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To Manuel Lopez-Pellicer



Preface

On 7 and 8 June 2018, the 2nd Meeting in Topology and Functional Analysis,
dedicated to the mathematical research of Professor Manuel Lopez-Pellicer, was
held at the Operations Research Center (CIO) of the Miguel Hernandez University
(UMH) of Elche. This book is the result of this Meeting. Covering topics in
descriptive topology and functional analysis, including topological groups and
Banach space theory, fuzzy topology, differentiability and renorming, tensor
products of Banach spaces and aspects of C-theory, this volume is particularly
useful to young researchers wanting to learn about the latest developments in these
areas.

I am grateful to Springer for the publication of the research results presented at
the conference, as well as to the attendees, participants, anonymous referees and
invited speakers, most of whose contributions have been collected in this book.
I am indebted to the Directors of the CIO and the Department of Statistics,
Mathematics and Informatics of the UMH, Professors Juan Aparicio and José
Valero, for their help and financial support, as well as to Professors José¢ Mas and
Santiago Moll for their I£EX assistance. I also want to express my gratitude to
Professor Lopez-Pellicer for his mathematical expertise, generosity and unwavering
friendship over many years. Finally, I would like to acknowledge the tremendous
work of Professor Lopez-Pellicer as Editor-in-Chief of RACSAM, the mathematical
publication of the Royal Academy of Exact, Physical and Natural Sciences of
Madrid: he has managed to transform a national magazine of limited diffusion into
an important reference of international mathematical research.

Elche, Spain Juan Carlos Ferrando
January 2019
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On the Mathematical Work of Professor m
Manuel Lopez-Pellicer L

In Honour of Manuel Loépez-Pellicer

Juan Carlos Ferrando

Abstract We examine selected topics of the research work of professor Manuel
Lépez-Pellicer. After an introductory section, the paper is divided in four main sec-
tions, which include his publications on Set Topology, Locally Convex Space Theory,
C,-theory and Descriptive Topology. We shall also glance at his work on Popular
Mathematics.

Keywords Locally convex spaces * Strongly barrelled conditions + Closed graph
theorem - Algebras with the Nikodym property + Normed spaces * Tychonoff
spaces - K-analytic spaces - Spaces of real-valued continuous functions - Spaces of
vector-valued functions

Classifications 46AXX - 54DXX - 54CXX - 46GXX - 46BXX

1 Ph.D. Dissertation and Early Work

Professor Lépez-Pellicer is member of the Royal Spanish Academy of Sciences since
1998, where he served as Secretary of its Mathematical Section (2000-2007) and
Editor in Chief of the Academy journal RACSAM since 2004 until today. He got two
M.Sc. degrees, one in Physics and the other one in Mathematics and earned his Ph.D.
in Mathematics in 1969 with a dissertation titled Asymptotic expansions and compact
Sfamilies of vector-valued holomorphic functions (Spanish), being his advisor Manuel
Valdivia. Full Professor in the Department of Applied Mathematics (1978-2015),
nowadays Lopez-Pellicer is Emeritus Professor of Universitat Politecnica de Valencia
(UPV). Most of his 11 students are Full Professors, with 52 descendants so far. His
mathematical genealogy from Gauss is depicted below, where each mathematician is
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2 J. C. Ferrando

the advisor of the one underneath, except Felix Kelin, also a descendant from Gauss
through C.L. Gerling (Géttingen, 1812) and J. Pliicker (Marburg, 1823).

Carl Friedich Gauss (Helmstedt, 1799)

K.G.C. von Staudt (Erlangen-Niirnberg, 1822)
Eduardo Torroja Caballé (Universidad Central, 1873) and
Felix Klein (Universitidt Bonn, 1868)

Julio Rey Pastor (Madrid and Géttingen, 1909)
Ricardo San Juan (Universidad Central de Madrid, 1933)
Manuel Valdivia (Universidad Complutense de Madrid, 1963)
Manuel Lépez-Pellicer (Universidad de Valencia, 1969)

Part of his doctoral dissertation was published in 1971 in RACSAM. In two 1972
papers a previous work of A. Plans on Hilbert space is generalized and some results
of Valdivia on barrelled spaces are extended to the infrabarrelled case. The 1973
paper shows that a Tychonoff space X is realcompact if and only the space C(X)
with the compact-open topology t. is a Mazur space. This is the t.-version of a 1946
result on C,(X), originally due to S. Mazur [88], rediscovered by A. Wilansky in
1981, [112].

2 Research on General Topology

In 1929 Tychonoff gave an example of aregular space thatis not completely regular. In
[9] anew proof of this fact is provided and some problems are proposed. Among them,
to characterize the compact spaces that have a stronger topology that is regular but not
completely regular. Sharpening this question, professor Lépez-Pellicer constructed
in [72] the first example of a completely regular space (X, t) whose associated
k-space is not completely regular. Recall that the k-extension t;, of a Hausdorff
topology T on X is the strongest topology on X that agrees with t on compact sets.

Let w be the first infinite ordinal and w; be the first uncountable ordinal. Denote
by [0, w] the set of all ordinals less than or equal to w; equipped with the order
topology and define X = [0, w;] X [0, wy] endowed with the product topology r,
under which it is a Hausdorff compact space. For each (countable) limit ordinal
a € [0, ) afunction f, : X — [0, 1] is defined in such a clever way that if

Woe = {(r,m) € Xt 1fo(y,m) =1l < b= f; [(1 =& 1+ &)]
then (i) Woe N{X \ ([0, 1) X {wo})} is w-open, (ii) Wo. N ([0, w1) x {wo}) =
{(ar, wp)}, and (iii) {a} x [0, wp] € W, foreacha € 2 andall0 < ¢ < 1.

Example 2.1 (Lopez-Pellicer [72]) The family = U {WO,,S e f,0<e< 1} isa
subbase of a completely regular topology T on X stronger than 7 such that (X, 7) is
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completely regular but, if 7, denotes the k-extension of t, the k-space (X, t) is not
completely regular.

Since (X, 7) is completely regular, for each -open set U there is a 77 -continuous
map gy : X — [0, 1] such that U = gljl([O, 1[). Hence, if §2 stands for the set
of all countable limit ordinals of [0, @], the initial topology on X determined by
the family of real-valued functions {gy, f, : U € w, o € §2} on X is a completely
regular topology T on X stronger than  (see [53, 3.7]). Property (i) shows that
and 7 coincide on X \ ([0, w;) X {wp}), property (ii) ensures that [0, w;) X {wp} is
a discrete set in (X, t) and property (iii) guarantees that the topologies 7 and t
coincide on each set {«} x [0, wg] for all @ € [0, w;]. If K is a T-compact subset of
X, if follows that K N ([0, w;) X {wp}) is finite, which shows that [0, w;) X {wg} is
a closed set in the k-extension 1 of the topology t. Now is not difficult to show that
if & is any t;-continuous function from X into [0, 1] there exists A € [0, w;) such
that & (A, wy) = h (w1, wp). Therefore, the point (w;, wyp) is not separated in (X, 7x)
from [0, w) % {wp}, so (X, 1) is not completely regular.

In [71] is proved that Komura’s .7 ! topology (see [66, 21.8]) is regular, which
reveals that the non compatibility with the linear structure of a topology is inde-
pendent from regularity. In [87] an embedding theorem for regular not completely
regular spaces in products of appropriate topological spaces is given. The definition
of those spaces is motivated by Tychonoff’s example of a regular not completely
regular space. It is shown in [73] that under certain conditions a topological space X
is Baire if and only if it has the Blumberg property with respect to Y, i.e., if for each
function f : X — Y there is a dense subset D of X such that f|, is continuous.

3 Research on Topological Vector Spaces

3.1 Strong Barrelledness Conditions

Although we survey here the research of professor Lépez-Pellicer on strong barrelled-
ness, let us mention that he also wrote a paper on weakly barrelledness properties
(namely, [37]). A locally convex (Hausdorff) space E is called barrelled if each bar-
rel of E (i.e., each absolutely convex, closed and absorbing set) is a neighborhood
of the origin. A locally convex space E is called Baire-like (BL for short) if given
an increasing sequence of closed absolutely convex subsets of E covering E, one of
them is a neighborhood of the origin, [100]. The classic Amemiya-Komura theorem
[1] guarantees that (i) each metrizable locally convex E is barrelled if and only if
it is BL, and (ii) if E is BL and F is a dense barrelled subspace of E then F is
BL. A locally convex space E is called suprabarrelled in [107] (SB for short) or
db in [102] if each increasing sequence of linear subspaces of E covering E has a
dense barrelled member. This definition was generalized by transfinite induction by
Rodriguez Salinas [99] as follows. If we call barrelled of class 0O to the barrelled
spaces, for every successor ordinal o + 1 a locally convex space E is barrelled of
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class o + 1 if in each increasing sequence of linear subspaces of E covering E there
is one of them which is dense and barrelled of class «, and for every limit ordinal
a a locally convex space E is barrelled of class « if E is barrelled of class 8 for
all B < «. A locally convex space E is totally barrelled (TB) if given a sequence of
linear subspaces of E covering E, one of them is BL, [110]. A locally convex space
E is unordered Baire-like (UBL) if each sequence of closed absolutely convex sets
which covers E contains a neighborhood of the origin [104]. Full account of strong
barrelledness conditions is given in [96, Chap. 9] and [68].

Suprabarrelled spaces compose the class of barrelled spaces of class 1. Barrelled
spaces of classes n and wy, the latter spaces called barrelled of class R in [44], fit in
the scheme of strong barrelledness properties as depicted in the following diagram

Baire locally convex space = UBL = TB = barrelled of class 8y =
barrelled of class n + 1 = barrelled of class n» = BL = barrelled.

Metrizable (L F) spaces are BL but not SB and each non normable Fréchet space
contains adense BL subspace thatis not SB. Every infinite-dimensional Fréchet space
contains a linear dense subspace which is TB but not UBL, [102]. Examples of TB
spaces that are not Baire can be found in [108]. In [102] Saxon and Narayanaswami
proved that a metrizable barrelled space E is not SB if and only if there exists a
linear subspace F of the completion E of E such that E C F and F is dominated
by an (L F)-space, i.e., there is a stronger locally convex topology t on F so that
(F, t) is an (L F)-space. In [38] quasi-suprabarrelled spaces were introduced by
removing the density requirement of the definition of suprabarrelled space. Quasi-
suprabarrelled spaces have been called d spaces by Saxon in [101]. The next example
(cf. [38]), where here and throughout the entire section w = KN, shows that the space
F need not coincide with E.

Example 3.1 (Ferrando and Lopez-Pellicer [38]) In the space w =~ N consider the

sequence {E, : n € N} of non-barrelled subspaces E, = w x V. X @ X @, X @p X
-+, where ¢,, means ¢ with the topology of . Then E = | J;_, E, is a dense and
barrelled subspace of the Fréchet space w which is neither quasi-suprabarrelled nor
dominated by any (L F)-space.

Example 3.2 (Ferrando and Lépez-Pellicer [40]) Equip F), := @" X €1 X £} X -+
with the product topology t,,, and define the (L F)-space (F, t) = lim (F,, t,). Then

7 coincides with the relative topology of F = [ 7~ F,, as a linear subspace of @ and
F is not suprabarrelled. Assuming by induction that there exists a dense barrelled
subspace E in w of class s — 1 but not of class s, it turns out that G := |-, G,
with G, = 0" x E x E x - -- is a dense barrelled subspace of o of class s but not
of class s + 1.

In both examples the use of the closed graph theorem for quasi-suprabarrelled
or suprabarrelled spaces in the domain class is critical. Now, borrowing a classic
result by Eidelheit (cf. [66, 31.4 (1)]) that states that each Fréchet space which is not
Banach has a quotient isomorphic to w, it follows that (see also [44, Theorem 3.3.3]).
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Theorem 3.1 (Ferrando and Loépez-Pellicer [39, 40]) Given n € N, each non-
normable Fréchet space contains a dense barrelled subspace of class n — 1 but
not of class n.

As regards barrelled spaces of class Ry, a detailed exposition is given in [44,
Chap.4]. Let us exhibit some separation examples. It was shown by Valdivia and
Pérez Carreras in [110] that if E is a TB space which is not UBL and F is a
locally convex space, then the projective tensor product £ ®, F' is TB if and only if
dim F < 8. Since E ®, F is barrelled of class 8y whenever both £ and F are
barrelled of class Ry and one of them is metrizable [44, Proposition 4.3.1], if E
is an infinite-dimensional Fréchet space and F is a TB but not UBL dense linear
subspace of E (see [102]), it turns out that E ®, F is a dense barrelled subspace of
class Ry of E ®, E which is not TB. Particularly, if E = w then the Fréchet space
» ®w ~ o ~ w contains a dense linear subspace which is barrelled of class R
but not TB.

Example 3.3 (Ferrando and Lépez-Pellicer [43]) Each non normable infinite-dimen-
sional Fréchet space contains a dense barrelled subspace of class 8y which is not
TB.

Example 3.4 (Ferrando and Lépez-Pellicer [43]) If (£2, X, ) is a nontrivial mea-
sure space, L, (i) with 1 < p < oo has a dense subspace which is barrelled of class
R but not TB.

If (£2, X) is a measure space, it was established in [41] by Ferrando and Lépez-
Pellicer that the space £3° (X) of all scalarly-valued X -simple functions f : 2 — K
equipped with the supremum-norm is barrelled of class Rg. Since, according to a
result of Arias de Reyna, if X' is a non trivial o-algebra the space £3° (¥) is not TB
(see [5]), it follows that £5° (X') is another example of a normed barrelled space of
class R which is not TB.

Another class of strong barrelled spaces is that of baireled spaces, introduced
in [46]. A linear web of a locally convex space E is a countable family {Enl...np :
p.ni,...,n, € N} of linear subspaces of E such that { E,, : n; € N} is an increas-
ing sequence covering E and if (ny,...,n,—1) € N°7! then {Ey ., n, 11 €
N} is increasing and verifies that Un[_1 Epnyn, = Eny.n,_,- A baireled space
is a locally convex space E such that each linear web in E contains a strand
{Em,...mp pE N} of barrelled and dense spaces.

Baireled spaces are strictly located between TB spaces and barrelled spaces of
class Ng, and baireledness is transmitted from dense subspaces and inherited by
closed quotients, countable-codimensional subspaces and finite products. If E is
baireled and metrizable and F is UBL, then E ®, F is baireled [46, Proposition 4].
Hence if E is a metrizable TB space which is not UBL, then E ®, ¢, is baireled but
not TB. Non-baireled spaces which are barrelled of class R are obtained as usual
in each non-normable Fréchet space by Eidelheit’s quotient theorem after showing
that @ contains a dense subspace E of those characteristics. Main result of [74]
reveals the strongest barrelledness property known so far enjoyed by the X'-simple
scalarly-valued function space £3°(X') over a o-algebra X.
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Theorem 3.2 (Lopez-Pellicer [74]) If (2, X') is a measurable space, then £5°(X)
is baireled.

In order to get the proof, professor Lépez-Pellicer introduced the notions of
v-web and v-tree, two combinatorial objects that can be defined as follows. Denote
by W (N) the language of the infinite alphabet N without the empty word, i.e.,
WEN) =UN:keNLIfw=(ny,...,n;,...,ny) € W(N), denote by |w| = ¢
the length of the word w and set P;w := (ny, ..., n;) for 1 <i < |w|. Then, for each
T € W(N) define T :={Pw:weT,i<|w|}. Anon-empty subset of words
T € W (N) is called a v-web of W (N) if

1. Foreach word w € T and each 1 <i < |w]| there are infinitely many words in T’
of the same length than w whose first i — 1 letters coincide with those of w and
whose ith letter is different in each one of these words.

2. For each w € T there is no longer word v in T such that Pj,,—;v = Pp,|—1w.

3. For each sequence {w,};2; € T with |w,| > n for all n € N there are two con-
secutive words w, and w,,; whose first p letters do not coincide.

I will call leaves the words of av-web T. If T is a v-web of W (N) and S C T does
not contain any v-web, it can be shown that 7' \ § does. Further, if w € W (N) then
b(w) :=={Piw, Pow, ..., P, w}iscalledthe branchof w. The set Br = | J, oy b (W)
consisting of the branches of the leaves is called the v-tree determined by T'. One may
see A as a tree with infinitely many branches of finite length (finitely many vertices
or knots), each of them ending in a leaf (a word of T'), and a root (the empty word),
i.e., an arborescence such that each of his infinitely many branches has finite length
and each father vertex w ¢ T (knot) of a branch of %7 has infinitely many sons (w, k)
belonging to other branches of %7, but if a son belongs to T (i.e., if a son is a leaf)
then all his siblings belong to 7. For the proof of the theorem, one first establishes
that () if {E,, : w € W(N)} is a linear web in £3°(X) and T is a v-web, there is
some w € T such that E,, is barrelled. Then proceed by contradiction, assuming that
there is a linear web {E,, : w € W (N)} in £5°(X) none of whose strands is entirely
formed by barrelled and dense subspaces. This produces a v-web T € W (N) of
leaves enjoying the property that no E,, with w € T is both dense and barrelled but
each Ep,, with 1 <i < |w]|is, condition 3 above being consequence of the fact that
there is no strand of dense and barrelled subspaces. That is, we get an v-tree with no
leaf w indexing a barrelled and dense subspace. The aforementioned property of T
clearly contradicts observation (x).

3.2 On the Nikodym Boundedness Theorem

The Nikodym-Grothendieck theorem assures that each pointwise bounded family
M = {luy : @ € A} of scalarly-valued bounded finitely additive measures defined
on ao-algebra X of subsets of a set £2 is uniformly bounded. In other words, each set
M C ba (X) such that sup,., |[te (E)| = kg < oo for every E € X, is uniformly
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bounded, i.e., such that sup,. 4 |it«| < 00. The norm involved here is the variation
norm || = |l ($2) = l|lull;, where

|l (E) = sup ) | (Ey)

i=1

with the supreme over all finite partitions {E1, ..., E,} of E by members of X.
Another equivalent norm is |||l = sup{|u (E)| : E € X}, which satisfies that
I'lee < || <4 ||l Ifinstead of a o -algebra of sets, we consider a Boolean algebra
</ (or a Boolean ring %) then, in case that 7 verifies the Nikodym boundedness
theorem, since Schachermayer’s [103, 2.4 Definition] such 7 is called a Boolean

algebra with property (N).

Theorem 3.3 (Nikodym [93]) If (£2, X') is a measurable space, each pointwise
bounded subset of ba(X) is norm bounded.

If o is an algebra of sets, a subclass .4 of o/ will be called a Nikodym set
for ba (&) if each set {u, : @ € A} in ba (&) which is pointwise bounded on .4/
is norm-bounded in (ba (&), ||-||;). With this terminology, the baireledness of the
space of X'-simple functions provides the following extension of the Nikodym bound-
edness theorem.

Theorem 3.4 (Lopez-Pellicer [74]) If {X,, : w € W (N)} is an increasing web of
subclasses of a o-algebra X of subsets of a set §2, there exists a strand { Xy n,. n, :
i € N} consisting of Nikodym sets for ba (X).

Pioneering research on this subject comes from Valdivia’s seminal paper [106].
Further research on this matter has been done in [59, 70], although no real improve-
ment of the previous theorem has been achieved (due to [70, Proposition 1]).

Even if X' is a o-algebra of subsets of 2 and Clo (ult (B)) denotes the alge-
bra of clopen subsets of the Stone space ult (X') of X, it must be pointed out that
if {E, : n € N} is a sequence of elements of X', the union Q of their homologue
counterparts {K, : n € N} in Clo (ult (B)) need not be a clopen set, so that it may
happen that Q ¢ Clo (ult (B)). This means that in general Clo (ult (B)) is not a

o-algebra. The homologue of | 72| E, € X is not | J~; K, but J.~, K,,. Which
the Stone representation theorem assures is that if £, — K, for each n € N, then
o2, Ey > sup{K, : n € N} = [J', K,.Soit make sense to extend the Nikodym-
Grothendrieck boundedness theorem for algebras. Concerning the algebra ¢ (K)
of Jordan measurable subsets of the compact interval K = ]—[Ll [a;, b;] of R¥ with
a; < b; for 1 <i <k, it has been showed in [109] that the space £5°(_Z (K)) is
suprabarrelled. This result has been extended in [69] by proving that £5°(_# (K))
is a baireled space. It is worthwhile to mention that the algebra ¢ (I) of Jordan
subsets of the interval I = [0, 1] was the first example, due to Schachermayer [103],
of a Boolean algebra with property (N) that does not have the so-called property
(G). For more information about the research on the Nikodym-Dieudonné theorem,
see [47] and references therein.
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3.3 Barrelled Spaces of Vector-Valued Functions

Let (£2, X') be a usually nontrivial measurable space and X be a normed space over
K. If B(X, X) denotes the normed space of X-valued functions defined on 2 that
are the uniform limit of a sequence of X'-simple X-valued functions defined on £2
endowed with uniform convergence topology, the research on the barrelledness of
locally convex spaces of vector-valued functions starts in 1982 when J. Mendoza
shows that B(X, X) is barrelled if and only if X is barrelled (cf. [89]). If K is a
compact space and C (K, X) denotes the linear space of all X-valued continuous
functions defined on §2 endowed with the compact-open topology, the following
result, also due to Mendoza, characterizes the barrelledness of C (K, X) in terms of
X.

Theorem 3.5 (Mendoza [90]) C (K, X) is barrelled if and only if both C (K) and
X are.

If now £2 stands for a locally compact space and Cy (§2, X) denotes the space
over K of continuous functions f : £2 — X vanishing at infinity (i.e., such that for
e > 0 there is a compact set K, in £2 such that || f (w)|| < & forw € 2\ K,)
equipped with the supremum norm, the following result answers a question raised
by J. Horvéth.

Theorem 3.6 (Ferrando, Kakol and Lépez-Pellicer [26]) If §2 is a normal locally
compact space, then Cy (§2, X) is barrelled if and only if X is barrelled.

If ¢ (I', X) denotes the linear space of all X-valued functions defined on £2 such
that foreach ¢ > O the set {w € 2 : || f (w)|| > &} is finite, provided with the supre-
mum norm, using the fact that each compact subset of a discrete topological space
(hence locally compact and normal) is finite, it holds that ¢y (I", X) = Cy (I', X)
whenever I" is endowed with the discrete topology. So we have that ¢y (I, X) is
barrelled if and only if X does. In [45] is shown that ¢o(I", X) is ultrabornological
or UBL if and only if X enjoys the corresponding property. This research was con-
tinued in [85], where it is proved that ¢ (I, X) is suprabarrelled if and only if X is
suprabarrelled. Then in [86], where is shown that ¢y (I, X) is suprabarrelled of class
p if and only if X barrelled of class p for every p € N and, finally, in [63], where
among others properties it is shown that ¢ (I”, X) is TB if and only if X is TB. These
results are summarized in the next theorem.

Theorem 3.7 (Lépez-Pellicer et al. [85, 86]) Let §2 be a nonempty set, X be a
normed space and p € N. Then cy(82, X) is barrelled of class p or totally barrelled
if and only if X is respectively barrelled of class p or totally barrelled.

As regards the spaces L, (i, X) the following results come from [18, 20].

Theorem 3.8 (Drewnowski, Florencio and Paul [20]) If (2, X, w) is atomless finite
measure space and X a normed space, then L ,(ju, X) is barrelled for 1 < p < oo.
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Theorem 3.9 (Diaz, Florencio and Paul [18]) If (§2, X, w) is atomless finite measure
space and X a normed space, then Lo, (1, X) is barrelled.

In [24] we obtained the following generalization of the latter two theorems.

Theorem 3.10 (Ferrando, Ferrer and Lépez-Pellicer [24]) If (2, X, ) is atomless
finite measure space and X a normed space, then L, (i, X) is barrelled of class R
forl < p <oo.

3.4 Metrizability of Precompact Sets

Although we shall define the notion of trans-separability for uniform spaces later
on, by now let us recall that a locally convex space E is called trans-separable if
for every absolutely convex neighborhood of zero U in E there exists a countable
subset Ny of E such that E = Ny + U. Clearly, a locally convex space E is trans-
separable if and only if E is isomorphic to a subspace of a product of separable
Banach spaces. Linear subspaces, locally convex products, completions, and linear
continuous images of trans-separable locally convex spaces are trans-separable. If E
is a locally convex space with topological dual E’, then clearly (E, o (E, E’)) and
(E',o (E', E)) are always trans-separable spaces.

A completely regular space X is quasi-Souslin (cf. [108]) if there is a map ¢
from NV into the family of all (countably compact) subsets of X such that: (i)
U {(p () :ax € NN} = X, and (ii) if a sequence {&,}oo in NN (here N is equipped
with the discrete topology and N with the product topology) converges to  and
Xy € @ (o) forall n € N, then {x,};2, has an cluster point in X contained in ¢ (c).
Since each metrizable quasi-Suslin locally convex space is separable, it turns out that
each quasi-Suslin locally convex space is trans-separable. In paper [28] we get the
following applicable result.

Theorem 3.11 (Ferrando, Kakol, Lépez-Pellicer [28]) In order for [prelcompact
sets of a locally convex space E to be metrizable, it is both necessary and sufficient
that E' endowed with the topology t. of uniform convergence on the compact sets of
E [resp. with the topology T, of uniform convergence on the precompact sets of E]
be trans-separable.

Since every quasi-Souslin locally convex space is trans-separable, our previous
theorem includes Valdivia’s [108, 1.4.3 (27)] if (E’, 1.) is quasi-Souslin, then all
compact sets in E are metrizable. On the other hand, in [12] Cascales and Orihuela
introduced a large class & of locally convex spaces including (L F')-spaces and (D F)-
spaces and proved that every precompact set of a locally convex space in class ®
is metrizable. The following result from [35, Theorems 4 and 5] sheds light on this
fact.

Theorem 3.12 (Ferrando, Kakol, Saxon and Loépez-Pellicer [35]) If E € & then
both its weak* dual (E/, o (E’, E)) and its Grothendieck dual (E/, ‘L’,,C), where T,
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is the topology of uniform convergence on the precompact sets in E, is a quasi-Suslin
space.

So, if 91 denotes the class of locally convex spaces having quasi-Suslin weak*
duals, it follows from the previous theorem that & C 9t and that every precompact
set of a space in class & is metrizable, as stated. Although class 901 is strictly wider
than class &, there is one important case where both classes coincide. Recall that a
locally convex space E is £o-barrelled if every weak* bounded sequence in E’ is
equicontinuous.

Theorem 3.13 (Ferrando, Kakol, Saxon and Lépez-Pellicer [35]) For an £ -barre-
lled space, it happens that & = .

Class 2 is the best known where the thesis of classic Kaplansky’s theorem holds.

Theorem 3.14 (Ferrando, Kakol, Lépez-Pellicer and Saxon [35]) Let E be a locally
convex space. If E € I, then E (weak) has countable tightness (see below).

3.5 Closed Graph Theorems

There are a number of papers of Lopez-Pellicer that contain a closed graph theorem.
Here we shall exhibit three of them which are particularly useful. Recall that a
locally convex space E is called quasi-suprabarrelled (cf. [38]) if given an increasing
sequence of subspaces of E covering E, there is one of them which is barrelled. A
locally convex space F is called a I'.-space (cf. [105, Theorem 2]) if every linear
map T : E — F from a barrelled space E into F with closed graph is continuous.
Each B,-complete space is a I',-space, so every Fréchet space is a I',-space. For a
definition of B,-complete space and an account of classic closed graph theorems,
see [67, Chap.7]. The first closed graph theorem of our particular selection comes
from [38].

Theorem 3.15 (Ferrando and Lopez-Pellicer [38]) Assume that E is a
quasi-suprabarrelled space and let {F,, : n € N} be an increasing sequence of linear
subspaces of a locally convex space F covering F. Assume that each space F, is
dominated by a I',-space. If T is a linear map from E into F with closed graph, then
T is continuous.

A nonempty set X is said to have a resolution if X is covered by a family
{Aq 1 € NN } of subsets such that A, € Agfora < B coordinatewise, i. €., such that
a (i) < B (@) forevery i € N. A topological space (X, t) is said to have a relatively
countably compact resolution if X has a resolution consisting of relatively count-
ably compact sets. Since Valdivia’s quasi-Suslin spaces have a relatively countably
compact resolution, the following closed graph theorem (taken from [30]) extends
Valdivia’s [108,1.4.2 (11)], and the case E = F (previously considered in [58] in the
locally convex setting) extends a classic result of De Wilde and Sunyach that states
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that each Baire K-analytic locally convex space (a completely regular space X is
K -analytic if it is the continuous image of a Cech-complete and Lindel6f space) is
a separable Fréchet space (see [108, 1.4.3 (21)]).

Theorem 3.16 (Ferrando, Kakol and Lépez-Pellicer [30]) Let E and F be topolog-
ical vector spaces such that E is Baire and F admits a relatively countable compact
resolution. If T : E — F is a linear map with closed graph, then T is continuous.
If E = F, then E is a separable F-space.

Recall that a nonempty topological space (X, 7) is called Fréchet~Urysohn if for
every subset A of X and any point x € A, where A denotes the closure of A in X,
there exits a sequence of points of A converging to x. The following version of the
closed graph theorem for topological groups can be found in [36].

Theorem 3.17 (Ferrando, Kakol, Lépez-Pellicer and Sliwa [36]) Let X and Y be
topological groups such that X is Baire and Fréchet—Urysohn and Y admits a rela-
tively countable compact resolution. If T : X — Y is a group homomorphism with
closed graph, then T is continuous.

A Fréchet—Urysohn additive topological group G for which every null sequence
{x,)02, is a K-sequence (i.e., such that each subsequence {y,} -, of {x,},2, has a
subsequence {z,}0° so that ) - z, converges in G) is a Baire space [11, Theorem
3]. Other results of Lopez-Pellicer related to the closed graph theorem can be found
in [49].

4 Research on C,-Theory

4.1 Bounding Tightness

If X is a topological space, we write 7 (X) < Rg to denote that X is countably tight,
i.e., if A C X and each x € A there is a countable set B C A such that x € B.
A completely regular space X is said to have [countable] bounding tightness if
x € A C X implies that there is a topologically bounded [resp. topologically bounded
and countable] set B C A withx € B.If X has countable bounding tightness we write
tp (X) < V. Itis clear that

X Fréchet-Urysohn = 1, (X) < Ry = 1 (X) < Ro.

Franklin [50] recorded an example of a compact space with countable tightness, hence
countable bounding tightness, which is not Fréchet—Urysohn. If X is completely
regular, we denote by C (X) the linear space of real-valued functions on X, or by
C, (X) when equipped with the pointwise topology 7. If X is a k-space, an extension
of a result of Grothendieck (see [6, III 4.15]) asserts that each topologically bounded
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set ¥ in C, (X) is relatively compact. In [57] is shown that #, (C,, [0, 1]) > N,.
Since, as is well-known ¢ (Cp [0, 1]) < Ny, it turns out that C,, ([0, 1]) is a countably
tight locally convex space with uncountable bounding tightness. Countable bounding
tightness has been used in [57] to characterize some classes of locally convex spaces.

Theorem 4.1 (Kakol and Lépez-Pellicer [57]) An (L F)-space is metrizable if and
only if has countable bounding tightness.

If E is a metrizable (L F))-space then E is Fréchet—Urysohn and thus #, (E) < 8.
Conversely, if 1, (E) < 8 the fact that 7, (¢) > Ry assures that E contains no copy
of ¢. Since E is barrelled, then E is BL by virtue of a deep result of [100]. But each
Baire-like (L F)-space is metrizable (see [94]). A classic result of C,-theory is the
following.

Theorem 4.2 (Asanov [7]) If C,, (X) is Lindeldf, then X" is countably tight for all
neN

Since C), (¢) is a Lindelof space, but ¢ has not countable bounding tightness, we
see that the analog to Asanov’s theorem for countable bounding tightness does not
hold.

Theorem 4.3 (Kakol and Lépez-Pellicer [57]) If X is a K-analytic space, then
C, (X) is Fréchet=Urysohn if and only if C, (X) has bounding tightness.

If X is K -analytic, there is a Cech-complete and Lindeldf space Y and a continuous
map ¢ from Y onto X. Since themap T : C, (X) — C, (Y) givenby Tf = fogis
a linear homeomorphism from C, (X) into C,, (Y), if f € AcC C,(X)and Cj, (X)
has bounding tightness there is a topologically bounded set B € A with f € B,

so that Tf € T (B) < T (B) """
C,(Y)

. Since Y is a k-space, Grothendieck’s theorem

guarantees that 7' (B) is a compact set of C,, (¥). Using the fact that C,, (Y) is
angelic (i.e., every [relatively] countably compact set is [relatively] compact and if
A is relatively compact and x € A there is a sequence in A that converges to x), we
get a sequence { f,},~; in B suchthat Tf, — Tf in Cp, (Y). Consequently f, — f
in Cp, (X).

4.2 Bounded Tightness

When working with topological vector spaces, a more natural property than that of
bounding tightness seems to be the following. A locally convex space E is said to
have [countable) bounded tightness if x € A C E implies the existence of a bounded
[resp. countable bounded] set B € A suchthatx € B (cf.[27]). Recall that a subset of
atopological vector space is called bounded if it is absorbed by each neighborhood of
the origin. Clearly, if a locally convex spaces E has [countable] bounding tightness,
then E has [countable] bounded tightness. Moreover, if E is countable tight, then E
has bounded tightness if and only if E has countable bounded tightness.
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Theorem 4.4 (Ferrando, Kakol and Lopez-Pellicer [27]) Each locally convex space
E with bounded tightness is bornological.

So, if E has bounded tightness, each bornivorous absolutely convex set of E is
a neighborhood of the origin. As a consequence, each locally convex space E with
bounded tightness is b-Baire-like, which means that if {A, : n € N} is an increasing
sequence of bornivorous absolutely convex sets of E, one of them is a neighborhood
of the origin. Other results on bounding and bounded tightness were obtained by
Cascales and Raja [14] and Cascales, Kakol and Saxon [16] (warning: in the latter
paper as in many others is called bounded tightness what we have called bounding
tightness).

According to the last theorem of the previous subsection, for a K-analytic X
space Fréchet—Urysohn and bounding tightness are equivalent properties. Are they
equivalent in C, (X) for any completely regular space X? In [65] an affirmative
answer is given to a question raised by Nyikos about whether or not Fréchet—Urysohn
and bounded tightness were equivalent properties for C, (X). Main result of this paper
assures that for a linear topological space the two properties are the same. Concretely
they show the following.

Theorem 4.5 (Kakol, Lépez-Pellicer and Todd [65]) For a topological vector space
E the following are equivalent

1. E is Fréchet—Urysohn.

2. Forasubset A of E suchthat0 € A there is a bounded subset B of Awith 0 € B.

3. For any sequence {A, : n € N} of subsets of E, each with 0 € A, there is a
sequence B, C A, for n € N, such that \ ;| B, is bounded and 0 € | J;_, Bx
for eachn € N.

This result implies that for any topological vector space Fréchet—Urysohn, [count-
able] bounding tightness and [countable] bounded tightness are the same. This fact
allows us to state a classic result of C,-theory as follows.

Theorem 4.6 For a completely regular space X the following are equivalent

C, (X) is a Fréchet-Urysohn space.
C, (X) is a sequential space.

C, (X) is a k-space.

C, (X) has bounding tightness.

C, (X) has bounded tightness.

LR N~

4.3 Trans-separable Spaces

A uniform space (X, .4") is called trans-separable if for every vicinity U of A4
there is a countable subset Z of X such that U [Z] = X, [55, 56]. The term trans-
separable was coined by Lech Drewnowski in [19]. Separable uniform spaces and
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Lindel6f uniform spaces are trans-separable, and each uniform pseudometrizable
trans-separable space is separable. A uniform space is trans-separable if and only if
isuniformly isomorphic to a subspace of a uniform product of separable pseudometric
spaces. For topological vector spaces E trans-separability means that E is isomorphic
to a subspace of a product of metrizable and separable topological vector spaces. If E
is alocally convex space with topological dual E’, then E is trans-separable provided
with the translation-invariant uniformity of the weak topology o (E, E’). The class of
trans-separable uniform spaces is hereditary, uniformly productive and closed under
uniform continuous images. So each uniformly continuous image of a trans-separable
space onto a uniform pseudometrizable space is separable. Trans-separable locally
convex spaces are closed for linear subspaces, topological products and continuous
linear images. Robertson proved that each uniform space (X, .4/") that is covered by
a family {K, : « € NN} of precompact sets such that K, C Kg whenever a < B is
trans-separable, [98]. Moreover, every compact subset of a completely regular space
X is metrizable if and only if the space C.(X) of all continuous functions defined
on X equipped with the compact-open topology t. is trans-separable. In [29] we
characterized the trans-separable uniform spaces as follows, where 7, denotes the
uniform topology on X, that is, the topology defined by the uniformity .4 for X.
Recall that a family .# of functions from a uniform space (X, ./#") into a uniform
space (Y, .#) is called uniformly equicontinuous if foreach V € .4 thereisU € AN
such that (f (x), f (y)) € V whenever f € .% and (x,y) € U.

Theorem 4.7 (Ferrando, Kakol and Lépez-Pellicer [29]) The following are equiva-
lent:

1. The uniform space (X, ) is trans-separable.

2. Each pointwise bounded uniformly equicontinuous set of functions from (X, A")
to R, provided with the usual uniformity, is metrizable in C, (X, Ty ).

3. Each pointwise bounded uniformly equicontinuous set of functions from (X, ")
to R, with the usual uniformity, has countable tightness in C, (X, Ty ).

Since on each equicontinuous family .# C C (X, t.4) both topologies 7, and
7. coincide, this theorem can also be stated for C. (X, 4 ). On the other hand,
a topological space X is said to have the Discrete Countable Chain Condition
(DCCCQ) if every discrete family of open sets is countable, which is equivalent to
require that each continuous metrizable image of X is separable. Since a topologi-
cal space X has the DCCC if and only if every pointwise bounded equicontinuous
subset of C (X) is t,-metrizable (see [13, Theorem 4]), it follows that each uniform
space (X, A4) such that (X, 7.4 ) has the DCCC is trans-separable. If X = [0, w)
where w is the first ordinal of uncountable cardinality, and for each y € X we set
Uy ={@p):a=BV@=yAB=y)then{U, :0<y <w}isabaseofa
uniformity .4 for X such that (X, .4") is trans-separable but (X, 7 s ) has not the
DCCC. Itis shown in [112, Theorem 3.5] that if C,, (X) is angelic, X has the DCCC.
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5 Research on Descriptive Topology

5.1 Tightness and Distinguished Fréchet Spaces

Let us recall that the tightness t (X) of a topological space X is the smallest cardinal «
such that for every set A € X and each x € A there exists a set B C A with |B| <k
such that x € B. On the other hand, the character x (E) of alocally convex space E
is the smallest cardinal for a base of neighborhoods of the origin. In terms of these
two indices, classic Kaplansky’s theorem reads as each locally convex space E satis-
fiesbotht (E) < x (E)and t (E, o (E, E’)) < x (E). Note that a separable locally
convex space need not have countable tightness, since ¢ (RR) =X (RR) = ¢. Recall
that a Fréchet space E is called distinguished if its strong dual F = (E "B (E " E ))
is barrelled, which always happens if E is a Banach space.

A completely regular space X is K -analytic if there exists a map T : N — 2%
with each T (a) compact such that [ J {7 (&) : @ € NV} = X and if {&,}(2, con-
verges to « in NN and x, € T () for every n € N, then {x,}2, has a cluster point
x € T (a),i.e., if there is an upper semi-continuous map (an usc map) T : NV — 2%
such that |J {7 (@) : « € N} = X.If T is countably compactly-valued we recover
the definition of quasi-Suslin space. Valdivia showed [108, pp. 65-66] that if E is
a Fréchet space, the bidual E" = (E’, B (E’, E))/ of E equipped with the weak*
topology is always quasi-Suslin, but is K -analytic if and only if (E’, n (E’, E”)) is
barrelled, where u (E, F) is the Mackey topology of the dual pair (E, F). In [34,
Corollary 4] the following is proved.

Theorem 5.1 (Ferrando, Kakol, Lopez-Pellicer and Saxon [34]) A Fréchet space
E is distinguished if and only if its strong dual F has countable tightness, i.e.,
t(F) <R

The first example of a nondistinguished Fréchet space was provided by
Grothendieck and Kothe (cf. [66]). This is the echelon space (A, v(A,1%)) of

all numerical double sequences x = (x;;) such that ij.:l |ai(j"’)x,- | < oo for each
(n)
ij
= 1fori > n and all j € N. Since A is echelon space, it is a perfect sequence

n € N.The steps a® = (a;"") are defined so thata
ai(;')
space and a Fréchet space in its normal topology v(x, 2*) and (&, v(x, 1%)) =
A*. According to the previous theorem, the strong dual (AX, B (kx, k)) of the
Grothendieck-Kothe space (A, v(A, kx)) has uncountable tightness. Since accord-
ing to [34, Example 5] it turns out that 7 (A, o (A, 1)) > No, it follows that
(A", o (1", 2¥)) is not K-analytic [15, Theorem 4.6]. But according to Valdivia
theorem (1", o (1, 1")) is a quasi-Suslin space. So we get the following additional
information about the space (k, v(X, AX)).

= jfori <nandall j € Nand

Example 5.1 (Ferrando, Kakol, Lépez-Pellicer and Saxon [34]) The weak* bidual
of the Grothendieck-Kothe space is a quasi-Suslin locally convex space which is not
K -analytic.
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If k is an infinite cardinal, let us denote by cf (k) the cofinality of «. A last result
from [34, Corollary 4] is in order.

Example 5.2 (Ferrando, Kakol, Lopez-Pellicer and Saxon [34]) If cf (k) > R then
C. ([0, k)), where here k is regarded as a (limit) ordinal, is quasi-Suslin but not
K -analytic.

5.2 Two Counterexamples

Our first example, taken from [36], exhibits a countably compact topological space
G whose product G x G cannot be covered by an ordered family {A, : & € NV}
of relatively countably compact sets. This shows that quasi-Suslin spaces are not
productive (see also [48]).

Let X be a discrete space of cardinality ¢ and let X; and X, be two subspaces
of X such that (i) X, N X, =0, (ii) X, U X, = X, and (iii) | X;| = |X2| = ¢. By
(iii) there exists a bijection o from X; onto X, whose Stone-Cech extension of
is a homeomorphism from X, onto BX,. Since X is a discrete space, we have
—BX _—BX —BX —BX —pX .

X NX, =f@and X, UX, =X ".IfY is asubspace of X, then we can
identify 8Y with Yﬁx. Hence 8X| N X, =@ and BX, U X, = BX. Moreover, if
N is a countable infinite subspace of X then |Nﬂxl = |BN| = |BN| = 2°.

Now define a homeomorphism ¢ : BX — BX by ¢ (x) = of (x) if x € X,
and ¢ (x) = (6#)7' (x) if x € BX,. Clearly ¢ (¢ (p)) = p for every p € BX, and
p € X if and only if ¢ (p) € X. Since ¢(BX,) = X, and ¢(BX,) = X, the
map ¢ does not have fixed points. If .4 denotes the family of all countable
infinite subsets of X, put Z := U{Nﬂx : N € 4} and denote by .# the family
of all countable infinite subsets of Z. Since |.4'| = ¢™ then |Z| = ¢™ x 2¢ = 2°¢
and hence |.Z| = 2°. So, if m is the first ordinal of cardinality 2¢, one gets that
M ={M, : 0 <o < m}. Note that « < m implies that |«| = |[0, )| < 2° and X
is contained in Z. Moreover, it can be easily seen that if M € .# then |Mﬁx| =2°.
Now it is possible to define inductively a set I" = { y:0<y< m} such that

Vo eEﬁX\(MaU{go(yy) :0<y <oz})f0revery0§oz <m.

Example 5.3 (Ferrando, Kakol, Lopez-Pellicer and Sliwa [36]) Setting G := X U T,
due to every countable infinite subset A of G is equal to M,, for some 0 < o < m, it
turns out that G contains a limit point of A. Therefore G is countably compact. On the
other hand, the graph {(p, ¢ (p)) : p € BX} of the continuous map ¢ : X — BX is
closedin BX x BX,sothatS := {(x, ¢ (x)) : x € X}isaclosed subspace of G x G
homeomorphic to X. So S is uncountable and discrete, which prevents G x G to be
covered by an ordered family {A, : o € NV} of relatively countably compact sets.

If X is completely regular, our second example characterize those C, (X) spaces
whose Mackey dual is analytic. Let us denote by L (X) the topological dual of C, (X)
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and by L, (X) the weak* dual of C, (X). The space L (X) consists of the linear span
of the vectors of the canonical copy 6 (X) of X in C), (C,, (X)), sothateach x € X is
depicted in L (X) by the evaluation map §, at x, defined by 3, (f) = f (x) for each
f € C(X). This forces X to be represented in L (X) as an algebraic basis. When
X =1 =0, 1] the following result is shown in [22].

Theorem 5.2 (Ferrando [22]) The locally convex space (L (I), u (L (1), C (I))) is
weakly analytic but not K -analytic.

This result is complemented in [64] by the following useful characterization.

Theorem 5.3 (Kakol, Lépez-Pellicer and Sliwa [64]) For a completely regular space
X, the Mackey dual of C, (X) is analytic if and only if X is countable.

5.3 Metrizable-Like Topological Groups

In [62] is shown that a locally compact topological group G is metrizable if each
compact subgroup K has countable tightness. In [51] is proved that each cosmic (i.e.,
with a countable network) Baire topological group is metrizable (and separable). A
B-base of atopological groupis abase {U, : a € N} of neighborhoods of the neutral
element e such that Ug C U, if o < B. Clearly, every metrizable topological group
has a ®-base. Conversely, every Fréchet—Urysohn topological group with a &-base
is metrizable [52, Theorem 1.2]. As shown in [25, Theorem 2], a space C,. (X) has a
®-base of neighborhoods of the origin if and only if X has a covering {A, : @ € NV}
made up of compact sets with A, € Ag whenever « < B that swallows the compact
sets. Combining with Christensen’s theorem [17, Theorem 3.3] one gets

Proposition 5.1 For a metrizable space X the following are equivalent

1. X is a Polish space.
2. C.(X) has a &-base of neighborhoods of the origin.

In [31] the notion of X-base is introduced. A topological group G is said to
have a X-base if for some (pointwise) unbounded and directed subset X of N the
neutral element of G has a base of neighborhoods {U, : @ € X'} such that Ug C U,
if « < B with «, 8 € X. The requirement for X~ to be directed is not a serious
constraint, since if I” is any unbounded subset of N and .# (X) stands for the family
of finite subsets of X then ¥ := {supf : [ € .% (I')}, where y =supf € NV is
given by y (i) = sup{a (i) : @ € F } foreach i € N, is unbounded and directed and
has the same cardinality as I". The following theorems from [31] characterize those
C. (X) spaces that admit a X -base.

Theorem 5.4 (Ferrando, Kakol and Lopez-Pellicer [31]) For completely regular
space X, the following are equivalent
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1. Thereisacompact covering {A, : a € X} of X, with X unbounded and directed,
such that A, C Ag whenever a < B in X, that swallows the compact sets.
2. C.(X) has a X-base of absolutely convex neighborhoods of the origin.

Theorem 5.5 (Ferrando, Kakol and Lépez-Pellicer [31]) If X is a separable and
metrizable space that is not a Polish space, then C. (X) admits a X -base of neigh-
borhoods of the origin but it does not admit any &-base.

A special class of X'-bases, called X,-bases, have close properties to those of
®-bases. A subset X of NN is called boundedly complete if each bounded set A of
X has a bound at X. If ¥ is a boundedly complete subset of N then ¥ is itself
directed. A X'-base of neighborhoods of the unit element of a topological group G
indexed by a boundedly complete set X of N is referred to as a X,-base. It is shown
in [31] that (7) if G is a Fréchet—Urysohn topological group with a X»-base then G
is metrizable, and (ii) a C,(X) space has a X>-base if and only if X is countable.

Example 5.4 (Ferrando, Kakol and Ldépez-Pellicer [31]) In any ZFC consistent
model for which 8| = 0 but ? < ¢ there exists a X»-base of absolutely convex neigh-
borhoods of the origin of the space C,. ([0, ®;)) which is not a &-base.

5.4 A -Invariance of Some Topological Properties

Two completely regular spaces X and Y are called £ ,-equivalent if the corresponding
spaces C,(X) and C,(Y) are linearly homeomorphic. Moreover, according to an old
result of Nagata, if the topological rings C, (X) and C,(Y) are topologically isomor-
phic (as rings), then X and Y are homeomorphic (cf. [92]). A topological property
& is said to be preserved by {,-equivalence if whenever two completely regular
spaces X and Y are £ ,-equivalent and X has property &7, then Y has property & as
well. Properties as metrizability, local compactness, countable weight, normality and
paracompactness are not £ ,-invariant, whereas hemicompactness and the properties
of being an Ry-space, a Lindelof X-space, a K-analytic space or an analytic space
are all preserved by £ ,-equivalence (see [82]).

In [8, Theorem 3.3] Baars, de Groot and Pelant proved that complete metrizability
is preserved by £,-equivalence in the class of metrizable spaces. Later on, Valov
proved, that a Cech-complete and first countable space Y is metrizable when it is
£ ,-equivalent to a metrizable space X (cf. [111]). The combination of the these facts
assures that property of complete metrizability is preserved by the £,-equivalence
for spaces satisfying the first axiom of countability.

In [60] two completely regular spaces X and Y are said to be £.-equivalent if the
spaces C.(X) and C,(Y) are linearly homeomorphic. It must be pointed out that if X
and Y are £ ,-equivalent and either (i) X is a u-space or X is Dieudonné complete (in
particular, if X is paracompact or realcompact), then X and Y are also £.-equivalent.
The first statement is essentially consequence of the fact thatis X is a u-space, due to
the Nachbin-Shirota theorem, the compact-open topology 7. (X) on C (X) coincides
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with the strong topology B (C (X), L (X)) of the dual pair (C (X), L (X)). Paper
[60] investigates whether some properties & are preserved by £.-equivalence. Let
us recall that a completely regular space X is called a Ry-space if it has a countable
k-network (cf. [91]). First countable or locally compact 8y-spaces are separable and
metrizable. A completely regular space X is said to be of pointwise countable type if
for each y € X there exists a compact set K such that y € K and K has a countable
base of neighborhoods in X (cf. [6, Chap. 0]). First countable, locally compact or, in
general, Cech-complete spaces, are spaces of pointwise countable type. Main results
of [60] are the following.

Theorem 5.6 (Kakol, Lopez-Pellicer and Okunev [60]) The property of being a Ry-
space is preserved by {.-equivalence among the class of completely regular spaces.

Theorem 5.7 (Kakol, Lopez-Pellicer and Okunev [60]) The property of being
metrizable and separable is preserved by L.-equivalence among the class of first
countable spaces.

Theorem 5.8 (Kakol, Lépez-Pellicer and Okunev [60]) Second countability and the
property of being a Polish space are both preserved by {.-equivalence among the
class of spaces of pointwise countable type.

Analogous results to those of Sect.?2 of the cited paper [60] can be found in [23].
The interested reader can find more information about £.-equivalence in the excellent
expository paper [82].

5.5 Rainwater Sets and Weak K-Analyticity of C? (X)

A subset Y of the dual closed unit ball Bg- of a Banach space E is called a Rainwater
set for E if every bounded sequence of E that converges pointwise on Y converges
weakly in E (cf. [95]). If Y is a Rainwater set for E, then Y separates the points
of E. Classic Rainwater’s theorem [97] asserts that the set of the extreme points of
the closed dual unit ball of E is a Rainwater set for E. In paper [32] Lépez-Pellicer
et al. study some topological properties of Rainwater sets for the Banach space
C? (X) of real-valued continuous and bounded functions over a completely regular
space X, equipped with the supremum-norm. The following result characterizes the
Rainwater sets ¥ € X for C (X) with compact X.

Proposition 5.2 (Ferrando, Kakol and Lépez-Pellicer [32]) Let X be a compact
space and be Y C X. The following are equivalent

1. Y is a Rainwater set for C (X) .
2. Y is Gs-dense in X.
3. Y is a James boundary for C (X).
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If X is completely regular and vX denotes the Hewitt realcompactification of
X, then X is pseudocompact if C (X) = C b(X) or alternatively if vX = X. The
previous proposition implies that if X is completely regular, then (i) X is a Rainwater
set for C? (X) if and only if X is pseudocompact, and (ii) if ¥ C X is a Rainwater
set for C? (X), then X is pseudocompact and Y is Gs-dense in X. Moreover, if Y is
a pseudocompact subset of Bcs(x)- (weak™) that contains X, then Y is a Rainwater
set for C? (X).

A space X is called Lindelof X if thereareaset ¥ € NNandauscmapT : ¥ —
2% with Uges T (o) = X ([6, Chap. IT] or [61, Chap. 3]). A Banach space is weakly
countably determined (WCD for short) or a Vasak space if is a Lindelof X'-space in
its weak topology. For the definition of weakly Lindeldf determined (WLD for short)
Banach space, see [61, Sect. 19.12]. Since CY(X) is WLD if X is pseudocompact
[32], denoting by oy the topology on C? (X) of the pointwise convergence on Y, we
get

Theorem 5.9 (Ferrando, Kakol and Lépez-Pellicer [32]) Let X be a completely
regular space. The following are equivalent

1. There exists a Rainwater set Y for C* (X) such that (Cb X), Uy) is K-analytic
(resp. WCD) and C,, (Y) is angelic.

2. There exists a Rainwater set Y for C* (X) such that (Cb X)), Uy) is both K -
analytic (resp. WCD) and angelic.

3. C’(X) is weakly K -analytic (resp. WCD).

As a corollary, we get classic Talagrand’s result that asserts that if X is pseudo-
compact, then C,, (X) is K -analytic (resp. Lindel6f X'-space) if and only if C (X) is
weakly K -analytic (resp. WCD). Next theorem characterizes Talagrand and Gul’ko
compactness.

Theorem 5.10 (Ferrando, Kakol and Lépez-Pellicer [32]) Let X be a compact space
and Y be a Gs-dense subspace. Then X is a Talagrand compact set (resp. Gul’ko
compact) if and only if the space (C (X), oy) is K-analytic (resp. a Lindelof X -
space).

5.6 Quantitative Descriptive Topology

Some cardinal functions have shown to be useful in descriptive topology. If X is a
completely regular space we can mention, among others, the Lindeldf number £ (X),
the density d (X), the hereditarily density hd (X), the weight w (X), the network
weight nw (X), the tightness t (X) and the Hewitt—Nachbin number g (X). We appeal
to Arkhangel’skii’s book [6] for the definition of those indices. The Nagami index
Nag (X) has been introduced in order to generalize the notion of Lindelof X'-space.
Recalling that the weight w (X) of X is the least cardinality of an open base of X,
the Nagami index is reported to be the smallest infinite cardinal number m such that
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there exists a topological space Y of weight m and a (compactly-valued) usc map
T : Y — 2% covering X. The Nagami index measures how far a completely regular
space X is from being a Lindelof X'-space, in the sense that Nag (X) < Ry if and
only X is a Lindelof X'-space. Here is useful to mention that if both X and C,, (X) are
Lindelof X-spaces, one has d (C,, (X)) = d (L, (X)). Main theorem of [33] reads
as follows.

Theorem 5.11 (Ferrando, Kakol, Lépez-Pellicer and Muiioz [33]) If X is a topo-
logical space and L C C, (X) there exists a space Y and two completely regular
topologies v/ < © on Y such that L is embedded in C, (Y, 1) and (i) Nag (Y, t) <
Nag (vX), (ii) w (Y, t/) <d (L), (iii) nw(Y,t) <max{Nag (X),d (L)}, and
(iv)d (L) <max{Nag (L),d ((Y,7)}.

As a consequence, if C, (X) is a Lindelof X'-space (which implies that vX is a
Lindelof X'-space) and L € C,(X) is separable,i.e.,d (L) < Ry, there is a separable
submetrizable (by (iii) and Urysohn’metrizability theorem) Lindel6f X' -space (Y, 1)
(by (i7)) such that L is embedded into C, (Y, 7). From this it can be readily shown that
C,(X) is analytic if and only if C,, (X) is separable and admits a compact resolution.
A striking consequence of the previous theorem in locally convex space theory is the
following result.

Corollary 5.1 (Cascales and Orihuela [13]) A weakly compact set Y in a locally
convex space E in class & is weakly metrizable if and only if Y is contained in a
weakly separable set.

In Banach space theory some indices have also been introduced to get quan-
titative versions of the classic Krein or Eberlein theorems, among others. If H
is a subset of a Banach space E, the index k (H) := sup{d (x**, E) : x™ € H" 1,
where the closure is in the weak* topology w* of the bidual E** and d (x*™*, E) =
inf {||x** — x|| : x € E}, is zero if and only if H is weakly relatively compact. The
inequality k (co (H)) < 2k (H) for a bounded subset H of a Banach space E (cf.
[21]) ork (co (H)) < 5k (H) for abounded subset H of the bidual E** (cf. [54]) are
quantitative versions of Krein’s theorem. On the other hand, the index

ck (H) = sup {d (Clustg- (s), E) : s € H"}

where Clustg« (h) designs the set of cluster points of the sequence s in E** (w*)
andd (A, B) =inf {||x — y|| : x € A, y € B}, measures how far H C E is far from
being relatively weakly countably compact, in the sense that in the latter case
ck (H) = 0. For a bounded subset H of a Banach space the equivalence of state-
ments (i) ck (H) =k (H) = 0and (ii) H is weakly relatively compact (cf. [2]) is a
quantitative version of Eberlein’s theorem. In [3] the following version of Eberlein’s
theorem for Fréchet spaces is shown.

Theorem 5.12 (Angosto, Kakol and Lépez-Pellicer [3]) If H is a bounded subset of
a Fréchet space E, the following are equivalent (i) ck (H) = 0, (ii) k (H) = 0, (iii)
H is weakly relatively countably compact, and (iv) H is weakly relatively compact.
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The following version of Krein’s theorem for Fréchet space was obtained in [4].

Theorem 5.13 (Angosto, Kakol, Kubzdela and Lépez-Pellicer [4]) If H is a bounded
set of a Fréchet space the inequality

k(co (H)) <k (H)3 —2yk (H))

holds.

6 Publications on Linear Algebra and Popular Science

There are two beautiful publications of professor Lépez-Pellicer on Linear Algebra,
both in 1985 and coauthored by Rafael Bru. In [10] a necessary and sufficient condi-
tion for a maximal set M of linearly independent eigenvectors of an endomorphism
f of afinite-dimensional vector space E to be extendable to a Jordan basis of E with
respect to f is provided. In [10] the authors give a proof of the existence of a Jordan
basis of an infinite-dimensional vector space E for each endomorphism f which is a
root of some (annihilating) polynomial. As in the finite-dimensional case, they give
anecessary and sufficient condition to extend a Jordan basis of an invariant subspace
to a Jordan basis of the whole vector space. These two papers have been the seed of
further research by professor Bru and his collaborators.

Regarding popular science. Seventeen papers in the MathSciNet list of publica-
tions of professor Lépez-Pellicer are devoted to this subject. All of them have been
published in Spanish journals and written in the tongue of Cervantes. There are
many others which are not included in the MathSciNet, as for instance his speech
on the occasion of his admission to the Spanish Royal Academy, in 1998, devoted
to the history of Functional Analysis, which occupies 106 pages at the journal of
the Academy. Many conferences, inside and outside of the Royal Academy have
been also dedicated to popular science. The life and work of some universal math-
ematicians as Euclides, Fermat, Euler, Poincaré, Banach, von Neumann, Russell or
Ramanujan, have focused the interest of professor Lpez-Pellicer informative job.
Particularly interesting are his articles on some Spanish scientists, engineers and
mathematicians, as Jorge Juan (1713-1773), Agustin de Bethencourt (1758-1824),
Julio Rey Pastor (1888-1962) and Manuel Valdivia (1928-2014). For the sake of
completeness we include references [75-81, 83] on popular science which do not
have been referenced in the MathSciNet list.

7 Work as Editor-in-Chief of RACSAM

Professor Lopez-Pellicer is Editor-in-Chief of the Journal of the Royal Academy of
Exact, Physical and Natural Sciences, Series A, Mathematics, acronym RACSAM,
since 2004 (volume 98) to the present. From 2004 to 2010 (volume 104) the magazine
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Table 1 Evolution of RACSAM Impact Factor (Source InCites Journal Citation Reports dataset
updated Jun 06, 2018)

Year Total cites | Citable Impact Rank Quartile JIF
items factor percentile

2011 91 33 0.340 239/289 Q4 17.474
2012 149 28 0.733 84/296 Q2 71.791
2013 171 30 0.689 98/302 Q2 67.715
2014 208 64 0.776 95/312 Q2 69.712
2015 221 52 0.468 223/312 Q3 28.686
2016 295 56 0.690 140/311 Q2 55.145
2017 430 87 1.074 56/309 Q1 82.039

published two annual issues, edited by the Academy itself. During years 2008, 2009
and 2010 the journal underwent evaluation in the JCR (Journal Citation Reports),
which requires follow-up by the JCR for three consecutive years. In 2011 Professor
Lépez-Pellicer was the architect of the signing of a contract with Springer. Currently
the journal publishes 4 issues per year. The evolution of the journal since the entry
of RACSAM in the JCR list is depicted in Table 1.
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1 Introduction

A discrete dynamical system (an ADS for short) is a pair (X, f) where X is a topolog-
ical space and f: X — X is a continuous function. Discrete dynamical systems can
be generalized in the following way: a nonautonomous discrete dynamical system
(a NDS for short) is a pair (X, f1..0) Where X is a topological space and f} » is a
sequence of continuous functions (f,,: X — X),cn. For each n € N, the n-iterate
of a NDS (X, f1.) is the composition

Ji = fuo famio-0 fao fi.

The symbol f} will stand for the identity map from X onto itself.
Notice that an ADS (X, f) coincides with the NDS (X, fi1,»), where f, = f for
each n € N. Given a NDS (X, f].o0), the orbit of a point x € X is the set

Of @) = {x, fl@), f@), ..., fl@), ...}

NDS’ were introduced by S. Kolyada and L. Snoha in [15]. The paper [5] describes
some recent developments on the theory of NDS’. Note that NDS’ are related to
nonautonomous difference equations: indeed, given a compact metric space (X, d)
and a sequence of continuous functions (f,: X — X),cn, if for each x € X we set

Xo =X,
Xng1 = Ju(Xn),

we obtain a nonautonomous difference equation (see, for example, [23, 25]). Observe
that, from the definition of a NDS, the orbit of a point forms a solution of a nonau-
tonomous difference equation. The orbit can be also described by the difference
equation x; = x and x,4+1 = f{'(x,) foreachn € N.

An ADS (X, f)issaidto be topologically transitive (transitive for short) if for any
pair U and V of nonempty open sets of X there exists # € Nsuch that f*(U) NV #
@. If X is a metric space via a metric d, it is said to have sensitive dependence on
initial conditions (sensitive for short) if there exists a constant § > 0 such that for any
x € Xand ¢ > 0 there exists y € Y withd(x, y) < ¢ such thatd(f"(x), f"(y)) > 8
for some n € N. If we replace f” by f|' we obtain the corresponding definitions of
transitivity and sensitivity for NDS’. Note that if X contains an isolated point, then
the NDS (X, f1.o) is not sensitive.

The reader familiar with the theory of uniform spaces will have noticed that the
definition of sensitivity is given by means of the uniformity induced by the metric
d. Thus, it can be extended to uniformizable spaces, that is, to Tychonoff spaces.

The paper is organized as follows. In the second section we present and ana-
lyze three notions of a periodic point for NDS’. Periodic points are of great inter-
est in the study of Devaney’s chaos. In this set-up, we present several results and
examples. Section 3 is devoted to transitivity. Among other results we study the rela-
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tionship between transitive points and transitivity. Several examples are presented.
For instance, we show that there exist NDS’ with equicontinuous points which are
nontransitive points. This is in striking contrast to the case of ADS.

Our notation and terminology are standard. The interested reader might consult
[13] for further information about ADS’ and [4, 5] for NDS’. Further information
in chaos, transitivity and sensitivity for NDS’ can be found in [6, 11, 14, 18]. For
topological notions and concepts not defined here see [14].

2 Periodic Points

An interesting question in the framework of NDS’ is how to obtain a suitable def-
inition of a periodic point. Given a NDS (X, fi o) where fi ~ is the sequence
(fu: X = X)nen, several different definitions are known, each one with its pros and
cons (see, for example [20-22, 26]):

(P1) A point x € X is periodic if there exists k € N such that flk(x) = x.

(P2) A point x € X is periodic if there exists k € N such that f{"(x) = x for all
n e N.

(P3) Apointx € X is periodic if it satisfies the following conditions: (a) there exists
k € N such that f{‘*" (x) = f{'(x) foralln e NU {0}, (2)if k # 1 then k is the
smallest natural number such that ff(x) = x, and f!'(x), f2(x), ..., [ (x)
are pairwise different.

It is clear that
P3) = P2) = (P

and easy examples show that the converses fail to be true. If in the above notions we
have k = 1, then we say that x is a fixed point in the sense of either (P1), (P2) or (P3).
For example x € X is a fixed point in the sense of (P1) if f;(x) = x. In such case
Jf2(x) and fi(x) can be different points of X. Indeed, for the NDS (I, f| ) described
in Example 3.1 below, a; is a fixed point in the sense of (P1) and f,(a;) # a; for
every n € N\ {1}. Note that x is a fixed point in the sense of (P2) if f{'(x) = x for
each n € N. In such situation &'y, _(x) = {x} is a finite set.

Theorem 2.1 Let (X, fi.o0) be a NDS. Then x € X is a fixed point in the sense of
(P2) if and only if f,(x) = x for everyn € N.

Proof Assume first that x is a fixed point in the sense of (P2). Then f|'(x) = x
for each n € N. In particular, fj(x) = fll (x) =x and if n > 2, then f,(x) =
Fu(f71(x)) = fI"(x) = x. This shows that f,(x) = x for every n € N.

Now assume that f,,(x) = x for every n € N. It is straightforward to show that
Jix)=(fuo fumio---0 fr0 fi)(x) = x foreach n € N, so x is a fixed point in
the sense of (P2). [l
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Note that x is a fixed point in the sense of (P3) if fl”Jrl (x) = f{'(x) forall n €
N U {0}. Using this equality it is not difficult to prove that x is a fixed point in the
sense of (P3) if and only if f{'(x) = x for each n € N. Hence fixed points according
to (P2) coincide with the ones according to (P3).

Now we construct a NDS in which every point is periodic in the sense of (P3).
Let f: X — X be a bijective function. Define f, = f ifnisodd, f, = f~'ifnis
even and fi o = (fu)nen. Then f{' = f if n is odd and f{' is the identity function
from X to X if n is even. Hence, for each x € X, we have 0, _ (x) = {x, f(x)}. If
f(x) # x, then ff*” (x) = f{'(x) forevery n € N U {0} and x is a periodic point in
the sense of (P3) withk = 2. If f(x) = x then ff’“(x) = fI'(x) foralln € NU {0}
and x is a fixed point in the sense of (P3).

Let x € X be a periodic point in the sense of (P3). Let kK € N be such that

£ (x) = f'(x) for all n € NU {0}. Then &, _(x) = {x, f (x), ..., £ (x)} is
a finite set. It is not difficult to prove that flk'”“' (x) = f{'(x) for each m € NU {0}.
If x € X is a periodic point in the sense of either (P1) or (P2) then the set Oy,  (x) is
either finite (for example, when x is a fixed point in the sense of (P2)) or infinite (see
Theorem 2.3). In any of the three situations, if x is a periodic pointand y € 0, _(x)
then y is not necessarily a periodic point (see Theorem2.3 and Example 2.1 in this
section).

Assume that the sequence f1 . = (f,)nen satisfies the following property:

(P) there exists k € N such that for each i € {1, 2, ..., k} we have f; = f4; for
every n € NU {0}.

Then any point x € X for which flk (x) = x satisfies that f1k+” (x) = f{'(x) for all
n € NU {0}. However, even under the assumption of (P), a periodic point in the
sense of (P1) is not necessarily a periodic point in the sense of (P2). To see this,
let I3 = {a, b, c} be a set with three points and the discrete metric. For eachn € N,
define h,: I3 — I3 sothath; = h; if and only if i and j are congruent mod 3. Then
hi.0o = (hy)nen satisfies (P) with k = 3. Define A, h, and h3 as follows: i (a) = b,
hy(b) = ¢, hz(¢) = a, hy(b) = a, ho(a) = b, h3(b) = a, h1(c¢) = a, hz(a) = cand
ha(c) = a. Then a is a periodic point in the sense of (P3), &y,  (a) = O, . (b) =
O}, .(c) = I3, b and c are periodic point in the sense of (P1) but not in the sense of
(P2). Note that the NDS (I3, h ) is transitive, not sensitive and the set of periodic
points in the sense of (P1) is dense in /3.

Let (X, f) be an ADS where X is an infinite 7} space. It is known that if (X, f) is
transitive, then X does not contain isolated points. This result is not valid for NDS’
as [26, Example 2.3] shows. In such example the functions that describe f  are all
constant. In Example 3.4 we present a NDS in which the elements of f; o, are not
constant functions. In the presence of isolated points we have the following result.

Theorem 2.2 If (X, fi.x) is a transitive NDS and x € X is an isolated point of X,
then x is a periodic point in the sense of (P1) with a dense orbit.

Proof Since {x} is open in X by transitivity there exists k € N such that f{‘({x}) N
{x} #0, so flk (x) = x and then x is a periodic point in the sense of (P1). Now if
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U is a nonempty open subset of X then, by transitivity, there is n € N such that
fTUxHD NU # @, so fi'(x) € U and then the orbit of x is dense in X. ([l

In order to avoid isolated points in our examples and results, from now on if
(X, f1.00) 1s a NDS, we will consider that X is a 7} space without isolated points
(this implies that X is infinite). Hence no periodic point in the sense of (P3) has a
dense orbit. The following theorem shows that periodic points in the sense of (P2)
(so that in the sense of (P1)) can have a dense orbit.

Theorem 2.3 In the unit interval 1, with its usual topology, there is a NDS (I, fi )
with the following properties: there exist a periodic point x in the sense of (P2) with
a dense orbitand y € Uy, (x)\{x} so that neither y is a periodic point nor its orbit
is dense. Moreover, x is not a periodic point in the sense of (P3).

Proof Let{s|, s2,...,8,,...} CI\ {0, 1} beadense subset of I such that 1/2 < s;.
Let (I, fi,00) be the NDS defined as follows: foreachn € N, f,(0) =0, f,(1) =0,

f2n+l(l/2) = Sn+1, f2(n+1)(s(n+l)) = 1/2 and both f2n+1 and f2(n+1) are piecewise
linear elsewhere. Moreover

s, ifx=1/2, L, ifx=1/2,
fl(x)_{l/Z,ifxzsl, and D) =110 iy =,

and both f} and f, are piecewise linear elsewhere. Note that the orbit of the point
x = 1/2 is the set

O .x)=1{1/2,51,1/2,50, ..., 1/2,5,,...}

and the orbit of the point y = s is the set {s;, 1/2, 1,0, 0, ...}. Hence, x is a periodic
point in the sense of (P2), whose orbit is dense in I, while y € &, _ (x) \ {x}isnota
periodic point, and the orbit of y is not dense in I. Since the orbit of a periodic point
in the sense of (P3) is a finite set, x is not a periodic point in the sense of (P3). [

Our interest in a suitable definition of a periodic point in the framework of NDS’
comes from the fact that they play a central role in the definition of Devaney’s chaos.
In order to make our description of this fact precise, we give the original definition.

Definition 2.1 ([9]) Let (X, d) be an infinite metric space. An ADS (X, f) is
Devaney chaotic if it satisfies the following conditions.

(i) (X, f) is topologically transitive.
(i) (X, f) has a dense set of periodic points.
(iii) (X, f) has sensitive dependence on initial conditions.

Recall that two ADS’ (X, f) and (Y, g) are said to be conjugate if there exists a
homeomorphism /: X — Y such that the following diagram
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commutes. The definition of chaos in the sense of Devaney rises the question whether
Devaney’s chaos is preserved by conjugation. The reason is apparent: indeed, it is
an easy matter to find an example showing that sensitivity is not preserved under
conjugation (see, for example, [7]). In the sitting of ADS’, Banks et al. [7] ans-
wered this question in 1992. The surprisingly neat answer is that Condition (iii) in
Devaney’s definition follows from the two previous ones.

8
_—

Remark 2.1 Asamatter of definition, sensitivity is preserved under conjugations that
are uniform isomorphisms [19]. Since compact spaces have a unique uniformity, this
fact implies that sensitivity is preserved when working with compact spaces [7].

In the realm of NDS’ the situation is quite different. In 2016, Lan [17, Problem 1]
proposed the following question.

In nonautonomous dynamical systems, does transitivity together with density of
periodic points imply sensitivity?

By means of additional conditions, a positive answer was given by Zhu et al. [26,
Theorems 3.1 and 3.2], using periodic points in the sense of (P3). Later, in the same
situation, Miralles et al. [20, Theorem 2.4] provided a positive answer using periodic
points in the sense of (P2) and assuming that the sequence f) o, which defines the
NDS converges uniformly to a function f: X — X. However, in the paper above,
Lan showed that the answer is in general negative if we use periodic points in the
sense of (P1). Moreover, Sdnchez et al. [21, Example4.4] gave an example on the
interval of a transitive NDS with a dense subset of periodic points in the sense of
(P1) which is not sensitive.

Nevertheless, in considering periodic points in the sense (P3), Zhu et al. [26,
Theorems 3.1 and 4.1] have obtained interesting results. We summarize the most
significative ones in the following theorem.

Theorem 2.4 Let (X, fi.«0) be a NDS. The following holds:

(1) If X is an unbounded metric space and (X, fi o) is transitive and the set of
periodic points in the sense of (P3) is dense in X, then (X, fi ) is sensitive.

(i1) Assume that the sequence f| « pointwise converges to a continuous function
f:X — X.If (X, fi.00) is transitive and the set of periodic points in the sense
of (P3) is dense in X, then (X, fi.0) is sensitive.

Given an ADS (X, f), each element of a periodic orbit of period k is also periodic
of period k. Despite the previous result and Theorem 2.3, this property fails to be true
for a periodic point in the sense of (P3). For this, we will use the Cantor set 4. By an
outstanding result of Brouwer’s [8] every nonempty, compact, totally disconnected
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and metrizable space without isolated points is homeomorphic to the Cantor set. In
the setting of ADS’, the Cantor set enjoys interesting properties. Among others, we
can cite that the Cantor set 4" has minimal equicontinuous systems: indeed, they are
conjugated to an odometer, that is, they are Kronecker systems on % (see [16]) and,
consequently, they are isometries. Moreover, the Cantor sets are the unique compact
subsets of the real line that have chaotic homeomorphisms in the sense of Devaney
[1]. Another property of %’ is its homogeneity. This means that for every two points x
and y in ¢ there exists a homeomorphism f: € — % such that f(x) = y. An easy
proof of this fact runs over the following lines. The two-points discrete space {0, 1}
endowed with the operation of addition mod 2 is a topological group. By Brouwer’s
theorem, the topological group {0, 1} is homeomorphic to the Cantor set ¢ and,
consequently, it is homogeneous.

Example 2.1 The points in the orbit of a periodic point in the sense of (P3) need not
be periodic. Also, the points in the orbit of a point with dense orbit does not have
dense orbit.
Proof By Brouwer’s theorem we can write 4 = 6, U %, with 6; C¥€ (i =1, 2)
homeomorphic to € and €, N 6, = @. Using the homogeneity of both €] and 63, it
follows that for every z;, z, € %) and each yy, y, € %, there exist homeomorphisms
hi: 6 — ¢, and hy: 6, — %) such that hy(z1) = y; and h,(y,) = z». Taking into
account the results in [2] commented above, from now on in this example, all the
functions that we will consider from %; onto € (i, j = 1, 2) are homeomorphisms.

Let fi: 61 — % be a homeomorphism. Pick now x € 4] and y € % with
fikx) =y.Let /o, = f]_l. Next, for n > 0, define homeomorphisms go,+1: 6 —
% and gy,42: 61 — %> which satisfy the following property: fix two sequences
(X2n+1)n>0 C 6> and (x2,42)n>0 C 61 whose elements are pairwise different
and such: (a) x; =y and, for each n >0, (b) gy+1(X2n+1) = X2u+2, and
(©) ganr2(X2012) = X2t 1)41-

To finish the proof we consider the sequence of homeomorphisms

hl,oo = {hls h27 ---9hn1 }
where, forn > 0, hy,q1: € — € and hy,p: € — € are defined as follows:

f1(), ift €4,
82n+1(t)7 ift € (52,

fz(l), if t E(fz,

hopa1(t) = .
21 (0) { gu2(t), ift € %.

and  hg,40(t) = {

Consider now the NDS (%, i1 ). It is an easy matter to check that h%*" (x) =
h'l (x) for each n € NU {0}, so x is a periodic point in the sense of (P3): indeed its
orbit is the set {x, y}. By construction the orbit of y is infinite. Notice that, being ¥
separable, the orbit of y can be chosen dense in . Then y is a point with dense orbit
which is no a periodic point in the sense of (P3). Making x, = x the point x is in the
orbit of y and, since the orbit of x is the set {x, y}, the orbit of x is not dense. |
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3 Transitivity and NDS

In this section we point out some similarities and some differences between transitive
ADS’ and transitive NDS’. In the realm of NDS’, the similarities are in spirit of
topological nature. Thus, they run over similar lines to the ADS’ case and, in general,
the proofs can be applied in more general settings. On the other hand, the differences
come from the definition of a NDS. We start with the relationship between point
transitivity and transitivity. Recall that an ADS (respectively, a NDS) is called point
topologically transitive (point transitive for short) if there exists a point, say xo,
whose orbit is dense. The point x is said to be a transitive point. If we admit isolated
points then, by Theorem 2.2, all the isolated points of a transitive NDS are transitive
points which are also periodic points in the sense of (P1).

Recall that a topological space X is called a Baire space if each countable inter-
section of open dense subsets is a dense set. A well-known result says that complete
metric spaces are Baire spaces. A useful result for ADS’ states the following.

Theorem 3.1 [24, Proposition 1.1] Let (X, f) be an ADS with X a perfect space.
The following hold.

1) If (X, f) has a transitive point, then it is transitive.
(i) Suppose that X is a second countable Baire space. If (X, f) is transitive, then
it has a transitive point.

The previous result can be applied to the most usual situations. However, for NDS’
Theorem 3.1 is not valid. Proposition 4.6 and Example4.7 of [21] shows that (i) of
the previous result holds for NDS’ but (ii) does not. Therefore, a natural question is
to establish a link between these two notions. Our first result is the following one.

Theorem 3.2 (Compare with [3, Theorem 1.1 (¢)]) Let (X, f1.00) be a NDS where
X is Tz, second countable and a Baire space. If (X, f1 ) is transitive, then the set
of transitive points is dense in X.

Proof Let {U, : n € N} be a countable base for X. Set S, = UpeN(flp)’l(Un) for
eachn € N.Notice that S,, isopenforalln € N. Moreover, being (X, fi o) transitive,
S, is dense in X for all n € N.

Take now a nonempty open set U of X. Since X is 73 we can pick a nonempty
open set V in X such that clyV C U. It is apparent that the elements of the family
{S, NV : n € N} are dense open sets of the space cly V. Since clx V is a Baire space
(see [10, Sect. 10, Exercise4]), we have

ﬂ(SnﬂV);é(?).

neN

Next choose a point xg € (),cy (S, N V). Fix now n € N. Since x € S,, the defini-
tion of S, says us that there exists m € N such that x( € (f{")_l (U,). This implies
that the orbit of x( is dense in X. Since xo € V C U, the transitive points are dense.
This completes the proof. O
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Assume that X is T3, second countable, Baire and without isolated points. If
(X, f1.00) is a transitive NDS then, by Theorem 3.2, X contains a dense set of transi-
tive points. Moreover, if xg is a transitive point, then x is not a periodic point in the
sense of (P3). Can x( be a periodic point in the sense of either (P1) or (P2)? To answer
this consider the following example, which is a modification of [25, Example 2.3].

Example 3.1 There exist a transitive NDS (I, fi ) and a dense subset D of I such
that each element of D is a transitive point and a periodic point in the sense of (P1).

Proof Let {a,: n € N} be the set of rational numbers in I so that D = {az,,+1:
m € N U {0}} is dense in 1. Given m € N U {0} we define f5,,+1(x) = azn+1 and
Jam+2(x) =1, for every x € I. Then (I, f1 o) is a NDS. Now consider a point
aym+1 € D and let W be a nonempty open subset of I. Note that 12’”“ (aomy1) =
aym1. Since D is dense in I, there exists n € N U {0} so that a,; € W. Note that
12"“ (a2m+1) = azp4+1 € W. This show that any element of the dense set D is a tran-
sitive point and a periodic point in the sense of (P1). Now consider two nonempty
open subsets U and V of I. By the density of D, there exist n, m € N U {0} so that
a1 € U and azqy € V. Note that f2" ! (az,41) = @omy1, 50 " U)YNV #0

and then (I, f o) is transitive. O
For the converse of Theorem 3.2, we have the following result.

Theorem 3.3 Let (X, fi o) be aNDS where X is a T\ space without isolated points.
If the set of transitive points is dense in X, then (X, fi1,) is transitive.

Proof Let U and V be two nonempty open sets of X. Being the transitive points
dense, there exists a transitive point, say xo, which belongs to U. Since X does
not have isolated points, there exists yo € V such that xo # yo. Let W be an open
subset of X such that yo € W and xo ¢ W. Density of &'y, _ (xo) implies that there is
k > 0 such that fll‘(xo) € VN W.Thus k € N and flk(U) NV #@,so (X, fleo)is
transitive. O

We can put together the two previous results in order to obtain the promised
connection into the existence of transitive points and transitivity.

Corollary 3.1 Let (X, fi.00) be a NDS where X is Tz, second countable, Baire and
without isolated points. Then (X, f1 o) is transitive if and only if the set of transitive
points is dense in X.

Compact metric spaces without isolated points satisfy the conditions of
Corollary 3.1.

The following result is well-known for ADS. Its proof lies in the definition of
transitive point. In fact, it is a consequence of this concept. Thus, its proof runs over
the similar lines to the ADS case (see the book of Akin [2, Theorem4.12]).

Theorem 3.4 Let (X, fi.o0) be atransitive NDS with X := (X, d) a separable com-
plete metric space. Then the set T of transitive points is a Gs-set. Indeed, T is an
intersection of countably many open dense sets.
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Proof Let D = {s1, 5, 53, ...} be a dense subset of X. Given an element s, € D, a
positive rational number & and a natural number n, we define the set

Mg e = {x € X: d(flj(x),sk) < ¢ for some j > n}

The family of all elements of the form M, , . are open and dense (notice that
density follows from Therem 3.2). It is clear that the transitive points of (X, fi o)
is the intersection of all subsets Mj, ,, . and the proof is complete. U

‘We move on to some differences between ADS’ and NDS’. Given an ADS (X, f)
with X := (X, d) a metric space, we say that a point x € X is an equicontinuous
point if for every ¢ > 0 there exists § > 0 such that d(f"(x), f"(y)) < ¢ for all
n € N provided that d(x, y) < §. The corresponding definition for NDS’ is self-
explanatory.

It is known that for transitive NDS’ a point is a transitive point whenever it
is equicontinuous [20, Theorem 3.1]. For compact metric ADS’ the converse is also
valid in the case that there exists at least one equicontinuous point ([3, Theorem 2.4]).
The following example points out that the situation is quite different in the realm of
NDS’. We will take advantage from the fact that, fixing x € [0, z] with z < 1, the
sequence {xz, X3, x . } uniformly converges to the constant function zero
and, consequently, it is equicontinuous on [0, z]. This outcome can be obtained by
an easy calculation or by means of the Dini’s theorem ([12, 3.10.F (b)]).

Example 3.2 There exists a minimal NDS (%, f1.») and a point which is not an
equicontinuous point. Indeed, let € be the Cantor set. Choose now a transitive
equicontinuous homeomorphism f on 4 and consider, for each n € N, the func-
tions go,41(x) = x2"*! for all x € €. Define now the NDS (¥, f1.00) as

{g3’ (gS)_l’ fv f_l’ 85, (gS)_lf’Z s f_zv s } .

Since (¢, f) is a transitive ADS, every point of (¢, f) is a transitive point. Then
x € X is a transitive point of (4, f1.«) for all x € €. Indeed, we have

fli=g, fi:=id, fl:=f f:=id,
f15:=g5’ f16:=id, f173=f2» flg:zid’

and so on and, consequently, { /" : n € N} is a subsequence of f| . Thus, every
point of X is a transitive point of (¢, fi.). In particular, (¥, fi.co) is minimal.
Next notice that the sequence {x2"+' :neN } converges to zero whenever 0 <
x < 1 and to one if x = 1. Thus, (¥, fi,~) is not equicontinuous at the transitive
point x = 1. Moreover, since the sequence of functions {x3, x5,y } is
equicontinuous on [0, z] forall z < 1, the set of points of equicontinuity of (€, fi.0)

is dense in %: indeed, it coincides with %\ {1}. O
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Let (X, f1.00) be aNDS with f| o = (fu)nen. We say that (X, f| ) iS surjective
if each function f, is surjective. A well-known result for ADS’ (and easy to proof)
says thatif (X, f) is atransitive ADS with X a compact 75 space, then f is surjective.
For NDS’ this result does not hold as Example 3.1 shows. Note that in such example
each function f,, is constant. Now we present an example in which the functions that
define the sequence f| . are not constant.

Example 3.3 There exists a NDS (%, f1..) such that each f, is neither surjective
nor constant. For this, let {%], %>} be a partition of the Cantor set % in two subspaces
homeomorphic to €. Consider bases & = {U, : n € N} and Z ={V, : n € N}
for the topologies of 4| and %65, respectively, formed by clopen sets. Consider an
enumeration of & X B x o x A, say,

{(Uj4f+l ’ VSzwz’ Ur4z+3’ Vm4r+4) 1=0,1,2,.. } .

For each (¢, j) € (NU{0}) x N define a continuous function fy4;: € — € such
that the restriction of f) to %, is the identity and with the following properties:

(1) The restriction of both fi, 1 and fs,43 to %] is a homeomorphism onto %>.
(2) The restriction of both fi, > and fa,44 to %, is a homeomorphism onto %.
3 farr1(Uj) = Vi

(4) f4l+2(VS4,+2) = Ur4,+3~

5 fu+3WUryy) = Ving -

(6) Sar+aVing) = Ujyyiyin-

Let (%, fi.00) be the NDS with

fl,oo = {fls f27 f31 f47 sz }

Since &7 and 4 are bases of 4] and 65, respectively, o/ U £ is a base for the
topology of ¥. Then, by the properties of the functions f,, an easy calculation
shows that (¥, fi..0) is transitive. Notice that no function of the sequence fi  is
surjective. (]

As we mentioned in Sect. 2 a transitive ADS (X, f) has no isolated points if and
only if X is infinite. This result fails to be true for NDS as the following example
shows. We employs a strategy similar to that underlying the proof of Example 3.3.
Therefore, we only give an outline of the proof.

Example 3.4 Consider the space X = % U {x} with x ¢ ¥ an isolated point. Let

{61, 6>}, o and £ as in the previous example. Let .# be an enumeration of {x} x
A X B x o X B, say,

{2 Ui Voo Urggs Vi) = 1=0,1,2,...}.

Tar+32
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For each (¢, j) € (NU{0}) x N consider the function fy;: € — € defined in
Example 3.3, so that the properties (1), (3), (4) and (5) of such example are satis-
fied. We redefine f4,1; in X by letting fa,11(x) € Uj,.,, far+4(Vi,.,) = {x}. More-
over, fai2(x), far+3(x), fara(x) belong to arbitrary clopen sets different from
V. U v whose preimage coincide with the set {x}. (]

S4r+22 Far43> ¥ M4r4

Acknowledgements The present paper was written during the first author’s sabbatical at the Insti-
tut de Matematiques i Aplicacions de Castelld, University Jaume I, Spain with the support of
PASPA/DGAPA/UNAM. The second author was supported by Spanish Government (MTM2016-
77143-P).

References

1. Ahmed, P., Kawamura, S.: Chaotic homeomorphisms of compact subspaces of the real line.
Bull. Yamagata Univ. Nat. Sci. 16(4), 127-133 (2007)

2. Akin, E.: The General Topology of Dynamical Systems. Graduate Studies in Mathematics, vol.
1. American Mathematical Society, Providence (1993)

3. Akin, E., Auslander, J., Berg, K.: When is a transisitive map chaotic? Convergence in Ergodic
Theory and Probability (Columbus, OH, 1993). Ohio State University Mathematical Research
Institute Publication, vol. 5, pp. 25—40. de Gruyter, Berlin (1996)

4. Alseda, L.L., Kolyada, S., Llibre, J., Snoha, L.: Entropy and periodic points for transitive maps.
Trans. Am. Math. Soc. 351(4), 1551-1573 (1999)

5. Balibrea, F., Caraballo, T., Kloeden, P.D., Valero, J.: Recent developments in dynamical sys-
tems: three perspectives. Inter. J. Bifurc. Chaos 20(9), 2591-2636 (2010)

6. Balibrea, F., Oprocha, P.: Weak mixing and chaos in nonautonomous discrete systems. Appl.
Math. Lett. 25, 1135-1141 (2012)

7. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am.
Math. Mon. 99(4), 332-334 (1992)

8. Brouwer, L.E.J.: On the structure of perfect sets of points. In: KNAW, Proceedings, vol. 12,
pp- 785-794. Amsterdam, Netherlands (1910)

9. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Reprint of the Second (1989)
edn. Studies in Nonlinearity. Westview Press, Boulder (2003)

10. Dugundji, J.: Topology. Reprinting of the 1966 Original. Allyn and Bacon Series in Advanced
Mathematics. Allyn and Bacon Inc, Boston, Mass-London-Sydney (1978)

11. Dvorakova, J.: Chaos in nonautonomous discrete dynamical systems. Commun. Nonlinear Sci.
Numer. Simul. 17, 46494652 (2012)

12. Engelking, R.: General Topology. Translated from the Polish by the Author. Sigma Series in
Pure Mathematics, vol. 6, 2nd edn. Heldermann, Berlin (1989)

13. Grosse-Erdmann, K.-G., Peris, A.: Linear Chaos. Universitext, Springer London Ltd, London
(2011)

14. Huang, Q., Shi, Y., Zhang, L.: Sensitivity of non-autonomous discrete dynamical systems.
Appl. Math. Lett. 39, 31-34 (2015)

15. Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random
Comput. Dyn. 4(2-3), 205-233 (1996)

16. Kurka, P.: Topological and Symbolic Dynamics. Cours Sépecialisés [Specialized Courses], vol.
11. Société Mathématique de France, Paris (2003)

17. Lan, Y.: Chaos in nonautonomous discrete fuzzy dynamical systems. J. Nonlinear Sci. Appl.
9, 404412 (2016)

18. Liu, L., Sun, Y.: Weakly mixing sets and transitive sets for non-autonomous discrete systems.
Adv. Difference Equ. 17, 9 (2014)



A Note on Nonautonomous Discrete Dynamical Systems 41

19.

20.

21.

22.

23.

24.

25.

26.

Lu, T., Zhu, P., Wu, X.: The retentivity of several kinds of chaos under uniformly conjugation.
Int. Math. Forum 8(25), 1243-1251 (2013). Hikari Ltd. http://www.m-hikari.com. https://doi.
org/10.12988/imf.2013.35107

Miralles, A., Murillo-Arcila, M., Sanchis, M.: Sensitive dependence for nonautonomous dis-
crete dynamical systems. J. Math. Anal. Appl. 463(1), 268-275 (2018)

Sanchez, 1., Sanchis, M., Villanueva, H.: Chaos in hyperspaces of nonautonomous discrete
systems. Chaos Solitons Fractals 94, 68-74 (2017)

Shi, Y., Chen, G.: Chaos of time-varying discrete dynamical systems. J. Differ. Equ. Appl. 15,
429-449 (2009)

Shi, Y.: Chaos in nonautonomous discrete dynamcial systems approached by their induced
mappings. Inter. J. Bifurc. Chaos 22(11), 1-12 (2012)

Silverman, S.: On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22,
353-375 (1992)

Zhu, H., Liu, L., Wang, J.: A note on stronger forms of sensitivity for inverse limit dynamical
systems. Adv. Differ. Equ. 2015(101), 1-9 (2015)

Zhu, H., Shi, Y., Shao, H.: Devaney chaos in non-autonomous discrete systems. Int. J. Bifurc.
Chaos 26(11), 10 (2016). Article ID 1650190


http://www.m-hikari.com
https://doi.org/10.12988/imf.2013.35107
https://doi.org/10.12988/imf.2013.35107

Linear Operators on the (LB)-Sequence m
Spaces ces(p—), 1 <p < o0 oo

In Honour of Manuel Loépez-Pellicer

Angela A. Albanese, José Bonet and Werner J. Ricker

Abstract We determine various properties of the regular (LB)-spaces ces(p—), 1 <
p < oo, generated by the family of Banach sequence spaces {ces(g): 1 < g < p}.
For instance, ces(p—) is a (DFS)-space which coincides with a countable inductive
limit of weighted ¢;-spaces; it is also Montel but not nuclear. Moreover, ces(p—)
and ces(g—) are isomorphic as locally convex Hausdorff spaces for all choices of
P, q € (1, oo]. In addition, with respect to the coordinatewise order, ces (p—) isalso a
Dedekind complete, reflexive, locally solid, Ic-Riesz space with a Lebesgue topology.
A detailed study is also made of various aspects (e.g., the spectrum, continuity,
compactness, mean ergodicity, supercyclicity) of the Cesaro operator, multiplication
operators and inclusion operators acting on such spaces (and between the spaces £,
and ces(p—)).

Keywords (LB)-space * Sequence space ces(p—) * Spectrum * Multiplier
operator - Cesaro operator + Mean ergodic operator

Subject Classifications 46A13 - 46A45 - 47B37 - 46A04 - 47A16 - 47B07

A. A. Albanese

Dipartimento di Matematica e Fisica “E. De Giorgi”, Universita del Salento-C.P.193,
73100 Lecce, Italy

e-mail: angela.albanese @unisalento.it

J. Bonet (X))

Instituto Universitario de Matemadtica Pura y Aplicada IUMPA, Universitat Politecnica de
Valéncia, 46071 Valencia, Spain

e-mail: jbonet@mat.upv.es

W. J. Ricker
Math.-Geogr. Fakultit, Katholische Universitit Eichstitt-Ingolstadt, 85072 Eichstitt, Germany
e-mail: werner.ricker@ku.de

© Springer Nature Switzerland AG 2019 43
J. C. Ferrando (ed.), Descriptive Topology and Functional

Analysis 11, Springer Proceedings in Mathematics & Statistics 286,
https://doi.org/10.1007/978-3-030-17376-0_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17376-0_3&domain=pdf
mailto:angela.albanese@unisalento.it
mailto:jbonet@mat.upv.es
mailto:werner.ricker@ku.de
https://doi.org/10.1007/978-3-030-17376-0_3

44 A. A. Albanese et al.

1 Introduction

The process of forming averages is time honoured in mathematics. For example,
the symmetric partial sums of the Fourier series of a 27-periodic function on R do
not behave as well with respect to pointwise convergence (or convergence in L') as
the sequence of their averages (i.e., their Cesaro means). Or, a consideration of the
averages of the sequence of powers of a given continuous linear operator leads to its
mean ergodic properties. And so on.

The linear operator C which assigns to a numerical sequence x = (x,), =
(x1, x2,...) € CN the sequence of its averages

X1+ X Xi+x+--+x

C(x) = (x1, TR “.ooyecy, xecy,
n

is called the (discrete) Cesaro operator. It maps many sequence spaces X C CY into
themselves (e.g. X = co, ¢, £, for 1 < p < 00) but, also exhibits other features. For
instance, the element x = ((—1)"), ¢ ¢ yet its image C(x) € ¢o. So, given a vector
space X € CN one may consider the vector space

[C,X]:={xeCN:Cx) e x}cCN )

generated by C and X. It was noted above that ¢ is a proper subspace of [C, cp].
For some classical spaces X € CY it can happen that X Z [C, X], eg. if X = £,
then [C, £;] = {x € CY: C(x) € £;} = {0}. On the other hand, Hardy’s inequality,
[27, Theorem 326], implies that C(¢,) € £, for every 1 < p <00, and so £, C
[C, £,]. This inclusion is proper, [21]. The corresponding spaces (2) for X = ¢,
were considered in [33].

From the viewpoint of analysis, a desirable property of a sequence space X € CN
is that it should be solid, that is, if x € X and y € CV satisfy |y| < |x|, then also
y € X. Here, for z € CN, we define |z] :== (|z,])» € CN and write z > 0 if z = |z].
Hence, |y| < |x| means that (|]x| — |y]) > 0. For this order defining its positive cone,
CN is a (complex) locally convex Fréchet lattice for the topology of coordinatewise
convergence. For example, each space £, for 1 < p < oo is solid whereas c is not
solid. The spaces [C, X] given by (2) are typically not solid, even if X is solid.
Note that C is a positive operator in CN, that is, C(x) > 0 whenever x > 01in CN (in
particular, C(]x]) < C(]y|) whenever |x| < |y| and |C(x)| < C(]x|)). For instance,
X = ¢ is solid and the element x := ((—1)"), € [C, ¢o] but, |x| ¢ [C, co]. Hence,
[C, co] is not solid. So, given a solid Banach space X C CN (with norm I llx),
perhaps more relevant than [C, X] is its solid Banach space counterpart

[C, X], := {x € CV: C(|x]) € X},

equipped with the norm
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lxllic.xy, == 1CAxDIx, x €[C, X];.

As pointed out in [21], the space [C, X], is the largest amongst all solid Banach
spaces Y C CY satisfying C(Y) C X.

When X is one of the spaces £,, 1 < p < oo, equipped with its standard norm
| - Il », then the solid Banach lattice [C, £, ]; generated by C and £, is more tradition-
ally denoted by

ces(p) :={x e CN: C(|x|) € £y}

with norm

n p\ 1/p
1
I llcescpy := ICAUxDII, = (g =2, (;Dm) ) , xeces(p). ()
k=1

The space ces(p), | < p < oo, was first introduced in [34, 40] and became promi-
nent in [28], where the description of its (somewhat complicated) dual Banach space
(ces(p)) was presented as the solution to a problem posed by the Dutch Math-
ematical Society in 1968. The first thorough investigation of the Banach spaces
ces(p), 1 < p < oo, was carried out in [12], where other equivalent norms to (3)
were also presented; see p. 25 and p. 54 of [12]. A further equivalent norm, based on
a certain weighted block decomposition of the elements of ces(p), is investigated
in [25]. Each Banach space ces(p), 1 < p < oo, is reflexive, p-concave and the
canonical vectors e, := (8,x)x, forn € N, form an unconditional basis, [12, 21]. For
every pair 1 < p, g < oo the space ces(p) is not isomorphic to £,, [12, Proposition
15.13]; it is also not isomorphic to ces(q) if p # g, [6, Proposition 3.3]. In view of
(3), Hardy’s inequality ensures that £, C ces(p) with [[X||ces(py < P’llx]|, for each
x € £,, where the conjugate index p’ of p is given by % + # = 1. Moreover, the
containment £, C ces(p) is proper, [21, Remark 2.2]. It is routine to verify that C
maps ces(p) continuously into £,. Many more properties of ces(p), 1 < p < oo,
are known; see, for example, [9, 10, 35], and the references therein.

In recent years there has been a renewed interest in the Banach spaces ces(p),
1 < p < 00, and various linear operators acting in them (e.g., the Cesaro operator,
multiplication operators, inclusion maps, convolution operators); see, for example,
[6, 11, 21, 22, 39]. In [19] a detailed investigation is made of the Banach space of
Dirichlet series defined in a fixed right half-plane of C and whose coefficients come
from ces(p), together with the multiplier operators acting in this space.

Non-normable sequence spaces X € CV are also abundant and form an impor-
tant part of functional analysis; see, for example, [13, 14, 30, 36, 43] and the ref-
erences therein. The particular family of classical Fréchet spaces £, 1= N,,¢,,
1 < p < 00, is well understood, [23, 37]. Its analogue ces(p+) := N,4ces(q),
1 < p < oo, was recently introduced and studied in [4]. The Fréchet spaces ces(p+)
are very different to the spaces £, that generate them (in the same sense that
£, generates ces(p)). Certain aspects of various linear operators (e.g., their spec-
trum, compactness, mean ergodicity, supercyclicity) acting on the spaces ces(p+),
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1 < p < oo, are investigated in [7]. The aim of this paper is to carry out a simi-
lar study for the corresponding class of (LB)-spaces given via the inductive limit
ces(p—) :=ind;4<pces(q), for 1 < p < oo, and operators acting in these spaces.
In order to summarize the main features of this paper we first require some notation
and preliminaries.

Let X and Y be a locally convex Hausdorff spaces (briefly, IcHs). The identity
operator on X is denoted by I and .Z (X, Y) denotes the space of all continuous linear
operators from X into Y. If X = Y, we write Z(X) = Z(X,Y) and if Y = C we
write X' for £ (X, C), i.e., the dual space of X. The dual (or transpose) operator of
T € Z(X,Y)isdenotedby T’: Y — X’. When X’ is equipped with the strong dual
topology B we denote it by Xj. In this case, T" € £ (Y, Xj). We denote by I'y a
system of continuous seminorms determining the topology of X. Let .%;(X) denote
Z(X) endowed with the strong operator topology 7, which is determined by the
seminorms T — ¢,(T) := q(Tx), for each x € X and ¢ € I'y. Moreover, .%,(X)
denotes .Z(X) equipped with the topology 7}, of uniform convergence on bounded
subsets of X which is determined by the seminorms 7" — gp(T) := sup,.5 q(Tx),
for each bounded subset B € X and g € Ix.

ForalcHs X and T € .Z(X), the resolvent set p(T) of T consists of all A € C such
that R(A, T) := (M — T) "' exists in .Z(X). The set o (T) := C\p(T) is called the
spectrum of T . The point spectrum o,,(T) of T consists of all A € C such that (A1 —
T') isnotinjective. If we need to stress the space X, then we write o (T'; X), 0,/ (T; X)
and p(T'; X). Given A, u € p(T) the resolvent identity R(A, T) — R(u, T) = (u —
MR(A, T)R(u, T) holds. Unlike for Banach spaces, it may happen that p(7') = @ or
that p(7T') is not open. This is why some authors (e.g. [42]) prefer the subset p*(T) of
p(T) consisting of all A € C for which there exists § > 0 such that B(A, §) :={z €
C:lz—A|l <8} C p(T)and {R(u, T): pu € B(A, )} is equicontinuous in .Z(X).
Define o*(T) := C\p*(T), which is a closed set containing o (T). If T € Z(X)
with X a Banach space, then o (T) = o*(T).

In Sect.2 we establish some important properties of the (LB)-spaces ces(p—),
1 < p < oo. A remarkable property of the Banach space ces(p), which is not shared
by £,,isthatx € CN belongs to ces(p) if and only if C(|x|) € ces(p), [12, Theorem
20.31]. This useful property carries over to ces(p—); see Proposition 2.1(i). It is also
established (in Proposition 2.1) that ces(p—) is a (DFS)-space which is solid in CN.
Moreover, ces(p—) is generated by £,_ in the sense that [C, £,_]; = ces(p—); see
Proposition 2.1(iii). It turns out that ces(p—) coincides as a vector space and topo-
logically with a countable inductive limit of weighted ¢;-spaces and hence, that it is
the strong dual of a Kothe echelon space 1y(A) for a certain Kothe matrix A. Actu-
ally, Ag(A) is precisely the power series Fréchet-Schwartz space A‘(’f/ ) ((ogk)y) of
finite type 1/p’ and order infinity (cf. Theorem 2.1). It follows that the (DFS)-space
ces(p—) is not nuclear and that it is isomorphic to ces(co—) := ind,ces(n + 1),
a space which is independent of p; see Corollary 2.1. In particular, ces(p—) and
ces(q—) are isomorphic IcHs’ for all choices of p, g € (1, oo].

Section 3 is devoted to an analysis of the Cesaro operator C: ces(p—) — ces(p—)
for 1 < p < oo. It is shown that C has no eigenvalues and its spectrum is localized
according to
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{O}U{AGC: |A—%|<%}QU(C;ces(p—))g{keC: =2 < };

(SRS
(CY S

see Proposition 3.2. Consequently, C cannot be a compact operator. Moreover, in
Proposition 3.3 it is shown that
/
<2
2

This knowledge of the spectra of C € £ (ces(p—)) implies that C is neither power
bounded nor mean ergodic (cf. Remark 3.2, Lemma 3.2 and Proposition 3.4). It is
also verified that C fails to be supercyclic in ces(p—); see Proposition 3.5.

Given a = (a,), € CV, the multiplication operator M,,: CN — CN is defined by
M, (x) := (a,x,), for each x € CN. Section4 treats various operator theoretic as-
pects of M, when it is restricted to ces(p—) for 1 < p < oo. The continuity of
M,: ces(p—) — ces(p—) is completely characterized (in terms of a € CN belong-
ing to a certain family of weighted £,.-spaces) in Proposition 4.1. Furthermore, the
compactness of M, € Z(ces(p—)) is fully determined in Proposition 4.2, namely
that the sequence (sup,., |ax|), generated by a € CV should belong to Upif;. It
turns out that the powe} boundedness of M, € £ (ces(p—)) is equivalent to its
mean ergodicity which in turn is equivalent to the requirements that a € £, and
llalloo < 1; see Proposition 4.3. Finally, the spectra of M, (cf. Proposition 4.4) are
given by o, (M,; ces(p—)) = {a,: n € N} and

/

o*(C; ces(p—)) = {A eC: |r—

(ST

o(M,; ces(p—)) = 0" (M,; ces(p—)) = {a,: n € N}.

Asaconsequence, whenever M, € £ (ces(p—)) is compact, then necessarily a € cg;
the converse is not true: For the purpose of comparison the continuous (and compact)
multiplication operators M, : £, — £,_ are also determined; see Proposition 4.5.

The aim of Sect.5 is to identify all pairs 1 < p, g < oo for which the natural
inclusion operator and the Cesaro operator map X into Y, where X € {£,_, ces(p—)}
and Y € {{,_, ces(g—)}. By the Closed Graph Theorem these operators are then
necessarily continuous. Of particular interest is the boundedness and the compactness
of such operators (in the sense of Grothendieck). The possible values of p, g for which
this is the case are precisely determined; see Propositions 5.2 and 5.4.

The final section collects together some relevant properties of the spaces £,_ and
ces(p—),1 < p < oo, when they are viewed as locally solid, Ic-Riesz spaces within
CN (for its coordinatewise order). Differences are to be expected since ces(p—) is a
Montel space whereas £,_ is not. The fact that they are the strong dual of suitable
Fréchet lattices plays an important role. The relevance of such properties is due to
the fact the Cesaro operator and inclusion maps are positive operators between Riesz
spaces, as are the multiplication operators M, whenever a > 0.
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2 The Space ces(p—)

Let p € (1, co]. We define

ces(p—) = Uj<pces(q)

and endow ces (p—) with the inductive limit topology. The union is strictly increasing
in the sense that ces(q1) ; ces(gz) whenever 1 < q; < g < p; see the discussion
prior to Proposition 3.3 in [6]. If 1 < p, < p,4+1 < p with p, — p as n — oo,
then ces(p—) = ind, ces(p,) is an (LB)-space, i.e., a countable inductive limit of
Banach spaces, [36, pp. 290-291]. Since the inclusion ces(p) C ces(q), for p < ¢,
is compact, [6, Proposition 3.4(ii)], the space ces(p—) is a (DFS)-space, i.e., the
strong dual of a Fréchet-Schwartz space, [36, Proposition 25.20]. In particular, it is
complete, regular and Montel, [13, pp. 61-62]. Since each Banach space ces(p),
1 < p < o0, is solid in CY, the space ces(p—) is also solid in CN.

Consider the (LB)-space £,_ :=ind,¢,, , where 1 <r, <r,y1 < pandr, 1 p.
Then £,_ C ces(p—) with a continuous inclusion since £, C ces(q) for all ¢ > 1
with a continuous inclusion (by Hardy’s inequality).

The Cesaro operator C maps ces(p—) continuously into £,_ since C: ces(q) —
£, is continuous foreach g > 1; this follows from [36, Proposition 24.7], for example.
Since also £, < ces(p—) continuously, we deduce that C: ces(p—) — ces(p—)
is continuous.

Proposition 2.1 Let 1 < p < oo.

(i) Letx € CN. Then x € ces(p—) if and only if C(|x]) € ces(p—).
(i) ces(p—) isa(DFS)-space, which is solid in the (Fréchet) lattice CN. Moreover,

Clces(p—)) S £,— S ces(p—).
In addition, the canonical vectors {e, ). | are a Schauder basis for ces(p—).
(iii)) Let X be any solid IcHs contained in CN such that C(X) C £y—. Then X C
ces(p—). Accordingly, [C, £,_]; = ces(p—).
(iv) Let X be any solid IcHs contained in CN such that C(X) € ces(p—). Then
X C ces(p—). Accordingly, [C, ces(p—)]; = ces(p—).

Proof (i) This is a direct consequence of [12, Theorem 20.31] and the definition of
ces(p—).

(ii) All claims (except the one about {e, }
Proposition 2.1.

Recalling that {e,};2, is a basis for each Banach space ces(q), 1 < g < oo, and
that the natural inclusion ces(g) C ces(p—) is continuous for each 1 < g < p, it
follows that {e, }52 | is a Schauder basis for ces(p—).

(iii) If x € X, then also |x| € X, as X is solid in CN. Then C(|x|) € L,— <
ces(p—). Thus, x € ces(p—) by part (i). Since C maps ces(p—) continuously into
£,—, we can conclude that [C, £,_]; = ces(p—).

[ee]

o2 1) follow from the discussion prior to
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(iv) This is again a consequence of part (i). Indeed, if x € X, then |x| € X and
hence, C(|x|) € ces(p—) by assumption. So, x € ces(p—). Since C(ces(p—)) C
ces(p—), it follows that [C, ces(p—)]; = ces(p—). This completes the proof.

We now show that ces(p—) coincides algebraically and topologically with a
countable inductive limit k; of weighted £,-spaces. This co-echelon space is the
strong dual of a power series space A(Y,,((logk);) of finite type 1/ p’ and infinite
order. This requires some explanation.

Given p € (1, 00), set p, := (p — ’%) forn > n(p)sothat 1 < p, < puy1 < p
for each n > n(p), where n(p) is the smallest n € N such that (p — —) > 1.Ifp=
oo, weset p, := n + 1 foreachn € N.Inbothcases p, 1 pandso p;, | p’. Consider
the sequence of strictly decreasing weights v, := (v,),, where v,: N — (0, 00) is
given by v, (k) := k=Y/Px fork,n € N. Clearly, v, (k) < v, (k) for each k, n € N.

For each n € N, consider the weighted ¢,-space

Gva) = {x € CV xflgyq = Y va(R)li] < 00
k=1

which is a solid Banach space relative to the norm || - [l¢,(,). Clearly £;(v,) €
£1(Vy41) with a continuous inclusion. Accordingly, k{(v,) := ind,£;(v,) is a count-
able inductive limit of Banach spaces. It coincides with the strong dual of the K&the
echelon space Ag(A) := proj,co(1/v,); see [14] and [36, Chap. 27], where 1(A) is
denoted by c(A). For each n € N, set a, (k) := (1/v,(k)) = k'/P», for each k € N,
in which case (a,), is a strictly increasing sequence of weights on N. Accordingly,
Mo(A) = pI‘O]nCo (ay) coincides with the power series space A{} o) ((log k)y) of finite
type 1/p’ and infinite order given by

A% ((ogh)y) = {y e C: Iyl = iu§|yk|k‘“’4 <ooVn e N} :
€

This is a Fréchet-Schwartz space; see [36, Propositions 24.18 and 27.10]. Moreover,
the canonical vectors {e, }52 | form a Schauder basis in A‘(’f/ ,>((10g k)i). Indeed, for

each k,n € N we have k!/Pn = kP with o, := M < 0. It follows, for
nFn+1

n € Nandagiven x € A(l/p)((logk)k), that

= Yl = Sup L !0k < (N 4 D lxlllnsr. N € N,
j=1

Accordingly, limy_, Zﬁv xjej = xin A, ((logk)y), as required.

Theorem 2.1 Let 1 < p < oo. The (LB)-space ces(p—) coincides algebraically
and topologically with ki (v,) = (A(l/p ,((log k)k))jg.
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Proof Fix 1 < p < oo. It suffices to establish the following two facts, where p, :=

1- % for all large enough n if p < co and p, :=n + 1if p = co. Namely, for each
n large enough,

(a) ces(pn) € £1(v,41) with a continuous inclusion, and

(b) £1(v;) € ces(pu+1) With a continuous inclusion, [36, Corollary 24.35].

We first verify the fact (a). Fix n € Nand x € ces(p,). Forg > 1, Lemma 4.7 of
[12] states that m < Zjik for k € N. Settingg :=1 + o , in which case

m =p, _Hk’l/ Pus1 it follows from this inequality that

2

o0
1
1 -1
Pasilxlle ) = ankauc P <3 g Z; [P
k=1 j=k

k
E 1/Pn+1

Il
e
»‘I»—

Now Hoélder’s inequality yields

00 & o\ 1/Pn o 1/p,
1 ot gt
pl/1+1||'x||ll(vn+l) < Z z2|x1| Z*] P/ Pusi

j=1 j=1 j=1

1/p;,
[
Zj_pn/p”H ||-x||ces(p,,)~
j:

,
Since p 1

> 1, we have Z 1 ~Pi/Pisi < 0o and the proof of (a) is complete.
To estabhsh the fact (b), fixn € Nand x € £;(v,). For k € N we have

k k
1 1 < 1 ,
1 1 —1/pn
ML ;Z 1/p,J/p”§%||x||z,(vn)k P = kP x gy
j=1 j=1
This inequality implies that
Pn+1 0o
Pn+1 Pn+1
NS lej =< I5055) X G
k=1 it

But, K :=) -, W < oo because p, < p,41 and so

1
”x”ces(p,,ﬂ) =< K /Pui ”x”El(v,,)'

Fact (b) is thereby established.
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Remark 2.1 Since Aff/ ) ((log k)i ) is a Fréchet-Schwartz space, it equals its bidual.
Accordingly, Theorem 2.1 implies that

(ces(p=)y = (ki (vp))y = A%, ((ogk)).

Corollary 2.1 Letl < p < oo.Thences(p—)isa(DFS)-space, butitis not nuclear.
Moreover, it is not isomorphic to £,_ for each g > 1, whereas it is isomorphic to
ces(00—).

Proof That ces(p—) is a (DFS)-space has been already shown. This implies that it
cannot be isomorphic to £,_ for each ¢ > 1 as £,_ is not Montel.

Suppose that A‘(’f/ ) ((log k)x) is nuclear. Recall that {e;};2 | is a Schauder basis of
A‘(’f/p,)((log k)r) for the topology given by the norms {||| - |||,: » € N}. Withn =1
it follows from the Grothendieck—Pietsch Theorem, [36, Theorem 28.15], that there
exists m > 1 such that

K/ ad 1

i llexl Il _i 3 e
- ke, kV/pn—1/p} ’

k=1 k=1

This is impossible as (- — ;) < ;- € (0, 1). So, AT, ((logk)y) is not nuclear.
Since ces(p—) = (A?f/p/)((logk)k))%, it follows that ces(p—) cannot be nuclear
either, [38, p. 78 Theorem].

All finite type power series spaces A2°(«), with « fixed, are diagonally isomor-
phic; see the argument in [36, p. 358]. This implies that

ces(p—) = (A%, ((log b))

is isomorphic to (A7) ((log k)k))}; = ces(00—).

3 The Cesaro Operator on ces(p—)

The aim of this section is to make a detailed analysis of the Cesaro operator
C: ces(p—) — ces(p—) for 1 < p < co. We first examine its spectrum and then,
with this information available, the linear dynamics and mean ergodicity of C can be
investigated.

We begin with an abstract result concerning the spectra of operators in (LB)-
spaces, [5, Lemma 5.2].

Lemma 3.1 Let E = ind, E,, be a Hausdorff inductive limit of Banach spaces. Let
T € Z(E) satisfy the following condition:

(A) For each n € N the restriction T,, of T to E, maps E, into itself and T, €
Z(E,).

Then the following properties are satisfied.
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(l) Opl(T E) = UneNapl(Tn; En)
(ii) o(T; E) € Nipen (Un =m0 (Tn; En))-
(iii) IfUX 0Ty E,) C U(T, E) for some m € N, then

o"(T;E)=0(T; E).

We will also require the following fact, [21, Theorem 5.1]

Theorem 3.1 Let p € (1, 00). The Cesaro operator C € £ (ces(p)) and |C|| = p'.
Moreover, 0, (C; ces(p)) = 0 and

£|§

o(C;ces(p)) ={reC: |r— %}
with Im(Al — C) # ces(p) whenever ) € C satisfies |\ — %| < ’%.

Since ces(p—) = ind,ces(p,) with1 < p, 1 p, we observe that the Cesaro oper-
ator C € Z(ces(p—)) satisfies all the assumptions of Lemma 3.1 with C,, := Clces(p,)
for each n € N.

Proposition 3.1 Let p € (1, o0]. Then 0,,,(C; ces(p—)) =0
Proof This is a direct consequence of Lemma 3.1(i) and Theorem 3.1.

Proposition 3.2 Let p € (1, 0o]. Then

0}U{reC:|a— %| < %} C o (Ciees(p—)) S (e Ct [a— %| < %}.

Proof We first establish the second inclusion. So, fixm € N.If n > m, then p) < p;,
and so, by Theorem 3.1, we have

/! /

P, _ D p p
Cps w) = {L e C: A— 2L <1 {AeC: A — 2 < 2.
o (Cp;ces(pn)) = {1 € C: | 2| 2} {reC:| 2| 2}
Accordingly,
_ Puy_ Py P, p,
reC: 1 2y {reC:|a— -2 < -2y
Uzt |2 2| } { |A 2I_ 2}
This implies that
P, _ D P, p,
reCiy—ZL <) eny_{reC: |a— =2 < =2
ml(nm{ | 2|_2}) l{ | 2|_2}

But, p/, | p’ and so, by Lemma 3.1(ii), we obtain
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o (C:ces(p—)) S {r e C: |4 — ”3| < ”5

}.
Concerning the firstinclusion, observe that C is not surjective on ces (p—). Indeed,

(1—(2;1% )k € £,— C ces(p—) for each p > 1. But,

1— (=D*

—1
c« 2k

) = (=D ¢ Uiy,

thereby implying that C~! ((%)k) = ((—D**"), ¢ ces(p—). Since C is an

isomorphism on CV, it follows that C is not surjective on ces(p—) and so A =0 €
o (C; ces(p—)).

LetA € C\{0}.If 1 € p(C; ces(p—)),then (A1 — C)(ces(p—)) = ces(p—). Since
ces(p—) is dense in ces(p), it follows (with the bar denoting the closure in ces(p))
that

ces(p) = ces(p—