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Preface

This volume contains the papers selected for presentation at CIAC 2019: the 11th
International Conference on Algorithms and Complexity held during May 27–29, 2019
in Rome. This series of conferences presents original research contributions in the
theory and applications of algorithms and computational complexity. The papers in this
volume are arranged alphabetically by the last names of their authors. We received 95
submissions, and these were handled through the EasyChair system. Each submission
was reviewed by three Program Committee members. The committee decided to accept
30 papers.

I would like to thank all the authors who submitted papers, the members of the
Program Committee, and the external reviewers who assisted the Program Committee
in the evaluation process. The organizers and I are grateful to the three invited speakers,
Edith Elkind (University of Oxford), Peter Rossmanith (Aachen University), and Luca
Trevisan (U.C. Berkeley), who kindly accepted our invitation to give plenary lectures
at CIAC 2019. We are grateful to Springer for sponsoring the CIAC 2019 best paper
award. I would like to extend my deep gratitude to Tiziana Calamoneri and Irene
Finocchi from the Sapienza University of Rome, who formed the Organizing
Committee, for organizing the conference in a very efficient and pleasant way, taking
care of administrative and public relation details, and being extremely helpful
throughout the whole procedure.

February 2019 Pinar Heggernes
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Quadratic Vertex Kernel for Split
Vertex Deletion

Akanksha Agrawal1, Sushmita Gupta2, Pallavi Jain3(B), and R. Krithika4

1 Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary
akanksha@sztaki.hu
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3 The Institute of Mathematical Sciences, HBNI, Chennai, India
pallavij@imsc.res.in

4 Indian Institute of Technology Palakkad, Palakkad, India
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Abstract. A graph is called a split graph if its vertex set can be par-
titioned into a clique and an independent set. Split graphs have rich
mathematical structure and interesting algorithmic properties making it
one of the most well-studied special graph classes. In the Split Vertex
Deletion(SVD) problem, given a graph and a positive integer k, the
objective is to test whether there exists a subset of at most k vertices
whose deletion results in a split graph. In this paper, we design a ker-
nel for this problem with O(k2) vertices, improving upon the previous
cubic bound known. Also, by giving a simple reduction from the Vertex
Cover problem, we establish that SVD does not admit a kernel with
O(k2−ε) edges, for any ε > 0, unless NP ⊆ coNP/poly.

Keywords: Split Vertex Deletion · Kernelization ·
Kernel lower bound · Parameterized Complexity

1 Introduction

The problem of graph editing–adding or deleting vertices or edges–to ensure
that the resulting graph has a desirable property is a well-studied problem in
graph algorithms. Lewis and Yannakakis [15] showed that if the objective is for
the resulting graph to have a non-trivial hereditary property (one that exists
in every induced subgraph), then the optimization version of the corresponding
graph editing problem is known to be NP-hard. Consequently this problem has
received attention both within the world of approximation algorithms [9,14,17]
as well as parameterized complexity [2,4,11]. A class G of graphs is called a

The first three authors are supported by the ERC Consolidator Grant SYSTEMATIC-
GRAPH (No. 725978) of the European Research Council; Research Council of Norway,
Toppforsk project (No. 274526); and SERB-NPDF fellowship (PDF/2016/003508) of
DST, India, respectively.
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2 A. Agrawal et al.

hereditary class if membership in G is a hereditary property. Extensive work has
been done on the topic of hereditary classes such as chordal graphs and planar
graphs [8,12,13,18,19]. In this paper we continue the study initiated by Ghosh
et al. [10] of the kernelization complexity of the vertex deletion problem of the
hereditary class consisting of all split graphs. A graph G = (V,E) is called a split
graph if there exists a partition of the vertex set V into two sets such that the
induced subgraph on one of the sets is a complete graph (i.e., a clique) and the
other set is an independent set.

Split graphs were introduced by Földes and Hammer [7] and were studied
decades later by Tyshkevich and Chernyak [20]. Split graphs have a rich structure
and several interesting algorithmic properties. For instance, they can be recog-
nized in polynomial time and they admit polynomial-time algorithms for several
classical problems like Maximum Independent Set, Maximum Clique and
Minimum Coloring. They can also be characterised by a finite set of forbidden
induced subgraphs (Proposition 1).

Proposition 1 ([7]). A graph is a split graph if and only if it contains no
induced subgraph isomorphic to 2K2, C4, or C5. Here, 2K2 is the graph that
is disjoint union of two edges and Ci is a cycle on i vertices.

In this article we study the kernelization complexity of the following problem.

Split Vertex Deletion(SVD) Parameter: k
Input: A graph G = (V,E) and an integer k.
Question: Does there exist a set of vertices S ⊆ V such that |S| ≤ k and
G[V \ S] is a split graph?

For a parameterized problem, a kernelization algorithm is a polynomial-time
algorithm that transforms an arbitrary instance of the problem to an equivalent
instance of the same problem whose size is bounded by some computable function
g of the parameter of the original instance. The resulting instance is called a
kernel and if g is a polynomial function, then it is called a polynomial kernel and
we say that the problem admits a polynomial kernel. Kernelization typically
involves applying a set of rules (called reduction rules) to the given instance
to produce another instance. We say that a reduction rule is applicable on an
instance if the output instance is different from the input instance. A reduction
rule is said to be safe if applying it to the given instance produces an equivalent
instance. For more details on kernelization algorithms, we refer the reader to the
book by Cygan et al. [3].

From Proposition 1, it is clear that SVD is related to the 5-Hitting Set
problem that has a kernel containing O(k4) elements [1]. Using the ideas of this
kernel, we can also obtain a kernel for SVD containing O(k4) vertices. Ghosh et
al. [10] improved this result by giving a kernel with O(k3) vertices.

Our Results and Techniques. In this paper we improve Ghosh et al.’s work
on the kernel for SVD by exhibiting a kernel containing O(k2) vertices. We
complement this result by showing that no kernel with O(k2−ε) edges is possible
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for any ε > 0 (unless NP ⊆ coNP/poly) by a reduction from Vertex Cover.
Our approach to the quadratic vertex kernel is as follows. Consider an input
instance (G, k). First, we compute a maximal set S of pairwise vertex disjoint
induced subgraphs of G isomorphic to 2K2, C4 or C5. Define the set S to be the
vertices of G that are in some element of S. Clearly, G − S is a split graph by
Proposition 1 and therefore has a partition of its vertex set into C and I where C
is a clique and I is an independent set. Then, we identify certain vertices Cfix ⊆ C
and Ifix ⊆ I that have to be in the clique side and independent side, respectively,
after the deletion of any solution to (G, k). Using the reduction rules described in
[10], we observe that G−Cfix has O(k2) vertices. To obtain the claimed kernel, it
is necessary and sufficient to bound |Cfix| by O(k2). We describe new reduction
rules and modify the instance appropriately (while preserving equivalence) to
delete redundant vertices in Cfix. Essentially, we crucially use the fact that in
any split partition of the resulting split graph (after deleting the solution), the
clique side can contain at most one vertex from I, and in particular from I \ Ifix.
This property helps us to forget the actual non-neighbourhood in Cfix of vertices
in I \ Ifix, and remember only the sizes of the non-neighbourhood of vertices in
I \ Ifix. We show that this information can be encoded using a set of O(k2) new
vertices whose addition to the graph enables us to delete most of the vertices in
Cfix. We conclude by showing that the resulting instance has O(k2) vertices.

Related Work. In addition to kernels for SVD, there has been quite a bit
of work on designing fixed-parameter tractable algorithms that beat the triv-
ial bound implied by the kernels. Lokshtanov et al. [16] exhibits an O∗(2.32k)
algorithm1 for SVD by using the fixed-parameter tractable algorithm for the
Above Guarantee Vertex Cover problem. Ghosh et al. [10] improve this
time-complexity to O∗(2k) by combining iterative compression with a bound on
the number of split partitions of a split graph. The FPT algorithm with running
time O∗(1.2738kkO(log k)) designed by Cygan and Pilipczuk [4] is the current
fastest algorithm for SVD, which uses the fastest known algorithm for Vertex
Cover and clique-independent set families. Among all the graph editing prob-
lems, the one that most closely resembles SVD is, perhaps, the Split Edge
Deletion problem, where the goal is to decide if there exists a subset of edges
of size at most k whose deletion results in a split graph. Guo [11] gave a ker-
nelization algorithm of size O(k4). Ghosh et al. [10] improved that bound to
O(k2). In the same paper, the authors gave an O∗(2

√
k log k) time algorithm for

the problem. It was posited in that paper that this might be the second problem
exhibited to have a subexponential-time algorithm on general graphs which does
not use bidimensionality theory (besides Minimum Fill-In [8]).

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, by [n] we denote the set
{1, 2, . . . , n}. We use standard terminology from the book of Diestel [6] for the

1 The O∗(.) notation suppresses polynomial factors in the input size.
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graph related terminologies which are not explicitly defined here. For a graph
G, by V (G) and E(G) we denote the vertex and edge sets of the graph G,
respectively. Consider a graph G. For v ∈ V (G), its neighbourhood (denoted
by NG(v)) is the set {u ∈ V (G) | (v, u) ∈ E(G)} and its non-neighbourhood
(denoted by NG(v)) is the set V (G) \ (NG(v) ∪ {v}). For any non-empty subset
S ⊆ V (G), the subgraph of G induced by S is denoted by G[S]; its vertex set
is S and its edge set is {(u, v) ∈ E(G) | u, v ∈ S}. For S ⊆ V (G), by G − S
we denote the graph G[V (G) \ S]. The complement of G, denoted by G, is the
graph defined as V (G) = V (G) and E(G) = {(u, v) | u, v ∈ V (G), where u �=
v, and (u, v) /∈ E(G)}.

A cycle C = (v1, v2, . . . , v�) in a graph G is a subgraph of G, with vertex
set {v1, v2, . . . , v�} ⊆ V (G) and edge set {(vi, v(i+1)) | i ∈ [�]} ⊆ E(G). Here,
the indices in the edge set are computed modulo �. The length of a cycle is the
number of vertices in it. The cycle on i vertices is denoted by Ci. For q ∈ N\{0},
by Kq we denote the clique (complete graph) on q vertices. The graph pKq is
defined as the graph obtained by taking the disjoint union of p copies of Kq.

A split graph is a graph G whose vertex set can be partitioned into two sets,
C and I, such that C is a clique while I is an independent set. The partition
(C, I) of the vertex set of a split graph G into a clique C and an independent
set I is called a split partition of G. By the definition of split graphs, it is easy
to observe the following.

Observation 1. G is a split graph with split partition (C, I) if and only if G is
a split graph with split partition (I, C).

Given a graph G, a split deletion set S ⊆ V (G), is a set such that G−S is a split
graph. We end this section by stating the following observation that is implied
by Proposition 1.

Observation 2. Given a graph G, there is a polynomial time algorithm that
returns a split deletion set S of G such that for any split deletion set S∗ of G,
we have |S| ≤ 5|S∗|.

3 The Quadratic Kernel

In this section, we show that SVD parameterized by k has a kernel with O(k2)
vertices. Consider an instance (G, k) of SVD. Let S be the split deletion set
of G obtained using Observation 2. Observe that if |S| > 5k, then (G, k) is a
no-instance. Otherwise, let (C, I) be a split partition of G − S. As we have
|S| = O(k), to obtain the required kernel, it suffices to bound |C| and |I|. To
achieve this, we will define a sequence of reduction rules. All reduction rules are
applied in the sequence stated. That is, a rule is applied only when none of the
preceding rules can be applied.

First, we apply the rules described in [10]. To this end, we first define the
subset SY = {v ∈ S | |NG(v) ∩ I| ≥ k + 2 and |NG(v) ∩ C| ≥ k + 2}. The use
of such a definition is to identify vertices of S that have to be in any solution
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S∗ to (G, k). Suppose that (C∗, I∗) is a split partition of G − S∗. Assume for
contradiction that there is a vertex v ∈ SY \ S∗. Then v ∈ C∗ or v ∈ I∗.
Consider the case when v is in C∗. As v has at least k + 2 non-neighbours in C
and |S∗| ≤ k, it follows that at least 2 such non-neighbours of v, say x and y,
are in V (G − S∗). As x and y are adjacent, at least one of them is in C∗. This
leads to a contradiction as v ∈ C∗. A similar argument holds if v ∈ I∗. This is
stated as the following lemma that leads to Reduction Rule 1.

Lemma 1 (Lemma 5 of [10]). For a solution S∗ to (G, k), we have SY ⊆ S∗.

Reduction Rule 1. If there is v∈ SY , then delete v and decrease k by 1.

The safeness of this reduction rule follows from Lemma 1. If our algorithm pro-
ceeds to the further steps, we can assume that Reduction Rule 1 is not applicable,
which means, SY = ∅. The reasoning behind the safeness of Reduction Rule 1
hints towards identifying vertices that have to be in the “clique side” and vertices
that have to be in the “independent side” of the resultant split graph (if the input
instance is a yes-instance). For this purpose, we define the following subsets of
S : SC = {v ∈ S | |NG(v) ∩ I| ≥ k + 2}, SI = {v ∈ S | |NG(v) ∩ C| ≥ k + 2},
and SZ = S \ (SC ∪ SI).

Intuitively, as every vertex v in SC has a large neighbourhood in I, either
v has to be in the solution split deletion set or v has to end up in the “clique
side” of the resultant split graph. Similarly, as every vertex u in SI has a large
non-neighbourhood in C, either u has to be in the solution split deletion set or
u has to end up in the “independent set side” of the resultant split graph. Note
that as SY = ∅, we have SC ∩ SI = ∅. In the above we identified some special
vertices of S which must necessarily belong to the clique side or belong to the
independent set side. Next we identify such “special vertices” in I and C.

Cfix = {v ∈ C | |NG(v) ∩ I| ≥ k + 2} and CZ = C \ Cfix

Ifix = {v ∈ I | |NG(v) ∩ C| ≥ k + 2} and IZ = I \ Ifix

Next, let CY be the set of vertices in C that have no non-neighbours in
SC ∪ SZ ∪ IZ . Let IY be the set of vertices in I that have no neighbours in
SI ∪ SZ ∪ CZ . We will now explain the idea behind partitioning V (G) into these
sets. First, we have the following property on Cfix and Ifix.

Lemma 2 (Lemma 4 of [10]). Suppose that S∗ is a solution to (G, k) and
(C∗, I∗) is a split partition of G − S∗. Then, for each vertex v in Cfix ∪ SC ,
either v ∈ S∗ or v ∈ C∗ and for each vertex v in Ifix ∪ SI , either v ∈ S∗ or
v ∈ I∗.

Next, let us consider the set CY . Consider a hypothetical solution S∗ to (G, k)
and let (C∗, I∗) denote a split partition of G−S∗. Observe that C∗ ∩ Ifix = ∅ by
Lemma 2. In other words, we have C∗ ⊆ SC ∪ SZ ∪ Cfix ∪ CZ ∪ IZ . By definition,
every vertex in CY is adjacent to every vertex in SC ∪ SZ ∪ Cfix ∪ CZ ∪ IZ . That
is, every vertex in CY is adjacent to every vertex that has the potential to end
up in C∗. Therefore, if |CY | is “too large”, we can afford to delete a vertex from
it as we can always “put it back” into the clique, as described in the following.
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Reduction Rule 2 (Reduction Rules 3.3 of [10]). If |CY ∩ Cfix| > k + 2,
then delete all edges between CY ∩ Cfix and (Ifix ∪ SI) and delete all but k + 2
vertices of CY ∩ Cfix.

Reduction Rule 3 (Reduction Rules 3.4 of [10]). If |CY ∩ CZ | > k + 2,
then delete all edges between CY ∩ CZ and (Ifix ∪ SI) and delete all but k + 2
vertices of CY ∩ CZ .

Along similar lines, let us now consider the set IY . Once again, consider
a hypothetical solution S∗ to (G, k) and let (C∗, I∗) denote a split partition
of G − S∗. Observe that I∗ ∩ Cfix = ∅ by Lemma 2. In other words, we have
I∗ ⊆ SI ∪ SZ ∪ Ifix ∪ IZ ∪ CZ . By definition, every vertex in IY is non-adjacent
to every vertex in SI ∪ SZ ∪ Ifix ∪ IZ ∪ CZ . That is, every vertex in IY is
non-adjacent to every vertex that has the potential to end up in I∗. Therefore, if
|IY | is too large, we can afford to delete a vertex from it as we can always “put it
back” into the independent set side. This justifies the following reduction rules.

Reduction Rule 4 (Reduction Rule 3.5 of [10]). If |IY ∩ Ifix| > k + 2,
then delete all edges between IY ∩ Ifix and (Cfix ∪ SC) and delete all but k + 2
vertices of IY ∩ Ifix.

Reduction Rule 5 (Reduction Rule 3.6 of [10]). If |IY ∩ IZ | > k+2, then
delete all edges between IY ∩ IZ and (Cfix ∪ SC) and delete all but k +2 vertices
of IY ∩ IZ .

The formal safeness proofs of Reduction Rule 1 to 5 can be found in [10].
When none of Reduction Rule 1 to 5 is applicable, we have the following bound.

Lemma 3 (Lemma 8 of [10]). When neither of Reduction Rule 1 to 5 are
applicable, either |CZ | ≤ 2k + 2 or |IZ | ≤ 2k + 2.

This result leads to the following bound.

Lemma 4 (Lemma 9 of [10]). When neither of the Reduction Rule 1 to 5 are
applicable, |CZ ∪ IZ | = O(k2). Moreover, if |CZ | ≤ 2k + 2, then |Ifix| is O(k2),
and if |IZ | ≤ 2k + 2, then |Cfix| is O(k2).

In the following, we describe how we obtain the kernel when |CZ ∪ IZ | =
O(k2), |CZ | ≤ 2k + 2, and |Ifix| = O(k2). Note that if we show that the size of
Cfix by O(k2), then we will obtain the desired kernel. First, we give an intuitive
description of the steps that the kernelization algorithm applies to reduce the
instance size. The algorithm will not delete any vertices in S ∪ CZ ∪ Ifix ∪ IZ .
From Lemma 2, we know that each vertex in Cfix is either in the solution that
we are looking for or is in the clique side of the split partition of the resulting
split graph. Similarly, each vertex in Ifix is either in the solution or is in the
independent set side of the split partition of the resulting split graph. Using some
gadgets, we will ensure that these properties hold irrespective of any subsequent
modification to the instance. After this we will crucially use the fact that in
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Cfix Ifix

SISC SZ

Capp Iapp

IZCZ

Fig. 1. An illustration of Gapp which shows only the new edges added. Here, the vertices
(remaining) in the squiggled and the starred set always belong to the clique and the
independent set side, respectively, after removal of any solution.

any split partition of the resulting split graph, the clique side can contain at
most one vertex from I, and in particular from IZ . This property helps us to
forget the actual non-neighbourhood in Cfix of vertices in IZ , and remember only
the sizes of the non-neighbourhood of vertices in IZ . Here, we will also rely on
the property that each vertex in IZ has at most k + 1 non-neighbours in C (in
particular, in Cfix). Next, we formally describe the operations that are performed
to obtain the desired kernel.

First, we construct an (equivalent) instance (Gapp, k) of SVD (in polynomial
time) as follows. Roughly speaking, Gapp is obtained from G by appending a large
enough clique and a large enough independent set. The addition of these sets
will (roughly) ensure that in the resulting graph, after we remove a solution,
the (remaining) vertices in Cfix ∪ SC always belong to the clique side of any
split partition. Also, it is assured that the (remaining) vertices in Ifix ∪ SI

always belong to the independent side of any split partition. The graph Gapp

is constructed as follows. Initially, Gapp = G. We add two sets Capp and Iapp
each of k + 2 (new) vertices to V (Gapp). The vertices in Capp and Iapp induce a
clique and an independent set in Gapp, respectively. We add all the edges between
vertices in Capp and vertices in C ∪ SC ∪ SZ ∪ IZ . Also, we add all the edges
between vertices in Iapp and Cfix ∪ SC ∪ Capp. An illustration of the graph Gapp

is depicted in Fig. 1.
Next, we show the equivalence between the instances (G, k) and (Gapp, k).

Lemma 5. (♣)2 (G, k) is a yes-instance of SVD if and only if (Gapp, k) is a
yes-instance of SVD.

The following observation follows from the construction of (Gapp, k).

Observation 3. The number of vertices in Gapp is |V (G)| + 2(k + 2).

In the following we construct a (marked) set M , of vertices in Gapp. Initially,
we have M = Capp ∪ Iapp ∪ S ∪ I ∪ CZ . For each s ∈ SC ∪ SZ , we add to M ,

2 The proofs of results marked with � will appear in the full version of the paper.
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Ifix

SISC SZ

Capp Iapp

IZ

CZ

q1 q2 q3 qk+1

v

Q

Cfix ∩ M

Fig. 2. An illustration of the graph Gρ, where ρ(v) = 1.

all the vertices in NG(s) ∩ C. That is, we add all the non-neighbours in C of
vertices in SC ∪ SZ to the set M . By our assumption and the definition of SC

and SZ , it follows that |M | = O(k2).
Next, we define some notations that will be useful in obtaining the desired

kernel. Let CU = Cfix \ M . We define a function ρ : IZ → N as follows. For
each v ∈ IZ , we set ρ(v) = |NG(v) ∩ CU |. That is, ρ(v) is the number of non-
neighbours of v in CU . Now we are ready to reduce the size of the instance
(Gapp, k). This step will rely on the fact that in a split partition after deletion of
any solution from the graph Gapp, the clique side can contain at most one vertex
from I (and in particular, from IZ).

We construct another (equivalent) instance (Gρ, k) of SVD as follows. Ini-
tially, Gρ = Gapp − CU . We add a set Q = {q1, q2, · · · , qk+1} of (new) ver-
tices inducing a clique, to Gρ. We add all the edges in {(q, v) | q ∈ Q, v ∈
Capp ∪ Iapp ∪ (C \ CU ) ∪ SC ∪ SZ}. For each v ∈ IZ , we add all the edges in
{(v, qi) | i ∈ [k + 1] \ [ρ(v)]} to E(Gρ). That is, we make v non-adjacent to the
first ρ(v) vertices in Q and adjacent to all the remaining vertices in Q. Here, we
rely on the fact that each vertex in IZ has at most k + 1 non-neighbours in C
(and in particular, in CU ). This completes the description of the graph Gρ; see
Fig. 2 for illustration.

From the construction of (Gρ, k), and the fact that |Capp ∪ Iapp ∪ Q| = O(k)
and V (G) \ CU = O(k2), we obtain the following observation.

Observation 4. The number of vertices in Gρ is O(k2).

Our next goal is to establish that (G, k) is a yes-instance of SVD if and
only if (Gρ, k) is a yes-instance of SVD. By Lemma 5, it is enough to show that
(Gapp, k) and (Gρ, k) are equivalent instances. We start by proving the following.

Lemma 6. (♣) Suppose that S∗ is a solution to (Gapp, k) and (C∗, I∗) is a split
partition of Gapp − S∗. Then, (Cfix ∪ SC) \ S∗ ⊆ C∗ and (Ifix ∪ SI) \ S∗ ⊆ I∗.

Similarly, the following claim holds for (Gρ, k).

Lemma 7. Suppose that S∗ is a solution to (Gρ, k) and (C∗, I∗) is a split par-
tition of Gρ − S∗. Then, (Q ∪ SC) \ S∗ ⊆ C∗ and (Ifix ∪ SI) \ S∗ ⊆ I∗.
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Lemma 8. (Gapp, k) is a yes-instance of SVD if and only if (Gρ, k) is a yes-
instance of SVD.

Proof. In the forward direction, let S∗ be a solution to SVD in (Gapp, k), and
let (C∗, I∗) be a split partition of Gapp − S∗.

1. Suppose IZ ∩ C∗ = ∅. In this case, consider the sets C∗
ρ = (C∗ \CU ) ∪ Q and

I∗
ρ = I∗ \ CU . We will show that (C∗

ρ , I∗
ρ ) is a split partition of Gρ − S∗. It

is easy to see that C∗
ρ and I∗

ρ partitions the set V (Gρ) \ S∗. By construction,
we have that I∗

ρ is an independent set in Gρ. We will show that C∗
ρ is a clique

in Gρ − S∗. To show this, we only need to show that Q is adjacent to each
vertex in C∗. Consider a vertex q ∈ Q. By construction, SI ∪ Ifix ⊆ NGρ

(q) ⊆
SI ∪ Ifix ∪ IZ , and from Lemma 6 we have (Ifix ∪ SI)\S∗ ⊆ I∗. Moreover, by
our assumption, IZ ∩ C∗ = ∅. From the above discussions we can conclude
that q is adjacent to every vertex in C∗.

2. Suppose IZ ∩ C∗ �= ∅. Since I is an independent set in Gapp (where IZ ⊆ I),
we have |IZ ∩ C∗| = 1. Let v be the unique vertex in IZ ∩ C∗ and CU (v) =
NGapp(v) ∩ CU . Note that ρ(v) = |CU (v)|. Since v /∈ S∗, from Lemma 6 we
have CU (v) ⊆ S∗. Let Sρ = (S∗ \ CU ) ∪ {qi | i ∈ [ρ(v)]}. Observe that
|Sρ| ≤ |S∗| ≤ k. We will show that Sρ is a solution to (Gρ, k). To this end,
consider the sets C∗

ρ = (C∗ \ CU ) ∪ (Q \ {qi | i ∈ [ρ(v)]}) and I∗
ρ = I∗ \ CU .

Notice that C∗
ρ and I∗

ρ forms a partition of V (Gρ) \ Sρ. We will show that
(C∗

ρ , I∗
ρ ) is a split partition of Gρ − Sρ. By construction, we have that I∗

ρ

is an independent set in Gρ. Now we will show that C∗
ρ is a clique in Gρ.

Notice that C∗ \ CU is a clique in Gρ, by the construction of Gρ. We will
show that each q ∈ Q \ {qi | i ∈ [ρ(v)]} is adjacent to each vertex in C∗ \ CU .
From Lemma 6 we have (Ifix ∪ SI) \ S∗ ⊆ I∗. Furthermore, (v, q) ∈ E(Gρ),
IZ ∩ C∗ = {v}, SC ∪ SZ ∪ (C \ CU ) ∪ Capp ⊆ NGρ

(q). Thus q is adjacent
to each vertex in C∗ \ CU . This together with the fact that Gρ[Q] is a clique,
implies that C∗

ρ is a clique in Gρ.

In the reverse direction, let Sρ be a solution to (Gρ, k), and (C∗
ρ , I∗

ρ ) be a split
partition of Gρ − Sρ. We again have cases similar to the proof of the forward
direction, based on the intersection of IZ with C∗

ρ .

1. Suppose IZ ∩ C∗
ρ = ∅. In this case, consider the sets C∗ = (C∗

ρ \Q) ∪ CU and
I∗ = I∗

ρ \ Q. We will show that (C∗, I∗) is a split partition of Gapp − Sρ. It is
easy to see that C∗ and I∗ partitions the set V (Gapp) \ Sρ. By construction,
we have that I∗ is an independent set in Gapp. We will show that C∗ is a
clique in Gapp − Sρ. To show this, we only need to show that each vertex in
CU is adjacent to each vertex in C∗

ρ \ Q. Consider a vertex v ∈ CU . By the
construction of CU , SC ∪ SZ ∪ Capp ∪ Iapp ⊆ NGρ

(v), and from Lemma 7 we
have (Ifix ∪ SI) \ Sρ ⊆ I∗

ρ . Thus, C∗ is a clique in Gapp.
2. Suppose IZ ∩ C∗

ρ �= ∅. Since I is an independent set in Gρ, we have |I ∩ C∗
ρ | =

1. Let v be the unique vertex in IZ ∩ C∗
ρ and Q(v) = NGρ

(v) ∩ Q. Note
that ρ(v) = |Q(v)|. Since v /∈ Sρ, from Lemma 7 we have Q(v) ⊆ Sρ. Let
S∗ = (Sρ \ Q) ∪ {w ∈ CU | (v, w) /∈ E(Gapp)}. Observe that |S∗| ≤ |Sρ| ≤ k.
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We will show that S∗ is a solution to (Gapp, k). To this end, consider the sets
C∗ = (C∗

ρ \ Q) ∪ (CU \ {w ∈ CU | (v, w) /∈ E(Gapp)}) and I∗ = I∗
ρ \ Q.

Notice that C∗ and I∗ partitions V (Gapp) \ S∗. We will show that (C∗, I∗)
is a split partition of Gapp − S∗. By construction, we have that I∗ is an
independent set in Gapp. Now we will show that C∗ is a clique in Gapp. Notice
that C∗

ρ \ Q is a clique in Gapp. We will show that each w ∈ CU \ {w ∈ CU |
(v, w) /∈ E(Gapp)} is adjacent to every vertex in C∗

ρ \ Q. From Lemma 7 we
have (Ifix ∪ SI) \ S∗ ⊆ I∗. Furthermore, (v, w) ∈ E(Gapp), IZ ∩ C∗

ρ = {v},
SC ∪ SZ ∪ (C \ Q) ∪ Capp ∪ Iapp ⊆ NGapp(w). Thus w is adjacent to each
vertex in C∗

ρ \ Q. This implies that C∗ is a clique in Gapp. �
Now, we define the following rule whose safeness follows from Lemmas 5 and 8.

Reduction Rule 6. Let (G, k) denote the instance on which none of Reduction
Rule 1 to 5 are applicable. If |CZ | ≤ 2k + 2, then return (Gρ, k).

Once this rule is applied, the resulting instance has O(k2) vertices by Obser-
vation 4. From Lemma 3, we know that when none of Reduction Rule 1 to 6 are
applicable on (G, k), we have |IZ | ≤ 2k + 2. Using Observation 1 and the fact
that (G, k) is a yes-instance if and only if (G, k) is a yes-instance, we define the
final reduction rule to handle this situation.

Reduction Rule 7. Let (G, k) denote the instance on which none of Reduction
Rule 1 to 6 are applicable. Then return (G, k).

Observe that after Reduction Rule 7 is applicable on an instance, one of
the earlier reduction rules become applicable. This is due to the fact that an
independent set (clique) in G becomes a clique (independent set) in G. This
leads to the main result of this paper.

Theorem 1. (♣) SVD admits a kernel with O(k2) vertices.

4 Kernelization Lower Bound

In Sect. 3, we obtained a kernel for SVD with O(k2) vertices. A natural question
is to determine if this is the best possible. Though, we do not fully answer this
question, we obtain that SVD does not admit a kernel with O(k2−ε) edges,
for any ε > 0 (assuming NP �⊆ coNP/poly). We obtain our lower bound result
by giving a simple (linearly) parameter-preserving reduction from the Vertex
Cover problem.

Vertex Cover Parameter: k
Input: A graph G and an integer k.
Question: Does there exist a set of vertices S ⊆ V (G) such that |S| ≤ k and
G − S has no edges?

Dell and van Melkebeek [5] proved that Vertex Cover does not admit a
compression of bit-size O(k2−ε), for any ε > 0, unless NP ⊆ coNP/poly.
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Definition 1. A compression of a parameterized problem Π ⊆ Σ∗ × N into a
problem Γ ⊆ Σ∗ is an algorithm that takes as input an instance (I, k) of Π, and
in time polynomial in |I| + k returns an instance I ′ of Γ such that |I ′| ≤ f(k)
and (I, k) is a yes-instance of Π if and only if I ′ is a yes-instance of Γ . The
function f is called the bit-size of the compression.

Note that if a parameterized problem does not admit a kernel of size f(k),
then it does not have a compression of size f(k), as the output kernel can be
treated as an instance of the un-parameterized version of the problem.

Theorem 2. SVD does not admit a kernel with O(k2−ε) edges, for any ε > 0,
unless NP ⊆ coNP/poly.

Proof. Suppose that SVD admits a kernel A, with O(k2−ε) edges, for some ε > 0.
Now we will design a compression for Vertex Cover of bit-size O(k2−ε), for
some ε > 0. Consider an instance (G, k) of Vertex Cover and let n denote
the number of vertices in G. Let ̂G be the graph obtained from G by adding a
set Q of k + 2 new vertices that induces a clique. We let ( ̂G, k) be the instance
of SVD. Now we use the algorithm A to obtain an instance (G∗, k∗) of SVD in
time polynomial in n+k, such that ( ̂G, k) is a yes-instance of SVD if and only if
(G∗, k∗) is a yes-instance of SVD and |E(G∗)| + k∗ = O(k2−ε). We can assume
that G∗ has no isolated vertices (otherwise, we can safely delete them to obtain a
smaller equivalent instance), thus we can assume that |V (G∗)|+ |E(G∗)|+ k∗ =
O(k2−ε). We output the instance (G∗, k∗) of SVD as a compression for the
instance (G, k) of Vertex Cover.

To obtain the proof, we only need to show that (G, k) is a yes-instance of
Vertex Cover if and only if ( ̂G, k) a yes-instance of SVD. Suppose that S is
a vertex cover of size at most k in G. Then, V (G) \S is an independent set in G

(and hence in ̂G). Thus, ̂G−S is a split graph with split partition (Q,V (G)\S).
In other words, S is a split deletion set of size at most k in ̂G. Conversely, suppose
that S∗ is a split deletion set of size at most k in ̂G. Let (C∗, I∗) denote a split
partition of ̂G − S∗. Then, |Q \ S∗| ≥ 2, because |Q| = k + 2 and |S∗| ≤ k. Since
Q is a clique in ̂G, at most one vertex from Q \S∗ can belong to I∗. Thus, there
is a vertex q ∈ C∗ ∩ Q. As no vertex of Q is adjacent to a vertex outside Q in ̂G,
we have that C∗ ⊆ Q \ S∗. From the above discussions it follows that S∗ \ Q is
a vertex cover of size at most k in G. Hence, (G, k) is a yes-instance of Vertex

Cover if and only if ( ̂G, k) a yes-instance of SVD.

5 Concluding Remarks

We have shown that SVD has a kernel with O(k2) vertices. A natural next
direction of research is to show that this is the best possible bound (under
standard complexity theoretic assumptions) or explore if the problem admits a
linear vertex kernel. In fact, even determining the existence of an O(k3) edges
kernel is an interesting line of work.
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Abstract. In this paper we study the problem of exploring a tempo-
ral graph (i.e. a graph that changes over time), in the fundamental case
where the underlying static graph is a star on n vertices. The aim of
the exploration problem in a temporal star is to find a temporal walk
which starts at the center of the star, visits all leaves, and eventually
returns back to the center. We present here a systematic study of the
computational complexity of this problem, depending on the number k
of time-labels that every edge is allowed to have; that is, on the number
k of time points where each edge can be present in the graph. To do so,
we distinguish between the decision version StarExp(k), asking whether
a complete exploration of the instance exists, and the maximization ver-
sion MaxStarExp(k) of the problem, asking for an exploration schedule
of the greatest possible number of edges in the star. We fully characterize
MaxStarExp(k) and show a dichotomy in terms of its complexity: on
one hand, we show that for both k = 2 and k = 3, it can be efficiently
solved in O(n logn) time; on the other hand, we show that it is APX-
complete, for every k ≥ 4 (does not admit a PTAS, unless P = NP, but
admits a polynomial-time 1.582-approximation algorithm). We also par-
tially characterize StarExp(k) in terms of complexity: we show that it
can be efficiently solved in O(n logn) time for k ∈ {2, 3} (as a corollary
of the solution to MaxStarExp(k), for k ∈ {2, 3}), but is NP-complete,
for every k ≥ 6.

1 Introduction and Motivation

A temporal graph is, roughly speaking, a graph that changes over time. Several
networks, both modern and traditional, including social networks, transporta-
tion networks, information and communication networks, can be modeled as
temporal graphs. The common characteristic in all the above examples is that
the network structure, i.e. the underlying graph topology, is subject to discrete
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changes over time. Temporal graphs naturally model such time-varying networks
using time-labels on the edges of a graph to indicate moments of existence of
those edges, while the vertex set remains unchanged. This formalism originates
in the foundational work of Kempe et al. [15].

In this work, we focus in particular on temporal graphs where the underlying
graph is a star graph and we consider the problem of exploring such a temporal
graph starting and finishing at the center of the star. The motivation behind this
is inspired from the well known Traveling Salesperson Problem (TSP). The latter
asks the following question: “Given a list of cities and the distances between
each pair of cities, what is the shortest possible route that visits each city and
returns to the origin one?”. In other words, given an undirected graph with edge
weights where vertices represent cities and edges represent the corresponding
distances, find a minimum-cost Hamiltonian cycle. However, what happens when
the traveling salesperson has particular temporal constraints that need to be
satisfied, e.g. (s)he can only go from city A to city B on Mondays or Tuesdays,
or (s)he can only travel by train and, hence, needs to schedule his/her visit based
on the train timetables? In particular, consider a traveling salesperson who,
starting from his/her home town, has to visit n−1 other towns via train, always
returning to his/her own home town after visiting each city. There are trains
between each town and the home town only on specific times/days, possibly
different for different towns, and the salesperson knows those times in advance.
Can the salesperson decide whether (s)he can visit all towns and return to his/her
own home town by a certain day?

Previous Work. Recent years have seen a growing interest in dynamic network
studies. Due to its vast applicability in many areas, the notion of temporal
graphs has been studied from different perspectives under various names such
as time-varying [1], evolving [10], dynamic [8,11,23,24]; for a recent attempt to
integrate existing models, concepts, and results from the distributed computing
perspective see the survey papers [7] and the references therein. Various temporal
analogues of known static graph concepts have also been studied in [2,3,5,13,
17,22].

Notably, temporal graph exploration has been studied before; Erlebach et
al. [12] define the problem of computing a foremost exploration of all vertices in
a temporal graph (Texp), without the requirement of returning to the starting
vertex. They show that it is NP-hard to approximate Texp with ratio O(n1−ε)
for any ε > 0, and give explicit construction of graphs that need Θ(n2) steps for
Texp. They also consider special classes of underlying graphs, such as the grid, as
well as the case of random temporal graphs where edges appear in every step with
independent probabilities. Michail and Spirakis [18] study a temporal analogue
of TSP(1,2) where the objective is to explore the vertices of a complete directed
temporal graph with edge weights from {1, 2} with the minimum total cost.
Ilcinkas et al. [14] study the exploration of constantly connected dynamic graphs
on an underlying cactus graph. Bodlaender and van der Zanden [6] show that
exploring temporal graphs of small pathwidth is NP-complete; they start from
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the problem that we define in this paper1, which we prove is NP-complete, and
give a reduction to the problem of exploring temporal graphs of small pathwidth.

We focus here on the exploration of temporal stars, inspired by the Travel-
ing Salesperson Problem (TSP) where the salesperson returns to his/her
base after visiting every city. TSP is one of the most well-known combinatorial
optimization problems, which still poses great challenges despite having been
intensively studied for more than sixty years.

The Model and Definitions. It is generally accepted to describe a network
topology using a graph, the vertices and edges of which represent the communi-
cating entities and the communication opportunities between them, respectively.
Unless otherwise stated, we denote by n and m the number of vertices and
edges of the graph, respectively. We consider graphs whose edge availabilities
are described by sets of positive integers (labels), one set per edge.

Definition 1 (Temporal Graph). Let G = (V,E) be a graph. A temporal
graph on G is a pair (G,L), where L : E → 2N is a time-labeling function,
called a labeling of G, which assigns to every edge of G a set of discrete-time
labels. The labels of an edge are the discrete time instances (“days”) at which it
is available.

More specifically, we focus on temporal graphs whose underlying graph is an
undirected star, i.e. a connected graph of m = n−1 edges which has n−1 leaves,
i.e. vertices of degree 1.

Definition 2 (Temporal Star). A temporal star is a temporal graph (Gs, L)
on a star graph Gs = (V,E). Henceforth, we denote by c the center of Gs, i.e. the
vertex of degree n − 1.

Definition 3 (Time edge). Let e = {u, v} be an edge of the underlying graph
of a temporal graph and consider a label l ∈ L(e). The ordered triplet (u, v, l) is
called time edge.2

A basic assumption that we follow here is that when a message or an entity
passes through an available link at time (day) t, then it can pass through a
subsequent link only at some time (day) t′ > t and only at a time at which that
link is available.

Definition 4 (Journey). A temporal path or journey j from a vertex u to a
vertex v ((u, v)-journey) is a sequence of time edges (u, u1, l1), (u1, u2, l2), . . .,
(uk−1, v, lk), such that li < li+1, for each 1 ≤ i ≤ k − 1. We call the last time
label, lk, arrival time of the journey.

1 A preliminary version of this paper appeared publicly in ArXiv on 12th May 2018
(https://arxiv.org/pdf/1805.04713.pdf).

2 Note that an undirected edge e = {u, v} is associated with 2 · |L(e)| time edges,
namely both (u, v, l) and (v, u, l) for every l ∈ L(e).

https://arxiv.org/pdf/1805.04713.pdf
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Given a temporal star (Gs, L), on the one hand we investigate the complexity
of deciding whether Gs is explorable: we say that (Gs, L) is explorable if there
is a journey starting and ending at the center of Gs that visits every node of
Gs. Equivalently, we say that there is an exploration that visits every node, and
explores every edge, of Gs; an edge of Gs is explored by crossing it from the
center to the leaf at some time t and then from the leaf to the center at some
time t′ > t. On the other hand, we investigate the complexity of computing
an exploration schedule that explores the greatest number of edges. A (partial)
exploration of a temporal star is a journey J that starts and ends at the center
of Gs which visits some nodes of Gs; its size |J | is the number of nodes of Gs

that are visited by J , where the centre is only accounted for once even if it is
visited multiple times. We, therefore, identify the following problems:

StarExp(k)

Input: A temporal star (Gs, L) such that every edge has at most k labels.
Question: Is (Gs, L) explorable?

MaxStarExp(k)

Input: A temporal star (Gs, L) such that every edge has at most k labels.
Output: A (partial) exploration of (Gs, L) of maximum size.

Note that the case where one edge e of the input temporal star has only
one label is degenerate. Indeed, in the decision variant (i.e. StarExp(k)) we
can immediately conclude that (Gs, L) is a no-instance as this edge cannot be
explored; similarly, in the maximization version (i.e. MaxStarExp(k)) we can
just ignore edge e for the same reason. We say that we “enter” an edge e = {c, v}
of (Gs, L) when we cross the edge from c to v at a time on which the edge is avail-
able. We say that we “exit” e when we cross it from v to c at a time on which the
edge is available. Without loss of generality we can assume that, in an exploration
of (Gs, L), the entry to any edge e is followed by the exit from e at the earliest
possible time (after the entry). That is, if the labels of an edge e are l1, l2, . . . , lk
and we enter e at time li, we exit at time li+1. The reason is that, waiting at a leaf
(instead of exiting as soon as possible) does not help in exploring more edges; we
are better off returning to the center c as soon as possible.

In order to solve the problem of exploring as many edges of a temporal star
as possible, we define here the Job Interval Selection Problem where each
job has at most k associated intervals (JISP(k)), k ≥ 1.

Job Interval Selection Problem - JISP(k) [21]

Input: n jobs, each described as a set of at most k intervals on the real line.
Output: A schedule that executes as many jobs as possible; to execute a job
one needs to select one interval associated with the job.

Notice that every edge e with labels l1, l2, . . . , lk can be seen as a job to
be scheduled where the corresponding intervals are [l1, l2], [l2, l3], . . . , [lk−1, lk],
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hence MaxStarExp(k) is a special case of JISP(k − 1); in the general
JISP(k − 1), the intervals associated with each job are not necessarily consec-
utive. JISP(k) is a well-studied problem in the Scheduling community, with
several known complexity results. In particular, Spieksma [21] showed a 2-
approximation for the problem, later improved to a 1.582-approximation by
Chuzhoy et al. [9]. This immediately implies a 1.582-approximation algorithm
for MaxStarExp(k); we use the latter to conclude on the APX-completeness3

of MaxStarExp(k). JISP(k) was also shown [21] to be APX-hard for any k ≥ 2,
but since MaxStarExp(k) is a special case of JISP(k−1), its hardness does not
follow from the already known results. In fact, we show that MaxStarExp(3)-
which is a special case of JISP(2)- is polynomially solvable.

Our Contribution. In this paper we do a systematic study of the com-
putational complexity landscape of the temporal star exploration problems
StarExp(k) and MaxStarExp(k), depending on the maximum number k of
labels allowed per edge. As a warm-up, we first prove in Sect. 2 that the maxi-
mization problem MaxStarExp(2) and MaxStarExp(3), i.e. when every edge
has at most three labels per edge, can be efficiently solved in O(n log n) time;
sorting the labels of the edges is the dominant part in the running time.

In Sect. 3 we prove that, for every k ≥ 6, the decision problem StarExp(k) is
NP-complete and, for every k ≥ 4, the maximization problem MaxStarExp(k)
is APX-hard, and thus it does not admit a Polynomial-Time Approximation
Scheme (PTAS), unless P= NP. These results are proved by reductions from
special cases of the satisfiability problem, namely 3SAT(3) and Max2SAT(3).
The APX-hardness result is complemented by a 1.582-approximation algorithm
for MaxStarExp(k) for any k, which concludes that MaxStarExp(k) is APX-
complete for k ≥ 4. This approximation algorithm carries over from an approx-
imation for the Job Interval Selection Problem [9], which we show is
generalization of MaxStarExp(k).

The table below summarizes the results presented in this paper regarding
the complexity of the two studied problems, shows the clear dichotomy in the
complexity of MaxStarExp(k), as well as the open problem regarding the com-
plexity of StarExp(k) for k ∈ {4, 5}. The entry NP-c (resp. APX-c) denotes
NP-completeness (resp. APX-completeness). Where k = 1, any instance of either
problem is clearly a NO-instance, since one can explore no edge (i.e. by also
returning to the center) with a single label:

Maximum number of labels per edge

k = 1 k = 2 k = 3 k = 4 k = 5 k ≥ 6

StarExp(k) No O(n log n) O(n logn) ? ? NP-c

MaxStarExp(k) No O(n log n) O(n logn) APX-c APX-c APX-c

3 APX is the complexity class of optimization problems that allow constant-factor
approximation algorithms.
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2 Efficient Algorithm for k ≤ 3 Labels per Edge

In this section we show that, when every edge has two or three labels, a maximum
size exploration in (Gs, L) can be efficiently solved in O(n log n) time. Thus,
clearly, the decision variation of the problem, i.e. StarExp(2) and StarExp(3),
can also be solved within the same time bound. We give here the proof for k = 3
labels, which also covers the case of k = 2.

Theorem 1. MaxStarExp(3) can be solved in O(n log n) time.

Proof. We show that MaxStarExp(3) is reducible to the Interval Scheduling
Maximization Problem (ISMP).

Interval Scheduling Maximization Problem (ISMP)

Input: A set of intervals, each with a start and a finish time.
Output: Find a set of non-overlapping intervals of maximum size.

Given (Gs, L) we construct a set I of at most 2(n − 1) intervals as follows:
All edges of (Gs, L) with a single label can be ignored as they can not be

explored in any exploration of (Gs, L); for every edge e of (Gs, L) with labels
le < l′e we create a single closed time interval, [le, l′e]; for every edge e of (Gs, L)
with labels le < l′e < l′′e we create two closed time intervals, [le, l′e] and [l′e, l

′′
e ].

We may now compute a maximum size subset I ′ of I of non-conflicting (i.e.,
disjoint) time intervals, using the greedy algorithm that can find an optimal
solution for ISMP [16]. It suffices to observe that no two intervals associated
with the same edge will ever be selected in I ′, as any two such intervals are
non-disjoint; indeed, two intervals associated with the same edge e are of the
form [le, l′e] and [l′e, l

′′
e ], hence they overlap at the single time point l′e.

So a maximum-size set I ′ of non-overlapping intervals corresponds to a
maximum-size exploration of (Gs, L) (in fact, of the same size as the size of
I ′). Also, we may indeed solve StarExp(3) by checking whether |I ′| = n − 1 or
not. The above works in O(n log n) time [16]. ��

3 Hardness for k ≥ 4 Labels per Edge

In this section we show that, whenever k ≥ 6, StarExp(k) is NP-complete.
Furthermore, we show that MaxStarExp(k) is APX-hard for k ≥ 4. Thus,
in particular, MaxStarExp(k) does not admit a Polynomial-Time Approxi-
mation Scheme (PTAS), unless P = NP. In fact, due to a known polynomial-
time constant-factor approximation algorithm for JISP(k) [9], it follows that
MaxStarExp(k) is also APX-complete.

3.1 StarExp(k) is NP-complete for k ≥ 6 Labels per Edge

We prove our NP-completeness result through a reduction from a special case
of 3SAT, namely 3SAT(3), which is known to be NP-complete [19].
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3SAT(3)

Input: A boolean formula in CNF with variables x1, x2, . . . , xp and clauses
c1, c2, . . . , cq, such that each clause has at most 3 literals, and each variable
appears in at most 3 clauses.
Output: Decision on whether the formula is satisfiable.

Intuition and Overview of the Reduction: Given an instance F of 3SAT(3), we
shall create an instance (Gs, L) of StarExp(k) such that F is satisfiable if and
only if (Gs, L) is explorable. Henceforth, we denote by |τ(F )| the number of
clauses of F that are satisfied by a truth assignment τ of F . Without loss of
generality we make the following assumptions on F . Firstly, if a variable occurs
only with positive (resp. only with negative) literals, then we trivially set it to
true (resp. false) and remove the associated clauses. Furthermore, without loss
of generality, if a variable xi appears three times in F , we assume that it appears
once as a negative literal ¬xi and two times as a positive literal xi; otherwise we
rename the negation with a new variable. Similarly, if xi appears two times in
F , then it appears once as a negative literal ¬xi and once as a positive literal xi.

We introduce here the intuition behind the reduction. (Gs, L) will have one
edge corresponding to each clause of F , and three edges (one “primary” and two
“auxiliary” edges) corresponding to each variable of F . We shall assign labels
in pairs to those edges so that it is possible to explore an edge only by using
labels from the same pair to enter and exit the edge; for example, if an edge e
is assigned the pairs of labels l1, l2 and l3, l4, with l1 < l2 < l3 < l4, we shall
ensure that one cannot enter e with, say, label l2 and exit with, say, label l3. In
particular, for the “primary” edge corresponding to a variable xi we will assign
to it two pairs of labels, namely (αi−β, αi−β + γ) and (αi+β, αi+β + γ), for
some α, β, γ ∈ N. The first (entry, exit) pair corresponds to setting xi to false,
while the second pair corresponds to setting xi to true. We shall choose α, β, γ
so that the entry and exit from the edge using the first pair is not conflicting
with the entry and exit using the second pair.

Then, to any edge corresponding to a clause cj that contains xi unnegated
for the first time (resp. second time4), we shall assign an (entry, exit) pair of
labels (αi − δ, αi − δ + ε) (resp. (αi − δ′, αi − δ′ + ε′)), choosing δ, ε ∈ N (resp.
δ′, ε′ ∈ N) so that (αi − δ, αi − δ + ε) (resp. (αi − δ′, αi − δ′ + ε′)) is in conflict
with the (αi−β, αi−β +γ) pair of labels of the edge corresponding to xi, which
is associated with xi = false but not in conflict with the (αi + β, αi + β + γ)
pair. If xi is false in F then cj cannot be satisfied through xi so we should not
be able to explore a corresponding edge via a pair of labels associated with xi. If
cj contains xi negated, we shall assign to its corresponding edge an (entry, exit)
pair of labels (αi+ζ, αi+ζ +θ), choosing ζ, θ ∈ N so that the latter is in conflict
with the (αi+β, αi+β +γ) pair of labels of the edge corresponding to xi, which
is associated with xi = true but not in conflict with the (αi−β, αi−β +γ) pair.
4 We consider here the order c1, c2, . . . , cq of the clauses of C; we say that xi appears

unnegated for the first time in some clause cµ if xi �∈ cm, m < µ.
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If xi is true in F then cj cannot be satisfied through ¬xi so we should not be
able to explore a corresponding edge via a pair of labels associated with ¬xi.

Finally, for every variable xi we also introduce two additional “auxiliary”
edges: the first one will be assigned the pair of labels (αi, αi + ξ), ξ ∈ N, so that
it is not conflicting with any of the above pairs – the reason for introducing this
first auxiliary edge is to avoid entering and exiting an edge corresponding to
some variable xi using labels from different pairs. The second auxiliary edge for
variable xi will be assigned the pair of labels (αi + χ, αi + χ + ψ), χ, ψ ∈ N, so
that it is not conflicting with any of the above pairs – the reason for introducing
this edge is to avoid entering an edge that corresponds to some clause cj using a
label associated with some variable xi and exiting using a label associated with a
different variable xi′ . The reader is referred to Fig. 1 for an example construction,
where the specific choices of the constants α, β, γ, δ, ε, δ′, ε′, ζ, θ, ξ, χ, ψ are α =
50, β = 10, γ = 3, δ = 12, ε = 3, δ′ = 8, ε′ = 3, ζ = 8, θ = 3, ξ = 1, χ = 15, ψ = 1.

Fig. 1. The temporal star constructed for the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨
¬x3)∧ (¬x1 ∨x3). Setting x1 to true, x2 to true and x3 to true yields a satisfying truth
assignment whose corresponding exploration is indicated in (b), where the numbers in
the circles indicate the order over time of the exploration of each edge.

The following lemmas are needed for the NP-completeness proof (Theorem 2).

Lemma 1. There exists a (partial) exploration J of (Gs, L) of maximum size
which explores all 3p edges associated with the variables of F .

Lemma 2. There exists a truth assignment τ of F with |τ(F )| ≥ β if and only
if there exists a (partial) exploration J of (Gs, L) of size |J | ≥ 3p + β.

Theorem 2. StarExp(k) is NP-complete for every k ≥ 6.



On Temporally Connected Graphs of Small Cost 21

3.2 MaxStarExp(k) is APX-complete for k ≥ 4 Labels per Edge

It can be shown that the reduction of Sect. 3.1 linearly preserves approxima-
bility features; this would in turn prove that MaxStarExp(k) is APX-hard
for k ≥ 6, since MAX3SAT(3), i.e. the maximization version of 3SAT(3), is
APX-complete [4]. However, this leaves a gap in the complexity of the prob-
lem for k ∈ {4, 5}. To close this gap we instead give an L-reduction [20] from
the Max2SAT(3) problem, i.e. an approximation preserving reduction which
linearly preserves approximability features. Max2SAT(3) is known to be APX-
complete [20].

MAX2SAT(3)

Input: A boolean formula in CNF with variables x1, x2, . . . , xp and clauses
c1, c2, . . . , cq, such that each clause has at most 2 literals, and each variable
appears in at most 3 clauses.
Output: Maximum number of satisfiable clauses in the formula.

The reduction: Given an instance F of MAX2SAT(3) we shall create an instance
(Gs, L) of MaxStarExp(k) such that F has β satisfiable clauses if and only
if (Gs, L) has β + 3p explorable edges. As previously, we assume without loss
of generality that every variable appears once as a negative literal and once or
twice as a positive literal.

The reduction is the same as the one presented in Sect. 3.1, with the edges of
(Gs, L) being assigned the same labels as in the previous reduction to appropri-
ately introduce conflicts between exploration windows of edges. The only differ-
ence in the construction is that now we start from a 2-CNF formula F (instead
of a 3-CNF formula in Sect. 3.1). Thus every edge of (Gs, L) that corresponds
to a clause of F now receives four labels instead of six, i.e. two labels for every
literal that appears in the clause.

The following lemmas are needed for the APX-hardness proof (Theorem 3).

Lemma 3. There exists a (partial) exploration J of (Gs, L) of maximum size
which explores all 3p edges associated with the variables of F .

Lemma 4. There exists a truth assignment τ of F with |τ(F )| ≥ β if and only
if there exists a (partial) exploration J of (Gs, L) of size |J | ≥ 3p + β.

Theorem 3. MaxStarExp(k) is APX-hard, for k ≥ 4.

Proof. Denote by OPTMax2SAT(3)(F ) the greatest number of clauses that can
be simultaneously satisfied by a truth assignment of F . The proof is done by
an L-reduction [20] from the Max2SAT(3) problem, i.e. by an approximation
preserving reduction which linearly preserves approximability features. For such
a reduction, it suffices to provide a polynomial-time computable function g and
two constants γ, δ > 0 such that:

– OPTMaxStarExp((Gs, L)) ≤ γ ·OPTMax2SAT(3)(F ), for any boolean formula F ,
and
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– for any (partial) exploration J ′ of (Gs, L), g(J ′) is a truth assignment for F
and OPTMax2SAT(3)(F ) − |g(J ′)| ≤ δ(OPTMaxStarExp((Gs, L)) − |J ′|), where
|g(J ′)| is the number of clauses of F that are satisfied by g(J ′).

We will prove the first condition for γ = 13. Recall that p and q are the
numbers of variables and clauses of F , respectively. Note that a random truth
assignment satisfies each clause of F with probability at least 1

2 (if each clause
had exactly 2 literals, then it would be satisfied with probability 3

4 , but we have
to account also for single-literal clauses), and thus there exists an assignment
τ that satisfies at least q

2 clauses of F . Furthermore, since every clause has at
most 2 literals and every variable appears at least once, it follows that q ≥ p

2 .
Therefore OPTMax2SAT(3)(F ) ≥ q

2 ≥ p
4 , and thus p ≤ 4 ·OPTMax2SAT(3)(F ). Now

Lemma 4 implies that:

OPTMaxStarExp((Gs, L)) = 3p + OPTMAX2SAT (3)(F )
≤ 3 · 4 · OPTMAX2SAT (3)(F ) + OPTMAX2SAT (3)(F )
= 13 · OPTMax2SAT(3)(F )

To prove the second condition for δ = 1, consider an arbitrary partial explo-
ration J ′ of Gs(L) of maximum size. In the proof of Lemma4, we describe how
one can start from any such J ′ and construct in polynomial time a truth assign-
ment g(J ′) = τ that satisfies at least OPTMaxStarExp((Gs, L))− 3p clauses of F ,
i.e. |g(J ′)| = |τ(F )| ≥ |J ′| − 3p. Then:

OPTMax2SAT(3)(F ) − |g(J ′)| ≤ OPTMax2SAT(3)(F ) − |J ′| + 3p

= OPTMaxStarExp((Gs, L)) − 3p − |J ′| + 3p

= OPTMaxStarExp((Gs, L)) − |J ′|

This completes the proof of the theorem. ��
Corollary 1. MaxStarExp(k) is APX-complete, for k ≥ 4.

Now we prove a correlation between the inapproximability bounds for the
MaxStarExp(k) problem and Max2SAT(3), as a result of the L-reduction
presented in the proof of Theorem3. Note that, since Max2SAT(3) is APX-
hard [4], there exists a constant ε0 > 0 such that there exists no polynomial-time
constant-factor approximation algorithm for Max2SAT(3) with approximation
ratio greater than (1 − ε0), unless P = NP.

Theorem 4. Let ε0 > 0 be the constant such that, unless P=NP, there exists
no polynomial-time constant-factor approximation algorithm for Max2SAT(3)
with approximation ratio greater than (1 − ε0). Then, unless P=NP,
there exists no polynomial-time constant-factor approximation algorithm for
MaxStarExp(k) with approximation ratio greater than (1 − ε0

13 ).
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Proof. Let ε > 0 be a constant such that there exists a polynomial-time approxi-
mation algorithm A for MaxStarExp(k) with ratio (1−ε). Let F be an instance
of MAX2SAT(3) with p variables and q clauses. We construct the instance
(Gs, L) of MaxStarExp(k) corresponding to F , as described in the L-reduction
(see Theorem 3). Then we apply the approximation algorithm A to (Gs, L),
which returns a (partial) exploration J . Note that |J | ≥ (1−ε) ·OPTMaxStarExp.
We construct from J in polynomial time a truth assignment τ ; we denote by |τ |
the number of clauses in F that are satisfied by the truth assignment τ . It now
follows from the proof of Theorem3 that:

OPTMax2SAT(3)(F ) − |τ | ≤ OPTMaxStarExp((Gs, L)) − |J |
≤ 13ε · OPTMax2SAT(3)(F )

Therefore |τ | ≥ (1 − 13ε) · OPTMax2SAT(3)(F ). That is, using algorithm A, we
can devise a polynomial-time algorithm for MAX2SAT(3) with approximation
ratio (1− 13ε). Therefore, due to the assumptions of the theorem it follows that
ε ≥ ε0

13 , unless P = NP. This completes the proof of the theorem. ��
Note that we have fully characterized MaxStarExp(k) in terms of complex-

ity, for all values of k ∈ N. However, the reduction that shows APX-hardness
for MaxStarExp(k) cannot be employed to show NP-hardness of the decision
version StarExp(k), since the decision problem 2SAT is polynomially solvable.

Open Problem. What is the complexity of StarExp(k), for k ∈ {4, 5}?
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Abstract. A convex partition of a point set P in the plane is a planar
subdivision of the convex hull of P whose edges are segments with both
endpoints in P and such that all internal faces are empty convex poly-
gons. In the Minimum Convex Partition Problem (mcpp) one seeks to
find a convex partition with the least number of faces. The complexity
of the problem is still open and so far no computational tests have been
reported. In this paper, we formulate the mcpp as an integer program
that is used both to solve the problem exactly and to design heuristics.
Thorough experiments are conducted to compare these algorithms in
terms of solution quality and runtime, showing that the duality gap is
decidedly small and grows quite slowly with the instance size.

1 Introduction

Let P be a set of n points in the plane in general position, i.e., with no three
points being collinear. We say that a simple polygon is empty, w.r.t. P , if it
contains no points of P in its interior. Denote by H(P ) the convex hull of P .
A convex partition (or decomposition) of P is a planar subdivision of H(P ) into
non overlapping empty convex polygons whose vertices are the points of P . The
Minimum Convex Partition Problem (mcpp) asks to find a convex partition of
P minimizing the number of faces. These concepts are illustrated in Fig. 1.

A practical application of the mcpp in the area of network design is described
in [7]. The goal is to form a communication network connecting the points of
P . When the edges used as links in the network form a convex partition of P ,
a simple randomized algorithm can be used for routing packages [2]. Hence, one
way to build a low-cost network, i.e., one with few links that still enables the
application of that routing algorithm, is to solve the mcpp for P .

Fig. 1. (a) Point set P ; (b) H(P ); (c) minimal and (d) optimal partition.
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Besides the actual application outlined above, the mcpp lies in the broader
context of polygon decomposition, an important topic of study in computational
geometry [6]. A frequently used approach for designing divide-and-conquer algo-
rithms for geometric problems for general polygons is to decompose these into
simpler component parts, solve the original problem on each component using
a specialized algorithm and then combine the partial solutions. Convex poly-
gons are often the best choice for the role of the smaller components. This is, in
fact, a reason why triangulations of sets of points, and of polygons in general,
have been so extensively studied and became a central problem in computational
geometry. Since triangulations are special cases of convex partitions, a deeper
understanding of the mcpp gains importance.

Literature Overview. To the best of our knowledge, the complexity of the
mcpp remains unknown. Moreover, even though some articles describe non-
polynomial algorithms to solve the problem, no implementations or results were
found that make an empirical assessment of the efficiency of those algorithms.

Fevens et al. [3] proposed an exact algorithm for the mcpp using dynamic
programming. If h denotes the onion depth of P , i.e. the number of nested convex
hulls that need to be removed before P becomes empty [8], the complexity of
this algorithm can be expressed as O(n3h+3) and is, therefore, exponential in
h, which can actually be as large as Θ(n). Spillner [10] designed another exact
algorithm whose complexity is O(2kk4n3 + n log n), where k = |I(P )| is the
number of points of P in the interior of H(P ). Moreover, Spillner et al. [7]
present a 30

11 -factor approximation algorithm for the mcpp.
Other papers investigate the mcpp in an attempt to find theoretical bounds

for the optimal value. Let Inst(n) be the set of all mcpp instances of size
n. Denoting the optimal value of an instance i ∈ Inst(n) by OPT(i), define
F (n) = maxi∈Inst(n) OPT(i), that is, F (n) is the maximum among all optima
for instances of size n. The best known lower bound for F (n) is 12

11n−2 as shown
in [4], for n ≥ 4, whereas the best upper bound proven to date is � 7(n−3)

5 �, see [5].
It is shown in [9] that any minimal convex partition has at most 3(n−2)

2 faces,
which also serves as an upper bound on F (n).

Our Contribution. In this paper, we introduce the first known integer linear
programming formulation of the mcpp. Through extensive experimentation, we
show that the solutions of the linear relaxation of this model provide invaluable
information on which segments are likely to be in an optimal solution of the prob-
lem. From this observation, we derive a powerful heuristic for the mcpp that is
capable of producing high quality solutions for instances with up to one hundred
points in no more than a few minutes of computation on a currently standard
machine. We hope that the present work will spearhead efforts of researchers
in the field to publish computational evaluation of algorithms for the mcpp. To
this end, all instances we used and their solutions, are made available [1].

Organization of the Text. The next sections of the paper are organized as
follows. Section 2 describes the computational environment in which our tests
were carried out. Section 3 presents an integer programming formulation for the
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mcpp and reports on experiments with this model. Section 4 is devoted to the
discussion of the heuristics developed in this work, whereas in Sect. 5 we analyze
the results yielded by these algorithms. Section 6 contains a few conclusions and
points out future research directions.

2 Experimental Environment

In the following sections, we propose exact and heuristic algorithms for the mcpp
and report on their experimental evaluation. Since observations made from initial
empirical results had an impact on the design of these algorithms, it is necessary
to first introduce the computational environment where tests were carried out
and to describe how the benchmark instances were created.

Software and Hardware. All experiments were run on an Intel Xeon E5-2420
at 1.9 GHz, and 32 GB of RAM running Ubuntu 14.04. The algorithms were
implement in C++ 11 and compiled with GCC 7.2.0. Geometrical structures
and procedure were implement using CGAL 4.2-5, library Gmpq was used to
represent rational numbers exactly. To solve integer linear programs and relax-
ations, we used CPLEX 12.8.0, in single-thread mode, with default configura-
tions, except for a time limit of 1200 s.

Instances. Instances consist of points whose x and y coordinates were ran-
domly generated in the interval [0, 1] according to a uniform distribution. For
an instance of size n, points were created in sequence until n points in gen-
eral position were included. To that end, when a newly spawned point resulted
collinear with a previously generated pair the former was rejected, otherwise it
was accepted.

Two sets of instances were generated, with different instance sizes. For each
size, 30 instances were created. The set T1 is comprised of instances of sizes 30,
32, 34, . . . , 50. For each size, we chose the first 30 found to be optimally solvable
within 20 min. The second set, T2, simply contains instances of sizes 55, 60, 65,
. . . , 110 for which optimal solutions are still not known.

3 A Mathematical Model for the mcpp

In this section, we propose an Integer Linear Programming (ilp) formulation for
the mcpp and discuss its correctness and performance on the randomly generated
instances described in Sect. 2.

Model Description. Before describing the model itself, we need to introduce
some terminology and notation. Recall that P denotes a set of n points in general
position. The set of internal points of P , denoted I(P ), is the subset of P formed
by the points that are not vertices of the convex hull of P , H(P ). Let S denote
the set of Θ(n2) line segments whose endpoints belong to P . Given a pair of
segments ij, k� ∈ S, we say that ij and k� cross when ij ∩ k� \ {i, j, k, �} �= ∅.
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Consider the complete (geometric) undirected graph G = (P,E(P )), induced
by P , where E(P ) = {{i, j} | ij ∈ S}. We will refer to an edge {i, j} of E(P )
and its corresponding segment ij in S interchangeably. We will also need to
allude to the set of pairs of crossing edges (segments), denoted SC . These pairs,
(ij, k�) | ij and k� cross, may easily be identified in O(n4) time using simple
geometric procedures. Similarly, a complete directed graph

−→
G = (P,A(P )) can

be defined, whose arcs correspond to the segments of S with either one of the
two possible orientations: (i, j) ∈ A(P ) iff ij ∈ S.

A few additional terminologies are needed before we can present the model
and argue about its correctness. Given two points a, b in the plane, we denote
by CCW(ab) (CW(ab)) the set of points c in the plane such that the triple abc
is positively (negatively) oriented, i.e., 0° < �abc < 180° ( −180° < �abc < 0°).
Let a be a point in the plane and L be a list of non collinear segments, all sharing
a as one of their endpoints. Assume that |L| ≥ 2 and that its segments are given
in a clockwise circular order around a. Point a is called reflex with respect to L
if there are two consecutive segments in L, say ba and ca, so that c ∈ CW(ba).
Notice that this is equivalent to say that CCW(ac) contains no endpoints of
segments in L. With respect to L, when a is not reflex, we call it convex.

Lastly, to each edge {i, j} ∈ E(P ), we associate a binary variable xij whose
value is one iff {i, j} is in the solution. In the formulation below, the unique
variable associated to the segment ij is naturally referred to as xij and as xji.
Accordingly, the proposed ilp model, referred to as basic, reads:

z = min
∑

{i,j}∈E(P )

xij (1a)

s.t. xij + xk� ≤ 1 ∀{{i, j}, {k, �}} ∈ Sc (1b)
xij = 1 ∀{i, j} ∈ H(P ) (1c)

∑

k∈CCW(ij)∩P

xik ≥ 1 ∀(i, j) ∈ A(P ), i ∈ I(P ) (1d)

∑

j∈P

xij ≥ 3 ∀i ∈ I(P ) (1e)

xij ∈ {0, 1} ∀{i, j} ∈ E(P ) (1f)

The objective function (1a) can be expressed in terms of the number of
edges in a solution because Euler’s formula implies that minimizing the number
of edges in a connected planar graph (subdivision) is equivalent to minimizing
the number of faces of any planar embedding of that graph. That is, if f , e and
v denote, respectively, the number of faces, edges and vertices of an embedding
of a planar graph, then f = e − v + 2. Since we seek to build a planar connected
subdivision and v = |P | is given, minimizing e is equivalent to minimizing f .

Constraints (1b) guarantee planarity since they prevent that both edges of a
crossing pair be included in a solution. Constraints (1c) establish that the edges
of the convex hull of P are included in the solution. Constraints (1d) ensure that
any point i in I(P ) is convex with respect to the set of segments that are in the
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Fig. 2. An instance of the mcpp whose solution of the relax model without constraints
(1e) has a vertex p with fractional degree 2.5. Dashed edges have value 0.5 and solid
edges have value 1.

solution. As shown in Proposition 1, the degree constraints (1e) are redundant
when we consider integer solutions and constraints (1d). However, we opted to
keep them in the formulation because we verified that they improve the value of
the relaxation. Figure 2 depicts an instance whose solution of the relaxation of
the basic model without constraints (1e) has an internal point with fractional
degree less than three. Finally, constraints (1f) require all variables to be binary.

Proposition 1. Let xL be the incidence vector of a subset L of segments in S
satisfying all constraints (1d). Then, xL also satisfies constraints (1e).

Proof. Denote by G(L) the subgraph induced by L in G. Due to constraints (1d),
the degree in G(L) of any point i ∈ I(P ) is at least one, meaning that, at the
minimum, there is one segment ia in L for some a ∈ P . Now, taking j = a in
constraint (1d), we obtain that there must be another point b in CCW(ia) ∩ P
for which ib is also in L. Hence, i has degree at least two. By construction, a
must be in CW(ib). Together with constraint (1d) for (i, b), this implies that
there must be a third point c in CCW(ib) ∩ P so that the segment ic is in L. �

Theorem 1. The basic model is a correct formulation for the mcpp.

Proof. First, we show that the incidence vector xL of any set L of segments in S
that corresponds to a feasible solution of the mcpp satisfies all the constraints of
the basic model. By definition, xL is a binary vector and hence, constraint (1f)
holds. The feasibility of L implies planarity, so xL satisfies all constraints (1b).
Besides, as the segments in the convex hull of P are all present in any feasible
solution, constraints (1c) are also verified by xL. Proposition 1 implies the fulfill-
ment of constraints (1e). It remains to prove that xL satisfies constraints (1d) as
well. Let Li be the clockwise ordered subset of segments of L that are incident to
i ∈ I(P ). The feasibility of L requires i to be convex with respect to Li, or else i
would be a reflex vertex of a face in the planar subdivision corresponding to L,
contradicting the hypothesis that the set is a feasible solution for the mcpp. As a
consequence, for any direction −→u , the set CCW(i(i + −→u ))1 contains at least one
endpoint of a segment in Li. Hence, for any (i, j) ∈ A(P ), at least one variable
xL

ik in the summation on the left of constraint (1d) has value one, ensuring that
the inequality is satisfied by xL.
1 Here, (i + −→u ) denotes any point obtained by a translation of i in the direction −→u .
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We now focus on the proof that the set L associated to any incidence vector
xL satisfying the linear system (1b)–(1f) is a convex partition of P . Let G(L)
denote the subgraph of G induced by L. Because of (1b), L is planar and, due
to (1c), it contains all the segments in H(P ). From Proposition 1, the degree of
any point i ∈ I(P ) in G(L) is at least three. For Li defined as before, we claim
that i is convex with respect to Li. To see this, suppose by contradiction that i
is reflex. So, w.l.o.g, there is a segment ia in Li such that, for any b with ib ∈ Li,
b is in CW(ia). This implies that there is no k ∈ CCW(ia) ∩ P so that ik is in
L. Consequently, xL does not satisfy constraint (1d) for (i, a), contradicting the
feasibility of xL. We next show that G(L) is connected.

By contradiction, suppose that G(L) has two or more connected components.
Since L contains the segments in H(P ), the points in at least one of these
connected components must all be internal. Let i be the rightmost point in this
component. Since i is not connected to any point to its right and has degree at
least three, i must be reflex relative to L. But then, constraint (1d) for (i, j) is
violated by xL, where ij is the first segment visited when Li is traversed starting
from a vertical line that goes through i.

On the other hand, we can also prove that G(L) contains no articulation
points (and hence, no bridges) by applying arguments similar to those employed
above. It then follows that each segment in L\H(P ) is incident to exactly two
(distinct) faces of the planar subdivision defined by L and that all faces in this
subdivision are empty polygons. Moreover, as all points in I(P ) are convex w.r.t.
L, these polygons are convex. The minimization condition is ensured by (1a). �

Empirical Evaluation. We now describe the empirical evaluation of the basic
model for the benchmark set T1. Recall that to construct the 330 instances
in T1, we sought to have only instances for which an optimal solution could
be found. To achieve that, a sequence of instances was generated for each of
the 11 intended sizes and we attempted to solve them to optimality within the
time limit of 20 min of computation. Those instances for which this process was
successful were kept and the failed ones were discarded and replaced.

As a form of probing the space of possible instances in regard to how much
harder it gets, as sizes increase, for finding instances that are solvable within our
time limit, consider Fig. 3a. It shows how many instances had to be generated
until a set of 30 instances could be found that satisfied our criteria. One can see
that the first 30 instances of sizes between 30 and 42 were all solvable. Differently,
from size 44 onwards, some instances timed out and had to be replaced. Clearly,
solvable instances within our time frame become rarer as the size increases.

One of the major drawbacks for the performance of the basic model is the
huge number of crossing constraints (1b), which is O(n4). For instances with 100
points, the formulation is too big even to be loaded into memory. A conceivable
approach in this case is to implement a branch-and-cut algorithm to compute
the basic model where the crossing constraints are added as they are needed.
Initially, no constraints (1b) are included in the model. The processing of a node
in the enumeration tree involves the execution a cutting-plane algorithm that is
composed of the following steps. In the first one, the current linear relaxation is
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Fig. 3. (a) Number of instances generated until 30 were solved exactly, and
(b) cardinality of the support of x�, as functions of the instance size.

computed. Then, a separation routine is run that checks for crossing constraints
that are violated by the optimal solution. The latter can be done by inspection in
O(n4) time and, if violated constraints are found, they are added to the current
relaxation and the previous steps are repeated; if not, the processing of the node
halts and branching takes place provided that the current solution is not integral.

Having implemented and tested this algorithm, we noticed that the computa-
tion of the linear relaxation via the cutting-plane algorithm was faster than solv-
ing the complete relaxed model. This proved helpful for developing our heuristics.
However, considering the imposed time limit and the size of the tested instances,
the branch-and-cut algorithm as a whole was slower than the standard branch-
and-bound algorithm used by cplex when applied to the full model.

The difficulty in computing optimal solutions motivated us to design heuris-
tics for the mcpp. The starting point for the development of such algorithms
came from observations on the solutions of the relaxation of the basic model.

Given a vector y ∈ R
|E(P )|, the support of y is the set of edges of E(P ) for

which the corresponding variables have positive values in y. Now, let relax be
the linear relaxation of the basic model, x� an optimal solution of relax and
E>0(x�) the support of x�. Similarly, let E=1(x�) be the subset of edges of E(P )
corresponding to the variables of value one in x�.

With these definitions, we are ready to analyze the quality of optimal solu-
tions of the linear relaxation of the basic model computed by cplex. We con-
sider the support of x� to be good if it is small-sized and there exists an optimal
(integer) solution of basic whose support intersects E>0(x�) for a large number
of edges. In that vein, Fig. 3b shows the average number of edges in E>0(x�) for
instances in the set T1. Notice that this value grows linearly in n, even though
there are Θ(n2) edges in E(P ). Since any convex partition of P has Ω(n) edges,
E>0(x�) is indeed small-sized.

To estimate the quality of the support of the solutions found by cplex,
we modify the basic model to look for an optimal solution with the largest
intersection with E>0(x�). To achieve this, the weights of the variables in the
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Fig. 4. Ratio between the minimum number of (a) zeros in x� that changed to ones
in an optimal solution of value d0; (b) ones in x� that changed to zeros in an optimal
solution of value d1, and the optimum (z∗

E(P )) of the mcpp.

objective function are changed. A null weight is assigned to edges in E>0(x�)
while a weight of one is assigned to all remaining variables. To ascertain that
the solution found is optimal for the mcpp, we add the following constraint:∑

e∈E(P ) xe = z∗
E(P ), where z∗

E(P ) is the number of edges in a minimum convex
partition of P . Objectively, we seek an optimal solution having as few edges not
in E>0(x�) as possible. Let d0(P ) be the optimum of the modified model.

Figure 4a shows the ratio between d0(P ) and z∗
E(P ) obtained for each size

for the instances in T1. Note that this value is quite small, with an average of
less than 10%. This suggests that the support of x� contains most of the edges
present in some optimal solution.

Another important observation for the development of heuristics for the mcpp
concerns the number of edges in E=1(x�) that do not appear in an optimal solu-
tion. To assess this quantity, we modify the basic model again but this time to
find a minimum convex partition of P that uses as many ones from x� as pos-
sible. As before, we add the constraint

∑
e∈E(P ) xe = z∗

E(P ) to ensure that the
solution found is an optimal solution for the mcpp. Also, we alter the objective
function by replacing it with |E=1(x�)|−∑

e∈E=1(x�) xe. This function computes
the number of variables that have value one in x� but not in the solution of the
new model. Hence, minimizing its value is tantamount to obtaining an optimal
convex partition with as many edges in E=1(x�) as possible.

Now, let d1(P ) be the optimal value of the latter model. Figure 4b displays
the ratio between d1(P ) and z∗

E(P ) obtained for each size for the instances in
T1. As can be seen, the ratios are minute, meaning that a very small fraction of
the edges in E=1(x�) are not present in some minimum convex partition.

Inspired by the two previous remarks, we decided to develop heuristics for
the mcpp based on the optimal solutions of the relax model. Accordingly, we
explored such solutions prioritizing the use of edges in their support, noticeably
those at value one. The next section explains how this is done.
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4 Heuristics

We now describe our proposed heuristics for the mcpp. The general framework
of the heuristics is summarized by the following steps:

Step 1: Solve the relax model and let x� be the optimal solution found;
Step 2: Using x�, build a subset B of E(P ) that induces at least one convex
partition of P and, for the sake of efficiency, having O(n) crossings;
Step 3: Find a smallest convex partition Sh of P in B and return this solu-
tion. From the discussion in the previous section, in Step 2 we try to use
the information conveyed by x� to select edges that have a high probability
of belonging to a minimum convex partition. We devise different procedures
to construct the set B containing these edges, which results in the heuristics
that are detailed below. The main strategy here is to pack B with more edges
than are really needed to obtain a convex partition of P and then, in Step 3
to select among them a subset of minimum size that is a feasible solution for
the mcpp.

Steps 1 and 3 are addressed in the same way in all heuristics developed in
this work. Step 1 corresponds to solving the relax model, in our case using
cplex, to obtain x�. As for Step 3, Sh is computed by solving a restricted
version of the basic model where the variables xij for (i, j) not in B are removed
from the model (equivalently, one could set them to zero a priori). It only remains
to decide how the set B is to be built in Step 2. Alternatives are proposed below
to accomplish this task giving rise to four distinct heuristics.

The Greedy Heuristic. In this heuristic, the set B in Step 2 is constructed as
follows. Initially, B is empty and the edges in E(P ) are organized in a sorted list
σ in non increasing order of their corresponding value in x�. Ties are broken by
the number of times the edge crosses the support of the relaxation; edges with less
crossings appear earlier in σ. Then, a triangulation of P is constructed iteratively
in a greedy fashion. At each iteration, the next edge e in σ is considered. If it does
not cross any of the edges already in B, the set is updated to B ∪{e}; otherwise,
B remains unchanged. Clearly, the greedy strategy prioritizes the edges in the
support of x�, which is in consonance with the results seen in Sect. 3. In the end,
since all edges in E(P ) have been considered, B must determine a triangulation
of P . Thus, the basic model relative to B computed in Step 3 has no constraints
of the form (1b). In the experiments reported at the end of this section, it is
shown that the computation of this restricted version of the basic model does
not compromise the efficiency of the Greedy heuristic. In fact, the algorithm
turned out to be remarkably fast.

The MaxSup Heuristic. The previous heuristic constructs B as the set of
edges of a greedy triangulation of P by favoring edges in the support of x� which,
as seen, are more likely to be in a minimum convex partition. In a similar mode,
the MaxSup heuristic provides an alternative way for obtaining B. The set is
initialized with a convex partition of P having the largest possible intersection
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with the support of x�. Next, edges are added to B in a greedy fashion until a
triangulation is formed whose associated basic model is computed in Step 3.

The difficulty with this approach lies on obtaining a convex partition of P
that maximizes the number of edges that are in the support of x�. This can be
accomplished by modifying the costs of the variables in the objective function
of the basic model and changing the problem into one of maximization. In the
new formulation, the costs of the variables associated to edges in the support of
x� are set to one and all others to zero. Besides, variables related to edges in
E=1(x�) are fixed to one. Since this ilp has fewer variables with positive costs,
in practice, it can be computed faster than the original model.

Adding Flips to a Triangulation. In an attempt to improve the results from
the heuristics even further, we decided to forgo the planarity requirements for B
in Step 2. By this strategy, we expect to increase the search space in Step 3,
potentially leading to better solutions. Nonetheless, some of the constraints (1b)
will have to be brought back into the model in Step 3, which could severely
impact its runtime. To avert this, we strive to keep its size linear in n.

With that intent in mind, assume that initially B determines a triangulation
of P . We say that an edge e ∈ B\H(P ) admits a flip if the two triangles incident
to e form a convex quadrilateral. If e admits a flip, its flip edge fe, which is not
in B, corresponds to the other diagonal of this quadrilateral. Clearly, each edge
in B has at most one flip edge and, hence, there are O(n) flip edges in total.
Let F (B) be the set of flip edges of the edges in B (that admit one). Evidently,
B ∪ F (B) has O(n) edges and the total number of pairs of edges in this set
that cross each other is also O(n). Thus, in Step 2, if B is initialized as a
triangulation of P and is later extended with its flip edges, in Step 3 we have to
solve a shorter version of the basic model with O(n) variables and constraints.

Notice that interchanging an edge of a triangulation and its flip edge gives
us an alternative triangulation. Therefore, one can think of the effect of Step 3
when B is replaced with B ∪ F (B) as the computation of the smallest convex
partition that can be obtained from a triangulation generated from B by a
sequence of flips involving the edges of B ∪ F (B). Observe that this amounts to
a considerable growth in the search space when compared to the use of a single
triangulation. Of course, this is only worthwhile when the computing time does
not increase too much while the solution quality improves. As we shall see later,
the expected benefit is confirmed in practice.

Motivated by the preceding discussion, we created one new heuristic from
each of the previous ones by aggregating flip edges. The enhanced version of
Greedy (MaxSup) using flip edges is called GreedyF (MaxSupF).

5 Computational Results

We now assess the results from the four heuristics discussed above comparing
them in regard to solution quality and running time. Firstly, we analyze the
performance of the heuristics for the instances with known optimum (T1). The
first row of the table below displays statistics on the mean values, per instance
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size, of the average relative gap given by 100(zh
E − z∗

E)/z∗
E , where z∗

E and zh
E are

the cost of an optimal and of the heuristic solution, respectively. The minimum,
average, standard deviation and maximum values are given for each heuristic.

The improvements caused by considering flips are evident. The version of
each heuristic including flips reduces the gap by more than half when compared
to their original counterparts. When flips are taken into consideration, no gap
exceeds 8%. As expected, MaxSup has a better overall performance relative to
Greedy. The second row of the table above shows the percentage of instances
for which the optimum was found in each case. Again, the benefit of including
flips and the superiority of MaxSup over Greedy are clear. In fact, there was
no instance where any other heuristic found a better solution than MaxSupF.

The mean values of the average ratio, per instance size, between the time
spent by each heuristic and the basic model is given in the next table. On
average, the additional computational cost incurred by considering flips is quite
small both for Greedy and for MaxSup. Together with the enhancement in
solution quality this favors even more the latter strategy. Although both heuris-
tics took just a fraction of the time spent by the basic model, one can see
that the Greedy versions used about half the time needed by their MaxSup
equivalents. Also, as revealed by the maximum values, the time required by the
MaxSup heuristics can surpass that of the basic model. This occurs because
these heuristics compute two ilps, and the instances in T1 are small.

Next, the heuristics are evaluated for the instances in T2. While the optimum
in this case is unknown, we observed that in all instances of T2 the best heuristic
solution was again found by MaxSupF. Therefore, for comparison purposes,
MaxSupF is used as reference, playing a role similar to that of the basic model
in the analysis of the instances in T1. The table below exhibits, per instance size,
the mean of the average gap between each heuristic and MaxSupF. As before,
the minimum, average, standard deviation and maximum values are given.

The same pattern perceived for T1 is observed here with GreedyF performing
slightly worse than MaxSupF, while the versions with flips outstrip by far their
original counterparts. Mean solving times relative to MaxSupF for all heuristics
are shown in the next table. Once again, we observe the insubstantial impact of
the inclusion of flips in the running time of the algorithms. The fact that the
MaxSup versions are almost four times slower on average than their Greedy
equivalents is remarkable. This is due to the fact that the computation of the
additional ilp in MaxSup to find the triangulation with the largest intersection
with x� consumes too much time as the instance size grows.
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Fig. 5. (a) Average number of edges in the solution; (b) Runtime (seconds)

From the previous discussions, we are left with two competitive heuris-
tics: GreedyF and MaxSupF. In Fig. 5a, we compare the solutions found
by MaxSupF and GreedyF with the dual bound given by the relax model
and the optimal solution, when available. We also extrapolate the partial aver-
age function corresponding to the optimal solution for the instances with sizes
equal to those in T2 and, as expected, the extrapolation corresponds to a linear
function since the optimum of the mcpp for a point set P is in Θ(|P |). The graph
reveals that the quality of the heuristic solutions deteriorates quite slowly as the
instance sizes increase. In particular, the distances between the values of the
MaxSupF and GreedyF solutions and between the dual bound and the (esti-
mated) optimum seem to grow at no more than a constant rate, as the instance
sizes get larger. With this in mind, one can estimate the error incurred by the
algorithm when executed on an instance of a given size.

Similarly, we analyze the total time spend by MaxSupF and GreedyF
in Fig. 5b, comparing them to the total time to solve the model and to find
optimal solutions for the instances in T1. We notice an erratic behavior for the
basic model at around size 45. This correlates to the difficulty of finding harder
instances that are still solvable to optimality within our preset time limit above
size 42, as shown in Fig. 3a. This suggests that the estimating curve should
actually grow even faster if no instances had to be discarded.

The MaxSupF heuristic eventually becomes less efficient since it involves the
solution of two ilps. However, it still remains much faster than computing a true
optimum. Thus, if more running time is allowed, and solution quality is a prime
concern, MaxSup should be considered an effective alternative when solving
the mcpp. On the other hand, we can see that, on average, running relax and
GreedyF are both very fast. In fact, at the expense of a small loss in quality, the
Greedy approach takes less than one minute, on average, to find solutions for
random instances of up to one hundred points. Thus, it is also a viable option to
obtain high quality solutions quickly. Furthermore, both heuristics endorse that
using the support of linear relaxations to guide heuristics is a powerful strategy.
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6 Final Remarks

In this paper, we investigated the problem of finding a minimum convex partition
of a set of points. An ilp model was developed that enabled the computation of
exact solutions for small-sized instances. The linear relaxation of this formulation
served as a guide for the design of heuristics that lead to demonstrably high
quality solutions within reasonable runtimes. To the best of our knowledge, both
the ilp modeling and the extensive computational experimentation with mcpp
algorithms done here are novelties on the study of this problem and may lead
to further practical developments. Moreover, research directions currently being
pursued include the development of new mathematical models for this problem
aiming at solving larger instances to optimality.
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(FAPESP) #2014/12236-1, #2017/12523-9, #2018/14883-5.

References

1. Barboza, A.S., de Souza, C.C., de Rezende, P.J.: Minimum Convex Partition of
Point Sets - Benchmark Instances and Solutions (2018). www.ic.unicamp.br/∼cid/
Problem-instances/Convex-Partition

2. Bose, P., et al.: Online routing in convex subdivisions. Int. J. Comput. Geom. Appl.
12(4), 283–296 (2002)

3. Fevens, T., Meijer, H., Rappaport, D.: Minimum convex partition of a constrained
point set. Discrete Appl. Math. 109(1–2), 95–107 (2001)
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Abstract. In this paper we study the problem of finding a small safe
set S in a graph G, i.e. a non-empty set of vertices such that no con-
nected component of G[S] is adjacent to a larger component in G − S.
We enhance our understanding of the problem from the viewpoint of
parameterized complexity by showing that (1) the problem is W[2]-hard
when parameterized by the pathwidth pw and cannot be solved in time
no(pw) unless the ETH is false, (2) it admits no polynomial kernel param-
eterized by the vertex cover number vc unless PH = Σp

3 , but (3) it is
fixed-parameter tractable (FPT) when parameterized by the neighbor-
hood diversity nd, and (4) it can be solved in time nf(cw) for some double
exponential function f where cw is the clique-width. We also present (5)
a faster FPT algorithm when parameterized by solution size.

Keywords: Safe set · Parameterized complexity ·
Vulnerability parameter · Pathwidth · Clique-width

1 Introduction

Let G = (V,E) be a graph. For a vertex set S ⊆ V (G), we denote by G[S] the
subgraph of G induced by S, and by G − S the subgraph induced by V \ S.
If G[S] is connected, we also say that S is connected. A vertex set C ⊆ V is
a component of G if C is an inclusion-wise maximal connected set. Two vertex
sets A,B ⊆ V are adjacent if there is an edge {a, b} ∈ E such that a ∈ A and

Partially supported by JSPS and MAEDI under the Japan-France Integrated Action
Program (SAKURA) Project GRAPA 38593YJ, and by JSPS/MEXT KAKENHI
Grant Numbers JP24106004, JP17H01698, JP18K11157, JP18K11168, JP18K11169,
JP18H04091, 18H06469.

c© Springer Nature Switzerland AG 2019
P. Heggernes (Ed.): CIAC 2019, LNCS 11485, pp. 38–49, 2019.
https://doi.org/10.1007/978-3-030-17402-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17402-6_4&domain=pdf
http://orcid.org/0000-0001-8043-5343
http://orcid.org/0000-0001-6943-856X
http://orcid.org/0000-0002-0977-0154
http://orcid.org/0000-0002-5791-0887
http://orcid.org/0000-0003-0845-3947
http://orcid.org/0000-0002-0087-853X
https://doi.org/10.1007/978-3-030-17402-6_4


Parameterized Complexity of Safe Set 39

b ∈ B. Now, a non-empty vertex set S ⊆ V of a graph G = (V,E) is a safe set
if no connected component C of G[S] has an adjacent connected component D
of G − S with |C| < |D|. A safe set S of G is a connected safe set if G[S] is
connected. The safe number s(G) of G is the size of a minimum safe set of G,
and the connected safe number cs(G) of G is the size of a minimum connected
safe set of G. It is known [13] that s(G) ≤ cs(G) ≤ 2 · s(G) − 1.

Fujita et al. [13] introduced the concept of safe sets motivated by a facility
location problem that can be used to design a safe evacuation plan. Subsequently,
Bapat et al. [2] observed that a safe set can control the consensus of the under-
lying network with a majority of each part of the subnetwork induced by a
component in the safe set and an adjacent component in the complement, thus
the minimum size of a safe set can be used as a vulnerability measure of the
network. That is, contrary to its name, having a small safe set could be unsafe
for a network. Both the combinatorial and algorithmic aspects of the safe set
problem have already been extensively studied [1,8,11,12].

In this paper, we study the problem of finding a small safe set mainly from the
parameterized-complexity point of view. We show a number of both tractability
and intractability results, that highlight the difference in complexity that this
parameter exhibits compared to similarly defined vulnerability parameters.

Our Results

Our main results are the following (see also Fig. 1).

1. Both problems are W[2]-hard parameterized by the pathwidth pw and cannot
be solved in time no(pw) unless the Exponential Time Hypothesis (ETH) fails,
where n is the number of vertices.

2. They do not admit kernels of polynomial size when parameterized by vertex
cover number even for connected graphs unless PH = Σp

3 .
3. Both problems are fixed-parameter tractable (FPT) when parameterized by

neighborhood diversity.
4. Both problems can be solved in XP-time when parameterized by clique-width.
5. Both problems can be solved in O∗(kO(k)) time1 when parameterized by the

solution size k.

The W[2]-hardness parameterized by pathwidth complements the known
FPT result when parameterized by the solution size [1], since for every graph
the size of the solution is at least half of the graph’s pathwidth (see Sect. 2). The
no(pw)-time lower bound is tight since there is an nO(tw)-time algorithm [1], where
tw is the treewidth. The second result also implies that there is no polynomial
kernel parameterized by solution size, as the vertex cover number is an upper
bound on the size of the solution. The third result marks the first FPT algo-
rithm by a parameter that is incomparable to the solution size. The fourth result
implies XP-time solvability for all the parameters mentioned in this paper and
extends the result for treewidth from [1]. The fifth result improves the known
algorithm [1] that uses Courcelle’s theorem.
1 The O∗(·) notation omits the polynomial dependency on the input size.
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clique-width

treewidth

pathwidth

modular-width

neighborhood diversity

vertex cover number

W[2]-hard

treedepth

safe number FPT

XP

no polynomial kernel

unknown

Fig. 1. Graph parameters and an overview of the parameterized complexity landscape
for SS and CSS. Connections between two parameters imply the existence of a function
in the one above (being in this sense more general) that lower bounds the one below.

Previous Work

In the first paper on this topic, Fujita et al. [13] showed that the problems are
NP-complete in general. Their hardness proof implies that the parameters are
hard to approximate within a factor of 1.3606 ([1]). They also showed that a
minimum connected safe set in a tree can be found in linear time.

Bapat et al. [2] considered the problems on vertex-weighted graphs, where
the problems are naturally generalized. They showed that these are weakly NP-
complete even for weighted stars (thus for all parameters generalizing vertex
cover number and graph classes like interval and split graphs). On the other hand,
they showed that the problems can be solved in O(n3) time for weighted paths.
Ehard and Rautenbach [8] presented a PTAS for the connected safe number of
a weighted tree. Fujita et al. [12] showed among other results that the problems
can be solved in linear time for weighted cycles.

Águeda et al. [1] studied their unweighted versions. They presented an XP
algorithm for graphs of bounded treewidth and showed that the problems can
be solved in polynomial time for interval graphs, while they are NP-complete for
split and bipartite planar graphs of maximum degree at most 7. Observing that
the treewidth of a graph is bounded by a function of its safe number, they also
showed that the problems are FPT parameterized by solution size.

2 Preliminaries

We assume that the reader is familiar with the concepts relating to fixed-
parameter tractability. Due to space restrictions, we omit some formal defini-
tions and most of our proofs. See [5] (and references therein) for the definitions
of relevant notions in parameterized complexity theory. We let N [v] denote the
closed neighborhood of vertex v, i.e. the set containing v and all vertices adjacent
to it. Furthermore, for a positive integer k, we denote the set {1, . . . , k} by [k].
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Graph Parameters

We recall relationships among some graph parameters used in this paper, and
give a map of the parameters with the results.

The graph parameters we explicitly use in this paper are vertex cover number
vc, pathwidth pw, neighborhood diversity nd, and clique-width cw. They are sit-
uated in the hierarchy of well-studied graph parameters, along with safe number
s, as depicted in Fig. 1.

The treewidth tw(G), pathwidth pw(G), treedepth td(G), and vertex cover
number vc(G) of a graph G can be defined as the minimum of the maximum
clique-size (−1 for tw(G), pw(G), and vc(G)) among all supergraphs of G that
are of type chordal, interval, trivially perfect and threshold, respectively. This
gives us tw(G) ≤ pw(G) ≤ td(G) − 1 ≤ vc(G) for every graph G. One can easily
see that s(G) ≤ vc(G) and td(G) ≤ 2s(G). (See also the discussion in [1].) This
justifies the hierarchical relationships among them in Fig. 1.

Although modular-width mw(G) and neighborhood diversity nd(G) are
incomparable to most of the parameters mentioned above, all these parameters
are generalized by clique-width, while the vertex cover number is their special-
ization.

3 W[2]-Hardness Parameterized by Pathwidth

In this section we show that Safe Set is W[2]-hard parameterized by pathwidth,
via a reduction from Dominating Set. Given an instance [G = (V,E), k] of
Dominating Set, we will construct an instance [G′ = (V ′, E′), pw(G′)] of Safe
Set parameterized by pathwidth. Let V = {v1, . . . , vn} and k′ = 1 + kn +∑

v∈V k(δ(v) + 1) be the target size of the safe set in the new instance, where
δ(v) is the degree of v in G.

Before proceeding, let us give a high-level description of some of the key
ideas of our reduction (an overview is given in Fig. 2). First, we note that our
new instance will include a universal vertex. This simplifies things, as such a
vertex must be included in any safe set (of reasonable size) and ensures that the
safe set is connected. The problem then becomes: can we select k′ − 1 additional
vertices so that their deletion disconnects the graph into components of size at
most k′.

The main part of our construction consists of a collection of k cycles of length
n2. By attaching an appropriate number of leaves to every n-th vertex of such
a cycle we can ensure that any safe set that uses exactly n vertices from each
cycle must space them evenly, that is, if it selects the i-th vertex of the cycle,
it also selects the (n + i)-th vertex, the (2n + i)-th vertex, etc. As a result, we
expect the solution to invest kn vertices in the cycles, in a way that encodes k
choices from the set [n].

We must now check that these choices form a dominating set of the original
graph G. For each vertex of G we construct a gadget and connect this gadget to
a different length-n section of the cycles. This type of connection ensures that



42 R. Belmonte et al.

the construction will in the end have small pathwidth, as the different gadgets
are only connected through the highly-structured “choice” part that consists of
the k cycles. We then construct a gadget for each vertex vi that can be broken
down into small enough components by deleting k(δ(vi)+1) vertices, if and only
if we have already selected from the cycles a vertex corresponding to a member
of N [v] in the original graph.

Domination Gadget: Before we go on to describe in detail the full construc-
tion, we describe a domination gadget D̂i. This gadget refers to the vertex vi ∈ V
and its purpose is to model the domination of vi in G and determine the member
of N [vi] that belongs to the dominating set. We construct D̂i as follows:

– We make a central vertex zi. We attach to this vertex k′ −k(δ(vi)+1) leaves.
Call this set of leaves W i.

– We make k independent sets Xi
1, . . . , X

i
k of size |N [vi]|. For each j ∈ [1, k] we

associate each x ∈ Xi
j with a distinct member of N [vi]. We attach to each

vertex x of each Xi
j , j ∈ [1, k] an independent set of k′ − 1 vertices. Call this

independent set Qx.
– We then make another k independent sets Y i

1 , . . . , Y i
k of size |N [vi]|. For each

j ∈ [1, k] we construct a perfect matching from Xi
j to Y i

j . We then connect z

to all vertices of Y i
j for all j ∈ [1, k].

The intuition behind this construction is the following: we will connect the ver-
tices of Xi

j to the j-th selection cycle, linking each vertex with the element of
N [vi] it represents. In order to construct a safe set, we need to select at least one
vertex y ∈ Y i

j for some j ∈ [1, k], otherwise the component containing z will be
too large. This gives us the opportunity to not place the neighbor x ∈ Xi

j of y
in the safe set. This can only happen, however, if the neighbor of x in the main
part is also in the safe set, i.e. if our selection dominates vi.

Construction: Graph G′ is constructed as follows:

– We first make n copies of V and serially connect them in a long cycle, concep-
tually divided into n blocks: v1, v2, . . . , vn|vn+1, . . . , v2n|v2n+1, . . . | . . . , vn2 |v1.
Each block corresponds to one vertex of V .

– We make k copies V 1, . . . , V k of this cycle, where V i = {vi
1, . . . , v

i
n2},∀i ∈

[1, k] and refer to each as a line. Each such line will correspond to one vertex
of a dominating set in G.

– We add a set Bi
j of k′−n+1 neighbors to each vertex vi

(j−1)n+1,∀j ∈ [1, n], i.e.
the first vertex of every block of every line. We refer to these sets collectively
as the guards.

– Then, for each column of blocks (i.e. the i-th block of all k lines for i ∈ [1, n]),
we make a domination gadget D̂i that refers to vertex vi ∈ V . As described
above, the gadget contains k copies Xi

1, . . . , X
i
k of N [vi] ⊆ V .

– For i ∈ [1, n] and j ∈ [1, k], we add an edge between each vertex in Xi
j and its

corresponding vertex in the i-th block of V j , i.e. for the given i-th column,
we connect a vertex from the j-th line (V j) to the vertex from the j-th copy
of N [vi] (Xi

j) if they correspond to the same original vertex from V .
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– We add a universal vertex u and connect it to every other vertex in the graph.
This concludes our construction (see also Fig. 2).

Fig. 2. A simplified picture of our construction. Note sets Q are only shown for two
vertices per gadget, exemplary connections between corresponding vertices in sets X
and lines V are only shown for the first gadget, while the universal vertex u is omitted.

Theorem 3.1. Safe Set and Connected Safe Set are W[2]-hard parame-
terized by the pathwidth of the input graph. Furthermore, both problems cannot
be solved in time no(pw) unless the ETH is false.

4 No Polynomial Kernel Parameterized by Vertex Cover
Number

A set X ⊆ V is a vertex cover of G = (V,E) if each edge e ∈ E has at least
one endpoint in X. The minimum size of a vertex cover in G is the vertex
cover number of G, denoted by vc(G). Parameterized by vertex cover number
vc, both problems are FPT (see Fig. 1) and in this section we show the following
kernelization hardness of SS and CSS.

Theorem 4.1. Safe Set and Connected Safe Set parameterized by the
vertex cover number do not admit polynomial kernels even for connected graphs
unless PH = Σp

3 .

Since for every graph G, it is cs(G)/2 ≤ s(G) ≤ vc(G) ([1]), the above theorem
implies that SS and CSS parameterized by the natural parameters do not admit
a polynomial kernel.
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Corollary 4.2. SS and CSS parameterized by solution size do not admit poly-
nomial kernels even for connected graphs unless PH = Σp

3 .

Let P and Q be parameterized problems. A polynomial-time computable
function f : Σ∗ ×N → Σ∗ ×N is a polynomial parameter transformation from P
to Q if there is a polynomial p such that for all (x, k) ∈ Σ∗ ×N , it is: (x, k) ∈ P
if and only if (x′, k′) = f(x, k) ∈ Q, and k′ ≤ p(k). If such a function exits, then
P is polynomial-parameter reducible to Q.

Proposition 4.3 ([3]). Let P and Q be parameterized problems, and P ′ and Q′

be unparameterized versions of P and Q, respectively. Suppose P ′ is NP-hard, Q′

is in NP, and P is polynomial-parameter reducible to Q. If Q has a polynomial
kernel, then P also has a polynomial kernel.

To prove Theorem 4.1, we present a polynomial-parameter transformation
from the well-known Red-Blue Dominating Set problem (RDBS, see [5]) to
SS (and CSS) parameterized by vertex cover number.

RDBS becomes trivial when k ≥ |R| and thus we assume that k < |R|
in what follows. It is known that RBDS parameterized simultaneously by k
and |R| does not admit a polynomial kernel unless PH = Σp

3 [6]. Since RBDS
is NP-hard and SS and CSS are in NP, it suffices to present a polynomial-
parameter transformation from RBDS parameterized by k + |R| to SS and CSS
parameterized by the vertex cover number.

From an instance [G, k] of RBDS with G = (R,B;E), we construct an
instance [H, s] of SS as follows (see Fig. 3). Let s = k + |R| + 1. We add a
vertex u to G and make it adjacent to all vertices in B. We then attach 2s pen-
dant vertices to each vertex in R and to u. Finally, for each r ∈ R, we make a
star K1,s−1 and add an edge between r and the center of the star. We call the
resultant graph H. Observe that vc(H) ≤ 2|R| + 1 since {u} ∪ R ∪ C is a vertex
cover of H, where C is the set of centers of stars attached to R. This reduction
is a polynomial-parameter transformation from RBDS parameterized by k + |R|
to SS parameterized by the vertex cover number.

If D ⊆ V (G) is a solution of RBDS of size k, then S := {u} ∪ R ∪ D is a
connected safe set of size s. To see this, recall that B is an independent set and
NH(B) = {u} ∪ R. Thus each component in H − S is either an isolated vertex
in D \ B, or a star K1,s−1 with s vertices.

Assume that (H, s) is a yes instance of SS and let S be a safe set of H with
|S| ≤ s. Observe that {u} ∪ R ⊆ S since u and all vertices in R have degree at
least 2s. Since |S \ ({u} ∪ R)| ≤ k < |R|, S cannot intersect all stars attached to
the vertices in R. Hence H −S has a component of size at least |V (K1,s−1)| = s.
This implies that S is connected. Since R is an independent set and each path
from u to a vertex in R passes through B, each vertex in R has to have a neighbor
in B ∩ S. Thus B ∩ S dominates R. Since B ∩ S ⊆ S \ ({u} ∪ R), it has size at
most k. Therefore, [G, k] is a Yes instance of RBDS. This completes the proof
of Theorem 4.1.
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Fig. 3. The graph H in our reduction from RBDS to SS for the proof of Theorem 4.1.

5 FPT Algorithm Parameterized by Neighborhood
Diversity

In this section, we present FPT algorithms for SS and CSS parameterized by
neighborhood diversity. That is, we prove the following theorem.

Theorem 5.1. Safe Set and Connected Safe Set are fixed-parameter
tractable when parameterized by the neighborhood diversity.

In a graph G = (V,E), two vertices u, v ∈ V are twins if N(u) \ {v} =
N(v) \ {u}. The neighborhood diversity nd(G) of G = (V,E) is the minimum
integer k such that V can be partitioned into k sets T1, . . . , Tk of pairwise twin
vertices. It is known that such a minimum partition can be found in linear
time using fast modular decomposition algorithms [18,21]. It is also known that
nd(G) ≤ 2vc(G) + vc(G) for every graph G [16].

Let G be a connected graph such that nd(G) = k. Let T1, . . . , Tk be the
partition of V (G) into sets of pairwise twin vertices. Note that each Ti is either a
clique or an independent set by definition. We assume that k ≥ 2 since otherwise
the problem becomes trivial. Since each Ti is a twin set, the sizes of intersections
|S ∩ Ti| completely characterize the sizes of the components in G[S] and G − S,
and the adjacency among them.

Let S ⊆ V (G) and si = |S ∩ Ti| for i ∈ [k]. We partition [k] into If , Ip, and
I∅ as follows:

i ∈

⎧
⎪⎨

⎪⎩

I∅ if si = 0,

Ip if 1 ≤ si ≤ |Ti| − 1,

If otherwise(si = |Ti|).
(1)

For i, i′ /∈ I∅ (not necessarily distinct), twin sets Ti and Ti′ are reachable in
S if either

– Ti = Ti′ and Ti is a clique, or
– there is a sequence i0, . . . , i� of indices such that � ≥ 1, i0 = i, i� = i′, ij /∈ I∅

for all j, and Tij and Tij+1 are adjacent for 0 ≤ j < �.
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Lemma 5.2. If i /∈ I∅ and Ti is not reachable to Ti itself in S, then each vertex
in Ti ∩ S induces a component of size 1.

Lemma 5.3. Two vertices u, v ∈ S are in the same component of G[S] if and
only if u ∈ Ti and v ∈ Ti′ for some i and i′, and Ti is reachable from Ti′ in S.

By Lemmas 5.2 and 5.3, each component of G[S] is either a single vertex, or
the intersection of S and the union of a maximal family of pairwise reachable
twin sets in S. Observe that the maximal families of pairwise reachable twin sets
in S is determined only by the set I∅. Also, if R is a maximal family of pairwise
reachable twin sets in S, then the corresponding component of G[S] has size∑

Ti∈R |Ti ∩ S|.
Now, just by interchanging the roles of S and V (G) \ S in Lemmas 5.2 and

5.3, we can show the following counterparts that imply that the maximal families
of pairwise reachable twin sets in V (G) \ S are determined only by the set If ,
while the size of the component of G − S corresponding to a maximal family R
of pairwise reachable twin sets in V (G) \ S is

∑
Ti∈R |Ti \ S|.

Lemma 5.4. If i /∈ If and Ti is not reachable to Ti itself in V (G)\S, then each
vertex in Ti \ S induces a component of size 1.

Lemma 5.5. Two vertices u, v ∈ V (G)\S are in the same component of G−S
if and only if u ∈ Ti and v ∈ Ti′ for some i and i′, and Ti is reachable from Ti′

in V (G) \ S.

ILP Formulation

Now we reduce the problem to an FPT number of integer linear programs with
a bounded number of variables. We first divide [k] into the subsets I∅, Ip, If in
Eq. (1). There are 3k candidates for such a partition.

For each i ∈ [k], we use a variable xi to represent the size of Ti ∩ S. To
find a minimum safe set satisfying I∅, Ip, If , we set the objective function to be∑

i∈[k] xi and minimize it subject to the following linear constraints. The first
set of constraints is to make S consistent with the guess of I∅, Ip, If :

xi = 0 for i ∈ I∅,
1 ≤ xi ≤ |Ti| − 1 for i ∈ Ip,

xi = |Ti| for i ∈ If .

As discussed above, the set of sizes xi completely characterizes the structure
of components in G[S] and G − S. In particular, we can decide whether G[S] is
connected or not at this point. We reject the disconnected case if we are looking
for a connected safe set.

Let C and D be the sets of maximal families of pairwise reachable twin sets in
S and V (G)\S, respectively. Note that the twin sets that satisfy the conditions of
Lemma 5.2 (Lemma 5.4) are not included in any member of C (D, respectively).
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For each Cj ∈ C, we use a variable yj to represent the size of the corresponding
component of G[S]. Also, for each Dh ∈ D, we use a variable zh to represent the
size of the corresponding component of G − S. This can be stated as follows:

yj =
∑

Ti∈Cj

xi forCj ∈ C,

zh =
∑

Ti∈Dh

|Ti| − xi forDh ∈ D.

We say that Cj ∈ C and Dh ∈ D are touching if there are T ∈ Cj and T ′ ∈ Dh

that are adjacent, or the same. We can see that Cj and Dh are touching if and
only if the corresponding components are adjacent via an edge from T and T ′

or an edge completely in T = T ′. We add the following constraint to guarantee
the safeness of S: yj ≥ zh, for each pair of touching Cj ∈ C and Dh ∈ D.

Now we have to deal with the singleton components of G[S] (we can ignore
the singleton components of G − S because the components of G[S] adjacent
to them have size at least 1). Let Ti be a twin set that satisfies the conditions
of Lemma 5.2. That is, Ti ∩ S 
= ∅, Ti is an independent set, and no twin
set adjacent to Ti has a non-empty intersection with S. Hence a component
of G − S is adjacent to the singleton components in Ti ∩ S, if and only if the
corresponding family Dh ∈ D includes a twin set adjacent to Ti. We say that
such Dh is adjacent to Ti. Therefore, we add the following constraint: zh ≤ 1,
for each Dh ∈ D adjacent to Ti satisfying Lemma 5.2.

Solving the ILP

Lenstra [17] showed that the feasibility of an ILP formula can be decided in FPT
time when parameterized by the number of variables (see also [10,15]). Fellows
et al. [9] extended it to the optimization version. More precisely, we define the
problem as follows:

p-Opt-ILP
Input: A matrix A ∈ Z

m×p, and vectors b ∈ Z
m and c ∈ Z

p.
Question: Find a vector x ∈ Z

p that minimizes c�x and satisfies that Ax ≥
b.

They then showed the following:

Theorem 5.6 (Fellows et al. [9]). p-Opt-ILP can be solved using O(p2.5p+o(p) ·
L·log(MN)) arithmetic operations and space polynomial in L, where L is the num-
ber of bits in the input, N is the maximum absolute values any variable can take,
and M is an upper bound on the absolute value of the minimum taken by the objec-
tive function.

In the formulation for SS and CSS, we have at most O(k) variables: xi for
i ∈ [k], yj for Cj ∈ C, and zh for Dh ∈ D. Observe that the elements of C (and of
D as well) are pairwise disjoint. We have only O(k2) constraints and the variables
and coefficients can have values at most |V (G)|. Therefore, Theorem 5.1 holds.
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6 XP Algorithm Parameterized by Clique-Width

This section presents an XP-time algorithm for SS and CSS parameterized by
clique-width. The algorithm runs in time O(g(c) · nf(c)), where c is the clique-
width. It is known that for any constant c, one can compute a (2c+1 − 1)-
expression of a graph of clique-width c in O(n3) time [14,19,20].

Due to space restrictions the proof is omitted here, but we can compute in a
bottom-up manner for each node t of such an expresssion all entries of the DP
tables describing our partial solutions (i.e. the sizes of components containing
the vertices of each label and their adjacent components) in time O(n18·2c),
assuming that the entries for the children of t are already computed. Note that
there are O(n10·2c+1) such entries. A ∪-node requires time O(n18·2c), while for
ρ- and η-nodes O(n10·2c) time will suffice.

Theorem 6.1. Given an n-vertex graph G and an irredundant c-expression T
of G, the values of s(G) and cs(G), along with their corresponding sets can be
computed in O(n28·2c+1) time.

Corollary 6.2. Given an n-vertex graph G, the values of s(G) and cs(G), along
with their corresponding sets can be computed in time nO(f(cw(G))), where f(c) =
22

c+1
.

7 Faster Algorithms Parameterized by Solution Size

We know that both SS and CSS admit FPT algorithms [1] when parameterized
by the solution size. The algorithms in [1] use Courcelle’s theorem [4], however,
and thus their dependency on the parameter may be gigantic. The natural ques-
tion would be whether they admit O∗(kk)-time algorithms as is the case for
vertex integrity [7].

We answer this question with the following theorems. The first step of our
algorithm for SS is a branching procedure to first guess the correct number
of components (k choices) and then guess their sizes (at most kk choices). We
complete our solutions (ensuring they are connected) by constructing and solv-
ing appropriate Steiner Tree sub-instances. With a simple modification our
algorithm also works for CSS.

Theorem 7.1. Safe Set can be solved in O∗(2kk3k) time, where k is the solu-
tion size.

Corollary 7.2. Connected Safe Set can be solved in O∗(2kkk) time, where
k is the solution size.
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Abstract. Diameter—the task of computing the length of a longest
shortest path—is a fundamental graph problem. Assuming the Strong
Exponential Time Hypothesis, there is no O(n1.99)-time algorithm even
in sparse graphs [Roditty and Williams, 2013]. To circumvent this lower
bound we aim for algorithms with running time f(k)(n+m) where k is a
parameter and f is a function as small as possible. We investigate which
parameters allow for such running times. To this end, we systematically
explore a hierarchy of structural graph parameters.

1 Introduction

The diameter is arguably among the most fundamental graph parameters.
Most known algorithms for determining the diameter first compute the short-
est path between each pair of vertices (APSP: All-Pairs Shortest Paths)
and then return the maximum [1]. The currently fastest algorithms for APSP
in weighted graphs have a running time of O(n3/2Ω(

√
log n)) in dense graphs [11]

and O(nm + n2 log n) in sparse graphs [23], respectively. In this work, we focus
on the unweighted case. Formally, we study the following problem:

Diameter
Input: An undirected, connected, unweighted graph G = (V,E).
Task: Compute the length of a longest shortest path in G.

The (theoretically) fastest algorithm for Diameter runs in O(n2.373) time and is
based on fast matrix multiplication [33]. This upper bound can (presumably) not
be improved by much as Roditty and Williams [32] showed that solving Diame-
ter in O((n+m)2−ε) time for any ε > 0 breaks the SETH (Strong Exponential
Time Hypothesis [21,22]). Seeking for ways to circumvent this lower bound, we
follow the line of “parameterization for polynomial-time solvable problems” [18]
(also referred to as “FPT in P”). This approach is recently actively studied and
sparked a lot of research [1,4,9,13,15,16,24,25,27]. Given some parameter k we
search for an algorithm with a running time of f(k)(n+m)2−ε that solves Diam-
eter. Starting FPT in P for Diameter, Abboud et al. [1] proved that, unless
the SETH fails, the function f has to be an exponential function if k is the
treewidth of the graph. We extend their research by systematically exploring the
parameter space looking for parameters where f can be a polynomial. If this is
c© Springer Nature Switzerland AG 2019
P. Heggernes (Ed.): CIAC 2019, LNCS 11485, pp. 50–61, 2019.
https://doi.org/10.1007/978-3-030-17402-6_5
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not possible (due to conditional lower bounds), then we seek for matching upper
bounds of the form f(k)(n + m)2−ε where f is exponential.

In a second step, we combine parameters that are known to be small in many
real world graphs. We concentrate on social networks which often have special
characteristics, including the “small-world” property and a power-law degree
distribution [26,28–31]. We therefore combine parameters related to the diameter
with parameters related to the h-index1; both parameters can be expected to be
orders of magnitude smaller than the number of vertices.

Related Work. Due to its importance, Diameter is extensively studied. Algo-
rithms employed in practice have usually a worst-case running time of O(nm),
but are much faster in experiments. See e. g. Borassi et al. [5] for a recent exam-
ple which also yields good performance bounds using average-case analysis [6].
Concerning worst-case analysis, the theoretically fastest algorithms are based on
matrix multiplication and run in O(n2.373) time [33] and any O((n+m)2−ε)-time
algorithm refutes the SETH [32].

The following results on approximating Diameter are known: It is easy to
see that a simple breadth-first search gives a linear-time 2-approximation. Aing-
worth et al. [2] improved the approximation factor to 3/2 at the expense of the
higher running time of O(n2 log n + m

√
n log n). The lower bound of Williams

[32] also implies that approximating Diameter within a factor of 3/2 − δ
in O(n2−ε) time refutes the SETH. Moreover, a 3/2 − δ-approximation in
O(m2−ε) time or a 5/3 − δ-approximation in O(m3/2−ε) time also refute the
SETH [3,10]. On planar graphs, there is an approximation scheme with near
linear running time [35]; the fastest exact algorithm for Diameter on planar
graphs runs in O(n1.667) time [17].

Concerning FPT in P, Diameter can be solved in 2O(k)n1+o(1) time where k
is the treewidth of the graph [9]; however, a 2o(k)n2−ε-time algorithm refutes the
SETH [1]. In fact, the construction actually proves the same running time lower
bound with k being the vertex cover number. The reduction for the lower bound
of Roditty and Williams [32] also implicitly implies that the SETH is refuted by
any f(k)(n+m)2−ε-time algorithm for Diameter for any computable function f
when k is either the (vertex deletion) distance to chordal graphs or the combined
parameter h-index and domination number. Evald and Dahlgaard [14] adapted
the reduction by Roditty and Williams and proved that any f(k)(n + m)2−ε-
time algorithm for Diameter parameterized by the maximum degree k for any
computable function f refutes the SETH.

Our Contribution. We make progress towards systematically classifying
the complexity of Diameter parameterized by structural graph parameters.
Figure 1 gives an overview of previously known and new results and their impli-
cations (see Brandstädt et al. [7] for definitions of the parameters). In Sect. 3,
we follow the “distance from triviality parameterization” [20] aiming to extend

1 The h-index of a graph G is the largest number � such that G contains at least �
vertices of degree at least �.
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Fig. 1. Overview of the relation between the structural parameters and the respective
results for Diameter. An edge from a parameter α to a parameter β below of α
means that β can be upper-bounded in a polynomial (usually linear) function in α (see
also [34]). The three small boxes below each parameter indicate whether there exists
(from left to right) an algorithm running in f(k)n2, f(k)(n log n+m), or kO(1)(n log n+
m) time, respectively. If a small box is green, then a corresponding algorithm exists
and the box to the left is also green. Similarly, a red box indicates that a corresponding
algorithm is a major breakthrough. More precisely, if a middle box (right box) is red,
then an algorithm running in f(k) · (n + m)2−ε (or kO(1) · (n + m)2−ε) time refutes the
SETH. If a left box is red, then an algorithm with running time f(k)n2 implies a faster
algorithm for Diameter in general. Hardness results for a parameter α imply the same
hardness results for the parameters below α. Similarly, algorithms for a parameter β
imply algorithms for the parameters above β. (Color figure online)

known tractability results for special graph classes to graphs with small modula-
tors. For example, Diameter is linear-time solvable on trees. We obtain for the
parameter feedback edge number k (edge deletion number to trees) an O(k · n)-
time algorithm. However, this is our only kO(1)(n + m)-time algorithm in this
section. For the remaining parameters, it is already known that such algorithms
refute the SETH. For the parameter distance k to cographs we therefore provide
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a 2O(k)(n + m)-time algorithm. Finally, for the parameter odd cycle transver-
sal k, we use the recently introduced notion of General-Problem-hardness [4] to
show that Diameter parameterized by k is “as hard” as the unparameterized
Diameter problem. In Sect. 4, we investigate parameter combinations. We prove
that a kO(1)(n+m)-time algorithm where k is the combined parameter diameter
and maximum degree would refute the SETH. Complementing this lower bound,
we provide an f(k)(n + m)-time algorithm where k is the combined parameter
diameter and h-index.

2 Preliminaries and Basic Observations

For � ∈ N we set [�] := {1, 2, . . . , �}. Given a graph G = (V,E) set n := |V |
and m := |E|. A path P = v0 . . . va is a graph with vertex set {v0, . . . , va} and
edge set {{vi, vi+1} | 0 ≤ i < a}. For u, v ∈ V , we denote with distG(u, v) the
distance between u and v in G, that is, the number of edges in a shortest path
between u and v. If G is clear from the context, then we omit the subscript.
We denote by d(G) the diameter of G. For a vertex subset V ′ ⊆ V , we denote
with G[V ′] the graph induced by V ′. We set G − V ′ := G[V \ V ′].

Parameterized Complexity and GP-Hardness. A language L ⊆ Σ∗ × N

is a parameterized problem over some finite alphabet Σ, where (x, k) ∈ Σ∗ × N

denotes an instance of L and k is the parameter. Then L is called fixed-parameter
tractable if there is an algorithm that on input (x, k) decides whether (x, k) ∈ L
in f(k) · |x|O(1) time, where f is some computable function only depending on k
and |x| denotes the size of x. For a parameterized problem L, the language L̂ =
{x | (x, k) ∈ L} is called the unparameterized problem associated to L. We use
the notion of General-Problem-hardness which formalizes the types of reduction
that allow us to exclude parameterized algorithms as they would lead to faster
algorithms for the general, unparameterized, problem.

Definition 1 ([4, Definition 2]). Let P ⊆ Σ∗ × N be a parameterized prob-
lem, let P̂ ⊆ Σ∗ be the unparameterized decision problem associated to P , and
let g : N → N be a polynomial. We call P �-General-Problem-hard(g) 0(�-GP-
hard(g)) if there exists an algorithm A transforming any input instance I of P̂
into a new instance (I ′, k′) of P such that

(G1) A runs in O(g(|I|)) time,
(G2) I ∈ P̂ ⇐⇒ (I ′, k′) ∈ P ,

(G3) k′ ≤ �, and
(G4) |I ′| ∈ O(|I|).

We call P General-Problem-hard (g) (GP-hard(g)) if there exists an integer �
such that P is �-GP-hard(g). We omit the running time and call P �-General-
Problem-hard (�-GP-hard) if g is a linear function.

Showing GP-hardness for some parameter k allows to lift algorithms for the
parameterized problem to the unparameterized setting as stated next.
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Lemma 2 ([4, Lemma 3]). Let g : N → N be a polynomial, let P ⊆ Σ∗ ×N be
a parameterized problem that is GP-hard(g), and let P̂ ⊆ Σ∗ be the unparam-
eterized decision problem associated to P . If there is an algorithm solving each
instance (I, k) of P in O(f(k) · g(|I|)) time, then there is an algorithm solving
each instance I ′ of P̂ in O(g(|I ′|)) time.

Applying Lemma 2 to Diameter yields the following. First, having an
f(k)n2.3 time algorithm with respect to a parameter k for which Diameter is
GP-hard would yield a faster Diameter algorithm. Moreover, from the known
SETH-based hardness results [3,10,32] we get the following.

Observation 1. If the SETH is true and Diameter is GP-hard(n2−ε) with
respect to some parameter k for some ε > 0, then there is no f(k) · n2−ε′

time
algorithm for any ε′ > 0 and any function f .

We next present a simple observation that completes the overview in Fig. 1.

Observation 2 (�2). Diameter parameterized by distance i to interval graphs,
distance c to clique, average degree a, maximum degree Δ, diameter d, and domi-
nation number γ is solvable

1. in O(i · n2) time provided that the
deletion set is given,

2. in O(c · (n + m)) time,

3. in O(a · n2) time,
4. in O(Δ2d+3) time, and,
5. in O(γ2 · Δ3) time, respectively.

3 Deletion Distance to Special Graph Classes

In this section, we investigate parameterizations that measure the distance to
special graph classes. The hope is that when Diameter can be solved efficiently
in a special graph class Π, then Diameter can be solved if the input graph
is “almost” in Π. We study the following parameters in this order: odd cycle
transversal (which is the same as distance to bipartite graphs), distance to cographs,
and feedback edge number. The first two parameters measure the vertex deletion
distance to some graph class. Feedback edge number measures the edge deletion
distance to trees. Note that the lower bound of Abboud et al. [1] for the param-
eter vertex cover number already implies that there is no kO(1)(n + m)2−ε-time
algorithm for k being one of the first two parameters in our list unless the SETH
breaks, since each of these parameters is smaller than vertex cover number (see
Fig. 1). This is also the motivation for studying feedback edge number rather
than feedback vertex number.

Odd Cycle Transversal. We show that Diameter parameterized by odd cycle
transversal (from now on called oct) and girth is 4-GP-hard. Consequently solving
Diameter in f(k) ·n2.3 for any computable function f , implies an O(n2.3)-time
algorithm for Diameter which would improve the currently best (unparame-
terized) algorithm. The girth of a graph is the length of a shortest cycle in it.
2 Results marked with (�) are deferred to a full version, available under https://arxiv.

org/abs/1802.10048.

https://arxiv.org/abs/1802.10048
https://arxiv.org/abs/1802.10048
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Fig. 2. Example for the construction in the proof of Theorem 3. The input graph given
on the left side has diameter two and the constructed graph on the right side has
diameter three. In each graph one longest shortest path is highlighted.

Theorem 3. Diameter is 4-GP-hard with respect to the combined parameter
oct and girth.

Proof. Let G = (V,E) be an arbitrary undirected graph where V =
{v1, v2, . . . , vn}. We construct a new graph G′ = (V ′, E′) as follows: V ′..={ui, wi |
vi ∈ V } and E′..={{ui, wj}, {uj , wi} | {vi, vj} ∈ E} ∪ {{ui, wi} | vi ∈ V }. An
example of this construction can be seen in Fig. 2. We will now prove that all
properties of Definition 1 hold. It is easy to verify that the reduction can be
implemented in linear time and therefore the resulting instance is of linear size
as well. Observe that {ui | vi ∈ V } and {wi | vi ∈ V } are both independent
sets and therefore G′ is bipartite. Notice further that for any edge {vi, vj} ∈ E
there is an induced cycle in G′ containing the vertices {ui, wi, uj , wj}. Since G′

is bipartite there is no cycle of length three in G′ and the girth of G′ is four.
Lastly, we show that d(G′) = d(G) + 1 by proving that if dist(vi, vj) is odd,

then dist(ui, wj) = dist(vi, vj) and dist(ui, uj) = dist(vi, vj)+1, and if dist(vi, vj)
is even, then dist(ui, uj) = dist(vi, vj) and dist(ui, wj) = dist(vi, vj) + 1. Since
dist(ui, wi) = 1 and dist(ui, wj) = dist(uj , wi), this will conclude the proof.

Let P = va0va1 . . . vad
be a shortest path from vi to vj where va0 = vi

and vad
= vj . Let P ′ = ua0wa1ua2wa3 . . . be a path in G′. Clearly, P ′ is also a

shortest path as there are no edges {ui, wj} ∈ E′ where {vi, vj} /∈ E.
If d is odd, then ua0wa1 . . . wad

is a path of length d from ui to wj and ua0wa1

. . . wad
uad

is a path of length d + 1 from ui to uj . If d is even, then ua0wa1 . . .
wad−1uad

is a path of length d from ui to uj and ua0wa1 . . . wad−1uad
wad

is a path
of length d + 1 from ui to wj . Notice that G′ is bipartite and thus dist(ui, uj)
must be even and dist(ui, wj) must be odd. 
�

Distance to Cographs. Providing an algorithm that matches the lower bound
of Abboud et al. [1], we will show that Diameter parameterized by distance k
to cographs can be solved in O(k · (n + m) + 2O(k)) time.

A graph is a cograph if and only if it does not contain a P4 as an induced
subgraph, where P4 is the path on four vertices. Given a graph G one can
determine in linear time whether G is a cograph and can return an induced P4

if this is not the case [8,12]. This implies that in O(k · (n + m)) time one can
compute a set K ⊆ V with |K| ≤ 4k such that G−K is a cograph: Iteratively add
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all four vertices of a returned P4 into the solution set and delete those vertices
from G until it is P4-free. In the following, we hence assume that such a set K
is given. Notice that every cograph has diameter at most two as any graph with
diameter at least three contains an induced P4.

Theorem 4 (�). Diameter can be solved in O(k · (n + m) + 216kk) time when
parameterized by distance k to cographs.

Feedback Edge Number. We will prove that Diameter parameterized by
feedback edge number k can be solved in O(k · n) time. One can compute a
minimum feedback edge set K (with |K| = k) in linear time by taking all edges
not in a spanning tree. Recently, this parameter was used to speed up algorithms
computing maximum matchings [24].

Theorem 5 (�). Diameter parameterized by feedback edge number k can be
solved in O(k · n) time.

4 Parameters for Social Networks

Here, we study parameters that we expect to be small in social networks. Recall
that social networks have the “small-world” property and a power-law degree dis-
tribution [26,28–31]. The “small-world” property directly transfers to the diam-
eter. We capture the power-law degree distribution by the h-index as only few
high-degree exist in the network. Thus, we investigate parameters related to the
diameter and to the h-index starting with degree-related parameters.

4.1 Degree Related Parameters

We next investigate the parameter minimum degree. Unsurprisingly, the mini-
mum degree is not helpful for parameterized algorithms. In fact, we show that
Diameter is 2-GP-hard with respect to the combined parameter bisection width
and minimum degree. The bisection width of a graph G is the minimum number
of edges to delete from G in order to partition G into two connected component
whose number of vertices differ by at most one.

Theorem 6 (�). Diameter is 2-GP-hard with respect to bisection width and
minimum degree.

We mention in passing that the constructed graph in the proof behind The-
orem 6 contains the original graph as an induced subgraph and if the original
graph is bipartite, then so is the constructed graph. Thus, first applying the con-
struction in the proof of Theorem3 (see also Fig. 2) and then the construction in
the proof of Theorem 6 proves that Diameter is GP-hard even parameterized
by the sum of girth, bisection width, minimum degree, and oct.
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4.2 Parameters Related to Both Diameter and h-Index

Here, we will study combinations of two parameters where the first one is related
to diameter and the second to h-index (see Fig. 1 for an overview of closely related
parameters). We start with the combination maximum degree and diameter. Inter-
estingly, although the parameter is quite large, the naive algorithm (see Obser-
vation 2) cannot be improved to a fully polynomial running time.

Theorem 7. There is no (d + Δ)O(1)(n + m)2−ε-time algorithm that solves
Diameter parameterized by maximum degree Δ and diameter d unless the SETH
is false.

Proof. We prove a slightly stronger statement excluding 2o( c√d+Δ) · (n + m)2−ε-
time algorithms for some constant c. Assume towards a contradiction that for
each constant r there is a 2o( r√d+Δ) · (n + m)2−ε-time algorithm that solves
Diameter parameterized by maximum degree Δ and diameter d. Evald and
Dahlgaard [14] have shown a reduction from CNF-SAT to Diameter where
the resulting graph has maximum degree three such that for any constant ε > 0
an O((n + m)2−ε)-time algorithm (for Diameter) would refute the SETH. A
closer look reveals that there is some constant c such that the diameter d in their
constructed graph is in O(logc(n+m)). By assumption we can solve Diameter

parameterized by maximum degree and diameter in 2o( c√d+Δ) · (n + m)2−ε time.
Observe that

2o( c√d+Δ) · (n + m)2−ε = 2o( c
√

logc(n+m)) · (n + m)2−ε

= (n + m)o(1) · (n + m)2−ε ⊆ O((n + m)2−ε′
) for some ε′ > 0.

Since we constructed for some ε′ > 0 an O((n + m)2−ε′
)-time algorithm for

Diameter the SETH fails and thus we reached a contradiction. Finally, notice
that (d + Δ)O(1) ⊂ 2o( c√d+Δ) for any constant c. 
�

h-Index and Diameter. We next investigate in the combined parameter
h-index and diameter. The reduction by Roditty and Williams [32] produces
instances with constant domination number and logarithmic vertex cover num-
ber (in the input size). Since the diameter d is linearly upper-bounded by the
domination number and the h-index is linearly upper-bounded by the vertex cover
number, any algorithm that solves Diameter parameterized by the combined
parameter (d+h) in 2o(d+h) · (n+m)2−ε time disproves the SETH. We will now
present an algorithm for Diameter parameterized by h-index and diameter that
almost matches the lower bound.

Theorem 8. Diameter parameterized by diameter d and h-Index h is solvable
in O(h · (m + n) + n · d · 2h log d+d log h) time.

Proof. Let H = {x1, . . . , xh} be a set of vertices such that all vertices in V \ H
have degree at most h in G. Clearly, H can be computed in linear time. We will
describe a two-phase algorithm with the following basic idea: In the first phase
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it performs a breadth-first search from each vertex v ∈ H, stores the distance
to each other vertex and uses this to compute the “type” of each vertex, that
is, a characterization by the distance to each vertex in H. In the second phase
it iteratively increases a value e and verifies whether there is a vertex pair of
distance at least e. If at any point no vertex pair is found, then the diameter
of G is e − 1.

The first phase is straight forward: Compute a BFS from each vertex v in H
and store the distance from v to every other vertex w in a table. Then iterate
over each vertex w ∈ V \ H and compute a vector of length h where the ith
entry represents the distance from w to xi. Also store the number of vertices of
each type containing at least one vertex. Since the distance to any vertex is at
most d, there are at most dh different types. This first phase takes O(h · (m+n))
time.

For the second phase, we initialize e with the largest distance found so far,
that is, the maximum value stored in the table and compute G′ = G − H.
Iteratively check whether there is a pair of vertices in V \ H of distance at
least e+1 as follows. We check for each vertex v ∈ V \H and each type whether
there is a path of length at most e from v to each vertex of this type through
a vertex in H. This can be done by computing the sum of the two type-vectors
in O(h) time and comparing the minimum entry in this sum with e. If all entries
are larger than e, then no shortest path from v to some vertex w of the respective
type of length at most e can contain any vertex in H. Thus we compute a BFS
from v in G′ up to depth e and count the number of vertices of the respective type
we found. If this number equals the total number of vertices of the respective
type, then for all vertices w of this type it holds that dist(v, w) ≤ e. If the two
numbers do not match, then there is a vertex pair of distance at least e + 1 so
we can increase e by one and start the process again.

There are at most d iterations in which e is increased and the check is done.
Recall that the maximum degree in G′ is h and therefore each of these iteration
takes O(n · dh · (he + h)) time as each BFS to depth e takes O(he) time. Thus,
the overall running time is in O(h · (m + n) + n · d · 2h log d+d log h). 
�

Acyclic Chromatic Number and Domination Number. We next analyze
the parameterized complexity of Diameter parameterized by acyclic chromatic
number a and domination number d. The acyclic chromatic number of a graph
is the minimum number of colors needed to color each vertex with one of the
given colors such that each subgraph induced by all vertices of one color is an
independent set and each subgraph induced by all vertices of two colors is acyclic.
The acyclic chromatic number upper-bounds the average degree, and therefore the
standard O(n · m)-time algorithm runs in O(n2 · a) time. We will show that this
is essentially the best one can hope for as we can exclude f(a, d) · (n + m)2−ε-
time algorithms under SETH. Our result is based on the reduction by Roditty
and Williams [32] and is modified such that the acyclic chromatic number and
domination number are both four in the resulting graph.
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Theorem 9 (�). There is no f(a, d) · (n + m)2−ε-time algorithm for any com-
putable function f that solves Diameter parameterized by acyclic chromatic
number a and domination number d unless the SETH is false.

5 Conclusion

We have resolved the complexity status of Diameter for most of the param-
eters in the complexity landscape shown in Fig. 1. However, several open ques-
tions remain. For example, is there an f(k)n2-time algorithm with respect to the
parameter diameter? Moreover, our algorithms working with parameter combi-
nations have mostly impractical running times which, assuming SETH, can-
not be improved by much. So the question arises, whether there are parame-
ters k1, . . . , k� that allow for practically relevant running times like

∏�
i=1 ki ·

(n + m) or even (n + m) · ∑�
i=1 ki? The list of parameters displayed in Fig. 1 is

by no means exhaustive. Hence, the question arises which other parameters are
small in typical scenarios? For example, what is a good parameter capturing the
special community structures of social networks [19]?
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Abstract. We consider an uncapacitated discrete facility location prob-
lem where the task is to decide which facilities to open and which
clients to serve for maximum profit so that the facilities form an inde-
pendent set in given facility-side matroids and the clients form an inde-
pendent set in given client-side matroids. We show that the problem
is fixed-parameter tractable parameterized by the number of matroids
and the minimum rank among the client-side matroids. To this end, we
derive fixed-parameter algorithms for computing representative families
for matroid intersections and maximum-weight set packings with multi-
ple matroid constraints. To illustrate the modeling capabilities of the new
problem, we use it to obtain algorithms for a problem in social network
analysis. We complement our tractability results by lower bounds.

Keywords: Matroid set packing · Matroid parity · Matroid median ·
Representative families · Social network analysis · Strong triadic closure

1 Introduction

The uncapacitated facility location problem (UFLP) is a classical problem stud-
ied in operations research [14]: a company has to decide where to open facilities in
order to serve its clients. Opening a facility incurs a cost, whereas serving clients
yields profit. The task is to decide where to open facilities so as to maximize the
profit minus the cost for opening facilities.

Numerous algorithms have been developed for the UFLP [14, Sect. 3.4]. Yet
in practice, the required solutions are often subject to additional side constraints
[14], which make algorithms for the pure UFLP inapplicable. For example:
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– The number of facilities in each of several, possibly overlapping areas is limited
(environmental protection, precaution against terrorism or sabotage).

– Facilities may be subject to move [25].
– A client may be served at one of several locations, which influences the profit.

In order to analyze the influence of such constraints on the complexity of UFLP
and to capture such constraints in a single algorithm, we introduce the following
uncapacitated facility location problem with matroid constraints (UFLP-MC).

Problem 1.1 (UFLP-MC).

Input: A universe U with n := |U |, for each pair u, v ∈ U a profit puv ∈ N

obtained when a facility at u serves a client at v, for each u ∈ U a
cost cu ∈ N for opening a facility at u, facility matroids {(Ui, Ai)}a

i=1, and
client matroids {(Vi, Ci)}c

i=1, where Ui ∪ Vi ⊆ U .
Task: Find two disjoint sets A � C ⊆ U that maximize the profit

∑

v∈C

max
u∈A

puv −
∑

u∈A

cu such that A ∈
a⋂

i=1

Ai and C ∈
c⋂

i=1

Ci.

Besides modeling natural facility location scenarios like the ones described above,
UFLP-MC generalizes several well-known combinatorial optimization problems.

Example 1.2. Using UFLP-MC with a = 1 facility matroid and c = 0 client
matroids one can model the classical NP-hard problem of covering a maximum
number of elements of a set V using at most r sets of a collection H ⊆ 2V . To
this end, choose the universe U = V ∪ H, a single facility matroid (H, A1) with
A1 := {H ⊆ H | |H| ≤ r}, cu = 0 for each u ∈ U , and, for each u, v ∈ U ,

puv =

{
1 if u ∈ H such that v ∈ u,

0 otherwise.

Already UFLP (without matroid constraints) does not allow for polynomial-time
approximation schemes unless P = NP [2]. Moreover, from Example 1.2 and the
W[2]-hardness of Set Cover [6], it immediately follows that UFLP-MC is W[2]-
hard parameterized by r even for zero costs, binary profits, and a single facility
matroid of rank r, making the problem of optimally placing a small number r of
facilities already hard when the set of clients is unconstrained. However, facility
location problems also have been studied when the number of clients is small [1]
and have several applications, for example:

– When clients are not end customers, but in the middle of the supply chain,
then their number may indeed be small. For example, there are many possible
locations for waste-to-energy plants, yet clients are a few city waste dumps.1

1 The State Register of Waste Disposal Facilities of the Russian Federation lists
18 dumps for municipal solid waste in Moscow region—the largest city of Europe.
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– In the stop location problem [23], the clients correspond to cities that are
served by new train stops to be built along existing rail infrastructure.

– Due to resource constraints or due to the constraint that each client be served
at only one of several possible locations, the number of actually served clients
may be small compared to the number of possible client and facility locations.

We aim for optimally solving UFLP-MC when the number of served clients is
small (not necessarily constant). To this end, we employ fixed-parameter algo-
rithms and thus contribute to the still relatively scarce results on the parame-
terized complexity of problems in operations research.

Parameterized Complexity. The main idea of fixed-parameter algorithms is to
accept the exponential running time seemingly inherent to solving NP-hard prob-
lems, yet to confine the combinatorial explosion to a parameter of the problem,
which can be small in applications [6]. A problem is fixed-parameter tractable if
it can be solved in f(k) ·poly(n) time on inputs of length n and some function f
depending only on some parameter k. This requirement is stronger than an algo-
rithm that merely runs in polynomial time for fixed k, say, in O(nk) time, which
is intractable even for small values of k. The parameterized analog of NP and
NP-hardness is the W -hierarchy FPT ⊆ W [1] ⊆ W [2] ⊆ . . . W [P ] ⊆ XP and
W [t]-hardness, where FPT is the class of fixed-parameter tractable problems
and all inclusions are conjectured to be strict. If some W [t]-hard problem is in
FPT, then FPT = W [t] [6].

1.1 Our Contributions and Organization of this Work

We introduce UFLP-MC and present first algorithmic results (we refer the reader
to Sect. 2 for basic definitions from matroid theory).

Theorem 1.3. UFLP-MC is

(i) solvable in 2O(r log r) · n2 time for a single facility matroid given as an inde-
pendence oracle and a single uniform client matroid of rank r.

(ii) fixed-parameter tractable parameterized by a+c+r, where r is the minimum
rank of the client matroids and representations of all matroids over the same
finite field Fpd are given for some prime p polynomial in the input size.

We point out that, if our aim is to maximize the profit from serving only k clients,
then we can always add a uniform client matroid of rank k and Theorem 1.3(ii)
gives a fixed-parameter algorithm for the parameter a+c+k. In contrast, Exam-
ple 1.2 shows that one cannot replace r by the minimum rank of all matroids in
Theorem 1.3(ii)

To illustrate the modeling capabilities of the newly introduced problem, in
Sect. 3, we use Theorem 1.3 to obtain fixed-parameter algorithms for a problem
in social network analysis, complementing known approximation results.

In Sect. 4, we present new results of independent interest to matroid opti-
mization. In Sect. 5, we show how to use these results to prove Theorem 1.3.
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Using a parameterized reduction from the Clique problem via a construction
resembling that of Schrijver [24, Sect. 43.9], we can also show that Theorem 1.3(ii)
does not generalize to non-representable client matroids:

Theorem 1.4. UFLP-MC even with unit costs, binary profits, without facility
matroids, and a single (non-representable) client matroid of rank r is W[1]-hard
parameterized by r.

Proofs are deferred to a full version of this article, available on arXiv:1806.11527.

1.2 Related Work

Uncapacitated Facility Location. The literature usually studies the variant where
each facility u has an opening cost cu, serving client v by facility u costs puv,
and one minimizes the total cost of serving all clients. Fellows and Fernau [7]
study the parameterized complexity of this variant. Krishnaswamy et al. [13]
and Swamy [25] study approximation algorithms for this variant with one facil-
ity matroid and without client matroids, called the matroid median problem. In
case where the clients also have to obey matroid constraints, the minimization
problem is meaningless: the minimization variant of UFLP-MC would simply
not serve clients and not open facilities. Thus, we study the problem of maxi-
mizing total profit minus facility opening costs. Ageev and Sviridenko [2] study
approximation algorithms for this variant (yet without matroid constraints).

Combinatorial Optimization with Matroid Constraints. Other classical combi-
natorial optimization problems such as Maximum Coverage [8], submodular
function maximization [5], and Set Packing [16] have been studied with a
matroid constraint. Towards proving Theorem1.3, we obtain a fixed-parameter
algorithm Weighted Set Packing subject to multiple matroid constraints.

Matroids in Parameterized Complexity. Matroids are an important tool in the
development of fixed-parameter algorithms [21]. Many of them are based on so-
called representative families for matroids [9,10,17,19], which we will generalize
to representative families for weighted matroid intersections. Marx [19] showed
that a common independent set of size r in m matroids can be found in f(r,m) ·
poly(n) time. Bonnet et al. [4] showed that the problem of covering at least
p elements of a set V using at most k sets of a given family H ⊆ 2V is fixed-
parameter tractable parameterized by p. Earlier, Marx [18] showed that Partial
Vertex Cover is fixed-parameter tractable by p. Our Theorem1.3 generalizes
all of these results and, indeed, is based on the color coding approach in Marx’s
[18] algorithm.

2 Preliminaries

By N, we denote the naturals numbers including zero. By Fp, we denote the field
on p elements. By n = |U |, we denote the size of the universe (matroid ground
set).

https://arxiv.org/abs/1806.11527


66 R. van Bevern et al.

Sets and Set Functions. By A � B, we denote the union of sets A and B that
we require to be disjoint. By convention, the intersection of no sets is the whole
universe and the union of no sets is the empty set.

We call Z1, . . . , Z� a partition of a set A if Z1 � · · · � Z� = A and Zi �= ∅ for
each i ∈ {1, . . . , �}. We call A ⊆ 2U an γ-family if each set in A has cardinality
exactly γ. A set function w : 2U → R is additive if, for any subsets A ∪ B ⊆ U ,
one has w(A∪B) = w(A)+w(B)−w(A∩B). If “≤” holds instead of “=”, then
w is called submodular.

Matroid Fundamentals. For proofs of the following propositions and for illustra-
tive examples of the following definitions, we refer to the book of Oxley [20].

A pair (U, I), where U is the ground set and I ⊆ 2U is a family of independent
sets, is a matroid if (i) ∅ ∈ I, (ii) if A′ ⊆ A and A ∈ I, then A′ ∈ I, and (iii) if
A,B ∈ I and |A| < |B|, then there is an x ∈ B \ A such that A ∪ {x} ∈ I. An
inclusion-wise maximal independent set A ∈ I is a basis. The cardinality of the
bases of M is called the rank of M .

Each matroid M has a dual matroid M∗ whose bases are the complements
of bases of M . The union M1 ∨ M2 = (U1 ∪ U2, {J1 ∪ J2 | J1 ∈ I1, J2 ∈ I2}) of
two matroids M1 = (U1, I1) and M2 = (U2, I2) is a matroid. If U1 ∩ U2 = ∅, we
write M1 ⊕ M2 := M1 ∨ M2 and call their union direct sum.

In a free matroid (U, 2U ) every set is independent. A uniform matroid of
rank r is a matroid (U, I) such that I := {S ⊆ U | |S| ≤ r}. The direct sum of
uniform matroids is called partition matroid. We call the direct sum of uniform
matroids of rank one a multicolored matroid. The k-truncation of a matroid (U, I)
is a matroid (U, I ′) with I ′ = {S ⊆ U | S ∈ I ∧ |S| ≤ k}.

Matroid Representations. An independence oracle is an algorithm that answers
in constant time whether a given set is independent in a given matroid.
A matroid M = (U, I) is representable over a field F if there is a matrix A
with n columns labeled by elements of U such that S ∈ I if and only if the
columns of A with labels in S are linearly independent over F. Not all matroids
are representable over all fields [20, Theorem 6.5.4]. Some are not representable
at all [20, Example 1.5.14]. Given a representation of a matroid M over a field F,
a representation of the dual matroid M∗ over F is computable in linear time [20,
Theorem 2.2.8]. Given representation of two matroids M1 and M2 over F, one
can easily obtain a representation of M1 ⊕ M2 over F [20, Exercise 6, p. 132].
Uniform matroids of rank r on a universe of size n are representable over all
fields with at least n elements [19, Sect. 3.5]. The uniform matroid of rank one
is trivially representable over all fields. Thus, so are multicolored matroids.

3 Finding Strong Links in Social Networks

We now illustrate the modeling capabilities of our newly introduced problem
UFLP-MC by using it to model a problem from social network analysis. In soci-
ological work, Granovetter [12] stated the Strong Triadic Closure (STC) hypoth-
esis: if two agents in a social network have a strong tie to a third agent, then



Maximum-Profit Facility Location Under Matroid Constraints 67

they should have at least a weak tie to each other. An induced path on three
vertices, also called an open triangle, consisting of strong edges only is an STC
violation.

Finding the strong ties in social networks helps improving clustering and
advertising algorithms. Rozenshtein et al. [22] consider the following scenario:
one is given a graph G = (V,E) and communities X1, . . . , Xm ⊆ V , each of
which represents a group with common interests and is thus assumed to be
connected via strong ties. They showed that it is NP-hard to check whether one
can label the edges of a graph strong or weak so that the subgraphs G[Xi] be
connected via strong ties and there be no STC violations. Thus, the number
of STC violations is inapproximable within any factor and the problem is not
fixed-parameter tractable with respect to the parameter “number of allowed STC
violations” unless P = NP. In contrast, the problem of maximizing the number r
of non-violated triangles admits a polynomial-time 1/(m+1)-approximation [22].
Complementing the approximability result for r, we show that the problem is
fixed-parameter tractable parameterized by m and r.

Problem 3.1 (STC with tight communities).

Input: A graph G = (V,E), communities X1, . . . , Xm ⊆ V , and an integer r.
Question: Are there weak edges A ⊆ E (edges in E \ A are strong) such that

each G[Xi] \ A is connected and there are at least r non-violated triangles?

We model Problem 3.1 as UFLP-MC: Let the universe U = E ∪ K, where E is
the set of edges and K is the set of all open triangles in G. Note that K can
be computed in O(n3) time. The set K corresponds to the set of clients, and
the set of edges E corresponds to the set of facilities. The cost of opening a
facility u ∈ E (that is, the cost of making an edge weak) is cu = 0. The profit
that facility u gets from serving client v, that is, from resolving STC violation v,
is

puv =

{
1 if the edge u ∈ E is a part of the open triangle v ∈ K in G,

0 otherwise.

As client matroid we can choose (K, C1) with C1 = {K′ ⊆ K | |K′| ≤ r}, since
resolving r STC violations is sufficient in order to resolve at least r of them.
Since it is a uniform matroid, we easily get a representation over any field with
at least |K| elements. The facility matroids are {Mi}m

i=1 with

Mi := (Ei, Ai) ⊕ (E \ Ei, 2E\Ei),
Ei := {{u, v} ∈ E | {u, v} ⊆ Xi}, and
Ai := {E′ ⊆ Ei | G[Xi] \ E′ is connected}.

Herein, (Ei, Ai) is the so-called bond matroid of G[Xi] [20, Sect. 2.3]. As the dual
of a graphic matroid, we easily represent it over any field [20, Proposition 5.1.2].
Since the free matroid (E \ Ei, 2E\Ei) is also representable over any field, so
is Mi. Therefore, having represented all matroids over the same field, we can
apply Theorem 1.3(ii) and thus complement the known 1/(m+1)-approximation
of the parameter r due to Rozenshtein et al. [22] by the following result:
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Proposition 3.2. Problem 3.1 is fixed-parameter tractable with respect to r+m.

As noted by Rozenshtein et al. [22], if two communities Xi and Xj are disjoint,
then the matroids Mi and Mj can be combined into one via a direct sum. Thus,
Problem 3.1 is fixed-parameter tractable parameterized by r if the input commu-
nities are pairwise disjoint.

Along the lines of Golovach et al. [11], we can also generalize Proposition 3.2
to the problem of maximizing induced subgraphs belonging to some set F and
containing at least one weak edge, if all graphs in F have constant size.

4 Representative Families for Matroid Intersections
and Set Packing with Multiple Matroid Constraints

In this section, we present generalizations of some known matroid optimization
fixed-parameter algorithms for use in our algorithm for UFLP-MC. These results
are completely independent from UFLP-MC and of independent interest. Among
them, we will see a fixed-parameter algorithm of the following problem.

Problem 4.1 (Set Packing with Matroid Constraints (SPMC)).

Input: Matroids {(U, Ii)}m
i=1, a family H ⊆ 2U , w : H → R, and α ∈ N.

Task: Find sets H1, . . . , Hα ∈ H such that

α⊎

i=1

Hi ∈
m⋂

i=1

Ii and maximizing
α∑

i=1

w(Hi).

SPMC is a generalization of the Matroid Parity and Matroid Match-
ing problems introduced by Lawler [15]. Lee et al. [16] studied approximation
algorithms for the variant Matroid Hypergraph Matching with one input
matroid and unweighted input sets. Marx [19] and Lokshtanov et al. [17] obtained
fixed-parameter tractability results for Matroid γ-Parity, where one has only
one input matroid and pairwise non-intersecting unweighted sets of size γ in the
input.

We generalize the fixed-parameter algorithms of Marx [19] and Lokshtanov
et al. [17] to SPMC. Both are based on representative families: intuitively, a
representative Ŝ of some family S for a matroid M ensures that, if S contains a
set S that can be extended to a basis of M , then Ŝ also contains such a set that
is “as least as good” as S. To solve SPMC (and later UFLP-MC), we generalize
this concept to representative families for matroid intersections:

Definition 4.2 (max intersection q-representative family). Given matr-
oids {(U, Ii)}m

i=1, a family S ⊆ 2U , and a function w : S → R, we say that a
subfamily Ŝ ⊆ S is max intersection q-representative for S with respect to w if,
for each set Y ⊆ U of size at most q, it holds that:

– if there is a set X ∈ S with X � Y ∈ ⋂m
i=1 Ii,
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– then there is a set X̂ ∈ Ŝ with X̂ � Y ∈ ⋂m
i=1 Ii and w(X̂) ≥ w(X).

If m = 1, then we call Ŝ a max q-representative family of S.
To solve SPMC, we compute a max intersection representative of the family of
all feasible solutions to SPMC, yet not only with respect to the goal function of
SPMC, but more generally with respect to set functions of the following type.

Definition 4.3 (inductive union maximizing function). Let H ⊆ 2U and

B(H) :=
{ i⊎

j=1

Hj

∣∣∣ i ∈ N,H1, . . . , Hi ∈ H
}
.

A set function w : B(H) → R is called an inductive union maximizing function
if there is a generating function g : R×H → R that is non-decreasing in its first
argument and such that, for each X �= ∅,

w(X) = max
H∈H,S∈B(H)

S�H=X

g(w(S),H).

Note that an inductive union maximizing function w is fully determined by the
value w(∅) and its generating function g. Inductive union maximizing functions
resemble primitive recursive functions on natural numbers, where S � H plays
the role of the “successor” of S in primitive recursion.

Example 4.4. Let H ⊆ 2U and w : H → R. For solving SPMC, we compute max
intersection representative families with respect to the function w determined
by w(∅) = 0 and g : (k,H) �→ k + w(H). Concretely, for ∅ �= X ⊆ B(H), one
gets

w(X) = max
X=H1�···�Hi
H1,...,Hi∈H

i∑

j=1

w(Hj)

due to the associativity and commutativity of the maximum and sum.

Inductive union maximizing functions generalize additive set functions, yet sub-
modular functions are generally not inductive union maximizing.

To compute max intersection representatives of the families of feasible solu-
tions of SPMC, we can prove the following theorem.

Theorem 4.5. Let {Mi = (U, Ii)}m
i=1 be linear matroids of rank r := (α+β)γ ≥

1, H ⊆ 2U be a γ-family of size t, and w : B(H) → R be an inductive union
maximizing function.

Given a representation Ai of Mi for each i ∈ {1, . . . , m} over the same field F

and the value w(∅), one can compute a max intersection βγ-representative of size
at most

(
rm

αγm

)
of the family

S =
{

S = H1 � · · · � Hα

∣∣∣ S ∈
m⋂

i=1

Ii and Hj ∈ H for j ∈ {1, . . . , α}
}

with respect to w in time of 2O(rm) · t + O(m2rn) operations over F and calls to
the function g generating w.



70 R. van Bevern et al.

The main feature of Theorem 4.5 is that it allows us to compute max intersection
representatives of the family S, whose size may be exponential in the size of H, in
time growing merely linearly in the size of H. The literature uses several implicit
ad-hoc proofs of variants of Theorem4.5 with m = 1 matroid in algorithms
for concrete problems [9,10,19]. These proofs usually use non-negative additive
functions in place of w. Our Theorem4.5 works for but is not limited to additive
weight functions, yet does not generalize to coverage functions—a special case
of submodular functions.

Proposition 4.6. If Theorem4.5 holds for coverage functions w even with m =
1 matroid, then FPT = W [2].

Using Theorem 4.5 to compute a max intersection 0-representative of the family
of all feasible solutions to SPMC, we can prove the following result.

Theorem 4.7. SPMC on matroids of rank at most r represented over a
field F = Fpd is solvable in time of 2O(αγm) · |H|2 ·poly(r)+m2n ·poly(r, α, γ, p, d)
operations over F, where γ is an upper bound on the sizes of the sets in H.

Remark 4.8. Although we define SPMC as a maximization problem and prove
our results for max intersection representative families, all results in this section
can also be proved for the minimization variants by negating the weight func-
tions.

5 A Fixed-Parameter Algorithm for UFLP-MC

In this section, we sketch our algorithm for Theorem 1.3. One major difficulty in
solving UFLP-MC is that the profit from opening a facility depends on which
other facilities are already open. To name an extreme example: when opening
only facility u, it induces cost cu and yields profit from serving all the clients.
However, when some other facility v is already open, then additionally opening u
induces cost cu yet might not yield any profit if all clients are more profitably
already served by v. To avoid such interference between facilities, we use the color
coding technique [3] to reduce UFLP-MC to 2O(r log r) instances of the follow-
ing uncapacitated facility location problem with matroid and color constraints
(UFLP-MCC).

Problem 5.1 (UFLP-MCC).

Input: A universe U , a coloring col : U → {1, . . . , k+�}, a partition Z1�· · ·�Z� =
{� + 1, . . . , � + k}, for each pair u, v ∈ U a profit puv ∈ N gained when a
facility at u serves a client at v, for each u ∈ U a cost cu ∈ N for opening a
facility at u, facility matroids {(Ui, Ai)}a

i=1, and client matroids {(Vi, Ci)}c
i=1,

where Ui ∪ Vi ⊆ U .
Task: Find two sets A � C ⊆ U such that

(i) for each i ∈ {1, . . . , �}, there is exactly one u ∈ A with col(u) = i,
(ii) for each i ∈ {� + 1, . . . , � + k}, there is exactly one v ∈ C with col(v) = i,
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(iii) A ∈
a⋂

i=1

Ai and C ∈
c⋂

i=1

Ci,

and that maximizes
∑

u∈A

(
−cu +

∑

v∈C∩Z(u)

puv

)
, where Z(u) := {v ∈ U | col(v) ∈ Zcol(u)}.

In case where there is only a single facility matroid and a uniform client matroid,
UFLP-MCC can be shown to be solvable in polynomial time by computing a
maximum-weight common independent set of the facility matroid and a multicol-
ored matroid, which yields Theorem1.3(i). To prove Theorem 1.3(ii), we solve
UFLP-MCC with multiple linear client and facility matroids. To describe the
algorithm, we introduce some notation.

Algorithm 5.1. Algorithm for UFLP-MC with linear matroids
Input: An UFLP-MCC instance: universe U = {1, . . . , n},
partition Z1 � · · · � Z� = {� + 1, . . . , � + k}, coloring col : U → {1, . . . , k + �},
profits puv ∈ N for each u, v ∈ U , costs cu ∈ N for each u ∈ U , facility
matroids A = {(Ui, Ai)}a

i=1, client matroids C = {(Vi, Ci)}c
i=1, all given as

representations over the same finite field, where Ui, Vi ⊆ U .
Output: An optimal solution A � C to UFLP-MCC.

1 MP ← (U, {I ⊆ U | I has at most one element of each color in {1, . . . , k + �}).

2 M ← {MP } ∪ {M ∨ (UC , 2UC ) | M ∈ A} ∪ {M ∨ (UA, 2UA) | M ∈ C}.
3 if some matroid in M has rank less than k + � then return No solution exists.
4 Truncate all matroids in M to rank k + � (using [17, Theorem 3.15]).
5 foreach u ∈ UA and i := col(u) do

6 ̂F(u) ← max intersection (k + � − |Zi|)-representative for the family

F(u) := {I ⊆ Z(u) | I is independent in each of M and |I| = |Zi|}
with respect to weights wu : 2U → N, I 	→ ∑

v∈I puv (via Theorem 4.5).

7 ̂F [u] ← {X ∪ {u} | X ∈ ̂F(u)}.

8 ̂F ← ⋃

u∈UA

̂F [u].

9 S1, . . . , S� ← solution to SPMC with matroids M, family ̂F , and weights

w : ̂F → Z, X 	→ wu(X \ {u}) − cu, where {u} = X ∩ UA (via Theorem 4.7).
10 if not found then return No solution exists.
11 A ← UA ∩ (S1 ∪ · · · ∪ S�).
12 C ← UC ∩ (S1 ∪ · · · ∪ S�).
13 return A � C.

Definition 5.2. For a coloring col : U → {1, . . . , k + �}, we denote by

U(i) := {u ∈ U | col(u) = i} the elements of color i,

UA :=
⋃�

i=1 U(i) is the set of facilities, and

UC :=
⋃�+k

i=�+1 U(i) is the set of clients.
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Algorithm 5.1 now solves UFLP-MCC as follows. In line 1, it constructs a mul-
ticolored matroid MP that will ensure that any independent set of k facilities
and � clients fulfills Problem5.1(i) and (ii). In line 2, it computes a family M
of matroids that contains MP and all facility and client matroids, which are
extended so that a set A�C ⊆ U is independent in all of them if and only if A is
independent in all facility matroids and C is independent in all client matroids.
Now, if one of the matroids in M has rank less than k+�, then there is no common
independent set of � facilities and k clients, which is checked in line 3. The trunca-
tion in line 4 thus results in each matroid in M having rank exactly k + �, which
is needed to apply Theorem 4.5 in line 6. In line 6, we construct for each u ∈ UA

with col(u) = i a max intersection (k + � − |Zi|)-representative F̂(u) for the
family F(u) of all sets of clients that could potentially be served by u in a solu-
tion. Afterwards, in line 8, we construct a family of sets, each consisting of one
facility u ∈ UA and a potential client set from F̂(u). Finally, in line 9, we will
use Theorem 4.7 to combine � of such sets into a set that is independent in all
matroids in M and yields maximum profit.

6 Conclusion

We can show fixed-parameter algorithms for UFLP-MC parameterized by the
minimum rank of the client matroids in case when the facility matroid is arbi-
trary and the client matroid is uniform, or when all matroids are linear. The
problem becomes W[1]-hard when the client matroid is not linear, even without
facility matroids. The complexity of UFLP-MC thus seems to be determined by
the client matroids. It would be interesting to settle the complexity of UFLP-MC
with one arbitrary facility matroid parameterized by the rank of a single linear
client matroid. For future research, we point out that our algorithm for Theo-
rem 1.3(i) works in polynomial space, whereas Theorem1.3(ii) requires exponen-
tial space due to Theorems 4.5 and 4.7. It is interesting whether this is avoidable.
Moreover, given that approximation algorithms are known for UFLP without
matroid constraints [2], for the minimization variant of UFLP with a single facil-
ity matroid [13,25], as well as for other optimization problems under matroid
constraints [5,8,16], it is canonical to study approximation algorithms for UFLP-
MC.
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ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

6. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015)
7. Fellows, M.R., Fernau, H.: Facility location problems: a parameterized view. Discr.

Appl. Math. 159(11), 1118–1130 (2011)
8. Filmus, Y., Ward, J.: The power of local search: maximum coverage over a matroid.

In: Proceedings of 29th STACS, LIPIcs, vol. 14, pp. 601–612. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Dagstuhl (2012)

9. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of
representative families with applications in parameterized and exact algorithms. J.
ACM 63(4), 29:1–29:60 (2016)

10. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative families of
product families. ACM T. Algorithms 13(3), 36:1–36:29 (2017)

11. Golovach, P.A., Heggernes, P., Konstantinidis, A.L., Lima, P.T., Papadopoulos, C.:
Parameterized aspects of strong subgraph closure. In: Proceedings of 16th SWAT,
LIPIcs, vol. 101, pp. 23:1–23:13. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
Dagstuhl (2018)

12. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380
(1973)

13. Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: Facility
location with matroid or knapsack constraints. Math. Oper. Res. 40(2), 446–459
(2015)

14. Laporte, G., Nickel, S., Saldanha da Gama, F. (eds.): Location Science. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-319-13111-5

15. Lawler, E.: Combinatorial Optimization-Networks and Matroids. Holt, Rinehart
and Winston, New York (1976)
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Abstract. We consider a strategic game called project game where each
agent has to choose a project among his own list of available projects. The
model includes positive weights expressing the capacity of a given agent
to contribute to a given project. The realization of a project produces
some reward that has to be allocated to the agents. The reward of a
realized project is fully allocated to its contributors, according to a simple
proportional rule. Existence and computational complexity of pure Nash
equilibria is addressed and their efficiency is investigated according to
both the utilitarian and the egalitarian social function.

Keywords: Strategic games · Price of anarchy/stability · Congestion

1 Introduction

We introduce and study the project game, a model where some agents take
part to some projects. Every agent chooses a single project but several agents can
select the same project. This situation happens for example when some scientists
decide on which problem they work, when some investors choose the business
in which they spend their money, when some benefactors select which artistic
project they support, etc. Our model includes positive weights which express
the capacity of a given agent to contribute to a given project. By assumption,
a project is realized if it is selected by at least one agent. The realization of a
project produces some reward that has to be allocated to the agents.

We take a game theoretic perspective, i.e. an agent’s strategy is to select,
within the projects that are available to her, the one inducing the largest piece
of reward. Therefore, the way the rewards are allocated is essential to this game.
Here we suppose that the reward of a realized project is fully allocated to its con-
tributors, according to a simple proportional rule based on the aforementioned
weights.

Our motivation is to analyze the impact of this simple and natural allocation
rule. Do the players reach a Nash equilibrium, that is a stable state in which no
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one wants to deviate from the project she is currently contributing? How bad is
a Nash equilibrium compared to the situation where a central authority would,
at best, decide by which agent(s) a project is conducted? In other words, does
the allocation rule incentivize the players to realize projects that optimize the
total rewards?

The Model. The project game is a strategic game with a set of n players
N = {1, · · · , n} = [n] and a set of m projects M = {1, · · · ,m} = [m]. The
strategy space of every player i, denoted by Si, is a subset of M . We assume
that

⋃
i∈N Si = M and a strategy for player i is to select a project j ∈ Si. Each

project j ∈ M has a positive reward rj . We suppose without loss of generality
that the minimum reward is always equal to 1. Each player i ∈ N has a positive
weight wi,j when she selects project j.

The load of project j under strategy profile σ, denoted by L(σ, j), is the total
weight of the players who play j. Thus, L(σ, j) =

∑
{i∈N :σi=j} wi,j .

The utility of player i (that she wants to maximize) under σ is defined as

ui(σ) =
wi,σi

L(σ, σi)
rσi

. (1)

A player’s utility is defined as a portion of the reward of the realized project
that she is contributing to. This portion is proportional to the player’s weight.

We will sometimes consider special cases of the project game. An instance
of the project game is symmetric when Si = M for every player i. The players’
weights are universal when, for every player i, wi,j is equal to some positive
number wi for every project j; in particular, they are identical when wi = 1 for
every player i. The weights are project-specific when they are not universal. The
projects’ rewards are identical when the reward is the same for all projects, and
this reward is equal to 1 by assumption.

A strategy profile σ is a pure Nash equilibrium if for each i ∈ N and j ∈ Si,
ui(σ) ≥ ui(σ−i, j) where σ′ = (σ−i, j) = is defined by σ′

� = σ� for � ∈ N \ {i}
and σ′

i = j. For a project game G, denote by NE(G) its set of pure Nash
equilibria.

For a strategy profile σ, P (σ) = {j ∈ M : L(σ, j) > 0} will denote the set of
projects selected by some players in σ. The social utility under strategy profile
σ, denoted by U(σ), is defined as the total sum of the rewards of the selected
projects (also known as the utilitarian social welfare), i.e., U(σ) =

∑
j∈P (σ) rj .

Note that U(σ) =
∑

i∈N ui(σ). A social optimum, denoted as σ∗, is a strategy
profile maximizing U.

Given a project game G, the price of anarchy of G is the worst-case
ratio between the social utility of a social optimum and the social utility of
a pure Nash equilibrium for G, namely, PoA(G) = supσ∈NE(G)

U(σ∗)
U(σ) [1]; the

price of stability of G is the best-case ratio between the social utility of a
social optimum and the social utility of a pure Nash equilibrium for G, namely,
PoS(G) = infσ∈NE(G)

U(σ∗)
U(σ) [2].
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For any two integers n,m > 1, let Gn,m denote the set of all project games
with n players and m projects. We define PoA(n,m) = supG∈Gn,m

PoA(G) (resp.
PoS(n,m) = supG∈Gn,m

PoS(G)) as the price of anarchy (resp. stability) of games
with n players and m projects.

Our Contribution. We focus on existence, computational complexity and effi-
ciency of pure Nash equilibria in project games. Given the structural simplicity
of these games, it will be possible to derive some results from the state of the
art of similar classes of games.

For instance, by making use of the notion of better response equivalence
[3], we derive that the problem of computing a pure Nash equilibrium in the
project game with universal weights belongs to the complexity class PLS and
can be solved in polynomial time as long as at least one of the following three
conditions holds: the game is symmetric, the rewards are identical, the weights
are identical. For the more general case of project-specific weights, instead, we
show by means of a potential function argument that the problem is in PLS as
long as the rewards are identical. Without this assumption, the problem gets
fairly much more complicated and even the existence of pure Nash equilibria
remains an open problem.

As to the efficiency of pure Nash equilibria, it is easy to see that the project
games belong to the class of valid utility games. For these games, Vetta [4]
gives an upper bound of 2 on the price of anarchy. We show that this bound
is tight only for the case of asymmetric games with non-identical rewards and
non-identical weights. In all other cases, we give refined bounds parameterized
by both the number of players and projects, also with respect to the price of
stability. All these bounds are shown to be tight except for one case involving
the price of anarchy of asymmetric games with identical rewards and identical
weights. For this particular variant of the game, we also consider an interesting
restriction in which all players have exactly two available strategies. These games
admit a multigraph representation and we provide some bounds on the price of
anarchy as a function of the multigraph topology.

Before concluding, we explore the efficiency of equilibria under an alternative
notion of social welfare which focuses on the utility of the poorest player. In this
document, some proofs are omitted due to space constraints but they will appear
in a journal version.

Related Work. Our project games fall within the class of monotone valid
utility games introduced by Vetta [4] and further considered in [5–11]. In a mono-
tone valid utility game there is a ground set of objects V and a strategy for a
player consists in selecting some subset of V . A social function γ : 2V �→ R asso-
ciates a non-negative value to each strategy profile; γ is assumed to be monotone
and submodular. The utility of player i in a strategy profile σ is at least the value
γ(σ) − γ(σ−i). Moreover, the sum of the players’ utilities in σ does not exceed
the value γ(σ). Vetta [4] shows that the price of anarchy of these games is at
most 2.
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Among the special cases of monotone valid utility games considered in the
literature, the one that mostly relates to our project games is the one studied
by Kleinberg and Orel in [9]. They consider a set of projects modeling open prob-
lems in scientific research and a set of players/scientists each of which chooses a
single problem to work on. However, there are several differences between the two
models which make the achieved results non comparable. In fact, in the games
studied by Kleinberg and Orel, players may fail in solving a problem, and so
the reward associated with each project is not always guaranteed to be realized;
moreover, when a problem is solved, its reward is always shared equally among
the solving players. This assumption makes these games instances of congestion
games, whereas this is not the case in our project games.

Congestion games [12] is a well known category of strategic games which,
by a potential argument [13], always admit a pure Nash equilibrium. In a con-
gestion game, there is a set of resources M and every players’ strategy set is a
non-empty subset of 2M . For example, M contains the links of a network from
which each player wants to choose a path. Each resource j is endowed with a
latency function �j which depends on the number of players having j in their
strategy. A player’s cost is the sum of the latencies of the resources that she
uses. This model received a lot of attention in the computer science community,
see e.g. [14]. Congestion games where generalized to the case where the players
have different weights (weighted congestion games), or when a resource’s latency
depends on the identity of the player (player specific congestion games) [15].
These extensions still admit a pure Nash equilibrium if the players’ strategies
are singletons. Nevertheless, a pure Nash equilibrium is not guaranteed when
we combine weights and player-specific costs, even with singleton strategies [15].
Singleton congestion games with weighted players are also known as Load Bal-
ancing games (c.f. [16]): resources and players may represent machines and jobs,
respectively. In this context each job goes on the machine that offers her the
lowest completion time.

Finally, it is worth mentioning the project game is remotely connected
with hedonic games [17] and the group activity selection problem [18] as the
realized projects induce a partition of the player set.

2 Existence of a Pure Strategy Nash Equilibrium

In this section, we focus on the existence and efficient computation of pure Nash
equilibria in the project game. We shall show how several positive results can
be obtained from the realm of load balancing games and singleton congestion
games by making use of the notion of better response equivalence [3]. Intuitively,
two games are better response equivalent when, for every pair of strategies, they
agree when one is better than the other (i.e., they have the same Nash dynamics
graph). By definition, two games which are better response equivalent share the
same set of pure Nash equilibria. Thus, existential and computational results for
one game can be directly applied to the other.
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Fix a project game with universal weights. By (1), we have that, for each
strategy profile σ, player i ∈ N and strategy j ∈ Si,

ui(σ−i, j) > ui(σ) ⇐⇒ L(σ, j) + wi

rj
<

L(σ, σi)
rσi

. (2)

If one interprets the set of projects as a set of related machines, where machine
j has a speed rj , and the set of players as a set of tasks, where task i has a
processing time wi, it follows immediately from (2) that any project game
with universal weights is better response equivalent to a load balancing game
with related machines. Similarly, a project game with universal weights and
identical projects is better response equivalent to a load balancing game with
identical machines and a project game with identical weights is better response
equivalent to a singleton congestion game with linear latency functions.

So, for the project game with universal weights, the existential result for
load balancing games with related machines as well as the polynomial time
algorithm for the case of symmetric games, both given in [19], can be reused.
For asymmetric games with identical rewards, the polynomial time algorithm
given in [20] can be applied. For asymmetric games with identical weights, the
algorithm given in [14] can be applied. These results are summarized in the
following theorem.

Theorem 1 ([14,19,20]). The project game with universal weights admits
a potential function. Moreover, a pure Nash equilibrium can be computed in
polynomial time when at least one of the following conditions is true: the game
is symmetric, the rewards are identical, the weights are identical.

For the case of project-specific weights, no transformation to other known
classes of games are possible (up to our knowledge) and a direct approach needs
to be developed. For projects with identical rewards, we show the existence of
pure Nash equilibria by providing a potential function argument.

Theorem 2. For the project game with identical rewards, the vector 〈|P (σ)|,
Φ(σ)〉, where Φ(σ) := Πj∈P (σ)L(σ, j) lexicographically increases after every prof-
itable unilateral deviation.

It follows from Theorem 2 that the better response dynamics of the project
game with identical rewards never cycles: it always converges to a pure Nash
equilibrium. As the potential function given in Theorem2, as well as the one
given in [19] for games with universal weights, can be computed in polynomial
time, it follows that the problem of computing a pure Nash equilibrium in games
with project-specific weights and identical rewards and in games with universal
weights belongs to the complexity class PLS, see, for instance, [21].

For the case of general rewards and project-specific weights, it is easy to see
that the project game is better response equivalent to a particular subclass of
singleton weighted congestion games with player-specific linear latency functions
and resource-specific weights. These games are defined as follows. There is a set of
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n players N = {1, · · · , n} = [n] and a set of m resources R = {1, · · · ,m} = [m].
Each player i ∈ N can choose a resource from a prescribed set Si ⊆ R and
has a weight wi,j > 0 on resource j ∈ R. The load (congestion) of resource j
in a strategy profile σ is L(σ, j) =

∑
i∈N :σi=j wi,j . Each resource j ∈ R has a

player-specific linear latency function �i
j(x) = αi

jx, with αi
j ≥ 0, for each i ∈ N .

The cost of player i in σ is defined as ci(σ) = �i
σi

(L(σ, σi)) = αi
σi

L(σ, σi).
To the best of our knowledge, singleton weighted congestion games with

player-specific linear latency functions and resource-specific weights have been
considered so far in the literature only under the assumption that the players’
weights are not resource-specific, i.e., each player i ∈ N has a weight wi > 0 for
each resource j ∈ Si. These games have been considered in [22,23]. In particular,
[22] shows that they do admit a potential function if and only if n = 2, while [23]
proves the existence of a pure Nash equilibrium for the cases of either n = 3 or
m = 2; in the latter, a polynomial time algorithm for computing an equilibrium
is also provided. However, there is no relationship between these games and our
project games. In fact, if from one perspective project games are more gen-
eral than singleton weighted congestion games with player-specific linear latency
functions in the definition of the players’ weights (which are resource-specific in
the former and resource-independent in the latter), on the other hand singleton
weighted congestion games with player-specific linear latency functions are more
general than project games in the definition of the latency functions (which
are arbitrary in the former and resource-related in the latter).

We close this section with the most general case of the project game, but
for a small number of players.

Proposition 1. The best response dynamics of the project game with two
players always converges.

Proposition 2. The project game with three players always admits a pure
Nash equilibrium.

3 Social Utility and the Price of Anarchy/Stability

In this section, we analyze the quality of pure Nash equilibria in the project
game in term of price of anarchy and stability. Before presenting our complete
characterization of their bounds, note that a social optimum can be computed
efficiently.

Proposition 3. Maximizing the utilitarian social welfare of the project game
can be done in polynomial time.

3.1 Games with Identical Rewards

In this subsection, we give results for games with identical rewards. The first
result states that there is always a pure Nash equilibrium that is socially optimal.
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Theorem 3. For any two integers n,m > 1, PoS(n,m) = 1.

Next, we show that, under the assumption of symmetric games, all pure Nash
equilibria are socially optimal.

Theorem 4. For any two integers n,m > 1, PoA(n,m) = 1 for symmetric
games.

For asymmetric games, instead, next theorem shows that the price of anarchy
rises to almost 2 even when considering universal weights.

Theorem 5. For any two integers n,m > 1 and s := min(n,m), PoA(n,m) ≥
2� s−1

2 �+1

� s−1
2 �+1

for games with universal weights.

A matching upper bound, which holds for the more general case of project-
specific weights is achieved in the following theorem.

Theorem 6. For any two integers n,m > 1 and s := min(n,m), PoA(n,m) ≤
2� s−1

2 �+1

� s−1
2 �+1

.

By Theorems 5 and 6, we get that PoA(n,m) =
2� s−1

2 �+1

� s−1
2 �+1

for games with

both project-specific and universal weights.

Identical Weights. Here, we consider the case of games with identical weights.
Games with this property admit an interesting representation via hypergraphs
(it becomes multigraphs when |Si| ≤ 2 for each i ∈ N).

Theorem 7. For identical weights and identical rewards and for any two inte-
gers n > 5,m > 1, 1.582 ≈ e

e−1 ≤ PoA(n,m) ≤ 5
3 ≈ 1.667.

3.2 Games with Non Identical Rewards

In this subsection, we address the more general case of general rewards. We
start by showing a lower bound on the price of stability which holds even for
symmetric games with identical weights.

Proposition 4. For any two integers n,m > 1, PoS(n,m) ≥ 1+ min(n,m)−1
n for

symmetric games with identical weights.

Proof. For any two integers n,m > 1, consider a game with n players of weight
1, one project p with reward n + ε, where ε > 0 is an arbitrary number, and
m − 1 projects with reward 1.

As choosing project p is a dominant strategy for each player, this game has
only one pure Nash equilibrium in which all the players select p. Under this
strategy profile, the social utility is n + ε. In a social optimum, a maximum
number of min(n,m) projects can be selected by some player, so that the social
utility is at most n+ ε+min(n,m)− 1. Thus, by the arbitrariness of ε, the price
of stability is at least 1 + min(n,m)−1

n . ��
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We now show a matching upper bound that holds even for the price of anarchy
of symmetric games with project-specific weights.

Theorem 8. For any two integers n,m > 1, PoA(n,m) ≤ 1 + min(n,m)−1
n for

symmetric games with project-specific weights.

We now move to the case of asymmetric games. Again, we shall prove a
lower bound on the price of stability which holds for universal weights and then
provides a matching upper bound on the price of anarchy for the case of project-
specific weights. As to the upper bound, from Vetta’s result [4], we have that,
for any two integers n,m > 1, PoA(n,m) ≤ 2 for games with project-specific
weights. Now, we show the matching lower bound.

Proposition 5. For any two integers n,m > 1, PoS(n,m) ≥ 2 for games with
universal weights.

The lower bound for the price of stability given in Proposition 5 does not
apply to games with identical weights. This leaves open the possibility to obtain
better bounds on both the price of anarchy and the price of stability in this
setting. The following two results cover this case. Again, we shall give a lower
bound on the price of stability and a matching upper bound on the price of
anarchy.

Proposition 6. For any two integers n,m > 1, we have PoS(n,m) ≥ 2−1/n if
m ≥ n, PoS(n,m) ≥ n+1

n if n > m = 2, and PoS(n,m) ≥ 2 − 1
m−1 if n > m > 2

for games with identical weights.

We shall prove the upper bounds by exploiting the primal-dual method devel-
oped in [24]. Before doing this, we need some additional notation. Given two
strategy profiles σ and σ∗, denote as α(σ, σ∗) = |P (σ∗) \ P (σ)|; moreover, for
each j ∈ M , denote as Cj(σ, σ∗) = {i ∈ N : σi = σ∗

i = j} the set of players select-
ing project j in both σ and σ∗ and as Oj(σ, σ∗) = {i ∈ N \ Cj(σ, σ∗) : σ∗

i = j}
the set of players selecting project j in σ∗ but not in σ. In the application of
this method, we shall make use of the following technical lemma.

Lemma 1. Fix a game with identical weights. For each strategy profile σ and
social optimum σ′, there exists a social optimum σ∗ such that (i) P (σ∗) = P (σ′)
and (ii) for each j ∈ P (σ∗) ∩ P (σ), |Cj(σ, σ∗)| ≥ L(σ, j) − α(σ, σ∗).

Proof. Fix a strategy profile σ and a social optimum σ′ and, for the sake of
simplicity, set α = α(σ, σ′). Our aim is to slightly modify σ so as to obtain a
social optimum σ∗ mimicking the assignment of players to projects realized in σ
for as much as possible. To do this, consider the following algorithm operating
in three steps.

At step 1, for each j ∈ P (σ′) \ P (σ), choose a unique player o(j) such that
j ∈ So(j) and define σ∗

o(j) = j. Let T1 be the set of players chosen at this step;
clearly, |T1| = α. At step 2, for each j ∈ P (σ′) ∩ P (σ), choose a unique player
o(j) in N \T1 such that j ∈ So(j) and define σ∗

o(j) = j. Let T2 be the set of players
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chosen at this step. At step 3, for each i /∈ T1∪T2, set σ∗
i = σi if σi ∈ P (σ′)∩P (σ)

and σ∗
i = j otherwise, where j is an arbitrary project in P (σ′).

The existence of σ′ implies that there exists a choice for T1 and T2 which
guarantees that P (σ∗) = P (σ′). To show part (ii) of the claim, consider a project
j∗ ∈ P (σ) ∩ P (σ∗) such that L(σ, j∗) ≥ α (if no such project exists, then the
claim is trivially true). Let

β = |{j ∈ P (σ′) ∩ P (σ) : {i ∈ N \ T1 : σi = j} = ∅}|
be the number of projects in P (σ′) ∩ P (σ) that lost all of their users in σ after
step 1 of the algorithm. We have that step 1 selects at least β players from β
different projects in P (σ)∩P (σ∗). This implies that j∗ loses at most α−β users
after step 1. At step 2, j∗ can lose at most other β additional users for a total
of α users. Hence, at least L(σ, j) − α players are assigned to j∗ in σ∗ at step 3
of the algorithm and this shows claim (ii). ��
Theorem 9. For any two integers n,m > 1, we have PoA(n,m) ≤ 2 − 1/n if
m ≥ n, PoA(n,m) ≤ n+1

n if n > m = 2, and PoA(n,m) ≤ 2− 1
m−1 if n > m > 2

for games with identical weights.

Proof. Fix a pure Nash equilibrium σ and a social optimum σ∗ and, for the
sake of simplicity, set α = α(σ, σ∗). By Lemma 1, we can assume without loss of
generality that, for each j ∈ P (σ∗)∩P (σ), |Cj(σ, σ∗)| ≥ L(σ, j)−α. We assume
α ≥ 1 as, otherwise, the price of anarchy is trivially equal to 1. By applying
the primal-dual method, we get that the inverse of the optimal solution of the
following linear program provides an upper bound on PoA(n,m):

min
∑

j∈P (σ) rj

s.t.
rσi

L(σ,σi)
− rσ∗

i

L((σ−i,σ∗
i ),σ

∗
i )

≥ 0 ∀i ∈ N,
∑

j∈P (σ∗) rj = 1
rj ≥ 0 ∀j ∈ M

For a strategy profile τ and a project j, denote by 1j(τ) the indicator function
that is equal to 1 if and only if j ∈ P (τ). The dual of the above linear program
is the following (we associate variable xi with the first constraint for each i ∈ N
and variable γ with the second one):

max γ
s.t.∑

i:σi=j
xi

L(σ,j) − ∑
i:σ∗

j

xi

L((σ−i,j),j)
+ γ1j(σ∗) ≤ 1j(σ) ∀j ∈ M,

xi ≥ 0 ∀i ∈ N

The inverse of the objective value of any feasible solution to this program pro-
vides an upper bound on PoA(n,m).

First of all, we observe that, for any dual solution such that xi = x for each
i ∈ N and γ = x, the dual constrain becomes:

x

(

1j(σ) − |Cj(σ, σ∗)|
L(σ, j)

− |Oj(σ, σ∗)|
L(σ, j) + 1

+ 1j(σ∗)
)

≤ 1j(σ). (3)
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If 1j(σ∗) = 0, (3) is satisfied as long as x ≤ 1. If 1j(σ∗) = 1 and 1j(σ) = 0,
which imply |Cj(σ, σ∗)| = 0, |Oj(σ, σ∗)| ≥ 1, and L(σ, j) + 1 = 1, (3) is satisfied
independently of the value of x. The case of 1j(σ∗) = 1 and 1j(σ) = 1 is then
the only one which can cause a price of anarchy higher than 1 and we focus on
this case in the remainder on the proof. Note that, in this case, we can always
assume |Cj(σ, σ∗)| + |Oj(σ, σ∗)| ≥ 1.

Consider the dual solution such that x = n
2n−1 . As L(σ, j) + 1 ≤ n, (3) is

satisfied. This proves a general upper bound of 2 − 1/n. However, for the case
of n > m, better upper bounds can be derived. Note that, in this case, we have
1 ≤ α ≤ m − 1.

Assume α ≤ m − 2 and consider the dual solution such that x = m−1
2m−3 .

If L(σ, j) ≤ α, the term within the parenthesis in the left-hand side of (3) is
at most 2m−3

m−1 and the constraint is satisfied. If L(σ, j) > α, as |Cj(σ, σ∗)| ≥
L(σ, j) − α, the term within the parenthesis in the left-hand side of (3) is at
most 2 − L(σ,j)−α

L(σ,j) = L(σ,j)+α
L(σ,j) which is maximized for α = m − 2 and L(σ, j) =

α + 1 = m − 1. Again, (3) is satisfied. This proves an upper bound of 2 − 1
m−1 .

Note that this bound does not apply to the case of m = 2, as α cannot be equal
to m − 2 in this case.

Assume now α = m−1 and consider the dual solution such that x = n
n+m−1 .

The assumption α = m − 1 implies that there exists a unique project j ∈
P (σ) ∩ P (σ∗) and so L(σ, j) = n and Cj(σ, σ∗) = n − m + 1. In this case, the
term within the parenthesis in the left-hand side of (3) is exactly n+m−1

n and
(3) is satisfied. This proves an upper bound of n+m−1

n .
As 2 − 1

m−1 ≥ n+m−1
n for n > m > 2, the claimed upper bounds follow. ��

4 Egalitarian Social Welfare

So far we have considered the utilitarian social welfare U(σ) :=
∑

i∈N ui(σ). In
this section we use the egalitarian social welfare E(σ) := mini∈N ui(σ) (to be
maximized). For this section we suppose adapted definitions of the PoA and the
PoS which include E instead of U. The motivation for considering E instead of
U is fairness among the players.

Proposition 7. For the egalitarian social welfare, the PoS of the project
game is unbounded even with 4 players, 2 projects, universal weights and iden-
tical rewards.

Since PoA ≥ PoS, the PoA of the project game is unbounded as well.
One can be tempted to try to enforce a social optimum. However, unlike the
utilitarian social welfare (see Proposition 3), the problem is intractable.

Proposition 8. It is NP-hard to compute a strategy profile that maximizes the
egalitarian social welfare of the project game even if there are two projects,
identical rewards, and universal weights.

Nevertheless, we were able to identify a polynomial case.
Proposition 9. Maximizing the egalitarian social welfare of the project
game can be done in polynomial time when the players have identical weights.
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5 Conclusion and Open Problems

We introduced a new class of games sharing similarities with valid utility games,
singleton congestion games, and hedonic games. We focused on existence, com-
putational complexity and efficiency of pure Nash equilibria under a natural
method for sharing the rewards of the projects that are realized.

Though the existence of a pure Nash equilibrium is showed for many impor-
tant special cases, proving (or disproving) its existence in general is a challenging
task. An interesting special case that is left open is when the number of projects is
small (e.g. m = 2). Other solution concepts (e.g. strong Nash equilibria) deserve
attention.

Our upper bounds on PoA and PoS under the utilitarian social welfare never
exceed 2, but it does not prevent to explore other sharing methods. Moreover,
closing the gap shown in Theorem7 is an intriguing open problem.

Regarding the computation of an optimal strategy profile with respect to
the egalitarian social welfare, there is a gap between hard and polynomial cases
(see Propositions 8 and 9). As a first step, it would be interesting to settle the
complexity of the symmetric case. As the PoS is unbounded under the egalitarian
social welfare, it is natural to ask if a different reward sharing method can provide
better results.
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1 Introduction

Let Q and G be graphs. A subgraph isomorphism η is an injection from V (Q)
to V (G) that preserves the adjacency in Q; that is, if {u, v} ∈ E(Q), then
{η(u), η(v)} ∈ E(G). We say that Q is subgraph-isomorphic to G if there is a
subgraph isomorphism from Q to G, and write Q � G. In this paper, we study
the following problem of deciding the existence of a subgraph isomorphism.

Subgraph Isomorphism
Input: Two graphs G (the host graph) and Q (the pattern graph).
Question: Q � G?

The problem Subgraph Isomorphism is one of the most general and fun-
damental graph problems and generalizes many other graph problems such
as Graph Isomorphism, Clique, Hamiltonian Path/Cycle, and Band-
width. Obviously, Subgraph Isomorphism is NP-complete in general. When
both host and pattern graphs are restricted to be in a graph class C, we call the
problem Subgraph Isomorphism on C. By slightly modifying known reduc-
tions in [7,14], one can easily show that the problem is hard even for very
restricted graph classes. Recall that a linear forest is the disjoint union of paths
and a cluster graph is the disjoint union of complete graphs. We can show the
following hardness of Subgraph Isomorphism by a simple reduction from 3-
Partition [14].

Proposition 1.1 (�1). Subgraph Isomorphism on linear forests and cluster
graphs is NP-complete even if both graphs have the same number of vertices.

Since most of the well-studied graph classes contain all linear forests or all
cluster graphs, it is often hopeless to have a polynomial-time algorithm for an
interesting graph class. This is sometimes true even if we further assume that
the graphs are connected [19,21]. On the other hand, it is polynomial-time solv-
able for trees [27]. This result was first generalized for 2-connected outerplanar
graphs [24], and finally for k-connected partial k-trees [15,26] (where the running
time is XP parameterized by k). In [26], a polynomial-time algorithm for partial
k-trees of bounded maximum degree is presented as well, which is later general-
ized to partial k-trees of log-bounded fragmentation [16]. It is also known that
for chain graphs, co-chain graphs, and threshold graphs, Subgraph Isomor-
phism is polynomial-time solvable [19–21]. In the case where only the pattern
graph has to be in a restricted graph class that is closed under vertex deletions,
a complexity dichotomy with respect to the graph class is known [17].

Because of its unavoidable hardness in the general case, it is often assumed
that the pattern graph is small. In such a setting, we can study the parame-
terized complexity2 of Subgraph Isomorphism parameterized by the size of
the pattern graph. Unfortunately, the W[1]-completeness of Clique [9] implies

1 A black star � means that the proof is omitted or shortened.
2 We assume that the readers are familiar with the concept of parameterized complex-
ity. See e.g. [6] for basic definitions omitted here.
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that this parameterization does not help in general. Indeed, the existence of
a 2o(n log n)-time algorithm for Subgraph Isomorphism is ruled out assuming
the Exponential Time Hypothesis, where n is the total number of vertices [5].
So we need further restrictions on the considered graph classes even in the
parameterized setting. For planar graphs, it is known to be fixed-parameter
tractable [8,11]. This result is later generalized to graphs of bounded genus [4].
For several graph parameters, the parameterized complexity of Subgraph Iso-
morphism parameterized by combinations of them is determined in [25]. In [3],
it is shown that when the pattern graph excludes a fixed graph as a minor, the
problem is fixed-parameter tractable parameterized by treewidth and the size of
the pattern graph. The result in [3] implies also that Subgraph Isomorphism
can be solved in subexponential time when the host graph also excludes a fixed
graph as a minor.

1.1 Our Results

As mentioned above, the research on Subgraph Isomorphism has been done
mostly when the size of the pattern graph is considered as a parameter. However,
in this paper, we are going to study the general case where the pattern graph
can be as large as the host graph.

We first observe that forbidding a graph as an induced substructure (an
induced subgraph, an induced topological minor, or an induced minor) does not
help for making Subgraph Isomorphism tractable unless we make the graph
class trivial by forbidding either adjacent vertices or nonadjacent vertices. This
can be done just by combining some easy observations and known results.

Observation 1.2 (�). Let C be the graph class that forbids a fixed graph H as
either an induced subgraph, an induced topological minor, or an induced minor.
Then, Subgraph Isomorphism on C is polynomial-time solvable if H has at
most two vertices; otherwise, it is NP-complete.

Our main contribution in this paper is the following pair of results on Sub-
graph Isomorphism on graph classes forbidding a fixed graph as a substruc-
ture. (We prove Theorem 1.3 in Sect. 3 and Theorem 1.4 in Sect. 4.)

Theorem 1.3. Let C be the graph class that forbids a fixed connected graph
H �= P5 as either a subgraph, a topological minor, or a minor. Then, Subgraph
Isomorphism on C is polynomial-time solvable if H is a subgraph of P4; other-
wise, it is NP-complete.

Theorem 1.4. Let C be the graph class that forbids a fixed (not necessarily
connected) graph H as either a subgraph, a topological minor, or a minor. Then,
Subgraph Isomorphism on C is

– fixed-parameter tractable parameterized by the order of H if H is a linear
forest such that at most one component is of order 4 and all other components
are of order at most 3;
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– NP-complete if either H is not a linear forest, H contains a component with
six or more vertices, or H contains four components with five vertices.

Note that we have some missing cases. We do not know the complexity of
the problem when the forbidden linear forest H contains either

– two or more disjoint P4 subgraphs but no P5 subgraph, or
– one, two, or three disjoint P5 subgraphs but no P6 subgraph.

2 Preliminaries and Basic Observations

We denote the path of n vertices by Pn, the complete graph of n vertices by Kn,
and the star with � leaves by K1,�. For notational convenience, we allow � to be
0; that is, K1,0 = P1 = K1. The disjoint union of graphs X and Y is denoted by
X ∪ Y and the disjoint union of k copies of a graph Z is denoted by kZ.

A graph Q is a minor of G if Q can be obtained from G by removing vertices,
removing edges, and contracting edges, where contracting an edge {u, v} means
adding a new vertex wu,v, making the neighbors of u and v adjacent to wu,v, and
removing u and v. A graph Q is a topological minor of G if Q can be obtained
by removing vertices, removing edges, and contracting edges, where contraction
of an edge is allowed if one of the endpoints of the edge is of degree 2. A graph
Q is a subgraph of G if Q can be obtained by removing vertices and edges. If
we cannot remove edges but can do the other modifications as before, then we
get the induced variants induced minor, induced topological minor, and induced
subgraph.

Recall that a graph is a linear forest if it is the disjoint union of paths. In
other words, a graph is a linear forest if and only if it does not contain a cycle
nor a vertex of degree at least 3. Observe that in all graph containment relations
mentioned above, if we do not forbid any linear forest from a graph class, then the
class includes all linear forests. Thus, by Proposition 1.1, we have the following
lemma.

Lemma 2.1. If H is not a linear forest, then Subgraph Isomorphism is NP-
complete for graphs that do not contain H as a minor, a topological minor, a
subgraph, an induced minor, an induced topological minor, or an induced sub-
graph.

2.1 Graphs Forbidding a Short Path as a Minor

By the discussion above, we can focus on a graph class forbidding a linear forest
as a minor (or equivalently as a topological minor or a subgraph). We here
characterize graph classes forbidding a short path as a minor.

Lemma 2.2 (�). A connected P3-minor free graph is isomorphic to K1 or K2.

Lemma 2.3 (�). A connected P4-minor free graph is isomorphic to either K3

or K1,s for some s ≥ 0.
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...

︸ ︷︷ ︸

n+i

...

4n
︷ ︸︸ ︷

... .........
︸ ︷︷ ︸

3n−i

...
︸ ︷︷ ︸

n+j
︸ ︷︷ ︸

3n−j
︸ ︷︷ ︸

n+k
︸ ︷︷ ︸

3n−k

{ui, uj, uk} ∈ C

Fig. 1. The tree in G corresponding to {ui, uj , uk} ∈ C.

3 Forbidding a Connected Graph as a Minor

Here we first show that Subgraph Isomorphism on Pk-minor free graphs is
linear-time solvable if k ≤ 4. Note that Pk-minor free graphs include all Pk′-
minor free graphs if k′ ≤ k.

The following result can be easily obtained from Lemma2.3.

Lemma 3.1 (�). Subgraph Isomorphism on P4-minor free graphs is linear-
time solvable.

The following theorem implies that Subgraph Isomorphism on Pk-minor
free graphs is NP-complete for every k ≥ 6.

Theorem 3.2. Subgraph Isomorphism is NP-complete when the host graph
is a forest without paths of length 6 and the pattern is a collection of stars.

Proof. The problem clearly is in NP. To show hardness, we reduce from Exact
3-Cover [14]:

Exact 3-Cover
Input: Collection C of subsets of a set U such that each c ∈ C has size 3.
Question: Is there a subcollection C′ ⊆ C such that

⋃

C∈C′ C = U and
|C′| = |U |/3?

Suppose we have an instance (C, U) of Exact 3-Cover given, where U =
{u0, . . . , un−1}. From (C, U), we construct the host graph G and the pattern Q.

The host G consists of the disjoint union of |C| trees as follows (see Fig. 1).
For each set C ∈ C, we take a tree in G as follows. Take a star K1,4n+6. For each
ui ∈ C, do the following: take one of the leaves of the star, and add n+i pendant
vertices to it. Take another leaf of the star, and add 3n− i pendant vertices to it.
I.e., if C = {ui, uj , uk}, then the corresponding tree has seven vertices of degree
more than 1: one vertex with degree 4n+6, which is also adjacent to each of the
other six non-leaf vertices; the non-leaf vertices have degree n+ i+1, 3n− i+1,
n + j + 1, 3n − j + 1, n + k + 1, and 3n − k + 1. Call the vertex of degree 4n + 6
the central vertex of the component of C.

The pattern graph Q consists of a number of stars (see Fig. 2):
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︸ ︷︷ ︸

n+i

...
︸ ︷︷ ︸

3n−i

...

i ∈ {0, . . . , n − 1}
...

︸ ︷︷ ︸

4n

× n/3
...

︸ ︷︷ ︸

4n+6

× (|C| − n/3)

Fig. 2. The pattern graph Q.

– We have n/3 stars K1,4n.
– We have |C| − n/3 stars K1,4n+6.
– For each i ∈ {0, . . . , n − 1}, we have stars K1,n+i and K1,3n−i. Call these the
element stars.

From (C, U), G and Q can be constructed in polynomial time. Now we show
that Q � G if and only if (C, U) is a yes-instance of Exact 3-Cover. We
assume that n > 6 in the following.

The if direction: Suppose that the Exact 3-Cover instance (C, U) has a solu-
tion C′ ⊆ C.

We map each K1,4n+6 of Q into a component M of G corresponding to a
set D /∈ C′. The center of K1,4n+6 is mapped to the central vertex of M and all
leaves to its neighbors. The other vertices T are isolated and not used.

Embed each K1,4n of Q into a component L of G corresponding to a set
C ∈ C′, mapping the center of K1,4n to the central vertex of L, and the leaves
of K1,4n to leaves neighboring the central vertex of L. After we have done so,
we left in this component six stars: if C = {ui, uj , uk}, then the vertices in L
that we did not yet use form stars K1,n+i, K1,3n−i, K1,n+j , K1,3n−j , K1,n+k,
K1,3n−k. We thus can embed the element stars corresponding to ui, uj , and uk

in these stars, and have embedded the entire pattern in the host graph since C′

is a cover of U .

The only if direction: Suppose that Q � G. Note that both Q and G have exactly
|C| vertices of degree at least 4n. Thus it follows that each vertex of degree at
least 4n in Q must be mapped to a central vertex of a component in G. We can
see that one of the following two cases must hold for the components in the host
graph G.

Case 1: A star K1,4n+6 is embedded in the component. This “uses up”
the central vertex and all its neighbors. The only vertices in the component that
are not in the image of the star K1,4n+6 are leaves with its neighbor being used:
these isolated vertices thus cannot be used for embedding any other stars. So all
element stars must be embedded in components for which Case 2 holds.

Case 2: A star K1,4n is embedded in the component. At this point,
note that the total number of vertices of element stars in Q equals 4n2 + 2n:
each of the n elements has in total 4n leaves and two high degree vertices in
its element stars. Also, the total number of vertices not used by the stars K1,4n

in the Case 2-components equals 4n2 + 2n: we have n/3 components of Case
2 in G and each has 16n + 7 vertices of which 4n + 1 are used for embedding
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the star K1,4n. Thus, each vertex in a Case 2-component M must be used for
embedding a vertex. This is only possible if we embed in M the element stars
of the elements in the set corresponding to M .

So, let C′ be the sets whose component is of Case 2, i.e., where we embedded
a K1,4n in its component. This subcollection C′ is a solution for Exact 3-
Cover: for each element ui, its element stars are embedded in a component that
corresponds to a set C that contains ui, and by the argument above C ∈ C′. 	


By Lemma 2.1, if a connected graph H is not a path, then Subgraph Iso-
morphism on H-minor free graphs is NP-complete. Assume that H is a path
Pk. If k ≥ 6, then by Theorem3.2 the problem is NP-complete. If k ≤ 4, then by
Lemma 3.1 the problem can be solved in polynomial time. This completes the
proof of Theorem1.3.

4 Forbidding a Disconnected Graph as a Minor

In this section, we study the more general cases where the forbidden minor H
is not necessarily connected. By Lemma 2.1, we can focus on linear forests H.
We already know, by Theorem3.2, if H contains a component with six or more
vertices the problem becomes NP-complete. Thus in the following we consider
the case where the components of H have five or less vertices.

Using the results in this section, we can prove Theorem 1.4. Corollary 4.2
implies the positive case of Theorem 1.4. Theorems 3.2 and 4.4 together with
Lemma 2.1 imply the negative cases.

4.1 Subgraph Isomorphism on (P4 ∪ kP3)-Minor Free Graphs

We show that Subgraph Isomorphism on (P4 ∪ kP3)-minor free graphs is
fixed-parameter tractable when parameterized by k. To this end, we present an
algorithm that is parameterized by the vertex integrity, which we think is of
independent interest. The vertex integrity [1] of a graph is the minimum integer
k such that there is a vertex set S ⊆ V such that |S| ≤ k and the maximum
order of the components of G − S is at most k − |S|. We call such S a vi(k) set
of G. Note that the property of having vertex integrity at most k is closed under
the subgraph relation.

This subsection is devoted to the proof of the following theorem.

Theorem 4.1. Subgraph Isomorphism on graphs of vertex integrity at most
k is fixed-parameter tractable when parameterized by k.

By combining Theorem 4.1, Lemma 3.1, and the fact that kP3-minor free
graphs have vertex integrity at most 3k − 1, we can prove the following.

Corollary 4.2 (�). Subgraph Isomorphism on (P4∪kP3)-minor free graphs
is fixed-parameter tractable when parameterized by k.

To prove Theorem 4.1, we start with the following simple fact.
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Lemma 4.3 (�). Let η be a subgraph isomorphism from Q to G. For every
vi(k) set T of G, there exists a minimal vi(k) set S of Q such that η(S) ⊆ T .

Our algorithm assumes that there is a subgraph isomorphism η from Q to G
and proceeds as follows:

1. find a vi(k) set T of G;
2. guess a minimal vi(k) set S of Q such that η(S) ⊆ T ;
3. guess the bijection between S and R := η(S);
4. guess a subset F ⊆ E(G − R) of the edges “unused” by η such that R is a

vi(k) set of G − F ;
5. solve the problem of deciding the extendability of the guessed parts as the

feasibility problem of an integer linear program with a bounded number of
variables.

Proof (Proof of Theorem 4.1). Let G and Q be graphs of vertex integrity at
most k. Our task is to find a subgraph isomorphism η from Q to G in FPT time
parameterized by k.

We first find a vi(k) set T of G and then guess a minimal vi(k) set S of Q such
that η(S) ⊆ T for some subgraph isomorphism η from Q to G. By Lemma 4.3,
such a set S exists if η exists. Finding T can be done in O(kk+1n) time [10],
where n = |V (G)|. To guess S, it suffices to list all minimal vi(k) set S of Q.
The same algorithm in [10] can be used again: it lists all O(kk) candidates by
branching on k + 1 vertices that induce a connected subgraph.

We then guess the subset R of T such that η(S) = R. We also guess for each
s ∈ S, the image η(s) ∈ R. That is, we guess an injection from S to T . The
number of such injections is

(|T |
|S|

)

· |S|! ≤ k!. If there is an edge {u, v} ∈ E(Q[S])
such that {η(u), η(v)} /∈ E(G[R]), then we reject this guess. Otherwise, we try
to further extend η.

Observe that R is not necessarily a vi(k) set of G. In the following, we guess
“unnecessary” edges in G − R. That is, we guess a subset F of the edges that
are not used by η as images of any edges in Q. Furthermore, we select F so that
R is a vi(k) set of G − F . Such F exists because η embeds Q − S (and no other
things) into G − R.

Guessing F : We now show that the number of candidates of F that we need
to consider is bounded by some function in k. We partition F into three sets
F1 = F ∩ E(G[T − R]), F2 = F ∩ E(V (G) − T, T − R), and F3 = F ∩ E(G − T )
and then count the numbers of candidates separately.

Guessing F1: For F1, we just use all 2|E(G[T−R])| < 2k2
subsets of E(G[T −

R]) as candidates. If R is not a vi(k) set of G[T ] − F1, we reject this F1.
Guessing F2: Since we are finding F such that R is a vi(k) set of G − F ,

each vertex in T − R has less than k edges to V (G) − T in G − F . Thus fewer
than k2 components of V (G) − T have edges to T − R in G − F . We guess such
components C.

Observe that each component in V (G) − T is of order at most k and that
each vertex of V (G) − T can be partitioned into at most 2k types with respect
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to the adjacency to T . This implies that the components of V (G) − T can be
classified into at most 4k2

types (2k2
for the isomorphism type and (2k)k for the

adjacency to T ) in such a way that if two components C1 and C2 of G − T are
of the same type, then there is an automorphism of G that fixes T and maps C1

to C2. Given this classification of the components in V (G) − T , we only need to
guess how many components of each type are included in C. For this guess, we

have at most
(
4k

2
+k2−1
k2

)

< 4k4+k2
options.

For each guess C, we guess the edges connecting the components in C to
T − R in G − F . Since |C| < k2 and |C| ≤ k for each C ∈ C, there are at most
k3 · |T − R| ≤ k4 candidate edges. We just try all O(2k4

) subsets F ′
2 of such

edges, and set F2 = E(V (G) − T, T − R) − F ′
2. In total, we have O(2k4+k2 · 2k4

)
options for F2.

Guessing F3: Recall that G − T does not contain any component of order
more than k. Hence, if G−R− (F1 ∪F2) has a component of order more than k,
then it consists of some vertices in T − R and some components in C. Thus, we
only need to pick some edges of the components in C for F3 to make R a vi(k)
set of G − F . We use all 2k4

subsets of the edges of the components in C as a
candidate of F3.

In total, F = F1 ∪ F2 ∪ F3 has at most 2k2 · 4k4+k2 · 2k4 · 2k4
candidates, and

each candidate can be found in FPT time. We reject this guess F if R is not a
vi(k) set of G − F . In the following, we assume that F is guessed correctly and
denote G − F by G′.

Extending η: Recall that we already know how η maps S to R and that each
component in Q − S and G′ − R is of order at most k. We now extend η by
determining how η maps Q−S to G′ −R. By renaming vertices, we can assume
that S = {s1, . . . , sq}, R = {r1, . . . , rq}, and η(si) = ri for 1 ≤ i ≤ q.

We say that a vertex u in Q − S matches a vertex v in G′ − R if {i | si ∈
NQ(u) ∩ S} ⊆ {i | ri ∈ NG′(v) ∩ R}. A set of components {C1, . . . , Ch} of Q − S
fits a component D of G′−R if there is an isomorphism φ from the disjoint union
of C1, . . . , Ch to D such that for all u ∈

⋃

i V (Ci) and v ∈ V (D), φ(u) = v holds
only if u matches v. Note that if h > k, then {C1, . . . , Ch} can fit no component
of G′ − R.

As we did before for guessing F2, we classify the components of Q − S and
G′ − R into at most 4k2

types. Two components C1 and C2 of Q − S (or of
G′ −R) are of the same type if and only if there is an isomorphism φ from C1 to
C2 such that φ(v1) = v2 implies that NQ(v1)∩S = NQ(v2)∩S (or NG′(v1)∩R =
NG′(v2) ∩ R, respectively). We denote by t(C) the type of a component C and
by t({C1, . . . , Ch}) the multi-set {t(C1), . . . , t(Ch)}. Observe that {C1, . . . , Ch}
fits D if and only if all sets {C ′

1, . . . , C
′
h} with t({C ′

1, . . . , C
′
h}) = t({C1, . . . , Ch})

fits D′ with t(D′) = t(D).
Observe that the guessed part η|S can be extended to a subgraph isomor-

phism η from Q to G′ if and only if there is a partition of the components of Q−S
such that each part {C1, . . . , Ch} in the partition can be injectively mapped to
a component D of G′ − R where {C1, . . . , Ch} fits D. To check the existence of
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such a partition, we only need to find for each pair of a multi-set T of types of a
set of components in Q − S and a type τ of a component in G′ − R, how many
sets of components of type T the map η embeds to components of type τ . We
use the following ILP formulation to solve this problem.

Let nτ and n′
τ be the numbers of type-τ components in Q − S and G′ − R,

respectively. These numbers can be computed in FPT time parameterized by k.
For each type τ and for each multi-set T of types such that T fits τ , we use

a variable xT ,τ to represent the number of type-T multi-sets of components in
Q − S that are mapped to type-τ components in G′ − R. For each type τ of
components in G′ − R, we can embed at most nτ sets of components in Q − S.
This constraint is expressed as follows:

nτ ≥
∑

T : T fits τ

xT ,τ for each type τ. (1)

For each type σ of components in Q − S, we need to embed all nσ components
of type σ into some components of G − R′. We can express this constraint as
follows:

nσ =
∑

T ,τ : σ∈T and T fits τ

μT ,σ · xT ,τ for each type σ, (2)

where μT ,σ is the multiplicity of σ in T . This completes the ILP formulation
of the problem. We do not have any objective function and just ask for the
feasibility. The construction can be done in FPT time parameterized by k.

Observe that there are at most
(
4k

2
+k−1
k

)

< 4k3+k multi-sets T of types of
components. Thus the ILP above has at most 4k2 ·4k3+k variables (the first factor
for τ and the second for T ) and at most 4k2 · 4k3+k +4k2 · 4k2 · 4k3+k constraints
(the first term for (1) and the second for (2)) of length O(4k2 · 4k3+k). The
coefficients are upper bounded by |V (G′)|. It is known that the feasibility check
of such an ILP can be done in FPT time parameterized by k [12,18,23]. Thus,
the problem can be solved in FPT time when parameterized by k. 	


4.2 Subgraph Isomorphism on 4P5-Minor Free Graphs

For this case, we show the NP-hardness by a reduction from (3, B2)-Sat [2],
which is a restricted version of 3-Sat. (The proof is omitted in this version.)

Theorem 4.4 (�). Subgraph Isomorphism on 4P5-minor free graphs is NP-
complete.

5 Concluding Remarks

As we mentioned before, there are some unsettled cases for Subgraph Isomor-
phism on H-minor free graphs. If H is connected, then H = P5 is only the
unknown case. When H can be disconnected, we do not know the complexity
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vertex cover number

twin-cover number

neighborhood diversity vertex integrity

treedepth

pathwidth

treewidth

clique-width

FPT

paraNP-complete

modular-width

Fig. 3.Graph parameters and Subgraph Isomorphism. For each connection of param-
eters, there is a function in the parameter above that lower bounds the one below.

when H is a linear forest and either H contains kP4 as a subgraph for k ≥ 2 but
no P5; or H contains kP5 as a subgraph for k ∈ {1, 2, 3} but no P6.

Our results imply some parameterized results. See Fig. 3. (We omit the def-
initions of the parameters.) The proof of Theorem3.2 implies that Subgraph
Isomorphism is NP-complete even for graphs of tree-depth [28] at most 3. This
bound is tight by Lemma3.1 since graphs of tree-depth at most 2 does not
contain P4 as a subgraph. Proposition 1.1 implies it is NP-complete even for
graphs of constant twin-cover number [13] because cluster graphs have twin-
cover number 0. For the parameterization by neighborhood diversity [22], we
can use techniques similar to the ones we used in this paper.

Theorem 5.1 (�). Subgraph Isomorphism on graphs of neighborhood diver-
sity at most k is fixed-parameter tractable parameterized by k.
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Abstract. Given an undirected graph G = (V, E) the NP-hard Strong
Triadic Closure (STC) problem asks for a labeling of the edges as
weak and strong such that at most k edges are weak and for each
induced P3 in G at least one edge is weak. In this work, we study the
following generalizations of STC with c different strong edge colors. In
Multi-STC an induced P3 may receive two strong labels as long as they
are different. In Edge-List Multi-STC and Vertex-List Multi-STC
we may additionally restrict the set of permitted colors for each edge of G.
We show that, under the ETH, Edge-List Multi-STC and Vertex-

List Multi-STC cannot be solved in time 2o(|V |2), and that Multi-STC
is NP-hard for every fixed c. We then extend previous fixed-parameter
tractability results and kernelizations for STC to the three variants with
multiple edge colors or outline the limits of such an extension.

1 Introduction

Social networks represent relationships between humans such as acquaintance
and friendship in online social networks. One task in social network analysis is
to determine the strength [15,16] and type [3,17] of the relationship signified by
each edge of the network. One approach to infer strong ties goes back to the
notion of strong triadic closure [6] which postulates that, if an agent has strong
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relations to two other agents, then these two should have at least a weak relation.
Following this assertion, Sintos and Tsaparas [16] proposed to find strong ties
in social networks by labeling the edges as weak or strong such that the strong
triadic closure property is fulfilled and the number of strong edges is maximized.

Sintos and Tsaparas [16] also formulated an extension where agents may
have c different types of strong relationships. In this model, the strong triadic
closure property only applies to edges of the same strong type. This is motivated
by the following observation: agents may very well have close relations to agents
that do not know each other if these relations arise in segregated contexts. For
example, it is quite likely that one’s rugby teammates do not know all of one’s
close colleagues. The edge labelings that model this variant of strong triadic
closure and the corresponding problem are defined as follows.

Definition 1. A c-labeling L = (S1
L, . . . , Sc

L,WL) of an undirected graph G =
(V,E) is a partition of the edge set E into c+1 color classes. The edges in Si

L, i ∈
[c], are strong and the edges in WL are weak; L is an STC-labeling if there exists
no pair of edges {u, v} ∈ Si

L and {v, w} ∈ Si
L such that {u,w} �∈ E.

Multi Strong Triadic Closure (Multi-STC)
Input: An undirected graph G = (V,E) and integers c ∈ N and k ∈ N.
Question: Is there a c-colored STC-labeling L with |WL| ≤ k?

We refer to the special case c = 1 as Strong Triadic Closure (STC). STC,
and thus Multi-STC, is NP-hard [16]. We study the complexity of Multi-STC
and two generalizations of Multi-STC which are defined as follows.

The first generalization deals with the case when one restricts the set of
possible relations for some agents. Assume, for example, that strong edges cor-
respond to family relations or professional relations. If one knows the profession
of some agents, then this knowledge can be modeled by introducing different
strong colors for each profession and constraining the sought edge labeling in
such a way that each agent may receive only a strong edge corresponding to a
familial relation or to his profession. In other words, for each agent we are given
a list Λ of strong colors that may be assigned to incident relationships.

Definition 2. Let G = (V,E) be a graph, Λ : V → 2{1,2,...,c} a mapping for
some c ∈ N, and L = (S1

L, . . . , Sc
L,WL) a c-colored STC-labeling. We say that

an edge {v, w} ∈ E satisfies the Λ-list property under L if {v, w} ∈ WL or
{v, w} ∈ Sα

L for some α ∈ Λ(v) ∩ Λ(w). We call a c-colored STC-labeling Λ-
satisfying if every edge e ∈ E satisfies the Λ-list property under L.

Vertex-List Multi Strong Triadic Closure (VL-Multi-STC)
Input: An undirected graph G = (V,E), integers c ∈ N and k ∈ N, and
vertex lists Λ : V → 2{1,2,...,c}.
Question: Is there a Λ-satisfying STC-labeling L with |WL| ≤ k?

Multi-STC is the special case where Λ(v) = {1, . . . , c} for all v ∈ V . One might
also specify a set of possible strong colors for each edge. This can be useful if
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Table 1. An overview of the parameterized complexity results.

Parameter Multi-STC VL-Multi-STC EL-Multi-STC

k FPT if c ≤ 2, NP-hard for k = 0 for all c ≥ 3
k1 4k1-vertex kernel W[1]-hard

O((c+ 1)k1 · (cm+ nm)) time
(c, k1) 4k1-vertex kernel no polynomial kernel

2c+1k1-vertex kernel

certain relations are not possible. For example, if two rugby players live far apart,
it is unlikely that they play together. This more general constraint is formalized
as for vertex lists with two differences: we are given edge lists Ψ : E → 2{1,2,...,c}

and for each edge e we have e ∈ WL or e ∈ Sα
L for some α ∈ Ψ(e).

Edge-List Multi Strong Triadic Closure (EL-Multi-STC)
Input: An undirected graph G = (V,E), integers c ∈ N and k ∈ N and
edge lists Ψ : E → 2{1,2,...,c}.
Question: Is there a Ψ -satisfying STC-labeling L with |WL| ≤ k?

From a more abstract point of view, in STC we are to cover all induced P3s,
the paths on three vertices, in a graph by selecting at most k edges. Moreover, all
STC-problems studied here have close ties to finding proper vertex colorings in a
related graph, the Gallai graph [4] of the input graph G. Hence we are motivated
to study these problems from a pure combinatorial and computational complex-
ity point of view in addition to the known applications of Multi-STC in social
network analysis [16]. So far, algorithmic work has focused on STC [5,7,11,16].
Motivated by the NP-hardness of STC [11,16], the parameterized complexity
of STC was studied. The two main parameters so far are the number k of weak
edges and the number � := |E| − k of strong edges in an STC-labeling with a
minimal number of weak edges. For k, STC is fixed-parameter tractable [5,7,16]
and admits a 4k-vertex kernel [7]. For �, STC is fixed-parameter tractable but
does not admit a polynomial problem kernel [5,7].

Our Results. We show that for all c ≥ 1 Multi-STC, VL-Multi-STC, and EL-
Multi-STC are NP-hard. In particular, for all c ≥ 3, we obtain NP-hardness
even if k = 0. We then show that, assuming the ETH, there is no 2o(|V |2)-time
algorithm for VL-Multi-STC and EL-Multi-STC even if k = 0 and c ∈
O(|V |).

We then proceed to a parameterized complexity analysis; see Table 1 for an
overview. Since all variants are NP-hard even if k = 0, we consider a structural
parameter related to k. This parameter, denoted by k1, is the minimum number
of weak edges needed in an STC-labeling for c = 1. Thus, if k1 is known, then
we may immediately accept all instances with k ≥ k1; in this sense one may
assume k < k1 for Multi-STC. For VL-Multi-STC and EL-Multi-STC this
is not necessarily true due to some border cases of the definition.
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The parameter k1 is relevant for two reasons: First, it allows us to determine
to which extent the FPT algorithms for STC carry over to Multi-STC, VL-
Multi-STC, and EL-Multi-STC. Second, k1 has a structural interpretation:
it is the vertex cover number of the Gallai graph of the input graph G. We
believe that this parameterization might be useful for other problems. The spe-
cific results are as follows. We extend the 4k1-vertex kernelization [7] from STC
to Multi-STC. This yields a 2c+1 · k1-vertex kernel for VL-Multi-STC and
EL-Multi-STC. We show that VL-Multi-STC and EL-Multi-STC are more
difficult than Multi-STC: parameterization by k1 alone leads to W[1]-hardness
and both are unlikely to admit a kernel that is polynomial in c + k1. We com-
plement these results by a providing an O((c + 1)k1 · (c · |E| + |V | · |E|))-time
algorithm for the most general EL-Multi-STC. Due to lack of space several
proofs are deferred to a full version.

Notation. We consider undirected graphs G = (V,E) where n := |V | denotes
the number of vertices and m := |E| denotes the number of edges in G. For a
vertex v ∈ V we denote by NG(v) := {u ∈ V | {u, v} ∈ E} the open neighborhood
of v and by NG[v] := N(v) ∪ {v} the closed neighborhood of v. For any two
vertex sets V1, V2 ⊆ V , we let EG(V1, V2) := {{v1, v2} ∈ E | v1 ∈ V1, v2 ∈ V2}
and EG(V ′) := EG(V ′, V ′). We may omit the subscript G if the graph is clear
from the context. The subgraph induced by a vertexset S is denoted by G[S] :=
(S,EG(S)). A proper vertex coloring with c strong colors for some c ∈ N is a
mapping a : V → {1, . . . , c} such that there is no edge {u, v} ∈ E with a(u) =
a(v). For the relevant definitions of parameterized complexity refer to [2].

Gallai Graphs, c-Colorable Subgraphs, and Their Relation to STC. Multi-STC
can be formulated in terms of so-called Gallai graphs [4].

Definition 3. Given a graph G = (V,E), the Gallai graph G̃ = (Ṽ , Ẽ) of G is
defined by Ṽ := E and Ẽ := {{e1, e2} | e1 and e2 form an induced P3 in G}.
The Gallai graph of an n-vertex and m-edge graph has O(m) vertices and O(mn)
edges. For c = 1, in other words, for STC, a graph G = (V,E) has an STC-
labeling with at most k weak edges if and only if its Gallai graph has a vertex
cover of size at most k [16]. This gives an O(1.28k + nm)-time algorithm by
using the current fastest algorithm for Vertex Cover [1]. More generally, a
graph G = (V,E) has a c-colored STC-labeling with at most k weak edges if and
only if the Gallai graph of G has a c-colorable subgraph on m − k vertices [16].

In the following we extend the relation to EL-Multi-STC by considering
list-colorings of the Gallai graph. The special cases VL-Multi-STC, Multi-
STC, and STC nicely embed into the construction. First, let us formally define
the problem that we need to solve in the Gallai graph. Given a graph G = (V,E),
we call a mapping χ : V → {0, 1, . . . , c} a subgraph-c-coloring if there is no
edge {u, v} ∈ E with χ(u) = χ(v) �= 0. Vertices v with χ(v) = 0 corre-
spond to deleted vertices. The List-Colorable Subgraph problem is, given
a graph G = (V,E), integers c, k ∈ N, and lists Γ : V → 2{1,...,c}, to decide
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whether there is a subgraph-c-coloring χ : V → {0, 1, . . . , c} with |{v ∈ V |
χ(v) = 0}| ≤ k and χ(w) ∈ Γ (w) ∪ {0} for every w ∈ V .

Proposition 1. An instance (G, c, k, Ψ) of EL-Multi-STC is a Yes-instance
if and only if (G̃, c, k, Ψ) is a Yes-instance of List-Colorable Subgraph,
where G̃ is the Gallai graph of G.

We make use of this correspondence in one FPT algorithm and below.

Proposition 2. List-Colorable Subgraph can be solved in O(3n · c2(n +
m)) time. EL-Multi-STC can be solved in O(3m · c2mn) time.

2 Classical and Fine-Grained Complexity

We first observe that Multi-STC is NP-hard for all c. For c = 2 it was claimed
that Multi-STC is NP-hard since in the Gallai graph this is exactly the NP-hard
Odd Cycle Transversal problem [16]. It is not known, however, whether
Odd Cycle Transversal is NP-hard on Gallai graphs. Hence, we provide a
proof of NP-hardness for c = 2 and further hardness results for all c ≥ 3.

Theorem 1. Multi-STC is NP-hard (a) for c = 2 even on graphs with maxi-
mum degree four, and (b) for every c ≥ 3, even if k = 0.

We now provide a stronger hardness result for VL-Multi-STC and EL-
Multi-STC: we show that they are unlikely to admit a single-exponential-time
algorithm with respect to the number n of vertices. Thus, the algorithm behind
Proposition 2 is optimal in the sense that m cannot be replaced by n. The
reduction behind this hardness result is inspired by a reduction used to show
that Rainbow Coloring cannot be solved in 2o(n3/2) time under the ETH [12].
We remark that for List-Edge Coloring an ETH-based lower bound of 2o(n2)

has been shown recently [13]. While List-Edge Coloring is related to EL-
Multi-STC, the reduction does not work directly for EL-Multi-STC because
the instances created in this reduction contain triangles. Moreover, we consider
the more restricted VL-Multi-STC problem.

Theorem 2. If the ETH is true, then VL-Multi-STC cannot be solved in
2o(|V |2) time even if restricted to instances with k = 0.

Proof. We give a reduction from 3-SAT to VL-Multi-STC such that the result-
ing graph has O(

√|φ|) vertices, where φ is the input formula and |φ| is the
number of variables plus the number of clauses. The ETH and the Sparsification
Lemma [9] then imply the claimed lower bound. Let φ be a 3-CNF formula with
a set X = {x1, x2, . . . , xn} of n variables and a set C := {C1, C2, . . . , Cm} of
m ≤ 4

3n clauses. We can furthermore assume that each variable occurs in at
most four clauses in φ [18]. Observe that, then, φ has at most 4

3n clauses. Let Cj

be a clause and xi a variable occurring in Cj . We define the occurrence number
Ω(Cj , xi) as the number of clauses in {C1, C2, . . . , Cj} that contain xi. Since
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Fig. 1. A sketch of the construction. Gray rectangles represent the variable-soundness
gadget, ⊗ a clique, and � an independent set. Edge {ηupC(Cj)

, θdownC(Cj)
} represents

a clause Cj = (x1 ∨ x2 ∨ x3) with Ω(Cj , x1) = 1 and Ω(Cj , x2) = Ω(Cj , x3) = 4. The
edge {γ1

midX (x1)
, δdownX (x1)

} has strong color T 1
1 which models an assignment where x1

is true, which satisfies Cj . Due to the compression, we may have mid(x1) = mid(x2)
and therefore x1 and x2 may share the four middle vertices.

each variable occurs in at most four clauses, we have Ω(Cj , xi) ∈ {1, 2, 3, 4}.
We now construct an equivalent instance (G = (V,E), c = 9n + 4, k = 0, Λ) for
VL-Multi-STC such that |V | ∈ O(

√
n). First, we give some intuition.

The strong colors 1, . . . , 8n represent the true and false assignments of the
occurrences of the variables. Throughout this proof we refer to these strong colors
as T r

i , F r
i with i ∈ {1, . . . , n} and r ∈ {1, 2, 3, 4}. The idea is that T r

i represents
assigning ‘true’ and F r

i represents assigning ‘false’ to the rth occurrence of a
variable xi ∈ X. The strong colors 8n + 1, . . . , 9n + 4 are auxiliary colors which
we need for the correctness of our construction. We refer to these strong colors
as R1, . . . , Rn and Z1, Z2, Z3, Z4. Due to lack of space, we give only a sketch of
the construction. Herein, we only mention the auxiliary colors Z2, Z3 and Z4. In
the variable gadget, there are four distinct edges e1, e2, e3, e4 for each variable xi

representing the (at most) four occurrences of the variable xi. Every such edge er

can only be labeled with the strong colors T r
i and F r

i . The coloring of these edges
represents a truth assignment to the variable xi. In the clause gadget, there are
m distinct edges such that the coloring of these edges represents a choice of
literals that satisfies φ. The edges between the two gadgets make the values of
the literals from the clause gadget consistent with the assignment of the variable
gadget. The construction consists of five layers. In the variable gadget we have
an upper- a middle- and a down layer (UX ,MX and DX). In the clause gadget
we have an upper and a down layer (UC and DC). Figure 1 shows a sketch of the
construction.
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The Variable Gadget. The vertices in the middle layer and the down layer form
a variable-representation gadget, where each edge between the two layers rep-
resents one occurrence of a variable. The vertices in the upper layer form a
variable-soundness gadget, which we need to ensure that for each variable either
all occurrences are assigned ‘true’ or all occurrences are assigned ‘false’. We start
by describing the variable-representation gadget. Let

MX := {γr
t | t ∈ {1, . . . , �√n �}, r ∈ {1, 2, 3, 4}} be the set of middle vertices,

DX := {δt | t ∈ {1, . . . , �√n � + 9} be the set of down vertices.

We add edges such that DX becomes a clique in G. To specify the correspon-
dence between the variables in X and the edges in the variable-representation
gadget, we define below two mappings midX : X → {1, . . . , �√n �} and downX :
X → {1, . . . , �√n � + 9}. Then, for each variable xi ∈ X we add four edges
{γr

midX(xi)
, δdownX(xi)} for r ∈ {1, 2, 3, 4}. The truth assignment for each variable

will be transmitted to a clause by edges between the variable and clause gadgets.
To ensure that each such transmitter edge is used for exactly one occurrence of
one variable, we first define the variable-conflict graph HX

φ := (X,ConflX) by
ConflX := {{xi, xj} | xi and xj occur in the same clause C ∈ C}. We use HX

φ

to define midX and downX . Since every variable of φ occurs in at most four
clauses, the maximum degree of HX

φ is at most 8. Hence, a proper vertex 9-
coloring χ : X → {1, 2, . . . , 9} for HX

φ can be computed in polynomial time by
a greedy algorithm giving 9 color classes χ−1(1), . . . , χ−1(9). Then, we parti-
tion each color class χ−1(i) into |χ−1(i)|

�√
n � groups arbitrarily such that each group

has size at most �√n �. Let s be the overall number of such groups and let
S := {S1, S2, . . . , Ss} be the family of all such groups of vertices in HX

φ . The
definition of S implies the following.

Claim 1. We have |Si| ≤ �√n � for each i ∈ {1, . . . , s}, and s ≤ �√n � + 9.

For any xi ∈ X let downX(xi) := j be the index of the group Sj containing xi.
By Claim 1, downX(xi) ≤ �√n �+9 = |DX |. The mapping downX is well-defined
since S is a partition of the variable set X. The following is needed to ensure,
for example, that no transmitter edge is used twice.

Claim 2. If xi, xj ∈ X occur in the same clause, then downX(xi) �= downX(xj).

Next, we define the mapping midX : X → {1, . . . , �√n �}. To this end, con-
sider the finite sequence Seqn

1 := (downX(x1),downX(x2), . . . ,downX(xn)) ∈
{1, . . . , �√n �+9}n. Define midX(xi) as the number of occurrences of downX(xi)
in the partial sequence Seqi

1 := (downX(x1), . . . ,downX(xi)). From Claim 1 we
conclude midX(xi) ∈ {1, 2, . . . , �√n �} for every xi ∈ X.

Claim 3. Let xi, xj ∈ X and let r ∈ {1, 2, 3, 4}. If xi �= xj, then it follows that
{γr

midX(xi)
, δdownX(xi)} �= {γr

midX(xj)
, δdownX(xj)}.
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Thus we assigned a unique edge in E(MX ,DX) to each occurrence of a
variable in X. Furthermore, the assigned edges of variables that occur in the
same clause do not share an endpoint in DX (Claim 2). We complete the variable-
representation gadget by defining the vertex list Λ(v) for every v ∈ MX ∪ DX :

Λ(γr
t ) :=

⋃

xi∈X
midX(xi)=t

{T r
i , F r

i , Rj} for every γr
t ∈ MX , and

Λ(δt) :=
⋃

xi∈X
downX(xi)=t

{T 1
i , T 2

i , T 3
i , T 4

i , F 1
i , F 2

i , F 3
i , F 4

i , Z2} for every δt ∈ DX .

With these vertex lists, every edge that represents an occurrence of some
variable can only be labeled with colors that match the truth assignment:

Claim 4. Let xi ∈ X and r ∈ {1, 2, 3, 4}. Then, Λ(γr
midX(xi)

) ∩ Λ(δdownX(xi)) =
{T r

i , F r
i }.

Note that for each variable xi there are four edges {γr
midX(xi)

, δdownX(xi) |
r ∈ {1, 2, 3, 4}} that can only be colored with the strong colors T r

i and F r
i

representing the truth assignments of the four occurrences of variable xi. We need
to ensure that there is no variable xi, where, for example, the first occurrence is
set to ‘true’ (T 1

i ) and the second occurrence is set to ‘false’ (F 2
i ) in a Λ-satisfying

STC-labeling with no weak edges. To this end, we construct a variable-soundness
gadget whose description is deferred to a full version.

The Clause Gadget. The clause gadget consists of an upper layer and a down
layer. Let UC := {ηi | i ∈ {1, . . . , 12�√n � + 1}} be the set of upper vertices and
DC := {θi | i ∈ {1, . . . , �√n �}} be the set of lower vertices. We add edges such
that UC and DC each form cliques in G. Below we define two mappings upC : C →
{1, 2, . . . , 12�√n � + 1}, downC : C → {1, 2, . . . , �√n �}, and vertex lists Λ : V →
2{1,...,c}. Then, for each clause Cj ∈ C we add an edge {ηupC(Cj), θdownC(Cj)}.
Next, we ensure that this edge can only be labeled with the strong colors that
match the literals in Ci. This means, for example, if Ci = (x1 ∨x2 ∨x3) we have
Λ(ηupC(Cj)) ∩ Λ(θdownC(Cj)) = {T

Ω(Cj ,x1)
1 , F

Ω(Cj ,x2)
2 , T

Ω(Cj ,x3)
3 }.

As above, we need to ensure that each variable occurring in a clause has
a unique edge between the clause and variable gadgets which transmits the
variable’s truth assignment to the clause. To achieve this, we define the clause-
conflict graph HC

φ := (C,ConflC) by

ConflC := {{Ci, Cj} | Ci contains a variable xi and Cj contains a variable xj ,

such that downX(xi) = downX(xj)}.

Since each variable occurs in at most four clauses and by Claim1, it follows
that the maximum degree of HC

φ is at most 12 · �√n �. Thus, a proper vertex col-
oring χ : C → {1, 2, . . . , 12 · �√n �+1} such that each color class χ−1(i) contains
at most � m

12·�√
n �+1

� + 1 ≤ �√n � can be computed in polynomial time [10].
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For a clause Ci ∈ C we define upC(Ci) := j as the index of the color class
χ−1(j) that contains Ci. Together with Claim 2 (which argues about the endpoint
in the variable gadget), the following claim (which argues about the endpoint in
the clause gadget) ensures that no transmitter edge is used twice.

Claim 5. If clause Cj1 ∈ C contains xi1 and clause Cj2 ∈ C contains xi2 such
that downX(xi1) = downX(xi2), then upC(Cj1) �= upC(Cj2).

Next, we define downC analogously to upX . Consider the sequence Seqm
1 =

(upC(C1),upC(C2), . . . ,upC(Cn)) and define downC(Cj) as the number of occur-
rences of upC(Cj) in the sequence Seqj

1 := (upC(C1), . . . ,upC(Cj)). Since each
color class contains at most �√n � elements, we have downC(Cj) ≤ �√n �.
Claim 6. If Ci �= Cj, then {ηupC(Ci), θdownC(Ci)} �= {ηupC(Cj), θdownC(Cj)}.

Thus we assigned a unique edge in E(UC ,DC) to each clause. We complete
the description of the clause gadget by defining the vertex lists Λ(v) for every
v ∈ UC ∪ DC . For a given clause Cj ∈ C we define the color set X(Cj) and the
literal color set L(Cj) of Cj by X(Cj) := {T

Ω(Cj ,xi)
i , F

Ω(Cj ,xi)
i | xi occurs in Cj}

and by L(Cj) := {T
Ω(Cj ,xi)
i | xi occurs as a positive literal in Cj}∪ {FΩ(Cj ,xi)

i |
xi occurs as a negative literal in Cj}.

Note that L(Cj) ⊆ X(Cj). The vertex lists for the vertices in UC ∪ DC are

Λ(ηt) :=
⋃

Cj∈C
upC(Cj)=t

X(Cj) ∪ {Z3} for every ηt ∈ UC , and

Λ(θt) :=
⋃

Cj∈C
downC(Cj)=t

L(Cj) ∪ {Z4} for every θt ∈ DC .

Claim 7. Let Cj ∈ C. Then, Λ(ηupC(Cj)) ∩ Λ(θdownC(Cj)) = L(Cj).

By Claim 7, for every clause the assigned edge can only be labeled with strong
colors that match its literals.

Connecting the Gadgets. To complete the construction of G, we add edges
between DX and UC that model the occurrences of variables in clauses. For each
clause Cj ∈ C, we add edges {δdownX(xi1 )

, ηupC(Cj)}, {δdownX(xi2 )
, ηupC(Cj)}, and

{δdownX(xi3 )
, ηupC(Cj)} where xi1 , xi2 , and xi3 are the variables that occur in Cj .

Intuitively, an edge {δdownX(xi), ηupC(Cj)} transmits the truth value of xi to Cj ,
where xi occurs as a positive or negative literal. The following claim states that
the possible strong colors for such an edge are only T

Ω(Cj ,xi)
i and F

Ω(Cj ,xi)
i ,

which correspond to the truth assignment of the Ω(Cj , xi)-th occurrence of xi.

Claim 8. Let Cj ∈ C be a clause and let xi ∈ X be some variable that occurs
in Cj. Then Λ(δdownX(xi)) ∩ Λ(ηupC(Cj)) = {T

Ω(Cj ,xi)
i , F

Ω(Cj ,xi)
i }.
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This completes the description of the construction and basic properties of
the VL-Multi-STC instance (G, 9n+4, 0, Λ). Note that G has O(

√
n) vertices.

The correctness proof is deferred to a full version. ��
Note that in the instance constructed in the proof of Theorem2, every edge

has at most three possible strong colors and c ∈ O(n). This implies the following.

Corollary 1. If the ETH is true, then

(a) EL-Multi-STC cannot be solved in 2o(|V |2) time even if restricted to
instances (G, c, k, Ψ) where k = 0 and maxe∈E |Ψ(e)| = 3.

(b) VL-Multi-STC cannot be solved in co(|V |2/ log |V |) time even if k = 0.

3 Parameterized Complexity

The most natural parameter is the number k of weak edges. The case c = 1
(STC) is fixed-parameter tractable [16]. For c = 2, we also obtain an FPT algo-
rithm: one may solve Odd Cycle Transversal in the Gallai graph G̃ which
is fixed-parameter tractable with respect to k [2]. This extends to EL-Multi-
STC with c = 2 by applying standard techniques. In contrast, for every fixed
c ≥ 3, Multi-STC is NP-hard even if k = 0. Hence, FPT algorithms for (c, k)
are unlikely. We thus define the parameter k1 and analyze the parameterized
complexity of (VL-/EL-)Multi-STC regarding the parameters k1 and (c, k1).

Definition 4. Let G = (V,E) be a graph with a 1-colored STC-labeling L =
(SL,WL) with a minimal number of weak edges. Then k1 = k1(G) := |WL|.
For a given graph G, the value k1 equals the size of a minimal vertex cover of
the Gallai graph G̃ due to Proposition 1. We now provide an FPT result for
EL-Multi-STC parameterized by (c, k1). The main idea of the algorithm is to
solve List-Colorable Subgraph on the Gallai graph of G.

Theorem 3. EL-Multi-STC can be solved in O((c + 1)k1 · (cm + nm)) time.

We conclude that Multi-STC parameterized by k1 is fixed-parameter tractable.

Theorem 4. Multi-STC can be solved in O((k1 + 1)k1 · (k1m + nm)) time.

Theorem 4 follows from a relationship between c and k1, which leads to an
FPT result for Multi-STC parameterized only by k1. Instances with c > k1 are
trivial yes-instances, otherwise Theorem 3 provides FPT running time. However,
there is little hope that something similar holds for VL-Multi-STC.

Theorem 5. VL-Multi-STC parameterized by k1 is W[1]-hard, even if k = 0.
VL-Multi-STC parameterized by (c, k1) does not admit a polynomial kernel
unless NP ⊆ coNP/poly.
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Algorithm 1. EL-Multi-STC kernel reduction
1: Input: G = (V, E) graph, K ⊆ V closed critical clique in G
2: for each v ∈ N (K) do
3: for each ψ ∈ {Ψ(e) �= ∅ | e ∈ E({v}, K)} do
4: i := 0
5: for each w ∈ N(v) ∩ K do
6: if Ψ({v, w}) = ψ then
7: Mark w as important and set i := i + 1

8: if i = |E({v}, N 2(K))| then break

9: Delete all vertices u ∈ K which are not marked as important from G
10: Decrease the value of k by the number of edges e that are incident with a deleted

vertex u and Ψ(e) = ∅.

On Problem Kernelization. Since EL-Multi-STC is a generalization of VL-
Multi-STC, we conclude from Theorem 5 that there is no polynomial kernel
for EL-Multi-STC parameterized by (c, k1) unless NP ⊆ coNP/poly and thus
we give a 2c+1 ·k1-vertex kernel for EL-Multi-STC. To this end we define a new
parameter τ as follows. Let I := (G, c, k, Ψ) be an instance of EL-Multi-STC.
Then τ := |Ψ(E)\{∅}| is defined as the number of different non-empty edge lists
occurring in the instance I. It clearly holds that τ ≤ 2c − 1.

For this kernelization we use critical cliques and critical clique graphs [14].
The kernelization described here generalizes the linear-vertex kernel for STC [7].

Definition 5. A critical clique of a graph G is a clique K where the vertices of K
all have the same neighbors in V \ K, and K is maximal under this property.
Given a graph G = (V,E), let K be the collection of its critical cliques. The
critical clique graph C of G is the graph (K, EC) with {Ki,Kj} ∈ EC ⇔ ∀u ∈
Ki, v ∈ Kj : {u, v} ∈ E .

For a critical clique K we let N (K) :=
⋃

K′∈NC(K) K ′ denote the union of
its neighbor cliques in the critical clique graph and N 2(K) :=

⋃
K′∈N2

C(K) K ′

denote the union of the critical cliques at distance exactly two from K. The
critical clique graph can be constructed in O(n + m) time [8].

Critical cliques are an important tool for EL-Multi-STC because every edge
between the vertices of some critical clique is not part of any induced P3 in G.
Hence, each such edge e is strong under any STC-Labeling unless Ψ(e) = ∅. In
the following, we distinguish between two types of critical cliques. We say that
K is closed if N (K) forms a clique in G and that K is open otherwise. We
will see that the number of vertices in open critical cliques is at most 2k1. The
following reduction rule describes how to deal with large closed critical cliques.

Rule 1. If G has a closed critical clique K with |K| > τ · |E(N (K),N 2(K))|,
then apply Algorithm 1 on G and K.

Proposition 3. Rule 1 is safe and can be applied in polynomial time.

Rule 1 leads to the following kernel result.
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Theorem 6. EL-Multi-STC admits a problem kernel with at most (τ+1) · 2k1
vertices, EL-Multi-STC admits a kernel with at most 2c+1k1 vertices, and
Multi-STC admits a problem kernel with at most 4k1 vertices.

For the last two statements of Theorem 6, recall that for any EL-Multi-STC
instance (G, c, k, Ψ) we have τ ≤ 2c − 1. Also, Multi-STC is the special case of
EL-Multi-STC where every edge has the list {1, 2, . . . , c}, and thus τ = 1.
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Abstract. We define the (random) k-cut number of a rooted graph to
model the difficulty of the destruction of a resilient network. The process
is as the cut model of Meir and Moon [14] except now a node must be cut
k times before it is destroyed. The first order terms of the expectation and
variance of Xn, the k-cut number of a path of length n, are proved. We
also show that Xn, after rescaling, converges in distribution to a limit Bk,
which has a complicated representation. The paper then briefly discusses
the k-cut number of general graphs. We conclude by some analytic results
which may be of interest.

Keywords: Cutting · k-cut · Network · Record · Permutation

1 Introduction and Main Results

1.1 The k-cut Number of a Graph

Consider Gn, a connected graph consisting of n nodes with exactly one node
labeled as the root, which we call a rooted graph. Let k be a positive integer. We
remove nodes from the graph as follows:

1. Choose a node uniformly at random from the component that contains the
root. Cut the selected node once.

2. If this node has been cut k times, remove the node together with edges
attached to it from the graph.

3. If the root has been removed, then stop. Otherwise, go to step 1.

We call the (random) total number of cuts needed to end this procedure the
k-cut number and denote it by K(Gn). (Note that in traditional cutting models,
nodes are removed as soon as they are cut once, i.e., k = 1. But in our model, a
node is only removed after being cut k times.)

One can also define an edge version of this process. Instead of cutting nodes,
each time we choose an edge uniformly at random from the component that
contains the root and cut it once. If the edge has been cut k-times then we
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remove it. The process stops when the root is isolated. We let Ke(Gn) denote
the number of cuts needed for the process to end.

Our model can also be applied to botnets, i.e., malicious computer net-
works consisting of compromised machines which are often used in spamming
or attacks. The nodes in Gn represent the computers in a botnet, and the root
represents the bot-master. The effectiveness of a botnet can be measured using
the size of the component containing the root, which indicates the resources
available to the bot-master [6]. To take down a botnet means to reduce the size
of this root component as much as possible. If we assume that we target infected
computers uniformly at random and it takes at least k attempts to fix a com-
puter, then the k-cut number measures how difficult it is to completely isolate
the bot-master.

The case k = 1 and Gn being a rooted tree has aroused great interests among
mathematicians in the past few decades. The edge version of one-cut was first
introduced by Meir and Moon [14] for the uniform random Cayley tree. Janson
[12,13] noticed the equivalence between one-cuts and records in trees and studied
them in binary trees and conditional Galton-Watson trees. Later Addario-Berry,
Broutin, and Holmgren [1] gave a simpler proof for the limit distribution of one-
cuts in conditional Galton-Watson trees. For one-cuts in random recursive trees,
see [7,11,15]. For binary search trees and split trees, see [9,10].

1.2 The k-cut Number of a Tree

One of the most interesting cases is when Gn = Tn, where Tn is a rooted tree
with n nodes.

There is an equivalent way to define K(Tn). Imagine that each node is given
an alarm clock. At time zero, the alarm clock of node v is set to ring at time T1,v,
where (Ti,v)i≥1,v∈Tn

are i.i.d. (independent and identically distributed) Exp(1)
random variables. After the alarm clock of node v rings the i-th time, we set
it to ring again at time Ti+1,v. Due to the memoryless property of exponential
random variables (see [8, pp. 134]), at any moment, which alarm clock rings next
is always uniformly distributed. Thus, if we cut a node that is still in the tree
when its alarm clock rings, and remove the node with its descendants if it has
already been cut k-times, then we get exactly the k-cut model. (The random
variables (Ti,v)i≥1 can be seen as the holding times in a Poisson process N(t)v

of parameter 1, where N(t)v is the number of cuts in v during the time [0, t] and
has a Poisson distribution with parameter t.)

How can we tell if a node is still in the tree? When node v’s alarm clock rings
for the r-th time for some r ≤ k, and no node above v has already rung k times,
we say v has become an r-record. And when a node becomes an r-record, it must
still be in the tree. Thus, summing the number of r-records over r ∈ {1, . . . , k},
we again get the k-cut number K(Tn). One node can be a 1-record, a 2-record,
etc., at the same time, so it can be counted multiple times. Note that if a node
is an r-record, then it must also be a i-record for i ∈ {1, . . . , r − 1}.
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To be more precise, we define K(Tn) as a function of (Ti,v)i≥1,v≥1. Let

Gr,v
def=

r∑

i=1

Ti,v,

i.e., Gr,v is the moment when the alarm clock of node v rings for the r-th
time. Then Gr,v has a gamma distribution with parameters (r, 1) (see [8, Theo-
rem 2.1.12]), which we denote by Gamma(r). Let

Ir,v
def= �Gr,v < min{Gk,u : u ∈ Tn, u is an ancestor of v}�, (1.1)

where �·� denotes the Iverson bracket, i.e., �S� = 1 if the statement S is true
and �S� = 0 otherwise. In other words, Ir,v is the indicator random variable for
node v being an r-record. Let

Kr(Tn) def=
∑

v∈Tn

Ir,v, K(Tn) def=
k∑

r=1

Kr(Tn).

Then Kr(Tn) is the number of r-records and K(Tn) is the total number of records.

1.3 The k-cut Number of a Path

Let Pn be a one-ary tree (a path) consisting of n nodes labeled 1, . . . , n from the
root to the leaf. To simplify notations, from now on we use Ir,i, Gr,i, and Tr,i to
represent Ir,v, Gr,v and Tr,v respectively for a node v at depth i.

Let Xn
def= K(Pn) and Xn,r = Kr(Pn). In this paper, we mainly consider Xn

and we let k ≥ 2 be a fixed integer.
The first motivation of this choice is that, as shown in Sect. 4, Pn is the

fastest to cut among all graphs. (We make this statement precise in Lemma 4.)
Thus Xn provides a universal stochastic lower bound for K(Gn). Moreover, our
results on Xn can immediately be extended to some trees of simple structures: see
Sect. 4. Finally, as shown below, Xn generalizes the well-known record number in
permutations and has very different behavior when k = 1, the usual cut-model,
and k ≥ 2, our extended model.

The name record comes from the classic definition of records in random
permutations. Let σ1, . . . , σn be a uniform random permutation of {1, . . . , n}. If
σi < min1≤j<i σj , then i is called a (strictly lower) record. Let Rn denote the
number of records in σ1, . . . , σn. Let W1, . . . ,Wn be i.i.d. random variables with
a common continuous distribution. Since the relative order of W1, . . . ,Wn also
gives a uniform random permutation, we can equivalently define σi as the rank
of Wi. As gamma distributions are continuous, we can in fact let Wi = Gk,i.
Thus, being a record in a uniform permutation is equivalent to being a k-record
and Rn

L=Xn,k. Moreover, when k = 1, Rn
L= Xn.

Starting from Chandler’s article [5] in 1952, the theory of records has been
widely studied due to its applications in statistics, computer science, and physics.
For more recent surveys on this topic, see [2].
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A well-known result of Rn (and thus also Xn,k) [16] is that (Ik,j)1≤j≤n are
independent. It follows from the Lindeberg–Lévy–Feller Theorem that

E [Rn]
log n

→ 1,
Rn

log n

a.s.→ 1, L
(Rn − log n√

log n

)
d→ N (0, 1),

where N (0, 1) denotes the standard normal distribution.
In the following, Theorem1 gives the expectation of Xn,r which implies that

the number of one-records dominates the number of other records. Subsequently
Theorems 2 and 3 estimate the variance and higher moments of Xn,1.

Theorem 1. For all fixed k ∈ N,

E [Xn,r] ∼
{

ηk,rn
1− r

k (1 ≤ r < k),
log n (r = k),

where the constants ηk,r are defined by

ηk,r
def=

(k!)
r
k

k − r

Γ
(

r
k

)

Γ (r)
,

where Γ (z) denotes the gamma function. Therefore E [Xn] ∼ E [Xn,1]. Also, for
k = 2,

E [Xn] ∼ E [Xn,1] ∼
√

2πn.

Theorem 2. For all fixed k ∈ {2, 3, . . . },

E [Xn,1(Xn,1 − 1)] ∼ E
[
(Xn,1)

2
]

∼ γkn2− 2
k ,

where

γk =
Γ
(
2
k

)
(k!)

2
k

k − 1
+ 2λk,

and

λk =

⎧
⎪⎪⎨

⎪⎪⎩

π cot
(

π
k

)
Γ
(
2
k

)
(k!)

2
k

2 (k − 2) (k − 1)
k > 2,

π2

4
k = 2.

Therefore

Var (Xn,1) ∼ (
γk − η2

k,1

)
n2− 2

k .

In particular, when k = 2

Var (Xn,1) ∼
(

π2

2
+ 2 − 2π

)
n.
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Theorem 3. For all fixed k ∈ {2, 3, . . . } and � ∈ N

lim sup
n→∞

E

[( Xn,1

n1− 1
k

)�
]

≤ ρk,�
def= �!Γ

(
� + 1 − �

k

)−1(
π

k
(k!)1/k sin

(π

k

)−1
)�

.

The upper bound is tight for � = 1 since ρk,1 = ηk,1.

The above theorems imply that the correct rescaling parameter should be
n1− 1

k . However, unlike the case k = 1, when k ≥ 2 the limit distribution of
Xn/n1− 1

k has a rather complicated representation Bk defined as follows: Let
U1, E1, U2, E2, . . . be mutually independent random variables with Ej

L= Exp(1)

and Uj
L= Unif[0, 1]. Let

Sp
def=

⎛

⎝k!
∑

1≤s≤p

⎛

⎝
∏

s≤j<p

Uj

⎞

⎠Es

⎞

⎠

1
k

,

Bp
def= (1 − Up)

⎛

⎝
∏

1≤j<p

Uj

⎞

⎠
1− 1

k

Sp,

Bk
def=

∑

1≤p

Bp,

where we use the convention that an empty product equals one.

Remark 1. An equivalent recursive definition of Sp is

Sp =

{
k!E1 (p = 1),
(
Up−1S

k
p−1 + k!Ep

) 1
k (p ≥ 2).

Theorem 4. Let k ∈ {2, 3, . . . }. Let L(Bk) denote the distribution of Bk. Then

L
( Xn

n1− 1
k

)
d→ L(Bk).

Thus, by Theorems 1, 2 and 3, the convergence also holds in Lp for all p > 0 and

E [Bk] = ηk,1, E
[B2

k

]
= γk, E [Bp

k] ∈ [ηp
k,1, ρk,p] (p ∈ N).

Remark 2. It is easy to see that X e
n+1

def= Ke(Pn+1)
L=Xn by treating each edge

on a length n + 1 path as a node on a length n path.

The rest of the paper is organized as follows: Sect. 2 sketches the proofs
for the moment results Theorems 1, 2, and 3. Section 3 deals with the distribu-
tional result Theorem 4. Section 4 discusses some easy results for general graphs.
Finally, Sect. 5 collects analytic results used in the proofs, which may themselves
be of interest. For detailed proofs, see the full version of this paper [3]. For k-cuts
in complete binary trees, see our follow-up paper [4].
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2 The Moments

2.1 The Expectation

Lemma 1. Uniformly for all i ≥ 1 and r ∈ {1, . . . , k},

E [Ir,i+1] =
(
1 + O

(
i−

1
2k

)) (k!)
r
k

k

Γ
(

r
k

)

Γ (r)
i−

r
k .

Proof. By (1.1), E [Ir,i+1] = P {Gk,1 > Gr,i+1, . . . , Gk,i > Gr,i+1}. Conditioning
on Gr,i+1 = x yields E [Ir,i+1] =

∫∞
0

xr−1e−x/Γ (r)P {Gk,1 > x}i dx. Lemma 1
thus follows from Lemma 7.

Proof (Proof of Theorem 1). A simply computation shows that for a ∈ (0, 1)
∑

1≤i≤n

1
ia

=
1

1 − a
n1−a + O(1).

It then follows from Lemma 1 that for r ∈ {1, . . . , k − 1}.

E [Xn,r] =
∑

0≤i<n

E [Ir,i+1] =
(k!)

r
k

k

Γ
(

r
k

)

Γ (r)
1

1 − r
k

n1− r
k + O

(
n1− r

k − 1
2k

)
+ O(1).

When r = k, E [Xn,k] = E [Rn] ∼ log(n) is already well-known.

2.2 The Variance

In this section we prove Theorem 2.
Let Ei,j denote the event that [I1,i+1I1,j+1 = 1]. Let Ax,y denote the event

that [G1,i+1 = x ∩ G1,j+1 = y]. Then conditioning on Ax,y

Ei,j =

⎡

⎣
⋂

1≤s≤i

Gk,s > x ∨ y

⎤

⎦ ∩ [Gk,i+1 > y] ∩
⎡

⎣
⋂

i+2≤s≤j

Gk,s > y

⎤

⎦ ,

where x∨y
def= max{x, y}. Since conditioning on Ax,y, Gk,i+1

L= Gamma(k−1)+x,

Gk,s
L= Gamma(k) for s /∈ {i + 1, j + 1}, and all these random variables are

independent, we have

P {Ei,j |Ax,y} = P {Gk−1,1 + x > y}P {Gk,1 > x ∨ y}i
P {Gk,1 > y}j−i−1

.

It follows from G1,i+1
L=G1,j+1

L= Exp(1) that

P {Ei,j} =
∫ ∞

0

∫ ∞

y

e−x−yP {Ei,j |Ax,y} dxdy

+
∫ ∞

0

∫ y

0

e−x−yP {Ei,j |Ax,y} dxdy

def= A1,i,j + A2,i,j .

Thus Theorem 2 follows from Xn,1(Xn,1 − 1) = 2
∑

1≤i<j≤n I1,iI1,j and the fol-
lowing two lemmas whose proofs rely on Lemmas 8, 9, 10.
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Lemma 2. Let k ∈ {2, 3, . . . }. We have

A2,i,j =
(
1 + O

(
j− 1

2k

)) (k!)
2
k

k
Γ

(
2
k

)
j− 2

k .

Lemma 3. Let k ∈ {2, 3, . . . }. Let a = i and b = j − i − 1. Then for all a ≥ 1
and b ≥ 1,

A1,i,j = ξk(a, b) + O
((

a− 1
2k + b− 1

2k

)(
a− 2

k + b− 2
k

))
,

where

ξk(a, b) def=
∫ ∞

0

∫ ∞

y

exp
(

−a
xk

k!
− b

yk

k!

)
dxdy.

2.3 Higher Moments

The computations of higher moments of Xn,1 are rather complicated. However,
an upper bound is readily available. Let 1 ≤ i1 < i2 < · · · < i� ≤ n. Then

E [I1,i1I1,i2 · · · I1,i�
] ≤ E [I1,i1 ]E [I1,i2−i1 ] · · ·E

[
I1,i�−i�−1

]
.

The above inequality holds since if ij is a one-record in the whole path, then it
must also be a one-record in the segment (ij−1 + 1, . . . , ij) ignoring everything
else, and what happens in each of such segments are independent. Theorem 3
follows easily from this observation.

3 Convergence to the k-cut Distribution

By Theorem 1 and Markov’s inequality, Xn,r/n1− 1
k

p→ 0 for r ∈ {2, . . . , k}. So it
suffices to prove Theorem 4 for Xn,1 instead of Xn. Throughout Sect. 3, unless
otherwise emphasized, we assume that k ≥ 2.

The idea of the proof is to condition on the positions and values of the k-
records, and study the distribution of the number of one-records between two
consecutive k-records.

We use (Rn,p)p≥1 to denote the k-record values and (Pn,p)p≥1 the positions

of these k-records. To be precise, let Rn,0
def= 0, and Pn,0

def= n + 1; for p ≥ 1, if
Pn,p−1 > 1, then let

Rn,p
def= min{Gk,j : 1 ≤ j < Pn,p−1},

Pn,p
def= argmin{Gk,j : 1 ≤ j < Pn,p−1},

i.e., Pn,p is the unique positive integer which satisfies that Gk,Pn,p
≤ Gk,i for all

1 ≤ i < Pn,p−1; otherwise let Pn,p = 1 and Rn,p = ∞. Note that Rn,1 is simply
the minimum of n i.i.d. Gamma(k) random variables.
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According to (Pn,p)p≥1, we split Xn,1 into the following sum

Xn,1 =
∑

1≤j≤n

I1,j = Xn,k +
∑

1≤p

∑

1≤j

�Pn,p−1 > j > Pn,p� I1,j
def= Xn,k +

∑

1≤p

Bn,p.

(3.1)
Figure 1 gives an example of (Bn,p)p≥1 for n = 12. It depicts the positions of
the k-records and the one-records. It also shows the values and the summation
ranges for (Bn,p)p≥1.

Fig. 1. An example of (Bn,p)p≥1 for n = 12.

Recall that Tr,j
L= Exp(1), is the lapse of time between the alarm clock

of j rings for the (r − 1)-st time and the r-th time. Conditioning on
(Rn,p, Pn,p)n≥1,p≥1, for j ∈ (Pn,p, Pn,p−1), we have

E [I1,j ] = P {T1,j < Rn,p |Gk,j > Rn,p−1 } .

Then the distribution of Bn,p conditioning on (Rn,p, Pn,p)n≥1,p≥1 is simply that
of

Bin (Pn,p−1 − Pn,p − 1,P {T1,j < Rn,p |Gk,j > Rn,p−1 }) ,

where Bin(m, p) denotes a binomial (m, p) random variable. When Rn,p−1 is
small and Pn,p−1 − Pn,p is large, this is roughly

Bin (Pn,p−1 − Pn,p,P {T1,j < Rn,p}) L= Bin
(
Pn,p−1 − Pn,p, 1 − e−Rn,p

)
. (3.2)

Therefore, we first study a slightly simplified model. Let (T ∗
r,j)r≥1,j≥1 be i.i.d.

Exp(1) which are also independent from (Tr,j)r≥1,j≥1. Let

I∗
j

def= �T ∗
1,j < min{Gk,i : 1 ≤ i ≤ j}�, X ∗

n
def=

∑

1≤j≤n

I∗
j .

We say a node j is an alt-one-record if I∗
j = 1. As in (3.1), we can write

X ∗
n =

∑

1≤j≤n

I∗
j =

∑

1≤p

∑

1≤j

�Pn,p−1 > j ≥ Pn,p� I∗
j

def=
∑

1≤p

B∗
n,p.
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Fig. 2. An example of (B∗
n,p)p≥1 for n = 12.

Then conditioning on (Rn,p, Pn,p)n≥1,p≥1, B∗
n,p has exactly the distribution as

(3.2). Figure 2 gives an example of (B∗
n,p)p≥1 for n = 12. It shows the positions

of alt-one-records, as well as the values and the summation ranges of(B∗
n,p)p≥1.

The main part of the proof for Theorem4 consist of showing the following

Proposition 1. For all fixed p ∈ N and k ≥ 2,

L
((

B∗
n,1

n1− 1
k

, . . . ,
B∗

n,p

n1− 1
k

))
d→ L ((B1, . . . Bp)) ,

which implies by the Cramér–Wold device that

L
⎛

⎝
∑

1≤j≤p

B∗
n,j

n1− 1
k

⎞

⎠ d→ L
⎛

⎝
∑

1≤j≤p

Bj

⎞

⎠ ,

Then we can prove that p can be chosen large enough so that
∑

p<j B∗
n,j/n1− 1

k

is negligible. Thus,

L
( X ∗

n

n1− 1
k

)
def= L

(∑
1≤j B∗

n,j

n1− 1
k

)
d→ L

⎛

⎝
∑

1≤j

Bj

⎞

⎠ def= L (Bk) .

Following this, we can use a coupling argument to show that Xn,1/n1− 1
k and

X ∗
n/n1− 1

k converge to the same limit, which finishes the proof of Theorem4.

4 Some Extensions

4.1 A Lower Bound and an Upper Bound for General Graphs

Let Gn be the set of rooted graphs with n nodes. It is obvious that Pn is the
easiest to cut among all graphs in Gn. We formalize this by the following lemma:
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Lemma 4. Let k ∈ N. For all Gn ∈ Gn, Xn
def= K(Pn) � K(Gn). Therefore,

min
Gn∈Gn

EK(Gn) ≥ EXn ∼
⎧
⎨

⎩

(k!)
1
k

k − 1
Γ

(
1
k

)
n1− 1

k (k ≥ 2),

log n (k = 1),

by Theorem1.

The most resilient graph is obviously Kn, the complete graph with n vertices.
Thus, we have the following upper bound:

Lemma 5. Let k ∈ N.

(i) Let Y
L= Gamma(k), Z

L= Poi(Y ), and W
L= Z ∧ k, i.e., W

L= min{Z, k}.
Then

L
(K(Kn)

n

)
d→ L (E [W |Y ]) = L

(
Γ (k + 1, Y ) − e−Y Y k+1

k!
+ k

)
,

where Γ (�, z) denotes the upper incomplete gamma function. Note that when
k = 1, the right-hand-side is simply Unif[0, 1].

(ii) For all Gn ∈ Gn, K(Gn) � K(Kn). Therefore,

max
Gn∈Gn

EK(Gn) ≤ EK(Kn) ∼ k

(
1 − 1

22k

(
2k

k

))
n.

4.2 Path-Like Graphs

If a graph Gn consists of only long paths, then the limit distribution K(Gn)
should be related to Bk, the limit distribution of K(Pn)/n1− 1

k (see Theorem 4).
We give two simple examples with k ∈ {2, 3, . . . }.

Example 1 (Long path). Let (Gn)n≥1 be a sequence of rooted graphs such that Gn

contains a path of length m(n) starting from the root with n−m(n) = o(n1− 1
k ).

Since it takes at most k(n−m(n)) cuts to remove all the nodes outside the long
path,

K(Pm(n)) � K(Gn) � K(Pm(n)) + ko
(
n1−1/k

)
.

Thus, by Lemma 4, this implies that K(Gn)/n1− 1
k converges in distribution to

Bk.

5 Some Auxiliary Results

Lemma 6. Let Gk
L= Gamma(k). Let α

def= 1
2

(
1
k + 1

k+1

)
and x0

def= m−α. Then
uniformly for all x ∈ [0, x0],

P {Gk > x}m =
(

Γ (k, x)
Γ (k)

)m

=
(
1 + O

(
m− 1

2k

))
exp

(
−mxk

k!

)
,

where Γ (�, z) denotes the upper incomplete gamma function.
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Lemma 7. Let Gk
L= Gamma(k). Let a ≥ 0 and b ≥ 1 be fixed. Then uniformly

for m ≥ 1,

∫ ∞

0

xb−1e−axP {Gk > x}m dx =
(
1 + O

(
m− 1

2k

)) (k!)
b
k

k
Γ

(
b

k

)
m− b

k .

Lemma 8. For a > 0, b > 0 and k ≥ 2,

ξk(a, b) def=
∫ ∞

0

∫ ∞

y

e−axk/k!−byk/k! dxdy

=
Γ
(
2
k

)

k

(
k!
a

) 2
k

F

(
2
k

,
1
k

; 1 +
1
k

;− b

a

)
,

where F denotes the hypergeometric function. In particular,

ξ2(a, b) = arctan

(√
b

a

)
(ab)− 1

2 .

Lemma 9. For a > 0, b > 0 and k ≥ 2,

(a + b)− 2
k ≤ k

Γ
(
2
k

)
(k!)

2
k

ξk(a, b) ≤ a− 2
k + b− 2

k .

Moreover, ξk(a, b) is monotonically decreasing in both a and b.

Lemma 10. For k ≥ 2, let

λk
def=

∫ 1

0

∫ 1−s

0

ξk(s, t) dt ds.

Then

λk =

⎧
⎪⎪⎨

⎪⎪⎩

π cot
(

π
k

)
Γ
(
2
k

)
(k!)

2
k

2 (k − 2) (k − 1)
k > 2,

π2

4
k = 2.
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Abstract. We study extension variants of the classical problems Ver-
tex Cover and Independent Set. Given a graph G = (V,E) and a
vertex set U ⊆ V , it is asked if there exists a minimal vertex cover
(resp. maximal independent set) S with U ⊆ S (resp. U ⊇ S). Possibly
contradicting intuition, these problems tend to be NP-complete, even
in graph classes where the classical problem can be solved efficiently.
Yet, we exhibit some graph classes where the extension variant remains
polynomial-time solvable. We also study the parameterized complexity
of theses problems, with parameter |U |, as well as the optimality of sim-
ple exact algorithms under ETH. All these complexity considerations are
also carried out in very restricted scenarios, be it degree or topological
restrictions (bipartite, planar or chordal graphs). This also motivates pre-
senting some explicit branching algorithms for degree-bounded instances.
e further discuss the price of extension, measuring the distance of U to
the closest set that can be extended, which results in natural optimization
problems related to extension problems for which we discuss polynomial-
time approximability.

Keywords: Extension problems · Special graph classes ·
Approximation algorithms · NP-completeness

1 Introduction

We will consider extension problems related to the classical graph problems
Vertex Cover and Independent Set. Informally in the extension version
of Vertex Cover, the input consists of both a graph G and a subset U of
vertices, and the task is to extend U to an inclusion-wise minimal vertex cover
of G (if possible). With Independent Set, given a graph G and a subset U
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of vertices, we are looking for an inclusion-wise maximal independent set of G
contained in U .

Studying such version is interesting when one wants to develop efficient enu-
meration algorithms or also for branching algorithms, to name two examples of
a list of applications given in [6].

Related Work. In [5], it is shown that extension of partial solutions is NP-hard
for computing prime implicants of the dual of a Boolean function; a problem
which can also be seen as trying to find a minimal hitting set for the prime
implicants of the input function. Interpreted in this way, the proof from [5]
yields NP-hardness for the minimal extension problem for 3-Hitting Set (but
polynomial-time solvable if |U | is constant). This result was extended in [2]
to prove NP-hardness for computing the extensions of vertex sets to minimal
dominating sets (Ext DS), even restricted to planar cubic graphs. Similarly, it
was shown in [1] that extensions to minimal vertex covers restricted to planar
cubic graphs is NP-hard. The first systematic study of this type of problems was
exhibited in [6] providing quite a number of different examples of this type of
problem.

An independent system is a set system (V, E), E ⊆ 2V , that is hereditary
under inclusion. The extension problem Ext Ind Sys (also called Flashlight)
for independent system was proposed in [17]. In this problem, given as input
X,Y ⊆ V , one asks for the existence of a maximal independent set including X
and that does not intersect with Y . Lawler et al. proved that Ext Ind Sys is
NP-complete, even when X = ∅ [17]. In order to enumerate all (inclusion-wise)
minimal dominating sets of a given graph, Kanté et al. studied a restriction of
Ext Ind Sys: finding a minimal dominating set containing X but excluding Y .
They proved that Ext DS is NP-complete, even in special graph classes like
split graphs, chordal graphs and line graphs [14,15]. Moreover, they proposed a
linear algorithm for split graphs when X,Y is a partition of the clique part [13].

Organization of the Paper. After some definitions and first results in Sect. 2,
we focus on bipartite graphs in Sect. 3 and give hardness results holding with
strong degree or planarity constraints. We also study parameterized complexity
at the end of this section and comment on lower bound results based on ETH. In
Sect. 4, we give positive algorithmic results on chordal graphs, with a combina-
torial characterization for the subclass of trees. We introduce the novel concept
of price of extension in Sect. 5 and discuss (non-)approximability for the accord-
ing optimization problems. In Sect. 6, we prove several algorithmic results for
bounded-degree graphs, based on a list of reduction rules and simple branching.
Finally, in Sect. 7, we give some prospects of future research.

2 Definitions and Preliminary Results

Throughout this paper, we consider simple undirected graphs only, to which
we refer as graphs. A graph can be specified by the set V of vertices and the
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set E of edges; every edge has two endpoints, and if v is an endpoint of e, we
also say that e and v are incident. Let G = (V,E) be a graph and U ⊆ V ;
NG(U) = {v ∈ V : ∃u ∈ U(vu ∈ E)} denotes the neighborhood of U in G and
NG[U ] = U ∪ NG(U) denotes the closed neighborhood of U . For singleton sets
U = {u}, we simply write NG(u) or NG[u], even omitting G if clear from the
context. The cardinality of NG(u) is called degree of u, denoted dG(u). A graph
where all vertices have degree k is called k-regular; 3-regular graphs are called
cubic. If 3 upper-bounds the degree of all vertices, we speak of subcubic graphs.

A vertex set U induces the graph G[U ] with vertex set U and e ∈ E being an
edge in G[U ] iff both endpoints of e are in U . A vertex set U is called independent
if U ∩ NG(U) = ∅; U is called dominating if NG[U ] = V ; U is a vertex cover if
each edge e is incident to at least one vertex from U . A graph is called bipartite if
its vertex set decomposes into two independent sets. A vertex cover S is minimal
if any proper subset S′ ⊂ S of S is not a vertex cover. Clearly, a vertex cover S
is minimal iff each vertex v in S possesses a private edge, i.e., an edge vu with
u /∈ S. An independent set S is maximal if any proper superset S′ ⊃ S of S is
not an independent set. The two main problems discussed in this paper are:

Ext VC
Input: A graph G = (V,E), a set of vertices U ⊆ V .
Question: Does G have a minimal vertex cover S with U ⊆ S?

Ext IS
Input: A graph G = (V,E), a set of vertices U ⊆ V .
Question: Does G have a maximal independent set S with S ⊆ U?

For Ext VC, the set U is also referred to as the set of required vertices.

Remark 1. (G,U) is a yes-instance of Ext VC iff (G,V \U) is a yes-instance of
Ext IS, as complements of maximal independent sets are minimal vertex covers.

Since adding or deleting edges between vertices of U does not change the
minimality of feasible solutions of Ext VC, we can first state the following.

Remark 2. For Ext VC (and for Ext IS) one can always assume the required
vertex set (the set V \ U) is either a clique or an independent set.

The following theorem gives a combinatorial characterization of yes-instances
of Ext VC that is quite important in our subsequent discussions.

Theorem 3. Let G = (V,E) be a graph and U ⊆ V be a set of vertices. The
three following conditions are equivalent:

(i) (G,U) is a yes-instance of Ext VC.
(ii) (G[NG[U ]], NG[U ] \ U) is a yes-instance of Ext IS.
(iii) There exists an independent dominating set S′ ⊆ NG[U ] \ U of G[NG[U ]].
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3 Bipartite Graphs

In this section, we focus on bipartite graphs. We prove that Ext VC is NP-
complete, even if restricted to cubic, or planar subcubic graphs. Due to Remark 1,
this immediately yields the same type of results for Ext IS. We add some
algorithmic notes on planar graphs that are also valid for the non-bipartite case.
Also, we discuss results based on ETH. We conclude the section by studying the
parameterized complexity of Ext VC in bipartite graphs when parameterized
by the size of U .

c1

c2

c3

...

cm

x1

¬x′
1

x2

¬x′
2

...

xn

¬x′
n

l1

l′1

l2

l′2

...

ln

l′n

m1

m′
1

m2

m′
2

...

mn

m′
n

r1

r′
1

r2

r′
2

...

rn

r′
n

¬x1

x′
1

¬x2

x′
2

...

¬xn

x′
n

c′
1

c′
2

c′
3

...

c′
m

Fig. 1. Graph G = (V,E) for Ext VC built from I. Vertices of U have a bold border.

Theorem 4. Ext VC (and Ext IS) is NP-complete in cubic bipartite graphs.

Proof. We reduce from 2-balanced 3-SAT, denoted (3, B2)-SAT ,which is NP-
hard by [3, Theorem 1], where an instance I is given by a set C of CNF clauses
over a set X of Boolean variables such that each clause has exactly 3 literals and
each variable appears exactly 4 times, twice negative and twice positive. The
bipartite graph associated to I is BP = (C ∪X,E(BP )) with C = {c1, . . . , cm},
X = {x1, . . . , xn} and E(BP ) = {cjxi : xi or ¬xi is literal of cj}.

For an instance I = (C,X) of (3, B2)-SAT, we build a cubic bipartite graph
G = (V,E) by duplicating instance I (here, vertices C ′ = {c′

1, . . . , c
′
m} and

X ′ = {x′
1, . . . , x

′
n} are the duplicate variants of vertices C = {c1, . . . , cm} and

X = {x1, . . . , xn}) and by connecting gadgets as done in Fig. 1. We also add
the following edges between the two copies: lil

′
i, mim

′
i and rir

′
i for i = 1, . . . , n.

The construction is illustrated in Fig. 1 and clearly, G is a cubic bipartite graph.
Finally we set U = {ci, c

′
i : i = 1, . . . , m} ∪ {mj ,m

′
j : j = 1, . . . , n}.
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We claim that I is satisfiable iff G admits a minimal vertex cover containing U .
Assume I is satisfiable and let T be a truth assignment which satisfies all clauses.
We set S = {¬xi, li,¬x′

i, r
′
i : T (xi) = true} ∪ {xi, ri, x

′
i, l

′
i : T (xi) = false} ∪ U .

We can easily check that S is a minimal vertex cover containing U .
Conversely, assume that G possesses a minimal vertex cover S containing U .

For a fixed i, we know that |{li, l
′
i, ri, r

′
i}∩S| ≥ 2 to cover the edges lil

′
i and rir

′
i.

If {li, ri} ⊆ S (resp. {l′i, r
′
i} ⊆ S), then S is not a minimal vertex cover because

mi (resp. m′
i) can be deleted, a contradiction. If {li, l

′
i} ⊆ S (resp. {ri, r

′
i} ⊆ S),

then S must contain another vertex to cover rir
′
i (resp. lil

′
i), leading to the

previous case, a contradiction. Hence, if {li, r
′
i} ⊆ S (resp., {ri, l

′
i} ⊆ S), then

{¬xi,¬x′
i} ⊆ S (resp., {xi, x

′
i} ⊆ S), since the edges l′i¬x′

i and ri¬xi (resp., lixi

and r′
ixi) must be covered. In conclusion, by setting T (xi) = true if ¬xi ∈ S

and T (xi) = false if xi ∈ S we obtain a truth assignment T which satisfies all
clauses, because {Ci, C

′
i : i = 1, . . . , m} ⊆ U ⊆ S. ��

Theorem 5. Ext IS is NP-complete on planar bipartite subcubic graphs.

Algorithmic Notes for the Planar Case. By distinguishing between whether
a vertex belongs to the cover or not and further, when it belongs to the cover, if it
already has a private edge or not, it is not hard to design a dynamic programming
algorithm that decides in time O∗(ct) if (G,U) is a yes-instance of Ext VC or
not, given a graph G together with a tree decomposition of width t. With some
more care, even c = 2 can be achieved, but this is not so important here. Rather,
below we will make explicit another algorithm for trees that is based on several
combinatorial properties and hence differs from the DP approach sketched here
for the more general notion of treewidth-bounded graphs.

Moreover, it is well-known that planar graphs of order n have treewidth
bounded by O(

√
n). In fact, we can obtain a corresponding tree decomposition

in polynomial time, given a planar graph G. Piecing things together, we obtain:

Theorem 6. Ext VC can be solved in time O∗(2O(
√

n)) on planar graphs.

Remarks on the Exponential Time Hypothesis. Assuming ETH, there is
no 2o(n+m)-algorithm for solving n-variable, m-clause instances of (3, B2)-SAT.
As our reduction from (3, B2)-SAT increases the size of the instances only in a
linear fashion, we can immediately conclude:

Theorem 7. There is no 2o(n+m)-algorithm for n-vertex, m-edge bipartite sub-
cubic instances of Ext VC, unless ETH fails.

This also motivates us to further study exact exponential-time algorithms.
We can also deduce optimality of our algorithms for planar graphs based on the
following auxiliary result.

Proposition 8. There is no algorithm that solves 4-Bounded Planar 3-
Connected SAT (see [16]) on instances with n variables and m clauses in
time 2o(

√
n+m), unless ETH fails.

Corollary 9. There is no 2o(
√

n) algorithm for solving Ext VC on planar
instances of order n, unless ETH fails.
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Remarks on Parameterized Complexity. We now study our problems in
the framework of parameterized complexity where we consider the size of the set
of fixed vertices as standard parameter for our extension problems.

Theorem 10. Ext VC with standard parameter is W[1]-complete, even when
restricted to bipartite instances.

Theorem 11. Ext VC with standard parameter is in FPT on planar graphs.

4 Chordal and Circular-Arc Graphs

An undirected graph G = (V,E) is chordal iff each cycle of G with a length
at least four has a chord (an edge linking two non-consecutive vertices of the
cycle) and G is circular-arc if it is the intersection graph of a collection of n arcs
around a circle. We will need the following problem definition.

Minimum Independent Dominating Set (MinISDS for short)
Input: A graph G = (V,E).
Solution: Subset of vertices S ⊆ V which is independent and dominating.
Output: Solution S that minimizes |S|.

Weighted Minimum Independent Dominating Set (or WMinISDS for
short) corresponds to the vertex-weighted variant of MinISDS, where each ver-
tex v ∈ V has a non-negative weight w(v) ≥ 0 associated to it and the goal
consists in minimizing w(S) =

∑
v∈S w(v). If w(v) ∈ {a, b} with 0 ≤ a < b, the

weights are called bivaluate, and a = 0 and b = 1 corresponds to binary weights.

Remark 12. MinISDS for chordal graphs has been studied in [10], where it
is shown that the restriction to binary weights is solvable in polynomial-time.
Bivalued MinISDS with a > 0 however is already NP-hard on chordal graphs,
see [7]. WMinISDS (without any restriction on the number of distinct weights)
is also polynomial-time solvable in circular-arc graphs [8].

Corollary 13. Ext VC is polynomial-time decidable in chordal and in circular-
arc graphs.

Farber’s algorithm [10] (used in Corollary 13) runs in linear-time and is based
on the resolution of a linear programming using primal and dual programs. Yet,
it would be nice to find a (direct) combinatorial linear-time algorithm for chordal
and circular-arc graphs, as this is quite common in that area. We give a first
step in this direction by presenting a characterization of yes-instances of Ext
VC on trees. Consider a tree T = (V,E) and a set of vertices U . A subtree
T ′ = (V ′, E′) (i.e., a connected induced subgraph) of a tree T is called edge
full with respect to (T,U) if U ⊆ V ′, dT ′(u) = dT (u) for all u ∈ U . A subtree
T ′ = (V ′, E′) is induced edge full with respect to (T,U) if it is edge full with
respect to (T,U ∩ V ′).
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For our characterization, we use a coloring of vertices with colors black and
white. If T = (V,E) is a tree and X ⊆ V , we use T [X → black] to denote the
colored tree where exactly the vertices from X are colored black. Further define
the following class of black and white colored trees T , inductively as follows.
Base case: A tree with a single vertex x belongs to T if x is black.
Inductive step: If T ∈ T , the tree resulting from the addition of a P3 (3 new
vertices that form a path p), one endpoint of p being black, the two other vertices
being white and the white endpoint of p linked to a black vertex of T , is in T .

The following theorem can be viewed as an algorithm for Ext VC on trees.

Theorem 14. Let T = (V,E) be a tree and U ⊆ V be an independent set. Then,
(T,U) is a yes-instance of Ext VC iff there is no subtree T ′ = (V ′, E′) of T
that is induced edge full with respect to (T,U) such that T ′[U → black] ∈ T .

5 Price of Extension

Considering the possibility that some set U might not be extendible to any
minimal solution, one might ask how wrong U is as a choice for an extension
problem. One idea to evaluate this, is to ask how much U has to be altered when
aiming for a minimal solution. Described differently for our extension problems
at hand, we want to discuss how many vertices of U have to be deleted for Ext
VC (added for Ext IS) in order to arrive at a yes-instance of the extension
problem. The magnitude of how much U has to be altered can be seen as the
price that has to be paid to ensure extendibility. To formally discuss this concept,
we consider according optimization problems. From an instance I = (G,U) of
Ext VC or Ext IS, we define the two NPO problems:

Max Ext VC
Input: A graph G = (V,E), a set of vertices U ⊆ V .
Solutions: Minimal vertex cover S of G.
Output: Solution S that maximizes |S ∩ U |.

Min Ext IS
Input: A graph G = (V,E), a set of vertices U ⊆ V .
Solutions: Maximal independent set S of G.
Output: Solution S that minimizes |U | + |S ∩ (V \ U)|.

For Π =Max Ext VC or Min Ext IS, we denote by optΠ(I, U) the value of
an optimal solution of Max Ext VC or Min Ext IS, respectively. Since for
both of them, optΠ(I, U) = |U | iff (G,U) is a yes-instance of Ext VC or Ext
IS, respectively, we deduce that Max Ext VC and Min Ext IS are NP-hard
as soon as Ext VC and Ext IS are NP-complete. Alternatively, we could write
optMax Ext VC(G,U) = arg max{U ′ ⊆ U : (G,U ′) is a yes-instance of Ext VC},
optMin Ext IS(G,U) = arg min{U ′ ⊇ U : (G,U ′) is a yes-instance of Ext IS}.
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Similarly to Remark 1, one observes that the decision variants of Max Ext
VC and Min Ext IS are equivalent, more precisely:

optMax Ext VC(G,U) + optMin Ext IS(G,V \ U) = |V | . (1)

We want to discuss polynomial-time approximability of Max Ext VC and Min
Ext IS. Considering Max Ext VC on G = (V,E) and the particular subset
U = V (resp., Min Ext IS with U = ∅), we obtain two well known optimization
problems called upper vertex cover (UVC for short, also called maximum
minimal vertex cover) and minimum maximal independent set (ISDS
for short). In [18], the computational complexity of these problems are studied
(among 12 problems), and (in)approximability results are given in [4,19] for
UVC and in [11] for ISDS where lower bounds of O(nε−1/2) and O(n1−ε),
respectively, for graphs on n vertices are given for every ε > 0. Analogous bounds
can be derived depending on the maximum degree Δ. In particular, we deduce:

Corollary 15. For any constant ε > 0, any ρ ∈ O
(
n1−ε

)
and ρ ∈ O

(
Δ1−ε

)
,

there is no polynomial-time ρ-approximation for Min Ext IS on graphs of n
vertices and maximum degree Δ, even when U = ∅, unless P = NP.

Theorem 16. Max Ext VC is as hard as MaxIS to approximate even if the
set U of required vertices forms an independent set.

Sketch. Let G = (V,E) be an instance of MaxIS. Construct H = (VH , EH)
from G, where vertex set VH contains two copies of V , V and V ′ = {v′ : v ∈ V }.
Let EH = E ∪ {vv′ : v ∈ V }. Consider I = (H,U) as instance of Max EXT
VC, where the required vertex subset is given by U = V ′.
We claim: H has a minimal vertex cover containing k vertices from U iff G has
a maximal independent set of size k.

Using the strong inapproximability results for MaxIS given in [20,21],
observing Δ(H) = Δ(G) + 1 and |VH | = 2|V |, we deduce the following result.

Corollary 17. For any constant ε > 0, any ρ ∈ O
(
Δ1−ε

)
and ρ ∈ O

(
n1−ε

)
,

there is no polynomial-time ρ-approximation for Max Ext VC on graphs of n
vertices and maximum degree Δ, unless P = NP.

In contrast to the hardness results on these restricted graph classes from
the previous sections, we find that restriction to bipartite graphs or graphs of
bounded degree improve approximability of Max Ext VC. For the following
results, we assume, w.l.o.g., that the input graph is connected, non-trivial and
therefore without isolated vertices, as we can solve our problems separately on
each connected component and then combine the results. By simply selecting the
side containing the largest number of vertices from U , we can show the following.

Theorem 18. A 2-approximation for Max Ext VC on bipartite graphs can be
computed in polynomial time.

Theorem 19. A Δ-approximation for Max Ext VC on graphs of maximum
degree Δ can be computed in polynomial time.
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Proof. Let G = (V,E) be connected of maximum degree Δ, and U ⊆ V be an
instance of Max Ext VC. If Δ ≤ 2, or if G = KΔ+1 (the complete graph on Δ+
1 vertices), it is easy to check Max Ext VC is polynomial-time solvable; actually
in these two cases, G is either chordal or circular-arc and Theorem20 gives the
conclusion. Hence, assume Δ ≥ 3 and G �= KΔ+1. By Brooks’s Theorem, we can
color G properly with at most Δ colors in polynomial-time (even linear ). Let
(S1, . . . , S�) be such coloring of G with � ≤ Δ. For i ≤ �, set Ui = U ∩ NG(Si)
where we recall NG(Si) is the open neighborhood of Si. By construction, Si is
an independent set which dominates Ui in G so it can be extended to satisfy
(iii) of Theorem 3, so (G,Ui) is a yes-instance of Ext VC. Choosing U ′ =
arg max |Ui| yields a Δ-approximation, since on the one hand

∑�
i=1 |Ui| ≥ |U ∩

(
∪�

i=1NG(Si)
)
| = |U ∩ V | and on the other hand Δ × |U ′| ≥

∑�
i=1 |Ui| ≥ |U | ≥

optMax Ext VC(G,U). ��
Along the lines of Corollary 13 with more careful arguments, we can prove:

Theorem 20. Max Ext VC can be solved optimally for chordal graphs and
circular-arc graphs in polynomial time.

Proof. Let (G,U) be an instance of Max Ext VC where G = (V,E) is a
chordal graph (resp., a circular-arc graph) and U is an independent set. We
build a weighted graph G′ for WMinISDS such that G′ is the subgraph of G
induced by NG[U ] and the weights on vertices are given by w(v) = 1 if v ∈ U
and w(v) = 0 for v ∈ NG[U ] \ U . Thus, we get: optWMinISDS(G′, w) = |U | −
optMax Ext VC(G,U). ��

6 Bounded Degree Graphs

Our NP-hardness results also work for the case of graphs of bounded degree,
hence it is also interesting to consider Ext VC with standard parameter with
an additional degree parameter Δ.

Theorem 21. Ext VC is in FPT when parameterized both by the standard
parameter and by the maximum degree Δ of the graph.

Sketch. Recursively, the algorithm picks some u ∈ U and branches on every
neighbor x ∈ N(u) \ U to be excluded from the vertex cover to ensure a private
edge xu for u. This is a limited choice of at most Δ neighbors, and considering
the new instance (G − N [x], U \ N [x]), this yields a running time in O∗(Δk).

Let us look at this algorithm more carefully in the case of Δ = 3 analyzing
it from the standpoint of exact algorithms, i.e., dependent on the number of
vertices n of the graph. Our algorithm has a branching vector of (2, 2, 2) (in
each branch, u and a neighbor of u is removed, so n reduces by 2), resulting
in a branching number upper-bounded by 1.733. However, the worst case is a
vertex in U that has three neighbors of degree one. Clearly, this can be improved.
We propose the following reduction rules for Ext VC on an instance (G,U),
G = (V,E), which have to be applied exhaustively and in order:
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0. If U = ∅, then answer yes.
1. If some u ∈ U is of degree zero, then (G,U) is a no-instance.
2. If some x /∈ U is of degree zero, then delete x from V .
3. If u, u′ ∈ U with uu′ ∈ E, then delete uu′ from E.
4. If u ∈ U is of degree one, then the only incident edge e = ux must be private,

hence we can delete N [x] from V and all u′ from U that are neighbors of x.
5. If u ∈ U has a neighbor x that is of degree one, then assume e = ux is the

private edge of u, so that we can delete u and x from V and u from U .

After executing the reduction rules exhaustively, the resulting graph has only
vertices of degree two and three (in the closed neighborhood of U) if we start
with a graph of maximum degree three. This improves the branching vector to
(3, 3, 3), resulting in a branching number upper-bounded by 1.443. However, the
rules are also valid for arbitrary graphs, as we show in the following.

Lemma 22. The reduction rules are sound for general graphs when applied
exhaustively and in order.

Theorem 23. Ext VC can be solved in time O∗(( 3
√

Δ)n) on graphs of order n
with maximum degree Δ.

This gives interesting branching numbers for Δ = 3: 1.443, Δ = 4: 1.588, Δ = 5:
1.710, etc., but from Δ = 8 on this is no better than the trivial O∗(2n)-algorithm.

Let us remark that the same reasoning that resulted in Rule 5 is valid for:

5’. If x /∈ U satisfies N(x) ⊆ U , then delete N [x] from V and from U .
6. Delete V \ NG[U ]. (inspired by Theorem 3)

We now run the following branching algorithm:

1. Apply all reduction rules exhaustively in the order given by the numbering.
2. On each connected component, do:

– Pick a vertex v of lowest degree.
– If v ∈ U : Branch on all possible private neighbors.
– If v /∈ U : Branch on if v is not in the cover or one of its neighbors.

A detailed analysis of the suggested algorithm gives the following result.

Theorem 24. Ext VC on subcubic graphs can be solved in time O∗(1.26n) on
graphs of order n.

Corollary 25. Ext VC on subcubic graphs can be solved in time O∗(2|U |) with
fixed vertex set U .

Our reduction rules guarantee that each vertex not in U (and hence in
NG(U)) has one or two neighbors in U , and each vertex in U has two or three
neighbors in NG(U). Hence, |NG(U)| ≤ 3|U |. In general, due to Rule 6:

Theorem 26. Ext VC on graphs of maximum degree Δ allows for a vertex
kernel of size (Δ + 1)|U |, parameterized by the size of the given vertex set U .
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Looking at the dual parameterization (i.e., Ext IS with standard parameter),
we can state due to all reduction rules:

Theorem 27. Ext VC on graphs of maximum degree Δ allows for a vertex
kernel of size Δ−1

2 |V \ U |, parameterized by |V \ U |.

For Δ = 3, we obtain vertex kernel bounds of 4|U | and 2|V \U |, respectively.
With the computations of [9, Cor. 3.3 & Cor. 3.4], we can state the following.

Corollary 28. Unless P = NP, for any ε > 0, there is no size (2−ε)|U | and no
size ( 43 − ε)|V \ U | vertex kernel for Ext VC on subcubic graphs, parameterized
by |U | or |V \ U |, respectively.

This shows that our (relatively simple) kernels are quite hard to improve on.

Remark 29. Note that the arguments that led to the FPT-result for Ext VC
on graphs of bounded degree (by providing a branching algorithm) also apply to
graph classes that are closed under taking induced subgraphs and that guarantee
the existence of vertices of small degree. This idea leads to a branching algorithm
with running time O∗(5|U |) or O∗(1.32|V |).

Remark 30. Let us mention that we also derived several linear-time algorithms
for solving Ext VC (and hence Ext IS) on trees in this paper. (1) A simple
restriction of the mentioned DP algorithm on graphs of bounded treewidth solves
this problem. (2) Apply our reduction rules exhaustively. (3) Check the charac-
terization given in Theorem 14. Also, Theorem 20 provides another polynomial-
time algorithm on trees.

7 Conclusions

We have found many graph classes where Ext VC (and hence also Ext IS)
remains NP-complete, but also many classes where these problems are solvable
in poly-time. The latter findings could motivate looking into parameterized algo-
rithms that consider the distance from favorable graph classes in some way.

It would be also interesting to study further optimization problems that
could be related to our extension problems, for instance the following ones,
here formulated as decision problems. (a) Given G,U, k, is it possible to delete
at most k vertices from the graph such that (G,U) becomes a yes-instance of
Ext VC? Clearly, this problem is related to the idea of the price of extension
discussed in this paper, in particular, if one restricts the possibly deleted vertices
to be vertices from U . (b) Given G,U, k, is it possible to add at most k edges
from the graph such that (G,U) becomes a yes-instance of Ext VC? Recall that
adding edges among vertices from U does not change our problem, as they can
never be private edges, but adding edges elsewhere might create private edges
for certain vertices. Such problems would be defined according to the general
idea of graph editing problems studied quite extensively in recent years. These
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problems are particularly interesting in graph classes where Ext VC is solvable
in poly-time.

Considering the underlying classical optimization problems, it is also a rather
intriguing question to decide for a given set U if it can be extended not just to
any inclusion minimal vertex cover but to a globally smallest one, as a kind of
optimum-extension problem. However, it has been shown in [12, Cor. 4.13] that
the Vertex Cover Member problem (given a graph G and a vertex v, does
there exist a vertex cover of minimum size that has v as a member, or, in other
words, that extends {v} is complete for the complexity class PNP

‖ , which is above
NP and co-NP.
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Abstract. Hedonic games are a prominent model of coalition formation,
in which each agent’s utility only depends on the coalition she resides.
The subclass of hedonic games that models the formation of general part-
nerships [21], where output is shared equally among affiliates, is called
hedonic games with common ranking property (HGCRP). Aside from
their economic motivation, HGCRP came into prominence since they are
guaranteed to have core stable solutions that can be found efficiently [2].
Nonetheless, a core stable solution is not necessarily a socially desirable
(Pareto optimal) outcome. We improve upon existing results by proving
that every instance of HGCRP has a solution that is both Pareto optimal
and core stable. We establish that finding such a solution is, however,
NP-HARD, by proving the stronger statement that finding any Pareto
optimal solution is NP-HARD. We show that the gap between the total
utility of a core stable solution and that of the socially optimal solution
(OPT) is bounded by |N |, where N is the set of agents, and that this
bound is tight. Our investigations reveal that finding a solution, whose
total utility is within a constant factor of that of OPT, is intractable.

Keywords: Algorithmic game theory · Computational complexity ·
Hedonic games · Pareto optimality · Core stability

1 Introduction

The class of games, where a finite set of agents are to be partitioned into groups
(coalitions) is known as coalition formation games [7]. A coalition formation
game is said to be a hedonic coalition formation game (or simply hedonic game)
if the utilities of the agents exclusively depend on the group they belong to [1],
i.e., the agents do not worry about how the remaining agents are partitioned.
Hedonic games subsume a wide range of problems, which includes well-known
matching problems, such as the stable marriage [5], the stable roommates [6],
and the hospital/residents problems [5].
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An important application of hedonic games is the formation of partnerships,
which is a formal agreement made by the founders of for-profit start-up ventures
when the company is founded [21]. Though there are several different types
of partnerships, the most common form is referred to as general partnership,
where all parties share the legal and financial liabilities as well as the profit of
the partnership equally. A hedonic game, where all agents of a coalition receive
the same utility (as is the case in general partnerships) is said to possess common
ranking property [2].

In game theory, the main goal is to determine the viable outcomes of a game
under the assumption that the agents are rational. This is typically done by
means of solution concepts. Each solution concept, designed with the intent of
modeling the behavior of rational agents, comes with a set of axioms to be
satisfied by the outcome of the game. Existence and tractable computability
of Nash-stable [8], individually stable [9], contractually individually stable [10],
core stable [11] outcomes of various subclasses of hedonic games are extensively
studied in the literature.

The most prominent solution concept used in hedonic games is the core
stability, where a partition of agents is defined as stable if no subset of agents
can form a new coalition together so that the utilities of all the agents in the
subset are increased [11]. Notice that core stability is the stability notion used in
the definition of classical matching problems such as the stable marriage [5], and
the stable roommates [6]. Some subclasses of hedonic games, such as the stable
roommates, may not have any core stable outcome. However, every hedonic
game that possesses common ranking property (HGCRP) is guaranteed to have
a nonempty set of core stable partitions and such a partition can be computed
via a simple greedy algorithm [2].

Pareto optimality is the most widely adopted concept of efficiency in game
theory [3]. In hedonic games, a partition π of agents is called a Pareto optimal
coalition structure, if no other partition π′ of agents make some agents better
off without making some agents worse off. Pareto optimality is a desirable prop-
erty for the outcome of a game, and every game is guaranteed to have a Pareto
optimal outcome. However, Pareto optimal outcomes do not necessarily coincide
with stable outcomes of a game. As an extreme example, in the classical Pris-
oner’s Dilemma game [23], all unstable outcomes are Pareto optimal, whereas
the unique stable outcome is not. Similarly, in a HGCRP instance, a core sta-
ble coalition structure is not necessarily Pareto optimal (see Example 1), and a
Pareto optimal coalition structure is not necessarily core stable (see Example 2).
Thus, a natural research question (RQ) is as follows:

RQ 1: Is it always possible to find a partition π of agents of a given
HGCRP instance, such that π is both core stable and Pareto optimal?

Theorem 1 answers to this question affirmatively via a constructive proof
using a potential function [13].

Since the existence problem is resolved by Theorem 1, the next immediate
problem is establishing the computational complexity of finding a core stable
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and Pareto optimal partition of a given HGCRP instance. In order to address
this problem, we first need to state how a HGCRP instance is represented.

In a hedonic game, the utility function of each agent is defined over all sub-
sets of agents containing her. Thus, if N is the set of agents, the input size is
O(|N |×2|N |−1). For HGCRP instances, we do not need to define separate utility
functions for each agent, rather, we only need to have a joint utility value for
each nonempty coalition (since all agents in the coalition have the same utility),
and thus the input size is O(2|N | − 1).

Since the representation of a hedonic game instance requires exponential
space in the number of agents, a lot of effort is spent in defining subclasses of
hedonic games with concise (polynomial in the number of agents) representa-
tions [12]. The succinct representations in the literature are, either incapable of
representing all HGCRP instances, or require space that is exponential in the
number of agents. In this paper, we assume that a HGCRP instance is repre-
sented as individually rational coalition lists [4], i.e., the utility value of a subset
S ⊆ N is omitted, if the utility value of S is smaller than that of one of its
singleton subsets. This is because no stable coalition structure can contain such
a coalition. Since we have a model for input representation, we are ready to state
the next immediate RQ as follows:

RQ 2: What is the computational complexity of finding a Pareto optimal
and core stable partition of agents of a given HGCRP instance?

The problem is NP-HARD as stated by Corollary 1, since finding any Pareto
optimal partition is NP-HARD due to Theorem 4.

In algorithmic game theory, a hot topic is quantifying the inefficiency due
to selfish behavior of the agents. The outcome of the game maximizing the sum
of the utilities of the agents, i.e., the total utility that could be achieved if the
agents were not selfish, is referred to as the socially optimal solution (OPT).

There are several metrics in the literature to quantify the loss of total utility
due to selfish acts, the most popular of which are the price of anarchy [14],
and the price of stability [15]. The price of anarchy, and the price of stability
of a given game are defined as the supremum of the ratio of the total utility of
OPT to that of the socially worst and best stable solutions, respectively, over
all instances of the game. In this paper, by a stable solution, we mean a core
stable partition of agents. Immediate research questions along this line and our
answers to them are stated in the following paragraphs.

RQ 3: Given a HGCRP instance, is it tractable to compute OPT? If not,
is it tractable to find a solution, whose total utility is within a constant
factor of that of OPT? Is the problem of computing OPT fixed-parameter
tractable, where the parameter is the maximum number of agents in a
coalition?

Finding a solution to a given HGCRP instance, whose total utility is within a
constant factor of that of OPT, is intractable due to Theorem5. However, finding
a solution with a total utility of at least 1/|N | times that of OPT, is tractable
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due to Corollary 5, where N is the set of agents. The problem of computing OPT
of a given HGCRP instance is not fixed-parameter tractable with respect to the
maximum number of agents in a coalition, since the problem is APX-COMPLETE
by Corollary 4, even under the restricted setting, where the size of a coalition is
bounded above by 3.

RQ 4:What are the price of anarchy, and the price of stability of HGCRP?

Both the price of anarchy and the price of stability of HGCRP are |N |, where
N is the set of agents, due to Theorem 6.

The rest of the paper is organized as follows: In Sect. 2, we introduce the
notation used in this paper. In Sect. 3, we prove existence of a Pareto optimal
and core stable partition of a given HGCRP instance, and show that finding such
a partition is NP-HARD. In Sect. 4, we present our hardness of approximation
and fixed-parameter intractability results for the problem of computing OPT. In
Sect. 5, we give tight bounds for the price of anarchy, and the price of stability of
HGCRP. In Sect. 6, we conclude and point out some future research directions.

2 Notation and Preliminaries

We define an instance of HGCRP as a binary pair G = (N,U), where N is
a finite set of n agents, and U : 2N

� ∅ → R+ is a non-negative real-valued
function defined over the nonempty subsets of N . We assume that an instance
is represented as individually rational coalition lists (IRCL) [4], i.e., if U(S) <
U({i}) for some agent i ∈ S for a subset of agents S ⊆ N , then U(S) is omitted
from the list, because coalition S is not a viable coalition in any stable coalition
structure.

The solution (outcome) of a game is a partition (coalition structure) π over
the set of agents N . The coalition containing an agent i ∈ N in partition π
is denoted by π(i). In a partition π, the utilities of all the agents in the same
coalition S ∈ π are the same, and equal to the joint utility U(S). We use ui(π)
to denote the utility of some agent i in partition π. Notice that ui(π) = U(π(i)).

A nonempty subset S ⊆ N of agents is said to be a blocking coalition with
respect to partition π, if U(S) > ui(π) for all agents i ∈ S, i.e., any agent i ∈ S
is strictly better off in S than she is in π(i). A coalition structure π is core stable
if there is no blocking coalition with respect to it.

For a partition π that is not core stable, and a blocking coalition S with
respect to π, we define πS as the partition induced on π by S. πS is the partition
that would arise if the agents in S collectively deviated from π to form coalition
S, i.e., πS(i) = S for all i ∈ S, and πS(j) = π(j) � S for all j ∈ N � S. Notice
that πS may or may not be core stable.

Pareto optimality is a measure to assess the social quality of the solutions of
a game with respect to alternative solutions of the same game. For two coalition
structures π and π′ over the set of agents N , we say that π′ Pareto dominates
π if, ui(π′) ≥ ui(π) for all agents i ∈ N , and there exists an agent i for which
the inequality is strict. In other words, if π′ Pareto dominates π, then all agents
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are at least as good in π′ than in π, and there is an agent that is strictly better
off in π′ than in π. A coalition structure π is said to be Pareto optimal if no
coalition structure Pareto dominates it. Notice that if π is a Pareto optimal
coalition structure, and if there is an agent i that is strictly better off in some
other coalition structure π′ than in π, then there is necessarily an agent j that is
strictly worse off in π′ than in π. Every finite game is known to possess a Pareto
optimal solution.

We next present two examples to illustrate the notions of core stability and
Pareto optimality, as well as the notation given above. In Example 1 we present
a core stable partition that is not Pareto optimal, and in Example 2 we present
a Pareto optimal partition that is not core stable.

Example 1. Let G = (N,U) be a HGCRP instance, where N = {1, 2}, and U
is defined as U({1}) = U({1, 2}) = 1, and U({2}) = 0. Notice that coalition
structure π = {{1}, {2}} is core stable since there is no blocking deviation with
respect to it. But π is not Pareto optimal since the partition π′ = {{1, 2}} Pareto
dominates π.

Example 2. Let G = (N,U) be a HGCRP instance, where N = {1, 2, 3}, and
U is defined as U({1}) = 0, U({2, 3}) = 2 and U(S) = 1 for all other subsets
S ⊆ N of agents. Notice that partition π = {{1, 2}, {3}} is Pareto optimal since
no partition Pareto dominates it. However, π is not core stable since S = {2, 3}
is a blocking coalition with respect to π. Notice that πS = {{1}, {2, 3}}.

3 Pareto Optimal and Core Stable Partitions

We devote this section to proving the existence of Pareto optimal and core stable
partitions of any given HGCRP instance, and establishing the computational
complexity of finding one such partition. We first prove the existence result,
given by Theorem 1, by presenting a potential function [13] defined over the
set of partitions of a given HGCRP instance, which is maximized at a Pareto
optimal and core stable partition.

Theorem 1. Every HGCRP instance G = (N,U) has a coalition structure that
is both Pareto optimal and core stable.

Proof. Let G = (N,U) be a given HGCRP instance with n agents, and let π and
π′ be two partitions over N . We define ψ(π) as the sequence of the utilities of the
agents in partition π in a non-increasing order. We denote the ith element in the
sequence ψ(π) by ψi(π). We use the symbols � and �, respectively, to denote the
binary relations “lexicographically greater than” and“lexicographically greater
than or equal to” over the set of sequences of utilities of agents.

We next show, by Lemma 1, that if π′ Pareto dominates π, then ψ(π′) is
lexicographically greater than ψ(π).
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Lemma 1. Let π and π′ be partitions of N such that π′ Pareto dominates π.
Then, ψ(π′) � ψ(π).

Proof. We rename the agents so that ψi(π) is the utility of agent i in partition π.
Notice that we have u1(π) ≥ u2(π) ≥ . . . ≥ un(π). Let ψ′(π′) be the permutation
of ψ(π′), where ψ′

i(π
′) and ψi(π) are the respective utilities of the same agent

for all i ∈ N . Notice that ψ′
i(π

′) = ui(π′) and ψi(π) = ui(π). Since π′ Pareto
dominates π, we have ui(π′) ≥ ui(π) for all i ∈ N , and uj(π′) > uj(π) for some
agent j. Hence, ψ′

i(π
′) ≥ ψi(π) for all i ∈ N , and ψ′

j(π
′) > ψj(π) for some agent

j ∈ N . Therefore, ψ′(π′) � ψ(π).
Notice that ψ(π′) � ψ′(π′) since ψ(π′) is the same sequence as ψ′(π′) but

sorted in descending order. Hence, ψ(π′) � ψ′(π′) � ψ(π), which completes the
proof. ��

We next show, by Lemma 2, that for a partition π that is not core stable,
and a blocking coalition S with respect to π, we have ψ(πS) lexicographically
greater than ψ(π).

Lemma 2. Let π be a partition of N that is not core stable, and let S be a
blocking coalition with respect to π. Then, ψ(πS) � ψ(π).

Proof. Due to common ranking property, we can assume without loss of general-
ity, that the utilities of agents that are in the same group in partition π are listed
consecutively in ψ(π). Moreover, we can assume without loss of generality, that
for a group G in partition π, the utilities of agents in G∩S precede in the ordering
of ψ(π) those in G�S. We also rename agents such that ψi(π) correspond to the
utility of agent i in partition π. Notice that we have u1(π) ≥ u2(π) ≥ . . . ≥ un(π).

Let ψ′(πS) be a permutation of ψ(πS), where ψ′
i(πS) and ψi(π) are the

respective utilities of the same agent for all i ∈ N . Then, ψ′
i(πS) = ui(πS)

and ψi(π) = ui(π). Let i be the agent with the smallest index such that
ψi(π) > ψ′

i(πS). That is, ui(π) > ui(πS). This implies i /∈ S, since otherwise
we would have ui(π) < ui(πS). Additionally, there must be an agent j ∈ π(i)
such that j ∈ S, since otherwise we would have π(i) = πS(i), and it would
mean ui(π) = ui(πS). Note that uj(πS) > uj(π) since j ∈ S, which means
ψ′

j(πS) > ψj(π). Also recall that uj(π) precedes ui(π) in the ordering of ψ(π).
Therefore, ψ′(πS) � ψ(π) since i is the agent with the smallest index such that
ψi(π) > ψ′

i(πS), and there exists an agent j < i such that ψj(π) < ψ′
j(πS).

Notice that ψ(πS) � ψ′(πS) since ψ(πS) is the same sequence as ψ′(πS) but
sorted in descending order. Therefore, ψ(πS) � ψ′(πS) � ψ(π), which completes
the proof. ��

Let π∗ be a coalition structure such that ψ(π∗) � ψ(π) for all partitions π
over N . Notice that such a partition π∗ exists, since the set of partitions over N
is finite. π∗ is Pareto optimal, since otherwise there is a partition π such that
π Pareto dominates π∗. But then ψ(π) � ψ(π∗) by Lemma 1, which contradicts
the fact that ψ(π∗) � ψ(π) for all partitions π over N . π∗ is also core stable,
since otherwise there is a subset of agents S, which is a blocking coalition with
respect to π∗. But then ψ(π∗

S)�ψ(π∗) by Lemma 2, which again contradicts the
fact that ψ(π∗) � ψ(π) for all partitions π over N . ��
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The rest of the section is devoted to proving that finding a Pareto optimal
and core stable partition of a given HGCRP instance is NP-HARD. To do that,
we first establish intractability of finding any Pareto optimal partition of a given
HGCRP, which trivially reduces to finding a Pareto optimal and core stable
partition. In our proof, we make use of an interesting result in the literature [3]
that relates the computational complexity of finding a Pareto optimal partition
of a subclass of hedonic games to that of finding a perfect partition in the same.
A partition of agents in a hedonic game is said to be a perfect partition, if every
agent is in her most preferred group, i.e., receives the maximum utility she can
attain. Notice that a hedonic game (and also an instance of HGCRP) does not
necessarily have a perfect partition. Therefore, the problem of finding a perfect
partition is formally specified as follows.

PERFECT-PARTITION = “Given a hedonic game, return a perfect parti-
tion if exists, return ∅ otherwise.”

The aforementioned relation between the computational complexities of find-
ing a Pareto optimal partition, and PERFECT-PARTITION is established via the
following result in [3].

Theorem 2 (Aziz et al. [3]). For every class of hedonic games, where it can
be checked whether a given partition is perfect in polynomial time, NP-hardness
of PERFECT-PARTITION implies NP-hardness of computing a Pareto optimal
coalition structure.

Since it can be efficiently checked whether a given partition π of a given
HGCRP instance is perfect or not in IRCL representation, Theorem 2 implies
that all we need to complete the proof is to show that PERFECT-PARTITION is
NP-HARD for the subclass HGCRP, which is stated as Theorem 3.

Theorem 3. PERFECT-PARTITION ∈ NP-HARD for HGCRP.

Proof. Since search version of an NP-COMPLETE decision problem is NP-HARD
[17], all we need is to show that deciding existence of a perfect partition of a
given HGCRP instance is NP-COMPLETE. We do that by giving a polynomial
time mapping reduction from EXACT-COVER [16].

In the EXACT-COVER problem, we are given a universe U = {1, . . . , n} and
a family S = {S1, . . . , Sk} of subsets of U . We are asked to decide whether there
exists an exact cover C ⊆ S, i.e., each element in U is contained in exactly
one subset in C. Given an instance (U, S) of EXACT-COVER, we construct a
corresponding instance (N,U) of HGCRP as follows:

– For every element of i ∈ U of (U, S), there is a corresponding agent i ∈ N of
(N,U),

– Each subset Si ∈ S of (U, S) corresponds to a subset of agents Si ⊆ N of
(N,U) with U(Si) = 2,

– For each subset G ⊆ N of agents of (N,U), for which there is no corresponding
subset in (U, S), the joint utility U(G) = 1 if |G| = 1, and U(G) = 0 otherwise.
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Notice that in the IRCL representation, the constructed HGCRP instance
(N,U) have joint utilities given only for the singleton groups, and the groups
with a corresponding subset in (U, S). Hence, the size of the constructed HGCRP
instance (N,U) is polynomial in the size of (U, S). We next show that (U, S) ∈
EXACT-COVER if and only if there exists a perfect partition in (N,U).

(If) Suppose (U, S) ∈ EXACT-COVER, i.e., there exists an exact cover C of
(U, S). Let π be the coalition structure of (N,U), where each coalition G ∈ π
is the correspondent of a subset Si ∈ C of (U, S). Notice that π is a partition
over the set of agents of (N,U). This is because for any distinct pair of subsets
Si ∈ C and Sj ∈ C, we have Si ∩ Sj = ∅ since C is an exact cover. But then,
ui(π) = 2 for all agents i ∈ N . Since no coalition of (N,U) has a joint utility
greater than 2, all agents of (N,U) are in their most preferred group, and thus,
π is a perfect partition of (N,U).

(Only If) Suppose that there exists a perfect partition π of (N,U), i.e.,
ui(π) = 2 for every agent i ∈ N . But then, for each coalition in π, there is a
corresponding set Si of (U, S). Notice that these sets not only cover all elements
of U but also do not overlap since π is a partition, and hence, form an exact
cover.

Since it is trivial in IRLC representation to check efficiently whether a par-
tition of a given HGCRP instance is perfect, the decision version of PERFECT-
PARTITION is in NP, and thus NP-COMPLETE by the above reduction. ��

Since it can be efficiently checked, whether a given partition π of a given
HGCRP instance is perfect in IRCL representation, Theorem 4 is a direct con-
sequence of Theorems 2 and 3.

Theorem 4. Finding a Pareto optimal coalition structure of a given HGCRP
instance is NP-HARD.

Even though a core stable partition can be computed in polynomial time by
a simple greedy algorithm [2], Theorem 4 implies that we cannot find a Pareto
optimal core stable partition of a given HGCRP instance in polynomial time, as
stated by Corollary 1.

Corollary 1. Finding a coalition structure that is both core stable and Pareto
optimal of a given HGCRP instance is NP-HARD.

Since the EXACT-COVER is NP-COMPLETE, even under the restriction that
|Si| = 3 for all Si ∈ S [18], the mapping reduction used in the proof of
Theorem 3 establishes the fixed parameter intractability result that PERFECT-
PARTITION ∈ NP-HARD for HGCRP, even when the sizes of coalitions are
bounded above by 3. As a consequence of the reduction given in [3] from finding
a perfect partition to finding a Pareto optimal partition, and the trivial reduc-
tion from finding a Pareto optimal partition to finding a Pareto optimal and
core stable partition, we obtain the following result stated as Corollary 2.

Corollary 2. The three problems, (i) finding a perfect partition, (ii) finding
a Pareto optimal partition, and (iii) finding a Pareto optimal and core stable
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partition, are all NP-HARD for HGCRP, even under the restriction that the
sizes of coalitions are bounded above by 3.

4 Computing the Socially Optimal Solution

This section is devoted to establishing the computational complexity of finding a
socially optimal solution π∗ of a given HGCRP instance G = (N,U). The metric
we use to evaluate the social welfare of a given solution π is the utilitarian objec-
tive function [23], i.e., the sum of the utilities of all agents. The social welfare
W (π) of a coalition structure π is then defined as W (π) =

∑
i∈N ui(π). A socially

optimal solution π∗ is a partition for which the social welfare is maximized.
Every socially optimal solution is a perfect partition, provided it exists, since

in a perfect partition all agents achieve their respective maximum attainable
utilities. Notice that PERFECT-PARTITION polynomially reduces to the prob-
lem of finding a socially optimal solution. This is because all it takes to decide
whether a given socially optimal solution is also a perfect partition is to ver-
ify that each agent is in her most preferred coalition, and that can trivially be
done efficiently in IRCL representation. Hence, all the hardness results presented
for the PERFECT-PARTITION applies to the problem of computing the socially
optimal solution as stated by Corollary 3.

Corollary 3. Finding a socially optimal solution of a given HGCRP instance
is NP-HARD, even under the restriction that the sizes of coalitions are bounded
above by 3.

In this section, we improve upon this immediate result by proving that finding
a socially optimal solution of a given HGCRP instance is APX-COMPLETE, even
under the restriction that the coalition sizes are bounded above by 3. For the
general case, we prove that finding a socially optimal solution is constant factor
inapproximable, as stated by Theorem 5.

Theorem 5. Finding a socially optimal solution of a given HGCRP instance
cannot be constant factor approximated.

Proof Sketch. The proof is via an approximation preserving A-reduction [22]
from MAXIMUM-INDEPENDENT-SET, which is known to be constant factor
inapproximable [19]. For a given undirected graph G = (V,E), we construct a
corresponding instance (N,U) of HGCRP as follows:

– For each edge e ∈ E, there is a corresponding agent in N ,
– Each v ∈ V corresponds to a group Cv ⊆ N , that consists of agents corre-

sponding to the incident edges of v, with joint utility U(Cv) = 1
|Cv| ,

– For each subset C ⊆ N of agents of (N,U), for which there is no corresponding
vertex in G, if |C| = 1 then U(C) = ε where 0 < ε ≤ 1

n2 , else U(C) = 0.
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Notice that the size of the constructed HGCRP instance (N,U) is polynomial
in the size of G.

Let I∗ be a maximum independent set of G, and let π∗ be a socially optimal
solution of (N,U). Then, it is possible to show that any partition π of (N,U)
induces an independent set I of G such that if W (π∗)

W (π) ≤ r then |I∗|
|I| ≤ r + 1.

Therefore, if we could have found a r-approximation π of a socially optimal
solution π∗ of (N,U), then we could have also found a (r + 1)-approximation I
of a maximum independent set I∗ of G. ��

Since MAXIMUM-INDEPENDENT-SET problem on cubic graphs (i.e., graphs
in which all the vertices have degree 3) is APX-COMPLETE [20], we also have
the following corollary.

Corollary 4. Finding a socially optimal solution of a given instance of HGCRP
is APX-COMPLETE, even when the sizes of coalitions are bounded above by 3.

5 Quantification of Inefficiency

We now give tight bounds for the price of anarchy and the price of stability of
HGCRP. The price of anarchy and the price of stability of a given game are
defined as the supremum of the ratio between the total utility of OPT and that
of the socially worst and best core stable solutions over all instances of the game,
respectively [23].

Theorem 6. The price of anarchy and the price of stability of HGCRP are n.

Proof. For a given HGCRP instance, let π and π∗ be a core stable solution, and
a socially optimal solution, respectively. That is, π∗ is a partition maximizing
W (π). Assume for the sake of contradiction W (π∗) > nW (π). Then, there is an
agent i ∈ N such that ui(π∗) > W (π) by pigeonhole principle, i.e., U(π∗(i)) >
W (π). This means that π∗(i) is a blocking coalition with respect to π. This
contradicts the fact that π is a core stable partition. Therefore, W (π∗) ≤ nW (π)
for any core stable partition π, specifically the socially worst one. Thus we have
the following upper bound for the price of anarchy:

Price of Anarchy ≤ W (π∗)
W (π)

≤ n

We now give a lower bound for the price of stability of HGCRP by giving
an example. Let G = (N,U) be an HGCRP instance, where U is defined as
U(N) = 1, U({1}) = 1 + ε for some ε > 0, and U(G) = 0 for all other subsets
G ⊂ N of agents. In a core stable partition π of this game, {1} ∈ π, since
otherwise {1} is a blocking coalition with respect to π. Then, N /∈ π since
1 ∈ N . Therefore, we have W (π) = 1 + ε. On the other hand, the socially
optimal solution π∗ is the one that N is formed, i.e., W (π∗) = n. Therefore, we
have the following lower bound for the price of stability:

W (π∗)
W (π)

=
n

1 + ε
≤ Price of Stability
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Since the price of stability is always less than or equal to the price of anarchy,
both of them are equal to n. ��

Since the price of anarchy of HGCRP is n, by Theorem 6, the social welfare
of the solution returned by the greedy algorithm [2] for finding a core stable
partition is within a factor of n of that of the socially optimal solution. Thus, it
is an n-approximation algorithm for finding the socially optimal solution, which
proves Corollary 5. Notice that this approximation bound is tight for the greedy
algorithm since the price of stability of HGCRP is also n.

Corollary 5. Finding a social optimal solution of a given HGCRP instance is
n-approximable.

6 Conclusion and Future Research Direction

We presented a comprehensive study of hedonic games possessing common rank-
ing property, which is a natural model for formation of general partnerships [21].
We strengthened the landmark result that every instance of HGCRP has a core
stable partition, by proving that every instance of HGCRP has a partition that
is both core stable and Pareto optimal. The economic significance of our result is
that efficiency is not to be totally sacrificed for the sake of stability in HGCRP.

We established the computational complexity of several problems related to
HGCRP both for the general case, and for the restricted case, where the size
of the coalitions are bounded above by 3. Our investigations revealed that all
the computational problems we considered are intractable. The restricted case,
where the size of the coalitions are bounded above by 2 remains as a future
research direction.

We quantified the loss of efficiency in HGCRP due to selfish behavior of
agents by proving tight bounds on the price of anarchy, and the price of stabil-
ity. In this way, we determined that finding a socially optimal solution can be
approximated within a factor of n; however, it cannot be approximated within a
constant factor. Finding a tighter bound remains as a future research direction.
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Abstract. The Dial-a-Ride problem may contain various constraints
for pickup-delivery requests, such as time windows and ride time con-
straints. For a tour, given as a sequence of pickup and delivery stops,
there exist polynomial time algorithms to find a schedule respecting
these constraints, provided that there exists one. However, if no feasi-
ble schedule exists, the natural question is to find a schedule minimis-
ing constraint violations. We model a generic fixed-sequence scheduling
problem, allowing lateness and ride time violations with linear penalty
functions and prove its APX-hardness. We also present an approach lead-
ing to a polynomial time algorithm if only the time window constraints
can be violated (by late visits). Then, we show that the problem can be
solved in polynomial time if all the ride time constraints are bounded by
a constant. Lastly, we give a polynomial time algorithm for the instances
where all the pickups precede all the deliveries in the sequence of stops.

Keywords: Dial-A-Ride · Scheduling · Vehicle Routing Problem ·
NP-hardness · Ride times · Time windows

1 Introduction

The Dial-A-Ride Problem (DARP) is a well studied variant of the Vehicle Rout-
ing Problem. The DARP, with its various restrictions, serves as a model for many
real-world problems from logistics, e.g. passenger transportation, or pickup-
delivery of perishable goods. For a review of DARPs, we refer the readers to [2].

The study of the Dial-A-Ride Problem can be split into three main subprob-
lems: the clustering of the requests into tours, the routing of the stops within
each tour into a sequence, and the scheduling of the stops inside the tours [4].
These problems are the source of major research topics in operation research,
each of them intensively studied. To get a better understanding of the inher-
ent complexity of the problems, and eventually obtain faster algorithms, many
restricted models have been studied.

In this paper, we focus on the scheduling subproblem, where the input of the
problem is a tour with fixed sequence of stops, a set of pickup-delivery requests,
c© Springer Nature Switzerland AG 2019
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and time constraints with their corresponding penalty functions. Each pickup-
delivery request is represented by two stops, the first one as a pickup, and the
second one as a delivery. The visit of each stop has to be performed within a
given time window. Furthermore, the time between the scheduled pickup and
delivery of a same request is bounded by a given ride time.

Time windows and ride times constraints are naturally arising when schedul-
ing pickups and deliveries. When both constraints must be respected in the solu-
tion, there exist efficient algorithms [6,9,11]. However, in all these approaches,
ride time and time window constraints are hard in the sense that a solution must
respect all the constraints.

In case there is no feasible schedule, one may look for a schedule “close” to a
feasible one with minimal penalties. Therefore, variants of the problem with soft
constraints, in which the violation of constraints is allowed but penalised, have
been introduced. Depending on the type of constraints and their corresponding
penalty functions, various results can be obtained. For instance, when the only
constraints are time windows for the stops, Dumas et al. [5] proposed a linear
programming approach for convex penalty functions with a linear time complex-
ity, but their algorithm does not incorporate ride time constraints. To the best
of our knowledge, the complexity of the problem with soft ride times constraints
was previously unknown.

In this paper, we propose a systematic study of the complexity of the problem
when allowing lateness at stops (scheduling after the time windows) and ride time
violation.

2 Problem Statement

In the following, we assume that 0 ∈ N. For � ∈ {≤, <,≥, >}, and X a well
ordered set, let X�x := {y ∈ X : y � x} and X[i] be the i-th smallest element
of X.

We are given a sequence S = (1, 2, . . . , 2n), n ∈ N, of 2n stops in the order
in which their visits must be scheduled (in case of no ambiguity s ∈ S also
represents an integer). Each stop s ∈ S is associated with a time interval (as, bs),
0 ≤ as ≤ bs, representing a time window in which a visit of the stop s should
take place (without loss of generality we suppose that a1 = 0). Furthermore, we
have a set P of n requests representing the pairs (p, d) of stops from S, p < d,
where p is a pickup and d is a delivery stop. Each request (p, d) has a time
constraint rp,d (rp,d ≥ 0) on the ride time: a visit at stop d should be scheduled
at most rp,d time units after the visit at stop p. Each stop s serves exactly one
request (either as a pickup or as a delivery stop) and all times are represented
as non-negative integers.

As it has been mentioned in Sect. 1, it is not always possible to schedule the
visits for all stops (in a given order) with respect to their time windows and ride
time constraints. Therefore we introduce the model in which the time window
and ride time constraints can be violated for penalties (soft constraints).
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In order to model soft constraints: (i) each stop s ∈ S is associated with a
penalty function σL

s : N → Q, mapping visit times which are later than the time
window bounds to a non-negative penalty, and (ii) each request (p, d) ∈ P is
associated with a penalty function σRT

p,d : N → Q, mapping ride times exceeding
ride time constraints to a non-negative penalty.

In this paper we suppose that all penalty functions are linear non-decreasing
functions. We consider a restricted model where earliness at stops is not allowed,
hence a stop must be either scheduled within or after its time window. Therefore,
for each stop s ∈ S and the visit time x at stop s, then x ≥ as. Moreover,
we have the function σL

s (x) such that σL
s (x) = 0 for x ≤ bs and otherwise

σL
s (x) = αs · (x − bs) + βs for given αs, βs ∈ Q≥0. Analogously, for each request

(p, d) ∈ P we have the function σRT
p,d with σRT

p,d (x) = 0 for x ≤ rp,d and otherwise
σRT

p,d (x) = αp,d · (x − rp,d) + βp,d for given αp,d, βp,d ∈ Q≥0.
A schedule t = (t1, . . . , t2n) is a sequence of visit times for all the stops in S

(in the given order), where we say that t schedules a stop s ∈ S at time ts. We
say that a schedule t is feasible if and only if for all stops s ∈ S, ts ≥ as and for
any s ∈ S<2n, ts ≤ ts+1. Obviously, each time window and ride time constraint
is either violated or satisfied by a schedule t. The cost c(t) of a schedule t is the
sum of the penalties of violated constraints:

c(t) =
∑

s∈S

σL
s (ts) +

∑

(p,d)∈P
σRT

p,d (td − tp) . (1)

When we solve the Min Pickup-Delivery Scheduling problem, we look
for a feasible schedule t with a minimum cost.

Min Pickup-Delivery Scheduling (Min PDS)
Input An instance I of Min PDS.
Task Find a feasible schedule t of I such that c(t) is minimum.

We also consider two special cases of the main problem:

Min Pickup-Delivery Scheduling with Hard Ride Time Constraints
(Min PDS-HRT)
Input An instance I of Min PDS.
Task Find a feasible schedule t of I respecting all ride time constraints and

minimising c(t).

Min Pickup-Delivery Scheduling with Hard Time Windows
(Min PDS-HTW)
Input An instance I of Min PDS.
Task Find a feasible schedule t of I respecting all time windows constraints

and minimising c(t).
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2.1 Our Contribution

The paper investigates how penalisation of the time window and ride time con-
straints contributes to the computational complexity of the problem. We show
that an essential factor for the complexity are soft maximum ride time con-
straints. In Subsect. 2.2, we give some remarks on our model. An overview of
complexity results is shown in Table 1. We prove the NP-hardness of the main
problem Min Pickup-Delivery Scheduling and its special case with hard
time window constraints, Min PDS-HTW (Sect. 3.1). Nevertheless, we show
that the problem can be solved in polynomial time in case of hard ride time
constraints, Min PDS-HRT (Sect. 3.2). Further underlining the role of ride
time constraints, we give a parameterised algorithm that solves Min Pickup-
Delivery Scheduling in polynomial time if all ride time constraints are
bounded by a constant (Sect. 4). In Sect. 5 we show that some structural prop-
erties in the sequence of the stops can be exploited to find a polynomial time
algorithm. Namely, we present an O(n4) time algorithm when all pickups precede
all the deliveries in the sequence.

Table 1. Overview of complexity results classified by constraints. Arrows mean results
are inferred.

Ride time constraints Time window constraints

Hard Soft

Hard O(n) [6] O(n) [Sect. 3.2]

0, βp,d = 0 O(n) ← O(n) [Sect. 4, from [5]]

Soft, bounded values P ← P [Sect. 4]

Soft, unbounded values NP-hard, APX-hard [Sect. 3.1] → NP-hard, APX-hard

2.2 Remarks on the Model

Driving times, (un)loading times. In favour of simplicity, our model neglects
times needed to travel between stops as well as loading or unloading times.
We emphasise that this is not restrictive, since we focus on the scheduling
of fixed sequences. An instance with given driving and (un)loading times
can be transformed to an equivalent instance of our form with a simple
preprocessing.

Waiting times. Constraints ws on the time to wait between two consecutive
stops s and s + 1 (as in [6]) are omitted in our model since they can be
expressed by ride time constraints: assume for s ∈ S<2n the constraint
ts + ws ≥ ts+1 is given for schedules t, ws ≥ 0. Simply insert two additional
stops: the stop p immediately before s and the stop d immediately after s+1
into S and add a request (p, d) to P with rp,d = ws. Replacing all waiting
time constraints leads to an equivalent instance with at most 6n−2 ∈ O(n)
requests.

Increasing time windows opening times. Since earliness is not allowed in
our model, we expect that any instance of 2n stops has as ≤ as+1 for all
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s ∈ S<2n. If for a stop s, s ∈ S<2n, we have as > as+1, for any feasible
schedule t it holds ts ≥ as and ts+1 ≥ ts and therefore ts+1 < as cannot
hold for any feasible scheduling. We can therefore preprocess the instance in
such a way that for all s ∈ S<2n, as+1 := max{as, as+1}. Notice that due to
this property and the fact that the last stop 2n is a delivery stop, it always
exists an optimal schedule t∗ such that t∗2n = a2n.

As soon as possible deliveries. All deliveries can be scheduled at a time as
soon as possible without increasing costs. Let d be a delivery of a request
(p, d) ∈ P and t a feasible schedule. We define a schedule t′ with t′s := ts
for all stops s ∈ S \ {d} and t′d := max{ad, td−1}. Clearly, t′ is feasible.
Obviously, t′d can only decrease the lateness at d as well as the ride time for
(p, d) ∈ P with no changes in scheduling of the other stops.

3 Complexity Study

3.1 Min Pickup-Delivery Scheduling with Hard Time Windows

In this subsection we study the variant of Min Pickup-Delivery Scheduling
in which ride time constraints may be violated in return for a penalty (soft
constraints), but the time windows must be respected (hard constraints). We
show that such a problem, called Min Pickup-Delivery Scheduling with
Hard Time Windows (Min PDS-HTW), is NP-hard and APX-hard even in
case of restricted time windows and very circumscribed penalty functions. The
proof is based on a reduction from the Maximum Dicut problem which is known
to be NP-hard and APX-hard when restricted to directed acyclic graphs (DAG)
[7,10].

A directed cut (A,B) of a directed graph G = (V,E) is a partition of V
into two subsets A, B. Its size s(A,B) := |{(u, v) ∈ E : u ∈ A, v ∈ B}| is the
number of outgoing arcs from A to B. The Maximum Dicut problem is defined
as follows:

Maximum Dicut
Input A directed graph G = (V,E).
Task Find a directed cut (A,B) of maximum size in G.

Theorem 1. Min Pickup-Delivery Scheduling with Hard Time Win-
dows is NP-hard.

Proof. Firstly, the decision version of Min PDS-HTW is clearly in NP. Let
G = (V,E) be a connected DAG such that |V | = n, |E| = m. Since G is a DAG,
the vertices of G can be labelled by 1, 2, . . . , n in a topological ordering in such a
way that for any arc (u, v) ∈ E it holds lab(u) < lab(v), where lab(z) represents
the number used for labelling the vertex z [12].

In the following we show how the graph G can be transformed into an instance
I of Min PDS-HTW. The sequence of stops for I is defined as the concatenation
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S := S1S2 . . . Sn, where each Sv represents a gadget of stops for each vertex v ∈ V .
Let v ∈ V be fixed, then the gadget Sv contains the stop sv

e for each arc e of
G incident to v, i.e. e = (v, u) or e = (u, v) for u ∈ V . An example of such a
gadget is depicted in Fig. 1.

1 2

3 4

w

z

yx

s1w
s1x

s2y
s2w

s3z
s3x
s3y

s4z

’w’
’x’
’y’

’z’

Fig. 1. A DAG (left) transformed into an instance of PDS (right). Gray boxes are time
windows of length 1. Note there are two stops for every arc of G and the stops are
grouped in gadgets for each vertex of G.

The stops within the gadget Sv are ordered in such a way that all stops
belonging to outgoing arcs precede all stops belonging to ingoing arcs. Note that
S has 2m stops. For each vertex v ∈ V the time windows of all stops s ∈ Sv

are set to as := lab(v) − 1 and bs := lab(v). The requests correspond to the
arcs in G, hence P = {(su

e , sv
e) : e = (u, v) ∈ E} and for each (p, d) ∈ P the

ride time is set to be rp,d = ad − bp. Due to the specific numbering of vertices
and sizes of windows, the stop p always precedes the stop d and rp,d ≥ 0 for all
(p, d) ∈ P. Setting the penalty coefficients αp,d = 0 and βp,d = 1, the cost of a
schedule corresponds to the number of violated ride time constraints. Obviously,
the transformation from G to the instance I can be done in polynomial time.

Now we show that G has a directed cut of size at least (m − k) if and only if
there exists a schedule t violating at most k ride time constraints, for any k ∈ N.

⇒ Suppose there exists a directed cut (A,B) in G of size at least (m − k).
Define a schedule t such that for every vertex v ∈ A and every stop s ∈ Sv we
set ts := bs and for all other stops ts := as. Clearly, t is a feasible schedule. Each
arc (u, v) ∈ E corresponds to the unique (p, d) ∈ P with p ∈ Su and d ∈ Sv. If
u ∈ A and v ∈ B, then td − tp = bd − ap ≤ rp,d, hence the ride time constraint is
respected. As we suppose s(A,B) ≥ m−k, the previous holds for at least (m−k)
requests. With |P| = m, it implies t violates at most k ride time constraints.

⇐ Now suppose there exists a schedule t for I violating at most k ride time
constraints. For each vertex v ∈ V let s[v] be the first delivery stop in Sv and
if there is no such stop, then s[v] be the last pickup stop in Sv. This allows
us to define a partition of V in the following way: for each vertex v ∈ V , if
ts[v] = bs[v] then v ∈ A, otherwise v ∈ B. Fix a (p, d) ∈ P and let u, v ∈ V be
such vertices that p (resp. d) is from the gadget Su (resp. Sv). If t satisfies the
ride time constraint of (p, d), then by the definition of I it must hold tp = bp and
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td = ad. Since p is from the gadget Su and t is feasible, ts[v] ≥ bp and necessarily
bs[u] = bp, hence ts[u] = bs[u]. Analogously, ts[v] = as[v]. Therefore, u ∈ A and
v ∈ B. As we suppose that in the schedule t at most k ride time constraints are
violated, then at least |P| − k = m − k are satisfied. Since each satisfied ride
time leads to a distinct arc going from A to B, s(A,B) ≥ m − k.

The reduction defined in Theorem 1 is in fact a Strict-reduction [3] between
the optimisation problems. As Lampis et al. [10] proved the Maximum Dicut
problem is APX-hard even when restricted on DAGs, the following result follows:

Corollary 1. Min Pickup-Delivery Scheduling with Hard Time Win-
dows is APX-hard.

Now we argue that the main problem Min Pickup-Delivery Scheduling
is NP-hard and APX-hard too. The idea is to set the penalties for lateness at
each stop to such values that any optimal schedule must respect the time win-
dows. Let I be an instance of Min PDS-HTW with n requests. As mentioned
in Subsect. 2.2, there exists an optimal schedule t of I such that t2n = a2n.
Therefore the actual ride time of each request is bounded by the value a2n.
Let k = max(p,d)∈P σRT

p,d (a2n). Then the instance I can be transformed into an
instance I ′ of Min PDS by setting αs = 0 and βs = nk + 1 for all s ∈ S (hence
σL

s (x) = kn + 1 for x > bs). The cost of any schedule respecting time windows
is at most nk, hence there exists an optimal schedule of I ′ with cost strictly less
than nk + 1. Such a schedule must respect time windows and therefore is also
valid for the instance I of Min PDS-HTW, hence Min PDS-HTW can be seen
as a special case of Min PDS. Therefore we can conclude

Corollary 2. Min Pickup-Delivery Scheduling is NP-hard and APX-hard.

3.2 Min Pickup-Delivery Scheduling with Hard Ride Time
Constraints

In this subsection we study the variant of Min Pickup-Delivery Scheduling
in which the ride time constraints must be respected (hard constraints), while
time windows may be violated in return for penalty (soft constraints). As it was
mentioned in Sect. 1, we consider a model in which lateness is the only possible
way to violate a time window restriction. We prove that this variant of the
problem, called Min Pickup-Delivery Scheduling with Hard Ride Time
Constraints (Min PDS-HRT), can be solved in linear time, compared to NP-
hardness of Min Pickup-Delivery Scheduling with Hard Time Windows
shown in Sect. 3.1.

When both ride times and time window constraints are hard, a linear time
algorithm was proposed by Firat and Woeginger in [6]. It has also been adapted
to handle additional minimum ride time constraints in [8]. We show how the same
approach can be used to minimise lateness penalties in Min Pickup-Delivery
Scheduling with Hard Ride Time Constraints.
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Our idea, similarly to the one used in [6,8], is to formulate a difference con-
straint system (DCS) with variables of the schedule and interpret it as a graph
in which the existence of negative weight cycles is equivalent to infeasibility of
the DCS. In these papers it is shown how to apply the single-source shortest
path algorithm for interval graphs presented in [1] to test the existence of nega-
tive weight cycles in linear time. In case of feasible instances, a solution can be
extracted in linear time as well. We point out that this approach will lead to a
schedule visiting every stop as late as possible: the scheduled time of each stop
is chosen by the length of a shortest path from the start vertex. This path corre-
sponds to a chain of difference equations and can be seen as the tightest upper
bound on the timing value. Since the shortest path lengths are upper bounds
this implies that no feasible schedule can visit any of the stops later.

Theorem 2. Min Pickup-Delivery Scheduling with Hard Ride Time
Constraints can be solved in linear time.

4 Bounded Ride Time Constraints

The Min Pickup-Delivery Scheduling problem is NP-hard as it follows from
Sect. 3.1. In this section we show that some restrictions on the parameters of the
problem improve the complexity of the problem.

We suppose that μ ∈ N is a fixed constant. Let μ-Min Pickup-Delivery
Scheduling (μ-Min PDS) be the restriction of the Min Pickup-Delivery
Scheduling problem to the instances with the ride time constraints bounded
by μ, i.e. rp,d ≤ μ for all (p, d) ∈ P. In the following we propose a polynomial-
time algorithm for μ-Min PDS.

Given an instance of Min PDS, let W be the set of all time window bounds
for all stops, i.e. W =

⋃
s∈S{as, bs}, and Js := {(p, d) ∈ P : d > s and p ≤ s} be

the set of the loaded requests after the stop s ∈ S, and its size load(s) := |Js|.
Firstly we observe that the visit times of an optimal solution can be chosen from
a restricted set of time values. We define the set

W̃ := (
⋃

w∈W
[w − nμ,w + nμ])≥a1,≤a2n

.

Note that W̃ = W in case of 0−Min PDS.
We say that a schedule t is defined in W̃ if and only if ts ∈ W̃ for all s ∈ S.

The following lemma states that in fact there is an optimal schedule defined in
W̃.

Theorem 3. For a given instance of μ-Min PDS there is an optimal schedule
t defined in W̃.

Definition 1. For a given schedule t of an instance of μ-Min PDS and a stop
� ∈ S we define the partial cost c̃(t, �) of t up to the stop � ∈ S as

c̃(t, �) :=
∑

s∈S≤�

σL
s (ts) +

∑

(p,d)∈J�

σRT
p,d (t� − tp) +

∑

(p,d)∈P
d≤�

σRT
p,d (td − tp) .
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In the following lemma we prove some observations regarding the partial cost
function.

Lemma 1. For a given schedule t of the instance μ-Min PDS and the stop
� ∈ S the following hold

(i) c̃(t, 1) = σL
1 (t1);

(ii) c̃(t, � + 1) = c̃(t, �) + σL
�+1(t�+1) +

∑
(p,d)∈J�

f �
p,d(t)

with f �
p,d(t) :=

{
αp,d(t�+1 − t�), if t� − tp > rp,d

σRT
p,d (t�+1 − tp), if t� − tp ≤ rp,d

,

(iii) c̃(t, 2n) = c(t),

Let I be an instance of μ-Min PDS. For each stop l, l = 1, 2, . . . , 2n we
define so called l-labels to capture the structure of ‘similar’ schedules for I. The
labels enable to restrict the number of schedules for I in each step and therefore
to use the ideas of dynamic programming.

As it follows from Theorem 3, we can focus on schedules defined in W̃ only.
For a schedule t defined in W̃ and � ∈ S, the �-label of t is defined as

Label�(t) =
(
t�, s

0, s1, . . . , sμ, c̃(t, �)
)
,

where sm := min{s ∈ S such that ts ≥ t� − m}, i.e. sm is the first stop of the
schedule t visited at or after time (t� − m) for any m, 0 ≤ m ≤ μ.

Note that every schedule has one such label for each � ∈ S, but a label may
describe more (different) schedules. We say that a label L ∈ W̃ × Sμ+1 × Q

+ is
a feasible �-label if there exists a feasible schedule t for I with Label�(t) = L.

In the following lemma we prove that in each stop there is a restriction on
the number of labels to consider to find an optimal schedule.

Lemma 2 (Domination rule). Let I be an instance of μ-Min PDS and the
stop � ∈ S be fixed. Let L1 =

(
τ, s0, s1, . . . , sμ, c̃1

)
and L2 =

(
τ, s0, s1, . . . , sμ, c̃2

)

be feasible �-labels with c̃1 ≤ c̃2. Then there is a feasible schedule t with
Label�(t) = L1 such that c(t) ≤ c(t′) for any feasible schedule t′ with Label�(t′) =
L2. We say that the label L1 dominates the label L2.

Now, according to Lemma 2, we can give an upper bound on the number of
non-dominated labels for any fixed stop l ∈ S. There are at most |W̃| possibilities
for the first item of the label, hence O(μ ·n2) if μ > 0 (in case μ = 0 only O(n)),
and O(n) choices for each of the next (μ + 1) items of the label.

Remark 1. For each instance of μ-Min PDS and a stop � ∈ S the number of
non-dominated �-labels is bounded by O(μ · nμ+3) if μ > 0 and by O(n2) if
μ = 0.

This leads to the following results:

Theorem 4. An instance of μ-Min PDS with μ > 0 can be solved in time
O(μ2 · nμ · poly(n)).
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Proof. Starting with the initial labels
(
τ, 1, . . . , 1, σL

1 (τ)
)

for each τ ∈ W̃≥a1 we
have all the labels for the first stop for any feasible schedule defined on W̃, by
Lemma 1 (i). The labels for the stop � ∈ S>1 can be calculated from the labels
of the stop (�−1). For a non-dominated label (τ, s0, . . . , sμ, c̃) of the stop (�−1)
(there are O(μ ·nμ+3) such labels) do the following: for every possible visit time
τ ′ ∈ W̃≥τ at the stop � (there are O(μ · n2) such possible time visits), generate
a new label:

– the first item of the label is τ ′;
– the s∗ items are defined in the following way: (τ ′ − τ) items have the value

� (truncate to at most μ + 1 items), if (τ ′ − τ) < μ + 1, then start to add
the items s0, . . . , sμ from the previous (l − 1)-label until there are (μ + 1)
s∗-items,

– the new cost can be calculated in a linear time from the given label using
Lemma 1 (ii).

Overall each new label is generated in time O(n). Any label at the stop 2n
minimising the last item of the label (cost) represents only optimal schedules by
Lemma 1 (iii).

Corollary 3. An instance of 0−Min PDS can be solved in time O(n5).

Proof. The result follows from the proof of Theorem 4 considering W̃ = W and
the fact that the number of non-dominated labels per stop is bounded by O(n2).

We consider another specific case, when the goal is to minimise the sum of
the lateness penalties and the sum of the ride times. This implies that μ = 0.
Since driving times are excluded from instances of our model (see Subsect. 2.2),
all ride times can be seen as excess ride times (excess ride times are defined as
the actual ride time minus the driving time). The problem can be solved with
the algorithm of Dumas et al. [5] in linear time (∗). The ride times can also be
minimised in a weighted manner, using αp,d ≥ 0 for (p, d) ∈ P. The waiting time
before a stop s ∈ S>1 is then simply weighted by

∑
(p,d)∈Js−1

αp,d.

5 Special Patterns in the Sequence of Stops

In this section we study a class of polynomial time solvable instance of Min
Pickup-Delivery Scheduling. We introduce the First Pickup Then Deliver-
ies (FPTD) instances in which all the stops 1, . . . , n are pickup stops, and the
stops n + 1, . . . , 2n are delivery stops. We show that Min Pickup-Delivery
Scheduling can be solved in polynomial time in the class of FPTD instances
despite the NP-hardness of the problem (Sect. 3.1).

Firstly, we prove that for each stop we can reduce the set of potential schedul-
ing times to a subset polynomial in size. Each time in this subset is calculated
from the time windows and maximal ride time values of the instance.



Complexity of Scheduling for DARP with Soft Ride Times 159

Lemma 3. Let I be an FPTD instance with 2n stops. Then there exists an
optimal schedule t of I such that for each s ∈ S:

– if ts < tn, then ts ∈ Bs(tn) :=
(
{bs′ : s′ ∈ S, s ≤ s′ ≤ n}<tn ∪

⋃
(p,d)∈P, p≤s

{
max{tn, ad} − rp,d

})
≥as

;

– if ts = tn, then

ts ∈ C := {an} ∪
⋃

(p,d)∈P

{
{bp, ad − rp,d} ∪

⋃
(p′,d′)∈P

{bp + rp′,d′ , ad − rp,d + rp′,d′}
}

;

– if ts > tn, then ts = as.

According to Lemma 3, there is an optimal schedule t with tn ∈ C, and |C|
is quadratic in the instance size. Moreover, when tn is fixed, each stop s ∈ S<n

with ts < tn belongs to Bs(tn), linear in size. Obviously, when tn is fixed, one
can schedule all deliveries d ∈ S>n at td := max{tn, ad}. In the following, we
show how one can efficiently calculate an optimal schedule for a fixed tn.

Let p ∈ S≤n be a pickup stop and (p, d) ∈ P its corresponding request. We
define the function σk

p as the partial cost of scheduling p when tn = k such that
if p is scheduled at l then σk

p(l) = σL
p (l)+σRT

p,d (max{k, ad}− l). In order to define
a recursive equation for calculating the cost of the optimal schedule, we define
for each pickup stop s ∈ S≤n the function T k

s : N → N:

T k
s (j) :=

{
max (Bs(k) ∪ {k})≤j if (Bs(k) ∪ {k})≤j �= ∅,
−1 otherwise.

The call of T k
s (j) yields the largest time of the set Bs(k) ∪ {k} which is smaller

than j, or returns −1 if there is no such time. Thus, given tn = k and a bound
j on the visit time for the pickup s, we are able to iterate over the candidate
times for s in Bs(k) ∪ {k}.

Thereby, we can define a recursion table calculating the minimum cost of a
schedule t when the value of tn is fixed.

Lemma 4. Let I be an FPTD instance, k ∈ C, and t a schedule of I such that
tn = k and t has minimum cost. Then, c(t) = C[n, k] +

∑
d∈S>n

σL
d (max{k, ad})

C[i, j] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

{
C[i − 1, T k

i−1(j)] + σk
i (j),

C[i, T k
i (j − 1)]

}
if i ≥ 1, j ≥ ai,

0 if i = 0,

∞ otherwise.

(2)

Finally, to find the cost of an optimal schedule, we have to compute the value
C[n, k] for each k ∈ C. A dynamic programming algorithm (∗) can solve it in
O(n4) time.

Theorem 5. An FPTD instance I with 2n stops can be solved in O(n4).
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6 Conclusion

We study a new model of the Dial-A-Ride Problem for the scheduling of fixed
sequences with several time constraints typical in the Pickup-and-Delivery sce-
nario. We highlight the key role of soft maximal ride time constraints in the
combinatorial complexity of the problem, as they induce the NP-hardness of the
problem. We also prove that if the maximal ride times are bounded by a constant,
we can obtain a polynomial-time algorithm. Finally, we show that instances of
the problem with a special structure can be solved efficiently, independently of
the timing constraints. We believe that this result can be generalised whenever
the number of times a pickup is followed by a delivery in the sequence is bounded.

To get a better understanding of the overall complexity of the problem further
research may consider other constraints, e.g. allow earliness at stops, and more
complex penalty functions.
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Abstract. In vertex deletion problems on graphs, the task is to find a set
of minimum number of vertices whose deletion results in a graph with
some specific property. The class of vertex deletion problems contains
several classical optimization problems, and has been studied extensively
in algorithm design. Recently, there was a study on vertex deletion prob-
lems on split graphs. One of the results shown was that transforming
a split graph into a block graph and a threshold graph using minimum
number of vertex deletions is NP-hard. We call the decision version of
these problems as Split to Block Vertex Deletion (SBVD) and
Split to Threshold Vertex Deletion (STVD), respectively. In this
paper, we study these problems in the realm of parameterized complex-
ity with respect to the number of vertex deletions k as parameter. These
problems are “implicit” 4-Hitting Set, and thus admit an algorithm
with running time O�(3.0755k), a kernel with O(k3) vertices, and a 4-
approximation algorithm. In this paper, we exploit the structure of the
input graph to obtain a kernel for SBVD with O(k2) vertices and FPT
algorithms for SBVD and STVD with running times O�(2.3028k) and
O�(2.7913k).

Keywords: Vertex deletion problems · Split graphs ·
Parameterized algorithms · Kernelization · Approximation algorithms

1 Introduction

Graphs are one of the most versatile mathematical objects endowed with
immense modelling power. Many problems of practical interest can be repre-
sented as problems on graphs and therefore the study of graph problems and
algorithms have become an integral part of computer science. In vertex deletion
problems on graphs, the task is to find a minimum number of vertices whose
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deletion results into a graph that belongs to a graph class with some specific
property. The family of vertex deletion problems contains several classical opti-
mization problems. For example, Vertex Cover, Feedback Vertex Set and
Odd Cycle Transversal are vertex deletion problems with the desired target
class being edgeless graphs, forests, and bipartite graphs, respectively. A general
result by Lewis and Yannakakis shows a complete dichotomy of the complexity
of these problems [18]. In particular, the problem is NP-hard for most choices of
the desired target class. As vertex deletion problems contain several problems
of both practical and theoretical interest, they have been studied extensively
in various algorithmic paradigms like parameterized complexity, approximation
algorithms, and exact algorithms.

Another natural direction of research is to study vertex deletion problems
on special graph classes. In this paper, we focus our study on split graphs –
a natural family of graphs. A split graph is a graph whose vertex set can be
partitioned into a clique and an independent set. Every split graph is a chordal
graph1 as well. Split graphs can be recognised in polynomial time, and they
admit elegant polynomial-time algorithms for several problems that are NP-
hard in general. Notable examples include Maximum Independent Set, Max-
imum Clique, Minimum Coloring, and Cluster Deletion [3,12]. However,
there are many problems which remain NP-hard even when restricted to split
graphs. For instance, Steiner Tree, Disjoint Paths, Cutwidth, and Rain-
bow Colouring are NP-hard on split graphs [5,13,15]. This contrast in the
complexity of classical problems makes the class of split graphs an important
and well-studied graph class.

A recent study on vertex deletion problems on split graphs showed interesting
NP-hardness results [4]. In particular, the following problems of transforming a
split graph into a block graph, and a threshold graph, using the minimum number
of vertex deletions were shown to be NP-hard.

Split to Block Vertex Deletion (SBVD)
Input: A split graph G and an integer k.
Question: Does there exist a set S ⊆ V (G) of at most k vertices such that
G − S is a block graph?

Split to Threshold Vertex Deletion (STVD)
Input: A split graph G and an integer k.
Question: Does there exist a set S ⊆ V (G) of at most k vertices such that
G − S is a threshold graph?

A graph is a block graph if every biconnected component is a clique. Equiv-
alently, block graphs are those chordal graphs that do not contain a diamond
(a complete graph on four vertices with exactly one edge deleted) as an induced
subgraph. A graph G is a threshold graph if there exists a real number t and
a function f : V (G) → R such that two vertices u and v are adjacent in G

1 A chordal graph is a graph in which every induced (or chordless) cycle is a triangle.
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if and only if f(u) + f(v) ≥ t. It is easy to verify that threshold graphs are
split graphs as well. Specifically, threshold graphs are those split graphs that
do not contain an induced path on four vertices [12]. Vertex deletion to split
graphs, block graphs and threshold graphs are well-studied in the framework
of parameterized algorithms [1,6,8,11,16]. In this paper, we study SBVD and
STVD with respect to the number of vertex deletions k as parameter. We also
design approximation algorithms for the minimization version of these prob-
lems, referred to as MinSBVD and MinSTVD, respectively. We begin our study
by observing that these problems can be cast as restricted cases of the popular
d-Hitting Set problem. For a set system (U,F) comprising of a finite universe
U , and a collection F of subsets of U , a hitting set is a set T ⊆ U that has
a non-empty intersection with each set in F . For a fixed integer d > 0, given
a set system (U,F) with each set in F consisting of at most d elements, the
d-Hitting Set problem requires finding a minimum hitting set. As SBVD and
STVD can be seen as “implicit” 4-Hitting Set, they admit an algorithm with
running time O�(3.0755k)2, a kernel with O(k3) vertices and a 4-approximation
algorithm [9,14,19]. In this paper, we exploit the structure of the input (a split
graph) and obtain improved polynomial kernel, parameterized algorithms, and
approximation algorithms. Due to space constraint, approximation algorithms
have been omitted, and will appear in the full version of the paper. Our results
comprise of the following:

– SBVD can be solved in O�(2.3028k) time and admits a kernel with O(k2)
vertices. MinSBVD can be solved in O�(1.5658n+o(n)) time, where n is the
number of vertices in the input graph.

– MinSBVD admits a factor 2-approximation algorithm but is APX-hard. Fur-
ther, no (2− ε)-approximation algorithm is possible under the Unique Games
Conjecture.

– STVD can be solved in O�(2.7913k) time and MinSTVD can be solved in
O�(1.6418n+o(n)) time, where n is the number of vertices in the input graph.

– MinSTVD admits a factor 2-approximation algorithm but is APX-hard.

The parameterized algorithms are based on the branching technique and
the exact exponential-time algorithms are obtained using the results of [10] in
conjunction with our FPT algorithms. The quadratic vertex kernel for SBVD is
based on the recently introduced new expansion lemma [17].

Preliminaries. The set {1, · · · , n} of consecutive integers from 1 to n is denoted
by [n]. For a set S,

(
S
2

)
denotes the set {{u, v}: u, v∈S, u �=v}. We use standard

terminology from the book of Diestel [7] for the graph related terminologies that
are not explicitly defined here. All graphs considered in this paper are simple and
undirected. The vertex set and the edge set of a graph G are denoted by V (G)
and E(G), respectively. For an edge e = uv, vertices u and v are called endpoints
of e. For a vertex v ∈ V (G), its neighbourhood N(v) is the set of all vertices

2 O� notation suppresses polynomial factors. That is, O�(f(k)) = O(f(k)nO(1)).
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adjacent to it, and its non-neighbourhood N(v) is the set V (G)\(N(v) ∪ {v}).
For S ⊆V (G), N(S) =

⋃
v∈S NG(v). The degree of a vertex v ∈ V (G), denoted

by degG(v), is the size of N(v). For a set S ⊆V (G), G[S] and G − S denote the
subgraphs of G induced by the set S and V (G)\S respectively. For a singleton set
S = {u}, we denote G−{u} as G−u. A complete graph on q vertices is denoted
by Kq. A diamond is denoted by D4. A block vertex deletion set of G is a set
S ⊆V (G) of vertices such that G−S is a block graph. The partition (C, I) of the
vertex set of a split graph G into clique C and independent set I is called a split
partition of G. A split graph with split partition (C, I) is called complete split
if every vertex of C is adjacent to every vertex of I. In a graph G, an induced
path on four vertices is denoted by P4 = (a, b, c, d), where ab, bc, cd∈E(G), and
ac, ad, bd /∈E(G). A split graph is a block graph if and only if it does not have a
D4 as an induced subgraph [2]. A split graph is a threshold graph if and only if it
does not have a P4 as an induced subgraph [12]. All reduction rules mentioned in
the paper are applied in the sequence stated and each rule is applied as long as
it is applicable on the instance. Due to space constraint, safeness of all reduction
rules and branching rules will appear in the full version of the paper.

2 A Quadratic Vertex Kernel for SBVD

In this section, we show that SBVD parameterized by k admits a kernel with
O(k2) vertices.

2.1 Tools Used: Expansion Lemma, 3-Hitting Set
and Approximation Algorithm

First, we list the tools and techniques that we crucially use in our kernelization
algorithm. We begin with the notions of �-expansion and new expansion lemma
from [17].

Definition 1. (�-expansion) [17] Let � be a positive integer and H be a bipartite
graph with bipartition (A,B). Let Â ⊆ A and B̂ ⊆ B. We say that Â has an
�-expansion into B̂ in H if |N(Y ) ∩ B̂| ≥ �|Y |, for all Y ⊆ Â.

An �-star at a vertex u is a set of � distinct edges incident on u. As discussed
in [17], the existence of an �-expansion from Â to B̂ is equivalent to having an �-
star at each u ∈ Â with the other endpoints in B̂, and the �-stars being pairwise
disjoint with respect to the vertices they use from B̂. For an �-expansion from
Â to B̂, the vertices of B̂ that are endpoints of �-star are termed as saturated,
while the remaining vertices of B̂ are termed as unsaturated.

Lemma 1. (New Expansion Lemma) [17] Let � be a positive integer and H be a
bipartite graph with bipartition (A,B). Then there exists Â ⊆ A and B̂ ⊆ B such
that Â has an �-expansion into B̂ in H, and, N(B̂) ⊆ Â and |B \ B̂| ≤ �|A \ Â|.
Moreover, the sets Â and B̂ can be computed in polynomial time.
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Note that Â and B̂ may be empty. In that case, since |B \ B̂| ≤ �|A \ Â|, we
have |B| ≤ �|A|. Therefore, if |B| > �|A|, then B̂ �= ∅.

The next tool that we use is based on the 3-Hitting Set problem. Consider
a 3-Hitting Set instance (U,F , k). An element u ∈ U is called essential for
(U,F , k) if every solution to (U,F , k) contains u. Observe that if u is essential,
then (U,F , k) is a yes-instance if and only if (U \ u,F ′, k − 1) is a yes-instance
where F ′ = {F : F ∈ F , u /∈ F}. A family F̂ ⊆ (

U
2

)
is called a family of essential

pairs for (U,F , k) if for every F ∈ F , there is a set F ′ ∈ F̂ such that F ′ ⊆ F .

Lemma 2. [20]�3 Given an instance (U,F , k) of 3-Hitting Set, there is a
polynomial-time algorithm that either declares that (U,F , k) is a no-instance, or
returns an essential element u ∈ U , or returns a set F̂ of essential pairs with
|F̂ | = O(k2).

Theorem 1. � MinSBVD admits a factor 2-approximation algorithm.

2.2 The Kernelization Algorithm

Let (G, k) be an instance of SBVD and S be a block vertex deletion set for G
obtained using the factor 2-approximation algorithm for SBVD due to Theo-
rem 1. Observe that if |S| > 2k, then (G, k) is a no-instance and the required
kernel is a trivial no-instance of constant size. Otherwise, let (C, I) and (C�, I�)
be split partitions of G[S] and G − S, such that C ∪ C� is a clique and I ∪ I� is
an independent set. If |C�| ≤ 2, then we add the vertices of C� to S and delete
C� from G − S. Now, S is a block vertex deletion set of G of size O(k).

To obtain the required kernel, it suffices to bound |C�| and |I�|. We will
define a sequence of reduction rules for the same. After the application of each
rule, we reuse the notations G to denote the resultant graph, and (C, I) and
(C�, I�) to denote the split partitions of the (new) G[S] and G−S, respectively.

Before proceeding to the kernelization algorithm, we state a crucial observa-
tion which is used subsequently.

Observation 1. � Suppose |C�| > 2. Then, there is at most one vertex in I�

that is adjacent to every vertex in C�. Further, every vertex in I� that has a
non-neighbour in C� is adjacent to at most one vertex in C�.

Preprocessing Rule 1. If there is a vertex v ∈ I� that is adjacent to every
vertex in C�, add v to S, and delete v from G − S.

Note that |S| remains O(k) as a result of this preprocessing rule. Subse-
quently, every vertex v ∈ I� has at most one neighbour in C�.

Reduction Rule 1. – If k ≤ 0 and G is not a block graph, then a no-instance
of constant size is the required kernel.

– If k ≥ 0 and G is a block graph, then a yes-instance of constant size is the
required kernel.

3 Proofs of results marked with � will be given in full version of the paper.
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– If there exists a vertex v ∈ V (G) that is not a part of any D4, then delete v
from G and the reduced instance is (G − v, k).

Next, we define the notion of an auxiliary bipartite graph that is used in
several reduction rules subsequently.

Definition 2. (Auxiliary Bipartite Graph) Given an ordered pair (Γ,Λ) with
Γ ⊆ (

V (G)
2

)
and Λ ⊆ V (G), the auxiliary bipartite graph Ĝ(Γ,Λ) with bipartition

(A,B) is defined as A = Γ , B = Λ, and a vertex {a, b} ∈ A is adjacent to u ∈ B
if and only if ua, ub ∈ E(G).

Now, we describe reduction rules to independently bound |I�| and |C�|.

Bounding |I�| when |C�| ≤ k + 1. We show that if |C�| is O(k), then |I�| is
O(k2) (and hence |V (G)| is O(k2)) using Reduction Rule 2.

Reduction Rule 2. Suppose |C�| ≤ k + 1. Let (A,B) be the bipartition of the
auxiliary bipartite graph Ĝ(

(
C∪C�

2

)
, I�) given by Definition 2. Let X ⊆ A and

Y ⊆ B be the sets obtained from Lemma 1 such that, X has a 2-expansion into
Y with N(Y ) ⊆ X, and |B \ Y | ≤ 2|A \ X|. If there is an unsaturated vertex u
in Y , then delete u from G and the reduced instance is (G − u, k).

Lemma 3. � Suppose |C�| ≤ k + 1, and neither of the Reduction Rules 1 and
2 are applicable. Then |I�| = O(k2) and hence |V (G)| = O(k2).

Bounding |I�| when |C�| ≥ k + 2. Here, for every vertex v ∈ I�, we have
|N(v) ∩ C�| ≥ k + 1 using Observation 1. Before presenting more reduction
rules, we show the following result.

Lemma 4. � Suppose |C�| ≥ k + 2, and Reduction Rule 1 is not applicable.
Then any solution Z of (G, k) satisfies Z ∩{v, a, b} �= ∅, where v ∈ I� and {a, b}
is a pair of distinct neighbours of v in C ∪ C�.

Reduction Rule 3. Suppose |C�| ≥ k + 2. For a vertex v ∈ I�, let Fv denote
the family {{v, a, b}: a, b ∈ N(v)∩(C ∪C�) and a �= b}. Let F =

⋃
v∈I� Fv and

U =
⋃

F∈F F .
Case 1. If Lemma 2 declares that (U,F , k) is a no-instance, then return a
no-instance of constant size.
Case 2. If Lemma 2 returns an essential element u for (U,F , k), then delete
u from G, and the reduced instance is (G − u, k − 1).
Case 3. If Lemma 2 returns an essential family F̂ for (U,F , k), then let D be
the set {{x, y} ∈ F̂ : x, y ∈ C ∪ C�}, and R be the set of vertices that appear in
some pair in F̂ . If D �= ∅, let (A,B) be the bipartition of the auxiliary bipartite
graph Ĝ(D, I� \ R) given by Definition 2. Let X ⊆ A and Y ⊆ B be the sets
obtained from Lemma 1 such that X has a 1-expansion into Y , N(Y ) ⊆ X and
|B \ Y | ≤ |A \ X|. If there is an unsaturated vertex u in Y , then delete u from
G and the reduced instance is (G − u, k).
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Lemma 5. � Suppose |C�| ≥ k + 2 and neither of the Reduction Rules 1 and 3
is applicable. Then |I�| is O(k2).

Bounding |C�|. Assume that |C�| ≥ k + 2, otherwise we have the required
kernel. For every vertex v ∈ I�, we have |N(v) ∩ C�| ≥ k + 1 using Observation
1. Let C�

0 = {v ∈ C� : N(v) ∩ I� = ∅} and C�
1 = {v ∈ C� : N(v) ∩ I� �= ∅}. We

define a marking scheme to identify vertices of C that may be present in any
solution. We first bound the size of C�

1 .

Marking Scheme 1.
For every vertex v ∈ C, we mark the vertices in C� and I� using the following
procedure.
– Initialize M1 = ∅, and mark(v) = ∅ for each v ∈ C.
– For each v ∈ C, if there exists a ∈ C� \ M1 and b ∈ I� \ M1 such that

ab, vb ∈ E(G), then set M1 = M1∪{a, b}, and mark(v) = mark(v)∪{ab}.

Lemma 6. � Let Z be a solution to (G, k) and v ∈ C \Z. Then, Z ∩{a, b} �= ∅,
for every ab ∈ mark(v).

Reduction Rule 4. If there exists a vertex v ∈ C such that |mark(v)| ≥ k +1,
then delete v from C and the reduced instance is (G − v, k − 1).

Lemma 7. � If Reduction Rules 1 and 4 are not applicable, then |C�
1 | is O(k2).

Now, it remains to bound the size of C�
0 . We define another marking scheme.

Marking Scheme 2.
– Initialize M2 = ∅.
– For each v ∈ I

• Add min{k + 2, |N(v) ∩ C�
0 |} neighbours of v in C�

0 to M2.
• Add min{k + 2, |N(v) ∩ C�

0 |} non-neighbours of v in C�
0 to M2.

Let W = C�
0 \ M2. Clearly, |M2| is O(k2).

Reduction Rule 5. Let (A,B) be the bipartition of the auxiliary bipartite graph
Ĝ(

(
I
2

)
,W ) given by Definition 2. Let X ⊆ A and Y ⊆ B be the sets obtained

from Lemma 1 such that X has a 2-expansion into Y , N(Y ) ⊆ X, and |B \Y | ≤
2|A \ X|. If there is an unsaturated vertex u in Y , then delete u from G and the
reduced instance is (G − u, k).

Lemma 8. � If neither of the Reduction Rules 1 and 5 are applicable, then |C�
0 |

is O(k2).

Theorem 2. � SBVD admits a kernel with O(k2) vertices.

3 An FPT Algorithm for SBVD

In this section, we describe an FPT algorithm for SBVD which runs in
O�(2.3028k) time. Before proceeding to the algorithm, we analyze certain special
cases where SBVD can be solved in polynomial time.
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Lemma 9. � If G is a complete split graph, then the instance (G, k) of SBVD
can be solved in polynomial time.

Observation 2. � If |C| < 40, then the instance (G, k) of SBVD can be solved
in polynomial time, where (C, I) is a split partition of G.

Let (G, k) be an instance of SBVD and (C, I) be a split partition of G. First,
we apply the following reduction rules exhaustively.

Reduction Rule 6. – If k ≤ 0 and G is not a block graph, then declare that
(G, k) is a no-instance.

– If k ≥ 0 and G is a block graph, then declare that (G, k) is a yes-instance.
– If there is a vertex v ∈ V (G) that does not participate in any D4, then delete

v from G and recurse on the instance (G − v, k).

Subsequently, we will assume that Reduction Rule 6 is not applicable on
(G, k). Further, G is not a complete split graph and |C| ≥ 40. Next, we apply
the following branching rules.

Branching Rule 1. Suppose there is a vertex v ∈ I that has exactly two neigh-
bours a, b in C. Let y1, · · · , y38 be distinct non-neighbours of v in C. Branch
into adding a or b or {y1, · · · , y38} to the solution. Recurse on the instances
(G − a, k − 1), (G − b, k − 1), and (G − {y1, · · · , y38}, k − 38).

Branching Rule 2. Suppose there is a vertex v ∈ I that has at least three
neighbours a, b, c in C. Let u be a non-neighbour of v in C.
Case 1: Suppose v has at least 20 non-neighbours in C, say x1, · · · , x20. Branch
into adding v or {a, b} or {b, c} or {a, c} or {x1, · · · , x20} to the solution. Recurse
on the instances (G−v, k −1), (G−{a, b}, k −2), (G−{b, c}, k −2), (G−{a, c},
k − 2), and (G − {x1, · · · , x20}, k − 20).
Case 2: Suppose v has at least 20 neighbours in C, say x1, · · · , x20. Let X =
{x1, · · · , x20} and A =

(
X
19

)
. Let A = {A1, · · · , A20}. Branch into adding v or u

or Ai ∈ A for each i ∈ [20] to the solution. Recurse on the instances (G−v, k−1),
(G − u, k − 1), (G − A1, k − 19), · · · , and (G − A20, k − 19).

Theorem 3. � SBVD can be solved in O�(2.3028k) time.

Theorem 3 along with the machinery of designing exact exponential-time algo-
rithms using FPT algorithms given in [10] leads to the following result.

Theorem 4. MinSBVD can be solved in O�(1.5658n+o(n)) time, where n is the
number of vertices in the input graph.

4 An FPT Algorithm for STVD

In this section, we give an FPT algorithm for STVD which runs in O�(2.7913k)
time.
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4.1 Description of the Algorithm

Let (G, k) be a STVD instance and (C, I) be a split partition of G. For v ∈ I,
let P I(v) denote the set {u ∈ I : ∃P4(v, a, b, u) in G}, PC(v) denote the set
{u ∈ C : uv /∈ E(G) and ∃P4(v, a, u, b) in G}, and LC(v) denote the set {u ∈
C : uv ∈ E(G) and ∃P4(v, u, a, b) in G}.

Reduction Rule 7. – If k ≤ 0 and G is not a threshold graph, then declare
that (G, k) is a no-instance of STVD.

– If k ≥ 0 and G is a threshold graph, then declare that (G, k) is a yes-instance
of STVD.

– If there exists a vertex v ∈ V (G) that does not participate in any P4, then
delete v from G and recurse on the instance (G − v, k).

Henceforth, we will assume that Reduction Rule 7 is not applicable on (G, k).

Branching Rule 3. Suppose there exist two vertices u, v in I such that
a, b ∈ N(u) \ N(v), and c, d ∈ N(v) \ N(u). Then branch into adding
either u or v or {a, b} or {c, d} to the solution. Recurse on the instances
(G − u, k − 1), (G − v, k − 1), (G − {a, b}, k − 2), and (G − {c, d},
k − 2).

Branching Rule 4. Suppose there exist three vertices u, v, w in I such that
c, d ∈ N(u) \ (N(v) ∪ N(w)), a ∈ N(v) \ N(u), and b ∈ N(w) \ N(u). Branch
into adding either {u}, {c, d}, {v, w}, {a, b}, {a,w}, or {b, v} to the solution.
Recurse on the instances (G − u, k − 1), (G − {c, d}, k − 2), (G − {v, w}, k − 2),
(G − {a, b}, k − 2), (G − {a,w}, k − 2), and (G − {b, v}, k − 2).

Branching Rule 5. Suppose there exist three vertices u, v, w in I such that
c, d ∈ N(u)\(N(v)∪N(w)), a ∈ (N(v)∩N(w))\N(u). Branch into adding either
{u}, {a}, {v, w}, or {c, d} to the solution. Recurse on the instances (G−u, k−1),
(G − a, k − 1), (G − {v, w}, k − 2), and (G − {c, d}, k − 2).

Branching Rule 6. Suppose there exist three vertices u, v, w in I such that
a ∈ (N(v) ∩ N(w)) \ N(u), c ∈ N(u) \ N(v), d ∈ N(u) \ (N(v) ∪ N(w)), and
e ∈ N(u) \ N(w). Branch into adding {u}, {a}, {v, w}, {v, d, e}, {c, d, e}, or
{c, d, w} to the solution. Recurse on the instances (G − u, k − 1), (G − a, k − 1),
(G−{v, w}, k−2), (G−{v, d, e}, k−3), (G−{c, d, e}, k−3), and (G−{c, d, w},
k − 3).

Branching Rule 7. Suppose u, v ∈ I such that v ∈ P I(u), and |PC(u)| = 1.
Let a ∈ PC(u), and c, d ∈ N(u)\N(v). Branch into adding a, v, or {c, d} to
the solution. Recurse on the instances (G − a, k − 1), (G − v, k − 1), and (G −
{c, d}, k − 2).

Branching Rule 8. Suppose there exist three vertices u, v, w in I such that a ∈
N(v)\(N(u)∪N(w)), b ∈ N(w)\N(v), c ∈ N(u)\N(v), and d ∈ (N(u)∩N(w))\
N(v). Branch into adding v, a, {u,w}, {u, b, d}, {c, d, w}, or {c, d, b} to the
solution. Recurse on the instances (G−v, k−1), (G−a, k−1), (G−{u,w}, k−2),
(G − {u, b, d}, k − 3), (G − {c, d, w}, k − 3), and (G − {c, d, b}, k − 3).
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Branching Rule 9. Suppose u ∈ I that forms a P4 with a vertex v ∈ I.
Case 1: Suppose |LC(u)| = |LC(v)| = 1. Let a ∈ LC(u), and b ∈ LC(v).
Branch into adding either {a}, or {b} to the solution. Recurse on the instances
(G − {a}, k − 1), or (G − {b}, k − 1).
Case 2: Suppose |PC(u)| = |PC(v)| = 1. Let a ∈ PC(u), and b ∈ PC(v).
Branch into adding either {a}, or {b} to the solution. Recurse on the instances
(G − {a}, k − 1) and (G − {b}, k − 1).

4.2 Correctness and Running Time

Suppose u, v ∈ V (G) such that N(u) = N(v). Then observe that, P I(u) = P I(v),
PC(u) = PC(v), and LC(u) = LC(v).

Observation 3. � Suppose (G, k) is an instance of STVD. If u, v ∈ I such
that deg(v) < deg(u), and |N(v)\N(u)|≥1, then |N(u)\N(v)|≥2.

Observation 4. � Suppose (G, k) is an instance of STVD, where Branching
Rule 3 is not applicable. If u, v∈I and deg(v)≤deg(u), then |N(v) \ N(u)| ≤ 1.

Lemma 10. � Suppose (G, k) is an instance of STVD, where Reduction Rule
7 and Branching Rule 3 are not applicable. Suppose for any u ∈ I, for each
v∈P I(u), we have deg(v) = deg(u). For u∈I, let Xu = {v∈I: deg(v) = deg(u)}.
Then for all x∈Xu either |PC(x)| = 1, or |LC(x)| = 1.

Theorem 5. There exists an algorithm for STVD which runs in O�(2.7913k)
time.

Proof. Given an instance (G, k) of STVD, let (C, I) be a split partition of G.
We first apply Reduction Rule 7 exhaustively. Suppose there exists two vertices
u and v in I such that there exist at least two vertices in N(u) ∩ N(v), and at
least two vertices in N(v) ∩ N(u), then we apply Branching Rule 3. Next we
consider the following cases.

(A) Suppose u is a highest degree vertex in I such that P I(u) has at least one
vertex of degree lesser than that of u.
(1) Suppose there exists at least two vertices v, w in P I(u) such that deg(v)<

deg(u), and deg(w) < deg(u). Clearly, |N(v) \N(u)| ≥ 1, otherwise v
and u cannot form a P4 together. Similarly, |N(w)\N(u)| ≥ 1. Using
Observation 4, we have |N(v)\N(u)| ≤ 1 and |N(w)\N(u)| ≤ 1. Hence,
there exists a unique vertex, say a in N(v) \ N(u), and a unique vertex,
say b in N(w)\N(u). By Observation 3, there exist at least two vertices in
N(u)\N(v), say c and d. Without loss of generality, let deg(w) ≤ deg(v).
Case (i) Suppose a �= b. Since N(v)\{a} ⊆ N(u), it follows that b /∈
N(v). Moreover, since deg(w) ≤ deg(v), and b /∈ N(v), by Observation 4,
N(w)\{b} ⊆ N(v). Note that since b is a non-neighbour of u, b /∈ {c, d}.
Hence, c, d /∈N(w). Therefore, Branching Rule 4 is applicable.
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Case (ii) Suppose a = b. By Observation 4, we have |N(w)\N(v)| ≤ 1.
Suppose |N(w) \N(v)| = 0. Since N(w) ⊆ N(v), c, d /∈ N(w). Hence
Branching Rule 5 is applicable. Now, suppose |N(w) \ N(v)| = 1. Let
x∈N(w)\N(v). Since N(w)\{a}⊆N(u), x∈N(u). Since |N(w)\N(v)| = 1,
by Observation 4, N(w)\{x}⊆N(v). If x /∈{c, d}, then c, d /∈N(w). In this
case Branching Rule 5 is applicable. Otherwise, without loss of generality
let x=c. Then d /∈ N(w). Since deg(w)<deg(u), by Observation 3, there
exists a vertex, say e∈N(u)\N(w), where e �= d. In this case Branching
Rule 6 is applicable.

(2) Suppose that there exists only one vertex v in P I(u) such that deg(v) <
deg(u). Note that |N(v) \N(u)| ≥ 1 as v forms a P4 with u. Due to
Observation 3, there exist at least two vertices in the neighbourhood of u
that are non-neighbours of v. Let c, d ∈ N(u)\N(v). Suppose |PC(u)| = 1,
then Branching Rule 7 is applicable. Now, suppose |PC(u)| > 1. Since u
and v form a P4, v has at least one neighbour which is a non-neighbour
of u. However, by Observation 4, since deg(v) < deg(u), it follows that
v has exactly one neighbour a which is a non-neighbour of u. Let b ∈
PC(u)\{a}. Note that vb /∈ E(G). Therefore, there exists a vertex, say w
in P I(u) such that wb ∈ E(G). Since P I(u) has only one vertex of degree
lesser than deg(u), it follows that deg(w) ≥ deg(u). If deg(w) > deg(u),
then it contradicts the fact that u is a highest degree vertex which forms a
P4 with a vertex of lesser degree. Hence, deg(w) = deg(u). Since u forms
a P4 with w, using Observation 4, we have |N(u) \N(w)| = 1. Therefore,
either c or d is in the neighbourhood of w. Without loss of generality,
let d ∈ N(w). By Observation 4, there exists at most one neighbour of
w which is a non-neighbour of u. Therefore, N(w) \ {b} ⊆ N(u). Thus
a /∈ N(w). Since there exists vertices a ∈ N(v) \ (N(u) ∪ N(w)), b ∈
N(w) \N(v), c ∈ N(u) \N(v), and d ∈ (N(u)∩N(w)) \N(v), Branching
Rule 8 is applicable.

(B) Suppose there exists a vertex u ∈ I, such that for all v ∈ P I(u), we have
deg(v)=deg(u). By Lemma 10, if v∈P I(u), then either |PC(u)|= |PC(v)| =
1, or |LC(u)|= |LC(v)|=1. Hence, Branching Rule 9 is applicable.

The correctness of the algorithm follows from the correctness of reduction
rules and branching rules. No reduction rule increases k, and k always reduces
in each branch of every branching rule. Moreover, all rules can be applied in
polynomial time. As the depth of recursion tree is at most k, the running time
of the algorithm is O�(2.7913k) which follows from solving the recurrence cor-
responding to the most expensive branching vector (Branching Rule 4), i.e,
(1, 2, 2, 2, 2, 2). �

Using Theorem 5 along with the machinery of designing exact exponential-
time algorithms using FPT algorithms given in [10], we have the following result.

Theorem 6. MinSTVD can be solved in O�(1.6418n+o(n)) time where n is the
number of vertices in the input graph.
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5 Conclusion

In this paper, we study the parameterized complexity of SBVD and STVD with
respect to the solution size as parameter. We also give factor 2-approximation
algorithms for MinSBVD and MinSTVD(both proven APX hard in full version).
Further, if there is an α-approximation algorithm for MinSBVD with α < 1.36,
then P = NP. Also, assuming the Unique Games Conjecture, if there is an α-
approximation algorithm for MinSBVD with α < 2, then P = NP.
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Abstract. Given a set V = {v1, . . . , vn} of n elements and a family
S = {S1, S2, . . . , Sm} of (possibly intersecting) subsets of V , we consider
a scheduling problem of perpetual monitoring (attending) these subsets.
In each time step one element of V is visited, and all sets in S containing
v are considered to be attended during this step. That is, we assume that
it is enough to visit an arbitrary element in Sj to attend to this whole
set. Each set Sj has an urgency factor hj , which indicates how frequently

this set should be attended relatively to other sets. Let t
(j)
i denote the

time slot when set Sj is attended for the i-th time. The objective is
to find a perpetual schedule of visiting the elements of V , so that the

maximum value hj

(
t
(j)
i+1 − t

(j)
i

)
is minimized. The value hj

(
t
(j)
i+1 − t

(j)
i

)

indicates how urgent it was to attend to set Sj at the time slot t
(j)
i+1.

We call this problem the Fair Hitting Sequence (FHS) problem, as it is
related to the minimum hitting set problem. In fact, the uniform FHS,
when all urgency factors are equal, is equivalent to the minimum hitting
set problem, implying that there is a constant c0 > 0 such that it is
NP-hard to compute (c0 logm)-approximation schedules for FHS.

We demonstrate that scheduling based on one hitting set can give poor
approximation ratios, even if an optimal hitting set is used. To counter
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this, we design a deterministic algorithm which partitions the family S
into sub-families and combines hitting sets of those sub-families, giving
O(log2 m)-approximate schedules. Finally, we show an LP-based lower
bound on the optimal objective value of FHS and use this bound to
derive a randomized algorithm which with high probability computes
O(logm)-approximate schedules.

Keywords: Scheduling · Periodic maintenance · Hitting set ·
Approximation algorithms

1 Introduction

The combinatorial problem studied in this paper is a natural extension of the
following perpetual scheduling proposed in [11]. Nodes v1, v2, . . . , vn of a network
need to be indefinitely monitored (visited) by a mobile agent according to their
urgency factors h1, h2, . . . , hn, which indicate how often each node should be
visited relatively to other nodes in the network. The (current) urgency indicator
of node vi is defined as t · hi, where t is the time which has elapsed since the
last visit to this node. The objective of scheduling visits to nodes is to minimise
the maximum value ever observed on the urgency indicators. Two variants of
this problem were considered in [11]. In the discrete variant the time needed
to visit each node is assumed to be uniform, corresponding to a single round
of the monitoring process. The continuous variant assumes that the nodes are
distributed in a geometric space and the time required to move to, and attend,
the next node depends on the current location of the mobile agent.

In this paper we consider a generalization of the discrete variant of the per-
petual scheduling, where the emphasis is on monitoring a given family of sets
S = {S1, S2, . . . , Sm}, which are (possibly intersecting) subsets of the set of n
network nodes. We assume that it is enough to visit an arbitrary node in a set
Sj to attend to this whole set. Moreover, by visiting a node we assume that
all sets in S containing this node are attended. As in the perpetual scheduling
problem studied in [11], we schedule visits to nodes, but these visits are now
only means of attending to sets Sj and the urgency factors h1, h2, . . . , hm are
associated with these sets, not with the nodes.

This generalization of the perpetual scheduling problem is motivated by dis-
semination (or collection) of information across different, possibly overlapping,
communities in social (media) networks. Participants of such a network can pro-
vide access to all communities to which they belong. While a lot of work has
been done on recognition/detection of communities, starting with the seminal
studies presented in [12,18], much less is known about efficient ways of inform-
ing or monitoring such communities, especially when they are highly overlapping
and dynamic and have their own frequency requirements. One way of modeling
such problems is to decide whom and when to contact to ensure regular, but
proportionate to the requirements, access to all communities.

Other scenarios motivating our scheduling problem arise in the con-
text of overlapping sensor or data networks. Consider overlapping networks
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S1, S2, . . . , Sm and access nodes v1, v2, . . . , vn. Each node vi is an access node
of one or more networks Si1 , Si2 , . . . , Sik

, k ≥ 1. In the context of our abstract
scheduling problem, these overlapping networks correspond to overlapping com-
munities of the previous scenario. Each network Sj has a specified access rate
hj > 0, which indicates how often this network should be accessed relative to
other networks. If an access node vi is used at the current time slot, then all net-
works Si1 , Si2 , . . . , Sik

containing vi are accessed during this time slot. Accessing
a network can be thought of, for example, as gathering data from that network,
or providing some other service, maintenance or update for that network. We
want to find an infinite schedule A = (vq1 , . . . , vqt

, . . .), where vqt
is the access

node used in the time slot t ≥ 1, so that each network is accessed as often as
possible and in a fair way according to the specified access rates.

Fair Hitting Sequence Problem. We formalize the objective of the regular and
fair access to networks S1, S2, . . . , Sm in the following way. When progressing
through a schedule A, if a network Sj was accessed for the last time at a time
slot t′, then the value hj (t − t′) indicates the urgency of accessing this network
at the current time slot t > t′. We refer to this value as the urgency indicator of
network Sj , or simply as the (current) urgency or the height of Sj . The urgency
indicator of Sj grows with the rate hj over the time when Sj is not accessed and
is reset to 0 when Sj is accessed. Hence we will refer to numbers hj also as growth
rates (of urgency indicators). We want to find a schedule which minimizes the
maximum hj

(
t
(j)
i+1 − t

(j)
i

)
, over all networks Sj , j = 1, 2, . . . ,m and all i ≥ 0,

where t
(j)
i is the i-th time slot when network Sj is accessed (setting t

(j)
0 ≡ 0).

That is, hj

(
t
(j)
i+1 − t

(j)
i

)
is the height of Sj at the time when this network is

(about to be) accessed for the (i + 1)-st time.
For a given schedule A = (vq1 , vq2 , . . .) and 1 ≤ j ≤ m, the number

Height(A, j) = sup
{

hj

(
t
(j)
i+1 − t

(j)
i

)
: i ≥ 0

}
(1)

is the maximum value, or the maximum height, of the urgency indicator of Sj ,
when schedule A is followed, and the number

Height(A) = max {Height(A, j) : 1 ≤ j ≤ m} (2)

is the maximum height of any urgency indicator and is called the height of
schedule A. We want to find an optimal schedule Aopt which minimizes (2). We
refer to this problem as the Fair Hitting Sequence (FHS) problem, and show
below that it includes the hitting set problem as a special case. We say that a
schedule A is ρ-approximate, if Height(A) ≤ ρ · Height(Aopt).

We denote by V = {v1, v2, . . . , vn} the set of all access nodes (or all par-
ticipants in a social network), which from now on will be simply referred to
as nodes, and we identify each network (or a community) Sj with the set
{vj1 , vj2 , . . . , vjq

} ⊆ V of all (access) nodes of this network (or all members
of this community). The simplest, and trivial, instance of the FHS problem is
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when m = n, Sj = {vj} and hj = 1, for all 1 ≤ j ≤ n. For this instance a
schedule is optimal if, and only if, it is a repetition of the same permutation of
V . The height of such a schedule is equal to n.

A still special case, but more interesting and non-trivial, is when sets Sj are
arbitrary, with possibly m �= n, but all hj remain equal to 1. It is not difficult
to see that for such instances of FHS a schedule is optimal if, and only if, it
is a repetition of the same permutation of the same minimum-size hitting set
W ⊆ V . That is, |Sj ∩ W | ≥ 1, for each 1 ≤ j ≤ m, and W has the minimum
size among all subsets of V with this property. The height of such optimal
schedule is equal to |W |. NP-hardness of the minimum hitting set problem,
which is equivalent to the minimum cover set problem, implies NP-hardness of
the more general FHS problem. The natural greedy algorithm for the minimum
hitting-set problem, which selects in each iteration a node hitting (belonging to)
the maximum number of the remaining sets Sj , gives an O(log m)-approximate
hitting set. On the other hand, it is known that there is a constant c0 > 0 such
that finding a (c0 log m)-approximate hitting set is NP-hard [21]. This implies
NP-hardness of (c0 log m)-approximation for the more general FHS problem.

Continuing with the case of uniform growth rates, if all sets Sj have size 2,
then such an instance is represented by the graph G = (V,E), where E =
{S1, S2, . . . , Sm}. In this case the FHS problem becomes a problem of efficient
monitoring of the edges of graph G (by visiting veritces of G), which is equivalent
to the vertex cover problem.

Another non-trivial special case of the FHS problem is when Sj = {vj}, for
each 1 ≤ j ≤ n, but the access rates hj are non-uniform. This is the perpetual
scheduling problem considered in [4,8,11]. If we further assume that all input
parameters hj are inverses of positive integer numbers, then the question whether
there exists a schedule of height not greater than 1 is known as the Pinwheel
scheduling problem [14].

We are interested in deriving good approximation algorithms for the FHS
problem. While schedules are defined as infinite sequences, it can be shown that
there is always an optimal schedule which has a periodic form Binit(Bperiod)∗,
where Binit and Bperiod are finite schedules (see e.g. [1]). The period of a periodic
optimal schedule can have exponential length, but our approximate algorithms
compute in polynomial time schedules with periods polynomial in m.

Our Results. If we denote by A(W ) the schedule obtained by repeating the
same hitting set W , then the height of A(W ) is at most hmax|W |, where hmax =
max1≤j≤m{hj}. Actually it is possible to show instances for which the A(W )
schedule is only Θ(m/ log m) approximate. To get better schedules, we have
to handle the variations in the growth rates hj . In Sect. 2, we present simple
O(log2 m)-approximate schedules. Such schedules are obtained by partitioning
the whole family of sets Sj into O(log m) sub-families of sets which have similar
growth rates, and by combining O(log m)-approximate hitting sets of these sub-
families. To improve further the approximation ratio of computed schedules, we
first derive in Sect. 3 a lower bound on the height of any schedule. This lower
bound can be viewed as the optimal solution to a fractional version of the FHS
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problem. Then we show in Sect. 4 a randomized algorithm which uses the optimal
fractional solution to compute schedules which are O(log m)-approximate with
probability at least 1 − 1/m.

Previous Related Results. Several constant approximation algorithms for the
discrete variant and O(log n) approximation for the continuous variant of this
perpetual scheduling problem are discussed in [11] and further work on this
problem is presented in [4,8]. In [4], the authors consider monitoring by two
agents of n nodes located on a line and requiring different frequencies of visits.
The authors provide several approximation algorithms concluding with the best
currently known

√
3-approximation.

The perpetual scheduling problem considered in [4,8,11] is closely related
to periodic scheduling [22], general Pinwheel scheduling [2,3], periodic Pinwheel
scheduling [14,15], and to other problems motivated by Pinwheel scheduling
[20]. This problem is also related to several classical algorithmic problems which
focus on monitoring and mobility. These include the Art Gallery Problem [19]
and its dynamic alternative called the k-Watchmen Problem [17,23]. In further
work on fence patrolling [5,6] the authors focus on monitoring vital (possibly
disconnected) parts of a linear environment where each point is expected to
be visited with the same frequency. The authors of [7] study monitoring linear
environments by agents prone to faults.

2 Deterministic O(log2 m)-Approximate Schedules

In this section, we show a deterministic approximation algorithm for the FHS
problem. The algorithm exploits the properties of schedules which are based on
hitting sets.

2.1 Algorithm Based on Hitting Sets

We first formalize an observation that if there is not much variation among
the growth rates of the sets, then the minimum hitting set gives a good
approximate solution. Consider an input instance with hmax ≤ C · hmin, where
hmin = min1≤j≤m{hj} and C ≥ 1 is a parameter. Let Wopt be a minimum
hitting set and compare the heights of the schedule A(Wopt) and an optimal
schedule Aopt. We note that an optimal schedule exists since the schedule A(V )
(the round-robin schedule (v1, v2, . . . , vn)∗) has height nhmax and all (infinitely
many) schedules with heights at most nhmax have heights in the finite set
{ihj : j = 1, 2, . . . , m, i − positive integer, ihj ≤ hmax · n}.

Let [1, t] be the shortest initial time interval in schedule Aopt when each set
is accessed at least once. We have t ≥ |Wopt|, since the set of nodes used in the
first t time slots in schedule Aopt is a hitting set. Let Sj be any set accessed for
the first time in schedule Aopt at time t. We have

Height(A(Wopt)) ≤ hmax|Wopt| ≤ C hj |Wopt| ≤ C hj t ≤ C · Height(Aopt),
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where the last inequality follows from the fact that in schedule Aopt, the height
of set Sj (that is, the height of its urgency indicator) at time t is equal to
hjt. Thus A(Wopt) is a C-approximate schedule. If Wapx is a D-approximate
hitting set (|Wapx| ≤ D · |Wopt|), then a similar argument shows that A(Wapx)
is a (CD)-approximate schedule. This and the O(log m) approximation of the
greedy algorithm for the hitting set problem give the following lemma.

Lemma 1. If Wapx is a D-approximate hitting set, then the schedule A(Wapx)
is (Dhmax/hmin)-approximate. There is a polynomial-time algorithm which com-
putes O((log m)hmax/hmin)-approximate schedules for the FHS problem.

If there is considerable variation in the growth rates hj , then the sched-
ule A(Wopt), which relies on one common minimum hitting set, can be far
from optimal. To get a better approximation, we consider separately sets with
similar growth rates. More precisely, we partition the whole family of sets
S = {S1, S2, . . . , Sm} into the following kmax = 	log m
 + 1 families.

Fk = {Sj : hmax/2k < hj ≤ hmax/2k−1}, for k = 1, 2, . . . , kmax − 1,
Fkmax = {Sj : hj ≤ hmax/2kmax−1}.

Let Wk be a D-approximate hitting set for the family Fk, 1 ≤ k ≤ kmax − 1,
and let Wkmax be any hitting set for the family Fkmax such that |Wkmax | ≤ |Fkmax |.
For 1 ≤ k ≤ kmax − 1, the schedule A(Wk), which repeats the same permuta-
tion of Wk, is a (2D)-approximate schedule for the family Fk (from Lemma 1).
The schedule A(Wkmax), which repeats the same permutation of Wkmax , is a
schedule for the family Fkmax with height at most |Wkmax |

(
hmax/2kmax−1

) ≤
m

(
hmax/2kmax−1

) ≤ 2hmax ≤ 2 · H(Aopt). Therefore the schedule A which
interleaves the kmax schedules A(W1),A(W2), . . . ,A(Wkmax−1),A(Wkmax) is a
(2Dkmax)-approximate schedule for the whole family S. This is because for each
1 ≤ k ≤ kmax, the lengths of the periods in the schedule A(Wk) between the
consecutive accesses to the same set Sj ∈ Fk increase kmax times in the schedule
A. (Set Sj may have some some additional accesses in A, which come from other
schedules A(Wk′), k′ �= k).

Theorem 1. The schedule A constructed above using D-approximate hitting
sets is O(D log m) approximate.

Corollary 1. There is a polynomial-time algorithm which computes O(log2 m)-
approximate schedules for the FHS problem.

2.2 A Tight Example for Using logm Hitting Sets

We showed in Sect. 2.1 that the schedule A which is based on log m hitting
sets computed separately for the groups of sets with similar growth rates is
O(D log m)-approximate, where D is an upper bound on the approximation ratio
of the used hitting sets (Theorem 1). We provide now an instance of FHS such
that even if optimal hitting sets are used, the schedule A is only Θ(log m)-
approximate.
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vt−1,1

. . . . . .

v2,2

v1,1

St,m+1
2

vt−1,m+1
4
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v2,1

St,1

St−1,1

S2,1 S2,2

Fig. 1. An instance of the FHS problem for algorithm A defined in Theorem 1.

Consider the following instance for the FHS problem, illustrated in Fig. 1.
Given an integer t > 0, let m = 2t − 1 be the number of sets. The sets are
defined as follows:

– St,i = {vt,i}, for each i = 1, 2, . . . , m+1
2 = 2t−1;

– S�,i = S�+1,2i−1 ∪ S�+1,2i ∪ {v�,i}, for each � = t − 1, t − 2, . . . , 1 and for each
i = 1, 2, . . . , m+1

2t−�+1 = 2�−1.

For the growth rates, we take h(S�,i) = 1
2� for each � = t, t − 1, . . . , 1 and

i = 1, 2, . . . , m+1
2t−�+1 = 2�−1.

On this instance, we now compare the performance of an optimum schedule
with the schedule A defined in Theorem 1.

Any schedule must cover separately the sets St,i, i = 1, ..., m+1
2 = 2t−1, since

each of these sets is a singleton containing a different element vt,i. Thus the
height of any schedule is at least 1

2 . A schedule given by an interleaved round-
robin on elements vt,i, i = 1, ..., m+1

2 achieves this lower bound. In fact, these
elements form a hitting set for the whole family S. By interleaved schedule we
mean that the elements are picked according to a permutation which ensures
that each set S�,i at level � is served every 2�−1 time slots, so it grows to the
maximum height of 1

2 . For instance, for t = 4, the schedule can be v4,1, v4,5, v4,3,
v4,7, v4,2, v4,6, v4,4, v4,8.

On the other hand, the schedule A constructed as in Sect. 2.1 has height
log(m+1)

2 . Indeed, the m+1
2 sets at level t have growth rates 1

2t , and each of these
sets is served every m+1

2 t time slots, giving the height

m + 1
2

· t · 1
2t

=
t

2
=

log(m + 1)
2

.

The heights of the sets at other levels are never greater than t
2 , so the approxi-

mation ratio of schedule A is Θ(log m).
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3 A Lower Bound via the Fractional Solution

We derive a lower bound on the height of any schedule A of the FHS problem.
Consider a schedule A = (vq1 , . . . , vqt

, . . .) in which each Sj , 1 ≤ j ≤ m, is
accessed infinitely many times (otherwise the schedule has infinite height) and
take a large time slot T . We look at the first T slots of schedule A, that is, at the
schedule A[T ] = (vq1 , vq2 , . . . , vqT

). For i = 1, 2, . . . , n, let zi denote the fraction
of the time slots 1, 2, . . . , T when the node vi is used, that is, zi = |{1 ≤ t ≤
T : vqt

= vi}|/T . For j = 1, 2, . . . ,m, let 1 ≤ t
(j)
1 < t

(j)
2 < · · · < t

(j)
I(j,T ) ≤ T

be the time slots in the period [1, T ] when Sj is accessed. We assume that T is
large enough so that for each 1 ≤ j ≤ m, I(j, T ) ≥ 1, that is, each Sj is accessed
at least once in the period [1, T − 1]. Defining t

(j)
0 = 0 and t

(j)
I(j,T )+1 = T , the

maximum height of Sj = {vj1 , vj2 , . . . , vjq(j)} in the period [1, T ] is

Height(A[T ], j) = max
{

hj

(
t
(j)
i − t

(j)
i−1

)
: 1 ≤ i ≤ I(j, T ) + 1

}
(3)

≥ hj

I(j, T ) + 1

i=I(j,T )+1∑
i=1

(
t
(j)
i − t

(j)
i−1

)
=

hjT

I(j, T ) + 1
(4)

=
hj

zj1 + zj2 + · · · + zjq(j)

I(j, T )
I(j, T ) + 1

. (5)

Inequality (4) simply says that the maximum of I(j, T ) + 1 numbers is at least
their mean value. The equality on the last line above holds because zjr

is the
fraction of the time slots 1, 2, . . . , T when node vjr

is used, so zj1 +zj2 + · · ·+zjq

is the fraction of the time slots 1, 2, . . . , T when Sj is accessed, which is equal to
I(j, T )/T > 0. For the height of schedule A, we have

Height(A) (6)
≥ Height(A[T ]) ≡ max{Height(A[T ], j) : j = 1, 2, . . . ,m}

≥
(

1 − 1
I(T ) + 1

)
max

{
hj

zj1 + zj2 + · · · + zjq(j)

: j = 1, 2, . . . ,m

}
, (7)

where I(T ) = min1≤j≤m{I(j, T )} is the minimum number of times any Sj is
accessed in the period [1, T ].

Consider the following linear program. (To get an equivalent proper linear
program, substitute X with 1/Z and maximize Z.)

(P) minimize X;
subject to:

x1 + x2 + · · · + xn = 1,

xj1 + xj2 + · · · + xjq(j) ≥ hj/X, for each j = 1, 2, . . . ,m, (8)
xi ≥ 0, for i = 1, 2, . . . , n,

X > 0. (9)
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Comparing Inequalities (7) with Inequalities (8), we see that by setting x1, x2,

. . . , xn to numbers z1, z2, . . . , zn and X to Height(A)/
(
1 − 1

I(T )+1

)
, we satisfy

all constraints of this linear program. Thus denoting by Xopt the minimum fea-

sible value of X in this linear program, we have Height(A) ≥ Xopt

(
1 − 1

I(T )+1

)
,

and by increasing T to infinity (so I(T ) increases to infinity) we conclude that

Height(A) ≥ Xopt. (10)

The linear program (P) can be viewed as giving the optimal solution for the
following fractional variant of the FHS problem. For the discrete FHS problem,
a schedule A can be represented by binary values yi,t ∈ {0, 1}, 1 ≤ i ≤ n, t ≥ 1,
with yi,t = 1 indicating that node vi is used in the time slot t. For the fractional
variant of FHS, a schedule is represented by numbers 0 ≤ yi,t ≤ 1 indicating
the fraction of commitment during the time slot t to node vi. (Think about the
nodes being dealt with during the time period (t − 1, t] concurrently, with the
fraction yi,t of the total effort spent on node vi.) In both discrete and fractional
cases we require that

∑n
i=1 yi,t = 1, for each time slot t ≥ 1. For the discrete

variant, the time slot t
(j)
i when Sj is accessed for the i-th time is the time slot

τ such that
τ∑

t=1

(
yj1,t + yj2,t + · · · + yjq(j),t

)
= i.

For the fractional variant, the time t
(j)
i when the i-th “cycle” of access to Sj is

completed (and the urgency indicator of Sj is reset to 0) is the fractional time
τ + δ, where τ is a positive integer and 0 ≤ δ < 1, such that

τ∑
t=1

(
yj1,t + yj2,t + · · · + yjq(j),t

)
+ δ

(
yj1,τ+1 + yj2,τ+1 + · · · + yjq(j),τ+1

)
= i.

In both cases, the fraction of the period (0, T ] when a node vi is used is equal to
zi =

(∑T
t=1 yi,t

)
/T and (3)–(7) and (10) apply. For the fractional variant, the

schedule yi,t = x∗
i , for 1 ≤ i ≤ n and t ≥ 1, where (x∗

1, x
∗
2, . . . , x

∗
n,Xopt) is an

optimal solution of (P), has the optimal (minimum) height Xopt.

4 Randomized O(logm)-Approximate Algorithm

We use an optimal solution (x∗
1, x

∗
2, . . . , x

∗
n,Xopt) of linear program (P) to ran-

domly select nodes for the first T = Θ(m) slots of a schedule A, so that
with high probability each set Sj is accessed at least once during each period
[t + 1, t + τj ] ⊆ [1, T ], where τj = Θ((Xopt/hj) log n). Thus during the first T
slots of the schedule, the heights of the urgency indicators remain O(Xopt log n).
The full (infinite) schedule keeps repeating the schedule from the first T slots.
In our calculations we assume that m ≥ m0, for a sufficiently large constant m0.
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We take T = 2m and construct a random schedule AR = (vq1 , vq2 , . . . , vqT
)

for T time slots in the following way. We put aside the even time slots for
some deterministic assignment of nodes. Specifically, for each time slot t = 2j,
j = 1, 2, . . . ,m, we (deterministically) take for the node vqt

for this time slot an
arbitrary node in Sj . This way we guarantee that each set Sj is accessed at least
once when the schedule AR is followed. For each odd time slot t, 1 ≤ t ≤ T ,
node vqt

is a random node selected according to the distribution (x∗
1, x

∗
2, . . . , x

∗
n)

and independently of the selection of other nodes. Thus for each odd time slot
t ∈ [1, T ] and for each node vi ∈ V , Pr(vqt

= vi) = x∗
i .

Lemma 2. The random schedule AR has the properties that each set Sj,
j = 1, 2, . . . ,m, is accessed at least once and with probability at least 1 − 1/m,
Height(AR) ≤ (5 ln m)Xopt.

Proof. The first property is obvious from the construction. We show that with
probability at least 1 − 1/m, no urgency indicator grows above (5 ln m)Xopt.
A set Sj with the rate growth hj < (2.5Xopt ln m)/m cannot grow above the
height hjT < 5Xopt ln m, so it suffices to look at the growth of the sets Sj with
hj ≥ (2.5 · Xopt ln m)/m. Observe that Xopt ≥ hmax = max{h1, h2, . . . , hm},
from (8).

Let J ⊆ {1, 2, . . . ,m} be the set of indices of the sets Sj for which hj ≥
(2.5 · Xopt ln m)/m. For each j ∈ J and for each odd time slot t ∈ [1, T ], the
probability that set Sj is accessed during this time slot is equal to x∗

j1
+x∗

j2
+· · ·+

x∗
jq

≥ hj/Xopt. In each period [t, t + τ − 1] ⊆ [1, T ] of τ consecutive time slots,
there are at least 	τ/2
 odd time slots, so the probability that Sj is not accessed
during this period is at most (1 − hj/Xopt)�τ/2�. We take τj = 5(Xopt/hj) ln m
(observe that lnm ≤ τj ≤ T ) and use the union bound over all j ∈ J and all
[t, t + τj − 1] ⊆ [1, T ] to conclude that the probability that there is a set Sj ,
j ∈ J , which is not accessed during consecutive τj time slots (and its urgency
indicator goes above (5 ln m)Xopt) is at most

T ·
∑
j∈J

(
1 − hj

Xopt

)(τj−1)/2

≤ T ·
∑
j∈J

(
1 − hj

Xopt

)2.4(Xopt/hj) lnm

≤ 2m · e−2.4 lnm ≤ 1
m

.

�
Theorem 2. For the infinite schedule A∗

R which keeps repeating the same ran-
dom schedule AR (all copies are the same), Height(A∗

R) ≤ (10 ln m)Xopt with
probability at least 1 − 1/m.

Proof. With probability at least 1−1/m, Height(AR) ≤ (5 ln m)Xopt (Lemma 2).
Assuming that Height(AR) ≤ (5 ln m)Xopt, we show that Height(A∗

R) ≤
(10 ln m)Xopt.
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Let T = 2m be the length of the schedule AR. We consider an arbitrary
set Sj and show that its height is never greater than (10 lnm)Xopt when the
schedule A∗

R is followed. Since Sj is accessed in AR at least once, the height of
Sj under the schedule A∗

R is the same at the end of the time slots kT , for all

positive integers k (and is equal to hj

(
T − t

(j)
last

)
, where t

(j)
last is the last time

slot in AR when Sj is accessed). The maximum height of Sj during the period
[1, T ] is at most (5 log m)Xopt. For each integer k ≥ 1, the maximum height of
set Sj during the period [kT +1, (k +1)T ] is at most the height of Sj at the end
of time slot kT , which is at most (5 ln m)Xopt, plus the maximum growth of Sj

under the schedule AR, which is again at most (5 ln m)Xopt. Thus the height of
Sj is never greater than (10 ln m)Xopt. �

5 Concluding Remarks

We studied the Fair Hitting Sequence problem, showing its wide range of applica-
tions. We provide both deterministic and randomized approximation algorithms,
with approximation ratios of O(log2 m) and O(log m), respectively. These upper
bounds should be compared with the lower bound of Ω(log m) on the approxima-
tion ratio of polynomial-time algorithms, which is inherited from the well-known
minimum hitting set problem. As a natural question one may ask whether it is
possible to provide a deterministic algorithm with approximation ratio guar-
antee of O(log m). Due to the deep relation shown for FHS with the hitting
set problem, one may be interested in understanding whether introducing some
restriction on the sets might result in better approximation ratios. For instance,
interesting cases might be when the size of each set Sj is bounded, when each
element is contained in a bounded number of sets, or when the intersection of
each pair of sets is bounded. In particular, when the size of each set is two, then
the sets can be seen as edges of a graph, as mentioned in Sect. 1, and one may
consider special graph topologies.

When we consider more than two elements per set, then instead of graphs
we actually deal with hypergraphs. In the finite hypergraph setting, a (minimal)
hitting set of the edges is called a (minimal) transversal of the hypergraph [9].
Fixed-parameter tractability results have been obtained for the related transver-
sal hypergraph recognition problem with a wide variety of parameters, including
vertex degree parameters, hyperedge size or number parameters, and hyperedge
intersection or union size parameters [13]. Concerning special classes of hyper-
graph, it is known that the transversal recognition is solvable in polynomial time
for special cases of acyclic hypergraphs [9,10]. These results for transversal of
hypergraphs may be useful in further study of the FHS problem.

Furthermore, some variants of the FHS problem may be interesting from the
theoretical or practical point of view. For instance, one may consider the elements
embedded in the plane and the time required by a visiting agent to move from
one element to another defined by the distance between those elements. In such
setting, it may be useful to consider the following geometric version of the hitting
set problem given in [16]. Given a set of geometric objects and a set of points, the
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goal is to compute the smallest subset of points that hit all geometric objects.
The authors of [16] provide (1 + ε)-approximation schemes for the minimum
geometric hitting set problem for a wide class of geometric range spaces. It
would be interesting to investigate how these results could be applied in the
wider context of the FHS problem. Finally, further investigations can come from
the variant where sets dynamically evolve, as it would be expected in the context
of evolving communities in a social network.
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G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 136–149. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-10801-4 12

9. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

10. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

11. G ↪asieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bam-
boo Garden Trimming Problem (perpetual maintenance of machines with different
attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 18

12. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

13. Hagen, M.: Algorithmic and Computational Complexity Issues of MONET, Dr.
rer. nat., Friedrich-Schiller-Universit at Jena (2008)

14. Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two
distinct numbers. Theor. Comput. Sci. 100(1), 105–135 (1992)

https://doi.org/10.1007/978-3-319-73117-9_26
https://doi.org/10.1007/978-3-642-23719-5_59
https://doi.org/10.1007/978-3-030-10801-4_12
https://doi.org/10.1007/978-3-319-51963-0_18


186 S. Cicerone et al.

15. Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight
schedulability bound. Algorithmica 19(4), 411–426 (1997)

16. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discret.
Comput. Geom. 44(4), 883–895 (2010)

17. Nilsson, B.: Guarding art galleries - methods for mobile guards. Ph.D. thesis,
Department of Computer Science, Lund University, Sweden (1995)

18. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

19. Ntafos, S.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)
20. Romer, T.H., Rosier, L.E.: An algorithm reminiscent of euclidean-gcd for comput-

ing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)
21. Raz, R., Safra, M.: A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In: Proceedings of STOC,
pp. 475–484 (1997)

22. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems.
SIAM J. Discret. Math. 2(4), 550–581 (1989)

23. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational
Geometry, vol. 1, no. 1, pp. 973–1027 (2000)



Towards a Theory of Mixing Graphs:
A Characterization of Perfect Mixability

(Extended Abstract)

Miguel Coviello Gonzalez and Marek Chrobak(B)

University of California at Riverside,
Riverside, CA 92521, USA

marek@cs.ucr.edu

Abstract. We study the problem of fluid mixing in microfluidic chips
represented by mixing graphs, that model a network of micro-mixers
(vertices) connected by micro-pipes (edges). We address the following
perfect mixability problem: given a collection C of droplets, is there a
mixing graph that mixes C perfectly, producing only droplets whose
concentration is the average concentration of C? We provide a complete
characterization of such perfectly mixable sets and an efficient algorithm
for testing perfect mixability. Further, we prove that any perfectly mix-
able set has a perfect-mixing graph of polynomial size, and that this
graph can be computed in polynomial time.

Keywords: Algorithms · Graph theory · Lab-on-chip · Fluid mixing

1 Introduction

Research advances in microfluidics led to the development of lab-on-chip (LoC)
devices that integrate on a tiny chip various functions of bulky and costly bio-
chemical systems. LoCs play an important role in applications that include envi-
ronmental monitoring, protein analysis, and physiological sample analysis.

One of the most fundamental functions of LoC devices is mixing of different
fluids, where the objective is to produce desired volumes of pre-specified mix-
tures of fluids. In typical applications only two fluids are involved, in which case
the process of mixing is often referred to as dilution. The fluid to be diluted
is called reactant and the diluting fluid is called buffer. For example, in clini-
cal diagnostics common reactants include blood, serum, plasma and urine, and
phosphate buffered saline is often used as buffer.

In this work we consider LoCs that involve a collection of tiny components
called micro-mixers connected by micro-channels. In such chips, input fluids are
injected into the chip using fluid dispensers, then they travel, following appro-
priate micro-channels, through a sequence of micro-mixers in which they are
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subjected to mixing operations, and are eventually discharged into output reser-
voirs. We focus on droplet-based LoCs, where fluids are manipulated in discrete
units called droplets. In such chips, a micro-mixer has exactly two input and
two output channels. It receives one droplet of fluid from each input, and mixes
them perfectly producing two identical droplets on its outputs. Specifically, if the
input droplets have (reactant) concentrations a, b, then the produced droplets
have concentration 1

2 (a+ b). It follows that all droplets flowing through the chip
have concentrations of the form c/2d, where c and d ≥ 0 are integers. This simply
means that their binary representations are finite, and we refer to such numbers
as binary numbers. The number d, called precision, is the number of fractional
bits (assuming c is odd when d ≥ 1).

Processing of droplets on such chips can be represented by a directed acyclic
graph G that we call a mixing graph. The edges of G represent micro-channels.
Source vertices represent dispensers, internal vertices represent micro-mixers,
and sink vertices represent output reservoirs. Given a set I of input droplets
injected into the source nodes, G converts it into a set T of droplets in its sink
nodes. We refer to this set T as a target set. An example of a mixing graph is
shown in Fig. 1. Here, and elsewhere, we represent each droplet by its reactant
concentration (which uniquely determines the buffer concentration).

0

1/2

1

0

1/4

1/8

0

1

3/4

1/2

1/8

5/16

3/4

1/2

5/16

5/16

Fig. 1. Mixing graph for input set I = {0, 0, 0, 1, 1} and target set T =
{

1
8
, 5
16
, 5
16
, 1
2
, 3
4

}
.

The numbers on the nodes represent the reactant concentration of the output droplets.

There is growing literature in the embedded systems and bioengineering com-
munities on designing microfluidic chips represented by such mixing graphs. The
most fundamental algorithmic problem emerging in this area is the following:

MixReachability: Given an input set I and a target set T of droplets, design
a mixing graph that converts I into T (if at all possible).

If there is a mixing graph that converts I into T then we say that T is mix-
reachable, or just reachable, from I. For T to be reachable from I, clearly, I and
T must have the same cardinality and equal reactant volumes. However, these
conditions are not sufficient. For example, T =

{
1
4 , 3

4

}
is not reachable from
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I = {0, 1}, because producing 1
4 from I requires at least two buffer droplets and

one reactant droplet, but T itself contains only two droplets.
In typical applications the input set I consists of pure buffer and reactant

droplets (that is, only 0’s and 1’s). We denote this variant by MixProducibil-
ity, and target sets reachable from such input sets are caled mix-producible, or
just producible. MixProducibility is not likely to be computationally easier
than MixReachability. For example, via a simple linear mapping, any algo-
rithm that solves MixProducibility can also solve the variant of MixReach-
ability where the input set has droplets of any two given concentrations.

Related work. The previous work in the literature focuses on the MixPro-
ducibility problem. To generate target sets that are not producible, one can
consider mixing graphs that besides a target set T also produce some amount
of superfluous fluid called waste. If we allow waste then, naturally, MixPro-
ducibility can be extended to an optimization problem where the objective
is to design a mixing graph that generates T while minimizing waste. Alterna-
tive objective functions have been studied, for example minimizing the reactant
waste, minimizing the number of micro-mixers, and other.

Most of the previous papers study designing mixing graphs using heuristic
approaches. Earlier studies focused on producing single-concentration targets,
where only one droplet of some desired concentration is needed. This line of
research was pioneered by Thies et al. [1], who proposed an algorithm called
Min-Mix that constructs a mixing graph for a single target droplet. Roy et al. [2]
developed a single-droplet algorithm called DMRW that considered waste reduction
and the number of mixing operations. Huang et al. [3] and Chiang et al. [4]
proposed single-droplet algorithms designed to minimize reactant usage.

Many applications, however, require target sets with multiple concentrations
(see [5–9]). Huang et al. [10] proposed an algorithm called WARA, an extension
of [3] for multiple-concentration targets. Mitra et al. [11] model the problem as
an instance of the Asymmetric TSP on a de Brujin graph.

The papers cited above describe heuristic algorithms with no formal perfor-
mance guarantees. Dinh et al. [12] took a more rigorous approach. Assuming that
the depth of a mixing graph does not exceed the maximum target precision, they
showed how to formulate the problem as an integer linear program. This leads
to an algorithm with doubly exponential running time. Unfortunately, contrary
to the claim in [12], their algorithm does not necessarily produce mixing graphs
with minimum waste. (A counter example is provided in the full version [13].)

Our results. To our knowledge, the computational complexity of MixReach-
ability is open; in fact, (given the flaw in [12] mentioned above) it is not even
known whether the MixProducibility variant is decidable. This paper reports
partial progress towards resolving this problem. We consider the following sub-
problem of MixReachability:

PerfectMixability: Given a set C of n droplets with average concentration
μ = (

∑
c∈C c)/n, is there a mixing graph that mixes C perfectly, converting

C into the set of n droplets with concentration μ?
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Fig. 2. A mixing graph that perfectly mixes set C =
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Figure 2 shows an example of a perfect-mixing graph. As an example of a
set that is not perfectly mixable, consider D =

{
0, 3

16 , 9
16

}
. After any (non-zero)

number of mixing operations the resulting set will have form D′ = {a, a, b} for
a �= b, so no finite mixing graph will convert D into its perfect mixture

{
1
4 , 1

4 , 1
4

}
.

In this paper, addressing the PerfectMixability problem, we give a com-
plete characterization of perfectly mixable sets and a polynomial-time algorithm
that tests whether a given set is perfectly mixable. We also show that this algo-
rithm can be extended to construct a polynomial-size perfect-mixing graph for
such perfect-mixing sets and in polynomial-time.

We represent droplet sets as multisets of concentration values. First, we
observe that without loss of generality we can assume that C ∪ {μ} �Z, for
otherwise we can simply rescale all values by an appropriate power of 2. (Z is
the set of integers; Z>0 and Z≥0 are the sets of positive and non-negative inte-
gers, respectively. Symbol � is used to specify a ground set of a multiset.) For
any finite multiset A�Z and b ∈ Z>0, we define A to be b-congruent if x ≡ y
(mod b) for all x, y ∈ A. (Otherwise we say that A is b-incongruent.)

We say that C satisfies Condition (MC) if, for each odd b ∈ Z>0, if C is b-
congruent then C ∪ {μ} is b-congruent as well, where μ = ave(C). The following
theorem summarizes our results.

Theorem 1. Assume that n ≥ 4 and C∪{μ} �Z, where μ = ave(C). Then: (a)
C is perfectly mixable if and only if C satisfies Condition (MC). (b) If C satisfies
Condition (MC) then it can be perfectly mixed with precision at most 1 and in a
polynomial number of steps. (That is, C has a perfect-mixing graph of polynomial
size where all intermediate concentration values are half-integral.) (c) There is
a polynomial-time algorithm that tests whether C is perfectly mixable and, if so,
computes a polynomial-size perfect-mixing graph for C.

Part (b) says that, providing that C is perfectly mixable, at most one extra
bit of precision is needed in the intermediate nodes of a perfect-mixing graph
for C. This extra 1-bit of precision is necessary. For example, C = {0, 0, 0, 3, 7}
(for which μ = 2) cannot be mixed perfectly with precision 0. If we mix 3 and 7,
we will obtain multiset {0, 0, 0, 5, 5} which is not perfectly mixable, as it violates
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Fig. 3. A perfect mixing graph for C = {0, 0, 0, 3, 7} with precision 1.

Condition (MC). Any other mixing creates fractional values. However, C does
have a mixing graph where the intermediate precision is at most 1—see Fig. 3.

Due to limited space, most proofs are left out to the full version of the
paper [13]. The rest of the paper is organized as follows. The necessity of Con-
dition (MC) in Theorem1(a) is given in Sect. 3. For the sufficiency of Condi-
tion (MC), first, in Sect. 4 (Lemma 1), we claim that for Condition (MC) it is
sufficient to consider only the values of b that are odd prime power factors of n.
This property is used to show that any set C that satisfies Condition (MC) has a
perfect-mixing graph, completing the argument in Theorem1(a). This property
is also used in our polynomial-time algorithm for testing perfect-mixability (part
one of Theorem 1(c)), which is given at the end of Sect. 4. Finally, the mixing
graph constructed in Sect. 4 has precision at most 1, hence showing the first part
of Theorem 1(b).

2 Preliminaries

Let Q0 be the set of binary numbers. For c ∈ Q0, we denote by prec(c) the
precision of c, that is the number of fractional bits in the binary representation
of c, assuming there are no trailing 0’s. In other words, prec(c) is the smallest
d ∈ Z≥0 such that c = a/2d for some a ∈ Z. If c = a/2d represents actual fluid
concentration, then we have 0 ≤ a ≤ 2d. However, it is convenient to relax this
restriction and allow “concentration values” that are arbitrary binary numbers,
even negative. In fact, it will be convenient to work with integral values.

By a configuration we mean a multiset C of n binary numbers, which
represent droplet concentrations. We will typically denote a configuration by
C = {f1 : c1, f2 : c2, ..., fm : cm} �Q0, where each ci represents a (different) con-
centration value and fi denotes the multiplicity of ci in C, so that

∑m
i=1 fi = n.

The number of droplets in C is denoted |C| = n, while the number of different
concentrations is denoted ‖C‖ = m. Occasionally, if it does not lead to confusion,
we may say “droplet ci” or “concentration ci”, referring to some droplet with
concentration ci. If fi = 1, we shorten “fi : ci” to just “ci”. If fi = 1 we say
that droplet ci is a singleton, if fi = 2 we say that droplet ci is a doubleton and
if fi ≥ 2 we say that droplet ci is a non-singleton. By ave(C) = (

∑
c∈C c)/n we
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denote the average value of the concentrations in C, which will be also typically
denoted by μ.

Mixing graphs were defined in the introduction. As we are not concerned in
this paper with the topological properties of mixing graphs, we will often identify
a mixing graph G with a corresponding mixing sequence, which is a sequence
(not necessarily unique) of mixing operations that convert C into its perfect
mixture. In other words, a mixing sequence is a sequence of mixing operations
in a topological ordering of a mixing graph.

Of course in a perfect-mixing graph (or sequence) G for C, all concentrations
in G, including those in C ∪ {μ}, must have finite precision (that is, belong to
Q0) which is at least max {prec(C), prec(μ)}. In addition to the basic question
about finding a perfect-mixing graph for C, we are also interested in bounding
the precision required to do so.

For x ∈ Q0, define multisets C +x = {c + x | c ∈ C}, C −x = C +(−x), and
C · x = {c · x | c ∈ C}. The next observation says that offsetting all values in C
does not affect perfect mixability, as long as the offset value’s precision does not
exceed that of C or μ.

Observation 1. Let μ = ave(C), x ∈ Q0 and d ≥ max {prec(C), prec(μ), }
prec(x). Then C is perfectly mixable with precision d if and only if C ′ = C + x
is perfectly mixable with precision d.

Observation 2. Let μ = ave(C), δ = max {prec(C), prec(μ)}, C ′ = C · 2δ with
μ′ = ave(C ′) = 2δμ. (Thus C ′ ∪ {μ′} �Z.) Then C is perfectly mixable with
precision d ≥ δ if and only if C ′ is perfectly mixable with precision d′ = d − δ.

Integral configurations. Per Observation 2, we can restrict our attention to
configurations C with integer values and average, that is C ∪ {μ} �Z. For x ∈
Z>0, if each c ∈ C is a multiple of x, let C/x = {c/x | c ∈ C}. For integral
configurations, we can extend Observation 2 to also multiplying C by an odd
integer or dividing it by a common odd factor of all concentrations in C.

Observation 3. Assume that C∪{μ} �Z and let x ∈ Z>0 be odd. (a) Let C ′ =
C · x. Then C is perfectly mixable with precision 0 if and only if C ′ is perfectly
mixable with precision 0. (b) Suppose that x is a divisor of all concentrations
in C ∪ {μ}. Then C is perfectly mixable with precision 0 if and only if C/x is
perfectly mixable with precision 0.

See [13] for the proofs for Observations 1, 2 and 3.

3 Necessity of Condition (MC)

We now prove that Condition (MC) in Theorem1(a) is necessary for perfect
mixability. Let C ∪ {μ} �Z, where μ = ave(C), and assume that C is perfectly
mixable. We want to prove that C satisfies Condition (MC).

Let G be a graph that mixes C perfectly. Suppose that C is b-congruent for
some odd b ∈ Z>0. Consider an auxiliary configuration C ′ = C · 2δ, where δ
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is sufficiently large, so that all intermediate concentrations in G when applying
G to C ′ are integral. This C ′ is b-congruent, and G converts C ′ into its perfect
mixture {n : μ′}, for μ′ = 2δμ.

Since C ′ is b-congruent, there is β ∈ {0, ..., b − 1} such that for each x ∈ C ′

we have x ≡ β (mod b). We claim that this property is preserved as we apply
mixing operations to droplets in C ′. Suppose that we mix two droplets with
concentrations x, y ∈ C ′, producing two droplets with concentration z. Since
x ≡ β (mod b) and y ≡ β (mod b), we have x = αb + β and y = α′b + β, for
some α, α′ ∈ Z, so z = 1

2 (x + y) = (12 (α + α′))b + β. As b is odd, α + α′ must
be even, and therefore z ≡ β (mod b), as claimed. Eventually G produces μ′, so
this must also hold for z = μ′. This implies that C ′ ∪ {μ′} is b-congruent.

Finally, since C ′ ∪ {μ′} is b-congruent, for all 2δx, 2δy ∈ C ′ ∪ {μ′} it holds
that 2δx ≡ 2δy (mod b). But this implies that x ≡ y (mod b), because b is odd.
So C ∪ {μ} is b-congruent, proving that C satisfies Condition (MC).

4 Sufficiency of Condition (MC)

In this section we sketch the proof that Condition (MC) in Theorem1(a) is suffi-
cient for perfect mixability. A perfect-mixing graph constructed in our argument
has precision at most 1, showing also the first part of Theorem 1(b).

Condition (MC) involves all odd b ∈ Z>0, so it does not directly lead to an
efficient test for perfect mixability. Hence, we show in Lemma 1 below (whose
proof is given in [13]) that only factors b of n that are odd prime powers need
to be considered. This implies that perfect mixability testing can be done in
polynomial time. (An algorithm for testing perfect mixability in polynomial time,
see [13], is given in Algorithm 1 at the end of this section.)

Lemma 1. If Condition (MC) holds for all factors b ∈ Z>0 of n that are a
power of an odd prime then it holds for all odd b ∈ Z>0.

Note that in Theorem 1 we assume that n = |C| ≥ 4. Regarding smaller
values of n, for n = 2, trivially, all configurations C with two droplets are
perfectly mixable with precision 0. The case n = 3 is exceptional, as in this case
Theorem 1 is actually false. (For example, consider configuration C = {0, 1, 5},
for which μ = 2. This configuration is b-incongruent for all odd b > 1, so it
satisfies condition (MC), but is not perfectly mixable.) Nevertheless, for n = 3,
perfectly mixable configurations are easy to characterize: Let C = {a, b, c}, where
a ≤ b ≤ c. Then C is perfectly mixable if and only if b = 1

2 (a+c). Further, if this
condition holds, C is perfectly mixable with precision 0. (That this condition is
sufficient is obvious. That it is also necessary can be proven by following the
argument given in the introduction for the example configuration D right after
the definition of PerfectMixability.)

So from now on we assume that n ≥ 4. Let C be the input configuration and
μ = ave(C), where C ∪ {μ} �Z. The outline of our proof is as follows:
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– First we show that C is perfectly mixable with precision 0 when n is a power of
2. This easily extends to configurations C called near-final, which are disjoint
unions of multisets with the same average and cardinalities being powers of
2. (This proves Theorem 1(a) for n = 4.)

– Next, we sketch a proof for n ≥ 7. The basic idea of the proof is to define an
invariant (I) and show that any configuration that satisfies (I) has a mixing
operation that either preserves invariant (I) or produces a near-final config-
uration. Condition (I) is stronger than (MC) (it implies (MC), but not vice
versa), but we show that any configuration that satisfies Condition (MC) can
be modified to satisfy (I).

– Finally, the proofs for n = 5, 6 appear in the full version of the paper [13].
These are similar to the case n ≥ 7, but they require a more subtle invariant.

Algorithm 1. PerfectMixabilityTesting(C)
n ← |C|
µ ← ave(C)
cmax ← absolute value of maximum concentration in C
P ← powers of odd prime factors of n that are at most cmax

for all p ∈ P do
if C is p-congruent but C ∪ {µ} is not then

return false
return true

4.1 Perfect Mixability of Near-Final Configurations

Let C �Z with ave(C) = μ ∈ Z be a configuration with |C| = n = σ2τ , for some
odd σ ∈ Z>0 and τ ∈ Z≥0, and ‖C‖ = m. We say that C is near-final if it can be
partitioned into multisets C1, C2, ..., Ck, such that, for each j, ave(Cj) = μ and
|Cj | is a power of 2. In this sub-section we show (Lemma 2 below) that near-final
configurations are perfectly mixable with precision 0.

Define Ψ(C) =
∑

c∈C(c − μ)2 as the “variance” of C. Obviously Ψ(C) ∈
Z≥0, Ψ(C) = 0 if and only if C is a perfect mixture, and, by a straightforward
calculation, mixing any two different same-parity concentrations in C decreases
the value of Ψ(C) by at least 1.

Lemma 2. If C is near-final then C is perfectly mixable with precision 0.

Note that it is sufficient to prove the lemma for the case when n is a power of
2. (Otherwise, we can apply it separately to each multiset Cj in the partition of
C from the definition of near-final configurations.) The idea is to always mix two
distinct same-parity concentrations, which strictly decreases Ψ(C) and preserves
integrality. Now, the existence of such a pair is trivial when m ≥ 3. For the
case when m = 2, showing both the concentrations in C have same-parity is
sufficient; this follows by simple number theory after offsetting C by −c, for any
c ∈ C.
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4.2 Proof for Arbitrary n ≥ 7

In this sub-section we sketch the proof that Condition (MC) in Theorem1(a) is
sufficient for perfect mixability when n ≥ 7. Let C be a configuration that satis-
fies Condition (MC), where C ∪ {μ} �Z and |C| = n. Also, let the factorization
of n be n = 2τ0pτ1

1 pτ2
2 ...pτs

s , where {p1, p2, ..., ps} = p̄ is the set of the odd prime
factors of n and {τ1, τ2, ..., τs} are their corresponding multiplicities.

If A�Z is a configuration with |A| = n (where n is as above) and ave(A) ∈ Z,
then we say that A is p̄-incongruent if A is pr-incongruent for all r. We next
show two key properties of p̄-incongruent configurations. (See [13] for the proof.)

Observation 4. Assume that A�Z with ave(A) ∈ Z is a p̄-incongruent con-
figuration. Then (a) A satisfies Condition (MC), and (b) if A is not near-final
then ‖A‖ ≥ 3.

Proof outline. The outline of the proof is as follows (see Fig. 4): Instead of
dealing with C directly, we consider a p̄-incongruent configuration Č �Z with
μ̌ = ave(Č) ∈ Z that is “equivalent” to C in the sense that C is perfectly mixable
with precision at most 1 if and only if Č is perfectly mixable with precision 0.

It is thus sufficient to show that Č is perfectly mixable with precision 0. To
this end, we first apply some mixing operations to Č, producing only integer
concentrations, that convert Č into a configuration E such that:

(I.0) E �Z and ave(E) = μ̌,
(I.1) E has at least 2 distinct non-singletons, and
(I.2) E is p̄-incongruent.

We refer to the three conditions above as Invariant (I). Then we show that
any configuration E that satisfies Invariant (I) has a pair of different concen-
trations that are “safe” to mix, in the sense that after they are mixed the new
configuration is either near-final or satisfies Invariant (I). We can thus repeatedly
mix such safe mixing pairs, preserving Invariant (I), until we produce a near-final
configuration, that, by Lemma2, can be perfectly mixed with precision 0.

C E near 
final

perfect
mix

satisfies (I)satisfies (MC) -incongruentp

Fig. 4. Proof outline for n ≥ 7. The first dashed arrow represents replacing C by Č.
Solid arrows represent sequences of mixing operations.

Replacing C by Č. We now explain how to modify C. First, let C ′ = C − ci,
for some arbitrary ci ∈ C. Note that μ′ = ave(C ′) = μ − ci ∈ Z, that 0 ∈ C ′,



196 M. Coviello Gonzalez and M. Chrobak

and that C ′ satisfies Condition (MC). By Observation 1, C is perfectly mixable
if and only if C ′ is perfectly mixable (with the same precision), so it is sufficient
to show that C ′ is perfectly mixable.

Let θ ∈ Z>0 be the maximum odd integer that divides all concentrations c ∈
C ′ (the greatest common odd divisor of C ′). Let C ′′ = C ′/θ. By Observation 3(b)
and the paragraph above, C is perfectly mixable if and only C ′′ is perfectly
mixable (with the same precision), so from now on we can replace C by C ′′.

By Condition (MC) applied to C ′, θ is a divisor of μ′, so μ′′ = ave(C ′′) =
μ′/θ ∈ Z. Next, we claim that C ′′ is p̄-incongruent. To show this, we argue by
contradiction. Suppose that C ′′ is pr-congruent for some r. This means that
there is β ∈ {0, 1, ..., pr − 1} such that c ≡ β (mod pr) for all c ∈ C ′′. Since
0 ∈ C ′′ (because 0 ∈ C ′), we must have β = 0. In other words, all c ∈ C ′′ are
multiples of pr. That would imply, however, that all c ∈ C ′ are multiples of θpr,
which contradicts the choice of θ, completing the proof.

Finally, let Č = 2·C ′′ and μ̌ = 2μ′′ = ave(Č). All concentrations in Č are even
and, since multiplying all concentrations by 2 does not affect p̄-incongruence, Č is
p̄-incongruent. By Observation 2, and the properties of C ′′ established above, C
is perfectly mixable with precision at most 1 if and only if Č is perfectly mixable
with precision 0. Therefore, it is sufficient to show a mixing sequence with integral
concentration values that converts Č into its perfect mixture {n : μ̌}.

Converting Č into E. Let Č be the configuration constructed above. We now
show that with at most two mixing operations, producing only integer values,
we can convert Č into a configuration E that satisfies Invariant (I).

Let A�Z be a configuration with ave(A) ∈ Z and |A| = n. Assume that
A is p̄-incongruent. For different concentrations a, a′ ∈ A with the same parity,
we say that the pair (a, a′) is pr-safe if mixing a and a′ converts A into a pr-
incongruent configuration; in other words, there is a′′ ∈ A with a′′ /∈ {a, a′}
that satisfies a′′ �≡ 1

2 (a + a′) (mod pr). (Otherwise, we say that the pair (a, a′)
is pr-unsafe, or just unsafe to generalize.) We will also say that (a, a′) is p̄-safe
if it is pr-safe for all r. For example, let n = 5 and A = {0, 0, 3, 7, 10}, for which
ave(A) = 4. Then pair (0, 10) is 5-safe but pair (3, 7) is 5-unsafe. The proof of
Lemma 3 below is given in [13].

Lemma 3. Let A be a p̄-incongruent configuration with ave(A) ∈ Z and |A| = n.
(Recall that n ≥ 7.) Then (a) For each r, there is at most one pr-unsafe pair
in A. (b) At most n− 5 droplets are involved in same-parity concentration pairs
that are unsafe. (c) If a concentration a ∈ A is a non-singleton then for any
b ∈ A with b �= a and the same parity as a, the pair (a, b) is p̄-safe.

The configuration Č constructed earlier contains only even concentration
values, it already satisfies Č ∪ {μ̌} �Z and is p̄-incongruent (that is, it satisfies
conditions (I.0) and (I.2) for E). It remains to show that there are mixing oper-
ations involving only droplets already present in Č (and thus of even value, to
assure that condition (I.0) holds) that preserve condition (I.2), and such that
the resulting configuration E is either near-final or it satisfies condition (I.1). If
Č already has two or more non-singletons, we can take E = Č and we are done,
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so assume otherwise, namely that there is either one non-singleton in Č or none.
We consider three cases.
Case 1: Č has one non-singleton a with multiplicity f ≥ 3. Mix a with any sin-
gleton b ∈ Č and let E be the resulting configuration. E has two non-singletons
and condition (I.2) is preserved by Lemma 3(c), so E satisfies Invariant (I).
Case 2: Č has one non-singleton a with multiplicity 2. This, and Lemma3(b)
imply that there are at least 3 singletons, say b, c, d, that are not involved in any
unsafe pair. Mixing one of pairs (b, c) or (b, d) produces a concentration other
than a, which yields to configuration E that satisfies Invariant (I).
Case 3: Č has only singletons. By Lemma 3(b), there are at least 5 singletons, say
a, b, c, d, e ∈ Č with a < b < c < d < e, that are not involved in any unsafe pair.
Let E be obtained by mixing a with b and c with d. Then, E is p̄-incongruent
and contains two non-singleton, so E satisfies Invariant (I).

Preserving Invariant (I). We now sketch the last part of the argument, which
follows the outline given at the beginning of this section. Let E �Z be the con-
figuration, say E = {f1 : e1, f2 : e2, ..., fm : em}, with ave(E) = μ̌, constructed
above from Č. If E is near-final then E has a perfect-mixing sequence, by
Lemma 2. Otherwise, we show that E has a pair of concentrations whose mixing
produces a configuration that is either near-final or satisfies Invariant (I).

Let ei, ej ∈ E with ei �= ej . The pair (ei, ej) is called a safe mixing pair if the
configuration E′, obtained by mixing ei and ej , is either near-final or satisfies
Invariant (I). In Lemma 4 below we show that if E satisfies Invariant (I) and is
not near-final, then it must contain a safe mixing pair. Thus, we can repeatedly
mix E, maintaining Invariant (I), until E becomes near-final. (In particular, it
is sufficient to transform E so that ‖E‖ = 2, because each configuration that
satisfies both Condition (MC) and ‖E‖ = 2 is near final; see [13] for the proof.)
Note that, to preserve conditions (I.0) and (I.2), we always choose a p̄-safe pair
(ei, ej) with same-parity concentration values.

Lemma 4. Assume that ‖E‖ ≥ 3 and that E is not near-final. If E satisfies
Invariant (I) then E has a safe mixing pair.

The proof of this lemma is given in the full version of the paper [13].

Completing the proof. We are now ready to complete the sketch for proof
that Condition (MC) in Theorem1(a) is sufficient for perfect mixability when
n ≥ 7. The argument follows the outline depicted in Fig. 4.

Assume that C satisfies Condition (MC). Replace C by configuration Č �Z

such that (i) μ̌ = ave(Č) ∈ Z, all values in Č are even, and Č is p̄-incongruent,
and (ii) C is perfectly mixable with precision at most 1 if and only if Č is
perfectly mixable with precision 0.

Then we show that Č has a perfect-mixing sequence (with precision 0), con-
verting Č into its perfect mixture {n : μ̌}. To this end, we first perform some
mixing operations (at most two) that convert Č into a configuration E that
either satisfies Invariant (I) or is near-final. If this E is near-final, we can com-
plete the mixing sequence using Lemma 2. If this E is not near-final then it
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satisfies Invariant (I) and, by Observation 4(b), ‖E‖ ≥ 3. Therefore, we can
apply Lemma 4 to show that E has a safe mixing pair, namely a pair of different
concentrations whose mixing either preserves Invariant (I) or produces a near-
final configuration. We can thus apply the above argument repeatedly to E. As
in Sect. 4.1, each mixing decreases the value of Ψ(E). Thus after a finite number
of steps we convert E into a near-final configuration, that has a mixing sequence
by Lemma 2.
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Abstract. In this work we introduce and study a pursuit-evasion game
in which the search is performed by heterogeneous entities. We incorpo-
rate heterogeneity into the classical edge search problem by considering
edge-labeled graphs. In such setting a searcher, once a search strategy
initially decides on the label of the searcher, can be present on an edge
only if the label of the searcher and the label of the edge are the same.
We prove that such searching problem is not monotone even for trees
and moreover we give instances in which the number of recontamination
events is Ω(n2), where n is the size of a tree. Another negative result
regards the NP-completeness of the monotone heterogeneous search in
trees. The two above properties show that this problem behaves very
differently from the classical edge search. On the other hand, if all edges
of a particular label form a (connected) subtree of the input tree, then
we show that optimal heterogeneous search strategy can be computed
efficiently.

Keywords: Graph searching · Mobile agent computing ·
Monotonicity · Pursuit-evasion

1 Introduction

Consider a scenario in which a team of searchers should propose a search strat-
egy, i.e., a sequence of their moves, that results in capturing a fast and invisible
fugitive hiding in a graph. This strategy should succeed regardless of the actions
of the fugitive and the fugitive is considered captured when at some point it
shares the same location with a searcher. In a strategy, the searchers may per-
form the following moves: a searcher may be placed/removed on/from a vertex of
the graph, and a searcher may slide along an edge from currently occupied vertex
to its neighbor. The fugitive may represent an entity that does not want to be
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captured but may as well be an entity that wants to be found but is constantly
moving and the searchers cannot make any assumptions on its behavior. There
are numerous models that have been studied and these models can be produced
by enforcing some properties of the fugitive (e.g., visibility, speed, randomness of
its movements), properties of the searchers (e.g., speed, type of knowledge pro-
vided as an input or during the search, restricted movements, radius of capture),
types of graphs (e.g., simple, directed) or by considering different optimization
criteria (e.g., number of searchers, search cost, search time).

One of the central concepts in graph searching theory is monotonicity. Infor-
mally speaking, if a search strategy has the property that once a searcher tra-
versed an edge (and by this action it has been verified that in this very moment
the fugitive is not present on this edge) it is guaranteed (by the future actions
of the searchers) that the edge remains inaccessible to the fugitive, then we say
that the search strategy is monotone. In most graph searching models it is not
beneficial to consider search strategies that are not monotone. Such a property
is crucial for two main reasons: firstly, knowing that monotone strategies include
optimal ones reduces the algorithmic search space when finding good strategies
and secondly, monotonicity places the problem in the class NP.

To the best of our knowledge, all searching problems studied to date are
considering the searchers to have the same characteristics, and they may only
have different ‘identities’ which allows them to differentiate their actions. How-
ever, there exist pursuit-evasion games in which some additional device (like a
sensor or a trap) is used by the searchers [6–8,31]. In this work we introduce a
searching problem in which searchers are different: each searcher has access only
to some part of the graph. More precisely, there are several types of searchers,
and for each edge e in the graph, only one type of searchers can slide along e.
We motivate this type of search twofold. First, referring to some applications
of graph searching problems in the field of robotics, one can imagine scenarios
in which the robots that should physically move around the environment may
not be all the same. Thus some robots, for various reasons, may not have access
to the entire search space. Our second motivation is an attempt to understand
the concept of monotonicity in graph searching. In general, the graph search-
ing theory lacks of tools for analyzing search strategies that are not monotone,
where a famous example is the question whether the connected search problem
belongs to NP [2]. In the latter, the simplest examples that show that recon-
tamination may be beneficial for some graphs are quite complicated [32]. The
variant of searching that we introduce has an interesting property: it is possible
to construct relatively simple examples of graphs in which multiple recontami-
nations are required to search the graph with the minimum number of searchers.
Moreover, it is interesting that this property holds even for trees.

Related Work. In this work we adopt two models of graph searching to our
purposes: the classical edge search and its connected variant introduced in [3]. As
an optimization criterion we consider minimization of the number of searchers.
The edge search problem is known to be monotone but the connected search is
not [32]. Knowing that the connected search is not monotone, a natural ques-



Searching by Heterogeneous Agents 201

tion is what is the ‘price of monotonicity’, i.e., what is the ratio of the minimum
number of searchers required in a monotone strategy and an arbitrary (possi-
bly non-monotone) one? It follows that this ratio is a constant that tends to
2 [13]. We remark that if the searchers do not know the graph in advance and
need to learn its structure during execution of their search strategy then this
ratio is Ω(n/ log n) even for trees [22]. A recently introduced model of exclusive
graph searching shows that internal edge search with additional restriction that
at most one searcher can occupy a vertex behaves very differently than edge
search. Namely, considerably more searchers are required for trees and exclusive
graph searching is not monotone even in trees [5,26]. Few other searching prob-
lems are known not to be monotone and we only provide references for further
readings [10,20,32]. Also see [19] for a searching problem for which determining
whether monotonicity holds turns out to be a challenging open problem.

Since we focus on trees in this work, we briefly survey a few known results
for this class of graphs. An edge search strategy that minimizes the number
of searchers can be computed in linear time for trees [27]. Connected search
is monotone and can be computed efficiently for trees [2] as well. However, if
one considers weighted trees (the weight of a vertex or edge indicate how many
searchers are required to clean or prevent recontamination), then the problem
turns out to be strongly NP-complete, both for edge search [28] and connected
search [11]. On the other hand, due to [12,13] both of these weighted problems
have constant factor approximations. The class of trees usually turns out to be
a very natural subclass to study for many graph searching problems — for some
recent algorithmic and complexity examples see e.g. [1,14,16,21].

We conclude by pointing to few works that use heterogeneous agents for solv-
ing different computational tasks, mostly in the area of mobile agent computing
[15,17,18,25,30]. We also note that heterogeneity can be introduced by provid-
ing weights to mobile agents, where the meaning of the weight is specific to a
particular problem to be solved [4,9,23].

Our Work. We focus on studying monotonicity and computational complexity
of our heterogeneous graph searching problem that we formally define in Sect. 2.
We start by proving that the problem is not monotone in the class of trees
(Sect. 3). In Sect. 4 we list our two main theorems regarding the complexity:
both the monotone and the general heterogeneous search problems are hard for
trees. The proofs are postponed to the appendix due to space limitations. Our
investigations suggest that the essence of the problem difficulty is hidden in the
properties of the availability areas for certain types of agents. For example, the
problem becomes hard for trees if such areas are allowed to be disconnected.
To formally argue that this is the case we give, in Sect. 5, a polynomial-time
algorithm that finds an optimal search strategy for heterogeneous agents in case
when the such areas are connected.
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2 Preliminaries

In this work we consider simple edge-labeled graphs G = (V (G), E(G), c), i.e.,
without loops or multiple edges, where c : E(G) → {1, . . . , z} is a function that
assigns labels, called colors, to the edges of G. Then, if c({u, v}) = i, {u, v} ∈
E(G), then we also say that vertices u and v have color i. Note that vertices
may have multiple colors, so by c(v) := {c({u, v}) : {u, v} ∈ E(G)} we will refer
to the set of colors of a vertex v ∈ V (G).

Problem Formulation. We will start by recalling the classical edge search
problem [29] and then we will formally introduce our adaptation of this problem
to the case of heterogeneous agents.

An (edge) search strategy S for a simple graph G = (V (G), E(G)) is a
sequence of moves S = (m1, . . . ,m�). Each move mi is one of the following
actions:

(M1) placing a searcher on a vertex,
(M2) removing a searcher from a vertex,
(M3) sliding a searcher present on a vertex u along an edge {u, v} of G, which

results in a searcher ending up on v.

Furthermore, we recursively define for each i ∈ {0, . . . , �} a set Ci such that Ci,
i > 0, is the set of edges that are clean after the move mi and C0 is the set of
edges that are clean prior to the first move of S. Initially, we set C0 = ∅. For
i > 0 we compute Ci in two steps. In the first step, let C′

i = Ci−1 for moves
(M1) and (M2), and let C′

i = Ci−1 ∪ {{u, v}} for a move (M3). In the second
step compute Ri to consists of all edges e in C′

i such that there exists a path
P in G such that none of the vertices of P is occupied by a searcher at the
end of move mi, one endpoint of P belongs to e and the other endpoint of P
belong to an edge not in Ci−1. Then, set Ci = C′

i \ Ri. If Ri �= ∅, then we say
that the edges in Ri become recontaminated (or that recontamination occurs in
S if it is not important which edges are involved). If le is the number of times
the edge e becomes recontaminated during a search strategy, then the value∑

e∈E(G) le is referred to as the number of unit recontaminations. Finally, we
define Di = E(G) \ Ci to be the set of edges that are contaminated at the end of
move mi, i > 0, where again D0 refers to the state prior to the first move. Note
that D0 = E(G). We require from a search strategy that C� = E(G).

Denote by V (mi) the vertices occupied by searchers at the end of move mi.
We write |S| to denote the number of searchers used by S understood as the
minimum number k such that at most k searchers are present on the graph in
each move. Then, the search number of G is

s(G) = min
{|S| ∣

∣ S is a search strategy for G
}

.

If the graph induced by edges in Ci is connected for each i ∈ {1, . . . , �}, then
we say that S is connected. We then recall the connected search number of G:

cs(G) = min
{|S| ∣

∣ S is a connected search strategy for G
}

.
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We now adopt the above classical graph searching definitions to the searching
problem we study in this work. For an edge-labeled graph G = (V (G), E(G), c),
a search strategy assigns to each of the k searchers used by a search strategy a
color: the color of searcher i is denoted by c̃(i). This is done prior to any move,
and the assignment remains fixed for the rest of the strategy. Then again, a search
strategy S is a sequence of moves with the following constraints: in move (M1)
that places a searcher i on a vertex v it holds c̃(i) ∈ c(v); move (M2) has no
additional constraints; in move (M3) that uses a searcher i for sliding along
an edge {u, v} it holds c̃(i) = c({u, v}). Note that, in other words, the above
constraints enforce the strategy to obey the requirement that at any given time
a searcher may be present on a vertex of the same color and a searcher may only
slide along an edge of the same color. To stress out that a search strategy uses
agents with color assignment c̃, we refer to as a search c̃-strategy. We write c̃S(i)
to refer to the number of agents with color i in a search strategy S.

Then we introduce the corresponding graph parameters hs(G) and hcs(G)
called the heterogeneous search number and heterogeneous connected search num-
ber of G, where hs(G) (respectively hcs(G)) is the minimum integer k such that
there exists a (connected) search c̃-strategy for G that uses k searchers. When-
ever we write s(G) or cs(G) for an edge-labeled graph G = (V,E, c) we refer to
s(G′) and cs(G′), respectively, where G′ = (V,E) is isomorphic to G.

We say that a search strategy S is monotone if no recontamination occurs in
S. Analogously, for the search numbers given above, we define monotone, con-
nected monotone, heterogeneous monotone and connected heterogeneous mono-
tone search numbers denoted by ms(G), mcs(G), mhs(G) and mhcs(G), respec-
tively, to be the minimum number of searchers required by an appropriate mono-
tone search strategy.

The decision versions of the combinatorial problems we study are as follows:

Heterogeneous Graph Searching Problem (HGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it
hold hs(G) ≤ k?

Heterogeneous Connected Graph Searching Problem (HCGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it
hold hcs(G) ≤ k?

In the optimization versions of both problems an edge-labeled graph G is given
as an input and the goal is to find the minimum integer k, a labeling c̃ of k
searchers and a (connected) search c̃-strategy for G.

Additional Notation and Remarks. For some nodes v in V (G) we have
|c(v)| > 1, such connecting nodes we will call junctions. Thus, a node v is a
junction if there exist two edges with different colors incident to v.

We define an area in G to be a maximal subgraph H of G such that for every
two edges e, f of H, there exists a path P in H connecting an endpoint of e
with and endpoint of f such that P contains no junctions. We further extend
our notation to denote by c(H) the color of all edges in area H. Note that two
areas of the same color may share a junction. Let Areas(G) denote all areas of
G. Two areas are said to be adjacent if they include the same junction.
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Fact 1. If T is a tree and v is a junction that belongs to some area H in T ,
then v is a leaf (its degree is one) in H. �	
Lemma 1. Given a tree T = (V (T ), E(T ), c) and any area H in T , any search
c̃-strategy for T uses at least s(H) searchers of color c(H). �	

Lemma 1 leads to the following lower bound:

β(G) =
z∑

i=1

max
{
s(H)

∣
∣ H ∈ Areas(G), c(H) = i

}
.

Lemma 2. For each tree T it holds hs(T ) ≥ β(T ). �	

3 Lack of Monotonicity

Restricting available strategies to monotone ones can lead to increase of hetero-
geneous search number, even in case of trees. We express this statement in form
of the following main theorem of this section:

Theorem 1. There exists a tree T such that mhs(T ) > hs(T ).

In order to prove this theorem we provide an example of a tree Tl = (V,E, c),
where l ≥ 3 is an integer, which cannot be cleaned with β(Tl) searchers using
a monotone search strategy, but there exists a non-monotone strategy, provided
below, which achieves this goal. Our construction is shown in Fig. 1.

We first define three building blocks needed to obtain Tl, namely subtrees
T ′
1, T ′

2 and T ′′
l . We use three colors, i.e., z = 3. The construction of T ′

i , i ∈ {1, 2},
starts with a root vertex qi, which has 3 further children connected by edges of
color 1. Each child of qi has 3 children connected by edges of color 2. For the tree
T ′′

l , l ≥ 3, take vertices v0, . . . , vl+1 that form a path with edges ex = {vx, vx+1},
x ∈ {0, . . . , l}. We set c(ex) = x mod 3 + 1. We attach one pendant edge with
color x mod 3 + 1 and one with color (x − 1) mod 3 + 1 to each vertex vx, x ∈
{1, . . . , l}. Next, we take a path P with four edges in which two internal edges
are of color 2 and two remaining edges are of color 3. To finish the construction
of T ′′

l , identify the middle vertex of P , incident to the two edges of color 2, with
the vertex v0 of the previously constructed subgraph. We link two copies of T ′

i ,
i ∈ {1, 2}, by identifying two endpoints of the path P with the roots q1 and q2
of T ′

1 and T ′
2, respectively, obtaining the final tree Tl shown in Fig. 1.

Now, we analyze a potential monotone search c̃-strategy S using β(Tl) = 3
searchers. By Lemma 1, S uses one searcher of each color. We define a notion of
a step for S = (m1, . . . ,ml) to refer to some particular move indices in S. We
distinguish the following steps that will be used in the lemmas below:

1. step ti, i ∈ {1, 2}, equals the minimum index j such that at the end of move
mj all searchers are placed on the vertices of T ′

i (informally, this is the first
move in which all searchers are present in T ′

i );
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Fig. 1. The construction of T3 (l = 3) from the trees T ′
1, T ′

2 and T ′′
3 . Regular, heavy

and dashed edges have labels 1, 2 and 3, respectively.

2. step t′i, i ∈ {1, 2}, is the maximum index j such that at the end of move mj

all searchers are placed on the vertices of T ′
i (informally, this is the last move

in which all searchers are present in T ′
i );

3. steps t3, t
′
3 are, respectively, the minimum and maximum indices j such that

at the end of mj all searchers are placed on the vertices in V (P ) ∪ V (T ′′
l ).

We skip a simple proof that all above steps are well defined, i.e., for any
search strategy using 3 searchers for T each of the steps ti, t

′
i, i ∈ {1, 2, 3}, must

occur (for trees T ′
1 and T ′

2 this immediately follows from s(T ′
i ) = 3 for i ∈ {1, 2}).

Lemma 3. For each monotone c̃-search strategy S for T3 it holds: t1 ≤ t′1 <
t3 ≤ t′3 < t2 ≤ t′2 or t2 ≤ t′2 < t3 ≤ t′3 < t1 ≤ t′1.

Proof. The arguments used to prove this lemma do not use colors, so atomic
statements about search strategies for subgraphs can be analyzed using simple
and well known results for edge search model. Furthermore, due to the symmetry
of T , it is enough to analyze only the case when t1 < t2. Note that ti ≤ t′i, i ∈
{1, 2, 3}, follows directly from the definition. The vertices qi, i ∈ {1, 2}, have to
be guarded at some point between ti-th move and t′i-th move because s(T ′

i ) = 3.
Because each step tj , j ∈ {1, 2, 3}, uses all searchers, it cannot be performed if a
searcher preventing recontamination is required to stay outside of subtree related
to the respective step. The subtrees T ′

1 and T ′
2 contain no common vertices, so

t1 < t2 implies t2 > t′1, as stated in the lemma.
Suppose for a contradiction that t3 < ti for each i ∈ {1, 2}. In t3-th move,

since neither of t′i-th moves has occurred, both subtrees T ′
1, T

′
2 contain contam-

inated edges. Moreover, some of the contaminated edges are incident to ver-
tices qi. Thus, any edge of T ′′

l that is clean becomes recontaminated in the step
min{t1, t2}. Therefore, t1 < t3 as required.
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Now we prove that t′1 < t3. Suppose for a contradiction that t1 < t3 < t′1.
Consider the t′1-th move. By t3 < t′1, T ′′

l contains clean edges. By t′1 < t2, q2
is incident to contaminated edges in T ′

2. Thus, there is a searcher outside of T ′
1

which prevents recontamination of clean edges in T ′′
l . Contradiction with the

definition of t′1.
In t2-th move there are no spare searchers left to guard any contaminated

area outside T ′
2 which bypasses q2 and could threaten recontamination of T ′

1. So
all edges, including the ones in T ′′

l , between those two trees are already clean.
Therefore, step t′3 already occurred, which allows us to conclude t′3 < t2. �	

Due to the symmetry of Tl, we consider the case t1 ≤ t′1 < t3 ≤ t′3 < t2 ≤ t′2.

Lemma 4. During each move of index t ∈ [t′1, t2] there is a searcher on a vertex
of P .

Proof. By t ≥ t′1, q1 is incident to some clean edges of T ′
1. By t ≤ t2, q2 is

incident to some contaminated edges from T ′
2. Hence there has to be a searcher

on q1, q2 or a vertex of the path P between them to prevent recontamination. �	
Let fi, i ∈ {1, . . . , l − 1}, be the number of a move such that one of the edges

incident to vi is clean, one of the edges incident to vi is being cleaned and and
all other edges incident to vi are contaminated.

Notice that s(T ′′
l ) = 2, and therefore an arbitrary search strategy S ′ using

two searchers to clean a subtree without colors that is isomorphic to T ′′
l follows

one of these patterns: either the first searcher is placed, in some move of S ′,
on v1 and throughout the search strategy it moves from v1 to vl−1 or the first
searcher starts at vl−1 and moves from vl−1 to v1 while S ′ proceeds. If for each
i ∈ {1, . . . , l−1} the edge {vi−1, vi} becomes clean prior to the edge {vi, vi+1}—
we say that such S ′ cleans T ′′

l from v1 to vl−1 and if the edge {vi−1, vi} becomes
clean after {vi, vi+1}—we say that such S cleans T ′′

l from vl−1 to v1.

Lemma 5. Each move of index fi, i ∈ {1, . . . , l − 1}, is well defined. Either
f1 < f2 < . . . < fl−2 < fl−1 or fl−1 < fl−2 < . . . < f2 < f1.

Proof. Consider a f -th move which belongs to [t3, t′3] in a search strategy S. By
Lemmas 3 and 4, a searcher is present on a vertex of P in the f -th move. Hence,
only two searchers can be in T ′′

l in the f -th move, so S cleans T ′′
l from v1 to vl−1

or cleans T ′′
l from vl−1 to v1. Note that during an execution of such a strategy

there occur moves which satisfy the definition of fi, and therefore there exists
well defined fi. When S cleans T ′′

l from v0 to vl, then f1 < f2 < . . . < fl−2 < fl−1

is satisfied and when S cleans T ′′
l from vl to v0, then fl−1 < fl−2 < . . . < f2 < f1

is satisfied. �	
Lemma 6. There exists no monotone search c̃-strategy that uses 3 searchers to
clean Tl when l ≥ 7.
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Proof. The vertex vi, i ∈ {1, . . . , l−1}, is incident to edges of colors i mod 3+1
and (i − 1) mod 3 + 1, and therefore each move fi uses both searchers of colors
i mod 3 + 1 and (i − 1) mod 3 + 1. By Lemma 4, the third searcher, which is
of color (i − 2) mod 3 + 1, stays on P .

Consider a sequence f6 < f5 < . . . < f2 < f1. Note that it implies that T ′′
3 is

cleaned from vl−1 to v1. Let us show that it is impossible to place a searcher on
the vertices of P such that no recontamination occurs in each fi, i ∈ {1, . . . , 6}.

Consider the f6-th move, where searchers of colors 1 and 3 are in T ′′
l and

2 is on P . Before f6-th move an edge incident to v6 is clean (by definition of
f6). No edge incident to v1 is clean and, by Lemma 3, T ′

j has a clean edge,
j ∈ {1, 2}. In order to prevent recontamination of T ′

j , the searcher is present on
P , particularly on a vertex of the path from qj to v0. It cannot be the vertex qj ,
because 2 /∈ c(qj), so the edge of color 3 incident to qj is clean, and the searcher
is on one of the remaining two vertices. Consider the f5-th move in which the
searcher of color 1 is on a vertex v of P . The vertex between qj and v0 cannot be
occupied, due to its colors, and occupying qj would cause recontamination—only
the vertex v0 is available, v = v0. Consider the f4-th move. The vertex v0 cannot
be occupied, due to its colors. The edge e0 cannot be clean before e4 is clean,
because T ′′

l is cleaned from vl−1 to v1. Therefore, the searcher on v0 cannot be
moved towards q2. Monotone strategy fails.

The argument is analogical for a sequence f1 < f2 < . . . < f5 < f6. By
Lemma 5, T ′′

l is cleaned either from v1 to vl−1 or the other way, which implies
that considering the two above cases completes the proof. �	

The following lemma (whose proof we skip due to space limitation) together
with Lemma 6 prove Theorem 1.

Lemma 7. There exists a non-monotone c̃-strategy S that cleans Tl using three
searchers for each l ≥ 3.

Theorem 2. There exist trees such that each search c̃-strategy that uses the
minimum number of searchers has Ω(n2) unit recontaminations.

Proof. As a proof we use a tree Hl obtained through a modification of the tree
Tl. In order to construct Hl, we replace each edge on the path P with a path
Pm containing m vertices, where each edge between them is in the same color as
the replaced edge in Tl. Clearly hs(Hl) = hs(Tl). Note that we can adjust the
number of vertices in T ′′

l and Pm of Hl independently of each other. While the
total number of vertices is n = Θ(m + l), we take m = Θ(n), l = Θ(n) in Hl.

In order to clean Hl, we employ the strategy provided in Lemma 7 adjusted
in such a way, that any sliding moves performed on edges of P are replaced by
O(m) sliding moves on the corresponding paths of Pm. As shown previously, the
number of times an edge of P in Tl, or path Pm in Hl, which contains Θ(m)
elements, has to be recontaminated depends linearly on size of T ′′

l . In the later
case the c̃-strategy cleaning Hl has Ω(ml) = Ω(n2) unit recontaminations . �	
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4 Hard Cases

We remark that the decision problem HGS is NP-complete for trees if we restrict
available strategies to monotone ones. Formally, we show that the following
problem is NP-complete:

Monotone Heterogeneous Graph Searching Problem (MHGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it
hold mhs(G) ≤ k?

We obtain the following theorem whose proof due to space limitations is omitted.

Theorem 3. The problem MHGS is NP-complete in the class of trees.

It turns out that obtaining a similar result for arbitrary, that is, possibly
non-monotone strategies, is much more complicated. Our proof of Theorem4 is
a non-trivial refinement of the proof of Theorem3 and we present it in this way.
In particular, we outline the changes and additional arguments that need to be
used when dealing with non-monotone strategies. Due to the space limitations
the full proof is omitted.

Theorem 4. The problem HGS is NP-hard in the class of trees.

5 Polynomially Tractable Instances

If G is a tree then Lemma 2 gives us a lower bound of β(G) on the number of
searchers. In this section we will look for an upper bound assuming that there
is exactly one area for each color. With this assumption we show a constructive,
polynomial-time algorithm both for HGS and HCGS.

Let (E1, . . . , Ez) be the partition of edges of T so that Ei induces the area
of color i in T . This partition induces a tree structure. More formally, consider
a graph in which the set of vertices is PE = {E1, E2, . . . , Ez} and {Ei, Ej} is an
edge if and only if an edge in Ei and and edge in Ej share a common junction
in T . Then, let T̃ be the BFS spanning tree with the root E1 in this graph. We
write Vi to denote all vertices of the area with edge set Ei, i ∈ {1, . . . , z}.

Our strategy for clearing T is recursive, starting with the root. The following
procedure requires that when it is called, the area that corresponds to the parent
of Ei in T̃ has been cleared, and if i �= 1 (i.e., Ei is not the root of T̃ ), then
assuming that Ej is the parent of Ei in T̃ , a searcher of color j is present on the
junction in Vi ∩ Vj . With this assumption, the procedure recursively clears the
subtree of T̃ rooted in Ei.
procedure Clear(labeled tree T , Ei) � Clear the subtree of T that
corresponds to the subtree of T̃ rooted in Ei

1. For each Ej such that Ej is a child of Ei in T̃ place a searcher of color j
on the junction v ∈ Vj ∩ Vi.
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2. Clear the area of color i using s(T [Vi]) searchers. Remove all searchers of
color i from vertices in Vi.

3. For each child Ej of Ei in T̃ :
(a) place a searcher of color i on the junction v ∈ Vj ∩ Vi,
(b) remove the searcher of color j from the vertex v,
(c) call Clear recursively with input T and Ej ,
(d) remove the searcher of color i from the vertex v.

end procedure
We skip a simple proof that, for a given tree G = (V (G), E(G), c), proce-

dure Clear(G, E1) clears G using β(G) searchers. We also immediately obtain.

Lemma 8. If all the strategies used in step 2 of procedure Clear to clear a subtree
T [Vi] are monotone, then the resulting c̃-strategy for G is also monotone. �	

It is known that there exists an optimal monotone search strategy for any
graph [24] and it can be computed in linear time for a tree [27]. An optimal
connected search strategy can be also computed in linear time for a tree [2].
Thus, using Lemma 2 we conclude with the following theorem:

Theorem 5. Let G = (V (G), E(G), c) be a tree such that the subgraph Gj com-
posed by the edges in Ej is connected for each j ∈ {1, 2, . . . , z}. Then, there
exists a polynomial-time algorithm for solving problems HGS and HCGS.

6 Conclusions and Open Problems

Our main open question, following the same unresolved one for connected search-
ing, is whether problems HGS and HCGS belong to NP?

Our more practical motivation for studying the problems is derived from
modeling physical environments to whose parts different robots have different
access. More complex scenarios than the one considered in this work are those
in which either an edge can have multiple colors (allowing it to be traversed by
all agents of those colors), and/or a searcher can have multiple colors, which in
turns extends its range of accessible parts of the graph.
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Abstract. Consider a totally ordered set S of n elements; as an exam-
ple, a set of tennis players and their rankings. Further assume that their
ranking is a total order and thus satisfies transitivity and anti-symmetry.
Following Yao [29], an element (player) is said to be (i, j)-mediocre if it
is neither among the top i nor among the bottom j elements of S. More
than 40 years ago, Yao suggested a stunningly simple algorithm for find-
ing an (i, j)-mediocre element: Pick i + j + 1 elements arbitrarily and
select the (i+1)-th largest among them. She also asked: “Is this the best
algorithm?” No one seems to have found such an algorithm ever since.

We first provide a deterministic algorithm that beats the worst-case
comparison bound in Yao’s algorithm for a large range of values of i (and
corresponding suitable j = j(i)). We then repeat the exercise for ran-
domized algorithms; the average number of comparisons of our algorithm
beats the average comparison bound in Yao’s algorithm for another large
range of values of i (and corresponding suitable j = j(i)); the improve-
ment is most notable in the symmetric case i = j. Moreover, the tight
bound obtained in the analysis of Yao’s algorithm allows us to give a def-
inite answer for this class of algorithms. In summary, we answer Yao’s
question as follows: (i) “Presently not” for deterministic algorithms and
(ii) “Definitely not” for randomized algorithms. (In fairness, it should be
said however that Yao posed the question in the context of deterministic
algorithms.)

Keywords: Comparison algorithm · Randomized algorithm ·
Approximate selection · i-th order statistic · Mediocre element ·
Yao’s hypothesis · Tournaments · Quantiles

1 Introduction

Given a sequence A of n numbers and an integer (selection) parameter 1 ≤ i ≤ n,
the selection problem asks to find the i-th smallest element in A. If the n elements
are distinct, the i-th smallest is larger than i−1 elements of A and smaller than
the other n − i elements of A. By symmetry, the problems of determining the
i-th smallest and the i-th largest are equivalent; throughout this paper, we will
be mainly concerned with the latter dual problem.

Together with sorting, the selection problem is one of the most fundamental
problems in computer science. Sorting trivially solves the selection problem;
c© Springer Nature Switzerland AG 2019
P. Heggernes (Ed.): CIAC 2019, LNCS 11485, pp. 212–223, 2019.
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however, a higher level of sophistication is required in order to obtain a linear
time algorithm. This was accomplished in the early 1970s, when Blum et al. [6]
gave an O(n)-time algorithm for the problem. Their algorithm performs at most
5.43n comparisons and its running time is linear irrespective of the selection
parameter i. Their approach was to use an element in A as a pivot to partition
A into two smaller subsequences and recurse on one of them with a (possibly
different) selection parameter i. The pivot was set as the (recursively computed)
median of medians of small disjoint groups of the input array (of constant size
at least 5). More recently, several variants of Select with groups of 3 and 4,
also running in O(n) time, have been obtained by Chen and Dumitrescu and
independently by Zwick; see [7].

The selection problem, and computing the median in particular are in close
relation with the problem of finding the quantiles of a set. The k-th quantiles
of an n-element set are the k − 1 order statistics that divide the sorted set in k
equal-sized groups (to within 1); see, e.g., [8, p. 223]. The k-th quantiles of a set
can be computed by a recursive algorithm running in O(n log k) time.

In an attempt to drastically reduce the number of comparisons done for selec-
tion (down from 5.43n), Schönhage et al. [28] designed a non-recursive algorithm
based on different principles, most notably the technique of mass-production.
Their algorithm finds the median (the �n/2�-th largest element) using at most
3n+o(n) comparisons; as noted by Dor and Zwick [11], it can be adjusted to find
the i-th largest, for any i, within the same comparison count. In a subsequent
work, Dor and Zwick [12] managed to reduce the 3n + o(n) comparison bound
to about 2.95n; this however required new ideas and took a great deal of effort.

Mediocre Elements (Players). Following Yao, an element is said to be (i, j)-
mediocre if it is neither among the top (i.e., largest) i nor among the bottom
(i.e., smallest) j of a totally ordered set S of n elements. Yao remarked, that
historically, finding a mediocre element is closely related to finding the median,
with a common motivation being selecting an element that is not too close to
either extreme. Observe also that (i, j)-mediocre elements where i = �n−1

2 �,
j = �n

2 � (and symmetrically exchanged), are medians of S.
In her PhD thesis [29], Yao suggested a stunningly simple algorithm for find-

ing an (i, j)-mediocre element: Pick i + j + 1 elements arbitrarily and select
the (i + 1)-th largest among them. It is easy to check that this element sat-
isfies the required condition. Yao asked whether this algorithm is optimal.
No improvements over this algorithm were known. An interesting feature of
this algorithm is that its complexity does not depend on n (unless i or j
do). The author also proved that this algorithm is optimal for i = 1. For
i + j + 1 ≤ n, let S(i, j, n) denote the minimum number of comparisons needed
in the worst case to find an (i, j)-mediocre element. Yao [29, Sect. 4.3] proved
that S(1, j, n) = V2(j + 2) = j + �log(j + 2)�, and so S(1, j, n) is independent of
n. Here V2(j + 2) denotes the minimum number of comparisons needed in the
worst case to find the second largest out of j + 2 elements.
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The question of whether this algorithm is optimal for all values of i and j
has remained open ever since; alternatively, the question is whether S(i, j, n) is
independent of n for all other values of i and j. Here we provide two alternative
algorithms for finding a mediocre element (one deterministic and one random-
ized), and thereby confront Yao’s algorithm with concrete challenges.

Background and Related Problems. Determining the comparison complex-
ity for computing various order statistics including the median has lead to
many exciting questions, some of which are still unanswered today. In this
respect, Yao’s hypothesis on selection [29, Sect. 4] has stimulated the devel-
opment of such algorithms [11,27,28]. That includes the seminal algorithm of
Schönhage et al. [28], which introduced principles of mass-production for deriv-
ing an efficient comparison-based algorithm.

Due to its primary importance, the selection problem has been studied exten-
sively; see for instance [1,4,5,9–12,16–23,27,30]. A comprehensive review of early
developments in selection is provided by Knuth [24]. The reader is also referred
to dedicated book chapters on selection, such as those in [3,8] and the more
recent articles [7,13], including experimental work [2].

In many applications (e.g., sorting), it is not important to find an exact
median, or any other precise order statistic, for that matter, and an approximate
median suffices [15]. For instance, quick-sort type algorithms aim at finding a
balanced partition without much effort; see e.g., [19]. As a concrete example,
Battiato et al. [4] gave an algorithm for finding a weak approximate median by
using few comparisons. While the number of comparisons is at most 3n/2 in the
worst case, their algorithm can only guarantee finding an (i, j)-mediocre element
with i, j = Ω(nlog3 2); however, nlog3 2 = o(n), and so the selection made could
be shallow.

Our Results. Our main results are summarized in the following. It is worth not-
ing, however, that the list of sample data the theorems provide is not exhaustive.

Theorem 1. Given a sequence of n elements, an (i, j)-mediocre element, where
i = αn, j = (1 − 2α)n − 1, and 0 < α < 1/3, can be found by a deterministic
algorithm A1 using cA1 · n + o(n) comparisons in the worst case, where the
constants cA1 = cA1(α) for the quantiles 1 through 33 are given in Fig. 2 (column
A1 of the second table). In particular, if the number of comparisons done by Yao’s
algorithm is cYao · n + o(n), we have cA1 < cYao, for each of these quantiles.

Theorem 2. Given a sequence of n elements, an (i, j)-mediocre element, where
i = j = n/2 − n3/4, can be found by a randomized algorithm using n + O(n3/4)
comparisons on average. If 0 < α < 1/2 is a fixed constant, an (i, j)-mediocre
element, where i = j = αn, can be found using 2αn + O(n3/4) comparisons on
average. If α, β > 0 are fixed constants with α+β < 1, an (i, j)-mediocre element,
where i = αn, j = βn, can be found using (α + β)n + O(n3/4) comparisons on
average.
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In particular, finding an element near the median requires about 3n/2 com-
parisons for any previous algorithm (including Yao’s), and finding the precise
median requires 3n/2 + o(n) comparisons on average, while the main term in
this expression cannot be improved [9]. In contrast, our randomized algorithm
finds an element near the median using about n comparisons on average, thereby
achieving a substantial savings of roughly n/2 comparisons.

Preliminaries and Notation. Without affecting the results, the following two
standard simplifying assumptions are convenient:(i) the input sequence A con-
tains n distinct numbers; and (ii) the floor and ceiling functions are omitted in
the descriptions of the algorithms and their analyses. For example, for simplicity
we write the αn-th element instead of the more precise �αn�-th element. In the
same spirit, for convenience we treat

√
n and n3/4 as integers. Unless specified

otherwise, all logarithms are in base 2.
Let E[X] and Var[X] denote the expectation and respectively, the variance,

of a random variable X. If E is an event in a probability space, Prob(E) denotes
its probability.

2 Instances and Algorithms for Deterministic
Approximate Selection

We first make a couple of observations on the problem of finding an (i, j)-
mediocre element. Without loss of generality (by considering the complemen-
tary order), it can be assumed that i ≤ j; and consequently, i < n/2, if con-
venient. Our algorithm is designed to work for a specific range of values of i, j:
i ≤ j ≤ n − 2i − 1; outside this range our algorithm simply proceeds as in Yao’s
algorithm. With anticipation, we note that our test values for purpose of com-
parison will belong to the specified range. Note that the conditions i ≤ j and
i ≤ j ≤ n − 2i − 1 imply that i < n/3.

Yao’s algorithm is very simple: simply pick i+ j +1 elements arbitrarily and
select the (i+1)-th largest among them. As mentioned earlier, it is easy to check
that this element satisfies the required condition.

Our algorithm (for the specified range) is also simple: Group the n elements
into m = n/2 pairs and perform n/2 comparisons; then select the (i + 1)-th
largest from the m upper elements in the m pairs. Let us first briefly argue
about its correctness; denoting the selected element by x, on one hand, observe
that x is smaller than i (upper) elements in disjoint pairs; on the other hand,
observe that x is larger than 2

(
n
2 − i − 1

)
+ 1 = n − 2i − 1 ≥ j (lower) elements

in disjoint pairs, by the range assumption. It follows that the algorithm returns
an (i, j)-mediocre element, as required.

It should be noted that both algorithms (ours as well as Yao’s) make calls to
exact selection, however with different input parameters. As such, we use state
of the art algorithms and corresponding worst-case bounds for (exact) selection
available. In particular, selecting the median can be accomplished with at most
2.95n comparisons, by using the algorithm of Dor and Zwick [12]; and if l is any
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fixed integer, selecting the αn-th largest element can be accomplished with at
most cDor−Zwick · n + o(n) comparisons, where

cDor−Zwick = cDor−Zwick(α, l) = 1 + (l + 2)
(

α +
1 − α

2l

)
, (1)

by using an algorithm tailored for shallow selection by the same authors [11]. In
particular, by letting l = �log 1

α + log log 1
α� in Eq. (1), the authors obtain the

following upper bound:

cDor−Zwick(α) = 1 + (l + 2)
(

α +
1 − α

2l

)
(2)

≤ 1 +
(

log
1
α

+ log log
1
α

+ 2
)

·
(

α +
2α(1 − α)

log 1
α

)
.

Note that Eqs. (1) and (2) only lead to upper bounds in asymptotic terms.
Here we present an algorithm that outperforms Yao’s algorithm for finding

an (αn, βn)-mediocre element for large n and for a broad range of values of α
and suitable β = β(α), using current best comparison bounds for exact selection
as described above. A key difference between our algorithm and Yao’s lies in
the amount of effort put into processing the input. Whereas Yao’s algorithm
chooses an arbitrary subset of elements of a certain size and ignores the remain-
ing elements, our algorithm looks at all the input elements and gathers initial
information based on grouping the elements into disjoint pairs and performing
the respective comparisons.

Problem Instances. Consider the instance (αn, (1 − 2α)n − 1) of the problem of
selecting a mediocre element, where α is a constant 0 < α < 1/3.

Algorithms. We next specify our algorithm and Yao’s algorithm for our problem
instances. We start with our algorithm; and refer to Fig. 1 for an illustration.

Algorithm A1.

Step 1: Group the n elements into n/2 pairs by performing n/2 comparisons.
Step 2: Select and return the (αn+1)-th largest from the n/2 upper elements
in the n/2 pairs. Refer to Fig. 1.

Let x denote the selected element. The general argument given earlier shows
that x is (αn, (1 − 2α)n − 1)-mediocre: On one hand, there are (2α)n/2 = αn
elements larger than x; on the other hand, there are (1 − 2α)n/2 · 2 − 1 =
(1 − 2α)n − 1 elements smaller than x, as required.

Algorithm Yao.

Step 1: Choose an arbitrary subset of k = (1−α)n elements from the given n.
Step 2: Select and return the (αn+1)-th largest element from the k chosen.

Let y denote the selected element. As noted earlier, y is (αn, (1 − 2α)n − 1)-
mediocre. Observe that the element returned by Yao’s algorithm corresponds to
a selection problem with a fraction α′ = α

1−α from the k available.
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Fig. 1. Illustration of Algorithm A1 for α = 1/6 and n = 12; large elements are at the
top of the respective edges.

Analysis of the Number of Comparisons. For 0 < α < 1, let f(α) denote the
multiplicative constant in the current best upper bound on the number of com-
parisons in the algorithm of Dor and Zwick for selection of the αn-th largest
element out of n elements, according to (1), with one improvement. Instead of
considering only one value for l, namely l = �log 1

α + log log 1
α�, we also consider

the value l + 1, and let the algorithm choose the best (i.e., the smallest of the
two resulting values in (1) for the number of comparisons in terms of α). This
simple change improves the advantage of Algorithm A1 over Yao’s algorithm.

Recall that the algorithm of Dor and Zwick [11], which is a refinement of
the algorithm of Schönhage et al. [28], is non-recursive, thus the selection target
remains the same during its execution, and so choosing the best value for l can
be done at the beginning of the algorithm. (Recall that the seminal algorithm
of Schönhage et al. [28] is non-recursive as well.)

To be precise, let

g(α, l) =
(

1 + (l + 2)
(

α +
1 − α

2l

))
, and (3)

l =
⌊
log

1
α

+ log log
1
α

⌋
, (4)

f(α) = min (g(α, l), g(α, l + 1)) . (5)

It follows by inspection that the comparison counts for Algorithm A1 and
Algorithm Yao are bounded from above by cA1 · n + o(n) and cYao · n + o(n),
respectively, where

cA1 =
1
2

(1 + f(2α)) , (6)

cYao = (1 − α) · f

(
α

1 − α

)
. (7)

It is worth noting that Eq. (5) yields values larger than 3 for certain values
of α; e.g., for α = 0.4, we have l = 1, and g(0.4, 1) = 3.1, g(0.4, 2) = 3.2, and
so f(0.4) = 3.1. Moreover, a problem instance with 1/6 ≤ α < 1/3 would entail
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Fig. 2. Left: the values of f(αi), αi = i/100, i = 1, . . . , 33, for the algorithm of Dor
and Zwick. Right: the comparison counts per element of A1 versus Yao for the first 33
quantiles. (The tables list the first four digits after the decimal point.)

Algorithm A1 making a call to an exact selection with parameter 1/3 ≤ 2α < 2/3
(see (6) above). However, taking into consideration the possible adaptation of
their algorithm pointed out by the authors [11], the expression of f(α) in (5)
can be replaced by

f(α) = min (g(α, l), g(α, l + 1), 3) , (8)

or even by
f(α) = min (g(α, l), g(α, l + 1), 2.95) . (9)



Finding a Mediocre Player 219

We next show that (the new) Algorithm A1 outperforms Algorithm Yao
with respect to the (worst-case) number of comparisons in selecting a mediocre
element for n large enough and for all instances (αin, (1 − 2αi)n − 1), where
αi = i/100, and i = 1, . . . , 33; that is, for all quantiles i = 1, . . . , 33 and suitable
values of the 2nd parameter. This is proven by the data in the two tables in
Fig. 2; the entries are computed using Eqs. (6) and (7), respectively. Moreover,
the results remain the same, regardless of whether one uses the expression of
f(α) in (8) or (9); to avoid the clutter, we only included the results obtained by
using the expression of f(α) in (8).

3 Instances and Algorithms for Randomized Approximate
Selection

Problem Instances. Consider the problem of selecting an (i, j)-mediocre element,
for the important symmetric case i = j. To start with, let i = j = n/2 − n3/4

(the first scenario described in Theorem 2); an extended range of values will be
given in the end.

Algorithms. We next specify our algorithm1 and compare it with Yao’s algorithm
instantiated with these values (i = j = n/2 − n3/4).

Algorithm A2.
Input: A set S of n elements over a totally ordered universe.
Output: An (i, j)-mediocre element, where i = j = n/2 − n3/4.

Step 1: Pick a (multi)-set R of �n3/4� elements in S, chosen uniformly and
independently at random with replacement.
Step 2: Let m be median of R (computed by a linear-time deterministic
algorithm).
Step 3: Compare each of the remaining elements of S \ R to m.
Step 4: If there are at least i = j = n/2 − n3/4 elements of S on either side
of m, return m, otherwise FAIL.

Observe that (i) Algorithm A2 performs at most n + O(n3/4) comparisons;
and (ii) it either correctly outputs an (i, j)-mediocre element, where i = j =
n/2 − n3/4, or FAIL.

Analysis of the Number of Comparisons. Our analysis is quite similar to that of
the classic randomized algorithm for finding the median; see [16], but also [26,
Sect. 3.3] and [25, Sect. 3.4]. In particular, the randomized median finding algo-
rithm and Algorithm A2 both fail for similar reasons.

1 We could formulate a general algorithm for finding an (i, j)-mediocre element, acting
differently in a specified range, as we did for the deterministic algorithm in Sect. 2.
However, for clarity, we preferred to specify it in this way.
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Recall that an execution of Algorithm A2 performs at most n + O(n3/4)
comparisons. Define a random variable Xi by

Xi =
{

1 if the rank of the ith sample is less than n/2 − n3/4,
0 else.

The variables Xi are independent, since the sampling is done with replacement.
It is easily seen that

p := Prob(Xi = 1) ≤ n/2 − n3/4

n
=

1
2

− 1
n1/4

.

Let X =
∑n3/4

i=1 Xi be the random variable counting the number of samples in
R whose rank is less than n/2 − n3/4. By the linearity of expectation, we have

E[X] =
n3/4
∑

i=1

E[Xi] ≤ n3/4

(
1
2

− 1
n1/4

)
=

n3/4

2
− √

n.

Observe that the randomized algorithm A2 fails if and only if the rank (in
S) of the median m of R is outside the rank interval [n/2 − n3/4, n/2 + n3/4],
i.e., the rank of m is smaller than n/2 − n3/4 or larger than n/2 + n3/4. Note
that if algorithm A2 fails then at least |R|/2 = n3/4/2 elements of R have rank
≤ n/2 − n3/4 or at least |R|/2 = n3/4/2 elements of R have rank ≥ n/2 + n3/4;
denote these two events by E1 and E2, respectively. We next bound from above
their probability.

Lemma 1.
Prob(E1) ≤ 1

4n1/4
.

Proof. Since Xi is a Bernoulli trial, X is a binomial random variable with param-
eters n3/4 and p. Observing that p(1 − p) ≤ 1/4, it follows (see for instance [25,
Sect. 3.2.1]) that

Var(X) = n3/4p(1 − p) ≤ n3/4

4
.

Applying Chebyshev’s inequality yields

Prob(E1) ≤ Prob
(

X ≥ n3/4

2

)
≤ Prob

(|X − E[X]| ≥ √
n
)

≤ Var(X)
n

≤ n3/4

4n
=

1
4n1/4

,

as claimed. 	

Similarly, we deduce that Prob(E2) ≤ 1/(4n1/4). Consequently, by the union

bound it follows that the probability that one execution of Algorithm A2 fails is
bounded from above by

Prob(E1 ∪ E2) ≤ Prob(E1) + Prob(E2) ≤ 1
2n1/4

.
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As in [25, Sect. 3.4], Algorithm A2 can be converted (from a Monte Carlo
algorithm) to a Las Vegas algorithm by running it repeatedly until it succeeds.
By Lemma 1, the FAIL probability is significantly small, and so the expected
number of comparisons of the resulting algorithm is still n + o(n)). Indeed, the
expected number of repetitions until the algorithm succeeds is at most

1
1 − 1/(2n1/4)

≤ 1 +
1

n1/4
.

Since the number of comparisons in each execution of the algorithm is n +
O(n3/4), the expected number of comparisons until success is at most

(
1 +

1
n1/4

)(
n + O(n3/4)

)
= n + O(n3/4).

We now analyze the average number of comparisons done by Yao’s algorithm.
On one hand, by a classic result of Floyd and Rivest [16], the k-th largest element
out of n given, can be found using at most n+min(k, n− k)+ o(n) comparisons
on average. On the other hand, by a classic result of Cunto and Munro [9], this
task requires n + min(k, n − k) + o(n) comparisons on average. In particular,
the median of i + j + 1 = n − 2n3/4 + 1 elements can be found using at most
3n/2+o(n) comparisons on average; and the main term in this expression cannot
be improved.

Consequently, since 1 < 3/2, the average number of comparisons done by
Algorithm A2 is significantly smaller than the average number of comparisons
done by Yao’s algorithm for the task of finding an (i, j)-mediocre element, when
n is large and i = j = n/2 − n3/4.

Generalization. A broad range of symmetric instances for comparison purposes
can be obtained as follows. Let 0 < α < 1/2 be any fixed constant. Consider the
problem of selecting an (i, j)-mediocre element in the symmetric case, where i =
j = αn. Our algorithm first chooses an arbitrary subset of 2αn+2n3/4 elements
of S to which it applies Algorithm A2; as such, it uses at most 2αn + O(n3/4)
comparisons on average. It is implicitly assumed here that 2αn + 2n3/4 ≤ n,
i.e., that n1/4(1 − 2α) ≥ 2, which holds for n large enough. In contrast, Yao’s
algorithm chooses an arbitrary subset of 2αn + 1 elements and uses 3αn + o(n)
comparisons on average. Since 2α < 3α for every α > 0, the average number of
comparisons in Algorithm A2 is significantly smaller than the average number of
comparisons in Yao’s algorithm for the task of finding an (i, j)-mediocre element,
when n is large and i = j = αn.

A broad range of asymmetric instances with a gap, as described in Theo-
rem 2, can be constructed using similar principles; in particular, in Step 2 of
Algorithm A2, a different order statistic of R (i.e., a biased partitioning element)
is computed rather than the median of R. It is easy to see that the resulting
algorithm performs at most (α + β)n + O(n3/4) comparisons on average. The
correctness argument is similar to the one used above in the symmetric case and
so we omit further details.
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4 Conclusion

We presented two alternative algorithms—one deterministic and one
randomized—for finding a mediocre element, i.e., for approximate selection. The
deterministic algorithm outperforms Yao’s algorithm for large n with respect to
the worst-case number of comparisons for about one third of the quantiles (as the
first parameter), and suitable values of the 2nd parameter, using state of the art
algorithms for exact selection due to Dor and Zwick [11]. Moreover, we suspect
that the comparison outcome remains the same for large n and the entire range
of α ∈ (0, 1/3) and suitable β = β(α) in the problem of selecting an (αn, βn)-
mediocre element. Whether Yao’s algorithm can be beaten by a deterministic
algorithm in the symmetric case i = j remains an interesting question.

The randomized algorithm outperforms Yao’s algorithm for large n with
respect to the expected number of comparisons for the entire range of α ∈ (0, 1/2)
in the problem of finding an (i, j)-mediocre element, where i = j = αn. These
ideas can be also used to generate asymmetric instances with a gap for suitable
variants of the randomized algorithm.

Discussions pertaining to lower bounds—for the deterministic and random-
ized cases, respectively—have been omitted from this version due to space con-
straints; they can be found in [14].
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Abstract. We investigate a variety of geometric problems of finding
tours and cycle covers with minimum turn cost, which have been stud-
ied in the past, with complexity and approximation results, and open
problems dating back to work by Arkin et al. in 2001. Many new prac-
tical applications have spawned variants: For full coverage, every point
has to be covered, for subset coverage, specific points have to be covered,
and for penalty coverage, points may be left uncovered by incurring a
penalty. We make a number of contributions. We first show that finding
a minimum-turn (full) cycle cover is NP-hard even in 2-dimensional grid
graphs, solving the long-standing open Problem 53 in The Open Prob-
lems Project edited by Demaine, Mitchell and O’Rourke. We also prove
NP-hardness of finding a subset cycle cover of minimum turn cost in thin
grid graphs, for which Arkin et al. gave a polynomial-time algorithm
for full coverage; this shows that their boundary techniques cannot be
applied to compute exact solutions for subset and penalty variants.

On the positive side, we establish the first constant-factor approxima-
tion algorithms for all considered subset and penalty problem variants
for very general classes of instances, making use of LP/IP techniques.
For these problems with many possible edge directions (and thus, turn
angles, such as in hexagonal grids or higher-dimensional variants), our
approximation factors also improve the combinatorial ones of Arkin et
al. Our approach can also be extended to other geometric variants, such
as scenarios with obstacles and linear combinations of turn and distance
costs.

1 Introduction

Finding roundtrips of minimum cost is one of the classic problems of theoretical
computer science. In its most basic form, the objective of the Traveling Salesman
Problem (TSP) is to minimize the total length of a single tour that covers all of
a given set of locations. If the tour is not required to be connected, the result
may be a cycle cover: a set of closed subtours that together cover the whole set.

A full version of this extended abstract can be found at [17].
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This distinction makes a tremendous difference for the computational complexity:
while the TSP is NP-hard, computing a cycle cover of minimum total length can
be achieved in polynomial time, based on matching techniques.

Evaluating the cost for a tour or a cycle cover by only considering its length
may not always be the right measure. Figure 1 shows an example application, in
which a drone has to sweep a given region to fight mosquitoes that may transmit
dangerous diseases. As can be seen in the right-hand part of the figure, by far
the dominant part of the overall travel cost occurs when the drone has to change
its direction. (See our related video and abstract [10] for more details, and the
resulting tour optimization.) There is an abundance of other related applied
work, e.g., mowing lawns or moving huge wind turbines [8].

Fig. 1. (Left) A drone equipped with an electrical grid for killing mosquitoes. (Mid-
dle) Physical aspects of the flying drone. (Right) Making turns is expensive. See our
related video [10].

For many purposes, two other variants are also practically important: for
subset coverage, only a prespecified subset of locations needs to be visited, while
for penalty coverage, locations may be skipped at the expense of an individual
penalty. From the theoretical side, Arkin et al. [6] showed that finding minimum-
turn tours in grid graphs is NP-hard, even if a minimum-turn cycle cover is
given. The question whether a minimum-turn cycle cover can be computed in
polynomial time (just like a minimum-length cycle cover) has been open for at
least 17 years, dating back to the conference paper [5]; it has been listed for 15
years as Problem 53 in The Open Problems Project edited by Demaine, Mitchell,
and O’Rourke [15]. In Sect. 2 we resolve this problem by showing that computing
a minimum-turn cycle cover in planar grid graphs is indeed NP-hard.

This raises the need for approximation algorithms. In Sect. 3, we present a
technique based on Integer Programming (IP) formulations and their Linear
Programming (LP) relaxations. Based on polyhedral results and combinatorial
modifications, we prove constant approximation for all problem variants.

1.1 Related Work

Milling with Turn Costs. Arkin et al. [5,6] introduce the problem of milling
(i.e., “carving out”) with turn costs. They show hardness of finding an optimal
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tour, even in thin 2-dimensional grid graphs (which do not contain an induced
2 × 2 subgraph) with a given optimal cycle cover. They give a 2.5-approximation
algorithm for obtaining a cycle cover, resulting in a 3.75-approximation algo-
rithm for tours. The complexity of finding an optimal cycle cover in a 2-
dimensional grid graph was established as Problem 53 in The Open Problems
Project [15].

Maurer [23] proves that a cycle partition with a minimum number of turns in
grid graphs can be computed in polynomial time and performs practical experi-
ments for optimal cycle covers. De Assis and de Souza [14] computed a provably
optimal solution for an instance with 76 vertices. For the abstract version on
graphs (in which “turns” correspond to weighted changes between edges), Fel-
lows et al. [20] show that the problem is fixed-parameter tractable by the number
of turns, tree-width, and maximum degree. Benbernou [11] considered milling
with turn costs on the surface of polyhedrons in the 3-dimensional grid. She gives
a corresponding 8/3-approximation algorithm for tours.

Note that the theoretical work presented in this paper has significant prac-
tical implications. As described in our forthcoming conference paper [18], the
IP/LP-characterization presented in Sect. 3 can be modified and combined with
additional algorithm engineering techniques to allow solving instances with more
than 1000 pixels to provable optimality (thereby expanding the range of de Assis
and de Souza [14] by a factor of 15), and computing solutions for instances with
up to 300,000 pixels within a few percentage points (thereby showing that the
practical performance of our approximation techniques is dramatically better
than the established worst-case bounds).

For mowing problems, i.e., covering a given area with a moving object that
may leave the region, Stein and Wagner [25] give a 2-approximation algorithm
on the number of turns for the case of orthogonal movement. If only the traveled
distance is considered, Arkin et al. [7] provide approximation algorithms for
milling and mowing.

Angle and Curvature-Constrained Tours and Paths. If the instances are
in the R

2 plane and only the turning angles are measured, the problem is called
the Angular Metric Traveling Salesman Problem. Aggarwal et al. [3] prove hard-
ness and provide an O(log n) approximation algorithm for cycle covers and tours
that works even for distance costs and higher dimensions. As shown by Aich-
holzer et al. [4], this problem seems to be very hard to solve optimally with
integer programming. Fekete and Woeginger [19] consider the problem of con-
necting a point set with a tour for which the angles between the two successive
edges are constrained. Finding a curvature-constrained shortest path with obsta-
cles has been shown to be NP-hard by Lazard et al. [22]. Without obstacles,
the problem is known as the Dubins path [16] that can be computed efficiently.
With complexity depending on the types of obstacles, Boissonnat and Lazard
[12], Agarwal et al. [1], and Agarwal and Wang [2] provide polynomial-time algo-
rithms when possible or 1 + ε approximation algorithms otherwise. Takei et al.
[26] consider the solution of the problem from a practical perspective.
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Related Combinatorial Problems. Goemans and Williamson [21] provide an
approximation technique for constrained forest problems and similar problems
that deal with penalties. In particular, they provide a 2-approximation algo-
rithm for Prize-Collecting Steiner Trees in general symmetric graphs and the
Penalty Traveling Salesman Problem in graphs that satisfy the triangle inequal-
ity. An introduction into approximation algorithms for prize-collecting/penalty
problems, k-MST/TSP, and minimum latency problems is given by Ausiello et
al. [9].

1.2 Preliminaries

The angular metric traveling salesman problem resp. cycle cover problem ask for
a cycle resp. set of cycles such that a given set P of n points in R

d is covered
and the sum of turn angles in minimized. A cycle is a closed chain of segments
and covers the points of the segments’ joints. A cycle has to cover at least two
points. The turn angle of a joint is the angle difference to 180◦. In the presence
of polygonal obstacles, cycles are not allowed to cross them. We consider three
coverage variants: Full, subset, and penalty. In full coverage, every point has to
be covered. In subset coverage, only points in a subset S ⊆ P have to be covered
(which is only interesting for grid graphs). In penalty coverage, no point has to
be covered but every uncovered point p ∈ P induces a penalty c(p) ∈ Q

+
0 on the

objective value. Optionally, the objective function can be a linear combination
of distance and turn costs.

In the following, we introduce the discretized angular metric, by considering
for every point p ∈ P a set of ω possible orientations (and thus, 2ω possible
directions) for a trajectory through p. We model this by considering for each
p ∈ P a set Op of ω infinitely short segments, which we call atomic strips; a point
is covered if one of its segments is part of the cycle, see Fig. 2. The corresponding
selection of atomic strips is called Atomic Strip Cover, i.e., a selection of one
o ∈ Op for every p ∈ P .

φ1

φ2

φ1 + φ2

edge weight:

One of the atomic
strips is integrated
into the polygonal
tour to cover the
corresponding point

Replace every point by a set
of atomic strips and push
the turn costs into the edge
weights.

atomic strip cover

Fig. 2. Transforming an angular metric TSP instance and solution to an instance based
on atomic strips, which can be considered infinitely small segments.
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The atomic strips induce a weighted graph GO(VO, EO) with the endpoints
of the atomic strips as vertices and the connections between the endpoints as
edges. The weight of an edge in GO equals the connection costs, in particular
the turn costs on the two endpoints. Thus, the cycle cover problem turns into
finding an Atomic Strip Cover with the minimum-weight perfect matching on
its induced subgraph. As the cost of connections in it depends on two edges in
the original graph, we call this generalized problem (in which the edge weights
do not have to be induced by geometry) the semi-quadratic cycle cover problem.

⇔8d + 4t

8d + 4t

16 distance and 8 turns16 distance and 8 turns

1d

1d + 1t

1d + 1t

1d

1d + 1t
1d

2d + 1t
1d + 1t

3d + 1t

3d

1d + 2t

d = distance costs
t = turn costs per 90◦

1d

1d

1d+ 1t

1d+ 1t

1d+ 1t 1d
2d+ 2t 2d+ 3t

=

=

Fig. 3. (Left) From an optimal cycle cover (dotted) we can extract an Atomic Strip
Cover (thick black), such that the matching (orange) induces an optimal solution.
(Right) For turns it does not matter if we choose the horizontal or vertical atomic
strip. (Color figure online)

It is important to note that the weights do not satisfy the triangle inequal-
ity; however, a direct connection is not more expensive than a connection that
includes another atomic strip, giving rise to the following pseudo-triangle inequal-
ities.

∀v1, v2 ∈ VO, w1w2 ∈ Op, p ∈ P :
cost(v1v2) ≤ cost(v1w1) + cost(w2v2)
cost(v1v2) ≤ cost(v1w2) + cost(w1v2)

(1)

Our model allows the original objective function to be a linear combination of
turn and distance costs, as it does not influence Eq. (1). Instances with polygonal
obstacles for 2-dimensional geometric instances are also possible (however, for
3D, the corresponding edge weights can no longer be computed efficiently). A
notable special case are grid graphs that arise as vertex-induced subgraphs of the
infinite integer orthogonal grid. In this case, a point can only be covered straight,
by a simple 90◦ turn, or by a 180◦ u-turn. We show grid graphs as polyominoes
in which vertices are shown as pixels. We also speak of the number of simple
turns (u-turns counting as two) instead of turn angles. More general grid graphs
can be based on other grids, such as 3-dimensional integral or hexagonal grids.

Minimum turn cycle covers in grid graphs can be modeled as a semi-quadratic
cycle cover problem with ω = 2 and edge weights satisfying Eq. (1). One of the
atomic strips represents being in a horizontal orientation (with an east and a west
heading vertex) and the other being in a vertical orientation (with a north and a
south heading vertex). The cost of an edge is as follows; see Fig. 3: Every vertex is
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connected to a position and a direction. The cost is the cheapest transition from
the position and direction of the first vertex to the position and opposite heading
of the second vertex (this is symmetric and can be computed efficiently). We can
easily transform a cycle cover in a grid graph into one based on atomic strips
and vice versa; see Fig. 3 (left). For each pixel we choose one of its transitions. If
it is straight, we select the equally oriented strip; otherwise it does not matter,
see Fig. 3 (right). With more atomic strips we can also model more general grid
graphs such as hexagonal or 3-dimensional grid graphs with three atomic strips.

1.3 Our Contribution

We provide the following results.

– We resolve Problem 53 in The Open Problems Project [15] by proving that
finding a cycle cover of minimum turn cost is NP-hard, even in the restricted
case of grid graphs. We also prove that finding a subset cycle cover of min-
imum turn cost is NP-hard, even in the restricted case of thin grid graphs,
in which no induced 2 × 2 subgraph exists. This differs from the case of full
coverage in thin grid graphs, which is known to be polynomially solvable [6].

– We provide a general IP/LP-based technique for obtaining 2 ∗ ω approxima-
tions for the semi-quadratic (penalty) cycle cover problem if Eq. (1) is satisfied,
where ω is the maximum number of atomic strips per vertex.

– We show how to connect the cycle covers to minimum turn tours to obtain a
6 approximation for full coverage in regular grid graphs, 4ω approximations
for full tours in general grid graphs, 4ω +2 approximations for (subset) tours,
and 4ω + 4 for penalty tours.

To the best of our knowledge, this is the first approximation algorithm for
the subset and penalty variant with turn costs. For general grid graphs our
techniques yields better guarantees than than the techniques of Arkin et al. who
give a factor of 6 ∗ ω for cycle covers and 6 ∗ ω + 2 for tours. In practice, our
approach also yields better solutions for regular grid graphs, see [18].

2 Complexity

Problem 53 in The Open Problems Project asks for the complexity of finding
a minimum-turn (full) cycle cover in a 2-dimensional grid graph. This is by
no means obvious: large parts of a solution can usually be deduced by local
information and matching techniques. In fact, it was shown by Arkin et al. [5,6]
that the full coverage variant in thin grid graphs (which do not contain a 2 × 2
square, so every pixel is a boundary pixel) is solvable in polynomial time. In this
section, we prove that finding a full cycle cover in 2-dimensional grid graphs with
minimum turn cost is NP-hard, resolving Problem 53. We also show that subset
coverage is NP-hard even for thin grid graphs, so the boundary techniques by
Arkin et al. [5,6] do not provide a polynomial-time algorithm.
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Theorem 1. It is NP-hard to find a cycle cover with a minimum number of 90◦

turns (180◦ turns counting as two) in a grid graph.

The proof is based on a reduction from One-in-three 3SAT (1-in-3SAT),
which was shown to be NP-hard by Schaefer [24]: for a Boolean formula in
conjunctive normal form with only three literals per clause, decide whether there
is a truth assignment that makes exactly one literal per clause true (and exactly
two literals false). For example, (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) is not (1-in-3)
satisfiable, whereas (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) is satisfiable.

See full version [17] for details, Fig. 5 for representing the one-clause formula
x1+x2+x3 = 1 with its three possible 1-in-3 solutions, and Fig. 4 for the instance
x1 +x2 +x3 = 1∧x1 +x2 +x4 = 1∧x1 +x2 +x3 = 1. For every variable we have
a gadget consisting of a gray gadget and a zig-zagging, high-cost path of
blue pixels. A cheap solution traverses a blue path once and connect the ends
through the remaining construction of gray and red pixels. Such variable cycles
(highlighted in red) must either go through the upper ( ) or lower ( ) lane
of the variable gadget; the former corresponds to a true, the later to a false
assignment of the corresponding variable. A clause gadget modifies a lane of all
three involved variable gadgets. This involves the gray pixels that are covered
by the green cycles; we can show that they do not interfere with the cycles for
covering the blue and red pixels, and cannot be modified to cover them. Thus,
we only have to cover red and blue pixels, but can pass over gray pixels, too.

To this end, we must connect the ends of the blue paths; as it turns out, the
formula is satisfiable if and only if we can perform this connection in a manner
that also covers one corresponding red pixel with at most two extra turns.

For subset cover we can also show hardness for thin grid graphs. Arkin et al.
[5,6] exploits the structure of these graphs to compute an optimal minimum-turn
cycle cover in polynomial time. If we only have to cover a subset of the vertices,
the problem becomes NP-hard again. The proof is inspired by the construction
of Aggarwal et al. [3] for the angular-metric cycle cover problem and significantly
simpler than the one for full coverage. See full version [17] for proof details.

Theorem 2. The minimum-turn subset cycle cover problem is NP-hard, even
in thin grid graphs.

3 Approximation Algorithms

3.1 Cycle Cover

Now we describe a 2ω-approximation algorithm for the semi-quadratic (penalty)
cycle cover problem with ω atomic strips per point if the edge weights satisfy
Eq. (1). We focus on the full coverage version, as the penalty variant can be
modeled in full coverage (with the same ω and while still satisfying Eq. (1)), by
adding for every point p ∈ P two further points that have a zero cost cycle only
including themselves and a cycle that also includes p with the cost of the penalty.

Our approximation algorithm proceeds as follows. We first determine an
atomic strip cover via linear programming. Computing an optimal atomic strip
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false
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x1 + x2 + x3 = 1

x1 + x2 + x4 = 1 x1 + x2 + x3 = 1

Fig. 4. Representing the 1-in-3SAT -formula x1 +x2 +x3 = 1∧x1 +x2 +x4 = 1∧x1 +
x2 + x3 = 1. (Color figure online)
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Fig. 5. Construction for the one-clause formula x1 + x2 + x3 = 1 and three possible
solutions. Every variable has a cycle traversing a zig-zagging path of blue pixels. A
variable is true if its cycle uses the upper path ( ) through green/red pixels, false
if it takes the lower path ( ). For covering the red pixels, we may use two additional
turns. This results in three classes of optimal cycle covers, shown above. If we use the
blue 4-turn cycle to cover the upper two red pixels, we are forced to cover the lower
red pixel by the x3 variable cycle, setting x3 to false. The variable cycles of x1 and x2

take the cheapest paths, setting them to true or false, respectively. The alternative
to a blue cycle is to cover all three red pixel by the variable cycles, as in the right
solution. (Color figure online)
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1. Get fractional solution 2. Extract Atomic Strip Cover 3. Match atomic strips

0.5

0.5 1.0

1.0

Fig. 6. Example of the approximation algorithm for a simple full cycle cover instance in
a grid graph. First the fractional solution of the integer program (2)–(4) is computed.
Strips and edges with value 0 are omitted, while dashed ones have value 0.5. Then
the dominant (i.e., highest valued) atomic strips of this solution are selected. Finally,
a minimum weight perfect matching on the ends of the atomic strips is computed.
(Recall that atomic strips only have an but no length, so the curves in the corner
indicate simple 90◦ turns.)

cover is NP-hard; we can show that choosing the dominant strips for each pixel
in the fractional solution, i.e., those with the highest value, suffices to obtain
provable good solutions. As a next step, we connect the atomic strips to a cycle
cover, using a minimum-weight perfect matching. See Fig. 6 for an illustration.

We now describe the integer program whose linear programming relaxation
is solved to select the dominant atomic strips. It searches for an optimal atomic
strip cover that yields a perfect matching of minimum weight. To satisfy Eq. (1),
transitive edges (connections implied by multiple explicitly given edges) may
need to be added, especially loop-edges (which are not used in the final solution).
The IP does not explicitly enforce cycles to contain at least two points: all small
cycles consist only of transitive edges that implicitly contain at least one further
atomic strip/point. For the usage of a matching edge e = vw ∈ EO, we use the
Boolean variable xe = xvw. For the usage of an atomic strip o = vw ∈ Op, p ∈ P ,
we use the Boolean variable yo = yvw.

min
∑

e∈EO

cost(e)xe (2)

s.t.
∑

vw∈Op

yvw = 1 p ∈ P (3)

2xvv +
∑

e∈EO(v)
e�=vv

xe = 2xww +
∑

e∈EO(w)
e�=ww

xe = yvw p ∈ P, vw ∈ Op (4)

We minimize the cost of the used edges, with Eq. (3) forcing the selection of one
atomic strip per pixel (atomic strip cover) and Eq. (4) ensuring that exactly the
vertices (endpoints) of the selected atomic strips are matched, with loop edges
counting double due to their two ends.

Theorem 3. Assuming edge weights that satisfy Eq. (1), there is a 2ω-
approximation for semi-quadratic (penalty) cycle cover.
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Proof. Consider the described fractional atomic strip cover and matching of the
integer program, which is a lower bound on the optimal cycle cover. We now
show that we can transform this solution to a matching of the dominant strips
with at most 2ω times the value. First we modify the solution such that exactly
the dominant strips are used. In the current solution, the dominant strips are
already used with at least 1

ω , so multiplying the solution by ω ensures a full
usage of them. Now we can remove all superfluous strip usages by replacing two
fractional matching edges that go through such a strip by a directly connecting
matching edge without increasing the cost. This can create loop matching edges
(assume these to have the same cost as the two edges they replace); these can
easily be removed later. After this, we are left with a matching polytope that is
half-integral (based on the same proof as for Theorem 6.13 in the book of Cook et
al. [13]). Thus, we can assume our matching to be half-integral and double it to
obtain an integral solution with double usages of strips. These double usages can
be removed the same way as before while remaining integral. Whole redundant
cycles may be removed on this way. We are now left with a feasible matching of
the dominant strips that has at most 2ω times the cost of the original fractional
solution, giving us the desired upper bound. More details on this proof can be
found in the full version [17].

3.2 Tours

A given cycle cover approximation can be turned into a tour approximation at
the expense of an additional constant factor. Because every cycle involves at
least two points and a full rotation, we can use classic tree techniques known
for TSP variants to connect the cycles and charge the necessary turns to the
involved cycles. We sketch the basic ideas; see full version [17] for details.

Theorem 4. Assuming validity of Eq. 1 we can establish the following approxi-
mation factors for tours.

(i) Full tours in regular grid graphs: 6-approximation.
(ii) Full tours in generalized grid graphs: 4ω-approximation.
(iii) Subset tours in (generalized) grid graphs: (4ω + 2)-approximation.
(iv) Geometric full tours: (4ω + 2)-approximation.
(v) Penalty tours (in grid graphs and geometric): (4ω + 4)-approximation.

These results also hold for objective functions that are linear combinations of
length and turn costs.

Proof. It is crucial that (1) a cycle always has a turn cost of at least 360◦, (2)
two intersecting cycles can be merged with a cost of at most 360◦, and (3) two
cycles intersecting on a 180◦ turn can be merged without additional cost.

(i) For full tours in grid graphs, greedily connecting cycles provides a tour with
at most 1.5 times the turn cost of the cycle cover, while a local optimization
can be exploited to limit the length to 4 times the optimum, as shown by
Arkin et al. [5].
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(ii) In a cycle cover for (generalized) grid graphs, there are always at least two
cycles with a distance of one, while every cycle has a length of at least 2;
otherwise the cycle cover is already a tour. This allows iteratively merging
cycles at cost at most as much as a cheapest cycle; the total number of
merges is less than the number of cycles.

(iii) and (iv) For subset coverage in grid graphs or full coverage in the geomet-
ric case, we need to compute the cheapest paths between any two cycles,
ignoring the orientations at the ends. First connect all intersecting cycles,
charging the cost on the vanishing cycles. The minimum spanning tree on
these edges is a lower bound on the cost of the tour. Doubling the MST con-
nects all cycles with the cost of twice the MST, the cost of the cycle cover,
and the turn costs at the end of the MST edges, which can be charged to
the cycles.

(v) Penalty tours can be approximated in a similar manner. Instead of an MST,
we use a Price-Collecting Steiner Tree, which is a lower bound on an optimal
penalty tour. We use a 2-approximation for the PCST [21], as it is NP-hard.
We achieve a cost of twice the 2-approximation of the PCST, the cost of
the penalty cycle cover, and the cost of its cycles again for charging the
connection costs. The penalties of the points not in the cycle cover are
already paid by the penalty cycle cover.

	


4 Conclusions

We have presented a number of theoretical results on finding optimal tours and
cycle covers with turn costs. In addition to resolving the long-standing open prob-
lem of complexity, we provided a generic framework to solve geometric (penalty)
cycle cover and tours problems with turn costs.

As described in [10], the underlying problem is also of practical relevance.
As it turns out, our approach does not only yield polynomial-time approxima-
tion algorithms; enhanced by an array of algorithm engineering techniques, they
can be employed for actually computing optimal and near-optimal solutions for
instances of considerable size in grid graphs. Further details on these algorithm
engineering aspects will be provided in our forthcoming paper [18].
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Abstract. Let Σ and Π be disjoint alphabets of respective size σ and π.
Two strings over Σ ∪ Π of equal length are said to parameterized match
(p-match) if there is a bijection f : Σ ∪ Π → Σ ∪ Π such that (1) f is
identity on Σ and (2) f maps the characters of one string to those of
the other string so that the two strings become identical. We consider
the p-matching problem on a (reversed) trie T and a string pattern P
such that every path that p-matches P has to be reported. Let N be
the size of the given trie T . In this paper, we propose the parameterized
position heap for T that occupies O(N) space and supports p-matching
queries in O(m log(σ + π) + mπ + pocc)) time, where m is the length of
a query pattern P and pocc is the number of paths in T to report. We
also present an algorithm which constructs the parameterized position
heap for a given trie T in O(N(σ + π)) time and working space.

1 Introduction

The parameterized matching problem (p-matching problem), first introduced by
Baker [2], is a variant of pattern matching which looks for substrings of a text
that has “the same structure” as a given pattern. More formally, we consider
a parameterized string (p-string) that can contain static characters from an
alphabet Σ and parameter characters from another alphabet Π. Two equal
length p-strings x and y over the alphabet Σ ∪ Π are said to parameterized
match (p-match) if x can be transformed to y (and vice versa) by applying
a bijection which renames the parameter characters. The p-matching problem
is, given a text p-string w and pattern p-string p, to report the occurrences
of substrings of w that p-match p. Studying the p-matching problem is well
motivated by plagiarism detection, software maintenance, and RNA structural
pattern matching [2,15]. We refer readers to [11] for detailed descriptions about
these motivations.

Baker [2] proposed an indexing data structure for the p-matching problem,
called the parameterized suffix tree (p-suffix tree). The p-suffix tree supports
p-matching queries in O(m log(σ + π) + pocc) time, where m is the length of
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pattern p, σ and π are respectively the sizes of the alphabets Σ and Π, and pocc
is the number of occurrences to report [1]. She also showed an algorithm that
builds the p-suffix tree for a given text S of length n in O(n(π+log σ)) time with
O(n) space [2]. Later, Kosaraju [8] proposed an algorithm to build the p-suffix
tree in O(n log(σ + π)) time1 with O(n) space. Their algorithms are both based
on McCreight’s suffix tree construction algorithm [10], and hence are offline
(namely, the whole text has to be known beforehand). Shibuya [15] gave an left-
to-right online algorithm that builds the p-suffix tree in O(n log(σ + π)) time
with O(n) space. His algorithm is based on Ukkonen’s suffix tree construction
algorithm [16] which scans the input text from left to right.

Diptarama et al. [5] proposed a new indexing structure called the parame-
terized position heap (p-position heap). They showed how to construct the p-
position heap of a given p-string S of length n in O(n log(σ+π)) time with O(n)
space in a left-to-right online manner. Their algorithm is based on Kucherov’s
position heap construction algorithm [9] which scans the input text from left to
right. Recently, Fujisato et al. [7] presented another variant of the p-position heap
that can be constructed in a right-to-left online manner, in O(n log(σ +π)) time
with O(n) space. This algorithm is based on Ehrenfeucht et al.’s algorithm [6]
which scans the input text from right to left. Both versions of p-positions heaps
support p-matching queries in O(m log(σ + π) + mπ + pocc) time.

This paper deals with indexing on multiple texts; in particular, we consider
the case where those multiple texts are represented by a trie. It should be noted
that our trie is a so-called common suffix trie (CS trie) where the common
suffixes of the texts are merged and the edges are reversed (namely, each text is
represented by a path from a leaf to the root). See also Fig. 1 for an example of a
CS trie. There are two merits in representing multiple texts by a CS trie: Let N
be the size of the CS trie of the multiple strings of total length Z. (1) N can be
as small as Θ(

√
Z) when the multiple texts share a lot of common long suffixes.

(2) The number of distinct suffixes of the texts is equal to the number of the
nodes in the CS trie, namely N . On the other hand, this is not the case with the
ordinal common prefix trie (CP trie), namely, the number of distinct suffixes in
the CP trie can be super-linear in the number of its nodes. Since most, if not
all, indexing structures require space that is dependent of the number of distinct
suffixes, the CS trie is a more space economical representation for indexing than
its CP trie counterpart.

Let N be the size of a given CS trie. Due to Property (1) above, it is significant
to construct an indexing structure directly from the CS trie. Note that if we
expand all texts from the CS trie, then the total string length can blow up to
O(N2). Breslauer [3] introduced the suffix tree for a CS trie which occupies O(N)
space, and proposed an algorithm which constructs it in O(Nσ) time and working
space. Using the suffix tree of a CS trie, one can report all paths of the CS trie

1 The original claimed time bounds in Kosaraju [8] and in Shibuya [15] are O(n(log σ+
log π)). However, assuming by symmetry that σ ≥ π, we have log σ + log π =
log(σπ) ≤ log σ2 = 2 log σ = O(log σ) and log(σ + π) ≤ log(2σ) = log 2 + log σ =
O(log σ).
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that exactly matches with a given pattern of length m in O(m log σ + occ) time,
where occ is the number of such paths to report. Shibuya [14] gave an optimal
O(N)-time construction for the suffix tree for a CS trie in the case of integer
alphabets of size NO(1). Nakashima et al. [12] proposed the position heap for
a CS trie, which can be built in O(Nσ) time and working space and supports
exact pattern matching in O(m log σ + occ) time. Later, an optimal O(N)-time
construction algorithm for the position heap for a CS trie in the case of integer
alphabets of size NO(1) was presented [13].

In this paper, we propose the parameterized position heap for a CS trie T ,
denoted by PPH(T ), which is the first indexing structure for p-matching on a
trie. We show that PPH(T ) occupies O(N) space, supports p-matching queries
in O(m log(σ + π) + mπ + pocc) time, and can be constructed in O(N(σ +
π)) time and working space. Hence, we achieve optimal pattern matching and
construction in the case of constant-sized alphabets. The proposed construction
algorithm is fairly simple, yet uses a non-trivial idea that converts a given CS
trie into a smaller trie based on the p-matching equivalence. The simplicity
of our construction algorithm comes from the fact that each string stored in
(p-)position heaps is represented by an explicit node, while it is not the case
with (p-)suffix trees. This nice property makes it easier and natural to adopt the
approaches by Brealauer [3] and by Fujisato et al. [7] that use reversed suffix links
in order to process the texts from left to right. We also remark that all existing
p-suffix tree construction algorithms [2,8,15] in the case of a single text require
somewhat involved data structures due to non-monotonicity of parameterized
suffix links [1,2], but our p-position heap does not need such a data structure
even in the case of CS tries (this will also be discussed in the concluding section).

2 Preliminaries

Let Σ and Π be disjoint ordered sets called a static alphabet and a parameterized
alphabet, respectively. Let σ = |Σ| and π = |Π|. An element of Σ is called an s-
character, and that of Π is called a p-character. In the sequel, both an s-character
and a p-character are sometimes simply called a character. An element of Σ∗ is
called a string, and an element of (Σ ∪ Π)∗ is called a p-string. The length of a
(p-)string w is the number of characters contained in w. The empty string ε is a
string of length 0, namely, |ε| = 0. For a (p-)string w = xyz, x, y and z are called
a prefix, substring, and suffix of w, respectively. The set of prefixes of a (p-)string
w is denoted by Prefix(w). The i-th character of a (p-)string w is denoted by
w[i] for 1 ≤ i ≤ |w|, and the substring of a (p-)string w that begins at position i
and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For convenience,
let w[i..j] = ε if j < i. Also, let w[i..] = w[i..|w|] for any 1 ≤ i ≤ |w|. For any
(p-)string w, let wR denote the reversed string of w, i.e., wR = w[|w|] · · · w[1].

Two p-strings x and y of length k each are said to parameterized match (p-
match) iff there is a bijection f on Σ ∪ Π such that f(a) = a for any a ∈ Σ and
f(x[i]) = y[i] for all 1 ≤ i ≤ k. For instance, let Σ = {a, b} and Π = {x, y, z},
and consider two p-strings x = axbzzayx and y = azbyyaxz. These two strings
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Fig. 1. The CS trie for a set {xaxxx, yaxx, zaxx, zyx, yyy, yayy, xayy, xzy, yayxz, xaxz}
of 10 p-strings over Σ ∪ Π, where Σ = {a} and Π = {x, y, z}.

p-match, since x can be transformed to y by applying a renaming bijection
f such that f(a) = a, f(b) = b, f(x) = z, f(y) = x, and f(z) = y to the
characters in x. We write x ≈ y iff two p-strings x and y p-match. It is clear
that ≈ is an equivalence relation on p-strings over Σ ∪ Π. We denote by [x]
the equivalence class for p-string x w.r.t. ≈. The representative of [x] is the
lexicographically smallest p-string in [x], which is denoted by spe(x). It is clear
that two p-strings x and y p-match iff spe(x) = spe(y). In the running example,
spe(axbzzayx) = spe(azbyyaxz) = axbyyazx.

A common suffix trie (CS trie) T is a reversed trie such that (1) each edge is
directed towards the root, (2) each edge is labeled with a character from Σ ∪Π,
and (3) the labels of the in-coming edges to each node are mutually distinct. Each
node of the trie represents the (p-)string obtained by concatenating the labels
on the path from the node to the root. An example of a CS trie is illustrated in
Fig. 1. CST(W ) denotes the CS trie which represents a set W of (p-)strings.

3 Parameterized Position Heap of a Common Suffix Trie

In this section, we introduce the parameterized pattern matching (p-matching)
problem on a common suffix trie that represents a set of p-strings, and propose
an indexing data structure called a parameterized position heap of a trie.

3.1 p-Matching Problem on a Common Suffix Trie

We introduce the p-matching problem on a common suffix trie T and a pattern
p. We will say that a node v in a common suffix trie p-matches with a pattern p-
string p if the prefix of length |p| of the p-string represented by v and p p-match.
In this problem, we preprocess a given common suffix trie T so that later, given
a query pattern p, we can quickly answer every node v of T whose prefix of
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Fig. 2. Illustration of pCST(T ) for T (where T is the common suffix trie illustrated in
Fig. 1). Each node of pCST(T ) corresponds to nodes of T which are labeled by elements
in the tuple above the node of pCST(T ). For example, the node of pCST(T ) labeled 6
corresponds to the nodes of T labeled 11 and 14.

length |p| and p p-match. For the common suffix trie in Fig. 1, when given query
pattern P = azy, then we answer the nodes 17 and 23.

Let WT be the set of all p-strings represented by nodes of T . By the definition
of the common suffix trie, there may exist two or more nodes which represent dif-
ferent p-strings, but p-match. We consider the common suffix trie which merges
such nodes into the same node by using the representative of the parameterized
equivalent class of these strings. We define the set pcs(T ) of p-strings as follows:
pcs(T ) = {spe(wR)R | w ∈ WT }. Then, the reversed trie which we want to con-
sider is CST(pcs(T )). We refer to this reversed trie as the parameterized-common
suffix trie of T , and denote it by pCST(T ) (i.e., pCST(T ) = CST(pcs(T ))). Each
node of pCST(T ) stores pointers to its corresponding node(s) of T . Then, by
solving the p-matching problem on pCST(T ), we can immediately answering p-
matching queries on T . Figure 2 shows an example of pCST(T ). In the rest of
this paper, N denotes the number of nodes of T and Np denotes the number of
nodes of pCST(T ). Note that N ≥ Np always holds.

3.2 Parameterized Position Heap of a Common Suffix Trie

Let S = 〈s1, . . . , sk〉 be a sequence of strings such that for any 1 < i ≤ k,
si 
∈ Prefix(sj) for any 1 ≤ j < i.

Definition 1 (Sequence hash trees [4]). The sequence hash tree of a
sequence S = 〈s1, . . . , sk〉 of strings, denoted SHT(S) = SHT(S)k, is a trie
structure that is recursively defined as follows: Let SHT(S)i = (Vi, Ei). Then

SHT(S)i =

{
({ε}, ∅) if i = 1,

(Vi−1 ∪ {ui}, Ei−1 ∪ {(vi, a, ui)}) if 2 ≤ i ≤ k,

where vi is the longest prefix of si which satisfies vi ∈ Vi−1, a = si[|vi| + 1], and
ui is the shortest prefix of si which satisfies ui /∈ Vi−1.

Note that since we have assumed that each si ∈ S is not a prefix of sj for
any 1 ≤ j < i, the new node ui and new edge (vi, a, ui) always exist for each
1 ≤ i ≤ k. Clearly SHT(S) contains k nodes (including the root).
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Let WT = 〈spe(w1), . . . , spe(wNp
)〉 be a sequence of p-strings such that

{w1, . . . , wNp
} = pcs(T ) and |wi| ≤ |wi+1| for any 1 ≤ i ≤ Np − 1.

WT (i) denote the sequence 〈spe(w1), . . . , spe(wi)〉 for any 1 ≤ i ≤ Np, and
pCST(T )i denote the common suffix trie of {spe(w1), . . . , spe(wi)}, namely,
pCST(T )i = CST({spe(w1), . . . , spe(wi)}). The node of pCST(T ) which repre-
sents wi is denoted by ci. Then, our indexing data structure is defined as follows.

Definition 2 (Parameterized positions heaps of a CST). The parame-
terized position heap (p-position heap) for a common suffix trie T , denoted by
PPH(T ), is the sequence hash tree of WT i.e., PPH(T ) = SHT(WT ).

Let PPH(T )i = SHT(WT (i)) for any 1 ≤ i ≤ Np (i.e., PPH(T )Np =
PPH(T )). The following lemma shows the exact size of PPH(T ).

Lemma 1. For any common suffix trie T such that the size of pCST(T ) is Np,
PPH(T ) consists of exactly Np nodes. Also, there is a one-to-one correspondence
between the nodes of pCST(T ) and the nodes of PPH(T ).

Proof. Initially, PPH(T )1 consists only of the root that represents ε since
w1 = ε. Let i be an integer in [1..Np]. Since wi does not p-match with wj

and |spe(wi)| ≥ |spe(wj)| for any 1 ≤ j < i, there is a prefix of spe(wi) that
is not represented by any node of PPH(T )i−1. Therefore, when we construct
PPH(T )i from PPH(T )i−1, then exactly one node is inserted, which corresponds
to the node representing wi. �

Let hi be the node of PPH(T ) which corresponds to wi. For any p-string
p ∈ (Σ ∪ Π)+, we say that p is represented by PPH(T ) iff PPH(T ) has a path
which starts from the root and spells out p.

Ehrenfeucht et al. [6] introduced maximal reach pointers, which are used for
efficient pattern matching queries on position heaps. Diptarama et al. [5] and
Fujisato et al. [7] also introduced maximal reach pointers for their p-position
heaps, and showed how efficient pattern matching queries can be done. We can
naturally extend the notion of maximal reach pointers to our p-position heaps:

Definition 3 (Maximal reach pointers). For each 1 ≤ i ≤ Np, the maximal
reach pointer of the node hi points to the deepest node v of PPH(T ) such that v
represents a prefix of spe(wi).

The node which is pointed by the maximal reach pointer of node hi is denoted
by mrp(i). The augmented PPH(T ) is PPH(T ) with the maximal reach pointers
of all nodes. For simplicity, if mrp(i) is equal to hi, then we omit this pointer.
See Fig. 3 for an example of augmented PPH(T ).

3.3 p-Matching with Augmented Parameterized Position Heap

It is straightforward that by applying Diptarama et al.’s pattern matching algo-
rithm to our PPH(T ) augmented with maximal reach pointers, parameterized
pattern matching can be done in O(m log(σ +π)+mπ +pocc′) time where pocc′
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Fig. 3. To the left is the list of spe(wi) for p-strings represented by pCST(T ) of Fig. 2,
where Σ = {a} and Π = {x, y, z}. To the right is an illustration for augmented PPH(T )
where the maximal reach pointers are indicated by the double-lined arrows. The under-
lined prefix of each spe(wi) in the left list denotes the longest prefix of spe(wi) that was
represented in PPH(T ) and hence, the maximal reach pointer of the node with label i
points to the node which represents this underlined prefix of spe(wi).

is the number of nodes in pCST(T ) that p-match with the pattern. Since each
node in pCST(T ) stores the pointers to the corresponding nodes in T , then we
can answer all the nodes that p-match with the pattern.

Diptarama et al.’s algorithm stands on Lemmas 13 and 14 of [5]. These
lemmas can be extended to our PPH(T ) as follows:

Lemma 2. Suppose spe(p) is represented by a node u of augmented PPH(T ).
Then p p-matches with the prefix of length |p| of wi iff mrp(i) is u or a descendant
of u.

Lemma 3. Suppose that spe(p) is not represented in augmented PPH(T ). There
is a factorization q1, . . . , qk of p s.t. qj is the longest prefix of spe(p[|q1 · · · qj−1|+
1..|p|]) that is represented in augmented PPH(T ). If p p-matches with the prefix
of length |p| of wi, then mrp(i+ |q1 · · · qj−1|) is the node which represents spe(qj)
for any 1 ≤ j < k and mrp(i + |q1 · · · qk−1|) is the node which represents spe(qk)
or a descendant of mrp(i + |q1 · · · qk−1|).

Theorem 1. Using our augmented PPH(T ), one can perform parameterized
pattern matching queries in O(m log(σ + π) + mπ + pocc) time.

4 Construction of Parameterized Position Heaps

In this section, we show how to construct the augmented PPH(T ) of a given
common suffix trie T of size N . For convenience, we will sometimes identify each
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node v of PPH(T ) with the string which is represented by v. In Sect. 4.1, we show
how to compute pCST(T ) from a given common suffix trie T . In Sect. 4.2, we
propose how to construct PPH(T ) from pCST(T ).

4.1 Computing pCST(T ) from T

Here, we show how to construct pCST(T ) of a given T of size N .

Lemma 4. For any common suffix trie T of size N , pCST(T ) can be computed
in O(Nπ) time and space.

Proof. We process every node of T in a breadth first manner. Let xj be the p-
string which is represented by j-the node of T . Suppose that we have processed
the first k nodes and have computed pCST(T )i (i ≤ k). We assume that the
j-th node of T , for any 1 ≤ j ≤ k, holds the resulting substitutions from xj

to spe((xj)R)R (i.e., xj [α] is mapped to spe((xj)R)R[α]), and also a pointer
to the corresponding node of pCST(T )i (i.e., pointer to the node representing
spe((xj)R)R). We consider processing the (k + 1)-th node of T . Since xk+1 is
encoded from right to left, we can determine a character spe((xk+1)R)R[1] in
O(π) time. Then, we can insert a new node that represents spe((xk+1)R)R as a
parent of the node which represents spe((xk+1[2..|xk+1|])R)R if there does not
exist such a node in pCST(T )i. Therefore, we can compute pCST(T ) in O(Nπ)
time and space. �

4.2 Computing PPH(T ) from pCST(T )

For efficient construction of our PPH(T ), we use reversed suffix links defined as
follows.

Definition 4 (Reversed suffix links). For any node v of PPH(T ) and a
character a ∈ Σ ∪ Π, let

rsl(a, v) =

{
spe(av) if spe(av) is represented by PPH(T ),
undefined otherwise.

See Fig. 4 for an example of PPH(T ) with reversed suffix links. In our algo-
rithm, firstly, we insert a new node hi of PPH(T )i to PPH(T )i−1. After that, we
add new suffix links which point to hi. When we have computed PPH(T ), then
we compute all maximal reach pointers of PPH(T ).

Inserting a New Node. Assume that cj (i.e., j-th node of pCST(T )) is the
child of ci for any 2 ≤ i ≤ Np. Consider to insert hi (i.e., the node of PPH(T )
which corresponds to ci) to PPH(T )i−1. We show how to find the parent of hi

by starting from hj . There are 3 cases based on wi[1] as follows:

– wi[1] ∈ Π and wi[1] appears in wj [1..|hj |] (Lemma 5),
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Fig. 4. PPH(T ) with all reversed suffix links is illustrated in this figure. Each dashed
arrow shows a reversed suffix link. The label of a suffix link is drawn by a bold character.

– wi[1] ∈ Π and wi[1] does not appear in wj [1..|hj |] (Lemma 6),
– wi[1] ∈ Σ (Lemma 7).

Lemma 5. Assume that wi[1] ∈ Π appears in wj [1..|hj |], and a is the character
in Π such that a = spe(wj [1..|hj |])[α] and wi[1] = wj [α] for some 1 ≤ α ≤
|wj [1..|hj |]|. Let hk be the node of PPH(T )i−1 which is the lowest ancestor of
hj that has a reversed suffix link labeled with a. Then, hi is a child of the node
representing rsl(a, hk).

Proof. Let 	 be the length of rsl(a, hk). To prove this lemma, we show that

1. rsl(a, hk) = spe(wi)[1..	], and
2. There does not exist a node which represents spe(wi)[1..	 + 1] in PPH(T )i−1.

By the definition of reversed suffix links and spe, we have

rsl(a, hk) = spe(a · spe(wj [1..	 − 1])) = spe(wi[1] · wj [1..	 − 1])
= spe(wi[1] · wi[2..	]) = spe(wi[1..	]).

Thus, we have proved the first statement.
By a similar argument, we also have spe(a · spe(wj [1..	])) = spe(wi[1..	 + 1]).

Thus, if spe(wi)[1..	 + 1] is represented in PPH(T )i−1, the node representing
spe(wj [1..	]) must have a reversed suffix link labeled with a. This contradicts
the fact that hk is the lowest ancestor of hj which has a reversed suffix link
labeled with a. �

Lemma 6. Assume that wi[1] ∈ Π does not appear in wj [1..|hj |]. Let hk be the
node of PPH(T )i−1 which is the lowest ancestor of hj that has a reversed suffix
link labeled with a ∈ Π \ {hj [α] | 1 ≤ α ≤ |hj |}. Then, hi is a child of the node
representing rsl(a, hk).
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Proof. Let 	 be the length of rsl(a, hk). We show similar statements to the proof
of the previous lemma hold, but with different assumptions on wi[1] and a. By
the definition of reversed suffix links and spe, we have

rsl(a, hk) = spe(a · spe(wj [1..	 − 1])) = spe(a · wj [1..	 − 1]) = spe(wi[1..	]).

Thus, we have proved the first statement.
By a similar argument, we also have spe(a · spe(wj [1..	])) = spe(wi[1..	 + 1]).

This implies that the second statement holds (similar to the proof of the previous
lemma). �

Lemma 7. Assume that wi[1] ∈ Σ. Let hk be the node in PPH(T )i−1 which is
the lowest ancestor of hj that has a reversed suffix link labeled with wi[1]. Then,
hi is a child of the node representing rsl(wi[1], hk).

Proof. Since wi[1] ∈ Σ, we can show the lemma in a similar way to the above
proofs. �

Inserting New Reversed Suffix Links. In our algorithm, we will add
reversed suffix links which point to hi after inserting a new node hi. The follow-
ing lemma shows the number of nodes which point to hi by reversed suffix links
is at most one.

Lemma 8. For any node v of PPH(T ), the number of nodes which point to v
by reversed suffix links is at most one.

Proof. Let v1, v2 be nodes of PPH(T ). Assume that rsl(a1, v1) = rsl(a2, v2) for
some a1, a2 ∈ Σ ∪ Π and v1 
= v2 hold. By the definition of reversed suffix links,
spe(a1 ·v1) = spe(a2 ·v2). Namely, a1 ·v1 ≈ a2 ·v2 holds. This implies that v1 ≈ v2,
i.e., spe(v1) = spe(v2). Since v1 and v2 are node of PPH(T ), spe(v1) = v1 and
spe(v2) = v2 hold. This contradicts the fact that v1 
= v2. �

By the above lemma and arguments of insertion, the node which points to the
new node hi by reversed suffix links is only a child of hk which is an ancestor of
hj .

Construction Algorithm. Finally, we explain our algorithm of constructing
our position heap. From the above lemmas, we can use similar techniques to
Nakashima et al. [12] which construct the position heap of a trie of normal strings.
One main difference is the computation of the label of inserted edges/reversed
suffix links. In so doing, each node hα holds the resulting substitutions from
wα[1..|hα|] to spe(wα[1..|hα|]). By using these substitutions, we can compute
the corresponding label in O(π) time. Thus, we can insert new nodes and new
suffix links in O(π) time for each node of pCST(T ). In fact, since we need to use
(σ + π)-copies of the position heap for nearest marked ancestor queries on each
character, we use O(σ + π) time to update the data structures needed for each
node of pCST(T ). Therefore, we have the following lemma.
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Lemma 9. We can compute PPH(T ) from pCST(T ) of size Np in O(Np(σ+π))
time and space.

Therefore, we can obtain the following result by Lemmas 4 and 9.

Theorem 2. We can compute PPH(T ) of a given common suffix trie T of size
N in O(N(σ + π)) time and space.

Since we can also compute all maximal reach pointers of PPH(T ) efficiently
in a similar way to [12] (this algorithm is also similar to suffix link construction),
we also have the following lemma.

Lemma 10. We can compute all the maximal reach pointers for PPH(T ) in
O(Np(σ + π)) time and space.

Hence, we can get the following result.

Theorem 3. We can compute the augmented PPH(T ) of a given common suffix
trie T of size N in O(N(σ + π)) time and space.

5 Conclusions and Open Problems

This paper proposed the p-position heap for a CS trie T , denoted PPH(T ), which
is the first indexing structure for the p-matching problem on a trie. The key idea
is to transform the input CS trie T into a parameterized CS trie pCST(T ) where
p-matching suffixes are merged. We showed that the p-matching problem on the
CS trie T can be reduced to the p-matching problem on the parameterized CS
trie pCST(T ). We proposed an algorithm which constructs PPH(T ) in O(N(σ +
π)) time and working space, where N is the size of the CS trie T . We also showed
that using PPH(P) one can solve the p-matching problem on the CS trie T in
O(m log(σ +π)+mπ +pocc) time, where m is the length of a query pattern and
pocc is the number of occurrences to report.

Examples of open problems regarding this work are the following:

– Would it be possible to shave the mπ term in the pattern matching time
using p-position heaps? This mπ term is introduced when the depth of the
corresponding path of PPH(T ) is shorter the pattern length m and thus the
pattern needs to be partitioned into O(π) blocks in the current pattern match-
ing algorithm [5].

– Can we efficiently build the p-suffix tree for a CS trie? It is noted by Baker [1,
2] that the destination of a parameterized suffix link (p-suffix link) of the p-
suffix tree can be an implicit node that lies on an edge, and hence there is
no monotonicity in the chain of p-suffix links. If we follow the approach by
Breslauer [3] which is based on Weiner’s algorithm [17], then we need to use
the reversed p-suffix link. It is, however, unclear whether one can adopt this
approach since the origin of a reversed p-suffix link may be an implicit node.
Recall that in each step of construction we need to find the nearest (implicit)
ancestor that has a reversed p-suffix link labeled with a given character. Since
there can be Θ(N2) implicit nodes, we cannot afford to explicitly maintain
information about the reversed p-suffix links for all implicit nodes.
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N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 360–371. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34109-0 38

13. Nakashima, Y., Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Constructing
LZ78 tries and position heaps in linear time for large alphabets. Inf. Process. Lett.
115(9), 655–659 (2015)

14. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE
Trans. Fundam. Electron. E86–A(5), 1061–1066 (2003)

15. Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica 39(1), 1–19 (2004)

16. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

17. Weiner, P.: Linear pattern-matching algorithms. In: Proceedings of 14th IEEE
Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973)

https://doi.org/10.1007/978-3-642-34109-0_38


Parameterized Algorithms
for Generalizations of Directed

Feedback Vertex Set
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Abstract. The Directed Feedback Vertex Set (DFVS) problem
takes as input a directed graph G and seeks a smallest vertex set S
that hits all cycles in G. This is one of Karp’s 21 NP-complete prob-
lems. Resolving the parameterized complexity status of DFVS was a
long-standing open problem until Chen et al. in 2008 showed its fixed-
parameter tractability via a 4kk!nO(1)-time algorithm, where k = |S|.

Here we show fixed-parameter tractability of two generalizations of
DFVS:

– Find a smallest vertex set S such that every strong component of
G − S has size at most s: we give an algorithm solving this problem
in time 4k(ks + k + s)! · nO(1).

– Find a smallest vertex set S such that every non-trivial strong com-
ponent of G − S is 1-out-regular: we give an algorithm solving this

problem in time 2O(k3) · nO(1).

We also solve the corresponding arc versions of these problems by fixed-
parameter algorithms.

1 Introduction

The Directed Feedback Vertex Set (DFVS) problem is that of finding a
smallest vertex set S in a given digraph G such that G − S is a directed acyclic
graph. This problem is among the most classical problems in algorithmic graph
theory. It is one of the 21 NP-complete problems on Karp’s famous list [12].

Consequently, the DFVS problem has long attracted researchers in approxi-
mation algorithms. The current best known approximation factor achievable in
polynomial time for n-vertex graphs with optimal fractional solution value1 τ∗

is O(min{log τ∗ log log τ∗, log n log log n}) due to Seymour [17], Even et al. [8]
and Even et al. [7]. On the negative side, Karp’s NP-hardness reduction shows

1 In unweighted digraphs, τ∗ ≤ n; in weighted digraphs we assume all weights are at
least 1.
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the problem to be APX-hard, which rules out the existence of a polynomial-
time approximation scheme (PTAS) assuming P �= NP. Assuming the Unique
Games Conjecture, the DFVS problem does not admit a polynomial-time O(1)-
approximation [10,11,18].

The DFVS problem has also received a significant amount of attention from
the perspective of parameterized complexity. The main parameter of interest
there is the optimal solution size k = |S|. The problem can easily be solved
in time nO(k) by enumerating all k-sized vertex subsets S ⊆ V (G) and then
seeking a topological order of G−S. The interesting question is thus whether the
DFVS problem is fixed-parameter tractable with respect to k, which is to devise
an algorithm with running time f(k) · nO(1) for some computable function f
depending only on k. It was a long-standing open problem whether DFVS admits
such an algorithm. The question was finally resolved by Chen et al. who gave a
4kk!k4 · O(nm)-time algorithm for graphs with n vertices and m arcs. Recently,
an algorithm for DFVS with run time 4kk!k5 ·O(n+m) was given by Lokshtanov
et al. [14]. It is well-known that the arc deletion variant is parameter-equivalent
to the vertex deletion variant and hence Directed Feedback Arc Set (DFAS)
can also be solved in time 4kk!k5 · O(n + m).

Once the breakthrough result for DFVS was obtained, the natural ques-
tion arose how much further one can push the boundary of (fixed-parameter)
tractability. On the one hand, Chitnis et al. [4] showed that the generalization
of DFVS where one only wishes to hit cycles going through a specified subset of
nodes of a given digraph is still fixed-parameter tractable when parameterized
by solution size. On the other hand, Lokshtanov et al. [15] show that finding a
smallest set of vertices of hitting only the odd directed cycles of a given digraph
is W[1]-hard, and hence not fixed-parameter tractable unless FPT = W[1].

Our Contributions. For another generalization the parameterized complexity
is still open: In the Eulerian Strong Component Arc (Vertex) Deletion
problem, one is given a directed multigraph G, and asks for a set S of at most k
vertices such that every strong component of G − S is Eulerian, that is, every
vertex has the same in-degree and out-degree within its strong component. The
arc version of this problem was suggested by Cechlárová and Schlotter [2] in the
context of housing markets. Marx [16] explicitly posed determining the parame-
terized complexity of Eulerian Strong Component Vertex Deletion as an
open problem. Notice that these problems generalize the DFAS/DFVS problems,
where each strong component of G − S has size one and thus is Eulerian.

Theorem 1. Eulerian Strong Component Vertex Deletion is W[1]-
hard parameterized by solution size k, even for (k + 1)-strong digraphs.

Alas, we are unable to determine the parameterized complexity of Eulerian
Strong Component Arc Deletion, which appears to be more challenging.
Hence, we consider two natural generalizations of DFAS which may help to gain
better insight into the parameterized complexity of that problem.

First, we consider the problem of deleting a set of k arcs or vertices from a
given digraph such that every strong component has size at most s. Thus, the
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DFAS/DFVS problems corresponds to the special case when s = 1. Formally,
the problem Bounded Size Strong Component Arc (Vertex) Deletion
takes as input a multi-digraph G and integers k, s, and seeks a set S of at most k
arcs or vertices such that every strong component of G − S has size at most s.

The undirected case of Bounded Size Strong Component Arc (Ver-
tex) Deletion was studied recently. There, one wishes to delete at most k
vertices of an undirected n-vertex graph such that each connected component
of the remaining graph has size at most s. For s being constant, Kumar and
Lokshtanov [13] obtained a kernel of size 2sk that can be computed in nO(s)

time; note that the degree of the run time in the input size n depends on s
and is thus not a fixed-parameter algorithm. For general s, there is a 9sk-sized
kernel computable in time O(n4m) by Xiao [19]. The directed case—which we
consider here—generalizes the undirected case by replacing each edge by arcs in
both directions.

Our main result here is to solve the directed case of the problem by a fixed-
parameter algorithm:

Theorem 2. There is an algorithm that solves Bounded Size Strong Com-
ponent Arc (Vertex) Deletion in time 4k(ks + k + s)! · nO(1) for n-vertex
multi-digraphs G and parameters k, s ∈ N.

In particular, our algorithm exhibits the same asymptotic dependence on k as
does the algorithm by Chen et al. [3] for the DFVS/DFAS problem, which cor-
responds to the special case s = 1.

Another motivation for this problem comes from the k-linkage problem, which
asks for k pairs of terminal vertices in a digraph if they can be connected by k
mutually arc-disjoint paths. The k-linkage problem is NP-complete already for
k = 2 [9]. Recently, Bang-Jensen and Larsen [1] solved the k-linkage problem in
digraphs where strong components have size at most s. Thus, finding induced
subgraphs with strong components of size at most s can be of interest in com-
puting k-linkages.

Our second problem is that of deleting a set of k arcs or vertices from a given
digraph such that each remaining non-trivial strong component is 1-out-regular,
meaning that every vertex has out-degree exactly 1 in its strong component. (A
strong component is non-trivial if it has at least two vertices.) So in particular,
every strong component is Eulerian, as in the Eulerian Strong Component
Arc Deletion problem. Observe that in the DFAS/DFVS problem we delete k
arcs or vertices from a given directed graph such that each remaining strong com-
ponent is 0-out-regular (trivial). Formally, we consider the 1-Out-Regular
Arc (Vertex) Deletion problem in which for a given multi-digraph G and
integer k, we seek a set S of at most k arcs (vertices) such that every non-trivial
component of G − S is 1-out-regular. Note that this problem is equivalent to
deleting a set S of at most k arcs (vertices) such that every non-trivial strong
component of G − S is an induced directed cycle. In contrast to Eulerian
Strong Component Vertex Deletion, the 1-Out-Regular Arc (Ver-
tex) Deletion problem is monotone, in that every superset of a solution is
again a solution: if we delete an additional arc or vertex that breaks a strong
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component that is an induced cycle into several strong components, then each
of these newly created strong components is trivial.

Our result for this problem reads as follows.

Theorem 3. There is an algorithm solving 1-Out-Regular Arc (Vertex)

Deletion in time 2O(k3) · O(n4) for n-vertex digraphs G and parameter k ∈ N.

Notice that for Bounded Size Strong Component Arc (Vertex)
Deletion and 1-Out-Regular Arc (Vertex) Deletion, there are infinitely
many instances for which solutions are arbitrarily smaller than those for DFAS
(DFVS), and for any instance they are never larger. Therefore, our algorithms
strictly generalize the one by Chen et al. [3] for DFAS (DFVS). As a possible
next step towards resolving the parameterized complexity of Eulerian Strong
Component Arc Deletion, one may generalize our algorithm for 1-Out-
Regular Arc Deletion to r-Out-Regular Arc Deletion for arbitrary r.

We give algorithms for vertex deletion variants only, and defer algorithms for
arc deletion variants and proofs marked by � to the full version of this paper.

2 Notions and Notations

We consider finite directed graphs (or digraphs) G with vertex set V (G) and arc
set A(G). We allow multiple arcs and arcs in both directions between the same
pairs of vertices. For each vertex v ∈ V (G), its out-degree in G is the number
d+G(v) of arcs of the form (v, w) for some w ∈ V (G), and its in-degree in G is
the number d−

G(v) of arcs of the form (w, v) for some w ∈ V (G). A vertex v is
balanced if d+G(v) = d−

G(v). A digraph G is balanced if every vertex v ∈ V (G) is
balanced.

For each subset V ′ ⊆ V (G), the subgraph induced by V ′ is the graph G[V ′]
with vertex set V ′ and arc set {(u, v) ∈ A(G) | u, v ∈ V ′}. For any set X of arcs
or vertices of G, let G − X denote the subgraph of G obtained by deleting the
elements of X from G. For subgraphs G′ of G and vertex sets X ⊆ V (G) let
R+

G′(X) denote the set of vertices that are reachable from X in G′, i.e. vertices to
which there is a path from some vertex in X. For an s-t-walk P and a t-q-walk R
we denote by P ◦ R the concatenation of these paths, i.e. the s-q-walk resulting
from first traversing P and then R.

Let G be a digraph. Then G is 1-out-regular if every vertex has out-degree
exactly 1. Further, G is called strong if either G consists of a single vertex (then G
is called trivial), or for any distinct u, v ∈ V (G) there is a directed path from u
to v. A strong component of G is an inclusion-maximal strong induced subgraph
of G. Also, G is t-strong for some t ∈ N if for any X ⊆ V (G) with |X| < t,
G − X is strong. We say that G is weakly connected if its underlying undirected
graph 〈G〉 is connected. Finally, G is Eulerian if there is a closed walk in G using
each arc exactly once.

Definition 4. For disjoint non-empty vertex sets X,Y of a digraph G, a set S
is an X − Y separator if S is disjoint from X ∪ Y and there is no path from X
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to Y in G − S. An X − Y separator S is minimal if no proper subset of S is
an X − Y separator. An X − Y separator S is important if there is no X − Y
separator S′ with |S′| ≤ |S| and R+

G−S(X) ⊂ R+
G−S′(X).

Notice that S can be either a vertex set or an arc set.

Proposition 5 ([5]). Let G be a digraph and let X,Y ⊆ V (G) be disjoint non-
empty vertex sets. For every p ≥ 0 there are at most 4p important X − Y sepa-
rators of size at most p, all of which can be enumerated in time 4p · nO(1).

3 Tools for Generalized DFVS/DFAS Problems

Iterative Compression. We use the standard technique of iterative com-
pression. For this, we label the vertices of the input digraph G arbitrarily by
v1, . . . , vn, and set Gi = G[{v1, . . . , vi}]. We start with G1 and the solution
S1 = {v1}. As long as |Si| < k, we can set Si+1 = Si ∪ {vi+1} and continue. As
soon as |Si| = k, the set Ti+1 = Si ∪ {vi+1} is a solution for Gi+1 of size k + 1.
The compression variant of our problem then takes as input a digraph G and a
solution T of size k +1, and seeks a solution S of size at most k for G or decides
that none exists.

We call an algorithm for the compression variant on (Gi+1, Ti+1) to obtain a
solution Si+1 or find out that Gi+1 does not have a solution of size k, but then
neither has G. By at most n calls to this algorithm we can deduce a solution for
the original instance (Gn = G, k).

Disjoint Solution. Given an input (G,T ) to the compression variant, the next
step is to ask for a solution S for G of size at most k that is disjoint from the
given solution T of size k + 1. This assumption can be made by guessing the
intersection T ′ = S ∩ T , and deleting those vertices from G. Since T has k + 1
elements, this step creates 2k+1 candidates T ′. The disjoint compression variant
of our problem then takes as input a graph G − T ′, a solution T \ T ′ of size
k + 1 − |T ′|, and seeks a solution S′ of size at most k − |T ′| disjoint from T \ T ′.

Covering the Shadow of a Solution. The “shadow” of a solution S is the
set of those vertices that are disconnected from T (in either direction) after the
removal of S. A common idea of several fixed-parameter algorithms on digraphs
is to first ensure that there is a solution whose shadow is empty, as finding such
a shadowless solution can be a significantly easier task. A generic framework by
Chitnis et al. [4] shows that for special types of problems as defined below, one
can invoke the random sampling of important separators technique and obtain
a set Z which is disjoint from a minimum solution and covers its shadow, i.e.
the shadow is contained in Z. What one does with this set, however, is problem-
specific. Typically, given such a set, one can use (some problem-specific variant
of) the “torso operation” to find an equivalent instance that has a shadowless
solution. Therefore, one can focus on the simpler task of finding a shadowless
solution or more precisely, finding any solution under the guarantee that a shad-
owless solution exists.
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Definition 6 (shadow). Let G be a digraph and let T, S ⊆ V (G). A vertex
v ∈ V (G) is in the forward shadow fG,T (S) of S (with respect to T ) if S is
a T − {v}-separator in G, and v is in the reverse shadow rG,T (S) of S (with
respect to T ) if S is a {v} − T -separator in G.

A vertex is in the shadow of S if it is in the forward or reverse shadow of S.

Note that S itself is not in the shadow of S by definition of separators.

Definition 7 (T -connected and F-transversal). Let G be a digraph, let T ⊆
V (G) and let F be a set of subgraphs of G. We say that F is T -connected if
for every F ∈ F , each vertex of F can reach some and is reachable by some
(maybe different) vertex of T by a walk completely contained in F . For a set F
of subgraphs of G, an F-transversal is a set of vertices that intersects the vertex
set of every subgraph in F .

Chitnis et al. [4] show how to deterministically cover the shadow of F-
transversals:

Proposition 8 (deterministic covering of the shadow, [4]). Let T ⊆
V (G). In time 2O(k2) · nO(1) one can construct t ≤ 2O(k2) log2 n sets Z1, . . . , Zt

such that for any set of subgraphs F which is T -connected, if there exists an F-
transversal of size at most k then there is an F-transversal S of size at most k
that is disjoint from Zi and Zi covers the shadow of S, for some i ≤ t.

4 Hardness of Vertex Deletion

In this section we prove Theorem 1, by showing NP-hardness and W[1]-hardness
of the Eulerian Strong Components Vertex Deletion problem. Before
the hardness proof we recall an equivalent characterization of Eulerian digraphs:

Lemma 9 (folklore). Let G be a weakly connected digraph. Then G is Eulerian
if and only if G is balanced.

We can now state the hardness reduction, which relies on the hardness of
the following problem introduced by Cygan et al. [6]. In Directed Balanced
Vertex Deletion, one is given a directed multigraph G and an integer k ∈ N,
and seeks a set S of at most k vertices such that G − S is balanced.

Proposition 10 ([6]). Directed Balanced Vertex Deletion is NP-hard
and W[1]-hard with parameter k.

We will prove the hardness of Eulerian Strong Component Vertex
Deletion for (k + 1)-strong digraphs by adding vertices ensuring this connec-
tivity. The proof of Theorem1 is deferred to the full version of this paper.
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5 Bounded Size Strong Component Arc (Vertex)
Deletion

In this section we show a fixed-parameter algorithm for the vertex deletion vari-
ant of Bounded Size Strong Component Vertex Deletion.

We give an algorithm that, given an n-vertex digraph G and integers k, s,
decides in time 4k(ks + k + s)! · nO(1) if G has a set S of at most k vertices such
that every strong component of G − S has size at most s. Such a set S will be
called a solution of the instance (G, k, s).

The algorithm first executes the general steps “Iterative Compression” and
“Disjoint Solution”; it continues with a reduction to a skew separator problem.

Reduction to Skew Separator Problem. Now the goal is, given a digraph G,
integers k, s ∈ N, and a solution T of (G, k+1, s), to decide if (G, k, s) has a solu-
tion S that is disjoint from T . We solve this problem—which we call Disjoint
Bounded Size Strong Component Vertex Deletion Reduction—by
reducing it to finding a small “skew separator” in one of a bounded number of
reduced instances.

Definition 11. Let G be a digraph, and let X = (X1, . . . , Xt),Y = (Y1, . . . , Yt)
be two ordered collections of t ≥ 1 vertex subsets of G. A skew separator S for
(G,X ,Y) is a vertex subset of V (G)\⋃t

i=1(Xi ∪Yi) such that for any index pair
(i, j) with t ≥ i ≥ j ≥ 1, there is no path from Xi to Yj in the graph G − S.

This definition gives rise to the Skew Separator problem, which for a
digraph G, ordered collections X ,Y of vertex subsets of G, and an integer k ∈ N

asks for a skew separator for (G,X ,Y) of size at most k. Chen et al. [3] showed:

Proposition 12 ([3, Theorem 3.5]). There is an algorithm solving Skew Sep-
arator in time 4kk · O(n3) for n-vertex digraphs G.

The reduction from Disjoint Bounded Size Strong Component Ver-
tex Deletion Reduction to Skew Separator is as follows. As T is a solu-
tion of (G, k + 1, s), we can assume that every strong component of G − T has
size at most s. Similarly, we can assume that every strong component of G[T ]
has size at most s, as otherwise there is no solution S of (G, k, s) that is disjoint
from T . Let {t1, . . . , tk+1} be a labeling of the vertices in T .

Lemma 13 (�). There is an algorithm that, given an n-vertex digraph G, inte-
gers k, s ∈ N, and a solution T of (G, k + 1, s), in time O((ks + s − 1)!) · nO(1)

computes a collection C of at most (ks + s − 1)! vectors C = (C1, . . . , Ck+1) of
length k + 1, where th ∈ Ch ⊆ V (G) for h = 1, . . . , k + 1, such that for some
solution S of (G, k, s) disjoint from T , there is a vector C ∈ C such that the
strong component of G − S containing th is exactly G[Ch] for h = 1, . . . , k + 1.

Armed with Lemma 13, we can hence restrict our search for a solution S
of (G, k, s) disjoint from T to those S that additionally are “compatible” with
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a vector in C. Formally, a solution S of (G, k, s) is compatible with a vector
C = (C1, . . . , Ck+1) ∈ C if the strong component of G−S containing th is exactly
Ch for h = 1, . . . , k + 1. For a given vector C = (C1, . . . , Ck+1), to determine
whether a solution S of (G, k, s) disjoint from T and compatible with C exists, we
create several instances of the Skew Separator problem. To this end, note that
if two sets Ch, Ch′ for distinct th, t′h ∈ T overlap, then actually Ch = Ch′ (and
th, t′h ∈ Ch). So for each set Ch we choose exactly one (arbitrary) representative
T -vertex among all T -vertices in Ch with consistent choice over overlapping
and thus equal Ch’s. Let T ′ ⊆ T be the set of these representative vertices.
Now we generate precisely one instance (G′,Xσ′ ,Yσ′ , k) of Skew Separator
for each permutation σ′ of T ′. The graph G′ is the same in all these instances,
and is obtained from G by replacing each unique set Ch by two vertices t+h , t−h
(where th is the representative of Ch), and connecting all vertices incoming
to Ch in G by an in-arc to t+h and all vertices outgoing from Ch in G by an
arc outgoing from t−h . This way also arcs of the type (t−j , t+h ) are added but
none of type (t−j , t−h ), (t+j , t−h ) or (t+j , t+h ). Notice that this operation is well-
defined and yields a simple digraph G′, even if th′ ∈ Ch for some distinct h, h′.
The sets Xσ′ and Yσ′ of “sources” and “sinks” depend on the permutation σ′

with elements σ′(1), . . . , σ′(|T ′|): let Xσ′ = (t−σ′(1), . . . , t
−
σ′(|T ′|)) and let Yσ′ =

(t+σ′(1), . . . , t
+
σ′(|T ′|)).

Thus, per triple ((G, k, s), T, C) we generate at most |T ′|! ≤ |T |! = (k + 1)!
instances (G′,Xσ′ ,Yσ′ , k), the number of permutations of T ′.

We now establish the correctness of this reduction, in the next two lemmas:

Lemma 14 (�). If an instance (G, k, s) admits a solution S disjoint from T ,
compatible with C and for which (tσ′(1), . . . , tσ′(|T ′|)) is a topological order of the
connected components of G′ − S, then S forms a skew separator of size k for
(G,Xσ′ ,Yσ′).

Lemma 15 (�). Conversely, if S is a skew separator of (G′,Xσ′ ,Yσ′) with size
at most k, then S is a solution of (G, k, s) disjoint from S and compatible with C.

In summary, we have reduced a single instance to the compression problem
Disjoint Bounded Size Strong Component Vertex Deletion Reduc-
tion to at most |C| · |T ′|! instances (G′,Xσ′ ,Yσ′ , k) of the Skew Separator
problem, where each such instance corresponds to a permutation σ′ of T ′. The
reduction just described implies that:

Lemma 16. An input (G, k, s, T ) to the Disjoint Bounded Size Strong
Component Vertex Deletion problem is a “yes”-instance if and only if
at least one of the instances (G′,Xσ′ ,Yσ′ , k) is a “yes”-instance for the Skew
Separator problem.

So we invoke the algorithm of Proposition 12 for each of the instances
(G′,Xσ′ ,Yσ′ , k). If at least one of them is a “yes”-instance then so is (G, k, s, T ),
otherwise (G, k, s, T ) is a “no”-instance. Hence, we conclude that Disjoint
Bounded Size Strong Component Vertex Deletion Reduction is
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fixed-parameter tractable with respect to the joint parameter (k, s), and so is
Bounded Size Strong Component Vertex Deletion. The overall run time
of the algorithm is thus bounded by |C| · |T ′|! ·nO(1) · 4kkn3 = (ks+ s− 1)! · (k +
1)! · 4k · nO(1) = 4k(ks + k + s)! · nO(1). This completes the proof of Theorem 2.

6 1-Out-Regular Arc (Vertex) Deletion

In this section we give a fixed-parameter algorithm for the vertex deletion variant
of Theorem 3. Let G be a digraph and let k ∈ N. A solution for (G, k) is a set S
of at most k vertices of G such that every non-trivial strong component of G−S
is 1-out-regular.

We first apply the steps “Iterative Compression” and “Disjoint Solution”
from Sect. 3. This yields the Disjoint 1-Out-Regular Vertex Deletion
Reduction problem, where we seek a solution S of (G, k) that is disjoint from
and smaller than a solution T of (G, k + 1).

Then we continue with the technique of covering of shadows, as described in
Sect. 3. In our setting, let F be the collection of vertex sets of G that induce a
strongly connected graph different from a simple directed cycle. Then clearly F
is T -connected and any solution S must intersect every such induced subgraph.

So we can use Proposition 8 to construct sets Z1, . . . , Zt with t ≤ 2O(k2) log2 n
such that one of these sets covers the shadow of our hypothetical solution S
with respect to T . For each Zi we construct an instance, where we assume that
Z = Zi \T covers the shadow. Note that a vertex of T is never in the shadow. As
we assume that Z ∪ T is disjoint of a solution we reject an instance if G[Z ∪ T ]
contains a member of F as a subgraph.

Observation 17. G[Z ∪ T ] has no subgraph in F .

Normally, one would give a “torso” operation which transforms (G, k) with
the use of Z into an instance (G′, k′) of the same problem which has a shadowless
solution if and only if the original instance has any solution. Instead, our torso
operation reduces to a similar problem while maintaining solution equivalence.

Reducing the Instance by the Torso Operation. Our torso operation works
directly on the graph. It reduces the original instance to one of a new problem
called Disjoint Shadow-less Good 1-Out-Regular Vertex Deletion
Reduction; afterwards we show the solution equivalence.

Definition 18. Let (G,T, k) be an instance of Disjoint 1-Out-Regular
Vertex Deletion Reduction and let Z ⊆ V (G). Then torso(G,Z) defines
the digraph with vertex set V (G) \ Z and good and bad arcs. An arc (u, v) for
u, v �∈ Z is introduced whenever there is an u → v path in G (of length at least 1)
whose internal vertices are all in Z. We mark (u, v) as good if this path P is
unique and there is no cycle O in G[Z] with O ∩ P �= ∅. Otherwise we mark it
as a bad arc.
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Note that every arc between vertices not in Z also forms a path as above. There-
fore G[V (G) \ Z] is a subdigraph of torso(G,Z). Also, torso(G,Z) may contain
self loops at vertices v from cycles with only the vertex v outside of Z. In
torso(G,Z), we call a cycle good if it consists of only good arcs. (A non-good
cycle in torso(G,Z) can contain both good arcs and bad arcs.)

Now we want to compute a vertex set of size k whose deletion from
G′ = torso(G,Z) yields a digraph whose every non-trivial strong component is a
cycle of good arcs. We call this problem Disjoint Shadow-less Good 1-Out-
Regular Vertex Deletion Reduction. To simplify notation we construct
a set Fbad which contains all strong subdigraphs of G that are not trivial or good
cycles. Then S is a solution to G′ if and only if G′ − S contains no subdigraph
in Fbad. In the next lemma we verify that our new problem is indeed equivalent
to the original problem, assuming that there is a solution disjoint from Z.

Lemma 19 (�, torso preserves obstructions). Let G be a digraph, T,Z ⊆
V (G) as above and G′ = torso(G,Z). For any S ⊆ V (G)\(Z∪T ) it holds that G−
S contains a subdigraph in F if and only if G′ −S contains a subdigraph in Fbad.

The above lemma shows that S is a solution of an instance (G,T, k) for Dis-
joint 1-Out-Regular Vertex Deletion Reduction disjoint of Z if and
only if it is a solution of (torso(G,Z), T, k) for Disjoint Shadow-less Good
1-Out-Regular Vertex Deletion Reduction. As connections between ver-
tices are preserved by the torso operation and the torso graph contains no vertices
in Z, we can reduce our search for (torso(G,Z), T, k) to shadow-less solutions
(justifying the name).

Finding a Shadowless Solution. Consider an instance (G,T, k) of Disjoint
Shadow-less Good 1-Out-Regular Vertex Deletion Reduction. Nor-
mally, after the torso operation a pushing argument is applied. However, we give
an algorithm that recovers the last connected component of G. As T is already
a solution, but disjoint of the new solution S, we take it as a starting point of
our recovery. Observe that, without loss of generality, each vertex t in T has
out-degree at least one in G − T \ {t}, for otherwise already T − t is a solution.

Consider a topological order of the strong components of G − S, say
C1, . . . , C�, i.e., there can be an arc from Ci to Cj only if i < j. We claim
that the last strong component C� in the topological ordering of G − S contains
a non-empty subset T0 of T . For if C� did not contain any vertex from T , then the
vertices of C� cannot reach any vertex of T , contradicting that S is a shadowless
solution of (G, k).

Since T0 is the subset of T present in C� and arcs between strong components
can only be from earlier to later components, we have that there are no outgoing
arcs from C� in G − S.

We guess a vertex t inside T0. This gives |T | ≤ k + 1 choices for t. For each
guess of t we try to find the component C�, similarly to the bounded-size case.
The component C� will either be trivial or not.
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If C� is a trivial component, then V (C�) = {t}, and so we delete all out-
neighbors of t in G − T and place them into the new set S. Hence, we must
decrease the parameter k by the number of out-neighbors of t in G − T , which
by assumption is at least one.

Else, if the component C� is non-trivial, define v0 = t and notice that exactly
one out-neighbor v1 of v0 belongs to C�. Set i = 0 and notice that every out-
neighbor of vi other than vi+1 must be removed from the graph G as C� is the last
component in the topological ordering of G − T ′, there is no later component
where those out-neighbors could go. This observation gives rise to a natural
branching procedure: we guess the out-neighbor vi+1 of vi that belongs to C�

and remove all other out-neighbors of vi from the graph. We then repeat this
branching step with i �→ i + 1 until we get back to the vertex t of T0 we started
with. This way, we obtain exactly the last component C�, forming a cycle. This
branching results in at least one deletion as long as vi has out-degree at least
two. If the out-degree of vi is exactly one, then we simple proceed by setting
vi := vi+1 (and increment i). In any case we stop early if (vi, vi+1) is a bad arc,
as this arc may not be contained in a strong component.

Recall that the vertices t = v0, v1, . . . must not belong to S, whereas the
deleted out-neighbors of vi must belong to S. From another perspective, the
deleted out-neighbors of vi must not belong to T . So once we reached back at
the vertex vj = t for some j ≥ 1, we have indeed found the component C� that
we were looking for.

Let us shortly analyze the run time of the branching step. As for each ver-
tex vi, we have to remove all its out-neighbors from G except one and include
them into the hypothetical solution S of size at most k, we immediately know
that the degree of vi in G can be at most k+1. Otherwise, we have to include v0
into S. Therefore, there are at most k + 1 branches to consider to identify the
unique out-neighbor vi+1 of vi in C�. So for each vertex vi with out-degree at
least two we branch into at most k + 1 ways, and do so for at most k vertices,
yielding a run time of O((k + 1)k) for the entire branching.

Once we recovered the last strong component C� of G−S, we remove the set
V (C�) from G and repeat: we then recover C�−1 as the last strong component,
and so on until C1.

Algorithm for Disjoint 1-Out-Regular Vertex Deletion Reduction.
Lemma 19 and the branching procedure combined give a bounded search tree
algorithm for Disjoint 1-Out-Regular Vertex Deletion Reduction:

Step1. For a given instance I = (G,T, k), use Proposition 8 to obtain a set of
instances {Z1, . . . , Zt} where t ≤ 2O(k2) log2 n, and Lemma 19 implies

– If I is a “no”-instance then all reduced instances I/Zj are “no”-instances,
for j = 1, . . . , t.

– If I is a “yes”-instance then there is at least one i ∈ {1, . . . , t} such that
there is a solution T � for I which is a shadowless solution for the reduced
instance I/Zi.

So at this step we branch into t ≤ 2O(k2) log2 n directions.



260 A. Göke et al.

Step2. For each of the instances obtained from Step 1, recover the compo-
nent C� by guessing the vertex t = v0. Afterwards, recover C�−1, . . . , C1 in
this order.
So at this step we branch into at most O(k · (k + 1)k) directions.

We then repeatedly perform Step 1 and Step 2. Note that for every instance,
one execution of Step 1 and Step 2 gives rise to 2O(k2) log2 n instances such that
for each instance, we either know that the answer is “no” or the budget k has
decreased, because each important separator is non-empty. Therefore, consider-
ing a level as an execution of Step 1 followed by Step 2, the height of the search
tree is at most k. Each time we branch into at most 2O(k2) log2 n ·O(k · (k +1)k)
directions. Hence the total number of nodes in the search tree is

(
2O(k2) log2 n

)k

· O (
k · (k + 1)k

)
=

(
2O(k2)

)k (
log2 n

)k · O(k) · O((k + 1)k)

= 2O(k3)
(
log2 n

)k
= 2O(k3) · O (

((2k log k)k + n/2k)3
)

= 2O(k3) · O(n3).

We then check the leaf nodes of the search tree and see if there are any strong
components other than cycles left after the budget k has become zero. If for at
least one of the leaf nodes the corresponding graph only has strong components
that are cycles then the given instance is a “yes”-instance. Otherwise, it is a
“no”-instance. This gives an 2O(k3) · nO(1)-time algorithm for Disjoint 1-Out-
Regular Vertex Deletion Reduction. So overall, we have an 2O(k3) ·nO(1)-
time algorithm for the 1-Out-Regular Vertex Deletion problem.
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Abstract. Suppose that two independent sets I and J of a graph with
|I| = |J | are given, and a token is placed on each vertex in I. The Sliding
Token problem is to determine whether there exists a sequence of inde-
pendent sets which transforms I into J so that each independent set in
the sequence results from the previous one by sliding exactly one token
along an edge in the graph. It is one of the representative reconfigura-
tion problems that attract the attention from the viewpoint of theoretical
computer science. For a yes-instance of a reconfiguration problem, find-
ing a shortest reconfiguration sequence has a different aspect. In general,
even if it is polynomial time solvable to decide whether two instances
are reconfigured with each other, it can be NP-hard to find a shortest
sequence between them. In this paper, we show that the problem for
finding a shortest sequence between two independent sets is polynomial
time solvable for spiders (i.e., trees having exactly one vertex of degree
at least three).

Keywords: Sliding token · Shortest reconfiguration ·
Independent set · Spider tree · Polynomial-time algorithm

1 Introduction

Recently, the reconfiguration problems attracted the attention from the view-
point of theoretical computer science. These problem arise when we like to find
a step-by-step transformation between two feasible solutions of a problem such
that all intermediate results are also feasible and each step abides by a fixed
reconfiguration rule, that is, an adjacency relation defined on feasible solutions of
the original problem. The reconfiguration problems have been studied extensively
for several well-known problems, including Independent Set [10,15,16,18],
Satisfiability [9,17], Set Cover, Clique, Matching [15], and so on.
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A reconfiguration problem can be seen as a natural “puzzle” from the view-
point of recreational mathematics. The 15-puzzle is one of the most famous clas-
sic puzzles, that had the greatest impact on American and European societies
(see [22] for its rich history). It is well known that the 15-puzzle has a parity, and
one can solve the problem in linear time just by checking whether the parity of
one placement coincides with the other or not. Moreover, the distance between
any two reconfigurable placements is O(n3), that is, we can reconfigure from
one to the other in O(n3) sliding pieces when the size of the board is n × n.
However, surprisingly, for these two reconfigurable placements, finding a short-
est path is NP-complete in general [5,20]. Namely, although we know that there
is a path of length in O(n3), finding a shortest one is NP-complete. While every
piece is a unit square in the 15-puzzle, we obtain the other famous classic puzzle
when we allow to have rectangular pieces, which is called “Dad puzzle” and its
variants can be found in the whole world (e.g., it is called “hako-iri-musume” in
Japanese). Gardner said that “these puzzles are very much in want of a theory”
in 1964 [8], and Hearn and Demaine gave the theory after 40 years [10]; they are
PSPACE-complete in general [11].

Summarizing up, these sliding block puzzles characterize representative com-
putational complexity classes; the decision problem for unit squares can be solved
in linear time just by checking parities, finding a shortest reconfiguration for
the unit squares is NP-complete, and the decision problem becomes PSPACE-
complete for rectangular pieces. That is, this simple reconfiguration problem
gives us a new sight of these representative computational complexity classes.

In general, the reconfiguration problems tend to be PSPACE-complete, and
some polynomial time algorithms are shown in restricted cases. Finding a short-
est sequence in the context of the reconfiguration problems is a new trend in
theoretical computer science because it has a great potential to characterize the
class NP from a different viewpoint from the classic ones.

Fig. 1. A sequence 〈I1, I2, . . . , I5〉 of independent sets of the same graph, where the
vertices in independent sets are depicted by small black circles (tokens).

One of the important NP-complete problems is the Independent Set prob-
lem. For this notion, a natural reconfiguration problem called Sliding Token
was introduced by Hearn and Demaine [10]. (See [16] for an overview on different
reconfiguration variants of Independent Set.) Suppose that we are given two
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independent sets I and J of a graph G = (V,E) such that |I| = |J |, and imagine
that a token (coin) is placed on each vertex in I. For convenience, sometimes we
identify the token with the vertex it is placed on and simply say “a token in an
independent set.” Then, the Sliding Token problem is to determine whether
there exists a sequence S = 〈I1, I2, . . . , I�〉 of independent sets of G such that

(a) I1 = I, I� = J , and |Ii| = |I| = |J | for all i, 1 ≤ i ≤ �; and
(b) for each i, 2 ≤ i ≤ �, there is an edge xy in G such that Ii−1 \ Ii = {x} and

Ii \ Ii−1 = {y}.

That is, Ii can be obtained from Ii−1 by sliding exactly one token on a vertex
x ∈ Ii−1 to its adjacent vertex y ∈ Ii along an edge xy ∈ E(G). Such a sequence
S, if exists, is called a TS-sequence in G between I and J . We denote by a 3-
tuple (G, I, J) an instance of Sliding Token problem. If a TS-sequence S in
G between I and J exists, we say that I is reconfigurable to J (and vice versa),
and write I

G� J . The sets I and J are the initial and target independent sets,
respectively. For a TS-sequence S, the length len(S) of S is defined as the number
of independent sets in S minus one. In other words, len(S) is the number of token-
slides described in S. Figure 1 illustrates a TS-sequence of length 4 between two
independent sets I = I1 and J = I5.

For the Sliding Token problem, linear-time algorithms have been shown
for cographs (also known as P4-free graphs) [16] and trees [4]. Polynomial-time
algorithms are shown for bipartite permutation graphs [7], claw-free graphs [3],
cacti [14], and interval graphs [2]1. On the other hand, PSPACE-completeness is
also shown for graphs of bounded tree-width [19], planar graphs [10,11], planar
graphs with bounded bandwidth [26], and split graphs [1].

In this context, for a given yes-instance (G, I, J) of Sliding Token, we aim
to find a shortest TS-sequence between I and J . Such a problem is called the
Shortest Sliding Token problem. As seen for the 15-puzzle, the Shortest
Sliding Token problem can be intractable even for these graph classes which
the decision problem can be solved in polynomial time. Moreover, in the 15-
puzzle, we already know that it has a solution of polynomial length for two
configurations. However, in the Sliding Token problem, we have no upper
bound of the length of a solution in general. To deal with this delicate issue,
we have to distinguish two variants of this problem. In the decision variant,
an integer � is also given as a part of input, and we have to decide whether
there exists a sequence between I and J of length at most �. In the non-decision
variant, we are asked to output a specific shortest TS-sequence. The length �
is not necessarily polynomial in |V (G)| in general. When � is super-polynomial,
we may have that the decision variant is in P, while the non-decision one is not
in P since it takes super-polynomial time to output the sequence. On the other
hand, even when G is a perfect graph and � is polynomial in |V (G)|, the decision
variant of Shortest Sliding Token is NP-complete (see [16, Theorem 5]). In
short, in the decision variant, we focus on the length of a shortest TS-sequence,
1 We note that the algorithm for a block graph in [12] has a flaw, and hence it is not

yet settled [21].
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while in the non-decision variant, we focus on the construction of a shortest
TS-sequence itself.

From this viewpoint, the length of a token sliding is a key feature of the
Shortest Sliding Token problem. If the length is super-polynomial in total,
there exists at least one token that slides super-polynomial times. That is, the
token visits the same vertex many times in its slides. That is, some tokens make
detours in the sequence (the notion of detour is important and precisely defined
later). In general, it seems to be more difficult to analyze “detours of tokens” for
graphs containing cycle(s). As a result, one may first consider the problem for
trees. The Sliding Token problem on a tree can be solved in linear time [4].
Polynomial-time algorithms for the Shortest Sliding Token problem were
first investigated in [25]. In [25], the authors gave polynomial-time algorithms
for solving Shortest Sliding Token when the input graph is either a proper
interval graph, a trivially perfect graph, or a caterpillar. We note that caterpillars
is the first graph class that required detours to solve the Shortest Sliding
Token problem. A caterpillar is a tree that consists of a “backbone” called a
spine with many pendants, or leaves attached to the spine. Each pendant can
be used to escape a token, however, the other tokens cannot pass through it.
Therefore, the ordering of tokens on the spine is fixed. In this paper, we consider
the Shortest Sliding Token problem on a spider, which is a tree with one
central vertex of degree more than 2. On this graph, we can use each “leg” as a
stack and exchange tokens using these stacks. Therefore, we have many ways to
handle the tokens, and hence we need more analyses to find a shortest sequence.
In this paper, we give an O(n2) time algorithms for the Shortest Sliding
Token problem on a spider, where n is the number of vertices. The algorithm is
constructive, and the sequence itself can be output in O(n2) time. As mentioned
in [25], the number of required token-slides in a sequence can be Ω(n2), hence
our algorithm is optimal for the number of token-slides. Due to space restriction,
several details are omitted; they can be found in the full version of this paper [13].

Note: Recently, it is announced that the Shortest Sliding Token problem
on a tree can be solved in polynomial time by Sugimori [23]. His algorithm is
based on a dynamic programming on a tree [24]: though it runs in polynomial
time, it seems to have much larger degree comparing to our case-analysis based
algorithm.

2 Preliminaries

For common graph theoretic definitions, we refer the readers to the textbook
[6]. Throughout this paper, we denote by V (G) and E(G) the vertex-set and
edge-set of a graph G, respectively. We always use n for denoting |V (G)|. For
a vertex x ∈ V (G), we denote by NG(x) the set {y ∈ V (G) : xy ∈ E(G)} of
neighbors of x, and by NG[x] the set NG(x) ∪ {x} of closed neighbors of x. In
a similar manner, for an induced subgraph H of G, the set NG[H] is defined as⋃

x∈V (H) NG[x]. The degree of x, denoted by degG(x), is the size of NG(x). For



266 D. A. Hoang et al.

x, y ∈ V (G), the distance distG(x, y) between x and y is simply the length (i.e.,
the number of edges) of a shortest xy-path in G.

For a tree T , we denote by Pxy the (unique) shortest xy-path in T , and by
T x

y the subtree of T induced by y and its descendants when regarding T as the
tree rooted at x. A spider graph (or starlike tree) is a tree having exactly one
vertex (called its body) of degree at least 3. For a spider G with body v and a
vertex w ∈ NG(v), the path Gv

w is called a leg of G. By definition, it is not hard
to see that two different legs of G have no common vertex. For example, the
graph in Fig. 1 is a spider with body v = v2 and degG(v) = 3 legs attached to v.

Let (G, I, J) be an instance of Shortest Sliding Token. A target assign-
ment from I to J is simply a bijective mapping f : I → J . A target assignment f
is called proper if there exists a TS-sequence in G between I and J that moves the
token on w to f(w) for every w ∈ I. Given a target assignment f : I → J from
I to J , one can also define the target assignment f−1 : J → I from J to I as fol-
lows: for every x ∈ J , f−1(x) = {y ∈ I : f(y) = x}. Let F be the set of all target
assignments from I to J . We define M∗(G, I, J) = minf∈F

∑
w∈I distG(w, f(w)).

Intuitively, observe that any TS-sequence between I and J in G (if exists) uses
at least M∗(G, I, J) token-slides.

Let S = 〈I1, I2, . . . , I�〉 be a TS-sequence between two independent sets I =
I1 and J = I� of a graph G. Indeed, one can describe S in term of token-
slides as follows: S = 〈x1 → y1, x2 → y2, . . . , x�−1 → y�−1〉, where xi and yi

(i ∈ {1, 2, . . . , � − 1}) satisfy xiyi ∈ E(G), Ii \ Ii+1 = {xi}, and Ii+1 \ Ii = {yi}.
The reverse of S (which reconfigures J to I), denoted by rev(S), is defined by
rev(S) = 〈I�, . . . , I2, I1〉. One can also describe rev(S) in term of token-slides:
rev(S) = 〈y�−1 → x�−1, . . . , y2 → x2, y1 → x1〉. For example, the TS-sequence
S = 〈I1, . . . , I5〉 described in Fig. 1 can also be written as S = 〈v4 → v5, v3 →
v2, v2 → v1, v5 → v4〉. Similarly, rev(S) = 〈I5, . . . , I1〉 = 〈v4 → v5, v1 → v2, v2 →
v3, v5 → v4〉.

For an edge e = xy ∈ E(G), we say that S makes detour over e if both
x → y and y → x are members of S. We emphasize that the steps x → y and
y → x is not necessarily made by the same token. The number of detours S
makes over e, denoted by DG(S, e), is defined to be twice the minimum between
the number of appearances of x → y and the number of appearances of y → x.
The total number of detours S makes in G, denoted by DG(S), is defined to
be

∑
e∈E(G) DG(S, e). As an example, one can verify that the TS-sequence S

described in Fig. 1 satisfies DG(S, v4v5) = 2 and DG(S) = 2. Let S be the
set of all TS-sequences in G between two independent sets I, J . We define by
D∗(G, I, J) = minS∈S DG(S) the smallest number of detours that a TS-sequence
between I and J in G can possibly make.

3 Shortest Sliding Token for Spiders

In this section, we claim that
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Theorem 1. Given an instance (G, I, J) of Shortest Sliding Token for spi-
ders, one can construct a shortest TS-sequence between I and J in O(n2) time,
where n denotes the number of vertices of the given spider G.

First of all, from the linear-time algorithm for solving Sliding Token for trees
(which also applies for spiders as well) presented in [4], we can simplify our
problem as follows. For an independent set I of a tree T , the token on u ∈ I is said
to be (T, I)-rigid if for any I ′ with I

T� I ′, u ∈ I ′. Intuitively, a (T, I)-rigid token
cannot be moved by any TS-sequence in T . One can find all (T, I)-rigid tokens
in a given tree T in linear time. Moreover, a TS-sequence between I and J in T
exists if and only if the (T, I)-rigid tokens and (T, J)-rigid tokens are the same,
and for any component F of the forest obtained from T by removing all vertices
where (T, I)-rigid tokens are placed and their neighbors, |I ∩ F | = |J ∩ F |. Thus,
for an instance (G, I, J) of Shortest Sliding Token for spiders, we can assume
without loss of generality that I

G� J and there are no (G, I)-rigid and (G, J)-
rigid tokens.

3.1 Our Approach

We now give a brief overview of our approach. For convenience, from now on,
let (G, I, J) be an instance of Shortest Sliding Token for spiders satisfy-
ing the above assumption. Rough speaking, we aim to construct a TS-sequence
in G between I and J of minimum length M∗(G, I, J) + D∗(G, I, J), where
M∗(G, I, J) and D∗(G, I, J) are respectively the smallest number of token-slides
and the smallest number of detours that a TS-sequence between I and J in G
can possibly perform, as defined in the previous section. Indeed, the following
lemma implies that any TS-sequence in G between I and J must be of length at
least M∗(G, I, J) + D∗(G, I, J).

Lemma 1. Let I, J be two independent sets of a tree T such that I
T� J . Then,

for every TS-sequence S between I and J , len(S) ≥ M∗(T, I, J) + D∗(T, I, J).

As a result, it remains to show that any TS-sequence in G between I and J
must be of length at most M∗(G, I, J) + D∗(G, I, J), and there exists a specific
TS-sequence S in G between I and J whose length is exactly M∗(G, I, J) +
D∗(G, I, J). To this end, we shall analyze the following cases.

– Case 1: max{|I ∩ NG(v)|, |J ∩ NG(v)|} = 0.
– Case 2: 0 < max{|I ∩ NG(v)|, |J ∩ NG(v)|} ≤ 1.
– Case 3: max{|I ∩ NG(v)|, |J ∩ NG(v)|} ≥ 2.

In each case, we claim that it is possible to simultaneously determine D∗(G, I, J)
and construct a TS-sequence in G between I and J whose length is minimum.
More precisely, in Case 1, we show that it is always possible to construct a TS-
sequence between I and J of length M∗(G, I, J), that is, no detours are required.
(Note that, no TS-sequence can use less than M∗(G, I, J) token-slides.) However,
this does not hold in Case 2. In this case, we show that in certain conditions,
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detours cannot be avoided, that is, any TS-sequence must make detours at least
one time at some edge of G. More precisely, in such situations, we show that it is
possible to construct a TS-sequence between I and J of length M∗(G, I, J) + 2,
that is, the sequence makes detour at exactly one edge. Finally, in Case 3, we
show that detours cannot be avoided at all, and it is possible to construct a TS-
sequence between I and J of minimum length, without even knowing exactly
how many detours it performs. As a by-product, we also describe how one can
calculate this (smallest) number of detours precisely. Due to space restriction, in
this paper, we consider only Case 1. For more details on Case 2 and Case 3,
please see the full version of this paper [13].

3.2 Case 1: max{|I ∩ NG(v)|, |J ∩ NG(v)|} = 0

As mentioned before, in this case, we will describe how to construct a TS-
sequence S in G between I and J whose length len(S) equals M∗(G, I, J) +
D∗(G, I, J). In general, to construct any TS-sequence, we need: (1) a tar-
get assignment f that tells us the final position a token should be moved
to (say, a token on v should finally be moved to f(v)); and (2) an order-
ing of tokens that tells us which token should move first. From the definition
of M∗(G, I, J), it is natural to require that our target assignment f satisfies
M∗(G, I, J) =

∑
w∈I distG(w, f(w)). As you will see later, such a target assign-

ment exists, and we can always construct one in polynomial time. We also claim
that one can efficiently define a total ordering ≺ of vertices in I such that if
x, y ∈ I and x ≺ y, then the token on x will be moved before the token on y in
our desired TS-sequence. Combining these results, our desired TS-sequence will
finally be constructed (in polynomial time).

Target Assignment. We now describe how to construct a target assignment
f such that M∗(G, I, J) =

∑
w∈I distG(w, f(w)). For convenience, we always

assume that the given spider G has body v and degG(v) legs L1, . . . , LdegG(v).
Moreover, we assume without loss of generality that these legs are labeled
such that |I ∩ V (Li)| − |J ∩ V (Li)| ≤ |I ∩ V (Lj)| − |J ∩ V (Lj)| for 1 ≤ i ≤
j ≤ degG(v); otherwise, we simply re-label them. For each leg Li (i ∈
{1, 2, . . . ,degG(v)}), we define the corresponding independent sets ILi

and JLi

as follows: IL1 = (I ∩ V (L1)) ∪ (I ∩ {v}); JL1 = (J ∩ V (L1)) ∪ (J ∩ {v}); and for
i ∈ {2, . . . , d}, we define ILi

= I ∩ V (Li) and JLi
= J ∩ V (Li). In this way, we

always have v ∈ IL1 (resp. v ∈ JL1) if v ∈ I (resp. v ∈ J). This definition will
be helpful when considering tokens placed at the body vertex v.

Under the above assumptions, we design Algorithm 1 for constructing f . We
note that Algorithm1 works even when the legs are labeled arbitrarily. However,
our labeling of the legs of G will be useful when we use the produced target
assignment for constructing a TS-sequence of length M∗(G, I, J) between I and
J in G.

Token Ordering. Intuitively, we want to have a total ordering ≺ of vertices in I
such that if x ≺ y, the token placed at x should be moved before the token placed
at y. Ideally, once the token is moved to its final destination, it will never be
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moved again. From Algorithm1, the following natural total ordering of vertices
in I can be derived: for x, y ∈ I, set x < y if x is assigned before y. Unfortunately,
such an ordering does not always satisfy our requirement. However, we can use
it as a basis for constructing our desired total ordering of vertices in I.

Algorithm 1. Find a target assignment between two independent sets I, J of a
spider G such that M∗(G, I, J) =

∑
w∈I distG(w, f(w)).

Input: Two independent sets I, J of a spider G with body v.
Output: A target assignment f : I → J such that M∗(G, I, J) =

∑
w∈I distG(w, f(w)).

1: for i = 1 to degG(v) do
2: while ILi �= ∅ and JLi �= ∅ do
3: Let x ∈ ILi be such that distG(x, v) = maxx′∈ILi

distG(x
′, v).

4: Let y ∈ JLi be such that distG(y, v) = maxy′∈JLi
distG(y

′, v).
5: f(x) ← y; ILi ← ILi \ {x}; JLi ← JLi \ {y}.
6: end while
7: end for
8: while

⋃degG(v)
i=1 ILi �= ∅ and

⋃degG(v)
i=1 JLi �= ∅ do � From this point, for any leg L,

either IL = ∅ or JL = ∅.
9: Take a leg Li such that there exists x ∈ ILi satisfying distG(x, v) =

min
x′∈⋃degG(v)

i=1 ILi

distG(x
′, v).

10: Take a leg Lj such that there exists y ∈ JLj satisfying distG(y, v) =
max

y′∈⋃degG(v)
i=1 JLi

distG(y
′, v).

11: f(x) ← y; ILi ← ILi \ {x}; JLj ← JLj \ {y}.
12: end while
13: return f .

Before showing how to construct ≺, we define some useful notation. Let f :
I → J be a target assignment produced from Algorithm 1. For a leg L of G and
a vertex x ∈ IL∪JL, we say that the leg L contains x, and x is inside L. For each
leg L of G, we define I1L = {w ∈ IL : f(w) /∈ JL} and I2L = {w ∈ IL : f(w) ∈ JL}.
Roughly speaking, a token in I1L (resp. I2L) must finally be moved to a target
outside (resp. inside) the leg L. Given a total ordering � on vertices of I and
a vertex x ∈ I, we define K(x, �) = NG[Pxf(x)] ∩ {y ∈ I : x � y}. Intuitively,
if y ∈ K(x, �), then in order to move the token on x to its final target f(x),
one should move the token on y beforehand. In some sense, the token on y is an
“obstacle” that forbids moving the token on x to its final target f(x). If x ∈ IL for
some leg L of G, we define K1(x, �) = K(x, �)∩ I1L and K2(x, �) = K(x, �)∩ I2L.
As before, a token in K1(x, �) (resp. K2(x, �)) must finally be moved to a target
outside (resp. inside) the leg L containing x. By definition, it is not hard to
see that I1L and I2L (resp. K1(x, �) and K2(x, �)) form a partition of IL (resp.
K(x, �)).

Ideally, in our desired total ordering ≺, for any w ∈ I, we must have K(w,≺) =
∅. This enables us to move tokens in a way that any token placed at w ∈ I is moved
directly to its final target f(w) through the (unique) shortest path Pwf(w) between
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them; and once a token is moved to its final target, it will never be moved again.
As this does not always hold for the total ordering < defined from Algorithm 1, a
natural approach is to construct≺ from<by looking at allw ∈ I withK(w,<) �= ∅
and reversing the ordering of any pair of vertices that makes our desired moving
strategy impossible. A formal description of this procedure is in Algorithm2 below.

To provide a better explanation of Algorithm2, we briefly introduce the
cases that require changing the ordering <. Assume that w ∈ I is such that
K(w,<) �= ∅.

– Ordering between w and vertices in K(w,<). For each x ∈ K(w,<),
originally w < x, but in the new ordering, x ≺ w. That is, to move the token
on w, one should move any “obstacle” (which belongs to K(w,<)) beforehand;

– Ordering between vertices in K2(w,<). If K2(w,<) �= ∅, the token on
w and any token in K2(w,<) must be moved to targets inside the leg L
containing w. (If f(w) /∈ JL then any “obstacle” between w and f(w) must be
moved to targets outside w, which means K2(w,<) is empty.) Consequently,
for x, y in K2(w,<), if x < y, the token on x should move after the token on
y, that is, we should define x  y.

– Ordering of vertices between K1(w,<) and K2(w,<). If both K1(w,<)
and K2(w,<) are non-empty, then it is better (but not strictly required)
if we move the tokens in K1(w,<) before moving any token in K2(w,<).
Originally, vertices in K1(w,<) (whose targets is outside L) is assigned after
those in K2(w,<) (whose targets is inside L) in Algorithm1. Intuitively, this
is because tokens in K1(w,<) is “closer” to the body vertex v than those
in K2(w,<), and moving tokens in K1(w,<) creates “empty space” in L for
moving tokens in K2(w,<) later.
Note that when changing the ordering of vertices between K1(w,<) and
K2(w,<), we also affect the ordering between vertices in I1L ⊇ K1(w,<). How-
ever, the ordering of vertices in I1L should remain unchanged, since Algorithm 1
always assign vertices in I1L whose distance is closest to the body vertex v first.
Thus, for each x ∈ I1L \K1(w,<) and y ∈ K1(w,<)∪K2(w,<)∪{w}, we need
to set x ≺ y.

The next lemma (Lemma 2) says that Algorithm2 correctly produces a total
ordering ≺ on vertices of I such that K(w,≺) = ∅ for every w ∈ I. Intuitively,
Lemma 2(i) and (ii) say that if wi ∈ IL is the “chosen” vertex in line 2 of Algo-
rithm2 for some leg L of G, then only a subset K(wi, <)∪I1L∪{wi} of IL contains
“candidates” for “re-ordering”. That is, the process of changing the ordering of
tokens in each iteration of Algorithm2 will not affect the ordering between tokens
inside and outside L. Lemma2(iii) guarantees that after “re-ordering”, wi will
never be chosen again2, and the next iteration of the main while loop can be
initiated. As Algorithm2 can “choose” at most |I| vertices, and each iteration
involving the “re-ordering” of at most O(|I|) vertices, it will finally stop and
produce the desired ordering in O(|I|2) time.
2 K(wi, ≺) = ∅ always holds, since none of the members of K(wi, <) will ever be

larger than wi in the new orderings ≺ produced in the next iterations.
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Algorithm 2. Construct a total ordering ≺ of vertices in I.
Input: The natural ordering < on vertices of I derived from Algorithm 1.
Output: A total ordering ≺ of vertices in I.
1: while there exists w such that K(w, <) �= ∅ do
2: Let w be the smallest element of I with respect to < such that K(w, <) �= ∅.
3: Let L be the leg of G such that w ∈ IL.
4: for x ∈ K(w, <) do
5: Set x ≺ w.
6: end for
7: if

∣
∣K2(w, <)

∣
∣ ≥ 2 then

8: For x, y ∈ K2(w, <), if x < y, then set x � y.
9: end if

10: if min{∣
∣K1(w, <)

∣
∣,

∣
∣K2(w, <)

∣
∣} ≥ 1 then

11: For x ∈ K1(w, <) and y ∈ K2(w, <), set x ≺ y.
12: end if
13: if min{∣

∣K1(w, <)
∣
∣,

∣
∣I1

L \ K1(w, <)
∣
∣} ≥ 1 then

14: For x ∈ I1
L \ K1(w, <) and y ∈ K1(w, <) ∪ K2(w, <) ∪ {w}, set x ≺ y.

15: end if
16: For x, y ∈ I whose ordering has not been defined, if x < y then set x ≺ y.
17: Re-define < to use in the next iteration by setting x < y if x ≺ y for every

x, y ∈ I.
18: end while
19: return The total ordering ≺ of vertices in I.

Lemma 2. Let (G, I, J) be an instance of Shortest Sliding Token for spi-
ders, where the body v of G satisfies max{|I ∩ NG(v)|, |J ∩ NG(v)|} = 0. Let
f : I → J be a target assignment produced from Algorithm1, and < be
the corresponding natural total ordering on vertices of I. Assume that I =
{w1, w2, . . . , w|I|} is such that w1 < w2 < · · · < w|I|. Let wi be the smallest
element in I (with respect to the ordering <) such that K(wi, <) �= ∅, and L be
the leg of G such that wi ∈ IL. Then,

(i) K(wi, <) ⊆ IL. Additionally, wi ∈ I2L.
(ii) Let ≺ be the total ordering of vertices in I defined as in lines 2–17 of Algo-

rithm2, where the corresponding vertex w is replaced by wi. Then,
(ii-1) If x ∈ K(wi, <), then x > wi and x ≺ wi.
(ii-2) If x, y ∈ K1(wi, <), then x < y if and only if x ≺ y.
(ii-3) If x, y ∈ K2(wi, <), then x < y if and only if x  y.
(ii-4) If x ∈ K1(wi, <) and y ∈ K2(wi, <), then x > y and x ≺ y.
(ii-5) If x ∈ I1L \ K1(wi, <) and y ∈ K1(wi, <), then wi < x < y and x ≺ y ≺

wi.
(ii-6) If x ∈ K(wi, <) ∪ I1L ∪ {wi} and y ∈ I \ (K(wi, <) ∪ I1L ∪ {wi}), then

x < y if and only if x ≺ y.
(ii-7) If x, y ∈ I \ (K(wi, <) ∪ I1L ∪ {wi}), then x < y if and only if x ≺ y.

(iii) Let ≺ be the total ordering of vertices in I described in (ii). Then,
K(wi,≺) = ∅. Moreover, if wj is the smallest element in I (with respect
to the ordering ≺) such that K(wj ,≺) �= ∅, then K(wj ,≺) = K(wj , <).
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Now, we have

Lemma 3. Let (G, I, J) be an instance of Shortest Sliding Token for spi-
ders where the body v of G satisfies max{|I ∩ NG(v)|, |J ∩ NG(v)|} = 0. Assume
that there exists a leg L of G with |IL| �= |JL|. Then, in O(n2) time, one can
construct a TS-sequence S between I and J such that len(S) = M∗(G, I, J).

In Lemma 3, we assumed that there is some leg L of G with |IL| �= |JL|. In
the next lemma, we consider the case |IL| = |JL| for every leg L of G (regardless
of whether max{|I ∩ NG(v)|, |J ∩ NG(v)|} = 0).

Lemma 4. Let (G, I, J) be an instance of Shortest Sliding Token for spi-
ders. Let v be the body of G. Assume that |IL| = |JL| for every leg L of G. Then,
in O(n2) time, one can construct a TS-sequence S between I and J such that
len(S) = M∗(G, I, J).

4 Conclusion

In this paper, we have shown that one can indeed construct a TS-sequence of
shortest length between two given independent sets of a spider graph (if exists).
We hope that the ideas and approaches described in this paper will provide a
useful framework for improving the polynomial-time algorithm for Shortest
Sliding Token for trees [23].
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Abstract. Turing Tumble is a toy gravity-fed mechanical computer
(similar to the classic Digi-Comp II, but including additional types of
pieces such as gears), in which marbles roll down a board, along paths
determined by the locations of ramps, toggles and gears, which are placed
by the “programmer,” and by their current states, which are altered
by the passing marbles. Aaronson proved that a Digi-Comp II decision
problem (viz., will any marbles reach the sink?) is CC-Complete, i.e.,
equivalent to evaluating comparator circuits, and posed the question of
what additional functionality would raise the machine’s computational
power beyond CC, speculating that a capability for toggles to affect one
another’s states (which Turing Tumble’s gears happen to provide) might
suffice. This turns out to be so: we show, though a simple reduction from
a variant of the circuit value problem (CVP), that the Turing Tumble
decision problem is P-Complete. The two models also differ in complexity
when exponentially (or unboundedly) many marbles are permitted: while
Digi-Comp II remains in P, Turing Tumble becomes PSPACE-Complete.

1 Introduction

Turing Tumble is a toy gravity-fed mechanical computer, which was recently
introduced commercially following a $400k Kickstarter campaign.1 It consists of
a 2D square grid pegboard, which stands upright; a collection of pieces including
ramps, toggles (or “bits”), gears, crossovers, and interceptors; and a set of mar-
bles (of two colors). The user “programs” the board through the placement of
the pieces (and the choice of their initial states). The program is run by pressing
a button to release a marble from the top, causing it to roll down the board,
passing through some diagonally contiguous sequence of pieces (see Fig. 1), per-
haps altering their states, until it reaches a paddle on the bottom-left or -right,
which releases a second marble (from the upper-left or -right, respectively), and
so on. The path traversed by a given marble depends both on the placement of
the pieces, and on their current state.

A toggle can be in one of two states (0 or 1), which determine the direction
the next marble rolls when exiting it (southwest or southeast, respectively). (The
behavior is the same regardless of whether the marble enters the toggle from the

1 https://www.turingtumble.com; emulations: https://jessecrossen.github.io/ttsim/
and https://www.lodev.org/jstumble/
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Fig. 1. Image from the Turing
Tumble website.

northwest or the northeast.) Crucially, each
marble’s visit to a toggle flips its state, tog-
gling it back and forth. Moreover, a collection
of gear bit toggles can be connected together
by gears, entangling them, so that flipping
the value of any one of these connected gear
toggles flips them all.

The final state of (some distinguished
subset of) the toggles can be interpreted
as the program’s output. Alternatively, with
two marble colors, two sources, and two pad-
dles, the color pattern of the marbles col-
lected at the bottom of board can also be
interpreted as output. Examples from the
Turing Tumble website and instruction man-
ual include programs implementing arith-
metic operations and counting in binary, as
well as for generating various color patterns.

Turing Tumble extends the Digi-Comp II,2 a toy mechanical computer first
sold in the 1960s, whose behavior is more restricted in a number of ways: rather
than a general grid, its collection of paths is hardcoded (in wood), with its ramps
and toggles in fixed locations; it has no gears, crossovers or interceptors; and it has
only one color (and source) of marbles. (Programming it consists entirely in ini-
tializing the toggles’ states.) Yet it also can perform interesting computations such
as arithmetic and binary counting. Aaronson [1] investigated the computational
power of a kind of generalized Digi-Comp II formalization in which the structure
of paths and toggle locations is specified by an arbitrary directed acyclic graph
(DAG) with a unique source and designated target sink, and whose internal nodes
represent either toggles or merge points. He defined DigiComp as the problem
of deciding, for a given instance (i.e., the DAG, the toggles’ initial states, and the
number of marbles available at the source, encoded in unary) whether any marbles
released will eventually reach the target.

Aaronson showed that DigiComp is not circuit-universal, i.e., it cannot solve
the circuit value problem (CVP) and is not P-Complete [11], but is instead
merely CC-Complete [5]. That is, deciding DigiComp is equivalent (under
logspace reductions) to solving the easier comparator circuit value problem
(CCV). One of the open questions Aaronson raised was to ask what additional
potential features to the DigiComp model might result in P-Completeness. In
particular, he speculated that the addition of direct causal interaction between
the pieces (“toggles and switches controlled by other toggles”) might suffice.3 In
this paper we show that it does.

2 https://digi-compii.com; emulation: https://museum.syssrc.com/joda/
3

Aaronson describes the actual Digi-Comp II as including some such interaction, but this appears
(based on the instruction manual [8]) to be in reference to the effects of the Clear switch and
the CF1 toggle, which send the marble to an underground passageway, affecting the pieces above.
Since the marbles that Clear and CF1 send underground only affect the pieces they pass directly
under, however, this arguably should not count as interaction between pieces.

https://digi-compii.com
https://museum.syssrc.com/joda/
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Contributions. We show that the TuringTumble decision problem (viz.,
deciding whether any marbles ever reach the designated target sink when an n-
piece board configuration is run with m marbles) is P-Complete (under logspace
reductions) when m = poly(n) (and even when m = n), and that it is PSPACE-
Complete when m is unbounded (and even when m = 2n). The same results
hold: (1) if we take n to be just the number of toggles and gear bits, and (2)
already in the planar special case, i.e., without use of Turing Tumble’s crossover
pieces. Many proofs, figures, and details are omitted due to space limitations.

Related Work and Related Models. Aaronson [1] showed in a blogpost that
DigiComp, which is equivalent to TuringTumble (on DAGs) without gear
pieces, is CC-Complete, i.e., equivalent to the comparator circuit value (CCV)
problem [5]. Meiburg [16], in a comment on Aaronson’s blogpost, extended this
argument to the special case of planar DAGs. Bickford [4] showed that a more
general, non-acyclic setting, equivalent to TuringTumble on arbitrary directed
graphs, can emulate a fixed-length-tape Turing Machine, i.e., a deterministic
linearly bounded automaton, and hence is PSPACE-Complete [4]. We show that
this complexity is reached already on DAGs with exponentially many marbles
or equivalently (see Sect. 2.3) on graphs consisting of a DAG plus one back-arc,
i.e., directed graphs with feedback vertex set number [9] equal to 1.

In the language of algorithmic combinatorial game theory [12], simulating or
predicting the behavior of the Digi-Comp II and the Turing Tumble are classi-
fied as zero-player games. Although our reductions are not from constraint logic,
our results are consistent the pattern commonly observed in connection with it
[7], of zero-player games being either P-Complete or PSPACE-Complete, depend-
ing on whether they are bounded or unbounded, which here translates into the
possible boundedness of the number of marbles. Note that in a sense this dis-
tinction collapses in case of the non-acyclic models cases mentioned above: with
cycles allowed, a single marble, which can be made to cycle around the graph
repeatedly, suffices. That is, the potential bound on number of marbles becomes
a potential bound on execution time.

The toggles of Digi-Comp II and Turing Tumble are equivalent to 2-state
periodic rotors in rotor-routing networks [10]. (One of the gadgets we construct,
using toggles and ramps, is equivalent to a k-state periodic rotor, with k a power
of 2.) Therefore the DAG of a Digi-Comp II instance is equivalent to (a special
case of) an acyclic rotor network. (Due to their gears, Turing Tumble instances
appear to transcend the rotor network model.)

Toggles are also effectively a nonreversible version of the deterministic forks
or 3-spinners from Demaine et al. [6]’s theory of single-robot motion planning
gadgets: in their terminology, when the robot (i.e., the marble) enters at the
center location (i.e., from the north) it exits from the left location (to the south-
west) or the right location (to the southeast), depending on the 3-spinner’s (the
toggle’s) current state, but (because the graph is a DAG) it can never enter at
the left or right location and exit from the center location.

Collisions are central to the billiard ball model of computation [15], whereas
in our setting there is only one active marble, which always rolls downhill. In
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dexterity games like Tilt, Labyrinth, and Pigs in Clover the challenge is to find
(and successfully execute) a sequence of moves tilting the board in different
directions in order to maneuver the ball towards the target location, whereas in
our setting there is only one tilt direction, viz., downward (unless we count the
release of the next marble as tilting the board upward and then back down, as
discussed in Sect. 2.3), and the task is simply to predict the machine’s behavior—
a zero-player game.

Finally, closely related to the Turing Tumble/Digi-Comp II setting is Becker
et al. [3]’s particle computation model. (Our work is analogous to the “inter-
nal computation” problems they study.) The two settings differ, first, in the
mechanics of the board pieces involved (with toggles and gear bits, in Turing
Tumble, which have state, versus obstacles in particle computation, which do
not); second, Turing Tumble involves only one active marble and only the one
fixed tilt direction versus multiple active marbles and multiple tilt directions
in particle computation. Comparing with the Single Instruction, Multiple Data
model of parallel algorithms [14], Becker et al. describe their model as “more
extreme,” and tantamount to Single Instruction, Single Data, Multiple Locations.
In this sense our setting could be described as more extreme still, and analogous
to Single Instruction, Single Data, Single Location. But of course, this simpler
character of board and marble movement in our setting is complemented by the
aforementioned more complicated nature of its individual board pieces.

2 Model

2.1 Hardware, Rules, and Dynamics

In terms of hardware components, the Turing Tumble consists of: the game
board, which is covered by a square grid pattern of pegs; the pieces, which the
user places on the pegs; the marbles; and a marble release mechanism involving
two paddles located at the bottom of the board and two corresponding sources
of marbles at the top of the board.

There are two types of pegs, gear pegs and regular pegs, which alternate along
each grid row and along each grid column, thus partitioning the square grid into
two coarser-grained square grids which are dual to one another (see Fig. 1). Gears
can only be placed on gear pegs; other types of pieces (described below) can only
be placed on regular pegs.4 Multiple pieces cannot be placed on the same peg.

Only one marble is in motion on the board at a time. Execution is begun when
the user manually causes the release of a marble, and it halts when the currently
moving marble reaches one of the two paddles and that paddle’s corresponding
marble source is empty (or when the marble reaches an interceptor, but as already
noted our constructions will not use these).

4 Technically speaking, in the actual Turing Tumble product, nothing physically pre-
vents gears from being placed on regular pegs as well, but there is no loss of generality
in assuming that gear bits, rather than gears, will be placed on those pegs.
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Upon a marble’s release from a source at the top, it is deposited on a (regular)
piece, from which it traverses a downward path, coming into direct physical
contact with, or visiting, a sequence of (regular) pieces, until it exits the grid at
the bottom of the board, and finally presses one of the two paddles, depending
on whether its final horizontal location is left- or right-of-center. The sequence
of (regular) pieces it visits is required to be diagonally contiguous, meaning that
the ith piece visited must be on a peg located either to the direct southwest
or the direct southeast of the i−1st piece visited. (Any non-diagonal free-fall
is forbidden.) That is, the directed graph formed by the regular pegs and the
paths marbles legally can potentially traverse is a -135-degree-rotated layered
grid graph [2], viz., a -135-degree rotation of a directed graph whose nodes are
members of N × N and whose arcs are all of the form (i, j) → (i + 1, j) or
(i, j) → (i, j + 1). Which path a given marble actually follows will depend on
the types of pieces it visits and on their current states (which may be affected
by its visit).

With the exception of crossover pieces, the behavior that occurs when a
marble visits a piece does not depend on whether it arrived from the northeast
or the northwest. The behavior depends on the type of the piece as follows:

– toggle: In the 0 state (which we define as the one in which it appears to be
pointing to the upper-left), it changes to the 1 state and the marble exits to
the lower-right (and vice versa).

– left ramp: The marble exits to the lower-left.
– right ramp: The marble exits to the lower-right.
– crossover: The marble entering from the upper-left exits to the lower-right,

and vice versa.
– interceptor: The marble does not exit.
– gear bit: The behavior is the same as the ordinary toggle’s, except that

when its state is flipped, by means of the gear bit’s rotation, this causes
the rotation (in the opposite direction) of any adjacent gears (i.e., any gears
located directly above, below, left, or right), which in turn causes the same
change in state (i.e., rotation in the same direction as the first gear bit) in
any gear bits adjacent to those gears, and so on. Any two gear bits that are
connected by such a rectilinearly contiguous alternating path of gear bits and
gears (in which case we say the gear bits are entangled) will always have the
same state. Note that an ordinary toggle adjacent to a gear is not affected.

More generally, gears behave as follows:

– gears: A maximal set of entangled gear bits is called a gear component.5 A
gear component need not be “convex” and can even have holes (although those
in our constructions will not have holes). Let a visit to a gear component be
a maximal subpath in the intersection of the gear component and a marble’s

5
More formally, gear components can be defined equivalently as follows. Consider the induced
subgraph of the solid (undirected) grid graph that is induced by the gears and gear bits, i.e., each
edge corresponds to a gear and a gear bit that are rectilinearly adjacent. Then a gear component
is a component of this graph.
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path, with the length of the visit referring to the length of this subpath.
Note that a marble may visit a gear component multiple times, interspersed
with visits to other pieces (potentially including toggles and/or other gear
components’ gear bits).
In the spirit of the mechanical interactions being modeled, where the gears
and gear bits will not be perfectly friction-free and the marbles will have some
finite weight, we assume that the size of any gear component (i.e., its number
of gear bits) is bounded by some small global constant C, such as 8.

Observation 1. The visit of a marble to a gear component flips the component’s
state iff the visit has odd length (i.e., consists of visits to an odd number of the
component’s gear bits).

Crossover pieces can be interpreted as permitting nonplanarity in the board
configuration; as already mentioned, our constructions will avoid the use of them.
One way to do so is by designing a crossover gadget that simulates a crossover
piece. An alternative approach, which will be more convenient in some situations
in terms of computation of grid locations, is to carefully schedule marble arrivals
in such a way that a toggle piece placed in a certain location will behave the same
as a crossover piece in that location would have.

Observation 2. If (a) all marbles visiting a given toggle piece alternate between
arriving from the northwest and from the northeast, (b) the first one arrives from
the northwest (respectively, from the northeast), and (c) the toggle is initialized
to the 0 state (respectively, to the 1 state), then each such marble will exit in
the same direction (viz., either to the southeast or to the southwest) as it would
have if a crossover piece had been placed in the toggle’s location instead.

2.2 Problem Formulation

It is clear that Turing Tumble can be simulated in polynomial time, i.e., that
the execution of an n-piece board configuration running on m marbles can be
simulated in time polynomial in nm. This is so even if we permit the crossover
pieces and interceptor pieces, and indeed even if we abstract away from the
board’s grid structure to an arbitrary DAG.

For proving hardness, we make a number of simplifying restrictions. We
assume that there is only one marble color and only one source, but that there
are two sinks (out-degree-0 nodes), one triggering the release of the next marble
and the other being the designated target sink. (This is equivalent to the actual
two-source/one-sink Turing Tumble in the special case that there is only one
marble at the right-hand source and ramps are placed forming a path from that
source to the right-hand sink.) Although our DAG will, unlike Turing Tumble
pieces, have nodes with in-degree and/or out-degree greater than 2, such nodes
will later translate into bit gadgets or 2h-rotor gadgets (see below), both of
which will be constructed out of Turing Tumble pieces, all of them having both
in-degree and out-degree at most 2.

Now we formally define two variants of the decision problem. In the DAG
variant, each node will be of one of the following types:
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– source node: in-degree 0 and out-degree 1, stateless;
– sink node: in-degree arbitrary and out-degree 0, stateless;
– merge node: out-degree 1, in-degree > 1, stateless;
– 2h-rotor node: out-degree 2h (with outgoing arcs labeled 0 to 2h − 1), in-

degree 1, state (in {0, ..., 2h−1}) indicates the outgoing arc taken by the most
recent marble entering the rotor, which would have cyclically incremented its
state; or

– bit node: in-degree ≤ 4 (with each incoming arc labeled read, set to 1, set to 0,
or flip), out-degree ≤ 8 (with each arc labeled with the operation performed,
or equivalently the incoming arc used, and 0 or 1, indicating the current state
after the current marble’s visit), state (in {0, 1}), which is altered by incoming
marbles as per the labels of the incoming arcs used.

TuringTumblem=m(n)
DAG (TTm(n)

D )
Instance: An n-node DAG with one source and two sinks (one designated

as the target), and each other node either a merge, a 2h-rotor, or a bit; the
initial state (0 or 1) of each bit node; and a function specifying the number of
marbles m(n).

Question: When the DAG in its initial state is run with m = m(n) marbles
at its source, do any marbles reach the target sink?

TuringTumblem=m(n)
GRID;C (TTm(n)

G;C )
Instance: An n-piece board configuration placing at most one piece—either

a toggle, a (left and right) ramp, a gear bit, or a gear—at each grid point
in an n × n square grid graph, one point designated as the marble source, and
two points designated as sinks (one designated as the target), such that every
induced gear component has size at most C; the initial state (0 or 1) of each
toggle and of gear component; and a function specifying the number of marbles
m(n).

Question: When the board configuration in its initial state is run with
m = m(n) marbles at its source, do any marbles reach the target sink?

For the value of C, we can choose a small constant such as 8.

Remark 1. Note that while the DAG version abstracts away from Turing Tumble
game board, the only way in which the grid version generalizes the actual physical
product is in parameterizing the numbers of pieces and marbles (and thus the
board size). All other respects in which the formulation differs from the actual
product (e.g., having a strict bound on gear component size, and avoiding the use
of crossover pieces or a second marble color) are restrictions from the product’s
behavior, which therefore only strengthen the hardness results.

Remark 2. In terms of an instance’s encoding size, specifying an instance of the
DAG version by the placement of all the individual pieces on the grid can be seen
as analogous to writing a graph’s edge weights in unary (or in a closer analogy,
splitting each (integer) weight-w edge of a graph into a path of w unit-weight
edges). In the eventual reduction, however, the number of ramp pieces used will
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be at most O(n2
b), where nb is the number of toggles and gear bits used, and so

the results are not affected if we represent the instance abstractly as a DAG and
have n denote the DAG’s number of nodes.

2.3 Single-Marble Non-acyclic Graph Interpretation

An alternative interpretation of the model is one where there is an additional
arc, from the non-target sink to the source, and only a single marble. The back-
arc means the model is no longer justifiable purely in terms of a unidirectional
gravitational pull, but in a sense it is a minimal extension beyond this.

If we permit such a back-arc, then the “exponentially many marbles” situa-
tion perhaps becomes easier to motivate: the assumption of the machine being
loaded with an exponential number of physical objects translates into the more
conventional notion of a machine executing a procedure having exponential run-
ning time. Moreover, the problem can be interpreted as a prediction problem
rather than a simulation problem: we can rephrase the decision problem as ask-
ing whether the marble would ever reach the target sink if we let it run without
a time limit. We emphasize that a DAG plus a single back-arc, i.e., a directed
graph with feedback vertex set number equal to 1, is highly restricted subclass of
directed graphs generally.

3 Strategy: circuit �→ TT
m(n)
D instance �→ TT

m(n)
G;C instance

We prove two main hardness results, P-hardness in the bounded m case and
PSPACE-hardness in the unbounded m case. The two proofs share the same
high-level structure, with the reduction’s transformation procedure divided into
two steps executed in succession:

1. constructing an instance of DAG-based TuringTumble, based on a given
boolean circuit of the appropriate type, and

2. constructing an instance of grid-based TuringTumble, based on the DAG-
based TuringTumble instance just constructed.

For simplicity we do not prove the two TuringTumble formulations are com-
putationally equivalent (neither is a simple generalization of the other), though
they likely are, even via relatively low-complexity transformation procedures.
Indeed, we do not even prove a reduction in the direction that would appear
most relevant here, i.e., from the DAG version to the grid version.

What we prove is a from a special case of the DAG version to the grid version.
Specifically, we reduce from the class of all DAG version instances that can be
produced in step 1. This is because the overall transformation from the formula
to the grid version instance is the composition of the transformations performed
by steps 1 and 2. The reductions for the bounded and unbounded settings will
differ in the nature of the boolean circuit they start with, and in the complexity
constraints the transformation procedure must obey.
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Fig. 2. Reduction from an example FixedInTopNor2CVP instance (left) to
TuringTumble instance (right). Each shaded circle in the TuringTumble instance
with multiple outgoing (downward) arcs indicates a rotor node whose arcs are taken
(by its incoming marbles) in left-to-right (counter-clockwise) order; each bolded gear
indicates a bit node (implemented with the gadget shown in Fig. 3), with its read and
set to 0 input arcs and its read 1 output arc labeled (and other output arcs, which are
directed to the non-sink terminal, not shown).
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To prove the bounded setting P-hard, we give a logarithmic-space reduction
from a variant of the Circuit Value Problem (CVP); to prove the unbounded set-
ting PSPACE-hard, we will give a polynomial-time reduction from an analogous
variant of the True Quantified Circuit problem.

4 Reducing CVP to TuringTumble
m=poly(n)
DAG

We reduce from a P-Complete variant of the Circuit Value Problem
(CVP) that we will call FixedIn Topologically Ordered Nor2CVP
(FixedInTopNor2CVP). NorCVP (equivalent to NandCVP, Problem A.1.5
in [11]) is the CVP variant in which all gates are NOR gates, and is P-Complete
[11]. Let Nor2CVP be the restriction of NorCVP in which all gates have
fanin and fanout at most 2,6 which remains P-Complete. Let TopNor2CVP be
the restriction of Nor2CVP to instances having nodes listed in a topologically
sorted order in the DAG’s string encoding, which again remains P-Complete
[11]. Finally, let FixedInTopNor2CVP be the P-Complete result of merging
all the input’s 1 bits into a single 1 bit and all its 0 bits into a single 0 bit (see
[11], Sect. 6.1).7

Let such a circuit be specified by a sequence of g + 2 gates having values
G−1 = 1, G1 = 0, and for all i ∈ [g], Gi = (Gp1(i) ∧Gp2(i)) where p1(i), p2(i) < i.
The task will be to evaluate the last gate Gg. Define ch(Gj) = p−1

1 (j) � p2
−1(j),

where � denotes multiset union, and out-deg(Gj) = |ch(Gj)|, which is at most
2 for all i ∈ [g], i.e., fanout. For i ∈ [g], let Ri refer to Gi’s read input arc, and
let R1

i refer to the output arc of Gi’s that indicates value 1 was read.

Theorem 1. TuringTumble
m=n
DAG is P-hard under logspace reductions.

Proof. Given the FixedInTopNor2CVP formula, we construct a Turing
Tumble instance as follows. We create a bit node for each gate Gi, i ∈
{−1, 1, 2, ..., g − 1}, initializing G−1 to 1, G0 to 0, and Gi to 1 for i ∈ [g].

We create a rotor node with one input arc coming from the source and with
out-deg(G−1) + 2g − 1 output arcs, where the first out-deg(G−1) of these are
directed to R−1; then, for each i ∈ [g − 1], two arcs are directed to Ri; finally,
one arc is directed to Rg. (Because the nor gates are all initialized to 1, there
is no need to create a bit node for G0.)

For each i ∈ {−1, 1, 2, ..., g − 1}, we create a toggle node with one input arc
coming from R1

i and with out-deg(Gi) output arcs, directed (in arbitrary order)
to the members of {Rj : Gj ∈ ch(Gi)}. Finally, we create an arc from R1

g to the
target sink. (Any missing arcs at exit points with the potential to emit marbles
should be assumed to go to the non-target sink.)

It is clear that the construction can be performed in logspace.

6 Although Nor2CVP’s P-hardness is not stated explicitly by [11], this is implicit in
the reduction from AM2CVP to NorCVP ([11], Theorem 6.2.4).

7 Our FixedInTopNor2CVP is somewhat in the spirit of [17]’s Sequential
NorCVP.
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When run, for each i ∈ {−1, 1, 2, ..., g − 1}, out-deg(Gi) many marbles will
travel from the source to Gi, and thence, if Gi = 1, to Gi’s children, setting
their states to 0. Finally, a marble travels from the source to Gg, and thence, if
Gg = 1, to the target sink. Note that the total number of marbles used is at most
2g + 1. We used a toggle for the output of every bit node except the last, and
each of the g+1 bit nodes will itself certainly contain at least one toggle/gear
bit, and so n is (conservatively) at least m.

Clearly TuringTumble is in P when m = poly(n). Thus we conclude:

Corollary 1. TuringTumble
m=poly(n)
DAG is P-Complete under logspace reduc-

tions.
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Fig. 3. Bit node gadget with operations: set to 1, set to 0, and read, in addition to
flip, consisting of C = 8 gear bits, 7 gears, and 15 ramps.

5 Discussion

Due to space limits, we omit the details of how the DAG problem instance is
embedded in the grid board, other than to say that the procedure involves the
definition of three gadgets (which will be the only occurrences of gear compo-
nents): a bit node gadget (illustrated in Fig. 3), a 2h-rotor node gadget (which
is a perfect height-h binary tree of toggle pieces, with its leaves’ outputs bit-
reversal permuted), a crossover gadget. (A merge node is simple a toggle piece.)
Eventually we obtain:

Theorem 2. TuringTumble
m=poly(n)
GRID;C is P-Complete under logspace reduc-

tions.

Also omitted are the proofs for large number of marbles m:

Theorem 3. TuringTumble
m≥2n

DAG and TuringTumble
m≥2n

GRID;C are both
PSPACE-Complete.

Besides asking what potential extensions to the model might raise its power
to P-Completeness, Aaronson presented as a possibly more interesting open
problem the question of what extensions might raise its power beyond CC-
Completeness but not all the way to P-Completeness. Our CVP reduction could
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perhaps be interpreted as discouraging in terms of that goal, since even a very
limited use of interaction (i.e., gadgets that identify the states of four adjacent
gear bits, using two gears) sufficed for P-Completeness. One potential direction,
however, would be to investigate the computational power of Turing Tumble
equipped with marble colors and sources/paddles, but without gears.

It would also be interesting to characterize Turing Tumble’s computational
power (and Digi-Comp II’s) in relation to Demaine et al. [6]’s gadget primitives
and to Holroyd et al. [13]’s Abelian logic gates.
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Abstract. We present an in-place depth first search (DFS) and an in-
place breadth first search (BFS) that runs on a word RAM in linear time
such that, if the adjacency arrays of the input graph are given in a sorted
order, the input is restored after running the algorithm. To obtain our
results we use properties of the representation used to store the given
graph and show several linear-time in-place graph transformations from
one representation into another.

Keywords: Space efficient · Depth first search · Breadth first search ·
Restore model

1 Introduction

Motivated by the rapid growth of the data sizes in nowadays applications, algo-
rithms that are designed to efficiently utilize both time and space are becoming
more and more important. Another reason for the need of such algorithms is the
limitation in the memory sizes of the tiniest devices.

To measure the total amount of memory that an algorithm requires we dis-
tinguish two types of memory. The memory that stores the input is called the
input memory. The memory that an algorithm additionally occupies during the
computation is called the working memory.

Several models of computation have been considered for the case when writ-
ing in the input memory is restricted. In the multi-pass streaming model [21] the
input is assumed to be held in a read-only sequentially-accessible media, and the
optimization target is the number of passes an algorithm makes over the input.
In the word RAM [15] the memory is partitioned into randomly-accessible words,
each of size w, the input is in the first N ∈ IN words and reading/writing a word
as well as the arithmetic operations (addition, subtraction, multiplication and
bit-shift) take constant time if applied on inputs that fit into a word. As usual,
we assume w = Ω(log N). In the read-only word RAM [15] the input memory is
assumed to be read-only. Another model allows data in the input memory to be
permuted, but not destroyed [5]. A variant of the latter model is called the restore
model [8] where the input memory is allowed to be modified during the process
of answering a query, but it has to be restored to its original state afterwards.
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There are several algorithms for the read-only word RAM, e.g., for sorting [4,
22], geometric problems [1,3], or graph algorithms [2,7,10,12,17]. Unfortunately,
most of the algorithms on n-vertex graphs (including depth first search (DFS)
and breadth first search (BFS)) have to use roughly Ω(n) bits of working memory
in the read-only RAM model since there is a lower bound for the reachability
problem, i.e., the problem to find out if two given vertices of a given graph are
in the same connected component. The lower bound essentially says that we
can solve reachability in polynomial time only if we have roughly Θ(n) bits of
working memory [11].

Our focus is to find space-efficient algorithms, i.e., algorithms that (1) run
(almost) as fast as the best known algorithms for the problem without any space
limitations and that (2) use space economically. To bypass the lower bound we
consider in-place algorithms. An in-place algorithm [9] can use the input memory
and the working memory for writing, and the result of the algorithm may be
written to the input or can be sent to an output stream. Moreover, the working
memory size is restricted to O(1) words. Sorting algorithms like heapsort and
bubblesort are classic examples of in-place algorithms.

Usually, one runs several computations on a given graph. To allow the input
to be reused we want to run our algorithms on the weak restore word RAM, i.e.,
given the input in a specific representation, as for example the sorted represen-
tation in the next section, it can be restored.

Graph algorithms usually do not specify the input format of a given graph
since linear time is sufficient to convert between any two reasonable adjacency-
list representations—e.g., reorder the adjacency arrays with radix sort. However,
since we focus on linear-time in-place algorithms for DFS and BFS in the weak
restore word RAM, we have to be more specific about the input format. Imple-
menting an in-place algorithm on the weak restore word RAM model where the
working memory is limited and the input memory must be restored, a trick is
to use the redundancy in the input representation. Thus, the size of the input
representation is very crucial. In the following, let n and m be the number of
vertices and edges, respectively, of the given graph.

We are not aware of a linear-time DFS or BFS that runs in-place or uses
this model. However, Chakraborty et al. [6] introduced another model where
the adjacency arrays of a graph can be only rotated, but a restoration is not
required. In their model, they recently showed that one can run an in-place DFS
and a BFS in O(n3 log n) time on an arbitrary graph. The space required to
represent the graph is not mentioned explicitly, but based on their description
they require at least (n+2m+min{n,m/w}) words for undirected graphs since
each undirected edge is stored at both endpoints and since an adjacency array
is used for each vertex where the size of the array must be known. Moreover,
their representation for directed graphs uses at least (2n+2m+2min{n,m/w})
words since adjacency arrays for in- and out-edges are stored for each vertex.

We use the weak restore word RAM to show linear-time, in-place algorithms
for both DFS and BFS that runs on a graph with a representation consisting of
only (n+m+2) words on directed graphs and (n+2m+2) words on undirected
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graphs (each undirected edge occurs at both endpoints). To operate efficiently
on that compact representation and to have also some kind of redundancy, we
assume that the order and the content of the adjacency arrays are sorted as
defined more precisely in the next section.

2 Representation

To show our results we use different representations of the given n-vertex graph
G = (V,E) with V = {1, . . . , n} that all need the same amount of memory. We
next present different graph representations.

In our sorted standard representation (Fig. 1), we first store the number of
vertices and a table of pointers T with one pointer per vertex that points to
the adjacency array of the vertex. Subsequently, we store the total length of the
adjacency arrays. We additionally assume for the sorted standard representation
that the adjacency array of vertex i is stored before the adjacency array of vertex
i + 1 for all i = 1, . . . , n − 1 and that all vertices inside an adjacency array are
also stored in ascending order. If the adjacency array of a vertex is not given
in ascending order, then it can be sorted using an in-place linear-time radix
sort [14]. However, in this case, we cannot restore to the representation of the
given graph.

This representation is economical in space and implicitly contains the infor-
mation to compute the degree of each vertex v ∈ V . The degree deg(v) of a
vertex v equals the length of its adjacency array, and since the adjacency array
of a vertex v is written directly before the adjacency array of a vertex v + 1, the
degree of v equals the pointer differences of T [v] and T [v +1] for all v ∈ V \{n}.
For the last vertex v = n the degree equals the difference of the pointer T [v]
and the total length of the array n + m + 2 with n = A[0] and m = A[n + 1].
If a vertex v ∈ V \ {n} has degree zero, then its adjacency array is empty and
therefore T [v] and T [v + 1] point at the same position.

For our DFS described subsequently, we require to encode information like
the state of visited and unvisited vertices. To be able to do this we transform
the sorted standard representation first into a so-called adjacency-array begin-
pointer representation or short the begin-pointer representation and finally into
a so-called swapped begin-pointer representation.

We obtain the begin-pointer representation (Fig. 2) by taking the sorted stan-
dard representation and replacing each vertex name v in the adjacency arrays
by a pointer to the beginning of the adjacency array of vertex v. Since a vertex
of degree zero does not have an adjacency array, we cannot create a pointer into
it. In this case we keep the vertex name, but we mark such a vertex by replacing
its pointer in the table T by a self reference, i.e., set T [v] = v.

In the begin-pointer representation we can jump from one adjacency array
into another, but lack the ability to find out the vertex name of the adjacency
array in constant time if we jump into it using some edge. To resolve this issue
we use the swapped begin-pointer representation (Fig. 3) where we swap the
first adjacency pointer of a vertex v by v and move the pointer stored there into
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the table T of position v. In this representation we are still able to access the
moved pointer by a lookup at T [v], and know immediately to which vertex the
adjacency belongs to.

In our full version of the paper [18], we show that in-place linear-time trans-
formations between all kinds of representation exist.
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Fig. 1. Sorted standard representation of a graph with m undirected or 2m directed
edges.
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Fig. 2. Begin-pointer representation of the graph from Fig. 1. Every adjacency array
entry v is replaced with the pointer p = T [v] to the first position of v’s adjacency array.

5
0

A

n

9
1

7
2

9
3

9
4

7
5

T

12
6

2m
1

7
17
8

2

9
12
10

14
11

3

12
14
13

4

14
12
15

17
16

5

17
14
18

Fig. 3. Swapped begin-pointer representation of the graph in Fig. 1.

3 Depth-First Search

Usually a DFS is only an algorithmic scheme how a graph can be explored step by
step and does nothing useful. Its usefulness comes in combination with additional
computational steps that are defined by a user for a specific application. These
steps can be encapsulated in functions that we call user-implemented functions.

To introduce the user-implemented functions pre- and postprocess as well
as pre- and postexplore we start to sketch their usage in a standard DFS.
Initially all vertices of a graph are unvisited, also called white. The algorithm
starts by visiting a start vertex u. Whenever a DFS visits a vertex u for the
first time it colors u gray to mark it as visited and executes preprocess(u). For
each outgoing edge (u, v) of u, it first calls preexplore(u, v) and second visits
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vertex v if v is white. When finally v has no outgoing white neighbors, it marks
v as done by coloring it black and calls postprocess(v) and backtracks to the
parent u. After backtracking from v to u the algorithm calls postexplore(u, v).

By using suitable implementations for the four user-implemented functions,
the user knows exactly how the exploration takes place and can easily output,
e.g., the vertices in pre-, post-, or inorder with respect to the constructed DFS
tree. Not every DFS algorithm supports all these functions. Thus, we can also
measure the usefulness of a DFS implementation by the number of supported
functions.

To obtain a linear-time in-place DFS on directed graphs, we cannot sup-
port calls of the functions preexplore and postexplore, which are often not
necessary, i.e., to compute pre- and post-order.

We now start the description of our DFS algorithm where we expect the
graph being given in the swapped begin-pointer representation. Our goal is to
encode two information in the representation, but with the knowledge that we
have to restore the representation later. First, we need to encode the color of
each vertex. Instead of encoding all three colors we use only the colors white
and gray-black (as gray or black). Second, we require to encode the path that
we took to reach a vertex such that we are able to backtrack to a parent vertex
and continue the exploration from there.

For simplicity, we assume that every vertex of the directed graph has at least
two neighbors, and we so can conclude that every pointer in the adjacency arrays
points at a position storing a vertex name v ∈ V = {1, . . . , n}. In our full version
of the paper [18], we describe how to handle vertices of degree one and zero.

Our idea is to store the colors of the vertices implicitly by using the following
invariant: A vertex v is white exactly if the first pointer p in the adjacency array
of v, which is stored in T [v], points at a value at most n, i.e., A[p] ≤ n. By
our conclusion this is initially true for all vertices. We next want to enable the
algorithm to backtrack from a visited vertex to its parent. Whenever a DFS
takes a path from a vertex u to a vertex v it has to return to the vertex u from
v, i.e., backtrack from v to u, if all white neighbors of v are visited. Our idea
is to reverse the path from vertex u to the vertex v whenever we visit a white
vertex v by using so-called reverse pointers. In other words, the idea is to turn
the pointer to v in u’s adjacency array to a pointer to u in v’s adjacency array.

Now we describe the construction of a reserve pointer in detail. See also
Fig. 4. Assume that our DFS currently visits a vertex u, and we iterate through
u’s adjacency array. Iterating over u’s adjacency array, e.g., at a position p, we
find a pointer q pointing into an adjacency array of a white vertex v = A[q].
Inside v’s adjacency array the first pointer that we have to inspect is q′ = T [v].
Because we know that we left from position p to q to reach v, we want to store a
pointer to p as a reverse pointer from v to u. (Returning to u, the algorithm can
continue exploring u’s adjacency array from p + 1.) We store p inside T [v]. The
pointer p is now the reverse pointer from v to u. Naively doing so we overwrite
the pointer q′. This would cause an information loss. Therefore, we have to find a
new location for q′. What we can observe is that when using the reverse pointer,
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Fig. 4. The figure shows the state before (left) and after (right) creating a reverse
pointer. The squares at the top are locations in T and the array bellow of each square
of T is the adjacency array of the vertex written on the top. The variables u, v, v′ are
vertices and p, q, q′ ≥ n + 2 are array positions/pointers. Normal arrows are pointers
from an adjacency array into another and dashed arrows are reverse pointers.

we can restore the original pointer from u to v such that we do not need to keep
the pointer q in A[p] (part of u’s adjacency array) as long as we have the reverse
pointer. Hence, we use A[p] as a temporary location to store q′. Note that q′ is
still accessible from v by following the reverse pointer stored in T [v].

In the example above we showed how to visit a vertex from a position p. If p
is not the first position of u’s adjacency array the creation of a reverse pointer
that points at p has a nice side-effect: The vertex v becomes gray-black since the
value stored in T [v] points at a value larger than n.

What if p is the first position in u’s adjacency array? Then we encounter
two problems. To handle the problems, recall that a reverse pointer of a vertex
v is always stored in T [v]. In this scenario the reverse pointer p = T [v] points
to the first position of an adjacency array that stores a vertex name u = A[p].
The first problem is that v is no longer white because p is the position of a
value at most n. The second problem arises when we try to temporary store
the pointer q′ = T [v] to A[p], which stores the vertex name u in our swapped
representation. Alternatively, storing the pointer q′ in T [u] overwrites the reverse
pointer of vertex u, unless u is the start vertex.

We avoid both problems by never leaving a vertex from the first position of
its adjacency array. If we have to visit a vertex by following the first pointer
stored at the first position p, i.e, stored in T [u] with u = A[p], then we first swap
the pointers in T [u] and A[p+1] and follow afterwards the pointer stored at the
second position p + 1. Since the pointers in our adjacency arrays are stored in
ascending order, we can check if we have swapped pointers. Whenever we return
to a vertex that we left from a second position p in its adjacency array and the
value stored at p is smaller than the value in T [u] with u = A[p−1]∧1 ≤ u ≤ n,
we swap the pointers in A[p] and T [u] back, and follow the pointer at position p
to the second vertex. This ensures that we never leave from the first adjacency
position of a vertex and thus never have to store a reverse pointer pointing to a
first adjacency position.
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We have shown how to create reverse pointers; now it remains to describe
how to remove them again. After exploring every neighbor of a vertex v, our
algorithm finds the start of the adjacency array of vertex v′′, i.e., we find a
position q′′ with 1 ≤ A[q′′] ≤ n (or q′′ is the end of the whole array A). Note
that v′′ = v + 1, but we do not know v at this point and thus, we cannot search
for v + 1. Now, we need to backtrack and thus find the reverse pointer of v.
We find the reverse pointer p = T [v] by iterating backwards until we find a
position q with A[q] ≤ n. In fact, then A[q] = v. Now we move the temporary
stored pointer q′ = A[p] into T [v] again, and restore the original pointer to v at
position p by setting A[p] = q. However, this turns v into a white vertex again,
which we solve by incrementing the first pointer q′ = T [v] of v by one such that
the pointer points to a position storing a value larger than n. Since we assume a
degree of at least two for all vertices the incrementation has the effect that the
pointer points at a value strictly greater than n. The incrementation is easily
reversible such that the restoration is trivial.

Before we present the remaining details of our algorithm, we summarize
the possible modifications in T and the adjacency arrays of the vertices in the
following three invariants that hold before and after each call of follow and
backtrack. Before, note that the only other operation that changes values
is nextNeighbor, which only swaps adjacency pointers, but does not change
colors of vertices and the invariants are not affected.

1. A vertex v is white exactly if v is not a start vertex and 1 ≤ A[T [v]] ≤ n.
2. Every gray-black vertex v on a current DFS path, except the start vertex,

stores the reverse pointer at T [v] that points into its parent adjacency array
at a position p = T [v] with A[p] ≥ n. Moreover, p is the position where the
parent of v originally stored the pointer to v.

3. The first pointer q = T [v] in the adjacency array of a gray-black vertex v that
is not on the current DFS path points with its first pointer q = T [v] to the
second position q′ of another vertex adjacency array, i.e., 1 ≤ A[q′ − 1] ≤ n.

In detail, our DFS runs as follows. If a start-vertex 1 ≤ vs ≤ n is given, we
search for the first position p with vs = A[p] of its adjacency array in O(m) time.
Alternatively, we search for a position p with vs = A[p] ∧ 1 ≤ vs ≤ n. Then, we
call visit(p) that is described now.

– visit(p): (Visit the vertex whose adjacency array starts at position p.) In
the swapped begin pointer representation, v = A[p] is always the vertex
name. First, call preprocess(v). Finally, start iterating through the neighbors
starting from position p by executing nextNeighbor(p,true).

– nextNeighbor(p, ignoreCheck): (Follows the edge at position p if the
opposite endpoint of the edge is white. Otherwise, it tries the position p+1.)
First of all, we test if p is the first position in the current adjacency array or
two position after it by determining if (¬ignoreCheck ∧ (1 ≤ A[p] ≤ n)) or
if 1 ≤ A[p − 2] ≤ n, respectively. If so, define p′ (and p′′) such that p′ is the
first (p′′ is the second) position in the adjacency array and check additionally
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if the first pointer (which is temporary stored in a parent vertex in A[r] with
r = T [u], u = A[p′]), and the second pointer in A[p′′] are swapped, which
means that the first is larger than the second pointer. Use the information
computed above and proceed with Substep 1.
Substep 1. If p is the first entry, increment p by one, swap the two pointers in
A[r] and A[p′′] as well as proceed with Substep 3 to visit the first neighbor
(if white) from the second position of the adjacency array.
If p is two positions after the first entry and the two pointers are swapped,
(i.e., we just returned from the first neighbor), decrement p by one, swap the
two pointers as described above and also proceed with Substep 3 to visit the
second neighbor (if white) from the second position of the adjacency array.
Otherwise, we just returned from the second, third, etc. neighbor. Then, we
go to Substep 2 to test if we reached the end of the current adjacency array
and then proceed with Substep 3.
Substep 2. We check if we require to backtrack, i.e, we reached the next
adjacency array or are out of index in array A. Hence, check if (1 ≤ A[p] ≤
n) ∨ (p > n + m + 2). If we have to backtrack, search for the largest position
q < p such that 1 ≤ A[q] ≤ n and call backtrack(q) unless A[q] = vs. In
that case color vs gray-black by incrementing its firs adjacency pointer T [vs]
by one. We now have to explored everything reachable from vs. If wanted,
start a new DFS with a next white vertex.
Substep 3. Check if the edge at p points to a white vertex v = A[q] with
q = A[p] by running the non-recursive procedure isWhite(v). If p does, call
follow(p). Otherwise, call nextNeigbor(p + 1, false).

– isWhite(v): (Return true exactly if the vertex v is white.) We check the
first invariant, i.e., return v �= vs ∧ 1 ≤ A[T [v]] ≤ n.

– follow(p): (Discover a new child via an edge e stored at position p and
color the new discovered vertex implicitly gray-black.) First we determine
the position q = A[p] and the vertex v = A[q] where e points to. Second, we
are going to create a reverse pointer in T [v] to backtrack later. To not lose the
pointer previously stored in T [v] we store it in A[p]. In detail, remember the
first pointer x = T [v] of the neighbor. Now, store the pointer inside A[p] = x
and create a reverse pointer from the neighbors first adjacency entry into its
parent’s adjacency array by setting T [v] = p. Finally, visit the neighbor by
executing visit(q).

– backtrack(q): (From a child v go to its parent where q is the beginning
of v’s adjacency array and p = T [v] with v = A[q] is a reverse pointer to
the adjacency array of the parent.) Before going to the parent, we have to
restore the edges that we modified by visiting v such that we fulfill the third
invariant. In detail, we first restore the child’s edge that was temporarily
stored in the parent’s adjacency array, but let it point one edge further to
guarantee the third invariant. Thus, we set T [v] = A[p]+1 and A[p] = q with
v = A[q] and p = T [v]. Finally, we call postprocess(v) and subsequently
nextNeighbor(p + 1, false).

Concerning the running time on n-vertex m-edge directed graphs, we can
observe that all functions of our in-place DFS run in constant time per call. More-
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over, visit and backtrack are called O(n) times whereas all other functions
are called O(m) times. Thus, our in-place DFS runs in O(n + m) time. Ignor-
ing the calls for the user-defined functions as well as for isWhite, which is not
recursive, we only make tail-calls and consequently require no recursion stack.

Theorem 1. There is an in-place DFS for (un)directed graphs on the weak
restore word RAM that runs in O(n + m) time on n-vertex m-edge graphs on
our sorted standard representation consisting of n + m + 2 words (n + 2m + 2
words) and supports calls of the user defined functions pre- and postprocess.

If O(n(n + m)) time is allowed, we can support pre- and postexplore:
Whenever backtracking from a vertex v to a vertex u we know v’s name and
return to a position p in u’s adjacency entry. Thus, O(n) time allows us to lookup
the vertex name u = A[q] by searching for the largest q < p with 1 ≤ A[q] ≤ n.

4 Breadth-First Search

As usual for a BFS, our algorithm runs in rounds and, in round z−1 with z ∈ IN ,
all vertices of distance z from a start vertex are added into a new list. Then our
algorithm can always iterate through a list of vertices and for each such vertex u,
we iterate through u’s adjacency array. For a simpler description, assume that
all vertices are initially white. After adding u’s white neighbors into a list for
the next BFS round, the vertex turns black.

To implement our BFS we make use of the following observation. In the
sorted standard representation all words in the table T are stored in ascending
order. Our idea is to partition T in regions such that the most significant bits
of the words are equal per region. We use this to create a shifted representation
of T by ignoring the most significant bits and shifting the words in T together
(Lemma 2) such that we have a linear number of bits free to store a c-color
choice dictionary [16,17,19] as demonstrated in Fig. 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p1

17
p2

18
2
19

packed words choice dictionary posit. & c′

Fig. 5. Shifted representation with c-color choice dictionary.

Lemma 2. Let c > 0 be a constant and n ≥ 2c+1w be an integer. Having an
array of n ordered words we can pack it in linear time with an in-place algorithm
such that we have cn unused bits free and that we still can access all elements of
the array in constant time. Afterwards, we can similarly unpack the words.
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Proof. The idea is to partition the array into parts such that each pair of words
in a part has the same c′ = c + 1 significant bits. Since the sequence is ordered,
we iterate over all words and look for the positions where one of the most c′

significant bits change.
Now, the most significant c′ bits of each word are equal per region. We

treat them as unused space. If we store the remaining (w − c′) bits of all words
consecutively, they occupy n(w − c′) bits in total such that it leaves c′n bits
free to use. We use the last 2c

′
words to store c′ and all the positions. Thus,

c′n − 2c
′
w ≥ c′n − n = cn bits remain free.

For implementing a function read(i ∈ {1, . . . , n}) that reads the ith original
word, we have to identify its current position that can be distributed between
two words, to cut its bits out of the two words and to use the remembered
position to reconstruct its most significant bits. For the following description
assume that the bits of a word are numbered from 0 (least significant) to w − 1
(most significant). In detail, the ith word in T originally stored at bit position
w(i − 1) was shifted exactly c(i − 1) bits and now starts after x = (w − c)(i − 1)
bits, i.e., it starts with bit y = (x mod w) in the word ((x div w) − 1) and
consists of the next w − c bits. Using suitable shift operations we can get the
ith word in constant time. To reconstruct its most significant bits, scan over the
last c′ words to determine the part to which i belongs. �	

Before we now obtain our linear-time BFS, we want to remark that the shifted
representation cannot be used to run a standard DFS in-place since a stack for
the DFS can require Θ(n log n) bits on n-vertex graphs and that many bits are
not free in the shifted representation.

We first prepare the shifted representation of our graph (Lemma 2). Then
we can use the free bits to implement a c-color choice dictionary in which we
store the colors of the vertices, and to iterate over colored vertices in constant
time per vertex. The c-color choice dictionary provides the following functions.

– setColor(v, q): Colors an entry v with the color q ∈ {0, . . . , c − 1}.
– color(v): Returns the color of the entry v.
– choice(q): Returns an (arbitrary) entry that has the color q ∈ {0, . . . , c−1}.

To start our BFS at vertex v, we first initialize a c-color choice dictionary
D for four colors {white, light-gray, dark-gray, black} with all vertices
being initially white. Remember in a global variable a round counter z = 0 to
output the round number for each vertex. Then, color the root vertex v light-
gray by calling D.setColor(v, light-gray). Finally, we start to process the
whole DFS-tree as follows.

Whenever the current round counter z is even, the idea is to iterate over the
light-gray vertices and color their white neighbors dark-gray and if z is odd we
do vice versa. We next explain the details for the case where z is even. For an
odd z, simply switch the words light-gray and dark-gray below.

As long as there is a light-gray vertex v = D.choice(light-gray), we out-
put (v, z), color v’s white neighbors dark-gray, and color v black. To color the
neighbors we iterate over v’s adjacency array starting at position p = T [v] and
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ending at q = T [v + 1] − 1 where we define T [n + 1] = n + m + 2 as the
end of our graph representation. For every neighbor u = A[j] with p ≤ j ≤ q
we check if D.color(u) = white and if so, we color u dark-gray by calling
D.setColor(u,dark-gray), otherwise we ignore it. After the iteration over v’s
adjacency array we call D.setColor(v,black). Since v is now black, the next
call of D.choice(light-gray) returns the next light-gray vertex if one exists.

If we could color a vertex dark-gray during the current iteration over the
light-gray vertices, then there are vertices left to process: We increase z by one
and start a new round by iterating now over the dark-gray colored vertices as
described. Otherwise, the BFS finishes.

By Lemma 2, we can restore to the sorted standard representation.

Theorem 3. There is an in-place BFS for (un)directed graphs on the weak
restore word RAM that runs in O(n + m) time on n-vertex m-edge graphs on
our sorted standard representation consisting of n + m + 2 words (n + 2m + 2
words).

5 Conclusion

We showed linear-time in-place algorithms for DFS and BFS on the weak restore
word RAM that have the same asymptotic running time as the standard algo-
rithms. To evaluate the usability in practice we implemented the folklore and the
linear-time in-place DFS. The implementations are published on GitHub [20].

Even if we consider our graph representation to be economical in its space
requirement, Farzan and Munro [13] showed a succinct graph representation with
constant access-time that requires only (1+ε) log

(
n2

m

)
bits for any constant ε > 0.

An interesting open question is if it is possible to implement a (linear-time) in-
place algorithm for DFS or BFS by using the succinct graph representation of
Farzan and Munro or one that requires a little more space.

Acknowledgments. Andrej Sajenko was funded by the Deutsche Forschungsgemein-
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Abstract. We study a generalisation of the stable matching problem
to the many-to-many variant in which vertices of the bipartite graph
G = (A ∪ B, E) may involve ties in their preference lists. We investigate
the notion of strong stability and give an O(m

∑
y∈B b(y)) algorithm for

computing a strongly stable b-matching optimal for vertices of A, where
we denote m = |E|. Our result improves on the previous algorithm by
Chen and Ghosh [2]. The main technique allowing us to speed up the
algorithm is a generalisation of the notion of level-maximal matchings
[8] to the case of b-matchings.

As a byproduct of our results we obtain an O(nm) algorithm for
a many-to-one restriction of the problem also known as the hospitals-
residents problem, where we denote n = |A ∪ B|, m = |E|. The previous
best algorithm had an O(m

∑
y∈B b(y)) runtime [8].

Keywords: Stable marriage · Strongly stable matching · b-matching

1 Introduction

An instance of the strongly stable b-matching problem is an undirected bipartite
graph G = (A ∪ B,E), where each vertex v ∈ A ∪ B has a capacity b(v).
Additionally each vertex ranks its neighbours in order of preference with possible
ties. Formally the preference list of a vertex v is a linearly ordered list of ties,
which are vertices equally good for v. Ties are disjoint and may contain one
vertex.

A set of edges M ⊆ E is a b-matching if for each vertex v ∈ A ∪ B we have
|M(v)| ≤ b(v), where M(v) is the subset of edges of M incident to v.

Let M be a b-matching of G. We first introduce the notion of a blocking edge.
Intuitively, an edge (a, b) ∈ E\M is a blocking edge with respect to M if by
getting matched with each other neither of the vertices a and b would become
worse off and at least one of them would become better off than in M . We say
that a matching is strongly stable if there is no blocking edge with respect to it.
We give a formal definition of the problem in Sect. 2.
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Our task is to find a strongly stable b-matching of G or report that none
exists.

Motivation. The stable matching problem and its extensions have widespread
applications to matching schemes [15].

The notion of strong stability considered in the paper allows us to prevent
bribery amongst the agents. Let us consider the following scenario. Suppose
that two agents, a and b are matched to respectively b′ and a′ in a matching
M . Additionally we assume that there exists an edge (a, b) in the graph, the
agent a strictly prefers b to its partner b′ in M and the agent b is indifferent
between a and a′. In order to improve their situation a may try to bribe b. Since
b would not get worse after accepting a, they might yield to a and accept the
bribe. Clearly such situations cannot happen if M is strongly stable.

Previous Results. Strongly stable matchings in the one-to-one variant have
been extensively studied in the literature. Irving [5] gave an O(n4) algorithm for
the version of the problem where the graph is complete and there is an equal
number of vertices on both sides of the bipartition. In [12] Manlove extended
this algorithm to incomplete bipartite graphs obtaining O(m2) complexity. Later
on Kavitha et al. [8] introduced the notion of a level-maximal matching which
allowed them to speed up the algorithm to O(nm) time.

The one-to-many variant of the problem, also known as the hospital-residents
problem, has also been studied in the literature. As is customary we call vertices
of A and B respectively residents and hospitals, where we assume that residents
have unit capacity. Irving et al. [6] gave an O(m2) algorithm for the problem,
which was improved by Kavitha et al. [8] to O(m

∑
y∈B b(y)).

A generalisation of the stable matching problem to the many-to-many set-
ting, known as the stable b-matching problem has been first studied by Bäıou
and Balinski [1]. They have shown that in instances with strict preferences the
problem can be solved in O(n2) time. Malhotra [11] studied the problem under
the notion of strong stability in instances with ties. He gave a polynomial-time
algorithm for computing a strongly stable b-matching or reporting that none
exists. Chen and Ghosh [2] showed that this algorithm is, in fact, incorrect and
they described an O(m3n) algorithm for the problem.

Our Results. Chen and Ghosh [2] asked whether it was possible to improve the
complexity of their algorithm using techniques from [8]. Manlove posed this prob-
lem again in his recent book [14]. In this paper we show that such an improvement
is indeed possible. We generalise the notion of level-maximal matchings to the
case of b-matchings. This allows us to bound the cost of matching augmentations
performed by the algorithm by O(m

∑
y∈B b(y)). We also show that the residual

graph Gr can be maintained more efficiently than in the algorithm of Chen and
Ghosh [2]. Their algorithm recomputes the residual graph from scratch in each
phase. We prove that this graph can be efficiently updated after each phase of
the algorithm. Combining the above two ideas we obtain an algorithm of time
complexity O(m

∑
y∈B b(y)).
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It is important to note that our algorithm calculates a strongly stable b-
matching optimal for vertices of A however its runtime depends only on capac-
ities of vertices belonging to B. We can reverse the roles of the vertices in
the algorithm and obtain a strongly stable b-matching optimal for vertices
of B in time O(m

∑
x∈A b(x)). This observation implies that we can in fact

determine whether a strongly stable b-matching exists and find one in time
O(mmin{∑y∈B b(y),

∑
x∈A b(x)}). As a byproduct of our algorithm we can solve

the one-to-many restriction of our problem (also known as the hospitals-residents
problem) in time O(nm), thereby answering an open question given in [8].

Related Work. Stable and strongly stable matchings have been studied in
so called stable roommate setting where the underlying graph is non-bipartite.
Irving [4] gave a linear time algorithm for computing a stable matching in non-
bipartite graphs with strict preferences or reporting that none exists. This algo-
rithm has been later extended to the many-to-many setting by Irving and Scott
[7]. Strongly stable matchings have also been studied in non-bipartite graphs.
Scott [16] gave an O(m2) algorithm for computing a strongly stable matching in
non-bipartite graphs or reporting that none exists. Kunysz [9] described a faster
O(nm) algorithm for this problem.

Many structural properties of the stable matching problem have been
described over the years. In [3] Gusfield and Irving have proven that in the case
of no ties the set of stable matching solutions forms a distributive lattice. They
also have shown that despite its exponential size, the lattice can be represented
as a set of closed sets of a certain partial order on O(m) elements. Such a repre-
sentation can be built in time O(m) using the notion of a rotation. These results
have been generalised to the case of strong stability. In [13] Manlove proved that
strongly stable matchings form a distributive lattice. Recently, Kunysz et al. [10]
described an O(nm) algorithm for constructing a representation of the lattice
and generalised the notion of a rotation to the case of strong stability.

2 Preliminaries

We first introduce some additional notation and formally define the problem.
Let b1 and b2 be two neighbours of a in G. If a strictly prefers b1 to b2 we

denote it by b1 �a b2. If a is indifferent between b1 and b2 we write b1 =a b2.
Similarly if a strictly prefers b2 to b1 we denote it by b1 ≺a b2.

If a prefers b1 to b2 or is indifferent between them then we say that a weakly
prefers b1 to b2 and denote it as b1 �a b2. Let M be a b-matching of G. We
say that a vertex v is free in the b-matching M if there are less than b(v) edges
incident to v in M . Similarly we say that a vertex v is full in M if there are
exactly b(v) edges incident to v in M .

Definition 1. An edge (v, w) ∈ E\M is blocking with respect to M if any of
the following conditions hold:

1. Both v and w are free with respect to M .
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2. The vertex v is free with respect to M and there exists a vertex v′ such that
(v′, w) ∈ M and v �w v′.

3. The vertex w is free with respect to M and there exists a vertex w′ such that
(v, w′) ∈ M and w �v w′.

4. There exist vertices v′ and w′ such that (v′, w) ∈ M , (v, w′) ∈ M and addi-
tionally either v �w v′ and w �v w′ or v �w v′ and w �v w′.

By headE(v) we denote the set of the most valued neighbours in E of v,
formally headE(v) = {w ∈ NE(v) : (∀w′ ∈ NE(v))w �v w′}), where NE(v) is
the set of edges incident to v belonging to E. Similarly by tailE(v) we denote
the set of the least valued neighbours of v in the graph spanned by E.

For X ⊆ E by dX(v) we denote the number of edges incident to v in X.
Let p = (v1, v2, . . . , vk) be a path in G. We say that p is an M -alternating

path if (v2i+1, v2i+2) /∈ M and (v2i, v2i+1) ∈ M for each i. If an alternating path
p is of an odd length we say that p is an augmenting path.

3 Description of the Algorithm

In this section we give an overview of Algorithm 1.
The algorithm proceeds in phases corresponding to executions of the outer

while loop (line 3). Throughout the execution we maintain two auxiliary graphs
Gc = (A ∪ B,Ec) - current graph and Gr = (A ∪ B,Er) - residual graph. We
also denote E′ ⊆ E to be a subset of edges of E not considered by the algorithm
yet. We initially set E′ = E and Ec = ∅, Er = ∅. A matching M is maintained
throught the execution. Each phase of the algorithm consists of three steps which
we describe in Subsect. 3.1, 3.2 and 3.3. Additionally we describe some details
regarding the maintenance of the graph Gr in Sect. 5.

3.1 Step 1 - Proposal-Rejection Sequence

In the first step we construct the auxiliary graph Gc. The pseudocode is contained
in lines 4–10 of Algorithm 1.

Each free agent v ∈ A first proposes to the most preferred neighbours on his
preference list, amongst the ones not considered yet (i.e., to the vertices of the
set headE′(v)). Each agent of B upon receiving a proposal may accept or reject
it. Edges corresponding to accepted proposals are added to Gc. Note that an
agent v ∈ A may propose to multiple agents belonging to B and similarly an
agent w ∈ B may accept proposals from multiple agents belonging to A.

Suppose that y receives a proposal from x. How do we determine if y should
accept the proposal? Let us consider two cases:

1. dEc
(y) < b(y)

2. dEc
(y) ≥ b(y)
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In the first case y has leftover capacity and accepts the proposal. Let us now
consider the second case. We say that a vertex x is dominated on the list of y in
the graph Gc if |{(z, y) ∈ Ec : z �y x}| ≥ b(y). If x is dominated on the list of
y we call (x, y) dominated. Clearly y should reject a proposal from x if (x, y) is
dominated as in this case y already has at least b(y) better candidates. If (x, y)
is not dominated then y accepts the proposal and (x, y) is added to Gc.

Once (x, y) is added to Gc some edges already present in Gc may become
dominated. Additionally some edges belonging to the set E′ may also become
dominated. We remove all such edges from E′ ∪ Ec in line 10. In Lemma 3 we
prove that such edges do not belong to any strongly stable b-matching.

Note that once (x, y) is added to Gc some vertices belonging to A may become
free due to the deletion in line 10. Agents belonging to A continue proposing
until all of them are full or they run out of proposals. If at some point there are
at least b(w) vertices incident to w in Ec then such a vertex becomes marked.
Lemma 4 implies that if a vertex w is marked then it must be matched to exactly
b(w) vertices in every strongly stable b-matching.

3.2 Step 2 - Construction of the Residual Graph Gr

The pseudocode of step 2 is described in lines 11–19 of Algorithm 1.
We first identify the set of preferred edges of Gc matched in every strongly

stable b-matching contained in this graph. Then we construct graph Gr based
on edges which are not preferred. The strongly stable b-matching M consists of
preferred edges and a br-matching of Gr, where br(v) is leftover capacity of v.

Suppose that v ∈ A. Similarly as in [2] we split edges incident to v in Gc into
sets of preferred edges PEc

(v) and indifferent edges IEc
(v).

Definition 2. Let v ∈ A. We divide the set NEc
(v) of neighbours of v into

levels L1, L2, ..., Lk according to his preference list. The vertex v is indifferent
between all nodes in the same level Li and strictly prefers each Li to Li+1. Let
p∗ = max{p :

∑p−1
i=1 |Li| ≤ b(v)}. We denote:

– PEc
(v) = {(v, w)|(∃i < p∗)w ∈ Li}.

– IEc
(v) = {(v, w)|w ∈ Lp∗}.

Note that the set IEc
(v) can be nonempty only if dEc

(v) > b(v). In this case
IEc

(v) consists of edges belonging to the tail of v in Gc and PEc
(v) consists of the

remaining edges incident to v in Gc. If we have dEc
(v) ≤ b(v) then the set IEc

(v)
is empty and all the edges incident to v in Gc belong to PEc

(v). We analogously
define sets PEc

and IEc
for agents belonging to B. From the definition it follows

that for any node v we have |PEc
(v)| ≤ b(v).

Definition 3. Let (v, w) ∈ Ec be an edge. We say that (v, w) is of type X
with respect to v if (v, w) ∈ XEc

(v) where X ∈ {P, I}. Similarly we say that
(v, w) is of type X with respect to w if (v, w) ∈ XEc

(w) where X ∈ {P, I}. For
X,Y ∈ {I, P} we say that (v, w) if of type (X,Y ) if (v, w) is of type X with
respect to v and (v, w) is of type Y with respect to w. An edge is preferred if it
is of type (I, P ), (P, I) or (P, P ).
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Let us consider a vertex w ∈ B. Recall that there are at most b(w) edges of
type P with respect to w. There may also exist preferred edges of type I with
respect to w but of type P with respect to the other endpoint. It can happen
that the set of preferred edges incident to w exceeds its capacity. In this case
in lines 11–16 of Algorithm 1 we remove a subset of edges incident to w and
claim that such edges do not belong to any strongly stable matching. After the
removal there are no more than b(w) preferred edges incident to each w ∈ B.

It may happen that there are more than b(v) preferred edges incident to a
vertex v ∈ A. We temporarily allow capacities of vertices belonging to A to be
exceeded and deal with this problem later. Note that in line 15 we again mark
a vertex w if at some point it is incident to more than b(w) edges in Ec.

The residual graph Gr is a subgraph of Gc constructed from edges which are
not preferred. We simply set Er ← {(v, w) ∈ Ec : (v, w) is of type (I, I)} (line
17). Additionally we define a capacity function br(v) = b(v) − |{(v, w) : (v, w) is
preferred}|.

3.3 Step 3 - Augmentation of Gr

Let us now describe step 3 of the algorithm. The pseudocode of this step is
presented in lines 20–30 of Algorithm 1. We distinguish two cases:

1. Gr contains a perfect br-matching Mr

2. a maximum matching Mr of Gr is not a perfect br-matching

In the case (1) our algorithm simply exits the while loop and step 3 is finished.
In the case (2) we identify a subset of edges to be removed from the graph and
restart the process. A maximum matching of Gr is computed using augmentation
paths in lines 21–24. Note that in line 22 we search for an augmenting path of
maximum level. This notion is used to speed up the algorithm and it is precisely
defined in Sect. 6. For the correctness of the algorithm it suffices to find an
arbitrary augmenting path.

Note that in line 29 we mark w if any edges incident to w are removed.

4 Correctness of the Algorithm

In this section we prove the correctness of our algorithm. We say that an edge
is strongly stable if it belongs to some strongly stable b-matching.

In the following two lemmas we show that if the algorithm returns a b-
matching, this b-matching is strongly stable.

Lemma 1. If an edge e = (v, w) is removed during the execution of Algorithm
1, it does not block a b-matching output by the algorithm.

Lemma 2. If Algorithm 1 returns a b-matching, this b-matching is strongly
stable.
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In order to prove that the algorithm is correct we need to show that if a
strongly stable b-matching exists, our algorithm is going to return one. We first
show that no edge which belongs to a strongly stable b-matching is ever deleted.

Lemma 3. No strongly stable edge is ever deleted during the execution of Algo-
rithm 1.

The following auxiliary lemma is needed to prove the correctness of the algo-
rithm. Note that in particular this lemma implies that all the strongly stable
b-matchings are of the same size and match the same sets of vertices.

Lemma 4. Assume that there exists a strongly stable b-matching M0 in G. Let
M be the set computed by the algorithm when it exits the while loop (lines 3–30).
Then:

1. |M | = |M0|
2. For each v ∈ A ∪B we have dM (v) = dM0(v) and dM (v) = min(b(v), dEc

(v))

We say that a strongly stable b-matching is A-optimal if every agent of A is
matched to the best possible set of partners amongst all the possible strongly
stable b-matchings.

Lemma 5. If a strongly stable b-matching exists, then Algorithm 1 outputs an
A-optimal strongly stable b-matching.

5 Maintenance of Gr

In order to perform augmentations of Mr described in Subsect. 3.3 we need to
be able to efficiently determine which edges belong to Gr. Each modification of
Gc may result in some edges changing their types. As a result the graph Gr may
change as well. We cannot afford to recalculate types from scratch after each
modification of Gc as such an approach would significantly slow down the algo-
rithm. We show that each modification of Gc only affects types of neighbouring
vertices and show how to efficiently maintain Gr.

In the next lemma we discuss potential changes of Gr resulting from oper-
ations performed in step 1. We show that when an agent v ∈ A makes his
proposals then edges newly added to Gr are either of the form (v, w) where
w ∈ headE′(v) or of the form (v′, w) where w ∈ headE′(v) and (v′, w) was a
preferred edge before proposals made by v.

Lemma 6. Consider an execution of Algorithm 1. Let us denote by Gj
r the

residual graph after j iterations of the while loop in lines 4–10. Suppose that
in iteration j an agent v ∈ A proposed to agents belonging to headE′(v).

Let (x, y) be an edge added to Gj
r during iteration j. Then exactly one of the

following holds:

1. We have x = v and y ∈ headE′(v). The agent x proposed to y in the iteration
j.
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2. We have y ∈ headE′(v). The edge (x, y) was of type (I, P ) before the iteration
j of the while loop.

We also show that as a result of steps 2 and 3 no new edges are added to Gr.

Lemma 7. Let Gi
r be the residual graph during phase i of the algorithm when

we exit the while loop in lines 4–10. Denote by Hi
r the residual graph obtained

from Gi
r after the execution of steps 2 and 3. Then Hi

r is a subgraph of Gi
r.

It can proven that once an edge is added or removed from Gc we can easily
determine types of all the edges in the updated graph. In order to do so it suffices
to carefully analyse proofs of the above two lemmas (see the full version of the
paper).

In order to keep the pseudocode of Algorithm 1 easier to read we do not
include instructions related to the maintenance of types. It is important to
remember that after each modification of Gc we have to update types according
to cases described in proofs of Lemmas 6 and 7.

Lemma 8. Let (v, w) where v ∈ A and w ∈ B be an edge added to Gc at some
point of the execution of Algorithm 1. Then the following hold:

1. If (v, w) is of type P with respect to v at some point of the execution then it
remains of type P with respect to v as long as it belongs to Gc.

2. If (v, w) is of type I with respect to w at some point of the execution then it
remains of type I with respect to w as long as it belongs to Gc.

The correctness of the above lemma is straightforward from proofs of Lemmas
6 and 7. Note that the type of (v, w) with respect to v ∈ A can change once
during the execution of Algorithm 1. The only possible change is from I to P .
Similarly the type of (v, w) with respect to w ∈ B can only change once. In
the full version of the paper we exploit this fact and present low-level details
regarding data structures used to maintain the graph Gr. We show there that
the cost of maintaining the graph Gr is at most O(nm) throughout the execution.

Recall that throughout the execution of the algorithm we make sure that
all the preferred edges are added to M (see line 18). Additionally we define Mr

to be M restricted to the graph Gr. It may happen that during the execution
of the algorithm a preferred edge e changes its type from (I, P ) to (I, I). It is
important to note that such an edge remains in M even though it is no longer
preferred. Once e changes type to (I, I) it is added to Er and Mr. This fact will
be used in the analysis of level-maximality of Mr described in Sect. 6.

6 Level-Maximal Matchings

In this section we extend the notion of level-maximal matchings [8] to the case
of b-matchings.

For a given edge e we define its level l(e) to be the number of the phase in
which e was added to Gr. Levels of edges not added to Gr remain undefined.
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We say that the level of a vertex v is a minimal level of an edge incident to this
vertex in Gr and we denote this value as l(v). If v is isolated in Gr then the level
of v remains undefined. Let M be a b-matching in G. We define the level of M
as:

l(M) =
∑

w∈B,dM (w)>0

l(w)dM (w)

Note that since we sum over vertices w such that dM (w) > 0 each term in
the above sum is correctly defined.

Definition 4. A matching M is said to be level-maximal in G if for every
matching M ′ such that ∀(v ∈ A)dM (v) = dM ′(v) we have l(M) ≥ l(M ′).

In the remainder of this section we show that the matching Mr maintained
by the algorithm is level-maximal in Gr throughout the execution. To prove this
we need two auxiliary lemmas. In Lemma 9 we give a necessary and sufficient
condition for the matching to be level-maximal. In Lemma 10 we show that if
we are given a level-maximal matching M , we can choose an augmenting path
p such that M ⊕ p is level maximal as well.

Lemma 9. Matching M is level-maximal if and only if there is no alternating
path p from a vertex w ∈ B to a vertex w′ ∈ B such that:

1. The edge of p incident to w does not belong to M
2. The vertex w is free with respect to M
3. The inequality l(w′) < l(w) holds

Lemma 10. Let M be level-maximal matching, v ∈ A be free vertex with respect
to M . Let w ∈ B be a vertex of maximal level reachable by an augmenting path
p from v. Then matching N = M ⊕ p is level-maximal.

A path p as in the statement of Lemma 10 is called a level-maximal augment-
ing path with respect to M . It turns out that the removal of edges from Gr does
not affect level-maximality of Mr.

Lemma 11. Let Mr be a level-maximal matching in Gr = (A ∪ B,Er) and
let E′

r be a subset of Er. Then M ′
r = Mr ∩ E′

r is a level-maximal matching in
G′

r = (A ∪ B,E′
r).

It remains to show that the matching Mr maintained by the algorithm is
level-maximal throughout the execution.

Lemma 12. Matching Mr is level-maximal in Gr at all times of the execution
of Algorithm 1.
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7 Level-Maximal Augmenting Paths

In this section we describe how to implement the search for level-maximal aug-
menting paths (see line 22 of Algorithm 1). Our algorithm is an extension of the
procedure described in [8] for the many-to-one version of the problem.

Let us consider the graph Gr during phase i of the execution of Algorithm
1 and let x ∈ A be a free node with respect to Mr. Our goal is to find a free
vertex w ∈ B reachable from x by an augmenting path from x, such that the
level of w is maximal. If such a vertex w does not exist then we will find a set
Z of vertices belonging to B reachable from x by alternating paths.

Lemma 13. Let p be an augmenting path with respect to Mr from x ∈ A to a
vertex w ∈ B such that w is of maximal possible level. Then the following hold:

1. For each vertex w′ ∈ B belonging to the path p we have l(w′) ≥ l(w).
2. For each edge e belonging to p we have l(e) ≥ l(w).

The search for augmenting paths is organized in rounds i, i− 1, i− 2 . . .. We
start in round i as this is the maximal possible level of an edge in the graph
during phase i. In round k we are going to check whether there exists a level-
maximal augmenting path ending in a vertex of level at least k. If we find such
a path we return it, otherwise we proceed to the round k − 1. We continue until
we either run out edges in the graph or find a desired path. From Lemma 13 it
follows that when we check for the existence of a path ending in a vertex of level
at least k it suffices to test edges of level k or higher.

Note that when we proceed from the round k to the round k − 1 we do not
start the search from scratch. We reuse alternating paths explored in previous
rounds and extend those using edges of level k − 1.

In order to implement this process we maintain an array o buckets X which
implement a simple priority queue. A bucket Xj contains vertices of level j
belonging to B which correspond to endpoints of currently explored alternating
paths. We initialise this structure by adding all neighbours of x into the appro-
priate buckets. In round k we simply continue the search from vertices in the
bucket Xk. There are three cases to consider:

1. Xk is empty and there exists a non-empty bucket.
2. All the remaining buckets are empty.
3. Xk is non-empty.

In the case (1) we simply proceed to the round k − 1. If (2) holds we finish
the search and conclude that there exists no augmenting path starting at x. In
the case (3) we expand current alternating paths. Let w ∈ Xk be a vertex in the
bucket. If w is free we found an augmenting path. From the construction of the
algorithm it follows that the path from x to w is a level-maximal augmenting
path. If w is full we explore alternating paths from this vertex. Vertices of level
lower than k encountered during the search are added to their appropriate buck-
ets. Once we explore all the paths from vertices of level at least k we proceed to
the round k − 1 and continue the search.
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Lemma 14. Total cost of augmenting path searches throughout the execution of
the algorithm is bounded by O(m

∑
y∈B b(y)).

In order to prove that the algorithm runs in O(m
∑

y∈B b(y)) time, it remains
to show that the additional overhead required to maintain the graph Gr does

Algorithm 1. For computing a strongly stable b-matching
1: E′ ← E
2: Ec, Er, M ← ∅
3: while ∃(v ∈ A)v is free and dE′(v) > 0 do
4: while ∃(v ∈ A)v is free and dE′(v) > 0 do � Step 1
5: H ← headE′(v)
6: for w ∈ H do
7: add (v, w) to Ec

8: if dEc(w) ≥ b(w) then
9: marked(w) = true

10: delete dominated edges belonging to Ec ∪ E′ and incident to w

11: for w ∈ B do � Step 2
12: if |{(v, w) : (v, w) is of type (P, I), (P, P ) or (I, P )}| > b(w) then
13: for (v′, w) ∈ Ec ∪ E′ do
14: if v′ �w tailEc(w) then
15: marked(w) = true
16: delete (v′, w)

17: Er ← {(v, w) ∈ Ec : (v, w) is of type (I, I)}
18: add all preferred edges to M
19: Mr ← M ∩ Er

20: while there exists a free m ∈ A in Gr with respect to Mr do � Step 3
21: while there exists an augmenting path p starting from m do
22: p ← an augmenting path from m to a free w ∈ B [of maximum level]
23: M ← M ⊕ p
24: Mr ← Mr ⊕ p

25: if m is free in Gr with respect to Mr then
26: Z ← the set of vertices belonging to B reachable from m by alternating

paths
27: for w, m′ such that w ∈ Z and (m′, w) ∈ Ec ∪ E′ do
28: if m′ �w tailEc(w) then
29: marked(w) = true
30: delete (m′, w)

31: if ∃(v ∈ A)dM (v) > b(v) then
32: return no strongly stable matching exists

33: for w ∈ B do
34: if marked(w) = true ∧dM (w) �= b(w) then
35: return no strongly stable matching exists

36: if marked(w) = false ∧dM (w) �= min(dEc(w), b(w)) then
37: return no strongly stable matching exists

38: return M
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not exceed the cost of augmenting path searches. Due to the space contraints we
defer the details to the full version of the paper.

References
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Abstract. In the eternal domination game played on graphs, an
attacker attacks a vertex at each turn and a team of guards must move
a guard to the attacked vertex to defend it. The guards may only move
to adjacent vertices on their turn. The goal is to determine the eternal
domination number γ∞

all of a graph which is the minimum number of
guards required to defend against an infinite sequence of attacks.

This paper continues the study of the eternal domination game on
strong grids Pn � Pm. Cartesian grids Pn � Pm have been vastly studied
with tight bounds existing for small grids such as k × n grids for k ∈
{2, 3, 4, 5}. It was recently proven that γ∞

all(Pn � Pm) = γ(Pn � Pm) +
O(n + m) where γ(Pn � Pm) is the domination number of Pn � Pm

which lower bounds the eternal domination number [Lamprou et al.
CIAC 2017]. We prove that, for all n, m ∈ N

∗ such that m ≥ n,
�n
3
��m

3
� + Ω(n + m) = γ∞

all(Pn � Pm) = �n
3
��m

3
� + O(m

√
n) (note that

�n
3
��m

3
� is the domination number of Pn � Pm). Our technique may be

applied to other “grid-like” graphs.

Keywords: Eternal domination · Combinatorial games · Graphs ·
Grids

1 Introduction

The origins of the eternal domination game date back to the 1990’s where the
military strategy of Emperor Constantine for defending the Roman Empire was
studied in a mathematical setting [1,21–23]. Roughly, a limited number of armies
must be placed in such a way that an army can always move to defend against
an attack by invaders.

Precisely, eternal domination is a 2-player game on graphs introduced in [6]
and defined as follows. Initially, k guards are placed on some vertices of a graph
G = (V,E). Turn-by-turn, an attacker first chooses a vertex v ∈ V to attack.
Then, if no guard is occupying v or a vertex adjacent to v, then the attacker
wins. Otherwise, one guard must move along an edge to occupy v if it is not
already occupied, and the next turn starts. If the attacker never wins whatever
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under reference ANR-11-LABX-0031-01, the Inria Associated Team AlDyNet. Due to
a lack of space, several proofs have been omitted and can be found in [14].
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be its sequence of attacks, then the guards win. So, clearly, there is no point in
the attacker attacking an occupied vertex. The aim in eternal domination is to
minimize the number of guards that must be used in order to win. Hence, let
γ∞(G) be the minimum integer k such that there exists a strategy allowing k
guards to win, regardless of what the attacker does [6].

In this paper, we consider the “all guards move” variant of eternal domina-
tion, proposed in [11], where, at their turn, every guard may move to a neighbour
of its position (still satisfying that the attacked vertex is occupied by a guard at
the end of the turn). Let γ∞

all(G) be the minimum number of guards for which a
winning strategy exists in this setting. By definition, γ(G) ≤ γ∞

all(G) ≤ γ∞(G)
for any graph G where γ(G) is the minimum size of a dominating set in G1.

Variants of the eternal domination game also differ in the fact that one or
more guards may simultaneously occupy the same vertex. In the initial variant
where a single guard is allowed to move each turn, this is not a strong con-
straint [6]. That is, imposing that a vertex cannot be occupied by more than
one guard does not increase the number of guards required to win. In the case
when multiple guards may move each turn, there are some graphs where this
constraint increases the number of guards [18]. Let γ∗∞

all (G) be the minimum
number of guards to win in G, moving several guards per turn, and in such a
way that a vertex cannot be occupied by several guards.

Previous works mainly studied lower and upper bounds on γ∞(G) and γ∞
all(G)

in function of other parameters of G, such as its domination number γ(G) [11],
independence number α(G)2 [6,11], and clique cover number θ(G)3 [6]. Notably,
these results give the following inequalities γ(G) ≤ γ∞

all(G) ≤ α(G) ≤ γ∞(G) ≤
θ(G) [6]. Particular graph classes have also been studied such as paths and
cycles [11], trees [16], and proper interval graphs [5]. In particular, the class of
grids and graph products has been widely studied [4,10,12,18–20,24].

In this paper, we focus on the class of strong grids SG and provide an almost
tight asymptotical value for γ∞

all(SG). Our result also holds for γ∗∞
all (SG). Our

main result is a new technique to prove upper bounds that we believe can be
generalized to many other “grid-like” graphs.

1.1 Related Work

The “all guards move” variant of eternal domination was shown to be NP-
complete in Hamiltonian split graphs [3]. Note that it is not known whether
the problem of deciding γ∞

all is in NP in general graphs. Moreover, given a graph
G and an integer k as inputs, the problem of deciding if γ∞(G) ≤ k is coNP-
hard [2].

Several graph classes have been studied. For a path Pn on n vertices,
γ∞

all(Pn) = �n
2 � and for a cycle Cn on n vertices, γ∞

all(Cn) = �n
3 � [11]. In [16],

the authors present a linear-time algorithm to determine γ∞
all(T ) for all trees T .

1 D ⊆ V is a dominating set of G if every vertex is in D or adjacent to a vertex in D.
2 α(G) is the maximum size of an independent set in G.
3 θ(G) is the minimum number of complete subgraphs of G whose union covers V (G).
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It was proven that if G is a proper interval graph, then γ∞
all(G) = α(G) [5]. In

the past few years, a lot of effort was put in by several authors to determine the
eternal domination number of cartesian grids, γ∞

all(Pn �Pm). Exact values were
determined for 2 × n cartesian grids [12] and 4 × n cartesian grids [4]. Asymp-
totical tight bounds for 3×n cartesian grids were obtained in [10] and improved
in [20]. Finally, bounds for 5 × n cartesian grids were given in [24]. The best
known lower bound for γ∞

all(Pn �Pm) for values of n and m large enough, is
the domination number with the latter only being recently determined in [13].
The best known upper bound for γ∞

all(Pn �Pm) was determined recently in [19],
where it was shown that γ∞

all(Pn �Pm) = γ(Pn �Pm) + O(n + m). Note that all
the results discussed in this subsection also hold for γ∗∞

all .
There are also many other variants of the game that exist and here we give a

brief description and references for some of them. Recently, the eternal domina-
tion game and a variant have been studied in digraphs, including orientations of
grids and toroidal strong grids [2]. Eternal total domination was studied in [17],
where a total dominating set must be maintained by the guards each turn. The
eviction model of eternal domination was studied in [15], where a vertex contain-
ing a guard is attacked each turn, which forces the guard to move to an adjacent
empty vertex with the condition that the guards must maintain a dominating set
each turn. The authors of the current paper studied a generalization of eternal
domination, called the Spy game, in [7,8]. For more information and results on
the original eternal domination game and its variants, see the survey [18].

1.2 Our Results

The main result of this paper is that, for all n,m ∈ N
∗ such that m ≥ n,

⌊n

3

⌋ ⌊m

3

⌋
+ Ω(n + m) = γ∞

all(Pn � Pm) =
⌈n

3

⌉ ⌈m

3

⌉
+ O(m

√
n).

In [14], we show that this result also holds in the case when at most one
guard may occupy each vertex.

Note that, in toroidal strong grids Cn �Cm, the problem becomes trivial and
γ∞

all(Cn � Cm) = �n
3 ��m

3 � for any n and m. However, in strong grids, border-
effects make the problem much harder. The upper bound is proven by defining a
set of specific configurations that each dominate the grid and are “invariant” to
the movements required by the defined strategy to defend against attacks. That
is, the attacks are separated into three types of attacks: horizontal, vertical, and
diagonal, and the strategy defined gives the movement of the guards based on the
type of attack. It is shown that in each of the three cases of attacks, the guards
are able to move from their current configuration to another configuration in the
set of configurations (so, it does not matter which configuration was the initial
one and which new configuration the guards reach after their moves) and hence,
the guards can defend against an infinite sequence of attacks.

The lower bound is proven by showing that, in any winning configuration in
eternal domination, there are some vertices that are dominated by more than one
guard, and/or some guards dominate at most 6 vertices. By double counting,
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this leads to the necessity of having Ω(n + m) extra guards compared to the
classical domination (when n ≡ 0 (mod 3) and m ≡ 0 (mod 3)).

2 Preliminaries

We use classic graph-theory terminology [9]. Notably, given a graph G = (V,E)
and S ⊆ V , let N(S) = {v ∈ V \ S | ∃w ∈ S, {v, w} ∈ E} denote the set of
neighbours (not in S) of the vertices in S and let N [S] = N(S) ∪ S denote the
closed neighbourhood of S. For v ∈ V , let N(v) = N({v}) and N [v] = N(v) ∪ {v}.

Let n,m ∈ N
∗ be such that m ≥ n and let the n × m strong grid, denoted

by SGn×m, be the strong product Pn � Pm of an n-node path with an m-node
path. Precisely, SGn×m is the graph with the set of vertices {(i, j) | 1 ≤ i ≤
n, 1 ≤ j ≤ m}, and two vertices (i1, j1) and (i2, j2) are adjacent if and only if
max{|i2−i1|, |j2−j1|} = 1. That is, the vertices are identified by their Cartesian
coordinates, i.e., the vertex (i, j) is the vertex in row i and column j. The vertex
(1, 1) is in the bottom-left corner and the vertex (n,m) is in the top-right corner.

Definition 1. The set of border vertices of SGn×m is the set

B =
⋃

1≤i≤n,1≤j≤m

{(1, j), (n, j), (i, 1), (i,m)} of vertices of degree ≤ 5.

The set of pre-border vertices of SGn×m is the set PB = N(B).

Equivalently, PB is the set of border vertices of the strong grid induced by
V (SGn×m) \ B.

We consider the turn-by-turn 2-player game in graphs called eternal domi-
nation. Each turn, each vertex of a graph G = (V,E) may be occupied by one
or more guards. Let k ∈ N

∗ be the total number of guards. The positions of the
guards are formally defined by a multi-set C of vertices, called a configuration,
where the number of occurrences of a vertex v ∈ C corresponds to the num-
ber of guards at v ∈ V and k = |C|. Each turn, given a current configuration
C = {vi | 1 ≤ i ≤ k} of k guards, Player 1, the attacker, attacks a vertex v ∈ V .
Then, Player 2 (the defender) may move each of its guards to a neighbour of their
current position, thereby, achieving a new configuration C ′ = {wi | 1 ≤ i ≤ k}
such that wi ∈ N [vi] for every 1 ≤ i ≤ k (we then say that C ′ is compatible
with C, which is clearly a symmetric relation). If v /∈ C ′, then the attacker wins,
otherwise, the game goes on with a next turn (given the new configuration C ′).

A strategy for k guards is defined by an initial configuration of size k and
by a function that, for every current configuration C and every attacked vertex
v ∈ V , specifies a new configuration C ′ compatible with C. A strategy S for the
guards is winning if, for every sequence of attacked vertices, the attacker never
wins when the defender plays according to S.

Our main contribution is the design of a winning strategy for γ(SGn×m) +
o(γ(SGn×m)) guards in SGn×m, where γ(SGn×m) = �n

3 ��m
3 � is the domination

number of SGn×m. The next lemma is key for this winning strategy.
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In our strategy, it will often be useful to move a guard from a node u ∈ PB
of the pre-border to another node v ∈ PB such that u and v are not necessarily
adjacent. For this purpose, the idea is to place a sufficient number of guards on
the vertices of the border such that a “flow” of the guards on the border vertices
will simulate the move of the guard from u to v in one turn.

Precisely, given a configuration C and u, v ∈ V (SGn×m) with u ∈ C, a guard
is said to jump from u to v if the configuration (C \ {u}) ∪ {v} is compatible
with C, i.e., the guards, in one turn, can move to achieve the same configuration
as C except that there is one guard less on u and one guard more on v. More
generally, given U ⊂ C and W ⊂ V (SGn×m), a set of guards is said to jump from
U to W if the configuration (C \U) ∪ W is compatible with the configuration C.

Lemma 1. Let α, β ∈ N
∗ such that β ≤ α. Let U,W ⊆ PB be two subsets of

pre-border vertices such that |U | = |W | = β. In any configuration C such that
U ⊆ C and C contains at least α occurrences of each vertex in B (i.e., each
border vertex is occupied by at least α guards), then β guards may “jump” from
U to W in one turn. Moreover, only guards in U ∪ B move.

Proof. The proof is by induction on β. The inductive hypothesis is that if each
vertex in B contains α guards, then β ≤ α guards may “jump” from U to W in
one turn such that at most β guards move off of each vertex w ∈ B in this turn.
For the base case, let us assume that U = {u} and W = {w}. Let us show how
1 guard can “jump” from u to w in one turn. If u = w, the result trivially holds,
so let u = w. Let u′ ∈ B (resp., w′) be a neighbour of u (of w) that shares one
coordinate with u (with w). Let Q = (u′ = v0, v1, . . . , v� = w′) be a path from
u′ to w′ induced by the border vertices. In one turn, a guard at u moves to u′,
for every 0 ≤ i < �, a guard at vi moves to vi+1, and a guard at v� moves to w.

Now, assume the inductive hypothesis holds for β ≥ 1. If β = α, we are done,
so assume β < α. Let |U | = |W | = β + 1 ≤ α and let u ∈ U and w ∈ W . By the
inductive hypothesis, β guards may jump from U \ {u} to W \ {w} in one turn
in such a way that, for every vertex b ∈ B, at most β guards move off of b during
this turn. Since every vertex of B is occupied by α > β guards, at least one
guard is unused on every vertex of B. Thus, it possible to use the same strategy
as in the base case to make one guard jump from u to w on this same turn. ��

3 Upper Bound Strategy

This section is devoted to proving that for all n,m ∈ N
∗ such that m ≥ n,

γ∞
all(SGn×m) = �n

3 ��m
3 � + O(m

√
n).

Before considering the general case, let us first assume that n−2 ≡ 0 (mod 3)
and that there exists k ∈ N

∗ such that k − 2 ≡ 0 (mod 3), and m ≡ 0 (mod k).
The n × m strong grid will be partitioned into blocks which are subgrids of
size n × k. More precisely, for all 1 ≤ q ≤ m

k , the qth block contains columns
(q − 1)k + 1 through qk of SGn×m.
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3.1 Horizontal Attacks

In this section, we only consider one block of SGn×m. W.l.o.g., let us consider
the block SGn×k induced by {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ k}. Let us first define a
family of parameterized configurations for this block.

x1 = 3(1− 1) + 2 + 1 = 3

x2 = 3(2− 1) + 2 + 1 = 6

xi = 3(i− 1) + b+ 1

b

a1

a2

a3

y2,3 = 3(2− 1) + 3 + 1 = 7

yj,i = 3(j − 1) + ai + 1

Fig. 1. P11 �P11 where the squares are vertices and two squares sharing a side and/or
a corner are adjacent. Example of a configuration CH(X) where X = (b = 2, a1 =
2, a2 = 1, a3 = an−2

3
= 3), there is one guard at each square in gray, and the white

squares contain no guards.

Let X = {(b, a1, . . . , an−2
3

) | b ∈ {1, 2, 3}, ai ∈ {1, 2, 3} for i = 1, . . . , n−2
3 }.

Given X = (b, a1, . . . , an−2
3

) ∈ X , let xi(X) = 3(i − 1) + b + 1, and yj,i(X) =
3(j − 1) + ai + 1 for every 1 ≤ i ≤ n−2

3 and 1 ≤ j ≤ k−2
3 . We set xi = xi(X)

and yj,i = yj,i(X) when there is no ambiguity. Intuitively, b will represent the
vertical shift of the positions of the guards in configuration X. Similarly, for
every 1 ≤ i ≤ n−2

3 , ai represents the horizontal shift of the positions of the
guards in row xi(X) in configuration X (see Fig. 1).

Horizontal Configurations. Let us define the set CH of configurations as fol-
lows. For every X ∈ X , let CH(X) = B ∪ {(xi(X), yj,i(X)) | 1 ≤ i ≤ n−2

3 , 1 ≤
j ≤ k−2

3 } be the configuration where there is one guard at every vertex of B and
one guard at each vertex (xi(X), yj,i(X)) = (3(i − 1) + b + 1, 3(j − 1) + ai + 1)
for every 1 ≤ i ≤ n−2

3 and 1 ≤ j ≤ k−2
3 . See an example in Fig. 1. Then,

CH = {CH(X) | X ∈ X}.

Note that |CH(X)| = (n−2)(k−2)
9 + 2(n + k) − 4 = κH for every X ∈ X . That

is, any horizontal configuration uses κH guards.

Lemma 2. Every configuration CH(X) ∈ CH is a dominating set of SGn×k.

In this subsection, we limit the power of the attacker by allowing it to attack
only some predefined vertices (this kind of attack will be referred to as a hori-
zontal attack). For every configuration CH(X) ∈ CH and for any such attack, we
show that the guards may be moved (in one turn) in such a way to defend the
attacked vertex and reach a new configuration in CH .
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Horizontal Attacks. Let X = (b, a1, . . . , an−2
3

) ∈ X and CH(X) ∈ CH . Let

AH(X) = {(xi, y) | 1 ≤ i ≤ n − 2
3

, 1 ≤ y ≤ k}.

Fig. 2. Example of a horizontal attack at the red square. The arrows (in blue) show
the movements of the guards in response to the attack. (Color figure online)

A horizontal attack with respect to X is an attack at any vertex in AH(X),
i.e., an attack at any vertex of a row where some non-border vertex is occupied
by a guard. Note that, for every vertex v ∈ AH(X), either v is occupied by a
guard or there is a guard on the vertex to the left or to the right of v.

The next lemma proves that, from any horizontal configuration and against
any horizontal attack (with respect to this current configuration), there is a
strategy for the guards that defends against this attack and leads to a (new)
horizontal configuration. Therefore, starting from any horizontal configuration,
there is a strategy of the guards that wins against any sequence of horizontal
attacks. See Fig. 2 for a schematic representation of how the guards react to one
of these attacks.

Lemma 3. For any X ∈ X and any v ∈ AH(X), there exists X ′ ∈ X such that
v ∈ CH(X ′) and configurations CH(X) and CH(X ′) are compatible. That is, in
one turn, the guards may move from CH(X) to CH(X ′) and defend against an
attack at v.

3.2 Vertical Attacks

In this section, we consider the entire strong grid SGn×m partitioned into m
k

blocks SGn×k with block q, for 1 ≤ q ≤ m
k , being induced by {(i, j + (q − 1)k) |

1 ≤ i ≤ n, 1 ≤ j ≤ k}. We first define a family of parameterized configurations
for this graph. A configuration for the whole grid will be defined as the union of
some configurations for each of the q blocks. Formally, for every 1 ≤ q ≤ m

k , let
X q = {(bq, aq

1, . . . , a
q
n−2
3

) | bq ∈ {1, 2, 3}, aq
i ∈ {1, 2, 3} for i = 1, . . . , n−2

3

and q = 1, . . . , m
k }.
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Given Xq = (bq, aq
1, . . . , a

q
n−2
3

) ∈ X q, let xq
i (X

q) = 3(i − 1) + bq + 1, and

yq
j,i(X

q) = (q − 1)k + 3(j − 1) + aq
i + 1 for every 1 ≤ i ≤ n−2

3 , 1 ≤ j ≤ k−2
3 , and

1 ≤ q ≤ m
k . We set xq

i = xq
i (X

q) and yq
j,i = yq

j,i(X
q) when there is no ambiguity.

That is, intuitively, bq will represent the vertical shift of the positions of the
guards in configuration Xq in the qth block. Similarly, for every 1 ≤ i ≤ n−2

3 ,
aq

i represents the horizontal shift of the positions of the guards in row xi(X) in
configuration Xq in the qth block.

Finally, let Y = {(X1, . . . , X
m
k ) | Xq ∈ X q for q = 1, . . . , m

k }.

Vertical Congurations. In order to properly define the following set of config-
urations, the following notation is used. For a set S of vertices in a configuration
C and an integer x > 0, let S[x] be the multi-set of vertices that consists of x
copies of each vertex in S. Intuitively, S[x] will be used to define a configura-
tion where x guards occupy each vertex of S. Let us now define the set CV of
configurations as follows.

For every Y = (X1, . . . , X
m
k ) ∈ Y, let CV (Y ) = B[ k−2

3 ] ∪
m
k⋃

q=1
CH(Xq) be the

configuration obtained as follows. First, for any 1 ≤ q ≤ m
k , guards are placed

in configuration CH(Xq) in the qth block. Then, k−2
3 guards are added to every

border vertex. Note that overall, there are k−2
3 + 1 guards at each vertex of B.

See an example in Fig. 3. Then, CV = {CV (Y ) | Y ∈ Y}.
Note that |CV (Y )| = m

k κH +2(k−2
3 )(n+m− 2) = κV for every Y ∈ Y. That

is, any vertical configuration uses κV guards.

Lemma 4. Every configuration CV (Y ) ∈ CV is a dominating set of SGn×m.

In this subsection, we limit the power of the attacker by allowing it to attack
only some vertical vertices. For every configuration CV (X) ∈ CV and for any
such attack, we show that the guards may be moved (in one turn) in such a way
to defend the attacked vertex and reach a new configuration in CV .

Vertical Attacks. Let Y = (X1, . . . , X
m
k ) ∈ Y and CV (Y ) ∈ CV . Let

AV (Y ) ={(xq
i − 1, yq

j,i), (x
q
i + 1, yq

j,i) | 1 ≤ i ≤ n − 2
3

, 1 ≤ j ≤ k − 2
3

, 1 ≤ q ≤ m

k
}

∪ {(2, yq
j,n−1) | 1 ≤ j ≤ k − 2

3
, 1 ≤ q ≤ m

k
and bq = 3}

∪ {(n − 1, yq
j,2) | 1 ≤ j ≤ k − 2

3
, 1 ≤ q ≤ m

k
and bq = 1}

A vertical attack with respect to Y is an attack at any vertex in AV (Y ), i.e.,
an attack at any non-border vertex above or below a guard not on a border
vertex. Moreover, if the vertical shift bq of the qth block equals 3, then some
vertices of the second row of the qth block may also be attacked (depending on
the horizontal shift aq

n−1). Finally, if the vertical shift bq of the qth block equals
1, then some vertices of the (n − 1)th row of the qth block may also be attacked
(depending on the horizontal shift aq

2).
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Note that AV (Y ) ∩ CV (Y ) = ∅, and AV (Y ) ∩ AH(Xq) = ∅ for any Xq ∈ Y ,
i.e., any vertical attack with respect to Y is not a horizontal attack with respect
to Xq ∈ Y and vice versa.

b1 b2
b3

a11

a23
a32

q = 1 q = 2 q = 3

Fig. 3. A configuration CV (Y ) where k = 11, Y = (X1, X2, X3), X1 = (2, 2, 1, 3),
X2 = (1, 1, 1, 2), X3 = (3, 3, 3, 1), there are (k − 2)/3 + 1 = 4 guards at each square
in dark gray, 1 guard at each square in light gray, and the white squares contain no
guards.

Fig. 4. Example of a vertical attack at the red square and how the guards react. (Color
figure online)

The next lemma proves that, from any vertical configuration and against any
vertical attack (with respect to this current configuration), there is a strategy for
the guards that defends against this attack and leads to a (new) vertical config-
uration. Therefore, starting from any vertical configuration, there is a strategy
of the guards that wins against any sequence of vertical attacks. See Fig. 4.

Lemma 5. For any Y ∈ Y and any v ∈ AV (Y ), there exists Y ′ ∈ Y such that
v ∈ CV (Y ′) and configurations CV (Y ) and CV (Y ′) are compatible. That is, in
one turn, the guards may move from CV (Y ) to CV (Y ′) and defend against an
attack at v.
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3.3 Diagonal Attacks

The same n×m strong grid SGn×m, notations, and configurations for the guards
used in Subsect. 3.2 will be used here. In this subsection, we limit the power of
the attacker by allowing it to attack only some diagonal vertices. For every
configuration CV (X) ∈ CV and for any such attack, we show that the guards
may be moved (in one turn) in such a way to defend the attacked vertex and
reach a new configuration in CV .

Fig. 5. Example of a diagonal attack at the red square. The dotted arrow in black is
to differentiate between the different guards jumping. (Color figure online)

Diagonal Attacks. Let Y = (X1, . . . , X
m
k ) ∈ Y and CV (Y ) ∈ CV . Let

AD(Y ) = V (SGn×m) \ (B ∪ AH(Y ) ∪ AV (Y )). That is, AD(Y ) covers all
possible attacks that are neither horizontal nor vertical.

A diagonal attack with respect to Y is an attack at any vertex in AD(Y ).
Note that, for every vertex v ∈ AD(Y ), there is a guard on a vertex adjacent to
v and neither in the same column nor in the same row as v.

The next lemma proves that, from any vertical configuration and against any
diagonal attack (with respect to this current configuration), there is a strategy
for the guards that defends against this attack and leads to a (new) vertical con-
figuration. Therefore, starting from any vertical configuration, there is a strategy
of the guards that wins against any sequence of diagonal attacks. See Fig. 5.

Lemma 6. For any Y ∈ Y and any v ∈ AD(Y ), there exists Y ′ ∈ Y such that
v ∈ CV (Y ′) and configurations CV (Y ) and CV (Y ′) are compatible. That is, in
one turn, the guards may move from CV (Y ) to CV (Y ′) and defend against an
attack at v.

3.4 Upper Bound in Strong Grids

Note that, for any Y = (X1, . . . , X
m
k ) ∈ Y, AD(Y )∪AV (Y ) ∪

m
k⋃

q=1
AH(Xq) ∪ B =

V (SGn×m). That is, any attack by the attacker in SGn×m is either an attack at
an occupied vertex or a horizontal, vertical or diagonal attack. Hence, Lemmas 3,
5, and 6 hold for any possible attack, which leads to our main theorem.
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Theorem 1. For all n,m ∈ N
∗ such that m ≥ n,

γ∞
all(SGn×m) =

⌈n

3

⌉ ⌈m

3

⌉
+ O(m

√
n) = (1 + o(1))γ(SGn×m).

Sketch of Proof. Let k be the integer closest to
√

n such that k − 2 ≡ 0 (mod 3).
O(m + n

√
n) guards suffice to place one guard at every vertex of some rows and

columns so that it can be assumed that n and m satisfy n − 2 ≡ 0 (mod 3) and
m ≡ 0 (mod k). Let Y ∈ Y be any configuration. The guards initially occupy
the configuration CV (Y ). By Lemma 4, the guards occupy a dominating set. We
show that, for an attack at any vertex v, there is Y ′ ∈ Y such that v ∈ CV (Y ′)
and CV (Y ′) is compatible with CV (Y ). Indeed, the guards respond to attacks
according to their type, i.e., horizontal, vertical or diagonal. Since k = Θ(

√
n),

the strategy uses κV = �n
3 ��m

3 � + O(m
√

n) guards. �

4 Lower Bound in Strong Grids

So far, the best lower bound for γ∞
all(SGn×m) was the trivial lower bound

γ(SGn×m). In this section, we slightly increase this lower bound, reducing the
gap with the new upper bound of the previous section.

Theorem 2. For all n,m ∈ N
∗, γ∞

all(SGn×m) =
⌊

n
3

⌋ ⌊
m
3

⌋
+ Ω(n + m).

Sketch of Proof. If n and m are divisible by 3, there is a unique minimum domi-
nating set of SGn×m and each vertex is dominated by exactly one guard in this
dominating set. The idea of the proof is that, in any winning configuration, some
vertices are dominated by more than one guard, and/or some guards dominate
at most 6 vertices. Indeed, this is because if there is a 4×5 subgrid that includes
5 border vertices with only one guard in it, then the attacker can win in at most
two turns. By double counting, this leads to the necessity of having Ω(n + m)
extra guards compared to the classical domination. �

5 Further Work

Our results in the strong grid leave the open problem of tightening the bounds.
Also, for which other grid graphs can our techniques used in obtaining the upper
bound be applied? The technique of considering subgrids where only certain
attacks are permitted and packing the borders of these subgrids as well as the
entire grid with guards should allow to prove that γ∞

all(G) = γ(G) + o(nm)
for many types of n × m grids G. This should be true since, for all Cayley
graphs H obtainable from abelian groups, γ∞

all(H) = γ(H) [11], and many grid
graphs can be represented as Cayley graphs obtained from abelian groups which
are truncated. This truncation may increase the number of guards needed but
our technique should permit the additional o(nm) guards to suffice. Lastly, as
mentioned in the introduction, it is known that given a graph G and an integer
k as inputs and asking whether γ∞

all(G) ≤ k is NP-hard in general [3] but the
exact complexity of the decision problem is open.
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14. Mc Inerney, F., Nisse, N., Pérennes, S.: Eternal domination in grids. Technical
report, INRIA (2018). RR, https://hal.archives-ouvertes.fr/hal-01790322

15. Klostermeyer, W.F., Lawrence, M., MacGillivray, G.: Dynamic dominating sets:
the eviction model for eternal domination. Manuscript (2014)

16. Klostermeyer, W.F., MacGillivray, G.: Eternal dominating sets in graphs. J. Comb.
Math. Comb. Comput. 68, 97–111 (2009)

17. Klostermeyer, W.F., Mynhardt, C.M.: Eternal total domination in graphs. Ars
Comb. 68, 473–492 (2012)

18. Klostermeyer, W.F., Mynhardt, C.M.: Protecting a graph with mobile guards.
Appl. Anal. Discrete Math. 10, 1–29 (2014)

19. Lamprou, I., Martin, R., Schewe, S.: Perpetually dominating large grids. In:
Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp.
393–404. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 33

20. Messinger, M.E., Delaney, A.Z.: Closing the gap: eternal domination on 3×n grids.
Contrib. Discrete Math. 12(1), 47–61 (2017)

21. Revelle, C.S.: Can you protect the Roman Empire? Johns Hopkins Mag. 50(2), 40
(1997)

22. Revelle, C.S., Rosing, K.E.: Defendens imperium romanum: a classical problem in
military strategy. Am. Math. Mon. 107, 585–594 (2000)

23. Stewart, I.: Defend the Roman Empire! Sci. Am. 281, 136–138 (1999)
24. van Bommel, C.M., van Bommel, M.F.: Eternal domination numbers of 5 × n grid

graphs. J. Comb. Math. Comb. Comput. 97, 83–102 (2016)

https://hal.archives-ouvertes.fr/hal-01790322
https://doi.org/10.1007/978-3-319-57586-5_33


On the Necessary Memory to Compute
the Plurality in Multi-agent Systems

Emanuele Natale1,2 and Iliad Ramezani3(B)

1 Max Planck Institute for Informatics, Saarbrücken, Germany
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Abstract. We consider the Relative-Majority Problem (also known as
Plurality), in which, given a multi-agent system where each agent is
initially provided an input value out of a set of k possible ones, each
agent is required to eventually compute the input value with the high-
est frequency in the initial configuration. We consider the problem in
the general Population Protocols model in which, given an underlying
undirected connected graph whose nodes represent the agents, edges are
selected by a globally fair scheduler.

The state complexity that is required for solving the Plurality Problem
(i.e., the minimum number of memory states that each agent needs to
have in order to solve the problem), has been a long-standing open prob-
lem. The best protocol so far for the general multi-valued case requires
polynomial memory: Salehkaleybar et al. (2015) devised a protocol that
solves the problem by employing O(k2k) states per agent, and they con-
jectured their upper bound to be optimal. On the other hand, under
the strong assumption that agents initially agree on a total ordering
of the initial input values, G ↪asieniec et al. (2017), provided an elegant
logarithmic-memory plurality protocol.

In this work, we refute Salehkaleybar et al.’s conjecture, by providing
a plurality protocol which employs O(k11) states per agent. Central to
our result is an ordering protocol which allows to leverage on the plurality
protocol by G ↪asieniec et al., of independent interest. We also provide a
Ω(k2)-state lower bound on the necessary memory to solve the problem,
proving that the Plurality Problem cannot be solved within the mere
memory necessary to encode the output.

1 Introduction

Consider a network of n people, where each person supports one opinion from a
set of k possible opinions. There is also a scheduler who decides in each round
which pair of neighbors can interact. The goal is to eventually reach an agreement
on the opinion with the largest number of supporters, i.e. the plurality opinion
(or majority when k = 2). Here, eventually means at an unspecified moment in
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time, which the agents are not necessarily aware of (i.e. global termination is not
required [25]).

The main resource we are interested in minimizing is the state complexity of
each node:

How many different states does each person need to go through during such
computation?

This voting task is known as the Plurality Problem (or as the Voting Problem)
in the asynchronous Population Protocols model [1,24]. For k = 2, the problem
is well understood: each person needs to maintain two bits in order for the people
to elect the opinion of the majority [9,21], regardless of the network size n, and
the problem cannot be solved with a single bit [21].

However, the state complexity of the problem for general k has so far
remained elusive: a clever protocol by Salehkaleybar et al. [24], called DMVR,
shows how to solve the problem with O(k2k) states per person. They conjectured
the DMVR protocol to be optimal:

“We conjecture that the DMVR protocol is an optimal solution for major-
ity voting problem, i.e. at least k2k−1 states are required for any possible
solution.”

On the other hand, under the assumption that agents initially agree on a total
ordering of the initial input values, [17] provide an elegant plurality protocol
which makes use of a polynomial number of states only. It remained however
rather unclear whether the above assumption can be removed in order to achieve
a polynomial number of states for the general Plurality Problem as well.

1.1 Related Work

Progress towards understanding the inherent computational complexity for a
multi-agent system to achieve certain tasks has been largely empirical in nature.
More recently, deeper insights have been offered by analytical studies with
respect to some coordination problems [23]. In this regard, understanding the
amount of memory necessary for a multi-agent system in order to solve a com-
putational problem is a fundamental issue, as it constrains the simplicity of the
individual agents which make up the system [22]. Several research areas such
as Chemical Reaction Networks [13] and Programmable Matter [18] investigate
the design of computing systems composed of elementary units; in this regard, a
high memory requirement for a computational problem constitute a prohibitive
barrier to its feasibility in such systems.

The Plurality Problem (also known as Plurality Consensus Problem in Dis-
tributed Computing), is an extensively studied problem in many areas of dis-
tributed computing, such as population protocols [1,8,9,21,24], fixed-volume
Chemical Reaction Networks [13,27], asynchronous Gossip protocols [5,6,10,15,
16], Statistical Physics [12] and Mathematical Biology [7,11,20,26].

In the Population Protocols model, the memory is usually measured in terms
of the number of states (state complexity) rather than the number of bits, fol-
lowing the convention for abstract automata [19]. In the context of the Plurality
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Problem, for k = 2, the protocols of [9,21] require 4 states per node, and in [21],
they showed that the problem cannot be solved with 3 states. For general k, the
protocol of [24] uses O(2k−1 ·k) states per node, and the only lower bound known
has been so far the trivial Ω(k), as each node/agent needs at least k distinct
states to specify its own opinion (which is from a set of size k). Under the cru-
cial assumption that agents initially agree on a representation of the input values
as distinct integers, [17] provides an elegant solution to the Plurality Problem
which employs O(k6) states only.

1.2 Our Results

In this work we refute the conjecture of [24], by devising a general ordering pro-
tocol which allows the agents to agree on a mapping of the initial k input values
to the integers {0, · · · , k − 1}, thus satisfying the assumption of the protocol by
[17]. We further show how to adapt the plurality protocol by [17] in a way that
allows to couple its execution in parallel with the ordering protocol such that,
once the ordering protocol has converged to the aforementioned mapping, the
execution of the plurality protocol is also eventually consistent with the provided
ordering of colors. We emphasize that agents are not required to detect when
the protocol terminates; this is indeed easily shown to be impossible under the
general assumption of a fair scheduler. The resulting plurality protocol make use
of O(k11) states per agent.

Theorem 1. There is a population protocol Pgeneral which solves the Plurality
Problem under a globally fair scheduler, by employing O(k11) states per agent.

Furthermore, we prove that k2 − k states per node are necessary (Theorem 2).

Insights on the Ordering Problem. The main idea for solving the ordering
problem is to have some agents form a linked list, where each node is a single
agent representing one of the initial colors. The fairness property of the scheduler
allows for an adversarial kind of asynchronicity in how agents’ interactions take
place. Because of this distributed nature of the problem, (temporary) creation
of multiple linked lists cannot be avoided. Thus, it is necessary to devise a way
to eliminate multiple linked lists, whenever more than one of them are detected.
We achieve this goal by having agents from one of the linked lists leave it; also,
as soon as these leaving agents interact with their successor or predecessor in
their former list, they force them to leave the list as well, thus propagating the
removal process until the entire list gets destroyed.

On the other hand, in order to form the linked list, the simple idea of having
removed agents appending themselves to an existing linked list does not work.
One of the issues with this naive approach is that a free agent u may interact
with the last agent v of a list � which is in the process of being destroyed, but
the removal process in � may still not have reached v. Our approach to resolve
this latter issue consists of, firstly, forcing the destruction process of a linked
lists to start from the first agents of the lists, and secondly, forcing free agents
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to attach to an existing list by climbing it up from its first agent and appending
themselves to its end once they have traversed it all. This way, by the time that
there is only one first agent r of a linked list (we call such agents root agents),
we can be sure that all the free agents must follow the linked list starting by the
agent r, thus avoid extending incomplete linked lists.

1.3 Model and Basic Definitions

Population Protocols. In this work, we consider the communication model of
Populations Protocols [1]: the multi-agent system is represented by a connected
graph G = (V,E) of n nodes/agents, where each node implements a finite state
machine with state space Σ. The communication in this model proceeds in dis-
crete steps. We remark that, as for asynchronous continuous-time models with
Poisson transition rates, they can always be mapped to a discrete-time model
[14].

At each time step, an (oriented) edge is chosen by a certain scheduler, and
the two endpoint nodes interact. Furthermore, there is a transition function
Γ : Σ × Σ → Σ × Σ that, given an ordered pair of states (σu, σv) ∈ Σ × Σ for
two interacting nodes u and v, returns their new states Γ ((σu, σv)) = (σ′

u, σ′
v).

We call configuration, and denote it by S(t), the vector whose entry u corresponds
to agent u’s state after t time steps. We say that a configuration S′

1 is reachable
from configuration S′

2 if there exists a sequence of edges sseq such that if we
start from S′

2 and we let the nodes interact according to sseq, the resulting
configuration is S′

1.
In recent works, the scheduler in this model is typically assumed to be prob-

abilistic: the edge that is selected at each step is determined by a probability
distribution on the edges. The most general studied scheduler is the fair sched-
uler [2], which guarantees the following global fairness property [3,4].

Definition 1. A scheduler is said to be globally fair, iff whenever a configura-
tion S appears infinitely often in an infinite execution S(1), S(2), · · · , also any
configuration S′ reachable from S appears infinitely often.

Some of our results hold for an even weaker1 version of scheduler, which satisfies
the weak fairness property [4,17].

Definition 2. A scheduler is said to be weakly fair, iff any edge e ∈ E appears
infinitely often in the activation series e1, e2, ... .

Note that any probabilistic scheduler which selects any edge with a positive
probability, is a globally fair scheduler, in the sense that the global fairness prop-
erty holds with probability 1. Indeed, the fairness condition for a scheduler may

1 Formally, the globally fair scheduler is not a special case of the weak one since, if
the activation of an edge does not lead to a different configuration, it can be ignored
under a globally fair scheduler. However, if such useless activations are ignored, it
is easy to see that the globally fair scheduler is a special case of the weak one.
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be viewed as an attempt to capture, in a general way, useful probability-1 prop-
erties in a probability-free model [2]. This is crucially the case when correctness
is required to be deterministic (i.e. the probability of failure should be 0) [21,24].

We emphasize that our theoretical results concern the existence of certain
times in the execution of the protocols for which some given properties hold,
but no general time upper bound is provided, since a fair scheduler can typically
delay some edge activation arbitrarily.

k-Plurality Problem. Let G = (V,E) be a network of n agents, such that
each agent v ∈ V initially supports a value in a set of possible values C of size
k. We refer to the k input values as colors. For each color c ∈ C, denote by
supp(c) the set of agents supporting color c. We further denote c(v) as the input
color of v ∈ V . We say that a population protocol solves the k-plurality problem
if it reaches any configuration S(t), such that for any t′ ≥ t it holds that the
agents agree on the color with the greatest number of supporters in the initial
configuration S(0). More formally, there is an output function Φ : Σ → C such
that for any t′ ≥ t and any agent u, Φ((S(t′))u) equals the plurality color. If the
relative majority is not unique, the agents should reach agreement on any of the
plurality colors.

In this work, we focus on solving the k-Plurality Problem under a fair sched-
uler with the goal of optimizing the state complexity, which we denote by Mk.

We emphasize that we do not assume any non-trivial lower bounds on the
support of the initial majority compared to other colors, nor that the agents
know the size of the network n, or that they know in advance the number of
colors k. We do not make any assumption on the underlying graph other than
connectedness. We remark that the analysis of our protocol Pgeneral in Theorem 1
holds for strongly connected directed graphs; however, for the sake of simplicity,
we restrict ourselves to the original setting by [23].

Crucially, motivated by real-world scenarios such as DNA computing and
biological protocols, we do not even assume that the nodes initially agree on
a binary representations of the colors: they are only able to recognize whether
two colors are equal and to memorize them. This latter assumption separates
the polynomial state complexity of [17] from the exponential state complexity
of [23].

2 Lower Bound on Mk

Since the agents need at least to be able to distinguish their initial colors from
each other, the trivial lower bound Mk ≥ k follows. In this section, we show
that Mk ∈ Ω(k2).

Theorem 2. Any protocol for the k-Plurality Problem requires at least k2 − k
memory states per agent.

Proof. The high level idea is to employ an indistinguishability argument. That
is, we show that for any protocol with less than k2 −k states, there must be two
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initial configurations, S(0)
1 and S(0)

2, with different plurality colors, such that
a configuration is reachable from both S(0)

1 and S(0)
2. Therefore, the protocol

must fail in at least one of these two initial configurations.
Let P be a protocol that solves the plurality consensus problem with k initial

colors, and let Φ : Σ → C be the output function of P . Define EndStates(c) =
{σ ∈ Σ |Φ(σ) = c}. We start by observing that there must be some color c∗ ∈ C,
such that |EndStates(c∗)| ≤ |Σ|/k. For any initial configuration S(0) and color
c, let ΔS(0)

c be the number of agents in S(0) with initial color c.

Definition 3. For an odd integer x > 0, let Sc∗
x be the set of all initial configu-

rations S(0), such that |S(0)| = 2x−1, ΔS(0)

c∗ = x and for any color c �= c∗, ΔS(0)

c

is an even number.

Given that, for the sake of the lower bound, we can assume a complete
topology, the number of configurations in Sc∗

x is equal to the number of ways
to put (x − 1)/2 pair of balls into k − 1 bins. Therefore, we have |Sc∗

x | ≥
( x−1

2 +k−2/k−2)k−2. For each S(0) ∈ Sc∗
x , since the plurality color in S(0) is c∗,

S(0) will reach a configuration that Φ maps all agents in the configuration to c∗.
The number of such possible configurations is at most the number of ways to put
2x − 1 balls into |EndStates(c∗)| bins. For a sufficiently large x, the number of
such possible configurations is at most ((2x−1+

|Σ|
k −1)e/|Σ|

k −1)
|Σ|
k −1. Observe that

for |Σ| < k2 −k and sufficiently large x, the upper bound on the number of pos-
sible final configurations is less than the lower bound on |Sc∗

x |. Therefore, there
must be two distinct initial configurations S(0)

1, S
(0)

2 ∈ Sc∗
x and a configuration

S in which all agents are mapped to c∗, such that S is reachable from both S(0)
1

and S(0)
2, by some activation sequences T1 and T2 respectively. By definition of

Sc∗
x , we have the following observation.

Observation 1. For each S(0), S(0)′ ∈ Sc∗
x where S(0) �= S(0)′, there exists a

color c such that |ΔS(0)

c − ΔS(0)′
c | ≥ 2.

Let c be the color obtained from Observation 2 when applied to S(0)
1 and S(0)

2.
Without loss of generality, assume that ΔS(0)

1
c ≥ ΔS(0)

2
c +2. Let S(0)

3 be an initial
configuration with x−ΔS(0)

1
c +1 agents, all having initial color c. Let us consider

the two initial configurations S(0)
4 = S(0)

1 ∪ S(0)
3 and S(0)

5 = S(0)
2 ∪ S(0)

3.
Observe that the plurality color in S(0)

5 is still c∗, while the plurality color in
S(0)

4 is now c. Since T1 and T2 are possible initial sequences of interactions in
S(0)

4 and S(0)
5 respectively, both S(0)

4 and S(0)
5 can reach the configuration

S∪S(0)
3. Therefore, a protocol P using only k2−k−1 states can fail to distinguish

between initial configurations S(0)
4 and S(0)

5. Hence, P fails to solve the problem
on at least one initial configuration.

3 Upper Bound on Mk

In the following, we present a protocol that solves the problem with polyno-
mial state complexity; we prove that Mk ∈ O(k11). The protocol proposed by
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G ↪asieniec et al. [2] solves the problem using a polynomial number of states, under
the hypothesis that agents agree on a way to represent each color with a m-bit
label.

First, we present a protocol that constructs such a shared labeling for the
input colors (Theorem 3). Then, we combine these two protocols to design a new
protocol that solves the k-Plurality Problem (Theorem1).

3.1 Protocol for the Ordering Problem

In the Ordering Problem, each agent a ∈ V initially obtains its input color ca,
from a set of possible colors C of size k. The goal of the agent is to eventually
agree on a bijection between the set of the possible input colors of size k, and
the integers {0, ..., k − 1}. In other words, each agent a eventually gets a label
da ∈ {0, 1, ..., k − 1} , such that for any two agents a and b, da = db iff ca = cb.
We want to solve the Ordering Problem by means of a protocol which uses as
few states as possible.

A weakly fair scheduler activates pairs of agents to interact. We consider the
underlying topology of possible interactions to be a complete directed graph. We
show how to remove such assumption in General Graphs section.

In this section, we prove the following theorem.

Theorem 3. There is a population protocol Po which solves the Ordering Prob-
lem under a weakly fair scheduler, by employing O(k4) states per agent.

We refer the reader to the section Insights on the Difficulty in the Introduc-
tion for an overview of the main ideas behind protocol Po.

Memory Organization. The state of each agent a, encodes the following infor-
mation:

1. ca, the initial color, which never changes.
2. da, the desired value, stored in �log2k	 bits.
3. la, a bit, indicating whether or not a is a leader.
4. ra, a bit, indicating whether or not a is a root.
5. prea, a color from the set C. If ra = 0 and a is on a linked list, then prea is

the color of the agent preceding a on the linked list. Otherwise prea is set to
be ca.

6. suca, a color from the set C. If a is on a linked list, suca is the color of the
agent succeeding a on the linked list (or ca if a is the last agent in the linked
list). Otherwise, suca is the color of the agent whom a is following on a linked
list, to reach the end of that linked list, or ca if a is not following a linked list
yet.

Thus, the number of states used is at most 8k4.

Definitions. An agent a is called a leader, iff la is set. A leader a is called a
root, iff ra is set. A leader a is called isolated, iff a is not a root and prea = ca.

A linked list of n links, is a sequence of leaders a0, a1, .., an, such that only
a0 is a root, and ∀i, 0 < i ≤ n : sucai−1 = cai

∧preai
= cai−1 . A linked list is said
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to be consistent, iff none of its agents’ information change by any sequence of
further activations, except possibly suca where a is the last agent on the linked
list.

An isolated agent a is a good agent, iff suca is either ca or the color of one
of the agents of a consistent linked list.

Initialization. Before the execution of the protocol, each agent sets d = 0,
l = 1, r = 1, pre = c and suc = c.

Transition Function. Let us suppose two agents a, b ∈ A interact, a �= b. The
transition function Γo that updates their states is given by the following Python
code, where clear function is for isolating an agent.

As seen above, there are 11 rules. The rules are defined for directed pair
interactions, but can easily be modified to handle the undirected-interaction
case.
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Proof of Theorem 3. We now prove the correctness of Protocol Po (Algorithm
1). We have the following.

Lemma 1. After some number of activations T , in each nonempty set supp(c)
of agents, only one is a leader, and among all leaders only one is a root. After
such configuration is reached, the leader and root bits of all agents will never
change.

Proof. The protocol never changes a leader or root bit from False to True. When
two leaders with the same color interact, one of them clears its leader bit, due to
Rule 1 (notice that the direction of interaction is relevant here). Therefore, the
number of leaders decreases until no two leaders have the same color, after which
no leader bit of any agent ever changes. Afterwards, when two roots interact,
they now have different colors and only one of them remains a root, due to Rule
3. Furthermore, note that when two leaders interact where one of them is a root,
the one who remains a leader is also a root, due to Rule 1. Hence, we conclude
that there is always a root, and after some number of interactions the root must
be unique, after which no root bit of any agent ever changes.

Let T be the number of activations described in Lemma1. Let L be the set
of leaders after T activations and let q ∈ L represent the unique root. We now
prove, by using induction on n, that for any integer n, 1 ≤ n < |L|, after some
number of activations tn ≥ T , there is a consistent linked list of n links whose
agents belong to L.

From now on, we may refer to a leader a ∈ L by its color ca. Observe that,
since there is only one root and no two leaders have the same color, any linked
list that exists after T activations, is a consistent one.

Base case n = 1. If after T activations, q does not have a successor (i.e. sucq =
cq), then as soon as q interacts with another leader, it makes the other one its
successor, due to Rule 5. Otherwise, as soon as q interacts with sucq, by Rule 5
we can be sure that they form a consistent linked list of 1 link.

Induction Step. Suppose that n + 1 < |L| and after tn ≥ T activations,
a consistent linked list of n links exists. Let v1, v2, ..., vn denote the agents
succeeding agent q on the linked list, respectively. Suppose sucvn

�= cvn
, and

let p denote sucvn
. Consider the first interaction between vn and p, after tn

activations. After such interaction, if prep = cvn
and dp = dvn

+ 1, we have a
consistent linked list of n + 1 links; otherwise, Rule 7 or Rule 9 executes and
sucvn

= cvn
. We now assume sucvn

= cvn
.

We prove the following.

Lemma 2. Suppose some number of activation T ′ ≥ T has passed, and q, v1,
v2, ..., vn form a consistent linked list of n links where n + 1 < |L|, and also
sucvn

= cvn
. After some more activations, a good agent exists.

Proof. (Proof of Lemma 2). If a good agent already exists after T ′ activations,
the claim is proved. Therefore, we assume that no good agent exists right after
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T ′ activations. Define M = L \ {q, v1, v2, ..., vn}. Let M1 be the set of agents in
M which are isolated and M2 = M \ M1. It follows from the hypothesis that
|M | > 0. First, we prove the lemma assuming |M1| = |M |. Then, we prove the
other cases by induction on the size of the |M1|.
Case |M1| = |M |. From the definitions above, it follows that |M1| = |M | implies
|M1| > 0 and |M2| = 0. Let a ∈ M1 be an agent. Since a is not a good agent,
we have suca �= ca. Let b denote suca. Consider the first moment after tk acti-
vations in which a and b interact. If one of a or b became a good agent, we are
done. Otherwise, Rule 4 executes and a is cleared. Thus, after some number of
activations t ≥ T ′, a is a good agent.

We now use induction on |M1| = 0, 1, ..., |M |−1 to prove the remaining cases.

Base case |M1| = 0. Consider an agent a0 ∈ M2. Let agent a1 be preva0 . If
a1 ∈ M2, let agent a2 be preva1 . We repeat this process until we reach some
agent ai such that either ai /∈ M2 or ai = aj for some j < i. Since |M1| = 0, if
ai /∈ M2 then ai /∈ M and ai−1 is cleared by the time it and ai interact, due to
Rule 8. Note that the only way M1 gets new members, is that an agent becomes
cleared, which implies the existence of a good agent. Otherwise, ai = aj for some
j < i, which means that we incur in a cycle when we follow the prev values of
agents. In particular, there will be a pair of agents on this cycle such that when
they interact (if they are not already cleared by that time), Rule 8 or Rule 9
executes and an agent is cleared. Therefore, after some activations t ≥ tn, an
agent is cleared and a good agent exists.

Induction Step. Suppose h < |M | and the statement holds for all |M1| < h.
We show that it also holds for |M1| = h. Again, we repeat the process described
in the base case. This time, we stop at agent ai if any of the following holds: (i)
ai /∈ M , (ii) ai = aj for some j < i, or (iii) ai ∈ M1.

The first two cases follow from the same argument as in the base case. In
the third case, suppose that agents ai−1 and ai interact at time tind. If an agent
a ∈ M has been cleared by time tind, then we have a good agent. Otherwise, if
no agents has been cleared between tn activations and tind and, by time tind,
agent ai is not in M1 anymore, then the size of M1 has been reduced by at
least 1. The latter event implies that, by induction hypothesis, after some more
activations either good agent exists or, by Rule 8, an interaction between ai−1

and ai clears ai. Thus, eventually a good agent exists.

Let a be a good agent, whose existence is guaranteed by Lemma 2. The only
activation that changes the state of a, is an interaction with suca (or q when
suca = ca). If suca is not the last agent of the linked list, it will be updated to be
its successor (or v1 when suca = ca). Therefore, after at most n such activations,
a interacts with the last agent on the linked list, and since sucvn

= cvn
, it is

added to the linked list (provided that the linked list have not already increased
its size by attaching another good agent to it). Therefore, after some activations
tn+1 ≥ tn ≥ T , a consistent linked list of n + 1 links is formed, concluding the
induction.
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We have thus proved that, after some number of activations t|L|−1, there is
a consistent linked list that includes all agents from L. Let a be the last agent
on the linked list. Rule 7 ensures that after some activations, suca = ca. Also,
after some activations all non-leader agents copy the assigned number of their
leader. Afterwards, the whole system stabilizes and no agent changes its state,
concluding the proof of the theorem.

As a final remark notice that, for an agent a, there may be sequences of edge
activations that lead the assigned label da to reach a value which grows as a
function of n before stabilizing. We thus assume that the variable da overflows
when exceeding the largest number it can store, and gets set back to 0. Notice
that da is guaranteed to be large enough to store k. It is straightforward to verify
that this latter assumption does not affect our analysis above. �

4 Plurality Protocol with O(k11) States

We now come back to the original problem by proving the following result.

Theorem 4. There is a population protocol Pcli which solves the k-Plurality
Problem under a weakly fair scheduler, when the underlying graph is complete,
by employing O(k11) states per agent.

Recall that, initially, each agent a ∈ V obtains its initial color which we shall
rename to ica, from a set of possible colors C of size k. Let m be �log2k	. For the
sake of simplicity, in this section we consider the underlying topology of possible
interactions to be a complete graph. We show how to remove such assumption
in Section General Graphs, thus proving Theorem1. A weak scheduler activates
pairs of agents to interact. The goal is for all agents to agree on the plurality
color, using as few states as possible.

Main Intuition behind Pcli . The protocol proposed by G ↪asieniec et al. [17],
which we shall call Pr, solves this problem under the hypothesis that each color
is denoted by a never changing m-bit label, such that each bit is either −1 or 1,
rather than the more standard 0 or 1. We adopt the same notation and assume
that the ordering protocol Po stores the d values in such format. The idea is to run
both protocols, Po and Pr, in parallel and, whenever for an agent a, la and da are
not equal, we ensure that after some activations, ∀i, 0 ≤ i < m : ca[i] = w(sa[i]).
When the latter condition holds, we can set la to be da and reinitialize ca and
sa according to initialization of Pr.

Notice that, since every agent is required to eventually learn the label of the
plurality color, each agent also stores a color that corresponds to that label.

Memory Organization. The state of each agent a, encodes the following infor-
mation:

1. ica, da, lda, rta, prea and suca, as described for Po (where ca, la and ra in Po

are renamed to ica, lda and rta, respectively),
2. la, ca, sa, as described in Pr, and
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3. ansa, a color from the set C, which holds the relative majority color.

The number of states used is at most 8k11.

Definitions. An agent a is called unstable, iff la �= da. For each i, 0 ≤ i < m,
and for each x that is an i-bit number with bit values either −1 or 1, let us
define Lx to be the set of all agents a such that the first i bits of la are equal to
x.

Initialization. Before the execution of the protocol, for each agent a, the vari-
ables da, lda, rta, prea and suca are initialized according to Po. Note that, instead
of all bits set to 0, da has all bits set to −1. Moreover, we set la = da and initialize
ca and sa according to Pr. ansa is set to be ica.

Transition Function. We now define the transition function Γcli. Let us sup-
pose that two agents a and b are activated, with a �= b. Let Γo be the transition
function of Po, and Γr be the transition function of Pr.

First, the values related to Po are updated according to Γo. If la or lb is the
label of the winning color in P2(0) (as described in Pr), let us set ansa = ica or
ansa = icb, respectively. Afterwards,

1. If da = la and db = lb, we update the values related to Pr according to Γr.
2. If da �= la, let La = {i|0 ≤ i < m ∧ ca[i] < w(sa[i])}, and let Ga = {i|0 ≤ i <

m ∧ ca[i] > w(sa[i])}. Let Lb and Gb be analogously defined. If La ∪ Ga = ∅,
we set la = da and initialize ca and sa according to initialization rule of Pr.
Otherwise, let M be La ∪ Ga if db = lb, (La ∪ Ga) ∩ (Lb ∪ Gb) otherwise. For
each i ∈ M , if la and lb share the same i-bit prefix, we have that
(a) If i ∈ (La ∩ Gb) ∪ (Ga ∩ Lb), set sa[i] = [ca[i]] and sb[i] = [cb[i]],
(b) Otherwise, update sa[i] and sb[i] according to Γr.
If db = lb, we update the array cb and, if needed, we propagate the changes
as in Γr.

Proof of Theorem 4. First, we prove that for each i, 0 ≤ i < m, and for each x
that is an i-bit number with bit values equal to either −1 or 1, the two invariants
of P2(i) hold for Lx, that is

1.
∑

a∈Lx
ca[i] =

∑
a∈Lx

w(s[i]), and
2. ∀a ∈ Lx, |w(sa[i]) − ca[i])| ≤ 1.

The interactions in which states are updated according to Pr satisfy the invari-
ants due to the correctness of Pr. The other interactions can be divided into the
following two cases.

1. For any agent a, if la changes and the change includes a bit from the i-
bit prefix of la, we know that ca[i] = w(s[i]) by definition of the protocol.
Therefore, if a is in Lx before the change, the same value is subtracted from
both sides of the first invariant. Otherwise, if a is in Lx after the change, the
same value is added to both sides of the first invariant. Moreover, since after
the reinitialization of a it is still the case that ca[i] = w(s[i]), the invariants
hold.



On the Necessary Memory to Compute the Plurality in Multi-agent Systems 335

2. If a ∈ Lx and b are two agents such that sa[i] and sb[i] changes simultaneously,
then we know that b ∈ Lx by definition of the protocol and, because of
the second invariant, either ca[i] = w(sa[i]) − 1 and cb[i] = w(sb[i]) + 1, or
ca[i] = w(sa[i]) + 1 and cb[i] = w(sb[i]) − 1. In both cases, w(sa[i]) + w(sb[i])
remains unchanged after sa[i] is set to [ca[i]] and sb[i] is set to [cb[i]], so the
first invariant holds. It is immediate to check that the second invariant still
holds as well.

We proved that the two invariants hold throughout the execution of the pro-
tocol. It follows from the correctness of Po that after some number of activations
To, for each agent a, da doesn’t change anymore.

Lemma 3. After some number of activations T ≥ To, for each agent a, la equals
da.

By the definition of Pcli, since da remains unchanged after T activations, it is
obvious that la remains unchanged as well. Thus, from the correctness of Pr,
it follows that the whole system eventually stabilizes and every agent knows
the label of the plurality color. Furthermore, when an agent a interacts with an
agent b with the winning color label, Pcli sets ansa to icb. Otherwise, if a has
the winning color itself, as soon as it is activated it sets ansa to ica (if it is not
set already). Therefore, it only remains to prove Lemma 3.

Proof of Lemma 3. Suppose To activations have passed. Since after To activa-
tions, the d value of agents remains unchanged, by the definition Pcli it imme-
diately follows that the number of unstable agents never increases.

Hence, to conclude the proof it suffices to prove the following fact.

Fact 1. Suppose that, after some number of activations T ≥ To have passed, an
unstable agent still exists. Then, after some additional number of activations,
the number of unstable agents decreases.

To see why Fact 1 holds, suppose that some number of activations T ≥ To

have passed and a is an unstable agent. Let I = {i|0 ≤ i < m∧ca[i] �= w(sa[i]))}.
Since the protocol does not change sa[i] and ca[i] for all i /∈ I, the size of I never
increases. We prove Fact 1 by induction on |I|.
Base case |I| = 0. As soon as a is activated, it will set la to da and thus the
number of unstable agents will decrease.

Induction Step. Suppose |I| = n, 0 < n ≤ |A|, and for all |I| < n, after some
activations either I = ∅ or the number of unstable agents decreases. Let i ∈ I be
an integer, and let x denote the i-bit prefix of la. Let U be the set of all agents
a ∈ Lx such that a is unstable and ca[i] = w(sa[i]). Pcli does not let agents in U
interact in P2(i), but any two agents from Lx \ U can interact with each other.
It can easily be seen that the two invariants hold for agents in Lx \ U in P2(i).
After some interactions, we can distinguish the following cases: (i) an unstable
agent in U becomes stable, (ii) an unstable agent becomes stable and is added
to Lx, or (iii) the agents in Lx \ U in P2(i) stabilize.
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In the latter case, suppose without loss of generality that ca[i] < w(sa[i]).
By the first invariant of P2(i) on Lx \ U , we know that there will be another
agent b ∈ Lx \ U such that cb[i] > w(sb[i]). As soon as a and b interact, the
protocol ensures that after the interaction, i /∈ I. Thus, after some number
of activations, either the number of unstable agents decreases or the size of I
decreases. Hence, Fact 1 follows by the induction hypothesis, and the proof of
Lemma 3 is completed. �

5 General Graphs

The protocol Pcli works on complete directed graphs, but it can be easily mod-
ified to work on complete undirected graphs. We now present a protocol Pgen

which works on undirected connected graphs, under a globally fair scheduler,
and finally prove our main result, Theorem1.

Plurality Protocol on General Graphs. The idea is that, whenever a pair
of agents is activated, the two agents can swap their updated states. This way,
the agents effectively travel on the nodes of the underlying graph and possibly
interact with other agents that were not initially adjacent.

Therefore, let us define the transition function Γgen(p, q) = Γcli(q, p), where
Γcli is the transition functions of modified Pcli. The initialization of Pgen is the
same as that of Pcli

Proof (Proof of Theorem 1). Let G be any connected graph. Let S(0), S(1), ...
any an infinite sequence of configurations obtained by running Pgen on G under
a globally fair scheduler, where S(0) is the initial configuration. Since the number
of possible states is finite, the number of possible configurations is also finite.
Therefore, there exists a configuration S that appears infinitely often in the
sequence.

For all distinct pairs u, v ∈ V (G), let Pathu,v be a series of edges forming a
path from u to v, and suppose that the edges in Pathu,v gets activated first in
the order in which they appear in the path, and then in reverse order. Let Eu,v be
the concatenation of such edge activations. If we activate edges according to Eu,v,
then u travels along Pathu,v (possibly interacting with some other agents), until
it interacts with v, and then travels back to its position. Therefore, the sequence
of activations Eu,v ensures that pair {u, v} of agents interact with each other at
least once. If we keep activating edges according to the sequences {Eu,v}u,v∈V ,
for each pair of agents {u, v}, then starting from S, each pair of agents interact
infinitely often.

Remark that, a globally fair scheduler is also a weakly fair one. By correctness
of Pcli under a weakly fair scheduler (Theorem4), by repeating the mentioned
edge activation sequence starting from S, a stable configuration S′ will be reached
(a configuration in which all agents know the initial plurality color, and their
guess remains correct thereafter). Therefore, S′ is reachable from S. By the
definition of a globally fair scheduler, since S is infinitely reached, the stable
configuration S′ is eventually reached.
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9. Bénézit, F., Thiran, P., Vetterli, M.: Interval consensus: from quantized gossip to
voting. In: Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP 2009, pp. 3661–3664 (2009)

10. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE/ACM Trans. Netw. 14(SI), 2508–2530 (2006)

11. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

12. Levin, D.A., Peres, Y.: Markov Chains and Mixing Times, 1st edn. American
Mathematical Society, Providence (2008)

13. Doty, D.: Timing in chemical reaction networks. In: Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 772–784 (2014)
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Abstract. An edge-bicolored graph is an undirected graph where each
edge is colored exclusively either blue or red. We consider the following
switching operation at vertices of edge-bicolored graphs: switching at a
vertex changes colors of all edges incident with the vertex from blue to
red and vice versa.

We study the complexity of using vertex switching to transform an
edge-bicolored graph into a graph that satisfies a given property for the
blue graph alone or for both blue and red graphs, and obtain polynomial-
time algorithms and NP-completeness proofs for several fundamental
properties such as connected graphs, Eulerian graphs, and acyclic graphs.

Keywords: Graph algorithms · Edge-bicolored graphs ·
Vertex switching

1 Introduction

An edge-bicolored graph G is an undirected graph where each edge is colored
exclusively either blue or red, and we use Gb and Gr respectively to denote
the blue and red graphs of G. Edge-bicolored graphs arise naturally from many
applications. For instance, we can represent a communication network by using
blue edges for active lines and red edges for inactive lines.

For an edge-bicolored graph, the operation of switching at a vertex changes
colors of all edges incident with the vertex from blue to red and vice versa.
This switching operation contains the classical Seidal switching [10] as a spe-
cial case with G being edge-bicolored complete graphs and, as pointed out by
Zaslavsky [12], was first described by Abelson and Rosenberg [1] in their math-
ematical system for structural analysis of attitudinal cognitions.

In this paper, we are interested in using switching operation to transform
an edge-bicolored graph G into a graph that satisfies a given property for the
blue graph alone or for both blue and red graphs. We will focus on polynomial
algorithms and NP-completeness of the following two types of problems in terms
of a given graph property Π, i.e., a family Π of graphs, where G � S denotes
the resulting graph after switching at vertices S.
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Π-Graph Switching: Does input graph G contain vertices S such that
(G � S)b is a Π-graph?

Dual Π-Graph Switching: Does input graph G contain vertices S
such that both (G � S)b and (G � S)r are Π-graphs?

We will consider Π-Graph Switching and Dual Π-Graph Switching
for the following classical and fundamental Π-graphs: connected graphs, Eulerian
graphs, even graphs, cluster graphs, and acyclic graphs.

1.1 Our Contributions

Table 1 summarizes our main results for Π-Graph Switching and Dual
Π-Graph Switching. We note that our cubic algorithms for Even Switching
and Dually Even Switching are based on a connection with the light-flipping
game of Dodis and Winkler [2], and our cubic algorithm for Dual Cluster
Switching uses a reduction to the classical 2Sat problem.

Table 1. Complexities of Π-Graph Switching and Dual Π-Graph Switching.

Π Π-Graph Switching Dual Π-Graph Switching

Connected O(m + n) NP-complete

Even O(n3) O(n3)

Eulerian Open NP-complete

Cluster NP-complete O(n3)

Acyclic NP-complete NP-complete

1.2 Related Work

Switching on signed graphs (edge-bicolored graphs with signs “+” and “−” as two
colors and {+,−} forms a group under product of signs) has been well studied
in connection with matroid theory [12,13]. However, there is little attention in
the literature regarding algorithmic problems we study in this paper for general
edge-bicolored graphs.

For Π-Graph Switching on edge-bicolored complete graphs, the problem
is equivalent to that of transforming an uncolored graph into a Π-graph by
Seidel switching which swaps neighbors of a vertex with its non-neighbors. For
this special case, polynomial-time algorithms have been obtained for various Π-
graphs, e.g., Hamiltonian graphs [8], Eulerian graphs [6], bipartite graphs [6], and
graphs of fixed degeneracy [3,7]. On the other hand, there are a few intractable
cases such as regular graphs [7].
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1.3 Definitions

An edge-bicolored graph G = (V,Eb ∪ Er) consists of blue graph Gb = (V,Eb)
and red graph Gr = (V,Er) with Eb ∩ Er = φ. We use m and n for numbers of
edges and vertices in G. A vertex u is a blue neighbor (resp., red neighbor) of v if
u is a neighbor of v in Gb (resp., Gr), and the blue-degree db(v) (resp., red-degree
dr(v)) of vertex v in G is the degree of v in Gb (resp., Gr). Two vertices u and v
in G are dually connected if G contains both blue and red paths between u and
v, and a subgraph of G is monochromatic if all edges in G have the same color.

An uncolored graph is even if every vertex has an even degree, Eulerian if
it is even and connected, acyclic if it contains no cycle, and a cluster graph if it
is the disjoint union of complete graphs. For any property Π, an edge-bicolored
graph G is a dual Π-graph if both Gb and Gr are Π-graphs.

In all illustrations, solid lines represent blue edges and dashed lines represent
red edges.

1.4 Basic Properties

We use G � v to denote the resulting graph after switching at a vertex v, and
G�S the resulting graph after switching at every vertex of a set S of vertices. The
following two observations directly follow from the definition of vertex switching:
(a) for any vertex v of G, (G � v) � v = G, and (b) for any edge e, the color of
e is changed iff S contains exactly one end of e.

The above two observations lead us to the following elementary properties of
vertex switching, which will be used throughout this paper.

Lemma 1. Let S be a subset of vertices of an edge-bicolored graph G.

1. G � S is the graph obtained by changing the color of each edge in the cut
[S, V − S] from blue to red and vice versa.

2. G�S is uniquely determined regardless of the ordering we switch at vertices.
3. For any subset S′ of vertices, (G�S)�S′ = G� (SΔS′), where SΔS′ is the

symmetric difference of S and S′.

2 Connected Graphs

We start with the fundamental property of connectedness of graphs as prop-
erty Π and consider Connected Switching (Is (G � S)b a connected graph?)
and Dually Connected Switching (Are (G � S)b and (G � S)r both con-
nected graphs?). We give a simple O(m + n)-time algorithm for Connected
Switching following a result of Zaslavsky [12], and prove the NP-completeness
of Dually Connected Switching. For Dually Connected Switching on
edge-bicolored complete graphs, we completely determine the existence of the
required S in terms of the structure of Gb and Gr.

For Connected Switching, we first note the following characterization as
a special case of a result of Zaslavsky [12]. Only a hint of proof was given in that
paper, and here we fill in details for completeness.
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Theorem 1 (Zaslavsky). For any edge-bicolored graph G, there is a subset S
of vertices such that (G � S)b is connected iff the underlying uncolored graph of
G is connected.

Proof. We need only prove the sufficiency as the necessity is obvious. Let T be
an arbitrary spanning tree of G, and make T a rooted tree by fixing a vertex
as the root. We perform switching operations starting from children of the root
level-by-level as follows: switch at the current vertex if it is connected to its
parent by a red edge. It is clear that when we finish, all edges of T become blue
and hence the resulting graph is blue-connected, which establishes the claim. ��

Since we can find a spanning tree T of G using BFS and process T level-by-
level in O(m + n) time, the proof implies the following result.

Corollary 1. Connected Switching is solvable in O(m + n) time.

On the other hand, once we require both (G � S)b and (G � S)r to be
connected, it becomes intractable to find the required S. We will prove this
fact by a reduction from the following NP-complete problem Set Splitting for
triples [9].

Instance: Set X and collection T of triples from X.
Question: Is there a partition (X ′,X − X ′) of X such that every triple
in T has its elements in both X ′ and X − X ′?

Note that for any instance (X, T ) of Set Splitting for triples, a partition
(X ′,X − X ′) forms a solution iff every triple in T contains exactly one or two
elements of X ′.

Theorem 2. Dually Connected Switching is NP-complete.

Proof. The problem is clearly in NP and we give a reduction from Set Split-
ting for triples with instance (X, T ). We first construct from (X, T ) in polyno-
mial time an edge-bicolored multigraph G as follows (see Fig. 1a for an example):

1. Create a vertex v∗. For each element x ∈ X, create an element-vertex vx and
connect it with v∗ by a blue edge and a red edge.

2. For each triple T ∈ T , create a triple-vertex vT and connect vT with each
corresponding element-vertex of T by a blue edge.

For any X ′ ⊆ X, let V (X ′) denote its corresponding vertices in G. We
show that (X, T ) admits a valid splitting (X ′,X − X ′) iff G � V (X ′) is dually
connected. For this purpose, we first note that all element-vertices of G are
dually connected to v∗ and it remains so regardless of what vertices of G are
switched at. Secondly for any triple-vertex vT , the only way to make vT dually
connected to v∗ is to switch at exactly one or two vertices of V (T ). It follows
that G�V (X ′) is dually connected iff V (X ′) contains exactly one or two vertices
of V (T ) for every triple T ∈ T , which is equivalent to (X ′, V −X ′) being a valid
splitting.
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v∗

v1
v2 v3

v4

(a)

v∗ vx

(b)

Fig. 1. (a) Example of reduction from Set Splitting where X = {1, 2, 3, 4} and
T = {{1, 2, 3}, {2, 3, 4}}, and (b) replacement gadget H for blue-red multiple edge.

Now we remove multiple edges in G by replacing, for each element-vertex vx,
the blue-red multiple edge connecting vx and vertex v∗ by gadget H in Fig. 1b. It
is easily checked that all vertices in H are dually-connected to v∗ and it remains
so after switching at vx. This ensures that this new graph is the required instance
of Dually Connected Switching and hence the theorem follows. ��

We now consider the special case of Dually Connected Switching with G
being edge-bicolored complete graphs, and completely characterize the existence
of required S in terms of the structure of Gb and Gr, which also leads to an
O(n2)-time algorithm. First we give two lemmas that enable us to switch at a
single vertex without disconnecting a graph.

Lemma 2. Let G be an edge-bicolored complete graph. For any connected Gb

that is not a complete graph, there exists a vertex v such that (G � v)b remains
connected.

Proof. In order for a vertex v to possess the property in the lemma, it suffices
for v to be a non-universal vertex of Gb such that Gb − v remains connected.
Indeed, if Gb contains a universal vertex, then we can take any non-universal
vertex of Gb as v (Gb contains at least one such vertex). Otherwise, compute a
spanning tree T of Gb and take any leaf of T as v. ��

Lemma 3. Let G be an edge-bicolored complete graph. If Gb is disconnected
then for any non-universal vertex v of Gr, (G � v)r remains connected.

Proof. First we note that Gr is connected as G is a complete graph. For any
vertex u, if Gr − u is disconnected, then Gb − u is connected as G − u is also
a complete graph. By the assumption that Gb is disconnected, u is an isolated
vertex of Gb, implying that u is a universal vertex of Gr. Therefore, Gr − v
remains connected for any non-universal vertex v, and hence (G � v)r remains
connected for any such vertex. ��

With the above two lemmas at hand, we now give a structural characteri-
zation for edge-bicolored complete graphs that can be transformed into dually
connected ones by vertex switching.

Theorem 3. An edge-bicolored complete graph G can be transformed into a
dually connected graph by vertex switching iff neither Gb nor Gr is a complete
graph or the union of two vertex-disjoint complete graphs.
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Proof. Suppose that neither Gb nor Gr is a complete graph or the union of
two vertex-disjoint complete graphs. If both Gb and Gr are connected, then
we are done. Otherwise, without loss of generality, we may assume that Gb is
disconnected. Then Gr is connected as G is a complete graph. We consider two
cases, which requires us to switch at one and two vertices respectively.

Case 1. Gb contains one connected component H that is not a complete graph.
By applying Lemma 2 to G[V (H)], we see that H contains a vertex v
such that (G[V (H)] � v)b remains connected. It follows that (G � v)b is
connected as v is connected to all vertices in G − V (H) by blue edges
after switching at vertex v. Since Gr is connected and v is not a universal
vertex of Gr, by Lemma 3, (G � v)r remains connected.

Case 2. Gb is the disjoint union of k ≥ 3 complete graphs. Since Gr is not
a complete graph, it contains at least one non-universal vertex v. By
Lemma 3, (G�v)r remains connected. Note that the connected compo-
nent of (G � v)b containing v is not a complete graph. Therefore we are
done if (G � v)b is connected, and otherwise Case 1 applies to (G � v)b.

Conversely, we may assume, without loss of generality, that Gb violates the
condition of the theorem. If Gb is a complete graph, then for any vertices S,
(G�S)b is a union of two vertex-disjoint complete graphs, which is disconnected.
Otherwise Gb consists of two vertex-disjoint complete graphs, and let H denote
one of them. For any vertices S, we have G�S = (G�V (H))�(S
V (H)). Since
(G � V (H))b is a complete graph, we see that (G � S)b consists of two vertex-
disjoint complete graphs if S �= V (H), which is disconnected; and otherwise
(G � S)b is a complete graph and hence (G � S)r is disconnected. ��

Since it takes O(n2) time to check whether a graph is a complete graph or
the union of two vertex-disjoint complete graphs, we have the following result.

Corollary 2. For edge-bicolored complete graphs, Dually Connected
Switching is solvable in O(n2) time.

3 Eulerian Graphs

In connection with Eulerian graphs, we take even graphs and Eulerian graphs,
respectively, as property Π and consider the following four problems:

– Even Switching: Is (G � S)b an even graph?
– Eulerian Switching: Is (G � S)b a connected even graph, i.e., Eulerian

graph?
– Dually Even Switching: Are (G � S)b and (G � S)r both even graphs?
– Dually Eulerian Switching: Are (G � S)b and (G � S)r both Eulerian

graphs?
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We obtain O(n3)-time algorithms for both Even Switching and Dually
Even Switching through a connection with the light-flipping game of Dodis
and Winkler [2], and establish NP-completeness for Dually Eulerian Switch-
ing. However, the complexity of Eulerian Switching remains open.

Let us start with two simple but crucial observations on degree parity once
we switch at a vertex v in G:

1. Vertex v interchanges its blue-degree parity with its red-degree parity.
2. Every vertex u adjacent to v changes its blue-degree parity and red-degree

parity, regardless of the color of edge uv.

The above observations lead us to the following light-flipping game of Dodis and
Winkler [2], which contains Lights Out and Orbix games as special cases:

Let G∗ be an undirected graph where each vertex has an indicator light
with state either On or Off, and a button of type either Excl or Incl.
Pressing an Excl button flips states of all its neighboring vertices, and
pressing an Incl button flips state of the vertex and also states of all its
neighboring vertices. Given an initial configuration of lights and buttons,
the objective of the game is to press some buttons to turn off all lights,
i.e., turn all vertices into Off states.

Indeed, we can express Even Switching as a light-flipping game as follows:

1. Set G∗ to be the underlying uncolored graph of edge-bicolored graph G.
2. The button type of a vertex is Excl if its blue- and red-degrees have the same

parity and Incl otherwise.
3. Set the initial state of a vertex to be Off if its blue-degree is even and On

otherwise.

With the above connection, we can adopt the ideas for the light-flipping
game [2] to solve Even Switching directly by solving a system of linear equa-
tions over GF(2) in polynomial time.

Theorem 4. Even Switching is solvable in O(n3) time.

Proof. Let G be an edge-bicolored graph. For each vertex vi of G, let xi ∈ {0, 1}
be a variable to indicate whether vi is switched at (xi = 1) or not (xi = 0). Note
that switching at a vertex vi changes its blue-degree from db(vi) to dr(vi), and
also changes the blue-degree partity of every vertex adjacent to vi. Therefore
our problem is to find values for xi’s to satisfy the following system of linear
equations over GF(2):

xidr(vi) + (1 − xi)db(vi) +
∑

vj∈N(vi)

xj ≡ 0 (mod 2), (1)

which can be solved by Gaussian elimination in O(n3) time. ��
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For Dually Even Switching, we observe that for an edge-bicolored graph
G to be transformed into a dually even graph by vertex switching, the underlying
graph of G must be an even graph. For such G, Gr is automatically an even graph
whenever Gb becomes one. Therefore Dually Even Switching is just Even
Switching on edge-bicolored graphs whose underlying graphs are even graphs,
and the following result follows immediately from Theorem 4.

Corollary 3. Dually Even Switching is solvable in O(n3) time.

Now we turn our attention to Dually Eulerian Switching. In spite of
the polynomial solvability of Dually Even Switching, the addition of con-
nectivity requirement makes our problem intractable.

Theorem 5. Dually Eulerian Switching is NP-complete.

Proof. The problem is clearly in NP, and we give a reduction from Dually
Connected Switching for the NP-hardness. For an arbitrary edge bicolored
graph G, first we construct an edge bicolored multigraph G′ by doubling each
edge with the same color. It is easy to see that G′ is a dually even graph, and
remains so regardless of what vertices are switched at. Furthermore, for any
subset S of vertices, G�S is dually connected iff G′ �S is, implying that G�S
is dually connected iff G′ � S is dually Eulerian.

Now we remove multiple edges in G′ by replacing each double edge in G′ by
the gadget H in Fig. 2 to obtain an edge-bicolored graph G∗ without multiple
edges. Note that the two 5-cliques in H correspond to the two end-vertices in
the replaced double edge. For such a 5-clique K, the structure of H ensures that,
for K to satisfy dully Eulerian property, we switched at either all or no vertices
of K. It follows that G′ � S is dually Eulerian iff G∗ becomes dually Eulerian
after switching at all vertices in the 5-cliques corresponding to S, which implies
the theorem. ��

u v

(a)

u v

(b)

Fig. 2. Replacement gadget H for (a) blue double edge uv and (b) red double edge uv.

4 Cluster Graphs

We now turn our attention to cluster graphs as property Π and consider Clus-
ter Switching (Is (G�S)b a cluster graph?) and Dual Cluster Switching
(Are (G � S)b and (G � S)r both cluster graphs?). We show that the former is
NP-complete but the latter is solvable in O(n3) time. Recall that cluster graphs
are exactly P3-free graphs, i.e., graphs containing no induced paths P3 on three
vertices.
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Theorem 6. Cluster Switching is NP-complete for edge-bicolored graphs of
maximum degree at least 4, but is solvable in O(n) time for edge-bicolored graphs
of maximum degree at most 3.

Proof. The problem is clearly in NP. For NP-hardness, we note that for any edge-
bicolored graph G without red edges, G contains vertices S such that (G � S)b

is a cluster graph iff both G[S] and G − S are cluster graphs. In other words,
Cluster Switching on edge-bicolored graphs without red edges is equivalent
to the problem of vertex-partitioning an uncolored graph into two cluster graphs,
which is known as the 2-Subcoloring problem and is NP-complete for graphs
of maximum degree at least 4 [5].

We now discuss the linear-time case. We can always transform any edge-
bicolored G of maximum degree 3 into a graph with maximum blue-degree at
most 1 (i.e., a special cluster graph) by the following algorithm: whenever the
current graph contains a vertex v of blue-degree at least 2, switch at vertex v.

Note that the above algorithm reduces at least one blue edge in each iteration,
and hence terminates in at most m ≤ 3n/2 iterations. We can implement it in
linear time by maintaining a list of vertices of blue-degree at least 2. ��

Moving on to Dual Cluster Switching, we will give an O(n3)-time algo-
rithm by a reduction to 2Sat, which has been a useful approach for Seidel
switching (e.g. [6]). Recall that an instance (U,C) of 2Sat consists of a set U of
Boolean variables and a collection C of binary clauses over U , and we want to
determine if there is a truth assignment for U that satisfies every clause in C.

For our purpose, we regard each vertex u of G as a Boolean variable and
express the existence of S that makes G�S a dual cluster graph by the satisfac-
tion of a collection of binary clauses, where the Boolean value of a vertex v is 1
iff v ∈ S. For convenience, we from now on use P3-free graphs for cluster graphs
and focus on destroying monochromatic induced P3’s by vertex switching. We
start with two 3-vertex graphs: 3-path P3 and triangle K3.

Lemma 4. If the underlying graph G∗ of an edge-bicolored graph G is P3 or K3,
then we can construct in O(1) time a collection C(G) of binary clauses such that
G can be transformed into a dually P3-free graph by vertex switching iff C(G) is
satisfiable.

Proof. Let {u, v, w} be vertices of G, and we denote the color of edge e by c(e).
For any S ⊆ V (G), we say that S is valid if G � S is dually P3-free, and we
express the validity of S by a logical formula F (G) as follows:

Case 1. G∗ = P3 with edges uv and vw. If c(uv) = c(vw), we set F (G) = (u ∈
S ⇔ w /∈ S) as S is valid iff it contains exactly one of u and w. Otherwise
c(uv) �= c(vw), and we set F (G) = (u ∈ S ⇔ w ∈ S) as S is valid iff it
simultaneously includes or excludes u and w.

Case 2. G∗ = K3. If c(uv) = c(vw) = c(wu), we set F (G) = (u ∈ S ⇔ v ∈ S ⇔
w ∈ S) as we need to switch at either all vertices or no vertex to make
G dually P3-free. Otherwise we may assume c(uv) = c(vw) �= c(uw),
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and we set F (G) = (u ∈ S ⇔ v /∈ S ⇔ w ∈ S) as valid values of S are
exactly {v} and {u,w}.

It is straightforward to transform F (G) into a collection C(G) of binary
clauses as formula (u ∈ S ⇔ v ∈ S) is equivalent to clauses {{u, v}, {u, v}}
and formula (u ∈ S ⇔ v /∈ S) is equivalent to clauses {{u, v}, {u, v}}. The
construction of C(G) clearly takes O(1) time, as each case contains at most 4
binary clauses. ��

Having Lemma 4 at hand, we now solve Dual Cluster Switching in
O(n3) time by reducing it to 2Sat. To do so, we consider all O(n3) distinct
vertex triples in the input graph G to construct the required binary clauses
C(G).

Theorem 7. Dual Cluster Switching is solvable in O(n3) time.

Proof. For an edge-bicolored graph G, let G1, G2, . . . , Gt with t =
(
n
3

)
, be sub-

graphs induced by all distinct vertex triples in G. Clearly, G is dually P3-free iff
every Gi is dually P3-free. Therefore in order to find vertices S to make G � S
dually P3-free, it suffices to find S such that Gi � S is dually P3-free for every i.

For this purpose, we consider each Gi. If the underlying graph G∗
i of Gi is

either P3 or K3, then we use Lemma 4 to construct its binary clauses C(Gi)
in O(1) time. Otherwise Gi is always dually P3-free regardless of which vertices
are switched at since G∗

i contains no P3 at all, and hence we set C(Gi) = ∅.
Finally we set C(G) =

⋃t
i=1 C(Gi). By Lemma 4, G has the required S iff C(G)

is satisfiable. Since C(G) contains O(n3) binary clauses and 2Sat is solvable in
linear time [4], we can solve Dual Cluster Switching in O(n3) time. ��

5 Acyclic Graphs

Finally we take acyclic graphs (i.e., forests) as property Π and will show the NP-
completeness of both Acyclic Switching (Is (G � S)b acyclic?) and Dually
Acyclic Switching (Are both (G � S)b and (G � S)r acyclic? Equivalently,
does G � S contain no monochromatic cycle?).

Theorem 8. Acyclic Switching is NP-complete for edge-bicolored graphs of
maximum degree 5.

Proof. The problem is clearly in NP. Similar to the proof of Theorem 6, Acyclic
Switching on edge-bicolored graphs without red edges is equivalent to the
problem of vertex-partitioning an uncolored graph into two forests, which is
NP-complete for graphs of maximum degree 5 [11]. ��

For Dually Acyclic Switching, we will establish its intractability by a
reduction from Set Splitting for triples used in Sect. 2. We begin with a con-
sistency gadget Γ in Fig. 3a with two terminal vertices x and x′. The gadget will
be used in our reduction to connect a vertex v with another vertex v′ represent-
ing same element by identifying v with x and v′ with x′. The following lemma
shows that we need to switch at both or none of x and x′ to maintain the dual
acyclicity of Γ .
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x x′

(a)

v2

v3

2

3

4

v42

3

1

v1

(b)

Fig. 3. (a) Consistency gadget Γ , and (b) example of reduction from Set Splitting
where X = {1, 2, 3, 4} and T = {{1, 2, 3}, {2, 3, 4}}.

Lemma 5. For any vertices S in Γ , if S contains exactly one of x and x′ then
Γ �S contains a monochromatic cycle. Otherwise Γ �S contains no monochro-
matic (x, x′)-path.

Proof. If S contains exactly one of x and x′, say x, then Γ �x contains three blue
(x, x′)-paths. Thereafter, regardless of which degree-2 vertices of Γ are switched
at, the resulting graph always contains a monochromatic cycle. Otherwise, we
note that neither Γ nor Γ � {x, x′} contains a monochromatic (x, x′)-path, and
switching at any degree-2 vertex of Γ creates no monochromatic (x, x′)-path. ��

We now establish the intractability of Dually Acyclic Switching. Recall
that for any instance (X, T ) of Set Splitting for triples, a partition (X ′,X −
X ′) forms a solution iff every triple in T contains exactly one or two elements
of X ′.

Theorem 9. Dually Acyclic Switching is NP-complete.

Proof. The problem is clearly in NP, and we give a reduction from Set Split-
ting for triples with instance (X, T ). We construct from (X, T ) in polynomial
time an edge-bicolored graph G as follows (see Fig. 3b for an example):

1. For each triple T ∈ T , construct a blue triangle BT on three new vertices
corresponding to the three elements of T .

2. For each element x ∈ X, create a vertex vx and for each triple T containing
element x, connect vx with the corresponding vertex of x in blue triangle BT

by a new copy of the consistency gadget Γ .

We note that Gb consists of vertex-disjoint blue triangles and stars, and Gr is
a forest consisting of vertex-disjoint stars. For an element x ∈ X, we use Vx to
denote the set of vertices in G corresponding to x.

Suppose that (X ′,X − X ′) is a solution of (X, T ), and let S =
⋃

x∈X′ Vx.
Since every triple T of T contains exactly one or two elements of X ′, blue triangle
BT in G contains exactly one or two vertices of S and hence switching at S
destroys all blue triangles of G. Furthermore Lemma 5 ensures that G � S has
no monochromatic path between any two vertices of Vx, implying that switching
at S creates no monochromatic cycle and hence G � S is dually acyclic.

Conversely, suppose that G�S is dually acyclic for some vertices S of G. By
Lemma 5, we see that for any x ∈ X, if vx ∈ S then S contains Vx and otherwise
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S contains no vertex of Vx. Let X ′ be the subset of X consisting of all elements
x with vx ∈ S, and consider an arbitrary triple T ∈ T . Since blue triangle BT in
G is destroyed by switching at S, S contains exactly one or two vertices of BT .
Therefore X ′ contains exactly one or two elements of T , and hence (X ′,X −X ′)
is a solution of (X, T ). ��

6 Concluding Remarks

We have studied computational complexity of some fundamental problems
regarding vertex switching in edge-bicolored graphs, which has revealed interest-
ing connections with Seidel’s switching, light-flipping game of Dodis and Win-
kler, and graph 2-partition.

There are abundant of interesting problems for vertex switching in edge-
bicolored graphs. For instance, most problems in this paper become NP-complete
once we limit the number k of vertex switching operations, and it is natural to
consider their parameterized complexity with respect to parameter k. We have
identified quite some intractable cases in a forthcoming paper, but FPT cases
seem uncommon and deserve attention and efforts.

From graph theoretical point of view, we note that for any hereditary prop-
erty Π, the family FΠ of edge-bicolored graphs obtainable from Π-graphs by
vertex switching is also hereditary. It is worthwhile to investigate characteriza-
tions of such families FΠ by obstruction sets, especially those of finite size.
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Abstract. We study an independent best-response dynamics on net-
work games in which the nodes (players) decide to revise their strategies
independently with some probability. We provide several bounds on the
convergence time to an equilibrium as a function of this probability, the
degree of the network, and the potential of the underlying games. These
dynamics are somewhat more suitable for distributed environments than
the classical better- and best-response dynamics where players revise
their strategies “sequentially”, i.e., no two players revise their strategies
simultaneously.

1 Introduction

Complex and distributed systems are often modeled by means of game dynamics
in which the participants (players) act spontaneously, typically striving to max-
imize their own payoff. Such selfish behavior often results in a so-called (pure
Nash) equilibrium which, roughly speaking, corresponds to the situation in which
no player has an incentive to change her current strategy.1

Consider the natural scenario in which people interact on a (social) network
and take their decisions based on both their personal interests and also on what
their friends decided. Situations of this sort are often modeled by means of
games that are played locally by the nodes of some graph (see, e.g., [14] and [13,
Chap. 19]). For example, players may have to choose between two alternatives
(strategies), and each strategy becomes more valuable if other friends also choose
it (perhaps it is easier to agree than to disagree, or it is better to adopt the same
technology for working, rather than different ones).

A full version of this work is available online at [27].
Supported by IRIF (CNRS UMR 8243) and Inria project-team GANG.

1 In this work we consider only pure Nash equilibria, which are the equilibria that
occur in certain games when each player chooses one strategy out of the available
ones. Other equilibrium concepts are also studied, most notably the mixed Nash
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In many cases, an extremely simple procedure to convergence to an equilib-
rium is the so-called best-response dynamics in which at each step one player
revises her strategy so to maximize her own payoff (and the others stay put).
These dynamics work in more general settings (not only on network games),
where convergence to an equilibrium is proven via a potential argument (every
move reduces the value of a global function – called potential). Games of this
nature are called potential games and they are used to model a variety of situa-
tions. Interestingly, this argument fails as soon as two or more players move at
the same time.

In this work we study a natural variant of best-response dynamics in which
we relax the requirement that one player at a time moves. That is, now play-
ers become active independently with some probability and all active players
revise their strategy according to the best-response rule (or more generally any
better-response rule). This is similar as before but allowing simultaneous moves.
Specifically, we study the convergence time of these dynamics when players play
on a network a “local” potential game: (1) each player interacts only with her
neighbors, meaning that the strategies of the non-neighbors do not affect the
payoff of this player, and (2) locally the game is a potential game (see Sect. 2 for
more details and formal definitions).

Simple examples show that convergence is impossible if two players are always
active (move all the time), or that the time to converge can be made arbitrarily
long if they become active at almost every step. At the other extreme, if the
probability of becoming active is too small, then the dynamics will also take a
long time to converge since almost all the time nothing happens. The trade-off
is between having sufficiently many active players and, at the same time, not
too many neighboring players moving simultaneously.

1.1 Our Contribution

We investigate how the convergence time depends on the probabilities of becom-
ing active and on the degree of the network. This is also motivated by the
search for simple dynamics that the players can easily implement without global
knowledge of the network (namely, they only need to known how many neighbors
they have), nor without having complex reasoning (they still myopically better-
respond). We first show that for the symmetric coordination game, the conver-
gence time is polynomial whenever the probability of being active is slightly
below the inverse of the maximum degree of the network (Theorem 2 and Corol-
lary 1). This generalizes to arbitrary potential games on graphs, where every
node plays a possibly different potential game with each of its neighbors, and
the maximum degree is replaced by a weighted maximum degree (see Theorem 6).
These results indeed hold whenever each active player uses a better response (not
necessarily the best response). Finally, we prove a lower bound saying that, in
general, the probabilities of becoming active must depend on the degree for
otherwise the convergence time is exponential with high probability (Theorem5
and Corollary 2). Note that this holds also for the simplest scenario of symmetric
coordination games.
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Our upper bounds can be seen as a probabilistic version of the potential
argument (under certain conditions, the potential decreases in expectation at
every step by some fixed amount). To the best of our knowledge, this is the
first study on the convergence time of these natural variants of best-response
dynamics. Prior studies (see next section) either focus on sufficient conditions to
guarantee convergence to Nash equilibria, or they consider noisy best-response
dynamics whose equilibria can be different from best-response.

We note that the general upper bound necessarily depends on the maximum
value of the potential, as these games include max-cut games which are PLS-
complete [30]: for such games, no centralized algorithm for computing a Nash
equilibrium in time polynomial in the number of players is known, and these
games are hard precisely when the potential can assume arbitrarily large values.
Obviously, one cannot hope that simple distributed dynamics do better than the
best centralized procedure.

1.2 Related Work

Several works study convergence to Nash equilibria for simple variants of best-
response dynamics. A first line of research concerns the ability to converge to a
Nash equilibrium when the strict schedule of the moves of the players (one player
at a time) is relaxed [10]; they proved that any “separable” schedule guarantees
convergence to a Nash equilibrium. Other works study the convergence time
of specific dynamics with limited simultaneous moves: [19] introduce a “local”
coordination mechanism for congestion games (which are equivalent to potential
games [24]), while [15] shows that with limited simultaneous moves the dynamics
reaches quickly a state whose cost is not too far from the worst Nash equilib-
rium [15]; Fast convergence can be achieved in certain linear congestion games
if approximate equilibria are considered [9].

Another well-studied variant of best-response dynamics is that of noisy or
logit (response) dynamics [1,6,7], where players’ responses is probabilistic and
determined by a noise parameter (as the noise tends to zero, players select almost
surely best-responses, while for high noise they respond at random). These
dynamics turn out to behave differently from “deterministic” best-response in
many aspects. In the original logit dynamics by [6,7], where one randomly chosen
player moves at a time, they essentially rest on a subset of potential minimizers.
When the players’ schedule is relaxed, this property is lost and additional condi-
tions on the game are required [1,2,10,18,26]. Our independent better-response
dynamics can be seen as an analog of the independent dynamics of [1] for logit
response.

Potential games on graphs (a proper subclass of potential games) are well-
studied because of their many applications. In physics, ferro-magnetic systems
are modeled as noisy best-response dynamics on lattice graphs in which every
player (node) plays a coordination game with each neighbor (see, for example,
[23] and Chap. 15 of [22]). The version in which the coordination game is asym-
metric (i.e., coordinating on one strategy is more profitable than another) is used
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to model the diffusion of new technologies [21,25] and opinions [17] in social net-
works. Finally, potential games on graphs (every node plays some potential game
with each neighbor) characterize the class of potential games for which the equi-
libria of noisy best-response dynamics with all players updating simultaneously
can be “easily” computed [3]. The convergence time of best-response dynamics
for games on graphs is studied in [12,17]: Among other results, [12] showed that
a polynomial number of steps are sufficient when the same game is played on all
edges and the number of strategies is constant. Analogous results are proven for
finite opinion games in [17]. Finally, [4] characterize the class of potential games
which are also graphical games [20], where the potential can be decomposed into
the sum of potentials of “maximal” cliques of an underlying graph. Graphical
games have been studied in several works (see, e.g., [5,8,11,28]). The class of
local interaction potential games [3] is the restriction in which the potential can
be decomposed into pairwise (edge) potential games. In this work we deal pre-
cisely with this class of games. Since this class includes the so-called max-cut
games, which are known to be PLS-complete [30], it is considered unlikely that
an equilibrium can be computed efficiently, even by a centralized procedure.

Our dynamics are similar to the α-synchronous dynamics in cellular
automata [16]. In particular, the case of symmetric coordination game corre-
sponds to majority rule on general graphs [29] (where each cellular automaton
tries to switch to the majority state of its neighbors, and stays put in case of
ties). The present work can be seen as a first study of α-synchronous dynamics
on general graphs for the rules that follow from best-response to some potential
games with neighbors.

2 Model (Local Interaction Potential Games)

Intuitively speaking we consider a network (graph) where each node is a player
who repeatedly plays with her neighbors. We assume that a two-player potential
game (defined below) is associated to each edge of the graph. Each player must
play the same strategy on all the games associated to its incident edges, and her
payoff is the sum of the payoffs obtained in each of these games. We also assume
finite strategies, i.e. each player chooses her strategy within a finite set.

Symmetric Coordination Game. One of the simplest (potential) games is the
symmetric coordination game where each player chooses color B or W (for black
or white) and her payoff is 1 if players agree on their strategies, and 0 otherwise
(see Fig. 1a where the two numbers are the payoff for the row and the column
player, respectively).



356 P. Penna and L. Viennot

B W
B 1, 1 0, 0
W 0, 0 1, 1

(a) Symmetric
Coordination Game.

B W
B 2, 1 0, 0
W 0, 0 1, 2

(b) Another
Coordination Game.

B W
B −2 −1
W 0 −2

(c) Potential
for Game (b).

B W
B 2, 2 1, 1
W 0, 0 2, 2

(d) Game equivalent
to Game (b).

Fig. 1. Examples of two-player games and potential function.

General Potential Games. In a general game, we have n players, and each of
them can choose one color (strategy) and the combination c = (c1, . . . , cn) of all
colors gives to each player u some payoff PAYu(c). In a potential game, when
the change in the payoff of any player improves by some amount, some global
function P called the potential will be decreased by the same amount: For any
player u and any two configurations c and c′ which differ only in u’s strategy, it
holds that

PAYu(c′) − PAYu(c) = P (c) − P (c′). (1)

A configuration c is a (pure Nash) equilibrium if no player u can improve
her payoff, that is, the quantity above is negative or zero for all c′ =
(c1, . . . , c′

u, . . . , cn). Conversely, c is not an equilibrium if there is a player u
who can improve her payoff (PAYu(c′)−PAYu(c) > 0) in which case c′

u is called
a better response (to strategies c). A best response is a better response max-
imizing this improvement, over the possible strategies of the player. Potential
games possess the following nice feature: A configuration c is an equilibrium if
and only if no player can improve the potential function by changing her current
strategy. In a general (two-player) potential game the payoff of the players is not
the same, and the potential function is therefore not symmetric (see the example
in Fig. 1c).

Local Interaction Potential Games [3]. In a local interaction potential game
the potential function can be decomposed into the sum of two-player potential
games, one for each edge of the network G:

P (c) =
∑

uv∈E(G)

Puv(cu, cv). (2)

No edge exists if the strategies of the two players do not affect each others’ payoff
(the corresponding potential is constant and can be ignored). This definition
captures the following natural class of games on networks: Each edge corresponds
to some potential game, and the payoff of a player is the sum of the payoffs of
the games with the neighbors. Note that a player chooses one strategy to be
played on all these games.

(Independent) Better-Response Dynamics. A simple procedure for computing
an equilibrium consists of repeatedly selecting one player who is currently not
playing a best response and let her play a better or best response. Every step
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reduces the potential by a finite amount, and therefore this procedure terminates
into an equilibrium in O(M) time steps, where M is the maximum value for the
potential (w.l.o.g., we assume that the potential is always non-negative and takes
integer values2). Here we consider the variant in which, at each time step, each
player becomes independently active according to some probability, and those
who can improve their payoff change strategy accordingly:

Definition 1. In independent better-response dynamics, at each time step t
players do the following:

– Each player (node) u becomes active with some probability pt
u which can

change over time (the case in which it is constant over time is a special
case of this one).

– Every active player (node) revises her strategy according to a better (or best)
response rule. If the current strategy is already a best response, then no change
is made.

Note that all players that are active at a certain time step may change their
strategies simultaneously. So, for example, it may happen that on the symmetric
coordination game in Fig. 1a the two players move from state BW to state WB
and back if they are both active all the time.

Generic upper bound. To show that dynamics converge quickly, we show that
the potential decreases in expectation at every step. To this end, we consider
the probability space of all possible evolutions of the dynamics. A configuration
c at a given time t is given by the colors chosen by players at the previous time
step (strategy profile) and by the values pt

u used by users for randomly deciding
to be active at time t. The universe Ω is then defined as the set of all infinite
sequences c0, c1, . . . of configurations.

Definition 2 (δ-improving dynamics). Dynamics are δ-improving for a
given (local interaction) potential game if in expectation the potential decreases
by at least δ during each time step, unless the current configuration is an equi-
librium. That is, for any configuration c which is not an equilibrium, and any
event F t

c = {c0, c1, . . . ∈ Ω | ct = c} where configuration c is reached at time t,
we have

E[P t+1 − P t | F t
c ] ≤ −δ

where P t denotes the potential at time t.

2 As we assume that strategy sets are finite, the potential function is defined by a finite
set of values. Rescaling the potential function so that different values are at least
1 apart, and then truncating the values to integers allows to obtain an equivalent
game (with same dynamics). Additionally shifting the values allows to obtain a
non-negative potential function for that game.
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Standard Martingale arguments imply the following (see [27] for details):

Theorem 1. The expected convergence time of any δ-improving dynamics is
O

(
M0
δ

)
where M0 is the expected potential of the game at time 0.

3 Networks with Symmetric Coordination Games

We first consider the scenario in which every edge of the network is the symmet-
ric coordination game in Fig. 1a. The nodes of a graph G (players) can choose
between two colors B and W and are rewarded according to the number of
neighbors with same color. We are thus considering the dynamics in which nodes
attempt to choose the majority color of their neighbors and every active node
changes its color if more than half of its neighbors has the different color.

In order to analyze the convergence time of these dynamics, we shall relate
the probabilities of being active to the number of neighbors having a different
color. We say that u is unstable at time t if more than half of the neighbors has
the other color, that is,

dct
u >

1
2
δu

where δu is the degree of u and dct
u is the number of neighbors of u that have a

color different from the color of u at time t. By definition, the dynamics converge
if no node is unstable. Note that we have dct

u ≤ δu ≤ Δu ≤ Δ where Δ =
maxu∈V (G) δu is the maximum degree of the graph, and Δu = maxuv∈E(G) δv is
the local maximum degree in the neighborhood of u.

For the case of symmetric coordination games, the potential function of a
configuration is the number of edges whose endpoints have different colors: An
edge uv is said to be conflicting in configuration c if u and v have different colors.
Therefore the potential is at most the number m of edges.

Theorem 2. Fix some real values p, q ∈ (0, 1). If we have pt
u ∈ [ p

Δ , q
Δu

] for
all u, t in a symmetric coordination game, then the expected convergence time is
O

(
Δm0

p(1−q)

)
where m0 is the initial number of conflicting edges, Δ is the maxi-

mum degree, and Δu is the maximum degree in the neighborhood of u.

As an immediate corollary, we have the following result for the case in which
all nodes are active with the same probability p.

Corollary 1. If all unstable nodes are active with probability p < 1−ε
Δ for ε > 0,

then the dynamics converge to a stable state in O(m0
pε ) expected time.

Theorem 2 derives from the following lemma and Theorem 1.

Lemma 1. Any dynamics satisfying the hypothesis of Theorem2 are δ-
improving for δ = p(1 − q)/Δ.
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Proof. Consider the event F t
c where a configuration c is reached at time t. Let Ct

denote the number of conflicting edges in c, and U t be the set of unstable nodes
at time t respectively. Recall that the number of conflicting edges is equal to the
potential, that is, P t = Ct. We now express E[Ct+1 − Ct | F t

c ] as a function of
the values {pt

u | u ∈ V (G)} associated to c.
For that purpose, we first analyze the probability that any given edge of c is

conflicting after the random choices made at time t. We distinguish the following
types of edges. Let S1 (resp. S2) denote the set of edges in c with the same color
and one unstable extremity (resp. two). Similarly, let C1 (resp. C2) denote the
set of edges in c with conflicting colors and one unstable extremity (resp. two).
Note that Ct = |C1| + |C2|. A conflicting edge uv will become non-conflicting
if only one extremity changes its color. Similarly, a non-conflicting edge uv will
become conflicting if only one extremity changes its color. Due to independence of
choices, this happens in both cases with probability pt

uv = pt
u(1−pt

v)+(1−pt
u)pt

v

if both u and v are unstable, and with probability pt
u if u is unstable and v is

not. By linearity of expectation, we then obtain:

E[Ct+1 − Ct | F t
c ] =

∑

uv∈S1

pt
u +

∑

uv∈S2

pt
uv −

∑

uv∈C1

pt
u −

∑

uv∈C2

pt
uv. (3)

(When we note uv ∈ C1 (resp. uv ∈ S1), we assume that u is unstable and
v is not.) By definition, each unstable node u sees more conflicting edges than
non-conflicting ones, thus implying 1+

∑
v|uv∈S1

1+
∑

v|uv∈S2
1 ≤ ∑

v|uv∈C1
1+∑

v|uv∈C2
1. By multiplying by pt

u and then summing over all unstable nodes,
we obtain:

∑

u∈Ut

pt
u +

∑

uv∈S1

pt
u +

∑

uv∈S2

(pt
u + pt

v) ≤
∑

uv∈C1

pt
u +

∑

uv∈C2

(pt
u + pt

v). (4)

As pt
uv = pt

u + pt
v − 2pt

upt
v, we deduce from (3) and (4):

E[Ct+1 − Ct | F t
c ] ≤

∑

uv∈C2

2pt
upt

v −
∑

u∈Ut

pt
u. (5)

Since every edge uv ∈ C2 has both endpoints in U t, we can rewrite (5) as

E[Ct+1 − Ct | F t
c ] ≤

∑

u∈Ut

pt
u

(
− 1 +

∑

v|uv∈C2

pt
v

)
.

Using pt
v ≤ q

Δv
≤ q

δu
and pt

u ≥ p
Δ , we obtain the following inequality: E[Ct+1 −

Ct | F t
c ] ≤ ∑

u∈Ut
p
Δ (−1 + q) = −p(1 − q) |Ut|

Δ . This completes the proof. ��

Adaptive Probabilities. The upper bound of Theorem2 can be improved if nodes
are aware of the number of neighbors that are willing to change strategy (unsta-
ble) and then set accordingly the probability of changing too. More precisely, one
can think of active nodes announcing to their neighbors that they are unstable
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and that they would like to switch to the other color, before actually doing so.
Then, each unstable node will switch with a probability inversely proportional to
the number of unstable neighbors. The following theorem shows that this yields
an improved upper bound on the convergence time.

Theorem 3. Fix some real values p, q ∈ (
0, 1

2

)
. If we have pt

u ∈ [ p
dt
u+1 , q

dt
u+1 ] for

all u, t in a symmetric coordination game, where dt
u is the number of conflicting

unstable neighbors of u, then the expected convergence time is O
(

m0
p(1−2q)

)
where

m0 is the initial number of conflicting edges.

To prove this theorem we adapt the proof of Lemma 1 and show that these
dynamics are δ-improving for δ = p(1 − 2q)(see [27] for details).

Fully Local Dynamics. Theorem 2 requires that each node is aware of a bound
on the maximum degree, or the local maximum degree in her neighborhood for
setting pt

u. Theorem 3 requires knowledge of the number of conflicting unstable
neighbors at each time step. We next consider dynamics that are fully local as
each node u can set the probabilities pt

u by only looking at its own degree.

Theorem 4. Fix some real values p, q ∈ (
0, 1

2

)
. If we have pt

u ∈ [ p
δu

, q
δu

] for
all u, t in a symmetric coordination game, where δu is the degree of u, then
the expected convergence time is O

(
Δm0

p(1−2q)

)
where m0 is the initial number of

conflicting edges.

The proof of this theorem is similar to that of Theorems 2 and 3 (see [27]).

Tightness of the Results. Consider the following network composed of a clique
and r/2+1 paths, for even r (see figure below). Each node in a path is connected
to all nodes to the right and to the left path (or clique for the first path) as feature
by demi-edges with degree indications w.r.t. the previous and the next part of
the construction. Below each part, we indicate the number of nodes in the part.

r + 1

· · ·

Clique Paths

r r − 1 r − 2 r/2

r + 1 r − 1

r r − 1

Intuitively, the construction is
such that the process proceeds from
left to right, where nodes in certain
path become unstable only after all
nodes in the previous path became
black; moreover, inside each path the
process is also sequential, i.e., the
path becomes black from extremities
to center. These observations imply
that any dynamics in which nodes
become active with probability p � α,
require Ω(r2/α) = Ω(n/α) steps.

Since every node has degree Θ(r) = Θ(
√

n) = Θ(Δ), and the initial con-
figuration has m0 = Θ(r2) = Θ(n) conflicting edges (those between the clique
and the first path), non-adaptive dynamics take Θ(Δm0) = Θ(n3/2) time steps.
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On the contrary, adaptive dynamics take Θ(m0) = Θ(n) steps since the number
dt

u of unstable conflicting neighbors of each node u is at most 1. Therefore, the
analysis of Theorems 2, 3, and 4 is tight. Moreover, the adaptive dynamics are
provably faster than non-adaptive ones.

4 An Exponential Lower Bound When the Degree
Is Unbounded

In this section we prove a lower bound for the case of symmetric coordination
game on each edge and dynamics with constant probabilities, that is, the case in
which every node becomes active with some probability p which does not depend
on the graph nor on the time, and which is the same over all nodes.

Theorem 5. For every p > 0, there are starting configurations of the complete
bipartite graph where the expected number of steps to converge to an equilibrium
is exponential in the number of nodes.

Proof Idea. Consider the continuous version of the problem in which, instead
of a bipartite graph with n nodes on each side, we imagine L and R being two
continuous intervals (see figure below). Start from a symmetric configuration in
which a fraction α > 1/2 of the players in L has color W and the same fraction in
R has the other color B. Suppose that α = 1

2−p . Then after one step the system
reaches the symmetric configuration, that is, a fraction α of nodes in L has color
B and the same fraction in R has color W . Indeed, the fraction β of players with
color B in L after one step is precisely β = 1 − α + p · α = 1−p

2−p + p
2−p = α.

α

p
α

L
pα

+
1
−

α
=

α

ac
ti
ve

R L R

α

α α

ac
ti
ve

We next prove the theorem via Chernoff
bounds. For ε = p/3 consider the interval
around(α) := [(1 − ε)α, (1 + ε)α], and let
CY CLE(t) be the following event:

CY CLE(t) := {At time t a fraction
αL ∈ around(α) of the nodes in L
has some color c, and a fraction αR ∈
around(α) of the nodes in R has the
other color c (where B = W and W = B).}

We say that the configuration is balanced at time t when CY CLE(t) holds.
Since ε < p/2 we have (1 − ε)α > 1/2, and thus the best response of every
(active) node in a balanced configuration is to switch color (since both αLn and
αRn are strictly larger than n/2). Chernoff bounds guarantee that with high
probability enough many nodes will be activated and therefore will switch to
obtain a symmetric balanced configuration (see [27] for proof of next lemma):

Lemma 2. For any t, it holds that P [CY CLE(t + 1)| CY CLE(t)] ≥ 1 −
4 exp

(
− δ2

3 μ
)

, where δ = ε
1+ε and μ = p(1 + ε)αn with ε = p/3.
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The above lemma implies that, starting from a balanced configuration, the
probability of reaching an equilibrium in t steps is at least (1 − q)t−1 where
q = 4 exp(− δ2

3 μ). The expected time to converge is thus at least 1/q2 which
proves the theorem. Simple calculations lead to the following result (see [27] for
details):

Corollary 2. Starting from any balanced configuration, the expected number of
steps to converge to an equilibrium in the complete bipartite graph is eΩ(n1−3c),
as long as p ≥ 1/nc with 0 ≤ c < 1/3.

5 General Local Interaction Potential Games

In this section we extend the upper bound of Theorem2 to general local inter-
action potential games: each edge uv of G is associated with a (two-player)
potential game with potential Puv. Without loss of generality, we assume that
the potential Puv takes integer non-negative values. The upper bound is given
in terms of the following quantity:

ΔP := max
u

∑

v∈N(u)

ΔPuv
, (6)

where ΔPuv
denotes the maximum value of Puv. Note that for symmetric coor-

dination games, ΔP is simply the maximum degree Δ of the graph.

Theorem 6. For any p, q ∈ (0, 1/2), if we have pt
u ∈ [ p

ΔP
, q

ΔP
] for all u and t

and for ΔP defined as in (6) in a general local interaction potential game, then
the expected convergence time is O

(
nΔ2

P

p(1−2q)

)
.

Since local interaction potential games include max-cut games, which are
notoriously PLS-complete [30], one cannot hope to have convergence time poly-
nomial independent of ‘ΔP ’ in general. Local interaction games also include finite
opinion games [17] and, in particular, 16Δ ≤ ΔP ≤ 16(Δ + 1), where Δ is the
maximum degree of the underlying graph (details in [27]). Theorem 6 implies:

Corollary 3. In finite opinion games on networks of maximum degree Δ, the
expected converge time of independent better-response dynamics is O(nΔ2) when-
ever pt

u = α
Δ for some α ∈ [ p

16 , q
16 ] with p, q ∈ (0, 1/2).

6 Conclusion

This work provides bounds on the time to converge to a (pure Nash) equilibrium
when players are active independently with some probability and they better or
best respond to each others current strategies. Our study focuses on a natural
(sub)class of potential games, namely, local interaction potential games. The
bounds suggest that the time to converge to an equilibrium must depend on the
degree of the nodes in the underlying network (cf. Theorems 2, 6 and Corollary 2).
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Since our bounds hold for local interaction potential games, it would be
interesting to investigate whether analogous results hold for general potential
games. Here a relevant notion is that of graphical games [20] and the results in
[4]. It would also be interesting to sharpen some of our bounds to show that
p � 1/Δ is essentially the threshold between fast and slow convergence, and to
investigate the range p ∈ [1/n, 1/n1/3] (cf. Theorem 2 and Corollary 2).
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Abstract. In the Subset Feedback Vertex Set (Subset-FVS) prob-
lem the input consists of a graph G, a subset T of vertices of G called the
“terminal” vertices, and an integer k. The task is to determine whether
there exists a subset of vertices of cardinality at most k which together
intersect all cycles which pass through the terminals. Subset-FVS gen-
eralizes several well studied problems including Feedback Vertex Set
and Multiway Cut. This problem is known to be NP-Complete even in
split graphs. Cygan et al. proved that Subset-FVS is fixed parameter
tractable (FPT) in general graphs when parameterized by k [SIAM J.
Discrete Math (2013)]. In split graphs a simple observation reduces the
problem to an equivalent instance of the 3-Hitting Set problem with
same solution size. This directly implies, for Subset-FVS restricted to
split graphs, (i) an FPT algorithm which solves the problem in O�(2.076k)
time (The O�() notation hides polynomial factors.) [Wahlström, Ph.D.
Thesis], and (ii) a kernel of size O(k3). We improve both these results
for Subset-FVS on split graphs; we derive (i) a kernel of size O(k2)
which is the best possible unless NP ⊆ coNP/poly, and (ii) an algorithm
which solves the problem in time O∗(2k). Our algorithm, in fact, solves
Subset-FVS on the more general class of chordal graphs, also in O∗(2k)
time.

1 Introduction

In a covering or transversal problem we are given a universe of elements U , a
family F (F could be given implicitly) of subsets of U , and an integer k and
the objective is to check whether there exists a subset of U of size at most
k which intersects all the elements of F . Several natural problems on graphs
can be framed in the form of such a problem. For instance, consider the clas-
sic Feedback Vertex Set (FVS) problem. Here, given a graph G and a
positive integer k, the objective is to decide whether there exists a vertex sub-
set X (also called a feedback vertex set) of size at most k which intersects all
c© Springer Nature Switzerland AG 2019
P. Heggernes (Ed.): CIAC 2019, LNCS 11485, pp. 365–376, 2019.
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cycles, that is, such that G−X is a forest. Other examples include Odd Cycle
Transversal, Directed Feedback Vertex Set and Vertex Cover (VC).
These problems have been particularly well studied in parameterized complex-
ity [4,6,15,17,19,21].

In a natural generalization of covering problems, together with U , F and k
we are given also a subset T of U and the objective is to decide whether there is
a subset of U of size at most k that intersects all the sets in F that contain an
element in T . This leads to the subset variant of classic covering problems; typical
examples include Subset Feedback Vertex Set (Subset-FVS), Subset
Directed Feedback Vertex Set and Subset Odd Cycle Transversal.
All these problems have received considerable attention and they have been
shown to be fixed-parameter tractable (FPT) with k as the parameter [4,6,15].

In this paper we study Subset-FVS when the input belongs to certain
restricted families of graphs. The (general) Subset-FVS problem was first intro-
duced by Even et al. [9]. This problem generalizes several other well-studied
problems like FVS, VC, and Multiway Cut [10]. The question whether the
Subset-FVS problem is fixed parameter tractable (FPT) when parameterized
by the solution size was posed independently by Kawarabayashi and the third
author in 2009. Cygan et al. [6] and Kawarabayashi and Kobayashi [15] inde-
pendently answered this question positively in 2011. Wahlström [21] gave the
first parameterized algorithm where the dependence on k is 2O(k). Lokshtanov
et al. [17] presented a different FPT algorithm which has linear dependence on
the input size. On the other hand, Fomin et al. presented a parameter preserv-
ing reduction from VC to Subset-FVS ([10, Theorem 2.1]) which rules out
the possibility of an algorithm with subexponential dependence on k under the
Exponential-Time Hypothesis. More recently, Hols and Kratsch showed—using
matroid-based tools—that Subset-FVS has a randomized polynomial kernel-
ization with O(k9) vertices [14].

All the results we mentioned above hold for arbitrary input graphs. There
has also been interest in studying Subset-FVS on various structured families of
graphs, such as chordal graphs and split graphs. While FVS is polynomial-time
solvable on split graphs, it turns out that Subset-FVS is NP-complete on these
graphs [10]. Indeed, the known upper bounds on the number of minimal feedback
vertex sets and of minimal subset feedback vertex sets in split graphs are n2

and 3n/3, respectively [10]. Golovach et al. [12] initiated the algorithmic study
of Subset-FVS on chordal graphs and presented an exact exponential time
algorithm for the problem on these graphs. This algorithm was later improved
by Chitnis et al. [3].

In this article we study Subset-FVS on chordal and split graphs in the
realm of parameterized complexity. For a given set of vertices T , a T -cycle is a
cycle which contains at least one vertex from T . Formally, the problem we study
is as follows.
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Subset FVS in Chordal Graphs Parameter: k
Input: A chordal graph G = (V,E), a set of terminal vertices T ⊆ V , and
an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of G such that
the subgraph G[V \ S] contains no T -cycle?

If the input graph in Subset FVS in Chordal Graphs is restricted to split
graphs, then the problem will be called Subset FVS in Split Graphs.

A simple observation states that in chordal graphs it is enough to intersect all
T -triangles to hit all T -cycles. This provides a parameter preserving reduction
from Subset FVS in Split Graphs to 3-Hitting Set (3-HS). On the one
hand, this directly implies a polynomial compression (in fact, a polynomial ker-
nel) of O(k3) size for Subset FVS in Split Graphs [1], and an FPT algorithm
running in time 2.076knO(1) [20]. On the other hand, when we formulate the prob-
lem in terms of 3-HS, we lose structural properties of the input graph. These
structural properties can potentially be exploited to obtain better algorithms
and smaller kernels for the original problem. This was recently demonstrated by
Le et al. [16] who derived smaller-than-cubic kernels for several implicit 3-HS
problems. This article is written in the same spirit, of obtaining better results
for implicit 3-Hitting Set problems by exploiting structural properties of the
input graph.

Our Results and Methods: Our first main result is a quadratic kernel for
Subset FVS in Split Graphs. This is an improvement over the cubic-size
kernel obtained via the 3-HS route [1]. Formally, we obtain the following.

Theorem 1. Subset FVS in Split Graphs has a quadratic-size kernel.

We design the kernel for Subset FVS in Split Graphs using non-trivial appli-
cations of the expansion lemma—a combinatorial tool central to the design of
the first quadratic kernel for FVS [19]. Given an input (G;T ; k) where G is a
split graph, we first reduce the input to an instance (G;T ; k) where the terminal
set T is exactly the independent set I from a split partition (K, I) of G. Then
we show that if a (non-terminal) vertex v ∈ K has at least k + 1 neighbours in
I then we can include v in a solution or safely delete one edge incident with v;
this leads to an instance where each v ∈ K has at most k neighbours in I. We
apply the expansion lemma to this instance to bound the number of vertices in
K by 10k; this gives the bound of O(k2) on the number of vertices in I. We
also use the expansion lemma to identify an irrelevant edge incident to v ∈ K.
A simple parameter preserving reduction from VC to Subset FVS in Split
Graphs implies that this kernel size bound is tight: the problem has no kernel
of size O(k2−ε) under the assumption that NP �⊆ coNP/poly [7].

Our second main result is an FPT algorithm for Subset FVS in Chordal
Graphs with a faster running time than the fastest known algorithm which was
based on solving 3-HS.
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Theorem 2. Subset FVS in Chordal Graphs admits an algorithm with
running time O(2k(n + m)). Here n,m are the number of vertices and the edges
of the input graph G, respectively.

Note that this running time is linear in the size of the input graph. To design
our FPT algorithm we examine a clique-tree of the input chordal graph and find
a useful vertex to branch on. The structure provided by this clique-tree plays a
crucial part in obtaining the improved running time.

All missing proofs and the FPT algorithm can be found in the full version of
the paper [18].

2 Preliminaries

Graphs. All our graphs are finite, undirected, and simple. We mostly conform
to the graph-theoretic notation and terminology from the book of Diestel [8].

Let S ⊆ V (G) and F ⊆ E(G) be a vertex subset and an edge subset of a
graph G, respectively. We use (i) G[S] to denote the subgraph of G induced by
S, (ii) G − S to denote the graph G[V \ S], and (ii) G − F to denote the graph
(V (G), (E(G)\F )). A triangle is a cycle of length three. Set S is a feedback vertex
set (FVS) of G if G−S is a forest. A path P (or cycle C) passes through S if P (or
C) contains a vertex from S. Let T ⊆ V (G) be a specified set of vertices called
terminal vertices (or terminals). A T -cycle ((T -triangle) is a cycle (triangle)
which passes through T . Graph G is a T -forest if it contains no T -cycle. Vertex
set S is a subset feedback vertex set (subset-FVS) of G with respect to terminal
set T if the graph G − S is a T -forest. Note that S may contain vertices from
T , and that G − S need not be a forest. Set S is a subset triangle hitting set
(subset-THS) of G with respect to terminal set T if G−S contains no T -triangle.
More generally, we say that a vertex v hits a cycle C if C contains v. Vertex set
S hits a set C of cycles if for each cycle C ∈ C there is a vertex v ∈ S which hits
C. We elide the phrase “with respect to T” when there is no ambiguity.

Kn is the complete graph on n vertices. A subset S ⊆ V (G) of vertices of
graph G is a clique if its vertices are all pairwise adjacent, and is an independent
set if they are all pairwise non-adjacent. A clique C in G is a maximal clique
if C is not a proper subset of some clique in G. A vertex v of G is a simplicial
vertex (or is simplicial) in G if N [v] is a clique. In this case we say that N [v] is
a simplicial clique in G and that v is a simplicial vertex of N [v].

Fact 1 ([2], Lemma 3). Vertex v is simplicial in graph G if and only v belongs
to precisely one maximal clique of G, namely the set N [v].

Chordal Graphs. A graph G is chordal (or triangulated) if every induced cycle
in G is a triangle; equivalently, if every cycle of length at least four has a chord.
If G is a chordal graph then [13]: (i) every induced subgraph of G is chordal;
(ii) G has a simplicial vertex, and if G is not a complete graph then G has two
non-adjacent simplicial vertices. Whether a graph H is chordal or not can be
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found in time O(|V (H)| + |E(H)|), and if H is chordal then a simplicial vertex
of H can be found within the same time bound [13].

Split Graphs. A graph G is a split graph if its vertex set can be partitioned into
a clique and an independent set in G. Such a partition is called a split partition
of G. We say that an edge uv in G[K] is highlighted if there is a vertex x in I
such that the vertices {x, u, v} induce a triangle in G.

Lemma 1. Let G be a chordal graph and let T ⊆ V (G) be a specified set of
terminal vertices. A vertex subset S ⊆ V (G) is a subset-FVS of G with respect
to T if and only if the graph G − S contains no T -triangles.

We use (G;T ; k) to denote an instance of Subset FVS in Chordal Graphs
or Subset FVS in Split Graphs where G is the input graph, T is the specified
set of terminals, and k is the parameter.

Corollary 1. An instance (G;T ; k) of Subset FVS in Chordal Graphs (or
of Subset FVS in Split Graphs) is a YES instance if and only if there is a
vertex subset S ⊆ V (G) of size at most k such that S is a T -THS of G.

Let (G;T ; k) be an instance of Subset FVS in Chordal Graphs. A sub-
set S ⊆ V (G) of vertices of G is a solution of this instance if S is a T -FVS
(equivalently, a T -THS) of G.

Expansion Lemmas. Let t be a positive integer and G a bipartite graph with
vertex bipartition (P,Q). A set of edges M ⊆ E(G) is called a t-expansion of
P into Q if (i) every vertex of P is incident with exactly t edges of M , and (ii)
the number of vertices in Q which are incident with at least one edge in M is
exactly t|P |. We say that M saturates the endvertices of its edges. Note that the
set Q may contain vertices which are not saturated by M . We need the following
generalizations of Hall’s Matching Theorem known as expansion lemmas:

Lemma 2 ([5] Lemma 2.18). Let t be a positive integer and G be a bipartite
graph with vertex bipartition (P,Q) such that |Q| ≥ t|P | and there are no isolated
vertices in Q. Then there exist nonempty vertex sets X ⊆ P and Y ⊆ Q such
that (i) X has a t-expansion into Y , and (ii) no vertex in Y has a neighbour
outside X. Furthermore the sets X and Y can be found in time polynomial in
the size of G.

Lemma 3 ([11]). Let t be a positive integer and G be a bipartite graph with
vertex bipartition (P,Q) such that |Q| > �t , where � is the size of a maximum
matching in G, and there are no isolated vertices in Q. Then there exist nonempty
vertex sets X ⊆ P and Y ⊆ Q such that (i) X has a t-expansion into Y , and
(ii) no vertex in Y has a neighbour outside X. Furthermore the sets X and Y
can be found in time polynomial in the size of G.

We need sets X,Y of Lemma 3 with an additional property:

Lemma 4. If the premises of Lemma 3 are satisfied then we can find, in polyno-
mial time, sets X,Y of the kind described in Lemma 3 and a vertex w ∈ Y such
that there exists a t-expansion M from X into Y which does not saturate w.
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3 Kernel Bounds for SUBSET FVS IN SPLIT GRAPHS

In this section we show that Subset FVS in Split Graphs has a quadratic-size
kernel with a linear number of vertices on the clique side.

Theorem 3. Subset FVS in Split Graphs has a quadratic-size kernel. More
precisely: There is a polynomial-time algorithm which, given an instance (G;T ; k)
of Subset FVS in Split Graphs, returns an instance (G′;T ′; k′) of Subset
FVS in Split Graphs such that (i) (G;T ; k) is a YES instance if and only if
(G′;T ′; k′) is a YES instance, and (ii) |V (G′)| = O(k2), |E(G′)| = O(k2), and
k′ ≤ k. Moreover if (K ′, I ′) is a split partition of split graph G′ then |K ′| ≤ 10k.

Our algorithm works as follows. We first reduce the input to an instance
(G;T ; k) where the terminal set T is exactly the independent set I from a split
partition (K, I) of G. Then we show that if a (non-terminal) vertex v ∈ K has
at least k +1 neighbours in I then we can either include v in a solution or safely
delete one edge incident with v; this leads to an instance where each v ∈ K has
at most k neighbours in I. We apply the expansion lemma (Lemma 3) to this
instance to bound the number of vertices in K by 10k; this gives the bound of
O(k2) on the number of vertices in I.

We now describe the reduction rules. Recall that we use (G;T ; k) and
(G′;T ′; k′) to represent the input and output instances of a reduction rule, respec-
tively. We always apply the first rule—in the order in which they are described
below—which applies to an instance. Thus we apply a rule to an instance only if
the instance is reduced with respect to all previously specified reduction rules.

Recall that a split graph may have more than one split partition. To keep our
presentation short we need to be able to refer to one split partition which “sur-
vives” throughout the application of these rules. Towards this we fix an arbitrary
split partition (K�, I�) of the original input graph. Whenever we say “the split
partition (K, I) of graph G” we mean the ordered pair ((K�∩V (G)), (I�∩V (G))).
The only ways in which our reduction rules modify the graph are: (i) delete
a vertex, or (ii) delete an edge of the form uv ; u ∈ K�, v ∈ I�. So
((K� ∩ V (G)), (I� ∩ V (G))) remains a split partition of the “current” graph
G at each stage during the algorithm.

Our first reduction rule deals with some easy instances.

Reduction Rule 1. Recall that (K, I) is the split partition of graph G. Apply
the first condition which matches (G;T ; k):

1. If T = Ø then output IYES
1 and stop.

2. If k < 0, or if k = 0 and there is a T -triangle in G, then output INO and stop.
3. If there is no T -triangle in G then output IYES and stop.
4. If |K| ≤ k + 1 then output IYES and stop.
5. If |K| = k + 2 and there is an edge uv in G[K] which is not highlighted then

output IYES and stop.

1 IYES and INO are trivial YES and NO instances, respectively.



Subset Feedback Vertex Set in Chordal and Split Graphs 371

Each remaining rule deletes a vertex or an edge from the graph.

Reduction Rule 2. If there is a vertex v of degree zero in G then delete v from
G to get graph G′. Set T ′ ← T \ {v}, k′ ← k. The reduced instance is (G′;T ′; k′).

Reduction Rule 3. If there is a non-terminal vertex v in G which is not
adjacent to a terminal vertex, then delete v from G to get graph G′. Set
T ′ ← T, k′ ← k. The reduced instance is (G′;T ′; k′).

Reduction Rule 4. If there is a bridge e in G then delete edge e (not its end-
vertices) to get graph G′. Set T ′ ← T, k′ ← k. The reduced instance is (G′;T ′; k′).

Lemma 5. Let (G;T ; k) be an instance of Subset FVS in Split Graphs
which is reduced with respect to Reduction Rules 1, 2, 3, and 4. Then

1. Each vertex in G has degree at least two.
2. Every vertex in G is part of some T -triangle.
3. If (G;T ; k) is a YES instance then every terminal vertex on the clique side of

G is present in every solution of (G;T ; k) of size at most k.

It is thus safe to pick a terminal vertex from the clique side into the solution.

Reduction Rule 5. If there is a terminal vertex t on the clique side then delete
t to get graph G′. Set T ′ ← T \{t}, k′ ← k−1. The reduced instance is (G′;T ′; k′).

Observation 1. Let (G;T ; k) be reduced with respect to Reduction Rules 1, 2,
3, 4 and 5. Let (K, I) be the split partition of G. Then T = I and every vertex
in K has a neighbour in I.

Our kernelization algorithm can be thought of having two main parts: (i)
bounding the number of vertices on the clique side by O(k), and (ii) bounding
the number of independent set vertices in the neighbourhood of each clique-side
vertex by k. We now describe the second part. We need some more notation.
For a vertex v ∈ K on the clique side of graph G we use (i) N1(v) for the
set of neighbours N(v) ∩ I of v on the independent side I, and (ii) N2(v) to
denote the set of all other clique vertices—than v—which are adjacent to some
vertex in N1(v); that is, N2(v) = N(N1(v))\{v}. Informally, N2(v) is the second
neighbourhood of v “going via I”. We use B(v) to denote the bipartite graph
obtained from G[N1(v)∪N2(v)] by deleting every edge with both its endvertices
in N2(v). Equivalently: Let H be the (bipartite) graph obtained by deleting, from
G, every edge which has both its ends on the clique side of G. Then B(v) =
H[N1(v) ∪ N2(v)]. We call B(v) the bipartite graph corresponding to vertex
v ∈ K.

Bounding the Independent-Side Neighbourhood of a Vertex on the Clique Side.
The first reduction rule of this part applies when there is a vertex v ∈ K which is
part of more than k T -triangles and these T -triangles are pairwise vertex-disjoint
apart from the one common vertex v. In this case any solution of size at most k
must contain v, so we delete v and reduce k.
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Lemma 6. Let v ∈ K be a vertex on the clique side of graph G such that the
bipartite graph B(v) contains a matching of size at least k + 1. Then every
T -FVS of G of size at most k contains v.

Reduction Rule 6. If there is a vertex v on the clique side K of graph G such
that the bipartite graph B(v) has a matching of size at least k + 1 then delete
vertex v from G to get graph G′. Set T ′ ← T, k′ ← k − 1. The reduced instance
is (G′;T ′; k′).

Let (G;T ; k) be an instance which is reduced with respect to Reduction
Rules 1 to 6. We show that if there is a vertex v ∈ K on the clique side of G
which has more than k neighbours in the independent side I, then we can find
an edge of the form vw ; w ∈ I which can safely be deleted from the graph.
We get this by a careful application of the “matching” version (Lemma 3) of
the Expansion Lemma together with Lemma 4. Let v be such a vertex and let
P = N2(v), Q = N1(v), t = 1. Then (P,Q) is a bipartition of the graph B(v)
corresponding to vertex v. Let � ≤ k be the size of a maximum matching of B(v).
Note that |Q| ≥ (k + 1) > �t and that—by part (1) of Lemma 5—there are no
isolated vertices in set |Q|. Thus Lemma 4 applies to graph B(v) together with
P,Q, t = 1. Since a 1-expansion from X into Y contains a matching between X
and Y which saturates X we get

Corollary 2. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 6. Suppose there is a vertex v ∈ K on the clique side of G which has
more than k neighbours in the independent side I. Then we can find, in polyno-
mial time, non-empty vertex sets X ⊆ N2(v) ⊆ K,Y ⊆ N1(v) ⊆ I and a vertex
w ∈ Y such that (i) there is a matching M between X and Y which saturates
every vertex of X and does not saturate w, and (ii) NG(Y ) = X ∪ {v}.
Lemma 7. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 6, and let v ∈ K be a vertex on the clique side which has more than k
neighbours in the independent side I. Let X ⊆ K,w ∈ Y ⊆ I,M ⊆ E(G[X ∪ Y ])
be as guaranteed to exist by Corollary 2. Let G′ = G − {vw}, and let S′ be a
T -THS of G′ of size at most k. If v /∈ S′ then (S′ \ Y ) ∪ X is a T -THS of G′ of
size at most k.

Reduction Rule 7. If there is a vertex v on the clique side K of graph G such
that v has more than k neighbours in the independent side I, then find a vertex
w ∈ I as described by Corollary 2 and delete the edge vw to get graph G′. Set
T ′ ← T, k′ ← k. The reduced instance is (G′;T ′; k′).

We now show how to bound the number of vertices on the clique side K of
an instance (G;T ; k) which is reduced with respect to Reduction Rule 7.

Bounding the Size of the Clique Side. We partition the clique side K into three
parts and bound the size of each part separately. To do this we first find a 3-
approximate solution S̃ to (G;T ; k). For this we initialize S̃ ← Ø and iterate as
follows: If there is a vertex v in the independent side I such that v is part of a
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triangle {v, x, y} in the graph G − S̃—note that in this case {x, y} ⊆ K—then
we set S̃ ← S̃ ∪ {v, x, y}. We repeat this till there is no such vertex v ∈ I or till
|S̃| becomes larger than 3k, whichever happens first.

Reduction Rule 8. Let (G;T ; k) be an instance which is reduced with respect to
Reduction Rule 7 and let S̃ be the set constructed as described above. If |S̃| > 3k
then return INO.

Fig. 1. The figure on the left shows the partition of V (G) as described after Reduction
Rule 8. On the right side, we have graph B as described before Corollary 4. Shaded
regions in S̃ and K1 represent the sets X,Y , respectively, as described in the same
corollary.

At this point we have that the cardinality of the approximate solution S̃ is
at most 3k. We now partition the sets K, I into three parts each and bound each
part separately (See Fig. 1):

– KS̃ is the set of clique-side vertices included in S̃: KS̃ = K ∩ S̃.
– IS̃ is the set of independent-side vertices included in S̃: IS̃ = I ∩ S̃.
– K0 is the set of clique-side vertices not in S̃ whose neighbour-

hoods in the independent side I are all contained in IS̃ : K0 =
{u ∈ (K \ KS̃) ; (N(u) ∩ I ⊆ IS̃} .

– I0 is the set of independent-side vertices not in S̃ whose neighbourhoods are
all contained in KS̃ : I0 = {v ∈ I \ IS̃ ; N(v) ⊆ KS̃} .

– K1 is the set of clique-side vertices not in S̃ which have at least one neighbour
in I outside of IS̃ ∪ I0. Equivalently, it is the set of clique-side vertices not in
KS̃ ∪ K0: K1 = K \ (KS̃ ∪ K0).

– I1 is the set of independent-side vertices which are not in IS̃ ∪ I0: I1 =
I \ (IS̃ ∪ I0). Since S̃ is a solution each vertex in I1—being a terminal—can
have exactly one neighbour in K1.
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We list some simple properties of this partition.

Observation 2. |KS̃ | ≤ 2k and |IS̃ | ≤ k. Each vertex in K1 has (i) no neigh-
bour in I0 and (ii) at least one neighbour in I1. Each vertex in I1 has exactly
one neighbour in K1. The bipartite graph obtained from G[K1 ∪ I1] by deleting
all the edges in G[K1] is a forest where each connected component is a star.

Let H be the bipartite graph obtained from G[IS̃ ∪ K0] by deleting all the
edges in G[K0]. Since—Observation 1—every vertex in the set K0 has at least
one neighbour in the set I and since (N(K0) ∩ I) ⊆ IS̃ by construction, we get
that there are no isolated vertices in graph H. So if |K0| ≥ 2|IS̃ | then Lemma 2
applies to graph H with P ← IS̃ , Q ← K0, t ← 2 and we get

Corollary 3. Let (G;T ; k) be an instance which is reduced with respect to
Reduction Rule 8, and let the sets KS̃ ,K0,K1, IS̃ , I0, I1 be as described above.
If |K0| ≥ 2|IS | then we can find, in polynomial time, non-empty vertex sets
X ⊆ IS̃ ⊆ I, Y ⊆ K0 ⊆ K such that (i) X has a 2-expansion M into Y , and (ii)
NG(Y ) = X.

Lemma 8. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 8, and let the sets KS̃ ,K0,K1, IS̃ , I0, I1 be as described above. Suppose
|K0| ≥ 2|IS̃ |, and let X ⊆ IS̃ ⊆ I, Y ⊆ K0 ⊆ K,M ⊆ E(G[X ∪ Y ]) be as
guaranteed to exist by Corollary 3. If S is a T -THS of graph G of size at most
k then (S \ Y ) ∪ X is also a T -THS of G of size at most k.

Reduction Rule 9. If |K0| ≥ 2|IS̃ | then find sets X ⊆ IS̃ and Y ⊆ K0 as
described by Corollary 3. Set G′ ← G − X,T ′ ← T \ X, k′ ← k − |X|. The
reduced instance is (G′;T ′; k′).

At this point we have the bounds |KS̃ | ≤ 2k and |K0| < 2|IS̃ | = 2k. We now
use a more involved application of the Expansion Lemma to bound the size of
the remaining part K1 of the clique side. The general idea is that if K1 is at
least twice as large as the approximate solution S̃ then the 2-expansion which
exists between subsets of these two sets will yield a non-empty set of “redundant”
vertices in K1.

Consider the bipartite graph B obtained from the induced subgraph G[S̃∪K1]
of G by (i) deleting all the edges in the two induced subgraphs G[S̃] and G[K1],
respectively, and (ii) deleting every edge uv ; u ∈ KS̃ , v ∈ K1 if and only if
there is no vertex w ∈ I1 such that {u, v, w} form a triangle in G. Consider
a vertex v ∈ K1. If v has a neighbour w ∈ IS̃ then the edge vw is present in
graph B and so v is not isolated in B. Now suppose v has no neighbour in
IS̃ . From the construction we know that v has no neighbour in I0 either. Then
from Lemma 5 and Observation 1 we get that there is a triangle {v, x, y} in G
where x ∈ (I \ (I0 ∪ IS̃)) = I1 and y ∈ K. Now by construction vertex x ∈ I1
has no neighbour in the set K0, and from Observation 2 we get that x has no
neighbour other than v in the set K1. Thus we get that y ∈ KS̃ , and hence
that the edge vy survives in graph B. Hence v is not isolated in B in this case
either. So if |K1| ≥ 2|S̃| then Lemma 2 applies to the bipartite graph B with
P ← S̃, Q ← K1, t ← 2 and we get
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Corollary 4. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 9, and let the sets K1, S̃,KS̃ , IS̃ ,K and the bipartite graph B be as
described above. If |K1| ≥ 2|S̃| then we can find, in polynomial time, non-empty
vertex sets X ⊆ S̃ = (KS̃ ∪ IS̃), Y ⊆ K1 ⊆ K such that (i) X has a 2-expansion
M into Y , and (ii) NB(Y ) = X.

Lemma 9. Let (G;T ; k) be an instance which is reduced with respect to Reduc-
tion Rule 8, and let the sets K1, S̃,KS̃ , IS̃ ,K and the bipartite graph B be as
described above. Suppose |K1| ≥ 2|S̃|, and let X ⊆ S̃ = (KS̃ ∪ IS̃), Y ⊆ K1 ⊆
K,M ⊆ E(G[X ∪ Y ]) be as guaranteed to exist by Corollary 3. If S is a T -THS
of graph G of size at most k then (S \ Y ) ∪ X is also a T -THS of G of size at
most k.

Reduction Rule 10. If |K1| ≥ 2|S̃| then find sets X ⊆ S̃ and Y ⊆ K1 as
described by Corollary 4. Set G′ ← G − X,T ′ ← T \ X, k′ ← k − |X|. The
reduced instance is (G′;T ′; k′).

Proof Sketch of Theorem 3. On input (G;T ; k) the algorithm applies the
various reduction rules exhaustively and in the given order, and outputs an
equivalent reduced instance (G′;T ′; k′). We assume without loss of generality
that (G′;T ′; k′) is not a trivial YES or NO instance. Since Reduction Rule 2 is
not applicable to the reduced instance (G′;T ′; k), there is no isolated vertex in
graph G′. Let (K ′, I ′) be the split partition of graph G′. Since Reduction Rules 6
and 7 are not applicable, every vertex in K ′ is adjacent with at most k vertices
in I ′. Since there is no isolated vertex in the graph, this implies |I ′| ≤ k · |K ′|.
Since Reduction Rule 8 did not return INO the approximate solution S̃ is of size
at most 3k. By Observation 2, |K ′ ∩ S̃| = |K ′

S̃
| ≤ 2k and |I ′ ∩ S̃| = |I ′

S̃
| ≤ k.

Let K ′
0,K

′
1 be the partition as defined after Reduction Rule 8. Since Reduction

Rule 9 is not applicable, this implies |K0| < 2|I ′
S̃
| < 2k. Similarly, Reduction

Rule 10 being not applicable implies that |K1| < 2|S̃| < 6k. Since K ′
S̃
,K0 and

K1 is a partition of K, we conclude that the cardinality of K is upper bounded
by 10k.

It is not difficult to verify that the kernelization algorithm runs in polynomial
time.

References

1. Abu-Khzam, F.N.: A Kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

2. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In:
George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix
Computation. The IMA Volumes in Mathematics and its Applications, vol. 56, pp.
1–29. Springer, New York (1993)

3. Chitnis, R., Fomin, F.V., Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh,
S.: Faster exact algorithms for some terminal set problems. In: Gutin, G., Szeider,
S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 150–162. Springer, Cham (2013)



376 G. Philip et al.

4. Chitnis, R.H., Cygan, M., Hajiaghayi, M.T., Marx, D.: Directed subset feedback
vertex set is fixed-parameter tractable. ACM Trans. Algorithms (TALG) 11(4),
28:1–28:28 (2015)

5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015)
6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex

set is fixed-parameter tractable. SIAM J. Discrete Math. 27(1), 290–309 (2013)
7. Dell, H., Van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless

the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)
8. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2016)
9. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback

vertex set problem. SIAM J. Comput. 30(4), 1231–1252 (2000)
10. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumer-

ating minimal subset feedback vertex sets. Algorithmica 69(1), 216–231 (2014)
11. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden

minors: approximation and Kernelization. SIAM J. Discrete Math. 30(1), 383–410
(2016)

12. Golovach, P.A., Heggernes, P., Kratsch, D., Saei, R.: Subset feedback vertex sets
in chordal graphs. J. Discrete Algorithms 26, 7–15 (2014)

13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier,
Amsterdam (2004)

14. Hols, E.M.C., Kratsch, S.: A randomized polynomial kernel for subset feedback
vertex set. Theory of Comput. Syst. 62(1), 63–92 (2018)

15. Kawarabayashi, K., Kobayashi, Y.: Fixed-parameter tractability for the subset
feedback set problem and the S-cycle packing problem. J. Comb. Theor. Ser. B
102(4), 1020–1034 (2012)

16. Le, T.-N., Lokshtanov, D., Saurabh, S., Thomassé, S., Zehavi, M.: Subquadratic
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