
Marin Lujak (Ed.)

 123

LN
AI

 1
13

27

6th International Conference, AT 2018
Bergen, Norway, December 6–7, 2018
Revised Selected Papers

Agreement
Technologies

Lecture Notes in Artificial Intelligence 11327

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Marin Lujak (Ed.)

Agreement
Technologies
6th International Conference, AT 2018
Bergen, Norway, December 6–7, 2018
Revised Selected Papers

123

Editor
Marin Lujak
IMT Lille Douai
Douai, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-17293-0 ISBN 978-3-030-17294-7 (eBook)
https://doi.org/10.1007/978-3-030-17294-7

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-17294-7

Preface

This volume contains revised proceedings of the 6th International Conference on
Agreement Technologies (AT 2018), which was held in Bergen, Norway, during
December 6–7, 2018.

AT 2018 was part of the International Conference Series on Agreement
Technologies, an international forum of reference in the field based on the notion of
agreement among computational agents. It followed the successful outcome of previous
editions of the AT Series: AT 2012 in Dubrovnik, Croatia, AT 2013 in Beijing, China,
AT 2015 in Athens, Greece, AT 2016 in Valencia, Spain, and AT 2017 in Évry,
France. For the fourth year in a row, the aim was to continue promoting scientific
information exchange between the EUMAS and AT community. This is why AT 2018
was co-located with the 16th European Conference on Multi-Agent Systems (EUMAS
2018) in the joint program composed of two parallel and four joint sessions.

The preceding five AT conferences engaged reputed researchers from around the
world and AT 2018 continued this trend. To attract early-stage as well as experienced
researchers, original preliminary and mature work was invited in the form of short and
long papers. We received 28 papers by authors coming from 17 countries. After a
double-blind review process with a minimum of three and an average of four reviews
per paper, 11 were accepted as long papers (39.29%) and six as short ones (21.43%).
Researchers from various areas of agreement technologies exchanged novel ideas,
techniques, results, and open questions regarding scientific advancements in the design,
implementation, and verification of next-generation open distributed systems.

I would like to sincerely thank the AT 2018 local chair, Marija Slavkovik, and the
Program Committee for their work and cooperation. I also thank the invited speakers –
Elizabeth Sklar from King’s College London (key speaker of AT 2018) and Michael
Fisher from the University of Liverpool (key speaker of EUMAS 2018) for joining us
and sharing their expertise. Their enlightening talks on “Shared Decision-Making in
Human–Robot Teams” and “Trustworthy Autonomy” were the key highlights of the
conference. Additional thanks are owed to the authors of the submitted papers and to all
the participants of AT 2018 and EUMAS 2018 who made this a successful and pro-
ductive international scientific event. Sincere thanks also to Alfred Hofmann and the
staff of Springer for their professional support. Finally, I would like to express my
appreciation to the sponsors of the conference, University of Bergen, The Research
Council of Norway, and IMT Lille Douai for their support.

February 2019 Marin Lujak

Organization

AT 2018 was organized by the University of Bergen in Norway in cooperation with
IMT Lille Douai.

Organizing Committee

Conference Chair

Marin Lujak IMT Lille Douai, France

Local Chair

Marija Slavkovik University of Bergen, Norway

Program Committee

Giulia Andrighetto Institute of Cognitive Sciences and Technologies
(ISTC CNR), Rome, Italy

Estefanía Argente Universitat Politècnica de València, Spain
Reyhan Aydogan TU Delft, The Netherlands and Özyeğin University,

Turkey
Silvana Badaloni University of Padova, Italy
Roberto Basili University of Rome Tor Vergata, Italy
Floris Bex Utrecht University, The Netherlands
Holger Billhardt University Rey Juan Carlos, Spain
Olivier Boissier Ecole des Mines de Saint-Étienne, France
Elise Bonzon LIPADE, Université Paris Descartes, France
Elena Cabrio Université Côte d’Azur, Inria, CNRS, I3S, France
Carlos Carrascosa Universitat Politècnica de València, Spain
Amedeo Cesta Institute of Cognitive Sciences and Technologies

(ISTC CNR), Italy
Carlos Chesñevar Universidad Nacional del Sur, Argentina
Stéphanie Combettes Institut de recherche en informatique de Toulouse,

France
Juan M. Corchado University of Salamanca, Spain, Osaka Institute of

Technology, Japan, and Universiti Malaysia
Kelantan, Malaysia

Arnaud Doniec IMT Lille Douai, France
Sylvie Doutre IRIT, University of Toulouse, France
Jürgen Dunkel Hannover University of Applied Sciences and Arts,

Germany
Alberto Fernandez Universidad Rey Juan Carlos, Spain
Nicoletta Fornara Universitá della Svizzera Italiana, Switzerland

Rubén Fuentes-Fernández Universidad Complutense de Madrid, Spain
Maria Ganzha Warsaw University of Technology, Poland
Stefano Giordani University of Rome Tor Vergata, Italy
Adriana Giret Universitat Politècnica de València, Spain
Jorge Gómez-Sanz Universidad Complutense de Madrid, Spain
Stella Heras Universitat Politècnica de València, Spain
Carlos A. Iglesias Universidad Politecnica de Madrid, Spain
Takayuki Ito Nagoya Institute of Technology, Japan
Mirjana Ivanović University of Novi Sad, Serbia
Gordan Ježić University of Zagreb, Croatia
Vicente Julian Universitat Politècnica de València, Spain
Jeroen Keppens King’s College London, UK
Matthias Klusch DFKI, German Research Center for AI, Germany
Ryszard Kowalczyk Swinburne University of Technology, Australia
Mario Kušek University of Zagreb, Croatia
Jerome Lang LAMSADE, Université Paris-Dauphine, France
Joao Leite Universidade Nova de Lisboa, Portugal
Beishui Liao Zhejiang University, Hangzhou City, China
Emiliano Lorini Université Paul Sabatier IRIT, Toulouse, France
Guillaume Lozenguez IMT Lille Douai, France
Nicolas Maudet University of Pierre et Marie Curie, France
Viorel Negru West University of Timisoara, Romania
Paulo Novais University of Minho, Portugal
Eugenio Oliveira Universidade do Porto, Portugal
Eva Onaindia Universitat Politècnica de València, Spain
Nir Oren University of Aberdeen, UK
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Mario Paolucci Institute of Cognitive Sciences and Technologies

(ISTC CNR), Italy
Marcin Paprzycki Polish Academy of Sciences, Poland
Simon Parsons King’s College London, UK
Miguel Rebollo Universitat Politècnica de València, Spain
Alessandro Ricci University of Bologna, Italy
M. Birna van Riemsdijk Delft University of Technology, The Netherlands
Jörg Rothe Universität Düsseldorf, Germany
Jordi Sabater-Mir Institut d’Investigació en Inteligència Artificial

(IIIA-CSIC), Spain
Victor Sanchez-Anguix Coventry University, UK
Miloš Savić University of Novi Sad, Serbia
Marco Schorlemmer Artificial Intelligence Research Institute IIIA-CSIC,

Spain
Michael I. Schumacher University of Applied Sciences, Switzerland
Emilio Serrano Polytechnic University of Madrid, Spain
Carles Sierra Artificial Intelligence Research Institute IIIA-CSIC,

Barcelona, Spain
Elizabeth Sklar King’s College London, UK

viii Organization

Marija Slavkovik University of Bergen, Norway
Giuseppe Stecca Institute for Systems Analysis and Computer Science

Antonio Ruberti (IASI-CNR), Italy
Francesca Toni Imperial College London, UK
Denis Trček University of Ljubljana, Slovenia
Alessandro Umbrico Institute of Cognitive Sciences and Technologies

(ISTC CNR), Italy
Serena Villata Université Nice Sophia Antipolis, France
George Vouros University of Piraeus, Greece
Marin Vuković University of Zagreb, Croatia
László Zsolt Varga Eötvös Loránd University, Hungary

Sponsoring Institutions

IMT Lille DouaiUniversity of BergenThe Research Council of Norway

Organization ix

Contents

AT Foundations and Modelling of Reasoning Agents

Towards an Approach for Modelling Uncertain Theory of Mind
in Multi-Agent Systems . 3

Ştefan Sarkadi, Alison R. Panisson, Rafael H. Bordini, Peter McBurney,
and Simon Parsons

On the Formal Semantics of Theory of Mind in Agent Communication 18
Alison R. Panisson, Ștefan Sarkadi, Peter McBurney, Simon Parsons,
and Rafael H. Bordini

Accountability for Practical Reasoning Agents . 33
Stephen Cranefield, Nir Oren, and Wamberto W. Vasconcelos

Using Semantic Web Technologies and Production Rules for Reasoning
on Obligations and Permissions . 49

Nicoletta Fornara, Alessia Chiappa, and Marco Colombetti

Minimality and Simplicity of Rules for the Internet-of-Things 64
Athanasios Panaretos, David Corsar, and Wamberto W. Vasconcelos

Stream-Based Perception for Agents on Mobile Devices 73
Jeremias Dötterl, Ralf Bruns, Jürgen Dunkel, and Sascha Ossowski

Argumentation and Negotiation

Distributed Ledger and Robust Consensus for Agreements 91
Miguel Rebollo, Carlos Carrascosa, and Alberto Palomares

The Challenge of Negotiation in the Game of Diplomacy. 100
Dave de Jonge, Tim Baarslag, Reyhan Aydoğan, Catholijn Jonker,
Katsuhide Fujita, and Takayuki Ito

Automated Negotiations Under User Preference Uncertainty:
A Linear Programming Approach . 115

Dimitrios Tsimpoukis, Tim Baarslag, Michael Kaisers,
and Nikolaos G. Paterakis

An Adversarial Algorithm for Delegation . 130
Juan Afanador, Murilo Baptista, and Nir Oren

Policies to Regulate Distributed Data Exchange . 146
Samuel R. Cauvin, Nir Oren, and Wamberto W. Vasconcelos

Developing a Method for Quantifying Degree of Discussion Progress
Towards Automatic Facilitation of Web-Based Discussion 162

Ko Kitagawa, Shun Shiramatsu, and Akira Kamiya

Coordination in Open Distributed Systems with Applications

Monotonicity, Duplication Monotonicity, and Pareto Optimality
in the Scoring-Based Allocation of Indivisible Goods 173

Benno Kuckuck and Jörg Rothe

Dynamic Delivery Plan Adaptation in Open Systems. 190
Miguel Ángel Rodríguez-García, Alberto Fernández,
and Holger Billhardt

Autonomous Vehicles Coordination Through Voting-Based
Decision-Making. 199

Miguel Teixeira, Pedro M. d’Orey, and Zafeiris Kokkinogenis

Balancing Strategies for Bike Sharing Systems . 208
Alberto Fernández, Holger Billhardt, Sandra Timón, Carlos Ruiz,
Óscar Sánchez, and Iván Bernabé

Towards Distributed Real-Time Coordination of Shoppers’ Routes
in Smart Hypermarkets . 223

Marin Lujak and Arnaud Doniec

Author Index . 239

xii Contents

AT Foundations and Modelling of
Reasoning Agents

Towards an Approach for Modelling
Uncertain Theory of Mind
in Multi-Agent Systems

Ştefan Sarkadi1, Alison R. Panisson2(B), Rafael H. Bordini2,
Peter McBurney1, and Simon Parsons1

1 Department of Informatics, King’s College London, London, UK
{stefan.sarkadi,peter.mcburney,simon.parsons}@kcl.ac.uk

2 School of Technology, PUCRS, Porto Alegre, Brazil
alison.panisson@acad.pucrs.br, rafael.bordini@pucrs.br

Abstract. Applying Theory of Mind to multi-agent systems enables
agents to model and reason about other agents’ minds. Recent work
shows that this ability could increase the performance of agents, making
them more efficient than agents that lack this ability. However, modelling
others agents’ minds is a difficult task, given that it involves many factors
of uncertainty, e.g., the uncertainty of the communication channel, the
uncertainty of reading other agents correctly, and the uncertainty of trust
in other agents. In this paper, we explore how agents acquire and update
Theory of Mind under conditions of uncertainty. To represent uncertain
Theory of Mind, we add probability estimation on a formal semantics
model for agent communication based on the BDI architecture and agent
communication languages.

Keywords: Multi-agent systems · Theory of Mind · Uncertainty ·
Socially-aware AI

1 Introduction

It is reasonable to expect that agents could be more effective at achieving their
goals during social interactions with other agents if they understand the other
agents involved. However, understanding other agents requires the capability of
modelling and reasoning about other agents’ mental attitudes. These character-
istics are intrinsic to Theory of Mind (ToM) [12].

Normally, agents operate under conditions of uncertainty due to the
dynamism of the environments in which they are situated [45]. Modelling other
agents’ minds also involves uncertainty. ToM involves uncertainty not only due
to the dynamism of other agents’ mental attitudes, e.g., agents might change
their beliefs constantly, but also because it involves the uncertainty of a message
reaching its audience (i.e., the uncertainty of the communication channels work-
ing properly), the uncertainty of other (autonomous) agents telling/acting truly,

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-17294-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_1

4 Ş. Sarkadi et al.

and the uncertainty of an agent reading other agents’ mental attitudes correctly
during interactions.

Various studies have investigated the application of ToM in Multi-Agent
Systems (MAS). Among them, [8,9] investigated the advantages of using different
levels of ToM in games played by agents, [33] investigated the role of ToM in
modelling dishonest attitudes in MAS, and [3,15,16,27,38] show the advantages
of modelling the opponent when considering strategies in argumentation-based
dialogues, even though ToM is not represented explicitly. It seems that modelling
other agents’ minds is an important topic of research, and existing results show
important contributions to MAS.

However, as described in [42], most of the work considering the modelling of
other agents’ minds assume such model as a given, which is an understandable
assumption due to the complexity of the problem, but unrealistic. Unfortunately,
the question of how to represent the uncertainty of beliefs about others’ beliefs
when agents acquire and update the model of other agents’ minds, i.e., uncer-
tain ToM, has not been fully investigated in the literature. We believe that
agents should also to be able to reason and make decisions using ToM. There-
fore, taking inspiration from others who have investigated the use of others
agents’ model during reasoning and decision-making, e.g., [3,8,9,15,16,27,38],
we propose an approach to model ToM in software agents that reflects the uncer-
tainty present in agent communication. We also took some inspiration from the
STAPLE language. STAPLE (Social and Team Agents Programming Language)
has its semantics based on joint intention theory [19]. STAPLE has the goal of
reaching a fault-tolerant approach to program teamwork, in which the authors
argue that a team is more than a collection of individuals working together to
achieve a common goal. The agents in a team must have a shared goal as well as
a shared mental state [21]. Thus, STAPLE enables agents to specify the models
of other agents, as well temporal properties of actions and events, allowing them
to reason about group beliefs, team intentions, and team commitments [20].1

Our first contribution is the proposal of an approach to model ToM that
reflects the uncertainty of information that agents infer about other agents’
minds through communication. To the best of our knowledge, our work is the
first to propose a formal model of how agents acquire and update ToM during
communication in MAS given the uncertainty of other agents’ model, partic-
ularly in the practical context of a BDI based Agent-Oriented Programming
Language (AOPL). This approach allows us to implement multi-agent commu-
nication that reflects some desired properties from communication and com-
mon knowledge theories [6]. For example, how agents increase the certainty of
their ToM by communicating more and, consequently, how communicating more
reinforces the already existing model of the mental attitudes of those agents.
Our second contribution is showing how agents may use our approach to reach

1 Note that our approach is more general than that, in which ToM could be used to
implement similar approaches for teamwork, which is a likely research direction for
our work.

Towards an Approach for Modelling Uncertain ToM in MAS 5

(or not) shared beliefs under conditions of uncertainty, and how agents make
decisions using ToM and probabilistic reasoning.

2 Background

2.1 Theory of Mind and the Problem of Other Minds

ToM is the ability of humans to ascribe elements such as beliefs, desires, and
intentions, and relations between these elements to other human agents. In other
words, it is the ability to form mental models of other agents [1]. There are two
major theories about ToM. One theory of ToM is the Theory-Theory of Mind
(henceforth TT). TT can be described as a theory based approach for assigning
states to other agents. While some argue TT is nothing else but folk psychology,
others say that it is a more scientific way of mindreading [13]. The other major
theory is Simulation Theory of Mind (henceforth ST), which is described to be
‘process-driven rather than theory-driven’ [2]. In other words, ST emphasises
the process of putting oneself into another’s shoes. TT argues for a hypothesis
testing method of model extraction, whereas ST argues for a simulation based
method for model selection.

An important factor that influences the acquisition, formation, or modifica-
tion of ToM is uncertainty. Inferring the beliefs of others is a notorious episte-
mological issue named by philosophers The Problem of Other Minds [17]. The
problem still stands since the times of Descartes [23]. It would be unreasonable
for one to assume that ToM is absolute or that ToM is a universal set of beliefs
shared by all agents in a system. Therefore, we believe that a reasonable app-
roach to model how ToM is acquired and updated by artificial agents has to
be able to represent the uncertainty with which agents infer beliefs about other
agents’ beliefs.

2.2 Agent Communication Languages

Agent communication languages have been developed based on the speech act
theory [41]. Speech act theory is concerned with the role of language as actions.
Among the agent communication languages which emerged from the speech act
theory, FIPA-ACL [11] and KQML [10] are the best known.

In this work, for practical reasons, we choose KQML, which is the standard
communication language in the Jason platform [5], the multi-agent platform we
choose to implement this work. Knowledge Query and Manipulation Language
(KQML) was designed to support interaction among intelligent software agents,
describing the message format and message-handling protocol to support run-
time agent communication [10,25].

In order to make KQML broadly applicable, a semantic framework for KQML
was proposed in [22]. The semantics for KQML-based messages in the AgentS-
peak programming language, as given in [43] and implemented in Jason [5],
formalises how the locutions successively operate on the states of agents, mak-
ing the references to the mental attitudes of BDI agents explicit, thus addressing

6 Ş. Sarkadi et al.

some of the problems of ACLs pointed out in [44]. Based on that semantics, we
put forward the idea that agents are able to infer the likely model of other agents’
minds during the process of communication, i.e., agents are able to acquire and
update ToM, as we describe later in this paper.

2.3 Agent Oriented Programming Languages

Among the many AOPL and platforms, such as Jason, Jadex, Jack, AgentFac-
tory, 2APL, GOAL, Golog, and MetateM, as discussed in [4], we chose the Jason
platform [5] for our work. Jason extends the AgentSpeak language, an abstract
logic-based AOPL introduced by Rao [37], which is one of the best-known lan-
guages inspired by the BDI architecture.

Besides specifying agents with well-defined mental attitudes based on the
BDI architecture, the Jason platform [5] has some other features that are partic-
ularly interesting for our work, for example strong negation, belief annotations,
and (customisable) speech-act based communication. Strong negation helps the
modelling of uncertainty, allowing the representation of propositions that the
agent: (i) believes to be true, e.g., about(paper1, uncertain tom); (ii) believes
to be false, e.g., ¬about(paper2, uncertain tom); (iii) is ignorant about, i.e.,
the agent has no information about whether a paper is about uncertain tom
or not. Also, Jason automatically generates annotations for all the beliefs in
the agents’ belief base about the source from where the belief was obtained
(which can be from sensing the environment, communication with other agents,
or a mental note created by the agent itself). The annotation has the following
format: about(paper1, tom)[source(reviewer1)], stating that the source of the
belief that paper1 is about the topic tom is reviewer1. The annotations in Jason
can be easily extended to include other meta-information, for example, trust and
time as used in [26,30]. Another interesting feature of Jason is the communica-
tion between agents, which is done through a predefined (internal) action. There
are a number of performatives allowing rich communication between agents in
Jason, as explained in detail in [5]. Further, new performatives can be easily
defined (or redefined) in order to give special meaning to them2, which is an
essential characteristic for this work.

3 Running Example

As a running example, we will take the following university scenario with five
agents. The first agent, John, plays the role of a professor in the university, and
the other agents, named Bob, Alice, Nick, and Ted, play the role of students.
John has a relation of adviser with the students. Also, John is responsible for
distributing tasks to students, which the students can accept or refuse. John
keeps information about the students, in order to assign tasks that the students
are more likely to accept.
2 For example, [31,32] propose new performatives for argumentation-based communi-

cation between Jason agents.

Towards an Approach for Modelling Uncertain ToM in MAS 7

Our model can be formally defined as 〈Ag, T ,A,S〉, in which Ag represents
the set of agents, T the set of tasks of the kind T ⊆ A × S, describing an action
from A, requiring knowledge about a subset of subjects from S, that might
be executed to achieve the task T . In our example, we consider the following
actions, subjects, and tasks:

– A = {write paper, review paper, paper seminar}
– S = {mas, kr, tom}

– T =

⎧
⎨

⎩

task(write paper, [mas, tom])
task(review paper, [kr])
task(paper seminar, [tom, mas])

⎫
⎬

⎭

For example, the task to write a paper with the subjects MAS and ToM,
task(write paper, [mas, tom]), requires competence on both subjects: mas and
tom. Thus, this task has a greater likelihood to be accepted by a student
who desires to execute that particular task, or who likes to execute the
action write paper and believes that itself knows the necessary subjects (e.g.,
knows(mas) and knows(tom) are necessary to execute this example task). Thus
the probability of an agent ag to accept a task ti is given by the following
equation:

P (accepts(ag, taski)) =
{

P (Desag(taski)) if Desag(taski) ∈ ΔJohn

P (Belag(likes(ai))) × P (Belag(knows(S′))) otherwise

with
P (Belag(knows(S′))) =

∏

si∈S′
P (Belag(knows(si)))

where taski = task(ai, S′), for taski ∈ T , ai ∈ A, and S′ ⊆ S. ΔJohn represents
John’s knowledge.

Thus, considering our scenario, when John knows that some student ag likely
desires to execute a particular task taski, i.e., Desag(taski), it can use this infor-
mation to assign the task. Otherwise, John can calculate the likely acceptance
for each student ag, based on the probability of each student to like executing
that action, P (Belag(likes(ai))), and the knowledge the student has about each
of the required subjects P (Belag(knows(S′))). Note that, while modelling the
students’ desires is more difficult to obtain in our scenario, the students’ beliefs
are easily obtained by John, given that John frequently talks to students about
these subjects and tasks.

In reality, agents operate with uncertain information, especially in the cases
of thinking about other agents’ minds. The minds of others are considered to be
some sort of black boxes that are more or less accessible depending on the given
scenario. Reasoning under uncertainty is a classic case where bounded rationality
acts as a major constraint on what agents can infer from their beliefs. However,
even if agents are constrained by their access to information, it does not mean
that the agents cannot reach reasonable conclusions about the minds of other
agents [14,23].

8 Ş. Sarkadi et al.

In our scenario, John will reason and make decisions based on information it
has about the students’ minds, i.e., information from its ToM. Thus John will
reach conclusions based on uncertain information, given that its ToM contains
information about students’ minds that has been estimated through the commu-
nication John has had with the students. Considering that an approach to reason
about uncertain information, uncertain ToM in our case, is using probabilistic
reasoning, as described in [14], we have modelled John’s decision-making pro-
cess based on the probability of each information in John’s ToM to be correct,
considering some factors of uncertainty we will describe further in this paper.

4 Modelling ToM from Other Agents’ Actions

In this paper, we are going to consider the modelling of ToM based on commu-
nication only, which can be considered a general approach for any application,
based on the semantics of each speech act used. On the other hand, the seman-
tics for other actions, e.g., actions agents execute in the environment, might have
different meaning according to different application domains.

In order to describe our approach, we use the following notation: Belag(ψ)
means that an agent ag believes ψ; Desag(ψ) means that an agent ag desires
ψ; Δag represents the ag’s knowledge base. Two distinct agents are represented
using agi and agj , with agi, agj ∈ Ag, and agi �= agj . We label the updates
agents execute in their ToM with γ, which can be used to represent the uncer-
tainty of that information. In Sect. 5, we propose an approach for uncertain ToM,
which is a particular instance for such γ label.

The speech acts considered in this particular work and their semantics
are based on our work in [29]. Messages are represented as 〈sender, receiver,
performative, content〉, and the meaning of each message is associated with
the performative used:

• 〈agi, agj , tell, ψ〉 means a message sent by agent agi to agent agj , with the
tell performative, and content ψ. When agi sends this message, it carries
out the following update3 on its ToM:

Δagi
= Δagi

∪ Belagj (ψ)[γ] (1)

When agj receives this message, it carries out the following update on its
ToM:

Δagj
= Δagj

∪ Belagi (ψ)[γ] (2)

• 〈agi, agj , ask, ψ〉 means a message sent by agent agi to agent agj , with the
ask performative, and content ψ. When agi sends this message, it carries out
the following update on its ToM:

Δagi
= Δagi

∪ Belagj (Desagi (ψ))[γ] (3)

3 Note that we are ignoring any other updates agents execute in their mental attitudes,
given we are interested only in the updates agents make on their ToM.

Towards an Approach for Modelling Uncertain ToM in MAS 9

When agj receives this message, it carries out the following update on its
ToM:

Δagj
= Δagj

∪ Desagi (ψ)[γ] (4)

Before introducing our approach for uncertain ToM, imagine that ToM could
be modelled without uncertainty, i.e., that we could ignore γ in our semantic
rules. Then, based on these simple semantic rules for agent communication, we
are able to show that agents can reach shared beliefs in a relatively straightfor-
ward way [29].

Definition 1 (Shared Beliefs Using ToM). An agent agi will reach a state
of shared beliefs with another agent agj when, for a belief ϕ, it is able to match
its own belief ϕ with a ToM about agj believing ϕ, i.e., ϕ ∧ Belagj (ϕ).

Example (Shared Beliefs Without Uncertainty): Following the scenario
introduced, imagine that two students, Alice and Bob, need to work together
to accomplish a particular task paper seminar, which requires the subjects mas
(Multi-Agent Systems) and tom (Theory of Mind). Also, while Alice only knows
the subject of mas, Bob only knows the subject of tom. Considering that both
Alice and Bob need to know both topics in order to help each other during the
paper seminar, they decide to exchange knowledge about these topics. Thus,
they might reach some shared beliefs (knowledge) about both topics. Note that,
in this scenario, Alice and Bob assume that both are cooperating and both
are rational. Thus, Bob starts the dialogue telling Alice that “Theory of Mind
is an approach to model others’ minds”, i.e., 〈alice, tell, def(tom, “an app-
roach to model others’ mind”)〉. At that moment, following the semantics for
the tell performative (Eq. (1)), Bob updates its ToM with the following infor-
mation Belalice(def(tom), “an approach to model others’ minds”). After that,
when Alice receives this message, following the semantics for the tell perfor-
mative (Eq. (2)), Alice updates its belief base with the following information
def(tom, “an approach to model others’ mind”), as well as Alice updates its
ToM about Bob with Belbob(def(tom), “an approach to model others’ minds”).
At this moment, both Alice and Bob reach a state of shared belief about the
definition of tom, according to Definition 1.

However, agents operate under conditions of uncertainty in a MAS, and the
previous assumptions are hard to obtain; thus, agents will face uncertainty about
their ToM, and consequently about their shared beliefs. For example, when an
agent sends a message, it faces the uncertainty of the communication channel,
i.e., the uncertainty of the message reaching the receiver. Also, when receiving a
message, an agent faces the uncertainty of the truth of that statement, e.g., an
agent is not able to verify if the other agents are acting maliciously [33,40], thus
it needs to consider the uncertainty of information it receives for those agents
based on how much it trusts them [26,34,35].

One manner to overcome the uncertainty and reach a more accurate ToM,
following the literature on common knowledge [6], is increasing the communica-
tion between agents. Thus, an agent is able to increase the certainty on a given
agent agj believing ϕ, confirming whether its ToM about agent agj believing ϕ is
correct. That is, the agent is able to infer that agj believes ϕ by reinforcing this

10 Ş. Sarkadi et al.

belief through communication. Henceforth we describe our model for uncertain
ToM, which is compatible with that behaviour.

5 A Model of Uncertain ToM

In this section we propose an approach to model ToM that reflects the uncer-
tainty present in MAS. In order to show our approach, we are going to consider
some parameter values. The first, α, reflects the uncertainty of the communica-
tion channel when sending a message. The second, β, reflects the uncertainty of
the other agents telling the truth, i.e., when an agent agi tells ϕ to agent agj ,
agent agj is able to model that agi believes on ϕ with a degree of certainty equal
to β. For simplicity, we will assume that an agent will model its ToM about the
other agents with a degree of certainty equal to the trust it has on the source4,
following the ideas introduced in [34,35].

Definition 2. The label γ will be instantiated with γ = (α, t) for an agent send-
ing a message, and γ = (β, t) for an agent receiving a message, where α repre-
sents the uncertainty of the message reaching the target, β the uncertainty of the
sender telling the truth, and t a discrete representation of the time of the MAS
in which the message was exchanged.

Thus, following Definition 2, a trace of different updates on the ToM is con-
structed over time. Note that α and β reflect the uncertainty of an update at a
given time. In order to execute reasoning over the ToM, agents are able to use the
trace of these updates to calculate the degree of certainty on their model. Using
this trace, we are able to model some desired behaviour from communication
theory in agent communication, as we will describe later in this paper.

For example, considering our scenario, when Bob tells Alice that “Theory
of Mind is an approach to model others’ minds”, considering also that Bob
knows that the efficiency of the communication channel is 0.9, i.e., α = 0.9,
Bob will update its ToM, following the semantics for the tell performative
(Eq. (1)) and Definition 2, with the information Belalice(def(tom), “an approach
to model others’ minds”)[(0.9,ti)], with ti the discrete time when the communi-
cation occurred. When Alice receives this message, considering that the trust
Alice has on Bob telling the truth is 0.8, i.e., β = 0.8, and following the seman-
tics for the tell performative (Eq. (2)) and Definition 2, Alice updates its ToM
with Belbob(def(tom), “an approach to model other minds”)[(0.8,tj)], with tj the
discrete time at which the message was received, with ti < tj . Both Alice and
Bob model uncertainty of their ToM about each other believing on the definition
of ToM.

Considering uncertain ToM, we need to redefine shared beliefs, in order to
reflect the uncertainty of agents’ models.

4 In [28], the authors show that trust aggregates not only the sincerity of the source
but also the expertise the source has about the information communicated.

Towards an Approach for Modelling Uncertain ToM in MAS 11

Definition 3 (Shared Beliefs Using Uncertain ToM). An agent agi will
reach a state of shared beliefs with another agent agj when, for a belief ϕ, it is able
to match its own belief ϕ with a ToM about agj believing ϕ with a predetermined
degree of certainty χ, i.e., ϕ ∧ P (Belagj (ϕ)) ≥ χ, with χ a value describing the
certainty necessary to consider ϕ a shared belief.

Following the literature on common knowledge [6], if two individuals agi and
agj can repeatedly communicate, then they can repeatedly reinforce their mental
state regarding an information ϕ. For example, telling each other that ϕ is true,
they should increase the certainty of each others’ belief in ϕ. In order to model
this desired behaviour in our model, we maintain the trace of all updates an
agent executes in its ToM, and using this trace we are able to aggregate different
pieces of evidence in order to increase the certainty on ToM. There are many
different ways to model this desired behaviour on agent communication, and it
could consider the particularities of each application domain. In our scenario, the
information communicated by agents, e.g. a concept definition, does not change
over time. Thus, for simplicity, we do not weight each information according to
the time it was received and the current time of the MAS, we only consider
the number of evidences about that information. Thus, we model this desired
behaviour using the following equation:

P (BelAg(ϕ)) =

{
f(Belag(ϕ)) if f(Belag(ϕ)) <= 1
1 otherwise

(5)

f(Belag(ϕ)) =

∑

ti∈ΔT

v | Belag(ϕ)[(v,ti)]

|ΔT | + (λ × |ΔT |) (6)

with ΔT the number of occurrences of Belag(ϕ)[(v,ti)]
in the agent ToM, and

λ the evidence factor, i.e., a parameter that reinforce the certainty on that
information according to how often it occurs in the trace. Equation 6 calculates
the average of the trace for Belag(ϕ) plus the evidence factor. Thus, following
Definition 3, agi is able to reach a state of shared belief with another agent agj

about a belief ϕ when it is able to infer P (Belagj (ϕ)) ≥ χ from Eq. 5 with χ = 1,
for example.

Proposition 1 (Reaching Shared Beliefs—ToM with Uncertainty).
When λ is a positive value, agents are able to eventually reach a state of shared
beliefs, even considering χ = 1, provided they communicate the same informa-
tion repeatedly. Also, the greater the value of λ, the faster agents will reach the
state of shared beliefs.

Example (Shared Beliefs Under Conditions of Uncertainty): Following
our example, imagine that Bob wants to reach a state of shared beliefs with
Alice about the definition of ToM under the conditions of uncertainty described
above. Thus, after sending the previous message and updating its ToM with
Belalice(def(tom), “an approach to model others’ minds”)[(0.9,ti)], Bob has two
options to increase the certainty on its ToM about Alice believing on that defini-
tion: (i) telling Alice that definition more times, or (ii) asking Alice the definition

12 Ş. Sarkadi et al.

of ToM and waiting for an answer from Alice, in which Alice tells Bob the def-
inition of ToM. Considering λ = 0.1, in the first case, when Bob tells Alice
about the definition of ToM one more time, following the semantics for the tell
performative (Eq. (1)) and Definition 2, Bob adds Belalice(def(tom), “an app-
roach to model others’ minds”)[(0.9,tj)] to its ToM, with ti < tj . Thus, Eq. 5
returns 1, considering the average 0.9 + 0.2 from the evidence factor, which is
0.1 multiplied by the number of evidences (Eq. (6)). Also, following the seman-
tics for the tell performative (Eq. (2)) and Definition 2, Alice updates its ToM
with Belbob(def(tom), “an approach to model other minds”)[(0.8,tj)], and Eq. (5)
returns 1, considering the average 0.8 + 0.2 from the evidence factor (Eq. (6)).
Thus, they reach a state of shared belief about the definition of ToM5, consid-
ering χ = 1 in Definition 3. In the other case, Bob asks to Alice to tell him
the definition of ToM, and it waits for the answer. When Alice tells Bob the
definition of ToM, Alice and Bob update their ToM with Belbob(def(tom), “an
approach to model other minds”)[(0.9,tj)], Belalice(def(tom), “an approach to
model others’ minds”)[(0.8,ti)], respectively. For both, Eq. (5) returns 1, consid-
ering the average 0.85 + 0.2 from the evidence factor, reaching a state of shared
beliefs about the definition of ToM according to Definition 3 with χ = 1.

6 Decision Making Using Uncertain ToM

Apart from enabling agents to model other agents’ minds and allowing them
to improve their models during communicative interactions, it is also essential
that agents are able to make decisions using these models. Normally, a decision-
making process is associated with the application domain, i.e., it is domain
dependent. Therefore, we will present the decision-making process for the task
assignment problem introduced in Sect. 3.

In our scenario, during advising sessions, John asks students about different
tasks they like to execute, as well as the different subjects the students are
reading about (the subjects the students know about). Thus, John acquires
ToM about the students, and its ToM becomes more accurate as they have more
advising sessions, and consequently they communicate more with each other.

John
ToM

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Belalice(likes(paper seminar))[0.8]
Belalice(likes(write paper))[0.7]
Belbob(likes(review paper))[0.9]
Belbob(likes(write paper))[0.8]
Belnick (likes(review paper))[0.6]
Belnick (likes(write paper))[0.5]
Bel ted(likes(write paper))[0.8]
Bel ted(likes(paper seminar))[0.4]
Bel ted(likes(review paper))[0.6]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

5 When considering γ = 0.1 and α and β >= 0.8, agents are able to reach shared
beliefs communicating only 2 messages.

Towards an Approach for Modelling Uncertain ToM in MAS 13

For example, John has asked (in different meetings and times) Bob, Alice,
Nick, and Ted which academic tasks they like to execute, e.g., 〈bob,
AskIf , likes(T)〉. After receiving this message, according to the semantic rule
for the ask performative (Eq. (4)), each student knows that John desires to
know which task they like to execute. Based on this knowledge, each student
has answered to John the tasks they like to execute, John has received these
messages and updated its ToM as shown in JohnToM

6.
Continuing with the example, during a meeting Alice asks John if there

is any scheduled paper seminar about ToM and MAS, i.e., 〈john,AskIf ,
task(paper seminar, [tom, mas]〉. Thus, based on the semantic rule for the ask
performative (Eq. (4)), John models that Alice is likely to desire that task, i.e.,
Desalice(task(paper seminar, [tom, mas]))[0.7], answering positively. Also, imag-
ine that John has asked the students which subject they have knowledge about,
resulting in the following additional information to John’s ToM:

John
ToM

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Belalice(knows(tom))[0.8] Belbob(knows(mas))[0.8]
Belalice(knows(mas))[0.9] Belbob(knows(kr))[0.9]
Belnick (knows(kr))[0.8] Bel ted(knows(tom))[0.8]
Belnick (knows(mas))[0.7] Bel ted(knows(kr))[0.5]
Belnick (knows(tom))[0.8] Bel ted(knows(mas))[0.8]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Using its ToM, John executes the probabilistic reasoning described in Sect. 3,
which computes the likelihood for each student to accept each task as shown in
Table 1. Note that the likelihood of Alice accepting the task paper seminar

Table 1. Likelihood calculation for task assignment

Student Task Likelihood

Alice task(write paper, [mas, tom]) 0.5

Alice task(review paper, [kr]) 0.0

Alice task(paper seminar, [tom, mas]) 0.7

Bob task(write paper, [mas, tom]) 0.0

Bob task(review paper, [kr]) 0.8

Bob task(paper seminar, [tom, mas]) 0.0

Nick task(write paper, [mas, tom]) 0.3

Nick task(review paper, [kr]) 0.5

Nick task(paper seminar, [tom, mas]) 0.0

Ted task(write paper, [mas, tom]) 0.5

Ted task(review paper, [kr]) 0.2

Ted task(paper seminar, [tom, mas]) 0.1

6 We do not represent the time at which the messages were communicated, but since
they were communicated at different times we introduced different values for γ.

14 Ş. Sarkadi et al.

is based on the information Desalice(task(paper seminar, [tom, mas]))[0.7] in
John’s ToM, while the other results are based on the likelihood of the students
liking a particular task and knowing the subjects related to that task. Thus, John
concludes that it is possible to increase the probability of each task to be accepted
by the students by offering the task task(paper seminar, [tom, mas]) to Alice,
offering task(review paper, [kr]) to Bob, and offering task(write paper,
[mas, tom]) to Ted.

7 Future Work

Uncertainty does not only arise from noisy communication channels or levels
of trust between agents. As future work, we plan to add an environment to
our model in order to represent how agents infer ToM from the observation
of actions performed by other agents in that environment. The modelling of
ToM based on these aspects faces complex issues such as the ones mentioned
in [7]: “the slamming of a door communicates the slammer’s anger only when
the intended observer of that act realises that the slammer wanted both to slam
the door in his face and for the observer to believe that to be his intention”.
This means that there is both uncertainty about the slammer’s intentions and
uncertainty about the act of slamming the door, which could be caused by an
accidental shove or by natural means, hence not represent a communicative act.
Therefore, observing such an event occur should not cause the observer to make
any inference about the slammer’s mental state. That being said, modelling ToM
based on environment observations requires more than only representing both
intended and non-intended acts of communication. The slammer might very
well not intend to communicate when slamming the door, but that does not
stop the observer from reading a message when observing the slamming of the
door. These complex issues arise with the inclusion of ToM because agents are
able to project beliefs in the minds of other agents they share an environment,
or even just a communication channel, with. Therefore, the agents that project
beliefs can be subject to what is known as the Mind Projection Fallacy [18]. An
agent commits this fallacy using ToM when the agent incorrectly assigns beliefs
to another agent’s mind7. In our future work, we hope to improve our model in
order to be able to represent complex phenomena such as the mind projection
fallacy.

8 Conclusions

We have proposed an approach for agents to acquire and update their ToM
during communication whilst reflecting on the uncertainty of this process. To
the best of our knowledge, our work is the first to explicitly address acquisition
and update of uncertain ToM in MAS. In order to show how our approach allows
us to model desired properties from communication and common knowledge

7 It is similar to committing a type I error in a statistical analysis.

Towards an Approach for Modelling Uncertain ToM in MAS 15

theories [6], we have proposed a model for uncertain ToM. Using our approach,
agents are able to reach accurate ToM and, consequently, accurate shared beliefs
by reinforcing their mental attitudes through communication. Furthermore, in
this work, we have shown not only how agents acquire and update ToM based on
agent communication, but also how agents reason and make decisions using ToM.

The modelling of ToM in MAS under the condition of uncertainty is an
important step towards obtaining more realistic and more socially aware artificial
agents. We argue that the approach we used to model ToM in MAS is in tune
with what we believe to be an upcoming discipline in the field of AI, namely the
study of machine behaviour as proposed by [36]. Thus, modelling ToM is relevant
to both the AI community and to multi-disciplinary research groups because it
offers the possibility to study how agents reach agreements with [24], cooperate
with [39], or even behave dishonestly towards [33,40] other agents using more
realistic models of social interactions.

Acknowledgements. We gratefully acknowledge the partial support from CAPES
and CNPq. Special thanks to Francesca Mosca for the support and for the feedback on
this paper.

References

1. Apperly, I.A.: What is theory of mind? concepts, cognitive processes and individual
differences. Q. J. Exp. Psychol. 65(5), 825–839 (2012)

2. Barlassina, L., Gordon, R.M.: Folk psychology as mental simulation. In: Zalta,
E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, summer 2017 edn. (2017)

3. Black, E., Atkinson, K.: Choosing persuasive arguments for action. In: The 10th
International Conference on Autonomous Agents and Multiagent Systems, pp. 905–
912 (2011)

4. El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.): Multi-Agent
Programming. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-
89299-3

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason (Wiley Series in Agent Technology). Wiley, Hoboken
(2007)

6. Chwe, M.S.Y.: Rational Ritual. Culture, Coordination, and Common Knowledge.
Princeton University Press, Princeton (2001)

7. Cohen, P.R., Perrault, C.R.: Elements of a plan-based theory of speech acts. In:
Readings in Distributed Artificial Intelligence, pp. 169–186. Elsevier (1988)

8. de Weerd, H., Verheij, B.: The advantage of higher-order theory of mind in the
game of limited bidding. In: Proceedings of the Workshop on Reasoning About
Other Minds, CEUR Workshop Proceedings, vol. 751, pp. 149–164 (2011)

9. de Weerd, H., Verbrugge, R., Verheij, B.: Higher-order social cognition in rock-
paper-scissors: a simulation study. In: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 1195–1196 (2012)

10. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communica-
tion language. In: Proceedings of the 3rd international conference on Information
and knowledge management, pp. 456–463. ACM (1994)

https://doi.org/10.1007/978-0-387-89299-3
https://doi.org/10.1007/978-0-387-89299-3

16 Ş. Sarkadi et al.

11. FIPA, T.: FIPA communicative act library specification. Foundation for Intelli-
gent Physical Agents (15.02.2018) (2008). http://www.fipa.org/specs/fipa00037/
SC00037J.html

12. Goldman, A.I.: Theory of mind. In: The Oxford Handbook of Philosophy of Cog-
nitive Science, 2012 edn. vol. 1, Oxford Handbooks Online (2012)

13. Gopnik, A., Glymour, C., Sobel, D.M., Schulz, L.E., Kushnir, T., Danks, D.: A
theory of causal learning in children: causal maps and bayes nets. Psychol. Rev.
111(1), 3 (2004)

14. Gopnik, A., Wellman, H.M.: Reconstructing constructivism: causal models,
Bayesian learning mechanisms, and the theory theory. Psychol. Bull. 138(6), 1085
(2012)

15. Hadidi, N., Dimopoulos, Y., Moraitis, P., et al.: Tactics and concessions for
argumentation-based negotiation. In: COMMA, pp. 285–296 (2012)

16. Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., McBurney, P.: Opponent mod-
elling in persuasion dialogues. In: International Joint Conference on Artificial Intel-
ligence, pp. 164–170 (2013)

17. Hyslop, A.: Other minds. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford University, spring 2016 edn. (2016)

18. Jaynes, E.T.: Probability theory as logic. In: Fougère, P.F. (ed.) Maximum Entropy
and Bayesian Methods. Springer, Dordrecht (1990). https://doi.org/10.1007/978-
94-009-0683-9 1

19. Kumar, S., Cohen, P.R.: STAPLE: an agent programming language based on the
joint intention theory. In: Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1390–1391 (2004)

20. Kumar, S., Cohen, P.R., Huber, M.J.: Direct execution of team specifications in
STAPLE. In: Proceedings of the 1st International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 567–568 (2002)

21. Kumar, S., Cohen, P.R., Levesque, H.J.: The adaptive agent architecture: achieving
fault-tolerance using persistent broker teams. In: Proceedings of Fourth Interna-
tional Conference on MultiAgent Systems, pp. 159–166 (2000)

22. Labrou, Y., Finin, T.: A semantics approach for KQML - a general purpose com-
munication language for software agents. In: Proceedings of the Third International
Conference on Information and knowledge Management, pp. 447–455. ACM (1994)

23. Leudar, I., Costall, A.: On the persistence of the problem of other minds in psychol-
ogy: chomsky, grice and theory of mind. Theory Psychol. 14(5), 601–621 (2004)

24. Luck, M., McBurney, P.: Computing as interaction: agent and agreement technolo-
gies. In: IEEE International Conference on Distributed Human-machine Systems.
IEEE Press, Citeseer (2008)

25. Mayfield, J., Labrou, Y., Finin, T.: Evaluation of KQML as an agent communi-
cation language. In: Wooldridge, M., Müller, J.P., Tambe, M. (eds.) ATAL 1995.
LNCS, vol. 1037, pp. 347–360. Springer, Heidelberg (1996). https://doi.org/10.
1007/3540608052 77

26. Melo, V.S., Panisson, A.R., Bordini, R.H.: Argumentation-based reasoning using
preferences over sources of information. In: 15th International Conference on
Autonomous Agents and Multiagent Systems (2016)

27. Oren, N., Norman, T.J.: Arguing using opponent models. In: McBurney, P., Rah-
wan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS (LNAI), vol. 6057, pp.
160–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12805-
9 10

http://www.fipa.org/specs/fipa00037/SC00037J.html
http://www.fipa.org/specs/fipa00037/SC00037J.html
https://doi.org/10.1007/978-94-009-0683-9_1
https://doi.org/10.1007/978-94-009-0683-9_1
https://doi.org/10.1007/3540608052_77
https://doi.org/10.1007/3540608052_77
https://doi.org/10.1007/978-3-642-12805-9_10
https://doi.org/10.1007/978-3-642-12805-9_10

Towards an Approach for Modelling Uncertain ToM in MAS 17

28. Paglieri, F., Castelfranchi, C., da Costa Pereira, C., Falcone, R., Tettamanzi, A.,
Villata, S.: Trusting the messenger because of the message: feedback dynamics from
information quality to source evaluation. Comput. Math. Organ. Theory 20(2),
176–194 (2014)

29. Panisson, A.R., Sarkadi, S., McBurney, P., Parsons, S., Bordini, R.H.: On the
formal semantics of theory of mind in agent communication. In: 6th International
Conference on Agreement Technologies (2018)

30. Panisson, A.R., Melo, V.S., Bordini, R.H.: Using preferences over sources of infor-
mation in argumentation-based reasoning. In: 5th Brazilian Conference on Intelli-
gent Systems, pp. 31–26 (2016)

31. Panisson, A.R., Meneguzzi, F., Fagundes, M., Vieira, R., Bordini, R.H.: Formal
semantics of speech acts for argumentative dialogues. In: 13th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 1437–1438 (2014)

32. Panisson, A.R., Meneguzzi, F., Vieira, R., Bordini, R.H.: Towards practical argu-
mentation in multi-agent systems. In: Brazilian Conference on Intelligent Systems
(2015)

33. Panisson, A.R., Sarkadi, S., McBurney, P., Parsons, S., Bordini, R.H.: Lies, bullshit,
and deception in agent-oriented programming languages. In: Proceedings of the
20th International Trust Workshop, pp. 50–61 (2018)

34. Parsons, S., Sklar, E., McBurney, P.: Using argumentation to reason with and
about trust. In: McBurney, P., Parsons, S., Rahwan, I. (eds.) ArgMAS 2011. LNCS
(LNAI), vol. 7543, pp. 194–212. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33152-7 12

35. Parsons, S., Tang, Y., Sklar, E., McBurney, P., Cai, K.: Argumentation-based
reasoning in agents with varying degrees of trust. In: The 10th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 879–886 (2011)

36. Rahwan, I., Cebrian, M.: Machine behavior needs to be an academic dis-
cipline (2018). http://nautil.us/issue/58/self/machine-behavior-needs-to-be-an-
academic-discipline

37. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

38. Rienstra, T., Thimm, M., Oren, N.: Opponent models with uncertainty for strategic
argumentation. In: International Joint Conference on Artificial Intelligence, pp.
332–338 (2013)

39. Rosenschein, J.S.: Rational interaction: cooperation among intelligent agents
(1986)

40. Sarkadi, S.: Deception. In: IJCAI, pp. 5781–5782 (2018)
41. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge

University Press, Cambridge (1969)
42. Thimm, M.: Strategic argumentation in multi-agent systems. KI-Künstliche Intel-

ligenz 28(3), 159–168 (2014)
43. Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.H.: On the formal semantics

of speech-act based communication in an agent-oriented programming language.
J. Artif. Int. Res. 29(1), 221–267 (2007)

44. Wooldridge, M.: Semantic issues in the verification of agent communication lan-
guages. Auton. Agent. Multi-Agent Syst. 3(1), 9–31 (2000)

45. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Hoboken (2009)

https://doi.org/10.1007/978-3-642-33152-7_12
https://doi.org/10.1007/978-3-642-33152-7_12
http://nautil.us/issue/58/self/machine-behavior-needs-to-be-an-academic-discipline
http://nautil.us/issue/58/self/machine-behavior-needs-to-be-an-academic-discipline
https://doi.org/10.1007/BFb0031845

On the Formal Semantics of Theory
of Mind in Agent Communication

Alison R. Panisson1(B), S, tefan Sarkadi2, Peter McBurney2,
Simon Parsons2, and Rafael H. Bordini1

1 School of Technology, PUCRS, Porto Alegre, Brazil
alison.panisson@acad.pucrs.br, rafael.bordini@pucrs.br

2 Department of Informatics, King’s College London, London, UK
{stefan.sarkadi,peter.mcburney,simon.parsons}@kcl.ac.uk

Abstract. Recent studies have shown that applying Theory of Mind
to agent technologies enables agents to model and reason about other
agents’ minds, making them more efficient than agents that do not have
this ability or agents that have a more limited ability of modelling others’
minds. Apart from the interesting results of combining Theory of Mind
and agent technologies, an important premise has not been yet fully
investigated in the AI literature: how do agents acquire and update their
models of others’ minds? In the context of multi-agent systems, one
of the most natural ways in which agents can acquire models of other
agents’ mental attitudes is through communication. In this work, we
propose an operational semantics for agents to update Theory of Mind
through communication. We not only make our formalisation broadly
applicable by defining a formal semantics based on components from
the BDI architecture, but we also implement our approach in an agent-
oriented programming language that is based on that architecture.

Keywords: Multi-Agent Systems · Theory of Mind ·
Agent-Oriented Programming Languages

1 Introduction

It seems reasonable to assume that agents will be more effective at achieving
their goals during interactions if they understand the other entities involved.
Understanding others requires the capability of modelling and reasoning about
other agents’ minds. These characteristics are intrinsic to Theory of Mind (ToM)
[10]. ToM is the ability of humans to ascribe elements such as beliefs, desires,
and intentions, and relations between these elements to other human agents. In
other words, it is the ability to form mental models of other agents.

The Multi-Agent Systems (MAS) community is showing increased interest
in ToM [6,7,24]. One reason for this interest might be that ToM could boost
the quality of communication between agents that need to exchange information
in order to make decisions and reach meaningful agreements. By meaningful
c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 18–32, 2019.
https://doi.org/10.1007/978-3-030-17294-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_2

On the Formal Semantics of Theory of Mind in Agent Communication 19

agreements we mean agreements that result from a mutual understanding. We
consider mutual understanding to be represented by a certain set of shared beliefs
reached through communication.

Various studies have investigated the use of ToM in MAS. Among them, [6,7]
investigated the advantages of using different levels of ToM in games played by
agents, and [1,11,12,20,29], even though ToM is not mentioned, show the advan-
tages of modelling the opponent when considering strategies in argumentation-
based dialogues. All that work shows that modelling other agents’ minds is an
important topic of research, and the results are important contributions to the
MAS literature. However, as described in [32], most of the work on modelling
other agents’ minds assume ToM as given. This is an understandable assump-
tion, but it is nevertheless unrealistic given that there are no readily-available,
practical techniques for developing such agents. Also, as a result of relying on
such unrealistic assumption, the question of how agents acquire the model of
other agents’ minds has not been fully investigated. In this work, we propose a
formal semantics for updates that agents can effect to their ToM based on the
communication that they have with other agents, thus allowing them to acquire
a ToM.

Communication plays an important role in MAS [34], and takes places on
multiple levels. Communicating content is only one part of the process of com-
munication. It also includes forming the message in a way that will make the
sender’s purpose of communication clear to the receivers [8]. In order to make the
sender’s purpose clear, agent communication languages, such as FIPA-ACL [9]
and KQML [8], have been proposed based on speech act theory. Both languages
format message to include performatives in such a way that the sender’s pur-
pose will be clear to the agent that is receiving the communication, facilitating
the correct interpretation of the content of that communication. In this work we
show that, based on the semantics of the agent communication languages, agents
are able to infer the likely model of other agents’ minds, i.e., ToM, considering
the meaning of each communication exchange. Using ToM acquired from com-
munication, agents are able to reason and make decisions using other agents’
models.

The main contributions of this paper are: (i) an operational semantics,
formally defined, for updates that agents carry out on their ToM during
communication—to the best of our knowledge, our work is the first to propose a
formal model of how agents acquire and update ToM during communication in
multi-agent systems, particularly in the practical context of an Agent-Oriented
Programming Language (AOPL) based on the BDI architecture; (ii) an app-
roach for agent reasoning and decision making, and, in particular, we show how
agents can reach shared beliefs more efficiently than when they are not able to
model ToM.

20 A. R. Panisson et al.

2 Background

2.1 Agent Communication Languages

Agent communication languages have been developed based on speech act the-
ory [30]. Speech act theory is concerned with the role of language as actions. In
speech act theory, a speech act is composed by (i) a locution, which represents
the physical utterance; (ii) an illocution, which provides the speaker intentions
to the hearer; and (iii) the perlocution, which describes the actions that occur
as a result of the illocution. For example, “I order you to shut the door” is a
locution with an illocution of a command to shut the door, and the perlocution
may be that the hearer shuts the door. Thus, an illocution is considered to have
two parts, the illocutionary force and a proposition (content). The illocutionary
force describes the type speech act used, e.g., assertive, directive, commissive,
declarative, expressive.

Among the agent communication languages which emerged based on speech
act theory, FIPA-ACL [9] and KQML [8] are the best known. In this work, for
practical reasons, we choose KQML, which is the standard communication lan-
guage in the Jason Platform [3], the multi-agent platform we choose to implement
this work.

The Knowledge Query and Manipulation Language (KQML) was designed
to support interaction among intelligent software agents, describing the mes-
sage format and message-handling protocol to support run-time agent commu-
nication [8,17]. In order to make KQML broadly applicable, in [16] a semantic
framework for KQML was proposed. Considering the speech act semantics, they
argue that it is necessary to consider the cognitive state of the agents that use
these speech acts. Defining the semantics, the authors provided an unambiguous
interpretation of (i) how the agents’ states change after sending and/or receiving
a KQML performative, as well as (ii) the criteria under which the illocutionary
point of the performative is satisfied (i.e., the communication was effective).

2.2 Agent Oriented Programming Languages

Among the many AOPLs and platforms, such as Jason, Jadex, Jack, AgentFac-
tory, 2APL, GOAL, Golog, and MetateM, as discussed in [2], we chose the Jason
platform [3] for our work. Jason extends the AgentSpeak language, an abstract
logic-based AOPL introduced by Rao [28], which is one of the best-known lan-
guages inspired by the BDI architecture.

Besides specifying BDI agents with well-defined mental attitudes, the Jason
platform [3] has some other features that are particularly interesting for our work,
for example, strong negation, belief annotations, and (customisable) speech-act
based communication. Strong negation helps the modelling of uncertainty, allow-
ing the representation of things that the agent: (i) believes to be true, e.g.,
about(paper1, tom); (ii) believes to be false, e.g., ¬about(paper2, tom); (iii) is
ignorant about, i.e., the agent has no information about whether a paper is about
tom or not. Also, Jason automatically generates annotations for all the beliefs

On the Formal Semantics of Theory of Mind in Agent Communication 21

in the agents’ belief base about the source from where the belief was obtained
(which can be from sensing the environment, communication with other agents,
or a mental note created by the agent itself). The annotation has the following
format: about(paper1, tom)[source(reviewer1)], stating that the source of the
belief that paper1 is about the topic tom is reviewer1. The annotations in Jason
can be easily extended to include other meta-information, for example, trust and
time as used in [19,21]. Another interesting feature of Jason is the communica-
tion between agents, which is done through a predefined (internal) action. There
are a number of performatives allowing rich communication between agents in
Jason, as explained in detail in [3]. Furthermore, new performatives can be eas-
ily defined (or redefined) in order to give special meaning to them1, which is an
essential characteristic for this work.

3 Running Example

As a running example, we will consider a scenario with five agents in a university.
The first agent, named John, plays the role of a professor in the university, and
the other agents, named Bob, Alice, Nick, and Ted, play the role of students.
John has a relation of supervisor to the students. Also, John is responsible for
distributing some tasks to the students. In order to distribute the tasks, John
maintains information about the students, so as to distribute tasks to students
that have the required knowledge for each task.

Our model can be described as 〈Ag, T ,A,S〉, in which Ag represents the set
of agents, T the set of tasks of the kind T ⊆ A × S, representing an action
from A, requiring knowledge about a subset of subjects from S, that might
be executed to achieve the task T . In our example, we consider the following
actions, subjects, and tasks:

– A = {write paper, review paper, paper seminar}
– S = {mas, kr, tom}

– T =

⎧
⎨

⎩

task(write paper, [mas, tom])
task(review paper, [kr])
task(paper seminar, [tom, mas])

⎫
⎬

⎭

For example, the task for writing a paper on the subjects multi-agent systems
and theory of mind, task(write paper, [mas, tom]), requires competence on both
subjects (mas and tom). Thus, this task should be assigned to a student (or a
group of students) who knows both subjects.

4 Semantics for ToM in Agent Communication

4.1 The Basis for the Operational Semantics

To define the semantics for the updates agents execute in their ToM, we extend
the original operational semantics of AgentSpeak [33], which is based on a widely
1 For example, [22,23] propose new performatives for argumentation-based communi-

cation between Jason agents.

22 A. R. Panisson et al.

used method for giving semantics to programming languages [27]. It is important
to mention that we are interested in the operational semantics for the updates
agents execute in their ToM, which considers the performatives (locutions) as
computational instructions that operate successively on the states of agents [18].
The operational semantics is given by a set of inference rules. These inference
rules define a transition relation between configurations represented by the tuple
〈ag , C,M, T, s〉, originally defined in [33], as follows:

• ag is a set of beliefs bs, a set of plans ps, and a set of theories of minds ToM.
• An agent’s circumstance C is a tuple 〈I, E,A〉 where:

– I is a set of intentions {i, i′, . . .}. Each intention i is a stack of partially
instantiated plans.

– E is a set of events {(te, i), (te ′, i′), . . .}. Each event is a pair (te, i), where
te is a triggering event and i is an intention—a stack of plans in case of
an internal event, or the empty intention T in case of an external event.
An example is when the belief revision function (which is not part of the
AgentSpeak interpreter but rather of the agent’s overall architecture),
updates the belief base, the associated events—i.e., additions and dele-
tions of beliefs—are included in this set. These are called external events;
internal events are generated by additions or deletions of goals from plans
currently executing.

– A is a set of actions to be performed in the environment.
• M is a tuple 〈In,Out〉 whose components characterise the following aspects of

communicating agents (note that communication is typically asynchronous):
– In is the mail inbox: the multi-agent system runtime infrastructure

includes all messages addressed to this agent in this set. Elements of this
set have the form 〈mid , id , ilf , cnt〉, where mid is a message identifier, id
identifies the sender of the message, ilf is the illocutionary force of the
message, and cnt its content: a (possibly singleton) set of AgentSpeak
predicates or plans, depending on the illocutionary force of the message.

– Out is where the agent posts messages it wishes to send; it is assumed
that some underlying communication infrastructure handles the delivery
of such messages. Messages in this set have exactly the same format as
above, except that here id refers to the agent to which the message is to
be sent.

• When giving semantics to an AgentSpeak agent’s reasoning cycle, it is useful
to have a structure which keeps track of temporary information that may be
subsequently required within a reasoning cycle. In this particular work, we
consider only Tι, which records a particular intention being considered along
the execution of one reasoning cycle.

• The current step within an agent’s reasoning cycle is symbolically annotated
by s ∈ {ProcMsg,SelEv,RelPl,ApplPl, SelAppl,AddIM,SelInt,ExecInt,ClrInt}.
These labels stand for, respectively: processing a message from the agent’s
mail inbox, selecting an event from the set of events, retrieving all relevant
plans, checking which of those are applicable, selecting one particular appli-
cable plan (the intended means), adding the new intended means to the set of

On the Formal Semantics of Theory of Mind in Agent Communication 23

intentions, selecting an intention, executing the selected intention, and clear-
ing an intention or intended means that may have finished in the previous
step.

• The semantics of AgentSpeak makes use of “selection functions” which allow
for user-defined components of the agent architecture. We use here only the
SM function, as originally defined in [33]; the select message function is used
to select one message from an agent’s mail inbox.

In the interests of readability, we adopt the following notation in the seman-
tics rules:

• If C is an AgentSpeak agent circumstance, we write CE to make reference to
the E component of C, and similarly for other components of the multi-agent
system and of the configuration of each agent.

• We write b[s(id)] to identify the origin of a belief, where id is an agent iden-
tifier (s refers to source)

4.2 Tell Performative

It is important to note that when we consider agents that are able to model other
agents’ minds during communication, both sides, sender and receiver, execute
updates in their ToM. The sender will be able to infer the likely model of the
receiver’s mind after receiving the message, and the receiver will be able to infer
the likely model of the sender based on the message received. In the semantics
presented in [33], there are separate semantic rules for sending and receiving a
message. We follow the same approach here.

Considering the Tell performative, when the sender agent sends a message
to a receiver agent sid with the content ϕ, first the sender checks if the receiver
will believe that information Bel sid(ϕ), using a function func send (which we
assume as given and is domain dependent), based on ToM it already has about
the receiver agToM and the relevant beliefs in its belief base agbs . The sender
will also annotate this ToM belief with a label γ that represents, for example, the
likelihood of the belief (i.e., a certainty on the expected state of mind). Note that
γ represents an estimation of the uncertainty given that no absolute inference is
possible in regards to an agent’s private state of mind.

Tι = i[head ← .send(sid ,Tell , ϕ);h]
func send(ϕ, agToM , agbs) = Bel sid(ϕ)[γ]

〈ag , C, M, T,ExecInt〉 −→ 〈ag ′, C′, M ′, T,ProcMsg〉
where:
M ′

Out = MOut ∪ {〈mid , sid ,Tell , ϕ〉}
with mid a new message identifier;

C′
I = (CI \ {Tι}) ∪ {i[head ← h]}

ag ′
ToM = agToM + Bel sid(ϕ)[γ]

C′
E = CE ∪ {〈+Bel sid(ϕ)[γ],T〉}

(SndTell)

After the agent updates its mail outbox MOut with the message, it updates
its current intention to i[head ← h] (considering the action .send(sid ,Tell , ϕ)

24 A. R. Panisson et al.

that has already been executed), then it updates its ToM with the prediction of
a belief Bel sid(ϕ)[γ], creating an event 〈+Bel sid(ϕ)[γ],T〉 that may be treated in
a later reasoning cycle, possibly forming a new goal for the agent based on this
new information.

Conversely, when a receiver agent receives a Tell message from an agent sid ,
first it checks whether the sender believes ϕ based on its previous ToM about
the sender and the relevant information in its belief base. This expectation of
a state of mind results from function func rec. A label γ is used to annotate
relevant information such as the confidence on the projected state of mind.

SM (MIn) = 〈mid , sid ,Tell , ϕ〉
func rec(ϕ, agToM , agbs) = Bel sid(ϕ)[γ]

〈ag , C, M, T,ProcMsg〉 −→ 〈ag ′, C′, M ′, T,ExecInt〉
where:
M ′

In = MIn \ {〈mid , sid ,Tell , ϕ〉}
ag ′

bs = agbs + ϕ[s(sid)]
ag ′

ToM = agToM + Bel sid(ϕ)[γ]

C′
E = CE ∪ {〈+ϕ[s(sid)],T〉} ∪ {〈+Bel sid(ϕ)[γ],T〉}

(Tell)

After that, the agent updates its mail inbox MIn , its belief base agbs with this
new information ϕ[s(sid)] (following the original semantics of AgentSpeak [33]),
and it updates its ToM about the sender with Bel sid(ϕ)[γ]. Both of these updates
(on the ToM and the belief base) generate events to which the agent is able to
react.

Note that the predictions resulting from func send and func rec can be dif-
ferent from the actual state of mind of the other agents. Therefore, a good
prediction model, considering both the ToM and relevant information from the
agents’ belief base, plays an important role when modelling ToM based on agent
communication. Such models might consider the uncertainty present in agent
communication, agents’ autonomy and self interest, trust relations, reliability,
etc. Thus, there are many different ways to instantiate such a model, and our
approach allows different models to be implemented through the user-defined
func send and func rec functions. Proposing a particular model for uncertainty
on ToM is out of the scope of this work. Therefore, we will omit γ in our exam-
ples. A model for uncertain ToM can be found in our work presented in [31].

Example: Considering the scenario introduced in Sect. 3, imagine that John
meets his students every week in order to supervise their work. In a particular
meeting with Alice, Alice asks John about the definition of ToM, and John
responds Alice with the following message: 〈alice, tell, definition(tom, “an
approach to model others’ minds”)〉. At that moment, John is able to model that
Alice believes the definition of Theory of Mind as “an approach to model others’
minds”, i.e., John models BelAlicedefinition(tom,“an approach to model
others’ minds”)) according to the SndTell semantic rule. Also, when Alice
receives the message, Alice is able to model that John believes on that definition

On the Formal Semantics of Theory of Mind in Agent Communication 25

for ToM, i.e., Alice models BelJohndefinition(tom, “an approach to model
others’ minds”)) according to the Tell semantic rule.

4.3 Achieve Performative

Considering the Achieve performative, when a sender agent sends a message
with the content ϕ, it expects that the receiver agent will likely desire ϕ. It
can predict this result using its previous ToM about the receiver, agToM , and
the relevant information in its belief base, agbs , resulting in Dessid(ϕ)[γ] (where
again γ is an estimation of how likely the receiver is to adopt that goal).

Tι = i[head ← .send(sid ,Achieve, ϕ);h]
func send(ϕ, agToM , agbs) = Dessid(ϕ)[γ]

〈ag , C, M, T,ExecInt〉 −→ 〈ag ′, C′, M ′, T,ProcMsg〉
where:
M ′

Out = MOut ∪ {〈mid , sid ,Achieve, ϕ〉}
with mid a new message identifier;

C′
I = (CI \ {Tι}) ∪ {i[head ← h]}

ag ′
ToM = agToM + Dessid(ϕ)[γ]

C′
E = CE ∪ {〈+Dessid(ϕ)[γ],T〉}

(SndAchieve)

The sender agent updates its mail outbox MOut , its current intention, its ToM
about the receiver with the prediction Dessid(ϕ)[γ], and an event is generated
from the update in its ToM.

On the other hand, when a receiver agent receives an Achieve message, it
can safely conclude that the sender desire ϕ itself, using its previous ToM about
the sender and the relevant information from its belief base.

SM (MIn) = 〈mid , sid ,Achieve, ϕ〉
func rec(ϕ, agToM , agbs) = Dessid(ϕ)[γ]

〈ag , C, M, T,ProcMsg〉 −→ 〈ag ′, C′, M ′, T,ExecInt〉
where:
M ′

In = MIn \ {〈mid , sid ,Achieve, ϕ〉}
ag ′

ToM = agToM + Dessid(ϕ)[γ]

C′
E = CE ∪ {〈+!ϕ,T〉} ∪ {〈+Dessid(ϕ)[γ],T〉}

(Achieve)

The receiver agent updates its mail inbox MIn and its ToM about the sender,
which generates an event 〈+Dessid(ϕ)[γ],T〉. Also, another event +!ϕ is gener-
ated, and the agent is able to autonomously decide whether to achieve ϕ or not.
In case it decides to achieve ϕ, then the agent will look for a plan that achieves
ϕ and make that plan one of its intentions.

Example: Continuing our scenario, imagine that during a meeting with
Bob, John realises that it could be interesting for Bob to read a paper
about multi-agent systems, so John sends the following message to Bob:
〈bob, achieve, read(bob, paper mas)〉. At that time, John is able to model

26 A. R. Panisson et al.

that Bob desires to read the paper, i.e., DesBob(read(bob, paper mas)) accord-
ing to the SndAchieve semantic rule. Also, Bob is able to model that
John desires that Bob reads the paper, i.e., DesJohn(read(bob, paper mas))
according to the Achieve semantic rule. Bob is able to react to the event
+!read(bob, paper mas), searching for a plan to achieve that goal and turn-
ing the plan into one of Bob’s intentions. A simple plan, written in Jason, that
Bob could use to achieve this goal is shown below:

+!read(Ag,Paper)

: .my_name(Ag) & desires(Sup,read(Ag,Paper)) & supervisor(Sup,Ag)

<- read(Paper).

The plan above says that, when an event of the type +!read(Ag,Paper)
is generated, then if Ag unifies with the name of the agent executing
this plan (obtained with .my name(Ag)), and if the agent believes that its
supervisor desires that it reads that paper (desires(Sup,read(Ag,Paper))
and supervisor(Sup,Ag)), then the agent will proceed to execute the
action read(Paper). Note that the Achieve semantic rule provides the
context (precondition) necessary for Bob to execute this plan, con-
sidering the unification {Ag �→ bob, Paper �→ paper mas, Sup �→ john} and
that desires(john,read(bob,paper mas)) is the code representation for
DesJohn(read(bob, paper mas)).

4.4 Ask-If Performative

Considering the AskIf performative, when the sender agent sends a message with
the content ϕ, the only inference the agent can make is that the other agent will
believe that the sender desires to know ϕ, i.e., Bel sid(Desag(ϕ))[γ].

Tι = i[head ← .send(sid ,AskIf , ϕ);h]
func send(ϕ, agToM , agbs) = Bel sid(Desag(ϕ))[γ]

〈ag , C, M, T,ExecInt〉 −→ 〈ag ′, C′, M ′, T,ProcMsg〉
where:
M ′

Out = MOut ∪ {〈mid , sid ,AskIf , ϕ〉}
with mid a new message identifier;

C′
I = (CI \ {Tι}) ∪ {i[head ← h]}

ag ′
ToM = agToM + Bel sid(Desag(ϕ))[γ]

C′
E = CE ∪ {〈+Bel sid(Desag(ϕ))[γ],T〉}

(SndAskIf)

The sender agent updates its mail outbox MOut , its current intention and its
ToM about the receiver with the prediction Bel sid(Desag(ϕ))[γ], thus an event is
generated from the update in its ToM. Conversely, when a receiver agent receives
the message, it is able to infer that the sender desires to know ϕ. After that,
in both cases the agent updates its mental state similarly to the other semantic
rules.

On the Formal Semantics of Theory of Mind in Agent Communication 27

SM (MIn) = 〈mid , sid ,AskIf , ϕ〉
func rec(ϕ, agToM , agbs) = Dessid(ϕ)[γ]

〈ag , C, M, T,ProcMsg〉 −→ 〈ag ′, C′, M ′, T,ExecInt〉
where:
M ′

In = MIn \ {〈mid , sid ,AskIf , ϕ〉}
ag ′

ToM = agToM + Dessid(ϕ)[γ]

C′
E = CE ∪ {〈+Dessid(ϕ)[γ],T〉}

(AskIf)

Example: Continuing our scenario, imagine that during a group meet-
ing, John asks all students if they like paper seminars, using the follow-
ing message: 〈{bob, alice, nick, tom}, AskIf, like(Ag, paper seminar))〉. At that
moment John considers that all students believe that John desires to know who
likes paper seminars, BelAlice(DesJohn(like(Ag, paper seminar))), according to
the SndAskIf semantic rule. Also, all students think that John desires to know
who likes paper seminars, DesJohn(like(Ag, paper seminar)), according to the
AskIf semantic rule. Two simple plans, written in Jason, that students could
use to react the event generated by adding DesJohn(like(Ag, paper seminar))
to their ToM is shown below:

+!desires(Sup,like(Ag,Task))
: .my_name(Me) & like(Me,Task) & supervisor(Sup,Me)
<- .send(Sup,tell,like(Me,Task)).

+!desires(Sup,like(Ag,Task))
: .my_name(Me) & ¬like(Me,Task) & supervisor(Sup,Me)
<- .send(Sup,tell,¬like(Me,Task)).

The plans above say that an agent will tell John that it likes a particular
task if it likes the task. Otherwise, an agent will tell John that it does not
like that task. For example, Alice likes paper seminars, answering John with
the following message: 〈john, tell, like(alice, paper seminar)〉. In this case,
John will update its ToM stating that Alice likes paper seminars, and Alice
will update its ToM stating that John believes that she likes paper seminars
Bel john(like(alice, paper seminar)), according to the Tell and SndTell
semantic rules. In the future, as John has this information, it would be able
to allocate a task to a student who likes that task.

5 Reaching Shared Beliefs Using ToM

In [33], the authors showed how agents are able to reach shared beliefs. That
approach for agents reaching shared beliefs starts with an agent agi, which
believes in ϕ, sending to another agent agj a tell message with the content
it desires to became a shared belief, i.e., 〈agj , tell, ϕ〉. Thus, following the
semantics in [33], agent agj will receive the message and update its belief base
with ϕ[source(agi)]. Then, agent agi needs to send a message to agent agj to

28 A. R. Panisson et al.

achieve that shared belief, i.e., 〈agj , achieve, ϕ〉, thus the agent agj is able to
execute the same procedure, sending a tell message to the agent agi with ϕ, i.e.,
〈agi, tell, ϕ〉. Finally, agent agi receives this message and updates its belief base
to ϕ[source(itself), source(agj)], reaching the state of shared beliefs.

Definition 1 (Shared Beliefs [33]). An agent agi will reach a state of shared
beliefs with another agent agj when, for a belief ϕ[S] with S the different sources
of ϕ, both itself and agj are sources of ϕ, i.e., source(self), source(agj) ∈ S.

Considering agents that are able to model ToM, we are able to redefine the
idea of shared beliefs, including the model of other agents’ minds, i.e., a ToM.

Definition 2 (Shared Beliefs using ToM). An agent agi will reach a state
of shared beliefs with another agent agj when, for a belief ϕ, it is able to match
its own belief ϕ with a ToM about agj believing ϕ, i.e., ϕ ∧ Belagj (ϕ)[γ], with γ
the parameter describing, for example, the certainty on ToM required to consider
ϕ a shared belief.

When we assume that agents are cooperative, they trust each other, and
the network infrastructure guarantees that messages will reach their intended
receivers, we also are able to assume that there is no uncertainty of the ToM
agents model about each other. Thus, we are able to ignore the label γ, which
aims to model uncertainty of ToM.

Proposition 1 (Reaching Shared beliefs—ToM without Uncertainty).
Without uncertainty of ToM, agents able to model ToM are able to reach a state
of shared beliefs faster (with fewer messages) than agents without this ability.

Proof (sketch). Following the semantic rule SndTell, when an agent agi believes
in ϕ and it is able to model ToM, then it is able to reach a state of a shared
belief ϕ with another agent agj communicating a single message 〈agj , tell, ϕ〉 to
agj . When the agent agi sends this message, it updates its ToM with Belagj (ϕ),
reaching the state of shared beliefs according to the Definition 2. Agents that
are not able to model ToM will need at least two messages, i.e., a tell message
each, according to the semantics from [33] and Definition 1.

Example: Following the scenario introduced in Sect. 3, imagine that during the
meetings John has had with his students, the students tell John which subjects
they know more about, and John has the following information of his students,
according to the Tell semantic rule:
⎧
⎪⎪⎨

⎪⎪⎩

knows(alice, tom) knows(bob, mas)
believes(alice, knows(alice, tom)) believes(bob, knows(bob, mas))
knows(nick, kr) knows(ted)
believes(nick, knows(nick, kr)) believes(ted, knows(tom, [tom, mas]))

⎫
⎪⎪⎬

⎪⎪⎭

Given this knowledge and the tasks John wants to allocate to his stu-
dents, John decides to assign the tasks as follows: task(write paper, [mas, tom])

On the Formal Semantics of Theory of Mind in Agent Communication 29

to Ted, who knows about both subjects needed for completing that task,
task(review paper, [kr]) to Nick, who is the only student able to execute that
task, and grouping Alice and Bob for the task task(paper seminar, [tom, mas]).
If Bob only knows mas and Alice only knows tom, then they need to share their
knowledge in order to successfully perform the task.

Reaching Shared Beliefs: Alice and Bob need to work together to accomplish
this particular task, which requires the subjects mas (Multi-Agent Systems) and
tom (Theory of Mind). Bob only knows the subject of mas and Alice only knows
the subject of tom. Considering that together Alice and Bob know both topics
in order to help each other during the paper seminar, they decide to exchange
knowledge about these topics. Thus, they might reach some shared beliefs
(knowledge) about both topics. Note that, in this scenario, Alice and Bob assume
that both are cooperating and both are rational. Thus, Alice starts the dia-
logue telling Bob that “Theory of Mind is an approach to model others’ minds”,
i.e., 〈bob, tell, def(tom, “an approach to model others’ minds”)〉. At that
moment, following the semantic rule SndTell, Alice updates its ToM with the
following information Belbob(def(tom, “an approach to model others’ minds”)).
When Bob receives this message, following the semantic rule Tell,
Bob updates its belief base with the following information def(tom,
“an approach to model others’ minds”), as well as its ToM about Alice with
Belalice(def(tom, “an approach to model other minds”)). By now, both Alice
and Bob have reached a state of shared belief about the definition of tom, accord-
ing to Definition 2. They proceed sharing the relevant information about each
topic until they both feel confident about both topics. Reaching shared beliefs
(knowledge) is important for this particular task, in which, when the audience
asks them questions about the topics tom and mas, both Alice and Bob are able
to answer the questions because they both have sufficient knowledge about the
topics.

6 Future Work

The relation of trust between agents [19,25,26] is an interesting property agents
could consider in a model for uncertain ToM. Our approach allows us to model
uncertainty through the functions func rec() and func send(), labelling the
uncertainty of that information using γ. Even though our approach allows us
to model ToM that reflects uncertainty, we believe that the modelling of uncer-
tain ToM is a task that falls beyond the scope of this particular paper and we
thus leave it as future work.

Another aspect of ToM to be considered in future work is that ToM can also
be inferred by agents from the environment by observing other agents’ actions.
The modelling of ToM based on these aspects is part of our ongoing research
and it faces some more complex issues such as the ones mentioned in [5]: “the
slamming of a door communicates the slammer’s anger only when the intended
observer of that act realises that the slammer wanted both to slam the door in his

30 A. R. Panisson et al.

face and for the observer to believe that to be his intention”. This means that
there is both uncertainty about the slammer’s intentions and uncertainty about
the act of slamming the door, which could be caused either by an accidental
shove or by natural means, which would not represent a communicative act and,
therefore, observing such an event occur should not cause the observer to make
any inference about the slammer’s mental state.

7 Related Work and Conclusions

As mentioned before, to the best of our knowledge, there is no work that explic-
itly and formally describes how agents acquire and update ToM during com-
munication. However, our work is inspired by others who have investigated
agents that use models of other agents in reasoning and decision making, e.g.,
[1,6,7,11,12,20,29]. Also, we took some inspiration from the STAPLE language,
that seems to have ceased to be used. The STAPLE (Social and Team Agents
Programming Language) language has its logic semantics based on joint inten-
tion theory [13]. STAPLE has the goal of reaching a fault-tolerant approach to
programming teamwork, in which the authors argue that a team is more than a
collection of individuals working together to achieve a common goal. The agents
in a team must have shared goals as well as a shared mental state [15]. Thus,
STAPLE enables agents to specify the models of other agents, as well as tempo-
ral properties of actions and events, allowing them to reason about group beliefs,
team intentions, and team commitments [14]. Note that our approach is more
general than that, in which ToM could be used to implement similar approaches
to teamwork and scalable cooperation, which is a likely research direction for
our work.

In this paper, we have defined the formal semantics for updates agents execute
on their ToM during communication. The formal semantics uses components
based on the BDI model and it is, therefore, broadly applicable to any BDI
based AOPL. To the best of our knowledge, our work is the first to address
a formal model for ToM in agent communication. We have showed not only
how agents acquire and update ToM based on agent communication, but we
have also shown how agents reason and make decisions using ToM through an
illustrative scenario. The modelling, the implementation and the study of agents
that are able to model other agents’ minds (i.e., ToM) goes beyond the current
interests of the AI community, in which the main research scope is to implement
rational and efficient software agents that are able to reason and make decisions
in order to simulate and study the social behaviour of intelligent entities [24].
ToM is also regarded as important by other research communities that engage in
the interdisciplinary study of communication, negotiation, social behaviour, and
developmental psychology [4]. We consider that it would be very useful for these
interdisciplinary communities to have the possibility to use AOPLs in order to
study ToM or any other problems in which ToM plays a significant role.

Acknowledgements. We gratefully acknowledge the partial support from CAPES
and CNPq.

On the Formal Semantics of Theory of Mind in Agent Communication 31

References

1. Black, E., Atkinson, K.: Choosing persuasive arguments for action. In: The 10th
International Conference on Autonomous Agents and Multiagent Systems, pp. 905–
912 (2011)

2. El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.): Multi-
Agent Programming: Languages, Tools and Applications, 1st edn. Springer, Boston
(2009). https://doi.org/10.1007/978-0-387-89299-3

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley Series in Agent Technology. Wiley, Chichester
(2007)

4. Carr, A., Slade, L., Yuill, N., Sullivan, S., Ruffman, T.: Minding the children: a
longitudinal study of mental state talk, theory of mind, and behavioural adjustment
from the age of 3 to 10. Soc. Dev. 27(4), 826–840 (2018)

5. Cohen, P.R., Perrault, C.R.: Elements of a plan-based theory of speech acts. In:
Readings in Distributed Artificial Intelligence, pp. 169–186. Elsevier (1988)

6. de Weerd, H., Verheij, B.: The advantage of higher-order theory of mind in the
game of limited bidding. In: Proceedings of the Workshop Reasoning About Other
Minds, CEUR Workshop Proceedings. vol. 751, pp. 149–164 (2011)

7. de Weerd, H., Verbrugge, R., Verheij, B.: Higher-order social cognition in rock-
paper-scissors: a simulation study. In: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 1195–1196 (2012)

8. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communica-
tion language. In: Proceedings of the 3rd International Conference on Information
and knowledge management, pp. 456–463. ACM (1994)

9. TCC FIPA: FIPA communicative act library specification. Foundation for Intel-
ligent Physical Agents (2008). http://www.fipa.org/specs/fipa00037/SC00037J.
html. 15 Feb 2018

10. Goldman, A.I.: Theory of mind. In: The Oxford Handbook of Philosophy of Cog-
nitive Science, vol. 1. Oxford Handbooks Online, 2012 edn. (2012)

11. Hadidi, N., Dimopoulos, Y., Moraitis, P., et al.: Tactics and concessions for
argumentation-based negotiation. In: COMMA, pp. 285–296 (2012)

12. Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., McBurney, P.: Opponent mod-
elling in persuasion dialogues. In: International Joint Conference on Artificial Intel-
ligence IJCAI, pp. 164–170 (2013)

13. Kumar, S., Cohen, P.R.: Staple: an agent programming language based on the
joint intention theory. In: Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1390–1391 (2004)

14. Kumar, S., Cohen, P.R., Huber, M.J.: Direct execution of team specifications in
STAPLE. In: Proceedings of the 1st International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 567–568. ACM (2002)

15. Kumar, S., Cohen, P.R., Levesque, H.J.: The adaptive agent architecture: achieving
fault-tolerance using persistent broker teams. In: Proceedings of the 4th Interna-
tional Conference on MultiAgent Systems, pp. 159–166 (2000)

16. Labrou, Y., Finin, T.: A semantics approach for KQML - a general purpose com-
munication language for software agents. In: Proceedings of the 3rd International
Conference on Information and Knowledge Management, pp. 447–455. ACM (1994)

17. Mayfield, J., Labrou, Y., Finin, T.: Evaluation of KQML as an agent communi-
cation language. In: Wooldridge, M., Müller, J.P., Tambe, M. (eds.) ATAL 1995.
LNCS, vol. 1037, pp. 347–360. Springer, Heidelberg (1996). https://doi.org/10.
1007/3540608052 77

https://doi.org/10.1007/978-0-387-89299-3
http://www.fipa.org/specs/fipa00037/SC00037J.html
http://www.fipa.org/specs/fipa00037/SC00037J.html
https://doi.org/10.1007/3540608052_77
https://doi.org/10.1007/3540608052_77

32 A. R. Panisson et al.

18. McBurney, P., Parsons, S.: Dialogue games for agent argumentation. In: Simari, G.,
Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 261–280. Springer,
Boston (2009). https://doi.org/10.1007/978-0-387-98197-0 13

19. Melo, V.S., Panisson, A.R., Bordini, R.H.: Argumentation-based reasoning using
preferences over sources of information. In: Fifteenth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (2016)

20. Oren, N., Norman, T.J.: Arguing using opponent models. In: McBurney, P., Rah-
wan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS (LNAI), vol. 6057, pp.
160–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12805-
9 10

21. Panisson, A.R., Melo, V.S., Bordini, R.H.: Using preferences over sources of infor-
mation in argumentation-based reasoning. In: 5th Brazilian Conference on Intelli-
gent Systems, pp. 31–36 (2016)

22. Panisson, A.R., Meneguzzi, F., Fagundes, M., Vieira, R., Bordini, R.H.: Formal
semantics of speech acts for argumentative dialogues. In: 13th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 1437–1438 (2014)

23. Panisson, A.R., Meneguzzi, F., Vieira, R., Bordini, R.H.: Towards practical argu-
mentation in multi-agent systems. In: Brazilian Conference on Intelligent Systems,
pp. 98–103 (2015)

24. Panisson, A.R., Sarkadi, S., McBurney, P., Parsons, S., Bordini, R.H.: Lies, bullshit,
and deception in agent-oriented programming languages. In: Proceedings of the
20th International Trust Workshop, pp. 50–61 (2018)

25. Parsons, S., Sklar, E., McBurney, P.: Using argumentation to reason with and
about trust. In: McBurney, P., Parsons, S., Rahwan, I. (eds.) ArgMAS 2011. LNCS
(LNAI), vol. 7543, pp. 194–212. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33152-7 12

26. Parsons, S., Tang, Y., Sklar, E., McBurney, P., Cai, K.: Argumentation-based
reasoning in agents with varying degrees of trust. In: The 10th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 879–886 (2011)

27. Plotkin, G.D.: A structural approach to operational semantics (1981)
28. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.

In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

29. Rienstra, T., Thimm, M., Oren, N.: Opponent models with uncertainty for strategic
argumentation. In: International Joint Conference on Artificial Intelligence IJCAI,
pp. 332–338 (2013)

30. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge (1969)

31. Sarkadi, S., Panisson, A.R., McBurney, P., Parsons, S., Bordini, R.H.: Towards an
approach for modelling uncertain theory of mind in multi-agent systems. In: 6th
International Conference on Agreement Technologies (2018)

32. Thimm, M.: Strategic argumentation in multi-agent systems. KI-Künstliche Intel-
ligenz 28(3), 159–168 (2014)

33. Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.H.: On the formal semantics
of speech-act based communication in an agent-oriented programming language.
J. Artif. Int. Res. 29(1), 221–267 (2007)

34. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2009)

https://doi.org/10.1007/978-0-387-98197-0_13
https://doi.org/10.1007/978-3-642-12805-9_10
https://doi.org/10.1007/978-3-642-12805-9_10
https://doi.org/10.1007/978-3-642-33152-7_12
https://doi.org/10.1007/978-3-642-33152-7_12
https://doi.org/10.1007/BFb0031845

Accountability for Practical
Reasoning Agents

Stephen Cranefield1(B) , Nir Oren2(B) ,
and Wamberto W. Vasconcelos2(B)

1 University of Otago, Dunedin, New Zealand
stephen.cranefield@otago.ac.nz

2 University of Aberdeen, Aberdeen, UK
n.oren@abdn.ac.uk, w.w.vasconcelos@abdn.ac.uk

Abstract. Artificial intelligence has been increasing the autonomy of
man-made artefacts such as software agents, self-driving vehicles and mil-
itary drones. This increase in autonomy together with the ubiquity and
impact of such artefacts in our daily lives have raised many concerns in
society. Initiatives such as transparent and ethical AI aim to allay fears of
a “free for all” future where amoral technology (or technology amorally
designed) will replace humans with terrible consequences. We discuss
the notion of accountable autonomy, and explore this concept within the
context of practical reasoning agents. We survey literature from distinct
fields such as management, healthcare, policy-making, and others, and
differentiate and relate concepts connected to accountability. We present
a list of justified requirements for accountable software agents and dis-
cuss research questions stemming from these requirements. We also pro-
pose a preliminary formalisation of one core aspect of accountability:
responsibility.

1 Introduction

Accountability has become an increasingly common term in public discourse,
with frequent demands for organisations and officials such as politicians, busi-
ness leaders, government agencies and public service organisations to be held
accountable for their actions (or lack of action). Dubnick [1] describes the term
“accountability” as a cultural keyword—one that was “culturally innocuous”
until the 1960s–70s, but has since undergone a massive growth in usage and
become an “expansive, ambiguous, and often enigmatic term with considerable
cultural gravitas”.

With the increasing capabilities and uptake of machine learning and other
AI techniques to aid human decision-making, the public desire for accountability
has begun to encompass the development and deployment of AI software [2,3],
and is likely to provide increasing urgency for researchers to address the emerg-
ing field of the ethical use of AI [4–6] (see also DeepMind’s “Ethics and Soci-
ety” initiative1). Due to the conspicuous success of deep learning classifiers and
1 https://deepmind.com/applied/deepmind-ethics-society/.

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 33–48, 2019.
https://doi.org/10.1007/978-3-030-17294-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_3&domain=pdf
http://orcid.org/0000-0001-5638-1648
http://orcid.org/0000-0002-4854-9014
http://orcid.org/0000-0001-5090-7581
https://deepmind.com/applied/deepmind-ethics-society/
https://doi.org/10.1007/978-3-030-17294-7_3

34 S. Cranefield et al.

reinforcement learning systems (e.g., Alphabet’s AlphaGo2), one particular
research focus is on understanding and addressing the inherent biases due to
the dependency of such systems on large sets of training data [7]. This is an
example of accountability applied to the people and organisations involved in
developing and deploying AI: academic (and increasingly public) debate is driv-
ing the development and application of norms of best practice [7].

However, in the context of AI systems that can act autonomously, the ques-
tion arises of whether, and how, such systems could themselves be considered
as “accountable”. This is particularly important for systems that are adaptive,
i.e., those that have the flexibility to modify their behaviour-generating processes
due to changes in their current knowledge of the world and their interactions with
other “agents”, which might be humans or other autonomous software systems.
This paper addresses the accountability of adaptive autonomous systems, with
a particular focus on agents that reason using goals and plans, such as belief-
desire-intention (BDI) agents [8–10], which have a long history of investigation
by researchers in the field of multi-agent systems.

The contributions of this article are: (i) a survey of the relevant literature on
accountability, drawing from diverse areas such as sociology, healthcare, manage-
ment, policy-making and artificial intelligence (especially autonomous and multi-
agent systems); (ii) a differentiation and correlation among concepts closely con-
nected to accountability such as responsibility, answerability, and others; we also
discuss the functional purpose of accountability; (iii) a justified list of require-
ments for accountable autonomous agents and research questions stemming from
these; and (iv) a preliminary formalisation of one core aspect of accountability:
answerability.

The rest of this paper is organised as follows. Section 2 surveys contribu-
tions from disparate areas, to answer the question “what is accountability?”.
Section 3 proposes, based on the literature surveyed, requirements to support
accountability in autonomous practical reasoning agents; for each requirement
we list associated research questions. In Sect. 4 we present a preliminary formal
model of one aspect of accountability: answerability. We conclude the paper in
Sect. 5, discussing our approach, contributions and further research.

2 What Is Accountability?

There has been a small amount of prior work related to accountability of
autonomous systems, but it is not clear that this work has formed a consen-
sus on what accountability entails, or how well that work aligns with the view
of accountability in other academic fields. Therefore, in this section we sur-
vey the literature on accountability from disparate fields such as policy-making,
sociology, management and computing science (especially artificial intelligence
and multi-agent systems). Our aim is to identify the key requirements that an
autonomous agent would need to satisfy in order to be considered accountable.

2 https://deepmind.com/research/alphago/.

https://deepmind.com/research/alphago/

Accountability for Practical Reasoning Agents 35

Chopra and Singh [11] describe accountability as a normative concept in the
context of socio-technical systems: “accountability requirements describe how
principals ought to act in each other’s eyes, providing a basis for their mutual
expectations”. They give two examples of accountability requirements: a meet-
ing participant who is accountable for turning up to a meeting after accepting an
invitation, and a food company that is accountable to a regulator for maintaining
certain tracking information and providing it to a regulator on demand. However,
it is not clear from this discussion to what degree (if any) the authors believe
the computational representations and processes needed to support account-
ability might differ from existing techniques developed by multi-agent systems
researchers for reasoning about norms and commitments [12,13].

Baldoni et al. [14] propose the study of computational accountability. They
consider accountability to be an ethical value, and define accountability as “the
acknowledgment and assumption of responsibility for decisions and actions that
an individual, or an organization, has towards another party”. They note that,
implicitly, “individuals are expected to account for their actions and decisions
when put under examination”. The paper focuses on multi-agent systems that
track the state of conditional social commitments using business artifacts, in
order to “coordinate their activities, e.g. through responsibility assignment, as
well as to identify liabilities”. It is argued that the “analysis of accountability
can be accomplished by looking at commitment relationships”.

In later work, Baldoni et al. [15,16] take the viewpoint of accountability as
a mechanism, summarised by Bovens et al. [17] as “an institutional relation or
arrangement in which an agent can be held to account by another agent or insti-
tution”. They consider how such an institutional mechanism can be provided
by design in a multi-agent system (MAS), and seek to provide “structures that
allow assessing who is accountable without actually infringing on the individual
and private nature of agents” and to “determine action impact or significance by
identifying the amount of disruption it causes in terms of other agents and/or
work affected” [15]. To this end, they present five “necessary-but-not-sufficient
principles that an MAS system must exhibit in order to support accountability
determination” [15]. These principles state that (i) agents should interact within
the scope of an organisation, (ii) must join the organisation by taking on a role,
(iii) can be accountable only for goals they have explicitly accepted, and (iv)
may specify the resources they need to satisfy a goal (which may be provided,
or not, at the organisation’s discretion). The fourth principle is endowed with
particular significance for accountability determination: “Should an uniformed
agent stipulate insufficient provisions for an impossible goal that is then accepted
by an organization, that agent will be held accountable because by voicing its
provisions, it declared an impossible goal possible” [16]. Baldoni et al. opera-
tionalise these principles as an “accountability protocol” to be followed when an
agent joins an organisation. This protocol ensures the creation of specific types
of commitment between agents and between agents and the organisation. This
work is situated within a particular paradigm of organisational multi-agent sys-
tems in which organisations are supported by specialised coordination artifacts,
whereas we seek a more general model of computational accountability.

36 S. Cranefield et al.

Dignum [18] addresses the question of how AI systems can be designed
responsibly to ensure they are “sensitive to moral principles and human value
[sic]”. She discusses three principles of responsible AI: accountability, respon-
sibility and transparency (ART). Accountability is described as “the need to
explain and justify one’s decisions and actions to its partners, users and others
with whom the system interacts”. In addition, there is a need for moral values
and social norms to be represented and included in the system’s deliberations
and explanations of its decisions.

Other multi-agent systems researchers have investigated related concepts
such as responsibility, which we discuss in Sect. 2.1, after a more general look at
the literature on accountability.

Dubnick [1] notes that it is difficult to find a definition of accountability that
is not circular or specific to a qualifying adjective (e.g. “political accountabil-
ity”). In the latter case, Dubnick observes that “whatever substantive meaning
might be in the word accountability is overwhelmed and subordinated to the
demands of the specific task environment”. Fox [19] also notes the lack of clarity
around the meaning of accountability and related concepts, stating that “the
terms transparency and accountability are both quite malleable and therefore –
conveniently – can mean all things to all people”.

Bovens et al. [17] discuss the views of accountability in the social psycholog-
ical, accounting, public administration, political science, international relations
and constitutional law literature. They observe that there is a “minimal con-
sensus” in the academic literature. Schillemans [20] expresses this consensus as
follows:

(1) Accountability is about providing answers, about answerability,
towards others with a legitimate claim in some agents’ work. (2) Account-
ability is furthermore a relational concept: it focuses our attention
on agents who perform tasks for others (3) Accountability is ret-
rospective . . . and focuses on the behavior of some agent in general,
ranging from performance and results to financial management, reg-
ularity or normative and professional standards. (4) . . . accountability
consists of three analytically distinct phases. In the first phase, the
agent/accountor/actor renders an account on his conduct and performance
to a significant other. This may be coined the information phase. In the
second phase, the principal/accountee/forum assesses the . . . transmitted
information and both parties often engage in a debate on this account.
The principal/accountee/forum may ask for additional information and
pass judgment on the behaviour of the agent/accountor/actor. The
agent/accountor/actor will then answer to questions and if necessary jus-
tify and defend his course of action. This is the debating phase. Finally, the
principal/accountee/forum comes to a concluding judgment and decides
whether and how to make use of available sanctions. This is the sanctions
or judgment phase.

Accountability for Practical Reasoning Agents 37

From this, we note that accountability revolves around some form of
accountability relationship between an accountee and accountor. As discussed
in Sect. 3.1, many of the properties of this relationship have not yet been for-
malised.

Emanuel and Emanuel [21] give a definition of accountability in the domain
of healthcare: “Accountability . . . entails procedures and processes by which one
party provides a justification and is held responsible for its actions by another
party that has an interest in the actions”. They consider the following compo-
nents of accountability: the locus of accountability, i.e. who can be held account-
able, the domain of accountability, i.e. for what activities, practices or issues “a
party can legitimately be held responsible and called on to justify or change its
action”, and the procedures of accountability, divided into evaluation of compli-
ance and dissemination of evaluations to seek “responses or justifications” from
accountable parties.

2.1 Related Concepts

Dubnick [1, Fig. 2.4] categorises various concepts related to accountability that
are motivated by “moral pull” (i.e., due to external forces): liability, answerabil-
ity, responsibility, responsiveness (in the legal, organisational, professional and
political settings, respectively), and those motivated by “moral push” (i.e., due
to internal managerial efforts): obligation, obediance, fidelity, amenability (in
the same four settings, respectively).

The relationships between accountability, responsibility and answerability
seem especially subject to varying viewpoints. Dubnick [1] notes that one can
be “responsible for some event, for example the marriage of two people who
met because (one) did not take the empty seat between them on the bus, with-
out being held to account for it”. Eshleman [22] discusses various philosophical
views on moral responsibility. The accountability view holds that “an agent is
responsible, if and only if it is appropriate for us to hold her responsible, or
accountable, via the reactive attitudes . . . (e.g. resentment)”. Another influential
view, referred to by Eshleman as the answerability view, is that “someone is
responsible for an action or attitude just in case it is connected to her capacity
for evaluative judgment in a way that opens her up, in principle, to demands for
justification from others”.

In the practice of business management, a Responsible, Accountable, Con-
sulted, and Informed (RACI) matrix is a recognised [23] tool to map where
responsibility and accountability are assigned for activities. In this context, the
responsible parties are those who work on the activity (responsibility may be
shared), whereas the accountable party is the (unique) person with “yes or
no authority” over the activity and “about whom it is said ‘The buck stops
here’ ” [24].

Researchers in multi-agent systems and deontic logic have addressed the con-
cept of responsibility as the problem of assigning blame for failures of group plans
or norms [25–36]. This problem has been well studied in the literature, and as
determining responsibility is a process performed by a principal, it is largely

38 S. Cranefield et al.

orthogonal to our focus in this paper: the capabilities needed for an accountable
agent to play its role in an accountability relationship with a principal. There-
fore, we do not attempt to summarise the literature on responsibility as blame
assignment.

In the context of the responsible development of AI systems, Dignum [18]
defines transparency as “the need to describe, inspect and reproduce the mecha-
nisms through which AI systems make decisions and learn to adapt to their envi-
ronment, and to the governance of the data used or created”. Fox [19] discusses
the relationship between transparency and accountability in human institutions,
which is conventionally expressed as “transparency generates accountability”.
After reviewing the empirical literature he concludes that transparency is neces-
sary for accountability, but far from sufficient. In particular, his analysis shows
that “opaque transparency” (limited to providing access to information) does not
necessarily result in accountability, whereas an overlap between transparency and
accountability occurs when there is answerability, i.e. the capacity or right to
demand answers. However, answerability without consequences (e.g. sanctions)
is a “soft” form of accountability. To guarantee “hard accountability” (answer-
ability plus consequence, such as sanctions), the intervention of other “public
sector actors” is needed.

Winikoff [37] considers the question of the trustability of autonomous systems,
i.e., how humans can come to trust them, and proposes three prerequisites for
such trust: there should be a social framework for recourse; if the system makes
a decision with negative consequences for the user, the system should be able
to explain its behaviour; and the system should be subject to verification and
validation to give assurance that key behavioural properties hold.

2.2 The Functional Purpose of Accountability

When setting out to design accountable software agents it is important to con-
sider the functional purpose of accountability. Is accountability simply something
that satisfies a human desire to feel empowered (even if there is no other effect),
or are there some system-level benefits? In the former case, there may be no
point in creating accountable agents unless they are interacting with people or
other agents. In the latter case, it is necessary to identify the benefits that we
wish our agents (or their society) to enjoy.

The purpose of accountability has been analysed in the human context.
Bovens provides this commentary [38]:

“So why is accountability important? . . . In the academic literature and in
policy publications about public accountability, three answers recur, albeit
implicitly, time and again. Accountability is important to provide a demo-
cratic means to monitor and control government conduct, for preventing
the development of concentrations of power, and to enhance the learning
capacity and effectiveness of public administration.”

Accountability for Practical Reasoning Agents 39

The first and last of these answers seem most relevant to software agents (assum-
ing that our agents are not power-seeking). The first reason (control) is also noted
by Mulgan [39]:

“The core sense of accountability is clearly grounded in the general purpose
of making agents or sub-ordinates act in accordance with the wishes of their
superiors. Subordinates are called to account and, if necessary, penalized
as means of bringing them under control.”

We note that this also highlights a motivational aspect of accountability: a ratio-
nal agent (as software agents are generally designed to be) will be likely to pri-
oritise goals for which it is accountable, and devote more resources to them. This
is due to the expected costs of requests for answers and possible sanctions in the
event of sub-standard performance or failure.

Bovens elaborates on the third reason above (enhancing learning) as follows:

“The purpose of public accountability is to induce the executive branch to
learn. The possibility of sanctions from clients and other stakeholders in
their environment in the event of errors and shortcomings motivates them
to search for more intelligent ways of organising their business. Moreover,
the public nature of the accountability process teaches others in similar
positions what is expected of them, what works and what does not.”

The last sentence implies a norm-alignment and spreading function of account-
ability, as Bovens notes elsewhere in his article: “Norms are (re)produced, inter-
nalised and, where necessary, adjusted through accountability”.

We conclude that for (software) multi-agent systems, accountability has a
role to play in motivating good performance, and in monitoring and control
(when one agent is a subordinate of another). It can also allow for incremental
system improvement through learning or instruction, e.g. one agent may send
new plans to another agent as an outcome of an accountability dialogue, and can
enable the alignment and spreading of norms. When human users or partners
are involved, we also see accountability contributing to the alignment of values.

3 Requirements for Accountable Autonomous Agents

Based on the literature discussed above, we propose that in order to support
accountability, an autonomous practical reasoning agent should have the follow-
ing four properties:

Expectation-Aware. The agent should be able to understand when it becomes
subject to the expectations of others, for example through norms and com-
mitments, such as the obligation to provide answers to accountability queries.
It should also expect to be held to account, and possibly incur a sanction,
after poor performance and failure—this provides the motivation to perform
well. Its practical reasoning should be informed by these expectations. This
property is likely to be crucial in ensuring that the following two properties
are exercised correctly.

40 S. Cranefield et al.

Answerable. The agent should be able to answer retrospective queries about its
decision-making, within some pre-established scope. These queries may not be
made immediately, so it must maintain sufficient information about its past
reasoning to enable these queries to be answered. Note that answerability is
similar to the concept of explainability, but includes the relational aspects
of accountability: an accountable agent is answerable to a specific party that
may send queries within some (possibly limited) scope, and these must be
answered.

Argumentative. Full accountability cannot be achieved by one-off queries
alone. To enable accountability processes to lead to system improvement
(including norm and value alignment), an accountable agent should be capa-
ble of undertaking extended accountability dialogues in which beliefs, plans,
norms and values are challenged, justified and further queried.

Meta-Cognitive. The agent must be able to adapt its reasoning mechanisms
as a result of accountability dialogues. For example, an agent may need to
update its plans, its plan selection mechanism, its failure-handing mecha-
nism, its norms, or its values as a result of advice from its principal. The
ability of an agent to alter its own decision-making components is known
as meta-cognition [40], although we do not require the agent to monitor its
own cognition, but rather to make changes when required by accountability
mechanisms.

Additionally, when the scope of accountability includes actions that affect people,
the following property is also required:

Value-Aware. The agent should maintain information about the relative impor-
tance of human values to its organisation or human partner(s) or client(s), and
take these into account during its reasoning [41]. This in line with Dignum’s
ART model of responsible AI [18].

3.1 Research Questions

Various research questions stem from the requirements above. When extending
autonomous agents to meet the requirements, we have:

Expectation-Aware. Research on norm-aware planning in BDI agents,
e.g., [42], indicate that it is desirable and possible to extend a standard
practical reasoning mechanism to address normative concerns. Our research
questions are

– What practical reasoning approach is most appropriate to be extended
with expectations stemming from accountability relationships?

– What is the minimal information required to enable expectation-aware
behaviour in autonomous agents?

– What game-theoretic aspects are there when agreeing (or not) to be
accountable for something?

Accountability for Practical Reasoning Agents 41

Answerable. There is a wealth of research on summarising and presenting data
and information to different stakeholders, e.g., [43,44]. We anticipate queries
to refer to rich and comprehensive records of decision-making processes and
their rationale. Some questions arising are

– What knowledge/information should be represented to support account-
ability?

– What extensions/adaptations are required in the decision-making pro-
cess(es) to ensure the knowledge and information of the previous question
is adequately represented?

– What kinds of queries should be supported in accountability relations?
Argumentative. Research on formal argumentation has matured and has been

applied to many contexts/domains [45]. Some issues arising are:
– Which formal argumentation techniques can be (re-)used, adapted or

extended in the context of accountability queries and how this can be
done?

– How can accountable behaviour (stemming from practical reasoning) be
combined/extended with argumentation capabilities?

– How can argumentation interactions support and affect accountable
behaviour (stemming from practical reasoning)?

Meta-Cognitive. Multi-agent plan selection and revision have been explored
through different approaches (e.g., [41,46,47]) indicating that practical rea-
soning must tackle meta-cognitive issues – agents not only build and follow
plans, but they must also reconsider/revisit decisions and reason about the
actual decision processes. Some questions arising are:

– Is there a need for many levels of meta-cognition, whereby agents become
aware about being aware about being aware and so on, or would a single
meta-cognition level suffice?

– Would meta-interpretation [48,49] be an adequate and flexible approach
to both meta-cognition and answerability?

– Should practical reasoning always embed meta-cognitive concerns or
should these only be addressed when agents are accountable for some
behaviour or result?

Value-Aware. Accountable agents seek to act, or answer queries, in a man-
ner which promotes the values of the organisation(s), human partner(s) or
client(s) to which they are accountable. In this context, research questions
include

– How can the actions for which one is held accountable be shown to align
to the values that should be promoted? Existing work on argument based
practical reasoning (e.g., [50]) demonstrates the links between action and
values, but not between accountability and values.

– How can the lack of promotion of a value (e.g., due to the sub-standard
execution of a task) trigger the accountability process?

4 Towards a Formalisation of Accountability

In this section we propose an initial high-level formalism of accountability, focus-
ing on answerability. We assume the accountable agent is equipped with a well

42 S. Cranefield et al.

studied form of expectation-awareness: the ability to represent and perform prac-
tical reasoning informed by norms such as obligations [51]. We consider that
answerability is naturally expressed as an organisational norm, or as a commit-
ment (if implicitly created via a commitment protocol [52]). We focus here on the
normative view and model answerability as a conditional obligation norm. It is
not the intention of this paper to define or commit to any specific formalisation
for obligations, so for brevity we use an existing notation from the literature:
the logic of Dignum et al. [53] for specifying temporal deontic constraints3.

answerable(ag , at ,QL,S , δt, rt) ≡
∀q PREV (ask(at, ag, q)) ∧ in scope(q,QL, S) −→

O(valid reply(ag, at, q, S, δt) < now + rt)

where:

– ag and at refer to the account-giver (or accountable party) and the account-
taker (or principal), following the terminology of Chopra and Singh [11].

– QL is an agreed (or imposed) query language in which accountability queries
will be expressed.

– S is an agreed (or imposed) scope of queries—not all queries that can be
expressed in QL may be relevant to the accountability relationship. Restric-
tions might include the types of goal considered, and the roles under which
the queried activities are performed. We make no commitment regarding how
S is expressed.

– δt is the length of the retrospective time period that accountability queries
can ask about (where δt = ∞ means there is no limit). This limits the time
interval for which ag must keep records of its decision-making processes.

– rt is the maximum time allowed for an answer to an accountability query to
be sent.

– PREV (a) means that the action leading to the current state was a.
– ask(at, ag, q) is the action of at asking ag the query q.
– in scope(q,QL, S) denotes the condition that the query q is expressed in the

query language QL and is within the scope S.
– O(a < t) denotes the obligation for action a to be done before time t.
– valid reply(ag, at, q, S, δt) is the action of ag sending at a valid answer for

query q within scope S, based on a trace of its reasoning for the last δt time
units. We do not attempt, within this obligation, to specify the notion of a
valid reply. Instead, we consider this an abstract action, and assume that ag
and at have a common understanding of what counts as [54] a valid reply.
Below we propose one option.

– now is a special variable used in the logic of Dignum et al. [53] to refer to the
time at which the obligation’s conditions become true.

3 This formalism is based on dynamic logic, but it is out of scope of this paper to
describe the semantics. Also, note that our purpose here is to specify the nature of
the obligation implied by answerability. For implementing accountability processes,
it is likely that agents can use less expresssive and possibly more specialised, repre-
sentations of their obligations.

Accountability for Practical Reasoning Agents 43

We now consider what could count as a valid answer to the query. An answer-
able agent should be obliged to provide information about its practical reasoning
that led to the queried behaviour, and that is relevant to the query. Before for-
malising this, we define some notation.

– τ
[t−δt,t]
ag denotes a full trace of the agent ag’s reasoning during the interval

[t − δt, t]. As well as recording successful plan executions, this trace must
include information about options considered and not selected, and action
and plan failures.

– Given a full trace τ , we write τ �q,S to denote the restriction of the trace to
contain only information relevant to the query q and scope S, and omit S if
there is no scope restriction. We leave as an open question whether such a
notion of relevance can be defined—if not, τ �q,S = τ .

We assume that queries are expressed declaratively, with answers returned
as variable bindings (or ⊥ to indicate failure), and that the trace is viewed as a
set of facts, and can therefore be decomposed into disjoint sets of facts. We then
propose the following conditions for a query reply to be considered valid (where
σ ranges over variable substitutions and ·∪ denotes disjoint union):

�σ : (τ [t−δt,t]
ag �q,S |= σ(q)) −→

reply(ag, at, q,⊥) counts as valid reply(ag, at, q, S, δt)

τ [t−δt,t]
ag �q,S |= σ(q) ∧

τ [t−δt,t]
ag �q,S = reasons ·∪ rest ∧ rest 	|= σ(q) −→

reply(ag, at, q, 〈σ, reasons〉) counts as valid reply(ag, at, q, S, δt)

The first clause states that a reply containing ⊥ is valid if the query cannot be
answered using the time- and scope-restricted trace. The first line of the second
clause expresses the condition that the answer is correct, i.e. σ(q) is entailed
by the scope- and time-restricted trace. The second line first extracts a set of
reasons from the trace, to help justify the query result, and then requires that
at least some of the reasons provided in the answer are necessary for the truth
of the answer—removing them from the trace would not allow the query to be
answered. When these conditions hold, a reply containing the substitution, i.e. a
set of variable bindings, and the reasons is considered valid. This notion of a
valid answer does not fully specify the reasons that should be given to justify
the answer. We believe these will be domain- and context-dependent, and in
general, we envisage the need for a dialogue between the two agents to build up
mutual information through a series of queries.

The use of τ
[t−δt,t]
ag above implies that ag should give an answer that is cor-

rect with respect to the full trace over the required retrospective time window.
However, that does not necessarily mean that ag must actually record the full
trace as implied by its semantics. Given a query scope S, it may be possible to
answer queries within that scope using a subset of the information in τ

[t−δt,t]
ag .

44 S. Cranefield et al.

We explain this intuition by using the notion of an abstraction of a transition
system. We can view the full trace as a transition system on time-stamped agent
internal states (but note that the transitions must include the evaluation of failed
reasoning rule conditions, as well as successes). Answering queries with a subset
of information means reasoning with an abstraction of the transition system [55],
which is defined over information states that are (potentially lossy) projections
of the full agent states.

For a projection function f and a trace τ , we denote the abstracted transition
system that f induces by τf . The task for the account-giver (or its designer) is
then, given a scope S, to find a projection function fS such that the following
property holds:

∀q : in scope(q, S),∀τ ∈ Traces,∀σ, (τ �q,S) |= σ(q)) ⇐⇒ (τfS �q |= σ(q))

This states that answering queries within scope S by projecting traces using fS

produces the same answers as would be obtained using scope-restricted traces.
This model of answerability opens a number of research directions, including

the following:

– There is a need to underpin the notation above with a formal model of agent
reasoning. In the context of debugging BDI agent programs, Winikoff [49]
provides such a model in the context of debugging agents by asking “why?”
and “why not?” questions, which are answered using traces of agent reasoning.
His formalism provides much of what is needed here. However, some aspects of
this approach may not suit the problem of answerability. For example, queries
may be asked some time after the computation in question was run, especially
in the case of suboptimal outcomes or failures, and the account-taker may only
have partial observability of the agent trace when asking its queries. Also,
Winikoff’s semantics assume that new beliefs can be semantically associated
with the actions they were consequences of. In practice, the world is more
complicated: actions can have various degrees of success and failure, and their
effects can vary accordingly. Also, the effects may not always be immediately
observable. To cater for these complexities, a richer domain model may be
needed, and explanations may need to be contingent on the most likely causes
of observations.

– A range of useful notions of query language and scope should be investigated.
Winikoff investigated questions seeking reasons for why, at a given point of
execution, plan steps were or were not performed, or specific conditions were
or were not believed. These could be extended to consider extended mod-
els of agent reasoning, e.g., those incorporating norms [51] and values [41].
Another potentially useful query type when the account-taker lacks the full
trace is “could you have performed X?” for a plan or action X. For argumen-
tative agents, the notion of a query language should be extended to include
assertions such as “P would have been a better plan to choose”.

– The problem of choosing a projection function fS given a scope S is important
to ensure that agents only need to record the minimal required information.
Also, there is the inverse question of what scope of queries can be answered
by an agent that keeps a specific type of audit trail.

Accountability for Practical Reasoning Agents 45

5 Conclusions, Discussion and Future Work

This paper surveyed the meaning and purpose of accountability in many areas,
connecting and differentiating it from closely related concepts such as respon-
sibility and transparency, among others. We identify the functional purpose of
accountability: it enables monitoring and control of self-interested agents of a
multi-agent system, and facilitates incremental improvements in the system. The
improvement comes about as agents, aware of what they are accountable for, fac-
tor this in their choices of autonomous behaviour; the interactions among agents
as they query and answer each other (this being guided by their accountability
relations) will enable sharing of “best practices” (plans which withstand scrutiny
and criticism), whilst aligning and spreading global norms. We have put forward
requirements for accountable practical reasoning agents, and for each of these
requirements we listed related research questions. We sketched a formalisation
for one aspect of accountability: answerability, as part of an investigation into
the normative constructs, the information model and reasoning mechanisms nec-
essary for accountable practical reasoning.

Concerns about advances in AI and their impact in society have caught the
attention of the media, governments and people in general. AI, coupled with
autonomous behaviour, has immense potential, and initiatives have championed
ethical and responsible principles for systems and their design. We hope we have
made a step towards accountable autonomy, whereby the design and execution of
practical reasoning agents is influenced by accountability. Ultimately, this paper
aims to increase awareness among the multi-agent systems and software agents
community of accountability and related ethical matters in our research. We
would also like to consider this paper as a call-to-arms: we can, as a community,
and building on the wealth of our research, lead the AI community in this quest
for ethical and responsible AI.

In addition to the various research questions raised in previous sections,
we are currently extending BDI practical reasoning technologies to explore
accountability issues. We are also developing our formalisation of accountability,
especially its connections with normative aspects as well as norm-aware BDI
reasoning.

References

1. Dubnick, M.J.: Accountability as a cultural keyword. In: Bovens et al. [56]
2. Billingham, P., Colin, A.: The democratisation of accountability in the digital

age: promise and pitfalls. In: Winner of Robert Davies Essay Competition 2016,
Skoll Centre for Social Entrepreneurship, Säıd Business School, The University of
Oxford, U.K. (2016). https://www.sbs.ox.ac.uk/sites/default/files/Skoll Centre/
Docs/Accountability BillinghamColin-Jones.pdf

3. Wachter, S.: Towards accountable A.I. in Europe? The Alan Turing Institute, U.K.
https://www.turing.ac.uk/blog/towards-accountable-ai-europe. Accessed 25 July
2018

https://www.sbs.ox.ac.uk/sites/default/files/Skoll_Centre/Docs/Accountability_BillinghamColin-Jones.pdf
https://www.sbs.ox.ac.uk/sites/default/files/Skoll_Centre/Docs/Accountability_BillinghamColin-Jones.pdf
https://www.turing.ac.uk/blog/towards-accountable-ai-europe

46 S. Cranefield et al.

4. Bostrom, N., Yudkowsky, E.: The ethics of artificial intelligence. In: Frankish, K.,
Ramsey, W.M. (eds.) The Cambridge Handbook of Artificial Intelligence, pp. 316–
334. Cambridge University Press (2014)

5. Dignum, V.: Ethics in artificial intelligence: introduction to the special issue. Ethics
Inf. Technol. 20(1), 1–3 (2018)

6. Simonite, T.: Tech firms move to put ethical guard rails around AI. Wired,
May 2018. https://www.wired.com/story/tech-firms-move-to-put-ethical-guard-
rails-around-ai/. Accessed 29 July 2018

7. Zou, J., Schiebinger, L.: AI can be sexist and racist – it’s time to make it fair.
Nature 559, 324–326 (2018)

8. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-
intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) ATAL
1998. LNCS, vol. 1555, pp. 1–10. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-49057-4 1

9. Meneguzzi, F.R., Zorzo, A.F., da Costa Móra, M.: Propositional planning in BDI
agents. In: Proceedings of the ACM Symposium on Applied Computing, pp. 58–63.
ACM, New York (2004)

10. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings
of the 1st International Conference on Multi-Agent Systems (ICMAS 1995), pp.
312–319. AAAI (1995). https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-
042.pdf

11. Chopra, A.K., Singh, M.P.: The thing itself speaks: accountability as a founda-
tion for requirements in sociotechnical systems. In: 2014 IEEE 7th International
Workshop on Requirements Engineering and Law, p. 22. IEEE (2014)

12. Dastani, M., van der Torre, L., Yorke-Smith, N.: Commitments and interaction
norms in organisations. Auton. Agent. Multi-Agent Syst. 31(2), 207–249 (2017)

13. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and
norms using OWL. AI Commun. 23(4), 341–356 (2010)

14. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability. In: Proceedings of the AI*IA Workshop on Deep Understanding
and Reasoning: A Challenge for Next-generation Intelligent Agents, volume 1802
of CEUR Workshop Proceedings, pp. 56–62. CEUR-WS.org (2017)

15. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: ADOPT JaCaMo:
accountability-driven organization programming technique for JaCaMo. In: An,
B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS
(LNAI), vol. 10621, pp. 295–312. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69131-2 18

16. Baldoni, M., Baroglio, C., Micalizio, R.: The AThOS project: first steps towards
computational accountability. In: Proceedings of the 1st Workshop on Computa-
tional Accountability and Responsibility in Multiagent Systems, volume 2051 of
CEUR Workshop Proceedings, pp. 3–19. CEUR-WS.org (2018)

17. Bovens, M., Schillemans, T., Goodin, R.E.: Public accountability. In: Bovens et al.
[56]

18. Dignum, V.: Responsible artificial intelligence: designing AI for human values. ITU
J. ICT Discov. 1(1), 1–8 (2018)

19. Fox, J.: The uncertain relationship between transparency and accountability. Dev.
Pract. 17(4–5), 663–671 (2007)

20. Schillemans, T.: The public accountability review: a meta-analysis of public
accountability research in six academic disciplines. Working paper, Utrecht Uni-
versity School of Governance (2013). https://dspace.library.uu.nl/handle/1874/
275784

https://www.wired.com/story/tech-firms-move-to-put-ethical-guard-rails-around-ai/
https://www.wired.com/story/tech-firms-move-to-put-ethical-guard-rails-around-ai/
https://doi.org/10.1007/3-540-49057-4_1
https://doi.org/10.1007/3-540-49057-4_1
https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf
https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf
https://doi.org/10.1007/978-3-319-69131-2_18
https://doi.org/10.1007/978-3-319-69131-2_18
https://dspace.library.uu.nl/handle/1874/275784
https://dspace.library.uu.nl/handle/1874/275784

Accountability for Practical Reasoning Agents 47

21. Emanuel, E.J., Emanuel, L.L.: What is accountability in health care? Ann. Intern.
Med. 124(2), 229–239 (1996)

22. Eshleman, A.: Moral responsibility. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edn.
(2016)

23. PMI: Guide to the Project Management Body of Knowledge (PMBOK R©Guide),
5th edn. Project Management Institute (2013)

24. Jacka, J.M., Keller, P.J.: Business Process Mapping: Improving Customer Satis-
faction, 2nd edn. Wiley, Hoboken (2009)

25. Grossi, D., Dignum, F., Royakkers, L.M.M., Meyer, J.-J.C.: Collective obligations
and agents: who gets the blame? In: Lomuscio, A., Nute, D. (eds.) DEON 2004.
LNCS (LNAI), vol. 3065, pp. 129–145. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-25927-5 9

26. Micalizio, R., Torasso, P., Torta, G.: On-line monitoring and diagnosis of multi-
agent systems: a model based approach. In: Proceedings of the 16th European
Conference on Artificial Intelligence, pp. 848–852. IOS Press (2004)

27. Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and
multi-agent plans. In: Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 805–812. ACM (2005)

28. Grossi, D., Royakkers, L., Dignum, F.: Organizational structure and responsibility.
Artif. Intell. Law 15(3), 223–249 (2007)

29. de Jonge, F., Roos, N., Witteveen, C.: Primary and secondary diagnosis of multi-
agent plan execution. Auton. Agent. Multi-Agent Syst. 18(2), 267–294 (2009)

30. Mastop, R.: Characterising responsibility in organisational structures: the problem
of many hands. In: Governatori, G., Sartor, G. (eds.) DEON 2010. LNCS (LNAI),
vol. 6181, pp. 274–287. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14183-6 20

31. De Lima, T., Royakkers, L.M.M., Dignum, F.: Modeling the problem of many hands
in organisations. In: Proceedings of the 19th European Conference on Artificial
Intelligence, volume 215 of Frontiers in Artificial Intelligence and Applications, pp.
79–84. IOS Press (2010)

32. Bulling, N., Dastani, M.: Coalitional responsibility in strategic settings. In: Leite,
J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA 2013. LNCS
(LNAI), vol. 8143, pp. 172–189. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40624-9 11

33. Micalizio, R., Torasso, P.: Cooperative monitoring to diagnose multiagent plans.
J. Artif. Intell. Res. 51, 1–70 (2014)

34. Lorini, E., Longin, D., Mayor, E.: A logical analysis of responsibility attribution:
emotions, individuals and collectives. J. Log. Comput. 24(6), 1313–1339 (2014)

35. Aldewereld, H., Dignum, V., Vasconcelos, W.W.: Group norms for multi-agent
organisations. ACM Trans. Auton. Adapt. Syst. 11(2), 15:1–15:31 (2016)

36. Alechina, N., Halpern, J.Y., Logan,B.: Causality, responsibility and blame in team
plans. In: Proceedings of the 16th International Conference on Autonomous Agents
and Multiagent Systems, pp. 1091–1099. IFAAMAS (2017)

37. Winikoff, M.: Towards trusting autonomous systems. In: El Fallah-Seghrouchni,
A., Ricci, A., Son, T.C. (eds.) EMAS 2017. LNCS (LNAI), vol. 10738, pp. 3–20.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91899-0 1

38. Bovens, M.: Analysing and assessing accountability: a conceptual framework. Eur.
Law J. 13(4), 447–468 (2007)

39. Richard, M.: ‘accountability’: An ever-expanding concept? Public Adm. 78(3),
555–573 (2000)

https://doi.org/10.1007/978-3-540-25927-5_9
https://doi.org/10.1007/978-3-540-25927-5_9
https://doi.org/10.1007/978-3-642-14183-6_20
https://doi.org/10.1007/978-3-642-14183-6_20
https://doi.org/10.1007/978-3-642-40624-9_11
https://doi.org/10.1007/978-3-642-40624-9_11
https://doi.org/10.1007/978-3-319-91899-0_1

48 S. Cranefield et al.

40. Anderson, M.L., Perlis, D.R.: Logic, self-awareness and self-improvement: the
metacognitive loop and the problem of brittleness. J. Log. Comput. 15(1), 21–
40 (2005)

41. Cranefield, S., Winikoff, M., Dignum, V., Dignum, F.: No pizza for you: Value-based
plan selection in BDI agents. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, pp. 178–184. ijcai.org (2017)

42. Meneguzzi, F., Rodrigues, O., Oren, N., Vasconcelos, W.W., Luck, M.: BDI rea-
soning with normative considerations. Eng. Appl. Artif. Intell. 43, 127–146 (2015)

43. Gatt, A., et al.: From data to text in the neonatal intensive care unit: using NLG
technology for decision support and information management. AI Commun. 22(3),
153–186 (2009)

44. Mulwa, C., Lawless, S., Sharp, M., Wade, V.: The evaluation of adaptive and
personalised information retrieval systems: a review. Int. J. Knowl. Web Intell.
2(2/3), 138–156 (2011)

45. Bex, F., Grasso, F., Green, N., Paglieri, F., Reed, C.: Argument Technologies:
Theory, Analysis, and Applications. Studies in Logic and Argumentation. College
Publications (2017)

46. Alechina, N., Dastani, M., Logan, B., Meyer, J.-J.C.: Reasoning about plan revision
in BDI agent programs. Theoret. Comput. Sci. 412(44), 6115–6134 (2011)

47. Ma, J., Liu, W., Hong, J., Godo, L., Sierra, C.: Plan selection for probabilistic
BDI agents. In: 2014 IEEE 26th International Conference on Tools with Artificial
Intelligence, pp. 83–90, November 2014

48. Winikoff, M.: An AgentSpeak meta-interpreter and its applications. In: Bordini,
R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) ProMAS 2005.
LNCS (LNAI), vol. 3862, pp. 123–138. Springer, Heidelberg (2006). https://doi.
org/10.1007/11678823 8

49. Winikoff, M.: Debugging agent programs with “why?” questions. In: Proceedings of
the 16th International Conference on Autonomous Agents and Multiagent Systems,
pp. 251–259. IFAAMAS (2017)

50. Atkinson, K., Bench-Capon, T.J.M.: Practical reasoning as presumptive argumen-
tation using action based alternating transition systems. Artifi. Intell. 171(10–15),
855–874 (2007)

51. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N. (eds.) Nor-
mative Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2013)

52. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. Auton. Agent.
Multi-Agent Syst. 14(2), 143–163 (2007)

53. Dignum, F., Weigand, H., Verharen, E.: Meeting the deadline: on the formal spec-
ification of temporal deontic constraints. In: Raś, Z.W., Michalewicz, M. (eds.)
ISMIS 1996. LNCS, vol. 1079, pp. 243–252. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61286-6 149

54. Searle, J.R.: The Construction of Social Reality. Free Press, New York (1995)
55. Finkel, A., Iyer, S.P., Sutre, G.: Well-abstracted transition systems: application to

FIFO automata. Inf. Comput. 181(1), 1–31 (2003)
56. Bovens, M., Goodin, R.E., Schillemans, T. (eds.): The Oxford Handbook of Public

Accountability. Oxford University Press, Oxford (2014)

https://doi.org/10.1007/11678823_8
https://doi.org/10.1007/11678823_8
https://doi.org/10.1007/3-540-61286-6_149
https://doi.org/10.1007/3-540-61286-6_149

Using Semantic Web Technologies
and Production Rules for Reasoning

on Obligations and Permissions

Nicoletta Fornara1(B) , Alessia Chiappa2, and Marco Colombetti2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
nicoletta.fornara@usi.ch

2 Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano, Italy
alessia.chiappa@gmail.com, marco.colombetti@polimi.it

Abstract. Nowadays the studies on the formalization, enforcement, and
monitoring of policies and norms is crucial in different fields of research
and in numerous applications. ODRL 2.2 (Open Digital Right Language)
is a W3C standard policy expression language formalized using seman-
tic web technologies. It is used to represent permitted and prohibited
actions over a certain asset, and obligations required to be met by parties
involved in the exchange of a digital asset. In this paper, we propose to
extend the model of permission and obligation proposed by ODRL 2.2 in
two directions. Firstly, by inserting in the model the notion of activation
event or action and by expressing event and action as complex constructs
having types and application-independent properties. Secondly, by con-
sidering the temporal aspects of obligations and permissions (expiration
dates and deadlines) as part of their application independent model. The
operational semantics of the proposed model of obligations and permis-
sions is specified using Discrete State Machines and is computed using
a production rule system. The proposed approach has been tested by
developing a framework in Java able to get as input a set of policies for-
malized using Semantic Web languages, and to compute their evolution
in time based on the events and actions that happen in the interaction
among the parties involved in the policies.

1 Introduction

Nowadays the study of policies and norms is crucial in different fields of research
and applications. Policies may be used for regulating access to data and digital
assets in policy-based access control frameworks. They may be used to unam-
biguously specify licenses for software, images, video and data or to formalize
contracts, agreements, and offers between different parties in e-commerce appli-
cations. Privacy policy may also be used to express regulations on the manage-
ment of personal and sensitive data.

Funded by the SNSF (Swiss National Science Foundation) grant no. 200021 175759/1.

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 49–63, 2019.
https://doi.org/10.1007/978-3-030-17294-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_4&domain=pdf
http://orcid.org/0000-0003-1692-880X
http://orcid.org/0000-0003-2339-9678
https://doi.org/10.1007/978-3-030-17294-7_4

50 N. Fornara et al.

In principle policies and norms can be specified using human-readable for-
mats; however, it is crucial to specify them with formal and machine-readable
languages in order to enable machine-to-machine interactions combined with a
number of useful services, like: (i) advanced search of resources based on the
actions that it is possible to perform on them; (ii) aggregation of different
resources released under different policies by computing policies compatibility
or conflicts; (iii) checking the satisfaction or violation of the normative or legal
relations that an intensive exchange of digital assets creates in the chain of inter-
actions among data producers, data publishers, and data consumers.

In order to perform services of this type it is crucial not only to propose a
language for expressing policies, but also to unambiguously specify the meaning
of such policies. This with the goal of being able to automatically monitor the
fulfilment or violation of obligations and the correct use of permissions, and to
simulate what would happen if one of the parties, related by a set of policies,
performs certain actions.

ODRL 2.2 (Open Digital Right Language)1 is a W3C standard policy expres-
sion language, which is used to represent permitted and prohibited actions over
a certain asset, and obligations required to be met by the parties involved in
the exchange of a digital asset. Originally, in 2001, ODRL was an XML lan-
guage for expressing digital rights, that is, digital content usage terms and con-
ditions. In 2012 (version 2.0) and in 2015 (version 2.1) [12], ODRL evolved into
a more general policy language: it is no longer focused only on the formalization
of rights expressions, but also on the specification of privacy statements, like
duties, permissions, and prohibitions. ORDL started to be formalized in RDF
with an abstract model specified by an RDF Schema Ontology. In March 2016,
a W3C Working Group was created with the goal of bringing the specifications
through the W3C Process to “Recommendation” status. ODRL 2.2 became a
W3C Recommendation on 15th February 2018. In all the specifications of ODRL,
its semantics is described informally in English, and no formal specification is
provided. In [13] an OWL representation of ODRL 1.1 is presented, but the use
of OWL is limited to the representation of classes and properties, and no rep-
resentation is given of the dynamic semantics of policies, that is, of how they
evolve in time. In [19] the semantics of ODRL 2.1 policies used for access control
is investigated. When a request to perform an action on an asset is issued, the
system evaluates which rules (prohibition, permission, or duty rules) are trig-
gered (taking into account explicit and implicit dependencies among regulated
actions), then it checks whether these rules hold based on certain constraints
(i.e., activation conditions); however there is no hint on how the satisfaction of
constraints can be computed.

In this paper, we propose to extend the model of permission and obligation
proposed by ODRL 2.2 in two directions. Firstly, by inserting in the model the
notion of activation event/action and by expressing event and action as complex
constructs having types and application-independent properties. Secondly, by
considering the temporal aspects of obligations and permissions (their expiration

1 https://www.w3.org/TR/odrl-model/.

https://www.w3.org/TR/odrl-model/

Using Semantic Web Technologies and Production Rules for Reasoning 51

dates and the deadlines) as part of their application-independent model. The
operational semantics of the proposed model of obligations and permissions is
then specified using Discrete State Machines, which are used to unambiguously
specify the temporal evolution of the deontic state of obligations and permissions
while time passes and relevant events (e.g. the elapsing of a deadline) or actions
(e.g. downloading a music file) happen. Such an operational semantics can be
efficiently computed by a monitor component by using a production rule system.
The proposed approach has been tested by developing a framework in Java able
to get as input a set of policies formalized using Semantic Web languages, and
to compute their evolution in time based on the events and actions that take
place. Such a framework uses the forward chaining rule-based RETE engine of
the Apache Jena framework2 (which is compatible with semantic web languages)
for realizing the production system.

The paper is organized as follows. In Sect. 2, a semantic meta-model for
expressing temporal and conditional permissions and obligations is introduced.
In Sect. 3, the life cycles of those two deontic relations is formally specified.
In Sect. 4, a production rule system is used for computing the deontic state of
obligations and permissions. In Sect. 5, a prototype for simulating the evolution
in time of deontic relations is described. Finally, in Sect. 6 other approaches for
expressing policies and norms are presented and discussed.

2 A Semantic Web Meta-model of Conditional
Obligations and Permissions

Following ODRL 2.2 Information Model, a policy must have at least one per-
mission, prohibition or obligation. In ODRL model, the regulated actions are
expressed by means of their textual name (e.g. print), and their semantics can
be narrowed by using constraints (i.e. expressions which compare two operands),
for example “print less than or equal to 1200 dpi resolution”. A permission may
be conditioned by a duty and its intuitive meaning is that the duty represents a
pre-condition that must be fulfilled to obtain a valid permission. From our per-
spective, it sounds quite unnatural to say that for acquiring a valid permission,
for example to listen to an audio file, I have the duty to do something, for exam-
ple to pay x euro. This because a duty is an action than an agent is obligated to
do, not an action that an agent can freely decide to perform. In ODRL model,
an obligation is a duty and it is fulfilled if all constraints are satisfied and if the
regulated action, with all constraints satisfied, has been exercised.

The ODRL model does not highlight two crucial application-independent
characteristics of the modelled deontic concepts. The first one is the important
role played by the event/action that can activate an obligation or make a per-
mission valid. In ODRL, an activation condition is represented as a generic con-
straint, even if it is a crucial part of the deontic model. For example, only when
an agent enters a limited traffic area he becomes obligated to pay an amount

2 https://jena.apache.org/documentation/inference/index.html.

https://jena.apache.org/documentation/inference/index.html

52 N. Fornara et al.

of money within a given interval of time; similarly, only after paying a fee an
agent gets a valid permission to play a music file in a party. It is also important
to model those actions and events using complex constructs having a type and
application-independent properties.

The second relevant application-independent characteristic of the modelled
deontic concepts is their relation with time. Usually an obligatory action has to
be performed before a specific deadline, and a permission can be used within a
certain interval of time (e.g., the obligation to pay 5 euro before the end of the
month, or the permission to play a music file within one week). A conditional
obligation/permission may also become expired if it is not activated or made
valid before a given expiration date. For example, as long as an agent is a bidder
in an auction, such an agent has the obligation to pay his bids if it becomes the
winner of the auction. When the auction is closed, the obligation expires and
cannot become active anymore.

In this paper, we propose to extend ODRL 2.2 information model with two
new types of deontic relations: conditional obligations and conditional permis-
sions, i.e. obligations and permissions that become activated/valid when a con-
dition is satisfied and having in their meta-model expiration dates and deadlines.
What we model is a notion of strong permission, i.e. the explicit permission to
do an otherwise prohibited action, which is different from the weak permission,
i.e. the absence of the prohibition to do an action [22].

Given that ODRL is a W3C standard, the ODRL 2.2 ontology3 is formalized
using RDF Schema4, a semantic web standard language for expressing data-
model vocabulary for RDF data. RDF Schema can be used for defining classes,
domain and range of properties and hierarchies of classes and of properties.
The provided ODRL specification is compatible with another standard semantic
web language for expressing ontologies, the OWL 2 Web Ontology Language,
which is a practical serialization of the SROIQ(D) Description Logic. Therefore,
given that we want to propose an extension of ODRL, we will formalize our
meta-model of temporal-conditional obligations and permissions using an OWL
ontology: the Normative Language Ontology (NL Ontology). This choice involves
also the advantage of being able to perform automatic reasoning on the OWL
formalization of the proposed deontic concepts.

In the definition of the Normative Language Ontology we exploit the possibil-
ity, given by the adoption of Semantic Web Languages, to connect our ontology
with other, quite well known, ontologies. We re-use the core model of temporal
entities specified in the OWL Time Ontology5 for being able to specify deadline
and expiration dates, and the time when real events or actions happen. We re-
use the Schema.org ontology6 a well-known ontology that has been developed to
support web search engines. We re-use it for the specification of actions as com-
plex objects, contrary to their treatment in ODRL, where they are represented

3 https://www.w3.org/ns/odrl/2/.
4 https://www.w3.org/TR/rdf-schema/.
5 W3C Recommendation 19 October 2017 https://www.w3.org/TR/owl-time/.
6 http://schema.org/docs/developers.html.

https://www.w3.org/ns/odrl/2/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-time/
http://schema.org/docs/developers.html

Using Semantic Web Technologies and Production Rules for Reasoning 53

by atomic symbols. We extend the ODRL 2.2 ontology in various ways, as will
be detailed in the sequel. Finally, we re-use the Event Ontology presented in [5]
for expressing events as a super-class of actions and for connecting events to time
instants and intervals. The import relationship among the various ontologies is
depicted in Fig. 1

Fig. 1. The import relationship among the various ontologies

The Normative Language Ontology is depicted in Fig. 2. It defines two new
types of deontic relations, as subclass of the ODRL Rule class: the nl:Obligation
and the nl:Permission classes.

Obligations and permissions have the following common characteristics. They
are deontic relations between two parties. They are characterized by two fun-
damental components: the activation condition and the content. The activation
condition describes an event or an action, the content describes an action. When
the activation event/action of an obligation actually happens, the obligation to
perform the action described in the content component becomes active. Differ-
ently, when the activation event/action of a permission actually happens, the
permission to perform the action described in the content component becomes
valid. A counter is used for managing obligations and permissions to perform an
action more than once. Obligations and permission have an expiration date and a
deadline. Expiration and deadline usually refer to different instants of time. The
expiration is the instant of time when the deontic relation ceases to exist. The
deadline is the instant of time before which it is obligatory to satisfy the content
of an active obligation or it permitted to exercise a valid permission. Deadlines
and expiration dates may be computed at run-time by using the specified interval
of time, in those cases their value depends on when the obligation/permission
is created or activated/made valid. Finally, obligation and permission have a
deontic state, it is used to compute their life cycle as discussed in next section.

An example of a conditional permission may be: when person:bob:01
pays 5 euros to organization:SOYN, he obtains a valid permission to listen
to, at most ten times, a music record by the Beatles within 48 h from the

54 N. Fornara et al.

Fig. 2. The OWL Normative Language Ontology and its connections with other
ontologies

payment; this permission expires at the end of 2018. Its formalization using
the proposed ontology serialized using the Turtle language7 is as follows:

ex:policy:01 a odrl:Policy;

nl:permission ex:perm:policy:01:1.

ex:perm:policy:01:1 a nl:Permission;

odrl:assigner ex:org:SOYN;

odrl:assignee ex:person:bob:01;

nl:hasActCond ex:actCond:1;

nl:hasContent ex:content:1;

nl:hasDeadlineDelta [time:hasTemporalDuration "PT48H0M0S"^^xsd:duration];

nl:hasExpiration [time:inDateTime "2018-12-31T09:00:00Z"^^xsd:dateTime];

nl:counter 10^^xsd:integer.

ex:actCond:01:1 a schema:PayAction;

schema:agent ex:person:bob:01;

schema:recipient ex:org:SOYN;

schema:price 5.00;

schema:priceCurrency "euro".

ex:content:01:1 a schema:ListenAction;

schema:agent ex:person:bob:01;

schema:object [a schema:MusicRecording;

schema:byArtist ex:Beatles].

7 https://www.w3.org/TR/2014/REC-turtle-20140225/. In Turtle every row is an
RDF triple statement (subject, predicate, object) terminated by ‘.’; a ‘;’ symbol is
used to repeat the subject of triples that vary only in the predicate and object parts.

https://www.w3.org/TR/2014/REC-turtle-20140225/

Using Semantic Web Technologies and Production Rules for Reasoning 55

This is an example of a policy instance, with all its properties filled with a
specific value. In a real system, it is desirable that digital assets are associated
with a policy schema that can be re-used in different circumstances, for example
the schema of a contract or of an agreement. Policy schemas contain variables
and are transformed into policy instances through a procedure of substitution of
variables with actual values, specified during an interaction with a specific user.

3 Life Cycles of Obligation and Permission

Obligations and permissions are two fundamental deontic relations widely used
for regulating the actions that various individuals should or may perform.
Actions, and more generally events (i.e. something that happens in a system, but
is not necessarily done by an actor) change the state of the interaction among
various parties, and their effects are strictly related to the instant of time when
they happen. In order to specify what it means for an agent to have an obli-
gation or a permission, it is fundamental to model their deontic state and to
formally specify its evolution in time based on actual events (e.g. the elapsing
of a deadline) and actions (e.g. downloading a music file).

In this section, we propose to formally describe such a temporal evolution
using two life cycles, one for the notion of obligation and one for the notion of
permission. They are the result of a deep analysis of the literature and of the
textual description of permissions and duties given in the ODRL Information
Model 2.2. Those life cycles are unambiguously specified using Discrete State
Machines. More precisely, we use two simple types of Discrete State Machines
(DSMs): pure Finite State Machines for modelling the conditional permission to
perform an action for an unlimited number of times, and Finite State Machines
augmented with a decreasing counter (with 0 lower bound), for modelling con-
ditional obligations and permissions to perform an action for a limited number
of times.

It is important to notice that the evolution of the deontic state of obligations
and permissions in turn depends on the satisfaction of their activation condition
and content. It is necessary to define a procedure for checking if actual events or
actions satisfy the description of events and actions that appear in obligations
and permissions. One possible approach for the realization of such a procedure
will be described and discussed in next section.

In order to represent in our model the satisfaction of the content or of the
activation condition of a deontic object, we introduce in the NL Ontology the
following two properties. The hasState property is used to connect the content
and the activation condition of a deontic object with their state. Such a state
is initially unsatisfied and becomes satisfied when the described event/action
occurs. The reason property is used to connect the content and the activation
condition of a deontic object with the real event or action that produced its satis-
faction. This property is necessary for comparing expiration dates and deadlines
of the deontic objects with the instant of time when events or actions actually
happen.

56 N. Fornara et al.

The life cycle of conditional obligations is depicted in Fig. 3. When a con-
ditional obligation is created, it is in the conditional state and its condition
and content are unsatisfied. When the activation condition becomes satisfied
and the current time is less than or equal to the expiration date of the deon-
tic relation, the transition from the conditional state to the activated state is
fired. Differently if the expiration date is elapsed the transition leads from the
conditional to the expired state. Then, whenever the content becomes satisfied
before the deadline and its counter is greater than zero the conditional obli-
gation remains activated, the counter is decremented, and the content is set
back to unsatisfied. If the content becomes again satisfied before the deadline
and the counter is equal to zero the state becomes fulfilled. Differently if the
state is still activated and the deadline becomes elapsed, the state becomes
violated.

Fig. 3. Life cycle of conditional obligation

The life cycle of a conditional permission is depicted in Fig. 4. A conditional
permission becomes valid when its condition is satisfied. Then every time it
is exercised, a counter is decremented and when the counter is equal to zero
the state becomes exercised. If the expiration date of a conditional permission
is expired its state becomes expiredConditional, differently if the deadline of a
valid permission is expired the permission becomes expiredValid. The conditional
permission to perform an action for an unlimited number of times is represented
with a Finite State Machine and the main difference is the absence of the counter
and of the exercised state, in fact only when the deadline is elapsed the permis-
sion becomes expiredValid.

It is interesting to observe that the conditions that trigger the transitions
of the two life cycles are identical. The fundamental difference between the two
deontic relations, which is enlightened by the different name of the deontic states,
is that for obligations the fulfilled state is a final and desired state, contrary to the
violated final state which may bring about a sanction, differently, for permissions
the exercised final state has no positive or negative connotation.

Using Semantic Web Technologies and Production Rules for Reasoning 57

Fig. 4. Life cycle of conditional permission

4 Operational Semantics of Obligation and Permission

In order to realize services able to automatically monitor or simulate the dynamic
evolution of the proposed deontic relations, it is necessary to define a procedure
for automatically computing their deontic state. Such a deontic state, in turn,
depends on the satisfaction of the state of the activation condition and content
of the relevant deontic objects.

This procedure requires an application-dependent component, able to “sense”
the actual events or actions and represent them as individuals of the State Ontol-
ogy by using the vocabulary defined by the Event and Schema.org ontologies.
This procedure also requires two application-independent components: one for
computing the satisfaction of the state and one for computing the deontic state.

In this section we propose to realize those components using a production sys-
tem [1], i.e. a forward-chaining reasoning system that uses production rules. The
ongoing memory of assertions (stored in the working memory of the proposed
production system) is composed of: the State Ontology, a representation, in the
form of RDF triples, of the state of the interaction in terms of actual actions,
events, and current time; the Normative Ontology, a representation of the set of
policies containing obligations and permissions. While time flows, the ongoing
memory is continuously updated with new assertions representing actual events
or actions and the elapsing of time, and it is updated due to the execution of
production rules.

A production rule has two parts: a set of conditions, to be tested on the
ongoing memory, and a set of actions, whose execution has an effect on the
ongoing memory. The generic form of a production rule is:

IF conditions THEN actions

Production rules may be used to generate an event-based computation, which
can carry out an inference process or implement a discrete dynamic system. We
will exploit the latter use of production rules for proposing an operation model of
the life cycles of obligations and permissions introduced in the previous section.

58 N. Fornara et al.

A crucial advantage of production rules is the possibility to represent the logic
of the dynamic evolution of the proposed deontic relations using a declarative
paradigm, where rules can be easily modified, instead of embedding such a logic
in the code written in an imperative programming language.

In this section we will formalize our production rules using the Abstract Syntax
of the W3C Recommendation RIF Production Rule Dialect8 (RIF PRD). Initially,
we present the application independent productions rules for computing the sat-
isfaction of activation conditions and content. Subsequently, we present the pro-
ductions rules for computing the deontic state of obligations and permissions.

The first type of production rules are used for matching the description of
events and actions with actual events or actions as soon as they are represented
in the system. In the meta-model of obligations and permissions proposed in this
paper, a description of an event or an action is characterized by the specification
of its class and of a list of values for significant properties. The matching can
be realized by a production rule used for checking the exact match between the
described values and the real values. Given that the list of properties used for
describing an event or an action can vary, we need to specify a production rule for
every monitored type of event or action (characterized by the list of properties
used for its description). In the future we plan to study a more flexible mechanism
for matching an actual event/action with an event/action description.

Due to space limitation we report only one production rule of this type. It
can be used for matching a real payment with the activation condition of the
permission presented in Sect. 2 and with all the activation conditions where the
same parameters are used9.

(* PayAction *)

Forall ?realAction ?component ?agent ?recipient ?price ?currency(

If And(rdf:type(?obl nl:Obligation)

nl:hasDeonState(?obl nl:conditional)

nl:hasActCond(?obl ?activation)

nl:hasState(?activation nl:unSatisfied)

rdf:type(?activation schema:PayAction)

schema:agent(?activation ?agent)

schema:recipient(?activation ?recipient)

schema:price(?activation ?price)

schema:priceCurrency(?activation ?currency)

rdf:type(?realAction schema:PayAction)

schema:agent(?realAction ?agent)

schema:recipient(?realAction ?recipient)

schema:price(?realAction ?price)

schema:priceCurrency(?realAction ?currency))

Then (Assert(nl:reason(?activation ?realAction))

Retract(nl:hasState(?activation nl:unSatisfied))

Assert(nl:hasState(?activation nl:satisfied))))

8 https://www.w3.org/TR/rif-prd/, http://www.w3.org/TR/rif-primer/.
9 We assume that it is impossible to insert in the State Ontology an event that will

happen in the future.

https://www.w3.org/TR/rif-prd/
http://www.w3.org/TR/rif-primer/

Using Semantic Web Technologies and Production Rules for Reasoning 59

The production rules of the second type are used for computing the deontic state
of obligations and permissions. It is necessary to define one production rule for every
transition of the life cycles presented in Sect. 3. The conditions of these production
rules are used for testing the type of the deontic relation (permission or obligation),
the current deontic state, and the conditions that appear on the transition of the life
cycle. The action component of the rules is used to retract the current deontic state,
assert the new one and, if necessary, decrement the counter.

Due to space limitation, we present only the production rule used for computing
the transition from conditional to valid of a permission.

(* validatePermission *)

Forall ?perm ?activation ?expiration ?expirationDateTime ?now (

If And(rdf:type(?perm nl:Permission)

nl:hasDeonState(?perm nl:conditional)

nl:hasActCond(?perm ?activation)

nl:hasState(?activation nl:satisfied)

nl:hasExpiration(?perm ?expiration)

time:inDateTime(?expiration ?expirationDateTime)

time:inDateTime(ex:currentTime ?now)

External(pred:numeric-less-than(?now ?expirationDateTime)))

Then (Retract(nl:hasDeonState(?perm nl:conditional))

Assert(nl:hasDeonState(?perm nl:valid))))

5 Implementation of a Prototype

For testing our proposal, we have developed a Java prototype, specifically a system
able to simulate the evolution of policies containing obligations and permissions. We
use Apache Jena10, a free and open source Java framework for building semantic web
applications. For the implementation of the production system, described in Sect. 4,
we use the Jena general-purpose rule-based reasoner and a translation of the RIF
PRD rules into Jena Rules11. This reasoner supports rule-based inference over RDF
graphs, and provides forward chaining realized by means of an internal RETE-based for-
ward chaining interpreter [4]. The main advantage of using the JENA interpreter with
respect to other Java compatible production rules interpreters, like for instance the Jess
engine inspired by the open-source CLIPS project, is its direct compatibility with RDF
data [16].

An interesting feature of the Jena forward chaining interpreter is that it works
incrementally, meaning that if the inference model is modified by adding or removing
statements, the reasoning process automatically resumes, potentially producing the
activation of new rules. The efficiency of the reasoning with respect to these incremental
changes is guaranteed by the use of the RETE algorithm, through which matching
tests are performed only for those rules whose conditions include an updated fact in
the previous iteration.

In our prototype, the RIF PRD external built-in operations of Retract() and
Assert() are realized by means of the default Jena built-in remove(n) and the ad-
hoc realized add(triple) built-in. The remove(n) Jena built-in has the side effect of

10 https://jena.apache.org/.
11 https://jena.apache.org/documentation/inference/#rules.

https://jena.apache.org/
https://jena.apache.org/documentation/inference/#rules

60 N. Fornara et al.

recursively retracting, from the inference model, the consequences of the already fired
rules, if their conditions matched with the removed statement. In fact, coherently with
its main goal of implementing logical reasoning in RDF and OWL, the Jena interpreter
is designed to have a monotonic behaviour. Given that our productions rules are meant
to implement Finite State Machines (and not monotonic logical reasoning), we imple-
mented the ad-hoc add(triple) built-in, having the effect of inserting a new triple that
will not be retracted as a side effect of removing another statement.

A useful service is the monitoring of deontic relations for those applications where it
is crucial to check the fulfilment or violation of norms and the use of valid permissions.
Another relevant service is the simulation of the evolution of deontic relations based
on a set of hypothetical actions. In order to realize these services it is important to
take into account that a few relevant instants are truly significant in the life cycle of
a permission or obligation. Significant instants are the instants when real actions and
events happen and the elapsing of deadline and expiration dates. Therefore in order
to realize an efficient simulator12 it is important that the comparison between the
simulated current time and the significant instants (stored in an ordered list) occurs
only if strictly necessary, i.e. when one of these relevant instants are reached. This is
obtained by forcing the current time to evolve to the nearest relevant instant of time.
Each update of the current time in the inference model leads to a new cycle of the
interpreter, during which the states of obligations and permissions eventually evolve.

6 Related Work

Studies on Normative Multiagent Systems (NorMAS) concern mainly the proposals of
formalisms for expressing norms or policies containing obligations, permissions, and
prohibitions. Those studies also investigate the realization of fundamental functionali-
ties for norm promulgation, monitoring, and enforcement, as well as norm adoption and
reasoning. In the NorMAS literature there are various proposals for the formalization
of norms and policies using different languages [3,5] and different frameworks [2,18]
for their management.

As we already discussed, the W3C standard for expressing policies is ODRL 2.2.
Another interesting proposal, which is in the process of becoming an OASIS standard
in the legal domain, is the LegalRuleML language13.

Many approaches to the formalization of norms are based on different logics, which
are declarative in nature. The most well-known are the studies on Deontic Logic [21],
a family of logical systems where the essential features of obligations, prohibitions
and related concepts are captured. An interesting approach to the specification of
the semantics of obligations, permissions, and prohibitions is given in [11], where the
L4LOD vocabulary for expressing licenses for Linked Open Data is presented. The
semantics of the deontic component of licenses is formalized using an extension of
Defeasible Logic [10]. This extension is a non-monotonic logic able to deal with per-
missions as defeaters of prohibitions (understood as negative obligations). The actions
that are regulated are those typical of linked open data licences (e.g., ShareAlike, Attri-
bution, etc.). Such actions are represented as atomic symbols, and no treatment of time
or relevant action attributes is proposed. Another interesting approach, where time is

12 Taking into account that the monitoring service can be realized using the simulator
where time and events are real.

13 https://www.oasis-open.org/committees/legalruleml/.

https://www.oasis-open.org/committees/legalruleml/

Using Semantic Web Technologies and Production Rules for Reasoning 61

taken into account, is based on Linear Temporal Logic (LTL) [17]. This paper proposes
a life cycle for obligations where deadlines and expiration dates are not modelled, and
the content of the obligation is a maintenance condition, like for example “do not cross
on a red light”. Similarly to our proposal the transition rules are computed using a pro-
duction system. In [9], a normative language for the specification of norms is presented.
In such a normative language norms have the form of preconditions → postconditions,
and the execution of every norm is implemented by means of an ad-hoc forward rule
written for the Jess interpreter14. Differently in this paper, we propose a production
rule system for computing the application-independent life cycle of policies containing
deontic relations.

In this paper, we propose to formalize policies using Semantic Web Technologies;
therefore here we will mainly discuss other approaches where those technologies were
adopted. In particular, an interesting literature review of various approaches to poli-
cies specification using Semantic Web Technologies is given in [14]. [5,7] presents a
proposal to specify and reason on obligations using OWL 2, SWRL rules, and OWL-
API. These papers present an OWL ontology of obligations whose content is a class
of possible actions that have to be performed within a given deadline. The monitoring
of such obligations (checking if they are fulfilled of violated on the basis of the actions
performed by the agents) is realized by means of a specific framework used for manag-
ing the elapsing of time and for performing closed-world reasoning on certain classes.
Unfortunately, the scalability of this approach is not good enough to make it usable in
real applications.

An interesting approach that uses Semantic Web Technologies for policy formaliza-
tion and management is the OWL-POLAR framework [18]. This framework investigates
the possibility of using OWL ontologies for representing the state of the interaction
among agents and SPARQL queries for reasoning on policies activation, for antici-
pating possible conflicts among policies, and for conflicts avoidance and resolution. In
the OWL-POLAR model, the activation condition and the content of the policies are
represented using conjunctive semantic formulas. Reasoning on a set of policies for
deducing their state is realized by translating the activation condition and the content
of a policy into the SPARQL query language and then evaluating the resulting queries
on the OWL ontology used for representing the state of the world. In OWL-POLAR,
there is no treatment of time.

Another relevant proposal is the KAoS policy management framework [2,20]. In
KAoS Semantic Web technologies are used for policy specification and management,
in particular policy monitoring and enforcing is realized by a component that compiles
OWL policies into an efficient format. In [15] social commitments [6] are used for
modelling privacy requirements for social networks formalized using OWL. Similarly
to our approach, the antecedent of commitments is a description of conditions that
have to be matched with the content of the ontology. However, the consequent of
commitments is limited to permissions or prohibitions to see a set of posts, and time
is not modelled at all.

In [8] a proposal of expressing conditional obligations to perform one action, as an
extension of ODRL 2.1 having a life cycle computed using Jena Rules is presented.
In this paper we improved that work by proposing an extension of the new version
of ODRL (ODRL 2.2), by formalizing the life cycle of both condition permissions
and obligations which regulate the performance of an action for a limited number of

14 http://www.jessrules.com/.

http://www.jessrules.com/

62 N. Fornara et al.

times, and by expressing the operational semantics of those deontic concepts using a
production system.

In our future work, we plan to investigate the dynamic connections between obliga-
tions, permissions and prohibitions. We plan also to study how to efficiently integrate
OWL reasoning into the proposed production system, and to further investigate the
possibility to use the event of violation or fulfilment of an obligation for applying
rewards or sanctions.

References

1. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc., San Francisco (2004)

2. Bradshaw, J.M., et al.: The KAoS policy services framework. In: Eighth Cyber
Security and Information Intelligence Research Workshop, CSIIRW 2013. Oak
Ridge National Labs, Oak Ridge (2013)

3. da Silva Figueiredo, K., Torres da Silva, V., de Oliveira Braga, C.: Modeling norms
in multi-agent systems with NormML. In: De Vos, M., Fornara, N., Pitt, J.V.,
Vouros, G. (eds.) COIN -2010. LNCS, vol. 6541, pp. 39–57. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21268-0 3

4. Forgy, C.L.: On the efficient implementation of production systems. Ph.D. thesis,
Pittsburgh, PA, USA (1979). AAI7919143

5. Fornara, N.: Specifying and monitoring obligations in open multiagent systems
using semantic web technology. In: Elçi, A., Koné, M.T., Orgun, M.A. (eds.)
Semantic Agent Systems: Foundations and Applications. Studies in Computational
Intelligence, chap. 2, vol. 344, pp. 25–46. Springer, Heidelberg (2011)

6. Fornara, N., Colombetti, M.: Operational specification of a commitment-based
agent communication language. In: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems: Part 2, AAMAS 2002,
pp. 536–542. ACM, New York (2002)

7. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and
norms using OWL. AI Commun. 23(4), 341–356 (2010)

8. Fornara, N., Colombetti, M.: Operational semantics of an extension of ODRL able
to express obligations. In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT -2017.
LNCS, vol. 10767, pp. 172–186. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01713-2 13

9. Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.A.: Implementing norms in
electronic institutions. In: Proceedings of the Fourth International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 667–673.
ACM, New York (2005)

10. Governatori, G., Rotolo, A.: BIO logical agents: norms, beliefs, intentions in defea-
sible logic. Auton. Agents Multi-Agent Syst. 17(1), 36–69 (2008)

11. Governatori, G., Rotolo, A., Villata, S., Gandon, F.: One license to compose them
all. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 151–166. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3 10

12. Iannella, R., Guth, S., Paehler, D., Kasten, A.: ODRL Version 2.1 Core Model
(2015). https://www.w3.org/community/odrl/model/2.1/. Accessed 15 Sept 2017

13. Kasten, A., Grimm, R.: Making the semantics of ODRL and URM explicit using
web ontologies. In: Virtual Goods, pp. 77–91 (2010)

https://doi.org/10.1007/978-3-642-21268-0_3
https://doi.org/10.1007/978-3-030-01713-2_13
https://doi.org/10.1007/978-3-030-01713-2_13
https://doi.org/10.1007/978-3-642-41335-3_10
https://www.w3.org/community/odrl/model/2.1/

Using Semantic Web Technologies and Production Rules for Reasoning 63

14. Kirrane, S., Villata, S., d’Aquin, M.: Privacy, security and policies: a review of
problems and solutions with semantic web technologies. Semant. Web 9(2), 153–
161 (2018)

15. Kokciyan, N., Yolum, P.: PriGuard: a semantic approach to detect privacy viola-
tions in online social networks. IEEE Trans. Knowl. Data Eng. 28(10), 2724–2737
(2016)

16. Moskal, J., Matheus, C.J.: Detection of suspicious activity using different rule
engines—comparison of BaseVISor, Jena and Jess rule engines. In: Bassiliades, N.,
Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp. 73–80.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88808-6 10

17. Panagiotidi, S., Alvarez-Napagao, S., Vázquez-Salceda, J.: Towards the Norm-
aware agent: bridging the gap between deontic specifications and practical mech-
anisms for norm monitoring and norm-aware planning. In: Balke, T., Dignum,
F., van Riemsdijk, M.B., Chopra, A.K. (eds.) COIN 2013. LNCS, vol. 8386, pp.
346–363. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07314-9 19

18. Sensoy, M., Norman, T.J., Vasconcelos, W.W., Sycara, K.P.: OWL-POLAR: a
framework for semantic policy representation and reasoning. J. Web Sem. 12, 148–
160 (2012)

19. Steyskal, S., Polleres, A.: Towards formal semantics for ODRL policies. In: Bassil-
iades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015.
LNCS, vol. 9202, pp. 360–375. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21542-6 23

20. Uszok, A., et al.: New developments in ontology-based policy management: increas-
ing the practicality and comprehensiveness of KAoS. In: POLICY 2008, Palisades,
New York, USA, 2–4 June 2008, pp. 145–152. IEEE Computer Society (2008)

21. von Wright, G.H.: Deontic logic. Mind New Ser. 60(237), 1–15 (1951)
22. von Wright, G.H.: Norm and Action: A Logical Enquiry. Routledge and Kegan

Paul, New York (1963)

https://doi.org/10.1007/978-3-540-88808-6_10
https://doi.org/10.1007/978-3-319-07314-9_19
https://doi.org/10.1007/978-3-319-21542-6_23
https://doi.org/10.1007/978-3-319-21542-6_23

Minimality and Simplicity of Rules
for the Internet-of-Things

Athanasios Panaretos1, David Corsar2 , and Wamberto W. Vasconcelos1(B)

1 Department of Computing Science, University of Aberdeen, Aberdeen, UK
athanasios.panaretos.17@aberdeen.ac.uk, w.w.vasconcelos@abdn.ac.uk

2 School of Computing Science and Digital Media, Robert Gordon University,
Aberdeen, UK

d.corsar1@rgu.ac.uk

Abstract. Rule-based systems have been increasing in popularity in
recent years. They allow for easier handling of both simple and com-
plicated problems utilising a set of rules created in various ways (e.g.,
manually, or (semi-) automatically, via, say, machine learning or deci-
sion trees) depending on the situation. Despite their usefulness however,
there are still improvements to be made. Knowledge representation tech-
nologies have been available for a long time and provide the means to
represent domains formally and correlate entities in those domains. They
also allow for ontological reasoning that can take advantage of such con-
nections between entities. These techniques can be useful when applied
on rule-based systems in order to improve the quality of rules and, hence,
overall system performance. We describe and implement an approach to
refine rules used in Internet-of-Things scenarios using knowledge repre-
sentation and reasoning. The proposed solution uses ontological reason-
ing on the preconditions and postconditions of rules as it aims to reduce
the total amount of rules in a system and simplify them.

Keywords: Rule-based systems · Internet-of-Things ·
Knowledge representation · Ontological reasoning

1 Introduction

The fast-spreading Internet-of-Things technology is creating massive changes in
the way people interact with devices, but also devices interact with each other.
In this quickly changing field, automation is becoming the key element, taking
control from humans and giving it to machines when it comes to daily tasks.

Rule-based systems have been used for quite a while to regulate societies of
agents. They are ideal for Internet-of-Things applications, however, they do have
some issues. Firstly, the constant creation of rules to deal with different situations

This research is partially sponsored by the EPSRC grant EP/P011829/1, funded
under the UK Engineering and Physical Sciences Council Human Dimensions of Cyber
Security call (2016).

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 64–72, 2019.
https://doi.org/10.1007/978-3-030-17294-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_5&domain=pdf
http://orcid.org/0000-0001-7059-4594
http://orcid.org/0000-0001-5090-7581
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/P011829/1
https://www.epsrc.ac.uk/funding/calls/humandimensionscybersecurity/
https://www.epsrc.ac.uk/funding/calls/humandimensionscybersecurity/
https://doi.org/10.1007/978-3-030-17294-7_5

Minimality and Simplicity of Rules for the Internet-of-Things 65

can lead to having far too many of them. Therefore, an issue of minimality of
rules has arisen. Secondly, the attempt to minimize the rules in a system can
result in a small set of rules that is however very complex and thus harder to
maintain. Hence, there is a need for simplicity.

This paper presents a system which can tackle the issues at hand. The sys-
tem is able to process events of Internet-of-Things scenarios and, along with a
knowledge representation model of the domain, generate rules based on them.
Furthermore, it refines these rules and through an exhaustive evaluation process
it guarantees to maintain the system’s accuracy while reducing the amount of
rules residing in it. Explicit knowledge representation of all the required concepts
is used to support the refinement process of the preconditions and postconditions
of the rules.

2 Background and Related Work

Internet-of-Things has been identified as one of the emerging technologies in
IT [4]. Despite the constant evolution of this technology, its main point, use of
sensors and actuators based on knowledge without human intervention, remains
the same [4]. This lack of solid definition of Internet-of-Things allows it to extend
into multiple fields. The application of this technology ranges from personal to
national making it quite efficient. Its current growth can be attributed to the
adaptability of the technology itself and the many capabilities it grants its users.

Our approach makes use of explicit representation of knowledge. An ontology
is an explicit specification of a conceptualization, that is the set of all the objects,
entities and concepts and the relationships between them, of a domain [3]. Over
time there have been a lot of successful attempts to generalize different situations
and create ontological models that can satisfy a wide range of cases. The result is
widely used models which greatly ease the process of inserting an ontology into
any kind of system. Some relevant to Internet-of-Things are the Semantic Sensor
Network1, Open Digital Rights Language2, Smart Appliances REFerence3 and
Smart Energy Aware Systems4.

A closely related area of research is normative multi-agent systems. In human
societies, norms have played an important role in governing the behavior of the
individuals in a society [2]. Even though norms are essential in agent societies,
they are not easy to synthesize. There are two approaches that deal with the
problem of norm synthesis, offline and online. The offline approach tackles the
problem by synthesizing all the norms required for a system during its design
time. This technique however requires complete knowledge of the situation that
the agents in the system will be facing.

1 https://www.w3.org/TR/vocab-ssn/.
2 https://www.w3.org/TR/odrl-model/.
3 https://sites.google.com/site/smartappliancesproject/ontologies/reference-

ontology.
4 https://ci.mines-stetienne.fr/seas/index.html.

https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/odrl-model/
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
https://ci.mines-stetienne.fr/seas/index.html

66 A. Panaretos et al.

The online approach on the other hand synthesizes norms during runtime.
This gives it the advantage of not requiring complete knowledge of the situation
on design time which also implies that the norms that will be created over time
will adjust to the conditions of the system as they keep changing [6]. It is worth
mentioning that norm emergence has been gaining popularity lately. It is an
online norm synthesis approach that allows agents to communicate with each
other, synthesize norms themselves and decide on which ones will be used by the
entire agent society. There are two related research work our project borrows
from, namely IRON and its predecessor BASE. They both make use of a Case
Based Reasoning mechanism to deal with conflict situations. Their differences
are that IRON has a norm evaluation method and a norm generalization and
specialization operator, which improve its performance.

3 Architecture and Implementation

The goal of the system is to process a log of events of Internet-of-Things scenarios
and knowledge representation models in order to generate norms. The system
will also have to be able to be integrated in different domains with only the
input changing for each different adaptation. The rules, once generated, will be
processed by the system and refined through generalizations and specializations
of the ontological counterparts of the preconditions and postconditions. The
output will be a set of rules that will be aiming to achieve minimality and
simplicity.

Based on the system objectives, we can describe the several functional
requirements that are inferred.

FR-1 The system will formulate rules based on an initial log of events and
make them available in a specific format – The rules created will therefore
be directly linked to the input log rather than abstract rules based on the
Internet-of-Things scenario.

FR-2 The system will refine the rules by using a generalization and a special-
ization operator – These two operators will be able to make the rules move
towards a more uniform form that will enable their merge.

FR-3 The system will evaluate the entire normative system after each operator
action – This ensures that the norms that have been altered are kept only if
they are efficient in their new form.

FR-4 The system will post-process the rules further to aim at achieving prop-
erties such as minimality and simplicity.

The scenario the system is applied on is a smart house that operates based
on Internet-of-Things technology. All the sockets of the house have their voltage
measured constantly which enables the complete knowledge of operation of every
device. The system built, will be offering a set of norms to the occupants of
the house that if followed will have beneficial effects to them such as reduced
electricity cost and power conservation.

Minimality and Simplicity of Rules for the Internet-of-Things 67

The data set5 used is a result of a research project of the Distributed Systems
Group of the Computing Science department of ETH in Zurich6. It is referred
to as the ECO (Electricity Consumption and Occupancy) data set and it is
a comprehensive open-source data set for non-intrusive load monitoring and
occupancy detection research. It has information of 6 households for a period of
8 months with readings every second on all sockets of the house through smart
meters. It additionally holds occupancy information through the use of a tablet
computer in the households. [1] and [5] analyzed it in detail but due to its open-
source nature it is useful to any other researcher on the field as well.

3.1 Architecture

It is important to distinguish the different components of the system so as to
understand its functionality. We introduce all the main components as well as
the initial inputs.

Input data – is the data on which the rules will be based and include tagged
undesirable system states.

Ontologies – in the system refer to the knowledge representation of the devices
as well as of the preconditions that define the rules.

Rules generator – generates rules according to data that has been given as
input. The rules are created by picking at random elements from the ontolo-
gies that represent the preconditions and postconditions. If the generated rule
can be applied to an undesirable state it is kept otherwise it is discarded.

Rules post-processor – receives the rules and generalizes or specializes them
using the corresponding operator. Further aspects of ontological DL reasoning
could be used to expand the concept hierarchies, this would give a richer set
of generalisations/specialisations for use by the algorithm, but would not
fundamentally alter the described approach.

Rules evaluator – evaluates the effectiveness of the generalized rules compared
to their previous form. Specifically, it compares the amount of cases the rule
got triggered before and after its generalization.

Rules merger – merges the generalized rules to reduce their total size.

3.2 Format of Rules

To understand our implementation better we introduce the format of the rules
in the system:

condition:day/precondition 1/.../precondition X;
action:device 1,action 1,...,device X,action X;
group:groupName

5 http://rossa-prod-ap11.ethz.ch/delivery/DeliveryManagerServlet?
dps pid=IE594964.

6 https://www.vs.inf.ethz.ch/.

http://rossa-prod-ap11.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE594964
http://rossa-prod-ap11.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE594964
https://www.vs.inf.ethz.ch/

68 A. Panaretos et al.

In the condition part of the rule, the day refers to the day of the week while
the preconditions refer to the time the rule will be applied. In the action part,
the devices refer to any of the known devices in the house, while the actions,
which have the value of 0 or 1 indicate whether the device should be turned off
or on. Lastly, the groups, namely Cheap Rate and Premium Rate, are used to
separate electricity cost depending on the time of the day. We also note that in
our system we represent rules as trees and refer to nodes of these trees when
performing actions between rules. For the sake of a simple example, let us assume
that there are only 2 devices in the bedroom, a TV and a lamp. Accordingly, 2
rules have been generated:

condition:Monday/2330;action:TV,0;group:Cheap Rate
condition:Monday/2335;action:Lamp,0;group:Cheap Rate

When generalized and merged these 2 rules can be turned into a single one of the
form condition:Monday/Late Night;action:Bedroom,0;group:Cheap Rate.

3.3 Ontologies in Our System

In the implementation we use as many ontologies as the preconditions and post-
conditions we want to apply ontological reasoning on. In this case therefore, there
is one ontology for the preconditions that is used to represent time and another
for the postconditions which is used to represent devices. The time ontology
splits up the time in different groups based on both the time of the day and the
electricity cost. The devices ontology, separates the devices into groups based on
their size and location in the house.

3.4 Functions and Operators

The most important functions amongst the many used in the system are the ones
responsible for the merging of different rules. They are based on the criteria of
the postcondition and precondition nodes being able to subsume other nodes of
their type. This is detailed in Algorithm 1, establishing how we can merge nodes
depending on preconditions and similarly for postconditions.

The generalization and specialization operators are the ones responsible for
changing the form of the rules. There are two different kinds of operator sets
as one deals with the preconditions of a rule while the other deals with the
postconditions.

Minimality and Simplicity of Rules for the Internet-of-Things 69

Data: current precondition node, list of all precondition and list of postcondition nodes
history← {};
get level of generalization of current node;
while list of preconditions is not over do

if the current node is in the same group as a preconditions node in the list then
get level of generalization of node in list;
if current node’s postconditions subsume node’s in the list postconditions then

compare their postconditions for contradictions;
if no contradictions then

add postconditions to current node;
add node in list to history;
delete node in list;

end

end

end

end
return history;

Algorithm 1. Nodes merging based on preconditions

4 Evaluation

For the performance and scalability evaluation our system had to undergo, some
adjustments were made. The system was set on a loop to generate a specific
amount of rules and continuously refine their preconditions and postconditions.
Afterwards, the rules were merged and the final number of the rules was stored
in a text file. It is important to mention that we ran an extensive amount of
experiments (100 times for every point that appears in the graph) so as to
guarantee up to a point, the statistical significance of our solution given the
random nature of the rules generation.

During the evaluation of our system we attempted to cover all the parameters
that should be examined. The total number of rules in the normative system
before and after it was processed was the first metric we observed. Scalability
testing was included as well, measuring the time required for the system to
complete one iteration based on the amount of rules in the normative system on
one hand and the amount of data on the other.

Fig. 1. Number of rules before and after refinement

70 A. Panaretos et al.

One of the main components that had to be checked during the evaluation of
our system was the improvement on the size of the modified normative system.
It is worth noticing however that the randomness of the rules generation did not
always allow for rules that could be merged. We display the statistics for this
metric of evaluation in Fig. 1.

Scalability testing is used to evaluate the robustness of a system in situations
of varying difficulty. As our system would have to be able to be integrated with
Internet-of-Things scenarios that could incorporate a large set of rules or data,
both of those parameters were tested.

The time required to process different amount of rules was recorded. This
measurement indicates the toll multiple operations on rules can have on the
system. The results are presented in Fig. 2.

Another important test to evaluate our implementation was the time it
required to go through data of different sizes. For this test, the data input was
changed from a full day to increments of 3 h and tested with 100 rules being
generated. Figure 3 shows the results.

Fig. 2. Time required to process specific amount of rules

Fig. 3. Time required to process data

Minimality and Simplicity of Rules for the Internet-of-Things 71

Besides the testing we carried out there are further experiments that could
verify the consistency of our approach. Specifically, we were considering the
formulation of two edge cases. The first would be an ideal, according to our
understanding at least, initial set of rules with the intent of checking if our
system can improve it further. The second, would be the worst possible initial
set of rules in order to assess the system’s performance when handling bad input
of this kind. However, due to time limitations, we could not perform either
evaluation.

5 Conclusions, Discussions and Future Work

We initially aspired to create a system that would post-process and refine rules
and normative systems through constant evaluations. Our goal was then trans-
formed into a specific architectural design and our system specifications were
stated. We have achieved our set objectives and presented our implementation
in detail. Our analysis of the system’s performance was a thorough process that
involved, due to the random factor in the rules creation, a large number of exper-
iments. Through scalability testing as well, we have discovered that our solution
is working as intended with little variation in time required, even if the amount
of rules is increased.

We have achieved the functional requirements laid out in Sect. 3. In doing so
we have made a contribution by extending and adapting an existing approach
to address a specific scenario of Internet-of-Things.

In the implementation stage of the task at hand, we avoided integrating a
Case-Based Reasoning mechanism into our system. This was done despite the
improvement in the efficiency of the rules that it could provide for a few reasons.
Firstly, the available free and open CBR systems are not easy to integrate with
our system. Secondly, as our solution is focused on rule refinement rather than
rule creation, we felt that it was beyond the scope of the paper to include a CBR
system in the rule refinement machine.

During the development process of our system a lot of ideas were discussed
and partially explored to enhance it. The enhancements can be split into system
improvements and system extensions. The most significant improvement to our
system would be an integration with available rule standards. This would enable
our system to be easier to integrate with existing Internet-of-Things solutions.
Ideally, instead of a specific technology and standard of rules, multiple options
should be offered to whoever would want to incorporate our system, or parts of
our system, into their own. Furthermore, additions to the system can be done to
increase its capabilities. The easiest and most efficient would be a user-based rule
insertion component. While the production of rules based on data is certainly as
efficient as it can be, we need to consider the individual needs of every user. This
would make the system more personalized and users would be more inclined to
use it.

72 A. Panaretos et al.

References

1. Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The eco data set
and the performance of non-intrusive load monitoring algorithms. In: Proceedings
of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings
(2014)

2. Durkheim, E., Simpson, G.: Emile Durkheim on the Division of Labor in Soci-
ety/Being a Translation of His De La Division Du Travail Social, with an Estimate
of His Work by George Simpson. Macmillan, London (1933)

3. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum. Comput. Stud. - Special Issue: The Role of Formal Ontology
in the Information Technology 43(5–6), 907–928 (1995)

4. Gubbia, J., Buyyab, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. FGCS 29(7), 1645–1660 (2013)

5. Kleiminger, W., Beckel, C., Santini, S.: Household occupancy monitoring using elec-
tricity meters. In: Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (2015)

6. Morales, J., López-Sánchez, M., Rordriguez-Aguilar, J.A., Vasconcelos, W.,
Wooldridge, M.: Online automated synthesis of compact normative systems. ACM
Trans. Autonom. Adapt. Syst. 10(1), Article 2 (2015)

Stream-Based Perception for Agents
on Mobile Devices

Jeremias Dötterl1(B), Ralf Bruns1, Jürgen Dunkel1, and Sascha Ossowski2

1 Department of Computer Science,
Hannover University of Applied Sciences and Arts, Hannover, Germany
{jeremias.doetterl,ralf.bruns,juergen.dunkel}@hs-hannover.de

2 CETINIA, University Rey Juan Carlos, Madrid, Spain
sascha.ossowski@urjc.es

Abstract. Multi-Agent Systems (MAS) lack advanced concepts for data
stream processing, which inhibits their effective use in mobile ecosystems,
where built-in smartphone sensors can provide valuable data about the
current physical environment of the mobile user. With beliefs, plans,
and goals, cognitive agent frameworks provide useful abstractions for
the development of complex systems but do not contain effective mech-
anisms to sufficiently bridge the abstraction gap that exists between
low-level streaming data and high-level percepts. The main contribu-
tion of this paper is an enhanced perception approach, which integrates
two new abstractions, namely expectations and interpretations, into the
commonly used perceive-deliberate-act cycle. Expectations and interpre-
tations address the challenges of sensor data and provide higher-level
knowledge to the agent’s deliberation, which allows mobile agents to
make situation-aware decisions in dynamically changing environments.

Keywords: Multi-Agent Systems · Data stream processing ·
Mobile computing · Agent perception

1 Introduction

Multi-Agent Systems (MAS) [27] support the engineering of complex distributed
systems through the decomposition of problems into autonomous agents that
perform high-level interactions [13,14]. In recent years, mobile devices have
become mature computing platforms that are taking over an ever-increasing
number of complex tasks. Agent-based abstractions can help to build complex
systems on mobile devices [22]. Mobile systems can be designed and developed
on an elevated abstraction level by making use of high-level agent concepts like
beliefs, plans, and goals. Unfortunately, agent-based frameworks [4,5] lack sat-
isfactory support for the processing of sensor data. Today’s mobile devices are
equipped with a rich set of sensors that can be exploited to achieve system
behavior that adapts itself to the current situation of the mobile user. However,
the processing of sensor data streams is not an explicitly addressed concern in
agent-based systems.
c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 73–87, 2019.
https://doi.org/10.1007/978-3-030-17294-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_6

74 J. Dötterl et al.

The major problem is the existing abstraction gap between data streams and
agent percepts [6,19,30]. Agents use their perception to obtain information from
the environment. The agents expect to receive the information in form of high-
level percepts, i.e. the percepts resemble actionable knowledge that the agents
can understand and react to directly. However, sensor data is located on a lower
level of abstraction: The individual data elements of the stream carry little infor-
mative value when observed in isolation and cannot be acted upon directly. To
shift the low-level data stream to a higher-level percept stream, meaningful per-
cept patterns have to be detected and encoded into meaningful situations. For
example, a single GPS value in isolation merely allows conclusions about the
location of an agent. Only by analyzing the patterns of multiple data elements,
higher-level knowledge can be extracted: Is the agent moving? Is it accelerating
or slowing down? Is it moving faster or slower than other agents? Without a
dedicated stream processing component, agents cannot infer situational knowl-
edge from complex data sequences. To achieve advanced situation awareness,
agents have to analyze the relationships and patterns of multiple data elements
and their relations in time.

In this paper, we propose two abstractions for the design and development of
MAS in mobile ecosystems, namely expectations and interpretations. The agent’s
expectations narrow the agent’s perception of the environment and control the
agent’s input. The agent’s interpretations drive the agent’s comprehension of the
environment and allow to express how complex sequences of percepts should be
interpreted by the agent to bridge the abstraction gap. Through enhanced per-
ception, mobile agents1 can perceive higher-level knowledge in low-level stream-
ing data.

The rest of the paper is structured as follows. Section 2 describes related work.
Section 3 presents the approach. In Sect. 4 we perform a case study. Section 5
evaluates and discusses our work. Section 6 terminates the paper with conclusions
and final remarks.

2 Related Work

Our work occupies a niche between two lines of research: (i) agents on mobile
devices, and (ii) data stream processing in agent-based systems.

There exist different frameworks and middleware for agent-oriented program-
ming on mobile devices [3,22]. In the past, several agent-based systems have
been proposed that operate on mobile devices: The approaches either present an
agent-based mobile system for a specific application domain (e.g., e-health [7]) or
aim to bring agent abstractions to mobile computing platforms [1,18,23]. How-
ever, none of these approaches uses advanced data processing to detect complex
relationships between observed percepts.

There exists some work on advanced data processing in MAS. In many agent-
based systems, reactive plans are triggered by the occurrence of a single event.

1 We use the term mobile agent to refer to an agent that runs on a mobile device.

Stream-Based Perception for Agents on Mobile Devices 75

Buford et al. [6] extend the BDI agent architecture with event correlation to
allow plans to be triggered by a (potentially complex) pattern of multiple events
rather than only by a single, isolated event. Ziafati et al. [30] add advanced event
processing to BDI agents in the context of autonomous robot programming. The
robot’s sensory information is processed in order to extract relevant knowledge
that the robot’s control component can use to make and execute appropriate
plans. There are two approaches related to our work that make use of Complex
Event Processing (CEP) [16] within the Jason [5] agent framework: Ranathunga
et al. [20] use CEP within a global event processing component to interface
Jason with the virtual Second Life platform. Ranathunga and Cranefield [19]
integrate CEP into Jason agents to identify complex situations in the agent’s
environment. However, these approaches do not consider the characteristics of
mobile ecosystems.

Weyns et al. [26] present a formal model for active perception, which allows
agents to direct their attention to the most relevant occurrences in the environ-
ment. Active perception assumes that percepts are given on the knowledge level
and narrows the agent’s view. Our enhanced perception approach acknowledges
that percepts can appear on a low abstraction level and widens the range of
situations the agent can perceive.

Further related work can be found in the area of context-aware systems.
Yılmaz and Erdur [29] present a context-aware MAS where mobile client agents
can request context information from a server-side context agent. To infer the
context, the context agent performs rule-based reasoning on a context ontol-
ogy. Alfonso-Cendón et al. [2] let agents perform context-aware workflows in the
ambient intelligence domain. The agents run on top of an existing context man-
agement system, which serves as the provider of context information. We are not
aware of any context-aware multi-agent approach where data stream processing
is integrated into a cognitive agent architecture to analyze mobile sensor data.

3 Agents with Enhanced Perception

3.1 Sensing the Environment

Modern smartphones have a wide range of data sources available through which
they can capture the immediate environment [25]:

– Internal sensors: On-board sensors to measure acceleration, air pressure,
GPS, humidity, temperature, rotation, etc.

– External sensors: Body sensors like bracelets or chest harness that are con-
nected to the smartphone to measure blood pressure or heart rate.

– Other apps: Any other app on the device. For instance, the calendar app that
informs about upcoming appointments.

– Operating system: Information about system events like low battery state or
missed calls.

– Communication interfaces: Wireless communication, e.g. via WIFI, enables
the access of web services or other data sources online.

76 J. Dötterl et al.

Like Santi et al. [22], we consider these data sources artifacts of the envi-
ronment, where the agent is situated and which the agent can sense to obtain
data. In the A&A (agents & artifacts) meta-model [17], artifacts are the pas-
sive components of the MAS that are intended to be used by the agents. While
agents constitute the pro-active and autonomous components of the system, arti-
facts can be understood as tools that provide functionality to the agents. Each
artifact exposes a usage interface to the agents, which can consist of arbitrary
operations. Artifacts are a generic mechanism to provide resources to the agents
or to provide an interface for performing actions on the environment.

In our approach, we distinguish between two groups of artifacts.

1. Device artifacts provide access to the different sensors and services of the
smartphone. Via these artifacts, the agent can obtain sensor data, check sen-
sor availability, and activate or deactivate sensors.

2. Domain artifacts provide access to functionality that the agent needs to act
in the given problem domain.

The artifacts provide the data in form of data streams. Streaming data has
various properties that prevent its direct use in conventional agent architectures.

– Low-quality [15]: Data streams can be of low quality due to imperfect sensing;
data can be missing or inaccurate.

– Low-level [28]: Due to the existing abstraction gap, it is often not possible to
react to single isolated data elements as their meaning is not inherently clear.

dynamic connection

stable connection

Stationary
Agent

Stationary
Agent

Mobile
Agent

Mobile
Agent

Multi-Agent Layer

Physical World

dynamic connection

Humans

Infrastructure

Fig. 1. Multi-Agent Systems with mobile agents

Other agents can also serve as data sources: Mobile agents can establish
dynamic connections with nearby agents to engage in flexible interaction and
data exchange, see Fig. 1. Interaction can take place with other mobile agents,
which typically represent human actors, or with stationary, non-mobile agents,
which can represent, e.g., shared infrastructure. As mobile agents can move
freely, their connections are typically less stable and more dynamic than those
of conventional, non-mobile agents.

Stream-Based Perception for Agents on Mobile Devices 77

3.2 Processing the Percept Stream

We propose AEP Architecture (Agents with Enhanced Perception) for agents
on mobile devices, as shown in Fig. 2. The AEP architecture consists of three
major components: The belief base and deliberation component originate in large
parts from the conventional agent architecture [5,12,21]. Enhanced perception
constitutes the proposed extension.

Percept processing Belief revision

Enhanced perception

Belief baseDeliberation

Expectations Interpretations

Beliefs

Plans

Goals

Goal-driven
deliberation

Agent with Enhanced Perception

Device artifacts

perform actions

Environment

add / remove
beliefs

SituationsGPS sensor

Gyroscope

Domain artifacts

< Domain artifact >

Data
streams

trigger plans

WIFI Manager

...

...

Fig. 2. AEP architecture: Agents with Enhanced Perception

Belief base: The belief base holds the agent’s beliefs, which are pieces of infor-
mation about the world that the agent believes to be true. Beliefs can change
through external events in the environment (indicated by percepts) or through
the agent’s internal deliberation.

Deliberation: The agent deliberates over the world to decide which actions to
perform. The agent’s deliberation process is controlled by plans and is aimed
at the achievement of the agent’s goals.

In mobile environments, these two components are insufficient as the incom-
ing percepts are mostly located on a low abstraction level, which prevents a
direct understanding and reaction by the agent.

Enhanced perception: In AEP, the responsibility of handling low-level per-
cepts is assumed by the enhanced perception component. Enhanced percep-
tion addresses the challenges introduced by data streams explicitly, which
gives the agent greater control over the incoming percept stream and pro-
tects the agent’s deliberation. In particular, low-level percepts are shifted
to an appropriate abstraction level. (First steps towards such an enhanced
perception approach were made in [10]).

As shown in Fig. 2, the agent acquires streaming data from several arti-
facts. The data arrives in form of percepts, which are processed by the two
sub-components of the enhanced perception module:

78 J. Dötterl et al.

1. Percept processing transforms the incoming percept stream according to the
agent’s expectations and interpretations and generates situations, which carry
the higher-level knowledge that the agent was able to infer from the incoming
percept stream.

2. Belief revision uses the situations to update beliefs in the agent’s belief base.
Belief revision manages the lifespan of beliefs according to the events the
agent believes to have occurred in the environment.

Percept Processing. We consider each percept a structure with the following
information:

(percept-type, timestamp, key0 = value0, ..., keyn = valuen)

Each percept adheres to a percept type, which gives the percept a semantic
meaning and constrains its admissible key-value pairs. Furthermore, each percept
holds the timestamp of its creation, which enables time-based pattern matching
over percept sequences.

Hitherto, agent perception processes one percept at a time and neglects the
history of recently observed percepts. To allow agents to perceive complex pat-
terns in percept sequences, we extend the agent’s perception by the following
information flow concepts [8]:

– Selection of particular percepts that match certain conditions regarding per-
cept type or attribute values.

– Windows that allow analysis of (i) the last N percept occurrences or (ii) the
percept occurrences of the last T time units.

– Aggregates to combine multiple percepts and the data they carry to new
information.

Therefore, we process the percept stream with the following information flow
operators [8,16]:

p1 and p2 Conjunction
p1 -> p2 Sequence (followed by)

.window:time(t) Time window
avg(x), max(x), min(x), sum(x) Aggregation

In AEP, the agent holds expectations and interpretations, which make use of
these operators to transform the percept stream.

Definition 1 (Expectations). An agent’s expectations characterize the
agent’s subjective attitude towards percepts. Expectations pose requirements for
the data and information carried by the stream of observed percepts.

Expectations limit the percept stream to those percepts that fulfill the agent’s
expectations. Percepts and percept sequences that violate the agent’s expecta-
tions are purposefully ignored. This reduces the agent’s computational load,

Stream-Based Perception for Agents on Mobile Devices 79

prevents imperfect data manifesting itself in beliefs, and lets the agent gain
control over the incoming data. Expectations address the problem of low data
quality and allow to express data requirements regarding criteria like accuracy,
consistency, and relevance. Expectations can be based on the agent’s current
beliefs.

Example 1 (Expectation). When the user is riding a bike, the agent might expect
two consequent GPS measurements, which are measured within two seconds to
each other, to be at most 20m apart, which corresponds to a speed of 36 km/h
(≈22mph). If the distance is larger than 20m, the agent considers one of the
data points to be erroneous and would drop at least one of the two for being
inconsistent with the agent’s expectations regarding the accuracy of the data.

We follow a rule-based approach, where the detection of a certain pattern in
the percept stream triggers the forwarding of the percept instances that fulfill
the expectations. Expectation rules have access to the agent’s belief base.

Example expectation rule

rule "forward plausible GPS data"
CONDITION: (every gps1=GPS -> gps2=GPS).window:time(2 seconds)

where Agent.hasBelief(isCycling)
and Geo.distance(gps1, gps2) < 20 meters

ACTION: forward gps2

Definition 2 (Interpretations). An agent’s interpretations form the agent’s
rapid recognition capabilities. Interpretations detect higher-level knowledge in
low-level percept streams considering the relationships between multiple percept
occurrences.

Interpretations produce situations, i.e. higher-level information that is
obtained by aggregating and correlating a multitude of percepts. Interpretations
can be influenced by the agent’s beliefs.

Example 2 (Interpretation). When the two latest GPS readings refer to different
locations, the user must have moved.

Like expectations, interpretations can be expressed with pattern rules. The
condition part describes meaningful percept occurrences (situations). Whenever
a percept sequence matches the given pattern, a new situation is created. Inter-
pretation rules can access the agent’s belief base.

Example interpretation rule

rule "detect movement"
CONDITION: every gps1=GPS -> gps2=GPS

where Geo.isDifferent(gps1, gps2)
ACTION: create IsMoving

The situation is then either processed by (a chain of) subsequent interpre-
tations yielding a possibly higher-level situation or passed to the belief revision
component.

80 J. Dötterl et al.

Belief Revision. Whenever a situation is detected, belief revision updates the
belief base to reflect the agent’s subjective view on the environment state. Belief
revision activates and deactivates beliefs in the agent’s belief base driven by
revision rules. The detection of a situation can, under the consideration of the
agent’s current beliefs, result in the addition of new (temporary) beliefs or the
removal of outdated beliefs that the agent believes to not be valid anymore.

As an example, consider the following revision rule which updates the agent’s
belief from is standing still to is cycling.

Example revision rule

CONDITION: IsMoving
where Agent.hasBelief(hasBike)

and not(Agent.hasBelief(hasCar))
ACTION: Agent.addBelief(isCycling), Agent.removeBelief(standingStill)

Whenever the situation isMoving is detected and the belief hasBike exists in
the belief base whereas the belief hasCar does not exist, the belief isCycling is
added and the belief standingStill is removed.

The addition and deletion of a belief can trigger the execution of plans in
the deliberation component of the AEP architecture. Triggered plans can then
initiate actions, e.g., calling an operation provided by an artifact or sending a
message to another agent. In cooperative settings, the agent can decide to share
its beliefs with other agents to inform them about the current environment state.
In competitive settings, the agent may enter into negotiations with other agents
and negotiate on the basis of its inferred situations.

4 Case Study

4.1 Rebalancing of Bike Sharing Systems

In recent years, bike sharing systems [24] have become a viable transportation
alternative in many cities but struggle with imbalanced station states [9]: When
rentals and returns of bikes occur at different rates, a station becomes either
completely empty or completely full, which prevents further rentals or returns.

In this case study, we describe an agent-based rebalancing approach that
incentivizes users to return their bikes at destinations that are beneficial to the
overall system balance [11]. Every user is represented by a user agent, which
runs on the user’s smartphone and analyzes the GPS data provided by the
smartphone’s integrated GPS sensor. Whenever the user agent detects that the
user is cycling near a bike station, it contacts the corresponding station agent
in order to request an incentive. If the station agent is interested in the user’s
currently rented bike, it responds with a corresponding incentive offer, i.e. a
small discount. The station agents coordinate themselves to determine which of
them should offer incentives to the user in order to achieve a balanced system
state.

Stream-Based Perception for Agents on Mobile Devices 81

4.2 Situation-Aware Rebalancing with AEP

The user agent (UA) obtains GPS data from the GPS sensor artifact and pro-
cesses the GPS data stream according to the following process, which is shown
in Fig. 3.

1. Remove outliers 2. Compute trajectories 3. Compute average
speed of last 10 seconds

Time window

4. Detect mode of
transportation

speed > 2
m/s ?

low accuracy

Gps(timestamp,
position)

Trajectory(from, to,
 distance, duration)

Speed(value)

X

TransportationMode(mode)

5. Compute temporal
distance to stations

6. Disseminate estimated
arrival times

7. Station agents:
determine incentives

Coordination

8. Present incentive
offers to user

+$
+$

-$

Fig. 3. AEP implementation of the dynamic rebalancing process

For the realization of the process with AEP, we decompose the process into
two major parts: Steps 1–4 are realized with enhanced perception, whereas steps
5–8 are realized within the agent’s deliberation component. The agent designer
can implement the first four steps by formulating appropriate expectations, inter-
pretations and revision rules.

1. Remove outliers The agent expects GPS data to be accurate. Therefore, the
agent filters implausible GPS events with the expectation rule shown in Sect. 3.2.

2. Compute trajectories
Interpretation Rule

// 2. Compute trajectories
CONDITION: every gps1=Gps -> gps2=Gps

where gps1.position as from
and gps2.position as to
and Geo.distance(from, to) as distance
and (gps2.timestamp - gps1.timestamp) as duration

ACTION: create Trajectory(from, to, distance, duration)

The rule finds for every GPS-Event gps1 its successor gps2 and aggregates
them to a new Trajectory event. This new Trajectory event carries the positions
of the two GPS-Events, as well as their physical distance and the time that
passed between the two GPS measurements. This information allows the agent
to compute the user’s speed.

82 J. Dötterl et al.

3. Compute average speed of last 10 s
Interpretation Rule

// 3. Compute average speed of last 10 seconds
CONDITION: t=Trajectory.window:time(10 seconds)

where sum(t.distance) as distanceSum
and sum(t.duration) as durationSum
and durationSum > 0
and (distanceSum/durationSum) as speedValue

ACTION: create Speed(speedValue)

This rule matches all Trajectory events of the last 10 s and computes the
sum of all distances and durations indicated by the individual Trajectory events.
The distance that the user has moved in the last 10 s (stored in distanceSum)
divided by the time that has passed between the first and last trajectory of
the time window (stored in durationSum) yields the user’s average speed. The
action part of the rule creates a new Speed event that carries the computed speed
value. This rule makes use of time windows, which are a data stream concept
that is usually not available in agent-based programming.

4. Detect mode of transportation
Interpretation Rule

// 4. Detect mode of transportation
CONDITION: s=Speed

where (if(s.speedValue > 2m/s)
then ’bike’
else ’walk’

end) as mode
ACTION: create TransportationMode(mode)

The rule matches all Speed events and estimates depending on the given speed
value whether the user is using a bike or walking. The action part of the rule
creates a new TransportationMode event that indicates the estimated mode of
transportation.

A revision rule updates the agent’s belief base whenever the transportation
mode changes.

Revision Rule

// Update beliefs
CONDITION: m=TransportationMode

where m.mode = "bike"
and Agent.hasBelief(isWalking)

ACTION: Agent.removeBelief(isWalking), Agent.addBelief(isCycling)

The rule reacts to all TransportationMode events by checking whether the appro-
priate belief exists in the agent’s belief base: If the mode bike is detected and
the agent holds the belief that the user is walking, the belief base is updated by
removing the belief isWalking and adding the belief isCycling.

5.-8. Deliberation The addition of the isCycling belief triggers a plan in the
agent that implements the steps 5–8 of the proposed rebalancing process. In this
case study, we assume Jason as the underlying agent framework.

Stream-Based Perception for Agents on Mobile Devices 83

Jason AgentSpeak

1 // When belief isCycling is added:
2 +isCycling : true <-
3 !obtainIncentivesFromNearbyStations .
4
5 +!obtainIncentivesFromNearbyStations : true <-
6 // iterate over all known stations:
7 for(station(ID, LAT, LON)) {
8 !estimateArrivalTime(LAT, LON, ETA);
9 if(ETA < 180) { // less than 3 minutes

10 .send(ID, tell, estimatedArrival(ETA));
11 }
12 } .
13
14 +!estimateArrivalTime(LAT, LON, ETA) : true
15 <- // ... (omitted for brevity)
16
17 // When incentive offer is received from station:
18 +incentiveOffer(Discount)[source(Station)] : true <-
19 displayOffer(Discount, Station) .

Whenever the user starts cycling, i.e. the belief isCycling is added (line 2),
the UA adopts the goal to obtain incentives from nearby stations (line 3). When
this goal is adopted (line 5), the UA estimates the arrival time for all stations
that are stored in its belief base (lines 7 and 8). To the station agents of those
stations, where the expected arrival time is lower than 3min, the agent sends a
message to inform them about the user’s expected arrival (lines 9 and 10). The
station agents (whose code is not shown here) then coordinate with each other
to decide whether to offer an incentive to the user. When they have decided on
a response, they send a corresponding message to the UA, which the UA reacts
to by displaying it to the user (lines 18 and 19), who ultimately decides whether
to accept or reject the offer.

If we implemented the same process without enhanced perception and passed
percepts to the agent’s deliberation directly, high-level knowledge such as user is
cycling would not be available. Instead, the agent’s deliberation would have to
react to many single GPS events, which carry little information when observed
in isolation. This high-level knowledge is made available through the presented
sequence of event processing rules (expectation, interpretation, and revision
rules). Using a dedicated event processing language, data stream processing con-
cepts like sliding windows and information flow operators are available as first-
class constructs, which allow expressing complex data patterns conveniently.

5 Evaluation and Discussion

To test our approach, we integrated the enhanced perception component into the
Jason agent framework. Percepts are converted to event objects and pushed into
a running event processing engine; in our prototype, we use the Esper engine2.
The event processing engine processes the percepts with the registered processing
rules. The Esper EPL (event processing language) supports the information flow

2 https://www.espertech.com/esper/ (Accessed: 2018-08-06).

https://www.espertech.com/esper/

84 J. Dötterl et al.

operators introduced in Sect. 3. In our prototype, the processing rules can access
the agent’s belief base to query, add, and remove beliefs.

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200 1400

S
pe

ed
in

m
/s

Time in seconds

Speed
Belief change: is walking
Belief change: is cycling

Fig. 4. Case study implementation

We implemented the case study of Sect. 4 with our prototype. To test the
expectation and interpretation rules with authentic data, we gathered GPS data
from an Android device while riding a bike. To achieve the best possible accuracy,
we used fine-grained location tracking and obtained GPS data from the device
as frequently as possible. The GPS data is visualized in Fig. 4a. The data set
consists of 1568 entries that were gathered over a time period of 25min and
contains noticeable outliers.

Using the rules of the case study, our approach accurately detects when
the bike is cycling or walking; Fig. 4b shows the belief changes that occurred
in the 25min period. Whether a belief change occurs depends on the average
speed of the last 10 s (see rule 3. in Sect. 4.2). When the speed value rises above
the threshold value of 2m/s, the belief is cycling becomes active; when the
speed value drops below the threshold value, the belief is walking becomes active
instead. Using a window size of 10 s, the belief is updated at most 10 s after the
GPS event that signaled the significant speed change.

Smaller update delays could be achieved by lowering the window size. How-
ever, the shorter delay would come at the cost of false positives. If fewer trajec-
tories are taken into account, small errors in the measured GPS locations have
a greater impact on the estimated speed and might result in unwarranted belief
changes.

In Table 1 we compare the number of low-level percepts that are processed by
the agent’s perception with the number of high-level situations that are provided
to the agent’s deliberation. The enhanced perception module receives 1568 raw

Stream-Based Perception for Agents on Mobile Devices 85

GPS events that are unfiltered and provide little actionable information. If the
percepts were passed to the agent’s deliberation directly, they would have to be
filtered, correlated, and aggregated using exclusively the concepts available in
Jason. With AEP, the deliberation receives no raw GPS events; instead, it gets
provided by the enhanced perception module with 111 higher-level beliefs, which
the deliberation is able to act upon directly.

Table 1. Number of events that were processed in our case study by the agent’s
(a) perception and (b) deliberation over a time span of 25 min.

Event (a) Perception (b) Deliberation

Gps 1568 0
IsWalking 0 5
IsCycling 0 4
ApproxSpeeda 0 51
ApproxPositiona 0 51
Total 1568 111

aThe number depends highly on the chosen update rate.
In our test, we updated the ApproxSpeed belief and the
ApproxPosition belief every 30 s. In cases, were larger
intervals are acceptable, the number of events is even
lower.

6 Conclusion

Agent-based abstractions can facilitate the development of complex systems on
mobile devices. Modern smartphones are equipped with a rich set of on-board
sensors, which can provide valuable information about the user’s environment.
Unfortunately, traditional agent approaches provide insufficient support for the
processing of sensor data streams.

In this paper, we have presented an enhanced perception approach to enable
a more sophisticated data processing for agents on mobile devices. Enhanced per-
ception is driven by the agent’s expectations and interpretations, which integrate
information flow concepts into the agent’s perceive-deliberate-think cycle. The
use of sliding windows and information flow operators allows detecting complex
temporal percept patterns. An implementation with conventional agent abstrac-
tions (beliefs, plans, and goals) would be cumbersome and error-prone.

To demonstrate the feasibility of the approach, we integrated the Esper com-
plex event processing engine into the Jason agent framework and implemented a
case study in the bike sharing domain. Low-level GPS percepts are processed by
enhanced perception; the agent’s deliberation operates on the inferred higher-
level knowledge.

86 J. Dötterl et al.

Future work could investigate how multiple agents can cooperate to detect
complex composite situations that a single agent cannot detect on its own due
to missing data or interpretations.

References

1. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: Does Android dream with
intelligent agents? In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M.
(eds.) International Symposium on Distributed Computing and Artificial Intelli-
gence 2008 (DCAI 2008). AINSC, vol. 50, pp. 194–204. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-85863-8_24

2. Alfonso-Cendón, J., de Alba, J.M.F., Fuentes-Fernández, R., Pavón, J.: Implemen-
tation of context-aware workflows with multi-agent systems. Neurocomputing 176,
91–97 (2016). Recent Advancements in Hybrid Artificial Intelligence Systems and
its Application to Real-World Problems

3. Bergenti, F., Caire, G., Gotta, D.: Agents on the move: JADE for Android devices.
In: Santoro, C., Bergenti, F. (eds.) Proceedings of the XV Workshop “Dagli Oggetti
agli Agenti”, Catania, Italy, 25–26 September 2014. CEUR Workshop Proceedings,
vol. 1260. CEUR-WS.org (2014)

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason, vol. 8. Wiley, Hoboken (2007)

6. Buford, J., Jakobson, G., Lewis, L.: Extending BDI multi-agent systems with sit-
uation management. In: 2006 9th International Conference on Information Fusion,
July 2006

7. Chan, V., Ray, P., Parameswaran, N.: Mobile e-health monitoring: an agent-based
approach. IET Commun. 2(2), 223–230 (2008)

8. Cugola, G., Margara, A.: Processing flows of information: from data stream to
complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)

9. DeMaio, P.: Bike-sharing: history, impacts, models of provision, and future. J.
Public Transp. 12(4), 41–56 (2009)

10. Dötterl, J., Bruns, R., Dunkel, J., Ossowski, S.: Event-driven agents: enhanced
perception for multi-agent systems using complex event processing. In: Belardinelli,
F., Argente, E. (eds.) EUMAS/AT -2017. LNCS (LNAI), vol. 10767, pp. 463–475.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01713-2_32

11. Dötterl, J., Bruns, R., Dunkel, J., Ossowski, S.: Towards dynamic rebalancing of
bike sharing systems: an event-driven agents approach. In: Oliveira, E., Gama,
J., Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp.
309–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2_26

12. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of
the Sixth National Conference on Artificial Intelligence - Volume 2, AAAI 1987,
pp. 677–682. AAAI Press (1987)

13. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296
(2000)

14. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001)

15. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a
review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013)

https://doi.org/10.1007/978-3-540-85863-8_24
https://doi.org/10.1007/978-3-030-01713-2_32
https://doi.org/10.1007/978-3-319-65340-2_26

Stream-Based Perception for Agents on Mobile Devices 87

16. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2001)

17. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agent. Multi-Agent Syst. 17(3), 432–456 (2008)

18. Rahwan, T., Rahwan, T., Rahwan, I., Ashri, R.: Agent-based support for mobile
users using AgentSpeak(L). In: Giorgini, P., Henderson-Sellers, B., Winikoff, M.
(eds.) AOIS -2003. LNCS (LNAI), vol. 3030, pp. 45–60. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-25943-5_4

19. Ranathunga, S., Cranefield, S.: Improving situation awareness in intelligent virtual
agents. In: Dignum, F., Brom, C., Hindriks, K., Beer, M., Richards, D. (eds.) CAVE
2012. LNCS (LNAI), vol. 7764, pp. 134–148. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36444-0_9

20. Ranathunga, S., Cranefield, S., Purvis, M.: Interfacing a cognitive agent platform
with second life. In: Beer, M., Brom, C., Dignum, F., Soo, V.-W. (eds.) AEGS
2011. LNCS (LNAI), vol. 7471, pp. 1–21. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32326-3_1

21. Rao, A.S.: BDI agents: from theory to practice. In: Proceedings of the 1st Inter-
national Conference of Multiagent Systems, July 1995

22. Santi, A., Guidi, M., Ricci, A.: JaCa-Android: an agent-based platform for building
smart mobile applications. In: Dastani, M., El Fallah Seghrouchni, A., Hübner,
J., Leite, J. (eds.) LADS 2010. LNCS (LNAI), vol. 6822, pp. 95–114. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22723-3_6

23. Sartori, F., Manenti, L., Grazioli, L.: A conceptual and computational model
for knowledge-based agents in ANDROID. In: Proceedings of the 14th Workshop
“From Objects to Agents” co-located with the 13th Conference of the Italian Asso-
ciation for Artificial Intelligence (AI*IA 2013), Torino, Italy, 2–3 December 2013,
pp. 41–46 (2013)

24. Shaheen, S., Guzman, S., Zhang, H.: Bikesharing in Europe, the Americas, and
Asia: past, present, and future. J. Transp. Res. Rec. 2143(1), 159–167 (2010)

25. Stipkovic, S., Bruns, R., Dunkel, J.: Pervasive computing by mobile complex event
processing. In: 2013 IEEE 10th International Conference on e-Business Engineer-
ing, pp. 318–323, September 2013

26. Weyns, D., Steegmans, E., Holvoet, T.: Towards active perception in situated
multi-agent systems. Appl. Artif. Intell. 18(9–10), 867–883 (2004)

27. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley Publish-
ing, Chichester (2009)

28. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive
computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012)

29. Yılmaz, Ö., Erdur, R.C.: iConAwa - an intelligent context-aware system. Expert
Syst. Appl. 39(3), 2907–2918 (2012)

30. Ziafati, P., Dastani, M., Meyer, J.J., van der Torre, L.: Event-processing in
autonomous robot programming. In: Proceedings of the 2013 International Confer-
ence on Autonomous Agents and Multi-agent Systems, AAMAS 2013, pp. 95–102.
International Foundation for Autonomous Agents and Multiagent Systems,
Richland (2013)

https://doi.org/10.1007/978-3-540-25943-5_4
https://doi.org/10.1007/978-3-642-36444-0_9
https://doi.org/10.1007/978-3-642-36444-0_9
https://doi.org/10.1007/978-3-642-32326-3_1
https://doi.org/10.1007/978-3-642-32326-3_1
https://doi.org/10.1007/978-3-642-22723-3_6

Argumentation and Negotiation

Distributed Ledger and Robust
Consensus for Agreements

Miguel Rebollo(B), Carlos Carrascosa, and Alberto Palomares

Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
{mrebollo,carrasco,apalomares}@dsic.upv.es

Abstract. This work proposes the application of consensus processes
to ensure the consistency of the data stored in distributed ledgers. Con-
sensus allows a group of agents to reach agreements about the value of
common variables or, in this case, data structures such as Merkle trees
or chains of blocks. Nevertheless, the consensus algorithm requires for all
the participants to apply the same equation. A malicious agent can inter-
fere in the process just by introducing some deviation from the expected
value. In this work, the authors propose a method to detect when the
information has been modified and, under certain assumptions, it can
recover the original data.

Keywords: Consensus · Agreement · Complex networks ·
Failure tolerance · Applications · Distributed Ledger Technology ·
Blockchain

1 Introduction

This work proposes an extension of a consensus process, which belongs to the
family of gossiping algorithms, to keep a distributed ledger. Interest in blockchain
grows because the strengthening in privacy protection [1], and it can be applied
to diverse areas such as food tracking systems [2], administrative contracts [3],
distributed voting [4], or power grid management [5]. Its usage in the IoT requires
certain adaptations, but blockchain technology provides secure and optimized
protocols [6,7]. Security concerns are one of the most important ones in this
technology, and the main protocols implement different defenses against byzan-
tine attacks, which can compromise the stability of the system [8,9].

Consensus process in networks allows calculating in a distributed way the
value of some common function. Each agent uses only its value and the value from
its direct neighbors to recalculate the value of the function and to propagate the
new value to its neighbors. This iterative process converges to one unique, final
value for the function that is being calculated. Agents have no further knowledge
about the size, the topology of the network, nor any other characteristic.

This work is supported by the PROMETEOII/2013/019 and TIN2015-65515-C4-1-R
projects of the Spanish government.

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 91–99, 2019.
https://doi.org/10.1007/978-3-030-17294-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_7

92 M. Rebollo et al.

Let be G = (V,E) an undirected graph formed by a set of vertexes V and
a set of links E ⊆ V × V where (i, j) ∈ E if exists a link between nodes i
and j. A vector x = (x1, . . . , xn)T contains the initial values of the variables
associated with each one of the nodes of the network. Olfati-Saber and Murray
[10] propose the algorithm described by Eq. 1, and that is executed until the
difference between two consecutive iterations is under some limit.

xi(t + 1) = xi(t) + ε
∑

j∈Ni

[xj(t) − xi(t)] (1)

To follow precisely the algorithm is mandatory for all the nodes. A well-known
misbehavior is the follow-the-leader one [11], in which one of the nodes remains
unchanged or changes arbitrarily. The complete network converges to the value of
this node. Another case appears when some nodes fake the transmitted value. In
any case, the network converges to a value different from the average. Therefore,
is too easy for a node to alter the final result of the consensus.

This work proposes a method to detect failures in the consensus process in
a distributed way. It is applied to the Distributed Ledger Technology (DLT) to
avoid malicious agents alter the contents of the ledger. The rest of the paper
is structured as follows. Section 2 extends the consensus algorithm to include
malicious nodes that try to fake the result of the process. Section 3 shows the
application of consensus to maintain a distributed ledger among a set of agents
and, finally, Sect. 4 resumes the main conclusions of this work.

2 Consensus with Malicious Agents

A deviation in the consensus process can be easily modeled as follows.

xi(t + 1) = xi(t) +
∑

j∈Ni

[xj(t) − xi(t)] + ui(t) (2)

where ui(t) is the error introduced by node i in the iteration t. Some models allow
detecting the failure, but they need the global knowledge of the network structure
since they are based on the use of an observation matrix that is calculated from
the adjacency matrix [12].

Figure 1 shows an example of the process. The random network has 10 agents
with initial values x = (1, 2, . . . , 10)T . Agent 5 introduces 4 extra units in itera-
tion t = 3, so u5(3) = 4. The network converges to the new average, as if agent
5 had x5(0) = 9 from the beginning, instead of the original value x5(0) = 5. The
main problem that this work address is how to detect this failure and if it is
possible to correct it.

2.1 Cheat Detection

In the example shown in Fig. 1(left), agent 5 introduces a deviation in the con-
sensus value. We can clean Eq. 1 and obtain the following expression.

Distributed Ledger and Robust Consensus for Agreements 93

time

0

2

4

6

8

10
x i

Consensus with Malicious Agent

0 10 20 30 40 50 0 10 20 30 40 50
time

0

0.2

0.4

0.6

0.8

1

x i

Consensus over the Detected Deviation

Fig. 1. (Left) Agent 5 adds 4 units in iteration t = 3, so the result converges to 5.9
instead of 5.5 (Right) the consensus over the detected deviation converges to dvi(t) =
0.4, and applying the formula in Eq. 6 we obtain ci = 4 that is the deviation introduced
by agent 5

xi(t + 1) = xi(t) + ε

⎡

⎣
∑

j∈Ni

xj(t) −
∑

j∈Ni

xi(t)

⎤

⎦

xi(t + 1) = xi(t) + ε
∑

j∈Ni

xj(t) − εdixi(t)

0 = xi(t + 1) + (εdi − 1)xi(t) − ε
∑

j∈Ni

xj(t)

︸ ︷︷ ︸
dvi(t)

. (3)

being di the degree of node i. Each iteration must fulfill

dvi(t) = 0 ∀t > 0 (4)

Each agent compares the newly calculated value with the corresponding one
calculated from the values in the previous iteration. If the difference is not zero,
then the agent can suspect about the validity of the obtained result. The only
constraint that the method must fulfill is that the first exchange must be trustful.
Depending on the domain and how the problem is modeled, in most of the cases,
this condition is satisfied. Therefore, we can detect that the result that we have
obtained has been somehow manipulated. The next step is to correct it.

2.2 Cheat Correction

Let’s assume for clarity that the deviation is positive it is added at once in one
of the iterations by one agent. The process is the same for multiple deviations in
several iterations. When a deviation from the expected value is detected, dvi(t)
is the value the agent has to compensate. From Eq. 3 we can see how the excess

94 M. Rebollo et al.

ui(t) is spread among the neighbors. In each iteration, the malicious agent keeps
(1 − εdi)ui(t) for itself and spreads εui(t) to each one of its neighbors:

dvi(t) = ε
∑

j∈Ni

uj(t), → dvi(t)
ε

=
∑

j∈Ni

uj(t) (5)

and dividing the deviation by the value of ε, any agent knows the alteration
that has been introduced in the process. Note that, as the values of

∑
j∈Ni

uj(t)
are aggregated, it is not possible to know which agent has been the one that
has cheated. This solution allows the neighbors of the malicious agent to know
that something is wrong in the consensus process and even correct it. However,
it is needed for the correction to be also propagated through all the network.
Therefore, a parallel consensus over the deviation dvi(t) is performed.

Let’s create a vector by extending the cumulated deviation detected by agent
i until instant t, Di(t) =

∑t
s=0 dvi(s), with wi(t) = wi(t − 1) + 1 if dvi(t) �= 0.

That is, wi(t) counts how many times agent i has detected a deviation. The same
consensus process is performed over (Di(t)|wi(t)) in parallel with the consensus
over xi(t), but only by the trustful agents1. When the process converges, the
fake result obtained in xi(t) can be corrected as follows

x̂i(t) = xi(t) − Di(t)/ε

wi(t)
= xi(t) − Di(t)

εwi(t)︸ ︷︷ ︸
ci(t)

(6)

Equation 6 is the result of the application of a cumulative consensus over the
deviations dvi(t) and the correction with Eq. 5.

Figure 1(right) shows the evolution of dv(t). The initial values were x(0) =
(1, 2, . . . , 10); agent 5 includes a deviation of u5(3) = 4 to obtain a final aver-
age value of 5.9, but the compensation propagated through dv(t) converges to
dv(t) = 0.4. Applying Eq. 6, c(t) = 4, so x(t) − c(t)/n give us the correct result
of consensus process. Algorithm 1 describes the process that each node has to
execute.

3 Consensus for Distributed Ledger

We’ll show the application of the detection of failures in the consensus process
to a real-world scenario: the Distributed Ledger Technology (DLT). Distributed
ledgers record, replicate, share and synchronize data without a central admin-
istrator and over the basis of peer-to-peer networks. Blockchain is one possible
utility of the DLT. The database is spread among a set of nodes in a network.
Each one of them keeps an identical copy of the ledger. When one node generates
a new block of data, it is spread to the complete network and the nodes vote to
decide which copy is the correct one.

1 If a malicious agent keeps cheating many times, it can be detected by its neighbors.
The demonstration is out of the scope of this work.

Distributed Ledger and Robust Consensus for Agreements 95

Algorithm 1. Consensus algorithm with cheat detection
1: set initial value xi(0)
2: while xi(t) not converge do
3: xi(t + 1) = xi(t) +

∑
j∈Ni

[xj(t) − xi(t)] + ui(t)
4: dvi(t) = xi(t + 1) + (εdi − 1)xi(t) − ε

∑
j∈Ni

xj(t)
5: if dvi(t) > 0 then
6: accumulate dvki(t) in Di(t)
7: wi(t) = wi(t − 1) + 1
8: end if
9: Di(t + 1) = Di(t) + ε

∑
j∈Ni

[Dj(t) − Di(t)]
10: wi(t + 1) = wi(t) + ε

∑
j∈Ni

[wj(t) − wi(t)]
11: end while
12: ci(t) = Di(t)

εwi(t)

13: corrected result is xi(t) − ci(t)/n

To apply the consensus process presented in this paper, we assume that
only one agent has the authority to emit blocks with the information the agent
generates. For example, for IoT, only the sensor creates a block with its readings,
or an academic institution generates certificates from their students, or an agency
is who signs contracts. The problem that arises in those scenarios is how to ensure
that the participants exchange the data as is.

The chosen structure that stores the blocks of data in each agent is Merkle
trees. In this trees, the terminal nodes (leaves) are the blocks that contain the
data, and the internal nodes hashes calculated from the hashes of their children.
For our proposal

– each agent keeps a copy of the Merkle tree,
– each agent emits blocks with its generated information (e.g., sensor readings),
– the rest of the nodes spread the block and stores it in their own Merkle tree.

Let’s consider a sensor network with agents that keep the record of the read-
ings and uses DLT with Merkle trees to distribute and synchronize the data
among the sensors using a consensus process.

1. agent i creates a block with all the readings s
2. it calculates the hash corresponding to the string with the readings
3. insert the block to its copy of the Merkles tree
4. obtain the updated hash of the root hr

5. it composes a vector formed by (s|hr|yi = 1)
6. all the other agents sets their initial state to (′′|′′|yi = 0).

After that, a consensus process begins, and when it converges, all the nodes
obtain the original string and hash value doing s/yi and h/yi (Fig. 2).

96 M. Rebollo et al.

L1 L2 L3 L4 L5 L6

Hash 1+2 Hash 3+4 Hash 5+6

Hash
1+2+3+4

Hash 5+6

Hash
1+2+3+4+5+6

Fig. 2. Merkles tree to store the blocks of DLT. Leaves are the blocks that contain the
data. Internal nodes contain hashes calculated from the hashes of their children.

For example, let’s consider that agent 4 generates the following block

{ "device": 4,
"readings": [

{"value": 0.45469, "time": "04-Oct-2018 23:36:16"},
{...}]

}

The hash for the root once it has been added to the tree is

CC327F8CE3D88E1D7279894089BBD5C9D47BFBC5C735CD0D7ECC02A4DF417A46

When the consensus process finishes, all the agents have received the same
block of data and the hash for the root. Each one of them adds the block to
its tree and retrieves the new hash for the root, who must match with the
received one. Figure 3 shows the convergence of such a consensus process. The
plot represents the sum of all the characters of the block. When the consensus
converges, it means that the block has arrived at all the agents and they can
extract the data and add it to their trees.

This process works as expected and keeps identical copies of the Merkles
trees in all the agents. A malicious node that tries to modify the block needs a
block that can pass as valid, so it has to

1. modify the block with a new reading s′

2. insert the modified block in the tree
3. retrieve the new hash from the root h′

r

4. compose the message (s′|h′
r|yi(t)) and sent it to its neighbors.

However, in this case, the modification is automatically detected by the neigh-
bors, and it can be corrected over the received blocks using the deviation value
dvi propagated through the network and Eq. 6 (see Fig. 3).

To complete the approach to the DLT with consensus, a set of experiments
analyzes how the solution degrades as the number of malicious agents increases.

Distributed Ledger and Robust Consensus for Agreements 97

0 20 40 60 80 100
time

1160

1180

1200

1220

1240

1260
x i

DLT by Consensus with Cheating

10 15 20 25 30

1190

1200

1210

1220

1230

0 20 40 60 80 100
time

0

0.05

0.1

0.15

0.2

0.25

x i

Evolution of Corrections for DLT

Fig. 3. Consensus process over a DLT. The values are the sum of all characters of the
readings and the hash. (Left) One node introduces a modified block in t = 20. (Right)
Convergence of the dv value for the correction.

0 20 40 60 80 100
#cheating nodes

200

400

600

800

1000

fr
eq

.

Successful corrections

Fig. 4. (Left) Deviation without correction in networks with 100 agents, varying the
number of traitors. The central line is the mean value and the area the standard
deviation. (Right) Number of complete successful corrections for 1,000 executions. The
distribution follows a power law with parameter α = −0.44

The tests have been executed over networks with 100 agents, varying the number
of malicious agents from 5 to 50 (which are the 50% of the size of the network).
In each case 20 networks have been generated with 50 repetitions in each one of
them, changing which are the traitor agents. Therefore, 1,000 executions provide
the data for each case. Figure 4(left) shows the mean value (the central line) and
the standard deviation (the shadowed area). The presence of a residual deviation
is due to the position of the traitors in the network. Figure 4(right) reveals how
the number of corrections are distributed. The distribution follows a power law
with parameter α = −0.44.

The solutions of Sundaram [12] to the BGP require that less than one-third
of the agents were traitors, and at least half of the neighbors of each agent must
be loyal. Since the networks generated for the experiments are random, without

98 M. Rebollo et al.

any control about the loyalty of the agents or their connectivity, and the tests
arrive at a proportion of 50-50 among loyal and traitor generals, there are cases in
which the network can not compensate the deviation. It is interesting to see that
the consensus process still works even when the one-third bound is overpassed.
It is something that needs a more in-depth study for future works.

4 Conclusions

This work proposes a modification of the Olfati–Saber and Murray consensus
algorithm that can recover from byzantines failures. In the general case, it is not
possible to detect which agent fails, but at least their direct neighbors can detect
when appears a deviation from the consensus process. Tis deviation can be cor-
rected over the final result, once the consensus has finished. The model has been
applied to a real-world domain in which the Byzantine Generals’ Problem arises:
the Distributed Ledger Technology (DLT). The proposed solution works appro-
priately, and detect and correct the deviations produced by malicious agents if
they are less than 1/3 of the total number of agents.

References

1. Kshetri, N.: Blockchain’s roles in strengthening cybersecurity and protecting pri-
vacy. Telecommun. Policy 41(10), 1027–1038 (2017)

2. Tian, F.: An agri-food supply chain traceability system for China based on RFID
a blockchain technology. In: Proceedings of the 13th International Conference on
Service Systems and Service Management (ICSSSM), Kunming, China, pp. 1–6,
June 2016

3. Wright, A., De Filippi, P.: Decentralized blockchain technology and the rise of Lex
Cryptographia (2015). https://ssrn.com/abstract=2580664

4. Rebollo, M., Benito, R.M., Losada, J.C., Galeano, J.: Robust distributed voting
mechanism by consensus. In: 2018 IEEE/ACM, ASONAM 2018 (2018)

5. Pop, C., Cioara, T., Antal, M., Anghel, I., Salomie, I., Bertoncini, M.: Blockchain
based decentralized management of demand response programs in smart energy
grids. Sensors 18(162), 1–21 (2018)

6. Fernandez-Carames, T.M., Fraga-Lamasa, P.: Review on the use of blockchain for
the Internet of Things. IEEE Access 6, 32979–33001 (2018)

7. Moinet, A., Darties, B., Baril, J.-L.: Blockchain based trust and authentication for
decentralized sensor networks arXiv.1706.01/730v1 (2017)

8. Toulouse, M., Le, H., Phung, C.V., Hock, D.: Defense strategies against byzantine
attacks in a consensus-based network intrusion detection system. Informatica 41,
193–207 (2017)

9. Jesus, E.F., Chicarino, V.R.L., de Albuquerque, C.V.N., Rocha, A.A.D.A: A survey
of how to use blockchain to secure Internet of Things and the stalker attack. Secur.
Commun. Netw. 2018, 1–27 (2018). Article ID 9675050

10. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with
switching topology and time-delays. IEEE TAC 49(9), 1520–1533 (2004)

https://ssrn.com/abstract=2580664
http://arxiv.org/abs/1706.01/730v1

Distributed Ledger and Robust Consensus for Agreements 99

11. Orlov, Y., Pilloni, A., Pisano, A., Usai, E.: Consensus-based leader-follower track-
ing for a network of perturbed diffusion PDEs via local boundary interaction. IFAC
49(8), 228–233 (2016)

12. Sundaram, S., Hadjicostis, C.N.: Distributed function calculation via linear iter-
ative strategies in the presence of malicious agents. IEEE TAC 56(7), 1495–1508
(2011)

The Challenge of Negotiation
in the Game of Diplomacy

Dave de Jonge1,2(B), Tim Baarslag3, Reyhan Aydoğan4, Catholijn Jonker5,
Katsuhide Fujita6, and Takayuki Ito7

1 IIIA-CSIC, Bellaterra, Spain
davedejonge@iiia.csic.es

2 Western Sydney University, Sydney, Australia
3 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

4 Özyeğin University, Istanbul, Turkey
5 Delft University of Technology, Delft, The Netherlands

6 Tokyo University of Agriculture and Technology, Fuchu, Japan
7 Nagoya Institute of Technology, Nagoya, Japan

Abstract. The game of Diplomacy has been used as a test case for
complex automated negotiations for a long time, but to date very few
successful negotiation algorithms have been implemented for this game.
We have therefore decided to include a Diplomacy tournament within
the annual Automated Negotiating Agents Competition (ANAC). In this
paper we present the setup and the results of the ANAC 2017 Diplomacy
Competition and the ANAC 2018 Diplomacy Challenge. We observe that
none of the negotiation algorithms submitted to these two editions have
been able to significantly improve the performance over a non-negotiating
baseline agent. We analyze these algorithms and discuss why it is so
hard to write successful negotiation algorithms for Diplomacy. Finally,
we provide experimental evidence that, despite these results, coalition
formation and coordination do form essential elements of the game.

1 Introduction

Automated negotiations have been studied extensively, but traditionally most
work has focused on the strategy to determine which deals to propose given the
utility values of those deals. A point that has received less attention is the fact
that in many real-world negotiation settings, for any given proposal, a negotiator
would need to spend considerable effort on estimating its value. Only recently,
more attention has been given in the literature to negotiation domains where
the calculation of utility is a highly non-trivial and time-consuming task. For
example, [9] treated a problem in which determining the value of a deal was
NP-hard and in [11] an algorithm was presented for negotiations applied to non-
zero-sum General Game Playing.

The Automated Negotiating Agents Competition (ANAC) is an annually
returning competition that aims to improve the state-of-the-art in automated

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 100–114, 2019.
https://doi.org/10.1007/978-3-030-17294-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_8

The Challenge of Negotiation in the Game of Diplomacy 101

negotiations [3]. It was first held in 2010 and has been steadily growing in pop-
ularity. The setup of this competition has been updated each year to reflect the
advancements made in the field of research. While ANAC started with small con-
tract spaces and linear utility functions [4], it has featured increasingly complex
scenarios, involving very large agreement spaces [8], multilateral negotiations [1],
human-agent interactions [13], and non-linear utility functions [2,8].

However, in all of these editions, the process of evaluating a proposal was
abstracted away. The agents would know the value of any potential proposal
almost instantaneously because it could be calculated with a simple linear for-
mula (this was true even in the editions with non-linear utility functions). Fur-
thermore, the agents were not required to have any background knowledge of the
negotiation domains and did not need to apply any form of reasoning to obtain
the utility value of a proposal. The utility functions of the agents’ opponents,
on the other hand, were assumed to be completely unknown.

We argue that in real negotiations it is important to have knowledge of the
domain and one should be able to reason about it. One cannot, for example,
expect to make profitable deals in the antique business without having any
knowledge of antique, no matter how good one is at bargaining. Moreover, a
good negotiator should also be able to reason about the desires of its opponents.
A good car salesman, for example, would try to find out what type of car best
suits his client’s needs to increase the chances of making a profitable deal. There-
fore, we envisioned a need to add a new league to ANAC that does involve this
kind of complex reasoning.

The game of Diplomacy forms an excellent test case for this type of complex
negotiations, as it is a game that includes many of the difficulties one would
also have to face in real-life negotiations [6]. It involves constraint satisfaction,
coalition formation, game theory, trust, and even psychology. Now that modern
Chess and Go computers are already far superior to any human player [15], we
expect that Diplomacy will start to draw more attention as the next big challenge
for computer science.

Although the game of Diplomacy has already been under attention of the
Automated Negotiations community for a long time, to date very few successful
negotiating Diplomacy players have been developed. Some of the earliest work
on this game, for example, was presented in [14], but they only managed to play
a very small number of games, because they had to play them with humans.

An informal online community called DAIDE exists which is dedicated to the
development of Diplomacy playing agents.1 Many agents have been developed
by this community but only very few are capable of negotiation. One of the main
non-negotiating bots developed on this framework is called the DumbBot.

In [6] a new platform called DipGame was introduced to make the develop-
ment of Diplomacy agents easier for scientific research. This platform was later
extended into the BANDANA platform [10]. Several negotiating agents have
been developed using DipGame such as DipBlue [7] which consists of a nego-
tiation algorithm built on top of the DumbBot. Unfortunately, its negotiation

1 http://www.daide.org.uk.

http://www.daide.org.uk

102 D. de Jonge et al.

algorithm did not result in a very strong increase in performance with respect
to the non-negotiating DumbBot. An entirely new agent was presented in [10],
called D-Brane, which can play with or without negotiations. Again, it turned
out that when applying negotiations it is only slightly stronger than when it
plays without negotiating. In 2015 the non-negotiating version of D-Brane won
the Computer Diplomacy Challenge2 which was organized as part of the ICGA
Computer Olympiad.

On the other hand, another negotiation algorithm was implemented on top
of DumbBot [5], which did strongly outperform the non-negotiating DumbBot.
Unfortunately, this agent required a supercomputer to run.

Another negotiating agent, called AlphaDip, was presented in [12], which was
largely based on D-Brane. Although it did improve over D-Brane, the authors
still concluded that adding negotiations to their agent only had a very small
influence on its overall performance.

This paper presents the setup and results of the ANAC 2017 Diplomacy
Competition and the ANAC 2018 Diplomacy Challenge and provides an analysis
of the proposed negotiation strategies for Diplomacy. The rest of the paper is
organized as follows: Sect. 2 introduces the game of Diplomacy while Sect. 3
explains the negotiation protocol used in this game. Sections 4 and 5 present
the setup and results of the 2017 and 2018 editions respectively. In Sect. 6 we
present an experiment we conducted to show the importance of cooperation in
Diplomacy. Finally, in Sect. 7, we conclude the paper with the lessons learned.

2 Diplomacy

Diplomacy is a widely played game for seven players. Just like chess it is com-
pletely deterministic (i.e. there are no dice, cards, or any other source of ran-
domness) and there is no hidden information.3 Players make their moves simul-
taneously. It is designed in such a way that each player needs to negotiate with
the other players in order to have a chance of winning. It can be played as a
classical board game, or it can be played online.4

The game takes place on a map of Europe in the year 1901, which is divided
into 75 Provinces. Each player plays one of the seven great Powers of that time:
Austria (AUS), England (ENG), France (FRA), Germany (GER), Italy (ITA),
Russia (RUS) and Turkey (TUR) and each player starts with three or four units
(armies or fleets) which are placed in fixed initial positions on the map. In each
round of the game, each player must ‘submit an order ’ for each of its units, which
tells those units how to move around the map and allows them to conquer the
map’s provinces.

2 https://icga.leidenuniv.nl/?page id=987.
3 One might argue that Diplomacy does have hidden information, because players

make secret agreements. However, these agreements have no formal meaning, and
form part of the players’ strategies rather than of the rules of the game. Therefore,
formally speaking there is no hidden information.

4 http://www.playdiplomacy.com/.

https://icga.leidenuniv.nl/?page_id=987
http://www.playdiplomacy.com/

The Challenge of Negotiation in the Game of Diplomacy 103

Some of the Provinces are so-called Supply Centers and the goal for the
players is to conquer those Supply Centers. A player is eliminated when he or
she loses all his or her Supply Centers and a player wins the game when he or she
has conquered 18 or more of the 34 Supply Centers (a Solo Victory). However,
the game may also end when all surviving players agree to a draw.

The game iterates through five types of rounds (or ‘phases’), in the following
order: Spring, Summer, Fall, Autumn, Winter. The first round of the game is
referred to as Spring 1901, followed by Summer 1901, etcetera. After Winter
1901 follows Spring 1902, Summer 1902, and so on.

The main difference between Diplomacy and other deterministic games like
Chess and Go, is that in Diplomacy players are allowed to negotiate with each
other and form coalitions. At each round, before the players submit their orders,
the players are given time to negotiate with each other and make agreements
about the orders they will submit. Negotiations take place in private, and each
agreement that is made is only known to the players involved in that agreement.

Typically, players may agree not to invade certain provinces, or they may
agree that one player will help the other player to invade a certain province.
In this way, players essentially form coalitions. These coalitions are not given
beforehand. Instead, during the course of the game players may form and break
coalitions as they like.

3 The Negotiation Protocol

In a real Diplomacy game there are no formal rules for the negotiations. Players
are allowed to negotiate anything and there is no guarantee that players will obey
their agreements. However, for our competition we needed to establish a well-
defined negotiation language and protocol so that the agents could understand
each other. Furthermore, in order to simplify the game and eliminate the issue
of trust, we imposed the rule that the players are always obliged to obey their
agreements. This means that our negotiation language needed to have well-
defined formal semantics, which are explained below.

As the negotiation protocol, we used the Unstructured Negotiation Protocol
[9], because it most closely resembles how negotiations in real games of Diplo-
macy take place. In this protocol, the agents do not take turns, but instead are
allowed to propose or accept a deal whenever they want. A deal may involve any
number of agents. Once all players involved in the deal have accepted it, a special
Notary agent checks whether it is consistent with earlier made agreements. If
this is indeed the case then the Notary will send a confirmation message to all
agents involved in the deal. Once the Notary has sent this confirmation message
the deal is considered officially binding. Players may propose and accept as many
deals as they wish and negotiations continue after a deal has been confirmed.

If an agent has proposed or accepted a deal, but then changes its mind, and
the deal has not yet been confirmed by the Notary, it can send a reject message
to withdraw from the proposal and hence prevent it from becoming confirmed.
However, once the deal is confirmed by the Notary the agents involved must
always obey it.

104 D. de Jonge et al.

Since each proposal is only sent to those players that are involved in it the
other players will never be aware that this deal was proposed. Also, the Notary
sends its confirmation message only to the players involved in the deal, so the
agreement remains secret.

3.1 Allowed Proposals

In this section we define the set of deals that agents may propose to each other.
A deal may consist of any number of Order Commitments and any number of
Demilitarized Zones.

Definition 1. An Order Commitment oc is a tuple: oc = (y, φ, o), where y
is a ‘year’ (an integer greater than 1900), φ ∈ {Spring,Fall} is a ‘phase’ and o
is any legal order for any unit.

An Order Commitment represents a promise that a power will submit a certain
order during a certain phase and year. For example: “In the Spring of 1902
the army in Holland will move to Belgium”. Formally, an Order Commitment
(y, φ, o) is obeyed if Power P submits the order o during phase φ of year y, where
P is the owner of the unit defined by the details of the order o.

Definition 2. A Demilitarized Zone dmz is a tuple: dmz = (y, φ,A,B) with
y and φ as in Definition 1, A is a nonempty set of Powers and B is a nonempty
set of Provinces.

A Demilitarized Zone is an agreement between the specified Powers that none
of them will invade (or stay inside) any of the specified Provinces during the
specified phase and year. For example, the Demilitarized Zone

(1903, Fall, {FRA,GER,ENG}, {NTH ,ECH })

has the interpretation “In the Fall of 1903 France, Germany, and England will
keep out of the North Sea and the English Channel”. Formally, a Demilitarized
Zone is obeyed if none of the powers in A submits any order during phase φ of
year y to move any unit into any of the provinces in B.

Definition 3. A Deal d is a non-empty set:

d = {oc1, . . . ocn, dmz1, . . . dmzm}
where each oci is an Order Commitment, each dmzi is a Demilitarized Zone,
and where n and m can be any non-negative integers.

When a deal is confirmed by the Notary it means that all Order Commitments
and all Demilitarized Zones in it must be obeyed.

A proposed deal can only be accepted or rejected in its entirety. If an agent
wishes to accept only a part of the deal, it can simply propose a new deal which
only consists of the subset of Order Commitments and Demilitarized Zones it
desires.

Apart from proposing this type of deals, agents are also allowed to propose
a draw to all other players. The game ends in a draw if all agents that have not
been eliminated propose a draw in the same round of the game.

The Challenge of Negotiation in the Game of Diplomacy 105

4 The ANAC 2017 Diplomacy Competition

4.1 Submission Rules and Tournament Setup

The assignment for the participants was to implement a negotiation algorithm
using the BANDANA framework. This negotiation algorithm would then be
combined with the tactical module of D-Brane to form a complete agent. This
tactical module would then choose which moves the agent makes, while obeying
the agreements made by the negotiation algorithm. The participants were not
allowed to implement a complete Diplomacy playing agent from scratch. They
were only allowed to implement a negotiation algorithm so that the competition
focused purely on the negotiation aspect of Diplomacy.

In order to determine whether to accept a proposal or not, the participants’
negotiation algorithms had the possibility to consult D-Brane’s Tactical Module
to see which moves would be played if that proposal was accepted.

The tournament was run using the Parlance game server.5 We let all agents
participating in the competition play 110 games together. Since a game requires
7 players and we only had 4 participants, we supplemented the agents with 3
instances of the non-negotiating D-Brane. In each game the players were ran-
domly assigned to the 7 Powers.6 Every round of each game had a deadline of
30 s. In order to prevent the games from continuing forever a draw was declared
automatically in any game that advanced to the Winter 1920 phase. The agents’
overall score for the tournament was determined by the number of Supply Cen-
ters they conquered.

4.2 Submissions

We received the following submissions:

– Frigate, by Ryohei Kawata and Katsuhide Fujita, Tokyo University of Agri-
culture and Technology, Japan

– Agent Madoff, by Tan Hao Hao, Nanyang Technological University,
Singapore

– DDAgent, by Daichi Shibata, Nagoya Institute of Technology, Japan
– NaiveThinkerG, by Giancarlo Nicolo, Universitat Polytècnica de València,

Spain

Due to lack of space we cannot give a description of all of these agents.
Therefore, we will only discuss the winner and the runner-up.

5 https://pypi.python.org/pypi/Parlance/1.4.1.
6 It would have been better to assign each agent to each Power an equal number of

times, because some Powers are stronger than others. Unfortunately, however, the
Parlance game server does not provide this option.

https://pypi.python.org/pypi/Parlance/1.4.1

106 D. de Jonge et al.

Frigate. Frigate only proposes bilateral deals, and only to Powers that own at
least 3 and at most 10 Supply Centers. Furthermore, it does not deal with any
Power that forms a direct threat to any of Frigate’s own Supply Centers. For
each Power that does qualify Frigate constructs a proposal by consulting the
D-Brane Tactical Module to find the best plans for itself and the other agent,
under the restriction that they do not invade each others’ Supply Centers. The
proposal will then consist of the union of these plans.

Frigate randomly chooses a deal from the proposals it found, where the prob-
ability depends on the strength of the other agent (the weaker the agent, the
higher the probability) and the number of Supply Centers that Frigate expects
to gain from it. Furthermore, the probability is multiplied by 5 if the other agent
is considered an ally. An agent is considered an ally if it was involved in the last
confirmed deal that Frigate was involved in.

Although Frigate does implement an acceptance strategy, due to a bug in
the code, it never accepts any incoming proposals.

Agent Madoff. In order to generate proposals Agent Madoff first tries to
predict the opponents’ orders using the D-Brane Tactical Module under the
assumption that the opponents have not made any agreements. Then, it identifies
which orders are in conflict with its own interests, namely orders for units to
invade any of Agent Madoff’s own Home Supply Centers, or any province that
Agent Madoff is also trying to invade. It then tries to find alternative orders for
such units and proposes them. If it cannot find any suitable alternative order
then Agent Madoff will try to ask a third party for support to defend or attack
the province in question.

Agent Madoff does not really apply a coalition formation strategy. However, it
does keep track of each opponent’s ‘hostility’. Initially, it assigns to each Power
has a hostility value of 0. This value is decreased whenever a Power steals a
Supply Center from Agent Madoff, and is increased whenever a Power agrees
to give support to Agent Madoff. This value is then used by Agent Madoff’s
acceptance strategy. The higher this value, the more likely it is that Agent Madoff
will accept a proposal from this opponent.

When Agent Madoff receives a proposal it calculates for each component of
this deal a value between 0 and 1 which depends on various heuristics, such as
the value of the province that is the destination of the order (in case of a move
order commitment), or the hostility of the supported power (in case of a support
order commitment). It then calculates the average value over these components.
The higher this average value, the higher the probability that Agent Madoff will
accept it.

4.3 Results

Initially, we ran the competition according to the setup announced to the par-
ticipants. Unfortunately, no agent performed significantly better than the non-
negotiating D-Brane, which means that the ability to negotiate did not really

The Challenge of Negotiation in the Game of Diplomacy 107

improve the results of the agents. We then played 50 games with 4 instances
of each agent versus 3 instances of D-Brane. The idea behind this was that it
might be easier for the agents to negotiate with a copy of themselves, rather
than with a different agent. Unfortunately, this setup also did not result in any
of the players significantly outperforming the others.

Therefore, to decide a winner, we counted the number of proposals made
by each agent that were accepted by every other agent involved in them, and
considered that value as the final score of each agent. The idea being that if
an agent’s proposals are accepted by the other agents, this can be seen as a
measure of quality, even though the agreement did not in the end result in a
higher number of Supply Centers. The results are displayed in Table 1. We see
that Frigate was proclaimed the winner of the competition and Agent Madoff
was awarded the second prize.

Table 1. Final results of the 2017 Diplomacy Competition. We counted the number
of proposals made by each agent that were eventually accepted by all the other agents
involved in it.

Confirmed proposals

Frigate 372

Agent Madoff 170

DDAgent 61

NaiveThinkerG 30

5 The 2018 Diplomacy Challenge

Because the 2017 Diplomacy Competition did not end with one agent being
significantly better than any of the other agents, or even better than the non-
negotiating agent, we decided to change the setup for 2018. Instead of a ‘Com-
petition’ we turned it into a ‘Challenge’, meaning that a winner would only be
proclaimed if its results are significant.

5.1 Tournament Setup

Most of the setup for 2018 was identical to the setup of 2017. We used exactly the
same negotiation protocol, and the participants were again required to imple-
ment a negotiation algorithm on top of D-Brane. The main difference was that
the 2018 Challenge consisted of two rounds.

In the first round for each agent we ran 100 games with 4 instances of that
agent against 3 instances of the non-negotiating D-Brane agent. We say an agent
passed the first round if the instances of that agent conquered a statistically

108 D. de Jonge et al.

significant higher number of Supply Centers on average than the D-Branes. The
agents that did not pass the first round were eliminated from the Challenge.

For the second round we then let all agents that passed the first round play
together. Since it was likely that there would be less than 7 such agents, we
stated the rule that the field would be supplemented with as many agents that
did not pass the first round as necessary, even though such agents were not
eligible to win the challenge. Furthermore, if there still would not be enough
agents, we would supplement the field with instances of the non-negotiating
D-Brane agent. We played 100 games and the agent that conquered the highest
number of Supply Centers would be the winner of Round 2.

In order to win the Challenge an agent had to win the second round, as well
as pass the first round. This means that if the winner of the second round did
not pass the first round there would be no winner at all.

5.2 Motivation

The motivation behind this setup is that in Round 2 the real negotiation skills of
the agents are tested. In theory, if an agent makes purely selfish proposals, it will
not succeed, because its proposals will not be accepted by the other agents. On
the other hand, if it makes purely altruistic proposals or accepts any proposal it
receives, it will not succeed either, because it will be exploited by its opponents.
In practice, however, a bad negotiator could still be able to win Round 2, because
its opponents are not perfect either and therefore it might purely benefit from
bad proposals made by the other agents. In order to prevent such ‘freeloading’
behavior we demanded that each agent was also able to successfully negotiate
with only copies of itself. For this reason we have included Round 1 in this
challenge. One could also roughly say that Round 1 tests the agents’ ‘proposing
strategy’, while Round 2 tests their ‘acceptance strategy’.

5.3 Submissions

We received the following submissions:

– CoalitionBot, by Ido Westler, Yehuda Callen, Moche Uzan, Arie Cattan,
Avishay Zagury Bar Ilan University, Israel

– M@sterMind, by Jonathan Ng, Nanyang Technological University,
Singapore

– Gunma, by Ryohei Kawata and Katsuhide Fujita, Tokyo University of Agri-
culture and Technology, Japan

– GamlBot, by Michael Vassernis, Bar Ilan University, Israel
– DDAgent2, by Daichi Shibata, Nagoya Institute of Technology, Japan

Unfortunately, it turned out that DDAgent2 was too slow to participate, because
in many rounds it was not able to submit its orders before the deadline.

Again, due to space constraints we will only discuss the two best agents of
the two respective rounds.

The Challenge of Negotiation in the Game of Diplomacy 109

CoalitionBot. CoalitionBot is a very passive player. It only proposes demilita-
rized zones and it accepts any incoming proposal. In the first turn, it proposes a
bilateral deal to every other Power. This deal proposes that the other Power will
not invade any of the CoalitionBot’s own supply Centers during the current turn,
and in return the CoalitionBot will not invade the other power’s Supply Centers
during the same turn. Any agent that accepts this proposal will be considered
an ally for the rest of the game. In all other turns, CoalitionBot proposes to all
its allies that they will not attack each others’ Supply Centers.

We will see below that CoalitionBot was able to perform strongly in the
first round, but not in the second round. This is not surprising, given that it
always accepts any incoming proposal and does not try to exploit its opponents.
Its implementation seems to be based on the idea that it can always completely
trust its opponents. Clearly, this works well when playing against copies of itself,
but not when playing against less altruistic opponents.

Gunma. Gunma proposes two types of deals, which the authors call a ‘Mutual
Support’ and a ‘Combined Attack’, respectively. A Mutual Support is a deal in
which one unit of Gunma supports an opponent’s unit to hold, and the oppo-
nent’s unit supports Gunma’s unit to hold in return. A Combined Attack is a
deal in which one of Gunma’s units attacks a province owned by an enemy, with
support from as many units from allies as possible. Whenever Gunma can find
a Combined Attack, it will propose it. On the other hand, it will only propose a
Mutual Support if it finds one for which it is sure it can gain a Supply Center.

For any received proposal Gunma predicts how many Supply Centers it would
gain from it. It accepts the deal that yields the highest gain, but if there are
multiple such deals, it uses the current number of supply centers owned by the
proposer as a tie-breaker. In that case it will accept the deal from the currently
weakest Power.

Note that Gunma’s proposing strategy is rather greedy. It only proposes deals
that yield benefit to himself, and never considers the needs of its negotiation
partners. When it comes to accepting, however, it is less selfish. If no deal yields
any gain, than it is willing to accept a deal that does not cause Gunma to lose
any Supply Centers.

5.4 Results

The Results of Round 1 are displayed in Table 2. We see that only CoalitionBot
and Gunma were able to outperform D-Brane. However, a one-sided Student-t
test7 revealed that the results of Gunma were not significant (p-value 0.23).
Therefore, only CoalitionBot managed to pass Round 1 (p-value 9.7 · 10−9).

The results of Round 2 are shown in Table 3. As explained above, we needed to
include all the agents in this round, as well as 3 instances of D-Brane, in order to

7 With respect to the null-hypothesis that each agent has a mean score of 34
7

Supply
Centers per game.

110 D. de Jonge et al.

Table 2. Results of the 2018 Diplomacy
Challenge, Round 1. Displayed are the aver-
age number of conquered supply centers per
game, with their standard errors.

Sup. Centers Result

CoalitionBot 5.528 ± 0.110 PASS

D-Brane 3.963 ± 0.146

Gunma 4.950 ± 0.128 FAIL

D-Brane 4.733 ± 0.171

D-Brane 4.930 ± 0.164

M@sterMind 4.803 ± 0.123 FAIL

D-Brane 5.440 ± 0.184

GamlBot 4.420 ± 0.138 FAIL

Table 3. Results of the 2018 Diplo-
macy Challenge, Round 2. Gunma
scores highest, but the results are
not significant.

Supply Centers

Gunma 5.69 ± 0.300

GamlBot 5.31 ± 0.334

CoalitionBot 4.94 ± 0.289

D-Brane 4.54 ± 0.157

M@sterMind 4.44 ± 0.290

have 7 players, even though CoalitionBot was the only agent that passed Round
1 and therefore the only candidate to win the challenge.

We see that Gunma performed best, although the difference between the
first three agents is non-significant. Since the CoalitionBot did not beat the
other agents in Round 2, and it was not able to clearly outperform the D-Brane
in this round either, the 2018 Diplomacy Challenge ended with no winner.

6 Is Cooperation Even Possible?

One question that may come to mind when looking at the results, is whether
it is really possible at all to improve performance by means of negotiation. Any
experienced Diplomacy player would answer this question with a definite ‘yes’,
but we would like to back this claim up with scientific evidence.

The question is then how we could show that it is possible to negotiate
successfully, without having any algorithm that can do this to our disposal.
Fortunately, we have managed to design an experiment that allows us to show
the benefit of cooperation, without actually using a negotiation algorithm.

It worked as follows. We first let 7 instances of the non-negotiating D-Brane
play 200 games and recorded how many Supply Centers each Power conquered on
average. The results are displayed in Table 4. Next, we repeated this experiment,
but with only 6 instances of D-Brane while one of those agents was playing two
Powers at the same time. For each possible combination of two Powers we played
200 games (there are

(
7
2

)
= 21 such combinations, so we played 21 · 200 = 4200

games) and recorded the number of Supply Centers conquered by the agent
playing two Powers.

In this way we have been able to show that if one agent plays the role of two
Powers at once, it scores more Supply Centers than if two agents individually
play the same two Powers. In other words, when two Powers work together as

The Challenge of Negotiation in the Game of Diplomacy 111

a team, they have a clear advantage. These results are displayed in Table 5.
For example, in the first row we see that when AUS and ENG are played by
one agent, then that agent scores on average 6.99 Supply Centers. However, we
see in Table 4 that when these Powers are played by individual agents, they
only score 1.60 and 4.39 Supply Centers respectively, yielding a total score of
1.60 + 4.39 = 5.99, which is also displayed in the first row of Table 5.

The combination of AUS and ENG only yields a small advantage, but for
many other coalitions we see much stronger synergy effects. For example, FRA
and GER together score 22.1 Supply Centers when played by a single agent,
while when playing individually they only score8 4.98 + 4.11 = 9.09.

In general, we see a clear advantage in 12 out of the 21 possible combina-
tions (more than 4 Supply Centers difference, indicated with ++) and a small
advantage in 4 of those combinations (indicated with +). When we calculate the
average over all combinations we find that the agent playing two Powers scores
around 14 Supply Centers, which is clearly more than the 2

7 · 34 = 9.71 Supply
Centers that two individual agents would conquer on average.

Although it is clear that players have an advantage when cooperating, we also
conclude that this highly depends on which two Powers are forming a coalition.
FRA and GER, for example, form a much stronger coalition than AUS and ENG.
This is an important observation, because this may also explain why it is hard for
the submitted agents to negotiate successfully. In many games the negotiating
agents may be assigned to Powers that do not form strong combinations, making
it hard to benefit from negotiation.

The fact that some coalitions are stronger than others is well-known among
experienced Diplomacy players, and is a consequence of the topology of the map.
For example, Russia and Turkey are two bordering Powers, which means that if
they form a coalition at the beginning of the game then each of them does not
have to worry about being attacked by the other, and can therefore completely
focus on its other direct neighbors. Furthermore, the fact that they are located
next to each other means they can easily give support to one another.

On the other hand, Turkey and England form a weak coalition because they
are positioned on opposite ends of the map, so they cannot attack each other in
early stages of the game, which means they would not benefit from any mutual
peace agreement, and they cannot give each other support either.

For some coalitions we even see a detrimental effect. Although in most cases
they are relatively small, they cannot be attributed to statistical fluctuations.
We suspect that this results from the fact that they play different opening moves
when playing together, which coincidentally happen to be worse.

Finally, we should note that the difference in strength between the various
coalitions may not only be caused by the topology of the map, but may also
partially be a consequence of the strategy applied by D-Brane. Therefore, we
expect these results to be different, but not radically different, if we repeated
this experiment with a different agent.

8 Table 5 shows a value of 9.08 instead of 9.09. This difference is due to rounding
errors.

112 D. de Jonge et al.

We conclude from these experiments that it should definitely be possible for
two agents to benefit from negotiations. Interestingly, these results also suggest
how such a negotiation algorithm could be implemented. The idea is that if our
agent is playing, for example, FRA, then it could consult the D-Brane Tactical
module to ask which moves it should play if it were playing as both FRA and
GER. Then, it could propose those moves to GER.

Table 4. The number of Supply Centers conquered by each Power, when 7 instances
of D-Brane are playing without negotiations

Power Supply Centers
AUS 1.60 ± 0.16
ENG 4.39 ± 0.17
FRA 4.98 ± 0.20
GER 4.11 ± 0.24

Power Supply Centers
ITA 2.41 ± 0.16
RUS 10.44 ± 0.42
TUR 6.09 ± 0.17

Table 5. The number of Supply Centers conquered by each combination of two Powers
played by one agent, compared to their score when played by two agents. Differences
greater than 4 Supply Center are indicated with ++ or – –, while smaller differences
are indicated with + or –. In all cases except AUS+ENG, AUS+GER and GER+TUR
the p−value was smaller than 10−4.

Coalition Score by Score by
of 2 Powers 1 agent 2 agents
AUS + ENG 6.99 5.99 +
AUS + FRA 9.91 6.57 +
AUS + GER 4.11 5.7 –
AUS + ITA 12.91 4.01 ++
AUS + RUS 17.61 12.03 ++
AUS + TUR 17.95 7.69 ++
ENG + FRA 17.95 9.37 ++
ENG + GER 17.78 8.50 ++
ENG + ITA 8.88 6.8 +
ENG + RUS 20.37 14.83 ++
ENG + TUR 8.82 10.48 –

Coalition Score by Score by
of 2 Powers 1 agent 2 agents
FRA + GER 22.1 9.08 ++
FRA + ITA 13.43 7.39 ++
FRA + RUS 9.91 15.41 – –
FRA + TUR 8.71 11.07 –
GER + ITA 11.7 6.52 ++
GER + RUS 21.27 14.54 ++
GER + TUR 8.99 10.20 –
ITA + RUS 19.21 12.85 ++
ITA + TUR 11.92 8.5 +
RUS + TUR 24.34 16.53 ++
Overall 14.04 9.71 ++

7 Discussion and Conclusions

From these two competitions we have learned that it is still very hard for the
Automated Negotiations community to implement algorithms for domains as
complex as Diplomacy. So far, no submission has been able to significantly out-
perform a non-negotiating agent, even though we have experimentally shown
that it is definitely possible for agents to benefit from cooperation.

However, it is important to understand that we are not expecting the Diplo-
macy Challenge to have a winner any time soon. We regard it as a long term

The Challenge of Negotiation in the Game of Diplomacy 113

challenge which might take several years to tackle. After all, in the cases of
Chess, Go, and Poker it also took many years to develop strong programs.

Diplomacy is a very complex game and it is hard for participants to write a
strong algorithm in the few months they have between the call for participation
and the submission deadline. Before they could even start implementing they
first needed to learn the rules of the game (which are fairly complex), learn
the rules of the competition, and learn to work with the BANDANA framework.
After that, they needed to come up with a smart algorithm, implement it, debug
it, and optimize it.

Studying the source codes of the agents, we made two important observations:

1. Most agents never make any proposals for any of the future turns. They only
make proposals for the current turn.

2. Many of the agents seem to have bugs in their code.

We think that both of these observations play an important role in the reason
why the agents fail to negotiate successfully.

Any experienced Diplomacy player would agree that it is essential to plan
several steps ahead. An important reason for this is that one does not often
encounter a situation in which two players can both directly benefit from coop-
eration. Although it often happens that one player can give support to another
player, it may then take several turns before a situation occurs in which the other
player can return the favor. Therefore, it is essential that, in the short term, play-
ers are not purely selfish. They should be willing to help another player, while
only expecting the favor to be returned at a later stage. Currently, none of the
submitted agents seem to exhibit this kind of long term negotiation strategy.

Similarly, we think that the second observation is a very important one. As
explained, the participants only have a limited amount of time to implement
their agents, so perhaps we can only expect any participant to win the challenge
after participating for several years. We noticed, for example, that due to a
bug Frigate never accepted any proposals, even though it did implement an
acceptance strategy. Also, Agent Madoff was more likely to accept a proposal
if it involved a unit invading a province currently occupied by a Power that is
considered a friend. We think that this is an error and that the author intended
the opposite. Luckily, we see that two participants from 2017 have continued
to participate in 2018, so the necessary drive seems to exist to commit to this
long-term challenge.

In future editions of the Diplomacy Challenge, whenever negotiating agents
play together with non-negotiating agents, we may need to make sure the nego-
tiating agents play Powers that are more likely to form successful coalitions, as
indicated by our experiments in Sect. 6.

Acknowledgments. This work is part of the Veni research programme with project
number 639.021.751, which is financed by the Netherlands Organisation for Scientific
Research (NWO), and project LOGISTAR, funded by the E.U. Horizon 2020 research
and innovation programme, Grant Agreement No. 769142.

114 D. de Jonge et al.

References

1. Aydoğan, R., Fujita, K., Baarslag, T., Jonker, C.M., Ito, T.: ANAC 2017: repeated
multilateral negotiation league. In: The 11th International Workshop on Auto-
mated Negotiation, ACAN 2018 (2018)

2. Aydoğan, R., et al.: A baseline for nonlinear bilateral negotiations: the full results
of the agents competing in ANAC 2014, pp. 96–122. Bentham Science Publishers
(2017)

3. Baarslag, T., Aydoğan, R., Hindriks, K.V., Fuijita, K., Ito, T., Jonker, C.M.: The
automated negotiating agents competition, 2010–2015. AI Mag. 36(4), 115–118
(2015)

4. Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The first Automated
Negotiating Agents Competition (ANAC 2010). In: Ito, T., Zhang, M., Robu, V.,
Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated
Negotiations. SCI, vol. 383, pp. 113–135. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-24696-8 7

5. Fabregues, A.: Facing the challenge of human-aware negotiation. Ph.D. thesis,
Universitat Autònoma de Barcelona (2012)

6. Fabregues, A., Sierra, C.: DipGame: a challenging negotiation testbed. Eng. Appl.
Artif. Intell. 24(7), 1137–1146 (2011)

7. Ferreira, A., Lopes Cardoso, H., Reis, L.P.: DipBlue: a diplomacy agent with strate-
gic and trust reasoning. In: ICAART 2015 - Proceedings of the International Con-
ference on Agents and Artificial Intelligence, Lisbon, Portugal, 10–12 January 2015,
vol. 1, pp. 54–65. SciTePress (2015)

8. Fujita, K., Aydoğan, R., Baarslag, T., Ito, T., Jonker, C.: The fifth Automated
Negotiating Agents Competition (ANAC 2014). In: Fukuta, N., Ito, T., Zhang, M.,
Fujita, K., Robu, V. (eds.) Recent Advances in Agent-based Complex Automated
Negotiation. SCI, vol. 638, pp. 211–224. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-30307-9 13

9. de Jonge, D., Sierra, C.: NB3: a multilateral negotiation algorithm for large, non-
linear agreement spaces with limited time. Auton. Agent. Multi-Agent Syst. 29(5),
896–942 (2015)

10. de Jonge, D., Sierra, C.: D-Brane: a diplomacy playing agent for automated nego-
tiations research. Appl. Intell. 47(1), 158–177 (2017)

11. de Jonge, D., Zhang, D.: Automated negotiations for general game playing. In: Pro-
ceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2017, São Paulo, Brazil, 8–12 May 2017, pp. 371–379. ACM (2017)

12. Marinheiro, J., Lopes Cardoso, H.: Towards general cooperative game playing. In:
Nguyen, N.T., Kowalczyk, R., van den Herik, J., Rocha, A.P., Filipe, J. (eds.)
Transactions on Computational Collective Intelligence XXVIII. LNCS, vol. 10780,
pp. 164–192. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78301-7 8

13. Mell, J., Gratch, J., Baarslag, T., Aydoğan, R., Jonker, C.: Results of the first
annual human-agent league of the automated negotiating agents competition. In:
Proceedings of the 2018 International Conference on Intelligent Virtual Agents
(2018)

14. Ephrati, E., Kraus, S., Lehman, D.: An automated diplomacy player. In: Levy, D.,
Beal, D. (eds.) Heuristic Programming in Artificial Intelligence: The 1st Computer
Olympia, pp. 134–153. Ellis Horwood Limited, Chicester (1989)

15. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1007/978-3-319-30307-9_13
https://doi.org/10.1007/978-3-319-30307-9_13
https://doi.org/10.1007/978-3-319-78301-7_8

Automated Negotiations Under User
Preference Uncertainty: A Linear

Programming Approach

Dimitrios Tsimpoukis1,2(B), Tim Baarslag1,3, Michael Kaisers1,
and Nikolaos G. Paterakis2

1 Centrum Wiskunde & Informatica,
Science Park 123, 1098 XG Amsterdam, The Netherlands

{D.Tsimpoukis,T.Baarslag,M.Kaisers}@cwi.nl
2 Technische Universiteit Eindhoven,

De Zaale, 5600 MB Eindhoven, The Netherlands
N.Paterakis@tue.nl

3 Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

T.Baarslag@uu.nl

Abstract. Autonomous agents negotiating on our behalf find applica-
tions in everyday life in many domains such as high frequency trading,
cloud computing and the smart grid among others. The agents negotiate
with one another to reach the best agreement for the users they rep-
resent. An obstacle in the future of automated negotiators is that the
agent may not always have a priori information about the preferences of
the user it represents. The purpose of this work is to develop an agent
that will be able to negotiate given partial information about the user’s
preferences. First, we present a new partial information model that is
supplied to the agent, which is based on categorical data in the form of
pairwise comparisons of outcomes instead of precise utility information.
Using this partial information, we develop an estimation model that uses
linear optimization and translates the information into utility estimates.
We test our methods in a negotiation scenario based on a smart grid coop-
erative where agents participate in energy trade-offs. The results show
that already with very limited information the model becomes accurate
quickly and performs well in an actual negotiation setting. Our work pro-
vides valuable insight into how uncertainty affects an agent’s negotiation
performance, how much information is needed to be able to formulate
an accurate user model, and shows a capability of negotiating effectively
with minimal user feedback.

1 Introduction

Negotiation between two or more different parties is the joint decision mak-
ing process towards a satisfactory outcome for all sides. If such an outcome is
achieved, it constitutes an agreement.
c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 115–129, 2019.
https://doi.org/10.1007/978-3-030-17294-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_9

116 D. Tsimpoukis et al.

In recent years there have been significant advancements in automating the
negotiation process meaning that human negotiators are being represented by
computer agents. Fully computerized negotiation offers a lot of benefits such as
achieving better (win-win) deals for all sides, reduction in negotiation duration,
and of course much reduced users’ stress and frustration due to participation
in the negotiation process [4]. Automated negotiation finds application in many
areas, some of which are high frequency trading, cloud computing and the smart
grid. Such settings can be very dynamic, and as a result automating the negoti-
ation process becomes imperative, considering that it is very uncomfortable for
the user having to participate in negotiations so frequently, especially in domains
in which they are not knowledgeable.

A major obstacle in the future of representative automated negotiation is the
agent’s level of knowledge about the preferences of the user it represents [6]. Pref-
erence elicitation is a tedious procedure to the users since they have to interact
with the system repeatedly and participate in lengthy queries. To address this
challenge, the agents should be able to accurately represent the users under min-
imal information about their preferences. Therefore, the agent must strike a bal-
ance between user model accuracy and user interference. Even though research
in the field of automated negotiations has made progress on opponent model-
ing, in most cases the agents themselves were operating under fully specified
preference profiles (see Sect. 2). The major questions that arise from the above
problem are:

– How can we model the incomplete information about the users’ preferences
supplied to the agent in cases of uncertainty?

– How can we estimate user preferences from incomplete information?
– How does uncertainty about the user’s preferences affect an agent’s negotia-

tion performance?

In this work we address the problems associated with negotiation under uncer-
tainty and test the results in a scenario inspired from the smart grid. The con-
tributions are threefold:

– We propose a way of representing user preference information, based on cat-
egorical data, showing preference relations between different possible out-
comes.

– We present a method of estimating preference information from the incom-
plete information model based on linear optimization.

– We test the proposed method while negotiating on a smart grid cooperative
scenario, examining the accuracy of the generated preference profile as well
as actual negotiation performance.

The rest of this work is organized as follows: Sect. 2 discusses related work in the
field of negotiation under uncertainty. Section 3 presents the problem setting, the
key components in automated negotiation, as well as the new proposed ordinal
data based incomplete information model. Section 4 describes the two proposed
preference estimation methods. In Sect. 5 we are presenting the results of our

Negotiating Under User Preference Uncertainty 117

strategies in terms of user model accuracy and negotiation performance, and in
Sect. 7 we make suggestions for future work.

2 Related Work

The subject of modeling partial information about a user’s preference profile, as
well as the process of trying to formulate an accurate model of the user’s real
preferences given incomplete information has been a topic of research through
the years, but not a lot of it has been applied in the negotiation domain.

A key area of research in the field of user-preference modeling is Multi-
Attribute Utility Theory. Many strategies have been proposed in this field, with
the target of creating a preference profile under incomplete information of the
user preferences. A large family of such strategies are the UTA (Utilité Additives)
methods, originally proposed by Jacquet-Lagreze and Siskos in 1982 [16]. The
UTA method and its extensions [14,21], obtain a ranked set of outcomes as input
and formulate a new piecewise linear utility function through the use of linear
programming. An application of the UTA method on the negotiation domain
has been presented by Roszkowska [22]. The main limitation of the method is
that the input outcome set needs to be a complete ranking of outcomes, meaning
a total ordering (even though it might not include the whole outcome space).
Even though the method we propose also utilizes a ranking as input in the
experimental implementation, it can also work with any arbitrary set of partial
orders.

Automated negotiation research has focused mostly on opponent preference
modeling rather than on the user preference elicitation [7,8]. However, sev-
eral techniques in opponent modeling are of interest to our case. Jonker et al.
present an agent architecture that uses heuristics based on the opponent’s bid-
ding sequence to elicit opponent preference information [17]. Even though the
user’s preference profile is considered known in these methods, opponent mod-
eling strategies could also be applied in user preference modeling.

Aside from multi-attribute utility theory, another option for representing user
information was proposed by Boutilier et al. [10] and studied in the negotiation
domain [6,20]. CP-nets provide a graphical representation of conditional and
qualitative preference relations. Cornelio et al. extend the CP-net concept to
incorporate uncertainty in the networks including probabilistic elements [11],
and Aydoğan et al. [1,3] apply CP-nets theory in the negotiation domain using
heuristics on the partial ordering of attribute values to generate a total ordering
of outcomes. While CP-nets prove an effective way of representing partial infor-
mation, our method is able to make the transition to utility-based negotiation
based on ordinal data on full negotiation outcomes.

Our proposed decision model is inspired mainly by the work of Srinivasan
and Shocker [24], who proposes a strategy for estimating the weights of differ-
ent attributes given a set of pairwise comparisons of outcomes by using linear
programming. The main limitation of this model, apart from the fact that it
is limited to weight estimation, is that the evaluations of the stimuli values

118 D. Tsimpoukis et al.

that appear on the comparison set need to be known. We extend this model to
propose a different formulation of the problem using categorical data that esti-
mates complete preference profiles based on the outcome set. We also formulate
a simplified version of related work [24] for estimating the different negotiation
issue weights.

Fig. 1. Negotiation setting

3 Problem Setting

3.1 Problem Description

Let us consider a setting where a computer agent is negotiating with an opponent
agent on behalf of a user it is supposed to represent. The agents are exchanging
bids (offers) to reach an agreement. The user that an agent represents has a
set of preferences towards particular outcomes and the agent tries to achieve a
negotiation outcome that satisfies these preferences as best as possible. This is
schematically illustrated in Fig. 1.

In a typical setting, an agent representing the user is assumed to have a
utility function that fully describes the user’s preference profile and translates
every possible outcome to marginal values. However, the agent in a negotiation
setting dost not necessarily have a priori, a fully specified user preference model,
which we will call user model. Part of the reason is the user’s discomfort to
engage with the system continuously.

Consider a typical example in a smart grid domain where a user would have to
interact with the energy management system in his residence to update his pref-
erences. This is a tedious procedure to the user, which requires lengthy queries
and on occasion even the user himself might not be sure about his preferences
due to lack of negotiation domain knowledge. As a result, agents have to be

Negotiating Under User Preference Uncertainty 119

able to negotiate on partial information about the user preferences, whilst also
querying the user for additional information as little as possible.

In cases of uncertainty an agent might be provided with an initial set of
information that might be known to it from domain knowledge, previous inter-
actions with the user, past negotiation data etc. The information obtained from
querying the user is another important concept when an agent needs to elicit
information about the user’s preferences. It may be difficult to query the user
for precise utility information, but, on the other hand, it could be much easier
for a user to compare outcomes. To that regard, we will propose a partial infor-
mation model based on ranked outcomes by the user which will be the initial
information supplied to the agents.

Our goal is to formulate a strategy, where an agent will be able to generate a
utility function that will approximate the real utility function as best as possible
given a partial information model based on a set of ranked outcomes that are
obtained from queries.

3.2 Formal Model

We present the key elements of a negotiation model architecture under preference
uncertainty. These are: the negotiation protocol, the negotiation scenario, the
users’ preference profiles, the agents’ negotiation tactics, presented below.

Negotiation Domain. During a negotiation, the participants are trying to
reach an agreement over m issues which we denote as I = {1,,m}. For
example, in the case of a smart grid collective these can include the price at
which the energy is traded, the need for green energy utilization, the willingness
to share, etc. Every issue i is discrete; i.e. each issue can take a finite number of
ni values which we denote as:

Vi =
{

x
(i)
1 , x

(i)
2 ,, x(i)

ni

}
. (1)

The negotiation domain Ω = V1 × V2 × . . . × Vm is the set of all possible
negotiation outcomes. A negotiation outcome ω ∈ Ω is thus an m–tuple that
assigns a single value ωi ∈ Vi to every issue i, such as “0.15 e/kWh” for the
issue “price of energy to be traded”.

Negotiation Protocol. The negotiation protocol dictates the actions that can
be performed by an agent at any given moment. We will be using the widely
used Alternating Offers Protocol, where each participant gets a turn per round
[8]. On each turn, the agent can accept or propose a counter-offer (or bid) to the
last offer by the opponent.

A negotiation deadline can be specified as the maximum number of negoti-
ation rounds, or in real time quantities. If an agreement has not been achieved
within the time-frame specified by the deadline, the negotiation ends and all
participants obtain utility zero. We assume the negotiation deadline is universal
and known to all participating agents [8,13].

120 D. Tsimpoukis et al.

Preference Profile. Every user participating in a negotiation has a specific set
of preferences regarding the possible outcomes. The preference profile is given
by an ordinal ranking over the set of possible outcomes: an outcome ω is said to
be weakly preferred over an outcome ω′ if ω � ω′ where ω, ω′ ∈ Ω, or strictly
preferred if ω � ω′.

Under mild assumptions [18], preference profiles can be expressed in a cardi-
nal way through the use of a utility function such that:

ω � ω′ ⇐⇒ u(ω) ≥ u(ω′). (2)

There is an outcome of minimum acceptable utility which is called reservation
value [5,12].

We will focus on linear additive utility functions, in which every issue i’s
value is calculated separately according to an evaluation function vi as follows:

u : Ω �→ [0, 1] ⊆ R with u(ω) =
m∑
i=1

wi · vi(ωi), (3)

where
m∑
i=1

wi = 1. (4)

Here, wi are the normalized weights that indicate the importance of each issue
to the user, and vi(ωi) is the evaluation function that maps the ith issue value
to a utility. Note that the linear utility function does not take dependencies
between issues into account. Alternatively, non-linear utility functions can be
incorporated to describe such dependencies [2,15,19].

Agent. The agent’s bidding strategy defines the agent’s structuring of the bids
during a negotiation [4], mapping negotiation states to an action (Acceptance,
or a Counter-offer in the Alternating Offers Protocol). The agent can per-
form better with an idea of the opponents’ preferences and bidding strategy
through opponent modeling techniques to propose bids which are more likely to
be accepted [7,23].

Well-known bidding strategies include the time-dependent bidding tactics
where the result of the decision functions is based on the time passed in the
negotiation [9,13] as follows:

u(t) = Pmin + (Pmax − Pmin) · (1 − F (t)), (5)

F (t) = k + (1 − k) · (1 − k) · t
1
e , (6)

where Pmin, Pmax are the minimum and maximum accepted offers, t is the nor-
malized1 time t ∈ [0, 1] and k ∈ [0, 1] is the utility of the first offer. If 0 < e < 1
the agent does not reduce its target utility in the early stages of the negotiation
and concedes at the end of the deadline [9,13]. The agent that follows this type
of strategy is called Boulware. In the opposite case of e ≥ 1, the agent is called
Conceder as it concedes to its reservation value (Pmin) very quickly.
1 The time range of a negotiation usually is [0, D] where D is the deadline in rounds

or time units and is normalized to the values [0, 1] .

Negotiating Under User Preference Uncertainty 121

User Model. The representative agent has a user model, which consists of the
agent’s beliefs about the user’s preferences. We assume the agent is supplied
with an initial set of answers to queries to the user, in the form of a user ranking
O ⊆ Ω of d different negotiation outcomes [24]:

O =
{

o(1), o(2), . . . , o(d)
}

, (7)

where o(1) � o(2) · · · � o(d), o(i) ∈ Ω.

This set will usually only contain a fraction of all outcomes Ω and hence
determines its level of uncertainty. Note that this notation allows us to denote
the ith issue value of an outcome o(j) ∈ O with o

(j)
i as before. The ranking O

can alternatively be expressed as a set of d − 1 pairwise comparisons:

D = {(o(j), o(j+1)) | o(j) ∈ O and 0 < j ≤ d − 1}. (8)

Given the outcome ranking O, the agent’s goal is to formulate its own esti-
mated utility function û(ω) that approximates the real utility function u(ω) as
much as possible. Establishing ‘the most likely’ utility function from a ranking of
outcomes O is complicated, as there is far less information available in D than
in u(ω). Furthermore, O might not contain any information about particular
outcomes, especially in large domains, requiring completion of the ordering.

4 Estimating a Utility Function from a User Model

If an agent is to operate under a non-fully specified preference profile, it needs
to formulate a strategy that will be able to derive a utility function from a set of
pairwise comparisons of outcomes. To do so, we will extend an approach followed
in [24].

Consider a ranking O of negotiation outcomes and the set D of correspond-
ing pairwise comparisons. Given the pairwise comparisons, the same inequality
should hold for the utility function of the agent (2). From the definition of the
utility function (2), we can integrate the weight and each evaluator value in one
variable and we rewrite (3) as:

u : Ω �→ [0, 1] ⊆ R with u(ω) =
m∑
i=1

φi(ωi), (9)

with φi(ωi) = wi · vi(ωi). (10)

This results in a new discrete set of variables

Y =
{

φ1(x
(1)
1), . . . , φ1(x(1)

n1
), φ2(x

(2)
1), . . . , φ2(x(2)

n2
), φm(x(m)

1) . . . , φm(x(m)
nm

)
}

.

(11)
With one additional piece of information, estimating the utility function can

be translated into a linear optimization problem with the set Y as the set of

122 D. Tsimpoukis et al.

unknown variables. For each pairwise comparison between outcomes (o, o′) ∈ D
we derive from (2) and (9) that:

m∑
i=1

(φi(oi) − φi(o′
i)) ≥ 0, with φi(oi), φi(o′

i) ∈ Y. (12)

We denote the above term as Δuo,o′ so

Δuo,o′ =
m∑
i=1

(φi(oi) − φi(o′
i)), Δuo,o′ ≥ 0. (13)

Now, we can translate the above inequalities into a linear optimization prob-
lem using standard linear programming techniques. For this, we need to consider
a set of ‘slack variables’ namely z. The number of slack variables zo,o′ is equal
to the number of comparisons (o, o′) in D. The linear program is formulated as:

Minimize: F =
∑

(o,o′)∈D
zo,o′ , (14)

subject to the constraints (Table 1):

zo,o′ + Δuo,o′ ≥ 0, (15)

zo,o′ ≥ 0, for (o, o′) ∈ D, (16)

φi(x
(i)
j) ≥ 0, for i ∈ I, j ∈ {1, 2, ..., ni} . (17)

Table 1. Summary of the linear program that estimates the new utility functions
parameters.

Objective function Decision variables Constraints

F Y ∪ {zo,o′ | (o, o′) ∈ D} (15), (16), (17), (18)

In its current form the optimization problem yields the trivial solution where
all φi(x

(i)
j) = 0, zo,o′ = 0. To tackle this problem an additional constraint is

required. Hence, arises the need for some additional piece of information about
the preferences of the user. In our solution, the additional information is the best
outcome for the user, i.e. the outcome of maximum utility ω∗. Note that this
does not mean that we know the importance of each separate issue, but only
that particular outcome that is the most desired from the user. This translates
into our final constraint for the optimization problem:

u(ω∗) = 1 ⇒
m∑
i=1

φ′
i(ω

∗
i) = 1. (18)

Negotiating Under User Preference Uncertainty 123

From the constraints (15) and (16) we can see that

zo,o′ ≥ max{0, −Δuo,o′}. (19)

Given that the goal is to minimize F , the optimal solution will be

z∗
o,o′ = max{0, −Δuo,o′}. (20)

We should note at this point that, in the case that the initial judgment
about the comparisons in D is correct, Δujk will always be positive. As a result
all zo,o′ will equal 0. This is an interesting attribute of this method, since it can
determine and pinpoint errors in user judgment as well. If all the zo,o′ are not
zero after solving the linear program, there is no solution set that satisfies all
the comparisons in D. This means that at lease one stated judgment regarding
the preference of two or more outcomes is wrong. This can prove very important
when the agent queries the user for information, in cases where the user is not
entirely sure about their preferences or does not have complete knowledge of the
negotiation domain and might give wrong feedback about their own preferences.
With our method these errors in user feedback can be pinpointed and addressed.

5 Experiments and Results

5.1 Setup

Scenario. To show that our proposed model is applicable in a real negotiation
setting we conducted experiments in a simulation of a negotiation scenario. The
scenario is inspired by the smart grid domain and refers to a fictitious energy
cooperative, where different residents participate in energy exchanges. The issues
of negotiation consist of the amount of energy bought or sold in different periods
of time, which in electrical energy systems are called Programme Time Units
(PTUs), and the type of energy exchanged (Green, Conventional). The possible
issue values for every PTU are {−3 kWh,−2 kWh, . . . ,+2kWh,+3kWh}. The
sign of the value corresponds to whether the user buys or sells the given amount
of energy. After an agreement is reached, for every PTU the amount sold by one
user is bought by the opponent. We created different preference profiles based
on different energy requirements patterns.

Measures. We selected two metrics to evaluate our model: accuracy towards
the real preference profile and negotiation performance.

To evaluate our model in terms of accuracy we compare the estimated weights
and evaluator values compare to the real preference profile. The comparison was
made in terms of 3 different accuracy measures: the Pearson Correlation Coef-
ficient, the Spearman Ranking Coefficient of bids between the entire resulting
utility space and the real utility space, and the maximum single bid utility
distance in the set. The Pearson Correlation Coefficient assesses linear relation-
ships between the two utility functions, while the Spearman Correlation assesses

124 D. Tsimpoukis et al.

monotonic relations based on their rank. The accuracy measures experiments
were performed on two scenarios with 3 (2 PTUs & Type of Energy) and 5 (4
PTUs & Type of Energy) issues respectively. In practice, the outcome space of
the 5 issue domain is 5000 times bigger than the 3 issue one. The calculations
were the result of averaging after 100 iterations for each uncertainty level.

Apart from the accuracy measures, we also investigate the influence of pref-
erence uncertainty in an actual negotiation and how well an agent performs in
this setup using our utility estimation strategies. To do so, we examined the
trace of the target utilities throughout a negotiation session of the Conceder
agent, presented in Sect. 3.2. To monitor the complete negotiation trace, we pit-
ted the Conceder agent against a never-accepting agent. The deadline was set at
180 rounds and the negotiation domain only on a 5-issue smart grid scenario (4
PTUs & Type of Energy).

Baseline Strategy. We tested our strategy against a simple preference esti-
mation method called Benchmarking Strategy, based on the intuition that the
more desired outcomes appear in the high positions of the ranked outcome set
O =

{
o(1), o(2), . . . , o(d)

}
. According to this method, all issue values occurring

in o(i) are awarded d − i points (for example, the values that make up the most
preferred outcome o(1) all receive maximum points). These scores are summed
for every i and then renormalized to values between 0 and 1 to determine the
final score for each value of every issue.

Weight Estimation Strategy. In some negotiation scenarios the preferences
for each issue might be known but the importance of each issue to the user is
not. For this case we created a simpler strategy based on our Linear Program-
ming model where the evaluator functions are known but the weights are not.
The solving strategy is exactly the same to the one presented in Sect. 4, with
the difference that the unknown variables are the issue weights only, since the
evaluator values are known. Hence, we replace the final constraint (18) with (4),
which states that the sum of the weights must equal 1.

5.2 Results

Accuracy Measures. Figure 2 presents the accuracy of the model compared
to the real preferences for 2 different domain sizes: 3 and 5 issues. The level of
uncertainty is expressed as the number of outcomes that appear on the ranked
set that is supplied to the agent. The first thing that we infer from the accu-
racy result figures is that our model becomes very accurate even with very few
comparisons (less than 1% of the d − 1 required for a perfect ranking of the
outcomes). Both our models outperform the benchmark strategy significantly.
Especially in the Weight Estimation case, all measures rapidly converge to the
desired values. This is reasonable if we consider the fact that in this case the
evaluator functions are considered known, which is already a very large amount
of information about the user preferences. To verify this claim, we ran a test case

Negotiating Under User Preference Uncertainty 125

0 20 40 60 80 100 120 140

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pearson

Benchmark Strategy
LP (Weights Only)
LP (General Case)

0 20 40 60 80 100 120 140
Outcome Ranking Max Size = 147

0.0

0.2

0.4

0.6

0.8

1.0

Maximum Bid Utility Distance

Benchmark Strategy
LP (Weights Only)
LP (General Case)

0 20 40 60 80 100 120 140

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Spearman

Benchmark Strategy
LP (Weights Only)
LP (General Case)

Accuracy Measures for 3 issues (2 PTUs & Type Of Energy)

0 20 40 60 80 100 120 140

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pearson

Benchmark Strategy
LP (Weights Only)
LP (General Case)

0 20 40 60 80 100 120 140
Outcome Ranking Max Size = 7203

0.0

0.2

0.4

0.6

0.8

1.0

Maximum Bid Utility Distance

Benchmark Strategy
LP (Weights Only)
LP (General Case)

0 20 40 60 80 100 120 140

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Spearman

Benchmark Strategy
LP (Weights Only)
LP (General Case)

Accuracy Measures for 5 issues (4 PTUs & Type Of Energy)

Fig. 2. Accuracy measures of simulations. The horizontal axis represents the size of
the outcome ranking that is supplied to the agent and the vertical axis the different
metric values.

for the 5 issue domain where the agent was supplied with 0 comparisons and the
weights were set to 0.2. The results yielded Pearson and Spearman coefficient
values above 0.7, which indicates relatively high accuracy even when the weights
are off.

We present the results up until 150 comparisons for each experiment since
all metrics converge to their final values by then. However, we need to remark
that only the Spearman correlation coefficient reaches its target value of 1 in
the case of a total ranking of outcomes (d − 1 comparisons). This means that
although the actual values of the weights and corresponding utilities might not
be exactly the same the ranking of outcomes is correct.

Negotiation Performance: The accuracy results suggest that our models
should perform well in an actual negotiation setting. To visualize the perfor-
mance of our models in an actual negotiation, we visualize the Conceder agents
traces for different amounts of comparisons for a whole negotiation session (180
rounds). That is, we observe the target utilities that are proposed at any given
round of negotiation according to the conceder strategy. Figure 3 shows these
traces for different amounts of preference information when following the Bench-
mark Strategy and our proposed Linear Programming Strategy as an estimation

126 D. Tsimpoukis et al.

0 25 50 75 100 125 150 175
Negotiation Round

0.0

0.2

0.4

0.6

0.8

1.0

T
ar
ge
t
U
ti
lit
y

Benchmark Strategy

Real
10
50
100
500
1000

0 25 50 75 100 125 150 175
Negotiation Round

0.0

0.2

0.4

0.6

0.8

1.0

T
ar
ge
t
U
ti
lit
y

LP (General Case)

Real
10
20
30
40
50

Fig. 3. Target utilities for a Conceder agent strategy under different levels of uncer-
tainty using the Benchmark Strategy and the Linear Programming Strategy

method. The superiority of the Linear Programming model becomes evident, as
with a small amount of comparisons (d ≤ 50) the real trace is followed almost
perfectly, whereas the Benchmark model does not even for a much higher amount
of comparisons (d = 1000). For 50 comparisons, the sum over all rounds of the
average bid distances (averaged over 100 iterations) of the trace compared to the
real trace was 2.564 following the Baseline strategy, compared to 0.120 following
the Linear Programming strategy.

The negotiation results mirror the knowledge we obtained from the accuracy
experiments. Given that at around 50 outcomes our method yields a Spearman’s
rank coefficient of ρ � 1, the user model becomes fully accurate, hence the
negotiation performance is not be affected. For the benchmark strategy on the
other hand, the trace never converges to the real profile. This is explained by the
fact that the benchmark method takes only the evaluator values into account
during its reasoning and not the issues’ importance (weights) at all. This can
result at wrong issue weights, which in turn affects the performance negatively.

6 Conclusion

We presented an information model that is based on categorical data and has
the form of a partial order of outcomes. This form of information may be readily
elicited by asking a user to compare outcomes. Given this input, the agent needs
to find the best sequence of queries that elicits as much preference information
as possible while minimizing user bother.

We created a decision model that utilizes the pairwise comparison informa-
tion, and through the use of linear programming we estimated a linear additive
utility function, which the agent will use to negotiate. The proposed decision
model was tested in terms of user-model accuracy and negotiation performance.
The accuracy results showed that even with a very small numbers of compar-
isons (less than 1% of a total ranking of outcomes), the agent can reach high

Negotiating Under User Preference Uncertainty 127

levels of accuracy (Spearman ρ � 1.0). We achieved similar results in perfor-
mance tests, with negotiation agreement utilities reaching no-uncertainty levels.
Finally, our proposed Linear Programing model outperformed a baseline model
both in terms of accuracy, as well as performance.

In a nutshell, we created a model that obtains incomplete ordinal prefer-
ence data in the form of rankings and through the use of linear programming
approximates the preferences of the user as best as possible. The results show
that even given a few outcome comparisons (i.e. user queries), together with the
knowledge of the overall best bid, an agent can improve the user model accuracy
significantly, and negotiates well as a result.

7 Discussion and Future Work

Computerized agents poised to represent users in negotiations should do so under
incomplete information about the preferences of the users they represent. This
work is a first step towards a reliable way of implementing such automated
negotiation under preference uncertainty.

In this work, we present a method of representing incomplete user-preference
information and a decision model that utilizes rankings of outcomes to elicit
as much information as possible. We focus on bilateral negotiation, but pave
the way for future work to examine how uncertainty affects an agent against
multiple opponents. It is reasonable to expect that when facing more opponents
the margin of error for an uncertain agent is smaller given that mistakes are
more likely to be exploited.

Furthermore, our model allows the incorporation of error in user feedback and
is able to pinpoint inconsistencies in user judgment, which could prove useful in
cases where the agent does not have enough knowledge about the domain or is
not certain about the user fidelity. The effect of judgment error could also be
further examined, e.g., on a total ranking of outcomes.

One last avenue for future work would be to test the model’s performance in
more heterogeneous scenarios. The results show small differences in the amount
of comparisons needed for high user model accuracy levels for various domains
sizes. This is explained by the fact that there is only a small increase in the num-
ber of linear utility function parameters relative to the size of the outcome space.
This finding may change for real-life domains without the linear attributes that
we assume in our model. Possible interdependencies between negotiation issues
would require non-linear optimization techniques and new and more complex
preference elicitation strategies.

Acknowledgment. This work is part of the Veni research programme with project
number 639.021.751, which is financed by the Netherlands Organisation for Scientific
Research (NWO).

128 D. Tsimpoukis et al.

References

1. Aydoğan, R., Baarslag, T., Hindriks, K.V., Jonker, C.M., Yolum, P.: Heuristics for
using CP-nets in utility-based negotiation without knowing utilities. Knowl. Inf.
Syst. 45(2), 357–388 (2015). https://doi.org/10.1007/s10115-014-0798-z

2. Aydogan, R., et al.: A baseline for non-linear bilateral negotiations: the full results
of the agents competing in ANAC 2014. In: Intelligent Computational Systems:
A Multi-Disciplinary Perspective, pp. 1–25. Bentham Science, July 2016. https://
eprints.soton.ac.uk/399235/

3. Aydoğan, R., Yolum, P.: Learning opponent’s preferences for effective negotiation:
an approach based on concept learning. Auton. Agent. Multi-Agent Syst. 24(1),
104–140 (2012)

4. Baarslag, T.: Exploring the Strategy Space of Negotiating Agents: A Framework for
Bidding, Learning and Accepting in Automated Negotiation. ST. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-28243-5

5. Baarslag, T., et al.: Evaluating practical negotiating agents: results and analysis
of the 2011 international competition. Artif. Intell. 198, 73–103 (2013). https://
doi.org/10.1016/j.artint.2012.09.004

6. Baarslag, T., Gerding, E.H.: Optimal incremental preference elicitation during
negotiation. In: Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, pp. 3–9. AAAI Press (2015). http://dl.acm.
org/citation.cfm?id=2832249.2832250

7. Baarslag, T., Hendrikx, M.J.C., Hindriks, K.V., Jonker, C.M.: Learning about
the opponent in automated bilateral negotiation: a comprehensive survey of oppo-
nent modeling techniques. Auton. Agent. Multi-Agent Syst. 30(5), 849–898 (2016).
https://doi.org/10.1007/s10458-015-9309-1

8. Baarslag, T., Kaisers, M.: The value of information in automated negotiation: a
decision model for eliciting user preferences. In: Proceedings of the 16th Confer-
ence on Autonomous Agents and MultiAgent Systems, AAMAS 2017, pp. 391–
400. International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2017). http://dl.acm.org/citation.cfm?id=3091125.3091185

9. Baarslag, T., Kaisers, M., Gerding, E.H., Jonker, C.M., Gratch, J.: Computers
that negotiate on our behalf: major challenges for self-sufficient, self-directed, and
interdependent negotiating agents. In: Sukthankar, G., Rodriguez-Aguilar, J.A.
(eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 143–163. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71679-4 10

10. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool
for representing and reasoning withconditional ceteris paribus preference state-
ments. ArXiv e-prints, June 2011

11. Cornelio, C., Goldsmith, J., Mattei, N., Rossi, F., Venable, K.B.: Updates and
uncertainty in CP-nets. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI),
vol. 8272, pp. 301–312. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03680-9 32

12. Fatima, S.S., Wooldridge, M., Jennings, N.R.: Optimal negotiation strategies for
agents with incomplete information. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL
2001. LNCS (LNAI), vol. 2333, pp. 377–392. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45448-9 28. http://dl.acm.org/citation.cfm?id=
648208.757345

https://doi.org/10.1007/s10115-014-0798-z
https://eprints.soton.ac.uk/399235/
https://eprints.soton.ac.uk/399235/
https://doi.org/10.1007/978-3-319-28243-5
https://doi.org/10.1016/j.artint.2012.09.004
https://doi.org/10.1016/j.artint.2012.09.004
http://dl.acm.org/citation.cfm?id=2832249.2832250
http://dl.acm.org/citation.cfm?id=2832249.2832250
https://doi.org/10.1007/s10458-015-9309-1
http://dl.acm.org/citation.cfm?id=3091125.3091185
https://doi.org/10.1007/978-3-319-71679-4_10
https://doi.org/10.1007/978-3-319-03680-9_32
https://doi.org/10.1007/978-3-319-03680-9_32
https://doi.org/10.1007/3-540-45448-9_28
http://dl.acm.org/citation.cfm?id=648208.757345
http://dl.acm.org/citation.cfm?id=648208.757345

Negotiating Under User Preference Uncertainty 129

13. Fatima, S.S., Wooldridge, M., Jennings, N.R.: Multi-issue negotiation under
time constraints. In: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 1, AAMAS 2002, pp. 143–150.
ACM, New York (2002). https://doi.org/10.1145/544741.544775

14. Greco, S., Kadziński, M., Mousseau, V., S�lowiński, R.: Robust ordinal regression for
multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP.
Decis. Support Syst. 52(3), 549–561 (2012). https://doi.org/10.1016/j.dss.2011.10.
005

15. Ito, T., Klein, M., Hattori, H.: A multi-issue negotiation protocol among agents
with nonlinear utility functions. Multiagent Grid Syst. 4(1), 67–83 (2008)

16. Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for
multicriteria decision-making, the UTA method. Eur. J. Oper. Res. 10(2), 151–
164 (1982). https://doi.org/10.1016/0377-2217(82)90155-2

17. Jonker, C.M., Robu, V., Treur, J.: An agent architecture for multi-attribute nego-
tiation using incomplete preference information. Auton. Agent. Multi-Agent Syst.
15(2), 221–252 (2007). https://doi.org/10.1007/s10458-006-9009-y

18. Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value
Trade-Offs. Wiley Series in Probability and Mathematical Statistics. Applied Prob-
ability and Statistics. Cambridge University Press (1993). https://books.google.nl/
books?id=GPE6ZAqGrnoC

19. Marsa-Maestre, I., Lopez-Carmona, M.A., Velasco, J.R., Ito, T., Klein, M., Fujita,
K.: Balancing utility and deal probability for auction-based negotiations in highly
nonlinear utility spaces. In: IJCAI, vol. 9, pp. 214–219 (2009)

20. Mohammad, Y., Nakadai, S.: FastVOI: efficient utility elicitation during negotia-
tions. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao
Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 560–567. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03098-8 42

21. Nguyen, D.V.: Global maximization of UTA functions in multi-objective optimiza-
tion. Eur. J. Oper. Res. 228(2), 397–404 (2013). https://doi.org/10.1016/j.ejor.
2012.06.022

22. Roszkowska, E.: The application of UTA method for support evaluation negotiation
offers. Optimum Stud. Ekonomiczne 2(80), 144–162 (2016). https://doi.org/10.
15290/ose.2016.02.80.11

23. Sanchez-Anguix, V., Aydoğan, R., Baarslag, T., Jonker, C.M.: Can we reach pareto
optimal outcomes using bottom-up approaches? In: Aydoğan, R., Baarslag, T.,
Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA
2016. LNCS (LNAI), vol. 10238, pp. 19–35. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57285-7 2

24. Srinivasan, V., Shocker, A.D.: Estimating the weights for multiple attributes in
a composite criterion using pairwise judgments. Psychometrika 38(4), 473–493
(1973). https://doi.org/10.1007/BF02291490

https://doi.org/10.1145/544741.544775
https://doi.org/10.1016/j.dss.2011.10.005
https://doi.org/10.1016/j.dss.2011.10.005
https://doi.org/10.1016/0377-2217(82)90155-2
https://doi.org/10.1007/s10458-006-9009-y
https://books.google.nl/books?id=GPE6ZAqGrnoC
https://books.google.nl/books?id=GPE6ZAqGrnoC
https://doi.org/10.1007/978-3-030-03098-8_42
https://doi.org/10.1016/j.ejor.2012.06.022
https://doi.org/10.1016/j.ejor.2012.06.022
https://doi.org/10.15290/ose.2016.02.80.11
https://doi.org/10.15290/ose.2016.02.80.11
https://doi.org/10.1007/978-3-319-57285-7_2
https://doi.org/10.1007/978-3-319-57285-7_2
https://doi.org/10.1007/BF02291490

An Adversarial Algorithm for Delegation

Juan Afanador(B), Murilo Baptista, and Nir Oren

University of Aberdeen, Aberdeen AB24 3UE, Scotland
{r01jca16,m.baptista,n.oren}@abdn.ac.uk

Abstract. Task delegation lies at the heart of the service economy, and
is a fundamental aspect of many agent marketplaces. Research in com-
putational trust considers which agent a task should be delegated to for
execution given the agent’s past behaviour. However, such work does
not consider the effects of the agent delegating the task onwards, form-
ing a chain of delegations before the task is finally executed (as occurs
in many human outsourcing scenarios). In this paper we consider such
delegation chains, and empirically demonstrate that existing trust based
approaches do not handle these situations as well. We then introduce a
new algorithm based on quitting games to cater for recursive delegation.

1 Introduction

Agents seeking to achieve some goal may delegate tasks to others. Such delega-
tions seek to increase the likelihood of the task being successfully executed, given
the presumption that the agent receiving the task (the delegatee) is willing and
capable to do so, on the part of the agent delegating the task (the delegator).
While this is the commonly adopted view, the delegatee may actually not be the
best suited agent for executing the task, but rather be able to further delegate
(due to its knowledge or connections) to others who are. This type of recursive
delegation has—to our knowledge—rarely been considered in the multi-agent
systems community, though it captures a common situation where, e.g., projects
are repeatedly contracted and subcontracted within organisations.

We believe that existing approaches to trust are ill-suited to making delega-
tion decisions in domains where recursive delegation is possible. This arises due
to several factors, namely that (1) agents within such a system are faced with a
choice of whether to execute a task, or delegate it onwards; (2) delegators must
learn about the competencies of their neighbours with respect to both delega-
tion and execution; and (3) the topology of the network of possible interactions
may change. The likelihood of a task being successfully executed thus depends
on multiple conditions, resulting in potentially large changes in the likelihood of
successful task execution, which are difficult to handle.

In this work, we propose an algorithm that explicitly considers recursive
delegation by building on quitting games [15]. We then compare the performance
of this algorithm to several existing techniques, empirically demonstrating its
improved behaviour. Critically, we do not consider reputation, but only direct

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 130–145, 2019.
https://doi.org/10.1007/978-3-030-17294-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_10

An Adversarial Algorithm for Delegation 131

trust observations, meaning that evaluating our algorithm against many existing
trust and reputation based approaches would be inappropriate. Instead, our
evaluation concentrates on trust-based approaches for partner selection based on
multi-armed bandits, namely an ε-greedy approach [17], UCB1 [2], Thompson
Sampling [5], and the Gittins Index [7]. We describe these approaches in Sect. 2.
In Sect. 3, we present our new quitting game based algorithm, providing an
empirical comparison between the various approaches in Sect. 4. We discuss our
results and situate them within existing work in Sect. 5, before concluding in
Sect. 6.

2 Background

The problem of task delegation among partners with unknown competencies can
be viewed as an exploitation/exploration problem, where partners should have
tasks delegated to them (exploitation), while unknown agents should occasion-
ally have tasks delegated to them so as to determine their competence (explo-
ration). A common framework for modelling, precisely, this class of problems
is offered by multi-armed bandit models, or multi-armed bandits (MABs) for
short; an overview of which will be provided in what follows, accompanied by
the algorithms used to solve them.

2.1 Multi-armed Bandits

A multi-armed bandit problem depicts a scenario where a single agent must
repeatedly select one among several courses of action, obtaining a reward from
this action. The repeated occurrence of an action can affect the rewards it
yields, an effect modelled by a random variable which—whenever the action
is performed—can cause a change to occur in the reward state underpinning the
action. In the MAB model, each potential action is referred to as an arm, while
choosing the action is referred to as pulling an arm.

Definition 1 (Multi-Armed Bandits—Arms). An arm A is a tuple 〈X, r,
h, f〉 where X is an ordered list of possible states of the arm, and r is a probability
distribution over possible rewards, parameterised by X.

The history of the arm, h, is a set of pairs (xh, lh) where lh ∈ Z is the number
of times the arm was pulled while in the state indexed by xh. The current state
of the arm is the state associated with the largest index of the arm’s history with
a non-zero lh.

Denoting the set of all possible histories as H, and the index of the current
state of the arm as x, f is a probability distribution over the states [xh, xh+1]
parameterised over H.

132 J. Afanador et al.

Definition 2 (Multi-Armed Bandits—Pulling an arm). Pulling an arm
with current state xi and history h = [(x1, l1), . . . , (xi, li), (xi+1, 0), . . . (xn, 0)]
will update the arm’s history to h′ as follows:

h′ =

{
[(x1, l1), . . . , (xi, li + 1), (xi+1, 0), . . . (xn, 0)] if f(h) = x

[(x1, l1), . . . , (xi, li), (xi+1, 1), . . . (xn, 0)] otherwise

A multi-armed bandit is then a set A of arms. The number of times each arm
was pulled starts at zero. Pulling an arm updates the arm as described above,
and—given that the arm is in state x—yields a reward R with likelihood r(x,R).

A policy is a function S : [a1, . . . , an] × [r1, . . . , rn] → A. In other words,
given a sequence of arm-pulls and the rewards thus obtained, the policy specifies
which arm should be pulled next. The main problem considered by the MAB
literature involves identifying a policy which is in some sense optimal, e.g., which
maximises rewards, or minimises regret. It has been long established that if the
states of the MAB and the probability distribution of its rewards are known, the
Gittins Index can be used to identify the optimal arm to pull [7].

Formally, the Gittins Index for arm i in state xi, with a discount factor for
future rewards of β, is defined as follows:

G(xi) = supσ>0
E[

∑σ−1
t=0 βtr(xi)| initial state of arm]

E[
∑σ−1

t=0 βt| initial state of arm]

The Gittins Index computes the expected reward of pulling arm xi against the
cost of not pulling it, and thus identifies the arm with the highest expected
reward as the one that should be pulled. Calculating the Gittins Index is compu-
tationally prohibitive [7], in response to which various numerical approximations
have been proposed in the literature [3,8].

More importantly, in practice, the probability distribution of the rewards and
the states of each arm may not be known. In this case, the Gittins Index may be
used as a heuristic based on beliefs about rewards and arm states, which means
that different ways of calculating these beliefs will result in different procedures
with very distinct properties. We now describe several such heuristics addressing
the MAB problem, namely UCB1 [2], ε-greedy [17], and Thompson Sampling [5].
We will compare the performance of our approach to these heuristics in Sect. 4.

2.2 MAB Heuristics

We begin this section by briefly describing several well-known MAB heuristics
in the context of standard MABs. In Sect. 3 we detail how these heuristics must
be modified to deal with recursive delegation.

UCB1. Rather than simply maximising rewards, upper confidence bound (UCB)
algorithms, exemplified by UCB1 [2], attempt to minimise decision-theoretic
regret—the difference between the expected reward obtained had the optimal
arm been pulled, and the expected reward of some other arm pulling policy.

An Adversarial Algorithm for Delegation 133

UCB1 is simple to implement and works well in practice, while guaranteeing
that the achieved regret will grow only logarithmically with the number of arm-
pulls that occur.

For an arm j, UCB1 tracks the average reward obtained from that arm (μj),
and the number of times the arm has been pulled (nj), as well as the total
number of times that the MAB’s arms have been pulled (n). It then picks arm
j, so as to maximise an upper bound on the mean expected reward given by the
following equation [2]:

μj +

√
2 ln n

nj
,

This choice guarantees that the probability of deviating from the population
mean decays exponentially through time, in accordance with the Chernoff-
Hoeffding inequality [10]. Once the arm has been pulled, μj , nj and n are updated
to identify the next arm to pull.

Thompson Sampling. This is another simple approach to selecting an arm, and
does so by sampling an expected reward based on the arm’s history, before
selecting the arm whose sample reward is maximal. To perform such sampling,
a probability distribution over the arms is required [1]. In this work we consider
binary rewards, and we therefore perform our sampling using a Beta distribution,
whose parameters record the number of times the arm returned a reward, and
the number of times it did not. Thompson Sampling then samples each arm
using this probability distribution, and selects the arm which—again, using this
sampling—has the highest expected reward.

ε-Greedy. This heuristic selects the arm which will yield the highest expected
reward with likelihood 1 − ε [17], otherwise picking an arm at random. It is
important to note that this heuristic differs from Thompson Sampling in that
no sampling over the arms takes place, meaning that the best arm (in the sense
of the expected reward) is always picked, unless a random arm is chosen (with
likelihood ε).

All of the heuristics described above seek to balance exploitation (that is,
selecting the arm most likely to give a high reward) with exploration (that is,
learning more about the likelihood that the arms will give a reward). If the distri-
bution governing the reward an arm provides is stationary, then these heuristics
work well, and give well-understood convergence guarantees. However, in the
case of recursive delegation, agents at each level learn simultaneously, meaning
that the stationary distribution assumption is—until the learning stage ends—
violated. It is for this reason that these heuristics function poorly when applied
to recursive delegation. We conclude this section by briefly describing how we
adapted the heuristics to operate in the domain of recursive delegation.

2.3 Applying MAB Heuristics to Recursive Delegation

Agents able to delegate to others must make two choices when tasked with an
action, namely whether to execute the action themselves, or delegate it onwards

134 J. Afanador et al.

(and in the latter case, must also decide who to delegate to). Each agent has a
list of delegatees to which they can delegate a task. By viewing the delegatee
agents as neighbours of the delegator, we obtain a directed graph over which a
path represents a sequence of delegations.

We unify the execution/delegation decision for an agent by associating a
dummy agent with each agent in the system, allowing the actual agent to delegate
to the dummy agent, and ensuring that the dummy agent has no delegatee
agents that they can pass the task onto. A task reaching the dummy agent
must therefore be executed (by the agent associated with the dummy agent).
Figure 1 illustrates a sample delegation network consisting of 6 agents (a, . . . , f),
together with dummy agents (a′, . . . , f ′). In this scenario, one possible sequence
of delegations (also referred to as a delegation chain) is a, b, c, f, f ′.

cb

a

e f

d

Fig. 1. A network of agents illustrating possible delegation links. Dotted lines indicate
links to dummy agents which, when delegated to, execute the task.

To use the heuristics described above in a recursive context, agents make a
local delegation decision, choosing who to pass the task to based only on their
neighbours’ potential to become delegatees. If a dummy agent receives the task,
then it is executed, and feedback on success or failure is provided to every agent
in the delegation chain. From thereon, each agent updates the statistics relevant
to its delegation decision with respect to its neighbours, and the process repeats.
Clearly, this approach prevents an agent from considering how others within the
chain make decisions, and we claim that this affects the effectiveness of MAB
heuristics in recursive delegation scenarios.

2.4 Quitting Games

We formulate an alternative approach to delegation which explicitly considers
the actions available to agents through a game-theoretic mechanism based on
quitting games [15]. Quitting games are multi-player stochastic games where
players are faced with two choices, namely to continue (c) or to quit (q). The
game ends and the players obtain rewards in two situations, whenever a quit
action occurs, or the game reaches some terminal time. If the game does not
end after the players have selected a move, i.e. simultaneous continue actions,

An Adversarial Algorithm for Delegation 135

then it enters another iteration where players act again, repeating this process
until termination. Figure 2 illustrates a generic two-player quitting game between
agents a and b.

The first entry in each terminal node appearing in Fig. 2 corresponds to the
reward accrued to a, the other denotes b’s reward. Whenever (ca, qb) is played,
a receives rca

and b obtains rqb
, whereas (ca, cb) leads to yet unrealised rewards

denoted by “�”. Agents a and b plan future moves by formulating strategies
based on the anticipation of potential ε − equilibria.

Definition 3 (Quitting Game—Strategies). At every iteration t within a
time horizon T , each player i is provided with a set of actions Ai = {ci, qi}.
A strategy is a probability measure xi

t : T → [0, 1] denoting the likelihood of
playing ci at iteration t.

Definition 4 (Quitting Game—ε-equilibrium). A profile or vector of
strategies xt, produces a stream of rewards rSt

, contributed by those players
St who have chosen not to quit the game, giving rise to an expected reward
vi

t(xt) := Ex[rSt
It<∞]. A solution concept states the criteria for playing a par-

ticular profile. ε-equilibrium is the solution concept employed when solving a quit-
ting game. A profile xt is an ε-equilibrium if the expected reward it yields plus
an overhead εt > 0, is at least that of any other strategy yi

t for every player i:

vi
t(xt) ≥ vi

t(x
−i
t , yi

t) − εt.

Note that if εt = 0, the above expression produces a Nash equilibrium. ε-
equilibria can be further qualified as cyclic if there exists a point in time τ ∈ T
when xi

t = xi
t+τ , or stationary if xi

t = xi
0 for each t ∈ T . For instance, given

rqa
> 0, rca

< rqb
, rqa

< rca
, and rcb

≥ rqb
, the stationary profile (xa, cb),

xa
t � 1 is an ε-equilibrium of the game in Fig. 2. More generally, every quitting

game where players prefer unilateral termination to indefinite continuation, has

a

qa

b

qb

a

qa ca

cb

ca

rqa , rqb

rca , rqb

rqa , rcb �

Fig. 2. Quitting game in extensive form

136 J. Afanador et al.

a cyclic subgame perfect ε-equilibrium [15], while every two and three players
quitting game has a stationary ε-equilibrium [16].

To use these ideas in the context of recursive delegation, a delegator playing
a quitting game may never see the task executed, depending on the periodicity of
the cyclic equilibrium, unless the delegation process unfolds either as a recursive
negotiation with the same delegatee, or every delegation chain is constrained
to no more than two delegatees. While most quitting games have more than
three players in the context of recursive delegation—and we therefore have no
guarantees regarding ε-equilibria—these games appear to capture an important
aspect of recursive delegation. Therefore, the algorithm for recursive delegation
which we propose in the next section builds on quitting games and, as discussed
in Sect. 4, appears to outperform other MAB based approaches in this context.

3 Approach

As indicated in Sect. 2.1, the problem of task delegation may be seen as an
exploitation/exploration problem in the spirit of MABs, where delegators waver
between delegating the task to competent partners (exploitation) and delegating
the task to unknown partners (exploration). It is also apparent from Sect. 2.4 that
recursive delegation has a natural predisposition to a game-theoretical treatment,
due precisely to its explicit approach to recursion. In this section we present
an algorithm for recursive delegation based on quitting games. Details on the
corresponding adaptation of MAB heuristics, and the Gittins Index in particular,
will be briefly addressed by the end of this section, procuring a comparable
benchmark for Sect. 4.

a

ea

b

eb db

da,b

c

ec

m

em dm

dc,m

n

en dn,·

dc,n

da,c

ra

rb, ra,b ra, 0 rc, ra,c

rm, ra,c, rc,m ra,c, rc,m rn, ra,c, rc,n �

Fig. 3. Delegation game in extensive form

3.1 Delegation as a Quitting Game

Quitting games are readily adaptable to recursive delegation. They typify the
occurrence of self-embedded instances of strategic interaction, resembling the
replication of delegation requests along a delegation chain. That is, if a delegator
(a) and a potential delegatee (b) were to play a quitting game, to determine

An Adversarial Algorithm for Delegation 137

whether to delegate a task or not, the profile (ca, cb) would take them both to a
new iteration of the same delegation request. Unlike a standard quitting game,
however, a delegation process requires distinct strategic scenarios, where, e.g.,
b becomes a delegator facing a new delegatee. For this reason we have adjusted
quitting games to this type of interactions, preferring instead the term delegation
games when referring to them.

The players of a delegation game have a delegate (d) action and an execute (e)
action, and their rewards depend on future delegate actions. Every pair of agents
populating each instance of the game consists of one former delegatee acting as
delegator, and one new agent serving as potential delegatee. Delegation games
can only be prolonged by (di, dj) profiles for every delegator i and delegatee j—
provided there are available delegatees and sufficient time—, and are brought
to an end whenever an execute action occurs. Future actions are formulated in
terms of strategies and the pursue of ε-equilibria.

Definition 5 (Delegation Game). A delegation game is a tuple 〈N, (Ai, u
i,

ri)i∈N 〉. All N agents, or players, pair up with one another. A player generating
a delegation request will be referred to as delegator, while a player at the receiving
end of the delegation request will be termed delegatee. Potential delegatees within
the reach of a delegator are said to be the latter’s neighbours.

Every iteration of the game comprises several instances of strategic interac-
tion. There are as many instances in a single iteration, as available delegatees
can be found. At every iteration t within a time horizon T , each player i is
provided with a set of actions Ai = {di, ei}.
Definition 6 (Delegation Game—Strategies and Expected Rewards).
A strategy is a probability measure xi

t : T → [0, 1] indicating the likelihood of
playing di at iteration t. Vectors of strategies xt are termed profiles. ri

Dt
is a ran-

dom variable representing the rewards obtained from delegation by each player
i, given the set of delegatees Dt at iteration t. ui

t : xt−1 × R → Δ(Ai) is a
measurable set-valued function that updates each player’s strategies once an
action ej occurs or a terminal node is reached. Profiles induce a probability
distribution which permits the computation of the expected rewards vi

t(xt) :=
Ex[rDt

It<∞].

Figure 3 depicts one iteration of a (deterministic) delegation game. Agents
a, b, c,m and n are arranged in a tree-like structure, where b and c are a’s neigh-
bours, m and n are c’s neighbours, while b and m have no neighbours, and n is
linked to another unspecified tree which allows delegation to continue. a has to
decide between choosing a delegatee from {b, c} or executing the task itself i.e.
it has to decide whether to play da,b, da,c or ea.

Each one of the three branches radiating from a, in Fig. 3, exemplifies an
absorbing state of a delegation game. a can play ea and perform the task itself.
It can also delegate the task to b, in which case b might accept the task by playing
eb, or not by playing db, thus returning the task to a and forcing the occurrence
of ea. In each case, a and b receive (ra, 0), (ra,b, rb) and (ra, 0), respectively.
Alternatively, a could delegate to c. If n decides to play en, it receives rn, while

138 J. Afanador et al.

c and a obtain rc,n and ra,c. The rewards of any agent in the delegation chain
emanating from n’s neighbour, will not be realised until some agent plays an
execute action, the delegation process reaches a terminal node like b, or the time
horizon is exhausted.

When rewards are subject to stochastic processes, the selection of an action
has to be expressed in terms of strategic profiles (xt), as in Definition 6. The prob-
ability distribution these profiles induce is then used to calculate the expected
rewards (vi

t). By contrasting expected rewards in the manner of an ε-equilibrium,
delegators and delegatees select a particular strategy, which once played provokes
the respective information states to update (ui

t). These ideas on how a delegation
game operates, are presented in Algorithm 1.

Algorithm 1. Delegation Game (DIG)
Input: P := {ai, adi}i∈N : Tuple of agents and their neighbours, r: Array of sampled

rewards.
Output: S: Sequence of agents receiving a delegation request, x: Array of mixed

strategies.
1: function DIG(Pi)
2: S ← {Si}i∈N , x ← {xi}i∈N , r ← {ri}i∈N

3: for j=1→ N do
4: adj ← {ak}k �=j∈B⊂N , rj ← {U(rj,0, rj,T)}j∈B⊂N , Sj ← ∅,xj ← 0

5: for ak ∈ adj do

6: xj,k =
rj,1−rj,0
rj,k−rk

7: x ← x ∪ {xj,k}
8: while (x �= ∅) ∧ (∃j[Sj == ∅]) do
9: m ← argmaxj∈adj (r)

10: if (random() < xj,m) then
11: if am ∈ Sj then
12: Update xj,m, rj,m

13: else am /∈ Sj

14: Sj ← Sj ∪ {am}
15: return LEARN(Pm; rm, xm)
16: else
17: aj executes the task
18: Sj ← ∅
19: return (S, x)

1: function Learn(Pi; ri, xi)
2: if ri,0 ≤ ri,1 then
3: ai executes the task
4: Update xk,i, rk,i

5: else
6: return DIG(Pi)

An Adversarial Algorithm for Delegation 139

In Algorithm 1, a set B ⊂ N of neighbours is assigned to each of the N agents,
and their respective rewards sampled from an uniform distribution (line 4).
The resulting initial state allows the computation of individual mixed strate-
gies i.e. the probabilities of delegating, whenever pairs of agents and neighbours
engage in a delegation request (line 6). Note that the notation is preserved except
for r·,1 and r·,0, denoting the rewards of executing the task given a delegatee’s
willingness to further delegate or not. As long as there are neighbours who have
not received such a request, despite holding a positive probability of delegating,
the selection of the one with the highest expected pay-off will take place (lines
8 and 9), seeking a Nash equilibrium. If capable of executing the task, as given
by a random “state of nature” (line10), this latter agent will have to weigh up
the possibility of passing the task down the delegation chain or attempting its
completion, thereby triggering a learning process (lines 11–15).

3.2 Delegation as Nested MABs

We now specify a second heuristic which treats recursive delegation as a set
of nested MABs, and where each agent makes a local decision regarding how
to delegate based on an approximation to the Gittins Index. This heuristic is
described in Algorithm 2.

Algorithm 2 is initialised in the same manner as Algorithm 1. It implements
the Gittins Index through a beta reputation mechanism captured in lines 16–19,
which feeds the numerical approximation to the index as specified in lines 8–10.
The former is but a counter of successful delegation events, acting as a wrapper
of the latter over recursive calls. In this way, monitoring behaviour is accounted
for with a binary random variable keeping track of successful and failed choices.

The main procedure in Algorithm 2 is Brezzi and Lai’s proposal of a
MAB optimal policy. For a large number of trials, and a time-discounting rate
c ∈ [0.8, 1]—as calibrated by Brezzi and Lai [3] for efficient performance—, the
following closed-form function is used to approximate the Gittins Index [3]:

G(T) ≈ μ +

√
μ(1 − μ)
T + 1

ψ

(
1

(T + 1)c

)
;

where μ is the mean of the compound distribution of the random variable indi-
cating a successful delegation, and

ψ(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
t/2 , t ≤ 0.2

0.49 − (0.11t)−1/2 , t ∈ (0.2, 1]

0.63 − (0.26t)−1/2 , t ∈ (1, 5]

0.77 − (0.58t)−1/2 , t ∈ (5, 15]

{2log(t) − loglog(t) − log(16π)}1/2 , otherwise

approximates the boundary of the continuation region, delineating the set
of iterations for which it is suboptimal to stop the exploration of potential
delegatees.

140 J. Afanador et al.

Algorithm 2. Dynamically Indexed Delegation (DID)
Input: P := {ai, adi}i∈N : Tuples of agents and their neighbours, δ: Array of time-

discounting parameter.
Output: S: Sequence of agents receiving a delegation request, μ: Array of probabilities

of successful delegation.
1: function DID(Pi; δi)
2: S ← ∅, μ ← {μi}i∈N , μi ∼ Beta(1, 1)
3: for i=1→ N do
4: adi ← {aj}j �=i∈K , δi ← [0.8, 1),

5: CountSuccessai ← 0, CountFailureai ← 0
6: αi ← CountSuccessai , βi ← CountFailureai

7: for i=1→ N do
8: μi ← 1

(1+βi/αi))

9: Gi,j ← μj +
(μj(1−μj)

αj+βj+1

)1/2ψ
(
1/(αj + βj + 1)log(δ−1

i)
)

10: m ← argmax({Gi,k}k∈adi)
11: if am �= ai then
12: S ← S ∪ {am}
13: return DID(Pm; δm)
14: else
15: Self-execute
16: if Outcome == True then
17: CountSuccessam ← CountSuccessam + 1
18: else
19: CountFailuream ← CountFailuream + 1

20: return Outcome

4 Evaluation

Having described our MAB and quitting game based heuristics, we now turn to
evaluating their effectiveness. We begin this section by detailing our experimental
setup, following which we describe our experiments and results.

4.1 Experimental Setup

Our evaluation consisted of running the various heuristics over 1000 delegation
requests, each run over 100 different graphs representing different possible initial
states. The algorithms were tested on two types of structures: 4-level directed
trees (as in Fig. 2), and networks of randomly formed neighbourhoods (as in
Fig. 1). The trees have a branching factor of 5 neighbours per node, with a
final population of 156 agents. The random networks have a fixed population of
100 agents, some of which may not be reachable. Agents in random networks
also possess 5 neighbours each, sampled from all available nodes excluding their
immediate predecessor and the root.

We experimented with different parameters for each of the heuristics. For
ε-greedy, ε takes on values between 0.05 and 0.1 [17]. Thompson Sampling was
recovered from a Bayesian variation of the same algorithm with no exploration.

An Adversarial Algorithm for Delegation 141

The discount factor in DID ranged within [0.8, 1), as to remain consistent with
the closed-form approximation to the Gittins Index [7]. The initial probabilities
of delegation were sampled from an uninformative Beta distribution.

For each heuristic we measured the probability that a delegation would
be successful after the nth iteration (averaged over the 100 runs), as well as
the regret value for the action. This latter value is computed as the difference
between the probability that a task would be successfully executed if the optimal
delegation path was followed, and the final likelihood of successful execution.

4.2 Results

Figure 4a shows the performance of the various heuristics over directed trees. We
observe that the DIG heuristic significantly increases the chance of successful
delegation when compared to other approaches. Thompson Sampling appears to
outperform the remaining approaches, but takes longer to approach its optimal
value than other techniques.

With regards to regret, we observe (Figs. 4b and 5a) that DIG by maximis-
ing the likelihood of successful delegation also minimises its regret, and that
this relationship holds for the remaining algorithms. Furthermore, none of the
algorithms obtain levels of regret greater than UCB1’s theoretical upper regret
bound (Fig. 4b and Table 1).

Turning to random networks, Fig. 6a demonstrates that DIG and DID outper-
form all other approaches. It appears that the rate of convergence for Thompson
sampling significantly lags behind the other approaches. Our results for regret
(Fig. 6b) are similar to those for directed trees.

If we consider the length of the resulting delegation chains, we observe that
in directed trees (Fig. 5b) all algorithms occasionally create chains which span
the height of the tree, though ε-greedy algorithms usually converge to a single
delegation instance. We believe that the latter is due to the algorithm’s focus
on exploitation over exploration. In the case of random networks, this behaviour
changes, with ε-greedy exploring the network at length, while other approaches
quickly converge to different delegation chain lengths.

(a) Probabilities of Successful Delegation (b) Regret Metrics and Upper Bounds

Fig. 4. Comparative performance over directed trees

142 J. Afanador et al.

(a) Dispersion of Regret (b) Persistence of the Chain Length

Fig. 5. Comparative performance over directed trees

On account of the difference in the number of neighbours, and the presence
of cycles, the variance of marginal regret is less uneven, but larger on average
in the random graph case. There are more pronounced differences in the levels
of regret as new agents are discovered every trial, as shown in Fig. 7b. Indeed,
DIG settles at a 2-agent long chain, leading to exceptional levels of successful
delegation. In this sense, DIG can be considered the most efficient algorithm.

Table 1. Relative performance over Directed Trees (D.T.) and Random Networks
(R.N.)

Algorithm Network
structure

Probability of
successful delegation

Mean rate of
convergencea

Mean regret

DIG D.T. 0.975 0.498 4.60

R.N. 0.985 0.434 10.821

DID D.T. 0.958 0.363 7.766

R.N. 0.974 0.324 15.842

ε-Greedy D.T. 0.927 0.437 31.352

R.N. 0.931 0.608 17.596

Thompson Sampling D.T. 0.947 0.731 21.281

R.N. 0.906 0.227 21.779

UCB1 D.T. 0.948 0.387 13.995

R.N. 0.858 0.172 33.689
aThe mean rate of convergence was approximated by the error of deviating from
a probability of delegating equal to 1 (et), over the first 175 trials i.e., q ≈
log(et+1/et)
log(et/et−1)

, t ∈ {1, . . . , 175}. The cut-off point was obtained through the Welch

method [19].

An Adversarial Algorithm for Delegation 143

(a) Probabilities of Successful Delegation (b) Regret Metrics and Upper Bounds

Fig. 6. Comparative performance over random networks

(a) Dispersion of Regret (b) Persistence of the Chain Length

Fig. 7. Comparative performance over random networks

5 Discussion and Future Work

Our results demonstrate that the DIG strategy outperforms other approaches
when dealing with recursive delegation problems. As future work, we intend to
investigate the theoretical properties of the heuristic to further understand its
salient features and the conditions behind its performance.

We believe that our approaches operate better than existing heuristics due
to the violation of the stationarity assumption in our domain. Our DID heuristic
has similarities to the manner in which the generalised Gittins Index is computed
under weaker forms of stationarity [11], suggesting the incorporation of evolu-
tionary algorithms into future research in the domain of recursive delegation.

By construction, delegation in our MAB framework conforms to a multilevel
linear program, where new delegation problems lie embedded in the constraints
restricting every agent’s objective. We intend to validate a similar mapping
between DIG and multilevel bilinear programs against recent work on (stochas-
tic) multilevel optimisation problems [6], tracing back to questions on stationar-
ity and the pertinence of evolutionary, hierarchical, and genetic algorithms [9].

Another strand of future work which we are actively pursuing involves
increasing the empirical faithfulness of our approach. This means introducing

144 J. Afanador et al.

resource constraints, explicit rewarding schemes, and potential costs to the del-
egation problem, by borrowing ideas from the principal-agent theory literature
[20], and results from coalitional game theory [14].

There is little work in the computational trust community dealing with recur-
sive delegation. To our knowledge, the only publications which address these
issues are [13] and [4]. In the former, the authors consider a supply chain prob-
lem and model it via recursive MABs, but focus on budget constraints for each
arm, solving local bandit problems in parallel to identify trustworthy suppliers.
In [4] the authors evaluate how simple algorithms to assign responsibilities for
task delegation failures across delegation chains, may affect the performance of
the system.

6 Conclusions

In this paper we described the recursive delegation problem, and empirically
demonstrated that a heuristic based on quitting games outperforms different
multi-arm bandit based techniques, namely UCB1, ε-greedy, Thompson Sam-
pling, and Lai and Brezzi’s numerical approximation to the Gittins Index. Our
heuristic outperforms these approaches both with regards to regret, and the
probability of successful delegation over different graph topologies.

Our results are directly applicable to multi-agent system marketplaces, and
address an oft-ignored issue in computational trust research, which usually con-
siders only non-recursive task delegation. In this regard, extensions to include
explicit rewarding schemes and resource constrains seem a fruitful direction of
future research. We believe they will give rise to decisive contributions to com-
putational trust theory and AI, if further pursued along the lines of hierarchical
reinforcement learning in non-stationary environments [12,18].

References

1. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit
problem. In: Conference on Learning Theory, pp. 39–1 (2012)

2. Auer, P., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach.
Learn. 47, 235–256 (2002)

3. Brezzi, M., Lai, T.L.: Optimal learning and experimentation in bandit problems.
J. Econ. Dyn. Control. 27(1), 87–108 (2002)

4. Burnett, C., Oren, N.: Sub-delegation and trust. In: AAMAS, pp. 1359–1360.
IFAAMAS (2012)

5. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Advances
in Neural Information Processing Systems, pp. 2249–2257 (2011)

6. Franke, S., Mehlitz, P., Pilecka, M.: Optimality conditions for the simple con-
vex bilevel programming problem in banach spaces. Optimization 67(2), 237–268
(2018)

7. Gittins, J., Glazebrook, K., Weber, R.: Multi-Armed Bandit Allocation Indices.
Wiley, Hoboken (2011)

An Adversarial Algorithm for Delegation 145

8. Gutin, E., Farias, V.: Optimistic Gittins indices. In: Advances in Neural Informa-
tion Processing Systems, pp. 3153–3161 (2016)

9. He, X., Zhou, Y., Chen, Z.: Evolutionary bilevel optimization based on covariance
matrix adaptation. IEEE Trans. Evol. Comput. (2018)

10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

11. Koulouriotis, D.E., Xanthopoulos, A.: Reinforcement learning and evolutionary
algorithms for non-stationary multi-armed bandit problems. Appl. Math. Comput.
196(2), 913–922 (2008)

12. Kulkarni, T.D., Narasimhan, K., Saeedi, A., Tenenbaum, J.: Hierarchical deep
reinforcement learning: integrating temporal abstraction and intrinsic motivation.
In: Advances in Neural Information Processing Systems, pp. 3675–3683 (2016)

13. Sen, S., Ridgway, A., Ripley, M.: Adaptive budgeted bandit algorithms for trust
development in a supply-chain. In: Proceedings of the 2015 International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 137–144.
International Foundation for Autonomous Agents and Multiagent Systems, Rich-
land (2015). http://dl.acm.org/citation.cfm?id=2772879.2772900

14. Skibski, O., Michalak, T.P., Rahwan, T., Wooldridge, M.: Algorithms for the shap-
ley and myerson values in graph-restricted games. In: Proceedings of the 2014
International Conference on Autonomous Agents and Multi-agent Systems, pp.
197–204. International Foundation for Autonomous Agents and Multiagent Sys-
tems (2014)

15. Solan, E., Vieille, N.: Quitting games. Math. Oper. Res. 26(2), 265–285 (2001)
16. Solan, E., Vieille, N.: Quitting games-an example. Int. J. Game Theory 31(3),

365–381 (2003)
17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,

Cambridge (2011)
18. Vezhnevets, A.S., et al.: Feudal networks for hierarchical reinforcement learning.

arXiv preprint arXiv:1703.01161 (2017)
19. Welch, P.D.: The statistical analysis of simulation results. In: The Computer Per-

formance Modeling Handbook, vol. 22, pp. 268–328 (1983)
20. Zhang, H., Zenios, S.: A dynamic principal-agent model with hidden information:

sequential optimality through truthful state revelation. Oper. Res. 56(3), 681–696
(2008)

http://dl.acm.org/citation.cfm?id=2772879.2772900
http://arxiv.org/abs/1703.01161

Policies to Regulate Distributed
Data Exchange

Samuel R. Cauvin(B) , Nir Oren , and Wamberto W. Vasconcelos

Department of Computing Science, University of Aberdeen, Aberdeen, UK
{r01src15,n.oren,w.w.vasconcelos}@abdn.ac.uk

Abstract. Data sharing is becoming an integral part of many aspects
of our daily lives. We propose a method for controlling access to data
and knowledge through fine-grained, user-specified explicitly represented
policies. We present an overview of a policy formalism and mechanisms
to facilitate distributed data sharing. We provide a breakdown of how our
approach defines compliance and violation, specifically providing a new
outlook on violation of permissions within the context of data sharing.
We also examine how our mechanisms have been adapted to support
socially responsible interactions between participants, whilst still pro-
viding them with control over their own data. We also explore a series
of planned experiments investigating how users understand and interact
with policies in a simplified version of our formalism.

1 Introduction

Data sharing is becoming an integral part of many aspects of our daily lives.
With the emergence of data-driven technologies that employ intelligent sensor
devices in an environment, such as smart cities [5,45] and smart homes [18], data
exchange and data sharing has to be addressed. While data sharing can provide
benefits and services to users, it is important to regulate it to allow users to
retain control of their data, addressing issues related to information governance.
Not only is it important to give control to individual users, but to maximise the
benefit to all users in data-sharing ecosystems.

Usually, data sharing is specified (and constrained) through the use of data
access policies. These policies specify how data may (or may not) be accessed,
changed and used. The traditional management of typical access policies tends to
be centralised [1,11,14,40]. This poses a number of problems, such as information
ownership and reliance on a central authority that may allow the manipulation
of these policies, and which answers queries regarding current policy settings for
data. A counter proposal to such a centralised form of policy management is
provided in [37] which describes a distributed architecture for normative regu-
lations.

This research is partially sponsored by the EPSRC grant EP/P011829/1, funded under
the UK Engineering and Physical Sciences Council Human Dimensions of Cyber Secu-
rity call (2016).

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 146–161, 2019.
https://doi.org/10.1007/978-3-030-17294-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_11&domain=pdf
http://orcid.org/0000-0003-0928-7813
http://orcid.org/0000-0002-4854-9014
http://orcid.org/0000-0001-5090-7581
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/P011829/1
https://www.epsrc.ac.uk/funding/calls/humandimensionscybersecurity/
https://www.epsrc.ac.uk/funding/calls/humandimensionscybersecurity/
https://doi.org/10.1007/978-3-030-17294-7_11

Policies to Regulate Distributed Data Exchange 147

We envisage a data-sharing economy where data can be safely exchanged
between participants. In addition to data, we also consider participants sharing
data access policies amongst themselves. To achieve this, we present the following
elements: an information model to support fine-grained policies, and a proposal
for a distributed data-sharing infrastructure.

We present a language to specify data access policies that is based on deon-
tic concepts such as prohibition, permission and obligation. We equipped this
language with fully distributed mechanisms to support participants making deci-
sions on how they should go about sharing data in a socially responsible manner.
That is, we enable participants to anticipate consequences and minimise their
negative effects where possible.

In this paper we present a language and associated mechanisms which are
sufficiently expressive to capture many data exchange scenarios but that can
also be presented at a higher level that we hope will aid users with less technical
experience in creating and interpreting policies. This language draws on existing
proposals, selecting some of their features and adding others where required, to
build a minimal but sufficient feature set to address data exchange scenarios.

We aim to answer the following research questions:

Q1 What information/knowledge is needed to represent policies to regulate data
sharing in a machine-processable fashion?

Q2 What mechanisms can we provide, using the information model and their
representations (from Q1), to enable rational decisions about data sharing
and policy-compliance?

Q3 Can our information model and their representations (from Q1) and mech-
anisms (from Q2) be sufficient to support data sharing in a distributed and
secure fashion?

In this paper we will primarily focus on Q1, but some detail will be provided
on how we are addressing Q2 and Q3.

In Sect. 2, we present an outline of our approach, including details of its
important distributed aspects. In Sect. 3 we provide details of our policy lan-
guage designed to regulate data exchange between peers. Section 4 introduces
the mechanisms that drive our solution and how they are adapted to maximise
social welfare. Section 5 discusses related work and in Sect. 6 we conclude with
a discussion of what we have achieved and what we plan to do as future work.

2 A Data Exchange Economy

Our approach builds on work on peer-to-peer networks [4,34], in which partici-
pants (whether sensors, individuals, or companies) are peers, and where each of
them is a self-interested party taking part in an economy where data is being
exchanged. Peers hold a unique identifier, which is distributed by a central
authority. This central authority also provides peers with neighbours to com-
municate with.

148 S. R. Cauvin et al.

As we work in a fully distributed environment, each of our peers holds their
own (possibly incomplete) information about other peers. Peers collect informa-
tion as they interact with other peers, storing records of all interactions they
take part in. As our peers gather additional information about the peer-to-peer
network (e.g., data, goals, and policies of other peers), we allow them to exchange
this information, in addition to just exchanging data.

Every peer defines a set of policies that determine how they will interact with
other peers. These policies can be updated as time passes to reflect changes in the
peers’ goals or knowledge about other peers. Our policies may express general
regulatory statements such as for example, “no drug records and medical records
can be obtained by the same party”, or more specific, such as “I will only provide
10 records to each person”. Our peers function autonomously, exchanging data
with respect to their policies, and any goals (get this piece of data, send this
piece of data to as many peers as possible, etc.) they have been given. Users
do not influence the data exchange process directly, which is one way we ensure
that all participants follow our mechanisms/transaction protocol.

Since our peers function independently of any central authority, it is impor-
tant that our solution has a secure way to determine what events occurred in
the past. For instance, to ensure no more than ten records of data are provided,
we have to be able to verify how many records were provided in previous inter-
actions. Without a central storage location, we turn to distributed storage. We
considered current distributed ledger technologies, such as Blockchain [16,25],
but concluded that these would provide too many unnecessary features. For sim-
plicity, we created a solution where peers maintain a set of records, accessible
only to themselves, of any transaction they had been a part of. These transaction
records cannot be tampered with and do not need to be synchronised amongst
peers. Moreover, records can only be accessed through our mechanisms.

Another challenge is how to apply and enforce penalties without having any
kind of enforcing body. In our case, penalties are accrued by violating policies,
and our mechanisms have built-in functionality to penalise peers. Our proposed
solution establishes a barrier for entry, in which peers must pay to participate in
“cycles”, that is, a fixed unit of time within the network. We impose penalties as
“penalty cycles” where, for the duration of that cycle, a peer’s ability to partici-
pate in the network will be limited. The peer will respond to incoming messages,
but will not perform any beneficial actions, such as sending data requests. This
is not a penalty that can be bypassed without leaving the network, as it is built
into the mechanisms through which the peer participates in the network. If a
peer does leave the network, and manages to spoof their identity, they will have
successfully avoided the penalty. They will, however, potentially have lost access
to data they could previously access, as the policies which permitted them access
will not necessarily apply to their new identity.

3 Policy Language

We have proposed an information model and associated formal syntax for a
policy language designed to regulate data exchange. We will give a short overview

Policies to Regulate Distributed Data Exchange 149

of some of the necessary concepts for this language here, before looking more in
depth at the structure of a policy.

Policies make use of predicates to describe the conditions in which they apply,
and the actions which they regulate. These predicates have been designed to
describe our data exchange scenarios, and provide a convenient way to capture
concepts of data exchange, and support the back-end mechanisms of our frame-
work. These predicates can be conveniently changed and adapted to fit other
domains, so long as appropriate supporting mechanisms are available.

We use the following three atoms within our predicates: identity which refers
to the identity of a specific peer (pId), or the identity of a group of peers (gId);
data which identifies a specific type of data (di), for instance, temperature
records or GPS data; and time which uses cycles (the time taken for a peer
to perform a fixed set of operations) to document the relative passing of time.

The primary interactions our peers have with each other are through trans-
actions, that is, a record of predicates establishing an exchange between two
peers regulated by policies. Peers hold a collection of predicates that represents
their knowledge of the world. This collection is their knowledge base (̂P), and
is subdivided into “states” (Pi), where each state is a collection of predicates
associated with a specific time cycle i.

With these concepts in place, we can now discuss our policies in more detail.
Policies are defined by peers to describe how their data may be accessed by
other peers. These policies may express regulatory statements such as “no more
than 10 records can be accessed by any peer”, “temperature records can only be
accessed by members of my family”, or “GPS data may be accessed, but cannot
be sent on by the recipient”. A policy, π, in our formalism is a tuple of the form
〈CA,CD,msrc

tgt A, ur , up〉, where [24]:

– CA and CD refer to the non-empty set of activation and deactivation condi-
tions, respectively. Activation conditions are the predicates (and constraints)
which must hold for the policy to become “active”. The policy will remain
active until all of the deactivation conditions hold.

– m is the deontic modality of the policy, either P, F, or O for Permission,
Prohibition, and Obligation. These are the standard deontic modalities rep-
resenting, respectively, what can, must not, or must be performed.

– src is the chain of assignment for the policy, i.e. the identities of all those
who have held and passed on the policy starting with the peer who enforces
it, of the form {pId1 , pId2 , . . . , pIdn}. This set shows not just everyone who
has held this policy, but the order in which they held it (i.e., pId1 passed it
to pId2 , who passed it to pId3).

– tgt is the identity of the group targeted by this policy.
– A is the non-empty set of actions which this policy permits, prohibits, or

obliges. These actions are predicates that can, for instance, allow access to
data, require a peer to adopt a policy, or prohibit a peer from sending data
to anyone. A is of the form {a0,a1, . . . ,an}. This set of actions is joined by
implicit conjunctions, for permissions all actions must occur together, for pro-
hibitions all actions must not occur together, and for obligations all actions

150 S. R. Cauvin et al.

must occur before a deadline. Disjunctions can be modelled by having alter-
native policies for each of the disjuncts.

– ur and up are real numbers (ur , up ∈ R) representing the reward/penalty
accrued by compliance or violation of this policy. We will discuss compli-
ance/violation in the next section.

This definition of policies draws together a number of proposals. The notion
of activation/deactivation conditions has been well studied [23,24]. The notion
of deontic modality and an associated set of actions are a standard feature of reg-
ulatory norms [22,44]. Having specific roles targeted by policies is used in many
scenarios, specifically we take this from traditional role-based access control [36].
The chain of assignment is a concept taken from blockchain, used to create a
so-called “audit trail” for policies. Rewards and penalties are a game theoretic
concept that we adapt to allow for utility calculations, and to provide incentives
to comply with our policies. For a full version of the formalism associated with
our language we refer readers to the following technical document [8].

Let us take the three example policies we gave above and represent them
in our formalism. Some of the representations below have been simplified for
presentation, we will note in the text below each example any simplifications
which have been made.

Example 1. “No more than 10 records can be accessed by each peer”

π1 =

⎛
⎜⎜⎝

recordsAccessed(gany ,dany ,−∞,+∞, n), n < 10,
recordsAccessed(gany ,dany ,−∞,+∞, n), n ≥ 10,

P
{pId1,pId2}
gIdany

access(dany , gIdany , 10),

5, 10

⎞
⎟⎟⎠

This policy allows any peer to access 10 records of any data. This policy is
active when fewer than 10 records of any data have been accessed (for all time,
between −∞ and +∞). This policy deactivates when 10 or more records of any
data have been accessed (for all time). We have simplified this policy slightly for
presentation, as the access action would need to refer to 10, minus the number
of records accessed so far. This would be achieved in our formalism through
variables and constraints.

Example 2. “Temperature records can only be accessed by members of my fam-
ily”

π2 =

⎛

⎜

⎝

�,
⊥,

P
{pId4 }
gId1

access(d1 , gId1 ,∞),

2, 0

⎞

⎟

⎠

This policy allows members of a family (represented by group gId1) to access as
many temperature records (represented by data type d1) as they like. The policy
is always active (vacuously true �), and never deactivates (vacuously false ⊥).

Policies to Regulate Distributed Data Exchange 151

3.1 Policy Compliance/Violation

With a definition of a policy (and related concepts) in place, we can now discuss
the notion of policy compliance and violation. That is, how do we determine
whether a peer is complying with, or violating, a given policy? In all cases,
a policy must be active when a transaction takes place for a peer to be in
compliance/violation with it. A policy π is active in state Pi if there exists a
state Pj prior to Pi where the activation conditions held, and there is no state
between Pj and Pi where the activation or deactivation conditions hold. If there
is a more recent state where the activation conditions hold, this should be used as
Pj instead – if we consider situations where a policy has activated, deactivated,
and then activated again. We assume there exists a predicate active(π, ̂P, i)
which returns whether policy π is active in state Pi (from a sequence of states
̂P). The full specification of active() and its auxiliary functions are detailed in
the following technical document [8].

We define two predicates which determine, respectively, whether a pol-
icy π was complied/violated in state Pi (from a sequence of states ̂P),
compliedX (π, ̂P, i) and violatedX (π, ̂P, i), where X stands for one of the deon-
tic modalities P,F,O. We show pseudocode for permission only as we handle
these differently from existing approaches as we explain next. Our definition for
prohibitions are not too different to that of permission. We will provide a short
informal description of obligation compliance/violation.

Compliance and violation of a permission are where our approach differs
from the standard approaches in the literature [3,15,24]. The two traditional
approaches are: (1) everything is prohibited unless permitted, or (2) permissions
as exceptions to prohibitions. Most approaches have issues, in particular, with
the notion of violating a permission. We provide a clear definition of permission
violation specifically relating to our intended scenario of a data sharing envi-
ronment. A permission, in our approach, is used to provide access to data by
other participants. Peers will adopt policies due to their bootstrapping (by the
peers designer) or as a result of interaction with other peers. In both cases, this
permission becomes an obligation to provide data when requested that a peer
is permitted to access [20,26]. So a permission is complied with when data, on
request by a permitted peer, is provided by the holder of the permission. A per-
mission is violated when the data, on request by a permitted peer, is not provided
by the holder of the permission. It may appear then that a permission is really
just a recast obligation, but it is closer to being a combination of the two: a per-
mission for a peer to access data, and an obligation on the data holder to provide
that data. Note that, in both scenarios, the permission is complied/violated by
the holder of that permission. This definition of permissions is a more natural
way of capturing commonly occurring phenomena of data exchange.

To more clearly illustrate this, we provide the pseudocode for compliedP() in
Algorithm 1. Given the proof in Theorem 1 below, we show that we can compute
violatedP() as ¬compliedP().

152 S. R. Cauvin et al.

Algorithm 1. Permission Compliance
Require: A policy π = 〈CA,CD,msrc

tgtA, ur , up〉, a sequence of states ̂P = 〈P0, . . . ,Pi, . . . ,Pn〉, a
cycle index i

Ensure: Complied, a Boolean variable indicating that π was complied with
1: procedure compliedP()
2: Complied ← ⊥
3: if active(π, ̂P, i) ∧ there is a request for an action a ∈ A in Pi then � Without a request,

the policy is neither complied with nor violated.
4: Complied ← 	
5: for all a′ ∈ A do
6: if a′ did not happen in state Pi then
7: Complied ← ⊥
8: break
9: end if
10: end for
11: end if
12: end procedure

We establish below an important result, namely, that according to our defi-
nitions, compliance and violation of permissions are dual concepts, that is, if a
permission is complied with then it cannot be violated, and vice-versa.

Theorem 1 (Permission Compliance/Violation Relation). Given a pol-
icy π with modality P, a sequence of states ̂P, and a cycle to check compliance
for i, compliance is equivalent to not violating. That is, compliedP(π, ̂P, i) ≡
¬violatedP(π, ̂P, i).

Proof. Our proof assumes that there has been a request for at least one of the
actions in A. (⇒) The actions associated with a policy π are the set of actions A.
Compliance of a permission can only occur when all actions in A occur in state
Pi. Violation of a permission can only occur when there exists at least one action
in A that does not occur in state Pi. If a permission is complied with in state Pi

then all actions in A occur in that state, and there can be no action in A that
does not occur. Therefore, if a permission is complied with in a state, it cannot
possibly be violated in that state, so compliedP(π, ̂P, i) ⇒ ¬violatedP(π, ̂P, i).
(⇐) To prove the opposite, if a permission is not violated in state Pi then there
no action in A that does not occur in that state, and all actions in A have
occurred. Therefore, if a permission is not violated in a state, it must always be
complied with in that state, so compliedP(π, ̂P, i) ⇐ ¬violatedP(π, ̂P, i).

As stated previously, we do not consider that our definitions of compli-
ance/violation of prohibitions contain any details of interest. Instead, we will
briefly summarise the definitions for obligations.

We establish that an obligation has been complied with by a peer pId in
state i if, and only if, the policy π was active in that state (active(π, ̂P, i)), a
transaction with pId has occurred in that state, and all of the actions (a ∈ A)
associated with the policy have been logged as performed by pId in one of the
states i to i + deadline(a) (where deadline(a) returns the number of cycles that
the obliged action a must be completed within). Violation is similar, except it
occurs when at leasts one of the actions (a ∈ A) associated with the policy has

Policies to Regulate Distributed Data Exchange 153

reached its deadline (i + deadline(a)) and does not have a corresponding entry
from pId in any of the states i to i + deadline(a).

4 Decision Mechanisms

Within our approach peers, once provided with policies, function autonomously.
Due to this, they must be equipped with appropriate mechanisms to allow them
to make decisions relating to transactions. These decisions broadly fall into two
categories, depending on the peer’s role in the transaction. If the peer is the one
providing data (the policy holder), we call that peer the provider. If the peer is
the one requesting data (from the provider), we call that peer the requestor.

4.1 Decisions by the Provider

During the course of a transaction, the provider sends a selection of their poli-
cies to the requestor. These policies are those which are relevant to the trans-
action in question, and represent the conditions for accessing (or not accessing)
the requested data. The provider must make decisions regarding what policies
to provide to the requestor during a transaction. Often this decision will be
straightforward, as the provider can just provide all policies relevant to the cur-
rent transaction. However, when there are conflicting policies in this set, the
provider must choose which policies to send. In this case, the provider will come
up with one or more conflict-free permission policy sets to send to the requestor.
These sets can be thought of as “offers” for interactions in which the requestor
can access data from the provider. Policies in these sets need not be currently
active, but it must be possible for the requestor to take actions to activate them;
if they are not active the requestor can suspend the transaction, complete the
necessary actions, then return to complete it. For instance, a policy that can only
be accessed at a certain time would be acceptable, but not one that requires the
requestor to have a different identity. For each of these sets, the provider can
calculate a utility value. This utility value is trivial to calculate for permissions
and prohibitions, but slightly more complex for obligations. We sketch this in
Definition 1, as ProfitAllow (Π), which calculates the profit of a set of policies
(representing an offer).

Definition 1 (Policy Profit (Provider)). For a set of policies Π = {π1,

π2, . . . , πn}, where πi = 〈Ci
A,Ci

D,misrci

tgtiA
i, ui

r , u
i
p〉, with three subsets, one for

each modality, ΠP = {πi ∈ Π|mi = P}, ΠF = {πi ∈ Π|mi = F}, ΠO =
{πi ∈ Π|mi = O}, we define two profit functions, ProfitAllow : Π → n ∈ R and
ProfitDeny : Π → n ∈ R as follows:

ProfitAllow (Π) =
∑

πi∈ΠP

ui
r −

∑

πj∈ΠF

uj
p +

∑

πk∈ΠO

profitObl(πk)

ProfitDeny(Π) =
∑

πi∈ΠF

ui
r −

∑

πj ∈ΠP

uj
p

154 S. R. Cauvin et al.

As noted above, the profit of obligations is less trivial to calculate, but below
we outline a mechanism, profitObl(π), which quantifies the profit of a given obli-
gation. This calculation performs two operations, for each action associated with
an obligation. First, it calculates the direct reward to the provider if the requestor
completes the action. This varies depending on the type of action, for instance,
an action that obliges data to be sent to the provider has a profit equal to the
value of that data (a value set by each peer for each type of data). The second
operation relates to the passing of obligations. Within our solution, peers are
able to pass obligations between each other. When passing on an obligation, the
provider forfeits any rewards or penalties that would be accrued by compliance
or violation of this obligation. To calculate the utility of passing an obligation,
the provider considers the likelihood of completion using its knowledge about the
state of the peer-to-peer network, and weights the reward/penalty of the obli-
gation with this value. The probability of completion is by no means exhaustive
and is at best an estimate using current (potentially inaccurate) knowledge.

The provider may also come up with a single prohibition policy set, that
is, the set of policies that will trigger if the requestor’s data request is refused
(prohibitions that will be complied with, and permission that will be violated).
This prohibition set is only used if it is the most profitable set, calculated by
ProfitDeny(Π) in Definition 1.

4.2 Decisions by the Requestor

The decisions made by the requestor are the counterpart to those made by
the provider. They relate to deciding whether to accept an offer for access to
data via a set of policies. When there are multiple potential policy sets sent by
the provider, then the requestor also must determine which, if any, to accept.
This again involves determining the utility of each of the policy sets. When the
requestor has received policy sets, it does not have to worry too much about
fairness to the provider, as the provider will already have eliminated any poli-
cies it deems disadvantageous (for example those that have no incentive for the
provider). The requestor does however have to select the fairest policy set, for
both parties, from those that were provided.

We will start by detailing how the requestor can calculate the utility of a
policy set, before discussing how the fairest set can then be chosen. The utility
calculation varies depending on the modality of the policy:

– The utility of a permission considers the value of data that can be accessed,
and the cost of any actions required to activate the associated policy. It also
considers the penalty of any policies the requestor holds to not access that
data, and the reward of any policies the requestor holds that require access
to that data.

– The utility of a prohibition considers the value of data that can no longer
be accessed, or the cost of any actions required to deactivate the associated
policy. It also considers the penalty of any policies the requestor holds that
requires access to that data, and the reward of any policies the requestor
holds to not access that data.

Policies to Regulate Distributed Data Exchange 155

– The utility of an obligation considers either the cost to complete the obliged
actions, or the penalty of violating the obliged actions.

The utility of a policy set is the sum of the utility of the policies within that
set, weighted by the likelihood of finding another (potentially better) offer. This
weighting is determined by knowledge of other peers and what data they hold;
most often this weighting will have a value close to one, having little effect, as a
peer may have no knowledge of other potential data sources.

Each of the three modalities makes reference to the cost to complete an
action. To discuss this calculation we must first discuss the main actions catered
for in our formalism. These come in two broad forms: data related actions, and
policy related actions. Data related actions involve obtaining, deleting, or pro-
viding data. Policy related actions involve the adoption or revocation of policies.
Adoption of policies is how our peers are able to pass obligations and access
rights between each other as currency. Considering these two types of actions
give shape to how we can calculate the cost to complete a given action.

Data related actions consider the average length of a transaction (in cycles),
and the value of the data (and quantity) involved. Policy related actions are
more complex, as the requestor must consider currently held policies which are
blocked by adopting a new policy, especially when that policy is obliged by
another participant. In the case of policy revocation, they must also consider
any penalties associated with not holding that policy if it has been obliged by
another participant. In addition to this, all actions add the reward/penalty of
the policy weighted by the probability of completing/not completing that action
before its deadline. This considers knowledge of the peer-to-peer network, the
average time to complete transactions, and current obligations.

1:1 80:20 50:40 40:50

1:1 80:20 50:40 40:50 20:60 70:10 80:1 200:0

1:1 80:20 50:40 40:50 20:60 70:10 80:1 200:0

(1) (2) (4)(3)

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(5)

(5)

(6)

(6) (7)

(7) (8)

(8)

1:1 80:20 50:40 40:50 20:60 70:10 80:1 200:0
(1) (2) (3) (4) (5) (6) (7) (8)

R: 4 R: 1.2 R: 1.2 R: 3

20:60 70:10 80:1 200:0
(5) (7) (8)(6)

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Fig. 1. An example of how the requestor chooses a policy set

As to how the requestor then chooses the fairest policy set, we use a four
stage process, carried out by the requestor in the transaction. We use pareto
optimality as an initial selection mechanism, and then choose the pair from

156 S. R. Cauvin et al.

those remaining with the best profit ratio. The stages are detailed below, and
illustrated with an example in Fig. 1:

Stage 1. Provider and requestor compute their personal utility for each policy
set. Each cell in Fig. 1 represents a policy set and associated utilities (Provider
Utility : Requestor Utility).

Stage 2. The requestor removes those sets which have a value below the mini-
mum profit of either party (less than 10 in this example).

Stage 3. The requestor selects the sets that have the highest utilities for
both parties, i.e. the pareto frontier, the sets where neither utility could be
improved without lowering the other, that is, there exists no other set with a
higher utility for both parties.

Stage 4. The requestor then calculates the normalised ratio between the util-
ities (highest value divided by lowest value, to ensure proportional ratios).
The requestor then chooses the fairest (closest to 1) set from these utilities,
choosing the highest requestor utility if a tie occurs.

This operation is run by the requestor which may appear to give them an
advantage, but it is performed as part of our blackbox mechanism without the
influence of the participant, so it can be considered tamperproof. This operation
ensures that profit is spread as evenly as possible between both parties, and
prioritises fairness over total profit. We assume that for any given policy we can
accurately compute the utility to ourselves.

The primary criticism of pareto optimality is that it gives no consideration to
equitable distribution. This is why we only use it to identify the pareto frontier,
and then go on to select the fairest of these options. Selecting the ratio that
is closest to a 1:1 distribution is always the fairest, if not necessarily the best
(consider two sets, 100:19 and 20:20), of the pareto frontier. While it is possible
for a sub-optimal outcome to have a better ratio, it would only be removed if
there is a policy set that is better for one (or both) parties without harming the
other. In other words, it may filter out fairer ratios (1:2 would be subsumed by
2:5), but no party is worse off in the remaining sets.

Utility is calculated as part of a black-box mechanism, so participants cannot
tamper with it. However the provider does send its utility across the network
(the incentive to do this is to try and ensure they earn themselves a fair deal), so
if they manage to in some way interrupt this and send false values, it does not
gain them anything. Raising the values can just end up getting you a worse deal,
as the requestor will end up with more to try and balance the deal. Lowering
the values will reduce the chances of a policy set being picked, but in this case
the provider could (and should) change their policies to have the same effect.
The requestor does not send utilities and so has no chance to alter them.

5 Related Work

In our peer-to-peer system it is important for peers to have control over who,
when, and how their data is shared. We achieve this through the use of poli-
cies/norms [33,35,44]. Norms are a formal representation of expected behaviours

Policies to Regulate Distributed Data Exchange 157

of software agents, such as prohibitions, and duties. An integral part of norms
concerns deontic logic [22,42], considering permissions, prohibitions, and obliga-
tions. Norms and agents are often associated, using norms to control behaviour
in societies of self-interested components [12].

Our work draws upon the concept of combining policies with data reported
in [24], however our work focuses on a distributed environment and provides
supporting mechanisms. The problem of unifying data and policies has, in the
past, been addressed only in a centralised context [30,43]. We extend and adapt
the policy language and mechanisms from our earlier work in [6] and [7].

We consider normative conflict detection [13,31] and resolution [10,29,38,39].
Conflict detection in our approach is performed when determining whether to
accepted a policy related obliged action. That is, when an obligation will cause
you to either adopt a new or revoke an old policy, we perform some simple conflict
detection to determine how this will conflict with current goals and obligations.
We do not attempt to make the policy set of each participant conflict free, only
to balance the risk of potential conflict. If conflict does occur, the participant
will resolve it by attempting to choose the solution with the highest utility (see
Sect. 4).

Role Based Access Control (RBAC) shares some similarities with our work,
though with a stronger focus on a controlled environment. Research has been
carried out to address RBAC in a distributed environment [9,21,28], but many
issues, such as a reliance on the ability to observe and control principals, have
not yet been satisfactorily resolved. [9] uses user-to-user relationships to form
a “path” of authorisation, but does not consider user-to-resource relationships
which limits its usefulness. [21] focuses on transactions passing between two
secure environments, rather than between two (potentially) insecure parties. [28]
discusses automating compliance within a single secure environment, but does
not discuss implementing this in a fully distributed environment.

An important concept within our solution is that of social welfare [27,32].
We use this to refer to the notion of fairness in peer transactions. A number
of our mechanisms to promote social welfare are based on concepts from game
theory [41]. Through our profit evaluation functions, we equate policy sets within
transactions as moves in a game with associated pay-outs.

The distributed portions of our work are based on established peer-to-peer
(P2P) technologies and operations [4,34]. P2P refers to networks in which
“peers” communicate directly with each other, with minimal reliance on a cen-
tralised server. P2P networks can have a variety of different topologies but
broadly they are either structured, where peers must organise themselves accord-
ing to a set of conditions, or unstructured, where peers have a set of unre-
lated“neighbours” with which they communicate. Peer-to-peer simulations are
based on a “network” of agents, lightweight independent processes which each act
according to their own agenda, while still following a prescribed protocol [19].
Agents can be cast as a community of interconnected components, as in the
Internet of Things [2,17].

158 S. R. Cauvin et al.

6 Conclusions, Discussions, and Future Work

In this paper we proposed a solution which enables users to control how their
data is used and traded within a fully distributed environment. This is achieved
through the use of fine-grained, user-specified access policies. Our solution com-
prises a policy formalism, associated semantics, and an outline of the supporting
mechanisms. These mechanisms make allowances to maximise the utility to all
parties involved in transactions, and include provisions for security without a
centralised authority.

We present the most recent version of our language and mechanisms that we
have been developing for some time now. Currently we are extending our mech-
anism (and their implementation) to accommodate recent extension to the lan-
guage. We have preliminary versions of a prototype where we can simulate large-
scale scenarios, however these do not reflect the latest version of our language
and mechanisms This prototype will then be used to run a series of experiments
to measure the performance and suitability of our language and mechanisms.

We are currently planning an evaluation to determine how participants
understand and interact with policies, conducted as three experiments. Exper-
iment 1 examines if participants understand how policy activation (CA) and
deactivation (CD) conditions work by having them determine what policies are
active in a specific context. Experiment 2 tests if participants can understand
how a set of policies will affect the actions involved in a specific task by hav-
ing them consider how a set of active policies will hinder completing a task.
Experiment 3 is a variant of experiment 2 that asks participants to consider how
policies affect the performance of members of a team that they are in charge of.

In terms of the mechanisms themselves, there are a number of extensions
we could make to them to expand their usefulness. For instance, our framework
allows for policies to dynamically change over time. At the moment these changes
would have to be driven by the user. However, with all the information that our
peers gather, we could enable them to make informed changes to their policy set
in response to events. These policy changes could occur at any time, and could
be in response to interactions, goal changes, and new knowledge about other
peers and data.

Another area we could improve is to outfit our peers with more complex
reasoning mechanisms to provide some limited ability to predict outcomes based
on past experience. We have some provisions for this at the moment, relating to
predicting potential sources for data, but we could build upon this. Our peers
have the ability to request not just data, but specific pieces of knowledge about
other peers in the network, so combining this with better prediction would allow
our peers to form more strategic plans. Importantly, these decisions are operating
on incomplete information, so our mechanisms must allow peers to take this into
account.

As an extra evaluation with the extended prototype incorporating the latest
version of the language, we plan to conduct a game theoretic evaluation. We
have made initial explorations into standard game theoretic properties (nash
equilbiria, pareto optimality, etc.), but would like to carry out a more extensive
evaluation of these properties.

Policies to Regulate Distributed Data Exchange 159

References

1. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A protocol for resource sharing in
norm-governed ad hoc networks. In: Leite, J., Omicini, A., Torroni, P., Yolum, I.
(eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 221–238. Springer, Heidelberg
(2005). https://doi.org/10.1007/11493402 13

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Boella, G., van der Torre, L.: Permissions and obligations in hierarchical normative
systems. In: Proceedings of the 9th International Conference on AI and Law, pp.
109–118. ACM (2003)

4. Buford, J., Yu, H., Lua, E.K.: P2P Networking and Applications. Morgan Kauf-
mann, San Francisco (2009)

5. Caragliu, A., Bo, C., Nijkamp, P.: Smart cities in Europe. J. Urban Technol. 18(2),
65–82 (2011)

6. Cauvin, S.R., Kollingbaum, M.J., Sleeman, D., Vasconcelos, W.W.: Towards a
distributed data-sharing economy. In: Cranefield, S., Mahmoud, S., Padget, J.,
Rocha, A.P. (eds.) COIN -2016. LNCS (LNAI), vol. 10315, pp. 3–21. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66595-5 1

7. Cauvin, S.R., Kollingbaum, M.J., Vasconcelos, W.W.: A peer-to-peer alternative
to blockchain for managing distributed data transactions. In: SmartLaw@ICAIL
(2017)

8. Cauvin, S.R., Vasconcelos, W.W.: A policy formalism to facilitate distributed data
exchange - technical note (2018). https://www.dropbox.com/s/i2jbc8m1uxzprp3/
policy-formalism-technical.pdf

9. Cheng, Y., Park, J., Sandhu, R.: A user-to-user relationship-based access control
model for online social networks. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 8–24. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31540-4 2

10. Cholvy, L., Cuppens, F.: Solving normative conflicts by merging roles. In: Pro-
ceedings of the 5th International Conference on A. I. and Law, pp. 201–209. ACM
(1995)

11. Cranefield, S.: A rule language for modelling and monitoring social expecta-
tions in multi-agent systems. In: Boissier, O., et al. (eds.) AAMAS 2005. LNCS
(LNAI), vol. 3913, pp. 246–258. Springer, Heidelberg (2006). https://doi.org/10.
1007/11775331 17

12. Dignum, F.: Autonomous agents with norms. A.I. Law 7(1), 69–79 (1999)
13. Elhag, A.A.O., Breuker, J.A.P.J., Brouwer, P.W.: On the formal analysis of nor-

mative conflicts. Inf. Commun. Technol. Law 9(3), 207–217 (2000)
14. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A dis-

tributed architecture for norm-aware agent societies. In: Baldoni, M., Endriss, U.,
Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 89–105.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691792 6

15. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. J. Phil. Logic 42(6), 799–829 (2013)

16. Grigorik, I.: Minimum Viable Block Chain (2014). https://www.igvita.com/2014/
05/05/minimum-viable-block-chain/

17. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

https://doi.org/10.1007/11493402_13
https://doi.org/10.1007/978-3-319-66595-5_1
https://www.dropbox.com/s/i2jbc8m1uxzprp3/policy-formalism-technical.pdf
https://www.dropbox.com/s/i2jbc8m1uxzprp3/policy-formalism-technical.pdf
https://doi.org/10.1007/978-3-642-31540-4_2
https://doi.org/10.1007/11775331_17
https://doi.org/10.1007/11775331_17
https://doi.org/10.1007/11691792_6
https://www.igvita.com/2014/05/05/minimum-viable-block-chain/
https://www.igvita.com/2014/05/05/minimum-viable-block-chain/

160 S. R. Cauvin et al.

18. Harper, R.: Inside the Smart Home. Springer, London (2006)
19. Hayes, C.C.: Agents in a nutshell-a very brief introduction. IEEE Trans. Knowl.

Data Eng. 11(1), 127–132 (1999)
20. Kanger, S.: Law and logic. Theoria 38(3), 105–132 (1972)
21. Karjoth, G., Schunter, M., Waidner, M.: Platform for enterprise privacy practices:

privacy-enabled management of customer data. In: Dingledine, R., Syverson, P.
(eds.) PET 2002. LNCS, vol. 2482, pp. 69–84. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36467-6 6

22. Meyer, J.J.C., Wieringa, R.J.: Deontic Logic in Computer Science Normative Sys-
tem Specification. In: International Workshop on Deontic Logic in Computer Sci-
ence (1993)

23. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.:
Towards a formalisation of electronic contracting environments. In: Hübner, J.F.,
Matson, E., Boissier, O., Dignum, V. (eds.) COIN 2008. LNCS (LNAI), vol.
5428, pp. 156–171. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00443-8 11

24. Padget, J.A., Vasconcelos, W.W.: Fine-grained access control via policy-carrying
data. ACM Trans. Internet Technol. 18(3), 1–24 (2018)

25. Postscapes: Blockchains and the Internet of Things, March 2016. http://
postscapes.com/blockchains-and-the-internet-of-things

26. Pörn, I.: The Logic of Power. Barnes & Noble, New York (1970)
27. Rabin, M.: Incorporating fairness into game theory and economics. Am. Econ. Rev.

1281–1302 (1993)
28. Sackmann, S., Kahmer, M.: ExPDT: a policy-based approach for automating com-

pliance. Wirtschaftsinformatik 50(5), 366 (2008)
29. Santos, J.S., Zahn, J.O., Silvestre, E.A., Silva, V.T., Vasconcelos, W.W.: Detection

and resolution of normative conflicts in multi-agent systems: a literature survey.
Auton. Agent. Multi-Agent Syst. 31(6), 1236–1282 (2017)

30. Saroiu, S., Wolman, A., Agarwal, S.: Policy-carrying data: a privacy abstraction for
attaching terms of service to mobile data. In: Proceedings of the 16th International
Workshop on Mobile Computing Systems and Applications, pp. 129–134. ACM
(2015)

31. Sartor, G.: Normative conflicts in legal reasoning. AI & Law 1(2–3), 209–235 (1992)
32. Sen, A.: Collective Choice and Social Welfare, Expanded edn. Penguin, London

(2017)
33. Sergot, M.: A computational theory of normative positions. ACM Trans. Comput.

Logic 2(4), 581–622 (2001)
34. Shen, X.S., Yu, H., Buford, J., Akon, M.: Handbook of peer-to-peer networking,

vol. 34. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09751-0
35. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: off-line

design. Artif. Intell. 73(1), 231–252 (1995)
36. Suhendra, V.: A survey on access control deployment. In: Kim, T., Adeli, H., Fang,

W., Villalba, J.G., Arnett, K.P., Khan, M.K. (eds.) SecTech 2011. CCIS, vol. 259,
pp. 11–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27189-
2 2

37. Vasconcelos, W.W., Garćıa-Camino, A., Gaertner, D., Rodŕıguez-Aguilar, J.A.,
Noriega, P.: Distributed norm management for multi-agent systems. Expert Syst.
Appl. 39(5), 5990–5999 (2012)

https://doi.org/10.1007/3-540-36467-6_6
https://doi.org/10.1007/3-540-36467-6_6
https://doi.org/10.1007/978-3-642-00443-8_11
https://doi.org/10.1007/978-3-642-00443-8_11
http://postscapes.com/blockchains-and-the-internet-of-things
http://postscapes.com/blockchains-and-the-internet-of-things
https://doi.org/10.1007/978-0-387-09751-0
https://doi.org/10.1007/978-3-642-27189-2_2
https://doi.org/10.1007/978-3-642-27189-2_2

Policies to Regulate Distributed Data Exchange 161

38. Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Resolving conflict and
inconsistency in norm-regulated virtual organizations. In: Proceedings of the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems,
p. 91. ACM (2007)

39. Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict resolu-
tion in multi-agent systems. AAMAS 19(2), 124–152 (2009)

40. Viganò, F., Fornara, N., Colombetti, M.: An event driven approach to norms in
artificial institutions. In: Boissier, O., et al. (eds.) AAMAS 2005. LNCS (LNAI),
vol. 3913, pp. 142–154. Springer, Heidelberg (2006). https://doi.org/10.1007/
11775331 10

41. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior
(commemorative edition). Princeton University Press, Princeton (2007)

42. Von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951)
43. Wang, X., Yong, Q., Dai, Y.H., Ren, J., Hang, Z.: Protecting outsourced data

privacy with lifelong policy carrying. In: IEEE International Conference on High
Performance Computing and Communications and Embedded and Ubiquitous
Computing (HPCC-EUC), pp. 896–905, November 2013. https://doi.org/10.1109/
HPCC.and.EUC.2013.128

44. von Wright, G.H.: Norm and Action: A Logical Enquiry. Routledge and Kegan
Paul, New York (1963)

45. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, method-
ologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38:1–38:55 (2014)

https://doi.org/10.1007/11775331_10
https://doi.org/10.1007/11775331_10
https://doi.org/10.1109/HPCC.and.EUC.2013.128
https://doi.org/10.1109/HPCC.and.EUC.2013.128

Developing a Method for Quantifying Degree
of Discussion Progress Towards Automatic

Facilitation of Web-Based Discussion

Ko Kitagawa(&), Shun Shiramatsu, and Akira Kamiya

Nagoya Institute of Technology,
Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan

{kitagawa,siramatu,a.kamiya.208}@srmtlab.org

Abstract. Online discussion has major potential for large-scale consensus
building. However, existing SNSs, microblogs, and chat systems lack facilita-
tion functions for avoiding stagnation and flaming of discussion. To develop a
function for detecting the stagnation of discussion, we need to quantify the
degree of discussion progress, as just the amount of content is not enough to
accurately gauge the discussion progress. Our definition of the degree of dis-
cussion progress is based on the Issue-Based Information System (IBIS).
Specifically, it is defined as a sum of weights representing the importance of
IBIS node types extracted from online discussion. In this paper, we determine
the optimal weights of the IBIS node types to maximize the correlation coeffi-
cient between calculated progress and the subjective progress of human par-
ticipants. The optimal weights are determined using a genetic algorithm.
Experimental results showed that the maximized correlation coefficient was
+0.54. Although the current definition of the discussion progress is simple
summation, we plan to further refine it with the hierarchical structure of IBIS in
future work.

Keywords: Autonomous facilitator agent � Online discussion �
Discussion progress � Consensus building � Genetic algorithm

1 Introduction

In recent years, with the widespread use of SNS and the like, large-scale discussions are
increasingly being conducted on the Web. One reason for this is that a wide range of
stakeholders are engaged in collaborative discussions to deal with social problems. For
example, social systems for public collaboration such as GoalShare [1] and Mis-
sonForest [2] require online consensus building for better collaboration.

We developed autonomous facilitator agents for online discussion in an earlier
work [3]. To automatically generate facilitator utterances1, we first analyzed the
utterances of human facilitators and found that the questions they asked are important
[4, 5]. However, the suitable timing of facilitator utterances is not yet known because

1 In this paper, an utterance refers to a post on a Web-based discussion forum.

© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 162–169, 2019.
https://doi.org/10.1007/978-3-030-17294-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_12

we do not have a sophisticated method to detect stagnation of discussion. When
discussing something on the Web, stagnation of discussion is likely to occur at some
point. In this research, we want to detect that stagnation as soon as it starts. Our aim is
to implement facilitator agents that are equipped with this function. In order to detect
the stagnation, it is necessary to quantify how far the discussion has currently pro-
gressed. The criterion for judging this is different depending on the state of discussion.
The state of discussion is classified into two phases: divergence and convergence. In
this paper, we examine the quantification of the discussion progress during the
divergence phase.

There are a few related works in this vein. Dringus and Ellis tried to evaluate
discussion progress with several metrics related to participant activities [6]; however,
they did not integrate these metrics for representing the discussion progress. Klein
developed a method for identifying the useful part of a discussion for each participant
by using attention-mediation metrics [7], and although their metrics have potential to be
used for our purpose, they are also not integrated. We need an integrated metric that
can be applied to autonomous facilitator agents. To this end, we propose a novel metric
for representing the discussion progress.

2 Proposed Method: A Metric for Discussion Progress

One method for recording a human decision making process is the Issue-Based
Information System (IBIS) [8]. This is a structured representation of tasks, ideas, etc. as
nodes (Fig. 1). In this research, we use IBIS to quantify the degree of discussion
progress. IBIS nodes handle 13 kinds of issues, ideas, etc. First, the IBIS structure is
extracted from the discussion up to a certain time t. A weight is assigned according to
the type of each node and the relationship between the nodes, and the sum of the
weights of all the nodes is set as the discussion progress degree PðtÞ at t. We prepared a
set Ut ¼ u1; u2; � � � ; unf g of the discussion up to time t and a set E uið Þ ¼
e1; e2; . . .; eif g of the IBIS nodes of the utterance ui. The type determined by IBIS node

e and its relation r is represented as typeðe; rÞ, and the weight is expressed as
wðtypeðe; rÞÞ. Using these, we formulate it as

wðukÞ ¼
X

e2EðukÞ
wðtypeðe; rÞÞ

P tð Þ ¼
Xn

k¼1

wðukÞ

The slope DP tð Þ
Dt represents the degree of progress of the discussion due to the change

in the weight (contribution).
We prepared a set S of typeðe; rÞ and collected data on the degree of progress

experienced by human participants in order to determine the optimal weights
wðtypeðe; rÞÞ for all typeðe; rÞ 2 S. Concretely, the optimal weights are determined by
maximizing the correlation between the sum of the weights wðtypeðe; rÞÞ of the nodes

Developing a Method for Quantifying Degree of Discussion Progress 163

included in one utterance and the subjective importance of the utterance felt by the
participants. However, the number of typeðe; rÞ, 13, is too many for a brute-force
search. Therefore, we use a genetic algorithm with the weight of each node as one gene
in order to optimize wðtypeðe; rÞÞ. This approach enables us to quantify the weight of
one utterance perceived by humans.

3 Data Collection

In order to determine the weight of each node, experiments were carried out using a
discussion that was done in the past (Fig. 2). Specifically, as data for discussion, we
utilized data of a large-scale social experiment (1) performed in November 2013 using
the online discussion system COLLAGREE [9]. The purpose of the divergence phase
is to have the discussion participants come up with as many possible solutions to a
problem as possible. For that reason, we asked participants to evaluate each utterance in
the discussion on a 6-point Likert scale (from 0 to 5) in terms of whether the utterance
had a new and important perspective or not. In other words, participants evaluated the
importance of each utterance while browsing a visualization of the cumulative sum of
his/her subjective importance, which is shown in Fig. 2. The cumulative sum of the
importance can be regarded as the progress of discussion. These subjective weights are
regarded as reference data for optimizing the node weights. Statistics are listed in
Table 1. This data was used as reference data for optimizing the parameters
wðtypeðe; rÞÞ with the genetic algorithm.

For each of 17 discussions with more than 10 and less than 21 utterances, the above
experiment was conducted for 13 people, each of whom was asked to experiment with
about four discussions, collecting 51 samples.

Fig. 1. Example of Issue-Based Information System (IBIS).

164 K. Kitagawa et al.

4 Experiment Contents

The questionnaire results revealed how important each statement was in the discussion
progress. We regard this as the degree of progress of each utterance perceived by
humans. Also, by setting the weight with a random number between 0 and 1 in the IBIS
nodes, the degree of progress of each utterance was determined by the weight of the
node. By optimizing the weight of each IBIS node by the genetic algorithm, we tried to
optimize the progress of discussion by IBIS so as to maximize the correlation between
the above two degrees of progress. In this process of the genetic algorithm, the gene
length was 13, the number of node types, and each gene stored a random number set for
each node. Python’s random function was used for generating random numbers with its
default seed because we did not set the seed. The number of individuals was 130. BLX-
a was used as the crossing method. Roulette selection and elite selection were used as
the selection methods. We optimized the node weights by maximizing the correlation
between the summation of node weights in each utterance and reference data obtained
by the questionnaire, i.e., subjective weights of each utterance.

Fig. 2. Questionnaire form for collecting subjective importance of each utterance with
visualizing cumulative sum of the importance.

Table 1. Statistics of questionnaire elements and number of samples.

Questionnaire elements Number of samples

Number of threads 17
Number of utterances 260
Number of subjects 13
Average number of threads assigned to each subject 3.92
Sum of sample data 51

Developing a Method for Quantifying Degree of Discussion Progress 165

As a result, the correlation was around +0.54, showing a moderately positive
correlation with the degree of progress that humans feel. The variation of the weight
and correlation coefficient of each node is shown Table 2 and Fig. 3, respectively.

Fig. 3. Correlation coefficient of each node.

Table 2. Variation of the weight.

Type Importance (weight) Amount of samples

Argument (Example) 0.98 63
Issue 0.85 151
Argument (Opinion) 0.73 146
Idea (Opinion) 0.7 105
Idea (Solution) 0.63 132
Argument (Merit) 0.52 40
Argument (None) 0.43 82
Argument (Reason) 0.39 36
Question 0.36 122
Argument (Answer) 0.3 95
Argument (Demerit) 0.14 23
Idea (None) 0.03 94
Idea (Answer) −0.47 6

166 K. Kitagawa et al.

5 Discussion

The results showed a moderate positive correlation: +0.54. Although this correlation is
not enough for actual use, it shows potential to be applied to autonomous facilitator
agents. In the future, we should be able to improve the correlation by considering a
hierarchical structure. For example, assume a particular sub tree of IBIS has shifted
topics. In such a case, the weight of that sub tree should be less. The weights of sub
trees can be calculated as the similarity between the sub tree and the main topic. We
need to verify this hypothesis in a future experiment.

It seems that the reason the weight of the node concerning the task and the idea got
larger is that the participant evaluated a new viewpoint as having been shown. In
addition, the weight of the exemplified idea became the highest because there were
many participants who felt that the idea was detailed and that understanding was
promoted by giving an example opinion.

We believe that if we can estimate the weight more accurately, we will be able to
detect not only the stagnation of a discussion but also flaming. Violent words do not
include elements that advance the discussion, so if the degree of discussion progress
does not rise even though the number of utterances rises, this can be considered
flaming.

6 Future Prospects

Discussion is considered to be hierarchical in structure in that some parts are deeply
related to the theme and others are not (Fig. 4). Therefore, it is insufficient to regard the
sum of the weights of the nodes alone as the progress degree. It is necessary to adjust
the magnification of the weight so as to also consider hierarchy.

Fig. 4. Example of hierarchical structure.

Developing a Method for Quantifying Degree of Discussion Progress 167

Our degree of discussion progress can applied to the development of autonomous
facilitator agents. For example, facilitator agents need to recognize the state of dis-
cussion to judge whether they should perform some action or not. We define four states
of the discussion on the basis of our degree of discussion progress: (1) normal,
(2) flaming, (3) stagnation, and (4) hot, as shown in Fig. 5. The discussion states can be
defined on the basis of the relationship between the amount of speech in the recent time
unit and the amount of increase in the degree of progress. If we can appropriately
determine the thresholds to divide the discussion states, facilitator agents can estimate
the current discussion state using calculated degree of discussion progress and select an
utterance suitable for facilitating current discussion.

Fig. 5. Four states in the discussion.

Fig. 6. The relationship between the amount of discussion content and the degree of discussion
agreement.

168 K. Kitagawa et al.

Although we only considered the divergence phase in this paper, the convergence
phase is also important. The relationship between the amount of discussion content and
the discussion agreement degree is considered to be as depicted in Fig. 6. By con-
sidering this relation, we believe that the relationship between time and progress degree
in the whole discussion can be more accurately judged.

For these reasons, our future work will involve improving the accuracy considering
the state of discussion and the hierarchical structure of discussion.

Acknowledgements. This work was partially supported by JST CREST (JPMJCR15E1) and
JSPS KAKENHI (17K00461).

References

1. Tossavainen, T., Shiramatsu, S., Ozono, T., Shintani, S.: A linked open data based system
utilizing structured open innovation process for addressing collaboratively public concerns in
regional societies. Appl. Intell. Int. J. Artif. Intell. Neural Netw. Complex Probl. Solving
Technol. 44(1), 196–207 (2016)

2. Watanabe, M., Shiramatsu, S., Goto, Y.: Tag-based approaches to sharing background
information regarding social problems towards facilitating public collaboration. In: eGose
2017 Proceedings of the International Conference on Electronic Governance and Open
Society: Challenges in Eurasia, pp. 113–118 (2017)

3. Ikeda, Y., Shiramatsu, S.: Generating questions asked by facilitator agents using preceding
context in web-based discussion. In: Proceedings of the 2nd IEEE International Conference
on Agents, pp. 127–132 (2017)

4. Shiramatsu, S., Nishida, T., Ito, T., Fujita, K.: Feature expression extraction from discussion
facilitators’ utterances in web-based forum system towards autonomous facilitator agents. In:
Proceedings of the 2016 5th IIAI International Congress on Advanced Applied Informatics,
pp. 687–691 (2016)

5. Shiramatsu, S., Ikeda, Y.: An approach to discussion facilitators’ action selection based on
expected utility calculated with random forest regression. In: Proceedings of the 2016
International Conference on Crowd Science and Engineering (ICCSE 2016), pp. 1–6 (2016)

6. Dringus, L.P., Ellis, T.: Using data mining as a strategy for assessing asynchronous discussion
forums. Comput. Educ. 45(1), 141–160 (2005)

7. Klein, M.: Enabling large-scale deliberation using attention-mediation metrics. Comput.
Support. Coop. Work (CSCW) 21(4–5), 449–473 (2012)

8. Noble, D., Rittel, H.W.J.: Issue-based information systems for design (1988)
9. Ito, T., Imi, T., Ito, T., Hideshima, E.: COLLAGREE: a facilitator-mediated large-scale

consensus support system. In: Collective Intelligence 2014 (2014)

Developing a Method for Quantifying Degree of Discussion Progress 169

Coordination in Open Distributed
Systems with Applications

Monotonicity, Duplication Monotonicity,
and Pareto Optimality

in the Scoring-Based Allocation
of Indivisible Goods

Benno Kuckuck1 and Jörg Rothe2(B)

1 Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf,
Düsseldorf, Germany

kuckuck@uni-duesseldorf.de
2 Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,

Düsseldorf, Germany
rothe@cs.uni-duesseldorf.de

Abstract. We study the properties of scoring allocation correspon-
dences and rules, due to Baumeister et al. [7], that are based on a scoring
vector (e.g., Borda or lexicographic scoring) and an aggregation function
(e.g., utilitarian or egalitarian social welfare) and can be used to allocate
indivisible goods to agents. Extending their previous results considerably
and solving some of their open questions, we show that while necessary
duplication monotonicity (a notion inspired by the twin paradox [21] and
false-name manipulation [1]) fails for most choices of scoring vector when
using leximin social welfare, possible duplication monotonicity holds for
a very wide range of scoring allocation rules. We also show that a very
large family of scoring allocation rules is monotonic. Finally, we show
that a large class of scoring allocation correspondences satisfies possible
Pareto-optimality, which extends a result of Brams et al. [12].

Keywords: Computational social choice · Fair division ·
Scoring allocation rule · Duplication monotonicity

1 Introduction

The allocation of indivisible goods to a number of agents is an important problem
that has been studied intensively both in economics and computer science; for
an overview we refer to the book by Moulin [22], the book chapters by Bouveret
et al. [11] and Lang and Rothe [20], and the survey by Nguyen et al. [24]. In a
setting where agents specify their preferences in a cardinal form, i.e., by ascribing
a utility to each good, so-called max-min allocations have received particular
attention in the literature: Here it is assumed that a bundle of goods is worth
the sum of the goods’ individual utilities to each agent, and an allocation is
considered optimal if it maximizes egalitarian social welfare, i.e., the minimum
c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 173–189, 2019.
https://doi.org/10.1007/978-3-030-17294-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_13

174 B. Kuckuck and J. Rothe

of the agents’ individual utilities. The problem of finding such an allocation is
known as the Santa Claus problem [4] and the complexity of this problem as well
as the properties of max-min allocations have been extensively studied. However,
as is well-known from the theory of voting, eliciting cardinal preferences can be
tricky, and in fact we consider it likely that most of the wishlists Santa receives
each year will consist not of numerical utilities but rather of ranked lists of items,
i.e., ordinal preferences.

Building on the work by Brams et al. [12,13], Baumeister et al. [7] recently
introduced and studied the families of scoring allocation correspondences and
rules: Taking a cue from voting theory, ordinal preferences submitted by the
agents are turned into cardinal preferences by means of a scoring vector, assign-
ing a fixed utility to each rank in the agents’ preferences (e.g., the Borda scoring
vector assigns one point to each agent’s least favorite good, two points to her
second-to-last favorite good, etc.). In this way, one obtains a vector of individual
utilities for each allocation and (as in the Santa Claus problem) an allocation is
considered optimal if it maximizes social welfare. There is no reason, a priori,
to limit oneself to egalitarian social welfare, and so a scoring allocation corre-
spondence in the sense of Baumeister et al. [7] is parametrized by both a scoring
vector and a social welfare aggregation function.

Of course, we have certain expectations about how a reasonable fair divi-
sion procedure should behave. For example, intuitively, (i) an agent ranking an
item higher should not decrease her chances of receiving this item (all else being
equal); (ii) two agents with identical preferences should together receive a share
at least as good as what a single agent with that preference would receive; and
(iii) the procedure should not consider an allocation optimal if another alloca-
tion provides a better share to some agent without making anyone else worse off.
These three intuitions can be formalized as the notions of monotonicity, dupli-
cation monotonicity, and Pareto optimality. The first two have been studied by
Baumeister et al. [7], for all scoring allocation rules using utilitarian or egali-
tarian social welfare. Monotonicity was shown to hold in those cases, but for
duplication monotonicity the picture remained rather incomplete. Pareto opti-
mality was studied by Brams et al. [12], but again only for a few particular
combinations of scoring vector and social welfare function. But since the family
of scoring allocation rules derives much of its power from the flexibility in vary-
ing the scoring vector and social welfare function, it is highly desirable to have
results that apply not only to particular choices of parameters but to formulate
general conditions on the parameters that ensure the property in question. That
is the goal of this paper.

Our main contributions are the following: (1) We extend one of the results
of Baumeister et al. [7, Theorem 1] by showing monotonicity for a very large
family of scoring allocation rules (Theorem 1). Solving most of the questions
left open by Baumeister et al. [7, Section 4.3], (2) we give examples showing
that necessary duplication monotonicity fails for most choices of scoring vector
when using leximin social welfare, and (3) our main result (Theorem 2 and its
Corollaries 1 and 3) shows that possible duplication monotonicity holds for a

Monotonicity, Duplication Monotonicity, and Pareto Optimality 175

very wide range of scoring allocation rules.1 (4) We generalize a result of Brams
et al. [12, Theorem 4.9] by proving possible Pareto optimality for a large class of
scoring allocation correspondences (Theorem 3). While it turns out to be quite
simple to find the correct conditions ensuring monotonicity or Pareto optimality,
our analysis of duplication monotonicity is much more technically involved – in
particular necessitating the introduction of a novel condition on social welfare
aggregation functions, which we call split-coherence, enjoyed by a large family
of such functions.

Duplication monotonicity is of particular interest due to its connections to
other well-studied phenomena that have received considerable attention in com-
putational social choice [14] and in cooperative game theory (see, e.g., [17]): The
failure of necessary duplication monotonicity in fair division is akin to the twin
paradox [21] in voting. An alternative interpretation of the question duplication
monotonicity intends to answer is whether agents can (always or sometimes)
profit from “cheating” by posing as two agents, submitting their preferences to
the allocation rule twice. This latter interpretation is inspired by false-name
manipulation in weighted voting games [1,25] as well as, to a lesser extent, by
control by adding voters [6] (cf. also the more remotely related notion of cloning
in voting [16,28]).

Organization of the Paper. In Sect. 2 we introduce scoring allocation corre-
spondences as defined by Baumeister et al. [7] as our underlying model of
resource allocation with ordinal preferences. In Sect. 3 we briefly treat mono-
tonicity, showing that weak monotonicity of the employed social welfare ordering
ensures monotonicity of scoring allocation correspondences. In Sect. 4 we recall
the notion of (necessary and possible) duplication monotonicity and provide
examples which show that necessary duplication monotonicity mostly does not
hold for scoring allocation correspondences. We then propose a new property of
social welfare orderings, split-coherence, and show that this property (analogous
to weak monotonicity in Sect. 3) guarantees possible duplication monotonicity
for scoring allocation correspondences. We then show that split-coherence is sat-
isfied for a large family of social welfare functions. Finally, we briefly consider
Pareto-optimality in Sect. 5, showing that monotonicity of social welfare func-
tions ensures possible Pareto-optimality for associated scoring allocation rules
and that necessary Pareto-optimality can fail quite badly.

2 Preliminaries

Let N = {1, . . . , n} denote a set of agents and G a finite set of goods or items. The
allocation procedures we want to consider take as their input a preference profile
(>1, . . . , >n) consisting of strict total orders on G. Their results are allocations

1 Possible and necessary duplication monotonicity are inspired by the notions of possi-
ble and necessary winner in voting [9,10,18,29] that have been used not only in fair
division [3,7] but were also applied, e.g., to strategy-proofness in judgment aggrega-
tion [8] and to stability concepts in hedonic games [19,26].

176 B. Kuckuck and J. Rothe

of G to N , i.e., tuples (π1, . . . ,πn) with G =
⋃n

i=1 πi and πi ∩ πj = ∅ for i �= j.
A function that produces a single such allocation for every preference profile, we
will call an allocation rule. More generally, an allocation correspondence returns
a nonempty subset of allocations. Denoting the set of preferences over G by
P(G) and the set of allocations of G to N by Π(G,N) an allocation rule can
thus formally be defined as a map P(G)n → Π(G,N), while an allocation
correspondence is a map P(G)n → 2Π(G,N) \ {∅}.

Scoring allocation correspondences were first defined by Baumeister
et al. [7] and Nguyen et al. [23], but special cases were previously used by
Brams et al. [12,13]. These correspondences choose an allocation maximizing
social welfare, which is computed by means of two parameters: First, a scoring
vector s = (s1, . . . , s|G|) consists of rational numbers s1 ≥ s2 ≥ · · · ≥ s|G| ≥ 0
with s1 > 0. It is used to assign a score to each rank in the agents’ preferences
and thus allows us to compute the individual utility of each agent’s share to
that agent. Second, a social welfare ordering (SWO) is a weak order (i.e., a
transitive, reflexive, and complete relation) on Q

n
≥0, that specifies which vectors

of individual utilities are socially preferable. It often comes in the form of an
aggregation or social welfare function (SWF) W : Qn

≥0 → R that computes a
collective utility from the individual utilities, thus inducing an SWO on Q

n
≥0:

a �W b ⇐⇒ W (a) ≥ W (b).

Definition 1. Let s be a scoring vector and � a social welfare ordering. For
a preference > on G and a subset B ⊂ G, define the individual utility of
B with respect to > and s as u>,s =

∑
g∈B srank(g,>), where rank(g,>) =

|{g′ ∈ G | g′ ≥ g}| is the rank of g in the linear order >. For a preference pro-
file P = (>1, . . . , >n) and an allocation π of G to N , denote by uP,s(π) =(
u>1,s(π1), . . . , u>n,s(πn)

)
the vector of individual utilities of each agent’s

share. The scoring allocation correspondence Fs,� is the function which picks
the allocation(s) with maximal utility vector according to � , so Fs,�(P) =
arg maxπ∈Π(G,N)

� uP,s(π).
If � = �W is induced by an aggregation function W : Qn

≥0 → R, we write
Fs,W in place of Fs,�

W
, so Fs,W (P) = arg maxπ∈Π(G,N) W (uP,s(π)).

As there might be more than one allocation maximizing social welfare, the
scoring allocation correspondences typically return a (nonempty) set of winning
allocations, not just a single one. A tie-breaking scheme is a function T : 2Π(G,n)\
{∅} → Π(G,n) with T (S) ∈ S for all nonempty sets S ⊆ Π(G,n). We write
FT

s,� = T ◦ Fs,� for the allocation rule that picks a set of winning allocations
according to Fs,� and then breaks ties using T . We will always consider tie-
breaking schemes of the form T (S) = max >T

(S) for some total order >T over
all allocations from G to N .

Choosing the Parameters. The freedom in choosing the scoring vector and
social welfare function affords a high degree of flexibility and leads to a rather
large and varied family of allocation procedures.

Monotonicity, Duplication Monotonicity, and Pareto Optimality 177

Example 1. Let G = {a, b, c, d, e, f, g, h, i, j} and consider the following prefer-
ence profile P = (>1, >2, >3) over G:

g >1 i >1 e >1 f >1 c >1 h >1 b >1 d >1 a >1 j

a >2 d >2 i >2 g >2 j >2 c >2 f >2 e >2 b >2 h

g >3 f >3 j >3 d >3 b >3 e >3 a >3 i >3 c >3 h

which we will shorten to P = (giefchbdaj , adigjcfebh, gfjdbeaich).
For any k,m ≥ 1 and M > m2, we define the following commonly used

scoring vectors: the Borda scoring vector borda = (m,m − 1, . . . , 2, 1), the lex-
icographic scoring vector lex = (2m−1, 2m−2, . . . , 21, 20), and the Borda-based
quasi-indifference scoring vector borda-qi = (1+ m

M , 1+ m−1
M , . . . , 1+ 1

M). Using
the lex scoring vector corresponds to the assumption that agents always value
getting good items over getting many items, whereas using borda-qi corresponds
to the opposite assumption; borda is a compromise.

Commonly used SWFs include the utilitarian SWF (u1, . . . , un) → ∑n
i=1 ui

(which we will denote for short by +) and the egalitarian SWF (u1, . . . , un) →
min1≤i≤n ui (denoted by min). The latter is often refined to the leximin SWO,
first introduced by Sen [27, Section 9.2]: For u, v ∈ Q

n, define u �lm v ⇐⇒
u∗ ≥lex v∗, where u∗ denotes the vector resulting from u by sorting the compo-
nents in ascending order, and ≥lex denotes the lexicographic ordering on Q

n.
It is easy to observe that every scoring allocation correspondence Fs,+ based

on utilitarian social welfare with a strictly decreasing scoring vector s assigns
every item to an agent who ranks it highest, hence (using, e.g., (bdeg , ch, afij)
as a shorthand for the allocation ({b, d, e, g}, {c, h}, {a, f, i, j})): Fborda,+(P) =
Flex,+ = Fborda-qi,+ = {(bdeg , ch, afij), (beg , ch, adfij)}.

By way of contrast, using leximin social welfare the winning allocations for
borda, lex, and borda-qi are all distinct: Fborda,leximin(P) = {(cehi , adj , bfg)},
Flex,leximin(P) = {(bcdefhij , a, g)}, Fborda-qi,leximin(P) = {(bceh, adi , fgj)}.

These examples exhibit some typical features: In combination with leximin
social welfare, e.g., borda-qi scoring will always produce even-shares allocations
– fairly balancing all agents’ desires to have as many items as possible. Char-
acteristically, using utilitarian social welfare means that no such balancing is
attempted in favor of simply getting goods to those who favor them most.

Often, it might be desirable to interpolate between these two extremes: This
can be achieved, e.g., by using a member of the following prominent family of
aggregation functions (see, e.g., [22, Section 3.2]), of which utilitarian and leximin
social welfare are the extreme cases p = 1 and p → −∞:

Definition 2. For p ≤ 1, define Wp : Q
n
>0 → Q by

Wp(u) =

⎧
⎪⎨

⎪⎩

up
1 + · · · + up

n if p > 0,
log(u1) + · · · + log(un) if p = 0,
−up

1 − · · · − up
n if p < 0.

178 B. Kuckuck and J. Rothe

Comparing Sets of Items. As we saw in the example, choosing a scoring
vector corresponds to making some assumptions on what kinds of shares the
agents favor: For a preference list abcdefgh, the share {a, d, e, g} will never receive
a worse score than {b, d, h} (we will say that the former is necessarily better)
but it may or may not receive a worse score than {a, b} (we will say they are
both possibly better than the other). Ultimately, we cannot know which of the
shares the agent really favors.2 This can be formalized in the following (standard)
definitions and well-known lemma:3

Definition 3. Let G be a finite set of goods and > a preference over G (i.e., a
strict total order). The universal responsive set extension �nec in 2G is defined
by B �nec A ⇔ there exists an injection f : A ↪→ B with f(a) ≥ a for all a ∈ A.
This is a partial order on 2G.

A utility function compatible with > is a map v : G → R≥0 such that
v(a) ≥ v(b) ⇔ a ≥ b. Such a function induces an additively representable [5]
or additively separable [2] set extension �v defined by A �v B ⇔ ∑

a∈A v(a) ≥∑
b∈B v(b).

Lemma 1. Let > be a preference on G and �nec its universal responsive set
extension. For A,B ∈ 2G, we have A �nec B if and only if A �v B for every
additively representable set extension �v of >.

This lemma is well known and widely used in the literature. Baumeister
et al. [7] also use the notation4 A �pos B (“A is possibly as good as B”) if B �nec

A does not hold, meaning that there is some additively separable extension �
of > for which A � B.

3 Monotonicity

Baumeister et al. [7] consider the following property:

Definition 4. Let N = {1, . . . , n} be a finite set of agents and G a set of goods.
An allocation rule F : P(G)n → Π(G,n) is called monotonic if it has the fol-
lowing property: For every preference profile P ∈ P(G)n, if F (P) gives good
g to agent i, then for every modified preference profile P ′, resulting from P by
ranking g higher in agent i’s preference and keeping all else fixed, the allocation
F (P ′) also gives good g to agent i.

Baumeister et al. [7] show that monotonicity holds for scoring allocation rules
FT

s,� with s an arbitrary scoring vector, � ∈ {+,min, leximin}, and an arbitrary

2 This is the price we pay for the simplicity of eliciting only ordinal preferences on
single items (as opposed to ordinal, or even cardinal, preferences on all shares).

3 Responsive set extensions are the most suitable in our context as they precisely
capture the uncertainty in choosing the “right” scoring vector.

4 Note that while �nec is a partial order, �pos is neither transitive nor antisymmetric
in general.

Monotonicity, Duplication Monotonicity, and Pareto Optimality 179

tie-breaking scheme induced by a tie-breaking relation >T . This result is easily
generalized as Theorem 1 below, showing that monotonicity of FT

s,� holds when
� is an arbitrary SWO satisfying just one very mild assumption:

Definition 5. We call an SWO � on Q
n
≥0 weakly monotonic if for all u, v ∈

Q
n
≥0 such that ui ≤ vi for all i, we have u � v. We call an SWF W : Q

n
≥0 → R

weakly monotonic if for all u, v ∈ Q
n
≥0 such that ui ≤ vi for all i, we have

W (u) ≤ W (v).

If W is a weakly monotonic SWF, then �W is a weakly monotonic SWO.
All of the SWFs Wp from Definition 2 are easily seen to be monotonic, as is the
function min (which fails to be monotonic in the classic sense, see Moulin [22])
and the leximin ordering. In fact, weak monotonicity is such a mild assumption
that it is hard to think of a sensible SWO that does not satisfy it. We omit the
proof of Theorem 1 due to space limitations.

Theorem 1. For any scoring vector s ∈ Q≥0, any weakly monotonic SWO � ,
and any tie-breaking relation T , the scoring allocation rule FT

s,� is monotonic.

4 Duplication Monotonicity

Another regularity property studied by Baumeister et al. [7] is duplication mono-
tonicity, demanding that two agents with identical preferences should always
receive a better share (in total) than a single agent with that preference would.
From another perspective, it tells us whether an agent who cheats by posing as
two agents (with identical preferences) gets a better share than she would have
without cheating.5 In light of the discussion at the end of Sect. 2, we actually
need to define two properties, possible and necessary duplication monotonicity:

Definition 6. Let G be a finite set of goods and let P = (>1, . . . , >n) ∈
P(G)n be a preference profile. Denote, for each i, by �nec

i and �pos
i the nec-

essary and possible preference relations on 2G associated to >i, as defined
above. Now, with P dup = (>1, . . . , >n, >n), an extended version of P with the
final preference doubled, an allocation rule F satisfies possible (resp., neces-
sary) duplication monotonicity if F (P dup)n ∪ F (P dup)n+1 �pos

n F (P)n (resp.,
F (P dup)n ∪ F (P dup)n+1 �nec

n F (P)n) for every choice of preference profile P .

5 While enabling such cheating might not seem like a desirable property, this really is
a common tradeoff: Procedures that behave predictably and naturally with respect
to changing inputs will always be easier to manipulate than ones that behave chaot-
ically. We believe that one should rather err on the side of regularity. Compare the
situation to voting: Under most reasonable voting rules, cheaters who manage to
improperly submit multiple ballots actually increase the chances of their favored
candidates being selected. But that should not be held against the voting rule: It
almost necessarily comes with trying to give equal weight to all votes, which is a
principle that should not be carelessly abandoned in the name of deterring cheaters.

180 B. Kuckuck and J. Rothe

Since this notion is defined for allocation rules only, we need to break ties and
this tie-breaking scheme needs to be suitably chosen: A tie-breaking relation6 >T

is duplication-compatible7 if for any two allocations π,π′ ∈ Π(G,n+1) satisfying
that π >T π′, either (π1, . . . ,πn−1,πn ∪ πn+1) = (π′

1, . . . ,π
′
n−1,π

′
n ∪ π′

n+1) or
(π1, . . . ,πn−1,πn ∪ πn+1) >T (π′

1, . . . ,π
′
n−1,π

′
n ∪ π′

n+1).

Necessary Duplication Monotonicity. As we saw in Example 1, any scoring
allocation correspondence using a strictly decreasing scoring vector and utili-
tarian social welfare simply gives each good to an agent who ranks it highest,
essentially ignoring the scoring vector. It is then easy to see that such a rule
satisfies necessary duplication monotonicity. Baumeister et al. [7] leave open the
question: Does necessary duplication monotonicity hold for any scoring allocation
rule using min or leximin as their social welfare ordering?

In the following examples we show that the answer is “no” for many common
choices of scoring vectors. In each case we exploit the possibility of a mismatch of
the agents’ “real” preferences over sets and the “proxy” preferences induced by
the scoring vector, which the allocation rule actually uses to make its decision.
This can mean that the allocation rule tries hard to give good items to an agent
and her clone, whereas in fact the agent might prefer getting many items. This
makes necessary duplication monotonicity quite hard to satisfy.

Example 2. Consider the following preference profiles over 8 resp. 9 goods:

P1 = (fdcbaehg , agfehdcb, abcdefgh), P2 = (abecdgfh, dbhfecag , abcdefgh),
P3 = (bfceiahgd , hcibfdeag , abcdefghi).

We then have

FT
lex,leximin(P1) = FT

lex,min(P1) = {(f , a, bcdegh)},

FT
lex,leximin(P dup

1) = FT
lex,min(P dup

1) = {(f , degh, a, bc), (f , degh, bc, a)},

FT
borda,leximin(P2) = {(beg , dfh, ac)},

6 more precisely, a family of tie-breaking relations >T
n on Π(G,n) for all n ≥ 1 (note

that this property is really about how the orders >T
n and >T

n+1 interact)
7 Note that this condition, which is taken from Baumeister et al. [7], is more a techni-

cal device than a substantive suggestion for how to choose tie-breaking mechanisms.
In the definition of duplication monotonicity the last agent gets duplicated. This
choice is arbitrary, but this is justified by the fact that scoring allocation correspon-
dences are anonymous, so the choice does not matter for our results, as long as no
tied winning allocations occur. However, after applying a tie-breaking mechanism,
the resulting allocation rule will no longer be anonymous, by necessity—non-trivial
anonymous allocation rules do not exist. The definition here is carefully chosen to
match the particular choice of duplicating the last agent, so we can give succinct
statements of our main theorems that hold even in cases of tied winners. In those
(and only those) cases, the results do depend on the arbitrary choices here, so are
not entirely natural.

Monotonicity, Duplication Monotonicity, and Pareto Optimality 181

FT
borda,leximin(P dup

2) = {(ag , fh, be, cd), (ag , fh, cd , be)},

FT
borda-qi,leximin(P3) = FT

borda-qi,min(P3) = {(cef , dhi , abg)},

FT
borda-qi,leximin(P dup

3)= FT
borda-qi,min(P dup

3) = {(bf , hi , ac, deg), (bf , hi , deg , ac)}.

The first two lines show that FT
lex,leximin and FT

lex,min cannot satisfy necessary
duplication monotonicity for any tie-breaking scheme T . For no matter which
of the two winning allocations for P dup

1 the tie-breaker T picks, agent 3 and
her clone will receive a, b, and c, which is not necessarily better than receiving
{b, c, d, e, g, h} as agent 3 did on her own. Similarly, the other two examples
show that neither the scoring allocation rule with Borda scoring and leximin
social welfare nor the one with qi scoring and min or leximin social welfare (and
arbitrary tie-breaking schemes) satisfy necessary duplication monotonicity.

Possible duplication monotonicity, potentially, is much easier to satisfy than
the necessary variant, because it is at least possible that agent n’s true prefer-
ences over sets agree exactly with the “proxy” utilities that the scoring allocation
tries to maximize. More precisely, let s be a strictly decreasing scoring vector, �
an SWO, and P a preference profile and let π = FT

s,�(P) and π′ = FT
s,�(P dup).

(with a duplication-compatible tie-breaking relation >T). For possible duplica-
tion monotonicity we need to show that π′

n ∪ π′
n+1 �pos

n πn. By Lemma 1, this
is equivalent to v(π′

n ∪ π′
n+1) ≥ v(πn) holding true for some additive utility

function v : 2G → R≥0 compatible with the ranking >n. But one such utility
function is u>n,s, used in the definition of the scoring allocation rule. So it is
in fact enough to show that u>n,s(π′

n) + u>n,s(π′
n+1) ≥ u>n,s(πn). The utili-

ties appearing here are exactly what the scoring allocation correspondence Fs,�
is trying to maximize. Essentially then, what remains to be proved is that the
social welfare maximizing allocation rule for additive cardinal preferences satis-
fies duplication monotonicity. This is far from apparent, even for the case where
� is the leximin ordering. Baumeister et al. [7] only show that FT

lex,leximin and
FT

borda-qi,leximin satisfy possible duplication monotonicity.8

We will show in Theorem 2 that those are just two very particular cases of a
vastly more general fact: FT

s,� satisfies possible duplication monotonicity for any
strictly decreasing s and any split-coherent � (see below), which includes leximin
and utilitiarian social welfare and also all the SWFs Wp from Definition 2.

Definition 7. Let � be a family of SWOs (formally, � = (�(n))n≥1, where �(n)

is a total preorder on Q
n
≥0 for each n, though we will write all the �(n) as �).

Then � is called split-coherent if the following holds: For all u, v ∈ Q
n
≥0 such

that u � v and all rational numbers x ≥ y ≥ 0 and x′ ≥ y′ ≥ 0 with x + x′ = un

and y + y′ = vn, we have (u1, . . . , un−1, x, x′) � (v1, . . . , vn−1, y, y′). We require
this relation to be strict whenever u � v is strict.
8 The proof for lexicographic scoring also supposes that a winning allocation for
Flex,leximin can give more than one item only to agents whose individual utility is
minimal among all agents. That assumption is not correct, as Example 2 illustrates.

182 B. Kuckuck and J. Rothe

While the utilitarian SWO is easily seen to be split-coherent, the proof of
split-coherence for the leximin ordering is technical and fairly involved, requiring
in particular a proof that a relation u �lm v for u, v ∈ Q

n
≥0 is preserved when

we replace some ui by a smaller number a < ui, as long as we also replace one
of the components vj of v by some b, which is smaller than both vj and a.

Lemma 2. The utilitarian and the leximin SWO are split-coherent.

Proof. The easy proof of split-coherence for the utilitarian SWO is omitted due
to space limitations. The technically rather involved proof that the leximin SWO
is split-coherent rests on the following two lemmas the first of which establishes
a fairly simple property that also holds for all the social welfare orderings �Wp

from Definition 2 (excluding some bad cases when p ≤ 0).

Lemma 3. For u, v ∈ Q
n
≥0 two vectors and a ∈ Q≥0, u �lm v ⇐⇒ (u1, . . . ,

un, a) �lm (v1, . . . , vn, a); if either relation is strict, then so is the other.

Proof. First note that u is a permutation of v if and only if the vector (u1, . . . ,
un, a) is a permutation of the vector (v1, . . . , vn, a), so u ∼lm v if and only if
(u1, . . . , un, a) ∼lm (v1, . . . , vn, a) (we refer to this as the “permutation prop-
erty”). In other words: Either relation fails to be strict if the other fails to be
strict. Therefore, the claim about strictness in the statement follows from the
main claim.

We now show the main claim by induction on n. First, let n = 1. Then
u = (u1) and v = (v1). If u �lm v, i.e., u1 ≥ v1, then weak monotonicity of
the leximin ordering (which can be easily observed) shows that (u1, a) ≥ (v1, a).
Conversely, assume that (u1, a) �lm (v1, a). Four cases may occur:

i. a ≤ u1, v1. Then (recalling that ≥lex denotes the lexicographic order on Q
n)

we have (a, u1) = (u1, a)∗ ≥lex (v1, a)∗ = (a, v1). By the definition of the
lexicographic order, this holds if and only if u1 ≥ v1.

ii. v1 ≤ a ≤ u1. Then we can immediately conclude u1 ≥ v1.
iii. u1 ≤ a ≤ v1. Then (u1, a) = (u1, a)∗ ≥lex (v1, a)∗ = (a, v1). By the defini-

tion of the lexicographic order, we must have u1 ≥ a, so u1 = a. But then,
looking to the second component, we must have a ≥ v1, so a = v1. Thus we
have u1 = v1.

iv. u1, v1 ≤ a. Then (u1, a) = (u1, a)∗ ≥lex (v1, a)∗ = (v1, a), and the definition
of the lexicographic order gives us u1 ≥ v1.

Now assume the statement is true for some n ≥ 1. Let u ∈ Q
n+1
≥0 and v ∈

Q
n+1
≥0 and set u = (u1, . . . , un+1, a) and v = (v1, . . . , vn+1, a). First assume

u �lm v. Consider the following cases:

i. min(u) = a. Now either min(v) < a, in which case u �lm v and we are
done, or min(v) = a. In that case, by the definition of the leximin order,
u �lm v ⇐⇒ u−(n+2) �lm u−(n+2) ⇐⇒ u �lm v, and we are also done.

ii. min(u) �= a and min(v) = a. In this case, ui < a for some i ∈ {1, . . . , n+1},
whereas vj ≥ a for all j ∈ {1 . . . , n + 1}. Hence min(u) ≤ ui < a ≤ min(v),
in contradiction to u �lm v. So this case cannot actually occur.

Monotonicity, Duplication Monotonicity, and Pareto Optimality 183

iii. min(u) �= a and min(v) �= a. In this case min(u) = ui and min(v) = vj for
suitably chosen i, j ∈ {1, . . . , n + 1}. Then we also have min(u) = ui and
min(v) = vj . Since u �lm v, we either have vj < ui, in which case u �lm v, or
we have vj = ui and u−i �lm v−j . Now u−i, v−j ∈ Q

n
≥0, so by the induction

hypothesis (u1, . . . , ui−1, ui+1, . . . , un, a) �lm (v1, . . . , vj−1, vj+1, . . . , vn, a),
and so u−i �lm v−j . Hence u �lm v.

Conversely, assume u �lm v. We go through three cases again:

i. min(v) = a. In this case, a = min(v) ≤ min(u) ≤ ui for all i ∈ {1, . . . , n+1}.
Therefore, min(u) = a = min(v), showing that u = u−(n+2) �lm v−(n+2) =
v.

ii. min(v) �= a and min(u) = a. In this case there is some j ∈ {1, . . . , n + 1}
with vj = min(v) < a while a ≤ ui for all i ∈ {1, . . . , n+1}. Then min(v) =
vj < a ≤ min(u) and thus u �lm v.

iii. min(v) �= a and min(u) �= a. In this case min(v) = vj < a and min(u) =
ui < a for certain i, j ∈ {1, . . . , n + 1}. In particular then, ui = min(u)
and vj = min(v). Since u �lm v we either have ui > vj , in which case
u �lm v, or ui = vj and u−i �lm v−j . But then (u1, . . . , ui−1, ui+1, . . . ,
un, a) �lm (v1, . . . , vj−1, vj+1, . . . , vn, a), and we obtain u−i = (u1, . . . , ui−1,
ui+1, . . . , un) �lm (v1, . . . , vj−1, vj+1, . . . , vn) = v−j by the induction
hypothesis, thus u �lm v.

This completes the proof. ��
The second lemma, however, seems to be rather peculiar to the leximin

ordering.

Lemma 4. Let u, v ∈ Q
n
≥0 with u �lm v. Now let a, b ∈ Q≥0 with a > b

and b < vn and set u′ = (u1, . . . , un−1, a) and v′ = (v1, . . . , vn−1, b). Then
u′ �lm v′. If u and v even satisfy u �lm v, then also u′ �lm v′.

Proof. We prove the claim by induction over n. For n = 1 we always have
u′ = (a) �lm (b) = v′, since a > b. So assume the claim is true for some n ≥ 1.
Let u, v ∈ Q

n+1
≥0 with u �lm v and a, b ∈ Q≥0 with a > b and b < vn+1. Set

u′ = (u1, . . . , un, a) and v′ = (v1, . . . , vn, b). We distinguish three cases:

i. min(u′) = a. In this case, min(v′) ≤ b < a = min(u′), so u′ �lm v′.
ii. min(u′) �= a and min(v) = vn+1. In this case min(u′) = ui < a for some

i ∈ {1, . . . , n} and b < vn+1 = min(v) ≤ vj for all j ∈ {1, . . . , n}. Hence,
b = min(v′). But now min(u′) = ui ≥ min(u) ≥ min(v) = vn+1 > b =
min(v′), and hence u′ �lm v′.

iii. min(u′) �= a and min(v) �= vn+1. In this case min(u′) = ui < a for some
i ∈ {1, . . . , n} and min(v) = vj < vn+1 for some j ∈ {1, . . . , n}. If b < vj ,
then min(v′) = b < vj = min(v) ≤ min(u) ≤ ui = min(u′), so, again,
u′ �lm v′ and we are done. Otherwise vj = min(v′). Then we have min(v′) =
vj = min(v) ≤ min(u) ≤ ui = min(u′). If min(v′) < min(u′), we have
u′ �lm v′ and we are done. Otherwise, min(v′) = min(u′) and we need to

184 B. Kuckuck and J. Rothe

show that u′
−i �lm v′

−j . In this case, equality holds everywhere in the above
inequalities and in particular we have min(u) = min(v) and min(u) = ui.
So since u �lm v, we need to have u−i �lm v−j . We then have u′

−i =
(u1, . . . , ui−1, ui+1, . . . , un, a) �lm (v1, . . . , vj−1, vj+1, . . . , vn, b) = v′

−j by
the induction hypothesis, and therefore u′ �lm v′.
If u �lm v, then we even have u−i �lm v−j , and again the induction hypoth-
esis gives u′

−i �lm v′
−j and hence u′ �lm v′.

This completes the proof. ��
Now, using Lemmas 3 and 4, we are ready to complete the proof that the

leximin ordering �lm is split-coherent. We are given u, v ∈ Q
n
≥0 such that u �lm v

and rational numbers x ≥ y ≥ 0 and x′ ≥ y′ ≥ 0 with x+x′ = un and y+y′ = vn.
First, we need to get some trivial cases out of the way. Consider the case

that at least one of x, x′ is zero (hence the other is un) and at least one of
y, y′ is zero (hence the other is vn). Then using the “permutation property”
(which is defined in the first paragraph in the proof of Lemma 3) and Lemma 3
gives (u1, . . . , un−1, x, x′) ∼lm (u1, . . . , un−1, un, 0) �lm (v1, . . . , vn−1, vn, 0) ∼lm

(v1, . . . , vn−1, y, y′), with strictness whenever u �lm v.
Next, consider the case that one of y and y′ is zero (hence the other is vn),

but x, x′ > 0. For any r ≥ 1 and any w ∈ Q
r
≥0, denote by Z(w) =

{
i ∈ {1, . . . ,

r
} | wi = 0} the number of zero components in w. Since u �lm v, we have

Z(u) ≤ Z(v). Furthermore,

Z((v1, . . . , vn−1, y, y′)) = Z((v1, . . . , vn−1, vn, 0)) = Z(v) + 1.

Meanwhile,

Z((u1, . . . , un−1, x, x′)) = Z((u1, . . . , un−1)) = Z(u) ≤ Z(v).

This implies (u1, . . . , un−1, x, x′) �lm (v1, . . . , vn−1, y, y′).
Having covered all the cases where one of y, y′ is zero, we may now assume,

for the rest of the proof, that both y, y′ �= 0. We distinguish three more cases:

i. x > y. Note that y < y + y′ = vn. Then, by Lemma 4, we have

(u1, . . . , un−1, x) �lm (v1, . . . , vn−1, y),

with strictness if u � v. By monotonicity of the leximin ordering and
Lemma 3 we obtain

(u1, . . . , un−1, x, x′) �lm (u1, . . . , un−1, x, y′) �lm (v1, . . . , vn−1, y, y′),

with strictness if the former relation was strict.
ii. x′ > y′. With the same argument as in the first case and using the permu-

tation property, we obtain (u1, . . . , un−1, x, x′) ∼ (u1, . . . , un−1, x
′, x) �lm

(v1, . . . , vn−1, y
′, y) ∼ (u1, . . . , un−1, y, y′), with strictness if u � v.

Monotonicity, Duplication Monotonicity, and Pareto Optimality 185

iii. x = x′ and y = y′. Then un = vn. Using Lemma 3 three times, we obtain

u � v =⇒ (u1, . . . , un−1) � (v1, . . . , vn−1)
=⇒ (u1, . . . , un−1, x) � (v1, . . . , vn−1, y)
=⇒ (u1, . . . , un−1, x, x′) � (v1, . . . , vn−1, y, y′),

and all these implications preserve strictness.

This shows that the leximin SWO is split-coherent, completing the proof of
Lemma 2. ��

Now we show our main result.

Theorem 2. Let G be a finite set of m goods, s ∈ Q
m
≥0 a strictly decreasing

scoring vector, � a split-coherent SWO, and >T a duplication-compatible tie-
breaking relation. Then FT

s,� satisfies possible duplication monotonicity.

Proof. Let P = (>1, . . . , >n) be a preference profile and denote the extended
profile P dup = (>1, . . . , >n, >n+1) with >n+1 = >n. Let π = (π1, . . . ,πn) =
FT

s,�(P) and ρ′ = (ρ′
1, . . . , ρ

′
n, ρ′

n+1) = FT
s,�(P dup). Define ρ = (ρ′

1, . . . , ρ
′
n−1, ρ

′
n∪

ρ′
n+1) ∈ Π(G,n). Suppose for a contradiction that ρ′

n ∪ ρ′
n+1 �pos

n πn does not
hold. Then πn �nec

n ρ′
n ∪ ρ′

n+1 = ρn. By Lemma 1, there is then an injection
f : ρn ↪→ πn with f(a) ≥n a for all a ∈ ρn. Let π′

n = f(ρ′
n) and π′

n+1 =
πn \ π′

n = f(ρ′
n+1) ∪ (πn \ f(ρn)). Since the restrictions of f to ρ′

n and ρ′
n+1

are still injections to π′
n and π′

n+1, respectively, with f(a) ≥ a for all a in the
domain, we have π′

n �nec ρ′
n and π′

n+1 �nec ρ′
n+1.

Consider the vectors v = uP,s(π) and w = uP,s(ρ). Since π ∈ Fs,�(P),
we must have v � w. We also have vn = u>n,s(πn) = u>n,s(π′

n ∪ π′
n+1) =

u>n,s(π′
n)+u>n,s(π′

n+1) and wn = u>n,s(ρn) = u>n,s(ρ′
n ∪ρ′

n+1) = u>n,s(ρ′
n)+

u>n,s(ρ′
n+1). Note that u>n,s : 2G → R≥0 is an additive utility function, which

is compatible with >n since s is strictly decreasing. Let x = u>n,s(π′
n), x′ =

u>n,s(π′
n+1), y = u>n,s(ρ′

n), and y′ = u>n,s(ρ′
n+1). By Lemma 1, it follows that

x ≥ y and x′ ≥ y′. Since � is split-coherent, we have

uPdup,s(π
′) = (u>1,s(π1), . . . , u>n−1,s(πn−1), u>n,s(π′

n), u>n,s(π′
n+1))

= (v1, . . . , vn−1, x, x′) � (w1, . . . , wn−1, y, y′)
= (u>1,s(ρ1), . . . , u>n−1,s(ρn−1), u>n,s(ρ′

n), u>n,s(ρ′
n+1)) = uP ′,s(ρ′).

If the relation v = uP,s(π) � uP,s(ρ) = w were strict, we would even get
uPdup,s(π′) � uPdup,s(ρ′), again by the definition of split-coherence. But this
cannot be true, since ρ′ ∈ Fs,�(P dup) implies that uPdup,s(ρ′) � uPdup,s(π′).
Hence we must have uP,s(π) ∼ uP,s(ρ) and uPdup,s(ρ′) ∼ uPdup,s(π′). But since
π = FT

s,�(P) and ρ′ = FT
s,�(P dup), the tie-breaking relation >T must satisfy

π >T ρ and ρ′ >T π′. This is a contradiction to the duplication-compatibility
of >T . ��
Corollary 1. For s a strictly decreasing scoring vector, � ∈ {+, leximin}, and
>T a duplication-compatible tie-breaking relation, FT

s,� satisfies possible duplica-
tion monotonicity.

186 B. Kuckuck and J. Rothe

Proof. This follows from Lemma 2 and Theorem 2. ��
Theorem 2 applies to many more SWOs than just these two. The proof of

Lemma 5 is omitted due to space limitations; it essentially follows from the
fundamental theorem of calculus.

Lemma 5. Let W : Q
n
≥0 → R be an SWF, defined by W (u1, . . . , un) =

∑n
i=1 f(ui), for some f : R≥0 → R. If f satisfies f(x+a)−f(x) ≤ f(y+a)−f(y)

for all x ≥ y ≥ 0 and a ≥ 0, then �W is split-coherent. This holds, in particular,
whenever f is differentiable and concave.

Corollary 2. For each p, 0 < p < 1, the social welfare orderings �Wp
induced

by Wp : Q
n
≥0 → R, u → ∑n

i=1 up
i , are split-coherent.

Corollary 3. For s a strictly decreasing scoring vector, 0 < p ≤ 1, and >T a
duplication-compatible tie-breaking relation, FT

s,Wp
satisfies possible duplication

monotonicity.

Proof. This is now immediate from Lemma 5, Corollary 2, and Theorem 2. ��
This central result still essentially holds for the Wp with p ≤ 0, though the

statements in this case have to be slightly modified, in order to deal with the
complications presented by utility vectors with zero entries.

5 Pareto Optimality

Brams et al. [12] study the question of Pareto optimality of Fs,�(P) with � ∈
{+,min, leximin}.9 Informally, an allocation π is called Pareto-optimal (with
respect to some preference profile) if there is no other allocation which makes
all agents at least as well off as π and some agent better off. As in the previous
section we actually obtain two variants of this notion. Definition 8 is due to
Brams et al. [12].

Definition 8. Let G be a finite set of goods. For a preference > ∈ P(G) over
G, denote by Eadd(>) the set of all additively representable set extensions of > to
2G. For a preference profile P = (>1, . . . , >n) ∈ P(G)n, Eadd(P) = Eadd(>1) ×
· · · × Eadd(>n). Let π, ρ ∈ Π(G,n). For P̂ = (�1, . . . ,�n) ∈ Eadd(P), we say
that ρ Pareto-dominates π with respect to P̂ if ρi �i πi for all i ∈ {1, . . . , n}
and ρj �j πj for some j ∈ {1, . . . , n}. We say that π is Pareto-optimal for P̂ if
no ρ ∈ Π(G,n) Pareto-dominates π with respect to P̂ . We say that π is possibly
(respectively, necessarily) Pareto-optimal for P if π is Pareto-optimal for some
(respectively, for all) P̂ ∈ Eadd(P).

The following is a generalization of a result of Brams et al. [12, Theorem 4.9]
(which treats only the special case of Borda scoring and the utilitarian or leximin
ordering). The proof of Theorem 3 is omitted due to space limitations.
9 In their terminology, maxsum divisions, maxmin divisions, and equimax divisions.

Monotonicity, Duplication Monotonicity, and Pareto Optimality 187

Theorem 3. Let G be a set of m goods, s ∈ Q
m
≥0 a scoring vector, and �

a monotonic social welfare ordering (e.g., the leximin ordering or any of the
orderings induced by the Wp from Definition 2). For all preference profiles P ∈
P(G)n, every π ∈ Fs,�(P) is possibly Pareto-optimal for P .

Necessary Pareto optimality is much harder to satisfy. Such divisions always
exist, but the trivial examples tend to violate intuitive notions of fairness and
are not usually of the kind returned by scoring allocation correspondences.

Brams et al. [12] give an example of a preference profile of two agents
over five goods, namely, P = (abcde, cadeb), such that Fborda,+(P) as well as
Fborda,leximin(P) consist of a unique allocation, π = (ab, cde), which yet fails to
be necessarily Pareto-optimal for P . The following example shows that even if
all the scoring allocation correspondences Fs,leximin(P) return the same unique
allocation for all strictly decreasing scoring vectors s ∈ Q

m
>0, this allocation can

still fail to be necessarily Pareto-optimal for P .

Example 3. Consider the profile P = (abcde, daebc). We can show that π =
(ab, cde) is the unique allocation in Fs,leximin(P) for every strictly decreasing
scoring vector s ∈ Q

5
>0. Still, π is not necessarily Pareto-optimal for P , since

the allocation ρ = (bce, ad) might be preferred over π by both agents.

6 Conclusions and Outlook

Following Baumeister et al. [7], we have studied the family of scoring allocation
correspondences. We have further extended and improved upon their results
regarding the properties of monotonicity and duplication monotonicity. We also
generalized results of Brams et al. [12] regarding Pareto optimality. Note that
our results on monotonicity, duplication monotonicity, and Pareto optimality
are very exhaustive, as they cover not just arbitrary strictly decreasing scoring
vectors but also utilitarian and leximin social welfare as well as the entire family
of social welfare functions Wp.

In future work, it would be interesting to study the computational aspects
of the related problems in the spirit of Baumeister et al. [7] and Darmann and
Schauer [15].

Acknowledgments. This work was supported in part by DFG grant RO 1202/14-2.

References

1. Aziz, H., Bachrach, Y., Elkind, E., Paterson, M.: False-name manipulations in
weighted voting games. J. Artif. Intell. Res. 40, 57–93 (2011)

2. Aziz, H., Brandt, F., Seedig, H.: Computing desirable partitions in additively sep-
arable hedonic games. Artif. Intell. 195, 316–334 (2013)

3. Aziz, H., Walsh, T., Xia, L.: Possible and necessary allocations via sequential
mechanisms. In: Proceedings of IJCAI 2015, pp. 468–474 (2015)

188 B. Kuckuck and J. Rothe

4. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of STOC
2006, pp. 31–40 (2006)

5. Barberà, S., Bossert, W., Pattanaik, P.: Ranking sets of objects. In: Barberà, S.,
Hammond, P., Seidl, C. (eds.) Handbook of Utility Theory, vol. 2: Extensions, pp.
893–977. Kluwer Academic Publisher (2004)

6. Bartholdi III, J., Tovey, C., Trick, M.: How hard is it to control an election? Math.
Comput. Model. 16(8/9), 27–40 (1992)

7. Baumeister, D., et al.: Positional scoring-based allocation of indivisible goods. J.
Auton. Agents Multi Agent Syst. 31(3), 628–655 (2017)

8. Baumeister, D., Erdélyi, G., Erdélyi, O., Rothe, J.: Complexity of manipulation
and bribery in judgment aggregation for uniform premise-based quota rules. Math.
Soc. Sci. 76, 19–30 (2015)

9. Baumeister, D., Rothe, J.: Taking the final step to a full dichotomy of the possible
winner problem in pure scoring rules. Inf. Process. Lett. 112(5), 186–190 (2012)

10. Betzler, N., Dorn, B.: Towards a dichotomy for the possible winner problem in
elections based on scoring rules. J. Comput. Syst. Sci. 76(8), 812–836 (2010)

11. Bouveret, S., Chevaleyre, Y., Maudet, N.: Fair allocation of indivisible goods. In:
Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.) Handbook of
Computational Social Choice, pp. 284–310. Cambridge University Press (2016)

12. Brams, S., Edelman, P., Fishburn, P.: Fair division of indivisible items. Theory
Decis. 55(2), 147–180 (2003)

13. Brams, S., King, D.: Efficient fair division: help the worst off or avoid envy? Rat.
Soc. 17(4), 387–421 (2005)

14. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.): Handbook of
Computational Social Choice. Cambridge University Press, New York (2016)

15. Darmann, A., Schauer, J.: Maximizing Nash product social welfare in allocating
indivisible goods. Eur. J. Oper. Res. 247(2), 548–559 (2015)

16. Elkind, E., Faliszewski, P., Slinko, A.: Cloning in elections: finding the possible
winners. J. Artif. Intell. Res. 42, 529–573 (2011)

17. Elkind, E., Rothe, J.: Cooperative game theory. In: Rothe, J. (ed.) Economics and
Computation, pp. 135–193. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47904-9

18. Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Pro-
ceedings of the Multidisciplinary IJCAI-05 Workshop on Advances in Preference
Handling, pp. 124–129, July/August 2005

19. Lang, J., Rey, A., Rothe, J., Schadrack, H., Schend, L.: Representing and solving
hedonic games with ordinal preferences and thresholds. In: Proceedings of AAMAS
2015, pp. 1229–1237 (2015)

20. Lang, J., Rothe, J.: Fair division of indivisible goods. In: Rothe, J. (ed.) Economics
and Computation, pp. 493–550. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47904-9 8

21. Moulin, H.: Condorcet’s principle implies the no show paradox. J. Econ. Theory
45(1), 53–64 (1988)

22. Moulin, H.: Fair Division and Collective Welfare. MIT Press, London (2004)
23. Nguyen, N., Baumeister, D., Rothe, J.: Strategy-proofness of scoring allocation

correspondences for indivisible goods. Soc. Choice Welf. 50(1), 101–122 (2018)
24. Nguyen, T., Roos, M., Rothe, J.: A survey of approximability and inapproximabil-

ity results for social welfare optimization in multiagent resource allocation. Ann.
Math. Artif. Intell. 68(1–3), 65–90 (2013)

25. Rey, A., Rothe, J.: False-name manipulation in weighted voting games is hard for
probabilistic polynomial time. J. Artif. Intell. Res. 50, 573–601 (2014)

https://doi.org/10.1007/978-3-662-47904-9
https://doi.org/10.1007/978-3-662-47904-9
https://doi.org/10.1007/978-3-662-47904-9_8
https://doi.org/10.1007/978-3-662-47904-9_8

Monotonicity, Duplication Monotonicity, and Pareto Optimality 189

26. Rothe, J., Schadrack, H., Schend, L.: Borda-induced hedonic games with friends,
enemies, and neutral players. Math. Soc. Sci. 96, 21–36 (2018)

27. Sen, A.: Collective Choice and Social Welfare. Holden Day, San Francisco (1970)
28. Tideman, N.: Independence of clones as a criterion for voting rules. Soc. Choice

Welf. 4(3), 185–206 (1987)
29. Xia, L., Conitzer, V.: Determining possible and necessary winners given partial

orders. J. Artif. Intell. Res. 41, 25–67 (2011)

Dynamic Delivery Plan Adaptation
in Open Systems

Miguel Ángel Rodríguez-García , Alberto Fernández(&) ,
and Holger Billhardt

Universidad Rey Juan Carlos, Madrid, Spain
{miguel.rodriguez,alberto.fernandez,

holger.billhardt}@urjc.es

Abstract. Open fleets offer a dynamic environment where the fleet is contin-
ually rebuilt ad-hoc since vehicles can enter or leave the fleet anytime, and the
only immutable entity is the item to be delivered. Therefore, we need to be able
to define a changeable delivery plan capable of adapting to such a dynamic
environment. Hence, we propose Open Fleet Management, a Self-Management
platform capable of optimizing plan delivery dynamically. The platform utilizes
information about location, routes, delivery in transit and delivery costs to
change the shipment plan according to the available carrier. Therefore, if two
carriers are doing a shipment service to the same place, the platform will be able
to discover such a situation and put them in contact to optimize the efficiency of
the shipment.

Keywords: Multi-agent systems � Delivery �
Intelligent transportation systems � Semantic technologies � Open systems

1 Introduction

Nowadays, the transportation sector has become one of the primary components of the
global economy [1]. Hence, this sector needs the development of innovative trans-
portation technologies capable of reducing the costs, improving the reliability and
helping to motivate the globalization process. Since Gaspard Monge formalized the
transportation problem in 1781 as an optimization problem [2], it has been re-
formulated into different ways to investigate similar obstacles which aim for the same
target, to reduce the associated costs. Between different proposed approaches, we can
find typical problems that logistics companies are usually facing in the current trans-
portation model such as to diminish the CO2 emissions [3], build new algorithms to
face vehicle routing optimization problems [4, 5], develop new smart systems methods
to monitor and improve the coordination of their fleets [6, 7]. Generally, such trans-
portation model is based on closed fleet where the volume of the vehicles does not
change dynamically; their capabilities are well-known by the company, the delivery
plans are not usually changeable (with rare exceptions unavailable vehicles due to
puncture, engine problems and so on).

© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 190–198, 2019.
https://doi.org/10.1007/978-3-030-17294-7_14

http://orcid.org/0000-0001-6244-6532
http://orcid.org/0000-0002-8962-6856
http://orcid.org/0000-0001-8298-4178
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_14

With the arrival of The Web 2.0 technologies, this model has been affected by the
proliferation of Transportation Network Companies (TNC) that provide a more dynamic
and disruptive transport model by which whoever vehicle owner can provide trans-
portation services. This new model offers even more complicated challenges because
vehicles can dynamically change their status by joining or leaving the fleet. Moreover,
vehicles do not belong to a company but rather private owners. Then, we do not know
their vehicles capabilities, technical features which offer even more obstacles to coor-
dinate the vehicles efficiently. Different works have been proposed in the literature to
tackle some of these problems, for instance, the vehicle routing problems using opti-
mization algorithms [6], a management system for optimizing the coordination in open
fleets [7] and innovative methods to define a match factor for heterogeneous fleets of
trucks [8].

In this article, we present a formal description of collaborative dynamic plan
delivery adaptation. Plan adaptations involve the cooperation among (usually two)
agents to deliver transportation tasks more efficiently. Plan improvements are defined in
terms of agents’ utility, which may be defined as higher commercial revenues, lower
CO2 emissions, among others.

The remainder of the paper is organized as follows. Next section describes the
dynamic transportation planning we tackle in this work. In Sect. 3, we describe in
depth the designed architecture examining the primary functions of each module.
Section 4 shows an example scenario in which we apply our approach. We end up the
article highlighting the conclusions and giving some future research lines.

2 Problem Definition

In our system agents can play two main roles, namely providers or clients. We focus on
service providers, which carry out transportation tasks, such as parcel delivery or
human transportation. Service providers have transportation plans P consisting of a
sequence of one or more transportation tasks [t1, t2, …, tn]. In the following, we
consider parcel delivery tasks. In our approach plan adaptation is analyzed locally. We
exploit close geographical location of provider agents so as to analyze whether agents
can exchange or delegate tasks, such that both agents benefit from the potential
agreement. For example, provider agents delivering/picking parcels in the same resi-
dential area at the same time and having also another similar delivery spot might be
interested in only one of them going to that destination with both packages and sharing
the benefits.

There are two different types of prices for packet deliveries:

• Price to client: is the price that client c pays to agent a to carry out task t (Price(a,
t)), i.e. delivering a package p. It may depend on characteristics such as package
physical features (height, width, weight, …), constraints (temperature, fragility, …),
distance from origin to destination, etc.

• Cost of task t for deliverer a (Cost(a, t)): is the cost for the delivery agent, which
includes petrol, vehicle maintenance, resources spent, distance travelled, value of
time spent, etc.

Dynamic Delivery Plan Adaptation in Open Systems 191

The utility of agent provider a for carrying out a transportation task t, Ua(t), is the
difference between the price paid by the client and the cost of carrying the task:

Ua tð Þ ¼ Priceða; tÞ � Costða; tÞ

In the following, we analyze the economic effect that a plan adaptation proposal
would have in the involved agents and the conditions for them to reach an agreement
on carrying out the adaptation. Given a set of agents in a close proximity, a re-planning
proposal requires that each involved provider agent obtains higher revenue than
without applying re-planning, i.e. they should accept the proposal. If needed, incentives
have to be assigned to tasks exchanges so as to compensate agents for lower revenues.

Given a set of agents A in a vicinity, each of them having a set of tasks to be carried
out. Let T be the set of all such tasks. The initial assignment of tasks to delivery agents,
As0 = {<ti, aj> | ti 2 T, aj 2 A}, where <ti, aj> represents that task ti is assigned to
agent aj.

The goal of a plan adaptation method is to propose some modifications M of
assignments <t, aj> to <t, ak> such that aj and ak both agree with M, i.e. U0

aj [Uaj and
U0

ak [Uak, where U0
aj and U0

ak are the new utilities of aj and ak, respectively, after
applying M. That is possible if:

U0
aj ¼ Uaj þCost aj; t

� �� Dtjk � rj t; akð Þ

U0
ak ¼ Uak � Cost ak; tð Þ þ Dtjk � rk t; aj

� �

Where Dtjk is a compensation that aj has to pay to ak for delegating t to ak, so both
agents agree with the deal, and rj(t, ak) is a coordination cost for aj (e.g. time spent for
synchronization with ak, impact on other tasks, etc.). Thus:

Cost ak; tð Þþ rk t; aj
� �

\Dtjk\Cost aj; t
� �� rj t; akð Þ

Note that Cost(ak, t) takes into account that ak had already scheduled to go to that
destination anyway, so it should be rather low. Thus, the same type of task may have
different cost depending on the rest of the plan. The range in which D can take values
represents the joint benefits resulted from the cooperation.

3 Architecture

The architecture of the platform that we present in this work comprises three modules:
(i) the Repository, which is one of the primary modules in the platform. It represents the
primary data deposit where data related to customers, shipments, vehicles, delivery
plans and others is stored. That material is extremely relevant since is used by other
modules to carry out their functions; (ii) the Semantic Descriptor, which aims at
translating data into semantic instances; (iii) the Semantic Matching responsible for
finding proper vehicles to ship delivery items and finally (iv) the Plan Manager

192 M. Á. Rodríguez-García et al.

implements the functions necessaries to optimize the coordination of vehicles in the
fleet. Figure 1 depicts the entire platform architecture highlighting each decomposed
module, its tasks, and how it interacts with others.

The working of the platform is as follows: we are assuming a transport scenario
where there is a user who needs to utilize a delivery service to transport an item to other
location, and different providers who are working in an open fleet. Hence, firstly, the
user needs to describe in natural language the items to be delivered. Consequently,
he/she has to provide features such as size, fragility or conditions like temperature,
refrigeration, etc. Then, the Semantic Descriptor module will transform systematically
it into semantic instances representing them using the language RDF. The instances
will be stored in the repository together with semantic descriptions about vehicles,
providers and users. Next, the semantic matching module is in charge of finding a list of
delivery vehicle which fulfill the user’s item requirements. For instance, when a user
requires a transportation service to a box whose size is 20 � 20, it requires refriger-
ation, and it contains fragile objects. Then, the module will recommend to user a set of
providers whose vehicles satisfy all the requirements. Once the user selects the driver,
the Plan Manager module will assign a new task to the delivery plan of the provider.
During the shipping process, the Plan Manager module analyzes continuously other
plans to try to coordinate in a better way the fleet. Therefore, a delivery plan can
suddenly suffer changes that are suggested to the provider. For instance, given two
providers P1 and P2 who have as a task to ship an item approximately in the same
place, the Plan Manager will suggest P1 give such item to P2 such that only one driver
goes to such location.

In the following sections, we analyze each module in detail. Hence, we will
decompose each one to study their functions and relations to others.

Fig. 1. Architecture of the platform organized in modules

Dynamic Delivery Plan Adaptation in Open Systems 193

3.1 Semantic Descriptor Module

Due to the way that the database management system structures the data, we have had
to develop a module capable of changing the representation of the data into RDF
triples. The Semantic Descriptor integrates a set of algorithms that aims for translating
structured data into triples of the type subject-predicate-object. In the following sec-
tions, we detail the procedure that we have developed to describe entities like vehicles,
shipment items, delivery tasks, etc. using such structure based on three main elements.

Describing and Matching Delivery Tasks. When an agreement between customer
and provider is mutually accepted, the plan manager has to build and assign a new
delivery task to the providers’ plan. To avoid duplicate data in the repository, we have
used the predicate element to relate the duet item-customer, which will represent a
delivery task. Then, the Plan Manager will relate this duet to the provider in charge of
shipping by using a different predicate. Thereby, we make the delivery tasks easy
interchangeable among providers. For instance, whether the Plan Manager estimates
that a concrete task has to be moved from one provider’s delivery map to other. Then, it
only implies to re-assign the delivery task to the new driver.

Let’s assume a normal scenario, where Costumer 1 (C1) query service to transport
an Item 1 (I1) to a specific location and the Provider 1 (P1) represents the driver who is
going to carry out the service. Table 1 contains the data model designed to represent
the entities Tasks and Providers. Firstly, it contains an RDF Turtle representation of
this scenario, it describes the Provider instance, which is related to other two instances:
Vehicle_30978, which stands for the vehicle that belongs the Provider, and
Task_14214 that represents the task to deliver by the Provider. Secondly, we define a
delivery task that includes the instances Task_14214 and Costumer_1354.

Table 1. Data model to represent a delivery task in RDF Turtle format.

ksaTremutsoC
@prefix rdf: <http://www.w3.org/
1999/02/22-rdf-syntax-ns#> .
@prefix ia: <http://www.ia.urjc.es/
onto/openfleet"> .
ia:Driver_14 ia:driver_id "14".
ia:Driver_14 ia:drives ia:Vehicle_30978.
ia:Vehicle_30978 ia:vehicle_id "30978".
ia:Vehicle_30978 ia:brand "Audi".
ia:Vehicle_30978 ia:model "A6".
ia:Vehicle_30978 ia:max_weight "2430".
ia:Vehicle_30978 ia:fuel "Gasoline".
...
Task_14214 ia:isCarriedOutBy ia:Driver_14.
...

@prefix rdf: <http://www.w3.org/
1999/02/22-rdf-syntax-ns#> .
@prefix ia: <http://www.ia.urjc.es/
onto/openfleet"> .
ia:Task_14214 delivery_task_id "14214".

ia:Task_14214 ia:assignedTo
ia:Customer_1354.
ia:Customer_1354 ia:customer_id "1354".
...
ia:Task_14214 ia:deliver Item_14314.
ia:Item_14314 ia:item_id "14314".
...

194 M. Á. Rodríguez-García et al.

Describing Transportation Capabilities (Vehicle). In this domain vehicles play an
extremely relevant role in the dialogue between customer and driver due to their
technical features establish whether or not the vehicle could be selected to carry out the
service. Therefore, we need to represent a vehicle taking into account physical features
such as size, capacity, weights, heights, refrigeration system, etc. to fit properly into the
features of the items. In this work, we have used the conceptual model developed in
[9]. In this approach, we conducted an intensive literature review to analyze cutting-
edge approaches that utilize semantic technologies to represent knowledge associated
to the car world.

Describing Delivery Items. Delivery items represent even the most relevant entity to
the open fleets domain. Its optimized shipment concerning analyzed variables such as
reducing CO2, finding the shortest path, avoiding waste resources, among others.
Those variables represent the primary target that we try to achieve by developing this
platform. Thereby, we need to take extremely carefully into account their physical
characteristics because the success of the delivery plan is highly dependent on them. To
represent a delivery item, we have built a new ontology model which contains the
following features: shape (box), height (cm), width (cm), weight (kg), fragility
(yes/no), priority (yes/no), temperature-sensitive (yes/no).

3.2 Semantic Matching Module

We utilize SPARQL language to query for all vehicles that match with the given
semantic item description. Then, the retrieved vehicles will be sorted by taking into
account the space available in their trailer for that date. For instance, we assume that we
want to transport a fragile box of 20 � 20 dimension to Murcia on 20th October. Once
the Semantic Descriptor module translates these details to an RDF representation, then
the Semantic Matching module will utilize this semantic representation to retrieve from
repository all vehicles that match with this description. Thereby, a SPARQL query is
systematically built to query the repository. Next, a list of instances is retrieved and
sorted taking into account the available space of the vehicle to this date, the require-
ments given and also the date.

3.3 Plan Manager

The Plan Manager has a main function for the good performance of the platform
presented in this work. Its aim is building and managing the delivery plan according
that we discussed in the Sect. 2. Therefore, when there is an agreement between user
and driver, we need to build a delivery plan that includes all the shipment for a concrete
date. Generally, in a closed fleet, the fleet manager system generates a fixed plan which
the provider has to carry out. However, in open fleets, the plan can be suddenly
modified to enhance its performance providing a new plan capable of reducing the CO2
emissions, orchestrating better or providing a more optimized transportation service.

Dynamic Delivery Plan Adaptation in Open Systems 195

4 Use Case (Plan Adaptation)

In this section, we introduce a real scenario where we will define the main relevant
issues known in collaborative transportation domain. We focus on plan adaptation. In
the scenario we assume that there are three delivery agents D1, D2, D3 in close locations
at a given time with the plans shown in Fig. 2.

Items book1 and printer1 have the following descriptions:

• “book1”: [ia:height: 30 cm, ia:width: 20 cm, ia:weight: 1.8 kg, ia:fragility: no, ia:
destination: {shop12, shopping mall central, zip code:12345}]

• “printer1”: [ia:height: 40 cm, ia:width: 60 cm, ia:weight: 5 kg, ia:fragility: no, ia:
destination: {travel agency TA, shopping mall central, zip code:12345}]

In the current delivery plans, tasks t12 and t22 have the following prices: Price(D1,
t12) = 3.99 €, Cost(D1, t12) = 2 €, Price(D2, t22) = 6.99 €, Cost(D2, t22) = 3.5 €.

The system realizes that there is a potential improvement of plans of D1 and D2.
They both have to go to the “central shopping mall” at some point to deliver a book and
a printer, respectively. The system put them in contact. There are two possible
improvements: (i) t12 is assigned from D1 to D2, or (ii) t22 is assigned from D2 to D1.

Let’s assume that for both carriers the cost of taking a small object to a planned
destination is 0.50€, and that coordination costs in both cases is rD1 = rD2 = 0.20€.

Now, we can analyze the two possibilities:

(A) t12 is assigned from D1 to D2. In this case, Cost(D2, t12) = 0.50€
Cost(D2, t12) + rD2(t12, D1) < D < Cost(D1, t12) − rD1(t12, D2)
0.50 + 0.20 < D < 2 − 0.20
0.70 < D < 1.80
They could reach an agreement in which D1 pays an amount between 0.70€ and
1.80€, for example, the mid quantity 1.25€.

Fig. 2. Scenario configured to perform the use case.

196 M. Á. Rodríguez-García et al.

(B) t22 is assigned from D2 to D1. In this case, Cost(D1, t22) = 0.50€
Cost(D1, t22) + rD1(t22, D1) < D < Cost(D2, t22) − rD2(t22, D1)
0.50 + 0.20 < D < 3.5 − 0.20
0.70 < D < 3.3
In this case, the agreement would be reached if D2 pays between 0.70€ and 3.3€ to
D1, for example 2€.

From the previous analysis, the best option is (B) since the savings are bigger, and
the benefits for both agents are higher.

5 Conclusions

In this work, we have formalized the delivery problem in open fleets, where trans-
portation tasks appear dynamically and deliverer agents may join and leave the fleet at
their will. We have seen how the decomposition of a delivery plan in a set of tasks can
directly affect the performance of the fleet. We have explored the conditions to
dynamically carry out task re-assignment among deliverer agents. Finally, we have also
proposed an architecture that is responsible for implementing this model.

Despite of generating a mathematical model capable of solving the analyzed
problems, there are still several issues related to dynamic fleet management and
coordination that need to be considered. Therefore, we consider them as a research
future lines to extend this work. In addition, although we use a centralized infras-
tructure, we believe that a centralized platform cannot provide the performance that is
necessary to coordinate such large open fleets. Therefore, we believe that changing the
model into a decentralized approach, it will help us to have a better control of the
vehicles’ behavior. Moreover, this disruptive model implies new challenges such as to
orchestrate and coordinate the new decentralized infrastructure, to provide mechanisms
that enable those nodes to share information and control the dynamic fleet. Hence,
those are some of the research lines to conduct as future work.

Acknowledgments. Work partially supported by the Autonomous Region of Madrid (grants
“MOSI-AGIL-CM” (S2013/ICE-3019) co-funded by EU Structural Funds FSE and FEDER and
Talent Attraction Program (“2017-T2/TIC-5664”)), project “SURF” (TIN2015-65515-C4-4-R
(MINECO/FEDER)) funded by the Spanish Ministry of Economy and Competitiveness, and
through the Excellence Research Group GES2ME (Ref. 30VCPIGI05) co-funded by URJC-
Santander Bank.

References

1. Rodrigue, J.P., Comtois, C., Slack, B.: The Geography of Transport Systems. Routledge, New
York (2009)

2. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale
des Sciences de Paris (1781)

3. Wang, W.W., Zhang, M., Zhou, M.: Using LMDI method to analyze transport sector CO2
emissions in China. Energy 36(10), 5909–5915 (2011)

Dynamic Delivery Plan Adaptation in Open Systems 197

4. Liu, Y., Wei, L.: The optimal routes and modes selection in multimodal transportation
networks based on improved A* algorithm. In: 2018 5th International Conference on
Industrial Engineering and Applications (ICIEA), pp. 236–240. IEEE, April 2018

5. Andreica, M.I., Briciu, S., Andreica, M.E.: Algorithmic solutions to some transportation
optimization problems with applications in the metallurgical industry. arXiv preprint arXiv:
0903.3622 (2009)

6. Herrero, R., Villalobos, A.R., Cáceres-Cruz, J., Juan, A.A.: Solving vehicle routing problems
with asymmetric costs and heterogeneous fleets. Int. J. Adv. Oper. Manage. 6(1), 58–80
(2014)

7. Billhardt, H., et al.: Coordinating open fleets. A taxi assignment example. AI Commun. 30(1),
37–52 (2017)

8. Burt, C.N., Caccetta, L.: Match factor for heterogeneous truck and loader fleets. Int. J. Min.
Reclam. Environ. 21(4), 262–270 (2007)

9. Rodríguez-García, M.Á., Fernández, A., Billhardt, H.: Provider recommendation in
heterogeneous transportation fleets. In: Bajo, J. (ed.) PAAMS 2018. CCIS, vol. 887,
pp. 416–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94779-2_36

198 M. Á. Rodríguez-García et al.

http://arxiv.org/abs/0903.3622
http://arxiv.org/abs/0903.3622
http://dx.doi.org/10.1007/978-3-319-94779-2_36

Autonomous Vehicles Coordination
Through Voting-Based Decision-Making

Miguel Teixeira1,2(B) , Pedro M. d’Orey1,2(B) , and Zafeiris Kokkinogenis1

1 Universidade do Porto, Porto, Portugal
{up201607941,kokkinogenis}@fe.up.pt, pedro.dorey@dcc.fc.up.pt

2 Instituto de Telecomunicações, Porto, Portugal

Abstract. This paper proposes the application of computational social
choice mechanisms to establish cooperative behavior within traffic sce-
narios involving autonomous vehicles. The main aim is to understand
the suitability of commonly used voting rules as a potential mechanism
for collective decision making in platoon applications considering unreli-
able communications. To realistically assess the system performance, we
designed an integrated simulation platform composed of an agent-based
platform, a microscopic traffic and a vehicular network models. Results
show the viability of these simple voting mechanism to maintain high
satisfaction among platoon members, which that can lead to stable for-
mations and consequently better traffic conditions. However, additional
mechanisms might need to be considered for larger platoon formations
to timely guarantee consensus between voters.

Keywords: Platooning · Voting mechanisms ·
Computational social choice · Connected Automated Vehicle ·
Collective decision-making

1 Introduction

Autonomous driving has gained momentum in recent years due to impressive
technological advances put forward by both academic and industrial researchers
[24]. The current main focus of automotive manufacturers is to design, build and
test vehicles that navigate autonomously in complex (urban) scenarios without
explicit cooperation with human drivers or users, i.e. the concept of collective
decision-making is considered mainly from an automation point of view. In par-
allel, advances in vehicular communication networks have enabled cooperation

This work is a result of grant UID/EEA/50008/2013 and the project MobiWise
(POCI-01-0145/FEDER-016426), funded by the European Regional Development Fund
(FEDER), through the Competitiveness and Internationalization Operational Pro-
gramme (COMPETE 2020) of the Portugal 2020 framework, and by national funds,
through Fundação para a Ciência e Tecnologia (FCT) and by FCT/MEC through
national funds.

c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 199–207, 2019.
https://doi.org/10.1007/978-3-030-17294-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_15&domain=pdf
http://orcid.org/0000-0001-6188-0425
http://orcid.org/0000-0002-2017-808X
http://orcid.org/0000-0002-0247-4184
https://doi.org/10.1007/978-3-030-17294-7_15

200 M. Teixeira et al.

between vehicles (V2V, vehicle-to-vehicle communications), and between vehi-
cles and infrastructure (V2I, vehicle-to-infrastructure communications) in an
explicit way. In this context, cooperation stems from the periodic or event-driven
exchange of static and dynamic data e.g. through the broadcast of Cooperative
Awareness Messages (CAM) [6]. Only more recently the concept of Connected
Automated Vehicles (CAVs) has gained momentum [18].

Multi-Agent Systems (MAS) research has devised various collective decision-
making mechanisms (e.g. auctions, voting) to reach consensus over the agents’
aggregated preferences for tactical and strategic decision-making levels1. Nev-
ertheless, previous research on vehicle coordination has not studied extensively
the application of these approaches in certain domains or the evaluation was
mostly done under unrealistic conditions. For instance, MAS research on vehicle
coordination has not considered an unreliable communication channel.

In this paper, we study - under realistic conditions - the viability of voting
schemes for the coordination of CAVs. We argue that the evaluation of collective
decision making should take into account realistic (communication) constraints.
Specifically, we argue that collective decision making can be impacted by an
unreliable communication channel and bound to the performance of the under-
lying communication system. As a vehicular coordination use case, we consider
a platoon speed negotiation scenario to study the behavior of different voting
mechanisms and the impact of the vehicular communication network. Platoon-
ing is seen as a promising approach to reduce road congestion and improve
safety [13]. To realistically evaluate vehicle coordination mechanisms, we have
designed a hybrid simulation framework that encompasses an agent-oriented
platform (LightJason [3]), a traffic simulation model (SUMO [16]), and a vehic-
ular communication network simulator (OMNET++ [23]).

The main contributions of this paper are: (1) a multi-resolution and multi-
domain simulator for the development and evaluation of agent-based ITS applica-
tions considering realistic communication and vehicle constraints, and (2) a pre-
liminary study on the viability of social consensus (specifically, voting schemes)
for autonomous vehicles coordination (e.g. platoon cruising speed setting).

The remainder of this paper is organized as follows. In Sect. 2, we outline
the application of social choice mechanisms for vehicle coordination. Section 3
details the application of these mechanism in a vehicle platooning use case. The
realistic evaluation of voting rules for vehicular coordination is given in Sect. 4. In
Sect. 5, we review the relevant work on social consensus mechanisms for vehicle
coordination. The main conclusions are provided in Sect. 6.

2 Social Choice in Vehicle Coordination

Social choice theory provides tools for aggregating the preferences/plans of mul-
tiple agents, and reaching consensus on any subject matter. We hypothesize that
the use of voting mechanisms can promote fair cooperative interactions among
1 Hollnagel et al. [12] classified vehicular decision-making levels into strategic (e.g.

route), tactical (e.g. maneuvering) and operational (e.g. vehicle control).

Autonomous Vehicles Coordination Through Voting-Based Decision-Making 201

a group of agents (i.e. vehicles). In a standard voting procedure, the preferences
of all voting members across a set of candidates is aggregated, and based upon
their collective preference, a winner or a set of winners is determined.

Model: Let N = [n] be the set of voters participating in coordination tasks,
A be the set of m alternatives, {a1, ..., am}, and V be the list of votes over A,
{v1, ..., vn}. A tuple (A, V) is the election ε. Each voter i has an utility function
ui for alternative a, which is translated into a vote. Each voter is represented by
the vote that specifies its preferences over the alternatives in A.

Voting Rule: Within every election, all members must agree upon a voting rule
that determines how members cast their votes and how winners are determined.
Formally, a voting mechanism is a rule that given a profile ε determines the
winner, which can be represented by a social choice correspondence function:

F : {ε = (A, V)|V is a preference profile} → P (A)

where P (A) is the power set of A. For any election ε, F (ε) ⊆ A, corresponds
to the set of the election winners. In case of multiple winners, a tie-breaking
rule is applied. In this paper we consider four common voting rules [2] for single
candidate elections, namely:

– Plurality : A voter states its preferred candidate, and the winner is the candi-
date who scores the highest among its competitors.

– Approval : Each voter selects a set of favourite candidates. The winner is the
candidate with the highest number of approvals.

– Borda: Each voter ranks each candidate according to their preferences and
attributes a score to each one. For a candidate set of size m, voters give m−n
points to the nth ranked candidate (e.g. m − 1 to their first choice, m − 2 to
their second, ... , 0 to their least approved). The winner is the candidate with
the most points.

– Copeland : Uses a round-robin style election, where each voter casts their pref-
erence on every possible pairwise candidate set. The winner is the candidate
with the most pairwise wins.

We consider an iterative voting process that is triggered by defined events.
Also, we assume the existence of a chair that is responsible for the election pro-
cess. When an election is initiated, the chair provides the context and candidate
set to all voters in N . Next, all members communicate their votes to the chair,
which applies the voting rule to determine the score of each candidate. At the
end of each iteration, the chair creates a new set of candidates composed of the
top-50% highest scored candidates. This subset is sent again to the voters and a
new voting iteration begins. When only three or less candidates remain, the can-
didate with the highest scoring is declared the winner. All voters are notified once
the winner has been determined. The exchange of information between voters
and chair is performed preferably through (encrypted) V2V communications.

Tie-Breaking Mechanisms: There exists several mechanisms to identify a
single winner. In case of a tie, we consider that the chair casts its preferential
vote based on their preference as proposed in [7].

202 M. Teixeira et al.

3 Case Study

To study the viability of voting mechanisms for cooperative traffic applications,
we consider a platooning scenario where vehicles need to reach consensus on
the formation’s cruising speed. We assume that there already exists a platoon
formation, and that there exists a mechanism to assign a vehicle as chair. Each
agent has its own desired speed chosen randomly in a given range (e.g. [85,
120] km/h). Each agent casts its vote based upon their perceived utility on each
candidate’s speed and the given voting rule. We resort to the utility function
defined in [15], where the utility of agent i being in the platoon Cj is:

U(i, Cj) = 1 − |Di − Sij |
Di

− λ(j)
|Pi − Sij |

Pi
(1)

where Di is agent’s i desired speed, Pi its current speed, and Sij the candidate
speed offered by platoon j to agent i. The cost factor for joining the platoon,
λ(j) |Pi−Sij |

Pi
, is zero for all elements in the platoon. Each agent calculates the

utility of each candidate speed and converts the sequence of utility into a vote
according to the voting rule. Despite its simplicity, this use case allows us to
present initial findings on the following two relevant research questions:

– Q1: Do different voting rules applied to vehicular platooning express signifi-
cant differences in driver satisfaction?

– Q2: How an imperfect vehicular communications affects the viability and/or
performance of different voting mechanism for vehicular coordination?

Question Q1 is evaluated by measuring the average platoon utility and com-
paring the results among the different voting rules defined in Sect. 2. Question
Q2 is assessed by analyzing the time needed to reach a consensus on cruising
speed. We consider the following baseline scenarios as benchmark:

– Q1: cruising speed is decided by the platoon leader unilaterally (totalitarian);
– Q2: V2V communications are perfect (e.g. no packet loss, zero delay).

4 Framework Evaluation

4.1 Simulation Framework

In order to simulate real-world constraints of a vehicular network, the decision-
making agents should interact in an environment that imposes both constraints
to wireless communication and on mobility. To achieve this goal, a hybrid sim-
ulation framework (Fig. 1) integrating the following components was developed:

– agent-oriented platform (LightJason [3]) that defines the agent
behaviours and is responsible for high-level decision making (i.e. voting).

– microscopic traffic simulator (SUMO [16]) that replicates the vehicular
traffic dynamics (e.g. vehicle kinematics or vehicle interactions).

Autonomous Vehicles Coordination Through Voting-Based Decision-Making 203

OMNeT++

TraCI Interface

Omnet++ interface

DecisionsASL files Agents

Query
Builder

Agent
Triggers

Vehicle
Controllers

Instructions
Jason Interface

Agent Manager

LightJason

SUMO Road Traffic Simulation

Triggers

Environment Control

Fig. 1. Simulation framework.

– network simulator (OMNeT++ [23]) that simulates the protocols of the
communication stack.

The framework follows a client-server design, with the LightJason applica-
tion acting as the server and the OMNeT++ side as the client. Vehicle applica-
tions continuously send information to the server (i.e. Triggers), and periodically
request the server for any decisions made by the agents (i.e. Instructions). The
interaction between the microscopic traffic simulator SUMO and the network
simulator OMNET++ follows the concept presented in [23].

Message transmission occurs via broadcast using dedicated messages for
negotiation similar to the protocols developed in [22] and [21]. A key differ-
ence is that we resort to dedicated broadcast messages, instead of piggybacking
acknowledgments in the CAMs. Potential alternative could also be receiver-based
approaches [11]. The assessment of the most efficient method for reliable message
exchange out of scope of this work.

4.2 Metrics

We consider the following evaluation metrics:

– Average (normalized) platoon utility (Up): average utility of all platoon
members used for evaluating the utilitarian social welfare of the platoon. This
metric is normalized with respect to the platoon size for comparison reasons.

– Time to consensus (TtC): time interval between the start ts and conclu-
sion te of an election including all iterations needed to reach consensus;

4.3 Scenario and Parameter Settings

– Use Case Scenario: We consider platoons with 4 to 8 elements. For statis-
tical significance reasons, we run 30 simulation runs for each platoon size and
voting rule.

– Microscopic traffic simulation: The scenario consists of a 1 km stretch of
highway with three lanes where the platoon and other injected traffic at a
density of 90 vehicles/km co-exist.

204 M. Teixeira et al.

– Network simulation: The transmission power is 15 dBm. All vehicles trans-
mit CAMs with a frequency of 10 Hz and with 200 Bytes in size. The two-ray
propagation model is used in the simulations [23].

4.4 Results

Figure 2 depicts the average platoon utilities Up as a function of the platoon
size and for different voting rules. We observe that the median and average
values of Up vary around 0.9, which demonstrates the viability of the voting
mechanism to maintain high satisfaction levels. Note also that, on average, all
rules obtain higher utility scores than the baseline scenario (i.e. cruising speed
decided unilaterally by platoon leader). These results indicate that voting may
be beneficial as a negotiation mechanism for AVs.

For a given platoon size, we also apply the Kolmogorov–Smirnov (K-S) to
determine if two given voting rules follow the same distribution (with significance
level of 5%). The K-S test shows that - for a given platoon size - in general we
cannot reject the null hypothesis H0 that two given Up distributions are equal.
However, the test confirms the difference between the baseline and voting rules
Up distributions (H0 rejected) for all platoon sizes.

Figure 3 depicts the Time to Consensus (TtC) metric. The results show that
for smaller platoons (<= 8) this metric is - on average - within typical time-
horizons for tactical level decision-making (<2 s) and, as expected, the TtC

Fig. 2. Average platoon utility as a function of the platoon size and voting rule (mean
values represented by the red diamond).

Fig. 3. Time To Consensus (TtC) as a function of the platoon size and voting rule
(mean values represented by the red diamond).

Autonomous Vehicles Coordination Through Voting-Based Decision-Making 205

increases for larger platoon sizes. Thus, the communication system adds a non-
negligible delay to the decision making process since several nodes contend for
channel access within a very small time interval. For larger sizes, the latency
induced to create social consensus is large enough that vehicles may not be able
to achieve complete consensus in a reasonable time interval. From a communica-
tion perspective, the iterative voting mechanism appears viable for reliable use
in vehicular networks at small platoon sizes. For larger platoons, a smaller num-
ber of voting iterations or other voting mechanisms might be needed to maintain
short negotiation times. Longer negotiation times could impair a number of phe-
nomena (e.g. traffic flow) if no additional actions are taken (e.g. queue at end of
platoon).

5 Related Work

Tactical (Platoon) Coordination: Several computational social choice
approaches have been applied to vehicular coordination at a tactical level. Den-
nisen et al. [8] proposed an agent-based voting architecture for traffic applica-
tions and theorized possible applications for taxi-sharing and platooning scenar-
ios. In [9] iterative committee elections are considered for reaching consensus
in ride-sharing applications. Sanderson and Pitt [19] propose an institutional-
ized consensus approach in platoon applications using self-organizing electronic
institutions. Voting mechanisms for leader elections have been used in vehicle
coordination in intersection management scenarios as in Ferreira et al. [10]. In [4]
vehicular coordination is achieved using consensus for the vehicle leader election.

Operational Platoon Coordination: Santini et al. [20] present a longitu-
dinal controller based on distributed consensus approach as potential solution,
where communication delays and topology of the vehicles’ network are taken
into consideration. Jia and Ngoduy [14] consider a leader-follower consensus-
based controller for multi-platoon cooperative driving. Their results show that
the leader’s information is crucial for the platoon stability and the leader-follower
communication scheme is more suitable for vehicle platooning.

Alternative to computational social choice methods are the market-based
approaches. Although auctions have been extensively used in road intersection
management, [17] is one of the few works to consider auctions for driving plans
negotiation in platoon applications.

Simulation: Similar approaches to the proposed simulation frameworks in this
paper have been conducted by various authors as in [5] a traffic arterial manage-
ment solution is discussed, although without consideration for a communications
network simulator. Evaluation of platooning maneuvers when communication
failure occurs is done in [1], using an OMNeT++ and SUMO integration, how-
ever without the MAS component.

To summarize, the novel contribution of this paper is the analysis of various
voting rules in an agent-based platoon scenario in the presence of unreliable
communications settings for tactical decision-making (e.g. platoon speed).

206 M. Teixeira et al.

6 Conclusion and Discussion

We studied the viability of four commonly used voting mechanisms (Plurality,
Borda, Copeland and Approval) to enable coordination in a platooning sce-
nario considering an unreliable communication channel. The results indicate
that these social consensus mechanisms show good results in maintaining high
satisfaction and that voting may be an appropriate negotiation mechanism for
autonomous vehicles. We can also conclude that voting mechanisms have an
acceptable response time for low platoon sizes (i.e. <9), but larger platoons
might need additional methods to timely achieve consensus.

Future research will look into the voting rules and market-based mechanisms
in more complex scenarios, including platoon formation where computational
social choice mechanisms are associated to a cost, as well to intra-platoon inter-
actions at intersections.

References

1. Amoozadeh, M., Deng, H., Chuah, C.N., Zhang, H.M., Ghosal, D.: Platoon man-
agement with cooperative adaptive cruise control enabled by vanet. Veh. Commun.
2(2), 110–123 (2015)

2. Arrow, K., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare, vol. 1.
Elsevier, Amsterdam (2002)

3. Aschermann, M., Kraus, P., Müller, J.P.: LightJason: a BDI framework inspired
by Jason. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V.
(eds.) EUMAS/AT -2016. LNCS (LNAI), vol. 10207, pp. 58–66. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59294-7 6

4. Asplund, M., Lövhall, J., Villani, E.: Specification, implementation and verifica-
tion of dynamic group membership for vehicle coordination. In: IEEE Pacific Rim
International Symposium on Dependable Computing, pp. 321–328. IEEE (2017)

5. Batista, A., Coutinho, L.R.: A multiagent system for combining green wave and
adaptive control in a dynamic way. In: IEEE Conference on Intelligent Transporta-
tion Systems, pp. 2439–2444. IEEE (2013)

6. Boban, M., d’Orey, P.M.: Exploring the practical limits of cooperative awareness
in vehicular communications. IEEE Trans. Veh. Technol. 65(6), 3904–3916 (2016)

7. Brandt, F., Saile, C., Stricker, C.: Voting with ties: strong impossibilities via sat
solving. In: International Conference on Autonomous Agents and Multiagent Sys-
tems (2018)

8. Dennisen, S.L., Müller, J.P.: Agent-based voting architecture for traffic applica-
tions. In: Müller, J.P., Ketter, W., Kaminka, G., Wagner, G., Bulling, N. (eds.)
MATES 2015. LNCS (LNAI), vol. 9433, pp. 200–217. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27343-3 11

9. Dennisen, S.L., Müller, J.P.: Iterative committee elections for collective decision-
making in a ride-sharing application. In: International Workshop on Agents in
Traffic and Transportation (ATT) (2016)

10. Ferreira, M., d’Orey, P.: On the impact of virtual traffic lights on carbon emissions
mitigation. IEEE Trans. Intell. Transp. Syst. 13, 284–295 (2012)

11. Gholibeigi, M., Heijenk, G., Moltchanov, D., Koucheryavy, Y.: Analysis of a
receiver-based reliable broadcast approach for vehicular networks. Ad Hoc Netw.
37, 63–75 (2016)

https://doi.org/10.1007/978-3-319-59294-7_6
https://doi.org/10.1007/978-3-319-27343-3_11

Autonomous Vehicles Coordination Through Voting-Based Decision-Making 207

12. Hollnagel, E., N̊abo, A., Lau, I.V.: A systemic model for driver-in-control. In: Inter-
national Driving Symposium on Human Factors in Driver Assessment, Training
and Vehicle Design, pp. 86–91 (2004)

13. Jia, D., Lu, K., Wang, J., Zhang, X., Shen, X.: A survey on platoon-based vehicular
cyber-physical systems. IEEE Commun. Surv. Tutor. 18(1), 263–284 (2016)

14. Jia, D., Ngoduy, D.: Platoon based cooperative driving model with consideration
of realistic inter-vehicle communication. Transp. Res. Part C Emerg. Technol. 68,
245–264 (2016)

15. Khan, M.A., Boloni, L.: Convoy driving through ad-hoc coalition formation. In:
IEEE Real Time and Embedded Technology and Applications Symposium, pp.
98–105. IEEE (2005)

16. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5,
128–138 (2012)

17. Rewald, H., Stursberg, O.: Cooperation of autonomous vehicles using a hierarchy
of auction-based and model-predictive control. In: 2016 IEEE Intelligent Vehicles
Symposium (IV), pp. 1078–1084. IEEE (2016)

18. Rios-Torres, J., Malikopoulos, A.A.: A survey on the coordination of connected
and automated vehicles at intersections and merging at highway on-ramps. IEEE
Trans. Intell. Transp. Syst. 18(5), 1066–1077 (2017)

19. Sanderson, D., Pitt, J.: Institutionalised consensus in vehicular networks: exe-
cutable specification and empirical validation. In: IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshops, pp. 71–76. IEEE (2012)

20. Santini, S., Salvi, A., Valente, A.S., Pescapé, A., Segata, M., Cigno, R.L.: A
consensus-based approach for platooning with intervehicular communications and
its validation in realistic scenarios. IEEE Trans. Veh. Technol. 66(3), 1985–1999
(2017)

21. Segata, M., Bloessl, B., Joerer, S., Dressler, F., Cigno, R.L.: Supporting platoon-
ing maneuvers through IVC: an initial protocol analysis for the join maneuver.
In: Annual Conference on Wireless On-demand Network Systems and Services
(WONS), pp. 130–137. IEEE (2014)

22. Segata, M., Dressler, F., Cigno, R.L.: Jerk beaconing: a dynamic approach to
platooning. In: IEEE Vehicular Networking Conference, pp. 135–142 (2015)

23. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road
traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1),
3–15 (2011)

24. Ziegler, J., Bender, P., Schreiber, M., et al.: Making bertha drive–an autonomous
journey on a historic route. IEEE Intell. Transp. Syst. Mag. 6(2), 8–20 (2014)

Balancing Strategies for Bike Sharing Systems

Alberto Fernández(&) , Holger Billhardt , Sandra Timón,
Carlos Ruiz, Óscar Sánchez, and Iván Bernabé

CETINIA, University Rey Juan Carlos, Madrid, Spain
{alberto.fernandez,holger.billhardt,sandra.timon,

carlos.ruiz,oscar.sanchezsa,ivan.bernabe}@urjc.es

Abstract. The increase of population in big cities has produced several prob-
lems related to mobility of humans in the city, such as congestions, CO2
emissions, etc. Lately, governments are trying to mitigate this situation by
promoting the use of greener means of transportation such as electrical vehicles
or bikes. In this paper, we focus on station-based bike sharing systems (BSS).
This type of infrastructure (bikes and parking docks) is shared by many users.
However, there are some inefficiencies in their management to imbalanced sit-
uations in which some stations fail to provide the service (bike hires or returns)
because they are empty or full. We tackle this problem by suggesting users to
take (or return) bikes from stations with the goal of keeping the system as
balanced as possible. We evaluate our proposal with Bike3S, a bike sharing
system simulator developed for testing these types of strategies.

Keywords: Bike sharing � Smart transportation � Smart mobility �
Multi-agent systems

1 Introduction

Currently, the management of urban mobility is a topic of growing interest in our
society because it affects our lives, particularly in large cities. Citizens not only need to
move around the city in a comfortable and fast way, but they also want to be eco-
friendly. However, this does not happen regularly and citizens do not only have to deal
with traffic congestion problems, parking problems and delays in public transport every
day. But they (or at least the governments) also have to think about the sustainable
future and try to reduce pollution and to avoid future health problems.

In recent years, to alleviate this situation, some proposals have appeared that try to
reduce the number of displacements promoting habits related to teleworking and others
so as to improve urban mobility. The use of bike sharing systems (BSS) is an effective
way to deal with these problems. BSS allow users to take a bicycle and facilitates the
movement around the city.

These systems can be managed by different business models but, basically, users
register in the system for an economic price and users are free to take a bicycle, move
around the city and return the bike in another different location. Regardless of the
business model, bike-sharing-systems are limited by resources and the main problem is
that those resources must be managed efficiently for the proper functioning of the
system, i.e. maximize their availability to citizens.

© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 208–222, 2019.
https://doi.org/10.1007/978-3-030-17294-7_16

http://orcid.org/0000-0002-8962-6856
http://orcid.org/0000-0001-8298-4178
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-17294-7_16

While in some recent BSS idle bikes are left “floating” anywhere in the city [1, 2],
in most systems there are docking stations where bikes have to be left and taken. In this
paper we focus on the latter type of BSS.

The main resources of these systems are bike stations distributed geographically
around the city and, specifically, the available bikes and empty slots to park them.
A system is effective if users arriving at stations to hire bikes find at least one available,
likewise they find empty slots to return them.

Sometimes the effectiveness of these systems depends on external services (fleet
operator) responsible for keeping the system balanced.

In this paper we deal with balancing station-based bike sharing systems. We
consider systems in which short-term demand is not known (e.g. historic data are not
available, or they are very variable). We propose individualized incentives to persuade
users to take (or leave) bikes from stations with the goal of keeping the system as
balanced as possible. Our proposal is scalable to systems with high number of stations.

The rest of the paper is organized as follows. In Sect. 2 we analyze some related
works on balancing BSS. Section 3 describes our vision of a BSS infrastructure. We
describe several quality metrics for comparing BSS in Sect. 4. Our proposed balancing
strategies are described in Sect. 5. We describe the experimental settings and the results
obtained in Sect. 6. Finally, we close the paper with some conclusions and future lines.

2 Related Works

Bicycle sharing systems (BSS) are gaining interest due to the benefits they bring to the
cities. [3–5] present the benefits that BSS bring socially, to the environment and to
business models, mainly in Europe, Asia and America. In particular, [6] presents the
evolution, adoption and expansion of these systems.

The operation of a BSS can be improved from several directions. Some works focus
on predicting user demand or the stock of stations in future periods [7–11]. Basically,
they present prediction mechanisms and can be classified into two categories: solutions
based on station demand prediction models or models centered on a set of stations in
global. For example, [7] tries to predict bicycles in each station from parameters such
as the historical average, previous trends, previous values, etc. [8–10] use time series
analysis methods to predict hourly demand for each station. However, these solutions
depend on the state of the city at every moment, so if the city is in an abnormal state
these solutions may not work efficiently.

[11, 13] present a hierarchical prediction model that predict the number of bicycles
that will be rented or returned in each cluster of stations. These solutions balance the
number of bikes in a cluster offering a coarse grain balance of the number of available
bicycles. In our work, we try to make a fine grain balance at station level.

Many existing systems in cities use trucks to move bikes among stations and try to
keep the BSS balanced. In fact, some works have proposed approaches to optimize the
routes of trucks during periods of low activity such as at night or off-peaks, e.g. [1, 2].

Other works, such as [12–15], present the problem in a dynamic way where the
demand of bikes at each station is forecasted and they try to optimize the distribution of
bikes in each station to maximize the number of trips. Using tracks to move bikes

Balancing Strategies for Bike Sharing Systems 209

among different stations is one option to reduce the unbalance situation, but other
works such as [15–17] propose giving incentives to users to collaborate in the distri-
bution of bikes. Chemla et al. [15] uses demand prediction and propose an optimization
problem to maximize the average number of users that find a bike per time unit. The
problem is NP-hard and they use heuristics to solve it. They also use dynamic pricing
that is charged when a user leaves a bike. Pfrommer et al. [17] propose a combination
of trucks and incentive for users. Price incentives is the most used approach (and
maybe intuitive), but other options might be possible (promotions, points, etc.).

3 Bike Sharing System

The aforementioned solutions improve the general functioning of BSS, however they
present scalability problems limiting the use of the system to scenarios with
low/medium number of stations and few bikes (small geographical areas). Big cities are
increasing the resources devoted to this kind of transport system, for example London
and New York have more that 750 stations and about 12000 bikes each. In this work
we are interested in scalable balancing strategies.

Figure 1 represents a common scenario in an area of the city. There is a set S of
docking stations (squares in the picture). Users are interested in renting (or returning)
bikes in nearby stations (within a radius Ru, e.g. 500 m of walking distance). The user
shown in Fig. 1 is located at distance di from station i. A station i has a number bi of
bikes and ei of empty slots. They also have information about the stations in their
neighborhood Ni, which are the stations located in a range Rs, i.e. Ni = {j 2 S | dij �
Rs}. Neighborhood of stations represent other stations that are located at a short distance,
so they could be considered by users in case there are not available bikes in their current
station.

Fig. 1. Bike sharing system. Squares represent stations. Each user and station have a range of
action, Ru and Rs respectively, which represent the maximum distance a user is willing to walk.

210 A. Fernández et al.

The general functioning of the system is as follows. A user u wants to hire a bike
near her location. She can either walk to the closest station or use an official app to get
information and recommendation about which station to go. By recommendation we
mean request to go to a station that is good for improving the balanced distribution of
bikes through stations.

4 Quality Measures for Bike Sharing Systems

In this section we describe several metrics for evaluating the quality of service provided
by bike sharing systems. The goal is to use them to compare different balancing
strategies.

4.1 Metrics Considering Absence of Bikes/Slots

The lack of available resources implies that some users might not satisfy their demand
(renting or returning a bike). As a consequence of this absence of bikes and/or slots,
users cannot make a reservation of any of these two resources. This means they are not
receiving a good service from the bike sharing system.

A way of discovering the bad system operation (because of a bad balancing
strategy) is analyzing how many failed attempts of renting/returning a bike or making a
reservation have occurred. Then, it is possible to calculate more significant quality
metrics to evaluate the effectiveness of the system in general.

We use the following metrics (N is the total number of users, i.e. total bike
demand), which are calculated from these basic definitions: Successful hires (SH, total
number of bike rentals), Failed hires (FH, total number of attempts to hire a bike that
failed due to unavailability), Successful returns (SR) and Failed returns (FR):

• Demand satisfaction (DS): ratio of users who were able to hire a bike (either at first
trial or not), including those who booked a bike in advance.

DS ¼ SH =N

• Return satisfaction (RS): ratio of users who were able to return their bikes (either at
first trial or not), including those who booked a dock in advance. Note that return
demand is SH (those who actually hired a bike). The result should be 1, otherwise
there are users who did not find an empty slot.

RS ¼ SR = SH

• Hire efficiency (HE): ratio between the number of rentals and the total rental
attempts of those users who hired a bike (FHh).

HE ¼ SH = SHþFHhð Þ

Balancing Strategies for Bike Sharing Systems 211

• Return efficiency (RE): ratio between the number of returns and the total return
attempts:

RE ¼ SR = SHþFRð Þ

4.2 Time with Low Resources

One of the problems with the metrics described in the previous section is that in real
settings it is difficult to count the number of failed attempts to rent or return bikes. That
is due to several reasons. Firstly, only successful actions are registered in the system.
Secondly, users frequently have access to information about resource availability via an
app or web page, so they go to the nearest station with available resources (this is more
common to rent than to return bikes).

The time a station is empty (of bikes/slots for renting/returning) can be used to
alleviate the failed service metrics. An empty station is potentially denying a service.
Thus, the longer a station is empty the lower the quality of service it provides.
Obviously, not always an empty station is provoking service failures, but it is an
indicator that can be combined with others for a better analysis.

We can generalize this approach and consider not only empty states but also
availability of resources under a given threshold u.

Given the total time T equally divided in time units ti, T ={t1, t2, …, tn}, the time
with low resources for station i, TESi, is obtained as:

TESi = |{t | bi(t) � u
W

ei(t) � u}|, where bi(t) and ei(t) are the number of
available bikes and empty slots in station i at time t.

4.3 Deviation with Regards to a Reference Balanced Situation

Some strategies aim at keeping the number of available bikes in station i as close as
possible to a reference balance situation hi (typically half its capacity). If demand
estimation is known, this value should be adapted to face the net demand (hires –

returns).
Figure 2 shows graphically the idea of this metric. The goal is to calculate the area

striped above and under the reference value h, which is a straight line. Then, the larger
this area is, the worse the situation is, because it means the stations are moving further
away from the desired state.

Average deviation (Di) of station i is defined as the mean number of bikes deviation
through time, and is obtained by the following equation:

Di ¼ 1
Tj j

ffiX

t2T
bi tð Þ � hij jbb

r

where bi(t) is the number of available bikes in station i at time t. b � 1 is a constant to
give more importance to deviation. For example, four bikes of deviation during one-
time unit (e.g. one hour) values the same as one bike deviation in four-time units. The
former seems worse balanced that the latter, so b > 1 can adjust Di in that sense.

212 A. Fernández et al.

4.4 Users’ Time in the System

Many users use shared bikes as transportation mean. In those cases, they are interested
in finding a bike as close as possible to their origin, and an empty slot as close as
possible to their destination. If nearby stations do not have available resources, then
they have to walk longer distances so the quality of service decreases. Therefore, users’
total time is one of the metrics to estimate service quality. Total time (TT) is the sum of
walking time to origin station (Tos), cycling travel time to return station (Trs) and
walking time to final user destination (Tfd):

TT ¼ Tos þ Trs þ Tfd

Note that Tos and Trs include walking or cycling (respectively) from station to
station in no available resources are found.

5 Our Proposal for Balancing BSS

In this section we describe several strategies that aim at keeping a bike sharing system
balanced. We consider a strategy as a method that returns a list of candidate stations
(within a maximum distance) sorted by a function f that represents the interest to the
global system according to the strategy criterion (the higher f the better).

We start presenting methods that only consider for each station its own availability
of resources. Then, we propose how to incorporate the influence that neighbor stations
may have on each other. Finally, we present approaches that include incentives so as to
influence users to take the actions that are proposed for the interest of the global fleet
operation.

Fig. 2. Example deviation of number of bikes with regards to a reference value h through time.

Balancing Strategies for Bike Sharing Systems 213

5.1 Independent Stations

In this type of strategy, stations are considered independent and only their status is
taken into account. This approach has the advantage that it works even though the
station gets disconnected from the others. It also serves as a base for designing more
sophisticated methods as we present in next sections.

Absolute Number of Available Resources (A)
The most intuitive strategy is to assign the station with higher number of bikes (for
hiring) or empty slots (for returning).

fi ¼ bi hiringð Þ
fi ¼ ei returningð Þ

where bi and ei are the number of available bikes and empty slots in station i.

Ratio (R)
If the capacity of the stations is not the same, then strategy A does not work well.
Candidate stations are ordered by ratio of available resources/capacity. Thus, if the
request is for hiring or returning a bike the list of candidate stations is ordered by:

fi ¼ rhi = bi= bi þ eið Þ hiringð Þ
fi ¼ rri = ei= bi þ eið Þ returningð Þ

Available Resources/Distance (A/D)
Humans usually decide the target station as close as possible to their location so as to
minimize the walking distance. A/D strategy combines the ratio of available resources
with the distance from the station to the user. We measure distances in meters. Nev-
ertheless, the unit is not relevant since it only affects as a constant factor to the result,
which is only used to rank the candidate stations.

fi ¼ bi= di hiringð Þ
fi ¼ ei= di returningð Þ

Ratio/Distance (R/D)
This strategy is similar to A/D but using the ratio of available resources instead of the
absolute value, i.e. is a combination of strategy R with the distance to the station.

fi ¼ rhi= di hiringð Þ
fi ¼ rri= di returningð Þ

5.2 Considering Areas

Balancing strategies described in Sect. 5.1 consider stations independently, i.e. their
ranking value only depends on their own status (number of bikes and empty slots).

214 A. Fernández et al.

However, station information in isolation may not correctly reflect the status of an area
where the station is located.

However, consider the situation shown in Fig. 3. A user is located to equal distance
d of two stations, which have 4 and 5 available resources (e.g. bikes). According to the
previous strategies, the one to the right would be preferable by the strategy (let’s
assume all have the same capacity). However, the one to the left has many more
available bikes nearby (17 vs 3). Thus, it may be recommended to take the bike from
that one because that zone of the city is still better covered with extra bikes.

We model the influence of nearby stations as two “virtual” numbers: available bikes
vb and empty slots ve. Virtual values are obtained by combining the actual value with
the influence of neighbor stations proportional to their distances, as described by the
following equations:

vbi ¼
X

j2Ni

bj � wj

vei ¼
X

j2Ni

ej � wj

Where Ni is the neighborhood of station i, i.e. those stations located within the
neighborhood radio Rs, including i itself, and weighted factor:

wj ¼ 1� dij
Rs

This strategy uses vb and ve.

fi ¼ vbi hiringð Þ
fi ¼ vei returningð Þ

Fig. 3. Example of influence of neighbor stations. Squares represent stations, the number of
available resources is shown inside squares.

Balancing Strategies for Bike Sharing Systems 215

5.3 Including Incentives

The strategies proposed in previous sections try and balance resource distribution in a
fleet of bikes by proposing users where to take or return bikes. However, we did not
deal with how to convince users to use the proposed station in case it does not coincide
with their preference. This can be done using incentives (e.g. discounts).

Devising an incentive-based strategy requires knowing users’ behaviors with
regards to those incentives. In general, users have preferences regarding the station they
want to use, normally based on the walking distance to their location. Thus, we assume
users decide their target station as close as possible to their position. By using
incentives, we have to compensate the extra “effort” it takes to users to walk the extra
distance to a station located farther than the nearest one.

Instead of adopting a specific type of incentive (money, prizes, etc.), we define
incentive units. This allows us to have a common framework that can be instantiated in
particular cases and even being adaptable to different users (for example, some users
prefer discounts while others are more appealed to points).

User model. Users select target station s that maximizes their utility, i.e.:

s� ¼ argmaxsUðsÞ

The utility of station s is modelled as (value of incentive minus extra distance to
walk):

U sð Þ ¼ d incsð Þ � ðds �min
i

diÞ

Where di is the walking distance from the user location to station i, and d(x) is a
function that map incentive x to walking distances (e.g. 1 incentive = 100 m). We
adopt linear functions, d(x) = k�x.
Incentives Design. Our general approach to balancing strategies consists in two basic
elements. Firstly, we calculate a reward a user must receive to compensate the effort to
go to a farther station. Secondly, if we only provide a compensation all stations would
have the same utility for the user, so we need to add some extra value d, so the user
definitely will choose the proposed station. Formally, the incentive given to the user for
going to station i is calculated as follows:

Inci ¼ compi þ di
compi ¼ di� dminð Þ=k

Where di is the distance from the user to i, and dmin is the distance to the closer
station to the user. Note that if the ideal station is the nearest one then compensation is
no needed (compi = 0).

d values must be chosen such that they keep the order according to fi, i.e. di > dj if
and only if fi > fj, which can be obtained as di = a�fi, with a > 1.

216 A. Fernández et al.

In the experiments presented in this paper we assume that the incentives given to
users by the strategies are high enough to convince them to accept the recommended
station to hire or return bikes.

6 Evaluation

In this section we detail the evaluation carried out. We first describe the simulator used
for the experiments. Then we describe the chosen scenario and configuration. Finally,
we present the results and analysis.

6.1 Bike3S Simulator

Bike3S [18] is a simulator that allows analyzing the behavior of station-based bike-
sharing systems. The ultimate goal of the simulator is to help to evaluate dynamic
rebalancing algorithms based on user incentives (e.g. discounts) in different settings. In
this sense, different user types (behaviors) can be defined and different balancing
strategies can be implemented.

The main characteristics of the simulator include:

• Event-based engine: the core of Bike3S follows a discrete or event-based approach,
since the state of the system only changes when new events occur (e.g. a new user
appears, bike rentals or returns, etc.).

• User models: several different types of bike users are predefined. Each user type has
a particular behavior. During the simulation, users, depending on their behavior, can
use operator’s services to make decisions such as which station to take a bike from.
The user types catalog can be extended by developers.

• Configuration: simulation experiments are configured by providing three types of
parameters: (i) infrastructure (location, capacity and initial state of stations), (ii) user
generation (e.g. type of user, location, probability distribution, etc.) and (iii) global
configuration (simulation time, geographical area, etc.). These configuration
parameters are stored in json files but graphical user interfaces are available to
facilitate its creation.

• Results analysis: several metrics are taken to assess the quality of a balancing
strategy based on the success or fail attempts to hire/return bikes, total time of
empty/full stations and others.

• Graphical visualization: the evolution of the simulation can be shown on a map.

The modular design of Bike3S allows separating the configuration and user gen-
eration from the simulation execution, and the latter from the visualization and analysis.
Thus, the simulator can generate users or load them from a file. Likewise, the visu-
alization interface or data analysis tool can load previously stored simulation histories.

The simulator can be used with different objectives. On one hand, it can be used to
assess a specific bike-sharing system infrastructure (station locations, size, etc.) before

Balancing Strategies for Bike Sharing Systems 217

deploying it by testing how the proposed infrastructure behaves to a given expected
demand. On the other hand, different incentive based strategies can be implemented
and evaluated.

6.2 Scenarios

We have carried out several experiments to evaluate our proposals. We used real data
from BiciMAD1, the public bike sharing system of Madrid (Spain), which covers an
area of about 5 � 5 km square of central Madrid. BiciMAD counts on 173 stations and
1702 bikes. Each station has around 20 slots to plug in bikes.

We simulated the operation of one day of BiciMAD with real data of bike trips. In
particular we used the data of the 5th of October 2017, the day with the highest usage
of the system in 2017. For each trip (14877 in total), data include time of taking a bike,
origin station, time of returning, destination station and speed. Origin and returning
times are given just in hours (without minutes). In order to simulate the trips in a more
legalistic way we randomly2 generated appearance time in minutes within the specified
hour. In addition, we also randomly generated the appearance and destination location
of users within a radius of 200 m from the real origin and destination station,
respectively. All the stations were initialized with a ratio bikes/empty slots of 0.5
(stations initial state information was not available in the historic data). We set a
maximum of three failed attempts to rent or book a bike before leaving the system
without using it, and radios Ru = Rs = 600 m. Figure 4 shows a snapshot of the chosen
scenario in the simulator.

We compared the performance of the system for different recommendation
strategies and user types. In particular, we tested two scenarios without strategies and
six with different balancing strategies:

(1) Dummy. No strategy is used. Users always go to the nearest station.
(2) Informed Users. No strategy is used. Users have information about stations and

always go to the nearest station with available bikes (when they get the infor-
mation). It might be possible that upon arrival time there is not any bikes (e.g. the
last one was rented while walking to the station).

(3) Incentive-A. Applies strategy “Absolute number of resources” with incentives.
(4) Incentive-R. Applies strategy “Ratio” with incentives.
(5) Incentive-A/D. Applies strategy “Available Resources/Distance” with incentives.
(6) Incentive-R/D. Applies strategy “Ratio/Distance” with incentives.
(7) Incentive A-N. Applies strategy A combined with stations in the neighborhood,

and incentives.
(8) Incentive A/D-N. Applies strategy A/D combined with stations in the neighbor-

hood, and incentives.

1 https://www.bicimad.com/.
2 Uniform probability distribution is used unless stated differently.

218 A. Fernández et al.

https://www.bicimad.com/

6.3 Results and Analysis

In order to evaluate the proposed strategies, we used the quality metrics defined in
Sect. 4. We recall that DS, HE and RE, stand for demand satisfaction, hire efficiency
and return efficiency, respectively. We did not use return satisfaction (RS) because its
value is 1 (everyone with a bike eventually returns it). We measured the average time a
station is empty (time with low resources, with u = 0) and the average deviation per
station with regards to a reference level h of 50% of capacity and b = 1. Finally, we
also measured the average total time users that hired bikes are in the system.

Table 1 shows the results of the experiments. Demand satisfaction (DS) and effi-
ciency (HE and RE) are very high in general, specially using incentives. This is normal
because the historic data used in the simulation only contain successful hires. Despite
this fact, those values are not always 1 since we had to randomly distribute users within
each hour and close location as explained in Sect. 6.2, so the data are not exactly the
same as the historic records. Scenarios with strategies using incentives outperform
those without any strategy in most metrics. In particular, Dummy users get the lowest
performance in demand satisfaction (DS) and efficiency (HE and RE). That is due to the
fact that users go to their nearest station without even checking whether there are bikes
available. Strategies Incentive-A and Incentive-R obtain the best results in average

Fig. 4. Snapshot of the simulated scenario. Stations are represented by circles, with the number
of available bikes shown in them. The ratio of available bikes and free slots is shown in red and
green, respectively. Bike and person symbols represent users riding or walking, respectively.
(Color figure online)

Balancing Strategies for Bike Sharing Systems 219

empty time and deviation. The reason is that those metrics analyze station status and
both strategies try to keep individual stations as balanced as possible. However, they
get worse performance when we analyze the users’ perspective, i.e. the time users
spend in the system. Results of strategies using “distances” (A/D, R/D and A/D-N)
confirm that a tradeoff between distances and available resource results in good effi-
ciency and low total time, since users walk shorter distances.

7 Conclusion

In this paper, we have proposed several balancing strategies for bike sharing systems.
Our approach tries to keep the situation of each station balanced using only local
information, so it can be computed decentralized providing good scalability. We pre-
sented four basic strategies that only used local station information, then complemented
them with information of nearby stations. Finally, we presented a method for providing
incentives to users so as to try to influence in their behavior to hire or leave a bike in a
station that is better for the balancing of the system. We also proposed several quality
metrics to evaluate the performance of different BSS, i.e. assess different balancing
strategies.

We conducted several experiments using a real scenario obtained from data of
Madrid BSS. The results of our experiments showed that using balancing strategies
with incentives the quality of service is better. In addition, we confirmed that strategies
using information about the distance from origin or destination points to candidate
stations outperform the others.

There are quite a few open lines of research that we plan to explore in the near
future. The main work we plan to carry out is analyzing the economic effect of using
incentives. In particular, how much money is necessary to get a good performance, how
it affects to get extra incomes (more users), how many resources can be saved to get the
same QoS when using incentives, etc., are some of the questions we want to explore.
We also plan to improve and propose new balancing strategies, specially including
demand prediction.

Table 1. Experiments results. Bold numbers indicate the best obtained result for each metric.

Strategy Abandoned DS HE RE Avg. empty
time (min)

h-deviation
(avg)

Avg. total
time (min)

Dummy 210 0.986 0.934 0.826 92.8 5.6 16.5
Informed 46 0.997 0.981 0.942 90.6 5.6 16.0
Incentive-A 0 1 0.993 0.999 1.1 2.1 25.7
Incentive-R 0 1 0.991 0.997 1.5 2.0 25.9
Incentive-A/D 19 0.999 0.999 0.956 98.3 5.0 17.7
Incentive-R/D 8 0.999 0.998 0.986 17.1 4.3 15.7
Incentive A-N 17 0.999 0.963 0.976 44.1 3.9 26.7
Incentive A/D-N 7 1 0.993 0.981 54.0 5.0 15.8

220 A. Fernández et al.

Acknowledgments. Work partially supported by the Autonomous Region of Madrid (grants
“MOSI-AGIL-CM” (S2013/ICE-3019) co-funded by EU Structural Funds FSE and FEDER, and
“PEJD-2017-PRE/TIC-3412” by “Consejeri ́a de Educacio ́n, Juventud y Deporte” and FSE),
project “SURF” (TIN2015-65515-C4-4-R (MINECO/FEDER)) funded by the Spanish Ministry
of Economy and Competitiveness, and through the Excellence Research Group GES2ME (Ref.
30VCPIGI05) co-funded by URJC-Santander Bank.

References

1. Pal, A., Zhang, Y.: Free-floating bike sharing: Solving real-life large-scale static rebalancing
problems. Trans. Res. Part C: Emerg. Technol. 80, 92–116 (2017)

2. Reiss, S., Bogenberger, K.: Optimal bike fleet management by smart relocation methods:
combining an operator-based with an user-based relocation strategy. In: IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC), pp. 2613–2618
(2016)

3. Shaheen, S., Zhang, H., Martin, E., Guzman, S.: China’s hangzhou public bicycle:
understanding early adoption and behavioral response to bikesharing. Trans. Res. Rec.
J. Transp. Res. Board 2247, 33–41 (2011)

4. Shaheen, S.A., Guzman, S., Zhang, H.: Bikesharing in Europe, the Americas, and Asia.
Transp. Res. Rec. J. Transp. Res. Board 2143, 159–167 (2010)

5. Shaheen, S.A., Cohen, A.P., Martin, E.W.: Public Bikesharing in North America: Early
Operator Understanding and Emerging Trends. Transp. Res. Rec. J. Transp. Res. Board
2387, 83–92 (2013). https://doi.org/10.3141/2387-10

6. Parkes, S.D., Marsden, G., Shaheen, S.A., Cohen, A.P.: Understanding the diffusion of
public Bikesharing systems: evidence from Europe and North America. J. Transp. Geogr.,
vol. 31, pp. 94–103, 2013. http://linkinghub.elsevier.com/retrieve/pii/S0966692313001130

7. Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city through
shared bicycling. In: IJCAI (2009)

8. Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., Banchs, R.: Urban cycles and mobility
patterns: exploring and predicting trends in a bicycle-based public transport system.
Pervasive Mob. Comput. 6(4), 455–466 (2010)

9. Vogel, P., Mattfeld, Dirk C.: Strategic and operational planning of bike-sharing systems by
data mining – a case study. In: Böse, Jürgen W., Hu, H., Jahn, C., Shi, X., Stahlbock, R.,
Voß, S. (eds.) ICCL 2011. LNCS, vol. 6971, pp. 127–141. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24264-9_10

10. Borgnat, P., Fleury, E., Robardet, C., Scherrer, A.: Spatial analysis of dynamic movements
of Velo’v, Lyon’s shared bicycle program. In: European Conference on Complex Systems
(ECCS) (2009)

11. Li, Y., Zheng, Y., Zhang, H., Chen, L.: Traffic prediction in a bike sharing system. In:
ACM SIGSPATIAL (2015)

12. Contardo, C., Morency, C., Rousseau, L. M.: Balancing a dynamic public bike-sharing
system. Technical Report vol. 4. CIRRELT (2012)

13. O’Mahony, E., Shmoys, D.B.: Data analysis and optimization for (citi)bike sharing. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015).
pp. 687–694. AAAI Press (2015)

14. Schuijbroek, J., Hampshire, R.C., Van Hoeve, W.J.: Inventory rebalancing and vehicle
routing in bike sharing systems. Eur. J. Oper. Res. 257(3), 992–1004 (2017)

Balancing Strategies for Bike Sharing Systems 221

http://dx.doi.org/10.3141/2387-10
http://linkinghub.elsevier.com/retrieve/pii/S0966692313001130
http://dx.doi.org/10.1007/978-3-642-24264-9_10

15. Chemla, D., Meunier, F., Pradeau, T., Calvo, R.W., Yahiaoui, H.: Self-service bike sharing
systems: Simulation, repositioning, pricing (2013). https://hal.archives-ouvertes.fr/hal-
00824078

16. Fricker, C., Gast, N.: Incentives and regulations in bike-sharing systems with stations of
finite capacity. arXiv:12011178 (2012)

17. Pfrommer, J., Warrington, J., Schildbach, G., Morari, M.: Dynamic vehicle redistribution
and online price incentives in shared mobility systems. IEEE Trans. Intell. Transp. Syst.
15(4), 1567–1578 (2014)

18. Fernández, A., Timón, S., Ruiz, C., Cumplido, T., Billhardt, H., Dunkel, J.: A bike sharing
system simulator. In: Bajo, J., et al. (eds.) PAAMS 2018. CCIS, vol. 887, pp. 428–440.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94779-2_37

222 A. Fernández et al.

https://hal.archives-ouvertes.fr/hal-00824078
https://hal.archives-ouvertes.fr/hal-00824078
http://arxiv.org/abs/12011178
http://dx.doi.org/10.1007/978-3-319-94779-2_37

Towards Distributed Real-Time
Coordination of Shoppers’ Routes

in Smart Hypermarkets

Marin Lujak(B) and Arnaud Doniec

IMT Lille Douai, Douai, France
{marin.lujak,arnaud.doniec}@imt-lille-douai.fr

Abstract. In this paper, we consider the problem of route guidance for
shoppers in crowded hypermarkets equipped with smart space technolo-
gies. This is an actual and a highly computationally complex problem in
peak hours due to dynamically changing congestion conditions, the size
and complexity of hypermarkets, and the presence of a multitude of shop-
pers with different shopping constraints and preferences. High compu-
tational complexity of this problem requires a computationally efficient
solution approach. We propose a shopper route guidance architecture in
which a hypermarket is modelled as a network of communicating smart
building agents, each one monitoring its exclusive physical area. More-
over, each shopper is represented by an agent installed on a shopper’s
app that, by interacting with other shoppers and smart building agents,
dynamically updates its shopping route. Each shopper agent resolves the
pick sequencing problem with congestion, i.e., given a shopper’s list, the
shopper’s items’ locations are sequenced in the route proposed to a shop-
per so that the overall traveling time is minimized considering congestion
in real-time. We propose a (low computational complexity) greedy tour
algorithm and a distributed TSP mathematical model solved in Cplex
for this problem and compare their performance. The results show that
the proposed architecture and methods scale well and provide efficient
shoppers’ routes.

Keywords: Route guidance · Pick sequencing · Multi-agent system ·
Hypermarket

1 Introduction

Commercial activities are crucial in terms of jobs and economic growth. For
many years, supermarkets and hypermarkets have been in competition with
their online counterparts. Compared to e-commerce, physical stores are more
time consuming and less convenient: large open spaces with long aisles difficult
to navigate with a multitude of products whose locations frequently change, and
jammed at peak hours and on weekends. A considerable percentage of retail is
lost when large hypermarkets get crowded, even when the attendance rate is
c© Springer Nature Switzerland AG 2019
M. Lujak (Ed.): AT 2018, LNAI 11327, pp. 223–238, 2019.
https://doi.org/10.1007/978-3-030-17294-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17294-7_17&domain=pdf
http://orcid.org/0000-0001-8565-9194
http://orcid.org/0000-0002-3843-6729
https://doi.org/10.1007/978-3-030-17294-7_17

224 M. Lujak and A. Doniec

relatively low. This is due to the shoppers’ tendency to decrease their purchases
when they travel through congested aisles. Shoppers can feel time pressure in
shopping in case of a too high crowdedness that can make them even leave the
hypermarket too early.

To the best of our knowledge, literature on the shopping route optimization
considering crowdedness is limited. This is due to the lack of indoor localization
technologies and relatively recent massive adoption of smart phones in our every-
day lives: the two basic means for inexpensive indoor route guidance. However,
with the developments in smart space technologies and smartphones, we can
provide intelligent solutions for improving shopping experience while lowering
time spent in shopping. A prerequisite for avoiding crowdedness is a detailed
information about the real-time position of all persons in the infrastructure. An
overview of indoor ultrasonic positioning systems with related state of the art
can be found in, e.g., [11,19]. Currently, mostly used technologies for indoor
localization are Wi-Fi, RFID and bluetooth low energy (BLE). They use radio
signal intensity to infer distance between a smartphone and other stationary
devices (Wi-Fi router, RFID tags, BLE devices (iBeacon), etc.). To the best of
our knowledge, localization with beacons is currently the best approach, e.g.,
[5,20].

Information about shoppers’ position and their paths is needed to deduce
about the crowdedness dynamics in a hypermarket. Such situational knowl-
edge cannot be predefined and must be inferred by exploiting continuous real–
time data streams provided by sensors. Situational knowledge can be considered
as a dynamic knowledge with a high change frequency. We may use Complex
Event Processing for filtering streams of events in real-time to achieve situation
awareness (see, e.g., [8]).

In this paper, we study a distributed shoppers’ route guidance in hyper-
markets equipped with smart space technologies. We deal with the problem of
minimizing a shopper’s shopping time given a predefined shopping list of the
items to purchase in a crowded hypermarket. A parameter strictly related to
crowdedness is the design of a hypermarket and the aisle width. To improve
the shopper’s throughput in peak hours, it is essential to dispose of a scalable
and dynamic method of coordination for the shoppers’ routes that will consider
people flow capacities of narrow aisles prone to congestion.

We propose a distributed multi-agent Shopping Route Guidance Architecture
(SRGA) together with a mathematical model and a greedy heuristic algorithm
for shopping route guidance, both of which consider crowdedness in real-time.
The objective is to minimize the time in purchasing items in a given shopping list
considering shoppers’ preferences and real-time congestion. We tackle congestion
by finding routes through aisles with sufficient free-flow capacity. We experiment
the proposed approaches in simulations. The results show that they scale well
and provide efficient shoppers’ routes.

The paper is organized as follows. In Sect. 2, we describe the background
and the state-of-the-art optimization models and algorithms related to shopping
route guidance. In Sect. 3, we formally define the problem of route guidance for

Towards Distributed Real-Time Coordination of Shoppers’ Routes 225

shoppers considering congestion. In Sect. 4, we explain the main features of the
shopper’s route guidance architecture. Section 5 presents our proposed mathe-
matical model and a greedy tour algorithm for shopping route guidance. Our
experiment setup description and results are presented in Sect. 6. We conclude
the paper with the main conclusions and future work in Sect. 7.

2 Background and Related Work

The literature on shopping route guidance mostly covers qualitative aspects of
shopping and shopper’s experience. Li et al. in [15] proposed a social route rec-
ommender mechanism for store shopping support that recommends appropriate
routes to first-time customers or those who are unfamiliar with a retailer’s shop-
ping space by extracting and analysing shopping information (shopping context,
visiting trajectory) and social information (user’s interest, friends’ influence).
They employed a clustering technique and a Markov chain model to gener-
ate appropriate routes for the target users. Similarly, in [4], a Markov decision
process-based system is proposed for finding a next location to visit in a mall
based on preferred products, current location and shopping done so far. The
proposed approach does not consider congestion and it gives no guarantee that
all preferred items will be purchased or that the route is the one of the minimum
cost. Bajo et al. in [3] proposed a distributed multi-agent architecture composed
of “lightweight” agents that can reside in mobile devices, such as phones, PDAs,
etc. based on case-based planning for guidance and advising of users in shopping
centers.

The problem of finding the shortest shopping route in a hypermarket through
locations of items to purchase given in a shopping list can be represented by an
undirected graph whose nodes represent items’ locations and each arc a walk-
able way free of obstacles between a pair of two neighboring nodes. Then, we
can model this problem as an order picking problem in warehouses with an arbi-
trary aisle configuration. The latter is a special type of the Travelling Salesman
Problem (TSP) (see, e.g., [22]) defined as follows. Given is an order, i.e., a list
of items demanded from a customer. A picker should leave the loading dock to
pick up the items in the order and transport them back to the loading dock. We
assume that the capacity of the picker’s vehicle is sufficient to pick up all the
items in the order. The objective is to find a minimum-cost tour by the picker,
where the total cost is the sum of the travelled distances among the items in
the tour. In the shopping route’s cost minimization, any tour that includes a
hypermarket entrance node and one of the cash-desk nodes while going through
every item in the shopping list exactly once is a feasible solution with a given
cost that cannot be smaller than the minimum cost tour.

Although TSP is an NP-hard problem and there is no efficient solution that
scales and works on all graphs, some of its special formulations can be solved effi-
ciently in polynomial time (e.g., [13]). These formulations in the CPLEX branch-
and-bound solver can solve instances with over 200 nodes to proven optimality
[14]. This is in contrast to the standard TSP, where sophisticated cutting-plane

226 M. Lujak and A. Doniec

and branch-and-cut techniques are needed to solve instances with more than
about 50 nodes (see, e.g., [2]). However, a disadvantage of exact algorithms is
that they show a very strong variability in computation time between different
TSP instances. Heuristic algorithms, on the other hand, construct feasible solu-
tions, and thus upper bounds for the optimum value. Often, they have no quality
guarantee as to how far off they may be from the optimal solution [10]. However,
their complexity is generally low. For example, Lin-Kernighan-Helsgaun (LKH)
TSP heuristic [9] is based on a series of n − opt moves with n ≤ 5, which are
restricted by carefully chosen candidate sets. The latter are defined by a measure
based on sensitivity analysis of minimum spanning trees, and are kept small but
at the same time large enough to allow good solutions to be found.

In this paper, we focus on narrow and long aisle systems, in which the distance
travelled crossing the aisle from one side to the other is negligible compared to
the distance travelled along the centreline of the aisle. Exact approaches to this
problem only exist for warehouses with at most 3 cross aisles. For other ware-
house types, various heuristic approaches exist, e.g., [23]. Since such systems
can get crowded, waiting time must be taken into account in the solution app-
roach together with travel time and distance. Unlike optimal solutions, heuristics
will (mostly) lead to non-optimal orderings but they offer feasible solutions and
require virtually no time to get generated.

In this paper, we consider real-time congestion information to keep shopping
routes updated up-to-the-minute and thus dynamically cope with congestion.
Related to this is a dynamic traveling salesman problem (TSP), where the ver-
tices and/or weights of the graph that represents the TSP are changed during
the optimization process (see, e.g., [25]). In [26], Toriello et al. formally propose
a dynamic TSP with stochastic arc costs and a lookahead price-directed pol-
icy implied by their cost-to-go approximation. In [21], Pan and Shih propose a
throughput model for the determination of the picking operation performance
for multiple-picker environments with congestion and validate it through a sim-
ulation experiment. They consider a trade-off between the picking distance and
the blocking-caused delay for the storage assignment.

There is a limited number of works with the topic of multi-agent computation
of TSP solution. For example, in [12], an ant colony optimization on a distributed
architecture is proposed where each node of the graph is conceptualized and
implemented as a software agent sending and receiving ants. A distributed multi-
agent computation model for route guidance under congestion in vehicle traffic
considering envy-freeness and fairness was proposed in [16,18]. It was shown
by simulation experiments that by proposing routes that are envy-free and fair,
the user equilibrium traffic assignment solution can be improved towards the
system optimum. Since congestion (crowdedness) plays an important role in the
shopping experience, we consider the problem of shopping route guidance under
congestion in this paper and formulate it in the following.

Towards Distributed Real-Time Coordination of Shoppers’ Routes 227

3 Problem Formulation

In this section, we define the problem of dynamic shopping route guidance in
smart hypermarkets considering congestion stated as follows: Given an arbitrary
current location of a shopper and a set of hypermarket locations that still have
to be visited, what route should the shopper follow in order to minimise the time
travelled considering actual hypermarket crowdedness?

A hypermarket layout may be represented by an undirected graph G =
(N,A), where N is a set of nodes representing separate physical spaces of a
hypermarket, and A the set of arcs connecting these spaces where each arc a ∈ A
has associated length da, people flow fa, travel time ta, and free-flow capacity
ua (a maximum sustainable people free flow up to which there is no conges-
tion). Two space nodes are adjacent (i.e., connected by an arc) if it is possible to
walk directly from the space represented by one node to another without passing
through the spaces represented by other nodes. Moreover, let O ⊂ N be a set of
entrance nodes to the hypermarket and let D ⊂ N be a set of cash desk nodes
such that O∩D = ∅. For each shopper s ∈ S, given is an unordered shopping list
Ls = {l1s , l

2
s , . . . , l

n
s } made of m item location nodes to visit, where S is a set of

shoppers. We assume that a shopping path of each shopper s ∈ S starts at one of
the entrance nodes o ∈ O, passing through the locations of items in Ls in some
order, and terminates at one of exit nodes d ∈ D. Moreover, we assume that
each shopper has a sufficient cart capacity for all the items in his/her shopping
list.

For simplicity and without loss of generality, we assume that there is a dummy
node d̂ that is connected to entrance nodes o ∈ O and cash desk nodes d ∈
D by dummy arcs with a sufficiently high travel time and length and infinite
capacity such that, in our model, each shopper starts his/her shopping path and
terminates it at dummy node d̂. We call such a path that starts and ends at the
same node d̂ a cycle. Requiring a shopper’s route to be a cycle rather than an
origin-destination path is not restricting because we can equivalently look for a
cycle made of an origin-destination path plus a destination-origin path made of
dummy arcs with zero length and travel time. Now, let an extended node set be
N ′ = N ∪ {d̂}, and extended arc set A′ = A ∪ Ad̂, where Ad̂ is a set of dummy
arcs with zero length and travel time adjacent to node d̂. Then, let Rs ⊂ N ′

be an unordered node subset such that Rs = Ls ∪ {d̂}, i.e., it contains all n

item location nodes in Ls, as well as the dummy node d̂. We consider graph
G′ = (Rs, A

′), where arcs a′ ∈ A′ connecting nodes in Rs are computed based
on the shortest distance among the nodes in Rs on G = (N,A).

To deal with uncertainty in our model, we consider estimated arcs’ travel
times t̂a and people flow f̂a instead of exact ones. They are computed based on
the following assumptions: (i) estimated travel time t̂a(da, f̂a(τ), ua) depends on
arc’s (positive) length da ≥ 0, estimated people flow f̂a(τ) at each time period
τ ∈ T , and arc’s capacity ua; (ii) estimated people flow f̂a(τ) on each arc a ∈ A
changes dynamically and is a function of time τ ∈ T ; (iii) arcs are undirected
so that both length, travel time, and people flow are symmetric, i.e., dij = dji,

228 M. Lujak and A. Doniec

t̂ij(τ) = t̂ji(τ), and f̂ij(τ) = f̂ji(τ), respectively. However, we could consider a
directed graph in a model representing a physical layout with physical barriers
that control the direction of people flow. In the generic case that we consider in
this paper without physical barriers and explicit people flow control, we assume
that the flow of shoppers in aisles self-organizes in terms of the lane formation,
drifting, and synchronization, (see, e.g., [24]).

Estimated travel time t̂ij(τ) for each arc (i, j) ∈ A and time period τ ∈ T
is computed at the beginning of time period τ = 1 and is updated in real-time
during execution. The following formula is used:

t̂ij(τ) = min
[
max

(
t̂ijtr(τ),Δt̂jw(τ)

)]
, (1)

where Δt̂jw(τ) is the estimated waiting time at node j due to a queue of shoppers
(if any) on arc (i, j) who arrived before and have still not reached it at time τ ∈ T ,
and t̂ijtr(τ) is the estimated travel time from i to j considering estimated arc’s
flow f̂ij(τ) at time τ ∈ T . Estimated travel time t̂ijtr(τ) of each arc (i, j) ∈ A can
be seen as a volume delay function modeled as a modified Davidson’s function,
see, e.g., [1].

Since the congestion dynamics is uncertain further ahead we look, we update
the shoppers’ routes as they progress. By this approach, we follow the first come
first served principle. Then, let t̂s(τ) be an estimated time of a shopping tour of
shopper s at time τ ∈ T comprised of the following components: (i) Estimated
total travel time t̂trs (τ), which is the sum of the travel times of arcs starting at
dummy node d̂, continuing through the nodes of items in shopping list Ls, and
ending at dummy node d̂, t̂trs (τ) =

∑
(i,j)∈Ro

s
t̂ij(τ), where Ro

s is a Hamiltonian
tour minimizing the overall estimated travel time of the nodes in Rs and t̂ij(τ)
is the estimated minimal travel time between the locations of items i and j
considering estimated people flow at time τ ∈ T ; (ii) Estimated item search
time t̂sis at the location of item i ∈ Rs; (iii) Estimated pick time t̂pis for picking
an item i ∈ Rs from its storage location and placing it on a shopping basket
or a shopping cart; (iv) Estimated set-up time t̂sus for searching for an empty
shopping basket or a shopping cart after entering into the hypermarket, and
emptying of a shopping basket or a shopping cart with the items in Rs at the
cash-desk at the end of shopping.

The estimated overall shopping time for each shopper agent s at time period
τ ∈ T is then:

t̂s(τ) = t̂trs (τ) +
∑
i∈Rs

(
t̂sis + t̂pis

)
+ t̂sus . (2)

Travelling is the most time consuming subtask of shopping in hypermarkets.
For simplicity, search and pick times are assumed constant independently of the
shopping tour composition, while setup time is assumed negligible. With these
assumptions, we have:

t̂s(τ) =
∑

i,j∈Ro
s

t̂ij(τ). (3)

Towards Distributed Real-Time Coordination of Shoppers’ Routes 229

To support constant search and pick times, we can use, e.g., smart space LEDs
to indicate the position of a wanted product on a shelf.

To facilitate scalability and lower the computational complexity, our app-
roach to this problem is based on a multi-agent architecture made of building
and shopper agents that compute their shopping routes in a distributed way as
described in the following.

4 MAS Architecture for Hypermarket Shopping

In this section, we present the distributed architecture for parallel, asynchronous
and decentralized shopping route computation considering congestion.

In order to provide a scalable and modular architecture robust to failures,
our proposed solution follows a distributed multi-agent approach with two types
of agents inspired by the distributed architecture for evacuation route compu-
tation presented in [17]: a set of Smart Building (SB) agents (implemented and
located at a (static) set NSB ⊂ N of graph G = (N,A)) and a set of shopper
agents SA moving in space (changing position over the nodes in N), both con-
sidered rational. While smart building agents are considered collaborative, each
shopper agent installed in an app of a shopper’s smartphone is considered self-
concerned. An overview of this architecture is given in Fig. 1. The objective of
the proposed shopping route guidance architecture (SRGA) is to provide person-
alized and optimal shopping route guidance considering congestion to shopper
agents installed in an app on shoppers’ smartphones.

Shopper Agents. Each shopper agent SA is associated with the application
installed on the smartphone of a shopper (see Fig. 1). It manages and stores the
information related to a specific shopper and informs the closest SB agent of
it. Moreover, it computes and updates the shopper’s route based on the filtered
semantic map of the hypermarket including its layout and topology received
from the closest SB agent.

In a hypermarket, global crowdedness situation is dynamically updated in
real–time. Thus, each SA agent recalculates its shopping route each time signifi-
cant changes on the route occur. To compute shopping routes, it is necessary to
consider knowledge representation and reasoning regarding products’ locations,
shopper’s requirements and preferences, and a shopping process. Before com-
puting shopping routes, we first need to reason about semantic information and
then transfer semantic data of the shopping list and the hypermarket contents
to graph representation. The following components are used:

– Data regarding the building topology: Static information about physical ele-
ments in the building (e.g. rooms, corridors, floors, doors, etc.) and relation
among them (e.g. the area of room A is 10 m2; room A is next to room B and
they are both at floor F). Topology knowledge is represented in such a way
that it is sufficient to describe the building network by a graph with weights
and tags on the constituent nodes and connecting arcs as described in Sect. 3.
Nodes and arcs are described by their type, surface, area, inclination, etc.

230 M. Lujak and A. Doniec

Fig. 1. Situation-aware real-time distributed shopping route guidance architecture.

– Shopping ontology: This ontology contains general knowledge about shop-
ping in a hypermarket, e.g., facts that people with strong affiliate ties move
together (for instance, families with children and persons with disability and
their assistants), the appropriateness of short routes for people with lim-
ited mobility, and the influence of certain events like congestion, degustation,
demonstration on the crowdedness level of a hypermarket.

– Real-time hypermarket situation: Current physical space situation awareness
received from the closest SB agent.

Smart Building Agents. Each SB agent has a corresponding region (Voronoi
cell) consisting of the hypermarket areas represented by the nodes of graph
G = (N,A) that are closer to that SB agent than to any other SB agent within
the same space. It processes and senses its Voronoi cell over a strategically dis-
tributed network of sensors and communicates with the rest of SB agents and
with the shopper agents that are momentarily within its cell. For processing of

Towards Distributed Real-Time Coordination of Shoppers’ Routes 231

the sensing information, it contains a local space situation awareness module
that perceives the crowdedness conditions of its physical space through combin-
ing and analysing the events provided by the environment sensors and the SAs
in its area.

The local space situation awareness module functions in cycles. At the first
phase, the local building sensor data is fused with the data received from
the locally present shopper agents. Then, the normalized crowdedness value is
deduced through Complex Event Processing (CEP) events. This data is sent to a
blackboard or alike globally shared data structure containing the overall network
safety values and visible to all SB agents. Thus, the global situational awareness
of the building is accessible to every SB agent by accessing the blackboard.

The situation awareness and decision making are distributed in the network of
SB agents such that each agent is responsible of the semantic reasoning concern-
ing the crowdedness of its assigned physical space. Moreover, each SB agent is
responsible of informing shopper agents in its physical area regarding the crowd-
edness dynamics on their shopping routes. An SB agent here is a link between
the distributed SB agent network and an individual shopper (see Fig. 1). Subse-
quently, the SB agent updates the hypermarket map and sends it to all SAs in
its physical area.

To relieve the communication load, each SB agent maintains a local copy of
the hypermarket’s network with the updated crowdedness conditions. CEP is
used to filter irrelevant information and to generate higher level events. Individ-
ual user events are aggregated to detect events regarding groups of users, their
distribution and density in the building.

5 Proposed Solution Approaches

In this Section, we present two approaches to shopping route optimization: a
distributed mathematical programming model and a greedy heuristic algorithm.

5.1 TSP Mathematical Programming Model

In dynamically changing congestion conditions, we update travel time matrix
Ds(τ) by calculating the minimum travel time between any two remaining loca-
tions to visit i, j ∈ Rs (including the present one and the dummy node d̂)
whenever the travel times between the remaining locations to visit change above
a given threshold. We apply a First Come First Reserved policy for controlling
the congestion on arcs and when an arc’s free-flow capacity is fully reserved, the
arc is not available any more for passage at that time period. In Ds(τ), the travel
time of arc (i, j) if i = j is set to infinity. Calculating the set of least cost chains
connecting all pairs of nodes in G is easily done in |N |3 simple operations [7].

The result is a symmetric and dynamic travel time matrix Ds(τ) for each
shopper s ∈ S that depends on updated congestion conditions in real-time. With
such a travel time matrix, any efficient approach for the static TSP can be used

232 M. Lujak and A. Doniec

to solve the considered problem. In this way, the shopper is routed dynamically
based on real-time aisle congestion information.

Next, we find for each shopper a minimum cost Hamiltonian tour Ro
s on a

complete undirected graph G1 = (Rs, As), i.e., an optimal sequence of nodes
to be visited by solving a symmetric version of a dynamic TSP in G1, where
estimated travel times t̂a(τ) are not known with certainty in advance, and the
Hamiltonian tour is found a priori and is updated every time there is a significant
change in the travel times of the constituent arcs of the Hamiltonian tour.

To minimize the computational complexity of the approach, we apply the
conventional TSP formulation, or sub-tour elimination formulation of the TSP,
due to Dantzig, Fulerkson, and Johnson [6]. For this scope, we define a binary
variable xij associated with each arc (i, j), which indicates whether the arc is
part of the tour, and its cost (travel time) tij .

Then, each shopping agent solves a TSP that can be formulated as the fol-
lowing mixed integer linear programming problem with n2 zero-one variables
and n − 1 continuous variables as follows:

min
n∑

i=0

n∑
j �=i,j=0

tijxij (4)

s.t.
n∑

i=0,i �=j

xij = 1, j = 0, . . . , n (5)

n∑
j=0,j �=i

xij = 1, i = 0, . . . , n (6)

ui − uj + nxij ≤ n − 1, i, j = 1, . . . , n; i 	= j (7)

ui ∈ Z, i = 0, . . . , n (8)

xij ∈ {0, 1}, i, j = 0, . . . , n (9)

The objective function (4) minimizes the total shopping travel time of each shop-
per s ∈ S. Constraints (5) are degree constraints that ensure that the shopper
comes from exactly one other item at each item. Constraints (6) ensure that a
shopper leaves an item departing to exactly one other item. Moreover, constraints
(8) ensure that, if the shopper travels from i to j, then the position of node j
is one more than that of node i. Here, ui is a dummy variable. Together with
the bounds (7), they ensure that each non-dummy node is in a unique position.
These constraints forbid subtours and enforce that there is only a single tour
covering all items, and not two or more disjoint tours that only collectively cover
all items. Movement restrictions are not imposed since they will be followed due
to the values in the travel time matrix Ds.

MILP problem (4)–(9) will give us the shopping path with the minimal travel
time. Hence, a shopper faces this problem whenever the congestion change influ-
ences his/her shopping path.

Towards Distributed Real-Time Coordination of Shoppers’ Routes 233

5.2 A Distributed Greedy Heuristic Approach

By using our proposed heuristic solution approach, each shopper agent builds
incrementally the trajectory in real- time as he/she moves through a hyper-
market. The approach is fully distributed as each shopper agent computes
individually and autonomously the trajectory by interacting with other shop-
per and smart building agents. We follow a First Come Fist Served principle:
a first shopper that declares its intention to pass through a node or an arc
reserves its passage in time and space and the capacity of the node/arc decreases
respectively.

The heuristic operates in iterations as follows. Given is an unordered list of
shopping items’ nodes to visit and a store entrance node as a starting point of
each shopper. In each iteration, the heuristic chooses the closest item in the list
to the momentary shopper’s node to which the shortest path does not contain
any nodes or arcs whose occupancy rate is higher than a given threshold. The
shortest paths are computed based on estimated travel times between each two
nodes in the path. When the shopper agent confirms the trajectory, it sends to
the closest smart building agent this estimated time so that the latter can update
its occupancy map and communicate it to other infrastructure and shopper
agents.

Algorithm 1 gives a programmatic overview of the heuristic. We consider the
following procedures:

– receiveMapOccupancyFromInfrastructureAgent allows a shopper
agent to receive the hypermarket occupancy map;

– nodeOf returns the node of an item since each item is associated to a node;
– distanceTo calculates the distance (following the shortest path) between

the current position of a shopper and the next item node to visit;
– isJammed? returns “True” when a node is jammed with people;
– sendNextNodeToVisitToInfrastructureAgent allows a shopper

agent to send, the next node to visit, to the closest smart building agent
that updates its hypermarket occupancy map.

– computeShortestPath returns the shortest path between two nodes (here
any classical algorithm from literature can be used).

Clearly, this heuristic is not optimal for several reasons. Firstly, it operates
asynchronously. So, when a shopper agent receives the occupancy map, poten-
tially this map may be already obsolete. Secondly, since the closest nodes are
favoured for next visit, there is no guarantee to obtain the shortest path among
all item nodes. Finally, there is no real negotiation between shopper agents but
rather a common agreement to follow a first come first serve principle. Neverthe-
less, this heuristic is sufficiently sophisticated to be used for shoppers’ guidance
in hypermarkets with congestion as this is a problem with high computational
complexity and fast solution time is of utmost importance.

234 M. Lujak and A. Doniec

Algorithm 1. Simple heuristic for shoppers’ route guidance
1: procedure routeGuidance(S(a): the list of items to buy, currentPosition: Node)
2: local variables: d: Integer, nextNodeToVisit: Node, path: list of Node
3: while S(A) �= do
4: d ← +∞
5: receiveMapOccupancyFromAgentBuilding()
6: for i ∈ S(a) do
7: if distanceTo(nodeOf(i)) < d and not isFull?(nodeOf(i)) then
8: nextNodeToVisit ← nodeOf(i)
9: end if

10: end for
11: sendNextNodeToVisitToAgentBuilding()
12: path ← computeShortestPath(currentPosition, NextNodeToVisit)
13: move(currentPosition, path)
14: end while
15: end procedure

6 Experiment

We consider a narrow-aisle hypermarket layout graph with a (horizontal) front,
intermediate and back aisle and multiple (vertical) lateral aisles, as seen in Fig. 2.
The graph is composed of 952 nodes distributed in 18 rows and 64 columns and
connected to their neighboring nodes.

The entrance is positioned at the lowest right node (18, 64) connected by
dummy arcs (of weight 0) with 20 cash desks that are positioned in row 18 and
columns: 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58,
and 61. Given is weight for each other arc of the graph, 3m. For the sake of
simplicity, we consider that pick time, search time, set-up time and cash-desk
waiting times are fixed.

Fig. 2. Use-case hypermarket layout graph with 952 communicating SB agent nodes

A set of 10 predefined shopping lists composed of 50 item nodes has been
generated randomly and considered to compare the two approaches proposed in
the paper. A shopper starts at the entrance node with one of these shopping

Towards Distributed Real-Time Coordination of Shoppers’ Routes 235

lists and ends the shopping at one of the cash-desks with a minimum travel
time. The objective of our two approaches is to propose the path to a shopper at
his/her current position based on the real-time congestion taking into account
the remaining items to buy. We assume that shoppers move one node per time
period (from their current node to one of their 4-neighboring nodes, excluding
diagonal movements).

Application of the TSP Mathematical Programming Approach. Each
shopper agent finds the shortest paths for each pair of its shopping list item
nodes by using a variant of the Floyd–Warshall algorithm. In the case there are
various paths to reach one node from an actual position, the minimum cost path
considering congestion is found. A path capacity of 1 is reserved in time and space
by assuming the estimated arrival time based on the momentary crowdedness
in the graph’s nodes. In the case there are multiple such paths, a path is chosen
arbitrarily among the shortest paths.

Then, each shopper agent solves individually the TSP problem (4)–(9) in
graph G1 = (Rs, As). This graph is updated as the shopping proceeds and once
a node has been reached and surpassed, it is excluded from the graph together
with its related arcs.

Application of the Greedy Approach. Similarly to the TSP approach, each
agent finds the shortest path between two nodes of the shopping list using a
classical algorithm (Dijkstra) (line 12 of the Algorithm 1). A capacity is defined
for each node of the graph; this one is then used by the algorithm to choose
the next targeted node for the shopper. For the experiment, this capacity is set
arbitrary to 15 persons.

In the following, we present the results of the TSP mathematical model run
in CPLEX in comparison to our greedy algorithm, in terms of the total distance
traveled and the computational time.

Results. Table 1 presents the performance1 of the two approaches regarding
two metrics: the computational time and the traveled distance. The maximum
run time of the CPLEX solver was 60 s. The best found solution up to this time is
presented in the Table. An optimal solution was found when the computational
time was lower than 60 s.

We observe that globally the CPLEX-based TSP mathematical programming
model outperforms the greedy approach. On average, the solutions obtained are
22% better, which represents almost 200 m of walking difference in the consid-
ered scenario. This result has to be put in perspective with the total length of
the store, which is equal to 195 m: therefore, the TSP-based approach allows the
user to save a full trip from one end of the store to the other. Then, the larger the

1 Simulation experiments were performed on HP ProBook with Intel Core i5-6200U
CPU at 2.30 Ghz with 16Gb RAM memory.

236 M. Lujak and A. Doniec

hypermarket is, the more the use of TSP is justified. Concerning the computa-
tional time, the greedy heuristic runs significantly faster, with an average largely
inferior to 1 s. Consequently, the greedy algorithm is more appropriate for small
and crowded hypermarkets which require to recompute quickly the paths of the
shoppers while moving from one item to another.

Table 1. Comparison between the TSP mathematical model solved by CPLEX and
the greedy heuristic approach

Computational time Cost (traveled distance)

Greedy heuristic TSP Greedy heuristic TSP Gap (in %)

List of items 1 0.697 60 987 708 28.26

List of items 2 0.585 60 846 708 16.31

List of items 3 0.683 60 972 681 29.93

List of items 4 0.689 47 1032 699 32.26

List of items 5 0.775 60 912 717 21.29

List of items 6 0.65 3.94 885 747 15.59

List of items 7 0.702 60 981 756 22.93

List of items 8 0.633 0.92 858 714 16.78

List of items 9 0.671 1.44 936 705 24.67

List of items 10 0.778 60 951 753 20.82

Mean 0.6863 60 951 753 22.88

7 Conclusions

In this paper, we proposed a distributed shopping route guidance architecture
and a shopping route computation mechanism for hypermarkets equipped with
smart space technologies with the objective to minimize the time spent in shop-
ping given a shopping list. In our proposed approach, a hypermarket is modelled
as a graph on which each person is seen as a particle of network flow. Each
node of the graph represents a part of the hypermarket where a set of items are
located with a given capacity to accommodate people around them. Similarly, an
arc connects two nodes and has the capacity that corresponds to the maximum
flow of people on an unobstructed walk way it presents.

In the proposed architecture, we modelled smart hypermarket as a network of
rational and collaborating smart building agents and each shopper as a rational
self-concerned agent with a given list of items to buy. We assumed that the
choosing and picking time are constant for all shoppers and products. However,
this time is influenced by multiple factors: visibility, type of a shopper, type of a
product, crowdedness, a part of the day, etc. In our future work, for simplification
purposes, we will investigate a modelling assumption of an estimated pickup
time depending on a type of a product and a shopper. Since shopping is not

Towards Distributed Real-Time Coordination of Shoppers’ Routes 237

only a purchasing, but also a social experience, the shoppers’ personality and
preferences play an important role. In our future work, we will also work on
the extension of the proposed approach to include shopping lists that are more
loosely defined, as e.g., shopping for fun with a qualitative item descriptions and
preferences regarding broad product categories open to marketing suggestions.

To simplify path computation considering congestion, which is a computa-
tionally hard problem, we used a first come first served principle. We assumed
that people follow the suggested routes. The users that do not use the app and
therefore do not share the information are seen as a white noise to the system.
In case a shopper does not follow the suggested route or he/she deviates signifi-
cantly from the route, we may introduce penalties. We will deal with this topic
in future work.

By updating estimated travel times of the network in real-time during exe-
cution, we can accommodate future shoppers that want to minimize the time of
their shopping by choosing an interval of the day for their shopping and consider
congestion in this interval. This topic will also be a possible part of future work.

References

1. Akcelik, R.: Travel time functions for transport planning purposes: Davidson’s
function, its time dependent form and alternative travel time function. Aust. Road
Res. 21(3) (1991)

2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2011)

3. Bajo, J., Corchado, J.M., De Paz, Y., et al.: SHOMAS: intelligent guidance and
suggestions in shopping centres. Appl. Soft Comput. 9(2), 851–862 (2009)

4. Bohnenberger, T., Jameson, A., Krüger, A., Butz, A.: Location-aware shopping
assistance: evaluation of a decision-theoretic approach. In: Paternò, F. (ed.) Mobile
HCI 2002. LNCS, vol. 2411, pp. 155–169. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45756-9 13

5. Cho, H., Ji, J., Chen, Z., Park, H., Lee, W.: Measuring a distance between things
with improved accuracy. Proc. Comput. Sci. 52, 1083–1088 (2015)

6. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman
problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)

7. Deo, N., Pang, C.Y.: Shortest-path algorithms: taxonomy and annotation. Net-
works 14(2), 275–323 (1984)

8. Dunkel, J., Fernández, A., Ortiz, R., Ossowski, S.: Event-driven architecture for
decision support in traffic management systems. Expert. Syst. Appl. 38(6), 6530–
6539 (2011)

9. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

10. Hoffman, K.L., Padberg, M., Rinaldi, G.: Traveling salesman problem. In: Gass,
S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Sci-
ence, pp. 1573–1578. Springer, Boston (2013). https://doi.org/10.1007/978-1-4419-
1153-7

11. Ijaz, F., Yang, H.K., Ahmad, A.W., Lee, C.: Indoor positioning: a review of indoor
ultrasonic positioning systems. In: 2013 15th International Conference on Advanced
Communication Technology (ICACT), pp. 1146–1150. IEEE (2013)

https://doi.org/10.1007/3-540-45756-9_13
https://doi.org/10.1007/3-540-45756-9_13
https://doi.org/10.1007/978-1-4419-1153-7
https://doi.org/10.1007/978-1-4419-1153-7

238 M. Lujak and A. Doniec

12. Ilie, S., Bădică, C.: Distributed multi-agent system for solving traveling salesman
problem using ant colony optimization. In: Essaaidi, M., Malgeri, M., Badica,C.
(eds.) Intelligent Distributed Computing IV, vol. 315, pp. 119–129. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15211-5 13

13. Kabadi, S.N.: Polynomially Solvable Cases of the TSP, pp. 489–583. Springer,
Boston (2007). https://doi.org/10.1007/0-306-48213-4 11

14. Letchford, A.N., Nasiri, S.D., Theis, D.O.: Compact formulations of the Steiner
traveling salesman problem and related problems. Eur. J. Oper. Res. 228(1),
83–92 (2013)

15. Li, Y.M., Lin, L.F., Ho, C.C.: A social route recommender mechanism for store
shopping support. Decis. Support. Syst. 94, 97–108 (2017)

16. Lujak, M., Giordani, S., Ossowski, S.: Fair route guidance: bridging system and user
optimization. In: 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pp. 1415–1422, October 2014

17. Lujak, M., Billhardt, H., Dunkel, J., Fernández, A., Hermoso, R., Ossowski, S.: A
distributed architecture for real-time evacuation guidance in large smart buildings.
Comput. Sci. Inf. Syst. 14(1), 257–282 (2017)

18. Lujak, M., Giordani, S., Ossowski, S.: Route guidance: bridging system and user
optimization in traffic assignment. Neurocomputing 151, 449–460 (2015)

19. Lymberopoulos, D., Liu, J., Yang, X., Choudhury, R.R., Handziski, V., Sen, S.:
A realistic evaluation and comparison of indoor location technologies: experiences
and lessons learned. In: Proceedings of the 14th International Conference on Infor-
mation Processing in Sensor Networks, pp. 178–189. ACM (2015)

20. Ng, T.M.: From “where I am” to “here I am”: accuracy study on location-based
services with IBeacon technology. HKIE Trans. 22(1), 23–31 (2015)

21. Pan, J.C.H., Shih, P.H.: Evaluation of the throughput of a multiple-picker order
picking system with congestion consideration. Comput. Ind. Eng. 55(2), 379–389
(2008)

22. Pan, J.C.H., Wu, M.H.: Throughput analysis for order picking system with multiple
pickers and aisle congestion considerations. Comput. Oper. Res. 39(7), 1661–1672
(2012)

23. Theys, C., Bräysy, O., Dullaert, W., Raa, B.: Using a tsp heuristic for routing
order pickers in warehouses. Eur. J. Oper. Res. 200(3), 755–763 (2010). https://
doi.org/10.1016/j.ejor.2009.01.036

24. Timmermans, H.: Pedestrian Behavior: Models, Data Collection and Applications.
Emerald Group Publishing Limited, London (2009)

25. Tinós, R.: Analysis of the dynamic traveling salesman problem with weight
changes. In: 2015 Latin America Congress on Computational Intelligence (LA-
CCI), pp. 1–6. IEEE (2015)

26. Toriello, A., Haskell, W.B., Poremba, M.: A dynamic traveling salesman problem
with stochastic arc costs. Oper. Res. 62(5), 1107–1125 (2014)

https://doi.org/10.1007/978-3-642-15211-5_13
https://doi.org/10.1007/0-306-48213-4_11
https://doi.org/10.1016/j.ejor.2009.01.036
https://doi.org/10.1016/j.ejor.2009.01.036

Author Index

Afanador, Juan 130
Aydoğan, Reyhan 100

Baarslag, Tim 100, 115
Baptista, Murilo 130
Bernabé, Iván 208
Billhardt, Holger 190, 208
Bordini, Rafael H. 3, 18
Bruns, Ralf 73

Carrascosa, Carlos 91
Cauvin, Samuel R. 146
Chiappa, Alessia 49
Colombetti, Marco 49
Corsar, David 64
Cranefield, Stephen 33

d’Orey, Pedro M. 199
de Jonge, Dave 100
Doniec, Arnaud 223
Dötterl, Jeremias 73
Dunkel, Jürgen 73

Fernández, Alberto 190, 208
Fornara, Nicoletta 49
Fujita, Katsuhide 100

Ito, Takayuki 100

Jonker, Catholijn 100

Kaisers, Michael 115
Kamiya, Akira 162

Kitagawa, Ko 162
Kokkinogenis, Zafeiris 199
Kuckuck, Benno 173

Lujak, Marin 223

McBurney, Peter 3, 18

Oren, Nir 33, 130, 146
Ossowski, Sascha 73

Palomares, Alberto 91
Panaretos, Athanasios 64
Panisson, Alison R. 3, 18
Parsons, Simon 3, 18
Paterakis, Nikolaos G. 115

Rebollo, Miguel 91
Rodríguez-García, Miguel Ángel 190
Rothe, Jörg 173
Ruiz, Carlos 208

Sánchez, Óscar 208
Sarkadi, Ștefan 18
Sarkadi, Ştefan 3
Shiramatsu, Shun 162

Teixeira, Miguel 199
Timón, Sandra 208
Tsimpoukis, Dimitrios 115

Vasconcelos, Wamberto W. 33, 64, 146

	Preface
	Organization
	Contents
	AT Foundations and Modelling of Reasoning Agents
	Towards an Approach for Modelling Uncertain Theory of Mind in Multi-Agent Systems
	1 Introduction
	2 Background
	2.1 Theory of Mind and the Problem of Other Minds
	2.2 Agent Communication Languages
	2.3 Agent Oriented Programming Languages

	3 Running Example
	4 Modelling ToM from Other Agents' Actions
	5 A Model of Uncertain ToM
	6 Decision Making Using Uncertain ToM
	7 Future Work
	8 Conclusions
	References

	On the Formal Semantics of Theory of Mind in Agent Communication
	1 Introduction
	2 Background
	2.1 Agent Communication Languages
	2.2 Agent Oriented Programming Languages

	3 Running Example
	4 Semantics for ToM in Agent Communication
	4.1 The Basis for the Operational Semantics
	4.2 Tell Performative
	4.3 Achieve Performative
	4.4 Ask-If Performative

	5 Reaching Shared Beliefs Using ToM
	6 Future Work
	7 Related Work and Conclusions
	References

	Accountability for Practical Reasoning Agents
	1 Introduction
	2 What Is Accountability?
	2.1 Related Concepts
	2.2 The Functional Purpose of Accountability

	3 Requirements for Accountable Autonomous Agents
	3.1 Research Questions

	4 Towards a Formalisation of Accountability
	5 Conclusions, Discussion and Future Work
	References

	Using Semantic Web Technologies and Production Rules for Reasoning on Obligations and Permissions
	1 Introduction
	2 A Semantic Web Meta-model of Conditional Obligations and Permissions
	3 Life Cycles of Obligation and Permission
	4 Operational Semantics of Obligation and Permission
	5 Implementation of a Prototype
	6 Related Work
	References

	Minimality and Simplicity of Rules for the Internet-of-Things
	1 Introduction
	2 Background and Related Work
	3 Architecture and Implementation
	3.1 Architecture
	3.2 Format of Rules
	3.3 Ontologies in Our System
	3.4 Functions and Operators

	4 Evaluation
	5 Conclusions, Discussions and Future Work
	References

	Stream-Based Perception for Agents on Mobile Devices
	1 Introduction
	2 Related Work
	3 Agents with Enhanced Perception
	3.1 Sensing the Environment
	3.2 Processing the Percept Stream

	4 Case Study
	4.1 Rebalancing of Bike Sharing Systems
	4.2 Situation-Aware Rebalancing with AEP

	5 Evaluation and Discussion
	6 Conclusion
	References

	Argumentation and Negotiation
	Distributed Ledger and Robust Consensus for Agreements
	1 Introduction
	2 Consensus with Malicious Agents
	2.1 Cheat Detection
	2.2 Cheat Correction

	3 Consensus for Distributed Ledger
	4 Conclusions
	References

	The Challenge of Negotiation in the Game of Diplomacy
	1 Introduction
	2 Diplomacy
	3 The Negotiation Protocol
	3.1 Allowed Proposals

	4 The ANAC 2017 Diplomacy Competition
	4.1 Submission Rules and Tournament Setup
	4.2 Submissions
	4.3 Results

	5 The 2018 Diplomacy Challenge
	5.1 Tournament Setup
	5.2 Motivation
	5.3 Submissions
	5.4 Results

	6 Is Cooperation Even Possible?
	7 Discussion and Conclusions
	References

	Automated Negotiations Under User Preference Uncertainty: A Linear Programming Approach
	1 Introduction
	2 Related Work
	3 Problem Setting
	3.1 Problem Description
	3.2 Formal Model

	4 Estimating a Utility Function from a User Model
	5 Experiments and Results
	5.1 Setup
	5.2 Results

	6 Conclusion
	7 Discussion and Future Work
	References

	An Adversarial Algorithm for Delegation
	1 Introduction
	2 Background
	2.1 Multi-armed Bandits
	2.2 MAB Heuristics
	2.3 Applying MAB Heuristics to Recursive Delegation
	2.4 Quitting Games

	3 Approach
	3.1 Delegation as a Quitting Game
	3.2 Delegation as Nested MABs

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Discussion and Future Work
	6 Conclusions
	References

	Policies to Regulate Distributed Data Exchange
	1 Introduction
	2 A Data Exchange Economy
	3 Policy Language
	3.1 Policy Compliance/Violation

	4 Decision Mechanisms
	4.1 Decisions by the Provider
	4.2 Decisions by the Requestor

	5 Related Work
	6 Conclusions, Discussions, and Future Work
	References

	Developing a Method for Quantifying Degree of Discussion Progress Towards Automatic Facilitation of Web-Based Discussion
	Abstract
	1 Introduction
	2 Proposed Method: A Metric for Discussion Progress
	3 Data Collection
	4 Experiment Contents
	5 Discussion
	6 Future Prospects
	Acknowledgements
	References

	Coordination in Open Distributed Systems with Applications
	Monotonicity, Duplication Monotonicity, and Pareto Optimality in the Scoring-Based Allocation of Indivisible Goods
	1 Introduction
	2 Preliminaries
	3 Monotonicity
	4 Duplication Monotonicity
	5 Pareto Optimality
	6 Conclusions and Outlook
	References

	Dynamic Delivery Plan Adaptation in Open Systems
	Abstract
	1 Introduction
	2 Problem Definition
	3 Architecture
	3.1 Semantic Descriptor Module
	3.2 Semantic Matching Module
	3.3 Plan Manager

	4 Use Case (Plan Adaptation)
	5 Conclusions
	Acknowledgments
	References

	Autonomous Vehicles Coordination Through Voting-Based Decision-Making
	1 Introduction
	2 Social Choice in Vehicle Coordination
	3 Case Study
	4 Framework Evaluation
	4.1 Simulation Framework
	4.2 Metrics
	4.3 Scenario and Parameter Settings
	4.4 Results

	5 Related Work
	6 Conclusion and Discussion
	References

	Balancing Strategies for Bike Sharing Systems
	Abstract
	1 Introduction
	2 Related Works
	3 Bike Sharing System
	4 Quality Measures for Bike Sharing Systems
	4.1 Metrics Considering Absence of Bikes/Slots
	4.2 Time with Low Resources
	4.3 Deviation with Regards to a Reference Balanced Situation
	4.4 Users’ Time in the System

	5 Our Proposal for Balancing BSS
	5.1 Independent Stations
	5.2 Considering Areas
	5.3 Including Incentives

	6 Evaluation
	6.1 Bike3S Simulator
	6.2 Scenarios
	6.3 Results and Analysis

	7 Conclusion
	Acknowledgments
	References

	Towards Distributed Real-Time Coordination of Shoppers' Routes in Smart Hypermarkets
	1 Introduction
	2 Background and Related Work
	3 Problem Formulation
	4 MAS Architecture for Hypermarket Shopping
	5 Proposed Solution Approaches
	5.1 TSP Mathematical Programming Model
	5.2 A Distributed Greedy Heuristic Approach

	6 Experiment
	7 Conclusions
	References

	Author Index

