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Abstract We revisit the notion of Lindelöf Σ-space giving a general overview
about this question. For that, we deal with the Lindelöf property to introduce Lin-
delöf Σ-spaces in order to make a description of the “goodness” of such a type of
spaces,making special emphasis in the duality between X andCp(X) respect to some
topological properties, more specifically, topological properties in which different
cardinal functions are involved. Classical results are linked with more recent results.
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1 Notation and Terminology

The set-theoretic notation which will be used follows [19, 20]. Cardinal numbers κ

andm are the initial ordinals thatwill denote always infinite cardinals,ω is the smallest
infinite cardinal number. The cardinal number assigned to the set of all real numbers
is denoted by c. κ+ is the smallest cardinal number after κ . The cardinality of a set
E is denote by |E |, P(E) is the power set of E and [E]n = {A : A ⊂ E, |A| = n}.
Respect to the notation refereed to topology the basic references used are [14, 22].

Let (X,T ) be a topological space, where X is a set and T is a topology. A
family of sets in N it is called a network for X if for every point x ∈ X and any
neighborhoodU of x there exists N ∈ N such that x ∈ N ⊂ U . The network weight
of a space X , nw(X), is defined as the smallest cardinal number of a network in X .
A family of open sets in B it is called a basis if for every non-empty open subset
U ∈ T of X can be represented as the union of a subfamily of B. This definition
is equivalent to the property that for each open set U ∈ T such that x ∈ U there
exists B ∈ B such that x ∈ B ⊂ U . It is clear that a basis is a network such that the
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elements of the family are open. The weight of a topological space (X,T ), denoted
by w(X,T ), is the smallest cardinal number of the cardinality of a basis.

Let x ∈ X be a fixed point of a topological space (X,T ) a family, B(x) ⊂ T of
open subsets is called a basis of neighborhoods at x if for every open setU ∈ T such
that x ∈ U , there exists V ∈ B(x) such that x ∈ V ⊂ U . The character of a point x ,
denoted by χ(X, x) is the smallest cardinal number of the cardinality of a basis of
neighborhoods at x . The character of a topological space (X,T ) is the supremum
of all cardinal numbers χ(x, X) for x ∈ X , and it will be denoted by χ(X). We will
write X a topological space instead of (X, τ ) for short.

Definition 1.1 (p. 12 [14]) A topological space X is said to be

1. first-countable or satisfies the first axiom of countability if χ(X) ≤ ω, this means
that each point has a countable basis of neighborhoods.

2. second-countable or satisfies the second axiom of countability if w(X) ≤ ω, that
is, X has a countable basis.

The following definitions are standard and can be found in [14].

Definition 1.2 (pp. 37–40 [14]) A topological space X is called a

1. T1-space if for every pair of different points x, y ∈ X there exists an open set
U ⊂ X such that x ∈ U and y /∈ U .

2. T2-space, or aHausdorff space, if for every pair of different points x, y ∈ X there
exist open sets U1, U2 ⊂ X such that x ∈ U1, y ∈ U2 and U1 ∩U2 = ∅.

3. T3-space, or a regular space, if X is a T1-space and for every x ∈ X and every
closed set F ⊂ X such that x /∈ F there exist open setsU1, U2 such that x ∈ U1,
F ⊂ U2 and U1 ∩U2 = ∅.

4. T3 1
2
-space, or a Tychonoff space, or a completely regular space, if X is a T1-space

and for every x ∈ X and every closed set F ⊂ X such that x /∈ F there exists
a continuous function f : X → I such that f (x) = 0 and f (y) = 1 for y ∈ F .
Every Tychonoff space is a regular space.

5. T4-space, or a normal space, if X is a T1-space an for every pair of disjoint closed
subsets A, B ⊂ X there exist open sets U1, U2 ⊂ X such that A ⊂ U1, B ⊂ U2

and U1 ∩U2 = ∅.
6. T5-space, or a completely normal space, if X is a T1-space and for every pair

of subsets A and B of X such that A ∩ B = A ∩ B = ∅ there exists open sets
U1, U2 ⊂ X such that A ⊂ U1, B ⊂ U2 and U1 ∩U2 = ∅.
All topological spaces in this chapter are supposed to be Hausdorff.

2 Lindelöf Spaces

It is well-known that a regular topological space X is a Lindelöf space, or has the
Lindelöf property, if every open cover of X has a countable subcover. In particular,
every compact space is a Lindelöf space. This is a descriptive well-known property
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that can be found along the bibliography thoroughly. According to R. Engelking [14],
the notion of a Lindelöf space was introduced by Alexandroff and Urysohn in [1],
although the property was named after Lindelöf [23] who proved in 1903 that any
open covering of a subset F of Rn contains a countable subcovering.

The existence of a countable number of open sets is a level immediately close to
the notion of compact space, in which a finite number of open sets are enough to
cover it, and as we will see the number of open sets to cover a topological space is
enough to establish bounds about other cardinal functions.

Basic properties related with axioms of separability follow. Thus,

Proposition 2.1 (Theorem 3.8.1 [14]) Every regular second countable space is a
Lindelöf space.

The converse does not hold in general.

Example 2.1 Sorgenfrey line is a Lindelöf space which is not second countable.

Proof On the set of the real numbers X it is considered the right half-open interval
topology, it means that τ is the family of all sets of the form [a, b), where a, b ∈ X .
The Sorgenfrey lineS := (X, τ ) is a Lindelöf completely normal space which is not
second countable since if S = {[xi , yi ) : i ∈ Z

+} is a countable set of open sets, then
there exists a ∈ X such that a �= xi for each i ∈ Z

+, thus, for any b > a, we have that
[a, b) is an open set such that is not a union of elements of S [36, Counterexample
84, pp. 103–105]. Observe that Sorgenfrey line is not σ -compact since each compact
set is countable and the real numbers is not countable. (X, τ ) is Lindelöf. Let {Uα} be
an open covering of X . Let {int(Uα)} be the family obtained considering the interior
of Uα in the usual topology of the real numbers. Then P = ∪αint(Uα) is Lindelöf
and there exists a countable subfamily such that P = ∪n∈Nint(Uαn ) = ∪αint(Uα).
Let A := X \ P , then A is a countable set which can be covered by a countable
subfamily of {Uα} and a countable subcovering can be obtained from the original
one.

On the contrary, Lindelöf property implies T4-space as it is stated in the following
proposition. The proof can be found in [14].

Proposition 2.2 (Theorem 3.8.2 [14]) Every Lindelöf space is normal.

In the case of regular spaces to be Lindelöf is close to have the countable inter-
section property, namely,

Proposition 2.3 (Theorem 3.8.3 [14]) A regular space X is Lindelöf if and only if
every family of closed subsets of X which has the countable intersection, that is, each
family F of closed sets such that for each countable subfamily F ′ ⊂ F holds that
∩F∈F ′ F �= ∅, has non-empty intersection.

In the frame of locally compact space the Lindelöf property is characterized in
the following proposition, see [14, Exercise 3.8.C, p. 195].
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Proposition 2.4 Let X be a locally compact space, that is, for every x ∈ X there
exists a neighbourhood U of the point x such that U is a compact of subspace of X.
Then the following sentences are equivalent:

1. The space X has the Lindelöf property.
2. The space X is σ -compact.
3. There exists a sequence A1, A2, . . . , of compact subspaces of the space X such

that Ai ⊂ int (Ai+1) and X = ⋃∞
i=1 Ai .

Unless otherwise was indicated, we assume that all topological spaces are non-
empty, completely regular and Hausdorff.

Respect to the stability properties, the Lindelöf property has a good behaviour
respect to some operations but not all.

We have that every closed subset subspace of a Lindelöf space is a Lindelöf space.
Every regular space which can be represented as a countable union of Lindelöf sub-
spaces is Lindelöf. The continuous image of a Lindelöf space X onto a regular space
Y is a Lindelöf space. Inverse images of a Lindelöf space under perfect mappings
are also Lindelöf. In fact, inverse images of closed mappings with Lindelöf fibers
are again Lindelöf. More about the “goodness” of the Lindelöf property comes from
realcompactness. A topological space is realcompact if and only if it is homeomor-
phic to a closed subspace of a power Rm of the real line, for a cardinal number m,
and it is known, that every Lindelöf space is realcompact [14, Theorem 3.11.12]. The
realcompactification of a topological space X is denoted by νX , whereas the Stone-
Čech compactification of X , is denoted by βX [14, Sect. 3.6]. As a good property we
have that every open cover of a Lindelöf space has a locally finite open refinement
[14, Theorem 3.8.11].

On the other hand, the Cartesian product of two Lindelöf spaces is not in general
a Lindelöf space, considering again the Sorgenfrey line S , then S × S is not
Lindelöf althoughS is it. In [35, p. 632] it is proved thatS × S is not normal and
hence it is not Lindelöf.

2.1 The Lindelöf Number

Until now we have summarized some properties of Lindelöf spaces respect to se-
parability axioms, countably axioms or stability properties, in a general frame. The
following lines will be occupied on the relationship between Lindelöf property and
other cardinal functions.

We have considered in the beginning some cardinal functions as theweight and the
network weight but a more formal definition is needed about what a cardinal function
is. Recall that a cardinal function is a function that assigns to every topological space
an infinite cardinal number which is invariant by homeomorphisms, it means that if X
and Y are homeomorphic, the cardinal function of X is equal to the cardinal function
of Y . In topology the descriptive properties of the spaces are mostly determined
by different cardinal functions. The generalization of the notion of Lindelöf space
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Fig. 1 General relationship
between general cardinal
functions. The arrow “→”
means greater than or equal
to. See [14] and [19, Sect. 3]
for more details

gives us a new cardinal function defined for each topological space X . The Lindelöf
number, denoted by �(X), is the smallest cardinal number κ such that for every open
cover there exists a subcovering of cardinality ≤ κ .

Other cardinal functions are the following. The density of X , d(X) is the smallest
cardinal number of a set S ⊂ X , such that S = X . The Souslin number, or cellularity
of a topological space X , c(X) is defined as the smallest cardinal numberm such that
the cardinality of a family of pairwise disjoint non-empty open subsets of X is not
greater than m. The spread of X , s(X), is the smallest cardinal number m such that
the cardinality of every discrete subspace is not greater than m. While the extent of
X , e(X), is the smallest cardinal number m such that the cardinality of a closed and
discrete subset of X is not greater thanm [19, Sect. 3]. It is clear that e(X) ≤ �(X) and
e(X) ≤ s(X). In other sense, as we have previously mentioned each closed subspace
of a Lindelöf space is Lindelöf but the same does not occur for open subspaces, hence
the hereditarily Lindelöf number of X , is defined as h�(X) = sup{�(Y ) : Y ⊂ X}.

Observe in Fig. 1 that the density character and the Lindelöf number are not
closely related. The Niemytzki plane is an example of a separable space which is
not a Lindelöf space [36, Example 82, p. 100]. Let L = {(x, y) ∈ R

2 : y ≥ 0}. Let
L1 = {(x, y) : y = 0} the real axis and L2 = L \ L1. In L2, the topology τ is the
Euclidean topology and τ ∗ is the topology in L generated by τ and all the sets of the
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form {(x, 0)} ∪ D, where D is an open disc in L2 which is tangent to L1 at the point
(x, 0). The space (L , τ 2) is called the Niemytzki plane.

The rest of the results included in Fig. 1 are classical and can be found in [19,
Sect. 3].

3 Lindelöf Σ-Spaces

A subclass of Lindelöf spaces is the class of Lindelöf Σ-spaces. Σ-spaces were
introduced by K. Nagami in [25]. This class of spaces has been widely used not only
in Topology, see [41] but also in Functional Analysis in which it is called the class
of countably K -determined spaces [11, 12, 17, 37].

3.1 Definition and First Properties

The categorical definition of Lindelöf Σ-spaces can be found in [2, p. 6].

Definition 3.1 The class of LindelöfΣ-spaces is the smallest class of spaces contai-
ning all compacta, all spaces with a countable basis and closed under the following
operations: finite products, closed subspaces and continuous images.

This definition gives us thefirst difference respect to theLindelöf property, namely,
the finite product of Lindelöf Σ-spaces is again a Lindelöf Σ-space, although more
can be done, since the countable product of LindelöfΣ-spaces is a LindelöfΣ-space,
see [41, Proposition 3]. Nevertheless, the categorical definition is not operative to
work with it.

Following M. Talagrand [37], we use the notion of upper semicontinuous map.

Definition 3.2 Let X and Y be topological spaces. A multivalued map φ : X → 2Y

is said to be upper semicontinuous in x0 ∈ X if φ(x0) is not empty and for each open
set V in Y with φ(x0) ⊂ V there exists an open set U of x0 such that φ(U ) ⊂ V . A
multivalued map φ is said to be upper semicontinuous if it is upper semicontinuous
for each point in X . We will say that a multivalued map φ : X → 2Y is usco if φ is
upper semicontinuous and the set φ(x) is compact for each x ∈ X .

The reader can find more information about usco maps in [9] and references therein.
The number of equivalent definitions for LindelöfΣ-space has increased because

the different situations in which it appears. In [41, Theorem 1], some equivalent
definitions of Lindelöf Σ-space have been summarized.

Proposition 3.1 (Theorem 1 [41]) The following conditions are equivalent for a
topological space X:

1. X is a Lindelöf Σ-space;
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2. there exist spaces K compact and M second countable such that X is a continuous
image of a closed subspace of K × M;

3. there exists an usco map φ : M → 2X , where M is a second countable space and
∪{φ(x) : x ∈ M} = X;

4. there exits a compact cover C of the space X such that some countable family
N of subsets of X is a network mod(C ) in the sense that, for any C ∈ C and
any U ∈ τ(X) with C ⊂ U there is N ∈ N such that C ⊂ N ⊂ U;

5. there exists a compact cover C of the space X such that some countable family
Q of closed subsets of X is a network mod(C );

6. there exists a countable familyF of compact subsets ofβX such thatF separates
X from βX \ X in the sense that, for any x ∈ X and y ∈ βX \ X there exists
F ∈ F for which x ∈ F and y /∈ F;

7. there exists a compactification bX of the space X and a countable family K of
compact subsets of bX which separates X from bX \ X;

8. there exists a space Y such that X ⊂ Y and, for some countable family K of
compact subsets of Y , we have X ⊂ ∪K and K separates X from Y \ X.

3.2 Generalizing Lindelöf Σ-Spaces

After characterization of Lindelöf Σ-space using usco maps, the cardinal functions
number of K -determination, �Σ(X) and Nagami number, Nag(X), make sense.

Definition 3.3 (Definition 2 [8]) Let X be a topological space.

(i) The number of K-determination of X , �Σ(X), is defined as the smallest cardinal
number m for which there are a metric space (M, d) of weight m and an usco
map φ : M → 2X such that X = ⋃{φ(x) : x ∈ M}.

(ii) The number ofNagami of X , Nag(X), is defined as the smallest cardinal number
m for which there are a topological space Y of weight m and an usco map
φ : Y → 2X such that X = ⋃{φ(y) : y ∈ Y }.

The following characterizations hold.

Proposition 3.2 (Proposition 6 [8]) Let X be topological space and m a cardinal
number. The following statements are equivalent:

1. Nag(X) ≤ m (resp. �Σ(X) ≤ m);
2. there is a family of closed sets {Ai : i ∈ m} in βX, such that for every x ∈ X

there is a set J ⊂ m (resp. with |J | ≤ ω) such that x ∈ ⋂
i∈J Ai ⊂ X.

3. there exists a topological (metric) space Y such that w(Y ) ≤ m and φ : Y → 2X

an usco map such that X = ∪{φ(y) : y ∈ Y }.
Observe that Nag(X) ≤ �Σ(X) and �Σ(X) ≤ ω implies that X is a Lindelöf Σ-

space. Both notions are different, in [8, Example 9] is given an example of a space
Y such that Nag(Y) ≤ w(Y) < �Σ(Y), [8, Proposition 10]. Figure2 adds to Fig. 1
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Fig. 2 Relationships
between general cardinal
functions for a completely
regular topological space X
including Nagami number.
The arrow “→” means ≥

the cardinal function Nag(X) and its relationships with other cardinal functions.
Thus, it is known that Nag(X) ≤ nw(X) for X a completely regular space, see [8,
Corollary 27]. In the class of infinite metric spaces we have that

w(X) = �(X) = d(X) = �Σ(X) = Nag(X).

When we consider ℵ-spaces the relationships between cardinal functions also
allow us to have more information. The class of ℵ-spaces was introduced by
P. O’Meara in [28]. A topological space X is called an ℵ-space if X is regular and
has a σ -locally finite k-network. A family F of subsets of X is called a k-network
in X , if whenever K ⊂ U with K compact and U open in X , then K ⊂ ∪F ′ ⊂ U
for some finite family F ′ ⊂ F . Because the regularity of the space, the collection
of subsets which is a σ -locally finite k-network can be chosen to consist of closed
sets. In the class of ℵ-spaces, �(X) = Nag(X) = �Σ(X).

3.3 Lindelöf Σ-Spaces in C p-Theory

The attempt to collect all the properties even in the particular case of Lindelöf Σ-
spaces is not an easy task, because the large quantity of results related, see [41].
Thus, we will show up only some results that give us a general knowledge about the
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behavior of LindelöfΣ-spaces. Let X be a topological space andCp(X) stands for the
space of real-valued continuous functions endowed with the pointwise convergence
topology. In this section we focus on how topological properties of both spaces are
related in the framework of Lindelöf Σ-spaces, since there is a special relationship
between properties of X and Cp(X) when Lindelöf Σ-property is involved.

Additional notation and definitions are needed and they can be found in [2]. The
tightness of a point x in a topological space X , t (x, X), is the smallest infinite cardinal
numberm such that for any x ∈ A, there exists B ⊂ A such that |B| ≤ m and x ∈ B.
The tightness of a topological space X , t (X), is the supremum of all t (x, X) for
x ∈ X .

The following definition can be found in [2, Sect. 0.2, p. 5].

Definition 3.4 Let X be a topological space, we called iw(X) the smallest cardinal
m for which there exist a topological space Y with w(Y ) ≤ m and a one-to-one
continuous map onto f : X → Y .

A space X is said to bem-stable if for every continuous imageY of X if iw(Y ) ≤ m
then nw(Y ) ≤ m. The space X is stable if it is m-stable for any infinite cardinal
number m. The following results get us a first example of what we mean about the
relationship between X and Cp(X) in the frame of Lindelöf Σ-spaces.

Theorem 3.1 (Theorem II.6.21 [2]) Every Lindelöf Σ-space is stable.

As a consequence of previous theorem the product of an arbitrary family of Lin-
delöfΣ-spaces is stable [2, Corollary II.6.27]. Moreover, a space is stable if and only
if Cp(Cp(X)) is stable, [2, Corollary II.6.11]. Following [39], let Cp,0(X) = X and
Cp,n+1(X) = Cp(Cp,n(X)) for each natural number n ∈ N. The following proposi-
tion holds.

Proposition 3.3 (Corollary II.6.32 [2]) Let X be a Lindelöf Σ-space then Cp,2n(X)

is stable for any n ∈ N.

3.3.1 The Iterative Process

In [41] V. Tkachuck gave a description of all possible distribution of the Lindelöf
Σ-property in the iterated spaces Cp,n(X). Only the following cases can occur:

Proposition 3.4 (Corollary 2.10 [41]) Only the following distributions of the Lin-
delöf Σ-property in iterated function spaces are possible:

1. Cp,n+1(X) is a Lindelöf Σ-space for every n ∈ N;
2. Cp,n+1(X) is a Lindelöf Σ-space only for odd n ∈ N;
3. Cp,n+1(X) is a Lindelöf Σ-space only for even n ∈ N;
4. for any n ∈ N the space Cp,n+1(X) is not a Lindelöf Σ-space.
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An example of a non-Lindelöf space X such that Cp,2n+1(X) is LindelöfΣ-space
for every n ∈ N but Cp,2n(X) is not Lindelöf and a space Y such that Cp,2n(Y ) is
a Lindelöf Σ-space for every n ∈ N and Cp,2n+1(Y ) is not Lindelöf are shown up
in [41, Examples 2.9].

Previously, particular results in the framework of compact spaces had been
obtained. The following definitions are well-known. A compact subset of a Banach
space in the weak topology is called Eberlein compact. A compact space X is called
Gul’ko compact if Cp(X) is a Lindelöf Σ-space. Finally, a compact space is said to
be a Corson compact if it can be embedded in the subspace of the product Rm of
the real line consisting of functions vanishing at all but countably many points for
an infinite cardinal number m [2, p. 134].

The behaviour of iterated spaces for LindelöfΣ-spaces have been widely studied.
Gul’ko proved in [18] that for any Eberlein compact X the iterated function spaces
Cp,n(X), n ∈ N, are Lindelöf. Sipachova [31] proved that Cp,n(X) is Lindelöf Σ-
space for any n ∈ N whenever X is an Eberlein compact space. On the other hand,
Okunev [27] proved that if X and Cp(X) are Lindelöf Σ-spaces then Cp,n(X) is a
Lindelöf Σ-space for each n ∈ N. In general, when X is a Lindelöf Σ-space such
that X ⊂ Cp(Y ), the following result is known.

Proposition 3.5 (Theorem 2.12 [27]) Let X and Y Lindelöf Σ-spaces such that
X ⊂ Cp(Y ), then Cp,n(X) is a Lindelöf Σ-space for any n ∈ N.

More in this sense,

Proposition 3.6 (Theorem 4.3 [27]) Let X be a Gul’ko compact space and K be a
compact subspace of Cp,n(X) for some n ∈ N, then K is a Gul’ko compact space.

A generalization of the previous result is the following one.

Theorem 3.2 (Theorem 4.4 [27]) Let K be a compact subspace of Cp(X) such that
there exists a Lindelöf Σ-space Z such that Cp(X) ⊂ Z then K is a Gul’ko compact
space.

The following result is a characterization of Gul’ko compact spaces.

Theorem 3.3 (Theorem 4.7 [27]) Let X be a compact space. Then the following
conditions are equivalent:

1. X is a Gul’ko compact space;
2. Cp,n(X) is a Lindelöf Σ-space for some n ∈ N;
3. Cp,n(X) is a Lindelöf Σ-space for any n ∈ N.

This Theorem links to the following one proved by Sokolov [33, Corollary 2].

Proposition 3.7 If X is a Corson compact space, then Cp,n(X) is Lindelöf for each
n ∈ N.
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Similarly, Gul’ko [44, Problem 27, p. 610] conjectured that the Lindelöf
property of all iterated continuous spaces characterizes Corson compact, neverthe-
less, Sokolov [34, Theorem 2.1] gave an example of a compact space X whose
iterated continuous function spaces Cp,n(X) for n ∈ N are Lindelöf but X is not a
Corson compact space.

More similarities follow. If X is a Corson (Gul’ko) compact space and Cp,n(X)

is homeomorphic to Cp,n(Y ), for some n ∈ N, then Y is Corson (Gul’ko). In 2018,
see [6, Sect. 3] for details, it has been proved the same result for Eberlein compact
space.

Recently (2017), Ferrando, Kąkol and López-Pellicer have characterized in [16]
Gul’ko compact spaces considering the topology inC(X) for σY , where Y is a subset
that separates the functions ofC(X) and σY is theweak topology σ(C(X), span(Y )).

Theorem 3.4 (Theorem 4.1 [16]) Let X be a compact space and Y be a Gδ-dense
subspace. Then X is a Gul’ko compact space if and only if (C(X), σY ) is a Lindelöf
Σ-space.

3.3.2 Σs-Products

The concept of Σs-product was used by Sokolov [32, Theorem 8] in order to give a
different characterization of Gul’ko compact spaces. The following definitions are
needed, see [30, Definition 3.1].

Definition 3.5 Let a be a point in the product space X = ∏
t∈T Xt .

1. The support of x , denoted by supp(x), is the set {t ∈ T : x(t) �= a(t)}.
2. The Σ-product of the family {Xt }t∈T centered at the point a, is the subspace of

X given by
Σ(X, a) = {x ∈ X : |supp(x)| ≤ ω}.

3. The σ -product of the family {Xt }t∈T centered at the point a, is the subspace of X
given by

σ(X, a) = {x ∈ X : |supp(x)| < ω}.

4. Let s be a countable family of subsets of T and sx = {E ∈ s : |supp(x) ∩ E | <

ω} ⊆ s for x ∈ X , then theΣs-product of the family {Xt }t∈T centered at the point
a with respect to the set s is the subspace of X given by

Σs(X, a) = {x ∈ X : T = ∪sx }.

If the point a in consideration is not relevant we will write Σ(X), σ(x) and Σs(X).

Now the following characterization can be introduced.

Proposition 3.8 (Theorem 8 [32]) A compact space X is Gul’ko if and only if X
embeds into a Σs -product of real lines.
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An extension of the previous result is debt to Casarrubias-Segura et al. [6] in
which it is proved that if X is a Lindelöf Σ-space contained in a Σs-product of real
lines then Cp(X) is a Lindelöf Σ-space.

More results related to Lindelöf Σ-spaces are known. Thus,

Proposition 3.9 (Theorem 3.2 [42]) Every Σs -product of compact spaces is a Lin-
delöf Σ-space.

Recently, in 2018,

Proposition 3.10 (Theorem 4.1 [6]) If X = ∏
t∈T Xt is a product, and every σ -

product in X is a Lindelöf Σ-space, then each Σs -product in X is a Lindelöf Σ-
space.

Proposition 3.11 (Theorem 4.5 [6]) Every Σs -product of K -analytic spaces is a
Lindelöf Σ-space.

In [6, Corollary 4.2] it has been proved that Proposition 3.9 holds for every Σs-
product of σ -compact spaces.

Different questions remain open in this framework, thus, in [6, Questions 5.6 and
5.7] the following questions are posed.

1. Let X be a Lindelöf Σ-space which admits a condensation in a Σs-product of
real lines. Must Cp(X) be a Lindelöf Σ-space?

2. Let X be a Lindelöf subspace of a Σ-product (or Σs-product) of real lines. Must
Cp(X) be Lindelöf?

Remind that a map f : X → Y is a condensation if it is a continuous bijection;
in this case we say that X condenses onto Y . If X condenses onto a subspace of Y ,
we say that X condenses into Y (Sect. 2 in [6]).

3.3.3 Cardinal Inequalities

In this section we focus our interest on the relationship between X and Cp(X)

involving different cardinal functions. In [8] can be found some of them in which the
number of K -determination and the Nagami number appear. Thus,

Proposition 3.12 (Proposition 16 [8]) Let X be a topological space, then t (Cp(X))

≤ �Σ(X). In particular, if X is a Lindelöf Σ-space, then t (Cp(X)) is countable.

Involving the network of the space the following results give us information in the
particular case of the Lindelöf Σ-spaces. Classical results of Arkhangel’skii follow.

Proposition 3.13 (Theorem 10 [3]) Let X be a topological space such that Cp(X)

is a LindelöfΣ-space and the spread of Cp(X) is countable then nw(X) is countable
(X is cosmic).
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Proposition 3.14 (Proposition 12 [3]) Let X be a topological space such that the
spread of X is countable and Cp(X) is a Lindelöf Σ-space then X is a Lindelöf
Σ-space.

Proposition 3.15 (Theorem13 [3])Let X bea topological space such that the spread
of X × X is countable and Cp(X) is a Lindelöf Σ-space then X has a countable
network (X is cosmic).

More conditions to obtain X cosmic were obtained by Tkachuck.

Proposition 3.16 (Theorem 3.6 [40]) Let X be a topological space such that Cp(X)

is a Lindelöf Σ-space and s(X) is countable then nw(X) is countable (X is cosmic).

Proposition 3.17 (Theorem 3.30 [43]) Let X be a topological space such that
Cp(Cp(X)) is a Lindelöf Σ-space and s(X) is countable then nw(X) is countable
(X is cosmic).

When we consider subspaces as our goal, then the following definitions are
needed. Let m be an infinite cardinal number, a topological space X is said to be
m-monolithic if for each A ⊂ X such that |A| ≤ m then nw(A) ≤ m. A space X is
called strongly m-monolithic if for every Y ⊂ X with |Y | ≤ m, the weight of the
space Y does not exceed m. A topological space X is said to be monolithic if X is
m-monolithic for each infinite cardinal number m. Thus, if X is a monolithic space,
then for each subspace Y ⊂ X , we have that d(Y ) = nw(Y ), [2, p. 76].

The following result can be found in [8].

Proposition 3.18 (Proposition 17 [8]) Let X be a topological space and H ⊂ C(X)

τp-compact, then H is strongly �Σ(X)-monolithic.

The corollary which follows from the previous proposition is also an immediate
consequence of [2, Theorem II.6.8].

Corollary 3.1 Let X be a Lindelöf Σ-space and H ⊂ Cp(X) then

nw(H) = d(H).

In particular, if H is τp-compact subspace then H is metrizable, see [10, Corollary
1.2].

Recent work has established accurate boundedness of the weight in Lindelöf Σ-
spaces. Tkachenko [38] has proved the following result.

Theorem 3.5 (Theorem 2.1 [38]) Let X be a completely regular space then w(X) ≤
|C(X)| ≤ nw(X)Nag(X) holds.

In [6, Theorem 8.2] this result has been proved with different arguments proving
that the inequality w(X) ≤ nw(X)Nag(X) holds for regular spaces. In particular for
a Lindelöf Σ-space X such that nw(X) ≤ c, then |C(X)| ≤ c and w(X) ≤ c. Even
more it is established,
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Theorem 3.6 (Theorem 2.3 [38]) Let Y be a dense subspace of a completely regular
space X, then |C(X)| ≤ nw(Y )Nag(Y ) and w(X) ≤ nw(Y )Nag(Y ).

Respect to the hereditarily numbers the following properties hold.

Theorem 3.7 (Theorem 5.2 [24]) Let X be a topological space then:

1. h�(X) ≤ max{Nag(Cp(X)), s(X)}.
2. h�(Cp(X)) ≤ max{Nag(X), s(Cp(X))}.

The corollary that follows can be found in [3].

Corollary 3.2 (Proposition 9 [3]) If X is a Lindelöf Σ-space and the spread of
Cp(X) is countable, then Cp(X) is hereditarily Lindelöf, and X × X is hereditarily
separable.

Finally, the classical theorem of Baturov [4] states that

Theorem 3.8 (Theorem III.6.1 [2]) Let X be a Lindelöf Σ-space and Y ⊂ Cp(X)

a subspace, then �(Y ) = e(Y ).

If X is a countably compact spaceBaturov’s theorem fails. Buzyakova [5, Example
3.6] showed an example of a countably compact space X such that e(Cp(X)) <

�(Cp(X)).

4 Characterizing When νX Is a Lindelöf Σ-Space

Realcompactification of a space is related with the space Cp(X) and as an interme-
diate step in order to get any of the previous results. In fact when dual spaces are
considered, envelopes play an important role.

Theorem 4.1 (Theorem 3.5 [27]) Let X be a topological space. Then νX is a
Lindelöf Σ-space if and only if there exists a Lindelöf Σ-space Z such that
Cp(X) ⊂ Z ⊂ R

X .

As a consequence of the previous result we have that

Proposition 4.1 (Corollary 3.6 [27]) Let νCp(X) be a Lindelöf Σ-space, then νX
is a Lindelöf Σ-space.

Theorem 4.2 (Theorem 3.5 [26]) Let Cp(X) be a Lindelöf Σ-space, then νX is a
Lindelöf Σ-space.

Theorem 4.3 (Theorem 2.3 [39]) Let Cp(X) be a Lindelöf Σ-space, then Cp(νX)

is a Lindelöf Σ-space.

Now, it is clear that
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Fig. 3 Relationships between some notions that summarizes some properties involving realcom-
pactification of a space. A → B means A implies B

Corollary 4.1 (Corollary 2.4 [39]) If Cp(X) is a Lindelöf Σ-space, then Cp,n(νX)

is a Lindelöf Σ-space for each n ∈ N.

Figure3 summarizes the previous results.
Completely regular spaces X whose realcompactification νX is a Lindelöf Σ-

space were studied by Ferrando in [15]. The characterization of topological spaces
whose realcompactification is a LindelöfΣ-space was also considered in [21] where
the notions of strongly web-bounded space and web-bounding space are involved.

Definition 4.1 (Definition 3 [7]) A locally convex space X is web-bounded if there
is a family {Aα : α ∈ Ω} of sets covering X for some nonempty Ω ⊂ N

N such that
if α = (nk)k ∈ Ω and xk ∈ Cn1,n2,...,nk := ⋃{Aβ : β = (mk)k ∈ Ω, m j = n j , j =
1, . . . , k} then (xk)k is bounded.

Definition 4.2 (p. 150 [29]) A space X is strongly web-bounding if there is a
family {Aα : α ∈ Ω} of sets covering X for some nonempty Ω ⊂ N

N such that
if α = (nk)k ∈ Ω and xk ∈ Cn1,n2,...,nk := ⋃{Aβ : β = (mk)k ∈ Ω, m j = n j , j =
1, . . . , k} then (xk)k is functionally bounded, that is, f ((xk)k) ⊂ R is bounded for
each continuous function f : X → R.

Characterization of the realcompactification of a space X which is also a Lindelöf
Σ-space was given by Kąkol and López-Pellicer in [21] giving a description of a
web-bounded structure in the original space.

Theorem 4.4 (Theorem 1.2 and Corollary 2.6 [21]) Let X be a completely regular
space then the following sentences are equivalent.

1. νX is a Lindelöf Σ-space;
2. X is strongly web-bounding;
3. Cp(X) is web-bounded;
4. there exits a Lindelöf Σ-space Z such that Cp(X) ⊂ Z ⊂ R

X .

Regarding the question if this property is in some sense “hereditary” when real-
compactification is involved we have the following result.
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Proposition 4.2 (Theorem 8 [13]) Let X and Y be spaces and h : Cp(X) → Cp(Y )

a surjective map that takes bounded sequences to bounded sequences. If νX is a
Lindelöf Σ-space, then νY is a Lindelöf Σ-space.
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16. Ferrando, J.C., Kąkol, J., López-Pellicer, M.: On spaces Cb(X) weakly K -analytic. Math.

Nachr. 290, 2612–2618 (2017)
17. Fremlin, D.H.: K -analytic spaces with metrizable compacts. Mathematika 24, 257–261 (1977)
18. Gul’ko, S.P.: On properties of some function spaces. Soviet Math. Dokl. 19, 1420–1424 (1978)
19. Hödel, R.: Cardinal functions I. Elsevier, Handbook of Set-Theoretic Topology (1984)
20. Juhász, I.: Cardinal Functions in Topology - Ten Years Later. Mathematical Centre Tracts 123,

Amsterdam (1983)
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