®

Check for
updates

VoxLogicA: A Spatial Model Checker
for Declarative Image Analysis

Gina Belmonte', Vincenzo Ciancia?®),

Diego Latella?, and Mieke Massink?

! Azienda Ospedaliera Universitaria Senese, Siena, Italy
2 (Consiglio Nazionale delle Ricerche - Istituto di Scienza e Tecnologie
dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
vincenzo.ciancia@isti.cnr.it

Abstract. Spatial and spatio-temporal model checking techniques have
a wide range of application domains, among which large scale distributed
systems and signal and image analysis. We explore a new domain, namely
(semi-)automatic contouring in Medical Imaging, introducing the tool
VoxLogicA which merges the state-of-the-art library of computational
imaging algorithms ITK with the unique combination of declarative spec-
ification and optimised execution provided by spatial logic model check-
ing. The result is a rapid, logic based analysis development methodology.
The analysis of an existing benchmark of medical images for segmenta-
tion of brain tumours shows that simple VoxLogicA analysis can reach
state-of-the-art accuracy, competing with best-in-class algorithms, with
the advantage of explainability and easy replicability. Furthermore, due
to a two-orders-of-magnitude speedup compared to the existing general-
purpose spatio-temporal model checker topochecker, VoxLogicA enables
interactive development of analysis of 3D medical images, which can
greatly facilitate the work of professionals in this domain.

Keywords: Spatial logics + Closure spaces + Model checking -
Medical Imaging

1 Introduction and Related Work

Spatial and Spatio-temporal model checking have gained an increasing interest
in recent years in various domains of application ranging from Collective Adap-
tive Systems [11,15,18] and networked systems [27], to signals [32] and digi-
tal images [14,26]. Research in this field has its origin in the topological app-
roach to spatial logics, dating back to the work of Alfred Tarski (see [9] for a
thorough introduction). More recently these early theoretical foundations have
been extended to encompass reasoning about discrete spatial structures, such as
graphs and images, extending the theoretical framework of topology to (quasi
discrete) closure spaces (see for instance [1,23,24]). That framework has subse-
quently been taken further in recent work by Ciancia et al. [13,14,17] resulting
in the definition of the Spatial Logic for Closure Spaces (SLCS), temporal exten-
sions (see [12,32,36]), and related model checking algorithms and tools.

© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 281-298, 2019.
https://doi.org/10.1007/978-3-030-17462-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17462-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-17462-0_16

282 G. Belmonte et al.

The main idea of spatial (and spatio-temporal) model checking is to use
specifications written in a suitable logical language to describe spatial properties
and to automatically identify patterns and structures of interest in a variety of
domains (see e.g., [5,16,18]). In this paper we focus on one such domain, namely
medical imaging for radiotherapy, and brain tumour segmentation in particular,
which is an important and currently very active research domain of its own. One
of the technical challenges of the development of automated (brain) tumour seg-
mentation is that lesion areas are only defined through differences in the intensity
(luminosity) in the (black & white) images that are relative to the intensity of
the surrounding normal tissue. A further complication is that even (laborious
and time consuming) manual segmentation by experts shows significant varia-
tions when intensity gradients between adjacent tissue structures are smooth or
partially obscured [31]. Moreover, there is a considerable variation across images
from different patients and images obtained with different Magnetic Resonance
Images (MRI) scanners. Several automatic and semi-automatic methods have
been proposed in this very active research area (see e.g., [20-22,29,34,37]).

This paper continues the research line of [3,7,8], introducing the free and
open source tool VoxLogicA (Vozel-based Logical Analyser)!, catering for a novel
approach to image segmentation, namely a rapid-development, declarative, logic-
based method, supported by spatial model checking. This approach is particularly
suitable to reason at the “macro-level”, by exploiting the relative spatial relations
between tissues or organs at risk. VoxLogicA is similar, in the accepted logical
language, and functionality, to the spatio-temporal model checker topochecker?,
but specifically designed for the analysis of (possibly multi-dimensional, e.g. 3D)
digital images as a specialised image analysis tool. It is tailored to usability and
efficiency by employing state-of-the-art algorithms and open source libraries,
borrowed from computational image processing, in combination with efficient
spatial model checking algorithms.

We show the application of VoxLogicA on BraT$S 20173 [2,31,35], a publicly
available set of benchmark MRI images for brain tumour segmentation, linked to a
yearly challenge. For each image, a manual segmentation of the tumour by domain
experts is available, enabling rigorous and objective qualitative comparisons via
established similarity indexes. We propose a simple, yet effective, high-level spec-
ification for glioblastoma segmentation. The procedure, partly derived from the
one presented in [3], directly competes in accuracy with the state-of-the-art tech-
niques submitted to the BraTS 2017 challenge, most of which based on machine
learning. Our approach to segmentation has the unique advantage of explainabil-
ity, and is easy to replicate; in fact, the structure of a logically specified procedure
can be explained to domain experts, and improved to encompass new observations.
A mathematically formalised, unambiguous semantics permits results to be repli-
cated not only by executing them in the multi-platform, open source tool that has
been provided, but also by computing them via different implementations.

! VoxLogicA: https://github.com/vincenzoml/VoxLogicA.

2 Topochecker: a topological model checker, see http:/ /topochecker.isti.cnr.it, https://
github.com/vincenzoml/topochecker.

3 See https://www.med.upenn.edu/sbia/brats2017/data.html.

https://github.com/vincenzoml/VoxLogicA
http://topochecker.isti.cnr.it
https://github.com/vincenzoml/topochecker
https://github.com/vincenzoml/topochecker
https://www.med.upenn.edu/sbia/brats2017/data.html

VoxLogicA 283

2 The Spatial Logic Framework

In this section, we briefly recall the logical language ImgQL (Image Query Lan-
guage) proposed in [3], which is based on the Spatial Logic for Closure Spaces
SLCS [13,14] and which forms the kernel of the framework we propose in the
present paper. In Sect. 4 we will see how the resulting logic can be used for actual
analysis via spatial model checking.

2.1 Foundations: Spatial Logics for Closure Spaces

The logic for closure spaces we use in the present paper is closely related to
SLCS [13,14] and, in particular, to the SLCS extension with distance-based
operators presented in [3]. As in [3], the resulting logic constitutes the kernel of
a solid logical framework for reasoning about texture features of digital images,
when interpreted as closure spaces. In the context of our work, a digital image is
not only a 2-dimensional grid of pizels, but, more generally, a multi-dimensional
(very often, 3-dimensional) grid of hyper-rectangular elements that are called
vozels (“volumetric picture elements”). When voxels are not hypercubes, images
are said to be anisotropic; this is usually the case in medical imaging. Further-
more, a digital image may contain information about its “real world” spatial
dimensions, position (origin) and rotation, permitting one to compute the real-
world coordinates of the centre and edges of each voxel. In medical imaging, such
information is typically encapsulated into data by machines such as MRI scan-
ners. In the remainder of the paper, we make no dimensionality assumptions.
From now on, we refer to picture elements either as voxels or simply as points.

Definition 1. A closure space is a pair (X,C) where X is a non-empty set (of
points) and C : 2% — 2X is a function satisfying the following azioms: C(()) = ();
Y CCY) forall Y C X; C(Y,UYs) =C(Y1) UC(Ya) for all Y1,Y, C X. e

Given any relation R C X x X, function Cp : 2¥ — 2% with Cr(Y) £ YU{x |
Jy € Y.y Ra} satisfies the axioms of Definition 1 thus making (X,Cr) a closure
space. Whenever a closure space is generated by a relation as above, it is called a
quasi-discrete closure space. A quasi-discrete closure space (X,Cr), can be used
as the basis for a mathematical model of a digital image. X represents the finite
set of vozels and R is the reflexive and symmetric adjacency relation between
voxels [25]. A closure space (X,C) can be enriched with a notion of distance, i.e.
a function d : X x X — R>o U {oo} such that d(z,y) = 0 iff z = y, leading to
the distance closure space ((X,C),d).*

* We recall that for § # Y C X, d(z,Y) 2 inf{d(z,y) | y € Y}, with d(z,0) = co.
In addition, as the definition of d might require the elements of R to be weighted,
quasi-discrete distance closure spaces may be enriched with a R-weighting function
W : R — R assigning the weight W(z,y) to each (z,y) € R. In the sequel we will
keep W implicit, whenever possible and for the sake of simplicity.

284 G. Belmonte et al.

It is sometimes convenient to equip the points of a closure space with
attributes; for instance, in the case of images, such attributes could be the color or
intensity of voxels. We assume sets A and V' of attribute names and values, and
an attribute valuation function A such that A(z,a) € V is the value of attribute
a of point z. Attributes can be used in assertions «, i.e. boolean expressions,
with standard syntax and semantics. Consequently, we abstract from related
details here and assume function A extended in the obvious way; for instance,
A(z,a < c¢) = A(z,a) < ¢, for appropriate constant c.

A (quasi-discrete) path m in (X,Cg) is a function 7 : N — X such that
for all Y C N, 7(Csucc(Y)) C Cr(n(Y)), where (N, Cgycc) is the closure space
of natural numbers with the successor relation: (n,m) € Succ & m = n + 1.
Intuitively: the ordering in the path imposed by N is compatible with relation
R, i.e. w(i) Rm(i + 1). For given set P of atomic predicates p, and interval of R
I, the syntax of the logic we use in this paper is given below:

Pu=p | =P | Py NPy | NO | p®y[®y] | D'D (1)

We assume that space is modelled by the set of points of a distance closure
space; each atomic predicate p € P models a specific feature of points and is
thus associated with the points that have this feature®. A point x satisfies N @
if a point satisfying @ can be reached from z in at most one (closure) step,
i.e. if z is near (or close) to a point satisfying @; x satisfies p &1[Ps] if x may
reach a point satisfying @1 via a path passing only by points satisfying @s; it
satisfies D! @ if its distance from the set of points satisfying @ falls in interval I.
The logic includes logical negation (—) and conjunction (A). In the following we
formalise the semantics of the logic. A distance closure model M is a tuple M =
(((X,C),d), A, V), where ((X,C),d) is a distance closure space, A: X x A =V
an attribute valuation, and V : P — 2% is a valuation of atomic propositions.

Definition 2. Satisfaction M,z = @ of a formula @ at point x € X in model
M= (((X,C),d), A, V) is defined by induction on the structure of formulas:

MxzEpeP <zxzeV(p)

Mz E-P & M,z =P does not hold

Mz =P NPy & M,z =81 and M,z = D

MazENS wazelCly|MyE2o})

M, x = p §1[P2] < there is path m and indez £ s.t. 7(0) = x and M, w(0) = &4
and for all indexes j : 0 < j < £ implies M, w(j) = P2

Mz D¢ sda{y|MyE®}) el

where, when p := « is a definition for p, we let x € V(p) iff A(z,a) is true. e

5 In particular, a predicate p can be a defined one, by means of a definition as p = «,
meaning that the feature of interest is characterized by the (boolean) value of a.

VoxLogicA 285

In the logic proposed in [13,14], the “may reach” operator is not present,
and the surrounded operator S has been defined as basic operator as follows: x
satisfies @1 S @, if and only if 2 belongs to an area of points satisfying ¢; and one
cannot “escape” from such an area without hitting a point satisfying ®@5. Several
types of reachability predicates can be derived from S. However, reachability is
in turn a widespread, more basic primitive, implemented in various forms (e.g.,
flooding, connected components) in programming libraries. Thus, in this work,
we prefer to use reachability as a basic predicate of the logic, as in [4], which is
dedicated to extending the Spatial Signal Temporal Logic of [32]. In the sequel
we show that S can be derived from the operators defined above, employing
a definition patterned after the model-checking algorithm of [13]. This change
simplifies the definition of several derived connectives, including that of touch
(see below), and resulted in notably faster execution times for analyses using such
derived connectives. We recall the definition of S from [14]: M,z = &1 S Dy if
and only if M,z = @; and for all paths 7 and indexes ¢ we have: if 7(0) = z
and M, 7({) = =P, then there is j such that 0 < j < ¢ and M, 7(j) | Po.

Proposition 1. For all closure models M = ((X,C), A, V) and all formulas 1,
@y the following holds: @1 S Do = P1 A —(p ~(P1 V Do) [—P2)]) o

Definition 3. We define some derived operators that are of particular use in
medical image analysis: touch(®y,Ps) = D1 A p Do[®1]; grow(Dy, Pa) = Dy V
touch(Po, P1); fit(r,d1) 2 D<T(DZ"—d,) .

The formula touch(®1, P2) is satisfied by points that satisfy @; and that are
on a path of points satisfying @; that reaches a point satisfying 5. The formula
grow(P1,P2) is satisfied by points that satisfy ¢1 and by points that satisfy @9
which are on a path of points satisfying &, that reaches a point satisfying ®;.
The formula fit(r,$1) is satisfied by points that are at a distance of less than
r from a point that is at least at distance r from points that do not satisfy @;.
This operator works as a filter; only contiguous areas satisfying &, that have a
minimal diameter of at least 2r are preserved; these are also smoothened if they
have an irregular shape (e.g. protrusions of less than the indicated distance).

Example 1. In Fig.1, the top row shows four pictures using colours blue and
red, interpreted as atomic propositions. Each picture in the bottom row shows
in white the points that satisfy a given formula. In particular: Fig. 1e is blue S red
of (a); Fig. 1f is touch(red, blue) of (b); Fig. 1g is grow(red, blue) of (¢); Fig. 1h
is red S (D=blue) of (d). For more details the reader is referred to [6].

2.2 Region Similarity via Statistical Cross-correlation

In the sequel, we provide some details on a logical operator, first defined in [3],
that we use in the context of Texture Analysis (see for example [10,19,28,30])
for defining a notion of statistical similarity between image regions. The sta-
tistical distribution of an area Y of a black and white image is approximated

286 G. Belmonte et al.

(a) (b

H I

() (f) (8)

=

(c)

= =

Fig. 1. Some examples of ImgQL operators (see Example 1). (Color figure online)

by the histogram of the grey levels of points (voxels) belonging to Y, limiting
the representation to those levels laying in a certain interval [m, M|, the lat-
ter being split into k& bins. In the case of images modelled as closure models,
where each point may have several attributes, the histogram can be defined for
different attributes. Given a closure model M = ((X,C), A,V), define function

?

H:Ax2X xRxRxN — (N — N) such that for all m < M, k > 0 and
ie{l,....k}, Ha,Yym, M, k)(i)=|{y €Y | (i—-1)- A< A(y,a) —m < i- A}
where A = = We call H(a,Y,m, M, k) the histogram of Y (for attribute a),

with k& bins and m, M min and max values respectively. The mean h of a his-
togram h with k bins is the quantity Zle h(i). The cross correlation between
two histograms hi,he with the same number k of bins is defined as follows:
i) = i)
VR (h () —F1) /S (ha (i)~)
that —1 < r < 1; r(hq, ha) = 1 indicates that hy and hy are perfectly correlated
(that is, hy = ahg + b, with a > 0); r(hy,hs) = —1 indicates perfect anti-
correlation (that is, hy = ahg + b, with a < 0). On the other hand, r(hy,hs) =0
indicates no correlation.
We embed statistical similarity X[% §] in the logic by adding it to the

. The value of r is normalised so

r a b

grammar defined by (1) and extending the definition of the satisfaction relation
(Definition 2) with the following equation, for m, M, k as above:
M,z ZAMC[T M ’g]@ < r(hg, hy) ¢

where h, = H(a, S(z,7),m, M, k), hy = H(b,{y | M,y E @},m,M,k), cis a
constant in [—1,1], e {<,<,=,> >} and S(z,7) = {y € X | d(z,y) < r}
is the sphere of radius r centred in x. Note that, differently from topochecker
that was used in [3], in VoxLogicA, for efficiency reasons, S(z,r) is actually the
hypercube with edge size 2r, which, for anisotropic images, becomes a hyperrect-
angle. So M. [T Y §]® compares the region of the image constituted by the
sphere (hypercube) of radius r centred in x against the region characterised by
®. The comparison is based on the cross correlation of the histograms of the

VoxLogicA 287

chosen attributes of (the points of) the two regions, namely a and b and both
histograms share the same range ([m, M]) and the same bins ([1, k]). In sum-
mary, the operator allows to check to which extent the sphere (hypercube) around
the point of interest is statistically similar to a given region (specified by) &.

3 The Tool VoxLogicA

VoxLogicA is a framework for image analysis, that embeds the logic ImgQL into
a user-oriented expression language to manipulate images. More precisely, the
VoxLogicA type system distinguishes between boolean-valued images, that can be
arguments or results of the application of ImgQL operators, and number-valued
images, resulting from imaging primitives. Underlying such expression language
is a global model checker, that is, the set of points satisfying a logic formula
is computed at once; this is done implicitly when an expression corresponding
to a logic formula is saved to an image. Functionality-wise, VoxLogicA spe-
cialises topochecker to the case of spatial analysis of multi-dimensional images.
It interprets a specification written in the ImgQL language, using a set of multi-
dimensional images® as models of the spatial logic, and produces as output a set
of multi-dimensional images representing the valuation of user-specified expres-
sions. For logical operators, such images are Boolean-valued, that is, regions of
interest in medical imaging terminology, which may be loaded as overlays in med-
ical image viewers. Non-logical operators may generate number-valued images.
VoxLogicA augments ImgQL with file loading and saving primitives, and a set
of additional commodity operators, specifically aimed at image analysis, that is
destined to grow along with future developments of the tool. The main execution
modality of VoxLogicA is batch execution. A (currently experimental) graphical
user interface is under development.

Implementation-wise, the tool achieves a two-orders-of-magnitude speedup
with respect to topochecker. Such speedup has permitted the rapid develop-
ment of a novel procedure for automatic segmentation of glioblastoma that,
besides being competitive with respect to the state-of-the-art in the field (see
Sect.4), is also easily replicable and ezplainable to humans, and therefore
amenable of improvement by the community of medical imaging practitioners.

3.1 Functionality

We provide an overview of the tool functionality, starting from its syntax. For
space reasons, we omit details on parsing rules (delegated to the tool documenta-
tion). In the following, £, x1,..., xN, x areidentifiers, "s" is a string, and el,

., eN, e are expressions (to be detailed later). A VoxLogicA specification
consists of a text file containing a sequence of commands (see Specification 1
in Sect.4 as an example). Five commands are currently implemented:

5 Besides common bitmap formats, the model loader of VoxLogicA currently supports
the NIfTI (Neuro-imaging Informatics Technology Initiative) format (https://nifti.
nimh.nih.gov/, version 1 and 2). 3D MR-FLAIR images in this format very often
have a slice size of 256 by 256 pixels, multiplied by 20 to 30 slices.

https://nifti.nimh.nih.gov/
https://nifti.nimh.nih.gov/

288 G. Belmonte et al.

— let f(x1,...,xN) = e is used for function declaration, also in the form let f =
e(constant declaration), and with special syntactic provisions to define infiz oper-
ators. After execution of the command, name f is bound to a function or constant
that evaluates to e with the appropriate substitutions of parameters;

— load x = "s" loads an image from file "s" and binds it to x for subsequent usage;

— save "s" e stores the image resulting from evaluation of expression e to file "s";

— print "s" e prints to the log the string s followed by the numeric, or boolean,
result of computing e;

— import "s" imports a library of declarations from file "s"; subsequent import
declarations for the same file are not processed; furthermore, such imported files
can only contain let or import commands.

VoxLogicA comes equipped with a set of built-in functions, such as arithmetic
operators, logic primitives as described in Sect.2, and imaging operators, for
instance for computing the gray-scale intensity of a colour image, or its colour
components, or the percentiles of its values (see Sect.4.1). An exhaustive list of
the available built-ins is provided in the user manual’. Furthermore, a “standard
library” is provided containing short-hands for commonly used functions, and
for derived operators. An expression may be a numeric literal (no distinction
is made between floating point and integer constants), an identifier (e.g. x), a
function application (e.g. £f(x1,x2)), an infix operator application (e.g. x1 +
x2), or a parenthesized (sub-)expression (e.g. (x1 + x2)).

The language features strong dynamic typing, that is, types of expressions
are unambiguously checked and errors are precisely reported, but such checks are
only performed at “run time”, that is, when evaluating closed-form expressions
with no free variables. The type system has currently been kept lightweight (the
only typing rules regard constants and function application), in order to leave the
design space open to future improvements. For instance, a planned development
is function and operator overloading, as well as some form of static typing not
interfering with the usability of the tool.

However, it is not the case that a type error may waste a long-running anal-
ysis. Type checking occurs after loading and parsing, but before analysis is run.
Actual program execution after parsing is divided into two phases. First (usu-
ally, in a negligible amount of time), all the “save” and “print” instructions are
examined to determine what expressions actually need to be computed; in this
phase, name binding is resolved, all constant and function applications are sub-
stituted with closed expressions, types are checked and the environment binding
expressions to names is discarded. Finally, the set of closed expressions to be
evaluated is transformed into a set of tasks to be executed, possibly in parallel,
and dependencies among them. After this phase, no further syntax processing or
name resolution are needed, and it is guaranteed that the program is free from
type errors. The second phase simply runs each task — in an order compliant
with dependencies — parallelising execution on multiple CPU cores.

Each built-in logical operator has an associated type of its input parameters
and output result. The available types are inductively defined as Number, Bool,

7 See https://github.com /vincenzoml/VoxLogicA.

https://github.com/vincenzoml/VoxLogicA

VoxLogicA 289

String, Model, and Valuation(t), where t is in turn a type. The type Model
is the type assigned to x in load x = "f"; operations such as the extraction
of RGB components take this type as input, and return as output the only
parametric type: Valuation(t), which is the type of a multi-dimensional image
in which each voxel contains a value of type t. For instance, the red component
of a loaded model has type Valuation (Number), whereas the result of evaluating
a logic formula has type Valuation(Bool)?.

An important aspect of the execution semantics of VoxLogicA specifications
is memoization, constituting the core of its execution engine, and used to achieve
maximal sharing of subformulas. In VoxLogicA, no expression is ever computed
twice, freeing the user from worrying about how many times a given function is
called, and making execution of complex macros and logical operators feasible.

3.2 Implementation Details

VoxLogicA is implemented in the functional, object-oriented programming lan-
guage FSharp, using the .NET Core implementation of the .NET specification®.
This permits a single code base with minimal environment-dependent setup to
be cross-compiled and deployed as a standalone executable, for the major desk-
top operating systems, namely Linuz, macOS, and Windows. Despite .NET code
is compiled for an intermediate machine, this does not mean that efficiency of
VoxLogicA is somehow “non-native”. There are quite a number of measures in
place to maximise efficiency. First and foremost, the execution time is heav-
ily dominated by the time spent in native libraries (more details below), and
VoxLogicA acts as a higher-level, declarative front-end for such libraries, adding
a logical language, memoization, parallel execution, and abstraction from a
plethora of technical details that a state-of-the-art imaging library necessarily
exposes. In our experiments, parsing, memoization, and preparation of the tasks
to be run may take a fraction of a second; the rest of the execution time (usu-
ally, several seconds, unless the analysis is extremely simple) is spent in foreign
function calls. The major performance boosters in VoxLogicA are: a state-of-the-
art computational imaging library (ITK); the optimised implementation of the
may reach operator; a new algorithm for statistical cross-correlation; an efficient
memoizing execution engine; parallel evaluation of independent tasks, exploit-
ing modern multi-core CPUs. Moreover, special care has been put in making
all performance-critical loops allocationless. All used memory along the loops is
pre-allocated, avoiding the risk to trigger garbage collection during computation.
We will address each of them briefly in the following.

ITK Library. VoxLogicA uses the state-of-the-art imaging library ITK, via the
SimpleITK glue library'®. Most of the operators of VoxLogicA are implemented

8 Although such type system would permit “odd” types such as Valuation(Model),
there is no way to construct them; in the future this may change when appropriate.

9 See https://fsharp.org and https://dotnet.github.io.

10 See https://itk.org and http://www.simpleitk.org.

https://fsharp.org
https://dotnet.github.io
https://itk.org
http://www.simpleitk.org

290 G. Belmonte et al.

directly by a library call. Notably, this includes the Maurer distance transform,
used to efficently implement the distance operators of ImgQL.

Novel Algorithms. The two most relevant operators that do not have a direct
implementation in ITK are mayReach and crossCorrelation, implementing,
respectively, the logical operator p, and statistical comparison described in
Sect.2.2. The computation of the voxels satisfying p ¢1[p2] can be imple-
mented either using the (classical, in computer graphics) flood-fill primitive,
or by exploiting the connected components of ¢o as a reachability primitive;
both solutions are available in SimpleITK. In our experiments, connected com-
ponents perform better using this library from FSharp, for large input seeds.
Several critical logical connectives (e.g. surrounded and touch), are defined in
terms of mayReach. Therefore, an optimised algorithm for mayReach is a key per-
formance improvement. The crossCorrelation operation is resource-intensive,
as it uses the histogram of a multi-dimensional hyperrectangle at each voxel.
Pre-computation methods such as the integral histogram [33], would not yield
the expected benefits, because cross-correlation is called only few times on the
same image. In this work, we designed a parallel algorithm exploiting additivity
of histograms. Given two sets of values P, Ps, let hy, hy be their respective
histograms, and let h}, h), be the histograms of P;\P, and P,\P;. For i a bin,
we have ho(i) = hy(i) — hi (i) + h4(7). This property leads to a particularly
efficient algorithm when P; and P, are two hyperrectangles centred over adja-
cent voxels, as P1\ Py and P>\ Py are hyperfaces, having one dimension less than
hyperrectangles. Our algorithm divides the image into as many partitions as the
number of available processors, and then computes a Hamiltonian path for each
partition, passing by each of its voxels exactly once. All partitions are visited
in parallel, in the order imposed by such Hamiltonian paths; the histogram is
computed incrementally as described above; finally cross-correlation is also com-
puted and stored in the resulting image. The asymptotic algorithmic complexity
of the implementation of ImgQL primitives in VoxLogicA is linear in the number
of voxels, with the exception of crossCorrelation, which, by the above expla-
nation, has complexity O(k - n), where n is the number of voxels, and & is the
size of the largest hyperface of the considered hypercube.

Memoizing Execution Semantics. Sub-expressions in VoxLogicA are by construc-
tion identified up-to syntactic equality and assigned a number, representing a
unique identifier (UID). UIDs start from 0 and are contiguous, therefore admit-
ting an array of all existing sub-formulas to be used to pre-computed valuations
of expressions without further hashing.

3.3 Design and Data Structures

The design of VoxLogicA defines three implementation layers. The core execution
engine implements the concurrent, memoizing semantics of the tool. The inter-
preter is responsible for translating source code into core library invocations.
These two layers only include some basic arithmetic and boolean primitives.

VoxLogicA 291

Operators can be added by inheriting from the abstract base class Model. The
third implementation layer is the instantiation of the core layer to define oper-
ators from ImgQL, and loading and saving of graphical models, using the ITK
library. We provide some more detail on the design of the core layer, which is
the most critical part of VoxLogicA. At the time of writing, the core consists of
just 350 lines of FSharp code, that has been carefully engineered not only for
performance, but also for ease of maintenance and future extensions.

The essential classes are ModelChecker, FormulaFactory, Formula, and
Operator, of which Constant is a subclass. Class Operator describes the avail-
able operators and their evaluation method. Class Formula is a symbolic repre-
sentation of a syntactic sub-expression. Each instance of Formula has a unique
numeric id (UID), an instance of Operator, and (inductively) a list of Formula
instances, denoting its arguments. The UID of a formula is determined by the
operator name (which is unique across the application), and the list of param-
eter UIDs. Therefore, by construction, it is not possible to build two different
instances of Formula that are syntactically equal. UIDs are contiguous and start
from 0. By this, all created formulas can be inserted into an array. Furthermore,
UIDs are allocated in such a way that the natural number order is a topological
sort of the dependency graph between subformulas (that is, if f; is a parameter
of fo, the UID of f; is greater than the UID of f5). This is exploited in class
ModelChecker; internally, the class uses an array to store the results of evaluat-
ing each Formula instance, implementing memoization. The class ModelChecker
turns each formula into a task to be executed. Whenever a formula with UID 4
is a parameter of the formula with UID j, a dependency is noted between the
associated tasks. The high-level, lightweight concurrent programming library
Hopac!'! and its abstractions are used to evaluate the resulting task graph, in
order to maximise CPU usage on multi-core machines.

4 Experimental Evaluation

The performance of VoxLogicA has been evaluated on the Brain Tumor Image
Segmentation Benchmark (BraTS) of 2017 [2,31] containing 210 multi contrast
MRI scans of high grade glioma patients that have been obtained from multiple
institutions and were acquired with different clinical protocols and various scan-
ners. All the imaging data sets provided by BraTS 2017 have been segmented
manually and approved by experienced neuro-radiologists. In our evaluation we
used the T2 Fluid Attenuated Inversion Recovery (FLAIR) type of scans, which
is one of the four provided modalities in the benchmark. Use of other modalities is
planned for future work. For training, the numeric parameters of the VoxLogicA
specification presented in Sect. 4.1 were manually calibrated against a subset of
20 cases. Validation of the method was conducted as follows. A priori, 17 of the
210 cases can be excluded because the current procedure is not suitable for these
images. This is because of the presence of multi-focal tumours (different tumours
in different areas of the brain), or due to clearly distinguishable artifacts in the

11 See https://github.com/Hopac/Hopac.

https://github.com/Hopac/Hopac

292 G. Belmonte et al.

FLAIR acquisition, or because the hyperintense area is too large and clearly not
significant (possibly by incorrect acquisition). Such cases require further investi-
gation. For instance, the current procedure may be improved to identify specific
types of artefacts, whereas multi-modal analysis can be used to complement the
information provided by the FLAIR image in cases where FLAIR hyperinten-
sity is not informative enough. In Sect. 4.2, we present the results both for the
full dataset (210 cases), and for the subset without these problematic cases (193
cases). We considered both the gross tumour volume (GTV), corresponding to
what can actually be seen on an image, and the clinical target volume (CTV)
which is an extension of the GTV. For glioblastomas this margin is a 2-2.5cm
isotropic expansion of the GTV volume within the brain.

4.1 ImgQL Segmentation Procedure

Specification 1 shows the tumour segmentation procedure that we used for the
evaluation'?. The syntax is that of VoxLogicA, namely: |,&,! are boolean or,
and, not; distlt(c,phi) is the set {y | M,y = D<°phi} (similarly, distgeq;
distances are in millimiters); crossCorrelation(r,a,b,phi,m,M,k) yields a
cross-correlation coefficient for each voxel, to which a predicate ¢ may be applied
to obtain the statistical similarity function of Sect. 2.2; the > operator performs
thresholding of an image; border is true on voxels that lay at the border of
the image. Operator percentiles(img,mask), where img is a number-valued
image, and mask is boolean-valued, considers the points identified by mask, and
assigns to each such point x the fraction of points that have an intensity below
that of in img. Other operators are explained in Definition 3 (see also Fig.1).
Figure 2 shows the intermediate phases of the procedure, for axial view of one
specific 2D slice of an example 3D MRI scan of the BraT$S 2017 data set.

We briefly discuss the specification (see [6] for more details). Lines 1-8 merely
define utility functions and load the image, calling it flair. Lines 9-10 define
the background as all voxels in the area of intensity less than 0.1 that touches
the border of the image, and the brain as the complement of the background.
The application of percentiles in line 11 assigns to each point of the brain
the percentile rank of its intensity among those that are part of brain. Based
on these percentiles, hyper-intense and very-intense points are identified that
satisfy hI and vI, respectively (lines 12-13). Hyper-intense points have a very
high likelihood to belong to tumour tissue; very-high intensity points are likely
to belong to the tumour as well, or to the oedema that is usually surround-
ing the tumour. However, not all hyper-intense and very-intense points are part
of a tumour. The idea is to identify the actual tumour using further spatial
information. In lines 14-15 the hyper-intense and very-intense points are fil-
tered, thus removing noise, and considering only areas of a certain relevant size.

2 Note that, although the procedure is loosely inspired by the one in [3], there are major
differences, partly due to a different method for identification of hyperintensities
(using percentiles), and partly since the task in this work is simpler, as we only
identify the CTV and GTV (avoiding, for instance, to label the oedema).

VoxLogicA 293

The points that satisfy hyperIntense and veryIntense are shown in red in
Fig.2a and in Fig. 2b, respectively. In line 16 the areas of hyper-intense points
are extended via the grow operator, with those areas that are very intense (pos-
sibly belonging to the oedema), and in turn touch the hyper-intense areas. The
points that satisfy growTum are shown in red in Fig. 2c. In line 17 the previously-
defined (line 8) similarity operator is used to assign to all voxels a texture-
similarity score with respect to growTum. In line 18 this operator is used to find
those voxels that have a high cross correlation coefficient and thus are likely
part of the tumour. The result is shown in Fig. 2d. Finally (line 19), the voxels
that are identified as part of the whole tumour are those that satisfy growTum
extended with those that are statistically similar to it via the grow operator.
Points that satisfy tumFinal are shown in red in Fig.2e and points identified
by manual segmentation are shown for comparison in blue in the same figure
(overlapping areas are purple).

ImgQL Specification 1: Full specification of tumour segmentation

1 import "stdlib.imgql"

2 let grow(a,b) = (a | touch(b,a))

3 let flt(r,a) = distlt(r,distgeq(r,'!a))

4 load imgFLAIR = "Brats17_2013_2_1 flair.nii.gz"

5 load imgManualSeg = "Brats17_2013_2_1_seg.nii.gz"

6 let manualContouring = intensity(imgManualSeg) > 0

7 let flair = intensity(imgFLAIR)

8 let similarFLAIRTo(a) =
crossCorrelation(5,flair,flair,a,min(flair) ,max(flair),100)

9 let background = touch(flair < 0.1,border)
10 let brain = !background
11 let pflair = percentiles(flair,brain)

12 let hI = pflair > 0.95
13 let vI = pflair > 0.86
14 let hyperIntense = f1t(5.0,hI)
15 let veryIntense = £1t(2.0,vI)

16 let growTum = grow(hyperIntense,veryIntense)
17 let tumSim = similarFLAIRTo (growTum)

18 let tumStatCC = f1t(2.0, (tumSim > 0.6))

19 let tumFinal= grow(growTum,tumStatCC)

20 save "output_Brats17.2013_.2_1/complete-FLAIR FL-seg.nii" tumFinal

Interesting aspects of the ImgQL specification are its relative simplicity and
abstraction level, fitting that of neuro-radiologists, its explainability, its time-
efficient verification, admitting a rapid development cycle, and its independence
of normalisation procedures through the use of percentiles rather than absolute
values for the intensity of voxels.

294 G. Belmonte et al.

4.2 Validation Results

Results of tumour segmentation are evaluated based on a number of indexes
commonly used to compare the quality of different techniques (see [31]). These
indexes are based on the true positive (TP) voxels (voxels that are identified as
part of a tumour in both manual and VoxLogicA segmentation), true negatives
(TN) voxels (those that are not identified as part of a tumour in both manual and
VoxLogicA segmentation), false positives (FP) voxels (those identified as part of
a tumour by VoxLogicA but not by manual segmentation) and false negatives
(FN) voxels (those identified as part of a tumour by manual segmentation but
not by VoxLogicA). Based on these four types the following indexes are defined:
sensitivity: TP /(TP + FN); specificity: TN/(TN + FP); Dice: 2+ TP/(2 « TP +
FN+FP). Sensitivity measures the fraction of voxels that are correctly identified
as part of a tumour. Specificity measures the fraction of voxels that are correctly
identified as not being part of a tumour. The Dice similarity coefficient is used to
provide a measure of the similarity of two segmentations. Table 1 shows the mean
values of the above indexes both for GTV and CTV volumes for Specification 1
applied to the BraTS 2017 training phase collection. The top-scoring methods
of the BraTS 2017 Challenge [35] can be considered a good sample of the state-
of-the-art in this domain. Among those, in order to collect significant statistics,
we selected the 18 techniques that have been applied to at least 100 cases of the
dataset. The median and range of values of the sensitivity, specificity and Dice
indexes for the GTV segmentation of the whole tumour are, respectively, 0.88
(ranging from 0.55 to 0.97), 0.99 (0.98 to 0.999) and 0.88 (0.64 to 0.96). The
3D images used in this experiment have size 240 x 240 x 155 (about 9 million
voxels). The evaluation of each case study takes about 10s on a desktop computer
equipped with an Intel Core I7 7700 processor (with 8 cores) and 16 GB of RAM.

(a) (b) (c) (d) (e)

Fig. 2. Tumour segmentation of image Brats17_2013_2_1, FLAIR, axial 2D slice at
X =155, Y = 117 and Z = 97. (a) hyperIntense (b) verylntense (¢) growTum (d)
tumStatCC (e) tumFinal (red) and manual (blue, overlapping area is purple). (Color
figure online)

VoxLogicA

Table 1. VoxLogicA evaluation on the BraTS 2017 benchmark.

295

Sensitivity |Specificity |Dice (193 |Sensitivity |Specificity |Dice (210

(193 cases) |(193 cases) |cases) (210 cases) |(210 cases) |cases)
GTV 0.89(0.10) |1.0(0.00) |0.85(0.10) 0.86(0.16) |1.0(0.0) |0.81(0.18)
CTV|0.95(0.07) 0.99(0.01) |0.90(0.09)0.93(0.14) 0.99(0.2) 0.87(0.15)

4.3 Comparison with topochecker

The evaluation of VoxLogicA that we presented in this section uses features
that are present in VoxLogicA, but not in topochecker. On the other hand, the
example specification in [3], and its variant aimed at 3D images, are quite similar
to the one we presented, and can be readily used to compare the performance of
VoxLogicA and topochecker. The specifications consist of two human-authored
text files of about 30 lines each. The specifications were run on a desktop com-
puter equipped with an Intel Core I7 7700 processor (with 8 cores) and 16 GB
of RAM. In the 2D case (image size: 512 x 512), topochecker took 52s to
complete the analysis, whereas VoxLogicA took 750 ms. In the 3D case (image
size: 512 x 512 x 24), topochecker took about 30 min, whereas VoxLogicA took
15s. As we mentioned before, this huge improvement is due to the combination
of a specialised imaging library, new algorithms (e.g., for statistical similarity
of regions), parallel execution and other optimisations. More details could be
obtained by designing a specialised set of benchmarks, where some of which
can also be run using topochecker; however, for the purposes of the current
paper, the performance difference is so large that we do not deem such detailed
comparison necessary.

5 Conclusions and Future Work

We presented VoxLogicA, a spatial model checker designed and optimised for
the analysis of multi-dimensional digital images. The tool has been successfully
evaluated on 193 cases of an international brain tumour 3D MRI segmentation
benchmark. The obtained results are well-positioned w.r.t. the performance of
state-of-the-art segmentation techniques, both efficiency-wise and accuracy-wise.
Future research work based on the tool will focus on further benchmarking (e.g.
various other types of tumours and tumour tissue such as necrotic and non-
enhancing parts), and clinical application. On the development side, planned
future work includes a graphical (web) interface for interactive parameter cal-
ibration (for that, execution times will need to be further improved, possibly
employing GPU computing); improvements in the type-system (e.g. operator
overloading); turning the core design layer into a reusable library available for
other projects. Finally, the (currently small, albeit useful) library of logical and
imaging-related primitives available will be enhanced, based on input from case
studies. Calibration of the numerical parameters of our Glioblastoma segmenta-
tion was done manually. Future work aims at exploring different possibilities for

296 G. Belmonte et al.

human-computer interaction in designing such procedures (e.g. via ad-hoc graph-
ical interfaces), to improve user friendliness for domain experts. Experimenta-
tion in combining machine-learning methods with the logic-based approach of
VoxLogicA are also worth being explored in this respect.

References

1. Aiello, M., Pratt-Hartmann, I., van Benthem, J.: Handbook of Spatial Logics.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features. Sci. Data 4 (2017). https://doi.
org/10.1038/sdata.2017.117. Accessed 05 Sept 2017

3. Banci Buonamici, F., Belmonte, G., Ciancia, V., et al.: Int. J. Softw. Tools Technol.
Transfer (2019). https://doi.org/10.1007/s10009-019-00511-9

4. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: Proceedings of the 15th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design, MEM-
OCODE 2017, pp. 146-155. ACM, New York (2017). http://doi.acm.org/10.1145/
3127041.3127050

5. Bartocci, E., Gol, E.A., Haghighi, I., Belta, C.: A formal methods approach to pat-
tern recognition and synthesis in reaction diffusion networks. IEEE Trans. Control
Netw. Syst. 1 (2016). https://doi.org/10.1109/tcns.2016.2609138

6. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model
checker for declarative image analysis (Extended Version). ArXiv e-prints, Novem-
ber 2018. https://arxiv.org/abs/1811.05677

7. Belmonte, G., et al.: A topological method for automatic segmentation of glioblas-
toma in MRI flair for radiotherapy. Magn. Reson. Mater. Phys. Biol. Med. 30(S1),
437 (2017). https://doi.org/10.1007/s10334-017-0634-z. In ESMRMB 2017, 34th
annual scientific meeting

8. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: From collective adaptive sys-
tems to human centric computation and back: spatial model checking for medical
imaging. In: ter Beek, M.H., Loreti, M. (eds.) Proceedings of the Workshop on
FORmal Methods for the Quantitative Evaluation of Collective Adaptive Sys-
Tems, FORECAST@QSTAF 2016, Vienna, Austria, 8 July 2016. EPTCS, vol. 217,
pp. 81-92 (2016). https://doi.org/10.4204/EPTCS.217.10

9. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-
Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217-298.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_5

10. Castellano, G., Bonilha, L., Li, L., Cendes, F.: Texture analysis of medical images.
Clin. Radiol. 59(12), 1061-1069 (2004)

11. Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification
for collective adaptive systems: spatial model-checking of vehicle location data.
In: Eighth IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, SASOW, pp. 32-37. IEEE Computer Society (2014)

12. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297-311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6_24

https://doi.org/10.1007/978-1-4020-5587-4
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1007/s10009-019-00511-9
http://doi.acm.org/10.1145/3127041.3127050
http://doi.acm.org/10.1145/3127041.3127050
https://doi.org/10.1109/tcns.2016.2609138
https://arxiv.org/abs/1811.05677
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.4204/EPTCS.217.10
https://doi.org/10.1007/978-1-4020-5587-4_5
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

VoxLogicA 297

Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, 1., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222-235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7_18

Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics
for closure spaces. Log. Methods Comput. Sci. 12(4), October 2016. http://lmcs.
episciences.org/2067

Ciancia, V., Latella, D., Massink, M., Pakauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: 2015 IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops, SASO Workshops, pp. 74-79.
IEEE Computer Society (2015)

Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems.
Int. J. Softw. Tools Technol. Transfer (2018). https://doi.org/10.1007/s10009-018-
0483-8

Ciancia, V., Latella, D., Loreti, M., Massink, M.: Spatial logic and spatial model
checking for closure spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SEM
2016. LNCS, vol. 9700, pp. 156-201. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8_6

Ciancia, V., Latella, D., Massink, M., Paskauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 657-673. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_46

Davnall, F., et al.: Assessment of tumor heterogeneity: an emerging imaging tool
for clinical practice? Insights Imaging 3(6), 573-589 (2012)

Despotovié, 1., Goossens, B., Philips, W.: MRI segmentation of the human brain:
challenges, methods, and applications. Comput. Math. Methods Med. 2015, 1-23
(2015). https://doi.org/10.1155/2015 /450341

Dupont, C., Betrouni, N., Reyns, N., Vermandel, M.: On image segmentation meth-
ods applied to glioblastoma: state of art and new trends. IRBM 37(3), 131-143
(2016). https://doi.org/10.1016/j.irbm.2015.12.004

Fyllingen, E.H., Stensjgen, A.L., Berntsen, E.M., Solheim, O., Reinertsen, I.:
Glioblastoma segmentation: comparison of three different software packages. PLOS
ONE 11(10), e0164891 (2016). https://doi.org/10.1371/journal.pone.0164891
Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.)
COSIT 1999. LNCS, vol. 1661, pp. 251-266. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48384-5_17

Galton, A.: A generalized topological view of motion in discrete space. Theor.
Comput. Sci. 305(1-3), 111-134 (2003). https://doi.org/10.1016,/S0304-
3975(02)00701-6

Galton, A.: Discrete mereotopology. In: Calosi, C., Graziani, P. (eds.) Mereology
and the Sciences: Parts and Wholes in the Contemporary Scientific Context, pp.
293-321. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05356-1_11
Grosu, R., Smolka, S., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.:
Learning and detecting emergent behavior in networks of cardiac myocytes. Com-
mun. ACM 52(3), 97-105 (2009)

Haghighi, 1., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC 2015, pp. 189-198. ACM, New York (2015)

https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18
http://lmcs.episciences.org/2067
http://lmcs.episciences.org/2067
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/978-3-319-34096-8_6
https://doi.org/10.1007/978-3-319-34096-8_6
https://doi.org/10.1007/978-3-319-47166-2_46
https://doi.org/10.1155/2015/450341
https://doi.org/10.1016/j.irbm.2015.12.004
https://doi.org/10.1371/journal.pone.0164891
https://doi.org/10.1007/3-540-48384-5_17
https://doi.org/10.1007/3-540-48384-5_17
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1007/978-3-319-05356-1_11

298 G. Belmonte et al.

28. Kassner, A., Thornhill, R.E.: Texture analysis: a review of neurologic MR imaging
applications. Am. J. Neuroradiol. 31(5), 809-816 (2010)

29. Lemieux, L., Hagemann, G., Krakow, K., Woermann, F.: Fast, accurate, and repro-
ducible automatic segmentation of the brain in t1-weighted volume mri data. Magn.
Reson. Med. 42(1), 127-135 (1999)

30. Lopes, R., et al.: Prostate cancer characterization on MR images using fractal
features. Med. Phys. 38(1), 83 (2011)

31. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(brats). IEEE Trans. Med. Imaging 34(10), 1993-2024 (2015)

32. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21-37. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23820-3_2

33. Porikli, F.M.: Integral histogram: a fast way to extract histograms in Cartesian
spaces. 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2005), vol. 1, pp. 829-836 (2005)

34. Simi, V., Joseph, J.: Segmentation of glioblastoma multiforme from MR images-
a comprehensive review. Egypt. J. Radiol. Nucl. Med. 46(4), 1105-1110 (2015).
https://doi.org/10.1016/j.ejrnm.2015.08.001

35. Spyridon (Spyros) Bakas, et al. (Ed.): 2017 international MICCAI BraTS Chal-
lenge: Pre-conference Proceedings, September 2017. https://www.cbica.upenn.
edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_
shortPapers.pdf

36. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of evolving cyber-
physical spaces. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, pp. 38-48. ACM, New York (2017).
http://doi.acm.org/10.1145/3106237.3106299

37. Zhu, Y., et al.: Semi-automatic segmentation software for quantitative clinical brain
glioblastoma evaluation. Acad. Radiol. 19(8), 977-985 (2012). https://doi.org/10.
1016/j.acra.2012.03.026

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1016/j.ejrnm.2015.08.001
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
http://doi.acm.org/10.1145/3106237.3106299
https://doi.org/10.1016/j.acra.2012.03.026
https://doi.org/10.1016/j.acra.2012.03.026
http://creativecommons.org/licenses/by/4.0/

	VoxLogicA: A Spatial Model Checker for Declarative Image Analysis
	1 Introduction and Related Work
	2 The Spatial Logic Framework
	2.1 Foundations: Spatial Logics for Closure Spaces
	2.2 Region Similarity via Statistical Cross-correlation

	3 The Tool VoxLogicA
	3.1 Functionality
	3.2 Implementation Details
	3.3 Design and Data Structures

	4 Experimental Evaluation
	4.1 ImgQL Segmentation Procedure
	4.2 Validation Results
	4.3 Comparison with topochecker

	5 Conclusions and Future Work
	References

