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Neural Networks for Histopathology
Image Analysis

Dragan Bošnački, Natal van Riel and Mitko Veta

Abstract In the recent years, deep learning basedmethods and, in particular, convo-
lutional neural networks, have been dominating the arena of medical image analysis.
This has been made possible both with the advent of new parallel hardware and
the development of efficient algorithms. It is expected that future advances in both
of these directions will increase this domination. The application of deep learning
methods to medical image analysis has been shown to significantly improve the
accuracy and efficiency of the diagnoses. In this chapter, we focus on applications of
deep learning in microscopy image analysis and digital pathology, in particular. We
provide an overview of the state-of-the-art methods in this area and exemplify some
of the main techniques. Finally, we discuss some open challenges and avenues for
future work.

17.1 Introduction

Imaging is an essential component of modern medicine. Routine clinical care results
in large quantities of image data that is analyzed by medical experts for decisions
regarding diagnosis and prognosis. However, these analyses are generally labor-
intensive, subjective, and expensive tasks. The goal of medical image analysis is to
develop automated methods that will enable a faster, more reliable, and quantitative
analysis ofmedical images. At its core, medical image analysis is an interdisciplinary
field combining knowledge from several disciplines, including medicine, physics,
mathematics, and computer science.
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In the coming decade, artificial intelligence will affect many aspects of human
life and society ranging from home automation and self-driving cars to algorith-
mic detection of “fake news” on social media. This technology will also inevitably
influence health care and in turn medical imaging. One of the most active fields of
research in artificial intelligence is deep machine learning. This concept works by
learning abstract, hierarchical feature representations of input data that are predic-
tive of a certain target (e.g., a class label in the case of classification). In contrast to
classical machine learning methods, deep learning eliminates the step of “manual”
feature engineering that is a tedious process and suboptimal compared with learned
representations.

In the field ofmedical image analysis, the use of deep learningmethods has already
resulted in notable progress for a variety of tasks. Some of the first applications
where automated methods were shown to outperform medical experts have been
in histopathology image analysis. In a recent work [5], it was demonstrated that
state-of-the-art deep convolutional neural networks can outperform pathologists in
detecting metastases in sentinel lymph nodes of breast cancer patients.

In recent years, methods based on Convolutional Neural Networks (CNNs) have
been showing great benefits and offering promising perspectives. This remarkable
progresswasmadepossiblewith the advent of highly parallel processors, likeGeneral
Purpose Graphics Processing Units (GPUs). Thanks to this massive parallelism for
the masses, it became feasible to revive some old concepts as well as develop new
approaches in CNNs. Another factor that boosted the deep learning, in general, was
the massive data gathered throughout the years.

Here, we focus mostly on methods based on convolutional neural networks as a
dominant image analysis concept. The first ideas on convolutional networks can be
traced to Fukushima [19, 20] in the beginning of the 80s and the first application
in medical image analysis is in the 90s [36]. The first landmark in the success story
of CNNs is the 1998 paper by LeCun et al. [33] on applying CNNs for recognition
of handwritten digits. Still another decade needed to pass and the emergence of
the new parallel hardware to happen in order AlexNet by Krizhevsky et al. [31]
to appear. With AlexNet they won the ImageNet competition [31], which triggered
applications of convolutional networks in many areas including their rediscovery
in medical image analysis. Since then an enormous proliferation of publications
has happened, with CNN-based methods for medical image analysis dominating
conferences and dedicated workshops.

In this work, we give an overview of various methods and applications of con-
volutional neural networks in digital pathology and microscopy. Considering the
fact that similar reviews have appeared before, e.g., [35, 41] including some more
general reviews that appeared while this work was already accepted for publication,
like [48], our paper focuses on some most recent work, mostly in the last 3 years.
This overview does not attempt to achieve a comprehensive cover of all new papers
that have appeared after these reviews. Rather we have made a selection of works
that have been the most interesting for us and relevant for our own research, but
which hopefully can still be of a broader importance. For the papers that have been
included in the previous reviews, we tried to give a more elaborate treatment as well
as provide a view from another angle on the treated subjects.
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Automated image analysis with artificial-intelligence-based methods will
undoubtedly lead to better health care because of the more objective evaluation,
standardization in quality, and reduction in errors. However, even with the recent
advances and success of this methodology applied to medical images, important
research questions still remain and need to be addressed. Most of the past efforts
have been focused on automating routine image analysis procedures, such as the
evaluation of known imaging biomarkers. While this is an important and still rele-
vant application area, the dominantly data-driven nature of deep learning methods
offers the possibility for discovery of novel imaging biomarkers. This can be achieved
by training deep learning models that predict patient outcomes such as response to
therapy and survival directly from the image data,without relying of prior knowledge.
Furthermore, in order to translate these methods to the clinic, further improvements
in the robustness across data sets from different centers are needed. We discuss these
and some other avenues for future work and identify the most important challenges.

17.2 Preliminaries

In this section, we review the basic concepts related to neural networks and, in
particular, convolutional neural networks.

Artificial neural networks are parallel distributed computational models. They
consist of artificial neurons arranged in layers and connected with multiple other
neurons. In recent decade, mostly due to the emergence of powerful parallel pro-
cessor architectures, in particular, the General Purpose Graphics Processing Units
(GPUs), neural networks consisting of thousands of neurons became feasible. The
new developments allowed also networks with multiple layers which lead to the
name “deep learning” to distinguish them from the previous “shallow” neural net-
works which usually featured one or two hidden layers.

Artificial neurons are the basic building blocks of the neural networks.An artificial
neuron is a computing element inspired by the natural neurons that have the ability
to react to external input signals (stimuli) and adapt its behavior depending on the
environment. The weighted cumulative effect of the input signals is processed, for
instance, by comparing it to a threshold.

More formally, we assume an input vector x = (x1, x2, . . . , xp). The elements
xi are usually referred to as features. A neuron is defined with its parameters set
θ = (w, b) and a transfer function z. The first parameter w = (w1, w2, . . . , wp) is a
vector of weights associated to each of the inputs, whereas b is a so-called bias.1 The
transfer function is obtained by combining an activation function with a nonlinear
output function. The activation function is a linear combination of the input and the
parameters, whereas the output function σ is a nonlinearity, for instance, a sigmoidal

1Actually b can be considered as a special weight w0 associated with a special input x0 which has
a constant value 1. In this way the transfer function becomes slightly simpler σ(wT x). However,
for the sake of clarity here we keep these two parameters separately.
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function like 1/(1 + e−x ). So, the usual form of the transfer function is

z(x) = σ(wT x + b)

Such a neuron can be used a classifier which can distinguish between two classes of
object, e.g., by comparing the output value z with a threshold.

In general, however we might have more than two classes. Therefore, we need a
classifier which implements a function f : Rp → R

k which takes the input vector
x ∈ R

p as argument and returns an output vector y = (y1, y2, . . . , yk) ∈ R
k , where

each element yi corresponds to one of the k classes. The value of the element yi of y
can be seen as a confidence score that the input x belongs to class i . The output score
can be processed further, for instance, to obtain a probability distribution P(y | x)

for x over the classes.
Such classifiers can be implemented in a straightforward way by assigning one

neuron per class and feeding the same input x to each of the neurons. Each neuron has
a separate parameter set θi = (wi , bi ). The weight vectors can be put together into a
matrix W, each wi being a row of the matrix. Similarly, a bias vector b is formed.

The drawback of such a simple network consisting of only one layer of neurons
is that it can implement only a limited class of functions f , more precisely functions
of the form

f (x, θ) = σ(Wx + b)

This constraint can be removed by pipelining several layers such that the input of
one layer is the output of another. It can be shown that in this way one can implement
any “reasonably” behaving function. The above-described network architectures are
known as Multilayered Perceptrons (MLP). Hence, MLP consists of several layers
connected with one another and implementing the superposition function

f (x,�) = σl(Wlσl−1(Wl−1 . . . σ1(W1x + b1) . . .) + bl)

where Wi , bi , and σi , are the corresponding parameters and nonlinearities of each of
the layers, respectively, and � = {(W1, b1), . . . , (Wl , bl)}. Multilayered networks
are also called deep neural networks. The layers which are between the input and
output layer are called hidden layers. The number of the layers defines the depth of
the network.

There are several possibilities to obtain the probability distribution over the classes
for a given input. One of the most used functions is softmax

ewT
i +bi

Σk
j=1e

wT
j +b j

Such a function is implemented within the very last layer by choosing for the non-
linearity σ(z) = ezi /(Σ j e

z
j ).
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Based on difference between the actual and the desired outputs, the neural net-
works can be trained by adjusting the parameter values in�. Depending on the scores
(distributions) and the methods, various loss functions can be defined. The most pop-
ular algorithms to fit the parameters and minimize the loss functions are based on
stochastic gradient descent with momentum and the Adam optimizer [17, 30].

Convolutional Neural Networks (CNNs/ConvNets) are a class of neural networks
which nowadays is the most used in biomedical applications and in particular in
image processing. In a nutshell, the main difference between the MLPs and CNNs is
that the latter have sparse connectivity and replication of the weights among different
neurons. In this way, CNNs require smaller number of parameters than MLPs, and
therefore less computational resources while retaining the same expressiveness, i.e.,
ability to implement a transfer function relating the input and the output vectors.

In theMLP architecture, the neuron layers are dense (fully connected) in the sense
that the output of each neuron of a layer serves as input to each neuron of the next
layer. In the CNNs, this is not the case. Instead, the neurons of the next layer use
only a subset of input elements (neurons) to perform a convolution on the images.

CNNs exploit the fact that the input data, especially in image analysis, is a mul-
tidimensional array. A filter (convolution kernel) consisting of a neighborhood of
input elements, i.e., a rectangular patch, is slid over the input image. The outputs of
the picture elements “covered” by the patch are wired to a neuron in the next layer.
The advantage of such floating neighborhoods is that they are not fixed anymore to
a certain position in the image. Hence, one particular filter specialized in detecting
a type of objects is sufficient to cover the whole image, instead of having multiple
copies for each position as this would be the case in the MLPs. In that regard, we
say that CNNs are translation invariant and thus able to detect the“object” regardless
where and how it is positioned in the image.

For such multidimensional inputs, also called tensors or simply 3D volumes, one
can define the operation of convolution, denoted as “*”, between the input and an
analogous smaller structure—the filter. For instance, assuming a 2D input vector x
and a 2D filter w, we can define2

h(i, j) = (x ∗ w)(i, j) = ΣmΣnx(i + m, j + m)w(m, n)

Hence, to compute themodified inputh, for each original input element at position
(i, j), a weighted sum of its m × n neighborhood is computed, where the weights
are given by the filter. In that way, the convolution operation is analogous to the
dot product of the input signals with the weights in the traditional neural networks,
only in the latter the neighborhood consists of all neurons of the previous layer.3

2Actually this is a definition of a cross-correlation which is slightly different than the usual math-
ematical notion of convolution, but in the machine learning practice this is how the convolution
operation is implemented [23].
3In principle, one can unfold the m × n covered rectangular patch of the input and the filter into
l-dimensional vectors, where l = m × n. In this way, “*” becomes real a dot product between the
vectors. Also, a bias element can be added, like in the traditional neural networks.
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Fig. 17.1 An example of a 2D convolution (adapted from [23]). A 2 × 2 filter (kernel) is slid over
a 3 × 4 image. To avoid out of range indexing the convolution is computed only when the filter is
within the image. As a result, the obtained 2D array has smaller dimensions than the input. (The
out of range indexing can be resolved by padding the input array with extra rows and columns,
usually having some default value like 0.) Please note that in our example also a bias b is used in the
convolution, similarly to the dot product in the traditional networks. Like in this example, in general,
the output volumes have smaller width and height than the input arrays. The number of elements in
the output array can be further reduced by using a stride parameter, i.e., skipping some of the values
of the indices i and j in the sliding. In a similar way, also the max pooling op ration is done. The
element-wise product between the input and the filter elements is replaced by the max function. For
instance, for the top left entry of the resulting array is obtained as max(x1,1, x1,2, x2,1, x2,2). The
output arrays obtained by convolving each of the filters associated with the convolution layer are
stacked together in a 3D array. For instance, if we had five filters, the output array has dimensions
3 × 3 × 5. In general, the dimensions of the output volume are given by the dimensions of the input,
the filter, and possibly by the abovementioned stride parameter.

The “sliding” of the filter is achieved by ranging over i and j . In this way, a new
transformed input array x ′ is obtained as illustrated in Fig. 17.1.
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The intuition behind the convolution is that, by averaging the neighborhood of an
input element, the filter acts as a noise reducing element. By sliding the filter over
the input, a “smoothed” version of the input is obtained.

More formally, in a convolution layer, the input is convoluted with a set of filters
(kernels) W = {w1, w2, . . . , wn}.

With each wi , a corresponding 2D output is obtained hi = x ∗ wi , where the
convolution operation ∗ is lifted to have the whole input array as argument. The
outputs are put together to form a 3D array H = (h1, h2, . . . , hn).

The CNN architectures are obtained by using a combination of convolution layers
and fully connected layers.4 The convolutional layers are followed by a nonlinearity
layer and optionally by pooling layers. The most preferred nonlinear function is the
so-called Rectified Linear Unit (ReLU) function defined as max(0, x). The nonlinear
function is applied to each element of the output H of the convolutional layer. The
pooling layers are interspersed between series of convolutional (plus ReLU) layers.
They also combine the outputs of several related neurons by sliding a small filter over
the output of the previous layer (which is usually a ReLU); however, in a simpler
way than the convolutional and the dense layers. Usually, a function like maximum
is used to approximate the values of a set of input elements. The last layer, which
computes the distribution, is a fully connected layer (see also Fig. 17.1). The net effect
is that one obtains a transfer function analogous to the one of the traditional networks
hl+1
k = σ l(Hl ∗ wl

k + b), where the subscripts l, l + 1 denote an association with the
l-the and l + 1-th layer, respectively, and σ l includes the effects of the nonlinear and
pooling layers and b is the set of biases that are used in the convolution (see also the
remarks in Fig. 17.1).

As mentioned above, the inputs of the CNNs are commonly seen as three-
dimensional arrays, since for each 2D image element there is also a color (the depth
dimension). The filters have the same depth as the original image—for instance, in
the first layer this is usually three—butmuch smaller breadth andwidth. To obtain the
modified input, i.e., the new feature vector, the processed input images are stacked
on each other and the new depth of the input is equal to the number n of filters Wi

associated with the layer. The breadth and width of the obtained output are usually
smaller than in the input volume (see also the explanation in Fig. 17.1).

Recurrent Neural Networks (RNNs) are used for sequence analysis. Mathemati-
cally, they learn a distribution P(y | x1, x2, . . . , xn) over an input vector sequence
instead of a single vector x. In the activation function, besides the input xi also the
effect of its predecessors is taken into account. The effect of the previous state is
recorded in the hidden states which are computed for each input of the sequence.

4In recent years, there is growing a trend to use fully convolutional networks in which the fully
connected layers are implemented by means of convolutional layers.
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17.3 Overview of Digital Pathology Techniques

In this section, we give an overview of different CNN-based models and algorithms
for medical image analysis that have appeared mostly in the recent years. As already
mentioned in the introduction, this is not an attempt to present a comprehensive
overview of the new developments, but rather a selection which to a great extent
was shaped by our own research interests. We begin the overview with the grand
challenges which have pushed the field forward to a great extent.

17.3.1 Grand Challenges in Digital Pathology

One of the developments that brought about the success of deep learning methods
in computer vision was the availability of large, public annotated image data sets.
In medical image analysis, this was mirrored in the form of medical image analysis
challenges—friendly competitions in which researchers worldwide evaluate their
solutions on the same data with the same criteria, in a blinded manner. Organizing a
challenge constitutes collecting and publicly distributing a data set that can be used to
address a specific clinical task (e.g., assessment of breast tumor proliferation speed).
Medical image analysis challenges have been a significant driver for improving the
state of the art for a variety of different tasks. The continuation and,more importantly,
the improvement in the quality of these efforts will continue to be an essential driver
of the medical image analysis field in the future.

The challenges are often associated with one of the major conferences. Among
others, such challenges include the 2012 EM segmentation challenge for the 2D
segmentation of neuronal process, the ICPR2012 andAMIDA2013mitosis detection
challenges, GLAS for gland segmentation, and CAMELYON 16 and TUPAC for
processing of breast cancer tissue.

17.3.2 Algorithms

The algorithm developed by IDSIA group won both the ICPR 2012 and AMIDA
13 challenges on mitosis detection with significant margin. In [13], they use deep
max-pooling convolutional networks to detect mitosis in breast cancer. In a manner
characteristic to the CNN approach, the network is trained to classify each pixel
based on the neighboring pixels. The method was evaluated on the public MITOS
data set that includes 50 images corresponding to 50 high-power fields in 5 different
biopsy slides stained with Hematoxylin and Eosin.

Also, the same group had the best result in the ISBI EM12 segmentation challenge
for the 2D segmentation of neural process [12]. The automated segmentation of
neuronal structures depicted in stacks of electron microscopy (EM) images is vital in
efficient mapping of 3D brain structure connectivity. Again, each pixel is classified
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based on the immediate neighborhood using CNNs. The approach was the only one
at the competition which was able to outperform a second human observer.

Xu et al. [50] won the GLAS challenge on gland instance segmentation in colon
histology images. The glands need not only be segmented from the background,
but they are also identified individually. They proposed the method called Deep
Multichannel Side Supervision (DMCS) involving three CNNs. The first one labels
the pixels as gland and non-gland and the second one extracts edge information. The
final segmentation is produced by the third CNN.

Wang et al. [49] won the CAMELYON16 challenge associated with the Inter-
national Symposium on Biomedical Imaging (ISBI). This challenge was the first
challenge involving whole-slide images (WSI).More precisely, the goal was an auto-
mated detection of metastatic breast cancer of WSIs sentinel lymph node biopsies.
The challenge was characterized by the contestants using very deep models. Such
was also the winning model of Wang et al. which was based on GoogleNet architec-
tures [44]. Combined with human pathologists diagnosis their algorithm was able to
increase the pathologist’s AUC score and reduce the human error rate for 85%. A
later standalone version of the algorithm [6] outperformed the pathologists score.

Paeng et al. [39]was the best-performingmethod of anotherWSI challengeTumor
Proliferation Assessment Challenge (TUPAC) associated with MICAI 2016. To pre-
dict proliferation in breast cancer, their framework combines three models: a WSI
processing component, a mitosis detection based on CNNs, and a Support Vector
Machine (SVM)-based proliferation module.

Mobadersany et al. [38] introduces Survival Convolutional Neural Networks
(SCCNs) which combine CNNs with traditional survival models. The approach
integrates information from histology images with genome biomarkers. The new
concept is applied to brain tumor classification and prediction of patient outcomes.
The obtained accuracy surpasses that of human experts. The information extracted
from the SCNNs can be used to visualize and identify important structures, like
microvascular proliferation that is crucial for the prognosis.

In [15], a CNN classifier is used for detecting the extent of invasive breast can-
cer regions on whole-slide images. Before that, a phase of tissue sampling and tile
preprocessing are done. One of themain goals of the studywas to evaluate the robust-
ness of the classifiers with regard to various conditions, like staining, preparation,
scanning platform, etc. To achieve robustness, the classifiers were trained on sam-
ples from different sources. Classifiers trained with different data cohorts showed
highly correlated performance measures (r ≥ 0.8) when tested with an independent
data cohort. The approach shows limitations though when applied to in situ breast
cancer which is different form the invasive cancer. In general, the presented classi-
fiers are quite successful with more than 70% of positive predictive value and 90%
of negative predictive value of pixel-by-pixel evaluation compared to the manually
annotated samples.

Bejnordi et al. [7] presents context-aware CNNs for classifications of breast car-
cinomas in three classes: normal/benign, DCIS, and invasive ductal carcinoma. The
approach consists of two stages. In the first one, cellular-level features are extracted
using small high-resolution patches. The output of this stage is pipelined with a
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fully convolutional network to facilitate predictions in local regions. The incorpo-
ration of more context results in improved performance. The obtained accuracy for
three-classes classification is above 80%.

It is generally recognized that a successful training of deep learning networks
requires many thousands of training samples, e.g., [45]. In image analysis, this is not
always possible since the number of images is often in the order of magnitude of
tens of hundreds. To alleviate this, problem augmentation techniques are proposed
which are able to produce variations of the available training samples. Ronneberger
et al. [40] propose a method that strongly relies on data augmentation. Their archi-
tecture, called U-Net, builds upon a fully convolutional architecture and features
contracting paths which are followed by symmetric expanding paths. The contract-
ing paths use max pooling and are used to capture context. The role of the expanding
paths is to enable precise localization. The expanding paths use up-convolutionwhich
to certain extent are inverse of themax pooling since they increase the number of pix-
els. The corresponding opposing convolution and deconvolution layers are connected
with skip connections. The networks are applied for various types of segmentation
of light microscopy images with good results.

Several derivatives of the U-Net architecture have appeared mostly in the context
of 3D image segmentation, like [11] and [37]. The latter introduce V-Net, a 3D
variant of the U-Net architecture, which features 3D convolutional layers. Drodzal
et al. [18] propose another variation that—inspired by ResNet [25]—adds to the
exisiting long skip connections also short skip connections between the up- and
downsampling layers.

Two variants of U-Net are evaluated in [14] within a segmentation study of
diseased and healthy skin. It was found that Dense Residual U-Net [27] performs
better when direct transfer learning is used, without fine-tuning. In densly reisdual
U-Nets, the convolution layers are replaced with dense convolutions. In the dense
convolutional networks, all convolutional layers are connected with each other. Also,
additional residual layers are added [25]. It is observed that when direct training and
fine-tuning are used U-Net ouperforms the dense residual networks.

Arbell and Riklin Raviv [4] propose to integrate the U-Net architecture with
Convolutional Long Short Term Memory (C-LSTM) [42] with the U-Net. C-LSTM
is a convolutional version of the fully connected LSTM [1, 16, 26] which have been
developed originally for handling of temporal correlation. To accomodate locally
spatial information in image sequences, C-LSTM replaces matrix multiplication
with convolutions. This novel approach is applied to individual cells’ segmentation
from microscopy sequences.

Johnson [28] uses theMask-RCNN[24] algorithm for segmentationofmicroscopy
images of cell nuclei. Mask-RCNNs predicts a segmentation mask for each region of
interest. Mask-RCNN was a convincing winner in the 2016 COCO Challenge [34],
a large-scale object detection, segmentation, and captioning challenge. Unlike U-
Net, Mask-RCNNs does not need a region proposal (mask). Instead, U-Net uses its
encoder–decoder framework in which the convolutional network encodes the con-
tent of the network in the first phase and the deconvolutional part to construct the
desired segmentation mask. In [28], it was shown that although Mask-RCNNs were
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originally developed for applciations in object detection, object localization, and
instance segmentation of natural images, with very little modification, can perform
very well also segmentation of nuclei in a broad spectrum of microscopy images.
Also, possible applications are discussed in segmentation of heart ventricles or liver
and tumor segmentation [9].

Bekkers et al. [8] propose a framework that avoids the need for data augmentation
by rotation. To this end, they use a generalization of CNNs called SE(2) group
CNNs (G-CNNs). SE(2) group is a formal descriptions of combinations of rotations
and translations (roto-tranaslations). More precisely, the group describes how two
roto-translations are cobmined in one resulting roto-translation. G-CNNs feature
special SE(2) group convolutional layers which capture the symmetries of the SE(2)
group. The usual translational convolutions with a filter (kernel) are replaced by
SE(2) convolutions. The rotational covariance does not need to be learned since it
is inherent to the model. Three layers are introduced: lifting layer transforms a 2D
image into an SE(2) image, group convolution layer from and to an SE(2)-image,
and a projection layer which returns the SE(2) image to a 2D image. The G-CNNs
are evaluated experimentally on three different image analysis tasks: histopatology,
retinal imaging, and elecron microscopy . The results show improvement of the
G-CNNs with regard to the CNNs.

In [3], an approach is presented inspired by the Generative Adversarial Neural
Networks (GANs) for cell segmentation. A pair of neural networks play a minimax
game which results in segmentation. With such a game approach, a loss function
is not needed any more. Another advantage of the approach is that it can work
with a limited number of training smaples. The method is evaluated on fluorescent
microscopy data, more precisely, on cell segmentation. GANs have recently been
applied inmicroscopy imaging. In [10, 22], they applied in the context of fluorescence
microscopy for morphological profiling human cultured cells. The reported results
show that GANs are superior to autoencoder-based approaches. In [10], GANs are
used for predicting fluorescent labels in unlabeled images over a broad range of labels
(nuclei, cell type, cell state).

Lafarge et al. [32] consider an alternative to standard augmentation and normal-
ization approaches—an adversarial approach for mitosis detection in breast cancer
histopathology images. Domain-adversarial neural networks (DANN) [21] allow to
learn a classification task, while ensuring that the domain of origin of any sample of
the training data cannot be recovered from the learned feature representation. The
color augmentation combined with DANN showed the best performance.

17.4 Discussion, Conclusions, and Outlook

We gave a selected overview of the recent developments in CNN-based methods for
histopatology image analysis. Research on CNNs has seen enormous expansion in
the recent years and novel network architectures are produced with a tremendous
speed. From the overview, it can be seen that the medical image analysis community
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quickly adapts these novel ideas. Although quite often the new architectures can be
applied without much modification in the end this still requires fine-tuning of the
parameters and often expert insight into the medical application area.

One of the main challenges in medical imaging is the limited amount of data.
Unlike standard image analysis for which millions of images can be found on the
Internet good training data is usually difficult to find for the medical applications.
In particular, well-annotated data is scarce. Another problem is the class imbalance
stemming from the fact that usually examples of healthy tissue are much more com-
mon. Because of these issues, the importance of data augmentation is increased.

In the future, it would be interesting to combine data obtained from the image
analysis with other data characterizing tissues, like genome or metabolome data.
Integration of image and molecular data can be beneficial in the elucidation of the
disease mechanisms andmedicine development. In that context, biomarker detection
and discovery will play an important role.

Biomarker detection is defined as automated evaluation of known imaging
biomarkers. The goal of applying image analysis is tomake the assessment more reli-
able, quantitative, fast, and accurate. While the application of deep learning methods
for biomarker detection has resulted in substantial improvements in accuracy, several
important research questions still need to be addressed. This includes development
of fast methods that can enable efficient analysis of larger images (up to several
terapixels in size in histopathology) and training of models using smaller annotated
data sets.

Biomarker discovery refers to the use of deep learning methods for identification
of novel, previously unknown image features that are predictive of a certain clinical
outcome. The clinical end points that can be used for biomarker discovery such as
survival or recurrence, are global, patient-level annotations, i.e., they are not localized
to a particular anatomical region or region of interest in the image. This constitutes
a so-called weakly labeled learning scenario, and, while techniques that specifically
address weakly labeled data have been proposed, it remains an open problem.

The generalization of data from medical centra that were not included in the
training data set is crucial for the practical application of the CNN techniques. One
of the major obstacles for wide implementation of image analysis methods in the
clinic is the poor generalization on data sets from “external” medical centers that
were not included in the training set. This drop in the performance can happen due
to a variety of reasons, such as use of different imaging equipment and parameters
or, in the case of histopathology, differences in the tissue preparation and staining
processes. A trivial solution to this problem is to create center-specific data sets and
retrain the deep learning models; however, this is not always feasible and can be very
expensive. Thus, an important research question that needs to be addressed is the
training of deep learning models that are robust w.r.t. such differences.

While ad hoc approaches such as appearance standardization algorithms can lead
to some success, it would be preferable to address this issue in a more systematic
way. One approach is through domain-adversarial training of deep neural networks.
With domain-adversarial training, the optimization procedure is modified in such a
way that irrelevant information such as the domain of origin of the training samples is
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explicitly removed from the learned representation, which leads to better generaliza-
tion on new image data sets. In [32], it has been already demonstrated that domain-
adversarial approaches can improve the generalization ability for histopathology
image analysis tasks.

Another important aspect that needs to be addressed is development mechanisms
for continuous training of the models as they are implemented in the clinic and more
training data becomes available.

It was already mentioned that the organization of medical image analysis chal-
lenges has had a tremendous impact on the advancement of the state of the art in
medical image analysis. In the coming decade, such methods will continue to push
the field forward. However, it is important that the quality of the challenge data sets
keeps improving. Most of all, there needs to be a shift from small and single-center
to large and multi-center data sets.

A successful transfer learning, i.e., taking over new CNN architectures that have
been developed in other application areas, has been one of the reasons for the success
of the CNN-based methods. However, as already mentioned, the basic architecture
usually requires some fine-tuning. In this situation, human expert knowledge can be
quite valuable. Therefore, it would be of enormous benefit if machine learning and
CNN, in particular, can be made easier to use for nonexperts in image processing.
There has been an ongoing research on developing online frameworks (c.f. [46]) for
“democratization” ofmachine learning, i.e., tomakemachine learningmethodsmore
accessible. To this end, various techniques like Bayesian learning and genetic algo-
rithms are used on different levels. For instance, to compose workflows of various
methods for fine-tuning of the parameters of the methods within the workflow. It is
interesting that to this end machine learning is used to improve machine learning and
to replace the parameter optimization which is at the moment still a highly empirical
exercise based on trial and error and adhocery. Such a prospective automated frame-
work for machine learning can be refined by taking into account the specifics of a
particular class of applications, in our case, image analysis.

A tremendous challenge remains to understand how andwhy neural networks and,
in particular, CNNs actually work. Since humans are inherently good in sequential
reasoning and algorithms, understanding the highly parallel and distributed models
will always be coupled with difficulties. Also, in this direction, the automated trial
by the open machine learning frameworks can help us to make some progress.

A related issue which could become quite relevant in the future, especially in
the medical applications, is the question of reliability of the CNN-based methods.
Many—if not most—of the deep learning methods are based on trial and error and
intuition. Defining a rigorous basis for deep learning will help resolve this issue as
well as other research questions like the limitations of the neural network models
and the interpretability of the results. Interpretability is, in particular, relevant in
diagnostics when a “black box” method could be often unsatisfying. Moreover, a
deeper understanding of the workings of the neural networks can be helpful in the
developing of new architectures. A recent effort toward formal verification can be
found [29].



466 D. Bošnački et al.

The outcomes of the empirical evaluation in CNNs and machine learning, in
general, could be quite dependent on the data sets used for training andbenchmarking.
Therefore, the generalizability of the results will be a question which will need to be
addressed in a more systematic manner in the future, e.g., [43].

In the future, there will be a strong demand for the integration of imaging and
other types of information, like clinical data or gene expression studies. Cross-modal
CNNs [47] could be a possible answer to this challenge. Cross-modal CNNs general-
ize the idea of neural network ensembles. The information is partitioned over several
smaller CNNs. In [47], it is shown that CNNs can be used to cope with situations
when “big data” is not available. Instead, the“breadth” of the data is used. An exam-
ple of such situation is clinical studies when not many patients might be available, but
the abundant heterogeneous information is distributed over the component CNNs.
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