosα − sin α

sin α cosα

)
.

In the local coordinate systems, the vectors y∗
1y1 and y∗

2y2 have coordinates

y∗
i yi
(
−
si ,− (
si )

2

2ρi

)
. Substituting the coordinates of all the vectors in relation (15),

one obtains:

|y1 − y2| = [(ξ1 − ξ2)
2 + (η1 − η2)

2
]1/2

=
[(

ξ 0
1 − 
s1 cosα + (
s1)

2

2ρ1
sin α + 
s2

)2

+
(

η0
1 − 
s1 sin α − (
s1)

2

2ρ1
cosα + (
s2)

2

2ρ2

)] 1/ 2
.

By successively squaring each of the brackets in the sum, we obtain the relation
up to small quantities of the second order inclusively

|y1 − y2| = [L2
1 − 2
s1

(
ξ 0
1 cosα + η0

1 sin α
)+ (
s1)

2 + (
s2)
2

− 2
s1
s2 cosα + (
s1)
2

ρ1

(
ξ 0
1 sin α − η0

1 cosα
)

+2ξ 0
1
s2 + η0

1
(
s2)

2

ρ2

]1/2
(16)

Let us prove the relation
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α = π − γ
(s)
1 − γ

(s)
2 (17)

In the triangle y∗
1 Ey

∗
2 : ∠y∗

2 y
∗
1 E = π

2 − γ
(s)
1 , ∠y∗

1 y
∗
2 E = π

2 − γ
(s)
2 and hence

∠y∗
1 Ey

∗
2 = π −

(
π
2 − γ

(s)
1

)
−
(

π
2 − γ

(s)
2

)
= γ

(s)
1 + γ

(s)
2 . On the other hand, α +

∠ y∗
1 E y∗

2 = π . Hence π −α = γ
(s)
1 +γ

(s)
2 , α = π −γ

(s)
1 −γ

(s)
2 . Taking into account

relation (16), we perform the transformations

ξ 0
1 cosα + η0

1 sin α = L1 sin
(
α + γ

(s)
2

)
= L1 sin γ

(s)
1 ,

ξ 0
1 sin α − η0

1 cosα = −L1 cos
(
α + γ

(s)
2

)
= L1 cos γ

(s)
1 ,

cosα = − cos
(
γ

(s)
1 + γ

(s)
2

)
,

which permit expression (16) to be rewritten in the form

|y1 − y2| = L1

[
1 − 2


s1
L1

sin γ
(s)
1 + 2


s2
L1

sin γ
(s)
2

+ (
s1)
2

L2
1

(
1 + L1

ρ1
cos γ

(s)
1

)
+ (
s2)

2

L2
1

(
1 + L1

ρ2
cos γ

(s)
2

)

+2

s1
s2

L2
1

cos
(
γ

(s)
1 + γ

(s)
2

)]1/ 2
.

Expanding the square root of the right-hand sides in powers of 
s1 and 
s2,
one obtains the following asymptotic representation for the distance to within small
quantities of the second order inclusively:

|y1 − y2| = L1 − 
s1 sin γ
(s)
1 + 
s2 sin γ

(s)
2

+ 0.5

(
L−1
1 cos2 γ

(s)
1 + cos γ

(s)
1

ρ1

)
(
s1)

2

+ 0.5

(
L−1
1 cos2 γ

(s)
2 + cos γ

(s)
2

ρ2

)
(
s2)

2

+ L−1
1 
s1
s2 cos γ

(s)
1 cos γ

(s)
2 (18)

By summation of the expressions for | x0 − y1 |, ks
kp

| y1 − y2 |, | y2 − x3 | and
using Snell’s law kp sin γ

(p)
1 = ks sin γ

(s)
1 , ks sin γ

(s)
2 = kp sin γ

(p)
2 , we write out

the relation for the phase φpsp:
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φpsp = L0 + ks
kp

L1 + L2 + 1

2

(
cos2. γ (p)

1

L0
+ ks cos2. γ

(s)
1

kpL1
+ cos γ

(p)
1

ρ1
+ ks cos γ

(s)
1

kpρ1

)
(
s1)

2

+ cos γ
(s)
1 cos γ

(p)
2

L 1
+ 1

2

(
ks cos2 γ

(s)
2

kpL 1
+ cos2 γ

(p)
2

L2
+ ks cos γ

(s)
2

kpρ2
+ cos γ

(p)
2

ρ2

)
(
s2)

2

The phase φpsp does not contain terms with the first powers of 
s1 and 
s2. This
indicates that the mirror reflection points are stationary for φpsp indeed.

The leading asymptotic term of the double integral (11) can be obtained by apply-
ing the method of the two-dimensional stationary phase [14]:

u(p)
r (x3) = −Qq

μ

kp
ks

√
2

πks
e−i π

4
cos γ1 cos γ3√

L0L1L2
× Vps

(
y∗)Vsp

(
y∗)

×
exp
{
i
[
kpL0 + ks L1 + kpL2 + π

4

(
δ

(psp)
2 − 2

)]}
√∣∣∣det D(psp)

2

∣∣∣
. (19)

Here D(psp)
2 is the Hessian matrix

D(psp)
2

=
⎛
⎝ cos2 γ

(p)
1

L0
+ ks cos2 γ

(s)
1

kp L 1
+ cos γ

(p)
1

ρ1
+ ks cos γ

(s)
1

kpρ1

cos γ
(s)
1 cos γ

(p)
2

L1

cos γ
(s)
1 cos γ

(p)
2

L 1

ks cos2 γ
(s)
2

kp L1
+ cos2 γ

(p)
2

L2
+ ks cos γ

(s)
2

kp ρ2
+ cos γ

(p)
2

ρ2

⎞
⎠,

and δ
(psp)
2 = sign D(psp)

2 = ν+−ν− is the difference between the number of positive
ν+ and negative ν− eigenvalues of the Hessian matrix D(psp)

2 .
Thus, in this section we have developed the leading asymptotic term (19) for the

amplitude of the displacement u(p)
r (x3) in the reflected high-frequency longitudinal

wave for p–s–p transformation from the surfaces of one (Fig. 1) or two (Fig. 2)
obstacles in the elastic medium in the two-dimensional case.

The explicit expressions for the principal terms of displacements in the doubly
re-reflected waves along the ray x0 − y∗

1 − y∗
2 − x3 in the remaining seven cases

of various possible reflections and transformations of elastic waves, namely: p–p–p,
p–p–s, p–s–s, s–s–s, s–s–p, s–p–s, s–p–p, can be obtained by the method described
in this section.
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6 Multiple Reflections with All Possible Transformations
of Elastic Waves

The geometry of the boundary contours of the obstacles in the elastic medium and
their arrangement can form such trajectories of the rays x0−y∗

1 −y∗
2 −· · ·−y∗

N −xN+1

which lead to any possible sequence of reflections and wave transformations at the
points of specular reflection. Suppose that for any N times re-reflected ray, in a cer-
tain order, p–p and s–s reflections have been realized at the mirror reflection points
y∗
1 , y

∗
2 , . . . , y

∗
N−1, y

∗
N , respectively N1 and N3 times, and p–s, and s–p, transforma-

tions—respectively N2 and N4 times. At the receiving point xN+1, both the longi-
tudinal wave u(xN+1) = u(p)

r (xN+1) and the transverse one u(xN+1) = u(s)
θ (xN+1)

may be received. In this case, the amplitude of the radial or tangential displacement
of the N times reflected ray at the point xN + 1 relatively the local polar coordinate
system r, θ at the point y∗

N of the boundary contour of the obstacle is represented
by the multiple Kirchhoff integral, which is formed according to the same laws as
the diffraction integral (11), by taking into account reflections and transformations
of the propagating ray at the points of mirror reflection:

u(p)
r (xN+1) = B(−1)Ne−i π

4

(
kp
2π

) N1+N2
2
(
ks
2π

) N3+N4
2 1√

L 0

N∏
n = 1

cos γ (2)
n√

L n
V
(
y∗
n

)

×
∫
l∗N

∫
l∗N−1

. . .

∫
l∗2

∫
l∗1

eikpϕdlNdlN−1 . . . dl2dl1 (20)

ϕ = k−1
p

(
k1|x0 − y1| +

N−1∑
n=1

kn|yn − yn+1| + kN |yN − xN+1|
)

L0 = ∣∣x0 − y∗
1

∣∣, Ln = ∣∣y∗
n − y∗

n+1

∣∣, LN = ∣∣y∗
N − xN+1

∣∣, n = 1, 2, . . . , N − 1.
(21)

Here B = Qq

4μ

(
kp
ks

)2√
2

πkp

(
B = Qq1

4μ

√
2

πks

)
if the first reflection is either p–p or

p–s (respectively, either s–s or s–p). In the expressions (20) and (22), γ (1)
n , γ (2)

n are the
angles of incidence and reflection of the corresponding wave at the mirror reflection
point y∗

n . Let us select four possible pairs of angles γ (1)
n , γ (2)

n

1. γ (1)
n = γ

(p)
n , γ (2)

n = γ
(p)
n , V (y∗

n ) = Vpp(y∗
n ), (p–p);

2. γ (1)
n = γ

(p)
n , γ (2)

n = γ (s)
n , V (y∗

n ) = Vps(y∗
n ), (p–s);

3. γ (1)
n = γ (s)

n , γ (2)
n = γ (s)

n , V (y∗
n ) = Vss(y∗

n ), (s–s);
4. γ (1)

n = γ (s)
n , γ (2)

n = γ
(p)
n , V (y∗

n ) = Vsp(y∗
n ), (s–p).

if the reflection or transformation indicated in parentheses occurs at the point y∗
n ,

respectively. V (y∗
n ) is the reflection or transformation coefficient [12, 13] at the point

y∗
n of the corresponding wave. In the phase ϕ (21), parameter kn = kp (p–p, p–s)
and kn = ks (s–s, s–p), if the corresponding reflections or transformations of the
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wave at point y∗
n are indicated in parentheses. Applying the asymptotic estimate of

the diffraction integral (20) in the method of N-dimensional stationary phase [14],
we obtain a geometrical-optic approximation of the displacements in the transmitted
elastic wave

u(xN+1) = B2

exp
{
i
[∑N

n=0 knLn + π
4 (δN − (N − 1))

]}
(∏N

n=0

√
Ln

)√|det(DN )|
,

B2 = (−1)N+NT B
N∏

n=1

cos γ (2)
n V
(
y∗
n

)
, (22)

where δN = sign DN , and DN = (dnm), n,m = 1, 2, 3, . . . , N is the Hessian
matrix, which is band-like and symmetric dn m = dm n , with the following nonzero
elements dn m, n < m:

dnn = k1n cos2 γ (1)
n

kpLn−1
+ k2n cos2 γ (2)

n

kpLn
+ k1n cos γ (1)

n

kpρn
+ k2n cos γ (2)

n

kpρn
, n = 1, N ,

dn,n+1 = Ln cos γ (1)
n cos γ

(1)
n+1, n = 1, N − 1,

dnm = 0; n �= m, n �= m + 1. (23)

Here γ (1)
n is the angle between the direction of incidence of thewave and γ (2)

n is the
angle between the direction of reflection of the wave and the external normal to the
contour at point y∗

n directed toward the elastic medium, ρn is the radius of curvature
of the contour at point y∗

n , V
(
y∗
n

)
is the reflection or transformation coefficient at the

point y∗
n , NT is the number of points of specular reflection on the contours of solid

obstacles.
In the diagonal elements of the Hesse matrix, the parameters k1n and k2n have

four possible pairs of values:

1. k1n = kp, k2n = kp (p–p);
2. k1n = kp, k2n = ks (p–s);
3. k1n = ks, k2n = ks (s–s);
4. k1n = ks, k2n = kp (s–p);

depending on what kind of reflection or transformation of waves is realized at the
point y∗

n .

7 Conclusion

Thus, the leading term of the asymptotics (22) is obtained in the amplitude of the dis-
placement u( x2N + 1) in the high-frequency longitudinal or transverse wave reflected
along the ray x0 − y∗

1 − y∗
2 −· · ·− y∗

N − xN+1 for an arbitrary sequence of reflections
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and transformations from N obstacles in an elastic medium in the two-dimensional
case. The amplitude of the displacement in the reflected elastic wave (22) and (23)
is determined by the distances from the wave source to the first point y∗

1 of mir-
ror reflection L 0, from the last reflecting point y∗

N to the receiving point LN , the
distances L n, n = 1, 2, . . . , N − 1 between the points y∗

n and y∗
n + 1. The points

y∗
1 , y

∗
2 , . . . , y

∗
N−1, y

∗
N can belong both to the boundaries l1, l2, . . . , lN−1, lN N of iso-

lated obstacles, and to the boundary l of one obstacle of a complex nonconvex
form. There may be cases when single points of specular reflection belong to dif-
ferent obstacles, and simultaneously the cases when several reflecting points belong
to different parts of the same obstacle of a complex non-convex form. The lead-
ing asymptotic term of the displacement explicitly contains the radii of curvature
ρ1, ρ2, . . . , ρN−1, ρN at the points y∗

1 , y
∗
2 , . . . , y

∗
N−1, y

∗
N , the directions of γ (1)

n ,γ (2)
n

of the incident and reflected waves at the points of specular reflection, and also the
reflection and transformation coefficients V

(
y∗
n

)
. The phase of the reflected wave

u( xN + 1) (22) is determined by the distances L0, L1, L2, . . . , LN−1, LN the wave
numbers kp and ks , the sign δN of the Hessian matrix DN , and the number of mirror
reflection points N.
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The Mixed Boundary Conditions
Problem of Layered Composites
with Meta-Surfaces in Electro Elasticity

Ara S. Avetisyan

Abstract The influence of taking into account the presence of roughness of both
the external mechanically free surfaces, and the internal surfaces connecting various
media, on the propagation of a high-frequency wave signal in a multilayer waveguide
is investigated. In order to solve the quasistatic problem of the coupled electroelastic
(magnetoelastic, thermoelastic) fields, the joints of the rough surfaces at the com-
posites are simulated as meta-surfaces. In different models of the connection of thick
piezoelectric layers, in the zone of the connection of their surfaces, the thin geometri-
cally and physically inhomogeneous multilayer zone, which is equivalent to the meta
surfacewith the dynamic loads, virtually arises. Taking into account the knownprinci-
ples ofwave formation and propagation of high-frequency (short-wave)wave signals,
as well as the magnitude of the surface roughness, hypotheses of magneto (electro,
thermo) elastic layered systems are introduced (hypothesisMELS—Magneto Elas-
tic Layered Systems). Proper selection of the surface exponential functions (SEF) in
hypotheses, in equations and in thermodynamic relationships of the problem ensures
that the surface roughness is taken into account. The introduction of hypothesis
MELS allows modeling of the mathematical boundary-value problem of the con-
tact of rough surfaces of continuous media with related physical and mechanical
fields. This approach also makes it easy to calculate the equivalent dynamic electro-
mechanical loads on the simulated meta-surface at the interface of the media. The
following examples have been analyzed: (i) the propagation of the signal of an elas-
tic shear wave in the case of the connection of rough surfaces of two piezoelectric
layers with another thin piezoelectric layer, (ii) the propagation of an electroelastic
wav(e in a single-shaped piezoelectric layer, the surfaces roughness of which is filled
with an isotropic dielectric or ideal conductor, (iii) the propagation of high-frequency
shear elasticwaves on interface of isotropic elastic half-spaceswith canonical surface
protrusions.
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1 Introduction

After electromagnetics, meta materials principles more often became the subject
of research in acoustics, which leads to its applications in various areas, such as
ultrasound for non-destructive testing Miniaci et al. [1], reducing noise Krushynska
et al. [2] and seismic protection Miniaci et al. [3]. They were used to manipulate the
elastic and acoustic waves of Deymier [4], Laude [5]. Many exciting effects, such as
masking, negative refraction, focus formation or forbidden zones were reproduced
with a particularly large range of sizes and proportions of frequencies at which they
can occur Hussein et al. [6]. About the achievements of recent years in the field of
mechanical metamaterials andmetasurfaces one can find in the editorial article Bosia
et al. [7]. In peper Moleron et al. [8], the authors theoretically and experimentally
investigate visco–thermal effects on the acoustic propagation through metamaterials
consisting of rigid slabs with subwavelength slits embedded in air. It was demon-
strated that this unavoidable loss mechanism is not merely a refinement. It plays a
dominant role in the actual acoustic response of the structure. In [9], the authors
extend the concept of metasurfaces to anti-plane surface waves existing in semi-
infinite layered media. By means of an effective medium approach, they derive an
original closed-form dispersion relation for the metasurface. This relation reveals
the possibility to control the Love waves dispersive properties by varying the res-
onators mechanical parameters. In work [10] Fabro et al., the wave attenuation from
a metamaterial beam assembly is investigated considering uncertain connections. In
article [11] Fomenko et al., the time-harmonic wave motion in a layered phononic
crystal with internal inhomogeneities such as piezoelectric functionally graded inter-
layers and periodic arrays of cracks is considered. The complete band-gaps in layered
piezoelectric functionally graded phononic crystal are revealed and analyzed. It is
demonstrated that introduction of periodic cracks leads to the formation of extra
band-gaps. Acoustic metasurfaces derive their characteristics from the interaction
between acoustic waves and specifically designed materials. Acoustic metasurfaces
have added value and unusual functionalities compared with their predecessor in
materials science, namely, acoustic metamaterials. These rationally designed 2D
materials of sub wavelength thickness provide a new route for sound wave manipu-
lation. In Review [12] by Assouar et al. (where about 130 different studies are cited),
the authors delineate the fundamental physics of metasurfaces, describe their differ-
ent concepts and design strategies, and discuss their functionalities for controllable
reflection, transmission and extraordinary absorption. In particular, they outline the
main designs of acoustic metasurfaces, including those based on coiling-up space,
Helmholtz-resonator-like and membrane-type structures. In the article [13] Miranda
Jr. et al., the band structure of flexural waves propagating in an elastic metamaterial
thin plate are theoretically investigated. The influence of periodic arrays of multiple
degrees of freedom local resonators in square and triangular lattices is studied. The
plane wave expansion and extended plane wave expansion methods are used, respec-
tively to solve the governing equation of motion for a thin plate. Thin layers of meta
materials are formed during the manufacture of structural elements of high-precision
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measuring devices. Even modern technology surface treatment of bodies still keeps
the surface roughness. The existence of these irregularities significantly affect the
dynamic processes in the body, if the step length of high-frequency oscillations or
the length of short waves is comparable with the geometric dimensions of the sur-
face irregularities. When the uneven surfaces of two bodies are joined with glue,
a near-surface thin non-uniform three-layer with mixed physicomechanical proper-
ties is formed [14, 15]. Taking into account the thinness of the near-surface zone,
the piecewise-homogeneous three-layer is modeled as an internal meta-surface of a
two-layerwaveguide, with unique physical and geometric characteristics. Smoothing
the roughness of the surfaces of the piezoelectric layer by pouring different materi-
als, in the near-surface zones, pairs of thin non-uniform layers with mixed physical
and mechanical properties are formed [16]. The different fills lead to the formation
of different heterogeneous electro mechanical meta-surfaces on the piezoelectric
base layer. When connecting two elastic half-spaces with canonical surface pins,
a transversely inhomogeneous three-layer is formed [17]. The formed, periodically
inhomogeneous three-layer waveguide is modeled as a two-layer waveguide with the
internal meta surface. The mixed physicomechanical properties of the newly formed
thin layers will naturally depend on the linear characteristics of the surfaces irregu-
larities, the method of chemo thermal treatment and surface bonding, as well as the
physicomechanical properties of thematerials involved in the compound. The surface
roughness of an elastic deformable medium is small-scale geometric heterogeneity
in the composite.

Therefore, in the calculations of the mode and dynamic characteristics of high-
frequency oscillations of structural elements, and also in the process of determining
the propagation dynamics of short (high-frequency)waves in a compositewaveguide,
the accounting of the surface roughness is especially important when the wavelength
of the wave signal is comparable to the average pitch of the surface irregularities.
Taking into account the surface inhomogeneities of a layered waveguide certainly
complicates the mathematical boundary-value problem. But it gives a chance to
identify near-surface wave effects and more accurately calculate the quantitative
characteristics of the formed wave field in the near-surface zone of the junction
of the composite elements. And naturally, the various contacts of rough surfaces
are important for a technical modeling of objects, as well as for the mathematical
modeling on their basis. Taking into account the small scale of the surface roughness
of the element, in works [14, 15], a combination approach for modeling the joints of
the rough surfaces of piezoelectric media is proposed. Depending on the method of
joining rough surfaces, it is proposed to virtually select a near-surface homogeneous
thin layer of variable thickness (or a near-surface non-uniform thin layer of constant
thickness) at the junctions of piezoelectric half-spaces.With the help of the introduced
hypotheses MELS, on the distribution of physical and mechanical fields across the
thickness of the layers, the obtained meta-surfaces completely describe the physics
of the corresponding butt-joints, greatly simplifying the solution of the mathematical
boundary value problem [18, 19].
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2 Basic Linear Relations of Electro Elasticity
for Piezoelectric Materials

In the future, wewill consider only electroacoustic interaction in piezoelectricmedia,
where the complete system of quasistatic equations can be conveniently represented
as

ci jkm
∂2u(n)

k

∂xi∂xm
+ ei jm

∂2ϕn

∂xi∂xm
= ρn

∂2u(n)
j

∂t2
; ei jm

∂2u(n)
j

∂xi∂xm
− εim

∂2ϕn

∂xi∂xm
= 0. (2.1)

in which the physicomechanical characteristics of the material form the
tensors describing a specific anisotropy of the piezoelectric material{(
ĉi jnk

)
6×6;

(
êi jm

)
3×6;

(
êmi j

)
6×3;

(
ε̂nk

)
3×3

}
9×9

, and determine the structural

composition of the coupled electroelastic wave field {ui (xk, t);ϕ(xk, t)}.
Formally, the role of the conjugation conditions of mechanical fields in the adjoin-

ing electro- (magneto-thermo-) elastic media is played by the conditions of continu-
ity of mechanical stresses σ

(m)
i j and elastic displacements u(m)

k at the media interface
Σm(xi )

(
σ

(1)
i j − σ

(2)
i j

)
· n j

∣∣∣
�m (xi )

= 0; u(1)
k

∣∣∣
�m (xi )

= u(2)
k

∣∣∣
�m (xi )

. (2.2)

In electro-elastic media, the conjugacy conditions at the interface of the media are
represented as continuity of the tangential components of the electric field strength
and normal components of the electric displacements in the adjacent media. In the
media interface �m(xi ), these conditions are written as

(
D(1)

j − D(2)
j

)
· n j

∣∣∣
�m (xi )

= 0; ϕ(1)
∣∣
�m (xi )

= ϕ(2)
∣∣
�m (xi )

. (2.3)

In the problems of electro elasticity (magneto elasticity), the vacuum is also consid-
ered as an interacting “medium”, on the outer surfaces of the waveguide. In these
cases, the conditions of mechanically open borders are written as

σ
(1)
i j · n j

∣∣∣
�0(xi )

= 0. (2.4)

In the case of a rigidly clamped outer surface of the waveguide, we will have the
fixing conditions for elastic displacements

u(1)
k

∣∣∣
�0(xi )

= 0. (2.5)

In the case of the metallized (shielded) surface of a dielectric material, the condi-
tion of an “electrically closed” boundary is satisfied on the surface
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ϕ(1)
∣∣
�0(xi )

= 0. (2.6)

When the contiguous dielectric (not piezoelectric) medium has a very small value
of the dielectric constant, instead of the surface conditions (2.6), we simply have an
“electrically open” boundary condition

D(1)
j · n j

∣∣∣
�0(xi )

= 0. (2.7)

A unit normal with varying components will no longer change along the direction
of the axis oxγ and therefore, in two-dimensional problems in accordance with the
statement of the problem we can take

n(∗)
j (xα, h(xα)) =

{
h,α(xα)/

√
1 + [

h,α(xα)
]2; 1/

√
1 + [

h,α(xα)
]2; 0

}
(2.8)

Taking into account the changes of the normal in the surface (2.8), the conditions
of complete conjugacy of electromechanical fields (2.2) and (2.3), on the interface
between the media xβ = h(xα), in the problem of a plane electroactive deformation{
uα

(
xα, xβ, t

); uβ

(
xα, xβ, t

); 0; ϕ
(
xα, xβ, t

)}
, will be written as

[
σ (1)

αα (xα, h(xα), t) − σ (2)
αα (x1, h(xα), t)

] · h,α(xα)

+
[
σ

(1)
βα (xα, h(xα), t) − σ

(2)
βα (xα, h(xα), t)

]
= 0; (2.9)

[
σ

(1)
βα (xα, h(xα), t) − σ

(2)
βα (xα, h(xα), t)

]
· h,α(xα)

+
[
σ

(1)
ββ (xα, h(xα), t) − σ

(2)
ββ (xα, h(xα), t)

]
= 0; (2.10)

[
D(1)

α (xα, h(xα), t) − D(2)
α (xα, h(xα), t)

] · h,α(xα)

+
[
D(1)

β (xα, h(xα), t) − D(2)
β (xα, h(xα), t)

]
= 0; (2.11)

u(1)
α (xα, h(xα), t) = u(2)

α (xα, h(xα), t);
u(1)

β (xα, h(xα), t) = u(2)
β (xα, h(xα), t); (2.12)

ϕ(1)(xα, h(xα), t) = ϕ(2)(xα, h(xα), t). (2.13)

Similarly, on the interface of the media xβ = h(xα), the conjugacy conditions
of the electromechanical fields (2.2) and (2.3), in the problem of an electroactive
antiplane deformation

{
0; 0; uγ

(
xα, xβ, t

); ϕ
(
xα, xβ, t

)}
, will be written as

[
σ (1)

γ α (xα, h(xα), t) − σ (2)
γ α (xα, h(xα), t)

] · h,α(xα)

+
[
σ

(1)
γβ (xα, h(xα), t) − σ

(2)
γβ (xα, h(xα), t)

]
= 0; (2.14)
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[
D(1)

α (xα, h(xα), t) − D(2)
α (xα, h(xα), t)

] · h,α(xα)

+
[
D(1)

β (xα, h(xα), t) − D(2)
β (xα, h(xα), t)

]
= 0; (2.15)

u(1)
γ (xα, h(xα), t) = u(2)

γ (xα, h(xα), t); (2.16)

ϕ(1)(xα, h(xα), t) = ϕ(2)(xα, h(xα), t). (2.17)

The continuity conditions of mechanical stresses (2.9), (2.10), (2.14) and elastic
displacements (2.12), (2.16), as well as the continuity conditions for the tangential
components of the electric field strength (2.13), (2.17) and the normal components
of electrical displacements (2.11), (2.15) in the case of a mechanically free surface
of the body (on the section of the medium with a vacuum) are naturally simplified.
The mechanical components of the second medium disappear from the relations

σ
(2)
i j (xα, h(xα), t) ≡ 0, u(2)

k (xα, h(xα), t) ≡ 0, where i; j; k ∈ {α;β; γ } (2.18)

and the characteristics of the electric field of the secondmedium describe the vacuum

D(2)
k (xα, h(xα), t) = −ε0ϕ

(e)
,k (xα, h(xα), t);

ϕ(2)(xα, h(xα), t) = ϕ(e)(xα, h(xα), t) (2.19)

In the vacuum region, the Laplace equation ∇2ϕ(e)(xα, xβ, t) = 0, for the electric
potential is solved.

In the considered problems, we will assume that the material of the main piezo-
electric layer belongs to the class 6 mm of hexagonal symmetry, for which the
electroactive shear deformation {0; 0; w(x, y, t); ϕ(x, y, t)} is separated from the
non-electroactive plane strain.

3 Mathematical Modeling of the Metasurfaces
by the Introduction of Magneto Elastic Layered Systems
Hypotheses (Hypothesis MELS)

3.1 The Connection of Two Piezoelectric Layers with Rough
Surfaces with the Other Piezoelectric Thin Layer
(Model–1)

When the roughness surfaces of two bodies are joined with the piezoelectric glue
(Fig. 1), a near-surface thin non-uniform three-layer with mixed physico mechanical
properties is formed [14, 15]. Take into account a thinness of the near-surface zone,
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Fig. 1 The cross section of the interface between two glued homogeneous piezoelectric materials

the piecewise-homogeneous three-layer is modeled as an internal meta-surface of a
two-layer waveguide, with unique physical and geometric characteristics (Fig. 1).

The thickness of the adhesive layer is also small compared to the effec-
tive thickness of the adjacent layers. In studies of the propagation of
the wave signal electroactive antiplane deformation, in the internal adhe-
sive gap of variable width �3 = {|x | < ∞, h2(x) ≤ y ≤ h1(x), |z| < ∞}, as
well as in each half space �1 = {|x | < ∞, h1(x) ≤ y < ∞, |z| < ∞} and
�2 = {|x | < ∞,−∞ < y ≤ h2(x), |z| < ∞} quasistatic equations of electroactive
antiplane deformation are solved

c(m)
44

∂2wm

∂x2
+ e(m)

15

∂2ϕm

∂x2
+ ∂σ (m)

yz

∂y
= ρm

∂2wm

∂t2
; (3.1)

e(m)

15

∂2wm

∂x2
− ε

(m)
11

∂2ϕm

∂x2
+ ∂D(m)

y

∂y
= 0 (3.2)

Taking into account the effective thickness of the adjacent layers, the solutions of
Eqs. (3.1) and (3.2) in each half space have the following form

wn(x, y, t) = W0n exp[(−1)nαnky] · exp[i(kx − ωt)] (3.3)

ϕn(x, y, t) =
{

�0n exp[(−1)nky]
+(en\εn) · W0n exp[(−1)nαnky]

}
· exp[i(kx − ωt)] (3.4)

The function of the distribution of the wave field is chosen so that it simply and
completely (without loss of physical phenomena) describes the nature of the change
of the desired quantities on surfaces and along the thickness of the adhesive layer.
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i. The choice of this function should ensure the conjugacy of the physicomechanical
fields on the surfaces hm(x) (when m = 1; 2) of media sections (2.14)–(2.17)

w∗
3(x, hm(x), t) = wm(x, hm(x), t);

ϕ∗
3 (x, hm(x), t) = ϕm(x, hm(x), t) (3.5)

[
σ (m)
yz (x, hm(x), t) − σ (3)

yz (x, hm(x), t)
]

+ [
σ (m)
zx (x, hm(x), t) − σ (3)

zx (x, hm(x), t)
] · hm,x (x) = 0 (3.6)

[
D(m)

2 (x, hm(x), t) − D(3)
2 (x, hm(x), t)

]

+
[
D(m)

1 (x, hm(x), t) − D(3)
1 (x, hm(x), t)

]
· hm,x (x) = 0 (3.7)

ii. The distribution function also includes the wave characteristic of the adhesive

layer α3k =
√
k2 − ω2 · (G̃3/ρ3), as well as superficial functions hm(x).

iii. The waves in all three areas are connected, and they have one propagation
function: exp[i(kx − ωt)].

Thus, the constructed hypothetical solutions in a thin adhesive layerwill bewritten
in the form

w3(x, y, t) = f3(hm(x), y) · [w2(x, h2(x), t) − w1(x, h1(x), t)]

+ w1(x, h1(x), t) (3.8)

ϕ3(x, y, t) = f3(hm(x), y) · [ϕ2(x, h2(x), t) − ϕ1(x, h1(x), t)]

+ ϕ1(x, h1(x), t) (3.9)

where the resulting distribution function is quite good in character and is represented
as a surface exponential function

f3(hm(x), y) = sh[α3k(y − h1(x))]/sh[α3k(h2(x) − h1(x))] (3.10)

Compared to the case of smooth contact surfaces y = const , from the boundary
conditions (3.6) it can be seen that differential dynamic mechanical forces appear on
the corresponding joint surfaces



The Mixed Boundary Conditions Problem of Layered … 81

σ (2)
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Similarly, from the boundary conditions (3.7) it can be seen that with non-smooth
surfaces of the contact of media, in comparison with the case of smooth contact
surfaces y = const , differential dynamic displacements of the electric field also
appear

D(2)
y (x, (R1 + R2), t) − D(1)

y (x, 0, t) = −
h1(x)∫

0

∂D(1)
x

∂x
· dy

−
h2(x)∫

h1(x)

∂D(3)
x

∂x
· dy −

R1+R2∫

h2(x)

∂D(2)
x

∂x
· dy.

(3.12)

The introduced hypotheses make it possible to determine not only the distribution
of the elastic displacement and the electric potential across the thickness of the
formed near-surface zone of the junction of rough surfaces, but it also determines the
influence of the roughness on the wave propagation function. Taking into account the
fact that the hypothetical representations (3.8) and (3.9) must also satisfy Eqs. (3.1)
and (3.2), for the amplitude functions of the inner layer we find

A31 = W01 · exp[−α1kh1(x)] · ch(α3kh2(x)) − W02 · exp[α2kh2(x)] · ch(α3kh1(x))

sh[α3k(h1(x) − h2(x))]
A32 = W02 · exp[α2kh2(x)] · sh(α3kh1(x)) − W01 · exp[−α1kh1(x)] · sh(α3kh2(x))

sh[α3k(h1(x) − h2(x))]
From the obtained expressions it follows that inside the junction of rough surfaces,

at all points of contact, when h1(x) = h2(x), internal resonance may occur.
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3.2 Smoothing the Roughness of the Surfaces
of the Piezoelectric Layer by Pouring Different Materials
(Model–2)

Smoothing the roughness of the surfaces of the piezoelectric layer by pouring dif-
ferent materials (Fig. 2), in the near-surface zones, thin non-uniform double layers
with mixed physical and mechanical properties are formed [16,18, 19 ]. Different
fills lead to the formation of heterogeneous electromechanical meta-surfaces of the
piezoelectric base layer.

Let us assume that the waveguide surface irregularities y = h+(x) are filled to the
level y = h0(1+γ+)with a good dielectric, and thewaveguide’s surface irregularities
y = h−(x) are filled to the level y = −h0(1+ γ−) with a good electrical conductor.

Here γ± � 1 are the heights of the profiles of irregularities and h0 is a half of
the base thickness of the homogeneous piezoelectric layer. So we have a composite
waveguide, which consists of five layers:

– the base layer �0{x, y} of a constant thickness −h0(1 − γ−) ≤ y ≤ h0(1 − γ+)

– an electrically conductive layer �c−{x, y} of thickness ξc(x) =
|h0(1 + γ−) + h−(x)|,

– nonhomogeneous piezoelectric thin layer �
p
−{x, y} of thickness ξp−(x) =

|−h0(1 − γ−) − h−(x)|,
– nonhomogeneous piezoelectric thin layer �

p
+{x, y} of thickness ξp+(x) =

|h+(x) − h0(1 − γ+)|,
– a dielectric thin layer �d+{x, y} of thickness ξd(x) = h0(1 + γ+) − h+(x).

Thus, near the surface area y = h−(x) we have a composite layer, which consists
of transversely inhomogeneous piezoelectric and homogeneous, perfectly conduct-
ing materials. The same way, near the surface area y = h+(x) we have a composite
layer, which consists of homogeneous dielectric and transversely inhomogeneous

Fig. 2 The model of smoothing roughness surfaces of the piezoelectric layer by pouring different
materials
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piezoelectric materials. The homogeneous piezoelectric waveguide with filled sur-
face irregularities is modeled as a multilayer waveguide made of different materials.

In each separated layer, we must solve the quasi-static equations of electro mag-
neto elasticity (2.1). The conjugacy conditions (2.14)–(2.17) of the electromagnetic
and mechanical fields on the six interface surfaces of body are satisfied.

The localization of elastic shear waves energy in the formed near-surface inho-
mogeneous thin interlayers is investigated in the case, when the high frequency shear
elasticity wave (SH) signal (short wave: the length of which is much smaller than
the base layer thickness) is propagating in a composite waveguide.

A mixed boundary mathematical problem is cumbersome, and its analytical solu-
tion is not always possible. Applying the hypothesis MELS (3.5)–(3.10) to the thin
layers �c−{x, y}, �

p
−{x, y}, �

p
+{x, y} and �d+{x, y} of the composite, we obtain a

homogenous piezoelectric waveguide of constant thickness h0(2 − γ+ − γ−), with
two meta-surfaces y− = −h0(1 − γ−) and y+ = h0(1 − γ+), which are equivalents
to the electromechanical loads of thin layers, respectively.

The wave solution of the equations system (2.1) in the base homogeneous piezo-
electric layer can be written in the form of a normal wave

w0(x, y, t) = [
A0 exp(−α0ky) + B0 exp(α0ky)

] · exp[i(kx − ωt)] (4.1)

ϕ0(x, y, t) = {C0 exp(−ky) + D0 exp(ky)} · exp[i(kx − ωt)]
+ (e15/ε11)w0(x, y, t) (4.2)

Here α0(k) =
√
1 − (

ω2
0/k

2
) ·

(
ρ0/G̃0

)
is the coefficient of elastic waves for-

mation across the thickness of the base layer.
The elastic shear and the electric field potential in the virtually cut inhomogeneous

piezoelectric layer �
p
+{x, y} are represented as follows:

wp
+(x, y, t) = f p

+ (kh0, h+(x)) · [wp
+(x, h+(x), t) − w0(x, h0(1 − γ+), t)

]

+ w0(x, h0(1 − γ+), t) (4.3)

ϕ
p
+(x, y, t) = f p

+ (kh0, h+(x)) · [
ϕ
p
+(x, h+(x), t) − ϕ0(x, h0(1 − γ+), t)

]

+ ϕ0(x, h0(1 − γ+), t) (4.4)

where f p
+ (kh0, h+(x)) = sh[αp+k(y − h0(1 − γ+))]/sh[αp+k(h+(x) − h0(1 −

γ+))] is the distribution function of an electromechanical field in the inho-
mogeneous piezoelectric layer. Obviously, the unknown characteristics for-
mation function f p

+ (kh0, h+(x)) is represented by the formation coefficient

α
p
+(k) =

[
(ω2

0/k
2)(ρ+/G̃+) − 1

]1/2
and the variable thickness ξp+(x) =

|h+(x) − h0(1 − γ+)|.
Similarly, in the homogeneous dielectric smoothing layer �d+ the elastic shear

and the electric field potential are represented as follows:
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wd
+(x, y, t) = f d+(kh0, h+(x)) · [

wd
+(x, h0(1 + γ+), t) − wp

+(x, h+(x), t)
]

+ wp
+(x, h+(x), t) (4.5)

ϕd
+(x, y, t) = f d+(kh0, h+(x)) · [

ϕd
+(x, h0 + γ+, t) − ϕ

p
+(x, h+(x), t)

]

+ ϕ
p
+(x, h+(x), t) (4.6)

where the formation function fd(kh0; h+(x)/h0) =
sh

[
αdk(y − h+(x))

]
/sh

[
αdk(h0(1 + γ+) − h+(x))

]
in a homogeneous dielectric

layer is already represented by the corresponding homogeneous layer parameters
αd+(k) = [

(ρdω
2
0/k

2Gd) − 1
]1/2

and ξd(x) = h0(1 + γ+) − h+(x).
Analogous to relations (4.3) and (4.4), the elastic shear and the electric field poten-

tial in the virtually cut inhomogeneous piezoelectric layer �
p
−{x, y} are represented

as follows:

wp
−(x, y, t) = f p

− (kh0, h−(x)) · [
wc

−(x, h−(x), t) − w0(x,−h0(1 − γ−), t)
]

+ w0(x,−h0(1 − γ−), t) (4.7)

ϕ−(x, y, t) = {1 − f−(kh0, h−(x))}ϕ0(x,−h0(1 − γ−), t) (4.8)

where the formation function f p
− (kh0, h+(x)) =

sh
[
α
p
−k(y + h0(1 − γ−)

]
/sh

[
α
p
−k(h−(x) + h0(1 − γ−))

]
in the inhomoge-

neous piezoelectric layer �
p
−{x, y} is represented by a new formation coef-

ficient α
p
−(k) =

[
(ρ−ω2

0/k
2G̃−) − 1

]1/2
and by the variable thickness

ξ
p
−(x) = h0(1 − γ−) − h−(x).
Since there is no electric field potential in the perfectly conductive smoothing

layer �c−, only the elastic shear is represented as follows:

wc
−(x, y, t) = f c−(kh0, h+(x)) · [wc

−(x,−h0(1 − γ−), t) − wp
−(x, h−(x), t)

]

+ wp
−(x, h−(x), t) (4.9)

where the formation function f c−(kh0, h+(x)) =
sh

[
αc−k(y − h−(x))

]
/sh

[
αc−k(−h0(1 + γ−) − h−(x))

]
in the homogeneous per-

fectly conductive layer is represented by the corresponding homogeneous conductive
layer parameters αc−(k) = [

(ρcω
2
0/k

2Gc) − 1
]1/2

and ξ c−(x) = h−(x)− h0(1+ γ−).
It is important to note, that by choosing the corresponding formation functions

f d+(kh0, h+(x)), f p
+ (kh0, h+(x)), f p

− (kh0, h−(x)) and f c−(kh0, h+(x)) in hypothet-
ical representation (4.3)–(4.9), the boundary conditions on the interface surfaces of
layers, are automatically satisfied for the elastic shear and the electric field poten-
tial of thin layers. Moreover, each of the represented distributions of the unknown
quantities (4.3)–(4.9) includes a formation coefficient for the dielectric interlayer,
the conductive interlayer, the virtually isolated interlayers of inhomogeneous piezo-
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electric and surface values of the electromechanical field of the base homogeneous
piezoelectric layers.

Using the obtained surface values of the unknown quantities of distributions
(4.1)–(4.9), we can represent the elastic shear and the electric field potential in each
layer in expanded form [16]. By integrating the electro-magnetic-elasticity equations
over the depth of flooded roughness y = h−(x) and y = h+(x), taking into account
the surface conjugacy conditions in internal surfaces, we obtain electromechanical
loads on the meta-surfaces y = h0(1− γ+) and y = −h0(1− γ−) of the base layer,
respectively.

By satisfying the surface conditions for smooth media interface boundaries y =
h0(1 − γ+) and y = −h0(1 − γ−), we get the system of algebraic linear equations,
relatively independent amplitudes {A0; B0;C0; D0; E0} of possible electroelastic
wave signal in the piezoelectric base layer and in the vacuum half-space, respectively.
From the condition for the existence of nontrivial solutions, the dispersion equation
for the formed wave field is obtained in the following form:

det
∥∥gi j (Gk; ρk; ek; εk; h±(x); ω; k(ω0)

∥∥
4×4 = 0 (4.10)

The variable coefficients
{
gi j (Gk; ρk; ek; εk; h±(x);ω; k(ω)

}
4×4 of the tensor-

dispersion equation are cumbersome. The coefficients of the fifth column of tensor
g15 = g25 = g45 = g55 ≡ 0, and g35(αd; ε(e)/εd; h+(x); kh0) ≥ 0 is positive-
definite and describes the oscillations of electric field in vacuum.

It is also shown in [20] that during propagation of longwave signals there is almost
no interaction between the propagating wave and slight irregularities. As a basis of
numerical calculations, test numerical data for material constants of adjacent mate-
rials of layers, given in Table 1, were taken, as well as geometric linear dimensions
of the base layer and the surface irregularities

h−(x) = −h0[1 + ε− sin(k−x) + δ− cos(k−x)],
h+(x) = h0[1 + ε+ sin(k+x) + δ+ cos(k+x)] (4.11)

Investigation of propagation of high frequency (short wave) wave signal in waveg-
uides considering the surface irregularities is caused by the fact that the linear
dimensions of these irregularities are small compared to the base layer thickness
γ± = √

ε± + δ±.
Figures 3 and 4 are showing the wave number as a function of the wave signal

frequency for normal waves.
Calculations show that for low-frequency (long-wave) signals, up to a certain

value kn ∼ 0.058, there is a pair of periodically repeating frequencies (Fig. 3),
which are determined by the physical-mechanical constants of thematerials, relations
of geometric linear dimensions of the base layer and surface irregularities of the
waveguide.

The cycle period of wave formation in the given calculations T = 200π is deter-
mined by the ratio of the linear dimensions of base layer and the surface irregularities.
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Table 1 Numerical test data of constants of composite waveguide materials

Gi = C (i)
44

ρi εi = ε
(i)
11 ei = e(i)

15

Homogeneous
Piezo crystal of
class 6 mm

1.49 × 1010 N/m2 4.82 ×
103 kg/m3

7.99 ×
10−11 F/m

−0.21 C/m2

Nonhomogeneous
Piezo crystal of
class 6 mm
(±10%)

1.639 ×
1010 N/m2

1.341 ×
1010 N/m2

5.302 ×
103 kg/m3

4.338 ×
103 kg/m3

8.789 ×
10−11 F/m
7.191 ×
10−11 F/m

−0.23 C/m2

−0.19 C/m2

Dielectric 1.788 ×
1010 N/m2

1.192 ×
1010 N/m2

5.784 ×
103 kg/m3

3.856 ×
103 kg/m3

9.588 ×
10−11 F/m
6.392 ×
10−11 F/m

Conductor
Gold Au
Silver Ag

2.7× 1010 N/m2

3.03 ×
1010 N/m2

19.32 ×
103 kg/m3

10.49 ×
103 kg/m3

Vacuum 0.885 ×
10−11 F/m

Fig. 3 The dependence of
wave number on the
frequency of long wave
signal
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Fig. 4 The dependence of
wave number on the
frequency of short wave
signal
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This means that a low frequency electro-elastic wave signal during its propagation
does not identify the existence of slight surface irregularities and very thin material
interlayers on the waveguide surface of layer.

From Fig. 4 we see that the dispersion surface for high-frequency (short wave)
signal changes greatly. This leads to a small quantitative change of the second wave
with wavenumber k02(ω).

But the first wavenumber k01(ω) of wave changes qualitatively for quite short
wave signals k01(ω) ∼ 100 m−1 (i.e.λ01(ω) ∼ 0.0628 mm), giving a space for a
new wave mode emergence. It’s interesting that ultra-short wave solutions do not
exist somewhere about kn(ω) ≥ 350 m−1.

The investigation of the arising frequency pattern in the problem of propagation
of an electro-elastic shear wave signal in a piezoelectric homogeneous waveguide
with irregular surfaces, where the irregularities on one surface are filled with perfect
conductor, and on the other surface—with a good dielectric, gives some interesting
results. For the fast waves, when the phase velocity is greater than the values of shear
spatial waves in the adjacent materials—Vφ(k;ω) ≥ cnt , the dispersion of the long
waves when k ∈ [0; 1.6] occurs in the interval ω(k) ∈ [0; 5000] (Fig. 5).

In the case of slow wave signals, when the phase velocity is less than the values
of shear spatial waves in the adjacent materials—Vφ(k;ω) < cnt—we obtain an
interesting phase pattern again (Fig. 6).
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Fig. 5 The frequency versus
of wave number for slow
shear waves
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3.3 The Propagation of High-Frequency Shear Elastic Waves
on Interface of Isotropic Elastic Half-Spaces
with Canonical Surface Protrusions (Model–3)

The features of the formation and propagation of forms of an elastic shear wave, con-
catenated with a canonical (rectangular, periodic in section) protrusions of surfaces
each with the other one in elastic isotropic half-spaces (Fig. 7) is investigated [17].
The connection of two half-spaces with surface canonical protrusions is modeled
as a composite waveguide consisting of periodically, longitudinally inhomogeneous
embedded inner layer in two homogeneous half-spaces.

It is shown from the formation of half-spaces with protrusions, that for the con-
venience of the mathematical boundary value problem, the coordinate plane yoz
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Fig. 6 The frequency versus
of wave number for fast
shear waves
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Fig. 7 Connection diagram
of two elastic half-spaces
with canonical surface pins,
as a three-layer waveguide
with a periodically
inhomogeneous inner layer
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(coordinate plane x = 0) is allocated on one of lateral surfaces of the protrusion con-
tact of the half-spaces �1{x; y} and �2{x; y}, and the coordinate axis oz is parallel
to the forming of these projections. The canonicity of projections (the forms of pins
and their linear dimensions) allows us to provide the full mechanical contact along
the entire line of contact of half-spaces.

By input of virtual cross-sections, in fact a three-layer waveguide is formed from
two homogeneous half-spaces and virtually separated longitudinally inhomogeneous
(piecewise-homogeneous) layer of periodically distributed cells of protrusions pairs
�1n{x; y} and �2n{x; y}.The mathematical boundary problem on the propagation
of normal wave signal (SH) of elastic shear is formulated from the equations of the
corresponding homogeneous half-spaces and their respective protrusions:

– in �1{x; y} and �1n{x; y}

∂2w1(x; y)/∂x2 + ∂2w1(x; y)/∂y2 = −ω2/c21t · w1(x; y), (5.1)

– in �2{x; y} and �2n{x; y}

∂2w2(x; y)/∂x2 + ∂2w2(x; y)/∂y2 = −ω2/c22t · w2(x; y), (5.2)

One group of boundary conditions of full mechanical contact is satisfied on the
virtual cross-sections y = h0 and y = −h0 along the widths of surface protrusions,
respectively. Along the width of each protrusion �1n{x; y}, the continuity surface
conditions of mechanical fields will be

w1(x;−h0; t) ≡ w1(x;−h0; t),
G1 · ∂w1(x; y; t)/∂y|y=−h0 ≡ G1 · ∂w1(x; y; t)/∂y|y=−h0 (5.3)

w1(x; h0; t) = w2(x; h0; t),
G1 · ∂w1(x; y; t)/∂y|y=h0 = G2 · ∂w2(x; y; t)/∂y|y=h0 (5.4)

Along the width of each protrusion �2n{x; y}, the continuity surface conditions
of mechanical fields will be

w2(x;−h0; t) = w1(x;−h0; t),
G2 · ∂y/∂w2(x; y; t)|y=−h0 = G1 · ∂w1(x; y; t)/∂y|y=−h0 (5.5)

w2(x; h0; t) ≡ w2(x; h0; t),
G2 · ∂w2(x; y; t)/∂y|y=h0 ≡ G2 · ∂w2(x; y; t)/∂y|y=h0 (5.6)

In addition to the given boundary conditions on virtual selected sections, surface
conditions of full mechanical contact are satisfied on the entire lateral surfaces of
protrusions.
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Taking into account the periodicity of the structure of internal virtual layer, the-
ory of Lyapunov-Floquet is used and the boundary value problem is solved for the
repeated cell with the number zero.

Satisfying the conditions of full mechanical contact on the lateral surface of the
protrusions x = 0,

w1(0; y; t) = w2(0; y; t),
G1 · ∂w1(x; y; t)/∂x |x=0 = G2 · ∂w2(x; y; t)/∂x |x=0 (5.7)

as well as the conditions on lateral surfaces of protrusions x = −b and x = a, taking
into account the periodicity of solutions by x coordinate

w1(x; y; t)|x=a = μ−1 w2(x; y; t)|x=−b,

μ · G1 · ∂w1(x; y; t)/∂x |x=a = G2 · ∂w2(x; y; t)/∂x |x=−b (5.8)

damping through the depth of homogeneous half-spaces �1{x; y} and �2{x; y}, as
well as in canonical (rectangular, periodic in section) protrusions of surfaces for
y → ±∞, respectively, normal waves are presented in the form

w1(x; y; t) = A1 · X01(x) · exp(α1t k1y) · exp(−iωt) in�1{x; y} (5.9)

w2(x; y; t) = A2 · X02(x) · exp(−α2t k2y) · exp(−iωt) in�2{x; y} (5.10)

w∗
1(x; y; t) = X01(x) · [

A∗
1 · sh(k1α1t y) + B∗

1 · ch(k1α1t y)
] · exp(−iωt) (5.11)

w∗
2(x; y; t) = X02(x) · [

A∗
2 · sh(k2α2t y) + B∗

2 · ch(k2α2t y)
] · exp(−iωt) (5.12)

For the corresponding homogeneous half-spaces, αnt �
√
1 − ω2/[k2n(ω) · c2nt ]

are the wave formation coefficients (in the case of slow waves—coefficients of atten-
uation into the corresponding half-spaces).

As follows from the Eqs. (5.1) and (5.2), the solutions providing synchronicity
of propagation waves in homogeneous half-spaces and their rectangular protrusions,
match and are written by harmonic functions in periodic, laterally inhomogeneous
layer

X∗
0n(x) = X0n(x) = Cn sin(knx) + Dn cos(knx), for n = 1; 2 (5.13)

After satisfying the boundary conditions of continuity of mechanical fields
(5.3)–(5.6) we obtain the dispersion relations.

th(2α1t k1h0) = G1α1t · (G1α1t + G2α2t )/
(
G1α1tG2α2t + G2

01α
2
1t

)
(5.14)

th(2α2t k2h0) = G2α2t · (G1α1t + G2α2t )/
(
G1α1tG2α2t + G2

0α
2
2t

)
(5.15)
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The systemof dispersion relations (5.14) and (5.15) represents itself the dispersion
equation of wave formation through the thickness of composite waveguide. Their
joint solution provides synchronized values of wave numbers in composite vertical
components of waveguide.

The localization of wave energy near the junction of surfaces is possible only in
the case of propagation of slow shear waves, for which Vφ(ω/k) < min{c1t ; c2t }. In
this case the system of dispersion relations (5.14) and (5.15) takes a rather simple
form

th(2h0α1t (ω) · k1(ω)) = 1 and th(2h0α2t (ω)k2(ω)) = 1 (5.16)

Since the hyperbolic tangents are quickly descending in Eq. (5.16) and allowed
wave lengths for periodic inhomogeneity are always of order of the composite layer
widths λ(ω) ∼ min{a; b}, from (5.16) the approximation of the solution with great
precision for arguments 2αnt knh0 = 4π is received

kn(ω) = (ω/cnt ) ·
√
1 + (2πcnt/ωh0)

2, n = 1; 2 (5.17)

Here the found wave numbers in both half-spaces provide lower phase velocity
than bulk shearwave in eachmedium.Corresponding to the slowwave, phase velocity
in each composite layer can be written as

Vaφ(ω/k) = c1t/
√
1 + (

2πc1t
/

ωh0
)2

Vbφ(ω/k) = c2t/
√
1 + (

2πc2t
/

ωh0
)2

(5.18)

The obtained value of phase velocity Vaφ(ω/k) in the first layer satisfies the
condition of slow waves V1φ(ω/k) < c2t in the frequency range

0 < ω ≤ (2π/h0) · (c1t c2t/
√
c21t − c22t ) (5.19)

Therefore, the connection of isotropic, elastic half-spaces with canonical surface
protrusions, for some ratios of the linear dimensions of protrusions leads to the
localization of wave energy of elastic shear signal with certain frequency ω, near the
virtual surfaces of homogeneous half-spaces.

By depth of a three-layer composite waveguide wave field will have the following
description

Y0a(y) =

⎧
⎪⎪⎨
⎪⎪⎩

A1 · exp[ka(ω)α1t (ω)y] −∞ < y ≤ −h0
A∗
1 · sh[ka(ω)α1t (ω)y]

+B∗
1 · ch[ka(ω)α1t (ω)y] −h0 ≤ y ≤ h0

A2 · exp[−ka(ω)α2t (ω)y] h0 ≤ y < ∞
(5.20)
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Y0b(y) =

⎧⎪⎪⎨
⎪⎪⎩

A1 · exp[kb(ω)α1t (ω)y] −∞ < y ≤ −h0
A∗
2 · sh[kb(ω)α2t (ω)y]

+B∗
2 · ch[kb(ω)α2t (ω)y] −h0 ≤ y ≤ h0

A2 · exp[−kb(ω)α2t (ω)y] h0 ≤ y < ∞
(5.21)

To construct the obtained localized forms of wave distributions over the thickness
of a layered waveguide (5.19) and (5.20), it is necessary to match the wave numbers
determined by (5.17) to the dispersion equation forwave propagation in a periodically
longitudinally non-uniform structure

cos[L · k f (ω)] = cos[k1(ω) · a] · cos[k2(ω) · b]
− G2

2k
2
2(ω) + G2

1k
2
1(ω)

2G2k2(ω) · G1k1(ω)
sin[k1(ω) · a] · sin[k2(ω) · b] (5.22)

In dispersion relation (5.21) λ(ω) = exp(Lk f (ω)) is a multiplier, and L = a + b
is the period of wave numbers k1(ω) and k2(ω) in the surface protrusions �1n{x; y}
and�2n{x; y}, respectively. k f (ω) = 2π/λ f (ω) is the wave number of formed wave
(Floquet wave number) corresponding to allowed wave length λ f (ω).

Synchronization of shear wave propagation in general assumes the same allowed
wave number

k f (ω) =

arccos

⎧⎪⎪⎨
⎪⎪⎩

(G2k2 + G1k1)
2 cos(k1a + k2b)

4G2k2G1k1

− (G2k2 − G1k1)
2 cos(k1a − k2b)

4G2k2G1k1

⎫⎪⎪⎬
⎪⎪⎭

L
(5.23)

Considering the received relations as an area of definition for the allowed lengths of
the wave signal in the periodic structure, from (5.22) we get

λ f (ω)

= 2πL

arccos
{

(G2k2+G1k1)
2

4G2k2G1k1

[
cos(k1a + k2b) − (G2k2−G1k1)

2

(G2k2+G1k1)
2 cos(k1a − k2b)

]} (5.24)

It should be noted, that the allowed wave lengths for the known inhomogeneity
are always of order of the composite layer widths λ f (ω) ∼ min{a; b}.

Numerical calculations are carried out for caseswhen the conductor and the piezo-
electric are bounded, without considering their electromagnetic properties (Table 1).

The formation of zones of forbidden and/or the allowed frequencies is shown on
Fig. 8 for slow high-frequency shear waves with phase speed less than the minimum
bulk wave of adjacent materials Vφ(ω/k) ≤ min{c1t ; c2t }, in a composite waveguide
of ZnO and Au. It is shown analytically, that slow waves are formed at relatively
low frequencies (5.19), in this case up to ≈0.85 ×1010 Hz. The zones of allowed



94 A. S. Avetisyan

50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

3.0

Lk

Fig. 8 The dispersion curves of localized shear nanometer waves λ ∼ 10−9 m at the mechanically
free surface of half-space of piezoelectric crystal (PZT-4) or Gold (Au), for micrometer height
h0 = 10−6 m andmicrometer widths of protrusions and cavities of surface protrusions a = 10−8 m
and b = 5 × 10−7 m

frequencies of these localized waves are already determined from the system (5.23)
taking into account (5.17), in the definition range (5.19).

It follows from the calculations, that the formation of localized slow waves with
the wave numbers (5.17) in the composite waveguide, in contrast to the case of prop-
agation of shear bulk wave in periodically longitudinally inhomogeneous waveguide
of homogeneous layers with wave numbers kn(ω) = ω/cnt [20], have an almost
continuous range of frequencies with one thin frequency slit. Their joint solution
provides synchronized values of wave numbers in composite vertical components of
waveguide.

From more visual graphs of high-frequency propagation (Fig. 8), it follows that
forbidden frequency zones do not form in this task, in which wave numbers k(ω)

do not exist. In this case, the dispersion lines have clearly outlined envelopes at the
top and bottom. It is also obvious, that the different stiffness of the materials of
half-spaces lead to frequency shear of the dispersion curves between each other.

It is interesting, that in all these cases the nature of changes of phase speeds are the
same in the virtually selected layers Fig. 8, while the phase speed in the cavity layer
(a ≤ x ≤ a + b) is less than the phase speed in the protrusion layer (0 ≤ x ≤ a).

4 Conclusion

The boundary joints of rough surfaces are virtually modeled as a laminate of thin,
geometrically or physically inhomogeneous media. Taking into account the random-
ness of the inhomogeneities of the surface band, the hypothesis MELS is introduced.

By the introduction of the hypothesis MELS, according to surfaces inhomo-
geneities, the near-surface inhomogeneity zone is mathematically simulated as a
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meta-surface with the equivalent electromechanical loades. The piezoelectric layer
with a smoothed roughness of both surfaces by casting different materials is mathe-
matically modeled as an inner base waveguide with electromechanical loads on the
meta-surfaces.

The connection of two half-spaces with surface canonical protrusions is mod-
eled as a composite waveguide consisting of periodically, laterally inhomogeneous
embedded inner layer in two homogeneous half-spaces. In neighboring cells of peri-
odically inhomogeneous layered compositewaveguide, the conditions of shear elastic
wave propagation are obtained.

From the dispersion equations for the formation of a waveform across the layer
thickness, nature of change of the phase speeds and amplitude distribution through the
thickness of the waveguide in the virtually sectioned vertical layers are investigated.

From the dispersion equation describing the propagation of the formed wave, the
zones of allowed and forbidden frequencies for wave propagation are determined.
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A Comparative Analysis of Wave
Properties of Finite and Infinite
Cascading Arrays of Cracks

Vitaly V. Popuzin, M. Y. Remizov, Mezhlum A. Sumbatyan
and Michele Brigante

Abstract Reflection and transmission coefficients in the problems of the normal
plane wave incidence on the system of finite and infinite periodic arrays of cracks
in an elastic body are determined. We propose a method permitting to solve the
scalar diffraction problem for both single crack and any finite number of cracks with
arbitrary lattice geometry. Under the condition of one-mode frequency regime the
problem is reduced to a discretization of the basic integral equation holding on the
boundary of the scatterers located in one horizontal waveguide. A semi-analytical
method developed earlier for diffraction problems on infinite periodic crack arrays
permits a comparative analysis of the properties of the main external parameters for a
finite periodic systemof cracks, where the solution of the boundary integral equations
is numerically constructed, and we obtain explicit analytical representations for the
wave field at the boundary of the obstacles. The analysis of the properties of the
scattering coefficients depending on the physical parameters is carried out for three
diffraction problems: a finite periodic system in a scalar formulation, an infinite
periodic system in a scalar formulation, an infinite periodic system in a plane problem
of the elasticity theory.

1 Introduction

In the present paperwe continue to study the properties ofmetamaterialswith applica-
tion to mechanical, electromagnetic and acoustic problems possessing some specific
periodic internal structure [1, 2]. The most part of the theoretical methods are based
on numerical treatment such as Finite element method or Boundary element method.
In recent years, the experimental base devoted to this topic is being actively devel-
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oped. There are also some semi-analytical methods used for infinite or semi-infinite
periodic structures, which are based on some asymptotic (low-frequency or high-
frequency) estimates, being valid only in the far zone of the wave field [3–8]. In [5,
9–11], the analytical formulas for the coefficients of reflection and transmission in
the low frequency range of the acoustic, electromagnetic and elastic waves, penetrat-
ing through the periodic system of holes of arbitrary shape and three-dimensional
obstacles, are presented. Two-dimensional problems of wave propagation through
a periodic screen lattice in elastic bodies with a single—periodic system of cracks
are studied in [7, 12], and in [13–17] there is considered a doubly-periodic system.
In [18–20] the problems of diffraction by a plane lattice of cylindrical cavities are
solved. It should be noted that the wave properties of elastic media containing peri-
odic structures of more complex physical nature—pores, inclusions, et al., have been
analyzed in [21–24].

The problems discussed in this paper are related to the theory of the so-called
“acoustic metamaterials”, which, due to their specific internal structure, have the
properties of acoustic filters. This means that such a material is able to pass the
passing wave over certain frequency intervals and lock the wave channel for other
frequencies. Thepropertywas experimentally discovered andpresented in [25]. Some
fundamental aspects related to the acoustic metamaterials are discussed in [26–28]
and some other publications.

It should be noted that a semi-analytical method in wave dynamics of periodic
structures has also been proposed in [29].

2 Problem Formulation

To study the filtration properties of the metamaterials, let us consider the normal
incidence of a plane longitudinal wave, propagating in an unboundedmedium pinc =
eikx1 , on a doubly-periodic system of finite numberM(>2) of identical vertical arrays,
which are finite or infinite along x2 and infinite in the direction x3. Each of them is an
ordinary periodic system of coplanar linear cracks located at x = 0, d, 2d, . . . , (M−
1)d. In the infinite case, under the natural symmetry, the problem is reduced to
the consideration of a plane waveguide of the width 2a, which includes M cracks
(Fig. 1). For the finite case it is necessary to solve the corresponding boundary integral
equation over all available contours of the crack system.

It is assumed that with the normal wave incidence ei(k1x1−ωt) there is a regime of
one-mode propagation at k1a < π , where k1—the wave number of the longitudinal
wave, 2a—the period of the system in the vertical direction, d—in the horizontal one.
The semi-analytical method is used when the distance between the adjacent parallel
arrays d and the incident wave length λ = 2π/k1 are such that the condition λ/d �
1 is satisfied. A comparative analysis of the properties of the scattering parameters is
carried out for the three diffraction problems for a finite and infinite periodic system
in a scalar formulation, as well as for an infinite periodic system under the conditions
of the plane problem of the elasticity theory.
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Fig. 1 Incidence of a plane wave on a periodic array of linear obstacles

3 Infinite Periodic System. Anti-plane Problem

The solution for elastic problems with infinite periodic arrays of cracks, in the anti-
plane formulation is presented in [5, 7, 15]. Omitting some routine transformations,
the problem can be reduced to the following systemofM integral equations regarding
the unknown functions gs(y); |y| < b; s = 1, . . . , M , [8]:

where the kernel has the following form: K (y) = ∑∞
n=1 rn cos(an y), rn =√

(πn/a)2 − k22 , an = πn/a, k2—the wave number of the incident transverse wave.
As mentioned for some aspects of the proposed semi-analytical method [16, 17], it
is necessary to consider the auxiliary integral equation, whose kernel K (y) requires
a special treatment:
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1

2a

b∫

−b

h(η)K (y − η)dη = 1, K (y) =
∞∑

n=1

rn cos(an y), |y| < b. (2)

Since rn ∼ an, n → ∞, the expression for the kernel (2) can be transformed to the
following form

K (y) =
∞∑

n=1

an cos(an y) +
∞∑

n=1

[rn − an]an cos(an y), K (y) = I (y) + Kr (y). (3)

Here the second part of the kernel is a certain regular function. The first part contains
both regular and singular parts: I (y) = [Ir (y) + Is(y)]. Obviously,

a

π
I (y) =

∞∑

n=1

n cos(πny/a) (4)

The representation for the sum (4) can be calculated in a generalized sense, as
follows

∞∑

n=1

n cos(πny/a) = lim
ε→+0

∞∑

n=1

e−εnn cos(πny/a)

= − 1

4sin2(πy/2a)
,

(

∼ − a2

π2y2
, y → 0

)

,

then the kernel of the integral Eq. (3) is K (y) = Ir (y) + Is(y) + Kr (y), where the
singular and the regular parts of function I (y) are, respectively

a

π
Is(y) = − a2

π2y2
,
a

π
Ir (y) = a2

π2y2
− 1

4 sin2(πy/2a)
. (5)

In can be seen that the behavior of the kernel for small argument is hyper-singular,
which is in a good agreementwith the classical theory of cracks in the elasticity theory
for unbounded media [30]. To provide a stable numerical method, we apply here a
discrete quadrature formula for the hyper-singular kernels, known as “the method of
discrete vortices” [31]. By applying the new expression for the kernel of the basic
integral Eqs. (3), (5), let us rewrite it in the following form:

1

2a

b∫

−b

h(η)

[

�r (y − η) − a

π(y − η)2

]

dη = 1,�r (y) = Ir (y) + Kr (y) (6)

The discretization of the integral operator in the left-hand side (6) leads to the fol-
lowing formula
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1

2a

N∑

k=1

ηk∫

ηk−1

h(η)

[

�r (yl − η) − a

π(yl − η)2

]

dη

= 1

2a

N∑

k=1

h(ηk)

⎡

⎣�r (yl − ηk)ε − a

π

ηk∫

ηk−1

d(η − yl)

π(yl − η)2

⎤

⎦

= 1

2a

N∑

k=1

h(ηk)

[

�r (yl − ηk)ε − a

π

(
1

yl − ηk
− 1

yl − ηk−1

)]

,

where ηk = −b + kε, yl = −b + (l − 0.5)ε, l = 1, . . . , N , ε = 2b/N . As a result,
we obtain the following algebraic system of linear equations:

1

2a

N∑

k=1

h(ηk)

[

�r (yl − ηk)ε − a

π

(
1

yl − ηk
− 1

yl − ηk−1

)]

= 1 (7)

By using the auxiliary Eq. (2), for which we introduce the integral characteristics

H =
b∫

−b

h(t)dt, Jj =
b∫

−b

g j
x (t)dt, j = 1, 2, . . . , M, (8)

one deduces from (1) and (2), in terms of function h(y):

By integrating (9) over the interval |y| < b, we obtain the following system of
linear algebraic equations regarding J̃ j = Jj/4a, j = 1, 2, . . . , M

(
1 + 4ai

k2H

)
J̃1 + eik2d J̃2 + eik22d J̃3 + . . . + eik2(M−1)d J̃M = 1;

eik2d J̃1 +
(
1 + 4ai

k2H

)
J̃2 + eik2d J̃3 + eik22d J̃4 + . . . + eik2(M−2)d J̃M = eik2d ;

eik22d J̃1 + eik2d J̃2 +
(
1 + 4ai

k2H

)
J̃3 + eik2d J̃4 + eik22d J̃5 + . . . + eik2(M−3)d J̃M = eik22d ;

. . .

eik2(M−1)d J̃1 + eik2(M−2)d J̃2 + . . . + eik2d J̃M−1 +
(
1 + 4ai

k2H

)
J̃M = eik2(M−1)d .

(10)

The matrix of system (10) takes the following form, with α = 1+4ai/k2H ; β =
eik2d :
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⎡

⎢
⎢
⎢
⎢
⎢
⎣

α β β2 . . . βm−1

β α β . . . βm−2

β2 β α . . . βm−3

. . . . . . . . . . . . . . .

βm−1 βm−2 βm−3 . . . α

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
β

β2

. . .

βm−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; Qm =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α β β2 . . . βm−1

β α β . . . βm−2

β2 β α . . . βm−3

. . . . . . . . . . . . . . .

βm−1 βm−2 βm−3 . . . α

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(11)

To solve the system (11) by Cramer’s rule, let us apply the recurrent relations
for its main determinant Qm and for determinants in (10), which are obtained by
changing the columns of the main matrix by the column of the right-hand side,
j = 1, 2, . . . , M , [17].

As a result, we obtain an explicit form for the quantities Jj , j = 1, 2, . . . , M
(m = M), as follows:

Jj = 4a
Q j

M

QM
, j = 1, 2, . . . , M (12)

Defining solution (12) with the known value of parameter H , we determine all
required wave characteristics. In particular, the reflection and transmission coeffi-
cients are expressed in the following form:

R = 1

4a

M∑

j=1

eik2( j−1)d J j ; T = − 1

4a

M∑

j=1

eik2(M− j)d J j + eik2(M−1)d . (13)

Since the present theory allows us to find coefficients (13) explicitly, and the only
point which is solved numerically is the solution to the auxiliary Eq. (7), the proposed
method may be called as “semi-analytical method”.

4 Infinite Periodic System. Plane Problem

The solution to the plane elasticity theory for the infinite periodic systems by the
developed semi-analytical method is presented in [16, 17]. Let us cite here only
the properties of the kernel for respective integral equations and the discretization
scheme.

As indicated above, it is necessary to consider the auxiliary integral equation, for
which we should study the properties of its kernel [16, 17]:

1

2a

b∫

−b

h(η)K (y − η)dη = 1; K (y) =
∞∑

n=1

Ln cos(an y); Ln = Rn

k22qn
, |y| < b

qn = [
(πn/a)2 − k21

]1/2
, rn = [

(πn/a)2 − k22
]1/2

,
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Rn = [2a2n − k22]2 − 4rnqna
2
n, an = πn/a. (14)

Here k1, k2—wave numbers for the longitudinal and the transverse waves. Let
us notice that Ln ∼ −2(1 − c22/c

2
1)an, n → ∞, where c1, c2—the speed of the

longitudinal and the transverse wave, respectively. Then the expression for the kernel
is transformed to the following form

K (y) = −2

(

1 − c22
c21

) ∞∑

n=1

an cos(an y) +
∞∑

n=1

[

Ln + 2

(

1 − c22
c21

)

an

]

cos(an y)

= −2

(

1 − c22
c21

)

I (y) + Kr (y). (15)

Here the second sum is a certain regular function. The first one has both regular
and singular parts: I (y) = [Ir (y)+ Is(y)]. After some transformations of the kernel
(15) of the auxiliary integral Eq. (14) the regular and the singular parts become,
respectively

Ir (y) = a

πy2
− π

4a sin2(πy/2a)
; Is(y) = − a

πy2
. (16)

The singularity of the kernel for small arguments contains a hyper-singularity
arising in the classical crack theory [30]. To provide the stability of the numerical
method, here we again apply the method “of discrete vortices” [31]. By using the
new representation for the kernel of the basic integral Eq. (14), let us rewrite the
latter in the following form:

1

2a

b∫

−b

h(η)

⎡

⎣�r (y − η) +
2a
[
1 − c22

c21

]

π(y − η)2

⎤

⎦dη = 1,

�r (y) = −2

[

1 − c22
c21

]

Ir (y) + Kr (y). (17)

The discretization of the relation (17) leads to the formula

1

2a

N∑

k=1

ηk∫

ηk−1

h(η)

⎡

⎣�r (yl − η) +
2a
[
1 − c22

c21

]

π(yl − η)2

⎤

⎦dη

= 1

2a

N∑

k=1

h(ηk)

ηk∫

ηk−1

⎡

⎣�r (yl − ηk) +
2a
[
1 − c22

c21

]

π(yl − η)2

⎤

⎦d(η − yl)

= 1

2a

N∑

k=1

h(ηk)

⎡

⎣�r (yl − ηk)ε1 +
2a
[
1 − c22

c21

]

π(yl − ηk)
−

2a
[
1 − c22

c21

]

π(yl − ηk−1)

⎤

⎦,
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where ηk = −b + kε1, yl = −b + (l − 0.5)ε1, l = 1, . . . , N , ε1 = 2b/N , and as a
result, we obtain the linear algebraic system of equations:

1

2a

N∑

k=1

h(ηk)

⎡

⎣�r (yl − ηk)ε1 +
2a[1 − c22

c21
]

π

(
1

(yl − ηk)
− 1

(yl − ηk−1)

)
⎤

⎦ = 1.

(18)

Further, by using the auxiliary equation in (14), we determine all wave charac-
teristics. In particular, for three vertical periodic systems [16], the reflection and
transmission coefficients are expressed in the explicit form:

R = − 1

4aik1

b∫

−b

g1x(t)dt − eik1d

4aik1

b∫

−b

g2x (t)dt − eik12d

4aik1

b∫

−b

g3x(t)dt;

T = − eik12d

4aik1

b∫

−b

g1x(t)d − eik1d

4aik1

b∫

−b

g2x (t)dt − 1

4aik1

b∫

−b

g3x(t)dt + eik12d . (19)

The present theory also allows us to determine coefficients (19) in explicit form, as
soon as the numerical solution of the auxiliary hyper-singular equation is constructed
(17) with the help of the linear algebraic system (18).

5 Finite Periodic System. Scalar Formulation

In order to solve the problem in the scalar case, we first consider the incidence of
a plane wave upon a doubly-periodic system of rigid screens, which is finite in the
both directions. In frames of the scalar acoustics, the wave equation for full acoustic
pressure p is reduced to the Helmholtz equation

(

 + k2

)
p = 0, (20)

where k—the wave number of the acoustic wave, 
 denotes the two-dimensional
Laplace operator, and the full wave pressure is a linear sum of the incident and the
scattered field: p = pinc + psc. To be more specific, let us restrict the consideration
by the normal incidence of a plane wave, hence the incident wave field is pinc

(
y0
) =

eiky
0
1 , where the two-dimensional point is y0 = (

y01 , y
0
2

)
.

The boundary condition, in the case of acoustically hard boundary L̃ has the form

∂p
∂ny

∣
∣
∣
∣
L̃

= 0, (y ∈ L̃). (21)
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Here ny is the unit normal vector at the point y, and L̃ = ∑M
m=1 l̃m represents

itself the full set of boundary contours.
In order to develop the basic boundary integral equation, let us introduce a respec-

tive closed contour lm around the current screen. Obviously, for the given contours,
in the case when the observation point x is outside, the following standard integral
representation is valid

psc(y0) =
∫

L

(

p(y)
∂�

∂ny
− ∂p(y)

∂ny
�

)

dLy, (y ∈ L), (22)

where� = �(r) is the Green’s function, which in the two-dimensional acoustic case
is expressed through the Hankel function of the first kind�(r) = (i/4)H (1)

0 (r), r =∣
∣y − y0

∣
∣.

If each surrounding closed contour converges to the respective rigid screen located
inside, then the second term in (22) is cancelled, due to the boundary condition. The
opposite sides of each obstacle are considered separately, being l−m i l+m , where the
sign “plus” is related to the normal n+

m , directed along the propagation of the incident
wave, and the negative sign—oppositely. Then, the integral representation (22) can
be reduced to the expression

psc(y0) =
M∑

m=1

⎛

⎜
⎝

∫

�+
m

(

p+(y)
∂�

∂n+
y

)

d�+
y +

∫

�−
m

(

p−(y)
∂�

∂n−
y

)

d�−
y

⎞

⎟
⎠

=
M∑

m=1

∫

�+
m

g(y)
∂�

∂n+
y

(
k
∣
∣y − y0

∣
∣
)
d�+

y , g(y) = p+(y) − p−(y), (y ∈ lm)

(23)

The introduced quantity g(y) represents the pressure fall when passing the barrier.
The obtained formula allows us to find the scattered pressure field at arbitrary point
of the space y0, however, to use it in practice, it is necessary to know the value of the
function g(y) over the boundary of the obstacles. To find this quantity, by analogy to
the classical approach, let us set the point y0 tending to the boundary of the obstacle:
y0 → x ∈ L . By expressing the reflected field, taken from the formulas, in terms
of the difference of the full and the incident ones, by differentiating the obtained
expression along the normal, we come to the following representation

∂p(x)

∂n+
x

= ∂pinc(x)

∂n+
x

+
M∑

m=1

∫

�+
m

g(y)
∂2�

∂n+
x ∂n+

y
(k|y − x |)d�+

y (24)

With the boundary condition, Eq. (24) is reduced to the system of BIEs, to find
function g(y)
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M∑

m=1

∫

�+
m

g(y)
∂2�

∂n+
x ∂n+

y
(kr)d�y = −∂pinc(x)

∂n+
x

, r = |y − x| (25)

Since there are no “minus” signs, let us omit all over below the sign “plus”, in the
notation of normal and obstacles. Let us write out the quantities explicitly present
in the equation. Obviously, all normal vectors are collinear: n = (0, 1), and the
right-hand side is expressed as follows: ∂pinc(x)

∂nx
= ikeikx1 . The first derivative of the

Green’s function can be obtained in the following way:

∂�

∂ny
= ∂�

∂r

∂r

∂ny
= − ik

4
H (1)

1 (kr)
y2 − x2

r
, (26)

where we have taken into account that for any function ∂ f
∂nx

= (gradx f · nx ) =
nx
1

∂ f
∂x1

+ nx
2

∂ f
∂x2

. The second derivative can be determined by analogy:

∂2�

∂nx∂ny

= − ik

4

{

k
∂H (1)

1 (kr)

∂(kr)

∂r

∂nx

y2 − x2
r

+ H (1)
1 (kr)

[
∂

∂r

(
y2 − x2

r

)

· ∂r

∂nx
− ∂

∂nx

(
y2 − x2

r

)]}

= − ik

4

{

−k

[

H (1)
0 (kr) − 1

kr
H (1)
1 (kr)

]
(y2 − x2)2

r2
+ H (1)

1 (kr)

[
(y2 − x2)2

r3
− 1

r

]}

(27)

It is clear from the last equation that with r → 0 there is a singularity in the
integrand in (25). It is known the behavior of theHankel function for small arguments:

H (1)
1 (x)

x→0∼ −2i/(πx). Then we can extract the hyper-singular part of the integrand
explicitly:

∂2�

∂nx∂ny
= − ik

4

{

−k

[

H (1)
0 (kr) − 1

kr
H (1)

1 (kr)

]
(y2 − x2)

2

r2
+
}

+ H (1)
1 (kr)

[
(y2 − x2)2

r3
− 1

r

]

− 2i

π

1

r2
+ 2i

π

1

r2
.

For the numerical solution, let us divide each obstacle’s contour l+i to n intervals of
the same length h = l+i /n and place the grid nodes in the middle of each elementary
interval (for simplicity, we consider only equal lengths of all obstacles). Then the
integral in the left-hand side (25) can be replaced by a sum over the elementary
intervals. In the case when r �= 0 the integrand may be approximated by its value
at the current point, but if r → 0 then the integration of the hyper-singular part is
performed in the following way:
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x j+ h
2∫

x j− h
2

dy j

(y j
1 − xi1)

2 + (y j
2 − xi2)

2
= 1

x j
2 − xi2

(

arctg

(
x j
1 − xi1 + h j

2

x j
2 − xi2

)

−arctg

(
x j
1 − xi1 − h j

2

x j
2 − xi2

))

. (28)

Obviously, if the both point are located over the same obstacle, the integration of the
hyper-singular part takes the simpler form:

x j+ h
2∫

x j− h
2

dy j

(y j
1 − xi1)

2
= h j
(
x j
2 − xi2

)2 − (h/2)2

As a result of the discretization performed, integral Eq. (25) is reduced to a SLAE
(System of linear algebraic equations), which is solved numerically.

6 Numerical Analysis

Let us perform a numerical analysis of the problems considered above, on example
of the medium with the longitudinal wave speed c1 = 6000 m/s (steel), and the ratio
of the longitudinal and the transverse wave speeds is c1/c2 = 1.87.

Tobeginwith, let us compare themoduli of reflection and transmission coefficients
versus frequency parameter, between the three studied cases, for a single vertical
array (see Figs. 2 and 3). With so doing, we assume that the longitudinal wave
speed in the problem 2 is equal to the transverse wave speed of the problems 1 and
3. This condition shortens the one-mode frequency interval, whose limit from the
right becomes π/1.87 = 1.680, (see Figs. 2 and 3). In Figs. 4, 5, 6, 7 and 8 the
comparative numerical analysis of the scalar problems 1 and 3 has been performed
for the transverse incident wave. Let us notice that for all cases the filtration interval
can be seen in the upper part of the one-mode frequency range. It is shown that lines
2 and 3 in Figs. 2 and 3, related to the scalar problems, are practically coinciding that
takes place even for N = 10 cracks in each vertical array. It should also be noted that
line 1 related to the elastic problem, shows a significant domination of the filtration
property, when compared with both infinite and finite scalar problems. Let us also
notice that for two vertical arrays in the elastic problem a perfect filtration takes
place for ak ≥ 0.7, but for one vertical row this property is valid only for ak ≥ 1.5;
this also confirms the evident property that with the growth of the vertical rows the
filtration becomes stronger.

Let us pass to the analysis of the grid size to the precision of the obtained results.
It is stated that in the case of a single obstacle it is sufficient to take 10 grid nodes

per each wavelength, to provide reliable results. With so doing, for the frequency
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Fig. 2 Comparison of three different periodicmodels: one vertical row (M= 1), period of the lattice
is 0.02 m, size of each crack is 2b = 0.015 m; line 1—infinite array, elastic theory; line2—infinite
array, scalar theory; line 3—finite array with M1 = 7 vertical cracks, scalar theory

Fig. 3 Comparison of three different periodic models: two vertical rows (M = 2), period of the
lattice is 0.02 m, size of each crack is 2b = 0.015 m, distance between the rows is d = 0.02 m; line
1—infinite array, elastic theory; line 2—infinite array, scalar theory; line 3—finite array with M1
= 7 vertical cracks, scalar theory

0.16MHz in this formulation the wavelength is 3.75 cm, hence on the obstacle of the
length 1.5 cm it is sufficient to take only 5 nodes. However, the complex geometry
of the diffraction lattice requires greater number of nodes. It can be seen from Fig. 4,
which represents the results for the array of 10 vertical rows, each containing 10
obstacles, that with 10 nodes over each obstacle the calculations are correct only in
the low-frequency case (for k*a < 1).

The investigation shows that for 5 vertical arrays with the obstacles of the length
1.8 cm, 10 obstacles in each vertical row (M1 = 10) are sufficient, to get finite
case quite close to the infinite one (see Fig. 5). It is stated that with the growing
number of obstacles in a single vertical row, so with the growth of parameter M1,
keeping all other parameters unchanged, the interval of the frequency cutoff varies
insignificantly. The reflection inside this frequency interval is almost constant, being
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Fig. 4 Comparison of two scalar models: ten vertical rows (M= 10), period of the lattice is 0.02 m,
size of each crack is 2b = 0.015 m, distance between the rows is d = 0.02 m; problem 1—infinite
array; problem 3—finite array with M1 = 10 vertical cracks; n is the number of the numerical grid
nodes on each crack

Fig. 5 Comparison of two scalar models: five vertical rows (M= 5), period of the lattice is 0.02 m,
size of each crack is 2b = 0.018 m, distance between the rows is d = 0.02 m; problem 1—infinite
array; problem 3—finite array with various number M1 of vertical cracks

equal to unit value, and the respective line on the diagram is almost horizontal. This
property takes place also for infinite arrays, where M is a number of such arrays.

Figure 6 characterizes the influence of the number of vertical rows, parameter M ,
to the reflection coefficient (the length of each obstacle is 1.5 cm, the width of the
strip is 2 cm). With the growth of parameter M the filtration for middle frequencies
becomes perfect, and for higher frequencies this is observed for all M .

Figure 7 demonstrates the influence of the strip width to the reflection coefficient
in the case M = 2, and the length of the obstacle 2b = 1.5 cm. For small d the
perfect filter at high frequencies is characterized by a poor cutoff at low frequencies.
For large d the cutoff intervals arise more often and the horizontal filtration line at
higher frequencies is divided to several intervals.

The dependence of obstacles’ size on the reflection coefficient in the array of 5
vertical rows with the width of the layer 2 cm can be extracted from Fig. 8. With
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Fig. 6 The scalar model for various number M of infinite vertical arrays: period of the lattice is
0.02 m, size of each crack is 2b = 0.015 m, distance between the rows is d = 0.02 m

Fig. 7 The scalar model for M = 2 infinite vertical arrays: period of the lattice is 0.02 m, size of
each crack is 2b = 0.015 m, for various distance d between the rows

the growing size of the screens the cutoff intervals at middle and high frequencies
become longer, and the filtration property strengthens over the full one-mode interval.

7 Conclusions

1. Virtually any frequency interval with the wave channel locking can be created by
controlling the relative crack size, the number of vertical arrays, and the lattice
period in the horizontal direction.
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Fig. 8 The scalar model for M = 5 infinite vertical arrays: period of the lattice is 0.02 m, distance
between the rows is d = 0.02 m, for various half-length b of each crack

2. When the number of cracks in one row increases, the locking interval changes
slightly. And the analysis shows that even 10 cracks sufficientlywell approximate
the case of the infinite system.

3. The properties of the problems in the scalar formulation (1, 3) demonstrate the
possible replacement of infinite crack arrays by the finite periodic systems while
maintaining the filtration properties.

4. The enhancement of the locking property of the wave channel occurs when
considering infinite doubly-periodic systems in the context of the elastic model
in comparison with the infinite and finite scalar analogue.
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Abstract The paper presents the current version of the finite element package
ACELAN-COMPOS with the focus on its capabilities for solving the homoge-
nization problems for piezoelectric composites with inhomogeneous polarization of
piezoceramic phase. We describe the basic version of the effective moduli method,
as well as the simplified theoretical approaches for taking into account the inhomo-
geneous polarization in the finite element solution of the homogenization problems.
We provide the brief description of the main features of the ACELAN-COMPOS
package, which we use for solving the described problems. The results of the numer-
ical solution of the homogenization problems for porous piezoceramic composites
demonstrate the importance of taking into account the inhomogeneous polarization
field for the effective moduli determination.
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1 Introduction

Piezoelectric composite materials are widely used in modern piezoengineering. As
it is known, the piezoceramic materials, which are the most effective in practical
applications, are obtained with the help of special fabrication stages, which consist
of the preparation of initial powders, their pressing, sintering and polarization. It
is possible to modify these processes, in order to obtain the composite materials
with controlled functional properties, for example, by adding other fractions or pore-
forming agents to the initial powders.As a result, piezocompositematerials of various
compositions and connectivity can be produced.

The most popular are two-component (two-phase, binary) piezoceramic compos-
ites, which include the first active piezoceramic phase and the second phase, which
can be represented either by inclusions from another piezoceramic or elastic material
or by pores [20, 31, 32, 40]. To denote the connectivity types of the components
for such composites, it is convenient to use the classification proposed by R. E.
Newnham [28]. According to this classification, the digits indicate the number of
axes of the Cartesian coordinate system along which a connected path through the
composite can be constructed for the material of this phase. Thus, the connectivity
of a two-phase composite can be denoted by the digits from 0 to 3 for each phase.
The most important connectivity types for mixed composites are the following: 3–3
(with connected materials in all three directions for both phases), 3–0 (with con-
nected material in three directions for the first phase, and with isolated parts of the
second phase), and 0–3 (with inverted connectivity compared to 3–0).

To determine the effective properties of binary piezocomposites, one can solve
homogenization problems using various generalizations of the methods adopted in
the mechanics of composite materials. The ACELAN-COMPOS package, devel-
oped by the authors and their colleagues, is aimed at the finite element solution of
the homogenization problems for two-phase piezocomposites by using the effective
moduli method and computer simulation of representative volumes, which takes into
account their internal structure.

The initial concept of the ACELAN-COMPOS package and the main features of
this package were described in the last papers [13, 14, 25]. As shown by numerous
investigations [6–8, 29], the internal structure has a significant influence on the
effective properties of the composites. In connection to this, special algorithms were
implemented in ACELAN-COMPOS, in order to simulate the piezocomposites with
3–3, 3–0, 0–3 and 1–3 connectivity types [10–14].

This paper focuses on some new features of the ACELAN-COMPOS package
with an emphasis on the homogenization problems for composites with non-uniform
polarization of the piezoceramic phase. The heterogeneity of polarization is also
important for determining the functional properties of the composite [16, 21, 33,
39]. In this paper, we describe simplified methods for taking into account inhomo-
geneities of the polarization. Note that more accurate approaches [13, 34, 35], which
are based on solving non-linear polarization problems, require significantly more
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computational resources and are not implemented in this version of the ACELAN-
COMPOS package.

In order to demonstrate the use of the simplified methods for inhomogeneous
polarization, we present some numerical results of the effective properties calcula-
tion for porous piezoceramic materials. These results show significant influence of
the inhomogeneity of polarization field and the porosity structure on the effective
properties of porous piezocomposites.

In this paper, we will not discuss other features of the ACELAN-COMPOS pack-
age, related to the computer design of magnetoelectric composites [13, 14] and
composites with imperfect interface boundaries that simulate nanoscale inclusions
or pores [25, 27]. The interested reader is referred to the above references for more
details.

2 Homogenization of Piezoelectric Composites

To determine the effective properties of piezoelectric composites, in ACELAN-
COMPOS package we use classical version of the effective moduli method. For
piezoelectric composites this method was applied in a large number of papers [5, 9,
22, 24, 30], with its mathematical basis given in [22, 24]. In this section, we de-
scribe the formulation of the homogenization problem using the Voigt vector-matrix
notation, which is generally accepted in the physical and theoretical literature on
piezoelectricity.

The input data for the homogenization problem for two-phase piezoelectric (elec-
troelastic) composite material is its representative volume element Ω together with
the parts Ω(1) and Ω(2) filled with materials of different phases. In the domains
Ω(j), j = 1, 2, the following material moduli are known: the elastic stiffnesses
cEαβ = cE(j)

αβ , measured at constant electric field; the piezoelectric moduli ekβ = e(j)
kβ ;

and the dielectric permittivity constants εSkm = ε
S(j)
km , measured at constant strain;

α, β = 1, 2, . . . , 6, k,m = 1, 2, 3; x ∈ Ω(j).
We also introduce the following notation: Γ = ∂Ω is the outer boundary of the

volume; u = u(x) is the vector function of displacements; ϕ = ϕ(x) is the electric
potential function;T = {σ11, σ22, σ33, σ23, σ13, σ12} is the array of stress components
σkm; S = {ε11, ε22, ε33, 2ε23, 2ε13, 2ε12} is the array of the strain components εkm; D
is the vector of electric induction or electric displacement; E is the vector of electric
field; cE is the 6 × 6 matrix of elastic stiffness moduli cEαβ , e is the 3 × 6 matrix of
piezoelectric modui ekβ ; εS is the 3 × 3 matrix of dielectric permittivity moduli εSkm.

In the homogenization problem, it is necessary to determine the effective moduli
c̃Eαβ , ẽkβ , ε̃

S
km. In order to do this, we need to solve a set of static boundary piezoelectric

problems
L∗(∇) · T = 0, ∇ · D = 0, x ∈ Ω , (1)

T = cE · S − e∗ · E = 0, D = e · S + εS · E = 0 , (2)
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S = L(∇) · u, E = −∇ϕ , (3)

u = L∗(x) · S0, ϕ = −x · E0, x ∈ Γ , (4)

where S0 is the six-dimensional array of constant values, E0 is the constant vector,
(. . .)∗ is the transpose operation,L(∇) is thematrix operator of differentiation, which
in transposed form is defined as follows

L∗(∇) =
⎡
⎣

∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

⎤
⎦ .

The set of boundary value problems is determined by specific forms of boundary
conditions (4). Let

S0 = ε0gζ , E0 = 0 , (5)

where ε0 = const, ζ = 1, 2, . . . , 6 is the fixed index,

g1 = {1, 0, 0, 0, 0, 0}, g2 = {0, 1, 0, 0, 0, 0}, g3 = {0, 0, 1, 0, 0, 0} , (6)

g4 = {0, 0, 0, 1/2, 0, 0}, g5 = {0, 0, 0, 0, 1/2, 0}, g6 = {0, 0, 0, 0, 0, 1/2} .

(7)
Then for each boundary value problem (1)–(5) with ζ = 1, 2, . . . , 6 and (6), (7) it

is necessary to find the solutions and determine the stress fields Tα , α = 1, 2, . . . , 6,
(T1 = σ11, T2 = σ22, T3 = σ33, T4 = σ23, T5 = σ13, T6 = σ12) and electric inductions
Dj, j = 1, 2, 3. After this, the stress fields and the electric induction fields, averaged
over the volume, will allow us to find the effective stiffness moduli c̃Eαζ and the
effective piezomoduli ẽjζ :

c̃Eαζ = 〈Tα〉/ε0, ẽjζ = 〈Dj〉/ε0 , (8)

where

〈(. . .)〉Ω = 1

|Ω|
( ∫

Ω

(. . .) dΩ
)

. (9)

Now we assume in (4)
S0 = 0, E0 = E0ek , (10)

where E0 = const, ek are the orts of the Cartesian coordinate system, k = 1, 2, 3 is
the fixed index.

By solving three (k = 1, 2, 3) problems (1)–(4), (10) we calculate the fields Tα ,
α = 1, 2, . . . , 6, and Dj, j = 1, 2, 3, their averaged values by (9) and determine the
effective piezoelectric moduli ẽkα , and the effective dielectric permittivity moduli
ε̃Sjk :

ẽkα = −〈Tα〉/E0, ε̃Sjk = 〈Dj〉/E0 . (11)
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We emphasize that the values Tα and Dj in (8) with ζ = 1, 2, . . . , 6 and in (11)
with k = 1, 2, 3 are different, since they are calculated from the solutions of prob-
lems (1)–(4) with different boundary conditions (4), specified by (5)–(7) or by (10),
respectively.

Note that up to the calculation accuracy, the following properties should be satis-
fied:

– the matrix of the effective stiffness moduli c̃Eαζ , found by (8) from the solutions of
six problems (1)–(5), should be symmetric;

– the effective piezoelectric moduli ẽjζ , found by (8) from the of six problems (1)–
(5), should coincide with those found by (11) from the solutions of three problems
(1)–(4), (10);

– the matrix of the effective dielectric permittivity moduli ε̃Sjk , found by (11) from
the solutions of three problems (1)–(4), (10), should be symmetric.

3 Some Models of Inhomogeneous Polarization
for Piezoelectric Composites

When analyzing the composites with the skeleton made of elastic piezoceramic
material containing inclusions or pores, we can expect high inhomogeneity of the
residual polarization vector P of piezoceramics. Indeed, even if the piezoceramics
are polarized in one direction, the electric field or electric induction vectors inside
the composite will not be parallel to this direction but will go around the inhomo-
geneities of the composite. Then it is logical to assume that the directions of the
vector P = P(x) at the first approximation can be obtained from the solution of the
model problem of the polarization of composite material in linear setting. We will
provide the mathematical setting of this problem in relation to the subsequent finite
element homogenization problem.

Let Ω be a cubic representative volume of the composite of the size L × L × L
with the mesh consisting of finite elements Ωem, Ω = ∪mΩem. It is assumed that
each elementΩem belongs to the domain of one of the two phases, namely, the unpo-
larized piezoceramics Ω(1) or the inclusion Ω(2). Consequently, each element Ωem

has dielectric properties of two phases, which we will consider isotropic materials
with dielectric permeabilities εi = ε

(j)
i , x ∈ Ω(j), j = 1, 2. We assume that the edges

x3 = 0 and x3 = L of the volumeΩ are electrodized and are subjected to the potential
difference ΔV = LE∗ with the field value E∗, which is enough for the polarization
of homogeneous piezoceramic material.

For the representative volume Ω with the help of FEM we solve the problem of
electrostatics

∇ · D = 0, D = εiE, E = −∇ϕ, x ∈ Ω , (12)

ϕ = LE∗, x3 = 0; ϕ = 0, x3 = L . (13)
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Using the obtained solution of the problem (12), (13) in central points of finite
elements Ωem ⊂ Ω(1), we compute the vectors Pem = Dem − ε0Eem, where ε0 is
the dielectric permeability of the vacuum, ε0 = 8.85 × 10−12 F/m. Let us assume
that these vectors with the accuracy up to the normalization are the vectors of the
piezoceramic polarization. Thus, herewe assume that the direction of the residual po-
larization vector coincides with the direction of the induced polarization component
under the action of the electric field in the composite nonpolarized material.

By virtue of the adopted hypothesis, we can associate with the finite elements
Ωem ⊂ Ω(1) the element coordinate systemsOxem1 xem2 xem3 [23, 26] with the axisOxem3
directed along the vector Pem. Let us denote as θ em

31 the angle, which this vector forms
with the axis Ox3 (Fig. 1).

In order to define the remaining axes, we consider the line of the intersection of
the plane Ox1x2 with the plane orthogonal to the axis Oxem3 , and denote the angle
between this line and the axis Ox1 as θ em

12 . Thus, the axes of local coordinate system
are obtained with the help of two rotations of the main coordinate system for the
given angles. The first rotation is performed around the axis Ox3 for the angle θ em

12 ,
which leads to the coordinate system Ox̃em1 x̃em2 x3. The second rotation is performed
around the axisOx̃em2 for the angle θ em

31 , which ultimately gives the necessary element
coordinate system Oxem1 xem2 xem3 .

In the case when the direction of the polarization vector Pem is close to the
direction of the axis Ox3, in order to ensure greater stability of the algorithm,
the choice of the first rotation angle θ em

12 can be subjected to the following con-
ditions: cos θ em

12 = Pem
1 /|Pem

12 |, if |Pem
12 | ≥ lem12 ; cos θ em

12 = 1, if |Pem
12 | < lem12 , where

lem12 = 0.001|Pem
12 |, Pem

12 = Pem − Pem
3 e3.

Now we can additionally take into account the inhomogeneity of the piezoce-
ramic polarization, when solving the homogenization problems described in Sect. 2.
Taking advantage of APDL language of the finite element software ANSYS, we
have previously implemented the following computation strategy [23, 24, 26]. In

Fig. 1 Element coordinate
system for a separate finite
element
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the existing finite element mesh, we modified all the electrostatic elements into the
elements with the possibilities of piezoelectric analysis. New elements were assigned
with the material properties of two types: the properties of polarized piezoceramics
for the finite elements of the first phase and the properties of inclusions or pores for
the elements of the second phase. At the same time, if the second phase consisted
of the set of pores, then the pores were considered as piezoceramic material with
negligibly small elastic and piezoelectric moduli and with dielectric permittivities
equal to the dielectric permittivities of vacuum. The element coordinate systems
Oxem1 xem2 xem3 , determined from the polarization vectors Pem obtained at the previous
stage, were assigned with the finite elements of the piezoceramic material of the first
phase. Further, in order to determine the effective moduli, we solved the problems
of electroelasticity for the inhomogeneous representative volume, using the meth-
ods described in Sect. 1. We note that when taking into account the inhomogeneous
polarization, the homogenization problems are solved on the finite element mesh,
in which each element of the polarized piezoceramics has, generally speaking, its
own moduli cEem, eem, εSem, obtained by the known formulas for the recalculation of
the tensor coefficients, when making a transition from the main coordinate system
Ox1x2x3 to the element coordinate systems Oxem1 xem2 xem3 [15].

If the polarization field is inhomogeneous, then problem (12), (13) is not used, and
all finite elements in the homogenization problem have either the properties of the
piezoceramicmaterial of the 6mmclass polarized along the axisOx3, or the properties
of pores. In the described above approach, the material moduli cEem, eem, εSem of the
finite elements of the first phase of piezoceramic composite were obtained from
the original moduli cE(1), e(1), εS(1), where the tensor coefficients were recalculated
after the rotation of the element coordinate systems. In the case when the residual
polarization vector does not achieve the maximal possible value of the saturation
polarization, the material moduli are the functions of this vector and the tensor of
residual strain. Not going into details for the determination of such dependence, here
we use linear approximation and assume that the material moduli cEem, eem, εSem of
the inhomogeneously polarized piezoceramics are linear functions of the residual
polarization. I.e. the material properties of the partially polarized ceramic linearly
change from the values at the state when the piezoceramics are thermally depolarized
(cEi , ei = 0, εS

i ), to the values of these moduli at the state of saturation cE(1), e(1),
εS(1). Indeed, following [36, 37], we adopt the following dependences

cEem = (1 − kp)cEi + kpcEemp , (14)

eem = kpeemp , (15)

εSem = (1 − kp)ε
S
i + kpε

Sem
p , (16)

where cEemp , eemp , εSem
p are the moduli obtained with the recalculation of the initial

moduli cE(1), e(1), εS(1) by the rotations of the element coordinate systems; cEi , εS
i

are the moduli for isotropic material, i.e. for nonpolarized ceramics the transversely
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isotropic 6mm class reduces to isotropic class: cEi11 = cEi33, c
E
i12 = cEi13, c

E
i44 = (cEi11 −

cEi12)/2, ε
S
i11 = εSi33 = εi.

The multiplier kp in (14)–(16) is the ratio of the magnitude of the element vector
of polarization Pem to the value of the magnitude of the polarization vector for the
homogeneous piezoceramics

kp = |Pem|/psat , (17)

where psat is the polarization value at the state of saturation, which in the frames of
the adopted model is determined by the following formula

psat = (εi − ε0)E∗ . (18)

When solving the problems of electrostatic for inhomogeneousmaterial with non-
smooth interphase boundaries, it is possible to encounter singularities in the electric
potential, electric field and electric induction. In such situations, themagnitude of the
residual polarization vector can exceed the maximal allowed value for the polariza-
tion at the saturation state, which is usually not permitted. In connection to this, we
can change the formula (17), thus eliminating the possibility of “superpolarization”
for the piezoceramic material:

kp =
{ |Pem|/psat, |Pem| ≤ psat ,
1, |Pem| > psat .

(19)

One more alternative approach is connected with the use of other constitutive
relations for the piezoceramics and therefore other dependences for the compliance
moduli of the inhomogeneously polarized ceramic sEemp , measured at constant electric
field, the piezomoduli dem

p and the dielectric permittivities εTem
p , measured at constant

(zero) mechanical stress [13, 35].

sEem = (1 − kp)sEi + kpsEemp , (20)

dem = kpdem
p , (21)

εTem = (1 − kp)ε
T
i + kpε

Tem
p . (22)

Here, similarly to (14)–(16), sEemp , dem
p , εTem

p are the moduli obtained by recalcula-
tion the original moduli sE(1), d(1), εT (1) with the rotations of the element coordinate
systems.

As the moduli from the sets {cE(1), e(1), εS(1)} and {sE(1), d(1), εT (1)} and so on are
connectedwith each other by the known relations sE(1) = (cE(1))−1,d(1) = e(1) · sE(1),
εT (1) = εS(1) + d(1) · e(1)∗), then having determined one of the sets of the material
moduli, it is possible to find the values of the moduli for the other set.

Meanwhile, relations (14)–(16) and (20)–(22) are not equivalent, and thus,
the question about the best approach for the determination of the moduli for
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inhomogeneously polarized piezoceramics in these simplified models remain open.
The approach connected with the use of relations (20)–(22) is more difficult for
practical implementation, but seems to be more reasonable.

At the same time, both models (14)–(16) and (20)–(22) can be implemented also
in ANSYS finite element software with the use of the programs in ANSYS APDL,
if we modify the electrostatic elements for piezoelectric analysis, changing their
element coordinate systems, as well as the values of their material properties.

4 ACELAN-COMPOSE Package Structure

4.1 Software Package Concept

ACELAN-COMPOS is a client-server GUI application with a modular structure.
The user interface is implemented as an application developed using HTML and
JavaScript and runs in a web-browser. The client-side application consists of the
following moduli:

1. Graphic 3D preprocessor – a component for creating and viewing the source
geometry. It is developed using theWebGLFramework. Currently, to start solving
the problem the user provides parameters for the new model, including preferred
connectivity type. Then the preprocessor allows analyzing generated mesh.

2. Tools for editing physical models – a set of forms for specifying boundary condi-
tions and material properties with the help of the ACELAN command language.

3. Graphic 3D postprocessor – a module for analyzing the solution obtained, which
includes the ability to view the solution both in tabular form and in the form
of visualizations over the original geometry. Supported viewing modes include
heat maps, vector field visualizations, sections and body viewing capabilities, etc.
WebGL Framework is also selected as the implementation tool for the graphic
postprocessor.

The server-side part of the package is a cross-platform application, developed using
the .Net Core Framework and the C# programming language. It is responsible for
performing calculations and processing the results of solving the problem. It allows
performing computations for different users simultaneously. The interaction between
the server and the client application is implemented by means of the REST API. The
main components are:

1. A set of mesh generators for composites of supported types. Various plug-in mesh
generators allow users to get models of composites that meet the required criteria.
Currently only two-component composites are supported.

2. The ALGLIB Library and custom implementation of the Page-Sanders algorithm
for solving systems of linear equations.

3. Finite element method solvers.



122 T. E. Gerasimenko et al.

4. Postprocessor for additional processing of the obtained solution and calculation
of derived values.

On the server side a relational database is used to store user problems data.

4.2 Material Editor

ACELAN-COMPOSmaterial library consists of two major parts: the storage system
built with relational database and the user interface. The storage system is imple-
mented with object-relational mapping tools from .NET packages. Universal storage
format is used for all material types. In this format, each material has its name and a
set of basic properties, such as density and anisotropy class, where all non-zero char-
acteristics of material properties are stored. The proposed storage scheme is based on
the ideas of sparse matrices storage formats. Due to the client-server architecture of
the package with multiple users, the database provides concurrent user access rights.
For a desktop version of the package, an embedded database is used. The material
database includes the ability to transform the set of material properties for isotropic
material to another type, such as, the Young’s modulus and Poisson’s ratio, the Lame
coefficients, or the bulk modulus and the shear modulus. Anisotropic materials can
depend on polarization angle and modulus. In this case, the rotation of the local
coordinate system is used to define the material properties.

The results of the effective moduli calculation for the composite material are
stored in the specially constructed material structures. After the effective moduli
calculation, these structures may have almost zero elements that contain negligibly
small values compared to the input numerical tolerance. In some cases, due to the
material distribution in representative volume, the anisotropy class of the composite
material can be different from anisotropy classes of its constituents. Such cases
require the analysis of anisotropy class change.However, inmost cases the anisotropy
class of the composite does not differ from initial anisotropy classes of its constitutive
phases, so that the negligibly small values, which appear at the places of initial zero
elements of the material properties structures, can be regarded as zeros. According
to the specified numerical tolerance, the computation results can be automatically
filtered, where almost zero values are replaced with zeros (Fig. 2). This filtration is
optional to the user, who can choose either the original or filtered results and therefore
control the output values.

The user interface was built with quite simple markup with the following features:
individual representations for the most used anisotropy classes, an auto-symmetry
tool to facilitate the process of the material properties input, and a tree structure for
easy access to the groups of materials.
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Fig. 2 User interface for results viewer

4.3 Representative Volume Element Models

The representative volumes of the composite materials in ACELAN-COMPOS can
be constructed using two basic models of 3–3 and 3–0 connectivity types. Since
the constitutive materials of the composite are identified in the volume only by
numeric labels, both models can be reversed by re-enumerating the bodies inside the
volume. The representative volumes are generated as the finite element meshes, with
possibility to perform export to the well-known CAE software formats as .inp. The
methods of the 3–3 and 3–0 models generation were previously presented in [11]
and [12] respectively. These methods are based on the well-known octree algorithm
[19].

Brief description of the 3–3 representative volume generation can be given as
follows. Each volume consists of clusters (Fig. 3), where each cluster is a cube made
of 512 finite elements with eight elements on each edge. All clusters are generated
separately, so that the parallel implementation can be used to improve performance.
Current version of the package is able to determine the number of the available pro-
cessors and to use them for simultaneous cluster generation. In each cluster, anchor
points for both materials are placed in specific predefined locations on the surface
to ensure that the material connectivity will not be broken between the clusters.
At the beginning, all other elements are marked as material #1. At the next step, a
random element of the cluster is marked as material #2. Then the shortest path is
constructed to connect this element with the material #2 anchor points. Afterwards,
the constructed material #2 structure is enlarged to achieve the needed percentage of
materials. As the connectivity of material #1 can be violated inside the cluster during
this process, the algorithm specially checks it at each step by a breadth-first search.

InACELAN-COMPOS, two variants of the 3–3 algorithm are implemented. In the
direct 3–3 connectivity algorithm, the connectivity ofmaterial #1 (orange elements in
Fig. 3) is ensured by the domain vertices, and the paths to the vertices are constructed
starting from the internal element in the domain. The connectivity ofmaterial #2 (blue
elements in Fig. 3) is ensured by the anchors located approximately in the middle of
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Fig. 3 Clusters for 3–3 representative volume with different input parameters

the domain faces. In the inverted 3–3 connectivity algorithm the phases numbers are
swapped. A detailed description of these algorithms can be found in [11, 12].

As it can be seen from Fig. 3, for a small proportion of inclusions the direct
algorithm distributes a significant part of the framework elements near the domain
edges (orange elements in Fig. 3 in the center and on the right), and, on the contrary,
the reverse algorithm collects most of the elements in the central part of the domain
(blue elements in Fig. 3 in the center and on the left).With a larger number of domains,
these effects are leveled, since in this case a part of the domain boundaries lays inside
the representative volume.

For 3–0models, user can setup not only the needed percentage but also the granule
size limits, aswell as definewhether the granules are allowed to join each other during
the representative volume generation process. These parameters are important for
setting limitations on the resulting material distribution. Therefore, they must be
chosen according to the known information about the studied composite.

The generated finite element meshes can be viewed in ACELAN-COMPOS web
application user interface (Fig. 4).

Fig. 4 Example of 3–3
representative volume with
32,768 elements
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4.4 Finite Elements, Solvers, and Postprocessing

ACELAN-COMPOS finite element library contains two types of elements: HEX8
and HEX20. These elements are an isoparametric 8-node linear hexahedron and
a 20-node quadratic serendipity hexahedron, respectively, with the capabilities of
piezoelectric, elastic or electrostatic analyses.Most numerical experiments in current
version of the package were performed with HEX8 element. This element is based
on the multiplicative cubature formula with 8 integration points.

Class hierarchy and several program interfaces allow us to use the elements with
different shape functions and integration schemes. The current version of the finite
element library was designed for conventional analysis, but in the case of solving
the problems for a representative volume with regular mesh, we can make some
simplifications. Note that all finite elements in pre-generated volumes have the same
size, form and their faces are parallel to the coordinate axes. Then the brick elements
are not actually isoparametric, since the parametric mapping becomes trivial, and
the any single element provides linear behavior respect to each variable x1, x2 and
x3. Moreover, as there are only two materials, only two different element matrices
must be evaluated.

The global finite element matrix is stored in sparse format and can be passed
to direct or iterative solvers. Both open-source and custom solvers are included in
the current version of the package. Export of matrices is also supported for further
research of the most applicable external sparse system solving tools. Normalization
technique is applied to global matrix to reduce computational errors in coupled
problems.

After solving the boundary value problems (1)–(5) or (1)–(4), (10) by the finite
element method, the ACELAN-COMPOS package calculates by (8) or (11) the
components of the averaged stress and electric induction. In order to calculate the
components Tα ∼ σij and Dj, it is necessary to determine the derivatives of the finite
element solutions u(x) and ϕ(x). As is known, the calculation of derivatives in FEM
has some features associatedwith their smoothing.Moreover, in the case of composite
media, it is suggested [3, 4, 38] to carry out such smoothing separately along the
subdomains of different phases. However, to find the effective moduli, we need not
the values of the stress fields and electric induction at different points of the medium,
but rather their integral characteristics. For these integral values, smoothing is not
necessary, and we can calculate the integrals of the various components of stresses
and electric induction over separate finite elements. These calculations are performed
with the same multiplicative 8-point cubature formulas that were used to calculate
the element matrices. This approach allows us to use the optimal values of the field
gradients [1] and implicitly restore these gradients, at least in the form of full linear
polynomials for each variable x1, x2 and x3.
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5 Numerical Examples

As an example, we present the results of the effective moduli calculation for a
porous piezoceramic material. The main active phase is the PZT-4 solid piezo-
ceramic material, with the following moduli in the crystallographic coordinate
system: cE(1)

11 = 13.9 × 1010 (N/m2); cE(1)
12 = 7.78 × 1010 (N/m2); cE(1)

13 = 7.43 ×
1010 (N/m2); cE(1)

33 = 11.5 × 1010 (N/m2); cE(1)
44 = 2.56 × 1010 (N/m2); e(1)

31 = −5.2
(C/m2); e(1)

33 = 15.1 (C/m2); e(1)
15 = 12.7 (C/m2); εS(1)

11 = 730ε0; ε
S(1)
33 = 635ε0, ε0 =

8.85 × 10−12 (F/m). The second phase of the composite is the pores, which will be
considered as a piezoceramic material with negligibly small moduli: cE(2)

αβ = κcE(1)
αβ ;

e(2)
jβ = κe(1)

jβ ; εS(2)
jj = ε0; κ = 10−10.

We will investigate three models of porous PZT ceramics:

– model 1 with uniform polarization of the piezoceramic phase;
– model 2 with inhomogeneous polarization based on cEeεS -relations (14)–(16) and
(17), (18);

– model 3 with inhomogeneous polarization based on sEdεT -relations (20)–(22) and
(17), (18).

In cases 2 and 3, we find the moduli of unpolarized ceramics as Hill-averaged
polycrystalline body constants equal to the moduli of dense polarized PZT ceramics
sE(1) = (cE(1))−1,εT (1). As a result of the calculations,we obtain the following values:
cEi11 = 13.0 × 1010 (N/m2); cEi12 = 7.52 × 1010 (N/m2); εSi11 = εTi11 = 1387ε0.

In numerical calculations, we used an inverted 3–3 connectivity algorithm for the
representative volume with 16 elements on each side.

The results of the calculations are presented in Figs. 5, 6, 7 and 8 for porosity 0 ≤
p ≤ 60%. Here and after r() denotes the relative values of the effective properties,
with respect to the corresponding values of themoduli for zero porosity. For example,
r(cE33) = c̃E33/c

E(1)
33 , where c̃E33 is the effective stiffness modulus for the porous PZT

ceramics, cE(1)
33 is the value of the stiffness modulus for an ordinary piezoceramic

material and so on. The curves 1–3 correspond to the models 1–3, respectively.
As can be seen from Figs. 5, 6, 7 and 8, the dependences on porosity and on polar-

ization models for the effective stiffness moduli, the piezomoduli and the dielectric
permittivities are quite different.

The effective stiffness moduli monotonously decrease with increasing porosity,
and taking into account inhomogeneous polarization only slightly reduces their val-
ues. The sEdεT -model for most porosity values gives slightly smaller stiffness values
compared to the cEeεS -model. At the same time, Fig. 5 shows only the graphs for
the relative moduli r(cE33) and r(cE13). The other stiffness moduli behave similarly
to those given. However, for the relative shear modulus r(cE44) there is a situation,
when even for a small porosity the model which takes into account inhomogeneous
polarization slightly increases the values of r(cE44) compared to the homogeneous
polarization model.

The effective piezomoduli (Figs. 6 and 7a) also decrease with increasing poros-
ity, but taking into account the inhomogeneity of the polarization field significantly
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Fig. 5 Dependencies of the relative effective stiffness moduli r(cE33) and r(cE13) versus porosity

Fig. 6 Dependencies of the relative effective piezomoduli r(e33) and r(e31) versus porosity

reduces their values, and the most significant decrease takes place for the sEdεT -
model. The behavior of the relative piezomodulus r(e31) (Fig. 6b) versus porosity
p > 40% is unusual in the sense that it becomes negative and even slightly increases
for p > 50%. A similar effect was observed in other computational experiments
with 3-3 connectivity algorithms [11]. This effect for other models of the represen-
tative volumes does not always occur, and can be explained by the peculiarities of
the composite phases generation, as well as by very small values of the effective
piezomodulus ẽ31.

The effective dielectric constant ε̃S33 (Fig. 7b) also decreaseswith increasing poros-
ity. But, in contrast to the effective stiffness, taking into account inhomogeneous
polarization leads to an increase in their values for most porosity values, and the
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Fig. 7 Dependencies of the relative effective piezomodulus r(e15) and dielectric permittivity r(εS33)
versus porosity

Fig. 8 Dependencies of the relative effective piezomoduli r(d33) and r(d31) versus porosity

cEeεS -model gives the highest values. The effective dielectric permittivity ε̃S11 be-
have similarly to the ε̃S33 modulus.

Note that for practical applications, especially in hydroacoustics, the values of
the piezomoduli d̃iα are very important. In a number of papers [5, 6, 32], it was
noted that for a porous piezoceramics, the effective thickness piezomodule d̃33 prac-
tically does not decrease with increasing porosity. In other papers [2, 17, 18, 41], a
decrease in the effective thickness piezomodule was noted. As we see from Fig. 8a
without polarization heterogeneity, the effective thickness piezomodule d̃33 is almost
constant, and with a large porosity it even slightly increases. Meanwhile, taking into
account the polarization inhomogeneity leads to a decrease in themodulus d̃33, which
corresponds to the papers [5, 6, 32]. This effect also depends on the structure of the
representative volume. Thus, Fig. 8a confirms that the structure of porosity and the
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technology creating of porous piezoceramics significantly affect of the piezomodule
d̃33. The relative effective piezomodule r(d31) (Fig. 8b) decreases with increasing
porosity, and taking into account the polarization inhomogeneity gives its stronger
decrease. This behavior is consistent with other known papers.

6 Conclusion

In this paper we have described new features of the ACELAN-COMPOS package.
This package is designed to determine the effective moduli of active composites.
It solves the homogenization problems based on the effective moduli method, the
representative volume simulation and the finite element method. Taking into account
inhomogeneous polarization in combinationwith the simulation of various structures
of the representative volumes allows us to detect the main features of the porous
piezoceramic effective moduli dependence versus porosity. These features also de-
pend on the values of the moduli cEi11, c

E
i12, ε

S
i11 for the nonpolarized piezoceramics.

In the above numerical example, there was the situation when cE(1)
33 ≤ cEi11 ≤ cE(1)

11 ;
cE(1)
13 ≤ cEi12 ≤ cE(1)

12 ; εSi11 = 1.9εS(1)
11 . In this case, taking into account the inhomo-

geneity of the polarization field had a different influence on the stiffness moduli and
on the dielectric permittivity constants.

Our models prove, that taking the inhomogeneous polarization into account leads
to the fact that a sufficiently large part of PZT ceramics turns out to be less polarized
than for the case of uniform polarization. In addition, the directions of the polariza-
tion vector in the vicinity of the pores become different from the main polarization
direction along the Ox3 axis. In this case, the polarization vectors in the vicinity of
the pores rotate in different directions, going around the pores. Thus we can mark
a conclusion that taking into account inhomogeneous polarization significantly re-
duces the relative values of the effective piezomoduli, especially the piezomoduli
r(e31) and r(d31).

Further research on the influence of nonuniform polarization field on the effective
moduli of porous PZT ceramics can be associated with the using more accurate
nonlinear polarization models and performing calculations for various structures
and connectivities of porous piezoceramics.
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Three-Dimensional Problems
of Harmonic Wave Propagation
in an Elastic Layer

Mels V. Belubekyan and Vagharshak M. Belubekyan

Abstract In the present paper three-dimensional problem of propagation of elastic
waves in a waveguide is considered, when several different boundary conditions are
realized on the surfaces of the waveguide. We then establish the conditions where
surface waves are permissible.

1 Introduction

Problems of dynamics of theory of elasticity of isotropic solids allow decou-pling
of solutions for plane and anti-plane deformation. Fundamental results in investiga-
tion of elastic waves in layers are obtained for decoupled problems, e. g. Rayleigh
waves and Love waves [1, 2]. On other hand, while three-dimensional problems are
more natural to formulate, the investigation of such problems is more complex, than
problems for decoupled plane or anti-plane waves.

A beginning to investigations in area of three-dimensional waves was set by the
work of J. K. Knowles, where a generalization of Rayleigh surface wave is provided.
Later the waves of Rayleigh type with mixed boundary conditions of a surface on
a semi-plane in the three-dimensional formulation were studied in [3–5]. Similar
problems for anisotropic media were considered in [6, 7], and waves of the Stoneley
type in [8].

2 Problem Statement

Let the elastic layer in the Cartesian coordinate system (x, y, z) occupy the domain:
−∞ < x < ∞, 0 ≤ y ≤ h,−∞ < z < ∞. The equation of wave propagation in
isotropic elastic media is taken in the form following the notations of Nowacki [9]:
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c2t �u + (
c2e − c2t

)
grad divu = ∂2u

∂t2
(2.1)

where u is the vector of elastic displacements, and

u = uî + v ĵ + wk̂, c2e = λ + 2μ

ρ
, c2t = μ

ρ
(2.2)

Following [3] we introduce potential functions in Eq. (2.1):

u = ∂ϕ

∂x
+ ∂ψ

∂z
, w = ∂ϕ

∂z
− ∂ψ

∂x
, (2.3)

these are similar to the known Lamé transform for problems of plane deformation.
With the help of (2.3) the projections of vector Eq. (2.1) are obtained in the following
form:

c2e�2ϕ + c2t
∂2ϕ

∂y2
− ∂2ϕ

∂t2
+ (

c2e − c2t
)∂v

∂y
= 0

c2t �v + (
c2e − c2t

) ∂

∂y
�2ϕ + (

c2e − c2t
)∂2v

∂y2
= ∂2v

∂t2

c2t �ψ = ∂2ψ

∂t2
,�2 ≡ ∂2

∂x2
+ ∂2

∂y2
(2.4)

Taking derivative on y of the second equation of the system (2.4) and substituting
the expression for ∂v/∂y from the first equation, as in [3] we obtain:

(
Δ − 1

c2t

∂2

∂t2

)(
Δϕ − 1

c2t

∂2ϕ

∂t2

)
= 0 (2.5)

Thuswe obtained autonomous (decoupled) equationswith respect to the unknown
function ϕ, which is Eq. (2.5), andψ , which is the third equation of the system (2.4).
Note that ϕ and ψ functions yield all components of the elastic displacements: u, w

are obtained from definition of ϕ andψ (2.3), and v is obtained from the first equation
of the system (2.4).

3 Harmonic Waves Representation

Let us represent the solutions of Eq. (2.5) and the third equation of system (2.4) in
the form of harmonic waves:

ϕ = φ(y)expi(ωt − k1x − k3z)
ψ = ψ(y)expi(ωt − k1x − k3z)

(3.1)
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The substitution of (3.1) into autonomous equations for ϕ(x, y, z, t), ψ(x, y, z, t)
yields ordinary equations with respect to functions φ(y), ψ(y), and the general solu-
tion to those equations would be:

φ(y) = A1ep1ky + B1e−p1ky + A2ep2ky + B2e−p2ky

ψ(y) = c1ep2ky + c2e−p2ky
(3.2)

where

p1 = √
1 − θη, p2 = √

1 − η, k =
√
k21 + k2

η = ω2

k2C2
t
, θ = C2

t
C2
e

(3.3)

Expressing the component v of displacements as follows:

v(x, y, z, t) = V (y)expi(ωt − k1x − k3z) (3.4)

from the second equation of system (2.4), taking into account (3.1) and (3.2) we
obtain:

V (y) = k

(
p1A1e

p1ky − p1B1e
−p1ky + 1

p2
A2e

p2ky − 1

p2
B2e

−p2ky

)
(3.5)

Based on the obtained general solutions, in the present paper we aim to study the
propagation of elastic waves in the layer, when the surface y = 0 is free of stresses,
as in the three-dimensional formulation of Rayleigh’s problem [10]:

σyy = 0, σyx = 0, σyz = 0y = 0 (3.6)

while several types of boundary conditions can be realized on the second surface
y1 = h.

Conditions (3.6) expressed in terms of displacements yield:

(λ + 2μ)
∂v

∂y
+ λ

(
∂u

∂x
+ ∂w

∂z

)
= 0,

∂v

∂x
+ ∂u

∂y
= 0,

∂v

∂z
+ ∂w

∂y
= 0 (3.7)

Applying the transformation (2.3) and representation of the general solutions
(3.1), (3.4), from (3.7) we obtain the boundary conditions with respect to the new
desired functions:

(λ + 2μ)V ′ − λk2φ = 0, V + φ′ = 0, ψ ′ = 0 when y = 0 (3.8)

By requiring that the general solution (3.2), (3.5) should satisfy the boundary
conditions (3.8), one obtains relations between the arbitrary constants: the constants
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B11B2 are expressed through A1, A2 and the constant C2 is expressed through C1, as
follows:

B1 = − 1

R
[R1A1 + 4(2 − η)A2] (3.9)

B2 = 1

R
[4p1 p2(2 − η)A1 + R1A2],C2 = C1 = 2C

where

R = (2 − η)2 − 4p1 p2, R1 = (2 − η)2 + 4p1 p2 (3.10)

And finally for solutions satisfying to free-boundary conditions at the surface
y = 0, we obtain:

φ = 2

R
[(2 − η)2shp1ky − 4p1 p2chp1ky + 2p1 p2(2 − η)e−p2ky]A1

+ 2

R

[
(2 − η)2chp2ky − 4p1 p2shp2ky − 2(2 − η)e−p1ky

]
A2

ψ = C chp2ky

v = 2k

R
× {

p1
[
(2 − η)2chp1ky − 4p1 p2shp1ky − 2(2 − η)e−p2ky

]
A1

+ 1

p2
[(2 − η)2shp2ky − 4p1 p2chp2ky + 2p1 p2(2 − η)e−p1ky] A2} (3.11)

The expressions (3.11) contain three yet unknown constants A1, A2,C , which are
to be determined from the boundary conditions at the second surface of the layer, the
y = h surface.

4 Navier Conditions at the Second Surface

Let the second surface y = h be subjected to Navier conditions:

σyy = 0, u = 0, v = 0when y = h (4.1)

Introducing functions ϕ,ψ the conditions (4.1) are transformed to the following:

∂v

∂y
= 0,

∂ϕ

∂x
+ ∂w

∂z
= 0,

∂ϕ

∂z
− ∂w

∂x
= 0 when y = h (4.2)

After some transformations, expressions (3.1), (3.4) yield the following simple
boundary conditions:



Three-Dimensional Problems of Harmonic Wave … 137

φ = 0, φ′′ = 0, ψ = 0 when y = h (4.3)

According to expansion for ψ taken from (3.10) and the third condition of (4.3),
the following equality holds:

C ch p2kh = 0 (3.4)

From (4.4) it follows that either C = 0 and all the phase velocities would be
determined solely from equations for A1, A2 according to boundary conditions for
function φ(y), or the following conditions should hold η > 1,

(
p2 = i

√
η − 1

)
, and

thus

cos
√

η − 1 kh = 0, η = 1 +
[
(2n − 1)π

2kh

]2

, (4.5)

The equality (4.5) means that in that case purely shear waves are propagating
with phase velocity (η) defined by (4.5). Obviously if (4.5) takes place, then for such
phase velocities A1 = A2 = 0 (φ ≡ 0).

On other hand, the requirement for φ from (3.2) to satisfy the boundary conditions
(4.3), leads to the following system of linear algebraic equations with respect to
constants A1, A2:

[
(2 − η)2sh p1kh − 4p1 p2ch p1kh + 2p1 p2(2 − η)e−p2kh

]
A1

+ [
(2 − η)2ch p2kh − 4p1 p2sh p2kh − 2(2 − η)e−p1kh

]
A2 = 0

p1
[
(2 − η)2 p1sh p1kh − 4p21 p2ch p1kh + 2p32(2 − η)e−p2kb

]
A1

+ [
(2 − η)2 p22ch p2kh − 4p1 p

3
2sh p2kb − 2(2 − η)p21e

−p1kh
]
A2 = 0 (4.6)

Setting the determinant of system (4.6) to zero, after some transformations we
obtain the dispersion equation:

K (η) ≡ −(
p21 − p22

)
R2(η) = 0 (4.7)

where:

R2(η) ≡ (2 − η)4shp1kh chp2kh − 4p1 p2(2 − η)2 shp1khshp2kh−
− 4p1 p2(2 − η)2chp1khchp2kh + 16p21 p

2
2chp1kh · shp2kh+

+ 4p1 p2(2 − η)2e−(p1+p2)kh (4.8)

For short waves (in approximation kh >> 1) the equation R2(η) = 0 is reduced
to the known Rayleigh equation [9]:

R2(η) ≡ e(p1+p2)kh
[
(2 − η)2 − 4p1 p2

]2 = 0 (4.9)
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Equation (4.8) has always a root satisfying the condition of localization:

0 < η < 1 (4.10)

This becomes obvious if long waves’ approximation (kh)2 << 1 is considered.
In monographs [11, 12] the solutions of spatial problems for elastic layers are

provided using asymptotical methods in approximation of thin layer.

5 Boundary Conditions of Sliding Contact and Clamped
Edge at the Second Surface

As a second type of boundary conditions on the surface y = h let us consider the
conditions of sliding contact:

v = 0, σyx = 0, σyz = 0 when y = h (5.1)

By using the Hooke’s law, instead of (5.1) one can write:

v = 0,
∂

∂y

(
∂ϕ

∂x
+ ∂ψ

∂z

)
= 0,

∂

∂y

(
∂ϕ

∂z
− ∂ψ

∂x

)
= 0 when y = h (5.2)

Then by using expressions (5.1), (3.4) the conditions of the sliding contact can be
finally represented as follows:

φ′ = 0, V = 0, ψ ′ = 0 when y = h (5.3)

The condition ψ ′ = 0, similarly to the previous case, leads to purely shear waves
(c �= 0) with the following phase velocity:

η = 1 +
(nπ

kh

)2
(5.4)

Alternatively, in the case C = 0 the dispersion equation is obtained by satisfying
the first two conditions from (5.3). These leads to the following system of linear
algebraic equations with respect to constants A1, A2:

p1
[
(2 − η)2chp1kh − 4p1 p2shkp1kh − 2p22(2 − η)e−p2kh

]
A1

+ [
(2 − η)2 p2shp2kh − 4p1 p

2
2chp2kh + 2p1(2 − η)e−p1kh

]
A2 = 0

+ p1
[
(2 − η)2chp1kh − 4p1 p2shp1kh − 2(2 − η)e−p2kh

]
A1

+ 1

p2

[
(2 − η)2shp2kh − 4p1 p2chp2kh + 2p1 p2(2 − η)e−p1kh

]
A2 = 0 (5.5)
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By setting the determinant of system (5.5) equal to zero, after some transforma-
tions we obtain the dispersion equation:

M(η) ≡ (2 − η)4thp2kh − 4p1 p2(2 − η)2(1 + thp1khthp2kh)

+ 16p21 p
2
2thp1kh

+ 4p1 p2(2 − η)2(chp1khchp2kh)−1e−(p1+p2)kh = 0 (5.6)

Equation (5.6) in the short-wave approximation kh >

1(thp2kh ≈ 1, thp1kh ≈ 1) reduces to the squared Rayleigh’s equation:

[
(2 − η)2 − 4p1 p2

]2 = 0 (5.7)

The value of η = 1(p2 = 0) satisfies Eq. (5.6). In the phase space the root η = 1
divides the domain of phase velocities η > 1 from domain 0 < η < 1 of phase
velocities for which localization near the free surface takes place [13]. By eliminating
the root η = 1 from equation dividing it by p2 and taking the limit p2 → 0, we
obtain the new equation:

(
kh − 4

√
1 − θ

)
ch

√
1 − θkh − 4

√
1 − θexp

(
−√

1 − θkh
)

= 0 (5.8)

Denoting the root of Eq. (5.8) as (kh)∗, then obviously when kh > (kh)∗ and
also in the limit case kh → ∞ corresponding to Eq. (5.7), the dispersion equation
should have a root within the range 0 < η < 1. From Eq. (5.8) there also follows an
approximate formula for the root:

(kh)∗ ≈ 4
√
1 − θ = 2

√
2√

1 − v
(5.9)

Let us also consider the case of boundary conditions of the clamped edge [14,
15]:

u = 0, v = 0, w = 0when y = 0 (5.10)

Applying transformation (2.3) and expressions (3.1), (3.4), the boundary condi-
tions for the sought functions are obtained as follows:

� = 0,V = 0, � = 0 when y = 0 (5.11)

Similarly to the above considered cases, fromcondition� = 0 there follows either
condition C = 0 or a condition for purely shear waves. Requiring that solution (3.8)
should satisfy the first two boundary conditions of (5.11), one comes to a system of
linear algebraic equations with respect to A1, A2. By putting the determinant of this
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system equal to zero, we obtain the dispersion equationwith respect to dimensionless
characteristic η of the phase velocity:

[
(2 − η)2shp1kh − 4p1 p2chp1kh + 2p1 p2(2 − η)e−p2kh

]×
× [

(2 − η)2shp2kh−4p1 p2chp2kh + 2p1 p2(2 − η)e−pikh
]−

− p1 p2
[
(2 − η)2chp2kh − 4p1 p2shp2kh2(2 − η)e−p1kh

]×
× [

(2 − η)2chp1kh − 4p1 p2shp1kh − 2(2 − η)e−p2kh
] = 0 (5.12)

For the short waves approximation Eq. (5.12) is reduced to the known Rayleigh
equation [9, 10, 16]:

(1 − p1 p2)
[
(2 − η)2 − 4p1 p2

]2 = 0 (5.13)

Equation (5.12) has the root η = 1(p2 = 0). Eliminating this root from the equa-
tion, we obtain the equation with respect to the relative wavelength kh, defining
the transition localized waves, that is the transition to the range 0 < η < 1 of the
allowable waves of the Rayleigh type:

(
kh − 4

√
1 − 0

)
sh

√
1 − θkh − √

1 − θch
√
1 − θkh+

+ 2
√
1 − θ

(
sh

√
1 − θkh + ch

√
1 − θkh − 1

)
e−√

1−θkh

+ √
1 − θ = 0 (5.14)

Noticing, that the roots of this equation should be greater than 1, we obtain the
approximate expression:

(kh)∗ > 5
√
1 − θ (5.15)

Thus, for these values of kh, the waves localized in the vicinity of the free surface
(y = 0) of the layer are permissible.

6 Conclusion

The problems of wave propagation in the elastic layer are studied in the three-
dimensional formulation. One of the external surfaces of the layer is considered to
be free of stresses. For a second surface a number of different boundary conditions
are investigated, namely Navier conditions, sliding contact conditions and clamped
boundary conditions. Short- and long-wave approximations of the respective dis-
persion equations are analyzed. Then we formulate the conditions, under which the
localization of waves in the vicinity of the free surface is possible.
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The Experimental Study
of a Metamaterial with a Triple-Periodic
Microstructure on the Epoxy Base

Vladimir M. Zotov, Vitaly V. Popuzin and Alexander E. Tarasov

Abstract We perform an experimental investigation of the acoustic properties of a
metamaterial consisting of triple periodic system of metallic spheres, coated with an
epoxy resin. Comparisons are given with the replacement of the wave propagation
medium from an epoxy base to water and ice. Thenwe consider the case of aluminum
specimenswith holes filledwithwater and ice.Adetailed analysis of the experimental
data is performed.

1 Introduction

Many published works are devoted to the study of the filtering properties of acoustic
meta-materials. A classical approach is developed in [1], where the passage of an
acoustic wave through a cube consisting of steel spheres covered with a thin silicone
filmand coatedwith epoxy resin is considered. Itwas oneof thefirstworks in this area,
where the study of this phenomenon has been carried from the purely experimental
point of view.Many important properties of themetamaterials are discussed in [2–5].
It should also be noted that an efficient mathematical model for US evaluation has
been proposed in [6].

Here we continue to perform some experimental research and pay a special atten-
tion to some new aspects. We evaluate how critical is the presence of the silicone
shell in terms of filtering properties of this meta-material. In addition, we estimate
the effect of various media which fill the holes in the meta-material—an epoxy resin,
water, and ice. In the second part we use some samples from experimental Chapter
“An Experimental Model of the Acoustic Wave Propagation Through a Cascading
Triple-Periodic Array of Cylindrical Holes” of this book, in which the orthogonal
holes were filled with analogous media.
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Fig. 1 Industrial ultrasonic flaw detector USD60-N

As the measuring equipment, we use the industrial ultrasonic flaw detector
USD60-N (Fig. 1) with a set of sensors listed in Table 1 of Chap. 3 (Fig. 2), where we
choose only the with the operating frequency low than 2.5 MHz. All measurements
were carried out by the thorough-transmission method, when the radiating and the
receiving sensors are located on the opposite sides of the sample.

2 Materials and Samples

A set of samples were prepared for this series of experiments. As ametamaterial with
a triple periodic microstructure we use a sample which is made in the form of a cube
containing 5mm diameter metal spheres, coated with epoxy resin. The technology of
making such a cube sample consist of several stages. First, we make a plexiglass box
with internal dimensions 30 × 30 × 30 mm. Next, we place spheres as horizontal
layers of 6× 6 rows into the box. Then, the spheres in the box are gradually, so that
no air bubbles remain, coated with epoxy resin, after which the box is placed in a
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Fig. 2 A set of low-frequency ultrasonic sensors used in the measurements

Fig. 3 Experimental samples: on the left—steel spheres coated with epoxy resin inside a Plexiglas
box; in the center—the previous sample, extracted from the plastic box; on the right there is a cube
of magnetized spheres

heating cabinet heated to 60 °C to polymerize the epoxy resin. After polymerization
the cube of the balls in a polymerized epoxy resin is removed from the box (Fig. 3).

As a second sample we use a cube of magnetized spheres, made of an alloy of
Nd–Fe–B with a chromium-nickel coating. The measurements with this sample are
made in water and in ice. The measurements in water for the described cube are
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carried out by an immersion method. The cube is placed in a bath of water. By
using the receiving and transmitting ultrasonic sensors with connectors hermetically
isolated from thewater, we investigate the passage of the ultrasonic waves at different
frequencies. The ultrasonic sensors are tightly sealedwith a rubber sheath, preventing
the liquid from the contact points of the sensor to the flaw detector.Most of the sensor
part is placed inside the water tank, and the part connected to the flaw detector is
located above the water. For similar measurements with ice, we use a cube frozen at
−10 °C in a small bath of water, which was cut out of the bath in accordance with the
30 × 30 × 30 mm size required for measurements, and then the ultrasound studies
are carried out. It should be noted that in this case a weak melting of ice creates a
good contact medium for the passage of the ultrasonic pulse, and as a consequence,
the use of additional lubricants typical in the ultrasonic flaw detection is not required.

For the second series of experiments, to study the acoustic properties of meta-
materials with different filling of the buffer space (water, ice), we use aluminum
samples with a system of holes described in Chapter “An Experimental Model of the
AcousticWave Propagation Through a Cascading Triple-Periodic Array of Cylindri-
cal Holes”, filling their holes. The measurements of the amplitude of the transmitted
ultrasonic pulse through the samples were carried out for three cases of the holes’
filling: air, water, and ice. The experiments with air are described in detail in Sect. 3.
The measurements in the case of water differ from those for a cubic sample of
spheres. In this case, the immersion method is not used. Instead, we use a special
preliminary preparation of the sample. The sample is first immersed in the water.
Then it is covered with a rubber bandage over the holes, as shown in Fig. 4. After

Fig. 4 Aluminum sample
with a cross hole system,
covered with a bandage, to
keep the holes full of water
and further freezing
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that, the sample is removed from the water, placed on the installation desk, to per-
form the measurements. The preparation of the Sample, for measurements with ice,
is carried out similarly to the preparation of a cubic sample of spheres. The sample
with water in the holes held by a rubber bandage is frozen at −10 °C, after which
the measurements are performed.

3 Results of the Experiments

Let us consider the experimental data obtained. Figure 5 presents the diagrams for
the through-transmitted signal, for the cubic samples consisting of the triple periodic
array of spheres with different media filling the space between these spheres. The
vertical amplitude in Fig. 5 represents the difference in dB between the peak of the
passed signal in the sample and the amplitude of the reference passed signal.

The diagrams demonstrate the filtering properties of the meta-material at a fre-
quency around 1 MHz, where the minimum of the amplitude of the passed signal is
clearly visible. It is curious that at a given frequency, the transverse wave length in
the spheres, of which the sample is composed, is approximately equal to 5.15 mm,
which is very closed to the diameter of the spheres (the velocity of the transverse
waves in steel and iron is approximately 5150 m/s.). It is worth noting that in water
this minimum shifts towards a higher frequency.

Also, from this graph one can notice some differences in the influence of purely
acoustic (water) and elastic media on the filtering properties of the studied meta-
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Fig. 5 The amplitude of the through-transmitted signal versus frequency: upper solid line—exper-
iments in water by the immersion method; middle dashed line—experiments for the sample filled
with epoxy resin; bottom dotted line—experiments for the sample filled with ice
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material. The main distinctive property of elastic media is the possibility of trans-
forming longitudinal waves to transverse one and vice versa, while in purely acoustic
media only longitudinal waves can propagate.

In the case of the acoustic medium, the filter band begins with a sharp decline
starting from around 1 MHz, and after a minimum value of the of transmission
amplitude this again tends to increase. In the case of the considered elastic media,
the appearance of the filtering band becomes smoother, without a sharp jump noted
in the acoustic case. Moreover, the subsequent maximum occurs rather quickly and
is not so high, after which a gradual decrease in the passage of the wave follows
again.

Figure 6 shows the measured results for aluminum parallelepipeds with different
fillings of cross hole systems, where the vertical amplitude, as in the previous case,
means the difference in dB between the peak of the passed signal in the measured
sample and the amplitude of the reference passed signal. It can be seen from the
diagrams that acoustic media show similar filtering properties in the entire frequency
range, with the only difference that filling the holes with water reduces the amplitude
of the passed signal. Ice filling behaves differently for different samples. So, in the
case of the second sample, the elastic medium is between acoustic water and air,

Table 1 The maximum amplitude of the passed signal, measured in dB, and as a percent with
respect to size of the display

f (MHz) Passed signal amplitude

Boxed Unboxed

2.5 −5.9 dB −2.1 dB

1.8 12 dB 12 dB

4% 4%

1.25 −4 dB 9.5 dB

– 3%

0.6 32.5 dB 31.6 dB

42% 38%

0.4 22.9 dB 35.4 dB

14% 59%

0.2 42 dB 34.3 dB

52% 126%

0.08-0.1 42 dB 42 dB

126% 126%

0.06 29.2 dB 42 dB

29% 126%

0.04 41.9 dB 41.7 dB

125% 122%
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representing the average. For the first and third samples, the change in the vertical
distance between the horizontal rows of holes leads to a shift in the beginning of the
first filter fall to higher frequencies, and in the remaining interval the elastic medium
has better transmission characteristics almost everywhere. It is interesting that, for
the fourth sample, the behavior is rather opposite, since the filling of the holes with
ice leads to the smallest amplitude of the passed signal, starting from the frequency
in which, for samples 1 and 3, such filling, on the contrary, improves the permeability
when compared with acoustic media.

In addition, we carried out a series of measurements for a cubic sample of spheres
coatedwith epoxy resin, before and after removal from the forming box. The obtained
results are shown in Table 1. It is seen that the presence of a layer of Plexiglas affects
only at a certain set of frequencies. Thus, a significant damping of the amplitude of
the transmitted signal in such a case is noticeable at frequencies of 0.06, 0.2, 0.4 and
1.25 MHz.

Figure 7 represents the spectral analysis taken over a 200µs interval. The spectral
characteristics are automatically normalized by the amplitude of the signal received
at the receiver, therefore these graphs should be analyzed together with Table 1. The
frequencies of 0.09, 0.6 and 0.85 MHz out, as can also be seen from the envelope of
the obtained spectra, shown in Fig. 8.

4 Conclusion

– When used as a component of meta-materials, elastic and acoustic media are
distinguished by their influence on filtering properties. Acoustic media generally
increase the transmission coefficient, while the elastic ones enhance the filtering
properties.

– In the case of elasticmedia for a cubic experimental sample ofmetal spheres coated
with epoxy resin, strongly expressed filtration at a frequency of 1 MHz appears.
This property, in our opinion, is associated with the propagation of transverse
elasticwaves inside the spheres themselves,whosewavelength at a given frequency
is equal to the diameter of the spheres.

– The use of an additional plexiglass interlayer between a sample of spheres coated
with epoxy resin has effects only for a discrete set of selective frequencies 0.06,
0.2, 0.4 and 1.25 MHz, suppressing the transmission coefficient, with almost no
change in the rest of the spectrum.
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Fig. 7 Comparison of the spectra of a cubic experimental sample of metal spheres coated with
epoxy, before and after extraction from a plastic box.White curves—before extraction, black—after
extraction
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Fig. 8 The envelopes of the measured spectra of a cubic experimental sample of metallic spheres
coated with epoxy resin, after being extracted from a plastic box

– Spectral analysis demonstrates obvious dominance of frequencies 0.09, 0.6 and
0.85MHz, especially in the cases of almost complete signal damping. Most likely,
these frequencies coincide with the natural vibration frequencies of the acoustic
meta-material at hand.
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On the Equations of the Surface
Elasticity Model Based on the Theory
of Polymeric Brushes

Roman A. Gerasimov, Tatiana O. Petrova, Victor A. Eremeyev,
Andrei V. Maximov and Olga G. Maximova

Abstract Motivating by theory of polymers, in particular, by the models of poly-
meric brushes we present here the homogenized (continual) two-dimensional (2D)
model of surface elasticity. A polymeric brush consists of an systemof almost aligned
rigid polymeric chains. The interaction between chain links are described through
Stockmayer potential, which take into account also dipole-dipole interactions. The
presented 2Dmodel can be treated as an highly anisotropic 2D strain gradient elastic-
ity. The surface strain energy contains both first and second derivatives of the surface
field of displacements. So it represents an intermediate class of 2D models of the
surface elasticity such as Gurtin-Murdoch and Steigmann-Ogden ones.
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1 Introduction

Nowadays the applications of the continuum mechanics and mechanics of structures
to modelling of some physical phenomena at the nanoscale became very common,
see, e.g., [2, 11, 22, 33]. Among the approaches used for nano-structured materials
it is worth to note the surface elasticity and strain gradient elasticity. In particular,
the model by Gurtin and Murdoch [26, 27] and by Steigmann and Ogden [37, 38]
found various application in the nanomechanics, see, e.g., [11, 12, 28, 30, 31, 35,
45, 46] and the reference therein.

The basic idea of the surface elasticity stands on introduction of two independent
systems of constitutive equations for the bulk and for its boundary. From the physi-
cal point of view these models correspond to the presence of a solid body an elastic
membrane or an elastic shell, which constitutive equations should be introduced in
addition to ones in the bulk. Obviously, presence of such kind of boundary reinforce-
ments may results in significant changes of effective properties of materials at the
nanoscale.

Here we introduce a model of surface elasticity based on a certain heuristic ho-
mogenization of so-called polymeric brush coatings, see, e.g., [6, 7, 9, 21]. These
coatings consist of a system long polymeric chains. At the molecular level the in-
teractions between chain links is described by Stockmayer potential, see [39]. Some
recent results related to the polymeric brushesmodelling are presented byGerasimov
et al. [23–25], Petrova et al. [36].

The interest to modelling of coatings made polymeric brushes relates to recent
developments in superhydrophobic and superoleophobic surfaces used for manufac-
turing of so-called self-cleaning and bactericide coatings, see the references in the
reviews by Eremeyev [12, 14].

The paper is organized as follows. In Sect. 2 we briefly recall the basic elements of
the polymeric brush discrete structure and used interaction potential. Then in Sect. 3
we introduce the continuum 2D model related to the discrete one. For simplicity
here we consider infinitesimal deformations. Finally, with the Lagrange principle we
derive the equilibrium equations and the corresponding natural boundary conditions.

2 Polymeric Brush and Its Mechanical Interpretation

We consider a polymeric brush as a system of almost aligned rigid chains. Each chain
consists of many links elastically connected to each other, see Fig. 1. There is an
interaction between chains. Following [39] the energy of interactions depends on the
changes in mean distances between neighbour links and in their relative orientation.
We denote rji−1,i the mean distance between neighbour jth links in (i − 1)th and ith
chains. In order to describe the orientation we attach to each link a trihedron of unit
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Fig. 1 Schematic structure of a polymeric brush and the kinematics of two links

vectors dk called directors. Hereinafter we use the coordinate-free (direct) tensor
calculus as described in [19, 32, 34], so for vectors and tensors we use the bold font
shape. For jth link of ith chain we introduce three vectors d(i,j)

k , k = 1, 2, 3, d(i,j)
k ·

d(i,j)
m = δmn, δmn is the Kronecker symbol, and the centered dot denotes the scalar

product. For simplicity we assume that d(i,j)
3 is tangent to the corresponding link.

As a result, the energy of the polymeric brush can be introduced as a sum of terms

Uij = Uij(r
j
i−1,i, {d(i−1,j)

k }, {d(i,j)
k }).

For detailed description we refer here to [23–25, 36].
From the mechanical point of view the described above approach is quite similar

to so-called Hencky model for an elastic beam, see original work by Hencky [29]
and recent papers by Turco et al. [40–43], Wang et al. [44], Zhang et al. [47]. So in
what follows we consider continual beam-lattice model for chains.

In this paper we consider coatings made of one layer of ordered chains attached
parallel to a surface, as shown in Fig. 2. From the physical point of view this assump-
tion corresponds to highly anisotropic coating with one preferred direction along the
chains.
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Fig. 2 Polymeric brush which is parallel to a surface

3 Surface Energy of a Beam-Lattice-Type Coating

Here we convert the discrete model discussed above into a continual one. To this end
let as consider an elastic solid body which occupies volume v with the boundary ∂v.
In what followswe consider infinitesimal deformations, so it is no need to distinguish
reference and current placements. On the part S of the boundary a polymeric coating
is perfectly attached. It consists of almost aligned elastic beams, see Fig. 3. Each
beam is perfectly connected to the surface. As beams are assumed to be very thin we
neglect their torsional energy during deformations. On the other hand we consider
their stretching/shrinking and bending together with the deformation of the material
in the bulk. Following [5, 8], for each beam we introduce directors d(i)

k , k = 1, 2, 3,
in such way that d(i)

3 coincides with the tangent vector τττ to the curve associated with
the ith beam, d(i)

1 = n, where n is the unit normal to S, and d(i)
2 = d(i)

3 × d(i)
1 , “×”

stands for the cross product. We also introduce the surface orthogonal coordinates s1
and s2 on S such that s1 is the arc-length parameter, and it is directed along beams.
So d(i)

3 and d(i)
2 are the tangent vector to s1- and s2-curves, respectively.

Let us introduce the surface displacement field as a vector-function of the surface
coordinate

u = u(s1, s2). (1)

i1
i1

i1

r

r

s1
s1

s2

S

v

n

τ
(i)

d(i)2

d(i)3 = τ

d(i)1 = n

Fig. 3 Polymeric brush which is parallel to a surface
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We represent u in the natural basis {dk} as follows

u = u1d1 + u2d2 + u3d3. (2)

Hereinafter for simplicity we omit the superscript “(i)”. With Euler–Bernoulli kine-
matics we can represent the strain energy density of a beam as a quadratic form

Ub = 1

2
Ksu

2
3,1 + 1

2
Kb‖u22,11 + 1

2
Kb⊥u21,11, (3)

where Ks is the tangent stiffness, Kb‖ and Kb⊥ are bending stiffness parameters of
the beam. For brevity we used the following notations for derivatives

(. . .),1 = ∂

∂s1
(. . .), (. . .),2 = ∂

∂s2
(. . .), (. . .),11 = ∂2

∂s21
(. . .), etc.

Let us note that (3) is the simplest example of the quadratic strain energy used in the
beam theory.

Having in mind that polymeric chains interact to each other, we also introduce
the interaction energy again as a quadratic function

Ui = 1

2
Ktu

2
2,2 + 1

2
Kr

[
u22,12 + u21,12

]
, (4)

with stiffness parametersKt andKr which are responsible for resistance with respect
to changes of mean distance between chains in s2-directions and to relative rotations
of chains, respectively.

As a result, we introduce the surface strain energy density expressed in surface
coordinates

U = 1

2
Ksu

2
3,1 + 1

2
Kb‖u22,11 + 1

2
Kb⊥u21,11 + 1

2
Ktu

2
2,2 + 1

2
Kr

[
u22,12 + u21,12

]
. (5)

Note that all introduced stiffness parameters are assumed to be positive, so the surface
energy is positive too. Nevertheless, it is obvious that U is highly non-symmetric
with respect to its arguments. In the other words U does not contain the complete
of the displacements derivatives. So by analogy with other models, see [16], we can
call it reduced or degenerated surface energy. AsU contains second derivatives as in
the Steigmann–Ogden model, we can also call this model the reduced surface strain
gradient elasticity. The further mathematical analysis of the model can be performed
as in [3, 4, 17, 18, 20].
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4 Equilibrium Conditions

In order to get the equilibrium conditions we apply the variational approach. We
derive the latter and the static boundary conditions as a result of the variational
equation

δL = 0, (6)

where the Lagrange functional is defined as

L =
∫

v
W dv +

∫

S
U da, (7)

and W is the strain energy in the bulk. It is given by

W = W (e), e = e(u) = 1

2
(∇u + ∇uT ), (8)

where∇ is the 3Dnabla-operator. Note that here for simplicitywe omitted an external
loading. We define the stress tensor by the formula

σσσ = ∂W

∂e
.

Following standard technique of the calculus of variations from (6) we get the
equilibrium equation in v

∇ · σσσ = 0. (9)

For the derivation of the natural boundary conditions from (6) more efforts are
required. Let us for simplicity neglect of a curvature of S. In the other words we
assume that S is a part of a plane. In this case s1 and s2 are usual Cartesian coordinates
and dk are constants. In particular, n = d1 and the stress vector n · σσσ has the form

n · σσσ = σ11d1 + σ12d2 + σ13d3.

Omitting derivation details after integration by parts we get

σ11 = −Kb⊥u1,1111 − Kru1,1212, (10)

σ12 = Ktu2,22 − Kb‖u2,1111 + Kru2,1212, (11)

σ13 = Ksu3,11. (12)

Boundary conditions (10)–(12) present various types of an elastic support. In partic-
ular, (12) corresponds to Ventcel-type of boundary conditions, whereas (10) and (11)
are more general. Let us underline that here the differential order of the boundary
conditions essentially depends on the preferred direction. In the considered case it is
d3-direction, that is along chains.
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5 Conclusions

Motivating by the structure of polymeric brushes we proposed the new model elas-
ticity under small deformations. Within the model we introduced the surface strain
energy as a function of a certain set of first and second derivatives of the surface
displacements. Considering it as model of 2D material we have to conclude that the
corresponding material is highly anisotropic. It constitutes an intermediate class be-
tween classic elasticity and strain gradient elasticity. Here we are restricted ourselves
by a plane surface with coating. The analysis of the curved surface will be presented
in forthcoming papers as well as natural conditions at edges ∂S and at corner points
with the use of the technique presented by Abali et al. [1], dell’Isola and Seppecher
[10], Eremeyev [13–15], Eremeyev et al. [20], Zemlyanova and Mogilevskaya [46].
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tion under the grant “Methods of microstructural nonlinear analysis, wave dynamics and mechanics
of composites for research and design of modern metamaterials and elements of structures made
on its base” (No. 15-19-10008-P).
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Finite Element Study of Ceramic Matrix
Piezocomposites with Mechanical
Interface Properties by the Effective
Moduli Method with Different Types
of Boundary Conditions

G. Iovane and A. V. Nasedkin

Abstract The paper deals with the problem of finding the effective moduli of a
ceramic matrix composite with surface stresses on the interphase boundaries. The
composite consists of a PZT ceramic matrix, elastic inclusions and interface bound-
aries. It is assumed that the interface stresses depend on the surface strains according
to the Gurtin–Murdoch model. This model describes the size effects and contributes
to the total stress-strain state only for nanodimensional inclusions. The homogeniza-
tion problem was set and solved with the help of the effective moduli method for
piezoelectric composites with interface boundaries and finite-element technologies
used for simulating the representative volumes and solving the resulting boundary-
value electroelastic problems. Here in the effective moduli method, different combi-
nations of linear first-kind boundary conditions and constant second-kind boundary
conditions for mechanical and electric fields were considered. The representative
volume consisted of cubic finite elements with the material properties of the matrix
or inclusions and also included the surface elements on the interfaces. Bulk elements
were supplied with the material properties of the matrix or inclusions, using a simple
randommethod. In the numerical example, the influence of the fraction of inclusions,
the interface stresses and boundary conditions on the effective electroelastic modules
were analysed.
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1 Introduction

Composite materials on the base of PZT ceramics are widely used for the production
of practically feasible devices for hydroacoustics, medical diagnostics and ultra-
sound, level and flow measurement, aerospace and automotive industries. From the
analysis of piezoelectric materials it is known that their physical properties remain to
be the essential limiting factor in the development of the most effective new piezo-
electric transducers. A lot of nanostructured PZT composite materials, which were
developed recently, demonstrate a range of significant advanced features, such as
the possibilities of controllable modification of the functional characteristics, the
ultra-low Q-factor, and other.

Furthermore, it is important to note that the simulation of micro- and nanos-
ructured composite materials has some specific features. As it is known, the nano-
materials have unconventional physical properties that significantly differ from the
characteristics of the bodies with usual sizes. For example, the known experimental
fact is that the stiffness increases with the reduction of the nanoobject sizes. The
surface effect may be one of the factors explaining this behavior. Numerous studies
conducted in the recent years have shown that the surface stresses are important for
micro- and nanoscale bodies. In connection to this, an interesting problem to consider
is to extend this approach to the nanostructured piezoelectric composite materials
[4, 10, 16, 29, 30, 33–35, 37], etc. For piezoelectric nanobodies it is possible to
consider not only surface mechanical stresses, but also surface electric fields [9, 22].
Piezoelectric and magnetoelectric nanosized materials with surface or imperfect in-
terface effects were investigated in [4, 9, 11, 13–15, 29], etc. Thus, in [36], using the
self-consistent method, an effective shear modulus for a fiber reinforced piezocom-
posite was found. Theoretical studies of the homogenization problems for nanoscale
piezoelectric composites were carried out in [3, 12, 21, 22, 35], etc.

In this paper, we use the homogenization models for two-phase piezoelectric
composites, which were previously developed in the framework of the effective
moduli method for piezoelectric composites of usual sizes [1, 27, 28]. We use these
models to build more complicated models for nanoscale PZT composites, which
additionally take into account interface mechanical boundary conditions.

We consider four static piezoelectric problems in a representative volume element
(RVE) that allow us to determine the full set of the effective moduli. These problems
differ from each other by the boundary conditions, which are set on external surfaces
of RVE as follows: (i) mechanical displacements and electric potential (uϕ-problem),
(ii) mechanical stress vector and electric potential (pϕ-problem), (iii) mechanical
displacements and normal component of electric displacement vector (uD-problem),
and (iv) mechanical stress vector and normal component of electric displacement
vector (uD-problem). For each type of these boundary-value problems we provide
the respective formulae for the effective moduli calculation for transversely isotropic
piezoelectric composites.

We use an integrated approach to the determination of the effective moduli of
nanostructured piezoelectric ceramic matrix composites with stochastic distribution
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of inclusions. In order to take into account nanoscale level at the borders between
material and inclusions, we use the Gurtin–Murdoch model of surface or interface
stresses. To simulate the RVE and to calculate the effective moduli, we use ANSYS
finite element package. This approach is based on the theory of effective moduli for
composite mechanics, the simulation of the RVE and the finite element method. We
adopt that the contact boundaries between material and inclusions are covered by the
membrane elements in order to take the interface stresses into account.

As an example, we give and analyse the results of numerical computations for a
ceramic matrix composite with various values of interface moduli and percentage of
inclusions, and different types of boundary conditions.

2 Formulation of Homogenization Problems

Let V be a representative volume element (RVE) of the ceramic matrix material,
which we will consider as a two-phase composite. We will assume that the first
phase is a piezoceramic material, and the second phase consists of a set of elastic
inclusions. We denote the regions occupied by the phases with the numbers j = 1, 2
as V (j). Let S = ∂V be the outer boundary of the RVE, Si = ∂V (1) ∩ ∂V (2) is the
set of contact boundaries between materials with different phases, i.e. the interface
boundaries; xm are the Cartesian coordinates, m = 1, 2, 3; nm are the components of
the vector of unit normal, external or relative to the volume of V (on S), or external
to the volume of the material of the primary phase V (1) (on Si).

In the volume V we will consider the static problem of electroelasticity with
respect to the components uk = uk(xm) of the displacement vector and the electric
potential ϕ = ϕ(xm). In contrast to an ordinary electroelastic problem, here we sup-
pose that at the interface boundary there are the interface (surface) stresses that de-
pend only on the interface (surface) strains according to the Gurtin–Murdoch model.
Thus, in the volume V we assume that the equations of the electroelasticity theory
are satisfied

σkm,m = 0, Dk,k = 0, x ∈ V , (1)

Tα = cEαζSζ − emαEm, Dk = ekζSζ + εSkmEm , (2)

εkm = (∂muk + ∂kum)/2, Ek = −ϕk , (3)

where, hereinafter, the Latin indices k and m can vary from 1 to 3, and the Greek
indicesα and ζ can vary from 1 to 6; the summation over repeated indices is assumed;
T1 = σ11, T2 = σ22, T3 = σ33, T4 = σ23, T5 = σ13, T6 = σ12; σkm are the components
of the stress tensor; S1 = ε11, S2 = ε22, S3 = ε33, S4 = 2ε23, S5 = 2ε13, S6 = 2ε12,
εkm are the components of the strain tensor; Dk are the components of the electric
displacement or electric flux density vector; Em are the components of the electric
field intensity vector; cEαζ are the elastic stiffness moduli at constant electric field;
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emα are the piezomoduli (stress coefficients; εSkm are the dielectric constants or the
dielectric permittivity moduli at constant mechanical strain. The superscripts E and
S indicate the corresponding moduli measured at constant electric field intensity and
at constant mechanical strain, respectively.

Note that the Voigt notation is used in the constitutive equations (2), but in their
tensor form, so that instead of the matrices cEαζ , ekζ and εSkm of the size 6 × 6, 3 × 6
and 3 × 3, the tensors of the fourth, third and second ranks are used, respectively.
Therefore, if it is necessary to transfer to another coordinate system, the material
moduliwill change according to the laws of changing the tensors of the corresponding
ranks.

In accordance with the Gurtin–Murdoch model for surface stresses and strains
we add to the system of equations (1)–(3) the following interface relations on the
boundary Si

nm[σkm] = ∂ i
mσ i

km, T i
α = cEiαζS

i
ζ , x ∈ Si , (4)

εikm = (∂ i
ku

i
m + ∂ i

mu
i
k)/2, uim = Amlul, Aml = δml − nmnl . (5)

Here, [σkm] = σ
(1)
km − σ

(2)
km is the jump stresses on the interface boundary; ∂ i

m =
∂m − nm(nl∂l) are the components of the interface (surface) gradient operator; T i

1 =
σ i
11, T

i
2 = σ i

22, T
i
3 = σ i

33, T
i
4 = σ i

23, T
i
5 = σ i

13, T
i
6 = σ i

12, σ
i
km are the components of the

interface (surface) stress tensor; Si
1 = εi11, S

i
2 = εi22, S

i
3 = εi33, S

i
4 = 2εi23, S

i
5 = 2εi13,

Si
6 = 2εi12, εikm are the components of the interface (surface) strain tensor; cEiαζ are
the interface (surface) elastic stiffness moduli. The superscript i refers to “interface”,
and does not have integer values.

We assume that the first phase of the composite is a piezoceramic material, po-
larized in the direction of the x3 axis. Then, as is known, the matrices of its material
moduli cEαζ = cE(1)

αζ , ekζ = e(1)
kζ and εSkm = ε

S(1)
km have the following structure

cE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cE11 c
E
12 c

E
13 0 0 0

cE12 c
E
11 c

E
13 0 0 0

cE13 c
E
13 c

E
33 0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE44 0

0 0 0 0 0 cE66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, e∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, εS =
⎡
⎣

εS11 0 0
0 εS11 0
0 0 εS33

⎤
⎦ ,

(6)
where cE66 = (cE11 − cE12)/2.

Thematerial of elastic inclusions is considered to be isotropic. Themoduli of such
material can also be represented as (6) with cEαζ = cE(2)

αζ , ekζ = e(2)
kζ and εSkm = ε

S(2)
km ,

subject to additional conditions cE(2)
11 = cE(2)

33 , cE(2)
12 = cE(2)

13 , cE(2)
44 = cE(2)

66 , ε
S(2)
11 =

ε
S(2)
33 , e(2)

kζ = 0.
Thus, both materials can be considered as transversely isotropic or materials of

6mm anisotropy class. Then it is logical to suppose that the mixed composite formed
of these materials will have the same class of anisotropy.
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We will assume that the set Si is the class union of the plane sections Sir with
normals parallel to one of the axes xl , r = 1, 2, . . . , ni. For each of these sections Sir ,
we introduce the local rectangular coordinate systemswith the axes x̃ir1 , x̃

ir
2 , x̃

ir
3 , where

the axes x̃ir1 , x̃
ir
2 lie in the plane of the segment Sir , and the axis x̃ir3 is perpendicular to

the plane of this segment. For such sections, only the two-dimensional components of
the interface stress tensors T̃ ir

1 = σ̃ ir
11 , T̃

ir
2 = σ̃ ir

22, T̃
ir
3 = σ̃ ir

12, and the two-dimensional
components of the interface strain tensors S̃ ir

1 = ε̃ir11, S̃
ir
2 = ε̃ir22, S̃

ir
3 = 2ε̃ir12 can be con-

sidered. For these components, we can write the two-dimensional Hooke’s interface
law and present the relations (4), (5) in the form

[σ̃ r
33] = 0, [σ̃ r

3q] = ∂̃ ir
p σ̃ ir

pq, T̃ ir
k = c̃Eirkm S̃

ir
m , x̃ ∈ Sir , (7)

ε̃irpq = (∂̃ ir
q ũ

ir
p + ∂̃ ir

p ũ
ir
q )/2 , (8)

where p, q = 1, 2; k,m = 1, 2, 3; the superscript r and the symbol ˜(...) denote the
value calculated in the local coordinate system Ox̃ir1 x̃

ir
2 x̃

ir
3 .

We assume that in the case of ceramic matrix PZT composite with nanostructured
inclusions the interface stiffnessmoduli can be calculated using the data of themoduli
of PZT ceramics and the moduli of inclusions by the formula cEiαζ = ld |cE(1)

αζ − cE(2)
αζ |,

where ld = 10−10 (m).
In addition, we will suppose that the matrices of the interface moduli inherit the

anisotropy type of the surrounding materials, i.e. materials of 6mm class. Therefore,
for plane sections Sir with normals parallel to the x3 axis, for the matrix of stiffness
moduli in the local coordinate system we can assume that c̃Eirkm = c̃Ei(12)km , and for
sections Sir with normals perpendicular to the axis x3, we can suppose that c̃Eirkm =
c̃Ei(13)km , where

c̃Ei(12) =
⎡
⎣
cEi11 c

Ei
12 0

cEi12 c
Ei
11 0

0 0 cEi66

⎤
⎦ , c̃Ei(13) =

⎡
⎣
cEi11 c

Ei
13 0

cEi13 c
Ei
33 0

0 0 cEi44

⎤
⎦ . (9)

In the considered case, we can assume that a homogeneous material will have
the same anisotropy class 6mm. Then, the homogenization problems will consist in
determining ten effective moduli (cE eff

11 , cE eff
12 , cE eff

13 , cE eff
33 , cE eff

44 , e eff
31 , e

eff
33 , e

eff
15 , ε

S eff
11 ,

εS eff33 ).
Following [22], these moduli can be determined by solving the electroelastic

problems (1)–(3) in the volume V with (4), (5) or (7), (8) with the linear by xm
boundary conditions (uϕ-problems)

uj = xkε0kj, ϕ = −xkE0k , x ∈ S , (10)

where ε0kj and E0k are some constant values independent from xk .
By using (10), we can select such boundary conditions that enable us to obtain

explicit expressions for the full set of the effective moduli.
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Indeed, these moduli can be found from the solutions of the following five prob-
lems (1)–(3), (4), (5) or (7), (8), and (10):
– uϕ-problems I-II, l = 1, 3, m = 1, 2, 3,

ε0kj = e0δlkδlj, E0k = 0 ⇒ cE eff
lm = 〈σmm〉VS/e0, e eff

3l = 〈D3〉V /e0 , (11)

– uϕ-problem III

ε0kj = e0(δ2kδ3j + δ3kδ2j)/2, E0k = 0 ⇒ cE eff
44 = 〈σ23〉VS/e0, eeff15 = 〈D2〉V /e0 ,

(12)
– uϕ-problem IV

ε0kj = 0, E0k = E0δ1k ⇒ e eff
15 = −〈σ13〉VS/E0, εS eff11 = 〈D1〉V /E0 , (13)

– uϕ-problem V, m = 1, 2, 3,

ε0kj = 0, E0k = E0δ3k ⇒ e eff
3m = −〈σmm〉VS/E0, εS eff33 = 〈D3〉V /E0 , (14)

where δjk is the Kronecker symbol; hereinafter the angle brackets 〈(•)〉VS denote the
averaged integral volume and interface values, and the angle brackets 〈(•)〉V denote
the averaged only integral volume values

〈(•)〉VS = 1

|V |
( ∫

V
(•) d V +

∫
Si

(•)i d S
)
, 〈(•)〉V = 1

|V |
( ∫

V
(•) d V

)
. (15)

The justification for the use of averaging (15) with volume and surface integrals
for composites with surface or interface stresses (4), (5) can be found, for example,
in [2, 17] and can be transferred to the homogenization problems (1)–(3), (4), (5) or
(7), (8), and (10) for piezoelectric composites.

The expressions (10) are linear essential boundary conditions, which for a ho-
mogeneous piezoelectric comparison medium provide the constant components of
the stresses, strains, electric fluxes, and electric intensity fields. Besides, we can use
different boundary conditions for the homogenization problems, which also pro-
vide the constant stresses, strains, electric fluxes, and electric intensity fields for a
homogeneous piezoelectric comparison medium [27, 28].

Thus, instead of expressions (10), we can adopt natural boundary condition for
the stress with known constant values and essential electric boundary condition with
the known linear be xm electric potential (pϕ-problems)

nkσkj = p0j, p0j = nkσ0kj, ϕ = −xkE0k , x ∈ S , (16)

where σ0kj and E0k are the fixed values.
Using this approach, in order to determine the other full set of effective moduli

for a ceramic matrix piezocomposite (sE eff
11 , sE eff

12 , sE eff
13 , sE eff

33 , sE eff
44 , d eff

31 , d
eff
33 , d

eff
15 ,

εT eff
11 , εT eff

33 ), we must solve five boundary-value problems (1)–(3), (4), (5) or (7), (8),
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and (16) with various values of σ0kj and E0k , having set only one or two components
σ0kj, E0k not equal to zero:
– pϕ-problems I-II, l = 1, 3, m = 1, 2, 3,

σ0kj = s0δlkδlj, E0k = 0 ⇒ sE eff
lm = 〈εmm〉V /s0, d eff

3l = 〈D3〉V /s0 , (17)

– pϕ-problem III

σ0kj = s0(δ2kδ3j + δ3kδ2j)/2, E0k = 0 ⇒ sE eff
44 = 〈ε23〉V /s0, d eff

15 = 〈D2〉V /s0 ,

(18)
– pϕ-problem IV

σ0kj = 0, E0k = E0δ1k ⇒ d eff
15 = 〈ε13〉V /E0, εT eff

11 = 〈D1〉V /E0 , (19)

– pϕ-problem V, m = 1, 2, 3,

σ0kj = 0, E0k = E0δ3k ⇒ d eff
3m = 〈εmm〉V /E0, εT eff

33 = 〈D3〉V /E0 . (20)

After solving these five pϕ-problems and finding from (17) to (20) the elastic
compliance moduli sE eff

αζ at constant electric field, the piezomoduli (charge coeffi-
cients) d eff

mα , and dielectric permittivity moduli εT eff
km at constant mechanical stress,

we can calculate the basic moduli by using the formulae

cE eff = (sE eff)−1, e eff
mα = d eff

mζ c
E eff
αζ , εS effkm = εT eff

km − d eff
kζ e

eff
mζ . (21)

It is clear that the moduli cE eff
αζ , e eff

mα , εS effkm found from the solutions of the pϕ-
problems (1)–(3), (4), (5) or (7), (8), and (15)–(21), generally speaking, may differ
from the moduli found from the solution of the uϕ-problems (1)–(3), (4), (5) or (7),
(8), and (10)–(15).

With a different alternative approach,we can adopt essentialmechanical boundary
conditions with known linear components of the displacement vector and natural
electric boundary conditions with known constant normal component of the electric
flux density vector (uD-problems)

uj = xkε0kj, nkDk = nkD0k , x ∈ S . (22)

Thenwe solvefive electroelastic problems (1)–(3), (4), (5) or (7), (8), and (22)with
various values ε0kj and D0k , having set in (22) only one or two non-zero components
from ε0kj, D0k , and in the result we can find the effective moduli cD eff

11 , cD eff
12 , cD eff

13 ,
cD eff
33 , cD eff

44 , h eff
31 , h

eff
33 , h

eff
15 , β

S eff
11 , βS eff

33 :
– uD-problems I-II, l = 1, 3, m = 1, 2, 3,

ε0kj = e0δlkδlj, D0k = 0 ⇒ cD eff
lm = 〈σmm〉VS/e0, h eff

3l = −〈E3〉V /e0 , (23)
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– uD-problem III

ε0kj = e0(δ2kδ3j + δ3kδ2j)/2, D0k = 0 ⇒ cD eff
44 = 〈σ23〉VS/e0, heff15 = −〈E2〉V /e0 ,

(24)
– uD-problem IV

ε0kj = 0, D0k = D0δ1k ⇒ h eff
15 = −〈σ13〉VS/D0, βS eff

11 = 〈E1〉V /D0 , (25)

– uD-problem V, m = 1, 2, 3,

ε0kj = 0, D0k = D0δ3k ⇒ h eff
3m = −〈σmm〉VS/D0, βS eff

33 = 〈E3〉V /D0 . (26)

By using obtained from (23)–(26) the elastic stiffness moduli cD eff
αζ at constant

electric displacement, the piezomoduli (strain coefficients) heffmα , and the dielectric
impermittivity moduli βS eff

km at constant strain, we can determine the basic moduli by
the formulae

εS eff = (βS eff)−1, e eff
mα = εS effmk heffkα, cE eff

αζ = cD eff
αζ − eeffkαh

eff
kζ . (27)

Again, it can be noted that the moduli cE eff
αζ , e eff

mα , ε
S eff
km obtained from the solutions

of uD-problems (1)–(3), (4), (5) or (7), (8), and (22)–(28) may differ from the moduli
with the same notations, obtained from the solutions of uϕ- and pϕ-problems.

Finally, we can assume natural mechanical and electric boundary conditions with
known constant components of the stress vector and normal component of the electric
flux density vector (pD-problems)

nkσkj = p0j, p0j = nkσ0kj, nkDk = nkD0k , x ∈ S , (28)

In this case, we solve five electroelastic problems (1)–(3), (4), (5) or (7), (8), and
(28) with various values of σ0kj and D0k , having set in (28) only one or two non-zero
components σ0kj and D0k , which enables us to find the effective moduli sD eff

11 , sD eff
12 ,

sD eff
13 , sD eff

33 , sD eff
44 , g eff

31 , g
eff
33 , g

eff
15 , β

T eff
11 , βT eff

33 :
– pD-problems I-II, l = 1, 3, m = 1, 2, 3,

σ0kj = s0δlkδlj, D0k = 0 ⇒ sD eff
lm = 〈εmm〉V /s0, geff3l = −〈E3〉V /s0 , (29)

– pD-problem III

σ0kj = s0(δ2kδ3j + δ3kδ2j)/2, D0k = 0 ⇒ sD eff
44 = 〈ε23〉V /s0, geff15 = −〈E2〉V /s0 ,

(30)
– pD-problem IV

σ0kj = 0, D0k = D0δ1k ⇒ geff15 = 〈ε13〉V /D0, βT eff
11 = 〈E1〉V /D0 , (31)
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– pD-problem V, m = 1, 2, 3,

σ0kj = 0, D0k = D0δ3k ⇒ geff3m = 〈εmm〉V /D0, βT eff
33 = 〈E3〉V /D0 . (32)

From (29) to (32) we determine the elastic compliance moduli sD eff
αζ at constant

electric displacement, the piezomoduli (voltage coefficients) geffmα , and the dielectric
impermittivity moduli βS eff

km at constant stress. Using this set, we at first determine
the moduli cD eff

αζ , heffmα , β
T eff
km by the formulae

cD eff = (sD eff)−1, h eff
mα = g eff

mζ c
D eff
ζα , βS eff

km = βT eff
km + g eff

kζ h
eff
mζ , (33)

and after that by (27) we can obtain the basic effective moduli.
In this variant of homogenization problems themoduli cE eff

αζ , e eff
mα , ε

S eff
km found from

the solutions of pD-problems (1)–(3), (4), (5) or (7), (8), and (28)–(33), (27) are not
required to be equal to the moduli obtained from the solutions of other problems.

In order to solve all four types of boundary value electroelastic problems, we
will use the finite element method, having previously simulated the representative
volume of the composite material.

3 Representative Volumes and Finite Element Models

All homogenization problems described in the previous section were solved in the
ANSYS finite element package. In order to implement different solution stages au-
tomatically, we have developed special programs written in the APDL ANSYS lan-
guage.

The representative volume elements (RVE) consisted of bulk and interface finite
elements. First, we have created an array of volume elements that included geomet-
rically identical cubes with sides a. On each axis of the Cartesian coordinate system,
n cubic elements were located. Thus, the RVE had n3 cubic elements, and the size
of RVE on each axis was L = na.

Each cubic finite element was provided with either material properties of piezo-
ceramic ceramics polarized in the direction of the x3 axis (phase 1), or material
properties of elastic inclusions (phase 2). Among all bulk finite elements, the el-
ements of the second phase were selected by a random algorithm in accordance
with a given percentage of inclusions p. All bulk elements were eight-node SOLID5
hexahedrons with piezoelectric properties for one of the phases.

Next, the interface elements were automatically created. For this, at the inter-
mediate stage, the edges of the elements of inclusions that did not reach the outer
boundary of the RVE were covered with quadrilateral elements TARGE170 with
four nodes, needed only for selecting the interface boundaries. At the next stage,
these elements were replaced with the four-node shell elements SHELL181 with the
membrane stress option.



172 G. Iovane and A. V. Nasedkin

As it has been observed, in ANSYS we can simulate the interface effects using
such finite elements. Note that for ANSYS shell element with the membrane stress
option, it is necessary to specify the stiffness modulus csαζ and thickness hs. At that,
the shell element ANSYS with the option of membrane stresses can be used as an
interface element, when taking into account the conditions (4), (5) or (7), (8), if
we assume cEiαζ = hscsαζ [24, 25]. Thus, for the calculation in ANSYS, the values
of the shell element stiffness modulus and the element thickness are not important
separately, but their product is. In contrast to [24, 25], here we consider the RVE
in a dimensionless form, with the side of a separate finite element equal to 1. Thus,
the spatial dimensionless parameter is equal to the minimum size a of the element
of the second phase. As noted in the previous section, we set the surface modulus
of stiffness by the formula cEiαζ = ld |cE(1)

αζ − cE(2)
αζ |, where ld = 10−10 (m). We also

assume that hs = a, csαζ = (ks/ld )cEiαζ , where k
s is a dimensionless coefficient. Then,

a = ld/ks, and therefore the coefficient ks is inversely proportional to the minimum
inclusion size a. In further numerical experiments, the interface moduli cEiαζ were
assumed to be constant, and the coefficient ks and the percentage of inclusions p
varied. It can be seen that an increase in the coefficient ks leads to a decrease in the
minimum size of the inclusion a, and when ks > 1 the value a becomes less than
ld = 10−10 (m).

For shell elements SHELL181, it is necessary to ensure the type of anisotropy
consistent with the anisotropy of bulk finite elements. Since the volume elements are
cubes, the faces of which are parallel to the coordinate axes of the main Cartesian
coordinate system, the shell elements can be located only in planes parallel to the
planesOx1x2,Ox1x3, andOx2x3. At the same time, for transversely isotropic material
its properties in the planes Ox1x3 and Ox2x3 are the same. It turns out that for the
shell elements it is necessary to provide the specification of material properties in the
element coordinate systems corresponding to the local coordinate systemsOx̃ir1 x̃

ir
2 x̃

ir
3

described in the previous section. More specifically, for the shell elements located in
planes parallel to the plane Ox1x2, the material properties must be set in accordance
with the first formula (9), and for the elements located in planes perpendicular to
the plane Ox1x2, the material properties must be set in accordance with the second
formula (9). This procedure was automated for the developed programs in the APDL
language.

For clarity, an example of a representative volume consisting of a small number
of elements n = 10 and with the percentage of inclusions p = 2% is given in Fig. 1.
In this figure we can see the entire volume on the left; the elements of the second
phase in the center; and the interface shell elements on the right. In this case, the
shell elements located perpendicular to the plane Ox1x2 are shown in yellow-brown,
and the elements parallel to the plane Ox1x2 are shown in blue.

At the next stage, for the generated RVE, we solved static piezoelectric uϕ-,
pϕ-, uD- or uD-problems, and after that in ANSYS postprocessor we calculated
the averaged characteristics (stresses, strains, electric fluxes and electric intensity
fields) by (9) according to (11)–(14), (17)–(20), (23)–(26), or (29)–(32). As a result,
we have obtained the full sets of the effective material moduli of ceramic matrix
piezocomposite.
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Fig. 1 Example of RVE: full volume (a), inclusions (b), interface elements (c)

4 Numerical Results

To provide an example, we have considered the PZT-5/α-Al2O3 ceramic matrix
composite. For solid piezoelectric ceramics PZT-5, the following material param-
eters were taken: cE(1)

11 = 12.1 × 1010; cE(1)
12 = 7.54 × 1010; cE(1)

13 = 7.52 × 1010;
cE(1)
33 = 11.1 × 1010; cE(1)

44 = 2.11 × 1010 (N/m2); e(1)
31 = −5.4; e(1)

33 = 15.8; e(1)
15 =

12.3 (C/m2); ε
S(1)
11 = 916ε0; ε

S(1)
33 = 830ε0, where ε0 = 8.85 × 10−12 (F/m) is the

dielectric permittivity of the vacuum.
For the corundum, we have preliminarily averaged its moduli as polycrystalline

inclusions to the isotropic phase. As a result, the followingmoduli of corundumwere
obtained: cE(2)

11 = 46.88 × 1010; cE(2)
12 = 14.22 × 1010 (N/m2); εS(2)

11 = 10ε0.
In all further calculations, the RVE included 20 elements along one of the axes.We

varied the percentage of inclusions p from 0 to 100%, themultiplier value for surface
stresses ks = 1 × 10−5 and ks = 1, and the type of the problem. We have found that
a change in the electric boundary conditions had a significantly smaller effect on
effective moduli compared to a change in the mechanical boundary conditions. For
this reason, below we present the results only for uϕ- and pϕ-problems.

The results of the calculations are presented in Figs. 2, 3, 4 and 5. Here r(...) de-
notes the relative value of the effective modulus, with respect to the value of the cor-
responding modulus for PZT ceramics without inclusions. Thus, r(cE11) = cEeff11 /cE11,
where cEeff11 is the effective elastic modulus for the ceramic matrix piezocomposite
with or without interface stresses, cE11 is the value of the corresponding elastic modu-
lus for an ordinary PZT ceramic material, and so on. The curves 1 correspond to the
case of uϕ-problem without interface stresses, when ks = 0; the curves 2 correspond
to the case of pϕ-problem also without interface stresses, when ks = 0; the curves
3 correspond to the case of uϕ-problem with large interface stresses, when ks = 1,
whereas the curves 4 correspond to the case of pϕ-problem also with large interface
stresses, when ks = 1. Note that the dependencies of the relative moduli r(cE12) and
r(cE12) are almost identical, as well as the dependencies of the relative moduli r(εS11)
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Fig. 2 Dependencies of the relative effective moduli cEeff11 (a) and cEeff13 (b) on the percentage of
inclusions

Fig. 3 Dependencies of the relative effective moduli cEeff33 (a) and cEeff44 (b) on the percentage of
inclusions

and r(εS33), which are also almost the same. Thus, Figs. 2, 3, 4 and 5 actually show
the dependencies of all ten effective moduli.

As can be seen from the comparison of Figs. 2, 3, 4 and 5, the curves 1–4 differ
most significantly among themselves for the elastic stiffness moduli (Figs. 2 and 3).
The presence of large interface stresses significantly increases the effective stiffness
moduli.

Besides, there are caseswhen the ceramicmatrix compositewith interface stresses
have greater effective stiffness moduli than the more hard material in the composite.
These situations take place when the curves 3 and 4 are located higher that the upper
dashed lines, which refers to the ratio of the elastic modulus of more hard inclusion
to the corresponding elastic modulus of the PZT ceramic material.

Note that the percentage of hard inclusions and the presence of interface stresses
have the same influence on the effective elastic moduli: an increase in the percentage
of hard inclusions leads to the growth of the elastic moduli, while the interface
stresses also increase the elastic moduli. Therefore, these effects lead to an increase
in the total harshness of the ceramic matrix composite. However, for very small and
for very large inclusion contents, the surface area of the interface becomes small,
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and therefore the effective elastic moduli become close to the corresponding elastic
moduli of the individual phases.

From Figs. 2 and 3 we can also conclude that the solutions of the uϕ-problems
give slightly larger values of elastic moduli as compared to the solutions of the pϕ-
problems. This can be explained by the fact that the uϕ-model with given displace-
ments turns out to be somewhatmore rigid than the pϕ-modelwith given stresses. The
difference between the solutions of the two problems becomes more evident in the
presence of interface stresses (the difference between curves 3 and 4 is significantly
larger compared to the difference between curves 1 and 2).

Since we used the model of interface stresses, which depended only on the strains,
and not on the electric fields, the effect of such stresses on the piezoelectric moduli
and the dielectric constants turned out to be weaker (Figs. 4 and 5). Interface stresses
have the greatest effect on the relative values of the transverse piezomodulus r(eeff31 ),
increasing it for small percentages of inclusions and decreasing it for large propor-
tions of inclusions. Moreover, in the pϕ-problem, the piezomoduli have larger values
than in the uϕ-problem. This behaviour of the piezomoduli differs significantly from
the behaviour of the stiffness moduli.

Fig. 4 Dependencies of the relative effective moduli eeff31 (a) and e eff33 (b) on the percentage of
inclusions

Fig. 5 Dependencies of the relative effective moduli eeff15 (a) and εSeff33 (b) on the percentage of
inclusions
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The dielectric constants (Fig. 5b) are least dependent on both the interface stresses
and the type of homogenization problem.

Thus, we can assume that the effective piezoelectric moduli and the dielectric
constants will more noticeably depend on nanoscale effects, if instead of the models
of uncoupled interface stresses we use more general electromechanically coupled
models [9, 23].

5 Concluding Remarks

Thus, in the present investigation in accordance with [27, 28] we have applied the
effectivemodulimethod and the finite element technique in order to solve the homog-
enization problems for ceramic matrix PZT composites with uncoupled mechanical
interface effects. This interface model gives valid results only for nanostructured
composites with nanoinclusions. We have formulated four types of the static piezo-
electric homogenization problems for a representative volume element. These prob-
lems are characterized by the boundary conditions which provide the constant values
of mechanical stresses, strains, electric fields intensity, and electric displacements
for homogeneous piezoelectric material. For each type of boundary conditions, we
have presented the sets of five boundary-value problems, which allowed us to de-
fine a complete set of the effective moduli for transversely isotropic ceramic matrix
composite.

The solutions of the homogenization piezoelectric problemswere obtained numer-
ically in the ANSYS finite element package.We used the regular cubic representative
volumes with hexahedral eight-node piezoelectric finite elements and random distri-
bution of inclusions. In order to take into account the mechanical interface effects,
we added shell four-node finite elements with membrane option on the interphase
facets of volume elements. We also specified anisotropic material properties for the
shell elements, in accordance with the location of the element coordinate systems
and the anisotropy type of the volume elements in these coordinate systems.

To provide an example, we have considered the composite material consisting of
a PZT ceramic matrix and α-corundum crystallites Al2O3 as inclusions. Thematerial
moduli of inclusions were assumed to be isotropic. We have presented the numerical
results of the effective moduli calculation for different types of boundary conditions,
different percentage of inclusions, and different interface effects values. We have
found that due to the interface effect, there were cases when the effective moduli of
the composite were superior to the moduli of its individual phases. Such phenomena
are known for nanoporous elastic materials [5–8, 18, 24, 25]. At the same time,
other types of boundary conditions can lesser the extent to which the values of the
effective moduli are affected.
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More accurate results can be obtained by using the models of the representative
volumes with different connectivities [1, 19, 20, 26–28], the electromechanically
coupled interface effects [9, 23], by taking into account the inhomogeneities of the
polarization field near the inclusions, and by introducing porosity between thematrix
and inclusions [31, 32].
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A Far-Field Asymptotic Analysis
in the High-Frequency Diffraction
by Cracks

M. Y. Remizov

Abstract On the basis of recently obtained asymptotic solutions of integral equa-
tions by the Wiener-Hopf method for diffraction by a straight finite-length crack in
a linear elastic medium, we study the properties of the far-zone scattered field at
high frequencies for (1) - anti-plane problem in a homogeneous medium, (2) - anti-
plane problem for an interface crack, and (3) - in-plane problem in a homogeneous
medium.The method proposed is founded on a high-frequency solution of the basic
integral equation of the scattering problem. Then we develop an explicit analytical
representation for the leading asymptotic term, by estimating the far-field behavior
of the relevant integrals with high oscillations by the method of stationary phase.
This allows us to obtain the final form of the scattered field in an explicit analytical
form as some quadratures.

1 Introduction

The high-frequency regime in diffraction processes is a casewhen standard numerical
methods encounter significant obstacles since these require too huge discrete grids.
Various asymptotic approaches have been proposed to overcome this difficulty [1–5].
In [6] a new method allied to the classical “Edge Waves” method [1] is proposed.
Typically, this requires a certain factorization of a symbolic function [7]. In the case
of scalar anti-plane (SH-) wave diffraction by cracks located in a linear isotropic
homogeneous elastic medium the factorization of such a function is attained in a
simple way. The in-plane diffraction by cracks involves the Rayleigh function as
a more complex form and in [6] an efficient approximate factorization of such a
function uniformly valid all over the real axis was proposed. For the scalar SH-
diffraction by the finite-length linear interface crack between two different elastic
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half-planes a new efficient factorization to the arising symbolic function is applied
in [8], where a closed-form solution has been constructed.

The present work continues to study the properties of the far-field scattering in
the problems listed above as 1–3, on high-frequency diffraction by cracks of finite
length. The discussion is restricted to the 2d elastic case for isotropic unbounded
media, where the integrals with high oscillations, forming a displacement field, have
been estimated by the method of stationary phase.

It should be noted that some fundamental aspects of new methods for hyper-
singular integral equations arising in diffraction by cracks, are discussed, among
many other publications, in [9–15].

2 Anti-plane Diffraction Problem

Let us consider the SH- (anti-plane) problem on diffraction of a plane incident
wave by a straight finite-length crack x ∈ [−a, a], y = 0 located in the linear elas-
tic isotropic space. The plane incident transverse wave forms angle θ with respect
to vertical axis y : winc(x, y) = exp[−iks(x sin θ + y cos θ)], where ks is the trans-
verse wave number and the time-dependent factor exp(−iωt) is hidden. Note that in
the anti-plane problem the displacement vector is ū(x, y, z) = {0, 0,w(x, y)}, where
function w satisfies the Helmholtz equation:

∂2w

∂x2
+ ∂2w

∂y2
+ k2s w = 0. (2.1)

The boundary conditions correspond to stress-free faces of the crack:

y = 0; |x| ≤ a : τ (1,2)
xz = −τ inc

xz , τ (1,2)
yz = −τ inc

yz ;
y = 0; |x| > a : τ (1)

xz = τ (2)
xz , τ (1)

yz = τ (2)
yz , w(1) = w(2), (2.2)

where all relations are written for the scattered component of the wave field. The
superscripts (1, 2) are related to the upper y ≤ 0 and lower y ≥ 0 half-planes, respec-
tively. By introducing the unknown function of the crack opening

(
w(2) − w(1)

)
(x, 0) =

{
0, |x| > a,

qz(x), |x| ≤ a.
(2.3)

and applying the Fourier transform, this classical problem can be reduced to the
integral equation which holds over the length of the crack [1]:

∫ a

−a
qz(ξ)Kz(x − ξ) dξ = −2iks cos θe−iksx sin θ ,

Kz(x) = 1

2π

∫ ∞

−∞
Lz(s)e

−ixs ds, Lz(s) =
√
s2 − k2s , |x| ≤ a. (2.4)
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The scattered field at any point in the plane is presented in the following form:

wsc(x, y) = 1

2π

∫ ∞

−∞
Fz(s)e

−
√

s2−k2s |y|e−ixsds,

Fz(s) = sign(y)
∫ a

−a
qz(ξ)eiξsdξ. (2.5)

The leading asymptotic term of the high-frequency solution to integral equation (2.4)
is constructed by using the Wiener-Hopf method [5, 6]:

qz(x) = q1 (a + x) + q2 (a − x) − q0(x),

q1,2(a ± x) = B1,2e∓ixks sin θe−π i/2 Erf
[
e−π i/4

√
(ks ± ks sin θ)(a±x)

]

√
ks ± ks sin θ

,

q0(x) =2 e−ixks sin θ , B1,2 = 2ks cos(θ)e±iaks sin θ

√±ks sin θ − ks
. (2.6)

After that the far-field representation, (with R → ∞), is [7]:

wsc(x, y) ≈ sign(y)

√
ks

2πR
sin ϕei(ksR−π/4)

a∫

−a

qz(ξ)dξe−iξks cosϕ. (2.7)

3 Anti-plane Diffraction Problem for Interface Crack

Let us consider the SH- (anti-plane) problem on diffraction of a plane incident
transverse wave by a straight finite-length crack x ∈ (−a, a), y = 0 located on
the interface boundary between two different linear elastic isotropic half-planes.
Let all quantities related to the upper medium y ≥ 0 be designated by subscript
1, and related to the lower medium y ≤ 0 – by subscript 2. The incident wave
arrives from infinity in medium 1, forming angle θ with respect to vertical axis
y: winc(x, y) = exp[−ik1(x sin θ + y cos θ)], where k1 is the transverse wave number
for the upper half-space, and time-dependent factor exp(−iωt) is hidden. Then the
transverse displacements wj satisfy the Helmholtz equations in the upper (j = 1) and
lower (j = 2) half-spaces, respectively [6]:

∂2wj

∂x2
+ ∂2wj

∂y2
+ k2j w = 0, kj = ω

cj
, c2j = μj

ρj
, j = 1, 2, (3.1)
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where μj and ρj designate elastic shear modulus and mass density for respective
medium. The boundary conditions are stress-free faces of the crack and the continuity
of the displacement and the stress on the interface outside the crack (y = 0):

∂w1

∂y
= ∂w2

∂y
= 0, |x| ≤ a; w1 = w2, μ1

∂w1

∂y
= μ2

∂w2

∂y
, |x| > a . (3.2)

Let us represent the wave field in the upper medium as the sum of the incident and
the scattered ones: w1 = e−ik1(x sin θ+y cos θ) + wsc

1 . By applying the Fourier transform
along x-axis: w1(x, y) =⇒ W1(s, y), w2(x, y) =⇒ W2(s, y), one easily obtains from
(3.1):

W1 =A1(s)e
−γ1y + 2πδ(s − k1 sin θ)e−ik1y cos θ ,

W2 = A2(s)e
γ2y, γj =

√
s2−k2j , j = 1, 2, (3.3)

where the following obvious relation (δ is Dirac’s delta-function):

∞∫

−∞
e−ik1x sin θ eixs dx = 2πδ(s − k1 sin θ) (3.4)

has been used, and A1,A2 are two arbitrary functions of Fourier parameter s. It
should be noted that expressions (3.3) automatically satisfy the radiation condition
at infinity.

It follows from (3.2) that μ1∂w1/∂y = μ2∂w2/∂y, y = 0 for all |x| < ∞. This
implies:

−μ1[γ1A1 + 2π ik1 cos θ δ(s − k1 sin θ)] = γ2μ2A2. (3.5)

In order to obtain a second relation between two quantities A1 and A2, let us intro-
duce the new unknown function qz(x) : qz(x) = w1(x,+0) − w2(x,−0), |x| ≤ a.
Therefore, if qz(x) =⇒ Q(s), then

Q(s) = W1(s, 0) − W2(s, 0) = A1 + 2πδ(s − k1 sin θ) − A2

= 2π

(
1 − ik1

γ1
cos θ

)
δ(s − k1 sin θ) −

(
1 + μ2γ2

μ1γ1

)
A2, (3.6)



A Far-Field Asymptotic Analysis in the High-Frequency Diffraction by Cracks 185

where the value of A1 in terms of A2 has been used, see Eq. (3.5). Now, Eqs. (3.3)
and (3.6) imply:

W1(s, y) = (−2π
μ2γ2 + μ1ik1 cos θ

μ1γ1 + μ2γ2
δ(s − k1 sin θ)

+ γ2μ2Q(s)

μ1γ1 + μ2γ2
)e−γ1y + 2πδ(s − k1 sin θ)e−ik1y cos θ

W2(s, y) = μ1(2π
γ1 − ik1 cos θ

μ1γ1 + μ2γ2
δ(s − k1 sin θ))

− γ1Q(s)

μ1γ1 + μ2γ2
)eγ2y. (3.7)

Then the remaining unused boundary condition in (3.2), ∂w2(x, 0)/∂y = 0, |x| ≤ a,
by applying the inverseFourier transform to (3.7), results to thebasic integral equation
for function qz(x), (Re

√
s2 − 1 ≥ 0, Re

√
s2 − k2 ≥ 0):

ak1∫

−ak1

qz(ξ)K(x−ξ)dξ = f (x), |x|≤ak1; K(x)= 1

π

∞∫

0

L(s)cos(xs)ds,

L(s) =
√
s2 − 1

√
s2 − k2

μ
√
s2 − 1 + √

s2 − k2
, μ = μ1

μ2
, k2 = k22

k21
= μ1ρ2

μ2ρ1
,

f (x) =
[

(
√
s2−1−icos θ)

√
s2−k2

μ
√
s2−1 + √

s2−k2
e−ixs

]

s=sin θ

=Ae−ix sin θ ,

A = −2icos θ
√
sin2 θ−k2

√
sin2 θ−k2−iμcos θ

, (3.8)

written in a dimensionless form.
It can easily be proved that the denominator of the fraction in functionL(s)does not

vanish. It can also be estimated thatK(x) = O(1/x2), x → 0. Some stable numerical
algorithms for such hyper-singular integral equations are described in [7, 8].

In the high-frequency regimenumerical treatment of Eq. (3.8) becomes inefficient,
since this leads to a huge size of the discrete mesh. For this reason, let us construct
an asymptotic solution of the integral equation, as ak1 → ∞. The method we use is
allied to the classical “Edge Waves” technique [1]. Let us represent the solution as a
combination of three functions:

qz(x) = q1 (ak1 + x) + q2 (ak1 − x) − q0(x), (3.9)
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satisfying, respectively, the following three equations:

∞∫

−ak1

q1(ak1+ ξ)K(x− ξ)dξ = f (x)+
−ak1∫

−∞
[q2(ak1− ξ)−q0(ξ)]K(x − ξ)dξ,

−ak1<x<∞
ak1∫

−∞
q2(ak1− ξ)K(x− ξ) dξ = f (x) +

∞∫

ak1

[q1(ak1+ ξ)− q0(ξ)]K(x− ξ) dξ,

−∞<x<ak1,
∞∫

−∞
q0(ξ)K(x − ξ) dξ = f (x), −∞ < x < ∞. (3.10)

The leading asymptotic term of the solution can be constructed by rejecting the
residual integrals in the right-hand sides of the first and the second lines of (3.10).
Then these two equations become the standard Wiener-Hopf equations on semi-
infinite intervals. As soon as they are solved, the correctness of the hypothesis,
that the rejected right-hand-side tails are asymptotically small, can be checked by
substituting the found solutions into those tail integrals. Physically, this means that
the reciprocal wave influence of the edges to each other is asymptotically small in
the first approximation.

The third equation of (3.10) is a simple convolution integral equation on the infinite
axis and its solution is easily obtained by the Fourier transform (f (x) =⇒ F(s)):

q0(x)= A

∞∫

−∞

δ(s−sin θ)

L(s)
e−ixsds = Ae−ix sin θ

L(sin θ)
=2 e−ix sin θ . (3.11)

It is very interesting to notice that q0(x) is the same as it could be predicted by
Kirchhoff’s physical diffraction theory [1].

The Wiener-Hopf equations discussed above, after evident change of variables
x′ = ak1 ± x, ξ ′ = ak1 ± ξ , can be rewritten in a more standard form, holding over
interval (0,∞) for 0 ≤ x′ < ∞:

∞∫

0

q1,2(ξ
′)K(x′ − ξ ′) dξ ′ = f1,2(x

′), f1,2(x
′) = f [±(x′ − ak1)]. (3.12)

Further steps of the Wiener-Hopf method are rather standard [5]. The solution to
Eq. (3.12) is obtained in the following form (q1,2(x′) =⇒ Q+

1,2(s)):
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Q+
1,2(s) = Ae± iak1 sin θ

iL−(± sin θ)(± sin θ − s)L+(s)
, L(s) = L+(s)L−(s), (3.13)

which after application of the inverse Fourier transformgives the solution to Eq. (3.7).
Note that superscripts “+” and “−” designate functions analytical in the upper (Im s ≥
0) and the lower (Im s ≤ 0) half-planes of complex-valued variable s. It should also
be noted that L = L+L− is the factorization of function L(s). As proposed in [6], the
denominator of expression (3.3b) is approximated as follows:

μ
√
s2−1 +

√
s2−k2 ≈ μ + 1

(B + 1)2

(
B
√
s + 1 + √

s + k
)

+
·
(
B
√
s−1 + √

s−k
)

−
.

With this approximation the efficient factorization of function L(s) is easily con-
structed as follows:

L(s)=
[

(B + 1)
√
s + 1

√
s + k√

μ+1 (B
√
s+1 +√

s+k )

]

+

[
(B + 1)

√
s − 1

√
s − k√

μ+1 (B
√
s−1 +√

s−k )

]

.

(3.14)

The introduced parameterB = B(μ, k) > 0may be chosen, for given values of phys-
ical parametersμ and k, to provide better approximation uniformly over all finite real-
valued values of variable s ∈ (−∞,∞). In the case whenμ1/μ2 = ρ1/ρ2 parameter
k = 1, hence the approximation is absolutely precise with B = 0. By calculating the
maximum relative error ε, between exact and approximating complex-valued func-
tions, for s ∈ (−∞,∞), one should take only physically true cases when bothμ1/μ2

and ρ1/ρ2 relations are simultaneously less or greater than the unit value. Then the
numerical investigation shows that the maximum relative error ε is always less than
1–2%. Then Eq. (3.14) takes the form:

Q+
1,2(s) = De± iak1 sin θ

(± sin θ−s)

(
1√

1 ∓ sin θ
+ B√

k ∓ sin θ

)(
1√
s + 1

+ B√
s + k

)
,

D = A(μ + 1)

(B + 1)2
. (3.15)

TheFourier inversion of this functionmaybe performedbypassing to inverseLaplace
transformwith the change is = −p, s = ip,wherep is theLaplace parameter. Expres-
sion (3.15) contains elementary functions with tabulated Laplace inversions [9]:

1

(α − s)
√
s + β

= eπ i/4

(p + iα)
√
p − iβ

, ⇐= ie−iαx′

√
α + β

Erf
[
e−π i/4

√
(α + β)x′

]
,

where Erf(z) is the probability integral. Since x′ = ak1 ± x, the inversion of (3.15)
gives
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q+
1,2(ak1 ± x) =Di

(
1√

1 ∓ sin θ
+ B√

k ∓ sin θ

)
e∓ix sin θ

×
{
Erf

[
e−π i/4

√
(1 ± sin θ)(ak1±x)

]

√
1 ± sin θ

+ BErf
[
e−π i/4

√
(k ± sin θ)(ak1±x)

]

√
k ± sin θ

}

.

On the basis of this explicit asymptotic representation it can be proved that the
right-hand-side “tails” in Eq. (3.10) tend to zero, as ak1 → ∞, that is to be proved
to justify the basic hypothesis permitting rejection of the tails.

By applying the inverse Fourier transform to Eq. (3.7), one comes to the displace-
ment functions, corresponding to the scattered field for each half-plane (μ = μ1/μ2):

wsc
1 (x, y) = − 1

2π

a∫

−a

qz(ξ)dξ

∞∫

−∞

γ2(s)

μγ1(s) + γ2(s)
e−γ1(s)y−is(x−ξ)ds, y > 0,

wsc
2 (x, y) = 1

2π

a∫

−a

qz(ξ)dξ

∞∫

−∞

μγ1(s)

μγ1(s) + γ2(s)
eγ2(s)y−is(x−ξ)ds, y < 0. (3.16)

Let x − ξ = R cosϕ − ξ = r cosψ, y = R sin ϕ = r sinψ, (R, r) → ∞. Then func-
tions (3.16) can be rewritten in the following form:

wsc
j (x, y) = 1

2π

a∫

−a

qz(ξ)dξ

∞∫

−∞
Fj(s)e

ir(
√

k2j−s2 sin ϕ+s cosϕ)ds, j = 1, 2,

F1(s) = − γ2(s)

μγ1(s) + γ2(s)
, F2(s) = μγ1(s)

μγ1(s) + γ2(s)
. (3.17)

Further treatment is based upon the classical far field approximation for the quantity
r in the argument of the exponential functions in (3.17):

r = √
x2 + y2 − 2xξ + ξ 2 ≈ R − ξ cosϕ + O(1/R), R = √

x2 + y2 → ∞.

Thus, the asymptotic estimate takes the following form, as R → ∞, j = 1, 2, [7]:

wsc
j (x, y) ≈

√
kj

2πR
sin ϕei(kjR−π/4)Fj(kj cosϕ)

a∫

−a

qz(ξ)dξe−iξkj cosϕ (3.18)

and the problem is then reduced to the calculation of the arisen integral.
As in the scalar problem of diffraction by a linear scatterer, the developed method

allows one to obtain the far field scattering pattern of the interface linear crack of
finite length for middle and high frequencies.
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4 In-Plane Diffraction Problem

In this section we consider the (2d) in-plane problem of the same geometry (|x| ≤ 1,
y = 0). The in-plane longitudinalwave is incident on the crack at the angle θ relatively
axis y with the wave potentials:

ϕinc(x, y) = e−ikp(x sin θ+y cos θ); ψ inc(x, y) = 0. (4.1)

Noting the potentials for the upper half-plane y ≥ 0 by subindex (1), for the lower
y ≤ 0 by (2), the total wave field can be represented as a sum of incident and scattered
ones, j = 1, 2:

ϕj(x, y) = ϕinc
j (x, y) + ϕsc

j (x, y); ψj(x, y) = ψ sc
j (x, y), ψ inc

j ≡ 0. (4.2)

The scattered components of the solution in terms of the Fourier transform, in accor-
dance with Zommerfeld’s radiation condition, take the forms:

Φ1,2(s, y) = A1,2(s)e
−γ (s)|y|, γ (s) =

√
s2 − k2p ; (4.3)

Ψ1,2(s, y) = B1,2(s)e
−β(s)|y|, β(s) =

√
s2 − k2s . (4.4)

The unknown quantitiesAj,Bj can be found using the following boundary conditions:

y = 0, |x| ≤ 1 : τ (1,2)
xy = −τ inc

xy ; τ (1,2)
yy = −τ inc

yy ; (4.5)

y = 0, |x| > 1 : τ (1)
xy = τ (2)

xy ; τ (1)
yy = τ (2)

yy ;
U (1)

x = U (2)
x ; U (1)

y = U (2)
y . (4.6)

Let us introduce the normal opening of the crack gy(x) and the tangential one qx(x),
which are the relative displacements of the opposite crack faces (y = 0):

U (1)
x −U (2)

x =
{
0, |x| > 1;
qx(x), |x| ≤ 1; U (1)

y −U (2)
y =

{
0, |x| > 1;
qy(x), |x| ≤ 1.

(4.7)

Then, the same technique like applied above in the anti-plane problems, leads to the
system of integral equations with respect to functions qx(x), qy(x), |x| ≤ 1:

∫ 1

−1
qx(ξ)Kx(x − ξ) dξ = −k2p k

2
s sin 2θe

−ikpx sin θ , (4.8)
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c2
∫ 1

−1
qy(ξ)Ky(x − ξ) dξ = 2k2p k

2
s (2c

2 sin2 θ − 1)e−ikpx sin θ , (4.9)

where

Kx(x) = 1

2π

∫ ∞

−∞
Lx(s)e

−isx ds; Lx(s) = Δ(s)

β(s)
,

Ky(x) = 1

2π

∫ ∞

−∞
Ly(s)e

−isx ds; Ly(s) = Δ(s)

γ (s)
,

|x| ≤ 1, y = 0, c2 = k2p/k
2
s ,Δ(s) = (2s2 − k2s )

2 − 4s2γ (s)β(s) – the Rayleigh func-
tion. It can directly be shown that the kernels in Eqs. (4.8), (4.9) possess hyper-
singular behavior as ξ → x, like in the anti-plane problem.

By analogy to the above consideration, the high-frequency solution for the integral
equations (4.8), (4.9) can be obtained by the same Wiener-Hopf method [5, 6]:

q(x) = q1 (a + x) + q2 (a − x) − q0(x), q(x) = qx,y(x). (4.10)

By applying the inverse Fourier transform to (4.3), (4.4), one comes to the potentials,
corresponding to the scattered field for the lower half-plane (y < 0):

ϕsc
2 (x, y) = 1

2π

a∫

−a

qx(ξ)dξ

∞∫

−∞

is

k2s
eγ (s)y−is(x−ξ)ds

− 1

2π

a∫

−a

qy(ξ)dξ

∞∫

−∞

2s2 − k2s
2γ (s)k2s

eγ (s)y−is(x−ξ)ds,

ψ sc
2 (x, y) = − 1

2π

a∫

−a

qy(ξ)dξ

∞∫

−∞

is

k2s
eβ(s)y−is(x−ξ)ds

− 1

2π

a∫

−a

qx(ξ)dξ

∞∫

−∞

2s2 − k2s
2β(s)k2s

eβ(s)y−is(x−ξ)ds, (4.11)

Thus, the asymptotic estimate of the infinite integrals in (4.11) take the following
form in the far zone (R → ∞), [5]:

ϕsc
2 (x, y) ≈

√
kp
2πR

ei(kpR−π/4)(

a∫

−a

qx(ξ)
ikp sin 2ϕ

2k2s
e−iξkp cosϕdξ

+
a∫

−a

qy(ξ)
2k2p cos

2 ϕ − k2s
2ikpk2s

e−iξkp cosϕdξ) (4.12)



A Far-Field Asymptotic Analysis in the High-Frequency Diffraction by Cracks 191

ψ sc
2 (x, y) ≈

√
ks

2πR
ei(ksR−π/4)(

a∫

−a

qx(ξ)
cos 2ϕ

2iks
e−iξks cosϕdξ

−
a∫

−a

qy(ξ)
i sin 2ϕ

2ks
e−iξks cosϕdξ) (4.13)

and the problem is again reduced to the calculation of the arisen integrals. The far
zone scattered fields for y > 0 can be obtained by analogy, being omitted for the sake
of brevity.

5 Results and Conclusions

5.1 Anti-plane Problem in Homogeneous Medium

Some examples of the numerical calculations are presented in Figs. 1 and 2. If
the angle of incidence θ , frequency parameter aks and radius R are fixed, then the
behavior of the amplitude of the scattered field |wsc

z (x, y)| versus angle of observation
ϕ illustrates the property that the symmetric leaves of the diagrams in both the upper
and the lower half-planes become shorter with increasing of θ (see Fig. 1). If one
defines here the mirror mode, when the direction of the reflected wave is dominant at
high frequencies in the direction of the incident wave, then the angles of observation
ϕ and incidence θ are related by the ratio ϕ = π/2 − θ . It is obvious from Fig. 2
that in the mirror mode the scattering diagram for higher aks has longer leaves than
the ones for lower frequencies. Within this observation, one can also state that the
highest value of the scattering amplitude takes place for normal incidence.

5.2 Anti-plane Problem for Interface Crack

The next examples are presented in Figs. 3, 4 and 5 for a pair of different elastic
materials, with k1 = k2. All the Figures demonstrate behavior of the high-frequency
scattering diagram |wsc

j (x, y)|, in the upper (j = 1) and the lower (j = 2) medium
versus angle of observation ϕ (Figs. 3 and 4) and angle of incidence θ , in the mirror
mode (Fig. 5). Different lines in these figures are related to different values of θ ,
(Fig. 3), and to the scattering diagrams in the mirror mode with replacing materials
between the upper and the lower half-planes, Fig. 5.

If angle θ , frequency parameter ak1 and radius R are fixed, then the behavior of
functions |wsc

j (x, y)| versus ϕ indicates that the the longest leaves of the diagram in
each half-plane become shorter with the increasing of θ , see Fig. 3. Here the mass
densities are related as ρ1 = 2ρ2. The highest value of the scattering diagram takes
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Fig. 1 Scattering diagram
versus polar angle ϕ of the
observation: aks = 50. Line
1 – θ = 0◦, line 2 – θ = 15◦,
line 3 – θ = 30◦, line 4 –
θ = 45◦, line 5 – θ = 60◦,
line 6 – θ = 75◦

place for the normal incidence (θ = 0) that is natural from the physical point of view.
For fixed θ , the scattered amplitude in the upper medium is weaker than in the lower
one. The same property takes place when the materials of the upper and the lower
half-planes are replaced: ρ1 = ρ2/2 (Fig. 4). Such a physical regime provides in two
times longer lengths of leaves, compared to respective diagrams in Fig. 1. When
replacing the materials of the upper and the lower half-planes, one can observe that
weaker scattering takes place if mass density of the first medium is higher than of the
second one. The greatest magnitude of the mirror mode diagrams take place when
θ = 0, which is a normal direction with respect to the line of the crack (Fig. 5).

5.3 In-Plane Problem

Some results for the in-plane problem are presented in Figs. 6 and 7. For fixed
θ , frequency parameters aks, akp, (ks/kp = 1.8) and radius R, the behavior of the
principal amplitude |ϕsc

j (x, y)| versus ϕ also demonstrates decreasing of almost equal
and symmetric leaves in the upper (j = 1) and lower (j = 2) half-plane, with the
increasing of θ (see Fig. 6). For the transverse potential |ψ sc

j (x, y)| with increasing
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Fig. 2 Scattering diagram
versus angle of incidence θ

in the echo-regime: line
1 – aks = 100, line
2 – aks = 150

Fig. 3 Scattering diagram
versus polar angle ϕ of the
observation:
ρ1/ρ2 = 2, μ1/μ2 =
2, ak1 = ak2 = 100. Line
1 – θ = 30◦, line 2 – θ = 60◦
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Fig. 4 Scattering diagram
versus polar angle ϕ of the
observation:
ρ1/ρ2 = 0.5, μ1/μ2 =
0.5, ak1 = ak2 = 100.
Line 1 – θ = 30◦

Fig. 5 Scattering diagram
versus angle of incidence θ

in the mirror-regime:
ak1 = ak2 = 100.
Line 1 – ρ1/ρ2 = 2,
μ1/μ2 = 2,
line 2 – ρ1/ρ2 = 0.5,
μ1/μ2 = 0.5

of the incident angle one can observe the scattered leaves of different length in
the upper and lower half-plane. It can be noted that the longitudinal potential is
quantitatively dominant compared to the transverse one.
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Fig. 6 Scattering diagram
|ϕsc

j | versus angle ϕ of the
observation: aks = 50. Line
1 – θ = 10◦, line 2 – θ = 30◦

Fig. 7 Scattering diagram
|ψ sc

j | versus angle ϕ of
observation: aks = 50. Line
1 – θ = 10◦, line 2 – θ = 30◦

In the analysis for different frequencies it is obvious from Figs. 8 and 9 that with
increasing of the aks, akp the magnitude of the scattering diagram for the potential
grows, keeping dominance in the direction of incident wave. In the mirror mode,
the scattering diagrams |ϕsc

j |, with fixed frequency parameter, like in the previous
problems, have the dominance compared to respective |ψ sc

j |. It should be noted that
the longest scattering leaves correspond to the incidence with θ = 0.
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Fig. 8 Scattering diagram
|ϕsc

j | versus angle ϕ of
observation: θ = 30◦. Short
leaves – aks = 50, long
leaves – aks = 100

Fig. 9 Scattering diagram
|ψ sc

j | versus angle ϕ of
observation: θ = 30◦. Short
leaves – aks = 50, long
leaves – aks = 100
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5.4 General Conclusions

The leading asymptotic terms for the solutions in problems 1–3 allow one to describe
the properties of the far field scattering diagrams for the crack of finite length for any
high frequency. The scattered field is completely determined by the direction of the
incident wave. The highest values of the far-field amplitudes for the reflected wave
take place in direction of the incident wave. With frequency increasing, the longest
leaves of the scattered field keep their directions. The maximum levels of the mirror
mode diagrams take place in the normal direction regarding the line of the crack.

When comparing the three studied problems with each other, it should be noted
that in the anti-plane cases the increase of the angle of incidence leads to a gradual
decrease of the lengths of the leaves in the scattering diagram, for the both half-
planes. In the in-plane problem, with the same variation of the incident angle, the
main leaves decrease much faster.

Acknowledgements The author expresses his gratitude to Professor M. A. Sumbatyan, Southern
Federal University, Russia, for valuable comments. He would also like to notice that this work has
been performed in frames of the project 9.5794.2017/8.9 under support of the Russian Ministry for
Education and Science.

References

1. Ufimtsev, P.Y.: Fundamentals of the Physical Theory of Diffraction. Wiley, Hoboken, New
Jercey (2007)

2. Colton,D., Kress, R.: Integral EquationMethods in ScatteringTheory. SIAM,NewYork (1983)
3. Babich, V.M., Buldyrev, V.S.: Short-Wavelength Diffraction Theory. Springer, Heidelberg,

Berlin (1989)
4. Shenderov, E.L.: Sound penetration through a rigid screen of finite thickness with apertures.

Soviet Phys. Acoust. 16(2) (1970)
5. Sumbatyan,M.A., Scalia, A.: Equations ofMathematical Diffraction Theory. CRC Press, Boca

Raton, Florida (2005)
6. Remizov, M.Y., Sumbatyan, M.A.: A semi-analytical method of solving problems of the high-

frequency diffraction of elastic waves by cracks. J. Appl. Math. Mech. 77, 452–456 (2013)
7. Mittra, R., Lee, S.W.: Analytical Techniques in the Theory of Guided Waves. Macmillan, New

York (1971)
8. Sumbatyan,M.A., Remizov,M.Y.: Asimotitic analysis in the anti-plane high-frequency diffrac-

tion by interface cracks. Appl. Math. Lett. 34, 72–75 (2014)
9. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)
10. Iovane, G., Lifanov, I.K., Sumbatyan, M.A.: On direct numerical treatment of hypersingular

integral equations arising in mechanics and acoustics. Acta Mech. 162, 99–110 (2003)
11. Chen, Z., Zhou, Y.F.: A new method for solving hypersingular integral equations of the first

kind. Appl. Math. Lett. 24, 636–641 (2011)
12. Fradkin, LJu, Stacey, R.: The high-frequency description of scatter of a plane compressional

wave by an elliptic crack. Ultrasonics 50, 529–538 (2010)
13. Rogoff, Z.M., Kiselev, A.P.: Diffraction at jump of curvature on an impedance boundary. J

Wave Motion 33, 183–208 (2001)



198 M. Y. Remizov

14. Gridin, D.: High-frequency asymptotic description of head waves and boundary layers sur-
rounding the critical rays in an elastic half-space. J. Acoust. Soc. Am. 104, 1188–1197 (1998)

15. Pal, S.C., Ghosh, M.L.: High frequency scattering of anti-plane shear waves by an interface
crack Indian. J. Pure. Appl. Math. 21, 1107–1124 (1990)



3d Propagation of Ultrasonic Waves
Through a System of Defects in an Elastic
Material, with Arbitrary Reflections
and Transformations

Nikolay V. Boyev, Mezhlum A. Sumbatyan and Vittorio Zampoli

Abstract In frames of the three-dimensional problem, we study a short wavelength
diffraction of elastic waves by a system of voids in the elastic medium. The defects
are bounded by arbitrary smooth surfaces. The problem is reduced to a classical
diffraction problem for high-frequency waves irradiated from a point source in the
elastic medium by the system of voids located in this medium. We consider multiple
reflections with various possible transformations of elastic waves. To study the prob-
lem, a special method is proposed, which is based on the asymptotic estimate of the
diffraction integrals by the multidimensional stationary phase method. On the basis
of the developed method, we obtain in explicit form the leading asymptotic term of
the displacements in the diffracted field, for arbitrary cases of multiple reflections
(longitudinal wave to longitudinal one and transverse wave to transverse one) and
transformations (longitudinal wave to transverse one and transverse wave to longi-
tudinal one), at the points of mirror reflections. The obtained explicit expressions for
the displacements agree with the Geometrical Diffraction Theory (GDT) for elastic
waves.

1 Introduction

Theproblemsof the shortwavelengthdiffractionby surfaces of theobstacles in acous-
tic and elastic media have broad application in the engineering practice. Impulses
filled of short waves are used when investigatingmetamaterials produced as an inclu-
sion of arrays of obstacles, as a rule—of a periodic structure, to a matrix of an elastic
material. In evaluation of location and shape of the obstacles in the acoustic and
elastic media, there are used sensors working in the ultrasonic range.
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The short-wave diffraction of the acoustic waves by curvilinear contours have
bee studied by various methods [1, 2]. The single reflection of the elastic wave in
the two-dimensional case is studied in [2, 3]. In frames of the three-dimensional
problem in [4, 5] the authors develop an approximation of the geometrical optics in
explicit form, for acoustic waves with single and multiple [5] reflections from arbi-
trary smooth surfaces. In [6] there are studied single and double reflections of the
elastic waves with arbitrary transformations. In [7] the authors study a propagation of
the plane longitudinal wave through a metamaterial which is a triple-periodic system
of rigid spheres embedded in an elastic matrix. In the present work, in frames of the
three-dimensional local problem, we propose a method, to study multiple reflections
of the longitudinal wave to the longitudinal one, multiple periodic transformation
of the elastic wave (with the period “longitudinal-transverse-longitudinal”) and the
sequence of arbitrary multiple reflections and transformations, based upon an esti-
mate of the Kirchhoff diffraction integral by the multidimensional stationary phase
method.

2 Formulation of the Three-Dimensional Local Problem

Let a spherical monochromatic high-frequency wave irradiated from point x0 fall to
a boundary surface (Fig. 1). The spherical wave is generated by the force Qe−iωt

located at point x0, where ω is the frequency of the oscillations. The displacements
at the point y of elastic medium, caused by this wave, are defined by the Kupradze
matrix [8]:

U (k)
j (y, x0) = U (k)

j p (y, x0) +U (k)
js (y, x0),

U (k)
j p (y, x0) = − 1

4πρω2

∂2

∂yk∂y j

(
eikp R0

R0

)
, k, j = 1, 2, 3,

U (k)
js (y, x0) = 1

4πρω2

[
k2s δk j

(
eiks R0

R0

)
+ ∂2

∂yk∂y j

(
eiks R0

R0

)]
, R0 = |x0 − y|. (1)

Here λ, μ are the Lamé coefficients, ρ is the mass density of the elastic material,
kp = ω /cp, ks = ω/cs , are the wave numbers, and cp, cS are the speeds of the
longitudinal and transverse waves, respectively, δk j is the Kronecker delta.

The aim of the present work is to study the amplitude characteristics of the wave
diffracted by the array of void obstacles in the elastic material.

3 Method of Solution

The dependence on time of all physical quantities is assumed harmonic. For exam-
ple, for the displacements in the elastic medium this reads: u (x1, x2, x3, t) =
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Fig. 1 N-fold
p−p−p− · · · −p−p−p
re-reflection of the
high-frequency longitudinal
wave along the ray
x0 − y∗

1 − y∗
2 − · · · −

y∗
N−1 − y∗

N − xN+1 on the
free boundary surfaces of a
system of N voids located in
the elastic medium

Re
[
u ( x1, x2, x3) exp(−i ω t)

]
, where u(x1, x2, x3) is the amplitude of the oscil-

lations.
TheKupradzematrix defines at the pointtoqke y to the radial directionq = (x0y)·

|x0y|−1 nontrivial some displacements in the longitudinal (p-wave) and transverse (s-
wave) waves. The explicit form of these displacements in the incident wave is written
out in [6]. In the high-frequency regime, as kp → ∞ and ks → ∞ in directions q
and q1 one obtains the following asymptotic representation in the incident wave

u(p)
q (y) = Qqq

k2p
4π ρ ω2

eikp R 0

R0

[
1 + O

(
1

kp R0

)]
, Qq = (Q, q), (2)

u(s)
q1 (y) = Qq1q1

k2s
4π ρ ω2

eiks R0

R0

[
1 + O

(
1

ks R0

)]
, Qq1 = (

Q, q1
)
. (3)
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The direction q1 is perpendicular to q. Qq, and Qq1 is the projection of the force
Q in directions q and q1, respectively.

The Cartesian components of the displacement vector in the wave reflected from
the free boundary surface at point x of the elastic medium can be written out as the
Somilyana representation [9]

uk(x) =
¨

S

Ty[U(k)(y, x)] · u(y)dSy, k = 1, 2, 3, (4)

Ty
[
U(k)(y, x)

] = 2μ
∂U(k)

∂n
+ λn div

(
U(k)

) + μ
(
n × rot

(
U(k)

))
, y ∈ S, (5)

Here the Kupradze matrix U(k)(y, x) is obtained from the matrix U(k)(y, x0) (1)
by the change of point x0 to point x and he distance R0 to the distance R = |y − x |,
Ty is the force vector at point y, u(y) is the vector of full displacement field over the
boundary surface of the void, n is the unit normal to surface S.

Let us extract, from the vectors of full displacement on the boundary surface and
the force vector Ty at point y, the term which is defined by the longitudinal (p) and
transverse (s) waves:

uk(x) =
¨

S

{
Ty[U(k)

p (y, x)] + Ty[U(k)
s (y, x)]} · [u(y; p) + u(y; s)]dSy,

uk(x) = uk(x; p−p) + uk(x; p−s) + uk(x; s−p) + uk(x; s−s)

uk(x; p−p) =
¨

S

Ty[U(k)
p (y, x)] · u(y; p)dSy, (6)

uk(x; p−s) =
¨

S

Ty[U(k)
s (y, x)] · u(y; p)dSy, (7)

uk(x; s−p) =
¨

S

Ty[U(k)
p (y, x)] · u(y; s)dSy, (8)

uk(x; s−s) =
¨

S

Ty[U(k)
s (y, x)] · u(y; s)dSy (9)

Here u(y; p) (u(y; s)) is the vector of full displacement on the boundary surface
S, formed by the incidence of longitudinal (transverse) wave.

The first (6) and the fourth (9) terms describe the p−p and s−s reflections, but
the second (7) and the third (8) ones the p−s and s−p transformations.

In the classical GDT, developed for scalar acoustics [10] and dynamic theory of
elasticity [11], there is a difference between the high-frequency asymptotics in local
and global sense. In the global formulation the problem is to calculate full field at
point x. In our case, on the basis of representation (6)–(9) the full wave field at point
x of the elastic medium is a sum of the four indicated integral terms (6)–(9) and
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the incident spherical wave. In the local formulation the problem is to determine the
leading asymptotic term of the diffracted amplitude in a small vicinity of any ray
irradiated from point x0, reflected from the boundary surface at point y∗ and arriving
at the receiving point x.

4 Multiple Re-reflections of the Longitudinal Wave

The diffraction of the high-frequency wave may be studied both in frames of the
classical GDT [1] and on the basis of the integral representation of the Kirchhoff
physical diffraction theory [12]. The foundation of the integral representation in N
times re-reflected longitudinal wave gives a modification of the Kirchhoff integral
representation Kipxgofa [13], realized in the case of double reflection [6].

Let a high-frequency spherical wave (2) propagate from point x0 of the elastic
medium. Let us assume that a longitudinal wave propagates along the ray x0 − y∗

1 −
y∗
2 − · · · − y∗

N − xN+1, where the points of specular reflection y∗
1 , y

∗
2 , …, y∗

N−1, y
∗
N ,

may belong to both a surface of the same void and boundary surfaces of N different
voids (Fig. 1). Besides, we admit the cases of sequential location of several points
on the same surfaces, while there the only point on some other surfaces. The wave
is recorded at point xN+1 of the elastic medium. Hereinafter we consider the local
formulation of the problem,where in the high-frequency regime of the time-harmonic
process the displacements at the receiving point is defined by a reflection of the wave
from small neighborhoods S∗

1 , S
∗
2 , . . . , S

∗
N of the boundary surfaces at the specular

reflection points y∗
1 , y

∗
2 , y

∗
3 , …, y∗

N .
Let us pass to integral representations of the Cartesian components of the dis-

placement u(p)
k (xN+1) in the reflected wave at the receiving point xN+1. The dis-

placements in N times reflected wave at point xN+1 can be determined by integration
over a small vicinity S∗

N of the last point of mirror reflection y∗
N of the rays formed

at single reflection from a vicinity S∗
N−1 of the previous point of mirror reflection

y∗
N−1. The components of the displacement at the receiving point u(p)

k (xN+1) in the
Cartesian coordinate system, at the last point of mirror reflection y∗

N is thus given by
the following formula:

u(p)
k (xN+1) =

¨

S∗
N

TyN [U(k)
p (yN , xN+1)] · u(yN ; p)dSN . (10)

Here u(yN ; p) is the displacement at the incident wave at point yN ∈ S∗
N

okpectnocti y∗
N , which is defined after reflection on the vicinity S∗

N−1 of point
y∗
NnN is the unit normal to surface S∗

N at point yN , in direction to the elastic medium.
At the same time, the displacement u(yN ; p) itself is expressed as an integral

representation in terms of the incident wave to the vicinity S∗
N , which is incoming

after the reflection on the vicinity S∗
N−1
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uk(yN ; p) =
¨

S∗
N−1

TyN−1 [U(k)
p (yN−1, yN )] · u(yN−1; p)dSN−1. (11)

Such an approach cam be extended also to the forming of the reflected wave at any
vicinity S∗

N along the considered ray. In frames of such amodification the components
of the displacement at the points of the vicinity yn ∈ S∗

n (n = 2, 3, . . . , N ) are
expressed by the formula:

uk(yn; p) =
¨

S∗
n−1

Tyn−1 [U(k)
p (yn−1, yn)] · u(yn−1; p)dSn−1, (12)

where u(yn; p) is the displacement at point yn ∈ S∗
n , u(yn−1; p) is the displacement

at the incident wave at point yn−1 ∈ S∗
n−1 of the vicinity of point y∗

n−1, which is
defined after reflection of the wave on the vicinity S∗

n−2 of point y∗
n−2, nn−1 is the

unit normal to the surface S∗
n−1 at point yn−1, directed to the elastic medium.

Moving along the re-reflected ray in the inverse direction, i.e. along the ray lyqa
xN+1 − y∗

N − · · · − y∗
2 − y∗

1 − x0, we come to the forming of the incident waveon
the vicinity S∗

2 .
At the point y2 of the vicinity S∗

2 of the second point of mirror reflection y∗
2 the

integral representation for uk (y2; p) takes the form:

uk(y2; p) =
¨

S∗
1

Ty1 [U(k)
p (y1, y2)] · uinc(y1; p)dS1, (13)

where uinc(y1; p) defines the incident field of the displacements (4), corresponding
to the point source x0 (2).

Substituting subsequent integral representations to previous expressions
(10)–(13), one obtains for u(p)

k (xN+1) the following 2N-fold integral

u(p)
k (xN+1) =

¨

S∗
N

¨

S∗
N−1

. . .

¨

S∗
2

¨

S∗
1

TyNTyN−1 . . .Ty2Ty1 ·uinc(y1; p)dS1dS2

. . . dSN−1dSN . (14)

The asymptotic solution developed below has a local character and gives the
leading asymptotic term for the amplitude of the diffracted field in a small vicinity
of any ray emitted from x0, reflected from the surfaces of the voids, sequentially at
points y∗

1 , y
∗
2 , y

∗
3 , …, y∗

N and arrived at point xN+1. Obviously, such rays exist only
in the case when all reflection point y∗

1 , y
∗
2 , y

∗
3 , …, y∗

N , and the receiving point xN+1

are located in the “light” zone.
In order to construct the leading asymptotic term of the integral (14), let us apply

the asymptotic representation [6] for the force vector (7).
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It should be noted that the incident y∗
n−1 − y∗

n and the reflected y∗
n − y∗

n+1 rays
belong to the same plane with the normal nn at point y∗

n .
Let us denote the distances

∣∣x0 − y∗
1

∣∣ = L0,
∣∣y∗

n − y∗
n+1

∣∣ = Ln ,
∣∣y∗

N − y∗
N+1

∣∣ =
LN , n = 1, 2, . . . , N − 1. After taking in the asymptotic representations (7) all
slowly varying function out of (14), the amplitude of the radial displacement of N
times reflected ray at point xN+1, in the local spherical coordinate system r, θ, ψ at
point of mirror reflection y∗

N of the boundary surface, is expressed as the following
integral

u(p)
r (xN+1) = i N

Qq

4π μ

k2p
k2s

(
kp
2π

)N
(

k2p
2 k2s

)N

L−1
0

N∏
n=1

L−1
n cos γnVpp

(
y∗
n

)

×
¨

S∗
N

¨

S∗
N−1

. . .

¨

S∗
2

¨

S∗
1

eikpφdS1dS2 . . . dSN−1dSN , (15)

u(p)
θ (xN+1) = 0, u(p)

ψ (xN+1) = 0,

φp = |x0 − y1| + |y1 − y2| + · · · + |yN−1 − yN | + |yN − xN+1|
L0 = ∣∣x0 − y∗

1

∣∣, Ln−1 = ∣∣y∗
n−1 − y∗

n

∣∣, n = 2, . . . , N ; LN = ∣∣y∗
N − xN+1

∣∣,
(16)

where L0 is the distance between the emitter x0 and the first point of mirror reflec-
tion y∗

1 , LN is the distance between the receiver xN+ 1 and the last point of mirror
reflection y∗

N , Ln−1(n = 2, 3, . . . , N ) is the distance between the points of mirror
reflection y∗

n − 1 and y∗
n , Vpp

(
y∗
n

)
is the reflection coefficient of the longitudinal wave

to longitudinal one [14, 15] at point y∗
n .

In the factors in front of the integral the values of cos γn for the incident ray are
taken at the point of mirror reflection y∗

n .
The neighborhoods S∗

1 , S
∗
2 , . . . , S

∗
N a related to the right Cartesian coordinate

systems, defined by the normals n1,n2, . . . . . . ,nN to the surfaces at points y∗
1 , y

∗
2 ,…,

y∗
N , directed to the elastic medium and tangential to the curvature lines. Let us denote

as OnX
(n)
1 X (n)

2 X (n)
3 , n = 1, 2, . . . , N the Cartesian coordinate system with the origin

at point y∗
n .

To determine the coordinates of the current point yn ∈ S∗
n , n = 1, 2, 3, . . . , N , at

any vicinity S∗
N let us count the lengths of the arcs �s(n)

1 , �s(n)
2 from point y∗

n along
the curvature lines. Then the current point yn of the convex surface Sn in the local
coordinate system OnX

(n)
1 X (n)

2 X (n)
3 has the following coordinates:

yn =
(

�s(n)
1 ,�s(n)

2 ,−0.5

(
k(n)
1

(
�s(n)

1

)2 + k(n)
2

(
�s(n)

2

)2
))

,

where k(n)
1 , k(n)

2 are the principal curvatures, and

(
k(n)
1

(
�s(n)

1

)2 + k(n)
2

(
�s(n)

2

)2
)
is

the second quadratic form of the surface S∗
n at point y∗

n . Up to small quantities of
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the second order
(
�s(1)

1

)2
,�s(1)

1 �s(1)
2 ,

(
�s(1)

2

)2
,
(
�s(N )

1

)2
,�s(N )

1 �s(N )
2 ,

(
�s(N )

2

)2

the asymptotic representations for the distances |x0 − y1| i |yN − xN+1| have the
following form:

|x0 − y1| = L0 − �s(1)
1 cosα1 − �s(1)

2 cosβ1

+ 0.5
(
L−1
0 sin2 α1 + k(1)

1 cos γ1

)(
�s(1)

1

)2

− L−1
0 cosα1 cosβ1�s(1)

1 �s(1)
2

+ 0.5
(
L−1
0 sin2 β1 + k(1)

2 cos γ1

)(
�s(1)

1

)2
, (17)

|yN − xN+1| = LN + �s(N )
1 cosαN + �s(N )

2 cosβN

+ 0.5
(
L−1
N sin2 αN + k(N )

1 cos γN

)(
�s(N )

1

)2

− L−1
N cosαN cosβN�s(N )

1 �s(N )
2

+ 0.5
(
L−1
N sin2 βN + k(N )

2 cos γN

)(
�s(N )

1

)2
. (18)

In the presented formulas above and hereinafter in this section
{− cosαn,− cosβn,− cos γn} is the direction of the incident ray and
{− cosαn,− cosβn, cos γn} is the direction of the reflected ray at point yn in
the vicinity S∗

n , related to the local coordinate system.
Each of the distances |yn−1 − yn| = |ynyn−1|, n = 2, 3, . . . , N in the phase ϕ

(16) is considered in the Cartesian coordinate system OnX
(n)
1 X (n)

2 X (n)
3 at point y∗

n .
For the vector ynyn−1 let us use the representation:

ynyn−1 = y∗
ny

∗
n−1 + An−1

n y∗
n−1yn−1 − y∗

nyn;
y∗
nyn =

{
�s(n)

1 ,�s(n)
2 ,−0.5

(
k(n)
1

(
�s(n)

1

)2 + k(n)
2

(
�s(n)

2

)2
)}

. (19)

Here the coordinates of vector y∗
i yi (i = n − 1, n) are written out in the local

Cartesian coordinates of points y∗
n−1 and y∗

n .

The matrix An−1
n =

(
ani, j

)
, i, j = 1, 2, 3 is the orthogonal matrix of the pas-

sage from the Cartesian basis OnX
(n)
1 X (n)

2 X (n)
3 at point y∗

n to the Cartesian basis
On−1X

(n−1)
1 X (n−1)

2 X (n−1)
3 at point y∗

n−1.
By taking into account the orthogonality of matrix An−1

n , each term
|yn−1 − yn|, n = 2, 3, . . . , N in the phase ϕ (16) is reduced to the form:

|yn−1 − yn| = Ln−1

+ cosαn−1�s(n−1)
1 + cosβn−1�s(n−1)

2



3d Propagation of Ultrasonic Waves … 207

+ 0.5 cos γn−1

[
k(n−1)
1

(
�s(n−1)

1

)2 + k(n−1)
2

(
�s(n−1)

2

)2
]

− cosαn�s(n)
1 − cosβn�s(n)

2

− 0.5 cos γn

[
k(n)
1

(
�s(n)

1

)2 + k(n)
2

(
�s(n)

2

)2
]

+ L−1
n−1

[
0.5 sin2 αn−1

(
�s(n−1)

1

)2 + 0.5 sin2 βn−1

(
�s(n−1)

2

)2

− cosαn−1 cosβn−1�s(n−1)
1 �s(n−1)

2

+ 0.5 sin2 αn

(
�s(n)

1

)2 + 0.5 sin2 βn

(
�s(n)

2

)2

− cosαn cosβn�s(n)
1 �s(n)

2

+ (
cosαn−1 cosαn − an11

)
�s(n−1)

1 �s(n)
1

+ (
cosβn−1 cosβn − an12

)
�s(n−1)

2 �s(n)
1

+ (
cosαn−1 cosαn − an21

)
�s(n−1)

1 �s(n)
2

+(
cosβn−1 cosβn − an22

)
�s(n−1)

2 �s(n)
2

]
n = 2, 3, . . . , N . (20)

In the general case of N-fold re-reflection, in the phase ϕ (16) there is no linear
term �s(n)

j ( j = 1, 2; n = 1, 2, . . . , N ). This means that the points y∗
n ∈ S∗

n of the
direct ray reflection correspond to the stationary value of the phase ϕ.

By applying the estimate as kp → ∞ 2N for the multiple Somilyana integral
(15) the multidimensional (2N-fold) stationary phase method [16], we obtain the
amplitude of the radial displacement in N times re-reflected p-wave:

u(p)
r (xN+1) = Qq

4π μ

k2p
k2s

N∏
n=1

cos γnVpp
(
y∗
n

)exp
{
i

[
kp

N∑
n=0

Ln + π
4

(
δ

(p)
2N + 2N

)]}

N∏
n=0

Ln

√∣∣∣det(D(p)
2N

)∣∣∣
,

(21)

where δ
(p)
2N = signD(p)

2N is the sign of the hessian matrix D(p)
2N = (di j ), i, j =

1, 2, 3, . . . , 2N , which is band-like (with the width of the band equal to seven) and
symmetric di j = d j i with the following non trivial elements di j , i ≤ j .

Diagonal elements:

{
d2n−1,2

d2n,2n

}
= (

L−1
n−1 + L−1

n

){ sin2 αn

sin2 βn

}
+ 2

{
k(n)
1

k(n)
2

}
cos γn, n = 1, N (22)

Out-of-diagonal elements:
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d2n−1,2n = −(
L−1
n−1 + L−1

n

)
cosαn cosβn, n = 1, N ,

d2n−1,2n+1 = L−1
n (cosαn cosαn+1 − an11), n = 1, N − 1,

d2n−1,2n+2 = L−1
n (cosαn cosβn+1 − an21), n = 1, N − 1,

d2n,2n+1 = L−1
n (cosβn cosαn+1 − an12), n = 1, N − 1,

d2n,2n+2 = L−1
n (cosβn cosβn+1 − an22), n = 1, N − 1. (23)

Let us note that the estimate of the multidimensional diffraction integral (15) is
not reduced to a sequential asymptotic estimate of the double integrals, since the
structure of the phase function represents itself a complex combination depending
on all points of vicinities S∗

1 , S
∗
2 , . . . , S

∗
N , participating in the ray reflections.

The elements of this matrix coincide with the elements of matrix D2 N from [4]
in the case of N–fold re-reflection of the acoustic wave. But one should take into
account that in the elements of matrix D(p)

2 N : {− cos αn,− cosβn,− cos γn} is the
direction of the incident p-wave regarding the coordinate system at point y∗

n , and{− cosαn+1,− cos βn+1, − cos γn+1} is the direction of the reflected p-wave at point
y∗
n regarding the coordinate system at point y∗

n +1, k
(n)
1 , k(n)

2 (n = 1, 2, . . . , N ) are the
principal curvatures of the surface at point y∗

n .
Therefore, in the present section we have obtained the leading asymptotic term

for the displacements in the longitudinal wave re-reflected arbitrary finite number of
times, from the surfaces of a system of voids located in the elastic medium. Formula
(12) for the amplitude of N times re-reflected p-wave differs from the amplitude for
pressure in N times re-reflected acoustic wave [4], by a certain inessential factor in
(21) and a product of the reflection coefficients Vpp

(
y∗
n

)
of p-wave [14, 15] at the

point y∗
n , n = 1, 2, . . . , N of mirror reflection.

5 Multiple Reflections with Periodic Transformation
of Elastic Waves

Let us consider this topic on a concrete example. If the location and the shape of the
surfaces are such that the trajectory of the ray x0−y∗

1 −y∗
2 −· · ·−y∗

2N−1−y∗
2N −x2N+1

leads to p−s−p−s− . . . −p−s−p reflection (this can be realized only for even
number of mirror reflections, Fig. 2), then the amplitude of the radial displacement
in the 2N times reflected ray at point x2N+1 relatively the local spherical coordinate
system r, θ, ψ at the last point of mirror reflection y∗

2N is represented by the integral

u(p)
r (x2N+1) = Qq

4πμ

(
kp
ks

)2(kpks
4π2

)N

L−1
0

N∏
n=1

L−1
2n−1L

−1
2n cos γ

(s)
2n−1 cos γ

(p)
2n Vps

(
y∗
2n−1

)
Vsp

(
y∗
2n

)
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Fig. 2 2N-fold
p−s−p− · · · −p−s−p
re-reflection of the
high-frequency longitudinal
wave along the ray
x0 − y∗

1 − y∗
2 − · · · −

y∗
2 N−1 − y∗

2 N − x2 N+ 1 from
a system of 2N voids

×
¨

S2N

¨

S2N−1

. . .

¨

S2

¨

S1

eikpφdS1dS2 . . . dS2N−1dS2N ,

u(p)
θ (x2N+1) = 0, u(p)

ψ (x2N+1) = 0, (24)

φ = |x0 − y1| + ks k
−1
p

N∑
n=1

|y2n−1 − y2n| +
N−1∑
n=1

|y2n − y2n+1| + |y2N − x2N+1|,

L0 = ∣∣x0 − y∗
1

∣∣ , Ln = ∣∣y∗
n − y∗

n+1

∣∣ , n = 1, 2, . . . , 2N − 1 ; L2N = ∣∣y∗
2N − x2N+1

∣∣,
(25)

where L0 is the distance between the emitter x0 and the first point of mirror reflection
y∗
1 , L2N—between the receiver x2N+1 and the last point of mirror reflection y∗

2N ,
Ln(n = 1, 2, 3, . . . , 2N − 1) is the distance between the points of mirror reflection
y∗
n and y∗

n+1.
The first |x0 − y1| and the last |y2N − x2N+1| terms in the phase φ (25) have the

same structure like in (17) and (18), and the others are analogous to (20).
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The asymptotic expansions for the distances |y2n−1 − y2n| = |y2n− 1y2n| and
|y2n − y2n+1| = |y2ny2n+1| are obtained on the basis of the following vector rep-
resentations

y2ny2n−1 = y∗
2 ny

∗
2n−1 + A2n−1

2 n y∗
2n−1y2n−1 − y∗

2 ny2 n. (26)

y2n+ 1y2n = y∗
2 n+ 1y

∗
2n + A2n

2 n+ 1y
∗
2ny2n − y∗

2 n+ 1y2 n+ 1. (27)

Here A2n−1
2 n = (

ai j
)2n−1
2 n and A2n

2 n +1 = (
ai j

)2n
2 n +1, i, j = 1, 2, 3; n =

1, 2, . . . , N − 1 are the transition matrices from the Cartesian coordinate system
at point y∗

2n (and respectively, y∗
2n+1) to the Cartesian coordinate system at point

y∗
2n−1 (and respectively, y∗

2n).
By applying for the asymptotic estimate, as kp → ∞, the 4N-fold Kirchhoff

integral (20) the 4N-forl stationary phase method, we obtain the amplitude of the
radial displacement in the 2N times re-reflected p-wave:

u(p)
r (x2N+1) = B1 ×

exp

{
i

[
kpL0 +

N∑
n=1

(
ks L2n−1 + kpL2n

) + π
4 (δ4N + 4N )

]}

2N∏
n=0

Ln
√|det(D4N )|

,

B1 = Qq

4πμ

(
ks
kp

)N−2 N∏
n=1

Vps
(
y∗
2n−1

)
Vsp

(
y∗
2n

)
cos γ

(s)
2n−1 cos γ

(p)
2n , (28)

where δ4N = sign D4N is the sign of the Hessian matrix D4N = (dmk), m, k =
1, 2, 3, . . . , 4N , which is band-like (with the width of the band equal to seven) and
symmetric dmk = dmk , with the following nontrivial elements dmk,m ≤ k, m, k ≤
4N ,

{
d4n−3,4n−3

d4n−2,4n−2

}
= 1

L2n−2

{
sin2 α

(p)
2n−1

sin2 β
(p)
2n−1

}
+ ks

kpL2n−1

{
sin2 α

(s)
2n−1

sin2 β
(s)
2n−1

}

+
{
k(2n−1)
1

k(2n−1)
2

}(
cos γ

(p)
2n−1 + ks

kp
cos γ

(s)
2n−1

)
, n = 1, N

{
d4n−1,4n−1

d4n,4n

}
= ks

kpL2n−1

{
sin2 α

(s)
2n

sin2 β
(s)
2n

}
+ 1

L2n

{
sin2 α

(p)
2n

sin2 β
(p)
2n

}

+
{
k(2n)
1

k(2n)
2

}(
ks
kp

cos γ
(s)
2n + cos γ

(p)
2n

)
, n = 1, N ,

d4n−3,4n−2 = − 1

L2n−2
cosα

(p)
2n−1 cosβ

(p)
2n−1

− ks
kpL2n−1

cosα
(s)
2n−1 cosβ

(s)
2n−1, n = 1, N ,
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d4n−1,4n = − ks
kpL2n−1

cosα
(s)
2n cosβ

(s)
2n − 1

L2n
cosα

(p)
2n cosβ

(p)
2n , n = 1, N ,

d4n−3,4n−1 = ks
kpL2n−1

(
cosα

(s)
2n−1 cosα

(s)
2n − (a11)

2n−1
2n

)
, n = 1, N − 1,

d4n−3,4n = ks
kpL2n−1

(
cosα

(s)
2n−1 cosβ

(s)
2n − (a21)

2n−1
2n

)
, n = 1, N − 1,

d4n−2,4n−1 = ks
kpL2n−1

(
cosβ

(s)
2n−1 cosα

(s)
2n − (a12)

2n−1
2n

)
, n = 1, N − 1,

d4n−2,4n = ks
kpL2n−1

(
cosβ

(s)
2n−1 cosβ

(s)
2n − (a22)

2n−1
2n

)
, n = 1, N − 1,

d4n−1,4n+1 = 1

L2n

(
cosα

(p)
2n cosα

(p)
2n+1 − (a11)

2n
2n+1

)
, n = 1, N − 1,

d4n−1,4n+2 = 1

L2n

(
cosα

(p)
2n cosβ

(p)
2n+1 − (a21)

2n
2n+1

)
, n = 1, N − 1,

d4n,4n+1 = 1

L2n

(
cosβ

(p)
2n cosα

(p)
2n+1 − (a12)

2n
2n+1

)
, n = 1, N − 1,

d4n,4n+2 = 1

L2n

(
cosβ

(p)
2n cosβ

(p)
2n+1 − (a22)

2n
2n+1

)
; n = 1, N − 1.

Here
{
− cosα

(p)
2n−1,− cosβ

(p)
2n−1,− cos γ

(p)
2n−1

}
is the direction of inci-

dence of p-wave, and
{
− cosα

(s)
2n−1,− cosβ

(s)
2n−1, cos γ

(s)
2n−1

}
—the direc-

tion of the reflection of s-wave, in the coordinate system at point y∗
2n−1;{

− cos α
(s)
2n , − cosβ

(s)
2n ,− cos γ

(s)
2n

}
—the direction of incidence of s-wave, and{

− cos α
(p)
2n , − cosβ

(p)
2n , cos γ

(p)
2n

}
—the direction of reflection of p-wave in the

coordinate system at point y∗
2n .

6 Multiple Reflections with All Possible Transformations
of Elastic Waves

The geometry of the boundary surfaces of the voids in the elastic medium and their
locationmay form such trajectories of rays x0−y∗

1 −y∗
2 −· · ·−y∗

N −xN+1, which lead
to any possibility of sequential reflections and transformations at the points of mirror
reflection. Generally, the trajectory of the wave is a three-dimensional polyline with
vertices at the points of mirror reflection.

Let for N times reflected ray at any possible sequence at the point of mir-
ror reflection y∗

1 , y∗
2 , …, y∗

N−1, y∗
N there is realized the p−p and s−s reflec-

tions N1 and N3 times, respectively, but p−s and s−p transformations—N2

and N4 times, respectively. At the receiving point xN+1 there can be
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received both longitudinal u(xN+1) = u(p)
r (xN+1) and transverse u(xN+1) =(

u(S)
θ (xN+1) cosα + u(S)

ψ (xN+1) cosβ
)
sin−1 γ wave, where {cosα, cosβ, cos γ } is

the direction of the reflected wave in the local Cartesian coordinate system at the
receiving point xN+1.

When so doing, the amplitude of the radial and tangential displacement in N
times reflected ray at point xN+1 regarding the local spherical coordinate system
r, θ, ψ at point yN of the boundary surface of the obstacle, is represented by a
multiple Kirchhoff integral, which is formed by the same rules like the diffraction
integrals (15) and (24), taking in account concrete reflections and transformations of
the propagating ray at the point of mirror reflection:

u(xN+1) = i N B

(
kp
2π

)N1+N2
(
ks
2π

)N3+N4

L−1
0

N∏
n=1

L−1
n cos γ (2)

n V (y∗
n )

×
¨

S∗
N

¨

S∗
N−1

. . .

¨

S∗
2

¨

S∗
1

eikpϕdS1dS2 . . .dSN−1dSN , (29)

ϕ = k−1
p

(
k1|x0 − y1| +

N−1∑
n=1

kn|yn − yn+1| + kN |yN − xN +1|
)

,

L0 = ∣∣x0 − y∗
1

∣∣, Ln = ∣∣y∗
n − y∗

n+1

∣∣, LN = ∣∣y∗
N − xN+1

∣∣, n = 1, 2, . . . , N − 1.
(30)

Here B = Qq

4πμ

(
kp
ks

)2N1+N4

.

In the expressions (29)–(32) q(1)
n = {

cos α(1)
n , cosβ(1)

n , cos γ (1)
n

}
and q(2)

n ={
cos α(2)

n , cosβ(2)
n , cos γ (2)

n

}
are, respectively, the direction of the incidence and

reflection of the wave at the points of mirror reflection y∗
n .

Let us mention the four combinations of the pairs of directions q(1)
n ,q(2)

n :

1. q(1)
n = q(p)

n , q(2)
n = q(p)

n , V (y∗
n ) = Vpp(y∗

n ), (p−p);
2. q(1)

n = q(p)
n , q(2)

n = q(s)
n , V (y∗

n ) = Vps(y∗
n ), (p−s);

3. q(1)
n = q(s)

n , q(2)
n = q(s)

n , V (y∗
n ) = Vss(y∗

n ), (s−s);
4. q(1)

n = q(s)
n , q(2)

n = q(p)
n , V (y∗

n ) = Vsp(y∗
n ), (s−p).

If at the point y∗
n there is realized a respective reflection or transformation indicated

in the brackets. V (y∗
n ) is the coefficient of the reflection or transmission [14, 15] at

the point y∗
n of the respective wave. In the phase ϕ (30) the parameter kn = kp

(p−p, p−s) and kn = ks(s−s, s−p), if the reflections or transformations indicated
in the brackets are realized at point y∗

n . By applying for the asymptotic estimate of
the diffraction integral (29) the 2N-fold stationary phase method [14] we obtain the
geometrical-optics approximation for the displacements in the passed elastic wave
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u(xN+1) = B2

exp

{
i

[
N∑

n=0
knLn + π

4 (δ2N + 2N )

]}

N∏
n=0

Ln
√|det(D2N )|

B2 = B
N∏

n=1

cos γ (2)
n V

(
y∗
n

)
(31)

where δ2N = signD2N , and D2N = (dnm), n,m = 1, 2, 3, . . . , 2N is the Hessian
matrix, which is band-like and symmetric dn m = dm n , with the following nontrivial
elements dn m, n < m :

d2n−1,2n−1 = k1n
kpLn−1

cosα(1)
n

+ k2n
kpLn

cosα(2)
n + kn1

(
k1n
kp

cos γ (1)
n + k2n

kp
cos γ (2)

n

)
, n = 1, N (32)

d2n,2n = k1n
kpLn−1

cosβ(1)
n + k2n

kpLn
cosβ(2)

n

+ kn2

(
k1n
kp

cos γ (1)
n + k2n

kp
cos γ (2)

n

)
, n = 1, N ,

d2n−1,2n = −
(

k1n
kpLn−1

cosα(1)
n cosβ(1)

n + k2n
kpLn

cosα(2)
n cosβ(2)

n

)
, n = 1, N ,

d2n−1,2n+1 = 1

Ln

(
cosα(1)

n cosα
(1)
n+1 − an11

)
, n = 1, N − 1

d2n−1,2n+2 = 1

Ln

(
cosα(1)

n cosβ
(1)
n+1 − an21

)
, n = 1, N − 1,

d2n,2n+1 = 1

Ln

(
cosβ(1)

n cosα
(1)
n+1 − an12

)
, n = 1, N − 1,

d2n,2n+2 = 1

Ln

(
cosβ(1)

n cosα
(1)
n+1 − an22

)
, n = 1, N − 1

Here
{
cosα(1)

n , cosβ(1)
n , cos γ (1)

n

}
are the direction of the incidence of the wave,

and
{
cosα(2)

n , cosβ(2)
n , cos γ (2)

n

}
is the direction of the wave reflection at point y∗

n ,

k(n)
1 , k(n)

2 —the principal curvatures of the boundary surface at the point y∗
n .

In the diagonal elements of the Hessian matrix for parameters k1n and k2n there
are possible the four pair of the values:

1. k1n = kp, k2n = kp (p−p);
2. k1n = kp, k2n = ks (p−s);
3. k1n = ks , k2n = ks (s−s);
4. k1n = ks , k2n = kp (s−p).
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Depending on which type of the reflection or transformation is realized at point
y∗
n

7 Conclusion

In the present work we give the leading asymptotic term (31) of the amplitude of the
displacement u(xN+1) of the reflected along the ray x0 − y∗

1 − y∗
2 −· · ·− y∗

N − xN+1

high-frequency longitudinal or transverse wave with the arbitrary sequence of reflec-
tions and transformations from N obstacles located in the elastic medium in the tree-
dimensional case. The trajectory of the wave is a three-dimensional polyline with the
vertices at the points of mirror reflections. The amplitude of the displacement in the
multiply reflected elastic wave (31), (32) is defined by the distances from the source
to the first reflection point y∗

1 , parameter L0, from the last mirror reflection point y∗
N

to the receiving point, parameter LN , the distances Ln , n = 1, 2, . . . , N −1 between
points y∗

n and y∗
n+1. Points y

∗
1 , y

∗
2 , . . . , y

∗
N−1, y

∗
N may belong to both boundary sur-

faces S1, S2 . . . , SN−1, SN ofN different voids, and the surface S of a single void of a
complex non-convex shape. There are also possible the caseswhen boundary surfaces
of some voids each contain one reflection point, and some other obstacles contain sev-
eral reflection points. The leading asymptotic term of the displacement also contains
in explicit form the principal curvatures of the surfaces k(n)

1 , k(n)
2 (n = 1, 2, . . . , N ) at

points y∗
1 , y

∗
2 , . . . , y

∗
N−1, y

∗
N , along the direction q

(1)
n = {

cos α(1)
n , cosβ(1)

n , cos γ (1)
n

}
and q(2)

n = {
cos α(2)

n , cosβ(2)
n , cos γ (2)

n

}
of the incident and reflected wave, respec-

tively, at the point of mirror reflection, as well as the reflection and transformation
coefficients V

(
y∗
n

)
. The phase of the reflected wave u(xN+1) (31) is defined by the

distances L0, L1, L2 ,…, LN−1, LN , by the wave numbers kp and ks , by the sign δ2N
of the Hessian matrix D2N , as well as by the number of points of mirror reflection.

Acknowledgements The present work is performed within the framework of the Project no. 15-
19-10008-P of the Russian Science Foundation (RSCF).

References

1. Babich, V.M., Buldyrev, V.S. Asymptotic Methods in Short-Wavelength Diffraction Theory.
Alpha Science International, London (2009)

2. Sumbatyan, M.A., Boyev, N.V.: High-frequency diffraction by nonconvex obstacles. J. Acoust.
Soc. Am. 95(5)(Part 1), 2347–2353 (1994)

3. Bojarski, N.N.: A survey of the physical optics inverse scattering identity. IEEE Trans. Anten.
Prop. AP 30(5), 980–988 (1982)

4. Boyev, N.V., Sumbatyan, M.A.: A short-wave diffraction by bodies, bounded by arbitrary
smooth surface. Russ. Dokl. 392(5) (2003)

5. McNamara,D.A., Pistotius,C.W.I.: Introduction to theUniformGeometricalTheoryofDiffrac-
tion. Artech House Microwave Library (1990)



3d Propagation of Ultrasonic Waves … 215

6. Boyev, N.V.: Short-wave diffraction of elastic waves by voids in an elastic mediumwith double
reflections and transformations. In:Wave Dynamics and CompositeMechanics forMicrostruc-
tured Materials and Metamaterials. Springer Series: Advanced Structured Materials, vol. 59,
pp. 91–106 (2017)

7. Boyev, N.V., Sumbatyan, M.A.: Ray tracing method for a high-frequency propagation of the
ultrasonic wave through a triple-periodic array of spheres. In: Wave Dynamics and Compos-
ite Mechanics for Microstructured Materials and Metamaterials. Springer Series: Advanced
Structured Materials, vol. 59, pp. 173–187 (2017)

8. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific
Translations (1965)

9. Novatsky, V.: Theory of Elasticity. Mir., Moscow (1975) (in Russian)
10. Borovikov, V.A., Borovikov, V.A., Kinber, B.Y., Kinber, B.E.: Geometrical Theory of Diffrac-

tion. The Institution of Electrical Engineers, London (1994)
11. Achenbach, J.D., Gautesen, A.K., McMaken, H.: Ray Methods for Waves in Elastic Solids:

With Applications to Scattering by Cracks. Pittman, New York (1982)
12. Hoenl, H., Maue A., Westpfahl, K.: Diffraction Theory. Mir., Moscow (1964) (in Russian)
13. Shenderov, E.L.: Wave Problems of Hydroacoustics. Sudostroenie, Leningrad (1972) (in Rus-

sian)
14. Brekhovskikh, L.: Waves in Layered Media. Academic Press, New York (2012)
15. Grinchenko, V.T., Meleshko, V.V.: Harmonic Oscillations and Waves in Elastic Bodies.

Naukova Dumka, Kiev (1981) (in Russian)
16. Fedorjuk, M.V.: Saddle Point Method. Nauka, Moscow (1977) (in Russian)



Numerical Investigation of Effective
Moduli of Porous Elastic Material
with Surface Stresses for Various
Structures of Porous Cells

A. V. Nasedkin and A. S. Kornievsky

Abstract The chapter deals with the model problem of finding the effective moduli
of a nanoporous elastic material, in which the surface stresses are defined on the
pore surface to reflect the size effect using the Gurtin–Murdoch model. One cell
of a porous material in the form of a cube with one pore located in the center is
considered. The objective of the study is to assess the influence of the pore shape and
the magnitude of the scale factors on the effective moduli of the composite material.
The homogenization problem is formulated within the framework of the effective
moduli method, and to find its solution, the finite element method and the ANSYS
software package are used. In the finite element model, the surface stresses are taken
into account by membrane elements covering the pore surfaces and conformable
with the finite element mesh of bulk elements. Numerical experiments carried out
for pores of cubic and spherical shapes show the cumulative significant effect of pore
geometry and scale factors on the effective elastic moduli.

1 Introduction

The problems of nanomechanics remain extremely relevant for the last few years.
Numerous studies have revealed a scale effect, which consists in changing the effec-
tive stiffness and other material moduli for nanoscale bodies in comparison with the
corresponding values for bodies of usual macro-dimensions. A number of theories
have been developed to explain the scale factor. One of these widely used theories
is the model of surface elasticity. There are a number of reviews [10, 16, 35, 36]
devoted to research on the surface theory of elasticity and its applications. In turn,
among the theories of surface elasticity, the most popular is the Gurtin–Murdoch
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model [15]. The use of this model actually leads to the fact that the boundaries of the
nano-sized body are covered with elastic membranes, the internal forces in which are
determined by surface stresses. Elastic membranes can be placed at the interphase
boundaries inside the body with nanoscale inclusions, which makes it possible to
simulate imperfect interface boundaries with stress jumps [3–5, 7, 8, 14, 24].

The Gurtin–Murdoch model was repeatedly used to describe elastic nanostruc-
tured composites. Thus, in [1, 2, 6–9, 11, 22, 23, 31] and others, within the frame-
work of the theory of elasticity with surface stresses, the mechanical properties of
composites with spherical nanoinclusions (nanopores), as well as fibrous and other
nanocomposites, were investigated. Techniques of finite element approximation for
elastic materials with surface effects and examples of calculations are presented in
[12, 13, 17–21, 26–28, 32, 34] and others.

In this paper, we study the effective stiffness properties of a nanoporous isotropic
elastic material for various forms of pores. Porousmaterial is considered as a limiting
case of a two-phase mixed composite, when the material of inclusions has negligibly
small stiffness moduli. The nano-dimensionality at the boundaries of the material
with pores was taken into account using the Gurtin–Murdoch surface stress model.
This paper is a continuation of research [26–30]. In the development of the above-
mentioned paper, the scale factor is associated with the pore size and the effect of
pore shape on the effective composite properties is studied.

2 Mathematical Problem Statement

Let Ω be a unit cubic cell of elastic porous material with one pore of cubic or
spherical form; a is the cubic cell side; Ω = Ω(1) ∪ Ω(2); Ω(1) is the part of Ω with
main elastic material; Ω(2) is the pore; Γ = ∂Ω is the external boundary of the cell;
Γ s = ∂Ω(2) is the boundary of the pore; nk are the components of the unit normal
vector external with respect to the volume of the main elastic material Ω(1).

The unit cell Ω is linked to the Cartesian coordinate system Ox1x2x3 so that it
occupies the region |xk | ≤ a/2. Then, in the case of a cubic pore with side b (b < a),
the domain Ω(2) will be defined by the inequalities |xk | ≤ b/2, and in the case of
a spherical pore with radius R, the domain Ω(2) is given by the inequality r ≤ R,

r =
√
x21 + x22 + x23.

Wewill assume that in the volumeΩ the system of equations of the static theory of
elasticity is satisfied with respect to the components uk = uk(x) of the displacement
vector

∂σij/∂xj = 0, σij = λεkkδij + 2μεij, εij = (∂ui/∂xj + ∂uj/∂xi)/2, (1)

where σij and εij are the components of the stress and strain tensors, respectively; λ,
μ are the Lame’s coefficients; δij is the Kronecker symbol.
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Here we consider the pore as an elastic material with negligible Lame’s coeffi-
cients. Thus, the system of equations (1) is satisfied in Ω , with λ = λ(m), μ = μ(m)

for x ∈ Ω(m); λ(2) � λ(1), μ(2) � μ(1).
We will accept that the poreΩ(2) is nanosized and in accordance with the Gurtin–

Murdoch model, at its boundary Γ s the surface stresses σ s
ij exist, and the following

equations hold
nj[σij] = ∂sσ s

ij/∂xj, x ∈ Γ s, (2)

σ s
ij = λsεskkδij + 2μsεsij, εsij = (∂susi /∂xj + ∂susj /∂xi)/2, (3)

∂s/∂xj = ∂/∂xj − nj(nk∂/∂xk), usi = (δik − nink)uk , (4)

where [σij] = σ
(1)
ij − σ

(2)
ij is the stress jump over the boundary Γ s between the vol-

umes with different materials; ∂s/∂xj are the components of the surface nabla-
operator; λs, μs are the surface Lame’s coefficients; εsij are the surface strains; usi
are the surface displacements.

In the rectangular local coordinate system, attached with tangent orts ẽ1 = τ 1,
ẽ2 = τ 2 and normal ẽ3 = n, the sets of the values ũsi , ε̃

s
ij, σ̃

s
ij are pertaining to surface,

i.e. ũs3 = 0, ε̃s13 = ε̃s23 = ε̃s33 = 0, σ̃ s
13 = σ̃ s

23 = σ̃ s
33 = 0.

Note that aswe can see fromEq. (1) the surface stressesσ s
ij have the dimensionality

(N/m) different from the dimensionality (N/m2) of usual bulk stresses σij. Also the
surface Lame’s coefficients λs, μs have the dimensionality (N/m) different from the
dimensionality (N/m2) of usual bulk Lame’s coefficients λ, μ.

When calculating the effective moduli of a porous elastic material with surface
stresses, we will find the basic moduli that are important for practical applications.
As is well known, for elastic isotropic materials such moduli are the stiffness moduli
c11, c12, the Young’s modulus E, the Poisson’s ratio ν, the shear modulus G = μ =
c44, and the bulk modulus K . These moduli can be expressed through the Lame’s
coefficients by the following formulae

c11 = λ + 2μ, c12 = λ, E = μ(3λ + 2μ)

λ + μ
, ν = λ

2(λ + μ)
, K = λ + 2

3
μ, (5)

or through the Young’s modulus and the Poisson’s ratio

λ = νE

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
, K = E

3(1 − 2ν)
. (6)

Similarly, instead of the surface Lame’s coefficients λs and μs we can use other
surface moduli. For example, we can introduce the surface Young’s modulus Es and
the surface Poisson’s ratio νs having expressed from the first formula (3) the surface
strains εsij through the surface stresses σ s

ij in a form similar to the standard Hooks’s
law for the three-dimensional theory of elasticity
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εsij = − νs

Es
σ s
kkδij +

(1 + νs)

Es
σ s
ij. (7)

Since in (3) and in (7) the surface quantities are related, the expressions for the
surface moduli will differ from (5), (6) [19]

cs11 = λs + 2μs, cs12 = λs, Es = 4μs(λs + μs)

λs + 2μs
, νs = λs

λs + 2μs
, Ks = λs + μs,

(8)

λs = νsEs

1 − (νs)2
, μs = Es

2(1 + νs)
, Ks = Es

2(1 − νs)
. (9)

Here, in (8), (9) we define the surface compression modulus Ks in the form
corresponding to [1, 19, 24] and differ from [6–8] and others.

Thus, a nanoporous composite with surface stresses on the pore boundaries is
characterized by four elastic moduli, for example, E(1), ν(1), Es and νs (E(2) ≈ 0).
We will assume that the “equivalent” homogeneous material will be isotropic and
will be characterizes by two independent moduli, for example, by c eff

11 and c eff
12 . In

order to find these effective moduli, it is enough to solve the problem (1)–(4) in the
unit cell Ω with the boundary conditions

u1 = ε0x1, u2 = u3 = 0, x ∈ Γ, (10)

where ε0 = const.
After solving the problem (1)–(4), (10) similar to [26–29], we can calculate the

effective stiffness moduli by using the formulae

c eff
11 = 〈σ11〉/ε0, c eff

12 = 〈σ22〉/ε0, (11)

where the angle brackets 〈(•)〉 denote the averaged integral volume and interface
values [3, 4, 18, 19]

〈(•)〉 = 1

|Ω|
( ∫

Ω

(•) d Ω +
∫

Γ s

(•)s d Γ
)
. (12)

We can check that the homogenized material will be isotropic, if for the solution
of the problem (1)–(4), (10) we verify that c eff

12 ≈ 〈σ33〉/ε0; 〈σjk〉 ≈ 0, j 	= k. For
additional control we can solve the shear problem (1)–(4) with boundary conditions:
u1 = 0, u2 = ε0x3/2, u3 = ε0x2/2, x ∈ Γ . From the solution of this problem we
can anew calculate the shear modulus c eff

44 = 〈σ23〉/ε0, and this modulus should be
approximately equal to c eff

44 ≈ (c eff
11 − c eff

12 )/2 , where the stiffness moduli c eff
11 and

c eff
12 are found from the solution of the problem (1)–(4), (10).
In conclusion of this section, we note that the model of the pore as an elastic

material gives some error, but since λ(2) ≈ 0, μ(2) ≈ 0, we should expect that the
stress components in the pore region will also be small σ (2)

ij ≈ 0.
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3 Finite Element Results and Discussion

The boundary problems (1)–(4), (10) were solved numerically in the ANSYS finite
element package.

By virtue of the problem symmetry and for the convenience of analyzing the fields
inside the volume, a quarter of the cell {−a ≤ x1 ≤ a, 0 ≤ x2 ≤ a, 0 ≤ x3 ≤ a} was
considered with symmetry conditions on the faces x2 = 0, x3 = 0. Inside the cell,
as a pore either a quarter cube {−b ≤ x1 ≤ b, 0 ≤ x2 ≤ b, 0 ≤ x3 ≤ b} (case 1), or
a quarter ball {r ≤ R, 0 ≤ x2, 0 ≤ x3} (case 2) were set. The 10-node tetrahedral
structural SOLID92 elements were used as volumetric elements. The presence of
surface stresses was modelled with 8-node SHELL281 elements with the option of
membrane stresses and with degenerate triangular 6-node shapes. The shell elements
were covered the inner boundary of the pore and were located on the triangular faces
of the corresponding bulk tetrahedral elements, which ensured the conformality of
the finite element mesh consisting of bulk and shell elements.

The grid of bulk finite elements was created in ANSYS with a limit on the max-
imum size of elements equal to â/10, where â is the dimensionless cell size. Bulk
elements inherit the material properties of the main elastic material and pore asso-
ciated with a quarter of the volumes Ω(1) and Ω(2). Then, shell finite elements were
created automatically on the elements faces located on the inner surface of the pore.
Variants of the constructed finite element meshes without elements with the material
properties of pores are shown in Fig. 1 for the case of cubic pores (a) and spherical
pores (b). Shell elements in Fig. 1 highlighted in a darker, and porosity p is the same
and equal to 40%.

We considered steel as themainmaterial with the following elastic moduli:E(1) =
2 · 1011 (N/m2), ν(1) = 0.3. In the pore volume, we set negligible stiffness moduli
using the formulae: E(2) = κE(1), κ = 10−10, ν(2) = ν(1).

For surface moduli we accept the following formulae: Es = dsE(1), νs = ν(1),
ds = 10−10 (m). Note that, unfortunately, so far there are very few data on surface
moduli, and they are quite contradictory. Therefore, in a large number of theoretical
papers, the same values of surface moduli from [25, 33] are used, which greatly
differ in different crystallographic planes and some are negative. In this regard, here
we use the model values of the surface moduli.

Analogously to [26, 27], we model in ANSYS the surface effects by using shall
finite elements with the membrane stress option. For these elements we specify
the Young’s modulus Em, the Poisson’s ratio νm and thickness hm. In order for the
membrane element can be used as a surface element, we must accept: Es = hmEm,
νs = νm [26, 27].Wealso assume thathm = b,Em = ksE,where ks is a dimensionless
coefficient. Then, b = ds/ks, and therefore the coefficient ks is inversely proportional
to the size b of cubic pore.

In the calculations, we determined the pore size as dimensionless, with the side
of cubic pore b̂ being equal to 1. We set the dimensionless radius R̂ = (3π/4)1/3 so
that the volume of the spherical pore is equal to the volume of the cubic pore. The
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Fig. 1 Finite element mesh for two cases of quarter unit cell without pore elements

dimensionless cell size â for both cases was determined depending on the specified
percentage of porosity p: â = (p/100)−1/3b̂ = (p/100)−1/3.

We analysed the influence of the pore forms, the percentage of porosity and the
surface stresses on the effective moduli. We varied the percentage of porosity p from
0 to 50%, the multiplier value for surface stresses ks, and the pore form (cube or
sphere).

The results of the calculations are presented in Figs. 2, 3, 4, 5, 6 and 7. Here
r(. . .) designates the relative value of the effective modulus, with respect to the
value of the corresponding modulus for main elastic material without pore. Thus,
r(c11) = c eff

11 /c(1)
11 , where c

eff
11 is the effective stiffnessmodulus for the porousmaterial

with or without interface stresses, c(1)
11 is the value of the corresponding stiffness

modulus for the dense main material, and so on. The curves 1 correspond to the case
of porous material without surface stresses, when ks = 0; the curves 2 correspond to
the case of porous material with small surface stresses, when ks = 0.1; the curves 3
correspond to the case of porous material with large enough surface stresses, when
ks = 0.5, and the curves 4 correspond to the case of porous material with very large
surface stresses, when ks = 1. Figures2, 3, 4, 5, 6 and 7 on the left (a) show graphs
for the case of a cubic pore, and on the right (b) show similar curves for the case of
a spherical pore.

Figures2, 3, 4, 5, 6 and 7 demonstrate an essential dependence of the effective
moduli, both on the pore shape and on the coefficient of surface stresses ks. These
dependencies also differ by module type. So, for moduli characterizing uniaxial
tension, shear and transversal deformations, these dependences are different.
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Fig. 2 Dependencies of the relative effective Young’s modulus E versus porosity

Fig. 3 Dependencies of the relative effective shear modulus G versus porosity

Fig. 4 Dependencies of the relative effective stiffness modulus c11 versus porosity
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Fig. 5 Dependencies of the relative effective stiffness modulus c12 versus porosity

Fig. 6 Dependencies of the relative effective bulk modulus K versus porosity

In the absence of surface stresses (curves 1), all moduli decrease with increasing
porosity, and the shapes of the pores have a certain effect, though it is not so extensive.
The presence of surface stresses radically changes the pattern of dependencies. All
moduli can be subdivided into two groups, in which the dependencies of the moduli
on porosity and on the shape of the pores aremost similar to each other. Thefirst group
includes themoduli characterizing uniaxial tension: theYoung’smodulusE, the shear
modulusG, and the stiffnessmodulus c11 (Figs. 2, 3 and4).The secondgroup includes
the moduli characterizing transverse deformations and uniform compression: the
stiffness modulus c12, the bulk modulus K , and the Poisson’s ratio ν (Figs. 5, 6
and 7).

For very large coefficients ks for a cubic pore, as the porosity increases, theYoung’s
modulus E and shear modulus G grow faster than in the case of a spherical pore. On
the contrary, the stiffness modulus c11 for large ks grows faster for a spherical pore.

Meanwhile, for the stiffness modulus c12, the bulk modulus K , and the Poisson’s
ratio ν, these behaviours differ significantly from porosity. For all used coefficients
ks, these moduli decrease with increasing porosity for a cubic pore. However, for a
spherical pore, these moduli increase for large ks (curves 4). In this case, the most
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Fig. 7 Dependencies of the relative effective Poisson’s ratio ν versus porosity

Fig. 8 Stresses σ22 in membrane elements for cubic pore (a) and for spherical pore (b)

interesting is the behaviour of the Poisson coefficient ν, which for a cubic pore
not only decreases with increasing porosity, but this decrease becomes stronger with
increasing ks, which differs from the corresponding behavior of the stiffnessmodulus
c12 and the bulk modulus K .

Such differences can be explained by the fact that for a cubic pore under extension
along the x1 axis, the stressesσ22 (and similarly forσ33) inmembrane elements change
sign, and on edges perpendicular to the axis x2 do not occur. In the case of a spherical
pore, membrane elements are located on curved surfaces. Therefore, with uniaxial
tension in membrane elements, the various stress components arise, and the main
stresses σ11 on a curved surface significantly affect to the stresses σ22 and σ33. As
can be seen from Fig. 8, the stresses σ22 in membrane elements on the sphere surface
do not change sign, and their maximum values are almost five times larger than for
a cubic pore. Since the stiffness modulus c12 according to (11), (12) is calculated
by integrating the stresses σ22 both by volume elements and surface elements, then
it is clear that the surface stresses for a spherical pore increase the modulus c12
significantly more than for a cubic pore.
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Similar reasoning is true for the bulk modulusK , and it is obvious that the sphere-
shaped pore reinforced over the surface gives a more rigid structure for a full com-
pression in the composite than the cubic pore reinforced over the surface.

Thus, summarizing the above, we can conclude that the shape of the pores has a
significant influence on the effective moduli of the porous material, especially when
taking into account surface stresses for nanoscale pores.

Finally,we cannote thewell-known fact that for a nanoporousmaterial its effective
moduli may be larger than for a solid material. As can be seen in Figs. 2, 3, 4, 5,
6 and 7, these situations occur when the values of the relative effective moduli are
greater than 1 (i.e. the curves 3 or 4 turn out to be above the dashed line r(. . .) = 1).
An explanation of this can be found in many papers [9–11, 26, 27] and therefore is
not repeated here.

Further studies can be aimed at solving the problems with periodic boundary
conditions, with representative volumes with a large number of pores of different
shapes and with the definition of surface moduli by using different formulae that was
accepted in this paper.
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Electro-Magneto-Elastic Coupled Waves
in Piezoactive Periodic Structures

Karen B. Ghazaryan, Davit G. Piliposyan and Gayane T. Piliposian

Abstract Based on the complete set of Maxwell’ electrodynamics equations and
the theory of elasticity the two-dimensional equations have obtained describing the
coupled wave process in piezoactive electro-magneto-elastic (MEE) structure and
allowing solution of a new class of problems, in particular, the problems of prop-
agation and internal resonance of electro-magneto-elastic waves in periodic MEE
structures. For longitudinal lattice vibrations of oppositely polarized MEE periodic
superlattice the effect of phonon–photon polariton is investigated with a full three-
phase coupling between elastic, electromagnetic fields. The results show that the new
coupled phonon–photon polariton exhibits properties different from piezoelectric or
piezomagneticpolaritons.

1 Introduction

Materials made of piezoelectric and piezomagnetic phases have the ability of con-
verting energy from one form to the other (amongmagnetic, electric, andmechanical
energies). Furthermore, composites made of piezoelectric and piezomagnetic mate-
rials exhibit a magnetoelectric piezo effect that is not present in the single-phase
piezoelectric or piezomagnetic material [1, 2]. This is achieved by artificially com-
bining electro-elastic (piezoelectric) and magneto-elastic (piezomagnetic) particles
within an elastic matrix [3]. Propagation of electro-magneto-elastic waves in peri-
odic composites where the constituent materials possess coupled response effects
(e.g. piezoelectric and piezomagnetic effects), have already found a wide range of
application in smartmaterials. A combination of these two effects in a single compos-
ite provides new properties such as themagneto-electro-elastic effect, which recently
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attracted much attention due to a growing interest in the application of the magneto-
electric composites, for example, inmedical ultrasonic imaging, electronic packaging
[4]. A number of papers have been published investigating the existence and prop-
agation of different kinds of waves in MEE materials, for example [5–8]. In most
of these studies, the quasi-static approximation is adopted for the electromagnetic
field. Under this assumption, both the optical effect and the effect from the rotational
part of the electric field are neglected. Although it is believed that the optical effect
is not significant it might be useful in some applications to accurately predict the
piezoelectricity induced electromagnetic radiation. Such applications can for exam-
ple include optical detection or nondestructive evaluation [9]. The problems of electro
-acoustic waves in a piezoelectric non-periodic medium in a dynamic setting (none
quasi-static) were considered in [10, 11]. In periodic structures the dynamic setting
of Maxwell’s equations is necessary to consider when investigating frequency for-
bidden band gaps, polariton effects and the coupling internal resonance of elastic and
electromagnetic waves [12, 13]. In the long-wavelength approximation this setting
has been used to investigate a new type of polariton coupling in peizoelectric and
piezomagnetic crystals [14–17]. In this paper based on results of [18] we present
studies defining the phonon–photon polariton coupling effects in a new type of MEE
periodic superlattice with a full three-phase coupling between mechanical, electric
and magnetic fields.

2 General Relations and Equations of MEE Media

We consider a piezoactive magneto-electro-elastic (MEE) media in the framework
of linear theory elasticity and full dynamic setting of the Maxwell’s electrodynamic
equations, which gives an opportunity to study the wave process in both acoustic and
optic wave frequency regions.

Interaction between elastic waves and electrodynamic waves in MEE media can
be described by the following equations

divσ = ρ
∂2U
∂t2

, rotE = −∂B
∂t

, rotH = ∂D
∂t

(1)

and basic constitutive relations

σ = c :S − e · E − d · H, (2)

D = e : S + ε · E + g · H, (3)

B = d : S + g · E + μ · H, (4)
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Here σ, S, ε,μ and g are the stress, strain, dielectric permittivity, magnetic per-
meability and magneto-electric tensors, e,d, c are the piezoelectric, piezomagnetic,
elastic stiffness tensors tensor, D,E,B,H are electric displacement, electric field,
magnetic induction and magnetic field vectors and U is the displacement vector, dot
corresponds to the tensor convolution operation, double dot corresponds to the tensor
double convolution operation.

We consider two dimensional wave propagation in an electro-magneto-elastic
medium of 6 mm class hexagonal symmetry, when the plane of symmetry coincides
with plane (x, y) and the crystallographic polling axis coincides with the direction
of z axis. For this media the 2D constitutive relations can be cast as (∂z = 0)

Bx = d15∂xUz + g11Ex + μ11Hx , Dx = e15∂xUz + ε11Ex + g11Hx ,

By = d15∂yUz + g11Ey + μ11Hy, Dy = e15∂yUz + ε11Ey + g11Hy,

Bz = d31(∂xUx + ∂yUy) + g33Ez + μ33Hz, Dz = e31(∂xUx + ∂yUy) + ε33Ez + g33Hz,

(5)

σyz = c44∂yUz − e15Ey − d15Hy, σxx = c11∂xUx + c12∂yUy − e31Ez − d31Hz,

σxz = c44∂xUz) − e15Ex − d15Hx , σyy = c12∂xUx + c11∂yUy − e31Ez − d31Hz .

σxy = c66(∂yUx + ∂xUy),

(6)

Substituting (4) into we obtain the following coupled set equations
with respect to eight functions Hz(x, y), Hx (x, y), Uz(x, y), Ux (x, y),
Uy(x, y), Ez(x, y), Ex (x, y), Ey(x, y)

∂Ex

∂t
= − 1

j1

(
χ

∂2Uz

∂x∂t
− ∂

∂y
(g11 Ez + μ11Hz)

)
,

∂Hx

∂t
= − 1

j1

(
δ

∂2Uz

∂x∂t
+ ∂

∂y
(g11 Hz + ε11Ez)

)
,

∂Ey

∂t
= − 1

j1

(
χ

∂2Uz

∂y∂t
+ ∂

∂x
(g11 Ez + μ11Hz)

)
,

∂Hy

∂t
= − 1

j1

(
δ

∂2Uz

∂y∂t
− ∂

∂x
(g11 Hz + ε11Ez)

)
, (7)

j1
∂2

∂t2

(
g33Ez + μ33Hz + d31

(
∂Ux

∂x
+ ∂Uy

∂y

))
− �(g11Ez + μ11Hz) = 0,

j1
∂2

∂t2

(
ε33Ez + g33Hz + e31

(
∂Ux

∂x
+ ∂Uy

∂y

))
− �(ε11Ez + g11Hz) = 0, (8)

c11
∂2Uy

∂y2
+ c66

∂2Uy

∂x2
+ (c66 + c12)

∂2Ux

∂x∂y
− ρ

∂2Uy

∂t2
− ∂

∂y
(e31Ez + d31Hz) = 0,

c11
∂2Ux

∂x2
+ c66

∂2Ux

∂y2
+ (c66 + c12)

∂2Uy

∂x∂y
− ρ

∂2Ux

∂t2
− ∂

∂x
(e31Ez + d31Hz) = 0,

(9)

where
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∂x = ∂
/

∂x, ∂y = ∂
/

∂y,� = ∂2

∂x2
+ ∂2

∂y2
,

j1 = ε11μ11 − g211, δ = (d15ε11 − e15g11), χ = (e15μ11 − d15g11),

From the analysis of these equations it follows that in contrary to the piezoelectric
case [12], for the MEEmedia of 6 mm class hexagonal symmetry the interconnected
elastic and electric excitations do not decouple into plane and anti-plane states.

Let us consider the several special cases of Eqs. (7–9):
In the cases of pure piezoelectric media (d15 = d31 = 0, g11 = g33 = 0) or pure

piezomagnetic media the anti-plane and in-plane states are now decoupled

1. Piezoelectric media

Anti-plane state
(
Uz, Hz, Ey, Ex

)
(
e215
ε11

+ c44

)
�Uz − ρ

∂2Uz

∂t2
= 0,�Hz − ε11μ33

∂2Hz

∂t2
= 0, (10)

ε11
∂Ex

∂t
+ e15

∂2Uz

∂x∂t
= ∂Hz

∂y
, ε11

∂Ey

∂t
+ e15

∂2Uz

∂y∂t
= −∂Hz

∂x
. (11)

In-plane state
(
Uyx ,Uy, Ez, Hx , Hy

)

c11
∂2Uy

∂y2
+ c66

∂2Uy

∂x2
+ (c66 + c12)

∂2Ux

∂x∂y
− ρ

∂2Uy

∂t2
= e31

∂Ez

∂y
, (12)

c11
∂2Ux

∂x2
+ c66

∂2Ux

∂y2
+ (c66 + c12)

∂2Uy

∂x∂y
− ρ

∂2Ux

∂t2
= e31

∂Ez

∂x
, (13)

μ11
∂2

∂t2

(
ε33Ez + e31

(
∂Ux

∂x
+ ∂Uy

∂y

))
− �Ez = 0, (14)

μ11
∂Hx

∂t
= −∂Ez

∂y
, μ11

∂Hy

∂t
= ∂Ez

∂x
. (15)

2. Piezo-magnetic media

Anti-plane state
(
Ux ,Uy, Hz, Ey, Ex

)
(
d2
15

μ11
+ c44

)
�Uz − ρ

∂2Uz

∂t2
= 0,�Ez − ε33μ11

∂2Ez

∂t2
= 0, (16)

μ11
∂Hx

∂t
+ d15

∂2Uz

∂x∂t
= −∂Ez

∂y
, μ11

∂Hy

∂t
+ d15

∂2Uz

∂y∂t
= −∂Ez

∂x
. (17)

In-plane state
(
Ux ,Uy, Hz, Ey, Ex

)

c11
∂2Uy

∂y2
+ c66

∂2Uy

∂x2
+ (c66 + c12)

∂2Ux

∂x∂y
− ρ

∂2Uy

∂t2
= d31

∂Hz

∂y
, (18)
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c11
∂2Ux

∂x2
+ c66

∂2Ux

∂y2
+ (c66 + c12)

∂2Uy

∂x∂y
− ρ

∂2Uy

∂t2
= d31

∂Hz

∂x
, (19)

μ11
∂2

∂t2

(
ε33Hz + d31

(
∂Ux

∂x
+ ∂Uy

∂y

))
− �Hz = 0, (20)

ε11
∂Ex

∂t
= ∂Hz

∂y
, ε11

∂Ey

∂t
= −∂Hz

∂x
. (21)

Let now consider the wave propagation along the axis x perpendicular to the
poling direction z of MEE structure. For a plane wave propagating along the x axis
there are two types of waves: transverse uncoupled waves describing by equations
(Uz, Hx , Ex ),

(
Uy

)
∂Ex

∂t
= − χ

j1

∂2Uz

∂x∂t
,
∂Hx

∂t
= − δ

j1

∂2Uz

∂x∂t
, (d15δ + e15χ + j1c44)�Uz − j1ρ

∂2Uz

∂t2
= 0, (22)

c66
∂2Uy

∂x2
− ρ

∂2Uy

∂t2
= 0, (23)

and coupled (hybrid) longitudinal and electromagnetic waves
(
Ux , Hz, Ey, Ez, Hy

)
describing by equations

c11
∂2Ux

∂x2
− ρ

∂2Ux

∂t2
− ∂

∂x
(e31Ez + d31Hz) = 0, (24)

∂Ey

∂t
= − 1

j1

∂

∂x
(g11 Ez + μ11Hz),

∂Hy

∂t
= 1

j1

∂

∂x
(g11 Hz + ε11Ez), (25)

j1
∂2

∂t2

(
g33Ez + μ33Hz + d31

∂Ux

∂x

)
− ∂2

∂x2
(g11Ez + μ11Hz) = 0, (26)

j1
∂2

∂t2

(
ε33Ez + g33Hz + e31

∂Ux

∂x

)
− ∂2

∂x2
(ε11Ez + g11Hz) = 0, (27)

Seeking in Eqs. (24–27) the elastic displacement Ux and the normal components
Hz, Ez of electromagnetic field vector in the form of the plane harmonic waves
travelling along the x axis (k is the wave vector, ω is the wave frequency)

Ez = Ez0 exp[i(kx − ωt)], Hz = Hz0 exp[i(kx − ωt)], (28)

Ey = Ey0 exp[i(kx − ωt)], Hy = Hy0 exp[i(kx − ωt)], (29)

Ux = Ux0 exp[i(kx − ωt)], (30)

we get the following dispersion equation
(
η = ω

/
k
)

d31e31η
2(−2g1 + 2g33 j1η

2) + d2
31η

2(ε11 − j1η
2ε33

)
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+ e231η
2
(
μ11 − j1η

2μ33
) = (

c11 − η2ρ
)(
1 − 2 j13η

2 + j1 j3η
4
)
, (31)

j1 = ε11μ11 − g211; j3 = ε33μ33 − g233; j13 = (ε33μ11 + ε11μ33 − 2g11g33)

2
, (32)

For an MEE structures the dispersion Eq. (31) defines the three hybrid waves
couple with each other making an electro-magneto-elastic waves defined by(
ux , Hy, Ez, Hz, Ey

)
indicating that a longitudinal acoustic wave will be excited

by and coupled to the y and z polarized electromagnetic waves. The acoustic wave
in its turn can also emit two orthogonally polarized electromagnetic waves.

In the absence of the MEE piezo effect (d31 = 0, e31 = 0, g11 = 0, g33 = 0) this
equation uncouples into three equations determining three separate independent

waves, a pure elastic longitudinal wave with phase velocity ηa =
√
c11

/
ρ, and

two pure electromagnetic waves Te
(
Ey, Hz

)
and Tm

(
Ez, Hy

)
with different phase

velocities ηe = (ε11μ33)
−1/ 2, ηm = (ε33μ11)

−1/ 2.
In the cases of pure piezoelectric media or pure piezomagnetic media disper-

sion equation defining weak interaction [20] of hybrid quasi electromagnetic, quasi
acoustic waves and pure electromagnetic waves of Te or Tm modes can be found as

(−e231η
2μ11 + (

1 − ε33μ11η
2
)(
c11 − η2ρ

))(
1 − ε11μ33η

2
) = 0, (34)

(−d2
31η

2ε11 + (
1 − ε11μ331η

2
)(
c11 − η2ρ

))(
1 − ε33μ11η

2
) = 0, (35)

For bi-anisotropic electromagnetic media [19] d31 = 0, e31 = 0 we have the
dispersion equation

(
1 − 2 j13η

2 + j1 j3η
4
) = 0, (36)

determining two separate independent electromagnetic waves with different veloci-
ties

η1,2 =

√√√√ j13 ±
√
j213 − j1 j3

j1 j3
, ( j13 > 0, j1 > 0, j3 > 0). (37)

3 Magneto-Electro–Elastic Polariton Coupling
in a Periodic Structure

We consider now the case of coupled electro-magnetic and longitudinal elastic waves
propagation in periodic MEE superlattice structure (Fig. 1) having positive and neg-
ative domains of equal thickness aligned periodically of period β along the x axis
and spontaneous polarization in the±z direction. The viscous damping properties of
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Fig. 1 Periodic oppositely
polarized MEE superlattice
structure

x

y

z

β

a MEE superlattice structure defining by damping coefficient η11 will be also taking
into account [20]

The piezoelectric and piezomagnetic coefficients e31(x), d31(x) are assumed to
be periodic functions of period β with

e31(x) = e0 f (x), d31(x) = d0 f (x),

f (x) = 1, x ∈ (
0, β

/
2
)
, f (x) = −1, x ∈ (

β
/
2, β

)
. (38)

The equation of motion can be rewritten written as

(
c11 + η11

∂

∂t

)
∂2Ux

∂x2
− ρ

∂2Ux

∂t2
= ∂

∂x

[
f (x)(e0Ez + d0Hz)

]
(39)

Using the Fourier transformation of f (x), f (x) = ∑
m

fm exp(i Kmx)

fm = i(1 − cos(πm))(πm)−1, Km = 2πmβ−1, (40)

in the long-wavelength approximation (the electromagneticwavewavelength ismuch
larger than the period of piezo active lattice) the solution of Eq. (39) can be found as
[15]

Ux (x) = −
∑
m

iKm fm
(c11−iη11ω)K2

m − ρω2
(e0Ez+d0Hz)exp(i Kmx), m = 1, 3, 5 . . . . (41)

Here and henceforth harmonic time dependence exp(−iωt) for all physical vari-
ables is assumed.

Using the Eq. (41) we can find that

d31
∂Ux

∂x
= μ̃33(x, ω)Hz + g̃33(x, ω)Ez, (42)

e31
∂Ux

∂x
= ε̃33(x, ω)Ez + g̃33(x, ω)Hz, (43)
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g̃33 = e0d0 f̃ (x, ω), ε̃33 = e20 f̃ (x, ω), μ̃33 = d2
0 f̃ (x, ω), (44)

f̃ (x, ω) = f (x)
∑
m

fmK 2
m exp(i Kmx)

(c11 − iη11ω)K 2
m − ρω2

, (45)

In the long wave approximation model the periodic MEE can be taken to be
homogeneous in space [15, 16] so that the following space average values F(ω) =
1
β

∫ β

0 F(x, ω)dx for ε̃33(x, ω), g̃33(x, ω) and μ̃33(x, ω) are applicable.
With this homogenization Eq. (42) can be written as

ε̃33(ω) = e20
∑
m

Rm(ω), g̃33(ω) = e0d0
∑
m

Rm(ω), Rm(ω) = 4ω2
m

c11
(
ω2
m − ω2 − iγmω

) , (46)

where ωm = Kmca are the resonance frequencies of the MEE superlattice,ca =√
c11

/
ρ the acoustic wave velocity, and γm = η11ω

2
m

/
c11 the damping coefficient.

For wave frequencies very close to one of the resonance frequencies the contribu-
tion of other high-order reciprocal vectors can be neglected, giving the following
equations for the frequency dependence of the dielectric, magnetic permeability and
magneto-electric functions:

ε̃33(ω) = e20Rm(ω), μ̃33(ω) = d2
0 Rm(ω), g̃33(ω) = e0d0 Rm(ω). (47)

Using (22) we can rewrite the Eq. (44) as

ε11
d2Ez

dx2
+ g11

d2Hz

dx2
+ j1ω

2[ε33(ω)Ez + g33(ω)Hz
] = 0, (48)

μ11
d2Hz

dx2
+ g11

d2Ez

dx2
+ j1ω

2
[
g33(ω)Ez + μ33(ω)Hz

] = 0, (49)

Here ε33(ω) = ε33 + ε̃33(ω); g33(ω) = g33 + g̃33(ω), μ33(ω) = μ33 + μ̃33(ω).
Assuming a dependence exp(ikx) for all the physical variables in (48), (49), from

Eqs. (26, 27) the following dispersion relation follows:

k4 + k2ω2(2g11g33(ω) − μ11ε33(ω) − ε11μ33(ω))

+ ω4
(
ε11μ11 − g211

)(
ε33(ω)μ33(ω) − g233(ω)

) = 0, (50)

In the case of a piezoelectric (PE) superlattice the dispersion Eq. (50) uncouples
into two equations, c2dk

2−ω2 = 0 for a pure EM (electromagnetic) wave Tm
(
Ez, Hy

)
and

(
cek

/
ω

)2 = ε33(ω) for a coupled transverse EM and longitudinal elastic wave(
ux , Ey, Hz

)
. In this case polariton interaction without viscous damping is studied

in [15–17]. For a piezomagnetic (PM) superlattice the dispersion Eq. (50) uncouples
into equations c2ek

2 − ω2 = 0 for a pure EM wave Te
(
Ey, Hz

)
and

(
cdk

/
ω

)2 =
μ33(ω) for a coupled EM and a longitudinal elastic wave

(
ux , Ez, Hy

)
.
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4 Numerical Analysis and Results

For an MEE crystal all the waves couple with each other making a hybrid electro-
magneto-elasticwaves defined by

(
ux , Hy, Ez, Hz, Ey

)
specifying that a longitudinal

acoustic wave will be excited by and coupled to the y and z polarized original EM
waves. The acoustic wave in its turn can also emit two orthogonally polarized EM
waves.

For numerical calculations the material parameters of the MEE crystal
BaTiO3–CoFe2O4 are taken from [21] and the damping constant taken γ1 =
0.03η11ω2

/
c11.

To show the MEE effect in polariton excitation in the MEE superlattice we first
discuss the dispersion equation

(
cek

/
ω

)2 = ε33(ω) for a PE superlattice. The depen-
dence of the real and imaginary parts of the dimensionless roots k̃1,2 = (k1,2β)/π of
the dispersion equation for the first-order polariton and the dimensionless dielectric
function �

ε33(ω) = ε33(ω)/ε33 on the normalized frequency are shown in Fig. 2. The
Tm wave decouples and the Te EM wave couples with the longitudinal elastic wave-
making a polariton band gap at the resonance frequency. The two dotted oblique lines
are Tm and Te modes without piezoelectric and piezomagnetic effects. In the long
wave region where the wave number of the longitudinal acoustic wave is sufficiently
small so that it can be approximated by the wave number of the electromagnetic
Te wave there is a narrow frequency gap around the resonance frequency where
the real part of the dispersion curve experiences a discontinuity and the imaginary
part reaches its maximum suggesting full absorption. The values of the imaginary
parts are comparable with those of the real parts near the frequency gap where the
propagation of the related mode is not supported.

In the case of a PM superlattice the dispersion equation
(
cdk

/
ω

)2 = μ33(ω)

shows two propagating modes, a Te wave decoupled from the lattice vibrations and
the wave coupled with the longitudinal elastic wave (Fig. 3). A PM polariton exci-
tation occurs at resonance when the frequency of the longitudinal lattice vibrations
coincides with the frequency of the Tm mode wave. This leads to a PM polariton
with a narrow frequency region where the large value of the imaginary part of the
wave number suggests that the wave propagation here is forbidden.

With the three phase PE, PM and ME effects involved in the MEE superlattice,
as results from Eqs. (48–50), there is a coupling between the EM wave

(
Ez, Hy

)
(Fig. 4). Due to the MEE effect the ab section of the dispersion curve of the PM
superlattice (Fig. 3) exchanges from a Te mode to a part of the upper branch of the
root k̃2 of the MEE dispersion Eq. (50) and away from the resonance point converges
to a Tm mode (Fig. 3).

The cb section of the upper branch of the k̃2 root of the PM dispersion curve
(Fig. 2) becomes the upper branch of the root k̃1 of the MEE dispersion equation and
converges to a Te mode (Fig. 3). As a result, as it can be seen from large imaginary
values of lower branch of the root k̃2 and upper branch of k̃1, a polariton gap occurs
between these dispersion curves. There is however always a wave propagating within
this gap. It can be seen from the imaginary curves (Fig. 3) that this is the wave
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Fig. 2 The dispersion curve
of the PE superlattice

Fig. 3 The dispersion curve
of the PM superlattice

described by the low part of the dispersion curve k̃1 propagating as a Te mode and at
the point a converting into the upper branch of the root k̃2 later converging into the
Tm mode.
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Fig. 4 The dispersion curve
of the MEE superlattice

5 Conclusion

In the framework of the Maxwell’ electrodynamics equations and the theory of
elasticity the two-dimensional coupled equations have obtained defining elastic and
electromagnetic fields interaction in MEE media. Based on this equations we have
investigated phonon–photon polariton interaction in three-phase coupling between
mechanical, electric and magnetic fields. We have demonstrated that due to the MEE
effect a strong coupling occurs between longitudinal elastic wave and two modes
of the electromagnetic waves resulting in a coupling of a new type polariton. It
is shown that two orthogonally polarized electromagnetic waves couple with each
other through the longitudinal elastic vibrations and transform the propagation mode
around the internal resonance frequencies. The results show that the new three-phase
coupled phonon–polariton exhibits properties different from two-phase piezoelectric
and piezomagnetic polaritons.
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Non-linear Dynamics of Pantographic
Fabrics: Modelling and Numerical Study

Marco Laudato and Emilio Barchiesi

Abstract In this work, the dynamical behavior of a pantographic sheet undergoing
sinusoidal (in time) imposed displacement is numerically investigated. The used
model has been largely exploited to analyse the quasi-static behavior of pantographic
materials. Here we propose to use a non-linear generalization of such a model for
the description of a pantographic material dynamical behavior.

1 Introduction

In the last years, mechanical metamaterial framework has experienced a remarkable
growth. Apart the promising technological applications, the interest in mechanical
metamaterials lies also in the formidable mathematical problems arising during the
modelling phase. Indeed, their macroscopic behavior can be forecasted in terms
of a continuous field theory that is usually deduced by means of homogenization
of the discrete description of the metamaterial’s microstructure [1–7]. It has been
shown that, if the microstructure is complex enough, the resulting homogenized
continuous model cannot be always framed in classic continuum mechanics [8–18].
In more formal terms, it may happen that the action functional which describes
such continuous model might depend upon the second (or higher) derivative of the
displacement field. We refer to such models as generalized continua [19–22]. Of
particular interest in this family is the so-called pantographic material [23]. This
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system is characterized by a microstructure which consists of two arrays of fibers,
orthogonally disposed, that in the intersection points are connected by means of a
set of cylinders called pivots. Such a system has been studied for long time, from
both the experimental [24] and theoretical [25, 26] point of view. However, the large
part of this investigation has been devoted to the quasi-static characterization of
its behavior and several models have been proposed, in both linear and non-linear
regimes, resulting from homogenization procedures. A remarkable example is the
model proposed in [5, 27–29] which has been obtained by homogenization, in a non-
linear fashion, of a 2D deformation model of a pantographic material. In that work,
moreover, the kinetic energy has been introduced but its effect was not analyzed in
details.

Wewill consider, in this paper, a non-linear generalization of themodel introduced
in [30] which coincides, in the linear limit, with the linear limit of themodel proposed
in [5]. In particular, as we will discuss in details in Sect. 2, we consider a non-linear
extension of such a model in which the strain energy depends upon the Green-Saint
Venant tensor and its first gradient. Motivated by the recent effort which has been put
on the experimental observation of the dynamics of pantographic sheets (see [31]),
we will consider also the kinetic energy and we will present numerical simulations
of a pantographic material in some exemplary dynamical regime cases. As we will
outline in Sect. 3, we will numerically compute the displacement vector field of a
pantographic sheet with one short-side undergoing an imposed sinusoidal oscillation
(in time) while the other short-side is clamped. This work has to be considered as a
first step in the modelling and numerical investigation of the dynamical behavior of
a 2D pantographic material. In a forthcoming paper the presented numerical results
will be compared with experimental observations.

2 2-Dimensional Finite Deformations Strain
Gradient Elasticity

In this section we introduce a mathematical model for a two-dimensional panto-
graphic metamaterial. Let us consider a 2-dimensional body, whose body points
can be put in a bijective correspondence with a closed subset B of the Euclidean
space R2. The setB represents the shape of the body in the reference (undeformed)
configuration. We then introduce a Cartesian coordinate system

(
O,

(
ê1, ê2

))
, with

X = (X1,X2) the coordinates of the generic point in the Euclidean space R2. Work-
ing in a Lagrangian framework, we define a placement function χ :B × R

+ → R
2

such that the image x = χ (X , t) of X through χ is the position of point X at time t.
The displacement function u: B × R

+ → R
2 is defined as u(X , t) = χ(X , t) − X .

The placement function is the independent kinematic descriptor of the system. Let
F = ∇Xχ be the gradient (with respect to the Lagrangian coordinate X ) of the place-
ment function χ . Clearly, F belongs to Lin+, the group of second order tensors with
positive determinant i.e. orientation preserving. We then define an objective strain
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measure G = [
FTF − I

]
/2 (sometime called Green-Saint Venant strain tensor),

which is a quantity G accounting for the local change of shape of the body. Hence-
forth,we shall omit the subscriptX in∇X and each space derivativewill be considered
a material derivative. The potential energy U is defined as

U =
∫

B
Û strain(G,∇G) −Uext, (1)

with Û strain(G,∇G) the strain energy density depending upon the Green-Saint
Venant tensor and its first derivative, and

Uext =
∫

B

(
bext · u + mext · ∇u

) + (2)
∫

∂B

[
text · u + τ ext · (∇u) n̂

] + (3)
∫

[∂∂B ]
f ext · u (4)

the work done by the external forces onto the system. In Eq. (3), n̂ is the unit external
normal and the dot “·” indicates tensor contraction. The quantities bext and mext in
(2) are the external bulk force and double force per unit area, respectively, while
quantities text and τ ext in (3) are the external force and double force per unit length,
respectively. The vector n̂ is the outward unit normal. Finally, f ext in (4) is the
external concentrated force, that is applied on the singularity points [∂∂B] (vertices)
of ∂B. The boundary ∂B is the union of m regular parts �c (with c = 1, . . . ,m)
(their intersection has zero 2-dimensional and 1-dimensional Lebesgue measure)
and [∂∂B] is the (disjoint) union of the corresponding m vertex-points Vc (with
c = 1, . . . ,m) with coordinates X c. Thus, the last integral is the sum of the external
works done by the concentrated forces applied at the vertices so that, for a generic
field g(X ), we have

∫

∂B
g(X )ds =

m∑

c=1

∫

�c

g(X )ds,
∫

[∂∂B ]
g(X ) =

m∑

c=1

g(X c). (5)

The action functional A reads then as

A = 1

2

∫ T

0

∫

B
ρ‖u̇‖2 −

∫ T

0

∫

B
Û strain +Uext (6)

When the strain energy density Û strain (G,∇G) is considered to be depending
quadratically upon the deformation tensor G and its gradient ∇G, the following
representation formula holds [19]
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Û strain = 1

2
εTC3×3ε + 1

2
ηTA6×6η, (7)

with

ε = (
G11 G22

√
2G12

)T
(8)

and

η = (
G11,1 G22,1

√
2G12,2 G22,2 G11,2

√
2G12,1

)T
. (9)

In order to account for anisotropy of the material, we must assume invariance
of the strain energy density under the action, on the Cartesian coordinate system(
O,

(
ê1, ê2

))
labeling points of the reference configuration, of some symmetry group

S of transformations, which could be any subgroup of Orth. For instance, if the ma-
terial is isotropic then, for a certain deformed configuration, any rotation or mirror
transformation of the reference configuration will yield the same strain energy. In a
mathematical form, this means that, if S is a symmetry group, then

U (Gij,Gij,k) = U (QinQjmGnm,QinQjmQkrGnm,r). (10)

When the symmetry group is the dihedral group D4 (orthotropic material, such as
pantographic metamaterials) we have the following representations for the matrices
C3×3 and A6×6

CD4
3×3 =

⎛

⎝
c11 c12 0
c12 c22 0
0 0 c33

⎞

⎠ (11)

AD4
6×6 =

(
AD4
3×3 0
0 AD4

3×3

)
, (12)

with c11 and c12 in CD4
3×3 corresponding to the two Lamé coefficients λ andμ, respec-

tively, and

AD4
3×3 =

⎛

⎝
a11 a12 a13
a12 a22 a23
a13 a23 a33

⎞

⎠ . (13)

Clearly, a restriction of thermodynamic nature can still be enforced on the strain
energy density Û strain. Indeed it is necessary to assume that Û strain is positive definite
or semi-definite (in such a case the existence of so-called floppy modes is contem-
plated). This translates in the matrices C3×3 and A6×6 in formula (7) being positive
definite (at least one of them) or semi-definite, respectively.



Non-linear Dynamics of Pantographic Fabrics: Modelling … 245

3 Weak Form Problem and Numerical Simulations

In this section we show some numerical simulations of the modeled introduced
previously. In particular, we consider a sinusoidal (in time) displacement applied to
one of the short side (70 mm) of the pantographic sheet modeled as a rectangular
continuous domain. The other short side is clamped while the other sides (210 mm)
have free boundary conditions. The actual dynamics of the system is obtained by
invoking the least action principle, namely we look for those configuration of the
system such that δA = 0 for all admissible motions δu. In order to derive the weak
form problem associated to the functional (6) one considers its Gâteaux derivative:

0 = 〈A ′(u), v, v̇〉 = − ρ

∫ T

0

∫

B
u̇i v̇i +

∫ T

0

∫

B

[
∂Û strain(G,∇G)

∂Gij

∂Gij

∂ui,j
vi,j

+ ∂Û strain(G,∇G)

∂Gij,k

∂Gij,k

∂ui,j
vi,j + ∂Û strain(G,∇G)

∂Gij,k

∂Gij,k

∂ui,jk
vi,jk

− bexti vi − mext
ij vi,j

]
−

∫ T

0

∫

∂B

[
texti vi + τ ext

i n̂jvi,j
] +

∫ T

0

∫

[∂∂B ]
f exti vi.

(14)
By means of subsequent integration by parts we get

0 = 〈A ′(u), v〉 = ρ

∫ T

0

∫

B
üivi −

∫ T

0

∫

B
vi

{[
Fiα(Sαj − Tαjh)

]
,j + bexti − mext

ij,j

}
+

∫ T

0

∫

∂B

[
vi

(
ti − texti − mext

ij n̂j
)

+ vi,j n̂j
(
τi − τ ext

i

)] +
∫ T

0

∫

[∂∂B ]
vi

(
fi − f exti

)
,

(15)
where the following quantities have been defined

ti = Fiα(Sαj − Tαjh,h)n̂j − Pka(FiαTαjhPajn̂h),k (16)

τi = FiαTαjhn̂jn̂h (17)

fi = FiαTαjhVjh. (18)

The second order tensor P in (16) is the tangential projector operator (Paj = δaj −
n̂an̂j), while the second order tensor V in (16) is the vertex operator

Vjh = ν l
j n̂

l
h + νr

j n̂
r
h, (19)
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Fig. 1 Displacement vector field at maximum imposed displacement for a frequency of 100 Hz.
Scales are in meters

where superscripts l and r refer to the two boundaries intersecting at a certain
vertex-point Vc and ν is the outward unit tangent vector. The Lagrangian (first Piola-
Kirchhoff) stress and hyper stress tensors are, respectively,

Sαj = ∂Û strain

∂Gαj
, Tαjh = ∂Û strain

∂Gαj,h
. (20)

Three different frequencies, namely 100, 150, and 200Hz, are considered. The maxi-
mum amplitude of the imposed displacement is 1 mm. Equation (15) has been solved
bymeans of the software COMSOLMultiphysics. Figures1, 2, and 3 show two snap-
shots of the displacement vector field at two different instant of time corresponding
to configurations of maximum imposed displacement. The parameters of the model
have been estimated in [30] and are reported in Table 1. The length of the arrows are
proportional (scale factor 150) to the vectors’ moduli. With respect to the figures, the
imposed displacement acts on the upper-right short side of the rectangular domain,
while the other short side has to be considered clamped.

In Fig. 4, snapshots at successive time instants of the (normalized) second gra-
dient contribution to the deformation energy density field due to fibres’ bending
during perturbation propagation are shown. Frequency and (maximum) amplitude
of the prescribed oscillation are 200 Hz and 1 mm, respectively. In Fig. 5, snap-
shots at successive time instants of the (normalized) first gradient contribution to the
deformation energy density field due to macroscopic shear deformation of the 2D
continuum, i.e. pivots’ twist at micro-level, during perturbation propagation. Fre-
quency and (maximum) amplitude of the prescribed oscillation are 200 Hz and 1
mm, respectively.
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Fig. 2 Displacement vector field at maximum imposed displacement for a frequency of 150 Hz.
Scales are in meters

Fig. 3 Displacement vector field at maximum imposed displacement for a frequency of 200 Hz.
Scales are in meters

Table 1 Values of the
model’s parameters

Parameter Value

c11 = c22 12310 N/m

c33 141.76 N/m

c12 = c21 0 N/m

c13 = c31 0 N/m

c23 = c32 0 N/m

a11 0 J

a12 = a21 0 J

a13 = a31 0 J

a22 0.00123 J

a23 = a32 −0.00174 J

a33 0.00246 J

ρ 0.00685kg/m2
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Fig. 4 Snapshots at successive time instants of the (normalized) second gradient contribution to the
deformation energy density field due to fibres’ bending during perturbation propagation. Frequency
and (maximum) amplitude of the prescribed oscillation are 200 Hz and 1 mm, respectively. The
images are ordered by successive time-steps from the top left corner to the bottom right corner
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Fig. 5 Snapshots at successive time instants of the (normalized) first gradient contribution to the
deformation energy density field due to macroscopic shear deformation of the 2D continuum, i.e.
pivots’ twist at micro-level, during perturbation propagation. Frequency and (maximum) amplitude
of the prescribedoscillation are 200Hzand1mm, respectively. The images are ordered by successive
time-steps from the top left corner to the bottom right corner
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4 Conclusions

In this work, by means of a non-linear generalization of the model presented in [30],
we have numerically computed the displacement vector field of a pantographic sheet
undergoing a sinusoidal (in time) imposed displacement. After the presentation of
the model, in which the strain energy depends upon the Green-Saint Venant tensor
and its first gradient, the weak form of the problem has been computed and solved by
means of COMSOL Multiphysics. Relevant plots have been shown. This work rep-
resents the first step of a modelling campaign aimed at characterizing the dynamical
behavior of pantographic materials. In particular, the generalization proposed here
will be validate by experimental observations and we do expect that the feedback
between numerical and experimental efforts will allow for a complete description of
the dynamics of pantographic materials. Further applications can be conceived in the
field of generalized thermoelasticity, as in [32, 33], or in the study of wave propa-
gation in microstructured continua [34–36] and in plates and shells [37–40]. Useful
results in the field of galloping phenomena can be, finally, found in [41–46]. The
pantographic structures here studied in dynamics can be considered under different
points of view. When taking into account the density of fibers, one can be obliged to
introduce a different model to describe the network, as in [47]. This model can be
studied in dynamics by using the results available in literature about dynamics of non-
linear Euler-Bernoulli and Timoshenko beams (see for example [48–51]). Another
possible generalization of the problem is represented by the study of the dynamics of
pantographic structures embedded in soft matrices. Useful results in this framework
can be found in [52–55] and in [56–58] for engineering-relevant compositematerials.
In perspective, the analysis here presented can be completed by the study of damage
and damage evolution in pantographic structures. Preliminary results can be found
in [59–65]. Numerical methods are nowadays of primary importance in the study of
architectured materials. Some useful results in the field of isogeometric analysis can
be found in [66–73], and in [74–77] for finite elements based continuum mechanics.
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