# A Fixed Point Theory Linked to the Zeros of the Partial Sums of the Riemann Zeta Function



# In Honour of Manuel López-Pellicer

#### Gaspar Mora

**Abstract** For each n > 2 we consider the corresponding *n*th-partial sum of the Riemann zeta function  $\zeta_n(z) := \sum_{j=1}^n j^{-z}$  and we introduce two real functions  $f_n(c)$ ,  $g_n(c), c \in \mathbb{R}$ , associated with the end-points of the interval of variation of the variable *x* of the analytic variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ , where  $\zeta_n^*(z) := \zeta_n(z) - p_{k_n}^{-z}$  and  $p_{k_n}$  is the last prime not exceeding *n*. The analysis of fixed point properties of  $f_n$ ,  $g_n$  and the behavior of such functions allow us to explain the distribution of the real parts of the zeros of  $\zeta_n(z)$ . Furthermore, the fixed points of  $f_n$ ,  $g_n$  characterize the set  $\mathscr{P}^*$  of prime numbers greater than 2 and the set  $\mathscr{C}^*$  of composite numbers greater than 2, proving in this way how close those functions from Arithmetic are. Finally, from the study of the graphs of  $f_n$ ,  $g_n$  we deduce important properties about the set  $R_{\zeta_n(z)} := \overline{\{\Re z : \zeta_n(z) = 0\}}$  and the bounds  $a_{\zeta_n(z)} := \inf\{\Re z : \zeta_n(z) = 0\}$ ,  $b_{\zeta_n(z)} := \sup\{\Re z : \zeta_n(z) = 0\}$  that define the critical strip  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \times \mathbb{R}$  where are located all the zeros of  $\zeta_n(z)$ .

**Keywords** Exponential polynomials  $\cdot$  Zeros of the partial sums of the Riemann zeta function  $\cdot$  Diophantine approximation

# 1 Introduction

Since the non-trivial zeros of the **Riemann zeta function**  $\zeta(z)$ , until now found, lie on the line  $\Re z = 1/2$  (the assertion that all them are situated on that line is the **Riemann Hypothesis**) and the trivial ones are on the real axis (they are the negative even numbers [9, p. 8]), it seems that the zeros of  $\zeta(z)$  are situated on those two perpendicular lines. However that is not so for the zeros of the partial sums  $\zeta_n(z) := \sum_{j=1}^n j^{-z}$  of the series  $\sum_{j=1}^{\infty} j^{-z}$  that defines the Riemann zeta function  $\zeta(z)$  on the half-plane  $\Re z > 1$ . Indeed, except for  $\zeta_2(z)$  whose zeros all are imaginary

G. Mora (🖂)

Facultad de Ciencias, Departamento de Matemáticas, Universidad de Alicante, Campus de Sant Vicent del Raspeig. Ap. 99, 03080 Alicante, Spain e-mail: gaspar.mora@ua.es

<sup>©</sup> Springer Nature Switzerland AG 2019

J. C. Ferrando (ed.), *Descriptive Topology and Functional Analysis II*, Springer Proceedings in Mathematics & Statistics 286, https://doi.org/10.1007/978-3-030-17376-0\_13



**Fig. 1** Graphs of the zeros of  $\zeta_n(z)$  for some values of *n*, with  $\Re z \in [-3, 1]$  and  $\Im z \in [0, 5000]$ 

(it is immediate to check that the zeros of  $\zeta_2(z)$  are  $z_{2,j} = \frac{(2j+1)\pi i}{\log 2}$ ,  $j \in \mathbb{Z}$ ), so aligned, the zeros of each  $\zeta_n(z)$  for any n > 2 are dispersed in a vertical strip forming a sort of cloud, more or less uniform, that extends up, down and left as *n* increases, whereas at the right the cloud of zeros is upper bounded (essentially) by the line  $\Re z = 1$  (see Fig. 1).

An explanation *grosso modo* why the zeros of the  $\zeta_n(z)$ 's are distributed of such a form is supported by the following facts:

(a) Any exponential polynomial (EP for short) of the form

A Fixed Point Theory Linked to the Zeros of the Partial Sums ...

$$P(z) := 1 + \sum_{j=1}^{N} a_j e^{-z\lambda_j}, \quad z \in \mathbb{C}, \quad a_j \in \mathbb{C} \setminus \{0\}, \quad 0 < \lambda_1 < \ldots < \lambda_N, \quad N \ge 1,$$
(1)

has zeros as a consequence of Hadamard's Factorization Theorem or from Pólya's Theorem [13, p. 71]. For N = 1, it is immediate that an EP of the form (1) has its zeros aligned. For N > 1, noticing that for any y,

$$\lim_{x \to +\infty} P(z) = \lim_{x \to -\infty} Q(z) = 1,$$

where  $Q(z) := a_N^{-1} e^{z\lambda_N} P(z)$  (observe that P(z) and Q(z) have exactly the same zeros), it follows that the zeros of P(z) are situated in a vertical strip. Therefore, for every EP P(z) of the form (1), there exist two real numbers

$$a_{P(z)} := \inf\{\Re z : P(z) = 0\}, \quad b_{P(z)} := \sup\{\Re z : P(z) = 0\},$$
 (2)

that define an interval  $[a_{P(z)}, b_{P(z)}]$ , called *critical interval* associated with P(z). Therefore the set  $[a_{P(z)}, b_{P(z)}] \times \mathbb{R}$ , called *critical strip* associated with P(z), is the minimal vertical strip that contains all the zeros of P(z).

It is immediate that any partial sum  $\zeta_n(z) := \sum_{j=1}^n j^{-z}$ ,  $n \ge 2$ , is an EP of the form (1). Therefore the zeros of each  $\zeta_n(z)$  are situated on its critical strip  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \times \mathbb{R}$  (a detailed proof on the existence of the zeros of  $\zeta_n(z)$  and their distribution with respect to the imaginary axis can be found in [14, Prop. 1, 2, 3]). Regarding the bounds  $a_{\zeta_n(z)}, b_{\zeta_n(z)}$ , taking into account that all the zeros of  $\zeta_2(z)$  lie on the imaginary axis, we get the property

$$a_{\zeta_2(z)} = b_{\zeta_2(z)} = 0; \quad a_{\zeta_n(z)} < 0 < b_{\zeta_n(z)}, \quad n > 2,$$
 (3)

that will be proved below in Lemma 2.3, Part (ii). A much more precise estimation of such bounds is given by the formulas:

$$b_{\zeta_n(z)} = 1 + \left(\frac{4}{\pi} - 1 + o(1)\right) \frac{\log \log n}{\log n}, \quad n \to \infty, \tag{4}$$

obtained by Montgomery and Vaughan [12] in 2001, by completing a previous work of Montgomery [11] of 1983, and

$$a_{\zeta_n(z)} = -\frac{\log 2}{\log(\frac{n-1}{n-2})} + \Delta_n, \quad \limsup_{n \to \infty} |\Delta_n| \le \log 2, \tag{5}$$

found by Mora [17] in 2015. Consequently, from (5) and (4), we have

$$\lim_{n\to\infty}a_{\zeta_n(z)}=-\infty,\quad \lim_{n\to\infty}b_{\zeta_n(z)}=1,$$

what justifies the fact of the cloud of zeros of  $\zeta_n(z)$  moves to the left as *n* increases but not to the right, where the cloud is upper bounded (essentially) by the line  $\Re z = 1$ (it does not mean that some  $\zeta_n(z)$  can have zeros with real part greater than 1; in fact, many works prove the existence of such zeros [10, 22, 23, 25], among others).

(b) Since the zeros of an analytic function are isolated, and all the  $\zeta_n(z)$ 's are entire functions, by taking into account the real parts of the zeros of each  $\zeta_n(z)$  are bounded (the real parts are contained in the critical interval  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$  for every fixed *n*), their imaginary parts cannot be. Furthermore, as the coefficients of every  $\zeta_n(z)$  are real, its zeros are conjugate. Consequently the zeros of the  $\zeta_n(z)$ 's are located up and down, symmetrically with respect to the real axis.

(c) From (3) we deduce that, for any n > 2,  $\zeta_n(z)$  has zeros with positive and negative real parts.

With the aim to understand what law controls the distribution of the real projections of the zeros of  $\zeta_n(z)$ , we introduce a Fixed Point Theory focused on two real functions,  $f_n$  and  $g_n$ , for every n > 2. Firstly, such functions, by virtue of a recent result [19, Theorem 3], allow us to have an easy characterization of the sets

$$R_{\zeta_n(z)} := \overline{\{\Re z : \zeta_n(z) = 0\}}.$$
(6)

Secondly, among others relevant results deduced from the fixed point properties of  $f_n$  and  $g_n$ , we stress those that characterize some notable *arithmetic sets* such as  $\mathscr{P}^*$  and  $\mathscr{C}^*$ , the set of primes greater than 2 and the set of composite numbers greater than 2, respectively. In this way, we show how close the arithmetic sets  $\mathscr{P}^*$  and  $\mathscr{C}^*$  from the law of the distribution of the zeros of the partial sums of the Riemann zeta function are. Furthermore, our point fixed theory proves the existence of a *minimal density interval* for each  $\zeta_n(z)$ , that is, a closed interval  $[A_n, b_{\zeta_n(z)}]$ , with  $a_{\zeta_n(z)} \leq A_n < b_{\zeta_n(z)}$  contained in the set  $R_{\zeta_n(z)}$ , for any integer n > 2, which means that there is no vertical sub-trip contained in  $[A_n, b_{\zeta_n(z)}] \times \mathbb{R}$  zero-free for  $\zeta_n(z)$ . Then, since it is always true that  $R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ , when the bound  $A_n$  coincides with  $a_{\zeta_n(z)}$  it follows that  $R_{\zeta_n(z)} = [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ . In this case we will say that  $\zeta_n(z)$  has a *maximum density interval*, and it is exactly the critical interval  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ . Finally, we will give a sufficient condition in terms of the quantity of fixed points of  $f_n$  for  $\zeta_n(z)$  have a maximum density interval.

### 2 The Functions $f_n$ and $g_n$

The functions  $f_n$  and  $g_n$  that we are going to introduce below, are directly linked to the interval of variation of the variable *x* of the Cartesian equation of an analytic variety associated with the *n*th-partial sum  $\zeta_n(z) := \sum_{j=1}^n j^{-z}$ , n > 2. First we consider the EP

$$\zeta_n^*(z) := \zeta_n(z) - p_{k_n}^{-z}, \quad n > 2, \tag{7}$$

where  $p_{k_n}$  is the last prime not exceeding *n*. The bounds  $a_{\zeta_n^*(z)}$ ,  $b_{\zeta_n^*(z)}$  defined in (2) corresponding to  $\zeta_n^*(z)$  satisfy the following crucial property (for details see [16, Theorem 15]):

$$a_{\zeta_n^*(z)} = b_{\zeta_n^*(z)} = 0$$
, for  $n = 3, 4$ ;  $a_{\zeta_n^*(z)} < 0 < b_{\zeta_n^*(z)}$ , for all  $n > 4$ . (8)

Now our objective is to analyse the behavior of the end-points of the interval of variation of the variable x of the analytic variety, or *level curve* [24, p. 121], of equation

$$|\zeta_n^*(z)| = p_{k_n}^{-c}, \quad n > 2, \quad c \in \mathbb{R}.$$
(9)

To do it, we square (9) and by using elementary formulas of trigonometry we obtain the Cartesian equation of  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ , namely

$$\sum_{j=1, j \neq p_{k_n}}^{n} j^{-2x} + 2 \cdot 1^{-x} \sum_{j=2, j \neq p_{k_n}}^{n} j^{-x} \cos(y \log(\frac{j}{1})) + 2 \cdot 2^{-x} \sum_{j=3, j \neq p_{k_n}}^{n} j^{-x} \cos(y \log(\frac{j}{2})) + \dots +$$
(10)
$$2(n-1)^{-x} \sum_{j=n, j \neq p_{k_n}}^{n} j^{-x} \cos(y \log(\frac{j}{n-1})) = p_{k_n}^{-2c}.$$

It is immediate to see that for any value of *y*, the left-hand side of (10) tends to  $+\infty$  as  $x \to -\infty$ . Then, as the right-hand side of (10) is a constant, the variation of *x* is always lower bounded by a number denoted by  $a_{n,c}$ . On the other hand, the limit of the left-hand side of (10) is 1 when  $x \to +\infty$ . Then, if  $c \neq 0$ , the variation of *x* is upper bounded by a number denoted by  $b_{n,c}$ . Therefore, fixed an integer n > 2, we have:

If  $c \neq 0$ , the variable x in the Eq. (10) varies on an open interval  $(a_{n,c}, b_{n,c})$  satisfying the properties: (a) Given  $x \in (a_{n,c}, b_{n,c})$ , there is at least a point of the level curve  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  with abscissa x. Exceptionally  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  could have points of abscissas  $a_{n,c}$ ,  $b_{n,c}$ . In this case we will say that  $a_{n,c}$ ,  $b_{n,c}$  are accessible. Otherwise the lines  $x = a_{n,c}$ ,  $x = b_{n,c}$  are asymptotes of the variety. (b) For  $x < a_{n,c}$  or  $x > b_{n,c}$  there is no point of the variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ .

If c = 0, x varies on  $(a_{n,0}, +\infty)$ , so  $b_{n,0}$  can be defined as  $+\infty$ , satisfying: (c) Given  $x \in (a_{n,0}, +\infty)$ , there is at least a point of the variety  $|\zeta_n^*(z)| = 1$  with abscissa x. If there is a point of  $|\zeta_n^*(z)| = 1$  with abscissa  $a_{n,0}$ , we will say that  $a_{n,0}$  is accessible. Otherwise the line  $x = a_{n,0}$  is an asymptote of the variety. (d) For  $x < a_{n,0}$  there is no point of  $|\zeta_n^*(z)| = 1$ .

We show in Fig. 2 the varieties  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  for n = 3 and some values of c.



**Fig. 2** Graphs of the varieties  $|\zeta_3^*(z)| = 3^{-c}$  for some values of c

The end-points  $a_{3,c}$ ,  $b_{3,c}$  corresponding to the variety  $|\zeta_3^*(z)| = p_{k_3}^{-c}$  can be easily determined by a completely similar way to those of the variety  $|\zeta_3^*(-z)| = p_{k_3}^c$  (see [8, p. 49]). Each bound  $a_{3,c}$ ,  $b_{3,c}$  as a function of *c* is given by the formulas

$$a_{3,c} = -\frac{\log(1+3^{-c})}{\log 2}, \quad c \in \mathbb{R}; \quad b_{3,c} = \begin{cases} -\frac{\log(3^{-c}-1)}{\log 2}, & \text{if } c < 0\\ -\frac{\log(1-3^{-c})}{\log 2}, & \text{if } c > 0 \end{cases}$$
(11)

By virtue of above considerations (a), (b), (c), (d), and by using an elementary geometric reasoning, similar to that it was used to find the graphs of  $|\zeta_n^*(-z)| = p_{k_n}^c$  (see [16, Proposition 8]), the graphs of the varieties  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  are described in the next result.

#### **Proposition 2.1** *Fixed an integer* n > 2*, we have:*

- (i) If c > 0,  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  has infinitely many arc-connected components which are closed curves and x varies on a finite interval  $(a_{n,c}, b_{n,c})$ , where  $a_{n,c}, b_{n,c}$  could be accessible.
- (ii) If c = 0,  $|\zeta_n^*(z)| = 1$  has infinitely many arc-connected components which are open curves with horizontal asymptotes of equations  $y = (2j + 1)\frac{\pi}{2\log 2}, j \in \mathbb{Z}$ , and x varies on the infinite interval  $(a_{n,0}, +\infty)$ , where  $a_{n,0}$  could be accessible.
- (iii) If c < 0,  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  has only one arc-connected component which is an open curve; x varies on a finite interval  $(a_{n,c}, b_{n,c})$ , where  $a_{n,c}, b_{n,c}$  could be accessible. The variable y takes all real values. Furthermore,  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  intersects the real axis at a unique point of abscissa  $b_{n,c}$ , so  $b_{n,c}$  is always accessible when c < 0.

In Fig. 3 we show the graph of  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  for some values of n > 3 and c. From Proposition 2.1, a simple consequence is deduced:



(d) Graph of  $|\zeta_{12}^*(z)| = 11^{1/8}$ . (e) Graph of  $|\zeta_{12}^*(z)| = 1$ . (f) Graph of  $|\zeta_{12}^*(z)| = 11^{-1/12}$ .

**Fig. 3** Graphs of the varieties  $|\zeta_7^*(z)| = 7^{-c}$  and  $|\zeta_{12}^*(z)| = 11^{-c}$  for some values of c

**Corollary 2.1** Fixed an integer n > 2, if  $u \in \mathbb{C}$  satisfies  $|\zeta_n^*(u)| < p_{k_n}^{-c}$  (in this case we will say that u is an interior point of the variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ ), then there exists a point w of  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ , so  $a_{n,c} \leq \Re w \leq b_{n,c}$ , such that  $\Re w < \Re u$ .

**Definition 2.1** Given an integer n > 2, we define the real functions

$$f_n(c) := a_{n,c}, \quad c \in \mathbb{R}; \qquad g_n(c) := b_{n,c}, \quad c \in \mathbb{R} \setminus \{0\}, \tag{12}$$

where  $a_{n,c}$ ,  $b_{n,c}$  are the end-points of the interval of variation of the variable *x* in the Eq. (10).

We show in Fig. 4 the graph of the functions  $f_3(c)$  and  $g_3(c)$ , defined by the Eq. (11), and the function  $f_4(c)$ .

Since  $|\zeta_n^*(z)| = p_{k_n}^{-d}$  tends to  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  as *d* tends to *c*, it is immediate that  $f_n, g_n$  are both continuous on  $\mathbb{R} \setminus \{0\}$ , and  $f_n$  is continuous on whole of  $\mathbb{R}$ . For c = 0, by Part (ii) of Proposition 1 we can agree  $b_{n,0} = +\infty$ , and then we should define  $g_n(0) := +\infty$ .

Now we are ready to give a characterization of the set  $R_{\zeta_n(z)}$ , defined in (6), by using the functions  $f_n$  and  $g_n$ .

**Theorem 2.1** Let n > 2 be a fixed integer. A real number  $c \in R_{\zeta_n(z)}$  if and only if



**Fig. 4** Left: Graph of the functions  $f_3(c)$  (blue),  $g_3(c)$  (red) and y = x (plotted). Right: Graph of the function  $f_4(c)$  (blue) and y = x (plotted)

$$f_n(c) \le c \le g_n(c). \tag{13}$$

*Proof* If  $c \in R_{\zeta_n(z)}$ , there exists a sequence  $(z_m)_{m=1,2,...}$  of zeros of  $\zeta_n(z)$  such that  $\lim_{m\to\infty} \Re z_m = c$ . From (7),  $\zeta_n^*(z_m) = -p_{k_n}^{-z_m}$  for each m = 1, 2, ... By taking the modulus, we have  $|\zeta_n^*(z_m)| = p_{k_n}^{-x_m}$ , where  $x_m := \Re z_m$ . This means that each  $z_m$  is a point of the variety  $|\zeta_n^*(z)| = p_{k_n}^{-x_m}$ , so  $x_m \in [a_{n,x_m}, b_{n,x_m}]$  and then we get

$$f_n(x_m) = a_{n,x_m} \le x_m \le b_{n,x_m} = g_n(x_m), \text{ for all } m.$$

Now by taking the limit when  $m \to \infty$ , noticing that  $\lim_{m\to\infty} x_m = c$ , because of the continuity of  $f_n$  and  $g_n$ , the inequalities (13) follow. Conversely, if  $f_n(c) < c < g_n(c)$ , by taking into account the definitions of  $f_n$ ,  $g_n$ , the value c is in the interval of variation of x of the variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  and then the line x = c intersects the variety. Therefore, by applying [16, Theorem 3],  $c \in R_{\zeta_n(z)}$ . If  $f_n(c) = c$  or  $g_n(c) = c$ , the line x = c intersects the variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  provided that  $a_{n,c}$  or  $b_{n,c}$  be accessible. Otherwise the line x = c is an asymptote of  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ . Therefore, in both cases, again by [19, Theorem 3], the point  $c \in R_{\zeta_n(z)}$ .

As we can easily check, the function  $f_3(c) := a_{3,c}$ , with  $a_{3,c}$  given in (11), is strictly increasing; this property is true for all the functions  $f_n(c)$ , n > 2, defined in (12), as we prove below.

**Lemma 2.1** For every integer n > 2,  $f_n$  is a strictly increasing function on  $\mathbb{R}$ .

*Proof* Firstly, for each fixed  $c \in \mathbb{R}$ , we claim that  $f_n$  satisfies

$$\inf\{|\zeta_n^*(f_n(c) + iy)| : y \in \mathbb{R}\} = p_{k_n}^{-c}.$$
(14)

Indeed, we put  $\lambda_{n,c} := \inf\{|\zeta_n^*(f_n(c) + iy)| : y \in \mathbb{R}\}$ . By assuming  $\lambda_{n,c} < p_{k_n}^{-c}$ , there exists a point  $z_c := f_n(c) + iy_c$  such that

$$\lambda_{n,c} \leq |\zeta_n^*(z_c)| < p_{k_n}^{-c},$$

and then it means that  $z_c$  is an interior point of  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ . By Corollary 2.1 there exists *w* belonging to the variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ , so  $a_{n,c} \leq \Re w \leq b_{n,c}$ , such that  $\Re w < \Re z_c = f_n(c) = a_{n,c}$ . But this is a contradiction, and then necessarily

$$\lambda_{n,c} \ge p_{k_n}^{-c}.\tag{15}$$

For  $\varepsilon > 0$  sufficiently small, we consider the strip

 $S_{\varepsilon} := \{ z \in \mathbb{C} : a_{n,c} \le \Re z < a_{n,c} + \varepsilon \},\$ 

and put

$$\lambda_{n,c,\varepsilon} := \inf\{|\zeta_n^*(z)| : z \in S_{\varepsilon}\}.$$

From the definition of  $a_{n,c}$ , the set  $S_{\varepsilon}$  contains infinitely many points of the variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ . Then  $\lambda_{n,c,\varepsilon} \le p_{k_n}^{-c}$  for all  $\varepsilon > 0$ , so  $\lambda_{n,c} \le p_{k_n}^{-c}$ . Therefore, according to (15),  $\lambda_{n,c} = p_{k_n}^{-c}$  and then (14) follows. Let *d* be a real number such that d < c, so  $p_{k_n}^{-d} > p_{k_n}^{-c}$ . Let  $\eta$  be such that  $0 < \eta < p_{k_n}^{-d} - p_{k_n}^{-c}$ . From (14), there exists some point  $z_\eta := f_n(c) + iy_\eta$  such that

$$p_{k_n}^{-c} \le |\zeta_n^*(z_\eta)| < p_{k_n}^{-c} + \eta < p_{k_n}^{-d},$$

so  $z_{\eta}$  is interior of  $|\zeta_n^*(z)| = p_{k_n}^{-d}$ . By Corollary 2.1, there exists a point  $w_{\eta}$  of  $|\zeta_n^*(z)| = p_{k_n}^{-d}$ , so  $a_{n,d} \leq \Re w_{\eta} \leq b_{n,d}$ , such that  $\Re w_{\eta} < \Re z_{\eta}$ . Then

$$f_n(d) = a_{n,d} \le \Re w_\eta < \Re z_\eta = f_n(c),$$

which definitely proves the lemma.

In the next result we prove that  $f_n$  is upper bounded by the number  $a_{\zeta_n^*(z)}$  defined in (2) corresponding to the EP  $\zeta_n^*(z)$ , defined in (7).

**Lemma 2.2** For every n > 2, the function  $f_n$  satisfies

$$f_n(c) < a_{\zeta^*(z)}$$
 for any  $c \in \mathbb{R}$ .

*Proof* Let *c* be an arbitrary real number. By taking into account the definition of  $a_{\zeta_n^*(z)}$ , there exists a sequence  $(z_m)_{m=1,2,...}$  of zeros of  $\zeta_n^*(z)$ , with  $\Re z_m \ge a_{\zeta_n^*(z)}$ , such that

$$\lim_{m \to \infty} \Re z_m = a_{\xi_n^*(z)}.$$
 (16)

Since  $\zeta_n^*(z_m) = 0$ , we get  $|\zeta_n^*(z_m)| < p_{k_n}^{-c}$ , for all *m*. Then, from Corollary 2.1, there exists a sequence  $(w_m)_{m=1,2,...}$  of points of  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ , so  $a_{n,c} \le \Re w_m \le b_{n,c}$ , such that  $\Re w_m < \Re z_m$ , for all *m*. Therefore, since  $f_n(c) = a_{n,c}$ , we have

$$f_n(c) \leq \Re w_m < \Re z_m$$
, for all  $m$ 

Now, by taking the limit in the above inequality when  $m \to \infty$ , by (16), we get

$$f_n(c) \leq a_{\zeta_n^*(z)}$$
 for any  $c \in \mathbb{R}$ ,

implying, noticing that by Lemma 2.1  $f_n$  is strictly increasing, that  $f_n(c) < a_{\zeta_n^*(z)}$  for any  $c \in \mathbb{R}$ .

For every n > 2, let  $a_{\zeta_n(z)}$ ,  $b_{\zeta_n(z)}$  be the bounds, defined in (2), corresponding to the EP  $\zeta_n(z)$ . The function  $g_n$ , defined in (12), has the following properties.

**Lemma 2.3** For every n > 2, the function  $g_n$  satisfies:

- (i)  $g_n$  is strictly increasing on  $(-\infty, 0)$  and decreasing on  $(0, +\infty)$ .
- (ii) If n is composite, then  $c \leq g_n(c)$  for any  $c \in (-\infty, b_{\zeta_n(z)}] \setminus \{0\}$  and the inequality is strict for all  $c \in (-\infty, b_{\zeta_n(z)}) \setminus \{0\}$ ; if  $c \in (b_{\zeta_n(z)}, +\infty)$ , then  $c > g_n(c)$ .
- (iii) If *n* is prime, then  $c \leq g_n(c)$  for any  $c \in [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \setminus \{0\}$  and the inequality is strict for all  $c \in (a_{\zeta_n(z)}, b_{\zeta_n(z)}) \setminus \{0\}$ ; if  $c \in (-\infty, a_{\zeta_n(z)}) \cup (b_{\zeta_n(z)}, +\infty)$ , then  $c > g_n(c)$ .

*Proof* Part (i). Let *c*, *d* be real numbers such that c < d < 0. From Proposition 2.1,  $b_{n,c}$  and  $b_{n,d}$  are the unique points of  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  and  $|\zeta_n^*(z)| = p_{k_n}^{-d}$  that intersect the real axis, respectively. Therefore  $b_{n,c}$  and  $b_{n,d}$  satisfy the equations

$$\sum_{\substack{m=1\\m\neq p_{k_n}}}^{n} m^{-x} = p_{k_n}^{-c}, \quad \sum_{\substack{m=1\\m\neq p_{k_n}}}^{n} m^{-x} = p_{k_n}^{-d}, \tag{17}$$

respectively. Each equation of (17) has only one real solution by virtue of [20, p. 46] and then, since  $p_{k_n}^{-c} > p_{k_n}^{-d}$ , the real solution of the first equation is obviously greater than the second one. Therefore  $-b_{n,c} > -b_{n,d}$ , equivalently,  $b_{n,c} < b_{n,d}$ . Consequently,  $g_n(c) < g_n(d)$  and then  $g_n$  is strictly increasing in  $(-\infty, 0)$ . Let c, d be such that c > d > 0. From Proposition 2.1,  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  and  $|\zeta_n^*(z)| = p_{k_n}^{-d}$  have infinitely many arc-connected components which are closed curves. Since  $p_{k_n}^{-c} < p_{k_n}^{-d}$ , any point of  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  is interior of  $|\zeta_n^*(z)| = p_{k_n}^{-d}$ , so  $b_{n,c} \le b_{n,d}$ . That is,  $g_n(c) \le g_n(d)$ , which means that  $g_n$  is decreasing on  $(0, +\infty)$ .

Part (ii). We firstly demonstrate that the bounds  $a_{\zeta_n(z)}$ ,  $b_{\zeta_n(z)}$  defined in (2) corresponding to  $\zeta_n(z)$  satisfy the second inequality of (3), that is

$$a_{\zeta_n(z)} < 0 < b_{\zeta_n(z)}$$
 for all  $n > 2$ . (18)

A Fixed Point Theory Linked to the Zeros of the Partial Sums ...

Indeed, we introduce the EP

$$G_n(z) := \zeta_n(-z). \tag{19}$$

In [7, Chap. 3, Theorem 3.20] was shown that

$$b_{G_n(z)} := \sup\{\Re z : G_n(z) = 0\} > 0 \text{ for all } n > 2,$$

now we claim that

$$a_{G_n(z)} := \inf \{ \Re z : G_n(z) = 0 \} < 0 \text{ for all } n > 2.$$

Otherwise, if all the zeros of  $G_n(z)$ , say  $(z_{n,k})_{k=1,2,...}$ , satisfy  $\Re z_{n,k} \ge 0$ , since  $b_{G_n(z)} > 0$ , there is at least a zero  $z_{n,k_0}$  with  $\Re z_{n,k_0} > 0$ . Then, as  $G_n(z)$  is almostperiodic (see for instance [4, 5] and [10, Chap. VI]),  $G_n(z)$  has infinitely many zeros in the strip

$$S_{\varepsilon} := \{ z : \Re z_{n,k_0} - \varepsilon < \Re z < \Re z_{n,k_0} + \varepsilon \}, \quad 0 < \varepsilon < \Re z_{n,k_0}, \varepsilon < \Re z_{n,k_0} \}$$

and consequently

$$\sum_{k=1}^{\infty} \Re z_{n,k} = +\infty.$$
<sup>(20)</sup>

However, as all the coefficients of  $G_n(z)$  are equal to 1, [21, formula (9)] applies and then we get  $\sum_{k=1}^{\infty} \Re z_{n,k} = O(1)$ , contradicting (20). Therefore the claim follows, that is,  $a_{G_n(s)} < 0$  for all n > 2. By (19) we have  $a_{\zeta_n(z)} = -b_{G_n(z)}$  and  $b_{\zeta_n(z)} = -a_{G_n(z)}$ , so (18) follows.

We now consider the point  $b_{\zeta_n(z)}$ . It is immediate that  $b_{\zeta_n(z)}$  belongs to the set  $R_{\zeta_n(z)}$  defined in (6). Then from Theorem 2.1 we have  $b_{\zeta_n(z)} \leq g_n(b_{\zeta_n(z)})$ , so the property  $c \leq g_n(c)$  is true for  $c = b_{\zeta_n(z)}$ . From (18) and by using that  $g_n$  is decreasing on  $(0, \infty)$  by virtue of Part (i), for any  $c \in (0, b_{\zeta_n(z)})$  we have

$$0 < c < b_{\zeta_n(z)} \le g_n(b_{\zeta_n(z)}) \le g_n(c).$$
(21)

Consequently, Part (ii) follows for  $c \in (0, b_{\zeta_n(z)}]$ . We now assume c < 0 and n composite, so  $p_{k_n} < n$ . If  $b_{n,c} \ge 0$ , then  $c < b_{n,c} = g_n(c)$  and again Part (ii) is true. Finally, we suppose  $b_{n,c} < 0$ . Since c < 0,  $b_{n,c}$  satisfies the first equation of (17) and then  $p_{k_n}^{-c} > n^{-b_{n,c}}$ . Consequently  $-c > -b_{n,c}$ , so  $c < b_{n,c}$  and then Part (ii) follows for  $c \in (-\infty, b_{\zeta_n(z)}] \setminus \{0\}$ . Finally, we claim that  $c > g_n(c)$  when  $c > b_{\zeta_n(z)}$ . Indeed, because of Lemma 2.2 and (8), we have  $f_n(c) < a_{\zeta_n^*(z)} \le 0$  for any c. Therefore, since  $c > b_{\zeta_n(z)}$ , by (18) c is positive and then  $f_n(c) < c$ . Assume  $c > g_n(c)$  is not true. Then we would have  $f_n(c) < c \le g_n(c)$  and by Theorem 2.1,  $c \in R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$  which means that  $c \le b_{\zeta_n(z)}$ . This is a contradiction because  $c > b_{\zeta_n(z)}$ , so the claim follows. This definitely proves Part (ii).

Part (iii). We first note that, since *n* is prime,  $p_{k_n} = n$ . Therefore the first equation in (17) becomes  $\sum_{m=1}^{n-1} m^{-x} = n^{-c}$ . By assuming c < 0,  $b_{n,c}$  satisfies the above

equation and then we have

$$\sum_{m=1}^{n-1} m^{-b_{n,c}} = n^{-c}.$$
(22)

For every  $n \ge 2$ , we consider the number  $\beta_{G_n(z)}$ , defined as the unique real solution of the equation  $\sum_{m=1}^{n-1} m^x = n^x$  (see [20, p. 46]). By [6, Proposition 5],  $\beta_{G_n(z)} \ge b_{G_n(z)}$  and the equality is attained for *n* prime. Therefore the set  $\mathbb{R}$  of real numbers is partitioned in two sets:

$$(-\infty, \beta_{G_n(z)}] = \{x \in \mathbb{R} : \sum_{m=1}^{n-1} m^x \ge n^x\},$$
 (23)

and

$$(\beta_{G_n(z)}, \infty) = \{ x \in \mathbb{R} : \sum_{m=1}^{n-1} m^x < n^x \}.$$
 (24)

Now we claim that  $c \le g_n(c)$  when  $a_{\zeta_n(z)} \le c < 0$ . Indeed, by (19),  $b_{G_n(z)} = -a_{\zeta_n(z)}$ , so *c* is such that  $0 < -c \le b_{G_n(z)} = \beta_{G_n(z)}$ . Then, according to (23), we have

$$\sum_{m=1}^{n-1} m^{-c} \ge n^{-c}.$$
 (25)

Therefore, if we assume  $c > g_n(c) = b_{n,c}$ , by applying (25) and taking into account (22), we get

$$n^{-c} \leq \sum_{m=1}^{n-1} m^{-c} < \sum_{m=1}^{n-1} m^{-b_{n,c}} = n^{-c},$$

which is a contradiction. Therefore  $c \le g_n(c)$  is true for c such that  $a_{\zeta_n(z)} \le c < 0$ . Consequently, taking into account (21), it follows

$$c \leq g_n(c)$$
, for any  $c \in [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \setminus \{0\}$ ,

where the inequality is strict for all *c* of  $(a_{\zeta_n(z)}, b_{\zeta_n(z)}) \setminus \{0\}$ . Now suppose  $c \in (-\infty, a_{\zeta_n(z)})$ . Then, since  $-c > -a_{\zeta_n(z)} = b_{G_n(z)} = \beta_{G_n(z)}$ , by applying (24) we have

$$\sum_{m=1}^{n-1} m^{-c} < n^{-c}.$$
 (26)

It implies that  $c > g_n(c)$ . Indeed, by supposing  $c \le g_n(c) = b_{n,c}$ , from (22) and (26) we are led to the following contradiction:

A Fixed Point Theory Linked to the Zeros of the Partial Sums ...

$$n^{-c} = \sum_{m=1}^{n-1} m^{-b_{n,c}} \le \sum_{m=1}^{n-1} m^{-c} < n^{-c}.$$

Therefore  $c > g_n(c)$  if  $c \in (-\infty, a_{\zeta_n(z)})$ . Finally, if  $c \in (b_{\zeta_n(z)}, +\infty)$ , the reasoning used to demonstrate the end of Part (ii) of the lemma proves that  $c > g_n(c)$ .

As a consequence of Lemma 2.3 we find the fixed points of the function  $g_n$ .

**Corollary 2.2** For every composite number n > 2,  $b_{\zeta_n(z)}$  is the fixed point of the function  $g_n$ . If n > 2 is prime,  $a_{\zeta_n(z)}$ ,  $b_{\zeta_n(z)}$  are the fixed points of  $g_n$ .

*Proof* Fixed an integer n > 2, by (18)  $a_{\zeta_n(z)}$ ,  $b_{\zeta_n(z)} \neq 0$ , so  $g_n$  is well defined at  $a_{\zeta_n(z)}$  and  $b_{\zeta_n(z)}$ . By applying Part (ii) of Lemma 2.3 for n > 2 composite, it is immediate, by the continuity of  $g_n$ , that the unique fixed point of  $g_n$  is  $b_{\zeta_n(z)}$ . If n > 2 is prime, by Part (iii) of Lemma 2.3, we get  $g_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$  and  $g_n(b_{\zeta_n(z)}) = b_{\zeta_n(z)}$ . Furthermore, Part (iii) of Lemma 2.3 also proves that  $a_{\zeta_n(z)}$ ,  $b_{\zeta_n(z)}$  are the unique fixed points of  $g_n$ .

In the next result we obtain a characterization of  $\mathscr{P}^*$ , the set of prime numbers greater than 2.

**Theorem 2.2** An integer n > 2 belongs to  $\mathscr{P}^*$  if and only if  $a_{\zeta_n(z)}$  is a fixed point of the function  $g_n$ .

*Proof* Assume n > 2 is prime, from Corollary 2.2,  $a_{\zeta_n(z)}$  is a fixed point of  $g_n$ . Conversely, if

$$g_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)},\tag{27}$$

by supposing *n* composite, from Part (ii) of Lemma 2.3, we have  $c < g_n(c)$  for all  $c \in (-\infty, b_{\zeta_n(z)}) \setminus \{0\}$ . From (18),  $a_{\zeta_n(z)} \in (-\infty, b_{\zeta_n(z)}) \setminus \{0\}$ . Then,  $a_{\zeta_n(z)} < g_n(a_{\zeta_n(z)})$ . This contradicts (27). Consequently *n* is a prime number and then the theorem follows.

# **3** The Fixed Points of $f_n$ and the Sets $R_{\zeta_n(z)}$

For every integer n > 2, the function  $f_n$  defined in (12) allows us to give a sufficient condition to have points of the set  $R_{\zeta_n(z)}$ , defined in (6).

**Theorem 3.1** For every integer n > 2, if a point  $c \in [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$  satisfies  $f_n(c) \le c$ , then  $c \in R_{\zeta_n(z)}$ .

*Proof* We first claim that

$$a_{\zeta_n(z)}, 0, b_{\zeta_n(z)} \in R_{\zeta_n(z)}$$
 for every  $n \ge 2$ . (28)

Indeed, for n = 2, the claim trivially follows because as we have seen in Introduction all the zeros of  $\zeta_2(z)$  are imaginary, so  $a_{\zeta_2(z)} = b_{\zeta_2(z)} = 0$  and then  $R_{\zeta_2(z)} = \{0\}$ . Therefore we assume n > 2. By taking into account the definitions of  $a_{\zeta_n(z)}, b_{\zeta_n(z)}$ , both numbers obviously belong to  $R_{\zeta_n(z)}$ . Regarding the fact that  $0 \in R_{\zeta_n(z)}$  for all n > 2, it was proved in [18, (3.7)]. Then (28) is true. Hence it only remains to prove the theorem for  $c \in (a_{G_n(z)}, b_{G_n(z)}) \setminus \{0\}$ . But in this case,since by hypothesis  $f_n(c) \le c$ , by using Parts (ii) and (iii) of Lemma 2.3 we are lead to  $f_n(c) \le c < g_n(c)$ and then, by Theorem 2.1,  $c \in R_{\zeta_n(z)}$ .

An important conclusion is deduced from the above theorem.

**Theorem 3.2** For every integer n > 2, if c belongs to  $R_{\zeta_n(z)}$  then

$$[f_n(c), c] \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}.$$
(29)

If n > 2 is composite and c belongs to  $R_{\zeta_n(z)}$ , then

$$[f_n(c), c] \subset R_{\zeta_n(z)}.$$
(30)

*Proof* Assume  $c \in R_{\zeta_n(z)}$ . Then, by Theorem 2.1,  $f_n(c) \le c \le g_n(c)$ . Therefore the interval  $[f_n(c), c]$  is well defined. If  $f_n(c) = c$  the theorem trivially follows. Suppose  $f_n(c) < c$ . Let *t* be a point of  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$  such that  $f_n(c) < t < c$ . By Lemma 2.1,  $f_n(t) < f_n(c)$ . Therefore we have

$$f_n(t) < f_n(c) < t < c,$$

and then, by applying Theorem 3.1,  $t \in R_{\zeta_n(z)}$ . Consequently

$$(f_n(c), c) \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$$

and from the closedness of  $R_{\zeta_n(z)}$ , (29) follows.

Assume n > 2 is composite. Since  $c \in R_{\zeta_n(z)}$  and

$$R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}],$$

we have  $c \le b_{\zeta_n(z)}$ . Furthermore, from Theorem 2.1,  $f_n(c) \le c \le g_n(c)$ . Then, if  $f_n(c) = c$ , (30) is obviously true. Suppose  $f_n(c) < c$ . Consider a number *t* such that  $f_n(c) \le t < c$ . Then, we get

$$f_n(c) \le t < c \le b_{\zeta_n(z)}.\tag{31}$$

If t = 0, by virtue of (28),  $t \in R_{\zeta_n(z)}$ . If  $t \neq 0$ , from (31),  $t \in (-\infty, b_{\zeta_n(z)}) \setminus \{0\}$ . Then, as *n* is composite, by Part (ii) of Lemma 2.3,  $t < g_n(t)$ . On the other hand, since t < c, from Lemma 2.1,  $f_n(t) < f_n(c)$  and then, again by (31), we have

$$f_n(t) < f_n(c) \le t < g_n(t).$$

Now, by applying Theorem 2.1,  $t \in R_{\zeta_n(z)}$ . Consequently  $[f_n(c), c] \subset R_{\zeta_n(z)}$  and then, since by hypothesis  $c \in R_{\zeta_n(z)}$ , we get  $[f_n(c), c] \subset R_{\zeta_n(z)}$ . The proof is now completed.

As a consequence of the two preceding results we characterize the set  $\mathscr{C}^*$  of composite numbers n > 2.

**Corollary 3.1** For every  $n \in \mathcal{C}^*$ ,  $a_{\zeta_n(z)}$  is a fixed point of the function  $f_n$ .

*Proof* Assume  $n \in \mathcal{C}^*$ . From (28),  $a_{\zeta_n(z)} \in R_{\zeta_n(z)}$ . Since *n* is composite and greater than 2, by (30) we have  $[f_n(a_{\zeta_n(z)}), a_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$ . Noticing  $R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ , necessarily  $f_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$ .

In the next result we prove that  $a_{\zeta_n(z)}$  is not a fixed point of  $f_n$  for any  $n \in \mathscr{P}^*$ .

**Corollary 3.2** For every  $n \in \mathscr{P}^*$ ,  $f_n(a_{\zeta_n(z)}) < a_{\zeta_n(z)}$ .

*Proof* For every n > 2, the variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$ , for arbitrary  $c \in \mathbb{R}$ , by virtue of equation (10) is not contained in a vertical line, so the interval of the variation of the variable *x* in the variety  $|\zeta_n^*(z)| = p_{k_n}^{-c}$  is not degenerate. Therefore, taking into account (12), we have

$$f_n(c) < g_n(c)$$
 for every integer  $n > 2$ , for all  $c \in \mathbb{R}$ . (32)

Assume n > 2 prime. By Corollary 2.2,  $g_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$ . Then, by taking  $c = a_{\zeta_n(z)}$  in (32), the corollary follows.

As a simple consequence from Corollary 3.2 we obtain a characterization of  $\mathscr{C}^*$ .

**Theorem 3.3** An integer n > 2 belongs to  $C^*$  if and only if  $a_{\zeta_n(z)}$  is a fixed point of the function  $f_n$ .

*Proof* From Corollary 3.1, if n > 2 is composite,  $a_{\zeta_n(z)}$  is a fixed point of  $f_n$ . Reciprocally, if  $a_{\zeta_n(z)}$  is a fixed point of  $f_n$ , by assuming n > 2 is not composite, by applying Corollary 3.2 we are led to a contradiction. Therefore, the theorem follows.

The bounds  $a_{\zeta_n(z)}$ ,  $a_{\zeta_n^*(z)}$  satisfy the following inequality.

**Proposition 3.1** For every integer n > 2,  $a_{\zeta_n(z)} < a_{\zeta_n^*(z)}$ .

*Proof* By taking  $c = a_{\zeta_n^*(z)}$  in Lemma 2.2 we have

$$f_n(a^*_{\zeta_n(z)}) < a^*_{\zeta_n(z)} \text{ for all } n > 2.$$
 (33)

Again from Lemma 2.2, for  $c = a_{\zeta_n(z)}$ , we get  $f_n(a_{\zeta_n(z)}) < a^*_{\zeta_n(z)}$ . If *n* is composite, by Corollary 3.1  $f_n(a_{\zeta_n(z)}) = a_{\zeta_n(z)}$  and from (33) we then deduce that  $a_{\zeta_n(z)} < a^*_{\zeta_n(z)}$ . This proves the proposition for *n* composite.

Assume *n* is prime. Then  $p_{k_n} = n$  and, from (7),  $\zeta_n^*(z) = \zeta_{n-1}(z)$ , so  $a_{\zeta_n^*(z)} = a_{\zeta_{n-1}(z)}$ . Now we consider the function  $G_n(z)$  defined in (19). As we have seen in the

proof of Lemma 2.3, because of [6, Proposition 5] we have  $b_{G_n(z)} \le \beta_{G_n(z)}$  for all  $n \ge 2$  and the equality is attained for *n* prime. Noticing [17, Lemma 1],  $\beta_{G_{n-1}(z)} < \beta_{G_n(z)}$  for all n > 2. Then we get

$$b_{G_{n-1}(z)} \le \beta_{G_{n-1}(z)} < \beta_{G_n(z)} = b_{G_n(z)}, \text{ for all prime } n > 2,$$
 (34)

or equivalently

$$-b_{G_{n-1}(z)} \ge -\beta_{G_{n-1}(z)} > -\beta_{G_n(z)} = -b_{G_n(z)}, \text{ for all prime } n > 2.$$

Now, since from (19)  $a_{\zeta_n(z)} = -b_{G_n(z)}$  for all  $n \ge 2$ , from the above chain of inequalities we deduce

$$a_{\zeta_n^*(z)} = a_{\zeta_{n-1}(z)} = -b_{G_{n-1}(z)} > -b_{G_n(z)} = a_{\zeta_n(z)}, \text{ for all prime } n > 2.$$

The proof is now completed.

**Corollary 3.3** For every integer n > 2,  $a_{\zeta_n(z)}^* \in R_{\zeta_n(z)}$ .

*Proof* For n = 3, 4, because of (8) we have  $a_{\xi_n(z)}^* = 0$ . Therefore, from (28),  $a_{\xi_n(z)}^* \in R_{\xi_n(z)}$  for n = 3, 4. Assume n > 4. By Proposition 3.1,  $a_{\xi_n(z)} < a_{\xi_n^*(z)}$  for all n > 2. Then, from (8) and (18),  $a_{\xi_n(z)}^* \in [a_{\xi_n(z)}, b_{\xi_n(z)}]$  for all n > 4. Therefore, by using (33) and applying Theorem 3.1,  $a_{\xi_n(z)}^* \in R_{\xi_n(z)}$  for all n > 4. This proves the corollary.

In the next result we prove the existence of a minimal density interval for every  $\zeta_n(z)$ , n > 2.

**Theorem 3.4** For every integer n > 2 there exists a number  $A_n \in [a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$  such that  $[A_n, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$ .

*Proof* Firstly we note that, by Proposition 3.1, the interval  $[a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$  is well defined. On the other hand, by (18)  $b_{\zeta_n(z)} > 0$  and, by (8)  $a_{\zeta_n^*(z)} \le 0$  for all n > 2, so by Proposition 3.1 we have

$$a_{\zeta_n(z)} < a_{\zeta_n^*(z)} \le 0 < b_{\zeta_n(z)}, \quad \text{for all } n > 2.$$
 (35)

This means that  $[a_{\zeta_n^*(z)}, b_{\zeta_n(z)}]$  is a non-degenerate sub-interval of  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$  for any n > 2. By Lemma 2.2, we have  $f_n(b_{\zeta_n(z)}) < a_{\zeta_n^*(z)}$ . Then, according to (35), we get

$$f_n(b_{\zeta_n(z)}) \leq a_{\zeta_n^*(z)} < b_{\zeta_n(z)},$$

so

$$[a_{\zeta_n^*(z)}, b_{\zeta_n(z)}] \subset [f_n(b_{\zeta_n(z)}), b_{\zeta_n(z)}].$$

Now, since  $b_{\zeta_n(z)} \in R_{\zeta_n(z)}$ , because of Theorem 3.2 we obtain

$$[a_{\zeta_n^*(z)}, b_{\zeta_n(z)}] \subset [f_n(b_{\zeta_n(z)}), b_{\zeta_n(z)}] \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}.$$
 (36)

This implies that  $a_{\zeta_n^*(z)} \in R_{\zeta_n(z)}$  (observe that from Corollary 3.3 we already knew that  $a_{\zeta_n^*(z)} \in R_{\zeta_n(z)}$ )) so, again by Theorem 3.2, we have

$$[f_n(a_{\zeta_n^*(z)}), a_{\zeta_n^*(z)} \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}.$$
(37)

If  $f_n(a_{\zeta_n^*(z)}) \leq a_{\zeta_n(z)}$ , from (37) we deduce that  $[a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}$  and then, by (36) we get  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$ . In this case by taking  $A_n = a_{\zeta_n(z)}$ , the theorem follows. Moreover,  $\zeta_n(z)$  has a maximum density interval and it coincides with its critical interval  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ .

If  $f_n(a_{\zeta_n^*(z)}) > a_{\zeta_n(z)}$ , from (37) we deduce

$$[f_n(a_{\zeta_n^*(z)}), a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}.$$
(38)

Therefore  $f_n(a_{\zeta_n^*(z)}) \in R_{\zeta_n(z)}$  and, again by Theorem 3.2, we have

$$[f_n^{(2)}(a_{\zeta_n^*(z)}), f_n(a_{\zeta_n^*(z)})] \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)},$$
(39)

where  $f_n^{(2)}$  denotes  $f_n$  composed with itself. Then, if  $f_n^{(2)}(a_{\zeta_n^*(z)}) \leq a_{\zeta_n(z)}$ , from (39), we have  $[a_{\zeta_n(z)}, f_n(a_{\zeta_n^*(z)})] \subset R_{\zeta_n(z)}$  and by (38), we get  $[a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}$ . Therefore taking into account (36) we obtain  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$ . Consequently, by taking  $A_n = a_{\zeta_n(z)}$ , the theorem follows and  $\zeta_n(z)$  has a maximum density interval that coincides with its critical interval  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ . If  $f_n^{(2)}(a_{\zeta_n^*(z)}) > a_{\zeta_n(z)}$ , from (39), we get

$$[f_n^{(2)}(a_{\zeta_n^*(z)}), f_n(a_{\zeta_n^*(z)})] \subset R_{\zeta_n(z)}.$$

Therefore  $f_n^{(2)}(a_{\zeta_n^*(z)}) \in R_{\zeta_n(z)}$  and, again by Theorem 3.2, we have

$$[f_n^{(3)}(a_{\zeta_n^*(z)}), f_n^{(2)}(a_{\zeta_n^*(z)})] \cap [a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$$

and so on. Therefore, by denoting  $f_n^{(k)} = f_n^{(k-1)} \circ f_n$  for  $k \ge 2$  and repeating the process above, we are led to one of the two cases:

(i) There is some  $k \ge 1$  such that  $f_n^{(k)}(a_{\zeta_n^*(z)}) \le a_{\zeta_n(z)}$ . In this case, as we have seen  $A_n = a_{\zeta_n(z)}$  and then  $\zeta_n(z)$  has a maximum density interval that coincides with its critical interval  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ .

(ii) For all k,  $f_n^{(k)}(a_{\zeta_n^*(z)}) > a_{\zeta_n(z)}$  and then, by virtue of Lemma 2.1 and (33), we have

$$a_{\zeta_n(z)} < \cdots < f_n^{(k)}(a_{\zeta_n^*(z)}) < \cdots < f_n^{(2)}(a_{\zeta_n^*(z)}) < f_n(a_{\zeta_n^*(z)}) < a_{\zeta_n^*(z)}.$$

Consequently there exists  $\lim_{k\to\infty} f_n^{(k)}(a_{\zeta_n^*(z)})$  and then, by defining

$$A_n := \lim_{k \to \infty} f_n^{(k)}(a_{\zeta_n^*(z)}),$$

we have  $a_{\zeta_n(z)} \leq A_n < a_{\zeta_n^*(z)}$ . On the other hand, by reiterating Theorem 3.2, we get

$$[f_n^{(k)}(a_{\zeta_n^*(z)}), f_n^{(k-1)}(a_{\zeta_n^*(z)})] \subset R_{\zeta_n(z)}, \text{ for all } k \ge 2.$$
(40)

Then taking into account (36) and (38), by (40) we deduce that  $[A_n, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$ . This definitely proves the theorem.

*Remark 3.5* Observe that if the case (ii) of above theorem holds,  $A_n$  will be a fixed point of  $f_n$  by virtue of the continuity of  $f_n$ . Then if  $n \in \mathscr{C}^*$ , by Theorem 14, the point  $A_n$  could be  $a_{\zeta_n(z)}$ . But if  $n \in \mathscr{P}^*$ , from Corollary 3.2,  $A_n$  can not be equal to  $a_{\zeta_n(z)}$ .

In the next result we prove that the number of fixed points of  $f_n$  influences on the existence of a maximum density interval of  $\zeta_n(z)$ .

**Theorem 3.6** For every integer n > 2, if  $f_n$  has at most a fixed point in the interval  $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$  then  $\zeta_n(z)$  has a maximum density interval that coincides with the critical interval  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$  associated with  $\zeta_n(z)$ .

*Proof* We first assume  $f_n$  has no fixed point in  $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ . Then we claim that  $f_n(c) < c$  for all  $c \in (a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ . Indeed, we define the function  $h_n(c) := f_n(c) - c$ . Then  $h_n$  is continuous on  $\mathbb{R}$ , and by virtue of Lemma 2.2 and (33),  $h_n$  is negative on  $[a_{\zeta_n^*(z)}, \infty)$ . Then, since  $f_n$  by hypothesis has no fixed point on  $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)}), h_n(c)$  has no zero on  $(a_{\zeta_n(z)}, \infty)$ . Consequently,  $h_n(c) < 0$  for any  $c \in (a_{\zeta_n(z)}, \infty)$  and in particular we have

$$f_n(c) < c \text{ for all } c \in (a_{\zeta_n(z)}, a_{\zeta_n^*(z)}].$$

$$\tag{41}$$

Hence the claim follows. On the other hand, by Corollary 3.3  $a_{\zeta_n^*(z)} \in R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ , so

$$(a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}].$$

Consequently, by taking into account (41) and by applying Theorem 3.1 we have

$$(a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}.$$

Therefore, since from (28)  $a_{\zeta_n(z)} \in R_{\zeta_n(z)}$ , we get  $[a_{\zeta_n(z)}, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}$  and then by (36) it follows that  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$ . As always is true that  $R_{\zeta_n(z)} \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$  we deduce that  $R_{\zeta_n(z)} = [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ , i.e.  $\zeta_n(z)$  has a maximum density interval. Then the theorem follows in this case.

We now suppose  $f_n$  has only one fixed point, say  $c_1$ , in  $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ . Then the function  $h_n(c) := f_n(c) - c$ , continuous on  $\mathbb{R}$ , is non-positive on  $[c_1, +\infty)$  by virtue of Lemma 2.2. Therefore, in particular,  $f_n(c) \le c$  for all  $c \in [c_1, a_{\zeta_n^*(z)}]$ . Since  $[c_1, a_{\zeta_n^*(z)}] \subset [a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ , by applying the Theorem 3.1 at any  $c \in [c_1, a_{\zeta_n^*(z)}]$  we have

$$[c_1, a_{\zeta_n^*(z)}] \subset R_{\zeta_n(z)}. \tag{42}$$

Now we claim that  $h_n$  is negative on  $(a_{\zeta_n(z)}, c_1)$ . Indeed, if we assume that  $h_n$  is non-negative on  $(a_{\zeta_n(z)}, c_1)$ , since  $c_1$  is the unique fixed point of  $f_n$  in  $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ ,

then  $f_n(c) > c$  for all  $c \in (a_{\zeta_n(z)}, c_1)$ . Then, by Theorem 2.1,  $c \notin R_{\zeta_n(z)}$  for all  $c \in (a_{\zeta_n(z)}, c_1)$ . This means that  $\zeta_n(z)$  has no zero on the strip  $(a_{\zeta_n(z)}, c_1) \times \mathbb{R}$ . But, taking into account that  $a_{\zeta_n(z)} \in R_{\zeta_n(z)}$ ,  $a_{\zeta_n(z)}$  would be an isolated point of  $R_{\zeta_n(z)}$  and it contradicts [2, Corollary 3.2]. Therefore the claim follows. Consequently,  $f_n(c) < c$  for all  $c \in (a_{\zeta_n(z)}, c_1)$  and then, by Theorem 3.1,  $(a_{\zeta_n(z)}, c_1) \subset R_{\zeta_n(z)}$ . From the closedness of  $R_{\zeta_n(z)}$ , we have

$$[a_{\zeta_n(z)}, c_1] \subset R_{\zeta_n(z)}. \tag{43}$$

Then, from (43), (42) and (36) we deduce that  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}] \subset R_{\zeta_n(z)}$ . Consequently,  $\zeta_n(z)$  has a maximum density interval and it coincides with its critical interval  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ .

As a first application of the usefulness of Theorem 3.6 we prove a result on  $\zeta_3(z)$  (the same result can be also deduced from others methods as we can see in [13, 15]).

**Corollary 3.4**  $\zeta_3(z)$  has a maximum density interval and it coincides with its critical interval  $[a_{\zeta_3(z)}, b_{\zeta_3(z)}]$ .

*Proof* The function  $f_3(c) := a_{3,c}$  is explicitly given by the formula (11). Then it is immediate to check that  $f_3(c) < c$  for all  $c \in \mathbb{R}$ . Therefore  $f_3(c)$  has no fixed point and then, from Theorem 3.6,  $\zeta_3(z)$  has a maximum density interval and it coincides with  $[a_{\zeta_3(z)}, b_{\zeta_3(z)}]$ .

# 4 The Fixed Point Theory and the Maximum Density Interval for $\zeta_n(z)$

In this section our aim is to give a very useful result (see below Lemma 4.1) based on Kronecker Theorem [8, Theorem 444] that allows us to apply our fixed point theory to prove the existence of a maximum density interval.

Let  $\mathscr{P} := \{p_j : j = 1, 2, 3, ...\}$  be the set of prime numbers and  $U := \{1, -1\}$ . For every map  $\delta : \mathscr{P} \to U$ , we define the function  $\omega_{\delta} : \mathbb{N} \to U$  as

$$\omega_{\delta}(1) := 1, \quad \omega_{\delta}(m) := (\delta(p_{k_1}))^{\alpha_1} \dots (\delta(p_{k_{l(m)}}))^{\alpha_{l(m)}}, \quad m > 1,$$
(44)

where  $(p_{k_1})^{\alpha_1} \dots (p_{k_{l(m)}})^{\alpha_{l(m)}}$ , with  $\alpha_1, \dots, \alpha_{l(m)} \in \mathbb{N}$ , is the decomposition of *m* in prime factors. Let  $\Omega$  be the set of all the  $\omega_{\delta}$ 's defined in (44). Observe that all functions of  $\Omega$  are *completely multiplicative* (see for instance [1, p. 138]).

**Lemma 4.1** Let n > 2 a fixed integer,  $p_{k_n}$  the last prime not exceeding n and  $f_n$  defined in (12). Given an arbitrary  $\omega_{\delta} \in \Omega$ , the inequality

$$p_{k_n}^{-c} \le |\sum_{\substack{m=1\\m \ne p_{k_n}}}^n \omega_{\delta}(m)m^{-f_n(c)}|,$$
(45)

#### *holds for all* $c \in \mathbb{R}$ *.*

*Proof* Because of (7),  $\zeta_n^*(z) := \sum_{m=1, m \neq p_{k_n}}^n m^{-z}$ . Therefore, given  $c \in \mathbb{R}$  we have

$$\zeta_n^*(f_n(c) + iy) = \sum_{\substack{m=1 \\ m \neq p_{k_n}}}^n m^{-f_n(c)}(\cos(y \log m) - i \sin(y \log m)).$$

Then taking into account (14),

$$p_{k_n}^{-c} \le |\sum_{\substack{m=1\\m \ne p_{k_n}}}^n m^{-f_n(c)}(\cos(y\log m) - i\sin(y\log m))|, \text{ for all } y \in \mathbb{R}.$$
 (46)

Given n > 2, we define  $J_n := \{1, 2, 3, \dots, \pi(n)\}$ , where  $\pi(n)$  denotes the number of prime numbers not exceeding *n*. As the set {log  $p_j : j \in J_n$ } is rationally independent, the set { $\frac{\log p_j}{2\pi} : j \in J_n$ } is also rationally independent. Then by Kronecker Theorem [8, Theorem 444] fixed an arbitrary set of real numbers { $\gamma_j : j \in J_n$ } and given an integer  $N \ge 1$ , there exists a real number  $y_N > N$  and integers  $m_{j,N}$ , such that

$$|y_N \frac{\log p_j}{2\pi} - m_{j,N} - \gamma_j| < \frac{1}{N}, \quad \text{for all } j \in J_n.$$
(47)

For each n > 2, we define the set  $\mathscr{P}_n := \{p_j \in \mathscr{P} : p_j \le n\}$ . Then, given a mapping  $\delta := \mathscr{P}_n \to U$ , we consider the set  $\{\gamma_j : j \in J_n\}$  where  $\gamma_j = 1$  for those j such that  $\delta(p_j) = 1$  and  $\gamma_j = 1/2$  for those j such that  $\delta(p_j) = -1$ . Then by applying the aforementioned Kronecker Theorem for N = 1, 2..., we can determine a sequence  $(y_N)_N$  satisfying, by virtue of (47), that

$$\cos(y_N \log p_j) \to 1$$
,  $\sin(y_N \log p_j) \to 0$  as  $N \to \infty$ , for  $p_j$  with  $\delta(p_j) = 1$ ,

and

$$\cos(y_N \log p_j) \to -1$$
,  $\sin(y_N \log p_j) \to 0$  as  $N \to \infty$ , for  $p_j$  with  $\delta(p_j) = -1$ .

Therefore for each *m* such that  $1 \le m \le n$  we get

$$\cos(y_N \log m) \to \omega_{\delta}(m), \quad \sin(y_N \log m) \to 0 \quad \text{as } N \to \infty.$$
 (48)

Now, we substitute *y* by  $y_N$  in (46) and we take the limit as  $N \to \infty$ . Then, according to (48), the inequality (45) follows.

**Theorem 4.1** For all prime numbers n > 2 except at most for a finite quantity,  $f_n$  has no fixed point in the interval  $(a_{\zeta_n(z)}, a_{\zeta_n^*(z)})$ .

*Proof* Corollary 3.4 proves the theorem for n = 3. Assume n > 3 prime. The numbers n - 2 and n - 1 are relatively primes and both cannot be perfect squares, so there exists  $\omega_{\delta} \in \Omega$  such that  $\omega_{\delta}(n - 2)\omega_{\delta}(n - 1) = -1$ . Since *n* is prime,  $a_{\zeta_n^*(z)} = a_{\zeta_{n-1}(z)}$  and  $p_{k_n} = n$ . By supposing the existence of a fixed point  $c_n \in (a_{\zeta_n(z)}, a_{\zeta_{n-1}(z)})$  for the function  $f_n$  for infinitely many prime n > 3, we are led to the following contradiction:

By (45) we have

$$n^{-c_n} \le |\pm ((n-1)^{-c_n} - (n-2)^{-c_n}) + \sum_{m \in P_{n-3,\omega_{\delta}}} m^{-c_n} - \sum_{m \notin P_{n-3,\omega_{\delta}}} m^{-c_n}|, \quad (49)$$

where, for a fixed integer n > 2 and  $\omega_{\delta} \in \Omega$ , the set  $P_{n,\omega_{\delta}}$  is defined as

 $P_{n,\omega_{\delta}} := \{m : 1 \le m \le n \text{ such that } \omega_{\delta}(m) = 1\}.$ 

On the other hand,  $\lim_{n\to\infty} \frac{a_{\zeta_n(z)}}{n} = -\log 2$  (see [3, Theorem 1] and [17, Theorem 2]). Then noticing that  $a_{\zeta_n(z)} < c_n < a_{\zeta_{n-1}(z)}$ , we get

$$\lim_{\substack{n \text{ prime} \\ n \to \infty}} \frac{c_n}{n-1} = -\log 2.$$

Therefore, for each fixed  $j \ge 0$ , it follows

$$\lim_{\substack{n \text{ prime}\\n \to \infty}} \left( \frac{n-j}{n-1} \right)^{-c_n} = 2^{-j+1}.$$
(50)

Now, dividing by  $(n-1)^{-c_n}$  the inequality (49), we have

$$\left(\frac{n}{n-1}\right)^{-c_{n}} \leq \left| \pm \left(1 - \left(\frac{n-2}{n-1}\right)^{-c_{n}}\right) + \sum_{m \in P_{n-3,\omega_{\delta}}} \left(\frac{m}{n-1}\right)^{-c_{n}} - \sum_{m \notin P_{n-3,\omega_{\delta}}} \left(\frac{m}{n-1}\right)^{-c_{n}} \right| \\
\leq \left| \pm \left(1 - \left(\frac{n-2}{n-1}\right)^{-c_{n}}\right) \right| + \left| \sum_{m \in P_{n-3,\omega_{\delta}}} \left(\frac{m}{n-1}\right)^{-c_{n}} - \sum_{m \notin P_{n-3,\omega_{\delta}}} \left(\frac{m}{n-1}\right)^{-c_{n}} \right| \\
\leq \left(1 - \left(\frac{n-2}{n-1}\right)^{-c_{n}}\right) + \sum_{j=3}^{n-1} \left(\frac{n-j}{n-1}\right)^{-c_{n}}.$$
(51)

According to (50), by taking the limit in (51) for *n* prime,  $n \to \infty$ , it follows that the limit of the left-hand side of (51) is 2 whereas the limit of the right-hand side

one is  $1/2 + \sum_{j=3}^{\infty} 2^{-j+1} = 1$ . This is the contradiction desired. Hence the theorem follows.

As a consequence from Theorem 4.1, an important property of the partial sums of order n prime can be deduced.

**Theorem 4.2** For all prime numbers n > 2 except at most for a finite quantity,  $\zeta_n(z)$  has a maximum density interval and it coincides with its critical interval  $[a_{\zeta_n(z)}, b_{\zeta_n(z)}]$ .

*Proof* It is enough to apply Theorems 3.6 and 4.1.

#### **5** Numerical Experiences

Simple numerical experiences carried out for some values of *n* in inequality (45) joint with the application of Theorem 3.6 and Lemma 4.1, allows us to prove the existence of a maximum density interval of  $\zeta_n(z)$  for all  $2 \le n \le 8$ . Indeed: For n = 2, we have already seen in the Introduction section that the zeros of  $\zeta_2(z)$  are all imaginary, so the set  $R_{\zeta_2(z)} = \{0\}$  and then  $a_{\zeta_2(z)} = b_{G_2(z)} = 0$  which means that we trivially have

$$R_{\zeta_2(z)} = [a_{\zeta_2(z)}, b_{\zeta_2(z)}].$$

Therefore  $\zeta_2(z)$  has a maximum density interval (in this case degenerate).

For n = 3, Corollary 3.4 proves that

$$R_{\zeta_3(z)} = [a_{\zeta_3(z)}, b_{\zeta_3(z)}]$$

and then  $\zeta_3(z)$  has a maximum density interval. In this case the end-points  $a_{\zeta_3(z)}$ ,  $b_{\zeta_3(z)}$  can be easily computed, being  $a_{\zeta_3(z)} = -1$  and  $b_{\zeta_3(z)} \approx 0.79$ . Thus,  $R_{\zeta_3(z)} \approx [-1, 0.79]$ .

For n = 4, we firstly claim that  $f_4$  has no fixed point in the interval  $(a_{\zeta_4(z)}, a_{\zeta_4^*(z)})$ . Indeed, by (8),  $a_{\zeta_4^*(z)} = 0$  and from (18),  $a_{\zeta_4(z)} < 0$ . Therefore we only study the behavior of  $f_4(c)$  for c < 0. We recall that from (12)  $f_4(c) = a_{4,c}$ , where  $a_{4,c}$  is the left end-point of the interval of variation of the variable *x* in the Cartesian equation of the variety  $|\zeta_4^*(z)| = p_{k_4}^{-c}$ . By taking into account formula (10) for n = 4, the equation of that variety is

$$1 + 2^{-2x} + 4^{-2x} + 2 \cdot 2^{-x} (1 + 4^{-x}) \cos(y \log 2) + 2 \cdot 4^{-x} \cos(y \log 4)) = 3^{-2c}.$$
(52)

By putting  $\cos(y \log 4)$ ) =  $2\cos^2(y \log 2) - 1$  in (52) and solving it for  $\cos(y \log 2)$  we have

$$\cos(y\log 2) = \frac{-(1+4^{-x}) \pm \sqrt{(2\cdot 3^{-c})^2 - (\sqrt{3}(4^{-x}-1))^2}}{4\cdot 2^{-x}}$$

Then the variable x must satisfy the inequality  $(\sqrt{3}(4^{-x} - 1))^2 \le (2 \cdot 3^{-c})^2$  which is equivalent to say that

$$4^{-x} \in [1 - 2 \cdot 3^{-c - \frac{1}{2}}, 1 + 2 \cdot 3^{-c - \frac{1}{2}}].$$
(53)

Since  $1 - 2 \cdot 3^{-c-\frac{1}{2}} < 0$  for all c < 0, by noting that  $4^{-x} > 0$  for any x, (53) is in turn equivalent to

$$-\frac{\log(1+2\cdot 3^{-c-\frac{1}{2}})}{\log 4} \le x.$$

Hence the minimum value for x is  $-\frac{\log(1+2\cdot3^{-c-\frac{1}{2}})}{\log 4}$ , so  $a_{4,c} = -\frac{\log(1+2\cdot3^{-c-\frac{1}{2}})}{\log 4}$  and consequently for c < 0 the function  $f_4(c)$  is given by the formula

$$f_4(c) = -\frac{\log(1 + 2 \cdot 3^{-c - \frac{1}{2}})}{\log 4}$$

Then the fixed points of  $f_4(c)$  are the solutions of the equation  $f_4(c) = c$ , that is

$$1 + 2 \cdot 3^{-c-1/2} = 4^{-c}.$$
(54)

According to [20, p. 46] Eq. (54) has a unique real solution, say  $c_0$ , whose approached value is -1.21. On the other hand, since n = 4 belongs to  $\mathscr{C}^*$ , by Theorem 3.3  $a_{\zeta_4(z)}$  is a fixed point of the function  $f_4$ . Since  $c_0$  is the unique solution of  $f_4(c) = c$ , necessarily  $a_{\zeta_4(z)} = c_0 \approx -1.21$  and then  $f_4$  has no fixed point in  $(a_{\zeta_4(z)}, a_{\zeta_4^*(z)})$ . Hence the claim follows. Then, by applying Theorem 3.6,  $\zeta_4(z)$  has a maximum density interval and consequently

$$R_{\zeta_4(z)} = [a_{\zeta_4(z)}, b_{\zeta_4(z)}].$$

For n = 5 we take a mapping  $\delta : \mathscr{P} \to U$  satisfying  $\delta(2) = \delta(3) = -1$  and consider its corresponding  $\omega_{\delta} : \mathbb{N} \to U$  defined in (44). Assume  $f_5$  has some fixed point, say  $c_0$ , in the interval  $(a_{\zeta_5(z)}, a_{\zeta_5^*(z)})$ . By (8)  $a_{\zeta_5^*(z)} < 0$  and then  $(a_{\zeta_5(z)}, a_{\zeta_5^*(z)})$  contains only negative numbers, so  $c_0 < 0$ . By applying (45) for n = 5,  $f_5$  and the above defined  $\omega_{\delta}$ , under the assumption  $f_5(c_0) = c_0$ , we have

$$5^{-c_0} \le |1 - 2^{-c_0} - 3^{-c_0} + 4^{-c_0}|.$$

But this inequality is clearly impossible for any  $c_0 < 0$ . Hence  $f_5$  has no fixed point in  $(a_{\zeta_5(z)}, a_{\zeta_5^*(z)})$ . Then, by applying Theorem 3.6,  $\zeta_5(z)$  has a maximum density interval and consequently

$$R_{\zeta_5(z)} = [a_{\zeta_5(z)}, b_{\zeta_5(z)}].$$

For n = 6, we take a mapping  $\delta : \mathscr{P} \to U$  satisfying  $\delta(2) = -1$ ,  $\delta(3) = 1$  and consider its corresponding  $\omega_{\delta} : \mathbb{N} \to U$  defined in (44). Assume  $f_6$  has some fixed

point, say  $c_0$ , in the interval  $(a_{\zeta_6(z)}, a_{\zeta_6^*(z)})$ . By (8)  $a_{\zeta_6^*(z)} < 0$  and then  $(a_{\zeta_6(z)}, a_{\zeta_6^*(z)})$  contains only negative numbers, so  $c_0 < 0$ . By applying (45) for n = 6,  $f_6$  and the above defined  $\omega_{\delta}$ , under the assumption  $f_6(c_0) = c_0$ , we have

$$5^{-c_0} \le |1 - 2^{-c_0} + 3^{-c_0} + 4^{-c_0} - 6^{-c_0}|.$$
(55)

Regarding inequality (55) we consider the two possible cases: (a)  $1 - 2^{-c_0} + 3^{-c_0} + 4^{-c_0} - 6^{-c_0} \ge 0$ , (b)  $1 - 2^{-c_0} + 3^{-c_0} + 4^{-c_0} - 6^{-c_0} < 0$ . In (a), according to (55), we have the inequality

$$1 + 3^{-c_0} + 4^{-c_0} \ge 2^{-c_0} + 5^{-c_0} + 6^{-c_0},$$

that as we easily can check is not possible for any  $c_0 < 0$ . In (b), because of (55), we get

$$1 + 3^{-c_0} + 4^{-c_0} + 5^{-c_0} \le 2^{-c_0} + 6^{-c_0}.$$
(56)

By a direct computation we see that (56) is only true for  $c_0 \le a_{\zeta_6(z)} \approx -2.8$  (observe that for  $c_0 \approx -2.8$ , inequality (56) becomes an equality and since n = 6 belongs to  $C^*$ , by Theorem 3.3,  $a_{\zeta_6(z)}$  is a fixed point of the function  $f_6$ ). Therefore for  $c_0 > a_{\zeta_6(z)}$ , (56) is not possible. Hence  $f_6$  has no fixed point in  $(a_{\zeta_6(z)}, a_{\zeta_6^*(z)})$ . Then, by applying Theorem 3.6,  $\zeta_6(z)$  has a maximum density interval and consequently

$$R_{\zeta_6(z)} = [a_{\zeta_6(z)}, b_{\zeta_6(z)}].$$

For n = 7, we take a mapping  $\delta : \mathscr{P} \to U$  satisfying  $\delta(2) = \delta(3) = \delta(5) = -1$  and consider its corresponding  $\omega_{\delta} : \mathbb{N} \to U$  defined in (44). Assume  $f_7$  has some fixed point, say  $c_0$ , in the interval  $(a_{\zeta_7(z)}, a_{\zeta_7^*(z)})$ . By (8)  $a_{\zeta_7^*(z)} < 0$  and then  $(a_{\zeta_7(z)}, a_{\zeta_7^*(z)})$  contains only negative numbers, so  $c_0 < 0$ . By applying (45) for n = 7,  $f_7$  and the above defined  $\omega_{\delta}$ , under the assumption  $f_7(c_0) = c_0$ , we have

$$7^{-c_0} \le |1 - 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} + 6^{-c_0}|.$$
(57)

We consider the two possible cases: (a)  $1 - 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} + 6^{-c_0} \ge 0$ , (b)  $1 - 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} + 6^{-c_0} < 0$ . In (a), according to (57), we have the inequality

$$1 + 4^{-c_0} + 6^{-c_0} \ge 2^{-c_0} + 3^{-c_0} + 5^{-c_0} + 7^{-c_0}$$

that is clearly impossible for any  $c_0 < 0$ . In (b), because of (57), we get

$$1 + 4^{-c_0} + 6^{-c_0} + 7^{-c_0} \le 2^{-c_0} + 3^{-c_0} + 5^{-c_0}.$$
(58)

It is immediate to check that inequality (58) is false for any  $c_0 < 0$ . Hence  $f_7$  has no fixed point in  $(a_{\zeta_7(z)}, a_{\zeta_7^*(z)})$ . Then, by applying Theorem 3.6,  $\zeta_7(z)$  has a maximum density interval and consequently

A Fixed Point Theory Linked to the Zeros of the Partial Sums ...

$$R_{\zeta_7(z)} = [a_{\zeta_7(z)}, b_{\zeta_7(z)}].$$

For n = 8, we take a mapping  $\delta : \mathscr{P} \to U$  satisfying  $\delta(2) = 1$ ,  $\delta(3) = \delta(5) = -1$  and consider its corresponding  $\omega_{\delta} := \mathbb{N} \to U$  defined in (44). Assume  $f_8$  has some fixed point, say  $c_0$ , in the interval  $(a_{\zeta_8(z)}, a_{\zeta_8^*(z)})$ . By (8)  $a_{\zeta_8^*(z)} < 0$  and then  $(a_{\zeta_8(z)}, a_{\zeta_8^*(z)})$  contains only negative numbers, so  $c_0 < 0$ . By applying (45) for n = 8,  $f_8$  and the above defined  $\omega_{\delta}$ , under the assumption  $f_8(c_0) = c_0$ , we have

$$7^{-c_0} \le |1 + 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} - 6^{-c_0} + 8^{-c_0}|.$$
(59)

Regarding inequality (59) we consider the two possible cases: (a)  $1 + 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} - 6^{-c_0} + 8^{-c_0} < 0$ , (b)  $1 + 2^{-c_0} - 3^{-c_0} + 4^{-c_0} - 5^{-c_0} - 6^{-c_0} + 8^{-c_0} \ge 0$ . In case (a), according to (59), we have the inequality

$$3^{-c_0} + 5^{-c_0} + 6^{-c_0} \ge 1 + 2^{-c_0} + 4^{-c_0} + 7^{-c_0} + 8^{-c_0}$$

which is clearly impossible for any  $c_0 < 0$ . In case (b), because of (59), we get

$$1 + 2^{-c_0} + 4^{-c_0} + 8^{-c_0} \ge 3^{-c_0} + 5^{-c_0} + 6^{-c_0} + 7^{-c_0}.$$
 (60)

By an elementary analysis we can see that (60) is only true for  $c_0 \le a_{\zeta_8(z)} \approx -4.1$ (observe that for  $c_0 \approx -4.1$  inequality (60) becomes an equality and since n = 8belongs to  $C^*$ , by Theorem 3.3,  $a_{\zeta_8(z)} \approx -4.1$  is a fixed point of the function  $f_8$ ). Therefore for  $c_0 \in (a_{\zeta_8(z)}, 0)$ , (60) is not possible. Then, since by (8)  $a_{\zeta_8^*(z)} < 0$ , in particular (60) is not possible in  $(a_{\zeta_8(z)}, a_{\zeta_8^*(z)})$ . Hence  $f_8$  has no fixed point in the interval  $(a_{\zeta_8(z)}, a_{\zeta_8^*(z)})$ . Then, by applying Theorem 3.6,  $\zeta_8(z)$  has a maximum density interval and consequently

$$R_{\zeta_8(z)} = [a_{\zeta_8(z)}, b_{\zeta_8(z)}].$$

Acknowledgements This work was partially supported by a grant from Ministerio de Economía y Competitividad, Spain (MTM 2014-52865-P).

## References

- 1. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, New York (1990)
- Avellar, C.E., Hale, J.K.: On the zeros of exponential polynomials. J. Math. Anal. Appl. 73, 434–452 (1980)
- Balazard, M., Velásquez Castañón, O.: Sur l'infimum des parties réelles des zéros des sommes partielles de la fonction zêta de Riemann. C. R. Acad. Sci. Paris, Ser. I 347, 343–346 (2009)
- 4. Bohr, H.: Almost Periodic Functions. Chelsea, New York (1947)
- 5. Corduneanu, C.: Almost Periodic Functions. Interscience Publishers, Geneva (1968)
- Dubon, E., Mora, G., Sepulcre, J.M., Ubeda, J.I., Vidal, T.: A note on the real projection of the zeros of partial sums of Riemann zeta function. RACSAM 108, 317–333 (2014)

- Ferrando, J.C., López-Pellicer, M.: Descriptive Topology and Functional Analysis. Proceedings in Mathematics & Estatistics. Springer, Berlin (2014)
- 8. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Clarendon Press, Oxford (1954)
- 9. Ivic, A.: The Riemann Zeta-Function. Dover, Mineola (2003)
- Levin, B.Ja.: Distribution of Zeros of Entire Functions. American Mathematical Society, Providence (1980)
- Montgomery, H.L.: Zeros of Approximations to the Zeta Function. Studies in Pure Mathematics: to the Memory of Paul Turán, pp. 497–506. Basel, Birkhäuser (1983)
- Montgomery, H.L., Vaughan, R.C.: Mean values of multiplicative functions. Period. Math. Hung. 43, 199–214 (2001)
- 13. Moreno, C.J.: The zeros of exponential polynomials (I). Compos. Math. 26, 69-78 (1973)
- 14. Mora, G.: A note on the functional equation F(z) + F(2z) + ... + F(nz) = 0. J. Math. Anal. Appl. **340**, 466–475 (2008)
- Mora, G., Sepulcre, J.M., Vidal, T.: On the existence of exponential polynomials with prefixed gaps. Bull. Lond. Math. Soc. 45, 1148–1162 (2013)
- 16. Mora, G.: Accumulation points of the sets of real parts of zeros of the partial sums of the Riemann zeta function (2013). arXiv:1311.5171 math. CV
- 17. Mora, G.: An estimate of the lower bound of the real parts of the zeros of the partial sums of the Riemann zeta function. J. Math. Anal. Appl. **427**, 428–439 (2015)
- Mora, G.: On the non-hyperbolicity of a class of exponential polynomials. Electron. J. Qual. Theory Differ. Equ. 67, 1–11 (2017)
- Mora, G.: On the closure of the real parts of the zeros of a class of exponential polynomials. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (2017). https://doi.org/10.1007/ s1339
- 20. Pólya, G., Szëgo, G.: Problems and theorems in analysis, vol. II. Springer, New York (1976)
- 21. Ritt, J.F.: On the zeros of exponential polynomials. Trans. Am. Math. Soc. 31, 680–686 (1929)
- 22. Spira, R.: Zeros of sections of the zeta function, I. Math. Comput. 20, 542-550 (1966)
- 23. Spira, R.: Zeros of sections of the zeta function, II. Math. Comput. 22, 168-173 (1968)
- 24. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, London (1939)
- Voronin SM.: On the zeros of partial sums of the Dirichlet series for the Riemann zeta-function. Dolk. Akad. Nauk. SSSR 216, 964–967 (1974); trans. Soviet. Math. Doklady 15, 900–903 (1974)