
Chapter 9
Balancing Prescriptions with Constraint
Solvers

Juliana K. F. Bowles and Marco B. Caminati

Abstract Clinical guidelines are evidence-based care plans which detail the essen-
tial steps to be followed when caring for patients with a specific clinical problem,
usually a chronic disease (e.g. diabetes, cardiovascular disease, chronic kidney dis-
ease, cancer, chronic obstructive pulmonary disease, and so on). Recommendations
for chronic diseases include the medications (or group of medications) to be given
at different stages of the treatment plan. We present an automated approach which
combines constraint solvers and theorem provers to find the best solutions for treat-
ment according to different criteria, and avoiding adverse drug reactions as much
as possible. We extended the approach here to further refine the choice(s) to avoid
dangerous or undesirable side effects.

9.1 Introduction

Clinical guidelines are published in the UK by the National Institute of Health and
Care Excellence (NICE1) for England and Wales, and the Scottish Intercollegiate
Guidelines Network (SIGN2) for Scotland. Clinical guidelines are evidence-based
care plans, which detail the essential steps to be followed when caring for patients
with a specific clinical problem and play an important role in improving health care
for people with long-term conditions. There are guidelines for managing the treat-
ment for chronic diseases such as diabetes, cardiovascular disease, chronic kidney
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disease, cancer, chronic obstructive pulmonary disease and so on. Guidelines include
recommendations for the medications (or group of medications) to be given at differ-
ent stages of the treatment plan as well as alternatives. When patients have multiple
chronic conditions, aka multimorbidity, they are implicitly following several of the
clinical guidelines for their individual diseases in parallel. Clinical guidelines make
recommendations for treatments of chronic conditions but often do not take into
account the possible presence of comorbidities. In fact, in the presence of multimor-
bidity, current guideline recommendations rapidly lead to polypharmacy without
providing guidance on how best to prioritise recommendations [17]. As a result, it
is possible for patients to take medications that lead to adverse drug reactions, or
for particular combinations of drugs to be less effective if administered at the same
time. In precision therapeutics, the aim is to tailor medical treatment to the individ-
ual characteristics of each patient which includes finding the right set of drugs for a
patient with multimorbidities.

In recent work, we have explored how formal methods can help with the devel-
opment of an automated framework that combines efficient and formal verification
techniques, such as constraint solvers and theorem provers, to identify steps in differ-
ent guidelines that cause problems if carried out together (e.g. two drugs prescribed
for different conditions may interact, food may interact with a drug, health recom-
mendationsmay contradict with each other) whilst at the same time find the preferred
alternative according to a certain criteria (e.g. drug efficacy, prevalent disease, patient
allergies, preferences, etc.) [8, 13]. Future integration of such techniques in practice
can lead to the development of clinical decision support systems to manage treat-
ments for patients with complex needs and multimorbidities. The need for this has
been stressed in Hughes et al. [17].

In Kovalov and Bowles [20], we introduced medication effectiveness (given by
drug companies) as the only criteria for finding the best solution. The approach
associated a positive score to each medication capturing effectiveness, and a negative
score to pairs of medications with known adverse reactions. This score is used by
the SMT solver to find the ideal solution with the highest possible score. This paper
extends ourwork further by expanding the search criteriawhilst being able to generate
the top three alternatives that reduce the identified inconsistencies according to the
chosen criteria. We can use modelling languages such as BPMN [16, 25] to capture
the details of a clinical guideline, as we did in Bowles et al. [13]. In the present paper,
however, we focus on the underlying formalisation of guidelines and our SMT solver
based approach for the search. The formal model used is the labelled event structure
(LES) [32].

Our approach takes two or more clinical guidelines for patients with multimor-
bidities (captured as LES), and detects whether when patients are at different stages
of their conditions, the combination of medications taken by such patients is safe and
if not computes preferable alternatives. The search involves checking other medica-
tions in a group and backtracking to previous decision points and reversing a decision
to find better solutions according to certain criteria. The list of alternatives can be
fine-tuned to suit individual patient’s preferences, such as, for instance avoiding spe-
cific undesirable side effects, but will otherwise take into account medication dosage
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and timing, and the prevalent disease (if applicable). The approach is flexible and we
can further explore different parameters as desired (e.g. cost, therapeutic efficacy,
number of medications prescribed, genomic biomarkers if known, and so on) to find
the ideal set of solutions.We interpret these parameters as integer variables andmake
use of the arithmetic capabilities of SMT solvers such as Z3 to compute optimal solu-
tions for subsets of parameters of interest. Behind the scenes, the correctness of our
approach is established by the theorem prover Isabelle.

This paper is structured as follows.We describe the background, including related
work, and contribution of the present paper in Sect. 9.2, and recall our formal model
(labelled event structures) as needed for this paper in Sect. 9.3. Section9.4 describes
how Isabelle and Z3 are combined to compute the best treatment paths under cer-
tain conditions, whilst Sect. 9.5 illustrates how their interplay allows to verify some
aspects of this computation. We conclude the paper with a discussion of future work
in Sect. 9.6.

9.2 Context and Contribution

When considering an approach to model treatment plans for patients with multi-
morbidities, a starting point are the models for the guidelines of individual diseases.
Each guideline has a process-like description: after diagnosis a patient follows a
sequence of steps, some steps may be carried out in parallel (for instance, a blood
test and anX-ray), under some conditions theremaybe alternative steps available (for
instance, in type 2 diabetes patients may be offered metformin or a sulphonylurea as
their first stage medication) and it may be necessary to repeat steps (for instance, for
patients with diabetes glycated haemoglobin (HbA1c) is measured regularly). There
are many modelling languages with notions of sequence, alternative, iterative and
parallel behaviour, which could be used to describe them, such as different notations
within UML [26], BPMN [25], Petri nets [28], process algebras, and so on. Compos-
ing guidelines for managing conditions such as type 2 diabetes, hypertension, and
chronic kidney disease (CKD) would give indications for treating patients with these
three conditions.

In recent years, several automated approaches have been developed to simplify
the task of composing a variety of models, typically partial specifications from UML
models [1, 5, 10–12, 19, 22, 27, 29–31, 33]. In our own work, we have used a com-
bination of SAT and SMT solvers [10–12] to combine behavioural models and have
shown the result in a visual manner. The idea is straightforward: behavioural models
are formalised as constraints expressed in first-order logic, and the conjunction of
the constraints from all models are fed to a solver to generate the solution for the
composition. If two or more constraints give rise to a contradiction no solution can
be produced and no valid composition model exists.We used a SAT solver based on
Alloy [18] in Bowles et al. [10, 11] and the SMT solver Z3 [23] in Bowles et al. [12]
and all subsequent work. In Bowles et al. [12] we had shown that Z3 outperforms
Alloy as the complexity of the examples increases. Even though the use of Alloy is
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common in the literature for model composition (e.g. [29, 33]), our own work was
the first to make use of Z3 [12]. Initially, we made little use of Z3’s powers such
as arithmetics and arithmetic optimisation, and we also did not explicitly deal with
inconsistent constraints. We have addressed both points more recently in Kovalov
and Bowles [20], Bowles and Caminati [6].

In Bowles and Caminati [6], we used labelled event structures [32] as a true-
concurrent semantic model of sequence diagrams [4, 21], and combined the theorem
prover Isabelle [24] with the SMT solver Z3 [23] to detect inconsistencies over
the model and solve partial specifications. In the context of clinical guidelines, the
approach can be adapted not only to identify inconsistencies—in which case the
SMT solver is unable to produce a solution but identifies the conflicting events—but
to search for optimal treatment paths that minimise the conflicts. We note that for
patients with complex conditions and subject to polypharmacy as a consequence it
may be unavoidable to have adverse reactions from some of the medications given,
but ideally this should be kept to a minimum.

In this paper, we extend earlier work done in Kovalov and Bowles [20] which used
integer variables to encode drug effectiveness and drug interactions. We add mea-
sures for the likelihood of side effects associated to drugs, and explore the arithmetic
capabilities of SMT solvers such as Z3 to search for the ideal solutions which min-
imise conflicts due to drug interaction and avoid undesired side effects. For example,
sulphonylureas can cause hypoglycemia (low blood sugar) andweight gain, and these
are relatively common side effects. In addition, some users may suffer an allergic
reaction during the initial weeks of treatment, resulting in itchy red skin/skin rashes.
Taking into account side effects of medications as a criteria of choice is new to this
paper. Also new here is that our approach finds the best three treatment plans for
clinicians to choose from.

We deal with side effects in our framework in two ways:

1. A side effect is captured as a Boolean variable. If a side effect s is to be avoided,
we ignore paths that contain medications which may be associated to s. This may
sometimes be necessary, but other times be too restrictive.

2. We capture the degree of likelihood of a side effect for a drug: very common,
common, occasional, rare, very rare. We assign a probability bound
to a side effect for a drug, where, for instance rare may mean a likelihood of
occurrence of less than 10%. For example, itchy red skin or skin rash is a rare or
possibly even very rare side effect for most sulphonylureas.

Continuing the work started in Bowles and Caminati [6], we exploit the interface
between Isabelle and Z3 to obtain a versatile tool for our search for optimal treat-
ment paths in complex scenarios. We have, for instance used Isabelle to check the
correctness of our models (LES), obtain their composition (if it exists) and fill any
gaps while being able to prove at any point that the models are valid [6]. Here, if
different care guidelines for chronic conditions are being applied to the same patient,
we consider the following:
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• One disease may have a higher priority, possibly due to a higher risk.
• Some of the possible medications prescribed at a given step in the guidelines may
be known to be more effective. For instance, the use of metformin in the treatment
of type 2 diabetes tends to be the first medication of choice.

• For a patient, the time of diagnosis for his/her different conditions rarely occur at
the same time. For example, (poorly managed) hypertension may lead to type 2
diabetes in the future. This makes it possible for a patient to start to follow different
care guidelines at different times in a dephased manner.

• Side effects (or their avoidance) often influence which medications are prescribed
to a patient, and sometimes also reflect patient’s preferences. For instance, the use
of metformin in the treatment of type 2 diabetes is often preferred because it lacks
the side effects of drugs like sulphonylureas. Standardmetformin can, nonetheless,
cause gastrointestinal intolerance.

• Further constraintsmay arise from allergies that a patient has to one ormore drugs.

Dephasing is a technique explored first in Bowles and Caminati [7] which adjusts
when the different conditions have to be considered together. This means that we can
ignore conflicts that cannot arise since the medications that could create problems
are no longer reflecting the current treatment. Instead, we focus on the present and
imminent medication choices and interactions. Further constraints can be used to add
allergies as well as any additional constraints as needed. If a patient has gastrointesti-
nal intolerance as a consequence of standard metformin, then the medication should
be avoided and replaced by another. It can be treated as a Boolean variable in the
same way that we avoid side effects altogether.

In the context of our work, it is crucial to define flexible automated techniques able
to consider all the information above in order to compute the best possible treatment
plan for each patient. Patients with similar conditions but, for instance different pace
of disease progression may be given different medication combinations. It should
also be noted that the best possible solution may still have very severe side effects.
It is ultimately the decision of the clinician which treatment to adopt given the
information available.

9.2.1 Example

Guidelines published by NICE are usually given in a combination of graphical rep-
resentation and notes in natural language. There are several problems with some of
the diagrams from NICE in their use of ambiguous notation. As mentioned earlier,
we do not focus on modelling in this paper, and we present an abstract example,
illustrating the guidelines for three hypothetical conditions D1, D2 and D3, given
as three labelled event structures directly. The formal details of the model will be
described later, but the visualisation of the model is simple to describe. It allows us
to give a more compact presentation, which is adequate for our purposes here.
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Fig. 9.1 Partial guideline models for three chronic conditions

Figure9.1 shows three (unfoldings of) treatments for different conditions that
a patient may be undergoing. Each circle is an event denoting the occurrence of
something (an action, a clinical examination, taking a medication, etc.). The initial
events (e0, g0 and f0) indicate the diagnosis of the corresponding disease. At times,
there may be a choice between treatment options (e.g. e2 and e3). We indicate in red
the occurrence associated to an event. Some occurrences have conditions on them,
for instance p1 has to hold for e2 to be able to occur. For event f2, variable x has
to have a value greater or equal to 40 for medication mc1 to be prescribed. The
arrows suggest the ordering of event occurrences, and the # denotes alternatives (e.g.
event e2 may be picked or event e3 but not both). Alternative events e2 and e3 have
associated constraints p1 and p2, respectively, but note that they are not necessarily
mutually exclusive. For instance, p1 can correspond to no patient weight
restrictions and p2 can be the patient is not overweight or
obese, in case ma1 denotes standard metformin and ma4 denotes a sulphonylureas.
We may want to associate a priority to p1, to indicate, for instance that if it holds we
will want the corresponding operand to execute (instead of the second operand and
regardless of whether p2 holds or not). We will see in the next section how these
notions get formalised.

Assume that we know that the occurrence of ma1 conflicts with mc2, and ma2
conflicts with mb2. This is not encoded directly in the LES of Fig. 9.1, but is domain
knowledge contained elsewhere. In order to find our optimal paths, we need to know
in addition how effective drugs are considered to be when used for a condition and
reported side effects. To simplify, we assume here that a drug is only used in the
context of one treatment—which in a way can be inferred by the dosage—but this
is not a required restriction of our framework. This information is captured for our
example in Table9.1.

In addition, drugs are known to interact with others. Sometimes additional drugs
are added to compensate the interactions as shown in Table9.2.

We want to combine the diagrams of Fig. 9.1 in a way that the known underlying
conflicts are taken into account. To do so, we extend our approach from Bowles and
Caminati [6] to find valid paths in the composition that avoid given conflicts and/or
side effects as desired.
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Table 9.1 Drug effectiveness
and side effects

Drug Effectiveness Side effects Likelihood

ma1 ve1 1000 s0 Rare (≤20%)

ma4 ve4 900 s1
s2

Common (≥60%)
Rare (≤20%)

ma5 ve5 600 s3 Very common (≥80%)

Table 9.2 Drug interactions Drugs Conflict level Score

ma1, mc2 Severe v1 - 2000

ma1, ma5, mc2 Mild v2 - 600

ma2, mb2 Severe v3 - 1800

9.3 Formal Model

The model we use to capture the semantics of a clinical guideline, or its unfolding, is
a labelled (prime) event structure [32]. The choice of the model is merely based on
its simplicity and how it is able to convey in a straightforwardmanner the key notions
required: sequence, parallelism and repetition of behaviour (cf. Küster-Filipe [21],
Bowles [4]). In addition, the formalism can be captured by our theorem prover and
all models checked for correctness.

As the name suggests, event structures consist of sets of events with several
binary relations defined over the events. Different variants of event structures are
available and define different relations. A prime event structure defines two binary
relations: causality (to denote a causal dependency between events) and conflict (to
denote nondeterminism). The former induces a (partial) order among events (e.g. a
patient whose diabetes worsens may be given a dual-therapy, that is an additional
drug to the one taken previously), whereas the latter captures how the occurrence
of some events excludes the occurrence of others (e.g. a patient may be given a
choice of drug as a beta-blocker). A further implicit relation of concurrency captures
any two events not related by causality nor conflict (e.g. a patient with diabetes is
independently monitored for high blood pressure). The formal definition below is
taken from Küster-Filipe [21].

Definition 1 An event structure is a triple E = (Ev,→∗, #) where Ev is a set
of events and →∗, # ⊆ Ev × Ev are binary relations called causality and conflict,
respectively. Causality →∗ is a partial order. Conflict # is symmetric and irreflexive,
and propagates over causality, i.e. e#e

′ ∧ e′ →∗ e
′′ ⇒ e#e

′′
for all e, e

′
, e

′′ ∈ Ev. Two
events e, e

′ ∈ Ev are concurrent, e co e
′
iff ¬(e →∗ e

′ ∨ e
′ →∗ e ∨ e#e

′
). C ⊆ Ev

is a configuration iff (1) C is conflict-free: ∀e, e′ ∈ C¬( e#e′) and (2) downward-
closed: e ∈ C and e′ →∗ e implies e′ ∈ C .

We assume a discrete structure which guarantees a finite model and is sufficient
for our purposes, that is, there are always only a finite number of causally related
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predecessors to an event e. This is referred to as the local configuration of e and
written↓e. Discreteness is important here because in our treatment plans for a chronic
condition there is always a starting point given by its diagnosis. A configuration as
defined above (downward-closed and conflict-free) is a trace of execution if and only
if it is maximal. Finally, an event e may have an immediate successor e′ with respect
to the causality relation. Immediate causality between two events e and e′ is written
e → e′ and indicates that no other event can occur in between. An event can have
one or more immediate successors.

Event structures are typically enriched with labels. We define two labelling func-
tions below where L is a set of labels.

Definition 2 A labelled event structure over L is a triple M = (E, μ, ν) where
E = (Ev,→∗, #) is an event structure, and μ and ν are partial labelling functions
given by μ : Ev → 2L and ν : Ev → N × N.

The first labelling function, μ : Ev → 2L , maps each event onto a subset of ele-
ments of L , where L denotes constraints defined over integer variables (e.g. x > 2
or y = 10), logical propositions (e.g. prop1) or actions (e.g. prescribe a medication
ma1). If for an event e ∈ Ev, μ(e) contains an action, then e denotes the occurrence
of that action. If μ(e) contains a formula or logical proposition, then this formula or
proposition must hold when e occurs.

The second labelling function, ν : Ev → N × N, associates to each event its pri-
ority and duration. For an event e with ν(e) = (p, d), the highest the value of p the
higher the priority associated to e, and d indicates the duration of e. Events in conflict
(alternatives) should typically have different priority values. Further labels may be
added to the framework as partial functions if required. We refer to M as a model.

LetL be a set of labels used across a finite number of models M1, . . . , Mn , where
n ∈ N and L ⊇ ⋃n

i=1 Li .

Definition 3 Label conflicts associated toL are given byΓ ⊆ Li1 × · · · × Lip × Z

where i1 . . . i p ∈ [1..n] and such thatΓ is right unique, i.e. for any l1, l2, . . . , l p ∈ L ,
if (l1, l2, . . . , l p,m), (l1, l2, . . . , l p, k) ∈ Γ then necessarily m = k.

Here, we assume conflicts of a certain value. For instance, (l1, l2, v) indicates that
l1 and l2 are in conflict with an interaction score of value v. The set of tuples in Γ

encodes the information of Table9.2.
Recall the example of Fig. 9.1 introduced in the previous section. The label con-

flicts are given by

Γ = {(ma1,mc2,−2000), (ma2,mb2,−1800), (ma1,ma5,mc2,−600)}

The information shown visually is formally given by the labels as follows:
μd1(e2) = {p1,ma1}, μd1(e3) = {p2,ma4}, μd1(e4) = {ma1,ma2}, μd1(e5) =
{ma1,ma3} and μd1(e6) = {ma1,ma3,ma5}for the event structure associated to
d1; μd2(g2) = {mb1} and μd2(g3) = {mb2} associated to d2; and μd3( f2) =
{x ≥ 40,mc1} and μd3( f3) = {x ≥ 60,mc2} associated to d3.



9 Balancing Prescriptions with Constraint Solvers 251

Fig. 9.2 Optimal solution with respect to effectiveness and interaction scores

Fig. 9.3 Optimal solution with respect to effectiveness and interaction scores, which avoids side
effect s3

The labels of some of the events (marked) above are inconsistent/conflicting
according to Γ , namely events f3 conflicts with e2, e4, e5 and e6; and events e4
and g3. When obtaining the composition of the models above we need to make sure
label inconsistencies are detected and avoided. A composed model that avoids the
labels could reduce the composition to a trace of execution which goes to e3 and
hence avoids most of the conflicts. However, if the search criteria needs to avoid a
common side effect s1 this is not an option.

When searching for the most effective configuration in the event structures, we
get the configuration highlighted in Fig. 9.2. However, if we now consider that we
want to avoid side effect s3 (very common for ma5) we obtain the configuration
shown in Fig. 9.3 instead.
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9.4 Searching Optimal Solutions

We use the theorem prover Isabelle [24] and the SMT solver Z3 [23] for our purposes
when searching for optimised treatment paths. We start with a description of how we
use the theorem prover.

9.4.1 Using a Theorem Prover

Isabelle is a theorem prover (proof assistant) providing a framework to accommo-
date logical systems (inference rules, axioms), and compute the validity of logical
deductions according to the chosen logical system. In this paper, we use Isabelle’s
library based on higher-order logic (HOL): the resulting overall system is referred to
as Isabelle/HOL, but here we will use Isabelle and Isabelle/HOL interchangeably. In
Isabelle/HOL, the basic notions are type specification, function application, lambda
abstraction and equality. Using these notions, mathematical definitions can be for-
mulated; in turn, theorems about these definitions can be proved using the axioms
describing the intuitive properties of the basic notions and the inference rules ofHOL.
An important point is that an Isabelle/HOL definition can be computed if suitably
formulated: this allows us to use Isabelle/HOL for performing computations and
formally prove their correctness by verifying theorems stating the wanted properties
of the corresponding definitions.

This idea is general, and can, in theory, be used to verify any algorithm. In practice,
however, the definition of the object we want to compute is often non-constructive
and therefore, whilst we can still use Isabelle/HOL to prove theorems about it, we
cannot directly compute it. One general approach used in Caminati et al. [14] to
overcome this limitation is: to keep the given non-constructive definition specifying
the given computational problem, to add a computable definition, and to prove in
Isabelle that they are equivalent through a so-called bridging theorem. In this way,
any theorem we prove about one of the two will carry over to the other definition
and, in particular, we are able to prove the correctness of our implementation (given
by the constructive Isabelle definition) with respect to the specification (given by the
original, potentially non-constructive, Isabelle definition).

These general considerations can be applied to the problem we are addressing
in this paper. Given the description of our formal model in Sect. 9.3, it is clear that
a key step in giving a solution to our problem consists of computing the traces
of the underlying event structures, which entails the computation of all possible
configurations. To this end, given an event structure with causality cau and conflict
cfl,we can easily express the propertieswhichmake a set of events C a configuration.

1 abbreviation " isDownwardClosed cau C == ( C ⊆ events cau
2 & (∀ e f . e ∈ cau & ( f , e ) ∈ cau → f ∈ C ) ) "
3 abbreviation " isConflictFree cfl C == (∀ e e ’ .
4 e ∈ C & e ’ ∈ C → ( e , e ’ ) /∈ cfl ) " ,
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where cau is the set of all the ordered pairs related by →∗, and cfl is the set of all
the ordered pairs related by #.

The problem, however, is that such definitions are not constructive: they describe
the properties Cmust have, but not how to compute it. We mentioned that the general
solution is to introduce a computable definition, which in this case reads:

1 abbreviation " extension cau C == ( C ∪ ( cau ^{ −1} ‘ ‘C ) ) "
2 abbreviation " restriction cfl C == C − ( cfl ‘ ‘ C ) "
3 abbreviation " configurations cau cfl ==
4 {C . C ∈ Pow ( events cau ) & extension cau C ⊆ C & C
5 ⊆ restriction cfl C } " ,

where “applies a relation to a set, ^−1 takes the converse of a relation, and Pow takes
the powerset. The advantage of configurations is that it is constructive and can,
therefore, be used to actually compute all the configurations. It is not immediate how
configurations relates to the original definition: the following bridging theorem
certifies their equivalence.

1 theorem " ( C ∈ configurations cau cfl ) ↔
2 ( isConflictFree cfl C & isDownwardClosed cau C ) "

The next step to the solution to the problem outlined in Sect. 9.3 is taking traces, i.e.
those configurations which are maximal. Again, the notion of maximality of a set X
in a family XX of sets:

1 ( X ∈ XX & (∀ Y ∈ XX . Y �= X → ¬ X ⊆ Y ) )

is descriptive, rather than constructive, and again we supply an equivalent, construc-
tive definition:

1 abbreviation " isMaximal XX X == ( { } /∈ ( λ Y . X−Y )
2 ‘ ( XX−{X } ) ) "
3 abbreviation " maximals XX== {X ∈ XX . isMaximal XX X } "

along with a bridging theorem:

1 theorem "X ∈ maximals XX ↔
2 ( X ∈ XX & (∀ Y ∈ XX . Y �= X → ¬ X ⊆ Y ) ) "

Putting together these first two steps, we are able to compute all traces for a given
event structure:

1 abbreviation "traces cau cfl ==
2 maximals ( configurations cau cfl ) "

We proceed by further steps each implementing the notions outlined in Sect. 9.3:
there, using the small example of Sect. 9.2.1, we explained our need to select, for
each event structure, the configurations yielding no incompatibilities (according to
Γ ) and the preferred combination of priorities (given by the first component of ν, ν1).
To do that, we need to specify how the events in a trace for one event structure overlap
timewise with the event in a trace for another event structure. This in turn implies
sorting the event in each trace. However, sorting the events of any configuration of an
event structuremust not disrupt the partial order given by the corresponding causality
relation. In other words, taken a list whose entries are the events in a trace, and any
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two distinct elements f , s of such a list which are related by f → s, the index of
f must be smaller than the index of s:

1 (∀ f s . ( ( f , s ) ∈ set G & f ∈ set l & s ∈ set l & f �= s )
2 → the ( findFirstIndex ( λ x . x=f ) l ) <
3 the ( findFirstIndex ( λx . x=s ) l ) ) ,

where findFirstIndex (λ x . x=e ) l returns the index of the first entry of the
list l equal to e. Since in general such an entry could in some cases be non-existing
(this is prevented in the particular clause above by the conditions on f , s), this
function actually returns a value of type optional, which provides a special value
None for these cases: the function the appearing above converts back this optional
type to a natural number, as it should be since it describes an index. Once again, this
condition does not allow to compute all the trace lists we need, so that we introduce
a corresponding constructive definition:

1 abbreviation " isOrderPreserving G l ==
2 ( None = ( List . find ( λ x . x=True )
3 [ let m=findFirstIndex ( λ x . x=f ) l in
4 let n=findFirstIndex ( λ x . x=s ) l in
5 ( m �= None & n �=None & the m > the n ) . ( f , s ) <− G ] ) ) "

and a bridging theorem granting us that isOrderPreserving does what expected:

1 theorem " ( ∀ f s .
2 ( ( f , s ) ∈ set G & f ∈ set l & s ∈ set l & f �=s ) →
3 the ( findFirstIndex ( λ x . x=f ) l ) <
4 the ( findFirstIndex ( λ x . x=s ) l ) )
5 ↔ ( isOrderPreserving G l ) " .

Once we have all the lists representing the traces and respecting the underlying
partial order given by causality, it is easy to calculate the temporal configurations
of all the events occurring in one such list. This can be implemented in Isabelle as
follows:

1 abbreviation "clocks dephasing durations l == map ( op +
dephasing )

2 [ listsum ( map durations ( take i l ) ) . i < − [ 0 . . < size l ] ] " ,

where the function clocks takes a list l representing a sorted trace and return the list
of the abscissas (i.e. the time at which they start) of the corresponding events. This is
calculated by summing for each event the durations (i.e. the second component
of the pair returned by the function ν introduced in Sect. 9.3) of the preceding events
and by adding the dephasing of the event structure. Finally, having computed the
temporal scope of each event in a sorted trace, and all the sorted traces as from the
previous steps, pruning the combination of traces featuring conflicting events over-
laps is straightforward. From the remaining traces, the overall priority is computed
through the standard Isabelle function listsum, then allowing to use the function
Isabelle argmax to pick the best combination of traces. We omit the details here,
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and focus, in the rest of the paper, on the issue of the performance of the obtained
implementation.

Up to now, the stress was on correctness, granted, as we have seen, by bridging
theorems between specification and implementation definitions in the functional lan-
guage Isabelle/HOL. Like any implementation, however, the one we have introduced
is liable to optimisations: for example, the definition of configurations on page
253 starts from the powerset of all the events and proceed to refine it according to the
properties extension and restrictions. Since the computation of the powerset
is expensive, one could try to find an equivalent definition for configuration not
using it, and then proceed to prove a further bridging theorem stating the correctness
of the new definition. This extends the bridging theorem approach by introducing
chains of equivalent definitions, each more and more efficient, linked by several
bridging theorems, leading to a general approach to writing algorithms which are
both efficient and formally proven correct [9].

Here, rather than following that approach, we proceed by introducing an alter-
native technique to improve performance by producing non-Isabelle code which is,
however, still amenable to Isabelle proofs. This non-Isabelle code will be, more
precisely, satisfiability modulo theories code. An SMT solver checks the satisfiabil-
ity of a set of formulas, aka assertions, expressed in first-order logic and such that
arithmetic operations and comparison are understood. Furthermore, additional rela-
tions and functions can be evaluated in order to make the problem satisfiable. The
next section reformulates our problem into SMT terms, while Sect. 9.5 introduces a
general technique to apply Isabelle correctness proof to the SMT code.

9.4.2 Using an SMT Solver

SMT code is typically not very readable due to the first-order logic underpinning
it, which features a limited number of native notions and structures. For example,
any computation involving elementary operations on sets (e.g. union, intersection,
cartesian product, domain, range and so on) has to be rewritten because sets are
not directly available in first-order logic and must be represented as predicates. Fur-
thermore, to increase efficiency, usually a number of transformations are applied to
the code making it even less readable: for example, a universally quantified assertion
over a finite type is often replaced bymultiple non-quantified assertions, each for one
element of the type (quantifier elimination). Finally, SMT-LIB, the standard specify-
ing a common language for SMT solvers [2], consistently employs polish notation,
aggravating the problem on the readability.

Our solution to this expository problem is to write formulas close to the first-order
logic language used by SMT solvers; for the sake of readability, however, we will
employ some simplifications. In particular, we adopt infix notation instead of prefix
notation, we use set-theoretical styling instead of predicates (e.g. writing (a, b) ∈ R
instead of R a b), we will use set-theoretical operations (e.g. union, intersection,
cartesian product, domain, range, etc.) instead of the corresponding first-order logic
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renditions, we will omit type specifications, and we will use the universal quantifier
∀ even when in the actual code it has been eliminated.

Recall from Sect. 9.3 that the input describing our problem is a n-tuple of models

M1 := (E1, μ1, ν1) . . . Mn := (En, μn, νn)

where
E1 = (

Ev1,→∗
1, #1

)
. . . En = (

Evn,→∗
n, #n

)

are event structures, together with a set of label constraints Γ . Evi is the set of
events, →∗

i is the causality relation (a partial order), and #i is the conflict relation
of the i th event structure, Li := ⋃

Range (μi ) is its set of labels, νi specifies the
priority and duration associated to each event of Ei , and Γ describes inter-structure
label conflicts. We assume that the sets of events are pairwise disjoint, and denote
Mi ’s immediate causality relation by Gi . We define the overall immediate causality
and conflict relations by the union of the respective relations of the models, that is

G :=
⋃

i=1,...,n

Gi and # :=
⋃

i=1,...,n

#i

Given a relation R over a set Y and a set X ⊆ Y , we introduce the notation R→ (X)

to denote the image of X through R.
We will now proceed in steps: first, we show how to compute traces, then we

show how to use ν to obtain the preferred one, depending on the duration and priority
assigned to single events.

9.4.3 Representing Traces of Execution

To represent a trace of execution, we need to know which events belong to the trace
and in which order.We define a Boolean function isSelected over the set of all events.

This function is computed by the SMT solver, and we illustrate how it works
for a given event structure Evi . Since traces are maximal configurations we need to
first make sure that isSelected is conflict-free and downward-closed in accordance
to Definition1. This is expressed by the following two conditions.

The conflict-free condition is given by

∀ j, k ∈ Evi . isSelected ( j) ∧ isSelected (k) → ¬ ( j#k)

where j and k are events and if both are selected they cannot be in conflict.
The downward-closed condition is given by

∀ j ∈ Range (Gi ) . isSelected ( j) →
∧

k∈(G−1
i )

→{ j}
isSelected (k)

where if j is selected so is k for all k predecessor of j .
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Together, these two conditions express the definition of configuration as intro-
duced in Definition1, and can be translated straightforwardly into corresponding
SMT-LIB assertions. This is no longer true for the notion of maximal configuration,
which is needed to compute the traces of execution as introduced in Sect. 9.3. In fact,
finding a maximal configuration implies quantifying over all configurations (that is,
sets of events). Since the logic of SMT solvers is essentially first order, this means
that one can quantify over the elements of sets, but not over sets themselves. For
this reason, we cannot directly express maximality in SMT-LIB. The solution to this
technical hurdle is to notice that, in this particular case, the definition of a configura-
tion can be reformulated in an equivalent way which does not require quantification
over higher level entities:

∀z ∈ Evi ∃y ∈ Evi ((y#z ∧ isSelected (y)) ∨ (9.1)

((y, z) ∈ Gi ∧ ¬ isSelected (y)))

We will prove that the aforementioned equivalence holds, and that therefore we
can use (9.1) in our SMT-LIB code to effectively compute traces, in Sect. 9.5. More
precisely, we will prove that the set on which isSelected is true satisfies the definition
of trace, and that any set of events obeying the definition of a trace must satisfy
the assertions above. This means that the SMT code expressing those assertions
implements an algorithm to compute traces. This algorithmwill return a set of events,
as required by the definition of a trace. However, we will see in Sect. 9.4.4 that, for
our purposes, it will be useful to endow this set with an ordering induced by the
causality partial orders →∗

1 . . . →∗
n .

More precisely, given a trace isSelected we consider its subset given by Evi ∩
isSelected (that is, the portion of the trace made of events of a given Ei , i ∈
{1, . . . , n}); we want to sort this subset or, more formally, we want to obtain a total
linear order si over it, in such a way that si respects→∗

i . The first step, therefore, is to
obtain →∗

i from Gi ; to conform with the fact that it is more convenient to restrict to
the ASCII character set when writing SMT code, we will indicate, here, →∗

i with Pi
(just as we previously used Gi for→i ). This means that we want to obtain the partial
order relation Pi given its transitive reduction Gi or that, equivalently, we want to
obtain the transitive–reflexive closure Pi of the covering relation Gi (see, e.g. [15,
Sect. 2]).

The standard definition of transitive closure of a relation consists of considering
the family of all the supersets of the given relation satisfying the definition of tran-
sitivity and then taking the minimal. This presents the same problem posed by the
computation of a maximal configuration, because to do so we have to quantify over a
set of sets. We solve it in the same manner: the parts of the definitions not involving
minimality can be expressed directly in first-order logic. In this case, we require that
Pi is a transitive and reflexive extension of Gi , which is straightforward:
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∀ j, k. ( j, k) ∈ Gi → ( j, k) ∈ Pi , (9.2)

∀ j, k, l. ( j, k) ∈ Pi ∧ (k, l) ∈ Pi → ( j, l) ∈ Pi ,

∀ j ∈ Evi . ( j, j) ∈ Pi ,

∀ j, k. ( j, k) ∈ Pi ∧ (k, j) ∈ Pi → j = k.

Now we want to impose that Pi is minimal among all the relations satisfying (9.2).
The following expression reformulates the minimality condition without quantifying
over relations:

∀l, n. (l, n) ∈ P → l = n ∨ (l, n) ∈ G ∨ ∃m. ((l,m) ∈ G ∧ (m, n) ∈ P) , (9.3)

where we set P := ⋃n
i=1 Pi . The idea behind (9.3) is that, if Pi is minimal, any two

events related by Pi will be joined by a finite path of events in which every event is
related to its successor by Gi .

We recall now that we wanted Pi in order to produce a total linear order si respect-
ing Pi . To this end, it is sufficient to ask for si to be an injectivemonotonemapbetween
the ordered sets Evi and {1 . . . , |Evi |} (where the latter set is ordered by the canoni-
cal order for natural numbers); this will automatically imply that si is surjective and
that it induces a total linear order on Evi , which will be useful in Sect. 9.4.4.

All these requirement are translated into the following SMT formulas:

∀ j, k. ( j, k) ∈ Pi → si ( j) ≤ si (k) , (9.4)

∀ j, k ∈ Evi . j �= k → si ( j) �= si (k) , (9.5)

∀ j ∈ Evi .si ( j) ≥ 1 (9.6)

∀ j ∈ Evi .si ( j) ≤ |Evi | (9.7)

∀ j, k ∈ Evi . isSelected ( j) ∧ ¬ isSelected (k) → si ( j) < si (k) . (9.8)

(9.4) specifies that si is monotonic (i.e. order-preserving), (9.5) requires si to be
injective, while (9.6) and (9.7) specify the range of si . Finally, (9.8) impose to sort
non-selected events before the events being part of the trace, a feature which will be
convenient for the purposes of Sect. 9.4.4.

Finally, we need to take into account the influence of side effects into the determi-
nation of a solution. To this end, we preliminarily define a function isAdministered
defined on all the drugs, and impose that if isSelected is true for a given node, then
isAdministered is true for all the drugs in that node. Then, we introduce two func-
tions, both defined over the set of all side effects S: isOccurring (yielding a boolean)
and likelihood (yielding a number). The latter function is given as input, while the
former is determined by the SMT solver to be true for any side effect linked to a drug
for which the function isAdministered yields true. This allows to impose constraints
regarding side effects; for example, imposing that no ‘very likely’ side effect occurs:

∀s ∈ S. likelihood (s) ≥ 80 → ¬ isOccurring (s)
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More elaborate constraints can be formulated, the possibilities being limited only by
the expressiveness of SMT syntax. For example, one could require that at most one
in a subset of side effects occurs, or that if a given side effect occurs, then another
does not, etc.

9.4.4 Selecting the Best Traces

In Sect. 9.4.3, we introduced SMT assertions to obtain a trace for each Evi indepen-
dently. Now we want to restrict those assertions in order to pick one trace for each
Evi so as to minimise the possible negative effects arising from interactions between
events in distinct Ev’s overlapping in time. To achieve this, we need to determine the
time occupied by each event in a trace: this is the reason why, in Sect. 9.4.3, rather
than limiting ourselves to compute traces of Evi merely as sets Evi ∩ isSelected of
events of Evi , we additionally endowed those sets with a linear order (described by
the map si ). Indeed, this now allows a straightforward determination of a function
clock yielding, for each event in a trace, its starting time: we just impose that each
event starts when its predecessor is in the same trace (according to si ) finishes.

∀ j, k ∈ Evi
(isSelected j ∧ isSelected k ∧ si ( j) ≤ |Evi | ∧ si (k) ≤ |Evi | ∧ si (k) − si ( j) = 1)

→ clock (k) = clock ( j) + ν2 ( j)

Here, ν2 is the second element of the pair returned by ν, as from the definitions in
Sect. 9.3. For events having no predecessors, i.e. the sources of the directed acyclic
graphs underlying the causality partial orders of the event structures, the formula
above does not impose anything. In other words, we are left with the freedom of
deciding when each event structure starts. This can be taken advantage of, as an
example, for representing the addition of a new long-term condition to others already
affecting a patient: the dephasing concept mentioned beforehand in Sect. 9.2. Now,
we are ready to use the information from clock to determine a two-argument function
Score yielding the degree of interaction of a pair of events and taking into account
their temporal overlapping.

The idea is to combine the absolute interaction (i.e. irrespective of their time
location) between two events, as given by a knownmap D, with their mutual position
in time (given by clock) to determine the value of Score for that particular pair of
events. The way we combine these two pieces of information is given by a known
function f , which has the role of a parameter; in other words, it can be any function
specified by the user in SMT-LIB, and therefore is quite arbitrary:

∀ j ∈ Evm, k ∈ Evm ′ . isSelected ( j) ∧ isSelected (k) → Score ( j, k) =
f (clock ( j) , clock (k) , ν2 ( j) , D (μ ( j) , μ (k))) ,
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The formula above is replicated for each m, m ′ indexing distinct event structures;
i.e. m ∈ {1, . . . , n}, m ′ ∈ {1, . . . , n} \ {m}. For the examples in this paper, we used
a simple threshold function as f :

f (x1, x2, y, z) :=
{
z, if x2 − x1 ∈ [0, y]
0, otherwise.

Score can be used to guide the solver towards selecting traces so that their mutual
interaction is minimised. However, we also want the priority of the events in the
computed traces to be high: therefore, we need to combine these two criteria. To do
so, we first need to compute the overall priority score of a trace:

∀ j. isSelected ( j) → priority ( j) = ν1 ( j)

∀ j.¬ isSelected ( j) → priority ( j) = 0,

where ν1 is the first component of ν, yielding the priority.
Then, we need to combine the two criteria; in other words, we need to combine

Score and priority thus computed in some way. This way, similarly to what happens
for f , can be given by any known, arbitrary map. In this paper, we used a very simple
function; i.e. we merely added them into an integer variable totScore. The SMT
solver was then challenged to take, among all the traces satisfying all the assertions,
the one maximising totScore. Note that this requires an SMT solver supporting
maximisation (which is outside of the SMT-LIB standard), such as Z3 [3].

9.4.5 The Example Revisited

We test the output of our approach with respect to the simple example of Fig. 9.1. To
this end, we first check that our approach computes the expected solution depicted
in Fig. 9.2 for the example introduced in Sect. 9.2.1.

Table9.3 (left) shows that this is indeed the case, while Table9.3 (right) was
obtained from the same input, but with the additional requirement that very likely side
effects (in this case, s3, do not occur). The result matches with what is represented
in Fig. 9.3 and was discussed in Sect. 9.2.1.

9.5 Verification

In Sect. 9.4.2, we condensed the actual SMT code under higher level formulas at the
theorem prover level motivating the reason for doing so. We now return to the topic
of the expressiveness of the SMT code, noting that our actual SMT code consists of
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Table 9.3 Computation results for Figs. 9.2 and 9.3 on the left and right, respectively

Clock Event Order Duration Clock Event Order Duration

0 e0 1 1 0 e0 1 1

0 f0 1 1 0 f0 1 1

0 g0 1 1 0 g0 1 1

1 e1 2 1 1 e1 2 1

1 f1 2 1 1 f1 2 1

1 g1 2 1 1 g1 2 1

2 e2 3 3 2 e2 3 3

2 f2 3 3 2 f2 3 3

2 g2 3 2 2 g2 3 2

4 g3 4 1 4 g3 4 1

5 e6 7 3 5 e4 6 2

5 g4 5 4 5 g4 5 4

265 assertions for the example of Sect. 9.2.1. To illustrate the SMT code consider
the following small excerpt.

1 ( assert (= > ( not ( isSelected f 1 ) ) ( exists ( ( y nodeType ) )
2 ( or ( and ( domain_coverRelations / f . txt y ) ( isSelected y )
3 ( < ( interactionDatabase ( label y ) ( label f 1 ) ) 0 ) )
4 ( and ( immediate_coverRelations / f . txt y f 1 )
5 ( not ( isSelected y ) ) ) ) ) ) )
6

7 ( assert (= > ( not ( isSelected f 2 ) ) ( exists ( ( y nodeType ) )
8 ( or ( and ( domain_coverRelations / f . txt y ) ( isSelected y )
9 ( < ( interactionDatabase ( label y ) ( label f 2 ) ) 0 ) )
10 ( and ( immediate_coverRelations / f . txt y f 2 )
11 ( not ( isSelected y ) ) ) ) ) ) )
12

13 ( assert (= > ( not ( isSelected f 3 ) ) ( exists ( ( y nodeType ) )
14 ( or ( and ( domain_coverRelations / f . txt y ) ( isSelected y )
15 ( < ( interactionDatabase ( label y ) ( label f 3 ) ) 0 ) )
16 ( and ( immediate_coverRelations / f . txt y f 3 )
17 ( not ( isSelected y ) ) ) ) ) ) )
18

19 ( define−fun DAG_coverRelations / f . txt ( ) Bool
20 ( and ( = true ( isSelected f 0 ) )
21 (= > ( isSelected f 1 ) ( and ( isSelected f 0 ) ) )
22 (= > ( isSelected f 2 ) ( and ( isSelected f 1 ) ) )
23 (= > ( isSelected f 3 ) ( and ( isSelected f 1 ) ) ) ) )
24

25 ( declare−fun transitive_coverRelations / f . txt
26 ( nodeType nodeType ) Bool )
27 ( assert ( forall ( ( arg0 nodeType ) ( arg1 nodeType ) )
28 (= > ( immediate_coverRelations / f . txt arg0 arg 1 )
29 ( transitive_coverRelations / f . txt arg0 arg 1 ) ) ) )



262 J. K. F. Bowles and M. B. Caminati

We can compare the Isabelle definition of traces given in Sect. 9.4 with the code
above, which is only a small part of the SMT code pursuing the same computation
as traces. On the one hand, Isabelle exploits the expressiveness of higher-order
logic for both computing and stating theorems, whereas on the other hand, SMT
solvers can handle millions of variables and assertions very efficiently. Further-
more, in Isabelle’s higher-order logic, one has (or can define) whatever mathemat-
ical notions and datatypes may be needed for the problem at hand, and can define
functions of any order (such as functions operating on other functions, and so on).
Conversely, an SMT solver has natively only very low-level objects: Booleans, num-
bers, quantifiers (for all, exists), functions and relations defined over these types, and
maybe the possibility of defining further datatypes. However, the objects obtained by
quantifying, function/relation application, and so on, cannot, in general, be subject
themselves to further quantification, function/relation application. In essence, this is
because such solvers operate on first-order logic only.We have seen the consequences
of this restriction when facing the notion of maximality in Sect. 9.4.2.

Our approach proposes to combine both approaches andmake use of the best from
each. In otherwords,we address the following question: Is it possible towrite efficient
SMTcode and to apply fully formal, rigorous Isabelle theorems on it, expressed using
the powerful higher-order logic of the latter? This can be useful in concrete SMT
implementations, where the efficient code can blow up to hundreds or thousands of
little-readable assertions, and therefore the assurance, by a formal theorem, that what
we are computing is indeed what we meant, becomes important. In this section, we
introduce a general method to achieve this, articulated in the following ideal steps:

s1 Isabelle’sHOL incorporates first-order logic; therefore, it is possible to generate
SMT code from Isabelle definitions restricting to entities in HOL’s first-order
logic fragment.

s2 These ‘restricted’ definitions are still Isabelle objects: hence, we can formally
prove correctness theorems about them (maybe by proving their equivalence
to higher order or more expressive Isabelle definitions which are easier to be
stated theorems about).

s3 Parallel to such Isabelle-generated SMT code, we will usually have efficient
SMT code obtained in some other way.

s4 We can use the SMT solver to prove the equivalence of the Isabelle-generated
SMT code and of the ‘efficient’ SMT code by challenging it to find a model
satisfying the assertions specified by one but not the assertions specified by the
other.

We will illustrate this method through a couple of examples related to the com-
putational problems presented up to now.

Let us start from Definition1, that of event structure: it is mainly built on elemen-
tary properties of relations (e.g. irreflexivity, transitivity, symmetry, propagation).
In first-order logic, and therefore in an SMT solver, we do have relations available,
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and therefore we can express the relevant requirements. However, in mathematics it
is quite common to regard relations (and functions) as sets of pairs, which allows
to reduce properties and operations on relations to set-theoretical properties and
operations: indeed, in Isabelle, many of the properties we need (irreflexivity, transi-
tivity, symmetry, etc.) are already defined using this second approach, with a number
of useful theorems already provided in the Isabelle library using this representation.
Therefore, a first Isabelle definition for Definition1 is straightforward:

1 abbreviation "isLes causality conflict ==
2 propagation conflict causality & sym conflict &
3 irrefl conflict & trans causality &
4 antisym causality & reflex causality "

where propagation was the only auxiliary definition we had to introduce our-
selves, the others appearing in the definiens above being already available:

1 a b b r e v i a t i o n " p r o p a g a t i o n c o n f l i c t c a u s a l i t y = =

2 ∀ x y . ( x , y ) ∈ c a u s a l i t y → c o n f l i c t ‘ ‘ { x } ⊆ c o n f l i c t ‘ ‘ { y } "

Typically, the set-theoretical representationwill bemore convenient than the other for
proving theorems involving the definition of event structure, but, of course, Isabelle
can use both representations and pass easily from one to another: this means that any
theorem proved about one of the definition can be restated for the other, by applying
the following Isabelle theorem to the target Isabelle theorem:

1 theorem "IsLes causality conflict ↔
2 ( isLes ( pred2set Causality ) ( pred2set Conflict ) ) "

where pred2set converts from relations represented as predicates into relations
represented as sets, and the definition of IsLes is similar to that of isLes, but
with native relations, rather than relations as sets of pairs. However, an SMT solver
can only use the non-set-theoretical representation, so that we can generate SMT
code expressing Definition1 using IsLes, because it restricts to those higher order
notions which are also available in first-order logic. We did not even need to write
our own translator from Isabelle syntax to SMT-LIB syntax, because it is already
provided by the existing Isabelle tool called sledgehammer (although the latter uses
the translator for goals totally different than ours):

1 lemma assumes "IsLes Causality Conflict " shows False
2 sledgehammer run [ provers=z 3 , minimize=false ,
3 overlord=true , timeout =1 ] ( assms )

Sledgehammer invokes SMT solvers to automatically find proofs to given lemmas
(a goal we are not interested in, here), and to do so the first step is translating the
lemma statement into SMT-LIB: since we only care about the first step, we placed the
definition wewant to translate as a premise of a dummy lemma (keyword assumes),
providing a dummy thesis (shows False), and then invoked sledgehammer. The
SMT code obtained is directly usable by an SMT solver (because IsLes has been



264 J. K. F. Bowles and M. B. Caminati

carefully restricted to first-order logic, as discussed above). We can, therefore, use it
to test whether a given SMT solution or definition is indeed an event structure. This
grants that all the Isabelle theorems we proved about event structures automatically
apply to that piece of SMT code (for example, Isabelle theorems seen in Sect. 9.4).

As a more elaborate application of the method introduced in this section, we show
how we can prove the correctness of the SMT code underlying the formula (9.1)
(Sect. 9.4.3). That formula will result in a multitude of SMT assertions, correspond-
ing to the fact that i and z range over the appropriate sets. The correspondence of
this portion of SMT code with the original goal (that is, calculating maximal con-
figurations) is hard to spot upon code inspection and even harder to establish with
acceptable certainty. Although the reformulation in (9.1) of the concept of maximal-
ity gives rise to such problems, we cannot avoid it, because the original definition
of maximality is not expressible in first-order logic (we discussed this problem in
Sect. 9.4.3). This kind of situation is pretty commonwhen using SMTor SAT solvers:
the object needed to be computed is often obtained through assertions possibly not
quite resembling the original definition of that object, typically because that defini-
tion is either inefficient or not expressible in first-order logic. Therefore, we proceed
according to the ideal steps outlined at the beginning of this section and start by intro-
ducing Isabelle definitionswhich are close to pen-and-paper definitions and therefore
easier to state theorems about (step (s2)). We need the definitions of configuration
and of maximality. The first is given straightforwardly by the following three Isabelle
definitions:

1 abbreviation " isConflictFree Cf C ==
2 (∀ e e ’ . e ∈ C & e ’ ∈ C → ( e , e ’ ) /∈ Cf ) "

1 abbreviation " isDownwardClosed Ca C =
2 ( C ⊆ events Ca &
3 (∀ e f . e ∈ C & ( f , e ) ∈ Ca → f ∈ C ) ) "

1 abbreviation " isConfiguration Ca Cf C =
2 isConflictFree Cf C & isDownwardClosed Ca C "

The first two are restated from Sect. 9.4.2 for the reader’s convenience. We add
another straightforward Isabelle statement of the notion of maximality to obtain an
Isabelle definition of trace as introduced in Sect. 9.3:

1 abbreviation " isTrace Ca Cf C =
2 isConfiguration Ca Cf C &
3 (∀ Y . Y ⊃ C → ¬ ( isConfiguration Ca Cf Y ) ) "

where the last line says that any strict superset Y of a trace C must not be a configura-
tion, which is what one means by maximality of C. Now, we want to prove that this
simple definition of maximality is the same as that expressed by (9.1). Therefore, we
reproduce the latter in Isabelle as follows.
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1 abbreviation " isMaximalConfSmt Ca Cf C ==
2 (∀ z ∈ events Ca − C .
3 z ∈ Cf ‘ ‘ C ∨ ( immediatePredecessors Ca {z } )−C �= { } ) "

where immediatePredecessors Ca {z returns all the events e satisfying e → z
(we recall that → is the immediate causality obtained from →∗). This allows to link
the two definitions through the following Isabelle theorem (we omit the formal proof
here):

1 theorem correctness : assumes "finite Ca " "isLes Ca Cf "
2 " isConfiguration Ca Cf C " shows
3 " ( isTrace Ca Cf C ) ↔ isMaximalConfSmt Ca Cf C "

The theorem establishes in its thesis (which is the statement following the key-
word shows) that the two definitions are indeed equivalent, as soon as some obvious
hypotheses are satisfied. One of these hypotheses requires that the set C is actually
a configuration. This does not pose issues because, contrary to maximality, configu-
ration can be straightforwardly expressed in first-order logic.

Above, isMaximalConfSmt is restricted to first-order logic, and can therefore
generate SMT code through sledgehammer, as discussed above for IsLes. It is
the gateway definition allowing us to bring correctness proof into SMT code. This
does not mean, however, that the corresponding SMT code will be the one actually
used for computations. The actual code is carefully written to optimise performance,
for example through the elimination of universal quantifiers (forall) by writing
one assertion for each possible quantified value, or through rewriting assertions in
equivalent forms, etc. We now show how the correctness of the Isabelle-generated
SMT code can be brought over to the SMT code actually used for computations.
We start by collecting the portion of the latter which expresses maximality under
an SMT boolean function maximality. If maximality were not correct, there
would be some model satisfying exactly one between isMaximalConfSmt and
maximality. This possibility is excluded by the SMT solver returning ( unsat )

for the following assertion:

1 ( assert ( or ( and ( not maximality ) isMaximalConfSmt )
2 ( and maximality ( not isMaximalConfSmt ) ) ) )

9.6 Conclusions

We presented a powerful approach to search for optimal treatment plans, and hence
reduce the risk of adverse drug reactions for patientswithmultiple chronic conditions,
under different criteria using SMT solvers. To the best of our knowledge, the use
of SMT solvers in this setting and for our purpose is novel. For the purposes of
this paper we kept the presentation of the notions and approach abstract, but clearly
motivating the need of all concepts with clinical guidelines in mind. In future work,
we want to analyse real data to obtain models for the treatment of individual diseases
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that takes into account medical practice, and determine more accurate values for our
parameters. Only then will be able to evaluate the framework with clinicians and
realistic scenarios.
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