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Abstract. Applying Theory of Mind to multi-agent systems enables
agents to model and reason about other agents’ minds. Recent work
shows that this ability could increase the performance of agents, making
them more efficient than agents that lack this ability. However, modelling
others agents’ minds is a difficult task, given that it involves many factors
of uncertainty, e.g., the uncertainty of the communication channel, the
uncertainty of reading other agents correctly, and the uncertainty of trust
in other agents. In this paper, we explore how agents acquire and update
Theory of Mind under conditions of uncertainty. To represent uncertain
Theory of Mind, we add probability estimation on a formal semantics
model for agent communication based on the BDI architecture and agent
communication languages.

Keywords: Multi-agent systems · Theory of Mind · Uncertainty ·
Socially-aware AI

1 Introduction

It is reasonable to expect that agents could be more effective at achieving their
goals during social interactions with other agents if they understand the other
agents involved. However, understanding other agents requires the capability of
modelling and reasoning about other agents’ mental attitudes. These character-
istics are intrinsic to Theory of Mind (ToM) [12].

Normally, agents operate under conditions of uncertainty due to the
dynamism of the environments in which they are situated [45]. Modelling other
agents’ minds also involves uncertainty. ToM involves uncertainty not only due
to the dynamism of other agents’ mental attitudes, e.g., agents might change
their beliefs constantly, but also because it involves the uncertainty of a message
reaching its audience (i.e., the uncertainty of the communication channels work-
ing properly), the uncertainty of other (autonomous) agents telling/acting truly,
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and the uncertainty of an agent reading other agents’ mental attitudes correctly
during interactions.

Various studies have investigated the application of ToM in Multi-Agent
Systems (MAS). Among them, [8,9] investigated the advantages of using different
levels of ToM in games played by agents, [33] investigated the role of ToM in
modelling dishonest attitudes in MAS, and [3,15,16,27,38] show the advantages
of modelling the opponent when considering strategies in argumentation-based
dialogues, even though ToM is not represented explicitly. It seems that modelling
other agents’ minds is an important topic of research, and existing results show
important contributions to MAS.

However, as described in [42], most of the work considering the modelling of
other agents’ minds assume such model as a given, which is an understandable
assumption due to the complexity of the problem, but unrealistic. Unfortunately,
the question of how to represent the uncertainty of beliefs about others’ beliefs
when agents acquire and update the model of other agents’ minds, i.e., uncer-
tain ToM, has not been fully investigated in the literature. We believe that
agents should also to be able to reason and make decisions using ToM. There-
fore, taking inspiration from others who have investigated the use of others
agents’ model during reasoning and decision-making, e.g., [3,8,9,15,16,27,38],
we propose an approach to model ToM in software agents that reflects the uncer-
tainty present in agent communication. We also took some inspiration from the
STAPLE language. STAPLE (Social and Team Agents Programming Language)
has its semantics based on joint intention theory [19]. STAPLE has the goal of
reaching a fault-tolerant approach to program teamwork, in which the authors
argue that a team is more than a collection of individuals working together to
achieve a common goal. The agents in a team must have a shared goal as well as
a shared mental state [21]. Thus, STAPLE enables agents to specify the models
of other agents, as well temporal properties of actions and events, allowing them
to reason about group beliefs, team intentions, and team commitments [20].1

Our first contribution is the proposal of an approach to model ToM that
reflects the uncertainty of information that agents infer about other agents’
minds through communication. To the best of our knowledge, our work is the
first to propose a formal model of how agents acquire and update ToM during
communication in MAS given the uncertainty of other agents’ model, partic-
ularly in the practical context of a BDI based Agent-Oriented Programming
Language (AOPL). This approach allows us to implement multi-agent commu-
nication that reflects some desired properties from communication and com-
mon knowledge theories [6]. For example, how agents increase the certainty of
their ToM by communicating more and, consequently, how communicating more
reinforces the already existing model of the mental attitudes of those agents.
Our second contribution is showing how agents may use our approach to reach

1 Note that our approach is more general than that, in which ToM could be used to
implement similar approaches for teamwork, which is a likely research direction for
our work.
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(or not) shared beliefs under conditions of uncertainty, and how agents make
decisions using ToM and probabilistic reasoning.

2 Background

2.1 Theory of Mind and the Problem of Other Minds

ToM is the ability of humans to ascribe elements such as beliefs, desires, and
intentions, and relations between these elements to other human agents. In other
words, it is the ability to form mental models of other agents [1]. There are two
major theories about ToM. One theory of ToM is the Theory-Theory of Mind
(henceforth TT). TT can be described as a theory based approach for assigning
states to other agents. While some argue TT is nothing else but folk psychology,
others say that it is a more scientific way of mindreading [13]. The other major
theory is Simulation Theory of Mind (henceforth ST), which is described to be
‘process-driven rather than theory-driven’ [2]. In other words, ST emphasises
the process of putting oneself into another’s shoes. TT argues for a hypothesis
testing method of model extraction, whereas ST argues for a simulation based
method for model selection.

An important factor that influences the acquisition, formation, or modifica-
tion of ToM is uncertainty. Inferring the beliefs of others is a notorious episte-
mological issue named by philosophers The Problem of Other Minds [17]. The
problem still stands since the times of Descartes [23]. It would be unreasonable
for one to assume that ToM is absolute or that ToM is a universal set of beliefs
shared by all agents in a system. Therefore, we believe that a reasonable app-
roach to model how ToM is acquired and updated by artificial agents has to
be able to represent the uncertainty with which agents infer beliefs about other
agents’ beliefs.

2.2 Agent Communication Languages

Agent communication languages have been developed based on the speech act
theory [41]. Speech act theory is concerned with the role of language as actions.
Among the agent communication languages which emerged from the speech act
theory, FIPA-ACL [11] and KQML [10] are the best known.

In this work, for practical reasons, we choose KQML, which is the standard
communication language in the Jason platform [5], the multi-agent platform we
choose to implement this work. Knowledge Query and Manipulation Language
(KQML) was designed to support interaction among intelligent software agents,
describing the message format and message-handling protocol to support run-
time agent communication [10,25].

In order to make KQML broadly applicable, a semantic framework for KQML
was proposed in [22]. The semantics for KQML-based messages in the AgentS-
peak programming language, as given in [43] and implemented in Jason [5],
formalises how the locutions successively operate on the states of agents, mak-
ing the references to the mental attitudes of BDI agents explicit, thus addressing
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some of the problems of ACLs pointed out in [44]. Based on that semantics, we
put forward the idea that agents are able to infer the likely model of other agents’
minds during the process of communication, i.e., agents are able to acquire and
update ToM, as we describe later in this paper.

2.3 Agent Oriented Programming Languages

Among the many AOPL and platforms, such as Jason, Jadex, Jack, AgentFac-
tory, 2APL, GOAL, Golog, and MetateM, as discussed in [4], we chose the Jason
platform [5] for our work. Jason extends the AgentSpeak language, an abstract
logic-based AOPL introduced by Rao [37], which is one of the best-known lan-
guages inspired by the BDI architecture.

Besides specifying agents with well-defined mental attitudes based on the
BDI architecture, the Jason platform [5] has some other features that are partic-
ularly interesting for our work, for example strong negation, belief annotations,
and (customisable) speech-act based communication. Strong negation helps the
modelling of uncertainty, allowing the representation of propositions that the
agent: (i) believes to be true, e.g., about(paper1, uncertain tom); (ii) believes
to be false, e.g., ¬about(paper2, uncertain tom); (iii) is ignorant about, i.e.,
the agent has no information about whether a paper is about uncertain tom
or not. Also, Jason automatically generates annotations for all the beliefs in
the agents’ belief base about the source from where the belief was obtained
(which can be from sensing the environment, communication with other agents,
or a mental note created by the agent itself). The annotation has the following
format: about(paper1, tom)[source(reviewer1)], stating that the source of the
belief that paper1 is about the topic tom is reviewer1. The annotations in Jason
can be easily extended to include other meta-information, for example, trust and
time as used in [26,30]. Another interesting feature of Jason is the communica-
tion between agents, which is done through a predefined (internal) action. There
are a number of performatives allowing rich communication between agents in
Jason, as explained in detail in [5]. Further, new performatives can be easily
defined (or redefined) in order to give special meaning to them2, which is an
essential characteristic for this work.

3 Running Example

As a running example, we will take the following university scenario with five
agents. The first agent, John, plays the role of a professor in the university, and
the other agents, named Bob, Alice, Nick, and Ted, play the role of students.
John has a relation of adviser with the students. Also, John is responsible for
distributing tasks to students, which the students can accept or refuse. John
keeps information about the students, in order to assign tasks that the students
are more likely to accept.
2 For example, [31,32] propose new performatives for argumentation-based communi-

cation between Jason agents.



Towards an Approach for Modelling Uncertain ToM in MAS 7

Our model can be formally defined as 〈Ag, T ,A,S〉, in which Ag represents
the set of agents, T the set of tasks of the kind T ⊆ A × S, describing an action
from A, requiring knowledge about a subset of subjects from S, that might
be executed to achieve the task T . In our example, we consider the following
actions, subjects, and tasks:

– A = {write paper, review paper, paper seminar}
– S = {mas, kr, tom}

– T =

⎧
⎨

⎩

task(write paper, [mas, tom])
task(review paper, [kr])
task(paper seminar, [tom, mas])

⎫
⎬

⎭

For example, the task to write a paper with the subjects MAS and ToM,
task(write paper, [mas, tom]), requires competence on both subjects: mas and
tom. Thus, this task has a greater likelihood to be accepted by a student
who desires to execute that particular task, or who likes to execute the
action write paper and believes that itself knows the necessary subjects (e.g.,
knows(mas) and knows(tom) are necessary to execute this example task). Thus
the probability of an agent ag to accept a task ti is given by the following
equation:

P (accepts(ag, taski)) =
{

P (Desag(taski)) if Desag(taski) ∈ ΔJohn

P (Belag(likes(ai))) × P (Belag(knows(S′))) otherwise

with
P (Belag(knows(S′))) =

∏

si∈S′
P (Belag(knows(si)))

where taski = task(ai, S′), for taski ∈ T , ai ∈ A, and S′ ⊆ S. ΔJohn represents
John’s knowledge.

Thus, considering our scenario, when John knows that some student ag likely
desires to execute a particular task taski, i.e., Desag(taski), it can use this infor-
mation to assign the task. Otherwise, John can calculate the likely acceptance
for each student ag, based on the probability of each student to like executing
that action, P (Belag(likes(ai))), and the knowledge the student has about each
of the required subjects P (Belag(knows(S′))). Note that, while modelling the
students’ desires is more difficult to obtain in our scenario, the students’ beliefs
are easily obtained by John, given that John frequently talks to students about
these subjects and tasks.

In reality, agents operate with uncertain information, especially in the cases
of thinking about other agents’ minds. The minds of others are considered to be
some sort of black boxes that are more or less accessible depending on the given
scenario. Reasoning under uncertainty is a classic case where bounded rationality
acts as a major constraint on what agents can infer from their beliefs. However,
even if agents are constrained by their access to information, it does not mean
that the agents cannot reach reasonable conclusions about the minds of other
agents [14,23].
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In our scenario, John will reason and make decisions based on information it
has about the students’ minds, i.e., information from its ToM. Thus John will
reach conclusions based on uncertain information, given that its ToM contains
information about students’ minds that has been estimated through the commu-
nication John has had with the students. Considering that an approach to reason
about uncertain information, uncertain ToM in our case, is using probabilistic
reasoning, as described in [14], we have modelled John’s decision-making pro-
cess based on the probability of each information in John’s ToM to be correct,
considering some factors of uncertainty we will describe further in this paper.

4 Modelling ToM from Other Agents’ Actions

In this paper, we are going to consider the modelling of ToM based on commu-
nication only, which can be considered a general approach for any application,
based on the semantics of each speech act used. On the other hand, the seman-
tics for other actions, e.g., actions agents execute in the environment, might have
different meaning according to different application domains.

In order to describe our approach, we use the following notation: Belag(ψ)
means that an agent ag believes ψ; Desag(ψ) means that an agent ag desires
ψ; Δag represents the ag’s knowledge base. Two distinct agents are represented
using agi and agj , with agi, agj ∈ Ag, and agi �= agj . We label the updates
agents execute in their ToM with γ, which can be used to represent the uncer-
tainty of that information. In Sect. 5, we propose an approach for uncertain ToM,
which is a particular instance for such γ label.

The speech acts considered in this particular work and their semantics
are based on our work in [29]. Messages are represented as 〈sender, receiver,
performative, content〉, and the meaning of each message is associated with
the performative used:

• 〈agi, agj , tell, ψ〉 means a message sent by agent agi to agent agj , with the
tell performative, and content ψ. When agi sends this message, it carries
out the following update3 on its ToM:

Δagi
= Δagi

∪ Belagj (ψ)[γ] (1)

When agj receives this message, it carries out the following update on its
ToM:

Δagj
= Δagj

∪ Belagi (ψ)[γ] (2)

• 〈agi, agj , ask, ψ〉 means a message sent by agent agi to agent agj , with the
ask performative, and content ψ. When agi sends this message, it carries out
the following update on its ToM:

Δagi
= Δagi

∪ Belagj (Desagi (ψ))[γ] (3)

3 Note that we are ignoring any other updates agents execute in their mental attitudes,
given we are interested only in the updates agents make on their ToM.
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When agj receives this message, it carries out the following update on its
ToM:

Δagj
= Δagj

∪ Desagi (ψ)[γ] (4)

Before introducing our approach for uncertain ToM, imagine that ToM could
be modelled without uncertainty, i.e., that we could ignore γ in our semantic
rules. Then, based on these simple semantic rules for agent communication, we
are able to show that agents can reach shared beliefs in a relatively straightfor-
ward way [29].

Definition 1 (Shared Beliefs Using ToM). An agent agi will reach a state
of shared beliefs with another agent agj when, for a belief ϕ, it is able to match
its own belief ϕ with a ToM about agj believing ϕ, i.e., ϕ ∧ Belagj (ϕ).

Example (Shared Beliefs Without Uncertainty): Following the scenario
introduced, imagine that two students, Alice and Bob, need to work together
to accomplish a particular task paper seminar, which requires the subjects mas
(Multi-Agent Systems) and tom (Theory of Mind). Also, while Alice only knows
the subject of mas, Bob only knows the subject of tom. Considering that both
Alice and Bob need to know both topics in order to help each other during the
paper seminar, they decide to exchange knowledge about these topics. Thus,
they might reach some shared beliefs (knowledge) about both topics. Note that,
in this scenario, Alice and Bob assume that both are cooperating and both
are rational. Thus, Bob starts the dialogue telling Alice that “Theory of Mind
is an approach to model others’ minds”, i.e., 〈alice, tell, def(tom, “an app-
roach to model others’ mind”)〉. At that moment, following the semantics for
the tell performative (Eq. (1)), Bob updates its ToM with the following infor-
mation Belalice(def(tom), “an approach to model others’ minds”). After that,
when Alice receives this message, following the semantics for the tell perfor-
mative (Eq. (2)), Alice updates its belief base with the following information
def(tom, “an approach to model others’ mind”), as well as Alice updates its
ToM about Bob with Belbob(def(tom), “an approach to model others’ minds”).
At this moment, both Alice and Bob reach a state of shared belief about the
definition of tom, according to Definition 1.

However, agents operate under conditions of uncertainty in a MAS, and the
previous assumptions are hard to obtain; thus, agents will face uncertainty about
their ToM, and consequently about their shared beliefs. For example, when an
agent sends a message, it faces the uncertainty of the communication channel,
i.e., the uncertainty of the message reaching the receiver. Also, when receiving a
message, an agent faces the uncertainty of the truth of that statement, e.g., an
agent is not able to verify if the other agents are acting maliciously [33,40], thus
it needs to consider the uncertainty of information it receives for those agents
based on how much it trusts them [26,34,35].

One manner to overcome the uncertainty and reach a more accurate ToM,
following the literature on common knowledge [6], is increasing the communica-
tion between agents. Thus, an agent is able to increase the certainty on a given
agent agj believing ϕ, confirming whether its ToM about agent agj believing ϕ is
correct. That is, the agent is able to infer that agj believes ϕ by reinforcing this
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belief through communication. Henceforth we describe our model for uncertain
ToM, which is compatible with that behaviour.

5 A Model of Uncertain ToM

In this section we propose an approach to model ToM that reflects the uncer-
tainty present in MAS. In order to show our approach, we are going to consider
some parameter values. The first, α, reflects the uncertainty of the communica-
tion channel when sending a message. The second, β, reflects the uncertainty of
the other agents telling the truth, i.e., when an agent agi tells ϕ to agent agj ,
agent agj is able to model that agi believes on ϕ with a degree of certainty equal
to β. For simplicity, we will assume that an agent will model its ToM about the
other agents with a degree of certainty equal to the trust it has on the source4,
following the ideas introduced in [34,35].

Definition 2. The label γ will be instantiated with γ = (α, t) for an agent send-
ing a message, and γ = (β, t) for an agent receiving a message, where α repre-
sents the uncertainty of the message reaching the target, β the uncertainty of the
sender telling the truth, and t a discrete representation of the time of the MAS
in which the message was exchanged.

Thus, following Definition 2, a trace of different updates on the ToM is con-
structed over time. Note that α and β reflect the uncertainty of an update at a
given time. In order to execute reasoning over the ToM, agents are able to use the
trace of these updates to calculate the degree of certainty on their model. Using
this trace, we are able to model some desired behaviour from communication
theory in agent communication, as we will describe later in this paper.

For example, considering our scenario, when Bob tells Alice that “Theory
of Mind is an approach to model others’ minds”, considering also that Bob
knows that the efficiency of the communication channel is 0.9, i.e., α = 0.9,
Bob will update its ToM, following the semantics for the tell performative
(Eq. (1)) and Definition 2, with the information Belalice(def(tom), “an approach
to model others’ minds”)[(0.9,ti)], with ti the discrete time when the communi-
cation occurred. When Alice receives this message, considering that the trust
Alice has on Bob telling the truth is 0.8, i.e., β = 0.8, and following the seman-
tics for the tell performative (Eq. (2)) and Definition 2, Alice updates its ToM
with Belbob(def(tom), “an approach to model other minds”)[(0.8,tj)], with tj the
discrete time at which the message was received, with ti < tj . Both Alice and
Bob model uncertainty of their ToM about each other believing on the definition
of ToM.

Considering uncertain ToM, we need to redefine shared beliefs, in order to
reflect the uncertainty of agents’ models.

4 In [28], the authors show that trust aggregates not only the sincerity of the source
but also the expertise the source has about the information communicated.
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Definition 3 (Shared Beliefs Using Uncertain ToM). An agent agi will
reach a state of shared beliefs with another agent agj when, for a belief ϕ, it is able
to match its own belief ϕ with a ToM about agj believing ϕ with a predetermined
degree of certainty χ, i.e., ϕ ∧ P (Belagj (ϕ)) ≥ χ, with χ a value describing the
certainty necessary to consider ϕ a shared belief.

Following the literature on common knowledge [6], if two individuals agi and
agj can repeatedly communicate, then they can repeatedly reinforce their mental
state regarding an information ϕ. For example, telling each other that ϕ is true,
they should increase the certainty of each others’ belief in ϕ. In order to model
this desired behaviour in our model, we maintain the trace of all updates an
agent executes in its ToM, and using this trace we are able to aggregate different
pieces of evidence in order to increase the certainty on ToM. There are many
different ways to model this desired behaviour on agent communication, and it
could consider the particularities of each application domain. In our scenario, the
information communicated by agents, e.g. a concept definition, does not change
over time. Thus, for simplicity, we do not weight each information according to
the time it was received and the current time of the MAS, we only consider
the number of evidences about that information. Thus, we model this desired
behaviour using the following equation:

P (BelAg(ϕ)) =

{
f(Belag(ϕ)) if f(Belag(ϕ)) <= 1
1 otherwise

(5)

f(Belag(ϕ)) =

∑

ti∈ΔT

v | Belag(ϕ)[(v,ti)]

|ΔT | + (λ × |ΔT |) (6)

with ΔT the number of occurrences of Belag(ϕ)[(v,ti)]
in the agent ToM, and

λ the evidence factor, i.e., a parameter that reinforce the certainty on that
information according to how often it occurs in the trace. Equation 6 calculates
the average of the trace for Belag(ϕ) plus the evidence factor. Thus, following
Definition 3, agi is able to reach a state of shared belief with another agent agj

about a belief ϕ when it is able to infer P (Belagj (ϕ)) ≥ χ from Eq. 5 with χ = 1,
for example.

Proposition 1 (Reaching Shared Beliefs—ToM with Uncertainty).
When λ is a positive value, agents are able to eventually reach a state of shared
beliefs, even considering χ = 1, provided they communicate the same informa-
tion repeatedly. Also, the greater the value of λ, the faster agents will reach the
state of shared beliefs.

Example (Shared Beliefs Under Conditions of Uncertainty): Following
our example, imagine that Bob wants to reach a state of shared beliefs with
Alice about the definition of ToM under the conditions of uncertainty described
above. Thus, after sending the previous message and updating its ToM with
Belalice(def(tom), “an approach to model others’ minds”)[(0.9,ti)], Bob has two
options to increase the certainty on its ToM about Alice believing on that defini-
tion: (i) telling Alice that definition more times, or (ii) asking Alice the definition
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of ToM and waiting for an answer from Alice, in which Alice tells Bob the def-
inition of ToM. Considering λ = 0.1, in the first case, when Bob tells Alice
about the definition of ToM one more time, following the semantics for the tell
performative (Eq. (1)) and Definition 2, Bob adds Belalice(def(tom), “an app-
roach to model others’ minds”)[(0.9,tj)] to its ToM, with ti < tj . Thus, Eq. 5
returns 1, considering the average 0.9 + 0.2 from the evidence factor, which is
0.1 multiplied by the number of evidences (Eq. (6)). Also, following the seman-
tics for the tell performative (Eq. (2)) and Definition 2, Alice updates its ToM
with Belbob(def(tom), “an approach to model other minds”)[(0.8,tj)], and Eq. (5)
returns 1, considering the average 0.8 + 0.2 from the evidence factor (Eq. (6)).
Thus, they reach a state of shared belief about the definition of ToM5, consid-
ering χ = 1 in Definition 3. In the other case, Bob asks to Alice to tell him
the definition of ToM, and it waits for the answer. When Alice tells Bob the
definition of ToM, Alice and Bob update their ToM with Belbob(def(tom), “an
approach to model other minds”)[(0.9,tj)], Belalice(def(tom), “an approach to
model others’ minds”)[(0.8,ti)], respectively. For both, Eq. (5) returns 1, consid-
ering the average 0.85 + 0.2 from the evidence factor, reaching a state of shared
beliefs about the definition of ToM according to Definition 3 with χ = 1.

6 Decision Making Using Uncertain ToM

Apart from enabling agents to model other agents’ minds and allowing them
to improve their models during communicative interactions, it is also essential
that agents are able to make decisions using these models. Normally, a decision-
making process is associated with the application domain, i.e., it is domain
dependent. Therefore, we will present the decision-making process for the task
assignment problem introduced in Sect. 3.

In our scenario, during advising sessions, John asks students about different
tasks they like to execute, as well as the different subjects the students are
reading about (the subjects the students know about). Thus, John acquires
ToM about the students, and its ToM becomes more accurate as they have more
advising sessions, and consequently they communicate more with each other.

John
ToM

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Belalice(likes(paper seminar))[0.8]
Belalice(likes(write paper))[0.7]
Belbob(likes(review paper))[0.9]
Belbob(likes(write paper))[0.8]
Belnick (likes(review paper))[0.6]
Belnick (likes(write paper))[0.5]
Bel ted(likes(write paper))[0.8]
Bel ted(likes(paper seminar))[0.4]
Bel ted(likes(review paper))[0.6]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

5 When considering γ = 0.1 and α and β >= 0.8, agents are able to reach shared
beliefs communicating only 2 messages.
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For example, John has asked (in different meetings and times) Bob, Alice,
Nick, and Ted which academic tasks they like to execute, e.g., 〈bob,
AskIf , likes(T)〉. After receiving this message, according to the semantic rule
for the ask performative (Eq. (4)), each student knows that John desires to
know which task they like to execute. Based on this knowledge, each student
has answered to John the tasks they like to execute, John has received these
messages and updated its ToM as shown in JohnToM

6.
Continuing with the example, during a meeting Alice asks John if there

is any scheduled paper seminar about ToM and MAS, i.e., 〈john,AskIf ,
task(paper seminar, [tom, mas]〉. Thus, based on the semantic rule for the ask
performative (Eq. (4)), John models that Alice is likely to desire that task, i.e.,
Desalice(task(paper seminar, [tom, mas]))[0.7], answering positively. Also, imag-
ine that John has asked the students which subject they have knowledge about,
resulting in the following additional information to John’s ToM:

John
ToM

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Belalice(knows(tom))[0.8] Belbob(knows(mas))[0.8]
Belalice(knows(mas))[0.9] Belbob(knows(kr))[0.9]
Belnick (knows(kr))[0.8] Bel ted(knows(tom))[0.8]
Belnick (knows(mas))[0.7] Bel ted(knows(kr))[0.5]
Belnick (knows(tom))[0.8] Bel ted(knows(mas))[0.8]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Using its ToM, John executes the probabilistic reasoning described in Sect. 3,
which computes the likelihood for each student to accept each task as shown in
Table 1. Note that the likelihood of Alice accepting the task paper seminar

Table 1. Likelihood calculation for task assignment

Student Task Likelihood

Alice task(write paper, [mas, tom]) 0.5

Alice task(review paper, [kr]) 0.0

Alice task(paper seminar, [tom, mas]) 0.7

Bob task(write paper, [mas, tom]) 0.0

Bob task(review paper, [kr]) 0.8

Bob task(paper seminar, [tom, mas]) 0.0

Nick task(write paper, [mas, tom]) 0.3

Nick task(review paper, [kr]) 0.5

Nick task(paper seminar, [tom, mas]) 0.0

Ted task(write paper, [mas, tom]) 0.5

Ted task(review paper, [kr]) 0.2

Ted task(paper seminar, [tom, mas]) 0.1

6 We do not represent the time at which the messages were communicated, but since
they were communicated at different times we introduced different values for γ.
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is based on the information Desalice(task(paper seminar, [tom, mas]))[0.7] in
John’s ToM, while the other results are based on the likelihood of the students
liking a particular task and knowing the subjects related to that task. Thus, John
concludes that it is possible to increase the probability of each task to be accepted
by the students by offering the task task(paper seminar, [tom, mas]) to Alice,
offering task(review paper, [kr]) to Bob, and offering task(write paper,
[mas, tom]) to Ted.

7 Future Work

Uncertainty does not only arise from noisy communication channels or levels
of trust between agents. As future work, we plan to add an environment to
our model in order to represent how agents infer ToM from the observation
of actions performed by other agents in that environment. The modelling of
ToM based on these aspects faces complex issues such as the ones mentioned
in [7]: “the slamming of a door communicates the slammer’s anger only when
the intended observer of that act realises that the slammer wanted both to slam
the door in his face and for the observer to believe that to be his intention”.
This means that there is both uncertainty about the slammer’s intentions and
uncertainty about the act of slamming the door, which could be caused by an
accidental shove or by natural means, hence not represent a communicative act.
Therefore, observing such an event occur should not cause the observer to make
any inference about the slammer’s mental state. That being said, modelling ToM
based on environment observations requires more than only representing both
intended and non-intended acts of communication. The slammer might very
well not intend to communicate when slamming the door, but that does not
stop the observer from reading a message when observing the slamming of the
door. These complex issues arise with the inclusion of ToM because agents are
able to project beliefs in the minds of other agents they share an environment,
or even just a communication channel, with. Therefore, the agents that project
beliefs can be subject to what is known as the Mind Projection Fallacy [18]. An
agent commits this fallacy using ToM when the agent incorrectly assigns beliefs
to another agent’s mind7. In our future work, we hope to improve our model in
order to be able to represent complex phenomena such as the mind projection
fallacy.

8 Conclusions

We have proposed an approach for agents to acquire and update their ToM
during communication whilst reflecting on the uncertainty of this process. To
the best of our knowledge, our work is the first to explicitly address acquisition
and update of uncertain ToM in MAS. In order to show how our approach allows
us to model desired properties from communication and common knowledge

7 It is similar to committing a type I error in a statistical analysis.
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theories [6], we have proposed a model for uncertain ToM. Using our approach,
agents are able to reach accurate ToM and, consequently, accurate shared beliefs
by reinforcing their mental attitudes through communication. Furthermore, in
this work, we have shown not only how agents acquire and update ToM based on
agent communication, but also how agents reason and make decisions using ToM.

The modelling of ToM in MAS under the condition of uncertainty is an
important step towards obtaining more realistic and more socially aware artificial
agents. We argue that the approach we used to model ToM in MAS is in tune
with what we believe to be an upcoming discipline in the field of AI, namely the
study of machine behaviour as proposed by [36]. Thus, modelling ToM is relevant
to both the AI community and to multi-disciplinary research groups because it
offers the possibility to study how agents reach agreements with [24], cooperate
with [39], or even behave dishonestly towards [33,40] other agents using more
realistic models of social interactions.
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this paper.
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16 Ş. Sarkadi et al.

11. FIPA, T.: FIPA communicative act library specification. Foundation for Intelli-
gent Physical Agents (15.02.2018) (2008). http://www.fipa.org/specs/fipa00037/
SC00037J.html

12. Goldman, A.I.: Theory of mind. In: The Oxford Handbook of Philosophy of Cog-
nitive Science, 2012 edn. vol. 1, Oxford Handbooks Online (2012)

13. Gopnik, A., Glymour, C., Sobel, D.M., Schulz, L.E., Kushnir, T., Danks, D.: A
theory of causal learning in children: causal maps and bayes nets. Psychol. Rev.
111(1), 3 (2004)

14. Gopnik, A., Wellman, H.M.: Reconstructing constructivism: causal models,
Bayesian learning mechanisms, and the theory theory. Psychol. Bull. 138(6), 1085
(2012)

15. Hadidi, N., Dimopoulos, Y., Moraitis, P., et al.: Tactics and concessions for
argumentation-based negotiation. In: COMMA, pp. 285–296 (2012)

16. Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., McBurney, P.: Opponent mod-
elling in persuasion dialogues. In: International Joint Conference on Artificial Intel-
ligence, pp. 164–170 (2013)

17. Hyslop, A.: Other minds. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford University, spring 2016 edn. (2016)

18. Jaynes, E.T.: Probability theory as logic. In: Fougère, P.F. (ed.) Maximum Entropy
and Bayesian Methods. Springer, Dordrecht (1990). https://doi.org/10.1007/978-
94-009-0683-9 1

19. Kumar, S., Cohen, P.R.: STAPLE: an agent programming language based on the
joint intention theory. In: Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1390–1391 (2004)

20. Kumar, S., Cohen, P.R., Huber, M.J.: Direct execution of team specifications in
STAPLE. In: Proceedings of the 1st International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 567–568 (2002)

21. Kumar, S., Cohen, P.R., Levesque, H.J.: The adaptive agent architecture: achieving
fault-tolerance using persistent broker teams. In: Proceedings of Fourth Interna-
tional Conference on MultiAgent Systems, pp. 159–166 (2000)

22. Labrou, Y., Finin, T.: A semantics approach for KQML - a general purpose com-
munication language for software agents. In: Proceedings of the Third International
Conference on Information and knowledge Management, pp. 447–455. ACM (1994)

23. Leudar, I., Costall, A.: On the persistence of the problem of other minds in psychol-
ogy: chomsky, grice and theory of mind. Theory Psychol. 14(5), 601–621 (2004)

24. Luck, M., McBurney, P.: Computing as interaction: agent and agreement technolo-
gies. In: IEEE International Conference on Distributed Human-machine Systems.
IEEE Press, Citeseer (2008)

25. Mayfield, J., Labrou, Y., Finin, T.: Evaluation of KQML as an agent communi-
cation language. In: Wooldridge, M., Müller, J.P., Tambe, M. (eds.) ATAL 1995.
LNCS, vol. 1037, pp. 347–360. Springer, Heidelberg (1996). https://doi.org/10.
1007/3540608052 77

26. Melo, V.S., Panisson, A.R., Bordini, R.H.: Argumentation-based reasoning using
preferences over sources of information. In: 15th International Conference on
Autonomous Agents and Multiagent Systems (2016)

27. Oren, N., Norman, T.J.: Arguing using opponent models. In: McBurney, P., Rah-
wan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS (LNAI), vol. 6057, pp.
160–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12805-
9 10

http://www.fipa.org/specs/fipa00037/SC00037J.html
http://www.fipa.org/specs/fipa00037/SC00037J.html
https://doi.org/10.1007/978-94-009-0683-9_1
https://doi.org/10.1007/978-94-009-0683-9_1
https://doi.org/10.1007/3540608052_77
https://doi.org/10.1007/3540608052_77
https://doi.org/10.1007/978-3-642-12805-9_10
https://doi.org/10.1007/978-3-642-12805-9_10


Towards an Approach for Modelling Uncertain ToM in MAS 17

28. Paglieri, F., Castelfranchi, C., da Costa Pereira, C., Falcone, R., Tettamanzi, A.,
Villata, S.: Trusting the messenger because of the message: feedback dynamics from
information quality to source evaluation. Comput. Math. Organ. Theory 20(2),
176–194 (2014)

29. Panisson, A.R., Sarkadi, S., McBurney, P., Parsons, S., Bordini, R.H.: On the
formal semantics of theory of mind in agent communication. In: 6th International
Conference on Agreement Technologies (2018)

30. Panisson, A.R., Melo, V.S., Bordini, R.H.: Using preferences over sources of infor-
mation in argumentation-based reasoning. In: 5th Brazilian Conference on Intelli-
gent Systems, pp. 31–26 (2016)

31. Panisson, A.R., Meneguzzi, F., Fagundes, M., Vieira, R., Bordini, R.H.: Formal
semantics of speech acts for argumentative dialogues. In: 13th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 1437–1438 (2014)

32. Panisson, A.R., Meneguzzi, F., Vieira, R., Bordini, R.H.: Towards practical argu-
mentation in multi-agent systems. In: Brazilian Conference on Intelligent Systems
(2015)

33. Panisson, A.R., Sarkadi, S., McBurney, P., Parsons, S., Bordini, R.H.: Lies, bullshit,
and deception in agent-oriented programming languages. In: Proceedings of the
20th International Trust Workshop, pp. 50–61 (2018)

34. Parsons, S., Sklar, E., McBurney, P.: Using argumentation to reason with and
about trust. In: McBurney, P., Parsons, S., Rahwan, I. (eds.) ArgMAS 2011. LNCS
(LNAI), vol. 7543, pp. 194–212. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33152-7 12

35. Parsons, S., Tang, Y., Sklar, E., McBurney, P., Cai, K.: Argumentation-based
reasoning in agents with varying degrees of trust. In: The 10th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 879–886 (2011)

36. Rahwan, I., Cebrian, M.: Machine behavior needs to be an academic dis-
cipline (2018). http://nautil.us/issue/58/self/machine-behavior-needs-to-be-an-
academic-discipline

37. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

38. Rienstra, T., Thimm, M., Oren, N.: Opponent models with uncertainty for strategic
argumentation. In: International Joint Conference on Artificial Intelligence, pp.
332–338 (2013)

39. Rosenschein, J.S.: Rational interaction: cooperation among intelligent agents
(1986)

40. Sarkadi, S.: Deception. In: IJCAI, pp. 5781–5782 (2018)
41. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge

University Press, Cambridge (1969)
42. Thimm, M.: Strategic argumentation in multi-agent systems. KI-Künstliche Intel-

ligenz 28(3), 159–168 (2014)
43. Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.H.: On the formal semantics

of speech-act based communication in an agent-oriented programming language.
J. Artif. Int. Res. 29(1), 221–267 (2007)

44. Wooldridge, M.: Semantic issues in the verification of agent communication lan-
guages. Auton. Agent. Multi-Agent Syst. 3(1), 9–31 (2000)

45. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Hoboken (2009)

https://doi.org/10.1007/978-3-642-33152-7_12
https://doi.org/10.1007/978-3-642-33152-7_12
http://nautil.us/issue/58/self/machine-behavior-needs-to-be-an-academic-discipline
http://nautil.us/issue/58/self/machine-behavior-needs-to-be-an-academic-discipline
https://doi.org/10.1007/BFb0031845

	Towards an Approach for Modelling Uncertain Theory of Mind in Multi-Agent Systems
	1 Introduction
	2 Background
	2.1 Theory of Mind and the Problem of Other Minds
	2.2 Agent Communication Languages
	2.3 Agent Oriented Programming Languages

	3 Running Example
	4 Modelling ToM from Other Agents' Actions
	5 A Model of Uncertain ToM
	6 Decision Making Using Uncertain ToM
	7 Future Work
	8 Conclusions
	References




