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Abstract. We study an independent best-response dynamics on net-
work games in which the nodes (players) decide to revise their strategies
independently with some probability. We provide several bounds on the
convergence time to an equilibrium as a function of this probability, the
degree of the network, and the potential of the underlying games. These
dynamics are somewhat more suitable for distributed environments than
the classical better- and best-response dynamics where players revise
their strategies “sequentially”, i.e., no two players revise their strategies
simultaneously.

1 Introduction

Complex and distributed systems are often modeled by means of game dynamics
in which the participants (players) act spontaneously, typically striving to max-
imize their own payoff. Such selfish behavior often results in a so-called (pure
Nash) equilibrium which, roughly speaking, corresponds to the situation in which
no player has an incentive to change her current strategy.1

Consider the natural scenario in which people interact on a (social) network
and take their decisions based on both their personal interests and also on what
their friends decided. Situations of this sort are often modeled by means of
games that are played locally by the nodes of some graph (see, e.g., [14] and [13,
Chap. 19]). For example, players may have to choose between two alternatives
(strategies), and each strategy becomes more valuable if other friends also choose
it (perhaps it is easier to agree than to disagree, or it is better to adopt the same
technology for working, rather than different ones).

A full version of this work is available online at [27].
Supported by IRIF (CNRS UMR 8243) and Inria project-team GANG.

1 In this work we consider only pure Nash equilibria, which are the equilibria that
occur in certain games when each player chooses one strategy out of the available
ones. Other equilibrium concepts are also studied, most notably the mixed Nash
equilibrium, where each player chooses a probability distribution over the available
strategies.
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In many cases, an extremely simple procedure to convergence to an equilib-
rium is the so-called best-response dynamics in which at each step one player
revises her strategy so to maximize her own payoff (and the others stay put).
These dynamics work in more general settings (not only on network games),
where convergence to an equilibrium is proven via a potential argument (every
move reduces the value of a global function – called potential). Games of this
nature are called potential games and they are used to model a variety of situa-
tions. Interestingly, this argument fails as soon as two or more players move at
the same time.

In this work we study a natural variant of best-response dynamics in which
we relax the requirement that one player at a time moves. That is, now play-
ers become active independently with some probability and all active players
revise their strategy according to the best-response rule (or more generally any
better-response rule). This is similar as before but allowing simultaneous moves.
Specifically, we study the convergence time of these dynamics when players play
on a network a “local” potential game: (1) each player interacts only with her
neighbors, meaning that the strategies of the non-neighbors do not affect the
payoff of this player, and (2) locally the game is a potential game (see Sect. 2 for
more details and formal definitions).

Simple examples show that convergence is impossible if two players are always
active (move all the time), or that the time to converge can be made arbitrarily
long if they become active at almost every step. At the other extreme, if the
probability of becoming active is too small, then the dynamics will also take a
long time to converge since almost all the time nothing happens. The trade-off
is between having sufficiently many active players and, at the same time, not
too many neighboring players moving simultaneously.

1.1 Our Contribution

We investigate how the convergence time depends on the probabilities of becom-
ing active and on the degree of the network. This is also motivated by the
search for simple dynamics that the players can easily implement without global
knowledge of the network (namely, they only need to known how many neighbors
they have), nor without having complex reasoning (they still myopically better-
respond). We first show that for the symmetric coordination game, the conver-
gence time is polynomial whenever the probability of being active is slightly
below the inverse of the maximum degree of the network (Theorem 2 and Corol-
lary 1). This generalizes to arbitrary potential games on graphs, where every
node plays a possibly different potential game with each of its neighbors, and
the maximum degree is replaced by a weighted maximum degree (see Theorem 6).
These results indeed hold whenever each active player uses a better response (not
necessarily the best response). Finally, we prove a lower bound saying that, in
general, the probabilities of becoming active must depend on the degree for
otherwise the convergence time is exponential with high probability (Theorem5
and Corollary 2). Note that this holds also for the simplest scenario of symmetric
coordination games.
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Our upper bounds can be seen as a probabilistic version of the potential
argument (under certain conditions, the potential decreases in expectation at
every step by some fixed amount). To the best of our knowledge, this is the
first study on the convergence time of these natural variants of best-response
dynamics. Prior studies (see next section) either focus on sufficient conditions to
guarantee convergence to Nash equilibria, or they consider noisy best-response
dynamics whose equilibria can be different from best-response.

We note that the general upper bound necessarily depends on the maximum
value of the potential, as these games include max-cut games which are PLS-
complete [30]: for such games, no centralized algorithm for computing a Nash
equilibrium in time polynomial in the number of players is known, and these
games are hard precisely when the potential can assume arbitrarily large values.
Obviously, one cannot hope that simple distributed dynamics do better than the
best centralized procedure.

1.2 Related Work

Several works study convergence to Nash equilibria for simple variants of best-
response dynamics. A first line of research concerns the ability to converge to a
Nash equilibrium when the strict schedule of the moves of the players (one player
at a time) is relaxed [10]; they proved that any “separable” schedule guarantees
convergence to a Nash equilibrium. Other works study the convergence time
of specific dynamics with limited simultaneous moves: [19] introduce a “local”
coordination mechanism for congestion games (which are equivalent to potential
games [24]), while [15] shows that with limited simultaneous moves the dynamics
reaches quickly a state whose cost is not too far from the worst Nash equilib-
rium [15]; Fast convergence can be achieved in certain linear congestion games
if approximate equilibria are considered [9].

Another well-studied variant of best-response dynamics is that of noisy or
logit (response) dynamics [1,6,7], where players’ responses is probabilistic and
determined by a noise parameter (as the noise tends to zero, players select almost
surely best-responses, while for high noise they respond at random). These
dynamics turn out to behave differently from “deterministic” best-response in
many aspects. In the original logit dynamics by [6,7], where one randomly chosen
player moves at a time, they essentially rest on a subset of potential minimizers.
When the players’ schedule is relaxed, this property is lost and additional condi-
tions on the game are required [1,2,10,18,26]. Our independent better-response
dynamics can be seen as an analog of the independent dynamics of [1] for logit
response.

Potential games on graphs (a proper subclass of potential games) are well-
studied because of their many applications. In physics, ferro-magnetic systems
are modeled as noisy best-response dynamics on lattice graphs in which every
player (node) plays a coordination game with each neighbor (see, for example,
[23] and Chap. 15 of [22]). The version in which the coordination game is asym-
metric (i.e., coordinating on one strategy is more profitable than another) is used
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to model the diffusion of new technologies [21,25] and opinions [17] in social net-
works. Finally, potential games on graphs (every node plays some potential game
with each neighbor) characterize the class of potential games for which the equi-
libria of noisy best-response dynamics with all players updating simultaneously
can be “easily” computed [3]. The convergence time of best-response dynamics
for games on graphs is studied in [12,17]: Among other results, [12] showed that
a polynomial number of steps are sufficient when the same game is played on all
edges and the number of strategies is constant. Analogous results are proven for
finite opinion games in [17]. Finally, [4] characterize the class of potential games
which are also graphical games [20], where the potential can be decomposed into
the sum of potentials of “maximal” cliques of an underlying graph. Graphical
games have been studied in several works (see, e.g., [5,8,11,28]). The class of
local interaction potential games [3] is the restriction in which the potential can
be decomposed into pairwise (edge) potential games. In this work we deal pre-
cisely with this class of games. Since this class includes the so-called max-cut
games, which are known to be PLS-complete [30], it is considered unlikely that
an equilibrium can be computed efficiently, even by a centralized procedure.

Our dynamics are similar to the α-synchronous dynamics in cellular
automata [16]. In particular, the case of symmetric coordination game corre-
sponds to majority rule on general graphs [29] (where each cellular automaton
tries to switch to the majority state of its neighbors, and stays put in case of
ties). The present work can be seen as a first study of α-synchronous dynamics
on general graphs for the rules that follow from best-response to some potential
games with neighbors.

2 Model (Local Interaction Potential Games)

Intuitively speaking we consider a network (graph) where each node is a player
who repeatedly plays with her neighbors. We assume that a two-player potential
game (defined below) is associated to each edge of the graph. Each player must
play the same strategy on all the games associated to its incident edges, and her
payoff is the sum of the payoffs obtained in each of these games. We also assume
finite strategies, i.e. each player chooses her strategy within a finite set.

Symmetric Coordination Game. One of the simplest (potential) games is the
symmetric coordination game where each player chooses color B or W (for black
or white) and her payoff is 1 if players agree on their strategies, and 0 otherwise
(see Fig. 1a where the two numbers are the payoff for the row and the column
player, respectively).
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B W
B 1, 1 0, 0
W 0, 0 1, 1

(a) Symmetric
Coordination Game.

B W
B 2, 1 0, 0
W 0, 0 1, 2

(b) Another
Coordination Game.

B W
B −2 −1
W 0 −2

(c) Potential
for Game (b).

B W
B 2, 2 1, 1
W 0, 0 2, 2

(d) Game equivalent
to Game (b).

Fig. 1. Examples of two-player games and potential function.

General Potential Games. In a general game, we have n players, and each of
them can choose one color (strategy) and the combination c = (c1, . . . , cn) of all
colors gives to each player u some payoff PAYu(c). In a potential game, when
the change in the payoff of any player improves by some amount, some global
function P called the potential will be decreased by the same amount: For any
player u and any two configurations c and c′ which differ only in u’s strategy, it
holds that

PAYu(c′) − PAYu(c) = P (c) − P (c′). (1)

A configuration c is a (pure Nash) equilibrium if no player u can improve
her payoff, that is, the quantity above is negative or zero for all c′ =
(c1, . . . , c′

u, . . . , cn). Conversely, c is not an equilibrium if there is a player u
who can improve her payoff (PAYu(c′)−PAYu(c) > 0) in which case c′

u is called
a better response (to strategies c). A best response is a better response max-
imizing this improvement, over the possible strategies of the player. Potential
games possess the following nice feature: A configuration c is an equilibrium if
and only if no player can improve the potential function by changing her current
strategy. In a general (two-player) potential game the payoff of the players is not
the same, and the potential function is therefore not symmetric (see the example
in Fig. 1c).

Local Interaction Potential Games [3]. In a local interaction potential game
the potential function can be decomposed into the sum of two-player potential
games, one for each edge of the network G:

P (c) =
∑

uv∈E(G)

Puv(cu, cv). (2)

No edge exists if the strategies of the two players do not affect each others’ payoff
(the corresponding potential is constant and can be ignored). This definition
captures the following natural class of games on networks: Each edge corresponds
to some potential game, and the payoff of a player is the sum of the payoffs of
the games with the neighbors. Note that a player chooses one strategy to be
played on all these games.

(Independent) Better-Response Dynamics. A simple procedure for computing
an equilibrium consists of repeatedly selecting one player who is currently not
playing a best response and let her play a better or best response. Every step
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reduces the potential by a finite amount, and therefore this procedure terminates
into an equilibrium in O(M) time steps, where M is the maximum value for the
potential (w.l.o.g., we assume that the potential is always non-negative and takes
integer values2). Here we consider the variant in which, at each time step, each
player becomes independently active according to some probability, and those
who can improve their payoff change strategy accordingly:

Definition 1. In independent better-response dynamics, at each time step t
players do the following:

– Each player (node) u becomes active with some probability pt
u which can

change over time (the case in which it is constant over time is a special
case of this one).

– Every active player (node) revises her strategy according to a better (or best)
response rule. If the current strategy is already a best response, then no change
is made.

Note that all players that are active at a certain time step may change their
strategies simultaneously. So, for example, it may happen that on the symmetric
coordination game in Fig. 1a the two players move from state BW to state WB
and back if they are both active all the time.

Generic upper bound. To show that dynamics converge quickly, we show that
the potential decreases in expectation at every step. To this end, we consider
the probability space of all possible evolutions of the dynamics. A configuration
c at a given time t is given by the colors chosen by players at the previous time
step (strategy profile) and by the values pt

u used by users for randomly deciding
to be active at time t. The universe Ω is then defined as the set of all infinite
sequences c0, c1, . . . of configurations.

Definition 2 (δ-improving dynamics). Dynamics are δ-improving for a
given (local interaction) potential game if in expectation the potential decreases
by at least δ during each time step, unless the current configuration is an equi-
librium. That is, for any configuration c which is not an equilibrium, and any
event F t

c = {c0, c1, . . . ∈ Ω | ct = c} where configuration c is reached at time t,
we have

E[P t+1 − P t | F t
c ] ≤ −δ

where P t denotes the potential at time t.

2 As we assume that strategy sets are finite, the potential function is defined by a finite
set of values. Rescaling the potential function so that different values are at least
1 apart, and then truncating the values to integers allows to obtain an equivalent
game (with same dynamics). Additionally shifting the values allows to obtain a
non-negative potential function for that game.
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Standard Martingale arguments imply the following (see [27] for details):

Theorem 1. The expected convergence time of any δ-improving dynamics is
O

(
M0
δ

)
where M0 is the expected potential of the game at time 0.

3 Networks with Symmetric Coordination Games

We first consider the scenario in which every edge of the network is the symmet-
ric coordination game in Fig. 1a. The nodes of a graph G (players) can choose
between two colors B and W and are rewarded according to the number of
neighbors with same color. We are thus considering the dynamics in which nodes
attempt to choose the majority color of their neighbors and every active node
changes its color if more than half of its neighbors has the different color.

In order to analyze the convergence time of these dynamics, we shall relate
the probabilities of being active to the number of neighbors having a different
color. We say that u is unstable at time t if more than half of the neighbors has
the other color, that is,

dct
u >

1
2
δu

where δu is the degree of u and dct
u is the number of neighbors of u that have a

color different from the color of u at time t. By definition, the dynamics converge
if no node is unstable. Note that we have dct

u ≤ δu ≤ Δu ≤ Δ where Δ =
maxu∈V (G) δu is the maximum degree of the graph, and Δu = maxuv∈E(G) δv is
the local maximum degree in the neighborhood of u.

For the case of symmetric coordination games, the potential function of a
configuration is the number of edges whose endpoints have different colors: An
edge uv is said to be conflicting in configuration c if u and v have different colors.
Therefore the potential is at most the number m of edges.

Theorem 2. Fix some real values p, q ∈ (0, 1). If we have pt
u ∈ [ p

Δ , q
Δu

] for
all u, t in a symmetric coordination game, then the expected convergence time is
O

(
Δm0

p(1−q)

)
where m0 is the initial number of conflicting edges, Δ is the maxi-

mum degree, and Δu is the maximum degree in the neighborhood of u.

As an immediate corollary, we have the following result for the case in which
all nodes are active with the same probability p.

Corollary 1. If all unstable nodes are active with probability p < 1−ε
Δ for ε > 0,

then the dynamics converge to a stable state in O(m0
pε ) expected time.

Theorem 2 derives from the following lemma and Theorem 1.

Lemma 1. Any dynamics satisfying the hypothesis of Theorem2 are δ-
improving for δ = p(1 − q)/Δ.
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Proof. Consider the event F t
c where a configuration c is reached at time t. Let Ct

denote the number of conflicting edges in c, and U t be the set of unstable nodes
at time t respectively. Recall that the number of conflicting edges is equal to the
potential, that is, P t = Ct. We now express E[Ct+1 − Ct | F t

c ] as a function of
the values {pt

u | u ∈ V (G)} associated to c.
For that purpose, we first analyze the probability that any given edge of c is

conflicting after the random choices made at time t. We distinguish the following
types of edges. Let S1 (resp. S2) denote the set of edges in c with the same color
and one unstable extremity (resp. two). Similarly, let C1 (resp. C2) denote the
set of edges in c with conflicting colors and one unstable extremity (resp. two).
Note that Ct = |C1| + |C2|. A conflicting edge uv will become non-conflicting
if only one extremity changes its color. Similarly, a non-conflicting edge uv will
become conflicting if only one extremity changes its color. Due to independence of
choices, this happens in both cases with probability pt

uv = pt
u(1−pt

v)+(1−pt
u)pt

v

if both u and v are unstable, and with probability pt
u if u is unstable and v is

not. By linearity of expectation, we then obtain:

E[Ct+1 − Ct | F t
c ] =

∑

uv∈S1

pt
u +

∑

uv∈S2

pt
uv −

∑

uv∈C1

pt
u −

∑

uv∈C2

pt
uv. (3)

(When we note uv ∈ C1 (resp. uv ∈ S1), we assume that u is unstable and
v is not.) By definition, each unstable node u sees more conflicting edges than
non-conflicting ones, thus implying 1+

∑
v|uv∈S1

1+
∑

v|uv∈S2
1 ≤ ∑

v|uv∈C1
1+∑

v|uv∈C2
1. By multiplying by pt

u and then summing over all unstable nodes,
we obtain:

∑

u∈Ut

pt
u +

∑

uv∈S1

pt
u +

∑

uv∈S2

(pt
u + pt

v) ≤
∑

uv∈C1

pt
u +

∑

uv∈C2

(pt
u + pt

v). (4)

As pt
uv = pt

u + pt
v − 2pt

upt
v, we deduce from (3) and (4):

E[Ct+1 − Ct | F t
c ] ≤

∑

uv∈C2

2pt
upt

v −
∑

u∈Ut

pt
u. (5)

Since every edge uv ∈ C2 has both endpoints in U t, we can rewrite (5) as

E[Ct+1 − Ct | F t
c ] ≤

∑

u∈Ut

pt
u

(
− 1 +

∑

v|uv∈C2

pt
v

)
.

Using pt
v ≤ q

Δv
≤ q

δu
and pt

u ≥ p
Δ , we obtain the following inequality: E[Ct+1 −

Ct | F t
c ] ≤ ∑

u∈Ut
p
Δ (−1 + q) = −p(1 − q) |Ut|

Δ . This completes the proof. ��

Adaptive Probabilities. The upper bound of Theorem2 can be improved if nodes
are aware of the number of neighbors that are willing to change strategy (unsta-
ble) and then set accordingly the probability of changing too. More precisely, one
can think of active nodes announcing to their neighbors that they are unstable
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and that they would like to switch to the other color, before actually doing so.
Then, each unstable node will switch with a probability inversely proportional to
the number of unstable neighbors. The following theorem shows that this yields
an improved upper bound on the convergence time.

Theorem 3. Fix some real values p, q ∈ (
0, 1

2

)
. If we have pt

u ∈ [ p
dt
u+1 , q

dt
u+1 ] for

all u, t in a symmetric coordination game, where dt
u is the number of conflicting

unstable neighbors of u, then the expected convergence time is O
(

m0
p(1−2q)

)
where

m0 is the initial number of conflicting edges.

To prove this theorem we adapt the proof of Lemma 1 and show that these
dynamics are δ-improving for δ = p(1 − 2q)(see [27] for details).

Fully Local Dynamics. Theorem 2 requires that each node is aware of a bound
on the maximum degree, or the local maximum degree in her neighborhood for
setting pt

u. Theorem 3 requires knowledge of the number of conflicting unstable
neighbors at each time step. We next consider dynamics that are fully local as
each node u can set the probabilities pt

u by only looking at its own degree.

Theorem 4. Fix some real values p, q ∈ (
0, 1

2

)
. If we have pt

u ∈ [ p
δu

, q
δu

] for
all u, t in a symmetric coordination game, where δu is the degree of u, then
the expected convergence time is O

(
Δm0

p(1−2q)

)
where m0 is the initial number of

conflicting edges.

The proof of this theorem is similar to that of Theorems 2 and 3 (see [27]).

Tightness of the Results. Consider the following network composed of a clique
and r/2+1 paths, for even r (see figure below). Each node in a path is connected
to all nodes to the right and to the left path (or clique for the first path) as feature
by demi-edges with degree indications w.r.t. the previous and the next part of
the construction. Below each part, we indicate the number of nodes in the part.

r + 1

· · ·

Clique Paths

r r − 1 r − 2 r/2

r + 1 r − 1

r r − 1

Intuitively, the construction is
such that the process proceeds from
left to right, where nodes in certain
path become unstable only after all
nodes in the previous path became
black; moreover, inside each path the
process is also sequential, i.e., the
path becomes black from extremities
to center. These observations imply
that any dynamics in which nodes
become active with probability p � α,
require Ω(r2/α) = Ω(n/α) steps.

Since every node has degree Θ(r) = Θ(
√

n) = Θ(Δ), and the initial con-
figuration has m0 = Θ(r2) = Θ(n) conflicting edges (those between the clique
and the first path), non-adaptive dynamics take Θ(Δm0) = Θ(n3/2) time steps.
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On the contrary, adaptive dynamics take Θ(m0) = Θ(n) steps since the number
dt

u of unstable conflicting neighbors of each node u is at most 1. Therefore, the
analysis of Theorems 2, 3, and 4 is tight. Moreover, the adaptive dynamics are
provably faster than non-adaptive ones.

4 An Exponential Lower Bound When the Degree
Is Unbounded

In this section we prove a lower bound for the case of symmetric coordination
game on each edge and dynamics with constant probabilities, that is, the case in
which every node becomes active with some probability p which does not depend
on the graph nor on the time, and which is the same over all nodes.

Theorem 5. For every p > 0, there are starting configurations of the complete
bipartite graph where the expected number of steps to converge to an equilibrium
is exponential in the number of nodes.

Proof Idea. Consider the continuous version of the problem in which, instead
of a bipartite graph with n nodes on each side, we imagine L and R being two
continuous intervals (see figure below). Start from a symmetric configuration in
which a fraction α > 1/2 of the players in L has color W and the same fraction in
R has the other color B. Suppose that α = 1

2−p . Then after one step the system
reaches the symmetric configuration, that is, a fraction α of nodes in L has color
B and the same fraction in R has color W . Indeed, the fraction β of players with
color B in L after one step is precisely β = 1 − α + p · α = 1−p

2−p + p
2−p = α.

α

p
α

L
pα

+
1
−

α
=

α

ac
ti
ve

R L R

α

α α

ac
ti
ve

We next prove the theorem via Chernoff
bounds. For ε = p/3 consider the interval
around(α) := [(1 − ε)α, (1 + ε)α], and let
CY CLE(t) be the following event:

CY CLE(t) := {At time t a fraction
αL ∈ around(α) of the nodes in L
has some color c, and a fraction αR ∈
around(α) of the nodes in R has the
other color c (where B = W and W = B).}

We say that the configuration is balanced at time t when CY CLE(t) holds.
Since ε < p/2 we have (1 − ε)α > 1/2, and thus the best response of every
(active) node in a balanced configuration is to switch color (since both αLn and
αRn are strictly larger than n/2). Chernoff bounds guarantee that with high
probability enough many nodes will be activated and therefore will switch to
obtain a symmetric balanced configuration (see [27] for proof of next lemma):

Lemma 2. For any t, it holds that P [CY CLE(t + 1)| CY CLE(t)] ≥ 1 −
4 exp

(
− δ2

3 μ
)

, where δ = ε
1+ε and μ = p(1 + ε)αn with ε = p/3.
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The above lemma implies that, starting from a balanced configuration, the
probability of reaching an equilibrium in t steps is at least (1 − q)t−1 where
q = 4 exp(− δ2

3 μ). The expected time to converge is thus at least 1/q2 which
proves the theorem. Simple calculations lead to the following result (see [27] for
details):

Corollary 2. Starting from any balanced configuration, the expected number of
steps to converge to an equilibrium in the complete bipartite graph is eΩ(n1−3c),
as long as p ≥ 1/nc with 0 ≤ c < 1/3.

5 General Local Interaction Potential Games

In this section we extend the upper bound of Theorem2 to general local inter-
action potential games: each edge uv of G is associated with a (two-player)
potential game with potential Puv. Without loss of generality, we assume that
the potential Puv takes integer non-negative values. The upper bound is given
in terms of the following quantity:

ΔP := max
u

∑

v∈N(u)

ΔPuv
, (6)

where ΔPuv
denotes the maximum value of Puv. Note that for symmetric coor-

dination games, ΔP is simply the maximum degree Δ of the graph.

Theorem 6. For any p, q ∈ (0, 1/2), if we have pt
u ∈ [ p

ΔP
, q

ΔP
] for all u and t

and for ΔP defined as in (6) in a general local interaction potential game, then
the expected convergence time is O

(
nΔ2

P

p(1−2q)

)
.

Since local interaction potential games include max-cut games, which are
notoriously PLS-complete [30], one cannot hope to have convergence time poly-
nomial independent of ‘ΔP ’ in general. Local interaction games also include finite
opinion games [17] and, in particular, 16Δ ≤ ΔP ≤ 16(Δ + 1), where Δ is the
maximum degree of the underlying graph (details in [27]). Theorem 6 implies:

Corollary 3. In finite opinion games on networks of maximum degree Δ, the
expected converge time of independent better-response dynamics is O(nΔ2) when-
ever pt

u = α
Δ for some α ∈ [ p

16 , q
16 ] with p, q ∈ (0, 1/2).

6 Conclusion

This work provides bounds on the time to converge to a (pure Nash) equilibrium
when players are active independently with some probability and they better or
best respond to each others current strategies. Our study focuses on a natural
(sub)class of potential games, namely, local interaction potential games. The
bounds suggest that the time to converge to an equilibrium must depend on the
degree of the nodes in the underlying network (cf. Theorems 2, 6 and Corollary 2).
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Since our bounds hold for local interaction potential games, it would be
interesting to investigate whether analogous results hold for general potential
games. Here a relevant notion is that of graphical games [20] and the results in
[4]. It would also be interesting to sharpen some of our bounds to show that
p � 1/Δ is essentially the threshold between fast and slow convergence, and to
investigate the range p ∈ [1/n, 1/n1/3] (cf. Theorem 2 and Corollary 2).
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