A Fixed Point Theory Linked to the Zeros of the Partial Sums of the Riemann Zeta Function

In Honour of Manuel López-Pellicer

Gaspar Mora

Abstract For each $n > 2$ we consider the corresponding *n*th-partial sum of the Riemann zeta function $\zeta_n(z) := \sum_{j=1}^n j^{-z}$ and we introduce two real functions $f_n(c)$, $g_n(c)$, $c \in \mathbb{R}$, associated with the end-points of the interval of variation of the variable *x* of the analytic variety $|\zeta_n^*(z)| = p_{k_n}^{-c}$, where $\zeta_n^*(z) := \zeta_n(z) - p_{k_n}^{-z}$ and p_{k_n} is the last prime not exceeding *n*. The analysis of fixed point properties of f_n , g_n and the behavior of such functions allow us to explain the distribution of the real parts of the zeros of $\zeta_n(z)$. Furthermore, the fixed points of f_n , g_n characterize the set *P*[∗] of prime numbers greater than 2 and the set \mathcal{C}^* of composite numbers greater than 2, proving in this way how close those functions from Arithmetic are. Finally, from the study of the graphs of f_n , g_n we deduce important properties about the set $R_{\zeta_n(z)} := \{ \Re z : \zeta_n(z) = 0 \}$ and the bounds $a_{\zeta_n(z)} := \inf \{ \Re z : \zeta_n(z) = 0 \}, b_{\zeta_n(z)} :=$ $\sup{\{\Re z : \zeta_n(z) = 0\}}$ that define the critical strip $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \times \mathbb{R}$ where are located all the zeros of $\zeta_n(z)$.

Keywords Exponential polynomials · Zeros of the partial sums of the Riemann zeta function · Diophantine approximation

1 Introduction

Since the non-trivial zeros of the **Riemann zeta function** $\zeta(z)$, until now found, lie on the line $\Re z = 1/2$ (the assertion that all them are situated on that line is the **Riemann Hypothesis**) and the trivial ones are on the real axis (they are the negative even numbers [\[9](#page-25-0), p. 8]), it seems that the zeros of $\zeta(\zeta)$ are situated on those two perpendicular lines. However that is not so for the zeros of the partial sums $\zeta_n(z) := \sum_{j=1}^n j^{-z}$ of the series $\sum_{j=1}^\infty j^{-z}$ that defines the Riemann zeta function $\zeta(z)$ on the half-plane $\Re z > 1$. Indeed, except for $\zeta_2(z)$ whose zeros all are imaginary

 $G.$ Mora (\boxtimes)

Facultad de Ciencias, Departamento de Matemáticas, Universidad de Alicante, Campus de Sant Vicent del Raspeig. Ap. 99, 03080 Alicante, Spain e-mail: gaspar.mora@ua.es

[©] Springer Nature Switzerland AG 2019

J. C. Ferrando (ed.), *Descriptive Topology and Functional Analysis II*, Springer Proceedings in Mathematics & Statistics 286, https://doi.org/10.1007/978-3-030-17376-0_13

Fig. 1 Graphs of the zeros of $\zeta_n(z)$ for some values of *n*, with $\Re z \in [-3, 1]$ and $\Im z \in [0, 5000]$

(it is immediate to check that the zeros of $\zeta_2(z)$ are $z_{2,j} = \frac{(2j+1)\pi i}{\log 2}$, $j \in \mathbb{Z}$), so aligned, the zeros of each $\zeta_n(z)$ for any $n > 2$ are dispersed in a vertical strip forming a sort of cloud, more or less uniform, that extends up, down and left as *n* increases, whereas at the right the cloud of zeros is upper bounded (essentially) by the line $\Re z = 1$ (see Fig. [1\)](#page-1-0).

An explanation *grosso modo* why the zeros of the ζ*n*(*z*)'s are distributed of such a form is supported by the following facts:

(a) Any exponential polynomial (EP for short) of the form

$$
P(z) := 1 + \sum_{j=1}^{N} a_j e^{-z\lambda_j}, \quad z \in \mathbb{C}, \quad a_j \in \mathbb{C} \setminus \{0\}, \quad 0 < \lambda_1 < \ldots < \lambda_N, \quad N \ge 1,\tag{1}
$$

has zeros as a consequence of Hadamard's Factorization Theorem or from Pólya's Theorem [\[13,](#page-25-1) p. 71]. For $N = 1$, it is immediate that an EP of the form [\(1\)](#page-2-0) has its zeros aligned. For $N > 1$, noticing that for any *y*,

$$
\lim_{x \to +\infty} P(z) = \lim_{x \to -\infty} Q(z) = 1,
$$

where $Q(z) := a_N^{-1} e^{z\lambda_N} P(z)$ (observe that $P(z)$ and $Q(z)$ have exactly the same zeros), it follows that the zeros of $P(z)$ are situated in a vertical strip. Therefore, for every EP $P(z)$ of the form [\(1\)](#page-2-0), there exist two real numbers

$$
a_{P(z)} := \inf \{ \Re z : P(z) = 0 \}, \quad b_{P(z)} := \sup \{ \Re z : P(z) = 0 \}, \tag{2}
$$

that define an interval $[a_{P(z)}, b_{P(z)}]$, called *critical interval* associated with $P(z)$. Therefore the set $[a_{P(z)}, b_{P(z)}] \times \mathbb{R}$, called *critical strip* associated with $P(z)$, is the minimal vertical strip that contains all the zeros of $P(z)$.

It is immediate that any partial sum $\zeta_n(z) := \sum_{j=1}^n j^{-z}, n \geq 2$, is an EP of the form [\(1\)](#page-2-0). Therefore the zeros of each $\zeta_n(z)$ are situated on its critical strip $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \times \mathbb{R}$ (a detailed proof on the existence of the zeros of $\zeta_n(z)$ and their distribution with respect to the imaginary axis can be found in $[14, Prop. 1, 2, 3]$ $[14, Prop. 1, 2, 3]$. Regarding the bounds $a_{\zeta_n(z)}$, $b_{\zeta_n(z)}$, taking into account that all the zeros of $\zeta_2(z)$ lie on the imaginary axis, we get the property

$$
a_{\zeta_2(z)} = b_{\zeta_2(z)} = 0; \quad a_{\zeta_n(z)} < 0 < b_{\zeta_n(z)}, \quad n > 2,\tag{3}
$$

that will be proved below in Lemma [2.3,](#page-9-0) Part (ii). A much more precise estimation of such bounds is given by the formulas:

$$
b_{\zeta_n(z)} = 1 + \left(\frac{4}{\pi} - 1 + o(1)\right) \frac{\log \log n}{\log n}, \quad n \to \infty,
$$
 (4)

obtained by Montgomery and Vaughan [\[12](#page-25-3)] in 2001, by completing a previous work of Montgomery [\[11](#page-25-4)] of 1983, and

$$
a_{\zeta_n(z)} = -\frac{\log 2}{\log(\frac{n-1}{n-2})} + \Delta_n, \quad \limsup_{n \to \infty} |\Delta_n| \le \log 2,
$$
 (5)

found by Mora $[17]$ $[17]$ in 2015. Consequently, from (5) and (4) , we have

$$
\lim_{n\to\infty}a_{\zeta_n(z)}=-\infty,\quad \lim_{n\to\infty}b_{\zeta_n(z)}=1,
$$

what justifies the fact of the cloud of zeros of $\zeta_n(z)$ moves to the left as *n* increases but not to the right, where the cloud is upper bounded (essentially) by the line $\Re z = 1$ (it does not mean that some $\zeta_n(z)$ can have zeros with real part greater than 1; in fact, many works prove the existence of such zeros [\[10](#page-25-6), [22,](#page-25-7) [23,](#page-25-8) [25](#page-25-9)], among others).

(b) Since the zeros of an analytic function are isolated, and all the $\zeta_n(z)$'s are entire functions, by taking into account the real parts of the zeros of each $\zeta_n(z)$ are bounded (the real parts are contained in the critical interval $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ for every fixed *n*), their imaginary parts cannot be. Furthermore, as the coefficients of every $\zeta_n(z)$ are real, its zeros are conjugate. Consequently the zeros of the $\zeta_n(z)$'s are located up and down, symmetrically with respect to the real axis.

(c) From [\(3\)](#page-2-3) we deduce that, for any $n > 2$, $\zeta_n(z)$ has zeros with positive and negative real parts.

With the aim to understand what law controls the distribution of the real projections of the zeros of $\zeta_n(z)$, we introduce a Fixed Point Theory focused on two real functions, f_n and g_n , for every $n > 2$. Firstly, such functions, by virtue of a recent result [\[19,](#page-25-10) Theorem 3], allow us to have an easy characterization of the sets

$$
R_{\zeta_n(z)} := \overline{\{\Re z : \zeta_n(z) = 0\}}.\tag{6}
$$

Secondly, among others relevant results deduced from the fixed point properties of *fn* and g_n , we stress those that characterize some notable *arithmetic sets* such as \mathscr{P}^* and \mathcal{C}^* , the set of primes greater than 2 and the set of composite numbers greater than 2, respectively. In this way, we show how close the arithmetic sets *P*[∗] and *C* [∗] from the law of the distribution of the zeros of the partial sums of the Riemann zeta function are. Furthermore, our point fixed theory proves the existence of a *minimal density interval* for each $\zeta_n(z)$, that is, a closed interval $[A_n, b_{\zeta_n(z)}]$, with $a_{\zeta_n(z)} \leq A_n < b_{\zeta_n(z)}$ contained in the set $R_{\zeta_n(z)}$, for any integer $n > 2$, which means that there is no vertical sub-trip contained in $[A_n, b_{\zeta_n(z)}] \times \mathbb{R}$ zero-free for $\zeta_n(z)$. Then, since it is always true that $R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$, when the bound A_n coincides with $a_{\zeta_n(z)}$ it follows that $R_{\zeta_n(z)} = [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$. In this case we will say that $\zeta_n(z)$ has a *maximum density interval*, and it is exactly the critical interval $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$. Finally, we will give a sufficient condition in terms of the quantity of fixed points of f_n for $\zeta_n(z)$ have a maximum density interval.

2 The Functions *fn* **and** *gn*

The functions f_n and g_n that we are going to introduce below, are directly linked to the interval of variation of the variable x of the Cartesian equation of an analytic variety associated with the *n*th-partial sum $\zeta_n(z) := \sum_{j=1}^n j^{-z}, n > 2$. First we consider the EP

$$
\zeta_n^*(z) := \zeta_n(z) - p_{k_n}^{-z}, \quad n > 2,
$$
\n(7)

where p_{k_n} is the last prime not exceeding *n*. The bounds $a_{\zeta_n^*(z)}, b_{\zeta_n^*(z)}$ defined in [\(2\)](#page-2-4) corresponding to $\zeta_n^*(z)$ satisfy the following crucial property (for details see [\[16,](#page-25-11) Theorem 15]) :

$$
a_{\zeta_n^*(z)} = b_{\zeta_n^*(z)} = 0, \quad \text{for } n = 3, 4; \quad a_{\zeta_n^*(z)} < 0 < b_{\zeta_n^*(z)}, \quad \text{for all } n > 4. \tag{8}
$$

Now our objective is to analyse the behavior of the end-points of the interval of variation of the variable *x* of the analytic variety, or *level curve* [\[24](#page-25-12), p. 121], of equation

$$
|\zeta_n^*(z)| = p_{k_n}^{-c}, \quad n > 2, \quad c \in \mathbb{R}.
$$
 (9)

To do it, we square [\(9\)](#page-4-0) and by using elementary formulas of trigonometry we obtain the Cartesian equation of $|\zeta_n^*(z)| = p_{k_n}^{-c}$, namely

$$
\sum_{j=1, j \neq p_{k_n}}^{n} j^{-2x} + 2 \cdot 1^{-x} \sum_{j=2, j \neq p_{k_n}}^{n} j^{-x} \cos(y \log(\frac{j}{1})) +
$$

$$
2 \cdot 2^{-x} \sum_{j=3, j \neq p_{k_n}}^{n} j^{-x} \cos(y \log(\frac{j}{2})) + \dots +
$$

$$
2(n-1)^{-x} \sum_{j=n, j \neq p_{k_n}}^{n} j^{-x} \cos(y \log(\frac{j}{n-1})) = p_{k_n}^{-2c}.
$$
 (10)

It is immediate to see that for any value of *y*, the left-hand side of [\(10\)](#page-4-1) tends to $+\infty$ as $x \to -\infty$. Then, as the right-hand side of [\(10\)](#page-4-1) is a constant, the variation of *x* is always lower bounded by a number denoted by $a_{n,c}$. On the other hand, the limit of the left-hand side of [\(10\)](#page-4-1) is 1 when $x \to +\infty$. Then, if $c \neq 0$, the variation of *x* is upper bounded by a number denoted by $b_{n,c}$. Therefore, fixed an integer $n > 2$, we have:

If $c \neq 0$, the variable *x* in the Eq. [\(10\)](#page-4-1) varies on an open interval $(a_{n,c}, b_{n,c})$ satisfying the properties: (a) Given $x \in (a_{n,c}, b_{n,c})$, there is at least a point of the level curve $|\zeta_n^*(z)| = p_{k_n}^{-c}$ with abscissa *x*. Exceptionally $|\zeta_n^*(z)| = p_{k_n}^{-c}$ could have points of abscissas $a_{n,c}$, $b_{n,c}$. In this case we will say that $a_{n,c}$, $b_{n,c}$ are *accessible*. Otherwise the lines $x = a_{n,c}$, $x = b_{n,c}$ are asymptotes of the variety. (b) For $x < a_{n,c}$ or $x > b_{n,c}$ there is no point of the variety $|\zeta_n^*(z)| = p_{k_n}^{-c}$.

If $c = 0$, *x* varies on $(a_{n,0}, +\infty)$, so $b_{n,0}$ can be defined as $+\infty$, satisfying: (c) Given $x \in (a_{n,0}, +\infty)$, there is at least a point of the variety $|\zeta_n^*(z)| = 1$ with abscissa *x*. If there is a point of $|\zeta_n^*(z)| = 1$ with abscissa $a_{n,0}$, we will say that $a_{n,0}$ is accessible. Otherwise the line $x = a_{n,0}$ is an asymptote of the variety. (d) For $x < a_{n,0}$ there is no point of $|\zeta_n^*(z)| = 1$.

We show in Fig. [2](#page-5-0) the varieties $|\zeta_n^*(z)| = p_{k_n}^{-c}$ for $n = 3$ and some values of *c*.

Fig. 2 Graphs of the varieties $|\zeta_3^*(z)| = 3^{-c}$ for some values of *c*

The end-points $a_{3,c}$, $b_{3,c}$ corresponding to the variety $|\zeta_3^*(z)| = p_{k_3}^{-c}$ can be easily determined by a completely similar way to those of the variety $|\zeta_3^*(-z)| = p_k^c$ (see [\[8,](#page-25-13) p. 49]). Each bound $a_{3,c}$, $b_{3,c}$ as a function of *c* is given by the formulas

$$
a_{3,c} = -\frac{\log(1+3^{-c})}{\log 2}, \quad c \in \mathbb{R}; \quad b_{3,c} = \begin{cases} -\frac{\log(3^{-c}-1)}{\log 2}, & \text{if } c < 0\\ -\frac{\log(1-3^{-c})}{\log 2}, & \text{if } c > 0 \end{cases}
$$
(11)

By virtue of above considerations (a), (b), (c), (d), and by using an elementary geometric reasoning, similar to that it was used to find the graphs of $|\zeta_n^*(-z)| = p_{k_n}^c$ (see [\[16,](#page-25-11) Proposition 8]), the graphs of the varieties $|\zeta_n^*(z)| = p_{k_n}^{-c}$ are described in the next result.

Proposition 2.1 *Fixed an integer n* > 2*, we have:*

- *(i)* If $c > 0$, $|\zeta_n^*(z)| = p_{k_n}^{-c}$ has infinitely many arc-connected components which *are closed curves and x varies on a finite interval* $(a_{n,c}, b_{n,c})$ *, where* $a_{n,c}, b_{n,c}$ *could be accessible.*
- *(ii) If* $c = 0$, $|\zeta_n^*(z)| = 1$ *has infinitely many arc-connected components which are open curves with horizontal asymptotes of equations* $y = (2j + 1) \frac{\pi}{2 \log 2}$ *,* $j \in \mathbb{Z}$ *, and x varies on the infinite interval* $(a_{n,0}, +\infty)$ *, where* $a_{n,0}$ *could be accessible.*
- *(iii)* If $c < 0$, $|\zeta_n^*(z)| = p_{k_n}^{-c}$ has only one arc-connected component which is an *open curve; x varies on a finite interval* $(a_{n,c}, b_{n,c})$ *, where* $a_{n,c}, b_{n,c}$ *could be accessible. The variable y takes all real values. Furthermore,* $|\zeta_n^*(z)| = p_{k_n}^{-c}$ *intersects the real axis at a unique point of abscissa* $b_{n,c}$ *, so* $b_{n,c}$ *is always accessible when* $c < 0$.

In Fig. [3](#page-6-0) we show the graph of $|\zeta_n^*(z)| = p_{k_n}^{-c}$ for some values of $n > 3$ and *c*. From Proposition [2.1,](#page-5-1) a simple consequence is deduced:

(d) Graph of $|\zeta_{12}^*(z)| = 11^{1/8}$. (e) Graph of $|\zeta_{12}^*(z)| = 1$. (f) Graph of $|\zeta_{12}^*(z)| = 11^{-1/12}$.

Fig. 3 Graphs of the varieties $|\zeta_7^*(z)| = 7^{-c}$ and $|\zeta_{12}^*(z)| = 11^{-c}$ for some values of *c*

Corollary 2.1 *Fixed an integer n* > 2, *if* $u \in \mathbb{C}$ *satisfies* $|\zeta_n^*(u)| < p_{k_n}^{-c}$ *(in this case we will say that u is an interior point of the variety* $|\zeta_n^*(z)| = p_{k_n}^{-c}$ *), then there exists a point w of* $|\zeta_n^*(z)| = p_{k_n}^{-c}$, so $a_{n,c} \leq \Re w \leq b_{n,c}$, such that $\Re w < \Re u$.

Definition 2.1 Given an integer $n > 2$, we define the real functions

$$
f_n(c) := a_{n,c}, \quad c \in \mathbb{R}; \qquad g_n(c) := b_{n,c}, \quad c \in \mathbb{R} \setminus \{0\},
$$
 (12)

where $a_{n,c}$, $b_{n,c}$ are the end-points of the interval of variation of the variable x in the Eq. (10) .

We show in Fig. [4](#page-7-0) the graph of the functions $f_3(c)$ and $g_3(c)$, defined by the Eq. [\(11\)](#page-5-2), and the function $f_4(c)$.

Since $|\zeta_n^*(z)| = p_{k_n}^{-d}$ tends to $|\zeta_n^*(z)| = p_{k_n}^{-c}$ as *d* tends to *c*, it is immediate that f_n , g_n are both continuous on $\mathbb{R} \setminus \{0\}$, and f_n is continuous on whole of \mathbb{R} . For $c = 0$, by Part (ii) of Proposition 1 we can agree $b_{n,0} = +\infty$, and then we should define $g_n(0) := +\infty$.

Now we are ready to give a characterization of the set $R_{\zeta_n(z)}$, defined in [\(6\)](#page-3-0), by using the functions f_n and g_n .

Theorem 2.1 *Let* $n > 2$ *be a fixed integer. A real number* $c \in R_{\zeta_n(z)}$ *if and only if*

Fig. 4 Left: Graph of the functions $f_3(c)$ (blue), $g_3(c)$ (red) and $y = x$ (plotted). Right: Graph of the function $f_4(c)$ (blue) and $y = x$ (plotted)

$$
f_n(c) \le c \le g_n(c). \tag{13}
$$

Proof If $c \in R_{\zeta_n(z)}$, there exists a sequence $(z_m)_{m=1,2,...}$ of zeros of $\zeta_n(z)$ such that $\lim_{m\to\infty} \Re z_m = c$. From [\(7\)](#page-3-1), $\zeta_n^*(z_m) = -p_{k_n}^{-z_m}$ for each $m = 1, 2, \dots$ By taking the modulus, we have $|\zeta_n^*(z_m)| = p_{k_n}^{-x_m}$, where $x_m := \Re z_m$. This means that each z_m is a point of the variety $|\zeta_n^*(z)| = p_{k_n}^{-x_m}$, so $x_m \in [a_{n,x_m}, b_{n,x_m}]$ and then we get

$$
f_n(x_m) = a_{n,x_m} \leq x_m \leq b_{n,x_m} = g_n(x_m), \text{ for all } m.
$$

Now by taking the limit when $m \to \infty$, noticing that $\lim_{m \to \infty} x_m = c$, because of the continuity of f_n and g_n , the inequalities [\(13\)](#page-7-1) follow. Conversely, if $f_n(c) < c <$ $g_n(c)$, by taking into account the definitions of f_n , g_n , the value *c* is in the interval of variation of *x* of the variety $|\zeta_n^*(z)| = p_{k_n}^{-c}$ and then the line $x = c$ intersects the variety. Therefore, by applying [\[16](#page-25-11), Theorem 3], $c \in R_{\zeta_n(z)}$. If $f_n(c) = c$ or $g_n(c) = c$, the line $x = c$ intersects the variety $|\zeta_n^*(z)| = p_{k_n}^{-c}$ provided that $a_{n,c}$ or $b_{n,c}$ be accessible. Otherwise the line $x = c$ is an asymptote of $|\zeta_n^*(z)| = p_{k_n}^{-c}$. Therefore, in both cases, again by [\[19](#page-25-10), Theorem 3], the point $c \in R_{\zeta_n(z)}$.

As we can easily check, the function $f_3(c) := a_{3,c}$, with $a_{3,c}$ given in [\(11\)](#page-5-2), is strictly increasing; this property is true for all the functions $f_n(c)$, $n > 2$, defined in [\(12\)](#page-6-1), as we prove below.

Lemma 2.1 *For every integer n* > 2, f_n *is a strictly increasing function on* \mathbb{R} *.*

Proof Firstly, for each fixed $c \in \mathbb{R}$, we claim that f_n satisfies

$$
\inf\{|\zeta_n^*(f_n(c) + iy)| : y \in \mathbb{R}\} = p_{k_n}^{-c}.\tag{14}
$$

Indeed, we put $\lambda_{n,c} := \inf\{|\zeta_n^*(f_n(c) + iy)| : y \in \mathbb{R}\}\$. By assuming $\lambda_{n,c} < p_{k_n}^{-c}$, there exists a point $z_c := f_n(c) + iy_c$ such that

$$
\lambda_{n,c} \leq |\zeta_n^*(z_c)| < p_{k_n}^{-c},
$$

and then it means that z_c is an interior point of $|\zeta_n^*(z)| = p_{k_n}^{-c}$. By Corollary [2.1](#page-5-3) there exists *w* belonging to the variety $|\zeta_n^*(z)| = p_{k_n}^{-c}$, so $a_{n,c} \leq \Re w \leq b_{n,c}$, such that $\Re w < \Re z_c = f_n(c) = a_{n,c}$. But this is a contradiction, and then necessarily

$$
\lambda_{n,c} \ge p_{k_n}^{-c}.\tag{15}
$$

For $\varepsilon > 0$ sufficiently small, we consider the strip

 $S_{\varepsilon} := \{z \in \mathbb{C} : a_{n,c} \leq \Re z < a_{n,c} + \varepsilon\},\$

and put

$$
\lambda_{n,c,\varepsilon} := \inf \{ |\zeta_n^*(z)| : z \in S_{\varepsilon} \}.
$$

From the definition of $a_{n,c}$, the set S_{ε} contains infinitely many points of the variety $|\zeta_n^*(z)| = p_{k_n}^{-c}$. Then $\lambda_{n,c,\varepsilon} \le p_{k_n}^{-c}$ for all $\varepsilon > 0$, so $\lambda_{n,c} \le p_{k_n}^{-c}$. Therefore, according to [\(15\)](#page-8-0), $\lambda_{n,c} = p_{k_n}^{-c}$ and then [\(14\)](#page-7-2) follows. Let *d* be a real number such that $d < c$, so $p_{k_n}^{-d} > p_{k_n}^{-c}$. Let η be such that $0 < \eta < p_{k_n}^{-d} - p_{k_n}^{-c}$. From [\(14\)](#page-7-2), there exists some point $z_n := f_n(c) + iy_n$ such that

$$
p_{k_n}^{-c} \leq |\zeta_n^*(z_\eta)| < p_{k_n}^{-c} + \eta < p_{k_n}^{-d},
$$

so z_η is interior of $|\zeta_n^*(z)| = p_{k_n}^{-d}$. By Corollary [2.1,](#page-5-3) there exists a point w_η of $|\zeta_n^*(z)| =$ $p_{k_n}^{-d}$, so $a_{n,d} \leq \Re w_\eta \leq b_{n,d}$, such that $\Re w_\eta < \Re z_\eta$. Then

$$
f_n(d) = a_{n,d} \leq \Re w_\eta < \Re z_\eta = f_n(c),
$$

which definitely proves the lemma. \Box

In the next result we prove that f_n is upper bounded by the number $a_{\zeta_n^*(z)}$ defined in [\(2\)](#page-2-4) corresponding to the EP $\zeta_n^*(z)$, defined in [\(7\)](#page-3-1).

Lemma 2.2 *For every n* > 2 *, the function f_n satisfies*

$$
f_n(c) < a_{\zeta_n^*(z)} \text{ for any } c \in \mathbb{R}.
$$

Proof Let *c* be an arbitrary real number. By taking into account the definition of $a_{\zeta_n^*(z)}$, there exists a sequence $(z_m)_{m=1,2,...}$ of zeros of $\zeta_n^*(z)$, with $\Re z_m \ge a_{\zeta_n^*(z)}$, such that

$$
\lim_{m \to \infty} \Re z_m = a_{\zeta_n^*(z)}.
$$
\n(16)

Since $\zeta_n^*(z_m) = 0$, we get $|\zeta_n^*(z_m)| < p_{k_n}^{-c}$, for all *m*. Then, from Corollary [2.1,](#page-5-3) there exists a sequence $(w_m)_{m=1,2,...}$ of points of $|\zeta_n^*(z)| = p_{k_n}^{-c}$, so $a_{n,c} \leq \Re w_m \leq b_{n,c}$, such that $\Re w_m < \Re z_m$, for all *m*. Therefore, since $f_n(c) = a_{n,c}$, we have

$$
f_n(c) \leq \Re w_m < \Re z_m, \quad \text{for all } m.
$$

Now, by taking the limit in the above inequality when $m \to \infty$, by [\(16\)](#page-8-1), we get

$$
f_n(c) \leq a_{\zeta_n^*(z)}
$$
 for any $c \in \mathbb{R}$,

implying, noticing that by Lemma [2.1](#page-7-3) f_n is strictly increasing, that $f_n(c) < a_{\zeta_n^*(z)}$ for any $c \in \mathbb{R}$.

For every $n > 2$, let $a_{\zeta_n(z)}$, $b_{\zeta_n(z)}$ be the bounds, defined in [\(2\)](#page-2-4), corresponding to the EP $\zeta_n(z)$. The function g_n , defined in [\(12\)](#page-6-1), has the following properties.

Lemma 2.3 *For every n* > 2*, the function* g_n *satisfies:*

- *(i)* g_n *is strictly increasing on* $(-\infty, 0)$ *and decreasing on* $(0, +\infty)$ *.*
- *(ii) If n is composite, then* $c \leq g_n(c)$ *for any* $c \in (-\infty, b_{\zeta_n(c)}] \setminus \{0\}$ *and the inequality is strict for all* $c \in (-\infty, b_{\zeta_n(z)}) \setminus \{0\}$ *; if* $c \in (b_{\zeta_n(z)}, +\infty)$ *<i>, then* $c > g_n(c)$ *.*
- *(iii) If n is prime, then* $c \leq g_n(c)$ *<i>for any* $c \in [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \setminus \{0\}$ *and the inequality is strict for all c* ∈ $(a_{\zeta_n(z)}, b_{\zeta_n(z)}) \setminus \{0\}$ *; if c* ∈ $(-\infty, a_{\zeta_n(z)}) \cup (b_{\zeta_n(z)}, +\infty)$ *, then* $c > g_n(c)$.

Proof Part (i). Let *c*, *d* be real numbers such that $c < d < 0$. From Proposition [2.1,](#page-5-1) *b_{n,c}* and *b_{n,d}* are the unique points of $|\zeta_n^*(z)| = p_{k_n}^{-c}$ and $|\zeta_n^*(z)| = p_{k_n}^{-d}$ that intersect the real axis, respectively. Therefore $b_{n,c}$ and $b_{n,d}$ satisfy the equations

$$
\sum_{\substack{m=1 \ m \neq p_{k_n}}}^n m^{-x} = p_{k_n}^{-c}, \quad \sum_{\substack{m=1 \ m \neq p_{k_n}}}^n m^{-x} = p_{k_n}^{-d}, \tag{17}
$$

respectively. Each equation of (17) has only one real solution by virtue of $[20, p$ $[20, p$. 46] and then, since $p_{k_n}^{-c} > p_{k_n}^{-d}$, the real solution of the first equation is obviously greater than the second one. Therefore $-b_{n,c} > -b_{n,d}$, equivalently, $b_{n,c} < b_{n,d}$. Consequently, $g_n(c) < g_n(d)$ and then g_n is strictly increasing in $(-\infty, 0)$. Let *c*, *d* be such that $c > d > 0$. From Proposition [2.1,](#page-5-1) $|\zeta_n^*(z)| = p_{k_n}^{-c}$ and $|\zeta_n^*(z)| = p_{k_n}^{-d}$ have infinitely many arc-connected components which are closed curves. Since $p_{k_n}^{-c}$ $p_{k_n}^{-d}$, any point of $|\zeta_n^*(z)| = p_{k_n}^{-c}$ is interior of $|\zeta_n^*(z)| = p_{k_n}^{-d}$, so $b_{n,c} \le b_{n,d}$. That is, $g_n(c) \leq g_n(d)$, which means that g_n is decreasing on $(0, +\infty)$.

Part (ii). We firstly demonstrate that the bounds $a_{\zeta_n(z)}$, $b_{\zeta_n(z)}$ defined in [\(2\)](#page-2-4) corresponding to $\zeta_n(z)$ satisfy the second inequality of [\(3\)](#page-2-3), that is

$$
a_{\zeta_n(z)} < 0 < b_{\zeta_n(z)} \quad \text{for all } n > 2. \tag{18}
$$

Indeed, we introduce the EP

$$
G_n(z) := \zeta_n(-z). \tag{19}
$$

In [\[7,](#page-25-15) Chap. 3, Theorem 3.20] was shown that

$$
b_{G_n(z)} := \sup\{\Re z : G_n(z) = 0\} > 0 \text{ for all } n > 2,
$$

now we claim that

$$
a_{G_n(z)} := \inf \{ \Re z : G_n(z) = 0 \} < 0 \quad \text{for all } n > 2.
$$

Otherwise, if all the zeros of $G_n(z)$, say $(z_{n,k})_{k=1,2,...}$, satisfy $\Re z_{n,k} \geq 0$, since $b_{G_n(z)} > 0$, there is at least a zero z_{n,k_0} with $\Re z_{n,k_0} > 0$. Then, as $G_n(z)$ is almostperiodic (see for instance $[4, 5]$ $[4, 5]$ $[4, 5]$ $[4, 5]$ and $[10, Chap. VI]$ $[10, Chap. VI]$), $G_n(z)$ has infinitely many zeros in the strip

$$
S_{\varepsilon} := \{ z : \Re z_{n,k_0} - \varepsilon < \Re z < \Re z_{n,k_0} + \varepsilon \}, \quad 0 < \varepsilon < \Re z_{n,k_0},
$$

and consequently

$$
\sum_{k=1}^{\infty} \Re z_{n,k} = +\infty.
$$
 (20)

However, as all the coefficients of $G_n(z)$ are equal to 1, [\[21](#page-25-16), formula (9)] applies and then we get $\sum_{k=1}^{\infty} \Re z_{n,k} = O(1)$, contradicting [\(20\)](#page-10-0). Therefore the claim follows, that is, $a_{G_n(s)} < 0$ for all $n > 2$. By [\(19\)](#page-10-1) we have $a_{\zeta_n(z)} = -b_{G_n(z)}$ and $b_{\zeta_n(z)} = -a_{G_n(z)}$, so [\(18\)](#page-9-2) follows.

We now consider the point $b_{\zeta_n(z)}$. It is immediate that $b_{\zeta_n(z)}$ belongs to the set $R_{\zeta_n(z)}$ defined in [\(6\)](#page-3-0). Then from Theorem [2.1](#page-6-2) we have $b_{\zeta_n(z)} \leq g_n(b_{\zeta_n(z)})$, so the property $c \leq g_n(c)$ is true for $c = b_{\zeta_n(z)}$. From [\(18\)](#page-9-2) and by using that g_n is decreasing on $(0, ∞)$ by virtue of Part (i), for any $c \in (0, b_{\zeta_n(\zeta)})$ we have

$$
0 < c < b_{\zeta_n(z)} \le g_n(b_{\zeta_n(z)}) \le g_n(c). \tag{21}
$$

Consequently, Part (ii) follows for $c \in (0, b_{\zeta_0}(\zeta_0))$. We now assume $c < 0$ and *n* composite, so $p_{k_n} < n$. If $b_{n,c} \ge 0$, then $c < b_{n,c} = g_n(c)$ and again Part (ii) is true. Finally, we suppose $b_{n,c} < 0$. Since $c < 0$, $b_{n,c}$ satisfies the first equation of [\(17\)](#page-9-1) and then $p_{k_n}^{-c} > n^{-b_{n,c}}$. Consequently $-c > -b_{n,c}$, so $c < b_{n,c}$ and then Part (ii) follows for $c \in (-\infty, b_{\zeta_n(z)}] \setminus \{0\}$. Finally, we claim that $c > g_n(c)$ when $c > b_{\zeta_n(z)}$. Indeed, because of Lemma [2.2](#page-8-2) and [\(8\)](#page-4-2), we have $f_n(c) < a_{\zeta_n^*(z)} \leq 0$ for any *c*. Therefore, since $c > b_{\zeta_n(z)}$, by [\(18\)](#page-9-2) *c* is positive and then $f_n(c) < c$. Assume $c > g_n(c)$ is not true. Then we would have $f_n(c) < c \le g_n(c)$ and by Theorem [2.1,](#page-6-2) $c \in R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ which means that $c \leq b_{\zeta_n(z)}$. This is a contradiction because $c > b_{\zeta_n(z)}$, so the claim follows. This definitely proves Part (ii).

Part (iii). We first note that, since *n* is prime, $p_{k_n} = n$. Therefore the first equation in [\(17\)](#page-9-1) becomes $\sum_{m=1}^{n-1} m^{-x} = n^{-c}$. By assuming $c < 0$, $b_{n,c}$ satisfies the above equation and then we have

$$
\sum_{m=1}^{n-1} m^{-b_{n,c}} = n^{-c}.
$$
 (22)

For every $n \geq 2$, we consider the number $\beta_{G_n(z)}$, defined as the unique real solution of the equation $\sum_{m=1}^{n-1} m^x = n^x$ (see [\[20](#page-25-14), p. 46]). By [\[6,](#page-24-2) Proposition 5], $\beta_{G_n(z)} \ge b_{G_n(z)}$ and the equality is attained for *n* prime. Therefore the set $\mathbb R$ of real numbers is partitioned in two sets:

$$
(-\infty, \beta_{G_n(z)}] = \{x \in \mathbb{R} : \sum_{m=1}^{n-1} m^x \ge n^x\},\tag{23}
$$

and

$$
(\beta_{G_n(z)}, \infty) = \{x \in \mathbb{R} : \sum_{m=1}^{n-1} m^x < n^x\}. \tag{24}
$$

Now we claim that $c \leq g_n(c)$ when $a_{\zeta_n(z)} \leq c < 0$. Indeed, by [\(19\)](#page-10-1), $b_{G_n(z)} = -a_{\zeta_n(z)}$, so *c* is such that $0 < -c \leq b_{G_n(z)} = \beta_{G_n(z)}$. Then, according to [\(23\)](#page-11-0), we have

$$
\sum_{m=1}^{n-1} m^{-c} \ge n^{-c}.
$$
 (25)

Therefore, if we assume $c > g_n(c) = b_{n,c}$, by applying [\(25\)](#page-11-1) and taking into account (22) , we get

$$
n^{-c} \leq \sum_{m=1}^{n-1} m^{-c} < \sum_{m=1}^{n-1} m^{-b_{n,c}} = n^{-c},
$$

which is a contradiction. Therefore $c \leq g_n(c)$ is true for *c* such that $a_{\zeta_n(z)} \leq c < 0$. Consequently, taking into account [\(21\)](#page-10-2), it follows

$$
c \leq g_n(c), \text{ for any } c \in [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \setminus \{0\},\
$$

where the inequality is strict for all *c* of $(a_{\zeta_n(z)}, b_{\zeta_n(z)}) \setminus \{0\}$. Now suppose $c \in$ $(-\infty, a_{\zeta_n(z)})$. Then, since $-c > -a_{\zeta_n(z)} = b_{G_n(z)} = \beta_{G_n(z)}$, by applying [\(24\)](#page-11-3) we have

$$
\sum_{m=1}^{n-1} m^{-c} < n^{-c}.\tag{26}
$$

It implies that $c > g_n(c)$. Indeed, by supposing $c \leq g_n(c) = b_{n,c}$, from [\(22\)](#page-11-2) and [\(26\)](#page-11-4) we are led to the following contradiction:

A Fixed Point Theory Linked to the Zeros of the Partial Sums … 253

$$
n^{-c} = \sum_{m=1}^{n-1} m^{-b_{n,c}} \le \sum_{m=1}^{n-1} m^{-c} < n^{-c}.
$$

Therefore $c > g_n(c)$ if $c \in (-\infty, a_{\zeta_n(z)})$. Finally, if $c \in (b_{\zeta_n(z)}, +\infty)$, the reasoning used to demonstrate the end of Part (ii) of the lemma proves that $c > g_n(c)$ used to demonstrate the end of Part (ii) of the lemma proves that $c > g_n(c)$.

As a consequence of Lemma [2.3](#page-9-0) we find the fixed points of the function *gn*.

Corollary 2.2 *For every composite number* $n > 2$ *,* $b_{\zeta_n}(z)$ *is the fixed point of the function g_n. If n* > 2 *is prime,* $a_{\zeta_n(z)}$ *,* $b_{\zeta_n(z)}$ *are the fixed points of g_n.*

Proof Fixed an integer $n > 2$, by [\(18\)](#page-9-2) $a_{\zeta_n(z)}$, $b_{\zeta_n(z)} \neq 0$, so g_n is well defined at $a_{\zeta_n(z)}$ and $b_{\zeta_n(z)}$. By applying Part (ii) of Lemma [2.3](#page-9-0) for $n > 2$ composite, it is immediate, by the continuity of g_n , that the unique fixed point of g_n is $b_{\zeta_n(z)}$. If $n > 2$ is prime, by Part (iii) of Lemma [2.3,](#page-9-0) we get $g_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$ and $g_n(b_{\zeta_n(z)}) = b_{\zeta_n(z)}$. Further-more, Part (iii) of Lemma [2.3](#page-9-0) also proves that $a_{\zeta_n(z)}$, $b_{\zeta_n(z)}$ are the unique fixed points of g_n .

In the next result we obtain a characterization of *P*∗, the set of prime numbers greater than 2.

Theorem 2.2 An integer $n > 2$ belongs to \mathcal{P}^* if and only if $a_{\zeta_*(\zeta)}$ is a fixed point of *the function gn.*

Proof Assume $n > 2$ is prime, from Corollary [2.2,](#page-12-0) $a_{\zeta_n}(z)$ is a fixed point of g_n . Conversely, if

$$
g_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}, \tag{27}
$$

by supposing *n* composite, from Part (ii) of Lemma [2.3,](#page-9-0) we have $c < g_n(c)$ for all $c \in$ $(-\infty, b_{\zeta_n(z)})$ \{0}. From [\(18\)](#page-9-2), $a_{\zeta_n(z)} \in (-\infty, b_{\zeta_n(z)})$ \{0}. Then, $a_{\zeta_n(z)} < g_n(a_{\zeta_n(z)})$. This contradicts [\(27\)](#page-12-1). Consequently *n* is a prime number and then the theorem fol- \Box hows.

3 The Fixed Points of f_n and the Sets $R_{\zeta_n(z)}$

For every integer $n > 2$, the function f_n defined in [\(12\)](#page-6-1) allows us to give a sufficient condition to have points of the set $R_{\zeta_n(z)}$, defined in [\(6\)](#page-3-0).

Theorem 3.1 *For every integer n* > 2*, if a point c* ∈ $[a_{\zeta_n(\zeta)}, b_{\zeta_n(\zeta)}]$ *satisfies f_n*(*c*) ≤ *c*, *then* $c \in R_{\zeta_n(z)}$ *.*

Proof We first claim that

$$
a_{\zeta_n(z)}, 0, b_{\zeta_n(z)} \in R_{\zeta_n(z)} \quad \text{for every } n \ge 2.
$$
 (28)

Indeed, for $n = 2$, the claim trivially follows because as we have seen in Introduction all the zeros of $\zeta_2(z)$ are imaginary, so $a_{\zeta_2}(z) = b_{\zeta_2}(z) = 0$ and then $R_{\zeta_2}(z) = \{0\}.$ Therefore we assume $n > 2$. By taking into account the definitions of $a_{\zeta_n(z)}, b_{\zeta_n(z)}$ both numbers obviously belong to $R_{\zeta_n(z)}$. Regarding the fact that $0 \in R_{\zeta_n(z)}$ for all $n > 2$, it was proved in [\[18,](#page-25-17) (3.7)]. Then [\(28\)](#page-12-2) is true. Hence it only remains to prove the theorem for $c \in (a_{G_n(z)}, b_{G_n(z)}) \setminus \{0\}$. But in this case, since by hypothesis $f_n(c) \leq c$, by using Parts (ii) and (iii) of Lemma [2.3](#page-9-0) we are lead to $f_n(c) \leq c < g_n(c)$ and then, by Theorem 2.1, $c \in R_{r(c)}$ and then, by Theorem [2.1,](#page-6-2) $c \in R_{\zeta_n(z)}$.

An important conclusion is deduced from the above theorem.

Theorem 3.2 *For every integer n* > 2*, if c belongs to* $R_{\zeta_n(z)}$ *then*

$$
[f_n(c), c] \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}.
$$
 (29)

If $n > 2$ *is composite and c belongs to* $R_{\zeta_n(z)}$ *, then*

$$
[f_n(c), c] \subset R_{\zeta_n(z)}.\tag{30}
$$

Proof Assume $c \in R_{\zeta_n(z)}$. Then, by Theorem [2.1,](#page-6-2) $f_n(c) \leq c \leq g_n(c)$. Therefore the interval $[f_n(c), c]$ is well defined. If $f_n(c) = c$ the theorem trivially follows. Suppose $f_n(c) < c$. Let *t* be a point of $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ such that $f_n(c) < t < c$. By Lemma [2.1,](#page-7-3) $f_n(t) < f_n(c)$. Therefore we have

$$
f_n(t) < f_n(c) < t < c
$$

and then, by applying Theorem [3.1,](#page-12-3) $t \in R_{\zeta_n(z)}$. Consequently

$$
(f_n(c),c)\cap [a_{\zeta_n(z)},b_{\zeta_n(z)}]\subset R_{\zeta_n(z)},
$$

and from the closedness of $R_{\zeta_n(z)}$, [\(29\)](#page-13-0) follows.

Assume $n > 2$ is composite. Since $c \in R_{\zeta_n(z)}$ and

$$
R_{\zeta_n(z)}\subset [a_{\zeta_n(z)},b_{\zeta_n(z)}],
$$

we have $c \leq b_{\zeta_n(z)}$. Furthermore, from Theorem [2.1,](#page-6-2) $f_n(c) \leq c \leq g_n(c)$. Then, if $f_n(c) = c$, [\(30\)](#page-13-1) is obviously true. Suppose $f_n(c) < c$. Consider a number *t* such that $f_n(c) \le t < c$. Then, we get

$$
f_n(c) \le t < c \le b_{\zeta_n(z)}.\tag{31}
$$

If *t* = 0, by virtue of [\(28\)](#page-12-2), *t* ∈ *R*_{$\zeta_n(z)$. If *t* ≠ 0, from [\(31\)](#page-13-2), *t* ∈ (−∞, *b*_{$\zeta_n(z)$) \ {0}.}} Then, as *n* is composite, by Part (ii) of Lemma [2.3,](#page-9-0) $t < g_n(t)$. On the other hand, since $t < c$, from Lemma [2.1,](#page-7-3) $f_n(t) < f_n(c)$ and then, again by [\(31\)](#page-13-2), we have

$$
f_n(t) < f_n(c) \leq t < g_n(t).
$$

Now, by applying Theorem [2.1,](#page-6-2) $t \in R_{\zeta_n(\zeta)}$. Consequently $[f_n(c), c) \subset R_{\zeta_n(\zeta)}$ and then, since by hypothesis $c \in R_{\zeta_n(z)}$, we get $[f_n(c), c] \subset R_{\zeta_n(z)}$. The proof is now completed. \Box completed.

As a consequence of the two preceding results we characterize the set \mathscr{C}^* of composite numbers $n > 2$.

Corollary 3.1 *For every n* $\in \mathcal{C}^*$, $a_{\zeta_n(\zeta)}$ *is a fixed point of the function f_n.*

Proof Assume $n \in \mathcal{C}^*$. From [\(28\)](#page-12-2), $a_{\zeta_n(z)} \in R_{\zeta_n(z)}$. Since *n* is composite and greater than 2, by [\(30\)](#page-13-1) we have $[f_n(a_{\zeta_n(z)})$, $a_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$. Noticing $R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$, necessarily $f_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$. necessarily $f_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$.

In the next result we prove that $a_{\zeta_n(\zeta)}$ is not a fixed point of f_n for any $n \in \mathcal{P}^*$.

Corollary 3.2 *For every n* $\in \mathcal{P}^*$ *,* $f_n(a_{\zeta_n(z)}) < a_{\zeta_n(z)}$ *.*

Proof For every *n* > 2, the variety $|\zeta_n^*(z)| = p_{k_n}^{-c}$, for arbitrary $c \in \mathbb{R}$, by virtue of equation [\(10\)](#page-4-1) is not contained in a vertical line, so the interval of the variation of the variable *x* in the variety $|\zeta_n^*(z)| = p_{k_n}^{-c}$ is not degenerate. Therefore, taking into account (12) , we have

$$
f_n(c) < g_n(c) \text{ for every integer } n > 2, \quad \text{for all } c \in \mathbb{R}. \tag{32}
$$

Assume *n* > 2 prime. By Corollary [2.2,](#page-12-0) $g_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$. Then, by taking $c = a_{\zeta_n(z)}$ in (32), the corollary follows. in (32) , the corollary follows.

As a simple consequence from Corollary [3.2](#page-14-1) we obtain a characterization of *C* [∗].

Theorem 3.3 An integer $n > 2$ belongs to \mathcal{C}^* if and only if $a_{\zeta_*(\zeta)}$ is a fixed point of *the function fn.*

Proof From Corollary [3.1,](#page-14-2) if $n > 2$ is composite, $a_{\zeta_n(z)}$ is a fixed point of f_n . Reciprocally, if $a_{\zeta_n(z)}$ is a fixed point of f_n , by assuming $n > 2$ is not composite, by applying Corollary [3.2](#page-14-1) we are led to a contradiction. Therefore, the theorem follows. \Box

The bounds $a_{\zeta_n(z)}$, $a_{\zeta_n^*(z)}$ satisfy the following inequality.

Proposition 3.1 *For every integer n* > 2, $a_{\zeta_n(z)} < a_{\zeta_n^*(z)}$.

Proof By taking $c = a_{\zeta_n^*(z)}$ in Lemma [2.2](#page-8-2) we have

$$
f_n(a_{\zeta_n(z)}^*) < a_{\zeta_n(z)}^* \text{ for all } n > 2.
$$
 (33)

Again from Lemma [2.2,](#page-8-2) for $c = a_{\zeta_n(z)}$, we get $f_n(a_{\zeta_n(z)}) < a_{\zeta_n(z)}^*$. If *n* is composite, by Corollary [3.1](#page-14-2) $f_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$ and from [\(33\)](#page-14-3) we then deduce that $a_{\zeta_n(z)} < a_{\zeta_n(z)}^*$. This proves the proposition for *n* composite.

Assume *n* is prime. Then $p_{k_n} = n$ and, from [\(7\)](#page-3-1), $\zeta_n^*(z) = \zeta_{n-1}(z)$, so $a_{\zeta_n^*(z)} =$ $a_{\zeta_{n-1}(z)}$. Now we consider the function $G_n(z)$ defined in [\(19\)](#page-10-1). As we have seen in the proof of Lemma [2.3,](#page-9-0) because of [\[6,](#page-24-2) Proposition 5] we have $b_{G_n(z)} \leq \beta_{G_n(z)}$ for all $n \geq 2$ and the equality is attained for *n* prime. Noticing [\[17,](#page-25-5) Lemma 1], $\beta_{G_{n-1}(z)}$ < $\beta_{G_n(z)}$ for all $n > 2$. Then we get

$$
b_{G_{n-1}(z)} \leq \beta_{G_{n-1}(z)} < \beta_{G_n(z)} = b_{G_n(z)}, \quad \text{for all prime } n > 2,\tag{34}
$$

or equivalently

$$
-b_{G_{n-1}(z)} \geq -\beta_{G_{n-1}(z)} > -\beta_{G_n(z)} = -b_{G_n(z)}, \text{ for all prime } n > 2.
$$

Now, since from [\(19\)](#page-10-1) $a_{\zeta_n(z)} = -b_{G_n(z)}$ for all $n \geq 2$, from the above chain of inequalities we deduce

$$
a_{\zeta_n^*(z)} = a_{\zeta_{n-1}(z)} = -b_{G_{n-1}(z)} > -b_{G_n(z)} = a_{\zeta_n(z)}, \text{ for all prime } n > 2.
$$

The proof is now completed. \Box

Corollary 3.3 *For every integer n* > 2, $a^*_{\zeta_n(z)} \in R_{\zeta_n(z)}$.

Proof For $n = 3, 4$, because of [\(8\)](#page-4-2) we have $a_{\zeta_n}(z) = 0$. Therefore, from [\(28\)](#page-12-2), $a_{\zeta_n(z)}^* \in R_{\zeta_n(z)}$ for $n = 3, 4$. Assume $n > 4$. By Proposition [3.1,](#page-14-4) $a_{\zeta_n(z)} < a_{\zeta_n^*(z)}$ for all $n > 2$. Then, from [\(8\)](#page-4-2) and [\(18\)](#page-9-2), $a^*_{\zeta_n(z)} \in [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ for all $n > 4$. Therefore, by using [\(33\)](#page-14-3) and applying Theorem [3.1,](#page-12-3) $a_{\zeta_n(z)}^* \in R_{\zeta_n(z)}$ for all $n > 4$. This proves the \Box corollary.

In the next result we prove the existence of a minimal density interval for every $\zeta_n(z)$, $n > 2$.

Theorem 3.4 *For every integer n* > 2 *there exists a number* $A_n \in [a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ *such that* $[A_n, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$ *.*

Proof Firstly we note that, by Proposition [3.1,](#page-14-4) the interval $[a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ is well defined. On the other hand, by [\(18\)](#page-9-2) $b_{\zeta_n(z)} > 0$ and, by [\(8\)](#page-4-2) $a_{\zeta_n^*(z)} \le 0$ for all $n > 2$, so by Proposition [3.1](#page-14-4) we have

$$
a_{\zeta_n(z)} < a_{\zeta_n^*(z)} \le 0 < b_{\zeta_n(z)}, \quad \text{for all } n > 2. \tag{35}
$$

This means that $[a_{\zeta_n^*(z)}, b_{\zeta_n(z)}]$ is a non-degenerate sub-interval of $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ for any *n* > 2. By Lemma [2.2,](#page-8-2) we have $f_n(b_{\zeta_n(z)}) < a_{\zeta_n^*(z)}$. Then, according to [\(35\)](#page-15-0), we get

$$
f_n(b_{\zeta_n(z)})\leq a_{\zeta_n^*(z)}
$$

so

$$
[a_{\zeta_n^*(z)}, b_{\zeta_n(z)}] \subset [f_n(b_{\zeta_n(z)}), b_{\zeta_n(z)}].
$$

Now, since $b_{\zeta_n(z)} \in R_{\zeta_n(z)}$, because of Theorem [3.2](#page-13-3) we obtain

$$
[a_{\zeta_n^*(z)}, b_{\zeta_n(z)}] \subset [f_n(b_{\zeta_n(z)}), b_{\zeta_n(z)}] \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}.
$$
 (36)

This implies that $a_{\zeta_n^*(z)} \in R_{\zeta_n(z)}$ (observe that from Corollary [3.3](#page-15-1) we already knew that $a_{\zeta_n^*(z)} \in R_{\zeta_n(z)}$) so, again by Theorem [3.2,](#page-13-3) we have

$$
[f_n(a_{\zeta_n^*(z)}), a_{\zeta_n^*(z)} \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}.
$$
 (37)

If $f_n(a_{\zeta_n^*(z)}) \le a_{\zeta_n(z)}$, from [\(37\)](#page-16-0) we deduce that $[a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}$ and then, by [\(36\)](#page-15-2) we get $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$. In this case by taking $A_n = a_{\zeta_n(z)}$, the theorem follows. Moreover, $\zeta_n(z)$ has a maximum density interval and it coincides with its critical interval $[a_{\zeta_n(z)}, b_{\zeta_n(z)}].$

If $f_n(a_{\zeta_n^*(z)}) > a_{\zeta_n(z)}$, from [\(37\)](#page-16-0) we deduce

$$
[f_n(a_{\zeta_n^*(z)}), a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}.
$$
 (38)

Therefore $f_n(a_{\zeta_n^*(z)}) \in R_{\zeta_n(z)}$ and, again by Theorem [3.2,](#page-13-3) we have

$$
[f_n^{(2)}(a_{\zeta_n^*(z)}), f_n(a_{\zeta_n^*(z)})] \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)},
$$
\n(39)

where $f_n^{(2)}$ denotes f_n composed with itself. Then, if $f_n^{(2)}(a_{\zeta_n^*(z)}) \le a_{\zeta_n(z)}$, from [\(39\)](#page-16-1), we have $[a_{\zeta_n(z)}, f_n(a_{\zeta_n^*(z)})] \subset R_{\zeta_n(z)}$ and by [\(38\)](#page-16-2), we get $[a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}$. Therefore taking into account [\(36\)](#page-15-2) we obtain $[a_{\zeta_n(\zeta)}, b_{\zeta_n(\zeta)}] \subset R_{\zeta_n(\zeta)}$. Consequently, by taking $A_n = a_{\zeta_n(z)}$, the theorem follows and $\zeta_n(z)$ has a maximum density interval that coincides with its critical interval $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$. If $f_n^{(2)}(a_{\zeta_n^*(z)}) > a_{\zeta_n(z)}$, from [\(39\)](#page-16-1), we get

$$
[f_n^{(2)}(a_{\zeta_n^*(z)}), f_n(a_{\zeta_n^*(z)})] \subset R_{\zeta_n(z)}.
$$

Therefore $f_n^{(2)}(a_{\zeta_n^*(z)}) \in R_{\zeta_n(z)}$ and, again by Theorem [3.2,](#page-13-3) we have

$$
[f_n^{(3)}(a_{\zeta_n^*(z)}), f_n^{(2)}(a_{\zeta_n^*(z)})] \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)},
$$

and so on. Therefore, by denoting $f_n^{(k)} = f_n^{(k-1)} \circ f_n$ for $k \ge 2$ and repeating the process above, we are led to one of the two cases:

(i) There is some $k \ge 1$ such that $f_n^{(k)}(a_{\zeta_n^*(z)}) \le a_{\zeta_n(z)}$. In this case, as we have seen $A_n = a_{\zeta_n(z)}$ and then $\zeta_n(z)$ has a maximum density interval that coincides with its critical interval $[a_{\zeta_n(z)}, b_{\zeta_n(z)}].$

(ii) For all *k*, $f_n^{(k)}(a_{\zeta_n^*(z)}) > a_{\zeta_n(z)}$ and then, by virtue of Lemma [2.1](#page-7-3) and [\(33\)](#page-14-3), we have

$$
a_{\zeta_n(z)} < \cdots < f_n^{(k)}(a_{\zeta_n^*(z)}) < \cdots < f_n^{(2)}(a_{\zeta_n^*(z)}) < f_n(a_{\zeta_n^*(z)}) < a_{\zeta_n^*(z)}.
$$

Consequently there exists $\lim_{k\to\infty} f_n^{(k)}(a_{\zeta_n^*(z)})$ and then, by defining

$$
A_n := \lim_{k \to \infty} f_n^{(k)}(a_{\zeta_n^*(z)}),
$$

we have $a_{\zeta_n(z)} \leq A_n < a_{\zeta_n^*(z)}$. On the other hand, by reiterating Theorem [3.2,](#page-13-3) we get

$$
[f_n^{(k)}(a_{\zeta_n^*(z)}), f_n^{(k-1)}(a_{\zeta_n^*(z)})] \subset R_{\zeta_n(z)}, \text{ for all } k \ge 2.
$$
 (40)

Then taking into account [\(36\)](#page-15-2) and [\(38\)](#page-16-2), by [\(40\)](#page-17-0) we deduce that $[A_n, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$. This definitely proves the theorem.

Remark 3.5 Observe that if the case (ii) of above theorem holds, *An* will be a fixed point of f_n by virtue of the continuity of f_n . Then if $n \in \mathcal{C}^*$, by Theorem 14, the point A_n could be $a_{\zeta_n(z)}$. But if $n \in \mathcal{P}^*$, from Corollary [3.2,](#page-14-1) A_n can not be equal to $a_{\zeta_n(z)}$.

In the next result we prove that the number of fixed points of f_n influences on the existence of a maximum density interval of $\zeta_n(z)$.

Theorem 3.6 *For every integer* $n > 2$ *, if* f_n *has at most a fixed point in the interval* $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ then $\zeta_n(z)$ has a maximum density interval that coincides with the *critical interval* $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ *associated with* $\zeta_n(z)$ *.*

Proof We first assume f_n has no fixed point in $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$. Then we claim that $f_n(c) < c$ for all $c \in (a_{\zeta_n(z)}, a_{\zeta_n^*(z)}]$. Indeed, we define the function $h_n(c) :=$ $f_n(c) - c$. Then h_n is continuous on R, and by virtue of Lemma [2.2](#page-8-2) and [\(33\)](#page-14-3), *h_n* is negative on [$a_{\zeta_n^*(z)}, \infty$). Then, since f_n by hypothesis has no fixed point on $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$, $h_n(c)$ has no zero on $(a_{\zeta_n(z)}, \infty)$. Consequently, $h_n(c) < 0$ for any $c \in (a_{\zeta_n(z)}, \infty)$ and in particular we have

$$
f_n(c) < c \text{ for all } c \in (a_{\zeta_n(z)}, a_{\zeta_n^*(z)}]. \tag{41}
$$

Hence the claim follows. On the other hand, by Corollary [3.3](#page-15-1) $a_{\zeta_n^*(z)} \in R_{\zeta_n(z)} \subset \zeta_n$ $[a_{\zeta_n(z)}, b_{\zeta_n(z)}],$ so

$$
(a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}].
$$

Consequently, by taking into account [\(41\)](#page-17-1) and by applying Theorem [3.1](#page-12-3) we have

$$
(a_{\zeta_n(z)}, a_{\zeta_n^*(z)}) \subset R_{\zeta_n(z)}.
$$

Therefore, since from [\(28\)](#page-12-2) $a_{\zeta_n(z)} \in R_{\zeta_n(z)}$, we get $[a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}$ and then by [\(36\)](#page-15-2) it follows that $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$. As always is true that $R_{\zeta_n(z)} \subset R_{\zeta_n(z)}$ $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ we deduce that $R_{\zeta_n(z)} = [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$, i.e. $\zeta_n(z)$ has a maximum density interval. Then the theorem follows in this case.

We now suppose f_n has only one fixed point, say c_1 , in $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$. Then the function $h_n(c) := f_n(c) - c$, continuous on R, is non-positive on $[c_1, +\infty)$ by virtue of Lemma [2.2.](#page-8-2) Therefore, in particular, $f_n(c) \leq c$ for all $c \in [c_1, a_{\zeta_n^*(z)}]$. Since $[c_1, a_{\zeta_n^*(z)}]$ ⊂ $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$, by applying the Theorem [3.1](#page-12-3) at any $c \in [c_1, a_{\zeta_n^*(z)}]$ we have

$$
[c_1, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}.\tag{42}
$$

Now we claim that h_n is negative on $(a_{\zeta_n(\zeta)}, c_1)$. Indeed, if we assume that h_n is non-negative on $(a_{\zeta_n(z)}, c_1)$, since c_1 is the unique fixed point of f_n in $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$, then $f_n(c) > c$ for all $c \in (a_{\zeta_n(\zeta)}, c_1)$. Then, by Theorem [2.1,](#page-6-2) $c \notin R_{\zeta_n(\zeta)}$ for all $c \in$ $(a_{\zeta_n(\zeta)}, c_1)$. This means that $\zeta_n(z)$ has no zero on the strip $(a_{\zeta_n(\zeta)}, c_1) \times \mathbb{R}$. But, taking into account that $a_{\zeta_n(z)} \in R_{\zeta_n(z)}$, $a_{\zeta_n(z)}$ would be an isolated point of $R_{\zeta_n(z)}$ and it contradicts [\[2](#page-24-3), Corollary 3.2]. Therefore the claim follows. Consequently, $f_n(c)$ < *c* for all $c \in (a_{\zeta_n(z)}, c_1)$ and then, by Theorem [3.1,](#page-12-3) $(a_{\zeta_n(z)}, c_1) \subset R_{\zeta_n(z)}$. From the closedness of $R_{\zeta_n(z)}$, we have

$$
[a_{\zeta_n(z)}, c_1] \subset R_{\zeta_n(z)}.\tag{43}
$$

Then, from [\(43\)](#page-18-0), [\(42\)](#page-17-2) and [\(36\)](#page-15-2) we deduce that $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$. Consequently, $\zeta_n(z)$ has a maximum density interval and it coincides with its critical interval $[a_{\zeta_n(z)}, b_{\zeta_n(z)}].$

As a first application of the usefulness of Theorem [3.6](#page-17-3) we prove a result on $\zeta_3(z)$ (the same result can be also deduced from others methods as we can see in [\[13,](#page-25-1) [15](#page-25-18)]).

Corollary 3.4 ζ3(*z*) *has a maximum density interval and it coincides with its critical interval* $[a_{\zeta_1(\zeta)}, b_{\zeta_2(\zeta)}].$

Proof The function $f_3(c) := a_{3,c}$ is explicitly given by the formula [\(11\)](#page-5-2). Then it is immediate to check that $f_3(c) < c$ for all $c \in \mathbb{R}$. Therefore $f_3(c)$ has no fixed point and then, from Theorem [3.6,](#page-17-3) $\zeta_3(z)$ has a maximum density interval and it coincides with $[a_{\zeta_3(z)}, b_{\zeta_3(z)}].$

4 The Fixed Point Theory and the Maximum Density Interval for $\zeta_n(z)$

In this section our aim is to give a very useful result (see below Lemma [4.1\)](#page-18-1) based on Kronecker Theorem [\[8](#page-25-13), Theorem 444] that allows us to apply our fixed point theory to prove the existence of a maximum density interval.

Let $\mathcal{P} := \{p_i : j = 1, 2, 3, ...\}$ be the set of prime numbers and *U* := {1, −1}. For every map $\delta : \mathscr{P} \to U$, we define the function $\omega_{\delta} : \mathbb{N} \to U$ as

$$
\omega_{\delta}(1) := 1, \quad \omega_{\delta}(m) := (\delta(p_{k_1}))^{\alpha_1} \dots (\delta(p_{k_{l(m)}}))^{\alpha_{l(m)}}, \quad m > 1,
$$
 (44)

where $(p_{k_1})^{\alpha_1} \dots (p_{k_{l(m)}})^{\alpha_{l(m)}}$, with $\alpha_1, \dots, \alpha_{l(m)} \in \mathbb{N}$, is the decomposition of *m* in prime factors. Let Ω be the set of all the ω_{δ} 's defined in [\(44\)](#page-18-2). Observe that all functions of Ω are *completely multiplicative* (see for instance [\[1](#page-24-4), p. 138]).

Lemma 4.1 *Let* $n > 2$ *a* fixed integer, p_{k_n} the last prime not exceeding n and f_n *defined in [\(12\)](#page-6-1). Given an arbitrary* $\omega_{\delta} \in \Omega$ *, the inequality*

$$
p_{k_n}^{-c} \leq |\sum_{\substack{m=1 \\ m \neq p_{k_n}}}^n \omega_\delta(m) m^{-f_n(c)}|, \qquad (45)
$$

holds for all $c \in \mathbb{R}$ *.*

Proof Because of [\(7\)](#page-3-1), $\zeta_n^*(z) := \sum_{m=1,m \neq p_{k_n}}^n m^{-z}$. Therefore, given $c \in \mathbb{R}$ we have

$$
\zeta_n^*(f_n(c) + iy) = \sum_{\substack{m=1 \\ m \neq p_{k_n}}}^n m^{-f_n(c)}(\cos(y \log m) - i \sin(y \log m)).
$$

Then taking into account (14) ,

$$
p_{k_n}^{-c} \leq |\sum_{\substack{m=1 \\ m \neq p_{k_n}}}^n m^{-f_n(c)}(\cos(y \log m) - i \sin(y \log m))|, \text{ for all } y \in \mathbb{R}.
$$
 (46)

Given $n > 2$, we define $J_n := \{1, 2, 3, \ldots \pi(n)\}\)$, where $\pi(n)$ denotes the number of prime numbers not exceeding *n*. As the set {log $p_j : j \in J_n$ } is rationally independent, the set $\{\frac{\log p_j}{2\pi} : j \in J_n\}$ is also rationally independent. Then by Kronecker Theorem [\[8,](#page-25-13) Theorem 444] fixed an arbitrary set of real numbers $\{y_i : j \in J_n\}$ and given an integer $N \ge 1$, there exists a real number $y_N > N$ and integers $m_{i,N}$, such that

$$
|y_N \frac{\log p_j}{2\pi} - m_{j,N} - \gamma_j| < \frac{1}{N}, \quad \text{for all } j \in J_n. \tag{47}
$$

For each $n > 2$, we define the set $\mathcal{P}_n := \{p_j \in \mathcal{P} : p_j \le n\}$. Then, given a mapping $\delta := \mathscr{P}_n \to U$, we consider the set $\{\gamma_i : j \in J_n\}$ where $\gamma_j = 1$ for those *j* such that $\delta(p_i) = 1$ and $\gamma_i = 1/2$ for those *j* such that $\delta(p_j) = -1$. Then by applying the aforementioned Kronecker Theorem for $N = 1, 2, \ldots$, we can determine a sequence $(y_N)_N$ satisfying, by virtue of [\(47\)](#page-19-0), that

$$
\cos(y_N \log p_j) \to 1, \quad \sin(y_N \log p_j) \to 0 \text{ as } N \to \infty, \text{ for } p_j \text{ with } \delta(p_j) = 1,
$$

and

$$
\cos(y_N \log p_j) \to -1, \quad \sin(y_N \log p_j) \to 0 \text{ as } N \to \infty, \text{ for } p_j \text{ with } \delta(p_j) = -1.
$$

Therefore for each *m* such that $1 \le m \le n$ we get

$$
\cos(y_N \log m) \to \omega_\delta(m), \quad \sin(y_N \log m) \to 0 \quad \text{as } N \to \infty. \tag{48}
$$

Now, we substitute *y* by y_N in [\(46\)](#page-19-1) and we take the limit as $N \to \infty$. Then, according to (48) the inequality (45) follows to (48) , the inequality (45) follows.

Theorem 4.1 *For all prime numbers n > 2 except at most for a finite quantity,* f_n *has no fixed point in the interval* $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ *.*

Proof Corollary [3.4](#page-18-4) proves the theorem for $n = 3$. Assume $n > 3$ prime. The numbers *n* − 2 and *n* − 1 are relatively primes and both cannot be perfect squares, so there exists $\omega_{\delta} \in \Omega$ such that $\omega_{\delta}(n-2)\omega_{\delta}(n-1) = -1$. Since *n* is prime, $a_{\zeta_n^*(z)} = a_{\zeta_{n-1}(z)}$ and $p_{k_n} = n$. By supposing the existence of a fixed point $c_n \in (a_{\zeta_n(z)}, a_{\zeta_{n-1}(z)})$ for the function f_n for infinitely many prime $n > 3$, we are led to the following contradiction:

By (45) we have

$$
n^{-c_n} \leq |\pm((n-1)^{-c_n}-(n-2)^{-c_n})+\sum_{m\in P_{n-3,\omega_{\delta}}}m^{-c_n}-\sum_{m\notin P_{n-3,\omega_{\delta}}}m^{-c_n}|, \quad (49)
$$

where, for a fixed integer $n > 2$ and $\omega_{\delta} \in \Omega$, the set $P_{n,\omega_{\delta}}$ is defined as

$$
P_{n,\omega_{\delta}} := \{m : 1 \leq m \leq n \text{ such that } \omega_{\delta}(m) = 1\}.
$$

On the other hand, $\lim_{n\to\infty} \frac{a_{\zeta_n(z)}}{n} = -\log 2$ (see [\[3](#page-24-5), Theorem 1] and [\[17,](#page-25-5) Theorem 2]). Then noticing that $a_{\zeta_n(z)} < c_n < a_{\zeta_{n-1}(z)}$, we get

$$
\lim_{\substack{n \text{ prime} \\ n \to \infty}} \frac{c_n}{n-1} = -\log 2.
$$

Therefore, for each fixed $j \geq 0$, it follows

$$
\lim_{\substack{n \text{ prime} \\ n \to \infty}} \left(\frac{n-j}{n-1} \right)^{-c_n} = 2^{-j+1}.
$$
\n(50)

Now, dividing by $(n - 1)^{-c_n}$ the inequality [\(49\)](#page-20-0), we have

$$
\left(\frac{n}{n-1}\right)^{-c_n} \leq \left| \pm \left(1 - \left(\frac{n-2}{n-1}\right)^{-c_n}\right) \right|
$$

+
$$
\sum_{m \in P_{n-3, \omega_3}} \left(\frac{m}{n-1}\right)^{-c_n} - \sum_{m \notin P_{n-3, \omega_3}} \left(\frac{m}{n-1}\right)^{-c_n} \right|
$$

$$
\leq \left| \pm \left(1 - \left(\frac{n-2}{n-1}\right)^{-c_n}\right) \right|
$$

+
$$
\left| \sum_{m \in P_{n-3, \omega_3}} \left(\frac{m}{n-1}\right)^{-c_n} - \sum_{m \notin P_{n-3, \omega_3}} \left(\frac{m}{n-1}\right)^{-c_n} \right|
$$

$$
\leq \left(1 - \left(\frac{n-2}{n-1}\right)^{-c_n}\right) + \sum_{j=3}^{n-1} \left(\frac{n-j}{n-1}\right)^{-c_n}.
$$
 (51)

According to [\(50\)](#page-20-1), by taking the limit in [\(51\)](#page-20-2) for *n* prime, $n \to \infty$, it follows that the limit of the left-hand side of (51) is 2 whereas the limit of the right-hand side

one is $1/2 + \sum_{j=3}^{\infty} 2^{-j+1} = 1$. This is the contradiction desired. Hence the theorem \Box follows.

As a consequence from Theorem [4.1,](#page-19-3) an important property of the partial sums of order *n* prime can be deduced.

Theorem 4.2 *For all prime numbers* $n > 2$ *except at most for a finite quantity,* ζ*n*(*z*) *has a maximum density interval and it coincides with its critical interval* $[a_{\zeta_n(z)}, b_{\zeta_n(z)}].$

Proof It is enough to apply Theorems [3.6](#page-17-3) and [4.1.](#page-19-3)

5 Numerical Experiences

Simple numerical experiences carried out for some values of *n* in inequality [\(45\)](#page-18-3) joint with the application of Theorem [3.6](#page-17-3) and Lemma [4.1,](#page-18-1) allows us to prove the existence of a maximum density interval of $\zeta_n(z)$ for all $2 \le n \le 8$. Indeed: For $n = 2$, we have already seen in the Introduction section that the zeros of $\zeta_2(z)$ are all imaginary, so the set $R_{\zeta_2(z)} = \{0\}$ and then $a_{\zeta_2(z)} = b_{G_2(z)} = 0$ which means that we trivially have

$$
R_{\zeta_2(z)}=[a_{\zeta_2(z)},b_{\zeta_2(z)}].
$$

Therefore $\zeta_2(z)$ has a maximum density interval (in this case degenerate).

For $n = 3$, Corollary [3.4](#page-18-4) proves that

$$
R_{\zeta_3(z)} = [a_{\zeta_3(z)}, b_{\zeta_3(z)}]
$$

and then $\zeta_3(z)$ has a maximum density interval. In this case the end-points $a_{\zeta_3(z)}$, *b*_{ζ3}(*z*) can be easily computed, being $a_{\zeta_3(z)} = -1$ and $b_{\zeta_3(z)} \approx 0.79$. Thus, $R_{\zeta_3(z)} \approx$ $[-1, 0.79]$.

For *n* = 4, we firstly claim that f_4 has no fixed point in the interval $(a_{\zeta_4(z)}, a_{\zeta_4^*(z)})$. Indeed, by [\(8\)](#page-4-2), $a_{\zeta_4^*(z)} = 0$ and from [\(18\)](#page-9-2), $a_{\zeta_4(z)} < 0$. Therefore we only study the behavior of $f_4(c)$ for $c < 0$. We recall that from [\(12\)](#page-6-1) $f_4(c) = a_{4,c}$, where $a_{4,c}$ is the left end-point of the interval of variation of the variable *x* in the Cartesian equation of the variety $|\zeta_4^*(z)| = p_{k_4}^{-c}$. By taking into account formula [\(10\)](#page-4-1) for $n = 4$, the equation of that variety is

$$
1 + 2^{-2x} + 4^{-2x} + 2 \cdot 2^{-x} (1 + 4^{-x}) \cos(y \log 2) + 2 \cdot 4^{-x} \cos(y \log 4) = 3^{-2c}.
$$
\n(52)

By putting $cos(y \log 4) = 2 cos^2(y \log 2) - 1$ in [\(52\)](#page-21-0) and solving it for $cos(y \log 2)$ we have

$$
\cos(y \log 2) = \frac{-(1+4^{-x}) \pm \sqrt{(2 \cdot 3^{-c})^2 - (\sqrt{3}(4^{-x}-1))^2}}{4 \cdot 2^{-x}}.
$$

Then the variable *x* must satisfy the inequality $(\sqrt{3}(4^{-x} - 1))^2 \le (2 \cdot 3^{-c})^2$ which is equivalent to say that

$$
4^{-x} \in [1 - 2 \cdot 3^{-c - \frac{1}{2}}, 1 + 2 \cdot 3^{-c - \frac{1}{2}}].
$$
\n(53)

Since $1 - 2 \cdot 3^{-c - \frac{1}{2}} < 0$ for all $c < 0$, by noting that $4^{-x} > 0$ for any *x*, [\(53\)](#page-22-0) is in turn equivalent to

$$
-\frac{\log(1+2\cdot 3^{-c-\frac{1}{2}})}{\log 4}\leq x.
$$

Hence the minimum value for *x* is $-\frac{\log(1+2\cdot3^{-c-1})}{\log 4}$, so $a_{4,c} = -\frac{\log(1+2\cdot3^{-c-1})}{\log 4}$ and consequently for $c < 0$ the function $f_4(c)$ is given by the formula

$$
f_4(c) = -\frac{\log(1 + 2 \cdot 3^{-c - \frac{1}{2}})}{\log 4}.
$$

Then the fixed points of $f_4(c)$ are the solutions of the equation $f_4(c) = c$, that is

$$
1 + 2 \cdot 3^{-c - 1/2} = 4^{-c}.
$$
 (54)

According to $[20, p. 46]$ $[20, p. 46]$ Eq. [\(54\)](#page-22-1) has a unique real solution, say c_0 , whose approached value is −1.21. On the other hand, since $n = 4$ belongs to \mathcal{C}^* , by Theorem [3.3](#page-14-5) $a_{\zeta_4(z)}$ is a fixed point of the function f_4 . Since c_0 is the unique solution of $f_4(c) = c$, necessarily $a_{\zeta_4(z)} = c_0 \approx -1.21$ and then f_4 has no fixed point in $(a_{\zeta_4(z)}, a_{\zeta_4^*(z)})$. Hence the claim follows. Then, by applying Theorem [3.6,](#page-17-3) $\zeta_4(z)$ has a maximum density interval and consequently

$$
R_{\zeta_4(z)}=[a_{\zeta_4(z)},b_{\zeta_4(z)}].
$$

For $n = 5$ we take a mapping $\delta : \mathscr{P} \to U$ satisfying $\delta(2) = \delta(3) = -1$ and consider its corresponding $\omega_{\delta} : \mathbb{N} \to U$ defined in [\(44\)](#page-18-2). Assume f_5 has some fixed point, say c_0 , in the interval $(a_{\zeta_5(z)}, a_{\zeta_5^*(z)})$. By [\(8\)](#page-4-2) $a_{\zeta_5^*(z)} < 0$ and then $(a_{\zeta_5(z)}, a_{\zeta_5^*(z)})$ contains only negative numbers, so $c_0 < 0$. By applying [\(45\)](#page-18-3) for $n = 5$, f_5 and the above defined ω_{δ} , under the assumption $f_5(c_0) = c_0$, we have

$$
5^{-c_0} \le |1 - 2^{-c_0} - 3^{-c_0} + 4^{-c_0}|.
$$

But this inequality is clearly impossible for any $c_0 < 0$. Hence f_5 has no fixed point in $(a_{\zeta_5(z)}, a_{\zeta_5^*(z)})$. Then, by applying Theorem [3.6,](#page-17-3) $\zeta_5(z)$ has a maximum density interval and consequently

$$
R_{\zeta_5(z)}=[a_{\zeta_5(z)},b_{\zeta_5(z)}].
$$

For $n = 6$, we take a mapping $\delta : \mathcal{P} \to U$ satisfying $\delta(2) = -1$, $\delta(3) = 1$ and consider its corresponding $\omega_{\delta} : \mathbb{N} \to U$ defined in [\(44\)](#page-18-2). Assume f_6 has some fixed

point, say c_0 , in the interval $(a_{\zeta_6(z)}, a_{\zeta_6^*(z)})$. By [\(8\)](#page-4-2) $a_{\zeta_6^*(z)} < 0$ and then $(a_{\zeta_6(z)}, a_{\zeta_6^*(z)})$ contains only negative numbers, so $c_0 < 0$. By applying [\(45\)](#page-18-3) for $n = 6$, f_6 and the above defined ω_{δ} , under the assumption $f_6(c_0) = c_0$, we have

$$
5^{-c_0} \le |1 - 2^{-c_0} + 3^{-c_0} + 4^{-c_0} - 6^{-c_0}|. \tag{55}
$$

Regarding inequality [\(55\)](#page-23-0) we consider the two possible cases: (a) $1 - 2^{-c_0} + 3^{-c_0} +$ $4^{-c_0} - 6^{-c_0} > 0$, (b) $1 - 2^{-c_0} + 3^{-c_0} + 4^{-c_0} - 6^{-c_0} < 0$. In (a), according to [\(55\)](#page-23-0), we have the inequality

$$
1+3^{-c_0}+4^{-c_0}\geq 2^{-c_0}+5^{-c_0}+6^{-c_0},
$$

that as we easily can check is not possible for any $c_0 < 0$. In (b), because of [\(55\)](#page-23-0), we get

$$
1 + 3^{-c_0} + 4^{-c_0} + 5^{-c_0} \le 2^{-c_0} + 6^{-c_0}.
$$
 (56)

By a direct computation we see that [\(56\)](#page-23-1) is only true for $c_0 \le a_{\zeta_6(z)} \approx -2.8$ (observe that for $c_0 \approx -2.8$, inequality [\(56\)](#page-23-1) becomes an equality and since $n = 6$ belongs to C^* , by Theorem [3.3,](#page-14-5) $a_{\zeta(\zeta)}$ is a fixed point of the function f_6). Therefore for $c_0 > a_{\zeta_6(z)}$, [\(56\)](#page-23-1) is not possible. Hence f_6 has no fixed point in $(a_{\zeta_6(z)}, a_{\zeta_6^*(z)})$. Then, by applying Theorem [3.6,](#page-17-3) $\zeta_6(z)$ has a maximum density interval and consequently

$$
R_{\zeta_6(z)}=[a_{\zeta_6(z)},b_{\zeta_6(z)}].
$$

For $n = 7$, we take a mapping $\delta : \mathcal{P} \to U$ satisfying $\delta(2) = \delta(3) = \delta(5) =$ -1 and consider its corresponding ω_{δ} : N → *U* defined in [\(44\)](#page-18-2). Assume f_7 has some fixed point, say c_0 , in the interval $(a_{\zeta_7(z)}, a_{\zeta_7^*(z)})$. By [\(8\)](#page-4-2) $a_{\zeta_7^*(z)} < 0$ and then $(a_{\zeta_7(z)}, a_{\zeta_7^*(z)})$ contains only negative numbers, so $c_0 < 0$. By applying [\(45\)](#page-18-3) for $n = 7$, *f*₇ and the above defined ω_{δ} , under the assumption $f_7(c_0) = c_0$, we have

$$
7^{-c_0} \le |1 - 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} + 6^{-c_0}|. \tag{57}
$$

We consider the two possible cases: (a) $1 - 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} + 6^{-c_0} > 0$, (b) $1 - 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} + 6^{-c_0} < 0$. In (a), according to [\(57\)](#page-23-2), we have the inequality

$$
1 + 4^{-c_0} + 6^{-c_0} \ge 2^{-c_0} + 3^{-c_0} + 5^{-c_0} + 7^{-c_0},
$$

that is clearly impossible for any $c_0 < 0$. In (b), because of [\(57\)](#page-23-2), we get

$$
1 + 4^{-c_0} + 6^{-c_0} + 7^{-c_0} \le 2^{-c_0} + 3^{-c_0} + 5^{-c_0}.
$$
 (58)

It is immediate to check that inequality [\(58\)](#page-23-3) is false for any $c_0 < 0$. Hence f_7 has no fixed point in $(a_{\zeta_7(z)}, a_{\zeta_7^*(z)})$. Then, by applying Theorem [3.6,](#page-17-3) $\zeta_7(z)$ has a maximum density interval and consequently

A Fixed Point Theory Linked to the Zeros of the Partial Sums … 265

$$
R_{\zeta_7(z)}=[a_{\zeta_7(z)},b_{\zeta_7(z)}].
$$

For $n = 8$, we take a mapping $\delta : \mathscr{P} \to U$ satisfying $\delta(2) = 1$, $\delta(3) =$ $\delta(5) = -1$ and consider its corresponding $\omega_{\delta} := \mathbb{N} \to U$ defined in [\(44\)](#page-18-2). Assume *f*₈ has some fixed point, say c_0 , in the interval $(a_{\zeta_8(z)}, a_{\zeta_8^*(z)})$. By [\(8\)](#page-4-2) $a_{\zeta_8^*(z)} < 0$ and then $(a_{\zeta_8(z)}, a_{\zeta_8^*(z)})$ contains only negative numbers, so $c_0 < 0$. By applying [\(45\)](#page-18-3) for $n = 8$, f_8 and the above defined ω_δ , under the assumption $f_8(c_0) = c_0$, we have

$$
7^{-c_0} \le |1 + 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} - 6^{-c_0} + 8^{-c_0}|.
$$
 (59)

Regarding inequality [\(59\)](#page-24-6) we consider the two possible cases: (a) $1 + 2^{-c_0}$
- $3^{-c_0} + 4^{-c_0} - 5^{-c_0} - 6^{-c_0} + 8^{-c_0} < 0$. (b) $1 + 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0}$ $-3^{-c_0} + 4^{-c_0} - 5^{-c_0} - 6^{-c_0} + 8^{-c_0} < 0,$ $-6^{-c_0} + 8^{-c_0} \ge 0$. In case (a), according to [\(59\)](#page-24-6), we have the inequality

$$
3^{-c_0} + 5^{-c_0} + 6^{-c_0} \ge 1 + 2^{-c_0} + 4^{-c_0} + 7^{-c_0} + 8^{-c_0},
$$

which is clearly impossible for any $c_0 < 0$. In case (b), because of [\(59\)](#page-24-6), we get

$$
1 + 2^{-c_0} + 4^{-c_0} + 8^{-c_0} \ge 3^{-c_0} + 5^{-c_0} + 6^{-c_0} + 7^{-c_0}.
$$
 (60)

By an elementary analysis we can see that [\(60\)](#page-24-7) is only true for $c_0 \le a_{\zeta_8(\zeta)} \approx -4.1$ (observe that for $c_0 \approx -4.1$ inequality [\(60\)](#page-24-7) becomes an equality and since $n = 8$ belongs to C^* , by Theorem [3.3,](#page-14-5) $a_{\zeta_8(\zeta)} \approx -4.1$ is a fixed point of the function f_8). Therefore for $c_0 \in (a_{\zeta_8(z)}, 0), (60)$ $c_0 \in (a_{\zeta_8(z)}, 0), (60)$ is not possible. Then, since by [\(8\)](#page-4-2) $a_{\zeta_8^*(z)} < 0$, in particular [\(60\)](#page-24-7) is not possible in $(a_{\zeta_8(z)}, a_{\zeta_8^*(z)})$. Hence f_8 has no fixed point in the interval $(a_{\zeta_8(z)}, a_{\zeta_8^*(z)})$. Then, by applying Theorem [3.6,](#page-17-3) $\zeta_8(z)$ has a maximum density interval and consequently

$$
R_{\zeta_8(z)}=[a_{\zeta_8(z)},b_{\zeta_8(z)}].
$$

Acknowledgements This work was partially supported by a grant from Ministerio de Economía y Competitividad, Spain (MTM 2014-52865-P).

References

- 1. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, New York (1990)
- 2. Avellar, C.E., Hale, J.K.: On the zeros of exponential polynomials. J. Math. Anal. Appl. **73**, 434–452 (1980)
- 3. Balazard, M., Velásquez Castañón, O.: Sur l'infimum des parties réelles des zéros des sommes partielles de la fonction zêta de Riemann. C. R. Acad. Sci. Paris, Ser. I **347**, 343–346 (2009)
- 4. Bohr, H.: Almost Periodic Functions. Chelsea, New York (1947)
- 5. Corduneanu, C.: Almost Periodic Functions. Interscience Publishers, Geneva (1968)
- 6. Dubon, E., Mora, G., Sepulcre, J.M., Ubeda, J.I., Vidal, T.: A note on the real projection of the zeros of partial sums of Riemann zeta function. RACSAM **108**, 317–333 (2014)
- 7. Ferrando, J.C., López-Pellicer, M.: Descriptive Topology and Functional Analysis. Proceedings in Mathematics & Estatistics. Springer, Berlin (2014)
- 8. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Clarendon Press, Oxford (1954)
- 9. Ivic, A.: The Riemann Zeta-Function. Dover, Mineola (2003)
- 10. Levin, B.Ja.: Distribution of Zeros of Entire Functions. American Mathematical Society, Providence (1980)
- 11. Montgomery, H.L.: Zeros of Approximations to the Zeta Function. Studies in Pure Mathematics: to the Memory of Paul Turán, pp. 497–506. Basel, Birkhäuser (1983)
- 12. Montgomery, H.L., Vaughan, R.C.: Mean values of multiplicative functions. Period. Math. Hung. **43**, 199–214 (2001)
- 13. Moreno, C.J.: The zeros of exponential polynomials (I). Compos. Math. **26**, 69–78 (1973)
- 14. Mora, G.: A note on the functional equation $F(z) + F(2z) + \ldots + F(nz) = 0$. J. Math. Anal. Appl. **340**, 466–475 (2008)
- 15. Mora, G., Sepulcre, J.M., Vidal, T.: On the existence of exponential polynomials with prefixed gaps. Bull. Lond. Math. Soc. **45**, 1148–1162 (2013)
- 16. Mora, G.: Accumulation points of the sets of real parts of zeros of the partial sums of the Riemann zeta function (2013). [arXiv:1311.5171](http://arxiv.org/abs/1311.5171) math. CV
- 17. Mora, G.: An estimate of the lower bound of the real parts of the zeros of the partial sums of the Riemann zeta function. J. Math. Anal. Appl. **427**, 428–439 (2015)
- 18. Mora, G.: On the non-hyperbolicity of a class of exponential polynomials. Electron. J. Qual. Theory Differ. Equ. **67**, 1–11 (2017)
- 19. Mora, G.: On the closure of the real parts of the zeros of a class of exponential polynomials. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (2017). [https://doi.org/10.1007/](https://doi.org/10.1007/s1339) [s1339](https://doi.org/10.1007/s1339)
- 20. Pólya, G., Szëgo, G.: Problems and theorems in analysis, vol. II. Springer, New York (1976)
- 21. Ritt, J.F.: On the zeros of exponential polynomials. Trans. Am. Math. Soc. **31**, 680–686 (1929)
- 22. Spira, R.: Zeros of sections of the zeta function, I. Math. Comput. **20**, 542–550 (1966)
- 23. Spira, R.: Zeros of sections of the zeta function, II. Math. Comput. **22**, 168–173 (1968)
- 24. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, London (1939)
- 25. Voronin SM.: On the zeros of partial sums of the Dirichlet series for the Riemann zeta-function. Dolk. Akad. Nauk. SSSR **216**, 964–967 (1974); trans. Soviet. Math. Doklady **15**, 900–903 (1974)