
Decryption Failure Attacks on IND-CCA
Secure Lattice-Based Schemes

Jan-Pieter D’Anvers1(B), Qian Guo2,3, Thomas Johansson3,
Alexander Nilsson3, Frederik Vercauteren1, and Ingrid Verbauwhede1

1 imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452,
3001 Leuven-Heverlee, Belgium

{janpieter.danvers,frederik.vercauteren,
ingrid.verbauwhede}@esat.kuleuven.be

2 Department of Informatics, University of Bergen, Box 7803, 5020 Bergen, Norway
qian.guo@uib.no

3 Department of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{thomas.johansson,alexander.nilsson}@eit.lth.se

Abstract. In this paper we investigate the impact of decryption fail-
ures on the chosen-ciphertext security of lattice-based primitives. We
discuss a generic framework for secret key recovery based on decryp-
tion failures and present an attack on the NIST Post-Quantum Proposal
ss-ntru-pke. Our framework is split in three parts: First, we use a tech-
nique to increase the failure rate of lattice-based schemes called failure
boosting. Based on this technique we investigate the minimal effort for
an adversary to obtain a failure in three cases: when he has access to
a quantum computer, when he mounts a multi-target attack or when
he can only perform a limited number of oracle queries. Secondly, we
examine the amount of information that an adversary can derive from
failing ciphertexts. Finally, these techniques are combined in an over-
all analysis of the security of lattice based schemes under a decryption
failure attack. We show that an attacker could significantly reduce the
security of lattice based schemes that have a relatively high failure rate.
However, for most of the NIST Post-Quantum Proposals, the number
of required oracle queries is above practical limits. Furthermore, a new
generic weak-key (multi-target) model on lattice-based schemes, which
can be viewed as a variant of the previous framework, is proposed. This
model further takes into consideration the weak-key phenomenon that a
small fraction of keys can have much larger decoding error probability
for ciphertexts with certain key-related properties. We apply this model
and present an attack in detail on the NIST Post-Quantum Proposal –
ss-ntru-pke – with complexity below the claimed security level.

Keywords: Lattice-based cryptography ·
NIST post-quantum standardization · Decryption failure · LWE ·
NTRU · Reaction attack

This paper is the result of a merge of [14] and [21].

c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11443, pp. 565–598, 2019.
https://doi.org/10.1007/978-3-030-17259-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17259-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-17259-6_19

566 J.-P. D’Anvers et al.

1 Introduction

The position of integer factorization and the discrete logarithm problem as a cor-
nerstone for asymmetric cryptography is being threatened by quantum comput-
ers, as their ability to efficiently solve these mathematical problems compromises
the security of current asymmetric primitives. These developments have led to
the emergence of post-quantum cryptography and motivated NIST to organize
a post-quantum cryptography standardization process, with the goal of stan-
dardizing one or more quantum-resistant public-key cryptographic primitives.
Submissions originate from various fields within post-quantum cryptography,
such as lattice-based, code-based and multivariate cryptography.

Lattice-based cryptography has recently developed into one of the main
research areas in post-quantum cryptography. Lattice-based submissions to the
NIST Post-Quantum process can be broadly put into one of two categories:
NTRU-based schemes (e.g. [39,47]) and schemes based on the learning with
errors (LWE) hard problem [36]. A lot of research has been done on their security,
such as provable post-quantum secure transformations from IND-CPA to IND-
CCA secure schemes [25,29,38,46], security estimates of post-quantum prim-
itives [3,4] and provable reductions for various hard problems underlying the
schemes [7,11,32,35,36].

A striking observation is that numerous proposed Key Encapsulation Mech-
anisms (KEM’s) have a small failure probability during decryption, in which the
involved parties fail to derive a shared secret key. This is the case for the majority
of schemes based on lattices, codes or Mersenne primes. The probability of such
failure varies from 2−64 in Ramstake [45] to 2−216 in New Hope [41], with most
of the failure probabilities lying around 2−128. As this failure is dependent on the
secret key, it might leak secret information to an adversary. However, reducing
this probability has a price, as the parameters should be adjusted accordingly,
resulting in a performance loss. An approach used by some schemes is to use
error-correcting codes to decrease the failure probability. This leads to a reduc-
tion in the communication overhead, but makes the scheme more vulnurable to
side-channel attacks.

As suggested by the wide range of failure probabilities in the NIST submis-
sions, the implications of failures are still not well understood. In the absence of
a clear evaluation technique for the impact of the failure rate, most NIST sub-
missions have chosen a bound on the decryption failure probability around 2−128

based on educated guessing. As far as we know, only NIST-submission Kyber
[40] provides an intuitive reasoning for its security against decryption failure
attacks, but this approximation is not tight. They introduce a methodology that
uses Grover’s search algorithm to find ciphertexts that have a relatively high
probability of triggering a decryption failure.

1.1 Related Works

The idea of exploiting decryption errors has been around for a long time and
applies to all areas of cryptography [9]. For lattice-based encryption systems, the

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 567

Ajtai-Dwork scheme and NTRU have been a target for attacks using decryption
failures. Hall, Goldberg, and Schneier [23] developed a reaction attack which
recovers the Ajtai-Dwork private key by observing decryption failures. Hoffstein
and Silverman [24] adapted the attack to NTRU and suggested modifying NTRU
to use the Fujisaki-Okamoto transform [18] to protect against such attacks. Fur-
ther work in this direction is given in [28], [26] and [19]. Fluhrer [17] described
an attack against Ring-Learning with Errors (RLWE) schemes. In [15] his work
was extended to more protocols and in [8] a chosen-ciphertext attack on the
proposal HILA5 [37] was given, using decryption failures.

These attacks are chosen-ciphertext attacks on proposals with only IND-
CPA-security and can be thwarted using an appropriate transformation to
a chosen-ciphertext secure scheme, such as the Fujisaki-Okamoto transforma-
tion [18]. Hofheinz et al. [25] and later Jiang et al. [29] proved a bound on
the impact of the failure rate on an IND-CCA secure KEM that is constructed
using this transformation, but their bounds are squared in the failure proba-
bility in the quantum oracle setting, which seems a very conservative result.
Guo, Johansson and Stankovski [22] proposed a key-recovery attack against the
IND-CCA-secure version of QC-MDPC, which is a code-based scheme. It uses
a distinguishing property that “colliding pairs” in the noise and the secret can
change the decryption failure rate.

1.2 Contributions

In this paper we investigate the requirements for KEM’s to resist decryption
failure cryptanalysis. Having better security estimates can benefit the param-
eter selection process, resulting in improved security and efficiency. We focus
on IND-CCA secure KEM’s based on the (Ring/Module-)Learning with Errors
and (Ring/Module-)Learning with Rounding paradigms. Nonetheless, the gen-
eral method can also be applied to investigate the impact of failures on other
schemes.

The exploitation of decryption failures of an IND-CCA secure cryptographic
scheme proceeds in two main steps: obtaining ciphertexts that result in a decryp-
tion failure and estimating the secret based on these ciphertexts. In the first step,
an adversary can use failure boosting to find ‘weak’ input vectors that artificially
enlarge the failure rate of the scheme. In Sect. 3, we examine how an adversary
can generate these ‘weak’ ciphertexts that increase the failure probability. We
provide a theoretical framework and a Python implementation1 to calculate an
estimate of the minimum effort required for an adversary to obtain one failing
ciphertext.

Once ciphertexts that trigger a decryption failure are collected, they can
be used to estimate the secret. In Sect. 4, we study how much information is
leaked by the collected failures. We develop a statistical model to estimate the
secret from the failures and determine the residual entropy of the secret after a

1 The software is available at https://github.com/danversjp/failureattack.

https://github.com/danversjp/failureattack

568 J.-P. D’Anvers et al.

certain number of failures is collected. The estimate of the secret can be used to
construct an easier problem that can be solved faster.

Section 5 combines failure boosting and the secret estimation technique
from Sect. 4 to estimate the security of schemes based on (Ring/Module)-
Learning with Errors and (Ring/Module)-Learning with Rounding under an
attack exploiting decryption failures. We show that an attacker could signifi-
cantly reduce the security of some schemes if he is able to perform sufficient
decryption queries. However, for most NIST submissions, the number of decryp-
tion queries required is above practical limits.

In Sect. 6 we propose a new generic weak-key (multi-target) model exploiting
the fact that a fraction of keys employed can have much higher error probability if
the chosen weak ciphertexts satisfy certain key-related properties. The detailed
attack procedure is similar to the attack discussed in the previous sections.
It first consists of a precomputation phase where special messages and their
corresponding error vectors are generated. Secondly, the messages are submitted
for decryption and some decryption errors are observed. Finally, a phase with a
statistical analysis of the messages/errors causing the decryption errors reveals
the secret key.

In Sect. 7 we apply the model to ss-ntru-pke, a version of NTRUEncrypt tar-
geting the security level of NIST-V. The proposed attack is an adaptive CCA
attack with complexity below the claimed security level. We provide a Rust
implementation2 where parts of the attack are simulated.

2 Preliminaries

2.1 Notation

Let Zq be the ring of integers modulo q represented in (−q/2, q/2], let Rq denote
the ring Zq[X]/(Xn +1) and let Rk1×k2

q denote the ring of k1 ×k2 matrices over
Rq. Matrices will be represented with bold uppercase letters, while vectors are
represented in bold lowercase. Let Aij denote the element on the ith row and
jth column of matrix A, and let Aijk denote the kth coefficient of this element.
Denote with A:j the jth column of A.

The rounding operation �x�q→p is defined as �p/q · x� ∈ Zp for an element
x ∈ Zq, while abs(·) takes the absolute value of the input. These operations
are extended coefficient-wise for elements of Rq and Rk1×k2

q . The two-norm of a
polynomial a ∈ Rq is written as ‖a‖2 and defined as

√∑
i a2

i , which is extended

to vectors as ‖a‖2 =
√∑

i ‖a i‖22. The notation a ← χ(Rq) will be used to
represent the sampling of a ∈ Rq according to the distribution χ. This can be
extended coefficient-wise for A ∈ Rk1×k2

q and is denoted as A ← χ(Rk1×k2
q). Let

2 The software is available at https://github.com/atneit/ss-ntru-pke-attack-simul
ation.

https://github.com/atneit/ss-ntru-pke-attack-simulation
https://github.com/atneit/ss-ntru-pke-attack-simulation

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 569

U be the uniform distribution. Denote with χ1 ∗ χ2 the convolution of the two
distributions χ1 and χ2, and denote with χ∗n = χ ∗ χ ∗ χ ∗ · · · ∗ χ ∗ χ

︸ ︷︷ ︸
n

the nth

convolutional power of χ.

2.2 Cryptographic Definitions

A Public Key Encryption (PKE) is defined as a triple of functions PKE =
(KeyGen, Enc, Dec), where the key generation KeyGen returns a secret key sk and
a public key pk, where the encryption Enc produces a ciphertext c from the
public key pk and the message m ∈ M, and where the decryption Dec returns
the message m′ given the secret key sk and the ciphertext c.

A Key Encapsulation Mechanism (KEM) consists of a triple of functions
KEM = (KeyGen, Encaps, Decaps), where KeyGen generates the secret and public
keys sk and pk respectively, where Encaps generates a key k ∈ K and a ciphertext
c from a public key pk, and where Decaps requires the secret key sk, the public
key pk and the ciphertext c to return a key k or the decryption failure symbol ⊥.
The security of a KEM can be defined under the notion of indistinguishability
under chosen ciphertext attacks (IND-CCA),

Advind-cca
KEM (A) =

∣∣∣∣∣∣
P

⎛

⎝b′ = b :
(pk, sk) ← KeyGen(), b ← U({0, 1}),

(c, d, k0) ← Encaps(pk),
k1 ← K, b′ ← ADecaps(pk, c, d, kb),

⎞

⎠ − 1
2

∣∣∣∣∣∣
.

2.3 LWE/LWR Problems

The decisional Learning with Errors problem (LWE) [36] consists of distin-
guishing a uniform sample (A,U) ← U(Zk1×k2

q × Z
k1×m
q) from an LWE-sample

(A,B = AS + E), were A ← U(Zk1×k2
q) and where the secret vectors S and

E are generated from the small distributions χs(Zk2×m
q) and χe(Zk1×m

q) respec-
tively. The search LWE problem states that it is hard to recover the secret S
from the LWE sample.

This definition can be extended to Ring- or Module-LWE [30,32] by using
vectors of polynomials. In this case, the problem is to distinguish the uniform
sample (A,U) ← U(Rk1×k2

q ×Rk1×m
q) from a generalized LWE sample (A,B =

AS + E) in which A ← U(Rk1×k2
q) and where the secret vectors S and E are

generated from the small distribution χs(Rk2×m
q) and χe(Rk1×m

q) respectively.
Analogous to the LWE case, the search problem is to recover the secret S from
a generalized LWE sample.

The decisional generalized Learning with Rounding (LWR) problem [7] is
defined as distinguishing the uniform sample (A, �U �q→p), with A ← U(Rk1×k2

q)
and U ← U(Rk1×m

q) from the generalized LWR sample (A,B = �AS�q→p) with
A ← U(Rk1×k2

q) and S ← χs(Rk2×m
q). In the analogous search problem, one has

to find S from a generalized LWR sample.

570 J.-P. D’Anvers et al.

2.4 (Ring/Module-)LWE Based Encryption

Let gen be a pseudorandom generator that expands seedA into a uniformly
random distributed matrix A ∈ Rk×k

q . Define enc as an encoding function that
transforms a message m into a polynomial representation, and dec as the inverse
decoding function. A general (Ring/Module-)LWE based PKE, consisting of a
key generation, an encryption and a decryption phase, can then be constructed
as described in Algorithms 1, 2 and 3 respectively. The randomness required for
the generation of the secrets S ′

B , E ′
B and E ′′

B during the encryption, is generated
pseudorandomly from the uniformly distributed seed r that is given as an input.

Algorithm 1. PKE.KeyGen

Input:
Output: Public key pk = (B , seedA), secret key sk = SA).
1) seedA ← U({0, 1}256)
2) A ← gen(seedA) ∈ Rl×l

q

4) SA ← χs(R
l×m
q),EA ← χe(R

l×m
q)

5) B = �ASA + EA�q→p

Algorithm 2. PKE.Enc

Input: Public key pk = (B , seedA), message m, randomness r
Output: Ciphertext c = (V ′,B’)
1) A ← gen(seedA) ∈ Rl×l

q

2) S ′
B ← χs(R

l×m
q),E ′

B ← χe(R
l×m
q)

3) E ′′
B ← χe(R

m×m
q)

4) Br = �B�p→q

5) B ′ = �ATS ′
B + E ′

B�q→p

6) V ′ = �BT
r S

′
B + E ′′

B + enc(m)�q→t

Algorithm 3. PKE.Dec

Input: Secret key sk = SA, ciphertext c = (V ′,B’)
Output: Message m′

1) B ′
r = �B ′�p→q

2) V ′
r = �V ′�t→q

3) V = B ′T
r SA

4) m′ = dec(V ′
r − V)

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 571

Using this general framework, specific schemes can be described with appro-
priate parameter choices. When the ring Rq is chosen as Zq, the encryption
is LWE-based as can be seen in FrodoKEM [33] and Emblem [42]. A value of
l = 1 indicates a Ring-LWE based scheme including New Hope [5], LAC [31],
LIMA [43] or R.Emblem [42]. If l 	= 1 and Rq 	= Zq, the scheme is based on
the Module-LWE hard problem such as Kyber [10]. When referring to Kyber
throughout this paper, we will consider the original version that includes round-
ing. The special case that χe = 0 corresponds to (Module/Ring)-LWR-based
schemes such as Round2 [6] and Saber [13]. In Lizard [12], a combination of
an LWE and LWR problem is proposed. In most (Ring/Module-)LWE based
schemes, q = p and no rounding is performed in the calculation of B and B ′,
while t is in most schemes much smaller than q leading to a drastic rounding
of V ′.

We define UA, U ′
B en U ′′

B as the errors introduced by the rounding opera-
tions, which is formalized as follows:

UA = ASA + EA − Br , (1)
U ′

B = ATS ′
B + E ′

B − B ′
r , (2)

U ′′
B = BT

r S
′
B + E ′′

B + enc(m) − V ′
r . (3)

Let S be the vector constructed as the concatenation of the vectors −SA

and EA + UA, let C be the concatenation of E ′
B + U ′

B and S ′
B , and let

G = E ′′
B + U ′′

B . An attacker that generates ciphertexts can compute C and G
and tries to obtain information about S . These variables are summarized below:

S =
(−SA

EA + UA

)
, C =

(
E ′

B + U ′
B

S ′
B

)
, G = E ′′

B + U ′′
B . (4)

After the execution of this protocol, the two parties will arrive at the same
key if the decoding dec(V ′

r−V) equals m. The term V ′
r−V can be rewritten as

(EA +UA)TS ′
B −ST

A(E ′
B +U ′

B)+(E ′′ +U ′′
B)+enc(m) = STC +G+enc(m).

The message can be recovered if and only if abs(STC + G) < qt for a certain
threshold qt that is scheme dependent.

We will say that a (decryption) failure occurred if the parties do not arrive
at a common key due to a coefficient of abs(STC + G) that is larger than qt,
and will define F (C ,G) as the probability of a decryption failure given C and
G averaged over all S , which can be expressed as

∑
S P (abs(STC + G) >

qt | S)P (S).

2.5 Fujisaki-Okamoto Transformation

Using the Fujisaki-Okamoto transform [18,25], one can transform a chosen plain-
text secure PKE to an IND-CCA secure KEM. On top of the encryption from the
PKE, the KEM defines an encapsulation and decapsulation function as described
in Algorithms 4 and 5, using hash functions H and G.

572 J.-P. D’Anvers et al.

Algorithm 4. KEM.Encaps

Input: Public key pk
Output: Ciphertext c, key K
1) m ← U({0, 1}256)
2) r = G(m)
3) c = PKE.Enc(pk, m, r)
4) K = H(r)

Algorithm 5. KEM.Decaps

Input: Public key pk, secret key sk, ciphertext c
Output: Key K or ⊥
1) m′ = PKE.Dec(sk, c)
2) r′ = G(m′)
3) c′ = PKE.Enc(pk, m′, r′)
4) If c = c′:
5) K = H(r)
6) Else:
7) K =⊥

3 Weak-Ciphertext Failure Boosting

In this section, we will develop a method to estimate the minimum amount of
work to obtain one ciphertext that triggers a decryption failure. In contrast to
an honest party that generates ciphertexts randomly, an attacker can search for
ciphertexts that have a higher failure probability than average, which will be
called ‘weak’. As C and G are the only terms with which an attacker can influ-
ence decryption failures, the search for weak ciphertexts boils down to the search
for weak (C ,G). However, the pair (C ,G) is generated through a hash H() with
random seed r, and during decryption it is checked whether the generator of the
ciphertext knew the preimage r of (C ,G). Therefore an attacker is forced to
resort to a brute force search, which can be sped up at most quadratically using
Grover’s algorithm [20].

To find a criterion for our search, we sort all possible (C ,G) according to an
increasing failure probability F (C ,G). This list can then be divided into two sets
using a threshold failure probability ft: weak vectors with a failure probability
higher or equal than ft, and strong vectors with lower failure probability. Let
f() be the deterministic function that generates C and G from the random seed
r. For a certain ft, we can calculate the probability of generating a weak pair:
α = P (F (C ,G) > ft | r ← U , (C ,G) = f(H(r))), and the probability of a
decryption failure when a weak pair is used: β = P (abs(STC + G) > qt | r ←
U , (C ,G) = f(H(r)), F (C ,G) > ft).

The amount of work for an adversary to find a weak pair (C ,G) is pro-
portional to α−1, but can be sped up quadratically using Grover’s algorithm

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 573

on a quantum computer, resulting in an expected workload of
√

α−1. On the
other hand, the probability of a decryption failure given a weak pair cannot
be improved using quantum computation assuming that the adversary has no
quantum access to the decryption oracle. This assumption is in agreement with
the premise in the NIST Post-Quantum Standardization Call for Proposals [2].
The expected work required to find a decryption failure given ft is therefore the
expected number of queries using weak ciphertexts times the expected amount
of work to find a weak ciphertext, or (α · β)−1 with a classical computer and
(
√

α ·β)−1 with a quantum computer. An optimization over ft gives the minimal
effort to find one decryption failure.

3.1 Practical Calculation

For most schemes, the full sorted list (C ,G) is not practically computable,
but using some observations and assumptions, an estimate can be found. The
next three steps aim at calculating the distribution of the failure probability
F (C ,G), i.e. what is the probability of finding a (C ,G) pair with a certain
failure probability f . This distribution gives enough information to calculate α
and β for a certain ft.

First, we can remove the hash H(.) in the probability expression by assum-
ing the output of f(H(.)) given random input r to behave as the probability
distributions (χC , χG), resulting in: α = P (F (C ,G) > ft | (C ,G) ← (χC , χG))
and β = P (abs(STC + G) > qt | (C ,G) ← (χC , χG), F (C ,G) > ft).

Secondly, we assume that the coefficients of STC are normally distributed,
which is reasonable as the coefficients are a sum of 2(l · n) distributions that
are somewhat close to a Gaussian. The coefficients of the polynomial (STC)ij

will be distributed with mean μ = 0 because of symmetry around 0, while the
variance can be calculated as follows, after defining χe+u as the distribution of
the coefficients of EA + UA:

var((STC)ijk) = var(
l−1∑

i=0

n−1∑

k=0

C ijksijk +
2l−1∑

i=l

n−1∑

k=0

C ijkeijk) (5)

where: sijk ← χs and eijk ← χe+u (6)

=
l−1∑

i=0

n−1∑

k=0

C 2
ijkvar(χs) +

2l−1∑

i=l

n−1∑

k=0

C 2
ijkvar(χe+u) (7)

= ‖(E ′
B + U ′

B):j‖22var(χs) + ‖(S ′
B):j‖22var(χe+u) . (8)

Therefore, the variance of the coefficients of STC for a given C is the same
for all coefficients in the same column. This variance will be denoted as σ2

j

for coefficients in the jth column of STC . Furthermore, following the Gaussian
assumption, the failure probability given σ2

j is the same as the failure probability
given the jth column of C .

574 J.-P. D’Anvers et al.

In the third step we gradually calculate the distribution of the failure prob-
ability. We start from the distribution of the failure probability of the coeffi-
cient at the ijkth position given σj , denoted with χcoef | σ. This distribution
expresses the probability of finding a G so that the failure probability is equal
to fijk given a certain value of C (or equivalently σ2

j) and can be expressed as
follows:

P (fijk |G ← χG,C) , (9)

where:

fijk = P (abs(STC + G)ijk > qt |G,C) (10)

≈ P (abs(x + Gijk) > qt |G, x ← N (0, σ2
j), σ2

j) . (11)

The distribution χcol | σ, which models the probability of a failure in the jth

column of abs(STC + G) given σ2
j , can be calculated using the convolution of

the distributions of the mn individual coefficient failures χcoef | σ as follows:

χcol | σ = χ∗nm
coef | σ . (12)

The conditioning on σ2
j is necessary to counter the dependency between the

coefficients of the columns of abs(STC + G), which are dependent as a result
of sharing the same variance σ2

j .
The distribution of failure probabilities in the jth column of STC , denoted

as χcol, can then be calculated using a weighted average over the possible values
of σ2

j as follows:

χcol =
∑

lc

P (f | f ← χ∗nm
col,σ)P (σ2

j = lc) . (13)

Finally we can calculate the full failure distribution χFAIL as the convolution
of the m probability distributions corresponding to the failure distributions of
the different columns. This convolution does not have the dependency on σ2

j as
failures of different columns are independent conditioned on C and G, therefore:

χFAIL = χ∗m
col . (14)

From this failure distribution, we can calculate α and β for an arbitrary value
of ft:

α = P (f > ft | f ← χFAIL) , (15)

β =

∑
f>ft

f · P (f | f ← χFAIL)
α

. (16)

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 575

We want to stress that this calculation is not exact, mainly due to the Gaus-
sian assumption in the second step. More accurate estimates could be obtained
with a more accurate approximation in step 2, tailored for a specific scheme. In
this case, the assumptions and calculations of step 1 and step 3 remain valid. For
the estimations of LAC [31] in subsequent paragraphs, we followed their app-
roach for the calculation of the effect of the error correcting code. Note that this
is not an exact formula as the inputs of the error correcting code are correlated
through their polynomial structure.

In Fig. 1 we compare the values of α and β calculated using the technique
described above, with exhaustively tested values on a variant of LAC128 without
error correction. For step 2 of the practical calculation, we use both a Gaussian
approximation as well as a binomial approximation that is more tailored for
LAC. We can observe that our estimation of the effect of failure boosting is
relatively close to reality.

Fig. 1. The failure rate of one weak ciphertext (β) as a function of the work required
to generate one weak ciphertext (α) on a classical computer for LAC128 without error
correction.

3.2 Applications of Failure Boosting

Failure boosting is a useful technique in at least three scenarios: first, if there is
no multi-target protection, second, if the adversary can only perform a limited
number of queries to the decryption oracle and third, if the adversary has access
to a quantum computer.

In some (Ring/Module-)LWE/LWR schemes, the seed r is the only input to
the pseudorandom generator that generates C and G. This paves the way to
a multi-target attack where precomputed weak values of r can be used against

576 J.-P. D’Anvers et al.

multiple targets: after choosing the parameter ft, the adversary can generate
weak ciphertexts in approximately α−1 time (

√
α−1 if he has access to a quantum

computer). Each precomputed sample has then a failure probability of β against
every target. Figure 2 shows the failure probability of one weak ciphertext versus
the amount of work to generate that ciphertext on a classical computer. Multi-
target protection, for example by including the public key into the generation of
C en G as proposed in Kyber [10] and Saber [13] is a relatively cheap option to
resolve this issue.

Fig. 2. The failure rate of one weak ciphertext (β) as a function of the work required
to generate one weak ciphertext (α) on a classical computer.

If the adversary can only perform a limited number of decryption queries, for
example 264 in the NIST Post-Quantum Standardization Call for Proposals [2],
the adversary can use failure boosting to reduce the number of required decryp-
tion queries. To this end, he chooses the parameter ft so that the inverse of the
failure probability β−1 equals the decryption query limit nd, which results in a
probability of finding a decryption failure of approximately (1− e−1) ≈ 0.63. To
find i failures with similar probability, the failure probability should be brought
up so that β−1 = nd/i. Since the amount of work to generate one input of the
decryption query is approximately α−1 (

√
α−1 quantumly), the total amount of

work expected is α−1β−1, (
√

α−1β−1 quantumly). Figure 3 shows the expected
total amount of work to find one decryption failure with a classical computer,
versus the failure rate of one weak ciphertext.

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 577

Fig. 3. The expected amount of work (α−1β−1) on a classical computer, as a function
of the failure rate of one weak ciphertext (β). The red dotted line indicates a failure
rate of 2−64. (Color figure online)

An adversary with a quantum computer always benefits from failure boosting,
as the search for weak ciphertexts can be sped up using Grover’s algorithm.
However, this speedup is not quadratic if the adversary has no quantum access
to the decryption oracle. Figure 4 shows the total amount of expected work to
find one decryption failure, versus the amount of work to find one weak ciphertext
on a quantum computer

√
α−1.

4 Estimation of the Secret

Finding a decryption failure does not immediately break the security of the
KEM, but it does provide extra information to an adversary. In this section we
will investigate how much this information leaks about the secret. An adversary
that has obtained ciphertexts that produce decryption failures can use them to
make an estimation of the secret S .

When a failure occurs, we know that at least one coefficient of abs(STC+G)
is larger than the threshold qt. This leads to a classification of the coefficients
in the set of fail coefficients vf and no-fail coefficients vs. To each coefficient at
position (i, j, k), a vector of integers s can be associated by taking the coefficients
of S :i. Similarly, the coefficient can be linked to a vector of integers c calculated
as a function of C :j and k, so that the multiplication sc equals that coefficient.

No-fail vectors will contain negligible information about the secret s, but
failure vectors do carry clues, as the threshold exceeding value of the coefficients
of STC + G implies a correlation between the corresponding c and s. This
correlation can be positive, in case of a large positive value of the coefficient, or

578 J.-P. D’Anvers et al.

Fig. 4. The expected amount of work (
√

α−1β−1) as a function of the work required
to generate one weak ciphertext (

√
α−1) on a classical computer.

negative, in case of a large negative value of the coefficient. Consequently, the fail
coefficients can be further divided into the sets of positive vfp and negative vfn

fail coefficients respectively. Moreover, negative fail vectors can be transformed
into positive fail vectors by multiplication with −1. Note that failure coefficients
at position (i, j, k) will only contain information about the jth column of S , which
is why the estimation of the columns of S can be performed independently.

4.1 One Positive Failure Vector

We will first examine the case where we know one positive fail vector c and
associated coefficient Gi,j,k, which we will denote with g. This corresponds to
the case where one failing ciphertext and the location and sign of the error is
known. The question is how much the knowledge about c and g can improve
our estimate of the associated secret s. Applying Bayes’ theorem and assuming
independence between the coefficients of c and s that are on different positions,
we can write:

P (si | c, g, sc > qt − g) ≈ P (si | ci, g, sc > qt − g) (17)

=
P (sc > qt − g | si, ci, g)P (si | ci, g)

P (sc > qt − g | ci, g)
(18)

=
P (

∑j �=i
j sjcj > qt − g − sici | si, ci, g)P (si)

P (sc > qt − g | ci, g)
. (19)

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 579

The improved estimates for the coefficients of s can in turn be used to get
an estimate sest that minimizes its variance E[(sest − s)2] as follows:

0 =
d

dsest,i
E((sest,i − si)2) (20)

= 2
∑

si

(sest,i − si)P (si) , (21)

or: sest,i =
∑

si

si · P (si) . (22)

The estimate of s gives the estimate of the jth column of S , which can be
divided trivially in an approximation SA,est of (SA):j and EA,est of (EA+UA):j .
These vectors can be used to transform the original (Ring/Module-)LWE/LWR
sample (A,A(SA):j + (EA +UA):j) into a (Ring/Module-)LWE alike problem
with a smaller secret variance by subtracting ASA,est + EA,est. This results in
the sample (A,A((SA):j −SA,est)+(EA +UA):j −EA,est), which is a problem
with smaller secret (SA):j − SA,est and noise (EA + UA):j − EA,est. We will
call this new problem the simplified problem.

4.2 Multiple Fail Vectors

Having access to m positive fail vectors c(1) . . . c(m) from the same column, with
corresponding values of G as g(1) . . . g(m), an adversary can improve his estimate
of P (s) and therefore obtain a better estimate sest, assuming that the failure
vectors ci are independent conditioned on s. This corresponds to knowing m
failing ciphertexts and the location and sign of their errors.

P (si | c(1) . . . c(m), g(1) . . . g(m)) ≈ P (si | c(1)
i . . . c

(m)
i , g(1) . . . g(m)) (23)

=
P (c

(1)
i . . . c

(m)
i | si, g

(1) . . . g(m))P (si | g(1) . . . g(m))

P (c
(1)
i . . . c

(m)
i | g(1) . . . g(m))

(24)

=
P (si)

∏m
k=1 P (c

(k)
i | si, g

(k))
∏m

k=1 P (c
(k)
i | g(k))

. (25)

Similar to Eq. 19, P (ci | si, g
(k)) can be calculated as:

P (ci | si, g, sc > qt − g) =
P (sc > qt − g | si, ci, g)P (ci | si, g)

P (sc > qt − g | si, g)
(26)

=
P (

∑j �=i
j sjcj > qt − g − sici | si, ci, g)P (ci)

P (sc > qt − g | si, g)
. (27)

In subsequent calculations, each value of the coefficient of g is taken as the
maximum possible value.

580 J.-P. D’Anvers et al.

4.3 Classification of Vectors

The above approach assumes a prior knowledge of the exact position and sign
of the errors. This information is needed to link coefficients of C with their
corresponding coefficient of S . However, this is not always a trivial problem.
For most schemes there are three sources of extra information that will allow to
perform this classification with a high probability using only a few decryption
failures.

Firstly, a large coefficient of G would induce a higher failure probability for
the corresponding coefficient of the error term STC +G. Thus, failures are more
likely to happen at positions linked to that coefficient of G. Moreover, a positive
value of the coefficient suggests a positive error so that c ∈ vfp, while a negative
value hints at a negative error, or c ∈ vfn.

Secondly, as vectors c ∈ vf are correlated with the secret s, they are also
correlated with each other. Therefore, vectors c ∈ vf are more correlated between
each other than a vector c ∈ vf with a vector c ∈ vs. Moreover, a high positive
correlation suggests that the vectors share the same class vfp or vfn, while
a high negative correlation indicates that the vectors have a different classes.
This allows for a clustering of the fail vectors using the higher than average
correlation, under the condition that the correlation difference is high enough.
This correlation difference is related to the failure rate: a low failure rate implies
a higher correlation because only ciphertexts that are highly correlated with the
secret lead to a failure rate in this case. For example, Fig. 5 shows an estimate
of the correlations between vectors of the classes vfp (pos), vfn (neg) and vs

(nofail) in Kyber768. This approach does not work for schemes with strong error
correcting codes (ECC) such as LAC, as the bit error rate before correction is
relatively high for these types of algorithms, leading to a relatively low correlation
between failure vectors.

Fig. 5. The probability of a certain value of the correlation between different classes
of vectors in Kyber768.

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 581

In case of a ring/module structure of the coefficients of S , an additional
structure arises leading to an artifact in which some pairs of no-fail coeffi-
cients within the same polynomial also have high correlation of their corre-
sponding vectors. Imagine a pair of failure coefficients at positions (i, j, k1)
and (i, j, k2) from different decryption failures a, b, with corresponding matri-
ces C (a) and C (b). The correlation of the vectors c(a) and c(b) can be written
as Xk1C

(a)T
:,j Xk2C

(b)
:,j = Xk1+k2C

(a)T
:,j C

(b)
:,j , from which is clear that the vectors

from C (a) and C (b), with respective positions (i, j, k1 − t) and (i, j, k2 + t) have
the same correlation. The clustering will thus result in n classes, with one class
containing the failure vectors. Combining this information with the information
of the first method gives an adversary the failure vectors with high probability.
Otherwise, an adversary can estimate the secret n times and check the validity
of the result using the (Ring/Module-)LWE/LWR problem.

Finally, for schemes that use error correcting codes to reduce their failure
probability, side channel leakage during the error correction might reveal infor-
mation on the presence or position of failure coefficients. Note that if this is the
case, it might not even be necessary to obtain a decryption failure since failing
coefficients could also be collected on successful decryptions where there is at
least one failing coefficient.

4.4 Implications

Figure 6 depicts the relative variance reduction of the secret as a function of the
number of positive failure vectors for various schemes. For schemes that have
a very low failure probability for individual coefficients of STC + G, such as
Kyber, Saber and FrodoKEM, the variance of the secret drastically reduces upon
knowing only a few failing ciphertexts. Assuming that the simplified problem,
that takes into account the estimate of the secret, has the same complexity
as a regular (Ring/Module-)LWE problem with similar secret variance, we can
calculate the remaining hardness of the simplified problem as a function of the
number of positive failure vectors as shown in Fig. 7 using the toolbox provided
by Albrecht et al. [4] using the Q-core sieve estimate.

The effectiveness of the attack declines as the failure probability of the indi-
vidual coefficients increases, since the correlation between the secret and the fail-
ing ciphertext is lower in this case. This can be seen in the case of LAC, where
the individual coefficients have relatively high failure rates due to a strong error
correcting code. On the other hand, a failing ciphertext will contain multiple
errors, making it easier to collect multiple failure vectors.

Note that once one or more failures are found, they can be used to estimate
the secret. This estimate in turn can be used to improve the search for weak
ciphertexts by considering F (C ,G) as

∑
S P (FAIL(C ,G),S), where S is not

sampled from χS , but from the new probability distribution χSest
. Therefore,

the search for weak keys could become easier the more failures have been found.
However, we do not take this effect into account in this paper.

582 J.-P. D’Anvers et al.

Fig. 6. The relative reduction in entropy as a function of the number of positive failure
vectors

5 Weak-Ciphertext Attack

Using the failure boosting technique from Sect. 3 and the secret estimation
method from Sect. 4, we can lower the security of a (Ring/Module-)LWE/LWR
scheme on the condition that its failure rate is high enough. To this end, we first

Fig. 7. The hardness of the simplified problem as a function of the number of positive
failure vectors

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 583

collect i decryption failures using the failure boosting technique, which would
cost approximately i

√
α−1β−1 work. Then, the exact error position and failure

type should be determined for all of the failure vectors using the techniques
of Subsect. 4.3. Based on this information, the secret can be estimated, which
in turn can be used to simplify the (Ring/Module-)LWE/LWR problem. These
last two operations require a negligible amount of work compared to finding
decryption failures. Finally, we need to solve the simplified problem, with has
a complexity Ssimplified(i) as estimated in Sect. 4. The total amount of work is
therefore O(Ssimplified(i) + i

√
α−1β−1), which is depicted in Fig. 8 as a function

of the number of failures i. Note that the practical security of Kyber relies on
an error term EA as well as a rounding term UA. Both are taken into account
in the security calculation.

Fig. 8. The full amount of work to break the scheme as a function of the number of
collected decryption failures

Table 1 gives an overview of the original hardness of the scheme before decryp-
tion failure usage S, and the attack cost Ssimplified(i) + i

√
α−1β−1 using decryp-

tion failures for ideal values of i and ft, which are calculated through a brute force
sweep. The number of collected decryption failures i and the expected number
of decryption queries iβ−1 is also included. These values are calculated assum-
ing that the adversary can perform an unlimited number of decryption queries.
From this table we can see that the security of Kyber and Saber is considerably
reduced. This is due to the fact that finding a failure is easier than breaking
the security of the scheme S. For the case of FrodoKEM976, the security is not
affected as the work to obtain a failure is considerably larger than breaking the
security S.

584 J.-P. D’Anvers et al.

In other situations such as a multi-target attack or having only a limited num-
ber of decryption queries, other values of ft and i will obtain optimal results. For
example in a multi-target attack scenario one would select a higher threshold ft

to be able to efficiently re-use the precomputation work α−1 for weak ciphertexts
and therefore reduce the overall work. A limit on the number of decryptions nd

could make it necessary to increase the amount of precomputational work α−1

in order to reduce the failure rate β−1 < nd/i. This would make the attack more
expensive or might even invalidate it. For example, the NIST Post-Quantum
Standardization Process decryption limit is set to 264, which rules out a decryp-
tion failure attack on schemes with a low enough failure rate such as Saber and
Kyber, which can be deduced from Fig. 3. As such, the security of this schemes
is not affected within the NIST framework.

6 A Weak-Key Attack Model

In this section we elaborate a weak-key (multi-target) attack model when the
adversary can only have a limited number of decryption queries to one user
but multiple users can be queried. We observe that for certain keys, the error
probability can be much higher when applying the failure boosting technique,
i.e., choosing ‘weak’ ciphertexts as discussed in Sect. 3, if the chosen ciphertexts
satisfy certain key-related properties. The major targets are the same as before –
lattice-based NIST post-quantum proposals with CCA security using some CCA
transformations.

We set the maximum number of ciphertexts that can be submitted to a node
with a public key to be 2K and we set the maximum number of public keys in the
system to be 2L. Referring again to the NIST Post-Quantum Standardization
Process, they have indicated in their call that at least K = 64 can be considered.
In the discussion forum [1] for the same project, we have also seen researchers
mentioning that L = 64 can be considered. We will adopt K = L = 64 in
the further sections since it seems these values are not questioned, although

Table 1. The security of different schemes with and without decryption failures

original attack reduction decryption decryption

security cost factor failures queries

Saber 2184 2139 245 77 2131

FireSaber 2257 2170 287 233 2161

Kyber768 2175 2142 233 42 2131

Kyber1024 2239 2169 270 159 2158

LAC256 2293 297† 2196 106 · 56 280

FrodoKEM976 2188 2188 20 0 0
† Note that it seems not straightforward for LAC256 to obtain the exact position and
type of the errors, which is required to obtain this result

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 585

larger values of K and L can give more powerful attacks and could definitely
be relevant. For example, comparing with attacks on symmetric schemes, such
attacks may require a number of plaintext-ciphertext pairs that are close to the
number of possible keys (like 2200), and still they are considered valid attacks.

The proposed attack procedure is split in three steps.

1. Do a precomputation step to establish pairs of messages and corresponding
ciphertexts and let informally the set F denote error vectors corresponding
to the different messages, which are equivalent to the (C ,G) pairs chosen
before. These selected error vectors should be with particular properties, e.g,
with large norm and/or with several large entries in certain positions, etc.

2. Send the ciphertexts contained in F and assume that we learn the decrypted
messages. Assume further that a subset have been erroneously decrypted
(wrong decoding due to too large error) and let F ′ be the error vectors causing
decryption failure. The cardinality of this set could be larger than average
if certain properties (related to F) of the secret vector hold. So we submit
the set of ciphertexts to each node holding a public key. The node giving
the largest decryption failure rate is selected as the target public key for the
attack.

3. Do statistical testing on the set F ′ (and possibly the set F) to establish
relationships between the secret key and given the noise vectors leading to
a decryption failure. Analyzing their correlation, we may be able to recover
partial secrets, which can considerably reduce the solving complexity of the
underlying hard problem. We are then able to perform a full key-recovery
attack via classic approaches such as lattice reduction algorithms.

Note that the above procedure is very close to the weak-ciphertext attack
described in the previous sections. One major difference is that here we choose
the set F of ‘weak’ ciphertexts to be related to the ‘weak’ keys targeted, while
in the prior, the ‘weak’ ciphertexts are chosen to have a larger decryption failure
rate averaged over all keys.

We discuss the three steps briefly. In the precomputation step, we can observe
a first difference between different schemes. Most schemes include the public key
in the generation of the noisy vectors (as input in the hash function generating
the noise). This means that a constructed set F can only be used for a single
public key and a new such set must be constructed for the next public key.
For simplicity, we assume |F| = 2K and note that the number of nodes with
a public key is 2L. If we set the computational complexity of precomputing a
set F to be 2λ, the overall complexity of this first step is 2λ+L. On the other
hand, there are also schemes where error vectors are generated independent of
the public key (e.g. LAC). In such a case the same set F can be used on all public
keys and the complexity is only 2λ. We could also use Grover’s search algorithm
to accelerate the pre-computation step, as discussed in Sect. 3. However, since
the pre-quantum and post-quantum security goals in the NIST Post-Quantum
Standardization Process are different for a certain security level, this quantum
acceleration may not help us to break the claimed security level of a submission.

586 J.-P. D’Anvers et al.

For the second step, the idea is that among many public keys, there will
be one where the corresponding secret values have a property that causes more
decryption errors than on average. So to increase the decryption error probability
to a reasonable and detectable level, we consider that a special property in the
secret value is held with probability at least p′, where 0 < p′ < 1. We then
assume that p′ = 2−L, so we can expect that this special property in the secret
value holds for one public key. As mentioned, with respect to the CCA security,
NIST restricts to have at most 264 decryption calls to each user (public key). So
in order to distinguish a special property in the secret value corresponding to a
public key, one needs to get the failure rate for this case to be larger than 2−64.

Finally, in the statistical testing part, we have a set of error vectors that
have caused decryption errors. There seems to be a plethora of methods that can
be used to recover secret values. For instance, the strong maximum-likelihood
approach has been discussed in Sect. 4 and heuristic approaches can also be
applied. A general approach that we can adopt is to consider a smaller part of
the secret vector under reconstruction, and select the most probable values for
this part, based on the observed error vectors in F . Then one combines such
guesses for different parts and builds an approximation of a secret vector. A
good approximation will mostly be sufficient as it can be used in lattice-basis
reduction algorithms.

We note that in many applications, the challenge is to detect the first decryp-
tion failure, since we can usually have adaptive approaches to find more failures
afterwards with a lower complexity. This idea is further demonstrated in the
next section where an adaptive CCA attack on ss-ntru-pke will be presented,
and also in a code-based application [34].

7 A Weak-Key Attack on ss-ntru-pke

We have applied the described weak-key approach and provide the details of
attacking ss-ntru-pke, a version in the submission to the NIST Post-Quantum
Standardization Process – NTRUEncrypt [47]. Connected is also the provably
secure NTRU [44] whose security is based purely on the hardness of Ring-
LWE. NTRUEncrypt with different parameter choices has been around for a long
time and is one of the most competitive lattice-based schemes when it comes to
performance.

Note that our attack in this section is in the pre-quantum (classic) security
framework due to the different security goal for NIST-V when Grover’s algorithm
is considered. We adopt the notations from the NTRUEncrypt submission [47]
throughout this section.

7.1 The ss-ntru-pke Scheme

ss-ntru-pke is the version of NTRUEncrypt targeting the highest security level,
being 256 bits. This scheme achieves CCA2 security via the NAEP trans-
form [27], a transform similar to the Fujisaki-Okamoto transformation with an

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 587

additional mask. We give a very brief explanation of the scheme. For most of the
description and details, we refer to [47]. In the key generation (see Algorithm 6),
two secret polynomials f ,g ∈ R are selected, where the coordinates are chosen
from a discrete Gaussian Xσ distribution with standard deviation σ. A public
key is formed by computing h = g/(pf + 1).

Algorithm 6. ss-ntru-pke.KeyGen

Input: Parameter sets Param = {N, p, q, σ} and a seed.
Output: Public key h and secret key (f ,g).
1) Instantiate Sampler with X N

σ and seed;
2) f ← Sampler, g ← Sampler;
3) h = g/(pf + 1) mod q;

We show in Algorithm 7 the encryption algorithm of ss-ntru-pke and in Algo-
rithm 8 the decryption algorithm, both from the original proposal [47]. In these
descriptions, Hash() represents a hash function, and B represents a set including
all binary polynomials with degree at most N −1. The Pad() operation is a func-
tion to ensure the message has sufficient entropy, and the Extract() operation is
the inverse of Pad().

In each encryption of a message m, two polynomials r, e ∈ R are generated,
where the coordinates are again chosen from a discrete Gaussian distribution
Xσ with standard deviation σ. This randomness source uses a seed generated as
Hash(m,h). This means that each choice of a message m will generate also the
polynomials r, e ∈ R. Let us denote this by

(r, e) = G(m,h).

Algorithm 7. ss-ntru-pke.Encrypt

Input: Public key h, message msg of length mlen, Param and a seed.
Output: Ciphertext c.
1) m = Pad(msg, seed);
2) rseed = Hash(m|h);
3) Instantiate Sampler with X N

σ and rseed;
4) r ← Sampler, e ← Sampler;
5) t = p · r ∗ h;
6) tseed = Hash(t);
7) Instantiate Sampler with B and tseed;
8) mmask ← Sampler;
9) m′ = m - mmask (mod p);
10) c = t + p · e + m′;

588 J.-P. D’Anvers et al.

In decryption, with ciphertext c, one computes the message by computing

f ∗ c =p · r ∗ g + p · e ∗ f + m′ ∗ f .

A decryption error occurs if ||p · r ∗ g+ p · e ∗ f +m′ ∗ f ||∞ > q/2. This basically
translates to ||r ∗ g + e ∗ f ||∞ > q/4 as p = 2 and the last term is much smaller
than the first two.

The proposed parameters for ss-ntru-pke for the security level of NIST-V are
shown in Table 2. The decoding error probability is estimated to be less than
2−80 in [47].

Table 2. Proposed ss-ntru-pke parameters.

N q p R σ ε Security

1024 230 + 213 + 1 2
Zq [x]

xN+1
724 < 2−80 V

7.2 The Attack

We now follow the approach of the previous section and describe an attack. The
detailed attack is shown in Algorithm 9, where a more efficient CCA2 version is
adopted. We define an equivalence relation for two polynomials u(x), v(x) ∈ R
if u(x) = xi ·v(x)

(
mod xN + 1

)
, or if u(x) = −xi ·v(x)

(
mod xN + 1

)
, for i ∈ Z.

Algorithm 8. ss-ntru-pke.Decrypt

Input: Secret key f, public key h, ciphertext c, and Param.
Output: result.
1) m′ = f ∗ c (mod p);
2) t = c − m′;
3) tseed = Hash(t);
4) Instantiate Sampler with B and tseed;
5) mmask ← Sampler;
6) m = m′ + mmask (mod p);
7) rseed = Hash(m|h);
8) Instantiate Sampler with X N

σ and rseed;
9) r ← Sampler;
10) e = p−1 (t − r ∗ h);
11) if ||e||∞ is big then

result = ⊥;

else
result = Extract(m);

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 589

Algorithm 9. The CCA2 attack against ss-ntru-pke

Input: A number (say 264) of public keys.
Output: The secret polynomials (f ,g) of one public key.
1) Collect messages/ciphertexts with special form for all public keys;
2) Submit them for decryption and determine a weak public key h;
1’) Prepare messages/ciphertexts with special form for this weak key h;
2’) Submit them for decryption and collect the decryption results;
3) Use statistical analysis to have a guess (f̂ , ĝ) close to the corresponding
secret key (f ,g);
4) Use lattice reduction algorithms to recover the secret key (f ,g);

Attack step 1 – pre-computation.
We pick random messages m and generate corresponding (r, e) = G(m,h)

for a given public key h. We keep only vectors e equivalent to a polynomial that
has the first l (e.g., l = 2) positions with the same sign and each with size larger
than c · σ, where c is a constant determining the computational effort of finding
such error vectors. These vectors form our chosen set F .

We set l = 2 to illustrate the idea in a concrete attack. For one position, the
probability that the entry is larger than cσ is 1 − erf(c/

√
2). As we can start

from any position, the probability to have two consecutive positions with the
same sign and entries larger than cσ is pe = N ∗ (1 − erf(c/

√
2))2/2. If we set pe

to be 2−120, then c can be as large as 9.193.

Attack step 2 – submit ciphertexts for decryption.
We then send the ciphertexts corresponding to the noise vectors in F to the

decryption algorithm. If the targeted secret key f is also equivalent to a polyno-
mial that has the first l (e.g., l = 2) positions with the same sign and each with
size larger than cs ·σ, where cs is another constant, then the decoding errors can
be detectable. We expect to collect several errors and store their corresponding
error vectors (r, e). The probability to have two consecutive positions with the
same sign and entries larger than csσ is ps = N ∗ (1 − erf(cs/

√
2))2/2. If we set

ps to be 2−64, then cs can be as large as 6.802.
If we run 2120 precomputation steps for each stored vector with the desired

properties, then the overall complexity is 2248 since ps = 2−64. Let C1 denote
2·cscσ2. We can then have a coefficient in r∗g+e∗f whose absolute contribution
from these two big entries is at least C1 = 225.97. We consider the probabilistic
behavior of the remaining (2N − 2) positions. As the coefficients of r,g, e, f
are all sampled from a Gaussian distribution with mean 0 and stand deviation
σ = 724, the expected norm of the rest vector in f ,g with 2N −2 entries is about√

2N − 2 ·σ. Given a public key, f ,g is fixed. Thus, this coefficient of r∗g+e∗ f
can be approximated as C1 +Φ0, where Φ0 is Gaussian distribution with mean 0

590 J.-P. D’Anvers et al.

and standard deviation
√

2N − 2 · σ2. As the error appears when this coefficient
is larger than q/4, the error probability3 can be approximated as

Pe =

(

1 − erf(
q/4 − C1√
2(2N − 2)σ2

)

)

· 1
2
.

We obtain a decoding error probability of 2−57.3 for this example.
Thus we can obtain about 26.7 errors from the 264 decryption trails.

An adaptive CCA attack. If we keep the previous setting, i.e., a CCA1
attack, the cost is larger than 2248. However, we can adopt a much more pow-
erful attack model, namely an adaptive CCA (CCA2) attack, consisting of two
phases. In the first phase, the attacker spends half of his computational power
to determine a weak key; in the later phase, he would put all his remaining
resources into attacking this weak key.

To be more specific, we first prepare 263 messages/ciphertexts for each of the
264 public keys. Then we expect two errors corresponding to one key, which can
be claimed as a weak key.

We can also reduce the precomputation work for each key to 289, if there
are 264 public keys. We have c = 7.956 and the error probability is 2−62.0, so
we expect to have two errors in the testing stage. We then spend 2216 work on
another precomputation to have 263 messages with c to be 10.351, done only for
this weak key. The error probability in the second phase is estimated as 2−53.0,
so we can have 210 errors. The overall complexity is 2217.

Attack step 3 – statistical analysis.
In this step we will try to recover the secret f . Let us first assume that f has

its two big entries in the first two positions of the vector. Then the position in
e∗ f where the error occurs, denoted i0, is the position where the two significant
coefficients in e and those in f coincide. We now transform each e in such a way
that its two big entries are also to be found in the first two positions. This is
done by replacing e with the corresponding equivalent vector where the two big
entries are in the first two positions. Assuming M decryption errors, this now
gives us the following knowledge from the received decryption errors:

N−1∑

i=2

e
(j)
i fi + N

(j)
i > q/4 − 2 · cscσ

2,

for j = 1 . . . M and where N (j) denotes the remaining contribution to the noise.
Finally we note that assuming that f has its two big entries in the first two
positions is not a restriction, as such an f vector will just be an equivalent

3 The error can occur in both directions. We omit the term

(

1 − erf(q/4+C1√
2(2N−2)σ2

)

)

· 1
2

as it is negligible compared with

(

1 − erf(q/4−C1√
2(2N−2)σ2

)

)

· 1
2

for C1 a very big positive

integer.

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 591

vector of the true f . So we need only to recover f and then check all equivalent
vectors.

We next show how to derive more knowledge of f ,g with statistical tools.

A heuristic approach. As we have assumed that the two big entries in
(f ,g) (or (e, r)) are the first two entries, we use K (or Vi for 1 ≤ i ≤ M) to
denote a vector consisting of the remaining 2N − 2 entries. Thus, the size of K
(or Vi) can be estimated as

√
(2N − 2)σ.

We adopt the heuristic assumptions from [19] that all the errors are very
close to the folding bound q/4, meaning that all the messages leading to an
error belong to a hyperplane

Vi · K =
q

4
− C1,

where C1 is the contribution from the two significant entries.
Thus, the mean vector V̂ of Vi should be close to a scaled vector of K, i.e.,

V̂ =
∑M

i=1 Vi

M
≈ q/4 − C1

‖K‖2 K.

We can have an estimation K̂ = (2N−2)σ2

q/4−C1
V̂. If we round the entries of K to the

nearest integer in Zq, we obtain an estimation (f̂ , ĝ) of the secret vector (f ,g).
The remaining question is how good this estimation can be? We heuristically

answer this question using the central limit theorem.
Each observation Vi with approximated norm

√
2N − 2σ can be viewed as

the summation of the signal point

q/4 − C1

‖K‖2 K,

and a noise vector with squared norm

(2N − 2)σ2 − (q/4 − C1)2

(2N − 2)σ2
.

By the central limit theorem, if we have M observations, then the squared
norm (variance) of the noise can be reduced by a factor of M . Hence, the error
norm should be √

1
M

·
(

(2N − 2)σ2 − (q/4 − C1)2

(2N − 2)σ2

)
.

As we consider K̂ instead of V̂, the true error norm should be resized as

(2N − 2)σ2

q/4 − C1
·
√

1
M

·
(

(2N − 2)σ2 − (q/4 − C1)2

(2N − 2)σ2

)
. (28)

Using this formula, we can have a candidate with error norm 0.169
√

2N − 2σ,
assuming that 1024 errors have been collected.

592 J.-P. D’Anvers et al.

Table 3. The simulated error rates v.s. the estimated error rates.

q error rate

-estimated- -simulated-

q = 229 2−9.05 2−9.19

q = 229 + 226 2−12.64 2−12.96

q = 229 + 227 2−16.91 2−17.09

q = 229 + 227 + 226 + 225 2−24.62 2−24.57

Attack step 4 – lattice reduction.
If (Δf ,Δg) = (f ,g)− (f̂ , ĝ) is small, we can recover it using lattice reduction

algorithms efficiently. Thus, we obtain the correct value of (f ,g).
If we have the error size to be only 0.169

√
2N − 2σ, as assumed in the pre-

vious step, using the LWE estimator from Albrecht et al. [4], it takes about 2181

time and 2128 memory if one uses sieving to implement the SVP oracle in BKZ.
Though the authors of [47] discussed about memory constraint for applying siev-
ing in lattice-based cryptanalysis, we believe it is reasonable to assume for 2128

memory when considering a scheme targeting the classic 256-bit security level.
Another possibility is to implement the SVP oracle using tuple sieving, further
reducing the memory complexity to 2117. The time complexity then increases to
2223, but still far from achieving the claimed 256-security level.

7.3 Experimental Results

We have implemented some of the parts of the attack to check performance
against theory. We have chosen exactly the same parameters in ss-ntru-pke as
well as in the attack, except for the q value, which in the experiment was set to
the values shown in Table 3. The reason being that is we wanted to lower the
decryption error rate so that simulation was possible.

We put two consecutive entries in f each of size 6.2 ·σ and we generated error
vectors with two large positive entries each of size 9.2 · σ. For such choice, we
first verified the decryption error probabilities, as seen in Table 3. These match
the theoretical results well.

Table 4. The simulated error norm v.s. the estimated error norm. (M = 1024)

q error norm /(
√

2N − 2σ)

-estimated- -simulated-

q = 229 0.487 0.472

q = 229 + 226 0.391 0.360

q = 229 + 227 0.326 0.302

q = 229 + 227 + 226 + 225 0.261 0.250

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 593

Table 5. The simulated error norm v.s. the estimated error norm. (q = 229 + 227 +
226 + 225)

M error norm /(
√

2N − 2σ)

-estimated- -simulated-

M = 256 0.522 0.490

M = 512 0.369 0.348

M = 1024 0.261 0.250

M = 1536 0.213 0.212

For each choice of q we then collected up to M = 210+29 = 1536 error vectors
and processed them in a statistical analysis step, to get a good approximation
of (f ,g). As the heuristic approach described, we first created an approximation

of (f ,g), say denoted by (f̂ , ĝ), by simply computing f̂i = E ·
∑M−1

j=0 e
(j)
i

M as the
value in the ith position. Here E is a constant that makes the norm of the vector
to be as the expected norm of f . Clearly, this is a very simple way of exploring
the dependence between fi and ei, but still it seems to be sufficient.

We have plotted the simulated error norms for various q and M in Figure 9.
Furthermore, we show in Tables 4 and 5 the comparison between the simulated
error norms and the estimated error norms according to Eq. 28.

25
6

51
2

1,
02

4

1,
53

6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#(Errors)

E
rr
or

no
rm

/
(√ 2N

−
2σ

)

error rate= 2−9.19

error rate= 2−12.95

error rate= 2−17.09

error rate= 2−24.57

Fig. 9. Error norm as a function of the number of collected error vectors.

594 J.-P. D’Anvers et al.

In the prior table, M is fixed to 1024 and q varies, while in the latter table, q
is fixed to 229+227+226+225 and M varies. We see that in all the cases, the sim-
ulated data match the estimated data well, though the simulation seems always
better than the estimation, i.e., with smaller error norms. Another observation
from Table 5 is that the estimation using the central limit theorem becomes more
accurate when M becomes larger, which is also very reasonable.

7.4 Summarizing the Attack

The best attack is a CCA2 type attack where we in precomputation use
289+63 = 2152 operations to derive 263 special ciphertexts that are submitted
for decryption. With probability 2−64 the secret f has the desired property of
two consecutive big entries. If so, we will most likely see several decoding errors
and such a weak key has been detected. When the weak key has been detected,
we perform yet another precomputation that uses 2216 operations to derive 263

additional special ciphertexts again submitted for decryption. We receive in
expectation 1024 decryption errors and the knowledge from the error vectors
will allow us to reconstruct f without too much trouble using lattice reduction
algorithms, as experimental results strongly indicated. The overall complexity
is thus approximately 2217 if the SVP oracle in BKZ is implemented via lattice
sieving. Actually, the cost of the lattice reduction algorithms in the final stage is
not the bottleneck, since we can employ other powerful statistical tools in Step 3
(e.g., the Maximum Likelihood Test approach) to make this cost negligible.

8 Conclusion

In this paper we introduced a method to increase the decryption failure rate of
a scheme, based on the search for ‘weak’ ciphertexts. This method benefits an
adversary in at least three scenarios: if he has access to a quantum computer, if he
can only perform a limited number of decryption queries or if he wants to stage a
multi-target attack on schemes that do not have the appropriate protection. We
explicitly calculated the effect of failure boosting in these scenarios for various
(Ring/Module-)LWE/LWR schemes. We also proposed a method to estimate
the secret key given ciphertexts that lead to decryption failures. The remaining
security after a certain number of decryption failures was calculated, given the
exact location of the error. We suggested three methods to obtain the exact
location of errors in failing ciphertexts. Finally, we estimated the security of
several schemes under an attack that optimally uses these decryption failures
and show that for some schemes the security is drastically reduced if an attacker
can perform sufficient decryption queries. However, for most NIST post-quantum
standardization candidates, the expected number of required decryption queries
is too high for a practical attack. We also identify the changes to this attack
under a multi-target scenario or when an attacker has only access to a limited
number of decryption queries.

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 595

We further proposed a generic weak-key attack model against lattice-based
schemes, which is slightly different from the previous attack, based on the obser-
vation that the error probability can be much higher for certain ‘weak’ keys.
We applied this model to attacking ss-ntru-pke, a version in the NTRUEncrypt
submission to the NIST Post-Quantum Standardization Process. Specifically, we
have presented an adaptive CCA attack on the claimed 256-bit classic security
level (NIST-V) of ss-ntru-pke. This attacking idea can be treated as extension of
reaction attacks [16,22] that already jeopardize the CCA security of MDPC and
LDPC based crypto-systems.

Acknowledgements. The authors would like to thank Tancrède Lepoint and the
anonymous reviewers for their helpful comments. They would also like to thank Andreas
Hülsing for interesting discussions. This work was supported in part by the Research
Council KU Leuven: C16/15/058, by the European Commission through the Horizon
2020 research and innovation programme Cathedral ERC Advanced Grant 695305,
by the Research Council KU Leuven grants C14/18/067 and STG/17/019, by the
Norwegian Research Council (Grant No. 247742/070), by the Swedish Research Council
(Grant No. 2015-04528), by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation, and by the
Swedish Foundation for Strategic Research (SSF) project RIT17-0005.

References

1. NIST Post-Quantum Cryptography Forum. https://groups.google.com/a/list.nist.
gov/forum/#!forum/pqc-forum. Accessed 11 Jan 2019

2. Submission requirements and evaluation criteria for the post-quantum cryptogra-
phy standardization process (2016). https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

3. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with errors.
J. Math. Cryptol. 9, 169–203 (2015)

4. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes! Cryptology ePrint
Archive, Report 2018/331 (2018). https://eprint.iacr.org/2018/331

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
− a new hope. In: USENIX Security 2016 (2016)

6. Baan, H., et al.: Round2: KEM and PKE based on GLWR. Cryptology ePrint
Archive, Report 2017/1183 (2017). https://eprint.iacr.org/2017/1183

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

8. Bernstein, D.J., Bruinderink, L.G., Lange, T., Panny, L.: HILA5 pindakaas: on
the CCA security of lattice-based encryption with error correction. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 203–216.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

9. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367–390. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43933-3 19

https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://eprint.iacr.org/2018/331
https://eprint.iacr.org/2017/1183
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-662-43933-3_19

596 J.-P. D’Anvers et al.

10. Bos, J., et al.: CRYSTALS − Kyber: a CCA-secure module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634 (2017). http://eprint.iacr.org/2017/
634

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, 1–4 June 2013, pp. 575–584.
ACM Press, Palo Alto (2013)

12. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! Practical post-
quantum public-key encryption from LWE and LWR. Cryptology ePrint Archive,
Report 2016/1126 (2016). http://eprint.iacr.org/2016/1126

13. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

14. D’Anvers, J.P., Vercauteren, F., Verbauwhede, I.: On the impact of decryption
failures on the security of LWE/LWR based schemes. Cryptology ePrint Archive,
Report 2018/1089 (2018). https://eprint.iacr.org/2018/1089

15. Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S., Lin, X.: Leakage of signal
function with reused keys in RLWE key exchange. Cryptology ePrint Archive,
Report 2016/1176 (2016). http://eprint.iacr.org/2016/1176

16. Fabsic, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A reac-
tion attack on the QC-LDPC McEliece cryptosystem. Cryptology ePrint Archive,
Report 2017/494 (2017). http://eprint.iacr.org/2017/494

17. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016). https://eprint.iacr.org/2016/
085

18. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

19. Gama, N., Nguyen, P.Q.: New chosen-ciphertext attacks on NTRU. In: Okamoto,
T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 89–106. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71677-8 7

20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Comput-
ing, pp. 212–219. STOC 1996. ACM, New York (1996). https://doi.org/10.1145/
237814.237866

21. Guo, Q., Johansson, T., Nilsson, A.: A generic attack on lattice-based schemes
using decryption errors with application to ss-ntru-pke. Cryptology ePrint Archive,
Report 2019/043 (2019). https://eprint.iacr.org/2019/043

22. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. Part I. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53887-6 29

23. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-
0 2

24. Hoffstein, J., Silverman, J.H.: NTRU Cryptosystems Technical Report Report#
016, Version 1 Title: Protecting NTRU Against Chosen Ciphertext and Reaction
Attacks

http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2016/1126
https://doi.org/10.1007/978-3-319-89339-6_16
https://eprint.iacr.org/2018/1089
http://eprint.iacr.org/2016/1176
http://eprint.iacr.org/2017/494
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-540-71677-8_7
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://eprint.iacr.org/2019/043
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-540-47942-0_2

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 597

25. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2 12

26. Howgrave-Graham, N., et al.: The impact of decryption failures on the security
of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 14

27. Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W.: NAEP: provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report
2003/172 (2003). http://eprint.iacr.org/2003/172

28. Jaulmes, É., Joux, A.: A chosen-ciphertext attack against NTRU. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 20–35. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 2

29. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-secure
KEM without additional hash. Cryptology ePrint Archive, Report 2017/1096
(2017). https://eprint.iacr.org/2017/1096

30. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-
014-9938-4

31. Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z.: LAC. Technical report, National
Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

33. Naehrig, M., et al.: Frodokem. Technical report, National Institute of Standards
and Technology (2017). https://frodokem.org/files/FrodoKEM-specification-
20171130.pdf

34. Nilsson, A., Johansson, T., Stankovski, P.: Error amplification in code-based cryp-
tography. IACR Trans. Crypt. Hardw. Embed. Syst. 2019(1), 238–258 (2019).
https://doi.org/10.13154/tches.v2019.i1.238-258

35. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing, pp. 333–342. STOC 2009. ACM, New York (2009). https://
doi.org/10.1145/1536414.1536461

36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing, 22–24 May 2005, pp. 84–93. ACM Press, Baltimore (2005)

37. Saarinen, M.J.O.: HILA5. Technical report, National Institute of Standards and
Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

38. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. Cryptology ePrint Archive, Report
2017/1005 (2017). https://eprint.iacr.org/2017/1005

39. Schanck, J.M., Hulsing, A., Rijneveld, J., Schwabe, P.: NTRU-HRSS-KEM. Tech-
nical report, National Institute of Standards and Technology (2017). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-1-submissions

40. Schwabe, P., et al.: CRYSTALS-Kyber. Technical report, National Institute of
Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
http://eprint.iacr.org/2003/172
https://doi.org/10.1007/3-540-44598-6_2
https://eprint.iacr.org/2017/1096
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-642-13190-5_1
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://doi.org/10.13154/tches.v2019.i1.238-258
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2017/1005
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

598 J.-P. D’Anvers et al.

41. Schwabe, P., et al.: Newhope. Technical report, National Institute of Standards and
Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

42. Seo, M., Park, J.H., Lee, D.H., Kim, S., Lee., S.J.: Emblem and R.Emblem. Tech-
nical report, National Institute of Standards and Technology (2017). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-1-submissions

43. Smart, N.P., et al.: LIMA. Technical report, National Institute of Standards and
Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

44. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

45. Szepieniec, A.: Ramstake. Technical report, National Institute of Standards and
Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

46. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

47. Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: NTRUEncrypt. Technical report,
National Institute of Standards and Technology (2017). https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-642-20465-4_4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

	Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes
	1 Introduction
	1.1 Related Works
	1.2 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Definitions
	2.3 LWE/LWR Problems
	2.4 (Ring/Module-)LWE Based Encryption
	2.5 Fujisaki-Okamoto Transformation

	3 Weak-Ciphertext Failure Boosting
	3.1 Practical Calculation
	3.2 Applications of Failure Boosting

	4 Estimation of the Secret
	4.1 One Positive Failure Vector
	4.2 Multiple Fail Vectors
	4.3 Classification of Vectors
	4.4 Implications

	5 Weak-Ciphertext Attack
	6 A Weak-Key Attack Model
	7 A Weak-Key Attack on ss-ntru-pke
	7.1 The ss-ntru-pke Scheme
	7.2 The Attack
	7.3 Experimental Results
	7.4 Summarizing the Attack

	8 Conclusion
	References

