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To Manuel López-Pellicer



Preface

On 7 and 8 June 2018, the 2nd Meeting in Topology and Functional Analysis,
dedicated to the mathematical research of Professor Manuel López-Pellicer, was
held at the Operations Research Center (CIO) of the Miguel Hernández University
(UMH) of Elche. This book is the result of this Meeting. Covering topics in
descriptive topology and functional analysis, including topological groups and
Banach space theory, fuzzy topology, differentiability and renorming, tensor
products of Banach spaces and aspects of Cp-theory, this volume is particularly
useful to young researchers wanting to learn about the latest developments in these
areas.

I am grateful to Springer for the publication of the research results presented at
the conference, as well as to the attendees, participants, anonymous referees and
invited speakers, most of whose contributions have been collected in this book.
I am indebted to the Directors of the CIO and the Department of Statistics,
Mathematics and Informatics of the UMH, Professors Juan Aparicio and José
Valero, for their help and financial support, as well as to Professors José Mas and
Santiago Moll for their LATEX assistance. I also want to express my gratitude to
Professor López-Pellicer for his mathematical expertise, generosity and unwavering
friendship over many years. Finally, I would like to acknowledge the tremendous
work of Professor López-Pellicer as Editor-in-Chief of RACSAM, the mathematical
publication of the Royal Academy of Exact, Physical and Natural Sciences of
Madrid: he has managed to transform a national magazine of limited diffusion into
an important reference of international mathematical research.

Elche, Spain Juan Carlos Ferrando
January 2019
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On the Mathematical Work of Professor
Manuel López-Pellicer

In Honour of Manuel López-Pellicer

Juan Carlos Ferrando

Abstract We examine selected topics of the research work of professor Manuel
López-Pellicer. After an introductory section, the paper is divided in four main sec-
tions, which include his publications on Set Topology, Locally Convex Space Theory,
Cp-theory and Descriptive Topology. We shall also glance at his work on Popular
Mathematics.

Keywords Locally convex spaces · Strongly barrelled conditions · Closed graph
theorem · Algebras with the Nikodým property · Normed spaces · Tychonoff
spaces · K-analytic spaces · Spaces of real-valued continuous functions · Spaces of
vector-valued functions

Classifications 46AXX · 54DXX · 54CXX · 46GXX · 46BXX

1 Ph.D. Dissertation and Early Work

Professor López-Pellicer ismember of the Royal SpanishAcademy of Sciences since
1998, where he served as Secretary of its Mathematical Section (2000–2007) and
Editor in Chief of the Academy journal RACSAM since 2004 until today. He got two
M.Sc. degrees, one in Physics and the other one inMathematics and earned his Ph.D.
inMathematics in 1969with a dissertation titledAsymptotic expansions and compact
families of vector-valued holomorphic functions (Spanish), being his advisorManuel
Valdivia. Full Professor in the Department of Applied Mathematics (1978–2015),
nowadaysLópez-Pellicer is Emeritus Professor ofUniversitat Politècnica deValència
(UPV). Most of his 11 students are Full Professors, with 52 descendants so far. His
mathematical genealogy fromGauss is depicted below, where each mathematician is

J. C. Ferrando (B)
Centro de Investigación Operativa, Edificio Torretamarit, Avda de la Universidad,
Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
e-mail: jc.ferrando@umh.es
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2 J. C. Ferrando

the advisor of the one underneath, except Felix Kelin, also a descendant from Gauss
through C.L. Gerling (Göttingen, 1812) and J. Plücker (Marburg, 1823).

Carl Friedich Gauss (Helmstedt, 1799)

K.G.C. von Staudt (Erlangen-Nürnberg, 1822)

Eduardo Torroja Caballé (Universidad Central, 1873) and

Felix Klein (Universität Bonn, 1868)

Julio Rey Pastor (Madrid and Göttingen, 1909)

Ricardo San Juan (Universidad Central de Madrid, 1933)

Manuel Valdivia (Universidad Complutense de Madrid, 1963)

Manuel López-Pellicer (Universidad de Valencia, 1969)

Part of his doctoral dissertation was published in 1971 in RACSAM. In two 1972
papers a previous work of A. Plans on Hilbert space is generalized and some results
of Valdivia on barrelled spaces are extended to the infrabarrelled case. The 1973
paper shows that a Tychonoff space X is realcompact if and only the space C(X)

with the compact-open topology τc is a Mazur space. This is the τc-version of a 1946
result on Cp(X), originally due to S. Mazur [88], rediscovered by A. Wilansky in
1981, [112].

2 Research on General Topology

In 1929Tychonoff gave an example of a regular space that is not completely regular. In
[9] a newproof of this fact is provided and someproblems are proposed.Among them,
to characterize the compact spaces that have a stronger topology that is regular but not
completely regular. Sharpening this question, professor López-Pellicer constructed
in [72] the first example of a completely regular space (X, τ ) whose associated
k-space is not completely regular. Recall that the k-extension τk of a Hausdorff
topology τ on X is the strongest topology on X that agrees with τ on compact sets.

Let ω0 be the first infinite ordinal and ω1 be the first uncountable ordinal. Denote
by [0, ω1] the set of all ordinals less than or equal to ω1 equipped with the order
topology and define X = [0, ω1] × [0, ω0] endowed with the product topology π ,
under which it is a Hausdorff compact space. For each (countable) limit ordinal
α ∈ [0, ω1) a function fα : X → [0, 1] is defined in such a clever way that if

Wα,ε := {(γ, n) ∈ X : | fα (γ, n) − 1| < ε} = f −1
α [(1 − ε, 1 + ε)]

then (i) Wα,ε ∩ {X \ ([0, ω1) × {ω0})} is π -open, (i i) Wα,ε ∩ ([0, ω1) × {ω0}) =
{(α, ω0)}, and (i i i) {α} × [0, ω0] ⊆ Wα,ε for each α ∈ Ω and all 0 < ε < 1.

Example 2.1 (López-Pellicer [72]) The family π ∪ {
Wα,ε : α ∈ Ω, 0 < ε < 1

}
is a

subbase of a completely regular topology τ on X stronger than π such that (X, τ ) is
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completely regular but, if τk denotes the k-extension of τ , the k-space (X, τk) is not
completely regular.

Since (X, π) is completely regular, for each π -open setU there is a π -continuous
map gU : X → [0, 1] such that U = g−1

U ([0, 1[). Hence, if Ω stands for the set
of all countable limit ordinals of [0, ω1], the initial topology on X determined by
the family of real-valued functions {gU , fα : U ∈ π, α ∈ Ω} on X is a completely
regular topology τ on X stronger than π (see [53, 3.7]). Property (i) shows that π

and τ coincide on X \ ([0, ω1) × {ω0}), property (i i) ensures that [0, ω1) × {ω0} is
a discrete set in (X, τ ) and property (i i i) guarantees that the topologies π and τ

coincide on each set {α} × [0, ω0] for all α ∈ [0, ω1]. If K is a τ -compact subset of
X , if follows that K ∩ ([0, ω1) × {ω0}) is finite, which shows that [0, ω1) × {ω0} is
a closed set in the k-extension τk of the topology τ . Now is not difficult to show that
if h is any τk-continuous function from X into [0, 1] there exists λ ∈ [0, ω1) such
that h (λ, ω0) = h (ω1, ω0). Therefore, the point (ω1, ω0) is not separated in (X, τk)

from [0, ω1) × {ω0}, so (X, τk) is not completely regular.
In [71] is proved that Kōmura’s T f topology (see [66, 21.8]) is regular, which

reveals that the non compatibility with the linear structure of a topology is inde-
pendent from regularity. In [87] an embedding theorem for regular not completely
regular spaces in products of appropriate topological spaces is given. The definition
of those spaces is motivated by Tychonoff’s example of a regular not completely
regular space. It is shown in [73] that under certain conditions a topological space X
is Baire if and only if it has the Blumberg property with respect to Y , i. e., if for each
function f : X → Y there is a dense subset D of X such that f |D is continuous.

3 Research on Topological Vector Spaces

3.1 Strong Barrelledness Conditions

Althoughwe surveyhere the research of professorLópez-Pellicer on strongbarrelled-
ness, let us mention that he also wrote a paper on weakly barrelledness properties
(namely, [37]). A locally convex (Hausdorff) space E is called barrelled if each bar-
rel of E (i. e., each absolutely convex, closed and absorbing set) is a neighborhood
of the origin. A locally convex space E is called Baire-like (BL for short) if given
an increasing sequence of closed absolutely convex subsets of E covering E , one of
them is a neighborhood of the origin, [100]. The classic Amemiya-Kōmura theorem
[1] guarantees that (i) each metrizable locally convex E is barrelled if and only if
it is BL, and (i i) if E is BL and F is a dense barrelled subspace of E then F is
BL. A locally convex space E is called suprabarrelled in [107] (SB for short) or
db in [102] if each increasing sequence of linear subspaces of E covering E has a
dense barrelled member. This definition was generalized by transfinite induction by
Rodríguez Salinas [99] as follows. If we call barrelled of class 0 to the barrelled
spaces, for every successor ordinal α + 1 a locally convex space E is barrelled of
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class α + 1 if in each increasing sequence of linear subspaces of E covering E there
is one of them which is dense and barrelled of class α, and for every limit ordinal
α a locally convex space E is barrelled of class α if E is barrelled of class β for
all β < α. A locally convex space E is totally barrelled (TB) if given a sequence of
linear subspaces of E covering E , one of them is BL, [110]. A locally convex space
E is unordered Baire-like (UBL) if each sequence of closed absolutely convex sets
which covers E contains a neighborhood of the origin [104]. Full account of strong
barrelledness conditions is given in [96, Chap.9] and [68].

Suprabarrelled spaces compose the class of barrelled spaces of class 1. Barrelled
spaces of classes n and ω0, the latter spaces called barrelled of class ℵ0 in [44], fit in
the scheme of strong barrelledness properties as depicted in the following diagram

Baire locally convex space ⇒ UBL ⇒ TB ⇒ barrelled of class ℵ0 ⇒
barrelled of class n + 1 ⇒ barrelled of class n ⇒ BL ⇒ barrelled.

Metrizable (LF) spaces are BL but not SB and each non normable Fréchet space
contains a denseBL subspace that is not SB.Every infinite-dimensional Fréchet space
contains a linear dense subspace which is TB but not UBL, [102]. Examples of TB
spaces that are not Baire can be found in [108]. In [102] Saxon and Narayanaswami
proved that a metrizable barrelled space E is not SB if and only if there exists a
linear subspace F of the completion Ê of E such that E ⊆ F and F is dominated
by an (LF)-space, i. e., there is a stronger locally convex topology τ on F so that
(F, τ ) is an (LF)-space. In [38] quasi-suprabarrelled spaces were introduced by
removing the density requirement of the definition of suprabarrelled space. Quasi-
suprabarrelled spaces have been called d spaces by Saxon in [101]. The next example
(cf. [38]), where here and throughout the entire sectionω = K

N, shows that the space
F need not coincide with E .

Example 3.1 (Ferrando and López-Pellicer [38]) In the space ω 	 ωN consider the
sequence {En : n ∈ N} of non-barrelled subspaces En = ω × n). . . × ω × ϕω × ϕω ×
· · · , where ϕω means ϕ with the topology of ω. Then E = ⋃∞

n=1 En is a dense and
barrelled subspace of the Fréchet space ω which is neither quasi-suprabarrelled nor
dominated by any (LF)-space.

Example 3.2 (Ferrando and López-Pellicer [40]) Equip Fn := ωn × �1 × �1 × · · ·
with the product topology τn , and define the (LF)-space (F, τ ) = lim→ (Fn, τn). Then

τ coincides with the relative topology of F = ⋃∞
n=1 Fn as a linear subspace of ω and

F is not suprabarrelled. Assuming by induction that there exists a dense barrelled
subspace E in ω of class s − 1 but not of class s, it turns out that G := ⋃∞

n=1 Gn

with Gn = ωn × E × E × · · · is a dense barrelled subspace of ωN of class s but not
of class s + 1.

In both examples the use of the closed graph theorem for quasi-suprabarrelled
or suprabarrelled spaces in the domain class is critical. Now, borrowing a classic
result by Eidelheit (cf. [66, 31.4 (1)]) that states that each Fréchet space which is not
Banach has a quotient isomorphic toω, it follows that (see also [44, Theorem 3.3.3]).
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Theorem 3.1 (Ferrando and López-Pellicer [39, 40]) Given n ∈ N, each non-
normable Fréchet space contains a dense barrelled subspace of class n − 1 but
not of class n.

As regards barrelled spaces of class ℵ0, a detailed exposition is given in [44,
Chap.4]. Let us exhibit some separation examples. It was shown by Valdivia and
Pérez Carreras in [110] that if E is a TB space which is not UBL and F is a
locally convex space, then the projective tensor product E ⊗π F is TB if and only if
dim F < ℵ0. Since E ⊗π F is barrelled of class ℵ0 whenever both E and F are
barrelled of class ℵ0 and one of them is metrizable [44, Proposition 4.3.1], if E
is an infinite-dimensional Fréchet space and F is a TB but not UBL dense linear
subspace of E (see [102]), it turns out that E ⊗π F is a dense barrelled subspace of
class ℵ0 of E ⊗π E which is not TB. Particularly, if E = ω then the Fréchet space
ω ⊗̂πω 	 ωN 	 ω contains a dense linear subspace which is barrelled of class ℵ0

but not TB.

Example 3.3 (Ferrando andLópez-Pellicer [43]) Each non normable infinite-dimen-
sional Fréchet space contains a dense barrelled subspace of class ℵ0 which is not
TB.

Example 3.4 (Ferrando and López-Pellicer [43]) If (Ω,Σ,μ) is a nontrivial mea-
sure space, L p (μ)with 1 ≤ p < ∞ has a dense subspace which is barrelled of class
ℵ0 but not TB.

If (Ω,Σ) is a measure space, it was established in [41] by Ferrando and López-
Pellicer that the space �∞

0 (Σ) of all scalarly-valuedΣ-simple functions f : Ω → K

equipped with the supremum-norm is barrelled of class ℵ0. Since, according to a
result of Arias de Reyna, if Σ is a non trivial σ -algebra the space �∞

0 (Σ) is not TB
(see [5]), it follows that �∞

0 (Σ) is another example of a normed barrelled space of
class ℵ0 which is not TB.

Another class of strong barrelled spaces is that of baireled spaces, introduced
in [46]. A linear web of a locally convex space E is a countable family

{
En1···np :

p, n1, . . . , np ∈ N
}
of linear subspaces of E such that

{
En1 : n1 ∈ N

}
is an increas-

ing sequence covering E and if
(
n1, . . . , np−1

) ∈ N
p−1 then {En1···np−1np : np ∈

N} is increasing and verifies that
⋃∞

np=1 En1···np−1np = En1···np−1 . A baireled space
is a locally convex space E such that each linear web in E contains a strand{
Em1···mp : p ∈ N

}
of barrelled and dense spaces.

Baireled spaces are strictly located between TB spaces and barrelled spaces of
class ℵ0, and baireledness is transmitted from dense subspaces and inherited by
closed quotients, countable-codimensional subspaces and finite products. If E is
baireled and metrizable and F is UBL, then E ⊗π F is baireled [46, Proposition 4].
Hence if E is a metrizable TB space which is not UBL, then E ⊗π �2 is baireled but
not TB. Non-baireled spaces which are barrelled of class ℵ0 are obtained as usual
in each non-normable Fréchet space by Eidelheit’s quotient theorem after showing
that ω contains a dense subspace E of those characteristics. Main result of [74]
reveals the strongest barrelledness property known so far enjoyed by the Σ-simple
scalarly-valued function space �∞

0 (Σ) over a σ -algebra Σ .
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Theorem 3.2 (López-Pellicer [74]) If (Ω,Σ) is a measurable space, then �∞
0 (Σ)

is baireled.

In order to get the proof, professor López-Pellicer introduced the notions of
v-web and v-tree, two combinatorial objects that can be defined as follows. Denote
by W (N) the language of the infinite alphabet N without the empty word, i. e.,
W (N) = ⋃{Nk : k ∈ N}. If w = (n1, . . . , ni , . . . , nq) ∈ W (N), denote by |w| = q
the length of the word w and set Piw := (n1, . . . , ni ) for 1 ≤ i ≤ |w|. Then, for each
T ⊆ W (N) define PiT := {Piw : w ∈ T, i ≤ |w|}. A non-empty subset of words
T ⊆ W (N) is called a v-web of W (N) if

1. For each word w ∈ T and each 1 ≤ i ≤ |w| there are infinitely many words in T
of the same length than w whose first i − 1 letters coincide with those of w and
whose i th letter is different in each one of these words.

2. For each w ∈ T there is no longer word v in T such that P|w|−1v = P|w|−1w.
3. For each sequence {wn}∞n=1 ⊆ T with |wn| ≥ n for all n ∈ N there are two con-

secutive words wp and wp+1 whose first p letters do not coincide.

I will call leaves the words of a v-web T . If T is a v-web ofW (N) and S ⊆ T does
not contain any v-web, it can be shown that T \ S does. Further, if w ∈ W (N) then
b (w) := {P1w, P2w, . . . , P|w|w} is called thebranch ofw. The setBT = ⋃

w∈T b (w)

consisting of the branches of the leaves is called the v-tree determined by T . Onemay
seeBT as a tree with infinitely many branches of finite length (finitely many vertices
or knots), each of them ending in a leaf (a word of T ), and a root (the empty word),
i. e., an arborescence such that each of his infinitely many branches has finite length
and each father vertexw /∈ T (knot) of a branch ofBT has infinitelymany sons (w, k)
belonging to other branches ofBT , but if a son belongs to T (i. e., if a son is a leaf)
then all his siblings belong to T . For the proof of the theorem, one first establishes
that (∗) if {Ew : w ∈ W (N)} is a linear web in �∞

0 (Σ) and T is a v-web, there is
some w ∈ T such that Ew is barrelled. Then proceed by contradiction, assuming that
there is a linear web {Ew : w ∈ W (N)} in �∞

0 (Σ) none of whose strands is entirely
formed by barrelled and dense subspaces. This produces a v-web T ⊆ W (N) of
leaves enjoying the property that no Ew with w ∈ T is both dense and barrelled but
each EPiw with 1 ≤ i < |w| is, condition 3 above being consequence of the fact that
there is no strand of dense and barrelled subspaces. That is, we get an v-tree with no
leaf w indexing a barrelled and dense subspace. The aforementioned property of T
clearly contradicts observation (∗).

3.2 On the Nikodým Boundedness Theorem

The Nikodým-Grothendieck theorem assures that each pointwise bounded family
M = {μα : α ∈ A} of scalarly-valued bounded finitely additive measures defined
on a σ -algebraΣ of subsets of a setΩ is uniformly bounded. In other words, each set
M ⊆ ba (Σ) such that supα∈A |μα (E)| = kE < ∞ for every E ∈ Σ , is uniformly
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bounded, i. e., such that supα∈A |μα| < ∞. The norm involved here is the variation
norm |μ| = |μ| (Ω) = ‖μ‖1, where

|μ| (E) = sup
n∑

i=1

|μ (Ei )|

with the supreme over all finite partitions {E1, . . . , En} of E by members of Σ .
Another equivalent norm is ‖μ‖∞ := sup {|μ (E)| : E ∈ Σ}, which satisfies that
‖·‖∞ ≤ | · | ≤ 4 ‖·‖∞. If instead of aσ -algebra of sets, we consider aBoolean algebra
A (or a Boolean ring R) then, in case that A verifies the Nikodým boundedness
theorem, since Schachermayer’s [103, 2.4 Definition] such A is called a Boolean
algebra with property (N ).

Theorem 3.3 (Nikodým [93]) If (Ω,Σ) is a measurable space, each pointwise
bounded subset of ba(Σ) is norm bounded.

If A is an algebra of sets, a subclass N of A will be called a Nikodým set
for ba (A ) if each set {μα : α ∈ �} in ba (A ) which is pointwise bounded on N
is norm-bounded in (ba (A ) , ‖·‖1). With this terminology, the baireledness of the
space ofΣ-simple functions provides the following extension of theNikodýmbound-
edness theorem.

Theorem 3.4 (López-Pellicer [74]) If {Σw : w ∈ W (N)} is an increasing web of
subclasses of a σ -algebra Σ of subsets of a set Ω , there exists a strand {Σn1n2...ni :
i ∈ N} consisting of Nikodým sets for ba (Σ).

Pioneering research on this subject comes from Valdivia’s seminal paper [106].
Further research on this matter has been done in [59, 70], although no real improve-
ment of the previous theorem has been achieved (due to [70, Proposition 1]).

Even if Σ is a σ -algebra of subsets of Ω and Clo (ult (B)) denotes the alge-
bra of clopen subsets of the Stone space ult (Σ) of Σ , it must be pointed out that
if {En : n ∈ N} is a sequence of elements of Σ , the union Q of their homologue
counterparts {Kn : n ∈ N} in Clo (ult (B)) need not be a clopen set, so that it may
happen that Q /∈ Clo (ult (B)). This means that in general Clo (ult (B)) is not a
σ -algebra. The homologue of

⋃∞
n=1 En ∈ Σ is not

⋃∞
n=1 Kn but

⋃∞
n=1 Kn . Which

the Stone representation theorem assures is that if En �→ Kn for each n ∈ N, then
⋃∞

n=1 En �→ sup {Kn : n ∈ N} = ⋃∞
n=1 Kn . So itmake sense to extend theNikodým-

Grothendrieck boundedness theorem for algebras. Concerning the algebra J (K )

of Jordan measurable subsets of the compact interval K = ∏k
i=1 [ai , bi ] of R

k with
ai < bi for 1 ≤ i ≤ k, it has been showed in [109] that the space �∞

0 (J (K )) is
suprabarrelled. This result has been extended in [69] by proving that �∞

0 (J (K ))

is a baireled space. It is worthwhile to mention that the algebra J (I ) of Jordan
subsets of the interval I = [0, 1] was the first example, due to Schachermayer [103],
of a Boolean algebra with property (N ) that does not have the so-called property
(G). For more information about the research on the Nikodým-Dieudonné theorem,
see [47] and references therein.
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3.3 Barrelled Spaces of Vector-Valued Functions

Let (Ω,Σ) be a usually nontrivial measurable space and X be a normed space over
K. If B(Σ, X) denotes the normed space of X -valued functions defined on Ω that
are the uniform limit of a sequence of Σ-simple X -valued functions defined on Ω

endowed with uniform convergence topology, the research on the barrelledness of
locally convex spaces of vector-valued functions starts in 1982 when J. Mendoza
shows that B(Σ, X) is barrelled if and only if X is barrelled (cf. [89]). If K is a
compact space and C (K , X) denotes the linear space of all X -valued continuous
functions defined on Ω endowed with the compact-open topology, the following
result, also due to Mendoza, characterizes the barrelledness of C (K , X) in terms of
X .

Theorem 3.5 (Mendoza [90]) C (K , X) is barrelled if and only if both C (K ) and
X are.

If now Ω stands for a locally compact space and C0 (Ω, X) denotes the space
over K of continuous functions f : Ω → X vanishing at infinity (i. e., such that for
ε > 0 there is a compact set K f,ε in Ω such that ‖ f (ω)‖ < ε for ω ∈ Ω \ K f,ε)
equipped with the supremum norm, the following result answers a question raised
by J. Horváth.

Theorem 3.6 (Ferrando, Kąkol and López-Pellicer [26]) If Ω is a normal locally
compact space, then C0 (Ω, X) is barrelled if and only if X is barrelled.

If c0 (Γ, X) denotes the linear space of all X -valued functions defined on Ω such
that for each ε > 0 the set {ω ∈ Ω : ‖ f (ω)‖ > ε} is finite, provided with the supre-
mum norm, using the fact that each compact subset of a discrete topological space
(hence locally compact and normal) is finite, it holds that c0 (Γ, X) = C0 (Γ, X)

whenever Γ is endowed with the discrete topology. So we have that c0 (Γ, X) is
barrelled if and only if X does. In [45] is shown that c0(Γ, X) is ultrabornological
or UBL if and only if X enjoys the corresponding property. This research was con-
tinued in [85], where it is proved that c0 (Γ, X) is suprabarrelled if and only if X is
suprabarrelled. Then in [86], where is shown that c0 (Γ, X) is suprabarrelled of class
p if and only if X barrelled of class p for every p ∈ N and, finally, in [63], where
among others properties it is shown that c0 (Γ, X) is TB if and only if X is TB. These
results are summarized in the next theorem.

Theorem 3.7 (López-Pellicer et al. [85, 86]) Let Ω be a nonempty set, X be a
normed space and p ∈ N. Then c0(Ω, X) is barrelled of class p or totally barrelled
if and only if X is respectively barrelled of class p or totally barrelled.

As regards the spaces L p(μ, X) the following results come from [18, 20].

Theorem 3.8 (Drewnowski, Florencio and Paúl [20]) If (Ω,Σ,μ) is atomless finite
measure space and X a normed space, then L p(μ, X) is barrelled for 1 ≤ p < ∞.
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Theorem 3.9 (Díaz, Florencio andPaúl [18]) If (Ω,Σ,μ) is atomless finitemeasure
space and X a normed space, then L∞(μ, X) is barrelled.

In [24] we obtained the following generalization of the latter two theorems.

Theorem 3.10 (Ferrando, Ferrer and López-Pellicer [24]) If (Ω,Σ,μ) is atomless
finite measure space and X a normed space, then L p(μ, X) is barrelled of class ℵ0

for 1 ≤ p ≤ ∞.

3.4 Metrizability of Precompact Sets

Although we shall define the notion of trans-separability for uniform spaces later
on, by now let us recall that a locally convex space E is called trans-separable if
for every absolutely convex neighborhood of zero U in E there exists a countable
subset NU of E such that E = NU +U . Clearly, a locally convex space E is trans-
separable if and only if E is isomorphic to a subspace of a product of separable
Banach spaces. Linear subspaces, locally convex products, completions, and linear
continuous images of trans-separable locally convex spaces are trans-separable. If E
is a locally convex space with topological dual E ′, then clearly

(
E, σ

(
E, E ′)) and(

E ′, σ
(
E ′, E

))
are always trans-separable spaces.

A completely regular space X is quasi-Souslin (cf. [108]) if there is a map ϕ

from N
N into the family of all (countably compact) subsets of X such that: (i)⋃ {

ϕ (α) : α ∈ N
N
} = X , and (i i) if a sequence {αn}∞n=1 in N

N (here N is equipped
with the discrete topology and N

N with the product topology) converges to α and
xn ∈ ϕ (αn) for all n ∈ N, then {xn}∞n=1 has an cluster point in X contained in ϕ (α).
Since each metrizable quasi-Suslin locally convex space is separable, it turns out that
each quasi-Suslin locally convex space is trans-separable. In paper [28] we get the
following applicable result.

Theorem 3.11 (Ferrando, Kąkol, López-Pellicer [28]) In order for [pre]compact
sets of a locally convex space E to be metrizable, it is both necessary and sufficient
that E ′ endowed with the topology τc of uniform convergence on the compact sets of
E [resp. with the topology τpc of uniform convergence on the precompact sets of E]
be trans-separable.

Since every quasi-Souslin locally convex space is trans-separable, our previous
theorem includes Valdivia’s [108, 1.4.3 (27)] if (E ′, τc) is quasi-Souslin, then all
compact sets in E are metrizable. On the other hand, in [12] Cascales and Orihuela
introduced a large classG of locally convex spaces including (LF)-spaces and (DF)-
spaces and proved that every precompact set of a locally convex space in class G
is metrizable. The following result from [35, Theorems 4 and 5] sheds light on this
fact.

Theorem 3.12 (Ferrando, Kąkol, Saxon and López-Pellicer [35]) If E ∈ G then
both its weak* dual

(
E ′, σ

(
E ′, E

))
and its Grothendieck dual

(
E ′, τpc

)
, where τpc



10 J. C. Ferrando

is the topology of uniform convergence on the precompact sets in E, is a quasi-Suslin
space.

So, if M denotes the class of locally convex spaces having quasi-Suslin weak*
duals, it follows from the previous theorem that G ⊆ M and that every precompact
set of a space in class G is metrizable, as stated. Although class M is strictly wider
than class G, there is one important case where both classes coincide. Recall that a
locally convex space E is �∞-barrelled if every weak* bounded sequence in E ′ is
equicontinuous.

Theorem 3.13 (Ferrando, Kąkol, Saxon and López-Pellicer [35]) For an �∞-barre-
lled space, it happens that G = M.

ClassM is the best known where the thesis of classic Kaplansky’s theorem holds.

Theorem 3.14 (Ferrando, Kąkol, López-Pellicer and Saxon [35]) Let E be a locally
convex space. If E ∈ M, then E (weak) has countable tightness (see below).

3.5 Closed Graph Theorems

There are a number of papers of López-Pellicer that contain a closed graph theorem.
Here we shall exhibit three of them which are particularly useful. Recall that a
locally convex space E is called quasi-suprabarrelled (cf. [38]) if given an increasing
sequence of subspaces of E covering E , there is one of them which is barrelled. A
locally convex space F is called a Γr -space (cf. [105, Theorem 2]) if every linear
map T : E → F from a barrelled space E into F with closed graph is continuous.
Each Br -complete space is a Γr -space, so every Fréchet space is a Γr -space. For a
definition of Br -complete space and an account of classic closed graph theorems,
see [67, Chap.7]. The first closed graph theorem of our particular selection comes
from [38].

Theorem 3.15 (Ferrando and López-Pellicer [38]) Assume that E is a
quasi-suprabarrelled space and let {Fn : n ∈ N} be an increasing sequence of linear
subspaces of a locally convex space F covering F. Assume that each space Fn is
dominated by a Γr -space. If T is a linear map from E into F with closed graph, then
T is continuous.

A nonempty set X is said to have a resolution if X is covered by a family
{Aα : α ∈ N

N} of subsets such that Aα ⊆ Aβ forα ≤ β coordinatewise, i. e., such that
α (i) ≤ β (i) for every i ∈ N. A topological space (X, τ ) is said to have a relatively
countably compact resolution if X has a resolution consisting of relatively count-
ably compact sets. Since Valdivia’s quasi-Suslin spaces have a relatively countably
compact resolution, the following closed graph theorem (taken from [30]) extends
Valdivia’s [108, I.4.2 (11)], and the case E = F (previously considered in [58] in the
locally convex setting) extends a classic result of De Wilde and Sunyach that states
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that each Baire K -analytic locally convex space (a completely regular space X is
K -analytic if it is the continuous image of a Čech-complete and Lindelöf space) is
a separable Fréchet space (see [108, I.4.3 (21)]).

Theorem 3.16 (Ferrando, Kąkol and López-Pellicer [30]) Let E and F be topolog-
ical vector spaces such that E is Baire and F admits a relatively countable compact
resolution. If T : E → F is a linear map with closed graph, then T is continuous.
If E = F, then E is a separable F-space.

Recall that a nonempty topological space (X, τ ) is called Fréchet–Urysohn if for
every subset A of X and any point x ∈ A, where A denotes the closure of A in X ,
there exits a sequence of points of A converging to x . The following version of the
closed graph theorem for topological groups can be found in [36].

Theorem 3.17 (Ferrando, Kąkol, López-Pellicer and Śliwa [36]) Let X and Y be
topological groups such that X is Baire and Fréchet–Urysohn and Y admits a rela-
tively countable compact resolution. If T : X → Y is a group homomorphism with
closed graph, then T is continuous.

A Fréchet–Urysohn additive topological group G for which every null sequence
{xn}∞n=1 is a K-sequence (i. e., such that each subsequence {yn}∞n=1 of {xn}∞n=1 has a
subsequence {zn}∞n=1 so that

∑∞
n=1 zn converges in G) is a Baire space [11, Theorem

3]. Other results of López-Pellicer related to the closed graph theorem can be found
in [49].

4 Research on Cp-Theory

4.1 Bounding Tightness

If X is a topological space, we write t (X) ≤ ℵ0 to denote that X is countably tight,
i. e., if A ⊆ X and each x ∈ A there is a countable set B ⊆ A such that x ∈ B.
A completely regular space X is said to have [countable] bounding tightness if
x ∈ A ⊆ X implies that there is a topologically bounded [resp. topologically bounded
and countable] set B ⊆ Awith x ∈ B. If X has countable bounding tightnesswewrite
tb (X) ≤ ℵ0. It is clear that

X Fréchet–Urysohn ⇒ tb (X) ≤ ℵ0 ⇒ t (X) ≤ ℵ0.

Franklin [50] recorded an example of a compact spacewith countable tightness, hence
countable bounding tightness, which is not Fréchet–Urysohn. If X is completely
regular, we denote by C (X) the linear space of real-valued functions on X , or by
Cp (X)when equippedwith the pointwise topology τp. If X is a k-space, an extension
of a result of Grothendieck (see [6, III 4.15]) asserts that each topologically bounded
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set Y in Cp (X) is relatively compact. In [57] is shown that tb
(
Cp [0, 1]

)
> ℵ0.

Since, as is well-known t
(
Cp [0, 1]

) ≤ ℵ0, it turns out that Cp ([0, 1]) is a countably
tight locally convex spacewith uncountable bounding tightness. Countable bounding
tightness has been used in [57] to characterize some classes of locally convex spaces.

Theorem 4.1 (Kąkol and López-Pellicer [57]) An (LF)-space is metrizable if and
only if has countable bounding tightness.

If E is a metrizable (LF)-space then E is Fréchet–Urysohn and thus tb (E) ≤ ℵ0.
Conversely, if tb (E) ≤ ℵ0 the fact that tb (ϕ) > ℵ0 assures that E contains no copy
of ϕ. Since E is barrelled, then E is BL by virtue of a deep result of [100]. But each
Baire-like (LF)-space is metrizable (see [94]). A classic result of Cp-theory is the
following.

Theorem 4.2 (Asanov [7]) If Cp (X) is Lindelöf, then Xn is countably tight for all
n ∈ N.

Since Cp (ϕ) is a Lindelöf space, but ϕ has not countable bounding tightness, we
see that the analog to Asanov’s theorem for countable bounding tightness does not
hold.

Theorem 4.3 (Kąkol and López-Pellicer [57]) If X is a K -analytic space, then
Cp (X) is Fréchet–Urysohn if and only if Cp (X) has bounding tightness.

If X is K -analytic, there is a Čech-complete andLindelöf spaceY and a continuous
map ϕ from Y onto X . Since the map T : Cp (X) → Cp (Y ) given by T f = f ◦ ϕ is
a linear homeomorphism from Cp (X) into Cp (Y ), if f ∈ A ⊆ Cp (X) and Cp (X)

has bounding tightness there is a topologically bounded set B ⊆ A with f ∈ B,

so that T f ∈ T
(
B

) ⊆ T (B)
Cp(Y )

. Since Y is a k-space, Grothendieck’s theorem

guarantees that T (B)
Cp(Y )

is a compact set of Cp (Y ). Using the fact that Cp (Y ) is
angelic (i. e., every [relatively] countably compact set is [relatively] compact and if
A is relatively compact and x ∈ A there is a sequence in A that converges to x), we
get a sequence { fn}∞n=1 in B such that T fn → T f in Cp (Y ). Consequently fn → f
in Cp (X).

4.2 Bounded Tightness

When working with topological vector spaces, a more natural property than that of
bounding tightness seems to be the following. A locally convex space E is said to
have [countable] bounded tightness if x ∈ A ⊆ E implies the existence of a bounded
[resp. countable bounded] set B ⊆ A such that x ∈ B (cf. [27]). Recall that a subset of
a topological vector space is called bounded if it is absorbed by each neighborhood of
the origin. Clearly, if a locally convex spaces E has [countable] bounding tightness,
then E has [countable] bounded tightness. Moreover, if E is countable tight, then E
has bounded tightness if and only if E has countable bounded tightness.
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Theorem 4.4 (Ferrando, Kąkol and López-Pellicer [27]) Each locally convex space
E with bounded tightness is bornological.

So, if E has bounded tightness, each bornivorous absolutely convex set of E is
a neighborhood of the origin. As a consequence, each locally convex space E with
bounded tightness is b-Baire-like, which means that if {An : n ∈ N} is an increasing
sequence of bornivorous absolutely convex sets of E , one of them is a neighborhood
of the origin. Other results on bounding and bounded tightness were obtained by
Cascales and Raja [14] and Cascales, Kąkol and Saxon [16] (warning: in the latter
paper as in many others is called bounded tightness what we have called bounding
tightness).

According to the last theorem of the previous subsection, for a K -analytic X
space Fréchet–Urysohn and bounding tightness are equivalent properties. Are they
equivalent in Cp (X) for any completely regular space X? In [65] an affirmative
answer is given to a question raised byNyikos about whether or not Fréchet–Urysohn
and bounded tightnesswere equivalent properties forCp(X).Main result of this paper
assures that for a linear topological space the two properties are the same. Concretely
they show the following.

Theorem 4.5 (Kąkol, López-Pellicer and Todd [65]) For a topological vector space
E the following are equivalent

1. E is Fréchet–Urysohn.
2. For a subset A of E such that 0 ∈ A there is a bounded subset B of A with 0 ∈ B.
3. For any sequence {An : n ∈ N} of subsets of E, each with 0 ∈ An, there is a

sequence Bn ⊆ An for n ∈ N, such that
⋃∞

n=1 Bn is bounded and 0 ∈ ⋃n
k=1 Bk

for each n ∈ N.

This result implies that for any topological vector space Fréchet–Urysohn, [count-
able] bounding tightness and [countable] bounded tightness are the same. This fact
allows us to state a classic result of Cp-theory as follows.

Theorem 4.6 For a completely regular space X the following are equivalent

1. Cp (X) is a Fréchet–Urysohn space.
2. Cp (X) is a sequential space.
3. Cp (X) is a k-space.
4. Cp (X) has bounding tightness.
5. Cp (X) has bounded tightness.

4.3 Trans-separable Spaces

A uniform space (X,N ) is called trans-separable if for every vicinity U of N
there is a countable subset Z of X such that U [Z ] = X , [55, 56]. The term trans-
separable was coined by Lech Drewnowski in [19]. Separable uniform spaces and
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Lindelöf uniform spaces are trans-separable, and each uniform pseudometrizable
trans-separable space is separable. A uniform space is trans-separable if and only if
is uniformly isomorphic to a subspace of a uniformproduct of separable pseudometric
spaces. For topological vector spaces E trans-separabilitymeans that E is isomorphic
to a subspace of a product of metrizable and separable topological vector spaces. If E
is a locally convex space with topological dual E ′, then E is trans-separable provided
with the translation-invariant uniformity of the weak topology σ(E, E ′). The class of
trans-separable uniform spaces is hereditary, uniformly productive and closed under
uniform continuous images. So each uniformly continuous image of a trans-separable
space onto a uniform pseudometrizable space is separable. Trans-separable locally
convex spaces are closed for linear subspaces, topological products and continuous
linear images. Robertson proved that each uniform space (X,N ) that is covered by
a family {Kα : α ∈ N

N} of precompact sets such that Kα ⊆ Kβ whenever α ≤ β is
trans-separable, [98]. Moreover, every compact subset of a completely regular space
X is metrizable if and only if the space Cc(X) of all continuous functions defined
on X equipped with the compact-open topology τc is trans-separable. In [29] we
characterized the trans-separable uniform spaces as follows, where τN denotes the
uniform topology on X , that is, the topology defined by the uniformity N for X .
Recall that a family F of functions from a uniform space (X,N ) into a uniform
space (Y,M ) is called uniformly equicontinuous if for each V ∈ M there isU ∈ N
such that ( f (x) , f (y)) ∈ V whenever f ∈ F and (x, y) ∈ U .

Theorem 4.7 (Ferrando, Kąkol and López-Pellicer [29]) The following are equiva-
lent:

1. The uniform space (X,N ) is trans-separable.
2. Each pointwise bounded uniformly equicontinuous set of functions from (X,N )

to R, provided with the usual uniformity, is metrizable in Cp (X, τN ).
3. Each pointwise bounded uniformly equicontinuous set of functions from (X,N )

to R, with the usual uniformity, has countable tightness in Cp (X, τN ).

Since on each equicontinuous family F ⊆ C (X, τN ) both topologies τp and
τc coincide, this theorem can also be stated for Cc (X, τN ). On the other hand,
a topological space X is said to have the Discrete Countable Chain Condition
(DCCC) if every discrete family of open sets is countable, which is equivalent to
require that each continuous metrizable image of X is separable. Since a topologi-
cal space X has the DCCC if and only if every pointwise bounded equicontinuous
subset of C (X) is τp-metrizable (see [13, Theorem 4]), it follows that each uniform
space (X,N ) such that (X, τN ) has the DCCC is trans-separable. If X = [0, ω1)

where ω1 is the first ordinal of uncountable cardinality, and for each γ ∈ X we set
Uγ := {(α, β) : α = β ∨ (α ≥ γ ∧ β ≥ γ )}, then {

Uγ : 0 ≤ γ < ω1
}
is a base of a

uniformity N for X such that (X,N ) is trans-separable but (X, τN ) has not the
DCCC. It is shown in [112, Theorem 3.5] that if Cp (X) is angelic, X has the DCCC.
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5 Research on Descriptive Topology

5.1 Tightness and Distinguished Fréchet Spaces

Let us recall that the tightness t (X) of a topological space X is the smallest cardinal κ
such that for every set A ⊆ X and each x ∈ A there exists a set B ⊆ A with |B| ≤ κ

such that x ∈ B. On the other hand, the character χ (E) of a locally convex space E
is the smallest cardinal for a base of neighborhoods of the origin. In terms of these
two indices, classic Kaplansky’s theorem reads as each locally convex space E satis-
fies both t (E) ≤ χ (E) and t

(
E, σ

(
E, E ′)) ≤ χ (E). Note that a separable locally

convex space need not have countable tightness, since t
(
R

R
) = χ

(
R

R
) = c. Recall

that a Fréchet space E is called distinguished if its strong dual F = (
E ′, β

(
E ′, E

))

is barrelled, which always happens if E is a Banach space.
A completely regular space X is K-analytic if there exists a map T : N

N → 2X

with each T (α) compact such that
⋃ {

T (α) : α ∈ N
N
} = X and if {αn}∞n=1 con-

verges to α in N
N and xn ∈ T (αn) for every n ∈ N, then {xn}∞n=1 has a cluster point

x ∈ T (α), i. e., if there is an upper semi-continuousmap (an uscmap) T : N
N → 2X

such that
⋃ {

T (α) : α ∈ N
N
} = X . If T is countably compactly-valued we recover

the definition of quasi-Suslin space. Valdivia showed [108, pp. 65–66] that if E is
a Fréchet space, the bidual E ′′ = (

E ′, β
(
E ′, E

))′
of E equipped with the weak*

topology is always quasi-Suslin, but is K -analytic if and only if
(
E ′, μ

(
E ′, E ′′)) is

barrelled, where μ (E, F) is the Mackey topology of the dual pair 〈E, F〉. In [34,
Corollary 4] the following is proved.

Theorem 5.1 (Ferrando, Kąkol, López-Pellicer and Saxon [34]) A Fréchet space
E is distinguished if and only if its strong dual F has countable tightness, i. e.,
t (F) ≤ ℵ0.

The first example of a nondistinguished Fréchet space was provided by
Grothendieck and Köthe (cf. [66]). This is the echelon space

(
λ, ν(λ, λ×)

)
of

all numerical double sequences x = (xi j ) such that
∑∞

i, j=1 |a(n)
i j xi j | < ∞ for each

n ∈ N. The steps a(n) = (a(n)
i j ) are defined so that a(n)

i j = j for i ≤ n and all j ∈ N and

a(n)
i j = 1 for i > n and all j ∈ N. Since λ is echelon space, it is a perfect sequence

space and a Fréchet space in its normal topology ν(λ, λ×) and
(
λ, ν(λ, λ×)

)′ =
λ×. According to the previous theorem, the strong dual

(
λ×, β

(
λ×, λ

))
of the

Grothendieck-Köthe space
(
λ, ν(λ, λ×)

)
has uncountable tightness. Since accord-

ing to [34, Example 5] it turns out that t
(
λ×, σ

(
λ×, λ′′)) > ℵ0, it follows that(

λ′′, σ
(
λ′′, λ×))

is not K -analytic [15, Theorem 4.6]. But according to Valdivia
theorem

(
λ′′, σ

(
λ′′, λ′)) is a quasi-Suslin space. So we get the following additional

information about the space
(
λ, ν(λ, λ×)

)
.

Example 5.1 (Ferrando, Kąkol, López-Pellicer and Saxon [34]) The weak* bidual
of the Grothendieck-Köthe space is a quasi-Suslin locally convex space which is not
K -analytic.
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If κ is an infinite cardinal, let us denote by c f (κ) the cofinality of κ . A last result
from [34, Corollary 4] is in order.

Example 5.2 (Ferrando, Kąkol, López-Pellicer and Saxon [34]) If c f (κ) > ℵ0 then
Cc ([0, κ)), where here κ is regarded as a (limit) ordinal, is quasi-Suslin but not
K -analytic.

5.2 Two Counterexamples

Our first example, taken from [36], exhibits a countably compact topological space
G whose product G × G cannot be covered by an ordered family {Aα : α ∈ N

N}
of relatively countably compact sets. This shows that quasi-Suslin spaces are not
productive (see also [48]).

Let X be a discrete space of cardinality c and let X1 and X2 be two subspaces
of X such that (i) X1 ∩ X2 = ∅, (i i) X1 ∪ X2 = X , and (i i i) |X1| = |X2| = c. By
(i i i) there exists a bijection σ from X1 onto X2 whose Stone-Čech extension σβ

is a homeomorphism from βX1 onto βX2. Since X is a discrete space, we have

X1
βX ∩ X2

βX = ∅ and X1
βX ∪ X2

βX = X
βX

. If Y is a subspace of X , then we can

identify βY with Y
βX

. Hence βX1 ∩ βX2 = ∅ and βX1 ∪ βX2 = βX . Moreover, if

N is a countable infinite subspace of X then |NβX | = |βN | = |βN| = 2c.
Now define a homeomorphism ϕ : βX → βX by ϕ (x) = σβ (x) if x ∈ βX1

and ϕ (x) = (σ β)−1 (x) if x ∈ βX2. Clearly ϕ (ϕ (p)) = p for every p ∈ βX , and
p ∈ X if and only if ϕ (p) ∈ X . Since ϕ(βX1) = βX2 and ϕ(βX2) = βX1, the
map ϕ does not have fixed points. If N denotes the family of all countable

infinite subsets of X , put Z := ⋃{NβX : N ∈ N } and denote by M the family
of all countable infinite subsets of Z . Since |N | = cℵ0 then |Z | = cℵ0 × 2c = 2c

and hence |M | = 2c. So, if m is the first ordinal of cardinality 2c, one gets that
M = {Mα : 0 ≤ α < m}. Note that α < m implies that |α| = |[0, α)| < 2c and X

is contained in Z . Moreover, it can be easily seen that if M ∈ M then |MβX | = 2c.
Now it is possible to define inductively a set Γ = {

yγ : 0 ≤ γ < m
}
such that

yα ∈ Mα
βX \ (Mα ∪ {

ϕ
(
yγ

) : 0 ≤ γ < α
}
) for every 0 ≤ α < m.

Example 5.3 (Ferrando,Kąkol, López-Pellicer and Śliwa [36]) SettingG := X ∪ Γ ,
due to every countable infinite subset A of G is equal to Mα for some 0 ≤ α < m, it
turns out thatG contains a limit point of A. ThereforeG is countably compact. On the
other hand, the graph {(p, ϕ (p)) : p ∈ βX} of the continuous map ϕ : βX → βX is
closed in βX × βX , so that S := {(x, ϕ (x)) : x ∈ X} is a closed subspace of G × G
homeomorphic to X . So S is uncountable and discrete, which prevents G × G to be
covered by an ordered family {Aα : α ∈ N

N} of relatively countably compact sets.

If X is completely regular, our second example characterize those Cp (X) spaces
whoseMackey dual is analytic. Let us denote by L (X) the topological dual ofCp (X)
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and by L p (X) the weak* dual ofCp (X). The space L (X) consists of the linear span
of the vectors of the canonical copy δ (X) of X inCp

(
Cp (X)

)
, so that each x ∈ X is

depicted in L (X) by the evaluation map δx at x , defined by δx ( f ) = f (x) for each
f ∈ C (X). This forces X to be represented in L (X) as an algebraic basis. When
X = I = [0, 1] the following result is shown in [22].

Theorem 5.2 (Ferrando [22]) The locally convex space (L (I ) , μ (L (I ) ,C (I ))) is
weakly analytic but not K -analytic.

This result is complemented in [64] by the following useful characterization.

Theorem 5.3 (Kąkol, López-Pellicer and Śliwa [64])Fora completely regular space
X, the Mackey dual of Cp (X) is analytic if and only if X is countable.

5.3 Metrizable-Like Topological Groups

In [62] is shown that a locally compact topological group G is metrizable if each
compact subgroup K has countable tightness. In [51] is proved that each cosmic (i. e.,
with a countable network) Baire topological group is metrizable (and separable). A
G-baseof a topological group is a base {Uα : α ∈ N

N}of neighborhoods of the neutral
element e such that Uβ ⊆ Uα if α ≤ β. Clearly, every metrizable topological group
has a G-base. Conversely, every Fréchet–Urysohn topological group with a G-base
is metrizable [52, Theorem 1.2]. As shown in [25, Theorem 2], a space Cc (X) has a
G-base of neighborhoods of the origin if and only if X has a covering

{
Aα : α ∈ N

N
}

made up of compact sets with Aα ⊆ Aβ whenever α ≤ β that swallows the compact
sets. Combining with Christensen’s theorem [17, Theorem 3.3] one gets

Proposition 5.1 For a metrizable space X the following are equivalent

1. X is a Polish space.
2. Cc (X) has a G-base of neighborhoods of the origin.

In [31] the notion of Σ-base is introduced. A topological group G is said to
have a Σ-base if for some (pointwise) unbounded and directed subset Σ of N

N the
neutral element of G has a base of neighborhoods {Uα : α ∈ Σ} such that Uβ ⊆ Uα

if α ≤ β with α, β ∈ Σ . The requirement for Σ to be directed is not a serious
constraint, since ifΓ is any unbounded subset ofN

N andF (Σ) stands for the family
of finite subsets of Σ then Σ := {sup� : � ∈ F (Γ )}, where γ = sup� ∈ N

N is
given by γ (i) = sup {α (i) : α ∈ �} for each i ∈ N, is unbounded and directed and
has the same cardinality as Γ . The following theorems from [31] characterize those
Cc (X) spaces that admit a Σ-base.

Theorem 5.4 (Ferrando, Kąkol and López-Pellicer [31]) For completely regular
space X, the following are equivalent
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1. There is a compact covering {Aα : α ∈ Σ} of X, withΣ unbounded and directed,
such that Aα ⊆ Aβ whenever α ≤ β in Σ , that swallows the compact sets.

2. Cc (X) has a Σ-base of absolutely convex neighborhoods of the origin.

Theorem 5.5 (Ferrando, Kąkol and López-Pellicer [31]) If X is a separable and
metrizable space that is not a Polish space, then Cc (X) admits a Σ-base of neigh-
borhoods of the origin but it does not admit any G-base.

A special class of Σ-bases, called Σ2-bases, have close properties to those of
G-bases. A subset Σ of N

N is called boundedly complete if each bounded set � of
Σ has a bound at Σ . If Σ is a boundedly complete subset of N

N then Σ is itself
directed. A Σ-base of neighborhoods of the unit element of a topological group G
indexed by a boundedly complete setΣ of N

N is referred to as aΣ2-base. It is shown
in [31] that (i) if G is a Fréchet–Urysohn topological group with a Σ2-base then G
is metrizable, and (i i) a Cp(X) space has a Σ2-base if and only if X is countable.

Example 5.4 (Ferrando, Kąkol and López-Pellicer [31]) In any ZFC consistent
model for which ℵ1 = d but d < c there exists aΣ2-base of absolutely convex neigh-
borhoods of the origin of the space Cc ([0, ω1)) which is not a G-base.

5.4 �c-Invariance of Some Topological Properties

Two completely regular spaces X and Y are called �p-equivalent if the corresponding
spaces Cp(X) andCp(Y ) are linearly homeomorphic. Moreover, according to an old
result of Nagata, if the topological ringsCp(X) andCp(Y ) are topologically isomor-
phic (as rings), then X and Y are homeomorphic (cf. [92]). A topological property
P is said to be preserved by �p-equivalence if whenever two completely regular
spaces X and Y are �p-equivalent and X has propertyP , then Y has propertyP as
well. Properties as metrizability, local compactness, countable weight, normality and
paracompactness are not �p-invariant, whereas hemicompactness and the properties
of being an ℵ0-space, a Lindelöf Σ-space, a K -analytic space or an analytic space
are all preserved by �p-equivalence (see [82]).

In [8, Theorem 3.3] Baars, de Groot and Pelant proved that complete metrizability
is preserved by �p-equivalence in the class of metrizable spaces. Later on, Valov
proved, that a Čech-complete and first countable space Y is metrizable when it is
�p-equivalent to a metrizable space X (cf. [111]). The combination of the these facts
assures that property of complete metrizability is preserved by the �p-equivalence
for spaces satisfying the first axiom of countability.

In [60] two completely regular spaces X and Y are said to be �c-equivalent if the
spaces Cc(X) and Cc(Y ) are linearly homeomorphic. It must be pointed out that if X
and Y are �p-equivalent and either (i) X is aμ-space or X isDieudonné complete (in
particular, if X is paracompact or realcompact), then X and Y are also �c-equivalent.
The first statement is essentially consequence of the fact that is X is aμ-space, due to
the Nachbin-Shirota theorem, the compact-open topology τc (X) onC (X) coincides
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with the strong topology β (C (X) , L (X)) of the dual pair 〈C (X) , L (X)〉. Paper
[60] investigates whether some properties P are preserved by �c-equivalence. Let
us recall that a completely regular space X is called a ℵ0-space if it has a countable
k-network (cf. [91]). First countable or locally compact ℵ0-spaces are separable and
metrizable. A completely regular space X is said to be of pointwise countable type if
for each y ∈ X there exists a compact set K such that y ∈ K and K has a countable
base of neighborhoods in X (cf. [6, Chap. 0]). First countable, locally compact or, in
general, Čech-complete spaces, are spaces of pointwise countable type. Main results
of [60] are the following.

Theorem 5.6 (Kąkol, López-Pellicer and Okunev [60]) The property of being a ℵ0-
space is preserved by �c-equivalence among the class of completely regular spaces.

Theorem 5.7 (Kąkol, López-Pellicer and Okunev [60]) The property of being
metrizable and separable is preserved by �c-equivalence among the class of first
countable spaces.

Theorem 5.8 (Kąkol, López-Pellicer and Okunev [60]) Second countability and the
property of being a Polish space are both preserved by �c-equivalence among the
class of spaces of pointwise countable type.

Analogous results to those of Sect. 2 of the cited paper [60] can be found in [23].
The interested reader can findmore information about �c-equivalence in the excellent
expository paper [82].

5.5 Rainwater Sets and Weak K-Analyticity of Cb (X)

A subset Y of the dual closed unit ball BE∗ of a Banach space E is called a Rainwater
set for E if every bounded sequence of E that converges pointwise on Y converges
weakly in E (cf. [95]). If Y is a Rainwater set for E , then Y separates the points
of E . Classic Rainwater’s theorem [97] asserts that the set of the extreme points of
the closed dual unit ball of E is a Rainwater set for E . In paper [32] López-Pellicer
et al. study some topological properties of Rainwater sets for the Banach space
Cb (X) of real-valued continuous and bounded functions over a completely regular
space X , equipped with the supremum-norm. The following result characterizes the
Rainwater sets Y ⊆ X for C (X) with compact X .

Proposition 5.2 (Ferrando, Kąkol and López-Pellicer [32]) Let X be a compact
space and be Y ⊆ X. The following are equivalent

1. Y is a Rainwater set for C (X) .

2. Y is Gδ-dense in X.
3. Y is a James boundary for C (X).
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If X is completely regular and υX denotes the Hewitt realcompactification of
X , then X is pseudocompact if C (X) = Cb (X) or alternatively if υX = βX . The
previous proposition implies that if X is completely regular, then (i) X is a Rainwater
set for Cb (X) if and only if X is pseudocompact, and (i i) if Y ⊆ X is a Rainwater
set for Cb (X), then X is pseudocompact and Y is Gδ-dense in X . Moreover, if Y is
a pseudocompact subset of BCb(X)∗ (weak∗) that contains X , then Y is a Rainwater
set for Cb (X).

A space X is called Lindelöf Σ if there are a setΣ ⊆ N
N and a uscmap T : Σ →

2X with
⋃

α∈Σ T (α) = X ([6, Chap. II] or [61, Chap.3]). A Banach space is weakly
countably determined (WCD for short) or a Vašák space if is a Lindelöf Σ-space in
its weak topology. For the definition of weakly Lindelöf determined (WLD for short)
Banach space, see [61, Sect. 19.12]. Since Cb(X) is WLD if X is pseudocompact
[32], denoting by σY the topology on Cb (X) of the pointwise convergence on Y , we
get

Theorem 5.9 (Ferrando, Kąkol and López-Pellicer [32]) Let X be a completely
regular space. The following are equivalent

1. There exists a Rainwater set Y for Cb (X) such that
(
Cb (X) , σY

)
is K -analytic

(resp. WCD) and Cp (Y ) is angelic.
2. There exists a Rainwater set Y for Cb (X) such that

(
Cb (X) , σY

)
is both K -

analytic (resp. WCD) and angelic.
3. Cb (X) is weakly K -analytic (resp. WCD).

As a corollary, we get classic Talagrand’s result that asserts that if X is pseudo-
compact, then Cp (X) is K -analytic (resp. Lindelöf Σ-space) if and only if C (X) is
weakly K -analytic (resp. WCD). Next theorem characterizes Talagrand and Gul’ko
compactness.

Theorem 5.10 (Ferrando, Kąkol and López-Pellicer [32]) Let X be a compact space
and Y be a Gδ-dense subspace. Then X is a Talagrand compact set (resp. Gul’ko
compact) if and only if the space (C (X) , σY ) is K -analytic (resp. a Lindelöf Σ-
space).

5.6 Quantitative Descriptive Topology

Some cardinal functions have shown to be useful in descriptive topology. If X is a
completely regular space we can mention, among others, the Lindelöf number � (X),
the density d (X), the hereditarily density hd (X), the weight w (X), the network
weight nw (X), the tightness t (X) and theHewitt–Nachbin number q (X).We appeal
to Arkhangel’skiı̆’s book [6] for the definition of those indices. The Nagami index
Nag (X) has been introduced in order to generalize the notion of Lindelöf Σ-space.
Recalling that the weight w (X) of X is the least cardinality of an open base of X ,
the Nagami index is reported to be the smallest infinite cardinal number m such that
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there exists a topological space Y of weight m and a (compactly-valued) usc map
T : Y → 2X covering X . The Nagami index measures how far a completely regular
space X is from being a Lindelöf Σ-space, in the sense that Nag (X) ≤ ℵ0 if and
only X is a LindelöfΣ-space. Here is useful to mention that if both X andCp (X) are
Lindelöf Σ-spaces, one has d

(
Cp (X)

) = d
(
L p (X)

)
. Main theorem of [33] reads

as follows.

Theorem 5.11 (Ferrando, Kąkol, López-Pellicer and Muñoz [33]) If X is a topo-
logical space and L ⊆ Cp (X) there exists a space Y and two completely regular
topologies τ ′ ≤ τ on Y such that L is embedded in Cp (Y, τ ) and (i) Nag (Y, τ ) ≤
Nag (υX), (i i) w

(
Y, τ ′) ≤ d (L), (i i i) nw (Y, τ ) ≤ max {Nag (X) , d (L)}, and

(iv) d (L) ≤ max {Nag (L) , d ((Y, τ )}.
As a consequence, if Cp (X) is a Lindelöf Σ-space (which implies that υX is a

LindelöfΣ-space) and L ⊆ Cp(X) is separable, i. e., d (L) ≤ ℵ0, there is a separable
submetrizable (by (i i i) andUrysohn’metrizability theorem)LindelöfΣ-space (Y, τ )

(by (i i)) such that L is embedded intoCp(Y, τ ). From this it can be readily shown that
Cp(X) is analytic if and only if Cp(X) is separable and admits a compact resolution.
A striking consequence of the previous theorem in locally convex space theory is the
following result.

Corollary 5.1 (Cascales and Orihuela [13]) A weakly compact set Y in a locally
convex space E in class G is weakly metrizable if and only if Y is contained in a
weakly separable set.

In Banach space theory some indices have also been introduced to get quan-
titative versions of the classic Krein or Eberlein theorems, among others. If H

is a subset of a Banach space E , the index k (H) := sup{d (x∗∗, E) : x∗∗ ∈ H
w∗ },

where the closure is in the weak* topology w∗ of the bidual E∗∗ and d (x∗∗, E) =
inf {‖x∗∗ − x‖ : x ∈ E}, is zero if and only if H is weakly relatively compact. The
inequality k (co (H)) ≤ 2k (H) for a bounded subset H of a Banach space E (cf.
[21]) or k (co (H)) ≤ 5k (H) for a bounded subset H of the bidual E∗∗ (cf. [54]) are
quantitative versions of Krein’s theorem. On the other hand, the index

ck (H) = sup
{
d (ClustE∗∗ (s) , E) : s ∈ HN

}

where ClustE∗∗ (h) designs the set of cluster points of the sequence s in E∗∗ (w∗)
and d (A, B) = inf {‖x − y‖ : x ∈ A, y ∈ B}, measures how far H ⊆ E is far from
being relatively weakly countably compact, in the sense that in the latter case
ck (H) = 0. For a bounded subset H of a Banach space the equivalence of state-
ments (i) ck (H) = k (H) = 0 and (i i) H is weakly relatively compact (cf. [2]) is a
quantitative version of Eberlein’s theorem. In [3] the following version of Eberlein’s
theorem for Fréchet spaces is shown.

Theorem 5.12 (Angosto, Kąkol and López-Pellicer [3]) If H is a bounded subset of
a Fréchet space E, the following are equivalent (i) ck (H) = 0, (i i) k (H) = 0, (i i i)
H is weakly relatively countably compact, and (iv) H is weakly relatively compact.
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The following version of Krein’s theorem for Fréchet space was obtained in [4].

Theorem 5.13 (Angosto,Kąkol,Kubzdela andLópez-Pellicer [4]) If H is abounded
set of a Fréchet space the inequality

k (co (H)) ≤ √
k (H)(3 − 2

√
k (H))

holds.

6 Publications on Linear Algebra and Popular Science

There are two beautiful publications of professor López-Pellicer on Linear Algebra,
both in 1985 and coauthored by Rafael Bru. In [10] a necessary and sufficient condi-
tion for a maximal set M of linearly independent eigenvectors of an endomorphism
f of a finite-dimensional vector space E to be extendable to a Jordan basis of E with
respect to f is provided. In [10] the authors give a proof of the existence of a Jordan
basis of an infinite-dimensional vector space E for each endomorphism f which is a
root of some (annihilating) polynomial. As in the finite-dimensional case, they give
a necessary and sufficient condition to extend a Jordan basis of an invariant subspace
to a Jordan basis of the whole vector space. These two papers have been the seed of
further research by professor Bru and his collaborators.

Regarding popular science. Seventeen papers in the MathSciNet list of publica-
tions of professor López-Pellicer are devoted to this subject. All of them have been
published in Spanish journals and written in the tongue of Cervantes. There are
many others which are not included in the MathSciNet, as for instance his speech
on the occasion of his admission to the Spanish Royal Academy, in 1998, devoted
to the history of Functional Analysis, which occupies 106 pages at the journal of
the Academy. Many conferences, inside and outside of the Royal Academy have
been also dedicated to popular science. The life and work of some universal math-
ematicians as Euclides, Fermat, Euler, Poincaré, Banach, von Neumann, Russell or
Ramanujan, have focused the interest of professor López-Pellicer informative job.
Particularly interesting are his articles on some Spanish scientists, engineers and
mathematicians, as Jorge Juan (1713–1773), Agustin de Bethencourt (1758–1824),
Julio Rey Pastor (1888–1962) and Manuel Valdivia (1928–2014). For the sake of
completeness we include references [75–81, 83] on popular science which do not
have been referenced in the MathSciNet list.

7 Work as Editor-in-Chief of RACSAM

Professor López-Pellicer is Editor-in-Chief of the Journal of the Royal Academy of
Exact, Physical and Natural Sciences, Series A, Mathematics, acronym RACSAM,
since 2004 (volume 98) to the present. From2004 to 2010 (volume 104) themagazine
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Table 1 Evolution of RACSAM Impact Factor (Source InCites Journal Citation Reports dataset
updated Jun 06, 2018)

Year Total cites Citable
items

Impact
factor

Rank Quartile JIF
percentile

2011 91 33 0.340 239/289 Q4 17.474

2012 149 28 0.733 84/296 Q2 71.791

2013 171 30 0.689 98/302 Q2 67.715

2014 208 64 0.776 95/312 Q2 69.712

2015 221 52 0.468 223/312 Q3 28.686

2016 295 56 0.690 140/311 Q2 55.145

2017 430 87 1.074 56/309 Q1 82.039

published two annual issues, edited by the Academy itself. During years 2008, 2009
and 2010 the journal underwent evaluation in the JCR (Journal Citation Reports),
which requires follow-up by the JCR for three consecutive years. In 2011 Professor
López-Pellicer was the architect of the signing of a contract with Springer. Currently
the journal publishes 4 issues per year. The evolution of the journal since the entry
of RACSAM in the JCR list is depicted in Table 1.
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31. Ferrando, J.C., Kąkol, J., López-Pellicer, M.: Spaces C(X) with ordered bases. Topol. Appl.
208, 30–39 (2016)
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1 Introduction

A discrete dynamical system (anADS for short) is a pair (X, f )where X is a topolog-
ical space and f : X → X is a continuous function. Discrete dynamical systems can
be generalized in the following way: a nonautonomous discrete dynamical system
(a NDS for short) is a pair (X, f1,∞) where X is a topological space and f1,∞ is a
sequence of continuous functions ( fn : X → X)n∈N. For each n ∈ N, the n-iterate
of a NDS (X, f1,∞) is the composition

f n1 := fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1.

The symbol f 01 will stand for the identity map from X onto itself.
Notice that an ADS (X, f ) coincides with the NDS (X, f1,∞), where fn = f for

each n ∈ N. Given a NDS (X, f1,∞), the orbit of a point x ∈ X is the set

O f1,∞(x) := {
x, f 11 (x), f 21 (x), . . . , f n1 (x), . . .

}
.

NDS’were introduced by S.Kolyada andL. Snoha in [15]. The paper [5] describes
some recent developments on the theory of NDS’. Note that NDS’ are related to
nonautonomous difference equations: indeed, given a compact metric space (X, d)

and a sequence of continuous functions ( fn : X → X)n∈N, if for each x ∈ X we set

{
x0 = x,
xn+1 = fn(xn),

weobtain a nonautonomous difference equation (see, for example, [23, 25]). Observe
that, from the definition of a NDS, the orbit of a point forms a solution of a nonau-
tonomous difference equation. The orbit can be also described by the difference
equation x1 = x and xn+1 = f n1 (xn) for each n ∈ N.

AnADS (X, f ) is said to be topologically transitive (transitive for short) if for any
pairU and V of nonempty open sets of X there exists n ∈ N such that f n(U ) ∩ V �=
∅. If X is a metric space via a metric d, it is said to have sensitive dependence on
initial conditions (sensitive for short) if there exists a constant δ > 0 such that for any
x ∈ Xand ε > 0 there exists y ∈ Y with d(x, y) < ε such that d( f n(x), f n(y)) ≥ δ

for some n ∈ N. If we replace f n by f n1 we obtain the corresponding definitions of
transitivity and sensitivity for NDS’. Note that if X contains an isolated point, then
the NDS (X, f1,∞) is not sensitive.

The reader familiar with the theory of uniform spaces will have noticed that the
definition of sensitivity is given by means of the uniformity induced by the metric
d. Thus, it can be extended to uniformizable spaces, that is, to Tychonoff spaces.

The paper is organized as follows. In the second section we present and ana-
lyze three notions of a periodic point for NDS’. Periodic points are of great inter-
est in the study of Devaney’s chaos. In this set-up, we present several results and
examples. Section3 is devoted to transitivity. Among other results we study the rela-
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tionship between transitive points and transitivity. Several examples are presented.
For instance, we show that there exist NDS’ with equicontinuous points which are
nontransitive points. This is in striking contrast to the case of ADS.

Our notation and terminology are standard. The interested reader might consult
[13] for further information about ADS’ and [4, 5] for NDS’. Further information
in chaos, transitivity and sensitivity for NDS’ can be found in [6, 11, 14, 18]. For
topological notions and concepts not defined here see [14].

2 Periodic Points

An interesting question in the framework of NDS’ is how to obtain a suitable def-
inition of a periodic point. Given a NDS (X, f1,∞) where f1,∞ is the sequence
( fn : X → X)n∈N, several different definitions are known, each one with its pros and
cons (see, for example [20–22, 26]):

(P1) A point x ∈ X is periodic if there exists k ∈ N such that f k1 (x) = x .
(P2) A point x ∈ X is periodic if there exists k ∈ N such that f kn1 (x) = x for all

n ∈ N.
(P3) A point x ∈ X is periodic if it satisfies the following conditions: (a) there exists

k ∈ N such that f k+n
1 (x) = f n1 (x) for all n ∈ N ∪ {0}, (2) if k �= 1 then k is the

smallest natural number such that f k1 (x) = x , and f 11 (x), f 21 (x), . . . , f k−1
1 (x)

are pairwise different.

It is clear that
(P3) =⇒ (P2) =⇒ (P1)

and easy examples show that the converses fail to be true. If in the above notions we
have k = 1, then we say that x is a fixed point in the sense of either (P1), (P2) or (P3).
For example x ∈ X is a fixed point in the sense of (P1) if f1(x) = x . In such case
f2(x) and f1(x) can be different points of X. Indeed, for the NDS (I, f1,∞) described
in Example 3.1 below, a1 is a fixed point in the sense of (P1) and fn(a1) �= a1 for
every n ∈ N \ {1}. Note that x is a fixed point in the sense of (P2) if f n1 (x) = x for
each n ∈ N. In such situation O f1,∞(x) = {x} is a finite set.
Theorem 2.1 Let (X, f1,∞) be a NDS. Then x ∈ X is a fixed point in the sense of
(P2) if and only if fn(x) = x for every n ∈ N.

Proof Assume first that x is a fixed point in the sense of (P2). Then f n1 (x) = x
for each n ∈ N. In particular, f1(x) = f 11 (x) = x and if n ≥ 2, then fn(x) =
fn( f

n−1
1 (x)) = f n1 (x) = x . This shows that fn(x) = x for every n ∈ N.

Now assume that fn(x) = x for every n ∈ N. It is straightforward to show that
f n1 (x) = ( fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1)(x) = x for each n ∈ N, so x is a fixed point in
the sense of (P2). �
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Note that x is a fixed point in the sense of (P3) if f n+1
1 (x) = f n1 (x) for all n ∈

N ∪ {0}. Using this equality it is not difficult to prove that x is a fixed point in the
sense of (P3) if and only if f n1 (x) = x for each n ∈ N. Hence fixed points according
to (P2) coincide with the ones according to (P3).

Now we construct a NDS in which every point is periodic in the sense of (P3).
Let f : X → X be a bijective function. Define fn = f if n is odd, fn = f −1 if n is
even and f1,∞ = ( fn)n∈N. Then f n1 = f if n is odd and f n1 is the identity function
from X to X if n is even. Hence, for each x ∈ X, we have O f1,∞(x) = {x, f (x)}. If
f (x) �= x, then f 2+n

1 (x) = f n1 (x) for every n ∈ N ∪ {0} and x is a periodic point in
the sense of (P3) with k = 2. If f (x) = x then f n+1

1 (x) = f n1 (x) for all n ∈ N ∪ {0}
and x is a fixed point in the sense of (P3).

Let x ∈ X be a periodic point in the sense of (P3). Let k ∈ N be such that
f k+n
1 (x) = f n1 (x) for all n ∈ N ∪ {0}. Then O f1,∞(x) = {x, f 11 (x), . . . , f k−1

1 (x)} is
a finite set. It is not difficult to prove that f km+n

1 (x) = f n1 (x) for each m ∈ N ∪ {0}.
If x ∈ X is a periodic point in the sense of either (P1) or (P2) then the setO f1,∞(x) is
either finite (for example, when x is a fixed point in the sense of (P2)) or infinite (see
Theorem 2.3). In any of the three situations, if x is a periodic point and y ∈ O f1,∞(x)
then y is not necessarily a periodic point (see Theorem2.3 and Example2.1 in this
section).

Assume that the sequence f1,∞ = ( fn)n∈N satisfies the following property:

(P) there exists k ∈ N such that for each i ∈ {1, 2, . . . , k} we have fi = fnk+i for
every n ∈ N ∪ {0}.

Then any point x ∈ X for which f k1 (x) = x satisfies that f k+n
1 (x) = f n1 (x) for all

n ∈ N ∪ {0}. However, even under the assumption of (P), a periodic point in the
sense of (P1) is not necessarily a periodic point in the sense of (P2). To see this,
let I3 = {a, b, c} be a set with three points and the discrete metric. For each n ∈ N,

define hn : I3 → I3 so that hi = h j if and only if i and j are congruent mod 3. Then
h1,∞ = (hn)n∈N satisfies (P) with k = 3.Define h1, h2 and h3 as follows: h1(a) = b,
h2(b) = c, h3(c) = a, h1(b) = a, h2(a) = b, h3(b) = a, h1(c) = a, h3(a) = c and
h2(c) = a. Then a is a periodic point in the sense of (P3), Oh1,∞(a) = Oh1,∞(b) =
Oh1,∞(c) = I3, b and c are periodic point in the sense of (P1) but not in the sense of
(P2). Note that the NDS (I3, h1,∞) is transitive, not sensitive and the set of periodic
points in the sense of (P1) is dense in I3.

Let (X, f ) be an ADS where X is an infinite T1 space. It is known that if (X, f ) is
transitive, then X does not contain isolated points. This result is not valid for NDS’
as [26, Example2.3] shows. In such example the functions that describe f1,∞ are all
constant. In Example3.4 we present a NDS in which the elements of f1,∞ are not
constant functions. In the presence of isolated points we have the following result.

Theorem 2.2 If (X, f1,∞) is a transitive NDS and x ∈ X is an isolated point of X,

then x is a periodic point in the sense of (P1) with a dense orbit.

Proof Since {x} is open in X by transitivity there exists k ∈ N such that f k1 ({x}) ∩
{x} �= ∅, so f k1 (x) = x and then x is a periodic point in the sense of (P1). Now if
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U is a nonempty open subset of X then, by transitivity, there is n ∈ N such that
f n1 ({x}) ∩U �= ∅, so f n1 (x) ∈ U and then the orbit of x is dense in X. �

In order to avoid isolated points in our examples and results, from now on if
(X, f1,∞) is a NDS, we will consider that X is a T1 space without isolated points
(this implies that X is infinite). Hence no periodic point in the sense of (P3) has a
dense orbit. The following theorem shows that periodic points in the sense of (P2)
(so that in the sense of (P1)) can have a dense orbit.

Theorem 2.3 In the unit interval I, with its usual topology, there is aNDS (I, f1,∞)

with the following properties: there exist a periodic point x in the sense of (P2) with
a dense orbit and y ∈ O f1,∞(x)\{x} so that neither y is a periodic point nor its orbit
is dense. Moreover, x is not a periodic point in the sense of (P3).

Proof Let {s1, s2, . . . , sn, . . .} ⊂ I \ {0, 1} be a dense subset of I such that 1/2 < s1.
Let (I, f1,∞) be the NDS defined as follows: for each n ∈ N, fn(0) = 0, fn(1) = 0,
f2n+1(1/2) = sn+1, f2(n+1)(s(n+1)) = 1/2 and both f2n+1 and f2(n+1) are piecewise
linear elsewhere. Moreover

f1(x) =
{
s1, if x = 1/2,
1/2, if x = s1,

and f2(x) =
{
1, if x = 1/2,
1/2, if x = s1,

and both f1 and f2 are piecewise linear elsewhere. Note that the orbit of the point
x = 1/2 is the set

O f1,∞(x) = {1/2, s1, 1/2, s2, . . . , 1/2, sn, . . .}

and the orbit of the point y = s1 is the set {s1, 1/2, 1, 0, 0, . . .}.Hence, x is a periodic
point in the sense of (P2), whose orbit is dense in I, while y ∈ O f1,∞(x) \ {x} is not a
periodic point, and the orbit of y is not dense in I. Since the orbit of a periodic point
in the sense of (P3) is a finite set, x is not a periodic point in the sense of (P3). �

Our interest in a suitable definition of a periodic point in the framework of NDS’
comes from the fact that they play a central role in the definition of Devaney’s chaos.
In order to make our description of this fact precise, we give the original definition.

Definition 2.1 ([9]) Let (X, d) be an infinite metric space. An ADS (X, f ) is
Devaney chaotic if it satisfies the following conditions.

(i) (X, f ) is topologically transitive.
(ii) (X, f ) has a dense set of periodic points.
(iii) (X, f ) has sensitive dependence on initial conditions.

Recall that two ADS’ (X, f ) and (Y, g) are said to be conjugate if there exists a
homeomorphism h : X → Y such that the following diagram



34 G. Acosta and M. Sanchis

X
f ��

h

��

X

h

��
Y

g �� Y

commutes. The definition of chaos in the sense of Devaney rises the question whether
Devaney’s chaos is preserved by conjugation. The reason is apparent: indeed, it is
an easy matter to find an example showing that sensitivity is not preserved under
conjugation (see, for example, [7]). In the sitting of ADS’, Banks et al. [7] ans-
wered this question in 1992. The surprisingly neat answer is that Condition (iii) in
Devaney’s definition follows from the two previous ones.

Remark 2.1 As amatter of definition, sensitivity is preserved under conjugations that
are uniform isomorphisms [19]. Since compact spaces have a unique uniformity, this
fact implies that sensitivity is preserved when working with compact spaces [7].

In the realm of NDS’ the situation is quite different. In 2016, Lan [17, Problem1]
proposed the following question.

In nonautonomous dynamical systems, does transitivity together with density of
periodic points imply sensitivity?

By means of additional conditions, a positive answer was given by Zhu et al. [26,
Theorems3.1 and 3.2], using periodic points in the sense of (P3). Later, in the same
situation, Miralles et al. [20, Theorem2.4] provided a positive answer using periodic
points in the sense of (P2) and assuming that the sequence f1,∞ which defines the
NDS converges uniformly to a function f : X → X . However, in the paper above,
Lan showed that the answer is in general negative if we use periodic points in the
sense of (P1). Moreover, Sánchez et al. [21, Example4.4] gave an example on the
interval of a transitive NDS with a dense subset of periodic points in the sense of
(P1) which is not sensitive.

Nevertheless, in considering periodic points in the sense (P3), Zhu et al. [26,
Theorems3.1 and 4.1] have obtained interesting results. We summarize the most
significative ones in the following theorem.

Theorem 2.4 Let (X, f1,∞) be a NDS. The following holds:

(i) If X is an unbounded metric space and (X, f1,∞) is transitive and the set of
periodic points in the sense of (P3) is dense in X, then (X, f1,∞) is sensitive.

(ii) Assume that the sequence f1,∞ pointwise converges to a continuous function
f : X → X. If (X, f1,∞) is transitive and the set of periodic points in the sense
of (P3) is dense in X, then (X, f1,∞) is sensitive.

Given an ADS (X, f ), each element of a periodic orbit of period k is also periodic
of period k. Despite the previous result and Theorem2.3, this property fails to be true
for a periodic point in the sense of (P3). For this, we will use the Cantor set C . By an
outstanding result of Brouwer’s [8] every nonempty, compact, totally disconnected
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and metrizable space without isolated points is homeomorphic to the Cantor set. In
the setting of ADS’, the Cantor set enjoys interesting properties. Among others, we
can cite that the Cantor set C has minimal equicontinuous systems: indeed, they are
conjugated to an odometer, that is, they are Kronecker systems on C (see [16]) and,
consequently, they are isometries. Moreover, the Cantor sets are the unique compact
subsets of the real line that have chaotic homeomorphisms in the sense of Devaney
[1]. Another property ofC is its homogeneity. This means that for every two points x
and y in C there exists a homeomorphism f : C → C such that f (x) = y. An easy
proof of this fact runs over the following lines. The two-points discrete space {0, 1}
endowed with the operation of addition mod 2 is a topological group. By Brouwer’s
theorem, the topological group {0, 1}N is homeomorphic to the Cantor set C and,
consequently, it is homogeneous.

Example 2.1 The points in the orbit of a periodic point in the sense of (P3) need not
be periodic. Also, the points in the orbit of a point with dense orbit does not have
dense orbit.

Proof By Brouwer’s theorem we can write C = C1 ∪ C2 with Ci � C (i = 1, 2)
homeomorphic to C and C1 ∩ C2 = ∅. Using the homogeneity of both C1 and C2, it
follows that for every z1, z2 ∈ C1 and each y1, y2 ∈ C2 there exist homeomorphisms
h1 : C1 → C2 and h2 : C2 → C1 such that h1(z1) = y1 and h2(y2) = z2. Taking into
account the results in [2] commented above, from now on in this example, all the
functions that we will consider from Ci onto C j (i, j = 1, 2) are homeomorphisms.

Let f1 : C1 → C2 be a homeomorphism. Pick now x ∈ C1 and y ∈ C2 with
f1(x) = y. Let f2 = f −1

1 . Next, for n ≥ 0, define homeomorphisms g2n+1 : C2 →
C1 and g2n+2 : C1 → C2 which satisfy the following property: fix two sequences
(x2n+1)n≥0 ⊂ C2 and (x2n+2)n≥0 ⊂ C1 whose elements are pairwise different
and such: (a) x1 = y and, for each n ≥ 0, (b) g2n+1(x2n+1) = x2n+2, and
(c) g2n+2(x2n+2) = x2(n+1)+1.

To finish the proof we consider the sequence of homeomorphisms

h1,∞ = {h1, h2, . . . , hn, . . .}

where, for n ≥ 0, h2n+1 : C → C and h2n+2 : C → C are defined as follows:

h2n+1(t) =
{
f1(t), if t ∈ C1,

g2n+1(t), if t ∈ C2,
and h2n+2(t) =

{
f2(t), if t ∈ C2,

g2n+2(t), if t ∈ C1.

Consider now the NDS (C , h1,∞). It is an easy matter to check that h2+n
1 (x) =

hn1(x) for each n ∈ N ∪ {0}, so x is a periodic point in the sense of (P3): indeed its
orbit is the set {x, y}. By construction the orbit of y is infinite. Notice that, being C
separable, the orbit of y can be chosen dense in C . Then y is a point with dense orbit
which is no a periodic point in the sense of (P3). Making x2 = x the point x is in the
orbit of y and, since the orbit of x is the set {x, y}, the orbit of x is not dense. �
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3 Transitivity and NDS

In this section we point out some similarities and some differences between transitive
ADS’ and transitive NDS’. In the realm of NDS’, the similarities are in spirit of
topological nature. Thus, they run over similar lines to the ADS’ case and, in general,
the proofs can be applied in more general settings. On the other hand, the differences
come from the definition of a NDS. We start with the relationship between point
transitivity and transitivity. Recall that an ADS (respectively, a NDS) is called point
topologically transitive (point transitive for short) if there exists a point, say x0,
whose orbit is dense. The point x0 is said to be a transitive point. If we admit isolated
points then, by Theorem2.2, all the isolated points of a transitive NDS are transitive
points which are also periodic points in the sense of (P1).

Recall that a topological space X is called a Baire space if each countable inter-
section of open dense subsets is a dense set. A well-known result says that complete
metric spaces are Baire spaces. A useful result for ADS’ states the following.

Theorem 3.1 [24, Proposition1.1] Let (X, f ) be an ADS with X a perfect space.
The following hold.

(i) If (X, f ) has a transitive point, then it is transitive.
(ii) Suppose that X is a second countable Baire space. If (X, f ) is transitive, then

it has a transitive point.

The previous result can be applied to themost usual situations. However, for NDS’
Theorem 3.1 is not valid. Proposition 4.6 and Example4.7 of [21] shows that (i) of
the previous result holds for NDS’ but (ii) does not. Therefore, a natural question is
to establish a link between these two notions. Our first result is the following one.

Theorem 3.2 (Compare with [3, Theorem1.1 (c)]) Let (X, f1,∞) be a NDS where
X is T3, second countable and a Baire space. If (X, f1,∞) is transitive, then the set
of transitive points is dense in X.

Proof Let {Un : n ∈ N} be a countable base for X . Set Sn = ⋃
p∈N( f p

1 )−1(Un) for
each n ∈ N. Notice that Sn is open for all n ∈ N.Moreover, being (X, f1,∞) transitive,
Sn is dense in X for all n ∈ N.

Take now a nonempty open set U of X . Since X is T3 we can pick a nonempty
open set V in X such that clXV ⊂ U . It is apparent that the elements of the family
{Sn ∩ V : n ∈ N} are dense open sets of the space clXV . Since clXV is a Baire space
(see [10, Sect. 10, Exercise4]), we have

⋂

n∈N
(Sn ∩ V ) �= ∅.

Next choose a point x0 ∈ ⋂
n∈N (Sn ∩ V ). Fix now n ∈ N. Since x0 ∈ Sn , the defini-

tion of Sn says us that there exists m ∈ N such that x0 ∈ (
f m1

)−1
(Un). This implies

that the orbit of x0 is dense in X . Since x0 ∈ V ⊂ U , the transitive points are dense.
This completes the proof. �



A Note on Nonautonomous Discrete Dynamical Systems 37

Assume that X is T3, second countable, Baire and without isolated points. If
(X, f1,∞) is a transitive NDS then, by Theorem3.2, X contains a dense set of transi-
tive points. Moreover, if x0 is a transitive point, then x0 is not a periodic point in the
sense of (P3). Can x0 be a periodic point in the sense of either (P1) or (P2)? To answer
this consider the following example, which is a modification of [25, Example2.3].

Example 3.1 There exist a transitive NDS (I, f1,∞) and a dense subset D of I such
that each element of D is a transitive point and a periodic point in the sense of (P1).

Proof Let {an : n ∈ N} be the set of rational numbers in I so that D = {a2m+1 :
m ∈ N ∪ {0}} is dense in I. Given m ∈ N ∪ {0} we define f2m+1(x) = a2m+1 and
f2m+2(x) = 1, for every x ∈ I. Then (I, f1,∞) is a NDS. Now consider a point
a2m+1 ∈ D and let W be a nonempty open subset of I. Note that f 2m+1

1 (a2m+1) =
a2m+1. Since D is dense in I, there exists n ∈ N ∪ {0} so that a2n+1 ∈ W. Note that
f 2n+1
1 (a2m+1) = a2n+1 ∈ W. This show that any element of the dense set D is a tran-

sitive point and a periodic point in the sense of (P1). Now consider two nonempty
open subsets U and V of I. By the density of D, there exist n,m ∈ N ∪ {0} so that
a2n+1 ∈ U and a2m+1 ∈ V .Note that f 2m+1

1 (a2n+1) = a2m+1, so f 2m+1
1 (U ) ∩ V �= ∅

and then (I, f1,∞) is transitive. �

For the converse of Theorem3.2, we have the following result.

Theorem 3.3 Let (X, f1,∞) be aNDSwhere X is a T1 space without isolated points.
If the set of transitive points is dense in X, then (X, f1,∞) is transitive.

Proof Let U and V be two nonempty open sets of X . Being the transitive points
dense, there exists a transitive point, say x0, which belongs to U . Since X does
not have isolated points, there exists y0 ∈ V such that x0 �= y0. Let W be an open
subset of X such that y0 ∈ W and x0 /∈ W. Density of O f1,∞(x0) implies that there is
k ≥ 0 such that f k1 (x0) ∈ V ∩ W . Thus k ∈ N and f k1 (U ) ∩ V �= ∅, so (X, f1,∞) is
transitive. �

We can put together the two previous results in order to obtain the promised
connection into the existence of transitive points and transitivity.

Corollary 3.1 Let (X, f1,∞) be a NDS where X is T3, second countable, Baire and
without isolated points. Then (X, f1,∞) is transitive if and only if the set of transitive
points is dense in X.

Compact metric spaces without isolated points satisfy the conditions of
Corollary3.1.

The following result is well-known for ADS. Its proof lies in the definition of
transitive point. In fact, it is a consequence of this concept. Thus, its proof runs over
the similar lines to the ADS case (see the book of Akin [2, Theorem4.12]).

Theorem 3.4 Let (X, f1,∞) be a transitiveNDSwith X := (X, d) a separable com-
plete metric space. Then the set T of transitive points is a Gδ-set. Indeed, T is an
intersection of countably many open dense sets.
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Proof Let D = {s1, s2, s3, . . .} be a dense subset of X . Given an element sk ∈ D, a
positive rational number ε and a natural number n, we define the set

Msk ,n,ε =
{
x ∈ X : d( f j

1 (x), sk) < ε for some j > n
}

.

The family of all elements of the form Msk ,n,ε are open and dense (notice that
density follows from Therem 3.2). It is clear that the transitive points of (X, f1,∞)

is the intersection of all subsets Msk ,n,ε and the proof is complete. �

Wemove on to some differences between ADS’ and NDS’. Given an ADS (X, f )
with X := (X, d) a metric space, we say that a point x ∈ X is an equicontinuous
point if for every ε > 0 there exists δ > 0 such that d( f n(x), f n(y)) < ε for all
n ∈ N provided that d(x, y) < δ. The corresponding definition for NDS’ is self-
explanatory.

It is known that for transitive NDS’ a point is a transitive point whenever it
is equicontinuous [20, Theorem3.1]. For compact metric ADS’ the converse is also
valid in the case that there exists at least one equicontinuous point ([3, Theorem2.4]).
The following example points out that the situation is quite different in the realm of
NDS’. We will take advantage from the fact that, fixing x ∈ [0, z] with z < 1, the
sequence

{
x2, x3, . . . , xn, . . .

}
uniformly converges to the constant function zero

and, consequently, it is equicontinuous on [0, z]. This outcome can be obtained by
an easy calculation or by means of the Dini’s theorem ([12, 3.10.F (b)]).

Example 3.2 There exists a minimal NDS (C , f1,∞) and a point which is not an
equicontinuous point. Indeed, let C be the Cantor set. Choose now a transitive
equicontinuous homeomorphism f on C and consider, for each n ∈ N, the func-
tions g2n+1(x) = x2n+1 for all x ∈ C . Define now the NDS (C , f1,∞) as

{
g3, (g3)

−1, f, f −1, g5, (g5)
−1 f,2 , f −2, . . .

}
.

Since (C , f ) is a transitive ADS, every point of (C , f ) is a transitive point. Then
x ∈ X is a transitive point of (C , f1,∞) for all x ∈ C . Indeed, we have

f 11 := g3, f 21 := id, f 31 := f, f 41 := id,

f 51 := g5, f 61 := id, f 71 := f 2, f 81 := id,

and so on and, consequently, { f n : n ∈ N} is a subsequence of f1,∞. Thus, every
point of X is a transitive point of (C , f1,∞). In particular, (C , f1,∞) is minimal.

Next notice that the sequence
{
x2n+1 : n ∈ N

}
converges to zero whenever 0 ≤

x < 1 and to one if x = 1. Thus, (C , f1,∞) is not equicontinuous at the transitive
point x = 1. Moreover, since the sequence of functions

{
x3, x5, . . . , x2n+1, . . .

}
is

equicontinuous on [0, z] for all z < 1, the set of points of equicontinuity of (C , f1,∞)

is dense in C : indeed, it coincides with C \{1}. �
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Let (X, f1,∞) be a NDS with f1,∞ = ( fn)n∈N. We say that (X, f1,∞) is surjective
if each function fn is surjective. A well-known result for ADS’ (and easy to proof)
says that if (X, f ) is a transitive ADSwith X a compact T2 space, then f is surjective.
For NDS’ this result does not hold as Example3.1 shows. Note that in such example
each function fn is constant. Now we present an example in which the functions that
define the sequence f1,∞ are not constant.

Example 3.3 There exists a NDS (C , f1,∞) such that each fn is neither surjective
nor constant. For this, let {C1,C2} be a partition of the Cantor setC in two subspaces
homeomorphic to C . Consider bases A = {Un : n ∈ N} and B = {Vn : n ∈ N}
for the topologies of C1 and C2, respectively, formed by clopen sets. Consider an
enumeration of A × B × A × B, say,

{(
Uj4t+1 , Vs4t+2 ,Ur4t+3 , Vm4t+4

) : t = 0, 1, 2, . . .
}
.

For each (t, j) ∈ (N ∪ {0}) × N define a continuous function f4t+ j : C → C such
that the restriction of f1 to C2 is the identity and with the following properties:

(1) The restriction of both f4t+1 and f4t+3 to C1 is a homeomorphism onto C2.
(2) The restriction of both f4t+2 and f4t+4 to C2 is a homeomorphism onto C1.
(3) f4t+1(Uj4t+1) = Vs4t+2 .
(4) f4t+2(Vs4t+2) = Ur4t+3 .
(5) f4t+3(Ur4t+3) = Vm4t+4 .
(6) f4t+4(Vm4t+4) = Uj4(t+1)+1 .

Let (C , f1,∞) be the NDS with

f1,∞ = { f1, f2, f3, f4, f5, . . .} .

Since A and B are bases of C1 and C2, respectively, A ∪ B is a base for the
topology of C . Then, by the properties of the functions fn , an easy calculation
shows that (C , f1,∞) is transitive. Notice that no function of the sequence f1,∞ is
surjective. �

As we mentioned in Sect. 2 a transitive ADS (X, f ) has no isolated points if and
only if X is infinite. This result fails to be true for NDS as the following example
shows. We employs a strategy similar to that underlying the proof of Example3.3.
Therefore, we only give an outline of the proof.

Example 3.4 Consider the space X = C ∪ {x} with x /∈ C an isolated point. Let
{C1,C2}, A and B as in the previous example. Let M be an enumeration of {x} ×
A × B × A × B, say,

{(
x,Uj4t+1 , Vs4t+2 ,Ur4t+3 , Vm4t+4

) : t = 0, 1, 2, . . .
}
.
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For each (t, j) ∈ (N ∪ {0}) × N consider the function f4t+ j : C → C defined in
Example3.3, so that the properties (1), (3), (4) and (5) of such example are satis-
fied. We redefine f4t+ j in X by letting f4t+1(x) ∈ Uj4t+1 , f4t+4(Vm4t+4) = {x}. More-
over, f4t+2(x), f4t+3(x), f4t+4(x) belong to arbitrary clopen sets different from
Vs4t+2 ,Ur4t+3 , Vm4t+4 whose preimage coincide with the set {x}. �
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1 Introduction

The process of forming averages is time honoured in mathematics. For example,
the symmetric partial sums of the Fourier series of a 2π-periodic function on R do
not behave as well with respect to pointwise convergence (or convergence in L1) as
the sequence of their averages (i.e., their Cesàro means). Or, a consideration of the
averages of the sequence of powers of a given continuous linear operator leads to its
mean ergodic properties. And so on.

The linear operator C which assigns to a numerical sequence x = (xn)n =
(x1, x2, . . .) ∈ C

N the sequence of its averages

C(x) := (x1,
x1 + x2

2
, . . . ,

x1 + x2 + · · · + xn

n
, . . .) ∈ C

N, x ∈ C
N, (1)

is called the (discrete) Cesàro operator. It maps many sequence spaces X ⊆ C
N into

themselves (e.g. X = c0, c, �p for 1 < p ≤ ∞) but, also exhibits other features. For
instance, the element x = ((−1)n)n /∈ c0 yet its image C(x) ∈ c0. So, given a vector
space X ⊆ C

N one may consider the vector space

[C, X ] := {x ∈ C
N : C(x) ∈ X} ⊆ C

N (2)

generated by C and X . It was noted above that c0 is a proper subspace of [C, c0].
For some classical spaces X ⊆ C

N it can happen that X � [C, X ], eg. if X = �1,
then [C, �1] = {x ∈ C

N : C(x) ∈ �1} = {0}. On the other hand, Hardy’s inequality,
[27, Theorem 326], implies that C(�p) ⊆ �p for every 1 < p ≤ ∞, and so �p ⊆
[C, �p]. This inclusion is proper, [21]. The corresponding spaces (2) for X = �p

were considered in [33].
From the viewpoint of analysis, a desirable property of a sequence space X ⊆ C

N

is that it should be solid, that is, if x ∈ X and y ∈ C
N satisfy |y| ≤ |x |, then also

y ∈ X . Here, for z ∈ C
N, we define |z| := (|zn|)n ∈ C

N and write z ≥ 0 if z = |z|.
Hence, |y| ≤ |x |means that (|x | − |y|) ≥ 0. For this order defining its positive cone,
C

N is a (complex) locally convex Fréchet lattice for the topology of coordinatewise
convergence. For example, each space �p for 1 ≤ p ≤ ∞ is solid whereas c is not
solid. The spaces [C, X ] given by (2) are typically not solid, even if X is solid.
Note that C is a positive operator in C

N, that is, C(x) ≥ 0 whenever x ≥ 0 in C
N (in

particular, C(|x |) ≤ C(|y|) whenever |x | ≤ |y| and |C(x)| ≤ C(|x |)). For instance,
X = c0 is solid and the element x := ((−1)n)n ∈ [C, c0] but, |x | /∈ [C, c0]. Hence,
[C, c0] is not solid. So, given a solid Banach space X ⊆ C

N (with norm ‖ · ‖X ),
perhaps more relevant than [C, X ] is its solid Banach space counterpart

[C, X ]s := {x ∈ C
N : C(|x |) ∈ X},

equipped with the norm



Linear Operators on the (LB)-Sequence Spaces ces(p−), 1 < p ≤ ∞ 45

‖x‖[C,X ]s := ‖C(|x |)‖X , x ∈ [C, X ]s .

As pointed out in [21], the space [C, X ]s is the largest amongst all solid Banach
spaces Y ⊆ C

N satisfying C(Y ) ⊆ X .
When X is one of the spaces �p, 1 < p ≤ ∞, equipped with its standard norm

‖ · ‖p, then the solid Banach lattice [C, �p]s generated by C and �p is more tradition-
ally denoted by

ces(p) := {x ∈ C
N : C(|x |) ∈ �p}

with norm

‖x‖ces(p) := ‖C(|x |)‖p =
(

⊆ �∞
n=1

(
1

n

n∑
k=1

|xk |
)p)1/p

, x ∈ ces(p). (3)

The space ces(p), 1 < p < ∞, was first introduced in [34, 40] and became promi-
nent in [28], where the description of its (somewhat complicated) dual Banach space
(ces(p))′ was presented as the solution to a problem posed by the Dutch Math-
ematical Society in 1968. The first thorough investigation of the Banach spaces
ces(p), 1 < p < ∞, was carried out in [12], where other equivalent norms to (3)
were also presented; see p. 25 and p. 54 of [12]. A further equivalent norm, based on
a certain weighted block decomposition of the elements of ces(p), is investigated
in [25]. Each Banach space ces(p), 1 < p < ∞, is reflexive, p-concave and the
canonical vectors en := (δnk)k, for n ∈ N, form an unconditional basis, [12, 21]. For
every pair 1 < p, q < ∞ the space ces(p) is not isomorphic to �q , [12, Proposition
15.13]; it is also not isomorphic to ces(q) if p 	= q, [6, Proposition 3.3]. In view of
(3), Hardy’s inequality ensures that �p ⊆ ces(p) with ‖x‖ces(p) ≤ p′‖x‖p for each
x ∈ �p, where the conjugate index p′ of p is given by 1

p + 1
p′ = 1. Moreover, the

containment �p ⊆ ces(p) is proper, [21, Remark 2.2]. It is routine to verify that C
maps ces(p) continuously into �p. Many more properties of ces(p), 1 < p < ∞,
are known; see, for example, [9, 10, 35], and the references therein.

In recent years there has been a renewed interest in the Banach spaces ces(p),
1 < p < ∞, and various linear operators acting in them (e.g., the Cesàro operator,
multiplication operators, inclusion maps, convolution operators); see, for example,
[6, 11, 21, 22, 39]. In [19] a detailed investigation is made of the Banach space of
Dirichlet series defined in a fixed right half-plane of C and whose coefficients come
from ces(p), together with the multiplier operators acting in this space.

Non-normable sequence spaces X ⊆ C
N are also abundant and form an impor-

tant part of functional analysis; see, for example, [13, 14, 30, 36, 43] and the ref-
erences therein. The particular family of classical Fréchet spaces �p+ := ∩p<q�q ,
1 ≤ p < ∞, is well understood, [23, 37]. Its analogue ces(p+) := ∩p<qces(q),
1 ≤ p < ∞, was recently introduced and studied in [4]. The Fréchet spaces ces(p+)

are very different to the spaces �p+ that generate them (in the same sense that
�p generates ces(p)). Certain aspects of various linear operators (e.g., their spec-
trum, compactness, mean ergodicity, supercyclicity) acting on the spaces ces(p+),
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1 ≤ p < ∞, are investigated in [7]. The aim of this paper is to carry out a simi-
lar study for the corresponding class of (LB)-spaces given via the inductive limit
ces(p−) := ind1<q<pces(q), for 1 < p ≤ ∞, and operators acting in these spaces.
In order to summarize the main features of this paper we first require some notation
and preliminaries.

Let X and Y be a locally convex Hausdorff spaces (briefly, lcHs). The identity
operator on X is denoted by I andL (X, Y ) denotes the space of all continuous linear
operators from X into Y . If X = Y , we write L (X) = L (X, Y ) and if Y = C we
write X ′ for L (X, C), i.e., the dual space of X . The dual (or transpose) operator of
T ∈ L (X, Y ) is denoted by T ′ : Y ′ → X ′. When X ′ is equipped with the strong dual
topology β we denote it by X ′

β . In this case, T ′ ∈ L (Y ′
β, X ′

β). We denote by ΓX a
system of continuous seminorms determining the topology of X . LetLs(X) denote
L (X) endowed with the strong operator topology τs which is determined by the
seminorms T → qx (T ) := q(T x), for each x ∈ X and q ∈ ΓX . Moreover, Lb(X)

denotes L (X) equipped with the topology τb of uniform convergence on bounded
subsets of X which is determined by the seminorms T → qB(T ) := supx∈B q(T x),
for each bounded subset B ⊆ X and q ∈ ΓX .

For a lcHs X and T ∈ L (X), the resolvent set ρ(T ) of T consists of allλ ∈ C such
that R(λ, T ) := (λI − T )−1 exists inL (X). The set σ(T ) := C\ρ(T ) is called the
spectrum of T . The point spectrum σpt (T ) of T consists of all λ ∈ C such that (λI −
T ) is not injective. If we need to stress the space X , thenwewrite σ(T ; X), σpt (T ; X)

and ρ(T ; X). Given λ,μ ∈ ρ(T ) the resolvent identity R(λ, T ) − R(μ, T ) = (μ −
λ)R(λ, T )R(μ, T ) holds. Unlike for Banach spaces, it may happen that ρ(T ) = ∅ or
that ρ(T ) is not open. This is why some authors (e.g. [42]) prefer the subset ρ∗(T ) of
ρ(T ) consisting of all λ ∈ C for which there exists δ > 0 such that B(λ, δ) := {z ∈
C : |z − λ| < δ} ⊆ ρ(T ) and {R(μ, T ) : μ ∈ B(λ, δ)} is equicontinuous in L (X).
Define σ ∗(T ) := C\ρ∗(T ), which is a closed set containing σ(T ). If T ∈ L (X)

with X a Banach space, then σ(T ) = σ ∗(T ).
In Sect. 2 we establish some important properties of the (LB)-spaces ces(p−),

1 < p ≤ ∞. A remarkable property of the Banach space ces(p), which is not shared
by �p, is that x ∈ C

N belongs to ces(p) if and only if C(|x |) ∈ ces(p), [12, Theorem
20.31]. This useful property carries over to ces(p−); see Proposition 2.1(i). It is also
established (in Proposition 2.1) that ces(p−) is a (DFS)-space which is solid in C

N.
Moreover, ces(p−) is generated by �p− in the sense that [C, �p−]s = ces(p−); see
Proposition 2.1(iii). It turns out that ces(p−) coincides as a vector space and topo-
logically with a countable inductive limit of weighted �1-spaces and hence, that it is
the strong dual of a Köthe echelon space λ0(A) for a certain Köthe matrix A. Actu-
ally, λ0(A) is precisely the power series Fréchet-Schwartz space Λ∞

(1/p′)((log k)k) of
finite type 1/p′ and order infinity (cf. Theorem 2.1). It follows that the (DFS)-space
ces(p−) is not nuclear and that it is isomorphic to ces(∞−) := indnces(n + 1),
a space which is independent of p; see Corollary 2.1. In particular, ces(p−) and
ces(q−) are isomorphic lcHs’ for all choices of p, q ∈ (1,∞].

Section3 is devoted to an analysis of theCesàro operatorC : ces(p−) → ces(p−)

for 1 < p ≤ ∞. It is shown that C has no eigenvalues and its spectrum is localized
according to
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{0} ∪
{
λ ∈ C : |λ − p′

2
| <

p′

2

}
⊆ σ(C; ces(p−)) ⊆

{
λ ∈ C : |λ − p′

2
| ≤ p′

2

}
;

see Proposition 3.2. Consequently, C cannot be a compact operator. Moreover, in
Proposition 3.3 it is shown that

σ ∗(C; ces(p−)) =
{
λ ∈ C : |λ − p′

2
| ≤ p′

2

}
.

This knowledge of the spectra of C ∈ L (ces(p−)) implies that C is neither power
bounded nor mean ergodic (cf. Remark 3.2, Lemma 3.2 and Proposition 3.4). It is
also verified that C fails to be supercyclic in ces(p−); see Proposition 3.5.

Given a = (an)n ∈ C
N, the multiplication operator Ma : C

N → C
N is defined by

Ma(x) := (an xn)n for each x ∈ C
N. Section4 treats various operator theoretic as-

pects of Ma when it is restricted to ces(p−) for 1 < p ≤ ∞. The continuity of
Ma : ces(p−) → ces(p−) is completely characterized (in terms of a ∈ C

N belong-
ing to a certain family of weighted �∞-spaces) in Proposition 4.1. Furthermore, the
compactness of Ma ∈ L (ces(p−)) is fully determined in Proposition 4.2, namely
that the sequence (supk≥n |ak |)n generated by a ∈ C

N should belong to ∪p′<t�t . It
turns out that the power boundedness of Ma ∈ L (ces(p−)) is equivalent to its
mean ergodicity which in turn is equivalent to the requirements that a ∈ �∞ and
‖a‖∞ ≤ 1; see Proposition 4.3. Finally, the spectra of Ma (cf. Proposition 4.4) are
given by σpt (Ma; ces(p−)) = {an : n ∈ N} and

σ(Ma; ces(p−)) = σ ∗(Ma; ces(p−)) = {an : n ∈ N}.

Asa consequence,whenever Ma ∈ L (ces(p−)) is compact, then necessarilya ∈ c0;
the converse is not true: For the purpose of comparison the continuous (and compact)
multiplication operators Ma : �p− → �p− are also determined; see Proposition 4.5.

The aim of Sect. 5 is to identify all pairs 1 < p, q ≤ ∞ for which the natural
inclusion operator and theCesàro operatormap X intoY , where X ∈ {�p−, ces(p−)}
and Y ∈ {�q−, ces(q−)}. By the Closed Graph Theorem these operators are then
necessarily continuous.Of particular interest is the boundedness and the compactness
of suchoperators (in the sense ofGröthendieck). Thepossible values of p, q forwhich
this is the case are precisely determined; see Propositions 5.2 and 5.4.

The final section collects together some relevant properties of the spaces �p− and
ces(p−), 1 < p ≤ ∞, when they are viewed as locally solid, lc-Riesz spaces within
C

N (for its coordinatewise order). Differences are to be expected since ces(p−) is a
Montel space whereas �p− is not. The fact that they are the strong dual of suitable
Fréchet lattices plays an important role. The relevance of such properties is due to
the fact the Cesàro operator and inclusion maps are positive operators between Riesz
spaces, as are the multiplication operators Ma whenever a ≥ 0.
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2 The Space ces( p−)

Let p ∈ (1,∞]. We define

ces(p−) := ∪1<q<pces(q)

and endow ces(p−)with the inductive limit topology. The union is strictly increasing
in the sense that ces(q1) � ces(q2) whenever 1 < q1 < q2 < p; see the discussion
prior to Proposition 3.3 in [6]. If 1 < pn < pn+1 < p with pn → p as n → ∞,
then ces(p−) = indnces(pn) is an (LB)-space, i.e., a countable inductive limit of
Banach spaces, [36, pp. 290–291]. Since the inclusion ces(p) ⊆ ces(q), for p < q,
is compact, [6, Proposition 3.4(ii)], the space ces(p−) is a (DFS)-space, i.e., the
strong dual of a Fréchet-Schwartz space, [36, Proposition 25.20]. In particular, it is
complete, regular and Montel, [13, pp. 61–62]. Since each Banach space ces(p),
1 < p < ∞, is solid in C

N, the space ces(p−) is also solid in C
N.

Consider the (LB)-space �p− := indn�rn , where 1 ≤ rn < rn+1 < p and rn ↑ p.
Then �p− ⊆ ces(p−) with a continuous inclusion since �q ⊆ ces(q) for all q > 1
with a continuous inclusion (by Hardy’s inequality).

The Cesàro operator C maps ces(p−) continuously into �p− since C : ces(q) →
�q is continuous for eachq > 1; this follows from [36, Proposition 24.7], for example.
Since also �p− ⊆ ces(p−) continuously, we deduce that C : ces(p−) → ces(p−)

is continuous.

Proposition 2.1 Let 1 < p ≤ ∞.

(i) Let x ∈ C
N. Then x ∈ ces(p−) if and only if C(|x |) ∈ ces(p−).

(ii) ces(p−) is a (DFS)-space, which is solid in the (Fréchet) lattice C
N. Moreover,

C(ces(p−)) ⊆ �p− ⊆ ces(p−).

In addition, the canonical vectors {en}∞n=1 are a Schauder basis for ces(p−).
(iii) Let X be any solid lcHs contained in C

N such that C(X) ⊆ �p−. Then X ⊆
ces(p−). Accordingly, [C, �p−]s = ces(p−).

(iv) Let X be any solid lcHs contained in C
N such that C(X) ⊆ ces(p−). Then

X ⊆ ces(p−). Accordingly, [C, ces(p−)]s = ces(p−).

Proof (i) This is a direct consequence of [12, Theorem 20.31] and the definition of
ces(p−).

(ii) All claims (except the one about {en}∞n=1) follow from the discussion prior to
Proposition 2.1.

Recalling that {en}∞n=1 is a basis for each Banach space ces(q), 1 < q < ∞, and
that the natural inclusion ces(q) ⊆ ces(p−) is continuous for each 1 < q < p, it
follows that {en}∞n=1 is a Schauder basis for ces(p−).

(iii) If x ∈ X , then also |x | ∈ X , as X is solid in C
N. Then C(|x |) ∈ �p− ⊆

ces(p−). Thus, x ∈ ces(p−) by part (i). Since C maps ces(p−) continuously into
�p−, we can conclude that [C, �p−]s = ces(p−).
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(iv) This is again a consequence of part (i). Indeed, if x ∈ X , then |x | ∈ X and
hence, C(|x |) ∈ ces(p−) by assumption. So, x ∈ ces(p−). Since C(ces(p−)) ⊆
ces(p−), it follows that [C, ces(p−)]s = ces(p−). This completes the proof.

We now show that ces(p−) coincides algebraically and topologically with a
countable inductive limit k1 of weighted �1-spaces. This co-echelon space is the
strong dual of a power series space Λ∞

(1/p′)((log k)k) of finite type 1/p′ and infinite
order. This requires some explanation.

Given p ∈ (1,∞), set pn := (p − 1
n ) for n ≥ n(p) so that 1 < pn < pn+1 < p

for each n ≥ n(p), where n(p) is the smallest n ∈ N such that (p − 1
n ) > 1. If p =

∞, we set pn := n + 1 for each n ∈ N. In both cases pn ↑ p and so p′
n ↓ p′. Consider

the sequence of strictly decreasing weights vp := (vn)n , where vn : N → (0,∞) is
given by vn(k) := k−1/p′

n for k, n ∈ N. Clearly, vn+1(k) < vn(k) for each k, n ∈ N.
For each n ∈ N, consider the weighted �1-space

�1(vn) :=
{

x ∈ C
N : ‖x‖�1(vn) :=

∞∑
k=1

vn(k)|xk | < ∞
}

,

which is a solid Banach space relative to the norm ‖ · ‖�1(vn). Clearly �1(vn) ⊆
�1(vn+1) with a continuous inclusion. Accordingly, k1(vp) := indn�1(vn) is a count-
able inductive limit of Banach spaces. It coincides with the strong dual of the Köthe
echelon space λ0(A) := projnc0(1/vn); see [14] and [36, Chap.27], where λ0(A) is
denoted by c0(A). For each n ∈ N, set an(k) := (1/vn(k)) = k1/p′

n , for each k ∈ N,
in which case (an)n is a strictly increasing sequence of weights on N. Accordingly,
λ0(A) = projnc0(an) coincides with the power series spaceΛ∞

(1/p′)((log k)k) of finite
type 1/p′ and infinite order given by

Λ∞
(1/p′)((log k)k) :=

{
y ∈ C

N : |||y|||n := sup
k∈N

|yk |k1/p′
n < ∞ ∀n ∈ N

}
.

This is a Fréchet-Schwartz space; see [36, Propositions 24.18 and 27.10]. Moreover,
the canonical vectors {en}∞n=1 form a Schauder basis in Λ∞

(1/p′)((log k)k). Indeed, for

each k, n ∈ N we have k1/p′
n = k1/p′

n+1kαn with αn := p′
n+1−p′

n

p′
n p′

n+1
< 0. It follows, for

n ∈ N and a given x ∈ Λ∞
(1/p′)((log k)k), that

|||x −
N∑

j=1

x j e j |||n = sup
k>N

|xk |k1/p′
n+1kαn ≤ (N + 1)αn |||x |||n+1, N ∈ N.

Accordingly, limN→∞
∑N

j=1 x j e j = x in Λ∞
(1/p′)((log k)k), as required.

Theorem 2.1 Let 1 < p ≤ ∞. The (LB)-space ces(p−) coincides algebraically
and topologically with k1(vp) = (Λ∞

(1/p′)((log k)k))
′
β .
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Proof Fix 1 < p ≤ ∞. It suffices to establish the following two facts, where pn :=
1 − 1

n for all large enough n if p < ∞ and pn := n + 1 if p = ∞. Namely, for each
n large enough,

(a) ces(pn) ⊆ �1(vn+1) with a continuous inclusion, and
(b) �1(vn) ⊆ ces(pn+1) with a continuous inclusion, [36, Corollary 24.35].
We first verify the fact (a). Fix n ∈ N and x ∈ ces(pn). For q > 1, Lemma 4.7 of

[12] states that 1
(q−1)kq−1 <

∑∞
j=k

1
jq for k ∈ N. Setting q := 1 + 1

p′
n+1

, in which case
1

(q−1)kq−1 = p′
n+1k−1/p′

n+1 , it follows from this inequality that

p′
n+1‖x‖�1(vn+1) = p′

n+1

∞∑
k=1

|xk |k−1/p′
n+1 ≤

∞∑
k=1

|xk |
⎛
⎝ ∞∑

j=k

1

j
j−1/p′

n+1

⎞
⎠

=
∞∑
j=1

⎛
⎝1

k

k∑
j=1

|x j |
⎞
⎠ j−1/p′

n+1 .

Now Hölder’s inequality yields

p′
n+1‖x‖�1(vn+1) ≤

⎛
⎝ ∞∑

j=1

⎛
⎝1

k

k∑
j=1

|x j |
⎞
⎠

pn
⎞
⎠

1/pn
⎛
⎝ ∞∑

j=1

j−p′
n/p′

n+1

⎞
⎠

1/p′
n

≤
⎛
⎝ ∞∑

j=1

j−p′
n/p′

n+1

⎞
⎠

1/p′
n

‖x‖ces(pn).

Since p′
n

p′
n+1

> 1, we have
∑∞

j=1 j−p′
n/p′

n+1 < ∞ and the proof of (a) is complete.
To establish the fact (b), fix n ∈ N and x ∈ �1(vn). For k ∈ N we have

1

k

k∑
j=1

|x j | = 1

k

k∑
j=1

|x j |
j1/p′

n
j1/p′

n ≤ 1

k
‖x‖�1(vn)k

1/p′
n = k−1/pn ‖x‖�1(vn).

This inequality implies that

‖x‖pn+1

ces(pn+1)
=

∞∑
k=1

⎛
⎝1

k

k∑
j=1

|x j |
⎞
⎠

pn+1

≤ ‖x‖pn+1

�1(vn)

∞∑
k=1

1

k pn+1/pn
.

But, K := ∑∞
k=1

1
k pn+1/pn < ∞ because pn < pn+1 and so

‖x‖ces(pn+1) ≤ K 1/pn+1‖x‖�1(vn).

Fact (b) is thereby established.
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Remark 2.1 Since Λ∞
(1/p′)((log k)k) is a Fréchet-Schwartz space, it equals its bidual.

Accordingly, Theorem 2.1 implies that

(ces(p−))′β = (k1(vp))
′
β = Λ∞

(1/p′)((log k)k).

Corollary 2.1 Let 1 < p ≤ ∞. Then ces(p−) is a (DFS)-space, but it is not nuclear.
Moreover, it is not isomorphic to �q− for each q > 1, whereas it is isomorphic to
ces(∞−).

Proof That ces(p−) is a (DFS)-space has been already shown. This implies that it
cannot be isomorphic to �q− for each q > 1 as �q− is not Montel.

Suppose thatΛ∞
(1/p′)((log k)k) is nuclear. Recall that {ek}∞k=1 is a Schauder basis of

Λ∞
(1/p′)((log k)k) for the topology given by the norms {||| · |||n : n ∈ N}. With n = 1

it follows from the Gröthendieck–Pietsch Theorem, [36, Theorem 28.15], that there
exists m > 1 such that

∞∑
k=1

|||ek |||1
|||ek |||m =

∞∑
k=1

k1/p′
1

k1/p′
m

=
∞∑

k=1

1

k1/p′
m−1/p′

1
< ∞.

This is impossible as ( 1
p′

m
− 1

p′
1
) < 1

p′
m

∈ (0, 1). So, Λ∞
(1/p′)((log k)k) is not nuclear.

Since ces(p−) = (Λ∞
(1/p′)((log k)k))

′
β , it follows that ces(p−) cannot be nuclear

either, [38, p. 78 Theorem].
All finite type power series spaces Λ∞

r (α), with α fixed, are diagonally isomor-
phic; see the argument in [36, p. 358]. This implies that

ces(p−) = (Λ∞
(1/p′)((log k)k))

′
β

is isomorphic to (Λ∞
(1)((log k)k))

′
β = ces(∞−).

3 The Cesàro Operator on ces( p−)

The aim of this section is to make a detailed analysis of the Cesàro operator
C : ces(p−) → ces(p−) for 1 < p ≤ ∞. We first examine its spectrum and then,
with this information available, the linear dynamics and mean ergodicity of C can be
investigated.

We begin with an abstract result concerning the spectra of operators in (LB)-
spaces, [5, Lemma 5.2].

Lemma 3.1 Let E = indn En be a Hausdorff inductive limit of Banach spaces. Let
T ∈ L (E) satisfy the following condition:

(A) For each n ∈ N the restriction Tn of T to En maps En into itself and Tn ∈
L (En).

Then the following properties are satisfied.
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(i) σpt (T ; E) = ∪n∈Nσpt (Tn; En).
(ii) σ(T ; E) ⊆ ∩m∈N

(∪∞
n=mσ

(
Tn; En

))
.

(iii) If ∪∞
n=mσ(Tn; En) ⊆ σ(T ; E) for some m ∈ N, then

σ ∗(T ; E) = σ(T ; E).

We will also require the following fact, [21, Theorem 5.1]

Theorem 3.1 Let p ∈ (1,∞). The Cesàro operator C ∈ L (ces(p)) and ‖C‖ = p′.
Moreover, σpt (C; ces(p)) = ∅ and

σ(C; ces(p)) = {λ ∈ C : |λ − p′

2
| ≤ p′

2
}

with Im(λI − C) 	= ces(p) whenever λ ∈ C satisfies |λ − p′
2 | <

p′
2 .

Since ces(p−) = indnces(pn)with 1 < pn ↑ p, we observe that the Cesàro oper-
atorC ∈ L (ces(p−)) satisfies all the assumptions ofLemma3.1withCn := C|ces(pn)

for each n ∈ N.

Proposition 3.1 Let p ∈ (1,∞]. Then σpt (C; ces(p−)) = ∅.

Proof This is a direct consequence of Lemma 3.1(i) and Theorem 3.1.

Proposition 3.2 Let p ∈ (1,∞]. Then

{0} ∪ {λ ∈ C : |λ − p′

2
| <

p′

2
} ⊆ σ(C; ces(p−)) ⊆ {λ ∈ C : |λ − p′

2
| ≤ p′

2
}.

Proof Wefirst establish the second inclusion. So, fixm ∈ N. If n ≥ m, then p′
n < p′

m
and so, by Theorem 3.1, we have

σ(Cn; ces(pn)) = {λ ∈ C : |λ − p′
n

2
| ≤ p′

n

2
} ⊆ {λ ∈ C : |λ − p′

m

2
| ≤ p′

m

2
}.

Accordingly,

∪∞
n=m{λ ∈ C : |λ − p′

n

2
| ≤ p′

n

2
} ⊆ {λ ∈ C : |λ − p′

m

2
| ≤ p′

m

2
}.

This implies that

∩∞
m=1

(
∪∞

n=m{λ ∈ C : |λ − p′
n

2
| ≤ p′

n

2
}
)

⊆ ∩∞
m=1{λ ∈ C : |λ − p′

m

2
| ≤ p′

m

2
}.

But, p′
m ↓ p′ and so, by Lemma 3.1(ii), we obtain
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σ(C; ces(p−)) ⊆ {λ ∈ C : |λ − p′

2
| ≤ p′

2
}.

Concerning the first inclusion, observe thatC is not surjective on ces(p−). Indeed,
( 1−(−1)k

2k )k ∈ �p− ⊆ ces(p−) for each p > 1. But,

C−1((
1 − (−1)k

2k
)k) = ((−1)k+1)k /∈ ∪q>1�q ,

thereby implying that C−1
((

1−(−1)k

2k

)
k

)
= ((−1)k+1)k /∈ ces(p−). Since C is an

isomorphism on C
N, it follows that C is not surjective on ces(p−) and so λ = 0 ∈

σ(C; ces(p−)).
Letλ ∈ C\{0}. Ifλ ∈ ρ(C; ces(p−)), then (λI − C)(ces(p−)) = ces(p−). Since

ces(p−) is dense in ces(p), it follows (with the bar denoting the closure in ces(p))
that

ces(p) = ces(p−) = (λI − C)(ces(p−)) ⊆ (λI − C)(ces(p)) ⊆ ces(p).

Thus, |λ − p′
2 | ≥ p′

2 by Theorem 3.1. Accordingly, |λ − p′
2 | <

p′
2 implies that λ ∈

σ(C; ces(p−)).

Remark 3.1 An operator T ∈ L (X, Y ) between lcHs’ X and Y is called compact if
there exists a neighbourhood of 0 in X whose image under T is relatively compact
in Y .

(i) Proposition 3.2 implies that C : ces(p−) → ces(p−) has uncountable spec-
trum and so it cannot be compact (byGröthendieck’s theorem), [24, Theorem9.10.2],
[26, p. 204].

(ii) Let 1 < p < ∞. Then for the dual operator C′ of C ∈ L (ces(p−)) we have

{
λ ∈ C : |λ − p′

2
| <

p′

2

}
⊆ σpt (C

′; (ces(p−))′).

Indeed, ces(p−) ⊆ ces(p) and so (ces(p))′ ⊆ (ces(p−))′ ⊆ C
N. Moreover, C′ is

the “same” operator in all three spaces, namely C′(x) = (
∑∞

k=n
xk
k )n . So,

σpt (C
′; (ces(p))′) ⊆ σpt (C

′; (ces(p−))′).

The conclusion follows from the proof ofTheorem3.1 above as given in [21, Theorem
5.1], where it is shown that {λ ∈ C : |λ − p′

2 | <
p′
2 } ⊆ σpt (C

′; (ces(p))′).

Proposition 3.3 Let p ∈ (1,∞]. Then the spectrum

σ ∗(C; ces(p−)) = {λ ∈ C : |λ − p′

2
| ≤ p′

2
}.
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Proof Fix p ∈ (1,∞]. In general, σ(C; ces(p−)) ⊆ σ ∗(C; ces(p−)) and so, by
Proposition 3.2, we have

{
λ ∈ C : |λ − p′

2
| ≤ p′

2

}
⊆ σ ∗(C; ces(p−)). (4)

Fix λ ∈ C with |λ − p′
2 | >

p′
2 . Recall that ces(p−) = indnces(pn) with p′

n ↓ p′.
So, there exist m ∈ N (i.e., p′

m > p′ > 1) and δ > 0 such that

B(λ, δ) ∩
{
α ∈ N : |α − p′

m

2
| ≤ p′

m

2

}
= ∅. (5)

By Proposition 3.2, for each μ /∈ {α ∈ N : |α − p′
2 | ≤ p′

2 } the inverse operator
R(μ,C) = (μI − C)−1 ∈ L (ces(p−)) exists. So, H := {R(μ,C) : μ ∈ B(λ, δ)} ⊆
L (ces(p−)) is well defined. Moreover, (5) implies (as p′

n ↓ p′) that

B(λ, δ) ∩
{
α ∈ N : |α − p′

n

2
| ≤ p′

n

2

}
= ∅, ∀n ≥ m.

The claim is that H is equicontinuous in L (ces(p−)). For this, it suffices to show
that {R(μ,C)(x) : μ ∈ B(λ, δ} is a bounded set in ces(p−) for each x ∈ ces(p−).
So, fix x ∈ ces(p−). Select n ≥ m such that x ∈ ces(pn). Since Cn := C|ces(pn) ∈
L (ces(pn)), the spectrum σ(Cn; ces(pn)) = {μ ∈ C : |μ − p′

n
2 | ≤ p′

n
2 } (cf. Theorem

3.1) and B(λ, δ) ∩ σ(Cn; ces(pn)) = ∅. Moreover, via the spectral theory of Banach
space operators we have that {R(μ,C)(x) : μ ∈ B(λ, δ} is a bounded set in ces(pn).
Hence, it is also a bounded set in ces(p−). This shows that λ ∈ ρ∗(C; ces(p−)) and
thereby establishes the reverse containment to that in (4).

Open Problem: It would be interesting to know precisely which non-zero points
of the circle {λ ∈ C : |λ − p′

2 | = p′
2 } belong to σ(C; ces(p−)), for 1 < p ≤ ∞.

An operator T ∈ L (X), with X a lcHs, is called power bounded if {T n}∞n=1 is an
equicontinuous subset ofL (X). Given T ∈ L (X), the averages

T[n] := 1

n

n∑
m=1

T m, n ∈ N,

are called the Cesàro means of T . They satisfy the identity

T n

n
= T[n] − (n − 1)

n
T[n−1], n ∈ N, (6)

where T[0] := I . The operator T is said to be mean ergodic (resp., uniformly mean
ergodic) if {T[n]}∞n=1 is a convergent sequence in Ls(X) (resp., in Lb(X)); in view
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of (6) it follows that necessarily T n

n → 0 inLs(X) (resp., inLb(X)) for n → ∞. A
relevant text for mean ergodic operators is [32].

Proposition 3.4 Let p ∈ (1,∞]. The Cesàro operator C ∈ L (ces(p−)) is not
mean ergodic and not power bounded.

Proof Assume that C ∈ L (ces(p−)) is mean ergodic. Since ces(p−) is barrelled,
[36, Theorem 24.16], it follows from Theorem 2.4 of [1] that

ces(p−) = Ker(I − C) ⊕ Im(I − C). (7)

It is routine to check that if (I − C)(x) = 0 for some x ∈ C
N, then x = x1u, where

u := (1, 1, . . .). But, if x ∈ ces(p−), then x ∈ ces(q) for some q ∈ (1, p). Since
C(ces(q)) ⊆ �q , it follows that C(x) ∈ �q , that is, x ∈ �q (as C(x) = x). But, x =
x1u ∈ �q if and only if x1 = 0 (equivalently, x = 0). So, Ker(I − C) = {0} which
implies, via (7), that

ces(p−) = Im(I − C). (8)

It is straight-forward to verify that Im(I − C) ⊆ Z := {x ∈ ces(p−) : x1 = 0}.
Since Z is also closed, we can conclude that Im(I − C) ⊆ Z . This contradicts (8) as
Z is a proper closed subspace of ces(p−). Accordingly, C is not mean ergodic.

Since ces(p−) is a reflexive (LB)-space, it follows from [1, Corollary 2.7] that C
is also not power bounded.

Remark 3.2 By Remark 3.1(ii) if 1 < p < ∞, then λ := 1+p′
2 satisfies |λ| > 1 and

λ ∈ σpt (C
′; (ces(p−))′). The following Lemma 3.2 then provides an alternative

proof of the fact that C ∈ L (ces(p−)) is neither power bounded nor mean ergodic.
Since σ(C; ces(∞−)) ⊆ {λ ∈ C : |λ − 1

2 | ≤ 1
2 } ⊆ U , with U := {z ∈ C : |z| ≤ 1}

(cf. Proposition 3.2) the above argument does not apply to p = ∞ (in which case
1+p′
2 = 1).

Lemma 3.2 Let X be a lcHs and let T ∈ L (X). If

σpt (T
′; X ′) ∩ {λ ∈ C : |λ| > 1} 	= ∅, (9)

then the sequence {T n/n}∞n=1 does not converge to 0 in Ls(X). In particular, T is
neither power bounded nor mean ergodic.

Proof Let λ belong to (9). Then there exists u ∈ X ′\{0} satisfying T ′u = λu. Select
any x ∈ X\{0} such that 〈x, u〉 = 1. Then

〈
T n(x)

n
, u

〉
= 1

n
〈x, (T ′)n(u)〉 = λn

n
, n ∈ N.

Since |λ| > 1, the sequence { T n(x)

n }∞n=1 fails to converge to 0 in X . As noted prior to
Proposition 3.4, T cannot be mean ergodic. Furthermore, if {T n/n}∞n=1 is not a null
sequence inLs(X), then T cannot be power bounded.
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An operator T ∈ L (X), with X a separable lcHs, is called hypercyclic if there
exists x ∈ X such that its orbit {T n(x) : n ∈ N0} is dense in X , whereN0 := {0} ∪ N.
If, for some z ∈ X , its projective orbit {λT n(z) : λ ∈ C, n ∈ N0} is dense in X , then
T is called supercyclic. Clearly, hypercyclicity implies supercyclicity.

Proposition 3.5 Let p ∈ (1,∞]. The Cesàro operator C ∈ L (ces(p−)) is not
supercyclic.

Proof Since ces(p−) is dense inC
N and ces(p−) ⊆ C

N continuously, it follows that
C is not supercyclic on ces(p−) because it is not supercyclic on C

N, [3, Proposition
4.3].

Remark 3.3 For 1 < p < ∞ an alternative proof of Proposition 3.5 is possible.
According to Remark 3.1(ii) the dual operator C′ of C ∈ L (ces(p−)) has at
least two linearly independent eigenvectors. Since supercyclicity is the same as 1-
supercyclicity in the sense of [18], it follows from Theorem 2.1 of [18] that C is not
supercyclic.

4 Multipliers on ces( p−)

Given a = (an)n ∈ C
N, the multiplication (or diagonal) operator Ma : C

N → C
N

is defined by Ma(x) := (an xn)n , for x ∈ C
N. Such operators on Banach sequence

spaces X ⊆ C
N have been dealt with in detail in [12], for example; see also [6]. For

various classical Banach spaces such as �p, 1 ≤ p ≤ ∞, c0 and c, we refer to [41,
§4.51]. For X the Fréchet space �p+ or ces(p+) see [7]. Also [20] is relevant. Our aim
in this section is to investigate the casewhen X = ces(p−) for 1 < p ≤ ∞.Webegin
with the following result; see [12, pp. 69–70], after noting that cop(p) = ces(p), for
p > 1, [12, p. 26].

Theorem 4.1 (i) Let 1 < p ≤ q < ∞. Then Ma : ces(p) → ces(q) is continuous
if and only if (akk(1/q)−(1/p))k ∈ �∞.

(ii) Let 1 < r < q < ∞ and define s by 1
s = 1

r − 1
q . Then Ma : ces(q) → ces(r) is

continuous if and only if (supk≥n |ak |)n ∈ �s .

An operator T ∈ L (X, Y ) with X , Y lcHs’ is called bounded if there exists a
neighbourhood of 0 in X whose image under T is a bounded subset of Y . If Y =
indmYm is a regular (LB)-space, then a set B ⊆ Y is bounded if and only if there exists
m ∈ N such that B ⊆ Ym and B is bounded in the Banach space Ym . The following
result follows from the various definitions involved. For part (i) the Gröthendieck
Factorization Theorem is required, [13, Theorem 2, p. 76], [36, Theorem 24.33].

Lemma 4.1 Let X = indn Xn and Y = indmYm be two (LB)-spaces with increasing
unions of Banach spaces X = ∪∞

n=1Xn and Y = ∪∞
m=1Ym. Let T : X → Y be a linear

map.
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(i) T is continuous if and only if for each n ∈ N there exists m ∈ N such that
T (Xn) ⊆ Ym and the restriction T : Xn → Ym is continuous.

(ii) Assume that Y is a regular (LB)-space. Then T is bounded if and only if there
exists m ∈ N such that T (Xn) ⊆ Ym and T : Xn → Ym is continuous for all
n ≥ m.

We can now characterize the multiplication operators in L (ces(p−)).

Proposition 4.1 Let a ∈ C
N and p ∈ (1,∞]. The operator Ma : ces(p−) →

ces(p−) is continuous if and only if for each q ∈ (1, p) there exists r ∈ [q, p) such
that (akk(1/r)−(1/q))k ∈ �∞.

Proof This is a direct consequence of Theorem 4.1(i) and Lemma 4.1(i).

Proposition 4.1 can be formulated in terms of weighted �∞-spaces. Namely, given
1 < p ≤ ∞ and a ∈ C

N, the operator Ma ∈ L (ces(p−)) if and only if

a ∈ ∩1<q<p(∪q≤r<p�∞(wr,q)),

where the weight wr,q(k) := k
1
r − 1

q for k ∈ N. It follows from this criterion that Ma ∈
L (ces(p−)) for every a ∈ �∞. On the other hand, a := (log(n))n /∈ �∞ but Ma ∈
L (ces(p−)) for every 1 < p ≤ ∞.

Since ces(p−), 1 < p ≤ ∞, is a Montel space, there is no distinction between
the bounded operators and the compact operators in L (ces(p−)).

Proposition 4.2 Let a ∈ C
N and p ∈ (1,∞]. The operator Ma ∈ L (ces(p−)) is

compact (equivalently, bounded) if and only if there is t > p′ such that (supk≥n |ak |)n

∈ �t .

Proof Case (i): 1 < p < ∞. Assume first that (supk≥n |ak |)n ∈ �t for some t > p′.
Then pt

p+t > 1. Put ε := p2

p+t and r := p − ε. Clearly r < p. Moreover, r = p − ε =
p − p2

p+t = pt
p+1 > 1. So, 1 < r < p. Given any q ∈ (r, p) = (p − ε, p) define s by

1
s = 1

r − 1
q . Then

1
p < 1

q and so

1

s
= 1

p − ε
− 1

q
<

1

p − ε
− 1

p
= ε

(p − ε)p
.

Thus, s >
(p−ε)p

ε
= t and hence, �t ⊆ �s . Accordingly, (supk≥n |ak |)n ∈ �s and so

Ma ∈ L (ces(q), ces(r)) via Theorem 4.1(ii). Now Lemma 4.1 ensures that Ma ∈
L (ces(p−)) is compact.

Conversely, assume that the operator Ma ∈ L (ces(p−)) is compact. By Lemma
4.1(ii) and Theorem 4.1(ii) there exists r ∈ (1, p) such that for every q ∈ (r, p) we
have (supk≥n |ak |)n ∈ �s , where 1

s = 1
r − 1

q . Select any q ∈ (r, p). For t specified by
1
t = 1

r − 1
q we have 1

t < (1 − 1
p ) = 1

p′ and so t > p′. Accordingly, (supk≥n |ak |)n ∈
�t .
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Case (ii): p = ∞. Assume there exists t > p′ = 1with (supk≥n |ak |)n ∈ �t . Select
any r > t (i.e., 1

r < 1
t ). If q ∈ (r,∞), then s defined by 1

s = 1
r − 1

q satisfies 1
s <

( 1t − 1
q ) < 1

t , that is, t < s. Accordingly, �t ⊆ �s and so (supk≥n |ak |)n ∈ �s , which
implies via Theorem 4.1(ii) that Ma ∈ L (ces(q), ces(r)). Now Lemma 4.1 ensures
that Ma ∈ L (ces(p−)) is compact.

The proof of the converse as given in Case (i) also applies for p = ∞.

Remark 4.1 For each 1 < p ≤ ∞ Proposition 4.2 can be formulated by saying that
Ma ∈ L (ces(p−)) is compact if and only if (supk≥n |ak |)n ∈ �∞− = ∪q>1�q , where
�∞− is independent of p.

We now turn our attention to the mean ergodic properties of the operators Ma

acting in ces(p−).

Proposition 4.3 Let a ∈ C
N and p ∈ (1,∞] satisfy Ma ∈ L (ces(p−)). The fol-

lowing conditions are equivalent.

(i) a ∈ �∞ and ‖a‖∞ ≤ 1.
(ii) The operator Ma is power bounded.
(iii) The operator Ma is uniformly mean ergodic.
(iv) The operator Ma is mean ergodic.

Proof Recall that ces(p−) = indnces(pn) with 1 < pn ↑ p.
(i)⇒(ii). Since a ∈ �∞ and ‖a‖∞ ≤ 1, we have that Ma ∈ L (ces(pn)) and

‖Ma‖op ≤ ‖a‖∞ ≤ 1, for each n ∈ N, [6, Lemma 2.6]. Let x ∈ ces(p−), in which
case x ∈ ces(pn) for some n ∈ N. Then ‖Mm

a (x)‖ces(pn) ≤ ‖x‖ces(pn) and
so {Mm

a (x)}∞m=1 is contained and bounded in the Banach space ces(pn). Hence, it is
also bounded in ces(p−). Since ces(p−) is barrelled, we conclude that {Mm

a }∞m=1 is
equicontinuous.

(ii)⇒(iii). This follows from the fact that the (LB)-space ces(p−) is Montel, [1,
Proposition 2.8].

(iii)⇒(iv). Immediate from the definitions.
(iv)⇒(i). Since Ma is mean ergodic, (6) implies (with T := Ma) that, for each x ∈

ces(p−), the sequence ( 1k Mk
a (x))k converges to 0 in ces(p−). Taking x := e j , for

j ∈ N fixed, we conclude that 1
k ak

j e j → 0 in ces(p−) as k → ∞. Since ces(p−) ⊆
C

N continuously, also 1
k ak

j e j → 0 in C
N as k → ∞ (i.e. coordinatewise) which

implies that 1
k ak

j → 0 in C as k → ∞. Hence, |a j | ≤ 1. Since j ∈ N is arbitrary, it
follows that a ∈ �∞ and ‖a‖∞ ≤ 1.

Proposition 4.4 Let a ∈ C
N and p ∈ (1,∞] satisfy Ma ∈ L (ces(p−)).

(i) σpt (Ma; ces(p−)) = {ak : k ∈ N}.
(ii) λ ∈ ρ(Ma; ces(p−)) if and only if for each 1 < q < p there exist r ∈ [q, p)

and ε > 0 such that |λ − ak | ≥ εk
1
r − 1

q for each k ∈ N. In this case M−1
λ−a =

M(1/(λ−a)) ∈ L (ces(p−)).
(iii) σ(Ma; ces(p−)) = σ ∗(Ma; ces(p−)) = {ak : k ∈ N}.
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Proof (i) It is clear from Ma(ek) = akek , for k ∈ N, that

{ak : k ∈ N} ⊆ σpt (Ma; ces(p−)).

On the other hand, if there is a non-zero x ∈ ces(p−) and λ ∈ C with Ma(x) = λx ,
then (ak xk)k = Ma(x) = λx = (λxk)k and so λ ∈ {ak : k ∈ N}.

(ii) Clearly λ ∈ ρ(Ma; ces(p−)) if and only if λ /∈ {ak : k ∈ N} and ψλ :=
( 1

λ−ak
)k ∈ C

N satisfies Mψλ
∈ L (ces(p−)). The conclusion is then immediate from

Proposition 4.1. Clearly M−1
λ−a = M(1/(λ−a)).

(iii) Part (i) implies that {ak : k ∈ N} ⊆ σ(Ma; ces(p−)). Therefore,

{ak : k ∈ N} ⊆ σ(Ma; ces(p−)) ⊆ σ ∗(Ma; ces(p−)).

Now take λ /∈ {ak : k ∈ N}. Then there exists ε > 0 such that |λ − ak | ≥ ε for each
k ∈ N. If |μ − λ| < ε/2, then |μ − ak | ≥ ε/2 for each k ∈ N. Let 1 < q < p. Part (ii)
implies (taking r := q there for each r < p) that μ ∈ ρ(Ma; ces(p−)) and M−1

μ−a =
M1/(μ−a). Moreover, ‖M1/(μ−a)(x)‖ces(r) ≤ (2/ε)‖x‖ces(r), for x ∈ ces(r) ⊆
ces(p−). Since ces(p−) = ind1<r<pces(r), we conclude that {M−1

μ−a : |μ − λ| <

ε/2} is bounded in Ls(ces(p−)) and hence, equicontinuous in L (ces(p−)). Ac-
cordingly, λ /∈ σ ∗(Ma; ces(p−)).

If T ∈ L (X), with X a lcHs, is compact, then σ(T ; X) is a compact sub-
set of C and every non-zero point of σ(T ; X) is isolated, [24, Theorem 9.10.2],
[26, p. 204]. For a given p ∈ (1,∞] this implies, via Proposition 4.4(iii), that
if Ma ∈ L (ces(p−)) is compact, then necessarily a ∈ c0. The converse is not
true. Indeed, since (|an|)n ≤ (supk≥n |ak |)n , it follows from Proposition 4.2 that
if Ma ∈ L (ces(p−)) is compact, then necessarily a ∈ �t for some t > p′. But
∪1≤t<∞�t ⊆ c0 is a proper containment. So, there exist elements a ∈ c0 such that, for
every p ∈ (1,∞], the operator Ma ∈ L (ces(p−)) (cf. the discussion after Propo-
sition 4.1) but Ma is not compact.

We end this section by characterizing the multipliers for �p− and the sub-
class of those which are compact operators. For 1 ≤ r < ∞ define M (�r+) :=
{a ∈ C

N : Ma ∈ L (�r+)} and for 1 < p ≤ ∞ define M (�p−) := {a ∈ C
N : Ma ∈

L (�p−)}. The subclass of compact multipliers are defined by

Mc(�r+) := {a ∈ M (�r+) : Ma is compact in L (�r+)}

and
Mc(�p−) := {a ∈ M (�p−) : Ma is compact in L (�p−)}.

It is known that
M (�r+) = �∞ and Mc(�r+) = ∪s>1�s; (10)

see [16, Corollary 5.3] and [7, Proposition 17], respectively.
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Proposition 4.5 Let 1 < p ≤ ∞. Then

M (�p−) = �∞ and Mc(�p−) = ∪s>1�s . (11)

Proof Recall that (�p−)′β = �p′+ and (�r+)′β = �r ′− for 1 ≤ r < ∞. Since the dual
operator of Ma ∈ L (�r+) is again Ma , but considered as an element of L (�r ′−),
and the dual operator of Ma ∈ L (�p−) is again Ma , but considered as an element of
L (�p′+), we see that the first equality in (11) follows from the first equality in (10).

Concerning the second equality in (11), let a ∈ ∪s>1�s . It follows from (10) that
Ma ∈ L (�p′+) with Ma compact. By Lemma 4.2 below, the dual operator M ′

a ∈
L (�p−) is compact, that is, Ma ∈ L (�p−) is compact. Accordingly, a ∈ Mc(�p−).

Conversely, let a ∈ Mc(�p−). Then T := M ′
a ∈ L (�p′+). Since T ′ = M ′′

a ∈
L ((�p′+)′β) = L (�p−) is compact (by the assumption on a), it follows from Lemma
4.2 below that T = M ′

a (= Ma) ∈ L (�p′+) is a compact operator. Then (10) implies
that a ∈ ∪s>1�s .

Lemma 4.2 Let X be a quasinormable Fréchet space. Then T ∈ L (X) is compact
if and only if T ′ ∈ L (X ′

β) is compact. Moreover, if X is also reflexive, then T ′′ = T
and (X ′

β)′β = X.

Proof If T ∈ L (X) is compact, then so is T ′ ∈ L (X ′
β), even if X is not quasi-

normable, [31, p. 203 Proposition (12)].
Conversely, suppose that T ′ ∈ L (X ′

β) is compact. Then there exists a closed,
balanced, bounded set B ⊆ X such that T ′(B◦) is relatively compact in X ′

β , where
B◦ is the polar of B. Since X is quasinormable (hence, distinguished, [36, Corollary
26.19]), X ′

β is a boundedly retractive (LB)-space; see, for example, [13, Sect. 3
and Appendix], [15, Theorem], [36, Remark 25.13]. Accordingly, let {Un}∞n=1 be
a basis of closed, balanced and convex neighbourhoods of 0 in X , so that X ′

β =
indn(X ′)U ◦

n
. Since compact sets in X ′

β are compact in some step, there exists m ∈ N

such that T ′(B◦) is relatively compact (hence, precompact) in (X ′)U ◦
m
. It follows

from Gröthendieck’s precompactness lemma, [31, p. 203 Proposition (10)], that
T (U ◦◦

m ) = T (Um) is precompact in X B . Since X is complete, T (Um) is relatively
compact in the Banach space X B and hence, also in X . So, T is compact.

Under reflexivity, that T ′′ = T and (X ′
β)′β = X is well known.

5 Operators from ces( p−) into ces(q−)

Consider a pair 1 < p, q ≤ ∞. Denote by Cc( p̂),c(q̂) (resp. Cc( p̂),q̂ ; C p̂,c(q̂); C p̂,q̂ ) the
Cesàro operator C when it acts from ces(p−) into ces(q−) (resp. ces(p−) into
�q−; resp. �p− into ces(q−); resp. �p− into �q−), whenever this operator exists. The
Closed Graph Theorem for operators between (LB)-spaces, [36, Theorem 24.31 and
Remark 24.36], then ensures that this operator is continuous. We use the analogous
notation for the natural inclusion maps ic( p̂),c(q̂); ic( p̂),q̂ ; i p̂,c(q̂); i p̂,q̂ whenever they
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exist. The aim of this section is to identify all pairs p, q for which these inclusion
operators and Cesàro operators do exist and, for such pairs, to determine whether or
not the operator is bounded and/or compact.

Proposition 5.1 Let 1 < p, q ≤ ∞ be an arbitrary pair.

(i) The inclusion map i p̂,q̂ : �p− → �q− exists if and only if p ≤ q.
(ii) The inclusion map i p̂,c(q̂) : �p− → ces(q−) exists if and only if p ≤ q.
(iii) The inclusion map ic( p̂),c(q̂) : ces(p−) → ces(q−) exists if and only if p ≤ q.
(iv) ces(p−) � �q− for all choices of p, q ∈ (1,∞].
All the inclusions, when they exist, are continuous.

Proof Suppose that 1 < p ≤ q ≤ ∞.When forming the inductive limits ces(p−) =
indnces(pn) and ces(q−) = indnces(qn)we can select pn ≤ qn for each n ∈ N. The
sufficiency conclusion in parts (i), (ii) and (iii) then follows from Lemma 4.1(i) and
[6, Proposition 3.2].

We now prove the reverse implications in (i)–(iii). So, assume that q < p and
choose any r ∈ (q, p). By [6, Proposition 3.2], there exists x ∈ �r\�q . Hence,
x ∈ �p−\�q− which covers case (i). Since ces(r) � �∞, there exists y ∈ ces(r)\�q−.
Accordingly, y ∈ ces(p−)\�q− which covers case (ii). Finally, it was noted in Sect. 2
that there exists z ∈ ces(r)\ces(q). In particular, z ∈ ces(p−)\ces(q−)which cov-
ers case (iii).

To see that (iv) holds, we apply [21, Remark 2.2(ii)] to find, for each p ∈ (1,∞],
an element x ∈ ces(p−) with x /∈ �∞. In particular, x /∈ �q− ⊆ �∞.

Proposition 5.2 Let 1 < p ≤ q ≤ ∞.

(i) The inclusion map i p̂,q̂ is bounded if and only if p < q. However, i p̂,q̂ is not
compact.

(ii) The inclusion map ic( p̂),c(q̂) is bounded (equivalently, compact) if and only if
p < q.

(iii) The inclusion map i p̂,c(q̂) is bounded (equivalently, compact) if and only if
p < q.

Proof If p = q, then the identity operator cannot be bounded, since neither �p−
nor ces(p−) is a Banach space. This shows the necessity of p < q in parts (i) and
(ii). Concerning the necessity of part (iii), assume that the natural inclusion �p− ⊆
ces(p−) is bounded. By Lemma 4.1(ii) there exists m ∈ N such that for n ≥ m,
we have �pn ⊆ ces(pm) with a continuous inclusion. Since n := m + 1 implies that
pn > pm , this is impossible by [6, Proposition 3.2(ii)].

Assume now that 1 < p < q ≤ ∞. Fix any r ∈ (p, q). Then �p− ⊆ �r ⊆ �q−
in part (i), ces(p−) ⊆ ces(r) ⊆ ces(q−) in part (ii) and �p− ⊆ �r ⊆ ces(q−) in
part (iii), with all inclusions continuous. Since �r and ces(r) are Banach spaces,
the continuous inclusions �r ⊆ �q and ces(r) ⊆ ces(q−) and �r ⊆ ces(q−) are all
bounded. Since the bounded operators between lcH’s form a 2-sided ideal, it follows
that the inclusions �p− ⊆ �q− (resp. ces(p−) ⊆ ces(q−), resp. �p− ⊆ ces(q−)) in
part (i) (resp. in part (ii), resp. in part (iii)) are bounded.
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Finally, if in part (i) the inclusion �p− ⊆ �q− were compact, then taking any
p1 ∈ (1, p), the inclusion �p1 ⊆ �q would be compact because of the continuous
factorization �p1 ⊆ �p− ⊆ �q− ⊆ �q . But, this is not the case, [6, Proposition 3.4(i)].

Proposition 5.3 Let 1 < p, q ≤ ∞.

(i) The Cesàro operator C p̂,q̂ is continuous if and only if p ≤ q.
(ii) The Cesàro operator C p̂,c(q̂) is continuous if and only if p ≤ q.
(iii) The Cesàro operator Cc( p̂),c(q̂) is continuous if and only if p ≤ q.
(iv) The Cesàro operator Cc( p̂),q̂ is continuous if and only if p ≤ q.

Proof As explained in the proof of Proposition 5.1 if p ≤ q, then we may assume
that pn ≤ qn for each n ∈ N. So, in this case the continuity in parts (i)–(iv) follows
from Lemma 4.1(i) and [6, Proposition 3.5].

Suppose now that p > q. Select any r ∈ (q, p) in which case �r ⊆ �p− continu-
ously. Suppose that C p̂,q̂ is continuous. Then Lemma 4.1(i) guarantees the existence
of qm ∈ (1, q) such that C : �r → �qm is continuous. Since r > qm , this contradicts
[6, Proposition 3.5(i)]. This completes the proof of part (i).

The other cases (ii)–(iv) can be established in a similar way.

Proposition 5.4 Let 1 < p ≤ q ≤ ∞.

(i) The Cesàro operator C p̂,q̂ is bounded if and only if it is compact if and only if
p < q.

(ii) The Cesàro operator C p̂,c(q̂) is bounded (equivalently, compact) if and only if
p < q.

(iii) The Cesàro operator Cc( p̂),c(q̂) is bounded (equivalently, compact) if and only
if p < q.

(iv) The Cesàro operator Cc( p̂),q̂ is bounded if and only if p < q.

Proof For the case p > q, none of the operators in (i)–(iv) exist (cf. Proposition
5.3) and so, p ≤ q is a necessary condition. If p = q, then C is not bounded in all
four cases. For example, in case (i) if C p̂,q̂ were bounded, then there exists m ∈ N

such that C : �pn → �pm is continuous for all n > m; see Lemma 4.1(ii). Taking
n := m + 1 (i.e. pn > pm) gives a contradiction to [6, Proposition 3.5(i)]. The other
cases (ii)–(iv) can be argued similarly.

Assume now that p < q. Fix any r ∈ (p, q).
(i) Note that C p̂,q̂ can be written as the composition operator C p̂,q̂ = B ◦ i , where

i : �p− → �r is the natural inclusion and B : �r → �q− is the Cesàro operator, both
of which are continuous. By Gröthendieck’s Factorization Theorem, [36, Theorem
24.33], there exists qn ∈ (r, q) such that B(�r ) ⊆ �qn with B ∈ L (�r , �qn ). Actu-
ally, B ∈ L (�r , �qn ) is compact, [6, Proposition 3.6(i)]. Since �p− ⊆ �r− ⊆ �r with
continuous inclusions, it follows that the inclusion i : �p− → �r is bounded (cf.
Proposition 5.2(i)). We can then conclude from C p̂,q̂ = B ◦ i that C p̂,q̂ is compact.
This completes the proof of part (i).

Since the bounded sets of the Montel space ces(p−) are relatively compact, for
each p ∈ (1,∞], in parts (ii)–(iii) it suffices to show that the Cesàro operator is
bounded.
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(ii) Note that C p̂,c(q̂) = Cr̂ ,c(q̂) ◦ i p̂,r̂ . The inclusion i p̂,r̂ is bounded by Proposition
5.2(i) and Cr̂ ,c(q̂) is continuous by Proposition 5.3(ii). So, C p̂,c(q̂) is bounded.

(iii) In this case Cc( p̂),c(q̂) = Cc(r̂),c(q̂) ◦ ic( p̂),c(r̂). Moreover, ic( p̂),c(r̂) is bounded
by Proposition 5.2(ii) andCc(r̂),c(q̂) is continuous by Proposition 5.3(iii). So,Cc( p̂),c(q̂)

is bounded.
(iv) Write Cc( p̂),q̂ = Cc(r̂),q̂ ◦ ic( p̂),c(r̂) and observe that ic( p̂),c(r̂) is bounded by

Proposition 5.2(ii) and Cc(r̂),q̂ is continuous by Proposition 5.3(iv). So, Cc( p̂),q̂ is
bounded.

6 Riesz Space Properties of � p− and ces( p−)

Let 1 < p ≤ ∞. We record here some properties of �p− and ces(p−) as locally
solid lc-Riesz spaces. Since these are the complexification of the corresponding real
Riesz spaces, i.e., considered in R

N, we will freely use the relevant results from [8],
keeping the same notation �p− and ces(p−) as no confusion will occur.

(I) The space �p− is the strong dual (�p′+)′β of the Fréchet space �p′+. Since all
spaces �p− and �p′+ are reflexive and the Fréchet spaces �r+ and �s+ (for r 	= s) are
not isomorphic, by duality theory also �p− and �q− (for p 	= q) are not isomorphic.

(II) Given a locally solid lcHs X (see, e.g. [8]) define a positive cone in the dual
space X ′ by

x ′ ≤ y′ if and only if 〈x, x ′〉 ≤ 〈x, y′〉 ∀x ∈ X+ := {x ∈ X : x ≥ 0}; (12)

see [8, Sect. 3]. For the strong dual topology and the order (12) on X ′ it turns out that
X ′

β is a Dedekind complete Riesz space, [8, Theorem 5.7]. Moreover, the Riesz space
X ′

β is a locally solid lcHs, [8, p. 59]. If, in addition, X is semireflexive, then both X
and X ′

β have a Lebesgue topology, [8, Theorem 22.4]. Locally solid, [8, Theorem
6.1], means that there exists a family {ρα}α of Riesz seminorms on X which generate
the topology of X , that is, each ρα satisfies

ρα(x) ≤ ρα(y), ∀x, y ∈ X with x ≤ y.

We point out that order intervals in X ′
β are necessarily topologically complete, [8,

Theorem 19.13].
(III) Since the norms generating the topology of the Fréchet space �p′+, 1 ≤ p <

∞, namely
rn(x) := ‖x‖pn , x ∈ �p′+ = ∩q>p′�q ,

for n ∈ N, where pn ↓ p′ with {pn}∞n=1 ⊆ (p′,∞), are clearly Riesz norms, it follows
that �p′+ is a locally solid, metrizable, lc-Riesz space (for the order induced from
C

N) which is known to be complete and reflexive.
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Consider now �p− := (�p′+)′β . From (II) it follows that �p− is a locally solid lcHs
for the order induced by the positive cone (12), has a Lebesgue topology and is
Dedekind complete. Moreover, �p− is complete and reflexive.

Claim: The order (12) is the same as that induced by the coordinatewise order ≺
in C

N, i.e., x ≺ y in C
N if and only if xn ≤ yn for all n ∈ N.

To see this, suppose that x ′ ≤ y′ with x ′, y′ ∈ (�p′+)′β = �p−. Then, for a fixed n,
noting that the canonical basis vector en ∈ (�p′+)+, we have 〈en, x ′〉 ≤ 〈en, y′〉, i.e.,
x ′

n ≤ y′
n . Since n ∈ N is arbitrary, it follows that x ′ ≺ y′.

Conversely, suppose that x ′ ≺ y′ with x ′, y′ ∈ �p− = (�p′+)′β , that is, x ′
n ≤ y′

n for
n ∈ N. Let x ∈ (�p′+)+, i.e., xn ≥ 0 for all n ∈ N. Then, by duality,

〈x, x ′〉 =
∞∑

n=1

xn x ′
n ≤

∞∑
n=1

xn y′
n = 〈x, y′〉.

Hence, by definition, x ′ ≤ y′ (in the order (12)).
To summarize: For the order induced by C

N (which is the complexification of
R

N), each (LB)-space �p−, 1 < p ≤ ∞, is a complete, reflexive, locally solid, lc-
Riesz space which is Dedekind complete, has a Lebesgue topology and its order
intervals are topologically complete.

Concerning ces(p−) we know from Sect. 2 that is the strong dual of the Fréchet-
Schwartz space λ0(A) = Λ∞

(1/p′)((log k)k), which is a locally solid Fréchet lattice (for
the order from C

N). Indeed, from Sect. 2, the sequence of norms {||| · |||n : n ∈ N}
generating the topology of λ0(A) are clearly Riesz norms. Moreover, unlike for
�p−, the space ces(p−) is actually Montel. Arguing as for �p−, we can summarize
as follows. Each (LB)-space ces(p−), 1 < p ≤ ∞, is a complete, Montel, locally
solid, lc-Riesz space which is Dedekind complete, has a Lebesgue topology and its
order intervals are topologically complete.

The spaces �p− and ces(p−), for 1 < p ≤ ∞, also have other desirable Riesz
space properties. For instance, they cannot contain an isomorphic lattice copy of ei-
ther �∞, �1 or c0, [17, Theorem 1.2]. Equivalently, they cannot contain any positively
complemented lattice copy of �∞, �1, c0, [17, Remark 2.5(i) and Proposition 3.2].

Of course, for the barrelled space ces(p−), which isMontel (see Sect. 2), this also
follows from the fact that the closed subspaces of such spaces are semi-Montel, [29,
Proposition 4(b), p. 230], and hence, if they are isomorphic to a Banach space, would
be finite dimensional. For the regular, reflexive (LB)-space �p− all closed subspaces
are semi-reflexive, [29, Proposition 5(a), p. 228], and hence, cannot be isomorphic
to �∞, �1, c0.

How does the fact that ces(p−) is a Montel space whereas �p− is not reveal itself
in the Riesz space properties of these spaces? First, since ces(p−) (resp. �p−) is
Dedekind completewith aLebesgue topology, its order intervals areweakly compact,
[8, Theorem 22.1]. For the complete Montel space ces(p−) it follows that its order
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intervals are even compact. Moreover, sequences from the positive cone (ces(p−))+
of ces(p−) (resp. (�p−)+ of �p−) which are topologically bounded and disjoint
always converge weakly to 0, [8, Theorem 22.4]. Now comes another difference.
Since ces(p−) is Montel, weak convergence of a sequence in ces(p−) implies
its strong convergence in ces(p−) = λ0(A)′β , [29, p. 230 Proposition 1]. Hence,
topologically bounded, disjoint sequences in (ces(p−))+ converge strongly to 0.
This feature fails for the reflexive, regular (LB)-space �p−. Indeed, consider the
sequence of canonical vectors B := {en}∞n=1 ⊆ (�p−)+ which is surely disjoint. Select
any q ∈ (p,∞). Then also B ⊆ �q . Since ‖en‖q = 1 for n ∈ N, it is clear that B is
bounded in the Banach space �q and hence, B is also bounded in �p−.Moreover, since
�p′+ is a quasinormable Fréchet space, its strong dual �p− is boundedly retractive,
[14, Theorem 3.4]. In particular, the norm topology in �q coincides on the bounded
set B ⊆ �p− with the inductive limit topology of �p−, [14, Definition 1.9]. Since
en 	→ 0 in the Banach space �q , also en 	→ 0 in �p−.

Fix 1 < p ≤ ∞. A consequence of the fact that not every topologically bounded,
disjoint sequence in �p− converges to 0 is that there must exist a power bounded
operator T belonging to the centre Z(�p−) ⊆ L (�p−) of �p− which is not uniformly
mean ergodic, [17, Theorem 5.1]. Recall, T ∈ Z(�p−) means that there exists 0 ≤
λ ∈ R such that |T (x)| ≤ λ|x | for all x ∈ �p−, [17, p. 914]. An explicit example of
such an operator T is the following one. Fix any sequence a = (an)n with 0 < an ↑ 1
(strictly), in which case ‖a‖∞ = 1. The multiplication operator Ma : �p′+ → �p′+
is continuous, [16, Corollary 5.3], and hence, its dual operator T := M ′

a belongs to
L (�p−) as �p− = (�p′+)′β . For x ∈ �p− we see that |T (x)| = |ax | = |a| · |x | ≤ |x |
and so T ∈ Z(�p−). Given y ∈ �p− there exists q ∈ (p,∞) such that y ∈ �q and
hence,

‖T n(y)‖q = ‖an y‖q ≤ ‖a‖n
∞‖y‖q ≤ ‖y‖q , n ∈ N,

where an = a · a . . . a (n-terms). Accordingly, {T n(y)}∞n=1 is bounded in �q and so
is also bounded in �p−. Since y ∈ �p− is arbitrary, {T n}∞n=1 is bounded in Ls(�p−).
But, �p− is barrelled as it is the strong dual of the reflexive Fréchet space �p′+, [36,
Proposition 25.12 and Corollary 25.14], and so {T n}∞n=1 is an equicontinuous subset
of L (�p−), [36, Proposition 23.27], that is, T is power bounded. It follows that T
is mean ergodic, [1, Corollary 2.7]. Assume that T is also uniformly mean ergodic,
that is, T[n] → S in Lb(�p−) for some S ∈ L (�p−). Since �p− is barrelled (with
�p′+ = (�p−)′β), the dual operators (Ma)[n] → S′ in Lb(�p′+), [2, Lemma 2.1], that
is, Ma ∈ L (�p′+) is uniformly mean ergodic. But, this is known not to be the case;
see the proof of Proposition 2.15 in [1]. Accordingly, the power bounded operator
T ∈ Z(�p−) is mean ergodic but not uniformly mean ergodic.
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Equicontinuity of Arcs in the Pointwise
Dual of a Topological Abelian Group

In Honour of Manuel López-Pellicer

María Jesús Chasco and Xabier Domínguez

Abstract We introduce, for any topological abelian group G, the property of
equicontinuity of arcs of G∧

p , the dual group of G endowed with its pointwise topol-
ogy. We analyze the implications of this property, which we denote by EAPσ , and
we present some representative examples. Furthermore we prove that if G satisfies
EAPσ , every element of the arcwise connected component of G∧

p can be written as
φ(1) for a suitable one-parameter subgroup φ : R → G∧

p .

Keywords Topological group · Dual group · Pointwise topology ·
Equicontinuity · Arcwise connected component · One-parameter subgroup

1 Introduction

The property of equicontinuity of arcs in the Pontryagin dual (EAP for short) is
enjoyed by a wide class of topological abelian groups. It was explicitly defined for
the first time in [3]. The origin of this property can be traced back to a known result by
Nickolas [8]: for any topological abelian group G which is a k-space, every element
of the arcwise connected component of the Pontryagin dual group of G (denoted by
G∧

co) can be written as φ(1) for a suitable one-parameter subgroup φ : R → G∧
co.

We use the symbols I and T for the unit interval [0, 1] and the circle group,
respectively. From well-known facts in general topology it follows that a continuous
arc γ : I → G∧

co has an equicontinuous image if and only if the mapping γ̃ : (t, x) ∈
I × G → γ (t)(x) ∈ T is continuous. This result makes it possible to proveNickolas’
theorem under the weaker condition EAP.
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It is easy to realize that this characterization of equicontinuity of γ (I) in terms of
joint continuity of the associated mapping γ̃ is actually true for any continuous arc in
the dual group G∧ endowed with the topology of pointwise convergence σ(G∧,G).

This leads naturally to the following, stronger variant of the equicontinuous arc
property, which we introduce in this paper: A topological abelian group (G, τ )

has the EAPσ if for every continuous γ : I → (G∧, σ (G∧,G)), the set γ (I) is τ -
equicontinuous.

In the first part of the paper we study the property EAPσ in relation with similar
properties as EAP or g-barrelledness, and provide some relevant examples. We also
characterize EAPσ for groups and topological vector spaces carrying weak topolo-
gies.

Nickolas’ theorem is one in an interesting collection of results connecting the real
characters of a group G with one-parameter subgroups and the arc component of its
dual group G∧. The question arises to which extent one can prove natural analogues
of these results where dual groups carry the pointwise convergence topology instead
of the compact-open topology. We explore these ideas in the final part of the paper.
Among other results, we prove that G∧

co and (G∧, σ (G∧,G)) have the same one-
parameter subgroups (Proposition2.5), and that for any group G with the EAPσ ,

the arc-component of (G∧, σ (G∧,G)) is the subgroup of G∧ formed by all liftable
characters of G (Theorem 2.2).

Notation and Terminology

If G is an abelian group, the set of all homomorphism from G to T will be denoted
by Hom(G,T), where T is the unit complex circle. The elements of Hom(G,T)

are called characters. The set Hom(G,T) has a group structure with respect to the
pointwise operation.

If (G, τ ) is a topological abelian group, its dual group G∧ := CHom(G,T) is
the set of all continuous characters of G. It is a subgroup of Hom(G,T). When G∧
separates points of G, we say that G is MAP (a shorthand for “maximally almost
periodic”).

Let A ⊆ G, where G is a topological abelian group. The polar set of A is defined
by

A� = {χ ∈ G∧ : χ(x) ∈ T+ ∀x ∈ A}

where T+ := {exp(2π i t) : t ∈ [−1/4, 1/4]}.
A subset S ⊆ G∧ is equicontinuous with respect to τ if and only if S ⊆ U � for

some neighborhood of zero U in G.
A group duality is a triple (G, H, 〈·, ·〉) where G and H are abelian groups

and 〈·, ·〉 : G × H → T is a bicharacter, that is, 〈x, ·〉 ∈ Hom(H,T) and 〈·, y〉 ∈
Hom(G,T) for every x ∈ G and y ∈ H .Wewill abbreviate the notation (G, H, 〈·, ·〉)
to 〈G, H〉 inwhat follows. To every group duality 〈G, H〉wecan associate in a natural
way its inverse duality 〈H,G〉.
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Given a group duality 〈G, H〉, the weak topology σ(G, H) is the initial topology
on G with respect to the elements of H . All precompact Hausdorff topologies on
an abelian group G have the form σ(G, L) where L is a subgroup of Hom(G,T)

which separates the points of G. Moreover L = (G, σ (G, L))∧ [6]. This result will
be quoted in what follows as “Comfort-Ross Theorem”.

An abelian topological group (G, τ ) gives rise to the natural dualities 〈G,G∧〉
and 〈G∧,G〉. In what follows, the dual group of G endowed with the pointwise
convergence topology σ(G∧,G) will be often denoted by G∧

p .
We will use the notation G∧

co for the dual group G∧ endowed with the compact-
open topology τco. For a topological abelian group G, we denote by αG : G →
(G∧

co)
∧ and βG : G → (G∧

p)
∧ the natural homomorphisms defined by αG(x)(χ) =

βG(x)(χ) = χ(x).
Recall that by Pontryagin-vanKampenTheorem,αG is a topological isomorphism

from G to (G∧
co)

∧
co for any locally compact abelian group G. The proof of the next

result is immediate from the preceding considerations:

Proposition 1.1 Let G be a topological abelian group.

(a) If G is MAP then both αG and βG are monomorphisms.
(b) βG is onto and continuous from G to (G∧

p)
∧
p .

(c) αG is continuous from G to (G∧
co)

∧
co if and only if all compact subsets of G

∧
co are

equicontinuous.

The following is a well-known result.

Proposition 1.2 ([1, Proposition 3.5]) Let G be a topological abelian group and U
a neighbourhood of zero in G. Then U � is compact in G∧

co. In particular, σ(G∧,G)

and τco induce the same topology on any equicontinuous subset of G∧.

IfG and H are topological abelian groups and ϕ : G → H is a continuous homo-
morphism, we define the adjoint of ϕ as the group homomorphims ϕ∧ : H∧ → G∧
given by ϕ∧(χ) = χ ◦ ϕ. Note that ϕ is continuous if we endow both H∧ and G∧
with their pointwise convergence topologies, or their corresponding compact-open
topologies.

A topological abelian groupG is said to be g-barrelled if everyσ(G∧,G)-compact
subset of G∧ is equicontinuous. This notion was introduced in [5]. There are many
classes of g-barrelled groups: all locally compact (even all Čech complete) abelian
groups are g-barrelled. Pseudocompact abelian groups are also g-barrelled. A recent
reference on g-barrelled groups is [4].

2 Main Results

Definition 2.1 A topological abelian group (G, τ ) is said to satisfy the

• EAP (equicontinuous arc property), if for every continuous map γ : I → G∧
co the

set γ (I) is τ -equicontinuous.
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• EAPσ if for every continuous map γ : I → (G∧, σ (G∧,G)) the set γ (I) is τ -
equicontinuous.

Note that in the definitions of the EAP and the EAPσ , if we replace arcs with
arbitrary compact subsets we obtain the definitions of a group G with αG continuous
and a g-barrelled group, respectively. The following diagram might be useful:

g-barrelled ��

��

αG continuous

��
EAPσ

�� EAP

The next result makes the relationship between EAP and EAPσ more precise:

Proposition 2.1 Given a topological abelian group G, the following are equivalent:

(1) G has the EAPσ .
(2) G has the EAP and every σ(G∧,G)-continuous arc in G∧ is continuous in G∧

co.

Proof (1)⇒(2): Fix a continuous arc γ : I → (G∧, σ (G∧,G)). Since G has the
EAPσ , the subset γ (I) ⊆ G∧ is equicontinuous. By Proposition1.2, the topologies
σ(G∧,G) and τco induce the same topology on the equicontinuous subset γ (I). We
deduce that γ is continuous from I to G∧

co.

(2)⇒(1) is clear.

Corollary 2.1 Let G be a topological group with the EAPσ . Then the arc-connected
components of G∧

co and G∧
p coincide.

Example 2.1 A precompact group G with the EAPσ for which αG is not continuous,
hence G is not g-barrelled: Consider the group G = (X, σ (X, X∧)) where X is a
noncompact, locally compact abelian group such that X∧

co is totally disconnected.
Let us see that αG is not continuous. Fix a compact neighborhood of zero U in

X∧
co. Since X∧

co is nondiscrete, U is an infinite set. By [3, Lemma 2.6], U is not
equicontinuous with respect to σ(X, X∧).

Let us see that G has the EAPσ . Fix a continuous arc γ : I → (X∧, σ (X∧, X)).

Since locally compact abelian groups have theEAPσ , we deduce fromProposition2.1
that γ is also a continuous arc in X∧

co. Since X
∧
co is totally disconnected by hypothesis,

γ is constant.

Example 2.2 A metrizable group with the EAPσ which is not g-barrelled: Consider
the group of rational numbers Q endowed with the topology induced by R. By
[2, Proposition 5.3], Q is not g-barrelled. Let us see that Q has the EAPσ . Let q :
R → R

∧ be the group isomorphism defined by q(λ)(μ) = exp(2π iλμ). For every
characterχ ∈ Q

∧ let χ̃ denote the unique continuous character ofRwhose restriction
to the rationals is χ . It is clear that the mapping [χ ∈ Q

∧ �→ q−1(χ̃) ∈ R] is a group
isomorphismwhich carries equicontinuous subsets ofQ∧ to bounded subsets ofR and
vice versa. In particular the groups (Q∧, σ (Q∧,Q)) and (R, σ (R,Q)) are naturally
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topologically isomorphic. Fix a continuous arc γ : I → (R, σ (R,Q)) and let us show
that γ (I) is bounded. The arc exp(2π iγ ) : I → T is continuous with respect to the
usual topology of T. Let Γ : I → R be a continuous lifting of exp(2π iγ ). Recall
that any continuous arc on a Tychonoff space either is constant or has an image of
size greater or equal than c. Since the continuous arc γ − Γ in (R, σ (R,Q)) takes
only integer values, it must be constant. This clearly implies that γ (I) is a bounded
subset of R.

We will see in Example 2.3 that in general the EAP is strictly weaker than the
EAPσ , and also that the converse of Corollary 2.1 is false.

It is clear that every topological groupG for which the arc component of the group
(G∧, σ (G∧,G)) is trivial has the EAPσ . This observation motivates the following
result.

Proposition 2.2 Let 〈G, H〉 be a duality of abelian groups. Assume that G separates
the points of H. The following are equivalent:

(a) (G, σ (G, H)) has the EAPσ .
(b) The arc component of the group (H, σ (H,G)) is trivial.

Proof Note that because of Comfort-Ross theorem, the pointwise dual group of
(G, σ (G, H)) is (H, σ (H,G)). Recall that a subset of H which is equicontinuous
with respect to σ(G, H) is necessarily finite [3, Lemma 2.6]. Taking into account
that any arc with finite range in a Hausdorff space as (H, σ (H,G)) is necessarily
constant, the result follows.

Topological vector spaces constitute a very important class of well-behaved topo-
logical abelian groups. We next characterize the EAPσ within this class, in terms of
vector space dualities.

For simplicity we restrict ourselves to vector spaces over R in what follows.
The notion of a vector space duality is well known. Given any duality 〈E, F〉 of
vector spaces let us denote by 〈E, F〉g the natural associated group duality given by
〈x, y〉g = exp(2π i〈x, y〉), by ω(E, F) the initial vector space topology on E with
respect to the duality 〈E, F〉, and by σ(E, F) the initial group topology on E with
respect to the group duality 〈E, F〉g. It is clear that σ(E, F) ≤ ω(E, F).

Lemma 2.1 ([9, Lemma 1.2]) If F separates the points of E in the vector space
duality 〈E, F〉, then the topologies σ(E, F) and ω(E, F) have the same compact
sets.

Lemma 2.2 Let E bea topological vector space.Consider the grouphomomorphism
�E : E∗ → E∧ defined by �E ( f ) = exp(2π i f ).

(a) [10, Lemma 1] �E is an isomorphism of abelian groups.
(b) [5, Proposition 1.11] �E preserves equicontinuous sets in both directions.

Proposition 2.3 Let E be a topological vector space. The following are equivalent:
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(a) E has the EAPσ

(b) Every arc in (E∗, ω(E∗, E)) is equicontinuous.

Proof Consider the mapping�E : E∗ → E∧ defined by�E ( f ) = exp(2π i f ). Tak-
ing into account Lemma 2.2, it suffices to show that a mapping γ : I → E∗ is
ω(E∗, E)-continuous if and only if �E ◦ γ is σ(E∧, E)-continuous.

If γ : I → E∗ is ω(E∗, E)-continuous, then clearly �E ◦ γ is σ(E∧, E)-
continuous. Conversely, let ξ : I → E∧ be σ(E∧, E)-continuous. We need to show
that �−1

E ◦ ξ is ω(E∗, E)-continuous. It is an immediate consequence of
Lemma 2.2(a) that �E defines a topological isomorphism from (E∗, σ (E∗, E)) to
(E∧, σ (E∧, E)). In particular the set �−1

E (ξ(I)) is σ(E∗, E)-compact. By Lemma
2.1 it is also ω(E∗, E)-compact. By minimality of Hausdorff compact topologies,
ω(E∗, E) and σ(E∗, E) induce the same topology on�−1

E (ξ(I)). This completes the
proof.

Proposition 2.4 Let 〈E, F〉 be a vector space duality. Assume that E separates the
points of F. The following are equivalent:

(a) (E, ω(E, F)) is g-barrelled.
(b) (E, ω(E, F)) has the EAPσ .
(c) Every bounded subset of (F, ω(F, E)) is contained in a finite dimensional sub-

space of F.

Proof (a) ⇒ (b) is trivial.
(b) ⇒ (c): Assume that the topological vector space (E, ω(E, F)) has the EAPσ .

By
Proposition2.3, every arc in (F, ω(F, E)) is equicontinuouswith respect toω(E, F).
By [3, Lemma 2.6(b)], we deduce that every arc in (F, ω(F, E)) is contained in a
finite dimensional subspace of F . By [3, Lemma 2.13], the same is true for any
bounded subset of (F, ω(F, E)).

(c) ⇒ (a): It is an immediate consequence of Lemma 2.2(a) that for the topo-
logical group G = (E, ω(E, F)) one has a natural isomorphism (G∧, σ (G∧,G)) ∼=
(F, σ (F, E)). Let K be a σ(F, E)-compact subset of F . We need to show that K
is equicontinuous with respect to ω(E, F). By Lemma 2.1, K is ω(F, E)-compact.
By our assumption, K is contained in the absolutely convex hull of a finite sub-
set {y1, . . . , yn} ⊆ F . This implies that |〈x, y〉| ≤ 1 for every y ∈ K and every x in
theω(E, F)-neighborhood of zero

⋂n
j=1{x ∈ E : |〈x, y j 〉| ≤ 1}. This completes the

proof.

Example 2.3 A topological group X which satisfies the EAP but not the EAPσ : Let
us denote byR(N) the subspace of the countable product of real lines formed by those
sequences with only finitely many nonzero components. Consider the topological
vector space X = R

(N) endowed with the induced product topology. Since X is
metrizable, it is a k-space and in particular, by Ascoli’s theorem, αX is continuous.
Hence X has the EAP.
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It was proved in [7, Theorem 3.1] that X is not g-barrelled. Let us see that actually
X does not satisfy the EAPσ . (Note, however, that X∧

p and X∧
co are arc connected,

since both topological groups admit a compatible topological vector space structure.)
The space X can be written as X = (E, ω(E, F)) for E = F = R

(N). By
Proposition2.4, in order to prove that X does not satisfy the EAPσ it is enough to
find a bounded subset of (F, ω(F, E)) = X which generates an infinite-dimensional
subspace of R(N). Since a subset B ⊆ X is bounded if and only if it is contained in
a product of bounded intervals, it is trivial to produce such an example.

We devote the remaining of this paper to prove that if the group G has the EAPσ ,

the arc-component ofG∧
p can be obtained as the subgroup ofG

∧ formed by all liftable
characters of G. We will need some previous results on one-parameter subgroups of
G∧

p which are of independent interest.
For any topological group G, we denote by Ga its arc-connected component and

by L(G) the group CHom(R,G). The exponential mapping expG : L(G) → G is
defined by expG(ϕ) = ϕ(1). It is clear that expG is continuous with respect to the
pointwise convergence topology on L(G).

Proposition 2.5 Let G be a topological abelian group. Then L(G∧
p) = L(G∧

co).

Proof Fix any continuous homorphism ϕ : R → G∧
p and let us show that ϕ is also

continuous from R to G∧
co. An easy comprobation shows that ϕ can be obtained as

β∧
G ◦ ϕ∧∧ ◦ βR where

• βR : R → (R∧
p)

∧
co is continuous since R is g-barrelled [4];

• ϕ∧∧ : (R∧
p)

∧
co → ((G∧

p)
∧
p)

∧
co is the τco-adjoint of the τp-adjoint of the continuous

homomorphism ϕ and consequently is continuous itself;
• β∧

G : ((G∧
p)

∧
p)

∧
co → G∧

co is the τco-adjoint of the continuousmap βG : G → (G∧
p)

∧
p ,

hence continuous itself.

The following result characterizes the “straight arcs” version of the EAPσ . We
denote by Rσ the topological group (R, σ (R,R∧)), which is topologically iso-
morphic to (R∧, σ (R∧,R)) through the mapping q : R → R

∧ given by q(λ)(μ) =
exp(2π iλμ).

Proposition 2.6 The following conditions are equivalent for a topological abelian
group G:

(a) For every ϕ ∈ L(G∧
p) the set ϕ(I) is equicontinuous.

(b) CHom(G,Rσ ) = CHom(G,R).

Proof Proposition 3.5 in [3] is the same result with L(G∧
co) instead of L(G∧

p). Hence
it suffices to apply Proposition2.5.

Definition 2.2 LetG be a topological abelian group.G∧
lift andG

∧
liftσ denote the group

of continuous characters of G that can be lifted over R and Rσ , respectively.



76 M. J. Chasco and X. Domínguez

Theorem 2.1 Let G be a topological abelian group. We have the following chain of
inclusions:

G∧
lift ≤ G∧

liftσ = im expG∧
p

≤ (G∧
p)a

Proof The inclusion G∧
lift ≤ G∧

liftσ is clear. On the other hand, for every topological
abelian group H we have im expH ≤ Ha because expH : L(H) → H is continuous
with respect to the pointwise convergence topology on L(H), and L(H) is arc-
connected with this topology.

The identity G∧
liftσ = im expG∧

co
was proved in [3, Theorem 3.6]. The identity

G∧
liftσ = im expG∧

p
follows from this one and Proposition2.5.

Theorem 2.2 Let G be a topological abelian group with the EAPσ . Then

G∧
lift = im expG∧

p
= (G∧

p)a

Proof By Theorem 3.11 in [3] we have G∧
lift = (G∧

co)a . Since G has the EAPσ ,

Corollary 2.1 implies that (G∧
co)a = (G∧

p)a . It only remains to apply Theorem 2.1.
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complete metrizable locally bounded topological vector space,

• a topological group which is a Baire space is barrelled with respect to any topo-
logical vector space,

• a topological group which is a Namioka space is g-barrelled with respect to any
metrizable topological group,

• a protodiscrete topological abelian group which is a Baire space may not be
g-barrelled (with respect to R/Z).

We also formulate some open questions.

Keywords Topological vector space · Locally convex space · Equicontinuity ·
Barrelledness · Ultrabarrelledness · Topological group · Baire space · Namioka
space

X. Domínguez
Department of Mathematics, Universidade da Coruña, A Coruña, Spain
e-mail: xabier.dominguez@udc.es

E. Martín-Peinador (B)
Departamento de Álgebra, Geometría y Topología and Instituto de Matemática
Interdisciplinar, Universidad Complutense, Madrid, Spain
e-mail: em_peinador@mat.ucm.es

V. Tarieladze
Muskhelishvili Institute of Computational Mathematics, Georgian Technical
University, Tbilisi, Georgia
e-mail: vajatarieladze@yahoo.com

© Springer Nature Switzerland AG 2019
J. C. Ferrando (ed.), Descriptive Topology and Functional
Analysis II, Springer Proceedings in Mathematics & Statistics 286,
https://doi.org/10.1007/978-3-030-17376-0_5

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17376-0_5&domain=pdf
mailto:xabier.dominguez@udc.es
mailto:em_peinador@mat.ucm.es
mailto:vajatarieladze@yahoo.com
https://doi.org/10.1007/978-3-030-17376-0_5


78 X. Domínguez et al.

1 Main Results

A locally convex space E is said to be barrelled if every closed, absorbing and
absolutely convex subset of E is a neighborhood of zero. Barrelled (real) locally
convex spaces were introduced by N. Bourbaki in [3] and they have been extensively
studied in many references as the monographs [10, 16].

Already in [3] the following characterization of barrelled spaces can be found:

Theorem 1.1 Let E be a locally convex space. The following properties are equiv-
alent:

(i) E is barrelled.
(ii) If F is a nontrivial locally convex Hausdorff topological vector space andH is

a set of continuous linear mappings from E to F for which the set

H (x) =
⋃

u∈H
{u(x)}

is bounded in F for every x ∈ E, then H is equicontinuous.

Local convexity of F is essential for the validity of implication (i) ⇒ (i i) of
Theorem1.1. It seems that this fact was pointed out for the first time in [23].

W.Robertson obtained in [17, Theorem4] the following characterization: a locally
convex space E with topology η is barrelled if and only if the only locally convex
vector space topologies with bases of η-closed neighborhoods of the origin are those
coarser than η. This motivated the following definition, included in the same refer-
ence:

Definition 1.1 Let E be a topological vector space under the topology η. We say
that E is ultrabarrelled if the only vector space topologies on E , compatible with
the algebraic structure of E and in which there is a base of η-closed neighbourhoods
of the origin, are those coarser than η.

For ultrabarrelled spaces we have the following nice analogue of Theorem1.1:

Theorem 1.2 (W. Robertson, L. Waelbroeck) For a topological vector space E the
following properties are equivalent.

(i) E is ultrabarrelled.
(ii) If F is a topological vector space andH is a set of continuous linear mappings

from E to F, for which the set

H (x) =
⋃

u∈H
{u(x)}

is bounded in F for every x ∈ E, then H is equicontinuous.
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The implication (i) ⇒ (i i) was proved in [17], where the validity of (i i) ⇒ (i) was
posed as a question as well. It seems that a (rather delicate) proof of the implication
(i i) ⇒ (i) appeared for the first time in [22, Proposition I.5]. A proof of Theorem1.2
is presented also in [1, §7.3] (where the term ’barrelled’ is used instead of ’ultrabar-
relled’).

It is clear that any ultrabarrelled locally convex space is barrelled. In [17] an
argument based on an idea from [23] was used to show that the converse implication
may fail:

Theorem 1.3 ([17, p. 256]) There is a normed space which is barrelled but not
ultrabarrelled.

To formulate our first theorem we need to introduce the following concept:

Definition 1.2 Let E be a topological vector space and F a Hausdorff topological
vector space. We say that E is sequentially barrelled with respect to F if every
sequence (un)n∈N of continuous linear maps from E to F which converges pointwise
to zero is equicontinuous.

Clearly every ultrabarrelled space is sequentially barrelled with respect to any
topological vector space. Hence the following result is a refinement of Theorem1.3:

Theorem 1.4 A barrelled normed space need not be sequentially barrelled with
respect to a complete metrizable, locally bounded topological vector space.

Question 1.1 Let E be a normed space which is sequentially barrelled with respect
to every complete metrizable (locally bounded) topological vector space. Is then E
ultrabarrelled?

The following result establishes a natural connection between ultrabarrelledness
and the property of being a Baire space:

Theorem 1.5 ([17, Proposition12]) Let E be a topological vector space over K ∈
{R,C}. If E as a topological space is a Baire space, then E is ultrabarrelled.

In view of Theorem1.5 the underlying topological space of a barrelled normed
space which is not ultrabarrelled cannot be a Baire space. According to [7], the first
example of a normed barrelled space which is not Baire appeared in [9]; see also [8,
20] for more examples of this sort.

Definition 1.3 Let G be a topological group and F be a topological vector space
over a nontrivially valued division ringK. We say that G is barrelled with respect to
F if every set H of continuous homomorphisms from G to F , for which the set

H (x) =
⋃

u∈H
{u(x)}

is bounded in F for every x ∈ E , is equicontinuous.
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We shall prove the following statement, which generalizes a similar one obtained
in [13] for the case of a normed space F .

Theorem 1.6 Let G be a topological group and F be a topological vector space
overR. If G as a topological space is a Baire space, then G is barrelled with respect
to F.

Question 1.2 Let G be a topological group and F be a topological vector space over
a nontrivially valued division ring K. If G as a topological space is a Baire space, is
then G barrelled with respect to F?

Definition 1.4 Let X be a topological space.

• X is called a Namioka space ([6]), or is said to have the Namioka property, if for
every compact Hausdorff space K , every metrizable space Z and every separately
continuous f : X × K → Z , there exists a dense Gδ-subset A of X such that f is
continuous at every point of A × K .

• X is called a weak Namioka space, or is said to have the weak Namioka property,
if for every compact Hausdorff space K , every metrizable space Z and every sep-
arately continuous f : X × K → Z , there exists a ∈ X such that f is continuous
at every point of {a} × K .

Proposition 1.1 (a) Let X be a topological space. Assume that for every compact
Hausdorff space K , every metrizable space Z and every separately continuous
f : X × K → Z there exists a dense subset A of X such that f is continuous at
every point of A × K. Then X is a Namioka space.

(b) (A. Bouziad, oral communication) Let X be a topological space. Assume that
every element of X admits a neighborhood which is a Namioka space. Then X
is a Namioka space.

Proof (a) This follows from the following known fact (see [15, p. 518]): for a sepa-
rately continuous f : X × K → Z the set

A( f ) := {a ∈ X : f is continuous at every point of {a} × K }

is always a Gδ-subset of X .
(b) Let f : X × K → Z be a separately continuous map, where Z is a metric space
and K is a compact space. Taking into account (a), we only have to show that the
set A( f ) is dense in X . Let U be a nonempty open subset of X . Choose x in U and
let V be a neighborhood of x in X such that V is a Namioka space. Choose also an
open subset W of X such that x ∈ W and W ⊂ V . The mapping g := f |V×K → Z
is separately continuous; since V is a Namioka space, the set

A(g) := {a ∈ V : g is continuous at every point of {a} × K }

is dense in V . From this, since U ∩ W is a nonempty open subset of V , we get that
A(g) ∩ (U ∩ W ) �= ∅. Fix an element a ∈ A(g) ∩ (U ∩ W ). Clearly, f is jointly
continuous at each point of {a} × K .
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The next theorem contains several known results about Namioka spaces.

Theorem 1.7 The following statements hold:

(a) [15, Theorem1.2] If X is a strongly countably complete regular space, then X
is a Namioka space. In particular, if X is a Čech complete Tychonoff space, then
X is a Namioka space.

(b) [19, Théorème 3] If X is a completely regular Namioka space, then X is a Baire
space.

(c) [19, Théorème 7] If X is a metrizable Baire space, then X is a Namioka space.
(d) [21, Théorème 2] There exists a completely regularHausdorff Baire space, which

has not the weak Namioka property.
(e) [21, Corollaire 6] If X is a Baire space which contains a dense σ -compact

subset, then X is a Namioka space.
(f) [18] If X is a Baire space which contains a dense K -countably determined

subset, then X is a Namioka space.
(g) [2, p. 333] If X is a pseudocompact space, then X is a Namioka space.

Proposition 1.2 If X is a locally pseudocompact space, then X is a Namioka space.

Proof This follows from Theorem1.7(g) and Proposition1.1(b).

Definition 1.5 Let G be a topological group and Y a Hausdorff topological group.
We say that

• G is g-barrelled with respect to Y if everyH ⊆ CHom(G,Y ) which is compact
in the product topology of YG is equicontinuous.

• G is sequentially g-barrelledwith respect to Y if every sequence {un}n∈N contained
in CHom(G,Y ) which converges pointwise to zero, is equicontinuous.

In the case where Y is the compact group R/Z we will drop the reference to Y and
use the shorter expression “(sequentially) g-barrelled group”.

g-barrelled topological abelian groups were introduced in [5]. Corollary 1.6 in
this reference provides some classes of g-barrelled groups. Also, several permanence
properties of this class were established in [5], but only recently it was proved that
the class of g-barrelled groups is closed with respect to Cartesian products [4].

For our purposes it is convenient to highlight the following results from [5]:

Theorem 1.8 Let G and Y be topological groups.

(a) If G as a topological space is a Baire space, then G is sequentially g-barrelled
with respect to Y (cf. [5, Proposition1.4]).

(b) If G and Y are metrizable and all closed separable subgroups of G are Baire
spaces, then G is g-barrelled with respect to Y (cf. [5, Theorem1.5]).

Here we shall prove the following statements:

Theorem 1.9 Let G be a topological group and Y be ametrizable topological group.
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(a) If G as a topological space is a Namioka space, then G is g-barrelled with
respect to Y .

(b) If G as a topological space is locally pseudocompact, then G is g-barrelled with
respect to Y .

Remark 1.1 The following particular case of Theorem1.9(b) was obtained earlier in
[11, Proposition4.4]: every pseudocompact topological abelian group is g-barrelled.

Question 1.3 LetG be aHausdorff (locally quasi-convex abelian) topological group,
which is g-barrelled with respect to every metrizable (abelian) topological group Y .
Is then G as a topological space a weak Namioka space?

It was shown in [21] that the Namioka spaces form a proper subclass of the class of
Baire spaces. By using a construction of [21], we will show that Theorem1.9(a) is
no longer true if we replace “Namioka space” with “Baire space”, thus answering
the question posed in [14, Remark2.2]. We denote by Z(2) the 2-element abelian
group Z/2Z.

Theorem 1.10 There exists a protodiscrete (in particular, locally quasi-convex)
Hausdorff topological abelian group G with the following properties:

(a) G as a topological space is a Baire space.
(b) G is not g-barrelled with respect to the discrete group Z(2). In particular, G is

not g-barrelled.

There also exists a submetrizable topological abelian group which as a topo-
logical space is a Baire space, but which is not g-barrelled (A. Bouziad, personal
communication).

Remark 1.2 In [12] it was introduced a notion of a g-ultrabarrelled topological
group. This class admits the following remarkable characterization: a Hausdorff
topological abelian group G is g-ultrabarrelled iff every closed group homomor-
phism from G into any separable complete metrizable topological group is continu-
ous [12, Theorem3.1]. In [12] it is noticed also that any topological group which is a
Baire space, is g-ultrabarrelled. From this and Theorem1.10 it follows that a Haus-
dorff topological abelian protodiscrete (hence, locally quasi-convex) g-ultrabarrelled
group may not be g-barrelled.

2 The Proofs

Proof of Theorem1.4

Fix a number p with 0 < p ≤ 1 and consider the sequence space

l p = {x = (x1, x2, . . . ) ∈ R
N :

∞∑

k=1

|xk |p < ∞}
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endowed with the p-norm

‖x‖p =
( ∞∑

k=1

|xk |p
) 1

p

, x ∈ l p .

Let us write
(l p)1 := (l p, ‖ · ‖1) .

Now we can formulate the following statement, which implies Theorem1.4.

Theorem 2.1 Let 0 < p < 1. Then

(a) (l p)1 is a barrelled normed space.
(b) (l p)1 is not sequentially barrelled with respect to lp.

Proof (a) is proved in [17, 23].
(b) Fix n ∈ N and consider the linearmapping un : (l p)1 → l p defined by the equality

un(x) = (x1, x2, . . . , xn, 0, 0, . . . ), x ∈ l p .

We have:
‖un(x)‖p ≤ ‖x‖p, x ∈ l p , (1)

and
‖un‖ := sup{‖un(x)‖p : x ∈ l p, ‖x‖1 ≤ 1} = n

1
p −1

. (2)

Fix now a number r with 0 < r < 1
p − 1 and write

vn = 1

nr
un .

Then we have
(C1) vn : (l p)1 → l p is a continuous linear mapping.
(C2) limn ‖vn(x)‖p = 0 for every x ∈ l p. This follows from (1).
(C3) The sequence (vn)n∈N is not equicontinuous at 0 ∈ (l p)1. In fact, from (2) we
have

‖vn‖ = n
1
p −(r+1)

. (3)

The equicontinuity of (vn)n∈N at 0 ∈ (l p)1 would imply that

sup
n

‖vn‖ < ∞

in contradiction with (3).
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Proof of Theorem1.6
Let H be a set of continuous homomorphisms from G to F for which H (x) is
bounded in F for every x ∈ G. Fix a zero neighborhood W ∈ N (F). We are going
to find O ∈ N (G) with u(O) ⊂ W for every u ∈ H , which means that H is
equicontinuous at 0 ∈ G.

Fix a symmetric closed W1 ∈ N (F) with W1 + W1 ⊂ W. Write

Xn =
⋂

u∈H
u−1(nW1), n = 1, 2, . . .

The boundedness in F of H (x) for every x ∈ G implies

G =
⋃

n∈N
Xn . (4)

Since the sets Xn, n = 1, 2, . . . are closed and G is a Baire space, we can find and
fix n0 ∈ N such that

U := Int(Xn0) �= ∅ .

Pick x0 ∈ U . Then

V := U − x0 ∈ N (G) .

It is easy to check that

u(x) = u(x + x0) − u(x0) ∈ n0W1 + n0W1 ⊂ n0W, ∀x ∈ V, ∀u ∈ H . (5)

Find and fix now O ∈ N (G) such that O+ n0· · · +O ⊂ V . As

x ∈ O ⇒ n0x ∈ V ,

from (5) we get

n0u(x) = u(n0x) ∈ n0W ∀x ∈ O, ∀u ∈ H .

Hence u(O) ⊂ W ∀u ∈ H , as required.

Proof of Theorem1.9

We will prove the following stronger version of Theorem1.9:

Theorem 2.2 Let G be a topological group and Y be ametrizable topological group.

(a) If G as a topological space is a weak Namioka space, then G is g-barrelled with
respect to Y .

(b) If G as a topological space is locally pseudocompact, then G is g-barrelled with
respect to Y .
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Proof (a) Fix a setH of continuous homomorphisms fromG to Y which is compact
in the product topology of YG . Consider the mapping f : G × H → Y defined as
follows:

f (x, u) = u(x), x ∈ G, u ∈ H .

Then f is separately continuous. Since G has the weak Namioka property, there
exists an element a ∈ G such that f is continuous at every point of {a} × Y . From
this, according to [15, Lemma 2.1] we can conclude that the set

{ f (·, u) : u ∈ H } = H

is equicontinuous at a. Since H consists of homomorphisms, we obtain that Y is
equicontinuous.
(b) This follows from (a) and Proposition1.2.

Proof of Theorem1.10

Let I be a fixed uncountable set. For f ∈ Z(2)I we denote by supp f the support of
f , i. e. the set of all i ∈ I such that f (i) = 1. Write

G = { f ∈ Z(2)I : card(supp f ) ≤ ℵ0}.

Consider on G the group topology which admits as a basis of neighborhoods of zero
the sets of the form

UJ := { f ∈ G : f (i) = 0 ∀i ∈ J }

where J runs through all subsets of I with card (J ) ≤ ℵ0. SinceUJ is a subgroup of
G for every J , this is a protodiscrete group topology.

(1) G is a Baire space [21].

Let K = β I be the Stone-Čech compactification of the discrete space I and let
C(K ,Z(2)) be the the set of all continuous mappings h : K → Z(2). Let us identify
G with a subset of C(K ,Z(2)) as follows: to each f ∈ G corresponds its unique
continuous extension f̃ : K → Z(2). Consider the mapping � : G × K → Z(2)
defined by the equality

�( f, h) = f̃ (h) ∀( f, h) ∈ G × K .

We have

(2) For a fixed h ∈ K the mapping �(·, h) is continuous on G [21].
(3) For each f ∈ G there exists h ∈ K such that � is not continuous at ( f, h) [21].

Consequently G is not a weak Namioka space.



86 X. Domínguez et al.

Note also that for each h ∈ K the mapping �(·, h) is a group homomorphism
from G to Z(2) (indeed, this is so when h = i ∈ I by the definition of the group
operation of G; the general case follows from the density of I in K ).

Clearly the set of continuous homomorphisms

H = {u ∈ Z(2)G : ∃h ∈ K , u(·) = �(·, h)}

is pointwise compact, but it is not equicontinuous (as the equicontinuity of H at 0
would imply that � is continuous at each point of {0} × K , which is not the case by
(3) above).
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Groups

In Honour of Manuel López-Pellicer

María Vicenta Ferrer and Salvador Hernández

Abstract A subgroup G of a product
∏

i∈N
Gi is rectangular if there are subgroups

Hi of Gi such that G = ∏

i∈N
Hi . We say that G is weakly rectangular if there are

finite subsets Fi ⊆ N and subgroups Hi of
⊕

j∈Fi
G j that satisfy G = ∏

i∈N
Hi . In this

paper we discuss when a closed subgroup of a product is weakly rectangular. Some
possible applications to the theory of group codes are also highlighted.

Keywords Rectangular subgroup · Weakly rectangular subgroup · Subdirect
product · Controllable group · Order controllable subgroup · Weakly controllable
subgroup

1 Introduction

For a family {Gi : i ∈ N} of topological groups, let
⊕

i∈N
Gi denote the subgroup

of elements (gi ) in the product
∏

i∈N
Gi such that gi = e for all but finitely many

indices i ∈ N. A subgroup G ≤ ∏

i∈N
Gi is called weakly controllable if G ∩ ⊕

i∈N
Gi

is dense in G, that is, if G is generated by its elements of finite support. The group
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G is called weakly observable if G ∩ ⊕

i∈N
Gi = G ∩ ⊕

i∈N
Gi , where G stands for the

closure of G in
∏

i∈N
Gi for the product topology. Although the notion of (weak)

controllability was coined by Fagnani earlier in a broader context (cf. [3, 4]), both
notions were introduced in the area of of coding theory by Forney and Trott (cf. [8]).
They observed that if the groups Gi are locally compact abelian, then controllability
and observability are dual properties with respect to the Pontryagin duality: If G is a
closed subgroup of

∏

i∈N
Gi , then it is weakly controllable if and only if its annihilator

G⊥ = {χ ∈ ∏̂

i∈N
Gi : χ(G) = {1}} is a weakly observable subgroup of ∏

i∈N
Ĝi (cf. [8,

4.8]).
In connection with the properties described above, the following definitions was

introduced in [12].

Definition 1.1 A subgroup G of a product
∏

i∈N
Gi is rectangular if there are sub-

groups Hi of Gi such that G = ∏

i∈N
Hi . We say that G is weakly rectangular if there

are finite subsets Fi ⊆ N and subgroups Hi of
⊕

j∈Fi
G j that satisfy G = ∏

i∈N
Hi . We

say that G is a subdirect product of the family {Gi }i∈I if G is weakly rectangular
and G ∩ ⊕

i∈I
Gi = ⊕

i∈N
Hi .

The observations below are easily verified.

1. Weakly rectangular subgroups and rectangular subgroups of
∏

i∈N
Gi are weakly

controllable.
2. If each Gi is a pro-pi -group for some prime pi , and all pi are distinct, then

every closed subgroup of the product
∏

i∈N
Gi is rectangular, and thus is a subdirect

product.
3. If each Gi is a finite simple non-abelian group, and all Gi are distinct, then every

closed normal subgroup of the product
∏

i∈N
Gi is rectangular, and thus a subdirect

product.

The main goal addressed in this paper is to study to what extent the converse of
these observations hold. In particular, we are interested in the following question (cf.
[12]):

Problem 1.1 Let {Gi : i ∈ N} be a family of compact metrizable groups, and G a
closed subgroup of the product

∏

i∈N
Gi . IfG is weakly controllable, that is,G ∩ ⊕

i∈N
Gi

is dense in G, what can be said about the structure of G? In particular, under what
additional conditions is the group G a subdirect product of {Gi : i ∈ N}, that is,
weakly rectangular and G ∩ ⊕

i∈I
Gi = ⊕

i∈N
Hi , where each Hi is a subgroup of

⊕

j∈Fi
G j

for some finite subset Fi ⊆ N?
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In connection with this question, the following result was established in [5].

Theorem 1.1 Let I be a countable set, {Gi : i ∈ I } be a family of finite abelian
groups andG = ∏

i∈I Gi be its direct product. Then every closedweakly controllable
subgroup H of G is topologically isomorphic to a direct product of finite cyclic
groups.

Unfortunately, this result does not answer Problem1.1, which remains open to the
best of our knowledge. Finally, it is pertinent to mention here that the relevance of
these notions stem fromcoding theorywhere they appear in connectionwith the study
of convolutional group codes [8, 13]. However, similar notions had been studied in
symbolic dynamics previously. Thus, the notions of weak controllability and weak
observability are related to the concepts of irreducible shift and shift of finite type,
respectively, that appear in symbolic dynamics. Here, we are concerned with abelian
profinite groups andourmain interest is to clarify theoverall topological and algebraic
structure of abelian profinite groups that satisfy any of the properties introduced
above. In the last section, we shall also consider some possible applications to the
study of group codes.

2 Basic Facts

2.1 Pontryagin-van Kampen Duality

One of the main tools in this research is Kaplan’s extension of Pontryagin van-
Kampen duality to infinite products of locally compact abelian (LCA) groups. In
like manner that Pontryagin-van Kampen duality has proven to be essential in under-
standing the structure of LCA, the extension accomplished by Kaplan for cartesian
products and direct sums [10, 11] (and some other subsequent results) have estab-
lished duality methods as a powerful tool outside the class of LCA groups and they
have been widely used in the study of group codes.

We recall the basic properties of topological abelian groups and the celebrated
Pontryagin-van Kampen duality.

Let G be a commutative locally-compact group. A character χ of G is a contin-
uous homomorphism χ : G −→ T where T is the multiplicative group of complex
numbers of modulus 1. The characters form a group Ĝ, called dual group, which
is given the topology of uniform convergence on compact subsets of G. It turns out
that Ĝ is locally compact and there is a canonical evaluation homomorphism

EG : G −→ ̂̂G.

Theorem 2.1 The evaluation homomorphism EG is an isomorphism of topological
groups.
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Some examples:
T̂ ∼= Z, Ẑ ∼= T, R̂ ∼= R, (̂Z/n) ∼= Z/n.

(Remark that some groups are self dual, such as finite abelian groups or the additive
group of the real numbers.)

Pontryagin-van Kampen duality establishes a duality between the subcategories
of compact and discrete abelian groups. If G denotes a compact abelian group and
Γ denotes its dual group, we have the following equivalences between topological
properties of G and algebraic properties of Γ:

1. weight (G) = |Γ | (metrizablity ⇔ |Γ | ≤ ω);
2. G is connected ⇔ Γ is torsion free;
3. Dim(G) = 0 ⇔ Γ is torsion; and
4. G is monothetic ⇔ Γ is isomorphic to a subgroup of Td .

In general, it is said that a topological abelian group (G, τ ) satisfiesPontryagin du-
ality (is P-reflexive for short,) if the evaluation map EG is a topological isomorphism
onto. We refer to the survey by Dikranjan and Stoyanov [2] and the monographs by
Dikranjan, Prodanov and Stoyanov [1] and Hofmann, Morris [9] in order to find the
basic results about Pontryagin-van Kampen duality.

The following result, due to Kaplan [10, 11] is essential in the applications of
duality methods.

Theorem 2.2 (Kaplan) Let {Gi : i ∈ I } be a family of P-reflexive groups. Then:
1. The direct product

∏

i∈I
Gi is P-reflexive.

2. The direct sum
⊕

i∈I
Gi equipped with a suitable topology is P-reflexive.

3. It holds:
(

∏

i∈I
Gi

)̂

∼=
⊕

i∈I
Ĝi

(
⊕

i∈I
Gi

)̂

∼=
∏

i∈I
Ĝi

Kaplan also set the problem of characterizing the class of topological abelian
groups for which Pontryagin duality holds.

Let g ∈ G andχ ∈ Ĝ, it is said that g andχ are orthogonalwhenχ(g) = 1. Given
S ⊆ G and S1 ⊆ Ĝ we define the orthogonal (or annihilator) of S and S1 as

S⊥ = {χ ∈ Ĝ : χ(g) = 1 ∀g ∈ S}

and
S⊥
1 = {g ∈ G : χ(g) = 1 ∀χ ∈ S1}.

Obviously G⊥ = {eĜ} and Ĝ⊥ = {eG}.
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The following result has also many applications in connection with duality theory.

Theorem 2.3 Let S and R be subgroups of a LCA group G such that S ≤ R ≤ G.
Then we have R̂/S ∼= S⊥/R⊥.

Corollary 2.1 Let H be a closed subgroup of a LCA group G. Then Ĝ/H ∼= H⊥
and Ĥ ∼= Ĝ/H⊥.

2.2 Abelian Profinite Groups

Our main results concern the structure of abelian profinite groups that appear in
coding theory. Firstly, we recall some basic definitions and terminology. For every
group G let us denote by (G)p the largest p-subgroup of G and PG = {p ∈ P :
G contains a p − subgroup} where p ∈ PG and P is the set of all prime numbers.

3 Order Controllable Groups

Definition 3.1 Let {Gi : i ∈ N} be a family of topological groups andC a subgroup
of

∏

i∈N
Gi . We have the following notions:

C is weakly controllable if C
⋂ ⊕

i∈N
Gi is dense in C.

C is controllable if for every c ∈ C and i ∈ N there are ni ∈ N and c1 ∈ C such
that c1|[1,i] = c|[1,i] and c1|]ni ,+∞[ = 0 (we assume that ni is the least natural number
satisfying this property). Remark that this property implies the existence of c2 ∈ C
such that c = c1 + c2, supp(c1) ⊆ [1, ni ] and supp(c2) ⊆ [i + 1,+∞[.

C is order-controllable if for every c ∈ C and i ∈ N there are ni ∈ N and c1 ∈ C
such that c1|[1,i] = c|[1,i], c1|]ni ,+∞[ = 0, and order(c1) ≤ order(c|[1,ni ]) (again, we
assume that ni is the least natural number satisfying this property). This prop-
erty implies the existence of c2 ∈ C such that c = c1 + c2, supp(c1) ⊆ [1, ni ],
supp(c2) ⊆ [i + 1,+∞[, and order(c1) ≤ order(c|[1,ni ]). As a consequence, we also
have that order(c2) ≤ order(c). Here, the order of c is taken in the usual sense, con-
sidering c as an element of the group C.

Every controllable group is weakly controllable and, if the groups Gi are finite,
then the notions of controllability and weakly controllability are equivalent (see [5]).
The following result partially answers Problem1.1 for p-groups. The proof can be
founded in [6].

Theorem 3.1 Let {Gi : i ∈ N} be a family of finite, abelian, p-groups and let G =∏

i∈N
Gi . If C is an infinite closed subgroup of G which is order-controllable, then C
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is weakly rectangular. In particular, there is a sequence {ym : m ∈ N} ⊆ C
⋂ ⊕

i∈N
Gi

such that C is topologically isomorphic to
∏

m∈N
< ym >.

Let C be a closed, subgroup of G = ∏

i∈N
Gi a countable product of finite abelian

groups. Since each group Gi is finite and abelian, by the fundamental structure theo-
rem of finite abelian groups, we have that every group Gi is a finite sum of finite
p-groups, that is Gi = ⊕

p∈Pi

(Gi )p and Pi = PGi is finite, i ∈ N. Note that PG = ∪Pi .

We have
∏

i∈N
Gi

∼=
∏

i∈N

⎛

⎝
∏

p∈Pi

(Gi )p

⎞

⎠ ∼=
∏

p∈PG

⎛

⎝
∏

i∈Np

(Gi )p

⎞

⎠

where Np = {i ∈ N : Gi has a p − subgroup}.
Thus

(G)p ∼=
∏

i∈Np

(Gi )p.

Consider the embedding

j : C ↪→
∏

p∈PG

⎛

⎝
∏

i∈Np

(Gi )p

⎞

⎠

and the canonical projection

πp :
∏

p∈PG

⎛

⎝
∏

i∈Np

(Gi )p

⎞

⎠ →
∏

i∈Np

(Gi )p.

Set C (p) = (πp ◦ j)(C ), that is a compact group. We have

(C )p ∼= C (p).

Now, it is easily seen thatC is order-controllable (resp. weakly rectangular) if and
only if (C )p has the corresponding property for each p ∈ PC . Taking this fact into
account, we obtain the following result that gives a partial answer to Problem1.1 for
products of finite abelian groups.

Theorem 3.2 Let C be an order-controllable, closed, subgroup of a countable
product G = ∏

i∈N
Gi of finite abelian groups Gi . Then C is weakly rectangular. In

particular, there is a sequence {y(p)
m : m ∈ N, p ∈ PC } ⊆ C ∩ (

⊕

i∈N
Gi ) such that

{y(p)
m : m ∈ N} ⊆ (C ∩ (

⊕

i∈N
Gi ))p andC is topologically isomorphic to

∏

m∈N
p∈PG

〈y(p)
m 〉.
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Proof Following with the notation introduced in the previous paragraph and, since
C ∩ (

⊕

i∈N
Gi ) is dense in C , we have that

(πp ◦ j)

(

C ∩ (
⊕

i∈N
Gi )

)

⊆ C (p) ∩
⊕

i∈Np

(Gi )p

is dense in C (p). Applying Theorem3.1, for each p ∈ PC , there is a sequence

{y(p)
m : m ∈ N} ⊆ C (p) ∩

⊕

i∈Np

(Gi )p

such that C (p) ∼= ∏

m∈N
〈y(p)

m 〉.
Finally, observe that if p ∈ PC , then C (p) ∩ ⊕

i∈Np

(Gi )p ∼= (C ∩ (
⊕

i∈N
Gi ))p. Thus,

using this isomorphism, we may assume with some notational abuse that

{y(p)
m : m ∈ N} ⊆ (C ∩ (

⊕

i∈N
Gi ))p

Therefore, the sequence {y(p)
m : m ∈ N, p ∈ PC } verifies the proof.

The notion of rectangular and weakly rectangular subgroup of an infinite product
extend canonically to subgroups of infinite direct sums. In this direction, we have:

Theorem 3.3 Let C be an order-controllable subgroup of
⊕

k∈N
Gk such that every

group Gk is finite and abelian. Then C is weakly rectangular. In particular, there is
a sequence (yn) ⊆ C such that

C �
⊕

n∈N
〈yn〉

4 Group Codes

According to Forney and Trott [8], a group code is a set of sequences that has a
group property under a componentwise group operation. In this general setting, a
group code may also be seen as the behavior of a behavioral group system as given
by Willens [14, 15]. It is known that many of the fundamental properties of linear
codes and systems depend only on their group structure. In fact, Forney and Trott,
loc. cit., obtain purely algebraic proofs of many of their results. In this section, we
follow this approach in order to apply the results in the preceding sections to obtain
further information about the structure of group codes in very general conditions.

Without loss of generality, assume, from here on, that a group code is a subgroup
of a (sequence) group W , called Laurent group, that has the generical form W =
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W f × W c, where W f is a direct sum of abelian groups (locally compact in general)
and W c a direct product. More precisely, let I ⊆ Z be a countable index set and let
{Gk : k ∈ I } be a set of symbol groups, a product sequence space is a direct product

W c =
∏

k∈I
Gk

equipped with the canonical product topology. A sum sequence space is a direct sum

W f =
⊕

k∈I
Gk

equipped with the canonical sum (box) topology. Sequence spaces are often defined
to be Laurent sequences

WL =
(

⊕

k<0

Gk

)

×
(

∏

k≥0

Gk

)

.

The character group of WL is

WaL =
(

∏

k<0

Ĝk

)

×
(

⊕

k≥0

Ĝk

)

.

Thus, a group codeC is a subgroup of a group sequence spaceW and is equipped
with the natural subgroup topology. Next we recall some basic facts of this theory
(cf. [4, 7, 8]). These notions are used in the study of convolutional codes that are
well known and used currently in data transmission (cf. [7]).

Let C be a group code in the product sequence space W = ∏
k∈I Gk . According

to Fagnani, C is called weakly controllable if it is generated by its finite sequences.
In other terms, if

C = C ∩ W f .

The group codeC is called controllable if for allw1,w2 ∈ C and k ∈ I , there exist
L(k) ∈ N and w ∈ C with w(i) = w1(i) ∀i < k, and w(i) = w2(i) ∀i ≥ k + L(k).

With the notation introduced above, let C be a group code in W . For any k ∈ I
and L ∈ N, we set

Ck(L) := {c ∈ C : there exists w ∈ C with w(i) = 0 ∀i < k and w(i) = c(i) ∀i ≥ k + L}

and
Ck :=

⋃

L∈N
Ck(L).

Obviously Ck(1) ⊆ Ck(2) ⊆ · · ·Ck(L) ⊆ · · · ⊆ Ck .
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We have the following equivalence, whose verification is left to the reader.

Proposition 4.1 C is controllable if and only if C = ⋂

k∈I

⋃

L∈N
Ck(L).

Given a group code C , the subgroup

Cc :=
⋂

k∈I

⋃

L∈N
Ck(L)

is called the controllable subcode of C . A code C is called uniformly controllable
when for every k ∈ I , there is Lk such that C = ⋂

k∈I
Ck(Lk). If there is some L ∈ N

such that Ck = Ck(L) for all k ∈ I , it is said that C is L-controllable. Finally, C is
strongly controllable if it is L-controllable for some L . IfC is uniformly controllable
and the sequence (Lk) is bounded, then C is strongly controllable and the least such
L is the controllability index (controller memory) of C .

Using the same words as in [8], the core meaning of “controllable” is that any
code sequence can be reached from any other code sequence in a finite interval. The
following property is clarifying in this regard. In the sequel

C:[k,k+L) = {w ∈ C : w( j) = 0 ∀ j /∈ [k, k + L)}.

Proposition 4.2 C is controllable if and only if for any w ∈ C , there is a sequence
(Lk) contained in N such that w ∈ ∑

k∈I
C:[k,k+Lk ).

Proof Let w ∈ C and let k1 ∈ I be the first index such that w(k1) �= 0. Then there
is w1 ∈ C and L1 ⊂ N such that w1(i) = w(i) for all 1 ≤ i ≤ k1 and w1(i) = 0 if
i ≥ L1 + k1. Take k2 = L1 + k1 + 1 and letw2 ∈ C satisfyingw2(i) = (w − w1)(i)
for all i ≤ k2 andw2(i) = 0 for all i ≥ k2 + L2. In generalwe selectwn ∈ C such that
wn(i) = 0 if i ≤ kn−1, wn(i) = (w − w1 − · · ·wn−1)(i) for all i < kn and wn(i) = 0
if i ≥ kn + Ln . We have that w = ∑

n∈N
wn in the product topology and furthermore

the sum
∑

n∈N
wn(i) is finite for all i ∈ I .

Analogous notions are defined regarding the observability of a group code. The
group code C is called weakly observable if

C ∩ W f = C ∩ W f .

Let C a group code in W , we set

(C f )k[L] := {c ∈ W f : c|[k,k+L] ∈ C|[k,k+L]}.

The group code C is called pointwise observable if
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C f =
⋂

k∈I

⋂

L∈N
(C f )k[L].

If C is a group code, then the supergroup

Cob := 〈C ∪ (
⋂

k∈I

⋂

L∈N
(C f )k[L])〉

is called the observable supercode of C . A code C is called uniformly observable
when for every k ∈ I , there is Lk such that C f = ⋂

k∈I
(C f )k[Lk]. If there is some

L ∈ N such that C f = ⋂

k∈I
(C f )k[L] for all k ∈ I , it is said that C is L-observable.

Finally, C is strongly observable if it is L-observable for some L . Obviously, if
C is uniformly observable and the sequence (Lk) is bounded, then C is strongly
observable and the least such L is the observability index (observer memory) of C .

Recently, Pontryagin duality methods have been applied systematically in the
study of convolutional abelian group codes. In this approach, a dual code C ⊥ is
associated to every group code C using Pontryagin-van Kampen duality in such a
way that the properties of C can be reflected (dualized) in C ⊥. Along this line,
the following duality theorem provides strong justification for the use of duality in
convolutional group codes (see [8]).

Theorem 4.1 ([8]) Given dual group codes C and C ⊥, then C is (resp. weakly,
strongly) controllable if and only if C ⊥ is (resp. weakly, strongly) observable, and
vice versa.

Using duality, we obtain the following additional equivalences (cf. [8]).

Proposition 4.3 For any group code C we have

1. (Cc)
⊥ ∼= (C ⊥)ob.

2. C is controllable if and only if C ⊥ is observable.
3. C is uniformly controllable if and only if C ⊥ is uniformly observable.

Therefore, we can put our attention on the controllability of a group code wlog.
In this direction, the following result was proved in [5].

Theorem 4.2 ([5]) Let C ≤ ∏

k∈N
Gk be a complete group code such that every group

Gk is finite (discrete). Then the following conditions are equivalent:

1. C is weakly controllable.
2. C is controllable.
3. C is uniformly controllable.

In [4] Fagnani proves that, if C is a closed, time invariant, group code in GZ, with
G being a compact group, then the properties of weak controllability, controllability
and strong controllability are equivalent. A different proof of this result follows easily
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using the ideas introduced above. Indeed, suppose that C is a weakly controllable,
compact group code in W . By Theorem4.2, we know that C is controllable and
therefore C = ⋂

k∈I

⋃

L∈N
Ck(L). Suppose, in addition, that C is time invariant, then

Ck(L) = C0(L) for all k ∈ I . Furthermore, using Baire category theorem and the
compactness of C , it follows that there must be some L ∈ N such that C0 = C0(L),
which means that C is strongly controllable.

The results formulated above do not hold in general. In fact, an example of a group
H that is weakly controllable but not controllable is provided in [5]. Furthermore,
using Theorem4.1, we obtain that the group H⊥ is is weakly controllable but not
controllable.

As a consequence of the preceding results we obtain the following relation be-
tween weakly controllable and controllable group codes (cf. [5]).

Theorem 4.3 If C is a group code in

W = W f × W c =
(

⊕

i<0

Gi

)

×
(

∏

i≥0

Gi

)

.

Then the following assertions hold:

(a) If every group Gi is discrete, then C is controllable if and only if C is weakly
controllable.

(b) If every group Gi is finite (discrete), then C is weakly controllable if and only if
C is uniformly controllable.

(c) If every group Gi is a fixed compact group G, and C is a time-invariant, closed
subgroup ofW c, then C is controllable if and only if C is strongly controllable.

In case the groups in the family {Gi : i ∈ I } are abelian, Theorem4.1 yields a
similar result for observable group codes, using Pontryagin duality.

Theorem 4.4 If C is a group code in

W = W f × W c =
(

⊕

i<0

Gi

)

×
(

∏

i≥0

Gi

)

.

Then the following assertions hold:

(a) If every group Gi is discrete abelian, then C is observable if and only if C is
weakly observable.

(b) If every group Gi is finite (discrete) abelian, then C is weakly observable if and
only if C is uniformly observable.

(c) If every group Gi is a fixed discrete abelian group G, and C is a time-invariant
subgroup of W f , then C is observable if and only if C is strongly observable.

A crucial point in the study of group codes is the finding of appropriate encoders.
Here, given a group code C ≤ ∏

i∈I Gi , an encoder is a continuous, injective map
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α : ∏
i∈I Fi → C that sends a full direct product onto C . Several techniques for

the construction of encoder have been considered so far (see [3, 7, 8]). Of special
relevance are the group codes that admit non-catastrophic encoders that are group
homomorphisms (cf. [3]). In this direction, the results accomplished in the previous
section give sufficient conditions for the existence of homomorphic encoders.

Theorem 4.5 Let C be an order-controllable, closed, subgroup of a countable
product G = ∏

i∈N
Gi of finite abelian groups Gi . Then C is weakly rectangular.

In particular, there is a sequence {ym : m ∈ N} ⊆ C ∩ (
⊕

i∈N
Gi ) and a topological

isomorphism
α :

∏

m∈N
〈ym〉 → C .

Furthermore, if α(
⊕

m∈N
〈ym〉) is a weakly observable subgroup, then α defines a non-

catastrophic encoder that is a group homomorphism.

5 Conclusion

To conclude, let us point out that, so far, the applications of Harmonic Analysis and
duality methods to the study of group codes have basically reached the abelian case
(via Pontryagin duality and Fourier analysis). The non-commutative case has not yet
been fully studied, but it can be expected that the application of duality techniques
in the study of non-abelian group codes could provide some results analogous to
those already known in the Abelian case (see the work of Forney and Trott, op.cit).
However, the nonabelian duality requires more complicated tools such as Kreǐn
algebras, vonNeumann algebras, operator spaces, etc.). Therefore, it is first necessary
to develop an appropriate nonabelian duality that can be applied in a similar way to
how it is done in the Abelian case.
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Maximally Almost Periodic Groups
and Respecting Properties
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Abstract A maximally almost periodic topological (MAP) group G respects P if
P(G) = P(G+), where G+ is the group G endowed with the Bohr topology and
P stands for the subsets ofG that have the propertyP . For a Tychonoff space X , we
denote byP the family of topological propertiesP of being a convergent sequence
or a compact, sequentially compact, countably compact, pseudocompact and func-
tionally bounded subset of X , respectively. We study relations between different
respecting properties from P and show that the respecting convergent sequences
(=the Schur property) is the weakest one among the properties ofP. We character-
ize respecting properties fromP inwide classes ofMAP topological groups including
the class of metrizableMAP abelian groups. Every real locally convex space (lcs) is a
quotient space of an lcs with the Schur property, and every locally quasi-convex (lqc)
abelian group is a quotient group of an lqc abelian group with the Schur property. It
is shown that a reflexive group G has the Schur property or respects compactness iff
its dual group G∧ is c0-barrelled or g-barrelled, respectively. We prove that an lqc
abelian kω-group respects all properties P ∈ P. As an application of the obtained
results we show that a reflexive abelian group of finite exponent is a Mackey group.

Keyword Schur property · Glicksberg property · kω-group · Locally quasi-convex
group · Free locally convex space

1 Introduction

LetX be aTychonoff space. IfP is a topological property,wedenote byP(X ) the set
of all subspaces ofX withP . Denote byS ,C ,SC ,CC ,PC orFB the property
of being a convergent sequence or being a compact, sequentially compact, countably
compact, pseudocompact and functionally bounded subset ofX , respectively. Inwhat
follows we consider the following families of compact-type topological properties

P0 := {S ,C ,SC ,CC ,PC } and P := P0 ∪ {FB}.
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LetG be amaximally almost periodic (MAP) topological groupG (for all relevant
definitions, see Sect. 2). We denote by G+ the group G endowed with the Bohr
topology. Following [59], a MAP group G respects a topological property P if
P(G) = P(G+).

The famous Glicksberg theorem [36] states that every locally compact abelian
(LCA) group respects compactness. If a MAP group G respects compactness we
shall say also that G has the Glicksberg property. Trigos-Arrieta [62, 63] proved
that countable compactness, pseudocompactness and functional boundedness are
respected by LCA groups. Banaszczyk and Martín-Peinador [9] generalized these
results to all nuclear groups. Nuclear groups were introduced and thoroughly studied
by Banaszczyk in [8]. The concept of Schwartz topological abelian groups appeared
in [4]. This notion generalizes the well-known notion of a Schwartz locally convex
space. All nuclear groups are Schwartz groups [4]. Außenhofer [2] proved that every
locally quasi-convex Schwartz group respects compactness. For a general and simple
approach to the theory of properties respected byMAP topological groups see [25].

Let (E, τ ) be a locally convex space (lcs for short), E′ the dual space of E and
let τw = σ(E,E′) be the weak topology on E. Set Ew := (E, τw). An lcs E is said
to have the Schur property if E and Ew have the same convergent sequences, i.e.,
S (E) = S (Ew). Considering E as an additive topological group one can define
E+. If E is a real lcs, it is proved in [58] that Ew and E+ have the same compact
sets and hence the same convergent sequences. By this reason we shall use of the
terminology “the Schur property” and “the Glicksberg property” for locally convex
spaces andMAP groups simultaneously. It is easy to see that if aMAP group G has
the Glicksberg property, then it has also the Schur property. In general the Schur
property does not imply the Glicksberg property, see [65, Example 6 (p. 267)] and
[19, Example 19.19], or [30, Proposition 3.5] for a more general assertion. However,
it is a classical result that a Banach space E has the Schur property if and only if E
has the Glicksberg property.

The aforementioned results motivate us to consider the following two problems.
The first problem concerns finding relationships between the properties P ∈ P. In
Sect. 3 we show that the Schur property is equivalent to the respecting sequential
compactness and is the weakest one among the properties ofP0, see Proposition 3.3.
Under the additional assumption that G+ is a μ-space, we prove in Theorem 3.4 that
the Glicksberg property implies all other properties P ∈ P. In Proposition 3.5 and
Theorem 3.6 we consider some natural classes of MAP groups in which the Schur
property implies the Glicksberg property and the respecting countable compactness.
We show also that the Schur property and the Glicksberg property have a natural
categorical characterization, see Proposition 3.1.

The second natural problem is the following: Characterize respecting properties in
concrete classes ofMAP groups. As wementioned above, every locally quasi-convex
Schwartz group has the Glicksberg property. However, there are even metrizable
reflexive abelian groups which are not Schwartz groups, see [25]. In [38] Hernández,
Galindo and Macario proved that a reflexive metrizable abelian group G has the
Glicksberg property if and only if every non-precompact subset A ofG has an infinite
subset B which is discrete and C∗-embedded in the Bohr compactification bG of G.
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This result was generalized by Hernández and Macario who showed in [39] that a
complete abelian g-group G has the Glicksberg property if and only if G respects
functional boundedness if and only if every non-precompact subset A of G has an
infinite subset B which is discrete and C-embedded in G+. Below we generalize
this result, see Theorem 3.4. Let us recall (see [39]) that every complete g-group
G is semi-reflexive and G+ is a μ-space. However, Außenhofer found in [1] an
example of a metrizable complete locally quasi-convex abelian group which is not
semi-reflexive. Thus the above results do not give a characterization of theGlicksberg
property even in the class of complete metrizable abelian groups.

We showed in [25] that if a completeMAP group respects functional boundedness,
thenG+ must be aμ-space.Therefore to obtain respectingproperties for aMAP group
G we should assume that G and G+ satisfy some completeness type properties. We
say that a topological space X is a countably μ-space if every countable functionally
bounded subset of X has compact closure. Clearly, every μ-space is a countably μ-
space, but the converse is not true in general (see Example 2.2 below). We shall say
that aMAP groupG is Bohr angelic ifG+ is angelic. In Theorem 3.6 we characterize
the Glicksberg property by means of the Bohr topology in the class of Bohr angelic
groups G which are countably μ-spaces. The class of Bohr angelic MAP groups
is sufficiently rich since it contains all MAP abelian groups with a G-base, see
Proposition 2.6. The class of topological groups with aG-base is introduced in [31],
it contains all metrizable groups and is closed under taking completions, quotients,
countable products and countable direct sums. Using Theorem 3.6 we prove the
following general result.

Theorem 1.1 Let G be a MAP abelian group with a G-base. If G is a countably
μ-space, then the following assertions are equivalent:

(i) G has the Schur property;
(ii) G has the Glicksberg property;
(iii) G respects sequential compactness;
(iv) G respects countable compactness;
(v) every non-functionally bounded subset of G has an infinite subset which is

closed and discrete in G+.

If, in addition, G+ is aμ-space, then (i)–(v) are equivalent to the following assertions:

(vi) G respects pseudocompactness;
(vii) G respects functional boundedness.

In particular, since every metrizable space is a μ-space and hence a countably μ-
space, Theorem 1.1 gives a characterization of the Glicksberg property in the class of
metrizableMAP abelian groupswithout the restrictive assumption of being a g-group
as in [39].

An important class of locally convex spaces (lcs for short) is the class of free locally
convex spacesL(X )overTychonoff spacesX . In Sect. 4weprove the following result.
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Theorem 1.2 Let X be a Tychonoff space. Then the free locally convex space L(X )

over X respects all properties P ∈ P0. If L(X ) is complete, then L(X ) respects all
properties P ∈ P.

It is well known that every Banach space E is a quotient space of a Banach space
with the Schur property (more precisely, E is a quotient space of the space �1(Γ )

for some set Γ ). We generalize this result to all real locally convex spaces and all
abelian Hausdorff topological groups.

Corollary 1.3 Every real locally convex space E is a quotient space of an lcs which
respects all properties P ∈ P0.

Corollary 1.4 Every Hausdorff abelian topological group G is a quotient group of
a locally quasi-convex abelian group which respects all properties P ∈ P0.

In Sect. 5 we obtain dual characterizations of the Schur property and the Glicks-
berg property in the class of reflexive abelian groups by showing that a reflexive
group G has the Schur property or the Glicksberg property if and only if its dual
group G∧ is c0-barrelled or g-barrelled, respectively (see Proposition 5.3). Another
important class of topological groups is the class of abelian kω-groups. This class
contains all dual groups of metrizable abelian groups, see [1, 13]. In Theorem 5.7
we show that every locally quasi-convex kω-group G respects all propertiesP ∈ P
(note that the condition of being a locally quasi-convex group cannot be omitted, see
Example 5.9).

In the last section we define some Glicksberg type properties and apply the
obtained results to show that a reflexive abelian group of finite exponent is a Mackey
group, see Theorem 6.7.

2 Preliminary Results

Denote by TG (TAG) the category of all Hausdorff (respectively, abelian) topologi-
cal groups and continuous homomorphisms. A compact group bX is called the Bohr
compactification of (X , τ ) ∈ TG if there exists a continuous homomorphism i from
X onto a dense subgroupofbX such that the pair (bX , i) satisfies the followinguniver-
sal property: If p : X → C is a continuous homomorphism into a compact group C,
then there exists a continuous homomorphism jp : bX → C such that p = jp ◦ i. Fol-
lowing von Neumann [51], the group X is called maximally almost periodic (MAP)
if the group X+ is Hausdorff, where X+ := (X , τ+) is the group X endowed with the
Bohr topology τ+ induced from bX . The family MAP (MAPA) of allMAP (respec-
tively,MAP abelian) topological groups is a subcategory of TG (respectively, TAG).
Every irreducible representation of a (pre)compact group X is finite-dimensional,
see [41, 22.13]. For an X ∈ MAP, we denote by ̂X the set of all (equivalence classes
of) finite-dimensional irreducible representations ofX . TheBohr functorB onMAP
is defined by B(X ) := X+ for a MAP group X and B(T ) = T if T : X → Y is a
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continuous homomorphism. Denote by PCom the class of all precompact groups. If
aMAP group (G, τ ) is abelian, then every π ∈ ̂G is one-dimensional (indeed, since
the unitary group of a finite-dimensional Hilbert space is compact, by the universal
property, π can be extended to π̂ ∈ ̂bG and [41, 22.17] applies), so ̂G coincides
with the group of all continuous characters of G denoted also by ̂G. In this case

τ+ = σ(G, ̂G), where σ(G, ̂G) is the smallest group topology on G for which the
elements of ̂G are continuous.

Denote by S the unit circle group and set S+ := {z ∈ S : Re(z) ≥ 0}. Let G be
an abelian topological group. A character χ ∈ ̂G is a continuous homomorphism
from G into S. A subgroup H of G is called dually embedded if every continuous
character of H can be extended to a continuous character of G. A subset A of G is
called quasi-convex if for every g ∈ G \ A there exists χ ∈ ̂G such that χ(g) /∈ S+
and χ(A) ⊆ S+. If A ⊆ G and B ⊆ ̂G set

A� := {χ ∈ ̂G : χ(A) ⊆ S+}, B� := {g ∈ G : χ(g) ∈ S+ ∀χ ∈ B}.

Then A is quasi-convex if and only if A�� = A. The set qc(A) := ⋂

χ∈A� χ−1(S+)

is called the quasi-convex hull of A. An abelian topological group (G, τ ) is called
locally quasi-convex if it admits a neighborhood base at the neutral element 0 consist-
ing of quasi-convex sets. IfG isMAP, then the sets qc(U ), whereU is a neighborhood
of zero inG, form a neighborhood base of a locally quasi-convex group topology τqc,
we set Gqc := (G, τqc). The class LQC of all abelian locally quasi-convex groups is
one of the most important subclasses of the class MAPA. Every LCA group is locally
quasi-convex. More generally, every nuclear group is locally quasi-convex, see [8,
Theorem 8.5]. The dual group ̂G of G endowed with the compact-open topology is
denoted by G∧. The homomorphism αG : G → G∧∧, g �→ (χ �→ χ(g)), is called
the canonical homomorphism. If αG is a topological isomorphism the group G is
called reflexive. In the dual group ̂G, we denote by σ(̂G,G) the topology of point-
wise convergence. Recall that a subset A of ̂G is called equicontinuous if for every
ε > 0 there is a neighborhood U of zero in G such that

|χ(x) − 1| < ε, ∀x ∈ U, ∀χ ∈ A.

We shall use the following fact, see [53].

Fact 2.1 Let U be a neighborhood of zero of an abelian topological group G. Then
U � is an equicontinuous quasi-convex compact subset of G∧. A subset A of G∧ is
equicontinuous if and only if A ⊆ V � for some neighborhood V of zero.

Let X and Y be Tychonoff spaces. We denote by Cp(X ,Y ) the space C(X ,Y )

of all continuous functions from X to Y endowed with the pointwise topology. If
Y = R, set C(X , R) := C(X ).

A subset A of a topological space X is called

• relatively compact if its closure Ā is compact;
• relatively countably compact if each countably infinite subset in A has a cluster
point in X ;
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• relatively sequentially compact if each sequence inAhas a subsequence converging
to a point of X ;

• functionally bounded in X if every f ∈ C(X ) is bounded on A.

Recall that a Hausdorff topological space X is called

• a kω-space if it is the inductive limit of an increasing sequence {Cn}n∈N of its
compact subsets;

• a kω-group if X is a topological group whose underlying space is a kω-space;
• a μ-space if every functionally bounded subset of X is relatively compact;
• an (E)-space if its relatively countably compact subsets are relatively compact
[37];

• a Šmulyan-space or a Š-space if its compact subsets are sequentially compact;
• an angelic space if (1) every relatively countably compact subset of X is relatively
compact, and (2) any compact subspace of X is Fréchet–Urysohn.

Note that any subspace of an angelic space is angelic, and a subset A of an angelic
spaceX is compact if and only if it is countably compact if and only ifA is sequentially
compact, see Lemma 0.3 of [56]. Note also that if τ and ν are regular topologies on
a set X such that τ ≤ ν and the space (X , τ ) is angelic, then the space (X , ν) is also
angelic, see [56].

We need also the following property stronger than the property of being a count-
ably μ-space. A topological group G is said to have a cp-property if every separable
(or countable) precompact subset of X has compact closure. If a topological group
G is complete, the closure A of each precompact subset A is compact. So every com-
plete topological group has the cp-property. However there is a non-complete group
with the cp-property which is not a μ-space.

Example 2.2 There is a sequentially compact non-compact abelian group H which
has the cp-property. Indeed, let G := X κ , where X is a metrizable compact abelian
group and the cardinal κ is uncountable. For g = (xi)i∈κ ∈ G, set supp(g) := {i ∈
κ : xi �= 0} and define

H := {g ∈ G : |supp(g)| ≤ ℵ0}.

Then H with the induced topology is a proper dense subgroup of G. Any countable
subset of H is contained in a countable product Y of copies of X . Since Y is a
compact and metrizable subgroup of G, we obtain that the group H is sequentially
compact with the cp-property. It is easy to see that every continuous function on H
is bounded. Since H is not compact, it follows that H is not a μ-space. Note also
that H is Fréchet–Urysohn by [52]. �

Example 2.3 It is well known that the ordinal spaceX = [0, ω1) is a pseudocompact
non-compact space, and hence X is not a μ-space. On the other hand, if A is a
countable subset of X and α = sup(A), then A is contained in the compact set [0, α].
Thus X is a countably μ-space. �
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We shall use the following result in which (i) is known but hard to locate explicitly
stated.

Lemma 2.4 Let G be a Hausdorff abelian topological group. Then:

(i) every functionally bounded subset A of G is precompact;
(ii) if G has the cp-property, then a separable subset B of G is functionally bounded

if and only if B is precompact.

Proof (i) If A is not precompact, Theorem 5 of [7] implies that A has an infinite
uniformly discrete subset C, i.e., there is a neighborhood U of zero in G such that
c − c′ /∈ U for every distinct c, c′ ∈ C. So C is not functionally bounded by Lemma
2.1 of [25], a contradiction.

(ii) follows from (i) and the cp-property. �

Following Orihuela [54], a Hausdorff topological space X is called web-compact
if there is a nonempty subset Σ of N

N and a family {Aα : α ∈ Σ} of subsets of X
such that, if

Cn1...nk :=
⋃

{Aβ : β = (mk) ∈ Σ, m1 = n1, . . . ,mk = nk}, ∀α = (nk) ∈ Σ,

the following two conditions hold:

(i)
⋃{Aα : α ∈ Σ} = X , and

(ii) if α = (nk) ∈ Σ and xk ∈ Cn1...nk for all k ∈ N, then the sequence {xk}k∈N has a
cluster point in X .

The class of web-compact spaces is sufficiently rich, see [45, § 4.3]. In particular,
every separable space is web-compact. In what follows we shall use repeatedly the
following result, see Proposition 4.2 of [45], which follows from a deep result of
Orihuela [54].

Fact 2.5 If X is web-compact, then the group Cp(X , S) is angelic.

Following [31], a topological group G is said to have a G-base if there is a
base {Uα : α ∈ N

N} of neighborhoods at the identity such that Uβ ⊆ Uα whenever
α ≤ β for all α, β ∈ N

N, where α = (α(n))n∈N ≤ β = (β(n))n∈N if α(n) ≤ β(n) for
all n ∈ N. Below we give sufficient conditions on aMAP abelian group G or its dual
group G∧ to be Bohr angelic.

Proposition 2.6 Let (G, τ ) be a MAP abelian group.

(i) If G is web-compact, then (G∧)+ is angelic.
(ii) If G has a G-base, then G+ is angelic.

Proof (i) The group
(

̂G, σ (̂G,G)
)

, being a closed subgroup of the group Cp(G, S),
is angelic by Fact 2.5. As σ(̂G,G) ≤ σ(̂G,G∧∧), we obtain that the group (G∧)+ =
(

̂G, σ (̂G,G∧∧)
)

is also angelic.



110 S. Gabriyelyan

(ii) Let {Uα : α ∈ N
N} be a G-base at zero in G. Then the family {U �

α : α ∈
N

N} is a compact resolution in G∧ by Theorem 5.1 of [31]. Therefore the group
H := (

̂G, σ (̂G,G)
)

is web-compact by Example 4.1(1) of [45]. Hence the space
Cp(H , S) is angelic by Fact 2.5. So the groupG+ = (

G, σ (G, ̂G)
)

, being a subgroup
of Cp(H , S), is also angelic. �

We shall use the following results.

Proposition 2.7 ([25]) Let H be a subgroup of a MAP Abelian group X and P ∈
P0. If X respects P , then H respects P as well.

Let E be a real lcs and E′ its topological dual space. Then E is a locally quasi-
convex abelian group, see [8]. So it is natural to consider relations between the weak
topology τw := σ(E,E′) and the Bohr topology τ+ := σ(E,̂E) on E. Denote by
τk the compact-open topology on E′. The polar of a subset A of E is denoted by
A◦ := {χ ∈ E′ : |χ(x)| ≤ 1∀x ∈ A}. Define

ψ : E′ → ̂E, ψ(χ) := e2π iχ ,
(

i.e. ψ(χ)(x) := e2π iχ(x) for x ∈ E
)

.

A proof of the next important result can be found in [8, Proposition 2.3].

Fact 2.8 Let E be a real lcs and let ψ : E′ → ̂E, ψ(χ) := e2π iχ . Then:

(i) ψ is an algebraic isomorphism;
(ii) ψ is a topological isomorphism of (E′, τk) onto E∧.

We shall say that ψ is the canonical isomorphism of E′ ontôE. Fact 2.8 implies that
τ+ < τw ≤ τ and hence

P(E) ⊆ P(Ew) ⊆ P(E+), for every P ∈ P. (1)

In [58] it is proved that Ew and E+ have the same compact sets and hence the
same convergent sequences. The next proposition generalizes this result.

Proposition 2.9 ([25]) Let E be a real lcs and letP ∈ P0. ThenP(Ew) = P(E+).

For an lcs E, we denote by Bo(E) the family of all bounded subsets of E. The
next assertion complements Proposition 2.9.

Proposition 2.10 If (E, τ ) is a real lcs, then every functionally bounded subset A of
E+ is bounded, i.e.,FB(E+) ⊆ Bo(E).

Proof Since Bo(E) = Bo(Ew), it is sufficient to show that A is weakly bounded. Let
U = [F; ε] be a standard weakly open neighborhood of zero in E, where F is a finite
subset of E′\{0}, ε > 0 and

[F; ε] := {x ∈ E : |χ(x)| < ε ∀χ ∈ F}.

Fix a χ ∈ F and take a z = zχ ∈ E such that χ(z) = 1. By Theorem 7.3.5 of [50],
we can represent E in the form E = Lχ ⊕ ker(χ), where Lχ = span(z) and ker(χ)
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is the kernel of χ . Then E+ = L+
χ ⊕ ker(χ)+. Since the projection Pχ from E

onto Lχ is continuous (in τ and τ+), Pχ (A) is a functionally bounded subset of
L+

χ
∼= R

+. By [63], Pχ (A) is bounded in Lχ . Therefore there exists a Cχ > 0 such
that |χ(a)| < Cχ for every a ∈ A. Set C := max{Cχ : χ ∈ F}. Then (ε/C)A ⊆ U
since |χ(

(ε/C)a
)

)| = (ε/C)|χ(a)| < ε for every a ∈ A and χ ∈ F . Thus A is
bounded. �

We do not know whether there exists a real lcs E such that FB(Ew) � FB(E+).
Theweak-∗ topology on the dual space of an lcsE plays a crucial role in the theory

of locally convex spaces. The next assertion complements Fact 2.8 and Proposition
2.9 and is used repeatedly in the paper (item (vii) is noticed in Proposition 2.3 of
[40]).

Proposition 2.11 Let E be a real lcs,P ∈ P0 and letψ : E′ → ̂E be the canonical
isomorphism. Then:

(i) the map ψ : (

E′, σ (E′,E)
)+ → (

̂E, σ (̂E,E)
)

is a topological isomorphism;
(ii) A ∈ P

(

E′, σ (E′,E)
)

if and only if ψ(A) ∈ P
(

̂E, σ (̂E,E)
)

;

(iii) the map ψ : (

E′, σ
(

E′, (E′, τk)′
))+ → (

̂E, σ (̂E,E∧∧)
)

is a topological iso-
morphism;

(iv) P

(

E′, σ
(

E′, (E′, τk)′
)

)

= P
(

(

E′, σ
(

E′, (E′, τk)′
))+)

;

(v) A ∈ P
(

E′, σ
(

E′, (E′, τk)′
))

if and only if ψ(A) ∈ P
(

̂E, σ (̂E,E∧∧)
)

;
(vi) a subset A of E′ is equicontinuous if and only if ψ(A) is equicontinuous;
(vii) the canonical map αE : E → E∧∧ is continuous if and only if every compact

subset of (E′, τk) is equicontinuous.

Proof (i) Since
(

E′, σ (E′,E)
)′ = E, the Fact 2.8 implies that the dual group of

(

E′, σ (E′,E)
)

can be identified with E under the map x �→ e2π ix (x ∈ E). So the sets

[F; ε] := {

χ ∈ E′ : |e2π iχ(x) − 1| < ε ∀x ∈ F
}

,

where F is a finite subset of E and ε > 0, form a base at zero in
(

E′, σ (E′,E)
)+

. The
sets

VF,ε := {

z ∈ ̂E : |z(x) − 1| < ε ∀x ∈ F
}

,

where F is a finite subset of E and ε > 0, form a base at zero in
(

̂E, σ (̂E,E)
)

.
Taking into account that ψ is an algebraic isomorphism and ψ(χ)(x) = e2π iχ(x), we
obtain thatψ

([F; ε]) = VF,ε. Thus the canonical isomorphismψ is also a topological
isomorphism.

(ii) Set F := (

E′, σ (E′,E)
)

. Then F ′ = E and Fw = F . Therefore, by Proposition
2.9, P(F) = P(F+) and (i) applies.

(iii) Note that
(

E′, σ
(

E′, (E′, τk)′
))′ = (E′, τk)′. Therefore, by Fact 2.8, the sets

[F; ε] := {

χ ∈ E′ : |e2π iξ(χ) − 1| < ε ∀ξ ∈ F
}

,
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where F is a finite subset of (E′, τk)′ and ε > 0, form a base at the origin in
(

E′, σ
(

E′, (E′, τk)′
))+

. Analogously, the sets

WF,ε := {

z ∈ ̂E : |s(z) − 1| < ε ∀s ∈ F
}

,

where F is a finite subset of E∧∧ and ε > 0, form a base at zero in
(

̂E, σ (̂E,E∧∧)
)

.
By (i) of Fact 2.8, the map

̂ψ : (E′, τk)′ → (E′, τk)∧, ̂ψ(ξ) := e2π iξ ,

is an algebraic isomorphism and, by (ii) of Fact 2.8, the adjoint map ψ∗ of ψ

ψ∗ : E∧∧ → (E′, τk)∧, (ψ∗(η), χ) = (

η,ψ(χ)
)

, η ∈ E∧∧, χ ∈ E′, (2)

is a topological isomorphism. In particular, for α = ψ∗(η), (2) implies

(α, χ) = (

(ψ∗)−1(α), ψ(χ)
)

, ∀α ∈ (E′, τk)∧, ∀χ ∈ E′. (3)

So the map H := (ψ∗)−1 ◦ ̂ψ : (E′, τk)′ → E∧∧ is an algebraic isomorphism such
that, for every z = ψ(χ) ∈ E∧ with χ ∈ E′ and each ξ ∈ (E′, τk)′, we have

(

H (ξ), z
) = (

(ψ∗)−1 ◦ ̂ψ(ξ), ψ(χ)
) (3)= (

̂ψ(ξ), χ
) = e2π iξ(χ) = e2π iξ

(

ψ−1(z)
)

.

Therefore, for a finite subset F of (E′, τk)′ and ε > 0, we obtain

ψ
([F; ε]) =

{

z ∈ ̂E :
∣

∣

∣

∣

e2π iξ
(

ψ−1(z)
)

− 1

∣

∣

∣

∣

< ε ∀ξ ∈ F

}

= {

z ∈ ̂E : ∣

∣

(

H (ξ), z
) − 1

∣

∣ < ε ∀ξ ∈ F
} = WH (F),ε.

Thus ψ is a topological isomorphism.
(iv) follows from Proposition 2.9 applied to G = Gw := (

E′, σ
(

E′, (E′, τk)′
))

,
and (v) follows from (iii) and (iv).

(vi) We shall use the following easily checked inequalities

π |φ| ≤ ∣

∣e2π iφ − 1
∣

∣ ≤ 2π |φ|, φ ∈ [−1/2, 1/2]. (4)

Let A ⊆ E′ be equicontinuous. For every 0 < ε < 0.1, take a neighborhood U of
zero in E such that

|a(x)| < ε, ∀a ∈ A, ∀x ∈ U. (5)

Then (4) and (5) imply

|ψ(a)(x) − 1| = ∣

∣e2π ia(x) − 1
∣

∣ ≤ 2πε, ∀a ∈ A, ∀x ∈ U.

Thus ψ(A) is equicontinuous.
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Conversely, letψ(A)be equicontinuous. For every 0 < ε < 0.1, take an absolutely
convex neighborhood U of zero in E such that

∣

∣e2π ia(x) − 1
∣

∣ < ε, ∀a ∈ A, ∀x ∈ U.

If a(x) = t + m with t ∈ [−1/2, 1/2] and m ∈ Z, (4) implies π |t| ≤ |e2π it − 1| =
|e2π ia(x) − 1| < ε, and hence

a(x) ∈ (−ε/π, ε/π) + Z, ∀a ∈ A, ∀x ∈ U. (6)

Since U is arc-connected, 0 ∈ U and ε < 0.1, (6) implies

a(x) ∈ (−ε/π, ε/π), ∀a ∈ A, ∀x ∈ U.

Thus A is equicontinuous.
(vii) Recall that αE is continuous if and only if every compact subset of E∧

is equicontinuous, see Proposition 5.10 of [1]. By Fact 2.8(ii), ψ is a topological
isomorphism of (E′, τk) onto E∧. Now the assertion follows from (vi). �

3 General Results

To show that the Glicksberg property and the Schur property can be naturally defined
by two functors in the category TG we consider two classes of topological groups
introduced by Noble in [52, 53], namely, the classes of k-groups and s-groups.

For every (X , τ ) ∈ TG denote by kg(τ ) the finest group topology forX coinciding
on compact sets with τ . In particular, τ and kg(τ ) have the same family of compact
subsets. Clearly, τ ≤ kg(τ ). If τ = kg(τ ), the group (X , τ ) is called a k-group [53].
The group (X , kg(τ )) is called the kg-modification ofX . The assignment kg(X , τ ) :=
(X , kg(τ )) is a functor fromTG to the full subcategoryK of all k-groups. The classK
contains all topological groups whose underlaying space is a k-space. In particular,
the class LC (LCA) of all locally compact (and abelian, respectively) groups is
contained in K. Since every metrizable group is a k-space we have LC � K. The
family of all abelian k-groups we denote by KA. Denote byRC the class of allMAP
groups which respect compactness.

Similar to k-groups we define s-groups (we follow [22]). Let (X , τ ) be a (Haus-
dorff) topological group and let S be the set of all sequences in (X , τ ) converging
to the unit e ∈ X . Then there exists the finest Hausdorff group topology τS on the
underlying group X in which all sequences of S converge to e. If τ = τS , the group
X is called an s-group. The assignment sg(X , τ ) := (X , τS) is a functor from TG to
the full subcategory S of all s-groups. The class S contains all sequential groups [22,
1.14]. Note that X and sg(X ) have the same set of convergent sequences [22, 4.2].
The family of all abelian s-groups we denote by SA. Every s-group is also a k-group
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[23], so S ⊆ K and SA ⊆ KA. Denote by RS the class of all MAP groups which
have the Schur property.

For a topological group X with the identity e, set

c0(X ) :=
{

(xn)n∈N ∈ X N : lim
n

xn = e
}

and let u0 be the uniform topology on c0(X ) generated by the sets of the form VN,
where V is an open neighborhood of e ∈ X . Set F0(X ) := (c0(X ), u0).

In (1) and (3) of the next proposition we give categorical characterizations of the
Schur property and the Glikcsberg property, note also that (8) generalizes Theorem
1.2 of [63].

Proposition 3.1 Let X and Y be MAP topological groups.

(1) X ∈ RC if and only if (kg ◦ B)(X ) = kg(X ).
(2) X ∈ K ∩ RC if and only if (kg ◦ B)(X ) = X .
(3) X ∈ RS if and only if (sg ◦ B)(X ) = sg(X ).
(4) X ∈ S ∩ RS if and only if (sg ◦ B)(X ) = X .
(5) PCom � RC and LCA � KA ∩ RC.
(6) K ∩ RC � K and K ∩ RC � RC.
(7) S ∩ RS � S and S ∩ RS � RS.
(8) Let X ∈ K and Y ∈ RC and let φ : X → Y be a homomorphism. If φ+ : X+ →

Y+, φ+(x) := φ(x), is continuous, then φ is continuous.
(9) Let X ∈ S and Y ∈ RS and let φ : X → Y be a homomorphism. If φ+ : X+ →

Y+, φ+(x) := φ(x), is continuous, then φ is continuous.

Proof (1) If X ∈ RC, then (kg ◦ B)(X ) = kg(X ) by the definition of the respecting
compactness and the definition of kg(X ). Conversely, let (kg ◦ B)(X ) = kg(X ) and
letK be compact inB(X ). ThenK is compact in (kg ◦ B)(X ) by the definition of kg-
modification. SoK is compact in kg(X ). Hence, by the definition of kg-modification,
K is compact in X . Thus X ∈ RC.

(2) If X ∈ K ∩ RC, then (1) and the definition of k-groups imply (kg ◦ B)(X ) =
kg(X ) = X . Conversely, let (kg ◦ B)(X ) = X . Since kg ◦ kg = kg , the equalities

kg(X ) = kg ◦ (kg ◦ B(X )) = (kg ◦ B)(X ) = X

and (1) imply that X is a k-group and X ∈ RC.
(3) and (4) can be proved analogously to (1) and (2), respectively.
(5) Since B(K) = K for each precompact group K , the first inclusion follows.

The second one holds by the Glicksberg theorem. To prove that these inclusions
are strict take an arbitrary compact totally disconnected metrizable group X . Then
F0(X ) is metrizable, and hence it is a k-group. By Theorem 1.3 of [25], F0(X )

respects compactness and it is not locally precompact by [24]. Thus the inclusions
are strict.
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(6)–(7) Being metrizable the group F0(T) belongs to SA ⊆ KA (here T = R/Z).
However,F0(T) does not respect compactness and convergent sequences byTheorem
1.3 of [25]. Thus K ∩ RC �= K and S ∩ RS �= S.

To prove that the second inclusion is proper it is enough to find a precompact
abelian group X which is not a k-group, and hence it is not an s-group. Take an
arbitrary non-measurable subgroup H of T and set X := (Z,TH ), where TH is the
smallest group topology on Z for which the elements of H are continuous. Then the
precompact group X does not contain non-trivial convergent sequences (see [16]).
Since X is countable, we obtain that X also does not have infinite compact subsets
by [20, 3.1.21]. This immediately implies that the kg-modification of X is discrete.
Hence kg(X ) = Zd is an infinite discrete LCA group. So kg(X ) �= X and X is not a
k-group. Thus the second inclusion is proper.

(8) Let idX : X → X+ and idY : Y → Y+ be the identity continuous maps. Fix
arbitrarily a compact subset K in X . Then K+ := φ+(idX (K)) is compact in Y+.
As Y ∈ RC, K+ is compact in Y . So idY |K+ is a homeomorphism. Hence φ|K =
(idY |K+)−1 ◦ φ+ ◦ (idX |K ) is continuous. So φ is continuous on any compact subset
of X . As X is a k-group, φ is continuous (see [53]).

(9) is proved analogously to (8). �

Remark 3.1 The fact that (G,T +) is precompact whenever (G,T ) is a MAP
abelian group suggests the following two natural questions posed in [18, 1.2] (see
also [63]):

(i) Let (G,U ) be an abelian precompact group. Must there exist a topological
group topology T for G such that (G,T ) is a LCA group and U = T +?

(ii) Let G be an abelian group with topological group topologies T and U such
that (G,T ) is a LCA group, (G,U ) is an abelian precompact group, U ⊆ T , and
a subset A ⊆ G is T -compact if and only if A is U -compact. Does it follow that
U = T +?

In [18], the authors showed that the answer to both these questions is “no”. Let
us show that the group X in the proof of (6)–(7) of Proposition 3.1 also answers
negatively to these questions. Set G = Z and U = TH . Since G is countable, every
locally compact group topologyT onGmust be discrete. SoT + = TT andU ⊆ T .
Further, as it was noticed in the proof of (6)–(7), a subset A of G is T -compact if
and only if A is U -compact (if and only if A is finite). However, since H �= T, we
obtain U �= T + by [17]. �

We note the following assertion.

Proposition 3.2 Let (G, τ ) be a MAP group such that every functionally bounded
subset of G+ has compact closure in G. Then G respects all propertiesP ∈ P and
G+ is a μ-space.

Proof Let A ∈ P(G+). Then A is functionally bounded in G+. Therefore its τ -
closure A is compact in G, so the identity map id : (

A, τ |A
) → (

A, τ+|A
)

is a home-
omorphism. Hence G+ is a μ-space and A ∈ P(G). Thus G respects P . �
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It is clear that the Glicksberg property implies the Schur property, but as we
mentioned in the introduction, the converse is not true in general. Someother relations
between respecting properties are given in the next proposition, which gives a partial
answer to Problem 7.2 in [25].

Proposition 3.3 Let (G, τ ) be a MAP group. Then:

(i) G has the Schur property if and only if it respects sequential compactness;
(ii) if G respects countable compactness, then G has the Schur property;
(iii) if G respects pseudocompactness, then G has the Schur property;
(iv) if G is a countably μ-space and respects functional boundedness, then G has

the Schur property;
(v) if G is complete and respects countable compactness, then G has theGlicksberg

property;
(vi) if G is complete and respects pseudocompactness, then G respects countable

compactness;
(vii) if G is complete and respects functional boundedness, then G respects all

properties P ∈ P.

Proof (i) (If G is an abelian group the necessity is proved in Proposition 23 of [12].)
Assume that (G, τ ) has the Schur property and letA be a sequentially compact subset
of G+. Take a sequence S = {an}n∈N in A. Then S has a τ+-convergent subsequence
S ′. By the Schur property S ′ converges in τ . Hence A is τ -sequentially compact. Thus
G respects sequential compactness.

Conversely, assume that (G, τ ) respects sequential compactness and let {an}n∈N be
a sequence τ+-converging to an element a0 ∈ G. Set S := {an}n∈N ∪ {a0}, so S is τ+-
compact. Being countable S is metrizable and hence τ+-sequentially compact. So S
is sequentially compact in τ . We show that an → a0 in τ . Suppose for a contradiction
that there is a τ -neighborhoodU of a0 which does not contain an infinite subsequence
S ′ of S. Then there is a subsequence {ank }k∈N of S ′ which τ -converges to an element
g ∈ S. Clearly, g �= a0 and ank → g in the Bohr topology, and hence an �→ a0 in τ+,
a contradiction. Therefore an → a0 in τ . Thus G has the Schur property.

(ii), (iii) Let {an}n∈N be a sequence τ+-converging to an element a0 ∈ G. Set
S := {an}n∈N ∪ {a0}, so S is τ+-compact. Hence S is τ+-countably compact. So S
is countably compact or pseudocompact in τ , respectively. As any countable space
is normal, in both cases S is countably compact in τ . We show that an → a0 in
τ . Suppose for a contradiction that there is a τ -neighborhood U of a0 which does
not contain an infinite subsequence S ′ of S. Then S ′ has a τ -cluster point g ∈ S and
clearly g �= a0. Note that g is also a cluster point of S ′ in the Bohr topology τ+. Hence
g = a0, a contradiction. Therefore an → a0 in τ . Thus G has the Schur property.

(iv) Let S = {an : n ∈ N} ∪ {a0} be a sequence in G+ which τ+-converges to a0.
Since S is also functional bounded in G+, we obtain that S is closed and functionally
bounded in G. So S is compact in G because G is a countably μ-space. As the
identity map (S, τ |S) → (S, τ+|S) is a homeomorphism, an → a0 in G. Thus G has
the Schur property.
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(v) Let K be a compact subset of G+. Then K is countably compact in G+ and
hence in G. Since functionally bounded subsets are precompact by Lemma 2.4, the
completeness of G and the closeness of K in G imply that K is a compact subset of
G. Thus G has the Glicksberg property.

(vi) Let A be a countably compact subset of G+. Then A is pseudocompact in G+
and hence inG. The completeness ofG and Lemma 2.4 imply that the closure A of A
in G is compact. As the identity map (A, τ |A) → (A, τ+|A) is a homeomorphism, we
obtain that A is countably compact in G. Thus G respects countable compactness.

(vii) This is Theorem 1.2 of [25]. �

Proposition 3.3 shows that the Schur property is the weakest one among the proper-
ties ofP0.We do not knowwhether the completeness ofG in (v)–(vii) of Proposition
3.3 can be dropped. Also we do not know an example of aMAP group which respects
countable compactness but does not have the Glicksberg property (or respects pseu-
docompactness but does not respect countable compactness, etc.).

Recall that in a complete group the class of precompact sets and the class of
functionally bounded sets are coincide. Recall also that if G is a complete g-group,
then G and G+ are μ-spaces, see Theorem 3.2 of [39]. Therefore the next theorem
generalizes Theorem 3.3 of [39], cf. also Theorem 1.2 of [25].

Theorem 3.4 Let (G, τ ) be a MAP group such that G+ is a μ-space. Then the
following assertions are equivalent:

(i) G respects compactness;
(ii) G respects countable compactness and G is a μ-space;
(iii) G respects pseudocompactness and G is a μ-space;
(iv) G respects functional boundedness and G is a μ-space;
(v) G is aμ-space and every non-functionally bounded subset A of G has an infinite

subset B which is discrete and C-embedded in G+.

If (i)–(v) hold, then every functionally bounded subset in G+ is relatively compact
in G.

Proof (i)⇒ (ii) Let A be a countably compact subset of G+. As G+ is aμ-space, the
τ+-closure A of A is compact in G+. Therefore A is compact in G by the Glicksberg
property, and hence A is relatively compact in G. Since the identity map (A, τ |A) →
(A, τ+|A) is a homeomorphism, we obtain that A is countably compact in G. Thus
G respects countable compactness. The same proof shows that every functionally
bounded subset in G+ is relatively compact in G, and in particular G is a μ-space.

(ii) ⇒ (iii) Let A be a pseudocompact subset of G+. Then the closure K of A in
G+ is τ+-compact because G+ is a μ-space. Therefore K is countably compact in
G. Being closed K also is compact in G since G is a μ-space. Since the identity map
(K, τ |K ) → (K, τ+|K ) is a homeomorphism, we obtain that A is pseudocompact in
G. Thus G respects pseudocompactness.

The implication (iii) ⇒ (iv) is proved analogously to (ii) ⇒ (iii).
(iv) ⇒ (v) Let A be a non-functionally bounded subset of G. As G respects

functional boundedness it follows that A is not functionally bounded in G+. Let f be
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a continuous function on G+ which is unbounded on A. If we take B as a sequence
{an}n∈N in A such that |f (an+1)| > |f (an)| + 1 for all n ∈ N, then B is discrete and
C-embedded in G+.

(v)⇒ (i) LetK be a compact subset ofG+. ThenK must be functionally bounded
in G. Since G is a μ-space and K is also closed in G we obtain that K is compact in
G. Thus G respects compactness. �

In several important classes ofMAP groups some of the properties fromP0 hold
simultaneously.

Proposition 3.5 Let (G, τ ) be a complete MAP group.

(i) If G+ is an (E)-space, then G has the Glicksberg property if and only if G
respects countable compactness.

(ii) If G+ is a Š-space, then G has the Schur property if and only if G has the
Glicksberg property.

Proof (i) Let G have the Glicksberg property and let K be a countably compact
subset of G+. Since G+ is an (E)-space, K is relatively compact in G+, and hence
its τ+-closure K is compact in G+. So K is compact in G and the identity map
(K, τ |K ) → (K, τ+|K ) is a homeomorphism. Therefore K is countably compact in
G. Thus G respects countable compactness. The converse assertion follows from (v)
of Proposition 3.3.

(ii) Let G have the Schur property and let K be a compact subset of G+. Then
K is sequentially compact in G+, and hence in G by (i) of Proposition 3.3. As K is
precompact and closed in G and G is complete, we obtain that K is compact in G.
Thus G has the Glicksberg property. The converse assertion is clear. �

For Bohr angelic groups we obtain the following result.

Theorem 3.6 Let (G, τ ) be a MAP group. If G+ is angelic, then the following
assertions are equivalent:

(i) G has the Schur property;
(ii) G has the Glicksberg property;
(iii) G respects sequential compactness;
(iv) G respects countable compactness.

If, in addition, G is a countably μ-space, then (i)–(iv) are equivalent to

(v) every non-functionally bounded subset of G has an infinite subset which is
closed and discrete in G+.

Proof The equivalence (i) ⇔ (iii) and the implications (ii) ⇒ (i) and (iv) ⇒ (i)
follow from Proposition 3.3.

(iii) ⇒ (ii), (iv) Let K be a compact subset or a countably compact subset of
G+. Then K is sequentially compact in G+ by [56, Lemma 0.3], and hence K is
sequentially compact in G. Since G is also angelic, we obtain that K is compact or
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countably compact in G. Thus G has the Glicksberg property or respects countable
compactness, respectively.

(ii) ⇒ (v) Suppose for a contradiction that there is a non-functionally bounded
subsetA inG such that every countably infinite subset is either non-closed inG+ or is
not discrete inG+. So, in both cases, every countably infinite subset ofA has a cluster
point in G+. Therefore A is relatively countably compact in G+. The angelicity of
G+ implies that the closure A of A in G+ is compact in G+. Hence A is compact in
G by the Glicksberg property. Thus A is functionally bounded in G, a contradiction.

(v) ⇒ (i) Let gn → e in G+, where e is the identity of G. Set S := {gn}n∈N ∪ {e},
so S is a compact subset of G+. Let us show that S is functionally bounded in G.
Indeed, otherwise, there would exist a subsequence {gnk }k∈N of S which is closed
and discrete in G+. Then gn does not converge to e in G+, a contradiction. So S
is functionally bounded in G. Thus the set S being also countable and closed in G
is compact in G (recall that G is a countably μ-space). Therefore the identity map
(S, τ |S) → (S, τ+|S) is a homeomorphism. Hence gn → e in G. Thus G has the
Schur property. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The equivalences (i) ⇔ (ii)⇔(iii) ⇔ (iv) ⇔ (v) follow from
Theorem 3.6 and (ii) of Proposition 2.6. The implications (vi) ⇒ (i) and (vii) ⇒ (i)
follow from (iii) and (iv) of Proposition 3.3, respectively. Finally, the implications
(ii) ⇒ (vi) and (ii) ⇒ (vii) follow from Theorem 3.4. �

Corollary 3.7 For a Lindelöf MAP abelian group G with a G-base the following
assertions are equivalent:

(i) there is P ∈ P such that G respects P;
(ii) G respects all properties P ∈ P;
(iii) every non-functionally bounded subset of G has an infinite subset which is

closed and discrete in G+.

If, in addition, G has the cp-property, then (i)–(iii) are equivalent to

(iv) every non-precompact sequence in G has an infinite subsequence which is
closed and discrete in G+.

Proof Since G is Lindelöf, the group G+ is also Lindelöf. Therefore G and G+ are
μ-spaces. Now Theorem 1.1 implies the equivalences (i) ⇔ (ii) ⇔ (iii). If G has the
cp-property, the equivalence (iii) ⇔ (iv) follows from Lemma 2.4. �

4 Real Locally Convex Spaces and Respecting Properties

Following [32, 48], the free locally convex space L(X ) (the free topological vector
space V(X )) on a Tychonoff space X is a pair consisting of a locally convex space
L(X ) (a topological vector spaceV(X ), resp.) and a continuousmap i : X → L(X ) (i :
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X → V(X ), resp.) such that every continuousmap f fromX to a locally convex space
E (a topological vector spaceE, resp.) gives rise to a unique continuous linear operator
f̄ : L(X ) → E (f̄ : V(X ) → E) with f = f̄ ◦ i. The free locally convex space L(X )

and the free topological vector space V(X ) always exist and are essentially unique.
The set X forms a Hamel basis for L(X ) and V(X ), and the map i is a topological
embedding, see [32, 57, 64].

For a Tychonoff spaceX , letCk(X ) be the spaceC(X ) endowedwith the compact-
open topology τk . Then the sets of the form

[K; ε] := {f ∈ C(X ) : |f (x)| < ε ∀x ∈ K}, where K is compact and ε > 0,

form a base of open neighborhoods at zero in τk .
Denote byMc(X ) the space of all real regular Borel measures on X with compact

support. It is well-known that the dual space of Ck(X ) isMc(X ), see [44]. Denote by
τe the polar topology onMc(X ) defined by the family of all equicontinuous pointwise
bounded subsets of C(X ). We shall use the following deep result of Uspenskiı̆ [64].

Theorem 4.1 ([64]) Let X be a Tychonoff space and let μX be the Dieudonné
completion of X . Then the completion L(X ) of L(X ) is topologically isomorphic
to

(

Mc(μX ), τe
)

. Consequently, L(X ) is complete if and only if X is Dieudonné
complete and does not have infinite compact subsets.

Corollary 4.2 Let X be aDieudonné complete space. Then the topology τe onMc(X )

is compatible with the duality (Ck(X ),Mc(X )).

Proof It is well-known that L(X )′ = C(X ), see [57]. Now Theorem 4.1 implies
(Mc(X ), τe)

′ = L(X )′ = C(X ). �

We need also the following fact, see §5.10 in [50].

Proposition 4.3 Let X be a Tychonoff space and let A be an equicontinuous point-
wise bounded subset of C(X ). Then the pointwise closure Ā of A is τk -compact and
equicontinuous.

Following [6], a Tychonoff space X is called Ascoli if every compact subset K
of Ck(X ) is equicontinuous. Note that X is Ascoli if and only if the canonical map
L(X ) → Ck(Ck(X )) is an embedding of locally convex spaces, see [26]. Below we
give another characterization of Ascoli spaces. Denote by τM

k the compact-open
topology on Mc(X ).

Proposition 4.4 Let X be a Tychonoff space. Then:

(i) τe ≤ τM
k on Mc(X );

(ii) τe = τM
k on Mc(X ) if and only if X is an Ascoli space.

Proof (i) immediately follows from Proposition 4.3.
(ii) Assume that X is an Ascoli space. By (i) we have to show that τM

k ≤ τe. Take
a standard τM

k -neighborhood of zero
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[K; ε] = {ν ∈ Mc(X ) : |ν(f )| < ε ∀f ∈ K},

where K is a compact subset of Ck(X ) and ε > 0. Since X is Ascoli, K is equicon-
tinuous and clearly pointwise bounded. Therefore [K; ε] is also a τe-neighborhood
of zero. Thus τM

k ≤ τe.
Conversely, let τe = τM

k on Mc(X ) and let K be a compact subset of Ck(X ).
Then the polar K◦ of K is also a τe-neighborhood of zero in Mc(X ). So there is an
absolutely convex, equicontinuous and pointwise bounded subset A of C(X ) such
that A◦ ⊆ K◦. By Proposition 4.3 we can assume that A is pointwise closed. Now
the Bipolar theorem implies that K ⊆ A◦◦ = A. So K is equicontinuous. Thus X is
an Ascoli space. �

Recall that a locally convex space E is called semi-Montel if every bounded subset
of E is relatively compact, and E is a Montel space if it is a barrelled semi-Montel
space. For real semi-Montel spaces, the following result strengthens Proposition 2.4
of [30].

Theorem 4.5 A real semi-Montel space E respects all properties P ∈ P.

Proof Let A ∈ P(E+). Then A is a functionally bounded subset of E+. Hence A is
bounded in E by Proposition 2.10. Therefore the closure A of A in E is compact and
Proposition 3.2 applies. �

Recall (see Theorem 15.2.4 of [50]) that a locally convex spaceE is semi-reflexive
if and only if every bounded subset A of E is relatively weakly compact. Although
the first assertion of the next corollary is known, see Corollary 4.15 of [33], we give
its simple and short proof.

Corollary 4.6 Let E be a real semi-reflexive lcs. Then E has the Glicksberg property
if and only if E is a semi-Montel space. In this case E respects all propertiesP ∈ P.

Proof Assume that E has the Glicksberg property. If A is a bounded subset of E,
then the weak closure A

τw of A is weakly compact, and hence A
τw is compact also

in E by the Glicksberg property and (1). Thus E is semi-Montel. The converse and
the last assertions follow from Theorem 4.5. �

Taking into account that any reflexive locally convex space is barrelled, Corollary
4.6 immediately implies the main result of [58].

Corollary 4.7 ([58])Let E be a real reflexive lcs. ThenE has theGlicksberg property
if and only if E is a Montel space.

An example of a semi-Montel but non-Montel space is given in Corollary 4.11 below.

Proposition 4.8 Let X be a Dieudonné complete space and let K be a τe-closed
subset of Mc(X ). Then the following assertions are equivalent:

(i) K is τe-compact;
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(ii) K is τe-bounded;
(iii) there is a compact subset C of X and ε > 0 such that K ⊆ [C; ε]◦.
In particular, the space (Mc(X ), τe) is a semi-Montel space.

Proof (i) ⇒ (ii) is clear. Let us prove that (ii) ⇒ (iii). Since X being a Dieudonné
complete space is a μ-space, Ck(X ) is barrelled by the Nachbin–Shirota theorem.
This fact and Corollary 4.2 imply that K is equicontinuous. So there is a compact
subsetC ofX and ε > 0 such thatK ⊆ [C; ε]◦. To prove (iii)⇒ (i) we note first that
[C; ε]◦ is equicontinuous and σ

(

Mc(X ),C(X )
)

-compact by the Alaoglu theorem.
Therefore [C; ε]◦ is compact in the precompact-open topology τpc on Mc(X ) by
Proposition 3.9.8 of [42]. By Proposition 4.4, we have τe ≤ τM

k ≤ τpc. Hence [C; ε]◦
is τe-compact. Thus K being closed is also τe-compact. �

Theorem 4.5 and Proposition 4.8 imply

Corollary 4.9 If X is a Dieudonné complete space, then (Mc(X ), τe) respects all
properties P ∈ P.

Below we describe bounded subsets of L(X ) essentially generalizing Lemma 6.3
of [32]. For χ = a1x1 + · · · + anxn ∈ L(X )with distinct x1, . . . , xn ∈ X and nonzero
a1, . . . , an ∈ R, we set

‖χ‖ := |a1| + · · · + |an|, and supp(χ) := {x1, . . . , xn},

and recall that

f (χ) = a1f (x1) + · · · + anf (xn), for every f ∈ C(X ) = L(X )′.

For {0} �= A ⊆ L(X ), set supp(A) := ⋃

χ∈A supp(χ).

Proposition 4.10 A nonzero subset A of L(X ) is bounded if and only if supp(A) has
compact closure in the Dieudonné completionμX of X and CA := sup{‖χ‖ : χ ∈ A}
is finite.

Proof Observe that a subset B of an lcs E is bounded if and only if its closure B in the
completion E of E is bounded. Now assume that A is bounded. By Theorem 4.1, we
have L(X ) = (Mc(μX ), τe) and, by Corollary 4.2, the topology τe is compatible with
the duality (Ck(μX ),Mc(μX )). As μX is a μ-space, the Nachbin–Shirota theorem
implies that Ck(μX ) is barrelled. Therefore A is a bounded subset of L(X ) if and
only if its completion A in (Mc(μX ), τe) is equicontinuous and hence if and only if
there is a compact subset K of μX and ε > 0 such that A ⊆ [K; ε]◦ ∩ L(X ). By the
regularity of μX it is easy to see that

χ = a1x1 + · · · + anxn ∈ [K; ε]◦ ∩ L(X ),

where x1, . . . , xn ∈ X are distinct and a1, . . . , an are nonzero, if and only if x1, . . . ,
xn ∈ K and ‖χ‖ = |a1| + · · · + |an| ≤ 1/ε. Therefore, if A is bounded, then supp(A)

⊆ K and CA < 1/ε.
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Conversely, let supp(A) be compact in μX and CA < ∞. Set B = [

supp(A);
1/CA

]◦
. Then B is equicontinuous and σ

(

Mc(μX ),C(μX )
)

-compact by the Alaoglu
theorem. ThereforeB is compact in the precompact-open topology τpc onMc(μX ) by
Proposition 3.9.8 of [42]. Since τe ≤ τM

k ≤ τpc by Proposition 4.4, we obtain that B
is a τe-compact subset ofMc(μX ). As A ⊆ B ∩ L(X ), the above observation implies
that A is a bounded subset of L(X ). �

Corollary 4.11 Let X be a Dieudonné complete space whose compact subsets are
finite. Then L(X ) is a complete semi-Montel space. If, in addition, X is non-discrete,
then L(X ) is not Montel.

Proof By Proposition 4.10, every bounded subset A of L(X ) is a bounded subset of
a finite-dimensional subspace of L(X ). Therefore A is compact and hence L(X ) is a
semi-Montel space. The space L(X ) is complete by Theorem 4.1. If additionally X
is not discrete, then L(X ) is not barrelled by Theorem 6.4 of [32]. Thus L(X ) is not
a Montel space. �

Now we prove the main result of this section.

Proof of Theorem 1.2. By Theorem 4.1, the space L(X ) embeds into (Mc(μX ), τe).
Now Proposition 2.7 and Corollary 4.9 imply that L(X ) respects all propertiesP ∈
P0.

Assume in addition that L(X ) is complete. Then X is Dieudonné complete and
does not have infinite compact subsets by Theorem 4.1. Hence L(X ) is a semi-
Montel space by Corollary 4.11. Thus L(X ) respects also functional boundedness by
Theorem 4.5. �
Proof of Corollary 1.3. By the universal property of the free lcs L(E), the identity
map id : E → E extends to a continuous linear map id from L(E) onto E. Since E is
a subspace of L(E) it follows that id is a quotient map. It remains to note that L(E)

respects all properties P ∈ P0 by Theorem 1.2. �
Following [48], an abelian topological group A(X ) is called the free abelian topo-

logical group over a Tychonoff space X if there is a continuous map i : X → A(X )

such that i(X ) algebraically generates A(X ), and if f : X → G is a continuous map
to an abelian topological group G, then there exists a continuous homomorphism
f̄ : A(X ) → G such that f = f̄ ◦ i. The free abelian topological group A(X ) always
exists and is essentially unique. The identity map idX : X → X extends to a canon-
ical homomorphism idA(X ) : A(X ) → L(X ). Note that idA(X ) is an embedding of
topological groups, see [61, 64].

It is known (see [33]) that the free abelian topological groupA(X )over aTychonoff
space X has the Glicksberg property. The next corollary generalizes this result.

Corollary 4.12 Let X be a Tychonoff space. Then the free abelian topological group
A(X ) over X is locally quasi-convex and respects all properties P ∈ P0.

Proof Since A(X ) is a subgroup of L(X ), A(X ) is locally quasi-convex. The group
A(X ) respects all properties P ∈ P0 by Proposition 2.7 and Theorem 1.2. �
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Proof of Corollary 1.4.Note thatG is a Tychonoff space. So, by the universal property
of A(G), the identity map id : G → G extends to a continuous homomorphism id
from A(G) onto G. Clearly, id is a quotient map. Now Corollary 4.12 finishes the
proof. �

We do not know whether L(X ) and A(X ) respect also functional boundedness for
every Tychonoff space X . We end this section with the following question.

Question 4.13 Characterize Tychonoff spaces X forwhich L(X ) is a reflexive group.

5 P-Barrelledness, Reflexivity and Respecting Properties

Let E be a locally convex space. It is well-known that E is barrelled if and only
if every σ(E′,E)-bounded subset of E′ is equicontinuous. Recall that E is called
c0-barrelled if every σ(E′,E)-null sequence is equicontinuous. Analogously, if P
is a (topological) property, we shall say that E is a P-barrelled space if every
A ∈ P

(

E′, σ (E′,E)
)

is equicontinuous.
Following [15], a MAP abelian group G is called g-barrelled if any σ(̂G,G)-

compact subset of ̂G is equicontinuous. Every real barrelled lcs E is a g-barrelled
group, but the converse does not hold in general by [15] (see also Example 5.6 below).
Analogously, G is sequentially barrelled or c0-barrelled if any σ(̂G,G)-convergent
sequence of ̂G is equicontinuous, see [49]. More generally, for a property P , we
shall say that aMAP abelian group G isP-barrelled if every A ∈ P

(

̂G, σ (̂G,G)
)

is equicontinuous. Clearly, every g-barrelled group is also c0-barrelled. In the next
proposition item (i) extends Proposition 1.12 of [15] and explains our use of the
notion “c0-barrelled group” also for c0-barrelled spaces.

Proposition 5.1 Let E be a real locally convex space and let P ∈ P0. Then:

(i) E is aP-barrelled space if and only if E is aP-barrelled group;
(ii) if E is a barrelled space, then E is aP-barrelled group.

Proof (i) Let E be a P-barrelled space and A ∈ P
(

̂E, σ (̂E,E)
)

. Recall that the
canonical isomorphism ψ : E′ → ̂E is defined by ψ(χ) := e2π iχ . Then ψ−1(A) ∈
P

(

E′, σ (E′,E)
)

by (ii) of Proposition 2.11, and hence ψ−1(A) is equicontinuous.
Now (vi) of Proposition 2.11 implies that A is equicontinuous. Thus E is a P-
barrelled group. Conversely, let E be aP-barrelled group and A ∈ P

(

E′, σ (E′,E)
)

.
Thenψ(A) ∈ P

(

̂E, σ (̂E,E)
)

by (ii) of Proposition 2.11, and henceψ(A) is equicon-
tinuous. Applying now (vi) of Proposition 2.11 we obtain that A is equicontinuous.
Thus E is aP-barrelled space.

(ii) follows from (i) and the fact that every weak-∗ functionally bounded subset
of E′ is weak-∗ bounded, see Proposition 2.10. �

Corollary 5.2 For a Tychonoff space X the space Cp(X ) is a c0-barrelled group if
and only if Cp(X ) is a barrelled space.
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Proof Recall thatCp(X ) is a c0-barrelled space if and only if it is barrelled (see [46]),
and Proposition 5.1 applies. �

In what follows, forP = C andP = S , we shall use the standard terminology
of being g-barrelled or c0-barrelled instead of being C -barrelled or S -barrelled,
respectively.

Items (i) and (ii) of the next proposition generalizes (a)-(b′) of Proposition 2.3 of
[49].

Proposition 5.3 Let G be a MAP abelian group. Then:

(i) if G isP-barrelled for P ∈ P0, then G∧ respects P;
(ii) if G∧ isP-barrelled forP ∈ P0 and αG is a topological embedding, then G

respects P;
(iii) if G is reflexive, then G is c0-barrelled if and only if G∧ has the Schur property;
(iv) if G is reflexive, then G is g-barrelled if and only if G∧ has the Glicksberg

property;
(v) if G is reflexive and G∧ is angelic, then G is CC -barrelled if and only if G∧

respects CC .

Proof (i) Let A ∈ P
(

̂G, σ (̂G,G∧∧)
)

. Then A ∈ P
(

̂G, σ (̂G,G)
)

as well, so A is
equicontinuous. Hence there is a neighborhoodU of zero in G such that A ⊆ U � and
the setU � is a compact subset ofG∧, see Fact 2.1. So the identitymap

(

U �, τk |U�
) �→

(

U �, σ (̂G,G∧∧)|U�
)

is a homeomorphism, where τk is the compact-open topology
of the dual group G∧. Therefore A ∈ P(G∧), and hence G∧ respects P .

(ii) follows from (i) and Proposition 2.7.
(iii) Assume that G∧ has the Schur property and S is a σ(̂G,G)-null sequence in

̂G. By the reflexivity of G, S is also a σ(̂G,G∧∧)-null sequence. Hence S converges
to zero in G∧ by the Schur property. Therefore S� is a neighborhood of zero in G∧∧.
By the reflexivity ofG, S� = α−1

G (S�) is a neighborhood of zero inG. Since S ⊆ S��
we obtain that S is equicontinuous, see Fact 2.1. ThusG is c0-barrelled. The converse
assertion follows from (i).

The proof of (iv) is similar to the proof of (iii).
(v) Assume that G∧ respects countable compactness. Let A be a σ(̂G,G)-

countably compact subset of ̂G. By the reflexivity of G, A is also σ(̂G,G∧∧)-
countably compact. As G∧ respects CC , A is countably compact in G∧ and hence
A is compact by the angelicity of G∧. The rest of the proof repeats (iii) replacing S
by A. �

Corollary 5.4 ([15]) A locally compact abelian group G is g-barrelled.

Proof Since G is reflexive and G∧ is locally compact by the Pontryagin–van Kam-
pen duality theorem, the assertion follows from Glicksberg’s theorem and (iv) of
Proposition 5.3. �

The condition of being reflexive in Proposition 5.3 is essential as the following
example shows.
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Example 5.5 The group G := Cp(s, 2) of all continuous maps from s to the discrete
group Z(2) with the pointwise topology has the following properties:

(i) G is a countable non-reflexive precompact metrizable group;
(ii) every compact subset of G∧ is equicontinuous;
(iii) G∧ respect all the properties P ∈ P;
(iv) G is not c0-barrelled.

Proof (i) Observe thatG is a dense proper subgroup of the compact metrizable group
Z(2)N, so G is metrizable. Being non-complete G is not reflexive, see [13]. To show
thatG is countable, for every n ∈ N, setFn := {e1, . . . , en} andUn := s\Fn. If f ∈ G,
there is an n ∈ N such that f |Un = f (e0) ∈ Z(2). Therefore f is uniquely defined by
its values on Fn ∪ {e0}. Thus G is countable.

(ii), (iii) By [1, 13], the group G∧ is the countable direct sum
⊕

N
Z(2) endowed

with the discrete topology. So every compact subset ofG∧ is finite and hence equicon-
tinuous. Since G∧ is discrete, it respects all properties P ∈ P (see Introduction).

(iv) For every n ∈ N, set

χn := (

0, . . . , 0
︸ ︷︷ ︸

2n

, 1, 1, 0, . . .
)

Taking into account the description of continuous functions given in (i), we obtain

χn(f ) = exp
{

π i
(

f (e2n+1) + f (e2n+2)
)} = 1

for all sufficiently large n ∈ N. Thus χn → 0 in the pointwise topology on ̂G. To
show that G is not c0-barrelled it suffices to prove that the sequence S := {χn}n∈N is
not equicontinuous. For every n ∈ N, define fn ∈ G by

fn(en) := 1, and fn(em) = 0 if m �= n.

It is clear that fn → 0 in G. Since χn(f2n+1) = exp{π i} = −1 we obtain that S is not
equicontinuous. �

In Remark 16 of [15], it is stated that for a non-reflexive real Banach space E, the
space

(

E′, μ(E′,E)
)

is a g-barrelled lcs which is not barrelled (where μ(E′,E) is
the Mackey topology on E′). So the converse in (ii) of Proposition 5.1 is not true in
general. Below we propose an analogous example of a g-barrelled real lcs E which
is not barrelled.

Example 5.6 Let (E, τ ) be a real non-semi-reflexive lcs. Assume that E is complete
and has the Glicksberg property (for example, E = �κ

1 for some cardinal κ). Set
F := (

E′, μ(E′,E)
)

, where μ(E′,E) is the Mackey topology on E′. As E is not
semi-reflexive, the space F is not barrelled by Theorem 11.4.1 of [44]. To show that
F is a g-barrelled space take arbitrarily a compact subset K of

(

F ′, σ (F ′,F)
) =

(

E, σ (E,E′)
)

. Denote by C := acx(K) the closed absolutely convex hull of K . We
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claim that C is also σ(E,E′)-compact. Indeed, the set K ∪ (−K) is τ -compact by
the Glicksberg property of E. So C is τ -compact in E by Theorem 4.8.9 of [50].
Thus C is σ(E,E′)-compact as well. Now the definition of the Mackey topology
μ(E′,E) and the claim imply that C and hence K are equicontinuous. Therefore F
is a g-barrelled space.

Assume additionally that E is a Banach space. Then E is a reflexive group by [60],
and Proposition 5.3(iv) implies that E∧ is a g-barrelled group. Hence (E∧)∧ = E
and the group E∧ is a Mackey group, see [15] (or Proposition 6.3 below). By Fact
2.8, the dual space E′ endowed with the compact-open topology τk is topologically
isomorphic to E∧. Therefore (E′, τk) is aMackey space such that (E′, τk)′ = E. Thus
τk = μ(E′,E) by the uniqueness of the Mackey space topology. �

Every abelian locally quasi-convex kω-group G is a Schwartz group by Corollary
5.5 of [4], and hence G has the Glicksberg property by [2]. Below we essentially
generalize this result using a completely different method.

Theorem 5.7 An abelian locally quasi-convex kω-group G respects all properties
P ∈ P.

Proof First we prove the following claim.

Claim. If G is a metrizable abelian group, then G∧ respects all properties P ∈
P. Indeed, let Ḡ be the completion of G. Then Ḡ∧ = G∧ by [1, 13] and Ḡ is g-
barrelled by Corollary 1.6 of [15]. Therefore G∧ has the Glicksberg property by (i)
of Proposition 5.3. By [1, 13],G∧ is a kω-space, and hence (G∧)+ is aμ-space. Since
every kω-group is complete by [43], the group G∧ respects all propertiesP ∈ P by
Theorem 1.2 of [25]. The claim is proved.

Note that G∧ is metrizable, and hence G∧∧ respects all propertiesP ∈ P by the
claim. By 5.12 and 6.10 of [1], the canonical homomorphism αG is an embedding of
G intoG∧∧. SinceG is complete by [43],αG(G) is a closed subgroup of the kω-group
G∧∧. Therefore αG(G) is C-embedded in G∧∧ by [34, 3D.1]. Thus G respects all
properties P ∈ P by Propositions 4.9 of [25] and Proposition 2.7. �

Following [35], a topological group G is called a locally kω-group if it has an
open kω-subgroup.

Corollary 5.8 A locally quasi-convex locally kω-group G respects all properties
P ∈ P0.

Proof The assertion follows from Theorem 5.7 and Proposition 2.7. �

In the next example we show that the condition of being locally quasi-convex can-
not be dropped in Theorem 5.7. Denote by V(s) and L(s) the free topological vector
space and the free locally convex space over the convergent sequence s, respectively.

Example 5.9 (i) V(s) is a non-locally quasi-convex MAP kω-group, so V(s) is a
Schwartz group;

(ii) V(s) does not have the Schur property, and hence V(s) does not respect any
P ∈ P.
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Proof (i) The space V(s) is a kω-group by Theorem 3.1 of [32], and it is not locally
quasi-convex by Proposition 5.13 of [32] and the fact that a topological vector space
E is a locally quasi-convex group if and only if E is locally convex (see Proposition
2.4 of [8]). By Proposition 5.1 of [32], the spaceV(s) is aMAP group. As a kω-group,
V(s) is a Schwartz group by Corollary 5.5 of [4].

(ii) Since the spacesV(s) and L(s) have the same dual space (see Proposition 5.10
of [32]), it is sufficient to find a sequence {zk}k∈N such that {zk}k∈N converges in L(s)
but it does not converge in V(s). For every k ∈ N, set dk := 2k and put

zk := 1

dk+1 − dk

(

edk+1 + · · · + edk+1

)

.

Then zk → e0 in L(s) because L(s) is locally convex and since en → e0. On the other
hand, zk �→ e0 in V(s) by Corollary 3.4 of [32].

Since any kω-space is aμ-space, the last assertion follows from Proposition 3.3.�

Recall that a topological group X is said to have a subgroup topology or a linear
topology if it has a base at the identity consisting of subgroups. In the next section
we use the following proposition.

Proposition 5.10 (i) If G is an abelian topological group with a subgroup topology,
then G is a locally quasi-convex nuclear group. SoG respects all propertiesP ∈ P0.

(ii) If (G, τ ) is a locally quasi-convex abelian group of finite exponent, then (G, τ )

and hence also (G, τ )∧ respect all the properties P ∈ P0.

Proof (i) By Proposition 2.2 of [5], G embeds into a product of discrete groups.
Therefore G is a locally quasi-convex nuclear group by Propositions 7.5 and 7.6 and
Theorem 8.5 of [8]. Finally, the groupG respects all propertiesP ∈ P0 by Corollary
4.7 of [25].

(ii) Propositions 2.1 of [5] implies that the topologies of the groups (G, τ ) and
(G, τ )∧ are subgroup topologies, and (i) applies. �

Being motivated by [49], we consider below a “compact” version of the Dunford–
Pettis property for abelian topological groups. Let X and Y be topological spaces. A
map p : X → Y is called s-continuous (k-continuous) if the restriction of p onto every
convergent sequence (every compact subset, respectively) ofX is continuous.Clearly,
every k-continuous map is also s-continuous. The next lemma is straightforward.

Lemma 5.11 For every abelian topological group G the evaluation map ψ : G∧ ×
G → S, ψ(χ, g) := χ(g), is k-continuous.

Following [49], an abelian topological groupG has the sequential Bohr continuity
property (s-BCP, for short) if the map

ψ : (

̂G, σ (̂G,G∧∧)
) × (

G, σ (G,G∧)
) → S, ψ(χ, g) := χ(g), (1)

is s-continuous. We shall say that G has the k-Bohr continuity property (k-BCP,
for short) if the map in (1) is k-continuous. Clearly, if G has the k-BCP then it has
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also the s-BCP. The next assertion is an analogue of Proposition 2.4 of [49] and
generalizes (d) and (c) of this proposition.

Proposition 5.12 For an abelian topological group G the following assertions hold:

(i) if G and G∧ have the Glicksberg property, then G has the k-BCP;
(ii) if G has the Glicksberg property and is g-barrelled, then G has the k-BCP;
(iii) if G is metrizable and has the Glicksberg property, then G has the k-BCP;
(iv) if G is locally compact, then G has the k-BCP;
(v) if G is a locally quasi-convex almost metrizable Schwartz group, then G has

the k-BCP;
(vi) if G is reflexive, then G has the k-BCP if and only if G∧ has the k-BCP.

Proof (i) immediately follows fromLemma5.11, and (ii) follows from (i) and Propo-
sition 5.3. The Claim of Theorem 5.7 and (i) imply (iii). (iv) follows from (i) and the
Glicksberg theorem.

(v) By [2], G has the Glicksberg property. The dual group G∧ of G is a locally
quasi-convex locally kω-group by Proposition 7.1 of [35]. Therefore G∧ has the
Glicksberg property by Corollary 5.8. Now the assertion follows from (i).

(vi) follows from the definition of the evaluation map ψ and the reflexivity
of G. �

LetG andH be abelian topological groups. Denote byCHomp(G,H ) the group of
all continuous homomorphisms from G to H endowed with the pointwise topology.

Proposition 5.13 Let G and H be MAP abelian groups with the Schur property.
Then also the group CHomp(G,H ) has the Schur property.

Proof Set Z := CHomp(G,H ). First we prove the following assertion.
Claim. For every Φ ∈ ̂H and each g ∈ G, the homomorphism TΦ,g : Z → S defined
by

TΦ,g(χ) := Φ
(

χ(g)
)

, χ ∈ Z,

is continuous, i.e. TΦ,g ∈ ̂Z .
Indeed, fix ε > 0. Choose an open neighborhood V of zero inH such that |Φ(h) −

1| < ε for every h ∈ V . Set Δ := {−g, 0, g}. Now if

χ ∈ [Δ; V ] := {χ ∈ Z : χ(t) ∈ V ∀t ∈ Δ},

then |TΦ,g(χ) − 1| = |Φ(

χ(g)
) − 1| < ε. Thus TΦ,g is continuous and the claim is

proved.
Now suppose for a contradiction that Z does not have the Schur property. Then

there exists a σ(Z,̂Z)-null sequence {χn}n∈N in Z which does not converge to zero
in Z . So there is a finite subset F of G, an open neighborhood U of zero in H and
ε > 0 such that

χn /∈ [F;U ] := {χ ∈ Z : χ(g) ∈ U ∀g ∈ F}, (2)
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for infinitely many indices n. Passing to a subsequence if needed, we shall assume
that (2) holds for all n ∈ N. Since F is finite, we can assume also that F = {g} for
some g ∈ G. Therefore χn(g) /∈ U for every n ∈ N. But this means that the sequence
χn(g) is not a null sequence in H . By the Schur property of H , there are Φ ∈ ̂H , an
increasing sequence {nk}k∈N in N, and ε > 0 such that

|Φ(

χnk (g)
) − 1| = |TΦ,g(χnk ) − 1| ≥ ε, k ∈ N.

Hence TΦ,g(χnk ) �→ 1. Since TΦ,g ∈ ̂Z by Claim, we obtain that {χn}n∈N is not a
σ(Z,̂Z)-null sequence, a contradiction. �

6 Glicksberg Type Properties and the Property of Being
a Mackey Group

Below we define some versions of respecting properties. For a MAP abelian group
G and a topological property P , we denote by Pqc(G) the set of all quasi-convex
subsets ofG withP . Recall that a locally convex spaceE has theGrothendieck prop-
erty if every weak-∗ convergent sequence in the dual space E′ is also weakly conver-
gent, i.e.,S

(

E′, σ (E′,E)
) = S

(

E′, σ (E′, (E′
β)′)

)

, where E′
β is the strong dual of E.

Analogously, we say that E has theP-Grothendieck property ifP
(

E′, σ (E′,E)
) =

P
(

E′, σ (E′, (E′
β)′)

)

.

Definition 6.1 Let (G, τ ) be a MAP abelian group and P a topological property.
We say that

(i) (G, τ ) respects Pqc ifPqc(G) = Pqc
(

G, σ (G, ̂G)
)

;
(ii) (G, τ )∧ respects P∗ ifP(G∧) = P

(

̂G, σ (̂G,G)
)

;
(iii) (G, τ )∧ respects P∗

qc ifPqc(G∧) = Pqc
(

̂G, σ (̂G,G)
)

;
(iv) (G, τ ) has theP-Pontryagin–Grothendieck property if

P
(

̂G, σ (̂G,G)
) = P

(

̂G, σ (̂G,G∧∧)
)

.

�

In the caseP is the propertyC of being a compact space and aMAP abelian group
(G, τ ) (G∧) respectsPqc (P∗ orP∗

qc, respectively), we shall say that the group G
(G∧) has the qc-Glicksberg property (the weak-∗ Glicksberg property or the weak-∗
qc-Glicksberg property, respectively). Clearly, if aMAP abelian group (G, τ ) has the
Glicksberg property, then it also has the qc-Glicksberg property, and if (G, τ )∧ has
the weak-∗ Glicksberg property, then it has also the weak-∗ qc-Glicksberg property.

Remark 6.1 Note that, for aMAP abelian groupG, ifG∧ has the weak-∗Glicksberg
property, then it has also the Glicksberg property. But the converse is not true in
general. Indeed, letG be a countable dense subgroupof an infinite compactmetrizable
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group X . ThenG∧ = X ∧ by [1, 13]. HenceG∧ is a discrete countably infinite group,

soG∧ has the Glicksberg property. On the other hand, the groupH := (

̂G, σ (̂G,G)
)

is a precompact metrizable group. So H contains infinite compact subsets which are
not compact in G∧. �
Proposition 6.2 Let E be a real lcs and P ∈ P0. If E has the P-Grothendieck
property, then E has the P-Pontryagin–Grothendieck property. But the converse is
not true in general.

Proof Let A ∈ P
(

̂E, σ (̂E,E)
)

. Then, by (ii) of Proposition 2.11, the set B :=
ψ−1(A) belongs to P

(

E′, σ (E′,E)
)

. So B ∈ P
(

E′, σ (E′, (E′
β)′)

)

. Since the com-
pact-open topology τk on E′ is weaker than the strong topology, we obtain that B ∈
P

(

E′, σ (E′, (E′, τk)′)
)

. Finally, (v) of Proposition 2.11 implies that A = ψ(B) ∈
P

(

̂E, σ (̂E,E∧∧)
)

.
To prove the last assertion, let E be a separable non-reflexive Banach space. Being

a reflexive group [60], E trivially has the S -Pontryagin–Grothendieck property.
However, a separableBanach spacewith theGrothendieck propertymust be reflexive,
so E does not have the Grothendieck property. �

Below we show that the weak-∗ qc-Glicksberg property is dually connected with
the property being a Mackey group. Let us recall the definition of Mackey spaces
and Mackey groups.

Let (E, τ ) be a locally convex space. A locally convex vector topology ν on E is
called compatible with τ if the spaces (E, τ ) and (E, ν) have the same topological
dual space. The famous Mackey–Arens theorem states that there is a finest locally
convex vector space topology μ on E compatible with τ . Moreover, the topology
μ is the topology of uniform convergence on absolutely convex weakly-∗ compact
subsets of the topological dual space E′ of E. So E is a Mackey space if and only if
every absolutely convex σ(E′,E)-compact subset of E′ is equicontinuous.

Two topologies τ and ν on an abelian groupG are said to be compatible if (̂G, τ ) =
(̂G, ν). Beingmotivated by the classicalMackey–Arens theorem the following notion
was introduced and studied in [15]: a locally quasi-convex abelian group (G, τ ) is
called a Mackey group if for every compatible locally quasi-convex group topology
ν on G it follows that ν ≤ τ .

Proposition 6.3 ([15, Theorem 4.2(1)]) (i) Let (G, τ ) be a locally quasi-convex
abelian group. If every A ∈ Cqc

(

̂G, σ (̂G,G)
)

is equicontinuous (for example, G is
g-barrelled), then G is a Mackey group.

(ii) If a real lcs E is a g-barrelled group, then E is a Mackey space.

Proof (i) Let ν be a locally quasi-convex group topology on G compatible with τ

and let U be a quasi-convex ν-neighborhood of zero. Then U � is σ(̂G,G)-compact
and quasi-convex by Fact 2.1. So U � is equicontinuous (with respect to the original
topology τ ). Fact 2.1 implies that U = U �� is also a τ -neighborhood of zero. Thus
ν ≤ τ and hence G is a Mackey group.

(ii) Proposition 5.1 implies that E is a g-barrelled space, i.e. every σ(E′,E)-
compact subset of E′ is equicontinuous. Thus E is a Mackey space. �
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Remark 6.2 We proved in [28] that the free lcs L(X ) is a Mackey group if and only
if it is a Mackey space if and only if X is discrete. Therefore, by Proposition 6.3,
L(X ) is a g-barrelled group if and only if X is discrete. �

Below we obtain another sufficient condition of being a Mackey group.

Proposition 6.4 Let (G, τ ) be a locally quasi-convex group such that the canonical
homomorphism αG is continuous. If (G, τ )∧ has the weak-∗ qc-Glicksberg property,
then (G, τ ) is a Mackey group. Consequently, if a reflexive abelian group (G, τ )

is such that (G, τ )∧ has the qc-Glicksberg property (in particular, the Glicksberg
property), then (G, τ ) is a Mackey group.

Proof Let ν be a locally quasi-convex topology on G compatible with τ and letU be
a closed quasi-convex ν-neighborhood of zero. Fact 2.1 implies that the quasi-convex

subset K := U � of ̂G is σ(̂G,G)-compact, and hence K is a compact subset of G∧
by the weak-∗ qc-Glicksberg property. Note that, by definition,K� is a neighborhood
of zero in G∧∧. As αG is continuous, U = K� = α−1

G (K�) is a τ -neighborhood of
zero in G. Hence ν ≤ τ . Thus (G, τ ) is a Mackey group.

The last assertion follows from the fact that the weak-∗ qc-Glicksberg property
coincides with the qc-Glicksberg property for any reflexive group. �

Since every LCA group is reflexive and has the Glicksberg property, Proposition 6.4
implies

Corollary 6.5 ([15]) Every LCA group is a Mackey group.

Remark 6.3 In the last assertion of Proposition 6.4 the reflexivity of G is essential.
Indeed, let G be a proper dense subgroup of a compact metrizable abelian group X .
Then G∧ = X ∧ (see [1, 13]), and hence the discrete group G∧ has the Glicksberg
property. Denote by p0 the product topology on the group c0(S) := {(zn) ∈ S

N :
zn → 1} induced from S

N. Then, by [21, Theorem 1], there is a locally quasi-convex
topology u0 on c0(S) compatible with p0 such that p0 < u0. Thus the group G :=
(

c0(S), p0) is a precompact arc-connected metrizable group such that G∧ has the
Glicksberg property, but G is not a Mackey group. Consequently, G∧ does not have
the weak-∗ qc-Glicksberg property. �

Every real barrelled locally convex space is a Mackey group by [15] (this also
follows from Propositions 5.1 and 6.3). Since every real reflexive locally convex
space E is barrelled by [44, Proposition 11.4.2], we obtain that E is a Mackey group.
This result motivates the following problem.

Problem 6.6 Characterize reflexive abelian groups which are Mackey groups.

Not every reflexive group is Mackey, see [14]. Moreover, there exists a reflexive
group which does not admit a Mackey group topology, see [3, 27]. However, if a
reflexive groupG is of finite exponent, it is aMackey group as the following theorem
shows.
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Theorem 6.7 A reflexive abelian group (G, τ ) of finite exponent is a Mackey group.

Proof Since (G, τ ) is locally quasi-convex, Proposition 5.10 implies that (G, τ )∧
has the Glicksberg property. Thus (G, τ ) is a Mackey group by Proposition 6.4. �

Corollary 6.8 Let X be a zero-dimensional realcompact k-space and let F be a
finite abelian group. Then Ck(X , F) is a Mackey group.

Proof The group Ck(X , F) is reflexive by the main result of [55], and Theorem 6.7
applies. �

Remark 6.4 Any metrizable and precompact abelian group of finite exponent is a
Mackey group, see [10, Example 4.4]. If G is a metrizable reflexive group, then G
must be complete by [13, Corollary 2]. So there are non-reflexive Mackey groups of
finite exponent. Moreover, since the group G in Example 5.5 is not c0-barrelled, we
obtain that there are Mackey groups which are not g-barrelled. �

Recall that an lcsE has the compact convex property (ccp) if the absolutely convex
hull of any compact subset of E is relatively compact in E. Following [11], we say
that a locally quasi-convex abelian groupG has a quasi-convex compactness property
(qcp) if the quasi-convex hull of any compact subset of G is relatively compact in
G. Clearly, every real lcs E with (ccp) has also (qcp).

Proposition 6.9 Let G be a locally quasi-convex abelian group. If G is g-barrelled,
then the group

(

̂G, σ (̂G,G)
)

has (qcp), but the converse is not true in general.

Proof Let K be a compact subset of H := (

̂G, σ (̂G,G)
)

. Then K is equicontinuous
by the g-barrelledness of G. Now Fact 2.1 implies that K�� is σ(̂G,G)-compact and
quasi-convex. Thus H has (qcp). For the last assertion, see Remark 15 of [15]. �

Remark 6.5 Let (G, τ ) be aMAP abelian groupwhich respectsP ∈ P and let ν be a
group topology on G compatible with τ . If τ+ ≤ ν ≤ τ , then clearly (G, ν) respects
P as well. But if ν > τ it may happen that (G, ν) does not respect P . Indeed, let
(G, ν) be a real Banach space without the Schur property and let τ = σ(E,E′). Then
the space (G, τ ) has the Schur property by Proposition 2.9. For a more non-trivial
example, consider the free lcsL(s)which respects all propertiesP ∈ P0 byTheorem
1.2, however the space

(

L(s), μ(L(s),C(s))
)

does not have the Schur property, see
Step 3 of the proof of Theorem 2.4 in [29]. �

In this paper we considered respecting properties related to compact-type prop-
erties. Of course we can consider other properties as separability or Lindelöfness.
It has also sense to consider the property of being a subgroup. More precisely, let
(G, τ ) be a MAP group and let H be a closed subgroup G+. One can ask: When
the topologies τ+|H and τ |H coincide? If they coincide it is clear that H must be a
precompact subgroup of G. Below we give a partial answer to this question.

Proposition 6.10 Let (G, τ ) be an lqc group and let H be a closed subgroup G+
such that (H , τ+|H ) is aMackey group. Then the following assertions are equivalent:
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(i) τ+|H = τ |H ;
(ii) H is dually closed and dually embedded in G.

Proof First we recall the following well known fact: any closed subgroup of a pre-
compact group is dually closed and dually embedded.

(i) ⇒ (ii) H is dually closed in G since H is dually closed in G+. To show
that H is also dually embedded in G, fix arbitrarily a χ ∈ ̂(H , τ |H ). Then, by (i),
χ ∈ ̂(H , τ+|H ) and the above mentioned fact implies that there is η ∈ ̂G+ = ̂G such
that η|H = χ . Thus H is dually embedded in G.

(ii) ⇒ (i) Lemma 2.3 of [25] states that H+ is a (closed) subgroup of G+, i.e.
τ+|H = (τ |H )+. Since τ+|H is Mackey and τ |H is locally quasi-convex and compat-
ible with (τ |H )+ we must have τ+|H = τ |H . �

Proposition 6.10 and Corollary 6.5 applied to H = G immediately imply

Corollary 6.11 ([15]) Let G be an lqc group such that G+ is compact. Then G is a
compact group.
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31. Gabriyelyan, S., Kąkol, J., Leiderman, A.: On topological groups with a small base and metriz-

ability. Fund. Math. 229, 129–158 (2015)
32. Gabriyelyan, S., Morris, S.A.: Free topological vector spaces. Topol. Appl. 223, 30–49 (2017)
33. Galindo, J., Hernández, S.: The concept of boundedness and the Bohr compactification of a

MAP abelian group. Fund. Math. 159, 195–218 (1999)
34. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, New York (1960)
35. Glöckner, H., Gramlich, R., Hartnick, T.: Final group topologies, Kac-Moody groups and

Pontryagin duality. Israel J. Math. 177, 49–102 (2010)
36. Glicksberg, I.: Uniform boundedness for groups. Can. J. Math. 14, 269–276 (1962)
37. Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, New York (1973)
38. Hernández, S., Galindo, J., Macario, S.: A characterization of the Schur property by means of

the Bohr topology. Topol. Appl. 97, 99–108 (1999)
39. Hernández, S., Macario, S.: Invariance of compactness for the Bohr topology. Topol. Appl.

111, 161–173 (2001)
40. Hernández, S., Uspenskiı̆, V.V.: Pontryagin duality for spaces of continuous functions. J. Math.

Anal. Appl. 242, 135–144 (2000)
41. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, Vol. I, 2nd ed. Springer, Berlin (1979)
42. Horváth, J.: Topological Vector Spaces and Distributions I. Addison-Wesley, Reading (1966)
43. Hunt, D.C., Morris, S.A.: Free subgroups of free topological groups. In: Proceedings of the

Second International Conference Theory of Groups, Canberra. Lecture Notes in Mathematics,
vol. 372, pp. 377–387. Springer, Berlin (1974)

http://arxiv.org/abs/1710.01759


136 S. Gabriyelyan

44. Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)
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Forty Years of Fuzzy Metrics

In Honour of Manuel López-Pellicer

Valentín Gregori and Almanzor Sapena

Abstract Kramosil and Michalek gave in 1975 a concept of fuzzy metric M on a
set X which extends to the fuzzy setting the concept of probabilistic metric space
introduced by K. Menger. After, George and Veeramani (Fuzzy Sets Syst 64: 395–
399, 1994) modified the previous concept and gave a new definition of fuzzy metric.
In both cases the fuzzy metric M induces a topology τM on X which is metrizable. In
this paperwe survey some results relative to both concepts. In particular, we focus our
attention in the completion of fuzzy metrics in the sense of George and Veeramani,
since there is a significative difference with respect to the classical metric theory (in
fact, there are fuzzy metric spaces, in this sense, which are not completable), and
also in fixed point theory in both senses because it is a high activity area.

Keywords Fuzzy metric · Fuzzy ultrametric · Fuzzy metric completion · Fixed
point

1 Introduction

In 1965, Zadeh [48] introduced the concept of fuzzy set which transformed and
stimulated almost all branches of Science and Engineering including Mathematics.
A fuzzy set can be defined by assigning to each element of a set X a value in [0, 1],
representing its grade of membership in the fuzzy set. Mathematically, a fuzzy set A
of X is a mapping A : X → [0, 1].

The problem of finding an appropriate concept of fuzzy metric has been inves-
tigated by many authors in different ways. Here we make a brief survey of fuzzy
metrics defined by means of t-norms which we describe in the following.
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Probabilistic metric spaces (PM-spaces) where introduced by K. Menger [25]
who generalized the theory of metric spaces. In the Menger’s theory the concept of
distance is considered to be statistical or probabilistic, i.e. he proposed to associate
a distribution function Fxy , with every pair of elements x, y instead of associating
a number, and for any real number t , interpreted Fxy(t) as the probability that the
distance from x to y be less than t . Recall [40] that a distribution function F is a non-
decreasing left continuous mapping from the set of real numbersR into [0, 1] so that
inf
t∈R

F(t) = 0 and sup
t∈R

F(t) = 1. Now, the concept of fuzziness found place in PM-

spaces because, in some cases, uncertainty in the distances between two points is due
to fuzziness rather than randomness. With this idea, in 1975, Kramosil andMichalek
[24] extended the theory of PM-spaces to the fuzzy setting defining a concept of
fuzzy metric. In this paper, following a modern terminology, by a KM-fuzzy metric
(Definition 2.2) we mean a fuzzy metric in the sense of Kramosil and Michalek, but
defined with the help of a continuous t-norm in the way that it was introduced in
[7]. Later, [4] George and Veeramani introduced and studied an interesting notion of
fuzzy metric which we deal with here, modifying the concept of KM-fuzzy metric.
Many concepts given for fuzzy metrics have been, obviously, extended to KM-fuzzy
metrics and vice versa.

An interesting aspect of this type of fuzzymetrics is that it includes in its definition
a parameter t . This feature has been successfully used in Engineering applications
such as color image filtering [2] and perceptual color differences [19]. From the
mathematical point of view it allows to introduce novel (fuzzy) metric concepts
that only have natural sense in this fuzzy metric context. This is the case of several
concepts of Cauchyness and convergence, related to sequences, appeared in the
literature (see [22]).

If M is a (KM-)fuzzy metric on X , a topology τM on X is deduced from M . In [5,
9] the authors showed that the class of topological spaces which are fuzzy metrizable
agreeswith the class ofmetrizable spaces, and then some classical theorems onmetric
completeness have been adapted to fuzzy setting. For instance, precompactness [9],
uniform continuity [5, 14], Ascoli-Arzelà theorem [5], Hausdorff fuzzy metric on
the set of nonempty compact sets of (X, τM) [33], fuzzy ultrametrics [17, 30, 38],
fuzzy quasi-metrics [12, 37] and its bicompletion [15], a domain-theoretic approach
to fuzzy metric space [32], fuzzy uniform structures and quasi-uniformities induced
by fuzzy (quasi-) metric [23, 36], …. Also, fuzzy metrics have been extended to the
intuitionistic field [1, 16, 31], and some approaches to fuzzy partialmetrics have been
given [47]. Nevertheless, the theory of fuzzy metric completion is, in this context,
very different from the classical theory of (probabilistic) metric completion. In fact,
there are fuzzy metric spaces which are not completable [10, 20].

In this paper, by the last reason, we will focus our attention on completion and
also on fixed point theory, since it is a high activity area [26, 27, 45].
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2 KM-Fuzzy Metric Spaces

We begin recalling the concept of t-norm.

Definition 2.1 ([40]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a t-
norm if it satisfies the following conditions:

(i) ∗ is associative and commutative
(ii) a ∗ 1 = a for every a ∈ [0, 1]
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for a, b, c, d ∈ [0, 1]

If, in addition, ∗ is continuous, then ∗ is called a continuous t-norm.
The three most commonly used continuous t-norms in fuzzy setting are the min-

imum, denoted by ∧, the usual product, denoted by · and the Lukasievicz t-norm,
denoted by L (xLy = max{0, x + y − 1}). They satisfy the following inequalities:

xLy ≤ x · y ≤ x ∧ y and x ∗ y ≤ x ∧ y

for each t-norm ∗. The t-norm ∗ is called integral (positive) if a ∗ b > 0 whenever
a �= 0, b �= 0. Notice that ∧ and · are integral but L is not.

The concept of fuzzy metric space rewritten by Grabiec is the following.

Definition 2.2 [7, 24] The term (X, M, ∗) is a KM-fuzzy metric space if X is a
non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × [0,+∞[
satisfying for all x, y, z ∈ X, t, s > 0 the following axioms:

(KM1) M(x, y, 0) = 0
(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y
(KM3) M(x, y, t) = M(y, x, t)
(KM4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s)
(KM5) The function Mxy : [0,+∞[→ [0, 1] defined by Mxy(t) = M(x, y, t) for
all t ≥ 0, is left continuous

If (X, M, ∗) is a KM-fuzzy metric space we say that (M, ∗) (or simply M) is a
KM-fuzzy metric on X .

From the above axioms one can show that Mxy is a non-decreasing function.

Remark 2.1 In the original concept of fuzzy metric due to Kramosil and Michalek
[24] it is included the axiom

(KM6) lim
t→∞ M(x, y, t) = 1

and in thisway any fuzzymetricM defined on X is equivalent to aMenger space ([24]
Corollary ofTheorem1) definingM(x, y, t) = Fxy(t) for all x, y ∈ X, t ∈ [0,+∞[.
Then, by this formula, since ∗ is continuous, we can deduce from M a topology τM
in an analogous way to that in Menger spaces. Moreover, if we extend concepts
and results relative to completion in Menger spaces to the fuzzy setting we obtain,
imitating the Sherwood’s proof [34], that every fuzzy metric space in the sense of
Kramosil and Michalek has a completion which is unique up to isometry.
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Now, mainly because (KM6) has been removed, in this case a KM-fuzzy metric
cannot be regarded as a Menger space. Nevertheless, in the same way as in the
Menger spaces theory, a topology τM deduced from M is defined on X , and the
concepts (Definition 4.1) and results relative to completeness in PM-spaces can be
translated to this fuzzy theory. In particular, KM-fuzzy metrics are completable.

3 Fuzzy Metric Spaces (in the Sense of George
and Veeramani)

In 1994, George and Veeramani introduced the notion of fuzzy metric space by mod-
ifying the modern concept of fuzzy metric due to Kramosil and Michalek (Remark
2.1) which we will adopt from now on.

Definition 3.1 ([4])A fuzzymetric space is anordered triple (X, M, ∗) such that X is
a (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on X × X×]0,+∞[
satisfying the following conditions, for all x, y, z ∈ X, s, t > 0 :
(GV1) M(x, y, t) > 0
(GV2) M(x, y, t) = 1 if and only if x = y
(GV3) M(x, y, t) = M(y, x, t)
(GV4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s)
(GV5) Mxy :]0,+∞[→]0, 1] is continuous where Mxy(t) = M(x, y, t)

The axiom (GV1) is justified by the authors because in the same way that a
classical metric does not take the value ∞ then M cannot take the value 0. The
axiom (GV2) is equivalent to the following:

M(x, x, t) = 1 for all x ∈ X, t > 0, andM(x, y, t) < 1 for all x �= y, t > 0

The axiom (GV2) gives the idea that only when x = y the degree of nearness of
x and y is perfect, or simply 1, and then M(x, x, t) = 1 for each x ∈ X and for each
t > 0. In this manner the values 0 and ∞ in the classical theory of metric spaces
are identified with 1 and 0, respectively, in this fuzzy theory. Axioms (GV3)-(GV4)
coincide with (KM3)-(KM4), respectively. In (GV5) the authors assume that the
variable t behaves nicely, that is, they assume that for fixed x and y, the function
t → M(x, y, t) is continuous. Finally, there is not any imposition for M as t → ∞.

Notice that if (X, M, ∗) is a fuzzy metric space and 
 is a continuous t-norm
such that a ∗ b ≥ a 
 b for each a, b ∈ [0, 1] (briefly ∗ ≥ 
), then (X, M,
) is a
fuzzy metric space but the converse, in general, is false. Consequently, if (X, M,∧)

is a fuzzy metric space then (X, M, ∗) is a fuzzy metric space for each continuous
t-norm ∗.

If M is a fuzzy metric on X then we can consider that M is a KM-fuzzy metric
on X , defining M(x, y, 0) = 0 for all x, y ∈ X .
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Definition 3.2 A fuzzy metric space (X, M, ∗) is said to be stationary ([11]) if M
does not depend on t, i.e. if for each x, y ∈ X, the function Mxy is constant.

If (X, M, ∗) is a stationary fuzzy metric space, we will simply write M(x, y)
instead of M(x, y, t).

Definition 3.3 [39] Let (X, M, ∗) be a fuzzy metric space. The fuzzy metric M (or
the fuzzymetric space (X, M, ∗)) is said to be strong if it satisfies for each x, y, z ∈ X
and each t > 0

M(x, z, t) ≥ M(x, y, t) ∗ M(y, z, t) (GV4′)

If (M,∧) is a strong fuzzy metric then it is called fuzzy ultrametric [38] and so it
satisfies M(x, z, t) ≥ M(x, y, t) ∧ M(y, z, t).

Example 3.1 (a) Let (X, d) be a metric space. Let Md be the fuzzy set defined on
X × X×]0,+∞[ by

Md(x, y, t) = t

t + d(x, y)

Then (Md , ·) is a fuzzy metric on X called standard fuzzy metric [4]. Further,
(Md ,∧) is also a fuzzy metric on X . (Notice that Md is defined explicitly by
means of a metric).

(b) Let X = R
+ and M(x, y, t) = min{x, y} + t

max{x, y} + t
Then (M, ·) is a fuzzy metric on X [4] which is non deduced explicitly from a
metric.

(c) Let X = R
+ and M(x, y) = min{x, y}

max{x, y}
Then (M, ·) is a stationary fuzzy metric on X [4].

A collection of examples of fuzzy metrics can be found in [18].

4 Metrizability of Fuzzy Metric Spaces

The results of Subsection 4.1 where established for fuzzy metrics but they are also
valid for KM-fuzzy metrics.

4.1 Topology in a Fuzzy Metric Space

George andVeeramani proved in [4] that every fuzzymetricM on X generates a topol-
ogy τM on X which has as a base the family of open sets of the form {BM(x, ε, t) :
x ∈ X, ε ∈]0, 1[, t > 0}, where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all
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x ∈ X, ε ∈]0, 1[ and t > 0. The set BM(x, ε, t) is called the open ball centered at x
with radius r and parameter t .

A sequence {xn} in X converges to x in τM if and only if lim
n

M(xn, x, t) = 1, for

all t > 0.
A topological space (X, τ ) is called fuzzy metrizable if there exists a fuzzy metric

M on X such that τM = τ . In this case it is said that M is compatible with τ .

Remark 4.1 If (X, d) is a metric space, then the topology generated by d coincides
with the topology τMd generated by the fuzzy metric Md ([4]). Consequently, every
metrizable topological space is fuzzy metrizable.

4.2 Uniformity in Fuzzy Metric Spaces

The results of this section where given in [9].
Let (X, M, ∗) be a fuzzy metric space. For each n ∈ N define:

Un = {(x, y) ∈ X × X : M(x, y,
1

n
) > 1 − 1

n
}

The (countable) family {Un : n ∈ N} is a base for a uniformityUM on X such that
the topology induced by UM agrees with the topology induced by the fuzzy metric
M . The uniformity UM will be called the uniformity deduced from M or generated
by M . Applying the Kelley’s metrization lemma the following result holds.

Lemma 4.1 (Metrizability of fuzzy metric spaces) Let (X, M, ∗) be a fuzzy metric
space. Then, (X, τM) is a metrizable topological space.

Taking into account that every metrizable topological space is fuzzy metrizable
(Remark 4.1), we obtain the following corollary.

Corollary 4.1 A topological space is metrizable if and only if it admits a compatible
fuzzy metric (i.e. it is fuzzy metrizable).

So, some results which had been stated at the beginning of this theory are, really,
consequences of the above corollary. For instance: Every separable fuzzy metric
space is second countable [6].

The definition of Cauchy sequence in a fuzzy metric space is similar to the given
in a Menger space.

Definition 4.1 [4, 42] A sequence {xn} in a (KM-)fuzzy metric space (X, M, ∗)

is said to be M-Cauchy, or simply Cauchy, if for each ε ∈]0, 1[ and each t > 0
there exists n0 ∈ N such thatM(xn, xm, t) > 1 − ε for all n,m ≥ n0 or, equivalently,
lim
n,m

M(xn, xm, t) = 1 for all t > 0. X is said to be complete if every Cauchy sequence

in X is convergent with respect to τM . In such a case M is also said to be complete.
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The proof of the next proposition is easy. Now, it is interesting mainly because,
in some cases, it is assumed that appropriate concepts in the fuzzy setting should
satisfy propositions as the next one which shows the relationship between a metric
concept and its corresponding fuzzy metric concept when considering its associated
standard fuzzy metric.

Proposition 4.1 {xn} is a Cauchy sequence in (X, d) if and only if it is a Cauchy
sequence in (X, Md , ∗). Further, (X, Md , ·) is complete if and only if (X, d) is com-
plete.

Let us recall that a metrizable topological space (X, τ ) is said to be completely
metrizable if it admits a complete metric.

Theorem 4.1 Let (X, M, ∗) be a complete fuzzy metric space. Then, (X, τM) is
completely metrizable.

Jointly this theorem and the above proposition we obtain the next corollary.

Corollary 4.2 A topological space is completely metrizable if and only it admits a
compatible complete fuzzy metric.

Then again some results in metric spaces can be stated in fuzzy metric spaces
without any additional proof. For instance: Every complete fuzzy metric space is
Baire [4].

5 Completion of Fuzzy Metric Spaces

A topic which differs essentially with the classical theory of metric spaces is com-
pletion. Indeed, Gregori and Romaguera [10] proved that there exist fuzzy metric
spaces which are not completable.

Definition 5.1 Let (X, M, ∗) and (Y, N , �) be two fuzzy metric spaces. A mapping
f from X toY is called an isometry if for each x, y ∈ X and each t > 0,M(x, y, t) =
N ( f (x), f (y), t).

As in the classical metric case, it is clear that every isometry is one-to-one.

Definition 5.2 Two fuzzymetric spaces (X, M, ∗) and (Y, N , �) are called isometric
if there is an isometry from X onto Y.

Definition 5.3 Let (X, M, ∗) be a fuzzy metric space. A fuzzy metric completion of
(X, M, ∗) is a complete fuzzymetric space (Y, N , �) such that (X, M, ∗) is isometric
to a dense subspace of Y .

Proposition 5.1 If a fuzzy metric space has a fuzzy metric completion then, as in
the classical case, it is unique up to isometry.
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The following is a positive result.

Proposition 5.2 ([10])Let (X, d) be ametric space. Then, (X, Md , ·) is completable
and its fuzzy metric completion is the standard fuzzy metric space of the metric
completion of (X, d).

In [10] the authors gave the following example of a fuzzy metric space that does
not admit any fuzzy metric completion in the sense of Definition 5.3.

Example 5.1 Let {xn}∞n=3 and {yn}∞n=3 be two sequences of distinct points such that
A ∩ B = ∅, where A = {xn : n ≥ 3} and B = {yn : n ≥ 3}.

Put X = A ∪ B.Define a real valued function M on X × X × (0,∞) as follows:

M(xn, xm, t) = M(yn, ym, t) = 1 −
[

1

n ∧ m
− 1

n ∨ m

]

M(xn, ym, t) = M(ym, xn, t) = 1

n
+ 1

m
,

for all n,m ≥ 3. Then (X, M,L) is a non-completable (stationary) fuzzy metric
space.

Later, the same authors gave a characterization of those fuzzy metric spaces that
are completable. We reformulate that characterization in the following theorem, for
better observing the advances of the theory on completion of fuzzy metric spaces.

Theorem 5.1 (Gregori and Romaguera [11])A fuzzy metric space (X, M, ∗) is com-
pletable if and only if for each pair of Cauchy sequences {an} and {bn} in X the
following three conditions are fulfilled:

(c1) The assignment t → lim
n

M(an, bn, t) for each t > 0 is a continuous function

on ]0,∞[, provided with the usual topology of R.
(c2) Each pair of point-equivalent Cauchy sequences is equivalent, i.e.,

lim
n

M(an, bn, s) = 1 for some s > 0 implies lim
n

M(an, bn, t) = 1 for all t > 0.

(c3) lim
n

M(an, bn, t) > 0 for all t > 0.

Since then, to find large classes of completable fuzzy metric spaces turned an
interesting question.

It is immediate to verify that (X, Md , ·) satisfies conditions (c1)-(c3) of the last
theorem. The following proposition is immediate from the same theorem.

Proposition 5.3 A stationary fuzzy metric space (X, M, ∗) is completable if and
only if lim

n
M(an, bn) > 0 for each pair of Cauchy sequences {an}, {bn} in X.

Recently, it has been proved [21] that conditions (c1)-(c3) constitute an indepen-
dent system, i.e., two of such conditions do not imply the third one.

The first non-completable fuzzy metric space which appeared in the literature
was Example 5.1, which fulfils (c1) − (c2) but not (c3). The second one was ([11],
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Example 2), which fulfils (c1) and (c3) but not (c2). A non-completable fuzzymetric
space fulfilling (c2) − (c3) but not (c1) was given in ([21], Example 3.3).

The t-norm ∗ plays an interesting role in completion theory. In particular, in [17]
it was proved the following result.

Proposition 5.4 (Gregori et al. [17]) Let (X, M, ∗) be a strong fuzzy metric space
and suppose that ∗ is integral. If {xn} and {yn} are Cauchy sequences in X and t > 0
then {M(xn, yn, t)}n converges in ]0, 1].

Asa consequence itwas obtained the following class of completable fuzzymetrics.

Theorem 5.2 If (M, ∗) is a stationary fuzzy metric on X and ∗ is integral then
(X, M, ∗) is completable.

Corollary 5.1 Stationary fuzzy ultrametrics are completable.

With respect to condition (c1) in [21] the authors obtained the following results.

Theorem 5.3 Let (X, M, ∗) be a strong fuzzy metric space, and let {an}, {bn} be two
Cauchy sequences in X. Then the assignment

t → lim
n

M(an, bn, t), for each t > 0

is a continuous function on ]0,∞[ provided with the usual topology of R.

Theorem 5.4 A strong fuzzy metric space (X, M, ∗) is completable if and only if
for each pair of Cauchy sequences {an} and {bn} in X the following conditions are
fulfilled:

(c2) limn M(an, bn, s) = 1 for some s > 0 implies limn M(an, bn, t) = 1 for all t >

0.
(c3) limn M(an, bn, t) > 0 for all t > 0.

The following corollaries are immediate.

Corollary 5.2 Let (X, M, ∗) be a strong fuzzy metric space and suppose that ∗
is integral. Then (X, M, ∗) is completable if and only if for each pair of Cauchy
sequences {an} and {bn} in X the condition (c2) is satisfied.

Corollary 5.3 Let (X, M, ∗) be a fuzzy ultrametric space. Then (X, M, ∗) is com-
pletable if and only if for each pair of Cauchy sequences {an} and {bn} in X the
condition (c2) is satisfied.

Remark 5.1 The fuzzy metric of ([11], Example 2) is a fuzzy ultrametric, but it is
not completable. (Notice that it does not satisfy (c2)). The fuzzy metric of Example
5.1 is strong and satisfy (c2) but it is not completable. (Notice that ∗ is not integral).

Finally, we will show a class of completable fuzzy metrics which fulfils condition
(c2).
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Definition 5.4 (Gregori et al. [21]) Let (X, M, ∗) be a fuzzy metric space. We will
say that (X, M, ∗) is a stratified fuzzy metric space if it satisfies one of the following
equivalent conditions

(i) M(a, b, s) = M(a′, b′, s) implies M(a, b, t) = M(a′, b′, t) for all t > 0.
(ii) M(a, b, s) < M(a′, b′, s) implies M(a, b, t) < M(a′, b′, t) for all t > 0.

In this case, we say that (M, ∗) (or simply M) is a stratified fuzzy metric on X .

Corollary 5.4 Under the assumption that ∗ is integral, a stratified fuzzymetric space
(X, M, ∗) is completable if and only if (c1) is satisfied.

The following theorem gives a large class of completable fuzzy metric spaces.

Theorem 5.5 Let (M, ∗) be a stratified strong fuzzy metric on X and suppose that
∗ is integral. Then (X, M, ∗) is completable.

Corollary 5.5 Let (M,∧) be a stratified fuzzy ultrametric on X. Then (X, M,∧) is
completable.

6 Fuzzy Banach Contraction Principle in KM-Fuzzy
Metric Spaces

Several extensions of the classical Banach contraction principle have been given in
our fuzzy context. The first one, due to Grabiec [7] was stated for KM-spaces as we
show in the following.

Definition 6.1 Let (X, M, ∗) be a KM-fuzzy metric space. A mapping f : X → X
is called a Banach fuzzy contraction (or Sehgal contraction [41]) if there exists
k ∈]0, 1[ such that M( f (x), f (y), kt) ≥ M(x, y, t) for each x, y ∈ X and t > 0.

The author also gave the following definition of Cauchy sequence, denoted here
G-Cauchy. A sequence {xn} in a KM-fuzzy metric space (X, M, ∗) is called G-
Cauchy if lim

n
M(xn+p, xn, t) = 1 for each t > 0, p > 0. X is called G-complete if

every G-Cauchy sequence in X converges.
Then it was proved the following fuzzy version of the Banach contraction

principle.

Theorem 6.1 (Grabiec [7]) Let (X, M, ∗) be a G-complete KM-fuzzy metric space
in which lim

t→∞ M(x, y, t) = 1 for all x, y ∈ X and let f : X → X a Banach fuzzy

contraction. Then f has a unique fixed point.

This result was generalized by R. Vasuki in [44], proving the existence of a
common fixed point for a sequence of mappings under appropriate conditions.

Grabiec also considered a fuzzy version of the Edelstein contractive mapping as
follows.
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Definition 6.2 A mapping f : X → X is called Edelstein fuzzy contractive if it
satisfies M( f (x), f (y), t) > M(x, y, t) for all x, y ∈ X, x �= y and all t > 0.

Then Grabiec obtained the next theorem for a compact KM-fuzzy metric space
[7]. (A (KM-)fuzzy metric space (X, M, ∗) is called compact if every sequence has
a convergent subsequence.)

Theorem 6.2 Let (X, M, ∗) be a compact KM-fuzzy metric space and T : X → X
an Edelstein fuzzy contractive mapping. Then T has a unique fixed point.

In [3] Ciric introduced a notion of an Edelstein fuzzy locally contractive mapping
and extended the last theorem. He also extended the first theorem above due to
Grabiec and the corresponding due to Vasuki.

Remark 6.1 Notice that in Theorem 6.1 it is assumed that X is G-complete. This
assumption is really a strong condition. In fact, a compact (KM)-fuzzy metric space
is not necessarily G-complete as it was proved in [43].

Assuming completeness instead of G-completeness for a KM-fuzzy metric, the
following result was given.

Theorem 6.3 (D. Mihet [28]) Let (X, M, ∗) be a complete strong KM-fuzzy metric
space and let f : X → X be a ψ-contractive mapping (see Definition 7.3 (iii)). If
there exists x ∈ X such that M(x, f (x), t) > 0 for all t > 0, then f has a fixed point.
Further, if M(x, y, t) > 0 for all t > 0, then the fixed point is unique.

In the following section we will see other concepts of contractivity and fixed point
theorems.

7 Fuzzy Banach Contraction Principle in Fuzzy Metric
Spaces

The first fuzzy Banach contraction principle in complete fuzzy metric spaces was
given by Gregori and Sapena [13]. To introduce this result we need some previous
concepts.

Definition 7.1 Let (X, M, ∗) be a fuzzy metric space. We will say the mapping
f : X −→ X is GS-fuzzy contractive if there exists k ∈]0, 1[ such that

1

M( f (x), f (y), t)
− 1 ≤ k(

1

M(x, y, t)
− 1)

for each x, y ∈ X and t > 0.(k is called the contractive constant of f ).

The above definition is justified by the next proposition.
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Proposition 7.1 Let (X, d) be a metric space. The mapping f : X −→ X is con-
tractive (a contraction) on the metric space (X, d) with contractive constant k if and
only if f is GS-fuzzy contractive, with contractive constant k, for the standard fuzzy
metric space induced by d.

Recall that a sequence {xn} in a metric space (X, d) is said to be contractive if
there exists k ∈]0, 1[ such that d(xn+1, xn+2) ≤ kd(xn, xn+1), for all n ∈ N. Now,
we give the following definition (compare with Definition 7.1).

Definition 7.2 Let (X, M, ∗) be a fuzzy metric space. We will say that the sequence
{xn} in X is GS-fuzzy contractive if there exists k ∈]0, 1[ such that

1

M(xn+1, xn+2, t)
− 1 ≤ k(

1

M(xn, xn+1, t)
− 1), for all t > 0, n ∈ N

Proposition 7.2 Let (X, Md , ∗) be the standard fuzzy metric space induced by the
metric d on X. The sequence {xn} in X is contractive in (X, d) iff {xn} is GS-fuzzy
contractive in (X, Md , ∗).

Next we extend the Banach fixed point theorem for GS-fuzzy contractive map-
pings of complete fuzzy metric spaces.

Theorem 7.1 (Gregori and Sapena [13]) (Banach Fuzzy contraction Theorem) Let
(X, M, ∗) be a complete fuzzy metric space in which fuzzy contractive sequences are
Cauchy. Let T : X −→ X be a GS-fuzzy contractive mapping.

Then T has a unique fixed point.

It is an open problem to know if GS-fuzzy contractive sequences are Cauchy.
D. Mihet obtained a negative answer if M is a KM-fuzzy metric. The following
corollary can be considered the fuzzy version of the Banach Contraction Principle.

Corollary 7.1 Let (X, Md , ∗) be a complete standard fuzzy metric space and let
T : X −→ X be a GS-fuzzy contractive mapping. Then T has a unique fixed point.

Many other concepts of contractive self-mapping on X have been given later in
the literature. Here we give some of them which are related.

Denote byH the family ofmappings η :]0, 1] → [0,+∞[ such that η transforms
]0, 1] onto [0,+∞[ and η is strictly decreasing. Denote by� the family of mappings
ψ :]0, 1] →]0, 1] such that ψ is continuous non-decreasing and ψ(t) > t for all
t ∈]0, 1]. Denote by Hω the family of continuous, strictly decreasing mappings
η :]0, 1] → [0,+∞[ with η(1) = 0.

Definition 7.3 Let (X, M, ∗) be a fuzzy metric space. A mapping f : X → X is
called

(i) RT -contractive [35] if there exists k ∈]0, 1[ such that

M( f (x), f (y), t) ≥ 1 − k + k · M(x, y, t) for all x, y ∈ Xand t > 0
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(ii) H -contractive [46] with respect to η ∈ H if there exists k ∈]0, 1[ such that

η(M( f (x), f (y), t)) ≤ k · η(M(x, y, t) for all x, y ∈ X and t > 0

(iii) Hω-contractive with respect to η ∈ Hω [29] if there exists k ∈]0, 1[ such that

η(M( f (x), f (y), t)) ≤ k · η(M(x, y, t)) for all x, y ∈ X and t > 0

(iv) ψ-contractive [28] with respect to ψ ∈ � if there exists k ∈]0, 1[ such that

M( f (x), f (y), t) ≥ ψ(M(x, y, t)) for all x, y ∈ X and t > 0

The following chain of implications, related to these contractive conditions, is
satisfied:

RT − contractive → GS − contractive → H − contractive → Hω − contractive → ψ − contractive

For the most two general contractive conditions above, recently, the following
fixed point theorems have been given.

Theorem 7.2 (Gregori and Miñana [8]) Let (X, M, ∗) be a complete fuzzy metric
space and let f : X → X be a fuzzyHω-contractivemapping. If

∧
t>0

M(x, f (x), t) >

0 for each x ∈ X, then f has a unique fixed point x∗ ∈ X (and for each x ∈ X the
sequence of iterates

{
f n)(x)

}
n converges to x∗).

This last theorem generalizes two results due to Wardowski and Mihet (Theorem
3.2 of [46] and Theorem 2.4 of [29], respectively).

Also, for a particular class of fuzzy metric spaces, the following theorem has been
given.

Theorem 7.3 (Gregori and Miñana [8]) Let (X, M, ∗) be a complete strong fuzzy
metric space and let f : X → X be a fuzzy ψ-contractive mapping. Then f has a
unique fixed point.
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Abstract This is a survey around a property (PropertyP) introduced byM. Fabian,
V. Zizler, and the third named author, in terms of differentiability of the norm. Pre-
cisely, a Banach space X is said to have property P if for every norming sub-
space N ⊂ X∗ there exists an equivalent Gâteaux differentiable norm for which N is
1-norming. Every weakly compactly generated space has propertyP . Applications
to measure theory, the classification of compacta, and some other structural proper-
ties of compact and Banach spaces are given. Some open problems are listed, too.
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that the spaceC[0, 1] has such a norm—a “weighted” �2-sum of the supremum norm
and the evaluations on a countable dense subset of [0, 1]—, and then by isometri-
cally embedding X into C[0, 1]. M. M. Day [5] observed that the only ingredient in
Clarkson’s argument was the existence of a countable total (i.e., linearly w∗-dense)
subset of SX∗ , and that this amounted to the construction of a continuous linear and
one-to-one mapping from X into �2, from where the result followed. Then ([5, Theo-
rem 4]) he went on by showing that every separable space X had an equivalent norm
that was simultaneously strictly convex and smooth (i.e., Gâteaux differentiable). He
showed that Clarkson’s method, when applied to X∗, gave a dual equivalent norm
that was strictly convex (and so its predual normwas smooth, by Šmulyan’s Lemma).
Finally he proved that every spacewith a smooth norm and having a continuous linear
and one-to-one mapping into a space with a norm that was simultaneously smooth
and strictly convex could be renormed by a norm that had simultaneously the two
properties.

The space c0(Γ ) has an equivalent locally uniformly rotund (LUR) norm (nowa-
days known as the Day norm). Day proved the strict convexity [5], and the LUR
property of that norm was the contribution of J. Rainwater [27].

The transfer technique sketched above and the property of the Day norm on c0(Γ )

allowed G. Godefroy [15] to provide a relatively simple proof of the celebrated S.
Troyanski’s result that every weakly compactly generated (WCG) Banach space has
an equivalent LUR norm [29]. Behind was the seminal construction of a projectional
resolution of the identity on WCG spaces, and the existence of a fundamental result
by D. Amir and J. Lindenstrauss [1]. Indeed, Amir and Lindenstrauss showed that if
X is aWCGspace, then both X and X∗ admit a strictly convex norm and, respectively,
a dual strictly convex norm (so X has also a Gâteaux norm), thanks to the existence
of injective mappings both from X and from X∗ into some c0(Γ ).

Lindenstrauss conjectured [22], after the previous results, that if X admits a
Gâteaux smooth norm, then X must be SWCG, i.e., a subspace of a WCG space.
The conjecture had a negative solution, with S. Mercourakis [23] showing that every
weakly countably determined (WCD) space X has the property that both X and X∗
admit strictly convex norms. To see how fruitful and far-reaching was the original
suggestion of Lindenstrauss, we may mention the following result: A Banach space
X has an equivalent uniformly smooth equivalent norm if, and only if, X is a sub-
space of a Hilbert-generated Banach space [9, 12]. A Banach space X is said to be
Hilbert generated if there is a bounded linear operator from a Hilbert space onto a
dense subspace of X .

Broadly speaking, smooth renorming is connectedwith compact generation,while
rotund renorming appears to be linked to special coverings of the unit sphere, in
particular if no linear transfer technique is available. The previous paragraphs hinted
at the first problem. For the second, a recent monograph that presents the advances in
LUR renorming is [24], and for a characterization of the existence of a strictly convex
renorming, together with a good account of the previous work done, see, e.g., [26].

The present note takes the first road and contributes to show how fruitful was
Lindenstrauss’ conjecture: If smoothness was thought to imply SWCG—in other
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words, that the dual unit ball in the w∗-topology is an Eberlein compact space—,
our note shows that some smoothness inC(K ) ensures additional compactness prop-
erties of the compact space K . It builds mainly on two papers [10, 17], and tries to
be a short survey on some of the topics treated in these two references. We complete
some of the information provided there, streamlining some proofs or modifyng oth-
ers, and hoping to make the text almost self-contained. At the end we list some open
problems related to the topic. Again, we rely on the questions presented in the two
aforementioned papers.

1.1 Notation

Throughout the note we consider only real vector spaces. All compact spaces are
assumed to be Hausdorff, unless specified otherwise.

As usual, if (X, ‖ · ‖) is a Banach space, BX denotes its closed unit ball, and SX its
unit sphere. X∗ is the topological dual of X , and the canonical dual norm on X∗ will
be written ‖ · ‖∗ (or again ‖ · ‖ if there is no risk of misunderstanding). The action
of an element x∗ ∈ X∗ on an element x ∈ X is denoted by x∗(x) or, alternatively, by
〈x, x∗〉. We put span S for the linear span of a set S in a vector space.

We say that f ∈ SX∗ attains its norm if there is x ∈ SX such that f (x) = 1. The
Bishop–Phelps theorem [3] asserts that such elements form a dense set in SX∗ (cf.
e.g. [7, p. 13], or [13]).

Along this survey we shall use the typographical device of bounding the “sup-
port material” or the “complementary explanations” by shaded boxes as the
present one. They can be skipped for the first approach.

1.2 Some Generalities on Norming Subspaces

Themore general statements about duality in locally convex spaces are formulated for
an abstract dual pair 〈E, F〉, where E and F are linear spaces, and 〈·, ·〉 : E × F →
R denotes a symmetric bilinear form that separates points of E and F . If a subspace
G of F is given, 〈E, G〉 is still a dual pair (endowed with the restriction to E × G of
the original bilinear form) if, and only if, G is w(F, E)-dense in F , where w(F, E)

is the topology on F of the pointwise convergence on the elements of E (this is
equivalent to say that G separates points of E). This topology is Hausdorff thanks
to the separating property of 〈·, ·〉.

The definition of the topology w(E, G) above can be pushed further by allowing
G to be an arbitrary subset of F . Note then that w(E, G) = w(E, span G). Thus,
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w(E, G) is Hausdorff if, and only if, G is w(F, E)-linearly dense in F , i.e., span G
is w(F, E)-dense in F .

In several instances along this paperwe shall use real locally convex spaces,mostly
real Banach spaces endowedwith different topologies. By a topological vector space
(E,T ) we understand a real vector space E endowed with a Hausdorff topology
T that makes continuous the vector space operations; a locally convex space is a
topological vector space where 0 has a basis of convex neighborhoods.

In the context of a Banach space (X, ‖ · ‖), it is obvious that 〈X, X∗〉 is a dual
pair for the bilinear form 〈x, x∗〉 := x∗(x) for x ∈ X , x∗ ∈ X∗. As usual, the weak
topology w(X, X∗) and the weak* topology w(X∗, X) will sometimes be denoted
by w and w∗, respectively. If D ⊂ X∗ is a w(X∗, X)-dense subspace (not necessarily
‖ · ‖-closed), we may consider BD := BX∗ ∩ D (i.e., its closed unit ball), and the
function ‖ · ‖D : X → R given by

‖x‖D := sup{〈x, x∗〉 : x∗ ∈ BD}, x ∈ X. (1)

Clearly, ‖ · ‖D is a (not necessarily equivalent) norm on X . Observe that its closed
unit ball is

B D := {x ∈ X : ‖x‖D ≤ 1} = (BD)◦, (2)

where A◦ ⊂ X denotes the polar set of a set A ⊂ X∗. With respect to the dual pair
〈X, D〉, BD is just B◦

X , where A◦ ⊂ D is the polar set of A ⊂ X . Hence

B D = (B◦
X )◦ = BX

w(X,D)
, (3)

where the last equality is just the bipolar theorem.
Note, too, that ‖ · ‖D , as the supremum of a collection of w(X, D)-continuous

(linear) functionals, isw(X, D)-lower semicontinuous.Moreover,‖ · ‖D is the largest
among all convexw(X, D)-lower semicontinuousminorants of the norm ‖ · ‖. This is
why ‖ · ‖D is called the w(X, D)-lower semicontinuous envelope of the norm ‖ · ‖.

As wementioned, the norm ‖ · ‖D defined in (1) is not always an equivalent norm.
For a particular example, see [13, Exercise 3.92]. When this is the case, the subspace
D of X∗ is said to be norming for X . More precisely, for some α > 0, a subspace
N ⊂ X∗ is said to be (1/α)-norming for X if α‖x‖ ≤ ‖x‖N (≤ ‖x‖) for all x ∈ X .
In particular, N is 1-norming for X if ‖ · ‖N = ‖ · ‖. We shall omit the reference to
X if it is understood from the context. Of course, every norming subspace N ⊂ X∗
is w(X∗, X)-dense.

Being a norming or 1-norming subspace can be described in a number ofways.We
gather such characterizations in the following two lemmata (note that, in all cases,
BD ⊂ BX∗ and BX ⊂ B D). The proofs of the equivalences are easy, and we shall
omit them (they can be found, e.g., in [13, Exercises 3.87–3.93, 4.34, 4.60, 5.3–5.6,
7.54–7.56, 8.19, 13.35 and 14.37]). For the “moreover” part of Lemma 1.1, see [18].
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Lemma 1.1 Let (X, ‖ · ‖) be a Banach space, and let D be a w(X∗, X)-dense sub-
space of X∗. The following are equivalent:

(i) D is norming.
(ii) B D is bounded.

(iii) BD
w(X∗,X)

has a nonempty interior.
(iv) X + D⊥ is closed in X∗∗, where D⊥ is the subspace of X∗∗ orthogonal to D.
(v) dist (SX , D⊥) > 0 (distance in X∗∗).

Under some additional assumptions, we can add more equivalent conditions. A
topological space T is said to be angelic (a property introduced by Fremlin, see, e.g.,
[14]) if for every relatively countably compact subset A, we have simultaneously the
two following properties: (i) A is relatively compact, and (ii) every point in A is the
limit of a sequence in A. If K is compact, then angelicity of K coincides with the
Fréchet–Urysohn property, which means that for every subset A of K , (ii) above
holds.

In the next statement the concept of a Mazur space appears: A locally convex
space E is said to be Mazur (or that it has the Mazur property) if every sequentially
continuous linear form on E is continuous, i.e., an element of its dual space. A linear
form f on E is said to be sequentially continuous if f (xn) → 0 whenever (xn) is
a sequence in E that converges to 0.

Lemma 1 continued (see [18]) Moreover, if D is ‖ · ‖-closed, and (BX∗ , w∗) is
angelic, then (i) is equivalent to any of the following:

(a) (X, μ(X, D)) is complete, where μ(X, D) is the topology of the uniform
convergence on all absolutely convex w(D, X)-compact subsets of D.

(b) the space (D, w(D, X)) is Mazur.

Remark 1.1 Without (BX∗ , w∗) being angelic, the equivalences in the “moreover”
part of Lemma 1.1 may fail. See [18] for examples.

Lemma 1.2 Let (X, ‖ · ‖) be a Banach space, and let D be a w(X∗, X)-dense sub-
space of X∗. The following are equivalent:

(i) D is 1-norming.
(ii) B D = BX .

(iii) BX∗ = BD
w(X∗,X)

.
(iv) BX is w(X, D)-closed.
(v) ‖ · ‖ is w(X, D)-lower semicontinuous.
(vi) X + D⊥ is closed in X∗∗, and the associated projection P : X + D⊥ → X

has norm 1.
(vii) dist (SX , D⊥) = 1 (distance in X∗∗).

Using norming (and, in particular, 1-norming) subspaces allows for unifying some
results on Banach spaces if we wish to cover the case of a Banach space (X, ‖ · ‖)
that, in some instances, may be a dual space. A trivial observation is that X , as a
(closed) subspace of X∗∗, is 1-norming for X∗. The space (X, ‖ · ‖) is said to have
an isomorphic (isometric) predual if there exists a Banach space (P, |‖ · |‖) such
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that (P∗, |‖ · |‖) is isomorphic (respectively, isometric) to (X, ‖ · ‖). It is plain that
(P, |‖ · |‖) is isomorphic (respectively, isometric) to a (closed) subspaceof (X∗, ‖ · ‖),
and this subspace is norming (respectively, 1-norming) for X .

Lemma 1.3 shows an interesting permanence property for norming subspaces:

Lemma 1.3 Let (Z , ‖ · ‖) be a Banach space, X a subspace of Z, and N ⊂ X∗ a
norming subspace for X. Let q : Z∗ → X∗ be the canonical quotient mapping. Then
q−1(N ) is a norming subspace for Z.

Proof We follow an idea in the proof of [16, Corollary 2.2]. Without loss of
generality, we may assume that N is a 1-norming subspace of X∗. Indeed,
denote again by ‖ · ‖ the norm on X induced by ‖ · ‖ on Z . Then ‖ · ‖N on X
defined by (1) makes, certainly, N a 1-norming subspace for X . Now, it is a
general fact that every equivalent norm on a subspace of a Banach space can
be extended to an equivalent norm on the whole space (see, for example, [7,
Lemma II.8.1]).

Take z ∈ SZ . Suppose first that its distance to X is less than 1/4. Choose
x ∈ X such that ‖z − x‖ < 1/4 and y∗ ∈ N ∩ BX∗ with 〈x, y∗〉 > ‖x‖ − 1/4.
Select z∗ ∈ q−1({y∗}) ∩ BZ∗ (such a selection is possible: Choose a sequence
(zn) in q−1({y∗}) with ‖zn‖ → 1; it has a w∗-cluster point z∗ that, by the
w∗-lower semicontinuity of the norm in Z∗, belongs to BZ∗). Then

〈z, z∗〉 = 〈x, z∗〉 + 〈z − x, z∗〉
= 〈x, y∗〉 + 〈z − x, z∗〉 > ‖x‖ − 1

4 − ‖z − x‖
> ‖z‖ − 1

4 − 1
4 − 1

4 = 1
4 .

It follows that the supremum of z on q−1(N ) ∩ BZ∗ is greater than 1/4. Second,
note that the distance d(z, X) from z to X is ‖Q(z)‖, where Q : Z → Z/X is
the canonical quotient mapping. Since the dual of Z/X is linearly isometric to
X⊥, if d(z, X) ≥ 1/4 we may choose z∗ ∈ SX⊥ such that 〈z, z∗〉 = 1/4. Note
that q(z∗) = 0. Thus, the supremum of z on q−1(N ) ∩ BZ∗ is greater or equal
than 1/4. This proves that

1
4 BZ∗ ⊂ q−1(N ) ∩ BZ∗

w∗
.

Hence, by (iii) in Lemma 1.1, q−1(N ) is norming. ��

Another result that will be used below is the following:

Proposition 1.1 Let X be a Banach space. Let F ∈ X∗∗ \ X. Then F−1(0) is a
norming subspace of X∗ for X.
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Proof For a proof see, e.g., [13, Exercise 3.88]. It is based on the so-
called Parallel Hyperplane Lemma (see, e.g., [13, Exercise 2.13]). A related,
although different argument, uses (iv) in Lemma 1.1: If N := F−1(0), then
N⊥ = span{F}, a one-dimensional subspace of X∗∗, so X + N⊥ is closed in
X∗∗, a simple consequence of the Separation Theorem. ��

Apparently, the following lemma is not directly related to norming subspaces. It
states a very simple, although useful, sequential property of the dual unit ball of a
Banach space when some smoothness of the norm of X is present. The application
to 1-norming subspaces is made explicit in Corollary 1.1.

Proposition 1.2 Let (X, ‖ · ‖) be a Banach space, and let x∗
0 ∈ N A(X) ∩ SX∗ .

Assume that ‖ · ‖ is Gâteaux differentiable at some x0 ∈ SX such that 〈x0, x∗
0 〉 = 1. If

S ⊂ BX∗ satisfies x∗
0 ∈ S

w∗
, then there exists a sequence (s∗

n ) in S that w∗-converges
to x∗

0 . If ‖ · ‖ is Fréchet differentiable at x0, then (s∗
n ) is ‖ · ‖-convergent to x∗

0 .

Proof Find a sequence (s∗
n ) in S such that 〈x0, s∗

n 〉 → 1. Let s∗ be an arbitrary w∗-
cluster point of (s∗

n ). Clearly, 〈x0, s∗〉 = 1, and s∗ ∈ BX∗ . Since ‖ · ‖ is Gâteaux
differentiable at x0, the Šmulyan lemma gives s∗ = x∗

0 . Thus, (s
∗
n ) is w∗-convergent

to x∗
0 . If ‖ · ‖ is Fréchet differentiable at x0, again the Šmulyan lemma gives conver-

gence, now in the norm. ��
Corollary 1.1 Let (X, ‖ · ‖) be a Banach space. Let N ⊂ X∗ be a 1-norming sub-
space of X∗. If ‖ · ‖ is Gâteaux differentiable, then every x∗ ∈ SX∗ is in the w∗-closure
of a countable subset of BN .

Proof Put S := BN . By (iii) in Lemma 1.2, S
w∗=BX∗ . Let x∗∈SX∗ . If x∗ ∈ N A

(X, ‖ · ‖) then in fact x∗ is the w∗-limit of a sequence in S, as it follows from
Proposition 1.2. Otherwise, x∗ is the ‖ · ‖-limit of a sequence in N A(X, ‖ · ‖) ∩
SX∗ , by the Bishop–Phelps theorem, and we can apply the first part to conclude
the proof. ��

Given a subset S of a topological space, the countable closureof S is, bydefinition,
the union of the closures of all at most countable subsets of S. The notions of a count-
ably closed or countably dense set S are also defined as expected— respectively, if
S coincides with its countable closure or if its countable closure is the whole space.

Thus, Corollary 1.1 says that SX∗ is in the countable w∗-closure of BN . Note that
in this case N is countably w∗-dense in X∗.

2 Property P

A Banach space X is said to be weakly compactly generated (briefly, WCG) if it
contains a weakly compact and linearly dense subset. The acronym SWCG denotes
the class of subspaces of WCG spaces. Certainly, every separable space is WCG, as
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well as every reflexive space. For any index set Γ , the space c0(Γ ) is WCG. If μ is
a σ -finite measure, then L1(μ) is also WCG (see, e.g., [13, Chap. 13]).

The origin of Theorem 2.2 below can be traced back to several sources, all of
them inspired by the early conjecture of J. Lindenstrauss connecting smoothness
and weak compactness that was mentioned at the Introduction. One is the following
result (the definition of M-smoothness is given below). The argument in the proof
of (i) in Theorem 2.1 has its origin in [9, Lemma 1]. This applies, too, to Theorem
2.2 and Remark 2.4 below.

Theorem 2.1 (Fabian, Montesinos, Zizler [11], Theorem 1) (i) Let M be a bounded
subset in a Banach space X. Then M is w-relatively compact if, and only if, for every
norming subspace N of X∗, there is an equivalent N-lower semicontinuous norm on
X that is M-smooth.

(ii) Let M be a bounded subset in the dual space X∗. Then M is w-relatively
compact if, and only if, there is an equivalent dual norm on X∗ which is M-smooth.

If M is a bounded subset of a Banach space (X, ‖ · ‖), we say that ‖ · ‖ is M-
smooth if

sup{‖x + th‖ + ‖x − th‖ − 2‖x‖ : h ∈ M} = o(t), for t > 0, 0 �= x ∈ X.

In particular, if (X, ‖ · ‖) is WCG, M ⊂ X is a linearly dense and w-compact set,
and N ⊂ X∗ is a norming subspace for (X, ‖ · ‖), then (i) in Theorem 2.1 gives an
equivalent M-smooth and N -lower semicontinuous norm |‖ · |‖. Due to the fact that
M is linearly dense, it is easy to show that |‖ · |‖ is Gâteaux smooth.

The following result is, regarding Gâteaux smoothness, a little bit more precise
than the necessary condition in (i) in Theorem 2.1. See also Remark 2.4 below.

Theorem 2.2 (Fabian, Montesinos, Zizler [10]) Let (X, ‖ · ‖) be a WCG Banach
space. Then X admits an equivalent norm |‖ · |‖ whose N-lower semicontinuous
envelope is Gâteaux differentiable for every norming subspace N of X∗.

Proof According to the well-known factorization theorem of Davis, Figiel, Johnson,
and Pełczyński (see, e.g., [13, Theorem 13.33]), there are a reflexive space R and
a linear bounded one-to-one operator T : R → X with dense range. Let | · | be an
equivalent norm on R such that the corresponding dual norm | · |∗ on R∗ is strictly
convex (see, e.g., [13, Theorem 13.25]). Put

D := B(X,‖·‖) + T
(
B(R,|·|)

)
.

As T
(
B(R,|·|)

)
is weakly compact, D is a bounded convex symmetric closed set with

0 in its interior. Let |‖ · |‖ be the Minkowski functional of D. This is an equivalent
norm on X , and B(X,|‖·|‖) = D. We shall show that |‖ · |‖ has the desired property.

To this end, let N ⊂ X∗ be a norming subspace. For the N -lower semicontinuous
envelope |‖ · |‖N of |‖ · |‖ we have, by (3),
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B(X,|‖·|‖N ) = D
w(X,N ) = B(X,‖·‖) + T

(
B(R,|·|)

)w(X,N )

.

As T
(
B(R,|·|)

)
is weakly compact (and thus w(X, N ) compact), we get

B(X,|‖·|‖N ) = B(X,‖·‖)
w(X,N ) + T

(
B(R,|·|)

) = B(X,‖·‖N ) + T
(
B(R,|·|)

)
.

Thus, for x∗ ∈ X∗ we have

|‖x∗|‖∗
N = ‖x∗‖∗

N + sup
〈
T

(
B(R,|·|)

)
, x∗〉 = ‖x∗‖∗

N + |T ∗x∗|∗.

The norm | · |∗ on R∗ is strictly convex and T ∗ is injective. We claim that |‖ · |‖∗
N on

X∗ is strictly convex. Indeed, consider two points x∗, y∗ ∈ X∗ such that

2(|‖x∗|‖∗
N )2 + 2(|‖y∗|‖∗

N )2 − (|‖x∗ + y∗|‖∗
N )2 = 0.

Then, a simple argument of convexity gives

2(|T ∗x∗|∗)2 + 2(|T ∗y∗|∗)2 − (|T ∗x∗ + T ∗y∗|∗)2 = 0.

The strict convexity of | · |∗ gives T ∗x∗ = T ∗y∗, and the fact that T has a dense range
shows that x∗ = y∗. This proves the claim (see, for more details, [7, pp. 43, 73] or
[13, Ex. Chap.8]). Finally, | · |N on X is Gâteaux differentiable, as it follows from
the Šmulyan’s Lemma (see, e.g., [7, Proposition II.1.6]). ��
Remark 2.3 A byproduct of the previous proof is the following observation: If
N A(X, ‖ · ‖) ⊂ X∗ denotes the set of all norm-attaining functionals for (X, ‖ · ‖),
then N A(X, ‖ · ‖) = N A(X, |‖ · |‖). Indeed, it is clear that the supremum of a linear
functional on the algebraic sum of two sets is the sum of the suprema on each of
them. To show the claim it is enough to observe that every element in X∗ attains
its supremum on the w-compact set T (B(R,|·|)). Let us give the details. To sim-
plify the notation, put sup x∗(A) := sup{〈a, x∗〉 : a ∈ A}, for x∗ ∈ X∗ and A ⊂ X .
If x∗

0 ∈ N A(X, ‖ · ‖), then there exists x0 ∈ B(X,‖·‖) such that sup x∗
0 (B(X,‖·‖)) =

〈x0, x∗
0 〉. There exists r0 ∈ B(R,|·|) such that sup x∗

0 (T B(R,|·|)) = 〈T r0, x∗
0 〉. It is obvi-

ous that z0 := x0 + T r0 ∈ B(X,|‖·|‖) satisfies sup x∗
0 (B(X,|‖·|‖)) = 〈z0, x∗

0 〉, so x∗
0 ∈

N A(X, |‖ · |‖). Conversely, if x∗
0 ∈ N A(X, |‖ · |‖), there exists z0 ∈ B(X,|‖·|‖) such

that

〈z0, x∗
0 〉 = sup x∗

0 (B(X,|‖·|‖))
(= sup x∗

0 (B(X,‖·‖)) + sup x∗
0 (T B(R,|·|)) = sup x∗

0 (B(X,‖·‖)) + 〈T r0, x∗
0 〉).

Thus, sup x∗
0 (B(X,‖·‖)) = 〈z0, x∗

0 〉. If z0 = x0 + T r0, where x0 ∈ B(X,‖·‖) and r0 ∈
B(R,|·|), then clearly x0(B(X,‖·‖)) = 〈x0, x∗

0 〉, hence x∗
0 ∈ N A(X, ‖ · ‖). �

Remark 2.4 Following [11], it is possible to improve Theorem 2.2 by showing the
following: Assume that M is a (convex and balanced) linearly dense and w-compact
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subset of (X, ‖ · ‖). Then there exists an equivalent norm |‖ · |‖ on X such that,
for every norming subspace N ⊂ X∗ for (X, ‖ · ‖), the N-lower semicontinuous
envelope |‖ · |‖N is M-smooth (in particular, Gâteaux smooth).

Proof (Sketch)We slightly modify the proof of Theorem 2.2 along the follow-
ing lines: First, in the construction of the classical factorization theorem, the
mapping T : R → X can be defined in such a way that M ⊂ T (BR). Second,
the norm | · | in R∗ can be taken to be LUR (Troyanski, see, e.g., [13, Theo-
rem13.25]). Put now D := ⋃{αB(X,‖·‖) + βT (B(R,|·|)) : α ≥ 0, β ≥ 0, α2 +
β2 ≤ 1}. It is easy to see that D is w-closed. Let |‖ · |‖ be the Minkowski func-
tional of D. This is an equivalent norm on X , and B(X,|‖·|‖) = D. Given a
norming subspace N for (X, ‖ · ‖), we have

B(X,|‖·|‖N ) = B(X,|‖·|‖)
w(X,N ) = D

w(X,N )

=
⋃

{αB(X,|‖·|‖N ) + βT (B(R,|·|)) : α ≥ 0, β ≥ 0, α2 + β2 ≤ 1}.

Thus,
|‖x∗|‖2N = ‖x∗‖2N + |T ∗x∗|2.

To show that |‖ · |‖N is M-LUR, take x∗, x∗
n ∈ X∗ such that

2|‖x∗|‖2N + 2|‖x∗|‖2N − |‖x∗ + x∗
n |‖2N → 0 as n → ∞.

Using the convexity, we get

2|T ∗x∗|2 + 2|T ∗x∗
n |2 − |T ∗x∗ + T ∗x∗

n |2 → 0 as n → ∞.

Since | · | on R
∗ is LUR, we conclude that |T ∗x∗

n − T ∗x∗| → 0 or, in other
words, sup{〈x, x∗

n − x∗〉 : x ∈ T (BR)} → 0 as n → ∞. Since M ⊂ T (BR),
a usual version of the Šmulyan’s lemma gives the conclusion. ��

Theorem 2.2 above suggests the following definition of a property of Banach
spaces in terms of renorming, that we call “property P” following the notation
alreadyused in [10].According to this result, everyWCGBanach space has a property
formally stronger thanP (we call it “strong propertyP”, again after [10]). We shall
see, for example in Proposition 2.1 below, that there are other spaces —for example,
the subspaces of the WCG space, a class denoted in short by SWCG— that share
the same strong property. That this class is larger than the class of WCG spaces is a
consequence of H. P. Rosenthal’s celebrated example [28].

Definition 2.1 (Fabian, Montesinos, Zizler [10]) We say that a Banach space X has
property P if for every norming subspace N ⊂ X∗ there is an equivalent Gâteaux
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differentiable norm on X that is N -lower semicontinuous; and X is said to have the
strong property P if there exists an equivalent norm |‖ · |‖ on X such that |‖ · |‖N

is Gâteaux differentiable for every norming subspace N of X∗.

Remark 2.5 By the equivalence (i)⇔(v) in Lemma 1.2, the N -lower semicontinuity
property of the equivalent norm in Definition 2.1 can be substituted by the fact that,
for the new norm, N is 1-norming.

Proposition 2.1 (Fabian, Montesinos, Zizler [10]) Every subspace of a Banach
space with property P (strong property P) has property P (respectively, strong
property P).

Proof Let Z be a Banach space with propertyP , let X be a closed subspace of Z and
let q be the canonical mapping from Z∗ onto X∗. By Lemma 1.3, q−1(N ) is norming
for every norming subspace N of X∗. Property P of Z provides an equivalent
Gâteaux differentiable norm | · | on Z that is q−1(N )-lower semicontinuous. Then
the restriction of | · | to X is the required norm. The proof for the strong propertyP
is similar. ��

3 Some Applications

In this section we present some applications of the concept introduced above. Each
subsection starts with a list of some of the definitions needed. For other undefined
terms, see, e.g., [13].

Sections 3.1 and 3.2 below deal with spaces C(K ) for a compact space K .
Section 3.4 contains an application to Mazur’s property.

3.1 Compact Spaces and PropertiesP and (M)

If K is a compact topological space, C(K ) is assumed, if nothing is said on the
contrary, to be endowed with the supremum norm ‖ · ‖∞. Note that the mapping
δ : K → C(K )∗ given by 〈 f, δ(k)〉 = f (k) for k ∈ K and f ∈ C(K ) is a topological
homeomorphism into when C(K )∗ carries the w∗-topology.

Property P (Definition 2.1 above) was defined for a Banach space. The reader
will notice that in many of the arguments related to this, only some special norming
subspaces do really play a role. This is specially so when dealing with C(K ) spaces.
The norming subspaces needed reduce to just the linear hull of dense subsets of
δ(K ). This is why it is convenient to introduce the compact-version (and the strong
compact-version) of the propertyP , as it was done in [10]. We hope that there will
be no misunderstanding derived from the same name used in the Banach-space and
the compact settings.
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Definition 3.1 (Fabian, Montesinos, Zizler [10]) We say that a compact space K
has property P if for every dense subset D of K there exists an equivalent Gâteaux
differentiable w(C(K ), δ(D))-lower semicontinuous norm on C(K ).

A compact space K has strong property P if there exists an equivalent Gâteaux
differentiable norm that is w(C(K ), δ(D))-lower semicontinuous for every dense
subset D of K .

Of course, if C(K ) has (strong) property P , then K has (respectively, strong)
property P . Some examples of compact spaces with (strong) property P will be
provided below.

Compact spaces can always be seen as topological subspaces of some productRΓ

of lines endowed with its product topologyTp. If nothing is said on the contrary, we
shall always consider RΓ endowed with this topology.

A particular subset of RΓ that will play an important role in the rest of the
paper is Σ(Γ ):={x ∈ R

Γ : |supp x | ≤ ℵ0}, where supp x :={γ ∈ Γ : x(γ ) �= 0}.
Another one is c0(Γ ) := {x ∈ R

Γ : |{γ ∈ Γ : |x(γ )| > ε}| < ℵ0 for every ε > 0}.
Obviously, c0(Γ ) ⊂ Σ(Γ ).

The following concept —whose origin can be traced to the work of H. H. Corson
and S. P. Gul’ko, see also [20] and the references therein— will help to simplify
some of the expressions below:

Definition 3.2 Let K be a compact space. A subset S of K is said to be a Σ-
subset if there exists a homeomorphism h from K into some RΓ such that h(S) =
h(K ) ∩ Σ(Γ ).

It is easy to observe that any Σ(Γ ) is always countably closed in RΓ , and hence
so is any Σ-subset of a compact space.

The way a compact space sits in some RΓ allows for its classification.
For example, K is called a Corson compact space if it is homeomorphic to a

subset of Σ(Γ ) for some set Γ (in other words, if K is a Σ-subset of itself). Note
that every Corson compact space K is angelic.

This has an easy proof: We may consider K as a subset of RΓ , and each
element k in K has a countable support supp (k). Let A be a nonempty subset
of K , and let k0 ∈ A. If supp (k) = {γ0,1, γ0,2 . . .}, find a1 ∈ Awith |a1(γ0,1) −
k0(γ0,1)| < 1. Let supp a1 = {γ1,1, γ1,2, . . .}. Find a2 ∈ A such that |a2(γi, j ) −
k0(γi, j )| < 1/2, i, j = 0, 1. Continue this way to get a sequence (an) in A that
pointwise converges to k0.

A Banach space X is called a weakly Lindelöf determined space (briefly,WLD)
if the dual unit ball of X∗ in its weak∗ topology is a Corson compact space (see, e.g.,
[8] or [19] for properties and references on WLD spaces).

A compact space K is said to be anEberlein compact space if it is homeomorphic
to aweakly compact subset of aBanach space endowedwith the restriction of itsweak
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topology. A compact space K is Eberlein compact if, and only if, it is homeomorphic
to a compact subset of c0(Γ ) endowed with the restriction of the pointwise topology,
for some set Γ (thus every Eberlein compact space is Corson compact). This is a
consequence of the work done by D. Amir and J. Lindenstrauss on WCG Banach
spaces [1]. As it follows from this, K is an Eberlein compact space if, and only
if, C(K ) is WCG. Then, according to Theorem 2.2 above, every Eberlein compact
space has strong property P .

Thus, the following theorem (a slight extension of one contained in an unpublished
version of [10]) contains, as a particular case, the result of A. Grothendieck on the
separability of supports of measures on Eberlein compact spaces. Recall that if K
is a compact space and μ is a regular Borel measure on it, then the support of μ is
defined as the complement of the set of all the points of K that have a neighborhood
with measure 0.

Theorem 3.1 Let K be a compact space with propertyP . Assume that μ is a regular
Borel measure on K . Then μ has a separable support.

Proof Put
N := span‖·‖∗∞{δ(k) : k ∈ K } (⊂ C(K )∗).

Obviously, N is 1-norming for (C(K ), ‖ · ‖∞). Since K has propertyP , there exists
an equivalent Gâteaux and w(C(K ), δ(K ))-lower semicontinuous norm |‖ · |‖ on
C(K ), hence w(C(K ), N )-lower semicontinuous. Thus, N is also 1-norming for
(C(K ), |‖ · |‖). By Corollary 1.1 it follows that μ is in the w∗-closure of a countable
subset of N . Thus the support of μ is separable. ��
Remark 3.2 The property of the compact space K exhibited in Theorem 3.1 is
recorded as property (M). This property was used by S. Argyros, S. Mercourakis,
and S. Negrepontis [2] (see also [19, Thm. 5.57] to show that for a compact space K
it is equivalent (i) to be Corson and enjoy property (M), and (ii) the space C(K ) to
be WLD. It is worth noticing that under CH, there is a Corson compact space failing
property (M). The first such example was given by K. Kunen in 1975 and published
in [21]. Other examples can be found in [25] and in [2] (see also [19, Sect. 5.5],
where the example in the last reference is presented).

Thus, Theorem 3.1 above says that every compact space K with property P
enjoys property (M). �

3.2 PropertyP , Corson and Valdivia Compacta

The following concept was introduced by M. Valdivia [30]. A compact space K is
called a Valdivia compact space if it contains a dense Σ-subset. Obviously, every
Corson compact space is Valdivia compact. On the other hand, there are Valdivia
compacta that are not Corson compacta.
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An example—in a sense canonical, see below—is the interval [0, ω1] endowed
with the order topology. This is a Valdivia compact space (note that [0, ω1)

is dense). It is not angelic, since ω1 is not the limit of a sequence in [0, ω1),
hence it is not Corson (see the proof at the beginning of Sect. 3.1). We mention
that [0, ω1] is “canonical” because of the following result, due to Deville and
Godefroy [6]: A Valdivia compact space is Corson compact if, and only if, it
does not contain an isomorphic copy of [0, ω1].

A Markushevich basis for a Banach space X is, by definition, a biorthogonal
system {xγ , fγ }γ∈Γ in X × X∗ such that the closed linear hull of {xγ : γ ∈ Γ } equals
to X and { fγ : γ ∈ Γ } separates the points of X (cf. e.g. [8] or [13]).

The density character dens X of a Banach space X is defined as the least cardinal
ℵ such that X admits a dense set of cardinality ℵ. The least uncountable ordinal
number is denoted by ω1 and the least uncountable cardinal by ℵ1.

The following result shows a connection between differentiability in C(K ) and
the quality of the compact space K of being Corson or Valdivia compact.

Theorem 3.3 (Guirao, Lissitsin, Montesinos [17]) If K is a Valdivia compact space
having propertyP , then C(K ) is WLD (in particular, K is a Corson compact space).

This result was preceded by a restricted version of the same theorem (Theorem 3.4
below), stated and proved only for the case, when the density character ofC(K ) isℵ1

[10]. The proof therewas based on the existence of a particular projectional resolution
of the identity in spacesC(K ) for K aValdivia compact space (due toValdivia himself
[30], see also, e.g., [7, Theorem 7.6]) and a “subordinated” Markushevich basis.

The proof of the general case is, in a sense, easier —at least for showing that K is
a Corson compact space—, since it uses nothing but the ingredients in the definition
of the propertyP and the concepts of Corson and Valdivia compacta. Still, we think
that the proof of the particular case is worth to reproduce, as it uses projectional
resolutions of the identity and the almost ubiquitous concept of a Markushevich
basis. The “plus” of the proof of Theorem 3.4 is that the WLD character of C(K )

is obtained without appealing to any measure-theoretical result or the use of Σ-
subspaces of the dual space, in contrast with the proof of Theorem 3.3.

Theorem 3.4 (Fabian,Montesinos,Zizler [10])Assume that K is a Valdivia compact
space having property P and that the density character of the space (C(K ), ‖ · ‖∞)

is ℵ1. Then C(K ) is WLD (in particular, K is a Corson compact space).

Proof We can assume that K ⊂ [−1, 1]Γ for some set Γ and that K ∩ Σ(Γ ) is
dense in K . Let { fα : α < ω1} be a dense set in C(K ). Using the Urysohn lemma,
we can easily see that the family {k ∈ K : fα(k) > 3

4 }, α < ω1, is a base for the
topology on K . For every α < ω1 find kα ∈ K ∩ Σ(Γ ) such that fα(kα) > 3

4 . Put
then S = {kα : α < ω1}.Note that this set is dense in K andhas cardinality atmostℵ1.
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By [30] (see also [7, LemmaVI.7.5]), we have that there exists an increasing trans-
finite sequence {Γα : ω0 ≤ α ≤ ω1} of subsets of Γ with the following properties:
For every α ∈ [ω0, ω1],

(i) card Γα ≤ card α,
(ii)

⋃

β+1<α

Γβ = Γα ,

(iii) Γω1 = Γ ,
and such that RΓα

(K ) ⊂ K , where RJ : [0, 1]Γ → [0, 1]Γ is defined for J ⊂ Γ

and x ∈ [0, 1]Γ by

RJ (x)(i) =
{

x(i), if i ∈ J
0, if i /∈ J.

The corresponding projectional resolution of identity {Pα : ω0 ≤ α ≤ ω1} on
C(K ) (see [7, Theorem VI.7.6]) is defined by Pα( f ) := f |Kα

◦ Rα , ω0 ≤ α ≤ ω1,
where Kα := Rα(K ) ⊂ K and Rα is the restriction of RΓα

to K . Now, every (Pα+1 −
Pα)(C(K )) is separable, so it has a countable Markushevich basis {xα,n, x∗

α,n}n=1,2,...

(see, e.g., [13, Theorem 4.59]). Following [8, Proposition 6.2.4], we get a Marku-
shevich basis {xα,n, x∗

α,n}ω0≤α<ω1, n=1,2,... on C(K ). Now, every element s ∈ S has
a countable support Ns ⊂ Γ . Hence there exists αs ∈ Γ such that Ns ⊂ Γα , for all
α0 ≤ α ≤ ω1. For the correspondingDiracmeasure δs we then have P∗

α δs = δs for all
these α. Therefore every element of Y := span ‖·‖{δs : s ∈ S} has at most countable
support on the set {xα,n : ω0 ≤ α < ω1, n = 1, 2, . . .}.

It remains to show that every element ofC(K )∗ has a countable support on this set.
Let | · | be an equivalent Gâteaux differentiable and Y -lower semicontinuous norm
on C(K ) (its existence is guaranteed by the propertyP). According to the Bishop-
Phelps theorem, it is enough to consider norm-attaining elements of (C(K ), | · |)∗.
Fix any x∗ ∈ S(C(K ),|·|)∗ that attains its ‖ · ‖ norm. By Proposition 1.2, there exists
a sequence (x∗

n ) in Y ∩ B(C(K )∗,|·|) that weak∗-converges to x∗. Therefore x∗ has a
countable support on {xα,n : ω0 ≤ α < ω1, n = 1, 2, . . .}. This means that C(K ) is
WLD. ��

Let us split the proof of Theorem 3.3 above into the following steps, which may
be of some interest on their own.

The first one easily follows fromCorollary 1.1 but highlights the essential assump-
tion that we will use.

Proposition 3.1 Let a compact space K enjoy property P . Then K satisfies the
property: For every dense S ⊂ K the subspace span δ(S) is countably w∗-dense in
C(K )∗.

Proof Property P gives an equivalent Gâteaux differentiable norm |‖ · |‖ on C(K )

for which span δ(S) is (still) 1-norming. Corollary 1.1 implies the claim. ��
Proposition 3.2 A Valdivia compact space K is Corson compact if and only if it
satisfies the property: For every dense S ⊂ K the subspace span δ(S) is countably
w∗-dense in span δ(K ).
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Proof The necessity is obvious. It follows from the angelicity, in particular from
countable tightness, of Corson compacta.

For the sufficiency, consider K as a subset of RΓ for some index set Γ in such
a way that S := K ∩ Σ(Γ ) is dense in K . For γ ∈ Γ , let pγ ∈ C(K ) be the γ -th
coordinate function, i.e., pγ (x) = x(γ ) for x ∈ K . Note that the topology w∗ of
C(K )∗ coincides on δ(K ) with the topology of the pointwise convergence on the set
{pγ : γ ∈ Γ } (⊂ C(K )). Fix δ(k) ∈ δ(K ). By assumption there exists a countable

subset Nk of N := span δ(S) such that δ(k) ∈ Nk
w∗
. Observe now that every δ(s) ∈

δ(S) (and so every μ ∈ N ) has a countable support on {pγ : γ ∈ Γ }. This shows
that δ(k) is also countably supported on {pγ : γ ∈ Γ }. Since K was homeomorphic
to a subset ofR{pγ : γ∈Γ } in its pointwise topology, we get that K is a Corson compact
space. ��
Proposition 3.3 Given a Corson compact space K , the space C(K ) is WLD if and
only if K satisfies the property: span δ(K ) is countably w∗-dense in C(K )∗.

Proof Again, the necessity follows from the angelicity of (BC(K )∗ , w∗).
For the sufficiency, we can proceed in two slightly different ways.
Path 1. Observe that by the same proof as in Theorem 3.1, the assumption implies

property (M). So the claim follows from Remark 3.2.
Path 2. We shall use a result of O. Kalenda [20, Proposition 5.1]. In fact, we need

only part of the statement there. It can be reproduced as follows:

Lemma 3.1 Let K be a compact space and let h be a homeomorphism from K
into R

Γ . Put S := h−1(Σ(Γ )). Then there exists an index set Γ̃ and a linear w∗-
continuous injection h̃ from C(K )∗ into R

Γ̃ such that δ(S) ⊂ h̃−1(Σ(Γ̃ )).

Proof The reader will understand that the construction in the proof of Propo-
sition 3.2 above is here pushed further: As before, put pγ := πγ ◦ h, where
πγ : RΓ → R is the γ -th projection for γ ∈ Γ . The family {pγ : γ ∈ Γ }
(⊂ C(K )) separates points of δ(K ), and

S = {k ∈ K : |{γ ∈ Γ : pγ (k) �= 0}| ≤ ℵ0}.

Let Γ̃ the set of all (possibly empty) finite sequences of elements in Γ . Given
γ̃ ∈ Γ̃ , let us define the element fγ ∈ C(K ) as

fγ̃ :=
{
1K if γ̃ = ∅,

pγ1 . . . pγn if γ̃ = (γ1, . . . , γn).

It follows from the Stone–Weierstrass theorem that

span‖·‖∞({ fγ̃ : γ̃ ∈ Γ̃ }) = C(K ).
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Define the mapping h̃ : C(K )∗ → R
Γ̃ by the formula

h̃(μ)(γ̃ ) := 〈 fγ̃ , μ〉, μ ∈ C(K )∗, γ̃ ∈ Γ̃ .

Then h̃ is a w∗-continuous one-to-one linear mapping. The last assertion of
the statement should be clear from the definition of S. ��

Path 2 continued. Since K is Corson, K ⊂ S, so h̃(δ(K )) ⊂ Σ(Γ̃ ). But Σ(Γ̃ ) is a
countably closed linear subspace ofRΓ̃ , so the assumption implies that h̃(C(K )∗) ⊂
Σ(Γ̃ ), and in particular, h̃(BC(K )∗) ⊂ Σ(Γ̃ ). Thus, (BC(K )∗ , w∗) is Corson andC(K )

is WLD. ��
Proof of Theorem 3.3. This is now just a successive application of Propositions
3.1–3.3. ��
Remark 3.5 Observe that the argument in Path 2 can be adapted to obtain the claim
directly from the property captured in Proposition 3.1 skipping the (more elementary)
proof of Proposition 3.2.

In fact, this argument is also behind the scenes in Path 1. Indeed, Lemma
3.1 is the first step for an alternative proof of the aforementioned theorem of
Argyros, Mercourakis, and Negrepontis involving property (M) (see, e.g.,
[13, Theorem 5.57]) �

The space C[0, ω1] admits an equivalent Fréchet differentiable norm by a result
of M. Talagrand (cf., e.g., [7, p. 313]). As [0, ω1] is a Valdivia compact space but
not Corson compact (see the proof at the beginning of this subsection), it follows
from Theorem 3.3 that C[0, ω1] does not have property P (Theorem 3.4 can also
be applied, since densC[0, ω1] = ℵ1). However, in this case we can state a more
precise result. Namely, we get the following proposition:

Proposition 3.4 (Fabian, Montesinos, Zizler [10]) The space of continuous func-
tions C[0, ω1] on the interval [0, ω1] does not admit any equivalent Gâteaux differ-
entiable norm that is [0, ω1)-lower semicontinuous.

Proof Assume that ‖ · ‖ is an equivalent Gâteaux differentiable norm on C[0, ω1]
that is [0, ω1)-lower semicontinuous. Put

N := span ‖·‖{δα : α < ω1}.

The space N is obviously 1-norming for (C[0, ω1], ‖ · ‖∞). By the assumption, it is
also 1-norming for (C[0, ω1], ‖ · ‖). It follows from Corollary 1.1 that any point of
C[0, ω1]∗, in particular δω1 , lies in theweak

∗-closure of the linear hull S of a countable
set {δαi }, αi < ω1 for all i . Let β = sup{αi }i . Then β < ω1. Let f ∈ C[0, ω1] be such
that f (αi ) = 0 for all i and f (ω1) = 1. Then f equals to zero on S and equal to 1 at
δω1 . This shows that δω1 is not in the weak

∗ closure of S. This contradiction finishes
the proof. ��
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For Fréchet differentiable norms the situation is different. The following Propo-
sition slightly improves a result in [10]. Here, the class of norming subspaces to be
considered reduces to the closed hyperplanes of X∗.

Proposition 3.5 Assume that X is a Banach space having property P for closed
norming hyperplanes and for Fréchet differentiability. Then X is reflexive.

Proof Let x∗∗ ∈ X∗∗ \ X and denote by N the kernel of x∗∗ in X∗; by Proposition 1.1,
this is a norming hyperplane of X∗. Let ‖ · ‖ be an equivalent Fréchet differentiable
norm on X that is N -lower semicontinuous. It follows from Proposition 1.2 that
every element of S(X∗,‖·‖) that attains the norm ‖ · ‖ is in N . By the Bishop-Phelps
Theorem we get N = X∗, a contradiction. ��

3.3 Plichko Spaces with PropertyP

The effect Lemma 3.1 has on aC(K ) space, when K is Valdivia, can also be desribed
in other Banach spaces. Let us recall the necessary notions (see, e.g., [20, Definition
4.11]). Let X be a Banach space. A subspace S ⊂ X∗ is called a Σ-subspace of X∗
if for some Γ there is a linear one-to-one w∗-continuous mapping T : X∗ → R

Γ

such that S = T −1(Σ(Γ )). The space X is called Plichko if X∗ contains a norming
Σ-subspace, and X is called 1-Plichko if X∗ contains a 1-norming Σ-subspace. For
any Plichko space X , the set Γ can be chosen to be a subset of X . Those classes were
introduced by A. Plichko himself (see, e.g., [19] and references therein).

Apart from C(K ) spaces for K Valdivia, the class of 1-Plichko spaces encom-
passes, e.g., order-continuous Banach lattices—in particular, abstract L-spaces (see
[20, Examples 6.9–6.12]).

Obviously, X is WLD whenever X∗ is a Σ-subspace of itself. The reverse impli-
cation also holds (see, e.g., [20, Definition 4.11 and Theorem 4.17]).

The same reasoning as in the proof of Theorem 3.3 can be applied to Plichko
spaces enjoying propertyP . The following observations are from [17].

Proposition 3.6 Let X be a Banach space. The following are equivalent:
(i) X is WLD.
(ii) X is 1-Plichko and every 1-norming subspace of X∗ is countably w∗-dense.
(iii) X is Plichko and every norming subspace of X∗ is countably w∗-dense.

Proof (i)⇒(ii) and (i)⇒(iii): Since X∗ is aΣ-subspace of itself, X is 1-Plichko. The
rest follows from the angelicity of (BX∗ , w∗).

(ii)⇒(i) and (iii)⇒(i): Since X is Plichko, there is a norming subspace N ⊂ X∗
that is a Σ-subspace of X∗. Being a Σ-subspace, it is countably w∗-closed but by
assumption also countably w∗-dense in X∗, so it coincides with X∗. ��

Combining Corollary 1.1 and Proposition 3.6 gives the following variant of
Theorem 3.3 above.
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Corollary 3.1 Let X be a Plichko Banach space with property P . Alternatively, let
X be a 1-Plichko Banach space such that for every 1-norming subspace N ⊂ X∗
there exists an equivalent Gâteaux differentiable w(X, N )-lower semicontinuous
norm on X. Then X is WLD.

3.4 PropertiesP and Mazur’s

Again, the following theorem slightly improves a result in [10] by reducing the
number of norming subspaces to be considered.Recall that (X∗, w∗) is said to have the
Mazur property whenever every sequentially continuous linear form on (X∗, w∗) is
continuous, i.e., an element in X . Note the following: Every sequentially continuous
linear form f on (X∗, w∗) is already an element in X∗∗. Indeed, if f �= 0 and K :=
ker( f ) ⊂ X∗, then K is a w∗-sequentially closed proper hyperplane in X∗. Let x∗ ∈
K

‖·‖
. Find a sequence (x∗

n ) in K that ‖ · ‖-converges to x∗. It is alsow∗-convergent, so
(0 =) f (x∗

n ) → f (x∗), hence x∗ ∈ K . Since K is ‖ · ‖-closed, f is ‖ · ‖-continuous,
i.e., f ∈ X∗∗.

Theorem 3.6 Assume that a Banach space X has property P for closed norming
hyperplanes of X∗. Then (X∗, w∗) has the Mazur property.

Proof Assume there is x∗∗ ∈ SX∗∗ \ X that is weak∗ sequentially continuous. Let N
be the kernel of x∗∗ in X∗. By Proposition 1.1, N is a norming hyperplane of X∗ which
is, moreover, weak∗-sequentially closed. Assume that an equivalent norm ‖ · ‖ on
X is Gâteaux differentiable and N -lower semicontinuous. Then, by Proposition 1.2,
every element of S(X∗,‖·‖) that attains its ‖ · ‖ norm belongs to N . By the Bishop-
Phelps theorem, N = X∗, a contradiction. ��
Remark 3.7 Note that in case that (BX∗ , w∗) is angelic, the conclusion of
Theorem 3.6 is true without any other hypothesis on the space X . This can be
seen as a consequence of the last statement in Lemma 1.1. Indeed, (X, μ(X, X∗)
is complete —note that this topology is just the norm topology—, so under the
angelicity of (BX∗, w∗) the space (X∗, w∗) is already Mazur. An alternative argu-
ment is the following: Let x∗∗ ∈ X∗∗ be w∗-sequentially continuous. Assume that
x∗∗ /∈ X . Let N := ker x∗∗, a closed and norming hyperplane of X∗ (see Proposition
1.1). If x∗ ∈ BN

w∗
, there exists, by the angelicity hypothesis, a sequence (x∗

n ) in
BN that w∗-converges to x∗. This shows that 〈x∗∗, x∗〉 = 0, hence x∗ ∈ BN . Thus,

BN = BN
w∗
. The Krein–Šmulyan theorem (see, e.g., [13, Corollary 3.94]) shows

that x∗∗ ∈ X , a contradiction. However, it is not necessary to rely on this theorem.
Note, simply, that the contradiction is reached because in this case we know that

(BN =) BN
w∗

contains a multiple of BX∗ . �
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4 Some Open Problems

1. We proved (Proposition 2.1) that every SWCG enjoys the strong property P .
Does the converse hold?

2. Along this paper, Property P has been substituted in some of the statements
by the formally weaker one defined in terms of the family of closed norming
hyperplanes. We do not know whether this requirement is really weaker. So we
formulate:Assume that for every x∗∗ ∈ X∗∗ \ X the space X admits an equivalent
Gâteaux differentiable norm that is Y -lower semicontinuous, where Y is the
kernel of x∗∗ in X∗. Does X necessarily have property P?

3. Are properties P and strong P (see Definition 2.1) the same?
4. Is it possible to prove the result of Deville and Godefroy in [6] quoted in Sect. 3.2

by showing that in case K is a Valdivia compact space that does not contain a
copy of [0, ω1], then C(K ) enjoys property P? Recall that here it is proved
(see the paragraph after the proof of Theorem 3.3) that C[0, ω1] does not have
property P .

5. Theorem 3.6 and Remark 3.7 suggest that property P may have a description
in terms of topological properties of (BX∗ , w∗).
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Separable (and Metrizable) Infinite
Dimensional Quotients of Cp(X) and
Cc(X) Spaces

In Honour of Manuel López-Pellicer

Jerzy Kąkol

Abstract The famousRosenthal-Lacey theorem states that for each infinite compact
set K theBanach spaceC(K ) of continuous real-valued functions on a compact space
K admits a quotient which is either an isomorphic copy of c or �2. Whether C(K )

admits an infinite dimensional separable (or even metrizable) Hausdorff quotient
when the uniform topology of C(K ) is replaced by the pointwise topology remains
as an open question. The present survey paper gathers several results concerning this
question for the space Cp(K ) of continuous real-valued functions endowed with the
pointwise topology. Among others, thatCp(K ) has an infinite dimensional separable
quotient for any compact space K containing a copy of βN. Consequently, this result
reduces the above question to the case when K is a Efimov space (i.e. K is an infinite
compact space that contains neither a non-trivial convergent sequence nor a copy
of βN). On the other hand, although it is unknown if Efimov spaces exist in ZFC,
we note under ♦ (applying some result due to R. de la Vega), that for some Efimov
space K the space Cp(K ) has an infinite dimensional (even metrizable) separable
quotient. The last part discusses the so-called Josefson–Nissenzweig property for
spaces Cp(K ), introduced recently in [3], and its relation with the separable quotient
problem for spaces Cp(K ).

Keywords The separable quotient problem · Spaces of continuous functions ·
Quotient spaces · The Josefson-Nissenzweig theorem · Efimov space

1 Introduction

Let X be a Tychonoff space. By Cp(X) and Cc(X) we denote the space of real-
valued continuous functions on X endowedwith the pointwise and the compact-open
topology, respectively.
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The classic Rosenthal-Lacey theorem, see [21, 27, 30], asserts that the Banach
space C(K ) of continuous real-valued functions on an infinite compact space K has
a quotient isomorphic to c or �2, or equivalently, there exists a continuous linear (and
open; by the open mapping Banach theorem) map from C(K ) onto c or �2.

The proof of this remarkable result splits into two cases:
(i) K is scattered. Then K contains a convergent sequence (xn) of distinct points.

The linear map T : C(K ) → c, f �→ ( f (xn)) is a continuous surjection. Hence the
quotient C(K )/T−1(0) is isomorphic to c.

(ii) K is not scattered. Then K is continuously mapped onto [0, 1]. The space �2
is isomorphic to a closed subspace of L1[0, 1] and l1[0, 1] is isomorphic to a closed
subspace L1(K ,BK , μ), where μ is some nonnegative finite regular Borel measure
on K . The latter space is isomorphic to a closed subspace of the norm dual Y of
C(K ). Therefore the reflexive space �2 is a subspace of Y that is weak∗-closed, and
then a quotient of C(K ) is isomorphic to �2, see [30, Corollary 1.6, Proposition 1.2]
for details.

This theorem motivates the following natural question (first discussed in [24]):

Problem 1.1 (Kąkol, Śliwa) Does Cp(K ) admit an infinite-dimensional separable
quotient (SQ in short) for any infinite compact space K ?

Note the following simple
Fact: Each metrizable (linear) quotient Cp(X)/Z of Cp(X) by a closed vector

subspace Z of Cp(X) is separable.
Indeed, this follows from the separability of metizable spaces of countable cel-

lularity and the fact that Cp(X) has countable cellularity, being a dense subspace of
R

X , see [2].
We can also argue as follows: It is well-known that the space Cp(X) carries its

weak locally convex topology. As the weak topology is inherited by each Hausdorff
quotient, and if additionally this quotient is metrizable, then it is a topological sub-
space of RN; for a discussion of most relevant facts concerning the weak topology
we refer the reader to [20].

The above Rosenthal-Lacey theorem motivates also the following (particular)
question related with Problem 1.1 for spaces Cp(X).

Problem 1.2 (Banakh, Kąkol, Śliwa) For which compact spaces K any of the fol-
lowing equivalent conditions holds:

1. The space Cp(K ) has an infinite dimensional metrizable quotient.
2. The space Cp(K ) has an infinite dimensional metrizable separable quotient.
3. The space Cp(K ) has a quotient isomorphic to a dense subspace of RN.

The present paper gathers (with possible discussion) several recently obtained results
concerning Problems 1 and 2.
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2 First Motivations and the Case Cp(βN)

The closed ideals of Cp(X) are precisely the spaces

FA = { f ∈ C(X) : f (x) = 0 ∀x ∈ A},

where A ranges over the closed subsets of X . These are also the closed ideals of
Cc(X). An algebra quotient ofCc(X) orCp(X) is one by a closed ideal, thus preserv-
ing vector multiplication. In Rosenthal’s Case (i) the quotient is an algebra quotient,
since the kernel of T is FA with A := {x0, x1, . . . }.

In [23] we proved the following general

Theorem 2.1 (Kąkol, Saxon) For a Tychonoff space X the following assertions are
equivalent:

1. X contains a closed infinite countable subset D.
2. Cc(X) admits an infinite dimensional separable quotient algebra.
3. Cp(X) admits an infinite dimensional separable quotient algebra.

We need the following

Lemma 2.1 If X has no infinite countable closed subset, then Cp(X) is not separa-
ble.

Proof Let f1, f2, · · · ∈ C(X) be arbitrary. We desire y1 �= y2 in X with

| fn(y1) − fn(y2)| ≤ 1, n ∈ N.

By our assumption, every infinite countable set in X has more than one cluster point
in X . Fix a cluster point y1 in X . By continuity we can choose a strictly decreasing
sequence of closed neighborhoods Vn of y1 such that each fn(Vn) has diameter no
larger than 1.

We choose xn ∈ Vn \ Vn+1 and let y2 be a cluster point of {xn}n distinct from y1.
Since all but finitely many of the xk are in a selected Vn , this closed set contains
the cluster point y2. In fact, then, the displayed inequality holds for each n. One
shows that there exists h ∈ C(X) with h(y1) = 5 and h(y2) = 9. If we assume some
fn ∈ h + [{y1, y2}, 1], we have

| fn(y1) − fn(y2)| ≥ (9 − 5) − 1 − 1 = 2,

a contradiction. Thus the arbitrary sequence in C(X) is not dense in Cp(X).

Proof (Skech of the proof of Theorem 2.1) [(1) ⇒ (2)]. If D admits a compact
infinite subset, the sequence space c is a (separable) algebra quotient of Cc(X). If D
has no such subset, we may assume D has no cluster points, so that Cc(X)/FD =
Cp(X)/FD , which is isomorphic to a dense subspace of the metrizable separableRD .
Hence the algebra quotient is separable.
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[(2) ⇒ (3)]. If Cc(X)/FA is separable, so is Cp(X)/FA.
[(3) ⇒ (1)]. If A is closed in X and Cp(X)/FA is separable, then so is Cp(A).

Since A is infinite, (the contrapositive of) Lemma 2.1 shows that A has a closed
countable infinite subset D. Thus D is closed in X , and (1) holds.

This theorem shows, for example, that the space Cp(βN) fails to have an infinite
dimensional separable quotient algebra. Motivated by this fact one can ask

Problem 2.1 (Kąkol, Śliwa) Does the space Cp(βN) admit an infinite dimensional
separable (even metrizable) quotient?

If K contains a non-trivial convergent sequence, say xn → x0, then for A := {xn :
n ∈ N} ∪ {x0}, the spaceCp(K ) has a quotient isomorphic to the infinite-dimensional
separable and metrizable space Cp(A). Many compact spaces contain non-trivial
convergent sequences; particularly Valdivia compact spaces, by Kalenda’s result
[26]. They are plentiful, indeed:

metri zable compact ⇒ Eberlein compact ⇒ Tala grand compact ⇒ Gulko compact

⇒ Corson compact ⇒ Valdivia compact.

Let K be an infinite compact space. If K is scattered, then it contains a non-trivial
convergent sequence. If K is not scattered, then there exists a continuous map from
K onto [0, 1] but this property seems to be not so helpful for Cp(K ).

Nevertheless, we will see that a stronger condition

(+) K is continuously mapped onto [0, 1]c,

implies that Cp(K ) has SQ, see Theorem 2.2 below. Recall that the condition (+)

is equivalent to the fact that K contains a copy of βN, see [31].
On the other hand, we have the following easy fact.

Proposition 2.1 For any infinite compact K the space Cp(K ) can be mapped onto
an infinite-dimensional separable metrizable locally convex space by a continuous
linear map.

Proof If K is separable, Cp(K ) has countable pseudocharacter [2, Theorem 1.1.4].
Hence Cp(K ) admits a weaker metrizable and separable locally convex topology,
see [16, Lemma 3.2]. If K is arbitrary, choose a compact separable infinite subset L
and apply the previous case using the restriction surjective map Cp(K ) → Cp(L).

Clearly Problem 1.1 is motivated by Rosenthal-Lacey theorem, but one can pro-
vide more specific motivations. Let X be a Tychonoff space.

1. If X is of pointwise countable type, then Cc(X) has a quotient isomorphic to
either RN or c or �2, see [23, Corollary 22].

2. Cc(X) has SQ provided Cc(X) is barrelled, i.e. every closed absolutely con-
vex absorbing set in Cc(X) is a neighborhood of zero, see [22]. Indeed, X is
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pseudocompact if and only if the set B := { f ∈ C(X) : | f (x)| ≤ 1, x ∈ X} is
a barrel in Cc(X). If X is pseudocompact and Cc(X) is barrelled, then B is a
neighborhood of zero; equivalently X is compact and Cc(X) is a Banach space
and the Rosenthal-Lacey theorem applies. If X is not pseudocompact we apply
Proposition 2.2 below.

3. If X is an infinite product of completely regular Hausdorff spaces of cardinality
at least two, then Cp(X) has SQ. Indeed, as X contains a compact metrizable
infinite subset Y , the space Cp(X) has a quotient isomorphic to Cp(Y ).

Hence, for example, Cc(X) has SQ whenever X is metrizable or hemicompact.
Recall that all first countable spaces and all locally compact spaces are of pointwise
countable type, see [12].

In [23, Corollary 11] we proved that for a fixed Tychonoff space X , if Cp(X)

has SQ, then also Cc(X) has SQ. Conversely, if Cc(X) has SQ and for every infi-
nite compact K ⊂ X the space Cp(K ) has SQ, then Cp(X) has also an infinite
dimensional separable quotient. Indeed, two cases are possible.

1. Every compact subset of X is finite. Then Cp(X) = Cc(X) and hence Cp(X)

has SQ.
2. X contains an infinite compact subset K . Then Cp(K ) has SQ (by assumption).

Since the restriction map f → f |K , f ∈ C(X) is a continuous open surjection
from Cp(X) onto Cp(K ), the desired conclusion holds.

Problem 1.1 has a simple solution for Tychonoff spaces which are not pseudo-
compact. We recall that a Tychonoff space X is pseudocompact if each continuous
real-valued function on X is bounded.

Proposition 2.2 For a Tychonoff space X the following conditions are equivalent:

1. X is not pseudocompact;
2. Cp(X) has a subspace, isomorphic to RN;
3. Cp(X) has a quotient space, isomorphic to RN;
4. Cp(X) admits a linear continuous map onto R

N.

Proof The implication (1) ⇒ (2) is proved in Theorem 14 of [23] and (2) ⇒ (3)
follows from the complementability ofRN in any locally convex space containing it,
see [29, Corollary 2.6.5]. The implication (3) ⇒ (4) is trivial. To see that (4) ⇒ (1),
observe that for a pseudocompact space X the function space Cp(X) is σ -bounded,
since it can be written as the countable union

Cp(X) =
∞⋃

n=1

{ f ∈ Cp(X) : sup
x∈X

| f (x)| ≤ n}

of bounded subsets. Then the image of Cp(X) under any linear continuous operator
also is σ -bounded. On the other hand, the Baire Theorem ensures that the space RN

is not σ -bounded.
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The following theorem (from [24, Theorem 4]) shows thatCp(K ) has SQ for any
compact space K containing a copy of βN.

Theorem 2.2 (Kąkol, Śliwa) Let X be a Tychonoff space with a sequence (Kn) of
non-empty compact subsets such that for any n ≥ 1 the set Kn contains two disjoint
subsets homeomorphic to Kn+1.ThenCp(X) has SQ.Consequently, if K is a compact
space which contains a copy of βN, then Cp(K ) has SQ.

For the proofwe need to show that there exists a sequence (ξn) of non-zero continuous
linear functionals on Cp(X) such that

E :=
∞⋃

n=1

∞⋂

m=n

ker ξn ⊂ Cp(X)

is dense in Cp(X), and then apply the main result of [25, Proposition 1] or [24,
Lemma 7].

Consequently, the above theorem reduces Problem 1.1 to the case when K is a
Efimov space (i.e. K is an infinite compact space that contains neither a non-trivial
convergent sequence nor a copy of βN). Indeed, if X contains a non-trivial conver-
gent sequence, then (as we have already noticed) Cp(X) contains a complemented
metrizable (hence separable) subspace. If X contains a copy of βN, then Cp(X) (by
Theorem 2.1) has SQ (even metrizable by Corollary 2.3).

Although, it is unknown if Efimov spaces exist in ZFC (see [8–11, 14, 15, 17,
19]) we showed in [24] that under ♦ for some Efimov spaces K the function space
Cp(K ) has SQ.

Theorem 2.1 implies the following

Corollary 2.1 Let X be a normal topological space with a sequence (Sn) of non-
empty closed subsets such that for any n ≥ 1 the set Sn contains two disjoint closed
subsets S′

n and S′′
n that are homeomorphic to Sn+1. Then Cp(βX) has SQ.

Proof Let n ≥ 1. Denote by Kn, K ′
n, K

′′
n and Kn+1 the closures in βX of the sets

Sn, S′
n, S

′′
n and Sn+1, respectively. Then K ′

n and K ′′
n are compact and disjoint subsets

of Kn that are homeomorphic to Kn+1 by [12, Corollaries 3.6.4 and 3.6.8]. Using the
last theorem, we infer that Cp(βX) has SQ.

Corollary 2.2 If K is an infinite compact space and every infinite closed set in K
contains two infinite disjoint homeomorphic closed sets, then Cp(K ) has SQ.

It is natural to ask if every infinite compact space K satisfies the assumption of the
above corollary. The answer (in the negative) follows from the following Example
2.1 below.

Recall that a compact space K is a Koszmider space, see [13], if all operators on
C(K ) have the form gI + S, where g ∈ C(K ) and S is weakly compact. If K is a
connected Koszmider space then C(K ) is indecomposable, i.e. there are no infinite-
dimensional closed subspaces Y and Z such that C(K ) = Y ⊕ Z , see [13, Lemma
2.6].
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Example 2.1 Under ♦ there exists a separable Efimov space F such that F is a
Koszmider space and does not admit two disjoint homeomorphic infinite closed
subsets.

Proof Let K be the compact connected space as in [13, Theorem 5.2]. Let F be
an infinite separable closed subset of K . Assume that F contains two closed infi-
nite disjoint homeomorphic subsets L1 and L2. Put L := L1 ∪ L2. This generates a
homeomorphismφ : L → L which is not the identity. Then the composition operator

Cφ : C(L) → C(L), Cφ(g) := g ◦ φ,

provides an operator which contradicts [13, Theorem 5.3]. Then F does not contain
βN. Moreover, F does not contain non-trivial convergent sequences. Indeed, other-
wise C(K ) is not a Grothendieck space, so C(K ) contains a complemented copy of
c0, see [5, Corollary 2], so that C(K ) is not indecomposable, a contradiction with
the above remark.

Remark 2.3 As every separable compact space is a continuous image of βN, the
space F from above Example 2.1 enjoys this property. Therefore we conclude that
the construction provided by Theorem 2.1 (which applies to βN) is not inherited by
continuous surjections.

Having in mind the above results one can also formulate the following

Problem 2.2 Let K be an infinite compact space and assume that Cp(K ) has an
infinite-dimensional separable quotient. Does Cp(K ) admit an infinite-dimensional
metrizable quotient?

Themain results of the paper [4] are the following twoTheorems 2.4 and 2.5 below
giving partial answers to Problems 1.2 and 2.2, the proof of the first theorem will be
provided below.A subspace A of a topological space X is calledC∗-embedded if each
bounded continuous function f : A → R has a continuous extension f̄ : X → R.

Theorem 2.4 (Banakh, Kąkol, Śliwa) If a pseudocompact Tychonoff space X con-
tains an infinite discrete C∗-embedded subspace D, then the function space Cp(X)

has an infinite-dimensional metrizable quotient. More precisely, for any sequence
(Fn)

∞
n=1 of non-empty, finite and pairwise disjoint subsets of D with limn |Fn| = ∞

and the closed linear subspace

Z =
∞⋂

n=1

{ f ∈ Cp(X) : ∑
x∈Fn

f (x) = 0}

the quotient space Cp(X)/Z is isomorphic to the subspace �∞ = {(xn) ∈ R
N :

supn |xn| < ∞} of RN.

If a Tychonoff space X is compact, then X contains an infinite discrete C∗-
embedded subspace if and only if X contains a copy of βN. On the other hand,
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the space ω1 is pseudocompact noncompact which does not contain C∗-embedded
infinite discrete subspaces. Moreover, the space � := βR \ (βN \ N) discussed in
[18, 6P, p. 97] is pseudocompact, noncompact and contains N as a closed discrete
C∗-embedded set.

We note the following extension of the second part of Theorem 2.1.

Corollary 2.3 For any infinite discrete space D the space Cp(βD) has a quotient
space, isomorphic to the subspace �∞ of RN.

Theorem 2.4 and Proposition 2.2 yield immediately

Corollary 2.4 For each Tychonoff space X containing a C∗-embedded infinite dis-
crete subspace, the function space Cp(X) has an infinite-dimensional metrizable
quotient, isomorphic to RN or �∞.

Besides the subspace �∞ of RN, the following corollary of Theorem 2.4 involves
also the subspace c0 := {(xn)n∈N ∈ R

N : limn→∞ xn = 0} of RN.

Corollary 2.5 If a compact Hausdorff space X is not Efimov, then the function space
Cp(X) has a quotient space, isomorphic to the subspaces �∞ or c0 in RN.

Proof The space X , being non-Efimov, contains either an infinite converging
sequence or a copy of βN. In the latter case X contains an infinite discrete C∗-
embedded subspace and Theorem 2.4 implies that Cp(X) has a quotient space, iso-
morphic to �∞ ⊂ R

N. If X contains a sequence (xn)n∈N of pairwise distinct points
that converges to a point x ∈ X , then for the compact subset K := {x} ∪ {xn}n∈N of
X the space Cp(K ) is isomorphic to c0 ⊂ R

N and is isomorphic to a complemented
subspace in Cp(X), see [1, Theorem 1, p.130, Proposition 2, p.128].

The following theorem (proved in [4]) extends the previous Theorem 2.1; its proof
ismuchmore technical and complicated than the corresponding one for Theorem 2.1,
and the reader is referred to [4] for details.

Theorem 2.5 For a Tychonoff space X the space Cp(X) has a metrizable infinite-
dimensional quotient if there exists a sequence (Kn)n∈N of non-empty compact subsets
of X such that for every n ∈ N the compact set Kn contains two disjoint topological
copies of Kn+1.

Note however that, it seems to be not clear if in Theorem 2.5 the obtained quotient
is isomorphic to �∞ or c0. Example 2.2 below provides an Efimov space K (under
♦) for which Theorem 2.5 applies.

Example 2.2 Under ♦ there exists an Efimov space K whose function space Cp(K )

has a metrizable infinite-dimensional quotient.

Proof De la Vega [33, Theorem 3.22] (we refer also to [32]) constructed under ♦
a compact zero-dimensional hereditary separable space K (hence not containing a
copy of βN) such that:
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(i) K does not contain non-trivial convergent sequences.
(ii) K has a base of clopen pairwise hemeomorphic sets.

Observe that K admits a sequence (Kn) of infinite compact subsets such that each
Kn contains two disjoint subsets homeomorphic to Kn+1; therefore by Theorem 2.5
the space Cp(K ) has the desired property.

As the space K from Example 2.2 does not contain βN, the assumption of
Theorem 2.4 is not satisfied. Note that in Example 2.1 we provided (again under
♦) a Efimov space K for which Theorem 2.5 cannot be applied.

3 Proof of Theorem 2.4

Let D be an infinite discrete C∗-embedded subspace of a pseudocompact Tychonoff
space X . Choose any sequence (Fn)n∈N of non-empty, finite and pairwise disjoint
subsets of D with

lim
n→∞ |Fn| = ∞.

For every n ∈ N consider the probability measure

μn = 1

|Fn|
∑

x∈Fn
δx ,

where δx is the Dirac measure concentrated at x .
The pseudocompactness of the space X enables us to derive that the linear con-

tinuous operator

T : Cp(X) → �∞ ⊂ R
N, T : f �→ (μn( f ))n∈N

is well-defined.
CLAIM: The operator T is open. Indeed, take a neighborhood U ⊂ Cp(X) of

zero. We need to show that T (U ) is a neighborhood of zero in �∞. We can assume
that U is of the basic form

U := { f ∈ Cp(X) : max
x∈E | f (x)| < ε}

for some finite set E ⊂ X and some ε > 0.
Choose a number m ∈ N such that

inf
k>m

|Fk | ≥ 2(|E | + 1).

We claim that T (U ) contains the open neighborhood
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V := {(yk)∞k=1 ∈ �∞ : max
k≤m

|xk | < ε}

of zero in �∞ ⊂ R
N.

Fix any sequence (yk)∞k=1 ∈ V . Choose any partition P of the set D \ ⋃m
k=1 Fk

into |P| = |E | + 1 pairwise disjoint sets such that for every P ∈ P and k > m the
intersection P ∩ Fk has cardinality

|P ∩ Fk | ≥ |Fk |
|E | + 1

− 1 ≥ 1.

Since the discrete subspace D is C∗-embedded in X , the sets in the partition P
have pairwise disjoint closures in X . Since |P| > |E |, we find a set P ∈ P whose
closure P̄ is disjoint with E .

Consider the function f : D → R defined by

f (x) =
⎧
⎨

⎩

yk x ∈ Fk for some k ≤ m
yk · |Fk |

|Fk∩P| if x ∈ P ∩ Fkfor some k > m
0 otherwise

The function f is bounded because supk∈N |yk | < ∞ and

sup
k>m

|Fk |
|Fk ∩ P| ≤ sup

k>m

|Fk |
|Fk ||E |+1 − 1

= sup
k>m

1
1

|E |+1 − 1
|Fk |

≤ 1
1

|E |+1 − 1
2(|E |+1)

= 2(|E | + 1) < ∞

Since the space D is discrete and C∗-embedded into X , the bounded function f
has a continuous extension f̄ : X → R. As the space X is Tychonoff, there exists
a continuous function λ : X → [0, 1] such that λ(D̄) = {1} and λ(x) = 0 for all
x ∈ E \ D̄. Replacing f̄ by the product f̄ · λ, we can assume that f̄ (x) = 0 for all
x ∈ E ∩ D̄. We claim that f̄ ∈ U .

If x ∈ E we should prove that | f̄ (x)| < ε. This holds if x /∈ D̄. If x ∈ Fk for some
k ≤ m, then | f̄ (x)| = |yk | < ε as y ∈ V . If

x ∈ D̄ \
m⋃

k=1

Fk,

then x ∈ Q̄ for some set Q ∈ P \ {P}. By definition of the function f we note that
f |Q ≡ 0 and then | f̄ (x)| = 0 < ε. This completes the proof of the inclusion f̄ ∈ U .
Also by definition of the function f we note that μk( f̄ ) = yk for all k ∈ N. So,

(yk)
∞
k=1 = T ( f̄ ) ∈ T (U )

and V ⊂ T (U ). This completes the proof of the openness of the operator

T : Cp(X) → �∞ ⊂ R
N.
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Since the kernel of the open operator T equals to

Z =
∞⋂

n=1

{ f ∈ Cp(X) : μn( f ) = 0},

the quotient space Cp(X)/Z is isomorphic to the subspace �∞ of RN.

4 The Josefson–Nissenzweig Property for Cp-Spaces,
Metrizable Quotients

The famous Josefson–Nissenzweig theorem asserts that for each infinite dimensional
Banach space E there exists a null sequence in the weak∗-topology of the topological
dual E∗ of E and which is of norm one in the dual norm, see for example [7]. We
need some extra notations and definitions.

For aTychonoff space X and apoint x ∈ X let δx : Cp(X) → R, δx : f �→ f (x),
be the Dirac measure concentrated at x . The linear hull L p(X) of the set {δx : x ∈ X}
in RCp(X) can be identified with the dual space of Cp(X).

Elements of the space L p(X) will be called finitely supported sign-measures (or
simply sign-measures) on X .

Each μ ∈ L p(X) can be uniquely written as a linear combination of Dirac mea-
suresμ = ∑

x∈F αxδx for some finite set F ⊂ X and some non-zero real numbersαx .
The set F is called the support of the sign-measureμ and is denoted by supp(μ). The
measure

∑
x∈F |αx |δx will be denoted by |μ| and the real number ‖μ‖ = ∑

x∈F |αx |
coincides with the norm of μ (in the dual Banach space C(βX)∗).

The sign-measure μ = ∑
x∈F αxδx determines the function μ : 2X → R defined

on the power-set of X and assigning to each subset A ⊂ X the real number∑
x∈A∩F αx . So, a finitely supported sign-measure will be considered both as a linear

functional on Cp(X) and an additive function on the power-set 2X .
We propose the following corresponding property for spaces Cp(X), see [3].

Definition 4.1 (Banakh, Kąkol, Śliwa) For a Tychonoff space X the space Cp(X)

satisfies the Josefson–Nissenzweig property (JNP in short) if there exists a sequence
(μn) of finitely supported sign-measures on X such that ‖μn‖ = 1 for all n ∈ N, and
μn( f ) →n 0 for each f ∈ Cp(X).

Let’s start with the following few observations concerning the JNP:

1. If a compact space K contains a non-trivial convergent sequence, say xn → x ,
then Cp(K ) satisfies the JNP. This is witnessed by the weak∗ null sequence (μn)

of sign-measures

μn := 1

2
(δxn − δx ), n ∈ N.
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2. The space Cp(βN) does not satisfy the JNP. This follows directly from the
Grothendieck theorem, see [6, Corollary 4.5.8].

3. There exists a compact space K containing a copy of βN but without non-trivial
convergent sequences such that Cp(K ) satisfies the JNP, see Example in [3].

If a compact space K contains a closed subset Z that is metrizable, then, as easily
seen, Cp(K ) has a complemented subspace isomorphic to Cp(Z). Therefore, if the
compact K contains a non-trivial convergent sequence, then Cp(K ) has a comple-
mented subspace isomorphic to c0.On the other hand, for every infinite compact K the
space Cp(K ) contains a subspace isomorphic to c0 but not necessary complemented
in Cp(K ). Nevertheless, there exists a compact space K without infinite convergent
sequences and such that Cp(K ) enjoys the JNP and so contains a complemented
subspace isomorphic to c0, this follows from Example 1 in [3].

We propose the following

Problem 4.1 Characterize those compact spaces K for which the space Cp(K ) has
the JNP.

The following theorem from [3] characterizes those spaces Cp(X) over pseudocom-
pact spaces X to have the JNP.

Theorem 4.1 (Banakh, Kąkol, Śliwa) Let X be a pseudocompact space. The fol-
lowing assertions are equivalent:

1. Cp(X) satisfies the JNP;
2. Cp(X) contains a complemented subspace isomorphic to c0;
3. Cp(X) has a quotient isomorphic to c0;
4. Cp(X) admits a linear continuous map onto c0;
5. Cp(X) contains a complemented infinite-dimensional metrizable subspace;
6. Cp(X) contains a complemented infinite-dimensional separable subspace;
7. Cp(X) has an infinite-dimensional Polishable quotient.

Recall here that a locally convex space X is Polishable if X admits a stronger Fréchet
locally convex topology. It is easy to see that the subspace c0 of RN is Polishable.

Last result applies to gather some interesting facts concerning the space Cp(βN);
the item (1) follows from Corollary 2.3.

Corollary 4.1 The space Cp(βN)

1. has a quotient isomorphic to �∞;
2. contains a subspace isomorphic to c0;
3. does not admit a continuous linear map onto c0;
4. has no Polishable infinite-dimensional quotients;
5. contains no complemented separable infinite-dimensional subspaces.

Recall that inTheorem4.1 the JNPdescribes spacesCp(X)over pseudocompact X
for whichCp(X) contains a complemented metrizable subspace which is Polishable.
This fact may suggest a question when Cp(X) is Polishable itself. In [3] we proved
the following interesting
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Theorem 4.2 For a Tychonoff space X the following conditions are equivalent:

1. Cp(X) is Polishable;
2. Cc(X) is Polishable;
3. Cc(X) is a separable Fréchet space;
4. X is a submetrizable hemicompact k-space.

Proof The implication (1) ⇒ (2) is obvious.
(2) ⇒ (3)Assume that the spaceCp(X) is Polishable and fix a stronger separable

Fréchet locally convex topology τ on Cp(X). By Cτ (X) we denote the separable
Fréchet space (Cp(X), τ ). By τc we denote the compact open topology of Cc(X).

Since Cp(X) is a continuous image of the separable Fréchet locally convex space
Cτ (X), we note that Cp(X) has countable network, and by [2, I.1.3], the space X
has countable network, too. Hence X is Lindelöf. By the normality (and the Lindelöf
property) of X , each closed bounded set in X is countably compact (and hence is
compact). So X is a μ-space.

By [29, Theorem 10.1.20] the space Cc(X) is barrelled. The continuity of the
identity maps Cc(X) → Cp(X) and Cτ (X) → Cp(X) implies that the identity map
Cc(X) → Cτ (X) has closed graph. Since Cc(X) is barrelled and Cτ (X) is Fréchet,
we can apply the Closed Graph Theorem [29, Theorem 4.1.10] and conclude that
the identity map Cc(X) → Cτ (X) is continuous.

Now we prove that the identity map Cτ (X) → Cc(X) is continuous. Fix arbitrary
compact set K ⊂ X and an ε > 0. We show that there exists a neighborhood of zero
U ⊂ Cτ (X) such that

U ⊂ { f ∈ C(X) : | f (x)| < ε, x ∈ K }.

The continuity of the restriction operator R : Cp(X) → Cp(K ), R : f �→ f |K , and
the continuity of the identitymapCτ (X) → Cp(X) imply that the restriction operator
R : Cτ (X) → Cp(K ) is continuous and hence has closed graph. The continuity of
the identity map Cc(K ) → Cp(K ) implies that R seen as an operator R : Cτ (X) →
Cc(K ) still has closed graph.

Since the spaces Cτ (X) and Cc(K ) are Fréchet, we apply the Closed Graph
Theorem [29, Theorem 1.2.19] to show that the restriction map

R : Cτ (X) → Cc(K )

is continuous. Hence there exists a neighborhood of zero U ⊂ Cτ (X) such that

R(U ) ⊂ { f ∈ Ck(K ) : | f (x)| < ε, x ∈ K }.

Then
U ⊂ { f ∈ C(X) : | f (x)| < ε, x ∈ K }.

This shows our claim. Consequently, we proved that τ = τc is a Fréchet locally
convex topology as claimed.



188 J. Kąkol

The implication (3) ⇒ (1) is obvious.
(3) ⇒ (4) If Cc(X) is a separable Fréchet space, we apply [28, Theorem 4.2] to

deduce that X is a hemicompact k-space. By the separability of Cc(X) the space X
is submetrizable.

(4) ⇒ (3) If X is a submetrizable and hemicompact k-space, then clearly Cc(X)

is a separable Fréchet space.
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Multiple Tensor Norms of Michor’s Type
and Associated Operator Ideals

In Honour of Manuel López-Pellicer

Juan Antonio López Molina

Abstract We study the (n + 1)-tensor norms of Michor type and characterize the
n-linear mappings of the components of its associated operator ideals.

Keywords Multiple tensor norms · Operator ideals · Ultraproducts

1 Introduction

The goal of this talk is to present some results about a new class of multiple tensor
norms and its associated multi-linear operator ideals in the sense of Defant–Floret–
Hunfeld [3, 6]. The detailed proofs of the main results are in [16] and here we
only add some precisions and complete proofs of some aspects in that paper which
deserves clarification.

We consider only linear spaces over the set R of real numbers. The notation
is standard in general. JF : F −→ F ′′ will denote the canonical inclusion of the
normed space F into its bidual F ′′. The band generated by an element x in a lat-
tice E will be represented by B(x). Given measure spaces (Ωi ,Ai , μi ), i = 1, 2
and Lebesgue-Bochner spaces Lq1 [Ω1,A1, μ1, Lq2(Ω2,A2, μ2)], 0 < qi ≤ ∞, i =
1, 2 sometimes we will write Lq1[Ω1, μ1, Lq2(Ω2, μ2)] simply if there is no risk of
confusion (or indeed Lq1 [Ω1, Lq2(Ω2)]). In a space �p[�q ] the element ((xi j )

∞
j=1)

∞
i=1

such that xkm = 1 and xi j = 0 if i �= k or j �= m will be written ekm . If F is a
quasi-Banach space we shall denote by L n

(∏n
j=1 E j , F

)
the space of all n−linear

continuous maps from the product
∏n

j=1 E j of the normed spaces E j , 1 ≤ j ≤ n,

into F. Given A j ∈ L (E j , Fj ) between normed spaces E j and Fj , 1 ≤ j ≤ n, we
write (A j )

n
j=1 := (A1, A2, ..., An) :∏n

j=1 E j −→∏n
j=1 Fj to denote the continu-

ous linear map sending every (x j )
n
j=1 ∈∏n

j=1 E j to
(

A1(x1), A2(x2), ..., An(xn)
) ∈∏n

j=1 Fj . More specific notations will be introduced when they be needed.
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1.1 (n+ 1)-Tensor Norms

The first systematical studies of tensor norms on tensor products E ⊗ F of two
normed or Banach spaces are due to Schatten [25] in the forties of the past century,
but the more important impulse was made in 1956 by Grothendieck in his famous
Résumé [7]. Roughly speaking, in subsequent years almost all the work in the study
of tensor norms was the full development of Grothendieck’s program, such as it
appears in the book of Defant and Floret [3] in 1993. Around those dates, once
the theory has been grown to reach a mature state of knowledge, the study of its
natural extension to tensor products ⊗n+1

j=1E j of several spaces began, enhanced by
its applications to infinite holomorphy.

We will denote indistinctly by CAT the class NOR of all normed spaces or the
class BAN of all Banach spaces. FIN will be the class of all finite dimensional linear
spaces,FIN(E) andCOFIN(E) the set of finite dimensional andfinite codimensional
subspaces of E ∈ CAT respectively and Norms(F) the set of all norms in a linear
space F. If E is a linear subspace of F ∈ CAT we denote by QF

E the quotient map
from F onto F/E and by I F

E the inclusion E ⊂ F.

Definition 1.1 An (n + 1)-tensor norm, n ≥ 1, in the class CAT is an assignment

α : (Ei )
n+1
i=1 ∈ CATn+1 −→ α(.,⊗n+1

i=1 Ei ) ∈ Norms(⊗n+1
i=1 Ei )

such that, denoting by (⊗n+1
i=1 E j ;α) the tensor product ⊗n+1

i=1 E j endowed with the
norm α(.,⊗n+1

i=1 Ei ), the following conditions are verified:

(1) α
(⊗n+1

j=1x j , ⊗n+1
i=1 Ei

) ≤∏n+1
j=1

∥∥x j
∥∥

Ei
∀ x j ∈ E j ∈ CAT, 1 ≤ j ≤ n + 1.

(2)
∥
∥⊗n+1

j=1x ′
j

∥
∥

(⊗n+1
i=1 E j ;α)′ ≤∏n+1

j=1

∥
∥x ′

j

∥
∥

E ′
i

∀ x ′
j ∈ E ′

j , E j ∈ CAT, 1 ≤ j ≤ n + 1.

(3) (The metric mappings property) For every Tj ∈ L (E j , Fj ), (E j , Fj ) ∈
CAT2, 1 ≤ j ≤ n + 1, the tensor product map ⊗n+1

j=1Tj which sends every ten-

sor
∑m

k=1 ⊗n+1
j=1xk

j ∈ (⊗n+1
j=1E j , α) to

∑m
k=1 ⊗n+1

j=1Tj (xk
j ) ∈ (⊗n+1

j=1Fj , α) has norm
∥∥⊗n+1

j=1Tj

∥∥ ≤∏n+1
j=1

∥∥Tj

∥∥.

The completion of the space (⊗n+1
j=1E j ;α)will be denoted by (⊗̂n+1

j=1E j ;α).Before
to present some concrete examples of (n + 1)-tensor norms and for a better appre-
ciation of the scope of its applications we set another two general definitions:

Definition 1.2 An (n + 1)-tensor norm in CAT is said to be finitely generated if for
all (E j )

n+1
j=1 ∈ CATn+1 and all z ∈ (⊗n+1

j=1E j ;α) one has

α(z, ⊗n+1
j=1E j ) = inf

{
α(z, ⊗n+1

j=1Fj )

∣
∣∣ z ∈ ⊗n+1

j=1Fj , Fj ∈ FIN(E j ), 1 ≤ j ≤ n + 1

}
.
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Noting that for every tensor norm α we have algebraically

∀ (E j )
n+1
j=1 ∈ FINn+1

(⊗n+1
j=1E ′

j ;α
)′ = ⊗n+1

j=1E j ,

we can define the dual tensor norm α′ of α as next finitely generated tensor norm:

Definition 1.3 Dual (n + 1)-tensor norm α′ of an (n + 1)-tensor norm α

∀ (E j )
n+1
j=1 ∈ CATn+1 ∀ z ∈ ⊗n+1

j=1E j α′(z,⊗n+1
j=1E j

) =:

= inf

{∥∥z
∥∥

(⊗n+1
j=1F ′

j ;α)′

∣∣∣ z ∈ ⊗n+1
j=1Fj , Fj ∈ FIN(E j ), 1 ≤ j ≤ n + 1

}
.

The most immediate examples of (n + 1)-tensor norm are the natural extensions
to multiple tensor products of the projective and injective tensor norms π and ε, but
we are interested in some more elaborated and less direct ones. All of them will be
finitely generated (n + 1)-tensor norms.

Example 1.1 (Iterations of Saphar-Chevet 2-tensor norms)
Given 1 < p < ∞ the classical 2-tensor norm gp of Saphar and Chevet is defined

for every (E1, E2) ∈ NOR2 and every z ∈ E1 ⊗ E2 as

gp(z, E1 ⊗ F2) = inf

{( h∑

k=1

∥
∥xk
∥
∥p

E1

) 1
p

sup
‖y′‖E ′

2
≤1

( h∑

k=1

∣
∣〈yk, y′〉∣∣p′) 1

p′ ∣∣
∣ z =

h∑

k=1

xk ⊗ yk

}
,

where 1
p + 1

p′ = 1. To simplify we will write E1 ⊗gp E2 := (E1 ⊗ E2; gp). Then,

given (E j )
n+1
j=1 ∈ CATn+1 we define the (n + 1)-tensor norm αp as the n times iter-

ation of the 2-tensor norm gp:

(⊗n+1
j=1E j ;αp

) = E1 ⊗gp

(
E2 ⊗gp

(
.. ⊗gp

(
En ⊗gp En+1

)))
.

The tensor norm αp is important by its applications to the representation of certain
Sobolev spaces on R

n+1. We recall that for 1 < p < ∞ the Sobolev space W s
p over

R of order s ∈ R can be defined with help of Fourier transform F as

Definition 1.4 (Sobolev spaces of order s)

W s
p(R) =

{
f ∈ S ′(R)

∣∣
∣
∥
∥ f
∥
∥

W s
p(R)

:=
∥∥
∥F−1

[
(1 + |x |2) s

2 (F f )(x)
]
(.)

∥∥
∥

L p(R)
< ∞

}
.



194 J. A. López Molina

This definition can be extended to distributions on R
n+1 taking an (n + 1)-tuple

r = (r j )
n+1
j=1 of real numbers and defining

Definition 1.5 (The Sobolev space Sr
pW (Rn+1) with dominating mixed smoothness

r = (r j )
n+1
j=1 ∈ R

n+1) We set

Sr
pW (Rn+1) :=

{
f ∈ S ′(Rn+1)

∣∣
∣

∥∥ f
∥∥

Sr
p W (Rn+1)

:=
∥∥
∥F−1

[n+1∏

j=1

(1 + |ξ j |2)
r j
2 (F f )(ξ)

]
(.)

∥∥
∥

L p(Rn+1)
< ∞

}
.

This space can be represented as the completion of an αp-tensor product:

Theorem 1.1 (Sickel and Ulrich [27, 2009]) For 1 < p < ∞ and r = (r1, r2, ...,
rn+1) ∈ R

n+1 one has isometrically Sr
pW (Rn+1) = (⊗̂n+1

j=1W
r j
p (R);αp

)
.

Example 1.2 ((n + 1)-tensor norms of Lapresté’s type)
Let r = (r1, ..., rn+1) ∈]1,∞[n+1 and r0 ∈]1,∞] be such that

1 = 1

r0
+ 1

r ′
1

+ 1

r ′
2

+ ... + 1

r ′
n+1

. (1)

The (n + 1)-tensor norm of Lapresté is the (n + 1)-tensor norm αr defined for every
(E j )

n+1
j=1 ∈ CATn+1 as

∀ z ∈ ⊗n+1
j=1E j αr(z, ⊗n+1

j=1E j ) := inf

{∥∥(λk)
h
k=1

∥∥
�r0

n+1∏

j=1

sup
‖x ′

j ‖E ′
j
≤1

( h∑

k=1

∣∣〈x j
k , x ′

j

〉|
) 1

r ′
j

∣
∣∣

z =
h∑

k=1

λk
(⊗n+1

j=1x j
k

)
, (λk)

h
k=1 ∈ R

h
}
.

If n = 1 and r = (r1, r2)we recover the 2-tensor norm αr1r2 which was studied by
Lapresté in [13, 1976]. The particular case α22 has found a few years ago interesting
applications in quantum information theory. We do not intend a precise definition
for the main concepts in that theory since we use it simply as an example about the
scope of applications of tensor norms. We refer the interested reader to the beautiful
paper [5] for detailed information on this topic. Here, the so called XOR two-prover
games are identified with tensors G ∈ �1m[�∞

2 ] ⊗ �1k[�∞
2 ], m, k ∈ N and the so called

entangled strategies are represented by elementsG ′ ∈ �∞
m [�12] ⊗ �∞

k [�12].Then it turns
out that
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Theorem 1.2 (Dukaric, [5], 2011) The entangled value of an XOR game G is
α′
22(G).

Next example is the most important in this talk since gives us the (n + 1)-tensor
norms we shall be concerned with.

Example 1.3 ((n + 1)-tensor norms of Michor’s type)

What happens if the sum in (1) is different from 1? This question was considered
first time by Michor in [21, 1978], in the case n = 1 as a natural extension of the
family of 2-tensor norms of Lapresté and without further more deep development
related to the general theory of tensor norms. By this reason, the (n + 1)-tensor
norms we are going to study will be named Michor’s (n + 1)-tensor norms.

We will consider only the case of an (n + 2)-tuple r = (r0, r1, ..., rn+1) ∈]
1,∞[n+1 (this notation is fixed from now on). Define sr > 0 verifying the equal-
ity

1

sr
:= 1

r0
+ 1

r ′
1

+ 1

r ′
2

+ · · · + 1

r ′
n+1

. (2)

Michor pointed out that if sr > 1 we always have αr
(
z, ⊗n+1

j=1E j
) = 0 for every

tensor z in any tensor product of normed spaces E j , 1 ≤ j ≤ n + 1, and so this
case is not interesting. However, if sr < 1 the function αr

(
z, ⊗n+1

j=1E j
)
turns out to

be an sr-norm instead of a norm. Then the Minkowski’s functional of the absolutely
convex cover of the set

{
z ∈ ⊗n+1

j=1E j

∣∣ αr
(
z, ⊗n+1

j=1E j
) ≤ 1

}

is a norm αC
r on ⊗n+1

j=1E j which can be explicitly computed for each z ∈ ⊗n+1
j=1E j as

αC
r (z, ⊗n+1

j=1E j ) = inf

{ s∑

m=1

∥∥(λmk)
h
k=1

∥∥
�r0

n+1∏

j=1

sup
‖x ′

j ‖E ′
j
≤1

( h∑

k=1

∣∣〈x j
mk, x ′

j

〉∣∣
) 1

r ′
j

∣∣∣

z =
s∑

m=1

h∑

k=1

λmk
(⊗n+1

j=1x j
mk

)}
.

The main difference between Lapresté and Michor (n + 1)-tensor norms is the
presence of a double sum in the computation of the norm of tensors in the latter case.
This fact will be source of many technical complications. As we shall see later on,
the number tr defined by the equality
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1

tr
:= 1

sr
− 1

r ′
n+1

= 1

r0
+

n∑

j=1

1

r ′
j

≥ 1

rn+1
∨
( n∨

j=1

1

r ′
j

)
(3)

and the inequalities

r0 > tr, tr ≤ rn+1 and tr ≤ r ′
j , 1 ≤ j ≤ n (4)

will be important in our search.

1.2 n-Linear Operator Ideals

Letα be an (n + 1)-tensor norm inCAT and letϕ an element in the topological dual of
a tensor product (⊗n+1

j=1E j ;α). Since this dual space coincides with (⊗n+1
j=1 Ê j ;α)′ we

can assume that CAT = BAN. Then ϕ defines canonically an n-linear map Tϕ from∏n
j=1 E j into E ′

n+1 setting that for every (x j )
n
j=1 ∈∏n

j=1 E j and every xn+1 ∈ En+1

the map Tϕ be given by the equality
〈
Tϕ

(
(x j )

n
j=1

)
, xn+1

〉
= ϕ
(⊗n+1

j=1x j
)
. Actually the

problem of finding the topological dual (⊗n+1
j=1E j ;α)′ is equivalent to the characteri-

zation of all the maps Tϕ obtained in this way. This leads us to the concept of n-linear
operators ideals, an idea which was systematically developed in the case of linear
operators by Pietsch and his school since 1968 but with a complete independence of
tensor products. The culmination of these studies was Piestch’s book [22, 1978]. In
the Leipzig Conference [23] of 1983 Pietsch proposed the jump to the multi-linear
case introducing next definition:

Definition 1.6 An n-operator idealA in the classBAN is amethod to simultaneously
assign a linear subspace A(E1, ..., En; En+1) ⊂ L n

(∏n
j=1 E j , En+1

)
to every (n +

1)-tuple of Banach spaces E j , 1 ≤ j ≤ n + 1, verifying the following conditions:

(1)For all (E j )
n+1
j=1 ∈ BANn+1 onehas (⊗n

j=1E ′
j ) ⊗ En+1 ⊂ A(E1, ..., En; En+1).

(2)Given (G j , E j ) ∈ BAN2, 1 ≤ j ≤ n + 1, for every A ∈ A(E1, ..., En; En+1),

for each U j ∈ L (G j , E j ), 1 ≤ j ≤ n, and for every T ∈ L (En+1, Gn+1) it turns
out that T ◦ A ◦ (U1, ..., Un) ∈ A(G1, ..., Gn; Gn+1).

The set A(E1, ..., En; En+1) is called the component of the n-operator ideal A
corresponding to the spaces (E j )

n+1
j=1.

Definition 1.7 A Banach n-linear operator ideal (A, A) is an n-linear operator
ideal A endowed with an ideal norm A, i. e. a method A to assign a norm
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A
(∏n

j=1 E j ; En+1
)
(in short A if there is no risk of confusion) to every component

A
(
E1, ..., En; En+1

)
verifying the following conditions:

(1) For every (E j )
n+1
j=1 ∈ BANn+1 the normed space

(
A
(
E1, ..., En; En+1

)
, A
)
is

a Banach space.

(2) If P : (λ j )
n
j=1 ∈ R

n −→∏n
j=1 λ j ∈ R one has A(P) = 1.

(3) (The ideal property for norms) For every A ∈ A(E1, ..., En; En+1) and every
U j ∈ L (G j , E j ), 1 ≤ j ≤ n, and every T ∈ L (En+1, H) one has

∥∥T ◦ A ◦ (U1, ..., Un)
∥∥ ≤ ∥∥T

∥∥ A
( n∏

j=1

E j ; En+1
)
(A)

n∏

j=1

∥∥U j

∥∥.

As a consequence of the properties of a tensor norm it turns out that every topo-
logical dual (⊗n+1

j=1E j ; α)′ is always the component of certain n-operator ideal cor-
responding to the spaces (E1, ..., En, E ′

n+1).

Definition 1.8 The maximal hull (Amax , Amax) of a Banach n-linear operator ideal
(A, A) is the Banach operator ideal (Amax , Amax ) whose components are

Amax
(
E1, ..., En; En+1

) :

=
{

T ∈ L n
( n∏

j=1

E j , En+1

) ∣∣∣ Amax (T ) := sup
{

A
(
QEn+1

F ◦ T ◦ (I
E j

M j
)n

j=1

) ∣∣

F ∈ COFIN(En+1), M j ∈ FIN(E j ), 1 ≤ j ≤ n
}

< ∞, (E j )
n+1
j=1 ∈ BANn+1

}
.

The Banach n-linear operator ideal (A, A) is called maximal if (Amax , Amax) =
(A, A).

There is a close relation (but non trivial in any way) between maximal Banach
n-linear operator ideals and finitely generated (n + 1)-tensor norms, given in next
representation theorem which was proved by Lotz in 1973 for the case n = 1.

Theorem 1.3 (Representation theorem for Banach maximal n-linear operator ide-
als, Lotz [17], Floret and Hunfeld [6]) A Banach n-linear operator ideal (A, A) is
maximal if and only if there is a finitely generated (n + 1)-tensor norm α in BAN
such that for every (E j )

n+1
j=1 ∈ BANn+1 one has isometrically

(
A(E1, ..., En; En+1), A

)
=
((⊗n

j=1 E j
)⊗ E ′

n+1; α′
)′⋂

L n
( n∏

j=1

E j , En+1

)
.
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In such a case the ideal (A, A) and the tensor norm α are said to be associated
(α ∼ A in symbols) and the operators in A are called n-linear α-integral operators.
To emphasize this relation we will write Aα and Iα instead of A and A. Moreover,
for every (E j )

n+1
j=1 ∈ BANn+1 one has the isometric equality

(
Aα

(
E1, ..., En; E ′

n+1

)
, Iα

)
=
(
⊗n+1

j=1 E j ; α′
)′

. (5)

It is clear the importance of the application of previous abstract concepts to con-
crete examples of tensor norms to know in detail its properties. In particular it is
important to characterize the α-integral operators associated to usual (n + 1)-tensor
norms, but this research area is not quite developed still. As a contribution to fill this
gap we have studied in [15] the αr-integral operators obtaining next result:

Theorem 1.4 ([15, Theorem 14]) Let E j , 1 ≤ j ≤ n + 1 be Banach spaces. An
operator T ∈ L n(

∏n
j=1 E j , En+1) is αr-integral if and only if JEn+1 ◦ T can be

factorized in the way

where A j ∈ L
(
E j , Lr ′

j (Ω,M , μ)
)
, 1 ≤ j ≤ n, C ∈ L

(
Lrn+1(Ω,M , μ), F ′′)

and Sg is the diagonal operator corresponding to a function g ∈ Lr0(Ω,M , μ).

Moreover Ir(T ) = inf
∥∥Dg

∥∥ ∥∥C
∥∥ ∏n

j=1

∥∥A j

∥∥ taking the inf over all factorizations
as in the previous diagram.

Our main goal in this talk is to present a characterization of the αC
r -integral

operators given in [16].

1.3 Some Preliminary Results

Before to start the study of the established main problem we present some results
necessary for our future work. Probably they are well known but we have not been
able to find a precise reference in the literature.

Associated with an (n + 2)-tuple r as in (2), given measure spaces (Ωi ,Ai , μi ),

i = 1, 2, and g(t, x) ∈ L1[Ω1, Lr0(Ω2)]wehave awell defined canonical continuous
diagonal n-linear map

Sg : ( f j (t, x))n
j=1 ∈

n∏

j=1

L∞[Ω1, Lr ′
j (Ω2)] −→ g(t, x)

n∏

j=1

f j (t, x) ∈ L1[Ω1, Ltr (Ω2)]
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verifying
∥∥Sg

∥∥ ≤ ∥∥g
∥∥

L1[Ω1,Lr0 (Ω2)] as an easy consequence of generalized Hölder’s
inequality and (3).

Lemma 1.1 If 0 < q < ∞, 0 ≤ v(t, x) ∈ L1[Ω1, μ1, Lq(Ω2, μ2)] and D∞
v :={

(t, x) ∈ Ω1 × Ω2 | v(t, x) = ∞} one has (μ1 × μ2)(D∞
v ) = 0.

Proof Let D∞
v (t) := {x ∈ Ω2 | (t, x) ∈ D∞

v

}
, t ∈ Ω1. Since

∫

Ω1

(∫

D∞
v (t)

χ
D∞

v
(t, x)v(t, x)q dμ2

) 1
q

dμ1 ≤ ∥∥v∥∥L1[Ω1,Lq (Ω2)] < ∞

necessarily we have μ2(D∞
v (t)) = 0 almost everywhere on Ω1 and so

(μ1 × μ2)(D∞
v ) =

∫

Ω1

(∫

D∞
v (t)

dμ2

)
dμ1 = 0.

�

LetM (Ω) be the set of all measurable real functions defined on a measure space
(Ω,A , μ). Given a set E ⊂ M (Ω) we define the α-dual E× as the set of functions
h ∈ M (Ω) such that f h ∈ L1(Ω,A , μ) for every f ∈ E . A set E ⊂ M (Ω) is
called perfect if E×× := (E×)× = E . It is well known that if (Ω,A , μ) is σ -finite
one has L p(Ω)× = L p′

(Ω) for each 1 ≤ p ≤ ∞ ([29, Chap. 12, §50, lemma γ , part
b)]).

Lemma 1.2 Let (Ω j ,A j , μ j ), j = 1, 2, be σ -finite measure spaces. Then if 1 <

p < ∞ one has (L∞[Ω1, L p(Ω2)])× = L1[Ω1, L p′
(Ω2)].

Proof The inclusion L1[Ω1, L p′
(Ω2)] ⊂ (L∞[Ω1, L p(Ω2)])× is trivial by Hölder’s

inequality and Fubini’s theorem. Conversely, let g(t, x) ∈ (L∞[Ω1, L p(Ω2)])×.

Consider for each j = 1, 2 an increasing sequence {A j
m}∞m=1 of sets in A j such that

Ω j =⋃∞
m=1 A j

m andμ j (A j
m) < ∞ for each m ∈ N. Let gk be the function defined as

gk(t, x) = min(|g(t, x)|, k) if (t, x) ∈ A1
k × A2

k and gk(t, x) = 0 if (t, x) /∈
A1

k × A2
k . It is clear that gk(t, x) ∈ L1[Ω1, L p′

(Ω2]) and limk→∞ gk(t, x) = g(t, x)

pointwise on Ω1 × Ω2. As
(
L1[Ω1, L p′ [Ω2]]

)′ = L∞[Ω1, L p(Ω2)] by the mono-
tone convergence theorem we obtain for every 0 ≤ f (t, x) ∈ L∞[Ω1, L p(Ω2)]

lim
k→∞

∫

Ω1×Ω2

f (t, x)gk(t, x) dμ1dμ2 =
∫

Ω1×Ω2

f (t, x)
∣∣g(t, x)

∣∣ dμ1dμ2 < ∞
(6)

and since h(t, x) = h(t, x)+ − h(t, x)− for every h(t, x) ∈ L∞[Ω1, L p(Ω2)] it turns
out that

{
gk(t, x)

}∞
k=1 is a weakly Cauchy sequence in L1[Ω1, L p′

(Ω2)] =
L1(Ω1)⊗̂π L p′

(Ω2) = L p′
(Ω2)⊗̂π L1(Ω1) (Grothendieck’s theorem) which is

weakly sequentially complete by Lewis’s result [14, Corollary 11]. So the weak
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limit limk→∞ gk(t, x) = v(t, x) ∈ L1[Ω1, L p′
(Ω2)] exists. Consider for every m ∈

N the set Nm := {(t, x) ∈ Ω1 × Ω2 | |g(t, x)| ≤ m
}
. Clearly χNm

(t, x)|g(t, x)| ∈
L1[Ω1, L p′

(Ω2)] for every m ∈ N and as an easy consequence of (6) and from
the definition of v(t, x) one has χNm

(t, x)|g(t, x)| = limk→∞ χNm
(t, x)gk(t, x) =

χNm
(t, x)v(t, x) weakly in L1[Ω1, L p′

(Ω2)] for every m ∈ N. Then by Lemma 1.1
v(t, x) = |g(t, x)| on Ω1 × Ω2 and

∣∣g(t, x)
∣∣ ∈ L1[Ω1, L p′

(Ω2)]. �

Given sets E j ⊂ M (Ω), j = 1, 2 we define E1E2 as the linear span of the set{
f1 f2 | f j ∈ E j , j = 1, 2

}
. If we have spaces E j ⊂ M (Ω), 1 ≤ j ≤ n + 1 we are

interested in determining the set

D
( n∏

j=1

E j ; En+1
) :=

{
f ∈ M (Ω)

∣∣∣ f
n∏

j=1

f j ∈ En+1 ∀( f j )
n
j=1 ∈

n∏

j=1

E j

}
.

Lemma 1.3 If En+1 is perfect one has D
(∏n

j=1 E j ; En+1
) =
(

E1E2...En E×
n+1

)×
.

Proof Clearly if f ∈ D
(∏n

j=1 E j ; En+1
)
, f j ∈ E j , 1 ≤ j ≤ n and g ∈ E×

n+1, one

has f (
∏n

j=1 f j )g ∈ L1(Ω,M , μ). That means that f ∈
(

E1E2...En E×
n+1

)×
. Con-

versely, if f ∈
(

E1E2...En E×
n+1

)×
, f j ∈ E j , 1 ≤ j ≤ n and g ∈ E×

n+1 it turns out

that f (
∏n

j=1 f j )g ∈ L1(Ω,M , μ) and so f (
∏n

j=1 f j ) ∈ E××
n+1 = En+1, that is

f ∈ D
(∏n

j=1 E j ; En+1
)
and the lemma is proved. �

Proposition 1.9 Let r as in (2) such that tr ≥ 1 and let (Ωi ,Ai , μi ), i = 1, 2σ -finite
measure spaces. Then

(1) L∞[Ω1, Lr ′
1(Ω2)]...L∞[Ω1, Lr ′

n (Ω2)]L∞[Ω1, Lt ′r (Ω2)] = L∞[Ω1, Lr ′
0(Ω2)].

(2) D
(∏n

j=1 L∞[Ω1, Lr ′
j (Ω2)]; L1[Ω1, Ltr (Ω2)]

) = L1[Ω1, Lr0(Ω2)].
Proof (1) It follows from (3) that

1

r ′
0

= 1

t ′
r

+
n∑

j=1

1

r ′
j

. (7)

If tr > 1 and f (t, x) ∈ L∞[Ω1, Lr ′
0(Ω2)] one has

∣∣ f (t, x)
∣∣ =

∣∣ f (t, x)
∣∣

r ′
0

t ′r
∏n

j=1

∣∣ f (t, x)
∣∣

r ′
0

r ′
j .Then

∣∣ f (t, x)
∣∣

r ′
0

t ′r ∈ L∞[Ω1, Lt ′
r(Ω2)] and

∣∣ f (t, x)
∣∣

r ′
0

r ′
j ∈

L∞[Ω1, Lr ′
j (Ω2)], 1 ≤ j ≤ n, showing that the right side in (1) is contained in the
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left side. The reverse inclusion follows from Hölder’s inequality and (7). If tr =
1 the previous argumentation shows that L∞[Ω1, Lr ′

1(Ω2)]...L∞[Ω1, Lr ′
n (Ω2)] =

L∞[Ω1, Lr ′
0(Ω2)] and, sincewehave trivially L∞[Ω1, Lr ′

0(Ω2)]L∞[Ω1, L∞(Ω2)] =
L∞[Ω1, Lr ′

0(Ω2)] the result is true for tr = 1 too.
(2) If g(t, x) ∈ D

(∏n
j=1 L∞[Ω1, Lr ′

j (Ω2)]; L1[Ω1, Ltr(Ω2)]
)
by lemmata 1.2,

1.3 and the first part of this proposition

g(t, x) ∈ (L∞[Ω1, Lr ′
0(Ω2)]

)× = L1[Ω1, Lr0(Ω2)]

and D
(∏n

j=1 L∞[Ω1, Lr ′
j (Ω2)]; L1[Ω1, Ltr(Ω2)]

) ⊂ L1[Ω1, Lr0(Ω2)]. The reverse
inclusion is immediate from the definition of Sg for every g ∈ L1[Ω1, Lr0(Ω2)]. �

2 αC
r -Integral Operators

This long section is devoted to explain almost in full detail how to prove a necessary
condition for an operator T ∈ L n

(∏n
j=1 E j , En+1

)
be αC

r -integral since this is the
most hard part of the study [16]. Hence the section will be subdivided in suitable
subsections and sub-subsections. Assume that T ∈ AαC

r

(
E1, ..., En; En+1

)
. By (5)

one has

JEn+1 ◦ T ∈ AαC
r

(
E1, ..., En; E ′′

n+1

) =
(
(⊗n

j=1E j ) ⊗ E ′
n+1; (αC

r )′
)′

. (1)

As (αC
r )′ is a finitely generated (n + 1)-tensor norm we start our search looking

at the behavior of the linear form defined by JEn+1 ◦ T on the tensor products of finite
dimensional subspaces of E j , 1 ≤ j ≤ n, and E ′

n+1 when they are endowed with
the (αC

r )′-norm. This is a particular case of the following general situation:

Definition 2.1 Let α ∼ A. The Banach n-linear operator ideal (Nα, Nα) of the n-
linear α-nuclear operators is the smallest Banach n-linear operator ideal whose finite
dimensional components are isometric with the finite dimensional components of
(A, A).

One of the main theorem of the theory of (n + 1)-tensor norms is next theorem
giving amore concrete description of the α-nuclear operators and its norm. The proof
for n = 1 can be found in [3, §22.2] and can easily be extended to the general case.

Theorem 2.1 Representation theorem of the α-nuclear operators) Let (A, A) be a
Banach n-linear operator ideal and let α ∼ (Amax , Amax ). Given (E j )

n+1
j=1 ∈ BANn+1

let Ψ ∈ L
((

(⊗̂n
j=1E ′

j )⊗̂En+1;α
)
,L n

(∏n
j=1 E j , En+1

)
be the canonical linear

map. Then Ψ : ((⊗̂n
j=1E ′

j )⊗̂En+1;α
) −→ (

Nα

(∏n
j=1 E j ; En+1

)
, Nα

)
is a metric

surjection.
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By application of Theorem 2.1 to our (n + 1)-tensor norm αC
r we obtain next

characterization of the αC
r −nuclear operators:

Theorem 2.2 ([16, Theorem 3], Characterization of the αC
r -nuclear operators) Let

Ei , 1 ≤ i ≤ n + 1, be Banach spaces. A map T ∈ NαC
r

(∏n
i=1 Ei ; En+1

)
if and only

if T factorizes in the way

where Sλ is a diagonal map defined by λ = ((λmk)
∞
k=1)

∞
m=1) ∈ �1[�r0 ]. Moreover,

NαC
r
(T ) = inf

(∏n
j=1 ‖A j‖

) ‖Sλ‖ ‖C
∥∥ taking the infimum over all factorizations of

this type.

In the previous diagram I1,1 ⊗ Itr,rn+1 denotes the tensor product map of the inclu-
sions I1,1 : �1 ⊂ �1 and Itr,rn+1 : �tr ⊂ �rn+1 (remember (4)).

Taking into account the characterizations of αr-integral operators the natural con-
jecture in order that an n-linear map be αC

r -integral is

Main conjecture: Let E j , 1 ≤ j ≤ n + 1, be Banach spaces and assume
that T ∈ IαC

r
(
∏n

j=1 E j ; En+1). Then there are measurable spaces (R,H, ν) and
(T,V, τ ), a function g ∈ L1[R, Lr0(T)] and a map

M ∈ L
(
L1[R, Ltr(T)], L1[R, Lrn+1(T)])

such that JEn+1 ◦ T can be factorized as

(2)

Along the long proof of the conjecture we will precise the properties of the map
M. Next global diagram shows the ambient we are moving on and the work we will
do to find the desired factorization. After a comparison between this total diagram
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and (2) it is clear that the map (Ar ′
j
)n

j=1 (resp. C) will be the composition of the
applications of the left side (resp. of the right side) of the full diagram. So we only
have to define the spaces and operators appearing on it and check its commutativity.

According with the previous ideas consider

F := (
n∏

j=1

FIN(E j )
)× FIN(E ′

n+1),

denote its elements in the way γ := (
→
F; G) := (∏n

j=1 Fj
)× G ∈ F and endow the

tensor product of its factor spaces with the tensor norm (αC
r )′. As a consequence of

the metric mapping property, for every γ = (∏n
j=1 Fj

)× G ∈ F the restriction to(
(⊗n

j=1Fj ) ⊗ G, (αC
r )′
)
of the linear form defined by JEn+1 ◦ T must be continuous.

That means that the restriction (JEn+1 ◦ T )|γ to
∏n

j=1 Fj of the linear map JEn+1 ◦ T
must be an αC

r -integral map from
∏n

j=1 Fj into G ′ and by finite dimensionality it
must be αC

r -nuclear. Then given ε > 0, by Theorem 2.2 (JEn+1 ◦ T )|γ will have a
factorization

(JEn+1 ◦ T )|γ = Cγ ◦ (I1,1 ⊗ Itr,rn+1) ◦ Sgγ ◦ (A j
γ )n

j=1 (3)

of the type of Theorem 2.2 where the diagonal operator Sgγ is defined by a double
sequence gγ = ((gγ

mk)
∞
k=1

)∞
m=1 ∈ �1[�r0 ] such that supγ∈F ‖gγ ‖�1[�r0 ] ≤ IαC

r
(T ) + ε.

Of course, these ideas imply that if all the spaces E j , 1 ≤ j ≤ n + 1,would be finite
dimensional the conjecture would be trivially true. So from now on we shall assume
that at least one of the spaces E j , 1 ≤ j ≤ n + 1, is infinite dimensional.

2.1 Ultrapowers of Spaces � p[�q]

To joint previous knowledge of the properties of the finite-dimensional restrictions
(JEn+1 ◦ T )|γ in order to obtain some information about the global map JEn+1 ◦ T we
needuse ultraproducts. For this topic ourmain references are [9, 26]. Theultraproduct
of a family {Eβ, β ∈ G } of quasi-Banach spaces by a non trivial ultrafilter U in an
index set G is denoted by (Eβ)U (or simply by (E)U if we deal with ultrapowers,
i. e. Eβ = E for everyβ ∈ G ) and providedwith its natural quasi-norm.Analogously,
(xβ)U will be the class in (Eβ)U of the element (xβ)β∈G ∈∏β∈G Eβ verifying
supβ∈G ‖xβ‖Eβ

< ∞. If every Eβ, β ∈ G is aBanach lattice, the ultraproduct (Eβ)U
is aBanach latticewith the canonical order definedby the relation (xβ)U ≤ (yβ)U if
and only if there exist (xβ) ∈ (xβ)U and (yβ) ∈ (yβ)U such that xβ ≤ yβ for every
β ∈ G . Moreover, one has (xβ)U ∧ (yβ)U = (xβ ∧ yβ)U and (xβ)U ∨ (yβ)U =
(xβ ∨ yβ)U .

Turning to our main problem we consider in F the order relation given by
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γ1 := (
n∏

j=1

N 1
j ) × G1 � γ2 := (

n∏

j=1

N 2
j ) × G2 ⇔ G1 ⊂ G2, N 1

j ⊂ N 2
j , 1 ≤ j ≤ n

and introduce the notations Π1
γ :=→

F=∏n
j=1 Fj , Π2

γ := G for every γ :=
(
→
F, G) ∈ F .

By our hypothesis about the dimensionality of the spaces E j , 1 ≤ j ≤ n + 1,

the family B :=
{
Bγ :=

{
δ ∈ F

∣∣∣ γ � δ
} ∣∣∣ γ ∈ F

}
is a non trivial filter basis in

F . Fixing an ultrafilter U finer than the filter generated by B we can form the
ultraproducts

(
Π1

γ

)
U

and
(
Π2

γ )U . Note thatU is a countable incomplete ultrafilter,

that is, there is a non increasing sequence
{
Uk
}∞

k=1 of elements of U such that⋂∞
k=1 Uk = ∅.

Since there are general canonical isometric inclusions

GΠ :
n∏

j=1

E j −→ (
Π1

γ

)
U , G E ′

n+1
: E ′

n+1 −→ (
Π2

γ )U , IU : ((Π2
γ )′
)
U −→ (

(Π2
γ )U

)′

(see [9, Proof of Proposition 6.2 and Sects. 2 and 7]) it turns out that top rect-
angle in the global diagram is commutative. Making the ultraproduct by U of
the factorizations (3) we obtain the commutativity of its second upper rectan-
gle and we arrive to the main and more difficult problem: to find a factorization
throughout "concrete" Lebesgue-Bochner function spaces of the ultraproduct map
S := (I1,1 ⊗ Itr,rn+1)U ◦ (Sgγ )U .

All the ultrapowers

∀ p ∈]0,∞], ∀ q > 0
(
�p[�q ])

U
, X∞

q := (�∞[�q ])
U

, Xq := (�1[�q ])
U

, Yq := (�q [�q ])
U

are quasi-Banach lattices when providedwith its canonical order.We are interested in
knowing the structure of the order components of its elements 0 ≤ W = ((wγ

mk)
)
U

∈(
�p[�q ])

U
(an order component of an elementu ≥ 0 in a lattice E is an element x ∈ E

such that x ∧ (u − x) = 0).
For this goal we need some new notations. Assume that we have a family{

Gγ

∣∣ γ ∈ F
} ⊂ P(N) indexed by γ ∈ F and that for every set Gγ of this fam-

ily we have another set
→
Fγ := {Fγ

m

∣∣ m ∈ Gγ

} ⊂ P(N) indexed by the elements of
Gγ . We denote by Wγ

Gγ ,
→
Fγ

= ((zγ

mk)
) ∈ �p[�q ] the “section” of the double sequence

(
(wγ

mk)
)
defined as zγ

mk = 0 ifm /∈ Gγ , zγ

mk = 0 ifm ∈ Gγ but k /∈ Fγ
m and zγ

mk = wγ

mk
if m ∈ Gγ and k ∈ Fγ

m whatever be γ ∈ F and (m, k) ∈ N
2. The ultraproduct of

these sections is denoted by W
(Gγ ),(

→
Fγ )

. If every set Fγ
m , m ∈ Gγ is the same set

F independent of m and γ we shall write W(Gγ ),(F) instead of W
(Gγ ),(

→
Fγ )

. Clearly

the map P
(Gγ ),(

→
Fγ )

: W ∈ (�p[�q ])
U

−→ W
(Gγ ),(

→
Fγ )

is a projection in
(
�p[�q ])

U
. In

particular, if we have two elements k = (kγ )U and h = (hγ )U of the set theoretic
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ultrapower N = (N)U of the set of natural numbers we put Wk,h for the element

W
(Gγ ),(

→
Fγ )

where Gγ = {kγ } and
→
Fγ = {{hγ }}, γ ∈ F . We will denote by C(W)

the set of all the order components of W ∈ (�p[�q ])
U

. It can be shown

Proposition 2.1 ([16, Lemma 4]) Let p ∈]0,∞] , q ∈]0,∞[ and 0 ≤ W ∈(
�p[�q ])

U
. Then

C(W) =
{

W
(Gγ ),(

→
Fγ )

∣∣ Gγ ⊂ N,
→
Fγ = {Fγ

m ⊂ N
∣∣ m ∈ Gγ

}
, γ ∈ F

}
.

Define g
γ
m := (gγ

mk)
∞
k=1 ∈ �r0 for every γ ∈ F and each m ∈ N. Clearly one

has supγ∈F supm∈N
∥∥gγ

m

∥∥
�r0

≤ IαC
r
(T ) + ε. Now we consider the following special

elements

∀ q > 0 Aq :=
(((∥∥gγ

m

∥∥− r0
q

�r0

∣∣gγ

mk

∣∣
r0
q
)∞

k=1

)∞
m=1

)

U
∈ X∞

q , (4)

∀ q > 0 Uq :=
(((∥∥gγ

m

∥∥1−
r0
q

�r0

∣∣gγ

mk

∣∣
r0
q
)∞

k=1

)∞
m=1

)

U
∈ Xq , (5)

∀ q > 0 Vq :=
(((∥∥gγ

m

∥
∥

1−r0
q

�r0

∣
∣gγ

mk

∣
∣

r0
q
)∞

k=1

)∞
m=1

)

U
∈ Yq . (6)

These elements are important for several reasons. First of all, if q ≥ 1, by
[8, Proposition 4.6], and [4, Theorem 11.12], the Banach lattices Xq and Yq are order
continuous (and Dedekind order complete), but not necessarily X∞

q . So, we look
for a factorization of (Sgγ )U through a Banach lattice with good order properties
replacing X∞

q . This can be done for 1 < q < ∞with help of Aq and Uq ′
considering

in a first step the quotient Banach latticeQ∞
q := (�∞[�q ])U

/
(Aq)⊥ (remember that

if Y is a subset of a lattice X we put Y ⊥ = {x ∈ X | |x | ∧ |y| = 0 ∀ y ∈ Y
}
and so

(Aq)⊥ is a solid set). We denote by Kq : X∞
q −→ Q∞

q the canonical quotient map.
It can be shown

Lemma 2.1 ([16, Lemma 6]) If q ∈]1,∞[ one has

C
(
Kq(Aq)

) = {Kq(X), X ∈ C(Aq)
}
.

In a second step, by the order continuity of Xq and Freudenthal’s spectral theorem
[1, Theorem 6.8], we check that (Uq ′

)◦ = ((Uq ′
)⊥⊥)◦. It follows that (Uq ′

)◦ is a solid
set (by [1, Page 166]) and the quotientDq ′ := (Xq ′)′/(Uq ′

)◦ is a well defined Banach
lattice. Let qq ′ : (Xq ′)′ −→ Dq ′ be the canonical quotient map. Using the main result
of Kürsten in [12] we obtain next important result containing in particular the desired
factorization of (Sgγ )U :

Proposition 2.2 ([16, Lemmata 7 and 8 and Corollary 9]) Let 1 < q < ∞. Then
Q∞

q is a Dedekind complete Banach lattice and
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(1) The map ιq : Kq(X) ∈ Q∞
q −→ qq ′(X) ∈ Dq ′ is a surjective topological order

isomorphism.
(2) Kq(Aq) is a weak order unit in Q∞

q and the linear span
〈
C
(
Kq(Aq)

)〉
is dense

in Q∞
q .

(3)The canonical map ̂(Sgγ )U ∈ L n
(∏n

j=1 Q
∞
r ′

j
, Xtr

)
factorizing (Sgγ )U through

∏n
j=1 Q

∞
r ′

j
is well defined and ̂(Sgγ )U

(∏n
j=1 Q

∞
r ′

j

) ⊂ B(Utr).

On the other hand, by (3) we have for components defined by arbitrary families

(Gγ ), (
→
Fγ )

(Sgγ )U
(
(A

r ′
j

(Gγ ),(
→
Fγ )

)n
j=1

) = ̂(Sgγ )U
(
(A

r ′
j

(Gγ ),(
→
Fγ )

)n
j=1

)

=
((∥∥gγ

m

∥∥−r0
(

1
tr

− 1
r0

)

�r0

(∣∣gγ

mk

∣∣r0
(

1
tr

− 1
r0

)
+1)

k∈Fγ
m

)

m∈Gγ

)

U
= Utr

(Gγ ),(
→
Fγ )

≤ Urn+1

(Gγ ),(
→
Fγ )

.

(7)

2.2 Building the Measure Spaces

The elements Vq are used to start the search of the desired measure spaces R and
T. The set C(V1) of all the order components of V1 is a Boolean algebra under the
operations ∨, ∧ and V1 − X, X ∈ C(V1). As Y1 is order Dedekind complete, by
the known result [1, Theorem 3.15], C(V1) is a Dedekind complete boolean algebra.
By Stone’s representation theorem there are an extremely disconnected compact
topological space Ω and a boolean algebra isomorphism ϕ1 from C(V1) onto the
Boole algebraB of the clopen sets ofΩ which, by Proposition 2.1, generates an onto
isomorphism of boolean algebras ϕq : Vq

(Gγ ),(
→
Fγ )

∈ C(Vq) −→ ϕ1
(
V1

(Gγ ),(
→
Fγ )

) ∈ B

from the boolean algebra of components of Vq onto B. Then, as in the proof of
Kakutani-Bohnenblust-Nakano’s Theorem [1, Theorem 12.26], it can be shown that
the real function μ onB

∀ 0 < q < ∞ ∀ A ∈ B μ(A) = ∥∥ϕ−1
1 (A)

∥
∥

Y1
= ∥∥ϕ−1

q (A)
∥
∥q

Yq
,

is a measure on (Ω,B) that can be extended by Caratheodory’s method to a measure
(again denoted byμ) defined on the σ -algebraM ofμ-measurable sets inΩ in such a
way that the quasi-Banach spaces L p(Ω,B, μ) and L p(Ω,M , μ), 0 < p <

∞, are isometric (because for every M -measurable set A there is a B-measurable
set B ⊃ A such thatμ(B\A) = 0). Furthermore, it can be shown that the linear map
Jq : w ∈ C(Vq) −→ Jq(w) = χ

ϕq (w)
can be extended to a surjective isometry (again

denoted by Jq ) Jq : B(Vq) −→ Lq(Ω,B, μ) from the band B(Vq) generated by
Vq in Yq onto the space Lq(Ω,B, μ). It follows that μ(Ω) < ∞.

Let Ω1 be the set of atoms of (Ω,B, μ) and let Ω0 := Ω\Ω1 be its purely
non atomic part. As μ(Ω) < ∞, by the result [28, Theorem 3.2], of Wnuk and
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Wiatrowski about discrete elements in ultrapowers of Banach latices the set of atoms
of (Ω,B, μ) must be a numerable set of elements of type

Ω1 =
{

ekm ,hk := ϕ1
(
V1

km ,hk

) ∣∣∣ (m, k) ∈ P ⊂ N
2
}
.

Put g := (gγ )U ∈ Xr0 and gk := g(kγ ),(N) for every k = (kγ )U ∈ N. Since for every
(m, k) ∈ P one has V1

km ,hk �= 0 and

μ(ekm ,hk ) = ∥∥V1
km ,hk

∥∥
Y1

= lim
γ,U

∥∥gγ

km
γ

∥∥1−r0
�r0

∣∣gγ

km
γ hk

γ

∣∣r0 = (lim
γ,U

∣∣gγ

km
γ hk

γ

∣∣r0) ∥∥gkm

∥∥1−r0
Xr0

�= 0,

(8)

noting that
∣∣gγ

km
γ hk

γ

∣∣∥∥gγ

km
γ

∥∥−1
�r0

≤ 1 for every γ ∈ F , we have necessarily

∀ (m, k) ∈ P
∥
∥gkm

∥
∥

Xr0
= lim

γ,U

∥
∥gγ

km
γ

∥
∥

�r0
�= 0 and lim

γ,U

∣
∣gγ

km
γ hk

γ

∣
∣
∥
∥gγ

km
γ

∥
∥−1

�r0
�= 0. (9)

If follows that Uq
km ,hk �= 0 for 0 < q < ∞ and (m, k) ∈ P.

On the other hand, consider the element Z := ((∥∥gγ
m

∥∥
�r0

)∞
m=1

)
U

∈ (�1)U which
is well defined by (3) and its subsequent comments. As in the case of V1 it can
be shown that the set of components of Z is C(Z) = {Z(Gγ )

∣∣ Gγ ⊂ N ∀ γ ∈ F
}
,

(the notation is self explanatory, keeping in mind the definitions for the components
of V1). As above C(Z) is a Dedekind complete boolean algebra ((�1)U is order
continuous by [8, Proposition 4.6]) and there are an extremely disconnected compact
topological space Ξ and a Boolean algebra isomorphism ψ from C(Z) onto the
Boolean algebra C of the clopen sets of Ξ. Moreover, the real function

β : A ∈ C −→ β(A) = ∥∥ψ−1(A)
∥∥

(�1)U

is a measure on (Ξ,C ) which can be extended to a measure, again denoted by β,
defined on the σ -algebra A of ν-measurable sets of Ξ, the spaces L1(Ξ,C , β)

and L1(Ξ,A , β) are isometric and the map I : w ∈ C(Z) −→ I(w) = χ
ψ(w)

can be
extended to a surjective isometry (again denoted by I) I : B(Z) −→ L1(Ξ,C , β)

from the band B(Z) generated by Z in (�1)U onto the space L1(Ξ,C , β). Note that
β(Ξ) < ∞. With a method analogous to the used one in the case of the atoms of Ω

it can be shown that the set of the atoms of (Ξ, β) is a numerable set

Ξa := {ekm := ψ(Zkm )
∣∣ km = (km

γ )U ∈ N, m ∈ A ⊂ N
}
.

Lemma 2.2 Define Ξπ :=
{

ekm ∈ Ξa

∣∣ ∃ hv ∈ N / ekm ,hv ∈ Ω1

}
. There is a repre-

sentative V1

(Pγ ),(
→
Qγ )

∈ C(V1) such that Ω1 = ϕ1(V1

(Pγ ),(
→
Qγ )

) and ψ(Z(Pγ )) = Ξπ.
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Proof LetA1 := {m ∈ A | ekm ∈ Ξπ

}
.Asψ is a boolean algebra isomorphism there

is Z(Aγ ) ∈ C(Z) such that

Ξπ = ψ(Z(Aγ )) =
⋃

m∈A1

ekm and Z(Aγ ) =
∨

m∈A1

Zkm . (10)

Analogously, ϕ1 being a boolean algebra isomorphism there isV1

(Pγ ),(
→
Qγ )

∈ C(V1)

such that
ϕ−1
1 (Ω1) = V1

(Pγ ),(
→
Qγ )

=
∨

(m,k)∈P
V1

km ,hk . (11)

First of all we show that

∃ U ∈ U such that Aγ ⊂ Pγ ∀ γ ∈ U. (12)

In fact, if m ∈ A1 there is ekm ,hv ∈ Ω1 and ϕ1 being a boolean algebra isomorphism
V1

km ,hv ≤ V1

(Pγ ),(
→
Qγ )

holds and so

V1
km ,hv = V1

km ,hv ∧ V1

(Pγ ),(
→
Qγ )

= V1
(km

γ ),({hv
γ }) ∧ V1

(Pγ ),(
→
Qγ )

= V1

({km
γ }∩Pγ ),(

−→
{hv

γ }∩Qγ

km
γ

)
.

Wededuce that there isU ∈ U such that {km
γ } = {km

γ } ∩ Pγ , that is km
γ ∈ Pγ , for each

γ ∈ U.Thenψ(Zkm ) ⊂ ψ(Z(Pγ )) and by (10)Ξπ =⋃m∈A1
ψ(Zkm ) ⊂ ψ(Z(Pγ )) and

taking images by ψ−1 we obtain Z(Aγ ) ≤ Z(Pγ ). In consequence it turns out that
Z(Aγ ) = Z(Aγ ) ∧ Z(Pγ ) = Z(Aγ ∩Pγ ) and that means (12).

In a second step we show that V1

(Aγ ),(
→
Qγ )

= V1

(Pγ ),(
→
Qγ )

= ϕ−1
1 (Ω1) and this fact

will prove our lemma choosing the family (Aγ ) instead of (Pγ ). The element
V1

(Aγ ),(
→
Qγ )

is well defined understanding that we consider only the sets Qγ
a corre-

sponding to elements a ∈ Aγ ⊂ Pγ . Trivially V1

(Aγ ),(
→
Qγ )

≤ V1

(Pγ ),(
→
Qγ )

. On the other

hand, for every (m, v) ∈ P one has ekm ,hv ⊂ Ω1 and so ψ(Zkm ) ⊂ Ξπ. It follows
that Zkm ≤ Z(Aγ ) and hence Zkm = Zkm ∧ Z(Aγ ) = Z({km

γ }∩Aγ ). Then there is U ∈ U
such that {km

γ } = {km
γ } ∩ Aγ for every γ ∈ U, i. e. kγ ∈ Aγ for every γ ∈ U. This

implies thatV1
km ,hv ≤ V1

(Aγ ),(
→
Qγ )

and by (11) we deduceV1

(Pγ ),(
→
Qγ )

≤ V1

(Aγ ),(
→
Qγ )

.Then

V1

(Pγ ),(
→
Qγ )

= V1

(Aγ ),(
→
Qγ )

. �

On the other hand, for 0 < q < ∞ let X1
q be the closure in Xq of the linear

span
〈
Uq

km ,hk

〉
(m,k)∈P. Let M := {(m, v)

∣∣ ekm ,hv ⊂ ϕq(V
q

(Eγ ),(
→
Fγ )

)
}
for a given fixed

Uq

(Eγ ),(
→
Fγ )

∈ C
(
Uq

(Pγ ),(
→
Qγ )

)
. If 1 ≤ q < ∞ the element
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Sq :=
∨

(m,k)∈M
Uq

km ,hk ∈ X1
q ⊂ B

(
Uq

(Pγ ),(
→
Qγ )

)

exists because Xq is order continuous and Dedekind complete.

Lemma 2.3 The equalities Sq = Uq

(Eγ ),(
→
Fγ )

and B
(
Uq

(Eγ ),(
→
Fγ )

) = P
(Eγ ),(

→
Fγ )

(
B(Uq)

)

hold for each 1 ≤ q < ∞. In particular B
(
Uq

(Pγ ),(
→
Qγ )

) = P
(Pγ ),(

→
Qγ )

(
B(Uq)

) = X1
q .

Proof Let 0 ≤ T ∈ Xq such that Uq
km ,hv ≤ T ≤ Uq

(Eγ ),(
→
Fγ )

for every (m, v) ∈ M.

From the definition of the order in ultraproducts we can choose a representative

T = ((tγ

mk)
)
U

such that for every γ ∈ F we have tγ

mk ≤ ∥∥gγ
m

∥∥1−
r0
q

�r0

∣∣gγ

mk

∣∣
r0
q for every

k ∈ Fγ
m , m ∈ Eγ and tγ

mk = 0 in other case. Analogously, fixed (m, v) ∈ M, there
is
(
(α

γ

ik)
) ∈ �1[�q ]F such that limγ,U

∥
∥((αγ

ik)
)∥∥

�1[�q ] = 0 and for every γ ∈ F ,with

respect to the order in �1[�q ] one has
∥∥gγ

km
γ

∥∥1−
r0
q

�r0

∣∣gγ

km
γ hv

γ

∣∣
r0
q + α

γ

km
γ hv

γ
≤ tγ

km
γ hv

γ
,

((∥∥gγ

k

∥∥
1
q −1

�r0
tγ

kh

)
h∈Fγ

k

)
k∈Eγ

≤ ((∥∥gγ

k

∥∥
1
q −1

�r0

∥∥gγ

k

∥∥1−
r0
q

�r0

∣∣gγ

kh

∣∣
r0
q
)

h∈Fγ

k

)
k∈Eγ

and

∥
∥gγ

km
γ

∥
∥

1
q −1

�r0

(∥
∥gγ

km
γ

∥
∥1−

r0
q

�r0

∣
∣gγ

kγ
m hγ

v

∣
∣

r0
q + α

γ

km
γ hv

γ

)
e

km
γ hv

γ
≤ ∥∥gγ

km
γ

∥
∥

1
q −1

�r0
tγ

km
γ hv

γ
e

km
γ hv

γ
(13)

≤ ∥∥gγ

km
γ

∥∥
1
q −1

�r0

∥∥gγ

km
γ

∥∥1−
r0
q

�r0

∣∣gγ

km
γ hv

γ

∣∣
r0
q e

km
γ hv

γ
≤ ((∥∥gγ

k

∥∥
1
q −1

�r0

∥∥gγ

k

∥∥1−
r0
q
∣∣gγ

kh

∣∣
r0
q
)

h∈Fγ

h

)
k∈Eγ

.

(14)

By (9) we obtain limγ,U

∥∥∥
∥∥gγ

km
γ

∥∥
1
q −1

�r0 α
γ

km
γ hv

γ
e

km
γ hv

γ

∥∥∥
�1[�q ]

= 0 and so, by (6), (13) and

(14) we deduce

Vq
km ,hv ≤ ((∥∥gγ

km
γ

∥∥
1
q −1

�r0
tγ

km
γ hv

γ
e

km
γ hv

γ

))
U

≤ ((∥∥gγ

k

∥∥
1
q −1

�r0
tγ

kh)h∈Fγ

k

)
k∈Eγ

)
U

≤ Vq

(Eγ ),(
→
Fγ )

.

(15)

As ϕq is an order isomorphism we have Vq

(Eγ ),(
→
Fγ )

=∨(m,v)∈M Vq
km ,hv and from the

arbitrariness of (m, v)∈M in (15)we obtainVq

(Eγ ),(
→
Fγ )

=((∥∥gγ

k

∥∥
1
q −1

�r0
tγ

kh)h∈Fγ

k

)
k∈Eγ

)
U
.

Then
∥∥gγ

k

∥∥
1−r0

q

�r0

∣∣gγ

kh

∣∣
r0
q = ∥∥gγ

k

∥∥
1
q −1

�r0
tγ

kh + bγ

kh, h ∈ Fγ

k , k ∈ Eγ , γ ∈ F for

some
(
(bγ

kh)
) ∈ �1[�q ]F verifying limγ,U

∥∥((bγ

kh)
)∥∥

�1[�q ] = 0 and bγ

kh = 0 if k /∈ Eγ

or k ∈ Eγ but h /∈ Fγ

k , γ ∈ F . As q ≥ 1, one has

lim
γ,U

∥∥∥
(
(
∥∥gγ

h

∥∥1−
1
q

�r0 bγ

kh)
)∥∥∥

�1[�q ]
= 0
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and hence

T = (((∥∥gγ

h

∥∥1− 1
q

�r0

∥∥gγ

h

∥∥
1
q −1

�r0
tγ

kh

)
h∈Fγ

k

)
k∈Eγ

)
U

= ((∥∥gγ

h

∥∥1− 1
q

�r0

(∥∥gγ

h

∥∥
1−r0

q

�r0

∣∣gγ

kh

∣∣
r0
q + bγ

kh

)
h∈Fγ

k

)
k∈Eγ

)
U

= Uq

(Eγ ),(
→
Fγ )

.

It follows that Sq = Uq

(Eγ ),(
→
Fγ )

. As Sq is a weak order unit in B(Sq) ([1, Page 36])

and B(Sq) is order continuous (because Xq does), Freudenthal’s spectral theorem
gives the density of the linear span

〈
C
(
Uq

(Eγ ),(
→
Fγ )

)〉
in B
(
Uq

(Eγ ),(
→
Fγ )

)
. �

ϕ1 being a boolean algebra isomorphism there is V1

(Nγ ),(
→

Mγ )
∈ C(V1) such that

ϕ−1
1 (Ω0) = V1

(Nγ ),(
→

Mγ )
. (16)

It is clear that for every X ∈ (�p[�q ])U , 0 < p, q ≤ ∞ one has

X = X
(Nγ ),(

→
Mγ )

+ X
(Pγ ),(

→
Qγ )

+ X
(Pγ \Nγ ),(

→
N\Qγ )

+ U
(Nγ \Pγ ),(

→
N\Mγ )

+ X(N\(Pγ ∪Nγ )),(N) + X
(Pγ ∪Nγ ),(

−→
N\(Qγ ∪Mγ ))

− X
(Pγ ∩Nγ ),(

−→
Qγ ∩Mγ )

. (17)

where the notations
−→

Qγ ∩ Mγ ,
→

N\Qγ and
→

N\Mγ means the families of sets{
Qγ

m ∩ Mγ
m

∣∣ m ∈ Pγ ∩ Nγ

}
,
{
N\Qγ

m

∣∣ m ∈ Pγ \Nγ

}
and

{
N\Mγ

m

∣∣ m ∈ Nγ \Pγ

}

respectively.

Lemma 2.4 One has V1

(Pγ ∩Nγ ),(
−→

Qγ ∩Mγ )
= 0, V1

(Pγ \Nγ ),(
→

N\Qγ )
= 0, V1

(Nγ \Pγ ),(
→

N\Mγ )
=

0, V1
(N\(Pγ ∪Nγ )),(N) = 0 and V1

(Pγ ∪Nγ ),(
−→

N\(Qγ ∪Mγ ))
= 0.

Proof As ϕ1 is an isomorphism of boolean algebras and ϕ1(V1

(Pγ ∩Nγ ),(
−→

Qγ ∩Mγ )
) ⊂

ϕ1(V1

(Pγ ),(
→
Qγ )

) ∩ ϕ1(V1

(Nγ ),(
→

Mγ )
) = Ω1 ∩ Ω0 = ∅ we obtain first result. If there

would be an atom in Ω1 ∩ ϕ1(V1

(Pγ \Nγ ),(
→

N\Qγ )
) we would have

0 < V1

(Pγ ),(
→
Qγ )

∧ V1

(Pγ \Nγ ),(
→

N\Qγ )
= 0,

a contradiction. Then ϕ1(V1

(Pγ \Nγ ),(
→

N\Qγ )
) is a purely non atomic set and so

V1

(Pγ \Nγ ),(
→

N\Qγ )
= V1

(Nγ ),(
→

Mγ )
∧ V1

(Pγ \Nγ ),(
→

N\Qγ )
= 0. The proof for V1

(Nγ \Pγ ),(
→

N\Mγ )
is

the same. �
Remark 2.3 We point out that the possibility Z(Nγ ∩Pγ ) �= 0 (or V1

(Nγ ∩Pγ ),(N) �= 0) is
not excluded. Then Ξ1 can be different from the atomic part of ψ(Z).
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Lemma 2.5 If 1 < q < ∞, Q∞,0
q := Kq ◦ P

(Nγ ),(
→

Mγ )
(X∞

q ) and Q∞,1
q := Kq ◦

P
(Pγ ),(

→
Qγ )

(X∞
q ), one has Q∞

q = Q∞,0
q ⊕ Q∞,1

q .

Proof As g = ((gγ

mk)
)
U

∈ Xr0 we deduce easily Uq ′ ≤ ∥∥g∥∥1−
1
q′

Xr0
Vq ′

and so, by

Lemma 2.4, Uq ′

(Pγ ∩Nγ ),(
→

Qγ ∩Mγ )
≤ ∥∥g∥∥1−

1
q′

Xr0
Vq ′

(Pγ ∩Nγ ),(
→

Qγ ∩Mγ )
= 0. In the same way

we obtain Uq ′

(Pγ \Nγ ),(
→

N\Qγ )
= 0, Uq ′

(Nγ \Pγ ),(
→

N\Mγ )
= 0, Uq ′

(N\(Pγ ∪Nγ )),(N) = 0

and Uq ′

(Pγ ∪Nγ ),(
−→

N\(Qγ ∪Mγ ))
= 0. Then, by (17) and Lemma 2.4, Uq ′ = Uq ′

(Nγ ),(
→

Mγ )
+

Uq ′

(Pγ ),(
→
Qγ )

. Hence, given X ∈ X∞
q we have 〈X

(Pγ \Nγ ),(
→

N\Qγ )
, Uq ′ 〉 = 0,

〈
X

(Nγ \Pγ ),(
→

N\Mγ )
, Uq ′ 〉 = 0,

〈
X

(Pγ ∪Nγ ),(
−→

N\(Qγ ∪Mγ ))
, Uq ′ 〉 = 0 and

〈
X

(Pγ ∩Nγ ),(
−→

Qγ ∩Mγ )
, Uq ′ 〉 = 0.

Once again by (17) the element W := X − X
(Nγ ),(

→
Mγ )

− X
(Pγ ),(

→
Qγ )

verifies W ∈ (Uq ′
)◦. We deduce

Kq(X) = ι−1
q ◦ qq ′(X) = ι−1

q ◦ qq ′
(
X

(Nγ ),(
→

Mγ )
+ X

(Pγ ),(
→
Qγ )

)

= Kq(X
(Nγ ),(

→
Mγ )

) + Kq(X
(Pγ ),(

→
Qγ )

)

and the result follows easily. �

Using the family (Nγ ) of (16) and the family
{

Pγ , γ ∈ F
}
introduced in Lemma

2.2we define two important subsetsΞ1 andΞ0 ofΞ whichwill be basic in the sequel:

Ξ1 := ψ
(
Z(Pγ )

)
, Ξ0 := ψ

(
Z(Nγ )

)
.

2.2.1 On the Atomic Part of R×T

We consider on Ξ1 the measure ν1 such that ν1(ekm ) = 1 for every m ∈ A1. For
every 0 < q < ∞ let Pq be the natural projection from �1[Ξ1, ν1, �

q(Ω1, μ)] onto
the closure of the linear span Hq := 〈χekm

(t)χekm , hv
(x)
〉
(m,v)∈P. The motivation for

the use of the measure ν1 is the following result.

Lemma 2.6 ([16, Lemma 13]) Let 0 < q < ∞. The map

Wq :
h∑

i=1

vi∑

v=1

αivUq
kmi ,hkv −→

h∑

i=1

v1∑

v=1

∥
∥g

kmi

∥
∥1− 1

q αivχekmi
(t)χe

kmi , hkv
(x)
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from
〈
Uq

km ,hv

〉
(m,v)∈P into �1[Ξ1, ν1, �

q(Ω1, μ)] can be extended to an isometry, again

denoted by Wq from X1
q onto the complemented subspace

H q of �1[Ξ1, ν1, �
q(Ω1, μ)].

Lemma 2.7 ([16, Lemma 14]) If 1 < q < ∞, the map Δ1
q sending each X =(

(xγ

mk)
)
U

∈ X∞
q to

Δ1
q(X)=

((∥
∥gkm

∥
∥

r0−1
q

(
lim
γ,U

xγ

km
γ hv

γ

∣
∣gγ

km
γ hv

γ

∣
∣−

r0
q

))

ekm ,hv ⊂Ω1

)

m∈A1

∈ �∞[Ξ1, ν1, �
q(Ω1, μ)]

is continuous. Moreover, the map

Δ̃1
q : X̃ ∈ Q∞

q −→ Δ1
q(X) ∈ �∞[Ξ1, ν1, �

q(Ω1, μ)]

is well defined and continuous.

2.2.2 On the Purely Non Atomic Part of R×T

Now we work on Ξ0 := ψ
(
Z(Nγ )

)
. We consider the boolean algebra C

(
Z(Nγ )

)
pro-

vided with the measure ν0 defined for every Z(Eγ ) ∈ C
(
Z(Nγ )

)
verifying Eγ ⊂ Nγ

for every γ in certain set U ∈ U as

ν0
(
Z(Eγ )

) = lim
γ,U

∑

m∈Eγ

(∑

j∈Mγ
m

∣
∣gγ

mj

∣
∣r0
) 1

r0
.

Clearly there is an isometry π from the measure algebra
(
C(Z(Nγ )), ν0

)
onto the

measure sub-σ -algebra (Z, μ) of C
(
V1

(Nγ ),(
→

Mγ )

)
defined as

Z := {V1

(Gγ ),(
→

Mγ )

∣
∣ Gγ ⊂ Nγ ∀ γ ∈ F

} ⊂ C
(
V1

(Nγ ),(
→

Mγ )

)
.

By Maharam’s results [19, Theorem 1] and [18, Definition 10.2, Theorem 10.6 and
Sect. 17] there are a component V1

(Vγ ),(
→

W γ )
∈ C
(
V1

(Nγ ),(
→

Mγ )

)
, a sub-σ -algebra E ⊂

C
(
V1

(Vγ ),(
→

W γ )

) ⊂ C
(
V1

(Nγ ),(
→

Mγ )

)
, a measure ρ0 on E and a surjective isometry

W : (C
(
V1

(Nγ ),(
→

Mγ )

)
, μ) −→ (Z, μ) × (E, ρ0) ≈ (C(Z(Nγ )), ν0

)× (E, ρ0)

from the measure algebra (C
(
V1

(Nγ ),(
→

Mγ )

)
, μ) onto the product measure algebra

(
C(Z(Nγ )), ν0

)× (E, ρ0). Moreover, W
(
V1

(Gγ ),(
→
Fγ )

) = V1

(Gγ ),(
→

Mγ )
× V1

(Gγ ),(
→
Fγ )

for every V1

(Gγ ),(
→
Fγ )

∈ E because V1

(Gγ ),(
→
Fγ )

=V1

(Gγ ),(
→
Fγ )

∧V1

(Gγ ),(
→

Mγ )
in C(V1

(Nγ ),(
→

Mγ )
).
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If P1 (resp. P2) denote the canonical projections from the cartesian product Z × E
onto Z (resp. E), from now on, given V1

(Eγ ),(
→
Dγ )

∈ C
(
V1

(Nγ ),(
→

Mγ )

)
we shall put

E := ψ ◦ π−1 ◦ P1 ◦ W
(
V1

(Eγ ),(
→
Dγ )

)
, D := ϕ1 ◦ P2 ◦ W

(
V1

(Eγ ),(
→
Dγ )

)
. (18)

Note that μ
(
V1

(Eγ ),(
→
Dγ )

) = ν0(E)ρ0(D). We define Ω := ϕ1
(
V1

(Vγ ),(
→

W γ )

) ⊂ Ω0 pro-

videdwith the σ -algebraB := ϕ1
(
E
)
and themeasure ρ0(ϕ1(A)) = ρ0(A) if A ∈ E.

In general given a measure space (�,K , υ) and a set B ∈ K we will denote by
KB the σ -algebra induced by K on B. Then we have

Lemma 2.8 ([16, Lemma 15]) There is a linear isometry Φ from L1(Ω0,BΩ0 , μ)

onto the Lebesgue-Bochner space L1[Ξ0,CΞ0 , ν0, L1(Ω,B, ρ0)].
We point out that the map Φ is the extension by density of the map sending

every simple function S =∑k
h=1

∑hv
v=1 αkvχAhv

(x) ∈ L1(Ω0,BΩ0 , μ), where
Ahv = ϕ1

(
V1

(Eh
γ ),(

→
Dγ

hv)

)
with pairwise disjoint components

{
V1

(Eh
γ ),(

→
Dγ

hv)

, 1 ≤ v ≤ hv
}

and
{
Z(Eh

γ ), 1 ≤ h ≤ k
}
, to the element

Φ(S) =
k∑

h=1

hv∑

v=1

αkvχEh
(t)χDhv

(x) ∈ L1[Ξ0,CΞ0 , ν0, L1(Ω,B, ρ0)].

Using the famous theorem of Mazur and Ulam [20] and [2, Chap. VII, §1, page
142] asserting that every isometric bijection f between Banach spaces such that
f (0) = 0 must be a linear map, we can prove next crucial result:

Proposition 2.3 ([16, Lemma 16]) If 1 ≤ q < ∞ there is a linear isometry Ψq from
the band B

(
Uq

(Nγ ),(
→

Mγ )
) ⊂ P

(Nγ ),(
→

Mγ )
(Xq) onto L1[Ξ0,CΞ0 , ν0, Lq(Ω,B, ρ0)] such

that for every V1

(Eγ ),(
→
Dγ )

∈ C
(
V1

(Nγ ),(
→

Mγ )

)
one has

Ψ −1
q (χE (t)χD (x))

= ρ0(D)
1−q

q

(((∥∥∥gγ
m

∥
∥1−r0

(∑

h∈Dγ
m

∣
∣gγ

mh

∣
∣r0
) q−1

q ∣∣gγ

mk

∣
∣

r0
q

)

k∈Dγ
m

)

m∈Eγ

)

U
.

After some technical computations we find indeed that

Corollary 2.1 ([16, Corollary 18]) Ψq and Ψ ′
q are order isomorphisms if

1 < q < ∞.

Proposition 2.4 L∞[Ξ0, ν0, Lq(Ω, ρ0)] is σ -order continuous if 1 < q < ∞.
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Proof Let
{

fs(t, x)
}∞

s=1 ⊂ L∞[Ξ0, ν0, Lq(Ω, ρ0)] be a decreasing sequence such
that
∧∞

s=1 fs(t, x) = 0.By Corollary 2.1 we obtain
∧∞

s=1 Ψ ′
q ′
(

fs(t, x)
) = 0 in (Xq ′)′

and by Proposition 2.2
{
(ιq)

−1 ◦ qq ′ ◦ Ψ ′
q ′
(

fs(t, x)
)}∞

s=1 is a decreasing sequence
in the order complete Banach lattice Q∞

q . By definition of the order in Q∞
q there

are sequences
{
Xs
}∞

s=1 ⊂ X∞
q and

{
Ys
}∞

s=2 ⊂ X∞
q such that Kq

(
Xs
) = Kq

(
Ys
) =

(ιq)
−1 ◦ qq ′ ◦ Ψ ′

q ′
(

fs(t, x)
)
for every s ≥ 2 andXs ≥ Ys+1 for every s ∈ N.Wecheck

that there is a decreasing sequence
{
Xs
}∞

s=1 ⊂ X∞
q such that Kq(Xs) = Kq(Xs) =

(ιq)
−1 ◦ qq ′ ◦ Ψ ′

q ′
(

fs(t, x)
)
for every s ≥ 1. In fact, define X1 := X1 and assume

that Xi , 1 ≤ i ≤ s is defined with the quoted properties. Then there is Zs ∈ (Aq)⊥
such that Xs = Xs + Zs ≥ Ys+1 + Zs .Defining Xs+1 = Ys+1 + Zs the step s + 1 is
reached and by induction we obtain the desired sequence.

It follows that qq ′(Xs) = ιq
(
Kq(Xs)

) = qq ′
(
Ψ ′

q ′( fs(t, x))
)
. That means that

Ψ ′
q ′( fs(t, x)) − Xs ∈ (Uq ′)◦ and hence, Uq ′ being a weak order unit in B(Uq ′), by

Proposition 2.3 and order continuity

(Ψ ′
q ′)−1(Ψ ′

q ′( fs(t, x)) − Xs
) = fs(t, x) − (Ψ ′

q ′)−1(Xs) ∈ L1[Ξ0, ν0, Lq ′
(Ω, ρ0)]◦ = {0}.

Weobtain fs(t, x) = (Ψ ′
q ′)−1(Xs), s ∈ N andXs = Ψ ′

q′( fs(t, x)), s ∈ N.ByCorol-
lary 2.1 we deduce

∧∞
s=1(Xs) = 0 in (Xq ′)′ and identifying X∞

q with a sublattice of
(Xq ′)′ we see that

∧∞
s=1(Xs) = 0 in X∞

q too. By theorem [10, Proposition 4.7] of
Henson and Moore (see alternatively [24, Lemma 0.2]) X∞

q is σ -order continuous
and lims→∞ Xs = 0 in X∞

q . By continuity of the inclusion X∞
q ⊂ (Xq ′)′ and the

isomorphism (Ψ ′
q ′)−1 we obtain finally lims→∞ fs(t, x) = 0 as desired. �

This result allows us to define the maps Ar ′
j
, 1 ≤ j ≤ n of the global diagram:

Proposition 2.5 ([16, Lemma 19]) The map

Aq : Kq(X) ∈ Kq
(
P

(Nγ ),(
→

Mγ )
(X∞

q )
) −→ (Ψ ′

q ′)
−1(X) ∈ L∞[Ξ0, ν0, Lq(Ω, ρ0)]

is well defined, continuous and linear for every q ∈]1,∞[.
We finish this subsubsection with an important and unexpected result:

Proposition 2.6 ([16, Lemma 20]) If tr < 1 we have S
(
(X j

(N\Pγ ),(N))
n
j=1

) = 0 and

S
(
(X j

(Pγ ),(
−→

N\Qγ )
)n

j=1

) = 0 for every (X j )n
j=1 ∈∏n

j=1 X∞
r ′

j
.

2.2.3 Construction of the Spaces R and T

Now we are ready to define our definitive measure spaces. If tr < 1 we define

(R,H, ν) := (Ξ1,CΞ1 , ν1) (T,V, τ ) := (Ω1,BΩ1 , μ).
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If tr ≥ 1 the construction is more involved. Roughly speaking we take R (resp.
T) as the disjoint union of Ξ0 and Ξ1 (since the fact Ξ0 ∩ Ξ1 �= ∅ is not necessarily
excluded) (resp. of Ω and Ω1) provided with the natural σ -algebra and measure. To
proceed formally consider the sets

Ξ d
0 := {(x, 0)

∣∣ x ∈ Ξ0
}
, Ξ d

1 := {(x, 1)
∣∣ x ∈ Ξ1

}
,Ω

d := {(x, 0)
∣∣ x ∈ Ω

}

andΩd
1 := {(x, 1)

∣∣ x ∈ Ω1
}
provided with the σ -algebras and measures defined by

C d
Ξ0

:=
{

A0 := {(x, 0) | x ∈ A}
∣∣∣ A ∈ CΞ0

}
, νd

0 (A0) = ν0(A) ∀A0 ∈ C d
Ξ0

,

C d
Ξ1

:=
{

A1 := {(x, 1) | x ∈ A}
∣
∣∣ A ∈ CΞ1

}
, νd

1 (A1) = ν1(A) ∀A1 ∈ C d
Ξ1

,

B
d :=

{
A0 := {(x, 0) | x ∈ A}

∣∣∣ A ∈ B
}
, ρ d

0 (A0) = ρ0(A) ∀A0 ∈ B
d
,

Bd
Ω1

:=
{

A1 := {(x, 1) | x ∈ A}
∣∣∣ A ∈ BΩ1

}
, μd

1(A1) = μ(A) ∀A1 ∈ Bd
Ω1

respectively. Finally we take
R = Ξ d

0 ∪ Ξ d
1 ,

H := {A0 ∪ A1, A0 ∈ C d
Ξ0

, A1 ∈ C d
Ξ1

}
and ν(A0 ∪ A1) = νd

0 (A0) + νd
1 (A1)

for every A0 ∪ A1 ∈ H. Analogously we define

T = Ω
d ∪ Ωd

1 ,

V := {A0 ∪ A1, A0 ∈ B
d
, A1 ∈ Bd

Ω1

}
and τ(A0 ∪ A1) = ρd

0(A0) + μd
1(A1) for

every A0 ∪ A1 ∈ V.

To simplify notation, for every 0 < q < ∞ and s = 1 or s = ∞ put

�s
Ξ1

[�q
Ω1

] := �s[Ξ1,CΞ1 , ν1, �
q(Ω1,BΩ1 , μ)],

�s
Ξ d

1
[�q

Ωd
1
] := �s[Ξ d

1 ,C d
Ξ1

, νd
1 , �q(Ωd

1 ,Bd
Ω1

, μd
1)]

and denote by i
q
1,s : �s

Ξ1
[�q

Ω1
] −→ �s

Ξ d
1
[�q

Ωd
1
] the natural surjective isometric isomor-

phism. In the same way we write i
q
0,s for the natural isometry from Ls

Ξ0
[Lq

Ω
] :=

Ls[Ξ0,CΞ0 , ν0, Lq(Ω,B, ρ0)] onto

Ls
Ξ d

0
[Lq

Ω
d ] := Ls[Ξ d

0 ,C d
Ξ0

, νd
0 , Lq(Ω

d
,B

d
, ρd

0)].
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The corresponding inverse mappings will be denoted by j
q
0,s and j

q
1,s respectively.

Moreover, J 0,s
q (resp. J 1,s

q ) will be the natural embedding from Ls
Ξ d

0
[Lq

Ω
d ] (resp.

�s
Ξ d

1
[�q

Ωd
1
] ) into Ls[R, ν, Lq(T, τ )] and p0q (resp. p1q ) will denote the natural pro-

jection from L1[R, ν, Lq(T, τ )] onto L1
Ξ d

0
[Lq

Ω
d ] (resp. �1

Ξ d
1
[�q

Ωd
1
]). Finally, keep-

ing in mind previous auxiliary notations let Jrn+1 be the natural inclusion from
�1

Ξ d
1
[�rn+1

Ωd
1

] ⊕ L1
Ξ d

0
[Lrn+1

Ω
d ] into L1[R, ν, Lrn+1(T, τ )] and

J∞
q := J 1,∞

q ◦ i
q
1,∞ ⊕ J 0,∞

q ◦ i
q
0,∞.

2.3 Completing the Operators of the Global Diagram

For every 1 ≤ j ≤ n, let X̃r ′
j
be the restriction to Q∞,1

r ′
j

of Δ̃r ′
j
and let s0r ′

j
(resp. s1r ′

j
)

the natural inclusion of L∞
Ξ0

[Lr ′
j

Ω
] (resp. of �∞

Ξ1
[�r ′

j

Ω1
]) into �∞

Ξ1
[�r ′

j

Ω1
] ⊕ L∞

Ξ0
[Lr ′

j

Ω
]. Then

we put Yr ′
j
:= X̃1

r ′
j
if tr < 1 and Yr ′

j
= s0r ′

j
◦ Ar ′

j
⊕ s1r ′

j
◦ X̃1

r ′
j
if tr ≥ 1.

Concerning toM we define

M = Wrn+1 ◦ P
(Pγ ),(

→
Qγ )

◦ (I1,1 ⊗ Itr,rn+1)U ◦ W−1
tr ◦ Ptr if tr < 1

and in the case tr ≥ 1

M := Jrn+1 ◦
(
i
rn+1
0,1 ◦ Ψrn+1 ◦ P

(Nγ ),(
→

Mγ )
◦ (I1,1 ⊗ Itr,rn+1)U ◦ Ψ −1

tr ◦ jtr0,1 ◦ p0tr+

+ i
rn+1
1,1 ◦ Wrn+1 ◦ P

(Pγ ),(
→
Qγ )

◦ (I1,1 ⊗ Itr,rn+1)U ◦ W−1
tr ◦ Ptr ◦ jtr1,1 ◦ p1tr

)
.

In both cases the definition ofM is nothing else that the composition of themaps in
the down right sector of the general diagram. We notice that to simplify notation, in
this diagram we have written Y := (Yr ′

j
)n

j=1, Q0 := P
(Nγ ),(

→
Mγ )

, Q1 := P
(Pγ ),(

→
Qγ )

and that the canonical inclusions Q j (Xq) ⊂ Q1(Xq) ⊕ Q0(Xq) ⊂ Xq , j = 0, 1,
andH rn+1 ⊂ �1Ξ1

[�rn+1
Ω1

] do not have written in any special way neither in the diagram
nor in the definition of M (moreover, recall Lemma 2.3 and Proposition 2.3).

It can be shown ([16, Theorem 11, step 3, 2.c)] the important fact that for every
f ∈ L1[R, ν, Ltr(T, τ )] it turns out that Supp(M( f )) ⊂ Supp( f ).

2.3.1 Definition of the Function g

(a) First of all we consider for every 0 < tr < ∞ the function
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g1(t, x) :=
∑

m∈A1

∥∥gkm

∥∥1− 1
r0 χekm

(t)
∑

v∈Pm

χekm ,hv
(x)

where we have defined Pm := {v ∈ N
∣
∣ (m, v) ∈ P

}
for every m ∈ A1.

Then
∥∥g1
∥∥

L1[Ξ1,ν1,Lr0 (Ω1,μ)] ≤ ∥∥g∥∥Xr0
(see [16, Theorem 11, step 4, part 2)] and hence

the diagonal map Sg1 ∈ L n
(∏n

j=1 �∞[Ξ1, ν1, �
r ′

j (Ω1, μ)], �1[Ξ1, ν1, �
tr(Ω1, μ)

])

is well defined. It is important to check later on the commutativity of the global
diagram to remark that actually

Sg1

( n∏

j=1

�∞[Ξ1, ν1, �
r ′

j (Ω1, μ)]) ⊂ Ptr

(
�1[Ξ1, ν1, �

tr(Ω1, μ)]).

(b) Then in the case tr < 1 we define simply g(t, x) := g1(t, x).

(c) Let tr ≥ 1. First of all we consider the map

Z := Ψtr ◦ P
(Nγ ),(

→
Mγ )

◦ ̂(Sgγ )U ◦ ((ι−1
r ′

j
◦ qr j ◦ Ψ ′

r j
)n

j=1

)

from
∏n

j=1 L∞[Ξ0, ν0, Lr ′
j (Ω, ρ0)] into L1[Ξ0, ν0, Ltr(Ω, ρ0)]. Consider the func-

tion g0(t, x) := Z
(
(χ

Ξ0
(t)χ

Ω
(x)))n

j=1

)
(t, x) ∈ L1[Ξ0, ν0, Ltr(Ω, ρ0)]. It follows

from Proposition 2.3, Corollary 2.1 and the properties of the maps arising in the
definition of Z that g0(t, x) ≥ 0.

Proposition 2.7 For every (h j (t, x))n
j=1 ∈∏n

j=1 L∞[Ξ0, ν0, Lr ′
j (Ω, ρ0)] the

equality Z
(
(h j )

n
j=1

) = g0(t, x)
∏n

j=1 h j (t, x) holds.

Proof It is shown in [16,Theorem11, step 4, part 1.b] that the proposition is truewhen
every h j ∈ L∞(Ξ0, ν0)⊗̂ε Lr ′

j (Ω, ρ0), 1 ≤ j ≤ n. We proceed now to the proof of
the general result. If Z̃ is the linearization of Z defined on

( n⊗

j=1

L∞[Ξ0, ν0, Lr ′
j (Ω, ρ0];π

)

we only need to show that

g0(t, x)

n∏

j=1

h j (t, x) = Z̃
(⊗n

j=1h j (t, x)
) = Z

(
(h j (t, x))n

j=1

) ∈ L1[Ξ0, ν0, Ltr (Ω, ρ0)]

(19)

and by linearity of Z̃ , since every h j (t, x) = h+
j (t, x) − h−

j (t, x), 1 ≤ j ≤ n, we
can assume that h j (t, x) ≥ 0 for each 1 ≤ j ≤ n.

Assume we have proved that (19) holds for every

h j (t, x) ∈ L∞[Ξ0, ν0, Lr ′
j (Ω, ρ0)], 1 ≤ j ≤ k − 1
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and every h j (t, x) ∈ L∞(Ξ0, ν0)⊗̂ε Lr ′
j (Ω, ρ0), j = k, ..., n for some 1 ≤ k < n (if

k = 1 there is no initial assumption). We claim that (19) holds when h j (t, x) ∈
L∞[Ξ0, ν0, Lr ′

j (Ω, ρ0)], 1 ≤ j ≤ k and

h j (t, x) ∈ L∞(Ξ0, ν0)⊗̂ε Lr ′
j (Ω, ρ0), j = k + 1, ..., n.

By induction this fact will prove the desired proposition.
(a) First we will prove our assertion in the case that hk(t, x) be a simple

function in L∞[Ξ0, ν0, Lr ′
k (Ω, ρ0)]. Clearly, to do this we can assume simply

that hk(t, x) = χD (t, x) where D is a (CΞ0 × B)-measurable set in Ξ0 × Ω. For
each v ∈ N there is a sequence

{
Avm × Bvm

}∞
m=1 of measurable rectangles such

that setting Mv :=⋃∞
m=1(Avm × Bvm) one has D ⊂ Mv, (ν0 × ρ0)

(
Mv\D

) ≤ 1
v and

Mv+1 ⊂ Mv for every v ∈ N. Clearly

(ν0 × ρ0)

(( ∞⋂

v=1

Mv

)

\D

)

= 0and
∞∧

v=1

χMv\D (t, x) = 0.

From Proposition 2.4 we deduce limv→∞ χMv\D (t, x) = 0 in L∞[Ξ0, ν0,

Lr ′
k (Ω, ρ0)] and hence limv→∞ χMv

(t, x) = χD (t, x) in L∞[Ξ0, ν0, Lr ′
k (Ω, ρ0)].

If Mvh :=⋃h
m=1(Avm × Bvm) one has χMvh

(t, x) ∈ L∞(Ξ0, ν0) ⊗ε Lr ′
k (Ω, ρ0) and∧∞

h=1

(
χMv

(t, x) − χMvh
(t, x)

) = 0. Once again by Proposition 2.4 we obtain

χMv
(t, x) = limh→∞ χMvh

(t, x) in L∞[Ξ0, ν0, Lr ′
k (Ω, ρ0)] and so

χMv
(t, x) ∈ L∞(Ξ0, ν0)⊗̂ε Lr ′

k (Ω, ρ0)

and consequently χD (t, x) ∈ L∞(Ξ0, ν0)⊗̂ε Lr ′
k (Ω, ρ0).

To simplify notation write for each function f (t, x) defined on Ξ0 × Ω

⊗k( f (t, x)) = h1(t, x) ⊗ ... ⊗ hk−1(t, x) ⊗ f (t, x) ⊗ hk+1(t, x) ⊗ ... ⊗ hn(t, x)

and �k( f (t, x)) = g0(t, x) f (t, x)
∏n

1= j �=k h j (t, x). It follows by continuity of the
involved maps and (19) that

Z̃
(⊗k(χD (t, x))

) = lim
v→∞ Z̃

(⊗k(χMv
(t, x))

) = lim
v→∞ �k

(
χMv

(t, x)
)
.

But
∧∞

v=1 �k
(
χMv

(t, x)
) = �k

(
χD (t, x)

)
and since L1[Ξ0, ν0, Ltr,(Ω, ρ0)] is order

continuous we obtain Z̃
(⊗k(χD (t, x))

) = limv→∞ �k
(
χMv

(t, x)
) = �k

(
χD (t, x)

)

in L1[Ξ0, ν0, Ltr(Ω, ρ0)], that is, we have proved (19) in the case hk(t, x) =
χD (t, x).

(b)Nowwe assume that hk(t, x) is a general nonnegativemeasurable function. Let
Gh := {(t, x) ∈ Ξ0 × Ω | g0(t, x) ∨ (

∨n
j=1 h j (t, x)) ≤ h

}
. As χGh

(t, x)hk(t, x) ≥
0 is a (CΞ0 × B)-measurable function, it is well known (see [11, Theorem 11.35]
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for instance) that there is an increasing sequence {Sm(t, x)}∞m=1 of non nega-
tive simple functions uniformly convergent to χGh

(t, x)hk(t, x). As ν0(Ξ0) < ∞
and ρ0(Ω) < ∞ it is easy to check that χGh

(t, x)hk(t, x) = limm→∞ Sm(t, x) in

L∞[Ξ0, ν0, Lr ′
k (Ω, ρ0)]. By continuity of Z̃ and part a)

Z̃
(⊗k
(
χGh

(t, x)hk(t, x)
)) = lim

m→∞ Z̃
(⊗k
(
χGh

(t, x)Sm(t, x)
))

= lim
m→∞ �k

(
χGh

(t, x)Sm(t, x)
)

in L1[Ξ0, ν0, Ltr(Ω, ρ0)]. But by (3) and Hölder’s inequality

lim
m→∞

∥∥∥�k
(
χGh

(t, x)hk(t, x)
)− �k

(
χGh

(t, x)Sm(t, x)
)∥∥∥

L1[Ξ0,Ltr (Ω)]

≤ lim
m→∞ K

∥∥
∥χGh

(t, x)hk(t, x) − Sm(t, x)

∥∥
∥

L∞[Ξ0,L
r ′
k (Ω)]

= 0

wherewehaveused K := h
(
(ν0 × ρ0)(Gh)

) 1
r0
∏n

1= j �=k

∥∥h j (t, x)
∥∥

L∞[Ξ0,L
r ′

j (Ω)].Then

Z̃
(⊗k(χGh

(t, x)hk(t, x))
) = lim

m→∞ �k
(
χGh

(t, x)Sm(t, x)
) = �k

(
χGh

(t, x)hk(t, x)
)

(20)

in L1[Ξ0, ν0, Ltr(Ω, ρ0)]. Let

D∞
h j

:= {(t, x) ∈ Ξ0 × Ω | h j (t, x) = ∞}, 1 ≤ j ≤ n.

As
∥
∥∥
∥
∥χ

D∞
h j

(t, x)h j (t, x)
∥
∥

L
r ′

j (Ω)

∥
∥∥

L∞(Ξ0)
< ∞ we have ρ0

({
x ∈ Ω | (t, x)

∈ D∞
h j

}) = 0 almost everywhere on Ξ0 and by Fubini’s theorem we obtain (ν0 ×
ρ0)(D∞

h j
) = 0, 1 ≤ j ≤ n. Recalling Lemma 1.1 this tell us that

(ν0 × ρ0)
(
(Ξ0 × Ω)\

∞⋃

h=1

Gh
) = 0. (21)

It follows that hk(t, x) =∨∞
s=1 χGs

(t, x)hk(t, x) and by Proposition 2.4 we have
hk(t, x) = lims→∞ χGs

(t, x)hk(t, x) in L∞[Ξ0, ν0, Lr ′
k (Ω, ρ0)].By continuity of Z̃

and (20)

Z̃
(⊗k
(
hk(t, x)

))= lim
s→∞ Z̃

(⊗k
(
χGs

(t, x)hk(t, x)
))= lim

s→∞ χGs
(t, x)g0(t, x)

h∏

j=1

h j (t, x)

in L1[Ξ0, ν0, Ltr(Ω, ρ0)]. Then for every v ∈ N we have
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χGv
(t, x)Z̃

(⊗k
(
hk(t, x)

)) = lim
s→∞ χGv

(t, x)χGs
(t, x)g0(t, x)

h∏

j=1

h j (t, x)

= χGv
(t, x)g0(t, x)

h∏

j=1

h j (t, x)

and it turns out that Z̃
(⊗k
(
hk(t, x)

))
coincides with g0(t, x)

∏h
j=1 h j (t, x) on the

set Gv. As v is arbitrary in N, by (21) we deduce (19). �

It is noteworthy to remark that the key of the proof of Proposition 2.7 is Proposi-
tion 2.4 which is a reflection of the close relation of L∞[Ξ0, Lq(Ω)], 1 ≤ q < ∞,

with an ultraproduct. On the other hand, an important consequence of Proposi-
tion 2.7 is the fact that g0 ∈ D

(∏n
j=1 L∞[Ξ0, Lr ′

j (Ω)]; L1[Ξ0, Ltr(Ω)]). Then by

Proposition 1.9 one has g0(t, x) ∈ L1[Ξ0, Lr0(Ω)] and hence the diagonal map
Sg0 from

∏n
j=1 L∞[Ξ0, Lr ′

j (Ω)] into L1[Ξ0, Ltr(Ω)] is well defined. We denote
by g̃0 (resp. g̃1) the function defined on R × T by g̃0

(
(t, i), (x, j)

) = g0(t, x) if
i = j = 0 (resp. g̃1

(
(t, i), (x, j)

) = g1(t, x) if i = j = 1) and g̃0
(
(t, i), (x, j)

) = 0
in other case (resp. g̃1

(
(t, i), (x, j)

) = 0 in other case), 0 ≤ i, j ≤ 1. Now, as
final function g

(
(t, i), (x, j)

) ∈ L1[R, ν, Lr0(T, τ )]we consider g
(
(t, i), (x, j)

) :=
g̃0
(
(t, i), (x, j)

)+ g̃1
(
(t, i), (x, j)

)
.

All the spaces and operators appearing in the global diagram are defined now. To
reach our goal we only have to check its commutativity.

(a) Assume first tr < 1. For every (X j )n
j=1 ∈∏n

j=1 X∞
r ′

j
one has

X j = X j

(Pγ ),(
→
Qγ )

+ X j

(N\Pγ ),(
→
N)

+ X j

(Pγ ),(
−→

N\Qγ )
, 1 ≤ j ≤ n

and hence by Proposition 2.6 S
(
(X j )n

j=1

) = S
(
(X j

(Pγ ),(
→
Qγ )

)n
j=1

)
. From now on the

proof is the same that the developed one in [16, Theorem 11, step 4, a)] and it will
not be repeated here.

(b) Let now tr ≥ 1. As Ω = Ω0 ∪ Ω1 and Ω0 ∩ Ω1 = ∅ it follows that Vtr =
Vtr

(Nγ ),(
→

Mγ )
+ Vtr

(Pγ ),(
→
Qγ )

. Keeping in mind Lemma 2.4 and the definitions of the

involved spaces and mappings, the proof of [16, Theorem 11, step 4, b)] can be
repeated.

2.3.2 Final Chacterization of αC
r -Integral Opearators

Hence we have shown the following precise form of our conjecture:

Theorem 2.4 Let T ∈ IαC
r

(∏n
j=1 E j ; En+1

)
. For each ε > 0 there are measure

spaces (R,H, ν) and (T,V, τ ), a map M ∈ L
(
L1[R, Ltr(T)], L1[R, Lrn+1(T)])
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verifying Supp(M( f )) ⊂ Supp( f ) for each f ∈ L1[R, Ltr(T)] and a function
g ∈ L1

[
R, Lr0(T)

]
such that JEn+1 ◦ T factorizes as

and
∥∥C
∥∥ ∥∥M

∥∥ ∥∥g
∥∥

L1[R,Lr0 (T)]
∏n

j=1

∥∥A j

∥∥ ≤ IαC
r

+ ε.

In the converse direction we have next result

Theorem 2.5 ([16, Theorem 22]) Let (Ξ,A , ν) and (Ω,M , μ) be measure
spaces. If g ∈ L1[Ξ, Lr0(Ω)] and M ∈ L

(
L1[Ξ, Ltr(Ω)], L1[Ξ, Lrn+1(Ω)]) ver-

ify Supp(M( f )) ⊂ Supp( f ) for every f ∈ L1[Ξ, Ltr(Ω)], the composition map

T := M ◦ Sg :
n∏

j=1

L∞[Ξ, Lr ′
j (Ω)] −→ L1[Ξ, Lrn+1(Ω)]

is αC
r -integral and IαC

r
(T ) ≤ ∥∥M∥∥ ∥∥g

∥∥
L1[Ξ,Lr0 (Ω)].

Hence we obtain the main result of our work, a characterization of the αC
r -integral

operators:

Theorem 2.6 ([16, Theorem 23, part a)]) Let E j , 1 ≤ j ≤ n + 1, be Banach spaces
and let T ∈ L n(

∏n
j=1 E j , En+1). The following assertions are equivalent:

(1) T is αC
r −integral.

(2) There are measurable spaces (Ξ,A , ν) and (Ω,M , μ), a function g ∈
L1[Ξ, Lr0(Ω)] and a map M ∈ L

(
L1[Ξ, Ltr(Ω)], L1[Ξ, Lrn+1(Ω)]) verifying

Supp
(
M( f )

) ⊂ Supp( f ) for each f ∈ L1[Ξ, Ltr(Ω)] such that JEn+1 ◦ T can be
factorized as

(3) A factorization as in (2) but with finite measure spaces (Ξ,A , ν) and
(Ω,M , μ) exists.
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Moreover, IαC
r
(T ) = inf

∥∥C
∥∥ ∥∥M

∥∥ ∥∥g
∥∥

L1[Ξ,Lr0 (Ω)]
∏n

j=1

∥∥A j

∥∥ taking the inf over
all such possible factorizations of type used in (2) or (3).

Next particular case of previous theorem is noteworthy:

Theorem 2.7 ([16, Theorem 23, part b)]) If tr < 1 and E j , 1 ≤ j ≤ n + 1, are
Banach spaces an operator T ∈ L n(

∏n
j=1 E j , En+1) is αC

r −integral if and only if
T is αC

r −nuclear.

Acknowledgements I express my gratitude to the Organization of the Meeting in honour to Prof.
López Pellicer for its invitation to present a talk.
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On Compacta K for Which C(K ) Has
Some Good Renorming Properties

In Honour of Manuel López-Pellicer

Aníbal Moltó

Abstract By renorming it is usually meant obtaining equivalent norms in a Banach
space with better properties, like being local uniformly rotund (LUR) or Kadets. In
these notes we are concerned with C(K) spaces and pointwise lower semicontinuous
Kadets or LUR renormings on them. If a C(K) space admits some of such equivalent
norms then this space, endowed with the pointwise topology, has a countable cover
by sets of small local norm-diameter (SLD). This property may be considered as the
topological baseline for the existence of a pointwise lower semicontinuous Kadets,
or even LUR renorming, since in many concrete cases it is the first step to obtain
such a norm. In these notes we survey some methods, appearing in the literature, to
prove that some C(K) spaces have this property.

Keywords Renorming · Small local diameter · Kadets norms · LUR norms ·
Dyadic compacta · Valdivia compacta · Trees · Rosenthal compacta

1 Introduction

By renorming it is usuallymeant a branch ofBanach space theorywhose original goal
is obtaining equivalent norms with better properties. In these notes we are focused in
two of them, Kadets and local uniformly rotundity (LUR). An account of their role
in this theory and their relation with other important parts of this field may be found
in [6]; in [25] there is an up-to-date survey of these properties for C(K ) spaces.
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Definition 1.1 A Banach space X (or its norm) is said to be local uniformly rotund
(LUR) if for any x ∈ X and any sequence {xk} ⊂ X we have limk ‖ xk − x ‖ = 0
whenever limk ‖ (xk + x)/2 ‖= limk ‖ xk ‖=‖ x ‖.
If τ is a topology on a Banach space X , coarser than the norm topology on X , we
say that X has the τ -Kadets property whenever τ and the norm topology coincide in
the unit sphere. The following result, due to Troyanski, shows the relation between
them.

Theorem 1.1 ([6]) Let X be a Banach space, then X admits an equivalent LUR
norm if, and only if, it has an equivalent weak–Kadets norm and an equivalent rotund
norm.

Let us recall that a norm is rotund if its unit sphere contains no non trivial segment.
The following property may be considered the topological baseline for the existence
of a Kadets renorming.

Definition 1.2 (Jayne, Namioka, Rogers [15]) Given a topological space Z and ρ

a lower-semicontinuous metric on it, we say that it has a countable cover by sets of
small local ρ-diameter, whenever for a given ε > 0 the set Z can be expressed as a
union Z = ⋃∞

i=1 Zi , in such a way that for each i and each x ∈ Zi there exists an
open subset W in Z such that x ∈ W and the ρ-diameter of W ∩ Zi is less than ε.

In this notes we will restrict ourselves to the study of those properties on C(K )

spaces. It is well known that any Banach space X is a subspace of C(K ), where K
stands for the dual ball of X , endowed with the weak∗-topology. This is one of the
motivations of the following

Problem 1.1 Characterize the compacta K for which C(K ) admits a (pointwise
lower-semicontinuous) LUR renorming.

Problem 1.2 Assume the Banach space X admits a LUR renorming and K is the
dual unit ball endowed with the weak∗-topology. Does C(K ) has a (pointwise lower-
semicontinuous) LUR equivalent norm?

In [11], from the existence of a LUR renorming in C(K ) for a particular class of
compacta K , Haydon deduces the following

Theorem 1.2 (Haydon) Let X be a Banach space whose dual norm is LUR. Every
continuous real–valued function on X may be uniformly approximated by functions
of class C 1.

Since we will be concerned with C(K ) spaces, from now on we will say that
C(K ) has the property SLD, or just SLD, when C(K ) endowed with the pointwise
topology has a countable cover by sets of small local ‖ · ‖-diameter. By C(K )〈K〉
(respectively C(K )〈LUR〉) we mean that the space has an equivalent norm with the
pointwise–Kadets property (respectively pointwise lower-semicontinuous LUR). It
is known that
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C(K )〈LUR〉 =⇒ C(K )〈K〉 =⇒ C(K ) SLD. (1)

The second implication was proved in [15], Haydon [9] showed that the converse of
the first is not true. Nevertheless the following problem is still open.

Problem 1.3 Does the implication C(K ) SLD =⇒ C(K )〈K〉 hold true for every
compact space K ?

This is an open problem even assuming in addition that the space C(K ) admits an
equivalent rotund norm.

M. Raja showed in [22], roughly speaking, that the class of C(K )’s spaces with
SLD is very close to those in which there exists a pointwise Kadets renorming,
namely from [22] it follows that a Banach space X endowed with the weak topology
has a countable cover by sets of small local ‖ · ‖-diameter if, and only if, there exists
a non negative symmetric homogeneous weak-lower-semicontinuous function (that
may be not convex) F on X with ‖ · ‖ ≤ F ≤ 3‖ · ‖ such that the norm and the weak
topologies coincide on the set {x ∈ X : F(x) = 1}.

2 Some Characterizations

In [21] a linear topological characterization ofBanach spaces that admit an equivalent
LUR norm is presented, this was improved in [8] that, in turn, opened the gate to
obtain a similar result for LUR and SLD in C(K ) spaces, [18–20]. These results
enable us to prove the existence of such a renorming with a unified approach in a
variety of C(K )’s spaces whose existence was originally deduced by methods ad
hoc.

An exposition of how this method may provide a LUR renormig for such C(K )’s
is beyond the scope of these notes, we restrict ourselves to survey some methods to
obtain, for some compacta K , the specific decomposition required in the property
SLD on C(K ) spaces, those are essentially contained in [13, 17–20]. Even with this
restriction, some proofs will be only outlined and sometimes skipped. Nevertheless
obtaining a concrete decomposition in C(K ) that satisfies the requirement of SLD
for C(K ) may be useful to show the existence of an equivalent LUR or K norm in
these spaces, since it may give the topological baseline to prove those properties [18,
20, 21].

If A is a bounded set of a normed space X , the Kuratowski index of non–
compactness of A is defined by

α(A) = inf {ε > 0 : A can be covered by finitely many sets of diameter less than ε} .

A subspace F of a normed space X is said to be norming for X whenever

‖|x |‖ := sup
{∣
∣x∗(x)

∣
∣ : x∗(x) ∈ BX∗ ∩ F

}

is an equivalent norm on X .
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Theorem 2.1 ([8, 21, 23]) Let X be a Banach space and let F be a norming linear
subspace of X∗. The following assertions are equivalent:

1. X admits an equivalent σ(X, F)−lower-semicontinuous LUR norm;
2. there is a countable family of subsets {Xn : n ∈ N} in X such that given ε > 0

and x ∈ X there exists n ∈ N with x ∈ Xn and a σ(X, F)−open half space H
containing x such that diam (H ∩ Xn) < ε;

3. there is a countable family of subsets {Xn : n ∈ N} in X such that given ε > 0
and x ∈ X there exists n ∈ N with x ∈ Xn and a σ(X, F)−open half space H
containing x such that α(H ∩ Xn) < ε.

To state some similar characterization for C(K ) spaces, let us remember some ele-
mentary facts of general topology. In what follows the term compact space, or just
compactum, will mean a Hausdorff compact topological space. It is well–known
that any compactum K is homeomorphic to a subspace of [0, 1]Γ for some set Γ ,
so we may and do assume that K ⊂ [0, 1]Γ ; then it makes sense to speak about the
coordinates of a point of K . Moreover for such K , each x ∈ C(K )must be uniformly
continuous on K , then for any ε > 0 there exist Λ ⊂ Γ , Λ finite, and δ > 0 such
that

|x(s) − x(t)| < ε whenever s, t ∈ K and sup
γ∈Λ

|s(γ ) − t (γ )| < δ. (2)

Definition 2.1 Given a compact space K we will say that the finite set Λ ε-controls
x with δ whenever (2) holds.

If there is some δ > 0 for which (2) holds then we will write that Λ ε–controls x .
A subset U ⊂ Γ is said to control x ∈ C(K ) if for every ε > 0 there exists a finite
subset Λ ⊂ U such that U ε–controls x .

Remark 2.1 Let K ⊂ [0, 1]Γ be a compact space and letU a (non necessarily finite)
subset of Γ . Observe that if U does not ε–control x ∈ C(K ) there exist s0, t0 ∈ K
with

s0(γ ) = t0(γ ) for all γ ∈ U, and |x (s0) − x (t0)| ≥ ε. (3)

Indeed, given n ∈ N and a finite subset F ⊂ U , since F does not 1/n-controls x , there
must exist sn,F , tn,F ∈ K such that

∣
∣x

(
sn,F

) − x
(
tn,F

)∣
∣ ≥ ε and

∣
∣sn,F (γ ) − tn,F (γ )

∣
∣

< 1/n whenever γ ∈ F . By compactness there must exist a convergent subnet to a
point (s0, t0) ∈ K × K that satisfies (3).

In [20], a characterization of those properties in terms of controlling coordinates is
deduced from Theorem2.1.

Theorem 2.2 ([20]) Let K be a compact subset of [0, 1]Γ and let F be a norming
subspace of C(K )∗. The following assertions are equivalent
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1. C(K ) admits a σ(C(K ), F)−lower-semicontinuous equivalent LUR norm;
2. for each ε > 0we have C(K ) = ⋃+∞

n=1 Cn,ε in such a way that for each n ∈ N and
each x ∈ Cn,ε there exists a σ(C(K ), F)−open half space S which contains x, a
finite set T ⊆ Γ and a δ > 0 such that T ε-controls each y ∈ S ∩ Cn,ε with δ.

We have a similar result for the existence of the property SLD.

Theorem 2.3 ([19]) Let K be a compact subset of [0, 1]Γ , the following assertions
are equivalent

1. C(K ) has SLD;
2. for each ε > 0 we have C(K ) = ⋃+∞

n=1 Cn,ε in such a way that for each n ∈ N
and each x ∈ Cn,ε there exist a pointwise–open set S which contains x, a finite
set T ⊆ Γ and a δ > 0 such that T ε-controls each y ∈ S ∩ Cn,ε with δ.

Problem 2.1 Characterize the compacta K for which C(K ) has SLD.

Such characterization is known within the class of scattered compacta.

Theorem 2.4 ([19]) Let K be a scattered compact space. Then C(K ) has SLD
if, and only if, the algebra of clopen (= open and closed) sets of K is pointwise
σ–discrete.

Examples of compacta K for which C(K ) has not SLD may be found in [6, 10].
Despite it is not known whether the converse of the second implication of (1)

holds, as we pointed out above, a concrete decomposition of C(K ) that satisfies the
requirement of SLD may be the first step to prove the existence of a LUR renorming,
since sometimes a refinement of this decomposition allows to apply Theorem2.2;
for this the following result may be of some use. Given two sets A, B with B ⊂ A,
and a real function ϕ : A → R, we write oscBϕ = sup {ϕ(u) − ϕ(v) : u, v ∈ B}.
Theorem 2.5 ([20]) Let ϕk , 1 ≤ k ≤ n, either continuous linear functional on a
locally convex linear topological space or non negative convex lower-semicontinuous
maps on a convex set B of X. Let A0 ⊂ B for which we have

oscA0ϕk ≤ 1, 1 ≤ k ≤ n.

Let δ and θ such that
0 < 4δ1/n ≤ θ ≤ 1.

Fix x ∈ A0 and set Ak = {y ∈ Ak−1 : ϕk(x) − ϕk(y) < δ}, 1 ≤ k ≤ n. Suppose that

ϕk(x) ≥ sup
Ak−1

ϕk − δ, 1 ≤ k ≤ n;
{y ∈ Ak−1 : δ ≤ ϕk(x) − ϕk(y) < θ} = ∅. [Rigidity condition]

Then there exists a continuous linear functional f on X such that

{y ∈ A0 : f (x − y) < 1} ⊂ An.
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3 The Property SLD in Some Classes of Compacta K

To deduce that a space C(K ) has SLD from Theorem 2.3, roughly speaking, we
should obtain a suitable method to associate to each x ∈ C(K ) a set of controlling
coordinates of x . For some compacta K , methods of this sort have been considered
to obtain extensions of theMibu Theorem [7]. Given a set Γ and a compact subspace
K ⊂ [0, 1]Γ let Ω : C(K ) −→ c0(Γ ) be the oscillation map

Ωx(γ ) = sup
{

x(t) − x(s) : t, s ∈ K , (t − s)|Γ \{γ } = 0
}
, x ∈ C(K ). (4)

It is clear that ifΔ controls x ∈ C (K ) then supp Ωx = {γ ∈ Γ : Ωx(γ ) �= 0} ⊂ Δ.
In some compacta K we have that the set supp Ωx controls every x ∈ C(K ),
this is so when K = [0, 1]Γ or K = {0, 1}Γ [7]. Let K be one of such compacta
and fix ε > 0, given x ∈ C(K ) there must exist nx ∈ N such that the finite set
{γ ∈ Γ : Ωx(γ ) > 1/nx } ε–controls x with δ = 1/mx . Let Cn,m,k,ε be the set of
all x ∈ C(K ) such that the cardinal of {γ ∈ Γ : Ωx(γ ) > 1/nx } is k, nx = n and
mx = m. It is easy to see that given n, m, k ∈ N and x ∈ Cn,m,k,ε there exists a point-
wise open set W such that {γ ∈ Γ : Ωx(γ ) > 1/n} ⊂ {γ ∈ Γ : Ωy(γ ) > 1/n}
for all y ∈ W . Then the choice of k gives that the former inclusion is, in fact, an
equality for y ∈ W ∩ Cn,m,k,ε. Now from Theorem2.3 it follows that if K = [0, 1]Γ
or K = {0, 1}Γ then C(K ) has SLD. In both cases we have that C (K ) 〈LUR〉 [21],
it is possible to show this by refining the above decomposition to apply Theorems2.2
and 2.5.

If K is a dyadic compactum (i.e. a continuous image of {0, 1}Γ for some set
Γ ) then C(K ) is a linear subspace of C

({0, 1}Γ )
so we have that C(K )〈LUR〉; in

particular, this happens whenever K is a compact topological group, [26, p. 81], see
also [2].

If Λ is an ordinal and then the map Ψ (λ) = {
1l[0,α](λ)

}
α∈[0,Λ[, λ ∈ [0,Λ], is an

embedding of K = [0,Λ] into {0, 1}[0,Λ[. In this case, let Ω be as in (4), we have
supp Ωx = {α ∈ [0,Λ[: x(α + 1) − x(α) �= 0}. It is easy to see that given p,q ∈ K
if p|supp Ωx = q|supp Ωx then x(p) = x(q), i.e. according to Remark 2.1 supp Ωx
controls x .

Fix ε > 0, given x ∈ C(K ) there exists n ∈ N such that if

Fn(x) := {α ∈ [0,Λ[: |x(α + 1) − x(α)| > 1/n}

then Fn(x) ε–controls x for some δ = 1/m. Once more let Cε,n,m,k be the set of all
y ∈ C(K ) such that Fn(y) ε–controls y for some δ = 1/m, and the cardinal of the
set Fn(y) is k. The argument above shows that the decomposition made up by all
Cε,n,m,k’s satisfies the conditions of Theorem2.3, so this C(K ) has SLD. Moreover
from Theorems2.2 and 2.5 it is possible to show that, in fact, C(K ) admits an
equivalent LUR norm [1].
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Since every metric compact space K may be embedded in K ⊂ [0, 1]N, from
the Borsuk–Dugundji theorem we have that C(K ) is a subspace of C

([0, 1]N
)
, then

C(K )〈LUR〉, see also [21, Corollary2.68]. It is known that any such K belongs to
the class of the Valdivia compacta, let us remember the definition of this class. Given
a set Γ let

Σ(Γ ) := {
u ∈ [0, 1]Γ : #{γ ∈ Γ : u(γ ) �= 0} ≤ ℵ0

}
.

Definition 3.1 ([5]) A compact space K is a Valdivia compact if, for some set
Γ , there exists an homeomorphic embedding h : K −→ [0, 1]Γ such that h(K ) =
Σ(Γ ) ∩ h(K )

[0,1]Γ
.

We can suppose, without loss of generality, that a Valdivia compact space K satisfies

K ⊂ [0, 1]Γ and K = Σ(Γ ) ∩ K
[0,1]Γ

.

Theorem 3.1 ([6]) If K is a Valdivia compact space then C(K )〈LUR〉.
In the class of Valdivia compacta the following result is the topological key to deduce
the existence of a LUR renorming.

Lemma 3.1 ([6, LemmaVI.7.5]) Let Γ be a set and let K be a closed subset of
[0, 1]Γ such that K ∩ Σ(Γ ) is dense in K . Let μ be the smallest ordinal such that
#μ = dens(K ∩ Σ(Γ )). Then there exists an increasing family {Γα : ω ≤ α ≤ μ}
of subsets of Γ such that for every α

1. #Γα ≤ #α;
2. Γα = ⋃

β<α Γβ+1 and Γμ = Γ ;
3. RΓα

(K ) ⊆ K where RI : [0, 1]Γ −→ [0, 1]Γ is defined for I ⊆ Γ by

s �−→ RI (s)(γ ) =
{

s(γ ) if γ ∈ I ;
0 if γ /∈ I

This lemma may be used to deduce the existence of a projectional resolution of the
identity suitable to obtain a LUR renorming [6]. Nevertheless it is possible to deduce
the existence of this renorming from Theorem2.2 by transfinite induction. We only
present a sketch of the proof that C(K ) is SLD.

We can assume that Γ is a limit ordinal and identify Γ with [0, Γ [. For Γ = ω,
[0, 1]Γ is a metric space and we have already seen that in this case C(K ) has SLD.
The idea for the induction is based on the following two observations: For each ε > 0
if

E(x, ε) := {α < Γ : ‖x ◦ Rα+1 − x ◦ Rα‖∞ > ε},

the uniform continuity of each x ∈ C(K ) shows that E(x, ε) is finite.Moreover from
the properties of the Rα’s it can be shown that for every ε > 0 and every x ∈ C(K )

there is n = n(ε, x) ∈ N such that
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α > max E(x, 1/n) =⇒ ‖x − x ◦ Rα‖∞ ≤ ε. (5)

For a given ε > 0 we may consider the countable decomposition C(K ) =⋃
n,m∈N Cε,n,m , where Cε,n,m is made up by all x ∈ C(K ) such that n(ε, x) = n and

the cardinal of E(x, 1/n) is m. Reasoning as in the previous cases, given n, m ∈ N
and x ∈ Cε,n,m it is easy to obtain a pointwise open set W such that x ∈ W and for
every y ∈ W ∩ Cε,n,m we have E(y, ε) = E(x, ε). Now since each each Rα(K ) is a
Valdivia compact space, from our inductive hypothesis C (Rα(K )) has a countable
decomposition that fulfills the requirement of Theorem 2.2; combining it with the
Cε,n,m’s wemay prove thatC(K ) has SLD. Refining this decomposition it is possible
to deduce from Theorems2.2 and 2.5 that, in fact, C(K ) admits an equivalent LUR
norm.

In what follows (Υ,�), or namely Υ , stands for a tree, i.e. a partially ordered set
such that for every t ∈ Υ the set ] ←, t] = {s ∈ Υ : s � t} is well–ordered by �.
Then for each t ∈ Υ there exists an ordinal r(t) such that ] ←, t] has the same order
type as r(t). From now on all trees will be Hausdorff, i.e. for every s, t ∈ Υ , if r(t)
is a limit ordinal and ] ←, s[=] ←, t[ then s = t , these trees can be endowed with
the coarsest topology for which the sets ] ←, s] are clopen for any s ∈ Υ , and we
consider every tree Υ endowed with this topology.

If t ∈ Υ we will denote by t+ the set of immediate successors of t , that is the set
of all s ∈ Υ , t ≺ s such that ]t, s[= ∅. Following [10] given an increasing function
on a tree ρ : Υ → R a point t ∈ Υ is called in [10] a good point for ρ if there is a
finite subset F ⊂ t+ such that ρ(t) < infu∈t+\F ρ(u); if t ∈ Υ is not a good point
we say that is bad point for ρ.

In [10] there is a characterization of those trees Υ for which C (Υ ∗) 〈K〉 and
〈LUR〉whereΥ ∗ stands for its Alexandroff compactification Υ ∗ = Υ ∪ {∞}. There
Haydon shows that the converse of the first implication in (1) does not hold. Here
we restrict ourselves to discuss the case C (Υ ∗) 〈LUR〉, as above we just sketch the
proof of the property SLD. Let us recall that a subset S of a tree Υ is ever-branching
if for every t ∈ S the set {u ∈ S : u � t} is not totally ordered [10].

Theorem 3.2 (Haydon [10]) For any tree Υ we have that C (Υ ∗) 〈LUR〉 if, and
only if, there exists an increasing function ρ : Υ → R which is constant on no ever-
branching subset of Υ and which has no bad points.

We may embed Υ ∗ into {0, 1}Υ by the map t → {
1l]←,s](t)

}
s∈Υ

. Write x̃ := x −
x(∞) for x ∈ C (Υ ∗). In [10] it is shown that for the trees of Theorem3.2, there exists
a bounded linear operator T : C0(Υ ) −→ c0(Υ ) such that for every x ∈ C (Υ ∗) we
have {t ∈ Υ : x̃(t) �= 0} ⊂ ⋃

s∈S(x)] ←, s] where S(x) := ⋃ {u ∈ Υ : T x̃(u) �= 0}.
Fix ε > 0. Set Sn(x) := ⋃ {γ ∈ Υ : |T x̃(γ )| > 1/n}, n ∈ N. Since T is c0(Υ )–

valuedwe have that the set Sn(x) is finite. Given x ∈ C (Υ ∗) a compactness argument
shows that there must exist nx ∈ N such that the finite set Snx (x) satisfies

{t ∈ Υ : |x̃(t)| ≥ ε/2} ⊂
⋃

s∈Snx (x)

] ←, s]. (6)



On Compacta K for Which C(K ) Has Some Good Renorming Properties 233

It is clear that if a finite set Fx ⊂ ⋃
s∈Snx (x)] ←, s] ε–controls x |⋃

s∈Snx (x)]←,s] for some

δx then Fx ∪ Snx (x) ε–controls x . Set C (Υ ∗) = ⋃+∞
n=1 Cn,m,�,ε, where Cn,m,�,ε is the

set of all x ∈ C (Υ ∗) for which (6) holds when nx = n, the cardinal #Sn(x) = m and
‖x‖∞ ≤ �. Fix n, m, � ∈ N and x ∈ Cn,m,�,ε. We have that

G := {
y ∈ Cn,m,�,ε : |T ỹ(γ )| > 1/n for all γ ∈ Sn(x)

}

is relatively pointwise open in Cn,m,�,ε. For any y ∈ G we get Sn(x) ⊂ Sn(y), once
more the choice of m implies that Sn(x) = Sn(y). Roughly speaking, now we have
only to describe the finite set Fx above; for this observe that in the finite union⋃

s∈Sn(x)] ←, s], each ] ←, s] is an ordinal andwe have already seen such description
in those spaces. Then combining both techniques it is possible to prove the property
SLD from Theorem 2.3. As above, this decomposition may be refined to show the
existence of a LUR renorming, for the trees considered, from Theorems2.2 and 2.5,
[18].

In some of the previous classes of compacta, the oscillation map Ω has played
an essential role in associating a controlling set of coordinates to each continuous
function, nevertheless there are compacta where Ω seems to be useless for this
purpose. For instance let us consider the Helly compact space H , i.e. the space of
all increasing functions from the real interval [0, 1] in itself, H ⊂ [0, 1][0,1], and the
map x : H −→ R, x(s) := ∫

[0,1] s, when x ∈ C(H). It is clear that for any γ ∈ [0, 1]
and any s, t ∈ C(H) such that (t − s)|Γ \{γ } = 0 we have that

∫
[0,1] s = ∫

[0,1] t , i.e.
x(s) = x(t) so suppΩx = ∅. Since x is not constant we have that suppΩx does not
control x . Nonetheless there exists an equivalent pointwise lower-semicontinuous
LUR norm in C(H) [21]. In fact since each s ∈ H has at most countably many
discontinuities, the existence of this norm may be deduced form the following

Theorem 3.3 ([13]) Let Γ be a Polish space and let K be a separable and pointwise
compact set of functions on Γ . Assume further that each function in K has only count-
ably many discontinuities. ThenC (K ) admits a pointwise-lower-semicontinuous and
local uniformly rotund norm, equivalent to the supremum norm.

The compact space K above belongs to the class of Rosenthal compacta, i.e. a
space made up by of Baire–1 functions over a Polish space that is pointwise compact.
Todorcevič showed that there exists a Rosenthal compact space K for which C(K )

has no equivalent LUR norm [27]. For separable Rosenthal compact spaces it has
been conjectured a positive answer to the following question [13].

Problem 3.1 If K is a separable Rosenthal compact then does C(K ) admit a locally
uniformly rotund renorming?

In [20] Theorem3.3 is deduced from Theorem2.2, we will only point out some
ideas to associate to each x ∈ C(K ) a controlling sets of coordinates, that can be
regarded as the first step of a proof by this method. Let us recall some notation.
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For a topological space X the derived space X ′ is the set of all points of X that
are not isolated, by transfinite induction for an ordinal β we define the β th–derived
set X (β) by

X (0) = X, X (γ+1) = (
X (γ )

)′
, X (α) =

⋂

γ<α

X (γ ),

for arbitrary ordinals γ and limit ordinals α. A topological space X is said to be
scattered if no nonempty subset of X is dense in itself, equivalently if there exists an
ordinal γ such that X (γ ) = ∅.

Fix ε > 0 and Q a countable dense subset of Γ . Let CF,1/n be set of all the
functions x ∈ C(K ) that are ε–controlled by a finite subset F ⊂ Q and δ = 1/n.
Observe that we cannot assert that the countable familyCF,1/n coversC(K ), because
there may be functions y ∈ C(K ) that are not ε–controlled by Q; from now on we
will consider only those functions y’s. Associate to each one of those y finite subsets
Fy ⊂ Γ \ Q, Ry ⊂ Q and ny ∈ N such that |y(u) − y(v)| < ε whenever u, v ∈ K
and supγ∈Fy∪Ry

|u(γ ) − v(γ )| ≤ 1/ny . Observe that Fy �= ∅ for such a function y.
By compactness there must exist an �y ∈ N such that

|y(u) − y(v)| ≤ ε − 1/�y whenever u, v ∈ K and sup
γ∈Fy∪Ry

|u(γ ) − v(γ )| ≤ 1/ny .

(7)

On the other hand, according to Remark2.1 there must exist s, t ∈ K such that

s|Q = t |Q and |y (s) − y (t)| ≥ ε. (8)

In particular

s|Q = t |Q and |y (s) − y (t)| > ε − 1/�y . (9)

For u ∈ K and δ > 0 write

J (u, δ) := {γ ∈ Γ : osc(u, G) ≥ δ for allG open with γ ∈ G}

where osc(u, G) stands for the oscillation of u in G, and J (u, v; δ) := J (u, δ) ∪
J (v, δ). From (7) it follows that for any couple s, t ∈ K verifying (9) there exists
γ ∈ Fy such that |s (γ ) − t (γ )| > 1/ny , moreover such γ must satisfy γ ∈ Fy ∩
J

(
s, t; 1/(2ny)

)
; in particular

Fy ∩ J
(
s, t; 1/(2ny)

) �= ∅. (10)

On the other hand, for any u ∈ K and δ > 0 the set J (u, δ) is closed and, accord-
ing to our hypothesis, countable, so it does not contain any perfect subset, there-
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fore there exists a countable ordinal αu such that J (u, δ)(αu) = ∅. For any cou-
ple s, t ∈ K satisfying (9) let αs,t,y the maximum of all the ordinals α such that

Fy ∩ (
J

(
s, t; 1/(2ny)

))(α) �= ∅, and α0,y the minimum for all such αs,t,y . Let k0,y
the minimum of the cardinals of Fy ∩ (

J
(
s, t; 1/(2ny)

))(α0,y) for s, t ∈ K that fulfill
(9) and

Fy ∩ (
J

(
s, t; 1/(2ny)

))(α0,y+1) = ∅. (11)

For such y ∈ C(K ) choose sy , ty ∈ K that verify (9), and (11) and the cardinal of

Fy ∩ (
J

(
sy, ty; 1/(2ny)

))(α0,y) is k0,y .
Let B be a countable base of open sets in Γ , since J

(
s, t; 1/(2ny)

)
is a totally

inconnected compact space, for y ∈ C(K ), not controlled by Q, we may fix V (y)

j ∈
B, 1 ≤ j ≤ j0,y , pairwise disjoint, in such a way that Fy ⊂ ⋃ j0,y

j=1 V (y)

j , the cardinal

of each Fy ∩ V (y)

j is one, and there exist i0,y ∈ N, i0,y ≤ j0,y , and ordinals
{
β j

}i0,y
j=1

such that if Fy ∩ V (y)

j ∩ J
(
sy, ty; 1/(2ny)

) = ∅ then V (y)

j ∩ J
(
sy, ty; 1/(2ny)

) = ∅
and

if Fy ∩ V (y)
j ∩ (

J
(
sy, ty , 1/(2ny)

)) �= ∅ then #

(

V (y)
j ∩ J

(
sy, ty; 1/(2ny)

)
(
β

(y)
j

))

= 1

and V (y)
j ∩ J

(
sy, ty; 1/(2ny)

)
(
β

(y)
j +1

)

= ∅. (12)

From the choice of α0,y and k0,y we have β
(y)

j ≤ α0,y , V (y)

j ∩ J
(
sy, ty; 1/

(2ny)
)(α0,y) = ∅ if β

(y)

j < α0,y and the set J0,y :=
{

j : β
(y)

j = α0,y

}
has cardinal

k0,y . So from (12) we get

V (y)

j ∩ J
(
sy, ty; 1/(2ny)

)(α0,y) = ∅ whenever j /∈ J0,y . (13)

Nowwehave several parameters and sets associated to each y, namely ny , �y , Ry , i0,y ,
j0,y , k0,y , V (y)

j ’s, α0,y’s, β
(y)

j ’s, and J0,y , we have seen that all of them but the α0,y’s

and β
(y)

j ’s belong to a countable set. In [13] it is deduced from the Rank Theorem [3,
16], that there exists a countable ordinal Ω such that J (u, δ)(Ω) = ∅ for all u ∈ K
and all δ > 0, therefore the α0,y’s and β

(y)

j ’s belong to the countable set [0,Ω].
Then we can split up the set of all functions y, that are not controlled by Q, into

a countable number of subsets C p, p ∈ N, in such a way that the parameters and
sets above are the same for all functions y ∈ C p; fix C p and writte those common
parameters and sets as n0, �0, R0, j0, i0, k0, Vj ’s, α0’s, β j ’s and J0. Now take x ∈ C p.
Then

W := {y ∈ Ck : |y (sx ) − y (tx )| > ε − 1/�0}



236 A. Moltó

is a pointwise open set in Ck than contains x . We claim that for y ∈ W we have

Fy ∩ J (sx , tx ; 1/(2n0))
(α0) = Fx ∩ J (sx , tx ; 1/(2n0))

(α0) �= ∅. (14)

Indeed from the choice of W and (12) we have

Fy ∩ (J (sx , tx ; 1/(2n0)))
(α0+1) ⊂

⎛

⎝
j0⋃

j=1

Vj

⎞

⎠ ∩ J (sx , tx ; 1/(2n0))
(α0+1) = ∅;

i.e. Fy ∩ (J (sx , tx ; 1/(2n0)))
(α0+1) = ∅. So, the cardinal of Fy ∩ (J (sx , tx ; 1/

(2ny)
))(α0) is greater or equal than k0. Since y ∈ Ck , from (13) and the choice

of
{

Vj
} j0

j=0 and α0 we have

Fy ∩ J (sx , tx ; 1/(2n0))
(α0) ⊂ J (sx , tx ; 1/(2n0))

(α0) ∩
⎛

⎝
⋃

j∈J0

Vj

⎞

⎠ .

So the cardinal of the last set above is k0 therefore both sets are equal and (14) is
proved.

Iterating this process we get a countable decomposition of C(K ) in such a way
that the hypotheses of Theorem2.3 hold, so C(K ) has SLD. In [20] Theorem3.3 is
deduced from Theorems2.2 and 2.5 refining this decomposition.

In all previous classes of compacta K , the presence the property SLD has been
deduced, roughly speaking, from a good method to associate finite sets of controlling
coordinates to each x ∈ C(K ), this notion comes from the elementary topological
property in (2). It is elementary too that for any x ∈ C(K ) and any ε > 0, there exists
a finite covering of K such that the oscillation of x , in each element of the covering,
is not bigger than ε. The next result states that in Theorems2.2 and 2.3 it is possible
to replace the first property by the second, namely

Theorem 3.4 Let K be a compact space. The Banach space C(K ) has the prop-
erty SLD (respectively admits an equivalent (pointwise lower-semicontinuous) LUR
norm) if, and only if, there is a countable family of subsets {Cn : n ∈ N} in C(K )

such that, for every x ∈ C(K ) and every ε > 0, there are q ∈ N, a pointwise open set
(respectively pointwise open half space) H with x ∈ H ∩ Cq together with a finite
covering L of K such that

|y(s) − y(t)| < ε whenever s, t ∈ L , y ∈ H ∩ Cq and L ∈ L .

From this result it is possible to deduce the existence of a LUR renorming in C(K )

when K is a Namioka–Phelps compact, a class introduced by M. Raja [24]. Let us
recall that a family H = {Hi : i ∈ I } of subsets of a topological space (X,T ) is

said to beT -isolated whenever Hi ∩ ⋃{Hj : j ∈ I, j �= i}T = ∅, for every i ∈ I .
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Wewill say thatH is aT -σ -isolated family ifH is a countable union ofT -isolated
families.

A collection N of subsets of a topological space (X,T ) is said to be a network
for the topology T if for every U ∈ T and every x ∈ U there exists N ∈ N such
that x ∈ N ⊂ U .

Definition 3.2 ([24]) A compact space (K ,T ) is said to be a Namioka–Phelps
compact if there is a T -lower-semicontinuous metric ρ on K such that the metric
topology induced by ρ has a network which is T -σ -isolated.

Theorem 3.5 (Haydon [11]) Let K be a Namioka–Phelps compact space. Then
C(K ) admits an equivalent pointwise lower-semicontinuous LUR norm.

In [20] this result is deduced from Theorem3.4, the proof is technically involved and
it is not included here.

If X is a space satisfying the hypotheses of Theorem1.2, then its dual unit ball
endowed with the weak∗ topology is a Namioka–Phelps compact [24]; using this
fact in [11] Theorem1.2 is deduced from Theorem3.5 above.

Since every σ -discrete compact space is Namioka–Phelps compact it follows the
following

Corollary 3.1 (Haydon) Let K be a σ -discrete compact space. Then C(K ) admits
an equivalent pointwise lower semicontinuous LUR norm.

If ω1 stands for the first uncountable ordinal and K is a compact space such that
K (ω1) = ∅, a compactness argument gives a countable ordinal Λ < ω1 such that
K (Λ) is finite. Since K = ⋃

γ≤Λ

(
K (γ ) \ K (γ+1)

)
and each K (γ ) \ K (γ+1) is discrete,

from Corollary3.1 we have

Theorem 3.6 (Haydon, Rogers [14]) Let K be a nonempty compact space such that
K (ω1) = ∅ then C(K ) admits an equivalent pointwise lower-semicontinuous LUR
norm.

From Theorem3.4 it follows that C(K ) has SLD for a class of compacta K
whose topology is linked with its order. In [4] it is proved that if K is a product
of totally ordered spaces, that are compact for the order topology, then C(K ) has a
pointwise lower-semicontinuous Kadets norm. We are going to see how to deduce
from Theorem3.4 the property SLD for a subclass of such compacta, namely for
totally ordered compact spaces K (see [12]).

Thus let K be a totally ordered space, that is compact for its order topology; 0,
1 denote the minimum and the maximum of K . In what follows given a, b ∈ K ,
the symbol < a, b > stands for the pair made up by these two points, and by (a, b)

the open interval whose extreme points are a and b. We say that x ∈ C(K ) ε–leaps
on the couple < a, b >, a < b, a, b ∈ K , whenever |x(b) − x(a)| > ε. Given a,
b ∈ K , the couple < a, b > is called a gate in K whenever a < b and (a, b) = ∅. If
x ε–leaps on a gate we will say that ε–jumps on it. It is easy to check that
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Remark 3.1 Let x ∈ C(K ), a, b ∈ I , a < b, M := sup[a,b] x , m := inf [a,b] x , if for
any u, v ∈ [a, b], u < v, x does not ε–jump in < u, v > then [m, M] \ x([a, b])
contains no interval of length bigger or equal than ε.

Given x : K → R and ε > 0wewill say that x can ε–leap n times on {〈ai , bi 〉}n
i=1,

ai ≤ bi , ai , , bi ∈ K , 1 ≤ i ≤ n, whenever

(i) either bi ≤ a j or b j ≤ ai , i �= j , 1 ≤ i, j ≤ n;
(ii) if x ε–jumps on < a, b > then there exists i , 1 ≤ i ≤ n, such that a = ai and

b = bi ;
(iii) x ε–leaps on each 〈ai , bi 〉, 1 ≤ i ≤ n.

Given 〈ai , bi 〉, ai , bi ∈ K , 1 ≤ i ≤ n, set

S := {0, 1} ∪ {ai : 1 ≤ i ≤ n} ∪ {bi : 1 ≤ i ≤ n} .

It is clear that there exists one, and only one, coveringI of K such that each I ∈ I
is a closed interval whose extreme points belong to S, and

(I) if I = [a, b] with a �= b then (a, b) �= ∅ and (a, b) ∩ S = ∅;
(II) I �⊂ J for I , J ∈ I with I �= J .

We say that I is the covering of K associated to {〈ai , bi 〉}n
i=1.

It is clear that given x ∈ C(K ) and ε > 0 there exists 0 = α0 < α1 < . . . < αm=1
such that the oscillation of x in each

[
αi−1, αi

]
, 1 ≤ i ≤ m, is strictly less than ε.

Then x cannot ε–leap more than m times, therefore it makes sense to consider the
maximum n(x, ε) of those n for which x can leap n times. Now it is easy to prove
that

Remark 3.2 Given x ∈ C(K ) and ε > 0 if x can ε–leapn(x, ε) times on {〈ai , bi 〉}n
i=1,

ai , bi ∈ K , 1 ≤ i ≤ n(x, ε), and if I is the covering of K associated to them, then
osc (x, I ) ≤ 3ε for every I ∈ I .

For n ∈ N let Cn,ε be the set of all x ∈ C(K ) for which n(x, ε) = n. We have that
C(K ) = ⋃+∞

n=1 Cn,ε. Given n ∈ N, ε > 0 and x0 ∈ Cn,ε, set {〈ai , bi 〉}n
i=1 satisfying

(i)–(iii) above for n(x, ε) = n, and r > 0 such that r < |x0 (bi ) − x0 (ai )| − ε, 1 ≤
i ≤ n. If W is the pointwise open neighbourhood of x0 defined by

W :=
{

y ∈ C(K ) : max
1≤i≤n

(|x0 (ai ) − y (ai )| , |x0 (bi ) − y (bi )|) < r/2

}

,

from Remark3.2 it follows that there is a finite partition of K made up by sets I such
that osc (y, I ) < 3ε for all y ∈ W ∩ Cn,ε. Then the hypotheses of Theorem3.4 for
SLD are fulfilled.

If K is a compact space endowed with an order for which is a distributive lattice
such that the supremum,∧, and the infimum,∨, are continuous, then we will say that
K is a compact distributive lattice. (A lattice (K ,∧,∨) is distributive if it satisfies
(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for every a, b, c ∈ K .) If K is a closed sublattice of
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a finite product of linearly ordered compacta it is called a finite dimensional compact
lattice. In [17], using an extension of the notion of gate, from Theorem3.4 it is
deduced the following

Theorem 3.7 Let K be a finite-dimensional compact lattice then C(K ) has the
property SLD.

We will finish with the following problem that arises in a natural way after the
previous result.

Problem 3.2 If K is a finite-dimensional compact lattice has C(K ) an equivalent
Kadets norm?

Acknowledgements Partially supported by Ministerio de Ciencia, Innovación y Universidades,
project MTM201453241P.
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A Fixed Point Theory Linked to the
Zeros of the Partial Sums of the Riemann
Zeta Function

In Honour of Manuel López-Pellicer

Gaspar Mora

Abstract For each n > 2 we consider the corresponding nth-partial sum of the
Riemann zeta function ζn(z) := ∑n

j=1 j−z andwe introduce two real functions fn(c),
gn(c), c ∈ R, associatedwith the end-points of the interval of variation of the variable
x of the analytic variety |ζ ∗

n (z)| = p−c
kn
, where ζ ∗

n (z) := ζn(z) − p−z
kn

and pkn is the
last prime not exceeding n. The analysis of fixed point properties of fn , gn and
the behavior of such functions allow us to explain the distribution of the real parts
of the zeros of ζn(z). Furthermore, the fixed points of fn , gn characterize the set
P∗ of prime numbers greater than 2 and the set C ∗ of composite numbers greater
than 2, proving in this way how close those functions from Arithmetic are. Finally,
from the study of the graphs of fn , gn we deduce important properties about the
set Rζn(z) := {�z : ζn(z) = 0} and the bounds aζn(z) := inf{�z : ζn(z) = 0}, bζn(z) :=
sup{�z : ζn(z) = 0} that define the critical strip [aζn(z), bζn(z)] × Rwhere are located
all the zeros of ζn(z).

Keywords Exponential polynomials · Zeros of the partial sums of the Riemann
zeta function · Diophantine approximation

1 Introduction

Since the non-trivial zeros of the Riemann zeta function ζ(z), until now found,
lie on the line �z = 1/2 (the assertion that all them are situated on that line is
the Riemann Hypothesis) and the trivial ones are on the real axis (they are the
negative even numbers [9, p. 8]), it seems that the zeros of ζ(z) are situated on those
two perpendicular lines. However that is not so for the zeros of the partial sums
ζn(z) := ∑n

j=1 j−z of the series
∑∞

j=1 j−z that defines the Riemann zeta function
ζ(z) on the half-plane�z > 1. Indeed, except for ζ2(z)whose zeros all are imaginary
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Fig. 1 Graphs of the zeros of ζn(z) for some values of n, with �z ∈ [−3, 1] and �z ∈ [0, 5000]

(it is immediate to check that the zeros of ζ2(z) are z2, j = (2 j+1)π i
log 2 , j ∈ Z), so aligned,

the zeros of each ζn(z) for any n > 2 are dispersed in a vertical strip forming a sort of
cloud, more or less uniform, that extends up, down and left as n increases, whereas
at the right the cloud of zeros is upper bounded (essentially) by the line �z = 1 (see
Fig. 1).

An explanation grosso modo why the zeros of the ζn(z)’s are distributed of such
a form is supported by the following facts:

(a) Any exponential polynomial (EP for short) of the form
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P(z) := 1 +
N∑

j=1

a j e
−zλ j , z ∈ C, a j ∈ C \ {0}, 0 < λ1 < . . . < λN , N ≥ 1,

(1)
has zeros as a consequence of Hadamard’s Factorization Theorem or from Pólya’s
Theorem [13, p. 71]. For N = 1, it is immediate that an EP of the form (1) has its
zeros aligned. For N > 1, noticing that for any y,

lim
x→+∞ P(z) = lim

x→−∞ Q(z) = 1,

where Q(z) := a−1
N ezλN P(z) (observe that P(z) and Q(z) have exactly the same

zeros), it follows that the zeros of P(z) are situated in a vertical strip. Therefore, for
every EP P(z) of the form (1), there exist two real numbers

aP(z) := inf{�z : P(z) = 0}, bP(z) := sup{�z : P(z) = 0}, (2)

that define an interval [aP(z), bP(z)], called critical interval associated with P(z).
Therefore the set [aP(z), bP(z)] × R, called critical strip associated with P(z), is the
minimal vertical strip that contains all the zeros of P(z).

It is immediate that any partial sum ζn(z) := ∑n
j=1 j−z , n ≥ 2, is anEPof the form

(1). Therefore the zeros of each ζn(z) are situated on its critical strip [aζn(z), bζn(z)] × R

(a detailed proof on the existence of the zeros of ζn(z) and their distribution with
respect to the imaginary axis can be found in [14, Prop. 1, 2, 3]). Regarding the bounds
aζn(z), bζn(z), taking into account that all the zeros of ζ2(z) lie on the imaginary axis,
we get the property

aζ2(z) = bζ2(z) = 0; aζn(z) < 0 < bζn(z), n > 2, (3)

that will be proved below in Lemma 2.3, Part (ii). A much more precise estimation
of such bounds is given by the formulas:

bζn(z) = 1 +
(
4

π
− 1 + o(1)

)
log log n

log n
, n → ∞, (4)

obtained by Montgomery and Vaughan [12] in 2001, by completing a previous work
of Montgomery [11] of 1983, and

aζn(z) = − log 2

log( n−1
n−2 )

+ Δn, lim sup
n→∞

|Δn| ≤ log 2, (5)

found by Mora [17] in 2015. Consequently, from (5) and (4), we have

lim
n→∞ aζn(z) = −∞, lim

n→∞ bζn(z) = 1,
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what justifies the fact of the cloud of zeros of ζn(z) moves to the left as n increases
but not to the right, where the cloud is upper bounded (essentially) by the line�z = 1
(it does not mean that some ζn(z) can have zeros with real part greater than 1; in fact,
many works prove the existence of such zeros [10, 22, 23, 25], among others).

(b) Since the zeros of an analytic function are isolated, and all the ζn(z)’s are entire
functions, by taking into account the real parts of the zeros of each ζn(z) are bounded
(the real parts are contained in the critical interval [aζn(z), bζn(z)] for every fixed n),
their imaginary parts cannot be. Furthermore, as the coefficients of every ζn(z) are
real, its zeros are conjugate. Consequently the zeros of the ζn(z)’s are located up and
down, symmetrically with respect to the real axis.

(c) From (3) we deduce that, for any n > 2, ζn(z) has zeros with positive and
negative real parts.

With the aim tounderstandwhat lawcontrols the distributionof the real projections
of the zeros of ζn(z), we introduce aFixedPoint Theory focused on two real functions,
fn and gn , for every n > 2. Firstly, such functions, by virtue of a recent result [19,
Theorem 3], allow us to have an easy characterization of the sets

Rζn(z) := {�z : ζn(z) = 0}. (6)

Secondly, among others relevant results deduced from the fixed point properties of fn
and gn , we stress those that characterize some notable arithmetic sets such asP∗ and
C ∗, the set of primes greater than 2 and the set of composite numbers greater than 2,
respectively. In this way, we show how close the arithmetic setsP∗ and C ∗ from the
law of the distribution of the zeros of the partial sums of the Riemann zeta function
are. Furthermore, our point fixed theory proves the existence of a minimal density
interval for each ζn(z), that is, a closed interval [An, bζn(z)], with aζn(z) ≤ An < bζn(z)

contained in the set Rζn(z), for any integer n > 2, whichmeans that there is no vertical
sub-trip contained in [An, bζn(z)] × R zero-free for ζn(z). Then, since it is always true
that Rζn(z) ⊂ [aζn(z), bζn(z)], when the bound An coincides with aζn(z) it follows that
Rζn(z) = [aζn(z), bζn(z)]. In this case we will say that ζn(z) has a maximum density
interval, and it is exactly the critical interval [aζn(z), bζn(z)]. Finally, we will give a
sufficient condition in terms of the quantity of fixed points of fn for ζn(z) have a
maximum density interval.

2 The Functions fn and gn

The functions fn and gn thatwe are going to introduce below, are directly linked to the
interval of variation of the variable x of the Cartesian equation of an analytic variety
associated with the nth-partial sum ζn(z) := ∑n

j=1 j−z , n > 2. First we consider the
EP

ζ ∗
n (z) := ζn(z) − p−z

kn
, n > 2, (7)
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where pkn is the last prime not exceeding n. The bounds aζ ∗
n (z), bζ ∗

n (z) defined in (2)
corresponding to ζ ∗

n (z) satisfy the following crucial property (for details see [16,
Theorem 15]) :

aζ ∗
n (z) = bζ ∗

n (z) = 0, for n = 3, 4; aζ ∗
n (z) < 0 < bζ ∗

n (z), for all n > 4. (8)

Now our objective is to analyse the behavior of the end-points of the interval of
variation of the variable x of the analytic variety, or level curve [24, p. 121], of
equation

|ζ ∗
n (z)| = p−c

kn
, n > 2, c ∈ R. (9)

To do it, we square (9) and by using elementary formulas of trigonometry we obtain
the Cartesian equation of |ζ ∗

n (z)| = p−c
kn
, namely

n∑

j=1, j �=pkn

j−2x + 2 · 1−x
n∑

j=2, j �=pkn

j−x cos(y log(
j

1
))+

2 · 2−x
n∑

j=3, j �=pkn

j−x cos(y log(
j

2
)) + · · · +

2(n − 1)−x
n∑

j=n, j �=pkn

j−x cos(y log(
j

n − 1
)) = p−2c

kn
.

(10)

It is immediate to see that for any value of y, the left-hand side of (10) tends to
+∞ as x → −∞. Then, as the right-hand side of (10) is a constant, the variation of
x is always lower bounded by a number denoted by an,c. On the other hand, the limit
of the left-hand side of (10) is 1 when x → +∞. Then, if c �= 0, the variation of x is
upper bounded by a number denoted by bn,c. Therefore, fixed an integer n > 2, we
have:

If c �= 0, the variable x in the Eq. (10) varies on an open interval (an,c, bn,c)

satisfying the properties: (a) Given x ∈ (an,c, bn,c), there is at least a point of the
level curve |ζ ∗

n (z)| = p−c
kn

with abscissa x . Exceptionally |ζ ∗
n (z)| = p−c

kn
could have

points of abscissas an,c, bn,c. In this case we will say that an,c, bn,c are accessible.
Otherwise the lines x = an,c, x = bn,c are asymptotes of the variety. (b) For x < an,c

or x > bn,c there is no point of the variety |ζ ∗
n (z)| = p−c

kn
.

If c = 0, x varies on (an,0,+∞), so bn,0 can be defined as +∞, satisfying: (c)
Given x ∈ (an,0,+∞), there is at least a point of the variety |ζ ∗

n (z)| = 1with abscissa
x . If there is a point of |ζ ∗

n (z)| = 1 with abscissa an,0, we will say that an,0 is accessi-
ble. Otherwise the line x = an,0 is an asymptote of the variety. (d) For x < an,0 there
is no point of |ζ ∗

n (z)| = 1.
We show in Fig. 2 the varieties |ζ ∗

n (z)| = p−c
kn

for n = 3 and some values of c.
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(a) Graph of | ∗
3 (z)| = 31/2. (b) Graph of | ∗

3 (z)| = 1. (c) Graph of | ∗
3 (z)| = 3−1/2.

Fig. 2 Graphs of the varieties |ζ ∗
3 (z)| = 3−c for some values of c

The end-points a3,c, b3,c corresponding to the variety |ζ ∗
3 (z)| = p−c

k3
can be easily

determined by a completely similar way to those of the variety |ζ ∗
3 (−z)| = pck3 (see

[8, p. 49]). Each bound a3,c, b3,c as a function of c is given by the formulas

a3,c = − log(1 + 3−c)

log 2
, c ∈ R; b3,c =

⎧
⎪⎨

⎪⎩

− log(3−c−1)
log 2 , if c < 0

− log(1−3−c)

log 2 , if c > 0
. (11)

By virtue of above considerations (a), (b), (c), (d), and by using an elementary
geometric reasoning, similar to that it was used to find the graphs of |ζ ∗

n (−z)| = pckn
(see [16, Proposition 8]), the graphs of the varieties |ζ ∗

n (z)| = p−c
kn

are described in
the next result.

Proposition 2.1 Fixed an integer n > 2, we have:

(i) If c > 0, |ζ ∗
n (z)| = p−c

kn
has infinitely many arc-connected components which

are closed curves and x varies on a finite interval (an,c, bn,c), where an,c, bn,c

could be accessible.
(ii) If c = 0, |ζ ∗

n (z)| = 1 has infinitely many arc-connected components which are
open curves with horizontal asymptotes of equations y = (2 j + 1) π

2 log 2 , j ∈ Z,
and x varies on the infinite interval (an,0,+∞), where an,0 could be accessible.

(iii) If c < 0, |ζ ∗
n (z)| = p−c

kn
has only one arc-connected component which is an

open curve; x varies on a finite interval (an,c, bn,c), where an,c, bn,c could be
accessible. The variable y takes all real values. Furthermore, |ζ ∗

n (z)| = p−c
kn

intersects the real axis at a unique point of abscissa bn,c, so bn,c is always
accessible when c < 0.

In Fig. 3 we show the graph of |ζ ∗
n (z)| = p−c

kn
for some values of n > 3 and c.

From Proposition 2.1, a simple consequence is deduced:
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Fig. 3 Graphs of the varieties |ζ ∗
7 (z)| = 7−c and |ζ ∗

12(z)| = 11−c for some values of c

Corollary 2.1 Fixed an integer n > 2, if u ∈ C satisfies |ζ ∗
n (u)| < p−c

kn
(in this case

we will say that u is an interior point of the variety |ζ ∗
n (z)| = p−c

kn
), then there exists

a point w of |ζ ∗
n (z)| = p−c

kn
, so an,c ≤ �w ≤ bn,c, such that �w < �u.

Definition 2.1 Given an integer n > 2, we define the real functions

fn(c) := an,c, c ∈ R; gn(c) := bn,c, c ∈ R \ {0}, (12)

where an,c, bn,c are the end-points of the interval of variation of the variable x in the
Eq. (10).

We show in Fig. 4 the graph of the functions f3(c) and g3(c), defined by the
Eq. (11), and the function f4(c).

Since |ζ ∗
n (z)| = p−d

kn
tends to |ζ ∗

n (z)| = p−c
kn

as d tends to c, it is immediate that
fn , gn are both continuous onR \ {0}, and fn is continuous on whole ofR. For c = 0,
by Part (ii) of Proposition 1 we can agree bn,0 = +∞, and then we should define
gn(0) := +∞.

Now we are ready to give a characterization of the set Rζn(z), defined in (6), by
using the functions fn and gn .

Theorem 2.1 Let n > 2 be a fixed integer. A real number c ∈ Rζn(z) if and only if
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Fig. 4 Left: Graph of the functions f3(c) (blue), g3(c) (red) and y = x (plotted). Right: Graph of
the function f4(c) (blue) and y = x (plotted)

fn(c) ≤ c ≤ gn(c). (13)

Proof If c ∈ Rζn(z), there exists a sequence (zm)m=1,2,... of zeros of ζn(z) such that
limm→∞ �zm = c. From (7), ζ ∗

n (zm) = −p−zm
kn

for each m = 1, 2, . . .. By taking the
modulus, we have |ζ ∗

n (zm)| = p−xm
kn

, where xm := �zm . This means that each zm is
a point of the variety |ζ ∗

n (z)| = p−xm
kn

, so xm ∈ [an,xm , bn,xm ] and then we get

fn(xm) = an,xm ≤ xm ≤ bn,xm = gn(xm), for all m.

Now by taking the limit whenm → ∞, noticing that limm→∞ xm = c, because of
the continuity of fn and gn , the inequalities (13) follow. Conversely, if fn(c) < c <

gn(c), by taking into account the definitions of fn , gn , the value c is in the interval
of variation of x of the variety |ζ ∗

n (z)| = p−c
kn

and then the line x = c intersects
the variety. Therefore, by applying [16, Theorem 3], c ∈ Rζn(z). If fn(c) = c or
gn(c) = c, the line x = c intersects the variety |ζ ∗

n (z)| = p−c
kn

provided that an,c

or bn,c be accessible. Otherwise the line x = c is an asymptote of |ζ ∗
n (z)| = p−c

kn
.

Therefore, in both cases, again by [19, Theorem 3], the point c ∈ Rζn(z). �

As we can easily check, the function f3(c) := a3,c, with a3,c given in (11), is
strictly increasing; this property is true for all the functions fn(c), n > 2, defined in
(12), as we prove below.

Lemma 2.1 For every integer n > 2, fn is a strictly increasing function on R.

Proof Firstly, for each fixed c ∈ R, we claim that fn satisfies

inf{|ζ ∗
n ( fn(c) + iy)| : y ∈ R} = p−c

kn
. (14)
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Indeed,we putλn,c := inf{|ζ ∗
n ( fn(c) + iy)| : y ∈ R}. By assumingλn,c < p−c

kn
, there

exists a point zc := fn(c) + iyc such that

λn,c ≤ |ζ ∗
n (zc)| < p−c

kn
,

and then it means that zc is an interior point of |ζ ∗
n (z)| = p−c

kn
. By Corollary 2.1

there exists w belonging to the variety |ζ ∗
n (z)| = p−c

kn
, so an,c ≤ �w ≤ bn,c, such that

�w < �zc = fn(c) = an,c. But this is a contradiction, and then necessarily

λn,c ≥ p−c
kn

. (15)

For ε > 0 sufficiently small, we consider the strip

Sε := {z ∈ C : an,c ≤ �z < an,c + ε},

and put
λn,c,ε := inf{|ζ ∗

n (z)| : z ∈ Sε}.

From the definition of an,c, the set Sε contains infinitely many points of the variety
|ζ ∗

n (z)| = p−c
kn
. Then λn,c,ε ≤ p−c

kn
for all ε > 0, so λn,c ≤ p−c

kn
. Therefore, according

to (15), λn,c = p−c
kn

and then (14) follows. Let d be a real number such that d < c,
so p−d

kn
> p−c

kn
. Let η be such that 0 < η < p−d

kn
− p−c

kn
. From (14), there exists some

point zη := fn(c) + iyη such that

p−c
kn

≤ |ζ ∗
n (zη)| < p−c

kn
+ η < p−d

kn
,

so zη is interior of |ζ ∗
n (z)| = p−d

kn
. ByCorollary 2.1, there exists a pointwη of |ζ ∗

n (z)| =
p−d
kn

, so an,d ≤ �wη ≤ bn,d , such that �wη < �zη. Then

fn(d) = an,d ≤ �wη < �zη = fn(c),

which definitely proves the lemma. �

In the next result we prove that fn is upper bounded by the number aζ ∗
n (z) defined

in (2) corresponding to the EP ζ ∗
n (z), defined in (7).

Lemma 2.2 For every n > 2, the function fn satisfies

fn(c) < aζ ∗
n (z) for any c ∈ R.

Proof Let c be an arbitrary real number. By taking into account the definition of
aζ ∗

n (z), there exists a sequence (zm)m=1,2,...of zeros of ζ ∗
n (z), with �zm ≥ aζ ∗

n (z), such
that

lim
m→∞ �zm = aζ ∗

n (z). (16)
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Since ζ ∗
n (zm) = 0, we get |ζ ∗

n (zm)| < p−c
kn
, for allm. Then, from Corollary 2.1, there

exists a sequence (wm)m=1,2,... of points of |ζ ∗
n (z)| = p−c

kn
, so an,c ≤ �wm ≤ bn,c,

such that �wm < �zm , for all m. Therefore, since fn(c) = an,c, we have

fn(c) ≤ �wm < �zm, for all m.

Now, by taking the limit in the above inequality when m → ∞, by (16), we get

fn(c) ≤ aζ ∗
n (z) for any c ∈ R,

implying, noticing that by Lemma 2.1 fn is strictly increasing, that fn(c) < aζ ∗
n (z)

for any c ∈ R. �

For every n > 2, let aζn(z), bζn(z) be the bounds, defined in (2), corresponding to
the EP ζn(z). The function gn , defined in (12), has the following properties.

Lemma 2.3 For every n > 2, the function gn satisfies:

(i) gn is strictly increasing on (−∞, 0) and decreasing on (0,+∞).
(ii) If n is composite, then c ≤ gn(c) for any c ∈ (−∞, bζn(z)] \ {0} and the inequal-

ity is strict for all c ∈ (−∞, bζn(z)) \ {0}; if c ∈ (bζn(z),+∞), then c > gn(c).
(iii) If n is prime, then c ≤ gn(c) for any c ∈ [aζn(z), bζn(z)] \ {0} and the inequality

is strict for all c ∈ (aζn(z), bζn(z)) \ {0}; if c ∈ (−∞, aζn(z)) ∪ (bζn(z),+∞), then
c > gn(c).

Proof Part (i). Let c, d be real numbers such that c < d < 0. From Proposition 2.1,
bn,c and bn,d are the unique points of |ζ ∗

n (z)| = p−c
kn

and |ζ ∗
n (z)| = p−d

kn
that intersect

the real axis, respectively. Therefore bn,c and bn,d satisfy the equations

n∑

m=1
m �=pkn

m−x = p−c
kn

,

n∑

m=1
m �=pkn

m−x = p−d
kn

, (17)

respectively. Each equation of (17) has only one real solution by virtue of [20, p.
46] and then, since p−c

kn
> p−d

kn
, the real solution of the first equation is obviously

greater than the second one. Therefore −bn,c > −bn,d , equivalently, bn,c < bn,d .
Consequently, gn(c) < gn(d) and then gn is strictly increasing in (−∞, 0). Let c, d
be such that c > d > 0. FromProposition 2.1, |ζ ∗

n (z)| = p−c
kn

and |ζ ∗
n (z)| = p−d

kn
have

infinitely many arc-connected components which are closed curves. Since p−c
kn

<

p−d
kn

, any point of |ζ ∗
n (z)| = p−c

kn
is interior of |ζ ∗

n (z)| = p−d
kn

, so bn,c ≤ bn,d . That is,
gn(c) ≤ gn(d), which means that gn is decreasing on (0,+∞).

Part (ii). We firstly demonstrate that the bounds aζn(z), bζn(z) defined in (2) corre-
sponding to ζn(z) satisfy the second inequality of (3), that is

aζn(z) < 0 < bζn(z) for all n > 2. (18)
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Indeed, we introduce the EP
Gn(z) := ζn(−z). (19)

In [7, Chap. 3, Theorem 3.20] was shown that

bGn(z) := sup{�z : Gn(z) = 0} > 0 for all n > 2,

now we claim that

aGn(z) := inf{�z : Gn(z) = 0} < 0 for all n > 2.

Otherwise, if all the zeros of Gn(z), say (zn,k)k=1,2,..., satisfy �zn,k ≥ 0, since
bGn(z) > 0, there is at least a zero zn,k0 with �zn,k0 > 0. Then, as Gn(z) is almost-
periodic (see for instance [4, 5] and [10, Chap. VI]), Gn(z) has infinitely many zeros
in the strip

Sε := {z : �zn,k0 − ε < �z < �zn,k0 + ε}, 0 < ε < �zn,k0 ,

and consequently
∞∑

k=1

�zn,k = +∞. (20)

However, as all the coefficients of Gn(z) are equal to 1, [21, formula (9)] applies and
thenweget

∑∞
k=1 �zn,k = O(1), contradicting (20). Therefore the claim follows, that

is, aGn(s) < 0 for all n > 2. By (19) we have aζn(z) = −bGn(z) and bζn(z) = −aGn(z),
so (18) follows.

We now consider the point bζn(z). It is immediate that bζn(z) belongs to the set Rζn(z)

defined in (6). Then from Theorem 2.1 we have bζn(z) ≤ gn(bζn(z)), so the property
c ≤ gn(c) is true for c = bζn(z). From (18) and by using that gn is decreasing on
(0,∞) by virtue of Part (i), for any c ∈ (0, bζn(z)) we have

0 < c < bζn(z) ≤ gn(bζn(z)) ≤ gn(c). (21)

Consequently, Part (ii) follows for c ∈ (0, bζn(z)]. We now assume c < 0 and n
composite, so pkn < n. If bn,c ≥ 0, then c < bn,c = gn(c) and again Part (ii) is
true. Finally, we suppose bn,c < 0. Since c < 0, bn,c satisfies the first equation
of (17) and then p−c

kn
> n−bn,c . Consequently −c > −bn,c, so c < bn,c and then

Part (ii) follows for c ∈ (−∞, bζn(z)] \ {0}. Finally, we claim that c > gn(c) when
c > bζn(z). Indeed, because of Lemma 2.2 and (8), we have fn(c) < aζ ∗

n (z) ≤ 0 for
any c. Therefore, since c > bζn(z), by (18) c is positive and then fn(c) < c. Assume
c > gn(c) is not true. Then we would have fn(c) < c ≤ gn(c) and by Theorem
2.1, c ∈ Rζn(z) ⊂ [aζn(z), bζn(z)] which means that c ≤ bζn(z). This is a contradiction
because c > bζn(z), so the claim follows. This definitely proves Part (ii).

Part (iii). We first note that, since n is prime, pkn = n. Therefore the first equation
in (17) becomes

∑n−1
m=1 m

−x = n−c. By assuming c < 0, bn,c satisfies the above
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equation and then we have
n−1∑

m=1

m−bn,c = n−c. (22)

For every n ≥ 2, we consider the number βGn(z), defined as the unique real solution of
the equation

∑n−1
m=1 m

x = nx (see [20, p. 46]). By [6, Proposition 5], βGn(z) ≥ bGn(z)

and the equality is attained for n prime. Therefore the set R of real numbers is
partitioned in two sets:

(−∞, βGn(z)] = {x ∈ R :
n−1∑

m=1

mx ≥ nx }, (23)

and

(βGn(z),∞) = {x ∈ R :
n−1∑

m=1

mx < nx }. (24)

Nowwe claim that c ≤ gn(c)when aζn(z) ≤ c < 0. Indeed, by (19), bGn(z) = −aζn(z),
so c is such that 0 < −c ≤ bGn(z) = βGn(z). Then, according to (23), we have

n−1∑

m=1

m−c ≥ n−c. (25)

Therefore, if we assume c > gn(c) = bn,c, by applying (25) and taking into account
(22), we get

n−c ≤
n−1∑

m=1

m−c <

n−1∑

m=1

m−bn,c = n−c,

which is a contradiction. Therefore c ≤ gn(c) is true for c such that aζn(z) ≤ c < 0.
Consequently, taking into account (21), it follows

c ≤ gn(c), for any c ∈ [aζn(z), bζn(z)] \ {0},

where the inequality is strict for all c of (aζn(z), bζn(z)) \ {0}. Now suppose c ∈
(−∞, aζn(z)). Then, since−c > −aζn(z) = bGn(z) = βGn(z), by applying (24) we have

n−1∑

m=1

m−c < n−c. (26)

It implies that c > gn(c). Indeed, by supposing c ≤ gn(c) = bn,c, from (22) and (26)
we are led to the following contradiction:
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n−c =
n−1∑

m=1

m−bn,c ≤
n−1∑

m=1

m−c < n−c.

Therefore c > gn(c) if c ∈ (−∞, aζn(z)). Finally, if c ∈ (bζn(z),+∞), the reasoning
used to demonstrate the end of Part (ii) of the lemma proves that c > gn(c). �

As a consequence of Lemma 2.3 we find the fixed points of the function gn .

Corollary 2.2 For every composite number n > 2, bζn(z) is the fixed point of the
function gn. If n > 2 is prime, aζn(z), bζn(z) are the fixed points of gn.

Proof Fixed an integer n > 2, by (18) aζn(z), bζn(z) �= 0, so gn is well defined at aζn(z)

and bζn(z). By applying Part (ii) of Lemma2.3 for n > 2 composite, it is immediate, by
the continuity of gn , that the unique fixed point of gn is bζn(z). If n > 2 is prime, by
Part (iii) of Lemma 2.3, we get gn(aζn(z)) = aζn(z) and gn(bζn(z)) = bζn(z). Further-
more, Part (iii) of Lemma 2.3 also proves that aζn(z), bζn(z) are the unique fixed points
of gn . �

In the next result we obtain a characterization of P∗, the set of prime numbers
greater than 2.

Theorem 2.2 An integer n > 2 belongs toP∗ if and only if aζn(z) is a fixed point of
the function gn.

Proof Assume n > 2 is prime, from Corollary 2.2, aζn(z) is a fixed point of gn .
Conversely, if

gn(aζn(z)) = aζn(z), (27)

by supposing n composite, from Part (ii) of Lemma 2.3, we have c < gn(c) for all c ∈
(−∞, bζn(z)) \ {0}. From (18), aζn(z) ∈ (−∞, bζn(z)) \ {0}. Then, aζn(z) < gn(aζn(z)).
This contradicts (27). Consequently n is a prime number and then the theorem fol-
lows. �

3 The Fixed Points of fn and the Sets Rζn(z)

For every integer n > 2, the function fn defined in (12) allows us to give a sufficient
condition to have points of the set Rζn(z), defined in (6).

Theorem 3.1 For every integer n > 2, if a point c∈[aζn(z), bζn(z)] satisfies fn(c) ≤ c,
then c ∈ Rζn(z).

Proof We first claim that

aζn(z), 0, bζn(z) ∈ Rζn(z) for every n ≥ 2. (28)
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Indeed, for n = 2, the claim trivially follows because as we have seen in Introduction
all the zeros of ζ2(z) are imaginary, so aζ2(z) = bζ2(z) = 0 and then Rζ2(z) = {0}.
Therefore we assume n > 2. By taking into account the definitions of aζn(z), bζn(z),
both numbers obviously belong to Rζn(z). Regarding the fact that 0 ∈ Rζn(z)for all
n > 2, it was proved in [18, (3.7)]. Then (28) is true. Hence it only remains to
prove the theorem for c ∈ (aGn(z), bGn(z)) \ {0}. But in this case,since by hypothesis
fn(c) ≤ c, by using Parts (ii) and (iii) of Lemma 2.3we are lead to fn(c) ≤ c < gn(c)
and then, by Theorem 2.1, c ∈ Rζn(z). �

An important conclusion is deduced from the above theorem.

Theorem 3.2 For every integer n > 2, if c belongs to Rζn(z) then

[ fn(c), c] ∩ [aζn(z), bζn(z)] ⊂ Rζn(z). (29)

If n > 2 is composite and c belongs to Rζn(z), then

[ fn(c), c] ⊂ Rζn(z). (30)

Proof Assume c ∈ Rζn(z). Then, by Theorem 2.1, fn(c) ≤ c ≤ gn(c). Therefore the
interval [ fn(c), c] is well defined. If fn(c) = c the theorem trivially follows. Suppose
fn(c) < c. Let t be a point of [aζn(z), bζn(z)] such that fn(c) < t < c. By Lemma 2.1,
fn(t) < fn(c). Therefore we have

fn(t) < fn(c) < t < c,

and then, by applying Theorem 3.1, t ∈ Rζn(z). Consequently

( fn(c), c) ∩ [aζn(z), bζn(z)] ⊂ Rζn(z),

and from the closedness of Rζn(z), (29) follows.
Assume n > 2 is composite. Since c ∈ Rζn(z) and

Rζn(z) ⊂ [aζn(z), bζn(z)],

we have c ≤ bζn(z). Furthermore, from Theorem 2.1, fn(c) ≤ c ≤ gn(c). Then, if
fn(c) = c, (30) is obviously true. Suppose fn(c) < c. Consider a number t such that
fn(c) ≤ t < c. Then, we get

fn(c) ≤ t < c ≤ bζn(z). (31)

If t = 0, by virtue of (28), t ∈ Rζn(z). If t �= 0, from (31), t ∈ (−∞, bζn(z)) \ {0}.
Then, as n is composite, by Part (ii) of Lemma 2.3, t < gn(t). On the other hand,
since t < c, from Lemma 2.1, fn(t) < fn(c) and then, again by (31), we have

fn(t) < fn(c) ≤ t < gn(t).
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Now, by applying Theorem 2.1, t ∈ Rζn(z). Consequently [ fn(c), c) ⊂ Rζn(z) and
then, since by hypothesis c ∈ Rζn(z), we get [ fn(c), c] ⊂ Rζn(z). The proof is now
completed. �

As a consequence of the two preceding results we characterize the set C ∗ of
composite numbers n > 2.

Corollary 3.1 For every n ∈ C ∗, aζn(z) is a fixed point of the function fn.

Proof Assume n ∈ C ∗. From (28), aζn(z) ∈ Rζn(z). Since n is composite and greater
than 2, by (30) we have [ fn(aζn(z)), aζn(z)] ⊂ Rζn(z). Noticing Rζn(z) ⊂ [aζn(z), bζn(z)],
necessarily fn(aζn(z)) = aζn(z). �

In the next result we prove that aζn(z) is not a fixed point of fn for any n ∈ P∗.

Corollary 3.2 For every n ∈ P∗, fn(aζn(z)) < aζn(z).

Proof For every n > 2, the variety |ζ ∗
n (z)| = p−c

kn
, for arbitrary c ∈ R, by virtue of

equation (10) is not contained in a vertical line, so the interval of the variation of
the variable x in the variety |ζ ∗

n (z)| = p−c
kn

is not degenerate. Therefore, taking into
account (12), we have

fn(c) < gn(c) for every integer n > 2, for all c ∈ R. (32)

Assume n > 2 prime. ByCorollary 2.2, gn(aζn(z)) = aζn(z). Then, by taking c = aζn(z)

in (32), the corollary follows. �

As a simple consequence from Corollary 3.2 we obtain a characterization of C ∗.

Theorem 3.3 An integer n > 2 belongs to C ∗ if and only if aζn(z) is a fixed point of
the function fn.

Proof FromCorollary 3.1, if n > 2 is composite, aζn(z) is a fixed point of fn . Recipro-
cally, if aζn(z) is a fixed point of fn , by assuming n > 2 is not composite, by applying
Corollary 3.2 we are led to a contradiction. Therefore, the theorem follows. �

The bounds aζn(z), aζ ∗
n (z) satisfy the following inequality.

Proposition 3.1 For every integer n > 2, aζn(z) < aζ ∗
n (z).

Proof By taking c = aζ ∗
n (z) in Lemma 2.2 we have

fn(a
∗
ζn(z)) < a∗

ζn(z) for all n > 2. (33)

Again from Lemma 2.2, for c = aζn(z), we get fn(aζn(z)) < a∗
ζn(z)

. If n is composite,
by Corollary 3.1 fn(aζn(z)) = aζn(z) and from (33) we then deduce that aζn(z) < a∗

ζn(z)
.

This proves the proposition for n composite.
Assume n is prime. Then pkn = n and, from (7), ζ ∗

n (z) = ζn−1(z), so aζ ∗
n (z) =

aζn−1(z). Now we consider the function Gn(z) defined in (19). As we have seen in the
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proof of Lemma 2.3, because of [6, Proposition 5] we have bGn(z) ≤ βGn(z) for all
n ≥ 2 and the equality is attained for n prime. Noticing [17, Lemma 1], βGn−1(z) <

βGn(z) for all n > 2. Then we get

bGn−1(z) ≤ βGn−1(z) < βGn(z) = bGn(z), for all prime n > 2, (34)

or equivalently

−bGn−1(z) ≥ −βGn−1(z) > −βGn(z) = −bGn(z), for all prime n > 2.

Now, since from (19) aζn(z) = −bGn(z) for all n ≥ 2, from the above chain of
inequalities we deduce

aζ ∗
n (z) = aζn−1(z) = −bGn−1(z) > −bGn(z) = aζn(z), for all prime n > 2.

The proof is now completed. �

Corollary 3.3 For every integer n > 2, a∗
ζn(z)

∈ Rζn(z).

Proof For n = 3, 4, because of (8) we have a∗
ζn(z)

= 0. Therefore, from (28),
a∗

ζn(z)
∈ Rζn(z) for n = 3, 4. Assume n > 4. By Proposition 3.1, aζn(z) < aζ ∗

n (z) for
all n > 2. Then, from (8) and (18), a∗

ζn(z)
∈ [aζn(z), bζn(z)] for all n > 4. Therefore, by

using (33) and applying Theorem 3.1, a∗
ζn(z)

∈ Rζn(z) for all n > 4. This proves the
corollary. �

In the next result we prove the existence of a minimal density interval for every
ζn(z), n > 2.

Theorem 3.4 For every integer n > 2 there exists a number An ∈ [aζn(z), aζ ∗
n (z)) such

that [An, bζn(z)] ⊂ Rζn(z).

Proof Firstly we note that, by Proposition 3.1, the interval [aζn(z), aζ ∗
n (z)) is well

defined. On the other hand, by (18) bζn(z) > 0 and, by (8) aζ ∗
n (z) ≤ 0 for all n > 2, so

by Proposition 3.1 we have

aζn(z) < aζ ∗
n (z) ≤ 0 < bζn(z), for all n > 2. (35)

This means that [aζ ∗
n (z), bζn(z)] is a non-degenerate sub-interval of [aζn(z), bζn(z)] for

any n > 2. By Lemma 2.2, we have fn(bζn(z)) < aζ ∗
n (z). Then, according to (35), we

get
fn(bζn(z)) ≤ aζ ∗

n (z) < bζn(z),

so
[aζ ∗

n (z), bζn(z)] ⊂ [ fn(bζn(z)), bζn(z)].

Now, since bζn(z) ∈ Rζn(z), because of Theorem 3.2 we obtain

[aζ ∗
n (z), bζn(z)] ⊂ [ fn(bζn(z)), bζn(z)] ∩ [aζn(z), bζn(z)] ⊂ Rζn(z). (36)
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This implies that aζ ∗
n (z) ∈ Rζn(z) (observe that from Corollary 3.3 we already knew

that aζ ∗
n (z) ∈ Rζn(z))) so, again by Theorem 3.2, we have

[ fn(aζ ∗
n (z)), aζ ∗

n (z) ∩ [aζn(z), bζn(z)] ⊂ Rζn(z). (37)

If fn(aζ ∗
n (z)) ≤ aζn(z), from (37) we deduce that [aζn(z), aζ ∗

n (z)] ⊂ Rζn(z) and then, by
(36) we get [aζn(z), bζn(z)] ⊂ Rζn(z). In this case by taking An = aζn(z), the theorem
follows. Moreover, ζn(z) has a maximum density interval and it coincides with its
critical interval [aζn(z), bζn(z)].

If fn(aζ ∗
n (z)) > aζn(z), from (37) we deduce

[ fn(aζ ∗
n (z)), aζ ∗

n (z)] ⊂ Rζn(z). (38)

Therefore fn(aζ ∗
n (z)) ∈ Rζn(z) and, again by Theorem 3.2, we have

[ f (2)
n (aζ ∗

n (z)), fn(aζ ∗
n (z))] ∩ [aζn(z), bζn(z)] ⊂ Rζn(z), (39)

where f (2)
n denotes fn composed with itself. Then, if f (2)

n (aζ ∗
n (z)) ≤ aζn(z), from

(39), we have [aζn(z), fn(aζ ∗
n (z))] ⊂ Rζn(z) and by (38), we get [aζn(z), aζ ∗

n (z)] ⊂ Rζn(z).
Therefore taking into account (36) we obtain [aζn(z), bζn(z)] ⊂ Rζn(z). Consequently,
by taking An = aζn(z), the theorem follows and ζn(z) has a maximum density inter-
val that coincides with its critical interval [aζn(z), bζn(z)]. If f (2)

n (aζ ∗
n (z)) > aζn(z), from

(39), we get
[ f (2)

n (aζ ∗
n (z)), fn(aζ ∗

n (z))] ⊂ Rζn(z).

Therefore f (2)
n (aζ ∗

n (z)) ∈ Rζn(z) and, again by Theorem 3.2, we have

[ f (3)
n (aζ ∗

n (z)), f (2)
n (aζ ∗

n (z))] ∩ [aζn(z), bζn(z)] ⊂ Rζn(z),

and so on. Therefore, by denoting f (k)
n = f (k−1)

n ◦ fn for k ≥ 2 and repeating the
process above, we are led to one of the two cases:

(i) There is some k ≥ 1 such that f (k)
n (aζ ∗

n (z)) ≤ aζn(z). In this case, as we have
seen An = aζn(z) and then ζn(z) has a maximum density interval that coincides with
its critical interval [aζn(z), bζn(z)].

(ii) For all k, f (k)
n (aζ ∗

n (z)) > aζn(z) and then, by virtue of Lemma 2.1 and (33), we
have

aζn(z) < · · · < f (k)
n (aζ ∗

n (z)) < · · · < f (2)
n (aζ ∗

n (z)) < fn(aζ ∗
n (z)) < aζ ∗

n (z).

Consequently there exists limk→∞ f (k)
n (aζ ∗

n (z)) and then, by defining

An := lim
k→∞ f (k)

n (aζ ∗
n (z)),

we have aζn(z) ≤ An < aζ ∗
n (z). On the other hand, by reiterating Theorem 3.2, we get



258 G. Mora

[ f (k)
n (aζ ∗

n (z)), f (k−1)
n (aζ ∗

n (z))] ⊂ Rζn(z), for all k ≥ 2. (40)

Then taking into account (36) and (38), by (40) we deduce that [An, bζn(z)] ⊂ Rζn(z).
This definitely proves the theorem. �
Remark 3.5 Observe that if the case (ii) of above theorem holds, An will be a fixed
point of fn by virtue of the continuity of fn . Then if n ∈ C ∗, by Theorem 14, the
point An could be aζn(z). But if n ∈ P∗, from Corollary 3.2, An can not be equal to
aζn(z).

In the next result we prove that the number of fixed points of fn influences on the
existence of a maximum density interval of ζn(z).

Theorem 3.6 For every integer n > 2, if fn has at most a fixed point in the interval
(aζn(z), aζ ∗

n (z)) then ζn(z) has a maximum density interval that coincides with the
critical interval [aζn(z), bζn(z)] associated with ζn(z).

Proof We first assume fn has no fixed point in (aζn(z), aζ ∗
n (z)). Then we claim

that fn(c) < c for all c ∈ (aζn(z), aζ ∗
n (z)]. Indeed, we define the function hn(c) :=

fn(c) − c. Then hn is continuous on R, and by virtue of Lemma 2.2 and (33),
hn is negative on [aζ ∗

n (z),∞). Then, since fn by hypothesis has no fixed point on
(aζn(z), aζ ∗

n (z)), hn(c) has no zero on (aζn(z),∞). Consequently, hn(c) < 0 for any
c ∈ (aζn(z),∞) and in particular we have

fn(c) < c for all c ∈ (aζn(z), aζ ∗
n (z)]. (41)

Hence the claim follows. On the other hand, by Corollary 3.3 aζ ∗
n (z) ∈ Rζn(z) ⊂

[aζn(z), bζn(z)], so
(aζn(z), aζ ∗

n (z)] ⊂ [aζn(z), bζn(z)].

Consequently, by taking into account (41) and by applying Theorem 3.1 we have

(aζn(z), aζ ∗
n (z)] ⊂ Rζn(z).

Therefore, since from (28) aζn(z) ∈ Rζn(z), we get [aζn(z), aζ ∗
n (z)] ⊂ Rζn(z) and then

by (36) it follows that [aζn(z), bζn(z)] ⊂ Rζn(z). As always is true that Rζn(z) ⊂
[aζn(z), bζn(z)]wededuce that Rζn(z) = [aζn(z), bζn(z)], i.e. ζn(z) has amaximumdensity
interval. Then the theorem follows in this case.

We now suppose fn has only one fixed point, say c1, in (aζn(z), aζ ∗
n (z)). Then

the function hn(c) := fn(c) − c, continuous on R, is non-positive on [c1,+∞) by
virtue of Lemma 2.2. Therefore, in particular, fn(c) ≤ c for all c ∈ [c1, aζ ∗

n (z)]. Since
[c1, aζ ∗

n (z)] ⊂ [aζn(z), bζn(z)], by applying the Theorem 3.1 at any c ∈ [c1, aζ ∗
n (z)] we

have
[c1, aζ ∗

n (z)] ⊂ Rζn(z). (42)

Now we claim that hn is negative on (aζn(z), c1). Indeed, if we assume that hn is
non-negative on (aζn(z), c1), since c1 is the unique fixed point of fn in (aζn(z), aζ ∗

n (z)),
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then fn(c) > c for all c ∈ (aζn(z), c1). Then, by Theorem 2.1, c /∈ Rζn(z) for all c ∈
(aζn(z), c1). This means that ζn(z) has no zero on the strip (aζn(z), c1) × R. But, taking
into account that aζn(z) ∈ Rζn(z), aζn(z) would be an isolated point of Rζn(z) and it
contradicts [2, Corollary 3.2]. Therefore the claim follows. Consequently, fn(c) <

c for all c ∈ (aζn(z), c1) and then, by Theorem 3.1, (aζn(z), c1) ⊂ Rζn(z). From the
closedness of Rζn(z), we have

[aζn(z), c1] ⊂ Rζn(z). (43)

Then, from (43), (42) and (36) we deduce that [aζn(z), bζn(z)] ⊂ Rζn(z). Consequently,
ζn(z) has a maximum density interval and it coincides with its critical interval
[aζn(z), bζn(z)]. �

As a first application of the usefulness of Theorem 3.6 we prove a result on ζ3(z)
(the same result can be also deduced from others methods as we can see in [13, 15]).

Corollary 3.4 ζ3(z) has amaximum density interval and it coincides with its critical
interval [aζ3(z), bζ3(z)].
Proof The function f3(c) := a3,c is explicitly given by the formula (11). Then it is
immediate to check that f3(c) < c for all c ∈ R. Therefore f3(c) has no fixed point
and then, from Theorem 3.6, ζ3(z) has a maximum density interval and it coincides
with [aζ3(z), bζ3(z)]. �

4 The Fixed Point Theory and the Maximum Density
Interval for ζn(z)

In this section our aim is to give a very useful result (see below Lemma 4.1) based on
Kronecker Theorem [8, Theorem 444] that allows us to apply our fixed point theory
to prove the existence of a maximum density interval.

Let P := {p j : j = 1, 2, 3, . . .} be the set of prime numbers and U := {1,−1}.
For every map δ : P → U , we define the function ωδ : N → U as

ωδ(1) := 1, ωδ(m) := (δ(pk1))
α1 . . . (δ(pkl(m)

))αl(m) , m > 1, (44)

where (pk1)
α1 . . . (pkl(m)

)αl(m) , with α1, …, αl(m) ∈ N, is the decomposition of m in
prime factors. Let Ω be the set of all the ωδ’s defined in (44). Observe that all
functions of Ω are completely multiplicative (see for instance [1, p. 138]).

Lemma 4.1 Let n > 2 a fixed integer, pkn the last prime not exceeding n and fn
defined in (12). Given an arbitrary ωδ ∈ Ω , the inequality

p−c
kn

≤ |
n∑

m=1
m �=pkn

ωδ(m)m− fn(c)|, (45)
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holds for all c ∈ R.

Proof Because of (7), ζ ∗
n (z) := ∑n

m=1,m �=pkn
m−z . Therefore, given c ∈ R we have

ζ ∗
n ( fn(c) + iy) =

n∑

m=1
m �=pkn

m− fn(c)(cos(y logm) − i sin(y logm)).

Then taking into account (14),

p−c
kn

≤ |
n∑

m=1
m �=pkn

m− fn(c)(cos(y logm) − i sin(y logm))|, for all y ∈ R. (46)

Given n > 2, we define Jn := {1, 2, 3, . . . π(n)}, where π(n) denotes the number of
primenumbers not exceedingn.As the set {log p j : j ∈ Jn} is rationally independent,
the set { log p j

2π : j ∈ Jn} is also rationally independent. Then by Kronecker Theorem
[8, Theorem 444] fixed an arbitrary set of real numbers {γ j : j ∈ Jn} and given an
integer N ≥ 1, there exists a real number yN > N and integers m j,N , such that

|yN log p j

2π
− m j,N − γ j | <

1

N
, for all j ∈ Jn. (47)

For each n > 2, we define the setPn := {p j ∈ P : p j ≤ n}. Then, given amapping
δ := Pn → U , we consider the set {γ j : j ∈ Jn} where γ j = 1 for those j such that
δ(p j ) = 1 and γ j = 1/2 for those j such that δ(p j ) = −1. Then by applying the
aforementioned Kronecker Theorem for N = 1, 2 . . ., we can determine a sequence
(yN )N satisfying, by virtue of (47), that

cos(yN log p j ) → 1, sin(yN log p j ) → 0 as N → ∞, for p j with δ(p j ) = 1,

and

cos(yN log p j ) → −1, sin(yN log p j ) → 0 as N → ∞, for p j with δ(p j ) = −1.

Therefore for each m such that 1 ≤ m ≤ n we get

cos(yN logm) → ωδ(m), sin(yN logm) → 0 as N → ∞. (48)

Now, we substitute y by yN in (46) andwe take the limit as N → ∞. Then, according
to (48), the inequality (45) follows. �

Theorem 4.1 For all prime numbers n > 2 except at most for a finite quantity, fn
has no fixed point in the interval (aζn(z), aζ ∗

n (z)).
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Proof Corollary 3.4 proves the theorem for n = 3. Assume n > 3 prime. The num-
bers n − 2 and n − 1 are relatively primes and both cannot be perfect squares, so there
existsωδ ∈ Ω such thatωδ(n − 2)ωδ(n − 1) = −1. Since n is prime, aζ ∗

n (z) = aζn−1(z)

and pkn = n. By supposing the existence of a fixed point cn ∈ (aζn(z), aζn−1(z)) for the
function fn for infinitelymany prime n > 3,we are led to the following contradiction:

By (45) we have

n−cn ≤ | ± ((n − 1)−cn − (n − 2)−cn ) +
∑

m∈Pn−3,ωδ

m−cn −
∑

m /∈Pn−3,ωδ

m−cn |, (49)

where, for a fixed integer n > 2 and ωδ ∈ Ω , the set Pn,ωδ
is defined as

Pn,ωδ
:= {m : 1 ≤ m ≤ n such that ωδ(m) = 1}.

On the other hand, limn→∞
aζn (z)

n = − log 2 (see [3, Theorem 1] and [17, Theorem
2]). Then noticing that aζn(z) < cn < aζn−1(z), we get

lim
n prime
n→∞

cn
n − 1

= − log 2.

Therefore, for each fixed j ≥ 0, it follows

lim
n prime
n→∞

(
n − j

n − 1

)−cn

= 2− j+1. (50)

Now, dividing by (n − 1)−cn the inequality (49), we have

(
n

n − 1

)−cn

≤
∣
∣
∣
∣ ±

(

1 −
(
n − 2

n − 1

)−cn )

+
∑

m∈Pn−3,ωδ

(
m

n − 1

)−cn

−
∑

m /∈Pn−3,ωδ

(
m

n − 1

)−cn ∣
∣
∣
∣

≤
∣
∣
∣
∣ ±

(

1 −
(
n − 2

n − 1

)−cn )∣
∣
∣
∣ (51)

+
∣
∣
∣
∣

∑

m∈Pn−3,ωδ

(
m

n − 1

)−cn

−
∑

m /∈Pn−3,ωδ

(
m

n − 1

)−cn ∣
∣
∣
∣

≤
(

1 −
(
n − 2

n − 1

)−cn
)

+
n−1∑

j=3

(
n − j

n − 1

)−cn

.

According to (50), by taking the limit in (51) for n prime, n → ∞, it follows that
the limit of the left-hand side of (51) is 2 whereas the limit of the right-hand side



262 G. Mora

one is 1/2 + ∑∞
j=3 2

− j+1 = 1. This is the contradiction desired. Hence the theorem
follows. �

As a consequence from Theorem 4.1, an important property of the partial sums
of order n prime can be deduced.

Theorem 4.2 For all prime numbers n > 2 except at most for a finite quantity,
ζn(z) has a maximum density interval and it coincides with its critical interval
[aζn(z), bζn(z)].
Proof It is enough to apply Theorems 3.6 and 4.1. �

5 Numerical Experiences

Simple numerical experiences carried out for some values of n in inequality (45) joint
with the application of Theorem 3.6 and Lemma 4.1, allows us to prove the existence
of a maximum density interval of ζn(z) for all 2 ≤ n ≤ 8. Indeed: For n = 2, we have
already seen in the Introduction section that the zeros of ζ2(z) are all imaginary, so
the set Rζ2(z) = {0} and then aζ2(z) = bG2(z) = 0 which means that we trivially have

Rζ2(z) = [aζ2(z), bζ2(z)].

Therefore ζ2(z) has a maximum density interval (in this case degenerate).
For n = 3, Corollary 3.4 proves that

Rζ3(z) = [aζ3(z), bζ3(z)]

and then ζ3(z) has a maximum density interval. In this case the end-points aζ3(z),
bζ3(z) can be easily computed, being aζ3(z) = −1 and bζ3(z) ≈ 0.79. Thus, Rζ3(z) ≈
[−1, 0.79].

For n = 4, we firstly claim that f4 has no fixed point in the interval (aζ4(z), aζ ∗
4 (z)).

Indeed, by (8), aζ ∗
4 (z) = 0 and from (18), aζ4(z) < 0. Therefore we only study the

behavior of f4(c) for c < 0. We recall that from (12) f4(c) = a4,c, where a4,c is the
left end-point of the interval of variation of the variable x in the Cartesian equation
of the variety |ζ ∗

4 (z)| = p−c
k4
. By taking into account formula (10) for n = 4, the

equation of that variety is

1 + 2−2x + 4−2x + 2 · 2−x (1 + 4−x ) cos(y log 2) + 2 · 4−x cos(y log 4)) = 3−2c.

(52)
By putting cos(y log 4)) = 2 cos2(y log 2) − 1 in (52) and solving it for cos(y log 2)
we have

cos(y log 2) = −(1 + 4−x ) ±
√

(2 · 3−c)2 − (
√
3(4−x − 1))2

4 · 2−x
.
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Then thevariable x must satisfy the inequality (
√
3(4−x − 1))2 ≤ (2 · 3−c)2 which

is equivalent to say that

4−x ∈ [1 − 2 · 3−c− 1
2 , 1 + 2 · 3−c− 1

2 ]. (53)

Since 1 − 2 · 3−c− 1
2 < 0 for all c < 0, by noting that 4−x > 0 for any x , (53) is in

turn equivalent to

− log(1 + 2 · 3−c− 1
2 )

log 4
≤ x .

Hence the minimum value for x is − log(1+2·3−c− 1
2 )

log 4 , so a4,c = − log(1+2·3−c− 1
2 )

log 4 and con-
sequently for c < 0 the function f4(c) is given by the formula

f4(c) = − log(1 + 2 · 3−c− 1
2 )

log 4
.

Then the fixed points of f4(c) are the solutions of the equation f4(c) = c, that is

1 + 2 · 3−c−1/2 = 4−c. (54)

According to [20, p. 46] Eq. (54) has a unique real solution, say c0, whose approached
value is −1.21. On the other hand, since n = 4 belongs to C ∗, by Theorem 3.3 aζ4(z)

is a fixed point of the function f4. Since c0 is the unique solution of f4(c) = c,
necessarily aζ4(z) = c0 ≈ −1.21 and then f4 has no fixed point in (aζ4(z), aζ ∗

4 (z)).
Hence the claim follows. Then, by applying Theorem 3.6, ζ4(z) has a maximum
density interval and consequently

Rζ4(z) = [aζ4(z), bζ4(z)].

For n = 5 we take a mapping δ : P → U satisfying δ(2) = δ(3) = −1 and con-
sider its correspondingωδ : N → U defined in (44). Assume f5 has some fixed point,
say c0, in the interval (aζ5(z), aζ ∗

5 (z)). By (8) aζ ∗
5 (z) < 0 and then (aζ5(z), aζ ∗

5 (z)) con-
tains only negative numbers, so c0 < 0. By applying (45) for n = 5, f5 and the above
defined ωδ , under the assumption f5(c0) = c0, we have

5−c0 ≤ |1 − 2−c0 − 3−c0 + 4−c0 |.

But this inequality is clearly impossible for any c0 < 0. Hence f5 has no fixed point in
(aζ5(z), aζ ∗

5 (z)). Then, by applying Theorem 3.6, ζ5(z) has a maximum density interval
and consequently

Rζ5(z) = [aζ5(z), bζ5(z)].

For n = 6, we take a mapping δ : P → U satisfying δ(2) = −1, δ(3) = 1 and
consider its corresponding ωδ : N → U defined in (44). Assume f6 has some fixed
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point, say c0, in the interval (aζ6(z), aζ ∗
6 (z)). By (8) aζ ∗

6 (z) < 0 and then (aζ6(z), aζ ∗
6 (z))

contains only negative numbers, so c0 < 0. By applying (45) for n = 6, f6 and the
above defined ωδ , under the assumption f6(c0) = c0, we have

5−c0 ≤ |1 − 2−c0 + 3−c0 + 4−c0 − 6−c0 |. (55)

Regarding inequality (55) we consider the two possible cases: (a) 1 − 2−c0 + 3−c0 +
4−c0 − 6−c0 ≥ 0, (b) 1 − 2−c0 + 3−c0 + 4−c0 − 6−c0 < 0. In (a), according to (55),
we have the inequality

1 + 3−c0 + 4−c0 ≥ 2−c0 + 5−c0 + 6−c0 ,

that as we easily can check is not possible for any c0 < 0. In (b), because of (55), we
get

1 + 3−c0 + 4−c0 + 5−c0 ≤ 2−c0 + 6−c0 . (56)

By a direct computation we see that (56) is only true for c0 ≤ aζ6(z) ≈ −2.8 (observe
that for c0 ≈ −2.8, inequality (56) becomes an equality and since n = 6 belongs
to C∗, by Theorem 3.3, aζ6(z) is a fixed point of the function f6). Therefore for
c0 > aζ6(z), (56) is not possible. Hence f6 has no fixed point in (aζ6(z), aζ ∗

6 (z)). Then,
by applying Theorem 3.6, ζ6(z) has a maximum density interval and consequently

Rζ6(z) = [aζ6(z), bζ6(z)].

For n = 7, we take a mapping δ : P → U satisfying δ(2) = δ(3) = δ(5) =
−1 and consider its corresponding ωδ : N → U defined in (44). Assume f7 has
some fixed point, say c0, in the interval (aζ7(z), aζ ∗

7 (z)). By (8) aζ ∗
7 (z) < 0 and then

(aζ7(z), aζ ∗
7 (z)) contains only negative numbers, so c0 < 0. By applying (45) for n = 7,

f7 and the above defined ωδ , under the assumption f7(c0) = c0, we have

7−c0 ≤ |1 − 2−c0 − 3−c0 + 4−c0 − 5−c0 + 6−c0 |. (57)

We consider the two possible cases: (a) 1 − 2−c0 − 3−c0 + 4−c0 − 5−c0 + 6−c0 ≥ 0,
(b) 1 − 2−c0 − 3−c0 + 4−c0 − 5−c0 + 6−c0 < 0. In (a), according to (57), we have the
inequality

1 + 4−c0 + 6−c0 ≥ 2−c0 + 3−c0 + 5−c0 + 7−c0 ,

that is clearly impossible for any c0 < 0. In (b), because of (57), we get

1 + 4−c0 + 6−c0 + 7−c0 ≤ 2−c0 + 3−c0 + 5−c0 . (58)

It is immediate to check that inequality (58) is false for any c0 < 0. Hence f7 has no
fixed point in (aζ7(z), aζ ∗

7 (z)). Then, by applying Theorem 3.6, ζ7(z) has a maximum
density interval and consequently
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Rζ7(z) = [aζ7(z), bζ7(z)].

For n = 8, we take a mapping δ : P → U satisfying δ(2) = 1, δ(3) =
δ(5) = −1 and consider its corresponding ωδ := N → U defined in (44). Assume
f8 has some fixed point, say c0, in the interval (aζ8(z), aζ ∗

8 (z)). By (8) aζ ∗
8 (z) < 0 and

then (aζ8(z), aζ ∗
8 (z)) contains only negative numbers, so c0 < 0. By applying (45) for

n = 8, f8 and the above defined ωδ , under the assumption f8(c0) = c0, we have

7−c0 ≤ |1 + 2−c0 − 3−c0 + 4−c0 − 5−c0 − 6−c0 + 8−c0 |. (59)

Regarding inequality (59) we consider the two possible cases: (a) 1 + 2−c0

− 3−c0 + 4−c0 − 5−c0 − 6−c0 + 8−c0 < 0, (b) 1 + 2−c0 − 3−c0 + 4−c0 − 5−c0

− 6−c0 + 8−c0 ≥ 0. In case (a), according to (59), we have the inequality

3−c0 + 5−c0 + 6−c0 ≥ 1 + 2−c0 + 4−c0 + 7−c0 + 8−c0 ,

which is clearly impossible for any c0 < 0. In case (b), because of (59), we get

1 + 2−c0 + 4−c0 + 8−c0 ≥ 3−c0 + 5−c0 + 6−c0 + 7−c0 . (60)

By an elementary analysis we can see that (60) is only true for c0 ≤ aζ8(z) ≈ −4.1
(observe that for c0 ≈ −4.1 inequality (60) becomes an equality and since n = 8
belongs to C∗, by Theorem 3.3, aζ8(z) ≈ −4.1 is a fixed point of the function f8).
Therefore for c0 ∈ (aζ8(z), 0), (60) is not possible. Then, since by (8) aζ ∗

8 (z) < 0, in
particular (60) is not possible in (aζ8(z), aζ ∗

8 (z)). Hence f8 has no fixed point in the
interval (aζ8(z), aζ ∗

8 (z)). Then, by applying Theorem 3.6, ζ8(z) has a maximum density
interval and consequently

Rζ8(z) = [aζ8(z), bζ8(z)].
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On Lindelöf Σ-Spaces

In Honour of Manuel López-Pellicer

María Muñoz-Guillermo

Abstract We revisit the notion of Lindelöf Σ-space giving a general overview
about this question. For that, we deal with the Lindelöf property to introduce Lin-
delöf Σ-spaces in order to make a description of the “goodness” of such a type of
spaces,making special emphasis in the duality between X andCp(X) respect to some
topological properties, more specifically, topological properties in which different
cardinal functions are involved. Classical results are linked with more recent results.

Keywords Lindelöf number · Cardinal inequalities · Topological properties

1 Notation and Terminology

The set-theoretic notation which will be used follows [19, 20]. Cardinal numbers κ

andm are the initial ordinals thatwill denote always infinite cardinals,ω is the smallest
infinite cardinal number. The cardinal number assigned to the set of all real numbers
is denoted by c. κ+ is the smallest cardinal number after κ . The cardinality of a set
E is denote by |E |, P(E) is the power set of E and [E]n = {A : A ⊂ E, |A| = n}.
Respect to the notation refereed to topology the basic references used are [14, 22].

Let (X,T ) be a topological space, where X is a set and T is a topology. A
family of sets in N it is called a network for X if for every point x ∈ X and any
neighborhoodU of x there exists N ∈ N such that x ∈ N ⊂ U . The network weight
of a space X , nw(X), is defined as the smallest cardinal number of a network in X .
A family of open sets in B it is called a basis if for every non-empty open subset
U ∈ T of X can be represented as the union of a subfamily of B. This definition
is equivalent to the property that for each open set U ∈ T such that x ∈ U there
exists B ∈ B such that x ∈ B ⊂ U . It is clear that a basis is a network such that the
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elements of the family are open. The weight of a topological space (X,T ), denoted
by w(X,T ), is the smallest cardinal number of the cardinality of a basis.

Let x ∈ X be a fixed point of a topological space (X,T ) a family, B(x) ⊂ T of
open subsets is called a basis of neighborhoods at x if for every open setU ∈ T such
that x ∈ U , there exists V ∈ B(x) such that x ∈ V ⊂ U . The character of a point x ,
denoted by χ(X, x) is the smallest cardinal number of the cardinality of a basis of
neighborhoods at x . The character of a topological space (X,T ) is the supremum
of all cardinal numbers χ(x, X) for x ∈ X , and it will be denoted by χ(X). We will
write X a topological space instead of (X, τ ) for short.

Definition 1.1 (p. 12 [14]) A topological space X is said to be

1. first-countable or satisfies the first axiom of countability if χ(X) ≤ ω, this means
that each point has a countable basis of neighborhoods.

2. second-countable or satisfies the second axiom of countability if w(X) ≤ ω, that
is, X has a countable basis.

The following definitions are standard and can be found in [14].

Definition 1.2 (pp. 37–40 [14]) A topological space X is called a

1. T1-space if for every pair of different points x, y ∈ X there exists an open set
U ⊂ X such that x ∈ U and y /∈ U .

2. T2-space, or aHausdorff space, if for every pair of different points x, y ∈ X there
exist open sets U1, U2 ⊂ X such that x ∈ U1, y ∈ U2 and U1 ∩U2 = ∅.

3. T3-space, or a regular space, if X is a T1-space and for every x ∈ X and every
closed set F ⊂ X such that x /∈ F there exist open setsU1, U2 such that x ∈ U1,
F ⊂ U2 and U1 ∩U2 = ∅.

4. T3 1
2
-space, or a Tychonoff space, or a completely regular space, if X is a T1-space

and for every x ∈ X and every closed set F ⊂ X such that x /∈ F there exists
a continuous function f : X → I such that f (x) = 0 and f (y) = 1 for y ∈ F .
Every Tychonoff space is a regular space.

5. T4-space, or a normal space, if X is a T1-space an for every pair of disjoint closed
subsets A, B ⊂ X there exist open sets U1, U2 ⊂ X such that A ⊂ U1, B ⊂ U2

and U1 ∩U2 = ∅.
6. T5-space, or a completely normal space, if X is a T1-space and for every pair

of subsets A and B of X such that A ∩ B = A ∩ B = ∅ there exists open sets
U1, U2 ⊂ X such that A ⊂ U1, B ⊂ U2 and U1 ∩U2 = ∅.
All topological spaces in this chapter are supposed to be Hausdorff.

2 Lindelöf Spaces

It is well-known that a regular topological space X is a Lindelöf space, or has the
Lindelöf property, if every open cover of X has a countable subcover. In particular,
every compact space is a Lindelöf space. This is a descriptive well-known property
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that can be found along the bibliography thoroughly. According to R. Engelking [14],
the notion of a Lindelöf space was introduced by Alexandroff and Urysohn in [1],
although the property was named after Lindelöf [23] who proved in 1903 that any
open covering of a subset F of Rn contains a countable subcovering.

The existence of a countable number of open sets is a level immediately close to
the notion of compact space, in which a finite number of open sets are enough to
cover it, and as we will see the number of open sets to cover a topological space is
enough to establish bounds about other cardinal functions.

Basic properties related with axioms of separability follow. Thus,

Proposition 2.1 (Theorem 3.8.1 [14]) Every regular second countable space is a
Lindelöf space.

The converse does not hold in general.

Example 2.1 Sorgenfrey line is a Lindelöf space which is not second countable.

Proof On the set of the real numbers X it is considered the right half-open interval
topology, it means that τ is the family of all sets of the form [a, b), where a, b ∈ X .
The Sorgenfrey lineS := (X, τ ) is a Lindelöf completely normal space which is not
second countable since if S = {[xi , yi ) : i ∈ Z

+} is a countable set of open sets, then
there exists a ∈ X such that a �= xi for each i ∈ Z

+, thus, for any b > a, we have that
[a, b) is an open set such that is not a union of elements of S [36, Counterexample
84, pp. 103–105]. Observe that Sorgenfrey line is not σ -compact since each compact
set is countable and the real numbers is not countable. (X, τ ) is Lindelöf. Let {Uα} be
an open covering of X . Let {int(Uα)} be the family obtained considering the interior
of Uα in the usual topology of the real numbers. Then P = ∪αint(Uα) is Lindelöf
and there exists a countable subfamily such that P = ∪n∈Nint(Uαn ) = ∪αint(Uα).
Let A := X \ P , then A is a countable set which can be covered by a countable
subfamily of {Uα} and a countable subcovering can be obtained from the original
one.

On the contrary, Lindelöf property implies T4-space as it is stated in the following
proposition. The proof can be found in [14].

Proposition 2.2 (Theorem 3.8.2 [14]) Every Lindelöf space is normal.

In the case of regular spaces to be Lindelöf is close to have the countable inter-
section property, namely,

Proposition 2.3 (Theorem 3.8.3 [14]) A regular space X is Lindelöf if and only if
every family of closed subsets of X which has the countable intersection, that is, each
family F of closed sets such that for each countable subfamily F ′ ⊂ F holds that
∩F∈F ′ F �= ∅, has non-empty intersection.

In the frame of locally compact space the Lindelöf property is characterized in
the following proposition, see [14, Exercise 3.8.C, p. 195].
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Proposition 2.4 Let X be a locally compact space, that is, for every x ∈ X there
exists a neighbourhood U of the point x such that U is a compact of subspace of X.
Then the following sentences are equivalent:

1. The space X has the Lindelöf property.
2. The space X is σ -compact.
3. There exists a sequence A1, A2, . . . , of compact subspaces of the space X such

that Ai ⊂ int (Ai+1) and X = ⋃∞
i=1 Ai .

Unless otherwise was indicated, we assume that all topological spaces are non-
empty, completely regular and Hausdorff.

Respect to the stability properties, the Lindelöf property has a good behaviour
respect to some operations but not all.

We have that every closed subset subspace of a Lindelöf space is a Lindelöf space.
Every regular space which can be represented as a countable union of Lindelöf sub-
spaces is Lindelöf. The continuous image of a Lindelöf space X onto a regular space
Y is a Lindelöf space. Inverse images of a Lindelöf space under perfect mappings
are also Lindelöf. In fact, inverse images of closed mappings with Lindelöf fibers
are again Lindelöf. More about the “goodness” of the Lindelöf property comes from
realcompactness. A topological space is realcompact if and only if it is homeomor-
phic to a closed subspace of a power Rm of the real line, for a cardinal number m,
and it is known, that every Lindelöf space is realcompact [14, Theorem 3.11.12]. The
realcompactification of a topological space X is denoted by νX , whereas the Stone-
Čech compactification of X , is denoted by βX [14, Sect. 3.6]. As a good property we
have that every open cover of a Lindelöf space has a locally finite open refinement
[14, Theorem 3.8.11].

On the other hand, the Cartesian product of two Lindelöf spaces is not in general
a Lindelöf space, considering again the Sorgenfrey line S , then S × S is not
Lindelöf althoughS is it. In [35, p. 632] it is proved thatS × S is not normal and
hence it is not Lindelöf.

2.1 The Lindelöf Number

Until now we have summarized some properties of Lindelöf spaces respect to se-
parability axioms, countably axioms or stability properties, in a general frame. The
following lines will be occupied on the relationship between Lindelöf property and
other cardinal functions.

We have considered in the beginning some cardinal functions as theweight and the
network weight but a more formal definition is needed about what a cardinal function
is. Recall that a cardinal function is a function that assigns to every topological space
an infinite cardinal number which is invariant by homeomorphisms, it means that if X
and Y are homeomorphic, the cardinal function of X is equal to the cardinal function
of Y . In topology the descriptive properties of the spaces are mostly determined
by different cardinal functions. The generalization of the notion of Lindelöf space
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Fig. 1 General relationship
between general cardinal
functions. The arrow “→”
means greater than or equal
to. See [14] and [19, Sect. 3]
for more details

gives us a new cardinal function defined for each topological space X . The Lindelöf
number, denoted by �(X), is the smallest cardinal number κ such that for every open
cover there exists a subcovering of cardinality ≤ κ .

Other cardinal functions are the following. The density of X , d(X) is the smallest
cardinal number of a set S ⊂ X , such that S = X . The Souslin number, or cellularity
of a topological space X , c(X) is defined as the smallest cardinal numberm such that
the cardinality of a family of pairwise disjoint non-empty open subsets of X is not
greater than m. The spread of X , s(X), is the smallest cardinal number m such that
the cardinality of every discrete subspace is not greater than m. While the extent of
X , e(X), is the smallest cardinal number m such that the cardinality of a closed and
discrete subset of X is not greater thanm [19, Sect. 3]. It is clear that e(X) ≤ �(X) and
e(X) ≤ s(X). In other sense, as we have previously mentioned each closed subspace
of a Lindelöf space is Lindelöf but the same does not occur for open subspaces, hence
the hereditarily Lindelöf number of X , is defined as h�(X) = sup{�(Y ) : Y ⊂ X}.

Observe in Fig. 1 that the density character and the Lindelöf number are not
closely related. The Niemytzki plane is an example of a separable space which is
not a Lindelöf space [36, Example 82, p. 100]. Let L = {(x, y) ∈ R

2 : y ≥ 0}. Let
L1 = {(x, y) : y = 0} the real axis and L2 = L \ L1. In L2, the topology τ is the
Euclidean topology and τ ∗ is the topology in L generated by τ and all the sets of the



272 M. Muñoz-Guillermo

form {(x, 0)} ∪ D, where D is an open disc in L2 which is tangent to L1 at the point
(x, 0). The space (L , τ 2) is called the Niemytzki plane.

The rest of the results included in Fig. 1 are classical and can be found in [19,
Sect. 3].

3 Lindelöf Σ-Spaces

A subclass of Lindelöf spaces is the class of Lindelöf Σ-spaces. Σ-spaces were
introduced by K. Nagami in [25]. This class of spaces has been widely used not only
in Topology, see [41] but also in Functional Analysis in which it is called the class
of countably K -determined spaces [11, 12, 17, 37].

3.1 Definition and First Properties

The categorical definition of Lindelöf Σ-spaces can be found in [2, p. 6].

Definition 3.1 The class of LindelöfΣ-spaces is the smallest class of spaces contai-
ning all compacta, all spaces with a countable basis and closed under the following
operations: finite products, closed subspaces and continuous images.

This definition gives us thefirst difference respect to theLindelöf property, namely,
the finite product of Lindelöf Σ-spaces is again a Lindelöf Σ-space, although more
can be done, since the countable product of LindelöfΣ-spaces is a LindelöfΣ-space,
see [41, Proposition 3]. Nevertheless, the categorical definition is not operative to
work with it.

Following M. Talagrand [37], we use the notion of upper semicontinuous map.

Definition 3.2 Let X and Y be topological spaces. A multivalued map φ : X → 2Y

is said to be upper semicontinuous in x0 ∈ X if φ(x0) is not empty and for each open
set V in Y with φ(x0) ⊂ V there exists an open set U of x0 such that φ(U ) ⊂ V . A
multivalued map φ is said to be upper semicontinuous if it is upper semicontinuous
for each point in X . We will say that a multivalued map φ : X → 2Y is usco if φ is
upper semicontinuous and the set φ(x) is compact for each x ∈ X .

The reader can find more information about usco maps in [9] and references therein.
The number of equivalent definitions for LindelöfΣ-space has increased because

the different situations in which it appears. In [41, Theorem 1], some equivalent
definitions of Lindelöf Σ-space have been summarized.

Proposition 3.1 (Theorem 1 [41]) The following conditions are equivalent for a
topological space X:

1. X is a Lindelöf Σ-space;
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2. there exist spaces K compact and M second countable such that X is a continuous
image of a closed subspace of K × M;

3. there exists an usco map φ : M → 2X , where M is a second countable space and
∪{φ(x) : x ∈ M} = X;

4. there exits a compact cover C of the space X such that some countable family
N of subsets of X is a network mod(C ) in the sense that, for any C ∈ C and
any U ∈ τ(X) with C ⊂ U there is N ∈ N such that C ⊂ N ⊂ U;

5. there exists a compact cover C of the space X such that some countable family
Q of closed subsets of X is a network mod(C );

6. there exists a countable familyF of compact subsets ofβX such thatF separates
X from βX \ X in the sense that, for any x ∈ X and y ∈ βX \ X there exists
F ∈ F for which x ∈ F and y /∈ F;

7. there exists a compactification bX of the space X and a countable family K of
compact subsets of bX which separates X from bX \ X;

8. there exists a space Y such that X ⊂ Y and, for some countable family K of
compact subsets of Y , we have X ⊂ ∪K and K separates X from Y \ X.

3.2 Generalizing Lindelöf Σ-Spaces

After characterization of Lindelöf Σ-space using usco maps, the cardinal functions
number of K -determination, �Σ(X) and Nagami number, Nag(X), make sense.

Definition 3.3 (Definition 2 [8]) Let X be a topological space.

(i) The number of K-determination of X , �Σ(X), is defined as the smallest cardinal
number m for which there are a metric space (M, d) of weight m and an usco
map φ : M → 2X such that X = ⋃{φ(x) : x ∈ M}.

(ii) The number ofNagami of X , Nag(X), is defined as the smallest cardinal number
m for which there are a topological space Y of weight m and an usco map
φ : Y → 2X such that X = ⋃{φ(y) : y ∈ Y }.

The following characterizations hold.

Proposition 3.2 (Proposition 6 [8]) Let X be topological space and m a cardinal
number. The following statements are equivalent:

1. Nag(X) ≤ m (resp. �Σ(X) ≤ m);
2. there is a family of closed sets {Ai : i ∈ m} in βX, such that for every x ∈ X

there is a set J ⊂ m (resp. with |J | ≤ ω) such that x ∈ ⋂
i∈J Ai ⊂ X.

3. there exists a topological (metric) space Y such that w(Y ) ≤ m and φ : Y → 2X

an usco map such that X = ∪{φ(y) : y ∈ Y }.
Observe that Nag(X) ≤ �Σ(X) and �Σ(X) ≤ ω implies that X is a Lindelöf Σ-

space. Both notions are different, in [8, Example 9] is given an example of a space
Y such that Nag(Y) ≤ w(Y) < �Σ(Y), [8, Proposition 10]. Figure2 adds to Fig. 1
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Fig. 2 Relationships
between general cardinal
functions for a completely
regular topological space X
including Nagami number.
The arrow “→” means ≥

the cardinal function Nag(X) and its relationships with other cardinal functions.
Thus, it is known that Nag(X) ≤ nw(X) for X a completely regular space, see [8,
Corollary 27]. In the class of infinite metric spaces we have that

w(X) = �(X) = d(X) = �Σ(X) = Nag(X).

When we consider ℵ-spaces the relationships between cardinal functions also
allow us to have more information. The class of ℵ-spaces was introduced by
P. O’Meara in [28]. A topological space X is called an ℵ-space if X is regular and
has a σ -locally finite k-network. A family F of subsets of X is called a k-network
in X , if whenever K ⊂ U with K compact and U open in X , then K ⊂ ∪F ′ ⊂ U
for some finite family F ′ ⊂ F . Because the regularity of the space, the collection
of subsets which is a σ -locally finite k-network can be chosen to consist of closed
sets. In the class of ℵ-spaces, �(X) = Nag(X) = �Σ(X).

3.3 Lindelöf Σ-Spaces in C p-Theory

The attempt to collect all the properties even in the particular case of Lindelöf Σ-
spaces is not an easy task, because the large quantity of results related, see [41].
Thus, we will show up only some results that give us a general knowledge about the
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behavior of LindelöfΣ-spaces. Let X be a topological space andCp(X) stands for the
space of real-valued continuous functions endowed with the pointwise convergence
topology. In this section we focus on how topological properties of both spaces are
related in the framework of Lindelöf Σ-spaces, since there is a special relationship
between properties of X and Cp(X) when Lindelöf Σ-property is involved.

Additional notation and definitions are needed and they can be found in [2]. The
tightness of a point x in a topological space X , t (x, X), is the smallest infinite cardinal
numberm such that for any x ∈ A, there exists B ⊂ A such that |B| ≤ m and x ∈ B.
The tightness of a topological space X , t (X), is the supremum of all t (x, X) for
x ∈ X .

The following definition can be found in [2, Sect. 0.2, p. 5].

Definition 3.4 Let X be a topological space, we called iw(X) the smallest cardinal
m for which there exist a topological space Y with w(Y ) ≤ m and a one-to-one
continuous map onto f : X → Y .

A space X is said to bem-stable if for every continuous imageY of X if iw(Y ) ≤ m
then nw(Y ) ≤ m. The space X is stable if it is m-stable for any infinite cardinal
number m. The following results get us a first example of what we mean about the
relationship between X and Cp(X) in the frame of Lindelöf Σ-spaces.

Theorem 3.1 (Theorem II.6.21 [2]) Every Lindelöf Σ-space is stable.

As a consequence of previous theorem the product of an arbitrary family of Lin-
delöfΣ-spaces is stable [2, Corollary II.6.27]. Moreover, a space is stable if and only
if Cp(Cp(X)) is stable, [2, Corollary II.6.11]. Following [39], let Cp,0(X) = X and
Cp,n+1(X) = Cp(Cp,n(X)) for each natural number n ∈ N. The following proposi-
tion holds.

Proposition 3.3 (Corollary II.6.32 [2]) Let X be a Lindelöf Σ-space then Cp,2n(X)

is stable for any n ∈ N.

3.3.1 The Iterative Process

In [41] V. Tkachuck gave a description of all possible distribution of the Lindelöf
Σ-property in the iterated spaces Cp,n(X). Only the following cases can occur:

Proposition 3.4 (Corollary 2.10 [41]) Only the following distributions of the Lin-
delöf Σ-property in iterated function spaces are possible:

1. Cp,n+1(X) is a Lindelöf Σ-space for every n ∈ N;
2. Cp,n+1(X) is a Lindelöf Σ-space only for odd n ∈ N;
3. Cp,n+1(X) is a Lindelöf Σ-space only for even n ∈ N;
4. for any n ∈ N the space Cp,n+1(X) is not a Lindelöf Σ-space.
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An example of a non-Lindelöf space X such that Cp,2n+1(X) is LindelöfΣ-space
for every n ∈ N but Cp,2n(X) is not Lindelöf and a space Y such that Cp,2n(Y ) is
a Lindelöf Σ-space for every n ∈ N and Cp,2n+1(Y ) is not Lindelöf are shown up
in [41, Examples 2.9].

Previously, particular results in the framework of compact spaces had been
obtained. The following definitions are well-known. A compact subset of a Banach
space in the weak topology is called Eberlein compact. A compact space X is called
Gul’ko compact if Cp(X) is a Lindelöf Σ-space. Finally, a compact space is said to
be a Corson compact if it can be embedded in the subspace of the product Rm of
the real line consisting of functions vanishing at all but countably many points for
an infinite cardinal number m [2, p. 134].

The behaviour of iterated spaces for LindelöfΣ-spaces have been widely studied.
Gul’ko proved in [18] that for any Eberlein compact X the iterated function spaces
Cp,n(X), n ∈ N, are Lindelöf. Sipachova [31] proved that Cp,n(X) is Lindelöf Σ-
space for any n ∈ N whenever X is an Eberlein compact space. On the other hand,
Okunev [27] proved that if X and Cp(X) are Lindelöf Σ-spaces then Cp,n(X) is a
Lindelöf Σ-space for each n ∈ N. In general, when X is a Lindelöf Σ-space such
that X ⊂ Cp(Y ), the following result is known.

Proposition 3.5 (Theorem 2.12 [27]) Let X and Y Lindelöf Σ-spaces such that
X ⊂ Cp(Y ), then Cp,n(X) is a Lindelöf Σ-space for any n ∈ N.

More in this sense,

Proposition 3.6 (Theorem 4.3 [27]) Let X be a Gul’ko compact space and K be a
compact subspace of Cp,n(X) for some n ∈ N, then K is a Gul’ko compact space.

A generalization of the previous result is the following one.

Theorem 3.2 (Theorem 4.4 [27]) Let K be a compact subspace of Cp(X) such that
there exists a Lindelöf Σ-space Z such that Cp(X) ⊂ Z then K is a Gul’ko compact
space.

The following result is a characterization of Gul’ko compact spaces.

Theorem 3.3 (Theorem 4.7 [27]) Let X be a compact space. Then the following
conditions are equivalent:

1. X is a Gul’ko compact space;
2. Cp,n(X) is a Lindelöf Σ-space for some n ∈ N;
3. Cp,n(X) is a Lindelöf Σ-space for any n ∈ N.

This Theorem links to the following one proved by Sokolov [33, Corollary 2].

Proposition 3.7 If X is a Corson compact space, then Cp,n(X) is Lindelöf for each
n ∈ N.
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Similarly, Gul’ko [44, Problem 27, p. 610] conjectured that the Lindelöf
property of all iterated continuous spaces characterizes Corson compact, neverthe-
less, Sokolov [34, Theorem 2.1] gave an example of a compact space X whose
iterated continuous function spaces Cp,n(X) for n ∈ N are Lindelöf but X is not a
Corson compact space.

More similarities follow. If X is a Corson (Gul’ko) compact space and Cp,n(X)

is homeomorphic to Cp,n(Y ), for some n ∈ N, then Y is Corson (Gul’ko). In 2018,
see [6, Sect. 3] for details, it has been proved the same result for Eberlein compact
space.

Recently (2017), Ferrando, Kąkol and López-Pellicer have characterized in [16]
Gul’ko compact spaces considering the topology inC(X) for σY , where Y is a subset
that separates the functions ofC(X) and σY is theweak topology σ(C(X), span(Y )).

Theorem 3.4 (Theorem 4.1 [16]) Let X be a compact space and Y be a Gδ-dense
subspace. Then X is a Gul’ko compact space if and only if (C(X), σY ) is a Lindelöf
Σ-space.

3.3.2 Σs-Products

The concept of Σs-product was used by Sokolov [32, Theorem 8] in order to give a
different characterization of Gul’ko compact spaces. The following definitions are
needed, see [30, Definition 3.1].

Definition 3.5 Let a be a point in the product space X = ∏
t∈T Xt .

1. The support of x , denoted by supp(x), is the set {t ∈ T : x(t) �= a(t)}.
2. The Σ-product of the family {Xt }t∈T centered at the point a, is the subspace of

X given by
Σ(X, a) = {x ∈ X : |supp(x)| ≤ ω}.

3. The σ -product of the family {Xt }t∈T centered at the point a, is the subspace of X
given by

σ(X, a) = {x ∈ X : |supp(x)| < ω}.

4. Let s be a countable family of subsets of T and sx = {E ∈ s : |supp(x) ∩ E | <

ω} ⊆ s for x ∈ X , then theΣs-product of the family {Xt }t∈T centered at the point
a with respect to the set s is the subspace of X given by

Σs(X, a) = {x ∈ X : T = ∪sx }.

If the point a in consideration is not relevant we will write Σ(X), σ(x) and Σs(X).

Now the following characterization can be introduced.

Proposition 3.8 (Theorem 8 [32]) A compact space X is Gul’ko if and only if X
embeds into a Σs -product of real lines.
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An extension of the previous result is debt to Casarrubias-Segura et al. [6] in
which it is proved that if X is a Lindelöf Σ-space contained in a Σs-product of real
lines then Cp(X) is a Lindelöf Σ-space.

More results related to Lindelöf Σ-spaces are known. Thus,

Proposition 3.9 (Theorem 3.2 [42]) Every Σs -product of compact spaces is a Lin-
delöf Σ-space.

Recently, in 2018,

Proposition 3.10 (Theorem 4.1 [6]) If X = ∏
t∈T Xt is a product, and every σ -

product in X is a Lindelöf Σ-space, then each Σs -product in X is a Lindelöf Σ-
space.

Proposition 3.11 (Theorem 4.5 [6]) Every Σs -product of K -analytic spaces is a
Lindelöf Σ-space.

In [6, Corollary 4.2] it has been proved that Proposition 3.9 holds for every Σs-
product of σ -compact spaces.

Different questions remain open in this framework, thus, in [6, Questions 5.6 and
5.7] the following questions are posed.

1. Let X be a Lindelöf Σ-space which admits a condensation in a Σs-product of
real lines. Must Cp(X) be a Lindelöf Σ-space?

2. Let X be a Lindelöf subspace of a Σ-product (or Σs-product) of real lines. Must
Cp(X) be Lindelöf?

Remind that a map f : X → Y is a condensation if it is a continuous bijection;
in this case we say that X condenses onto Y . If X condenses onto a subspace of Y ,
we say that X condenses into Y (Sect. 2 in [6]).

3.3.3 Cardinal Inequalities

In this section we focus our interest on the relationship between X and Cp(X)

involving different cardinal functions. In [8] can be found some of them in which the
number of K -determination and the Nagami number appear. Thus,

Proposition 3.12 (Proposition 16 [8]) Let X be a topological space, then t (Cp(X))

≤ �Σ(X). In particular, if X is a Lindelöf Σ-space, then t (Cp(X)) is countable.

Involving the network of the space the following results give us information in the
particular case of the Lindelöf Σ-spaces. Classical results of Arkhangel’skii follow.

Proposition 3.13 (Theorem 10 [3]) Let X be a topological space such that Cp(X)

is a LindelöfΣ-space and the spread of Cp(X) is countable then nw(X) is countable
(X is cosmic).
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Proposition 3.14 (Proposition 12 [3]) Let X be a topological space such that the
spread of X is countable and Cp(X) is a Lindelöf Σ-space then X is a Lindelöf
Σ-space.

Proposition 3.15 (Theorem13 [3])Let X bea topological space such that the spread
of X × X is countable and Cp(X) is a Lindelöf Σ-space then X has a countable
network (X is cosmic).

More conditions to obtain X cosmic were obtained by Tkachuck.

Proposition 3.16 (Theorem 3.6 [40]) Let X be a topological space such that Cp(X)

is a Lindelöf Σ-space and s(X) is countable then nw(X) is countable (X is cosmic).

Proposition 3.17 (Theorem 3.30 [43]) Let X be a topological space such that
Cp(Cp(X)) is a Lindelöf Σ-space and s(X) is countable then nw(X) is countable
(X is cosmic).

When we consider subspaces as our goal, then the following definitions are
needed. Let m be an infinite cardinal number, a topological space X is said to be
m-monolithic if for each A ⊂ X such that |A| ≤ m then nw(A) ≤ m. A space X is
called strongly m-monolithic if for every Y ⊂ X with |Y | ≤ m, the weight of the
space Y does not exceed m. A topological space X is said to be monolithic if X is
m-monolithic for each infinite cardinal number m. Thus, if X is a monolithic space,
then for each subspace Y ⊂ X , we have that d(Y ) = nw(Y ), [2, p. 76].

The following result can be found in [8].

Proposition 3.18 (Proposition 17 [8]) Let X be a topological space and H ⊂ C(X)

τp-compact, then H is strongly �Σ(X)-monolithic.

The corollary which follows from the previous proposition is also an immediate
consequence of [2, Theorem II.6.8].

Corollary 3.1 Let X be a Lindelöf Σ-space and H ⊂ Cp(X) then

nw(H) = d(H).

In particular, if H is τp-compact subspace then H is metrizable, see [10, Corollary
1.2].

Recent work has established accurate boundedness of the weight in Lindelöf Σ-
spaces. Tkachenko [38] has proved the following result.

Theorem 3.5 (Theorem 2.1 [38]) Let X be a completely regular space then w(X) ≤
|C(X)| ≤ nw(X)Nag(X) holds.

In [6, Theorem 8.2] this result has been proved with different arguments proving
that the inequality w(X) ≤ nw(X)Nag(X) holds for regular spaces. In particular for
a Lindelöf Σ-space X such that nw(X) ≤ c, then |C(X)| ≤ c and w(X) ≤ c. Even
more it is established,
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Theorem 3.6 (Theorem 2.3 [38]) Let Y be a dense subspace of a completely regular
space X, then |C(X)| ≤ nw(Y )Nag(Y ) and w(X) ≤ nw(Y )Nag(Y ).

Respect to the hereditarily numbers the following properties hold.

Theorem 3.7 (Theorem 5.2 [24]) Let X be a topological space then:

1. h�(X) ≤ max{Nag(Cp(X)), s(X)}.
2. h�(Cp(X)) ≤ max{Nag(X), s(Cp(X))}.

The corollary that follows can be found in [3].

Corollary 3.2 (Proposition 9 [3]) If X is a Lindelöf Σ-space and the spread of
Cp(X) is countable, then Cp(X) is hereditarily Lindelöf, and X × X is hereditarily
separable.

Finally, the classical theorem of Baturov [4] states that

Theorem 3.8 (Theorem III.6.1 [2]) Let X be a Lindelöf Σ-space and Y ⊂ Cp(X)

a subspace, then �(Y ) = e(Y ).

If X is a countably compact spaceBaturov’s theorem fails. Buzyakova [5, Example
3.6] showed an example of a countably compact space X such that e(Cp(X)) <

�(Cp(X)).

4 Characterizing When νX Is a Lindelöf Σ-Space

Realcompactification of a space is related with the space Cp(X) and as an interme-
diate step in order to get any of the previous results. In fact when dual spaces are
considered, envelopes play an important role.

Theorem 4.1 (Theorem 3.5 [27]) Let X be a topological space. Then νX is a
Lindelöf Σ-space if and only if there exists a Lindelöf Σ-space Z such that
Cp(X) ⊂ Z ⊂ R

X .

As a consequence of the previous result we have that

Proposition 4.1 (Corollary 3.6 [27]) Let νCp(X) be a Lindelöf Σ-space, then νX
is a Lindelöf Σ-space.

Theorem 4.2 (Theorem 3.5 [26]) Let Cp(X) be a Lindelöf Σ-space, then νX is a
Lindelöf Σ-space.

Theorem 4.3 (Theorem 2.3 [39]) Let Cp(X) be a Lindelöf Σ-space, then Cp(νX)

is a Lindelöf Σ-space.

Now, it is clear that
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Fig. 3 Relationships between some notions that summarizes some properties involving realcom-
pactification of a space. A → B means A implies B

Corollary 4.1 (Corollary 2.4 [39]) If Cp(X) is a Lindelöf Σ-space, then Cp,n(νX)

is a Lindelöf Σ-space for each n ∈ N.

Figure3 summarizes the previous results.
Completely regular spaces X whose realcompactification νX is a Lindelöf Σ-

space were studied by Ferrando in [15]. The characterization of topological spaces
whose realcompactification is a LindelöfΣ-space was also considered in [21] where
the notions of strongly web-bounded space and web-bounding space are involved.

Definition 4.1 (Definition 3 [7]) A locally convex space X is web-bounded if there
is a family {Aα : α ∈ Ω} of sets covering X for some nonempty Ω ⊂ N

N such that
if α = (nk)k ∈ Ω and xk ∈ Cn1,n2,...,nk := ⋃{Aβ : β = (mk)k ∈ Ω, m j = n j , j =
1, . . . , k} then (xk)k is bounded.

Definition 4.2 (p. 150 [29]) A space X is strongly web-bounding if there is a
family {Aα : α ∈ Ω} of sets covering X for some nonempty Ω ⊂ N

N such that
if α = (nk)k ∈ Ω and xk ∈ Cn1,n2,...,nk := ⋃{Aβ : β = (mk)k ∈ Ω, m j = n j , j =
1, . . . , k} then (xk)k is functionally bounded, that is, f ((xk)k) ⊂ R is bounded for
each continuous function f : X → R.

Characterization of the realcompactification of a space X which is also a Lindelöf
Σ-space was given by Kąkol and López-Pellicer in [21] giving a description of a
web-bounded structure in the original space.

Theorem 4.4 (Theorem 1.2 and Corollary 2.6 [21]) Let X be a completely regular
space then the following sentences are equivalent.

1. νX is a Lindelöf Σ-space;
2. X is strongly web-bounding;
3. Cp(X) is web-bounded;
4. there exits a Lindelöf Σ-space Z such that Cp(X) ⊂ Z ⊂ R

X .

Regarding the question if this property is in some sense “hereditary” when real-
compactification is involved we have the following result.
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Proposition 4.2 (Theorem 8 [13]) Let X and Y be spaces and h : Cp(X) → Cp(Y )

a surjective map that takes bounded sequences to bounded sequences. If νX is a
Lindelöf Σ-space, then νY is a Lindelöf Σ-space.
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Some Extensions of the Class
of L p-Spaces

In Honour of Manuel López-Pellicer

María José Rivera

Abstract The �p spaces play a central role in the classical theory of operators
and finitely generated tensor norms. In this setting Lindenstrauss and Pelczyǹski
(Stud Math 29: 275–326, 1968) introduced the class of the L p-spaces in 1968. By
construction the class L p places us squarely in the so called Local Theory, that
deals with the study of Banach spaces through or in terms of their finite-dimensional
subspaces, see Pietsch (Stud Math 135: 273–298, 1999). Although the definition of
the spaces of the class L p from the �p spaces is finite-dimensional, it has many
implications in the global structure of theL p-spaces. And it is clear that, in general,
the nice behavior of theL p spaces is a consequence of some good properties of the
�p spaces, which make them a basic pillar of the Banach spaces theory. Anyway, if
we replace �p for another sequence space λ, one expects that some important new
problems will appear, since �p and henceL p seem to be more or less irreplaceable.
Our purpose is to present some conclusions we reached in this way in relation to the
study of certain concrete tensor norms defined through different sequence spaces,
making a small chronological journey, step by step, attempt after attempt. This study
has an earlier version entitled “On the classes of L λ, quasi-L λ and L λ,g spaces”,
published in the Proceedings of the American Mathematical Society (Rivera in Proc
Amer Math Soc 133: 2035–2044, 2005).

Keywords L p-Spaces · Tensor products · Local theory · Finite representability ·
Uniform projection property · Local unconditional structure

1 Preliminaries

In the paper Résumé de la théorie métrique des produits tensoriells topologiques,
Grothendieck [8] demostrated the relevance of the tensor products in the Banach
space theory, being the first to realize the scope of the finite dimensional behavior of
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the tensor norms. And anticipating the notion of finite representability, other basic
tool of the Local Theory, he established a partial order in the class of normed spaces,
saying that a normed space E has “lower linear type” to another normed space F
if there is a constant c > 0 such that for every finite-dimensional subspace M of E
there is a finite-dimensional subspace N of F such that the Banach-Mazur distance
d(M, N ) < c. A decisive step was the introduction of Dacunha-Castelle and Krivine
[3] of the ultraproducts technique in Banach spaces theory. The tensor norms of
Saphar and Lapresté, defined through the �p spaces, completed what nowadays is
known as the classical theory of topological tensor products of Banach spaces.

Different authors have contributed to precise what is now understood by theLocal
Theory in Banach spaces. For example, the word “localization” which appears in the
title of he paper of Pelczyǹski and Rosenthal [23] refers to obtain quantitative finite-
dimensional formulations of infinite-dimensional results. For Tomczak-Jaegermann
[30] a property of Banach spaces (or operators acting between them) is called local
if it can be defined by a quantitative statement or inequality concerning a finite num-
ber of finite-dimensional subspaces. On the other hand Lindenstrauss and Milman
[17] emphasize in the relation of the structure of an infinite-dimensional space and
its finite-dimensional subspaces. But in all these formulations lies the same idea:
the theory of Banach spaces covers local aspects and global aspects, and certain
properties of infinite-dimensional Banach spaces can be studied through their finite-
dimensional spaces.

With the instruments of the Local Theory, Grothendieck developed a very useful
theory of duality in tensor products of Banach spaces, involving in it the wonderful
theory of operator ideals. In this context appeared in 1968 theL p spaces of Linden-
strauss and Pelczyǹski [18] that we try to extend, study which would be enriched a
year later with the paper of Lindenstrauss and Rosenthal [19]. Also in 1968 Pietsch
and his school carry out a systematic investigation of operator ideals on the class of
Banach spaces ignoring tensor products, without this lack affecting the quality of the
results. But many of the ideas of the book od Pietsch “Operator ideals”, that culmi-
nated this huge task and posterior reflections, see [25] for example, clearly came from
the work of Grothendieck, in particular the use of techniques of the Local Theory
that Pietsch leads to the theory of operators. We must highlight the great use that
Pietsch makes in his book of the ultraproducts of operators. And in the same line
Beauzamy [1] introduced the notion of finite representability for operators.

To facilitate the reading, we begin by briefly explaining some concepts, to fix
through them our starting position, the difficulties we face, the mathematical instru-
ments we have and the specific objectives of the paper. The notation is standard, but
eventually wewill have to clarify some abbreviations. In this paper we almost always
work with Banach spaces. But it is necessary to highlight that it is possible to extend
the concepts of the Local Theory of Banach spaces we are going to handle to the
Local Theory of Banach lattices, which is the right place where locate the study of
tensor norms and operator ideals associated to a sequence space λ, see [4, 9, 18–20,
22–24, 28].
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1.1 Banach Sequence Spaces

Let ω be the vector space of all real sequences and ϕ the subspace of ω of sequences
with finitely many non zero coordinates.

Definition 1.1 A real Banach space (λ, ‖.‖λ) is said to be a Banach sequence space
if it satisfies the following conditions:

(I) ϕ ⊂ λ ⊂ ω.
(II) If |x | ≤ |y| with x ∈ ω and y ∈ λ, then x ∈ λ and ‖x‖λ ≤ ‖y‖λ.

We recall that every Banach sequence space λ, endowed with the pointwise order,
by (II) can be considered as a solid Banach lattice. Sk(λ) represents the k-sectional
subspace of λ. Then we say that a Banach sequence space λ is regular if every
element of λ is limit of its sections. If λ is not regular, their subspace ϕλ is denoted
by λr . λ× represents the Köthe dual of λ, that is the space of the scalar sequences
(bn) such that

∑∞
n=1 |anbn| < ∞ for every (an) ∈ λ. λ× is a closed subspace of λ′.

1.2 Tensor Products and Tensor Norms

The reference text of this subsection is [4].
For every pair E and F of real linear spaces, if B(E, F) is the space of bilinear

forms defined in E × F , every (x, y) ∈ E × F defines canonical linear form in
B(E, F) denoted by x ⊗ y such that ∀w ∈ B(E, F), < x ⊗ y, w >= w(x, y).

Definition 1.2 The subspace of the algebraic dual of B(E, F) generated by {x ⊗
y, x ∈ E, y ∈ F} is called the tensor product of E and F , and it is denoted by
E ⊗ F.

Definition 1.3 A tensor norm α in the class of normed spaces assigns to every pair
of normed spaces E, F a norm in E ⊗ F such that, if we denote by E ⊗α F the
corresponding normed space, the following conditions are satisfied.

• α(x ⊗ y) = ‖x‖‖y‖, ∀x ∈ E, y ∈ F
• ‖x ′ ⊗ y′‖(E⊗α F)′ = ‖x ′‖‖y′‖, ∀x ′ ∈ E ′, y′ ∈ F ′.
• If A : E1 → E2 and B : F1 → F2 are operators, then A ⊗ B : E1 ⊗α F1 →

E2 ⊗α F2 is a operator with ‖A ⊗ B‖ ≤ ‖A‖‖B‖
Given a Banach sequence space λ, there is an standard way to construct a tensor

norm in the class of Banach spaces.

Definition 1.4 We say that a sequence (xn)
∞
n=1 in a Banach space E is strongly

λ-summable if
πλ((xn)) := ‖(‖xn‖)‖λ < ∞.

Denote λ{E} := {(xn) : πλ((xn)) < ∞}. Then (λ{E}, πλ) is a Banach space



288 M. J. Rivera

Definition 1.5 We say that a sequence (xn)
∞
n=1 in a Banach space E is weakly λ-

summable if
ελ((xn)) := sup

‖x ′‖≤1
‖(< xn, x ′ >)‖λ < ∞.

Denote λ(E) := {(yn) : ελ((yn)) < ∞}. Then (λ(E), ελ) is a Banach space.
If E and F are Banach spaces, for every z ∈ E ⊗ F , we define

gλ(z) := inf{πλ((xn)) ελ×((yn)) : z =
m∑

n=1

xn ⊗ yn}.

If λ = �p, gλ is the tensor-norm gp of Saphar. But in more general cases gλ is only
a quasi-norm, because it does not satisfy the triangular property. Then, to get a
tensor-norm in E ⊗ F, it is necessary to take the absolutely convex hull Γ (B) of
B = {z ∈ E ⊗ F : gλ(z) ≤ 1} and then the Minkowski functional gc

λ of Γ (B). Then
gc

λ is a tensor-norm equivalent to the quasi-norm gλ. which satisfies

gc
λ(z) = inf{

n∑

i=1

πλ((xi j ) j ) ελ×((yi j ) j ) : z =
n∑

i=1

m∑

j=1

xi j ⊗ yi j }.

The normed space (E ⊗ F, gc
λ) is denoted by E ⊗gc

λ
F, and E⊗̂gc

λ
F represent its

completion. Then if If z ∈ E⊗̂gc
λ
F, it has a representation (called here of “good

type”)

z =
∞∑

i=1

∞∑

j=1

xi j ⊗ yi j

such that
{(xi j )

∞
j=1, i ∈ N} ⊂ λr {E},

{(yi j )
∞
j=1, i ∈ N} ⊂ λ×(F)),

∞∑

i=1

πλ((xi j ) j ) ελ×((yi j ) j ) < ∞.

Then

gc
λ(z) = inf{

∞∑

i=1

πλ((xi j ) j ) ελ×((yi j ) j )},

where the infimum is in the set of representations of z of “good type”.
Remark that gc

λ is the tensor norm associated to �1(λr ), but having to use �1(λr )

instead of λ adds very little difficulties, because the real obstacle is λ itself. And to
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save those obstacles we need two important tools of the Local Theory of Banach
spaces: ultraproducts and finite representability.

1.3 Ultraproducts

The ultraproducts are essential theoretical instruments in the study of models, and
have been fundamental in branches of mathematics such as algebra or set theory. But
since the Robinson’s work, “Non-standard analysis”, [27], the ultraproducts also
found numerous applications in Analysis. The basic material for this subsection is
in [3, 10, 29].

We recall that a filter of subsets of a set D is a non empty family F of subsets
of D such that (1) ∅ /∈ F , (2) A, B ∈ F implies A ∩ B ∈ F and (3) A ∈ F and
A ⊂ B implies B ∈ F . A maximal filter in D with respect to the inclusion order is
said to be an ultrafilter.

Definition 1.6 Let H be a topological space, let (xd)d∈D be a family of elements of
H of index D and letU be an ultrafilter of subsets of D. We say that limU xd = x,

x ∈ H , if for every neighborhood V of x,

{d ∈ D : xd ∈ V } ∈ U .

From a purely set point of view, the construction of ultraproducts comes from a
family of sets {Ad , d ∈ D}, an ultrafilter U of subsets of D, a binary equivalence
relationRU defined in the cartesian product Πd∈D Ad defined:

(ad)RU (bd) ↔ {d ∈ D : ad = bd} ∈ U .

Thequotient setΠd∈D Ad/RU is called the ultraproduct of the family {Ad , d ∈ D}
with respect to the ultrafilter U , and it is denoted by (Ad)U . If Ad = A,∀d ∈ D,
the corresponding (A)U is said to be an ultrapower.

But the set definition of ultraproduct has serious difficulties if we want to incor-
porate it into the Banach space theory when Ad are Banach spaces. For that reason
Dacunha-Castelle and Krivine [3] replaced the Cartesian product Πd∈D Ad by the
space

�∞(Ad , d ∈ D) = {(ad) ∈ Πd∈D Ad : ‖(ad)‖∞ = sup
d∈D

‖ad‖ < ∞}

which is a Banach space with respect to the norm ‖.‖∞.
Then let NU be the closed subspace of �∞(Ad , d ∈ D) such that:

NU = {(ad) ∈ Πd∈D Ad : lim
U

‖ad‖ = 0.}
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The ultraproduct (Ad)U is for definition the quotient space �∞(Ad , d ∈ D)/NU

which is a Banach endowed with the quotient norm which is

‖(ad)U ‖ := lim
U

‖ad‖.

If {Ad , d ∈ D} and {Bd , d ∈ D} are two families of Banach spaces, and {Td :
Ad → Bd , d ∈ D} is a family of operators such that, supd∈D ‖Td‖ < ∞, then {Td :
Ad → Bd , d ∈ D} defines in a natural way an operator T : (Ad)U → (Bd)U , such
that ‖T ‖ = limU ‖Td‖.

1.4 Finite Representability

Definition 1.7 A Banach space E is said to be finitely representable in a Banach
space F if each finite-dimensional subspace of E fits almost isometrically in F . With
more precision, if for every ε > 0 and for every finite-dimensional subspace M of E
there is a finite-dimensional subspace N of F such that the Banach-Mazur distance
d(M, N ) ≤ 1 + ε.

If d(M, N ) ≤ b for a fix b > 0 independent of M , we say that X is b-finitely
representable in F.

Refer to [12] for details and for more information.
The relationship between ultrapowers and finite representability is quite close: a

Banach space E is finitely representable (b-finitely representable) in a Banach space
F if and only if E is isometric (b-isomorphic) to a subspace of some ultrapower of F .

1.5 TheL p-Spaces of Lindenstrauss and Pelczyǹski

An strong version of the notion of finite representability of a Banach space X in �p

characterizes the intensively studied class of the L p spaces of Lindenstrauss and
Pelczyǹski [18], see also [19, 23].

Definition 1.8 We say that a Banach space X is a L p-space, 1 ≤ p ≤ ∞, if there
is c ≥ 1 such that for each finite-dimensional subspace M of X there is a finite-
dimensional subspace N containing M such that d(N , Sdim(N )(�p)) ≤ c.

It is clear that, in general, the nice behavior of the L p-spaces, 1 ≤ p ≤ ∞, is
a consequence of some good properties of the �p spaces, which make them basic
constructions in the Banach spaces theory. And in the setting of the classical theory
of tensor norm s and operator ideals, this “nice behavior” are based on the possibil-
ity of representing every ultrapower (�p)U as an L p(μ), for some measure space
(Ω,Σ,μ), and the fact that every L p(μ)-space is anL p-space.
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Let’s see what happens when we translate the definition of the L p-spaces sub-
stituting �p for another Banach sequence space λ.

2 The Class of L λ-Spaces

Definition 2.1 Given a Banach sequence space λ, a Banach space X is said to be an
L λ-space if there exists a real constant c ≥ 1 such that for every finite-dimensional
subspace M of X , there is a finite-dimensional subspace N of X containing M such
that d(N , Sdim(N )(λ)) ≤ c.

The following proposition shows that all the ultrapowers of λ are L λ-spaces if and
only if λ satisfies a certain property.

Proposition 2.1 Given a Banach sequence space λ, the following conditions are
equivalent:

(1) Every ultrapower (λ)U is a L λ space.
(2) λ satisfies the following property, denoted property (P): There is a constant

c ≥ 1 such that given a positive integer m, there exists some positive integer n = n(m)

only depending of m such that any m-dimensional subspace M of λ is contained in
an n-dimensional subspace N of λ with d(N , Sn(λ)) < c.

Proof (1) → (2) : Let U be an ultrafilter on an index set D, and let {Nd , d ∈ D}
be an arbitrary family of n-dimensional subspaces of λ. If for every d ∈ D, {xi

d , i =
1, . . . , n} is a basis of norm one vectors in Nd , {xi = (xi

d)U , i = 1, . . . , n} is an basis
in N = (Nd)U , hence N is an n-dimensional subspace of (λ)U . From hypothesis
(λ)U is a L λ-space then, there are c > 0 and an m-dimensional subspace M of
(λ)U containing N such that d(M, Sm(λ)) < c. Let {(xi

d)U , i = n + 1, . . . , m} be
a basis of an algebraic complement of N in M . Then M = (Md)U where Md =
span(xi

d , i = 1, . . . , m). But as {(xi
d)U , i = 1, . . . , m} is a basis in M , there is a I1 ∈

U such that if d ∈ I1, {xi
d , i = 1, . . . , m} are linearly independent hence dim(Md) =

m for every d ∈ I1. But also there is a I0 ∈ U such that d(M, Md) ≤ 1 + ε for every
d ∈ I0, hence for every d ∈ I0 ∩ I1, Nd ⊂ Md with d(Md , Sm(λ)) < c(1 + ε). The
result follows because D, U and {Nd , d ∈ D} are arbitrary.

(2) → (1) : If N is an n-dimensional subspace of (λ)U and ε > 0, from [10]
proposition 6.1, N = (Nd)U with dim(Nd) = n. From hypothesis λ satisfies (P),
hence there are c ≥ 1 and m = m(n) such that for every d ∈ D there is a m-
dimensional subspace Md of λ containing Nd with d(Md , Sm(λ)) < c. Then fixed a
basis in every Md , M = (Md)U is an m-dimensional subspace of (λ)U containing
N . Moreover there is I0 ∈ U such that d(M, Md) < 1 + ε for every d ∈ I0. Then
d(M, Sm(λ)) ≤ c(1 + ε) �

We emphasize that (P) is a very strong property that �p spaces satisfy [23], and
Yves Raynaud pointed out to us that �p(�q) also satisfies the property (P). But we



292 M. J. Rivera

don’t know any Banach sequence space λ out of the very close �p setting with this
property.

The limitation of the class L λ, if λ is not an �p space, with respect to the sta-
bility under ultrapowers of λ is the main motivation we had for considering that the
resolution of the problem must be two stages:

I Investigate what new property of λ, less restrictive that the property P, could
be desirable as a substitute for property P.

II Replace the class L p for a new class so that if a Banach sequence space λ

satisfies the new property, then the new class has a “nice behavior” in the sense
that it is useful in the theory of tensor norms and operator ideals defined by λ,
with basically means that the new class is stable under ultrapowers, biduals and
complemented subspaces.

From the first moment we thought that a good candidate to new property could
be the called uniform projection property defined by Pelczyński and Rosenthal in
1975 [19], because it has the same spirit as the property P, but is less restrictive.

Definition 2.2 A Banach space E has the uniform projection property if there
is a positive real number h > 0 such that for each natural number m there is a
natural number n = n(m) only depending of m such that for every m-dimensional
subspace M ⊂ E there exists a k-dimensional and h-complemented subspace N of
E containing M with k ≤ n.

1) The class is quite large. Examples: reflexive Orlicz and modular spaces [21],
Bochner spaces L p(μ, E) if E does (hence �1(λ) if λ does) see [10], the Hardy
space H 1 see [14].

2) The uniform projection property is stable under ultrapowers and duals, see
[10, 11].

And to choose another candidate to new class we thought it would be wise to stay
in the environment of Pelczyński, Lindenstrauss and Rosenthal.

3 DPR-Local Unconditional Structure: The Class of the
Quasi-L λ-Spaces

The definition of the new class part of the observation of Dubinski, Pelczyǹski
and Rosenthal [5] that, as the �p-spaces, certain classical Banach spaces admit a
family of finite-dimensional subspaces having unconditional basis with respect to
some constant, and that this family is dense in the family of all its finite-dimensional
subspaces. With this idea, they define a notion of local unconditional structure in
Banach spaces.
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Definition 3.1 A Banach space X has DPR-local unconditional structure if there
is c ≥ 1 such that for each finite-dimensional subspace M of X there are a finite-
dimensional subspace N of X containing M and a finite-dimensional Banach lattice
L such that d(N , L) ≤ c.

Every Banach lattice has DPR-local unconditional structure for all c > 1. And
also every finite dimensional Banach space has DPR-local unconditional structure
since it is isomorphic to a Banach lattice, but, as we can read in [2], it is the uni-
form bound on the isomorphisms of all finite-dimensional subspaces of an infinite
dimensional Banach space X which restricts the class of the Banach spaces having
local unconditional structure. Moreover from [13], a Banach space with DPR-local
unconditional structure is either super-reflexive or it contains uniformly isomorphic
copies of Sn(�1) or Sn(�∞), for all n ∈ N.

Inspired in the DPR-local unconditional structure we propose the following defi-
nition of the Anew class. If h is a positive real number, in short we say that a Banach
space F is h-complemented in a Banach space E if the norm of the projection map
P : E → F is less or equal than h.

Definition 3.2 Let λ be a Banach sequence space and let X be Banach space. We
say that X is a quasi-L λ-space if there exist constants c ≥ 1 and h > 0 such that for
every finite-dimensional subspace M of X there are a finite-dimensional subspace N
of X containing M and a h-complemented and finite-dimensional Banach subspace
G of λ such that d(N , G) ≤ c.

It is obvious that if λ satisfies the uniform projection property then λ is a quasi-
L λ-space.

Next we have to test if the quasi-L λ class is stable under ultrapowers, biduals
and complemented subspaces.

To abbreviate, from now on for every Banach space E , FIN(E) represents the set
of finite-dimensional subspaces of E .

Theorem 3.1 Let λ be a Banach sequence space satisfying the uniform projection
property. Then every ultrapower of λ (in particular λ itself) is a quasi-L λ-space.

Proof Let M = M = (Md)U be a m dimensional subspace of (λ)U . Without loss
of generality, we can assume that ∀d ∈ D the dimension of Md is m. As λ satisfies
the uniform projection property, ∃b > 0, exists a natural number n = n(m) only
depending of m and ∃{Nd ∈ FIN(λ), d ∈ D} such that ∀d ∈ D,

• Md ⊂ Nd

• dim(Nd) ≤ n(m)

• Nd b-complemented in λ.

If N = (Nd)U , then dim(N ) ≤ n and it is b-complemented in (λ)U .Denote N =
(Nd)U . Let Pd : λ → Nd , d ∈ D be the corresponding projections with ‖Pd‖ ≤ b.

Denote P := (Pd)U : (λ)U → N is a projectionwith ‖P‖ ≤ b.Given 0 < ε < 1, it
s known that there exists a A0 ∈ U such that for every d0 ∈ A0 and∀x = (xd)U ∈ N ,
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(1 − ε)‖x‖ ≤ ‖xd0‖ ≤ (1 + ε)‖x‖

Then d(N , N0) ≤ 1+ε
1−ε

. �

To study the stability of the class of quasi-L λ-spaces under biduals we need the
Principle of Local Reflexivity of Linndenstrauss and Rosenthal [19]:

Theorem 3.2 Let X be a Banach space, and let G ⊂ X ′′ and F ⊂ X ′ be finite-
dimensional subspaces. Given ε > 0 there exists a ε-isometry A : G → X (that is if
y ∈ G, (1 − ε)‖y‖ ≤ ‖A(y)‖ ≤ (1 + ε)‖y‖) such that

• A|G∩X = id|G∩X

• < f, A(g) >=< g, f >, for every g ∈ G and f ∈ F.

A well known consequence of the Principle of Local Reflexivity says that X ′′ is
a 1-complemented subspace of some ultrapower of X . In this direction we have the
following property:

Theorem 3.3 Let X be a quasi-L λ-space. Then idX ′′ factors through an ultrapower
of λ such that if S1 : X ′′ → (λ)U and S2 : (λ)U → X ′′ then there is complemented
subspace G of (λ)U and T : X ′′ → G such that if IG : G → (λ)U is the inclusion
map then S1 = IG T .

Proof The proof is based in the following fact: If (xd)U ∈ (X)U , then {xd , d ∈ D}
is bounded in X, and then it is relatively-σ(X ′′, X ′)-compact in X ′′, hence limU xd

exists in the σ(X ′′, X ′)-topology of X ′′.
First of all consider the set D = {(M, N , ε), M ∈ FIN(X ′′), N ∈ FIN(X ′), ε >

0} endowed the order (M1, N1, ε1) ≤ (M2, N2, ε2) if and only if M1 ⊂ M2, N1 ⊂
N2, ε1 ≥ ε2 We denote R(d0) = {d ∈ D : d0 ≤ d}. Then R = {R(d), d ∈ D} is a
filter basis of D. Let U be an ultrafilter containing R.

For the Principle of Local Reflexivity ∀d = (Md , Nd , εd) such that limU εd = 0,
∃Fd ∈ FIN(X) and Td : Md → Fd with ‖Td‖ ‖T −1

d ‖ ≤ 1 + εd such that

• (Td)|Md∩Fd = I|Md∩Fd .

• ∀x ′′ ∈ Md , ∀x ′ ∈ Nd , < x ′, Td(x ′′) =< x ′′, x ′ > .

As X is a a quasi-L λ-space with constants c ≥ 1 and b > 0, ∀d ∈ D,

• ∃Yd ∈ FIN(X) such that Fd ⊂ Yd ∈ FIN(X) ∃Gd ∈ FIN(λ) complemented in λ

with projection Pd : λ → Gd , ‖Pd‖ ≤ b
• ∃Sd : Yd → Gd , ‖Sd‖ ‖S−1

d ‖ ≤ c + εd .

Then (Yd)U andG := (Gd)U are isomorphic, andG is b-complemented in (λ)U .
We construct the map T : X ′′ → (Yd)U such that if T (x ′′) = (xd)U , then xd =

Td(x ′′) if x ′′ ∈ Md , and xd = 0 if x ′′ /∈ Md .

Given x ′′ ∈ X ′′, for all x ′ ∈ X ′, there is d0 = (Md0 , Nd0 , εd0) such that x ′′ ∈ Md0
and x ′ ∈ Nd0 . Then limU < Td(x ′′), x ′ >=< x ′′, x ′ >. Hence limU Td(x ′′) = x ′′ in
the σ(X ′′, X ′) topology of X ′′. And also ‖x ′′‖ = limU ‖(Td(x ′′))U ‖. Then if we
identify x ′′ with T (x ′′), we can say that T is an isometric embedding.
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Define Q = (Qd)U : (λ)U → (Yd)U such that Qd = S−1
d Pd , ∀d ∈ D. Identify-

ing (S−1
d Pd(wd))U with limU S−1

d Pd(wd), which is some element of X ′′, we can
consider that Q : (λ)U → X ′′.

Denote Id the inclusion map of Gd in λ. Then limU < Qd Id Sd T (x ′′), x ′ >=<

x ′′, x ′ >, ∀x ′ ∈ X ′ and ∀x ′′ ∈ X ′′. Hence limU Qd Id Sd T (x ′′) = x ′′. �

From Theorem 3.3 it is clear that for every finite-dimensional subspace M of the
bidual of a quasi-L λ-space X where λ satisfies the uniform projection property,
the identity map idM factors through a complemented finite-dimensional subspace
G of λ. But this no proves that M is contained in a finite-dimensional subspace N
of X ′′ such that d(N , G) ≤ c, for some constant c. That is, 3.3 does not prove that
X ′′ is a quasi-L λ-space.

In the same way it Y is a complemented subspace of a quasi-L λ-space X where
λ satisfies the uniform projection property, then there exist constants c ≥ 1 and
h > 0 such that if M ∈ FIN(Y ) there are a N ∈ FIN(X) and a h-complemented and
finite dimensional Banach subspace G of λ) such that d(N , G) ≤ c, but it does not
prove that Y is a quasi-L λ-space because we cannot prove that N ∈ FIN(Y ).

Then the class of quasi-L λ-spaces does not have the “nice behavior” we need in
the theory of tensor norms and operator ideals associated to the Banach sequence
space λ, hence we have to reject it. But the information obtained through these two
failures illuminates a new possibility.

4 (GL)-Local Unconditional Structure: The Class of
L λ,g-Spaces

In view of the difficulties we have had with the class of quasi-L λ-spaces, whose
definition is inspired by the notion of (DPR)-local unconditional structure, we pro-
pose the definition of a new class based on another way of understanding the concept
of local unconditional structure given by Gordon and Lewis in 1974 [7], which is
more flexible and more manageable than the (DPR)-local unconditional structure,
but nonetheless has the same spirit and plays a very similar role.

Definition 4.1 We say that a Banach space X has (GL)-local unconditional struc-
ture if there exists a real constants b > 0 such that for every finite-dimensional sub-
space M of X , there are a finite-dimensional lattice L and linear operators u : F → L
and v : L → X such that ‖u‖ ‖v‖ ≤ b and v u = IM,X .

We recall that the local unconditional structure of Gordon and Lewis has
been a basic tool in the study of many important topics in the theory of Banach
spaces, Banach lattices, Banach algebras and operators, for example, in the study of
unconditional basis (it is significant that the James space J does not have (GL)-local
unconditional structure) and other geometrical aspects of Banach spaces, Banach
lattices and operator ideals. The following characterization of Figiel, Johnson and
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Tzafriri, [6], see also [15, 16], of theBanach spaces having (GL)-local unconditional
structure is very significant.

Theorem 4.1 A Banach space X gas (GL)-local unconditional structure if and
only if X ′′ is isomorphic to a complemented subspace of a Banach lattice.

Inspired by the notion of (GL)-local unconditional structure, we will propose the
definition of another new class of Banach spaces, denoted the class of the L λ,g-
spaces, as a candidate to replace the class L p when we substitute �p by a more
general Banach sequence space λ.

Definition 4.2 Given a Banach sequence space λ, a Banach space X is said to be
aL λ,g-space if exists real constants h, b > 0 such that for every finite-dimensional
subspace M of X, there exist a finite-dimensional and h-complemented subspace
G of λ and linear operators u : M → G and v : G → X such that ‖u‖ ‖v‖ ≤ b and
v u = IM,X .

Obviously quasi-L λ ⊂ L λ,g. Hence if λ satisfies the uniform projection prop-
erty then λ ∈ L λ,g and (λ)U ∈ L λ,g, for every ultrafilter U .

Theorem 4.2 Let λ be a Banach sequence space and let X be a Banach space.
Consider the following statements:

(i) X ∈ L λ,g.
(ii) IX,X ′′ factors through an ultrapower of λ.

(iii) idX ′′ factors through an ultrapower of λ.

Then,
(a) (i) → (ii) ↔ (iii).
(b) If λ satisfies the uniform projection property, all are equivalent.

Proof (a) Consider the ultrafilter of the proposition 3.3. By hypothesis, there are
h, b > 0 such that for every d ∈ D, there are an h-complemented finite-dimensional
subspace Sd of λ and maps ud : Md → Sd and vd : Sd → X such that vdud = IMd ,X

and ‖ud‖ ‖vd‖ ≤ b. Then,
(i)→ (ii) because X is isometric to a subspace of (Md)U , by local reflexivity X ′′

is isometric to a 1-complemented subspace of (X)U and (Sd)U is a complemented
subspace of (λ)U with projection norm less or equal to h.

(ii) → (iii): Since IX,X ′′ = S2S1 with S1 : X → (λr )U and S2 : (λr )U → X ′′,
then by bidualization we have (IX,X ′′)′′ = S′′

2 S′′
1 , which provides a factorization of

the biconjugate of the inclusion map through ((λr )U )′′. Note that although (IX,X ′′)′′
is an into isometry X ′′ → X ′′′′ which differs generally from the natural inclusionmap
IX ′′,X ′′′′ , it has nevertheless the same left inverse P = (IX ′,X ′′′)′. Hence IX ′′ = P S′′

2 S′′
1

provides a factorization of the identity of X ′′ through ((λ)U )′′. Now the usual local
reflexivity argument gives a factorization of ((λ)U )′′ through an iterated ultrapower
((λr )U )V , which is isometric with (λr )U ×V .

(b) it is enough to see that (i i i) → (i). As λ satisfies the uniform projec-
tion property, (λ)U is a quasi-L λ-space. If idX ′′ = S2S1, S1 : X ′′ → (λ)U and
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S2 : (λ)U → X ′′, given a finite-dimensional subspace M of X , S1(M) is a finite
dimensional subspace of (λ)U , then there are a N ∈ FIN(λ)U ) containing S1(M),

an h-complemented subspace G of λ and an isomorphism C : N → G such that
‖C‖ ‖C−1‖ ≤ c.The result follows defining u := C IS1(M),N S1 and v := S2C−1, tak-
ing into account that S2S1(X) = X . �

Theorem 4.3 Let λ be a Banach sequence space satisfying the uniform projection
property. Then the class L λ,g is stable

(1) Under complemented subspaces.
(2) Under ultrapowers.
(3) Under biduals.

Proof (1) LetY be a complemented subspace of aL λ,g-space X with projection P . If
M is a finite-dimensional subspace of Y it is also a finite-dimensional subspace of X.

Then there are real constants h, b > 0 a finite-dimensional and h-complemented sub-
space G of λ and linear operators u : M → G and v : G → X such that ‖u‖ ‖v‖ ≤ b
and v u = IM,X . The result follows taking U = u and V = Pv.

(2) If X is a L λ,g , then IX,X ′′ factors through some (λ)U . Hence the inclusion
map (IX,X ′′)V : (X)V → (X ′′)V factors through ((λ)U )V = (λ)U ×V . The result
follows because (X ′′)V is a subspace of ((X)V )′′, and then I(X)V ,((X)V )′′ factors
through (λ)U ×V .

(3) The result follows from (1) and (2), because the bidual of a Banach space X is
a 1-complemented subspace of some ultrapower of X, and for (2) if X is aL λ,g-space
Every ultrapower of X is also a L λ,g-space, hence the
bidual of X is a complemented subspace of a L λ,g-space, and for (1) it is also
aL λ,g-space. �
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