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Abstract. We present ROLL 1.0, an w-regular language learning library
with command line tools to learn and complement Biichi automata. This
open source Java library implements all existing learning algorithms for
the complete class of w-regular languages. It also provides a learning-
based Biichi automata complementation procedure that can be used as
a baseline for automata complementation research. The tool supports
both the Hanoi Omega Automata format and the BA format used by
the tool RABIT. Moreover, it features an interactive Jupyter notebook
environment that can be used for educational purpose.

1 Introduction

In her seminal work [3], Angluin introduced the well-known algorithm L* to
learn regular languages by means of deterministic finite automata (DFAs). In
the learning setting presented in [3], there is a teacher, who knows the target
language L, and a learner, whose task is to learn the target language, represented
by an automaton. The learner interacts with the teacher by means of two kinds
of queries: membership queries and equivalence queries. A membership query
MQ(w) asks whether a string w belongs to L while an equivalence query EQ(A)
asks whether the conjectured DFA A recognizes L. The teacher replies with a
witness if the conjecture is incorrect otherwise the learner completes its job.
This learning setting now is widely known as active automata learning. In recent
years, active automata learning algorithms have attracted increasing attention
in the computer aided verification community: it has been applied in black-box
model checking [24], compositional verification [12], program verification [10],
error localization [8], and model learning [26].

Due to the increasing importance of automata learning algorithms, many
efforts have been put into the development of automata learning libraries such
as libalf [6] and LearnLib [18]. However, their focus is only on automata accepting
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finite words, which correspond to safety properties. The w-regular languages are
the standard formalism to describe liveness properties. The problem of learning
the complete class of w-regular languages was considered open until recently,
when it has been solved by Farzan et al. [15] and improved by Angluin et al. [4].

However, the research on applying w-regular language learning algorithms for
verification problems is still in its infancy. Learning algorithms for w-regular lan-
guages are admittedly much more complicated than their finite regular language
counterparts. This becomes a barrier for the researchers doing further investi-
gations and experiments on such topics. We present ROLL 1.0, an open-source
library implementing all existing learning algorithms for the complete class of
w-regular languages known in literature, which we believe can be an enabling
tool for this direction of research. To the best of our knowledge, ROLL 1.0 is the
only publicly available tool focusing on w-regular language learning.

ROLL, a preliminary version of ROLL 1.0, was developed in [22] to compare
the performance of different learning algorithms for Biichi automata (BAs). The
main improvements made in ROLL 1.0 compared to its previous version are as
follows. ROLL 1.0 rewrites the algorithms in the core part of ROLL and obtains
high modularity to allow for supporting the learning algorithms for more types of
w-automata than just BAs, algorithms to be developed in future. In addition to
the BA format [1,2,11], ROLL 1.0 now also supports the Hanoi Omega Automata
(HOA) format [5]. Besides the learning algorithms, ROLL 1.0 also contains com-
plementation [23] and a new language inclusion algorithm. Both of them are
built on top of the BAs learning algorithms. Experiments [23] have shown that
the resulting automata produced by the learning-based complementation can
be much smaller than those built by structure-based algorithms [7,9,19,21,25].
Therefore, the learning-based complementation is suitable to serve as a baseline
for Biichi automata complementation researches. The language inclusion check-
ing algorithm implemented in ROLL 1.0 is based on learning and a Monte Carlo
word sampling algorithm [17]. ROLL 1.0 features an interactive mode which is
used in the ROLL Jupyter notebook environment. This is particularly helpful for
teaching and learning how w-regular language learning algorithms work.

2 ROLL 1.0 Architecture and Usage

ROLL 1.0 is written entirely in Java and its architecture, shown in Fig.1, com-
prises two main components: the Learning Library, which provides all known
existing learning algorithms for Biichi automata, and the Control Center,
which uses the learning library to complete the input tasks required by the user.

Learning Library. The learning library implements all known BA learning algo-
rithms for the full class of w-regular languages: the L® learner [15], based on
DFA learning [3], and the L“ learner [22], based on three canonical family of
DFAs (FDFAs) learning algorithms [4,22]. ROLL 1.0 supports both observation
tables [3] and classification trees [20] to store membership query answers. All
learning algorithms provided in ROLL 1.0 implement the Learner interface; their



ROLL 1.0: w-Regular Language Learning Library 367

Learning Library

1

L Interf; |

Jupyter ! eagner nterface Teacher Interface |
notebook ol L” BA Learner — RABIT X
1| — L¥ BA Learner |

1

1
1
,m‘—:—l Learning mode | log file
! | Obtions Interactive mode i
| P Complementation ||

Iﬂ,—:—T Inclusion testing ' output file(s)
1

Fig. 1. Architecture of ROLL 1.0

corresponding teachers implement the Teacher interface. Any Java object that
implements Teacher and can decide the equivalence of two Biichi automata is a
valid teacher for the BA learning algorithms. Similarly, any Java object imple-
menting Learner can be used as a learner, making ROLL 1.0 easy to extend
with new learning algorithms and functionalities. The BA teacher implemented
in ROLL 1.0 uses RABIT [1,2,11] to answer the equivalence queries posed by the
learners since the counterexamples RABIT provides tend to be short and hence
are easier to analyze; membership queries are instead answered by implementing
the ASCC algorithm from [16].

Control Center. The control center is responsible for calling the appropriate
learning algorithm according to the user’s command and options given at com-
mand line, which is used to set the Options. The file formats supported by ROLL
1.0 for the input automata are the RABIT BA format [1,2,11] and the standard
Hanoi Omega Automata (HOA) format [5], identified by the file extensions .ba
and .hoa, respectively. Besides managing the different execution modes, which
are presented below, the control center allows for saving the learned automa-
ton into a given file (option -out), for further processing, and to save execution
details in a log file (option -log). The output automaton is generated in the same
format of the input. The standard way to call ROLL 1.0 from command line is

java -jar ROLL.jar command input file(s) [options]

Learning mode (command learn) makes ROLL 1.0 learn a Biichi automaton
equivalent to the given Biichi automaton; this can be used, for instance, to get
a possibly smaller BA. The default option for storing answers to membership
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queries is -table, which selects the observation tables; classification trees can
be chosen instead by means of the -tree option.

java -jar ROLL.jar learn aut.hoa

for instance runs ROLL 1.0 in learning mode against the input BA aut.hoa;
it learns aut.hoa by means of the L learner using observation tables. The
three canonical FDFA learning algorithms given in [4] can be chosen by means
of the options -syntactic (default), -recurrent, and -periodic. Options -under
(default) and -over control which approximation is used in the L“ learner [22]
to transform an FDFA to a BA. By giving the option -ldollar, ROLL 1.0
switches to use the L¥ learner instead of the default L* learner.

Interactive mode (command play) allows users to play as the teacher guiding
ROLL 1.0 in learning the language they have in mind. To show how the
learning procedure works, ROLL 1.0 outputs each intermediate result in the
Graphviz dot layout format!; users can use Graphviz’s tools to get a graphical
view of the output BA so to decide whether it is the right conjecture.

Complementation (command complement) of the BA 5 in ROLL 1.0 is based
on the algorithm from [23] which learns the complement automaton B¢ from
a teacher who knows the language X \ £(B). This allows ROLL 1.0 to dis-
entangle B¢ from the structure of B, avoiding the £2((0.76n)™) blowup [27] of
the structure-based complementation algorithms (see., e.g., [7,19,21,25]).

Inclusion testing (command include) between two BAs A and B is imple-
mented in ROLL 1.0 as follows: (1) first, sample several w-words w € L(.A)
and check whether w ¢ £L(B) to prove L(A) € L(B); (2) then, try simulation
techniques [11,13,14] to prove inclusion; (3) finally, use the learning based
complementation algorithm to check inclusion. The ROLL 1.0’s w-word sam-
pling algorithm is an extension of the one proposed in [17]. The latter only
samples paths visiting any state at most twice while ROLL 1.0’s variant allows
for sampling paths visiting any state at most K times, where K is usually
set to the number of states in A. In this way, ROLL 1.0 can get a larger set
of w-words accepted by A than the set from the original algorithm.

Online availability of ROLL 1.0. ROLL 1.0 is an open-source library freely avail-
able online at https://iscasmc.ios.ac.cn/roll/, where more details are provided
about its commands and options, its use as a Java library, and its GitHub repos-
itory?. Moreover, from the roll page, it is possible to access an online Jupyter
notebook?® allowing to interact with ROLL 1.0 without having to download and
compile it. Each client gets a new instance of the notebook, provided by Jupyter-
Hub?, so to avoid unexpected interactions between different users. Figure 2 shows
few screenshots of the notebook for learning in interactive mode the language
X* - b¥ over the alphabet X = {a,b}. As we can see, the membership query

! https://www.graphviz.org/.

2 https://github.com /ISCAS-PMC/roll-library.
3 https://iscasme.ios.ac.cn/roll/jupyter.

4 https://jupyterhub.readthedocs.io/.
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In [24]: import roll.jupyter.x;
import java.util.function.BiFunction; 0ut[241: Leading Learner:

I (e, €) |

import roll.words.*;

// now we define a function mqOracle : (string, string) -> boolean and this
// function is used to determine whether a string is in the target language L
mgOracle = {

stem, loop ->

if (loop.length() < 1) return false; // this is a finite word

for (int 1 = @; i < loop.length(); it++) {
// check whether the periodic word is b+
if (loop.charAt(i) != 'b") {
return false;
}

return true;

H

// now we create a table-based recurrent NBA learner to learn the language L
nbalLearner = JupyterROLL.createNBALearner("recurrent”, "table”, mqOracle);
// we can also see the table data structure of the learner

nbalearner

In [25]: | // output current hypothesis to see whether
// it recognizes the target language L In [26]: | // hypothesis is still not correct,
nbalLearner.getHypothesis() DS AT e o o

Out[25]: nbalearner.refineHypothesis("ba", "ba")

nbalearner.getHypothesis()

Out[26]:

Fig. 2. ROLL 1.0 running in the Jupyter notebook for interactively learning X* - b*

MQ(w) is answered by means of the mgOracle function: it gets as input two
finite words, the stem and the loop of the ultimately periodic word w, and it
checks whether 1oop contains only b. Then one can create a BA learner with the
oracle mgOracle, say the BA learner nbalLearner, based on observation tables
and the recurrent FDFAs, as shown in the top-left screenshot. One can check
the internal table structures of nbalearner by printing out the learner, as in
the top-right screenshot. The answer to an equivalence query is split in two
parts: first, the call to getHypothesis() shows the currently conjectured BA;
then, the call to refineHypothesis("ba", "ba") simulates a negative answer
with counterexample ba - (ba)¥. After the refinement by nbaLearner, the new
conjectured BA is already the right conjecture.
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