
Chapter 1
Model Checking Approach
to the Analysis of Biological Systems

Nikola Beneš, Luboš Brim, Samuel Pastva and David Šafránek

Abstract Formal verification techniques together with other computer science for-
mal methods have been recently tailored for applications to biological and biomedi-
cal systems. In contrast to traditional simulation-based approaches, model checking
opens an entirely novel way of viewing and analysing the dynamics of such sys-
tems. In particular, it can help in system identification and parameter synthesis, in
comparison of models with respect to a priori given desired properties, in robustness
analysis of systems, in relating models to experimental data, or in globally analysing
the bifurcations of systems behaviour with respect to changes in parameters. In this
review, we briefly describe the state-of-the-art methods and techniques employing
model checking, as one of the most prominent verification techniques, to the anal-
ysis of biomedical systems. We demonstrate some of the advantages of using the
model checking method by presenting a brief account of the technique itself fol-
lowed by examples of the application of formal methods based on model checking
to three areas related to the analysis of biomedical systems: verification of biolog-
ical hypotheses, parameters synthesis, and bifurcation analysis. Finally, we discuss
several case studies that show how fruitfully the methods can be utilised within the
computational systems biology and biomedicine domain.

N. Beneš · L. Brim · S. Pastva · D. Šafránek (B)
Systems Biology Laboratory at Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic
e-mail: safranek@fi.muni.cz

N. Beneš
e-mail: xbenes3@fi.muni.cz

L. Brim
e-mail: brim@fi.muni.cz

S. Pastva
e-mail: xpastva@fi.muni.cz

© Springer Nature Switzerland AG 2019
P. Liò and P. Zuliani (eds.), Automated Reasoning for Systems
Biology and Medicine, Computational Biology 30,
https://doi.org/10.1007/978-3-030-17297-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17297-8_1&domain=pdf
mailto:safranek@fi.muni.cz
mailto:xbenes3@fi.muni.cz
mailto:brim@fi.muni.cz
mailto:xpastva@fi.muni.cz
https://doi.org/10.1007/978-3-030-17297-8_1

4 N. Beneš et al.

1.1 Introduction

Biomedical systems are complex systems of interacting parts, which may be
molecules, cells, organisms, or entire species that change their properties with time
in response to external and internal stimuli. Studying the dynamic behaviour (dynam-
ics) of these systems is the basis for the understanding of, e.g. cellular functions or
disease mechanisms.

The computational analysis of the precise dynamics of biomedical systems
involves the construction of appropriate computational models. Building suitable
sound dynamic models can be regarded as an essential step in the development of
predictive models for cells or whole organisms. While the structure of the models is
mostly available, some of their quantitative features are often difficult to determine.
These values, which may significantly affect the system dynamics, are represented in
the model as parameters. To gain reliable models for making predictions, its param-
eters, such as concentrations or reaction rates, should be specified as precisely as
possible. Some of the parameter values are already defined in the literature, or they
can be inferred from experimental data. However, most of them are uncertain or
unknown.

The application of formal approaches and computational methods, as discovered
and developed in the context of computer science and engineering [54, 83], in sys-
tems biology can contribute to the development of powerful model-based reasoning,
analysis, and simulation tools for biologists. These tools have the power to bring the
necessary support in preparing new experiments for testing hypotheses and eventu-
ally, for a better understanding of emergent functional properties of cells, tissues or
even organisms.

In recent years, the cooperation among biologists, mathematicians and computer
scientists in the area of systems biology is extending and intensifying. The reason
is that both the biological and the computational systems can be regarded as sys-
tems that rely on the interaction of its components known in computer science as
communicating reactive systems. Therefore, many formal methods and approaches
developed in computer science for modelling and analysis of reactive computational
systems may apply to the biological ones as well.

Model checking (also termed automated formal verification) is one of them. It is
a very appropriate and promising formal method that can be exploited in computa-
tional systems biology with the potential of bringing significant benefits in designing
biological models. The reason is that model checking, as a verification technique, can
be regarded in principle as an approach to confirm or refute biological hypotheses.

The development of formal verification techniques together with the power of the
underlying computer hardware has made it possible to apply these methods to very
complex systems. In this review,we briefly describe three examples of the application
of model checking to the formal analysis of biological systems.

1 Model Checking Approach to the Analysis of Biological Systems 5

1.2 Verification by Model Checking

Model checking [5, 39] is a computer science verification method that grew up from
purely academic research techniques to a well-accepted modern verification method
routinely used in industry. Nowadays, model checking is widely considered as a com-
plement and enhancement to the existing validation and verification techniques such
as simulation and testing.

The principle of model checking as a software verification method is to system-
atically check whether a model of a given computer system satisfies a property such
as deadlock freedom, invariants or request–response. The main advantage of model
checking is that, when applied to restricted finite-state models—Kripke structures, it
is a pure ‘push-button’ technology. The possibility to have a fully automatic method
for software verification, as opposed to other verification methods, is substantial. It
requires minimal human intervention (and less experience), applies to systems with
realistic properties, and produces a counterexample in case of failure.

Model checking belongs to a broader class of formal methods that are termed
formal verification methods. Although the introduction of formal verification to
computer systems development is rather costly, it pays off after all. In particular,
it is not only able to catch deeper flaws in the computer systems than testing or sim-
ulation; it often results in significant reduction in the verification time as well as the
development costs and time-to-market.

Model checking is a computationally demanding andmemory-intensive technique
in general. Its applicability to large and complex systems as seen in practice is thus
limited to some extent. The major problem is the state space explosion problem [41]
due to which large industrial models cannot be efficiently handled, unless scalable
and more sophisticated methods are used.

A great deal of attention has been paid to the development of approaches to fight
the state space explosion problem in the field of automated formal verification [81].
The most prominent are state space reduction [38, 51, 82], compression [65], state
compaction [58], bounded model checking [22], symbolic state space representa-
tion [33] and the use of parallel computers [29].

Model checking is primarily a verification techniquewhich is, however, often used
for falsification (as a bug hunting method). The core idea behind model checking is
to exhaustively explore, using clever techniques, all states of the finite-state system
(model). This either gives the guarantee the system is correct or presents a counter-
example in the opposite case. It is this exploration feature of model checking that is
often used to perform other kinds of analyses of (biological) models as we see later.

Model checking, as the term suggests, needs a suitable model of the system.
Model checking cannot be applied directly to real systems which is sometimes con-
sidered as its drawback. In software engineering, this is not a critical issue as there
are model-based approaches to system construction and building models is a natural
part of the software life cycle. On the contrary, for biological systems, the model

6 N. Beneš et al.

must be acquired from the knowledge about the real, already existing, system first.
We will comment on biological models and how to turn them into models suitable
for model checking later in Sect. 1.3.1. In this review, we will suppose the system is
modelled operationally as a nondeterministic finite-state system with a set of transi-
tions (a transition system), which define the changes of state as the system evolves.
A sequence of successive transitions is called a run or an execution. Furthermore,
for the model checking purposes, we usually extend the model by assigning atomic
logical propositions to particular states. Such a model is in computer science termed
a Kripke structure.

The second, and equally important, ingredient for the model checking procedure
is a temporal logic formula expressing the desired property of the system’s behaviour
(its dynamics). Computer science offers two main types of logical formalisms for
expressing qualitative properties of systems dynamics (see, e.g. [5]): linear-time tem-
poral logics interpreted over individual model executions (runs), and branching-time
temporal logics, interpreted over trees of (nondeterministically) branching model
executions. The simplest linear-time temporal logic is linear temporal logic (LTL)
and the basic branching-time logic is CTL. Both LTL and CTL can be interpreted
on many kinds of models. Both logics extend the classical propositional logic by
temporal operators. The temporal operators in LTL are the F operator expressing
that a property will be true in the future (eventually), the G operator expressing that
a property will be true invariantly (globally) in all states of the execution, X express-
ing that a property will be true in the neXt state of the execution, and the U operator
expressing that one property is true until another property is true. The logic CTL
adds to LTL ‘quantifiers’ A and E over runs with with a common state (computation
trees). For example, the formula AF expresses that on all executions from here the
property is true sometime in the future, while the formula EG expresses that on some
execution from here the property is always true. The individual temporal logics differ
in the selection of temporal operators and the semantic model used. There are also
numerous extensions of these logics in order to increase their expressive power. In
particular, a hybrid extension is very useful for describing some typical phenom-
ena found in biology. We give several additional examples of properties taken from
biology and their reformulation as formulae in Sect. 1.3.1.

1.3 Methods and Tools

The development of methods, techniques, and tools is not yet at a level where the
formal analysis of an entire complex biological or biomedical system is possible.
Nevertheless, we can already handle interesting and challenging fragments of such
systems.

1 Model Checking Approach to the Analysis of Biological Systems 7

1.3.1 Model Checking Biological Systems

The formalism used to define a model of a biological system is essential, since it
not only dictates the possible behaviours that may or may not be captured but it
also determines the computational means for detecting them and subsequently to
perform an effective model calibration. Fisher and Henzinger [54] distinguish two
kinds of models in systems biology: operational (also termed executable or com-
putational) versus denotational (also termed mathematical). The operational models
(such as Continuous time Markov chains, Petri nets, or Process algebras) are exe-
cutable and mimic system processes. The denotational models (such as differential
or difference equations) express mathematical relationships between quantities and
how they change over time. These models are in general quantitative and tend to
require a lot of computational power to simulate. In this review, we stick with com-
putational models in the form of Kripke structures. All computational models can, at
least in principle, be used instead of Kripke structures or their extensions. We prefer
Kripke structures for their simplicity and generality.

Models in systems biology are rarely presented as Kripke structures. To be able to
apply formal verificationmethods to amodel, it has to be first converted into a Kripke
structure. We omit the details about the various conversion methods here; for details
see, e.g. [28].

Models can also be classified as deterministic or stochastic (or hybrid). On the
one hand, deterministic models such as those based on ordinary differential equations
(ODE) typically enable the analysis of large collections of molecules in a popula-
tion. This is because they abstract from individualistic properties of each molecule,
such as position or its stochastic behaviour, and take into account concentrations
of each species as its variables only. On the other hand, stochastic models such
as CTMCs (Continuous-time Markov chains) abstract from positions of molecules
but maintain their individual interactions. Stochastic models overcome some of the
inherent limitations of deterministic models typically at the price of higher compu-
tational complexity. We do not cover stochastic models in this review, and we refer
the interested reader again to [28].

1.3.1.1 Temporal Properties of Biological Systems

Let us now turn our attention to properties and their formulation in temporal logics.
Concerning the phenomena appearing in the dynamics of biological processes, there
are several classes of properties that are typically studied on biological models. In
particular, they can be organised into the following six categories: reachability prop-
erties, temporal ordering of events, variable correlations, (multi)stability properties,
monotonic trends and oscillation properties.

For the demonstration purposes, suppose the states of our model incorporate
information about concentration levels of some ingredients represented as system
variables. Reachability properties express ‘reachability of specified concentration

8 N. Beneš et al.

levels in given model variables’. An example of a typical reachability property is
the following requirement ‘C reaches the concentration level ranging between 3.1
and 3.3 at some phase of the dynamics’. Such a property can be encoded by the
formula F(3.1 ≤ B ≤ 3.3). The formula is based on the fundamental linear operator
F (Future). It has the intuitive meaning that can be phrased in the following way
‘on a given execution, there must eventually exist a state where the subformula is
satisfied’. Is itworth noting that the property does not address themoment atwhich the
event occurs (it is a qualitative property). The applicability of reachability properties
is mainly seen in expressing global bounds on the reachable concentration of given
substances.

For capturing the qualitative patterns of temporal behaviour observed in dynamics
of given variables, the typically used properties target the phenomenon of temporal
ordering of events. linear-time operator U (Until), i.e. the formula ϕ1 U ϕ2, with an
intuitive meaning that, for a given execution, ϕ2 must eventually hold in some i th
state of the execution and for all states from the beginning of the execution until the i th
state,ϕ1 must hold.An example of such property is the formula (A ≤ 3)U [(3 < A ≤
15)U (A > 15)] representing the following temporal pattern: species A is initially
kept below 3 until it reaches 15 and finally exceeds 15.

Variable correlations can provide important observations revealing coopera-
tions and dependencies in biological processes, e.g. co-expression of certain genes.
We can express such properties by combining several temporal ordering formu-
lae into a single formula using the traditional propositional operators. In this
way, mutual dependencies in the dynamics of inspected variables can be cap-
tured. For example, the formula [(A ≤ 3)U ((3 < A ≤ 15)U (A > 15))] ⇒ [(C ≥
11)U ((5 ≤ C < 11)U (C < 5))] expresses the following correlation in concentra-
tions of species A and C : if A increases according to the temporal pattern from the
previous paragraph then C decreases from a level above 11 to a level below 5.

The analysis of the presence of stable concentration levels calls for using a spe-
cific kind of temporal properties. An example of an elementary stability property
is the formula G(A ≤ 3) stating that the concentration below 3 is stable (attrac-
tor) for species A. The formula Gϕ, with the operator G (Globally), expresses the
requirement that ϕ must be invariantly true in each state of a given execution; its
intuitive meaning is ‘forever’. Stability properties can be combined with reacha-
bility properties and related to a specific initial condition. For example, the for-
mula (A ≥ 0) ⇒ FG(5 < A ≤ 12) states that the stable concentration between 5
and 12 is reached from any non-negative initial concentration of A. The LTL for-
mula [(A ≤ 5) ⇒ G(A ≤ 5)] ∧ [(A > 5) ⇒ G(A > 5)] can be used to express the
existence of several different stable states (multi-stability). In this case, the formula
expresses the fact that there are two different stable concentration levels in the dynam-
ics of A: the first one is below the level 5 and the second one is above 5. Note that this
formula states the existence of the two stable attractors only, there is nothing specified
with respect to reachability of both stable attractors from a particular part of the state
space (the so-called basin of attraction). To formulate this kind of properties, CTL
has to be employed: EFAG(A ≤ 5) ∧ EFAG(A ≥ 5). The branching-time operator
EFϕ requires the existence of a branch whereϕ is eventually satisfied, whereasAGϕ

1 Model Checking Approach to the Analysis of Biological Systems 9

requires ϕ to be true in all future states. Therefore, the bi-stability formula holds in
every state from which the execution can eventually branch into both attractors.

Another important dynamics property appearing in biological systems is oscil-
lation, e.g. circadian rhythms. For example, the formula (G[(A ≤ 3) ⇒ F(A >

3)]) ∧ (G[(A > 3) ⇒ F(A ≤ 3)]) represents a permanent oscillation of A around
the concentration level 3. To express oscillation properties, we have to use linear-
time operators; oscillation properties cannot be sufficiently well expressed in CTL.
Finer specification of oscillations (e.g. the maximal and minimal amplitude levels)
can be realised by adding additional constraints identifying the qualitative aspects of
the oscillation to the formula.

To formalise biological phenomena in temporal logics, we often have to consider
extensions of existing logics. The biologically relevant extensions target precise
quantitative description of oscillations [9, 45] or qualitative properties combining
linear-time properties with branching-time [75]. In the domain of branching-time
logics, our own work brings a unique combination of two known extensions of CTL–
an extension HCTL adding hybrid operators including past operators and allowing
to use of state variables that can be fixed in certain parts of the formula as well
as quantified [2], and an extension UCTL adding event predicates over single-step
system evolutions [16]. The resulting logic called HUCTL [20] allows to efficiently
express global and local properties of phase spaces of dynamical systems that cannot
be expressed in LTL/CTL, e.g. the presence of a given number of mutually exclu-
sive stable attractors. The need for hybrid branching-time logics in the domain of
biological systems has been also addressed in [3].

The examples mentioned above presented an intuition behind the linear and
branching-time temporal logic as a formalism used for expressing properties of bio-
logical systems. In next paragraphs, we give the full syntax and semantics of the two
considered temporal logics.

1.3.1.2 Linear Temporal Logic

LTL captures temporal properties of paths in discrete state-transition systems. In
particular, LTL formulae are interpreted on infinite paths generated by a Kripke
structure.

A Kripke structure K is defined as a tuple K = (S, S0,→, L) where S is a set of
states, S0 ⊆ S is a set of initial states (representing all initial conditions considered
in a particular analysis task), →⊆ S × S is the transition relation, and L : S → 2AP

is a mapping (labelling) that assigns atomic propositions from some set AP to states.
The meaning of a labelling is to annotate states with attributes that are supposed to
be satisfied in the respective states.

LTL formulae are defined by the following abstract syntax:

ϕ:: = Q | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

10 N. Beneš et al.

where Q ranges over atomic propositions taken from a set AP . We use the standard
abbreviations like Fϕ which stands for trueUϕ or Gϕ which stands for ¬F¬ϕ.

The semantics of an LTL formula ϕ is interpreted on infinite paths of a Kripke
structure K = (S, S0,→, L). For an infinite path π = s0s1... and some i ∈ N0, we
use the notation πi to denote the infinite path πi = si si+1... and the notation π(i) to
denote the state si .

π |=K Q iff Q ∈ L(π(0))
π |=K ¬ϕ iff π 	|=K ϕ
π |=K ϕ1 ∧ ϕ2 iff π |=K ϕ1 and π |=K ϕ2

π |=K X[ϕ] iff π1 |=K ϕ
π |=K ϕ1Uϕ2 iff ∃i ∈ N0 such that πi |= ϕ2 and ∀ j < i.π j |= ϕ1

We say a Kripke structure K satisfies ϕ iff every path starting in some initial state
satisfies ϕ. This is called the universal interpretation of LTL.

The patterns of some typical LTL formulae covering the most usual classes of
properties given in Sect. 1.3.1.1 are the following:

• F[ϕ] expresses a reachability of a state where the condition ϕ holds,
• G[ϕ] expresses a stabilisation with ϕ being continually true,
• [ϕ1 ⇒ Fϕ2] ∧ [ϕ2 ⇒ Fϕ1] expresses a permanent oscillation betweenϕ1 andϕ2.

1.3.1.3 Computation Tree Logic

The key characteristics of CTL is that it captures the branching behaviour of discrete
state-transition systems. More precisely, CTL formulae are interpreted on states of
a Kripke structure.

CTL formulae are defined by the following abstract syntax:

ϕ:: = Q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | A(ϕ1Uϕ2) | E(ϕ1Uϕ2)

where Q ranges over atomic propositions taken from a set AP . It is worthmentioning
the standard abbreviations like EFϕ which stands for E(trueU ϕ) or AGϕ which
stands for ¬EF ¬ϕ.

The semantics of aCTL formulaϕ is interpreted onKripke structures; in particular,
for every state s ∈ S and a particular form of the formula the semantics is given as
follows:

s |=K Q iff Q ∈ L(s)
s |=K ¬ϕ iff s 	|=K ϕ
s |=K ϕ1 ∧ ϕ2 iff s |=K ϕ1 and s |=K ϕ2

s |=K AX[ϕ] iff for all π in K such that π(0) = s it holds that π(1) |=K ϕ
s |=K EX[ϕ] iff there exists π in K such that π(0) = s and π(1) |=K ϕ
s |=K A(ϕ1 U ϕ2) iff for every π in K such that π(0) = s there exists

i ∈ N0 such that π(i) |= ϕ2 and ∀ j < i.π(j) |= ϕ1

1 Model Checking Approach to the Analysis of Biological Systems 11

s |=K E(ϕ1 U ϕ2) iff there exists π in K such that π(0) = s and
∃i ∈ N0 such that π(i) |= ϕ2 and ∀ j < i.π(j) |= ϕ1

We say a Kripke structure K satisfies ϕ iff for all s ∈ S0, s |=K ϕ.
The following examples show typical CTL formulae used for biological systems

as discussed above:

• EF[ϕ] expresses a reachability of a state where the condition ϕ holds,
• AG[ϕ] expresses a stabilisation with ϕ (ϕ is continually true),
• EF[AG[ϕ1]] ∧ EF[AG[ϕ2]] expresses a bistable switch (two different stable sit-
uations ϕ1, ϕ2 can be reached).

1.3.1.4 Model Checking and Monitoring Methods

Model checking based techniques for the analysis of biological and biomedical sys-
tems can be roughly split into monitoring (simulation) techniques and exhaustive
(verification) techniques. Both classes of techniques make a crucial tool for automa-
tised analysis of engineered systems. The exhaustive techniques check whether
all executions—state-event sequences—generated by a given system S, satisfy the
inspected property described as a formula ϕ in a suitable logic. To generate all exe-
cutions, the whole state space must be (at least in principle) stored and evaluated. For
systemswhich cannot be handled by exhaustive techniques, either due to the presence
of continuous and/or unbounded values or simply due to the state space explosion
problem, the monitoring techniques are the only feasible validation method. Unlike
model checking, the monitoring techniques check an individual execution. The key
rationale behind the efficiency of monitoring is that for large and complex systems,
the simulation is generally easier and faster than building a concise representation of
a whole system required for the exhaustive model checking. However, since a single
simulation generates one trajectory out of all the possible ones of a system, usually
the average values among several simulations must be considered for achieving the
necessary level of confidence in the results obtained.

The accuracy of monitoring techniques can be improved by employing the
(Bayesian) statistical model checking. The method addresses general stochastic
systems in terms of (Bayesian) statistical inference [66, 69]. First, it samples the
behaviours (simulations) of a model. Second, it verifies their validity with respect to
a temporal formula (i.e. performs themembership test). Finally, it applies a statistical
estimation technique to compute an approximate value for the probability that the
formula is satisfied.

It is worth noting that the monitoring procedure can be also applied to experimen-
tally measured time-series data. Monitoring then enables methods of automatised
inference of logical specification of system’s dynamics from experimental data [79].

Exhaustive model checking, statistical model checking, and monitoring tech-
niques have been applied to the analysis of models of biological systems. They
provide researchers with means to make predictions and test their hypotheses for
systems of different kinds ‘in silico’. For continuous-time models, the exhaustive

12 N. Beneš et al.

techniques cannot be used directly due to the infinite number of possible states.
Therefore, more sophisticated monitoring techniques for many temporal logics have
been developed to analyse complex nonlinear systems. A comprehensive survey is
available in [74]. These approaches have been further extended for application in
systems biology. The Breach tool [47] makes a good example. The tool provides
a coherent set of simulation-based techniques for the analysis and parameter iden-
tification/synthesis of deterministic continuous-time models of complex biological
systems studied in biology. The main features of the tool facilitate the computa-
tion and the property investigation of large sets of trajectories. Additionally, it also
provides information about the sensitivity with respect to parameter perturbations.
A successful application of this tool in systems biology has been demonstrated in [49]
where a model of the acute inflammatory response to bacterial infection is analysed.

Another, more or less similar, extension to the monitoring techniques has been
proposed in [53]. The authors present a generalisation of a constraint-solving trace-
basedmodel checking algorithm [34] for the quantifier-free fragment of thefirst-order
extension of linear temporal logic QFLTL(R) with numerical constraints over the
real numbers. Given an ODE model and a temporal property to be verified within
a finite time horizon, the computation of a finite simulation trace by numerical inte-
gration provides a linear Kripke structure—a structure where each state has a single
successor. The generalisation provided by QFLTL(R) gives the ability to compute
those instantiations of a formula that are true in a finite trace. This is realised by
giving the complete domain of the real-valued variables occurring in the formula for
which it is true. The BIOCHAM [52] tool implements this approach.

The main drawback of statistical model checking is handling rare events; in par-
ticular, the temporal formulae that characterise behaviour with a tiny probability of
occurrence. To estimate the probability of such formulae, the number of required sim-
ulations for ensuring a good estimate becomes impractical. In [40], the importance
sampling is addressed.More specifically, a variance-reduction technique is presented
for the Monte Carlo method, and the cross-entropy method, a general Monte Carlo
approach to combinatorial and continuousmulti-extremal optimisation. The bounded
linear temporal logic is employed here; it is a variant of LTL that enhances temporal
operators with time bounds.

Besides the utilisation of Bayesian inference [66], there have been recently devel-
oped techniques employing moment-closures [1, 4, 27] (a robust implementation of
some of these methods is available in the tool U-check [26]). Additionally, methods
based on a correct deterministic approximation of the transient distribution can also
be employed [25].

Several model checking tools have been developed implementing exact and
approximate techniques, e.g. PRISM [68], MARCIE [92]. Examples of applica-
tions to analysis of biological systems are, e.g. [63] where the authors apply PRISM
to analyse the complex FGF (Fibroblast Growth Factor) signalling pathway and
[91] where the authors analyse stochastic Petri nets using efficient state space rep-
resentation based on interval decision diagrams. The prototype tool SABRE [44]
implements techniques for exact CSL model checking that allow to reduce the state
space explosion problem for some classes of biological systems.

1 Model Checking Approach to the Analysis of Biological Systems 13

In the case of real-timemodels,model checking requires to transform the uncount-
able continuous-time model into an equivalent finite discrete structure (the so-called
zone automaton). The main tools targeting real-time models are UPPAAL [17] and
KRONOS [96]. They have also been used for the analysis of biological models. In
the case of UPPAAL, there are applications to gene regulatory networks [60, 93]
and signalling pathways [89]. The latter case study has lead to a novel tool ANIMO
adapting the technology to the specific format of biological models [90]. KRONOS
was applied to real-time abstractions of continuous-time deterministic models [73]
and to gene regulatory networks [14].

At the end of this section, we give a brief overview of applications of model
checking techniques to analysis of biological systems. Model checking is highly
relevant for Boolean models of genetic regulatory networks [21, 36] and signalling
networks [50, 88], provided that symbolic verification techniques can be employed.
The tool BIOCHAM [34] allows verification of qualitative CTL properties of asyn-
chronous qualitative models with Boolean semantics using the standard symbolic
model checker NuSMV [37].

Explicit model checking is employed in [67] where the authors propose a new
methodology for parameter synthesis of discrete gene networks based on coloured
LTL model checking [6].

In [64], the authors present a methodology adapting Petri nets to qualitative
and quantitative analysis of biological systems including examples demonstrated on
a mitogen-activated kinase cascade. The authors study structural properties (reflect-
ing the modelling approach), properties specified in temporal logic and general prop-
erties studied on Petri nets (boundedness, liveness, reversibility, invariants).

The tool BioDiVinE [7] provides techniques for finite discrete abstraction of the
continuous state space and that way allows to analyse biological models specified
in terms of a set of chemical reactions. First, dynamics of chemical reactions is
represented by means of multi-affine differential equations. Second, the multi-affine
system is further discretised to a finite-state-transition system in order to employ the
standard LTLmodel checking techniques including parameter synthesis with respect
to LTL properties.

1.3.2 Parameter Synthesis for Dynamical Systems

The construction of models describing the dynamics of a biochemical process is one
of the most critical tasks to be done when we want to improve the understanding
of existing or not yet discovered behavioural phenomena and physiological pheno-
types occurring in biology. The model-based prediction and analysis are traditional
approaches that form the cornerstones of systems biology. With computational mod-
els, we can also count on new and very efficient computer-aided formal analysis tech-
niques, that have not only the potential to speed up the analysis itself, but they can
even provide new and unexpected results. In many cases, the structure of a dynamical
model capturing the hypothesis about some biological process is already available

14 N. Beneš et al.

at the qualitative level represented by known entities and their mutual interactions.
However, most of the quantitative aspects related to the systems dynamics, such
as initial concentrations or reaction rates, are either unknown or cannot be readily
determined. These quantitative attributes of interactions are usually reflected in the
model as parameters. To design a reliable model, its parameters must be specified
as precisely as possible. Typically, a small fraction of the parameter values can be
determined from the literature or experimental data while leaving many parameter
values uncertain or unknown entirely. The reason is that many parameters are hard
to measure in vitro/in vivo.

Thealgorithmic synthesisof unknownparameter values (also referred to asparam-
eter discovery, parameter estimation, parameter identification or the inverse prob-
lem) remains thus one of the most challenging problems in computational systems
biology. As an alternative to the traditional approaches solving this problem (e.g. [55,
56, 59, 85]), there have recently appeared completely new techniques grounded in
formal verification [6, 11, 71]. These methods and techniques typically focus on
synthesising subsets of parameter space instead of finding unique parameter values.
The parameter synthesis procedure computes, for a given parametrised model and
a desired temporal property, the maximal set of parametrisations satisfying the prop-
erty. The overall setting of the property-driven parameter synthesis is depicted in
Fig. 1.1. The hypotheses obtained from literature as well as time-series experiments
data conducted in wet-labs can be considered as temporal properties restricting the
admissible set of model parameter values.

The main advantage of using a temporal logic specification for parameter syn-
thesis is in the ability to focus on certain precisely specified qualitative aspects of
observed behaviour [78]. A good example is a temporal ordering of events qualita-

parameters

real-world
system

mathematical
model

observed
properties

specified
properties

required
properties

admissible
parameters

influencing reality

observation

reconstruction

formalisation

parameter tuning

parameter
synthesis

Fig. 1.1 A general scheme of parameter synthesis methods based on system properties formalised
in a temporal logic

1 Model Checking Approach to the Analysis of Biological Systems 15

tively characterising order of important moments in the systems dynamics. Temporal
properties also have the power to express global properties independent of the spe-
cific set of initial conditions. The tool thus can, for a given model and a property,
compute the maximal set of parameter values and initial conditions for which the
model entirely fulfils the property. Such an approach is complementary to traditional
methods based on monitoring a numerical simulation [15, 46] or local sensitivity
analysis [48]. To express required biologically relevant temporal hypotheses, both
the branching-time and the linear-time operators are needed [13].

It isworth noting that there are two levels of complexity that significantly affect the
tractability of parameter synthesis for biological models. First, the procedure needs
to be exhaustive in terms of considering all possible settings of parameters—points
in the parameter space. The size of the parameter space increases exponentially
with the number of unknown parameters. However, to achieve practically usable
results, the number of parameters to be considered has to be small. A model with too
many parameters is hard to falsify—it can fit almost any data. Second, during every
model checking step—analysis of the model with a particular parameter setting—
the dynamics of the model has to be explored. More precisely, the state space of the
model, which increases exponentially with the number of state variables, has to be
examined for every considered parametrisation.

Several techniques have been developed for parameter synthesis of continuous-
time and discrete-time dynamical systems. In the case of linear-time temporal logic,
the dominating approach is based on monitoring simulated trajectories of the sys-
tem [8, 31, 48, 84, 86]. These techniques use numerical solvers working on systems
with fixed parameters or with small parameter spaces (perturbations). An advantage
of these techniques is that the function defining the systems dynamics is consid-
ered as a black box provided that there is almost no limitation on the form of the
system parametrisation. The main disadvantage is the need to sample the parameter
space and initial states while losing robust guarantees on the results. This problem
can be overcome by replacing numerical solvers with Satisfiability Modulo Theo-
ries (SMT) solvers that cope well with nonlinear functions and real domains up to
required precision [57]. However, such symbolic techniques are limited to reachabil-
ity analysis [72]. In particular, their extension to general temporal logic specifications
is a non-trivial task yet to be explored. In [43], the authors show that exploration
(sampling) of the parameter space can be improved with sensitivity analysis.

In this chapter, we focus on robust property-driven parameter synthesis tech-
niques that instead of sampling the parameter values synthesise an exact (symbolic)
representation of the maximal set of parametrisations satisfying a given temporal
logic property. These techniques are based on model checking performed directly
on a qualitative finite quotient or hybridisation of systems dynamics (e.g. [6, 12, 15,
23, 32]). Several approaches encode parameter sets symbolically in terms of poly-
topes [15, 61]. Another solution is to encode parametrisation sets utilising predicate
formulae with nonlinear arithmetic over real numbers and use SMT to reason on
them. In this chapter, we focus on this one. The reason is that the SMT-based solu-
tion is sufficiently general in terms of expressiveness of the supported parametrised

16 N. Beneš et al.

(a)

(b)

Fig. 1.2 Parameter synthesis workflow based on colouredmodel checking technology (a). Detailed
scheme of the coloured model checking procedure (b)

models and can be even improved in future with the progress of SMT state-of-the-art
techniques.

To target the needs for efficient and scalable algorithmic base for parameter syn-
thesis, we have developed the coloured model checking technique that extends the
enumerative model checking framework to parametrised dynamical systems [19].
The intuitive idea is to symbolically execute the system runs over the unknown
parameters while model checking the behaviour with respect to a given property.
During the execution, a set of parametrisations enabling the satisfying behaviour is
synthesised by constructing an appropriate SMT formula encoding the set.

The overall procedure of parameter synthesis based on model checking consists
of several tasks. The input of the method is a set of behaviour constraints specifying
requirements on the systems dynamics, a set of parameter constraints collecting all
a priori known restrictions, dependencies and correlations of individual parameter
values. The particular workflow depends on the kind of temporal logic employed
and the kind of models considered. In Fig. 1.2a, there is depicted the general sce-
nario with ODE models and CTL. In such a case, the parametrised ODE model has
to be discretised into a parametrised Kripke structure. The important step is thus
the appropriate abstraction procedure. Some classes of nonlinear ODE models can
be approximated by a piecewise multi-affine ODE model (PMA) or a piece-wise
affine ODE model (PAA). To that end, techniques based on linear optimisation are
employed [61]. Consequently, a suitable abstraction technique is applied to obtain
an over-approximation of the original system dynamics [11, 18]. The abstracted

1 Model Checking Approach to the Analysis of Biological Systems 17

model is translated into the form of parametrised Kripke structure [42] that makes
the input to the coloured model checking procedure for CTL [32]. The coloured
model checking procedure can efficiently utilise satisfiability modulo theories for
encoding compactly the (possibly infinite) sets of parameter values enabling a given
transition in the Kripke structure (Fig. 1.2b).

The output of the procedure is for every state of the system a complex SMT for-
mula encoding the set of parameter values satisfying the given temporal property in
that particular state. Coloured model checking gives thus entirely global results that
cover all states of the discretised system. The output can be further post-processed.
First, optimisation tools based on SMT such as Symba [70] can be employed to find
parameter values optimal with respect to a given objective function. Second, sam-
pling or statistical model checking can provide a detailed exploration of the valid
parameter space including quantitative measures such as satisfaction or robustness
degree [86]. All the steps starting from approximation, abstraction and finally the
parameter synthesis are fully automatised. The only input required from the user in
addition to the models and constraints are the appropriate settings of the approxima-
tion/abstraction steps.

The approximation and abstraction steps can be realised automatically by tech-
niques introduced in [11, 61]. In particular, each nonlinear function (i.e. Hill kinetics,
Michaelis–Menten kinetics, or their variants) appearing in the right-hand side of the
model equations is replaced with a sum of piecewise affine or piecewise multi-affine
functions optimally fitting the original kinetic function. As a result of the abstraction,
a parametrised direction transition system (PDTS) is obtained. This PDTS exactly
over-approximates the PAA/PMA model. The details on how the models can be
approximated and abstracted by means of PDTSs are described in [30]. The main
principle of the abstraction is shown in Fig. 1.3. Additionally, the transitions are nat-
urally labelled by an up- (resp. down-) arrow expressing the change in a particular
model variable.

1.3.3 Digital Bifurcation Analysis

The goal of the classical bifurcation theory is to study qualitative changes to the
properties of a parameter-dependent system as its parameters are varied. Even a tiny
change in one or more of parameter values can namely have a significant effect on the
entire system dynamics. It is clear that getting a deeper insight into these qualitative
structure changes of flow fields is of great importance for better understanding the
general system behaviour.

The main questions to be answered when studying these behaviours are: what
is the range of the parameter values over which a particular behaviour exists, for
which values the system changes its behaviour qualitatively, what are the different
behavioural patterns and what are the mechanisms of transition between them.

To analyse a system behaviour concerning a given domain of parameter values,
traditional dynamical systems theory provides the apparatus called bifurcation anal-

18 N. Beneš et al.

y

x

y

x

↑x

↑x ↓x ↓x ↓x

↓x
↑y↑y↑y

↑x

↑y ↓y ↑x
↑y ↓x ↓x

↑y↓x↓x
↑y↓x

↑y↑x
↓y ↑y↑y↑x

↓y

↓y

Fig. 1.3 (Top left) the vector field of a PMAmodel. Ttop right) the discretisation of the emphasised
part of the vector field highlighting the attractor (stable equilibrium) of the system’s dynamics. The
partitioning determining the rectangles was computed by the algorithm in [61]. (Bottom) the state-
transition system (Kripke structure) corresponding to the discretisation. The arrows in the rectangles
display the directions of changes of the particular value of the model variable

ysis [35] that allows to identify the so-called bifurcation topologies that organise
typical asymptotic solutions (attractors) such as multiple steady states, limit cycles,
etc. Its goal is primarily to compute the bifurcation diagrams (parameter space maps)
that split the parameter space into areas for which the parameters do not affect the
system’s behaviour qualitatively, e.g. the structure and quality of attractors remain
unchanged. Bifurcations occur at particular parameter values (so-called bifurcation
points) that lie on the borders of these areas.

A common disadvantage of these traditional methods for bifurcation analysis is
that they require mathematical skills, especially they need sophisticated results from
numerical linear algebra and, as a result, their application is complicated and limited.
Furthermore, another, in some sense even more severe, problem of existing methods
(analytical [80] and numerical [76]) is their limitation in scalability. This is given by
a relatively small number of parameters that can be handled and the impossibility to
sufficiently automatise the analysis. In spite of these problems, bifurcation analysis is
still a unique technique for the analysis of systemswith parameters that gives a global
understanding of the relationship between significant phases of systems dynamics
and parameters.

1 Model Checking Approach to the Analysis of Biological Systems 19

Inspired by the classical bifurcation theory for dynamical systems, we have devel-
oped a novel approach to bifurcation analysis that is based on model checking and
called the digital bifurcation analysis. The digital bifurcation analysis works on
a discrete finite abstraction of the original continuous model. The method is, unlike
mathematical methods, fully automatic and does not need any mathematical skills
to be utilised. Another significant advantage is that the method is scalable to state
spaces with tens of variables and high co-dimension of bifurcation (tens, possibly
dependent, parameters), overcoming thus significantly the limits of the traditional
mathematical methods. Last but not least the approach is advantageous in performing
the global bifurcation analysis which is generally hard to compute by classical meth-
ods. The expressiveness regarding particular types of bifurcations, however, relies
on the precision of the original systems phase-space discretisation/abstraction and
on the logic chosen to describe various kinds of bifurcation.

The bifurcation analysis builds on so-called phase plane portraits of a dynamical
system which we can understand as a division of the state space according to proper-
ties of trajectories. The phase portraits are typically presented in a graphical form, and
they visualise how the solution of the system behaves in the long-term run. A phase
portrait can reveal substantial information about the behaviour of a dynamical sys-
tem. The individual parts of a phase portrait are called portrait patterns. A phase
portrait can, for example, disclose the number and types of asymptotic equilibria like
cycles or fixed points. Since it is practically impossible to graphically visualise all
individual runs, only several key runs are depicted in the pictures to present phase
portraits schematically.

Digital bifurcation analysis supposes the system is abstracted into a discrete struc-
ture (Kripke structure) inwhich transitions represent state changes and are in addition
assigned with symbols representing directions of flow. A run in a Kripke structure is
a sequence of transitions that change directions in individual states. In such a way,
continuous trajectories in the original continuous system are abstracted into discrete
runs in the Kripke structure preserving the direction of flow in the original system.
Note that the size of the vectors in the original vector field is abstracted away. The
phase portraits are represented in the Kripke structure as discrete counterparts of the
original phase portraits and are called the discrete phase portraits. The patterns of
the discrete phase portraits can be characterised by temporal logic formulae that take
into account changes in directions.

It is worth noting that here we focus on discrete and even finite space systems.
In continuous-time dynamical systems, a phase portrait plots both the position and
momentum variables as a function of time to set up the ‘field’ that gives structure to
the phase portrait. However, as already stated above, in our discrete system abstrac-
tion, we generally do not have the same kind of momentum. In our approach we
simplify the velocity vectors that are put together to make a phase portrait of the
continuous-time system by ‘vectors’ all having the same size. Bifurcation analy-
sis is thus interpreted relatively with respect to the particular discrete abstraction
procedure.

20 N. Beneš et al.

sink

*

*

saddle flowsource

Fig. 1.4 Examples of single-state portrait patterns. The symbol ‘∗’ stands for the following situ-
ations: incoming only, outgoing only, both or none. The patterns representing a saddle and a flow
can be rotated along a particular axis, resulting in additional examples

The continuous phase portraits are formed from phase patterns that can have
various shapes. The typical shapes that can occur in a phase portrait of a piecewise-
affine system in a plane are the following:

• sink: a point into which all nearby trajectories flow;
• source: a point away from which all nearby trajectories flow;
• stable spiral: a point to which trajectories converge in a spiral;
• unstable spiral: a point near which trajectories diverge out in a spiral;
• centre: an infinite number of orbits; and
• saddle: a point near which two trajectories flow in, two flow out and the rest come
close but then move away again.

The phase patterns closely relate to the notion of stability. We call a state of
a dynamical system stable if the system returns to that state after a small disturbance,
or perturbation occurs. Otherwise, the state is called unstable. The interpretation
on a phase portrait is the following: a state is stable if all nearby trajectories point
towards it, and unstable otherwise. The sink and limit cycle are stable, but the source
and saddle are unstable. All mentioned shapes characterise systems stability (resp.
instability) around an equilibrium.

When the individual phase patterns are projected into the discrete abstraction
of the given system, we get a discrete abstraction of patterns called the discrete
portrait patterns. Some of the patterns can be characterised as single-state patterns
(Fig. 1.4) while other patterns require several states to be included. For some single-
state patterns, we can guarantee (by the abstraction procedures) that the abstracted
pattern represents exactly the original phase portrait.

We can roughly classify all possible long-term runs in a Kripke structure as fixed
points, cycles, and ‘others’. To further classify individual elements of a phase portrait,
in particular, other kinds of asymptotic behaviours of the system covered by ‘others’,
a notion of a non-trivial strongly connected component (SCC) can be used. A set of
states is called an invariant set if it has the property that placing a system into an
arbitrary state of the set guarantees that the system cannot escape from the set and
we speak about strong invariancy (the SCC is final in such case), or itmay stay in the
set forever (weak invariancy). A fixed point thus makes a special case of an invariant
set.

1 Model Checking Approach to the Analysis of Biological Systems 21

The types of portrait patterns are characterised by properties of their constituting
runs. Properties of runs can be formally represented as formulae of suitable temporal
logic.We have already seen how to use the computational tree logic (CTL) to express
various properties of runs. To describe adequately various kinds of complex patterns,
we need a more expressive logic than CTL. We therefore employ a hybrid extension
of CTL (with directions) which we now briefly introduce.

The main idea behind the hybrid extension is in the addition of special variables
allowing to refer to states (nominals). The down-arrow binder ↓s sets the state
variable s to the current state of evaluation. The formula ↓s.AXs, for example,
characterises the set of states which have themselves as their only next state (steady
states). Another hybrid operator is the at operator (@n). Intuitively, @n means ‘at
the state named by n’.

To describe a richer class of portrait patterns, it is also handy to consider some
other extensions of CTL. One of them is the temporal logic past CTL (PCTL) which
incorporates past operators facilitating the expression of ‘time going backwards’. For
example, the past formula ÊFQ represents the fact that once in the past Q was true.
Another extension, known as UCTL [16], adds the possibility to express ‘directions’
to the temporal operators. For example the formula EXN true expresses the existence
of a transition from the current state to the ‘north’. For all additional operators and
a full definition of HUCTLP, the hybrid CTL logic augmented with past operators
and directions, we refer to [19].

We now show how to use the extended logic to describe patterns not definable
in the standard version of CTL. We distinguish several classes of formulae. The
following formulae are typical examples.

Single-State patterns

• sink (stable steady state): ↓s.AXs
• source (only self-loops, no other incoming): ↓s.ÂXs
• presence of self-loop (unstable steady state): ↓s.EXs
• two-dimensional saddle: AXN∨S true ∧ EXN true ∧ EXS true ∧ ÂXE∨W true ∧

ÊXE true ∧ ÊXW true (north–south outgoing, west–east incoming)

Another kind of general multi-state patterns are invariant sets like periodic runs
or limit cycles. Here are some examples.

Invariant sets (multi-state patterns)

• state in a non-trivial SCC (i.e. on a cycle): ↓s.EXEFs
• state in a final SCC (generalised sink): ↓s.AGEFs
• state in an initial SCC (generalised source): ↓s.ÂGÊFs
• non-north flow in the whole system: ∀s.@s.AX¬N true

Relations among patterns (elements) of phase portraits can also be captured with
HUCTLP formulae as the following examples demonstrate.

22 N. Beneš et al.

Relations among patterns

• the system contains at least two sinks: ∃s.∃t.(@s.¬t ∧ AXs) ∧ (@t.AXt)
• the system contains at least two terminal SCCs: ∃s.∃t.(@s.AG¬t ∧ AGEFs) ∧
(@t.AGEFt) (similarly for initial SCCs)

• formula that is true in states that have two outgoing executions to two different
sinks: ∃s.∃t.(@s.¬t ∧ AXs) ∧ (@t.AXt) ∧ EFs ∧ EFt (intersection of basins of
attraction of two different sinks)

• formula that is true in states that satisfy ϕ1 and can reach a state satisfying ϕ2

without ever going north: ϕ1 ∧ ∃s.(@s.ϕ2) ∧ E¬NFs

We now turn our attention to the digital bifurcation analysis itself. When con-
ducting the bifurcation analysis of a given system, we are interested in the question
of how a phase portrait changes when parameter values vary. We therefore suppose
we are given a parametrised n-dimensional KS where the parameters are taken from
a finite set P . For the purpose of the digital bifurcation analysis, we assume P to be
a partially ordered set.

Digital bifurcation analysis allows to characterise qualitative (structural) changes
in discrete phase portraits. Each of the changed situation can be captured by specify-
ing the corresponding patterns of the phase portrait with a finite set of HUCTLP for-
mulae and observing when (regarding changes in parameters) these patterns appear
or disappear (the formulae change their truth-value). The temporal logic specifi-
cation of a set of phase portraits is called phase portrait specification. The set
defines in an obvious way a division of the state space according to the validity
of the individual formulae (the structure of the phase portrait) as exemplified in
Fig. 1.5. From the practical view point, the phase portrait specification is supposed
to describe various patterns appearing in the phase portrait and their mutual relation-
ship. As an example consider two formulae, one expressing the reachability of a sink
state (ϕ1

df=EF(↓s.AXs)) and the other one expressing the backward reachability of
a source state (ϕ2

df=ÊF(↓s.ÂXs)). The state space is in general divided into four parts
as is shown in Fig. 1.5 (left).

¬ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ϕ2

¬ϕ1 ∧ ϕ2 ϕ2

ϕ1 ∧ ¬ϕ2

¬ϕ2

Fig. 1.5 Characterisation by formulae and change of phase portraits

1 Model Checking Approach to the Analysis of Biological Systems 23

A change in any of the parameter values may affect the corresponding transition
relation and may thus result in a change of the truth-value of the respective formula
in the portrait specification. If such a change results in non-satisfiability of one of
the formulae (or its negation) in the specification, we consider this as a structural
change in the phase portrait—a bifurcation. For the example above, if the parameter
value changes in such a way that the formula ϕ1 does not hold in any state, the
four-part ‘structure’ collapses into two parts, as shown in Fig. 1.5 (right). The set of
all parameter values for which the structure of the phase portrait is kept unchanged
is called a stratum. A boundary point of a stratum is called a bifurcation point. We
obtain the so-called parametric portrait of the system by taking all strata in the
parameter space with respect to a given phase portrait specification. The parametric
portrait together with its characteristic phase portraits makes a bifurcation diagram.
The set of phase portraits that are characteristic for a given parametric portrait is
called the phase portrait pattern.

1.4 Case Studies

1.4.1 Regulation of G1/S Cell Cycle Transition

We now consider the well-known ODEmodel of a two-gene regulatory network [94]
to indicate the applicability of our framework. The network describes the interaction
of the tumour suppressor protein pRB and the central transcription factor E2F1, see
Fig. 1.6 (top). This interaction is the essential mechanism that governs the transition
from the G1 phase to the S phase in the cell cycle of mammalian cells. The G1 phase
makes an important decision point. If the concentration levels of E2F1 are high, the
G1/S transition mechanism is activated. If the concentration levels of E2F1 are low,
the transition to S phase is refused and the cell thus avoids the DNA replication.

pRB

mt:protein

E2F1

mt:protein

d[pRB]
dt

= k1
[E2F1]

Km1+[E2F1]
J11

J11+[pRB] − φpRB [pRB]
d[E2F1]

dt
= kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB] − φE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, φE2F1 = 0.1
J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Fig. 1.6 The G1/S transition regulatory network represented in SBGN and its ODE model taken
from [94]

24 N. Beneš et al.

E2F1 E2F1

0.005 0.01 0.015 0.020.01 0.015 0.02 0.03 0.0350.005

1

2

3

4

5

6

1

2

3

4

5

6

7

high-level stable mode

low-level stable mode

unstable mode

φpRB φpRB

Fig. 1.7 (left) Equilibrium diagram reproducing the results achieved in [94]. (right) Visualisation
of the parameter synthesis results. The high and low stable regions are represented by the red and
blue coloured areas, respectively. The yellow areas denote the states in which the bistable switch
formula ϕ is satisfied

This mechanism is an example of a pattern called the bistable switch. This irre-
versible process eventually reaches one of two different stable equilibria. In this case,
we would like to investigate the existence of such two stable states on E2F1. The
activity of pRB is modulated by the phosphorylation/dephosphorylation turn-over
controlled by growth factor signals transferred to cyclin-dependent kinases each act-
ing on a specific subset of pRB phosporylation sites [77]. This is captured in the
ODE model using the parameter φpRB describing the degradation rate of pRB.

In [94], the authors provide a numerical bifurcation analysis that investigates the
E2F1 equilibria depending on φpRB . They have constructed an equilibrium point
curve for E2F1 and discovered two saddle-node bifurcation points by non-trivial
elaboration with numerical analysis methods and utilising previous knowledge of
the equilibria. This result is illustrated in Fig. 1.7 (left). For φpRB less than 0.007,
the system converges to a single stable equilibrium with low E2F1 concentration.
For φpRB higher than 0.027, the system dually converges to a single stable equi-
librium with high E2F1 concentration. If φpRB is between these two bifurcation
points the system exhibits the bistable switch behaviour. This means that there can
always be found an unstable equilibrium whose neighbourhood intersects the basins
of attraction of both the stable equilibria.

To employ our framework in this case, we first create the piece-wise multi-affine
approximation (PMA) of the nonlinear ODE model [61]. Each nonlinear function
appearing in theODEs is approximatedwith an optimal sequence of piece-wise affine
ramp functions. In this case study, we have set the granularity to 70 affine segments
per each function. We then employ the technique of rectangular abstraction [11] to
obtain a finite discrete transition system over-approximating the PMA.

CTL Parameter Synthesis

The bistable switch situation we are interested in can be described by the CTL for-
mulaϕ ≡ EFAGhigh ∧ EFAGlow. Informally, this formula describes a branching

1 Model Checking Approach to the Analysis of Biological Systems 25

that can end in two different stable states with different concentration levels. The
atomic propositions low and high, which express the location of the E2F1 stable
equilibria, are chosen based on the results reported in [94]. We thus define high ≡
(E2F1 > 4 ∧ E2F1 < 7.5) and low ≡ (E2F1 > 0.5 ∧ E2F1 < 2.5). These def-
initions cover the expected regions of the two stable attractors as well as a part of
their attractor basins. We use the formula ϕ together with the initial parameter space
φpRB ∈ [0.001, 0.025] as the input to the coloured CTL model checking algorithm.

The results obtained using the algorithm are illustrated in Fig. 1.7 (right) and
can be compared against the equilibrium curve of [94] in Fig. 1.7 (left). The blue
area represents the states satisfying the formula AGlow. In such states, the low
concentration of E2F1 is guaranteed to stabilise for the corresponding values of
φpRB in the PMA. This is due to the fact that the abstraction we employ is an over-
approximation [42] in the following sense: For every trajectory in the PMA, there
has to exist a corresponding run in the parametrised Kripke structure. As an exam-
ple, the model checking result implies that if the value of the parameter is fixed
at 0.005 then no run in the parametrised Kripke structure exits the concentration
bounds 0.5 ≤ E2F1 ≤ 2.5; hence, there is no such trajectory in the PMA. On the
other hand, although no red region is identified at φpRB = 0.005 we cannot be sure
that the corresponding property holds also in the PMA since a spurious run might
have been introduced by the abstraction. For a universally quantified CTL formula,
the abstraction makes the parameter space synthesised by model checking under-
approximated [11]. As φpRB gets closer to the bistable region, the guarantee of low
stabilisation becomes limited to a smaller subset of the low region until it disap-
pears at φpRB > 0.0145. A similar observations can be made about the red area
representing the states satisfying AGhigh. Note that in this case the effect of the
parameter value under-approximation is much less significant, which can be seen
from the comparison with the equilibrium point curve. For φpRB ∈ [0.012, 0.0145],
the system has two stable equilibria, i.e. the set of states satisfying AGlow and the
set of states satisfying AGhigh are both guaranteed to be non-empty.

The yellow area represents states satisfying the formula ϕ as explained above.
Since the satisfaction of an EF-formula might be caused by a spurious behaviour
introduced by the abstraction, this result does not comewith any guarantees but can be
rather seen as an estimate of the parameter values and initial conditions under which
the system exhibits the bistable switch behaviour and both stable regions might be
reached. The fill opacity of the coloured areas of the diagram represents the number
of states with the fixed E2F1 and φpRB values and the varying amounts of pRB.
This can be seen as a projection of the third axis (value of pRB) onto the 2D plane of
the diagram. The grey area represents the fact there are values of pRB from which
the red or the blue region is not reachable. This information is again guaranteed.

Bifurcation Analysis

We now focus on the bifurcation analysis with respect to the parameter φpRB . As
explained above, the biological switch is known to be bistable, i.e. two different stable
states can exist in the systems dynamics; furthermore, this bi-stability is known to

26 N. Beneš et al.

be sensitive to change in the parameter φpRB . To explore this sensitivity, we express
the portrait specification using the following formulae:

• ϕ1 := ∃s.∃t.(@s.AGEFs) ∧ (@t.¬EFs ∧ AGEFt) ∧ E¬↑E2F1Fs ∧ E¬↓E2F1Ft
The system contains at least two terminal SCCs (generalised stable states); fur-
thermore, the formula holds in states that have a non-E2F1-increasing execution
(i.e. an execution on which E2F1 decreases or stay the same in each step) leading
to one of the terminal SCCs and similarly a non-E2F1-decreasing execution to the
other terminal SCC.

• ϕ2 := ¬ϕ1 ∧ ↓s.AGEFs ∧ E2F1 < 4
There is exactly one terminal SCC and it is located in the region where the value
of E2F1 is below 4. This formula holds in all states included in this terminal SCC.

• ϕ3 := ¬ϕ1 ∧ ↓s.AGEFs ∧ E2F1 > 4
There is exactly one terminal SCC and it is located in the region where the value
of E2F1 value is above 4.

We do not have to compute the entire parametric portrait here as we have previous
knowledge about the system dynamics as well as the relation among the three for-
mulae. We thus rather focus directly on the mutual bifurcations among the portraits
characterised by the individual formulae. The results we obtain using our proto-
type implementation are as follows: ϕ1 holds for φpRB ∈ [0.011, 0.0136], ϕ2 for
φpRB ∈ [0.002, 0, 011] and ϕ3 for φpRB ∈ [0.0136, 0.5]. We can thus draw the con-
clusion that the values 0.011 and 0.0136 represent the bifurcation points of the
parametrised system. For φpRB = 0.011 the portrait changes between ϕ2 and ϕ1 and
for φpRB = 0.0136 it changes between ϕ1 and ϕ3. Figure1.8 shows the vector fields
and the corresponding abstractions for three chosen values of φpRB , each belonging
to one of the computed intervals. The blue rectangles depict the states that satisfy
the particular formulae.

We have also explored a variant of the formula ϕ1 in which we also require the
states satisfying the formula to not be sources (and thus require them to actually
be saddle states): ϕ′

1 := ϕ1 ∧ ¬(↓s.ÂXs). The results obtained using our prototype
show that this formula also holds for φpRB ∈ [0.011, 0.0136].

Note that the results we obtain are affected by the precision of the approximation
and abstraction of the original continuous model. Nevertheless, the intervals of φpRB

computedusingourmethodcomplywith thenumerical bifurcation analysis presented
in [94].

1.4.2 Signalling Pathways

In this section, we demonstrate the use of parameter synthesis to differentiate models
that display or do not display a particular studied dynamical behaviour expressed in
the form of a temporal property. The details on the modelling and analysis provided
here have been published in [62].

1 Model Checking Approach to the Analysis of Biological Systems 27

E
2F

1

ϕ2

E
2F

1

t

ϕ1

s

pRB

E
2F

1

pRB

ϕ3

Fig. 1.8 The vector fields (left) and their corresponding abstractions (right). The situations are
displayed for three different settings of φpRB : 0.0075 (top), 0.0115 (middle) and 0.014 (bottom).
The highlighted regions mark the states satisfying the respective formulae. The regions marked s
and t denote the states matching the corresponding variables in ϕ1

28 N. Beneš et al.

Fig. 1.9 The topology of the
models represented by
means of an SBGN activity
flow diagram. The dashed
line represents optional
inhibition (left). The positive
and negative Hill functions
(right)

joint effect

The signalling pathways are one of the most important biochemical mechanisms
currently studied by systems biology. They represent a complex cellular information
processing machinery that evaluates input stimuli and transfers them into genome
by means of regulation of specific genes expression. It is important to distinguishing
betweenmonotone (sustained) and non-monotone (transient) time-course behaviour
of signalling pathways [87, 95]. It is believed that transition between these twomodes
may cause significant changes of the nominal cell behaviour that may lead to serious
anomalies of the internal cellular processes control.

We consider three ODEmodels describing a general shape of signalling pathways
at a high level of abstraction. In particular, we focus on three topologies differing
in the presence/absence of feedback mechanisms (Fig. 1.9). We use Hill kinetics
employing sigmoidal functions to describe the response of a signalling component
with respect to the input signal (see equations in Fig. 1.9). In particular, our models
consist of the following entities: the receptor (R), the adapter (A) and the target
protein (T P). The receptor concentration is constant. The adapter forms the main
dynamical entity of the model. It is activated by the receptor and inhibited by the
target protein. The first model includes no inhibition (Eq.1.3); the second model
describes independent inhibition (Eq.1.4); and the third model describes dependent
inhibition (Eq.1.5) using a negative sigmoidal function (Eq.1.2). The target protein
dynamics is modelled as a positive sigmoidal function (Eq.1.1) of the adapter in all
three models (Eq.1.6). The topology of the models is illustrated in Fig. 1.9.

hill(X, KM, n) = [X]n
KM

n + [X]n (1.1)

hill−(X, KM, n) = KM
n

KM
n + [X]n (1.2)

d[A]
dt

= VMAX_A · hill(R, KM_A, nA) − yA[A] (1.3)

d[A]
dt

= VMAX_A1 · hill(R, KM_A1, nA1) + VMAX_A2 · hill−(T P, KM_A2, nA2) − yA[A] (1.4)

d[A]
dt

= VMAX_A1 · hill(R, KM_A1, nA1) · VMAX_A2 · hill−(T P, KM_A2, nA2) − yA[A] (1.5)

d[T P]
dt

= VMAX_T P · hill(A, KM_T P , nT P) − yT P [T P] (1.6)

1 Model Checking Approach to the Analysis of Biological Systems 29

The Hill function describing the adapter activation is also constant based on the
biological assumptions of constant receptor activity.We therefore simplify themodel
equations as follows:

d[A]
dt

= VA − yA[A] (1.7)

d[A]
dt

= VA + VMAX_A · hill−(T P, KM_A, nA) − yA[A] (1.8)

d[A]
dt

= V ′
A · hill−(T P, KM_A, nA) − yA[A] (1.9)

The parameter V ′
A is defined as VA · VMAX_A. The default parameters have been set

to: V = V ′
A = VMAX_A = VMAX_T P = 0.001, KM_A = KM_T P = yA = yT P = 0.1,

nA = nT P = 2. The initial concentrations of all entities have been set to 0: A(0) =
T P(0) = 0.

In order to prepare the model for model checking analysis, we perform the steps
described at the end of Sect. 1.3.2. First, we construct the piece-wise affine approxi-
mation (PAA) of the original nonlinear continuous models by applying the automa-
tised approximation procedure introduced in [61]. In particular, we approximate each
nonlinear function appearing in the equationswith a sumof ten piece-wise affine ramp
functions. Second, we apply the abstraction procedure based on [15, 42]. As a result
of the abstraction, we obtain a parametrised direction transition system (PDTS) that
exactly over-approximates the PAA model.

We formulate the properties of interest in terms of UCTL formulae. The usage of
a branching-time logic is motivated by the fact that the rectangular over-abstraction
of the original model is nondeterministic. Furthermore, the combination of action
and state predicates is used to express both local patterns of the dynamics (state
predicates) and the character of the transitions (action predicates).

Here, we use the extension of the coloured CTL model checking algorithm that is
able to deal with the UCTL operators. This extension is a straightforward enhance-
ment of the algorithm described in [32]. Using this procedure, we obtain a global
result that describes all the initial states and corresponding parameter values for
which the given formula holds. It is important to note the consequences of the over-
approximating abstraction for the parameter synthesis results. On the one hand,
satisfaction of a formula is guaranteed for all universally quantified UCTL formulae.
On the other hand, falsification of a formula is guaranteed for all existentially quan-
tified UCTL formulae. To preserve these guarantees, the formulae may not contain
alternations of quantifiers. In both of the cases where results are guaranteed, the
obtained parameter value regions are under-approximated.

In this case, the parameters for synthesis are chosen as follows: VA in the first
model, VMAX_A in the second model, V

′
A in the third model and VMAX_T P in all three

models. The range of these parameters is set to [0.0001, 10]; other constants are
fixed at the default values with the only exception of yA, yT P (set to 0.5009) and VA

in the second model (set to 0.001).

30 N. Beneš et al.

Table 1.1 The results obtained for the given properties in the three different models. The initial
concentration of A is the union of the concentration values in states where the formula holds for
the stated parameters. V ∗ is the production parameter of A that represents VA in the first model,
VMAX_A in the second model, V ′

A in the third model. Each parameter interval represents the range
of all satisfying parameter values across all the states of the respective model where the particular
property holds

Model type Property Initial concentration
of A

V ∗ × VMAX_T P

Model 1 ϕ1 [0.22, 11.9] [0.11, 5.96] × [0.0, 6.81]

¬ϕ2 [0.22, 12.0] [0.11, 10.0] × [7.23, 10.0]

¬ϕ3 [0.01, 12.0] [0.23, 10.0] × [6.26, 10.0]

∪[5.96, 10.0] × [0.0, 10.0]

Model 2 ϕ1 [0.01, 11.5] [0.0, 5.76] × [0.0, 0.01]

¬ϕ2 [0.22, 12.0] [2.29, 10.0] × [7.23, 10.0]

¬ϕ3 [0.0, 12.0] [0.09, 10.0] × [7.23, 10.0]

∪[4.47, 10.0] × [0.0, 10.0]

Model 3 ϕ1 [0.01, 11.5] [0.01, 5.76] × [0.0, 0.01]

¬ϕ2 [0.22, 12.0] [2.31, 10.0] × [7.23, 10.0]

¬ϕ3 [0.0, 12.0] [0.11, 10.0] × [7.23, 10.0]

∪ [4.49, 10.0] × [0.0, 10.0]

To express the combined characteristics of the two behaviours of T P , we employ
the following UCTL-specified properties:

ϕ1 = Init ∧ AX↑T P(AF¬↓T P Stable),
ϕ2 = Init ∧ EF(EX↑T P(EF¬↓T P(EF¬↑T P(EX↓T P True)))),
ϕ3 = Init ∧ EF(EX↑T P(EF¬↓T P(EF¬↑T P(EX↓T P NotUp)))).

Here, Init represents the set of initial states (with T P constrained in the range
[0.0, 0.0001]), NotUp represents a state in which the abstracted vector field dis-
allows the increase in the T P concentration, Stable represents an equilibrium where
both species are stable, and True represents the set of all states. Intuitively, the for-
mula ϕ1 is a specification of the sustained behaviour; its satisfaction guarantees this
behaviour in a givenmodel for the given initial states. Formally, this formula requires
all admissible runs to start in Init, to increase the T P concentration in the very next
step, and not to decrease it before reaching Stable. The formulaeϕ2 andϕ3 specify the
necessary conditions for the presence of transient behaviour. Both formulae require
all admissible runs to start in Init and to increase the T P concentration at least once
before decreasing it also at least once. Using the parametrisations that violate these
properties, the system is guaranteed the absence of the transient behaviour. All the
obtained results are summarised in Table1.1.

Note that the abstraction together with the chosen logic UCTL allow us to exactly
characterise the inevitability of the sustained behaviour. However, as reported in [30],
the state predicate Stable is exactly preserved in the abstraction only if a particular

1 Model Checking Approach to the Analysis of Biological Systems 31

equilibrium in the respective state rectangles is hyperbolic. As a consequence, we
are unable to fully cover the transient behaviour. More specifically, the transient
behaviour might asymptotically converge to an equilibrium that is asymptotically
stable. Such a property is not preserved by the abstraction. We therefore limit our-
selves to only refuting the absolutely transient behaviour, i.e. the transient behaviour
without any oscillations around the target equilibrium.

Conclusions

Recent advances in formal analysis and verification techniques for computer systems
and formal modelling of biological and biomedical systems brought us to a point
where formal methods might be applicable to biological systems as well. In this
little review, we pointed out to a few areas where biologists could benefit from the
application of formal methods. Namely, we have focused on techniques working
with parameter-uncertain models.

In general, the ultimate prerequisite is to develop formal models of systems we
want to understand. For an excellent position paper on formal modelling in systems
biology, we refer to [24]. A recent overview covering a broad set of techniques to
formal specification and analysis of biological systems is provided in [10].

Acknowledgements This work has been partially supported by the Czech Science Foundation
grant No. 18-00178S.

References

1. AndreychenkoA,Mikeev L,Wolf V (2015)Model reconstruction formoment-based stochastic
chemical kinetics. ACM Trans Model Comput Simul 25(2):12:1–12:19

2. Areces C, ten Cate B (2007) Hybrid logics. In: Blackburn P, van Benthem J, Wolter F (eds)
Handbook of modal logic, vol 3, 1st edn. Elsevier

3. Arellano G, Argil J, Azpeitia E, Benítez M, Carrillo M, Góngora P, Rosenblueth D, Alvarez-
Buylla E (2011) “Antelope” a hybrid-logic model checker for branching-time boolean grn
analysis. BMC Bioinform 12(1):490

4. BackenköhlerM,Bortolussi L,WolfV (2018)Moment-based parameter estimation for stochas-
tic reaction networks in equilibrium. IEEE/ACM Trans Comput Biol Bioinform 15(4):1180–
1192

5. Baier C, Katoen JP (2008) Principles of model checking. The MIT Press
6. Barnat J, Brim L, Krejčí A, Štreck A, Šafránek D, Vejnár M, Vejpustek T (2012) On parameter

synthesis by parallel model checking. IEEE/ACMTrans Comput Biol Bioinform 9(3):693–705
7. Barnat J, BrimL, Černá I, Dražan S, Fabriková J, Láník J, ŠafránekD,MaH (2009) BioDiVinE:

A framework for parallel analysis of biological models. In: Computational models for cell
processes (COMPMOD). EPTCS, vol 6, pp 31–45

8. Barnat J,BrimL,ŠafránekD (2010)High-performance analysis of biological systemsdynamics
with the DiVinE model checker. Brief Bioinform 11(3):301–312

9. Bartocci E, Corradini F, Merelli E, Tesei L (2010) Detecting synchronisation of biological
oscillators by model checking. Theor Comput Sci 411(20):1999–2018

10. Bartocci E, Liò P (2016) Computational modeling, formal analysis, and tools for systems
biology. PLOS Comput Biol 12(1):1–22

11. Batt G, Belta C, Weiss R (2007) Model checking liveness properties of genetic regulatory
networks. In: TACAS. LNCS, vol 4424. Springer, pp 323–338

32 N. Beneš et al.

12. Batt G, PageM, Cantone I, Gössler G,Monteiro P, de Jong H (2010) Efficient parameter search
for qualitative models of regulatory networks using symbolic model checking. Bioinformatics
26(18):603–610

13. Batt G, Ropers D, Jong HD, Geiselmann J, Mateescu R, Schneider D (2005) Validation of
qualitativemodels of genetic regulatory networks bymodel checking: analysis of the nutritional
stress response in escherichia coli. Bioinformatics 21:19–28

14. Batt G, Salah RB, Maler O (2007) On timed models of gene networks. In: Formal modeling
and analysis of timed systems (FORMATS). LNCS, Springer, Berlin, pp 38–52

15. Batt G, Yordanov B, Weiss R, Belta C (2007) Robustness analysis and tuning of synthetic gene
networks. Bioinformatics 23(18):2415–2422

16. ter Beek MH, Fantechi A, Gnesi S, Mazzanti F (2011) A state/event-based model-checking
approach for the analysis of abstract system properties. Sci Comput Prog 76:119–135

17. Behrmann G, David A, Larsen KG (2004) A tutorial on uppaal. In: 4th international school on
formal methods for the design of computer, communication, and software systems in formal
methods for the design of real-time systems (SFM-RT), No. 3185. LNCS, Springer, Berlin, pp
200–236

18. Belta C, Habets LCGJM (2006) Controlling a class of nonlinear systems on rectangles. IEEE
Trans Automat Contr 51(11):1749–1759

19. Beneš N, Brim L, Demko M, Pastva S, Šafránek D (2016) Parallel SMT-based parameter
synthesis with application to piecewise multi-affine systems. ATVA. LNCS 9938:192–208

20. Beneš N, Brim L, Demko M, Pastva S, Šafránek D (2016) A model checking approach to
discrete bifurcation analysis. In: Fitzgerald J, Heitmeyer C, Gnesi S, Philippou A (eds.) FM
2016, vol 9995. LNCS, Springer, pp 85–101

21. Bernot G, Comet JP, Richard A, Guespin J (2004) Application of formal methods to biological
regulatory networks: extending thomas’ asynchronous logical approach with temporal logic. J
Theor Biol 229(3):339–347

22. Biere A, Cimatti A, Clarke E, Zhu Y (1999) Symbolic model checking without BDDs. In:
Cleaveland WR (ed) Tools and algorithms for the construction and analysis of systems, vol
6806. LNCS, Springer, Berlin, pp 193–207

23. Bogomolov S, Schilling C, Bartocci E, Batt G, Kong H, Grosu R (2015) Abstraction-based
parameter synthesis formultiaffine systems. In:Hardware and software: verification and testing,
lecture notes in computer science, vol 9434, Springer International Publishing, pp 19–35

24. Bonzanni N, Feenstra KA, Fokkink W, Krepska E (2009) What can formal methods bring
to systems biology? In: FM 2009: formal methods, second world congress, eindhoven, The
Netherlands, November 2-6, 2009. Proceedings, Lecture notes in computer science, vol 5850,
Springer, Berlin, pp 16–22

25. Bortolussi L, Cardelli L, Kwiatkowska M, Laurenti L (2016) Approximation of probabilistic
reachability for chemical reaction networks using the linear noise approximation. In: Quanti-
tative evaluation of system (QEST 2016), vol 9826, Springer, Berlin, pp 72–88

26. Bortolussi L, Milios D, Sanguinetti G (2015) U-check: model checking and parameter synthe-
sis under uncertainty. In: Campos J, Haverkort BR (eds) Quantitative evaluation of systems.
Springer International Publishing, Cham, pp 89–104

27. Bortolussi L, Milios D, Sanguinetti G (2016) Smoothed model checking for uncertain
continuous-time markov chains. Inf Comput 247:235–253

28. Brim L, Češka M, Šafránek D (2013) Model checking of biological system. In: 13th Inter-
national school on formal methods for the design of computer, communication and software
systems: dynamical systems

29. Brim L, Barnat J (2007) Tutorial: Parallel model checking. In: Bosnacki D, Edelkamp S (eds)
Model checking software, 14th International SPINworkshop, Berlin, Germany, July 1-3, 2007,
Proceedings, Lecture notes in computer science, vol 4595, Springer, Berlin, pp 187–203

30. BrimL,DemkoM, Pastva S, ŠafránekD (2015)High-performance discrete bifurcation analysis
for piecewise-affine dynamical systems. In: Hybrid systems biology, Springer, Berlin, pp 58–74

31. Brim L, Dluhoš P, Šafránek D, Vejpu stek T (2014) STL*: extending signal temporal logic
with signal-value freezing operator. Information and computation 236, 52–67, special Issue on
Hybrid Systems and Biology

1 Model Checking Approach to the Analysis of Biological Systems 33

32. Brim L, Češka M, Demko M, Pastva S, Šafránek D (2015) Parameter synthesis by parallel
colouredCTLmodel checking. In: RouxO, Bourdon J (eds) Computationalmethods in systems
biology, Lecture notes in computer science, vol 9308, pp 251–263. Springer International
Publishing (2015)

33. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ (1992) Symbolic model checking:
1020 states and beyond. Inf Comput 98(2):142–170

34. Calzone L, Chabrier-Rivier N, Fages F, Soliman S (2006) Machine learning biochemical net-
works from temporal logic properties. In: Transactions on computational systems biology VI,
LNCS, Springer, Berlin, Heidelberg, pp 68–94

35. Champneys A, Tsaneva-Atanasova K (2013) Dynamical systems theory, bifurcation analysis.
In: Encyclopedia of systems biology, Springer, Berlin, pp 632–637

36. Chaouiya C, Remy E, Mossé B, Thieffry D (2003) Qualitative analysis of regulatory graphs:
a computational tool based on a discrete formal framework. In: Positive systems, vol 294,
LNCIS, Springer, pp 830–832

37. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tac-
chella A (2002) NuSMV 2: an OpenSource tool for symbolic model checking. Computer aided
verification (CAV), vol 2404, LNCS, Springer, Berlin, Heidelberg, pp 359–364

38. Clarke EM, Enders R, Filkorn T, Jha S (1996) Exploiting symmetry in temporal logic model
checking. Form Methods Syst Des 9(1–2):77–104

39. Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press, Cambridge
40. Clarke E, Zuliani P (2011) Statistical model checking for cyber-physical systems. Automated

technology for verification and analysis (ATVA), vol 6996. LNCS, Springer, Berlin Heidelberg,
pp 1–12

41. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2001) Progress on the state explosion problem in
model checking. In: Informatics - 10 Years back. 10 Years ahead, vol 2000, LNCS, Springer,
Berlin, pp 176–194

42. Collins P, Habets LC, van Schuppen JH, Černá I, Fabriková J, ŠafránekD (2011) Abstraction of
biochemical reaction systems on polytopes. In: Proceedings of the 18th IFAC world congress,
vol 18, pp 14869–14875

43. Dang T, Donze A, Maler O, Shalev N (2008) Sensitive state-space exploration. In: IEEE
conference on decision and control, pp 4049–4054

44. Didier F, Henzinger TA, Mateescu M, Wolf V (2010) Sabre: a tool for stochastic analysis of
biochemical reaction networks. CoRR arXiv:abs/1005.2819

45. Dluhoš P, Brim L, Šafránek D (2012) On expressing and monitoring oscillatory dynamics. In:
Hybrid systems and biology (HSB), vol 92, EPTCS, pp 73–87

46. Donaldson R, Gilbert D (2008) A model checking approach to the parameter estimation of
biochemical pathways. In: CMSB, vol 5307, LNCS, Springer, Berlin, pp 269–287

47. Donzé A (2010) Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In: Computer aided verification (CAV). LNCS, Springer, Berlin, Heidelberg, pp 167–170

48. Donzé A (2010) Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In: CAV. vol 10, Springer, pp 167–170

49. Donzé A, Clermont G, Langmead CJ (2010) Parameter synthesis in nonlinear dynamical sys-
tems: application to systems biology. J Comput Biol 17(3):325–336

50. Eker S, Knapp M, Laderoute K, Lincoln P, Meseguer J, Sonmez K (2002) Pathway logic:
symbolic analysis of biological signaling. In: Pacific symposium on biocomputing, pp 400–
412

51. Emerson EA, Sistla AP (1996) Symmetry and model checking. Form Methods Syst Des 9(1–
2):105–131

52. Fages F, Soliman S (2008) Formal cell biology in Biocham. In: 8th International school on for-
mal methods for the design of computer, communication and software systems: computational
systems biology SFM08, vol 5016, pp 54–80

53. Fages F, Rizk A (2008) On temporal logic constraint solving for analyzing numerical data time
series. Theor Comput Sci 408(1):55–65

54. Fisher J, Henzinger TA (2007) Executable cell biology. Nat Biotechnol 25(11):1239–1249

http://arxiv.org/abs/abs/1005.2819

34 N. Beneš et al.

55. Fröhlich F, Theis F, Hasenauer J (2014) Uncertainty analysis for non-identifiable dynamical
systems: profile likelihoods, bootstrapping and more. In: CMBS, vol 8859, LNCS, Springer,
Berlin, pp 61–72

56. Gábor, A., Banga, J.R.: Improved parameter estimation in kinetic models: selection and tuning
of regularization methods. In: CMSB, vol 8859, LNCS, Springer, Berlin, pp 45–60

57. Gao S, Kong S, Clarke EM (2013) dReal: An SMT solver for nonlinear theories over the reals.
In: CADE-24. , vol. 7898, LNCS, Springer, Berlin, pp 208–214

58. Geldenhuys J, de Villiers PJA (1999) Runtime efficient state compaction in SPIN. In: Model
checking software (SPIN), vol 1680. LNCS, Springer, Berlin, pp 12–21

59. GilbertD,BreitlingR,HeinerM,DonaldsonR (2009)An introduction to biomodel engineering,
illustrated for signal transduction pathways. Membrane computing, vol 5391, LNCS, Springer,
Berlin, pp 13–28

60. Goethem SV, Jacquet JM, Brim L, Šafránek D (2013) Timed modelling of gene networks
with arbitrary expression level discretization. In: Interactions between computer science and
biology. ENTCS, Elsevier

61. Grosu R, Batt G, Fenton FH, Glimm J, Guernic CL, Smolka SA, Bartocci E (2011) From
cardiac cells to genetic regulatory networks. CAV LNCS 6806:396–411

62. Hajnal M, Šafránek D, Demko M, Pastva S, Krejčí P, Brim L (2016) Toward modelling and
analysis of transient and sustainedbehaviour of signalling pathways. In:Hybrid systemsbiology
- 5th international workshop, HSB 2016, Grenoble, France, October 20-21, 2016, Proceedings.
Springer, Berlin, pp 57–66

63. Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O (2008) Probabilistic model
checking of complex biological pathways. Theor Comput Sci 319(3):239–257

64. Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology. In:
Formal methods for the design of computer, communication, and software systems 8th inter-
national conference on formal methods for computational systems biology (SFM), vol 5016,
LNCS, Springer, Berlin, pp 215–264

65. Holzmann GJ (2003) The Spin model checker: primer and reference manual. Addison-Wesley
66. Jha SK,Clarke EM,LangmeadCJ, LegayA, PlatzerA, Zuliani P (2009)Abayesian approach to

model checking biological systems. In: Computational methods in systems biology. Springer,
Berlin, pp 218–234

67. Klarner H, Streck A, Šafránek D, Kolčák J, Siebert H (2012) Parameter identification and
model ranking of thomas networks. In: Computational methods in systems biology (CMSB),
LNCS, Springer, Berlin, pp 207–226

68. Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: verification of probabilistic real-
time systems. In: Computer aided verification (CAV), vol 6806, LNCS, Springer, Berlin, pp
585–591

69. Legay, A., Delahaye, B., Bensalem, S (2010) Statistical model checking: an overview. In:
Runtime verification, Springer, Berlin, Heidelberg, pp 122–135

70. Li Y, Albarghouthi A, Kincaid Z, Gurfinkel A, Chechik M (2014) Symbolic optimization with
SMT solvers. In: POPL ’14. ACM, pp 607–618

71. Liu B, Kong S, Gao S, Zuliani P, Clarke EM (2014) Parameter synthesis for cardiac cell hybrid
models using δ-decisions. In: CMSB, vol 8859, LNCS, Springer, Berlin, pp 99–113

72. Madsen C, Shmarov F, Zuliani P (2015) BioPSy: An SMT-based tool for guaranteed parameter
set synthesis of biological models. In: CMSB’15, vol 9308, LNCS, Springer, Berlin, pp 182–
194

73. Maler O, Batt G (2008) Approximating continuous systems by timed automata. In: Formal
methods in systems biology (FMSB), LNCS, Springer, Berlin, pp 77–89

74. Maler O, Nickovic D, Pnueli A (2008) Checking temporal properties of discrete, timed and
continuous behaviors. In: Pillars of computer science, Springer, Berlin, Heidelberg, pp 475–505

75. Mateescu R, Monteiro PT, Dumas E, de Jong H (2011) CTRL: extension of CTL with regular
expressions and fairness operators to verify genetic regulatory networks. Theor Comput Sci
412(26):2854–2883

1 Model Checking Approach to the Analysis of Biological Systems 35

76. Meijer H, Dercole F, Oldeman B (2011) Numerical bifurcation analysis. In: Mathematics of
complexity and dynamical systems, Springer, Berlin, pp 1172–1194

77. Mittnacht S (1998) Control of pRB phosphorylation. Curr Opin Genet Dev 8(1):21–27
78. Monteiro PT, Ropers D, Mateescu R, Freitas AT, de Jong H (2008) Temporal logic patterns

for querying qualitative models of genetic regulatory networks. In: ECAI, vol 178, FAIA, IOS
Press, pp 229–233

79. Nenzi L, Silvetti S, Bartocci E, Bortolussi L (2018) A robust genetic algorithm for learning
temporal specifications fromdata. In:Quantitative evaluation of systems, Springer International
Publishing, Cham, pp. 323–338

80. NiuW,WangD (2008)Algebraic analysis of bifurcation and limit cycles for biological systems.
In: Algebraic biology, AB ’08, Springer, Berlin, pp 156–171

81. Pelánek R (2009) Fighting state space explosion: review and evaluation. In: Formal methods
for industrial critical systems (FMICS), vol 5596, LNCS, Springer, Berlin, pp 37–52

82. Peled D (1988) Ten years of partial order reduction. In: Computer aided verification (CAV),
LNCS, Springer, Berlin, pp 17–28

83. Priami C (2009) Algorithmic systems biology. Commun ACM 52(5):80–88
84. Raman V, Donzé A, Sadigh D, Murray RM, Seshia SA (2015) Reactive synthesis from signal

temporal logic specifications. In: HSCC’15, ACM, New York, NY, USA, pp 239–248
85. Raue A, Karlsson J, Saccomani MP, Jirstrand M, Timmer J (2014) Comparison of approaches

for parameter identifiability analysis of biological systems. Bioinformatics
86. Rizk A, Batt G, Fages F, Soliman S (2009) A general computational method for robustness

analysis with applications to synthetic gene networks. Bioinformatics 25(12)
87. Sasagawa S, Ozaki Yi, Fujita K, Kuroda S (2005) Prediction and validation of the distinct

dynamics of transient and sustained ERK activation. Nat Cell Biol 7(4):365–373
88. Schaub M, Henzinger T, Fisher J (2007) Qualitative networks: a symbolic approach to analyze

biological signaling networks. BMC Syst Biol 1(1):4
89. Schivo DS, Scholma J, Wanders, B, Urquidi Camacho R, van der PV, Karperien H, Langerak

R, van de JP, Post J (2012) Modelling biological pathway dynamics with timed automata. In:
IEEE international conference on bioinformatics and bioengineering (ICBB), IEEE Computer
Society, pp 447–453

90. Schivo S, Scholma J, van der Vet PE, Karperien M, Post JN, van de Pol J, Langerak R (2016)
Modellingwith animo: between fuzzy logic and differential equations. BMCSyst Biol 10(1):56

91. Schwarick M, Heiner M (2009) CSL model checking of biochemical networks with inter-
val decision diagrams. In: Computational methods in systems biology (CMSB), vol 5688,
LNCS/LNBI, Springer, Berlin, pp 296–312

92. SchwarickM, Rohr C, HeinerM (2011)MARCIE -Model checking And Reachability analysis
done effiCIEntly . In:Quantitative evaluation of systems (QEST2011). IEEEComputer Society,
pp 91–100

93. Siebert H, Bockmayr A (2006) Incorporating time delays into the logical analysis of gene
regulatory networks. Computational Methods in Systems Biology (CMSB), vol 4210. LNCS,
Springer, Berlin Heidelberg, pp 169–183

94. Swat M, Kel A, Herzel H (2004) Bifurcation analysis of the regulatory modules of the mam-
malian G1/S transition. Bioinformatics 20(10):1506–1511

95. Yamada S, Taketomi T, Yoshimura A (2004) Model analysis of difference between EGF path-
way and FGF pathway. Biochem Biophys Res Commun 314(4):1113–1120

96. Yovine S (1997) Kronos: a verification tool for real-time systems. Int J Softw Tools Technol
Transf 1:123–133

	1 Model Checking Approach to the Analysis of Biological Systems
	1.1 Introduction
	1.2 Verification by Model Checking
	1.3 Methods and Tools
	1.3.1 Model Checking Biological Systems
	1.3.2 Parameter Synthesis for Dynamical Systems
	1.3.3 Digital Bifurcation Analysis

	1.4 Case Studies
	1.4.1 Regulation of G1/S Cell Cycle Transition
	1.4.2 Signalling Pathways

	References

