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Preface

The 22nd IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2019) was held April 14–17, 2019, in Beijing, China. The
conference is sponsored by the International Association for Cryptologic Research
(IACR) and focuses on all technical aspects of public-key cryptography. These
proceedings consist of two volumes including 42 papers that were selected by the
Program Committee from 173 submissions. Each submission was assigned to at least
three reviewers while submissions co-authored by Program Committee members
received at least five reviews. During the discussion phase, the Program Committee
used quite intensively a recent feature of the review system, which allows Program
Committee members to anonymously ask questions to the authors. The reviewing and
selection process was a challenging task and we are deeply grateful to the Program
Committee members and external reviewers for their hard and thorough work. Many
thanks also to Shai Halevi for his assistance with the Web submission and review
software. We thank the authors for promptly responding to the questions raised by the
committee, which helped us understand the content of their submissions.

The conference program also included an invited talk by Tatsuaki Okamoto (NTT).
We would like to thank the invited speaker as well as all the other speakers and the
authors of all submissions for their contributions to the program and conference.
Finally, we would like to thank Xiaoyun Wang, the general chair, and all the members
of local Organizing Committee for organizing a great conference and all the conference
attendees for making this conference a truly intellectually stimulating event through
their active participation.

April 2019 Dongdai Lin
Kazue Sako
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Collusion Resistant Broadcast and Trace
from Positional Witness Encryption

Rishab Goyal, Satyanarayana Vusirikala(B), and Brent Waters

University of Texas at Austin, Austin, USA
{rgoyal,satya,bwaters}@cs.utexas.edu

Abstract. An emerging trend is for researchers to identify cryptogra-
phy primitives for which feasibility was first established under obfusca-
tion and then move the realization to a different setting. In this work
we explore a new such avenue—to move obfuscation-based cryptogra-
phy to the assumption of (positional) witness encryption. Our goal is
to develop techniques and tools, which we will dub “witness encryption
friendly” primitives and use these to develop a methodology for building
advanced cryptography from positional witness encryption.

We take a bottom up approach and pursue our general agenda by
attacking the specific problem of building collusion-resistant broadcast
systems with tracing from positional witness encryption. We achieve a
system where the size of ciphertexts, public key and private key are poly-
nomial in the security parameter λ and independent of the number of
users N in the broadcast system. Currently, systems with such parame-
ters are only known from indistinguishability obfuscation.

1 Introduction

Over the past five years the introduction of candidate indistinguishability obfus-
cation schemes [27] has produced a dramatic shift in the community’s view of
which cryptographic primitives are plausibly achievable. Starting with [56] there
have been several works [9,10,16,19,26,30,43,45,56] that leverage the power of
indistinguishability obfuscation [6,7] to give new solutions for problems ranging
from deniable encryption to showing the hardness of finding Nash equilibrium.

An emerging trend is for researchers to identify cryptography primitives for
which feasibility was first established under obfuscation and then move the real-
ization to a different setting. For example, several works [2,9,39,40,46,59] pro-
posed solutions under the Learning with Errors [54] (LWE) assumption of prim-
itives (or impossibility results) that to that point were known only under indis-
tinguishability obfuscation. The motivation for this movement is that LWE is
considered a standard assumption with connections to certain problems on lat-
tices, while current indistinguishability obfuscation constructions are based on
much newer multilinear map candidates. In a different line of researchers [31,47]

B. Waters—Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare,
Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11443, pp. 3–33, 2019.
https://doi.org/10.1007/978-3-030-17259-6_1
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have shown how to base applications such as realizing trapdoor permutations
and the hardness of Nash equilibrium from functional encryption. While sub
exponentially hard functional encryption is known to imply indistinguishabil-
ity obfuscation [4,5,11], this direction is motivated by building these primitives
with only a polynomial loss in the reductions coupled with prospect of func-
tional encryption schemes realized from the polynomial hardness of standard
assumptions.

In this work we explore a new such avenue—to move obfuscation-based cryp-
tography to the assumption of (positional) witness encryption [29,33]. Recall
that in a witness encryption scheme, say for SAT, an encryption algorithm takes
in a message m along with a boolean formula φ that operates an n bit input w
producing a ciphertext ct. A decryptor can recover the message m from ct if it
knows a w such that φ(w) = 1. If no such w exists, then the message is computa-
tionally hidden. In addition to serving as its own application, witness encryption
is known to give rise to primitives such as identity-based encryption [12,58] and
attribute-based encryption [55].

A natural question is why push for moving cryptography from indistinguisha-
bility obfuscation to positional witness encryption when current constructions
for both rely on multilinear maps [22,23,25,32]. The justification (like in [31,47])
relies on some projection to the future. Since witness encryption is a less powerful
primitive than indistinguishability obfuscation, it is believed that the commu-
nity will likely arrive at a standard assumption solution earlier. This conjecture
is supported by some heuristic evidence:

– The work of [33] showing provably secure positional witness encryption from
simple multilinear map assumptions came earlier than and was simpler than
the later work [34] which gave a similar result for obfuscation.

– Recently, it was shown [18] that attribute-based encryption gives rise to a
non-trivial form of witness encryption. This might lead to further advances
in witness encryption which would not necessarily translate to general obfus-
cation.

– Recently, the concept of lockable obfuscation [39,59] was proposed and shown
to be realizable under the LWE assumption. Like witness encryption this is a
general class of obfuscation, but is more restricted than indistinguishability
obfuscation.

– Very recently, Chen et al. [20] gave a new candidate for witness encryp-
tion (albeit not positional witness encryption) inspired by [32] multilinear
encodings. An important feature of their candidate is that it directly encodes
read-once branching program representations of the associated CNF formu-
lae, thereby avoiding attacks such as input-mixing and more. Since read-once
branching programs are much less expressive than general branching pro-
grams, this also points towards reaching the goal of witness encryption before
obfuscation.

In addition, we expect future solutions to witness encryption to be practically
more efficient than full blown indistinguishability obfuscation.
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Our goal is to develop techniques and tools, which we will dub “witness
encryption friendly” primitives1, and use these to develop a methodology for
building advanced cryptography from positional witness encryption. While we
don’t expect to move all or even “most” of obfuscation-based cryptography to
positional witness encryption, we believe that a long term effort could yield a
number of applications which are comparable to those achieved from the afore-
mentioned efforts on building from functional encryption [31,47] or lockable
obfuscation [39,59].

We will take a bottom-up approach and pursue our general agenda by attack-
ing specific problems that are not known from witness encryption. To that end
in this work we study building collusion-resistant broadcast systems with trac-
ing from positional witness encryption. Our goal is to achieve where the size of
ciphertexts, public key and private key are polynomial in the security parameter
λ and independent of the number of users N in the broadcast system.2 Below we
provide an overview of prior work, present our new results, toolkit of “witness
encryption friendly” primitives, and the techniques that allow us to achieve the
above goals.

1.1 Overview

Broadcast Encryption with Tracing. Broadcast Encryption was introduced by
Fiat and Naor [24]. A broadcast encryption scheme, like a standard public key
encryption scheme, consists of three algorithms—setup, encryption and decryp-
tion. The setup algorithm outputs a public key and N secret keys, where N
represents the number of users given as an input. Using the encryption algo-
rithm, a sender can encrypt a message such that the corresponding ciphertext
can only be decrypted by the “qualified” users S ⊆ [N ].3 Here the set S is
given as input to the encryption algorithm. The decryption algorithm is self-
explanatory. For security it is required that no set of colluding users can decrypt
a ciphertext if none of them are qualified.

Suppose that a set of users S1 collude to create a decoding box D which is
capable of decrypting ciphertexts intended for some (possibly different) set of
users S2 with some non-negligible probability. A broadcast system which pro-
vides tracing capabilities allows extraction of a non-empty set T (from the box
D) such that T ⊆ S1, i.e. contains at least one colluding user but none outside
of it. Such broadcast systems are referred to as Trace and Revoke systems in the
folklore [50,51]. However, we chose to refer to it as Broadcast and Trace system
as it is more appropriate. They have an additional tracing algorithm which given
only the oracle access to the box D can perform this traitor extraction.

Broadcast and Trace via Augmented Broadcast Encryption (AugBE). Boneh and
Waters (BW) [14] built the first fully collusion resistant Broadcast and Trace
1 This is intended to mirror the term “iO friendly” used elsewhere in the literature.
2 Following prior broadcast encryption literature we will not count a description S of

the recipients of a ciphertext toward the ciphertext overhead.
3 Here qualified could alternatively be interpreted as “non-revoked”.
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scheme with sub-linear (in N) ciphertext size. They also provided a framework
for building Broadcast and Trace schemes by introducing an intermediate prim-
itive called augmented broadcast encryption (AugBE). We follow the same app-
roach in this work and therefore we elaborate on it now.

An AugBE scheme, as the name suggests, is a broadcast encryption scheme
with an augmented encryption functionality. Similar to a standard broadcast
encryption scheme it consists of setup, encryption and decryption algorithms.
In an AugBE system, the encryption algorithm also receives a “cutoff” index
i ∈ [N + 1], in addition to a set S ⊆ [N ], as an input. This cutoff index affects
the decryptability of the ciphertext in such a way that the resultant ciphertext
can only be decrypted by the users S′ = S \ [i − 1], i.e. users whose indices are
as large as i and belong to the set S are now labelled as qualified. BW defined
two security properties for an AugBE system—index hiding and message hiding
security. The first security property (index hiding) states that an encryption of
m under set S to index i is indistinguishable from an encryption of m under set
S to index i+1, if either i /∈ S (even when the adversary has all the secret keys),
or the adversary does not have the ith key. The second property (message hiding)
states that an encryption of m0 under set S to index N + 1 is indistinguishable
from an encryption of m1 under set S to index N + 1, even when the adversary
is given all N secret keys.

BW argued that if an AugBE scheme satisfies these two properties, then
that is sufficient for constructing a Broadcast and Trace (BT) scheme. In their
transformation, the BT setup and decryption algorithm are identical to their
AugBE counterparts. For encryption, a sender runs the AugBE encryption algo-
rithm with the cutoff index value set to be 1. The tracing algorithm runs AugBE
encryption varying the value of cutoff index. Given a decoder box D and tar-
get set S, the tracing algorithm encrypts random messages under set S to every
index i = 1 to N +1, and estimates (for each index i) the probability D decrypts
correctly. Suppose the probability decoder D is successful, i.e. decrypts standard
(index 1) ciphertexts correctly, is at least ε. By message hiding property, we know
that D can not have non-negligible success probability when run on ciphertexts
encrypting to index N + 1. This implies that there must exist an index i∗ ∈ [N ]
such that the decoder’s success probability in decrypting index i∗ ciphertexts is
at least ≈ ε/N more than in decrypting index i∗ + 1 ciphertexts. Every cutoff
index i where there is a gap in the estimated success probabilities for index i
and i+1, the tracing algorithm adds that user i to the set of traitors. The main
idea here is that if an index i /∈ S or the adversary does not have the key for
user i, then by index hiding security it should not be able to distinguish between
index i and i + 1 ciphertexts.

Although the above transformation seems to work (at least intuitively), we
would like to point out that the proof provided in [14] was inaccurate. Very
briefly, the problem lies in the fact that there is a “semantic gap” between the
definitions of BT and AugBE schemes. The issue is that in a BT system an
adversary outputs a box which performs some decoding/decryption operations,
whereas in an AugBE system the adversary plays a distinguishing game. At first,
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it seems like one could use the decoder box to decrypt the ciphertext and use its
output for distinguishing. The problem is that decoder might work incorrectly
sometime and it would affect the success probability of the reduction algorithm.
Similar issues were observed by Goyal, Koppula and Waters [41] in the context
of (non-broadcast) traitor tracing. They resolved the issue by upgrading the
security requirements from the underlying intermediate primitives to match the
decoder-based security notions required for traitor tracing. In this work we fix
the proof of security for the BW transformation showing that it does lead to a
secure BT scheme.4 More details are provided later in Sect. 3.

Our Results and Prior Work. Our main result are new collusion-resistant Broad-
cast and Trace schemes from positional witness encryption where the size of
ciphertexts, public key and private key are polynomial in the security param-
eter λ and independent of the number of users N5. Currently, systems with
such parameters are only known from indistinguishability obfuscation [52]. If we
drop the tracing requirement, that is consider only broadcast encryption, there
are constructions based on multilinear maps [15] and iO [16]. If we drop the
revocation requirement, that is consider only traitor tracing, schemes with such
parameters are known based on iO [16]. In bilinear groups we can achieve short
ciphertexts [13,35], but with longer keys if we drop the tracing requirement.
Additionally, we have solutions [14] with ciphertexts that grow proportionally
to

√
N if we keep it. Very recently, Goyal, Koppula and Waters [41] gave a poly-

log traitor tracing scheme from the LWE assumption. However, their system
does not have the capability to broadcast to arbitrary sets.

We further develop a toolkit of certain simpler primitives such that these
could be used in conjunction with positional witness encryption in similar vein to
how we have iO friendly primitives to support applications of iO. Our BT scheme
is secure assuming the existence of positional witness encryption and these sim-
pler primitives. We provide numerous instantiations of these primitives from a
wide variety of standard assumptions such as LWE, RSA and decision linear
over bilinear groups. Now we describe our techniques and main ideas to build a
Broadcast and Trace system.

Building Augmented Broadcast Encryption from Positional Witness Encryption.
The main building block used in our construction is a positional witness encryp-
tion (PWE) scheme. In a PWE scheme, the encryption algorithm also takes
as input a cutoff index i ∈ {0, . . . , 2n} where n is the bit length of witnesses
on which the corresponding boolean formula (witness relation) φ operates. A
decryptor can recover the message m from ct if it knows a w such that φ(w) = 1
and w ≥ i.6 For security it has two properties—message hiding and index hiding.
First, message hiding states that a message encrypted for index 2n (i.e., the last

4 Here we only consider BT schemes with public traceability.
5 Here we assume that number of users N is at most poly(λ).
6 Here comparisons between bit-strings is performed by interpreting each bit-string as

non-negative integer.
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index) is hidden irrespective of the boolean formula used. Second, index hiding
states that an encryption of m under formula φ for index i is indistinguishable
from an encryption of m under φ to index i + 1, if φ(i) = 0.

We now provide an outline of our AugBE construction. Let us start with
a simple idea. Suppose during setup, the algorithm samples a key pair for a
standard signature scheme. Next, the secret key for ith user consists of a signature
σi on message i and the public key simply corresponds to the verification key
vk. To encrypt a message m under set S and index i, the encryptor runs the
PWE encryption algorithm on message m for index i || 0� and formula φvk,S ,
where φvk,S(j, σ) = 1 iff ‘j ∈ S’ and ‘σ is a valid signature on j under vk’. Here
� denotes the length of the signatures. For decryption a user simply runs the
PWE decryption with its index and signature as the witness. Correctness of this
scheme follows directly. However, this scheme is clearly not compact since the set
S is embedded in the formula φvk,S and since the size of PWE ciphertexts could
arbitrarily (but polynomially) depend on the size of the formula, thus the overall
AugBE scheme could be highly inefficient. In a few words the problem is that
we are implementing a trivial set membership check which breaks compactness.

To get around this problem we will use an alternate set membership check.
Our idea is to embed only a succinct commitment to the set S in the formula
φ such that there exists proofs of membership in S that grow at most logarith-
mically with the number of users N . Clearly such a primitive would resolve the
inefficiency problem. One possible execution of this idea is via a Merkle hash
tree.7 Let IS represent the N -bit indicator string corresponding to set S, i.e. ith

bit of IS is 1 iff i ∈ S. We modify the encryption procedure as follows—first com-
pute a hash h of string IS ; next run the PWE encryption algorithm on message m
for index i || 0� || 0k and formula φvk,h,N , where φvk,h,N (j, σ, π) = 1 iff ‘j ≤ N ’, ‘π
is a valid proof membership for index j w.r.t. hash h’ and ‘σ is a valid signature
on j under vk’. Here proof π simply corresponds to the pre-images in the hash
tree along the path from the root h to the leaf node containing the jth bit, and
k denotes the length of proof π. The decryption is then performed analogously
where the decryptor computes the membership proof by hashing IS and using
the appropriate leaf-to-root path as a proof. This seems to resolve the succinct-
ness problem as the size of the ciphertext is independent of the number of users.
Also, at least intuitively, it seems that the scheme should satisfy both index hid-
ing and message hiding security properties. The intuition is that since φvk,h,N

is not satisfied by any witness larger than (N + 1) || 0� || 0k, by using security of
PWE we can argue message hiding security for the above scheme.8 For arguing

7 The idea of using Merkle hash tree for efficiently committing to large sets has also
been previously used in works such as [3,60].

8 The proof will involve an exponential number of hybrids. This is because for applying
message hiding security property of PWE the index used must be 2λ+�+k (i.e., the
last index), therefore we need to use index hiding security to go from index (N +
1) || 0� || 0k to 2λ+�+k which takes an exponential number of hybrid steps. Here the
exact ordering of witness components, i.e. i, σ, π, is very important for the proof to
go through. We can only use the security of PWE scheme if index i is leading term
and corresponds to the most significant bits.
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index hiding security we would hope to use the fact that if i /∈ S, or if the adver-
sary does not receive the key for ith user, then the adversary does not know of
any witnesses of the form i || {0, 1}� || {0, 1}k and thus we could use PWE index
hiding security. In the first case (i.e., i /∈ S) hardness of computing witnesses
should follow from collision resistance of the hash function, and in the second
scenario it should follow from unforgeability of the signature scheme. However,
there is a problem here. Although we could argue that witnesses are hard-to-
compute while proving index hiding for AugBE, this won’t be sufficient overall
as for applying PWE index hiding security as it is necessary that there does not
exist any witness of the form i || {0, 1}� || {0, 1}k. Thus, unless the underlying
PWE scheme provides some strong notion of extractable security, it is not clear
how to prove security of the above construction.9

To this end, we develop a toolkit of certain simpler primitives, which aid
us in proving our construction to be secure. Our motivation here is that
using such primitives, we could somehow indistinguishably switch between
instances/formulae which have hard-to-compute witnesses to instances/formulae
which do not have any witnesses (in some particular pre-specified range).
Thus this would enable applicability of the index hiding security property of
PWE scheme in the corresponding proof. Below we elaborate on two such
primitives—all-but-one signatures and somewhere perfectly binding hash func-
tions (a primitive similar to somewhere statistically binding hash functions
described in [44,53]).10

A Toolkit for Witness Encryption. The first primitive we consider is a special
type of signature scheme called all-but-one (ABO) signatures. These are just
like standard signatures, except the setup algorithm has a special “punctured”
mode in which it takes a message m∗ as an additional input and outputs a pair of
signing and verification key (sk, vk) such that there does not exist any signature
that gets verified for message m∗. In other words, the verification algorithm
on inputs vk and m∗ rejects every signature σ. Now instead of unforgeability-
type security, we only require that an adversary should not be able to distinguish
verification keys that are output by punctured setup with message m∗ from those
output by normal setup, even when given access to the signing oracle.11 We note
that the notion of ABO signatures is motivated by constrained signatures [16]
and splittable signatures [45], but is much weaker than both of those. In this
work, we also provide new constructions of ABO signatures from a wide variety

9 Although the notion of witness encryption with extractable security has been well
studied [28,36], extractability in the case of positional witness encryption is rather
non-trivial to define due to the fact that PWE already requires index hiding to hold
for all indices.

10 We would like to point out that our techniques of relaxing extractably-secure assump-
tions to more standard indistinguishability-based assumptions are in part inspired
by analogous results in the regime of moving from differing-inputs obfuscation (diO)
to indistinguishability obfuscation (iO) [21,44,52].

11 The adversary is not allowed to query the oracle on message m∗ to allow trivial
distinguishing attacks.
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of standard assumptions. Next we discuss the second primitive we use, and later
we will circle back to the new ABO signature constructions we provide.

The next primitive we employ is a somewhere perfectly binding (SPB) hash
function [44,53]. An SPB hash consists of four algorithms—setup, hash, open
and verify. The setup algorithm is used to sample a hash key hk, and has two
modes (akin to ABO signatures)—normal and “binding”. In the binding mode
it takes an index i as an additional input, and it ensures that the corresponding
hash function Hhk is perfectly binding for the ith message position (i.e., the hash
value completely determines the ith bit of the pre-image). Additionally, SPB
hashes have a local opening property which states that for any message m, any
index i ≤ |m| and hash h = Hhk(m), one could create a short proof π proving
that the message’s ith bit is m[i] and it hashes to h.12 Such proofs could be
verified by running the verification algorithm which also take as input the hash
key, hash value and a position. For security it is required that an adversary
should not be able to distinguish between hash keys that are output by binding
setup and those output by normal setup.

Next we show that if we use ABO signatures and SPB hash functions in the
previously described AugBE construction then we can prove its security using
positional witness encryption.

Completing AugBE Construction. As discussed earlier, ABO signature scheme
and an SPB hash function enable us to indistinguishably turn instances with
hard-to-compute witnesses into instances which have no witnesses (in a par-
ticular range). Therefore, by simply using an ABO signature scheme and an
SPB hash function in our AugBE construction, we can also prove index hiding
property of our construction. The construction is identical to the one described
before, except that checking membership of index j will now be done by SPB
verification algorithm as follows—‘π proves that there exists a string x such that
x[j] = 1 and Hhk(x) = h’. The proof of AugBE message hiding stays the same
as φvk,hk,h,N is not satisfied by any witness larger than (N + 1) || 0� || 0k. The
AugBE index hiding proof is divided in two parts. Let i be the challenge index,
S the challenge set and SA the set of keys in adversary’s possession. We know
that either i /∈ S or i /∈ SA. Consider the following cases.

– i /∈ SA: The idea here is that since the adversary does not have key for user
i, thus we could instead generate the (sk, vk) key pair by running punctured
setup for message i. From adversary’s perspective this can not be distin-
guished with non-negligible probability by ABO security. And now, since the
verification key vk no longer accepts any signature σ for message i, we get
φvk,hk,h,N (w) = 0 for all i || 0� || 0k ≤ w < (i+1) || 0� || 0k. As a result, we could
use PWE index hiding security to switch from index i AugBE ciphertexts to
index i + 1 ciphertexts. Finally, we could un-puncture the key vk to complete
the proof.

12 Technically one could visualize the proof π as only proving that the ith bit of pre-
image is m[i]. The fact that it also proves that the message hashes to Hhk(m) is just
due to the structure of the proof.
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– i /∈ S: The proof is very similar to the one described above. The only mod-
ification will be that instead of puncturing the verification key at index i,
we bind the hash key for position i. The intuition is that since the ith bit of
string IS is zero (as i /∈ S), thus if the hash key hk was (perfectly) binding at
position i then there will not exist any proof π that proves that there exists
a string x such that Hhk(IS) = Hhk(x) the ith bit of x is 1. Thus, as before
φvk,hk,h,N (w) = 0 for all indices in that range and we can apply PWE index
hiding security.

At a high level, the proposed paradigm is to first use the developed toolkit to turn
formulae with hard-to-compute satisfying inputs into formulae with only range-
restricted satisfying inputs, then use PWE security to cut through the range of
inactive inputs, and finally switch back to original formulae using our toolkit.
We believe that such a methodology will find more applications especially in
bringing more primitives based on obfuscation to the assumption of (positional)
witness encryption. Finally, we talk about the new ABO signature constructions
that we provide.

ABO Signatures from Standard Assumptions. In this work we give two new
pathways to build ABO signatures. First, we show that an ABO signature scheme
can be generically built from any verifiable random function (VRF) [49] and a
perfectly-binding (non-interactive) commitment scheme. Second, we show that
any identity-based encryption (IBE) scheme [12,58], that is anonymous [8] as
well as allows efficient key verifiability, also leads to an ABO signature scheme.
VRFs can be based on a wide variety of assumptions such as decision-linear over
bilinear maps as well as RSA-like assumptions [42,49] and perfectly-binding
(non-interactive) commitment schemes can be based on assumptions such as
DDH, LWE and LPN [37] and perfectly injective OWFs. IBE schemes with
such verifiability and anonymity properties can be based on simple assumptions
over bilinear maps as well as LWE [1,17,39,48,57,59]. Thus this leads to new
constructions of ABO signatures. We also point out that ABO signatures can be
built from constrained signatures [16] and splittable signatures [45] which have
been constructed under iO and OWFs. Constrained signatures have also been
constructed from non-interactive witness indistinguishable proofs and perfectly
binding commitments [16].

We now briefly highlight the main ideas to build these from VRFs. A VRF
is like a pseudorandom function (PRF) in which the secret key holder can also
prove correctness and uniqueness of PRF evaluation. Concretely, using the secret
key sk, it could efficiently evaluate the function Fsk(·) on any input x as well as
generate a proof π of the statement y = Fsk(x). An ABO signing key will simply
correspond to the VRF secret key sk, and the ABO verification key will contain
the VRF verification key vk as well as a commitment COM. Here COM commits
to 0 during standard setup, whereas during punctured setup (with message x∗)
COM commits to 1 where the random coins used are Fsk(x∗). A signature σ for
any message x will simply correspond to its function evaluation y = Fsk(x) as
well as corresponding proof π. While verifying a message-signature pair x, (y, π)
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w.r.t. key (vk,COM), the verifier checks two things—(1) π proves that y is a
correct evaluation on input x, and (2) COM does not match the commitment
of bit 1 obtained using y as randomness. Clearly this scheme satisfies the ABO
scheme correctness condition if the underlying commitment scheme is perfectly
binding as in case of normal setup, condition (2) will never be satisfied. Both
our ABO constructions are provided later in Sect. 5.

Lastly, one might think that the full power of ABO signatures is not needed to
build the above Broadcast and Trace system. Instead a restricted version where
the message space is fixed to be {1, 2, . . . , N} might suffice. It turns out that
such a restricted ABO signature scheme can be directly constructed from any
SPB Hash function and length doubling pseudo-random generator (PRG). The
idea is to sample an SPB hash key hk, random λ bit strings si for each message
i ∈ [N ] during setup. The verification key consists of the hash key hk and a hash
value h, where h is computed as the SPB hash on the set {ti = PRG(si)}i. The
signature on message i consists of (si, πi) where πi is the SPB hash opening of
hash h on index i. The verification procedure first checks correctness of the hash
proof πi, and then also checks that PRG(si) is ith block value. For punctured
setup at index i∗, the algorithm changes the following—(1) it samples SPB hash
hk to be binding at index i∗, (2) it samples ti∗ uniformly at random from {0, 1}2λ.
With all-but-negligible probability, ti∗ will lie outside the range space of PRG,
therefore no valid signature for i∗ would exist under punctured setup.

However, such an ABO scheme can only be used to build a Broadcast and
Trace system in which the numbers of users is a-priori (and polynomially)
bounded. A more desirable setting would be where the number of users that
can be supported is exponential (i.e., unbounded), while allowing the encryptor
to choose any polynomial sized (a-priori unbounded) subset of users to broadcast
to. Such a Broadcast and Trace system would still require the full power of ABO
signatures, thus we stick to the more general setting.

2 Preliminaries

Notations. For a probability distribution D, we denote by x ← D that x is
sampled according to D. If S is a set, y ← S denotes that y is sampled from
S according to the uniform distribution on S. The set of contiguous integers
{1, . . . , k} for some k ≥ 1 is denoted by [k]. The set of contiguous integers
{m, . . . , n} for some m,n ∈ Z is denoted by [m,n]. We sometimes slightly abuse
notation and refer to bit strings in {0, 1}� by integers, where the left most bit
of x ∈ {0, 1}� is considered as the most significant bit. For any set S, we denote
the size of the set of |S|. We denote security parameter by λ in the rest of the
paper. For any bit string t, we denote that int(t) as the integer representation of
string t.

We define positional witness encryption in this section and defer the defi-
nitions of rest of the primitives to the full version of the paper due to space
constraints.
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2.1 Positional Witness Encryption

In this section, we formally define Positional Witness Encryption (PWE) [33] and
list its correctness and security properties. The encryption system is defined for
an NP language L and a message space {Mλ}λ. Let R(·, ·) be the witness relation
corresponding to L i.e., for any string x ∈ {0, 1}∗, x ∈ L iff ∃w ∈ {0, 1}n(|x|) s.t.
R(x,w) = 1, where n(|x|) is the witness length of instance x. For simplicity of
notation, we hereby denote n = n(|x|). A party can encrypt a message m with
an instance x and index ind. Another party can decrypt the ciphertext using
a witness w to the instance x such that R(x,w) = 1 and w ≥ ind. Given a
string w ∈ {0, 1}n, we sometimes slightly abuse notation and also refer to w as
an integer. Formally, the encryption system contains two procedures defined as
follows.

– Encrypt(1λ, x,m, ind) → ct. The encryption algorithm takes as input a secu-
rity parameter 1λ, an instance x ∈ {0, 1}∗, a message m, an index ind ∈ [0, 2n]
and outputs a ciphertext ct.

– Decrypt(w, ct) → m. The decryption algorithm takes as input a witness w ∈
[0, 2n − 1], a ciphertext ct and outputs either a message m or ⊥.

Correctness. We say that a PWE scheme is correct if for every λ ∈ N, any
instance x ∈ {0, 1}∗, any message m ∈ Mλ, any witness w ∈ [0, 2n − 1], any
position index ind ∈ [0, 2n] such that R(x,w) = 1 and w ≥ ind, and ct ←
Encrypt(1λ, x,m, ind), we have

Pr
[
Decrypt(w, ct) = m

]
= 1

Security. A positional witness encryption scheme should satisfy 2 security prop-
erties: message indistinguishability and position indistinguishability defined as
follows.

Definition 1 (Message Indistinguishability). A PWE scheme for a lan-
guage L is message indistinguishability secure if for any stateful PPT adversary
A, there exists a negligible function negl(·) such that for every λ ∈ N, we have

Pr
[
A(ct) = b :

(x,m0,m1) ← A(1λ);
b ← {0, 1}; ct ← Encrypt(1λ, x,mb, 2n)

]
≤ 1

2
+ negl(λ).

Note that the above property needs to be satisfied even for instances x ∈ L.

Definition 2 (Position Indistinguishability). A PWE scheme for a lan-
guage L with witness relation R(·, ·) is position indistinguishability secure if for
every stateful PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N, we have

Pr
[
A(ct) = b :

(x,m, ind) ← A(1λ);
b ← {0, 1}; ct ← Encrypt(1λ, x,m, ind + b)

]
≤ 1

2
+ negl(λ).

where the adversary A is restricted to produce a challenge (x,m, ind) such that
R(x, ind) = 0.
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3 Revisiting Broadcast and Trace System

3.1 Broadcast and Trace System

In this section, we formally define Broadcast and Trace system and describe its
security properties. The security definition is motivated by a recent work by
Goyal et al. [38] which points out problems with previously proposed notions of
traitor tracing and proposes an indistinguishability based security definition for
the primitive.

– Setup(1λ, 1N ) → (pk, {sk1, sk2, . . . , skN}). The setup algorithm takes as input
a security parameter λ and number of users N . It outputs a public key pk,
and secret keys for N users {sk1, sk2, . . . , skN}.

– Encrypt(pk, S,m) → ct. The encryption algorithm takes as input public key
pk, a set S ⊆ [N ] of users, a message m and outputs a ciphertext ct.

– Decrypt(i, ski, pk, S, ct) → m/⊥. The decryption algorithm takes as input an
index i ∈ [N ], secret key of ith user, public key pk, a set of users S ⊆ [N ], a
ciphertext ct and outputs either a message m or ⊥.

– TraceD(pk, SD,m0,m1, 11/ε) → S∗. The tracing algorithm takes as input a
public key pk, a set of users SD, two messages m0, m1 and parameter ε < 1.
The algorithm has a black-box access to the decoder D and outputs a set of
indices S∗ ⊆ [N ].

Correctness. The Broadcast and Trace system is said to be correct if for every
λ ∈ N, any number of users N ∈ N, every subset of users S ⊆ [N ], every
message m ∈ Mλ, every user i ∈ S, (pk, {sk1, sk2, . . . , skN}) ← Setup(1λ, 1N )
and ct ← Encrypt(pk, S,m), we have

Decrypt(i, ski, pk, S, ct) = m.

Security. Intuitively, the system is said to be secure if it is IND-CPA secure
and if no poly-time adversary can produce a decoder that can fool the tracing
algorithm. We formally define both of these properties below.

Definition 3 (IND-CPA security). We say that a Broadcast and Trace scheme
is IND-CPA secure if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

⎡
⎣AO(·)(ct) = b :

1N ← A(1λ); (pk, (sk1, . . . , skN )) ← Setup(1λ, 1N );

(S′, m0, m1) ← AO(·)(pk); b ← {0, 1};
ct ← Encrypt(pk, S′, mb)

⎤
⎦ ≤ 1

2
+ negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index
i ∈ [n] and outputs ski. Let the set of indices queried by the adversary to the
oracle be S ⊆ [N ]. Then the adversary is restricted to output the challenge set
S′ such that S′ ⊆ [N ] \ S.
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Experiment Expt-BTA,ε(λ)

– 1N A(1λ).
– (pk, (sk1, . . . , skN )) Setup(1λ, 1N ).
– (D, SD, m0, m1) AO(·)(pk).
– S∗ TraceD(pk, SD, m0, m1, 11/ε(λ)).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input
an index i ∈ [N ] and outputs ski. Let S be the set of indices queried
by A.

Fig. 1. Experiment Expt-BT

Definition 4 (IND-secure Traitor Tracing). Let (Setup,Encrypt, Decrypt,
Trace) be a Broadcast and Trace scheme. For any non-negligible function ε(·)
and stateful PPT adversary A, consider the experiment Expt-BTA,ε(λ) defined
as follows.

In order to define the security of tracing mechanism, we define the following
events and probabilities as a function of security parameter λ.

– Good-DecA,ε : Pr[D(ct) = b : b ← {0, 1}, ct ← Encrypt(pk, SD,mb)] ≥ 1/2 +
ε(λ)
Pr-Good-DecA,ε(λ) = Pr[Good-DecA,ε]

– Correct-TrA,ε : |S∗| > 0, S∗ ⊆ S ∩ SD

Pr-Correct-TrA,ε(λ) = Pr[Correct-TrA,ε]
– False-TrA,ε : S∗ ⊆ S ∩ SD

Pr-False-TrA,ε(λ) = Pr[False-TrA,ε]

The Broadcast and Trace scheme is said to have Ind-secure tracing mechanism if
for every stateful PPT adversary A, polynomial q(·) and non-negligible function
ε(·), there exists negligible functions negl1(·) and negl2(·) such that for all λ ∈ N

satisfying ε(λ) > 1/q(λ), Pr-Correct-TrA,ε(λ) ≥ Pr-Good-DecA,ε(λ) − negl1(λ)
and Pr-False-TrA,ε(λ) ≤ negl2(λ) (Fig. 1).

3.2 Augmented Broadcast Encryption

In this section, we define Augmented Broadcast Encryption (AugBE) and its
security properties.

– Setup(1λ, 1N ) → (pk, {sk1, . . . , skN}). The setup algorithm takes as input
security parameter λ and number of users N . It outputs a public key pk and
secret keys {sk1, . . . , skN}, where ski is the secret key for user i.

– Encrypt(pk, S,m, ind) → ct. The encryption algorithm takes as input public
key pk, a set of users S ⊆ [N ], a message m, and an index ind ∈ [N + 1]. It
outputs a ciphertext ct.

– Decrypt(i, ski, pk, S, ct) → m/⊥. The decryption algorithm takes as input an
index i, secret key for ith user ski, public key pk, a set of users S ⊆ [N ], a
ciphertext ct and outputs a message m or ⊥.
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Correctness. An AugBE scheme is said to be correct if for every security param-
eter λ ∈ N, any number of users N ∈ N, any message m ∈ Mλ, any subset
of users S ⊆ [N ], any index ind ∈ [N ], any i ∈ S ∩ {ind, ind + 1, . . . , N},
(pk, {sk1, sk2, . . . , skN}) ← Setup(1λ, 1N ) and ct ← Encrypt(pk, S,m, ind), we
have

Decrypt(i, ski, pk, S, ct) = m.

Security. We need AugBE to satisfy 2 security properties. The first is message
hiding property which states that no PPT adversary can distinguish between
encryptions of m0 and m1 encrypted using the last index N + 1. The second is
index hiding property which states that ciphertexts encrypted to index ind do
not reveal any non-trivial information about the index. We formally define the
security properties below.

Definition 5 (Message Hiding). We say that an AugBE scheme satisfies
message hiding property if for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, the following holds

Pr

⎡
⎢⎢⎣AO(·)(ct) = b :

1N ← A(1λ);
(msk, pk, {ski}i∈[N ]) ← Setup(1λ, 1N );
(S′,m0,m1) ← AO(·)(pk); b ← {0, 1};

ct ← Encrypt(pk, S′,mb, N + 1)

⎤
⎥⎥⎦ ≤ 1

2
+ negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index
i ∈ [N ] and outputs ski.

Definition 6 (Index Hiding). We say that an AugBE scheme satisfies index
hiding property if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds,

Pr

⎡
⎢⎢⎣AO(·)(ct) = b :

(1N , ind) ← A(1λ);
(msk, pk, {ski}i∈[N ]) ← Setup(1λ, 1N );

(S′,m) ← AO(·)(pk); b ← {0, 1};
ct ← Encrypt(pk, S′,m, ind + b)

⎤
⎥⎥⎦ ≤ 1

2
+ negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index
i ∈ [N ] and outputs ski. Let the set of keys queried by the adversary be S. We
restrict the adversary to satisfy ind /∈ S′ ∨ ind /∈ S.

3.3 Broadcast and Trace from AugBE

We construct a Broadcast and Trace system assuming we have an AugBE
scheme. The construction is same as [14], but we would like to point out their
security proof is inaccurate. The problem lies in the fact that there is a “seman-
tic gap” between their definitions of BT and AugBE schemes. The issue is
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that in a BT system an adversary outputs a box which performs some decod-
ing/decryption operations, whereas in an AugBE system the adversary plays a
distinguishing game. We modify their security proof as per indistinguishability
based definition of Broadcast and Trace. Due to space constraints, we present
the construction in the full version of the paper.

4 Construction of Augmented Broadcast Encryption

In this section, we construct an augmented broadcast encryption (AugBE)
scheme from positional witness encryption (PWE), somewhere perfectly binding
hash (SPB hash) function and all-but-one (ABO) signatures. We also prove that
the construction satisfies the message hiding and index hiding properties.

Let ABO = (SetupABO,Setup-PuncABO, SignABO,VerifyABO) be an ABO
signature scheme with message space {0, 1}λ, signature space {0, 1}k(λ),
secret key space {Sλ}λ and verification key space {Vλ}λ. Let SPB =
(SetupSPB,Setup-BindSPB, HashSPB, OpenSPB,VerifySPB) be an SPB hash func-
tion with hash key space {Kλ}λ, hash space {Hλ}λ and hash opening space
{0, 1}�(λ). For simplicity of notation, we hereby use � = �(λ) and k = k(λ).
Let PWE = (EncryptPWE,DecryptPWE) be a PWE scheme with message space
{Mλ}λ with respect to the following language L. The language L contains
instances of the form (1λ, N, h, hk, vk) ∈ 1λ × {0, 1}λ × Hλ × Kλ × Vλ, where
λ ∈ N, with the following witness relation R:

(1λ, N, h, hk, vk) ∈ L ⇐⇒
∃(i, σ, π) ∈ {0, 1}λ × {0, 1}k × {0, 1}� s.t.

1 ≤ i ≤ N ∧ VerifyABO(vk, i, σ) = 1∧
VerifySPB(hk, h, i, 1, π) = 1.

Note that the above witness relation R is well defined as VerifyABO and VerifySPB
are deterministic algorithms. We construct an AugBE scheme AUGBE = (Setup,
Encrypt, Decrypt) with message space {Mλ}λ. We sometimes slightly abuse nota-
tion and denote the values in {0, 1}z (for z ∈ N) by integers. For any set S ⊆ [N ],
let IS be a bit vector of length N , where the ith element IS(i) is defined as

IS(i) =

{
1 if i ∈ S,

0 otherwise
.

– Setup(1λ, 1N ): Sample (vk, sk) ← SetupABO(1λ) and hk ← SetupSPB(1λ, N).
Compute signatures {σi ← SignABO(sk, i) : 1 ≤ i ≤ N}. Output pk =
(1λ, N, vk, hk), and secret keys {ski = σi : 1 ≤ i ≤ N}.

– Encrypt(pk, S,m, ind): Let pk = (1λ, N, vk, hk). Compute SPB hash on IS i.e.,
compute the hash h = HashSPB (hk, IS). Then encrypt the message m with
PWE scheme using the instance inst = (1λ, N, h, hk, vk) and index ind||0k+�,
i.e., computes ct ← EncryptPWE (inst, m, ind||0k+�).

– Decrypt(i, ski, pk, S, ct): Let pk = (1λ, N, vk, hk). Compute hash h = HashSPB
(hk, IS) and proof πi ← OpenSPB(hk, IS , i). Then decrypt the ciphertext
using the witness w = i||ski||πi i.e., output message m ← DecryptPWE(w =
i||ski||πi, ct).
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Note that the correctness properties of SPB hash and ABO signature
schemes imply that w = i||ski||πi is a valid witness to the instance inst =
(1λ, N, h, hk, vk) (i.e., R(x,w) = 1). This along with the correctness of PWE
scheme imply the correctness of the above scheme. In the following subsections,
we prove that the above AugBE construction satisfies message hiding and index
hiding properties. Formally, we prove the following theorem.

Theorem 1. If PWE is a sub-exponentially secure PWE scheme as per Defi-
nitions 1 and 2, ABO is a secure ABO signature scheme and SPB is a secure
SPB hash function, then AUGBE is a secure AugBE scheme as per Definitions
5 and 6.

4.1 Message Hiding

In this subsection, we prove the message hiding property of the above
scheme assuming sub-exponential security of PWE scheme. For any instance
(1λ, N, h, hk, vk), let r(λ) be the length of witnesses accepted by the witness
relation R, i.e., r(λ) = λ + k(λ) + �(λ). For simplicity of notation, we ignore
the parameters and simply denote it by r. We first describe the following games
that help us in proving the property.

Game N + 1||0k+�. This game is same as the AugBE message hiding game.

1. Setup Phase. The adversary A sends the number of users 1N to the challenger.
The challenger samples the keys (vk, sk) ← SetupABO(1λ), hash key hk ←
SetupSPB(1λ, N) and signatures {σi ← SignABO(sk, i) : 1 ≤ i ≤ N}. It then
sends the public key pk = (1λ, N, vk, hk) to A.

2. Pre-Challenge Query Phase. The adversary then adaptively queries for secret
keys. For each query j, the challenger responds with the secret key skj = σj .

3. Challenge Phase. The adversary then sends a pair of messages m0,m1 and
a set S ⊆ [N ] to the challenger. The challenger samples a bit b ← {0, 1}
and computes hash h = HashSPB(hk, IS). It then samples ciphertext ct ←
EncryptPWE (x = (1λ, N, h, hk, vk), mb, int(N + 1||0k+�)) and responds with
ct.

4. Post-Challenge Query Phase. This is identical to Pre-Challenge Query Phase.
5. Output Phase. The adversary sends a bit b′ to the challenger. The adversary

wins if b′ = b.

Game y (N + 1||0k+� < y ≤ 2r). This game is similar to Game N + 1||0k+�,
except that the challenger encrypts the challenge message using index y instead
of index int(N + 1||0k+�).

3. Challenge Phase. The adversary then sends a pair of messages m0,m1 and
a set S ⊆ [N ] to the challenger. The challenger samples a bit b ← {0, 1}
and computes hash h = HashSPB(hk, IS). It then samples ciphertext ct ←
EncryptPWE (x = (1λ, N, h, hk, vk), mb, y) and responds with ct.
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For any stateful PPT adversary A, we define the advantage of the adversary
in Game x as AdvA

x (λ) = Pr[A wins] − 1/2. We prove that the advantage of
any PPT adversary A in Game N + 1||0k+� is negligible in security parameter.
For any stateful PPT adversary B and λ ∈ N, let AdvPosIndB(λ) denote the
advantage of B in position indistinguishability game and AdvMsgIndB(λ) denote
the advantage of B in message indistinguishability game of PWE scheme. For
any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosIndB(λ) and AdvMsgInd(λ) =
supPPT B AdvMsgIndB(λ). We now establish using the following lemma that the
difference of the adversary’s advantage between each adjacent game is at most
2 · AdvPosInd(λ). Finally we show that if any adversary wins in the last game,
then it wins message indistinguishability game against PWE challenger as well.

Claim 1. For every y s.t. N + 1||0k+� ≤ y ≤ 2r − 1, every PPT adversary A
and λ ∈ N, we have AdvA

y (λ) − AdvA
y+1(λ) ≤ 2 · AdvPosInd(λ).

Proof. Consider any y s.t. N + 1||0k+� ≤ y ≤ 2r − 1, any PPT adversary A
and λ ∈ N. We build a PPT algorithm B which uses A and has advantage
(AdvA

y (λ) −AdvA
y+1(λ))/2 in the position indistinguishability game of the PWE

scheme. The reduction algorithm B proceeds as follows.
A first sends the number of users 1N to B. B then samples (sk, vk) ←

SetupABO(1λ), hk ← SetupSPB(1λ, N), signatures {σj ← SignABO(sk, j) : 1 ≤
j ≤ N} and sends the public key pk = (1λ, N, vk, hk) to A. A then adap-
tively queries for secret keys. For each query j, B responds with the secret key
skj = σj . After query phase, A sends a challenge set S and a pair of messages
m0,m1 to B. B samples a bit b ← {0, 1} and computes hash h = HashSPB(hk, IS).
It then sends the challenge instance inst = (1λ, N, h, hk, vk), challenge message
mb and challenge index y to the challenger C of position indistinguishability
game. The challenger samples a bit β ← {0, 1} and responds with a ciphertext
ct ← EncryptPWE(inst,mb, y + β) to B, which forwards it to A. A further adap-
tively queries for secret keys. For each query j, B responds with the secret key
skj = σj . Finally, A sends a bit b′ to B. If b′ = b, then B outputs 0 indicating its
guess that the challenger encrypted mb using index y. If b′ = b, then B outputs
1 indicating its guess that the challenger encrypted mb using index y + 1.

We know that the index y cannot be a witness for the instance
(1λ, N, h, hk, vk) as y ≥ N + 1||0k+� (i.e., y[1 : λ] ≥ N + 1). Therefore,
the reduction algorithm B acts as a valid adversary in the position indis-
tinguishability game. If β = 0, B simulates the view of Game y to A and
Pr[b′ = b] = 1/2 + AdvA

y (λ). Otherwise, it simulates the view of Game y + 1
to A and Pr[b′ = b] = 1/2 + AdvA

y+1(λ). Therefore, the advantage of B in posi-
tion indistinguishability game is given by AdvPosIndB(λ) = 1/2 · Pr[b′ = b|β =
0] + 1/2 · Pr[b′ = b|β = 1] − 1/2 = 1/2 · (AdvA

y (λ) − AdvA
y+1(λ)). Therefore,

AdvA
y (λ) − AdvA

y+1(λ) ≤ 2 · AdvPosInd(λ).

Claim 2. For every stateful PPT adversary A and every λ ∈ N, we have
AdvA

2r (λ) ≤ AdvMsgInd(λ).
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Proof. Consider any PPT adversary A and any λ ∈ N. We build a PPT algorithm
B which uses A and has advantage AdvA

2r (λ) in message indistinguishability game
of the PWE scheme. The reduction algorithm B proceeds as follows.

A first sends the number of users 1N to B. B then samples (sk, vk) ←
SetupABO(1λ), hash key hk ← SetupSPB(1λ, N) and signatures {σj ←
SignABO(sk, j) : 1 ≤ j ≤ N}. It then sends the public key pk = (1λ, N, vk, hk)
to A. A then adaptively queries for secret keys. For each query j, B responds
with the secret key skj = σj . After query phase, A sends a challenge set S and
messages m0,m1 to B. B computes hash h = HashSPB(hk, IS). It then sends chal-
lenge instance inst = (1λ, N, h, hk, vk) and challenge messages m0,m1 to message
indistinguishability game challenger C. The challenger samples a bit b ← {0, 1}
and responds with ciphertext ct ← EncryptPWE(inst,mb, 2r) to B, which forwards
ct to A. A further adaptively queries for secret keys. For each query j, B responds
with the secret key skj = σj . Finally, A sends a bit b′ to B, which outputs b′ as
its guess in message indistinguishability game.

Clearly, B is a valid adversary of the message indistinguishability game, and
also simulates the view of Game 2r to A. Note that advantage of B in message
indistinguishability game is given by AdvMsgIndB(λ) = AdvA

2r (λ), and therefore
AdvA

2r (λ) ≤ AdvMsgInd(λ).

Note that by combining Claims 1 and 2, the advantage of any PPT adversary A
in AugBE message hiding game is AdvA

N+1||0k+�(λ) =
∑2r−1

y=N+1||0k+�(AdvA
y (λ) −

AdvA
y+1(λ))+AdvA

2r (λ) ≤ 2 ·(2λ −N) ·2k+� ·AdvPosInd(λ)+AdvMsgInd(λ). Using
complexity leveraging, we demand that AdvPosInd(λ) ≤ 2−(λ+k+�+1) ·negl(λ) for
some negligible function negl(·). At the instantiation level, the security parameter
will be increased to match this condition.

4.2 Index Hiding

In this section, we prove the index hiding property of the above scheme. We first
describe the following 2 games that help us in describing the lemma formally.

Game 0. This game corresponds to AugBE index hiding game where the chal-
lenger always uses bit b = 0.

1. Setup Phase. The adversary A sends the number of users 1N and index i s.t.
1 ≤ i ≤ N to the challenger. The challenger samples (vk, sk) ← SetupABO(1λ),
hash key hk ← SetupSPB(1λ, N) and signatures {σj ← SignABO (sk, j) : 1 ≤
j ≤ N} of the AugBE scheme. It then sends the public key pk = (1λ, N, vk, hk)
to A.

2. Pre-Challenge Query Phase. The adversary then adaptively queries for secret
keys. For each query j, the challenger responds with the secret key skj = σj .

3. Challenge Phase. The adversary then sends a message m and a set S ⊆
[N ] to the challenger. The challenger computes hash h = HashSPB(hk, IS)
and responds with ciphertext ct ← EncryptPWE (x = (1λ, N, h, hk, vk),
m, int(i||0k+�)).
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4. Post-Challenge Query Phase. This is identical to Pre-Challenge Query Phase.
5. Output Phase. The adversary sends a bit b′ to the challenger.

Let the set of all secret keys queried by the adversary be S∗. The adversary is
restricted to query such that i /∈ S ∨ i /∈ S∗.

Game 3. This game is similar to the first game, except that the challenger always
uses bit b = 1.

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ]
to the challenger. The challenger computes hash h = HashSPB(hk, IS) and
responds with ciphertext ct ← EncryptPWE(x = (1λ, N, h, hk, vk),m, int(i +
1||0k+�)).

For any stateful PPT adversary A, let the probability that A outputs 1 in Game y
be pA

y (λ). We denote the advantage of a PPT adversary A in distinguishing
between any two games Game x and Game y by AdvA

x,y(λ) = |pA
x (λ) − pA

y (λ)|.
Lemma 1. If ABO is a secure ABO signature scheme, SPB is a secure SPB
hash function, and PWE is a sub-exponentially secure PWE scheme as per Def-
inition 2, for every stateful PPT Adversary A, there exists a negligible function
negl(·) such that for every security parameter λ, AdvA

0,3(λ) ≤ negl(λ).

Proof. We first classify the adversaries into the following 2 types.

– Type 1 adversary: Restricted to generate set of key queries S∗ and challenge
set S s.t. i /∈ S.

– Type 2 adversary: Restricted to generate set of key queries S∗ and challenge
set S s.t. i ∈ S ∧ i /∈ S∗.

We now prove Lemmas 2 and 3 which together imply Lemma 1.

Lemma 2. If SPB is secure, and PWE is a sub-exponentially secure as per
Definition 2, for every stateful Type 1 PPT Adversary A, there exists a negligible
function negl(·) such that for every security parameter λ, AdvA

0,3(λ) ≤ negl(λ).

Proof. We prove the lemma using the following sequence of hybrids.

Game 1.t (for 0 ≤ t < 2k+�): Here t is a bit string of length k + �. This game is
similar to Game 0 except that challenger samples SPB hash key using Setup-Bind
and encrypts the challenge message using index int(i||0k+�) + t.

1. Setup Phase. The adversary A sends the number of users 1N to the chal-
lenger. The challenger samples (vk, sk) ← SetupABO(1λ), hk ← Setup-BindSPB
(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}. It then sends
the public key pk = (1λ, N, vk, hk) to A.

3. Challenge Phase. The adversary sends a message m and a set S ⊆ [N ] to the
challenger. The challenger computes hash h = HashSPB(hk, IS) and responds
with ciphertext ct ← EncryptPWE((1λ, N, h, hk, vk), m, int(i||0k+�) + t).
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Game 1.2k+�: This game is similar to Game 1.2k+� − 1 except that challenger
encrypts the challenge message using index int(i + 1||0k+�).

1. Setup Phase. The adversary A sends the number of users 1N to the chal-
lenger. The challenger samples (vk, sk) ← SetupABO(1λ), hash key hk ←
Setup-BindSPB(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}
of the AugBE scheme. It then sends the public key pk = (vk, hk) to A.

3. Challenge Phase. The adversary sends a message m and a set S ⊆ [N ] to
the challenger, which computes hash h = HashSPB(hk, IS) and responds with
ciphertext ct ← EncryptPWE((1λ, N, h, hk, vk),m, int(i + 1||0k+�)).

For any PPT adversary B and λ ∈ N, let AdvSpbIndB(λ) denote the advan-
tage of B in index hiding game of SPB scheme and AdvPosIndB(λ) denote
the advantage of B in position indistinguishability game of PWE scheme. For
any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosIndB(λ) and AdvSpbInd(λ) =
supPPT B AdvSpbIndB(λ). We prove Lemma 2 using the following sequence of
claims.

Claim 3. For every Type 1 PPT adversary A and any λ ∈ N, we have
AdvA

0,1.0(λ) ≤ 2 · AdvSpbInd(λ).

Proof. Consider any Type 1 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA

0,1.0(λ)/2 in index hiding game
of the SPB scheme. The reduction algorithm B proceeds as follows.

A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B. B
then sends (N, i) to index hiding game challenger C. The challenger samples a
bit b ← {0, 1}. If b = 0, it responds with hk ← SetupSPB(1λ, N). Otherwise, it
responds with hk ← Setup-BindSPB(1λ, N, i). B samples (sk, vk) ← SetupABO(1λ),
signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N} and sends the public key
pk = (1λ, N, vk, hk) to A. A then adaptively queries for secret keys. For each
query j, B responds with secret key skj = σj . After query phase, A sends a
challenge set S and a message m to B. B aborts if i ∈ S. Otherwise, it com-
putes hash h = HashSPB(hk, IS) and responds with ciphertext ct ← EncryptPWE

((1λ, N, h, hk, vk), m, int(i||0k+�)). A further adaptively queries for secret keys.
For each query j, B responds with secret key skj = σj . Finally, A sends a bit b′

to B, which outputs b′ as its guess in the index hiding game.
As A is a Type 1 adversary, note that i /∈ S and B does not abort. Note

that if b = 0, B simulates the view of Game 0 to A and Pr[b′ = 1] = pA
0 (λ).

Otherwise, it simulates the view of Game 1.0 to A and Pr[b′ = 1] = pA
1.0(λ). This

implies, the advantage of B in the index hiding game is given by AdvSpbIndB(λ) =
|1/2 · Pr[b′ = 0|b = 0] + 1/2 · Pr[b′ = 1|b = 1] − 1/2| = AdvA

0,1.0(λ)/2. Therefore,
AdvA

0,1.0(λ) ≤ 2 · AdvSpbInd(λ).

Claim 4. Assuming SPB is somewhere perfectly binding w.r.t. opening, for any
0 ≤ t ≤ 2k+� −1, any stateful Type 1 PPT Adversary A and any λ ∈ N, we have
AdvA

1.t,1.t+1(λ) ≤ 2 · AdvPosInd(λ).
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Proof. Consider any t s.t. 0 ≤ t ≤ 2k+� − 1, any Type 1 PPT adversary A and
any λ ∈ N. Assuming SPB is somewhere perfectly binding w.r.t. opening, we
build a PPT algorithm B which uses A and has advantage AdvA

1.t,1.t+1(λ)/2 in
position indistinguishability game of the PWE scheme. The reduction algorithm
B proceeds as follows.

A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B.
B then samples (sk, vk) ← SetupABO(1λ), hash key hk ← Setup-BindSPB(1λ, N, i)
and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}. It then sends the public key
pk = (1λ, N, vk, hk) to A. A then adaptively queries for secret keys. For each
query j, B responds with secret key skj = σj . After query phase, A sends a chal-
lenge set S and a message m to B. B aborts if i ∈ S. Otherwise, it computes hash
h = HashSPB(hk, IS), and sends the challenge instance inst = (1λ, N, h, hk, vk),
challenge message m and challenge index int(i||0k+�) + t to the position indis-
tinguishability game challenger C. The challenger samples a bit β ← {0, 1} and
responds with a ciphertext ct ← EncryptPWE(inst,m, int(i||0k+�) + t + β)13 to B.
B forwards the ciphertext to A. A further adaptively queries for secret keys. For
each query j, B responds with secret key skj = σj . Finally, A sends a bit b′ to
B, which outputs b′ as its guess in the position indistinguishability game.

As A is a Type 1 adversary, note that IS(i) = 0 and B does not abort.
We know that, Pr[hk is binding w.r.t. opening at index i] = 1. This implies
that there does not exist a proof π such that VerifySPB(hk, h, i, 1, π) = 1 and
int(i||0κ+�) + t cannot be a witness of the instance (1λ, N, h, hk, vk). Therefore,
B acts as a valid adversary of the position indistinguishability game. If β = 0,
B simulates the view of Game 1.t to A and Pr[b′ = 1] = pA

1.t(λ). Otherwise,
it simulates the view of Game 1.t + 1 to A and Pr[b′ = 1] = pA

1.t+1(λ). This
implies, the advantage of B in the position indistinguishability game is given
by AdvPosIndB(λ) = |1/2 · Pr[b′ = 0|β = 0] + 1/2 · Pr[b′ = 1|β = 1] − 1/2| =
AdvA

1.t,1.t+1(λ)/2. Therefore, AdvA
1.t,1.t+1(λ) ≤ 2 · AdvPosInd(λ).

Claim 5. For every Type 1 PPT adversary A and any λ ∈ N, we have
AdvA

1.2k+�,3(λ) ≤ 2 · AdvSpbInd(λ).

Proof. Consider any Type 1 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA

1.2k+�,3(λ)/2 in the index hiding
game of the SPB scheme. We ignore the description of algorithm B as it proceeds
similar to proof of Claim 3.

Note that by triangle inequality and combining Claims 3, 4, and 5, the advan-
tage of any Type 1 PPT adversary A in AugBE index hiding game is AdvA

0,3(λ) ≤
AdvA

0,1.0 +
∑2k+�−1

t=0 AdvA
1.t,1.t+1 + AdvA

1.2k+�,3 ≤ 4 · AdvSpbInd(λ) + 2 · 2k+� ·
AdvPosInd(λ). Using complexity leveraging, we demand that AdvPosInd(λ) ≤
2−(k+�+1) ·negl(λ) for some negligible function negl(·). At the instantiation level,
the security parameter will be increased to match these conditions.

13 Note that index int(i||0k+�) + 2k+� is same as int(i + 1||0k+�).
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Lemma 3. If ABO is a secure ABO signature scheme and PWE is a sub-
exponentially secure as per Definition 2, for every stateful Type 2 PPT Adversary
A, there exists a negligible function negl(·) such that for every security parameter
λ, AdvA

0,3(λ) ≤ negl(λ).

Proof. We prove the lemma using the following sequence of hybrids.

Game 2.t (for 0 ≤ t < 2k+�): Here t is a bit string of length k + �. This game
is similar to Game 0 except, the challenger samples ABO signature verification
key using Setup-Punc algorithm and encrypts challenge message using index
int(i||0k+�) + t.

1. Setup Phase. The adversary A sends the number of users 1N to the challenger.
The challenger samples (vk, sk) ← Setup-PuncABO(1λ, i), hk ← SetupSPB
(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}. It then sends
the public key pk = (1λ, N, vk, hk) to A.

3. Challenge Phase. The adversary sends a message m and a set S ⊆ [N ] to the
challenger. The challenger computes hash h = HashSPB(hk, IS) and responds
with ciphertext ct ← EncryptPWE((1λ, N, h, hk, vk), m, int(i||0k+�) + t).

Game 2.2k+�: This game is similar to Game 2.2k+� −1 except that the challenger
encrypts the challenge message using index int(i + 1||0k+�).

1. Setup Phase. The adversary A sends the number of users 1N to the chal-
lenger. The challenger samples (vk, sk) ← Setup-PuncABO(1λ, i), hash key
hk ← SetupSPB(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N} of
the AugBE scheme. It then sends the public key pk = (vk, hk) to A.

3. Challenge Phase. The adversary sends a message m and a set S ⊆ [N ] to
the challenger, which computes hash h = HashSPB(hk, IS) and responds with
ciphertext ct ← EncryptPWE((1λ, N, h, hk, vk), m, int(i + 1||0k+�)).

For any PPT adversary B and λ ∈ N, let AdvAboIndB(λ) denote the advantage
of B in VK indistinguishability game of ABO scheme and AdvPosIndB(λ) denote
the advantage of B in position indistinguishability game of PWE scheme. For
any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosIndB(λ) and AdvAboInd(λ) =
supPPT B AdvAboIndB(λ). We prove Lemma 3 using the following sequence of
claims.

Claim 6. For every Type 2 PPT adversary A and any λ ∈ N, we have
AdvA

0,2.0(λ) ≤ 2 · AdvAboInd(λ).

Proof. Consider any Type 2 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA

0,2.0(λ) in VK indistinguisha-
bility game of the ABO scheme. The reduction algorithm B proceeds as follows.

A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B.
B sends challenge message i to VK indistinguishability game challenger C. The
challenger samples a bit b ← {0, 1}. If b = 0, it samples (sk, vk) ← SetupABO(1λ).
Otherwise, it samples (sk, vk) ← Setup-PuncABO(1λ, i). It then sends vk to B. B
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samples hk ← SetupSPB(1λ, N) and sends the public key pk = (1λ, N, vk, hk) to
A. A then adaptively queries for secret keys. For each query j, B aborts if j = i.
Otherwise, it forwards the query to C, which responds with σ ← SignABO(sk, j).
B forwards the reply to A. After query phase, A sends a challenge set S and a
message m to B. B computes hash h = HashSPB(hk, IS) and responds with cipher-
text ct ← EncryptPWE (x = (1λ, N, h, hk, vk), m, int(i||0k+�)). A then adaptively
queries for secret keys. For each query j, B aborts if j = i. Otherwise, it forwards
the query to C, which responds with σ ← SignABO(sk, j). B forwards the reply
to A. Finally, A sends a bit b′ to B, which outputs b′ as its guess in the VK
indistinguishability game.

As A is a Type 2 adversary, it does not query for secret key ski and therefore,
B does not abort and acts as a valid adversary of the VK indistinguishability
game. If b = 0, then B simulates the view of Game 0 to A and Pr[b′ = 1] = pA

0 (λ).
Otherwise, it simulates the view of Game 2.0 to A and Pr[b′ = 1] = pA

2.0(λ). This
implies, the advantage of B in the index hiding game is given by AdvSpbIndB(λ) =
|1/2 · Pr[b′ = 0|b = 0] + 1/2 · Pr[b′ = 1|b = 1] − 1/2| = AdvA

0,2.0(λ)/2. Therefore,
AdvA

0,2.0(λ) ≤ 2 · AdvAboInd(λ).

Claim 7. For every t s.t. 0 ≤ t ≤ 2k+� −1, every Type 2 PPT adversary A and
any λ ∈ N, we have AdvA

2.t,2.t+1(λ) ≤ 2 · AdvPosInd(λ).

Proof. Consider any t s.t. 0 ≤ t ≤ 2k+� − 1, a Type 2 PPT adversary A and
any λ ∈ N. We build a PPT algorithm B which uses A and has advantage
AdvA

2.t,2.t+1(λ) in position indistinguishability game of the PWE scheme. The
reduction algorithm B proceeds as follows.

A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B. B
then samples (sk, vk) ← Setup-PuncABO(1λ, i), hash key hk ← SetupSPB(1λ, N)
and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N, j = i}. It then sends the
public key pk = (1λ, N, vk, hk) to A. A then adaptively queries for secret keys.
For each query j, B aborts if j = i. Otherwise, it responds with the secret key
skj = σj . After query phase, A sends a challenge set S and a message m to B.
B computes hash h = HashSPB(hk, IS) and sends the challenge instance inst =
(1λ, N, h, hk, vk), challenge message m and challenge index int(i||0k+�) + t to
the position indistinguishability game challenger C. The challenger samples a bit
β ← {0, 1} and responds with a ciphertext ct ← EncryptPWE(inst,m, int(i||0k+�)+
t + β)14 to B. B forwards the ciphertext to A. A further adaptively queries for
secret keys. For each query j, B aborts if j = i. Otherwise, it responds with the
secret key skj = σj . Finally, A sends a bit b′ to B, which outputs b′ as its guess
in the position indistinguishability game.

As A is a Type 2 adversary, it does not make key query on i and therefore,
B does not abort. As vk is punctured at i,  ∃σ s.t. VerifyABO(vk, i, σ) = 1. This
implies int(i||0k+�) + t cannot be a witness of the instance (1λ, N, h, hk, vk) and
therefore, B acts as a valid adversary of the position indistinguishability game.
If β = 0, B simulates the view of Game 2.t to A and Pr[b′ = 1] = pA

2.t(λ).

14 Note that index int(i||0k+�) + 2k+� is same as int(i + 1||0k+�).
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Otherwise, it simulates the view of Game 2.t+1 to A and Pr[b′ = 1] = pA
2.t+1(λ).

This implies, the advantage of B in the position indistinguishability game is
given by AdvPosIndB(λ) = |1/2 ·Pr[b′ = 0|β = 0]+1/2 ·Pr[b′ = 1|β = 1]−1/2| =
AdvA

2.t,2.t+1(λ)/2. Therefore, AdvA
2.t,2.t+1(λ) ≤ 2 · AdvPosInd(λ).

Claim 8. For every Type 2 PPT adversary A and any λ ∈ N, we have
AdvA

2.2k+�,3(λ) ≤ 2 · AdvAboInd(λ).

Proof. Consider any Type 2 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA

2.2k+�,3(λ) in VK indistin-
guishability game of the ABO scheme. We ignore the description of algorithm
B as it proceeds similar to proof of Claim 6.

Note that by combining triangle inequality and Claims 6, 7, and 8, the advantage
of any Type 2 PPT adversary A in AugBE index hiding game is AdvA

0,3(λ) ≤
AdvA

0,2.0 +
∑2k+�−1

t=0 AdvA
2.t,2.t+1 + AdvA

2.2k+�,3 ≤ 4 · AdvAboInd(λ) + 2 · 2k+� ·
AdvPosInd(λ). Using complexity leveraging, we demand that AdvPosInd(λ) ≤
2−(k+�+1) ·negl(λ) for some negligible function negl(·). At the instantiation level,
the security parameter will be increased to match this condition.

Note that Lemma 1 follows by combining Lemmas 2 and 3 as any adversary
A of AugBE index hiding game is of either Type 1 or Type 2.

5 All-But-One Signatures from Standard Assumptions

In this section, we present two new constructions for all-but-one (ABO) signa-
tures from standard assumptions. The first construction is based on verifiable
random functions (VRF) and perfectly-binding (non-interactive) commitment
schemes. The second construction is based on verifiable and anonymous identity-
based encryption (VAIBE). The first ABO scheme satisfies perfect correctness,
where as the second scheme satisfies correctness with all but negligible proba-
bility. We would like to point that using the second ABO signature scheme to
instantiate the AugBE construction described in Sect. 4 results in AugBE scheme
without perfect correctness. We finally note that VRFs can be based on simple
assumptions over bilinear maps as well as RSA-like assumptions [42,49], and per-
fectly binding commitments can be constructed from any injective OWF as well
as based on assumptions such as DDH, LWE and LPN [37], and VAIBE can be
based on simple assumptions over bilinear maps as well as LWE [1,17,48,57].15

Therefore, this leads to constructions of ABO signatures from a wide variety of
standard assumptions listed above.

15 We would like to point out that most existing IBE constructions based on LWE are
already verifiable and they can be made anonymous by using the transformation
from [39,59].
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5.1 All-But-One Signatures from VRFs

Let VRF = (SetupVRF,EvalVRF,VerifyVRF) be a verifiable random function
(VRF) with input space {0, 1}i(λ), output space {0, 1}o(λ) and proof space
{0, 1}p(λ). Let COM = (SetupCOM,Commit,VerifyCOM) be a perfectly binding
computationally hiding commitment scheme with randomness space {0, 1}o(λ)

and commitment space {0, 1}k(λ). We construct an ABO signature scheme
ABO = (Setup,Setup-Punc,Sign,Verify) on message space {0, 1}i(λ) and signa-
ture space {0, 1}o(λ)+p(λ) as follows. For the simplicity of notation, we hereby
denote i = i(λ), o = o(λ), p = p(λ) and k = k(λ).

– Setup(1λ). Sample (skVRF, vkVRF) ← SetupVRF(1λ) and pp ← SetupCOM(1λ).
Sample y∗ ← {0, 1}o and cm ← Commit(pp, 0; y∗). Output sk = skVRF and
vk = (pp, vkVRF, cm).

– Setup-Punc(1λ,m∗). Sample (skVRF, vkVRF) ← SetupVRF(1λ) and pp ←
SetupCOM (1λ). Sample (y∗, π) ← EvalVRF(skVRF,m∗) and cm ←
Commit(pp, 1; y∗). Output sk = skVRF and vk = (pp, vkVRF, cm).

– Sign(sk,m). Sample (y, π) ← EvalVRF(sk,m). Output σ = (y, π).
– Verify(vk,m, σ). Let σ = (y, π) and vk = (pp, vkVRF, cm). Output 1 iff VerifyVRF

(vkVRF,m, y, π) = 1 ∧ VerifyCOM(pp, 1, cm, y) = 0.

Due to space constraints, we prove that the ABO signature scheme satisfies
the required correctness properties in the full version of the paper.

We prove that the above scheme satisfies VK indistinguishability property
using a sequence of hybrids. The first hybrid is same as the VK indistinguisha-
bility game, except that the challenger always uses punctured setup to generate
verification key. The second hybrid is same as the first hybrid, except that the
challenger samples y∗ randomly during the setup phase. These two hybrids are
indistinguishable to the adversary as the VRF scheme has pseudorandomness
property and as the adversary is not allowed to query for signature on message
m∗. The third hybrid is same as the VK indistinguishability game, except that
the challenger always uses normal setup to generate verification key. The second
and third hybrids are indistinguishable to the adversary as he cannot distinguish
between commitment of 0 and commitment of 1 (computational hiding property
of the COM scheme). Due to space constraints, we prove that the above scheme
satisfies VK indistinguishability in the full version of the paper.

5.2 All-But-One Signatures from VAIBE

In this section, we construct all-but-one (ABO) signatures from verifiable
and anonymous identity based encryption system (VAIBE). Let VAIBE =
(SetupVAIBE, KeyGen,Encrypt,Decrypt,VerifyVAIBE) be any VAIBE scheme for
message space {0, 1}m(λ), ciphertext space {0, 1}c(λ), secret key space {0, 1}k(λ),
identity space {0, 1}i(λ) and proof space {0, 1}r(λ). We construct an ABO
signature scheme ABO = (Setup,Setup-Punc,Sign,Verify) for message space
{0, 1}i(λ)\{0i(λ)} and signature space {0, 1}k(λ)+r(λ) i.e., for every λ ∈ N, identity
0i(λ) is not supported by the signature scheme. Let Iλ = {0, 1}i(λ) \ {0i(λ)}. For
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simplicity of notation, we hereby denote m = m(λ), c = c(λ), k = k(λ), i = i(λ)
and p = p(λ). Also, we hereby refer to messages in ABO scheme by identities in
VAIBE scheme. Formally, the construction proceeds as follows.

– Setup(1λ). Sample VAIBE keys (mpkVAIBE,mskVAIBE) ← SetupVAIBE(1λ). Sam-
ple a random message x ← {0, 1}m and compute ciphertext t ← Encrypt
(mpkVAIBE, 0i, x). Output secret key sk = mskVAIBE and verification key
vk = (x,mpkVAIBE, t).

– Setup-Punc(1λ, id∗). Sample VAIBE keys (mpkVAIBE,mskVAIBE) ← SetupVAIBE
(1λ). Choose a random message x ← {0, 1}m. Encrypt the message x using
identity id∗ i.e., compute ciphertext t ← Encrypt(mpkVAIBE, id

∗, x). Output
secret key sk = mskVAIBE and verification key vk = (x,mpkVAIBE, t).

– Sign(sk, id). Sample (skid, π) ← KeyGen(sk, id). Output signature σ = (skid, π).
– Verify(vk, id, σ). Let σ = (sk′, π) and vk = (x,mpk, t). Output 1 iff VerifyVAIBE

(mpk, id, sk′, π) = 1 ∧ x = Decrypt(sk′, t).

We note that the ABO scheme does not achieve perfect correctness16. We
now prove that the ABO scheme satisfies the required correctness properties
with all but negligible probability.

Correctness of Setup

Claim 9. There exists a negligible function negl(·) such that for all λ ∈ N and
any identity id ∈ Iλ, we have

Pr

⎡
⎣Verify(vk, id, σ) = 0 :

(mpk,msk) ← SetupVAIBE(1
λ), x0 ← {0, 1}m,

t ← Encrypt(mpk, 0i, x0), vk ← (x0,mpk, t),
σ = (skid, π) ← KeyGen(msk, id)

⎤
⎦ ≤ 1

2m
+ negl(λ).

Proof. Suppose there exists a non-negligible function δ(·) such that, for every
λ ∈ N, there exists an identity id′

λ ∈ Iλ such that,

Pr

⎡
⎣Verify(vk, id′

λ, σ) = 0 :

(mpk,msk) ← SetupVAIBE(1
λ), x0 ← {0, 1}m,

t ← Encrypt(mpk, 0i, x0), vk ← (x0,mpk, t),
σ = (skid′

λ
, π) ← KeyGen(msk, id′

λ)

⎤
⎦ >

1

2m
+ δ(λ).

By the correctness of VAIBE scheme, we know that VerifyVAIBE(mpk, id′
λ,

skid′
λ
, π) = 1. This implies,

Pr

⎡
⎣Decrypt(skid′

λ
, t) = x0 :

(mpk,msk) ← SetupVAIBE(1
λ),

x0 ← {0, 1}m, t ← Encrypt(mpk, 0i, x0),
σ = (skid′

λ
, π) ← KeyGen(msk, id′

λ)

⎤
⎦ >

1

2m
+ δ(λ). (1)

16 Using this ABO scheme in our AugBE construction results in an AugBE scheme
without perfect correctness.
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For any fixed x0 ∈ {0, 1}m, let

px0 = Pr

⎡
⎣Decrypt(skid′

λ
, t) = x0 :

(mpk,msk) ← SetupVAIBE(1λ),
x1 ← {0, 1}m, t ← Encrypt(mpk, 0i, x1),

(skid′
λ
, π) ← KeyGen(msk, id′

λ)

⎤
⎦ .

We know that
∑

x0
px0 = 1. This implies,

Pr

⎡
⎣Decrypt(skid′

λ
, t) = x0 :

(mpk,msk) ← SetupVAIBE(1
λ), x1 ← {0, 1}m,

x0 ← {0, 1}m, t ← Encrypt(mpk, 0i, x1),
(skid′

λ
, π) ← KeyGen(msk, id′

λ)

⎤
⎦ =

1

2m
. (2)

We build a non-uniform PPT adversary A that breaks IND-CPA security
of VAIBE scheme. The algorithm proceeds as follows. Assume the adversary
is given id′

λ as a non-uniform advice. A first samples two random messages
x0 ← {0, 1}m, x1 ← {0, 1}m and sends challenge messages (x0, x1) and chal-
lenge identity 0i to VAIBE IND-CPA challenger C. C samples VAIBE keys
(mpk,msk) ← SetupVAIBE(1λ), a bit b ← {0, 1}, and computes ciphertext t ←
Encrypt(mpk, 0i, xb). C sends public key mpk and challenge response t to A. The
adversary then makes a key query on index id′

λ to the challenger, which responds
with (skid′

λ
, π) ← KeyGen(msk, id′

λ). A outputs 1 if Decrypt(skid′
λ
, t) = x0 and out-

puts 0 otherwise.
By Eq. 1, if b = 0, A outputs 1 with probability greater than 1

2m + δ(λ). By
Eq. 2, if b = 1, A outputs 1 with probability 1

2m . This implies that the advantage
of A in the IND-CPA game is at least 1/2 · δ(λ).

Correctness of Punctured Setup

Claim 10. For all λ ∈ N, any identity id∗ ∈ Iλ, any keys (sk, vk) ← Setup-Punc
(1λ, id∗), any σ ← {0, 1}k+r, we have Verify(vk, id∗, σ) = 0.

Proof. Let vk = (x,mpk, t) and σ = (sk′, π). From the soundness of verifiability
property of VAIBE scheme, we know that if VerifyVAIBE(mpk, id∗, sk′, π) = 1,
then Decrypt(sk′, t) = x. Therefore, Verify(vk, id∗, σ) = 0.

The VK indistinguishability property of the above scheme follows from the
IND-ANON security of the VAIBE scheme. Intuitively, if an adversary can dis-
tinguish between verification key generated by the normal setup and the punc-
tured setup, then he can also distinguish between VAIBE ciphertext encrypted
using identity 0i and VAIBE ciphertext encrypted using identity id∗, which con-
tradicts the IND-ANON security property of the VAIBE scheme. Due to space
constraints, we defer the full proof to the full version of the paper.
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ening of) ABO signatures.



30 R. Goyal et al.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for any cycle
length from (Ring-)LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 659–680. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 23

3. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013)

4. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

5. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: indistinguisha-
bility obfuscation from non-compact functional encryption. IACR Cryptology
ePrint Archive (2015)

6. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

7. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6 (2012)

8. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

9. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

10. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 20

11. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, pp. 171–190 (2015)

12. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

13. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

14. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security, CCS 2006, pp. 211–220 (2006)

15. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 206–223. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 12

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-662-53008-5_23
https://doi.org/10.1007/978-3-662-53008-5_23
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/978-3-662-44371-2_12


Collusion Resistant Broadcast and Trace from Positional Witness Encryption 31

16. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

17. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 17

18. Brakerski, Z., Jain, A., Komargodski, I., Passelegue, A., Wichs, D.: Non-trivial
witness encryption and null-IO from standard assumptions. Cryptology ePrint
Archive, Report 2017/874 (2017). https://eprint.iacr.org/2017/874

19. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

20. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20
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Abstract. “Break-glass” is a term used in IT healthcare systems to
denote an emergency access to private information without having the
credentials to do so.

In this paper we introduce the concept of break-glass encryption for
cloud storage, where the security of the ciphertexts – stored on a cloud
– can be violated exactly once, for emergency circumstances, in a way
that is detectable and without relying on a trusted party.

Detectability is the crucial property here: if a cloud breaks glass with-
out permission from the legitimate user, the latter should detect it and
have a proof of such violation. However, if the break-glass procedure is
invoked by the legitimate user, then semantic security must still hold
and the cloud will learn nothing. Distinguishing that a break-glass is
requested by the legitimate party is also challenging in absence of secrets.

In this paper, we provide a formalization of break-glass encryption and
a secure instantiation using hardware tokens. Our construction aims to
be a feasibility result and is admittedly impractical. Whether hardware
tokens are necessary to achieve this security notion and whether more
practical solutions can be devised are interesting open questions.

1 Introduction

The purpose of an encryption scheme [GM84] is to protect data against any
observer that is not the intended recipient of the data. Encryption has been
historically used to protect messages in transmission over untrusted channels.
Recently however, encryption is progressively being used in the context of cloud
storage to protect the confidentiality of the data uploaded by the users to the
cloud. In a cloud storage setting, the cloud is trusted to guarantee availability
of the uploaded data at any time, but it is not necessarily trusted (or held
accountable) for not leaking clients’ data to third parties. Thus, the cloud can
be seen as an untrusted but reliable channel that the client uses to communicate
data to herself in the future.

The Need to Break. But what happens if the user loses the key? Or more gener-
ally, what if the user loses the ability to access to the secret key (e.g. because she
lost her laptop, or simply because she is not alive anymore) but there is a need
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to retrieve the documents that she uploaded to the cloud? For this emergency
condition, one would like to have a way to break the encryption without knowing
any cryptographic secret associated to the user.

Break-glass Encryption. We introduce the concept of break-glass1 encryption.
This is an encryption scheme that guarantees semantic security – just like any
traditional encryption scheme – but it additionally provides a new command
called Break that allows one designated party (the cloud) to help an alleged
user to break her ciphertexts. Each ciphertext can be broken at most one time
in a way that is detectable. Detectability is the crucial property. If the cloud
breaks the ciphertexts without having received any request from the user, then
the user should be able to detect and publicly prove this violation. A bit more
specifically, we consider a setting where a user uploads and updates a (potentially
large) number of ciphertexts and we want two properties: (1) a legitimate break-
glass procedure preserves semantic security, that is, an honest user should be
able to use the cloud to break her ciphertexts in such a way that the cloud
does not learn anything about the plaintexts; (2) an illegitimate break-glass
procedure is detectable, that is, if the cloud breaks user’s ciphertexts without
any permission, this violation is detectable and can be proven to a third party. In
other words, a legitimate break-glass procedure preserves the semantic security
of the ciphertext, while an illegitimate break-glass procedure leaks data but
provides a proof of the violation.

What Constitutes a Legitimate Break-glass Request? A peculiar aspect of a
break-glass encryption is that the break-glass procedure should be requested
without knowing any secret. This is indeed crucial since a user wants to break-
glass exactly because he does not remember his secrets.

However, if no secret are required to request to break-glass, how do we dis-
tinguish a legitimate request – coming from the owner of the data – from an
illegitimate one – coming from anyone else? What makes a request illegitimate?

This is a challenge unique for our setting. For any break-glass encryption,
one has to first design a permission mechanism for creating legitimate permis-
sions without any secret and identifying and/or denying illegitimate requests. To
devise such a permission mechanism we leverage the following observation. If a
user did not request a break-glass procedure, this means that she probably still
possesses her secrets, and therefore she can use them to delegitimize the request.

More concretely, the high-level idea behind the permission mechanism is the
following. Any user U has associated a (public) alert address (e.g., an email
address, a Bitcoin account), which we call alert-info. When the cloud receives a
break-glass request from a party on behalf of user U , will first send an “alert”
to user U , by forwarding the break-glass request to the address alert-info. The

1 The name break-glass encryption is inspired by the break-glass procedures used in
access control of various systems (healthcare, computer systems, etc.). In a break-
glass procedure the system administrator breaks into the account of a certain user
without the legitimate credentials in order to retrieve his data.
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cloud will then wait a certain interval of time TWaitPermission, this time could
depend on the application and the permission mechanism. If the users knows
the secret associated to alert-info, then she will be able to stop or endorse the
permission by using her secrets. If not, the user will simply do nothing. After
waiting TWaitPermission steps, if no denying answer is received from U , the silence
is accepted as a proof that the user did indeed lose the key and a “silence”
permission that U wishes to break the glass. Crucially, it is important that a
cloud is not able to fabricate a “silence” permission; thus the silence response
must be publicly verifiable. This is necessary for protecting the user against a
malicious cloud that pretends that no answer was received; but also to protect
the cloud in case a malicious user remains silent but then later accuses the cloud
by fabricating a proof delegitimizing the request.

We abstract the properties of such verifiable permission mechanism in an
ideal functionality Gperm (see Fig. 2) and we discuss possible implementations
using a blockchain or an email provider (see Sect. 4.3).

Detectability: Why Simple Solutions Do Not Work. At first sight, the break-
glass property might seem trivial to achieve; after all we are adding a method to
reveal something and not to conceal. Unfortunately, this is not the case, and the
main reason is that for each breaking attempt we need to ensure detectability.
To show this, we now discuss some trivial solutions that do not work.

A straightforward solution could be to upload the ciphertexts in one cloud,
and give the secret key to another party, e.g., a friend, another cloud, a group
of colleagues, etc. This approach fails in achieving detectability: if the cloud
colludes with the party holding the key then ciphertexts can be decrypted at
any time and without leaving any trace. Similarly, the approach of selecting a
group of people that collectively holds the secret key suffers of the same problem:
if the group comes together and decides to decrypt, there is no way for the user
to ever notice. Furthermore, in this type of approach, it does not seem possible
to guarantee semantic security in presence of legitimate break-glass procedure.

Another relatively straightforward approach is to use a one-time hardware
token. Namely, the user prepares a token which has the secret key hardwired,
and when queried, it will output the key and then stop responding. The user
will then send to the cloud two things: the ciphertexts and the token, with the
understanding that the token should be used only in case of emergency. To break
the glass, the cloud simply queries the token and get the key. The user could
detect if the break-glass procedure has been illegitimately performed by peri-
odically pinging her token. This approach however does not achieve semantic
security in presence of legitimate break-glass procedure. Indeed, since the cloud
learns the key, will be able to decrypt everything even when following a legit-
imate request, and also trace the ciphertexts updates over time. Finally, this
solution does not allow for any granularity in case of illegitimate break-glass
procedure. Indeed, since the key is revealed, all ciphertexts are automatically
broken. Instead, we would like a more fine-grained mechanism that tells the user
exactly which ciphertexts have been compromised, or that it allows the user to
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setup a leaking threshold (e.g., not more then 50% of the data should be ever
decrypted).

When to Use Break-glass Encryption? Break-glass security is reminiscent of
covert security [AL07], and it is meaningful in scenarios where the loss of rep-
utation is a strong deterrence against cheating. In particular, our definition is
stronger than covert security in that we explicitly require that, for any illegit-
imate breaking attempt, the client will get a proof that can be used to pub-
licly accuse the cloud. Thus, we target the scenario of cloud storage, where the
cloud is a functional and mostly credible company (e.g., Dropbox, iCloud Apple,
Google drive). In this scenario the stake for reputation is very high, therefore
it is very reasonable to assume that the benefit from breaking the security of a
single client, are less appealing than losing the reputation and thus all the other
clients. Clearly, break-glass encryption is not suitable for scenarios where the
cloud storage is an unknown server, that has not accountability or credibility. In
this case indeed, there is no reputation to maintain, thus not deterrence against
cheating.

What Break-glass Encryption is Not. Break-glass encryption is different from a
“trapdoored” encryption scheme, where one can put a trapdoor that allows a
designed party (who knows the trapdoor) to decrypt. The crucial difference is
that a trapdoor allows to decrypt undetectably, while we want to make sure that
each break is detectable and it can be performed at most one-time.

1.1 Our Contribution and Our Techniques

In this paper we provide two main contributions:

– Definition of break-glass encryption. We introduce the new concept of
break-glass encryption. This is an encryption scheme for the cloud stor-
age setting, that allows a honest user to break her own ciphertexts when
necessary, while preserving semantic security. We formally define break-glass
encryption via an ideal functionality Fbreak. In this context, we also introduce
a new ideal functionality, Gperm, for generating verifiable permissions for a
user U .

– Construction of a break-glass encryption. As a feasibility result, we
show that break-glass encryption can be constructed using (stateful) hardware
token [Kat07] in the (Gperm,Gclock)-hybrid model, where Gclock is the global
clock functionality. We also suggest implementations of Gperm using blockchain
or email systems.

In the remaining part of this section we provide more details about the tech-
nical aspects of each contribution.

Definition of Break-glass Encryption. We consider a setting where there
is a cloud C and a user U , and the cloud is used for memory outsourcing. The
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user can perform the following actions (1) upload/download ciphertexts; (2)
update a ciphertext; (3) break-glass of one (or many) ciphertexts. Our ideal
functionality Fbreak should satisfy the following properties. If the cloud honestly
performs a legitimate break-glass procedure on behalf of a user, then semantic
security should still hold, namely, the cloud does not learn anything about the
decryption. If the cloud performs an illegitimate break-glass command, then this
action must be detectable by the user the very next time the user attempts to
read any ciphertext, and the violation should be publicly verifiable.

Defining Permission Without Secret: Gperm Functionality. We introduce the Gperm

functionality. This a functionality used by cloud C and user U to obtain and ver-
ify valid permissions from U . In Gperm each user Ui is associated to a public
information alert-infoi. We stress that this information is public and a user can
retrieve it even if she loses all her secrets. This functionality provides the fol-
lowing interface: Register, Create Permission, and Verify Permission. Register
is used by U to register the public information alert-info. Create Permission is
used by the cloud to obtain a permission πperm, which is either a publicly verifi-
able endorsement of the request or a publicly verifiable silence proof from Gperm.
This step uses timing information and invoke ideal functionality Gclock. This is
the global clock functionality, previously used in [BMTZ17] in the context of
defining the public ledger functionality and analysing the security of the bit-
coin protocol. VerifyPermission is used by any party who wishes to check that
(alert-info, πperm) is a valid permission granted by U . We discuss realization of
Gperm based on blockchain or email in Sect. 4.3.

Defining Break-glass: Fbreak Functionality. We capture the security properties
of detectability, accountability and semantic security in presence of legitimate
break-glass procedure in an ideal functionality Fbreak (Fig. 1). Fbreak interacts
with two parties, a cloud C and a user U . Fbreak takes in input messages
m1, . . . , ml from U , who can then update and retrieve her messages many times
(by invoking commands Update/Retrieve). Fbreak provides a Break command
that can be invoked by C only. It takes in input an index i (denoting the cipher-
text that the party wishes to decrypt), a proof of permission (alert-info, πperm) or
a proof of cheating (πcheat). Fbreak verifies the permission (alert-info, πperm) using
Gperm, and then proceeds by sending mi to the user U only. If the request is
illegitimate, Fbreak checks that πcheat is a proof of cheating. If the check passes,
Fbreak sends mi to the cloud, and records the cheating attempt.

For every operation requested by the user, Fbreak proceeds only after receiving
an ack from C. This captures the real world fact that a cloud can always refuse to
answer (note that this is true in any cloud system). In such case, our functionality
give no explicit guarantees, since the user will just receive the message (refuse,⊥).
In practice however, refusing the answer is a proof of misbehaviour and can be
turned into a legal proof via court.

Construction. Our construction relies on hardware tokens. The token is the
point of trust of the user. It is initialized with the secret key k used to encrypt the
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data, a signing key sskT , and the verification key of the cloud vpkC . The token is
sent to the cloud C at the very beginning, and it stays with the cloud throughout
the execution. We consider the case where the user can encrypt arbitrarily long
files, but the size of the token is constant, that is, it must be independent on the
number of blocks encrypted. This size constraint rules out any solution where
we just keep all the ciphertexts inside the token or have the token record all the
ciphertexts for which the cloud invoked the Break command.

The token performs a computation only when the inputs are authenticated
wrt the cloud’s public key. Authenticated inputs serve two purposes: first, it pro-
vides a proof in case a cloud operated the token illegitimately; second, it protects
the cloud from false accusations about the operation of the token. Finally, the
outputs of the token is also authenticated, in order to avoid that the cloud sends
wrong information to the user.

Warm Up Solution Without Granularity. As warm up, we describe a solution
that does not provide any granularity. Namely, a user cannot detect which cipher-
texts have been violated and when. The first solution works as follows. The user
sends her ciphertexts C = (c1, . . . , cn), encrypted under a secret key k to the
cloud. Then she initializes a token T with the secret key k, the verification key of
the cloud vpkC and the signature key sskT used to authenticate T ’s outputs. The
token T performs a very simple functionality: on input a permission perm and a
fresh public key pk, it outputs the encryption of the secret key k and stops. Note
that the token only checks that the input perm, pk is correctly signed by C; but
does not check if the permission (if any) given in input is valid. This check will
be done later by the parties only in case of dispute. This solution is simple, but it
leaves little control on the illegitimate queries. Indeed, with one such query, the
cloud can immediately decrypt 100% of the ciphertexts. We would like a more
fine-grained approach that allows the user to identify precisely which ciphertexts
have been broken and potentially to setup a threshold on the total number of
ciphertexts that can be broken.

A Fine-Grained Solution: Breaking Ciphertexts Selectively. To break the cipher-
texts selectively, the token should not output the key. Instead, we need the token
to decrypt selectively. The idea is to give in input to the token also a ciphertext
ci, so that the token will answer with mi, i.e., the decryption of ci, rather than
the key. More precisely, the token will output an encryption of mi under the
public key pk, where pk is the public key chosen by the person who is requesting
to break ciphertext ci. Moreover, to make sure that ci is marked as broken, the
token will output a new version, c′

i = Enc(mi||broken||perm) that must replace
ci, where perm is the permission used to invoke the break procedure (perm might
be empty). Next time the user will download the i-th ciphertext, she will obtain
c′
i and if she still has the key k, she will detect that c′

i was illegitimately broken;
similarly, next time the cloud inputs c′

i to the token, the token will refuse to
decrypt.

This solution is too naive. A malicious cloud can simply ignore the new
marked ciphertext c′

i and send the old unbroken ci to the user. Namely, the
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cloud can always replay old ciphertexts, defeating the checks of the token/user.
To overcome this problem, we propose a mechanism that makes valid ciphertext
evolve over time, or in other words, age. We do so by simply adding bookkeeping
information; namely, each encryption now will also contain a time ti when it was
last updated, the time T0 when the first break occurred (if any). This means that
by downloading any of the ciphertexts the user can determine if a break-glass has
happened. Each ciphertext ci needs to be refreshed every I timestamps (where
I is a parameter that can vary with application). Since updating ciphertexts
requires the use of the secret key, the cloud C will use the token to re-encrypt
each ciphertext upon each interval I. Updating a ciphertex simply means to re-
encrypt the message mi concatenated with the current time, and the time of the
first break-glass T0 (if any). Now, when a user downloads the i-th ciphertext ci,
and tries to decrypt it, she expects to obtain the most updated time (within a
window of I steps). If not, she will discard the ciphertext as stale, and consider
this as a cheating attempt from the cloud.

Therefore, in this fine grained approach, the token performs two operations
for the cloud: re-encryption and break. When the cloud inputs the command
‘re-encrypt’, then the token expects in input a ciphertext ci that needs to be
re-encrypted with the current time. The token will accept to re-encrypt only if
the time registered in ci are at most I steps behind the current time.

Finally, there is a subtle issue that requires a careful tradeoff between the
size of interval I and the size of the memory of the token. Consider the following
attack. The cloud queries the token to re-encrypt ci at time t obtaining ct

i.
The cloud then queries the token to break ct

i, at time t + 1 and obtains mi as
well as the new encryption ct+1

i which is marked as broken. Then, the cloud
completely discard ct+1

i and instead queries the token to re-encrypt ct
i at time

t + 2. If t + I < t + 2 then the token accepts to re-encrypt ct
i with the new

time t + 2, and output the new ciphertext ct+2
i which is not marked as broken

(however note that ct+2
i will still have the field T0 �= 0 signaling that a break-

glass took place). Thus, the cloud obtains a clean unmarked version of ci which
is updated to time t + 2, even if ci was broken at time t + 1 and the user will
not detect that this specific ciphertext was broken (however U will still know
that a ciphertext was broken). This problem arises because we allow a interval I
between re-encryptions and can be solved by simply remembering the indexes of
the ciphertexts broken within a window of I steps. The size of this list depends
on the size of I (and logn where n is the number of ciphertexts).

How to Get Rid of Clocks in the Token. In the outlined solution, the token uses a
clock to check the current time and identify stale ciphertexts. However, requiring
a clock (even only loosely synchronized) in the token is a strong assumption (the
token cannot simply connect to a public server to check the time). We remove this
assumption by having the cloud C provide the current time as input to the token.
Time is simply a monotonic function, and time is “correct” if it moves forward.
Thus, instead of requiring the token to keep its own clock, the token could receive
the time as input, store the last time it was queried, and accept a new “current”
time only if it goes in the forward direction. Checking whether the time provided
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by C is actually good will be done by the user when downloading the ciphertext.
As long as the parties (i.e., the cloud and the user) agree on a common source
for reliable time, then there will be no dispute of the current time. We stress
that assuming that C and U agree on a common time is a natural assumption
made by most real world systems that we use in everyday life. The Network
Time Protocol (NTP) [MMBK,CHMV17] is one example of protocols used for
synchronization of the communications over the internet. There has been a lot of
work on attacks and defenses for the NTP protocols (see [MG16,MGV+17]), but
this problem is orthogonal to the one discussed in this paper. Moreover, we stress
that we only need C and U to be loosely synchronized, and the parameters of the
encryption (i.e., the interval I and TWaitPermission) can be tailored accordingly.

On the Need of State, Obfuscation, Blockchain. We got rid of the clock for the
token, by just assuming that the world (the cloud and the user) has a global
clock. Can we get rid of the state too by assuming that the world share a
global immutable state? If that was possible, we could use a stateless token,
or even further, can we replace the token with Indistinguishability Obfusca-
tion [ABG+13,GGH+13,GGHW17,BCP14]. Very recently blockchain technol-
ogy provides the world with a common state that everyone seems to agree on,
without trusting any party. Thus, a possible approach could be for the token
to store its state as a transaction in the blockchain, and the cloud can query
the token on input the transaction. However, this seems to be challenging since
a token could not verify the validity of a transaction without having access to
the entire blockchain. Recent work [LKW15,Jag15,KMG17,GG17] show how to
construct one-time programs [GKR08] and time-lock encryption leveraging the
blockchain (but they are based on witness encryption [GKP+13]). We do not
rule out that an interesting solution can be developed using weaker cryptographic
assumptions, we leave it as future work to explore this direction.

Other Considerations. For simplicity we assume that the token sent by the user
runs the prescribed code (i.e., the user does not embed malicious code into the
token). This is only for simplicity of exposition, since standard techniques using
zero-knowledge proof could allow us to remove this requirement. We believe that
this is a reasonable relaxation, especially for the envisioned application of break-
glass encryption, and since this is the first attempt to achieve such security
notion. We do not consider side-channel attacks on the token.

On Surveillance and Rational Adversaries. One can argue that this scheme has
the undesired effect that it can be used by a government to break the privacy of
its citizens (by subpoena the cloud). This is certainly true, but recall that the
citizens would detect that their privacy is violated. Therefore, one can be in two
cases. Case 1, one lives in a country where the state cares about citizens not
being aware that they are monitored. In this case, the state would not use the
break functionality to break encryption, but something more subtle. Case 2, one
lives in a country where citizens are aware that they are watched. In this case,
even if the state imposes the citizens to use a break-glass encryption scheme,
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then the citizens can still break-glass encrypt a ciphertext (rather than their
messages). In this way, even if a break is performed, the perpetrator will only
learn more encryptions.

On Refusing to Provide the Service. Just like any client-server system, the cloud
can always refuse to provide the service and ignore user’s requests. In this case
the user will not have a cryptographic proof of cheating as promised by the break-
glass encryption scheme, however, the user can obtain a court order obligating
the cloud to release ciphertexts and users’ token.

2 Open Problems

The main goal of this work was to introduce the concept of break-glass encryp-
tion, and show that in principle is achievable. The proposed solution however is
quite impractical and only provides a feasibility result. Several questions are left
open: Are (stateful) hardware token necessary to achieve this notion of security?
Can we devise a solution that achieves some granularity but it does not require
the cloud to continuously update the ciphertexts by querying the token? What
are other interesting implementations of Gperm and can Gperm have applications
in other setting besides break-glass encryption?

3 Related Work

Concurrently and independently from our work, recently the concept of “dis-
posable cryptography” has been introduced by Chung, Georgiou, Lai and Zikas
in [CGLZ18]. While sharing some similarity with our work, the aims and the
techniques are very different. The goal of this work is to provide an encryp-
tion scheme for cloud storage, that can be broken by anyone exactly once, in a
detectable way. The motivation for break-glass is the case when the legitimate
user wants to decrypt the data she uploaded to the cloud, but she lost all her
secret keys. The goal of [CGLZ18] is to realize trapdoored cryptographic schemes
that can be violated once, by a designated entity who possesses the trapdoor,
which is not the legitimate user and without being detected. The motivation for
dispensable backdoors is to allow law enforcement to break the scheme exactly
once, the envisioned application is breaking into mobile phones undetectably.
Somewhat related to the concept of break-glass cryptography is the idea of time-
locked encryption [BN00,BGJ+16,BM09,BM17,LPS17]. In time-locked encryp-
tion some information is meant to be protected for a certain period time T ,
thus when the time expires, the cloud will be able to decrypt the information
contained in the ciphertext. The difference between break-glass and time-locked
encryption is in the fact that our cloud can always break the encryption if she
wishes to do so, but at the price of being detected. Our adversarial model is
very close in spirit to the covert model [BM09]. In this model the adversary is
allowed to cheat and violate the privacy to the parties, but by doing so he will
be caught and thus lose reputation.
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4 Definitions

4.1 Break the Glass Encryption Scheme

A break-glass encryption is a private-key encryption scheme designed for the
cloud storage setting. It provides a procedure called Break which allows a user
to decrypt her ciphertexts without knowing the secret key, exactly once. At
high-level a break-glass encryption scheme must satisfy the following properties:

– Completeness. If the cloud and the user follow the protocol then the user is
able to obtain the plaintexts that she encrypted originally, without knowing
the key.

– Confidentiality (Semantic-Security). If no Break is performed, then the cipher-
texts are semantically secure against any PPT malicious cloud.

– Break-glass Confidentiality. If break-glass is requested by a legitimate user,
the cloud does not learn anything about the broken ciphertexts.

– Break-glass Detectability. If break-glass is performed by the cloud without
user’s permission, the cloud can decrypt each ciphertext exactly once, and
each violation is detected by the user (unless the cloud refuses to respond).

– Break-glass Accountability. A user should be able to prove that the cloud
performed an illegitimate break-glass request.

We provide a simulation-based definition [Gol04,HL10] and capture the above
security requirements via an ideal functionality Fbreak (Fig. 1). To capture break-
glass accountability, Fbreak is designed so that it will proceed with an illegitimate
break requested by the cloud C, only if C provides a proof of cheating, that we
denote by cheat-proof. Fbreak invokes ideal functionalities Gperm and Gclock (which
are defined as global functionalities). This definitional approach was used in
previous work in the (stronger) GUC setting by Badertscher et al. [BMTZ17].
Finally, Fbreak captures the real world fact that a cloud can always refuse to
provide a service. Thus, every operation on the outsourced messages is fulfilled
by Fbreak only if the cloud agrees on responding.

Definition 1 (Break-glass encryption scheme). A scheme Π is a secure
break-glass encryption scheme if it realizes the functionality Fbreak in the sense
of [HL10].

4.2 The Gperm Ideal Functionality

The ideal functionality Gperm is described in Fig. 2 and is inspired by the signature
ideal functionality of [Can04]. The purpose of this functionality is to alert the
user Ui, registered with alert address alert-infoi, that a permission request was
triggered by a party. The user Ui can then provide a proof to either legitimate
or to invalidate the permission request. This proof is then sent to the cloud
Ci associated to alert-infoi. If the user fails to provide any proof within time
TWaitPermission, then a proof of silence is generated and provided to C.
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FunctionalityFbreak.
Participants: The cloud C, a user U , the adversary.
Variables: a boolean flag, when flag = 1 means that there has been an illegitimate
break. A vector Status = Status[1], . . . , Status[l], with Status[i] = b|nlegit where b = 1
means that the i-th ciphertext was broken; nlegit = 1 means that the break was
not legitimate. A vector CheatΠ[1], . . . , CheatΠcheat[l] collects proofs of illegitimate
break-glass.
External Functionality: Gperm.
Algorithms: Fbreak is parameterized by VrfyCheatProof to check the proofs of ille-
gitimate access provided by a corrupted cloud.
Procedure:
� Upload. Upon receiving (upload, sid, m1, . . . , ml, U) from user U , store the vector
M = m1, . . . , ml. (Ignore any other request of this type). Send (uploaded, sid, l, U) to
the cloud C and the adversary.
� Update. Upon receiving (update, sid, i, m) from user U , send (update, sid, i) to C.
If C is corrupted, then wait for answer (ack-updated, sid, U , resp). If resp = no send
(refuse, ⊥) to U . Else, update mi := m. Send (updated, sid, i) to U , C.
� Break. Upon receiving (break, sid, i, perm-proof, cheat-proof) from C.
1. Case 1: User’s Request. Parse perm-proof = (alert-info, πperm).

(a) Validate permission: Send (verify-permission, alert-info, πperm) to Gperm. If the
output is granted, proceed.

(b) Send (break-request, sid, i, alert-info, πperm) to C. If C is corrupted, wait to re-
ceive (ack-break, sid, U , resp). If resp = no send (refuse, ⊥) to U . Else pro-
ceed with the break procedure as follows:
− (Never broken before) if Status[i] = 00 then send (mi, f lag) to P.
− (Already broken) if Status[i] = 1|nlegit, send (i is broken) to P.

2. Case 2. Illegitimate Request. If VrfyCheatProof(cheat-proof) = 1:
* Set flag = 1. Set Status[i] = 11 and send mi to C.
* Register CheatΠ[i]:=cheat-proof.

� Retrieve. Upon receiving (get, sid, i, U) from U . Send (retrieve-request, sid, i, U) to
C. If C is corrupted, then wait for the command (ack-retrieve, sid, U , resp); if resp = no
send (refuse, ⊥) to U . Else send (mi, flag, Status[i]) to U .
� Accuse with Proof. Upon receiving (accuse, sid, j) from a party P. Send
(accused, sid, P) to C and CheatΠ[j] to P.

Fig. 1. Fbreak functionality

4.3 How to Implement Gperm

In this section we informally discuss two possible implementations of Gperm.

Implementation Using a Blockchain. Assuming the existence of a
blockchain, Gperm could be instantiated as follows. Procedure (register,
alert-info,Ui) consists in having the user compute keys for a digital signature
scheme and send the corresponding public key vpkUi

to the cloud. C will then
set alert-info= vpkUi

.
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Functionality Gperm.
Gperm is parameterized by procedure InfoCheck used to check the validity of the cre-
dential provided by the user at registration phase.
Variables. TWaitPermission is the time allowed to generate a valid permission or to deny
a permission. LU is the list of registered users.
External Functionality. Gclock

� Register. Upon receiving (register, alert-info, Ui, Ci) from user Ui. If
InfoCheck(alert-info, Ui) = 1 then add (Ui, alert-info, Ci) to the list of registered
users LU (where Ci is the party that obtains permissions from Ui) and send it to the
adversary.
� Create Permission. Upon receiving (CreatePermission, alert-info, Ui) from a party
P . If (Ui, alert-info, Ci) is in LU , then send (CreatePermission, alert-info) to Ui.

– Upon receiving (ack-check, (alert-info, Ui), ans) from Ui. Send (GetProof,
alert-info, Ui, ans) to the adversary and obtain π.

– Else, if TWaitPermission time has elapsed (use Gclock for this), send
GenSilenceProof(Ui, alert-info, P) to the adversary, and obtain πε. Set π = πε.

– Check that no entry (alert-info, Ui, π, 0) is recorded. If it is, output error message
to Ui. Else, record (sid, alert-info, Ui, π, ans, 1).

– Finally, send (Permission, alert-info, π, ans) to Ci.

� Verify permission. Upon receiving (verify-permission, alert-info, π) from any party
Pj , send (VerifyPerm, alert-info, π, Φ) to the adversary. Then,

1. If there is an entry (alert-info, Ui, π, ans, 1) then
– If ans = Y ES. Send (alert-info, verifiably − granted, π) to Pj .
– Else, if if ans = NO Send (alert-info, verifiably − denied, π) to Pj .

2. If there is no entry (alert-info, Ui, π, ans, 1) recorded and Ui is not corrupted, then
send (alert-info, notverified, π) and record (alert-info, Ui, π, ans, 0).

3. Else, if there is an entry (alert-info, Ui, π, ans, 0) send (alert-info, notverified, π) to
Pj .

4. Else, set (alert-info, Ui, π, ans, Φ) and performs checks 1, 2, 3.

Fig. 2. Gperm functionality

To make a break-glass request, Ui, who potentially lost all the keys, will send
a break-glass request to C (this request can be sent via a website form; to avoid
denial of service attack one can enforce that to submit a request the user must
pay some small amount of money). Upon receiving the request, C will look up
the alert-info for Ui and proceed with the CreatePermission procedure.

Procedure (CreatePermission, alert-info,Ui) is implemented as follows. C pre-
pares a permission request by posting a transaction Txalert on the blockchain.
Such transaction will contain a break-glass request in reference to the tuple
(alert-info, C). After the transactions has been posted in a block of the blockchain,
C waits TWaitPermission time (this duration can be agreed on by the parties). Then,
C downloads the blocks of the blockchain that appeared after the transaction
Txalert was posted and:
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1. If there is no signed transaction that verifies under public key alert-info, then
this sequence of TWaitPermission blocks (b1, . . . ,bTWaitPermission

) represents a proof of
“silence” πε = (b1, . . . ,bTWaitPermission

) that C will use when querying the token.
2. Else, if within these blocks there is a transaction πans signed by alert-info

denying τalert-info, this transaction will be the proof of denied permission
π = (τalert-info, b1, . . ., bTWaitPermission

, πans).
3. Else, if transaction πans is endorsing τalert-info, then such transaction alone will

be the proof of permission π = πans.

Note that the token is not connected to the blockchain, and it does not check
any transaction. The blockchain transactions are checked only by the parties who
will check the permission in case of a dispute. The advantage of a blockchain-
based implementation is that it is decentralized, therefore the validity of the
permission does not depend on any third party. The downside however is that
the permission request must be posted on the blockchain, therefore revealing
some information about the fact that a user of a certain cloud C lost her key.

Implementation with a (Trusted) Email Provider. Gperm can also be
implemented simply using an email system, and it requires the collaboration
of the email service provider. In this case, the email provider is a trusted third
party between the user and the cloud. Procedure (register, alert-info,Ui) consists
in having the user register an email address alert-info that will be used for break-
glass communications.

To make a break-glass request, Ui, who potentially lost all the keys, and
therefore also the password to access to the email address alert-info, will send to
C a break-glass request (via a web-form, for example, as above).

Procedure (CreatePermission, alert-info,Ui) is implemented by having the
cloud sending an email to the address alert-info with the detailed information
about the break-glass request received for Ui. If the cloud does not receive any
reply after a period of TWaitPermission, it will proceed with the request. The proof
πε for not having received a reply would require the intervention of the email
providers of both user and cloud. A proof of valid permission is simply the email
sent by address alert-infoi to the cloud, authorizing the procedure. Similarly, a
proof of denied permission, is the email sent by address alert-infoi to the cloud,
denying the permission.

5 Construction

A break-glass encryption scheme is defined by two procedures: the user’s proce-
dure, described in Figs. 3 and 4, and the cloud’s procedure, described in Fig. 6.
The cloud’s procedure consists in interacting with the token T , the token’s algo-
rithm is described in Fig. 5. We assume that the token behaves like the ideal
token functionality Fwrap [Kat07] (described in Fig. 10). However, for simplicity
of notation we do not use the ideal functionality interface. Also, we assume that
all communications are carried over authenticated channels.
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In the following we describe user’s procedures. C’s procedure and T ’s proce-
dure follow naturally.

5.1 User’s Procedures

Procedure Setup(1λ). U ’s procedure starts with a one-time initialization step
when the token T is prepared. U generates a secret key k for the symmetric-key
encryption scheme and keys for the signature scheme (vkT , sskT ). Key k is used
to encrypt the data; the token uses this key to decrypt and re-encrypt the cipher-
texts. Signing keys (vkT , sskT ) are used by the token to authenticate its outputs.
Hence, the token is initialized with secret keys (k, sskT ), the current time, and a
parameter I denoting the window of time within which the ciphertext is consid-
ered valid. In this step, the user also register his alert address alert-info and the
identity of the party she wants to authorize (i.e., C) to the Gperm functionality.
Namely U sends (register, alert-info,U , C) to Gperm.

Procedure Upload(). The second step for the user is to upload her data. We
represent the data as a vector of l blocks (l can be very large). The user will
encrypt each block, adding some bookkeeping information. The encryption of
the i-th block will have the following format: ctxi = Enck(mi||bookkeep||perm)
where:

– mi is the message,
– bookkeep = [ti, T0, Ti] contains the bookkeeping information, keeping track of

the time of last update, and time of break-glass operations. Specifically:
– ti is the time when ciphertext ci was last updated. This time is used to

defeat replay attacks.
– T0 is a global value (i.e., it is the same for all ciphertexts) and indicates the

time when the first break-glass was performed. Adding this information
allows the user to know that a break-glass has happened at least once
(without needing to query the token).

– Ti is the time when the i-th ciphertext was broken. This information
allows fine-grained information about which ciphertexts have been com-
promised and when.

– perm = [alert-info, πperm, pk, σC ] will contain the info about the break-glass
permission (if any) generated by the cloud. This field is empty in normal
circumstances. Specifically, (alert-info, πperm) is the actual proof of permission
obtained by the cloud – it can be empty if the cloud performs an illegitimate
break-glass; pk is the public key used to encrypt the result of the decryption
(when the break is legitimate, this ensures that only the client choosing pk will
be able to decrypt the result of the decryption). Finally, σC is the signature
computed by C. This signature is necessary to hold the cloud accountable of
invoking the break-glass procedure.

Procedure Get(i, k) is used to retrieve the i-th ciphertext. The cloud
could refuse to send the ciphertext. If this happens, the user will consider
this as a cheating behaviour and will accuse the cloud. The network data
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can be used as evidence that the cloud received the request but did not ful-
fill it2. If the cloud replies with ciphertext ci, U will decrypt it and obtain
bookkeeping information: bookkeep = [ti, T0, Ti] and permission information
perm= (alert-info, πperm, pk, σC).

U first checks the following:

1. Case 1. Stale Ciphertext. If ti < t − I, this means that the ciphertext is
not updated. Thus, the cloud replied with an older version of the ciphertext,
perhaps to hide the fact that the updated ciphertext would have been marked
with a information about an illegitimate break. A stale ciphertext triggers a
red flag, and the user will use this communication and the network data as
an evidence of cheating.

2. Case 2. Unauthorized break. If T0 �= 0 (recall that T0 denotes the time
the first break occurred) but the user never requested/approved a break-
glass procedure then the user U will us the σC computed on a wrong or
empty πperm information, as a proof of cheating, and she invokes procedure
CloudCheating(perm, t). (Indeed, since the user did not approve any permis-
sion on Gperm there exists no valid pair (alert-info, πperm) that could justify the
break-glass action performed by C).

3. Case 3. Unauthorized break of i-th ciphertext. If Ti �= 0 (recall that Ti denotes
the time when ciphertext ci was broken) but the user never asked to break
ciphertext ci, U proceeds as in Step 2.

Else, if none of the conditions above is satisfied, there were no illegitimate
breaks, and the user simply outputs the decrypted plaintext mi.

Procedure Break(i, alert-info). This procedure is invoked by any party
who would like to break ciphertext ci. A break-glass procedure starts with a
party sending a request to the cloud C. The request has the following info:
(break, i, alert-info) (recall that alert-info is the address used to alert user U). On
receiving such request, the cloud C will send a request to Gperm to obtain a proof
of permission. Namely, C sends (CreatePermission, alert-info,U) to Gperm.

The functionality Gperm will then send an alert to the actual user U by sending
(permission-request, C) to U . At this point the user can entire compute a proof
π to endorse/deny the request by sending (ack-check, (alert-info,Ui), yes/no, π)
to Gperm; or she can not respond at all, triggering the generation of a “proof of
silence” πε. The cloud will then obtain (granted, πε) or (granted, π) in case the
permission is granted, or (denied, π) in case the permission is denied. If granted,
the cloud will use proof πε or π as input to the token T in the break procedure.

Below we provide a table for the notation used in the procedures.

2 We do not formally cover this cheating case, as it requires formalization of the
network interface, which is outside the scope of this work.
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I Maximum time between two updates

TWaitPermission Time waited before providing a silence proof

T0 Time when the first Break has been received by T
Ti Time when ci was broken

bookkeep contains ti, T0, Ti

perm contains alert-info, πperm, pk, σC
alert-info Used to notify a user of a break-glass request

πperm Equal to either πε or πUi or ⊥
πε Proof of silence

6 Security Proof

Theorem 1. Assume (KeyGen,Enc,Dec) is an INT-CTXT NM CPA-secure
encryption scheme (Definition in Fig. 9 [BN08]), (PKGen,PKEnc,PKDec) is a
CPA-secure public key encryption scheme, (GenSignKey,Sign,Verify) is a EUF-
CMA secure signature scheme; assume that all communications are carried over
authenticated channels. Then the scheme described in Figs. 3, 4, 5 and 6 securely
realize the Fbreak functionality in the (Gperm,Gclock,Fwrap)-hybrid model.

6.1 Case Malicious Cloud

The proof consists in showing a PPT simulator Sim that generates the view of
a malicious cloud C∗ while only having access to Fbreak (Fig. 1), and an indis-
tinguishability proof that the transcript generated by the simulator is indistin-
guishable from the output generated by the cloud in the real world execution.

Simulator. Sim has blackbox access to C∗ and interacts with Fbreak in the ideal
world. The ideal functionality Gclock is used by both the environment and Sim
to get the current time, and Gperm is used to get/validate a permission to break-
glass. The simulator also simulates the Fwrap functionality to C∗. Sim is described
in Fig. 7.

Informally, the goal of the simulator is to (1) simulate the ciphertexts with-
out knowing the messages uploaded by the user, and (2) to correctly intercept
the break-glass requests coming from the malicious cloud (Sim obtains the legit-
imate break-glass procedure requests from Gperm via the command (Permission,
alert-info, π)). The ciphertexts are simulated as encryptions of 0. Due to the
INT-CTXT NM CPA security property of the underlying encryption scheme,
and the tamper-proof property of hardware tokens (modeled as an ideal black-
box by Fwrap) this difference cannot be detected by the malicious cloud. Gperm

guarantees that a permission cannot be fabricated on behalf of Ui (if Ui is hon-
est), thus an illegitimate break-glass procedure can be detected by observing the
queries made to the token that have an invalid perm-proof field.
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User Procedures I

Cryptographic Primitive Used.
Π = (KeyGen, Enc, Dec): INT-CTXT NM-CPA secure encryption scheme.
Σ = (GenSignKey, Sign, Verify): a EUF-CMA digital signature scheme.
Parameters.
– I: denotes the frequency with which the ciphertexts need to be updated.
– vpkC is the public key of the cloud C.
– alert-info: public alert info used for requesting permission via Gperm.

External Functionalities: Gclock and Gperm.

Procedure Setup(1λ)

– Generate key for encryption of the data: k Π.KeyGen(1λ);
– Generate signature keys for token: (vkT , sskT ) Σ.GenSignKey(1λ).
– Initialize token T with encryption key k, signature key sskT , cloud’s public key

vpkC , interval I and mytime := t, where t is the current time from Gclock. T ’s
procedure is described in Figure 5.

– Send T to the cloud C, publish verification key vkT to a public repository D.
– Register with Gperm: send (register, alert-info, U , C) to Gperm.

Procedure Upload(M)
– Parse M = (m1, . . . , ml).
– Encrypt each block mj : ctxj = Enck(mj ||bookkeep||perm) for j ∈ {1, . . . , l},

where bookkeep := [t, 0, 0] and perm = [⊥, ⊥, ⊥, ⊥].
– Send (ctxj)j∈[l] to C.

Procedure Get(i, k)
Get current time time from Gclock.
– (Download ciphertext) Send command Get(i, time) to C. If C does not respond,

or responds with an invalid ciphertext then output (refuse, time) and halt.
– Else, let ci be ciphertext received from C and let (m||bookkeep||perm) :=

Dec(k, ci). Parse bookkeep = [ti||T0||Ti] and perm = (v1, v2, pk, σC), and perform
the following checks.
1. BAD CASES:

• (Stale ciphertext) If ti < time − I. This means that the ciphertext was
not updated, and considered as potential cheating attempt without im-
mediate proof, hence output (refuse, time).

• (Unauthorized Break) . If (T0 �= 0 ∧ Break(·, alert-info)) was never called
before, OR if (Ti �= 0 ∧ Break(i, alert-info)) was never called before, then:
* If v1, v2 is not a valid permission, then set x = (i, Ti, pk) and construct
proof π = (x, σC). Call procedure CloudCheating(π, time) (Described in
Fig. 4).
* If v1, v2 is a valid permission, then output “Gperm failure”.

2. GOOD CASE. (No illegitimate break) Else if ti ∈ [time ± I] output mi.

Fig. 3. User procedures 1
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User Procedures II

Cryptographic Primitive Used.

Π = (PKGen, PKEnc, PKDec): CPA-secure Public Key encryption scheme.
Procedure Break(i, alert-info)
Get current time time from Gclock. Send (CreatePermission, alert-info, Ui) to Gperm. Set
Tbreak = time. Then:
– Generate fresh keys (pk′, sk′) PKGen(1λ).
– Send break-glass request. Send command (break, i, U , alert-info, pk′) to C. If C does

not respond after more than TWaitPermission + δ steps then output (refuse, time).
– Check authenticity of the answer. Upon receiving (cbreak, input, σC , σi) from C.

For input = [Ti, alert-info, πperm, pk′]), let x = (cbreak, input, σC). Check that
VerifyvkT (x, σi) = 1 and Ti = time. If not, output (refuse, time). Else, recover
(mi|| bookkeep|| VerifyPerm) PKDec(sk′, cbreak) and proceeds with the checks
as in Procedure Get(·, ·).

Procedure Update(i, m′, k)
Get current time time from Gclock.
– Run Get(i, k). If the output is OK continue.
– Send the new ciphertext. Send c′

i = Enck(m′||bookkeep′||perm′) to C, where
bookkeep′ = (time||0||0) and perm′ = (⊥, ⊥, ⊥, ⊥).

Procedure CloudCheating(π, time)
Parse π = (x, σC). If Verify(vpkC , x, σC) = 1 Accuse C of cheating with proof π, time.

Interaction with Gperm

Upon receiving (CreatePermission, alert-info) from Gperm. Get current time time from
Gclock. Let δ a time interval depending on the implementation of Gperm.

– If time = Tbreak ± δ, then endorse request and send (ack-check, (alert-info, Ui),
Y ES) to Gperm.

– time = Tbreak ± δ but secrets are lost do nothing.
– Else, deny the request: send (ack-check, (alert-info, Ui), NO) to Gperm.
– If time �= Tbreak ± δ but secrets are lost, then output: Failure to Stop

Illegitimate Request.

Fig. 4. User procedures 2

Indistinguishability Proof. Overview. We start by outlining the differences
between the view of C∗ in the ideal world and in the real world. The view of C∗

consists in the initial set of ciphertexts (ctx0i )i∈[l], and the output computed by
the token T . The crucial differences between the views in the two worlds are:

– Encryptions. In the real world C∗ will observe correct encryptions of messages
of the form (m||bookkeep||perm). Instead, in the ideal world, the ciphertexts
are only encryptions of 0. The indistinguishability of the two set of encryptions
intuitively follows from the CPA security of the underlying encryption scheme.
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Token Procedure T
Hardwired Values. Encryption key k, signing key sskT .

Variables.
List of the last κ broken ciphertexts L.
Current time mytime. Set σ0

C = ε

On input:(CMD, c, i, external-time, perm′).

0. Check that i is not in the breaking list: If i ∈ L do nothing.

1. Check and Update time.
If external-time ≤ mytime output ⊥ (The cloud is querying with a time that is too far
in the past). Else, update current time: set mytime := external-time.

2. Decrypt.
Decrypt c using key k and obtain (m||bookkeep||perm). If decryption fails, do nothing.
Let bookkeep = (ti||T0||Ti).

– (Already Broken) If Ti �= 0 then halt and output ⊥. (This ciphertext is already
broken. No re-encryption required)

– (Stale) If ti < mytime − I then halt and output ⊥.
– (Error) If ti > mytime+I then halt and output output “Error, someone encrypted

under my key?” and stop.

3. Execute Command CMD.

Break If CMD =break.
0. Parse perm′ = (alert-info, πperm, pk, σC).
1. Checks: If VerifyvpkC (i||external-time||perm′, σC , ) = 1 continues. (Add i to the

list of recently broken ciphertext). Unqueue L, then add i to L. Else, ignore
the request.

2. Case: First Break. If T0 = 0 then set T0 = mytime, set σ0
C = σC .

3. Re-encrypt using the fresh key pk. cbreak PKEnc(pk, mi, bookkeep).
4. Authenticate the break-info: σT = SignsskT

(cbreak, perm-proof, σC).
5. Mark the i-th ciphertext as broken.

(a) Update bookkeep = (mytime, T0, mytime).
(b) Compute c′

i = Enck(cbreak, bookkeep, perm′). (Note. This ciphertext will
never be re-encrypted again).

6. Output cbreak, perm-proof, σC , σT , c′
i.

Re-encryption. If CMD = Reencrypt.
Set bookkeep = (mytime, T0, 0). Set perm = (⊥, ⊥, ⊥, σ0

C).
Output c′

i= Enck(m||bookkeep||perm).

Fig. 5. The token procedure

– Token’s functionality. In the real world, the token will accept any valid encryp-
tion provided in input. Namely, on input a ciphertext c, the token will first
try to decrypt with its secret key, and if the decryption is successful will
proceed with the necessary steps. Instead, in the ideal word, the simulated
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Cloud Procedures

Parameters.
I: denotes the frequency with which the ciphertexts need to be updated.

Private Input. Signing key: sskC . External Functionalities: Gclock and Gperm.

Setup for user Ui.
Upon receiving TU , vkT , (ctxi)i∈[l] from user U :

– Store ciphertexts (ctxi)i∈[l] and user’s verification key vkT .
– Activate Maintenance procedure for U .

Procedure Maintenance(ctxi, TU , vkT )
Get time from Gclock.
Every I steps: query T (ci, i, Reencrypt, time, ⊥) and obtain cnew

i . Replace ci := cnew
i ,

∀i ∈ [l].

Answering User’s requests.

– Get. Upon receiving Get(i, t). Get current time: time Gclock(clockread). If t ∈
[time ± δ] then reply with ci.

– Break. Upon receiving (break, i, U , alert-info, pk′).
1. Send (GetPermission, alert-info, U , C) to Gperm. If Gperm outputs (granted,

πperm). compute σC = SignsskC
(i, time, alert-info, πperm, pk′) (else, do nothing).

2. Query token T (Break, i, ci, time, perm), where perm=
(alert-info, πperm, pk′, σC) and forward the answer to U .

Fig. 6. Cloud procedure

token accepts only encryptions that were computed by the simulator itself.
In other words, if the cloud is able to compute a ciphertext that is valid
in the real world and accepted by the real token, this ciphertext will not be
accepted by the simulated token. Similarly, in the Get functionality, a real user
would accept any valid ciphertext that C∗ provides, instead the simulated user
would abort if a valid ciphertext was not computed by the simulated token.
The indistinguishability between the two worlds follows from the integrity
ciphertext property INT-CTXT NM CPA security defined by Bellare and
Namprempre in [BN08], which we report in Fig. 9.

– Break invocation. Recall, there are two types of break requests. The ones
generated by the user, and the ones generated by the cloud. The simulator
obtains the user requests directly from Fbreak, and will forward them to the
adversary C∗. The main task of the simulator however is to identify the break
requests that are initiated by the cloud. Since the cloud must interact with
the token in order to successfully decrypt a ciphertext3 the simulator will

3 To see why, note that, besides the access to the token, a cloud only has a list of
ciphertexts. The output of the token is either a ciphertext, or a message m, but no
other information about the secret key is given in output. Thus, if a cloud is able to
decrypt a ciphertext, without calling the break command, this cloud is violating the
CPA-security of the ciphertext.
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Simulator Sim

Upload and Initialization. Upon receiving request (uploaded, sid, l, U) from Fbreak

do:
– Generate key for encryption k Π.KeyGen(1λ) and prepare ciphertexts:

[ctx01, . . . , ctx0l ] where ctx0i = Enck(0p(λ)).
– Generate signature keys for token: (vkT , sskT ) Σ.GenSignKey(1λ).
– Get the initial time from Gclock and store it in variable tkntime.
– Initialize matrices L, Lsign, B. L stores the ciphertexts computed by Sim, Lsign

stores the signatures computed by SimT , B stores the ciphertexts that have
been broken. We denote by L[i] = (ci

0, t0), (ci
1, t1), . . . the list of ciphertexts

generated for the i-th element. At the beginning, L[i] := [ctx0i , tkntime]
Lsign contains the signatures computed by the token.

– Send vkT , [ctx01, . . . , ctx0l ] to C∗.
Update. Upon receiving (update, sid, i) from Fbreak. Get current time: time

Gclock(clockread).
First, send Get(i, time) to C∗. If no response is received then send
(ack-updated, sid, U , NO) to Fbreak. Else, let c′

i be the ciphertext received from
C∗. Analyse c′

i as follows:
– Bad Cases.

1. (Case: Broken ciphertext) If c′
i ∈ B then do nothing.

2. (Case: Wrong ciphertext) If c′
i /∈ L and decryption fails, then send

(ack-updated, sid, U , NO).
3. (Case: Stale ciphertext) If there exists a pair (c′

i, t
′) ∈ L[i, t′] but t′ <

time − I then send (ack-updated, sid, U , NO).
4. (Failure Case: Good ciphertext not provided by the simulated token) If

c′
i /∈ L and Dec(k, c′

i) �= ⊥ then output Integrity Encryption Failure

and stop.
– Good cases. If there exists pair (c′

i, t) ∈ L s.t. t′ ∈ [time − I] then
send (ack-updated, sid, U , yes) to Fbreak. Then compute c′′ Enck(0), add
(c′′, time) to L[i] and finally send the updated ciphertext c′′ to C∗.

User’s Initiated Break Upon receiving (Permission, sid, alert-info, π, ans) from
Gperm. If ans = no, record π in a list of denied permissions DeniedList. Else,
if ans = 1 continue with the break-glass procedure as an honest user.
1. (break, sid, i, perm-proof = π, cheat-proof = ⊥)
2. Get current time: time Gclock(clockread). Store (user-break, time).
3. Generate fresh keys (pk′, sk′) PKGen(1λ).
4. Send (break, i, alert-info, pk′) to C∗.
5. Upon receiving response ans from C∗ do.

– C∗ refuses to collaborate If ans= ⊥ then send (ack-break, sid, U , NO)
to Fbreak.

– C∗ gives (x, σ). Parse x= (cbreak, ci, external-time,alert-info, π, pk, σC).
(a) Good signature. If (x, σ) ∈ Lsign[external-time] then send

(ack-break, sid, U , yes) to Fbreak

(b) Forgery. If σ verifies on x, but (x, σ) /∈ Lsign[external-time] then out-
put Forgery Failure and halt.

Retrieve Upon receiving (retrieve-request, sid, i, U) at time time, send
(Get, i, time, σU ) to C∗.
– If C∗ sends ⊥ then send (ack-retrieve, sid, i, U , no).
– Else, let c∗ be the ciphertext sent by the cloud. Let t ∈ [time − δ, time + δ].

• If there exists (c∗, t) ∈ L[i] then send (ack − inquire, sid, U , yes).
• Else, send (ack − retrieve, sid, U , no) to Fbreak.

Fig. 7. Simulator
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Token simulation SimT .
B stores the ciphertexts that have been broken.
On input (CMD, c, i, alert-info, external-time, π, σC):
0. Check broken list If c ∈ B||I| then do nothing.

1. Check time and Ciphertext Validity. If mytime < external-time then update
mytime = external-time

1. (Stale Ciphertext) If (c, j) ∈ L[i] but j /∈ [mytime ± I] then do nothing.
2. (Invalid iphertext c) If there is no (c, j) ∈ L[i] do nothing.
3. (Forged Ciphertext ) If there is no (c, j) ∈ L[i] but Deck(c) �= ⊥ then output

Integrity Encryption Failure and halts.

Re-encryption If CMD =Reencrypt. Compute c Enck(0) and add L[i] :=
[c, tkntime]. Output c.

Break CMD =Break. Verify signature σC on input x =
(alert-info, π, break, i, pk, mytime). If check passes do:
1. Detect illegitimate request. If π �= ⊥ check if it is a legitimate permission by

sending (verify-permission, alert-info, π) to Gperm. If Gperm sends (sid, alert-info,
verifiably − denied, π) or (sid, alert-info, notverified, π) then this is a marked
as an illegitimate request.

2. Send illegitimate request to Fbreak. First, set cheat-proof = (ξ, σC) and send
(break, sid, i, ⊥, cheat-proof) and receive mi.
(a) Add i to the list of broken ciphertexts: B B ∪ i.
(b) Set break time: Record Ti = tkntime; (if T0 = 0) Record T0 = tkntime,

record σ0
C = σC .

(c) Compute encryption. Set ci = Enck(0p(n)), add L[i] = (ci, tkntime).
(d) Compute token’s signature. Set σi on input (mi||ci||tkntime||auth||π||σC)

add σiLsign.
(e) Return (mi, ci) to C∗

3. (Initiated by User.) Else, send (ack-break, sid, U , yes) to Fbreak. Do steps as
above, but instead of outputting mi, output a dummy encryption c∗ =
PKEnc(pk, 0).

Fig. 8. Token simulator

use the simulated token to intercept requests that do not have a valid proof
of permission and send them to the ideal functionality. Note that at this
step, we are using security of Gperm. Namely, we are assuming that a cloud
cannot fabricate a valid permission without the help of the user. If this was
not the case the simulator could not use the absence of permission to detect
illegitimate break-glass requests.

We will prove the above intuition via a sequence of hybrid games.

Hybrid Arguments Overview. We show the following sequence of hybrid experi-
ments. Hybrid H0 denotes the real world, in hybrid H1 all ciphertexts generated
by the user and the token are collected in a table, and the user’s procedure
and the token’s procedure will accept only ciphertexts in this table (i.e., valid
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ciphertexts that are not part of this table are not accepted). Indistinguishabil-
ity between H0 and H1 follows from the INT-CTXT NM CPA Security of the
symmetric key encryption scheme. In H2 and H̄2 we remove the semantic from
all the encryptions and simply compute encryptions of 0. Indistinguishability
between H1 and H2 follows from the CPA security of the underlying symmetric-
key encryption scheme. Finally, in H3 the user accepts only signatures generated
by the simulated token, instead of accepting any valid signature. Indistinguisha-
bility between H2 and H3 follows from the unforgeability of the underlying
signature scheme. We assume that all communications between cloud and token
are authenticated.

Hybrid H0. This is the real world experiment. Sim honestly follows the user
procedure Figs. 3 and 4, and T ’s procedure (Fig. 5).

Hybrid H1 (Integrity and Non-malleability). This experiment is as H0 with
the only difference that Sim stores the encryptions computed by the user and
the token in a matrix L, and token and user accept only encryptions that
are in L. If they receive any other encryption that is valid but it is not in L,
then the simulated user/token will abort and output Integrity Encryption
Failure. Note that H0 and H1 are different only in the case where C∗ is able
to find at a ciphertext c∗ that is a valid encryption under secret key k, but it
was not computed by the token/user.
In the following lemma we show that probability that C∗ generates such a
valid ciphertext is negligible, therefore H0 and H1 are computationally indis-
tinguishable.

Lemma 1 (Ciphertext Integrity). If (KeyGen,Enc,Dec) achieves integrity
of ciphertext property (INT-CTX, Fig. 9) then event Integrity Encryption
Failure happens with negligible probability.

Towards a contradiction, assume that there exists a C∗ such that Integrity
Encryption Failure happens with non-negligible probability p(λ). This means
that C∗ queried SimT with a valid ciphertext c∗ (i.e., a ciphertext that can be
correctly decrypted but it was not compute neither by SimT nor by the user). If
this is the case, then we can construct an adversary A that wins the INT-CTXT
game with the same probability, as follows.

Reduction INT-CTX Security. A playing in experiment ExpINT−CTX (Fig. 9), has
access to encryption oracle and black-box access to C∗. A simulates real world
experiment to C∗:

– (0) A plays as the honest user and therefore knows all the plaintexts
m1, . . . , ml.

– (1) Encryption. To generated ciphertexts on behalf of the token and the user,
A uses its oracle access to Enc, provided by the experiment ExpINT−CTX. A
collects all the ciphertext generated, together with the plaintext used, in a
matrix L′. (This matrix is different from the matrix used by the simulator in
that the simulator does not need to remember the correspondent plaintexts).
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– (2) Decryption. To decrypt a ciphertexts c provided by the cloud, A will first
check if the ciphertexts are contained in the matrix L′. If c /∈ L′ then A will
call VF(c) in ExpINT−CTX and obtain answer m. If m �= ⊥ then A wins the
game and halts. Else, if m = ⊥, A simply continues the reduction, following
the honest user and token procedure.

Analysis. Note that A follows the honest user’s procedure and honest token’s
procedure just like in the H0. A will interrupt the reduction and deviate from
H0, only if the cloud provides a ciphertext c that is accepted V F (c) in which
case A simply halts, just like the simulator in H1. Thus the probability that A
wins the game and halts the reduction, it is closely related to the probability that
there is a difference between H0 and H1. Since the underlying encryption scheme
is assumed to be INT-CTX secure, the probability of A winning is negligible,
consequently, the distributions of transcripts in H0 and H1 are distinguishable
with negligible probability.

Due to Lemma 1, it follows that probability that C∗ generates such a valid
ciphertext is negligible, therefore H0 and H1 are computationally indistinguish-
able.

Hybrid Hj
2 j = 1, . . . (CPA-security). In this sequence of hybrid experiments

we change the value encrypted in the j-th ciphertext. Instead of encrypting
the actual information (m||bookkeep||perm) we will encrypt to 0 (but for the
sake of the simulation we will still keep record of the plaintexts that should
be instead encrypted.) The difference between Hj

2 and Hj−1
1 is that in Hj

2

one more ciphertext is computed as encryption of 0. Assume that there is a
distinguisher between the two experiments, we will construct an adversary
for CPA-security.

Hybrid H̄j
2 for j = 1, . . . (PK CPA-security). In this sequence of hybrid we

replace the encryptions output by the token after a user-triggered break-glass
encryption (i.e., cbreak). Instead of encrypting the actual message mi, it will
encrypt 0. This sequence of hybrid is indistinguishable to the CPA-security
of the public key encryption scheme.

Hybrid H3 (Unforgeability of Token’s signature). In this hybrid, the pro-
cedure of the simulated user is modified as follows. The simulator (playing as
user) accepts only signatures that are in Lsign. When a signature (x∗, σ∗) ver-
ifies under vkT but σ∗ /∈ Lsign then the simulated user will output Forgery
Failure and abort. Therefore, the difference between H2 and H3 is that
in H2 a user would accept any signature σ∗ that verifies under vkT (i.e.,
Verify(vkT , x∗, σ∗)), instead in H3, when a valid signature σ∗ /∈ Lsign is pre-
sented by C∗, the user will abort.
The following lemma shows that the probability that C∗ can compute such a
signature is negligible due to the unforgeability of the underlying signature
scheme.

Lemma 2. If (GenSignKey,Sign,Verify) is a EUF-CMA digital signature
scheme, then event Forgery Failure happens with negligible probability.
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Assume, towards a contradiction, that there exists an adversary C∗ that is
able to generate a signature valid σ∗ that was not generated by SimT with
probability p(λ). Thus, we can construct an adversary A that computes a forgery
with the same probability as follows.

Reduction EUF-CMA Security

A playing in experiment Expforge, has oracle access to C∗ and simulates experi-
ment H2 to C∗ with the following difference:

1. Token Signatures. When the token is required to compute a signature on a
message x, A will forward x to Expforge and obtain signature σ. Add σ to the
list Lsign and set it as the output of the token.

2. Decision. Upon receiving a signature (x∗, σ∗) from C∗, such that σ∗ /∈ Lsign.
If (x∗, σ∗) verifies then send σ∗ to Expforge and output win.

Analysis. A wins the forgery game Expforge with the same probability that C∗

computes a valid σ∗ and trigger event Forgery Failure. Since by assumption
the underlying signature scheme is EUF-CMA secure, then probability that A
trigger the above event is negligible.

6.2 Exculpability in Presence of a Malicious User

In the ideal functionality a user obtains a proof to accuse a cloud only if the
cloud actually invoked a break command without permission granted from Gperm.
In the ideal world there is nothing that the user can do to trigger an accusation
against an honest cloud (without violating Gperm).

Instead in the real world, there are several ways the user could accuse an
honest cloud. We divide them in four categories: network attack, permission
attack, token attack and forgery attack, which we describe below. We show that
three of them can be quickly ruled out by definition, while the implausibility
of the fourth one can be ruled out by unforgeability property of the underlying
signature scheme.

1. Network Attack. A malicious user could accuse the cloud of not responding.
This accusation can be challenged by the cloud by having access to logs on
the network traffic that guarantees that a correct answer was correctly and
timely delivered to the user.

2. Permission Attack. A malicious user could trigger a break-glass procedure,
and then accuse the cloud of having fabricated such permission. Since our
protocol works in the Gperm-hybrid model, we assume that the procedure for
granting permission cannot be counterfeit by anyone.

3. Token Attack. A malicious user could accuse the cloud of not correctly updat-
ing the ciphertext. We note however that accusation is not possible since
we assume that the token is trusted and will follow the honest procedure.
Thus, the cloud will be able to show updated ciphertexts as a proof of honest
behaviour.
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4. Forgery Attack. A user could accuse an honest cloud by fabricating a valid
signature σ that verifies under vpkC , on a message that contains the word
break but does not contain any valid authorization received by Gperm. Let us
call this event Sign Forgery Accusation. We show in Lemma 3 that this
events happen with negligible probability.

Permission attack and Token attack are ruled out, since we are assuming to
work in the Gperm-hybrid model, and we assume that the token is trusted. For
network attacks, we also implicitly assume that there is a way for the cloud to
prove that the messages were timely delivered to the user.

Lemma 3. If (GenSignKey,Sign,Verify) is a EUF-CMA digital signature
scheme, then event Sign Forgery Accusation happens with negligible proba-
bility.

Assume, towards a contradiction, that there exists a malicious user U∗ that
is able to accuse C by generating a valid signature σ∗ that was not generated by
C with probability p(λ). Thus, we can construct an adversary A that computes
a forgery with the same probability as follows.

Reduction EUF-CMA Security

A playing in experiment Expforge, has oracle access to U∗ and simulate the
cloud to U∗.

1. Protocol Execution. A receives the token from U∗ and fulfills all the requests
received by U∗ by simply following the honest cloud procedure and using the
Signature oracle provided by Expforge.

2. Accuse. When U∗ sends an accusation on input π = (x, σ∗), if Verify(vpkC ,
x, σ∗) = 1 send π to Expforge and output 1.

Analysis. Since by assumption the underlying signature scheme is EUF-CMA
secure, probability of event Sign Forgery Accusation is negligible.

Acknowledgments. We thank Laurie Williams for the initial discussion on break-
glass encryption, as well as many other insightful conversations. We also thank the
anonymous reviewers for their useful comments.

A Additional Security Definitions

Ciphertext Integrity INT-CTX [BN08]. The definition of Cipher Integrity INT-
CTX, introduced by Bellare et al. in [BN08] is described in Fig. 9.
Ideal Functionality Fwrap. For completeness we report the ideal Fwrap function-
ality in Fig. 10.
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INT-CTX NM Experiment

Proc Initialize
K

$ Gen(1λ), S ∅.
Proc Enc (M)

C
$ EncK(M). S S ∪ {C}.

Proc VF(C)
M DecK(C).
If M �= ⊥ and C /∈ S win true.
Return M �= ⊥.
Proc Finalize
Return win

Fig. 9. INT-CTX game [BN08]

Ideal Functionality Fwrap.
The functionality is parameterized by a polynomial p(·) and an implicit security

parameter λ.

Create: Upon receiving an input (create, sid, C, U, M ) from a party C (i.e., the token
creator), where U is another party (i.e., the token user) and M is an interactive
Turing machine, do: If there is no tuple of the form 〈C, U, , , 〉 stored, store
〈C, U, M, 0, ∅, 〉. Send (create, 〈sid, C, U〉) to the adversary.

Deliver: Upon receiving (ready, 〈sid, C, U〉) from the adversary, send (ready,
〈sid, C, U〉) to U .

Execute: Upon receiving an input (run, 〈sid, C, U〉, msg) from U , find the unique
stored tuple 〈C, U, M, i, state〉. If no such tuple exists, do nothing. Otherwise, do:
If M has never been used yet (i.e.,i = 0), then choose uniform ω ∈ {0, 1}p(λ) and
set state := ω. Run (out, state′) := M(msg; state) for at most p(λ) steps where out
is the response and state′ is the new state of M (set out := ⊥ and state′ := state
if M does not respond in the allotted time). Send (response,〈sid, C, U〉, out) to
U . Erase 〈C, U, M, i, state〉 and store 〈C, U, M, i + 1, state′〉.

Fig. 10. Fwrap functionality [Kat07]
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Abstract. The notion of Registration-Based Encryption (RBE) was
recently introduced by Garg, Hajiabadi, Mahmoody, and Rahimi
[TCC’18] with the goal of removing the private-key generator (PKG)
from IBE. Specifically, RBE allows encrypting to identities using a (com-
pact) master public key, like how IBE is used, with the benefit that the
PKG is substituted with a weaker entity called “key curator” who has
no knowledge of any secret keys. Here individuals generate their secret
keys on their own and then publicly register their identities and their
corresponding public keys to the key curator. Finally, individuals obtain
“rare” decryption-key updates from the key curator as the population
grows. In their work, they gave a construction of RBE schemes based on
the combination of indistinguishability obfuscation and somewhere sta-
tistically binding hash functions. However, they left open the problem of
constructing RBE schemes based on standard assumptions.

In this work, we resolve the above problem and construct RBE
schemes based on standard assumptions (e.g., CDH or LWE). Further-
more, we show a new application of RBE in a novel context. In particu-
lar, we show that anonymous variants of RBE (which we also construct
under standard assumptions) can be used for realizing abstracts forms
of anonymous messaging tasks in simple scenarios in which the parties
communicate by writing messages on a shared board in a synchronized
way.
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1 Introduction

Identity based encryption, first introduced by Shamir [31], and then realized
based on pairings by Boneh and Franklin [7], allows a set of remote parties to
communicate secretly by only knowing one single public key and the name of
the recipient identity. Despite being a milestone in foundations of cryptography
and a powerful tool for simplifying key-management, real-world uses of IBE
schemes come with a major caveat: IBE schemes require a private-key generator
(PKG) who holds the master key and uses it to generate decryption keys for
the identities. Therefore, the PKG has the ability to decrypt all cipherexts. This
issue, inherent to IBE by design, is known as the key escrow problem.

Many previous works tried to rectify the key escrow problem in IBE. These
efforts include making the trust de-centralized using multiple PKGs [7], mak-
ing the PKG accountable for distributing the decryption keys to unauthorized
users [23,24], making it hard for PKG to find out the receiver identity in a large
set of identities [12,14,33], or using Certificateless Public Key Cryptography [1]
as a hybrid of IBE and public-key directories. However, none of these efforts
resolve the key escrow problem completely. The issue of key escrow was also
discussed in [11] in depth and resolving this was left as a major open problem
with no good solutions.

Motivated by entirely removing PKGs from IBE schemes, recently Garg,
Hajiabadi, Mahmoody, and Rahimi [22] introduced the notion of registration-
based encryption (RBE for short). In an RBE scheme, the PKG entity is substi-
tuted by a much weaker entity called the key curator (KC for short). The KC
will not posses any secret keys, and all it does is to manage the set of public
keys of the registered identities. More specifically, in an RBE scheme identities
(or, rather the users corresponding to the identities) generate their own public
and secret keys, and then they will register their public keys to the KC who
maintains and updates a public parameter ppn where n is the number of parties
who have joined the system so far. This public parameter ppn can be used (now
and in the future) to encrypt messages to any of the n identities who have reg-
istered so far. The first key efficiency requirement of RBE schemes is that ppn

is compact ; i.e., poly(κ, log n) in size where κ is the security parameter. More-
over, RBE requires that the process of “identity registration” is also efficient;
i.e., runs in time poly(κ, log n). In order to connect an updated public parameter
ppn to the previously registered identities, RBE allows the identities to obtain
updates from the KC, which (together with their own secret keys) can be used as
decryption keys. The second efficiency requirement of RBE is that such updates
are only needed at most O(log n) times over the lifetime of the system. In sum-
mary, RBE schemes are required to perform both “identity registration” and
“update generation” in time sublinear in n. In particular, these two operations
are required to run in time poly(κ, log n) where κ is the security parameter.

The work of [22] showed how to construct RBE schemes based on the combi-
nation of indistinguishability obfuscation (IO) [3,21] and somewhere statistically
binding hash functions (SSBH) [25]. Towards the goal of basing RBE schemes
on more standard assumptions, [22] also showed how to construct weakly effi-
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cient RBE schemes with poly(κ, n) identity registration time based on standard
assumptions such as CDH and LWE. The work of [22] left open the question of
constructing RBE schemes (with the required registration time poly(κ, log n))
from standard cryptographic assumptions. This gap leads us to the following
question, which is the main question studied in this work:

Can we base registration-based encryption on standard cryptographic
assumptions?

Our results. In this work, we resolve the above question affirmatively. Namely,
as the main result of this work, we construct RBE schemes with all the required
compactness and efficiency requirements based on standard assumptions such as
LWE, CDH, or Factoring. In particular, in our RBE scheme (based on CDH or
LWE assumptions) the time it takes to register any new identity into the system
is only poly(κ, log n) where κ is the security parameter and n is the number of
identities registered into the system so far.

In addition to resolving the question above, in this work we show the use-
fulness of RBE by demonstrating a connection between an anonymous variant
of RBE (defined similarly to how anonymous IBE [6] is defined) to an abstract
anonymous messaging primitive that we call anonymous board communication
(ABC for short). At a high level, (anonymous) IBE fails to achieve ABC, exactly
because of the key escrow problem, which does not exist in RBE.

1.1 Technical Overview

In this subsection, we will first describe the high level ideas behind our RBE
scheme based on standard assumptions. We will then describe how to add the
extra property of anonymity to RBE, allowing it to be used for realizing ABC
as described above.

Figure 1 shows the high level structure and the roadmap of the primitives
that we use (and construct along the way) for achieving RBE from standard
assumptions. The features in parentheses (i.e., “blind” and “anonymous”) can be
added to or removed from the figure. When they are added, Fig. 1 demonstrates
the way we obtain anonymous RBE.

The big picture. We construct our RBE scheme based on the primitive hash
garbling which was formally defined in [22] but was used implicitly in some prior
works [10,13,19,20], and a new primitive “time-stamp” RBE (T-RBE for short)
that we introduce in this work. T-RBE is a special case of RBE, where we use the
time-stamp tid of the registration time of each identity instead of their (arbitrary
string identity) id. T-RBE also requires the same efficiency and compactness
requirements of RBE. Since T-RBE is a special case of RBE, achieving T-RBE
from standard assumptions is potentially easier; we leverage this in our approach.

In particular, as depicted in Fig. 1, we first show how T-RBE can be con-
structed from public-key encryption and hash garbling schemes. Then, having
T-RBE, hash garbling, and a red-black Merkle tree we show how to construct an
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(Blind) T-RBE (Anonymous) RBE

(Blind) PKE (Blind) Hash Garbling
Red-Black Merkle

Fig. 1. Roadmap

RBE scheme. This resolves the open question of [22] where they obtained weakly
efficient RBE schemes. Finally, we show that by substituting each of the used
primitives with a “blind” version of them as defined in [10] we can bootstrap our
new RBE construction to make it anonymous. Below, we describe each of these
steps, their corresponding challenges, and how we resolve them.

The weakly efficient RBE of [22]. Before describing our RBE construction,
we describe the main challenge in achieving the required registration efficiency,
which made the construction of [22] (based on standard assumptions) weakly effi-
cient. For that, we need to quickly recall the high level structure of the (weakly-
efficient) construction of [22]. At a high level, the registration algorithm in the
construction of [22] leads to an auxiliary information stored at the KC that
consists of some Merkle trees Tree1, . . . ,Treeη where each of these trees in their
leaves contains the ids of the already registered identities, along with their pub-
lic keys pk. The encryption algorithm of this scheme requires to use the public
key corresponding to the specific identity to encrypt the message. To do so, it
requires to do a binary search on the tree containing the id (so as to access the
corresponding public key), for which it is required that the leaves of the trees are
sorted according to their labels (i.e., identities) from left to right. This binary
search was captured by generation of a sequence of garbled circuits. Now, going
back to the registration algorithm, if the execution of the registration algorithm
ever leads to two trees with the same size, those two will be merged into one
tree, which again needs to have the identities sorted. (Merging the trees is nec-
essary to keep the public parameter compact, because the public parameter is
basically the concatenation of the roots of theses trees, and so the number of
trees shall remain bounded.) Hence, every time a tree merge operation is done
in their registration process, the entire tree needs to be restructured based on
the newly sorted list of the identities in the two trees. This very sorting made
the construction of [22] weakly efficient.

Step one: weakening the functionality for sake of efficiency. To over-
come the challenge of achieving the required efficiency for RBE, in this work we
first introduce a new primitive that we call T-RBE (short form of time-stamp
RBE) that weakens RBE for the sake of achieving efficient registration. (Look-
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ing ahead, we will later bootstrap T-RBE to RBE.) This new primitive has
the same functionality as RBE, except that in a T-RBE, the identities do not
register with their actual ids, but rather with the corresponding time-stamps
of their registration moments. This has the immediate obvious effect that the
time-stamp strings already arrive in sorted order, hence removing the need of
re-structuring the trees for sorting purposes. Note that since time-stamps are
taking the role of the identities, all the algorithms (including the encryption)
shall use the time-stamp as the identity’s label (instead of the id).

We now describe how T-RBE can indeed overcome the efficiency challenge left
open about RBE. Notice that the time-stamps used for registrations are already
sorted based on the arrival times. One useful consequence of this phenomenon is
that, if we apply the same approach of [22] for weakly-efficient RBE, the resulting
T-RBE will have leaves of the trees automatically sorted at all times. Hence, when
we want to merge two trees, we may simply hash their roots into a new root,
with a guarantee that all the leaves in one sub-tree will be larger than all those
in the other sub-tree. Hence, by restricting the problem to T-RBE, we would
not require to restructure the trees when we merge them. Hence, the T-RBE
registration overcomes the main reason for inefficiency in the RBE construction
of [22] and turns out to be efficient as required. The other algorithms of the
T-RBE scheme are also similar to the corresponding algorithms of the RBE in
[22], with some natural changes.

Step two: bootstrapping T-RBE to RBE (using Red-Black Merkle
Tree). Recall that T-RBE uses the time-stamps of the identities as if they were
the actual ids. So, to come up with a construction of RBE with the same efficiency
as T-RBE, we somehow need to find a way to connect the actual identities of
the parties to their corresponding registration time-stamps. In particular, the
encryption algorithm of the RBE scheme, which now takes as input an identity
id as opposed to a time-stamp, would need to first obtain the corresponding time-
stamp of the given id, and then run the T-RBE encryption algorithm using this
time-stamp. Further, we also need to ensure that the registration and update
algorithms of this RBE scheme are efficient. At a high level, we achieve this
efficiency by using a red-black Merkle tree in addition to the auxiliary input
maintained by our T-RBE scheme. Such a tree allows us to (indirectly) obtain the
time-stamp corresponding to an identity id in an efficient way (details of which
are described below), without having to store the tree in the public parameter
(which is prohibitive due to the tree size).

In order to enable this indirect access to the red-black Merkle tree, we will
make further use of the hash-garbling primitive. Here we give a high-level descrip-
tion of our RBE scheme which uses T-RBE (and hash garbling) as subroutines
together with the help of a red-black Merkle tree. In this scheme, the auxiliary
information aux, stored by the key curator consists of η full binary Merkle trees
Tree1, . . . ,Treeη, as was in the construction of [22]. In addition, aux contains a
red-black Merkle tree TimeTree, whose leaves contain pairs of identities/time-
stamps, sorted according to the identities. TimeTree is a key part in enabling the
efficiency of our registration part.



68 S. Garg et al.

– The description of TimeTree. It is a close variant of red-black Merkle tree,
where each leaf is of the form (id, tid) and every non-leaf node in this tree
contains the hash of its left child, the largest identity in its left sub-tree and
the hash of the right child (all hashes use a hash key generated at the setup
and described by a CRS). It differs from just red-black tree in the sense that
each internal node also contains the largest identity in its left sub-tree. The
choice of this specific data-structure is crucial for our construction. Notice that
the leaves are sorted in ascending order of the identities. In addition, every
node has another bit of information representing its color, which would be
helpful in keeping the tree balanced using the red-black Merkle tree rotation
algorithms.

– How to register (Updating aux). As we use the T-RBE as a subroutine,
aux consists of the auxiliary information of T-RBE, auxT , the TimeTree and
a list of already registered identities. auxT itself comprises of the Merkle
trees T = {Tree1, · · · ,Treeη}, with the time-stamps and their corresponding
public keys at the leaf nodes. So to update the aux when somebody registers,
we insert their identity id as well as their time-stamp tid to TimeTree, update
auxT using the T-RBE subroutine and add id to the list of registered identities.
Recall that the T-RBE registration process involves creating a new Merkle
tree with leaf nodes tid and its corresponding public key pk and the merging
the trees in T which are of same depth (merging only requires hashing the
roots of the two trees to obtain a new tree).

– How to encrypt. The encryption algorithm takes as input the public param-
eter pp, a message m, and a receiver’s identity id, and outputs a ciphertext,
which is obtained by encrypting m using the T-RBE encryption under the
time-stamp corresponding to id. To do this, the encryption algorithm requires
to first look up id in TimeTree to obtain its time-stamp and then use it to
encrypt m under the T-RBE encryption. However, the encryption algorithm
only takes pp as public information, which is too small to contain TimeTree,
and so a “direct search” is impossible. To get around this problem, the encryp-
tion algorithm “defers” this search process to the time of decryption: Specifi-
cally, the encryption algorithm constructs a sequence of (garbled) programs,
which enable one to do a binary search on TimeTree (during the decryp-
tion time) to obtain the time-stamp corresponding to id and then to use it
to encrypt the message using the T-RBE encryption. The ciphertext then
consists of the hash garbling of these programs.

– How to decrypt. The decryption algorithm takes as input two paths
u = pth1, pth2, a secret key sk and a ciphertext, which contains the garbled
programs, and outputs a message (or aborts). Here, pth1 is the path from the
root of TimeTree to the node that contains the id of the decryptor and its time-
stamp tid, and pth2 is the updated path (obtained using the update algorithm
of T-RBE) required for running the T-RBE decryption algorithm. Using pth1,
the decryptor runs the hash garbled programs to obtain the ciphertext under
the T-RBE scheme with time-stamp tid as the output of the last program.
Then, it runs the decryption algorithm of T-RBE with inputs pth2, sk and
the obtained ciphertext to get the message m.
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– How to update u (the auxiliary information required by decryptor).
With the registration as described above, we can guarantee the efficiency. The
updation algorithm requires to only read a path in the TimeTree, which leads
to id and its time-stamp tid and further use the updation algorithm of the
T-RBE scheme. This would also be efficient. But we also need to guarantee
that the number of times an id calls the updation algorithm is at most log(n)
(where n is the number of identities registered so far). This is not guaranteed
if we only have a single variant of the TimeTree. This is because, each time
an id registers, its addition to the TimeTree modifies the root hash, changing
the root-to-leaf path for every other identity registered. We resolve this issue
by maintaining a variant of the same TimeTree, at the times corresponding
to which each Merkle tree in T was last updated (which means we maintain
at most log n variants of the TimeTree from different time instances). This
guarantees two things: firstly that an identity contained in Treei of T will
definitely be contained in the corresponding i-th variant of TimeTree and
secondly that this identity only requires to update its root-to-leaf path in the
TimeTree, when the tree Treei is modified (which happens only when the tree
is merged with another tree and the number of times this merger can occur
is at most log(n)). These two observations would guarantee that the number
of updates (of root to leaf path in TimeTree) required by any user is at most
log(n). Hence, this would give the desired efficiency in number of updates.
Note that this is also the reason why we need a combination of the Merkle
trees T and the TimeTree and why we cannot use the TimeTree alone to store
the ids and their pks.

Adding anonymity. Adding the anonymity feature to our RBE scheme involves
techniques which are in essence same as those used in [10]. We build an RBE
scheme achieving the stronger notion of “blindness,” which in turn implies the
required anonymity property of an anonymous RBE scheme. While the notion
of anonymity guarantees that the identity id is hidden along with the message
being encrypted (similar to an anonymous IBE), the property of “blindness”
gives a stronger guarantee that the ciphertext generated on a uniformly random
message looks uniform. The fact that this stronger guarantee is achieved by our
scheme and that it implies anonymity is shown in Sect. 5.3.

As shown in the Fig. 1, we can get the blind T-RBE based on blind PKE and
blind hash garbling schemes. The construction of the blind T-RBE is exactly the
same as the regular T-RBE, except that instead of using a regular PKE scheme
and a hash garbling scheme, we will use blind variants of these primitives and
separate the corresponding ciphertexts and hash inputs into two parts. Then
using blind T-RBE and blind hash garbling, we can get the desired anonymous
RBE scheme (which is in fact a blind RBE).
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1.2 Potential Applications of Anonymous RBE

Here we describe a possible application of anonymous RBE in scenarios where
other seemingly similar and powerful primitives (e.g., anonymous IBE [6,9] or
anonymous PKE [4]) seem incapable of.

Anonymous board communication (ABC). In an ABC scheme, a dynamic
set of (semi-honest) parties {id1, . . . , idn} anonymously communicate by writ-
ing and reading on a single shared board B in a synchronized way. More for-
mally, whenever a party joins the system, they update some information on the
board B. Also, the communication between {id1, . . . , idn} is done in synchro-
nized cycles. In cycle t, each identity idi has a list of messages mi,1,mi,2, . . . to
be delivered to some parties idi,1, idi,2, . . . . Then at the beginning of the cycle t,
all of the parties write some arbitrary messages on the common board B. After
all the parties are done with writing, in the second half of the cycle t, all the
parties read (their selected parts or all of) the content of the board B. By the
end of cycle t, all the parties should be able to obtain the messages intended to
be sent to them. Namely, if the message m was sent to identity id (by another
identity id′), by the end of cycle t, m should be obtained by id. The security goal
is to keep all the senders and receivers anonymous from the perspective of any
adversary who can read all the information written on the common board B.
The efficiency goal here is have parties write their messages in “small” time. In
particular, we require the write time of each party to be poly(κ, log n) ·k where k
is the total length of the message to be sent out and κ is the security parameter.

ABC from anonymous IBE? One might try to get ABCs from anonymous
IBE as follows. The public key of the anonymous IBE scheme is written on the
board, and the parties use it to compose their messages for the desired receivers.
During the read part of each cycle, each party will read the whole board B and
try to decrypt messages that are sent to them. This approach provides receiver
anonymity and sender efficiency, but the main issue is that the master secret
key should be stored somewhere and there is only one place for storing it: on
the board B. So, anyone who has full access to the board can decrypt all the
messages. On the other hand, one might try to avoid IBE and use a public-key
directory storing public-keys of an (anonymous) PKE scheme at the board B.
Then the parties can try to use this information and write their messages to the
desired recipients on the same board. The problem with this approach is that
the writing parties need to read the whole set of public-keys from the board to
obtain the desired target public keys.

ABC from anonymous RBE. Interestingly, anonymous RBE directly enables
ABC and achieves what anonymous IBE and PKE seem incapable of. In par-
ticular, a specific part of the common board B would be dedicated to store the
information required for maintaining the public parameters and the auxiliary
information of the KC of the anonymous RBE scheme (and note that no mas-
ter secret key exists). This way, by reading the public parameter ppn (after n
people have joined), an (anonymous-receiver) message can be composed to any
recipient. In particular, if mi,1,mi,2, . . . are to be sent to parties idi,1, idi,2, . . . by
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party idi, all idi does is to generate anonymous-receiver ciphertexts containing
the messages and encrypted to the right identities. The anonymity of the sender
stems from the fact that RBE can be used like an IBE and anyone (including
those in the system) can compose messages to any other identify in a secret way.
Finally, the fact that the key curator is transparent (and all it does is curating
the keys) allows the parties to join the system freely one by one and update the
public parameter as required.

Relation to other works on secure messaging. We emphasize that our
ABC primitive is not by any means aiming to capture practical scenarios of
secure messaging that have been a source of intense work over recent years
[2,5,15–18,30,32]. For example a large body of work (e.g., see [16–18]) explore
realistic messaging settings in which a set of distributed parties communicate
over a network and aim to message each other in a way that senders, receivers,
(and some more specific relations) remain secret despite the messages being sent
over the network. Some of these works achieve privacy by using non-colluding
servers, while ABC only uses one “server”. On the other hand, our ABC occurs
in a centralized setting in which all the messages by the parties are directly
written to and read from the shared board. In a different direction, many works
(e.g., see [5,8,15,26,28] in the context of what is now known as “Ratcheted Key
Exchange” study ways to expand shared keys to secure refreshed keys to be
used in the future, and so they fundamentally differ from ABC simply because
in ABC there are no keys shared between the parties. Thus, we note that the
main goal of introducing ABC is to demonstrate a basic abstract messaging
scenario with challenges that can be resolved immediately using (anonymous)
RBE, while other powerful tools do not seem to be capable of doing the same.
While the idea for our ABC scheme requires a more concrete formalization, we
introduce it as an attempt to lay down a concrete framework for an anonymous
messaging scheme in the “single server” model (see also the discussion in [29]).

2 Preliminary Definitions

In this section we describe the needed definitions. We separate the definitions
of variants of RBE into those borrowed from previous work and those that are
introduced in this work.

2.1 Previous Definitions About RBE

In this subsection we recall the definition of RBE, taken verbatim from [22].

Definition 1 (Syntax of RBE). A registration-based encryption (RBE for
short) scheme consists of PPT algorithms (Gen,Reg,Enc,Upd,Dec) working as
follows. The Reg and Upd algorithms are performed by the key curator, which
we call KC for short.
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– Generating common random string. Some of the subroutines below will
need a common random string crs, which could be sampled publicly using some
public randomness beacon. crs of length poly(κ) is sampled at the beginning,
for the security parameter κ.

– Key generation. Gen(1κ) → (pk, sk): The randomized algorithm Gen takes
as input the security parameter 1κ and outputs a pair of public/secret keys
(pk, sk). Note that these are only public and secret keys, not the encryption
or decryption keys. The key generation algorithm is run by any honest party
locally who wants to register itself into the system.

– Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic algorithm
Reg takes as input the common random sting crs, current public parameter
pp, a registering identity id and a public key pk (supposedly for the identity
id), and it outputs pp′ as the updated public parameters. The Reg algorithm
uses read and write oracle access to aux which will be updated into aux′ during
the process of registration. (The system is initialized with public parameters
pp and auxiliary information aux set to ⊥.)

– Encryption. Enc(crs, pp, id,m) → ct: The randomized algorithm Enc takes
as input the common random sting crs, a public parameter pp, a recipient
identity id and a plaintext message m and outputs a ciphertext ct.

– Update. Updaux(pp, id) → u: The deterministic algorithm Upd takes as input
the current information pp stored at the KC and an identity id, has read only
oracle access to aux and generates an update information u that can help id
to decrypt its messages.

– Decryption. Dec(sk, u, ct): The deterministic decryption algorithm Dec takes
as input a secret key sk, an update information u, and a ciphertext ct, and
it outputs a message m ∈ {0, 1}∗ or in {⊥, GetUpd}. The special symbol ⊥
indicates a syntax error, while GetUpd indicates that more recent update infor-
mation (than u) might be needed for decryption.

Definition 2 (Completeness, compactness, and efficiency of RBE). For
any interactive computationally unbounded adversary Adv that still has a limited
poly(κ) round complexity, consider the following game CompAdv(κ) between Adv
and a challenger Chal.

1. Initialization. Chal sets pp = ⊥, aux = ⊥, u = ⊥, ID = ∅, id∗ = ⊥, t = 0,
crs ← Upoly(κ) and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, Adv chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. Adv sends some id �∈ ID and

pk to Chal. Chal registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and ID := ID ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already
(i.e., id∗ �= ⊥), skip this step. Otherwise, Adv sends some id∗ �∈
ID to Chal. Chal then samples (pk∗, sk∗) ← Gen(1κ), updates pp :=
Reg[aux](crs, pp, id∗, pk∗), ID := ID ∪ {id∗}, and sends pk∗ to Adv.

(c) Encrypting for the target identity. If id∗ = ⊥ then skip this step.
Otherwise, Chal sets t = t + 1, then Adv sends some mt ∈ {0, 1}∗ to
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Chal who then sets m′
t := mt and sends back a corresponding ciphertext

ctt ← Enc(crs, pp, id∗,mt) to Adv.
(d) Decryption by target identity. Adv sends a j ∈ [t] to Chal. Chal then

lets m′
j = Dec(sk∗, u, ctj). If m′

j = GetUpd, then Chal obtains the update
u = Updaux(pp, id∗) and then lets m′

j = Dec(sk∗, u, ctj).
3. The adversary Adv wins the game if there is some j ∈ [t] for which m′

j �= mj.

Let n = |ID| be the number of identities registered till a specific moment. We
require the following properties to hold for any Adv (as specified above) and for
all the moments (and so for all the values of ID and n = |ID| as well) during the
game CompAdv(κ).

– Completeness. Pr[Adv wins in CompAdv(κ)] = negl(κ).
– Compactness of public parameters and updates. |pp|, |u| are both ≤

poly(κ, log n).
– Efficiency of runtime of registration and update. The running time of

each invocation of Reg and Upd algorithms is at most poly(κ, log n). (This
implies the compactness property.)

– Efficiency of the number of updates. The total number of invocations
of Upd for identity id∗ in Step 2d of the game CompAdv(κ) is at most O(log n)
for every n during CompAdv(κ).

Definition 3 (WE-RBE). A weakly efficient RBE (or WE-RBE for short)
is defined similarly to Definition 2, where the specified poly(κ, log n) runtime
efficiency of the registration algorithm is not required anymore, but instead we
require the registration time to be poly(κ, n).

Definition 4 (Security of RBE). For any interactive PPT adversary Adv,
consider the following game SecAdv(κ) between Adv and a challenger Chal. (Steps
that are different from the completeness definition are denoted with purple stars
(��). Specifically, Steps 2c and 2d from Definition 2 are replaced by Step 3 below.
Additionally, Step 3 from Definition 2 is replaced by Step 4 below.)

1. Initialization. Chal sets pp = ⊥, aux = ⊥, ID = ∅, id∗ = ⊥, crs ← Upoly(κ)

and sends the sampled crs to Adv.
2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At

every iteration, Adv chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. Adv sends some id �∈ ID and

pk to Chal. Chal registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and ID := ID ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already
(i.e., id∗ �= ⊥), skip this step. Otherwise, Adv sends some id∗ �∈
ID to Chal. Chal then samples (pk∗, sk∗) ← Gen(1κ), updates pp :=
Reg[aux](crs, pp, id∗, pk∗), ID := ID ∪ {id∗}, and sends pk∗ to Adv.

3. (��) Encrypting for the target identity. If no id∗ was chosen by Adv
before (i.e., id∗ = ⊥) then Adv first sends some id∗ �∈ ID to Chal. Next, Chal
generates ct ← Enc(crs, pp, id∗, b), where b ← {0, 1} is a random bit, lets
ID = ID ∪ {id∗}, and sends ct to Adv.
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4. (��) The adversary Adv outputs a bit b′ and wins the game if b = b′.
We call an RBE scheme secure if Pr[Adv wins in SecAdv(κ)] < 1

2 + negl(κ)
for any PPT Adv.

2.2 New Definitions About (Anonymous) RBE

In this section we define an anonymity feature for the notion of RBE, and we will
show later how to build efficient anonymous RBE from standard assumptions.

Definition 5 (Anonymous RBE). An anonymous RBE scheme has
the same syntax as that of an RBE scheme, with PPT algorithms
(Gen,Reg,Enc,Upd,Dec). It satisfies the properties of completeness, compact-
ness and efficiency as a RBE scheme and has the following stronger notion of
security: For any interactive PPT adversary Adv, consider the game EXPAnon

Adv (κ)
between Adv and a challenger Chal as follows.

1. Initialization. Chal sets pp = ⊥, aux = ⊥, ID = ∅, id0 = ⊥, id1 = ⊥,
crs ← Upoly(κ) and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, Adv can perform exactly one of the following actions.
(a) Registering new (non-target) identity. Adv sends some id �∈ ID and

pk to Chal. Chal registers (id, pk) by getting pp = Reg[aux](crs, pp, (id, pk))
and lets ID = ID ∪ {id}.

(b) Registering new target identity pair. If id0 or id1 was chosen by
Adv already (i.e., id0 �= ⊥ or id1 �= ⊥), skip this step. Otherwise, Adv
sends challenges id0, id1 /∈ ID to Chal. Chal first samples (pk0, sk0) ←
Gen(1κ), registers id0 by setting pp = Reg[aux](crs, pp, (id0, pk0)) and
then samples (pk1, sk1) ← Gen(1κ), registers id1 by setting pp =
Reg[aux](crs, pp, (id1, pk1)). Next, Chal lets ID = ID ∪ {id0, id1} and sends
pk0, pk1 to Adv.

3. Encrypting for the challenge identity. If id0, id1 was not chosen by Adv
already (i.e., id0 = ⊥, id1 = ⊥), then Adv first sends some id0, id1 /∈ ID to
Chal before continuing this step. Next, Chal samples a bit b ∈ {0, 1} and
generates the challenge ciphertext ct ← Enc(crs, pp, idb, b). Further, Chal sets
ID = ID ∪ {id0, id1} and sends ct to Adv.

4. The adversary Adv outputs a bit b′ and wins the game if b′ = b.

We call an RBE scheme an Anonymous-RBE if Pr[Adv wins in EXPAnon
Adv (κ)] <

1
2 + negl(κ) for any PPT Adv.

As a step-stone toward building efficient (anonymous) RBE, we will first show
how to build a primitive which we call timestamp-RBE. We define this notion
formally below.

Definition 6 (T-RBE). A timestamp-RBE (or T-RBE for short) has syntax
exactly similar to Definition 1, except for one difference: we now consider the reg-
istration algorithm Reg, the encryption algorithm Enc and the update algorithm
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Upd to take as input the timestamp tid of an identity id (binary representation
of the time at which an identity registers) as input instead of the identity id. The
completeness, compactness of public parameters, the efficiency of runtime of reg-
istration and update and the efficiency of the number of updates is exactly simi-
lar to Definition 2 and the security guarantee is similar to Definition 4, replacing
identity id with its timestamp tid in all the appropriate places. For a T-RBE, we
define the notion of anonymity exactly as in Definition 5, replacing identity id
with its timestamp tid in all the appropriate places.

2.3 Blind Public Key Encryption

In this subsection we define blindness features for several cryptographic prim-
itives, which will be used in our main constructions. We first start with the
notion of blind PKE. The notion of blindness for PKE is well-studied with a few
prior definitions; see, e.g., [4,27]. Here we give a tailored version of this definition
suitable for our later constructions.

Definition 7 (Blind Public Key Encryption). A blind public key encryp-
tion scheme (with public parameters) has algorithms (Params,G,E,D) which
is IND-CPA secure and satisfies the following additional security property: the
function E(pp, pk,m; r) can be expressed as E1(pp; r)||E2(pp, pk,m; r) such that
the distribution of {(pp, pk, sk,Enc(pp, pk,m; r)) : pp ← Params(1λ), (pk, sk) ←
G(pp),m $←− M, r

$←− {0, 1}∗} is computationally indistinguishable from

{(pp, pk, sk,E1(pp; r), subct2) : pp ← Params(1λ), (pk, sk) ← G(pp),m $←− M, r
$←−

{0, 1}∗, subct2
$←− {0, 1}L}, where L = |E2(pp, pk,m; r)|.

We now define a blindness notion for garbled circuits. Our blindness requirement
is the same as that introduced and used by [10].

Definition 8 (Blind Garbled Circuits [10]). A garbling scheme consists of
PPT algorithms (Garble,Eval) and a simulator G.Sim where:

1. Garble(1λ, 1l, 1m,C; state) := Garble1(1λ, 1l, 1m; state)||Garble2(1λ, 1l, 1m,C;
state). Garble1 takes as input the security parameter λ, the input length l and
output length m for circuit C and a random value state ∈ {0, 1}λ and out-
puts the labels for input wire of the Garbled circuit {labj,b}j∈[l],b∈{0,1}, where
labj,b ∈ {0, 1}λ and Garble2 takes the circuit C in addition, and outputs the
garbled circuit C̃.

2. Eval(1λ, C̃, ˜lab) is a deterministic algorithm that takes as input the garbled
circuit C̃, along with a set of l labels ˜lab = {labj}j∈[l] and outputs a string
y ∈ {0, 1}m.

3. G.Sim(1λ, 1|C|, 1l, y) takes as input the security parameter λ, the description
length of circuit C, the input length l and a string y ∈ {0, 1}m and outputs a
simulated garbled circuit C̃ and labels ˜lab.

A blind garbling scheme must satisfy the following properties:
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1. Correctness. For all circuits C, inputs x and all (C̃, {labj,b}j∈[l],b∈{0,1}) ←
Garble(C) and ˜lab = {labj,xj

}j∈[l], we have Eval(C̃, ˜lab) = C(x).
2. Simulation Security. For all circuits C : {0, 1}l → {0, 1}m and all inputs

x ∈ {0, 1}l, the following distributions are computationally indistinguishable:

{(C̃, ˜lab) : (C̃, {labj,b}j∈[l],b∈{0,1}) ← Garble(C), ˜lab = {labj,xj
}j∈[l]}

c≈ {(C̃, ˜lab) : (C̃, ˜lab) ← G.Sim(1λ, 1|C|, 1l,C(x))}

3. Blindness. G.Sim(1λ, 1|C|, 1l, Um)
c≈ U . The output of the simulator on a

completely uniform output is indistinguishable from a uniform bit string.

We now review the notion of blind batch encryption from [10]. The notion
of batch encryption is in turn similar to some notions such as hash encryption
and laconic oblivious transfer [13,19].

Definition 9 (Blind Single Batch Encryption [10]). A blind single batch
encryption scheme consists of PPT algorithms (Setup,H,HEnc,HDec):

1. Setup(1λ, 1l) takes as input the security parameter λ, a length parameter l
and outputs a hash key hk.

2. H(hk, x) takes as input a hash key hk and x ∈ {0, 1}l and deterministically
outputs h ∈ {0, 1}λ.

3. HEnc(hk, h, i,M) takes as input the hash key hk, hash value h and a message
matrix M ∈ {0, 1}1×2 and outputs a ciphertext ct, which can be written as a
concatenation of two parts ct = (subct1, subct2).

4. HDec(hk, x, i, ct) takes as input the ciphertext ct and outputs an m ∈ {0, 1}.

A blind single batch encryption must satisfy the following properties:

1. Correctness. Let hk ← Setup(1λ, 1l). For all x, i,M , taking h = H(hk, x),
ct = HEnc(hk, h, i,M), it holds that HDec(hk, x, i, ct) = Mxi

, with probability
at least 1/2 + 1/poly(λ) over the randomness of HEnc.

2. Semantic Security. For any PPT adversary Adv the probability of winning
in the following game between Adv and a challenger Chal is 1/2 + negl(λ):
(a) Adv takes as input 1λ and sends 1l, x ∈ {0, 1}l, i ∈ [l] to Chal.
(b) Chal generates hk = Setup(1λ, 1l) and sends hk to Adv.
(c) Adv sends a pair M (0),M (1), such that M

(0)
xi = M

(1)
xi , to Chal.

(d) Chal computes h = H(hk, x), chooses b ∈R {0, 1} and sends ct =
HEnc(hk, h, i,M (b)) to Adv.

(e) Adv outputs a bit b′ and wins if b′ = b.
3. Blindness. The encryption HEnc(hk, h, i,M ; r) can be considered as a con-

catenation of HEnc1(hk; r)||HEnc2(hk, h, i,M ; r). Further, any PPT adversary
Adv the probability of winning in the following game with a Challenger Chal
is at most 1/2 + negl(λ):
(a) Adv takes as input 1λ and sends 1l, x, i to Chal.
(b) Chal generates hk = Setup(1λ, 1l) and computes h = H(hk, x). Further it

samples a random b ∈ {0, 1}, a random message matrix M ∈ {0, 1}1×2

and encrypts (subct1, subct2) ← HEnc(hk, h, i,M). It generates ct as:
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– If b = 0, the ct = (subct1, subct2).
– If b = 1, then pick a random subct′2 of same length as subct2 and set

ct = (subct1, subct′2).
Chal sends hk, ct to Adv.

(c) Adv outputs a bit b′ and wins if b′ = b.

3 Blind Hash Garbling

In this section we introduce and build a primitive which we call blind hash gar-
bling, which will later be used as an ingredient in the construction of anonymous
T-RBE schemes. We first define this notion below and will then show how to
build it using tools defined in the previous sections.

3.1 Definition of Blind Hash Garbling

The notion of hash garbling was defined in [22]; here we review this notion and
define a blindness feature for it.

Definition 10 (Blind Hash Garbling). A blind hash garbling scheme has the
following polynomial time algorithms HGen,Hash,HObf,HInp:

– HGen(1κ, 1l) → hk. It takes as input the security parameter κ and an output
length parameter 1l for l ≤ poly(κ), and outputs a hash key hk.

– Hash(hk, x) = y. It takes as input hk and x ∈ {0, 1}l and deterministically
outputs y ∈ {0, 1}κ.

– HObf(hk,C, state) → C̃. It takes as input hk, a circuit C, and a secret state
state ∈ {0, 1}κ and outputs a circuit C̃.

– HInp(hk, y, state) → ỹ. This takes as input hk, a value y ∈ {0, 1}κ, and secret
state state and outputs ỹ. Consider ỹ as concatenation of two parts ỹ1||ỹ2.

A blind hash garbling scheme must satisfy the following properties:

– Correctness. For all κ, l, hash key hk ← HGen(1κ, 1l), circuit C,
input x ∈ {0, 1}l, state ∈ {0, 1}κ, C̃ ← HObf(hk,C, state) and ỹ ←
HInp(hk,Hash(hk, x), state), then C̃(ỹ, x) = C(x).

– Security. There exists a PPT simulator Sim such that for all κ, l and PPT
(in κ) Adv we have that

(hk, x, ỹ1, C̃, ỹ2)
c≈ (hk, x, ỹ1,Sim(hk, x, 1|C|,C(x))),

where hk ← HGen(1κ, 1l), (C, x) ← Adv(hk), state ← {0, 1}κ, C̃ ←
HObf(hk,C, state) and (ỹ1, ỹ2) ← HInp(hk,Hash(hk, x), state).

– Blindness. The function ỹ = HInp(hk, y, state; r) can be expressed as the
concatenation HInp1(hk; r)||HInp2(hk, y, state; r) = ỹ1||ỹ2 such that

(hk, x,HInp1(hk; r),Sim(hk, x, 1|C|, U|C(x)|))
c≈ (hk, x,HInp1(hk; r), U|C̃|+|ỹ2|)

where 1l, x ← Adv(1κ), hk ← HGen(1κ, 1l). (It is clear that the distinguisher
should not know about the random output value that was used for simulation)



78 S. Garg et al.

3.2 Construction of a Blind Hash Garbling Scheme

We require the following building blocks to construct blind hash garbling:

– Blind single batch encryption scheme (Setup,H,HEnc,HDec) as Definition 9.
– Blind garbled circuit scheme (Garble,Eval) as in Definition 8.

The blind hash garbling scheme is as follows:

1. HGen(1κ, 1l): Generate hk ← Setup(1κ, 1l) and output hk.
2. Hash(hk, x): Generate H(hk, x) = y and output y.
3. HObf(hk,C, state): Generate C̃ ← Garble2(1κ, 1l, 1m,C; state) and output

C̃[hk] (circuit C̃ hardwired with hk).
4. HInp(hk, y, state):

– Generate {labj,b}j∈[l],b∈{0,1} ← Garble1(1κ, 1l, 1m; state).
– Generate ỹ = {HEnc(hk, y, j, [labj,0 labj,1])}j∈[l] = {subct1,j , subct2,j}j∈[l].

Let ỹ1 = {subct1,j}j∈[l] and ỹ2 = {subct2,j}j∈[l]. Output ỹ = (ỹ1, ỹ2).

Theorem 11. The above construction (HGen,Hash,HObf,HInp) satisfies the
correctness, security and blindness properties as given in Definition 10.

Proof. We now prove the above theorem.

1. Correctness. Consider the circuit C̃[hk](ỹ, x):
– Recovers labj,xj

:= HDec(hk, x, j, ỹj) for each j ∈ [l], where ỹ = {ỹj}j∈[l].
– Outputs Eval(C̃, {labj,xj

}j∈[l]).
Then clearly by correctness of the blind garbling circuit and the correctness
of the blind single batch encryption scheme, C̃[hk](ỹ, x) = C(x).

2. Security. We define the simulator Sim as below: Sim(hk, x, 1|C|,C(x)):
– Evaluate (C̃, {labj}j∈[l]) ← G.Sim(1κ, 1|C|, 1l,C(x)).
– For j ∈ [l], let Mj = [Mj,0 Mj,1], where Mj,xj

= labj , Mj,1−xj
∈R {0, 1}κ.

– Evaluate ỹ = {HEnc(hk,H(hk, x), j,Mj)}j∈[l]. As expressed in the proto-
col, ỹ = (ỹ1, ỹ2).

– Output (C̃, ỹ2).
Then, by simulation security of the blind garbled circuit scheme and the
semantic security of the blind single batch encryption scheme, it can be shown
through a sequence of hybrids that:

(hk, x, ỹ1, C̃, ỹ2)
c≈ (hk, x, ỹ1,Sim(hk, x, 1|C|,C(x))),

where hk ← HGen(1κ, 1l), (C, x) ← Adv(hk), state ← {0, 1}κ, C̃ ←
HObf(hk,C, state) and (ỹ1, ỹ2) ← HInp(hk,Hash(hk, x), state).

3. Blindness. For the simulator Sim described above, consider the distribution
of Sim(hk, x, 1|C|, U|C(x)|) for a uniformly generated output.

– By the blindness of blind garbled circuit, G.Sim(1κ, 1|C|, 1l, U|C(x)|)
c≈ U .

– Hence for each j ∈ [l],Mj
c≈ U . Thus, by blindness of the blind single

batch encryption, ỹ = (ỹ1, ỹ2) (as described in the protocol), where ỹ1
can be expressed as HInp1(hk; r) and (hk, x, ỹ1, ỹ2)

c≈ (hk, x, ỹ1, U).
Hence, it follows that (hk, x, ỹ1,Sim(hk, x, 1|C|, U|C(x)|))

c≈ (hk, x, ỹ1, U).
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4 Efficient Blind T-RBE

We first define and construct an efficient blind T-RBE and then use it to con-
struct an efficient Anonymous RBE scheme.

4.1 Definition

Definition 12 (Blind T-RBE). A T-RBE scheme (TGen,TReg,TEnc,
TUpd,TDec) is said to be blind if, in addition to completeness, compactness,
efficiency and security properties, as in Definition 6, it also satisfies the fol-
lowing blindness property: the function TEnc(crs, pp, tid,m; r) can be expressed
as the concatenation TEnc1(crs, pp; r)||TEnc2(crs, pp, tid,m; r) such that for any
PPT adversary Adv, the probability of winning in the following game with a
challenger Chal is at most 1/2 + negl(κ):

1. Initialization. Chal sets pp = ⊥, aux = ⊥, ID = ∅, t = 1, t∗ = ⊥, id∗ = ⊥,
crs ← Upoly(κ) and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, Adv can perform exactly one of the following actions.
(a) Registering new (non-target) identity. Adv sends some id �∈ ID and

pk to Chal. Chal registers (id, pk) by getting pp = TReg[aux](crs, pp, (t, pk))
and sets ID = ID ∪ {id} and t = t + 1.

(b) Registering new target identity pair. If id∗ was chosen by Adv already
(i.e., id∗ �= ⊥), skip this step. Otherwise, Adv sends challenge identities
id∗ /∈ ID to Chal. Chal first samples (pk∗, sk∗) ← TGen(1κ), registers id∗

by setting pp = TReg[aux](crs, pp, (t, pk∗)). Next, Chal lets ID = ID∪{id∗},
t = t∗ and t = t + 1, and sends t∗, pk∗, sk∗ to Adv. (Note that unlike the
security property, the secret key is given to Adv.)

3. Encrypting for the challenge identity. If id∗ was not chosen by Adv
already (i.e., id∗ �= ⊥), then Adv first sends some id∗ /∈ ID to Chal before
continuing this step. Next, Chal samples a random message m ∈R M and
generates (subct1, subct2) ← TEnc(crs, pp, t∗,m; r). It generates a bit b ∈R

{0, 1} and:
– if b = 0, set ct = (subct1, subct2).
– if b = 1, generate a random subct′2 of same length as subct2 and set

ct = (subct1, subct′2).
Chal sends ct to Adv (Note that the Adv does not know the random message
m being encrypted).

4. The adversary Adv outputs a bit b′ and wins the game if b′ = b.

4.2 Construction of an Efficient Blind T-RBE Scheme

We construct a blind T-RBE scheme (TGen,TReg,TUpd,TEnc,TDec), as in
Definition 12, using the following building blocks:
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– Blind Hash Garbling scheme (HGen,Hash,HObf,HInp), where the function
HInp is expressible as concatenation of function outputs of HInp1 and HInp2

as in Definition 10.
– Blind Public-key Encryption scheme (G,E,D), where the function E is

expressible as a concatenation of outputs of E1 and E2, as in Definition 7.

The subroutines of the T-RBE scheme are defined as follows:

– TGen(1κ):
1. (pk, sk) ← G(1κ)
2. Output (pk, sk).

– TReg[aux](pp, tid, pk):
1. aux consists of a family of Merkle trees T = {Tree1, · · · ,Treeη} which

are constructed through the process of registration described below. It
also consists of a list of timestamps corresponding to each tree in T , TID,
arranged in ascending order of timestamps of the identities.

2. Parse pp = (hk, (rt1, d1), · · · , (rtη, dη)), where hk ← HGen(1κ, 12κ+log n)
and (rti, di) represent the root and depth of Treei in T .

3. Updating aux:
(a) Create Treeη+1 with leaves tid and pk and root rtη+1 =

Hash(hk, tid||pk||0κ).
(b) If there are two trees TreeL and TreeR in T of same depth d then

proceed as follows:
• Let tL and tR denote the largest timestamps of TreeL and TreeR

respectively (can be obtained by reading the last leaf of each tree).
WLOG, suppose tL < tR.

• Merge the trees, with TreeL on the left and TreeR on the right1,
with corresponding roots rtL and rtR, to obtain Tree with root
rt = Hash(hk, rtL||rtR||tL).

• Remove TreeL and TreeR from T and add Tree to it.
(c) TID := TID ∪ {tid}.

4. Set pp′ = (hk, (rt1, d1), · · · , (rtζ , dζ)), where (rti, di) represent the root
and depth of Treei in updated T .

5. Output pp′.
– TUpd[aux](pp, tid):

1. Parse pp = (hk, (rt1, d1), · · · , (rtη, dη)).
2. Let u = pth, the Merkle opening from the leaf node tid and its sibling pk

to the root rti (in Treei containing the timestamp tid).
3. Output u.

– TEnc(pp, tid,m):
1. Parse pp = (hk, (rt1, d1), · · · , (rtη, dη)).
2. For each i = 1, · · · , η:

(a) For each j = 1, · · · , di:
• Sample statei,j ← {0, 1}κ

1 This will guarantee that the leaf nodes are sorted in ascending order of the times-
tamps of the identities.
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• Generate ˜Pi,j ← HObf(hk,Pi,j , statei,j)
(b) Obtain ỹi,1 ← HInp(hk, rti, statei,1), where ỹi,1 = ỹ

(0)
i,1 ||ỹ(1)

i,1

(c) For each j = 2, · · · , di, obtain ỹ
(0)
i,j = HInp1(hk; ri,j)

3. Output ct = (pp, {˜Pi,j}i,j , {ỹ
(0)
i,j }i,j , {ỹ

(1)
i,1 }i,E1(r)). Let subct1 = (pp,

{ỹ
(0)
i,j }i,j ,E1(r)) and subct2 = ({˜Pi,j}i,j , {ỹ

(1)
i,1 }i). Then ct = (subct1,

subct2).
The program Pi,j is as defined below:
Hardwired: tid, hk, statei,j+1,m, ri,j+1 (where statei,di+1 = ⊥, ri,di+1 = r).
Input: a||b||t∗.
1. If t∗ = 0κ and a = tid, output E2(b,m; ri,j+1).
2. If t∗ = 0κ and a �= tid, output ⊥.
3. If tid > t∗, output HInp2(hk, b, statei,j+1; ri,j+1).

Else, output HInp2(hk, a, statei,j+1; ri,j+1).
– TDec(sk, u, ct):

1. Parse ct as (pp, {˜Pi,j}i,j , {ỹ
(0)
i,j }i,j , {ỹ

(1)
i,1 }i,E1(r)).

2. Parse u as pth = (z0 = rti∗ , z1, · · · , zdi∗ = tid||pk||0κ), the Merkle opening
from leaf tid to the root rti∗ of Treei∗ (containing tid).

3. For each j = 1, · · · , di∗ − 1 evaluate:
• ỹ

(1)
i∗,j+1 ← ˜Pi∗,j(ỹi∗,j , zj)

4. Let c2 = ˜Pi∗,di∗ (ỹi∗,di∗ , zdi∗ ). If c2 = ⊥, set c = ⊥, else set c = E1(r)||c2.
5. If c = ⊥, output GetUpd, else output D(sk, c).

Theorem 13. The T-RBE construction Sect. 4.2 satisfies the completeness,
compactness, efficiency, security and blindness (Definition 12) properties.

In the following subsections, we prove Theorem13.

4.3 Proofs of Completeness, Compactness and Efficiency of the
T-RBE Construction

Completeness. By the correctness of the hash garbling scheme and the Public-
key Encryption scheme, completeness property follows.

Compactness of public parameters and update. Consider the public
parameter pp = (hk, (rt1, d1), · · · , (rtη, dη)). We observe that:

– The number of Merkle trees, η, in T at any time is at most log(n). This is
because the trees are full binary trees and the size of the trees are always
different (as we keep merging in the registration process).

– The hash key hk, the root and the depth of each tree are all of size κ each.

Hence, the size of pp is O(κ. log n).
Consider the update u = pth, the Merkle opening from leaf node tid ad its

sibling pk to the root rti. The depth of the tree is di and hence, there are at
most 2.di + 1 nodes in the Merkle opening, where di ≤ κ. Hence, the size of u is
at most O((2.κ + log n).κ) = O(poly(κ, log(n))).
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Efficiency of runtime of registration and update. The registration process
involves evaluating a hash value to create a new tree with the new identity and
then merging the trees of same depth after this. We observe that:

– The number of merge operations is O(log n) as the number of trees is always
logarithmic.

– Computing each hash costs O(κ).

Hence, each invocation of the registration process takes time O(κ. log n). Con-
sider a single invocation of the update. This just involves reading aux to out-
put the Merkle opening required and this takes time O((2.κ + log n)κ) =
O(poly(κ, log n)).

Efficiency of the number of updates. Each identity would require to invoke
Upd, whenever the Merkle opening for the id gets modified. This in turn happens
whenever two tress are merged. Since the number of merges is at most O(log n),
the total number of invocations of Upd by each identity is at most O(log n).

4.4 Proof of Security of the T-RBE Construction

We prove the security assuming that there is only one tree at the time of encryp-
tion. The proof for the case of multiple trees will be the same.

Proof. Suppose that at the time of encryption, the underlying tree has root rt
and depth d. For simplicity, for each j ∈ [d], we denote the circuits P1,j by Pj

and the state used for obfuscation, state1,j by statej , i.e., for each j ∈ [d]

Pj ≡ P1,j [tid, hk, statej+1,m, r1,j+1]

where all the variables are as in the encryption algorithm of the construction.
As in the construction, let the Merkle opening from the leaf node tid and its

sibling pk to the root rt be denoted by:

pth = ((tid, pk, 0κ), (a1, b1, t1), · · · , (ad−1, bd−1, td−1), rt)

As in the decryption algorithm of the construction, we denote the hash-
obfuscation of the inputs of the circuits by ỹj ≡ ỹ1,j = (ỹ(0)

1,j , ỹ
(1)
1,j ) for each

j ∈ [d]. Then, in the actual game, the output of the encryption algorithm
is ct0 := (subct0,1, subct0,2), where subct0,1 = (pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and

subct0,2 = (˜P1, · · · , ˜Pd, ỹ
(1)
1 ) (as in the protocol we have two parts of the cipher-

text).
We describe the following sequence of hybrids, where we first replace the

garbled versions of the programs Pj and the corresponding garbled inputs ỹj by
their simulated variants, which do not use statej , one by one.

– Hybrid0 (encryption in real game): The ciphertext here will be ct0 :=
(subct0,1, subct0,2), where subct0,1 = (pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and subct0,2 =

(˜P1, · · · , ˜Pd, ỹ
(1)
1 ), are as described above.
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– Hybrid1: We replace the first obfuscated program P̃1 with its simulated
form. P̃2, · · · , P̃d are sampled as in the construction. Let P̃1,sim and ỹ

(1)
1,sim be

sampled as:

(P̃1,sim, ỹ
(1)
1,sim) ← Sim(hk, (ad−1, bd−1, td−1), 1|P1 |, ỹ(1)

2 )

Then, the ciphertext in this hybrid is ct1 := (subct1,1, subct1,2), where
subct1,1 = (pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and subct1,2 = (P̃1,sim, P̃2, · · · , P̃d, ỹ

(1)
1,sim).

– Hybridi, for each i ∈ [d − 1]: The ciphertext is cti := (subcti,1, subcti,2),
where subcti,1 = (pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and subcti,2 = (P̃1,sim, · · · ,

P̃i,sim, P̃i+1, · · · , P̃d, ỹ
(1)
1,sim) where for each j ∈ [i]:

(P̃j,sim, ỹ
(1)
j,sim) ← Sim(hk, (ad−j , bd−j , td−j), 1|Pj |, ỹ(1)

j+1)

– Hybridd: The ciphertext is ctd := (subctd,1, subctd,2), where subctd,1 =
(pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and subctd,2 = (P̃1,sim, · · · , P̃d,sim, ỹ

(1)
1,sim) where for

each j ∈ [d − 1]

(P̃j,sim, ỹ
(1)
j,sim) ← Sim(hk, (ad−j , bd−j , td−j), 1|Pj |, ỹ(1)

j+1)

and
(P̃d,sim, ỹ

(1)
d,sim) ← Sim(hk, (tid, pk, 0κ), 1|Pd |,E2(pk,m; r))

By the simulation security of the hash garbling scheme, we know that, for each
j ∈ [d − 1],

(hk, (ad−j , bd−j , td−j), ỹ
(0)
j , P̃j , ỹ

(1)
j )

c≈ (hk, (ad−j , bd−j , td−j), ỹ
(0)
j , P̃j,sim, ỹ

(1)
j,sim)

and

(hk, (tid, pk, 0κ), ỹ(0)
d , P̃d, ỹ

(1)
d )

c≈ (hk, (tid, pk, 0κ), ỹ(0)
d , P̃d,sim, ỹ

(1)
d,sim)

Hence, it follows that for each i = 0, · · · , d − 1, Hybridi

c≈ Hybridi+1.

Now, let Hybrid0
i denote the hybrids described above with use of underlying

message m0 and Hybrid1
i for message m1. By semantic security of the underlying

public-key encryption scheme, we get:

Sim(hk,(tid, pk, 0κ), 1|Pd |,E2(pk,m0; r))
c≈Sim(hk, (tid, pk, 0κ), 1|Pd |,E2(pk,m1; r))

Hence, Hybrid0
d

c≈ Hybrid1
d. Then, it follows that Hybrid0

0

c≈ Hybrid1
0, which

represent the actual security game with use of messages m0 and m1 in respective
hybrids. Hence, the security of the T-RBE scheme is proved.

4.5 Proof of Blindness of the T-RBE Construction

We prove the blindness of the scheme assuming that there is only one tree at
the time of encryption. The proof for the case of multiple trees will be the same.
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Proof. Suppose that at the time of encryption, the underlying tree has root rt
and depth d. For simplicity, for each j ∈ [d], we denote the circuits P1,j by Pj

and the state used for obfuscation, state1,j by statej , i.e., for each j ∈ [d]

Pj ≡ P1,j [tid, hk, statej+1,m, r1,j+1]

where all the variables are as in the encryption algorithm of the construction.
As in the construction, let the Merkle opening from the leaf node tid and its

sibling pk to the root rt be denoted by:

pth = ((tid, pk, 0κ), (a1, b1, t1), · · · , (ad−1, bd−1, td−1), rt).

As in the decryption algorithm of the construction, we denote the hash-
obfuscation of the inputs of the circuits by ỹj ≡ ỹ1,j = (ỹ(0)

1,j , ỹ
(1)
1,j ) for each

j ∈ [d]. Then, in the actual game, where now the message m is chosen at ran-
dom, the output of the encryption algorithm is ct0 := (subct0,1, subct0,2), where
subct0,1 = (pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and subct0,2 = (˜P1, · · · , ˜Pd, ỹ

(1)
1 ) (as in the

protocol we have two parts of the ciphertext). Clearly subct0,1 is expressible as
TEnc1(pp; r).

We describe the following sequence of hybrids, where we first follow the
sequence of hybrids in the security proof of Sect. 4.4 to replace all the garbled
versions of the programs Pj and the corresponding garbled inputs ỹj by their
simulated variants. Then we use the blindness property of the blind hash gar-
bling scheme and the blind public key encryption scheme to replace the simulated
garbled circuits with uniform.

– Hybrid0 (encryption in real blindness game): The ciphertext
in this hybrid will be ct0 := (subct0,1, subct0,2), where subct0,1 =
(pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and subct0,2 = (˜P1, · · · , ˜Pd, ỹ

(1)
1 ), as described

above.
– Hybrid1: The ciphertext is ct1 := (subct1,1, subct1,2), where subct1,1 =

(pp, ỹ(0)
1 , · · · , ỹ

(0)
d ,E1(r)) and subct1,2 = (P̃1,sim, · · · , P̃d,sim, ỹ

(1)
1,sim) where for

each j ∈ [d − 1]

(P̃j,sim, ỹ
(1)
j,sim) ← Sim(hk, (ad−j , bd−j , td−j), 1|Pj |, ỹ(1)

j+1)

and
(P̃d,sim, ỹ

(1)
d,sim) ← Sim(hk, (tid, pk, 0κ), 1|Pd |,E2(pk,m; r)).

– Hybridi for each i = 2, · · · , d: The ciphertext is cti := (subcti,1, subcti,2),
where subcti,1 = (pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and subcti,2 = (P̃1,sim, · · · ,

P̃d−(i−1),sim, U|P̃d−(i−2)|, · · · , U|P̃d|, ỹ
(1)
1,sim).

– Hybridd+1: The ciphertext is ctd+1 := (subctd+1,1, subctd+1,2), where
subctd+1,1 = (pp, ỹ(0)

1 , · · · , ỹ
(0)
d ,E1(r)) and subctd+1,2 = (U|P̃1|+|ỹ(1)

1 |,
U|P̃2|, · · · , U|P̃d|).
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By the proof of security in Sect. 4.4, we know that Hybrid0

c≈ Hybrid1. Now,
by blindness property of the blind public key encryption scheme, we know:

(pk, sk,E1(r),E2(pk,m; r))
c≈ (pk, sk,E1(r), U).

Hence, by the blindness property of the hash garbling scheme, it follows that:

(hk, (tid, pk, 0κ), sk, ỹ(0)
d , P̃d,sim, ỹ

(1)
d,sim)

c≈ (hk, (tid, pk, 0κ), sk, ỹ(0)
d , U|Pd |+|ỹ(1)

d |).

Hence, it follows that Hybrid1

c≈ Hybrid2 even given the secret key sk.
By consecutive use of blindness property of the hash garbling scheme, it

would follow that for each i = 2, · · · , d, Hybridi

c≈ Hybridi+1 which holds
even given the secret key sk.

Hence, we have that Hybrid0

c≈ Hybridd+1, even given the secret key sk,
which exactly represents the blindness game. This completes the proof of blind-
ness of the T-RBE scheme.

5 Anonymous Registration-Based Encryption

We now construct an efficient anonymous RBE scheme as in Definition 5.

5.1 Construction of an Efficient Anonymous RBE Scheme

We now construct a RBE scheme (Gen,Reg,Enc,Upd,Dec) using the following
building blocks:

– Blind Hash Garbling scheme (HGen,Hash,HObf,HInp), where the function
HInp is expressible as concatenation of function outputs of HInp1 and HInp2,
as in Definition 10.

– Blind T-RBE scheme (TGen,TReg,TEnc,TUpd,TDec), where the function
TEnc is expressible as the concatenation of function outputs of TEnc1 and
TEnc2, as in Definition 12.

The subroutines of our RBE scheme are defined as follows:

– Gen(1κ):
1. (pk, sk) ← TGen(1κ).
2. Output (pk, sk).

– Reg[aux](pp, id, pk):
1. aux consists of a Red-black Merkle tree TimeTree which has the identities

(along with their timestamps) at the leaf nodes, sorted according to the
identities. TimeTree is constructed through the process of registration, as
described below. aux also consists of the database auxT required by the
T-RBE scheme and a list ID of identities registered so far, in ascending
order. Let the Merkle trees contained in auxT be T = {Tree1, · · · ,Treeη}.
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2. Parse pp as (hk, ppT , (rt1, d1), · · · , (rtη, dη)), where hk ← HGen(1κ, 13κ),
ppT corresponds to the public parameter of the T-RBE scheme and
(rt1, d1), · · · , (rtη, dη) are the roots and depth of the same TimeTree cor-
responding to the time when Tree1, · · · ,Treeη where last updated respec-
tively.2

3. Updating TimeTree:
(a) TimeTree is a Red-Black Merkle tree with each non-leaf node con-

taining a hash of its left child, hash of its right child and the largest
identity on the left subtree. The leaves of the tree contain the iden-
tities (with their timestamps, i.e., a binary representation of when
the identity registered). Further, each node has an additional bit of
information, indicating if it’s colored red or black. The color helps in
keeping the tree “approximately” balanced after each insertion3.

(b) Evaluate hid = Hash(hk, id||02κ−log n||tid).
(c) To insert the new id at the right location, we first parse the root of

TimeTree as rt = h1||id∗||h2. If id > id∗, read the right child, else read
the left child. Continue traversing the path down the tree to figure
out the correct insertion point of id.

(d) The parent node of id||tid contains hid along with the largest identity
on its left subtree and the hash of its other child. Re-order the tree,
recolor, to keep it balanced. This will take at most log n time (as it’s
a red-black tree). Every node that is not a leaf or a parent node of a
leaf node, is of the form hL||id∗||hR, where hL = Hash(hk, h1||idL||h2)
and hR = Hash(hk, h3||idR||h4) and id∗ is the largest identity on the
left subtree of this node.

4. Evaluate pp′
T ← TReg[aux](ppT , tid, pk), where tid will be the binary rep-

resentation of the timestamp corresponding to id (can be obtained by
checking ID to see the current number of identities).

5. Suppose the registration process of T-RBE above results in a merge of
trees TreeL and TreeR and the corresponding root hashes of TimeTree at
the time of last update of these trees be rtL and rtR. Remove (rtL, dL) and
(rtR, dR) from pp and add (rt, d), which is the root hash and the depth
of TimeTree at time tid. Suppose the updated root hashes and depth of
TimeTree after all the merges in T be (rt1, d1), · · · , (rtζ , dζ).

6. Set pp′ = (hk, pp′
T , (rt1, d1), · · · , (rtζ , dζ)).

7. Output pp′.
– Upd[aux](pp, id):

1. Parse pp = (hk, ppT , (rt1, d1), · · · , (rtη, dη)).
2. Evaluate u1 ← TUpd[aux](ppT , tid).

2 Looking ahead, we need to store the root hashes of TimeTree at mulitple times in
order to ensure that the number of updates required by each person remains log n.

3 The main advantage of having a Red-Black Merkle tree is that after each insertion,
the depth of the tree does not increase beyond log n, where n is the number of
people registered in the system. The balancing is not perfect, but ensures that further
insertions, rearrangement after insertion to balance, searches, all take time O(log n).
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3. Set pth to be the path from the leaf node id||tid||02κ−log n to the root hash
rti of TimeTree at the time of last modification of the Merkle tree, Treei,
containing id.4

4. Set u = (u1, pth).
5. Output u.

– Enc(pp, id,m):
1. Parse pp as (hk, ppT , (rt1, d1), · · · , (rtη, dη)).
2. For each i = 1, · · · , η:

(a) For each j = 1, · · · , dη:
i. Sample statei,j ← {0, 1}κ.
ii. Generate Q̃i,j ← HObf(hk,Qi,j , statei,j).

(b) Parse rti as h1||id∗||h2.
(c) If id > id∗, obtain ỹi,1 ← HInp(hk, h2, state1), where ỹi,1 = ỹ

(0)
i,1 ||ỹ(1)

i,1

Else obtain ỹi,1 ← HInp(hk, h1, state1), where ỹi,1 = ỹ
(0)
i,1 ||ỹ(1)

i,1 .

(d) For each j = 2, · · · , di, obtain ỹ
(0)
i,j ← HInp1(hk; ri,j).

3. Output ct = (pp, {Q̃i,j}i,j , {ỹ
(0)
i,j }i,j , {ỹ

(1)
i,1 }i,TEnc1(ppT ; r)).

Let subct1 = (pp, {ỹ
(0)
i,j }i,j ,TEnc1(ppT ; r)) and subct2 = ({Q̃i,j}i,j ,

{ỹ
(1)
i,1 }i). Then ct = (subct1, subct2).

The program Qi,j is defined as:
Hardwired: hk, statei,j+1, id,m, ri,j+1, r, ppT (for statei,di+1 = ri,di+1 = ⊥).
Input: a||id∗||b.
1. If id∗ = 02κ−log n and a = id, output TEnc2(ppT , b,m; r).
2. If id∗ = 02κ−log n and a �= id, output ⊥.
3. If id > id∗, output HInp2(hk, b, statei,j+1; ri,j+1).

Else, output HInp2(hk, a, statei,j+1; ri,j+1).
– Dec(sk, u, ct):

1. Parse u as (u1, pth), where pth = (z0 = rti, z1, · · · , zd = id||02κ−log n||tid).
Here rti is the root hash of TimeTree at the time when Treei, the tree
containing id, was last updated.

2. Parse ct as (pp, {Q̃i,j}i,j , {ỹ
(0)
i,j }i,j , {ỹ

(1)
i,1 }i,TEnc1(ppT ; r)).

3. For j = 1, · · · , d − 1, evaluate:
• ỹ

(1)
i,j+1 ← Q̃i,j(ỹi,j , zj)

4. Let c2 = Q̃i,d(ỹi,d, zd). If c2 = ⊥, set c = ⊥, else set c =
TEnc1(ppT ; r)||c2.5

5. If c = ⊥, output GetUpd, else output TDec(sk, u1, c).

Theorem 14. The RBE construction Sect. 5.1 satisfies the completeness, com-
pactness, efficiency (Definition 2) and the stronger security notion of an anony-
mous RBE (Definition 5) properties.

In the following subsections, we prove Theorem14.
4 Note that we must store the versions of the same TimeTree at times corresponding

to last updation of each Treei in T . But there would only be log n such versions.
5 Alternately, we could have performed these operations for each i, which would be

the number of trees in T . Here, we would have obtained a value �= ⊥ only for one i.
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5.2 Completeness, Compactness and Efficiency of the Construction

Completeness. By the correctness of the hash garbling scheme and the com-
pleteness of the T-RBE scheme, completeness property follows.

Compactness of public parameters and update. Consider the public
parameter pp = (hk, ppT , (rt1, d1), · · · , (rtη, dη)). We observe that:

– The public parameter of T-RBE, ppT is of size O(poly(κ, log n)).
– The hash key hk and the depth di are each of size κ.
– The root of the time tree rti is of size 3.κ.
– η is at any time is atmost log(n), as the number of trees in T at any time is

at most log(n).

Hence, the size of pp is O(poly(κ, log n)).
Consider the update u = (u1, pth). By efficiency of T-RBE, size of u1 is

O(poly(κ, log n)). pth is the path of nodes from the leaf id||tid||02κ−log n to
the root rt and hence of size at most κ.(3κ) = O(κ). Hence, the size of u is
O(poly(κ, log n)).

Efficiency of runtime of registration and update. The registration process
involves running the registration of underlying T-RBE, which takes time at
most poly(κ, log n) and inserting the new identity into the Red-black Merkle
tree TimeTree, which takes time at most log n. Hence, each invocation of the
registration process takes time O(poly(κ, log n)).

Consider a single invocation of the update process. It involves a single invoca-
tion of the update algorithm of T-RBE, which takes time at most poly(κ, log n)
and reading a single path from TimeTree in aux, which takes time O((3.κ).κ) and
an additional log(n) time to figure out the correct version of TimeTree to read the
path from. Hence a single invocation of the update takes time O(poly(κ, log n)).

Efficiency of the number of updates. Each identity would require to invoke
Upd, whenever the Merkle tree in T containing id gets modified (by a merge).
Unless a merge operation occurs, the identities can use the opening in the
TimeTree corresponding to the time its Merkle tree (in T ) was last updated
(even though TimeTree gets updated at each registration). Since the number of
merges is at most O(log(n)), the number of invocations of Upd by each identity
is at most O(log n).

5.3 Proof of Anonymity and Security of the RBE Construction

We now prove that the RBE scheme satisfies the stronger notion of security of
an anonymous RBE (Definition 5).

Proof. We prove the security assuming that there is only one Merkle tree in T
at the time of encryption for simplicity. The proof for the case of multiple trees
will be the same. Let TimeTree have root rt and let the challenge identity id be
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at depth d in TimeTree, at the time of encryption. For each j ∈ [d], as in the
construction, we have:

Qj ≡ Q1,j [hk, state1,j+1, id,m, r1,j+1, r, ppT ]

where all the variables are as in the encryption algorithm of the construction.
As in the construction, let the path from the leaf node id||02κ−log n||tid to the

root rt be denoted by:

pth = ((id, 02κ−log n, tid), (a1, id1, b1), · · · , (ad−1, idd−1, bd−1), rt)

As in the decryption algorithm of the construction, we denote the hash-garbling
of the inputs of the circuits by ỹj = ỹ

(0)
1,j ||ỹ

(1)
1,j for each j ∈ [d]. Then, in the actual

game, the output of the encryption algorithm is ct0 := (subct0,1, subct0,2), where
subct0,1 = (pp, {ỹ

(0)
j }j ,TEnc1(ppT ; r)) and subct0,2 = ({Q̃j}j , ỹ

(1)
1 ).

We describe the following sequence of hybrids, for uniformly drawn message
m, where we first replace the garbled versions of the programs Qj and the corre-
sponding garbled inputs ỹj by their simulated variants, which do not use statej ,
one by one. Then, in the subsequent hybrids, we replace the simulated garbled
programs and inputs by uniform, one by one. This uses the blindness of the
T-RBE scheme and the blind hash garbling scheme.

– Hybrid0 (encryption in real game): The ciphertext in this hybrid is
ct0 := (subct0,1, subct0,2), where subct0,1 = (pp, {ỹ

(0)
j }j ,TEnc1(ppT ; r)) and

subct0,2 = (Q̃1, · · · , Q̃d, ỹ
(1)
1 ), as described above.

– Hybrid1: We replace the first obfuscated program Q̃1 with its simulated
form. Q̃2, · · · , Q̃d are sampled as in the construction. Let Q̃1,sim and ỹ

(1)
1,sim be

sampled as:

(Q̃1,sim, ỹ
(1)
1,sim) ← Sim(hk, (ad−1, idd−1, bd−1), 1|Q1 |, ỹ(1)

2 )

Then, the ciphertext in this hybrid is ct1 := (subct1,1, subct1,2),
where subct1,1 = (pp, , {ỹ

(0)
j }j ,TEnc1(ppT ; r)) and subct1,2 = (Q̃1,sim, · · · , Q̃d,

ỹ
(1)
1,sim).

– Hybridi, for each i ∈ [d−1]: The ciphertext is cti := (subcti,1, subcti,2), where
subcti,1 = (pp, {ỹ

(0)
j }j ,TEnc1(ppT ; r)) and subcti,2 = (Q̃1,sim, · · · , Q̃i,sim,

Q̃i+1, · · · , Q̃d, ỹ
(1)
1,sim) where for each j ∈ [i]:

(Q̃j,sim, ỹ
(1)
j,sim) ← Sim(hk, (ad−j , idd−j , bd−j), 1|Qj |, ỹ(1)

j+1)

– Hybridd: The ciphertext is ctd := (subctd,1, subctd,2), where subctd,1 =
(pp, {ỹ

(0)
j }j ,TEnc1(ppT ; r)) and subctd,2 = (Q̃1,sim, · · · , Q̃d,sim, ỹ

(1)
1,sim) where

for each j ∈ [d − 1]

(Q̃j,sim, ỹ
(1)
j,sim) ← Sim(hk, (ad−j , idd−j , bd−j), 1|Qj |, ỹ(1)

j+1)

and

(Q̃d,sim, ỹ
(1)
d,sim) ← Sim(hk, (id, 02κ−log n, tid), 1|Qd |,TEnc2(ppT , tid,m; r))
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– Hybridi for each i = d + 1, · · · , 2d − 1: The ciphertext is cti :=
(subcti,1, subcti,2), where subcti,1 = (pp, {ỹ

(0)
j }j ,TEnc1(ppT ; r)) and

subcti,2 = (Q̃1,sim, · · · , Q̃2d−i,sim, U|Q̃2d−i+1|, · · · , U|Q̃d|, ỹ
(1)
1,sim)

– Hybrid2d: The ciphertext is ct2d := (subct2d,1, subct2d,2), where subct2d,1 =
(pp, {ỹ

(0)
j }j ,TEnc1(ppT ; r)) and subct2d,2 = (U|Q̃1|+|ỹ(1)

1 |, U|Q̃2|, · · · , U|Q̃d|)

By the simulation security of the hash garbling scheme, for each j ∈ [d − 1],

(hk, (ad−j , idd−j , bd−j), ỹ
(0)
j , Q̃j , ỹ

(1)
j )

c≈ (hk, (ad−j , idd−j , bd−j), ỹ
(0)
j , Q̃j,sim, ỹ

(1)
j,sim)

(hk, (id, 02κ−log n, tid), ỹ
(0)
d , Q̃d, ỹ

(1)
d )

c≈ (hk, (id, 02κ−log n, tid), ỹ
(0)
d , Q̃d,sim, ỹ

(1)
d,sim)

Hence, it follows that for each i = 0, · · · , d − 1, Hybridi

c≈ Hybridi+1.

Now, as the sequence of hybrids were defined for uniformly drawn message m,
by the blindness of underlying T-RBE scheme, we know that:

(TEnc1(ppT ; r),TEnc2(ppT , tid,m; r))
c≈ (TEnc1(ppT ; r), U)

Hence, by the blindness property of the hash garbling scheme, it follows that:

(hk, (id, 02κ−log n, tid), ỹ
(0)
d , Q̃d,sim, ỹ

(1)
d,sim)

c≈ (hk, (id, 02κ−log n, tid), ỹ
(0)
d , U|Q̃d|+|ỹ(d)

1 |)

Hence, Hybridd

c≈ Hybridd+1.
Similarly, by consecutive application of the blindness property of the

hash garbling scheme, it holds that for each i = d + 1, · · · , 2d − 1,
Hybridi

c≈ Hybridi+1. Hence, we have that, for uniformly drawn message m,

Hybrid0

c≈ Hybrid2d (1)

We now prove that, in fact, indistinguishability in Eq. 1 is stronger than the
desired anonymity of the RBE scheme:

For b = 0, 1, let ctmb,idb
0 = (subctmb,idb

0,1 , subctmb,idb
0,2 ) and ctmb,idb

2d =
(subctmb,idb

2d,1 , subctmb,idb
2d,2 ) denote the ciphertexts in Hybrid0 and Hybrid2d

respectively for the b-th message, identity pair.

1. By security of T-RBE, it would follow that Hybrid0
d

c≈ Hybrid1
d, where

Hybridβ
i denote the hybrids described above with use of message mβ . Hence,

it follows that Hybrid0
0

c≈ Hybrid1
0.

2. Using the above indistinguishability, it follows that, for a random message m,
we have ctm0,id0

0

c≈ ctm,id0
0 .

3. Since Hybrid0

c≈ Hybrid2d for random message m, it then follows that
ctm,id0

0 = (subctm,id0
0,1 , subctm,id0

0,2 )
c≈ (subctm,id0

0,1 , U) = ctm,id0
2d .

4. Since subctm,id0
0,1 = TEnc1(ppT ; r), is independent of identity or the message

m, it then follows that ctm,id0
2d

c≈ ctm,id1
2d .

Combining the steps 2, 3 and 4 above, it follows that ctm0,id0
0

c≈ ctm1,id1
0 . This

exactly represents the stronger security game of the anonymous RBE. Hence,
the anonymity and security of the RBE scheme is proved.
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Abstract. In this work, we revisit the primitive functional encryp-
tion (FE) for inner products and show its application to decentralized
attribute-based encryption (ABE). Particularly, we derive an FE for
inner products that satisfies a stronger notion, and show how to use such
an FE to construct decentralized ABE for the class {0, 1}-LSSS against
bounded collusions in the plain model. We formalize the FE notion and
show how to achieve such an FE under the LWE or DDH assumption.
Therefore, our resulting decentralized ABE can be constructed under
the same standard assumptions, improving the prior construction by
Lewko and Waters (Eurocrypt 2011). Finally, we also point out chal-
lenges to construct decentralized ABE for general functions by establish-
ing a relation between such an ABE and witness encryption for general
NP statements.

1 Introduction

In this work, we revisit the functional encryption (FE) for inner products [6] and
show its application to decentralized attribute-based encryption [22]. In partic-
ular, we identify a stronger notion for FE required in this application, and show
how to build such a scheme under the LWE or DDH assumption. Our new anal-
ysis improves the parameters of the LWE-based scheme (over [6]) substantially.
Next, we show how to build a decentralized ABE against bounded collusion
from FE for inner products that satisfies the stronger notion. By combining the
instantiation of the FE, we can derive a decentralized ABE against bounded
collusion from LWE or DDH, improving the prior work [41] in the perspective
of weaker assumptions. Below, we briefly review the contexts and motivation of
our study.
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1.1 A Brief History and Motivation

We start with the application of decentralized ABE, and then discuss our central
tool – FE for inner products.

Attribute-based Encryption. Attribute-based Encryption (ABE) [11,34]
generalizes public key encryption to allow fine grained access control on
encrypted data. In (ciphertext-policy) attribute-based encryption, a cipher-
text ct for message μ is associated with a policy function f , and a secret
key sk corresponds to an attribute x. The functionality requires that decryp-
tor learns the underlying message μ if attribute x satisfies the policy func-
tion f , and if not, security guarantees that nothing about μ can be learned.
In the past decade, significant progress has been made towards construct-
ing attribute-based encryption for advanced functionalities based on various
assumptions [5,8,14,17,18,20,26,29,32,33,35,39,42,49,51,54,55].

In 2007, Chase [22] considered an extension called multi-authority (or decen-
tralized) ABE. In almost all ABE proposals listed above, the secret keys are
generated by one central authority, who has the ability to verify all attributes
for the secret keys it generated. These systems can be utilized to share informa-
tion according to a policy within a domain or organization, where the central
authority is in charge of issuing secret keys. However, in many applications, we
wish to share some confidential information associated with a policy function
across several different trusted organizations. For instance, in a joint project
by two corporations, like Google and Facebook, they both may issue secret keys
associated with attributes within their own organizations. This setting is outside
the scope of the single authority ABE, as the single authority is not capable to
verify attributes from different organizations. In [41], the authors show how to
construct a decentralized ABE that captures the desired properties, for a large
class of functions. Their solutions are secure against unbounded collusion in the
random oracle model, or against bounded collusion in the standard model. For
both cases, their proofs of security however, rely on several new computational
assumptions on bilinear groups. Moreover, their security model only captures a
static corruption where the adversary must commit to a set of corrupted parties
at the beginning of the security game. To our knowledge, there is no construc-
tion that is based on better studied computational assumptions, such as DDH
or LWE, even for the setting of bounded collusion. Thus, we ask:

Can we build a decentralized ABE under standard assumptions, even for some
restricted class of functions and against bounded collusion?

Along the way to answer this question, we identify an interesting connection
between decentralized ABE and functional encryption for inner products [6]. We
first review the context of functional encryption (for inner products), and then
elaborate on the connection in the technical overview section below.

Functional Encryption (for Inner Products). In a Functional Encryption
(FE) scheme [16,48], a secret key skg is associated with a function g, and a cipher-
text ctx is associated with some input x from the domain of g. The function-
ality of FE requires that the decryption procedure outputs g(x), while security
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guarantees that nothing more than than g(x) can be learned. Constructing FE
for general functions is quite challenging – the only known solutions (support-
ing unbounded key queries) either rely on indistinguishability obfuscation [25]
or multilinear maps [27]. On the other hand, researchers have identified some
special classes of functions that already suffice for many interesting applica-
tions [3,7]. One of them is the inner products, where a ciphertext ct encrypts a
vector y ∈ D� for some domain D, and a secret key for vector x ∈ D� allows
computing 〈x,y〉 but nothing else. Abdalla et al. [1] constructed a scheme and
prove security against selective adversaries, who have to declare the challenge
messages (y0,y1) at the beginning before seeing the master public key mpk.
More recently, Agrawal et al. [6] constructed an adaptively secure FE for inner
products that removes this restriction, and in particular, their scheme guaran-
tees the indistinguishability-based (IND) security for key queries both before and
after the challenge ciphertext. Moreover, Agrawal et al. [6] pointed out that the
IND-based security achieves “almost” the best possible security, as it implies
the simulation-based (SIM) security (for the case of inner products) without
post-challenge-ciphertext key queries. On the other hand, the SIM-based secu-
rity is in general impossible to achieve even for one post-challenge-ciphertext key
query [6,16].

In this work, we observe that the IND-based security does not suffice for
our task of constructing decentralized ABE with a stronger security guarantee.
Furthermore, the efficiency of the currently best known lattice-based construc-
tion (FE for inner products) [6] degrades exponentially with the dimension of
the vector y. A subsequent work [4] improved the parameters significantly, yet
with a tradeoff of weaker security where the adversary can only receive skx for
random x’s before the challenge ciphertext and cannot issue more key queries
afterwards. Their scheme [4] is useful in the setting of designing trace-and-revoke
systems, but cannot be applied to the decentralized ABE where the adversary
can obtain keys of his own choice, both before and after the challenge ciphertext.
Thus, the applicability of currently known FE for inner products is still limited.
Therefore, we ask the following question:

Can we further generalize the security framework and construct
more efficient schemes of FE for inner products?

1.2 Our Results

Below we summarize our answers to the two questions in three folds as below.

1. For the question related to decentralized ABE, we first generalize the security
notion of [41] by considering adaptive corruption of parties (in addition to
making adaptive key queries). Then we construct a new scheme for {0, 1}-
LSSS (a class that captures monotone boolean formula) with the building
block – functional encryption for inner products (with a stronger security
requirement). Our scheme is in the plain model and the security holds against
bounded collusion.
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2. We formalize this requirement and instantiate two schemes – one by LWE,
and the other by DDH. Our constructions make essential modifications of
the constructions by [6], and we improve the analysis significantly (especially
for the LWE-based construction), resulting in more efficient schemes with
stronger security.

3. We show that decentralized ABE for general access structures is somewhat
equivalent to witness encryption (WE) for general NP relations. This can
be viewed as a challenge in achieving decentralized ABE based on standard
assumptions, as we are not aware of any construction of WE for NP relations
based on standard assumptions.

By putting (1) and (2) together, we achieve the following informal theorem:

Theorem 1.1 (Informally Stated). Assume the DDH or LWE assumption.
For the function class of {0, 1}-LSSS, there exists a decentralized ABE scheme
that is secure against adversary who can make adaptive key queries and adap-
tively corrupt parties, with bounded collusions.

Our LWE-based construction provides another path to construct decentral-
ized ABE that is potentially secure against quantum computers as long as LWE
is quantum hard. Next we compare our DDH construction with that of the prior
work [41]. First, both schemes achieve the function class {0, 1}-LSSS. Second,
our scheme achieves stronger security against adaptive corruptions of parties,
yet the work [41] achieves security against static security where the adversary
needs to commit to a subset of corrupted parties at the beginning of the security
experiment. Third, our scheme only relies on the DDH assumption without the
need of pairings, yet the work [41] requires three new assumptions on bilinear
groups. Finally, the work [41] can support an unbounded number of collusions
by using random oracle, yet in the plain model, their scheme can only support a
bounded number of collusions. On the other hand, our scheme works natively in
the plain model and supports a bounded number of collusions. We leave it as an
interesting open question whether our scheme can be upgraded in the random
oracle model.

1.3 Our Techniques

Decentralized ABE. In this work, one focus is to construct decentralized ABE,
following the direction of the prior work [22,41]. We first briefly review the set-
ting. In a decentralized ABE system, anyone can become an authority by simply
creating a public key and issuing secret keys to different users for their attributes,
without coordinating with (or even being aware of) other authorities. Similarly
as in [22,41], we use the concept of global identifiers (GID) to link together secret
keys issued by different authorities. Ciphertexts are generated corresponding to
some access structure over attributes. The decryptor can recover the message if
he holds secret keys from different attributes that have the same GID and satisfy
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the access structure specified by the ciphertext. In the security model, the adver-
sary can corrupt authorities and query authorities for attributes associated with
GID adaptively, with the restrictions that the information learned from these
collusion cannot help adversary decrypt challenge ciphertext. For the bounded
collusion setting, the number of GID queried by adversary is fixed according to
the scheme parameter.

To present our intuition, we first consider a very simple case and then present
how we can generalize the idea. Let us assume that there is only one known GID,
and there are three parties P1, P2, P3, where each Pi holds only one attribute i.
In this case, constructing a decentralized ABE is simple. Each Pi just samples
(pki, ski) from a regular encryption scheme, and outputs pki as the master public
key and keeps ski as the master secret key. To issue a key for the attribute i,
the party Pi just simply outputs ski. To encrypt a message m, the encryptor
first secret share (w1, w2, w3) ← Share(m) (according to its access structure),
and outputs Encpk1(w1),Encpk2(w2),Encpk3(w3) as the ciphertext. Intuitively, if
the decryptor holds a set of keys {skj}j∈S where S satisfies the access structure,
then the decryptor can obtain {wj}j∈S and recover the original message m. On
the other hand, if S does not satisfy the structure, then by the security of the
secret sharing scheme, the adversary cannot learn any information about m.

To generalize the idea to a larger GID domain, we consider a new secret
sharing that takes shares over polynomials.1 Particularly, we let p0(x) = m
be a constant degree polynomial with the coefficient m. The encryptor now
shares (p1(x), p2(x), p3(x)) ← Share(p0(x)), and outputs the ciphertext as(
Encpk1(p1(x)), Encpk2(p2(x)),Encpk3(p3(x))

)
. Suppose we can achieve the fol-

lowing properties:

1. Pi can issue a secret key ski,GID such that whoever holds the key can learn
pi(GID).

2. Suppose
(

{pi(GID1)}i∈S1
, {pi(GID2)}i∈S2

, . . . , {pi(GIDt)}i∈St

)
is given for

distinct GID1, . . . ,GIDt.
(a) If there exists some Sj that satisfies the access structure, then one can

recover p0(GIDj) = m.
(b) If no such Sj exists, then p0(x) = m remains hidden.

Then it is not hard to see that the scheme also achieves the decentralized ABE,
as Pi can issue ski,GID as Property 1, the decryption works by Property 2(a), and
intuitively, security is guaranteed by Property 2(b).

Now we elaborate on how to implement the properties in more details. First,
we can see that functional encryption (FE) is exactly what we need for Prop-
erty 1, and in fact, FE for inner products suffices for the functionality. The
encryption algorithm can encrypt y = (c0, c1, . . . , ck) that represents the poly-
nomial p(x) =

∑k
i=0 cix

i, and a key for GID can be set as the FE key skx for
x = (1,GID,GID2, . . . ,GIDk). By using the FE decryption with the secret key
1 We will discuss the secret sharing in more details, but let us focus on the high level

concepts at this point.
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skx , one can learn 〈x,y〉 = p(GID). To implement Property 2, we find that we
can apply the known {0, 1}-LSSS sharing scheme [13] over the coefficients of the
polynomial, and prove Properties 2(a) and 2(b). If the shares of polynomials are
of degree k, then we can tolerate up to t = k − 1 distinct GID queries. See our
Sect. 4 for further details.

We notice that any FE for inner products can achieve the functionality of
Property 1 as stated above, yet connecting security of the FE and security of
the decentralized ABE is not obvious. First, the (challenge) messages used in
the decentralized ABE come from a distribution (i.e., shares from Share (p0(x))
form a distribution), yet the IND-based security considered by prior work [1,
6,16] focuses on two fixed challenge messages y0 and y1. It is not clear how
to define two fixed y0 and y1 to capture two distributions of Share (p0(x)) and
Share (q0(x)) in the decentralized ABE setting, and furthermore, is not clear how
to define admissible key queries in our setting. SIM-based FE might be helpful,
but it is impossible to achieve the notion (for challenge ciphertexts that encrypt a
vector of messages) if the adversary is allowed to make post-challenge ciphertext
key queries, as pointed out by [6]. We also note that the scheme of Gorbunov,
Vaikuntanathan, and Wee [31] cannot be applied to our setting directly, as their
SIM adaptive security only holds for challenge ciphertexts that encrypt a single-
message.2 Second, in our decentralized ABE, the adversary is allowed to corrupt
parties and make key queries adaptively, i.e., at any time of the game. It is
not clear whether the currently functional encryption schemes are secure under
adaptive corruption if several ciphertexts under different public keys are given
first and then several master secret keys are compromised. Consider the following
example: suppose Encpk1(y1),Encpk2(y2),Encpk3(y3) are given first, and then the
adversary can corrupt any subset, say sk1 and sk2, and make key query to sk3,
what security can we guarantee for the remaining message y3?

Functional Encryption for Inner Products. To handle the issues above, we
consider a more generalized security notion of functional encryption. Intuitively,
our framework considers encryption over a set of messages from two (challenge)
distributions, say (y1, . . . ,y�) ← D�

b for b ∈ {0, 1}, under different public keys
(pk1, . . . , pk�), and the ciphertexts

(
Encpk1(y1), . . . ,Encpk�

(y�)
)

are given to the
adversary. The adversary can make (1) a corruption query to any ski and (2)
a key query x to an uncorrupted skj , multiple times before or after the chal-
lenge phase. Our security requires that the adversary cannot guess b correctly,
as long as the distributions D�

0 and D�
1 remain indistinguishable under the func-

tionalities from (1) and (2). This security notion lies in between the IND-based
security and the SIM-based security. We prove that any functional encryption
that satisfies the notion can be used to implement the idea above to build a
secure decentralized ABE. We present the details in Sect. 4.

Next we turn to the question how to build such a functional encryp-
tion scheme. We make essential modifications of the DDH and LWE-based

2 The work [31] can derive an IND adaptively secure scheme for challenge ciphertexts
that encrypt a vector of messages, but as we discussed above, IND security seems
not sufficient for our application.
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constructions from the work [6], and prove that the modified schemes achieve our
new security definition. Conceptually, we develop two new techniques: (1) we use
a complexity leverage argument (or random guessing [36]) in a clever way that
does not affect of the underlying LWE or DDH assumption at all. (2) Our LWE-
based construction uses a re-randomized technique proposed in the work [37]
to avoid the use of multi-hint extended LWE as required by the work [6]. The
reduction from multi-hint LWE to LWE incurs a significant security loss, and
the standard deviation required by the discrete Gaussian distribution is large.
By using our new analysis, we are able to have a direct security proof of the
scheme without multi-hint LWE, resulting in an exponential improvement over
the parameters. Below we elaborate on more details. As we improve over some
subtle but important points of the work [6], for the next paragraph we assume
some familiarity of the work [6].

We briefly review the approach of [6]. The master public/secret keys have
the form mpk = (A,U) and msk = Z such that U = ZA. The ciphertext has
the form Enc(y) = (c0, c1) where c0 = As+e0, and c1 = Us+e1 +Ky for some
appropriate number K. The security proof of [6] proceeds as follows:

– Let H0 be the original game.
– Hybrid H1: c0 remains the same, and c1 = Z(c0 − e0) + e1 + Ky.
– Hybrid H2: c0 is switched to the uniform vector, and c1 remains the same as

H1.

It is quite easy to see that H1 is just a rephrase of H0, so the two hybrids are
identical. The difference between H1 and H2 relies on the multi-hint extended
LWE, as we need the hint of Ze0 in order to simulate c1 given c0. Then Agrawal
et al. [6] showed that in H2, the adversary has a negligible winning probability
with an information-theoretic argument. This is to say, in H2, even a computa-
tionally unbounded adversary cannot win the game with better than a negligible
probability.

To get rid of the use of multi-hint extended LWE, we modify the hybrid 1:

– New H ′
1: c0 remains the same as H0, and c1 = ReRand(Z, c0, αq, σ∗) + Ky

for some αq, σ∗.

The algorithm ReRand was proposed in the work by Katsumata et al. [37]. We
show that this technique can be used to improve analysis in our setting: by setting
αq, σ∗ appropriately, the output distribution of the ReRand will be statistically
close to Us + e∗ where e∗ has the same distribution of e1. Consequently, c1
can be generated independent of e0, and thus we can get rid of the need of the
multi-hint LWE.

To prove security of our setting, we need to analyze the success probability of
an adversary in H2. We observe that the proof technique by the work [6] cannot
be applied to our setting. Intuitively, the crux of their security proof (in H2) relies
on the following facts: (1) once the adversary submits the challenge messages
y0,y1, the space of key queries in the remaining game is fixed to Λ⊥(y0−y1). (2)
The adversary cannot distinguish y0 from y1 even if he is given the ciphertext
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and a set of keys in each dimension of Λ⊥(y0 − y1) at the same time. (This is
captured as XtopZ in their proof.) (3) Any post-challenge key queries can be
derived by a linear combination of the keys obtained in (2), i.e, XtopZ. In our
setting however, the fact (1) no longer holds. Given two message distributions,
it is not clear whether the space for the remaining key queries is even fixed or
not. Therefore, their argument cannot be used in our setting.

Another possible way to handle adaptive queries is to use a complexity lever-
aging argument (or random guessing according to the work [36]). However, by
folklore we know that naively applying the argument will result in an exponen-
tial security loss, i.e., εscheme ≤ 2λ · εLWE. Our new insight to tackle this problem
is to apply it cleverly: we only apply the argument in the hybrid H2 where
all the analysis is information-theoretic. In more details, we show that in H2

the advantage of any adversary who only makes pre-challenge ciphertext key
queries is bounded by some ε2, and by the complexity leveraging argument, the
advantage of a full adversary is bounded by 2λ · ε2. By setting the parameters
appropriately, we can afford the loss without affecting the hardness of the under-
lying LWE or DDH assumption. Our overall advantage of the adversary would
be εscheme ≤ Δ(H0,H1) + Δ(H1,H2) + Adv(H2). By the property of ReRand,
Δ(H0,H1) is negligible; by the security of LWE, Δ(H1,H2) ≤ εLWE; by the above
argument Adv(H2) = 2λ · ε2 can also be set to negligible. Therefore, we have
εscheme ≤ εLWE + negl(λ). Details can be found in the full version of the paper.

Can We Achieve Decentralized ABE for General Functions? After
achieving decentralized ABE for {0, 1}-LSSS, it is natural to ask whether we
can do more. Here we show that any decentralized ABE for general functions
implies a witness encryption (WE) for general NP statements. On the other
hand, an extractable witness encryption for general NP statements plus signa-
tures implies decentralized ABE, following the argument of the work [29]. The
result provides a challenge to construct decentralized ABE for general functions
under standard assumptions, as we are not aware of any construction of WE
from standard assumptions. We leave it as an interesting open question whether
there exists a decentralized ABE for a class between {0, 1}-LSSS and general
functions.

1.4 Additional Related Work

Decentralized ABE. The problem of building ABE with multiple authorities
was proposed by Sahai and Waters [53], and first considered by Chase [22].
In [22], Chase introduced the concept of using a global identifier to link secret
keys together. However, her system relies on a central authority and is limited
to express a strict AND policy over a pre-determined set of authorities. Müller
et al. [46,47] proposed another construction with a centralized authority for any
LSSS structure, based on [54], but their construction is secure only against non-
adaptive queries. Lin et al. [43] showed a threshold based scheme (somewhat
decentralized) against bounded collusions. In their system, the set of authorities
is fixed ahead of time, and they must interact during system setup. Chase and
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Chow [23] showed how to remove the central authority using a distributed PRF,
but the restriction of an AND policy over a pre-determined set of authorities
remained. In [41], Lewko and Waters proposed a decentralized ABE system for
any LSSS structure from bilinear groups. Their system is secure against adaptive
secret key queries and selective authority corruption in random oracle model. Liu
et al. [44] proposed a fully secure decentralized ABE scheme in standard model,
but there exists multiple central authorities issuing identity-related keys to users.

Functional Encryption for Inner Products. The problem of FE for inner
products was first considered by Abdalla et al. [1], where they show construc-
tions against selective adversaries based on standard assumptions, like DDH and
LWE. Later on, Bishop et al. [12] consider the same functionality in the secret-
key setting with the motivation of achieving function privacy and security against
adaptive adversaries. Recently, in work by Agrawal et al. [6], they provide con-
structions in public key setting based on several standard assumptions that are
secure against more realistic adaptive adversaries, where challenge messages are
declared in the challenge phase, based on previously collected information. Ben-
hamouda et al. [10] show a CCA-Secure Inner-Product Functional Encryption
generically from projective hash functions with homomorphic properties.

For the multi-input version of the inner product functionality, more recently,
Abdalla et al. [2] show a construction of multi-input functional encryption
scheme (MIFE) for the inner products functionality based on the k-linear
assumption in prime-order bilinear groups, which is secure against adaptive
adversaries. In [24], Datta et al. describe two non-generic constructions based
on bilinear groups of prime order, where one construction can withstand an
arbitrary number of encryption slots.

Witness Encryption. Recently, Brakerski et al. [19] proposed a new framework
to construct WE via ABE. We note that a result similar to our construction can
be obtained from their work.

1.5 Roadmap

The notations and some preliminaries are described in Sect. 2. In Sect. 3, we
present our new security definition for FE, and propose an LWE based construc-
tion satisfying our new security. Due to the space limitation, we defer the full
security proof to the full version of the paper. In Sect. 4, we give a stronger secu-
rity definition for decentralized ABE and present our construction. Furthermore,
we explore the relationship between decentralized ABE and (extratable) witness
encryption in Sect. 5. The DDH-based constructions for FE and decentralized
ABE can be found in the full version of the paper.

2 Preliminaries

Notations. We use λ to denote security parameter throughout this paper. For
an integer n, we write [n] to denote the set {1, . . . , n}. We use bold lowercase
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letters to denote vectors (e.g. v) and bold uppercase letters for matrices (e.g.
A). For a vector v, we let ‖v‖ denote its �2 norm. The �2 norm of a matrix
R = {r1, ..., rm} is denoted by ‖R‖ = maxi ‖ri‖. The spectral norm of R is
denoted by s1(R) = supx∈Rm+1‖R · x‖.

We say a function negl(·) : N → (0, 1) is negligible, if for every constant
c ∈ N, negl(n) < n−c for sufficiently large n. For any set X, we denote by
P(X) as the power set of X. For any Y,Z ∈ {0, 1}n, we say that Y ⊆ Z if for
each index i ∈ [n] such that Yi = 1, We have Zi = 1. The statistical distance
between two distributions X and Y over a countable domain D is defined to be
1
2

∑
d∈D |X(d) − Y (d)|. We say that two distributions are statistically close if

their statistical distance is negligible in λ.
A family of functions H = {hi : D → R} from a domain D to range R is

called k-wise independent, if for every pairwise distinct x1, ..., xk ∈ D and every
y1, ..., yk ∈ R,

Prh←H[h(x1) = y1 ∧ ... ∧ h(xk) = yk] = 1/|R|k.

Secret Sharing and the {0, 1}-LSSS Access Structure. We briefly des-
cribe the syntax of secret sharing and the {0, 1}-LSSS access structure, and
refer the full version of the paper for further details. A secret sharing scheme
consists of two algorithms as follow: SS = (SS.Share,SS.Combine). The share
algorithm SS.Share takes input a secret message k and an access structure A

and output a set of shares s1, . . . , st. The combine algorithm SS.Combine takes
input a subset of shares can recover the secret k if the subset satisfies the access
structure A. If not, then the secret k should remain hidden to the algorithm.
Briefly speaking, if the combine algorithm just applies a linear combination over
shares to recover the message, then the secret sharing scheme is called linear,
or LSSS in brief. If the coefficients are in {0, 1}, then it is called {0, 1}-LSSS. It
is worthwhile pointing out that the {0, 1}-LSSS contains a powerful class called
Monotone Boolean Formula (MBF) pointed out by the work [13,41], who showed
that any MBF can be expressed as an access structure in {0, 1}-LSSS. In this
work, our construction of decentralized ABE achieves the class of {0, 1}-LSSS
and thus supports any the class of MBF.

3 Adaptively Secure FE for Chosen Message
Distributions

In this section, we define a new security notion of functional encryption, called
adaptively secure functional encryption for chosen message distributions. This
notion is a generalization of prior adaptively secure functional encryption [6].
We first propose the definition, and then construct an LWE-based scheme that
achieves the security notion. Our construction modified the scheme of [6] in an
essential way, and our security analysis provides significantly better parameters
than the work [6]. The DDH-based construction and its security proof can be
analyzed in a similar way as our LWE-based scheme.
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3.1 New Security Definition

In functional encryption, a secret key skg is associated with a function g, and
a ciphertext ctx is associated with some input x from the domain of g. The
functionality of FE requires that the decryption procedure outputs g(x), while
security guarantees that nothing more than g(x) can be learned. The formal
description of syntax is in the full version of the paper.

Suppose that in a functional encryption scheme, a set of messages can be
chosen from two distributions, and we obtain a set of ciphertexts by encrypting
each message yi using different master public keys mpki. Before choosing the
two message distributions, the adversary is sent a set of master public keys
{mpki}i∈[t] and can also make two kinds of queries:

– Function queries: For query (f, i), obtain secret key skf
i for function f from

mski.
– Opening queries: For query i, obtain master secret key mski.

The natural restrictions we enforce here are (1) the distributions of queried func-
tion evaluations for the two message distributions remains indistinguishable, (2)
the distributions of opening messages are also indistinguishable. Otherwise, there
can be no security as the adversary can trivially distinguish the two message dis-
tributions. On the other hand, other additional information such as, the opening
messages, queried keys, and the function values, may help the adversary to learn
to distinguish the message distributions from the ciphertexts. Our new security
notion – adaptively secure functional encryption for chosen message distribu-
tions, requires that the choice of the message distribution of challenger remains
indistinguishable even if the adversary is given the additional information.

We formalize IND-based security definition with respect to admissible map-
pings. For ease of exposition, we first define the query mappings.

Definition 3.1. Let t = t(λ) be an integer and M be the message space.
{xi}i∈[t] ∈ Mt is a set of messages, and f : M → K be a function. We
define the functions (i, f) : Mt → K as (i, f)(x1, ..., xt) = f(xi), and function
(i, I) : Mt → M as (i, I)(x1, ..., xt) = xi.

Definition 3.2 (Admissible mappings). Let t = t(λ) be an integer, M be
the message space, and M0,M1 be two distributions over space Mt. Let subsets
T1, T2 � [t] such that T2 ∩ T1 = ∅ and |T2 ∪ T1| < t, and let {ki}i∈T2 be a
set of integers. We say that mappings {(i, I)}i∈T1 and {(i, fij)}i∈T2,j∈[ki] are
admissible if it holds that

{{(i, I)(M0)}i∈T1 , {(i, fij)(M0)}i∈T2,j∈[ki]}
= {{(i, I)(M1)}i∈T1 , {(i, fij)(M1)}i∈T2,j∈[ki]}

Remark 3.3. The requirement of admissible mappings is that the above two
distributions are identical. We can also relax the definition by requiring the two
distributions are statistically or computationally close.
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We define the adaptive security of functional encryption for chosen message
distributions through an experiment ExptFEA (1λ, 1t) between an adversary and
challenger:

1. Setup: For i ∈ [t], challenger first computes (mpki,mski) ← Setup(1λ), then
sends {mpki}i∈[t] to adversary A.

2. Query Phase I: Proceeding adaptively, adversary can make any polynomial
number of queries to the oracle O({mski}i∈[t], ·) of the following two kinds:

– Function queries (i, fij): Challenger sends back skfij
← KeyGen(ski, fij).

– Opening queries (i, I): Challenger sends back mski.
3. Challenge Phase: Adversary A sends two message distributions M0 and

M1 over message space Mt with the restriction that any queries made in
Query Phase I are admissible with respect to (M0,M1) (c.f. Definition 3.2).
The challenger chooses a random bit b ∈ {0, 1}, and sends ciphertext {cti =
Enc(mpki, xi)}i∈[t] back to adversary, where {xi}i∈[t] ← Mb.

4. Query Phase II: Adversary A can continue making queries as specified in
Query Phase I as long as the queries are admissible.

5. Guess: Adversary A outputs his guess b′.

We define the advantage of adversary A in the experiment ExptFEA (1λ, 1t) as

AdvA(1λ, 1t) = |Pr[ExptFEA (1λ, 1t) = 1] − 1/2|
Definition 3.4. We say a functional encryption scheme Π is adaptively secure
for chosen message distributions security if for any polynomial t = t(λ), and any
ppt adversary A, we have AdvA(1λ, 1t) ≤ negl(λ).

3.2 Functional Encryption for Inner Products Modulo p

Agrawal et al. [6] show a construction of functional encryption for inner products
modulo p assuming the hardness of LWE problem. In this section, we made some
important modifications of their construction, particularly the encryption and
key generation algorithms, and then show that the modified scheme satisfies our
new security definition. Our modifications and new analysis provide significantly
better parameters as we will discuss below. We first present the construction:

– Setup(1n, 1�, 1k, p): Set integers m, q = pe for some integer e, and real numbers

α, α′ ∈ (0, 1). Randomly sample matrices A $← Z
m×n
q and Zi

$←− Z
�×m
p , for

i = 1, ..., k. Compute Ui = Zi ·A ∈ Z
�×n
q . Output mpk := (A, {Ui}i∈[k]) and

msk := ({Zi}i∈[k]).
– KeyGen(msk,x): On input a vector x = (x1, . . . ,xk), where for each i ∈ [k],

xi ∈ Z
�
p, compute the secret key zx as follows. As x is linearly independent

from the key queries have been made so far modulo p, we can compute zx =∑k
i=1 xT

i · Zi, and output secret key skx = zx .
– Enc(mpk,y): On input y = (y1, ...,yk), where for each i ∈ [k], yi ∈ Z

�
p,

sample s
$← Z

n
q ,e0 ← Dm

Z,αq and {ei}i∈[k] ← D�
Z,α′q and compute

c0 = A · s + e0 ∈ Z
m
q , ci = Ui · s + ei + pe−1 · yi ∈ Z

�
q,∀i ∈ [k]

Then, output ct = (c0, {ci}i∈[k]).
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– Dec(mpk, skx , ct): On input ct = (c0, {ci}i∈[k]) and a secret key skx = zx for
x = (x1, . . . ,xk) ∈ Z

k�
p , compute μ′ =

∑k
i=1〈xi, ci〉−〈zx , c0〉 and output the

value μ ∈ Zp that minimizes |pe−1 · μ − μ′|.

Decryption Correctness. Correctness derives from the following equation:

μ′ =

k∑

i=1

〈xi, ci〉 − 〈zx , c0〉 = pe−1 ·
(

k∑

i=1

〈xi, yi〉 mod p

)
+

k∑

i=1

〈xi, ei〉 − 〈zx , e0〉 mod q

If the magnitude of error term
∑k

i=1〈xi,ei〉−〈zx ,e0〉 is ≤ pe−1/2 with over-
whelming probability, then the correctness holds with overwhelming probability.

Parameters Setting. The parameters in Table 1 are selected in order to satisfy
the following constraints. In the table below, e, c1, c2, δ1, δ2, δ are constants, and
δ = δ1 + δ2

Table 1. Parameter description and simple example setting

Parameters Description Setting

λ security parameter

n column of public matrix λ

m row of public matrix n1+δ

p modulus of inner products nc1

e power of q to p > 3 + ( 7δ
2

+ c2
2

+ 2)/c1

q modulus of LWE nc1e

αq Gaussian parameter of e0

√
nc2+2δ · log n

α
′
q Gaussian parameter of ei n1+δ+c1 ·

√
nc+2δ · log n

t number of distinct mpk’s nc2

k number of xi in x nδ1

� dimension of xi nδ2

σ∗ parameter of ReRand algorithm pm

– To ensure correctness of decryption, we require pe−1 > 2kp2m�αq(2
√

�+
√

m).
– To ensure the correctness of ReRand algorithm, we require σ∗ ≥ pm.
– By the property of ReRand algorithm, we have α

′
q = 2σ∗αq.

– To ensure small enough reduction loss for the ReRand algorithm, we require
αq >

√
λ + tk2�2 log p.

– To ensure large enough entropy required by Claim (in full version), we require
m ≥ 2k� + ek�(n + 1) + 3λ.
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Comparison with the Work [4,6]. Our analysis shows that the scheme can
support a much wider range of parameters than the analysis of Agrawal et al. [6].
For their analysis, the efficiency degrade quickly when the dimension increases,
and in particular, the modulus q ≥ p�. This is why the work [6] sets the dimension
� = Ω(log n). In our analysis, we can build a direct reduction to LWE (without
using the intermediate extended LWE), allowing us to choose Zi ← U(Z�×m

p )
(instead of using a discrete Gaussian with a very large deviation). This gives us
a significant improvement over the parameters: our modulus q does not depend
on � in an exponential way, so we can set the dimension to any fixed polynomial,
without increasing q significantly.

A subsequent work [4] improved the parameters significantly, yet with a
tradeoff of weaker security where the adversary can only receive skx for random
x’s before the challenge ciphertext and cannot issue more key queries afterwards.
Their scheme [4] is useful in the setting of designing trace-and-revoke systems,
but cannot be applied to the decentralized ABE where the adversary can obtain
keys of his own choice, both before and after the challenge ciphertext.

Security Proof. Now we can show the following theorem that under the param-
eters above, the functional encryption for inner product scheme described above
is adaptively secure for chosen message distributions. Due to space limit, we
defer the full proof to the full version of the paper.

Theorem 3.5. Under the LWE assumption, the above functional encryption for
inner products is adaptively secure for chosen message distributions, assuming
for each mski, the secret key queries to the mski are linearly independent.

Remark 3.6. The functionality of the scheme described above is inner products
modulo a prime p. In [6], the authors have given an attack for the case that the
secret key queries are not linearly independent modulo p but linearly independent
over the integers, and they proposed a stateful key generation technique to get
rid of the attack. Here we can also use a stateful key generation algorithm to
remove the last assumption (i.e., linearly independent queries) in the theorem.

4 Decentralized ABE: Stronger Definition and
Construction

In this section, we first describe the syntax of decentralized ABE, following the
work [41], and then we define a stronger security notion. Next, we present our
construction and security proof, relying on the functional encryption scheme in
Sect. 3.2. We first present a basic scheme that supports smaller GID and mes-
sage spaces (Sect. 4.2), and next we show an improved scheme that supports
significantly larger spaces (Sect. 4.3).
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4.1 Syntax of Decentralized ABE Scheme and Stronger Security

We first recall the syntax of decentralized ABE as defined in [41] and then present
a stronger security definition. Let F be a function class. A decentralized ABE
for F consists of the following algorithms:

– Global.Setup(1λ) → GP The global setup algorithm takes in the security
parameter λ and outputs global parameters GP for the system.

– Authority.Setup(GP) → (pk, sk) Each authority runs the authority setup algo-
rithm with GP as input to produce its own secret key and the public key pair
(sk, pk).

– Enc(μ, f,GP, {pk}) → ct Encryption algorithm takes as inputs a message μ,
a function f ∈ F , a set of public keys for relevant authorities, and the global
parameters, and outputs a ciphertext ct.

– KeyGen(GID,GP, i, sk) → ki,GID The key generation algorithm takes as inputs
an identity GID, global parameters GP, an attribute i, and secret key sk
for this authority who holds the attribute. It produces a key ki,GID for this
attribute-identity pair.

– Dec(ct,GP, {ki,GID}) → μ The decryption algorithm takes as inputs the global
parameters GP, a ciphertext ct, and a set of keys {ki,GID} corresponding to
attribute-identity pairs. It outputs a message μ, if the set of attributes i
satisfies the policy specified by f and all the identities have the same GID.
Otherwise, it outputs ⊥.

Definition 4.1 (Correctness). We say a decentralized ABE scheme is correct
if for any GP ← Global.Setup(1λ), f ∈ F , message μ, and {ki,GID} obtained
from the key generation algorithm for the same identity GID where the attributes
satisfy the policy f , we have

Pr[Dec(Enc(μ, f,GP, {pk}),GP, {ki,GID}) = μ] = 1 − negl(λ).

Security Definition. We define the notion of full security of decentralized ABE
schemes. In our setting, the adversary can adaptively corrupt authorities, as well
as making adaptive key queries. In a similar but weaker model defined in [41], the
adversary can make adaptive key queries but only static corruption queries, i.e.,
the adversary can only corrupt parties before the global parameter is generated.

Let t = poly(λ) denote the number of authorities, and we consider parties
P1, P2, . . . , Pt, where each party Pi holds an attribute i. Then we define the
security notion via an experiment ExptdabeA (1λ, 1t) between an adversary and
the challenger:

1. Setup: The challenger runs GP ← Global Setup(1λ), and then (pki, ski) ←
Authority Setup(GP) for i ∈ [t]. Then the challenger sends

(
GP, {pki}i∈[t]

)
to

the adversary, and keeps {ski}i∈[t] secretly.
2. Key Query Phase 1: Proceeding adaptively, adversary can make the two types

of queries:
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(a) Secret key query (i,GID): A submits a pair (i,GID) to the challenger,
where i is an attribute belonging to an uncorrupted authority Pi and GID
is an identity. The challenger runs ki,GID ← KeyGen(GID,GP, i, ski) and
forwards the adversary ki,GID.

(b) Corruption query (i, corr): A submits (i, corr) to the challenger, where i is
an attribute that the adversary want to corrupt. The challenger responds
by giving A the corresponding master secret key mski.

3. Challenge Phase: A specify two messages μ0, μ1, and a function f , where func-
tion satisfies the following constraint. We let ωc denote the attributes con-
trolled by the corrupted authorities, and for each GID we let ωGID denote the
attributes which the adversary has queried. We require that f(ωc,ωGID) �= 1
(In other words, the adversary does not hold a set of keys that allow decryp-
tion). The challenger flips a random coin b ∈ {0, 1} and sends the adversary
an encryption of μb under f .

4. Key Query Phase 2: The adversary can further make corruption and key
queries as the Key Query Phase 1, under the constraint of f as specified above.

5. Guess: The adversary submits a guess bit b′, and wins if b′ = b. The advantage
of adversary in the experiment ExptdabeA (1λ, 1t) is defined as AdvA(1λ) =
|Pr[b′

= b] − 1/2|.
Definition 4.2. A decentralized ABE scheme is fully secure if for any ppt
adversary A, we have AdvA(1λ) ≤ negl(λ). The scheme is fully secure against
k-bounded collusion if we further require that A can query at most k distinct
GID’s in the experiment.

4.2 Our Basic Construction

In the description here, we first present our basic construction of decentralized
ABE for {0, 1}-LSSS. The basic construction can only support GID ∈ GF(p) for
some fixed prime p, and the message space is also GF(p). Next we show how to
extend the GID domain to GF(p�) by using the field extension technique.

Our construction uses the following building blocks: (1) a {0, 1}-LSSS scheme
SS, and (2) a fully secure functional encryption for inner product modulo p,
denoted as FEIP. We can instantiate the {0, 1}-LSSS as definition in [13], and
the FEIP as the construction in Sect. 3.2. Then we define our construction
Π = (Global.Setup,Authority.Setup,Enc,KeyGen,Dec) as follows:

– Global.Setup(1λ): On input security parameter λ, the global setup algorithm
sets k = k(λ) to denote the collusion bound of the scheme and t = t(λ)
to denote the number of associated attributes. The global setup algorithm
also sets an integer n = n(λ) and a prime number p = p(λ). It outputs
GP = (k, t, n, p) as the global parameter.

– Authority.Setup(GP): On input GP, for any attribute i belonged to the author-
ity, the authority runs the algorithm FEIP.Setup(1n, 1�, 1k, p) to generate
FEIP.mpki and FEIP.mski. Then output pk = {FEIP.mpki} as its public key,
and keep sk = {FEIP.mski,∀i} as its secret key. (In the basic scheme, � is set
to 1.)
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– Enc(μ, (A, ρ),GP, {pk}): On input a message μ ∈ Zp, an access matrix
A ∈ Z

t×d
p with ρ mapping its row number x to attributes, the global param-

eters GP, and the public keys {FEIP.mpki} of the relevant authorities. The
encryption algorithm invokes k times {0, 1}-LSSS for secret space K = Zp to
generate:

(u1,1, ...u1,t) ← SS.Share(μ,A),

(ui,1, ...ui,t) ← SS.Share(0,A),∀i ∈ [2, k].

For each (u1,x, ..., uk,x) ∈ Z
k
p, x ∈ [t] it generates

FEIP.ctρ(x) ← FEIP.Enc(FEIP.mpkρ(x), (u1,x, ..., uk,x)).

The ciphertext is ct = ({FEIP.ctρ(x)}x=1,...t).
– KeyGen(GID, i, sk,GP): On inputs attribute i, global identifier GID ∈ Zp,

secret key sk and global parameter GP, the algorithm sets GID =
(1,GID, ...,GIDk−1) and computes

FEIP.ski,GID ← FEIP.KeyGen(FEIP.mski,GID),

and outputs ki,GID = FEIP.ski,GID.
– Dec({ki,GID},A, ct,GP): On input secret keys {kρ(x),GID}, the access matrix

A, ciphertext ct and global parameter GP, the decryptor first checks if
(1, 0, . . . , 0) is in the span of the rows {Ax}. If not, the algorithm outputs ⊥.
Otherwise, it computes

ηρ(x) = FEIP.Dec
(
FEIP.skρ(x),GID,FEIP.ctρ(x)

)
for each ρ(x),

and outputs η = SS.Combine({ηρ(x)}).

Remark 4.3. We note that for any distinct k GID’s, GID1, . . . ,GIDk, the vectors{
GIDi = (1,GIDi, ...,GID

k−1
i )

}
i∈[k]

are linearly independent. In our construction

above, each GID ∈ Zp and the vectors can be expressed as a Vandermonde matrix

X =

⎡
⎢⎢⎢⎣

1 . . . 1
x1 . . . xk

...
. . .

...
xk−1
1 . . . xk−1

k

⎤
⎥⎥⎥⎦, which is full-rank if the elements {xi}i∈[k] are distinct.

Therefore, for any less than k distinct GID’s, the key queries for these GID’s are
linearly independent.

Correctness. We show that the scheme above is correct. By correctness of the
fully secure functional encryption scheme FEIP, we have that for each ρ(x),

ηρ(x) = u1,ρ(x) +
k−1∑
j=1

uj+1,ρ(x)GID
j mod p.



114 Z. Wang et al.

Since (u1,1, ...u1,t) is secret sharing of message μ, and {(ui,1, ...ui,t)}k
i=2 is secret

sharing of 0, then by correctness of {0, 1}-LSSS scheme, we have that η = μ mod
p. This proves correctness.

Parameter Setting. We can instantiate the scheme FEIP (c.f. Sect. 3.2) by
setting n = λ, � = 1, k = poly(λ), t = poly(λ) and p = poly(λ), and obtain
a decentralized ABE with both the message space and GID space being Zp.
In summary, our basic scheme can support any fixed poly(λ) GID and message
spaces, against any fixed poly(λ) bounded collusion.

Security Proof. Next we prove security of the above scheme in the following
theorem.

Theorem 4.4. Assuming that FEIP is a functional encryption for inner prod-
ucts and FEIP is adaptively secure for chosen message distributions, and SS is a
{0, 1}-LSSS, the decentralized ABE construction Π described above is fully secure
against k − 1 bounded collusion.

Proof. We prove the theorem by reduction. Assume that there exists an adver-
sary A who breaks the scheme with some non-negligible advantage ε, then we
can construct a reduction B that breaks the security of FEIP. Given an adversary
A, we define B as follows:

1. B first receives {mpki} from its challenger, and forwards {mpki} to A.
2. B runs A to simulate the Key Query Phase 1 of the ABE security game. In

each round, B may receive either a corruption query (i, I) or a key query
(GID, i).

– Upon receiving a query (GID, i), B makes a key query
(
(1,GID, ...,

GIDk), i
)

to its challenger, and receives ki,GID. B forward A with the key.
– Upon receiving a query (i, corr), B make a query (i, I) to the challenger

and receives mski. B just sends A mski.
B continue to run this step until A makes the challenge query.

3. Upon receiving A’s challenge query, which contains an access structure A

and two messages μ0, μ1 ∈ Zp, B first checks whether all the key queries
satisfy the constraint of the security game of decentralized ABE. (This can
be efficiently checked in our setting). If not, B aborts the game and outputs a
random guess. Otherwise, B defines two distributions M0 and M1 as follows.
For b ∈ {0, 1}, Mb is defined as the distribution that first samples k times of
the {0, 1}-LSSS procedure

(u(b)
1,1, ...u

(b)
1,t) ← SS.Share(μb,A)

(u(b)
i,1 , ...u

(b)
i,t ) ← SS.Share(0,A),∀i ∈ [2, k].

Then Mb outputs:
(
(u(b)

1,1, ..., u
(b)
k,1), ..., (u

(b)
1,t , ..., u

(b)
k,t)

)
.

B sends the descriptions of M0,M1 (which can be succinctly described, e.g.,
(μb,A)) to the challenger, and then B forwards A the challenge ciphertext
received from the external FEIP challenger.
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4. B simulates the Key Query Phase 2 in the same way as Step 2.
5. Finally B outputs A’s guess b′.

Next we are going to analyze the reduction B. Since B perfectly emulates
the FEIP security game for A, B’s advantage is the same as A’s, assuming the
queries are admissible in the FEIP security game. Therefore, it suffices to prove
the theorem by showing that the queries made by B are admissible.

The assumption of the theorem requires that A can query at most k − 1
different GID’s for each mski. Let T1 be the set that B (and also A as well)
makes corruption queries, and ki be the number of secret key queries that B
makes to mski. Then we need to show that the two distributions defined below
are identical, i.e., D0 = D1, where

Db =
{

{(i, I)(Mb)}i∈T1
, {(i,xij)(Mb)}i∈T2,j∈[ki]

}
,

where xij = (1,GIDij , ...GID
k−1
ij ), T1 is the set B corrupts, and T2 is the set that

B makes key queries but does not corrupt.
We note that, for an opening query (i, I), (i, I)(Mb) =

(
u
(b)
1,i , ..., u

(b)
k,i

)

can be viewed as coefficients of the polynomial Pi(x) = u
(b)
1,i +

∑k
j=2 u

(b)
j,i ·

xj−1 mod p). By the property of Lagrange interpolation formula, the coef-
ficients of a polynomial P (x) of degree k can be uniquely determined given
P (x1), . . . , P (xk) for any distinct (x1, . . . , xk). This implies that (i, I)(Mb)
can be simulated by {(i,GIDij)(Mb)}j∈[k] for any distinct {GIDij}j∈[k], where
GID = (1,GID, . . . ,GIDk−1). Therefore, it is without loss of generality to assume
that Db only contains information of the form {(i,GIDij)(Mb)}.

As we argue above, all queries are of the form (i,xij), so we can re-write
the queries in Db as {q1, . . . , qn}, where each qj is of the form (i,x). Denote
{q1, . . . , qn} as −→q , and then we can further re-write Db as −→q (Mb). Now it
suffices to show that for every admissible −→q and possible values z,

Pr[−→q (M0) = z] = Pr[−→q (M1) = z].

Pr[−→q (Mb) = z] can be expanded as

Pr[−→q (Mb) = z]
=Pr[q1(Mb) = z1] · Pr[q2(Mb) = z2|q1(Mb) = z1] · ··
Pr[qn(Mb) = zn|q1(Mb) = z1 ∧ ... ∧ qn−1(Mb) = zn−1].

We first observe that the message distribution Mb =
(
(u(b)

1,1, ..., u
(b)
k,1), ...,

(u(b)
1,t , ..., u

(b)
k,t)

)
can be viewed as coefficients of t degree-k polynomials

(P1(x), . . . , Pt(x)). Since the marginal distribution of (u(b)
1,i , ..., u

(b)
k,i) is uniformly

random by the {0, 1}-LSSS property, the marginal distribution of any poly-
nomial Pi is uniform, i.e., a random degree-k polynomial in Zp. Therefore,
Pr[q1(Mb) = x1] = 1/p, independent of b.
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Next we will show that for any j ∈ [n],

Pr [qj(Mb) = zj | qj−1(Mb) = zj−1 ∧ · · · ∧ q1(Mb) = z1] = 1/p,

assuming q1, . . . , qj are admissible.
To prove this, we first set up some notations. We assume that

GID1, . . . ,GIDk−1 are the identifiers queried by the adversary. If the adversary
corrupts some mski, then he will further learn Pi(GIDk) (for another GIDk) in
addition to Pi(GID1), . . . , Pi(GIDk−1). We assume that qj = (i,GIDr) for some
i ∈ [t], r ∈ [k]. Let S be an arbitrary maximal invalid set that includes all v’s
with (v,GIDr) belongs to the queries {q1, . . . , qj}, according to the access struc-
ture A, i.e. {v : (v,GIDr) ∈ {q1, . . . , qj}} ⊆ S. Since the queries are admissible,
such a set S always exists.

By the privacy guarantee of the LSSS, we know the distributions of the
polynomials P1(x), . . . , Pt(x) generated in the encryption algorithm is identical
to the following process:

– For every v ∈ S, sample Pv(x) (the coefficients) uniformly and independently
at random.

– For every v /∈ S, set Pv(x) = μb − ∑
w∈Γv

Pw(x), where Γv ⊆ S is the
reconstruction set that can be efficiently determined given (v, A).

Next, we observe the following facts:

1. Since Pi(x) is a random polynomial (the marginal distribution), we know
that the (marginal) distribution Pi(GIDr) is uniformly random even condi-
tioned on all {Pi(GIDw)}w∈[k]\{r} (as a random degree k polynomial is k-wise
independent).

2. From the above sampling procedure, we know that Pi(x) is independent of
{Pv(x)}v∈S\{i}.

3. From the above two facts, we know that the (marginal) distribution Pi(GIDr)
is still uniformly random even further conditioned on {Pv(x)}v∈S\{i} and
{Pi(GIDw)}w∈[k]\{r}.

4. For every v /∈ S, w ∈ [k] \ {r}, Pv(GIDw) can be deterministically
obtained given the information {Pv(x)}v∈S\{i} and {Pi(GIDw)}w∈[k]\{r}.
This implies that the conditional distribution Pi(GIDr) is uniform even
further given {Pv(GIDw)}v∈[t]\S,w∈[k]\{r} in addition to {Pv(x)}v∈S\{i} and
{Pi(GIDw)}w∈[k]\{r}.

It is not hard to see that the information of q1(Mb), . . . , qj−1(Mb)
can be obtained given {Pv(GIDw)}v∈[t]\S,w∈[k]\{r}, {Pv(x)}v∈S\{i}, and
{Pi(GIDw)}w∈[k]\{r}. Therefore, we have showed: for any j ∈ [n],

Pr [qj(Mb) = zj | qj−1(Mb) = zj−1 ∧ · · · ∧ q1(Mb) = z1] = 1/p.
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Then we can conclude that

Pr[−→q (M0) = x]
=Pr[q1(M0) = x1] · Pr[q2(M0) = x2|q1(M0) = x1] · ··
Pr[qn(M0) = xn|q1(M0) = x1 ∧ ... ∧ qn−1(M0) = xn−1]

=Pr[q1(M1) = x1] · Pr[q2(M1) = x2|q1(M1) = x1] · ··
Pr[qn(M1) = xn|q1(M1) = x1 ∧ ... ∧ qn−1(M1) = xn−1]

=Pr[−→q (M1) = x].

This proves that all the queries B makes during the game are admissible. This
means that B is a legal adversary in the security game of FEIP. Since B also
perfect simulates the challenger of A, the advantage of B is the same as the
advantage of A, a non-negligible quantity. This reaches a contraction, and com-
pletes the proof. ��

4.3 An Improved Construction for Large Spaces

We can modify our basic construction so that it can support significantly lager
GID and message spaces, using the technique of finite field extension to GF(p�)
for some �. In more detail, we consider the embedding technique described in
the work [45,56]. Intuitively, we can compute GF(p�) field operations via pro-
jecting GF(p�) elements to Z

�
p (and Z

�×�
p ), and thus, the field operations can be

supported by our FEIP scheme.
Let p ∈ N be a prime, � ∈ N, and let f(x) be a monic irreducible polynomial in

Zp of degree �. Then we define R = Zp[X]/〈f(x)〉, and note that R is isomorphic
to GF(p�) as p is a prime and f(x) is an irreducible polynomial of degree �. We
will use R as the representation of GF(p�).

We then define two mappings φ : R → Z
�
p and Rot : R → Z

�×�
p by

φ : θ = a1 + a2x + ... + a�x
�−1 �→ (a1, ..., a�)�,

Rot : θ = a1 + a2x + ... + a�x
�−1 �→ [

φ(θ)φ(θx)...φ(θx�−1)
]
.

We note that Rot(θ) · φ(ϑ) = φ(θϑ), Rot(θ) · Rot(ϑ) = Rot(θϑ), and Rot(θ) +
Rot(ϑ) = Rot(θ + ϑ). This means that Rot is a ring-homomorphism from R to
Z

�×�
p . If θ �= θ

′ ∈ GF(p�), then Rot(θ) − Rot(θ
′
) = Rot(θ − θ

′
) �= 0.

Now we present our modified construction Π = (Global.Setup,Authority.
Setup,Enc,KeyGen,Dec):

– Global.Setup(1λ): On input the security parameter λ, the global setup algo-
rithm sets k = k(λ) to denote the collusion bound of our scheme and t = t(λ)
to denote the number of associated attributes. The global setup algorithm
also sets n = n(λ), � = �(λ) and p = p(λ) to denote the input parameters of
FEIP.Setup. It outputs GP = (k, t, n, �, p) as the global parameter, and sets
both the GID and message spaces as GF(p�).
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– Authority.Setup(GP): On input GP, for attribute i belonged to the author-
ity, the authority runs the algorithm FEIP.Setup(1n, 1�, 1k, p) to generate
FEIP.mpki and FEIP.mski. Then output pk = {FEIP.mpki} as its public key,
and keep sk = {FEIP.mski,∀i} as its secret key.

– Enc(μ, (A, ρ),GP, {pk}): On input a message μ ∈ GF(p�), an access matrix
A ∈ GF(p�)t×d with ρ mapping its row number x to attributes, the global
parameters GP, and the public keys {FEIP.mpki} of the relevant authori-
ties. The encryption algorithm invokes k times {0, 1}-LSSS over secret space
GF(p�) to generate

(u1,1, ...u1,t) ← SS.Share(μ,A),

(ui,1, ...ui,t) ← SS.Share(0,A),∀i ∈ [2, k],

For each (u1,x, ..., uk,x) ∈ GF(p�)k, x ∈ [t], the encryption algorithm first
computes:

(u1,x, ...,uk,x) ← φ(u1,x, ..., uk,x),

and then generates

FEIP.ctρ(x) ← FEIP.Enc(FEIP.mpkρ(x), (u1,x, ...,uk,x)).

The ciphertext is ct = ({FEIP.ctρ(x)}x=1,...t).
– KeyGen(GID, i, sk,GP): On input attribute i, global identifier GID ∈ GF(p�),

secret key sk and global parameters GP. To generate a key for GID for attribute
i belonging to an authority, the authority first computes k elements GIDj ∈
GF(p�),∀j ∈ [k − 1], then computes Rot(GIDj),∀j ∈ [k − 1], and denotes

the column vectors of

⎡
⎢⎢⎢⎣

I
Rot(GID)

...
Rot(GIDk−1)

⎤
⎥⎥⎥⎦ to be {gj}j∈�, where I is the identity

matrix in Z
�×�
p , finally sets

FEIP.sk
(j)
i,GID ← FEIP.KeyGen

(
FEIP.mski, gj , randi

)
,∀j ∈ [�].

Outputs ki,GID = {FEIP.sk
(j)
i,GID}j∈[�].

– Dec({ki,GID},A, ct,GP): On input secret keys {kρ(x),GID}, the access matrix
A, ciphertext ct and global parameters GP, the decryptor first checks if
(1, 0, . . . , 0) is in the span of the rows {Ax} or not. If not, the algorithm
outputs ⊥. Otherwise, it computes

η
(j)
ρ(x) = FEIP.Dec

(
FEIP.sk

(j)
ρ(x),GID,FEIP.ctρ(x)

)
,∀j ∈ [�], for each ρ(x),

and sets ηρ(x) =
(
η
(1)
ρ(x), ..., η

(�)
ρ(x)

)
, θρ(x) = φ−1(ηρ(x)), then outputs θ =

SS.Combine({θρ(x)}).
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Correctness. By correctness of the scheme FEIP, we have that for each ρ(x),

ηρ(x) = u1,ρ(x) +
k−1∑
j=1

uj+1,ρ(x)Rot(GID
j)(mod p)

= φ(u1,ρ(x) +
k−1∑
j=1

uj+1,ρ(x)GID
j).

Then θρ(x) = u1,ρ(x) +
∑k−1

j=1 uj+1,ρ(x)GID
j . By correctness of the {0, 1}-LSSS

scheme over GF(p�), we have that θ = μ. This proves correctness.

Parameters. We can instantiate the scheme FEIP (c.f. Sect. 3.2) by setting
n = λ, � = poly(λ) k = poly(λ), t = poly(λ) and p = poly(λ), and obtain a
decentralized ABE with both the message space and GID space being GF(p�). In
summary, our modified scheme can support exponential-sized GID and message
spaces, against any fixed poly(λ) bounded collusion.

Security. Security of the modified scheme can be proven in the same way as our
basic scheme, as the only difference is the underlying finite field. We note that
the analysis that the distributions Db are identical in the proof of Theorem4.4
works for any underlying finite field (either Zp or GF(p�)), so the analysis can
be carried to the modified scheme straightforwardly. To avoid repetition, we just
state the theorem as follow.

Theorem 4.5. Assume that FEIP is a functional encryption for inner prod-
ucts that is adaptively secure for chosen message distributions, and SS is a
{0, 1}-LSSS over GF(p�). Then the scheme Π above is a fully secure decen-
tralized ABE against k − 1 bounded collusion for {0, 1}-LSSS over GF(p�).

Combining Theorem 4.5 and the instantiation by Theorem3.5, we obtain the
following corollary:

Corollary 4.6. Assume the LWE assumption. Then there exits a decentralized
ABE that is fully secure against k−1 bounded collusion for any polynomial k, for
the function class {0, 1}-LSSS over Zp for any polynomial prime p. The scheme
supports exponential-sized GID and message spaces.

5 Witness Encryption and Decentralized ABE

In this section, we discuss the relation between decentralized ABE and witness
encryption, which is introduced by Garg et al. [28]. We first recall the syntax of
witness encryption and its security, after that we give a construction of witness
construction for NP language using decentralized ABE for general circuits, and
then show that extractable witness encryption implies decentralized ABE for
general circuits.
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5.1 Witness Encryption

We recall the syntax of WE introduced by Garg et al. [28], and also the
extractability security defined by Goldwasser et al. [29]. A witness encryption
scheme for an NP language L (with corresponding witness relation R) consists
of algorithms Π = (Enc,Dec):

– Enc(1λ, x, μ): On input the security parameter λ, an unbounded-length string
x, and a message μ ∈ {0, 1}, the encryption algorithm outputs a ciphertext
ct.

– Dec(ct, w): On input a ciphertext and an unbounded-length string w, the
decryption algorithm outputs a message μ or a special symbol ⊥.

Definition 5.1 (Witness Encryption). We say Π described above is a wit-
ness encryption, if it satisfies:

– Correctness: For any security parameter λ, any μ ∈ {0, 1}, and x ∈ L such
that R(x,w) = 1, we have that

Pr[Dec(Enc(1λ, x, μ), w) = μ] = 1

– Soundness Security: For any ppt adversary A, there exists a negligible
function negl(·) such that for any x /∈ L, we have:

|Pr[A(Enc(1λ, x, 0)) = 1] − Pr[A(Enc(1λ, x, 1)) = 1]| < negl(λ)

Definition 5.2 (Extractable security). A witness encryption scheme for an
NP language L is secure if for all ppt adversary A, and all poly q, there exist
a ppt extractor E and a poly p, such that for all auxiliary inputs z and for all
x ∈ {0, 1}∗, the following holds:

Pr[b ← {0, 1};ct ← WE.Enc(1λ, x, b) : A(x, ct, z) = b] ≥ 1/2 + 1/q(|x|)
⇒ Pr[E(x, z) = ω : (x, ω) ∈ RL] ≥ 1/p(|x|).

5.2 Witness Encryption from Decentralized ABE for General
Circuit

We first describe a transformation from witness encryption for NP languages
from decentralized ABE for general circuits. Intuitively, the witness encryption
can use the Decentralized ABE scheme in the following way: the general circuit
f is used as the NP verifier such that the decryptor can recover the message if
he has the witness ω for the statement x satisfying f(x, ω) = 1.

More specifically, given an NP language L, we present witness encryption
scheme (WE.Enc,WE.Dec) for L as follows:

– WE.Enc(1λ, x, μ): The encryption algorithm takes input a string x ∈ {0, 1}n

(whose witness has length bounded by m) and message μ. Then the algorithm
runs the following procedures:
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• It runs Global.Setup and Authority.Setup to generate a global parameters
GP and public keys {pki}i∈[n+m] and secret keys sk = {ski}i∈[n+m].

• Then it invokes KeyGen to generate {ki,xi
}i∈[n] and {kj,0, kj,1}n+m

j=n+1.
3

• It sets f : {0, 1}n ×{0, 1}m → {0, 1} as the NP verifier for L that on input
x ∈ {0, 1}n, ω ∈ {0, 1}m outputs 1 iff ω is a valid witness of x. Then it
generates ct ← Enc(μ, f,GP, {pki}i∈[n+m]).

• Finally, it outputs ct =
(
x, {ki,xi

}i∈[n], {kj,0, kj,1}n+m
j=n+1, {pki}i∈[n+m], ct

)
.

– WE.Dec(1λ, ω, ct): The decryption algorithm takes input a witness ω ∈
{0, 1}m for the statement x ∈ {0, 1}n and a ciphertex ct for x. Then the
algorithm runs the following procedures:

• It first checks if f(x, ω) = 1 holds, if not, the decryption algorithm outputs
⊥.

• Otherwise, for j = n + 1, . . . , n + m, the decryption algorithm chooses
kj,ωt

from {kj,0, kj,1}n+m
j=n+1 (where ωi ∈ {0, 1} is the i-th bit of ω). Then

it outputs

μ = Dec
(
ct,GP,

{{ki,xi
}i∈[n], {kj,ωt

}n+m
j=n+1

})
.

Correctness of the witness encryption scheme is straightforward from the cor-
rectness of decentralized ABE scheme. Now we can show the following theorem.
Due to space limit, we defer the full proof to the full version of the paper.

Theorem 5.3. Assuming that Π is a secure decentralized ABE scheme for gen-
eral circuits (against 1-bounded corruption, static corruption of authorities and
selective key queries), the witness encryption scheme above is secure.

Remark 5.4. Bellare et al. [9] has introduced a stronger security of WE which
is denoted as adaptive soundness security. However, our construction can not
achieve the stronger adaptive soundness security, because the NP language L we
defined is not (efficiently) falsifiable.

Remark 5.5. We note that a weaker notion of decentralized ABE (where the
adversary makes static corruption at the beginning of security game, and key
queries only once) suffices to construct the witness encryption scheme. This
demonstrates the hardness to construct decentralized ABE for general circuits.

Remark 5.6. The scheme we construct above makes use of a decentralized
ABE scheme for n + m authorities. We can also construct a WE scheme by
invoking a decentralized ABE scheme for only two authorities. Intuitively, we
set the attribute space as {0, 1}n. Then the NP statement x ∈ {0, 1}n is the one
attribute controlled by the non-corrupt authority, and the witness ω ∈ {0, 1}m

of x is the one attribute controlled by the corrupt authority. We set f as the NP
verifier algorithm. And the decryptor of WE scheme can recover the message if
he can find the witness ω for x such that f(x, ω) = 1. Then we can obtain the
scheme similarly to the scheme above.

3 In our setting, we consider a general case where there is no GID.
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5.3 Decentralized ABE from Extractable Witness Encryption

Next, we show how to construct a decentralized ABE for general circuits from
the following two components: (1) an extractable witness encryption scheme
WE = (WE.Enc,WE.Dec) [29], and (2) an existentially unforgeable signature
scheme SIG = (SIG.KeyGen,SIG.Sign,SIG.Verify) [30].

In our construction, we assume that each authority Pi has a polynomial
number of distinct attributes Si = {xj}. This is without loss of generality because
we can always encode the party’s ID in the first several bits of the attributes.
Our construction Π = (Authority Setup,Enc,KeyGen,Dec) (we omit algorithm
Global Setup, as it does not affect the functionality) is described as follows:

– Authority Setup(1λ) (for party Pj): On input security parameter λ, for
each attribute xi belonged to the authority Pj , i.e., xi ∈ Sj , the algo-
rithm runs SIG.KeyGen(1λ) to generate key pair (svkxi

, sskxi
). Then it sets

pk = {svkxi
}xi∈Sj

as the public key, and keeps sk = {sskxi
}xi∈Sj

as its secret
key.

– Enc({pk}, f, μ): On input public key pk, a function f and message μ, the
encryption algorithm sets an instance xf as xf = ({svkxi

}, f), and defines
NP language L such that xf ∈ L if and only if there exists n signature pairs
(σ1, (x1,GID)), . . . , (σn, (xn,GID)) such that

(∀i,SIG.Verifysvkx i
(σi, (xi,GID)) = 1) ∧ (f(x1, ...,xn) = 1)

Next it computes and outputs ct ← WE.Enc(xf , μ).
– KeyGen(xj ,GID, ski): On input attribute xj , the authority outputs kj,GID =

σj ← SIG.Sign(sski, (xj ,GID)) if xj ∈ Si. Otherwise, it outputs ⊥.
– Dec({ki,GID},GP, ct): If the decryptor has a set of keys with the same GID

such that f(x1, . . . ,xn) = 1, and all the signature verifications succeed, then
{ki,GID} servers as witness for xf , and it calls WE.Dec(ω, ct) to recover the
message μ. Otherwise, the decryption fails.

It is straightforward that the correctness of the scheme described above comes
from the correctness of witness encryption WE and signature scheme SIG.

Next, we are going to show that the construction above achieves a ABE
against static corruption. For convenience of our proof, we use the following
presentation of definition for security against static corruption. Let A = (A1,A2)
be an adversary, and T denote the set of authorities.

Expdabe(1λ):

1. (T ′, {pki, ski}i∈T ′ ) ← A1(1λ)
2. {pkj , skj}j∈T\T ′ ← Authority.Setup(1λ)

3. (f, state) ← AKeyGen(skj ,·)
1 ({pkk}k∈[T ])

4. Choose a bit b at random and let ct ← Enc({pkk}k∈[T ], f, b)

5. b′ ← AKeyGen(skj ,·)
2 (state, ct)

6. If b = b′ and for all attributes xgo that A makes key requests to oracle KeyGen(skj , .)
along with the attributes xco controlled by corrupted authorities (A), we have

f(xgo,xco) �= 1, output 1, else output 0.
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We say that the scheme is secure (against static corruption of authorities) if
for all PPT adversaries A, the advantage Advdabe

A of A is negligible. where:

Advdabe
A = |Pr[ExpdabeA (1λ) = 1] − 1/2|.

Then we can show the following theorem. Due to space limit, we defer the full
proof to the full version of the paper.

Theorem 5.7. Assuming the existence of an extractable witness encryption
scheme WE and an existentially unforgeable signature scheme SIG, then the
scheme described above is secure against static corruption of authorities.

6 Conclusion

We investigated the constructions of LWE-based and DDH-based decentralized
ABE, which satisfy stronger security notion that adversary can make corrup-
tion queries of parties adaptively in addition to making adaptive key queries.
As a building block, we first introduced a functional encryption for inner prod-
uct functionality with a stronger security requirement, and then we proposed the
constructions of FE for inner product with the stronger security by making some
modifications of the constructions by [6]. Combining the FE for inner product
with the stronger security and a {0, 1}-LSSS scheme, we obtained the construc-
tions of the desired decentralized ABE. Finally, we showed that decentralized
ABE for general access structures is somewhat equivalent to witness encryption
(WE) for general NP relations.

Our scheme is in the plain model and the security holds against bounded
collusion, the work [41] can support an unbounded number of collusions by using
random oracle. We leave it as an interesting open question whether our scheme
can be upgraded in the random oracle model.
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Abstract. Multi-client functional encryption (MCFE) is a more flexi-
ble variant of functional encryption whose functional decryption involves
multiple ciphertexts from different parties. Each party holds a different
secret key and can independently and adaptively be corrupted by the
adversary. We present two compilers for MCFE schemes for the inner-
product functionality, both of which support encryption labels. Our first
compiler transforms any scheme with a special key-derivation property
into a decentralized scheme, as defined by Chotard et al. (ASIACRYPT
2018), thus allowing for a simple distributed way of generating functional
decryption keys without a trusted party. Our second compiler allows to
lift an unnatural restriction present in existing (decentralized) MCFE
schemes, which requires the adversary to ask for a ciphertext from each
party. We apply our compilers to the works of Abdalla et al. (CRYPTO
2018) and Chotard et al. (ASIACRYPT 2018) to obtain schemes with
hitherto unachieved properties. From Abdalla et al., we obtain instanti-
ations of DMCFE schemes in the standard model (from DDH, Paillier,
or LWE) but without labels. From Chotard et al., we obtain a DMCFE
scheme with labels still in the random oracle model, but without pairings.

1 Introduction

Functional encryption (FE) [12,23,24] is a form of encryption that allows fine-
grained access control over encrypted data. Besides the classical encryption and
decryption procedures, functional encryption schemes consists of a key derivation
algorithm, which allows the owner of a master secret key to derive keys with more
restricted capabilities. These derived keys skf are called functional decryption
keys and are associated with a function f . Using the key skf for the decryption of
a ciphertext Enc(x) generates the output f(x). During this decryption procedure
no more information is revealed about the underlying plaintext than f(x).

In the case of classical functional encryption, the (functional) decryption
procedure takes as input a single ciphertext Enc(x). A natural extension is the
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multi-input setting, where the decryption procedure takes as input n different
ciphertexts and outputs a function applied on the n corresponding plaintexts.
Such a scheme is called multi-input functional encryption (MIFE) scheme [20].
In a MIFE scheme, each ciphertext can be generated independently (i.e., with
completely independent randomness).

An important use case of MIFE considers multiple parties or clients, where
each party Pi generates a single ciphertext of the tuple. The ciphertext gen-
erated by party Pi is often said to correspond to position or slot i. In the
multi-client setting, it becomes natural to assume that each party has a dif-
ferent secret/encryption key ski that can be corrupted by the adversary. We call
such a scheme a multi-client functional encryption (MCFE) scheme [15,20].

We remark that the exact terminology varies from paper to paper. Here, a
MCFE scheme is always supposed to be secure against corruption of the parties
encrypting messages. In a MIFE scheme, on the other hand, all the parties may
use the same encryption key and there is no security against corruption.

The multi-input and multi-client settings still require a trusted third party
that sets up the encryption keys and holds the master secret key used to derive
the functional decryption keys. As a result, the central authority is able to recover
every client’s private data. This raises the question if it is possible to decentralize
the concept of functional encryption and get rid of this trusted entity. In this
work, we focus on the notion of decentralized multi-client functional encryption
(DMCFE) introduced by Chotard et al. [15]. In DMCFE, the key derivation
procedure KeyDer is divided into two procedures KeyDerShare and KeyDerComb.
The KeyDer procedure allows each party Pi to generate a share ski,f of the
functional key skf from its secret key ski. The KeyDerComb procedure is then
used to combine these n different shares sk1,f , . . . , skn,f to generate the functional
key skf . Assuming that the secret key ski can also be generated in a distributed
way, this makes it possible to get rid of the trusted party and to ensure that
every party has complete control over their individual data.

An important property of MIFE and (D)MCFE schemes is whether they are
labeled or not. The labeled setting is similar to vanilla multi-input/multi-client
functional encryption, but the encryption procedure takes as input a second
parameter, a so-called label �. The decryption procedure is restricted in such a
way that it is only possible to decrypt ciphertexts that are encrypted under the
same label Enc(sk1, x1, �), . . . ,Enc(skn, xn, �). This setting is sometimes desirable
in practice as it allows repeated computations over encrypted data that comes
from different sources (for example data mining over encrypted data or multi-
client delegation of computation [15]).

In the last few years, many multi-input or multi-client functional encryption
schemes have been constructed. As noted in [4], these schemes can be split into
two main categories: (1) feasibility for general functionalities, and (2) concrete
and efficient realizations for more restricted functionalities. Constructions of
the first category [6,7,13,20] are based on more unstable assumptions, such
as indistinguishable obfuscation or multilinear maps, and tackle the problem
of creating schemes for more general functionalities. A few constructions of the
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second category are provided in the work of Abdalla et al. in [3,4] and Chotard et
al. in [15], which consider different types of secret-key constructions for the inner-
product functionality. In these schemes, each function is specified by a collection
y of n vectors y1, . . . ,yn and takes a collection x of n vectors x1, . . . ,xn as
input. Their output is fy (x) =

∑n
i=1〈xi,yi〉 = 〈x,y〉. As the original single-

input inner-product functionality [2,5,11,17] and their quadratic extensions [8],
multi-input or multi-client inner-product functionalities can be quite useful for
computing statistics or performing data mining on encrypted databases [4,15].

Currently, the work of Chotard et al. provides the only known DMCFE to our
knowledge. However, while their MCFE uses any cyclic group where the Deci-
sional Diffie-Hellman (DDH) assumption holds, their DMCFE scheme requires
pairings. Furthermore, the security notion they achieve only guarantees security
against an adversary that queries the encryption/challenge oracle for every posi-
tion i. At first glance, it might seem that more encryption queries would help the
adversary, but this does not allow trivial attacks and the adversary is restricted
as follows: all functions f for which the adversary has a functional decryption
key must evaluate to the same value on all the plaintext tuples queried to the
encryption oracle. However, when a position i is not queried, this condition is
always satisfied since the function f in principle can never be really evaluated
due to a missing input. Hence, requiring the adversary to query the encryp-
tion/challenge oracle for every position i actually weakens the achieved security
notion.

This leaves open the following problems that we tackle in this paper:

1. Constructing DMCFE schemes without pairings, and even from more general
assumptions than discrete-logarithm-based ones.

2. Removing the restriction that the adversary has to query the encryption
oracle for every position i.

1.1 Contributions

Our first main contribution is to provide a generic compiler from any MCFE
scheme satisfying an extra property called special key derivation into an DMCFE
scheme. The transformation is purely information-theoretic and does not require
any additional assumptions. As the MCFE from Chotard et al. [15] satisfies
this extra property, we obtain a labeled DMCFE scheme secure under the plain
DDH assumption without pairings (in the random oracle model). As in [15],
the version of the scheme without labels is secure in the standard model (i.e.,
without random oracles).

Furthermore, we show as an additional contribution that the MIFE schemes
from Abdalla et al. [3] are actually MCFE secure against adaptive corruptions
(but without labels). This directly yields the first DMCFE scheme without labels
from the LWE assumptions and the Paillier assumptions in the standard model.

Our second main contribution is to provide generic compilers to transform
any scheme in the weaker model where the adversary is required to query the
encryption oracle at every position i, into a scheme without this restriction. We
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propose two versions of the compiler: one without labels (in the standard model)
which only requires an IND-CPA symmetric encryption scheme, and one with
labels in the random oracle model.

These two compilers can be used to lift the security of the previously men-
tioned constructions of DMCFE to the stronger model. The resulting instan-
tiations from DDH, LWE, and Paillier described above rely on the same
assumptions.

1.2 Technical Overview

Contribution 1: A MCFE to DMCFE compiler. The DMCFE construction intro-
duced by Chotard et al. [15] is based on pairings and proven in the random oracle
model.

Our first compiler transforms an MCFE scheme into a DMCFE scheme and
does not require pairings. It operates on schemes with the special key derivation
property, namely whose master secret key can be split into separate secret keys,
one for each input, i.e. msk = {ski}i∈[n], and whose functional decryption keys are
derived through a combination of local and linear inner-product computations
on i, f, ski and pp. That is, the functional decryption key skf for the function f :
x �→ ∑n

i=1〈xi,yi〉 can be written as skf = ({s(ski,y)}i∈[n],
∑n

i=1〈u(ski),yi〉),
where f is defined by the collection y of the vectors y1, . . . ,yn and takes as
input a collection x of n vectors x1, . . . ,xn, and where s and u are two public
functions.1 Sums and inner products are computed modulo some integer L which
is either prime or hard to factor.

For instance the MCFE scheme of [15], without pairings but supporting
labels, has functional decryption keys of the form skf = (y,

∑
i ski · yi).

Consider first the following straw man compiler. It splits KeyDer into two
procedures KeyDerShare and KeyDerComb. The first procedure assumes that
each party Pi has access to the i-th share ti,y of a fresh secret sharing of zero
{ti,y}i∈[n]. It then computes si,y = s(ski,y) (which is a local computation) and
dki,y = 〈u(ski),yi〉 + ti,y . The output key share is ski,y = (si,y , dki,y ). In the
KeyDerComb procedure, the dki,y values get summed up to cancel out the ti,y
values and to obtain

∑
i〈u(ski),yi〉. The output gets then extended with the val-

ues s(ski,y) to obtain the complete functional decryption key skf . This works
but the question on the generation of the fresh secret sharing of zero {ti,y}i∈[n]

is left out.
One solution consists in generating it as follows: ti,y =

∑
j �=i(−1)j<iFKi,j

(y),
where FKi,j

is a pseudorandom function with key Ki,j = Kj,i shared between par-
ties Pi and Pj . This yields an DMCFE scheme secure against static corruption.
Unfortunately, we do not know how to prove such a scheme secure against adap-
tive corruptions.

Our full compiler improves this construction in two ways: it allows adaptive
corruptions and does not require any pseudorandom function. The procedure

1 We note that our compiler actually is not restricted to the inner-product function-
ality. The only requirement is the special key derivation property.
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KeyDerShare of our full compiler uses masking values {vi}i∈[n], vi ∈ Z
m·n
L , such

that vn = −∑n−1
i=1 vi, to derive the key shares ski,f = 〈u(ski),yi〉+〈vi,y〉. Here,

〈vi,y〉 acts as a kind of information theoretic pseudorandom function with key
vi. To make this work, the queried values need to be linearly independent. This
allows us to construct an information-theoretic compiler that provides security
against adaptive corruptions (see Sect. 3 for details).

The masking of values prevents the combination of key shares for different
functions y. If one computes shares on different y’s, then the sum of these shares
will not sum up to 0 and the resulting key will be invalid. The encryption and
decryption procedures proceed in the same way as in the MCFE setting.

Contribution 2: A compiler enforcing a single ciphertext query for each position.
The standard security property of MIFE/MCFE schemes guarantees that an
adversary can only learn a function of the inputs when it is in possession of
a ciphertext for every input position i. This property is not satisfied by the
schemes of [3,4,15]. Their basic definitions guarantee security only when the
adversary queries every position at least once. We call a scheme satisfying this
property pos-IND secure (for positive) while we call the standard property any-
IND secure.

To overcome this deficiency, Abdalla et al. [4] constructed a compiler that
turns any pos-IND secure MIFE scheme into an any-IND secure MIFE scheme.
The compiler uses a symmetric encryption scheme in addition to their MIFE
encryption scheme. In more detail, the setup procedure of the compiler samples a
key K for the symmetric encryption scheme and splits it into n shares k1, . . . , kn,
such that k1 ⊕ · · · ⊕ kn = K. Each party Pi receives its MIFE key ski, the
symmetric encryption key K, as well as its share of the encryption key ki. To
encrypt, every party first runs the encryption procedure of the MIFE scheme to
generate cti ← Enc(ski,xi) and then encrypts the output cti using the symmetric
encryption scheme to get ct′i ← EncSE(K, cti). The output of the encryption
procedure is (ct′i, ki). This compiler obviously does not work when we allow
corruptions as this would allow the adversary to learn K after corrupting any
single party and use it to recover cti from ct′i for all positions i. Consequently,
the compiler does not work for (D)MCFE schemes.

In this work, we construct an extension of the compiler described above that
works in the multi-client setting by individually having a separate symmetric
encryption key for each position. Hence, we increase the number of symmetric
encryption keys from 1 to n and the number of the corresponding shares from
n to n2. This allows us to ensure that if the adversary does not ask encryption
queries in every uncorrupted position, it does not learn any information about
the underlying (D)MCFE ciphertexts.

We describe in more detail how the compiler handles the additional keys. In
the setup procedure, every party (or a trusted party) generates its own key Ki

and corresponding shares ki,j , such that ki,1 ⊕· · ·⊕ki,n = Ki. The share ki,j gets
exchanged with Party Pj afterwards. In the encryption procedure every party
encrypts its plaintext in the same way as in the MIFE setting, but using its
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own key Ki instead of the single symmetric encryption key K. The ciphertext
corresponding to slot i of Party Pi is (ct′i, {kj,i}j∈[n]).

If the adversary does not know all of the shares {ki,j}i,j∈[n], then security
relies on the security of the symmetric encryption scheme. If the adversary knows
all of the different symmetric encryption keys Ki, i ∈ [n], it relies on the security
of the multi-client scheme. All of the key shares are only released if an encryption
query has been made in every uncorrupted position.

This first compiler is, however, restricted to (D)MCFE schemes without
labels. To add support for labels, the first idea is to use fresh keys ki,j,� for
each label �. These keys can be locally derived from ki,j using a pseudoran-
dom function. Unfortunately, we do not know how to prove the security of such
a scheme except in a very restricted setting (selective and static corruptions),
where the adversary needs to output all its corruption and encryption queries at
the beginning of the security experiment. We show how to achieve the standard
(adaptive) security notion when the above pseudorandom function as well as the
symmetric encryption scheme is implemented using hash functions that can be
modeled as random oracles. The use of random oracles allows us to show that
the adversary learns absolutely nothing about the inner ciphertexts cti until it
has queried all the positions (for each given label) and we can then program the
random oracles to properly “explain” the previously generated ciphertexts ct′i.

1.3 Additional Related Work

In [19], Fan and Tang proposed a new notion of distributed public key functional
encryption, in which the key generation procedure generates n different shares
{skf

i }i∈[n] instead of a single functional decryption key skf . The decryption of
a ciphertext ct (a encryption of a message m) under a function f requires first
the decryption under the functional key shares si ← Dec(skf

i , ct) for all i ∈ [n].
These shares {si}i∈[n] are then used to reconstruct f(m). In this setting, a trusted
third party is still needed to set up the public parameters and to generate the
functional keys, which makes it not really decentralized.

In Private Stream Aggregation (PSA), a weighted sum f(x) �→ ∑n
i xi

gets computed. This is similar to DMCFE for the inner-product functionality
f(x) �→ 〈x,y〉. PSA was introduced by Shi et al. [25] and allows a set of users to
compute the sum of their encrypted data for different time periods. Compared
to DMCFE, PSA is more restricted. It only allows computation of simple sums,
whereas in principle DMCFE allows the computation of different functions on
the input data. Furthermore, research on PSA has mainly focused on achieving
new properties or better efficiency [10,14,18,21,22], instead of providing new
functionalities.

1.4 Concurrent Work

Concurrently and independently of our work, Chotard et al. [16] proposed new
constructions of MCFE schemes for inner products both in the centralized and
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decentralized settings. Their paper contains three main contributions: (1) A
pairing-based compiler that turns any pos-IND secure MCFE scheme into an
any-IND secure MCFE scheme, secure under the decisional Bilinear Diffie-
Hellman problem in the random oracle model; (2) A second compiler that turns
a one-IND secure MCFE scheme into a pos-IND secure MCFE scheme; and (3)
A compiler that transforms a class of MCFE schemes for inner products into
a corresponding DMCFE scheme, based on either the CDH assumption in the
random-oracle model or the DDH assumption in the standard model.

While contribution (2) is unrelated and complementary to our work, con-
tributions (1) and (3) are related to our contributions in Sects. 4 and 3, respec-
tively. Regarding (1), their compiler from pos-IND to any-IND security produces
constant-size ciphertexts, but it requires pairings and random oracles. Our com-
piler in Sect. 4, on the other hand, avoids pairings, requiring either symmetric
encryption when applied to schemes without labels or random oracles for schemes
with labels, but ciphertext sizes are linear in the number of inputs. Regarding
(3), their compiler is similar to the straw man compiler described above. It is
based on the DDH assumption and proven secure with respect to static corrup-
tions. Our compiler in Sect. 3, on the other hand, is information-theoretic and
achieves adaptive security.

1.5 Organization

The paper is organized as follows. In Sect. 2, we recall classical definitions as well
as the definition of MCFE and DMCFE. Section 3 presents our first main con-
tribution: the compiler from MCFE to DMCFE. Our second main contribution,
namely our compilers from pos-IND security to any-IND security, is shown in
Sect. 4. We conclude our paper by the proof that the MIFE scheme of Abdalla
et al. [3] is actually an MCFE scheme that is secure under adaptive corruptions.

2 Definitions and Security Models

Notation. We use [n] to denote the set {1, . . . , n}. We write x for vectors and
xi for the i-th element. For security parameter λ and additional parameters n,
we denote the winning probability of an adversary A in a game or experiment
G as WinGA(λ, n), which is Pr[G(λ, n,A) = 1]. The probability is taken over the
random coins of G and A. We define the distinguishing advantage between games
G0 and G1 of an adversary A in the following way: AdvGA(λ, n) =

∣
∣WinG0

A (λ, n) −
WinG1

A (λ, n)
∣
∣.
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2.1 Multi-Client Functional Encryption

In this section, we define the notion of MCFE [20].

Definition 2.1 (Multi-Client Functional Encryption). Let F = {Fρ}ρ be
a family (indexed by ρ) of sets Fρ of functions f : Xρ,1 × · · · × Xρ,nρ

→ Yρ.2 Let
Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client functional encryption
scheme (MCFE) for the function family F and the label set Labels is a tuple of
five algorithms MCFE = (Setup,KeyGen,KeyDer,Enc,Dec):

Setup(1λ, 1n): Takes as input a security parameter λ and the number of parties n,
and generates public parameters pp. The public parameters implicitly define
an index ρ corresponding to a set Fρ of n-ary functions (i.e., n = nρ).

KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys
{ski}i∈[n] and a master secret key msk.

KeyDer(pp,msk, f): Takes as input the public parameters pp, the master secret
key msk and a function f ∈ Fρ, and outputs a functional decryption key skf .

Enc(pp, ski, xi, �): Takes as input the public parameters pp, a secret key ski, a
message xi ∈ Xρ,i to encrypt, a label � ∈ Labels, and outputs ciphertext cti,�.

Dec(pp, skf , ct1,�, . . . , ctn,�): Takes as input the public parameters pp, a func-
tional key skf and n ciphertexts under the same label � and outputs a value
y ∈ Yρ.

A scheme MCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ,
� ∈ Labels, xi ∈ Xρ,i, when ({ski}i∈[n],msk) ← KeyGen(pp) and skf ←
KeyDer(pp,msk, f), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, �), . . . ,Enc(pp, skn, xn, �)) = f(x1, . . . , xn)] = 1.

When ρ is clear from context, the index ρ is omitted. When Labels = {0, 1}∗,
we say that the scheme is labeled or with labels. When Labels = {⊥}, we say that
the scheme is without labels, and we often omit �.

Remark 2.2. We note that contrary to most definitions, the algorithm Setup
only generates public parameters that determine the set of functions for which
functional decryption keys can be created. The secret/encryption keys and the
master secret keys are generated by another algorithm KeyGen, while the func-
tional decryption keys are generated by KeyDer. This separation between Setup
and KeyGen is especially useful when combining multiple MCFE/MIFE schemes
as in [3] to ensure that all the MCFE/MIFE instances are using the same mod-
ulus. Note that this separation prevents for example the functionality to consist
of inner products modulo some RSA modulus N = pq and the master secret key
to contain the factorization of N (except if the factorization of the modulus N
is public).

2 All the functions inside the same set Fρ have the same domain and the same range.
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As noted in [15,20], the security model of multi-client functional encryption
is similar to the security model of standard multi-input functional encryption,
except that instead of a single master secret key msk for encryption, each slot
i has a different secret key ski and the keys ski can be individually corrupted.
In addition, one also needs to consider corruptions to handle possible collusions
between different parties. In the following, we define security as adaptive left-or-
right indistinguishability under both static (sta), and adaptive (adt) corruption.
We also consider three variants of these notions (one, any,pos) related to the
number of encryption queries asked by the adversary for each slot.

Definition 2.3 (Security of MCFE). Let MCFE be an MCFE scheme, F =
{Fρ}ρ a function family indexed by ρ and Labels a label set. For xx ∈ {sta, adt},
yy ∈ {one, any,pos}, and β ∈ {0, 1}, we define the experiment xx-yy-INDMCFE

β

in Fig. 1, where the oracles are defined as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote
by CS the set of corrupted slots at the end of the experiment.

Encryption oracle QEnc(i, x0
i , x

1
i , �): Outputs cti,� = Enc(pp, ski, x

β
i , �) on a

query (i, x0
i , x

1
i , �). We denote by Qi,� the number of queries of the form

QEnc(i, ·, ·, �).
Key derivation oracle QKeyD(f): Outputs skf = KeyDer(pp,msk, f).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QEnc(i, x0
i , x

1
i , �), x0

i = x1
i .

– For any label � ∈ Labels, for any family of queries {QEnc(i, x0
i , x

1
i , �)}i∈[n]\CS ,

for any family of inputs {xi ∈ Xρ,i}i∈CS , for any query QKeyD(f), we define
x0

i = x1
i = xi for any slot i ∈ CS, xb = (xb

1, . . . , x
b
n) for b ∈ {0, 1}, and we

require that:
f(x0) = f(x1).

We insist that if one index i /∈ CS is not queried for the label �, there is no
restriction.

– When yy = one: for any slot i ∈ [n] and � ∈ Labels, Qi,� ∈ {0, 1}, and if
Qi,� = 1, then for any slot j ∈ [n] \ CS, Qj,� = 1. In other words, for any
label, either the adversary makes no encryption query or makes exactly one
encryption query for each i ∈ [n] \ CS.

– When yy = pos: for any slot i ∈ [n] and � ∈ Labels, if Qi,� > 0, then for any
slot j ∈ [n] \ CS, Qj,� > 0. In other words, for any label, either the adversary
makes no encryption query or makes at least one encryption query for each
slot i ∈ [n] \ CS.

We define the advantage of an adversary A in the following way:

Advxx-yy-IND
MCFE,A (λ, n) =

∣
∣ Pr[xx-yy-INDMCFE

0 (λ, n,A) = 1]

−Pr[xx-yy-INDMCFE
1 (λ, n,A) = 1]

∣
∣.

A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if for
any n, for any polynomial-time adversary A, there exists a negligible function
negl such that: Advxx-yy-IND

MCFE,A (λ, n) ≤ negl(λ).
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Fig. 1. Security games for MCFE

Fig. 2. Relations between the MCFE security notions (arrows indicate implication or
being “a stronger security notion than”)

We omit n when it is clear from the context. We also often omit A from the
parameter of experiments or games when it is clear from context.

We summarize the relations between the six security notions in Fig. 2. Multi-
input functional encryption (MIFE) and functional encryption (FE) are special
cases of MCFE. MIFE is MCFE without corruption, and FE is the special case
of n = 1 (in which case, MIFE and MCFE coincide as there is no non-trivial cor-
ruption). Therefore, for single-input FE schemes, sta-any-IND = adt-any-IND =
any-IND corresponds to the secret-key version of the standard adaptive indis-
tinguishability notion used in [5]. The security notions considered in [15] are
actually xx-pos-IND and so are the MIFE notions of [3]. An xx-one-IND MCFE
is also called a one-time secure scheme.

2.2 Decentralized Multi-Client Functional Encryption

Now, we introduce the definition of decentralized multi-client functional encryp-
tion (DMCFE) [15]. As for our definition of MCFE, we separate the algorithm
Setup which generates public parameters defining in particular the set of func-
tions, from the algorithm KeyGen (see Remark 2.2).

Definition 2.4 (Decentralized Multi-Client Functional Encryption).
Let F = {Fρ}ρ be a family (indexed by ρ) of sets Fρ of functions f : Xρ,1 ×
· · · × Xρ,nρ

→ Yρ. Let Labels = {0, 1}∗ or {⊥} be a set of labels. A decen-
tralized multi-client functional encryption scheme (DMCFE) for the function
family F and the label set Labels is a tuple of six algorithms DMCFE =
(Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,Dec):
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Setup(1λ, 1n) is defined as for MCFE in Definition 2.1.
KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys

{ski}i∈[n].
KeyDerShare(pp, ski, f): Takes as input the public parameters pp, a secret key

ski from position i and a function f ∈ Fρ, and outputs a partial functional
decryption key ski,f .

KeyDerComb(pp, sk1,f , . . . , skn,f ): Takes as input the public parameters pp, n
partial functional decryption keys sk1,f , . . . , skn,f and outputs the functional
decryption key skf .

Enc(pp, ski, xi, �) is defined as for MCFE in Definition 2.1.
Dec(pp, skf , ct1,�, . . . , ctn,�) is defined as for MCFE in Definition 2.1.

A scheme DMCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ, � ∈
Labels, xi ∈ Xρ,i, when {ski}i∈[n] ← KeyGen(pp), ski,f ← KeyDerShare(ski, f)
for i ∈ [n], and skf ← KeyDerComb(pp, sk1,f , . . . , skn,f ), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, �), . . . ,Enc(pp, skn, xn, �)) = f(x1, . . . , xn)] = 1.

We remark that there is no master secret key msk. Furthermore, similarly
to [15], our definition does not explicitly ask the setup to be decentralized. How-
ever, all our constructions allow for the setup to be easily decentralized, at least
assuming that the original schemes have such a property in the case of our
compilers.

We consider a similar security definition for the decentralized multi-client
scheme. We point out that contrary to [15], we do not differentiate encryption
keys from secret keys. This is without loss of generality, as corruptions in [15]
only allow to corrupt both keys at the same time.

Definition 2.5 (Security of DMCFE). The xx-yy-IND security notion of
an DMCFE scheme (xx ∈ {sta, adt} and yy ∈ {one, any,pos}) is similar to the
one of an MCFE (Definition 2.3), except that there is no master secret key msk
and the key derivation oracle is now defined as:

Key derivation oracle QKeyD(f): Computes ski,f := KeyDerShare(pp, ski, f)
for i ∈ [n] and outputs {ski,f}i∈[n].

2.3 Inner-Product Functionality

We describe the functionalities supported by the constructions in this paper, by
considering the index ρ of F in more detail.

The index of the family is defined as ρ = (R, n,m,X, Y ) where R is either
Z or ZL for some integer L, and n,m,X, Y are positive integers. If X,Y are
omitted, then X = Y = L is used (i.e., no constraint).

This defines Fρ = {fy1,...,yn
: (Rm)n → R} where

fy1,...,yn
(x1, . . . ,xn) =

n∑

i=1

〈xi,yi〉 = 〈x,y〉,
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where the vectors satisfy the following bounds: ‖xi‖∞ < X, ‖yi‖∞ < Y for
i ∈ [n], and where x ∈ Rmn and y ∈ Rmn are the vectors corresponding to the
concatenation of the n vectors x1, . . . ,xn and y1, . . . ,yn respectively.

2.4 Symmetric Encryption

For our second compiler (Sect. 4.1), we make use of a symmetric encryption
scheme SE = (EncSE,DecSE) that is indistinguishable secure under chosen plain-
text attacks (IND-CPA) and whose keys are uniform strings in {0, 1}λ as defined
by [9].

EncSE(K, x): Takes as input a key K ∈ {0, 1}λ and a message x to encrypt, and
outputs the ciphertext ct.

DecSE(K, ct): Takes as input a key K and a ciphertext ct to decrypt, and outputs
a message x.

We denote with AdvIND-CPA
SE,A (λ) the advantage of an adversary guessing β in

the following game: the challenger picks K ← {0, 1}λ and gives A access to
an encryption oracle QEnc(x0

i , x
1
i ) that outputs ct = EncSE(K, xβ

i ) on a query
(x0, x1).

3 From MCFE to DMCFE

In this section, we describe our first compiler which allows the decentralization of
MCFE schemes that satisfy an additional property, called special key derivation.
We start by defining this property and showing that existing schemes from [3,
15] satisfy it. Next, we describe the compiler and prove its security when the
underlying modulus of the special key derivation property is prime. Finally, we
extend the proof to the case where this modulus is a hard-to-factor composite
number.

3.1 Special Key Derivation Property

Definition 3.1 (MCFE with Special Key Derivation). An MCFE scheme
MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) for a family of functions F and a set
of labels Labels has the special key derivation property modulo L if:3

– Secret keys ski generated by KeyGen have the following form: ski =
(i, si, {uk

i }k∈[κ]), where si ∈ {0, 1}∗, and uk
i ∈ Z

m
L , and κ and m are pos-

itive integers implicitly depending on the public parameters pp.
– skf ← KeyDer(pp,msk, f) outputs skf = ({si,f}i∈[n], {dkk

f}
k∈[κ]

), where si,f

is a (polynomial-time) function of pp, i, si, and f , while:

dkk
f =

n∑

i=1

〈uk
i ,yk

i,f 〉 = 〈uk,yk
f 〉,

3 The integer L can depend on the public parameters pp.
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where yk
i,f ∈ Z

m
L is a (polynomial-time) function of pp, i, and f , and uk and

yk
f are the vectors in Z

mn
L corresponding to the concatenation of the vectors

{uk
i }i∈[n] and {yk

i,f}
i∈[n]

respectively.

Without loss of generality for MCFE with the special key derivation property,
we can suppose that msk = {ski}i∈[n]. We also remark that we do not require any
property of the family of functions F and that our compiler could be applicable
to more general MCFE than inner-product ones.

3.2 Instantiations

The MCFE construction of Chotard et al. [15, Section 4] satisfies the special key
derivation property modulo L = p (the order of the cyclic group), with κ = 2
and yk

f = y, when f : x �→ 〈x,y〉.
The generic constructions of Abdalla et al. [3, Section 3] (both over Z and

ZL, see also Sect. 5) satisfy the special key derivation property modulo L (where
L is the modulo used for the information-theoretic MIFE/MCFE with one-time
security) with yk

f = y. The instantiations from MDDH, LWE, and Paillier [3,
Section 4] use L = p the prime order of the cyclic group, L = q the prime modulo
for LWE (we need L = q to be prime for our compiler), L = N = pq the modulus
used for Paillier respectively.

3.3 Compiler for Prime Moduli

We start by presenting our compiler from MCFE schemes with the special key
derivation property modulo a prime L in Fig. 3. Correctness follows directly from
the fact that:

n∑

i=1

dkk
i,f =

n∑

i=1

〈uk
i ,yk

i,f 〉 +
n∑

i=1

〈vk
i ,yk

f 〉

= dkk
f + 〈

n∑

i=1

vk
i ,yk

f 〉 = dkk
f + 〈0,yk

f 〉 = dkk
f .

We insist on the fact that while vectors uk
i and yk

i,f are m-dimensional, vectors
vk

i and yk
f are (mn)-dimensional.

We have the following security theorem.

Theorem 3.2. Let MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) be an MCFE
construction for a family of functions F and a set of labels Labels. We suppose
that MCFE has the special key derivation property modulo a prime L. For any
xx ∈ {sta, adt} and any yy ∈ {one,pos, any}, if MCFE is an xx-yy-IND-secure
MCFE scheme, then the scheme DMCFE′ depicted in Fig. 3 is an xx-yy-IND-
secure DMCFE scheme. Namely, for any PPT adversary A, there exist a PPT
adversary B such that:

Advxx-yy-IND
DMCFE′,A (λ, n) ≤ Advxx-yy-IND

MCFE,B (λ, n).
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Fig. 3. Compiler from MCFE to DMCFE′: si,f is a function of pp, i, si, f and yk
i,f is a

function of pp, i, f , and k. M = mn.

Below, we provide a proof sketch of the theorem. The formal proof is in the
full version [1].

Proof (Theorem 3.2—sketch). In this sketch, we focus on a setting without cor-
ruption and where L is a prime number. For the sake of simplicity, we also
suppose that κ = 1 and si,f is an empty string, so that we can omit the super-
script k and we have sk′

i,f = dki,f = 〈ui,yi,f 〉 + 〈vi,yf 〉. We can define u′
i ∈ ZL

to be ui “padded with 0” so that we can write: 〈ui,yi,f 〉 = 〈u′
i,yf 〉 (recall that

yf is just the concatenation of the vectors yi,f for i ∈ [n]). Thus we have:

sk′
i,f = dki,f = 〈u′

i,yf 〉 + 〈vi,yf 〉 = 〈u′
i + vi,yf 〉.

Now, we remark that from keys dki,g for g ∈ {f1, . . . , fq}, one can compute the
key dki,f for any f such that yf is in the subspace generated by yf1 , . . . ,yfq

.
Indeed, if y =

∑q
j=1 μj · yfj

, for some μ1, . . . , μq ∈ ZL, then: dki,f =
∑q

j=1 μj ·
dki,fj

.
Let S be the set of functions f queried to QKeyD such that the family of vector

{yf}f∈S is linearly independent. We compute the dki,f of linearly dependent
functions as outlined above. We now look at linearly independent functions.
As the vectors vi are uniformly distributed under the constraints

∑n
i=1 vi = 0
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(by definition of Setup′), linear algebra ensures that the values {〈vi,yf 〉}i∈[n],f∈S

are distributed uniformly under the constraints
∑n

i=1〈vi,yf 〉 = 0 for f ∈ S.
Thus, from Sect. 3.3, we get that for any f ∈ S, {dki,f}i∈[n] is a fresh additive
secret sharing of

n∑

i=1

dki,f =
n∑

i=1

〈u′
i,yf 〉 =

n∑

i=1

〈ui,yi,f 〉 = dkf ,

and hence can be simulated knowing only dkf = KeyDer(msk, f) (but not the
vectors ui themselves, which are parts of the secret keys ski). In other words
queries to the oracle QKeyD(f) in the security game of DMCFE′ can be simulated
just from KeyDer(pp,msk, f) (or equivalently just from queries to the oracle
QKeyD(f) in the security game of MCFE).

Thus, we have a perfect reduction from the security of DMCFE′ to the security
of MCFE. �

3.4 Extension to Hard-to-Factor Moduli

We can extend the previous scheme to moduli L which are hard to factor. This
is required for the Paillier instantiation from [3, Section 4.3].

Let us provide formal details.

Definition 3.3 (Factorization). Let GenL be a PPT algorithm taking as input
the security parameter 1λ and outputing a number L ≥ 2. We define the
experiment FactorGenL(λ,A) for an adversary A as follows: it outputs 1 if on
input L ← GenL(1λ), the adversary outputs two integers L1, L2 ≥ 2, such that
L1 ·L2 = L. The advantage of A is AdvFactorGenL,A(λ) = Pr[FactorGenL(λ,A)]. Factor-
ization is hard for GenL if the advantage of any PPT adversary A is negligible
in λ.

We have the following security theorem proven in the full version [1].

Theorem 3.4. Let MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) be an MCFE
construction for an ensemble of functions F and a set of labels Labels. We sup-
pose that MCFE has the special key derivation property modulo an integer L,
which is part of the public parameter pp and generated as L ← GenL(1λ) in the
setup, for some polynomial-time algorithm. We assume that factorization is hard
for GenL. For any xx ∈ {sta, adt} and any yy ∈ {one,pos, any}, if MCFE is an
xx-yy-IND-secure MCFE scheme, then the scheme DMCFE′ depicted in Fig. 3
is an xx-yy-IND-secure DMCFE scheme. Namely, for any PPT adversary A,
there exist two PPT adversaries B and B′ such that:

Advxx-yy-IND
DMCFE′,A (λ, n) ≤ Advxx-yy-IND

MCFE,B (λ, n) + 2 · AdvFactorGenL,B′(λ).
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4 From xx-pos-IND to xx-any-IND Security

We present two compilers transforming pos-IND-secure MIFE, MCFE, and
DMCFE schemes into any-IND schemes. These compilers essentially force the
adversary to ask for at least one ciphertext per position i (and per label, for
labeled schemes).

The first compiler works for sta-pos-IND and adt-pos-IND-secure schemes
without labels (Labels = {⊥}) and only requires an IND-CPA symmetric encryp-
tion scheme to work. We prove it for the adt-pos-IND case as the proof for sta-
pos-IND is simpler. The second compiler supports labeled schemes, but is in the
random oracle model. Although our presentation is for DMCFE, the compilers
can be adapted to work for MCFE schemes in a straightforward way.

Regarding efficiency, both compilers add 2n − 1 symmetric keys (i.e., λ-bit
strings) to each secret key ski, and n symmetric keys to each ciphertext cti
(plus the overhead due to symmetric encryption, which can be as low as λ
bits using stream ciphers for example). (Partial) functional decryption keys and
public parameters are unchanged. For the first compiler, the computational com-
plexity overhead essentially consists in one symmetric encryption of the original
ciphertext for functional encryption, and n symmetric decryptions for functional
decryption. The second compiler uses a specific encryption scheme based on hash
functions (modeled as random oracles) which requires 2n−1 hash function eval-
uations in addition to the encryption algorithm.

4.1 Compiler for DMCFE Schemes Without Labels

The compiler without labels is described in Fig. 4. Where SE is an IND-CPA
symmetric-key encryption scheme. We show the following security theorem.

Theorem 4.1. Let DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,
Dec) be an adt-pos-IND-secure DMCFE scheme without labels (Labels =
{⊥}) for a family of functions F . Let SE = (EncSE,DecSE) be an IND-
CPA symmetric-key encryption scheme. Then the DMCFE scheme DMCFE′ =
(Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 4 is an
adt-any-IND-secure DMCFE scheme. Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n) + n · AdvIND-CPA
SE,B′ (λ).

Proof. An encryption query on the i-th slot is denoted as (x0
i , x

1
i ).

In the proof we need to consider two different cases:

1. In all uncorrupted positions i /∈ CS, at least one query has been made, Qi ≥ 1.
2. In an uncorrupted position i /∈ CS, zero queries have been made, Qi = 0.

We begin our proof by considering the first point.
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Fig. 4. Compiler from an xx-pos-IND DMCFE DMCFE without labels into an xx-any-
IND DMCFE DMCFE′ using an IND-CPA symmetric-key encryption scheme SE

Lemma 4.2. Let DMCFE = (Setup, KeyGen, KeyDerShare, KeyDerComb, Enc,
Dec) be an adt-pos-IND-secure DMCFE construction without labels (Labels =
{⊥}) for a family of functions F . Let SE = (EncSE,DecSE) be a
symmetric-key encryption scheme. Then the DMCFE scheme DMCFE′ =
(Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 4 is
adt-any-IND secure. Namely, for any PPT adversary A restricted to make
Qi ≥ 1 for all i /∈ CS there exist a PPT adversary B such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n).

Proof. We construct an adversary B against the adt-any-IND security of the
scheme DMCFE′. B generates ki,1, . . . , ki,n and Ki for every i ∈ [n].

If A ask a query QCor′(i), B asks a query QCor(i) to its own corruption oracle
to obtain the key ski and uses it to create sk′

i, which gets forwarded to A.
When the adversary A asks a query QEnc′(i, x0

i , x
1
i ), B directly forwards it

to its own encryption oracle. It receives cti ← Enc(pp, ski, x
β
i ) as a result and

uses Ki to generate ct′i ← EncSE(Ki, cti). This ciphertext gets concatenated with
the key shares of the symmetric encryption scheme {kj,i}j∈[n] and sent to A as
an answer to the encryption query.

If A asks a query QKeyD′(f), B forwards it to its own oracle to receive ski,f ,
which gets forwarded to A.
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It is straightforward to see that the adversary B perfectly simulates the secu-
rity game for DMCFE′ to A. Hence, we have:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n).

�
We continue with the consideration of the second point.

Lemma 4.3. Let DMCFE = (Setup, KeyGen, KeyDerShare, KeyDerComb, Enc,
Dec) be a DMCFE construction without labels (Labels = {⊥}) for a family of
functions F . Let SE = (EncSE,DecSE) be an IND-CPA symmetric-key encryp-
tion scheme and let Qi = 0 for at least one i /∈ CS. Then the DMCFE scheme
DMCFE′ = (Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) described
in Fig. 4 is adt-any-IND-secure. Namely, for any PPT adversary A, there exists
an adversary B′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ n · AdvIND-CPA

SE,B′ (λ).

Proof. We prove this part by using a hybrid argument. We define the games
G1, . . . ,Gn in Fig. 5.

Due to the definition of the game it holds that: Game G0 corresponds to the
experiment adt-any-INDDMCFE′

β for β = 1 and Gn to the experiment adt-any-
INDDMCFE′

β for β = 1 therefore using the triangular inequality, we get:

Advadt-any-IND
DMCFE′,A (λ, n) ≤

n∑

t=1

|Win
Gt−1
A (λ, n) − WinGt

A (λ, n)|.

We then conclude by showing that for any t, there exists an adversary Bt

such that
|Win

Gt−1
A (λ, n) − WinGt

A (λ, n)| ≤ AdvIND-CPA
SE,Bt

(λ).

The adversary B′ of the statement then just picks t ∈ [n] and simulates Bt.
The standard details are omitted here. The adversary Bt against the IND-CPA
security of the symmetric encryption scheme behaves in the following way:

In the first step, Bt generates the keys Ki and also samples ski for all i ∈
[n] \ {t} by running the key generation algorithm of DMCFE.

We denote by ES the set of positions i in which encryption queries have been
made.

If A corrupts a position i �= t, the adversary Bt samples random values ki,j

for all j ∈ [n]\(CS ∪ES) such that Ki = ⊕j∈[n]ki,j . If the position i has not been
corrupted before and if no encryption query has been asked in this position (i.e.
i /∈ CS ∪ES), then Bt samples random values kj,i for all j ∈ [n]\(CS ∪{i}). If the
adversary A asks a corruption query QCor′(t), the adversary Bt directly outputs
a random value r ← {0, 1}. This is due to the fact that, if party t is corrupted
the games Gt−1 and Gt are the same. This results in an advantage equal to 0.
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Fig. 5. The description of the hybrid used for the reduction to the symmetric-key
encryption scheme in Lemma 4.3.

Whenever A asks a query QEnc′(i, x0
i , x

1
i ) we consider three different cases.

In the first case, A queries the encryption oracle for i < t, then Bt generates
EncSE(Ki,Enc(pp, ski, x

0
i )) using the key Ki. The same happens for queries with

i > t, but with x1
i instead of x0

i , i.e. EncSE(Ki,Enc(pp, ski, x
1
i )). In the case that

A asks a query QEnc′(t, x0
t , x

1
t ), Bt generates (Enc(pp, skt, x

0
t ),Enc(pp, skt, x

1
t ))

and sends it to its own encryption oracle to receive EncSE(Enc(pp, skt, x
β
t )). If

no encryption has been asked in the position i before and if i is not corrupted
(i.e., i /∈ (CS ∪ ES)) then we sample kj,i for all j ∈ [n] \ CS. If i ∈ (CS ∪ ES)
then the values kj,i have already been sampled for all j ∈ [n]. The ciphertext
EncSE(Ki,Enc(pp, ski, x

β
i )) together with kj,i,∀j ∈ [n] are then sent to A in the

last step.
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If A asks a key derivation query QKeyD′(f), Bt uses the public parameters
pp and the keys {ski, f}i∈[n] to generate {sk′

i,f ← KeyDerShare(pp, ski, f)}
i∈[n]

as a response for A.
The reduction shows that for all t ∈ [n]:

|Win
Gt−1
A (λ, n) − WinGt

A (λ, n)| ≤ AdvIND-CPA
SE,Bt

(λ).

This results in:
n∑

t=1

|Win
Gt−1
A (λ, n) − WinGt

A (λ, n)| ≤
n∑

t=1

AdvIND-CPA
SE,Bt

(λ).

�
Theorem 4.1 follow from the two above lemmas. �

4.2 Compiler for Labeled DMCFE Schemes

We now present the compiler supporting labels in Fig. 6, where H1 : {0, 1}∗ →
{0, 1}λ and H2 : {0, 1}∗ → {0, 1}|cti| are two hash functions modeled as random
oracles in the security proof. We formally prove the following security theorem
in the full version [1].

Theorem 4.4. Let DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,
Dec) be an adt-pos-IND-secure DMCFE scheme for an ensemble of func-
tions F and set of labels Labels. Then the DMCFE scheme DMCFE′ =
(Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 6 is an
adt-any-IND-secure scheme. Namely, when the hash functions H1 and H2 are
modeled as random oracles, for any PPT adversary A there exist a PPT adver-
sary B such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n)

+
2qH1 + (2n + 1) · (qH2qQEnc + q2QEnc)

2λ
,

where qH1 , qH2 , and qQEnc are the numbers of queries to the oracles H1, H2, and
QEnc respectively.

A high-level overview of the proof of this theorem can be found in Sect. 1.2.

5 Security of the MCFE from Abdalla et al. Against
Adaptive Corruptions

In this section, we prove that the MIFE scheme by Abdalla et al. [3] is also
secure against adaptive corruptions, when their unique encryption and secret
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Fig. 6. Compiler from an xx-pos-IND DMCFE DMCFE with labels into an xx-any-
IND DMCFE DMCFE′ with labels, where H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ →
{0, 1}|cti| are two hash functions modeled as random oracles in the security proof.

key is split into individual secret keys for each party in a natural way4, as
described in Figs. 7 and 9.

For simplicity, we focus here on the bounded-norm MIFE case since the con-
struction over ZL can be easily adapted from it. Towards this goal, Sect. 5.1 first
recalls the definition of FE with two-step decryption and linear encryption. Next,
Sect. 5.2 recalls the other building block, an sta-one-IND-secure MCFE scheme
for Fρ, ρ = (ZL, n,m,L, L). Finally, Sect. 5.3 recalls the MCFE construction
from [3].

5.1 Inner-Product FE with Two-Step Decryption and Linear
Encryption

The [3] construction extends a one-time secure MIFE scheme over ZL to a
many-time secure MIFE scheme over Z. This extension relies on a single-input
FE scheme for Fρ, ρ = (Z, 1,m,X, Y ) satisfying two properties, called two-step

4 Note that the schemes in [3] were presented as a MIFE scheme with a unique encryp-
tion and secret key. It is however straightforward to split the encryption key and
secret key into a key ski for each party.
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decryption and linear encryption [3]. As indicated in [3], the two-step decryp-
tion property informally says that the FE decryption algorithm can be broken in
two steps: one step that uses the secret key to return an encoding of the result
and the other step that returns the actual result 〈x,y〉 as long as the bounds
||x||∞ < X, ||y||∞ < Y hold. The linear encryption property, on the other hand,
informally states that the FE encryption algorithm is additively homomorphic.
We now recall these definitions more formally.

Definition 5.1 (Two-step decryption [3]). A secret-key FE scheme
FE = (Setup,KeyGen,KeyDer,Enc,Dec) for the function ensemble Fρ, ρ =
(Z, 1,m,X, Y ) satisfies the two-step decryption property if it admits PPT algo-
rithms Setup�,Dec1,Dec2 and an encoding function E such that:

1. For all λ ∈ N,Setup�(1λ, 1n) outputs pp where pp includes ρ = (Z, 1,m,X, Y )
and a bound B ∈ N, as well as the description of a group G (with group
law ◦) of order L > 2 · n · m · X · Y , which defines the encoding function E :
ZL × Z → G.

2. For all msk ← KeyGen(pp),x ∈ Z
m, ct ← Enc(pp,msk,x),y ∈ Z

m, and sk ←
KeyDer(msk,y), we have

Dec1(pp, sk, ct) = E(〈x,y〉 mod L, noise),

for some noise ∈ N that depends on ct and sk. Furthermore, it holds that
Pr[noise < B] = 1 − negl(λ), where the probability is taken over the random
coins of KeyGen and KeyDer. Note that there is no restriction on the norm of
〈x,y〉 here.

3. Given any γ ∈ ZL, and pp, one can efficiently compute E(γ, 0).
4. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise + noise′).

5. For all γ < 2 · n · m · X · Y , and noise < n · B,Dec2(pp, E(γ, noise)) = γ.

Definition 5.2 (Linear encryption [3]). A secret-key FE scheme FE =
(Setup,KeyGen,KeyDer,Enc,Dec) is said to satisfy the linear encryption prop-
erty if there exists a deterministic algorithm Add that takes as input a cipher-
text and a message, such that for all x,x′ ∈ Z

m, the following are identically
distributed:

Add(Enc(pp,msk,x),x′), and Enc
(
pp,msk, (x + x′ mod L)

)
.

Recall that the value L ∈ N is defined as part of the output of the algorithm
Setup� (see the two-step decryption property above).

5.2 One-Time Inner-Product MCFE over ZL

We recap the one-time secure scheme provided by Abdalla et al. [3] in Fig. 7,
to which we made the following modifications. First, our description does not
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Fig. 7. One-Time Inner-Product MCFE over ZL (for Fm
L,n)

need a setup procedure Setupot, which now simply defines (n,m,L). Second,
the steps of the original Setupot in Abdalla et al. [3] are now defined in the
KeyGenot procedure. When doing so, we also split their unique secret key into
individual secret keys for each party. Since these modifications do not impact
the correctness of the scheme, we refer to [3] for a proof of correctness. As for
its security with respect to adaptive corruptions, we need to modify the proof
of Abdalla et al. [3] to account for corruption queries.

Theorem 5.3. The MCFEot scheme in Fig. 7 is adt-one-IND secure. Namely,
for any adversary A, Advadt-one-IND

MCFEot,A (λ) = 0.

Proof. Let A be an adversary against the adt-one-IND security of the MCFEot

scheme with advantage Advadt-one-IND
MCFEot,A (λ). Let sta-one-sel-INDMCFEot

β (λ, n,B) be a
variant of the sta-one-INDMCFEot

β (λ, n,B) experiment in which the selective adver-
sary B additionally specifies the encryption challenges {xb

i}i∈[n],b∈{0,1} together
with the corrupted set at the beginning of the experiment. (Recall that there is
a single challenge per slot.)

We use complexity leveraging to transform A into a selective adversary B
such that:

Advadt-one-IND
MCFEot,A (λ) ≤ 2−n · (2X)−2nm · Advsta-one-sel-IND

MCFEot,B (λ).

After adversary B made its guesses {xb
i}i∈[n],b∈{0,1} and determined the set of

corrupted parties, it simulates A’s experiment using its own static and selective
experiment. When B receives a challenge or corruption query from A, it checks
if the guess was successful: if it was, it continues simulating A’s experiment,
otherwise, it returns 0. When the guess is successful, B perfectly simulates A’s
view.

Hence, to prove that MCFEot satisfies perfect adt-one-IND security, we just
need to prove that it satisfies perfect sta-one-sel-IND security. In order to prove
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Fig. 8. Hybrid experiments for the proof of Theorem 5.3.

MCFEot satisfies perfect sta-one-sel-IND security (i.e., Advsta-one-sel-IND
MCFEot,B (λ) = 0),

we introduce hybrid games Hβ(1λ,B), described in Fig. 8.
We prove that for all β ∈ {0, 1}, the hybrid Hβ(1λ,B) is identical to the

experiment sta-one-sel-INDMCFEot

β (λ, n,B). This can be seen by using the fact
that, in the selective security game, all {xβ

i ∈ Z
m}i∈[n] have identical distribu-

tions: {ui mod L}i∈[n] and {ui − xβ
i mod L}, with ui ←R Z

m
L . This also holds

for the corrupted positions i ∈ CS, because in this case it holds that x0
i = x1

i .
Finally, we show that B’s view in Hβ(1λ,B) is independent of β. Indeed,

the only information about β that leaks in the experiment is 〈xβ
i ,yi〉, which is

independent of β by the definition of the security game. �

5.3 Inner-Product MCFE over Z

In Fig. 9, we recall the construction of [3] of a pos-IND-secure scheme MCFE =
(Setup,KeyGen,KeyDer,Enc,Dec) from the (one-IND-secure) MCFE scheme
MCFEot = (KeyGenot,KeyDerot,Encot,Decot) described in Sect. 5.2 and from any
any-IND-secure scheme FE = (Setupsi,KeyGensi,KeyDersi,Encsi,Decsi) for a sin-
gle input. As for the one-time scheme in Sect. 5.2, we also modified the KeyGen
procedure in [3] in order to split their unique secret key into individual secret
keys for each party. Since these modifications do not impact the correctness of
the scheme, we refer to [3] for a proof of the latter. In the following, we show
that this construction allows for adaptive corruption.

Lemma 5.4. Assume that the single-input scheme FE is any-IND-secure and
the multi-client scheme MCFEot is adt-one-IND-secure. Then the multi-client
scheme MCFE is adt-pos-IND-secure. Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that

Advadt-pos-IND
MCFE,A (λ, n) ≤ Advadt-one-IND

MCFEot,B (λ, n) + n · Advany-IND
FE,B′ (λ, n).

Proof. To prove the security of the multi-client inner-product functional
encryption scheme, we define a sequence of games, where G0 is the
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Fig. 9. Inner-Product for Fρ, ρ = (Z, n, m, X, Y ) built from MCFEot for Fρot , ρot =
(ZL, n, m, L, L) and FE for Fρsi , ρsi = (Z, 1, m, 3X, Y )

Fig. 10. Overview of the games to prove the security of the MCFE scheme.
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adt-pos-INDMCFE
0 (λ, n,A) game and G2 the adt-pos-INDMCFE

1 (λ, n,A) game. A
description of all the different games can be found in Fig. 10. We denote the
winning probability of an adversary A in a game Gi as WinGi

A (λ, n), which is
Pr[Gi(λ, n,A) = 1]. The probability is taken over the random coins of Gi and
A. The encryption query j on the i-th slot is denoted as (x0,j

i ,x1,j
i ).

We start our proof by considering the games G0 and G1.

Lemma 5.5. For any PPT A, there exists a PPT adversary B such that

|WinG0
A (λ, n) − WinG1

A (λ, n)| ≤ Advadt-one-IND
MCFEot,B (λ, n).

Proof. Compared to G0, G1 replaces the encryptions of x0,j
i −x0,1

i +x0,1
i with the

encryptions of x0,j
i −x0,1

i +x1,1
i for all of the slots i under adaptive corruptions.

This mirrors directly the distribution of the challenge ciphertexts in Gβ .
The adversary B simulates Gβ to A using the adt-one-INDMCFE

β experiment.
In the beginning B generates the parameters pp = (ppsi, ppot) ← Setup(1λ, 1n)
and the keys msksii ← KeyGen(ppsi) for all the positions i ∈ [n]. Whenever A asks
a query QKeyD′(y = (y1, . . . ,yn)), B uses its own key derivation oracle to get
dky =

∑
i∈[n]〈ui,yi〉 and computes the keys ski,y ← KeyDersi(ppsi,msksii ,yi) for

all the positions i ∈ [n] on its own and sends them to A.
For each position i ∈ [n], the first encryption query QEnc′(i,x0,1

i ,x1,1
i ) by

A gets forwarded to the challenger. B receives cti,ot = ui + xβ,1
i as an answer,

computes ct1i = Encsi(ppsi,msksii ,ui + xβ,1
i ), and returns it to A. For all further

queries (j > 1), B produces ctji by encrypting (x0,j
i − x0,1

i + cti,ot) mod L.
When A asks a query QCor′(i), it is necessary that x0,j

i = x1,j
i holds for

all the corruption queries that A has asked before. In this case, B computes
ui = cti,ot − x0,1

i and sends (msksii ,mpksii ,ui) to A.
Finally, B outputs 1, if and only if A outputs 1. By the reasoning above, we

can conclude that:

|WinG0
A (λ, n) − WinG1

A (λ, n)| ≤ Advadt-one-IND
MCFEot,B (λ, n).

�
In the next step we consider game G2. In this game, we change the encryption

from Encsi(ppsi,msksii ,x0,j
i − x0,1

i + ui + x1,1
i ) to Encsi(ppsi,msksii ,x1,j

i − x1,1
i +

ui + x1,1
i ) for all slots i and all queries j.

To prove that G1 is indistinguishable from G2 we need to apply a hybrid
argument over the n slots, using the security of the single input FE scheme.

Using the definition of the games in Fig. 11, we can see that

|WinG1
A (λ, n) − WinG2

A (λ, n)| =
n∑

k=1

|Win
G1.k−1
A (λ, n) − WinG1.k

A (λ, n)|,

where G1 corresponds to game G1.0 and whereas G2 is identical to game G1.n.
Now, we can bound the difference between each consecutive pair of games

for every k:
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Lemma 5.6. For every k ∈ [n], there exists a PPT adversary Bk against the
any-IND security of the single-input scheme FE such that

|Win
G1.k−1
A (λ, n) − WinG1.k

A (λ, n)| ≤ Advany-IND
FE,Bk

(λ, n).

Proof. G1.k replaces the encryption of x0,j
i − x0,1

i + x1,1
i with encryptions of

x1,j
i −x1,1

i +x1,1
i in all slots, for i ≤ k. As already described in the preliminaries,

it must hold that 〈x0,j
i − x0,1

i ,yi〉 = 〈x1,j
i − x1,1

i ,yi〉 for all queries. Hence
〈x0,j

i −x0,1
i +x1,1

i ,yi〉 = 〈x1,j
i −x1,1

i +x1,1
i ,yi〉, and since ‖x0,j

i − x0,1
i + x1,1

i ‖∞ <

3X and ‖x1,j
i − x1,1

i + x1,1
i ‖∞ < 3X, using the linear encryption property, we

can reduce the difference in the winning probability of an adversary A in games
G1.k−1 and G1.k to the any-IND security of the single-input scheme FE.

More precisely, we build an adversary Bk that simulates G1.k−1+β to A when
interacting with the underlying any-INDFE

β experiment. In the beginning of the
reduction, Bk receives the public parameters from the experiment. The received
key from the challenge is set to be mpksik , corresponding to the k-th encryption
instance. In the next step, Bk randomly chooses ui ∈ Z

m
L for all i ∈ [n] and runs

the KeyGen procedure to get msksii for all i �= k.
Whenever A asks a query QKeyD′(y), Bk computes dky =

∑
i∈[n]〈ui,yi〉 on

its own and generates ski,y ← KeyGensi(ppsi,msksii ,yi) for all i �= k. To get the
functional key skk,y , Bk queries its own key derivation oracle on yi and outputs
({ski,y}i∈[n], dky) to A.

For the encryption queries QEnc(i,x0,j
i ,x1,j

i ), Bk proceeds in the following
way:

– If i < k it computes Encsi(ppsi,msksii ,ui + x1,j
i ).

– If i > k it computes Encsi(ppsi,msksii ,x0,j
i − x0,1

i + ui + x1,1
i ).

– If i = k, Bk queries the encryption oracle on input (x0,j
k − x0,1

k + x1,1
k ,x1,j

k −
x1,1

k +x1,1
k ) to get back the ciphertext ctj∗ := Encsi(ppsi,msksik ,xβ,j

k −xβ,1
k +x1,1

k )
from the any-INDFE

β experiment.5 Then, Bk computes the ciphertext ctjk :=
Add(ctj∗,uk) and forwards it to A.

As in the security proof of the MIFE scheme in [3], we remark that
by the two-step property Definition 5.2, ctjk is identically distributed to
Encsi

(
ppsi,msksik ,xj,β

k − x1,β
k + x1,1

k + uk mod L
)
, which is itself equal to

Encsi
(
ppsi,msksik ,Encot(xj,β

k − x1,β
k + x1,1

k )
)
.

In the case that the adversary A asks a corruption query QCor′(k) for position
k at any time, the adversary Bk directly outputs a random value α ← {0, 1}.
This is due to the fact that, if position k is corrupted, then the games G1.k−1

and G1.k are identical given that x1,0
k = x1,1

k . This results in an advantage equal
to 0 and Lemma 5.6 trivially holds in this case.
5 As in [3], note that these vectors have norm less than 3X, and as such, are a valid

input to the encryption oracle. Furthermore, these queries are allowed, since as
explained at the beginning of the proof: it holds that 〈x0,j

i − x0,1
i ,yi〉 = 〈x1,j

i −
x1,1

i ,yi〉.
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Fig. 11. A more detailed description of how the games work.

In the case that the adversary A asks a corruption query QCor′(i) for i �= k,
Bk simply returns (msksii ,ui) to A.

This covers the simulation of the game G1.k−1+β . Finally, Bk outputs the
same bit β′ returned by A:

|Win
G1.k−1
A (λ, n) − WinG1.k

A (λ, n)| ≤ Advany-IND
FE,Bk

(λ, n).

�
The proof of theorem follows by combining the statements in Lemmas 5.5 and
5.6 and noticing that the adversary B′ in the theorem statement can be obtained
by picking i ∈ [n] and running Bi. The standard details are omitted here. �
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Abstract. In non-zero inner product encryption (NIPE) schemes,
ciphertexts and secret keys are associated with vectors and decryption is
possible whenever the inner product of these vectors does not equal zero.
So far, much effort on constructing bilinear map-based NIPE schemes
have been made and this has lead to many efficient schemes. However,
the constructions of NIPE schemes without bilinear maps are much less
investigated. The only known other NIPE constructions are based on
lattices, however, they are all highly inefficient due to the need of con-
verting inner product operations into circuits or branching programs.

To remedy our rather poor understanding regarding NIPE schemes
without bilinear maps, we provide two methods for constructing NIPE
schemes: a direct construction from lattices and a generic construction
from schemes for inner products (LinFE). For our first direct construc-
tion, it highly departs from the traditional lattice-based constructions
and we rely heavily on new tools concerning Gaussian measures over
multi-dimensional lattices to prove security. For our second generic con-
struction, using the recent constructions of LinFE schemes as building
blocks, we obtain the first NIPE constructions based on the DDH and
DCR assumptions. In particular, we obtain the first NIPE schemes with-
out bilinear maps or lattices.

1 Introduction

1.1 Background

An attribute-based encryption (ABE) scheme is an advanced form of public
key encryption where an access control over encrypted data is possible. In
an ABE scheme, a ciphertext and a secret key are associated with attributes
X and Y , respectively, and the decryption is possible only when they satisfy
R(X,Y ) = 1 for a certain relation R. The concept of ABE was first proposed
by Sahai and Waters [SW05]. Since then, many study followed in order to
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improve the scheme in many aspects: security [LOS+10,OT10], expressibility
[GPSW06,LW11,GVW13], and efficiency [ALDP11]. While the early construc-
tions of ABE schemes are based on bilinear maps, some of the more recent
schemes are based on lattices.

In this paper, we focus on a special form of an ABE scheme called non-
zero inner product encryption (NIPE) scheme. In an NIPE scheme, a ciphertext
attribute is a vector x and a secret key attribute is a vector y, and the relation
is defined as R(x,y) = 1 iff 〈x,y〉 �= 0. The notion of NIPE was first introduced
in [KSW08]. It was not until Attrapadung and Libert [AL10] who gave the
direct first construction of an NIPE scheme using bilinear maps.1 In their work,
they provided interesting applications of NIPE schemes such as identity-based
revocation (IBR) schemes, where an IBR scheme is a type of broadcast encryp-
tion scheme that allows for efficient revocation of small member size. Since then,
many efficient NIPE schemes have been proposed [AL10,ALDP11,OT10,OT15],
[YAHK14,CW14,CLR16]. They are all based on number theoretic assumptions
on bilinear maps.

On the other hand, the constructions of NIPE schemes without bilinear maps
are much less investigated. The only known other constructions are based on
lattices. However, unlike in the bilinear map setting, we do not know of any
direct constructions of a NIPE scheme in the lattice setting. In more detail,
we have ABE schemes for any circuit (i.e. the relation R being general cir-
cuits) [GVW13,BGG+14] and any branching programs [GVW13,GV15] from
the learning with errors (LWE) assumption. Here, the expressibility of the latter
constructions are more limited, however, these schemes can be proven secure
under the LWE assumption with polynomial approximation factors unlike the
former schemes that require sub-exponential approximation factors, i.e., the
required hardness assumption is much weaker. Although we have two lines of
works that allow us to indirectly construct lattice-based NIPE schemes, they
are both highly inefficient. In particular, we can use the former constructions
from circuits to implement an NIPE scheme, however, this would require us to
express the computation of the non-zero inner product predicates as a circuit,
which would result in a highly inefficient scheme. Furthermore, it would require
us to base security on a sub-exponential LWE assumption, which is not desirable
both from the efficiency and security stand points. Alternatively, we can use the
latter construction for branching programs. To do so, we would first represent
the non-zero inner product predicate as an NC1 circuit, which is possible because
arithmetic operations are known to be in NC1 [BCH86], and then convert it into
a branching program using the Barrington’s theorem. Using [GVW13] or [GV15],
the construction by this approach enjoys security from the standard polynomial
LWE assumption. However, the approach is still highly inefficient due to the
large overhead incurred by the invocation of the Barrington’s theorem [Bar89].

1 We note that Goyal et al. [GPSW06] propose an ABE scheme for NC1 circuit,
which in turn implies a NIPE scheme, since the computation of inner products can
be performed in NC1. However, the resulting construction is highly inefficient.
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More on NIPEs. Although NIPE schemes allows us to construct other cryp-
tographic primitives such as IBR schemes as explained above, it may be more
helpful to understand the usefulness of the primitive through its “negating” fea-
ture. As the name suggests, NIPE scheme is the counterpart of inner-product
encryption (IPE) schemes. It is well known that IPE schemes can be used
to construct functional encryption schemes that can handle many practical
predicates such as polynomial evaluations, disjunction and/or conjunctions of
equality tests, membership tests and so on (for concrete applications see for
example [BW07,KSW08]). In brief, NIPE schemes are primitives that can han-
dle the exact opposite of all these predicates. Due to its usefulness in prac-
tice, negated policies in the area of ABE have been highlighted in prior works
[OSW07,AL10,ABS17].

Furthermore, aside from its practical interest, NIPE schemes are theoretically
interesting in its own right, since as we show as one of our results, NIPE schemes
can be constructed from much weaker assumptions than one would expect. In
particular, we construct NIPE schemes from the DDH or DCR assumption,
where it currently seems that stronger assumptions such as the DBDH or DLIN
assumption is required to construct its counterpart—IPE schemes. Therefore,
although an NIPE scheme may be simply understood as an IPE scheme in the
opposite flavor, our result indicates a distinct gap between the two primitives
when it comes to concrete constructions. Considering the recent breakthrough in
constructing identity-based encryption schemes [DG17] and functional encryp-
tion schemes for inner products [ABDCP15,ALS16] from weak assumptions, we
hope our work to spark interest to finding the minimum assumption for other
ABE-related primitives.

1.2 Our Contributions

To remedy our rather poor understanding regarding NIPE schemes without bilin-
ear maps, we provide two methods for constructing NIPE schemes: a direct con-
struction from lattices and a generic construction from functional encryption
schemes for inner products (LinFE)2. For the first direct lattice-based approach,
we propose two NIPE constructions where the differences lie in where the inner
products between attribute and predicate vectors are taken. The first scheme is
over Z whereas the second scheme is over Zp. For the second generic approach,
we show how to generically construct NIPE schemes from any LinFE scheme. In
particular, we can use the recent works of [ABDCP15,ALS16] to instantiate var-
ious types of NIPE schemes. Concretely, since [ALS16] provides us with LinFE
schemes from the LWE assumption, the DDH assumption and the DCR assump-
tion, we obtain NIPE schemes secure under all of these assumptions. Notably,
we obtain the first NIPE constructions without bilinear maps or lattices.

We give a brief overview on the properties that our NIPE schemes satisfy. As
for the first direct approach, we obtain two NIPE schemes with different prop-
erties: a selectively secure stateless NIPE scheme over Z and a selectively secure
2 The term LinFE is borrowed from [ALS16]. It is named as such, since it is a special

type of functional encryption scheme restricted to the class of linear functions.
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stateful NIPE scheme over Zp. As for the second generic approach, by using the
LinFE schemes provided in [ALS16], which subsumes the work of [ABDCP15],
we obtain an adaptively secure stateless or stateful NIPE scheme over Z or Zp,
depending on what we use as the underlying LinFE scheme. The main advan-
tage of the first approach is that it leads to a more efficient NIPE scheme in the
amortized sense compared with the second approach instantiated with a lattice-
based LinFE scheme. In more detail, to encrypt a message of �M -bit length, the
first approach requires (�M + m + m�) elements of Zq in a ciphertext and the
second requires (m + �)�M . Here, � is the dimension of the predicate vectors in
the NIPE scheme and q and m are the modulus size and the number of columns
of the LWE matrix involved in the scheme, respectively. The first approach is
more efficient than the second one when we encrypt more than m�/(m + �) bits
at once. For a natural setting of � < m, λ where λ is the security parameter, this
encompasses the most interesting case of KEM-DEM settings where one encrypts
λ bits of session key. In fact, when we are in the ring setting, since m is O(log λ),
the first approach will be more efficient regardless of the size �. Furthermore,
for NIPE schemes over Zp, the first approach would require smaller LWE mod-
ulus. Indeed, in certain regime of parameters such as � = log n/ log log log n and
p = log log n, the first approach would yield a scheme with polynomial modulus
whereas the second requires super-polynomial modulus. However, on the other
hand, the advantage of the second approach is that it achieves adaptive security
and allows us to instantiate the NIPE scheme with different types of hardness
assumptions such as the DDH and DCR assumptions. Below, we give an outline
of the techniques we used for constructing our lattice-based NIPE schemes and
the generic construction of NIPE schemes from LinFE. We believe the techniques
we utilized for the lattice-based direct NIPE construction to be of independent
interest.

Lattice-Based Constructions. We propose two NIPE schemes built directly
from lattices. At a high level, our two NIPE constructions share many simi-
larities; both constructions highly depart from the previous lattice-based ABE
constructions [GVW13,BGG+14,GV15] and they rely heavily on the tools of
Gaussian measures over multi-dimensional lattices during the security proof.
Notably, for both of our constructions: a trapdoor TA ∈ Z

m×m for the public
matrix A ∈ Z

n×m
q is not required, a secret key for a user is simply a linear com-

bination of the master secret keys, and the algorithm SampleRight of [ABB10] is
used during decryption. To the knowledgeable readers of lattice-based cryptog-
raphy, this may seem somewhat peculiar, since SampleRight is an algorithm that
customary appears in the security proof for allowing the simulator to sample a
short vector e such that [A|B]e = u without knowledge of the trapdoor of A, in
case B is in the special form AR+ t ·G mod q, where t ∈ Zq is some invertible
element and G [MP12] is a special matrix with a publicly known trapdoor TG.

Below we sketch our construction. We set the master public key MPK and
the master secret key MSK as follows:

MPK = (A,B1, · · · ,B�,u) and MSK = (R1, · · · ,R�),
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where � denotes the dimension of the vectors, {Ri}i∈[�] are random matrices
whose columns are sampled from the discrete Gaussian distribution and Bi =
ARi mod q. In the following, we focus on the overview of our first NIPE scheme
with inner product space Z. Although the high level construction is the same for
our second NIPE scheme with inner product space Zp, we require some additional
technicalities during key generation, which we describe later.

Given the master secret key MSK, our secret key generation algorithm is
very simple and does not require any Gaussian sampling as in prior works.
Concretely, given a predicate vector y = (y1, · · · , y�) ∈ Z

�, we simply return
Ry =

∑�
i=1 yiRi ∈ Z

m×m as the secret key. To embed an attribute vec-
tor x = (x1, · · · , x�) ∈ Z

� into the ciphertext, we use the techniques of
[AFV11,BGG+14], and create vectors {ci = s�(Bi + xi · G) + zi}i∈[�] along
with c0 = s�A + z0. Here, s is a randomly sampled vector in Z

n
q and {zi}i∈[0,�]

are short vectors in Z
m sampled from a particular discrete Gaussian distribution.

Then, for decryption, a user with predicate vector y computes the following:

�∑

i=1

yi · ci = s�(
�∑

i=1

yiBi + 〈x,y〉 · G) + noise = s�(ARy + 〈x,y〉 · G) + noise.

Therefore, if 〈x,y〉 �= 0 (over Z), we can use the algorithm SampleRight to sample
a short vector e ∈ Z

2m such that [A|ARy + 〈x,y〉 · G]e = u mod q. Here, to
take care of the subtle problem that 〈x,y〉 has to be invertible over Zq, we
require the attribute and predicate vectors to be in some restricted domains.

However, despite the simplicity of our construction, the security proof
requires a rather sensitive and technical analysis that calls for new techniques.
In particular, building upon the prior works of [BF11], we prepare new tools
concerning Gaussian measures over mulit-dimensional lattices, which we believe
to be of independent interest. Using these tools, we are able to provide a rigorous
treatment on the distribution of the secret keys Ry of the real world and the
simulated world. In more detail, given a challenge attribute x∗ ∈ Z

� at the outset
of the game, the simulator samples random matrices {RSIM

i }i∈[�] as in the real
world and sets the public matrices Bi as ARSIM

i −x∗
i ·G. We answer the secret key

queries as in the real world, i.e., given a predicate vector y = (y1, · · · , y�) ∈ Z
�,

we simply return RSIM
y =

∑�
i=1 yiRSIM

i ∈ Z
m×m. At first glance this seems

completely insecure, since an adversary may query y = (1, 0, · · · , 0) ∈ Z
� and

recover R1 or RSIM
1 depending on which world it is in. Then, the adversary can

check whether B1 = AR1 or B1 = ARSIM
1 − x∗

1 · G to distinguish between
the real world and the simulated world. However, this seemingly acute tactic
cannot be used to attack our NIPE scheme. The main observation is that, if
y = (1, 0, · · · , 0) ∈ Z

� is a valid predicate for the key extraction query, then we
must have 〈x∗,y〉 = 0, or in other words x∗

1y1 = x∗
1 = 0. Therefore, since R1

and RSIM
1 are distributed statistically close, the above attack cannot be used to

distinguish between the two worlds. Our security analysis builds on this idea and
proves that the distribution of the secret keys the adversary obtains in the two
worlds {Ry (j)}j∈[Q] and {RSIM

y (j)}j∈[Q] are indeed statistically indistinguishable.
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The main technical contribution is developing new tools for Gaussian measures
over multi-dimensional lattices, and analyzing the (set of) linear combinations
of Gaussian distributions {Ry (j) =

∑�
i=1 y

(j)
i Ri}j∈[Q].

Finally, we briefly note on the aforementioned technical issue that arises
for our second NIPE construction with inner product space Zp. Notably, we
require our NIPE scheme to be stateful. This is similar to an issue that came
up in the works of [ALS16] for their LinFE scheme over Zp. Unlike in the NIPE
construction with inner product space Z, the linear dependency of the predicate
vectors y ∈ Z

�
p and the secret keys Ry ∈ Z

m×m are no longer consistent. In other
words, even when an adversary queries for secret keys corresponding to predicate
vectors that are linearly dependent over Zp, the corresponding secret keys may
no longer be linearly dependent over Z. Therefore, the adversary can recover
the full master secret key {Ri}i∈[�] by querying the right predicate vectors. To
prevent this from happening, we make the key generation algorithm stateful
and pay special attention so as not to give out linearly independent secret keys
for linearly dependent predicate vectors. In addition, we also specify how to
maintain the state in a clever way. This is because the representation of the
state has a direct effect on the required LWE assumption, and if we maintain
the state naively, we would have to base our security on the subexponential LWE
assumption.

Generic Construction from LinFE. Besides the direct constructions from
lattices, we also propose a generic construction of a NIPE scheme from a LinFE
scheme. The idea for the generic conversion is inspired by the works of [ABP+17]
and is surprisingly simple. To explain the idea, let us first recall that in a LinFE
scheme, a ciphertext and a private key are associated with vectors x and y,
and when we decrypt the ciphertext using the private key, we recover 〈x,y〉.
Given a LinFE scheme, we construct a NIPE scheme as follows. To encrypt a
message M for a vector x, we encrypt a vector M ·x using the underlying LinFE
scheme to obtain a ciphertext. A private key for a vector y in the NIPE scheme
is exactly the same as a private key for y in the underlying LinFE scheme.
Observe that when we decrypt the ciphertext using the private key, we recover
〈M · x,y〉 = M · 〈x,y〉. This value corresponds to 0 when 〈x,y〉 = 0 regardless
of the value of the message. On the other hand, when x and y are known, M
can be recovered by computing M · 〈x,y〉/〈x,y〉 = M. That is, the message is
recovered if and only if 〈x,y〉 �= 0. Indeed, this functionality exactly matches
that of NIPE schemes.

While the idea is very simple, it leads to interesting consequences. By apply-
ing our LinFE-to-NIPE conversion to existing LinFE constructions [ABDCP15,
ALS16], we obtain several new NIPE schemes. Notably, we obtain the first NIPE
constructions from the DDH and DCR assumptions. In other words, we obtain
NIPE constructions without relying on bilinear maps or lattices. This result may
be somewhat surprising, since we do not know any other similar primitives to
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inner product encryption (IPE)3 schemes that can be constructed without bilin-
ear maps or lattices. In particular, it was not until recently for even a simple
primitive such as an identity-based encryption scheme (in the standard model)
to be constructed without relying on bilinear maps or lattices [DG17]. Therefore,
our result indicates that NIPE schemes may be a primitive quite different from
other ABE type primitives in nature.

2 Preliminaries

2.1 Non-zero Inner Product Encryption

Syntax. Let P and I denote the predicate space and attribute space, where the
inner product between elements (i.e., vectors) from P and I are well-defined.
Furthermore, let S denote the space where the inner product is taken. A state-
ful non-zero inner product encryption (NIPE) scheme over S consists of the
following four algorithms:

Setup(1λ, 1�) → (MPK,MSK, st): The setup algorithm takes as input a security
parameter 1λ and the length � of the vectors in the predicate and attribute
spaces, and outputs a master public key MPK, a master secret key MSK and
an initial state st.

KeyGen(MPK,MSK, st,y) → (sky , st): The key generation algorithm takes as
input the master public key MPK, the master secret key MSK, the state st
and a predicate vector y ∈ P. It outputs a private key sky and a updated
state st. We assume that y is implicitly included in sky .

Encrypt(MPK,x,M) → C: The encryption algorithm takes as input a master
public key MPK, an attribute vector x ∈ I and a messageM. It outputs a
ciphertext C.

Decrypt(MPK, sky , (x, C)) → M or ⊥: The decryption algorithm takes as input
the master public key MPK, a private key sky , and a ciphertext C with an
associating attribute vector x. It outputs the message M or ⊥, which means
that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, � ∈ N, all
x ∈ I,y ∈ P, and all M in the specified message space, the following holds:

– if 〈x,y〉 �= 0, then Pr[Dec(MPK, sky ,Enc(MPK,x,M)) = M] = 1 − negl(λ)
– if 〈x,y〉 = 0, then Pr[Dec(MPK, sky ,Enc(MPK,x,M)) = ⊥] = 1 − negl(λ),

where the inner products are taken over S and the probability is taken over the
randomness used in all the algorithms.

3 IPE is a special kind of ABE where decryption is possible iff the inner product of
the vectors corresponding to a ciphertext and a private key is 0. This should not be
confused with LinFE, where the decryption is always possible and the decryption
result is the inner product itself.
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We also define a stateless non-zero inner product encryption, where we do
not require any state information in the above algorithms.

Security. We define the security of a (stateful) NIPE scheme over S with pred-
icate space P and attribute space I by the following game between a challenger
and an adversary A.

- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ←
Setup(1λ, 1�) and gives the public parameter MPK to A.

- Phase 1. A may adaptively make key-extraction queries. If A submits a predi-
cate vector y ∈ P to the challenger, the challenger runs (sky , st) ← KeyGen(MPK,
MSK, st,y) and returns sky .

- Challenge Phase. At some point, A outputs messages M0,M1 and an
attribute vector x∗ ∈ I on which it wishes to be challenged, with the restriction
that 〈x∗,y〉 = 0 (over S) for all y queried during Phase 1. Then, the challenger
picks a random bit b ∈ {0, 1} and returns C∗ ← Enc(MPK,x∗,Mb) to A.

- Phase 2. After the challenge query, A may continue to make key-extraction
queries for predicate vectors y ∈ P, with the added restriction that 〈x∗,y〉 = 0
(over S).

- Guess. Finally, A outputs a guess b′ for b.
The advantage of A is defined as AdvNIPE

A,S =
∣
∣Pr[b′ = b] − 1

2

∣
∣ . We say that

a stateful NIPE scheme with inner product space S is adaptively secure, if the
advantage of any PPT A is negligible. Similarly, we define selective security for
a stateful NIPE scheme with inner product space S, by modifying the above
game so that the adversary A is forced to declare its challenge attribute vector
x∗ before Setup. Therefore, we also add the restriction that 〈x∗,y〉 = 0 (over
S) during Phase 1. Finally, we define an analogous security notion for stateless
NIPE schemes, where we do not require any state information during the above
game.

Remark on the Security Model. In the stateful setting, it may be more
natural to consider a security model where the adversary is allowed to request
the challenger to create a secret key without actually seeing it. Such a query
will change the internal state of KeyGen in a possibly malicious way. In our
work, we follow the stateful functional encryption formalization of [ALS16] and
do not consider this stronger security model. We leave it open the problem of
constructing efficient NIPE scheme satisfying this security notion.

2.2 Lattices

A (full-rank-integer) m-dimensional lattice Λ in Z
m is a set of the form

{∑i∈[m] xibi|xi ∈ Z}, where B = {b1, · · · ,bm} are m linearly indepen-
dent vectors in Z

m. We call B the basis of the lattice Λ. For any positive
integers n,m and q ≥ 2, a matrix A ∈ Z

n×m
q and a vector u ∈ Z

n
q , we

defineΛ⊥(A) = {z ∈ Z
m|Az = 0 mod q}, Λ⊥

u (A) = {z ∈ Z
m|Az = u mod q}.
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For an m-dimensional lattice Λ ⊆ Z
m, define the m-dimensional k-multi

lattice Λk as [Λ| · · · |Λ] = {[z1| · · · |zk]|∀zi ∈ Λ,∀i ∈ [k]} ⊆ Z
m×k. For a matrix

T = [t1| · · · |tk] ∈ Z
m×k, denote Λk + T as [Λ + t1| · · · |Λ + tk] ⊆ Z

m×k. For a
matrix M ∈ Z

k×� define Λk · M as the multi lattice {VM|V ∈ Λk} ⊆ Z
m×�.

Gaussian Measures. For any vector c ∈ R
m and positive real σ > 0, the m-

dimensional Gaussian function over Rm centered at c with parameter s is defined
as ρσ,c(x) = exp(−π‖x−c‖2/σ2). The continuous Gaussian distribution Dσ over
R

m centered at c with parameter σ is defined as Dσ,c(x) = ρσ,c(x)/σm. For an
m-dimensional lattice Λ, the discrete Gaussian distribution over Λ with center c
and parameter σ is defined as DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ) for all x ∈ Λ, where
ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). Finally, for an m-dimensional shifted lattice Λ + t, we

define the Gaussian distribution DΛ+t,σ with center c = 0 and parameter σ
as the process of adding the vector t to a sample from DΛ,σ,−t. We omit the
subscripts σ and c when they are taken to be 1 and 0, respectively.

Lemma 1 ([GPV08], Lem. 5.2, Cor. 5.4 and Adapted from [ALS16],
Lem. 9). Let q be a prime or some power of a prime4 p and let n,m be
positive integers such that m ≥ 2n log q. Let σ be any positive real such that
σ ≥ ω(

√
log n). Then for A ← Z

n×m
q and e ← DZm,σ, the distribution of u = Ae

mod q is statistically close to uniform over Z
n
q .

Furthermore, fix u ∈ Z
n
q and let t ∈ Z

m be an arbitrary solution to At = u
mod q. Then the conditional distribution of e ← DZm,σ, given Ae = u mod q
for a uniformly random A in Z

n×m
q is exactly DΛ⊥(A)+t,σ with all but negligible

probability.

Lemma 2 ([MP12], Lem. 2.8 and Lem. 2.9). Let m, k be positive integers,
{σi}k

i=1 a set of positive reals and denote σmax = maxi{σi}. Let R ∈ Z
m×k

be a matrix where its i-th column is sampled from DZm,σi
. Then there exists a

universal constant C > 0 such that we have s1(R) ≤ C · σmax(
√

m +
√

k) with
all but negligible probability in m.

Lemma 3 ([ABB10], Lem. 8). Let n,m, q be positive integers with m > n,
A ∈ Z

n×m
q be a matrix, u ∈ Z

n
q be a vector, TA be a basis for Λ⊥(A), and

σ > ‖TA‖ · ω(
√

log m). Then, if we sample a vector x ← DΛ⊥
u (A),σ, we have

Pr[‖x‖ >
√

mσ] < negl(n).

Lemma 4 (Noise Rerandomization, [KY16], Lem. 1). Let q, �,m be pos-
itive integers and r a positive real satisfying r > max{ω(

√
log m), ω(

√
log �)}.

Let b ∈ Z
m
q be arbitrary and z chosen from DZm,r. Then for any V ∈ Z

m×�

and positive real σ > s1(V), there exists a PPT algorithm ReRand(V,b+z, r, σ)
that outputs b′� = b�V + z′� ∈ Z

�
q where z′ is distributed statistically close to

DZ�,2rσ.

Analogously to above, for an m-dimensional k-multi lattice Λk, we define the
discrete Gaussian distribution over Λk with center C ∈ Z

m×k and parameter σ

4 Note that for the case q = pk for some k ∈ N, we set the statistical distance to be
n−ω(1) rather than 2−Ω(n) as in [ALS16], Lem. 9.
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denoted as DΛk,σ,C by the process of sampling a matrix whose i-th column is a
sample from DΛ,σ,Ci

for i ∈ [k], where Ci denotes the i-th column of C. This
definition extends naturally to shifted multi-lattices as well.

Key Theorem. The following theorem concerning the distribution of the sum
of discrete Gaussians plays a central roll in our security proof. The proof of the
theorem is given in the full version with a more formal treatment on the output
distribution.

Theorem 1. Let q be a prime or some power of a prime p. Let n,m, �, t be
positive integers such that m ≥ 2n log q and � > t, let A ∈ Z

n×m
q be a random

matrix and T ∈ Z
m×� be an arbitrary matrix. Let M ∈ Z

�×(�−t) and W ∈ Z
�×t

be full rank matrices satisfying W�M = 0 ∈ Z
t×(�−t). Finally, let σ be a positive

real such that σ >
√

s1(W�W) · ω(
√

log m).Notably, if X ∈ Z
m×� is distributed

as DΛ⊥(A)�+T,σ, then XM ∈ Z
m×(�−t) is statistically close to a distribution

parameterized by Λ⊥(A), σ,M, (TM mod Λ⊥(A)�M).

Remark 1. An important observation is that, if we independently sample X0 ←
DΛk+T0,σ and X1 ← DΛk+T1,σ, then the distributions of X0M and X1M are
statistically close whenever T0M = T1M mod ΛkM. This is the key insight
used in our security proof; in the real world the secret components are sampled
as X0 and in the simulated world they are sampled as X1. Furthermore, for
any matrix M̄, if we let M be an arbitrary maximal independent subset of
the columns of M̄, since all the columns of XM̄ are linear combinations of
the columns of XM, the distribution of XM̄ is parameterized solely by the
distribution of Λ, σ,M, (TM mod ΛkM).

Sampling Algorithms. The following lemma states useful algorithms for sam-
pling short vectors from lattices.

Lemma 5. Let n,m, q > 0 be integers with m > n. Then:

– ([GPV08]) SamplePre(A,u,TA, σ) → e : There exists a randomized algo-
rithm that, given a matrix A ∈ Z

n×m
q , a vector u ∈ Z

n
q , a basis TA for

Λ⊥(A), and a Gaussian parameter σ > ‖TA‖GS ·ω(
√

log m), outputs a vector
e ∈ Z

m sampled from a distribution which is negl(n)-close to DΛ⊥
u (A),σ.

– ([ABB10]) SampleRight(A,G,R, t,u,TG, σ) → e: There exists a randomized
algorithm that, given a full-rank matrix A,G ∈ Z

n×m
q , an invertible element

t ∈ Zq, a matrix R ∈ Z
m×m, a vector u ∈ Z

n
q , a basis TG for Λ⊥(G), and a

Gaussian parameter σ > s1(R)·‖TG‖GS·ω(
√

log m), outputs a vector e ∈ Z
2m

sampled from a distribution which is negl(n)-close to DΛ⊥
u ([A|AR+tG]),σ.

– ([MP12]) Let m ≥ n�log q�. Then, there exists a fixed full-rank matrix G ∈
Z

n×m
q such that the lattice Λ⊥(G) has publicly known basis TG ∈ Z

m×m with
‖TG‖GS ≤ √

5.

Observe that even if we are in possession of a “nice” trapdoor matrix R,
we can not use the SampleRight algorithm in case t is not invertible over Zq.
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Below we consider the case where q = pd for some prime p and positive integer
d, and slightly modify SampleRight so that we can sample short vectors from
some shifted lattice of Λ⊥([A|AR+ pd−1t′G]) for an invertible element t′ ∈ Zq.
Note that t = pd−1t′ is no longer invertible over Zq. The proof is provided in the
full version.

Lemma 6 (Algorithm SampleSkewed). Let q = pd for a prime p and positive
integer d. Then, there exists a polynomial time algorithm SampleSkewed with the
following property.

SampleSkewed(A,G,R, t, pd−1u,TG) → e: a randomized algorithm that,
given full-rank matrices A,G ∈ Z

n×m
q , a matrix R ∈ Z

m×m, a vector pd−1u ∈
Z

n
q , and an invertible element t ∈ Zq, outputs a vector e ∈ Z

2m such that
[A|AR+ pd−1 · t ·G]e = pd−1u mod q and ‖e‖ ≤ s1(R)

√
m ·ω(

√
log n) with all

but negligible probability.

Hardness Assumptions. We define the Learning with Errors (LWE) problem
first introduced by Regev [Reg05], and further define a variant of LWE called
the First-is-Errorless LWE (FE.LWE) problem introduced by [BLP+13]. Both
problems are shown to be as hard as approximating the worst-case GapSVP
problems. In particular, the FE.LWE problem is proven to be essentially as hard
as the LWE problem. Looking ahead, FE.LWE will be used for our lattice-based
NIPE construction over Zp.

Definition 1 (LWE and FE.LWE). For integers n = n(λ),m = m(n), q =
q(n) > 2, an error distribution over χ = χ(n) over Z, and a PPT algorithm A,
an advantage Adv

LWEn,m,q,χ

A for the learning with errors problem LWEn,m,q,χ of
A is defined as follows:

∣
∣
∣Pr

[A({ai}m
i=1, {a�

i s + xi}m
i=1

)
= 1

]− Pr
[A({ai}m

i=1, {vi}m
i=1

)
= 1

]∣∣
∣

where ai ← Z
n
q , s ← Z

n
q , xi ← χ, vi ← Zq for each i ∈ [m]. We say that the

LWE assumption holds if AdvLWEn,m,q,χ

A is negligible for all PPT A.
In addition, we define the first-is-errorless learning with errors problem

FE.LWEn,m,q,χ, which is the LWE problem where the first sample is noise free,
i.e., we have x1 = 0 instead of x1 ← χ. The advantage for the FE.LWEn,m,q,χ

problem of A is defined analogously to above.

3 Construction from Lattices with Inner Product over Z

3.1 Constructions

Here we construct a stateless NIPE scheme with inner product space Z. We con-
sider the predicate space P = {−P + 1, . . . , P − 2, P − 1}� ⊂ Z

� and attribute
space I = {−I +1, . . . , I −2, I −1}� ⊂ Z

� for some integers P = P (n), I = I(n),
where � = �(n) is typically taken to be poly(n), and set the modulus size
to be a prime q = q(n) such that the inner products of the predicate and
attribute vectors do not wrap around q, i.e., �PI < q. Other parameters includ-
ing m(n), σ(n), α(n), α′(n), s(n) are specified later. Here, we assume that the
message space is {0, 1}. For the multi-bit variant, we refer Sect. 3.4.
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Setup(1n, 1�): On input 1n, 1�, it samples a random matrix A ← Z
n×m
q , a random

vector u ← Z
n
q and random matrices Ri ← (

DZm,σ

)m for i ∈ [�]. It then sets
Bi = ARi mod q. Finally, it outputs

MPK = (A,B1, · · · ,B�,u) and MSK = (R1, · · · ,R�).

KeyGen(MPK,MSK,y ∈ P): Given a predicate vector y = (y1, · · · , y�) ∈ P, it
computes

Ry =
�∑

i=1

yiRi ∈ Z
m×m.

Then, it returns the secret key sky = Ry .
Enc(MPK,x ∈ I,M): To encrypt a message M ∈ {0, 1} for an attribute x =

(x1, · · · , x�) ∈ I, it samples s ← Z
n
q , z ← DZ,αq and zi ← DZm,α′q for

i ∈ [0, �], and computes
⎧
⎪⎨

⎪⎩

c = u�s + z + M�q/2�,
c0 = A�s + z0,

ci = (Bi + xiG)�s + zi, (i ∈ [�]).

Then, it returns the ciphertext C = (c, (ci)i∈[0,�]) ∈ Zq × (Zm
q )(�+1) with the

corresponding attribute x.
Dec(MPK, (y, sky ), (x, C)): To decrypt a ciphertext C = (c, (ci)i∈[0,�]) with an

associating attribute x ∈ I using a secret key sky = Ry =
∑�

i=1 yiRi with
an associating predicate y ∈ P, it first computes

cy =
�∑

i=1

yici ∈ Z
m
q .

Next, it samples a short vector e ∈ Z
2m by running SampleRight(A,G,Ry ,

〈x,y〉,u,TG, s). Then, it computes w = c − e�[c�
0 |c�

y ]� ∈ Zq. Finally, it
returns 1 if |w − �q/2�| < �q/4� and 0 otherwise.

3.2 Correctness and Parameter Selection

Lemma 7 (correctness). Assume
(
αq + �P 2σmα′q

) · ω(
√

log n) < q/5 holds
with overwhelming probability. Then the above scheme has negligible decryption
error.

The correctness is omitted to the full version. The main observation is that
cy =

(
ARy + 〈x,y〉G)�

s + z′ for some vector z′ with sufficiently small noise,
and we are able to use algorithm SampleRight to sample a short vector e ∈ Z

2m

such that [A|ARy + 〈x,y〉G]e = u if and only if 〈x,y〉 �= 0 (and invertible).

Parameter Selection. We provide a candidate parameter selection in the full
version. Notably, we can base security on the polynomial LWE assumption.
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3.3 Security Proof

Theorem 2. The above NIPE scheme with inner product space Z is selectively
secure assuming LWEn,m+1,q,χ is hard, where χ = DZ,αq.

Proof. Let A be a PPT adversary that breaks the selective security of the NIPE
scheme. In addition, let Q = Q(n) be the number of key extraction queries
A makes, and denote y(k) ∈ P as the k-th predicate vector A queries, where
k ∈ [Q]. Here, we assume that A always queries for � − 1 linearly independent
predicate vectors, which are all orthogonal to the challenge attribute vector x∗

over Z. This can be done without loss of generality, since A can simply ignore
these additional queries. The proof proceeds with a sequence of games that starts
with the real game and ends with a game in which A has negligible advantage.
For each game Gamei denote Si the event that A wins the game.

Game0 : This is the real security game. Namely, adversary A declares its challenge
attribute vector x∗ ∈ I at the beginning of the game. Note that any predicate
vector y ∈ P queried by A to the challenger as a key extraction query must
satisfy 〈x∗,y〉 = 0 over Z if A is a legitimate adversary.

Game1 : In this game, we change the way the public matrices B1, · · · ,B� are
created. On receiving the challenge attribute vector x∗ = (x∗

1, · · · , x∗
� ) ∈ I from

adversary A at the beginning of the game, the challenger samples random matri-
ces Ri ← (

DZm,σ

)m and sets Bi = ARi − x∗
iG mod q for i ∈ [�]. Otherwise,

the behavior of the challenger is identical as in Game0. Namely, the challenger
remains to answer the key extraction query for a predicate vector y ∈ P as
sky = Ry =

∑�
i=1 yiRi where y = (y1, · · · , y�), and creates the challenge cipher-

text as in Game0.
Before continuing to Game2, we show that Game0 is statistically indistin-

guishable from Game1; this is the crux of our proof. In particular, we show that
the view of the adversary in both games is statistically close. Here, the view of
the adversary is completely determined by

{

MPK =
{
A, {Bi}i∈[�],u

}
, {Ry (k)}k∈[Q], C∗

}

where {Ry (k)}k∈[Q] is the set of secret keys returned by the challenger during the
key extraction query and C∗ ← Enc(MPK,x∗,Mb) is the challenge ciphertext,
where b is the random bit chosen by the challenger. Observe that in both games
A,u are distributed identically. Furthermore, the challenge ciphertext C∗ is cre-
ated using only the terms in MPK (with some extra randomness that are iden-
tical in both games). Furthermore, from our assumption on A, we assume that
{y(k)}k∈[�−1] is the set of the � − 1 linearly independent vectors that A queries.
Then, what we need to consider are only the � − 1 secret keys {Ry (k)}k∈[�−1],
since all the other secret keys can be created by the linear combinations of
{Ry (k)}k∈[�−1]. Therefore, the difference in the views of the adversary in Game0
and Game1 is determined solely by the difference in the distribution of

{
{Bi}i∈[�], {Ry (k)}k∈[�−1]

}
. (1)
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Hence, we aim at proving that the view of Eq. (1) for the adversary is statis-
tically close in both games. More strictly, we compare the following probability
of each game:

Pr
[{

{Bi}i∈[�], {Ry (k)}k∈[�−1]

}
=
{

{B̂i}i∈[�], {R̂y (k)}k∈[�−1]

}]

= Pr
[

{Ry (k)}k∈[�−1] = {R̂y (k)}k∈[�−1]

∣
∣
∣ {Bi}i∈[�] = {B̂i}i∈[�]

]

︸ ︷︷ ︸
(A)

× Pr
[

{Bi}i∈[�] = {B̂i}i∈[�]

]

︸ ︷︷ ︸
(B)

,

where the probability is taken over the randomness of {Ri}i∈[�] during Setup;
recall each Ri is distributed according to

(
DZm,σ

)m in both games. Note that
in the above we abuse the notation for sets by implicitly assigning an order over
the elements, i.e., {X,Y} �= {Y,X}.

We first prove that the value of (B) is negligibly close in both games. Observe
that for all i ∈ [�], ARi is distributed uniformly at random over Z

n×m
q with all

but negligible probability where Ri ← (
DZm,σ

)m, which follows from Lemma 1
and our parameter selections. Concretely, since Bi = ARi and Bi = ARi −x∗

iG
for Game0 and Game1, respectively, we have that in both games {Bi}i∈[�] is

distributed statistically close to uniform over
(
Z

n×m
q

)�.
We now proceed to prove that the value of (A) is negligibly close in

both games. We first analyze the case for Game0. Let Bview ∈ Z
n×m�
q and

R ∈ Z
m×m� denote the matrices [B1| · · · |B�] and [R1| · · · |R�], respectively. Then

we have Bview = AR mod q. Furthermore, let T = [T1| · · · |T�] ∈ Z
m×m� be

an arbitrary solution to Bview = AT mod q. Then, due to Lemma 1, condi-
tioned on {B̂i}i∈[�] = {ARi}i∈[�] (mod q), the conditional distribution of R is
DΛ⊥(A)m�+T,σ. Now, we are ready to determine the conditional distribution of
the secret keys {Ry (k)}k∈[�−1] obtained by the adversary A. Observe the follow-
ing equation:

[Ry (1) |Ry (2) | · · · |Ry (�−1) ]
︸ ︷︷ ︸

:=Rsk ∈Zm×m(�−1)

= [R1|R2| · · · |R�]
︸ ︷︷ ︸

=R ∈Zm×m�

⎡

⎢
⎢
⎢
⎢
⎣

y
(1)
1 Im

y
(1)
2 Im

...
y
(1)
� Im

y
(2)
1 Im

y
(2)
2 Im

...
y
(2)
� Im

· · ·

· · ·

y
(�−1)
1 Im

y
(�−1)
2 Im

...
y
(�−1)
� Im

⎤

⎥
⎥
⎥
⎥
⎦

,

︸ ︷︷ ︸
:=M=Y⊗Im ∈Zm�×m(�−1)

(2)

where y
(k)
j is the j-th entry of the k-th predicate vector y(k) and Y ∈ Z

�×(�−1) is
a full rank matrix whose k-th column is y(k). We also denote the left and right
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hand matrices as Rsk and M ∈ Z
m�×m(�−1), respectively. Note that the equality

is taken over Z. Now, since x��Y = 0 ∈ Z
1×(�−1), we have W�M = 0 ∈

Z
m×m(�−1) where W = x� ⊗ Im ∈ Z

m�×m is a full rank matrix. Furthermore, by
construction, we have

√
s1(W�W) = ‖x∗‖. Therefore, by Theorem1 and from

the fact that R is distributed according to DΛ⊥(A)m�+T,σ, for our parameter
selection, we have that the distribution of Rsk = RM is statistically close to a
distribution parameterized by Λ⊥(A), σ,M and (TM mod Λ⊥(A)m�M).

We now show that this holds in case for Game1 as well. Similarly to above, we
begin by determining the conditional distribution of R given {Bi}i∈[�] = {ARi−
x∗

iG}i∈[�]. Let us denote Gx∗ ∈ Z
n×m�
q as the matrix [x∗

1G|x∗
2G| · · · |x∗

�G].
Then, Bview + Gx∗ = AR mod q. Next, let us chose an arbitrary matrix
E ∈ Z

m×m such that G = AE mod q, and define Ex∗ ∈ Z
m×m� as the matrix

[x∗
1E|x∗

2E| · · · |x∗
�E]. Then, we have Gx∗ = AEx∗ mod q. Combining this with

the T we have defined above in Game0, we obtain Bview + Gx∗ = A(T + Ex∗)
mod q. Therefore, by Lemma 1, the conditional distribution of R given {Bi}i∈[�]

is DΛ⊥(A)m�+T+Ex∗ ,σ. Next, we determine the conditional distribution of the
secret keys {Ry (k)}k∈[�−1] obtained by the adversary A. Observe that equation
Eq.(2) holds for Game1 as well, since we do not change the way we answer the
key extraction queries. Concretely, we have M = Y⊗ Im and W�M = 0 where
W = x� ⊗Im. Hence, by Theorem 1 and the fact that R is distributed according
to DΛ⊥(A)m�+T+Ex∗ ,σ, we have that the distribution of Rsk = RM is statisti-
cally close to a distribution parameterized by Λ⊥(A), σ,M and (TM + Ex∗M
mod Λ⊥(A)m�M). Finally, it remains to prove that Ex∗M = 0 (over Z) in order
to prove equivalence of (A) between Game0 and Game1. Observe that

Ex∗M = E · [x∗
1Im|x∗

2Im| · · · |x∗
�Im]

⎡

⎢
⎢
⎢
⎢
⎣

y
(1)
1 Im

y
(1)
2 Im

...
y
(1)
� Im

y
(2)
1 Im

y
(2)
2 Im

...
y
(2)
� Im

· · ·

· · ·

y
(�−1)
1 Im

y
(�−1)
2 Im

...
y
(�−1)
� Im

⎤

⎥
⎥
⎥
⎥
⎦

= E · [〈x∗,y(1)〉Im|〈x∗,y(2)〉Im| · · · |〈x∗,y(�−1)〉Im]

= 0 ∈ Z
m×m(�−1),

since we have 〈x∗,y(k)〉 = 0 over Z for k ∈ [� − 1]. Hence, we conclude that the
value of (A), i.e., the conditional probability of Rsk given {Bi}i∈[�], in Game0
and Game1 are statistically close. Therefore, we have |Pr[S0]−Pr[S1]| = negl(n).

Game2 : In this game, we change the way the challenge ciphertext is created.
Recall that in the previous game, the challenge ciphertext was created as

c = u�s + z + Mb�q/2�, c0 = A�s + z0, (ci = (ARi)�s + zi)i∈[�] (3)

where s ← Z
n
q , z ← DZ,αq, zi ← DZm,α′q for i ∈ [0, �], and b ← {0, 1}, where

the last term follows from the fact that in Game1 we modified Bi so that Bi =
ARi − x∗

iG, and M0,M1 are the two messages sent by the adversary A. To
create the challenge ciphertext in Game2, the challenger first picks s ← Z

n
q and
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z ← DZm,αq and computes v = A�s + z ∈ Z
m
q . It then runs the algorithm

ReRand
(
[Im|R],v, αq,

α′

2α

)
→ c ∈ Z

m(�+1)
q

from Lemma 4, and parses c into � + 1 vectors (ci)i∈[�+1] in Z
m
q such that c� =

[c�
0 |c�

1 | · · · |c�
� ] ∈ Z

m(�+1)
q . Finally, it picks z ← DZ,αq, b ← {0, 1} and sets the

challenge ciphertext as

C∗ =
(
c = v + Mb�q/2�, c0, (ci)i∈[�]

)
∈ Zq × Z

m
q × (Zm

q )�, (4)

where v = u�s + z.
We claim that this change alters the view of A only negligibly. First, the

first term c is distributed identically as in Eq.(3). Next, observe that the input
to ReRand is [Im|R] ∈ Z

m×m(�+1) and v = A�s + z ∈ Z
m
q . Therefore, due to

Lemma 4, for our choices of α and α′, the output of ReRand is

c� =
(
A�s

)�[Im|R] + z′�

= s�[A|AR] + z′� ∈ Z
m(�+1)
q ,

where the distribution of z′ is within statistical distance from z′ ← DZm(�+1),α′q.
By parsing c appropriately as above, it can be seen that it is statistically close
to (ci)i∈[0,�] of Eq.(3). Therefore, the challenge ciphertexts of Game1 and Game2
are statistically indistinguishable. Hence, we have |Pr[S1] − Pr[S2]| = negl(n).

Game3 : In this game, we further change the way the challenge ciphertext is
created. To create the challenge ciphertext, the challenger first samples v ← Zq,

v′ ← Z
m
q and z ← DZm,αq, and runs ReRand

(
[Im|R],v, αq, α′

2α

)
→ c ∈ Z

m(�+1)
q ,

where v = v′ + z. Then, the challenge ciphertext is set as in Eq.(4). We show in
the full version that we have |Pr[S2]−Pr[S3]| = negl(n). Assuming the hardness
of LWEn,m+1,q,χ.

Furthermore, since v is uniformly random over Zq and independent of the
other values, the term in the challenge ciphertext c = v + Mb�q/2� that con-
veys the information on the message is distributed independently from the value
of Mb. Therefore, we have Pr[S3] = 1/2. Combining everything together, we
have

∣
∣Pr[S0] − 1

2

∣
∣ =

∣
∣
∣
∑2

i=0 (Pr[Si] − Pr[Si+1]) + Pr[S3] − 1
2

∣
∣
∣ ≤ ∣

∣Pr[S3] − 1
2

∣
∣ +

∑2
i=0 |Pr[Si] − Pr[Si+1]| ≤ negl(n). Therefore, the probability that A wins

Game0 is negligible.

3.4 Multi-bit Variant

Here, we explain how to extend our scheme to a multi-bit variant without increas-
ing much the size of the master public keys, secret keys, and ciphertexts following
the techniques of [PVW08,ABB10,Yam16]. To modify the scheme to deal with
message space of length �M , we replace u ∈ Z

n
q in MPK with U ∈ Z

n×�M
q .
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The component c in the ciphertext is replaced with c = U�s + z + M�q/2�
where z ← D

Z
�M ,αq and M ∈ {0, 1}�M is the message to be encrypted.

When decrypting the message, one samples a matrix E ∈ Z
2m×�M such that

[A|ARy + 〈x,y〉G]E = U, which is possible given sky by running SampleRight
in a column wise manner. We can prove security for the multi-bit variant from
LWEn,m+�M ,q,χ by naturally extending the proof of Theorem2. We note that
the same parameters as in the single-bit variant work for the multi-bit vari-
ant. By this change, the sizes of the master public keys, ciphertexts, and pri-
vate keys become Õ((n2� + n�M ) log q),Õ((n + � + �M ) log q), and Õ(n2 log q)
from Õ(n2� log q), Õ((n+ �) log q), and Õ(n2 log q), respectively. The sizes of the
master public keys and ciphertexts will be asymptotically the same as long as
�M = Õ(n). To deal with longer messages, we employ a KEM-DEM approach as
suggested in [Yam16]. Namely, we encrypt a random ephemeral key of sufficient
length and then encrypt the message by using the ephemeral key.

4 Constructions from Lattices with Inner Product
over Zp

In this section, we construct a stateful NIPE scheme with inner product space
Zp for p = p(n) a prime, where the predicate and attribute spaces are Z

�
p.

Overview. We give a more detailed overview on the intuition given in the
introduction. First, we need the state to keep track of what kind of predicate
vectors y we gave out secret keys to. Unlike in the NIPE construction of Sect. 3,
for our NIPE scheme with predicate space Zp, the linear dependency of the
predicate vectors (over Zp) and the secret keys (over Z) are no longer consistent.
Namely, when an adversary queries for linearly dependent predicate vectors over
Zp, the corresponding secret keys may no longer be linearly dependent over
Z. For our particular construction, when an adversary obtains secret keys to a
linearly independent predicate vectors over Z, the scheme leads to a complete
break in security. Therefore, we need to maintain information on the linear span
of the predicate vectors (over Zp and Z) that it has generated secret keys to,
and create a secret key for a new predicate vector y as a Z-linear combination
of the previously generated secret keys if y lies in the Zp-linear span maintained
in the state.

Here, we also maintain our state in a unique way, which allows us to base
security of our scheme on a weaker polynomial LWE assumption. As already
mentioned, the state maintains the information of the linear span of the predicate
vectors that it has generated secret keys to. In our scheme, this is expressed by
a list of tuples of the form (h(i),h(i), skh(i)) ∈ Z

�
p × Z

� × Z
m×m, where i ∈

list ⊆ [�]. Informally, list indicates the distinctive indices that specifies the linear
span of the so far queried predicate vectors, and |list| is the dimension of the
linear span. Furthermore, h(i) ∈ Z

�
p are vectors specifying the linear span of

the queried predicate vectors, h(i) are vectors in Z
� that is in a sense encodings

of h(i) that maintain linear dependency over Z, and skh(i) are the secret keys
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corresponding to the predicate vector h(i). When queried a new predicate vector
y, the algorithm first checks if it lies in the Zp-linear span of {h(i)}i∈list. If so,
(informally) it computes secret keys as a Z-linear combination of {skh(i)}i∈list. If
not, it processes y into a new vector h(j) ∈ Z

�
p that does not lie in the Zp-linear

span of {h(i)}i∈list and adds j to list. Here, in order for us to base security on an
LWE assumption with polynomial approximation factor, we need to process y
in such a way that the matrix with columns {h(i)}i∈list interpreted as vectors in
Z

� has a small singular value. At a high level, this can be achieved by keeping
the diagonal elements small, which we can do since we can store any factor of
h(i) ∈ Z

�
p without altering the Zp-linear span. Here, the crucial observation is

that the Zp-linear dependency of {h(i)}i∈list and the size of the singular values of
{h(i)}i∈list interpreted as a matrix over Z are (almost completely) independent
with each other.

Construction. Let q = pd for some positive integer d ≥ 3 and let
m(n), σ(n), α(n), α′(n), s(n) be parameters that are specified later. Here, we
assume that the message space is {0, 1}. We can easily extend the scheme to
the multi-bit variant similarly to Sect. 3.4.

Setup(1n, 1�): On input 1n, 1�, it samples a random matrix A ← Z
n×m
q , a random

vector u ← Z
n
q , random matrices Ri ← (

DZm,σ

)m for i ∈ [�] and sets Bi =
ARi mod q. Furthermore, it initializes a state st that inculdes an empty list
list ⊆ [�]. Finally, it outputs

MPK =
(
A, {Bi}i∈[�],u

)
and MSK =

(
st, {Ri}i∈[�]

)
.

KeyGen (MPK,MSK,y ∈ Z
�
p, st): Given a predicate vector y ∈ Z

�
p and an inter-

nal state st, it computes the secret key sky as follows. At any point of the
execution, the internal state st contains a list of indices list ⊆ [�] and at most
� tuples of the form (h(i),h(i), skh(i)) ∈ Z

�
p × Z

� × Z
m×m, where the vectors

{h(i)}j∈list form a basis of the Zp-linear span of the predicate vectors which
the key extraction queries has been made so far.

If y ∈ Z
�
p is linearly independent modulo p from all the {h(j)}j∈list in the

state st, it first runs the following procedure. By construction, for all j ∈ list,
we will have (j = arg mini∈[�]{h

(j)
i �= 0}) ∧ (h(j)

j = 1), i.e., the smallest
index for which the entry of h(j) is non-zero is j, and at that index it holds
that h

(j)
j = 1. It sets h = y, and starting with the smallest index j ∈ list,

it iterates through list in ascending order by updating h ← h − hj · h(j)

mod p so that the updated h satisfies hj = 0 mod p, where hj denotes the
j-th element of h. After it runs through all the element in list, it finds the
smallest index j′ such that hj′ �= 0. This always exists since y is linearly
independent modulo p from {h(j)}j∈list. Then, it updates h once more by
h ← (1/hj′) · h mod p and sets h(j′) = h ∈ Z

�
p. It can be checked that

(j′ = arg mini∈[�]{h
(j′)
i �= 0}) ∧ (h(j′)

j′ = 1). Finally, it sets h(j
′) = h(j′),

interpreted as a vector in Z
�, and sets skh(j′) as
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Rh(j′) =
�∑

i=1

h
(j′)
i Ri ∈ Z

m×m, (5)

where h
(j′)
i is the i-th entry of h(j

′). It then adds j′ to list and the tuple
(h(j′),h(j

′), skh(j′)) to st.5 Note that after this procedure, the predicate vector
y is linearly dependent modulo p with the vectors {h(j)}j∈list in the state st.
Furthermore, when � linearly independent queries has been made, we have
list = [�] and the set of vectors {h(j)}j∈[�] forms a lower triangular matrix
with ones along the diagonal.

Finally, to construct the secret key for y, it sets y =
∑

j∈list λjh
(j) mod p

for some λj ’s in Zp and sets y =
∑

j∈list λjh(j) ∈ Z
� where here λj is viewed

as an element over Z. Finally, it sets sky as

Ry =
�∑

i=1

yiRi ∈ Z
m×m,

where yi is the i-th entry of y, and returns the tuple (y, sky ) ∈ Z
� ×Z

m×m as
the secret key.

Enc(MPK,x ∈ Z
�
p,M): To encrypt a message M ∈ {0, 1} for an attribute x =

(x1, · · · , x�) ∈ Z
�
p, it samples s ← Z

n
q , z0, zi ← DZm,α′q for i ∈ [�], and

computes
⎧
⎪⎨

⎪⎩

c = pd−1 · (u�s + M�p/2�) ,

c0 = A�s + z0,

ci = (Bi + pd−1 · xiG)�s + zi, (i ∈ [�]),

Then, it returns the ciphertext C = (c, c0, (ci)i∈[�]) ∈ Zq × (Zm
q )�+1 with its

corresponding attribute x.
Dec(MPK, (y, y, sky ), (x, C)): To decrypt a ciphertext C = (c, c0, (ci)i∈[�]) with

an associating attribute x ∈ Z
�
p, it first computes

cy =
�∑

i=1

yici mod q ∈ Z
m
q ,

where yi is the i-th entry of y. Next, it samples a short vector e ∈ Z
2m by

running SampleSkewed(A, sky = Ry , 〈x,y〉, pd−1u,TG). Then, it computes
t = c − e�[c�

0 |c�
y ]� ∈ Zq.

Finally, it returns 1 if |t − �q/2�| < �q/4� and 0 otherwise.

5 Although h(j′) ∈ Z
�
p and h(j′) ∈ Z

� are in some sense identical, we intentionally
write it redundantly in this form for consistency with the other predicate vectors y,
i.e., (h(j′), sk

h (j′)) acts as a valid secret key for the predicate vector h(j′).
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4.1 Correctness and Parameter Selection

The correctness of the scheme and a candidate parameter selection is given in
the full version. Notably, by setting the parameters appropriately we can base
security on the polynomial LWE assumption.

4.2 Security Proof

Theorem 3. The above NIPE scheme with inner product space Zp is selectively
secure assuming FE.LWEn,m+1,q,χ is hard, where χ = DZ,αq.

Proof. Let A be a PPT adversary that breaks the selective security of the NIPE
scheme. Here, assume that A makes key extraction queries in a way that at
the end of the game the state st contains � − 1 linearly independent (modulo p)
predicate vectors {h(j)}j∈list where |list| = �−1 (which are all orthogonal modulo
p to the challenge attribute vector x∗). Note that this assumption can be made
without loss of generality, since A may simply ignore unnecessary additional
secret keys, and A can not obtain no more than � − 1 linearly independent
(modulo p) vectors without violating the 〈x∗,y〉 = 0 mod p condition. The
proof proceeds with a sequence of games that starts with the real game and
ends with a game in which A has negligible advantage. For each game Gamei

denote Si the event that A wins the game.

Game0 : This is the real security game. Namely, adversary A declares its challenge
attribute vector x∗ ∈ Z

�
p at the beginning of the game. Note that any predicate

vector y ∈ Z
�
p queried by A to the challenger as a key extraction query must

satisfy 〈x∗,y〉 = 0 mod p if A is a legitimate adversary.

Game1 : In this game, we change the way the public matrices B1, · · · ,B� are
created. On receiving the challenge attribute vector x∗ = (x∗

1, · · · , x∗
� ) ∈ Z

�
p

from adversary A at the beginning of the game, the challenger samples random
matrices Ri ← (

DZm,σ

)m and sets Bi = ARi − pd−1 · x∗
iG mod q for i ∈ [�].

Otherwise, the behavior of the challenger is identical as in Game0. Namely, the
challenger remains to answer the key extraction query for a predicate vector
y ∈ Z

�
p and creates the challenge ciphertext as in Game0.

Before moving on to Game2, we show that Game0 is statistically indistin-
guishable from Game1. In particular, we prove that the view of the adversary
in both games is statistically close. In doing so, we first show that every secret
keys are Z-linear combinations of the secret keys stored in the state st. Namely,
let {h(j)}j∈list denote the vectors stored in the state st on time of constructing
the secret key for the queried predicate vector y, where list ⊆ [�] is the index
set contained in st. Then, we want to show that for a predicate vector y of
the form

∑
j∈list λjh

(j) mod p for some λj ’s in Zp, the corresponding secret key
sky (= Ry ) is a Z-linear combination of {skh(j) = Rh(j)}j∈list. To see this let the
tuples stored in st be (h(j),h(j), skh(j) = Rh(j)) ∈ Z

�
p × Z

� × Z
m×m for j ∈ list.
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Then, we have the following:

Ry =
�∑

i=1

yiRi
(i)
=

�∑

i=1

( ∑

j∈list

λjh
(j)
i

)

Ri =
∑

j∈list

λj

( �∑

i=1

h
(j)
i Ri

)
(ii)
=

∑

j∈list

λjRh(j) ,

where h
(j)
i is the i-th entry of h(j). Equation (i) follows from the definition of yi

and Eq. (ii) follows from Eq. (5)
Therefore the distribution of the secret keys obtained by adversary A is

completely determined by the distribution of the secret keys {skh(j) = Rh(j)}j∈list

stored in the state st at the end of the game. Therefore, the view of the adversary
in both games is determined by

{

MPK =
{
A, {Bi}i∈[�],u

}
, {Rh(j)}j∈list, C∗

}

,

where C∗ ← Enc(MPK,x∗,Mb) is the challenge ciphertext, b is the random bit
chosen by the challenger and |list| = � − 1 by assumption. Observe that in both
games A,u are distributed identically and the challenge ciphertext C∗ is created
using only the terms in MPK (with some extra randomness that are identical in
both games). Therefore, the differences in the views of the adversary in Game0
and Game1 is solely determined by the difference in the distribution of

{
{Bi}i∈[�], {Rh (j)}j∈list

}
. (6)

Hence, we aim at proving that the view of Eq.(6) in both games are statistically close
to the adversary. More specifically, we compare the following probability of each game:

Pr

[{
{Bi}i∈[�], {Rh (j)}j∈list

}
=

{
{B̂i}i∈[�], {R̂h (j)}j∈list

}]

= Pr

[
{Rh (j)}j∈list = {R̂h (j)}j∈list

∣∣∣ {Bi}i∈[�] = {B̂i}i∈[�]

︸ ︷︷ ︸
(A)

]
· Pr

[
{Bi}i∈[�] = {B̂i}i∈[�]

]

︸ ︷︷ ︸
(B)

,

where the probability is taken over the randomness of {Ri}i∈[�] during Setup;
recall each Ri is distributed according to

(
DZm,σ

)m in both games. Note that
in the above we abuse the notation for sets by implicitly assigning an order over
the elements, i.e., {X,Y} �= {Y,X}.

We first prove that the value of (B) is negligibly close in both games. Observe
that for all i ∈ [�], ARi is distributed uniformly at random over Z

n×m
q with all

but negligible probability where Ri ← (
DZm,σ

)m, which follows from Lemma 1
and our parameter selections. Concretely, since Bi = ARi and Bi = ARi−pd−1 ·
x∗

iG for Game0 and Game1 respectively, we have that in both games {Bi}i∈[�] is

distributed statistically close to uniform over
(
Z

n×m
q

)�.
We now proceed to prove that the value of (A) is negligibly close in both

games. We first analyze the case for Game0. Let Bview ∈ Z
n×m�
q and R ∈ Z

m×m�
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denote the matrices [B1| · · · |B�] and [R1| · · · |R�], respectively. Then, we have
Bview = AR mod q. Furthermore, let T = [T1| · · · |T�] ∈ Z

m×m� be an
arbitrary solution to Bview = AT mod q. Then, due to Lemma 1 and the
conditions on {B̂i}i∈[�] = {ARi}i∈[�], the conditional distribution of R is
given by DΛ⊥(A)m�+T,σ. Now, we are ready to determine the conditional dis-
tribution of the secret keys {Rh(j)}j∈list obtained by the adversary A. Here,
let j∗ ∈ [�] denote the index [�]\list where |list| = � − 1,and observe that
Rsk := [Rh(1) |Rh(2) | · · · |Rh(�−1) ] ∈ Z

m×m(�−1) is equal to the following

[R1|R2| · · · |R�]
︸ ︷︷ ︸

=R ∈Zm×m�

⎡

⎢
⎢
⎢
⎢
⎣

h
(1)
1 Im

h
(1)
2 Im

...
h
(1)
� Im

· · ·
· · ·

· · ·

h
(j∗−1)
1 Im

h
(j∗−1)
2 Im

...
h
(j∗−1)
� Im

h
(j∗+1)
1 Im

h
(j∗+1)
2 Im

...
h
(j∗+1)
� Im

· · ·
· · ·

· · ·

h
(�−1)
1 Im

h
(�−1)
2 Im

...
h
(�−1)
� Im

⎤

⎥
⎥
⎥
⎥
⎦

,

︸ ︷︷ ︸
:=M ∈Zm�×m(�−1)

(7)

where h
(j)
k is the k-th entry of h(j) that is associated with the j-th vector h(j) in

st for j ∈ list. We denote the left and right hand matrices as Rsk ∈ Z
m×m(�−1)

and M ∈ Z
m�×m(�−1) respectively. We show in the full versionthat there exists

a matrix W ∈ Z
m�×m such that W�M = 0 over Z with a sufficiently small

singular value. Therefore, for our parameter selection and the fact that R is
distributed according to DΛ⊥(A)m�+T,σ we can apply Theorem 1. Namely, the
distribution of Rsk = RM is statistically close to a distribution parameterized
by Λ⊥(A), σ,M and (TM mod Λ⊥(A)m�M).

We now show that this holds in case for Game1 as well. We begin by determin-
ing the conditional distribution of R given {Bi}i∈[�] = {ARi − pd−1 · x∗

iG}i∈[�].
Let us denote Gx∗ ∈ Z

n×m�
q as the matrix pd−1 · [x∗

1G|x∗
2G| · · · |x∗

�G]. Then,
Bview + Gx∗ = AR mod q. Next, let us chose an arbitrary matrix E ∈
Z

m×m such that G = AE mod q, and define Ex∗ ∈ Z
m×m� as the matrix

pd−1 · [x∗
1E|x∗

2E| · · · |x∗
�E]. Then, we have Gx∗ = AEx∗ mod q. Combining this

with the T we have defined above in Game0, we obtain Bview+Gx∗ = A(T+Ex∗)
mod q. Therefore, by Lemma 1, the conditional distribution of R given {Bi}i∈[�]

is DΛ⊥(A)m�+T+Ex∗ ,σ. Next, we determine the conditional distribution of the
secret keys {Rh(j)}j∈list obtained by the adversary A. Observe that equation
Eq.(7) holds for Game1 as well, since we do not change the way we answer the
key extraction query. Hence, following the same argument as above, by Theo-
rem 1 and the fact that R is distributed according to DΛ⊥(A)m�+T+Ex∗ ,σ, we
have that the distribution of Rsk = RM is statistically close to a distribution
parameterized by Λ⊥(A), σ,M and (TM + Ex∗M mod Λ⊥(A)m�M).

Finally, we prove that Ex∗M ∈ Λ⊥(A)m�M to prove equivalence of the
distributions between Game0 and Game1. Observe that Ex∗M is qual to the
following:
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pd−1 · E · [x∗
1Im|x∗

2Im| · · · |x∗
� Im] ·

⎡
⎢⎢⎢⎢⎣

h
(1)
1 Im

h
(1)
2 Im

...

h
(1)
� Im

· · ·
· · ·

· · ·

h
(j∗−1)
1 Im

h
(j∗−1)
2 Im

...

h
(j∗−1)
� Im

h
(j∗+1)
1 Im

h
(j∗+1)
2 Im

...

h
(j∗+1)
� Im

· · ·
· · ·

· · ·

h
(�−1)
1 Im

h
(�−1)
2 Im

...

h
(�−1)
� Im

⎤
⎥⎥⎥⎥⎦
,

= pd−1 · E · [〈x∗, h(1)〉Im| · · · |〈x∗, h(j∗−1)〉Im|〈x∗, h(j∗+1)〉Im| · · · |〈x∗, h(�−1)〉Im]

= q · E · [n1Im| · · · |nj∗−1Im|nj∗+1Im| · · · |n�−1Im] ∈ qZm×m(�−1),

where we set nj = 〈x∗,h(j)〉/p ∈ N for j ∈ list. Note that this is well-defined
since 〈x∗,h(j)〉 = 〈x∗,h(j)〉 = 0 mod p (See Sect. 4.1) and q = pd. Therefore, to
prove Ex∗M ∈ Λ⊥(A)m�M, it suffices to prove that qZm×m(�−1) ⊂ Λ⊥(A)m�M.
Namely, we prove that for every Z ∈ qZm×m(�−1), there exists a matrix V ∈
Λ⊥(A)m� ⊂ Z

m×m� such that VM = Z (over Z). Here, recall that for the vectors
{h(j)}j∈list in the state st, we had (j = arg mini∈[�]{h

(j)
i �= 0}) ∧ (h(j)

j = 1).
Namely, the smallest index with a non-zero entry for h(j) is j, and at that index
we have h

(j)
j = 1. Therefore, denoting H ∈ Z

�×(�−1) as the matrix whose columns
are the vectors in {h(j)}j∈list, we can properly rearrange the columns and rows
of H, or more concretely there exists a permutation matrix P ∈ {0, 1}�×�,Q ∈
{0, 1}(�−1)×(�−1), such that H gets transformed into the following matrix:

PHQ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

� · · · � �
1 0 · · · · · · 0

� 1
. . .

...
... �

. . . . . .
...

...
. . . 1 0

� � · · · � 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
a�

U

]

∈ Z
�×(�−1), (8)

where � denotes an arbitrary element in Z, a ∈ Z
�−1 is some vector and U ∈

Z
(�−1)×(�−1) is unimodular. Recall that permutation matrices are orthogonal

matrices: Q−1 = Q�, and that the inverse of a unitary matrix is also unitary:
U−1 ∈ Z

(�−1)×(�−1). We now proceed to prove that V = [0m×m | Z · (QU−1 ⊗
Im)] · (P ⊗ Im) ∈ Z

m×m� satisfies the above condition, i.e., V ∈ Λ⊥(A)m�

and VM = Z (over Z). First, it is easy to check that V ∈ Λ⊥(A)m�, since
Z ∈ qZm×m(�−1) and qZm ⊂ Λ⊥(A). Then, recalling that M = H⊗ Im, we have

VM =
(
[0m×m | Z · (QU−1 ⊗ Im)](P ⊗ Im)

)
· (H ⊗ Im)

=
(
[0m×m | Z · (QU−1 ⊗ Im)](P ⊗ Im)

)
·
(
P�

[
a�

U

]
Q�

)
⊗ Im (9)

= [0m×m | Z · (QU−1 ⊗ Im)](P ⊗ Im)(P� ⊗ Im)

([
a�Q�

UQ�

]
⊗ Im

)
(10)

= [0m×m | Z · (QU−1 ⊗ Im)]

[
a�Q� ⊗ Im

UQ� ⊗ Im

]
(11)

= Z, (12)
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where Eq. (9) follows from Eq. (8), Eq. (10) follows from the fact that (AB ⊗
Im) = (A⊗ Im)(B⊗ Im) and Eq. (11), (12) follows from the fact that P,Q are
orthogonal matrices. Therefore, we have Ex∗M ∈ Λ⊥(A)m�M.

Hence, we conclude that the value of (A), i.e., the conditional probability of
Rsk given {Bi}i∈[�] in Game0 and Game1 are statistically close. Therefore, we
have |Pr[S0] − Pr[S1]| = negl(n).

It remains to show that the challenge ciphertext is indistinguishable from
random. Since the remaining proof follows closely to Game2 and Game3 in the
previous proof of Theorem2, we omit the details to the full version. The main dif-
ference is that we use the first-is-errorless LWE problem instead of the standard
LWE problem to simulate the challenge ciphertext.

5 A Generic Construction of NIPE from LinFE

In this section, we show a generic conversion from a functional encryption scheme
for inner products to a NIPE scheme. We note that the former primitive is a
special case of the notion of functional encryption schemes where only linear
functions are available. Henceforth we call this primitive as LinFE in the fol-
lowing. The idea for the conversion is drawn from the work of Agrawal et al.
[ABP+17], who constructed trace and revoke schemes from LinFE.

5.1 Definition of Functional Encryption for Inner Product

Syntax. Let Q and J denote the predicate space and attribute spaces, where
the inner product between elements (i.e., vectors) from Q and J are well-defined.
Furthermore, let D denote the space where the inner product is taken. A stateful
functional encryption scheme for inner products over D consists of the following
four algorithms:

Setup(1λ, 1�) → (MPK,MSK, st): The setup algorithm takes as input a security
parameter 1λ and the length � of the vectors in the predicate and an attribute
spaces, and outputs a master public key MPK, a master secret key MSK and
an initial state st.

KeyGen(MPK,MSK, st,y) → (sky , st): The key generation algorithm takes as
input the master public key MPK, the master secret key MSK, the state st
and a predicate vector y ∈ Q. It outputs a private key sky and a updated
state st. We assume that y is implicitly included in sky .

Encrypt(MPK,x) → C: The encryption algorithm takes as input a master public
key MPK and attribute vector x ∈ J . It outputs a ciphertext C.

Decrypt(MPK, sky , C) → 〈x,y〉 or ⊥: The decryption algorithm takes as input
the master public key MPK, a private key sky , and a ciphertext C. It outputs
〈x,y〉 or ⊥, which means that the ciphertext is not in a valid form.
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Correctness. We require correctness of decryption: that is, for all λ, � ∈ N, and
all x ∈ J ,y ∈ Q, we require

Pr[Dec(MPK, sky ,Enc(MPK,x,M)) = 〈x,y〉] = 1 − negl(λ)

holds, where the probability is taken over the randomness used in (MPK,MSK, st)
← Setup(1λ, 1�), (sky , st) ← KeyGen(MPK,MSK, st,y), and Enc(MPK,x).

We also define a stateless LinFE scheme, where we do not require any state
information in the above algorithms.

Security. We define the security of a (stateful) LinFE scheme for inner product
space D with predicate space Q and attribute space J by the following game
between a challenger and an adversary A.

- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ←
Setup(1λ, 1�) and gives the public parameter MPK to A.

- Phase 1. A may adaptively make key-extraction queries. If A submits a
predicate vector y ∈ Q to the challenger, the challenger runs (sky , st) ←
KeyGen(MPK,MSK, st,y) and returns sky to A.

- Challenge Phase. At some point, A outputs messages x∗
0,x

∗
1 on which it

wishes to be challenged, with the restriction that 〈x∗
0,y〉 = 〈x∗

1,y〉 (over D) for
all y queried during Phase 1. Then, the challenger picks a random bit b ∈ {0, 1}
and returns C∗ ← Enc(MPK,x∗

b) to A.

- Phase 2. After the challenge query, A may continue to make key-extraction
queries for predicate vectors y ∈ Q, with the added restriction that 〈x∗

0,y〉 =
〈x∗

1,y〉 (over D).

- Guess. Finally, A outputs a guess b′ for b. The advantage of A is defined as

AdvLinFEA,D =
∣
∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣
∣ .

We say that an LinFE scheme with inner product space D is adaptively secure, if
the advantage of any PPT A is negligible. Similarly, we define selective security
for a stateful LinFE scheme with inner product space D, by modifying the above
game so that the adversary A is forced to declare its challenge attribute vectors
x∗
0,x

∗
1 before Setup. Finally, we define an analogous security notion for stateless

LinFE schemes, where we do not require any state information during the above
game.

5.2 Generic Construction of NIPE from LinFE

Here, we show a generic construction of NIPE from LinFE. Specifically, we con-
vert a LinFE scheme with predicate space Q, attribute space J with inner
product space D into an NIPE scheme over D with predicate space P, attribute
space I, and message space M. The conversion is possible when the following
properties are satisfied:
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– We require P,Q, I,J ⊆ D� and M ⊆ D for some integral domain D.
– We also require { M · x | M ∈ M, x ∈ I } ⊆ J and P = Q.
– Division can be efficiently performed over D. More specifically, we require

that given α, β ∈ D, it is possible to efficiently compute γ ∈ D satisfying
α = βγ if such γ exists.

We now show the construction. Note that the conversion works both for
the stateless and stateful cases. Let (Setup,KeyGen,Enc,Dec) be the underlying
LinFE scheme and (Setup′,KeyGen′,Enc′,Dec′) be the resulting NIPE scheme.

Setup′(1λ, 1�): It is the same as Setup(1λ, 1�).
KeyGen′(MPK,MSK,y ∈ P, st): It is the same as KeyGen(MPK,MSK,y ∈ P, st).
Enc′(MPK,x ∈ I,M ∈ M): To encrypt a message M ∈ M for an attribute

x = (x1, · · · , x�) ∈ I, it runs C ← Enc(MPK,M · x) and outputs C.
Dec′(MPK, (y, sky ), (x, C)): To decrypt a ciphertext C with an associating

attribute x ∈ I using a secret key sky with an associating predicate y ∈ P, it
first computes z = Dec(MPK, sky , C). It then computes 〈x,y〉 and outputs ⊥
if 〈x,y〉 = 0 over D. Otherwise, it outputs z/〈x,y〉. Note that the final step
is possible because of the requirement on D.

Correctness. Due to the requirements on the domains, we have M · x ⊆ J
and y ∈ Q = P. Therefore, by the correctness of the underlying LinFE scheme,
we have z = 〈M · x,y〉 = M · 〈x,y〉 with overwhelming probability. Thus, the
correctness of the resulting NIPE scheme follows.

Theorem 4. If the underlying LinFE scheme is adaptively secure, so is the
above NIPE scheme.

Proof. Suppose there exists an adversary A against the NIPE scheme that has
non-negligible advantage. We use A to construct another adversary B against
the underlying LinFE scheme as follows.

- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ←
Setup(1λ, 1�) and gives the public parameter MPK to B. B then passes MPK to
A.

- Phase 1. When A makes a key-extraction query for a vector y, B submits the
same y to its challenger and is given sky . Then, it passes the same sky to A.

- Challenge Phase. When A outputs the messages (M0,M1) and the challenge
attribute x∗ on which it wishes to be challenged, B submits (M0 ·x∗,M1 ·x∗) to
its challenger and receives the challenge ciphertext C∗. B then passes C∗ to A.

- Phase 2. It is the same as Phase 1.

- Guess. Finally, A outputs a guess b′. B outputs the same bit as its guess.

Analysis. We first show that B does not violate the restriction of the security
game as long as A does not. To see this, observe that

〈M0 · x∗,y〉 = M0 · 〈x∗,y〉 = 0 = M1 · 〈x∗,y〉 = 〈M1 · x∗,y〉
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holds for all y that is queried during the game. Here, the second and the third
equalities follow from the restrictions on the queries posed on A. It is clear that
B’s simulation for A is perfect and B’s advantage is exactly the same as A. This
concludes the proof of the theorem.

One may expect that the above proof works also in the selective setting (i.e.,
if we start from a selectively secure LinFE, we obtain a selectively secure NIPE).
However, interestingly we require to modify the proof to work in the selective
setting. In particular, in the selective setting, the LinFE adversary B above
has to declare its target (M0x

∗,M1x
∗) at the beginning of the game. However,

since the NIPE adversary A only declares x∗ at the outset and decides (M0,M1)
later in the game, it is difficult for B to correctly decide its target. One way to
circumvent this problem is to restrict the message space M to be of polynomial
size and change the proof so that B simply guesses (M0,M1). The probability of
B correctly guessing the values is noticeable due to the restriction on the size of
the message space, which will be enough for our purpose. The drawback of the
approach is that we can only encrypt short messages of logarithmic length. To
encrypt a longer message, one needs to run the encryption algorithm many times
to encrypt each chunk of the message. Formally, we have the following theorem.
The proof is omitted to the full version.

Theorem 5. Let us assume that the size of the message space M is polynomially
bounded. Then, if the underlying LinFE scheme is selectively secure, so is the
above NIPE scheme.

5.3 Instantiations

By applying the conversion to the existing adaptively secure LinFE schemes
of [ABDCP15,ALS16], we obtain several new NIPE schemes. Since the result
of [ALS16] subsumes that of [ABDCP15] in the sense that the former achieves
adaptive security whereas the latter achieves selective security, we discuss new
schemes obtained by applying our conversion to the former schemes. This results
in new adaptively secure NIPE schemes from the LWE assumption, the DDH
assumption, and the DCR assumption. In particular, our DDH and DCR instan-
tiations are the first constructions of NIPE schemes without bilinear maps or
lattices. One thing to note is that the resulting scheme obtained by our conver-
sion can only deal with logarithmic-size message space when D is of polynomial
size and in order to encrypt a longer message, one needs to separate the message
into chunks and run the encryption algorithm multiple times to encrypt each of
them.

Construction from the LWE Assumption. In [ALS16], the authors pro-
posed two LinFE schemes from lattices. One is in the stateless setting where the
inner product is taken over Z, and the other one is in the stateful setting where
the inner product is taken over Zp for some prime p. To apply the conversion to
the former scheme, we set D = Z, P = Q = {0, . . . , P − 1}�, I = {0, . . . , I − 1}�,
M = {0, . . . , M − 1} and J = {0, . . . , MI − 1} for (polynomially bounded)
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integers P, I,M . It is straightforward to see that these domains satisfy our con-
ditions for the conversion. This results in a stateless NIPE scheme over Z.To
apply the conversion to the latter scheme, we set D = Zp,P = Q = I = J = Z

�
p,

and M = Zp. It is also easy to see that these domains satisfy our condition for
the conversion. This results in a stateful NIPE scheme over Zp.Since the original
scheme is adaptively secure under the LWE assumption with sub-exponential
approximation factors, so is our scheme obtained by the conversion.

Here, we compare our direct construction in Sect. 4 with the scheme obtained
via the above conversion. To encrypt a message of �M -bit length, the first app-
roach requires (�M + m + m�) elements of Zq in a ciphertext and the second
requires (m + �)�M . The first approach is more efficient than the second one
when we encrypt more than m�/(m + �) bits at once. For a natural setting of
� < m, λ, this condition encompasses the most interesting case of KEM-DEM
settings where one encrypts λ bits of session key. In fact, when we are in the ring
setting, since m is O(log λ), the first approach will be more efficient regardless
of the size �. Furthermore, for NIPE schemes over Zp, the first approach would
require smaller LWE modulus. Indeed, in certain regime of parameters such as
� = log n/ log log log n and p = log log n, the first approach would yield a scheme
with polynomial modulus whereas the second requires super-polynomial modu-
lus. However, on the other hand, the advantage of the second approach is that
it achieves adaptive security.

Construction from the DDH Assumption. In [ALS16], the authors pro-
posed a stateless LinFE scheme from the DDH assumption. In the scheme, the
inner product is taken over Zq, where q is the order of the underlying group G.
One subtlety regarding their scheme is that the decryption algorithm is efficient
only when the inner product 〈x,y〉 is polynomially bounded. This is because
the decryption algorithm first recovers g〈x,y〉 for the generator g of G and then
retrieves 〈x,y〉 by solving the discrete logarithm problem. Due to this problem,
we cannot apply the conversion in a completely black box manner and some
modification is needed. To apply our conversion to their scheme, we set D = Zq,
P = Q = I = J = Z

�
q, and M = {0, 1, . . . ,M} for polynomially bounded M .

Then, (Setup′,KeyGen′,Enc′) are defined as in Sect. 5.2. We slightly modify the
decryption algorithm. We run the decryption algorithm of the underlying LinFE
scheme to obtain Z = gM·〈x,y〉, but halt it before computing the discrete loga-
rithm logg Z, which is impossible when M · 〈x,y〉 is exponentially large. Instead,
we compute Z1/〈x,y〉 = gM and then retrieve the message M by solving the
discrete logarithm problem.

The above scheme can encrypt only short messages. We can modify the
scheme so that it can encrypt longer messages without degrading the efficiency
much. The main idea is that we can use the above scheme as a key encapsulation
mechanism (KEM). Namely, we change the above scheme so that the encryption
algorithm first encrypts a randomness s ∈ Zp and then encrypt the message
M by using the “DEM key” K = gs. The decryption algorithm first retrieves
K = gs and then retrieves the message M using the key K.
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Construction from the DCR Assumption. In [ALS16], the authors pro-
posed two LinFE schemes from the DCR assumption. One is in the stateless
setting where the inner product is taken over Z, and the other is in the stateful
setting where the inner product is taken over ZN . To apply the conversion to
the former scheme, we set D = Z, P = Q = {0, . . . , P − 1}�, I = {0, . . . , I − 1}�,
M = {0, . . . , M −1} and J = {0, . . . , MI −1} for (possibly exponentially large)
integers P, I,M . It is straightforward to see that these domains satisfy our condi-
tion for the conversion. This results in a stateless NIPE scheme over Z.To apply
the conversion to the latter scheme, we set D = ZN ,P = Q = I = J = Z

�
N ,

and M = ZN .Rigorously speaking, we cannot apply the conversion because ZN

is not an integral domain.However, we can treat ZN as if it were an integral
domain, since any element x ∈ ZN with gcd(x,N) �= 1 will allow us to factorize
N , which contradicts the hardness of the DCR assumption.
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Abstract. In this work, we propose new constructions for zero
inner-product encryption (ZIPE) and non-zero inner-product encryp-
tion (NIPE) from prime-order bilinear pairings, which are both attribute
and function private in the public-key setting.
• Our ZIPE scheme is adaptively attribute private under the standard

Matrix DDH assumption for unbounded collusions. It is additionally
computationally function private under a min-entropy variant of the
Matrix DDH assumption for predicates sampled from distributions
with super-logarithmic min-entropy. Existing (statistically) function
private ZIPE schemes due to Boneh et al. [Crypto’13, Asiacrypt’13]
necessarily require predicate distributions with significantly larger
min-entropy in the public-key setting.

• Our NIPE scheme is adaptively attribute private under the standard
Matrix DDH assumption, albeit for bounded collusions. In addition,
it achieves computational function privacy under a min-entropy vari-
ant of the Matrix DDH assumption for predicates sampled from dis-
tributions with super-logarithmic min-entropy. To the best of our
knowledge, existing NIPE schemes from bilinear pairings were nei-
ther attribute private nor function private.

Our constructions are inspired by the linear FE constructions of Agrawal
et al. [Crypto’16] and the simulation secure ZIPE of Wee [TCC’17]. In
our ZIPE scheme, we show a novel way of embedding two different hard
problem instances in a single secret key - one for unbounded collusion-
resistance and the other for function privacy. For NIPE, we introduce
new techniques for simultaneously achieving attribute and function pri-
vacy. We further show that the two constructions naturally generalize to
a wider class of predicate encryption schemes such as subspace member-
ship, subspace non-membership and hidden-vector encryption.

1 Introduction

Predicate encryption (PE) [5,14,30] is a modern public-key primitive that
enables fine-grained role-based access control on encrypted data, which makes it
desirable for a number of real-life applications. In a PE scheme, a single master
secret key msk is used to derive several secret keys of the form skf , where f is
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a Boolean function over Σ. A ciphertext corresponds to an attribute-message
pair (I,M) ∈ Σ × M, where Σ is a pre-defined set of attributes and M is a set
of payload messages. Decryption of a ciphertext corresponding to (I,M) by skf

reveals M if and only if f(I) = 1. Based on the security notion achieved, a PE
scheme may be classified into one or more of the categories described below.

Public Attribute PE. In a public attribute PE system, a ciphertext ct on
(I,M) leaks no information about the message M to an adversary possessing
secret-keys that do not decrypt ct (i.e., skf such that f(I) = 0). The attribute I,
on the other hand, is public. Such schemes are often nomenclatured as attribute-
based encryption (ABE). Concrete ABE schemes have been proposed for a wide
range of Boolean predicates, including equality/identity testing (IBE) [10,24],
keyword search [1,9], Boolean formulae [29], regular languages [36], general
polynomial-size circuits [11,22,27], and even Turing machines [25].

Attribute Private PE. In an attribute private PE, the ciphertext ct leaks
no information about either the attribute I or the message M to an adversary
possessing secret-keys that do not decrypt ct. Concrete instantiations of private
attribute PE have been achieved for hidden vector encryption (HVE) [14] that
supports, in addition to equality, conjunctive, range and subset predicates, and
also for zero-inner-product encryption (ZIPE) [30,33]. ZIPE has been realized
using bilinear maps [30,33] and also from lattice-based techniques [2,5,6].

In a more recent work [37], Wee demonstrated many new techniques for
achieving selectively simulation-secure attribute private PE from prime-order
bilinear groups under the standard Matrix DDH assumption. The main result
of this work is a partially hiding predicate encryption scheme for functions that
compute an arithmetic branching program on public attributes, followed by an
inner product predicate on private attributes. In the realm of lattices, Gorbunov
et al. [28] showed how to construct attribute private PE for all circuits from the
learning with errors (LWE) assumption.

Although attribute privacy has been realized for many different predicates
from bilinear pairings, it remains open to construct pairing-based attribute pri-
vate PE for certain simple predicates such as non-zero inner-product encryp-
tion (NIPE) [7] and its natural generalization to a broader class of subspace
non-membership encryption (SNME) predicates.

Function Private PE. In a function private PE, a secret-key skf reveal no
information beyond the absolute minimum about the underlying predicate f .
Note that the notions of attribute and function privacy for a PE are mutually
exclusive in the sense that one does not necessarily imply the other. In the
setting of private-key PE, there already exist function private constructions from
pairings for predicates such as ZIPE [8,20]. In fact, using techniques introduced
by Brakerski et al. [15], any private-key PE can be made function private in a
generic manner. However, in the setting of public-key PE, formalizing a realistic
notion of function privacy is significantly more challenging [12,13].
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Consider, for example, an adversary against an IBE scheme who is given a
secret-key skid corresponding to an identity id. As long as the adversary has some
apriori information that id belongs to a set S such that |S| is at most polynomial
in the security parameter λ, it can fully recover id from skid : it can simply resort
to encrypting a random message M under each identity in S, and decrypting
using skid to check for a correct recovery.

Hence, in the setting of public-key PE, function privacy can only hold under
the minimal assumption that each predicate is sampled from a distribution
with min-entropy at least super logarithmic in the security parameter λ [12,13].
Under similar assumptions, function private public-key constructions have been
reported for IBE [12], ZIPE [3] and subspace membership encryption (SME) [13],
which is essentially a generalization of ZIPE. These works throw open several
interesting questions. We discuss them below.

1. The PE schemes proposed in [12,13] are inherently restricted to satisfying
a statistical notion of function privacy. For a vast majority of applications,
a relaxed computational notion of function privacy suffices. It is currently
open to design public-key PE schemes with function privacy in this relaxed
computational setting.

2. The function private PE schemes in [12,13] necessarily assume predicate dis-
tributions with min-entropy k ≥ λ (where λ is the security parameter).1

This is a rather stringent assumption in the context of real-world predicates.
An interesting question is whether a public-key PE scheme can be function
private for predicate distributions with only super-logarithmic min-entropy.

There are several real-world applications that warrant the study of PE
schemes which are simultaneously attribute and function private. These include
searching on encrypted data, secure information retrieval, secure mail gateways
and payment gateways, and many others. The reader is referred to [12] for an
elaborate discussion of these applications.

1.1 Our Contributions

We focus on the following questions discussed in the previous section:

Is it possible to design attribute private PE from bilinear maps for the non-zero
inner product functionality?

What is a meaningful definition of function privacy against resource-bounded
adversaries?

Can the min-entropy requirements on the underlying predicate distributions be
restricted to a bare minimum while defining function privacy?

1 The PE schemes in [12,13] are not function private, even in the weaker computational
setting, if the min-entropy requirements are relaxed any further.
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Are there constructions for public-key PE that are provably function private, with
respect to the relaxed definition, under standard computational assumptions?

In this paper, we answer these questions in the affirmative by first present-
ing a relaxed definition of function privacy taking into account resource bounded
adversaries and restricting the min-entropy requirements of the underlying pred-
icate distributions to ω(log λ). We then present new pairing-based construc-
tions in the public key setting for subspace membership encryption (SME) and
subspace non-membership encryption (SNME) that generalize ZIPE and NIPE
respectively. Our constructions are adaptively attribute private and computa-
tionally function private in tandem, under variants of the well-known matrix
Diffie-Hellman (MDDH) assumption.

Our ZIPE scheme is the first to achieve computational function privacy for
predicates with super-logarithmic min-entropy. As already mentioned, existing
(statistically) function private ZIPE schemes due to Boneh et al. [13] neces-
sarily require predicate distributions with significantly larger min-entropy in
the public-key setting. Our NIPE scheme is first to achieve both attribute and
function privacy under group-theoretic assumptions, albeit in the bounded collu-
sion setting. Existing constructions for NIPE based on group-theoretic assump-
tions [7,16] were neither attribute nor function private, even in the bounded
collusion setting.

Our key technical contributions may be summarized as follows.

• Relaxing function privacy definition to account for resource-bounded adver-
saries and underlying predicates sampled from distributions with min-entropy
k = ω (log λ) (λ being the security parameter).

• Introduction of a min-entropy variant of MDDH assumption where the matrix
provided in the instance does not have the uniform distribution but guaran-
teed to have ω(log λ) min-entropy.

• Simple and efficient constructions for ZIPE and NIPE from prime-order asym-
metric bilinear pairings, that are simultaneously attribute and function pri-
vate under the presumed hardness of matrix DDH and its min-entropy vari-
ant, respectively, so long as the predicates are sampled from distributions
with super-logarithmic min-entropy.

• Generalizations of the aforementioned constructions to a broader class of
predicates, namely SME and SNME.

Our constructions are inspired by the linear FE constructions of Agrawal et
al. [6] and the simulation secure ZIPE of Wee [37]. In our SME (and hence ZIPE)
scheme, we show a novel way of embedding two different hard problem instances
in a single secret key - one for unbounded collusion-resistance and the other for
function privacy. With respect to SNME (and hence NIPE), we introduce new
techniques for simultaneously achieving attribute and function privacy, albeit in
the bounded collusion setting.
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1.2 Overview of Results and Techniques

In this section, we briefly explain the core ideas of our attribute private and func-
tion private SME/SNME in terms of the simplest cases, namely, ZIPE/NIPE.
The security of our constructions follow from different variants of the Matrix
DDH assumption over both source groups of a bilinear pairing.

The Matrix DDH assumption in a group G of prime order q given by a
generator g requires distinguishing between two distributions – (gA, gAr) and
(gA, gu) – where A ∈ Z

(k+1)×k
q , r ∈ Z

k
q and u ∈ Z

k+1
q are sampled uniformly

and independently from their respective domains (here k ≥ 1 and it is assumed
that A has full rank with overwhelming probability). For the function privacy
proofs we rely on a special form of the MDDH assumption parameterized by
(m,n) – an instance (with respect to a group G = 〈g〉) consists of gW, gu where
W R←− V∗ for some source distribution V∗ over Z

m×n
q of min-entropy ω(log λ)

and the task is to determine if u = WT · y for y R←− Z
m
q or u is randomly

distributed in Z
n
q .

Denote an asymmetric pairing by the 7-tuple G = (G1,G2,GT , q, g1, g2, e)
where |G1| = |G2| = |GT | = q, g1, g2 respectively generate G1,G2 and e :
G1 ×G2 → GT is a non-degenerate, efficiently computable bilinear map. Call G
Matrix DDH-hard if the Matrix DDH assumption holds in both G1 and G2.

Zero Inner-Product Encryption (ZIPE). Our attribute and function pri-
vate ZIPE construction, named ΠZIPE, is inspired by the simulation secure ZIPE
scheme of Wee [37]. The public parameters and the master secret key in ΠZIPE

are given by

pp =
(

g1, g
A
1 , gS0·A

1 , gS1·A
1 , . . . , gSn·A

1 , e(g1, g2)K·A
)

,

msk = (g2,S0,S1, . . . ,Sn,K,B0) ,

where A R←− Z
(k+1)×k
q , S0,S1, . . . ,Sn

R←− Z
(2k+1)×(k+1)
q , K R←− Z

1×(k+1)
q and

B0
R←− Z

(2k+1)×k
q are sampled uniformly. A ciphertext ct on attribute vector

x = (x1, . . . , xn) ∈ Z
n
q and message M is given by

ct =
(
c0, {cj}nj=1, cn+1

)
=

(

g
(A·r)T
1 ,

{
g
((xj ·S0+Sj)·A·r)T
1

}n

j=1

,M · e(g1, g2)(K·A·r)T
)

,

for r R←− Z
k
q . The secret key skw on a vector w = (w1, . . . , wn) ∈ Z

n
q is defined as

skw =
(
h0, {hj}n

j=1

)
=

(
g
K+y

∑n
j=1 wj ·t·Sj

2 ,
{

g
ywjt
2

}n

j=1

)
,

where y
R←− Zq and t = (B0 · s)T for s R←− Z

k
q .
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For correctness, we restrict the message space M to an exponentially smaller
subset of GT . The decryption algorithm computes

M = cn+1 ·
⎛
⎝ n∏

j=1

e(cj , hj)

⎞
⎠

/
e(c0, h0),

which returns the correct message if 〈x,w〉 = 0. When 〈x,w〉 �= 0 the message
thus computed is uniformly distributed in GT and with high probability will be
outside M. In such a case, the decryption algorithm may return a symbol ⊥
indicating failure.

We prove that ΠZIPE is adaptively attribute private assuming the hardness
of the decisional MDDH problems in G1 and G2. The attribute privacy game
asks an adversary to distinguish between encryptions to attribute vectors x0 and
x1. Or in other words, the adversary is given a challenge ciphertext for xb where
b

R←− {0, 1} and its task is to guess b. Essentially, we need to argue that the
components {cj}n

j=1 in the challenge ciphertext hide the attribute x.
The proof relies on the dual system proof methodology and proceeds through

a sequence of games, each changing the distribution of challenge ciphertext and
keys. The key steps in the proof are listed below.

1. The reduction first embeds an instance of MDDH in G1 in the challenge
ciphertext to make it semi-functional. At this stage, the exponent of cipher-
text component c0 is no longer correlated to A and this is consistent with the
other components.

2. In a series of subsequent games, we turn each secret key provided to the
adversary upon a key extract query to semi-functional form by embedding
MDDH instances in the group G2. This step is crucial for unbounded collusion
resistance.

3. Once the distribution of all keys are modified, we apply a “change of basis”
to the challenge ciphertext, and argue that xb is information theoretically
hidden from the adversary.

We prove the indistinguishability of each pair of consecutive games by resorting
to a set of techniques involving dual bases in prime-order bilinear groups (similar
techniques have been used in prior works, notably [17,23,26]). The reader may
refer to Sect. 4 and the full version [35] for details of the proof.

For showing function privacy of ΠZIPE, we rely on the min-entropy variant of
the MDDH assumption. In the function privacy experiment, the adversary picks
two vector distributions, each component of which is an ω(log λ)-source over
Zq. The challenger samples a vector w according to one of the distributions,
computes a secret key skw for vector w and gives it to the adversary. The adver-
sary’s task is to determine the distribution of w looking at skw. To prove that
the secret key hides the distribution from which w was sampled, we embed an
instance of the min-entropy variant of the MDDH assumption in the challenge
secret key provided to the adversary. If the instance is sampled from the correct
distribution, the secret key is well-formed. On the other hand, if the instance is
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uniformly random, the secret key perfectly hides the distribution from which w
was sampled. The reader may refer to Sect. 4 for the detailed proof.

Note that our ZIPE scheme essentially embeds two different problem
instances in the same secret key – an MDDH problem instance over G2 that
is exploited to achieve unbounded collusion-resistance in the attribute privacy
experiment, and a min-entropy MDDH instance over G2, which is the basis for
the proof of function privacy. We believe that this “simultaneous embedding”
strategy is of independent interest, and may be useful in other applications.

Non-Zero Inner-Product Encryption (NIPE). Our NIPE scheme is
inspired by the linear FE construction of Agrawal, Libert and Stehlé [6] referred
to as LinFE in what follows. A LinFE ciphertext ct is created by encrypting a
vector x of length n. Decryption of ct by a secret key, generated for a linear
function (given by a length n vector w), returns the value of the inner-product
〈x,w〉.

In a NIPE scheme, a ciphertext is associated with a payload message M and
a vector x while a secret key corresponds to a vector y. to be encoded in the
ciphertext. Decryption algorithm should be designed to return M iff 〈x,w〉 �=
0. To derive NIPE from LinFE, we use two instantiations of the LinFE with
independent master secret keys. The public parameters and master secret key
for the resulting scheme would be

pp =
(
g, gA, gS1 , gS2

)
msk = (S1,S2).

The ciphertext for (x,M) will result from encoding x and M · x using the two
individual schemes as shown below:

ct =
(
gAr1 , gx+S1Ar1 , gAr2 , gM ·x+S2Ar2

)
.

Here r1, r2 are sampled uniformly at random from Z
k
q . A secret key skw =

(wTS1,wTS2) helps in recovering gM〈x,w〉 and g〈x,w〉 with respect to g. One
may recover M by simply computing the discrete logarithm of gM〈x,w〉 by g〈x,w〉

which is possible only when 〈x,w〉 �= 0. The restriction on the inner-products
now shifts to the messages that is, the messages have to lie in a polynomial-sized
subset of Zq. A similar technique has been previously used in [4] to construct
public revocation and traitor-tracing from LinFE and revocation, in particular,
can be seen as a special case of NIPE. However, our naive construction is not
sufficient to (simultaneously) achieve attribute privacy and function privacy since
the secret key already reveals too much information about w.

To circumvent the problem, we adapt the construction to the bilinear map
setting. This is because functions are associated with secret keys and a basic
step to ensure privacy of the function encoded in the secret key components
is to hide them in the exponents of elements coming from a discrete log hard
group. Ciphertext components already live in a cyclic group. Decryption requires
combining the ciphertext and key components to recover the message which
can be facilitated if the two groups are equipped with a pairing/bilinear map.
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Furthermore, the secret key is additionally randomized with y ∈ Zq (for the
generalized case of SNME, this would be a vector y ∈ Z

m
q where w is replaced by

a matrix W ∈ Z
m×n
q ). Randomization is essential for the function privacy proof,

which exploits the hardness of a min-entropy variant of the MDDH assumption.
We now discuss the construction of a NIPE scheme possessing both attribute
and function privacy.

Let G = (G1,G2,GT , q, g1, g2, e) denote an asymmetric bilinear map ensem-
ble. The public parameters and master secret key for our modified scheme ΠNIPE

would be similar to the naive scheme we described earlier except that pp com-
ponents now live in G1.

pp =
(
g1, g

A
1 , gS1

1 , gS2
1

)
msk = (g2,S1,S2) .

Similarly, the ciphertext for (x,M) for ΠNIPE is given by

ct =
(
gAr1
1 , gx+S1Ar1

1 , gAr2
1 , gM ·x+S2Ar2

1

)
,

where r1, r2 are uniformly distributed in Z
k
q . Secret key for w would now be

defined as
skw =

(
gy·w
2 , gy·wTS1

2 , gy·wTS2
2

)

randomized by y sampled uniformly from Zq. During decryption, ciphertext
and key components are paired to obtained e(g1, g2)My〈x,w〉 and e(g1, g2)y〈x,w〉.
Message M can be recovered by computing the discrete logarithm of the former
with respect to the latter, conditioned on 〈x,w〉 �= 0.

Unlike the SME case, we can only prove attribute privacy of our SNME
scheme in the bounded collusion model. More precisely, an adversary is allowed
to query at most n − 1 secret keys, so that the master secret key components
S0,S1 . . . ,Sn retain sufficient entropy from the adversary’s point of view. The
proof then proceeds via a sequence of two hybrid experiments, in each of which
the proof embeds a fresh MDDH instance in the challenge ciphertext.

We argue that when these instances are sampled from the “random” distri-
bution instead of the “real” distribution, the challenge ciphertext perfectly hides
which attribute-message pair among (x0,M0) and (x1,M1) is being encrypted.
The argument for perfect hiding relies on hash proof systems [18,19], similar to
those used by Agrawal et al. in proving the security of their linear FE scheme [6].
Finally, the scheme is adaptively secure because the reduction knows the master
secret key at any time, which allows it to answer all secret key queries without
knowing the challenge attributes beforehand. For more details on the proof, the
reader may refer to Sect. 5 and the full version [35].

To prove function privacy, we again rely on the min-entropy variant of the
MDDH assumption over the group G2. This proof is technically very similar
to the proof of function privacy for our SME scheme. The reader may refer to
Sect. 5 for the detailed proof.

Hidden Vector Encryption (HVE). We extend our techniques to construct a
hidden vector encryption wherein a secret key for a vector y ∈ (Σ ∪{�})n allows
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decryption of a ciphertext on attribute vector x ∈ Σn if for each j ∈ [1, n], either
yj = xj or yj = �. Although attribute-private HVE is implied by attribute-
private SME, the implication does not extend to function privacy. In fact, defin-
ing function privacy for HVE itself is tricky given the presence of wildcard char-
acters. We overcome this issue by presenting a weaker notion of function privacy
for HVE that allows revealing positions of the wildcard (�) characters in a given
predicate vector, while hiding the contents of the other “non-wildcard” ositions.
Also presented is a construction of HVE that is provably function private in
this weaker model from bilinear maps. The construction is quite similar to our
SME construction, except for certain minor tweaks to account for the presence
of wildcard characters. The proofs of attribute and function privacy (in the weak
model) also follow analogously.

1.3 Open Problems

Several interesting questions remain unanswered. The construction of
NIPE/SNME we present have a restriction – attribute privacy only holds in
the bounded collusions model. It would be interesting to obtain constructions
free of this restriction. Another problem is to construct efficient function-private
PE for richer functionalities such as Boolean and arithmetic span programs from
standard assumptions.

1.4 Organization of the Paper

In Sect. 2, we present the notation, a quick review of bilinear maps and related
assumptions followed by definitions of PE and associated security notions. This is
followed by a description of min-entropy variants of MDDH assumption required
for our proofs. We formalize the relaxed computational notion of function pri-
vacy and discuss related issues in Sect. 3. In Sect. 4, we present our SME con-
struction followed by proofs of attribute privacy and function privacy. Section 5
describes our construction of SNME. Due to lack of space, we omit details of the
proofs. Interested readers are referred to the full version [35]. The full version
also describes a function private hidden vector encryption along with a sketch
of its security proof.

2 Background and Preliminary Definitions

In this section, we fix notation, present background material on predicate encryp-
tion and recall certain standard computational assumptions in bilinear groups.
We also introduce certain min-entropy variants of these assumptions useful for
our proofs.
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2.1 Notation

This section summarizes the notations used throughout the rest of the paper. We
write x

R←− χ to represent that an element x is sampled uniformly at random from
a set/distribution X . The output a of a deterministic algorithm A is denoted by
x = A and the output a′ of a randomized algorithm A′ is denoted by x′ ← A′.

We refer to λ ∈ N as the security parameter, and denote by exp(λ), poly(λ)
and negl(λ) any generic (unspecified) exponential function, polynomial function
and negligible function in λ respectively. Note that a function f : N → N is said
to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ) when λ is
sufficiently large.

For a, b ∈ Z such that a ≤ b, we denote by [a, b] the set of integers lying
between a and b (both inclusive). For a finite field Fq (q being a λ-bit prime)
and m,n ∈ N, we denote by F

m×n
q the space of all m × n matrices W with

elements from Fq. We use the short-hand notation F
m
q to represent the vector

space F
m×1
q . The transpose of a matrix W ∈ F

m×n
q is denoted as WT. The

symbol 0 is used to denote an all-zero matrix of appropriate dimension.
Finally, the min-entropy of a random variable Y is denoted as H∞(Y) and

is evaluated as H∞(Y) = − log (maxy Pr[Y = y]). A random variable Y is said
to be a k-source if H∞(Y) ≥ k.

2.2 Predicate Encryption

Definition 1 (Predicate Encryption). A predicate encryption (PE) scheme
for a class of predicates F over an attribute space Σ and a payload-message space
M is a quadruple of PPT algorithms Π = (Setup,KeyGen,Enc,Dec), defined as
follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm generates
the public parameter pp and the master secret key msk.

• KeyGen(pp,msk, f): On input the public parameter pp, the master secret key
msk and a predicate f ∈ F , the key-generation algorithm outputs a secret
key skf .

• Enc(pp, I,M): On input the public parameter pp, an attribute I ∈ Σ and a
payload message M ∈ M, the encryption algorithm outputs a ciphertext ct.

• Dec(pp, skf , ct): On input the public parameter pp, a ciphertext ct and a secret
key skf , the decryption algorithm outputs either a payload-message M ∈ M
or the symbol ⊥.

Correctness. A PE scheme is said to be functionally correct if for any security
parameter λ ∈ N, any predicate f ∈ F , any attribute I ∈ Σ, and any payload
message M ∈ M, letting (pp,msk) ← Setup(1λ), skf ← KeyGen (pp,msk, f) and
ct ← Enc (pp, I,M), the following hold:

1. If f(I) = 1, Pr [Dec (pp, ct, skf ) = M ] = 1,
2. If f(I) = 0, Pr [Dec (pp, ct, skf ) = ⊥] with overwhelmingly large probability,
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Experiment Expt
(b)
AP,Π,A(λ):

1. The challenger samples (pp,msk) ← Setup(1λ) and provides pp to A.
2. The adversary A adaptively issues key-generation queries. For each query

predicate f , the challenger responds with

skf ← KeyGen (pp,msk, f) .

3. The adversary A outputs attribute-message pairs (I0, M0) and (I1, M1), such
that for each predicate f queried, it holds that

f(I0) = f(I1) = 0.

The challenger responds to the adversary A with the ciphertext

ct ← Enc (pp, Ib, Mb) .

4. The adversary A continues to adaptively issue key-generation queries, subject
to the aforementioned restrictions. The challenger responds as above.

5. Eventually, the adversary A outputs a bit b′.

Fig. 1. The attribute privacy experiment for predicate encryption

where the probabilities are computed over the randomness of the Setup,KeyGen
and Enc algorithms.

Attribute Privacy. Define the experiment Expt
(b)
AP,Π,A(λ) as in Fig. 1 for a PE

Π = (Setup,KeyGen,Enc,Dec), a security parameter λ ∈ N and a bit b ∈ {0, 1}.
Let AdvAP

Π,A(λ) denote the advantage of the adversary A in the aforementioned
experiment, defined as

AdvAP
Π,A(λ) :=

∣∣∣∣ Pr
[
Expt

(0)
AP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
AP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ).

Definition 2 (Attribute Private PE). A PE scheme Π is said to be attribute
private if for all security parameters λ ∈ N and for all PPT adversaries A, it
holds that AdvAP

Π,A(λ) ≤ negl(λ).

2.3 Sub-Classes of Predicate Encryption

In this subsection, we recall definitions of certain sub-classes of predicate encryp-
tion that are used in the rest of the paper.

Inner Product Encryption. An inner product encryption (IPE) scheme [30,
33] is a PE over an attribute space Σ = F

n
q (q being a λ-bit prime) and a set of

Boolean predicates fy : Fn
q −→ {0, 1} such that for each y ∈ F

n
q and x ∈ F

n
q , we

have
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fy(x) =

{
1 if 〈y,x〉 = 0
0 otherwise.

where 〈·, ·〉 denotes the inner product (equivalently, scalar product) of two vectors
over Zq.

Subspace Membership Encryption. Subspace membership encryption
(SME) [13] is a generalization of IPE to accommodate general linear subspaces
as opposed to only vector spaces. Formally, an SME scheme is is a PE over an
attribute space Σ = F

n
q (q being a λ-bit prime) and a set of Boolean predicates

fW : Fn
q −→ {0, 1} such that for each W ∈ F

m×n
q and x ∈ F

n
q , we have

fW(x) =

{
1 if W · x = 0
0 otherwise.

Non-Zero IPE. Non-zero IPE (NIPE) [7,16] is the dual of IPE in the sense
that it is a PE over an attribute space Σ = F

n
q (q being a λ-bit prime) and a set

of Boolean predicates fy : Fn
q −→ {0, 1} such that for each y ∈ F

n
q and x ∈ F

n
q ,

we have

fy(x) =

{
1 if 〈y,x〉 �= 0
0 otherwise.

Subspace Non-Membership Encryption. Subspace non-membership
encryption (SNME) is a generalization of NIPE and the dual of SME in the
sense that it is a PE over an attribute space Σ = F

n
q (q being a λ-bit prime) and

a set of Boolean predicates fW : Fn
q −→ {0, 1} such that for each W ∈ F

m×n
q

and x ∈ F
n
q , we have

fW(x) =

{
1 if W · x �= 0
0 otherwise.

2.4 Bilinear Maps and Matrix Diffie-Hellman Assumptions

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter
λ, and outputs a tuple of the form (G1,G2,GT , q, g1, g2, e), where G1, G2 and
GT are distinct cyclic groups of order q (q being a λ-bit prime), g1 is a generator
for G1, g2 is a generator for G2, and e : G1 × G2 −→ GT is an efficiently
computable non-degenerate asymmetric bilinear map. Also, let W ∈ Z

m×n
q be

an m × n matrix with entries {wi,j}i∈[1,m],j∈[1,n]. Throughout the paper, we use
the following notations:

• gW1 : set of group elements {g
wi,j

1 }i∈[1,m],j∈[1,n] ∈ G
m×n
1

• gW2 : set of group elements {g
wi,j

2 }i∈[1,m],j∈[1,n] ∈ G
m×n
2

• e(g1, g2)W: set of group elements {e(g1, g2)wi,j }i∈[1,m],j∈[1,n] ∈ G
m×n
T

We now review the matrix Diffie-Hellman (MDDH) assumption over the
source groups G1 and G2 of a bilinear map.
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The Dm,n-MDDH Assumption. Let m,n ∈ N such that m > n, and let Dm,n

denote a matrix distribution over Zm×n
q such that a matrix W R←− Dm,n has full

rank n with overwhelmingly large probability. The Dm,n-MDDH assumption [21]
holds over the group Gi (for i = 1, 2) if the distribution ensembles:{(

gWi , gW·y
i

)}
W

R←−Dm,n, y
R←−Zn

q

and
{(

gWi , gui
)}

W
R←−Dm,n, u

R←−Zm
q

are computationally indistinguishable.

The Um,n-MDDH Assumption. The Um,n-MDDH assumption is a special
instance of the Dm,n-MDDH assumption where the matrix distribution Dm,n is
the uniform distribution over Zm×n

q .

2.5 A “Min-Entropy” Variant of the MDDH Assumption

In this subsection, we introduce another special instance of the Dk1,k2-MDDH
assumption where the matrix distribution Dk1,k2 is not uniform, but an ordered
collection of m×n independent ω(log λ)-sources over Zq. We first state and prove
the following lemma.

Lemma 2.1. Let Wk1,k2 =
[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a matrix of independently
distributed random variables such that each random variable Wi,j for i ∈ [1, k1]

and j ∈ [1, k2] is an ω (log λ)-source over Zq. Then, any matrix W R←− Wk1,k2

has full rank n with overwhelmingly large probability.

Proof. Let Wk1,k2 =
[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a tuple of (k1 × k2) independently
distributed random variables such that each random variable Wi,j for i ∈ [1, k1]

and j ∈ [1, k2] is a t-source over Zq. Let W R←− Wk1,k2 , and let W̃ be any
arbitrary k2 × k2 sub-matrix of W. Then, the probability of the event that W̃
has a zero determinant may be quantified as:

Pr
[
Det(W̃) = 0

]
= 1 −

( k2−1∏
j=1

(
1 − 2−j·t) )

≤ 1 − (
1 − 2−t

)(k2−1) ≤ (k2 − 1) · 2−t,

which is negligible for t = ω(log λ). This completes the proof of Lemma 2.1.

The Min-Entropy-MDDH Assumption. Let k1, k2 ∈ N with k1 > k2, and
let Wk1,k2 =

[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a tuple of independently distributed random
variables such that each random variable Wi,j for i ∈ [1, k1] and j ∈ [1, k2] is
an ω (log λ)-source over Zq. The (k1, k2)-min-entropy-MDDH assumption holds
over the group Gi (for i = 1, 2) if the distribution ensembles:{(

gWi , gW·y
i

)}
W

R←−Wk1,k2 , y
R←−Zn

q

and
{(

gWi , gui
)}

W
R←−Wk1,k2 , u

R←−Zm
q

are computationally indistinguishable.
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All proofs of function privacy for the schemes presented in this paper are based
on the Wm,n-MDDH assumption over the group G2.

2.6 Dual Bases

We briefly recall the concept of “dual bases” [16], along with some useful lemmas
that are used in the rest of the proof. Fix some integers k0, k1, k2 ≥ 1, and let
k = k0 + k1 + k2. We denote by “basis” a uniformly sampled tuple of matrices

(B0,B1,B2)
R←− Z

k×k0
q × Z

k×k1
q × Z

k×k2
q .

The corresponding “dual basis” is the tuple of matrices

(B∗
0,B

∗
1,B

∗
2) ∈ Z

k×k0
q × Z

k×k1
q × Z

k×k2
q ,

such that the following “non-degeneracy” conditions hold:

BT
0 · B∗

0 = I0 mod q, BT
1 · B∗

1 = I1 mod q, BT
2 · B∗

2 = I2 mod q,

where I0, I1 and I2 are identity matrices of appropriate dimensions, and the
following “orthogonality” conditions hold:

BT
i · B∗

j = 0 mod q for i, j ∈ {0, 1, 2}, i �= j.

We also recall some useful lemmas related to dual bases. These lemmas have
been used in many prior works, notably [17,23,26].

Lemma 2.2. Let (B0,B1,B2) be a uniformly sampled basis as described above
with corresponding dual basis (B∗

0,B
∗
1,B

∗
2). Any arbitrary vector u ∈ Z

k
q may be

uniquely decomposed as u = u0 + u1 + u2 such that

u0 = B∗
0 · s0, u1 = B∗

1 · s1, u2 = B∗
2 · s2,

for (s0, s1, s2) ∈ Z
k0
q × Z

k1
q × Z

k2
q . Additionally, the following holds for each

i ∈ {0, 1, 2}:
uT · Bi = uT

i · Bi.

Lemma 2.3. Let (B0,B1,B2) be a uniformly sampled basis as described above
with corresponding dual basis (B∗

0,B
∗
1,B

∗
2). Let a uniform vector u R←− Z

k
q be

decomposed as u = u0 + u1 + u2 such that

u0 = B∗
0 · s0, u1 = B∗

1 · s1, u2 = B∗
2 · s2,

for (s0, s1, s2) ∈ Z
k0
q × Z

k1
q × Z

k2
q . Then, for each i ∈ {0, 1, 2} and for uniform

s′
i

R←− Z
ki
q , it holds that the distributions of the tuples

(ui, {uj}j 	=i) and ((ui + B∗
i · s′

i), {uj}j 	=i)

are statistically indistinguishable.
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To see that the aforementioned lemma holds, fix an arbitrary i ∈ {0, 1, 2},
set u′ = u + B∗

i · s′
i for uniform s′

i
R←− Z

ki
q , decompose u′ = u′

0 + u′
1 + u′

2 and
observe that:

• For each j ∈ {0, 1, 2} \ {i}, we have u′
j = uj by the orthogonality property.

• The distributions of ui and (ui + B∗
i · s′

i) are statistically indistinguishable
whenever the vectors u and s′

i are uniformly random.

Lemma 2.4. Let (B0,B1,B2) be a uniformly sampled basis as described above
with corresponding dual basis (B∗

0,B
∗
1,B

∗
2). Let (i0, i1, i2) be a fixed but arbitrary

permutation of the set {0, 1, 2}. Let B̂i0,i1 be a basis for the span of the matrices[
B∗

i0
| B∗

i1

]
and let B̂i2 be a basis for the span of the matrix B∗

i2
. Let

t0 = (Bi0 · s0)
T

, t1 = (Bi0 · s1,0 + Bi1 · s1,1)
T

,

where s0, s1,0, s1,1 are uniformly sampled vectors of appropriate dimensions. If
the U(ki0+ki1 ),ki0

-MDDH assumption holds over the bilinear group G2, then for
all PPT adversaries A, we have∣∣Pr

[A (
D, gt02

)
= 1

] − Pr
[A (

D, gt12
)

= 1
]∣∣ ≤ negl(λ),

where D :=
(
g
B∗

0
2 , g

B∗
1

2 , g
B∗

2
2 , B̂i0,i1 , B̂i2

)
.

Note that Lemma 2.4 is essentially the prime-order analog of the well-known
subgroup decision assumption over composite order groups, which has classically
been used for dual system encryption [32]. The reader may refer to [17] for the
proof of this lemma.

3 Function Privacy of SME and SNME

In this section, we define the indistinguishability-based framework for the func-
tion privacy of subspace membership encryption (SME) and subspace non-
membership encryption (SNME). Let Π = (Setup,KeyGen,Enc,Dec) be an
SME (equivalently, SNME) scheme. Define the experiment Expt

(b)
FP,Π,A(λ) as in

Fig. 2 for a security parameter λ ∈ N and a bit b ∈ {0, 1}. Let AdvFP
Π,A(λ) denote

the advantage of the adversary A in the aforementioned experiment, defined as

AdvFP
Π,A(λ) :=

∣∣∣∣ Pr
[
Expt

(0)
FP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
FP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ).

Definition 3 (Function Private SME). An SME scheme Π is said to be
function private if for all security parameters λ ∈ N and for all PPT adversaries
A, it holds that AdvFP

Π,A(λ) ≤ negl(λ).

Definition 4 (Function Private SNME). An SNME scheme Π is said to be
function private if for all security parameters λ ∈ N and for all PPT adversaries
A, it holds that AdvFP

Π,A(λ) ≤ negl(λ).
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Experiment Expt
(b)
FP,Π,A(λ):

1. The challenger samples (pp,msk) ← Setup(1λ) and provides pp to A.
2. The adversary A adaptively issues key-generation queries. For each queried

predicate matrix W, the challenger responds with

skW ← KeyGen (pp,msk,W) .

3. The adversary A outputs circuits of the form

W0 =
[
W(0)

i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W(1)

i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Fm×n
q , with the following restrictions:

(a) For each i ∈ [1, m], j ∈ [1, n] and b̃ ∈ {0, 1}, W(b̃)
i,j represents an ω(log λ)-

source over Fq.
(b) For each i, i′ ∈ [1, m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W(b̃)

i,j andW(b̃)
i′,j′ represent

mutually independent distributions.
The challenger samples W R←− Wb and responds to the adversary A with the
secret-key

skW = KeyGen(msk,W).

4. The adversary A continues to adaptively issue key-generation queries. The
challenger responds as above.

5. Eventually, the adversary A outputs a bit b′.

Fig. 2. The function privacy experiment for SME and SNME

The Mutual Independence Condition. Observe that the function privacy
experiment requires the adversarially chosen distributions W0 and W1 to be
constructed such that the individual component distributions are both “mutually
independent” and “sufficiently unpredictable”. A stronger notion of function
privacy could allow these components to be “arbitrarily correlated”, so long as
they are “individually” sufficiently unpredictable. As shown in [13], such a notion
is impossible to satisfy. In other words, if arbitrary correlations were allowed,
the adversary A in the function privacy experiment can always create challenge
distributions that satisfy the unpredictability requirement, but secret keys for
matrices from these distributions are easily distinguishable. We present a brief
illustration here for the sake of completeness.

Consider an IPE scheme (equivalently, an SME scheme of dimension m = 1)
and an adversary A in the function privacy experiment that chooses the challenge
distributions as:

W0 =
[
W(0)

1 , 2W(0)
1 ,W(0)

2 , . . . ,W(0)
n−1

]
, W1 =

[
W(1)

1 ,W(1)
2 , . . . ,W(1)

n−1, 2W(1)
n−1

]
,

where for each j ∈ [1, n−1] and b̃ ∈ {0, 1}, W(b̃)
j represents a uniform source over

Fq. Clearly, each individual distribution has min-entropy log q = ω(log λ); yet,
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secret keys for vectors sampled from W0 can be distinguished from secret keys
for vectors sampled from W1 with non-negligible advantage as follows: encrypt
a message M under two attribute vectors x0 and x1 defined as:

x0 = (2,−1, 0, . . . , 0) , x1 = (0, . . . , 0, 2,−1) ,

and see which of the two ciphertexts decrypts correctly under the challenge secret
key. This justifies the mutual independence criteria imposed in the function
privacy experiment.

Multi-Challenge vs. Single-Challenge. Observe that the aforementioned
function privacy definition for SME/SNME is “single-challenge” in the sense that
the function privacy experiment allows the adversary a single challenge query.
In fact, as the adversary is also given access to the key-generation oracle, the
“single-challenge” definition is polynomially equivalent to a “multi-challenge”
variant where the adversary is allowed polynomially many challenge queries. This
equivalence may be proved by a hybrid argument (originally proposed in [13]),
where the hybrids are constructed such that only one query is forwarded to
the function privacy oracle, and all other queries are answered using the key-
generation oracle.

4 Function Private SME

In this section, we present the construction of an SME scheme that achieves
computational function privacy whenever the predicate matrices are sampled
from distributions with min-entropy ω(log λ). In contrast, the SME scheme of
Boneh et al. [13] is statistically function private, albeit for predicate matrices
sampled from distributions with min-entropy slightly larger than λ.

Attribute and function privacy guarantees of our scheme follow from variants
of the general D-MDDH assumption in the standard model. More specifically,
attribute privacy can be based on the Uk+1,k-MDDH assumption in G1 and
U2k,k-MDDH assumption in G2, while function privacy follows from the Wm,n-
MDDH assumption described in Sect. 2.4. The scheme is described below, while
the proofs of attribute and function privacy are presented subsequently.

4.1 The Construction

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter
λ ∈ N, and outputs the tuple (G1,G2,GT , q, g1, g2, e), where G1, G2 and GT are
cyclic groups of prime order q (q being a λ-bit prime), g1 is a generator for G1,
g2 is a generator for G2, and e : G1 × G2 −→ GT is an efficiently computable
non-degenerate asymmetric bilinear map. Our scheme ΠSME is parameterized
by m,n = poly(λ) in the sense that it supports predicate matrices of the form
W ∈ Z

m×n
q , and attribute vectors of the form x ∈ Z

n
q . Finally, the payload
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message space M is assumed to a “super-polynomially smaller” subset of GT ,
namely |M| < |GT |1/2. Our scheme works as follows.2

• Setup(1λ): Uniformly sample (G1,G2,GT , q, g1, g2, e) ← GroupGen(1λ). Also,
uniformly sample

A R←− Z
(k+1)×k
q , S0,S1, . . . ,Sn

R←− Z
(2k+1)×(k+1)
q ,

K R←− Z
1×(k+1)
q , B0

R←− Z
(2k+1)×k
q

for some constant k > 0. Output

pp =
(

g1, g
A
1 , gS0·A

1 , gS1·A
1 , . . . , gSn·A

1 , e(g1, g2)K·A
)

,

msk = (g2,S0,S1, . . . ,Sn,K,B0) .

• KeyGen(pp,msk,W): Parse the predicate matrix W ∈ Z
m×n
q as

W =
[
wi,j

]
i∈[1,m],j∈[1,n]

.

Uniformly sample s R←− Z
k
q and set t = (B0 · s)T. Finally, pick uniform

y1, . . . , ym
R←− Zq and output skW =

(
{hj}j∈[0,n]

)
where

h0 = g
(K+

∑m
i=1 yi·(

∑n
j=1 wi,j ·t·Sj))T

2 ,

hj = g
(∑m

i=1 yi·wi,j ·t)T
2 for j ∈ [1, n].

• Enc(pp,x,M): Given an attribute vector x =
[
x1 . . . xn

]T ∈ Z
n
q and

a message M ∈ M ⊂ GT , uniformly sample r R←− Z
k
q and output

ct =
(
{cj}j∈[0,n+1]

)
where

c0 = g
(A·r)T
1

cj = g
((xj ·S0+Sj)·A·r)T
1 for j ∈ [1, n]

cn+1 = M · e(g1, g2)(K·A·r)T

• Dec(pp, skW, ct): Parse the ciphertext as ct =
(
{cj}j∈[0,n+1]

)
and the secret

key as skW =
(
{hj}j∈[0,n]

)
. Compute

M =
(

cn+1 ·
n∏

j=1

e (cj , hj)
)/

e (c0, h0) .

If M ∈ M, output M . Otherwise, output ⊥.
2 The restriction on the size of the message space M is necessary for correctness as

explained subsequently. Note that this restriction does not prevent M from being
exponentially large.
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Correctness. To see that the aforementioned scheme is functionally correct,
observe the following.

n∏

j=1

e (cj , hj) =
n∏

j=1

e(g1, g2)
(
∑m

i=1 yi·wi,j ·t·(xj ·S0+Sj)·A·r)T

= e(g1, g2)
((

∑n
j=1

∑m
i=1 yi·wi,j ·xj ·t·S0+

∑n
j=1

∑m
i=1 yi·wi,j ·t·Sj)·A·r)T

= e(g1, g2)
(
∑m

i=1 yi·
∑n

j=1 wi,j ·xj ·t·S0·A·r)T · e(g1, g2)(
∑m

i=1 yi·(
∑n

j=1 wi,j ·t·Sj)·A·r)T

= e(g1, g2)
(
∑m

i=1 yi·
∑n

j=1 wi,j ·xj ·t·S0·A·r)T · e
(
g
(A·r)T
1 , g

(
∑m

i=1 yi·(
∑n

j=1 wi,j ·t·Sj))
T

2

)

= M · (cn+1)
−1 · e (c0, h0) · e(g1, g2)((y·W·x)·t·S0·A·r)T

where y =
[
y1 . . . ym

]
. Hence, when W ·x = 0 mod q, the decryption algorithm

recovers M correctly. On the other hand, when W·x �= 0 mod q the distribution
of M such that M satisfies the decryption equation is uniformly random over
GT , and hence, with overwhelmingly large probability over the randomness of
KeyGen and Enc, the decryption algorithm returns ⊥.3

4.2 Attribute Privacy

We state and prove the following theorem.

Theorem 4.1. If the Uk+1,k-MDDH assumption holds over the group G1 and
the U2k,k-MDDH assumption holds over the group G2, then for all PPT adver-
saries A, we have AdvAP

ΠSME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with
the “real” attribute privacy experiment and ending with an experiment where
the adversary has no advantage. We consider a variant of the “real” attribute
privacy experiment where the challenge messages M0 and M1 are chosen to be
equal by the adversary. One can reduce the case for M0 �= M1 to this case by
arguing that an encryption of Mb for b ∈ {0, 1} is indistinguishable from an
encryption of M0 [16,37]. Hence, it is sufficient to assume that M0 = M1 in the
hybrid experiments presented next.4

Expt-0. This is the “real” experiment. In this experiment, the adversary A
is given the public parameter pp. The adversary chooses two (distinct) vector-
message pairs (x0,M0), (x1,M1) ∈ Z

n
q × M, such that

xb =
[
x1,b x2,b . . . xn,b

]T for each b ∈ {0, 1}.

3 The argument follows from the fact that both y and r are uniformly random vectors
in Z

m
q and Z

k
q , respectively, and |M| < |GT |1/2.

4 Due to paucity of space, we only provide brief proof sketches in several cases. We
refer the reader to the full version of the paper [35] for the detailed proofs.
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and M0 = M1. In addition, the adversary (adaptively) issues a maximum of
Q key generation queries (for some fixed polynomial Q = Q(λ)) corresponding
to predicate matrices the form W1, . . . ,WQ ∈ Z

m×n
q , subject to the restriction

that

(W� · x0 �= 0 mod q) ∧ (W� · x1 �= 0 mod q) for each � ∈ [1, Q].

It receives in response
(
ct∗, skW1 , . . . , skWQ

)
, where

ct∗ ← Enc(pp,xb,M0) for some random b
R←− {0, 1},

skW�
← KeyGen(pp,msk,W�) for each � ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which
the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly
samples r R←− Z

k
q and uses the master secret key components S0,S1, . . . ,Sn,K

to generate the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = g
(A·r)T
1 ,

{
cj = (c0)

(xj,b·S0+Sj)
T

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

.

Note that for each j ∈ [1, n], we essentially have cj = g

(
v
(1)
j

)T

1 , where

v(1)
j = (xj,b · S0 + Sj) · A · r.

Let PA,1 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-1. Observe that the challenge ciphertext ct∗ in
Expt-1 has the same distribution as in Expt-0. Hence, we have PA,1 = PA,0.

Expt-2. This experiment is identical to Expt-1 except for the manner in which
the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly
samples u R←− Z

k+1
q , and generates the ciphertext ct∗ =

(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = (c0)

(xj,b·S0+Sj)
T

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

.

Note that for each j ∈ [1, n], we essentially have cj = g

(
v
(2)
j

)T

1 , where

v(2)
j = (xj,b · S0 + Sj) · u .

Let PA,2 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-2. We state the following lemma.
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Lemma 4.1. For all PPT adversaries A, |PA,2 − PA,1| ≤ negl(λ).

The proof of this lemma follows directly from the Uk+1,k-MDDH assumption over
the group G1. More specifically, given a PPT adversary A that can distinguish
between between its views in Expt-1 and Expt-2 with non-negligible probability,
one can construct a PPT algorithm that can distinguish between the ensembles

{(
gA1 , gA·r

1

)}
A

R←−Z
(k+1)×k
q ,r

R←−Zk
q

and
{(

gA1 , gu1
)}

A
R←−Z

(k+1)×k
q , u

R←−Z
k+1
q

with non-negligible probability. Quite evidently, the existence of such a PPT
algorithm violates the Uk+1,k-MDDH assumption over the group G1.

Expt-3. This experiment is identical to Expt-2 except for the manner in which
the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly
samples a basis

(B0,B1,B2) ∈ Z
(2k+1)×k
q × Z

(2k+1)×1
q × Z

(2k+1)×k
q ,

with corresponding dual basis (B∗
0,B

∗
1,B

∗
2), and uses B0 as part of the master

secret key msk. It samples u R←− Z
k+1
q and decomposes S0 · u ∈ Z

2k+1
q as

S0 · u = u0 + u1 + u2,

such that

u0 = B∗
0 · s0, u1 = B∗

1 · s1, u2 = B∗
2 · s2 for some s0, s2 ∈ Z

k
q , s1 ∈ Zq.

Note that such a decomposition always exists by Lemma 2.2. The challenger B
then generates the ciphertext ct∗ =

(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(3)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v(3)
j = xj,b · u0 + xj,1−b · u1 + xj,b · u2 + Sj · u.

Let PA,3 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-3. We state the following lemma.

Lemma 4.2. For all unbounded adversaries A, |PA,3 − PA,2| ≤ negl(λ).

Proof Sketch. To prove Lemma 4.2, it is sufficient to prove that for each j ∈
[1, n] and for all x0,x1 ∈ Z

n
q , the distributions of v(2)

j and v(3)
j are statistically

close. Informally, the proof is based on the following observations and a simple
application of Lemma 2.3.
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1. If one were to decompose Sj · u for j ∈ [1, n] as

Sj · u = uj,0 + uj,1 + uj,2,

such that

uj,0 = B∗
0 · sj,0, uj,1 = B∗

1 · sj,1, uj,2 = B∗
2 · sj,2,

for some sj,0, sj,2 ∈ Z
k
q , sj,1 ∈ Zq, then the public parameter pp and the secret

keys skW1 , . . . , skWQ
statistically hide uj,1 for j ∈ [1, n]. In other words, in

the view of an unbounded adversary, the distribution of uj,1 is statistically
indistinguishable from that of a uniformly random vector in the span of B∗

1.
The reasoning behind this observation is detailed in the full version [35].

2. For each j ∈ [1, n], for all x0,x1 ∈ Z
n
q and for all u1 in the span of B∗

1, the
distributions of

(xj,b · u1 + uj,1) and (xj,1−b · u1 + uj,1)

are statistically indistinguishable whenever uj,1 is uniform in the span of B∗
1.

Expt-4-�. For each � ∈ [0, Q], the experiment Expt-4-� is identical to Expt-3
except for the manner in which the first � secret key queries are answered by the
challenger B. More specifically, B uniformly samples a basis (B0,B1,B2) with
corresponding dual basis (B∗

0,B
∗
1,B

∗
2), and uses B0 as part of the master secret

key msk. For each �′ ∈ [1, �], B uniformly samples s�′,0
R←− Z

k
q and s�′,1

R←− Zq,
and sets

t�′ = (B0 · s�′,0 + B1 · s�′,1)
T

.

In other words, the vector (t�′)T now lies in the span of
[
B0 | B1

]
and not in

the span of B0, as in the real experiment. The challenger B then generates the
secret key corresponding to the predicate matrix W�′ as skW�′ =

(
{hj,�′}j∈[0,n]

)
where

h0,�′ = g
(K+

∑m
i=1 y�′,i·(

∑n
j=1 wi,j ·t�′ ·Sj))T

2 ,

hj,�′ = g
(∑m

i=1 y�′,i·wi,j ·t�′)T
2 for j ∈ [1, n].

where y�′,1, . . . , y�′,m
R←− Zq.

Let PA,4,� denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-4-�. We state the following lemma.

Lemma 4.3. For all PPT adversaries A,
∣∣PA,4,� − PA,4,(�−1)

∣∣ ≤ negl(λ) for
each � ∈ [1, Q].

Proof. The proof proceeds through another sequence of hybrid experiments,
beginning with an experiment identical to Expt-4-(� − 1) and ending with an
experiment identical to Expt-4-�. Each experiment in this sequence differs from
its predecessor in one of two ways: either the �th secret key sk� is generated
in a different manner, or the challenge ciphertext ct∗ is generated in a differ-
ent manner. The corresponding indistinguishability arguments between pairs of
successive experiments rely heavily on Lemmas 2.2, 2.3 and 2.4.
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Expt-5. This experiment is identical to Expt-4-Q except for the manner in
which the challenge ciphertext ct∗ is generated. More specifically, the challenger
B samples u,u′,u′′ R←− Z

k+1
q and uses the dual basis to decompose these as

S0 · u = (u0 + u1 + u2)
S0 · u′ = (u′

0 + u′
1 + u′

2)
S0 · u′′ = (u′′

0 + u′′
1 + u′′

2)

It then generates the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(5)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v(5)
j = xj,0 · (u′

0 + u′
1) + xj,1 · (u′′

0 + u′′
1) + xj,b · u2 + Sj · u.

Let PA,5 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-5. We state and prove the following lemma.

Lemma 4.4. For all unbounded adversaries A, |PA,5 − PA,4−Q| ≤ negl(λ).

Proof Sketch. To prove this lemma, we employ the standard “change of basis”
technique used in dual pairing vector spaces [31,33,34]. More specifically, we
argue that the distributions of

(u1,u2) and ((u′
0 + u′

1), (u
′′
0 + u′′

1))

are statistically indistinguishable whenever the vectors u,u′,u′′ and the basis
matrices B0,B1 are uniformly random. Informally, the argument follows from
the following observations:

• The randomness ti in each secret key skWi
for i ∈ [1, Q] statistically hides

the span of
[
B0 | B1

]
. This allows for an alternative simulation of Expt-4,

where the basis matrices B0,B1 are “changed”, i.e., replaced by two other
specially constructed basis matrices, such that the replacement matrices are
also distributed uniformly.

• The alternative simulation of Expt-4 is statistically indistinguishable from
the original simulation of Expt-4.

• The alternative simulation of Expt-4 with respect to the changed basis matri-
ces is statistically indistinguishable from the simulation of Expt-5 with respect
to the original basis matrices.

Expt-6. This experiment is identical to Expt-5 except for the manner in which
the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly
samples u,u′,u′′ R←− Z

k+1
q and generates the ciphertext ct∗ =

(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(6)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,
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where for each j ∈ [1, n], we have

v(6)
j = xj,0 · S0 · u′ + xj,1 · S0 · u′′ + Sj · u.

Let PA,6 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-6. We state and prove the following lemma.

Lemma 4.5. For all unbounded adversaries A, |PA,6 − PA,5| ≤ negl(λ).

Proof. The proof is similar to the proof of indistinguishability of Expt 2 and
Expt 3.

Finally, observe that in Expt-6, the adversary A has no advantage in guessing
b, since the ciphertext ct∗ is entirely independent of b. In other words, for all
PPT adversaries A, we must have PA,6 = 1/2. This completes the proof of
Theorem 4.1. ��

4.3 Function Privacy

We state and prove the following theorem.

Theorem 4.2. If the (n,m)-min-entropy-MDDH assumption holds over the
group G2, then for all PPT adversaries A, we have AdvFP

ΠSME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with
the “real” function privacy experiment and ending with an experiment where
the adversary has no advantage.

Expt-0. This is the “real” function privacy experiment. In this experiment, the
adversary A is given the public parameter pp. The adversary chooses two circuits
corresponding to matrix distributions of the form

W0 =
[
W(0)

i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W(1)

i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Zm×n
q , subject to the following restrictions:

1. For each i ∈ [1,m], j ∈ [1, n] and b̃ ∈ {0, 1}, W(b̃)
i,j represents an ω(log λ)-

source over Fq.

2. For each i, i′ ∈ [1,m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W(b̃)
i,j and W(b̃)

i′,j′ represent
mutually independent distributions.

The adversary A also (adaptively) issues key generation queries corresponding
to predicate matrices the form W1, . . . ,WQ ∈ Z

m×n
q for some Q = poly(λ). The

challenger samples W∗ R←− Wb for some random b
R←− {0, 1}, where

W∗ =
[
w∗

i,j

]
i∈[1,m],j∈[1,n]

,
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and uses the master secret key msk = (g2,S0,S1, . . . ,Sn,K,B0) to set the chal-
lenge secret key skW∗ =

(
{hj}j∈[0,n]

)
where

h0 = g
(K+

∑m
i=1 yi·(

∑n
j=1 w∗

i,j ·t·Sj))T
2 ,

hj = g
(∑m

i=1 yi·w∗
i,j ·t)T

2 for j ∈ [1, n],

where y1, . . . , ym
R←− Zq and t = (B · s)T for some s R←− Z

k
q . The adversary A

receives
(
skW∗ , skW1 , . . . , skWQ

)
, where

skW�
← KeyGen(pp,msk,W�) for each � ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which
the challenge secret key skW∗ is generated. Namely, the challenger B uniformly
samples u1, . . . , un

R←− Zq and sets the challenge secret key skW∗ =
(
{hj}j∈[0,n]

)
as follows:

h0 = g
(K+

∑n
j=1 uj ·t·Sj)T

2 ,

hj = g
(ujt)

T

2 for j ∈ [1, n],

where t = (B · s)T for some s R←− Z
k
q . Let PA,1 denote the probability that b = b′,

where b′ is the bit output by the adversary A at the end of Expt-1. By the (n,m)-
min-entropy-MDDH assumption, we must have |PA,2 − PA,1| ≤ negl(λ).

Finally, observe that the challenge secret key skW∗ in Expt-1 is independent
of the bit b chosen by the challenger. Hence, for all PPT adversaries A, we must
have PA,1 = 1/2. This completes the proof of Theorem 4.2. ��

5 Function Private SNME

In this section, we present an SNME scheme that is (computationally) function
private whenever the predicate matrices are sampled from distributions with
super-logarithmic min-entropy. Similar to the SME scheme, attribute privacy of
our SNME scheme can be based on the Uk+1,k-MDDH assumption, albeit in the
bounded collusion setting, while function privacy follows from the min-entropy-
MDDH assumption described in Sect. 2.4.

5.1 The Construction

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter
λ ∈ N, and outputs the tuple (G1,G2,GT , q, g1, g2, e), where G1, G2 and GT are
cyclic groups of prime order q (q being a λ-bit prime), g1 is a generator for G1,
g2 is a generator for G2, and e : G1 × G2 −→ GT is an efficiently computable
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non-degenerate asymmetric bilinear map. Our scheme ΠSNME is parameterized
by m,n = poly(λ) in the sense that it supports predicate matrices of the form
W ∈ Z

m×n
q , and attribute vectors of the form x ∈ Z

n
q . The payload message

space M for this scheme is assumed to be a “small” subset of Zq such that
|M| ≤ poly(λ).

• Setup(1λ): Uniformly sample (G1,G2,GT , q, g1, g2, e) ← GroupGen(1λ). Also,
uniformly sample A R←− Z

(k+1)×k
q and S1,S2

R←− Z
n×(k+1)
q for some constant

k > 0. Output

pp =
(

g1, g
A
1 , gS1·A

1 , gS2·A
1

)
, msk =

(
g2,S1,S2

)
.

• KeyGen(pp,msk,W): Given a predicate matrix W ∈ Z
m×n
q , sample y R←− Z

m
q

and output skW = (h0, h1, h2), where

h0 = gW
T·y

2 , h1 = g
(W·S1)

T·y
2 , h2 = g

(W·S2)
T·y

2 .

• Enc(pp,x,M): Given an attribute vector x ∈ Z
n
q and a message M ∈ M ⊂ Zq,

uniformly sample r1, r2
R←− Z

k
q and output ct = (c1,0, c1,1, c2,0, c2,1) where

c1,0 = g
(A·r1)T
1 , c1,1 = g

(x+S1·A·r1)T
1 ,

c2,0 = g
(A·r2)T
1 , c2,1 = g

(M ·x+S2·A·r2)T
1 .

• Dec(pp, skW, ct): Parse the ciphertext as ct = (c1,0, c1,1, c2,0, c2,1) and the
secret key as skW = (h0, h1, h2). Check if there exists a unique M ∈ M such
that

e (c2,1, h0) · e (c2,0, h2)
−1 =

(
e (c1,1, h0) · e (c1,0, h1)

−1

)M

.

If yes, return M . Else return ⊥.

Correctness. To see that the aforementioned scheme is functionally correct,
observe the following.

e (c1,1, h0) · e (c1,0, h1)
−1 = e (g1, g2)(

yT·W·(x+S1·A·r1)−yT·W·S1·A·r1)T

= e (g1, g2)(
yT·W·x)T

e (c2,1, h0) · e (c2,0, h2)
−1 = e (g1, g2)(

yT·W·(M ·x+S2·A·r2)−yT·W·S2·A·r2)T

= e (g1, g2)
M ·(yT·W·x)T

When W · x �= 0 mod q, we have yT · W · x �= 0 mod q with overwhelmingly
large probability over the randomness of KeyGen, and the decryption algorithm
correctly recovers the message M . But when W · x = 0 mod q, the message M
cannot be uniquely recovered and the decryption algorithm returns ⊥.
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5.2 Attribute Privacy

We state the following theorem.

Theorem 5.1. If the Uk+1,k-MDDH assumption holds over the group G1, then
for all PPT adversaries A that issue as most (n − 1) secret key queries during
the attribute privacy experiment, we have AdvAP

ΠSNME,A(λ) ≤ negl(λ).

Proof Sketch. Due to lack of space, we only provide a brief proof sketch. We
refer the reader to the full version of the paper [35] for the detailed proof.

The proof essentially relies on hash proof systems [18,19], and uses argu-
ments similar to those used by Agrawal et al. in proving the security of their
linear FE scheme [6]. The analysis exploits the following fact: given the public
parameter pp and no more than (n − 1) secret keys, the master secret key com-
ponents S0,S1 . . . ,Sn retain sufficient entropy from an (unbounded) adversary’s
point of view. This in turn ensures that at some stage, if the challenge cipher-
text is generated using the master-secret-key instead of the public parameter, it
will perfectly hide which attribute-message pair among (x0,M0) and (x1,M1) is
encrypted.

Finally, the scheme is adaptively secure because the reduction knows the
master secret key at any time, which allows it to answer all secret key queries
without knowing the challenge attributes beforehand. This feature is common
to nearly all security proofs relying on hash proof systems [18,19].

5.3 Function Privacy

We state and prove the following theorem.

Theorem 5.2. If the (n,m)-min-entropy-MDDH assumption holds over the
group G2, then for all PPT adversaries A, we have AdvFP

ΠSNME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with
the “real” function privacy experiment and ending with an experiment where
the adversary has no advantage.

Expt-0. This is the “real” function privacy experiment. In this experiment, the
adversary A is given the public parameter pp. The adversary chooses two circuits
corresponding to matrix distributions of the form

W0 =
[
W(0)

i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W(1)

i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Zm×n
q , subject to the following restrictions:

1. For each i ∈ [1,m], j ∈ [1, n] and b̃ ∈ {0, 1}, W(b̃)
i,j represents an ω(log λ)-

source over Fq.

2. For each i, i′ ∈ [1,m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W(b̃)
i,j and W(b̃)

i′,j′ represent
mutually independent distributions.
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The adversary A also (adaptively) issues key generation queries corresponding
to predicate matrices the form W1, . . . ,WQ ∈ Z

m×n
q for some Q = poly(λ). The

challenger samples W∗ R←− Wb for some random b
R←− {0, 1}, and and uses the

master secret key msk =
(
S1,S2

)
to set skW∗ = (h0, h1, h2), where

h0 = g
(W∗)T·y
2 , h1 = g

(W·S∗
1)T·y

2 , h2 = g
(W·S∗

2)T·y
2 ,

where y R←− Z
m
q . The adversary A receives

(
skW∗ , skW1 , . . . , skWQ

)
, where

skW�
← KeyGen(pp,msk,W�) for each � ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which
the challenge secret key skW∗ is generated. Namely, the challenger B uniformly
samples u R←− Z

n
q and uses the master secret key msk = (g2,S1,S2) to output

skW∗ = (h0, h1, h2) where

h0 = gu2 , h1 = g
(S1)

T·u
2 , h2 = g

(S2)
T·u

2 .

Let PA,1 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-1. By the (n,m)-min-entropy-MDDH assump-
tion, we must have |PA,2 − PA,1| ≤ negl(λ).

Finally, observe that the challenge secret key skW∗ in Expt-1 is independent
of the bit b chosen by the challenger. Hence, for all PPT adversaries A, we must
have PA,1 = 1/2. This completes the proof of Theorem5.2. ��
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Abstract. We present a construction of an adaptively single-key secure
constrained PRF (CPRF) for NC1 assuming the existence of indistin-
guishability obfuscation (IO) and the subgroup hiding assumption over
a (pairing-free) composite order group. This is the first construction of
such a CPRF in the standard model without relying on a complexity
leveraging argument.

To achieve this, we first introduce the notion of partitionable CPRF,
which is a CPRF accommodated with partitioning techniques and com-
bine it with shadow copy techniques often used in the dual system encryp-
tion methodology. We present a construction of partitionable CPRF for
NC1 based on IO and the subgroup hiding assumption over a (pairing-
free) group. We finally prove that an adaptively single-key secure CPRF
for NC1 can be obtained from a partitionable CPRF for NC1 and IO.

1 Introduction

1.1 Background

Constrained pseudorandom function (CPRF) [10]1 is a PRF with an additional
functionality to “constrain” the ability of a secret key. A constrained key asso-
ciated with a boolean function f enables us to compute a PRF value on inputs
x such that f(x) = 0.2 Security of CPRF roughly requires that for a “challenge
input” x∗ such that f(x∗) = 1, the PRF value on x∗ remains pseudorandom
given skf . There are many applications of CPRFs including broadcast encryp-
tion [10], attribute-based encryption (ABE) [2], identity-based non-interactive
key exchange [10], and policy-based key distribution [10].

1 It is also known as delegatable PRF [36] and functional PRF [12].
2 We note that the role of the constraining function f is “reversed” from the definition

by Boneh and Waters [10], in the sense that the evaluation by a constrained key skf

is possible for inputs x with f(x) = 1 in their definition, while it is possible for
inputs x for f(x) = 0 in our paper. Our treatment is the same as Brakerski and
Vaikuntanathan [14].

c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11443, pp. 223–253, 2019.
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Since the proposal of the concept of CPRF, there have been significant
progresses in constructing CPRFs [1–3,6,8–14,16,23,30,36,40]. However, most
known collusion-resistant3 CPRFs (e.g., [10]) only satisfy weaker security called
“selective-challenge” security, where an adversary must declare a challenge input
at the beginning of the security game. In the single-key setting where an adver-
sary is given only one constrained key (e.g., [14]), we often consider “selective-
constraint” security where an adversary must declare a constraint for which it
obtains a constrained key at the beginning of the security game whereas it is
allowed to choose a challenge input later.4 In a realistic scenario, adversaries
should be able to choose a constraint and a challenge input in an arbitrary
order. We call such security “adaptive security”.

An easy way to obtain an adaptively secure CPRF is converting selective-
challenge secure one into adaptively secure one by guessing a challenge input
with a standard technique typically called complexity leveraging. However, this
incurs an exponential security loss, and thus we have to rely on sub-exponential
assumptions. We would like to avoid this to achieve better security. In the ran-
dom oracle model, Hofheinz, Kamath, Koppula and Waters [32] constructed
an adaptively secure collusion-resistant CPRF for all circuits without relying
on complexity leveraging based on indistinguishability obfuscation (IO) [4,27],
and Attrapadung et al. [2] constructed an adaptively single-key secure CPRF
for NC1 on pairing-free groups. However, the random oracle model has been
recognized to be problematic [17].

There are a few number of adaptively secure CPRFs in the standard model.
Hohenberger, Koppula, and Waters [34] constructed an adaptively secure punc-
turable PRF based on IO and the subgroup hiding assumption on a composite
order group.5 Very recently, Davidson et al. [22] constructed an adaptively secure
CPRF for bit-fixing functions secure against a constant number of collusion
based on one-way functions. However, these schemes only support puncturing
functions or bit-fixing functions which are very limited functionalities, and there
is no known construction of adaptively secure CPRF for a sufficiently expressive
function class (e.g., NC1 or all polynomial-size circuits) even in the single-key
setting and even with IO.

1.2 Our Contribution

In this study, we achieve an adaptively single-key secure CPRF for NC1 assum-
ing the existence of IO and the subgroup hiding assumption over a (pairing-free)
composite order group. This is the first construction of such a CPRF in the
standard model without relying on the complexity leveraging technique.
3 A CPRF is called collusion-resistant if it remains secure even if adversaries are given

polynomially many constrained keys.
4 In previous works, both selective-challenge and selective-constraint security are sim-

ply called selective security. We use different names for them for clarity.
5 More precisely, they also generalized their construction to obtain a CPRF for t-

puncturing functions, which puncture the input space on t points for a polynomial
t (rather than a single point).
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We emphasize that using IO is not an easy solution to achieve adaptive
security even in the single-key setting, although IO is a strong cryptographic tool
(a.k.a. “heavy hammer”). All CPRFs for a sufficiently expressive class based on
IO in the standard model do not achieve adaptive security if we do not rely on
complexity leveraging [1,9,11,21,23].

1.3 Design Idea and Technical Overview

In this section, we give an overview of our design idea and technique.

Toward adaptive security: partitioning technique. Our construction is based on
a technique called the partitioning technique, which has been widely used to
achieve adaptive security in the context of signature, identity-based encryption,
verifiable random function etc. [7,19,35,44,45]. Roughly speaking, in the par-
titioning technique, a reduction algorithm partitions the input space into two
disjoint spaces, the challenge space and the simulation space, so that it can com-
pute PRF values on all inputs in the simulation space whereas it cannot compute
it on any input in the challenge space. More specifically, the input space is par-
titioned via an admissible hash function denoted by h : {0, 1}n → {0, 1}m and
a partitioning policy u ∈ {0, 1,⊥}m where {0, 1}n is the input space.6 We par-
tition the input space {0, 1}n so that x ∈ {0, 1}n is in the challenge space if
Pu(h(x)) = 0 and it is in the simulation space if Pu(h(x)) = 1, where Pu is
defined by

Pu(y) =

{
0 If for all i ∈ [m], ui = ⊥ ∨ yi = ui

1 Otherwise
,

where yi and ui are the i-th bit of y and u, respectively. If we choose u according
to an appropriate distribution (depending on the number of evaluation queries),
the probability that all evaluation queries fall in the simulation space and a chal-
lenge query falls in the challenge space is noticeable, in which case, a reduction
algorithm works well. The crucial feature of this technique is that a reduction
algorithm need not know a challenge query at the beginning of its simulation.

Though it may seem easy to construct adaptively secure CPRFs based on
the above idea, it is not the case because we also have to simulate constrained
keys in security proofs of CPRFs. Indeed, Hofheinz et al. [32] observed that
the partitioning technique does not seem to work for constructing collusion-
resistant CPRFs. Nonetheless, we show that it works in the case of single-key
secure CPRFs by using a partitionable CPRF which we introduce in this study.

Partitionable CPRF. Intuitively, a partitionable CPRF is a CPRF with an addi-
tional functionality that enables us to generate a “merged” key from two inde-
pendent master keys and a partitioning policy u. The behavior of a merged key

6 Actually, we use an extended notion called a balanced admissible hash function
(Sect. 2.2).



226 N. Attrapadung et al.

depends on whether an input is in the challenge space or in the simulation space.
Namely, if we merge msk0 and msk1 with a partitioning policy u to generate a
merged key k[msk0,msk1, u], then it works similarly to msk0 for inputs x in the
challenge space, and msk1 for inputs x in the simulation space. We often call
msk0 a real master key, and msk1 a “shadow” master key because the former
is the real master secret key used in actual constructions and the latter is an
artificial key that only appears in security proofs.

For a partitionable CPRF, we require two properties. First, we require that
it satisfy selective-constraint no-evaluation security as a CPRF, where an adver-
sary must declare its unique constraining query at the beginning of the security
game and does not make any evaluation queries. Here, it is important that
in this security notion, an adversary is allowed to adaptively choose a chal-
lenge query. Second, we require a property called the partition-hiding, which
means that k[msk0,msk1, u] does not reveal u. In particular, k[msk0,msk1,⊥m],
which works exactly the same as msk0, is computationally indistinguishable from
k[msk0,msk1, u].

Adaptively secure CPRF from partitionable CPRF. Now, we take a closer look at
how we construct an adaptively single-key secure CPRF based on a partitionable
CPRF and IO. Master secret keys and PRF values of the CPRF are defined
to be exactly the same as those of the underlying partitionable CPRF. The
only difference between them is the way of generating constrained keys. In the
proposed CPRF, a constrained key for a function f is an obfuscated program
that computes PRF values on all inputs x such that f(x) = 0 with a real master
secret key.

The security proof proceeds as follows. First, we remark that if a challenge
query is made before the constraining query, then the proof is easy by the stan-
dard puncturing technique [11,41]. Thus, in the following, we assume that a chal-
lenge query is made after the constraining query. First, we modify the security
game so that we use k[msk0,msk1,⊥m] instead of msk0 where msk1 is a “shadow”
master secret key that is independent from msk0. This modification causes a neg-
ligible difference by the security of IO because k[msk0,msk1,⊥m] works exactly
the same as msk0. Then we replace k[msk0,msk1,⊥m] with k[msk0,msk1, u] for a
partitioning policy u chosen from an appropriate distribution. This modification
causes a negligible difference by the partition-hiding of the underlying parti-
tionable CPRF. Here, suppose that all evaluation queries are in the simulation
space, and the challenge query x∗ is in the challenge space. Such an event occurs
with noticeable probability by the way we choose u. In this case, all evaluation
queries can be simulated by using the shadow master secret key msk1 whereas a
challenge value is computed by using the real secret key msk0. Then we modify a
constrained key skf associated with a function f so that we hardwire skrealf , which
is a constrained key associated with the function f derived from msk0 by the
constraining algorithm of the underlying partitionable CPRF, instead of msk0.
This modification causes a negligible difference by the security of IO since skrealf

and msk0 work similarly on inputs x such that f(x) = 0. At this point, a PRF
value on x∗ such that f(x∗) = 1 is pseudorandom by the selective-constraint
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no-evaluation security of the underlying partitionable CPRF (Recall that msk0
is not used for simulating the evaluation oracle now). This completes the proof
of the adaptive single-key security of the CPRF.

Partitionable CPRF for puncturing [34]. What is left is a construction of a par-
titionable CPRF. First, we observe that the construction of adaptively secure
puncturable PRF by Hohenberger et al. [34] can be seen as a construction of
a partitionable CPRF for puncturing functions. Their construction is a variant
of the Naor-Reingold PRF [39] on a composite order group G = Gp × Gq of
an order N = pq. Namely, a master secret key mskhkw consists of si,b ∈ ZN for
i ∈ [m] and b ∈ {0, 1}, and their PRF Fhkw is defined as

Fhkw(mskhkw, x) := g
∏m

i=1 si,yi .

Here, g is a generator of G and yi is the i-th bit of y := h(x), where h is an
admissible hash function. A punctured key on the challenge input x∗ is an obfus-
cated program that computes Fhkw(msk, x) on all inputs x �= x∗. They implicitly
proved that the above construction is a partitionable CPRF for puncturing if
we define k[msk0,msk1, u] to be an obfuscation of a program that computes
Fhkw(mskPu(x), x) on an input x.

We remark that we cannot directly reduce the partition-hiding property
to the security of IO because the functionality of k[msk0,msk1,⊥m] and
k[msk0,msk1, u] differ on exponentially many inputs. They overcome this prob-
lem by sophisticated use of the subgroup hiding assumption on a composite order
group. Namely, we can prove that this construction satisfies the partition-hiding
under the security of IO and the subgroup hiding assumption, which claims that
random elements of Gp and G are computationally indistinguishable. Then if we
can prove the above construction is a selective-constraint no-evaluation secure
CPRF for a function class F , then we obtain an adaptively single-key secure
CPRF for the function class F as discussed in the previous paragraph. One may
think that it is easy to prove that the above construction is selective-constraint
no-evaluation secure for all circuits by using the standard puncturing technique
with IO [11,41]. However, it is not the case because the selective-constraint secu-
rity requires security against an adversary that makes a challenge query after
making a constraining query. Though IO is quite powerful when considering
selective-challenge security where an adversary declares a challenge query at the
beginning, it is almost useless for selective-constraint security where an adversary
may adaptively choose a challenge query. For the case of puncturable PRF, a
challenge input is automatically determined when a constraining query is made,
and thus selective-constraint security is equivalent to selective-challenge security.
This is why they achieved adaptive security only for a puncturable PRF.

Partitionable CPRF for NC 1. Finally, we explain how to construct a parti-
tionable CPRF for NC1. Our idea is to combine Hohenberger et al.’s con-
struction as described above and the selective-constraint no-evaluation secure
CPRF for NC1 recently proposed by Attrapadung et al. [2]. The construction
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of Attrapadung et al.’s CPRF Famnyy (instantiated on a composite order group
G = Gp × Gq) is described as follows.

Famnyy(mskamnyy, x) = gU(b,x)/α

where mskamnyy = (b ∈ Z
z
N , α ∈ ZN ) is a master secret key and U(·) is a

polynomial that works as a universal circuit for NC1. We omit a description of
constrained keys for this CPRF since this is not important in this overview (See
Sect. 3.2 for details). They proved that Famnyy satisfies selective-constraint no-
evaluation security under the L-DDHI assumption7, which can be reduced to the
subgroup hiding assumption (See Lemma 2.1). An important fact is that their
CPRF is secure against adversaries that adaptively make a challenge query as
long as a constraining query is declared at the beginning and they do not make
any evaluation queries.

Then we combine Famnyy and Fhkw to define Fours as follows:

Fours(mskours, x) = g(
∏m

i=1 si,yi
)·U(b,x)/α,

where x is an input, yi is the i-th bit of h(x), h is an admissible hash function,
and mskours = (b, α, {si,b}i∈[m],b∈{0,1}) is a master secret key. A constrained key
for a predicate f consists of that of Famnyy and {si,b}i∈[m],b∈{0,1}. It is easy to
see that this constrained key can be used to evaluate Fours(mskours, x) for all x
such that f(x) = 0 since we have

Fours(mskours, x) = Famnyy(mskamnyy, x)
∏m

i=1 si,yi

where mskamnyy := (b, α). By this equation, it is also easy to see that the selective-
constraint no-evaluation security of Fours can be reduced to that of Famnyy. A
merged key is an obfuscated circuit that computes Eval(mskPu(h(x)), x) where
msk0 = (b, α, {si,b}i∈[m],b∈{0,1}) and msk1 = (b̂, α̂, {ŝi,b}i∈[m],b∈{0,1}) are two
independent master secret keys and u is a partitioning policy embedded into the
merged key.

Now, we look at why the construction satisfies partition-hiding. Intuitively, a
partitioning policy u is hidden because it is hardwired in an obfuscated circuit.
However, since the functionality of k[msk0,msk1,⊥m] and k[msk0,msk1, u] differ
on exponentially many inputs, we cannot directly argue indistinguishability of
them based on the security of IO. In the following, we explain how to prove it
relying on the subgroup hiding assumption. Roughly speaking, this consists of
two parts. In the first part, we modify the way of computing PRF values inside
a merged key (which is an obfuscated program) so that it uses a different way to
compute them on inputs in the challenge space and on those in the simulation
space. In the second step, we make a shadow copy of the real master key by
using the Chinese remainder theorem.

7 It assumes that {(G, g, (gβi

)i∈[L], g
1/β)} ≈c {(G, g, (gβi

)i∈[L], ψ1)} holds, where G =
(N,G,Gp,Gq, g1, g2), G, Gp, and Gq are groups of order N , p, and q, respectively,

g, g1, and g2 are generators of G, Gp, and Gq, respectively, and ψ1
R← G.
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First, to modify the way of computing PRF values inside a merged
key, we use the (m − 1)-DDH assumption, which claims that we have
{(G, g, (gβi

)i∈[m−1], g
βm

)}≈c {(G, g, (gβi

)i∈[m−1], ψ1)}, where G = (N,G,Gp,Gq,
g1, g2), G, Gp, and Gq are groups of order N , p, and q, respectively, g, g1, and
g2 are generators of G, Gp, and Gq, respectively, and ψ1

R← G. As shown in
Lemma 2.1, this assumption can be reduced to the subgroup hiding assumption.
Recall that the partitioning policy Pu(y) outputs 0 (i.e., x is in the challenge
space) if for all i, ui = yi ∨ ui = ⊥. Here, we set si,η := βs′

i,η ∈ ZN for all (i, η)
such that ui = ⊥ or η = ui, where s′

i,η is a uniformly random and β comes
from the (m − 1)-DDH instance. The distributions of si,η set as above are sta-
tistically close to the original ones. Now, a merged key uses the (m − 1)-DDH
challenge w ∈ G (which is gβm

or random) for simulating a PRF value on an
input x in the challenge space. That is, it computes the PRF value on x as
w(

∏m
i=1 s′

i,yi
)·U(b,x)/α. On the other hand, on inputs x in the simulation space,

it uses the values (g, gβ , . . . , gβm−1
) in the (m − 1)-DDH problem instances as

(gβr

)(
∏m

i=1 s′
i,yi

)·U(b,x)/α, where r := |{i ∈ [m] | ui = yi}| ≤ m − 1. If w = gβm

,
then a merged key as modified above correctly computes PRF values on all
inputs. Thus, this modification causes a negligible difference by the security of
IO. Then we can replace w with a random element in G by using the (m−1)-DDH
assumption.

Now, we use the subgroup hiding assumption to make a shadow copy of the
real master key. By the subgroup hiding assumption, we can replace w ∈ G

and g ∈ G with w ∈ Gp and g ∈ Gq, respectively, where G (resp. Gp, Gq) is
a group of order N = pq (resp. p, q) and p, q are primes.8 Then, we can set
msk0 := {s′

i,b mod p}i,b and msk1 := {s′
i,b mod q}i,b. Since w ∈ Gp and gβj ∈ Gq

where j ∈ {1, . . . , m − 1}, it holds that

w(
∏

s′
i,yi

)·U(b,x)/α = w((
∏

s′
i,yi

)·U(b,x)/α mod p)

(gβj

)(
∏

s′
i,yi

)·U(b,x)/α = (gβj

)((
∏

s′
i,yi

)·U(b,x)/α mod q)

and this change is indistinguishable due to the security of IO. Lastly, by the
Chinese remainder theorem, msk0 and msk1 are independently and uniformly
random (that is, msk1 can be changed into {ŝi,b mod q}i,b where ŝi,b are inde-
pendent of s′

i,b and uniformly random). Now, the shadow master secret key is
used for evaluating PRF values on inputs in the challenge space whereas the real
master secret key is used for evaluating those on inputs in the simulation space
as desired.

By these techniques, we can obtain a partitionable CPRF for NC1 based on
IO and the subgroup hiding assumption in pairing-free groups though we omit
many details for simplicity in this overview.

In summary, we can obtain an adaptively single-key secure CPRF for NC1 by
combining the above partitionable CPRF for NC1 based on IO and the subgroup

8 Note that being given both g1 ∈ Gp and g2 ∈ Gq does not lead to a trivial attack
since we use “pairing-free” groups.
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hiding assumption with the transformation from a partitionable CPRF into an
adaptively secure CPRF explained in the paragraph of “Adaptively secure CPRF
from partitionable CPRF”.

1.4 Discussion

Why subgroup-hiding needed? One may wonder why we need the subgroup hiding
assumption as an extra assumption though we rely on IO, which is already a sig-
nificantly strong assumption. We give two reasons for this below. The first reason
is that we do not know how to construct a CPRF with selective-constraint secu-
rity (even in the single-key setting) from IO though we can construct collusion-
resistant CRPF with selective-challenge security from IO [11]. In the CPRF
based on IO, a constrained key is an obfuscated program that evaluates the
PRF on inputs that satisfy the constraint. In the security proof, we puncture
the obfuscated program on the challenge input by using the security of IO. This
argument is crucially based on the fact that the challenge is given before all con-
straining queries, and cannot be used in the selective-constraint setting where the
challenge is chosen after a constrained key is given. Since our security definition
of partitionable CPRF requires selective-constraint security, it seems difficult
to construct it from IO. We note that selective-constraint security (rather than
selective-challenge security) of partitionable CPRF is crucial to prove the adap-
tive security of our final CPRF. The second reason is specific to the security
proof of our partitionable CPRF. Namely, in the proof of the partition-hiding
property of our partitionable CPRF, we have to modify outputs of an obfuscated
circuit (which is a constrained key) on exponentially many inputs. Since the secu-
rity of IO only enables us to modify an obfuscated circuit only on one input, it
would need an exponential number of hybrids to modify outputs on exponen-
tially many inputs if we just use the security of IO. We overcome this issue by
sophisticated use of the subgroup hiding assumption in a similar way to the work
by Hohenberger et al. [34]. We note that in this technique, the Chinese remainder
theorem is essential, and we cannot replace the assumption with the decisional
linear (DLIN) assumption on a prime-order group, though there are some known
prime-to-composite-order conversions in some settings [24,31,37,42].

Why single-key security for NC 1? One may wonder why our adaptive CPRF
only achieves single-key security rather than collusion-resistance and supports
NC1 rather than all polynomial-size circuits (P/poly) though there seems to be
no obvious attack against our CPRF even if an adversary is given multiple con-
strained keys for constraints possibly outside NC1.9 In fact, we can prove that
our CPRF is collusion-resistant and supports P/poly in the selective-challenge
setting by the puncturing technique similarly to [11]. However, in the security

9 We note that even if the underlying partitionable CPRF only supports NC1, we can
naturally define a constrained key for a function outside NC1 in the CPRF given in
Sect. 4 because a function class supported by the partitionable CPRF matters only
in the security proof and does not matter for the correctness.
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of adaptive security, we crucially rely on the selective-constraint security of the
underlying partitionable CPRF, which stems from the CPRF by Attrapadung
et al. [2]. Since their CPRF only achieves single-key security and supports NC1,
our CPRF inherits them. Possible alternatives to their CPRF are lattice-based
CPRFs [13,14,40] which satisfy selective-constraint single-key security and sup-
ports P/poly. If we could use these CPRFs instead of Attrapadung et al.’s
scheme, we would obtain adaptively single-key secure CPRFs for P/poly. How-
ever, since we use techniques based on the subgroup-hiding assumption in the
proof of the partition-hiding property of our partitionable CPRF, we have to
rely on group-based CPRFs for compatibility to the technique, and this is the
reason why we cannot use lattice-based CPRFs.

Relation with private CPRF. Partitionable CPRF and private CPRF [9] share
a similarity that both enable one to modify functionality of a PRF key without
revealing inputs on which outputs were manipulated. Actually, a partitionable
CPRF can be seen as a private CPRF for the “admissible hash friendly” func-
tionality [30]. On the other hand, the inverse is not true. Private CPRF does not
put any restriction on behaviors of a constrained key on inputs that do not satisfy
the constraint except that they look random. On the other hand, partitionable
CPRF requires behaviors on these inputs should be consistent in the sense that
they are PRF values evaluated on another master secret key. This difference
makes it more difficult to construct a partitionable CPRF than constructing a
private CPRF.

1.5 Other Related Work

Here, we discuss two additional related works that are relevant to adaptively
secure CPRFs.

Fuchsbauer, Konstantinov, Pietrazk, and Rao [26] proved that the classical
GGM PRF [29] is an adaptively secure puncturable PRF if the underlying PRG
is quasi-polynomially secure. We note that quasi-polynomially-secure PRG is a
super-polynomial hardness assumption.

Canetti and Chen [15] proposed a lattice-based construction of (constraint-
hiding) single-key secure CPRF for NC1 that achieves a weaker form of adaptive
security where adversaries are allowed to send logarithmically many evaluation
queries before a constraining query as long as it correctly declares if the evalua-
tion query satisfies the constraint to be queried as a constraining query. We note
that in the proceedings version [16], they claimed security against adversaries
that make an unbounded number of evaluation queries before a constraining
query, but they retracted the claim [15, footnotes 1 and 2]. We remark that
the adaptive security defined in this paper does not put any restriction on the
number of evaluation queries before a constraining query nor require adversaries
to declare if the evaluation query satisfies the constraint to be queried as a
constraining query.

Organization. The rest of the paper is organized as follows. After introducing
notations, security definitions, and building blocks in Sect. 2, we present the
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definition of partitionable CPRF, our construction of partitionable CPRF for
NC1, and its security proofs in Sect. 3, and our adaptively single-key secure
CPRFs for NC1 and its security proofs in Sect. 4.

2 Preliminaries

In this section, we review the definitions for complexity assumptions, tools, and
cryptographic primitives.

2.1 Composite Order Group

In this paper, in a similar manner to Hohenberger et al. [34], we will use a group
of composite order in which the subgroup hiding assumption holds. We recall it
here.

Let GGen be a PPT algorithm (called the group generator) that takes a
security parameter 1λ as input, and outputs (N, p, q,G,Gp,Gq, g1, g2), where
p, q ∈ Ω(2λ), N = pq, G is a cyclic group of order N , Gp and Gq are the
subgroups of G of orders p and q respectively, and g1 and g2 are generators of
Gp and Gq respectively. The subgroup hiding assumption with respect to GGen
is defined as follows:

Definition 2.1 (Subgroup Hiding Assumption). Let GGen be a group
generator. We say that the subgroup hiding assumption holds with respect to
GGen, if for all PPT adversaries A, the advantage AdvsghGGen,A(λ) defined below is
negligible:

AdvsghGGen,A(λ) :=
∣∣∣Pr[A(G, ψ0) = 1] − Pr[A(G, ψ1) = 1]

∣∣∣,
where (N, p, q,G,Gp,Gq, g1, g2)

R← GGen(1λ), G := (N,G,Gp,Gq, g1, g2), ψ0
R←

G, and ψ1
R← Gp.

For our purpose in this paper, it is convenient to introduce the following L-
DDH 10 and L-DDHI assumptions with respect to GGen. These are not additional
assumptions since they are implied by the subgroup hiding assumption.

Definition 2.2 (L-DDH & L-DDHI Assumptions). Let GGen be a group
generator and L = L(λ) = poly(λ). We say that the L-decisional Diffie-Hellman
(L-DDH) assumption holds with respect to GGen, if for all PPT adversaries A,
the advantage AdvL-ddh

GGen,A(λ) defined below is negligible:

AdvL-ddh
GGen,A(λ) :=

∣
∣
∣Pr[A(G, g, (gαi

)i∈[L], ψ0) = 1] − Pr[A(G, g, (gαi

)i∈[L], ψ1) = 1]
∣
∣
∣,

where (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), G := (N,G,Gp,Gq, g1, g2), g

R← G,
α

R← Z
∗
N , ψ0 := gαL+1

, and ψ1
R← G.

10 The L-DDH assumption was called Assumption 2 by Hohenberger et al. [33].
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The L-decisional Diffie-Hellman inversion (L-DDHI) assumption with respect
to GGen is defined in the same way as the above, except that “ψ0 := gαL+1

” is
replaced with “ψ0 := g1/α”.

Lemma 2.1. Let GGen be a group generator. If the subgroup hiding assumption
holds with respect to GGen, then the L-DDH and L-DDHI assumptions hold with
respect to GGen for all polynomials L = L(λ).

The proof of Lemma 2.1 can be found in the full version.

2.2 Balanced Admissible Hash Functions and Related Facts

Here, we describe the definition of a balanced admissible hash function (AHF)
introduced by Jager [35]. A balanced AHF is an extension of an ordinary AHF
[7,19], but with some more properties. Similarly to an ordinary AHF, it partitions
the input space in a security proof so that the simulation is possible with a
noticeable probability. The reason why we use a balanced AHF instead of an
ordinary AHF is that the former simplifies our security proof. We note that the
following formalization of a balanced AHF is slightly different from that by Jager
[35] and corresponds to a special case of the general notion of “a partitioning
function” introduced by Yamada [45].

Definition 2.3 ([35,45]). Let n(λ) and m(λ) be polynomials. Furthermore, for
u ∈ {0, 1,⊥}m, let Pu : {0, 1}m → {0, 1} be defined as

Pu(y) =

{
0 If for all i ∈ [m], ui = ⊥ ∨ yi = ui

1 Otherwise
,

where yi and ui are the i-th bit of y and u, respectively. We say that an efficiently
computable function h : {0, 1}n → {0, 1}m is a balanced admissible hash function
(balanced AHF), if there exists an efficient algorithm AdmSample(1λ, Q, δ), which
takes as input (Q, δ) where Q = Q(λ) ∈ N is polynomially bounded and δ =
δ(λ) ∈ (0, 1] is noticeable, and outputs u ∈ {0, 1,⊥}m such that:

1. There exists λ0 ∈ N such that

Pr
[

u
R← AdmSample(1λ, Q(λ), δ(λ)) : u ∈ {0, 1}m

]
= 1

for all λ > λ0. Here, λ0 may depend on functions Q(λ) and δ(λ).
2. For λ > λ0 (defined in Item 1), there exist γmax(λ) and γmin(λ) that depend on

Q(λ) and δ(λ) such that for all x1, ..., xQ, x∗ ∈ {0, 1}n with x∗ �∈ {x1, ..., xQ},
γmax(λ) ≥ Pr [Pu(h(x1)) = ... = Pu(h(xQ)) = 1 ∧ Pu(h(x∗)) = 0] ≥ γmin(λ)

where γmax(λ) and γmin(λ) satisfy that the function τ(λ) defined as

τ(λ) = γmin(λ) · δ(λ) − γmax(λ) − γmin(λ)
2

is noticeable. We note that the probability is taken over the choice of u where
u

R← AdmSample(1λ, Q(λ), δ(λ)).
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Remark 2.1. The term τ(λ) defined above may appear very specific. However,
as discussed by Jager [35], such a term appears typically in security analyses
that follow the approach of Bellare and Ristenpart [5].

As shown by Jager [35], who extended previous works that gave simple con-
structions of AHF [25,38], a family of codes h : {0, 1}n → {0, 1}m with minimal
distance mc for a constant c is a balanced AHF. Explicit constructions of such
codes are known [28,43,46].

2.3 Constrained Pseudorandom Functions

Here, we recall the syntax and security definitions for a CPRF. We use the same
definitions as Attrapadung et al. [2].

Syntax. Let F = {Fλ,k}λ,k∈N be a class of functions11 where each Fλ,k is a set of
functions with domain {0, 1}k and range {0, 1}, and the description size (when
represented by a circuit) of every function in Fλ,k is bounded by poly(λ, k).

A CPRF for F consists of the five PPT algorithms (Setup,KeyGen,Eval,
Constrain,CEval) with the following interfaces:

Setup(1λ) R→ pp: This is the setup algorithm that takes a security parameter
1λ as input, and outputs a public parameter pp,12 where pp specifies the
descriptions of the key space K, the input-length n = n(λ) = poly(λ) (that
defines the domain {0, 1}n), and the range R.

KeyGen(pp) R→ msk: This is the key generation algorithm that takes a public
parameter pp as input, and outputs a master secret key msk ∈ K.

Eval(pp,msk, x) =: y: This is the deterministic evaluation algorithm that takes a
public parameter pp, a master secret key msk ∈ K, and an element x ∈ {0, 1}n

as input, and outputs an element y ∈ R.
Constrain(pp,msk, f) R→ skf : This is the constraining algorithm that takes as

input a public parameter pp, a master secret key msk, and a function f ∈
Fλ,n, where n = n(λ) = poly(λ) is the input-length specified by pp. Then, it
outputs a constrained key skf .

CEval(pp, skf , x) =: y: This is the deterministic constrained evaluation algorithm
that takes a public parameter pp, a constrained key skf , and an element
x ∈ {0, 1}n as input, and outputs an element y ∈ R.

Whenever clear from the context, we will drop pp from the inputs of Eval,
Constrain, and CEval, and the executions of them are denoted as “Eval(msk, x)”,
“Constrain(msk, f)”, and “CEval(skf , x)”, respectively.
11 In this paper, a “class of functions” is a set of “sets of functions”. Each Fλ,k in F

considered for a CPRF is a set of functions parameterized by a security parameter
λ and an input-length k.

12 For clarity, we will define a CPRF as a primitive that has a public parameter.
However, this treatment is compatible with the standard syntax in which there is
no public parameter, because it can always be contained as part of a master secret
key and constrained secret keys.
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Fig. 1. The experiment for defining single-key security for a CPRF.

Correctness. For correctness of a CPRF for a function class F = {Fλ,k}λ,k∈N,
we require that for all λ ∈ N, pp R← Setup(1λ) (which specifies the input length
n = n(λ) = poly(λ)), msk

R← KeyGen(pp), functions f ∈ Fλ,n, and inputs x ∈
{0, 1}n satisfying f(x) = 0, we have CEval( Constrain(msk, f), x ) = Eval(msk, x).
We stress that a constrained key skf can compute the PRF if f(x) = 0. (This
treatment is reversed from the original definition by Boneh and Waters [10].)

Security. Here, we give the security definitions for a CPRF. We only consider
CPRFs that are secure in the presence of a single constrained key, for which
we consider two flavors of security: adaptive single-key security and selective-
constraint no-evaluation security.13 The former notion captures security against
adversaries A that may decide the constraining function f any time during the
experiment. (That is, A can specify the constraining function f even after seeing
some evaluation results of the CPRF.) In contrast, the latter notion captures
security against adversaries that declare a constraining query at the beginning
of the security game and have no access to the evaluation oracle. The definition
below reflects these differences.

Formally, for a CPRF CPRF = (Setup,KeyGen,Eval,Constrain,CEval) (with
input-length n = n(λ)) for a function class F = {Fλ,k}λ,k∈N and an adversary
A = (A1,A2), we define the single-key security experiment ExptcprfCPRF,F,A(λ) as
described in Fig. 1 where Func({0, 1}n,R) denotes the set of all functions from
{0, 1}n to R.

In the security experiment, the adversary A’s single constraining query is
captured by the function f included in the first-stage algorithm A1’s output.
Furthermore, A1 and A2 have access to the challenge oracle OChal(·) and the
evaluation oracle Eval(msk, ·), where the former oracle takes x∗ ∈ {0, 1}n as

13 Selective-constraint no-evaluation security was simply called no-evaluation security
in [2].
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input, and returns either the actual evaluation result Eval(msk, x∗) or the output
RF(x∗) of a random function, depending on the challenge bit coin ∈ {0, 1}.

We say that an adversary A = (A1,A2) in the experiment ExptcprfCPRF,F,A(λ)
is admissible if A1 and A2 are PPT and respect the following restrictions:

– f ∈ Fλ,n.
– A1 and A2 never make the same query twice.
– All challenge queries x∗ made by A1 and A2 satisfy f(x∗) = 1, and are distinct

from any of the evaluation queries x that they submit to the evaluation oracle
Eval(msk, ·).

Furthermore, we say that A is a selective-constraint no-evaluation adversary if
A1 and A2 are PPT, and they do not make any queries, except that A2 is allowed
to make only a single challenge query x∗ such that f(x∗) = 1.

Definition 2.4 (Single-Key Security of CPRF). We say that a CPRF
CPRF for a function class F is adaptively single-key secure, if for all admissible
adversaries A, the advantage AdvcprfCPRF,F,A(λ) := 2 · |Pr[ExptcprfCPRF,F,A(λ) = 1] −
1/2| is negligible.

We define selective-constraint no-evaluation security of CPRF analogously,
by replacing the phrase “all admissible adversaries A” in the above definition
with “all selective-constraint no-evaluation adversaries A”.

Remark 2.2. As noted by Boneh and Waters [10], without loss of generality we
can assume that A makes a challenge query only once, because security for a
single challenge query can be shown to imply security for multiple challenge
queries via a standard hybrid argument. Hence, in the rest of the paper we only
use the security experiment with a single challenge query for simplicity.

2.4 Indistinguishability Obfuscation

Here, we recall the definition of indistinguishability obfuscation (iO) (for all
circuits) [4,27].

Definition 2.5 (Indistinguishability Obfuscation). We say that a PPT
algorithm iO is a secure indistinguishability obfuscator (iO), if it satisfies the
following properties:

Functionality: iO takes a security parameter 1λ and a circuit C as input, and
outputs an obfuscated circuit Ĉ that computes the same function as C. (We
may drop 1λ from an input to iO when λ is clear from the context.)

Security: For all PPT adversaries A = (A1,A2), the advantage function
AdvioiO,A(λ) defined below is negligible:

AdvioiO,A(λ) := 2 ·
∣
∣
∣
∣
∣
Pr

[

(C0, C1, st)
R← A1(1

λ); coin ← {0, 1};

Ĉ
R← iO(1λ, Cb); ĉoin

R← A2(st, Ĉ)
: ĉoin = coin

]

− 1

2

∣
∣
∣
∣
∣
.

where it is required that C0 and C1 compute the same function and have the
same description size.
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3 Partitionable Constrained Pseudorandom Function

In this section, we introduce a concept of Partitionable Constrained Pseudoran-
dom Function (PCPRF), which is used as a building block for constructing our
adaptively single-key secure CPRF. Then we construct a PCPRF for NC1 based
on iO and the subgroup hiding assumption.

3.1 Definition

A PCPRF for F w.r.t. a function h : {0, 1}n → {0, 1}m consists of
(Setup,KeyGen,Eval,Constrain,CEval,Merge,MEval) where (Setup,KeyGen,
Eval,Constrain,CEval) forms a CPRF for F . Two additional algorithms Merge
and MEval work as follows.

Merge(msk0,msk1, u): This is the merging algorithm that takes two master keys
(msk0,msk1) and a partitioning policy u ∈ {0, 1,⊥}m, and outputs a merged
key k[msk0,msk1, u].

MEval(k[msk0,msk1, u], x): This is the evaluation algorithm that takes a merged
key k[msk0,msk1, u] and x ∈ {0, 1}n as input, and outputs y.

Correctness. In addition to the correctness as a CPRF, we require the fol-
lowing. For all λ ∈ N, pp R← Setup(1λ) (which specifies the input length n =
n(λ) = poly(λ)), msk0,msk1

R← KeyGen(pp), u ∈ {0, 1,⊥}m, k[msk0,msk1, u] R←
Merge(msk0,msk1, u) and inputs x ∈ {0, 1}n we have

MEval(k[msk0,msk1, u], x) = Eval(mskPu(h(x)), x)

where we recall that Pu is as defined in Definition 2.3.

Security. We define two security requirements for PCPRFs. The first one is
the security as a CPRF, and the second one is partition-hiding, which roughly
means that a merged key hides the partition policy u with which the merged
key is generated.

CPRF security. We say that a PCPRF is selective-constraint no-evaluation
secure if (Setup,KeyGen,Eval,Constrain,CEval) is selective-constraint no-
evaluation secure as a CPRF.14

Partition-hiding. For all PPT adversaries A = (A1,A2), the advantage
AdvphPCPRF,A(λ), defined below, is negligible:

AdvphPCPRF,A(λ) :=

2 ·

∣∣∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎢⎢⎣

pp
R← Setup(1λ);msk0,msk1

R← KeyGen(pp);
(u, st) R← A1(pp);
k0

R← Merge(msk0,msk1,⊥m);
k1

R← Merge(msk0,msk1, u);
coin ← {0, 1}; ĉoin R← A2(st, kcoin)

: ĉoin = coin

⎤
⎥⎥⎥⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣∣∣∣
.

14 Though it is possible to define the adaptive security for PCPRFs in the similar way,
we only define the selective-constraint no-evaluation security since we only need it.
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We note that k0 generated by Merge(msk0,msk1,⊥m) works completely iden-
tically to msk0, albeit in the sense that MEval(k0, x) = Eval(msk0, x). This is
since we have P⊥m(h(x)) = 0 for all x ∈ {0, 1}n.

3.2 Construction

Here, we construct a partition-hiding and selective-constraint no-evaluation
secure PCPRF for NC1 based on iO and the subgroup hiding assumption. Before
describing our scheme, we prepare some notations and describe class of functions
our scheme supports. Since the function class our scheme supports is exactly the
same as that of [2], the following two paragraphs are taken from [2].

Notations. In the following, we will sometimes abuse notation and evaluate a
boolean circuit C(·) : {0, 1}� → {0, 1} on input y ∈ R

� for some ring R. The
evaluation is done by regarding C(·) as the arithmetic circuit whose AND gates
(y1, y2) �→ y1∧y2 being changed to the multiplication gates (y1, y2) �→ y1y2, NOT
gates y �→ ¬y changed to the gates y �→ 1−y, and the OR gates (y1, y2) �→ y1∨y2
changed to the gates (y1, y2) �→ y1 + y2 − y1y2. It is easy to observe that if the
input is confined within {0, 1}� ⊆ R

�, the evaluation of the arithmetized version
of C(·) equals to that of the binary version. (Here, we identify ring elements
0, 1 ∈ R with the binary bit.) In that way, we can regard C(·) as an �-variate
polynomial over R. The degree of C(·) is defined as the maximum of the total
degree of all the polynomials that appear during the computation.

Class of Functions. Let n = poly(λ), z(n) = poly(n), and d(n) = O(log n) be
parameters. The function class that will be dealt with by the scheme is denoted
by FNC1

= {FNC1

λ,n(λ)}λ∈N, where FNC1

λ,n consists of (Boolean) circuits f whose
input size is n(λ), the description size is z(n), and the depth is d(n). We can set
the parameters arbitrarily large as long as they do not violate the asymptotic
bounds above, and thus the function class corresponds to NC1 circuits with
bounded size. The following lemma will be helpful when describing our scheme.

Lemma 3.1. ([2,20]) Let n = poly(λ). There exists a family of universal circuit
{Un}n∈N of degree D(λ) = poly(λ) such that Un(f, x) = f(x) for any f ∈ FNC1

λ,n(λ)

and x ∈ {0, 1}n.

Construction. Let FNC1
= {FNC1

λ,n }λ,n∈N be the family of the circuit defined
as above and {Un}n∈N be the family of the universal circuit defined in Lemma 3.1.
Let the parameter D(λ) be the degree of the universal circuit (chosen as specified
in Lemma 3.1). Since we will fix n in the construction, we drop the subscripts
and just denote FNC1

and U in the following. Let h : {0, 1}n → {0, 1}m be
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any efficiently computable function.15 The description of our PCPRF PCPRF =
(Setup,KeyGen,Eval,Constrain,CEval,Merge,MEval) is given below.

Setup(1λ): It obtains the group description G = (N, p, q,G,Gp,Gq, g1, g2) by
running G R← GGen(1λ). It then outputs the public parameter pp := (N,G).

KeyGen(pp): It chooses g
R← G, (s1,0, s1,1), ..., (sm,0, sm,1)

R← Z
2
N , and

(b1, ..., bz)
R← Z

z
N , α

R← Z
∗
N .16 It outputs msk := (g, (s1,0, s1,1), ..., (sm,0, sm,1),

b1, . . . , bz, α).
Eval(msk, x): Given input x ∈ {0, 1}n, it computes y := h(x) and outputs

X := g
∏m

i=1 si,yi
·U((b1,...,bz),(x1,...,xn))/α.

Constrain(msk, f): It first parses (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α) ←
msk. Then it sets

b′
i := (bi − fi)α−1 mod N for i ∈ [z]

where fi is the i-th bit of the binary representation of f . It then outputs

skf := ((s1,0, s1,1), ..., (sm,0, sm,1), f, b′
1, . . . , b

′
z, g, gα, . . . , gαD−1

).

CEval(skf , x): It parses ((s1,0, s1,1), ..., (sn,0, sn,1), f, b′
1, . . . , b

′
z, g, gα, . . . , gαD−1

)
← skf . It can be shown that, from (b′

1, ..., b
′
z), f and x, it is possible to

efficiently compute {ci}i∈[D] that satisfies

U((b1, . . . , bz), (x1, . . . , xn)) = f(x) +
D∑

j=1

cjα
j . (1)

If f(x) = 0, it computes y = h(x) and X := (
∏D

j=1(g
αj−1

)cj )
∏m

i=1 si,yi and
outputs X. Otherwise it outputs ⊥.

Merge(msk0,msk1, u): Let MergedKey[msk0,msk1, u] be a program as described
in Fig. 2. It computes and outputs

k[msk0,msk1, u] R← iO(MergedKey[msk0,msk1, u]).

MEval(k[msk0,msk1, u], x): It computes and outputs y := k[msk0,msk1, u](x).

The proof of correctness of PCPRF can be found in the full version.

Theorem 3.1. If iO is a secure indistinguishability obfuscator and the sub-
group hiding assumption holds for GGen, then PCPRF is selective-constraint no-
evaluation secure PCPRF for F and partition-hiding with respect to h.
15 The construction will be partition-hiding with respect to h. Looking ahead, we will

show that PCPRF that is partition-hiding with respect to a balanced AHF is adap-
tively single-key secure in Sect. 4. There, we will set h to be a balanced AHF. How-
ever, in this section, h can be any efficiently computable function.

16 This can be done by sampling in ZN ; if it is not in Z
∗
N , sampling again until it is.

This will succeed with an overwhelming probability since N is a composite with two
large prime factors.
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Fig. 2. Description of program MergedKey[msk0,msk1, u]

3.3 Security of Our Partitionable CPRF

We present the proof of Theorem 3.1 in this section.

Proof sketch of Theorem 3.1. We have to prove that the construction satisfies the
selective-constraint no-evaluation security and partition-hiding. From high level,
the selective-constraint no-evaluation security is proven similarly to [2], and the
partition-hiding is proven similarly to [34]. The selective-constraint no-evaluation
security of PCPRF can be reduced to the (D − 1)-DDHI assumption, which in
turn follows from the subgroup hiding assumption similarly to the security proof
of the no-evaluation secure CPRF of [2]. Therefore we omit it here, and the proof
for this part can be found in the full version. In the following, we give a proof
sketch for the partition-hiding.

We want to prove that k generated by iO(MergedKey[msk0,msk1,⊥m]) and
generated by iO(MergedKey[msk0,msk1, u]) are computationally indistinguish-
able. The difficulty is that MergedKey[msk0,msk1,⊥m] and MergedKey[msk0,
msk1, u] do not have the same functionality, and thus we cannot simply use
the security of iO to conclude it.17 Actually, this can be proven by using
the subgroup hiding assumption in a sophisticated way as in the work by
Hohenberger, Koppula and Waters [34]. Let A = (A1,A2) be a PPT adver-
sary against the partition-hiding property. We prove the above theorem by con-
sidering the following sequence of games. We underline modifications from the
previous one in descriptions of games. In the following, Ti denotes the event that
Game i returns 1.

Game 0: This game corresponds to the case of coin = 0 in the experiment defining
the partition-hiding. More precisely,
1. Let G = (N, p, q,G,Gp,Gq, g1, g2)

R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g

R← G, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N . Then choose (s1,0,

s1,1), ..., (sm,0, sm,1)
R← Z

2m
N . Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1),

b1, . . . , bz, α).
17 If one relies on the technique of “exponential number of hybrids” (e.g., [18]), then

we can prove the indistinguishability of these two cases without relying on subgroup
hiding. However, the technique requires sub-exponentially secure iO, which we want
to avoid.
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Fig. 3. Description of program MergedKey-Zero[msk0]

Choose ĝ
R← G, (̂b1, ..., b̂z)

R← Z
z
N and α̂

R← Z
∗
N . Then choose (ŝ1,0, ŝ1,1),

..., (ŝm,0, ŝm,1)
R← Z

2m
N . Set msk1 := (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1,

. . . , b̂z, α̂).
4. Compute k

R← iO(MergedKey[msk0,msk1,⊥m])
5. Compute ĉoin

R← A2(stA, k). The game returns ĉoin.

Game 1: In this game, we set k as an obfuscation of MergedKey-Zero[msk0], which
is described in Fig. 3.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g

R← G, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N . Then choose

(s1,0, s1,1), ..., (sm,0, sm,1)
R← Z

2m
N . Set msk0 := (g, (s1,0, s1,1), ..., (sm,0,

sm,1), b1, . . . , bz, α).
4. Compute k

R← iO(MergedKey-Zero[msk0]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have |Pr[T1] − Pr[T0]| = negl(λ) by the security of iO.
Game 2: In this game, we generate (s1,0, s1,1), ..., (sm,0, sm,1) in a different way.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g

R← G, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1)

R← Z
2m
N . Set

si,η :=

{
β · s′

i,η If ui = ⊥ ∨ η = ui

s′
i,η Otherwise

.

Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
4. Compute k

R← MergedKey-Zero[msk0].
5. Compute ĉoin

R← A2(stA, k). The game returns ĉoin.
We have Pr[T2] = Pr[T1] since {si,η}i∈[m],η∈{0,1} is uniformly distributed in Z

2m
N

in both games.
Game 3: In this game, we set k as an obfuscation of MergedKey-Zero′

[msk′
0, u, v0, ..., vm−1, w]), which is described in Fig. 4.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).
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Fig. 4. Description of program MergedKey-Zero′[msk′
0, u, v0, ..., vm−1, w]

2. Compute (u, stA) R← A1(pp).
3. Choose g

R← G, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1)

R← Z
2m
N .

Set vj := gβj

for j ∈ {0, ...,m − 1} and w := gβm

.
Set msk′

0 := ((s′
1,0, s

′
1,1), ..., (s

′
m,0, s

′
m,1), b1, . . . , bz, α).

4. Compute k
R← iO(MergedKey-Zero′[msk′

0, u, v0, ..., vm−1, w]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have |Pr[T3] − Pr[T2]| = negl(λ) by the security of iO.
Game 4: In this game, we randomly choose w from G, which was set to be gβm

in the previous game.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g

R← G, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1)

R← Z
2m
N .

Set vj := gβj

for j ∈ {0, ...,m − 1}. Choose w
R← G.

Set msk′
0 := ((s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1), b1, . . . , bz, α).

4. Compute k
R← iO(MergedKey-Zero′[msk′

0, u, v0, ..., vm−1, w]).
5. Compute ĉoin

R← A2(stA, k). The game returns ĉoin.
We have |Pr[T4] − Pr[T3]| = negl(λ) by the (m − 1)-DDH assumption.
Game 5: In this game, we randomly choose g and w from Gq and Gp, respectively,

which are randomly chosen from G in the previous game.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2)

R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
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Fig. 5. Description of program MergedKey-Alt[msk′
0,msk′

1, u, v0, ..., vm−1, w]

3. Choose g
R← Gq, (b1, ..., bz)

R← Z
z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1)

R← Z
2m
N .

Set vj := gβj

for j ∈ {0, ...,m − 1}. Choose w
R← Gp.

Set msk′
0 := ((s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1), b1, . . . , bz, α).

4. Compute k
R← iO(MergedKey-Zero′[msk′

0, u, v0, ..., vm−1, w]).
5. Compute ĉoin

R← A2(stA, k). The game returns ĉoin.
We have |Pr[T5] − Pr[T4]| = negl(λ) by the subgroup hiding assumption.
Game 6: In this game, we set k as an obfuscation of MergedKey-Alt[msk′

0,msk′
1, u,

v0, ..., vm−1, w], which is described in Fig. 5.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g

R← Gq, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1)

R← Z
2m
N .

Set s′
i,η,p := s′

i,η mod p and s′
i,η,q := s′

i,η mod q for i ∈ [m] and η ∈ {0, 1}.

Set bi,p := bi mod p and bi,q := bi mod q for i ∈ [m].
αp := α mod p and αq := α mod q.

Set vj := gβj

for j ∈ {0, ...,m − 1}. Choose w
R← Gp.

Set msk′
0 := ((s′

1,0,p, s
′
1,1,p), ..., (s

′
m,0,p, s

′
m,1,p), b1,p, . . . , bz,p, αp).

Set msk′
1 := ((s′

1,0,q, s
′
1,1,q), ..., (s

′
m,0,q, s

′
m,1,q), b1,q, . . . , bz,q, αq).

4. Compute k
R← iO(MergedKey-Alt[msk′

0,msk′
1, u, v0, ..., vm−1, w]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have |Pr[T6] − Pr[T5]| = negl(λ) by the security of iO.
Game 7: In this game, we modify how to generate s′

i,η,q, bi,q and αq.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).
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2. Compute (u, stA) R← A1(pp).
3. Choose g

R← Gq, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1)

R← Z
2m
N .

Choose (̂b1, ..., b̂z)
R← Z

z
N , α̂

R← Z
∗
N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1)

R← Z
2m
N .

Set s′
i,η,p := s′

i,η mod p and s′
i,η,q := ŝi,η mod q for i ∈ [m], η ∈ {0, 1}.

Set bi,p := bi mod p and bi,q := b̂i mod q for i ∈ [m].
Set αp := α mod p and αq := α̂ mod q.

Set vj := gβj

for j ∈ {0, ...,m − 1}. Choose w
R← Gp.

Set msk′
0 := ((s′

1,0,p, s
′
1,1,p), ..., (s

′
m,0,p, s

′
m,1,p), b1,p, . . . , bz,p, αp).

Set msk′
1 := ((s′

1,0,q, s
′
1,1,q), ..., (s

′
m,0,q, s

′
m,1,q), b1,q, . . . , bz,q, αq).

4. Compute k
R← iO(MergedKey-Alt[msk′

0,msk′
1, u, v0, ..., vm−1, w]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have Pr[T7] = Pr[T6] by the Chinese remainder theorem.
Game 8: In this game, we modify the way to set msk′

0 and msk′
1.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g

R← Gq, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1)

R← Z
2m
N .

Choose (̂b1, ..., b̂z)
R← Z

z
N , α̂

R← Z
∗
N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1)

R← Z
2m
N .

Set vj := gβj

for j ∈ {0, ...,m − 1}. Choose w
R← Gp.

Set msk′
0 := ((s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1), b1, . . . , bz, α).

Set msk′
1 := ((ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k
R← iO(MergedKey-Alt[msk′

0,msk′
1, u, v0, ..., vm−1, w]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have |Pr[T8] − Pr[T7]| = negl(λ) by the security of iO.
Game 9: In this game, we set k to be an obfuscation of MergedKey[msk0,msk1, u],

which is described in Fig. 2. For clarity, we give more concrete description of
MergedKey[msk0,msk1, u] in Fig. 6.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g

R← Gq, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s′

1,0, s
′
1,1), ..., (s

′
m,0, s

′
m,1)

R← Z
2m
N .

Set

si,η :=

{
β · s′

i,η If ui = ⊥ ∨ η = ui

s′
i,η Otherwise

.

Choose (̂b1, ..., b̂z)
R← Z

z
N , α̂

R← Z
∗
N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1)

R←
Z
2m
N .
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Fig. 6. Description of program MergedKey[msk0,msk1, u], more concretely

Choose w
R← Gp.

Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).

Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k
R← iO(MergedKey[msk0,msk1, u]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have |Pr[T9] − Pr[T8]| = negl(λ) by the security of iO.
Game 10: In this game, we modify the way to set si,η.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g

R← Gq, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s1,0, s1,1), ..., (sm,0, sm,1)

R← Z
2m
N .

Choose (̂b1, ..., b̂z)
R← Z

z
N , α̂

R← Z
∗
N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1)

R←
Z
2m
N .

Choose w
R← Gp.

Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k
R← iO(MergedKey[msk0,msk1, u]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have Pr[T10] = Pr[T9] since {si,η}i∈[m],η∈{0,1} is uniformly distributed in
Z
2m
N in both games.

Game 11: In this game, we randomly choose g and w from G, which are chosen
from Gq and Gp in the previous game.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2)
R← GGen(1λ), Set pp := (N,G).

2. Compute (u, stA) R← A1(pp).



246 N. Attrapadung et al.

3. Choose g
R← G, (b1, ..., bz)

R← Z
z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s1,0, s1,1), ..., (sm,0, sm,1)

R← Z
2m
N .

Choose (̂b1, ..., b̂z)
R← Z

z
N , α̂

R← Z
∗
N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1)

R←
Z
2m
N .

Choose w
R← G.

Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k
R← iO(MergedKey[msk0,msk1, u]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have |Pr[T11] − Pr[T10]| = negl(λ) by the subgrup hiding assumption.
Game 12: This game is the same as the previous game except that we rename g

and w by ĝ and g.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2)

R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose ĝ

R← G, (b1, ..., bz)
R← Z

z
N , and α

R← Z
∗
N .

Choose β
R← Z

∗
N and (s1,0, s1,1), ..., (sm,0, sm,1)

R← Z
2m
N .

Choose (̂b1, ..., b̂z)
R← Z

z
N , α̂

R← Z
∗
N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1)

R←
Z
2m
N .

Choose g
R← G.

Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k
R← iO(MergedKey[msk0,msk1, u]).

5. Compute ĉoin
R← A2(stA, k). The game returns ĉoin.

We have Pr[T12] = Pr[T11] since we just renamed g and w by ĝ and g.
This game corresponds to the case of coin = 1 in the experiment defining
the partition-hiding.

Game 0 and Game 12 correspond to the cases of coin = 0 and coin = 1 in
the experiment defining the partition-hiding, and we proved |Pr[T12]−Pr[T0]| =
negl(λ). This completes the proof of the constraint-hiding. More detailed analysis
of the above sequence of games can be found in the full version.

This completes the proof of Theorem 3.1. �

4 Adaptively Single-Key Secure CPRF

In this section, we construct an adaptively single-key secure CPRF based on iO
and a partition-hiding no-evaluation secure PCPRF. By instantiating the latter
with our construction of PCPRF in Sect. 3.2, we obtain the first adaptively
single-key secure CPRF for NC1 in the standard model.

4.1 Construction

Let PCPRF=(Setup,KeyGen,Eval,Constrain,CEval,Merge,MEval) be a partition-
hiding and selective-constraint no-evaluation secure PCPRF for function
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Fig. 7. Description of program ConstrainedKey[msk, f ]

class F . Then we construct CPRF CPRF = (Setup′,KeyGen′,Eval′,Constrain′,
CEval′) for the same function class as follows.

Setup′(1λ): This algorithm is completely identical to Setup(1λ).
KeyGen′(pp): This algorithm is completely identical to KeyGen(pp).
Eval′(msk, x): This algorithm is completely identical to Eval(msk, x).
Constrain′(msk, f): It computes and outputs skf

R← iO(ConstrainedKey[msk, f ])
where ConstrainedKey[msk, f ] is a program described in Fig. 7.

CEval′(skf , x): It computes and outputs skf (x).

We note that the program ConstrainedKey[msk, f ] is padded so that the size of
it is the same size as the programs that appear in the security proof. See also
Remark 4.1.

The following theorem addresses the security of the above construction. We
require F to contain some basic functions in the theorem. However, this restric-
tion is very mild. Indeed, the requirement for the function class is satisfied in
our construction of PCPRF in Sect. 3.2.

Theorem 4.1. Let F be a function class that contains constant functions and
punctured function gy : {0, 1}n → {0, 1} defined as gy(x) = (x ?= y) for all
y ∈ {0, 1}n. If iO is a secure indistinguishability obfuscator and PCPRF is both
partition-hiding with respect to a balanced AHF h : {0, 1}n → {0, 1}m and
selective-constraint no-evaluation secure PCPRF for F , then CPRF constructed
above is an adaptively single-key secure CPRF for F .

By combining Theorems 3.1 and 4.1, we obtain the following theorem.

Theorem 4.2. If there exists a secure indistinguishability obfuscator and a
group generator for which the subgroup hiding assumption holds, then there exists
an adaptively single-key secure CPRF for the function class FNC1

, which is
defined in Sect. 3.

Proof. Let A be a PPT adversary that breaks adaptive single-key security of the
scheme. In addition, let ε = ε(λ) and Q = Q(λ) be its advantage and the upper
bound on the number of evaluation queries, respectively. By assumption, Q(λ)
is polynomially bounded and there exists a noticeable function ε0(λ) such that
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ε(λ) ≥ ε0(λ) holds for infinitely many λ. By the property of the balanced AHF
(Definition 2.3, Item 1), Pr[u R← AdmSample(1λ, Q(λ), ε0(λ)) : u ∈ {0, 1}m] =
1 for all sufficiently large λ. Therefore, in the following, we assume that this
condition always holds. We show the security of the scheme via the following
sequence of games. In the following, Ti denotes the event that Game i returns
1, and we denote the master secret key of the scheme by msk0 for notational
convenience.

Game 0: This is the real single-key security experiment ExptcprfCPRF,F,A(λ) against
an admissible adversary A = (A1,A2). Namely,
coin

R← {0, 1}
pp

R← Setup(1λ)
msk0

R← KeyGen(pp)
X∗ R← R
(f, stA) R← AOChal(·),Eval(msk0,·)

1 (pp)
skf

R← iO(ConstrainedKey[msk, f ])
ĉoin

R← AOChal(·),Eval(msk0,·)
2 (skf , stA)

Return (ĉoin ?= coin)

where the challenge oracle OChal(·) is
described below.

OChal(x∗): Given x∗ ∈ {0, 1}n as
input, it returns Eval(msk0, x

∗) if
coin = 1 and X∗ if coin = 0.

We recall that OChal(·) is queried at
most once during the game.

Game 1: In this game, we change Game 0 so that the game performs the following
additional step at the end of the experiment. First, the game samples u

R←
AdmSample(1λ, Q, ε0) and checks whether the following condition holds:

Pu(h(x1)) = · · · = Pu(h(xQ)) = 1 ∧ Pu(h(x∗)) = 0, (2)

where x1, . . . , xQ are inputs to the PRF for which A called the evaluation
oracle Eval(msk0, ·). If it does not hold, the game ignores the output ĉoin of
A, and replace it with a fresh random coin ĉoin

R← {0, 1}. In this case, we say
that the game aborts.
By using the property of AHF, we can prove that the probability that the
game does not abort is noticeable. More precisely, if |Pr[T0] − 1/2| is non-
negligible, so is |Pr[T1] − 1/2| (See the full version for details).

Game 2: In this game, we change the way skf is generated and the ora-
cles return answers. At the beginning of the game, we sample msk0

R←
KeyGen(pp) and msk1

R← KeyGen(pp), and compute k[msk0,msk1,⊥m] R←
Merge[msk0,msk1,⊥m]. We then set C := MEval(k[msk0,msk1,⊥m], ·). Fur-
thermore, skf given to A2 is generated as skf

R← iO(ConstrainedKeyAlt
[C, f ]) instead of skf

R← iO(ConstrainedKey[msk, f ]), where the circuit
ConstrainedKeyAlt[C, f ] is depicted in Fig. 8. We also replace the evalua-
tion oracle Eval(msk0, ·) and the challenge oracle ÕChal(·) with the following
oracles.
Ẽval(C, ·): Given x ∈ {0, 1}n as input, it returns C(x).
ÕChal(C, ·): Given x∗ as input, it returns C(x∗) if coin = 1 and X∗ if coin = 0.
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Fig. 8. Description of program ConstrainedKeyAlt[C, f ]

We have |Pr[T2] − Pr[T1]| = negl(λ) by the security of iO.
Game 3: Recall that in Game 2, it is checked whether the abort condition Eq. (2)

holds or not at the end of the game. In this game, we change the game so
that it samples u at the beginning of the game and aborts and outputs a
random bit as soon as the abort condition becomes true.
We have Pr[T3] = Pr[T2] since the change is conceptual and nothing is
changed from the adversary’s view.

Game 4: In this game, we further change the way C is generated.
At the beginning of the game, the game samples k[msk0,msk1, u] R←
Merge[msk0,msk1, u] and then set C := MEval(k[msk0,msk1, u], ·) instead of
C := MEval(k[msk0,msk1,⊥m], ·).
We have |Pr[T4] − Pr[T3]| = negl(λ) by the partition-hiding property of
PCPRF.

Game 5: In this game, we replace Ẽval(C, ·) and ÕChal(C, ·) with the following
oracles.
Eval(msk1, ·): Given x ∈ {0, 1}n as input, it returns Eval(msk1, x).
ŌChal(msk0, ·): Given x∗ ∈ {0, 1}n as input, it returns Eval(msk0, x

∗) if coin =
1 and X∗ if coin = 0.

We have Pr[T5] = Pr[T4] since as soon as A makes an evaluation or challenge
query that makes a difference for the response by the oracles, these games
abort.

Game 6: In this game, we change the way skf is generated when A1 makes
the call to OChal (namely, the challenge query is made before f is chosen
by A). Let x∗ be the challenge query made by A1. We set the function
gx∗ : {0, 1}n → {0, 1} as gx∗(x) = (x ?= x∗). To generate skf , we first sample
sk0,gx∗

R← Constrain(msk0, gx∗) and set skf
R← iO(C̃[sk0,gx∗ ,msk1, f, u]), where

C̃[sk0,g,msk1, f, u] is depicted in Fig. 9. Note that if A1 does not make the
challenge query, we do not change the way skf is generated.
We have |Pr[T6] − Pr[T5]| = negl(λ) by the security of iO.

Game 7: In this game, we change the way skf is generated when A1 stops without
making challenge query (namely, the challenge query will be made after A
chooses f). In such a case, we first sample sk0,f

R← Constrain(msk0, f) and
set skf

R← iO(C̃[sk0,f ,msk1, f, u]).
We have |Pr[T7] − Pr[T6]| = negl(λ) by the security of iO.
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Fig. 9. Description of program C̃[sk0,g,msk1, f, u]

Finally, we observe that we have |Pr[T7] − 1/2| = negl(λ) by the selective-
constraint no-evaluation security of PCPRF. The above completes the proof of
Theorem 4.1. More detailed analysis of the above sequence of games can be found
in the full version. �

Remark 4.1. As one may notice, in the hybrids, we obfuscate a program that
contains a merged key k[msk0,msk1, u] that itself is also an obfuscation of some
program in our construction. Therefore when generating a constrained key,
ConstrainedKey[msk, f ] should be padded to the maximum size of an obfuscated
program that appears in the hybrids, and thus the size of skf is the size of an
obfuscation of an obfuscation. Actually, this “obfuscation of obfuscation” blowup
could be avoided if we directly construct an adaptively secure CPRF based on iO
and the subgroup hiding assumption. However, we believe that the abstraction
of PCPRF makes it easier to understand our security proof, and there should be
further applications of it.
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Abstract. This paper shows how to obfuscate several simple function-
alities from a new Knowledge of OrthogonALity Assumption (KOALA)
in cyclic groups which is shown to hold in the Generic Group Model.
Specifically, we give simpler and stronger security proofs for obfusca-
tion schemes for point functions, general-output point functions and
pattern matching with wildcards. We also revisit the work of Bishop
et al. (CRYPTO 2018) on obfuscating the pattern matching with wild-
cards functionality. We improve upon the construction and the analysis
in several ways:

– attacks and stronger guarantees: We show that the construction
achieves virtual black-box security for a simulator that runs in time
roughly 2n/2, as well as distributional security for larger classes of
distributions. We give attacks that show that our results are tight.

– weaker assumptions: We prove security under KOALA.
– better efficiency: We also provide a construction that outputs n + 1

instead of 2n group elements.
We obtain our results by first obfuscating a simpler “big subset function-
ality”, for which we establish full virtual black-box security; this yields
a simpler and more modular analysis for pattern matching. Finally, we
extend our distinguishing attacks to a large class of simple linear-in-the-
exponent schemes.

1 Introduction

Program obfuscation is a powerful cryptographic primitive where an obfuscator
O takes the description of a program as input and outputs an obfuscated pro-
gram that has the same input-output behavior as the original program while
hiding how the program works internally. The first theoretic investigation of
obfuscation was made in the work of Barak et al. [1,14] that defined the Vir-
tual Black Box (VBB) security definition, and showed that this strong definition
can not be satisfied for general circuits. This has sparked a line of research,
starting from [12], into trying to realize the weaker notion of indistinguisha-
bility obfuscation for general circuits. There have been many candidate IO for
circuits, but they all rely on non-standard and poorly understood assumptions
c© International Association for Cryptologic Research 2019
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Fig. 1. Security for obfuscation of point functions.

several of which have been broken. In contrast, there is a different line of work to
achieve the full VBB obfuscation for more restricted functionalities. Work in this
direction has shown that one can VBB obfuscate simple functionalities such as
point functions [4,7,8,15,16] and hyperplane membership testing [9]. Obfuscat-
ing the pattern matching with wildcards functionality (also called conjunctions)
was shown to be possible from LWE and variants [5,6,13,17]. A pattern is spec-
ified by a string ρ in {0, 1, �}n and matches an input x ∈ {0, 1}n if ρi = xi

or ρi = � for all i ∈ [n]. Recently at CRYPTO 2018 Bishop et al. presented a
simple and efficient method for obfuscating pattern matching with wildcards [3]
where the obfuscated pattern compromises of 2n elements in a cyclic group, and
showed that the construction achieves distributional VBB (DVBB) security for
the uniform distribution over patterns containing a fixed number of wildcards
up to 0.75n.

1.1 Our Results

We introduce a knowledge assumption that is weaker than the generic group
model. The knowledge assumption is a natural decisional analogue of Damgard’s
KEA assumption [10], and asserts that given any adversary that distinguishes
gMr for any M and a random r from the uniform distribution, there exists
another adversary (sometimes referred to as an “extractor”) that outputs a non-
trivial vector z such that zM = 0. We refer to this as the Knowledge of Orthogo-
nALity Assumption (KOALA). The assumption can also be viewed as a natural
decisional analogue of the recent algebraic group model [11], which essentially
asserts that the only way an adversary can compute a new group element is to
take a linear combination of previous ones.

To showcase the power of KOALA we give a simple proof for the VBB security
of the point function obfuscator of [7]. Moreover, we also give the first proof of
the self composability of this obfuscator and we extend the construction to VBB
obfuscation of point functions with general output. Prior work on obfuscating
point functions is summarized in Fig. 1.

We improve on the work of Bishop et al. in a number of directions. First we
explain that it is possible to, given an obfuscation of a pattern ρ, learn if the
first half of ρ consists of wildcards. Since it is not possible to learn this efficiently
through black box access only, this attack shows that the construction is not VBB
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Class of Patterns Distribution Security Assumption Reference

{0, 1, �}n,
uniform, w ≤ 0.75n DVBB generic group [3]

exactly w �’s
uniform, w ≤ n − ω(logn) DVBB generic group [2]
uniform, w ≤ n − ω(logn) DVBB KOALA Thm. 10

{0, 1, �}n

– 20.5n-VBB KOALA Thm. 8
– not 20.499n-VBB – Thm. 6

min-entropy ≥ n + ω(logn) DVBB KOALA Thm. 9
min-entropy ≤ n − ω(logn) not DVBB – Lem. 4

Fig. 2. Security for obfuscation of pattern matching with wildcards in cyclic groups [3].
Note that the KOALA knowledge assumption holds in the generic group model. The
(independent) work of [2] also proved DVBB results for the class of patterns with
exactly w �’s in the high min-entropy setting.

secure. Moreover, the attack shows that there are high entropy distributions for
which the scheme is not DVBB secure. On the other hand we prove stronger
security claims by proving the scheme to be VBB secure with simulators that
run in time roughly 2n/2. We also give optimal min-entropy bounds such that any
distribution that has this amount of min-entropy is automatically DVBB secure.
More precisely, we prove that any distribution over {0, 1, �}n with n + ω(log n)
bits of min-entropy is distributional VBB secure. We give a similar result for
distributions with a fixed number of wildcards. Previous works only showed
DVBB security for certain specific distributions, namely uniform distributions
with a fixed number of wildcards ≤ 3n/4. These distributions have min-entropy
at least 1.06n for sufficiently large n and therefore DVBB security for these
distributions follows as a special case of our DVBB result for high min-entropy
distributions. Another advantage of our security proofs is that they only rely on
the KOALA, rather than on the full generic group model (Fig. 2).

In our security proof we show that the construction of Bishop et al. is essen-
tially built around an obfuscator for a new Big Subset-functionality that could
be of independent interest. For input size n, the functions of this functionality
are parametrized by a subset Y ⊂ [n] and a threshold value 0 ≤ t ≤ n. The
function fY,n,t : P([n]) → {0, 1} takes a subset X ⊂ [n] as input and outputs
1 if and only if X is a big enough subset of Y (i.e. |X| ≥ t). The key result is
that the big subset functionality can be obfuscated with VBB security assuming
KOALA. The security guarantees for the pattern matching functionality follow
from this result by embedding the pattern matching functionality into the big
subset functionality.

The scheme of [3] uses only linear operations which are hidden in the expo-
nent of a cryptographic group. We formulate the framework for linear-in-the-
exponent obfuscation schemes in the hope of finding more efficient and more
secure constructions. On the positive side we find a more efficient construction
whose obfuscated programs are represented by n+1 group elements rather than
2n group elements while having at least the same security as the construction
of [3]. On the negative side we prove that our distinguishing attack extends to a
wide family of “natural” linear-in-the-exponent obfuscation schemes.
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1.2 Technical Overview

We provide a brief overview of our obfuscation construction for the “big subset
functionality”, which is implicit in [3], and then explain how this relates to
obfuscating pattern matching with wildcards.

Obfuscating “big subset”. The functionality fY,n,t is parametrized by (Y, n, t)
where Y ⊆ [n], t ≤ n, and given an input X ⊆ [n],

fY,n,t(X) = 1 ⇔ |X| ≥ t and X ⊆ Y .

The obfuscation of fY,n,t comprises n group elements [v1]g, . . . , [vn]g (we use [·]g
to denote group exponentiation) where

– {vi : i ∈ Y } are random Shamir shares of 0, that is, the evaluations of a
random degree t − 1 polynomial whose constant term is 0, and

– the remaining vi’s, i /∈ Y are chosen uniformly at random.

To evaluate the obfuscated program on input X, we simply return 1 if and only
if reconstruction “in the exponent” over the shares corresponding to X returns
[0]g.

To prove VBB security, we adopt a “random or learn” strategy similar to
that in [7,9,16]. Given an adversary A, we try to simulate its view by feeding it
n random group elements. Suppose this simulation fails, which means A distin-
guishes an obfuscation of fY,n,t from uniformly random group elements. Then, by
our KOALA assumption, then we can “extract” from A a vector z from which
we can efficiently compute an X such that fY,n,t(X) = 1. In fact, X simply
corresponds to the indices of z that are non-zero; X ⊆ Y follows from the fact
that vi’s outside Y are uniformly random, and |X| ≥ t follows from the secrecy
of Shamir’s secret-sharing scheme. Finally, we show that given oracle access to
fY,n,t and an X such that fY,n,t(X) = 1, we can efficiently recover Y, t, upon
which we can simulate the view of the adversary perfectly.

We mention here that the actual simulation is a bit more complex, since the
KOALA assumption only guarantees extraction with inverse polynomial prob-
ability. Therefore, we will need to “extract” multiple z’s and run the above
simulation of each of these z; the number of samples we need and thus the run-
ning time of the simulator is inverse polynomial in the simulation accuracy. We
also note that the same approach also yields a much easier proof for the VBB
security of Canetti’s point function obfuscator (which outputs just two group ele-
ments). Moreover, we can also give a proof for the self-composability of Canetti’s
obfuscator.

Obfuscating pattern matching with wildcards. To go from obfuscating
the “big subset functionality” to obfuscating pattern-matching with wildcards,
we observe that there is a simple embedding of {0, 1, �}n into (P([2n]), 2n, n)
where we replace the i’th symbol with either 2i − 1, 2i or both. Indeed, this
was the approach (implicitly) taken in [3]. Unfortunately, this embedding also
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allows an adversary to check whether any subset of n/2 positions of a pattern
correspond to wildcards, which is the basis for our distinguishing attack. As
mentioned earlier in the introduction, we show that

– this construction achieves VBB security with roughly 2n/2-time simulation.
This essentially follows from the fact that we can simulate any query to big
subset oracle with 2n/2 queries to the pattern matching oracle.

– this construction achieves D-VBB security for any distribution over {0, 1, �}n

with min-entropy at least n + ω(log n). This essentially follows from the fact
that any distribution over (P([2n]), 2n, n) for big subset with min-entropy
n + ω(log n) is evasive. The latter in turn follows from the fact that any X ⊆
[2n] of size n is an accepting input for at most 2n patterns in (P([2n]), 2n, n).

– the construction is not D-VBB secure for some distribution over {0, 1, �}n

with min-entropy n − ω(log n). In particular, take any a = ω(log n) and
consider the distribution where the first a positions is uniform over {0, 1}a,
the next a positions are �’s, and the last n − 2a positions are uniform over
{0, �}n−2a. This distribution is evasive, and yet we can distinguish obfuscation
of this distribution from that of the uniform distribution over {0, 1, �}n.

Prior analysis only considers restricted distributions, namely the uniform distri-
bution over patterns with a fixed number of wildcards; we note that our tech-
niques are fairly general and also provide matching results for these restricted
distributions.

In the last section of the paper, we explore the possibility of achieving VBB
obfuscation for pattern matching with wildcards via some “natural” generaliza-
tion of the above constructions. Our results here are mostly negative. Along the
way, we also present a compression technique that allows us to reduce the output
of the obfuscator from 2n to n + 1 group elements.

Open problems. We conclude with a number of open problems on efficient
obfuscation using cyclic groups:

– Construct simple obfuscation schemes for simple functionalities beyond “big
subset”.

– Prove or disprove: for every δ > 0, there exists an efficient obfuscation scheme
for pattern matching with wildcards that is D-VBB for any distribution
over {0, 1, �} with min-entropy δn (alternatively, VBB secure with 2δn-time
simulation).

Roadmap. The rest of the paper consists of the following: In Sect. 2 we state
the definitions of VBB, T -VBB and DVBB secure obfuscation schemes. We also
prove that T -VBB security implies DVBB security for T -elusive distributions.
In Sect. 3 we describe the construction of [3] for obfuscating pattern matching
with wildcards. In Sect. 4 we introduce the KOALA knowledge assumption and
we prove that it holds in the generic group model. We also showcase the power of
the KOALA by giving a simple proof of the VBB security of the point function
obfuscator of Canetti [7], and giving the first proof of its self composability.
In Sect. 5 we introduce the big subset functionality, we show that it can be
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obfuscated with VBB security and we prove that certain distributions of big
subset functions are elusive. In Sect. 6 we give our security analysis including
a family of attacks and new security proofs. In Sect. 7 we describe and study
linear-in-the-exponent obfuscation schemes for pattern matching with wildcards.
We find more efficient schemes, but we prove that there are no VBB secure
obfuscators in a broad class of constructions that follow this paradigm.

Independent work. We clarify here that an independent work of Bartusek, et
al. [2] achieved a subset of our results (in addition to other results not in this
work): the overlap are the construction with n + 1 group elements, as well as
distributional VBB for the uniform distribution over patterns with exactly w
wildcards for any w = ω(log n) in the generic group model.

2 Preliminaries

Notation. Throughout the paper we use [n] to denote the set {1, · · · , n}. We
write vectors in boldface (e.g. x) and their entries in plain text (e.g. x1). We also
use the implicit representation of group elements: If G is a cyclic group of order
p with generator g, then for a ∈ Zp we use [a]g to denote the group element ga.
If v ∈ Z

n
p is a vector mod p, then [v]g denotes the tuple of n group elements

{gvi}i∈[n].

2.1 Security Definitions

In this section we define Virtual Black Box [1] (VBB) and Distributional Vir-
tual Black Box [5] (DVBB) security. We also introduce T -VBB security, which
is a variant of VBB security where the simulator is allowed to run in super-
polynomial time O(T ). We prove that T -VBB security implies distributional
VBB security for distributions that are T -evasive (even with simulators that
make no black box queries).

Let F = {Fn}n∈N be a sequence of function families where Fn is a set
of functions that takes n bits as input. A PPT algorithm O is said to be an
Obfuscator for F if it takes an input length n (in unary representation) and a
function f ∈ Fn as input, and outputs an obfuscated program O(1n, f) that:

1. preserves functionality: For any n, f ∈ Fn and x ∈ {0, 1}n we have that
O(1n, f)(x) = f(x) with a probability that is overwhelming as a parameter
of n.

2. has only polynomial slowdown: For any n and f ∈ Fn the obfuscated program
O(1n, f) runs in time that is poly(n, T (f)), where T (f) is the run time of f .

To ease notation, we don’t explicitly write the input length n as an input to the
obfuscator O in the rest of the paper.

Virtual Black Box Security (VBB). If an obfuscator reveals no more infor-
mation about the function f ∈ Fn than what can by learned from black box
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access the obfuscator is said to be Virtual Black Box (VBB) secure. More for-
mally, we have the following definition.

Definition 1 (VBB Security). An obfuscator O for the functionality
{Fn}n∈N is said to be VBB secure if for any PPT Adversary A and polynomial
p(n), there exists a PPT simulator S that has black box access to a function in
F and an n0 such that for any n ≥ n0 and any f ∈ Fn

∣
∣
∣
∣
Pr
O,A

[A(O(f)) = 1] − Pr
S

[Sf (1n) = 1]
∣
∣
∣
∣
≤ 1

p(n)
.

Remark 1. In our definition (and in our definition of T -VBB security below),
the simulator S is allowed to depend on the required simulator accuracy p(n).
This is slightly weaker than the original definition of [1].

One can relax the condition that S runs in polynomial time to obtain a
weaker security notion. An obfuscator satisfying this relaxed security notion
reveals nothing about the function it obfuscated beyond what can be learned
with a lot of black box queries.

Definition 2 (T -VBB Security). An obfuscator O for the functionality F is
said to be T -VBB secure if for any PPT Adversary A and any polynomial p(n),
there exists a simulator S that has black box access to a function in F that runs
in time O(T ∗ poly(n)) and an n0 such that for any n ≥ n0 and f ∈ Fn

∣
∣
∣
∣
Pr
O,A

[A(O(f)) = 1] − Pr
S

[Sf (1n) = 1]
∣
∣
∣
∣
≤ 1

p(n)
.

Distributional Virtual Black Box security (D- DVBB). A weaker notion
of Obfuscator security is that of Distributional VBB security (also called
Average-Case VBB). In the distributional setting, there is a sequence of dis-
tributions D = {Dn}n∈N that the function f to be obfuscated is drawn from.
If an obfuscator O reveals nothing about functions randomly drawn from D
beyond what can be learned from black box access, the obfuscator O is said to
be D-DVBB secure. This is captured by the following definition:

Definition 3 (D-DVBB Security). Let D = {Dn}n∈N be a sequence of dis-
tributions on F , and O an obfuscator for the F functionality. Then O is said
to be D-DVBB secure if for any adversary A and any sequence of predicates
P = {Pn : Fn → {0, 1}} there exists a PPT Simulator S such that

∣
∣
∣
∣

Pr
f←Dn,O,A

[A(O(f)) = Pn(f)] − Pr
f←Dn,S

[Sf (1n) = Pn(f)]
∣
∣
∣
∣
= negl(n).

The fact that VBB security implies distributional VBB security for any arbi-
trary distribution is trivial. However, we prove that VBB security also implies
DVBB security with simulators that don’t make black-box queries for distri-
butions that are evasive. It is also the case that T -VBB implies DVBB with
simulators that make no black-box queries for distributions which are T -evasive.
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Definition 4 (evasive, T -evasive). A sequence {Dn}n∈N of distributions on
{Fn}n∈N is evasive if there is a negligible function μ(n) such that for all x ∈
{0, 1}n we have

Pr
f←Dn

[f(x) 
= 0] < μ(n).

A the sequence of distributions is said to be T -evasive if there is a negligible
function μ(n) such that for all x ∈ {0, 1}n we have

Pr
f←Dn

[f(x) 
= 0] <
μ(n)
T (n)

.

Lemma 1 (VBB implies DVBB without black-box queries for evasive
distributions). Suppose O is a VBB secure (resp. T -VBB secure) obfuscator
for the functionality {Fn}n∈N and let D = {Dn}n∈N be an evasive (resp. T -
evasive) sequence of distributions that can be sampled from efficiently, then O is
D-DVBB secure with a simulator that does not make any black box queries.

Proof. Let O, {Fn}n∈N and {Dn}n∈N be as in the statement of the theorem. Let
A be an adversary and P a predicate on F . We define a simulator S that draws
a function f from Dn and outputs A(O(f)). It is clear that this simulator makes
no black box queries to f . We now prove that S has negligible simulation error.

Fix any polynomial p(n) and let SVBB be a simulator that runs in polynomial
time (resp. O(T ∗ poly(n))) with a simulation error that is eventually less than

1
3p(n) . This is guaranteed to exist because of the VBB (resp T -VBB) property
of O. Then we have for large enough n that

∣
∣
∣
∣

Pr
f←Dn

[A(O(f)) = P (f)] − Pr
f←Dn

[Sf
VBB(1n) = P (f)]

∣
∣
∣
∣
≤ (1)

∑

f∈Fn

Pr[Dn = f ]
∣
∣
∣Pr[A(O(f)) = 1] − Pr[Sf

VBB(1n) = 1]
∣
∣
∣ ≤ 1

3p(n)
.

Since SVBB makes at most polynomially many (resp. O(T ∗ poly(n))) queries
to f and since the sequence D is evasive (resp. T -evasive) we have

∣
∣
∣
∣

Pr
f←Dn

[Sf
VBB(1n) = P (f)] − Pr

f←Dn

[S0
VBB(1n) = P (f)]

∣
∣
∣
∣
≤ negl(n), (2)

and similarly we have
∣
∣
∣
∣

Pr
f←Dn

[S0
VBB(1n) = P (f)] − Pr

f1,f2←Dn

[Sf1
VBB(1n) = P (f2)]

∣
∣
∣
∣
≤ negl(n). (3)

Finally, similar to Eq. 1 we have for large enough n that
∣
∣
∣
∣

Pr
f1,f2←Dn

[Sf1
VBB(1n) = P (f2)] − Pr

f1,f2←Dn

[A(O(f1)) = P (f2)]
∣
∣
∣
∣
≤ (4)

∑

f1∈Fn

Pr[Dn = f1]
∣
∣
∣Pr[Sf1

VBB(1n) = 1] − Pr[A(O(f1)) = 1]
∣
∣
∣ ≤ 1

3p(n)
.
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Putting these four inequalities together we have for large enough n that
∣
∣
∣
∣

Pr
f←Dn

[A(O(f)) = P (f)] − Pr
f1,f2←Dn

[A(O(f1)) = P (f2)]
∣
∣
∣
∣
≤ 2

3p(n)
+ negl(n),

which shows that the simulator error is eventually lower than 1
p(n) for any p(n).

��

3 Obfuscation for Pattern Matching with Wildcards

The class of functions for the pattern matching with wildcards functionality
it parametrized by length n strings over the alphabet {0, 1, �}. For a pattern
ρ = (ρi)i∈[n] in {0, 1, �}n we define the pattern matching function fρ that takes
a binary string x = (xi)i∈[n] as input, and outputs whether the string matches
the pattern ρ. More precisely we have

fρ(x) =

{

1 if for all i either ρi = xi or ρi = �

0 otherwise

A simple and efficient construction. The work of Bishop et al. [3] gives a
simple obfuscation scheme for the pattern matching with wildcards functionality.
The obfuscation of a pattern ρ consists of 2n elements {vi,j}(i,j)∈[n]×1,2 of a
cyclic group G of prime order p with generator g. This obfuscation is produced
by picking a random degree n − 1 polynomial h(x) = a1x + · · · + an−1x

n−1 with
h(0) = 0 and defining

vi,j =

{

h(2i − j) if ρi = � or ρi = j

ri,j otherwise
,

where the ri,j are chosen uniformly at random. The obfuscation O(ρ) then con-
sists of the 2n group elements [{vi,j}(i,j)∈[n]×{0,1}]g.

To evaluate the obfuscated program on input x, the evaluator computes the
polynomial interpolation coefficients

Ca =
∏

b∈[n],
b�=a

−2b − xb

2a + xa − 2b − xb
,

and computes h0 = [
∑

i∈[n] Civi,xi
]g. If the pattern ρ accepts x then all the

vi,xi
are of the form [h(2i − j)]g and the polynomial interpolation will work in

the exponent such that h0 = [h(0)]g = [0]g. If h0 = [0]g the obfuscated program
accepts the input x and otherwise it rejects. If the pattern ρ does not accept x at
least one uniformly random group element enters into h, so that the obfuscated
program will only accept a bad input with probability 1 − 1

p .
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Prior analysis in [3]. The construction of [3] is proven to be Distributional
VBB secure (Definition 3) in the generic group model for uniform distributions
of patterns with a fixed number up to 3n

4 wildcards. More strongly, it is proven
that the result of obfuscating a uniformly random pattern in {0, 1, �}n with a
fixed number up to 3n

4 wildcards is indistinguishable from 2n uniformly chosen
group elements.

4 A New Knowledge Assumption: KOALA

We introduce a new assumption, the Knowledge of OrthogonALity Assumption
(KOALA), that is valid in the generic group model and based on which we
will prove the security of the Obfuscation scheme. The assumption says that an
adversary can only distinguish [v]g for vectors v drawn uniformly at random
from a subspace V ⊂ Z

n
p from [u]g for uniformly random vectors u ∈ Z

n
p if it

can also produce a non-zero vector orthogonal to V in the clear.

Definition 5 (KOALA). A sequence of cyclic groups {Gn}n∈N of order pn ∈
[2n, 2n+1) satisfies the knowledge of orthogonality assumption if for every PPT
adversary A, there exists a polynomial s(n) and a PPT algorithm A′ that outputs
nonzero vectors such that for every subspace V ⊂ Z

n
p , if A distinguishes uniform

samples of [V ]g from random with advantage

AdvA,V =
∣
∣
∣
∣

Pr
v←V

[A([v]g) = 1] − Pr
u←Zn

p

[A([u]g) = 1]
∣
∣
∣
∣

,

then A′(1n) is orthogonal to V with probability

Pr[A′(1n) ∈ V ⊥ \ {0}] ≥ AdvA,V

s(n)
.

4.1 KOALA Is Weaker Than Generic Group Model

Although KOALA is quite a strong assumption, it is weaker than the generic
group model:

Theorem 1 (Generic groups satisfy KOALA). A sequence of cyclic groups
{Gpn

}n∈N of order pn ∈ [2n, 2n+1) satisfies KOALA in the generic group model.

Proof. Given an adversary A, we construct an extractor EA that satisfies the
condition of Definition 5. The extractor runs A on a list of n generic group
elements e = {ei}i∈[n], then by looking at how A interacts with the group oracle
E records all the vectors v for which A has computed v · e. When A terminates,
E chooses two distinct vectors that it has collected and outputs their difference.

More formally the extractor EA works as follows: EA simulates a group oracle
G2 that gives randomly encoded access to the group Z

n
p . He does this by main-

taining a table {(qi, hi)}i∈I ⊂ Z
n
p × {0, 1}n mapping vectors of Zn

p to random
handles that he updates on the fly when new vectors are discovered. Initially he
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populates the table with random handles for the n unit vectors ei for i ∈ [n].
Then it runs AG2 with the handles of the n unit vectors as input. When A termi-
nates the extractor picks two distinct vectors qi,qj from the group oracle table
and outputs qi − qj .

We now fix a subspace V ⊂ Z
n
p with basis {v1, · · · ,vk} and we show that if

A makes Q queries to the group oracle and distinguishes [V ]g from [Zn
p ]g with

probability

AdvA,V =
∣
∣
∣
∣

Pr
v←V

[A([v]g) = 1] − Pr
u←Zn

p

[A([u]g) = 1]
∣
∣
∣
∣
,

then the extractor will output a nonzero vector orthogonal to V with probability

Pr[A′(1n) ∈ V ⊥ \ {0}] ≥ AdvA,V

(Q + 2n)2
− 2

p
,

so the extractor satisfies the requirement in Definition 5. We show this through
a sequence of four games.

1. In the first game A is given access to the group oracle G1 for Gp, and it is
given the encoding of [u]g, for u a random vector from Z

n
p as input.

Game1 = u ← Z
n
p ; ReturnAG1(u));

2. In the second game A is given a group oracle G2 for the group Z
n
p . Let ei ∈ Z

n
p

for i ∈ [n] be the unit vectors of Zn
p . The input to A is a random encoding of

these n unit vectors.

Game2 = ReturnAG2({ei}i∈[n]);

3. In the third game A is given access to a group oracle G3 for Z
k
p. Let e′

i ∈ Z
k
p

for i ∈ [k] be the unit vectors of Z
k
p. The input to A is the encoding of n

vectors {mi}i∈[n], where mi =
∑k

j=1(vi)je′
j .

Game3 = ReturnAG3({mi}i∈[n]);

4. In the last game A is given access to the group oracle G1 for Gp again, and
it is given the encoding of [v]g, for v a random vector from V as input.

Game4 = v ← V ; ReturnAG1(v));

Game1 and Game2 are close. Consider the map φ1 : Zn
p → Gp : x �→ [x ·u]g,

where u is the vector chosen uniformly from Z
n
p in the first game. Now consider

a group oracle G1 ◦φ1 that maintains a table {(qi, [qi ·u]g, hi)}i∈I of vectors that
were queried, their images under φ1, and random encodings of the images φ1(qi).
As long as no two queries qi,qj map to the same element of Gp this is an honest
implementation of the group oracle G2. Moreover, φ1 maps the inputs to A in
Game2 to the inputs of A in Game1, so unless A queries G2 at two vectors that
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are mapped to the same group element by φ1 the views of A in Game1 and Game2
are identical. After Q group oracle queries the table contains Q+2n entries. For
each pair of distinct vectors (qi,qj) the probability that φ1(qi) = φ1(qj) is 1/p,
so a union bound yields

|Pr[Game1() = 1] − Pr[Game2() = 1]| < (Q + 2n)2/p

Game2 and Game3 are close unless nonzero vectors orthogonal to V
are found. Now, consider the map φ2 : Zn

p → Z
k
p, defined on the unit vectors

as

φ2(ei) =
k∑

j=1

(vi)je′
j ,

and extended to all of Z
n
p by linearity. Notice that the vectors orthogonal to

V are precisely the vectors in the kernel of φ2 because the i-th component of
φ2(u) is u · vi. Now consider the group oracle G3 ◦ φ2 that maintains the table
{(qi, φ2(qi), hi)}i∈I . This is an honest implementation of G2 as long as it is not
queried on two different vectors qi,qj that are mapped to the same vector by
φ2. The connecting map φ2 maps the inputs to A in Game2 to the inputs of A
in Game3. Therefore we have

|Pr[Game2() = 1] − Pr[Game3() = 1]| ≤ Collision ,

where Collision is the probability that two vectors in the table of G3 ◦ φ2 have
the same image under φ2.

Game3 and Game4 are close. The proof of this transition is very similar to
that of the first transition, with the connecting map φ3 : Zk

p → Gp : x �→ [x · c]g,
where c ∈ Z

k
p is the unique vector such that v =

∑k
i=1 civi. The map φ3 sends the

input of A in Game3 to the input of A in Game4, so like in the first transition, the
view of A is identical in Game3 and Game4 as long as no two queries to G1 ◦ φ3

are mapped to the same group element by φ. This happens with probability
bounded by (Q + 2n)2/p, so we have

|Pr[Game3() = 1] − Pr[Game4() = 1]| < (Q + 2n)2/p

Putting everything together. Combining the previous results with the tri-
angle inequality we get

|Pr[Game1() = 1] − Pr[Game4() = 1]| < Collision + 2(Q + 2n)2/p .

Here the left hand side is exactly the distinguishing advantage AdvA,V , so we
get

Collision > AdvA,V − 2(Q + 2n)2

p
.

The extractor outputs the difference of two randomly chosen vectors out of the
Q + 2n vectors in the table of G2. Therefore, since the kernel of φ2 is exactly
the set of vectors orthogonal to V we know that E outputs a vector in V ⊥ \ {0}
with probability at least Collision

(Q+2n)2 , which finishes the proof. ��
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4.2 Obfuscating Point Functions from KOALA

To demonstrate the power of KOALA, we prove the VBB security of the simple
point function obfuscator of [7]. To obfuscate the function that tests whether an
input x ∈ Zp is equal to x0 the obfuscator simply outputs [r]g, [−x0r]g, where
[r]g is a uniformly random group element. On input x ∈ Zp, the evaluator simply
computes [xr − x0r] and outputs 1 if and only if this is equal to [0]g.

Theorem 2 (Obfuscating point functions from KOALA). The point
function obfuscator from [7] using a sequence of groups {Gn}n∈N that satisfies
KOALA is VBB secure.

Proof. Given an adversary A and required simulator accuracy of 1
p(n) , let A′ and

s(n) be the PPT algorithm and polynomial that are guaranteed to exists because
of KOALA. We construct a simulator S that on input [v]g = ([v1]g, [v2]g) calls
A′(1n) to get output o = (o1, o2), if o2 = 0 then S discards o and otherwise
it makes a black box query to the point function on input o1

o2
. The simulator S

repeats this a total of s(n)p(n) times. Then there are two cases:

A All of the black box queries return 0. In this case S picks a uniformly
random vector u ∈ Z

2
p and outputs A([u]g).

B A black box query with input x0 returns 1. In this case S outputs
A(O(x0)).

In case of event B the simulation of S is perfect, so the simulation error of
S is

Pr[A] ·
∣
∣
∣
∣

Pr
r←Zp

[A([r]g, [xr]g) = 1] − Pr
r1,r2←Zp

[A([r1]g, [r2]g) = 1]

∣
∣
∣
∣
= Pr[A]AdvA,〈(1,−x)〉.

Event A only occurs if none of the outputs of A′ are orthogonal to 〈(1,−x)〉, so
using KOALA we get that the simulation error is bounded by

Pr[A(1n)⊥ · (1,−x) �= 0]s(n)p(n)AdvA,〈(1,−x)〉 ≤
(
1 − AdvA,〈(1,−x)〉

s(n)

)s(n)p(n)

·AdvA,〈(1,−x)〉.

Using 1 − x ≤ e−x and e−x ≤ 1
x for x > 0 this means that the simulation error

is bounded by

e−AdvA,〈(1,−x)〉p(n) · AdvA,〈(1,−x)〉 ≤ 1
p(n)

,

as required. ��
Definition 6 (Array of functions). Let f1, · · · , fk : D → R be a sequence of
k functions on the same domain D, then we define a new function �f1, · · · , fk� :
[k] × D → R by

�f1, · · · , fk�(i, x) = fi(x).



Obfuscating Simple Functionalities from Knowledge Assumptions 267

Definition 7 (VBB Self composability). A VBB secure obfuscator O for a
function family F is said to be VBB self composable if O′ : (f1, · · · , fk) ∈ F∗ →
(O(f1), · · · ,O(fk)) is a VBB secure obfuscator for the function family

{�f1, · · · , fk�|(f1, · · · , fk) ∈ Fk}

Remark 2. This definition is stronger than the one of [15] because it works simul-
taneously for all (polynomially bounded) k, rather than a fixed value of k.

Theorem 3. The point function obfuscator from [7] using a sequence of groups
{Gn}n∈N that satisfies KOALA is VBB self composable.

Proof. Let A be an adversary and let p(n) be a polynomial such that 1
p(n) is

the desired simulator accuracy. We then construct a simulator S that works in
two phases. On input (O(x1), · · · ,O(xk)) the simulator S starts with a learning
phase S in which it tries to recover as many of the xi as possible. Then in the
simulation phase it outputs A(u1, · · · , uk), where

ui =

{

O(xi) if S has learned xi

[ri]g if S has not learned xi

,

where the ri are uniformly random vectors in Z
2
p.

Learning phase: The learning phase starts with a empty set L = {} of learned
xi’s. Let A′

1 and s(n) be the PPT algorithm and the polynomial given by the
KOALA assumption. Then, like in the proof of Theorem 2, we call A0() a total
of ks(n)p(n) times to get an output o = ((o1,1, o1,2), · · · , (ok,1, ok,2)). For all
i ∈ [k], if oi,2 
= 0, then S queries the black box oracle for fi at input oi,1

oi,2
.

If all the queries return False, the learning phase ends and S moves on to the
Simulation phase. Conversely, if the query fi(xi) returns True, then (i,xi) is
added to L.

If the learning phase has not ended in the first iteration (i.e. if xi are dis-
covered), then we construct a new adversary A2 that accepts k − |L| obfuscated
programs as input. The adversary A2 computes an obfuscation O(xi) for each
xi that it has learned, and plugs it into the slots of A = A1. The k − |L| inputs
are plugged into the remaining slots and then A2 calls A with these inputs and
returns the output of A. The KOALA guarantees there exist a PPT algorithm
A′

2 and polynomial s2(n). Then S calls A′
2() a total of ks2(n)p(n) times to get

outputs o = ((o1,1, o1,2), · · · , (ok,1, ok,2)). Again, if oi,2 
= 0, then S queries the
black box oracle for fi at input oi,1

oi,2
. If all the queries return False, the learning

phase ends and S moves on to the Simulation phase. Conversely, if the query
fi(xi) returns True, then (i,xi) is added to L.

This process continues with Ai + 1 the algorithm that calculates O(xi) for
the newly discovered xi and plugging it into Ai. After at most k iterations no
new inputs are learned and the Learning phase terminates.
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Simulation phase: After the Learning phase the simulator S computes ui =
O(xi) for all (i,xi) in L. Then it fixes the remaining ui to [ri]g for ri random
vectors in Z

2
p and outputs A(u1, · · · ,uk). In other words, S calls the last iteration

Ai of the adversary constructed in the Learning phase on uniformly random
input, and return the result.

Now we analyze the simulation error of this simulator S. Let I =
{i|∃xis.t.(i,xi) ∈ L} be the set of indices of the xi that are learned at the end
of the learning phase. Now, for X ⊂ [k] Let uX,i be the distribution defined as

uX,i =

{

O(xi) if i in X
[U(Z2

p)]g else

Then we have that the output of S is equal to A(uI,1, · · · , uI,k), so the
simulation error of S is bounded by

∣
∣
∣Pr[A(O(fx1), · · · ,O(fxk

)) = 1] − Pr[S�fx1 ,··· ,fxk
�](1kn) = 1

∣
∣
∣ ≤

∑

X⊂[k]

Pr[X = I] |Pr[A(O(fx1), · · · ,O(fxk
)) = 1] − Pr[A(uX,1, · · · , uX,k) = 1]| =

∑

X⊂[k]

Pr[X = I] · AdvA,X ,

where AdvA,X denotes the advantage of A for distinguishing O(fx1), · · · ,O(fxk
)

from uX,1, · · · , uX,k.
The probability Pr[X = I] is equal to Pr[reach X] Pr[stay at X| reach X],

where Pr[reach X] is the probability that S reaches a state where the indices
of the learned xi is exactly X, and Pr[stay at X| reach X] is the probabil-
ity that S does not leave this state, given that this state is reached. So,
Pr[stay at X| reach X] is bounded by the probability that none of vectors out-
putted by A′

i is nonzero and orthogonal to the 2(k − |X|) dimensional space of
obfuscations of the k − |X| point functions that are not learned. According the
KOALA this implies

Pr[ stay at X| reach X] ≤
(

1 − AdvA,X

si(n)

)ksi(n)p(n)

≤ 1
kAdvA,Xp(n)

.

Plugging this in to the upper bound for the simulator error shows that it is
bounded by

∑

X⊂[k]

Pr[reach X] · 1
kp(n)

.

Now, since there are at most k iterations in the learning phase (each new iter-
ation increases |L|, and |L| ≤ k) we know that

∑

X⊂[k] Pr[reach X] is bounded
by k, so the simulation error of S is bounded by 1

p(n) , as required. ��
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Definition 8 (multi-bit output point functions). Point functions with
multi-bit output are parametrized by two bitstrings a ∈ {0, 1}n and b ∈ {0, 1}l.
The function fx,y is defined as

fa,b(x) =

{

b if x = a
⊥ else

Theorem 4 (Obfuscating multi-bit output point functions). Suppose O
is a VBB self-composable obfuscator for point functions, then there exists a VB
self-composable obfuscator O′ for point functions with multi-bit output

Proof. On input (a,b) ∈ {0, 1}n × {0, 1}l the obfuscator O′ simply computes
and outputs l obfuscated programs O(a||b1), · · · ,O(a||bl). To evaluate O′(a,b)
at input x, one simply evaluates all the obfuscations at x||0 and x||1. If for some
of the obfuscations neither x||0 nor x||1 is accepted, then the evaluator returns
⊥, otherwise the evaluator returns y defined as

yi =

{

0 if i-th obfuscated program accepts x||0
1 if i-th obfuscated program accepts x||1

Correctness and poly-time slowdown of this obfuscator O′ follows immedi-
ately from the correctness and poly-time slowdown of O.

Now we show that the construction is VBB secure for compositions of
k multi-bit output point functions. Let A be an adversary and let 1

p(n)

be the desired simulator accuracy. Then the VBB self-composability prop-
erty of O immediately implies there is a PPT simulator S with the desired
simulator accuracy that makes black box queries to the k × l point func-
tions fa1||b11 , · · · , fa1||b1l

, · · · , fak||bk1 , · · · , fak||bkl
. We can answer these queries

because we have black box access to fa1||b1 , · · · , fak||bk
. To answer a query to

fai||bij
with input x, b we first query the black box oracle for fai||bi

(x). If this
returns ⊥, we answer the query with False, otherwise if fai||bi

(x) = bi ∈ {0, 1}l,
then we answer the query with bij = b. ��

5 Obfuscating Big Subset Functionality

The obfuscator for pattern matching with wildcards of [3] contains an obfusca-
tor for a different functionality, we call this other functionality the big subset
functionality. We show that there is an embedding of the pattern matching with
wildcards functionality into the big subset functionality and hence, that any
obfuscator for the big subset functionality can be transformed generically into
an obfuscator for pattern matching with wildcards. This transformation pre-
serves VBB security at the cost of a slowdown of the simulator by a factor 2n/2.
The transformation also preserves distributional VBB security with simulators
that make no black box queries without slowing down the simulator. Since the
obfuscator of [3] is an instantiation of this transformation this will ultimately
allow us to prove its VBB security with super-polynomial simulator and Distri-
butional VBB security for a wide variety of distributions.
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Definition 9 (Big Subset Functionality). For each n ∈ N, we define the
class of functions parametrized by (Y, n, t), where Y is a subset of [n] and t is a
threshold value with 0 ≤ t ≤ n. We define fY,n,t : P ([n]) → {0, 1} that on input
a subset X outputs

fY,n,t(X) =

{

1 if |X| ≥ t and X ⊂ Y

0 otherwise
.

5.1 VBB Secure Obfuscation of Big Subset Functionality

The following construction is implicit in [3]: To obfuscate the function fY,n,t the
obfuscator picks a random degree t − 1 polynomial h(x) = a1x + · · · + at−1x

t−1

with coefficients in Zp such that h(0) = 0. Then it outputs n group elements
[v]g defined as

vi =

{

h(i) if i ∈ Y

ri otherwise
,

where the ri ∈ Zp are chosen uniformly at random. To evaluate the function at
input X ⊂ [n] we use polynomial interpolation in the exponent to check if the
points {(i, oi) | i ∈ X} lie on a degree |X| − 1 polynomial hx with hx(0) = 0.

We now prove that under KOALA this construction is a VBB secure
obfuscator.

Theorem 5 (O is VBB secure). Let O be the obfuscator for the big subset
functionality defined above, using a family of cyclic groups that satisfies KOALA.
Then O is VBB secure.

Proof. Let A be an adversary and p(n) the polynomial such that 1
p(n) is the

desired simulator accuracy. Then we construct a simulator S that runs in time
O(p(n)∗poly(n)) such that for any (Y, n, t) with sufficiently large n the simulation
error ∣

∣
∣
∣
Pr
O,A

[A(O(Y, n, t)) = 1] − Pr
S

[SfY,n,t(1n) = 1]
∣
∣
∣
∣
≤ 1

p(n)
.

The simulator S is constructed as follows: According to KOALA, there exists
a PPT algorithm A′ that samples vectors in Z

n
p that are likely to be orthogonal

to any subspace V such that A can distinguish [v]g ← [V ]g from [u]g ← [Z]g.
Now S repeatedly calls x ← A′ and queries the fY,n,t oracle on Sup(x) for a
total of R(n) times (for R some polynomial to be determined later). Now there
are two possibilities:

A. All of the fY,n,t queries return 0. In this case S just picks a uniformly
random vector u ∈ Z

n
p and outputs A([u]g).

B. One of the queries fY,n,t(X) returns 1. In this case S makes n − |X|
additional queries to fY,n,t on the inputs X ∪ {i} for i 
∈ X in order to learn
the set Y . Once S knows Y it queries fY,n,t on subsets of Y of increasing
size until it gets an accept in order to learn the threshold value t. Then S
outputs A(O(Y, n, t)).
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The intuition to why this simulator works is that either A can distinguish
O(Y, n, t) from randomness, in which case we can show that B occurs with
overwhelming probability, or A cannot distinguish O(Y, n, t) from [u]g in which
case the event A can happen with non-negligible probability, but this is not a
problem because then S outputs A([u]g) which is close enough to A(O(Y, n, t)).

Let s(n) be the polynomial from the KOALA assumption (Definition 5) such
that for any subspace V ⊂ Z

n
p

Pr[A′(1n) ∈ V ⊥ \ {0}] ≥ AdvA,V

s(n)
.

The remainder of the proof shows that the simulation error of S is bounded by
s(n)
R(n) , so by taking R(n) = s(n)p(n), we get that the simulation error of S is less
than 1

p(n) , as required.
Let VY,n,t be the set of exponent vectors of possible obfuscations of fY,n,t.

This is a vector space that can be written as VY,n,t = C + E, where C is

C =
{{h(i)}i∈[n] |h a degree t − 1 polynomial with h(0) = 0 } ,

and E is the subspace with basis {ei | i 
∈ Y }. C is the column space of the
(almost Vandermonde) n-by-(t − 1) matrix

⎛

⎜
⎜
⎜
⎜
⎝

1 1 · · · 1
2 22 · · · nt−1

...
...

. . .
...

n n2 · · · nt−1

⎞

⎟
⎟
⎟
⎟
⎠

Any (t − 1)-by-(t − 1) submatrix of this matrix is invertible, which means that
elements in C⊥ are either 0 or have more than (t − 1) nonzero entries. So for
any x ∈ (V ⊥

Y,n,t \ {0}) ⊂ (C⊥ \ {0}) we have |Sup(x)| ≥ t. Also, x ∈ E⊥, which
implies that Sup(x) ⊂ Y . Therefore, x ∈ V ⊥

Y,n,t \ {0} implies fY,n,t(Sup(x)) = 1.
So the event A that the support of none of the vectors sampled by A′ is

accepted by the fY,n,t oracle is less probable than the event that none of the
vectors sampled by A′ is orthogonal to VY,n,t. Because of KOALA this means

Pr[A] ≤ (

1 − Pr[A′(1n) ∈ V ⊥ \ {0}]
)R(n) ≤

(

1 − AdvA,V

s(n)

)R(n)

. (5)

The simulator returns the output A on random input or on input O(Y, n, t)
in case of event A or event B respectively, so

Pr[SfY,n,t(1n) = 1] = Pr[A] · Pr
u←Zn

p

[A([u]g) = 1] + Pr[B] · Pr[A(O(Y, n, t)) = 1] ,

so the simulation error of S is equal to

Pr[A] ·
∣
∣
∣
∣
Pr[A(O(V, n, t)) = 1] − Pr

u←Zn
p

[A([u]g) = 1]
∣
∣
∣
∣
= Pr[A] · AdvA,VY,n,t

.
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Combining this with Eq. 5 says that the simulation error of S is at most

(

1 − AdvA,VY,n,t

s(n)

)R(n)

· AdvA,VY,n,t ≤ exp

[
AdvA,VY,n,tR(n)

s(n)

]

AdvA,VY,n,t ≤ s(n)

R(n)
,

where for the first inequality we use 1−x ≤ exp(−x), and for the second inequal-
ity we use exp(−x) ≤ 1

x for x > 0. ��

5.2 Evasive Distributions

We describe several evasive distributions for the big subset functionality, which
will come in handy later for analyzing pattern matching with wildcards.

Lemma 2 (Evasive distributions for big subset). Let D = {Dn}n∈N be a
sequence of distributions and t0(n), t1(n) functions with 0 ≤ t0(n) ≤ t1(n) ≤ n.
Then we have

1. If Dn outputs (Y, n, t) with t ≥ t0, and the min-entropy of Dn is n − to(n) +
ω(log n), then D is evasive.

2. If Dn outputs (Y, n, t0(n)) with |Y | = t1(n), and the min-entropy of Dn is
log(

(
n−t0(n)

t1(n)−t0(n)

)

) + ω(log n), then D is D evasive.

Proof. Suppose D and t0 satisfy the assumptions of 1 and let mn be the min-
entropy of Dn. Take any n and X ⊂ [n]. Now we prove that

Pr
(Y,n,t)←Dn

[fY,n,t(X) = 1] ≤ (n − t0(n))2n−t0(n)−mn .

If |X| ≤ t0(n), then clearly this probability is zero, because we have |X| ≤ t with
probability 1. So suppose |X| ≥ t0(n). Then there are at most 2n−t0(n) values
of Y such that X ⊂ Y and at most (n − t0(n)) values of t such that |X| ≤ t.
This makes a total of (n− t0(n))2n−t0(n) triples (Y, n, t) such that fY,n,t(X) = 1.
Since each of these triples occurs with probability at most 2−mn the inequality
above follows.

This shows that if the min-entropy of Dn is n − to(n) + ω(log n), then

Pr
(Y,n,t)←Dn

[fY,n,t(X) = 1] ≤ (n − t0(n))2−ω(log n) ,

which is a negligible function of n, so D is evasive.
The argument to prove 2 is very similar, the only difference being that t =

to(n) and |Y | = t1(n) reduces the number of triples (Y, n, t) such that fY,n,t(X) =
1. If |X| < t0(n), then there are no accepting triples. If |X| ≥ t0 the number of
Y of size t1(n) such that X ⊂ Y is

(
n−t0(n)

t1(n)−t0(n)

)

, so

Pr
(Y,n,t)←Dn

[fY,n,t(X) = 1] ≤
(

n − t0(n)
t1(n) − t0(n)

)

2−mn .

The rest of the argument is the same as in the proof of 1. ��
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6 Obfuscating Pattern Matching with Wildcards,
Revisited

In this section, we further investigate the security of the obfuscation scheme
of [3]. On the negative side we introduce an attack that allows an adversary to
learn if the first half of the pattern consists of wildcards. This proves the scheme
is not VBB secure, and even that the scheme is not DVBB secure for some high
entropy distributions. On the positive side however, we prove that the scheme is
VBB secure if we allow for a super-polynomial simulator.

We also show that any distribution of patterns that has at least n + ω(log n)
bits of min-entropy is automatically secure. We give similar bounds for distribu-
tions that output patterns with a fixed number of wildcards. Our attacks match
these min-entropy bounds and hence they show that the bounds are nearly opti-
mal. The bounds immediately prove that the scheme is DVBB secure for uni-
form patterns and uniform patterns with a fixed number of wildcards up to
n−ω(log n). This is stronger than the result of [3] that only proves DVBB secu-
rity for uniform distributions of up to 3n

4 wildcards. Having up to n − ω(log n)
wildcards is optimal, because for n − O(log n) wildcards a pattern can be recov-
ered through black box queries in polynomial time and VBB security is trivial.
Indeed, if there are only O(log n) non wildcards, then after polynomially many
black box queries at random inputs we will get an accepting input. Once an
accepting input x ∈ {0, 1}n is found we can learn the entire pattern with n
additional black box queries on the n inputs that differ from x at exactly one
position.

6.1 The Construction of [3] Is Not VBB Secure

By looking at an obfuscation of a pattern ρ it is possible to check whether the first
half consists of wildcards. This is done by simply doing polynomial interpolation
in the exponent in the values vi,j for (i, j) ∈ [�n/2�]×{0, 1}. Determining whether
the first half of a pattern consists of wildcards is not efficiently possible with
only black box access, so this attack breaks VBB security. Moreover, this breaks
DVBB security for high entropy distributions.

Let [v]g = [{vi,j}(i,j)∈[n]×{0,1}]g be the obfuscation of a pattern ρ. To simplify
the notation we assume that n is even. The [vi,j ]g are of the form [p(2i− j)]g for
all (i, j) ∈ [n/2] × {0, 1} if and only if the first half of the pattern ρ consist of
wildcards. Therefore we can compute the polynomial interpolation coefficients

Ci,j =
∏

(a,b)∈[n/2]×{0,1},
(a,b) �=(i,j)

−2a + b

2i − j − 2a + b

and then h = [
∑

(i,j)∈[n/2]×{0,1} Ci,jvi,j ]g will be equal to [p(0)]g = [0]g if the
first half of ρ consist of wildcards. If the first half does not consist of wildcards,
then a random group element enters in the calculation of h and then h 
= [0]g
with overwhelming probability 1 − 1/p.
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Lemma 3 (A very evasive insecure distribution). There exists a sequence
of distributions {Dn}n∈N that is 2n/2n−ω(1)-evasive such that the obfuscation
scheme of [3] is not D-DVBB secure.

Proof. Let Dn be the distribution that tosses a fair coin and on tails outputs a
uniformly random pattern without wildcards and on heads outputs a uniformly
random pattern with wildcards in the first half but no wildcards in the second
half. Clearly for any x the probability

Pr
ρ←Dn

[fρ(x) = 1] < 2−n/2 ,

so this sequence of distributions is 2n/2n−ω(1)-evasive. Let A the adversary that
executes the attack of the previous paragraph and outputs 1 if h = [0]g and 0
otherwise. Let P be the predicate of the first half of a pattern being wildcards
and let S be a PPT simulator. Since our distribution is evasive we have

∣
∣
∣
∣

Pr
ρ←Dn,S

[Sfρ(1n) = P (ρ)] − Pr
ρ←Dn,S

[S0(1n) = P (ρ)]
∣
∣
∣
∣
= negl(n).

Now we can bound the simulation error of S:
∣
∣
∣
∣

Pr
ρ←Dn

[A(O(ρ)) = P (ρ)] − Pr
ρ←Dn,S

[Sfρ(1n) = P (ρ)]
∣
∣
∣
∣
≤

∣
∣
∣
∣

Pr
ρ←Dn

[A(O(ρ)) = P (ρ)] − Pr
ρ←Dn,S

[S0(1n) = P (ρ)]
∣
∣
∣
∣
− negl(n) =

∣
∣
∣
∣

(

1 − 1
2p

)

− 1
2

∣
∣
∣
∣
− negl(n).

which is clearly not negligible. This proves the obfuscation scheme is not distri-
butional VBB secure for this scheme. ��
Theorem 6 (O is not 20.5nn−ω(1)-VBB secure.). Let O be the obfuscation
scheme for pattern matching with wildcards from [3], then O is not 20.5nn−ω(1)-
VBB secure.

Proof. This follows immediately from Lemma 1 combined with Lemma 3. ��
The distribution of Lemma 3 has n/2+1 bits of min-entropy, but the attack

can be generalized to showcase distributions that are not DVBB with even more
min-entropy. If a pattern has wildcards in the first a ≤ n/2 positions, 0 or � in the
next n−2a positions and 0,1 or � in the last a positions, then an attacker can do
polynomial interpolation on the (n−a)+a values {[vi,0]g}i∈[n−a]∪{[vi,1]g}i∈[a] to
detect this. If we pick a = ω(log n) and we sample from these patterns uniformly
we get an evasive distribution. So, similar to the proof of Lemma 3 this leads to
an insecure distribution.

Lemma 4 (Insecure distribution with high min-entropy). There exists a
sequence of distributions {Dn}n∈N with n − 2a + log(3)a + 1 bits of min-entropy
such that the obfuscation scheme of [3] is not D-DVBB secure if a = ω(log n).
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We showed that the construction is not VBB secure because by looking at
O(ρ) it is possible to learn something about ρ in polynomial time that would
take O(2n/2) black box queries to learn otherwise. Later, we will prove that this
is essentially the best attack (assuming KOALA). Specifically, we prove that
anything that can be learned from an obfuscation of f can also be learned from
roughly 2n/2 black box queries to fρ (see Theorem 8).

6.2 Pattern Matching from Big Subset

Next, we show how to derive an obfuscation scheme for pattern matching starting
with that for big subset.

Theorem 7 (Pattern matching with wildcards obfuscator from big
subset obfuscator). For an obfuscation scheme O for the big subset func-
tionality, there exists an obfuscator O′ for the pattern matching with wildcards
functionality such that:

1. If O is T -VBB secure with simulators making Q black box queries, then O′

is (T + Q2n/2)-VBB secure.
2. If O is T -VBB secure with simulators making Q black box queries, then O′

is (T + Q(2w + n))-VBB secure for pattern matching with up to w wildcards.
3. For a sequence of distributions {D′

n}n∈N of length n patterns, let Dn =
(YD′

n
, 2n, n), where for pattern ρ, the subset Yρ is defined as

2i − j ∈ Yρ ⇔ ρi = � or ρi = j .

Then, if O is D-DVBB secure with simulators that don’t make black box
queries, then O′ is D′-DVBB secure with simulators that don’t make black
box queries.

Proof. The obfuscator O′ works as follows:

– To obfuscate a pattern ρ ∈ {0, 1, �}n the obfuscator O′ simply outputs
O(Yρ, n, 2n).

– To evaluate the Obfuscated program at input x ∈ {0, 1}n, one simply outputs
O(Yρ, 2n, n)(Xx), where

Xx = {2i − j | (i, j) ∈ [n] × {0, 1} s.t. xi = j} .

To prove 1, assume that A is an adversary against the O′ obfuscator, and that
1

p(n) is the desired simulator accuracy. We can use A as an adversary to O, so if
O is T -VBB secure there exists a simulator S, running in time O(T ∗ poly(n)),
such that for sufficiently large n we have

∣
∣
∣
∣
Pr
O,A

[A(O(Yρ, 2n, n)) = 1] − Pr
S

[SfYρ,2n,2(1n) = 1]
∣
∣
∣
∣
≤ 1

p(n)
.

So S is almost a good simulator to prove T -VBB security for O′, the only problem
is that S makes black box queries to fYρ,2n,n instead of to fρ. To solve this
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problem it suffices to prove that one can answer queries to fYρ,2n,n using at
most O(2n/2) queries to fρ.

If fYρ,2n,n is queried on input X with |X| < n we can return 0 without
making any queries to fρ. We define

Wildcards = {i | 2i ∈ X and 2i − 1 ∈ X} ,

Zeros = {i | 2i ∈ X and 2i − 1 
∈ X} and
Ones = {i | 2i 
∈ X and 2i − 1 ∈ X} .

Since 2|Wildcards| + |Ones| + |Zeros| = |X| ≥ n we have |Wildcards| + |Ones| +
|Zeros| ≥ n/2. This means there are at most 2n/2 inputs x that are zero at the
indices of Wildcards∪ Zeros and one at the indices in Ones. We query fρ at each
of these inputs. If each of these queries returns 0 we know that X 
⊂ Yρ, so we
return 0. If one of the queries returns a 1 we can do n additional black box
queries to fρ to recover the entire pattern ρ and we output 1 only if X ⊂ Yρ.

This shows that there is a simulator S ′ for O′ with negligible simulation error
that runs in time O(T ∗ poly(n) + Q2n/2), which proves 1. For 2 we observe that
if ρ has at most w wildcards, then |Wildcards| ≤ w which implies |Wildcards| +
|Ones| + |Zeros| ≥ n − w. Therefore we can answer each query to fYρ,2n,n

in time
O(2w + n) which proves 2.

To prove 3, assume A is an adversary against the O′ obfuscator and
{P ′

n}n∈N a sequence of predicates. Define a sequence of predicates Pn :
{P ([2n], 2n, [2n])} → {0, 1} such that Pn((Yρ, 2n, n)) = P ′

n(ρ) for all ρ ∈ 0, 1∗

and with arbitrary behavior on other inputs. By assumption there exists a simu-
lator S for (A, P ) that makes no black box queries and with negligible simulation
error

∣
∣
∣
∣

Pr
(Yρ,2n,n)←Dn

[A(O(Yρ, 2n, n)) = Pn(Yρ, 2n, n)] − Pr
(Yρ,2n,n)←Dn

[S(1n) = Pn(Yρ, 2n, n)]

∣
∣
∣
∣

.

But this simulation error is exactly equal to
∣
∣
∣
∣

Pr
ρ←D′

n

[A(O′(ρ)) = P ′
n(ρ)] − Pr

(ρ←D′
n

[S(1n) = P ′
n(ρ)]

∣
∣
∣
∣

,

so S is also a good simulator for (A, P ′), which proves that O′ is D′-DVBB
secure. ��

6.3 Security Guarantees for Construction of [3]

Since the obfuscator of [3] is an instantiation of the transformation of Theorem 7
with the big subset obfuscator whose VBB security we prove in Theorem 5
we can now derive security guarantees. In particular we derive the 2n/2-VBB
security of the obfuscator and we prove that a sequence of distributions that has
enough min-entropy is automatically DVBB secure. We prove one statement for
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distributions that output (Y, n, t) with t ≥ t0 for a certain t0, and one statement
for distributions that output (Y, n, t) with a fixed t = t0, and a fixed size of Y
equal to t1. The following follows immediately from combining Theorem 7 with
Theorem 5 (note that VBB security is equivalent to 1-VBB security, because
the T -VBB security definition hides polynomial factors in the runtime of the
simulators).

Theorem 8 (O is 2n/2- VBB secure and 2w-VBB secure). The obfus-
cator for pattern matching with wildcards from [3] is 2n/2-VBB secure. If the
functionality is restricted to patterns with at most w(n) wildcards, the obfusca-
tor is 2w-VBB secure.

The DVVB security of the pattern matching obfuscator for a wide variety of
distributions also follows.

Theorem 9 (DVBB security for min-entropy distributions). Let D =
{Dn}n∈N be a sequence of distributions over {0, 1, �}n and let w(n) be a function
with 0 ≤ w(n) ≤ n, then

1. If the min-entropy of Dn is n + ω(log n), then the obfuscation scheme is D-
DVBB secure with simulators that make no black box queries.

2. If Dn is supported on patterns with w(n) wildcards, and its min-entropy is
log(

(
n

w(n)

)

) + ω(log n), then the obfuscation scheme is D-DVBB secure with
simulators that make no black box queries.

Proof. The embedding of pattern matching instances into big subset instances
ρ �→ (Yρ, 2n, n) is injective so it preserves min-entropy. Now point 1 of Lemma 2
with t0(2n) = n says that if the min-entropy of D′ = (Yρ, 2n, n) is n + ω(log n),
then the obfuscation scheme for the big subset functionality is D′-DVBB secure
with a simulator that makes no black box queries. From this, Theorem 7 says that
the obfuscation scheme for pattern matching is D-VBB secure with simulators
that make no black box queries.

To prove 2, we use point 2 of Lemma 2 with t0(2n) = n and t1(2n) = n+w(n).
This tells us that if the min-entropy of Dn is log(

(
n

w(n)

)

) + ω(log n) then the big
subset-obfuscator is DVBB secure. From this, Theorem 7 says that the pattern
matching-obfuscator is D-DVVB secure. ��

The min-entropy bounds of Theorem9 are almost optimal. The generalized
attack of Lemma 4 gives a distribution which has min-entropy larger than n −
ω(log n). Similarly, we can construct distributions of functions with exactly w(n)
wildcards for which the scheme is not DVBB secure that have min-entropy at
least log(

(
n

w(n)

)

) − ω(log n).
From the min-entropy criteria it follows immediately that the obfuscator

of [3] is DVVB secure for uniform distributions, and uniform distributions with
a fixed number of wildcards.

Theorem 10 (DVBB security for uniform distributions). Let O be the
obfuscator from [3], and let w(n) be a function with n ≤ w(n) ≤ n, such that
n − w(n) is ω(log n) then
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1. O is DVBB secure for the sequence of uniform distributions of patterns of
length n, and

2. O is DVBB secure for the sequence of uniform distributions of length n pat-
terns with w(n) wildcards.

Proof. There are 3n patterns of length n, so the min-entropy of the uniform
distributions is log(3)n, which is clearly n + ω(log n). The claim now follows
from Theorem 9.

For 2, there are
(

n
w(n)

)

2n−w(n) patterns, so the min-entropy of the distribution
is log(

(
n

w(n)

)

) + n − w(n), so again the claim follows from Theorem 9. ��

Remark 3. The condition that n−w(n) is ω(log n) is essentially optimal, because
if the number of non-wildcards is O(log n), then an adversary can find an accept-
ing input in polynomial time and recover the entire pattern with n additional
black box queries.

7 Generalizing the Scheme

A natural question is whether we can generalize the scheme of [3] to create a
scheme that is fully VBB secure. For example, one could hope to introduce some
extra error terms to the scheme to prevent the attack of Sect. 6.1 and get a fully
VBB secure scheme. However, we formulate a big class of generalizations of the
scheme and show that all these schemes suffer from an attack similar the one in
Sect. 6.1. On the positive side we give a variant of the scheme of [3] which has
exactly the same security, but where the obfuscation only consists of n+1 group
elements instead of 2n.

7.1 Framework

At a high level, the construction of [3] consist of a mapping u : {0, 1}n → Z
m
p

that maps an input x to a vector ux of length m (In the construction we have
m = 2n), and a mapping V that assigns a vector space Vρ to each pattern ρ
in {0, 1, �}n. An obfuscation of the pattern ρ is then [v]g, where v is a vector,
chosen uniformly from Vρ. To evaluate the obfuscated program at input x the
evaluator computes [u�

x · v]g. If this inner product is [0]g the evaluator outputs
1, otherwise it outputs 0. For correctness, we require that ux is orthogonal to
Vρ if and only fρ(x) = 1. This ensures that the obfuscated program outputs 1 if
fρ(x) = 1 with probability 1, and 0 if fρ(x) = 0 with overwhelming probability
1 − 1/p.

Definition 10 (Linear-in-the-exponent obfuscation scheme). A linear-
in-the-exponent obfuscation scheme (for pattern matching with wildcards) is a
tuple (u, V,m(n),O), where u is a mapping {0, 1}n → Z

m(n)
p and V is a mapping

that sends patterns in {0, 1, �}n to subspaces of Zm(n)
p such that

ux ∈ V ⊥
ρ ⇔ fρ(x) = 1,
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and O is the obfuscation scheme that in input ρ outputs [v]g, for a uniformly
chosen vector v ∈ Vρ. Note that m(n) has to be bounded by a polynomial, because
otherwise O does not have a polynomial slowdown.

Concretely, in the construction of [3] the mapping u assigns to input x ∈
{0, 1}n the length-2n vector ux whose (2i− j)-th component is the correct poly-
nomial interpolation coefficient if xi = j, and 0 otherwise. For a pattern ρ, the
vector space Vρ = C + Eρ, where

C =
{{h(i)}i∈[n] |h a degree t − 1 polynomial with h(0) = 0 } ,

and Eρ is the subspace with basis {e2i−j | ρi 
= � and ρi 
= j}. We have correct-
ness because ux is orthogonal to C regardless of x, and orthogonal to E if and
only if fρ(x) = 1.

7.2 Compression

We observed that ux is orthogonal to C, regardless of x. This is because ux · v
corresponds to looking at certain coefficients of u and doing polynomial inter-
polation on them at 0, while the entries of u ∈ C are precisely the evaluation
of a low degree polynomial h with h(0) = 0. This shows that u sends all the
inputs x to a vector in C⊥, which is a subspace of dimension n + 1. So the
scheme is not using the additional n − 1 dimensions of Z2n

p , which is wasteful.
We can “cut out” these extra dimensions to get a scheme (u′, V ′) which has
more compact obfuscated programs consisting of n+1 group elements instead of
2n, but still has the same security. This compression can be performed for any
linear-in-the-exponent obfuscation scheme (u, V ) if 〈ux |x ∈ {0, 1}n〉 
= Z

m
p .

Theorem 11 (Compressing linear-in-the-exponent schemes). Let (u,
V,m,O) be a linear-in-the-exponent obfuscation scheme, then there exists a
scheme (u′, V ′,m′,O′) such that

m′(n) = dim(〈ux |x ∈ {0, 1}n〉) = dim(〈u′
x |x ∈ {0, 1}n〉).

Let T be a function and {Dn}n∈N be a sequence of distributions of length-n
patterns. If O is VBB, T -VBB or D-DVBB secure then O′ is VBB, T -VBB or
D-DVBB secure respectively.

Proof. For any n, let Un = 〈ux |x ∈ {0, 1}n〉 be the space spanned by the ux.
Let m′(n) = dim(Un) and let u1, · · · ,um′(n) be a basis for U and extend this
to a basis u1, · · · , un for all of Zm(n)

p . Let M be the matrix whose columns are
the ui, and M� and M−1 the first m′(n) rows of M� and M−1 respectively.
Now we define u′

x = M−1ux and V ′
ρ = M�Vρ. Let u be a vector from Vρ and

v′ = M�v, then we have

u′
x

� · v′ = u�
x · M−1

� · M� · v = u�
x · v .
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This shows that the new linear-in-the-exponent obfuscation scheme (u′, V ′,
m′,O′) is correct if the original scheme is.

To prove that the compression preserves security, let A′ be an adversary that
breaks VBB, T -VBB or D-DVBB security of O′, then it is easy to see that the
adversary A that on input [v]g computes [M�v]g and outputs A′([M�v]g) is an
adversary that breaks VBB, T -VBB or D-DVBB security of O respectively. ��

7.3 Impossibility Result

We have proven that the construction of [3] is essentially only 2n/2-VBB secure.
So constructing a simple, efficient and fully VBB secure construction is still an
open problem. A priori, one can hope to find another construction that follows
the linear-in-the-exponent paradigm which is fully VBB secure, or perhaps some-
thing that is 2

√
n-VBB secure. Unfortunately we show that our attack on the

construction of [3] generalizes to a wide class of “natural” linear-in-the expo-
nent constructions. Recall that our attack on the scheme of [3] allowed to check
whether the first half of an obfuscated pattern consists of wildcards. This was
done by interpolating on the first n values. In the language of the linear-in-
the-exponent framework this means there is a vector o (which corresponds to
polynomial interpolation) that is orthogonal to Vρ for every pattern ρ that has
wildcards in the first n/2 positions. So, given an obfuscated program O(ρ) = [v]g,
one can test if the first half of the obfuscated pattern ρ consists of wildcards by
checking if [o� · v]g = [0]g. One crucial element here for the attack work is that
[o� · v]g 
= [0]g with a large probability if [v]g is the obfuscation of a pattern
that does have non-wildcard characters in the first half of the pattern. For the
construction of [3] this is obviously true.

The same thing happens for general linear-in-the-exponent obfuscation
schemes. We show in Lemma 5 that if a ≤ n

log(m) , then there exist a subset
A ⊂ [n] of size a and a non-zero attack vector o such that o is orthogonal to Vρ

for every pattern ρ that has only wildcards outside of A. If o is not orthogonal
to obfuscations of uniformly chosen patterns with a non-negligible probability,
then this breaks VBB security (and even 2

n
ω(log n) -VBB security). Note that with-

out loss of generality we can assume that no vector is orthogonal to every Vρ,
because otherwise we can use the compression trick to obtain a more efficient
and equally secure scheme. Schemes for which each vector is not orthogonal to
a significant fraction of the Vρ are called natural. We then prove that there are
no natural linear-in-the-exponent obfuscation schemes.

Definition 11 (Natural linear-in-the-exponent schemes). A linear-in-
the-exponent obfuscation scheme (u, V,m,O) is called natural if there exists a
polynomial p(n) such that for all vectors o

Pr
ρ←{0,1,�}n

[o 
∈ V ⊥
ρ ] ≥ 1

p(n)
.

Remark 4. All schemes where m(n) = n + 1 are natural.
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Lemma 5 (There exist vectors orthogonal to patterns with wildcards
at fixed positions). Let (u, V,m,O) be a linear-in-the-exponent obfuscation
scheme for pattern matching with wildcards. Then if a(n) ≤ n

log(m(n)) then there
exist subsets An ⊂ [n] of size |An| = a(n) and non-zero vectors on such that on

is orthogonal to Vρ for any pattern ρ that has wildcards outside of An.

Proof. Suppose (u, V,m,O) is a linear-in-the-exponent obfuscation scheme for
pattern matching with wildcards. Let a(n) be a function such that 2� n

a(n) � >
m(n) then we will prove that there is a subset A ⊂ [n] of size |A| = a together
with a non-zero vector o such that o is orthogonal to Vρ for all patterns ρ such
that ρi = � for all i outside of A. It suffices to show this in the case that the Vρ

are maximal given the correctness constraints, i.e.

Vρ = 〈ux |x ∈ {0, 1}n : ρ(x) = 1〉⊥ .

Clearly, if we prove there exists a vector o that is orthogonal to the maximal
Vρ, than this o will also be orthogonal to whatever the Vρ are in any other
linear-in-the-exponent obfuscation scheme with the same u map.

For i ∈ [n] and j ∈ {0, 1, �} let ei,j be the pattern that has the character j
at position i and wildcards at all other positions. Then we have for a general
pattern ρ that fρ(x) = 1 if and only if fei,ρj

(x) = 1 for all i ∈ [n]. Therefore we
have that

Vρ = 〈ux |x ∈ {0, 1}n : fei,ρi
(x) = 1 ∀i ∈ [n]〉⊥

=
n∑

i=1

〈ux |x ∈ {0, 1}n : fei,ρi
(x) = 1〉⊥ =

n∑

i=1

Vei,ρi
.

Working towards a contradiction, suppose no A ⊂ [n] of size |A| = a and o
exists. This means that for every set A ⊂ [n] of size |A| = a we have

∩{V ⊥
ρ | ρ : ρi = �∀i 
∈ A} = {0} ,

which is equivalent to
∑{Vρ | ρ : ρi = �∀i 
∈ A} = Z

m(n)
p . Using the fact that

Vρ =
∑n

i=0 Vei,ρi
this is the same as

(
∑

i∈A

Vei,0

)

+

(
∑

i∈A

Vei,1

)

= Z
m(n)
p . (6)

Pick �n
a � disjoint subsets A1, · · · , Ak, each of size a, and define the vector

spaces
V j

i =
∑

i∈Ai

Vei,j
.

Then Eq. 6 says that for any i we have V 0
i + V 1

i = Z
m(n)
p . At the same time we

have for any y ∈ {0, 1}k that

Vy =
k∑

i=1

V yi

i 
= Z
n
p ,
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because if ρ is the pattern such that ρi = yj if i ∈ Aj and ρi = � otherwise,
then Vρ =

∑k
i=1 V yi

i , and Vρ is not equal to Z
m
p (n) because by correctness it is

orthogonal to x for any x that is accepted by ρ.
Now we show that the 2k none of the spaces Vy

⊥ are included in the sum of
the other 2k − 1 ones. Indeed, suppose V ⊥

y ⊂ ∑

y′ �=y V ⊥
y′ , which is equivalent to

Vy ⊃ ⋂

y′ �=y Vy′ , then after adding Vy to both sides we get

Vy ⊃
⋂

y′ �=y

(Vy′ + Vy) .

But this is a contradiction because the left hand side is not equal to Z
m(n)
p

while each space in the intersection is equal to Z
m(n)
p because if yi 
= y′

i, then
Vy′ +Vy contains V 0

i +V 1
i = Z

m(n)
p . The fact that none of 2k subspaces of Zm(n)

p

is included in the sum of the other 2k − 1 ones implies that m(n) ≥ 2k = 2� n
a �,

which contradicts the assumption that m(n) < 2� n
a �. ��

The following theorem follows readily from Lemma 5 and the discussion
above.

Theorem 12 (Limitations of linear-in-the-exponent obfuscation). There
are no natural linear-in-the-exponent obfuscation schemes that are 2

n
ω(log n) -VBB

secure.

Since every scheme with the minimal dimensionality of m = n+1 is automatically
natural, this implies that no VBB secure constructions with m(n) = n+1 exist.

Proof. Let a(n) = n
log(m(n)) − 1. Then Lemma 3 says that there exists an An

of size a(n) and vectors on such that o is orthogonal to Vρ for all patterns ρ
that have wilcards outside of An. Sampling uniformly from patterns that have
wildcards outside of An and no wildcards at locations in An are 2a(n)n−ω(1)-
elusive. But obfuscations of these patterns can be efficiently distinguished from
obfuscations of uniformly random patterns (which are also elusive) with the
vectors on, because the former are orthogonal to o, and the latter are not with
non negligible probability (because of the naturality assumption). Then it follows
from Lemma 1 that the scheme is not 2a(n)n−ω(1)-VBB secure. The claim follows
because 2a(n)n−ω(1)) is eventually bigger than 2n/f(n) for every f(n) that is
ω(log n). ��
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Abstract. In the simplest setting of proxy reencryption, there are three
parties: Alice, Bob, and Polly (the proxy). Alice keeps some encrypted
data that she can decrypt with a secret key known only to her. She wants
to communicate the data to Bob, but not to Polly (nor anybody else).
Using proxy reencryption, Alice can create a reencryption key that will
enable Polly to reencrypt the data for Bob’s use, but which will not help
Polly learn anything about the data.

There are two well-studied notions of security for proxy reencryp-
tion schemes: security under chosen-plaintext attacks (CPA) and security
under chosen-ciphertext attacks (CCA). Both definitions aim to formal-
ize the security that Alice enjoys against both Polly and Bob.

In this work, we demonstrate that CPA security guarantees much
less security against Bob than was previously understood. In particu-
lar, CPA security does not prevent Bob from learning Alice’s secret key
after receiving a single honestly reencrypted ciphertext. As a result, CPA
security provides scant guarantees in common applications.

We propose security under honest reencryption attacks (HRA), a
strengthening of CPA security that better captures the goals of proxy
reencryption. In applications, HRA security provides much more robust
security. We identify a property of proxy reencryption schemes that suf-
fices to amplify CPA security to HRA security and show that two existing
proxy reencryption schemes are in fact HRA secure.

Keywords: Proxy reencryption · Definitions ·
Public-key cryptography

1 Introduction

Consider three parties: Alice, Bob, and Polly Proxy. Alice keeps encrypted data
(created with a public key) that she can decrypt with a secret key known only
to her. She wants to communicate some of the data to Bob, but not to Polly
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(nor anybody else). Assuming Alice and Polly know Bob’s public key, how can
she communicate the data to him?

If she is willing to entrust Bob with all her secrets, past and future, Alice
might try to tell Bob her secret decryption key by encrypting it using Bob’s
public key. We call this the Trivial Scheme. If she does not have such trust in
Bob, Alice can instead decrypt the data, and reencrypt it using Bob’s public key.
But what if Alice does not want to do the work of decrypting and reencrypting
large amounts of data?

Proxy reencryption (PRE) provides an elegant solution: Alice creates and
gives to Polly a reencryption key that will enable Polly to reencrypt her data
under Bob’s public key for his use, but that will not reveal the data to Polly.
Proxy reencryption guarantees that Bob can recover the data uncorrupted (cor-
rectness) and that Polly cannot learn anything about Alice’s data (security). The
most widely-studied model of security for proxy reencryption is called CPA secu-
rity, named after the corresponding notion from standard encryption on which
it is based.

But what about Bob? As already observed, if we do not require any security
against Bob, proxy reencryption is trivial: Alice uses the Trivial Scheme, simply
sending Bob her encrypted secret key. This is undesirable, unsatisfying, and
insufficient for a number of supposed applications of proxy reencryption (Sect. 2).

Surprisingly, the Trivial Scheme is a CPA secure proxy reencryption scheme
when the public key encryption scheme used is circularly secure [6]! Bob com-
pletely learns Alice’s secret key, and circular security is used only to prove secu-
rity against a malicious Polly. Furthermore, the CPA-security of any proxy reen-
cryption scheme remains uncompromised if Polly attaches the reencryption key
to every reencrypted ciphertext sent to Bob, even though this would enable Bob
to decrypt messages encrypted under Alice’s public key (Sect. 3.1).

These “constructions” of CPA-secure proxy reencryption—original to this
work—demonstrate the inadequacy of CPA security for proxy reencryption. If
they had been observed previously, perhaps CPA security would not have gained
the traction that it has.

Throughout this work, we use CPA (respectively, CCA and HRA) to refer
to the security notion for proxy reencryption, and Enc-CPA (resp., Enc-CCA)
to refer to the security notion for standard encryption. We restrict our attention
to unidirectional proxy reencryption, where the reencryption key allows Alice’s
ciphertexts to be reencrypted to Bob’s key, but not the reverse. In a bidirectional
scheme, Bob—using his own secret key and Alice’s public key—is able compute
the Alice-to-Bob reencryption key himself; thus a lack of security against Bob is
inherent.

1.1 CPA and CCA Security of Proxy Reencryption

First considered by Blaze, Bleumer, and Strauss [5], proxy reencryption has
received significant and continuous attention in the last decade, including def-
initions [4,10,22,28], number-theoretical constructions [3,12,26], lattice-based
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constructions [2,17,19,30], implementations [8,20,25,31], and early success in
program obfuscation [11,21].

Adapting notions from standard encryption, this literature considers two
main indistinguishability-based security notions for proxy reencryption: security
under chosen plaintext attacks (CPA) [3] and chosen ciphertext attacks (CCA)
[10]. While CCA security is considered the gold-standard, CPA security has
received significant attention [3,4,21], especially in latticed-based constructions
[2,19,30,31]. CPA security has been used as a testing ground for new techniques
for proxy reencryption and in settings where efficiency concerns make the added
security of CCA undesirable.

We now briefly describe the definitions of CPA and CCA security for proxy
reencryption, with the goal of communicating the underlying intuition. For this
informal description, we restrict our attention to the limited three party setting
of Alice, Bob, and Polly and strip away many of the complexities of the full
definition. For a full definitions of CPA and CCA security, see Definition 3 and
the full version of this article [13], respectively.

Both notions are typically defined using a security game between an adver-
sary and a challenger in which the adversary’s task is to distinguish between
encryptions of two messages. Both notions allow the adversary to corrupt either
Bob (learning skbob) or Polly (learning the reencryption key rk). CCA and CPA
security differ in the additional power granted to the adversary.

CCA security grants the adversary access to two oracles:

– ODec: The decryption oracle takes as input a ciphertext along with the public
key of either Alice or Bob, and outputs the decryption of the ciphertext using
the corresponding secret key.

– OReEnc: The reencryption oracle takes as input a ciphertext ctalice and outputs
a reencrypted ciphertext ctbob.

These oracles come with restrictions to prevent the adversary from simply reen-
crypting or decrypting the challenge ciphertext, adapting replayable chosen-
ciphertext security of standard encryption (Enc-CCA) in the natural way.

CPA security of proxy reencryption, however, removes both oracles.1 Why?
First, to adapt chosen-plaintext security from standard encryption (Enc-CPA)
to proxy reencryption, we must of course do away with ODec. Secondly, it seems
we must also remove OReEnc: otherwise, by corrupting Bob it seems that the
adversary can use the combination of OReEnc and skbob to simulate ODec. Remov-
ing both decryption and reencryption oracles, according to [3], naturally extends
the Enc-CPA security to proxy reencryption, yielding CPA security.

As we observe in this work, a natural definition is not always a good defini-
tion. Not only is the above intuition for removing OReEnc false (see full version

1 This description is an oversimplification. In the many party setting, the adversary
has access to a reencryption oracle which will reencrypt ciphertexts between two
uncorrupted parties or between two corrupted parties, but not from an honest party
to a corrupted party.
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[13]), but CPA security as defined above guarantees little against a honest-but-
curious Bob, even under normal operation. The definition only requires that
the adversary will not win the game as long as it never sees any reencrypted
ciphertexts. It guarantees nothing if Bob sees even a single reencrypted cipher-
text. This vulnerability is not purely theoretical: in the CPA secure scheme of
[31], Bob can recover Alice’s secret key with significant probability from a single
reencrypted ciphertext (Theorem 4).

This makes CPA security ill-suited for the most commonly cited applications
of proxy reencryption, including forwarding of encrypted email and single-writer,
many-reader encrypted storage (Sect. 2). CPA security is inadequate for proxy
reencryption and must be replaced.

1.2 Security Against Honest Reencryption Attacks

What minimal guarantees should proxy reencryption provide? First, it should
offer security against a dishonest proxy Polly when Alice and Bob are honest and
using the proxy reencryption as intended. Polly’s knowledge of a reencryption key
from Alice to Bob (or vice versa) should not help her learn anything about the
messages underlying ciphertexts encrypted under pkalice or pkbob. Such security
against the corrupted proxy is guaranteed by CPA.

Second, proxy reencryption should offer security against a dishonest receiver
Bob when Alice and Polly are honest and using the proxy reencryption as
intended. Bob’s knowledge of honestly reencrypted ciphertexts (that were hon-
estly generated to begin with) should not help him learn anything about the
messages underlying other ciphertexts encrypted under pkalice that have not
been reencrypted. As we show in this work, such security against the corrupted
receiver is not guaranteed by CPA.

Generalizing these dual guarantees to many possibly colluding parties, we
want security as long as the adversary only sees honestly reencrypted ciphertexts.
In Sect. 4, we formalize this notion as proxy reencryption security against honest
reencryption attacks (HRA). Recall that CCA security provides the adversary
with both ODec and OReEnc while CPA provides neither oracle. In contrast, HRA
security provides the adversary with a restricted reencryption oracle which will
only reencrypt honestly generated ciphertexts.

By guaranteeing security of both kinds described above, HRA is a strength-
ening of CPA security that better captures our intuitions for security of proxy
reencryption. Furthermore, HRA guarantees more meaningful security in the
most common applications of proxy reencryption (Sect. 4.1). HRA security is an
appropriate goal when developing new techniques for proxy reencryption and in
settings where full CCA security is undesirable or out of reach.

Security of Existing Schemes. Can we construct a proxy reencryption scheme
that is HRA secure? HRA security is a strict strengthening of CPA security,
so it is not immediately clear that any existing constructions are HRA secure
without redoing the proofs from scratch. Indeed, the CPA secure scheme of [31]
is not HRA secure (Theorem 4).
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In Sect. 5, we identify a property—reencryption simulatablity—which is suf-
ficient to boost CPA security to HRA security. Very roughly, reencryption
simulatability means that reencrypted ciphertexts resulting from computing
ReEnc(rkalice→bob, ctalice) can be simulated without knowledge of the secret key
skalice (but with knowledge of the plaintext message m). Reencryption simulata-
bility allows a reduction with access to the CPA oracles to efficiently implement
the honest reencryption oracle, thereby reducing HRA security to CPA security.

We the examine the simple construction of proxy reencryption from any
fully-homomorphic encryption [19], and the pairing-based construction of [4].
In the first case, if the fully-homomorphic encryption secure is circuit private,
then the resulting proxy reencryption scheme is reencryption simulatable. In
the second case, rerandomizing reencrypted ciphertexts suffices for reencryption
simulation.2

1.3 Related Work

The below mentioned works are just the most directly relevant. There is by
now an extensive research literature on proxy reencryption, presenting a zoo of
definitions. There have been three main approaches to defining security: CPA,
CCA, and (to a much lesser extent) obfuscation-based. The CPA notion, in one
form or another, is by far the most well studied. In this work, we make the
deliberate choice to address the core CPA definition, not to present an ultimate
definition of security for proxy reencryption nor to address the vast array of
different criticisms or strengthenings of CPA security that have been or may be
considered. We hope that doing so will make these ideas more understandable
and adaptable.

RIND-CPA Security. In concurrent and independent work defining and
constructing forward-secure proxy reencryption, Derler, Krenn, Lorünser,
Ramacher, Slamanig, and Striecks identify the same problem with CPA secu-
rity as discussed in this work [14, Definition 14]. As in our work, they address
the problem with CPA security by defining a new security notion—RIND-CPA
security—which expands the power of the adversary. They additionally sepa-
rate RIND-CPA and CPA security with a construction that is essentially our
Concatenation Scheme.

However, this is where the resemblance between [14] and our work ends. In
the RIND-CPA game offered by [14], the adversary gets access to an reencryption
oracle that works on all inputs (not just honestly generated ones), but only before
the challenge ciphertext is generated.3 In contrast, HRA allows reencryption
both before and after the challenge, but only for honestly generated ciphertexts.

2 While we don’t examine every pairing-based construction of proxy reencryption, we
suspect that rerandomizing reencryption will suffice for reencryption simulation in
many, if not all.

3 The full version [13] discusses the related definition of IND-CCA0,1 security from [28].
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RIND-IND is inadequate as a replacement for CPA security in the research
literature: its usefulness in applications is unclear, and it appears too strong
to provide a useful testing ground for the development of new techniques for
constructing proxy reencryption.

In the course of normal operation of a proxy reencryption in applications, an
adversarial party will typically see many reencrypted ciphertexts. These cipher-
texts may come at any time—both before and after other ciphertexts whose con-
tents should remain secret. HRA is meaningful in many such applications—many
more than CPA security. But because RIND-CPA restricts the reencryption ora-
cle to the period before the challenge ciphertext, its usefulness in applications is
not clear.

The challenge of proving CCA security for encryption (proxy or otherwise) is
demonstrating that an adversary cannot use dishonestly generated, malformed
ciphertexts to win in the security game. In this respect, RIND-CPA security
is much more akin to CCA security than to CPA security. HRA, on the other
hand, makes minimal assumptions about the distribution of plaintext messages
by allowing the adversary to choose messages itself, just as in Enc-CPA for
standard encryption.

Appendix B discusses RIND-CPA security in more depth, expanding on
the arguments above and proving that RIND-CPA and HRA security are
incomparable.

Subsequent Work. Two subsequent works continue the study of HRA secure
proxy reencryption. Fuchsbauer, Kamath, Klein, and Pietrzak study CPA and
HRA secure proxy reencryption in an adaptive corruption model [18]. As in our
work, they prove the HRA security of their construction by first proving CPA
security and then lifting it to full HRA security using a version of reencryption
simulatability.

More recently, Dottling and Nishimaki study the problem of converting
ciphertexts between different public-key encryption schemes, a problem they
call universal proxy reencryption [15]. They define security by extending HRA
security to the universal setting. [15] extends Theorem 5 to show that a com-
putational version of reencryption simulatability suffices to lift CPA to HRA
security. However, they prove HRA security directly rather, finding that proving
computational reencryption simulatability is not much more simple than proving
HRA security itself.

Other Related Work. Our dual-guarantee conception of proxy reencryption
security mirrors the security requirements of what Ivan and Dodis call CPA
security [22]. Their notion differs substantially from what is now referred to
by that name. The [22] conception of CPA security is only defined in a proof
in the appendix of that work and seems to have been completely overlooked
by the later works proposing the modern notion of CPA security (beginning
with [4] and then in its present form in [3]). If, however, Ivan and Dodis had
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undertaken to revisit proxy reencryption after [3], they might have proposed a
security definition similar to HRA.

In [28], Nuñez, Agudo, and Lopez provide a parameterized family of CCA-
type attack models for proxy reencryption. Their weakest model corresponds to
CPA security and their strongest to full CCA security. That work is partially
a response to a claimed construction of CCA-1 secure proxy reencryption in a
security model that does not allow reencryption queries. [28] provide an attack
on the construction in the presence of a reencryption oracle consisting of care-
fully constructed, dishonestly generated queries which leak the reencryption key.
They do not consider restricting the reencryption oracle in the security game to
honestly generated ciphertexts. We discuss [28] further in the full version [13].

Finally, a parallel line of work initiated by Hohenberger, Rothblum,
Shelat, Vaikuntanathan which studies proxy reencryption using an obfuscation-
based definition that is incomparable to CPA security [21]. Their definition
requires that the functionality of the obfuscated reencryption circuit be sta-
tistically close to that of the ideal reencryption functionality: namely, that
ReEnc(rki→j ,Enc(pki,m)) ≈s Enc(pkj ,m). Thus the definition of [21] (and even
the relaxed correctness found in [11]) imply reencryption simulatability defined
in Sect. 5.

1.4 Organization

We begin by discussing applications of proxy reencryption and identifying the
weaknesses of CPA security in those applications (Sect. 2). Then we present the
existing CPA security definition and further demonstrate its weaknesses with two
new schemes: the Trivial Scheme and Concatentation Scheme (Sect. 3). We pro-
pose a new security notion to overcome those weaknesses: security against hon-
est reenecryption attacks (HRA) (Sect. 4). We examine the relationship between
CPA and HRA security and the HRA security (or insecurity) of existing reen-
cryption schemes (Sect. 5). The appendix provides additional discussion of the
Trivial Scheme (AppendixA) and comparison between HRA and RIND-CPA
security (AppendixB). The full version provides additional discussion of CCA
security [13].

2 Insufficiency of CPA Security for Applications

In Sect. 3, we recall the definition of CPA security of proxy reencryption from
[3] and formalize the Trivial Scheme from the introduction satisfying the notion.
In the Trivial Scheme, Bob learns Alice’s secret key after receiving a single
reencrypted ciphertext.

We are faced with a choice: accept the existing definition of CPA security, or
reject it and seek a definition that better captures our intuitions. In support of
the latter, we describe a number of applications of proxy reencryption proposed
in the literature for which CPA security (as implemented by the Trivial Scheme)
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is potentially unsatisfactory, but for which full CCA security may not always
be necessary.4 We revisit these applications in Sect. 4.1 after proposing our new
security notion.

Encrypted Email Forwarding [4,5,23]. Forwarding of encrypted email with-
out requiring the sender’s participation might be desirable for temporary
delegation during a vacation [23] or for spam filtering [4]. Does the Trivial
Scheme suffice? The Trivial Scheme enables Bob, the receiver of Alice’s for-
warded (and reencrypted) email, to recover Alice’s secret key. If Alice trusts
Bob enough to use the Trivial Scheme, she could instead reveal her secret key.
The Trivial Scheme might be preferable in very specific trust or interaction
models, but it does not offer meaningful security against Bob if Alice only
wishes to forward a subset of emails (for example, from particular senders or
during a specific time period).

Key Escrow [22]. Similar to email forwarding, Ivan and Dodis describe the
application of key escrow as follows: “The problem is to allow the law enforce-
ment agency to read messages encrypted for a set of users, for a limited period
of time, without knowing the users secrets. The solution is to locate a key
escrow agent between the users and the law enforcement agency, such that
it controls which messages are read by the law enforcement agencies.” As
in email forwarding, the “for a limited period of time” requirement suggests
that Ivan and Dodis would not have been satisfied with the Trivial Scheme.5

Single-Writer, Many-Reader Encrypted Storage [4,24,25,31]. Under dif-
ferent monikers (including DRM and publish/subscribe systems), these works
describe systems in which a single privileged writer encrypts data and deter-
mines an access control policy for readers. A semi-honest proxy server is
entrusted with reencryption keys and is tasked with enforcing the access
control policy. Whether the Trivial Scheme suffices for these applications
depends on what sort of access control policies are envisioned. If the access
is all or nothing (i.e., all readers may access all data), the Trivial Scheme
suffices; if the access is fine grained (i.e., each reader may access only a spe-
cific subset of the data), then it does not. Existing works are often unclear
on which is envisioned.

4 We might also appeal for support to [22], the only paper in the proxy reencryption
literature of which we are aware adopting a security definition providing a reencryp-
tion oracle without a decryption oracle. One could look to the originators of proxy
reencryption for guidance, but the shortcoming we identify does not manifest in the
original setting of [5] (there is only Alice and Bob; there is no Proxy). It is therefore
of little help.

5 Note that Ivan and Dodis do not adopt the CPA definition used elsewhere, but a
definition much closer to our own. There is no gap between their security guarantees
and the requirements of their briefly-described application.

Though primarily focused on the setting where the key escrow agent enforces
the limited time requirement by eventually refusing to reencrypt, [22] considers the
possibility of dividing time into epochs and enforcing the time limitation technically.
Such a proxy reencryption is called temporary in [4]. We do not discuss temporary
proxy reencryption further.
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For completeness, we mention that CPA security does suffice for two important
applications of proxy reencryption: namely, key rotation for encrypted cloud
storage [7,16] and fully homomorphic encryption [19].

3 Security Against Chosen Plaintext Attacks

In this section, we recall the definition of CPA security for proxy reencryption
and illustrate its shortcomings. We begin with the definitions of syntax, correct-
ness, and CPA security from [3, Definition 2.2] (with minor changes in notation
and presentation, and the change noted in Remark 1 at the end of this subsec-
tion). The syntax and correctness requirements are common to CPA, HRA, and
CCA security.

For the sake of concreteness, simplicity, and brevity, we restrict the discussion
to unidirectional, single-hop schemes. In multi-hop schemes, reencryption keys
rkA→B and rkB→C can be used to reencrypt a ciphertext ctA from pkA to pkC .
In single-hop schemes, they cannot. Single-hop or multi-hop schemes each have
their benefits and drawbacks, and works typically focus on one or the other
notion.6 To the best of our knowledge, our observations and results can all be
adapted to the multi-hop setting.

Definition 1 (Proxy Reencryption: Syntax [3]). A proxy reencryption
scheme for a message space M is a tuple of algorithms PRE = (Setup,KeyGen,
ReKeyGen,Enc,ReEnc,Dec):

Setup(1λ) → pp. On input security parameter 1λ, the setup algorithm outputs
the public parameters pp.

KeyGen(pp) → (pk, sk). On input public parameters, the key generation algorithm
outputs a public key pk and a secret key sk. For ease of notation, we assume
that both pk and sk include pp and refrain from including pp as input to other
algorithms.

ReKeyGen(ski, pkj) → rki→j. On input a secret key ski and a public key pkj,
where i �= j, the reencryption key generation algorithm outputs a reencryp-
tion key rki→j.

6 The literature is divided about whether “single-hop” is merely a correctness prop-
erty (i.e., able to reencrypt at least once, but agnostic about whether reencrypting
more than once is possible) or if it is also a security property (i.e., a ciphertext
can be reencrypted once, but never twice). This distinction manifests in the secu-
rity definition. In works that consider only single-hop correctness [3,4,21,28], the
oracle OReKeyGen in the security game will not accept queries from honest users to
corrupted users (i.e., (i, j) such that i ∈ Hon and j ∈ Cor). We adopt this formalism
in Definitions 3 and 5 for simplicity of presentation only.

In works that consider single-hop security [12,17,26], the oracle will answer such
queries, but the challenge ciphertext must be encrypted under the key of an honest
user i∗ for which no such reencryption key was generated (which can be formalized
in a number of ways).

This work adopts the simplest model, requiring only one hope of correctness, but
neither requiring nor forbidding additional functionality.
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Enc(pki,m) → cti. On input a public key pki and a message m ∈ M, the
encryption algorithm outputs a ciphertext cti.

ReEnc(rki→j , cti) → ctj. On input a reencryption key from i to j rki→j and a
ciphertext cti, the reencryption algorithm ouputs a ciphertext ctj or the error
symbol ⊥.

Dec(skj , ctj) → m. Given a secret key skj and a ciphertext ctj, the decryption
algorithm outputs a message m ∈ M or the error symbol ⊥.

Definition 2 (Proxy Reencryption: Correctness [3]). A proxy reencryp-
tion scheme PRE is correct with respect to message space M if for all λ ∈ N,
pp ← Setup(1λ), and m ∈ M:

1. for all (pk, sk) ← KeyGen(pp):

Dec(sk,Enc(pk,m)) = m.

2. for all (pki, ski), (pkj , skj) ← KeyGen(pp), rki→j ← ReKeyGen(ski, pkj):

Dec(skj ,ReEnc(rki→j ,Enc(pki,m))) = m.

Security is modeled by a game played by an adversary A. A has the power
to corrupt a set of users Cor (learning their secret keys) while learning only
the public keys for a set of honest users Hon. Additionally, A may reencrypt
ciphertexts (either by getting a reencryption key or calling a reencryption oracle)
between pairs of users in Hon or in Cor, or from Cor to Hon, but not from Hon
to Cor. This is in contrast to the simplified three-party setting discussed in the
introduction, where the A could not reencrypt whatsoever.

Definition 3 (Proxy Reencryption: Security Game for Chosen Plain-
text Attacks (CPA) [3]). Let λ be the security parameter and A be an oracle
Turing machine. The CPA game consists of an execution of A with the following
oracles. The game consists of three phases, which are executed in order. Within
each phase, each oracle can be executed in any order, poly(λ) times, unless oth-
erwise specified.

Phase 1:

Setup: The public parameters are generated and given to A. A counter numKeys
is initialized to 0, and the sets Hon (of honest, uncorrupted indices) and Cor
(of corrupted indices) are initialized to be empty. This oracle is executed first
and only once.

Uncorrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give pknumKeys to A. The current value of numKeys is added
to Hon and numKeys is incremented.

Corrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and given to A. The current value of numKeys is added to Cor
and numKeys is incremented.
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Phase 2: For each pair i, j ≤ numKeys, compute the reencryption key rki→j ←
ReKeyGen(ski, pkj).

Reencryption Key Generation OReKeyGen: On input (i, j) where i, j ≤ numKeys, if
i = j or if i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return the reencryption
key rki→j.

Reencryption OReEnc: On input (i, j, cti) where i, j ≤ numKeys, if i = j or if
i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return the reencrypted ciphertext
ReEnc(rki→j , cti).

Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈ M, sample
a bit b ← {0, 1} uniformly at random, and return the challenge ciphertext
ct∗ ← Enc(pki,mb). This oracle can only be queried once.

Phase 3:

Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The CPA advantage of A is defined as

AdvA
cpa(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in the CPA
game.

Definition 4 (Proxy Reencryption: CPA Security[3]). Given a security
parameter 1λ, a proxy reencryption scheme is CPA secure if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl such that

AdvA
cpa(λ) <

1
2

+ negl(λ)

Remark 1. Another definitional subtlety of proxy reencryption worth discussing
affects not just CPA security, but HRA and CCA security as well. Consider the
specification of OReKeyGen and OReEnc in Definition 3. As defined, the reencryption
keys rki→j are persistent : the same key is used each time a pair (i, j) is queried.
This follows [3, Definition 2.5] and [2,17], though we find our formalization
somewhat simpler.

Contrast this with [3, Definition 2.2] in which reencryption keys are
ephemeral : they are generated afresh each time either oracle is invoked on the
same pair (i, j). [7,10,30] similarly use ephemeral keys in their definitions. In
the remaining papers we examined, it was less clear whether reencryption keys
were ephemeral or persistent.

Neither definition implies the other; any scheme secure with persistent keys
can be modified into one that is insecure with ephemeral keys, and vice-versa.
The definitions, however, are not in serious tension; any scheme secure with per-
sistent keys and having deterministic ReKeyGen is also secure with ephemeral
keys, and ReKeyGen can in general be derandomized using pseudorandom func-
tions. Of course, one can easily define a hybrid notion stronger than both by
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allowing the adversary to specify for each query whether it wants to use reen-
cryption keys that are new or old.

We adopt the persistent formalization as it better captures ‘typical’ use.
To the best of our knowledge, all claims in this work can be adapted to the
ephemeral setting.

Remark 2. The power of the adversary above can be strengthened by allowing
adaptive corruptions instead of dividing the game into phases. Our definitions of
CPA and HRA security follow the convention of [3] primarily because it is most
common in the research literature. For an examination of CPA and HRA security
in the adaptive setting, see the subsequent work of Fuchsbauer, Kamath, Klein,
and Pietrzak [18]. Adaptive-secure, bidirectional, CCA secure proxy reencryption
has been studied in [10,28].

3.1 Concatenation Scheme and Trivial Scheme

The weakness of CPA security lies in the specification of OReEnc, which does
not reencrypt any ciphertexts from honest to corrupt users. Said another way,
OReEnc reencrypts between only those pairs keys for which OReKeyGen outputs a
reencryption key (rather than returning ⊥). We now describe two schemes that
are CPA secure, but are insecure against a dishonest receiver of reencrypted
ciphertexts. In both schemes, a single ciphertext reencrypted from an honest
index to a corrupted index enables the decryption of messages encrypted under
the honest index’s public key.

Concatenation Scheme. Let PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,
ReEnc) be a CPA-secure proxy reencryption scheme. Define a new scheme
by modifying only reencryption and decryption:

ReEnc′(rk, ct) := ReEnc(rk, ct)‖rk

Dec′(sk, ct) :=
{
Dec(sk, ct1) if ct = ct1‖ct2
Dec(sk, ct) otherwise

Theorem 1. Let PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) be a CPA-
secure proxy reencryption scheme. The corresponding Concatenation Scheme
PRE′ = (Setup,KeyGen,Enc,Dec′,ReKeyGen,ReEnc′) is a CPA-secure proxy
reencryption scheme.

Proof. For any probabilistic, polynomial-time algorithm A′ (the CPA adversary
against PRE′), we construct an efficient algorithm A such that AdvA

cpa = AdvA′
cpa.

By the CPA security of PRE, this advantage is negligible, completing the proof.
A runs A′ and simulates the CPA security game for PRE′ (if A′ does not

follow the specification of the game, A simply aborts). Except for calls to OReEnc,
all oracle calls by A′ are passed along unaltered by A, along with their responses.

A begins Phase 2 by requesting all admissible reencryption keys rki→j from
its own reencryption key generation oracle. To answer oracle calls from A′ to
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OReEnc, A first queries its own reencryption oracle, which returns ct1. If ct1 = ⊥,
then A′ returns ⊥. Otherwise, A′ concatenates the appropriate reencryption key
rk to form the new ciphertext ct = ct1‖rk. This is possible because if ct1 �= ⊥,
then A is able to get the corresponding reencryption key at the beginning of
Phase 2.

A perfectly implements the CPA security game for PRE′, and A′ wins that
game if and only if A wins the corresponding game for PRE. Therefore, AdvA

cpa =
AdvA′

cpa. Finally, the running time of A is polynomially related to that of A′.

While the Concatenation Scheme builds upon any CPA-secure proxy reen-
cryption scheme, the Trivial Scheme presented next makes use of public-key
encryption enjoying circular security. Informally, circular security guarantees
that encryptions of messages that are a function of the secret key(s) are as
secure as encryptions of messages that are independent of the secret key(s), a
security property that does not follow from standard semantic security.

In the Trivial Scheme, the reencryption key from party i to j is simply rki→j =
Enc(pkj , ski). CPA security of the resulting proxy reencryption scheme requires
security against an adversary who has both rki→j and rkj→i. This requires that
the underlying encryption scheme is circular secure.

Because existing definitions and constructions of circular secure encryption
schemes based on standard assumptions (e.g., [6] from DDH) require a bound
on the total number of public keys n, the corresponding Trivial Scheme will only
satisfy a bounded-key variant of CPA security. Any circular secure encryption
scheme without this limitation would yield a Trivial Scheme secure according
to Definition 4. We defer the definitions of circular security, bounded-key CPA
security, and the proof of Theorem2 to AppendixA.

Trivial Scheme. Let (KeyGencirc,Enccirc,Deccirc) be an n-way circular-secure
encryption scheme. Let Setup ≡ ⊥, KeyGen ≡ KeyGencirc; Enc ≡ Enccirc;

ReKeyGen(ski, pkj) := Enccirc(pkj , ski)

ReEnc(rki→j , cti) := cti‖rki→j

Dec(sk, ct) :=
{
Deccirc(Deccirc(sk, ct2), ct1) if ct = ct1‖ct2
Deccirc(sk, ct) otherwise .

Theorem 2. Let (KeyGencirc,Enccirc,Deccirc) be an n-way circular-secure
encryption scheme. The corresponding Trivial Scheme PRE is an n-way CPA
secure proxy reencryption scheme.

4 Security Against Honest Reencryption Attacks

We seek a definition of security which holds as long as the adversary only sees
honestly reencrypted ciphertexts, unless the set of corrupt parties can trivially
violate security (by some chain of reencryption keys from an uncorrupted public
key to a corrupted public key).
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We term this notion security against honest reencryption attacks (HRA). To
formalize it, we model the ability of an adversary to see honest reencryptions by
granting it access to a modified reencryption oracle OReEnc. Instead of taking a
ciphertext as input, the modified OReEnc takes as input a reference to a previously
generated ciphertext (either as the output of OEnc or OReEnc itself).

To implement such an oracle, we introduce to the security game a key-value
store C as additional state: the values are ciphertexts ct which are keyed by a
pair of integers (i, k), where i denotes the index of the key pair (pki, ski) under
which ct was (re)encrypted, and k is a unique index assigned to ct.

As described, this new OReEnc admits a trivial attack: simply reencrypt the
challenge ciphertext to a corrupted key and decrypt. To address this issue, we
adapt an idea from [10] definition of CCA security: we rule out the trivial attack
by storing a set Deriv of ciphertexts derived from the challenge by reencrypting,
and rejecting queries to OReEnc for ciphertexts in Deriv and a corrupted target
key. We might have instead chosen to forbid any reencryptions of the challenge
ciphertext, even between uncorrupted keys. Though this would have simplified
the definition, it would have been unsatisfactory. For example, in the single-
writer, many-reader encrypted storage application the contents of a message m
that gets reencrypted from Alice to Charlie should be hidden from Bob.

We now present the honest reencryption attacks security game. The game is
similar to the CPA security game with some modifications to Setup, Challenge,
and OReEnc, and the addition of an Enc oracle OEnc to Phase 2. OEnc may be
executed poly(λ) times and in any order relative to the other oracles in Phase 2.
For the sake of clarity we reproduce the full game below and mark the modified
oracles with a �.

Definition 5 (Proxy Reencryption: Security Game for Honest Reen-
cryption Attacks (HRA)). Let λ be the security parameter and A be an
oracle Turing machine. The HRA game consists of an execution of A with the
following oracles.

Phase 1:

� Setup: The public parameters are generated and given to A. A counter numKeys
is initialized to 0, and the sets Hon (of honest, uncorrupted indices) and Cor
(of corrupted indices) are initialized to be empty.
Additionally the following are initialized: a counter numCt to 0, a key-value
store C to empty, and a set Deriv to be empty. This oracle is executed first
and only once.

Uncorrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give pknumKeys to A. The current value of numKeys is added
to Hon and numKeys is incremented.

Corrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and given to A. The current value of numKeys is added to Cor
and numKeys is incremented.
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Phase 2: For each pair i, j ≤ numKeys, compute the reencryption key rki→j ←
ReKeyGen(ski, pkj).

Reencryption Key Generation OReKeyGen: On input (i, j) where i, j ≤ numKeys, if
i = j or if i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return the reencryption
key rki→j.

� Encryption OEnc: On input (i,m), where i ≤ numKeys, compute ct ←
Enc(pki,m) and increment numCt. Store the value ct in C with key (i, numCt).
Return (numCt, ct).

� Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈ M, sam-
ple a bit b ← {0, 1} uniformly at random, compute the challenge ciphertext
ct∗ ← Enc(pki,mb), and increment numCt. Add numCt to the set Deriv. Store
the value ct∗ in C with key (i, numCt). Return (numCt, ct∗). This oracle can
only be queried once.

� Reencryption OReEnc: On input (i, j, k) where i, j ≤ numKeys and k ≤ numCt,
if j ∈ Cor and k ∈ Deriv return ⊥. If there is no value in C with key (i, k),
return ⊥.
Otherwise, let cti be that value in C, let ctj ← ReEnc(rki→j , cti), and incre-
ment numCt. Store the value ctj in C with key (j, numCt). If k ∈ Deriv, add
numCt to the set Deriv.
Return (numCt, ctj).

Phase 3:

Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The HRA advantage of A is defined as

AdvA
hra(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in HRA game.

Definition 6 (Proxy Reencryption: HRA Security). Given a security
parameter 1λ, a proxy reencryption scheme is HRA secure if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl such that

AdvA
hra(λ) <

1
2

+ negl(λ)

The Concatenation Scheme demonstrates that CPA security does not neces-
sarily imply HRA security. Together with following theorem, we see that HRA
security is a strict strengthening of CPA security.

Theorem 3. Let PRE be an HRA secure proxy reencryption scheme. Then PRE
is CPA secure.

Proof. From any probabilistic, polynomial-time algorithm A (the CPA adver-
sary), we construct an efficient algorithm A′ such that AdvA′

hra = AdvA
CPA. By the

HRA security of PRE this advantage is negligible, completing the proof.
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A′ runs A and simulates the CPA security game (if A does not follow the
specification of the CPA security game, A′ simply aborts). Except for calls to
OReEnc, all oracle calls by A′ are passed along unaltered by A to the corresponding
HRA oracles, along with their responses.

A′ begins Phase 2 by requesting all (admissible) reencryption keys rki→j

from OReKeyGen. racle calls from A to OReEnc are answered by A′ by computing
the reencryption using the appropriate reencryption key; this is possible because
OReEnc returns ⊥ if and only if A′ is unable to get the corresponding reencryption
key.

A′ prefectly implements the CPA security game, and A wins that game if and
only if A′ wins the HRA security game. Therefore AdvA′

hra = AdvA
CPA. Finally,

the running time of A′ is polynomially related to the that of A.

4.1 Sufficiency of HRA Security for Applications

Returning to the applications of proxy reencryption described in Sect. 2, we
observe that HRA security provides substantially stronger security guarantees.

Encrypted Email Forwarding. Using proxy reencryption with HRA security,
Alice can forward encrypted email to Bob for a short period of time (during a
vacation, say) and be sure that Bob cannot read her email after she returns.

Key Escrow. Similar to encrypted email forwarding, proxy reencryption with
HRA can be used to enable law enforcement to read certain encrypted mes-
sages without compromising the secrecy of documents outside the scope of a
search warrant or subpoena, for example.

Single-Writer, Many-Reader Encrypted Storage. Whereas proxy reen-
cryption with CPA security can only support all or nothing access (i.e., all
readers may access all data), HRA security can support fine grained access
control (i.e., each reader may access only a specific subset of the data).

There is no question that HRA does not provide as much security as CCA, and
that CCA-secure proxy reencryption would yield more robust applications. HRA
security, however, can provide meaningful guarantees in the above applications.

Encrypted Email Forwarding. If Alice is forwarding all emails to Bob, then
Bob could certainly mount an attack outside the honest reencryption model.
On the other hand, if Alice is forwarding only those emails from a third-party
sender Charlie, then such an attack is impossible without the involvement
of Charlie (supposing of course that the sender of an email can be authenti-
cated).

Key Escrow. The hypothetical legal regime that establishes the govern-
ment’s power of exceptional access by way of key escrow could addition-
ally prohibit the government from mounting chosen-ciphertext attacks. In
the United States, a Constitutional argument could perhaps be made that
law-enforcement use of chosen-ciphertext attacks must be limited.
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Single-Writer, Many-Reader Encrypted Storage. The only ciphertexts
being reencrypted are those uploaded by the single-writer to the proxy server
(hence the name). It is by no means a stretch to require that the proxy server
does not allow writes by unauthorized parties (i.e., the readers). If the honest
writer only uploads honestly generated ciphertexts, HRA is appropriate.

5 Security of Existing Proxy Reencryption Schemes

Can we construct HRA-secure proxy reencryption? The most natural place to
begin is with existing schemes.

We begin by demonstrating that the CPA secure scheme of [31] is not HRA
secure. Although CPA security is strictly weaker than HRA security, we might
hope that the existing CPA secure schemes already satisfy the more stringent
definition. To this end, we identify a natural property—reencryption simulata-
bility—sufficient to boost CPA security to HRA security.7

We examine the simple construction of CPA secure proxy reencryption from
any fully-homomorphic encryption (FHE) presented in [19]. While the resulting
proxy reencryption may not be HRA secure in general, if the FHE is circuit
private—a property Gentry imbues into his FHE by rerandomization—the same
construction will be HRA secure. We then examine pairing-based schemes, find-
ing there too that rerandomization provides a direct path to HRA security.8

Remark 3. It may seem that CCA security should imply HRA security, but
unfortunately the situation is not so clear. Intuitively, CCA security allows
the adversary to make relatively unrestricted queries to both OReEnc and ODec,
whereas HRA restricts the adversary to making only honest reencryption queries
to OReEnc.

However the oracles in the CCA definition are restricted in a way that stymies
a naive attempt at a reduction. The CCA definition prevents reencryptions or
decryptions of all ciphertexts that could in principle be derived from the chal-
lenge (including by rerandomization). On the other hand, the HRA security game
restricts reencryption queries only when the ciphertext is actually a derivative of
the challenge. The adversary may reencrypt other encryptions of the challenge
messages, so long as those encryptions were honestly generated independently
from the challenge ciphertext.

We do not resolve the question of whether CCA security implies HRA secu-
rity. By Theorem 5, any CCA secure proxy reencryption scheme satisfying reen-
cryption simulatability is also HRA secure. See the full version of this article [13]
for further discussion.
7 Some existing notions in the proxy reencryption literature seem powerful enough to

elevate CPA security to HRA security, including proxy invisibility [4], unlinkability
[17], and punctured security [1]. However, these notions are not sufficiently well
defined to draw any concrete conclusions. The notion of key-privacy [3] does not in
general suffice for HRA security.

8 While we do not examine every pairing-based construction of proxy reencryption,
we suspect that rerandomizing reencryption will suffice for reencryption simulation
in many, if not all.
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5.1 HRA Insecurity of [31]

Though it is easy to construct CPA secure encryption schemes that are not
HRA secure, the question remains whether any previously proposed schemes
fail to satisfy HRA security. In this section, we show that the construction of
Polyakov, Rohloff, Sahu, and Vaikuntanathan [31, Sect. 5] is one such scheme.
Their construction is based on a public key encryption scheme of Brakerski and
Vaikuntanathan [9] and is CPA secure assuming the hardness of Ring Learning
With Errors (RLWE).

As with the Trivial and Concatenation schemes, the HRA attack is simple
yet severe: any single honestly generated ciphertext enables the recipient Bob to
recover the sender Alice’s secret key with significant probability.

Theorem 4. The proxy reencryption scheme of [31, Sect. 5] is not HRA secure.

Proof. Except where noted, the notation used below is consistent with [31]; we
restrict our description to those facts necessary to describe the HRA attack.

For n a power of 2 and prime q ≡ 1 mod 2n, let Rq = Zq[x]/(xn + 1) be
a ring of degree (n − 1) polynomials with coefficients in Zq. The sender Alice’s
secret key is s, and the recipient Bob’s secret key is s∗. Bob’s public key includes
O(log q) = poly(n) RLWE samples θ∗

i = βi · s∗ + pei, where p is a public prime
and the βi and ei are ring elements sampled by Bob.9 Ciphertexts are pairs of
ring elements (c0, c1) ∈ R2

q . By [9, Lemma 4], the distribution of c1 is statistically
close to uniform over Rq. By [27, Lemma 2.25], c1 is invertible with probability
at least e−1 − negl(n). The result of reencrypting (c0, c1) is a pair (c′

0, c
′
1) such

that c′
0 − s∗ · c′

1 = c0 − s · c1 + pE1, where Ei is computable given c1 and the ei.
This fact is used by [31] to prove the correctness of their scheme. Rearranging
the above, we see that

s · c1 = c0 + pE1 − c′
0 + s∗ · c′

1.

Given any ciphertext (c0, c1) and its reencryption (c′
0, c

′
1), Bob can evaluate

the above and compute s · c1. With probability at least e−1 − negl(n), c1 is
invertible and Bob can recover the secret s.

5.2 Reencryption Simulatability

While HRA is a strictly stronger security notion than CPA, we now show that if
a CPA secure proxy reencryption scheme has an additional property we call
reencryption simulatability, then it must also be HRA secure. Very roughly,
reencryption simulatability means that ciphertexts resulting from computing
ReEnc(rki→j , cti) can be simulated without knowledge of the sender’s secret key
ski (but with knowledge of the plaintext message m and the recipient’s secret
key skj). Note that ReEnc uses rki→j which is a function of ski.

9 [31] separate the computation of θ∗
i from Bob’s public key, but this is only a matter

of presentation.
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Reencryption simulatability allows an algorithm with access to the CPA ora-
cles to efficiently implement the honest reencryption oracle. For intuition, con-
sider the following approach to reducing HRA security to CPA security. Sup-
pose there existed an adversary Ahra violating the HRA security of a scheme;
the reduction plays the roles of both the CPA adversary and the challenger in
the HRA security game, and attempts to violate CPA security. To succeed, the
reduction must be able to answer honest reencryption queries from uncorrupted
keys to corrupted keys. Though the reduction knows the messages being reen-
crypted, it does not know the appropriate reencryption key. However, if it could
indistinguishably simulate these reencryptions then it could indeed leverage Ahra

to violate CPA security.
We emphasize that the goal of Definition 7 is to capture a large swath of pos-

sible schemes while still enabling very simple proofs of simulatability (and thus of
HRA security for existing CPA secure schemes). It is not intended to be the only
avenue for proving HRA security of new or existing constructions. Reencryption
simulatability is not necessary for HRA security of proxy reencryption. In par-
ticular, analogous versions of Theorem5 hold with computational simulatability
guarantees, but are more complicated [15, Foonote 7 and Appendix A].

Definition 7 (Reencryption Simulatability). A proxy reencryption scheme
PRE is reencryption simulatable if there exists a probabilistic, polynomial-time
algorithm ReEncSim such that with high probability over aux, for all m ∈ M:

(ReEncSim(aux), aux) ≈s (ReEnc(rka→b, cta), aux),

where ≈s denotes statistical indistinguishability, and cta and aux are sampled
according to

pp ← Setup(1λ),
(pka, ska) ← KeyGen(pp),
(pkb, skb) ← KeyGen(pp),
rka→b ← ReKeyGen(ska, pkb),
cta ← Enc(pka,m),
aux = (pp, pka, pkb, skb, cta,m).

A special case of the above is when ReEncSim(aux) = Enc(pkb,m) simply
computes a fresh encryption of the message. That is, if reencrypted cipher-
texts are distributed like fresh ciphertexts, then the scheme is reencryption
simulatable.

Theorem 5. Let PRE be an CPA secure, reencryption simulatable, proxy reen-
cryption scheme. Then PRE is HRA secure.

Proof (Outline). The proof proceeds according to the intuition above. From any
probabilistic, polynomial-time algorithm A = Ahra (the HRA adversary), we
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construct an algorithm A′ = Acpa such that AdvA′
cpa(λ) ≥ AdvA

hra(λ) − negl(λ); by
the CPA security of PRE this advantage is negligible, completing the proof.

Acpa runs Ahra and simulates the HRA security game (if Ahra does not follow
the specification of the HRA security game, Acpa simply aborts). To answer
oracle calls by Ahra to any oracle other than OReEnc, Acpa simply passes the calls
and answers unaltered to the corresponding CPA oracles.

To answer oracle calls to OReEnc between two uncorrupted keys or two cor-
rupted keys, Acpa uses the corresponding reencryption key. On the other hand,
for calls to OReEnc from an uncorrupted key to a corrupted key, Acpa simulates the
reencryption using ReEncSim. This is possible because Acpa knows the underlying
m (along with the other information in aux).

Reencryption simulatability implies that the views of Ahra in the real security
game (using the real OReEnc) and the simulated security game (using ReEncSim)
are statistically close. Acpa wins the CPA security game if and only if Ahra wins
in the simulated HRA game described above.

5.3 Fully Homomorphic Encryption and Proxy Reencryption

There is an intimate connection between FHE and proxy reencryption: a suffi-
ciently powerful somewhat homomorphic encryption scheme implies CPA secure
proxy reencryption, which can be used to “bootstrap” the scheme to achieve
fully homomorphic encryption [19]. For the relevant FHE definitions, see [19,
Sect. 2].

Let FHE=(SetupFHE,KeyGenFHE,EncFHE,DecFHE,EvalFHE) be an FHE scheme.
Proxy reencryption can be constructed as follows (compare to the Trivial Scheme):

KeyGenPRE, EncPRE and DecPRE are identical to their FHE counterparts.
ReKeyGenPRE(ski, pkj) = EncFHE(pkj , ski)‖pkj . The reencryption key rki→j is an

encryption under pkj of ski, along with the target public key pkj .
ReEncPRE(rki→j , cti): Let cti→j ← EncFHE(pkj , cti). Homomorphically compute

the FHE decryption function DecFHE(ski, cti) using the corresponding cipher-
texts rki→j and cti→j (under pkj). Namely, ctj = EvalFHE(pkj ,DecFHE, rki→j ,
cti→j).

The correctness of the FHE implies the correctness of the resulting proxy reen-
cryption:

DecPRE(skj , ctj) = DecFHE(skj , ctj) = DecFHE(ski, cti) = DecPRE(ski, cti).

Furthermore, the proxy reencryption scheme is CPA secure.
To demonstrate that the construction might not be HRA secure, consider

the following fully homomorphic encryption scheme FHE′ constructed from any
existing scheme FHE. The only modification made in FHE′ is to EvalFHE′ :

EvalFHE′(pkj , C, ct1, ct2) := EvalFHE(pkj , C, ct1, ct2)‖ct1.
Note that FHE′ does not violate FHE compactness if ct1 (in the proxy reencryp-
tion construction, rki→j) is always of some size bounded by a polynomial in the
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security parameter of the FHE scheme; this suffices for our purpose. Instanti-
ating the proxy reencryption construction with FHE′ essentially results in the
Concatenation Scheme, which is not HRA secure.

Circuit Privacy. An FHE scheme is circuit private if ciphertexts resulting
from FHE evaluations are statistically indistinguishable from fresh ciphertexts
[19]. Namely, if for any circuit C and any ciphertexts ct1,. . . ,ctt:

EncFHE(pk, C(ct1, . . . , ctt)) ≈s EvalFHE(pk, C, ct1, . . . , ctt).

In [19], an FHE scheme without circuit privacy is modified to be circuit private
by rerandomizing the ciphertexts resulting from EvalFHE.

While our proxy reencryption construction above is not in general HRA
secure, it is easy to see that if the underlying FHE is circuit private, then the
proxy reencryption is reencryption simulatable (Definition 7). By Theorem 5, the
resulting scheme is therefore HRA secure.

5.4 Pairing-Based Proxy Reencryption

Many constructions of proxy reencryption are based on the hardness of Diffie-
Hellman-type problems over certain bilinear groups, including [3,4,10,21,26].

A prototypical construction is that of [4], which itself is based on the original
scheme of [5]. For every λ, let G1 and G2 be groups of prime order q = Θ(2λ),
and let g be a generator of G1. Let e be a non-degenerate bilinear map e :
G1 × G1 → G2 (i.e., for all h ∈ G1 and a, b ∈ Zq, e(ha, hb) = e(h, h)ab, and for
all generators g of G1, e(g, g) �= 1). Let Z = e(g, g). The message-space of the
scheme is G2.

Setup(1λ): Output pp = (q, g,G1, G2, e).
KeyGen(pp): Sample a ← Zq uniformly at random. Output sk = a and pk = ga.
Enc(pk,m): Sample k ← Zq uniformly at random. Output ct = (pkk,mZk) =

(gak,mZk).
ReKeyGen(skA = a, pkB = gb): Output rkA→B = gb/a.
ReEnc(rkA→B , ctA): Let ctA = (α1, α2). Output

ctB = (e(α1, rkA→B), α2) = (e(gak, gb/a),mZk) = (Zbk,mZk).

Dec(sk, ct): Let ct = (α1, α2). If α1 ∈ G2 (i.e., if it is the result of ReEnc), then
output α2/α

1/a
1 = mZk/Zk = m. Otherwise α1 ∈ G1 (i.e., it is a fresh

ciphertext); output α2/e(α1, g)1/a = mZk/e(gak, g)1/a = mZk/Zk = m.

Is this scheme HRA secure? It is tempting to say that the scheme is reen-
cryption simulatable; after all, given a message m it is indeed straightfor-
ward to sample (Zbk,mZk) for random k ← Zq. However ctA = (gak,mZk)
and ctB = ReEnc(rkA→B , ctA) = (Zbk,mZk) share the randomness k. Given
ctA = (gak,mZk) and m, it is not clear how to output (gbk,mZk).
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Rerandomization. A minor modification to the scheme above guarantees reen-
cryption simulatability and therefore HRA security. Replace ReEnc above with
ReEnc′:

ReEnc′(rkA→B , ctA): Compute (Zbk,mZk) = ReEnc(rkA→B , ctA). Sample k′ ←
Z uniformly at random, and output (Zbk · e(gb, gk′

), mZk · e(g, gk′
)) =

(Zb(k+k′),mZk+k′
).

The resulting proxy reencryption scheme maintains the CPA security of the orig-
inal, as the only modification is the rerandomization of reencrypted ciphertexts
(which can be done by anyone with knowledge of the public parameters).

Furthermore, the scheme is now reencryption simulatable. To see why,
observe that the resulting reencrypted ciphertexts are uniformly distributed in
{(ct1, ct2) ∈ G2 ×G2 : ct2/ct

1/b
1 = m}, independent of all other keys and cipher-

texts. Such ciphertexts are easily sampled with knowledge of pp, pkB = gb and
m as follows.

ReEncSim(pp, pkB ,m): Sample k′ ← Zq uniformly at random, and and output
(e(pkB , gk′

),m · e(g, gk′
)) = (Zbk′

,mZbk′
).

Thus, by Theorem 5, the modified scheme is HRA secure. Observe that reran-
domization was the key to achieving circuit privacy (and thereby HRA security)
in the FHE-based proxy reencryption construction as well.

The pairing-based schemes of [3] and [21] already incorporate rerandomiza-
tion during reencryption. In the former case, it is used to achieve “key privacy;”
in the latter, to achieve obfuscation of the reencryption functionality. In each,
it is straightforward to show that the schemes are also reencryption simulatable
and therefore HRA secure.
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A The Trivial Scheme

The following description and definition of circular security is adapted with slight
modification from [6].

Let (KeyGen,Enc,Dec) be a public-key encryption scheme with key space K
and message space M such that K ⊆ M. Let n > 0 be an integer and let C be
the set of functions C = {f : Kn → M} consisting of

– all |M| constant functions fm(z) = m for all z ∈ Kn, and
– all n selector functions fi(x1, . . . , xn) = xi for 1 ≤ i ≤ n.

We define circular security using the following game between a challenger
and an adversary A. For an integer n > 0 and a security parameter λ, the game
proceeds as follows:

Initialization: The challenger chooses a random bit b ← {0, 1}. It generates
(pk1, sk1), . . . , (pkn, skn) by running KeyGen(1λ) n times, and sends (pk1, . . . ,
pkn) to A.

Queries: The adversary repeatedly issues queries where each query is of the
form (i, f) with 1 ≤ i ≤ n and f ∈ C. The challenger responds by setting
y = f(sk1, . . . , skn) and

ct ←
{
Enc(pki, y) if b = 0
Enc(pki, 0|y|) if b = 1
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and sends ct to A.
Finish: Finally, the adversary outputs a bit b′ ∈ {0, 1}.

We say that A wins the game if b = b′. Let win be the event that A wins the
game and define A’s advantage as

AdvA
circ,n(λ) = Pr[win].

Definition 8 (n-Circular Security). We say that a public-key encryption
scheme (KeyGen,Enc,Dec) is n-way circular secure if for all probabilistic poly-
nomial time adversaries A, there exists a negligible function negl such that

AdvA
circ,n(λ) <

1
2

+ negl(λ).

Because existing constructions of circularly secure encryption schemes based
on standard assumptions require a bound on the total number of public keys
n, the corresponding Trivial Scheme will only satisfy a bounded-key variant of
CPA security, defined next.

Definition 9 (Proxy Reencryption: n-CPA Security). For n ∈ N, the n-
CPA security game is identical to the CPA security game in Definition 3 except
for the following underlined modifications. Recall that numKeys is initialized to
0 and is incremented after every key generation call in the security game.

Uncorrupted Key Generation: If numKeys = n, return ⊥. Otherwise, obtain a
new key pair (pki, ski) ← KeyGen(pp). A is given pki. The current value of
numKeys is added to Hon and numKeys is incremented.

Corrupted Key Generation: If numKeys = n, return ⊥. Otherwise, obtain a new
key pair (pki, ski) ← KeyGen(pp). A is given (pki, ski). The current value of
numKeys is added to Cor and numKeys is incremented.

The corresponding n-CPA advantage of A is denoted AdvA
cpa,n(λ). A proxy reen-

cryption scheme is n-CPA secure if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl such that

AdvA
cpa,n(λ) <

1
2

+ negl(λ)

Trivial Scheme. Let (KeyGencirc,Enccirc,Deccirc) be an n-way circular secure
encryption scheme. Let Setup ≡ ⊥, KeyGen ≡ KeyGencirc; Enc ≡ Enccirc;

ReKeyGen(ski, pkj) := Enccirc(pkj , ski)

ReEnc(rki→j , cti) := cti‖rki→j

Dec(sk, ct) :=
{
Deccirc(Deccirc(sk, ct2), ct1) if ct = ct1‖ct2
Deccirc(sk, ct) otherwise .

Theorem 2 states that if (KeyGencirc,Enccirc,Deccirc) is an n-way circular
secure encryption scheme, then the corresponding Trivial Scheme PRE is an
n-CPA secure proxy reencryption scheme. In fact, the proof below extends the
case when there are n uncorrupted keys and any number of corrupted keys.
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Proof (of Theorem 2). For all n ∈ N and any probabilistic, polynomial-time
algorithm A (the adversary against the trivial scheme), we construct an effi-
cient algorithm Acirc such that AdvAcirc

circ,n = 1
2 · AdvA

cpa,n. By the hypothesis, this
advantage is negligible, completing the proof.

At the beginning of the game, the circular security challenger picks a random
bit b. If b = 0, then the Queries oracle encrypts all messages correctly; if b = 1,
then the Queries oracle encrypts only the message 0. Acirc runs A and simulates
the CPA security game for PRE (if A does not follow the specification of the
game, Acirc simply aborts).

At the start of Phase 1, Acirc calls its Initialization oracle in the circular
security game. In return it receives the public keys (pkcirc1 , . . . , pkcircn ). To answer
an Uncorrupted Key Generation query, Acirc gives to A the first unused public
key pkcirci from this list. To answer a Corrupted Key Generation query, Acirc

generates a new key pair (pk, sk) ← KeyGen and gives (pk, sk) to the adversary.
A begins Phase 2 by using its Queries oracle to learn the reencryption keys

for all pairs of uncorrupted keys generated. Using its knowledge of the corrupted
secret keys, it also computes reencryption keys for all the pairs of corrupted keys
generated. Oracle calls from A to OReKeyGen are answered with the corresponding
reencryption key (or with ⊥). To answer oracle calls from A to OReEnc, computes
the appropriate response; namely, it concatenates the reencryption key to the
ciphertext (or returns ⊥).

At some point, A queries the Challenge oracle with an honest key index i
and a pair of messages (m0,m1). Acirc chooses a random one of the messages m
and queries its own Queries oracle with the pair (i,m), returning the resulting
ciphertext to A.

Finally, A guesses whether m = m0 or m1. If A guesses correctly, Acirc

guesses the bit b′ = 0. Otherwise, Acirc guesses a random b′ ← {0, 1}. Conditioned
on b = 0, Acirc perfectly simulates the PRE security game, and guesses b′ = 0
with probability AdvA

cpa,n. It follows that AdvAcirc

circ,n = 1
2 · AdvA

cpa,n.

B Comparison to RIND-CPA

The concurrent work of Derler, Krenn, Lorünser, Ramacher, Slamanig, and
Striecks identify the same problem with CPA security as discussed [14]. They
define a new security notion—RIND-CPA security—as an additional property
that proxy reencryptions schemes should guarantee.

The key feature of RIND-CPA security is that the adversary gets access to
an unrestricted ReEnc oracle, but only before seeing the challenge ciphertext.
The definition is similar to IND-CCA0,1 of [28]. The definition of the RIND-CPA
security experiment is from [14, Experiment 8].

Definition 10 (RIND-CPA Security Experiment).

pp ← Setup(1λ), (pk, sk) ← KeyGen(pp), b ← {0, 1}
(pk∗, st) ← A(pp, pk)
rk ← ReKeyGen(sk, pk∗)
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(m0,m1, st) ← A{ReEnc(rk,·)}(st)
b∗ ← A(st,Enc(pk,mb))
if b = b∗ return 1, else return 0.

RIND-CPA security requires that for all efficient adversaries, the probability of
outputting 1 in the experiment is 1

2 ± negl(λ).
In this section, we compare the approach of [14] with ours. We begin by

describing RIND-CPA security as defined by [14]. Next, we compare RIND-CPA
with HRA security informally, arguing that HRA provides the better generaliza-
tion of Enc-CPA security to the PRE setting. Finally, we show that HRA and
RIND-CPA security are incomparable notions.

B.1 Informal Comparison

RIND-CPA is less suitable than HRA as a replacement for CPA security of proxy
reencryption. First and most importantly, HRA better captures the intuitive
guarantees of Enc-CPA security for standard encryption. Second, access to an
unrestricted ReEnc oracle makes it a more useful as a testing ground for the
development of new techniques. Finally, two idiosyncrasies of the [14] formulation
of RIND-CPA security present additional issues.

Capturing Enc-CPA security. In Enc-CPA security for standard encryption, the
adversary is able to arbitrarily affect the distribution of plaintext messages. One
way of viewing this aspect of the definition is that Enc-CPA requires security
while being agnostic as to the true distribution over messages (except that it is
efficiently sampleable). Other than choosing the distribution over messages, the
adversary is only allowed to see publicly-available information (i.e. public keys
and parameters) and honestly encrypted ciphertexts. Informally, the Enc-CPA
guarantee is that security should hold under normal operating conditions against
eavesdropping parties without making distributional assumptions on plaintext
messages. However, Enc-CPA makes no guarantees about dishonestly generated
or malformed ciphertexts.

HRA security captures this intuitive guarantee better than RIND-CPA. In
the course of normal operation of a proxy reencryption, an adversarial party
will see reencrypted ciphertexts. These ciphertexts may come at any time—
both before and after other ciphertexts whose contents should remain secret.
While HRA allows reencryption both before and after the challenge, RIND-CPA
restricts the reencryption oracle to the period before the challenge.

HRA makes minimal assumptions about the distribution of plaintext mes-
sages by allowing the adversary to choose messages itself, just as in Enc-CPA.
RIND-CPA goes further by making requirements in the face of malformed or
dishonestly generated ciphertexts.

A testing ground for new techniques. For classical encryption, Enc-CCA security
is strictly stronger than Enc-CPA security. In fact, there are many settings where
Enc-CPA security is demonstrably insufficient. Why then does the cryptography
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community continue to study it? There are many answers to this question, but
we mention only two. First, although insufficient for some applications, Enc-CPA
is useful in others. Second, it is useful as an intermediate goal because it seems
to capture a sort of hard core of the general problem of encryption and spurs
the development of new techniques.

HRA security enjoys these same features; RIND-CPA does not. As for use-
fulness for applications, HRA is meaningful in many of the envisioned applica-
tions of proxy reencryption—many more than CPA security. Because RIND-CPA
restricts the reencryption oracle to the period before the challenge ciphertext,
its usefulness in applications is less clear.

The challenge of constructing CCA secure proxy reencryption is the same as
the challenge of Enc-CCA secure encryption: namely, dealing with dishonestly
generated, possibly malformed ciphertexts. RIND-CPA, by allowing malformed
ciphertexts, presents similar challenges as full CCA security.

As for the usefulness of HRA as an intermediate goal towards CCA secu-
rity, the historical development of proxy reencryption is proof itself. This sounds
paradoxical: how can this be true if the notion has only just been introduced
in this work? Many of cryptographers that were targeting CPA security devel-
oped schemes that achieve HRA security with only minimal modification. The
techniques developed in these constructions were later adapted to achieve CCA
security. This suggests that cryptographers’ intuitions for the hard core of reen-
cryption were not flawed, only the formalization of these intuitions as CPA secu-
rity. HRA security is a better formalization for these intuitions and thus an
appropriate intermediate goal for reencryption research.

Idiosyncrasies of the RIND-CPA definition. We mention two unusual proper-
ties of the [14] definition. Unlike the adversary’s access to a ReEnc oracle, these
properties are not inherent in the RIND-CPA concept. It would be easy to pro-
pose a modified RIND-CPA definition that did not have these properties (e.g.,
IND-CCA0,1 in [28]).

First, the definition only considers the two party setting. Much like the infor-
mal description of proxy reencryption in Sect. 1, there is only a single uncor-
rupted key and a single corrupted key. It is easy to show that security in the two
party setting does not imply security in a many party setting.

Second, not only are inputs to ReEnc allowed to be malformed, but the cor-
rupted public key pk∗ can be malformed as well. The adversary outputs pk∗

itself and it needs not be honestly generated. This makes RIND-CPA security
as defined in [14] formally incomparable to all other definitions of proxy reen-
cryption security we know of, including the IND-CCA0,1 of [28].

These drawbacks of the [14] definition do not affect the proof of Theorem7,
but neither does the proof depend on them.

B.2 Separating RIND-CPA and HRA Security

The following pair of theorems support the conclusion that HRA security and
RIND-CPA security are incomparable.
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Theorem 6. If there exists an HRA secure PRE scheme, then there exists a
PRE scheme that is HRA secure but not RIND-CPA secure.

Proof. Suppose PRE is HRA secure, and let  be a special symbol that is not a
valid ciphertext. Define a new scheme PRE′ by modifying reencryption as follows:

ReEnc′(rk, ct) :=
{
ReEnc(rk, ct) if ct �= 
rk if ct =  .

PRE′ is still HRA secure: OReEnc′ is functionally equivalent to OReEnc when
restricted to honestly generated ciphertexts.

PRE′ is not RIND-CPA secure: a single call to OReEnc′(i, j,) (made before
the challenge) allows the adversary to learn the reencryption key rki→j and
thereby decrypt the challenge ciphertext.

Theorem 7. Under the assumptions stated below, there exists a PRE scheme
that is RIND-CPA secure but not HRA secure.

The claim assumes the existence of pair of encryption schemes, PRE and FHE
with the following properties. PRE is a RIND-CPA secure proxy reencryption
scheme with a ciphertext space Cinner. FHE is a circuit private fully homomor-
phic encryption scheme with message space Mfhe = Cinner. The message spaces
and ciphertext spaces of the two schemes are all disjoint and efficiently decid-
able. Finally, the additional proxy reencryption scheme PREFHE corresponding
to the FHE scheme (see Sect. 5.3) is RIND-CPA secure.10 For simplicity, we also
assume perfect correctness of reencryption (for both schemes) and of homomor-
phic evaluation.

Below we present a intuition for the proof of Theorem7. The proof is included
in the full version [13].

Proof Intuition for Theorem 7. Recall that RIND-CPA security allows the
adversary access to an unrestricted ReEnc oracle, but only before the challenge
ciphertext is generated. The main difficulty in separating RIND-CPA and HRA
security is the restriction in the HRA reencryption oracle to honestly generated
ciphertexts.

The first idea in our construction is the observation that separating RIND-
CPA and HRA security would be easy if it were possible to use Enc oracle
to generate a fresh, honest encryption of the challenge plaintext. This fresh
encryption could be reencrypted by the HRA reencryption oracle to a corrupted
key, revealing the challenge plaintext.

The second idea is to have two layers of encryption, where the message space
of the outer layer is equal to the ciphertext space of the inner layer. If the

10 The proof requires that an encryption scheme be both fully homomorphic and sup-
port proxy reencryption with RIND-CPA security. For concreteness, we have chosen
to assume that there exists an FHE scheme whose corresponding PRE is RIND-CPA
secure, but a different construction would suffice. We do not further explore the
underlying cryptographic assumptions needed to instantiate this encryption scheme.
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challenge ciphertext comes from the inner layer, then it can be used as input to
the Enc oracle to generate a new outer ciphertext containing information about
the challenge plaintext—namely, an encryption of the challenge ciphertext. The
outer ciphertext is honestly generated and can be reencrypted to a corrupt party
and decrypted. But it seems we are no better off; decrypting the outer ciphertext
only returns the challenge ciphertext still encrypted under the key of an honest
party.

The third idea is to modify ReEnc—using fully homomorphic encryption—to
reencrypt both the outer ciphertext and the inner challenge ciphertext. In addi-
tion to the usual reencrypted ciphertext, we augment ReEnc to output an addi-
tional, doubly reencrypted ciphertext, where both the outer and inner ciphertexts
have been reencrypted. If the recipient of the resulting ciphertext is corrupt, the
adversary can decrypt both layers and recover the challenge plaintext, violating
HRA security.

We now describe the intuition for how to perform double reencryption. Sup-
pose the proxy reencryption scheme used for the outer layer of encryption is
also fully homomorphic. Such a scheme can be constructed from any FHE
scheme (see Sect. 5.3). Given input an outer layer ciphertext ctouter = Enc(ctinner),
ReEnc will homomorphically evaluate Evalfhe(ReEnc, ctouter). The result is an
(non-reencrypted) outer ciphertext containing a reencrypted inner ciphertext.
Then, ReEnc reencrypts that outer ciphertext. This produces a reencrypted outer
ciphertext containing a reencrypted inner ciphertext.

Violating HRA security is simple: the adversary encrypts the challenge
ciphertexts, reencrypts it to a corrupted key, then decrypts the doubly-
reencrypted component twice to recover the challenge message.

It remains to prove that the constructed PRE scheme is RIND-CPA secure.
The homomorphic double reencryption functionality can be simulated by a
sequence of calls to Enc, Dec and OReEnc, allowing us to analyze the two-layered
scheme without the double-reencryption modification to ReEnc. The RIND-CPA
security of that scheme follows directly from the RIND-CPA security of the PRE
scheme underlying the two layers.
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1 Introduction

A proxy re-encryption (PRE) scheme is a public-key encryption scheme with
an additional functionality: Alice and Bob, who have key pairs (pkA, skA) and
(pkB , skB), respectively, can generate a re-encryption key (re-key, for short)
rkA,B that allows its holder, say Peggy, to act as a proxy; that is, she can
transform ciphertexts under pkA to ciphertexts under pkB without having to
know the underlying message. A trivial way to accomplish this would be for
Alice to hand her secret key skA to Peggy, who can then decrypt ciphertexts
under pkA, encrypt them under pkB and send them to Bob. Alice’s secret key acts
thus as the re-key and de- and encryption algorithms are used for re-encryption.
However, this approach requires Alice to reveal her secret key to Peggy and
therefore place complete trust on her. The more interesting cases are when the
parties are mutually distrustful.

Bidirectional vs. unidirectional. In the above setting, if the re-key rkA,B

allows Peggy to also transform ciphertexts under pkB to pkA, the PRE scheme
is called “bidirectional”. For such schemes the re-key is necessarily a function of
both skA and skB . In this paper we are interested in the more interesting case
of “unidirectional” PRE schemes where the re-key rkA,B can only transform
ciphertexts from pkA to pkB , and not vice-versa, and ciphertexts under pkB

remain secure even given skA and rkA,B . (Henceforth we will always assume
PREs to be unidirectional.) As opposed to bidirectional PREs, the re-key gener-
ation algorithm in a unidirectional PRE takes as input “source” keys (pkA, skA)
and only the “target” public key pkB .

Single hop vs. multiple hops. Suppose a third user, Charlie, holding keys
(pkC , skC), enters the picture and suppose Peggy obtains the re-key rkB,C that
allows her to transform ciphertexts under Bob’s public key to ciphertexts under
Charlie’s public key. Peggy can, by definition, transform a ciphertext cA under
pkA to a ciphertext cB under pkB using her re-key rkA,B . If it allows Peggy to
transform ciphertext cB , which has already been re-encrypted once, to a cipher-
text cC under pkC using the re-key rkB,C then we say that the PRE scheme
allows two “hops”. In a similar manner, one can consider multiple hops of re-
encryptions. Such a scheme is termed “multi-hop” as opposed to a “single-hop”
scheme (which does not allow re-encryptions of already re-encrypted cipher-
texts).

1.1 Modelling Security

The basic notion of security for unidirectional PREs is that of indistinguishability
under chosen-plaintext attack (CPA). There are n users and, at the beginning of
the game, the adversary gets their public keys pk1, . . . , pkn from the challenger.
In the first phase, the adversary can corrupt users of its choice by requesting their
secret keys; in the second phase, it can obtain re-keys rki,j and re-encryptions
for ciphertexts of its choice. The scheme is CPA-secure if it is infeasible for
the adversary to distinguish encryptions of two messages under a key that the
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adversary has not corrupted either directly or indirectly (through a re-key or
re-encryption query to a corrupted user).

Just as in standard public-key encryption, the above security definition can
be strengthened to chosen-ciphertext attack (CCA) by allowing the adversary
access to a decryption oracle which, on input a ciphertext and a public key pki

returns the decryption of the ciphertext under ski. The conditions to ensure
non-triviality have to be altered accordingly.

We note that both definitions are selective in nature: the adversary must
choose the set of players it corrupts before issuing any queries.

1.2 Prior Work

Bidirectional PREs were introduced as “atomic proxy cryptography” by Blaze,
Bleumer and Strauss [BBS98], who constructed a multi-hop scheme under the
decisional Diffie-Hellman assumption. Unidirectional PREs were introduced later
by Ateniese et al. [AFGH05]. Their main motivation was to limit the amount of
trust placed on the proxy, as required by their application to access control for
distributed storage. Since the notion of security for unidirectional PRE is differ-
ent from a bidirectional PRE, they also reformulated the notion of CPA (for the
single-hop setting). Assuming hardness of certain problems on bilinear groups,
they constructed CPA-secure schemes that are single-hop and unidirectional.

The definition of CCA security for single-hop bidirectional schemes is due
to Canetti and Hohenberger [CH07] and is more involved than previous defini-
tions, mainly because the adversary is allowed adaptive corruption. They gave
a scheme satisfying their notion under the standard decisional bilinear Diffie-
Hellman assumption. The definition of CCA security in the unidirectional set-
ting is due to Libert and Vergnaud [LV08], who instantiate it under a slightly
non-standard assumption on bilinear groups.

The earlier constructions of multi-hop, unidirectional schemes were based on
program obfuscation [HRsV07,CCV12]. In his seminal paper, Gentry [Gen09]
gave a generic construction of PREs from fully homomorphic encryption. The
first construction (with succinct ciphertexts) based on a standard assumption is
due to Chandran et al. [CCL+14]: their scheme is CPA-secure assuming deci-
sional learning with errors. Phong et al. [PWA+16] followed up with a construc-
tion that, in addition, enjoys a security property called “key-privacy”. The only
construction of a CCA-secure multi-hop, unidirectional scheme is due to Fan
and Liu [FL17]. In their paper, they also rigorously defined the security models
(CPA and CCA) for the multi-hop setting.

Cohen [Coh17] has recently argued that CPA security might be too
weak for some applications and introduced indistinguishability against honest-
reencryption attack (HRA), a notion that lies between CPA and CCA. He also
showed that if a PRE satisfies a property called “source-hiding”, which several
existing CPA-secure schemes do, then HRA security reduces to CPA security.
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1.3 Our Contribution

Our starting point is the observation that, unlike bidirectional PREs, the secu-
rity definitions for unidirectional PREs (that is, CPA, HRA and CCA) are all
selective in nature: the adversary must choose the set of parties it corrupts before
issuing any queries. A more meaningful notion would be adaptive security, where
the adversary is allowed to corrupt users at any time during the game. However,
modelling this turns out to be as tricky as in the bidirectional setting. In this
paper, we lift the definitions for CPA and HRA to the adaptive setting.

1.3.1 First Contribution: Modelling Adaptive Corruption. The main
problem that arises when we allow the adversary to adaptively corrupt users is
that we must ensure that the adversary cannot trivially win the security game.
For bidirectional PREs this was handled in [CH07] by defining a relation that
keeps track of the dependency between the re-keys and re-encryptions that were
issued during the game. Our approach is similar in spirit: the security game
maintains a “recoding graph” that has n nodes, and whose edges are derived
from the re-keys and re-encryptions issued to the adversary. The exact definitions
of the recoding graph for adaptive CPA and for adaptive HRA differ slightly, but
in both cases it is defined so that no corrupt key is reachable from the challenge
key. That is, the adversary is forbidden from making any re-key or re-encryption
queries to a corrupt user that is reachable from the challenge key. The recoding
graph now allows to ensure non-triviality of the adversary’s actions by checking
a few basic graph properties.

1.3.2 Second Contribution: The Reduction. Proving adaptive security
can be reduced to showing selective security by initially guessing the set of users
that will be corrupted. However, this reduction loses an exponential factor in
n, rendering the reduction meaningless already for moderate n. As our main
contribution, we give a more fine-grained reduction from adaptive to selective
security which in many practical settings and for several existing schemes (or
minor variants) implies adaptive security at much smaller (quasi-polynomial, or
even polynomial) loss. More precisely, the loss in our reduction depends on the
structure of the recoding graph: for trees and chains we get a quasi-polynomial
nO(log n) loss, whereas for general graphs the loss is exponential in their depth.
Fortunately, trees, chains, and low-depth graphs cover many, if not most, inter-
esting applications.

Security assumptions. A key step in our search for a tighter reduction was
the identification of the basic security assumptions on a PRE that we required
in our arguments. For the case of CPA, it turned out to be ciphertext indis-
tinguishability and weak key-privacy, both fairly standard security requirements
already explored in some of the previous works.

As the name suggests, a PRE is ciphertext-indistinguishable (or, for short,
indistinguishable) if the underlying encryption is. Since the syntax of the encryp-
tion algorithm for a PRE is slightly different from that of a standard public-key
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encryption, the definition of indistinguishability has to be slightly changed. To
be precise, the encryption algorithm for a PRE takes also a “level” as input, and
we require that the ciphertexts are indistinguishable on all levels. It is not hard,
therefore, to see that any selectively CPA-secure PRE has to trivially satisfy
indistinguishability.

The notion of key-privacy was introduced in a strong form in [ABH09]. We
require the PRE to satisfy a much weaker property, namely that a re-key rkA,B

looks pseudorandom given just the source and target public keys pkA and pkB.
Existing PRE schemes that satisfy the stronger key privacy as defined in [ABH09]
are therefore candidates for our reduction.

To apply our reduction to HRA-secure PRE, we need a third assumption
to hold: source-hiding. This is the same property that allowed Cohen [Coh17]
to lift a CPA-secure PRE to a HRA-secure one. Informally, a PRE is source-
hiding if ciphertexts that result from re-encryptions are distributed close to fresh
encryptions (at the corresponding level).

For PRE satisfying these assumptions, we show that the framework of
Jafargholi et al. [JKK+17], who gave an abstraction of the techniques from
[FKPR14], can be applied. This framework has been used to show adaptive
security of a variety of cryptographic protocols (e.g., secret sharing, garbled cir-
cuits etc.) in the “symmetric-key” setting while avoiding an exponential loss that
typically results from the guessing step when going from selective to adaptive
security. Its application to PREs in this work is the first in the “public-key”
setting. We describe their framework in more detail below.

The [JKK+17] framework. A standard way to prove adaptive security is to
first define a “selective” variant that requires the adversary to commit to some
of its choices (e.g., whom to corrupt, or on what input to be challenged at the
end) at the beginning of the game. Let W denote the set of all possible choices.

Consider a selective security notion defined as two games H0 and H1 being
indistinguishable. A security proof often uses a hybrid argument: one defines
a sequence of hybrid games (H0, . . . ,Hτ ) where the first and last games corre-
spond to the original selective games (i.e., H0 = H0 and H1 = Hτ ). One then
proves that any two consecutive hybrids (Ht and Ht+1) are ε-indistinguishable.
As indistinguishability satisfies the triangle inequality, the extreme games H0

and Hτ are (ε · τ)-indistinguishable.
Now to prove security against an adaptive adversary (who will not reveal

its choices at the beginning), one defines a new reduction that just guesses the
adversary’s future choices at random from the set W and then follows the selec-
tive reduction. Conditioned on the guess being correct, this reduction has the
same success probability as the selective one.

Unfortunately, the overall loss in security of this second step is as large as
the size of W, which is typically exponential (e.g., exponential in the number
of parties that can be corrupted). Thus, if the selective reduction implied ε-
indistinguishability (based on some underlying assumption), the adaptive reduc-
tion will only imply (ε · |W|)-indistinguishability, which in most cases will be
meaningless.
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The key observation in [JKK+17] was that in many selective reductions as
above, only a highly compressed version h(w) of the information w ∈ W that the
adversary commits to is actually used in the simulation of intermediate hybrids.
Jafargholi et al. called these “partially selective” hybrids, as opposed to the
original hybrids, which are “fully selective”. They show that the security loss in
such cases is only exponential in the length of h(w) (its the longest value for any
two consecutive hybrids), and not exponential in the length of the entire w.

In all the instances to which the [JKK+17] framework has been applied the
simulation of the security game depends on some underlying graph (e.g., the
access structure in secret sharing or the Boolean circuit in case of garbling) and
the hybrid games involve incremental changes to the simulation depending on
the structure of this graph. Jafargholi et al. managed to decouple the particulars
of the simulation from the design of the hybrids by using a pebbling game on the
graph (the graph must thus be directed and acyclic). To be more precise, they
associated the simulation of a hybrid (Ht) to a pebbling configuration (Pt), and
therefore the incremental changes in the simulation to the pebbling sequence
(P0, . . . ,Pτ ). In particular, if a vertex carries a pebble then the part of simula-
tion of the hybrid that is dependent on the vertex is carried out in a different
manner (e.g., in garbling using Yao’s scheme the ciphertexts in the garbled table
for a gate are all bogus). The rules of the simulation is what then determines
the pebbling rules, i.e., when exactly a pebble can be placed on or removed from
a vertex. The extreme hybrids correspond to the initial and final pebbling con-
figurations, and the immediate goal is to show that two hybrids that differ by a
pebble are indistinguishable to an adversary. Indistinguishability of the original
games then follows by transitivity of indistinguishability.

In the fully selective games of the above examples, the adversary commits
to the whole graph; but, as explained above, knowledge of the vertices that
are pebbled suffices to simulate the intermediate hybrids. Therefore, in the par-
tially selective game the adversary “commits” to some pebbling configuration.
Since we have established a correspondence between the simulation and a peb-
bling configuration, the task of designing a better sequence of hybrids has been
reduced to finding a better pebbling sequence. In particular, the fewer pebbles
are on the graph at any particular time, the more concisely we can describe this
configuration, and thus the smaller the incurred security loss.

Designing the hybrids. The graph that underlies the simulation in adaptive
CPA and HRA is precisely the recoding graph. (Strictly speaking, it suffices
to consider the subgraph that is reachable from the challenge vertex, which we
will call the “challenge graph”.) The presence (or not) of a pebble on a vertex
dictates how the re-encryption and re-key queries outgoing from that vertex
are simulated. Therefore in the fully selective games, the adversary commits to
the recoding graph (which is different from the original selective game in which
the adversary committed to the set of corrupt users), whereas in the partially
selective games it “commits” just to a pebbling configuration.

Let us first consider adaptive CPA: the edges of the recoding graph corre-
spond to the re-key and re-encryption queries made by the adversary during the
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game. For simplicity, assume that the recoding graph has a single source vertex
i∗ that is also the vertex the adversary wants to be challenged on. Once it has
made all the queries, the adversary receives its challenge, which is the encryp-
tion of either m∗

0 or m∗
1 under pki∗ ; let CPA0 and CPA1 denote the respective

games. In case there are no outgoing edges from i∗, indistinguishability of CPA0

and CPA1 follows from ciphertext indistinguishability (the first assumption): The
reduction embeds the challenge public key (of the indistinguishability game) as
the i∗-th key, relays (m∗

0,m
∗
1) to its challenger and forwards the challenge cipher-

text it receives to the adversary. As there are no outgoing re-keys from i∗, the
simulation does not require the secret key ski∗ .

In case i∗ does have outgoing edges, the idea is to use a sequence of hybrids
to reach a game where knowledge of ski∗ is not required for simulation, just like
above. To argue indistinguishability of hybrids, we use weak key-privacy, which
guarantees that a re-key looks pseudorandom given the source and target public
keys. Weak key-privacy allows the simulator to fake the outgoing edges from a
vertex, after which the secret key for this vertex is not required for simulation
anymore. However, the simulator cannot fake edges right away: it has to fake all
children of a vertex first, before it can rely on weak key-privacy. Consequently,
the pebbling must obey the following rule: in a move, a pebble can be placed on
or removed from a vertex only if all its children carry pebbles.

To be precise, in game Hb
t , for each pebbled vertex in Pt all queried re-keys

outgoing from that vertex are faked. Observe that as the secret key corresponding
to a vertex is used only for the generation of the re-keys outgoing from that
vertex, the simulation of a hybrid can be carried out without knowledge of the
secret key corresponding to the pebbled vertices. Thus, a pebbling sequence
describes a sequence of hybrids.

Main result. Our main result bounds the security loss for arbitrary recoding
graphs in terms of their space and time complexity, where a graph is said to
have space complexity σ and time complexity τ if there exists a valid pebbling
strategy for that graph that uses at most σ pebbles and requires at most τ moves.
More generally, a class of graphs has space complexity σ and time complexity τ
if this is the case for every graph in that class.

Theorem 1 (Informal Theorem 5). Let G(n) denote a family of graphs on
n vertices with space-complexity σ and time-complexity τ . Then a PRE that is
ciphertext-indistinguishable and weakly key-private for computationally bounded
adversaries is also adaptively CPA-secure against computationally bounded
adversaries for recoding graphs in G with a loss in security of ≈ τ · nσ. If the
PRE is also statistically source-hiding then it is also adaptively HRA-secure.

In many applications, the underlying recoding graph has a very particular
structure like trees (or even paths) and low-depth graphs, which cover many
interesting applications. For paths, or fixed-arity trees, our reduction only loses
a quasi-polynomial factor. For low-depth graphs, the loss is exponential only in
the depth (and thus polynomial for fixed depth-graphs). Below, we mention two
such applications.
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Table 1. PRE schemes we prove adaptively CPA and HRA secure (see Sect. 5 and the
full version [FKKP18] for the definitions of the assumptions).

Scheme Setting Assumption(s) Hops

[CCL+14] (Constr. 2, Section 5) Lattices LWE Multiple

[AFGH05] ([FKKP18, Constr. 4 ]) Bilinear maps eDBDH and XDH Single

[ABH09] ([FKKP18, Constr. 6]) Bilinear maps eDBDH and DLin Single

[Gen09] ([FKKP18, Constr. 5]) – FHE Multiple

1. In key rotation for encrypted cloud storage, a client has its data encrypted
on a server, and occasionally wants to re-encrypt it (say, to restore security
after key leakage). As the client does not trust the server, it will not want to
hand it the decryption key. When using PRE, the client can simply send a
re-key to the server, which enables it to locally re-encrypt all ciphertexts to
the new key. In this application the recoding graph is simply a chain.

2. Another common application is forwarding of encrypted email without involv-
ing the receiver, say, for delegation during vacation or for filtering spam
emails. In most cases the underlying delegation structure will be captured
by simple graphs. For example, if delegation only happens to subordinates,
the depth of the recoding graph is bounded by the depth of the hierarchy of
the organisation.

1.3.3 Third Contribution: Adaptively-Secure PREs. Finally, we show
that the aforementioned three properties are satisfied by several existing con-
structions or by minor variants thereof, and thus Theorem1 can be applied
to them. An overview of these schemes is given in Table 1. We consider the
most interesting corollary to our results the adaptive security of the LWE-based
scheme by Chandran et al. [CCL+14]:

Theorem 2 (Informal Theorem 6). The quasi-polynomially secure decisional
LWE problem implies multi-hop, unidirectional adaptively CPA/HRA-secure
PRE for chains or complete binary trees.

2 Formal Definitions

Notation. We use [a, b] to denote {a, a+1, . . . , b} and [b] as a shorthand for [1, b].
We will only consider logarithms to the base 2 (i.e., log := log2). For two sets
X ,Y we write XΔY for the symmetric difference. We write x ← X for sampling
an element x uniformly at random from the set X ; analogously, x1, . . . , xn ← X
denotes sampling x1, . . . , xn independently and uniformly at random from the
set X . To indicate sampling according to a distribution X on X , we write x ← X.
By [X] we denote the support of X, i.e., the values with positive probability.
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For two distributions X,Y , Δ(X,Y ) denotes their statistical distance. We write
X ≡ Y if X has the same input/output distribution as Y . Two distributions
X = {Xκ}κ∈N

and {Yκ}κ∈N
are (s, ε)-indistinguishable, denoted X ≈(s,ε) Y , if

for every adversary A of size at most s

|P[A(X) = 1] − P[A(Y ) = 1]| ≤ ε.

Throughout the paper, we will repeatedly use the following lemma concerning
the transitivity of the indistinguishability relation ≈:

Lemma 1. Let X, Y , Z be distributions on a set X . If X ≈(s1,ε1) Y and
Y ≈(s2,ε2) Z, then X ≈(min(s1,s2),ε1+ε2) Z.

For indistinguishability-based security games, we use 〈G,A〉 to denote the bit
output by the challenger G at the end of its interaction with the adversary A. We
say that two games G0 and G1 are (s, ε)-indistinguishable, denoted G0 ≈(s,ε) G

1,
if for every adversary A of size at most s

|P[〈G0,A〉 = 1] − P[〈G1,A〉 = 1]| ≤ ε.

For an algorithm A, we use sA to denote its size; in a similar manner, for
a set X , we use sX to denote the complexity of sampling from X uniformly at
random.

Notation for graphs. We let G = (V, E) denote a directed graph with vertices
V (usually V = [n] for some n ∈ N) and edges E ⊆ V2. The indegree (resp.,
outdegree) of a vertex is defined as the number of edges coming in to (resp.,
going out of) that vertex. The indegree (resp., outdegree) of the graph is the
maximum indegree (resp., outdegree) over all the vertices. A vertex with indegree
(resp., outdegree) zero is called a source (resp., sink). A vertex i is connected
to another vertex j (or alternatively j is reachable from i) if there is a directed
path from i to j in G.

2.1 Proxy Reencryption: Formal Definitions

Definition 1 (Multi-hop, unidirectional PRE). A multi-hop, unidirec-
tional PRE scheme for a message space M consists of the six-tuple of algorithms
(S,K,RK,E,D,RE), which are explained below.

S(1κ, 1λ) → pp: On input the security parameter κ and the maximum level λ
(both in unary) supported by the scheme, setup outputs the public parameters
pp. We assume that pp is implicit in other function calls.

K(pp) → (pk, sk): Key generation returns a public key pk and the correspond-
ing secret key sk.

RK((pki, ski), pkj) → rki,j: On input a source key pair (pki, ski) and a target
public key pkj, re-key generation generates a unidirectional re-encryption
key (rekey, for short) rki,j.



326 G. Fuchsbauer et al.

E(pk, (m, �)) → (c, �): Encryption takes as input the public key pk, a message
m and a level � ∈ [λ], and outputs a level-� ciphertext (c, �).

D(sk, (c, �)) → m : On input a ciphertext (c, �) and the secret key sk, decryp-
tion outputs a message m, or the symbol ⊥ (if the ciphertext is invalid).

RE(rki,j , pki, pkj , (ci, �)) → (cj , � + 1): Reencryption takes a re-key rki,j, a
source public key pki, a target public key pkj and a level-� ciphertext ci under
pki and transforms it to a level-(� + 1) ciphertext cj under pkj. Only cipher-
texts belonging to levels � ∈ [λ−1] can be re-encrypted. In constructions where
arguments pki and/or pkj are optional, we simply drop them.

Definition 1 differs slightly from the definition of multi-hop unidirectional PRE
in [FL17]. Here, the re-keys are level-agnostic: the same re-key can be used
to re-encrypt a ciphertext belonging to any level. In [FL17], however, a re-key
associated to a level cannot be used to re-encrypt a ciphertext from a different
level. We require the PRE to satisfy the following two correctness properties.

Definition 2 (Correctness [ABH09]). A proxy re-encryption scheme (as in
Definition 1) is correct w.r.t. the message space M if the following two properties
hold:

1. Correctness of encryption: ∀κ, λ ∈ N ∀ pp ∈ [S(1κ, 1λ)] ∀ (pk, sk) ∈ [K(pp)]
∀ (m, �) ∈ M × [λ]:

P[D
(
sk,E(pk, (m, �))

) = m] = negl(κ, λ),

where the probability is over the random coins of E.
2. Correctness of re-encryption: ∀κ, λ ∈ N ∀ pp ∈ [S(1κ, 1λ)] ∀ (pki, ski),

(pkj , skj) ∈ [K(pp)] ∀ rki,j ∈ [RK((pki, ski), pkj)] ∀ (m, �) ∈ M × [λ − 1]:

P[D
(
skj ,RE(rki,j , pki, pkj ,E(pki, (m, �)))

) = m] = negl(κ, λ),

where the probability is over the random coins of E and RE.

2.2 Modelling Security

2.2.1 Selective Corruption. The selective security of a multi-hop, unidi-
rectional PRE scheme against a chosen-plaintext attack is modelled using the
security game given in Game 1. It is an extension of the security model for
single-hop PRE from [ABH09] to the multi-hop setting.1 The limiting feature of
the model is that the adversary has to fix, beforehand in Phase 1 (see Game 1),
the honest and corrupt public keys. Its goal is to distinguish an encryption of
m0 from an encryption of m1 (for m0,m1 of its choice) under a key of its choice.
The game aborts if the adversary does one of the following:

– query the challenge oracle on a corrupt public key (abort1);

1 [FL17] formalised security differently; we stick to the definition from [ABH09].
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– request a re-key from an honest key to a corrupt key (abort2); or
– query a re-encryption from an honest to a corrupt key (abort3).

Challenger sCPAb(1κ, 1λ, n)
1: Set C = ∅ � Stores the corrupt public keys
2: pp ← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn) ← PRE.K(pp) � Generate keys
3: ∀i, j ∈ [n], i �= j : rki,j ← PRE.RK((pki, ski), pkj) � Generate re-keys

4: state ← A
(corrupt,·)
1 (pp) � Phase 1

5: b′ ← A
(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)
2 (pk1, . . . , pkn, state) � Phase 2

6: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i, j)
1: if i /∈ C and j ∈ C then HALT end if � abort2
2: return rki,j

Oracle (reencrypt, i, j, (ci, �))
1: if i /∈ C and j ∈ C then HALT end if � abort3
2: return (cj , � + 1) ← PRE.RE(rki,j , pki, pkj , (ci, �))

Oracle (challenge, i∗, (m∗
0, m

∗
1), �∗) � Single access

1: if i∗ ∈ C then HALT end if � abort1
2: return (ci∗ , �∗) ← PRE.E(pki∗ , (m∗

b , �∗))

Game 1: sPRE-CPA

Definition 3 (sPRE-CPA-security). A PRE scheme is (s, ε)-selectively
secure against chosen-plaintext attack if sCPA0 ≈(s,ε) sCPA1, where sCPAb is
defined in Game 1.

Security against honest-reencryption attack. A stronger security definition
was introduced in [Coh17] to address some of the restrictions that sPRE-CPA

imposes on the adversary. The idea is to allow re-encryptions from honest to cor-
rupt keys, if the ciphertexts to re-encrypt were honestly generated. The adversary
can obtain such honest ciphertexts via an encrypt oracle, which stores them in a
list. The reencrypt oracle now takes the index of an honestly generated cipher-
text. It was shown in [Coh17] that (selective) HRA-security implies (selective)
CPA-security and also that if the PRE scheme is re-encryption-simulatable (a
generalisation of Definition 9) then (selective) CPA-security implies (selective)
HRA-security. In sPRE-HRA, which we formally define in Game 2, abort3 is
relaxed to

– abort∗
3: The adversary queries the re-encryption of a ciphertext that is the

result of a chain of re-encryptions of the challenge ciphertext from an honest
to a corrupt key.

Definition 4 (sPRE-HRA-security). A PRE scheme is (s, ε)-selectively
secure against honest-reencryption attack if sHRA0 ≈(s,ε) sHRA1, where sHRAb

is defined in Game 2.
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Challenger sHRAb(1κ, 1λ, n)
1: Set C, E = ∅ � Stores corrupt keys and issued re-keys and re-encryptions
2: Set C = 0 � Counts ciphertexts generated
3: Set L, L∗ = ∅ � Stores honest ciphertexts and which derived from challenge
4: pp ← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn) ← PRE.K(pp) � Generate keys
5: ∀i, j ∈ [n], i �= j : rki,j ← PRE.RK((pki, ski), pkj) � Generate re-keys

6: state ← A
(corrupt,·)
1 (pp) � Phase 1

7: b′ ← A
(encrypt,·,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)
2 (pk1, . . . , pkn, state) � Phase 2

8: return b′

Oracles corrupt and rekey are defined like in Game 1.
Oracle (encrypt, i, (m, �))
1: (c, �) ← PRE.E(pki, (m, �))
2: Increment C and add (C, i, m, (c, �)) to L
3: return (c, �)
Oracle (reencrypt, i, j, k)
1: Retrieve (k, i, m, (ci, �)) from L and increment C
2: (cj , � + 1) ← PRE.RE(rki,j , pki, pkj , (ci, �))
3: if k ∈ L∗ then � The ciphertext is derived from the challenge
4: if j ∈ C then HALT else add C to L∗ � abort∗

3 end if
5: end if
6: Add (C, j, m, (cj , � + 1)) to L
7: return (cj , � + 1)
Oracle (challenge, i∗, (m∗

0, m
∗
1), �∗) � Single access

1: Compute (ci∗ , �∗) ← PRE.E(pki∗ , (m∗
b , �∗)) and increment C

2: if i∗ ∈ C then HALT else add C to L∗ � abort1 end if
3: Add (C, i∗, m∗

b , (ci∗ , �∗)) to L
4: return (ci∗ , �∗)

Game 2: sPRE-HRA

2.2.2 Modelling Adaptive Corruption. The adaptive security games cor-
responding to Games 1 and 2 are given in Games 3 and 4, respectively. To model
adaptive corruption, we think of the game being played on a directed graph
G = (V, E) called the “recoding” graph. The vertices of the recoding graph cor-
respond to the public keys, i.e., V = [n]. The edges are derived from the re-keys
and re-encryptions issued to the adversary in the security game, and their pur-
pose is to ensure that the adversary does not win the game in a trivial manner.
In particular, the recoding graph is defined so that no corrupt key is reachable
from the challenge key. To be precise, in CPA an edge (i, j) is added to E if the
adversary made either a (rekey, i, j) or (reencrypt, i, j, ·) query (see Game 3
and Fig. 1). Consequently, the adversary is forbidden from making any re-key
or re-encryption queries to a corrupt user that is reachable from the challenge
key.2

2 The selective CPA notion (Game 1) is in fact more restrictive in that it does not
allow re-keys and re-encryptions from any honest user to a corrupt user.
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Fig. 1. Recoding graph. The (round) green nodes represent the honest users, whereas
the (square) red nodes are the corrupted ones. The edges denote the recoding informa-
tion. In particular, the (solid) black edges are the re-keys, the (dashed) orange edges
are the re-encryptions related to the challenge ciphertext (therefore, 3 is the challenge
vertex) and (dotted) blue edges represent the remaining re-encryptions. For CPA, all
the edges are counted, but for HRA the blue (dotted) edges are not counted. The
subgraph of the recoding graph that forms the challenge graph (cf. Sect. 4) is shaded:
the darker inner shading for HRA, whereas the lighter outer shading is the challenge
graph for CPA. Note that the edge (7, 8) is valid in the case of HRA, but invalid for
CPA (and therefore the CPA challenger would abort at the end of such an execution.)
(Color figure online)

For HRA, on the other hand, (i, j) is added to E if the adversary made either
a (rekey, i, j) query or a (reencrypt, i, j, k) query where the k-th ciphertext
is a re-encryption of the challenge ciphertext (see Game 4 and Fig. 1). This is
less restrictive than in CPA: the adversary can make re-encryption queries to a
corrupt user that is reachable from the challenge key unless it is related to the
challenge ciphertext.

For comparison we have reformulated the selective notions defined in Games 1
and 2 using a recoding graph instead of explicit aborts. Games 9 and 10 in the
full version define the exact same notions as Games 1 and 2, respectively.

Definition 5 (PRE-CPA-security). A PRE scheme is (s, ε)-adaptively
secure against chosen-plaintext attack if CPA0 ≈(s,ε) CPA

1, where CPAb is defined
in Game 3.
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Challenger CPAb(1κ, 1λ, n)
1: Set C, E = ∅ � Stores corrupt keys and issued re-keys and re-encryptions
2: pp ← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn) ← PRE.K(pp) � Generate keys
3: ∀i, j ∈ [n], i �= j : rki,j ← PRE.RK((pki, ski), pkj) � Generate re-keys
4: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
5: if A made call (challenge, i∗, ·, ·) for some i∗ then � Check abort conditions
6: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
7: end if
8: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i, j)
1: Add (i, j) to E � Add to recoding graph
2: return rki,j

Oracle (reencrypt, i, j, (ci, �))
1: Add (i, j) to E � Add to recoding graph
2: return (cj , � + 1) ← PRE.RE(rki,j , pki, pkj , (ci, �))

Oracle (challenge, i∗, (m∗
0, m

∗
1), �∗) � Single access

1: return (ci∗ , �∗) ← PRE.E(pki∗ , (m∗
b , �∗))

Game 3: PRE-CPA

Definition 6 (PRE-HRA-security). A PRE scheme is (s, ε)-adaptively
secure against honest-reencryption attack if HRA0 ≈(s,ε) HRA1, where HRAb is
defined in Game 4.

3 Preliminaries

This section provides the background necessary for the main results in Sect. 4.
We start with the security assumptions on PREs that allow us to prove adaptive
security (Sect. 3.1) and then give an overview of the framework of [JKK+17]
(Sect. 3.2), the description of the pebbling game that is used in the design of the
hybrids (Sect. 3.3).

3.1 Security Assumptions on PRE

We describe the three security properties of PRE schemes that allow us to prove
adaptive security: indistinguishability, key-privacy and source-hiding.

Indistinguishability of ciphertexts. For proxy re-encryption, we require the
notion of indistinguishability, as defined for public-key encryption, to hold on all
levels:

Definition 7 (Indistinguishability). A proxy re-encryption scheme PRE has
(s, ε)-indistinguishable ciphertexts if IND0 ≈(s,ε) IND

1 with IND as in Game 5.
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Challenger HRAb(1κ, 1λ, n)
1: Set C, L, L∗ = ∅ and C = 0 � L stores honest enc’s, L∗ marks challenge reenc’s
2: E = ∅ � The edges of the recoding graph
3: pp ← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn) ← PRE.K(pp) � Generate keys
4: ∀i, j ∈ [n], i �= j : rki,j ← PRE.RK((pki, ski), pkj) � Generate re-keys
5: b′ ← A(corrupt,·),(rekey,·,·),(encrypt,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
6: if A made call (challenge, i∗, ·, ·) for some i∗ then � Check abort conditions
7: if ∃ i ∈ C : i∗ is connected to i then return 0 end if
8: end if
9: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i, j)
1: Add (i, j) to E � Add to recoding graph
2: return rki,j

Oracle (encrypt, i, (m, �))
1: c ← PRE.E(pki, (m, �)), increment C and add (C, i, m, (c, �)) to L
2: return c

Oracle (reencrypt, i, j, k)
1: Retrieve (k, i, m, (ci, �)) from L
2: (cj , � + 1) ← PRE.RE(rki,j , pki, pkj , (ci, �))
3: Increment C and add (C, j, m, (cj , � + 1)) to L
4: if k ∈ L∗ then � cj derived from challenge
5: Add C to L∗ and add (i, j) to E � Add to recoding graph
6: end if
7: return (cj , � + 1)

Oracle (challenge, i∗, (m∗
0, m

∗
1), �∗) � Single access

1: Compute (ci∗ , �∗) ← PRE.E(pki∗ , (m∗
b , �∗))

2: Increment C, add (C, i∗, m∗
b , (ci∗ , �∗)) to L and C to L∗

3: return (ci∗ , �∗)

Game 4: PRE-HRA

Challenger INDb(1κ, 1λ)
1: pp ← PRE.S(1κ, 1λ), (pk, sk) ← PRE.K(pp)
2: return b′ ← A(challenge,·,·)(pp, pk)

Oracle (challenge, (m∗
0, m

∗
1), �∗)

1: return PRE.E(pk, (m∗
b , �∗))

Game 5: Security game IND for ciphertext indistinguishability

Key-Privacy. The original notion of key-privacy for PREs, which we refer to
as “strong” key-privacy, was introduced in [ABH09]. It is modelled by a security
game similar to sPRE-CPA: the adversary has access to corrupt, rekey and
reencrypt oracles, but as a challenge it has to distinguish a real re-key from a
re-key sampled uniformly at random from the support of re-keys. We refer the
readers to [ABH09] for the details.

We only need a weaker definition stating that re-keys should hide the source
keys. That is, the re-key rk0,1 from source (pk0, sk0) to a target key pk1 should
be indistinguishable from a random source to pk1. In addition, we need this
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property to hold with respect to multiple re-keys. More formally, the security
game for weak key-privacy is given in Game 6 where the simulator RK∗ is defined
as

RK∗(pp, pk1) := RK((pk0, sk0), pk1) : (pk0, sk0) ← K(pp).

Definition 8 (Weak key-privacy). Let δ ∈ N. A proxy re-encryption scheme
PRE is (s, ε, δ)-weakly key-private if KP0 ≈(s,ε) KP

1 with KP as in Game 6.

Source-hiding. Source-hiding is a special case of re-encryption-simulatability,
a notion that was introduced in [Coh17]. It requires that re-encryptions can
be simulated without knowledge of the secret key. In particular, the simulated
re-encryptions should be indistinguishable from re-encrypted ciphertexts even
when given the secret keys for the source and target public keys, as well as the
re-key that was used for re-encryption (hence the notion of indistinguishabil-
ity is at least that of statistical indistinguishability). A PRE scheme is called
source-hiding if re-encrypted ciphertexts have the same distribution as “fresh”
ciphertexts, i.e., the encryption algorithm can be used as a simulator for re-
encryption.

Definition 9 (Source-hiding). A proxy re-encryption scheme PRE is (s, ε)-
source-hiding if SH0 ≈(s,ε) SH

1, with SH as defined in Game 7.

3.2 Overview of [JKK+17]

Random guessing. A standard way to prove adaptive security is to first show
security in a “selective” version of the adaptive game, in which the adversary
commits to some of its future choices, and then use random guessing of the
adversary’s commitment to reduce adaptive security to selective security. For
instance, consider the indistinguishability game for identity-based encryption:
in the selective counterpart the adversary commits to the challenge identity at
the start of the game, and the adaptive to selective reduction then works by
guessing the challenge identity. More formally, let G0 and G1 denote the two
adaptive games. For some function g : {0, 1}∗ → W we define below the selective
games H0 = SELW [G0, g] and H1 = SELW [G1, g] where the adversary commits to
some information w ∈ W – for the case of IBE, W is the set of all identities. Note
that the selective game gets a commitment w from the adversary but essentially
ignores it during the rest of the game. It checks that the commitment matches
what actually happened during the game only at the very end of the game;
whether w matches is defined via the function g.

Definition 10 (Fully selectivised game [JKK+17]). Given an (adaptive)
game G and some function g : {0, 1}∗ → W, the selectivised game H =
SELW [G, g] is defined as follows. The adversary A first sends a commitment
w ∈ W to H. Then H runs the challenger G against A, at the end of which G
outputs a bit b̂. Let transcript denote all communication exchanged between G
and A. If g(transcript) = w then H outputs the bit b̂ and else it outputs 0.
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Challenger KPb(1κ, 1λ)
1: pp ← PRE.S(1κ, 1λ), (pk0, sk0), . . . , (pkδ, skδ) ← K(pp)
2: ∀j ∈ [δ] : rk(0)0,j ← RK((pk0, sk0), pkj)

3: rk
(1)
0,j ← RK∗(pp, pkj)

4: return b′ ← A(pp, pk0, . . . , pkδ, rk
(b)
0,1, . . . , rk

(b)
0,δ)

Game 6: Security game KP for weak key-privacy

Challenger SHb(1κ, 1λ)
1: pp ← PRE.S(1κ, 1λ)
2: (pk0, sk0), (pk1, sk1) ← PRE.K(pp)
3: rk0,1 ← PRE.RK((pk0, sk0), pk1)
4: b′ ← A(challenge,·,·)(pp, (pk0, sk0), (pk1, sk1), rk0,1)
5: return b′

Oracle (challenge, m∗, �∗) � �∗ ∈ [λ − 1]
1: c0 ← PRE.E(pk0, (m

∗, �∗))
2: c

(0)
1 ← PRE.RE(rk0,1, pk0, pk1, c0) � Real re-encryption

3: c
(1)
1 ← PRE.E(pk1, (m

∗, �∗ + 1)) � Simulate re-encryption
4: return (c0, c

(b)
1 )

Game 7: Security game SH for source hiding
Next, suppose that the selective security is proved using a hybrid argument.

That is, to show the indistinguishability of H0 and H1 suppose we have a sequence
of τ + 1 (selective) hybrid games H0 = H0,H1, . . . ,Hτ = H1 (see Fig. 2). If we
only assume that neighbouring hybrids Hi,Hi+1 are indistinguishable, then by
combining the hybrid argument and random guessing we get that G0 and G1 are
indistinguishable with a loss in distinguishing advantage of τ · |W|. The factor
of |W| is the cost of the random guessing, whereas the factor of τ is due to
the hybrid argument. This is stated in the following (recall that sW denotes the
complexity of sampling from W):

Theorem 3 ([BB04,JKK+17]). Assume we have two games defined via (adap-
tive) challengers G0 and G1 respectively. Let g : {0, 1}∗ → W be an arbitrary
function and define the selectivised games Hb = SELW [Gb, g] for b ∈ {0, 1}. Also
assume that for each i ∈ [τ ], the games Hi−1,Hi are (s, ε)-indistinguishable.
Then, G0 and G1 are (s − sW , ε · τ · |W|)-indistinguishable.

The framework. In some cases only part of the information that the adversary
commits to is used in simulating the intermediate hybrids, but when considering
all the hybrids the whole commitment is being used. For example, the simulation
of an intermediate hybrid in the case of IBE could rely on only certain bits of
the challenge identity. It is shown in [JKK+17] that the security loss in such
cases can be limited to the maximum size of the information used across any
two successive hybrids.

More formally, [JKK+17] makes a stronger assumption: not only are neigh-
bouring hybrids Hi,Hi+1 indistinguishable, but they are “selectivised” versions,
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G0

H0 = H0 H1 H2 · · · Hτ−1 Hτ = H1

G1

Ĥ0,0 Ĥ0,1 Ĥ1,0 Ĥ1,1 Ĥ2,0 Ĥτ−2,1 Ĥτ−1,0 Ĥτ−1,1

Fig. 2. A schematic diagram showing the relationship between adaptive, fully selective
and partially selective hybrids. The adaptive games G0 and G1 are in green (circles); the
fully selective games H0, . . . ,Hτ are in solid black (boxes); and the partially selective
games Ĥ0,0, Ĥ0,1, . . . , Ĥτ−1,0, Ĥτ−1,1 are in (dotted) blue boxes. The arrows indicate
indistinguishability. (Color figure online)

of “partially” selective games Ĥi,0, Ĥi,1 which are already indistinguishable. In
particular, for each pair of neighbouring hybrids Hi,Hi+1 there exists a pair of
partially selective hybrids Ĥi,0, Ĥi,1 (see Fig. 2) in which the adversary commits
to much less information hi(w) ∈ U instead of w ∈ W. The selectivised game
essentially ignores w and only relies on the partial information u = hi(w) during
the course of the game but at the very end it still checks that the full commitment
w matches what actually happened during the game.

Definition 11 (Partially selectivised game [JKK+17]). Assume Ĥ is a
game which expects to receive some commitment u ∈ U from the adversary in
the beginning. Given functions g : {0, 1}∗ → W and h : W → U the partially
selectivised game H = SELU→W [Ĥ, g, h] is defined as follows. The adversary A

first sends a commitment w ∈ W to H and H begins running Ĥ and passes it
u = h(w). It then continues running the game between Ĥ and A at the end of
which Ĥ outputs a bit b̂. Let transcript denote all communication exchanged
between Ĥ and A. If g(transcript) = w then H outputs the bit b̂ and else it
outputs 0.

Note that different pairs of partially selective hybrids Ĥi,0, Ĥi,1 might rely on
completely different partial information hi(w) about the adversary’s choices.
The partially selective hybrid associated to each Hi can thus be different when
we compare Hi−1,Hi (in which case it is Ĥi−1,1) and when we compare Hi and
Hi+1 (in which case it is Ĥi,0) – see Fig. 2. The next theorem shows that we
only incur a security loss proportional to |U| rather than |W| if we can define a
sequence of partially selective hybrids which only require commitments from U .

Theorem 4 ([JKK+17]). Let G0 and G1 be two adaptive games. For some
function g : {0, 1}∗ → W we define the selectivised games H0 = SELW [G0, g],
H1 = SELW [G1, g]. Let H0 = H0,H1, . . . ,Hτ = H1 be some sequence of hybrid
games. Assume that for each i ∈ [0, τ − 1], there exists a function hi : W → U
and games Ĥi,0, Ĥi,1 such that

Hi ≡ SELU→W [Ĥi,0, g, hi] and Hi+1 ≡ SELU→W [Ĥi,1, g, hi]. (1)
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Furthermore, if Ĥi,0, Ĥi,1 are (s, ε)-indistinguishable for all i ∈ [0, τ −1], then G0

and G1 are (s − sU , ε · τ · |U|)-indistinguishable.

3.3 Pebbling Games

The reversible pebbling game on DAGs was introduced in [Ben89] to model
reversible computation. We define a variant in which the pebbling rules have
been adapted for application to PREs. In particular, the rule is the opposite of
that in [Ben89]: a pebble can be placed on or removed from a vertex if all its
children carry a pebble.3

Definition 12. A reversible pebbling of a directed acyclic graph G = (V, E) with
a unique source vertex i∗ is a sequence P := (P0, . . . ,Pτ ) of pebbling configura-
tions Pt ⊆ V. Two subsequent configurations differ only in one vertex and the
following rule is respected in a move: a pebble can be placed on or removed from
a vertex iff all its children carry a pebble. That is, P is a valid sequence iff

∀t ∈ [τ ] ∃! i ∈ Pt−1�Pt and children(i, G) ⊆ Pt−1.

Starting with an empty graph (i.e., P0 = ∅), the goal of the game is to place a
pebble on the source (i.e., i∗ ∈ Pτ ).

For a DAG G, let PG denote the set of all valid reversible pebbling sequences
(as per Definition 12) for G. The time complexity of a particular sequence P =
(P0, . . . ,Pτ ) for a DAG G is defined as τG(P) := τ , whereas its space complexity
is defined as

σG(P) := max
t∈[0,τ ]

|Pt|.

Definition 13 (Space- and time-complexity of a class of DAGs). We say
that a class of DAGs G has time complexity τ and space complexity σ if

∀G ∈ G ∃P ∈ PG : τG(P) ≤ τ ∧ σG(P) ≤ σ.

Concrete Bounds. The pebbling complexity for the pertinent classes of single-
source graphs on n vertices are listed in Table 2. These bounds are proved in
Lemmata 2 through 4 in the full version.

3 Alternatively, one can think of the pebbling game in Definition 12 as the classical
reversible pebbling game played on a DAG whose edges have their direction flipped.
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Table 2. Space and time complexity for different classes of DAGs. These bounds are
proved in Lemmata 2 through 4 in the full version.

Family
Bounds

Space (σ) Time (τ)

DAGs with outdegree δ and depth d G(n, δ, d) (δ + 1) · d (2δ)d

Complete binary trees of size n B(n) log n n2

Chains of length C(n) log n + 1 3log n

4 Framework for Adaptive Security

In this section we demonstrate, using the framework of [JKK+17], how adaptive
security can be achieved for PREs. We focus on CPA, and the analogous result
for HRA is given in the full version [FKKP18]. As for the applications given in
[JKK+17], we use pebbling games on DAGs to design the hybrid games. Each
pebbling configuration uniquely determines a hybrid game bridging the two real
games CPA0 and CPA1. The DAG that we pebble in the proof is the subgraph
of the recoding graph that is reachable from the challenge i∗ (via the edges
E defined during the game); it is thus a subgraph of the recoding graph with
one unique source i∗, which we call the challenge graph. A pebble on a vertex
allows the simulation of the hybrid to be carried out without the knowledge of
the secret key associated with that vertex. The pebbling rules will ensure that
hybrids corresponding to two successive pebbling configurations can be proven
indistinguishable assuming key-privacy.

4.1 Adaptive Security Against Chosen-Plaintext Attack

We first show how a pebbling sequence on the challenge graph defines a sequence
of fully selective hybrids (Lemma 2), and then prove that these hybrids are par-
tially selectivised (Lemma 3).

4.1.1 Fully Selective Hybrids. In the fully selectivised version of PRE-CPA

(Game 3), A first makes a commitment Ĝ to the challenge graph. Any correct
commitment Ĝ must therefore have one unique source, which we denote by î. The
selective challenger is thus SELG [CPAb, g], where g is the function that extracts
the recoding graph G and the challenge user i∗ from the transcript and returns
the challenge graph, i.e., the subgraph of G reachable from i∗. Note that this is
fundamentally different from the original selective game (i.e., sCPA in Game 1)
where the adversary commits, beforehand, to the set of corrupt public keys.

Each hybrid is associated with a pebbling configuration Pt and a bit b, and
we consider the sequence of hybrids H0

0, . . . ,H
0
τ ,H1

τ , . . . ,H1
0. The pebbling state of

a vertex dictates how the outgoing re-key and re-encrypt queries are simulated,
whereas the bit determines how the challenge query is answered. To be precise,
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in game Hb
t , for each pebbled vertex in Pt all used re-keys outgoing from that

vertex are faked, and the challenge query is answered by an encryption of m∗
b .

(Rekeys outgoing from pebbled vertices that are not used for any queries are
defined as real re-keys). Observe that the secret key corresponding to a vertex
is used only for the generation of the re-keys outgoing from that vertex; the
simulation of a hybrid can thus be carried out without knowledge of the secret
keys corresponding to the pebbled vertices (as the non-queried re-keys need not
be generated).

Since the initial pebbling configuration is the empty set, H0
0 and H1

0 corre-
spond to the (fully selectivised) games SELG [CPA0, g] and SELG [CPA1, g], respec-
tively. Now, consider the middle hybrids H0

τ and H1
τ : they are the same except

for the response to the challenge query which is the encryption of m∗
0 in the

former and the encryption of m∗
1 in the latter. Since the pebbling configuration

Pτ , by definition, contains a pebble on the challenge vertex i∗, the simulation of
this hybrid can be carried out without knowledge of the secret key corresponding
to i∗. This means we can reduce indistinguishability of the PRE to the indis-
tinguishability of these two hybrids. To be precise, the reduction embeds the
challenge public key at ı̂, which is defined by the commitment Ĝ and replies to
the challenge query (in the CPA game) by sending the challenge ciphertext (of
the indistinguishability game). Note that if i∗ = î, that is, the commitment Ĝ
doesn’t coincide with the transcript of the CPA game, then the hybrid returns
0 anyway. The reduction is formally defined in Algorithm 2.

Next, consider any two hybrids Hb
t and Hb

t+1, t ∈ [0, τ − 1] and b ∈ {0, 1}.
Also, assume Pt+1 results from Pt by placing a pebble on the vertex i0 (the case
when a pebble is removed can be argued analogously). The simulation of Hb

t and
Hb

t+1 is the same except for the (used) re-keys outgoing from i0: in Hb
t they are

all real whereas in Hb
t+1 they are all fake. By the rules of the pebbling game,

the children of i0 all carry pebbles in the configurations Pt and Pt+1; therefore
the simulation need not know the corresponding secret keys. This means that
we can prove indistinguishability of Hb

t and Hb
t+1 from weak key-privacy: the

reduction embeds the (key-privacy) challenge public keys pk0, . . . , pkδ at i0 and
its children, and uses the challenge re-keys rk0,1, . . . , rk0,δ to simulate the re-key
oracle for queries from i0 to its children. The reduction is formally defined in
Algorithm 3. (Note that the simulation of the reduction in Algorithm 3 is perfect:
if the commitment Ĝ does not match with the transcript, it returns 0; else, we
have î = i∗ and by definition of the pebbling, i0 is reachable from î = i∗ and so
are its children i1, . . . , iδ. If the adversary corrupts any of these, then the game
returns 0.)

In summary, we get a sequence of hybrids SELG [CPA0, g] = H0
0, . . . ,H

0
τ ,

H1
τ , . . . ,H1

0 = SELG [CPA1, g], where each pair of subsequent hybrids can be
proved indistinguishable. Security in the fully selectivised CPA game follows
by Lemma 1. We state this formally in Lemma 2 below.
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Hybrid Hb
t(1κ, 1λ, n)

1: Obtain the challenge graph Ĝ ∈ G(n, δ, d) from A
2: Compute Pt ← P(Ĝ, t) � The t-th pebbling configuration
3: Set C, E = ∅ � Stores corrupt keys and issued re-keys and re-encryptions
4: pp ← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn) ← PRE.K(pp)
5: ∀i ∈ Pt, ∀j ∈ children(i, Ĝ): rki,j ← RK∗(pp, pkj) � Fake re-keys
6: ∀i ∈ Pt, ∀j ∈ [n] \ {children(i, Ĝ) ∪ i}: rki,j ← PRE.RK((pki, ski), pkj) � Real

re-keys
7: ∀i ∈ [n] \ Pt, ∀j �= i: rki,j ← PRE.RK((pki, ski), pkj) � Real re-keys
8: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
9: if A made call (challenge, i∗, ·, ·) for some i∗ then � Check abort conditions
10: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
11: end if
12: if Ĝ is the subgraph of ([n], E) reachable from i∗ then return b′ end if
13: return 0

Algorithm 1: Template for generating fully selective PRE-CPA hybrids given a
pebbling configuration. All the oracles are defined like in Game 3.

Lemma 2 (Security against fully selectivised PRE-CPA). Consider the
sequence of hybrids H0

0, . . . ,H
0
τ ,H1

τ , . . . ,H1
0, where Hb

t is defined in Algorithm1
using the pebbling configuration Pt. Hb

0 is the fully selectivised game of CPAb:
i.e., Hb

0 = SELG [CPAb, g] where g extracts the challenge graph (subgraph reach-
able from the challenge vertex) from a transcript. Moreover, if the adversary
makes at most QRE re-encryption queries, then a PRE scheme that is (s1, ε1)-
indistinguishable and (s2, ε2, δ)-weakly key-private is (s, ε)-secure against fully
selectivised PRE-CPA restricted to challenge graphs in G(n, δ, d) with

s := min(s1, s2) − sCPA and ε := ε1 + 2τ · ε2,

where sCPA ≈ O(sP + n2 · sRK + QRE · sRE) denotes the complexity of simulating
the CPA game.

PRE-CPA-security follows from random guessing (Theorem 3) but with a
security loss of 2n2

, where n2 is an upper bound on the number of bits required
to encode the challenge subgraph:

Corollary 1 (PRE-CPA-security by random guessing). A PRE scheme
that is (s1, ε1)-indistinguishable and (s2, ε2, δ)-weakly key-private is (s, ε)-secure
against PRE-CPA restricted to challenge graphs in G(n, δ, d), where

s := min(s1, s2) − sCPA − sG and ε := (ε1 + 2τ · ε2) · 2n2
.

4.1.2 Partially Selective Hybrids. In hybrid Hb
t described in Algorithm 1,

we observe that not all information on the committed recoding graph Ĝ is actu-
ally required for the simulation. In fact, only the pebbling configuration Pt is



Adaptively Secure Proxy Re-encryption 339

required to simulate the hybrid: re-keys are only required once a corresponding
re-key or a re-encrypt query is issued; for a pebbled node, such queries lead to
an edge added in E ; thus the re-key is simulated (while the “not-queried” re-keys
are never used during the experiment).

Reduction R
(IND.challenge,·,·)
τ (pp∗, pk∗) � pk∗ denotes the challenge public key

1: Obtain the challenge graph Ĝ ∈ G(n, δ, d) from A
2: Compute Pτ ← P(Ĝ, τ) � The τ -th pebbling configuration
3: Set C, E = ∅ � Stores corrupt keys and issued re-keys and re-encryptions
4: (pk1, sk1), . . . , (pk̂ı−1, sk̂ı−1), (pk̂ı+1, sk̂ı+1), . . . , (pkn, skn) ← PRE.K(pp∗)
5: Let ı̂ be the source of Ĝ, set pk̂ı := pk∗ � Embed challenge public key
6: ∀i ∈ Pτ , ∀j ∈ children(i, Ĝ): rki,j ← RK∗(pp, pkj) � Fake re-keys
7: ∀i ∈ [n] \ Pτ , ∀j ∈ children(i, Ĝ): rki,j ← PRE.RK((pki, ski), pkj) � Real re-keys
8: ∀i ∈ Pτ , ∀j ∈ [n] \ {children(i, Ĝ) ∪ i}: rki,j ← PRE.RK((pki, ski), pkj) � Real

re-keys
9: ∀i ∈ [n] \ Pτ , ∀j �= i: rki,j ← PRE.RK((pki, ski), pkj) � Real re-keys
10: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp∗, pk1, . . . , pkn)
11: if A made call (challenge, i∗, ·, ·) for some i∗ then � Check abort conditions
12: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
13: end if
14: if Ĝ is the subgraph of ([n], E) reachable from i∗ then return b′ end if
15: return 0

Oracles rekey and reencrypt are defined like in Game 3.
Oracle (corrupt, i)
1: if i = ı̂ then HALT: Rτ returns 0 end if � Commitment Ĝ doesn’t match or. . .
2: Add i to C and return ski � . . . i∗ corrupted
Oracle (challenge, i∗, (m∗

0, m
∗
1), �∗) � Single access

1: (ci∗ , �∗) ← IND.challenge((m∗
0, m

∗
1), �∗) � Embed challenge ciphertext

2: return (ci∗ , �∗)

Algorithm 2: The reduction showing that the hybrids H0
τ and H1

τ are indistin-
guishable by indistinguishability of ciphertexts.

In addition to the pebbling configuration Pτ , the reduction from ciphertext
indistinguishability (cf. Algorithm 2) also needs to know the challenge vertex
î in order to embed the challenge public key. The reduction from weak key-
privacy (cf. Algorithm 3) requires, in addition to Pt, the vertex that is pebbled
or unpebbled in Pt+1 (i.e., the vertex i0) and its children, so it can embed its
challenge public keys and re-keys.

To sum up, two consecutive hybrids Hb
t and Hb

t+1 can be shown to be indis-
tinguishable using a lot less information than what the adversary commits to.
We thus have the following:

Lemma 3 (Partially selectivised hybrids). Let P0, . . . ,Pτ and H0
0, . . . ,H

0
τ ,

H1
τ , . . . ,H1

0 be defined as in Lemma 2, and let σ denote the space complexity of
the pebbling sequence. Then, for t ∈ [0, τ − 1] and b, β ∈ {0, 1},

Hb
t+β ≡ SELU→G [Ĥ

b

t,β , g, ht] and Hb
τ ≡ SELU→G [Ĥ

b

τ,0, g, hτ ],
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Reduction Rb
t(pp∗, pk∗

0, . . . , pk
∗
δ , rk∗

0,1, . . . , rk
∗
0,δ)

1: Obtain the challenge graph Ĝ ∈ G(n, δ, d) from A
2: Compute Pt ← P(Ĝ, t), Pt+1 ← P(Ĝ, t + 1) � The t-th and (t + 1)-th

configurations
3: Set C, E = ∅ � Stores corrupt keys and issued re-keys and re-encryptions
4: i0 := PtΔPt+1, i1, . . . , iδ := children(i0, Ĝ) � i0 denotes pebbled/unpebbled vertex
5: ∀k ∈ [0, δ]: pkik

:= pk∗
k � Embed the challenge public keys

6: ∀k ∈ [n] \ {i0, . . . , iδ}: (pkk, skk) ← PRE.K(pp∗) � Real keys
7: ∀k ∈ [δ] : rki0,ik := rk∗

0,k � Embed challenge re-keys
8: ∀i ∈ Pt \ {i0}, ∀j ∈ children(i, Ĝ): rki,j ← RK∗(pp∗, pkj) � Fake re-keys
9: ∀i ∈ Pt, ∀j ∈ [n] \ {children(i, Ĝ) ∪ i}: rki,j ← PRE.RK((pki, ski), pkj) � Real

re-keys
10: ∀i ∈ [n] \ (Pt ∪ {i0}), ∀j �= i: rki,j ← PRE.RK((pki, ski), pkj) � Real re-keys
11: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp∗, pk1, . . . , pkn)
12: if A made call (challenge, i∗, ·, ·) for some i∗ then � Check abort conditions
13: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
14: end if
15: if Ĝ is the subgraph of ([n], E) reachable from i∗ then return b′ end if
16: return 0

Oracles rekey, reencrypt and challenge are defined like in Game 3.
Oracle (corrupt, i)
1: if i ∈ {i0, . . . , iδ} then HALT: Rτ returns 0 end if� Commitment Ĝ doesn’t match
2: Add i to C and return ski � . . . or i reachable from i∗

Algorithm 3: The reduction showing that the hybrids Hb
t and Hb

t+1, for t ∈
[0, τ − 1] and b ∈ {0, 1}, are indistinguishable by weak key-privacy.

where Ĥ
b

t,β is defined in Algorithm4 (see also Fig. 3), g extracts the challenge
graph from the transcript (as in Lemma 2). For t ∈ [0, τ − 1], ht is the function
that extracts the pebbling configuration Pt, the pebbled/unpebbled vertex in Pt+1

and its children; hτ extracts the pebbling configuration Pτ and the challenge node
i∗. Thus, U corresponds to the set Vσ+δ+1.

The tighter bound for PRE-CPA-security now results by applying Theorem4:

Theorem 5 (main, PRE-CPA security). Let σ and τ denote, respectively,
the pebbling space and time complexity for the class G(n, δ, d). Then a PRE
scheme that is (s1, ε1)-indistinguishable and (s2, ε2, δ)-weakly key-private is (s, ε)-
PRE-CPA-secure restricted to challenge graphs in G(n, δ, d), where

s := min(s1, s2) − sCPA − sG and ε := (ε1 + 2τ · ε2) · nσ+δ+1.

4.2 Corollaries

Finally, we calculate concrete bounds to Theorem 5 for the families of recoding
graphs listed in Table 2. The approximate security loss (assuming ε1 = ε2 = ε′)
that results when substituting these bounds for CPA in Theorem5 are nO(d·δ)

for G(n, δ, d), nO(log n) for B(n) and nO(log n) for C(n). The same bounds hold for
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CPA0

H0 = H0
0 H0

1 H0
2 · · · H0

τ H1
τ · · ·

Ĥ
0
0,0 Ĥ

0
0,1 Ĥ

0
1,0 Ĥ

0
1,1 Ĥ

0
2,0 Ĥ

0
τ−1,1 Ĥ

0
τ,0 Ĥ

1
τ,0 Ĥ

1
τ−1,1

Fig. 3. Diagram showing the partially selectivised hybrids for PRE-CPA.

HRA if one assumes that QRE and QE (i.e., number of queries) are polynomial
and ε3 = 2−κ (i.e., the PRE scheme is statistically source-hiding): see the full
version for the details.

5 Lattice-Based Multi-hop Scheme

Here, we describe the lattice-based unidirectional multi-hop PRE scheme from
[CCL+14]. The remainder of the schemes—viz. the pairing-based schemes from
[AFGH05] and [ABH09] and Gentry’s FHE-based construction—are given in the
full version [FKKP18]. We note that being based directly on the decision LWE
(DLWE) problem this scheme achieves better parameters than the construction
from FHE.

5.1 [CCL+14] Scheme

In [CCL+14], Chandran et al. propose two lattice-based unidirectional multi-hop
proxy re-encryption schemes. The schemes are built upon Regev’s encryption
[Reg05] and its dual version [GPV07], respectively. Here, we will describe the
former one, which is inspired by the fully homomorphic encryption scheme of
[BV11]. Security can be proven assuming the hardness of the decisional learning
with errors (DLWE) problem (cf. Definition 14 below).

We recall Regev’s encryption scheme in Construction 1. We can now define
the PRE scheme from [CCL+14] using RGV in Construction 2.a. To achieve
source-hiding, Chandran et al. propose the variant given as Construction 2.b.

In both schemes, the LWE error will grow with each re-encryption and the
level bound λ needs to be chosen appropriately so that correctness of decryption
is still guaranteed (with overwhelming probability). The second variant achieves
the stronger notion of PRE-HRA-security (see below) at the cost of worse param-
eters; only a small number λ of re-encryptions is supported by this scheme and
the underlying security assumption is very strong.
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Hybrid Hb
t+β

1: Obtain the challenge graph Ĝ ∈ G(n, δ, d) from A and let ı̂ be its source
2: Compute Pt ← P(Ĝ, t), Pt+1 ← P(Ĝ, t + 1) � The t-th and (t + 1)-th

configurations
3: i0 := PtΔPt+1, i1, . . . , iδ := children(i0, Ĝ) � i0 denotes pebbled/unpebbled vertex
4: if t < τ then b̂ ← Ĥ

b

t,β(Pt, {i0, . . . , iδ}) � Key-privacy hybrid

5: else b̂ ← Ĥ
b

τ,0(Pτ , {̂ı, ⊥, . . . , ⊥}) end if � t = τ , β = 0: ind hybrid
6: if Ĝ is subgraph of ([n], E) reachable from i∗ then return b′ end if
7: return 0

Ĥ
b

t,β(Pt, {i0, . . . , iδ})
1: Set C, E = ∅ � Stores corrupt keys and issued re-keys and re-encryptions
2: if t < τ then
3: if i0 ∈ Pt then Pt+1 := Pt \ {i0} else Pt+1 := Pt ∪ {i0} end if
4: end if
5: pp ← PRE.S(1κ, 1λ), (pk1, sk1), . . . , (pkn, skn) ← PRE.K(pp)
6: ∀i, j ∈ [n], i �= j : rki,j = ⊥ � Delay re-key generation till the query
7: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
8: if A made call (challenge, i∗, ·, ·) for some i∗ then � Check abort conditions
9: if ∃ i ∈ C : i∗ is connected to i in ([n], E) then return 0 end if
10: end if
11: return b′

Oracles corrupt and challenge are defined like in Game 3.
Oracle (rekey, i, j)
1: if rki,j = ⊥ then � Re-key not generated
2: if i ∈ Pt+β then rki,j ← RK∗(pp, pkj) � Fake re-key
3: else rki,j ← RK((pki, ski), pkj) end if � Real re-key
4: end if
5: Add (i, j) to E � Add to recoding graph
6: return rki,j

Oracle (reencrypt, i, j, (ci, �))
1: if rki,j = ⊥ then � Re-key not generated
2: if i ∈ Pt+β then rki,j ← RK∗(pp, pkj) � Fake re-key
3: else rki,j ← RK((pki, ski), pkj) end if � Real re-key
4: end if
5: Add (i, j) to E � Add to recoding graph
6: return (cj , � + 1) ← PRE.RE(rki,j , pki, pkj , (ci, �))

Algorithm 4: Partially selectivised hybrids. For t ∈ [0, τ − 1] and b, β ∈ {0, 1}:
Hb

t+β = SELU→G [Ĥ
b

t,β , g, ht] and Hb
τ = SELU→G [Ĥ

b

τ,0, g, hτ ]. Moreover, U is the
set Vσ+δ+1. Note that the sampling of the re-keys has been deferred to the actual
calls.

Security. The PRE scheme in Construction 2.a can be proven secure assum-
ing the hardness of decisional learning with errors (DLWE). We will first show
PRE-CPA-security of Construction 2.a and then consider PRE-HRA-security of
Construction 2.b.
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1. S(1κ): Pick lattice parameters N, M, q ∈ N and a B-bounded error distribution χ
on M

q . Sample A ← M×N
q uniformly at random and return the public parameters

pp = (A, N, M, q, χ).
2. K(pp): Sample s ← N

q uniformly at random and compute b = A · s + e, where
e ← χ. Set pk := b as the public key and sk := s as the secret key. Return (pk, sk).

3. E(pk, m): On input pk ∈ M
q and a message bit m ∈ {0, 1}, sample r ← {0, 1}M

and output
c := rT (A, b) + (0N , m · 
q/2�) ∈ Z

N+1
q .

4. D(sk, c): On input a secret key sk = s ∈ N
q and a ciphertext c = (α, β) ∈ N

q ×Zq,
output 0 if β − 〈α, s〉 is closer to 0 than to 
q/2�, else output 1.

Construction 1: Regev’s Encryption scheme RGV [Reg05].

1. S(1κ): Get parameters pp′ ← RGV.S(1κ), level bound λ and “blurring error”

bound E� for each level � ∈ [λ]. Return the parameters pp = (pp′, λ, (E�)�∈[λ]).
2. K(pp): Run RGV.K(pp′) and output the result.

3. E(pk, (m, �)): Compute c = RGV.E(pk, m)+ (0N , f�) , where f� ← [−E�, E�] ∩ Z ,
and return the level-� ciphertext (c, �).

4. RK((pki, ski), pkj): Parse ski as si = (si,1, . . . , si,N ) ∈ N
q . For k ∈ [N ] and

l ∈ [
log q�], compute Kk,l ← RGV.E(pkj , 0) + (0N , si,k · 2l). Return the re-key:

rki,j := {Kk,l}k∈[N ],l∈[�log q�].

5. RE(rki,j , pki, pkj , (ci, �)) → (cj , �+1): If � ≥ λ, abort. Otherwise, parse the level-�
ciphertext ci as (α, β) ∈ N

q ×Zq and rki,j as {Kk,l}k∈[N ],l∈[�log q�]. Denote by αk

the k-th component of α, and denote the bit decomposition of αk as {αk,l}l∈[�log q�],
i.e., αk =

∑
l∈[�log q�] αk,l2l, where each αk,l ∈ {0, 1}. Compute

cj = (0N , β) +
∑

k,l αk,l · Kk,l + RGV.E(pkj , 0) + (0N , f�+1) ,

where f�+1 ← [−E�+1, E�+1] ∩ Z , and return (cj , � + 1).
6. D(sk, (c, �)): Run RGV.D(sk, c) and output the result.

Construction 2: source-hiding unidirectional multi-hop PRE from [CCL+14].
We refer to the construction without the blurring (ignoring the boxes) by Con-
struction 2.a and the construction with blurring (including the boxes) by Con-
struction 2.b.

Definition 14 (DLWE [Reg05]). Let N, M, q ∈ N. For a matrix A ← ZM×N
q

and a secret vector s ← ZN
q , each sampled uniformly at random, and a vec-

tor e ← χ for an error distribution χ on ZM
q , the decisional LWE problem

DLWEN,M,q,χ is to distinguish (A,A · s + e) from (A, b) for a uniformly ran-
dom sample b ← ZM

q .

To prove adaptive security for the two variants of Construction 2, we will
need the following lemma [BV11].
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Lemma 4 (matrix-vector leftover hash lemma). Let κ, N, q ∈ N, and
M ≥ N · log q + 2κ. For A ← ZM×N

q , r ← {0, 1}M , and y ← ZN
q each sampled

uniformly at random, it holds Δ((A,AT r), (A,y)) ≤ 2−κ.

Assuming the computational hardness of DLWEN,M,q,χ for appropriate
parameters, by the above lemma we get for any pp = (A, N,M, q, χ, λ), pk = b
and m ∈ {0, 1}: RGV.E(pk,m) = rT (A, b) + (0N ,m · �q/2�) is computation-
ally indistinguishable from rT (A, b′) + (0N ,m · �q/2�), where r ← {0, 1}M and
b′ ← ZM

q . The latter distribution is, in turn, statistically close to the uni-
form distribution on Z

N+1
q . Informally, since RGV.E(pk, 0) is computationally

indistinguishable from uniformly random, ciphertexts, re-keys and re-encrypted
ciphertexts all look uniformly random; in particular Construction 2.a satisfies
indistinguishability of ciphertexts as well as δ-weak key privacy.

Lemma 5. Assuming DLWEN,M,q,χ is (s1, ε1)-hard for parameters N,M, q as
in Lemma 4, Construction 2.a satisfies (s1 − sE, 2(ε1 +2−κ))-indistinguishability
and (s1 − O(δ N �log q� (s

Z
N+1
q

+ sRGV.E)), δN�log q�ε1, δ)-weak key-privacy.

Theorem 6 (PRE-CPA-security of Construction 2.a). Let σ and τ denote
the space and time complexity for the class G = G(n, δ, d). Assume the
DLWEN,M,q,χ problem is (s1, ε1)-hard for parameters N,M, q as in Lemma 4.
Then Construction 2.a is (s, ε)-PRE-CPA-secure restricted to challenge graphs
in G, where

s := s1 − O(δ N �log q� (s
Z
N+1
q

+ sRGV.E)) − sCPA − sG and

ε := (2τ · δN�log q� + 1) · ε1 · nσ+δ+1.

Construction 2.a clearly does not satisfy source-hiding and, thus cannot be
proven PRE-HRA-secure using our results. Fortunately, Construction 2.b solves
this issue, but at the cost of only allowing for a constant level bound λ. The addi-
tional uniform error f
 ← [−E
, E
] ∩ Z added in E and RE in Construction 2.b
is used to “blur out” the different errors caused by encryption or re-encryption,
respectively. Choosing the error bounds E
 appropriately guarantees the source-
hiding property of the scheme while still preserving correctness.4 Chandran et
al. refer to this rerandomisation technique as strong blurring ; a more detailed
analysis can be found in [DS16, Sect. 4.1], where the same method for rerandom-
ization of Regev ciphertexts is used to discuss sanitizability of the FHE scheme
from [BV11].

To prove PRE-HRA-security of Construction 2.b, note that, as above, seman-
tic security and δ-weak key-privacy of (E,D) directly follow by the security of
Regev’s encryption scheme. We get a result similar to Lemma 5.

Lemma 6. For large enough (see Footnote 4) error ranges E
, � ∈ [λ], Con-
struction 2.b is (statistically) source-hiding.
4 In fact, we need to choose the error bounds (E�)�∈[λ] exponentially large, eg., E1 ≥

(M + 1)B2κ. Thus, to provide correctness of the scheme, one needs to choose the
modulus q to be of size exp(O(κ)) and the level bound λ of size O(1).
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Theorem 7 (PRE-HRA-security of Construction 2.b). Let ε be as in The-
orem6 and let σ and τ denote the space and time complexity for G = G(n, δ, d).
If DLWEN,M,q,χ is (s1, ε1)-hard for parameters N,M, q as in Lemma 4 and E


(� ∈ [λ]), λ are chosen appropriately, then Construction 2.b is (s′, ε′)-PRE-HRA-
secure restricted to challenge graphs in G, where

s′ := s1 − O(δ N �log q� (s
Z
N+1
q

+ sRGV.E)) − sHRA − sG , and

ε′ := 2n(n − 1)(QE + QRE)QRE · 2−κ + ε.

6 Open Problems

We leave as open problems to find adaptively secure PREs (either via the
[JKK+17] framework or using a new technique) for more general settings, which
includes unidirectional PREs on general graphs, bidirectional PREs and CCA-
secure PRE (the schemes above only satisfy CPA, and the slightly stronger HRA
security notion).
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Abstract. Robustly reusable Fuzzy Extractor (rrFE) considers reusabil-
ity and robustness simultaneously. We present two approaches to the
generic construction of rrFE. Both of approaches make use of a secure
sketch and universal hash functions. The first approach also employs a spe-
cial pseudo-random function (PRF), namely unique-input key-shift (ui-ks)
secure PRF, and the second uses a key-shift secure auxiliary-input authen-
ticated encryption (AIAE). The ui-ks security of PRF (resp. key-shift secu-
rity of AIAE), together with the homomorphic properties of secure sketch
and universal hash function, guarantees the reusability and robustness
of rrFE. Meanwhile, we show two instantiations of the two approaches
respectively. The first instantiation results in the first rrFE from the LWE
assumption, while the second instantiation results in the first rrFE from
the DDH assumption over non-pairing groups.

Keywords: Fuzzy extractor · Reusability · Robustness

1 Introduction

In cryptographic applications, the underlying secret keys are required to be uni-
formly sampled and reproducible. Uniformity of the secret keys is necessary for
the security of cryptographic algorithms, and reproducibility is responsible for the
correctness of the algorithms. In reality, there exist many noisy random sources
of high entropy, which are neither uniformly distributed nor reproducible. For
instance, biometrics [19,20] (like fingerprint, iris, voice, etc), physical unclonable
functions [22,23] in electronic devices, and quantum bits generated from quan-
tum devices [4,5]. In fact, the readings of the same source are rarely identical and
noises are inevitably introduced in each reading. An interesting topic is research
on converting such random sources into uniform and reproducible strings so that
they can serve as secret keys for cryptographic systems. The topic was highlighted
by Dodis et al. [11] who proposed the concept of Fuzzy Extractor.

Fuzzy extractor (FE) is able to turn a noisy variable of high entropy into a
stable, uniformly distributed string. More precisely, it consists of two efficient
c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11443, pp. 349–378, 2019.
https://doi.org/10.1007/978-3-030-17259-6_12
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algorithms (Gen,Rep). The generation algorithm Gen on input a reading w from
a noisy source W outputs a public helper string P together with an extracted
string R. The security of FE requires that R is (pseudo-)random if W has enough
entropy. The reproduction algorithm Rep on input w′ which is close to w will
reproduce R with the help of the public helper string P.

Reusable Fuzzy Extractor. It should be noted that fuzzy extractor only
allows one extraction from a noisy source. This feature limits the usability of
fuzzy extractor. In fact, a user may like to use his/her fingerprint to generate
several keys for different cryptographic applications. To this end, reusable fuzzy
extractor was proposed by Boyen [6]. Generally, reusable fuzzy extractor guaran-
tees the security of multiple keys extracted from a single noisy source. More pre-
cisely, R1,R2, · · · ,RQ are all pseudorandom even conditioned on (P1,P2, · · · ,PQ)
where (Pj ,Rj) ← Gen(wj), j ∈ {1, · · · , Q} and wj is the j-th reading of a noisy
source.

In [6], Boyen proposed a reusable FE scheme based on the random oracle.
In the security model, it assumes the exclusive OR of two readings of the same
source reveals no information of the noisy source W . Wen et al. [27] constructed
a reusable FE from the Decisional Diffie-Hellman (DDH) assumption, and the
security model assumes that the difference of two readings of the same source
does not reveal too much information of the random source.

Canetti et al. [8] constructed a reusable FE from a powerful tool named
“digital locker”. In the security model, no assumption is made on how multiple
readings are correlated. However, existing instantiations of digital locker rely
their security either on random oracles or non-standard assumptions. Their work
was upgraded by Alamélou et al. [1] to tolerate linear fraction of errors, but still
rely on “digital locker”.

Apon et al. [2] proposed a reusable FE from the learning with errors (LWE)
assumption, but it can only tolerate logarithmic fraction of errors. Later, Wen
et al. [24] constructed a new reusable FE from LWE assumption tolerating linear
fraction of errors. In both works, it assumes that the differences between two
readings of the same source are controlled by a probabilistic polynomial-time
(PPT) adversary.

Robust Fuzzy Extractor. Fuzzy extractor does not consider active adver-
saries. If the public helper string P is modified by an active adversary, the correct-
ness of fuzzy extractor might not be guaranteed. Boyen et al. [7] first highlighted
this issue and introduced the concept of robust fuzzy extractor. Robustness of
fuzzy extractor concerns the integrity of P, and requires that the reproduction
algorithm of FE will output ⊥ with overwhelming probability if P is modified.

Boyen et al. [7] proposed a generic way of transforming a fuzzy extractor to a
robust one based on random oracles. Dodis et al. [10] showed that robustness of
information-theoretic fuzzy extractor is not achievable in the plain model if the
entropy rate of the source is less than 1/2 and they constructed a fuzzy extractor
with post-application robustness which applies to sources of entropy rate larger
than 2/3. Later, Kanukurthi et al. [16] introduced an improved robust FE, which
relaxes entropy rates of sources to be larger than 1/2. With the help of common
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reference string (CRS), Cramer et al. [9] proposed a robust FE and breaks the
1/2 entropy rate barrier in the CRS model.

Robustly Reusable Fuzzy Extractor. Most recently, Wen et al. [25] pro-
posed the concept of robustly reusable Fuzzy Extractor (rrFE), which considers
robustness and reusability simultaneously in the CRS model.

According to [25], the reusability of rrFE asks the pseudorandomness of Rj

even conditioned on (R1, · · · ,Rj−1,Rj+1, · · · ,RQ,P1, · · · ,PQ) where (Pj ,Rj) ←
Gen(wj = w + δj), j ∈ [Q] ([Q] := {1, · · · , Q}) and δj is controlled by the
adversary. In formula, (R1, · · · ,Rj , · · · ,RQ,P1, · · · ,PQ) ≈c (R1, · · · ,Uj , · · · ,RQ,P1,

· · · ,PQ), where Uj denotes a uniform distribution. In fact, a stronger version
requires (R1, · · · ,RQ,P1, · · · ,PQ) ≈c (U1, · · · ,UQ,P1, · · · ,PQ). The robustness of
rrFE requires that for any PPT adversary, its forged public helper string and
reading shift (P∗, δ∗) cannot pass the reproduction algorithm of rrFE except with
negligible probability, even if the adversary sees (Pj ,Rj)j∈[Q]. Here (Pj ,Rj) ←
Gen(wj = w + δj). Moreover, {δj}j∈[Q], (P∗, δ∗) /∈ {(Pj ,Rj)}j∈[Q] are adaptively
chosen by the adversary.

In [25], the first robustly reusable fuzzy extractor was constructed based on
the DDH and DLIN assumptions in the CRS model. We stress that the DLIN
assumption is over pairing-friendly groups, since a core building block of their
construction, namely homomorphic lossy algebraic filter (LAF) [15], has only
one instantiation, which is over (symmetric) pairing-friendly groups. Though
the construction is elegant, the instantiation of LAF introduces big public helper
string, and complicated computations over symmetric pairing groups in rrFE.

Question. Is there any other approaches to rrFE? Is it possible to obtain a more
efficient rrFE? Is it possible to construct a rrFE from the LWE assumption?

1.1 Our Contribution

We answer the above questions in the affirmative.

– We provide two generic constructions of rrFE. Namely,

SS + HI + ui-ks-PRF ⇒ rrFE,

SS + HI + AIAE ⇒ rrFE,

where SS is a homomorphic Secure Sketch with linearity property, HI is a
family of homomorphic universal hash functions, ui-ks-PRF is a pseudorandom
function with unique-input key-shift security, and AIAE is an auxiliary-input
authenticated encryption with key-shift security.

– Our construction is simple and can be instantiated with standard assump-
tions. Both SS and HI have information-theoretic instantiations, and ui-ks-
PRF and AIAE have available instantiations from standard assumptions.

• When instantiating ui-ks-PRF with the PRF constructed in [18], we obtain
the first post-quantum rrFE from the LWE assumption.
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Fig. 1. The generation algorithm of the robustly reusable Fuzzy Extractor in [25].

• When instantiating AIAE with the AIAE scheme from [14], we obtain the
first efficient rrFE from the DDH assumption over pairing-free groups.

1.2 Our Approaches

We provide two new approaches to rrFE. Following the security model in [25],
the adversary controls the differences between any two different readings of the
source W .

First, we recall the generation algorithm of rrFE in [25] in Fig. 1. The source
reading w is served as inputs for three building blocks, i.e., universal hash func-
tion Hi, secure sketch scheme SS = (SS.Gen,SS.Rec) and lossy algebraic filter
LAF. With Hi, a string k is extracted from source w and used as a key in the
symmetric KEM SKEM = (SKEM.Enc,SKEM.Dec), which in turn encapsulates
the final extracted string R; with SS.Gen, a secure sketch s is generated from
w to help eliminate noises in the reproduction algorithm of rrFE; with LAF, w
is used as an authentication key to authenticate the ciphertext c generated by
SKEM.Gen, the secure sketch s and a random tag t′. The output σ of LAF can
be regarded as an authenticator. The final public helper string is P = (c, s, t′, σ).

Differences Between Ours and [25]. Different from the rrFE in [25], we
explore a different structure with different primitives. As for primitive, we
use pseudorandom function (PRF) or auxiliary-input authentication encryption
(AIAE), instead of LAF+SKEM. As for structure, rrFE in [25] uses LAF for
authentication of (c, s, t′) and SKEM for pseudo-randomness of R, while ours
employs only a single primitive ui-ks-PRF(or AIAE) to achieve both authentica-
tion and pseudo-randomness. Moreover, we do not use w directly as authenti-
cation key. Instead, we input w to Hi to obtain a key k for ui-ks-PRF/AIAE. We
expect ui-ks-PRF/AIAE to provide both pseudorandomness of R and authentica-
tion of the public helper string P. In fact, the security of the PRF ui-ks-PRF/AIAE
helps us to obtain reusability and robustness of rrFE. See Figs. 2 and 3.

The First Approach. In the first approach, we resort to a special PRF, namely
ui-ks-PRF. Taking the output k from Hi as its key, and the output s from SS and
a random t as its input, ui-ks-PRF outputs a string which is further divided into
R and v. Here R is the final extracted string, while v behaves as an authenticator.
The public helper string is P = (s, t, v).
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Fig. 2. Gen of the first approach. Fig. 3. Gen of the second approach.

The reusability and robustness of rrFE can be reduced to the Unique-Input
Key-Shift (ui-ks) security of ui-ks-PRF, with the help of the homomorphic prop-
erties of Hi and SS (and also the linearity property of SS). Informally, the security
of the PRF ui-ks-PRF requires

(xj ,PRF(k + Δj , xj))j∈[Q] ≈c (xj ,Uj)j∈[Q]

for all PPT adversaries, where k, Uj are uniformly distributed, PRF is the
evaluation algorithm of ui-ks-PRF, inputs {xj}j∈[Q] are distinct, and {xj}j∈[Q]

{Δj}j∈[Q] are adaptively chosen by the adversary.
Now we outline the high-level idea of proving the reusability and robustness

of our first rrFE in Fig. 2.

(i) Due to the homomorphic properties of SS and Hi, it holds that Hi(wj) =
Hi(w+δj) = Hi(w)+Hi(δj) and SS.Gen(wj) = SS.Gen(w+δj) = SS.Gen(w)+
SS.Gen(δj). Then the view of the adversary can be considered as the ran-
domized function of k(:= Hi(w)), s(:= SS.Gen(w)). The output s from SS
only leaks limited amount of information of W . By the leftover hash lemma,
the output k from universal hash function Hi is uniform and independent
of s.

(ii) The key of ui-ks PRF is given by kj = Hi(wj) = Hi(w + δj) = k + Hi(δj),
which can be regarded as a key shifted Δj := Hi(δj) from k. The inputs
of ui-ks PRF are (sj , tj)j∈[Q], which are distinct with each other due to the
randomness of tj . Given that k is uniform and independent of s, key shift
Δj is determined by δj , and all input (sj , tj) are distinct, it is ready for us
to implement the security reduction of rrFE to ui-ks security of ui-ks PRF.
The security reduction is non-trivial (see Sect. 4 for details).

(iii) The ui-ks security of ui-ks PRF implies the pseudo-randomness of (Rj , vj)
and (R∗, v∗) for A, which immediately implies reusability of rrFE. The
robustness of rrFE follows as well, since the adversary cannot guess the cor-
rect authenticator v∗ with non-negligible probability. The security reduction
is non-trivial (see Sect. 4 for details).

The Second Approach. In the second approach, we use a special authenticated
encryption scheme, namely auxiliary-input authenticated encryption (AIAE).
Taking k := Hi(w) as its key and s := SS.Gen(w) as its auxiliary input, AIAE
encrypts a random string R and outputs a ciphertext ct. Then R serves as the
final extracted string, while P = (s, ct) as the public helper string.
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As a symmetric encryption, the Key-Shift security AIAE asks both IND-RKA
and (weak) INT-RKA security. The IND-RKA security requires

(mj,0,mj,1, ctj,0 ← AIAE.Enc(k + Δj ,mj,0, auxj))j∈[Q]

≈c (mj,0,mj,1, ctj,1 ← AIAE.Enc(k + Δj ,mj,1, auxj))j∈[Q] ,

where (mj,0,mj,1),Δj are adaptively chosen by PPT adversaries. It implies that

(Rj , ctj)j∈[Q] ≈c

(
Rj , ct

′
j

)
j∈[Q]

,

where Rj ,R
′
j are uniformly chosen and ctj ← AIAE.Enc(k + Δj ,Rj , auxj), ct′j ←

AIAE.Enc(k + Δj ,R
′
j , auxj). The weak INT-RKA security requires that given

ctj ← AIAE.Enc(k + Δj ,mj , auxj) with (Δj ,mj , auxj) chosen by the adversary,
it is hard for the PPT adversary to forge a new tuple (aux∗, ct∗,Δ∗) such that
AIAE.Dec(k + Δ∗, ct∗, aux∗) �= ⊥. Here a special rule is imposed: Δ∗ = Δj if
aux∗ = auxj .

The reusability and robustness of rrFE can be reduced to the Key-Shift
security of AIAE, thanks to the homomorphic properties of Hi and SS and the
linearity property of SS.

(i)’ With the same reason as in (i), Hi(w) outputs a uniform key k, which is
independent of s.

(ii)’ The key of AIAE is kj = Hi(wj) = Hi(w + δj) = k + Hi(δj), which can
be regarded as a key shifted Δj := Hi(δj) from k. The message of AIAE
is a random string R, the auxiliary input is sj := s + SS.Gen(δj) and the
corresponding ciphertext is ctj := AIAE.Enc(k + Δj ,R, sj). Given that k
is uniform and independent of s, key shift Δj is determined by δj , it is
ready for us to implement the reusability security reduction of rrFE to
IND-RKA security of AIAE. The IND-RKA security of AIAE guarantees
that (Rj , ctj)j∈[Q] ≈c

(
Rj , ct

′
j

)
j∈[Q]

, where Rj ,R
′
j are uniformly chosen and

ctj ← AIAE.Enc(k + Δj ,Rj , auxj), ct′j ← AIAE.Enc(k + Δj ,R
′
j , auxj). This

suggests that the extracted string Rj ’s are pseudo-random, hence reusabil-
ity of rrFE follows. The security reduction is non-trivial (see Sect. 5 for
details).

(iii)’ As for robustness, let (P∗ = (s∗, ct∗), δ∗) be the forged pair by a PPT
adversary. If aux∗ = s∗ = sj = auxj , then the correctness of SS means w∗ =
wj , hence the keys k∗ = Hi(w∗) = Hi(w + δ∗) = Hi(wj) = Hi(w + δj) = kj ,
i.e., Δ∗ = Δj . As a result, the special rule is satisfied. The secure sketch
scheme SS is required to be linear so that there exists an efficient function
g to compute δ̃∗ = g(s = SS.Gen(w), s∗, δ∗) such that Δ∗ := Hi(δ̃∗). Now
that k is uniform and independent of s, key shift Δj ,Δ

∗ are determined by
δj , δ

∗, s, s∗, and the special rule is satisfied. It is ready for us to implement
the robustness security reduction of rrFE to INT-RKA security of AIAE.
According to the weak INT-RKA security of AIAE, the probability that
AIAE.Dec(k + Δ∗, ct∗, aux∗ = s∗) �= ⊥ is negligible. Hence robustness of
rrFE follows. The security reduction is non-trivial (see Sect. 5 for details).
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Table 1. Comparison with known FE schemes. “Robustness?” asks whether the scheme
achieves robustness.“Reusability?” asks whether the scheme achieves reusability. “Stan-
dard Assumption?” asks whether the scheme is based on standard assumptions. “Linear
Errors?” asks whether the scheme tolerates linear fraction of errors. “Free of Pairing?”
asks whether the scheme is free of pairing. “–” represents the scheme is an information
theoretical one.

FE Schemes Robustness? Reusability? Standard Assumption? Linear Errors? Free of Pairing?

DRS04[11] ✗ ✗ – ✔ ✔

FMR13[12] ✗ ✗ ✔ ✗ ✔

BDKOS05[7] ✔ ✗ ✗ ✔ ✔

DKRS06[10], KR08[16], CDFPW08[9] ✔ ✗ – ✔ ✔

CFPRS16[8] ✗ ✔ ✗ ✗ ✔

Boyen04[6] ABCCFGS18[1] ✗ ✔ ✗ ✔ ✔

ACEK17[2] ✗ ✔ ✔ ✗ ✔

WL18[24],WLH18[27] ✗ ✔ ✔ ✔ ✔

Wen-Liu18[25] ✔ ✔ ✔ ✔ ✗

Ours rrFE from ui-ks PRF ✔ ✔ ✔ ✗ ✔

Ours rrFE from AIAE ✔ ✔ ✔ ✔ ✔

1.3 Comparison

The instantiation of our first approach results in a rrFE based on the LWE
assumption, and the instantiation of our second approach results in a rrFE based
on the DDH assumption over non-pairing groups. In Table 1, we compare our
instantiations with the related works.

The rrFE from the LWE assumption supports sub-linear fraction of errors,
due to the parameter choice of ui-ks PRF, but it serves as the first post-quantum
rrFE.

The rrFE from the DDH assumption supports linear fraction of errors, just
like the Wen-Liu18 rrFE in [25]. The advantages of this rrFE over [25] are as
follows.

– Our rrFE is free of pairing, since the underlying building block AIAE is built
over non-pairing groups. However, Wen-Liu18 rrFE heavily relies on pairings
since its building block LAF is built over symmetric pairing groups1.

– The crs and the public helper string P of our rrFE are much shorter than that
of Wen-Liu18 rrFE [25]. Recall that in the Wen-Liu18 rrFE [25], the reading
w is directly input to the building block LAF as an authentication key. This
makes the length of the public key (a part of crs), the length of the tag (a
part of P) and the evaluation complexity of LAF closely related to the length
of w (|w|). Our rrFE avoids this problem since our approach has a different
frame structure.

– Our rrFE is more efficient than Wen-Liu18 [25]. Due to the complicated pair-
ing operations and the number of pairings depending on |w|, Wen-Liu18 rrFE
suffers from high computational complexities in the generation and reproduc-
tion algorithms. In contrast, our rrFE is much efficient since the underlying
building block AIAE is built over a simple group.

1 As noted by Galbraith [13], the symmetric pairings (i.e., Type 1 pairings) are now
essentially dead and it would be better in future to design protocols that do not
require Type 1 pairings.
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Precise comparison between our DDH-based rrFE and the Wen-Liu18 rrFE is
shown in Table 2.

Table 2. Efficiency comparison of our instantiation of rrFE from AIAE and the
Wen-Liu18 rrFE in [25]. “Exp/Gen” and “Pairing/Gen” represent the numbers of
exponentiations and pairings over groups per generation respectively. “Exp/Rep” and
“Pairing/Rep” represent the numbers of exponentiations and pairings over groups per
reproduction respectively. The Wen-Liu18 rrFE [25] relies on the DDH assumption over
a group G and the DLIN assumption over a group Ĝ of order p′ which admits symmetric
pairing e : Ĝ× Ĝ → GT . Define des(Ĝ,GT , e) the description of the symmetric pairing
group. Hpk describes the chameleon hash. |Rch| is the bit-length of the randomness
used in chameleon hash function. Meanwhile, Hi, Hi2 describe universal hash functions,
and Hi1 a collision-resistant hash function. Define |des(Ĝ,GT , e)|, |Hpk|, |Hi|, |Hi1 | and
|Hi2 | the bit-lengths of the descriptions respectively. Define n := |w|/ log p′ (it is nec-
essary that n ≥ 2), where |w| is the bit-length of the source reading w. Define |aG| as
the bit-length of a elements in group G. |s| is the bit-length of secure sketch. N̄ is a
prime of 4λ + 1, and QRN̄ is a subgroup of quadratic residues of Z∗̄

N
.

rrFE Schemes Bit-length of crs Bit-length of P Exp/Gen Exp/Rep Pairing/Gen Pairing/Rep Assumptions

Wen-Liu18 [25]
|des(Ĝ,GT , e)| + |(λ + n)Ĝ|
+|G| + |Hpk| + |Hi| = O(λ2)

|s| + λ + |Rch|
+|(1 + n + n2)Ĝ|

n2 (over Ĝ)
+2 (over G)

n2 (over Ĝ)
+1 (over G)

4n2 4n2
DDH (over G)+DLIN

(over sym. pairing Ĝ)

Our rrFE
from AIAE

20λ + 3 + |Hi| + |Hi1 |
+|Hi2 | = O(λ)

|s| + 10λ + 2
4

(over QRN̄)
2

(over QRN̄)
0 0 DDH (over QRN̄)

2 Preliminaries

For an integer, denote {1, 2, · · · , n} by [n]. For a set X , let x ← $ X denote
randomly choosing an element x from set X . For a random variable X, let
x ← X denote sampling x according to X. For two random variables X and Y , let
H∞(X) denote the min-entropy of X, the conditional min-entropy is defined by
H∞(X|Y ) = − log(Ey←Y

[
2−H∞(X|Y =y)

]
), and the statistical distance between

X and Y is defined by SD(X,Y ) = 1
2

∑
x∈X |Pr[X = x] − Pr[Y = x]|. Let

X
c≈ε Y denote that for any PPT adversary, its advantage to distinguish X

and Y is no more than ε, and X ≈c Y denote that distributions X and Y are
computationally indistinguishable.

A family of functions F : K × X → Y takes a key k ∈ K and input x ∈ X ,
and returns an output F (k, x) ∈ Y. Let FF(K,X ,Y) be the set of all families of
functions F : K×X → Y. For sets X ,Y, let Fun(X ,Y) be the set of all functions
mapping X to Y.

For a real number x, let 	x
 denote rounding x to the closest integer, and �x

denote rounding x to the largest integer which does not exceed it. For a string x,
let |x| denote the bit length of x. For integers q, p, y where q ≥ p ≥ 2, we define
the function �y
p : Zq → Zp as �y
p = i, where i · �q/p
 is the largest multiple
of �q/p
 that does not larger than y. For a vector y ∈ Z

m
q , we define �y
p as the

vector in Z
m
p obtained by rounding each coordinate of the vector individually.
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For a primitive XX and a security notion YY, by ExpYY
A,XX(λ) ⇒ 1, we mean

that the security experiment outputs 1 after interacting with an adversary A.
By AdvYY

A,XX(λ), we denote the advantage of a PPT adversary A and define
AdvYY

XX(λ) := maxPPTA AdvYY
A,XX(λ).

2.1 Universal Hash Functions

Definition 1 (Universal Hash Functions). A family of hash functions HI =
{Hi : X → Y}i∈I is universal, if for all distinct x, x′ ∈ X , it holds that

Pr[Hi : Hi(x) = Hi(x′)] ≤ 1/|Y|,

where i is uniformly chosen from I.

Lemma 1 (Generalized Leftover Hash Lemma). Let HI = {Hi : X → Y}
be a family of universal hash functions. Then for any two random variables X,Z,

SD((HI(X), I, Z), (U, I, Z)) ≤ 1
2

√
|Y| · 2−H̃∞(X|Z)

holds, where I and U are uniform distributions over I and Y, respectively.

Definition 2 (Homomorphic Universal Hash Functions). Let HI = {Hi :
X → Y}i∈I be a family of universal hash functions. HI is homomorphic if for
all i ∈ I,

Hi(x + x′) = Hi(x) + Hi(x′).

See the full version [26] for a concrete construction of homomorphic universal
hash functions.

2.2 Secure Sketch

Definition 3 (Secure Sketch). An (M,m, m̃, t)-secure sketch (SS) consists of
a pair of PPT algorithms (SS.Gen,SS.Rec) with the following specifications:

– SS.Gen(w) on input w ∈ M outputs a sketch s ∈ S.
– SS.Rec(w′, s) on input w′ ∈ M and a sketch s outputs w̃.

It also satisfies the following properties:

Correctness. If dis(w,w′) ≤ t, then w = SS.Rec(w′,SS.Gen(w)).
Privacy. For any distribution W over M, if H∞(W ) ≥ m, then
H̃∞(W |SS.Gen(W )) ≥ m̃.

Definition 4 (Secure Sketch Linearity Property) [9]. Let SS = (SS.Gen,
SS.Rec) be an (M,m, m̃, t)-secure sketch. For any w ∈ M, s̃ ∈ S and δ such
that dis(δ) ≤ t, let s := SS.Gen(w), w̃ := SS.Rec(w + δ, s̃) and δ̃ := w̃ − w, then
SS is linear if there exists a deterministic and efficiently computable function g
such that δ̃ = g(δ, s, s̃).
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Definition 5 (Homomorphic Secure Sketch). Let SS = (SS.Gen,SS.Rec) be
an (M,m, m̃, t)-secure sketch. SS is homomorphic if

SS.Gen(w + w′) = SS.Gen(w) + SS.Gen(w′).

In this paper, we will employ a homomorphic secure sketch with linearity
property. An instantiation of such SS is the syndrome-based secure sketch [9].
See the full version [26] for the concrete construction of the syndrome-based SS.

2.3 Pseudorandom Functions

Informally, a pseudorandom function (PRF) is an efficiently computable function
F : K × X → Y such that no PPT adversary can distinguish the function from
a truly random function given only black-box access. We review the definition
of pseudorandom functions (PRF) [18] which considers the PRF with public
parameters pp.

Definition 6 (PRF). An efficiently computable function Fpp : K × X → Y is
a secure PRF if for any PPT adversary A, Advprf

A,Fpp
(λ) := |Pr[Expprf

A,Fpp
(λ) ⇒

1]− 1/2| is negligible in λ, where the game Expprf
A,Fpp

(λ) is defined in Fig. 4. Here
pp ← PRF.Setup(1λ), K is the key space, X is the domain, and Y is the range
of the function.

Procedure Initialize:
pp ← PRF.Setup(1λ), b ←$ {0, 1}.
If b = 0, f(·) ←$ Fun(X , Y).
Else, k ←$ K, set f(·) := Fpp(k, ·).
Return pp.

Procedure Que(x):
Return f(x).

Procedure Finalize(b∗)
If b∗ = b, Return 1.
Else, Return 0.

Fig. 4. The experiment for defining the game Expprf
A,Fpp

(λ) for PRF, where Fun(X , Y)
is the set of all functions mapping X to Y.

Definition 7 (Φ-RKA-PRF). PRF Fpp : K × X → Y is Φ-RKA-secure w.r.t.
a class of related-key deriving functions Φ = {φ : K → K}, if for any PPT
adversary A, Advrka-prf

A,Fpp
(λ) = |Pr[Exprka-prf

A,Fpp
(λ) ⇒ 1] − 1/2| is negligible in λ,

where the game Exprka-prf
A,Fpp

(λ) is defined in Fig. 5.

Remark 1. We will make use the fact that Advrka-prf
A,Fpp

(λ) = |Pr[Exprka-prf
A,Fpp

(λ) ⇒ 1]−
1/2| = 1

2 |Pr [A ⇒ 1 | f(·, ·) = Fpp(k, ·)] − Pr [A ⇒ 1 | f(·, ·) is random] |, where
A ⇒ 1 means that the adversary A returns 1 to Finalize.
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Procedure Initialize:
pp ← PRF.Setup(1λ), b ←$ {0, 1}.
k ←$ K.
If b = 0, f(·, ·) ←$ FF(K, X , Y)
Else, set f(·, ·) := Fpp(·, ·),
Return pp.

Procedure RKQue(φ ∈ Φ, x):
Return f(φ(k), x).

Procedure Finalize(b∗)
If b∗ = b, Return 1.
Else, Return 0.

Fig. 5. The experiment for defining the Φ-RKA game Exprka-prf
A,Fpp

for PRF, where

FF(K, X , Y) is the set of all functions f : K × X → Y.

Definition 8 (Unique-Input RKA Security). An adversary is a unique-
input adversary if the input queries (φ1, x1), · · · , (φQ, xQ) are such that xi �= xj

in the game Exprka-prf
A,F (λ). A PRF Fpp is unique-input Φ-RKA-secure if it is

Φ-RKA-secure against unique-input adversaries.

Define the shift function family ΦΔ := {φa : K → K | φa(k) = k+a}a∈K. The
unique-input ΦΔ-RKA-security of PRF is also named unique-input key-shift (ui-
ks) security. In this paper, ui-ks security of PRF is sufficient for our construction
in Sect. 4.

2.4 Auxiliary-Input Authenticated Encryption

We recall the definition of auxiliary-input authenticated encryption scheme [14].

Definition 9 (AIAE). An auxiliary-input authenticated encryption scheme
consists of three PPT algorithms:

– AIAE.Setup(1λ) on input the security parameter λ outputs the system param-
eter pp, which is an implicit input to AIAE.Enc and AIAE.Dec. The system
parameter pp implicitly defines the key space K, the message space MAIAE

and the auxiliary input space AUX .
– AIAE.Enc(k,m, aux) on input a key k ∈ K, a message m ∈ MAIAE and an

auxiliary input aux ∈ AUX outputs a ciphertext ct.
– AIAE.Dec(k, ct, aux) on input a key k, a ciphertext ct and an auxiliary input

aux outputs a message m or a rejection symbol ⊥.

Correctness. For all pp ← AIAE.Setup(1λ), all k ∈ K, all m ∈ MAIAE and all
ct ← AIAE.Enc(k,m, aux), it holds that m = AIAE.Dec(k, ct, aux).

Definition 10 (IND-Φ-RKA and Weak INT-Φ-RKA Securities for
AIAE). For a class of related-key deriving functions Φ = {φ : K → K},
an AIAE scheme is IND-Φ-RKA and weak INT-Φ-RKA secure, if for any
PPT adversary A, both Advind-rka

A,AIAE(λ) = |Pr[Expind-rka
A,AIAE(λ) ⇒ 1] − 1/2| and

Advint-rka
A,AIAE(λ) = Pr[Expint-rka

A,AIAE(λ) ⇒ 1] are negligible, where games Expind-rka
A,AIAE(λ)

and Expint-rka
A,AIAE(λ) are depicted in Fig. 6.
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If AIAE is IND-ΦΔ-RKA and Weak INT-ΦΔ-RKA secure, then it is also called
a Key-Shift secure AIAE.

Procedure Initialize:
pp ← AIAE.Setup(1λ), k ←$ K.
b ←$ {0, 1}.
Return pp.

Procedure LR(m0,m1, aux, φ ∈ Φ):
If |m0| �= |m1|, Return ⊥.
ct ← AIAE.Enc(φ(k),mb, aux).
Return ct.

Procedure Finalize(b∗)
If b = b∗, Return 1.
Else, Return 0.

Procedure Initialize:
pp ← AIAE.Setup(1λ), k ←$ K.
Qenc = Qaux = ∅.
Return pp.

Procedure Enc(m, aux, φ ∈ Φ):
ct ← AIAE.Enc(φ(k),m, aux).
Qenc := Qenc ∪ {(aux, φ, ct)}.
Qaux := Qaux ∪ {(aux, φ)}.
Return ct.

Procedure Finalize(aux∗, φ∗ ∈ Φ, ct∗)
If (aux∗, φ∗ ∈ Φ, ct∗) ∈ Qenc, Return 0.
If there exsits (aux, φ) ∈ Qaux, such that
aux∗ = aux but φ∗ �= φ, Return 0.
Return (AIAE.Dec(φ∗(k), ct∗, aux∗) �= ⊥).

Fig. 6. Left: The experiment for defining the IND-Φ-RKA game Expint-rka
A,AIAE for AIAE.

Right: The experiment for defining the weak INT-Φ-RKA game Expind-rka
A,AIAE for AIAE.

3 Robustly Reusable Fuzzy Extractor

Definition 11 (Fuzzy Extractor). An (M,m,R, t, ε)-fuzzy extractor (FE)
consists of three PPT algorithms FE = (Init,Gen,Rep) with the following proper-
ties:

– Init(1λ) on input the security parameter λ, outputs the common reference
string crs.

– Gen(crs,w) on input the common reference string crs and an element w ∈ M,
outputs a public helper string P and an extracted string R ∈ R.

– Rep(crs,w′,P) on input the common reference string crs, an element w′ ∈ M
and the public helper string P, outputs an extracted string R or ⊥.

– Correctness. If dis(w,w′) ≤ t, then for all crs ← Init(1λ) and (P,R) ←
Gen(crs,w), we have R = Rep(crs,w′,P).

– Security. For any distribution W over M such that H∞(W ) ≥ m, R is
pseudorandom even conditioned on P and crs, where (P,R) ← Gen(crs,W )
and crs ← Init(1λ).

Definition 12 (Robustly Reusable Fuzzy Extractor). A FE = (Init,Gen,
Rep) is called an (M,m,R, t, ε1, ε2)-robustly reusable Fuzzy Extractor (rrFE), if
for any PPT adversary A and any distribution W over M such that H∞(W ) ≥
m, it holds that Advreu

A,FE(λ) = |Pr[Expreu
A,FE(λ) ⇒ 1]−1/2| ≤ ε1 and Advrob

A,FE(λ) =
Pr[Exprob

A,FE(λ) ⇒ 1] ≤ ε2, where games Expreu
A,FE(λ) and Exprob

A,FE(λ) are specified
in Fig. 7.
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Fig. 7. Left: The experiment for defining the reusability game Expreu
A,FE(λ) for a FE.

Right: The experiment for defining the robustness game Exprob
A,FE(λ) for a FE.

Remark 2. The definition of reusability is not identical to but implies the
reusability defined in [25]. In [25], a fuzzy extractor is reusable if for all PPT
adversary it is hard to distinguish (U1,R2, · · · ,RQ,P1, · · · ,PQ) from (R1,R2,
· · · ,RQ,P1, · · · ,PQ), where U1←$ R, (Pi,Ri) ← Gen(crs,w + δi) and δi is cho-
sen by the adversary. In our definition, a fuzzy extractor is reusable if for
all PPT adversary, it is hard to distinguish the tuple (U1,U2, · · · ,UQ,P1, · · · ,
PQ) from (R1,R2, · · · ,RQ,P1, · · · ,PQ). In fact, we can show if (U1,U2, · · · ,UQ,

P1, · · · ,PQ)
c≈ε (R1,R2, · · · ,RQ,P1, · · · ,PQ), then (U1,U2, · · · ,UQ,P1, · · · ,PQ)

c≈ε (U1,R2, · · · ,RQ,P1, · · · ,PQ), by a hybrid argument we get that
(R1,R2, · · · ,RQ,P1, · · · ,PQ)

c≈2ε (U1,R2, · · · ,RQ,P1, · · · ,PQ). This means that
if a fuzzy extractor is ε-reusable in our definition, then it is 2ε-reusable in [25].

4 Construction of rrFE from Unique-Input RKA-PRF

We introduce a generic construction of robustly reusable fuzzy extractor (rrFE)
from a unique-input key-shift (ΦΔ-RKA) secure PRF, a Secure Sketch and a
family of universal hash functions, as shown in Fig. 8.

Fig. 8. Construction of rrFEPRF from unique-input key-shift secure PRF.
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Theorem 1. The fuzzy extractor rrFEPRF in Fig. 8 is an (M,m,R, t, ε1, ε2)-
robustly reusable fuzzy extractor with ε1 = 2Advrka

PRF(λ) + 2−ω(log λ) and ε2 =
2Advrka

PRF(λ) + 2−ω(log λ), if the underlying building blocks satisfies the following
properties.

– SS = (SS.Gen,SS.Rec) is a homomorphic (M,m, m̃, 2t)-secure sketch with
linearity property.

– HI = {Hi : M → K}i∈I is a family of homomorphic universal hash functions
such that m̃ − log |K| ≥ ω(log λ).

– Fpp(K,X ,Y) is a unique-input key-shift secure PRF such that X = U × T ,
S ⊆ U , Y = R × V, log |T | ≥ ω(log λ) and log |V| ≥ ω(log λ).

The correctness of rrFEPRF follows from the correctness of the underlying SS,
since w can be correctly recovered from the public helper string P if dis(w,w′) ≤ t.
The reusability and robustness are shown in Lemmas 2 and 3 respectively.

Lemma 2. The construction of rrFE in Fig. 8 is ε1-reusable with

ε1 = 2Advrka-prf
PRF (λ) + 2−ω(log λ).

Proof. We will prove the reusability of rrFE via a series of games, as shown in
Fig. 9. Game Gj denotes a variant of reusability game played between a PPT
adversary A and a challenger who provides Procedures Initialize and Chal-
lenge for A. Denote by Pr[Gj ] the probability that A wins, i.e., Finalize
returns 1, in game Gj . Obviously, A wins iff b = b∗.

Game G0. G0 is just the reusability game. More precisely, in Procedures Ini-
tialize, the challenger chooses b ← $ {0, 1}, samples w ← W , and generates
crs = (Hi, pp). Upon receiving the j-th Challenge query δj from A, the chal-
lenger answers A’s Challenge query as follows:

Fig. 9. Game G0–G3 for the security proof of Lemma 2.
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1. If dis(δj) > t, then return ⊥.
2. Compute sketch sj = SS.Gen(w + δj) and hash value kj = Hi(w + δj).
3. Choose tj ←$ T , compute (rj , vj) ← Fpp(kj , (sj , tj)) and set Pj := (sj , tj , vj),

Rj := rj .
4. If b = 1, return (Pj ,Rj), else choose Uj ←$ R and return (Pj ,Uj).

Clearly,
Advreu

A,FE(λ) = |Pr[G0] − 1/2|. (1)

Game G1: G1 is identical to G0, except for some conceptual changes of the gen-
erations of secure sketch sj and hash value kj . More precisely, step 2 is changed
to step 2′.

2′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = Hi(w) + Hi(δj).

By the homomorphic properties of secure sketch and hash function, we have that

Pr[G0] = Pr[G1]. (2)

Game G2. G2 is the same as G1, except for two changes.
The first change is to add k ←$ K in Initialize of G2. The second change is

the generation of kj in Challenge. In G2, instead of computing kj := Hi(w) +
Hi(δj), the challenger computes kj = k+Hi(δj). More precisely, step 2′ is changed
to step 2′′.

2′′ Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = k + Hi(δj).

Claim 1 |Pr[G1] − Pr[G2]| ≤ 2−ω(log λ).

Proof. Recall that H∞(W ) ≥ m. Then by the privacy of secure sketch, it follows
that H∞(W |SS.Gen(W )) ≥ m̃. According to the Leftover Hash Lemma (see
Lemma 1), we have

SD((Hi(w), i, s = SS.Gen(w), (U, i, s = SS.Gen(w))) ≤ 1
2

√
|K| · 2−m̃, (3)

where U ←$ K. This implies that for all powerful (not necessarily PPT) algo-
rithm B, it is impossible for B to tell (Hi(w), i, s = SS.Gen(w)) from (U, i, s =
SS.Gen(w))) with probability more than 1

2

√
|K| · 2−m̃. In formula,

|Pr[B(U, i, s = SS.Gen(w)) ⇒ 1] − Pr[B(Hi(w), i, s = SS.Gen(w)) ⇒ 1]| ≤ 1

2

√
|K| · 2−m̃. (4)

Now we show that

|Pr[G1] − Pr[G2]| ≤ 1
2

√
|K| · 2−m̃ ≤ 2−ω(log λ). (5)

We prove (5) by constructing a powerful algorithm B who aims to distinguish
(Hi(w), i, s = SS.Gen(w)) from (U, i, s = SS.Gen(w)). Given (X, i, s = SS.Gen(w)),
where X is either Hi(w) or a uniform U , B simulates G1/G2 for A as follows.
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– To simulate Procedure Initialize, B randomly chooses a bit b ← $ {0, 1},
then determines crs = (Hi, pp) for A by determining Hi with i and invoking
pp ← PRF.Setup(1λ).

– To answer A’s query δj , B simulates Procedure Challenge(δj) as follows.
• If dis(δj) > t, return ⊥.
• sj = s + SS.Gen(δj).
• kj = X + Hi(δj).
• tj ←$ T .
• (rj , vj) ← Fpp(kj , (sj , tj)).
• Pj := (sj , tj , vj), Rj := rj .
• If b = 1, return (Pj ,Rj). Else, Uj ←$ R, return (Pj ,Uj).

– Finally A outputs a guessing bit b∗. If b = b∗ (i.e., A wins), then B outputs
1, otherwise B outputs 0.

If X = Hi(w), B perfectly simulates G1 for A; if X = U , B perfectly simulates
G2 for A. Consequently,

|Pr[B(Hi(w), i, s = SS.Gen(w)) ⇒ 1] − Pr[B((U, i, s = SS.Gen(w)) ⇒ 1]|
= |Pr[G1] − Pr[G2]|. (6)

Obviously, Eq. (5) follows from Eqs. (4), (6) and the fact of m̃ − log |K| ≥
ω(log λ). The claim follows. ��

Game G3. G3 is the same as G2, except that (rj , vj) is randomly chosen in G3.
More precisely, step 3 is replaced with 3′ in Procedure Challenge(δj) of G3.

3′ tj ←$ T , (rj , vj) ←$ R × V and set Pj := (sj , tj , vj), Rj := rj .

Claim 2 |Pr[G2] − Pr[G3]| ≤ 2Advrka-prf
PRF (λ) + 2−ω(log λ).

Proof. Suppose that A makes Q challenge queries. Let Bad denote the event
that there exist i, j ∈ [Q] such that ti = tj . Note that tj is randomly chosen
from T , so Pr [Bad] = Q(Q − 1)/(2|T |). Let Bad denote the event that Bad does
not happen. Then

Pr[G2] = Pr[G2 ∧ Bad] + Pr[G2 ∧ Bad],

Pr[G3] = Pr[G3 ∧ Bad] + Pr[G3 ∧ Bad],

|Pr[G3] − Pr[G2]| ≤ |Pr[G3 ∧ Bad] − Pr[G3 ∧ Bad]| + |Pr[G2 ∧ Bad] − Pr[G3 ∧ Bad]|
≤ Pr[Bad] + |Pr[G2 ∧ Bad] − Pr[G3 ∧ Bad]|

=
Q(Q − 1)

2|T |
+ |Pr[G2 ∧ Bad] − Pr[G3 ∧ Bad]|. (7)

Next we show that

|Pr[G2 ∧ Bad] − Pr[G3 ∧ Bad]| ≤ 2Advrka-prf
PRF (λ). (8)
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by constructing a PPT algorithm A′ against the unique-input key-shift security
of PRF Fpp. Recall that in the unique-input key-shift security game Exprka-prf

A,Fpp
,

A′ obtains the public parameter pp which is generated via pp ← PRF.Setup(1λ)
by Procedure Initialize. Meanwhile, A′ is able to query (φΔ, x) and Procedure
RKQue will reply A′ with the function value of f(k+Δ,x). The aim of A′ is to
tell whether f(k, ·) is Fpp(k, ·) or a random function. Now A′ simulates G2/G3

for A as follows.

– To simulate Procedure Initialize of G2/G3, A′ samples w ← W , chooses
b ←$ {0, 1} and an index i ←$ I (hence Hi), then sends crs = (Hi, pp) to A.

– A′ initializes a set Qt = ∅. To answer A’s query δj , A′ simulates Procedure
Challenge(δj) as follows.

• If dis(δj) > t, return ⊥.
• Compute sj := SS.Gen(w) + SS.Gen(δj) and sample tj ←$ T . If tj ∈ Qt,

i.e., Bad happens, then A′ aborts the game. Otherwise, Qt := Qt ∪ {tj}.
• A′ queries (φHi(δj), (sj , tj)) to its Procedure RKQue, then RKQue

returns (rj , vj) to A′.
• A′ defines Pj := (sj , tj , vj) and Rj := rj .
• If b = 1, return (Pj ,Rj). Else, Uj ←$ R, return (Pj ,Uj).

– Finally A outputs a guessing bit b∗ for Finalize. If b = b∗ (i.e., A wins),
then A′ outputs 1, otherwise A′ outputs 0.

If Bad does not happen, then A′ is a unique-input adversary. There are two
cases.

• If f(k, ·) = Fpp(k, ·), then RKQue computes (rj , vj) via (rj , vj) ← Fpp(k +
Hi(δj), (sj , tj)). In this case, A′ can perfectly simulate G2 ∧ Bad for A.

• If f(k, ·) is a random function and RKQue takes the value of the random
function f(k+Hi(δj), (sj , tj)) as (rj , vj). In this case, A′ can perfectly simulates
G3 ∧ Bad for A.

Now we consider the advantage of A′

Advrka-prf
A′,PRF(λ) = |Pr[Exprka-prf

A′,Fpp
(λ) ⇒ 1] − 1

2
|

=
1
2
|Pr [A′ ⇒ 1 | f(·, ·) = Fpp(k, ·)] − Pr [A′ ⇒ 1 | f(·, ·) is random] |

=
1
2
|Pr

[
A wins∧Bad | f(·, ·)=Fpp(k, ·)

]
−Pr

[
A wins∧Bad | f(·, ·) is random

]
|

=
1
2
|Pr

[
G2 ∧ Bad

]
− Pr

[
G3 ∧ Bad

]
|. (9)

The claim follows from Eqs. (7), (8) and the fact that log(|T |) ≥ ω(log λ). ��

Observe that in G3, (Pj ,Rj) is generated in the same way, no matter whether
b = 0 or b = 1. Therefore,

Pr[G3] = 1/2. (10)

Taking Eqs. (1), (2), Claims 1, 2 and Eq. (10) together, Lemma 2 follows.
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Fig. 10. Game G0–G3 for the security proof of Lemma 3.

Lemma 3. The construction in Fig. 8 is ε2-robust, with

ε2 = 2Advrka-prf
PRF (λ) + 2−ω(log λ). (11)

Proof. We prove the robustness of fuzzy extractor by a sequence of games as
shown in Fig. 10. Denote by Pr[Gj ] the probability that A wins in Gj .

Game G0: G0 is the robustness game played between the challenger and a PPT
adversary A. More precisely, the challenger generates crs = (Hi, ppAIAE), samples
w ← W , sets Q = ∅, and returns crs to A. Upon receiving the j-th generation
query δj from A, the challenger answers A’s Generation query δj as follows:

1. If dis(δj) > t, then return ⊥.
2. Compute the sketch sj = SS.Gen(w+ δj) and the hash value kj = Hi(w+ δj).
3. Sample tj ← $ T , compute (rj , vj) ← Fpp(kj , (sj , tj)), set Pj := (sj , tj , vj),

Rj := rj , Q := Q ∪ {Pj}, and return (Pj ,Rj) to A.

In finalize, upon receiving (P∗, δ∗) from A, if dis(δ∗) ≥ t or P∗ ∈ Q, the
challenger returns 0. Else, it parses P∗ = (s∗, t∗, v∗), then computes w̃ =
SS.Rec(w + δ∗, s∗), k̃ = Hi(w̃) and (̃r, ṽ) ← Fpp(k̃, (s∗, t∗)). If ṽ = v∗, it returns 1,
else, it returns 0.

We have that
Advrob

A,FE(λ) = Pr[G0]. (12)

Game G1: G1 is the same as G0, except for the following changes.

– When answering a generation query δj from A, step 2 in Generation(δj) is
changed into step 2′:
2′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = Hi(w) + Hi(δj).

– In finalize, the generation of k̃ is changed. Instead of computing k̃ :=
Hi(w̃) with w̃ := SS.Rec(w + δ∗, s∗), now k̃ := Hi(w) + Hi(δ̃∗) with δ̃∗ =
g(SS.Gen(w), s∗, δ∗), where g is defined in Definition 4.
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By the linearity property of the secure sketch and the homomorphic properties
of secure sketch and hash function, the changes are just conceptual. Hence

Pr[G0] = Pr[G1]. (13)

Game G2: G2 is the same as G1, except for the generation of kj and k̃. Instead
of computing kj := Hi(w)+Hi(δj), now the challenger computes kj := k+Hi(δj)
in Generation(δj) of G2. Instead of computing k̃ = Hi(w) + Hi(δ̃∗) , now the
challenger computes k̃ = k+Hi(δ̃∗) in Finalize(P∗, δ∗) of G2. Here k is randomly
chosen (once and for all in Initialize). More precisely,

– In Initialize, add k ←$ K.
– When answering the generation queries from A, step 2′ in Generation(δj)

is changed into step 2′′.
2′′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = k + Hi(δj).

– In Finalize(P∗, δ∗), the challenger computes k̃ = k + Hi(δ̃∗) instead of k̃ =
Hi(w) + Hi(δ̃∗).

Claim 3 |Pr[G1] − Pr[G2]| ≤ 2−ω(log λ).

Proof. The proof is similar to that of Claim 1 in the reusability proof, so we omit
it here. See the full version [26] for details. ��

Game G3: G3 is the same as G2, except that (rj , vj) in Challenge(δj) and
(̃r, ṽ) in Finalize are randomly chosen in G3. More precisely,

– In Challenge(δj), step 3 is replaced with 3′.
3′. tj ← $ T and (rj , vj) ← $ R × V, set Pj := (sj , tj , vj), Rj := rj , Q :=

Q ∪ {Pj}, and return (Pj ,Rj) to A.
– In Finalize, upon receiving a (P∗, δ∗) from A, if dis(δ∗) ≥ t or P∗ ∈ Q, the

challenger returns 0. Else, it parses P∗ = (s∗, t∗, v∗), and samples (̃r, ṽ) ←
$ R × V. If ṽ = v∗, it returns 1, else, it returns 0.

Observe that in G3, ṽ is randomly chosen from V, the probability of ṽ = v∗

is bounded by 1/|V|. Note that log |V| ≥ ω(log λ), so we have that

Pr[G3] ≤ 2−ω(log λ). (14)

Claim 4 |Pr[G2] − Pr[G3]| ≤ 2Advrka-prf
PRF (λ) + 2−ω(log λ).

Proof. The proof is similar to that of Claim 2.
Let Q denote the number of generation queries by A. Let Bad denote the

event that there exist i, j ∈ [Q] such that ti = tj . Let Bad′ denote the event that
∃j ∈ [Q] such that (s∗, t∗) = (sj , tj). Similar to Eq. (7), we have
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|Pr[G2] − Pr[G3]|
≤ |Pr[G2 ∧ (Bad ∨ Bad′)] − Pr[G3 ∧ (Bad ∨ Bad′)]|

+|Pr[G2 ∧ Bad ∧ Bad
′
] − Pr[G3 ∧ Bad ∧ Bad

′
]|

= |Pr[G2 ∧ Bad] − Pr[G3 ∧ Bad]|
+|Pr[G2 ∧ Bad ∧ Bad

′
] − Pr[G3 ∧ Bad ∧ Bad

′
]| (15)

≤ Q(Q − 1)
2|T | + |Pr[G2 ∧ Bad ∧ Bad′] − Pr[G3 ∧ Bad′ ∧ Bad]|. (16)

Equation (15) is due to

Pr[G2 ∧ Bad′] = Pr[G3 ∧ Bad′] = 0, (17)

and Eq. (16) is due to |Pr[G2 ∧ Bad] − Pr[G3 ∧ Bad]| ≤ Pr[Bad] = Q(Q−1)
2|T | .

Equation (17) means that it is impossible for A to win if Bad′ happens, say
(s∗, t∗) = (sj , tj). The reason is as follows. Recall that (s∗, t∗) is from P∗ =
(s∗, t∗, v∗) and (sj , tj) is from Pj = (sj , tj , vj). Note that dis(δ∗) ≤ t, dis(δj) ≤ t
and s∗ = sj = SS.Gen(w+δj), so we have that w+δj = SS.Rec(w+δ∗, s∗) by the
correctness of (M,m, m̃, 2t)-secure sketch. Meanwhile, by the linearity property
we have SS.Rec(w + δ∗, s∗) = w + δ̃∗, where δ̃∗ = g(δ∗,SS.Gen(w), s∗). As a
result, δj = δ̃∗ and kj = φHi(δj)(k) = k + Hi(δj) = k + Hi(δ̃∗) = φHi(˜δ∗)(k) = k̃.

Now that (k̃, (s∗, t∗) = (kj , sj , tj), hence Fpp(k̃, (s∗, t∗)) = Fpp(kj , (sj , tj)), i.e.,
(̃r, ṽ) = (rj , vj). If v∗ = vj , then P∗ = Pj ; otherwise ṽ �= v∗. Either case results
in the failure of A in G2/G3.

Next we will prove

|Pr[G2 ∧ Bad ∧ Bad′] − Pr[G3 ∧ Bad ∧ Bad′]| ≤ 2Advrka-prf
PRF (λ) (18)

by constructing a PPT algorithm A′ against the unique-input key-shift security
of PRF Fpp, just like the proof of Eq. (8).

Recall that in the unique-input key-shift security game Exprka-prf
A,Fpp

(λ), A′

obtains the public parameter pp from its own Initialize. Meanwhile, A′ is able
to query (φΔ, x) to RKQue and obtain the value of f(k + Δ,x). The aim of
A′ is to tell whether f(k, ·) is Fpp(k, ·) or a random function. Now A′ simulates
G2/G3 for A as follows.

– To simulate Initialize of G2/G3, A′ samples w ← W , chooses b ←$ {0, 1}
and an index i ←$ I, then sends crs = (Hi, pp) for A. And A′ sets Q = Qt = ∅.

– To answer A’s query δj , A′ simulates Procedure Challenge(δj) as follows.
• If dis(δj) > t, return ⊥.
• sj := SS.Gen(w) + SS.Gen(δj) and tj ←$ T . If tj ∈ Qt, i.e., Bad happens,

then A′ aborts the game. Otherwise, Qt := Qt ∪ {tj}.
• A′ queries (φHi(δj), (sj , tj)) to its Procedure RKQue, then RKQue

returns (rj , vj) to A′.
• A′ defines Pj := (sj , tj , vj), Rj := rj and Q := Q ∪ {Pj}.
• Return (Pj ,Rj).
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– Finally, A sends (P∗, δ∗) to Finalize.
• If dis(δ∗) ≥ t or P∗ ∈ Q, A′ returns 0 to its own challenger.
• If ∃j ∈ [Q] such that (s∗, t∗) = (sj , tj), A′ returns 0 to its own challenger.
• A′ parses P∗ = (s∗, t∗, v∗) and computes δ̃∗ = g(SS.Gen(w), s∗, δ∗).

Then A′ queries ((φHi(˜δ∗), s
∗, t∗) to RKQue and receives ỹ = f(k +

Hi(δ̃∗), (s∗, t∗)) from RKQue. A′ parses ỹ = (̃r, ṽ). If ṽ = v∗, A′ returns
1, else A′ returns 0 to its own challenger.

Suppose that neither Bad nor Bad′ happens. Then

• A′ perfectly simulates G2 ∧ Bad ∧ Bad′ for A if f(k, ·) = Fpp(k, ·);
• A′ perfectly simulates G3 ∧ Bad ∧ Bad′ for A if f(k, ·) is a random function.

Then the advantage of A′ is given by

Advrka-prf
A′,PRF(λ) = | Pr[Exprka-prf

A′,Fpp
(λ) ⇒ 1] − 1

2
|

=
1

2
| Pr

[
A′ ⇒ 1 | f(·, ·) = Fpp(k, ·)

]
− Pr

[
A′ ⇒ 1 | f(·, ·) is random

]
|

=
1

2

∣∣∣Pr
[
A wins ∧ Bad ∧ Bad

′ | f(·, ·) = Fpp(k, ·)
]

(19)

− Pr
[
A wins ∧ Bad ∧ Bad

′ | f(·, ·) is random
]∣∣∣

=
1

2
| Pr

[
G2 ∧ Bad ∧ Bad

′] − Pr
[
G3 ∧ Bad ∧ Bad

′] |. (20)

This completes the proof of Eq. (18).

The claim follows from Eqs. (16), (18) and the fact that log(|T |) ≥ ω(log λ). ��

Taking Eqs. (12), (13), Claims 3, 4 and Eq. (14) together, Lemma 3 follows.

5 Construction of rrFE from AIAE

In this section we propose a generic construction of robustly reusable fuzzy
extractor rrFE = (Init,Gen,Rep) from a key-shift secure AIAE, a secure sketch
and a family of universal hash functions as shown in Fig. 11.

crs ← Init(1λ):

i ←$ I (i.e., Hi ←$ HI).
ppAIAE ← AIAE.Setup(1λ).
crs = (Hi, ppAIAE).
Return crs.

(P,R) ← Gen(crs,w):

s ← SS.Gen(w).
k ← Hi(w).
m ←$ MAIAE.

ct ← AIAE.Enc(k,m, s).
P := (s, ct),R := m.

R ← Rep(crs,P,w′):
Parse P = (s, ct).
w̃ ← SS.Rec(w′, s).
k̃ ← Hi(w̃).
m̃/⊥ ← AIAE.Dec(k̃, ct, s).
Return m̃/⊥.

Fig. 11. Construction of rrFEAIAE from key-shift secure AIAE.
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Theorem 2. The fuzzy extractor rrFEAIAE in Fig. 11 is an (M,m,MAIAE, t, ε1,
ε2)-robustly reusable fuzzy extractor where ε1 = Advind-rka

AIAE (λ)+2−ω(log λ) and ε2 =
Advint-rka

AIAE (λ) + 2−ω(log λ), if the building blocks satisfy the following properties.

– SS = (SS.Gen,SS.Rec) is a homomorphic (M,m, m̃, 2t)-secure sketch with
linearity property.

– HI = {Hi : M → K}i∈I is a family of homomorphic universal hash functions
such that m̃ − log |K| ≥ ω(log λ).

– AIAE is key-shift secure ( IND-ΦΔ-RKA and weak INT-ΦΔ-RKA secure) with
key space K, message space MAIAE and auxiliary input space {0, 1}∗.

The correctness follows from the correctness of the underlying SS and AIAE.
More precisely, if dis(w,w′) ≤ t, then by the correctness of secure sketch, w can
be correctly recovered, so is the secret key k(= Hi(w)). Then by the correctness
of AIAE, the message m, i.e., R can be precisely reproduced. The reusability and
robustness of rrFEAIAE are shown in Lemmas 4 and 5 respectively.

Fig. 12. Game G0, G1 and G2 for the security proof of Lemma 4.

Lemma 4. The fuzzy extractor rrFEAIAE in Fig. 11 is ε1-reusable with ε1 =
Advind-rka

AIAE (λ) + 2−ω(log λ).

Proof. We will prove the reusability of our construction via a series of games as
shown in Fig. 12. By Pr[Gj ] we denote the probability that A wins in game Gj .

Game G0: G0 is the reusability game played between the challenger and a PPT
adversary A. More precisely, in Procedures Initialize, the challenger chooses
b ←$ {0, 1}, samples w ← W , generates crs = (Hi, ppAIAE), and returns crs to A.
Upon receiving the j-th Challenge query δj from A, the challenger answers
A’s query as follows:
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1. If dis(δj) > t, then return ⊥.
2. Compute the sketch sj = SS.Gen(w+ δj) and the hash value kj = Hi(w+ δj).
3. Randomly choose a message mj ← $ MAIAE, compute ctj ←

AIAE.Enc(kj ,mj , sj), set Pj = (sj , ctj) and Rj = mj .
4. If b = 1, return (Pj ,Rj), else randomly choose Uj ← $ MAIAE and return

(Pj ,Uj).

We have that
Advreu

A,FE(λ) = |Pr[G0] − 1/2|. (21)

Game G1: Game G1 is identical to G0, except the conceptual changes of the
generations of the secure sketch and the hash value. More precisely, step 2 is
changed to step 2′ in Challenge(δj).

2′. compute the sketch sj = SS.Gen(w) + SS.Gen(δj) and the hash value kj =
Hi(w) + Hi(δj).

By the homomorphic properties of secure sketch and hash function, we have

Pr[G0] = Pr[G1]. (22)

Game G2: Game G2 is identical to G1, except that instead of computing
kj = Hi(w) + Hi(δj), the challenger randomly chooses an element k from K
in Initialize and computes kj := k + Hi(δj) in Challenge(δj) of G2. More
precisely,

– In Initialize, add k ←$ K.
– When answering the generation queries from A, step 2′ in Challenge(δj) is

changed into step 2′′.
2′′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = k + Hi(δj).

Claim 5 |Pr[G1] − Pr[G2]| ≤ 2−ω(log λ).

Proof. This proof is essentially the same as the proof of Claim 1. We omit it here
(See the full version [26] for details). ��

Claim 6 |Pr[G2] − 1/2| ≤ Advind-rka
AIAE (λ).

Proof. We will reduce the IND-ΦΔ-RKA security of AIAE to the altered reusabil-
ity game as described in Game G2. To this end, we assume a PPT adversary
A winning G2 and show how to construct a PPT IND-ΦΔ-RKA adversary
B. On input ppAIAE, B samples w ← W and i ← $ I (i.e., Hi ← $ HI), sets
crs = (Hi, ppAIAE) and returns crs to A. Upon receiving the i-th challenge query
δj from A, adversary B simulates Challenge(δj) for A as follows:

1. If dis(δj) > t, then return ⊥.
2. Compute the sketch sj = SS.Gen(w) + SS.Gen(δj) and the hash value Δj =

Hi(δj).
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3. Randomly choose two messages (mj0,mj1) ← $ MAIAE, and send (mj0,mj1,
auxj = sj , φΔj

) to its own challenger.
4. Upon receiving ctj from its own challenger, set Pj = (sj , ctj), and return

(Pj ,mj1).

Finally, A outputs a guessing bit b∗, then B forwards b∗ to its own challenger.
It is straightforward to see that B simulates game G2 perfectly. More precisely,

– If ctj = AIAE.Enc(φΔj
,mj0, aux), then B perfectly simulates for the case b = 0

in G2.
– If ctj = AIAE.Enc(φΔj

,mj1, aux), then B perfectly simulates for the case b = 1
in G2.

Clearly, B wins if and only if A wins. This yields |Pr[G2]−1/2| = Advind-rka
B,AIAE(λ) ≤

Advind-rka
AIAE (λ). ��

Taking Eq. (21), Eq. (22), Claim 5 and Claim 6 together, we have Advreu
FE (λ) ≤

Advind-rka
AIAE (λ) + 2−ω(log λ), and Lemma 4 follows.

Fig. 13. Game G0-G2 for the security proof of Lemma 5.

Lemma 5. The fuzzy extractor rrFEAIAE in Fig. 11 is ε2-robust with ε2 =
Advind-rka

AIAE (λ) + 2−ω(log λ).

Proof. We prove the robustness of reusable fuzzy extractor by a sequence of
games as shown in Fig. 13. By Pr[Gj ] we denote the probability that A wins in
game Gj .

Game G0: G0 is the original robustness game. More precisely, let crs =
(Hi, ppAIAE), Q = ∅ and w ← W . Upon receiving the j-th Generation query δj

from A, the challenger answers A’s query as follows:

1. If dis(δj) > t, then return ⊥.
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2. Compute the sketch sj = SS.Gen(w+ δj) and the hash value kj = Hi(w+ δj).
3. Randomly choose a message mj ← $ MAIAE, compute ctj ←

AIAE.Enc(kj ,mj , sj), set Pj = (sj , ctj), Rj = mj and Q = Q ∪ {Pj}, and
return (Pj ,Rj) to A.

In finalize, upon receiving a (P∗, δ∗) from A, if dis(δ∗) ≥ t or P∗ ∈ Q, the
challenger returns 0. Else, it parses P∗ = (s∗, ct∗), then computes w̃ = SS.Rec(w+
δ∗, s∗) and k̃ = Hi(w̃). If AIAE.Dec(k̃, ct∗, s∗) = ⊥, then return 0, otherwise return
1. We have that

Advrob
A,FE(λ) = Pr[G0]. (23)

Game G1: G1 is the same as G0, except for the following changes.

– When answering a generation query δj from A, step 2 in Generation(δj) is
changed into step 2′:
2′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = Hi(w) + Hi(δj).

– In finalize, the generation of k̃ is changed. Instead of computing k̃ :=
Hi(w̃) with w̃ := SS.Rec(w + δ∗, s∗), now k̃ := Hi(w) + Hi(δ̃∗) with δ̃∗ =
g(SS.Gen(w), s∗, δ∗), where g is defined in Definition 4.

By the linearity property of the secure sketch and the homomorphic properties
of secure sketch and hash function, the changes are just conceptual. Hence

Pr[G0] = Pr[G1]. (24)

Game G2: Game G2 is identical to G1, except that the challenger replaces
Hi(w) by a randomly choosen k from K. More precisely,

– In Initialize, challenger will additionally sample k ←$ K.
– When the challenger answers the generation queries, step 2′ is changed into

step 2′′:
2′′. compute the sketch sj = SS.Gen(w) + SS.Gen(δj) and the hash value

kj = k + Hi(δj).
– In finalize, the challenger computes k̃ = k + Hi(δ̃∗) instead of k̃ = Hi(w) +

Hi(δ̃∗).

Claim 7 |Pr[G1] − Pr[G2]| ≤ 2−ω(log λ).

Proof. This proof is similar to that of Claim 3. We omit it here (See the full
version [26] for details).

Claim 8 Pr[G2] ≤ Advint-rka
AIAE (λ).

Proof. We will reduce the INT-ΦΔ-RKA security of AIAE to the altered robust-
ness game as described in Game G2. To this end, we assume a PPT adversary
A winning G2 and show how to construct a PPT weak INT-ΦΔ-RKA adversary
B. On input ppAIAE, adversary B samples w ← W and i ←$ I (i.e., Hi ←$ HI),
sets Q = ∅ and crs = (Hi, ppAIAE), and returns crs to A. Upon receiving the j-th
Generation query δj from A, adversary B answers A’s query as follows:
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1. If dis(δj) > t, then return ⊥.
2. Compute the sketch sj = SS.Gen(w) + SS.Gen(δj) and the hash value Δj =

Hi(δj).
3. Randomly choose a messages mj ←$ MAIAE, and send (mj , auxj = sj , φΔj

) to
its own challenger.

4. Upon receiving ctj from its own challenger, set Pj = (sj , ctj), Q = Q ∪ {Pj}
and return (Pj ,mj).

Finally A will output (P∗, δ∗) for Finalize. If dis(δ∗) ≥ t or P∗ ∈ Q, B
aborts. Else, B parses P∗ = (s∗, ct∗), then computes δ̃∗ = g(SS.Gen(w), s∗, δ∗)
and Δ∗ = Hi(δ̃∗). Finally, B takes (aux∗ = s∗, φΔ∗ , ct∗) as its own forgery and
sends the forgery to its own challenger.

Note that B simulates game G2 perfectly. As long as the forgery satisfies the
additional special rule required for the weak INT-ΦΔ-RKA security, B wins if
and only if A wins.

We show that the forgery always satisfies the special rule, i.e., if aux∗ = s∗ =
sj = auxj for some j ∈ [Q], then φΔj

= φΔ∗ .
Note that dis(δ∗) ≤ t, dis(δj) ≤ t and s∗ = sj = SS.Gen(w + δj), so we have

that w+δj = SS.Rec(w+δ∗, s∗) by the correctness of (M,m, m̃, 2t)-secure sketch.
Meanwhile, by the linearity property we have SS.Rec(w+ δ∗, s∗) = w+ δ̃∗, where
δ̃∗ = g(δ∗,SS.Gen(w), s∗). As a result, δj = δ̃∗ and Δj = Hi(δj) = Hi(δ̃∗) = Δ∗.
Hence the key deriving function φΔj

= φΔ∗ , and the special rule is satisfied.
As a result Pr[G2] = Advint-rka

B,AIAE(λ) ≤ Advint-rka
AIAE (λ). The claim follows. ��

Taking Eq. (23), Eq. (24), Claim 7 and Claim 8 together, we have Advreu
A,FE(λ) ≤

Advint-rka
AIAE (λ) + 2−ω(log λ). Lemma 5 follows. ��

6 Instantiations

6.1 Instantiation of rrFEprf

We recall the unique-input Φln-aff-RKA-secure PRF for an affine class Φln-aff in
[18]. For m, p, q ∈ N such that p|q, the public parameters ppPRF is a pair of
matrices of the form A0,A1 ∈ Z

m×m
q , where each row of A0 and A1 is sampled

uniformly from {0, 1}m. The secret key K is a matrix in Z
m×m
q . Pseudo-random

function FLWE : Zm×m
q × {0, 1}l → Z

m×m
p is defined as

FLWE(K, x) :=

⌊

K ·
l∏

i=1

Axi

⌋

p

. (25)

Its security is based on the LWE assumption [21].

Theorem 3 ([18]). Let q = O(
√

λ/α), m = 	λ log q�, l = λε/ log λ, 0 < ε < 1,
p = 2λε−ω(log λ), α = 2−λε

, c,B > 0 such that the quantity (2m)lcBp/q is negligi-
ble in the security parameter λ. Under the (Zq, λ, Ψα)-LWE assumption, the PRF
defined in Eq. (25) is Φln-aff-RKA-secure against unique-input adversaries for the
class Φln-aff := {φC,B : φC,B(K) = CK + B | C ∈ [−c, c]m×m,B ∈ Z

m×m
q }.
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crs ← Init(1λ):

i ←$ I (i.e., Hi ←$ HI).
A0,A1 ← Sample(Zm×m

q ).
crs = (Hi,A0,A1).
Return crs.

(P,R) ← Gen(crs,w):

s ← SS.Gen(w).
K ← Hi(w).
t ←$ , x = (s, t).

FLWE(k, x) :=
⌊
K · ∏l

i=1 Axi

⌋
p
= (r, v).

P := (s, t, v), R := r.

R ← Rep(crs,P,w′):
Parse P = (s, t, v).
w̃ ← SS.Rec(w′, s).
K̃ ← Hi(w̃), x = (s, t).
FLWE(K̃, x) = (̃r, ṽ).
If ṽ = v, Return R := r̃.
Else, Return ⊥.

Fig. 14. Instantiation of rrFEprf from FLWE: rrFEprflwe
.

Obviously, Φln-aff covers the key shift function set ΦΔ := {φΔ : φΔ(K) = K+Δ |
Δ ∈ Z

m×m
q }. Hence, FLWE is a unique-input key-shift secure PRF.

Let A0,A1 ← Sample(Zm×m
q ) denote sampling two matrices A0,A1 ∈ Z

m×m
q ,

where each row of A0 and A1 is sampled uniformly from {0, 1}m. By instantiating
the PRF Fpp in Fig. 8 with FLWE, the SS with the syndrome-based secure sketch
scheme (see the full version [26] for its construction) and HI = {Hi : M →
Z
m×m
q }i∈I with a homomorphic universal hash function (see the full version

[26] for its concrete construction), and by setting T = {0, 1}ω(log λ), l = ω(log λ),
|s| = |t| = l

2 , R = Z
m×(m−1)
p , V = Z

m
p , we get a concrete construction of rrFEprf

from the (Zq, λ, Ψα)-LWE assumption.

Corollary 1. Scheme rrFEprflwe
in Fig. 14 is a robustly reusable fuzzy extractor

based on the LWE assumption.

The computational complexities of Gen and Rep of rrFEprf are dominated
by the computation of the underlying PRF. According to [3], the best known
running time of FLWE is O(mλ5) per output bit. There are totally m2 log p output
bits, so the complexity is O(λ11).

The length of P is given by |P | = l + m log p, while the length of R is
|R| = m(m − 1) log p.

Note that |s| = ω(log λ), and this limits the error tolerance of SS. As a result,
rrFEprflwe

can only support sub-linear fraction of errors.

6.2 Instantiation of rrFEAIAE

We recall the construction of AIAE from one-time (OT) secure AE and the
DDH assumption in [14]. Let (N̄ ,N, p, q) ← GenN(1λ) be a group genera-
tion algorithm, where p, q are 2λ-bit safe primes such that N̄ = 2pq + 1
is also a prime and N = pq. Let HI1 = {Hi1 : {0, 1}∗ → ZN}i1∈I1 and
HI2 = {Hi2 : QRN̄ → KAE}i2∈I2 be two families of hash functions, where QRN̄ is
the subgroup of quadratic residues of Z∗̄

N
. Let AE = (AE.Enc,AE.Dec) be a OT-

secure authenticated encryption scheme with key space KAE and message space
M. The scheme AIAE = (AIAE.Setup,AIAE.Enc,AIAE.Dec) in [14] is described
as follows.
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ppAIAE ← AIAE.Setup(1λ):
(N̄ , N, p, q) ← GenN(1λ).
g1, g2 ← QRN̄ .
Hi1 ←$ HI1 ,Hi2 ←$ HI2 .
ppAIAE := (N̄ , N, p, q, g1, g2,Hi1 ,Hi2).
Return ppAIAE.

(c1, c2, χ) ← AIAE.Enc(k,m, aux):
Parse k = (k1, k2, k3, k4) ∈ (ZN )4.
α ←$ ZN \ {0}.
(c1, c2) := (gα

1 , gα
2 ) ∈ QR

2
N̄ .

β := Hi1(c1, c2, aux) ∈ ZN .
κ := Hi2(c

k1+k3β
1 · ck2+k4β

2 ) ∈ KAE.
χ ← AE.Enc(κ,m).
Return (c1, c2, χ).

m/⊥AIAE.Dec(k, (c1, c2, χ), aux):
Parse k = (k1, k2, k3, k4) ∈ (ZN )4.
If (c1, c2) /∈ QR

2
N̄ ∨ (c1, c2) = (1, 1),

Return ⊥.
β := Hi1(c1, c2, aux) ∈ ZN .
κ := Hi2(c

k1+k3β
1 · ck2+k4β

2 ) ∈ KAE.
m/⊥ ← AE.Dec(κ, χ).
Return m/⊥.

Fig. 15. Construction of DDH-based AIAEddh from OT-secure AE.

crs ← Init(1λ):
i ←$ I (i.e., Hi ←$ HI).
(N̄ , N, p, q) ← Gen(1λ).
g1, g2 ← QRN̄ .
Hi1 ←$ HI1 ,Hi2 ←$ HI2 .
ppAIAE := (N̄ , N, p, q, g1, g2,Hi1 ,Hi2).
crs = (Hi, ppAIAE).
Return crs.

(P,R) ← Gen(crs,w):
s ← SS.Gen(w).
k ← Hi(w).
m ←$ MAIAE.
Parse k = (k1, k2, k3, k4) ∈ (ZN )4.
α ←$ ZN \ {0}.
(c1, c2) := (gw

1 , gw
2 ) ∈ QR

2
N̄ .

t := Hi1(c1, c2, s) ∈ ZN .
κ := Hi2(c

k1+k3t
1 · ck2+k4t

2 ) ∈ KAE.
χ ← AE.Enc(κ,m).
P := (s, c1, c2, χ),R := m.

R ← Rep(crs,P,w′):
Parse P = (s, c1, c2, χ).
w̃ ← SS.Rec(w′, s).
k̃ ← Hi(w̃).
Parse k̃ = (k̃1, k̃2, k̃3, k̃4) ∈ (ZN )4.
If (c1, c2) /∈ QR

2
N̄ ∨ (c1, c2) = (1, 1),

Return ⊥.
β := Hi1(c1, c2, s) ∈ ZN .
κ := Hi2(c

k̃1+k̃3β
1 · ck̃2+k̃4β

2 ) ∈ KAE.
m̃/⊥ ← AE.Dec(κ, χ).
Return m̃/⊥.

Fig. 16. Instantiation of rrFEAIAE from AIAEddh: rrFEAIAEddh .

Theorem 4 [14]. If the underlying AE is OT-secure, the DDH assumption holds
w.r.t. GenN over QRN̄ , HI1 is collision resistant and HI2 is universal, then
AIAEddh in Fig. 15 is IND-Φraff-RKA and weak INT-Φraff-RKA secure, where
Φraff := {φa,b : (k1, k2, k3, k4) ∈ Z

4
N �→ (ak1 + b1, ak2 + b2, ak3 + b3, ak4 + b4) ∈

Z
4
N | a ∈ Z

∗
N , b = (b1, b2, b3, b4) ∈ Z

4
N}.

Clearly, the key deriving function set Φraff contains the key-shift function set
ΦΔ := {φΔ : (k1, k2, k3, k4) ∈ Z

4
N �→ (k1+b1, k2+b2, k3+b3, k4+b4) ∈ Z

4
N | Δ =

(b1, b2, b3, b4) ∈ Z
4
N}. So the AIAEddh in Fig. 15 is Key-Shift secure. In AIAEddh,

the building block AE can be instantiated with OT-secure AE [17], where κ =
(κ1, κ2, κ3) ∈ {0, 1}3λ, MAE = {0, 1}λ and χ ∈ {0, 1}2λ. The definition of
OT-secure AE and the construction in [17] are presented in our full paper [26].

By instantiating the AIAE in Fig. 11 with AIAEddh, the SS with the syndrome-
based secure sketch scheme (see the full version [26]) and HI = {Hi : M →
Z
4
N}i∈I with the universal hash function (see the full version [26]), we get a

concrete construction of rrFEAIAE from the DDH assumption (see Fig. 16).

Corollary 2. Scheme rrFEAIAEddh
in Fig. 16 is a robustly reusable fuzzy extractor

based on the DDH assumption.

The computational complexities of Gen and Rep are dominated by the encryp-
tion and decryption algorithms of the underlying AIAEddh. Consequently, the
complexity of Gen is dominated by four modular exponentiations while that of
Rep by two modular exponentiations over QRN̄ .

Observe that the ciphertext ct of AIAEddh in Fig. 15 is of size (4λ+1)+(4λ+
1)+2λ = 10λ+2. So the public string P of rrFEAIAEddh

in Fig. 16 has |s|+10λ+2
bits, where |s| depend on the maximal number of errors t. Note that AIAEddh is
very efficient, so this instantiation rrFEAIAEddh

in Fig. 16 is very efficient as well.
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Since the syndrome-based secure sketch can correct linear fraction of errors
and there is no further limits on the length of s, the resulting rrFEAIAEddh

in Fig. 16
can support linear fraction of errors.
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Abstract. We consider the problem of constructing Diffie-Hellman
(DH) parameters which pass standard approaches to parameter valida-
tion but for which the Discrete Logarithm Problem (DLP) is relatively
easy to solve. We consider both the finite field setting and the elliptic
curve setting.

For finite fields, we show how to construct DH parameters (p, q, g) for
the safe prime setting in which p = 2q+1 is prime, q is relatively smooth
but fools random-base Miller-Rabin primality testing with some reason-
able probability, and g is of order q mod p. The construction involves
modifying and combining known methods for obtaining Carmichael num-
bers. Concretely, we provide an example with 1024-bit p which passes
OpenSSL’s Diffie-Hellman validation procedure with probability 2−24

(for versions of OpenSSL prior to 1.1.0i). Here, the largest factor of q
has 121 bits, meaning that the DLP can be solved with about 264 effort
using the Pohlig-Hellman algorithm. We go on to explain how this param-
eter set can be used to mount offline dictionary attacks against PAKE
protocols. In the elliptic curve case, we use an algorithm of Bröker and
Stevenhagen to construct an elliptic curve E over a finite field Fp hav-
ing a specified number of points n. We are able to select n of the form
h · q such that h is a small co-factor, q is relatively smooth but fools
random-base Miller-Rabin primality testing with some reasonable prob-
ability, and E has a point of order q. Concretely, we provide example
curves at the 128-bit security level with h = 1, where q passes a single
random-base Miller-Rabin primality test with probability 1/4 and where
the elliptic curve DLP can be solved with about 244 effort. Alternatively,
we can pass the test with probability 1/8 and solve the elliptic curve
DLP with about 235.5 effort. These ECDH parameter sets lead to similar
attacks on PAKE protocols relying on elliptic curves.

Our work shows the importance of performing proper (EC)DH param-
eter validation in cryptographic implementations and/or the wisdom of
relying on standardised parameter sets of known provenance.
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1 Introduction

In a recent paper, Albrecht et al. [AMPS18] conducted a systematic study of
primality testing “in the wild”. They found flaws in primality tests implemented
in several cryptographic libraries, for example a reliance on fixed-base Miller-
Rabin primality testing, or the use of too few rounds of the Miller-Rabin test
when testing numbers of unknown provenance. They studied the implications
of their work for Diffie-Hellman (DH) in the finite field case, showing how to
generate DH parameter sets of the form (p, q, g) in which p = kq + 1 for some
k, p is prime, q is composite but passes a Miller-Rabin primality test with some
probability, yet q is sufficiently smooth that the Discrete Logarithm Problem
(DLP) is relatively easy to solve using the Pohlig-Hellman algorithm in the
order q subgroup generated by g. Such a parameter set (p, q, g) might pass DH
parameter validation with non-negligible probability in a cryptographic library
that performs “naive” primality testing on p and q, e.g. one carrying out just
a few iterations of Miller-Rabin on each number. If such a parameter set were
used in a cryptographic protocol like TLS, then it would also allow an attacker
to recover all the keying material and thence break the protocol’s security, cf.
[Won16]. Albrecht et al. [AMPS18] posited this as a plausible attack scenario
when, for example, a malicious developer hard-codes the DH parameters into
the protocol.

It is notable that the methods of [AMPS18] for producing malicious DH
parameters do not work in the safe prime setting, wherein p = 2q + 1. This is
because Albrecht et al. need flexibility in choosing k to arrange p to be prime. It is
also because their methods can only produce q with 2 or 3 prime factors, meaning
that q needs to be relatively small so that the Pohlig-Hellman algorithm applies
(recall that Pohlig-Hellman runs in time O(B1/2) where B is a bound on the
largest prime factor of q; if q has only 3 prime factors and we want an algorithm
requiring 264 effort, then q can have at most 384 bits). Yet requiring safe primes is
quite common for DH in the finite field setting. This is because it helps to avoid
known attacks, such as small subgroup attacks [LL97,VAS+17], and because
it ostensibly makes parameter validation easier. For example, OpenSSL’s Diffie-
Hellman validation routine DH check1 insists on the safe prime setting by default.
Indeed, it was left as an open problem in [AMPS18] to find a large, sufficiently
smooth, composite q passing a primality test with high probability such that
p = 2q + 1 is also prime or passes a primality test.

Interestingly, more than a decade ago, Bleichenbacher [Ble05] addressed a
closely related problem: the construction of malicious DH parameters (p, q, g)
for which p and q pass fixed-base Miller-Rabin primality tests. This was moti-
vated by his observation that, at this time, the GNU Crypto library was using
such a test, with the bases being the first 13 primes a = 2, 3, . . . , 41. He produced
a number q having 1095 bits and 27 prime factors, the largest of which has 53

1 See https://www.openssl.org/docs/man1.1.1/man3/DH check.html for a descrip-
tion and https://github.com/openssl/openssl/blob/master/crypto/dh/dh check.c
for source code.

https://www.openssl.org/docs/man1.1.1/man3/DH_check.html
https://github.com/openssl/openssl/blob/master/crypto/dh/dh_check.c
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bits, such that q always passed the primality test of GNU Crypto, and such
that p = 2q + 1 is prime. His q has very special form: it is a Carmichael num-
ber obtained using a modified version of the Erdös method [Erd56]. Of course,
his DH parameter set (p, q, g) would not stand up to the more commonly used
random-base Miller-Rabin testing, but his construction is nevertheless impres-
sive. Bleichenbacher also showed how such a parameter set could be used to
break the SRP Password Authenticated Key Exchange (PAKE) protocol: he
showed that a client that accepts bad DH parameters in the SRP protocol can
be subject to an offline dictionary attack on its password. Here, the attacker
impersonates the server in a run of the SRP protocol, sending the client mali-
cious DH parameters, and inducing the client to send a password-dependent
protocol message. It is the attacker’s ability to solve the DLP that then enables
the offline password recovery. Thus Bleichenbacher had already given a realistic
and quite standard attack scenario where robust DH (and ECDH) parameter
validation is crucial: PAKE protocols in which an attacker impersonating one of
the parties can dictate (EC)DH parameters.

1.1 Our Contributions

In this paper, we address the problem left open from [AMPS18] of finding mali-
cious DH parameters in the safe prime setting. We also study the analogous
problem in the elliptic curve setting.

Finite Field Setting: As a flavour of the results to come, we exhibit a DH
parameter set (p = 2q+1, q, g) in which p has 1024 bits and q is a composite with
9 prime factors, each at most 121 bits in size, which passes a single random-base
Miller-Rabin test with probability 2−8. We show that no number with this many
factors can achieve a higher passing probability. Because of the 121-bit bound on
the factors of q, the DLP in the subgroup of order q generated by g can be solved
with about 264 effort using the Pohlig-Hellman algorithm. When OpenSSL’s DH
validation routine DH check is used in its default configuration, this parameter
set is declared valid with probability 2−24 for versions of OpenSSL prior to
1.1.0i (released 14th August 2018). This is because OpenSSL uses the size of q to
determine how many rounds of Miller-Rabin to apply, and adopts non-adversarial
bounds suitable for average case primality testing derived from [DLP93]. These
dictate using 3 rounds of testing for 1023-bit q for versions of OpenSSL prior
to 1.1.0i, and 5 rounds in later versions (the increase was made in an effort to
achieve a 128-bit security level). We also give a DH parameter set (p = 2q+1, q, g)
in which p is a 1024 bit prime and q has 11 prime factors, each at most 100 bits
in size, which passes a single random-base Miller-Rabin test with probability
2−10. This parameter set is declared valid with a lower probability of 2−30 for
versions of OpenSSL prior to 1.1.0i, however the DLP in the subgroup of order
q generated by g can be solved using the Pohlig-Hellman algorithm with less
effort, in about 254 operations.

The probability of 2−24 or 2−30 for passing DH validation may not seem very
large, and indeed can be seen as a vindication of using safe primes for DH. On the
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other hand, Bleichenbacher-style attacks against PAKEs can be carried out over
many sessions and against multiple users, meaning that the success probability
of an overall password recovery attack can be boosted. We exemplify this in the
context of J-PAKE, a particular PAKE protocol that was supported in OpenSSL
until recently (but we stress that the attack is not specific to J-PAKE).

Obtaining such malicious DH parameter sets in the finite field setting requires
some new insights. In particular, we are interested in numbers q that are rel-
atively smooth (having all prime factors less than some pre-determined bound
B, say), but which pass random-base Miller-Rabin primality tests with proba-
bility as high as possible. We therefore investigate the relationship between the
number of prime factors m of a number n and the number of Miller-Rabin non-
witnesses S(n) for n, this being the number of bases a for which the Miller-Rabin
test fails to declare n composite. We are able to prove that S(n) ≤ ϕ(n)/2m−1

where ϕ(·) is the Euler function. Since for large n we usually have ϕ(n) ≈ n,
this shows that the highest probability a malicious actor can achieve for passing
a single, random-base Miller-Rabin test is (roughly) 21−m. (This already shows
that an adversary can only have limited success, especially if multiple rounds of
Miller-Rabin are used.) We are also able to completely characterise those num-
bers achieving equality in this bound for m ≥ 3: they are exactly the Carmichael
numbers having m prime factors that are all congruent to 3 mod 4.

This characterisation then motivates us to develop constructions for such
Carmichael numbers with a controlled number of prime factors. We show how
to modify the existing Erdös method [Erd56] and the method of Granville and
Pomerance [GP02] for constructing Carmichael numbers, and how to combine
them, to obtain cryptographically-sized q with the required properties.

However, this only partly solves our problem, since we also require that
p = 2q + 1 should pass primality tests (or even be prime). We explore further
modifications of our approach so as to avoid trivial arithmetic conditions that
prevent p from being prime (the prime 3 is particularly troublesome in this
regard). We are also able to show that the probability that p is prime is higher
than would be expected for a random choice of p by virtue of properties of the
Granville-Pomerance construction: essentially, the construction ensures that p
cannot be divisible by certain small primes; we tweak the construction further
to enhance this property. Combining all of these steps leads to a detailed proce-
dure by which our example DH parameter set (p = 2q + 1, q, g) described above
was obtained. This procedure is amenable to parallelisation. The computation
of our particular example required 136 core-days of computation using a server
with 3.2 GHz processors.

Elliptic Curve Setting: While the main focus of our work is on the finite field
setting, we also briefly study the elliptic curve setting. Here ECDH parameters
(p,E, P, q, h) consist of a prime p defining a field (we focus on prime fields, Fp),
a curve E over that field defined in some standard form (for example, short
Weierstrass form), a point P , the (claimed) order q of P , and a co-factor h such
that #E(Fp) = h · q. Parameter validation should verify the primality of p and
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q, and check that P does have order q on E by computing [q]P and comparing
the result to the point at infinity.

Bröker and Stevenhagen [BS05] gave a reasonably efficient algorithm to con-
struct an elliptic curve E over a prime field Fp having a specified number of
points n, given the factorisation of n as an input. Their algorithm is sensitive to
the number of prime factors of n – fewer is better. We use their algorithm with
n being one of our specially constructed Carmichael numbers q passing Miller-
Rabin primality testing with highest possible probability, or a small multiple of
such a q.

Since p ≈ q in the elliptic curve setting and we only need these numbers to
have, say, 256 bits to achieve a 128-bit security level, the task of constructing q
is much easier than in the finite field setting considered above. Indeed, we could
employ a Carmichael number q with 3 prime factors to pass Miller-Rabin with
probability 1/4 per iteration. At the 128-bit security level, q then has 3 prime
factors each of roughly 85 bits, and the Pohlig-Hellman algorithm would solve
the ECDLP on the constructed curve in about 244 steps. Using a Carmichael q
with 4 prime factors each of exactly 64 bits, we would pass Miller-Rabin with
probability 1/8 per iteration and solve the ECDLP with only 234 effort. We give
concrete examples of curves having such properties.

These malicious ECDH parameters (p,E, P, q, h) lead to attacks on PAKEs
running over elliptic curves, as well as more traditional ECDH key exchanges.
These attacks are fully analogous to those in the finite field setting. They high-
light the importance of careful validation of ECDH parameters that may origi-
nate from potentially malicious sources, especially in the case of bespoke param-
eter sets sent as part of a cryptographic protocol. For example, the specification
of the TLS extension for elliptic curve cryptography [BWBG+06] caters for the
use of custom elliptic curves, though this option does not seem to be widely
supported in implementations at present. Our work shows that robust checking
of any such parameters would be highly advisable.

1.2 Further Related Work

In the light of the Snowden revelations, a body of work examining methods by
which the security of cryptographic algorithms and protocols can be deliberately
undermined has been developed. Our work can be seen as fitting into that theme
(though we stress that the application of our work to PAKE protocols shows that
there are concerns in the “standard” cryptographic setting too).

Young and Yung laid the foundations of kleptography, that is, cryptography
designed with malicious intent, see for example [YY97]. Bellare et al. [BPR14]
studied the problem of how to subvert symmetric encryption algorithms, and
how to protect against such subversions.

Fried et al. [FGHT17] followed up on early work of Gordon [Gor93] to examine
how to backdoor the DLP in the finite field setting. These works showed how
to construct large primes p for which the Special Number Field Sieve makes
solving the DLP possible if one is in possession of trapdoor information about
how p was generated. This provides another avenue to subverting the security
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of DH parameters. It appears that the 1024-bit example in [FGHT17] is not in
the safe-prime setting, however.

The NIST DualEC generator was extensively analysed [CNE+14] and
found to be used in Juniper’s ScreenOS operating system in an exploitable
way [CMG+16]. This inspired more theoretical follow-up work on backdoored
RNGs [DGG+15] and PRNGs [DPSW16].

Bernstein et al. [BCC+15] extensively discuss the problem of certifying that
elliptic curve parameter sets are free of manipulation during generation.

The dangers of allowing support for old algorithms and protocol versions,
especially those allowing export-grade cryptography, are made manifest by the
FREAK [BBD+15], Logjam [ABD+15] and DROWN [ASS+16] attacks on SSL
and TLS.

2 Miller-Rabin Primality Testing and Pseudoprimes

Suppose n > 1 is an odd integer to be tested for primality. We first write n =
2ed + 1 where d is odd. If n is prime, then for any integer a with 1 ≤ a < n, we
have:

ad = 1 mod n or a2id = −1 mod n for some 0 ≤ i < e.

The Miller-Rabin test then consists of checking the above conditions for some
value a, declaring a number to be composite if both conditions fail and to be
(probably) prime if either of the two conditions hold. If one condition holds,
then we say n is a pseudoprime to base a, or that a is a non-witness to the
compositeness of n (since n may be composite, but a does not demonstrate this
fact).

We begin by exploring the relationship between a composite number n and
the number of non-witnesses this number possesses, denoted S(n). Since in this
work we are interested in constructing numbers n that fool the Miller-Rabin test
with as high a probability as possible for random bases a, our main interest is
in constructing n for which S(n) is as large as possible. However, since we are
also interested in solving discrete logarithm problems in subgroups of order n,
we will also want n to be relatively smooth.

The following theorem can be used to calculate the exact number of non-
witnesses that some composite n has:

Theorem 1 ([Mon80], Proposition 1). Let n be an odd composite integer.
Suppose that n = 2e · d + 1 where d is odd. Also suppose that n has prime
factorisation n =

∏m
i=1 pqi

i where each prime pi can be expressed as 2ei · di + 1
with each di odd. Then:

S(n) =
(

2min(ei)·m − 1
2m − 1

+ 1
) m∏

i=1

gcd(d, di). (1)

A general upper-bound on S(n) is given by results of [Mon80,Rab80]:
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Theorem 2 (Monier-Rabin Bound). Let n �= 9 be odd and composite. Then

S(n) ≤ ϕ(n)
4

where ϕ denotes the Euler totient function.

It is known from [Mon80] that the bound in Theorem2 is met with equality
for numbers n of the form n = (2x + 1)(4x + 1) with 2x + 1, 4x + 1 prime and
x odd. It is also known that the bound is met with equality for numbers n that
are Carmichael numbers with three prime factors, n = p1p2p3, and where each
factor pi is congruent to 3 mod 4.

Definition 1 (Carmichael numbers). Let n be an odd composite number.
Then n is said to be a Carmichael number if an−1 = 1 mod n for all a co-prime
to n.

Note that Carmichael numbers are those for which the Fermat primality test
fails to identify n as composite for all co-prime bases a.

Theorem 3 (Korselt’s Criterion). Let n be odd and composite. Then n is a
Carmichael number if and only if n is square-free and for all prime divisors p of
n, we have p − 1 | n − 1.

For a proof of this theorem, see [Mon80]. It is also known that Carmichael
numbers must have at least 3 distinct prime factors.

2.1 On the Relationship Between S(n) and m, the Number of
Prime Factors of n

The following result is central to our work.

Theorem 4 (Factor Bound on S(n)). Let n be an odd composite integer
with prime factorisation n =

∏m
i=1 pqi

i . Write n = 2ed + 1 where d is odd and
pi = 2eidi+1 where each di is odd. Then S(n) ≤ ϕ(n)

2m−1 , where ϕ(·) denotes Euler’s
function, with equality if and only if n is square-free and, for all i, ei = 1 and
di | d.

Proof. We have:

2min(ei)·m−1
2m−1 + 1
2min(ei)·m =

1
2m − 1

+
(

1
2min(ei)·m

)(

1 − 1
2m − 1

)

≤ 1
2m − 1

+
(

1
2m

)(

1 − 1
2m − 1

)

=
2(2m − 1)

(2m)(2m − 1)

=
1

2m−1
.
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Therefore, using Theorem 1, we have:

S(n) =
(

2min(ei)·m − 1
2m − 1

+ 1
) m∏

i=1

gcd(d, di) ≤ 1
2m−1

· 2min(ei)·m
m∏

i=1

gcd(d, di)

(2)

≤ 1
2m−1

m∏

i=1

(2ei · di) (3)

=
1

2m−1

m∏

i=1

(pi − 1)

≤ 1
2m−1

ϕ(n). (4)

We obtain equality in Eq. (2) above when min(ei) = 1 and in Eq. (3) when
e1 = e2 = · · · = em and gcd(d, di) = di for all i (which is equivalent to di | d).
We obtain equality in Eq. (4) when ϕ(n) =

∏m
i=1(pi −1). This occurs if and only

n is square free. The result follows.

Remark: For the case m = 2, the bound of Theorem4 can be strengthened
to S(n) ≤ ϕ(n)/4, that is, the Monier-Rabin bound. As mentioned above,
Monier [Mon80] remarked that the bound is met in this case for numbers of the
form n = (2x+1)(4x+1) with 2x+1, 4x+1 prime and x odd, see also [Nar14].
This form was exploited extensively in [AMPS18], but will be less useful in our
work because we require numbers n of cryptographic size that satisfy a smaller
smoothness bound. For example, we will be interested in constructing 1024-bit
n in which each prime factor has at most 128 bits, meaning n will have at least
8 prime factors.

We now go on to show that, when m ≥ 3, the bound in the above theorem
is attained if and only if n is a Carmichael number of special form.

Theorem 5. Let n be a Carmichael number with m ≥ 3 prime factors that are
all congruent to 3 mod 4. Then S(n) = ϕ(n)

2m−1 . Conversely, if n has m ≥ 3 prime
factors and S(n) = ϕ(n)

2m−1 , then n is a Carmichael number whose prime factors
are all congruent to 3 mod 4.

Proof. By Korselt’s criterion we know that n is square-free. Write n = p1 · · · pm

where the pi are prime and, by assumption, pi = 3 mod 4 for each i. As before,
we write n = 2ed + 1 where d is odd and pi = 2eidi + 1 where each di is odd.
Since pi = 3 mod 4 for each i, it is immediate that ei = 1 for each i. Moreover,
by Korselt’s criterion, we have 2eidi|2ed, and hence di|d, for each i. The result
follows from the converse part of Theorem 4.

For the converse, let n =
∏m

i=1 pqi
i . Suppose pi = 2eidi+1 where di is odd and

n = 2ed+1 where d is odd. Necessarily, e ≥ 1. By Theorem 4, since S(n) = ϕ(n)
2m−1 ,

we have that n is square free, ei = 1 for all i and di | d for all i. Since ei = 1
∀i, we have that pi = 3 mod 4 and 2ei | 2e for all i. Also, since di | d for all i, it



Safety in Numbers 387

follows that 2e
i di | 2ed for all i, and thus pi − 1 | n− 1 for all i. Hence, n satisfies

Korselt’s criterion, and n is a Carmichael number.

Example 1. Table 1 gives, for each 3 ≤ m ≤ 10, the smallest number with m
prime factors achieving the bound of Theorem4. In the light of Theorem5, these
are all Carmichael numbers whose prime factors are all congruent to 3 mod 4.
These are obtained from data made available by Pinch and reported in [Pin08].
Of course, these examples are all much too small for cryptographic use.

Table 1. The smallest number Cm with m prime factors that meets the upper bound
of ϕ(Cm)/2m−1 on S(Cm).

m Cm S(Cm)

3 7 · 19 · 67 ϕ(Cm)/4

4 7 · 19 · 67 · 199 ϕ(Cm)/8

5 7 · 11 · 19 · 103 · 9419 ϕ(Cm)/16

6 7 · 11 · 31 · 47 · 163 · 223 ϕ(Cm)/32

7 19 · 23 · 31 · 67 · 71 · 199 · 271 ϕ(Cm)/64

8 11 · 31 · 43 · 47 · 71 · 139 · 239 · 271 ϕ(Cm)/128

9 19 · 31 · 43 · 67 · 71 · 103 · 239 · 307 · 631 ϕ(Cm)/256

10 7 · 11 · 19 · 31 · 47 · 79 · 139 · 163 · 271 · 2347 ϕ(Cm)/512

3 Generating Large Carmichael Numbers

The results in the previous section motivate the search for cryptographically-
sized Carmichael numbers with a chosen number of prime factors, with each
factor congruent to 3 mod 4. In this section, we discuss two existing constructions
for Carmichael numbers: the Erdös method [Erd56] and the method of Granville
and Pomerance [GP02]. We show how to combine these two methods to produce
large examples. We also show how to modify the constructions to improve the
probability that they will succeed in constructing large examples meeting our
additional congruence requirements.

3.1 The Erdös Method

Erdös [Erd56] gave a method to construct Carmichael numbers with many prime
factors. The method starts with a highly composite number L and then considers
the set P(L) = {p : p prime, p − 1 | L, p � L}. If for some subset p1, p2, . . . , pm

of P(L), we have p1p2 · · · pm = 1 mod L, then n = p1p2 · · · pm is a Carmichael
number, by Korselt’s criterion. This is easy to see: by construction, pi − 1 | L;
the condition n = 1 mod L implies that L | n − 1; it follows that pi − 1 | n − 1,
and n is evidently square-free.
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Example 2. If L = 120 = 23 · 3 · 5, then P(L) = {7, 11, 13, 31, 41, 61}. If we
examine all the subsets of P(L), we find that 41040 = 7 · 11 · 13 · 41, 172081 =
7 · 13 · 31 · 61 and 852841 = 11 · 31 · 41 · 61 are all 1 mod 120, and so are all
Carmichael numbers.

The Erdös method lends itself to a computational approach to generating
Carmichael numbers with a chosen number of prime factors m for moderate
values of L. For a given L, the set P(L) can be quickly generated by considering
each factor f of the selected L and testing the primality of f + 1. One can then
examine all m-products of distinct elements from P(L) and test the product n
against the condition n = 1 mod L.

Alternatively, as pointed out in [Ble05], one can employ a time-memory
trade-off (TMTO): for some k, build a table of all k-products p1 · · · pk from
P(L), and look for collisions in that table with the inverses of (m − k)-products
(pk+1 · · · pm)−1 mod L from P(L). Such a collision gives an equation

p1 · · · pk = (pk+1 · · · pm)−1 mod L

and hence
p1 · · · pkpk+1 · · · pm = 1 mod L.

Of course, one needs to take care to avoid repeated primes in such an app-
roach. For the L we use later, the direct approach suffices, and so we did not
explore this direction further.

3.2 The Selection of L in the Erdös Method

Clearly, L must be even, otherwise the integers p satisfying p − 1 | L will all be
even. We can ensure that all primes p in P(L) satisfy p = 3 mod 4 by setting the
maximum power of 2 in L to be 1, i.e. by setting L = 2 mod 4. For then each
factor f of L must be 2 mod 4, and hence p = f + 1 = 3 mod 4. As we shall see
later, other conditions can be imposed on L as needed.

Note that since 2 | L, p = 3 is a candidate for inclusion in P(L). However,
if 3 is also a factor of L then it is excluded because of the additional condition
p � L on elements of P(L); this condition is needed in general, since if p | L, then
any product p1p2 · · · pm including p as a factor would be 0 mod L instead of the
required 1 mod L.

For the Erdös method to be successful in producing a Carmichael number
with m prime factors, we need to find a product pi such that p1p2 · · · pm = 1
mod L. One can see that the number of possible products that can be considered
is

(|P(L)|
m

)
. Let us make the heuristic assumption that the values of p1p2 · · · pm

are uniformly distributed amongst the odd numbers modulo the even integer L.
Then we need to ensure that:

(|P(L)|
m

)

� L/2

for the method to have a reasonable chance of success.



Safety in Numbers 389

Table 2. For a given Lbound (column 1), the value Lbest (column 2) gives the value
of L ≤ Lbound resulting in the largest set of primes P(L), subject to the additional
restriction that p = 3 mod 4 for all p ∈ P(L).

Lbound Lbest |P(Lbest)|
220 810810 = 2 · 34 · 5 · 7 · 11 · 13 39

221 2088450 = 2 · 33 · 52 · 7 · 13 · 17 50

222 4054050 = 2 · 34 · 52 · 7 · 11 · 13 58

223 7657650 = 2 · 32 · 52 · 7 · 11 · 13 · 17 65

224 13783770 = 2 · 34 · 5 · 7 · 11 · 13 · 17 73

225 22972950 = 2 · 33 · 52 · 7 · 11 · 13 · 17 89

226 53603550 = 2 · 32 · 52 · 72 · 11 · 13 · 17 93

Thus it is desirable to find L such that |P(L)| is as large as possible. In turn,
this heuristically depends on L being as smooth as possible, since such an L
has many factors f and therefore many possible candidates p = f + 1 that, if
prime, can be included in P(L). This analysis of course depends on the primality
of the different values f + 1 being in some sense independent for the different
factors f of L; this is a reasonable assumption given standard heuristics on the
distribution of primes.

For various bounds Lbound, we have computed the value of L ≤ Lbound giving
the largest set P(L), where we impose the restriction L = 2 mod 4 to ensure the
primes in P(L) are all 3 mod 4. The results are shown in Table 2, and bear out
our heuristic analysis suggesting that smooth L make the best choices.

Example 3. Suppose L = 53603550. Then |P(L)| = 93 with:

P(L) = {19, 23, 31, 43, 67, 71, 79, 103, 127, 131, 151, 199, 211, 239, 307, 331, 443,

463, 491, 547, 631, 859, 883, 911, 991, 1051, 1123, 1171, 1327, 1471, 1531,
1667, 1871, 1951, 2003, 2143, 2311, 2551, 2731, 3571, 3823, 3851, 4951,
4999, 5851, 6007, 7151, 7351, 8191, 9283, 10711, 11467, 11551, 16831,

17851, 19891, 22051, 23563, 26951, 27847, 28051, 33151, 34651, 41651,

42043, 43759, 46411, 50051, 53551, 54979, 57331, 72931, 77351, 91631
102103, 117811, 124951, 126127, 150151, 232051, 242551, 286651,

324871, 350351, 450451, 824671, 1051051, 1093951, 1191191, 1624351,
2144143, 4873051, 10720711}.

As representative examples, the following Carmichael numbers with, respec-
tively 8 and 16 prime factors, can then be obtained by running a simple search
algorithm over subsets of P(L) to find subsets whose products are 1 mod L:
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C8 = 19 · 23 · 43 · 239 · 859 · 9283 · 11467 · 242551
C16 = 19 · 23 · 31 · 43 · 67 · 71 · 79 · 103 · 127·

131 · 491 · 1531 · 3851 · 7151 · 11467 · 33151

Here
C8 = 99605240811373000403701

and
C16 = 2952075740383473675231403915547850874801.

Our SAGE [S+18] implementation of the Erdös method running on a 3.3 GHz
processor took 4.83 s to find C8 and 1.78 s to find C16. The code used to generate
these examples can be found in the full version [GMP19].

It would be tempting to think that this method could easily be scaled-up to
numbers of cryptographic size. However, this is not so easy. To illustrate, suppose
we wanted to construct a 1024-bit n with, say, m = 8 prime factors, all having
about 128 bits. This would necessitate using an L substantially larger than 2128,
which would make the direct approach of finding a product p1 · · · p8 = 1 mod L
infeasible; even the TMTO version would require prohibitive time and memory,
on the order of 264 of each.

3.3 The Method of Granville and Pomerance

The second method of generating Carmichael numbers that we consider is due
to Granville and Pomerance [GP02]. This takes a small Carmichael number with
m (known) factors and produces from it a larger Carmichael number, also with
m factors. It is based on the following theorem.

Theorem 6 (Granville and Pomerance [GP02]). Let n = p1p2 · · · pm be
a Carmichael Number. Let L = lcm(pi − 1) and let M be any integer with
M ≡ 1 mod L. Set qi = 1 + M(pi − 1). Then N = q1 · · · qm is a Carmichael
number whenever each qi is prime.

Recall that we are interested in Carmichael numbers N in which all prime
factors are congruent to 3 mod 4. Fortunately, as the following lemma shows,
the method of Granville and Pomerance ‘preserves’ this property.

Lemma 1. With notation as in Theorem6, suppose pi ≡ 3 (mod 4). Then qi =
3 (mod 4).

Proof. The integer L is even as it is the least common multiple of even integers
pi −1. But M ≡ 1 (mod L) implies that M is odd; write M = 2s+1. Moreover,
since pi = 3 mod 4, we have pi − 1 = 2di with di odd; write di = 2ti + 1. Then
qi = 1+M(pi −1) = 1+(2s+1)(4ti +2) = 3+4(2sti +s+ ti), which is evidently
3 mod 4.
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There are two important choices of variable in this method: M and the
starting Carmichael number n.

Clearly, the properties of the resulting Carmichael number N are dependent
on n, for example the value of each prime factor mod 4 (as seen in Lemma 1)
and the number m of these factors.

The effects of M are more subtle. In particular, we need to select an M
such that all the resulting qi = 1 + M(pi − 1) are prime. Using the heuristic
that the values qi are as likely to be prime as random choices of odd qi of
the same size, the probability that a random choice of M yields m primes is
approximately (2/ ln(B))m where B is a bound on the qi. This probability drops
very quickly for N of cryptographic size and even moderate m. For example,
with B of 128 bits and m = 8 (so that the target N has 1024 bits), we obtain
(2/ ln(B))m ≈ 2−43.77. Clearly then, simply making random choices of M is
unlikely to yield candidates of cryptographically interesting sizes in a reasonable
amount of time. We therefore turn to investigating methods for improving the
probability that the qi are all prime by careful choice of M .

3.4 The Selection of M in the Method of Granville and Pomerance

The only requirement on M coming from Theorem 6 is that M ≡ 1 (mod L),
where L = lcm(pi − 1). However, by a careful choice of M we can both ensure
that this is true, and that the resulting values qi = 1+M(pi −1) are more likely
to be prime than if M was chosen at random.

Our approach is inspired by techniques originally introduced in [JPV00,JP06]
for generating primes on low-end processors. There, one considers numbers of the
form p = kH + δ where H is smooth (say, H is the product of the first h primes,
H =

∏h
i=1 si), δ is chosen to be co-prime to H, and k is a free parameter. Then

p is guaranteed to be divisible by each of s1, . . . , sh, since p = δ �= 0 mod si.
By choosing different values of k, one can generate different candidates for p,
and test them for primality. Numbers p generated in this way have a higher
probability of being prime than uniformly random candidates, since they are
effectively guaranteed to pass trial divisions by each of the small primes dividing
H. We refer to this process as ‘sieving’ by the primes s1, s2, . . . , sh. An analysis
using the inclusion-exclusion principle can be used to evaluate the increase in
probability that can be achieved by this means; a factor of 5 increase is typical
even for moderate values of h, since many small divisors can be eliminated.

We present an adaptation of this method to generate candidates for M in the
method of Granville and Pomerance, such that the resulting qi are guaranteed
to be indivisible by many small primes.

Since M = 1 (mod L), we can write M = kL + 1, where k now becomes the
free parameter in the construction method. Then

qi − 1 = M(pi − 1) = (kL + 1)(pi − 1) = kLpi + pi − kL − 1.

Rearranging, we get:

qi = kLpi + pi − kL = kL(pi − 1) + pi.
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Note that, typically, many small primes will divide L because L is the least
common multiple of the pi − 1. This is especially so if we use the Erdös method
to generate the starting Carmichael number n, since it starts with a smooth
number which all the pi − 1 will divide.

Now none of the primes dividing L can be a pi (again, because L is the least
common multiple of the pi − 1). For each such prime p, we have:

qi = pi �= 0 mod p.

Hence, we are assured that qi is not divisible by any of the prime divisors of
L: we achieve ‘free’ sieving on qi for every such divisor.

Now we consider other primes (not equal to any of the pi, and not dividing
L). Let s denote such a prime, and suppose we choose k such that s divides k.
Recalling that M = kL + 1, then we get:

qi = kL(pi − 1) + pi = pi �= 0 mod s.

Hence, by choosing k so that it is divisible by a product of primes sj that do
not equal any of the pi nor any of the divisors of L, we also obtain sieving on all
the sj . Of course, we can include an additional factor when building k to ensure
that the resulting qi are of any desired bit-size and that there are sufficiently
many choices for k (and thence M). In what follows, we write k = k′ ∏

j sj for
some collection of primes sj subject to the above constraints; k′ now replaces k
as the free parameter in the construction.

The overall sieving effectiveness will be determined by the collection of prime
factors present in L and the sj . Let us denote the complete set of primes from
these two sources as {s1, . . . , sh}. Then the fraction of non-prime candidates for
each qi that are removed by the sieving can be calculated using the formula:

σ = 1 −
h∏

i=1

(

1 − 1
si

)

. (5)

This means that the prime values of qi are now concentrated in a fraction
1−σ of the initial set of candidates, so that a random selection from this reduced
set is 1/(1−σ) times more likely to result in a prime. Notice that the effect here
is multiplicative across all m of the qi – they all benefit from the sieving on the
si. Note too how powerful the prime s = 3 is in sieving, contributing a factor
2/3 to the product term determining σ.

The overall effect is to improve the success probability for each trial of
the modified Granville-Pomerance construction (involving a choice of k′) from
(2/ ln(B))m to (2/(1 − σ) ln(B))m.

Example 4. Using a C implementation of the modified Granville-Pomerance con-
struction, with the Carmichael number C8 of Example 3 as the starting value n
and L = 53603550, we found that choosing

k = 7891867750444302551322686487
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produces the 8-factor, 1024-bit Carmichael number N = q1 · · · q8 where:

q1 = 7614578295977916492449157442324119319
q2 = 9306706806195231268548970207285034723
q3 = 17767349357281805149048034032089611743
q4 = 100681646357930229177938859515174466539
q5 = 362961565441614019473409838084116354159
q6 = 3926584207959278937939615521091804194983
q7 = 4850486374537932805690113290760464005567
q8 = 102606442538302424735752396535317507810051.

Here, q8, the largest prime factor, has 137 bits.
As pointed out in Sect. 3.3, with B of 128 bits and m = 8 (so that the

target N has 1024 bits), we estimate the standard Granville-Pomerance con-
struction to have a success rate of (2/ ln(B))m ≈ 2−43.8 per trial, so that the
expected number of trials would be about 243.8. With our modified version of
the Granville-Pomerance construction we obtain sieving on each of the qi by the
primes 3, 5, 7, 11, 13, 17 that divide L (in this case, we did not add any more
primes to k to improve the sieving further). This gives us σ = 0.6393 and there-
fore reduces the expected number of trials by a factor of about 1/(1−σ)m ≈ 211.8

to roughly 232 trials. Finding the above N using our ‘C’ implementation actually
took 231.51 trials and less than one core-hour running on 3.3 GHz CPUs.

The above example illustrates that we can generate numbers that are of
cryptographically interesting size, have a controlled number of prime factors
(and therefore achieve a given smoothness bound), achieve the upper bound of
Theorem 4 on the number of Miller-Rabin non-witnesses, and hence maximise
the probability of passing random-base Miller-Rabin primality tests.

4 Fooling Diffie-Hellman Parameter Validation in the
Safe-Prime Setting

In this section, we target the problem of producing Diffie-Hellman parameters
for the prime order setting, where the parameters are able to pass validity tests
on the parameters but where the relevant Discrete Logarithm Problem (DLP)
is relatively easy.

A Diffie-Hellman (DH) parameter set (p, q, g) in the prime order setting is
formed of a prime p with g ∈ Zp generating a group of prime order q, where
q | p − 1. As explained in the introduction, validating the correctness of DH
parameters is vital in ensuring the subsequent security of the DH key exchange.
As also explained there, Bleichenbacher [Ble05] provided an extreme example
of this in the context of Password Authenticated Key Exchange (PAKE): he
showed that a client that accepts bad DH parameters in the SRP protocol can
be subject to an offline dictionary attack on its password. Here, the attacker
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impersonates the server in a run of the SRP protocol, and induces the client to
send a password-dependent protocol message; the attacker’s ability to solve the
DLP is what enables the offline password recovery.

DH validation checks should consist of primality tests on both p and q as
well as a verification that p = kq + 1 for some integer k. The checks should
also ensure that the given generator g generates the subgroup of order q. The
security is based in part on size of q: it must still be large enough to thwart the
Pohlig-Hellman algorithm for solving the DLP. For prime q, this algorithm runs
in time O(

√
q).

Albrecht et al. [AMPS18] already showed how to subvert DH parameters
in the case where k is permitted to be large and where a weak primality test
based on Miller-Rabin with a small number of rounds is permitted. For example,
they selected q to be of the form (2x + 1)(4x + 1) with both factors prime, and
then tried k of a suitable size until kq + 1 was prime. This gives an O(q1/4)
algorithm using the Pohlig-Hellman algorithm in the subgroups of orders 2x + 1
and 4x + 1, with q passing t rounds of random-base Miller-Rabin testing with
the best possible probability 4−t (this coming from the Monier-Rabin bound).

However, many implementations insist on using DH parameters in which p
is a safe prime; that is, they require p = 2q + 1, in which case g must have
order q or 2q if it is not equal to ±1. OpenSSL in its default setting is a good
example of such a library. Insisting on safe primes to a large extent eliminates
small subgroup attacks. It is also a good option in the context of protocols like
SSL/TLS in which a server following the specification only provides p and g but
not q.2 As noted in the introduction, the techniques of [AMPS18] do not extend
to the safe-prime setting, since they need the flexibility in k to force p = kq + 1
to be prime. The resulting q would also be too large and have too few prime
factors to make the Pohlig-Hellman algorithm effective.

This leaves open the problem of fooling DH parameter validation when
random-base Miller-Rabin tests are used for checking p and q (as should be
the case in practice, in light of the work of [Arn95] and [Ble05]).

4.1 Generating Carmichael Numbers q Such that p = 2q + 1 Is
Prime

To summarise the above discussion, we wish to construct a number q such that q
and p = 2q + 1 both pass random-base Miller-Rabin primality testing, and such
that q is sufficiently smooth that the Pohlig-Hellman algorithm can be used to
solve the DLP in some subgroup mod p.

Our approach parallels that of [Ble05]: we construct q as a large Carmichael
number with m prime factors that are all 3 mod 4 using the techniques from
the previous section. Then q will pass random-base Miller-Rabin primality tests

2 For if p is not a safe prime, then the client is forced to blindly accept the parameters
or to do an expensive computation to factorise p − 1 and then test g for different
possible orders arising as factors of p − 1. We know of no cryptographic library that
does the latter.
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with the highest possible probability amongst all integers with m prime factors.
After constructing a candidate q, we test 2q + 1 for primality (using a robust
primality test), rejecting q if this test fails, and stopping if it passes. If 2q + 1 is
prime, then the DLP in the subgroup of order q can be solved with O(mB1/2)
effort where B is an upper bound on the prime factors of q.

The approach just described will fail in practice. The first reason is that it is
unlikely that 2q + 1 will happen to be prime by chance (the probability is about
1/ ln q by standard density estimates for primes). The second reason is that there
may be arithmetic reasons why 2q + 1 can never be prime. We investigate and
resolve these issues next.

Sieving for 2q+1: We begin by examining the method of Granville and Pomer-
ance and its consequences for the values of 2q + 1 modulo small primes.

Assume we have some starting Carmichael number n = p1 · · · pm, and we
apply the method of Granville and Pomerance, setting qi = M(pi −1)+1 where
M = 1+ kL and L = lcm(pi − 1). We assume k is such that the qi are all prime,
and we write q = q1 · · · qm for the resulting Carmichael number.

Lemma 2. With notation as above, for all primes s dividing kL, we have that
2q + 1 = 2n + 1 (mod s).

Proof. Since qi = M(pi − 1) + 1 = (1 + kL)(pi − 1) + 1, it follows that for any
prime s with s | kL we have qi = pi (mod s), therefore 2q +1 ≡ 2n+1 (mod s).

The importance of the above lemma is that we can determine at the outset,
based only on the small starting Carmichael number n, whether 2q + 1 will be
divisible by each of the primes s or not. In particular, we should just ignore any
n for which 2n + 1 ≡ 0 (mod s) for any of the primes s dividing L or k, since
then 2q + 1 can never be prime. Typically, there are many such primes s, since
L is usually rather smooth, arising as the least common multiple of the pi − 1.
This is particularly so when the Erdös method is used to construct n.

The Prime 3: The prime 3 plays a particularly important role when applying
our sieving trick in the method of Granville and Pomerance: it contributes a
factor 2/3 to the product term

∏h
i=1

(
1 − 1

si

)
when computing σ. It is therefore

desirable to keep 3 as a factor of kL in the construction. On the other hand, the
above lemma then imposes the necessary condition 2n + 1 �= 0 mod 3 for 2q + 1
to be prime; this in turn requires n = 0 mod 3 or n = 2 mod 3.

We consider the two cases n = 0 mod 3 and n = 2 mod 3.

The case n = 0 mod 3: In this case, we have 3 | n, and so we can set p1 = 3.
Recall that, in our approach, n = p1 · · · pm will be obtained using the Erdös
method, in which case p1 = 3 is contained in the set P(L∗) (henceforth L∗

denotes the smooth number used in the Erdös method; we use L∗ to distinguish
it from L = lcm(pi − 1) in the method of Granville and Pomerance – they are
often equal but need not be so). From the conditions on P(L∗), we deduce that
3 � L∗. Since each prime in P(L∗) is constructed by adding 1 to a factor of
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L∗, we deduce that p = 2 mod 3 for every p ∈ P(L∗) \ {3}. Since we will also
have p = 3 mod 4 by choice of L∗, we deduce that p = 11 mod 12 for every
p ∈ P(L∗) \ {3}.

Hence, in the case where 3 appears as a factor in the starting Carmichael
number n, and n is obtained via the Erdös method, then the remaining primes
arising as factors of n must all be 11 mod 12. This happens automatically in the
Erdös method simply by ensuring 3 � L∗.

The case n = 2 mod 3: In this case, we can show that pi = 2 mod 3 for all
primes pi arising as factors of n. For suppose that pi = 1 mod 3 for some i. This
implies 3 | pi − 1. By Korselt’s criterion, we deduce that 3 | n − 1, and hence
n = 1 mod 3. This contradicts our starting assumption on n.

Moreover, it is easy to see that we must take m, the number of prime factors
of n, to be odd in this case. For n =

∏m
i=1 pi = 2m mod 3, and so n = 2 mod 3

if and only if m is odd.
Hence, in the case where n = 2 mod 3, we are forced to use a starting

Carmichael number with m odd in which pi = 2 mod 3 for each prime factor
pi (whether or not we use the Erdös method). This may sound overly restrictive.
But, fortunately, we have already seen how to arrange this for the Erdös method:
we simply need to ensure that 3 � L∗, where L∗ denotes the smooth number used
in that construction, and then all but one of the primes p ∈ P(L∗) will satisfy
this requirement. We then remove p = 3 from P(L∗) when running the last step
in the Erdös method.

Other Primes: Of course, Lemma 2 imposes a single condition on n for every
other prime s dividing kL, but these conditions are much less restrictive than
that in the case s = 3, and so we do not investigate the implications for the pi

any further here.

Completing the Construction: We have now assembled all the tools neces-
sary to produce a suitable Carmichael number n such that when the method of
Granville and Pomerance is applied to produce q from n, then 2q +1 �= 0 mod 3;
moreover q will attain the bound of Theorem4 on S(q), the number of Miller-
Rabin non-witnesses for q, namely S(q) = ϕ(q)/2m−1. Our procedure is as
follows:

1. We use the first step of the Erdös method with an L∗ such that 2 | L∗, 4 � L∗,
3 � L∗. This ensures that the resulting set P(L∗) contains the prime 3, and a
collection of other primes that are all 11 mod 12.3

2. We remove 3 from P(L∗) and run the second step of the Erdös method with
an odd m to find a subset of primes p1, . . . , pm such that n := p1 · · · pm = 1
(mod L); n is then a Carmichael number with m prime factors that are all
11 mod 12 and therefore both 3 mod 4 and 2 mod 3.

3 Of course, one could choose not to restrict L∗ in this way and just filter the resulting
set P(L∗) for primes that are 11 mod 12, but this involves wasted computation and
the use of larger L∗ than is necessary.
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3. We set L = lcm(pi − 1) and test the condition 2n + 1 �= 0 mod s for each
prime factor s of L (cf. Lemma 2). If any test fails, we go back to the previous
step and generate another n.

4. Integer n is then used in the method of Granville and Pomerance to produce
candidates for q (in which the qi are all prime). By construction of the pi, we
will have 3 � L in the Granville-Pomerance method, but we desire 3 | kL in
view of the power of sieving by 3 in that method. We therefore set k = 3k′

for k′ of suitable size when running this step, introducing the prime 3 in k.
5. Finally, we test 2q + 1 for primality. By choice of n, we are guaranteed that

2q + 1 �= 0 mod 3 and 2q + 1 �= 0 mod s for each prime divisor s of L, so we
are assured that 2q + 1 will not be divisible by certain (small) primes.

Note that the procedure as described focusses on the case n = 2 mod 3.
An alternative procedure could be developed for the case n = 0 mod 3. The
procedure can be enhanced by setting k at step 4 to contain additional prime
factors s beyond 3 not already found in L, to increase the effect of sieving. Of
course, in view of Lemma 2, certain bad choices of s should be avoided at this
stage.

4.2 Examples of Cryptographic Size

Using the method described above, we now give two examples of Carmichael
numbers q such that p = 2q + 1 is a 1024-bit prime. In the first example q
is the product of 9 prime factors, which by construction will pass a random-
base Miller-Rabin primality test with probability approximately 1/28. Since the
largest factor of q is 121 bits in size, the DLP in the subgroup of order q mod p
for this parameter set can be solved in approximately 9 · 260.5 ≈ 264 operations.
In the second example, q is the product of 11 prime factors, which by con-
struction will pass a random-base Miller-Rabin primality test with probability
approximately 1/210. However, because the q with 11 factors is smoother, with
largest factor 100 bits in size, the DLP in the subgroup of order q mod p for
this parameter set can be solved in approximately 11 · 250 ≈ 254 operations. We
give both these examples to illustrate the trade off between the probability of a
parameter set being accepted and the work required to solve the DLP for that
parameter set.

Example 5. Using SAGE [S+18] we examined all L∗ < 230 such that 2 | L∗,
4 � L∗, 3 � L∗. We found the largest set of primes P(L∗) was produced when
L = 565815250 = 2 · 53 · 72 · 11 · 13 · 17 · 19. Here, |P(L∗)| = 53 (including the
prime 3).

Then, using the Erdös method with L∗ = 565815250 we generated the 9-
factor Carmichael number

n = 1712969394960887942534921587572251
= 71 · 131 · 647 · 1871 · 4523 · 4751 · 46751 · 350351 · 432251.
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Using the procedure described above, we found k = 3k′ with

k′ = 1844674409176776955124

produced a 9-factor, 1023-bit Carmichael number q such that n = 2q + 1 is a
1024-bit prime.

To generate a target q with 1023 bits, with m = 9 factors each around 114
bits in size, we estimate the standard Granville-Pomerance construction to have
a success rate of (2/ ln(B))m ≈ 2−47.73 per trial, so that the expected num-
ber of trials would be about 247.7. With our modified version of the Granville-
Pomerance construction we obtain sieving on each of the qi by the primes
5, 7, 11, 13, 17, 19 that divide L and the prime 3 since it divides k. This gives
us σ = 0.658 and therefore reduces the expected number of trials by about
1/(1 − σ)m ≈ 213.9 to roughly 233.8 trials. We then need to consider the proba-
bility that the q produced is such that p = 2q + 1 is also prime. By Lemma 2 we
know that we obtain sieving on 2q+1 from all primes s | kL, hence a success rate
of (2/(1 − σ) ln(21024)) ≈ 2−6.9. Therefore we expect to require 233.8+6.9 = 240.7

total trials. Finding the above q such that p = 2q + 1 is prime actually took
238.15 trials, so we were somewhat lucky. Our implementation is in ‘C’ and ran
for 136 core-days on 3.2 GHz CPUs.

The factors of this q are:

q1 = 219186431519361672882122216610071
q2 = 407060515678814535352512687990131
q3 = 2022777639450109152597870741858647
q4 = 5855408956302947546993836358011871
q5 = 14159443476150764068185095193010523
q6 = 14873364995956684945572578984254751
q7 = 146385223907573688674845908950296751
q8 = 1097028089754405172775021694133400351
q9 = 1353476214632058330047104687567182251.

Since 2q ≡ 1 (mod p) we can set a generator g = 2 to obtain a complete set
of DH parameters (p, q, g). By construction q will pass a random-base Miller-
Rabin primality test with probability approximately 1/28. Since q9, the largest
factor of q, is 121 bits in size, the DLP in the subgroup of order q mod p for this
parameter set can be solved in approximately 9 · 260.5 ≈ 264 operations. The C
code used to generate this example can be found in the full version [GMP19].

Example 6. Again, using the Erdös method with L∗ = 565815250 we generated
the 11-factor Carmichael number

n = 96647594591145401276131753609264751
= 23 · 71 · 191 · 419 · 491 · 3851 · 4523 · 4751 · 9311 · 17291 · 113051.



Safety in Numbers 399

Using the procedure described above, we found k = 3k′ with

k′ = 3994916512074331

produced a 11-factor, 1023-bit Carmichael number q such that p = 2q + 1 is a
1024-bit prime.

To generate a target q with 1023 bits, with m = 11 factors each around
93 bits in size, we estimate the standard Granville-Pomerance construction to
have a success rate of (2/ ln(B))m ≈ 2−55.11 per trial, so that the expected
number of trials would be about 255.1. Again, using our modified version of the
Granville-Pomerance construction we sieve as in the previous example to reduce
the expected number of trials by about 1/(1 − 0.658)m ≈ 217 to roughly 238.1

trials. Then again by considering the probability that the q produced is such
that 2q+1 is also prime we expect to require 238.1+6.9 = 245 total trials. Finding
the above q such that 2q+1 was prime took 244.83 trials. The computation using
our ‘C’ implementation ran for 1680 core-days on 3.3GHz CPUs.

The factors of this q are:

q1 = 149185389210558730480951523
q2 = 474680783851777778803027571
q3 = 1288419270454825399608217691
q4 = 2834522395000615879138078919
q5 = 3322765486962444451621192991
q6 = 26107443111847777834166516351
q7 = 30664378636824844510675581023
q8 = 32210481761370634990205442251
q9 = 63132544252286444580802666811

q10 = 117246153611389111364347809791
q11 = 766609465920621112766889525551.

Since 2q ≡ 1 (mod p) we can set a generator g = 2 to obtain a complete
set of DH parameters (p, q, g). By construction q will pass a random-base Miller-
Rabin primality test with probability approximately 1/210. Since q11, the largest
factor of q, is 100 bits in size, the DLP in the subgroup of order q mod p for this
parameter set can be solved in approximately 11 · 250 ≈ 254 operations.

4.3 Application to OpenSSL and PAKE Protocols

OpenSSL provides the DH parameter verification function DH check in
dh check.c. This function takes a DH parameter set (p, q, g) and performs pri-
mality testing on both p and q. A safe-prime setting is enforced by default, and
if q is not provided then it is calculated from p via q = (p−1)/2. For this reason,
Albrecht et al. [AMPS18] were not able to create malicious DH parameter sets
passing OpenSSL’s testing.
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The primality test that OpenSSL uses is BN is prime ex; this performs t
rounds of random-base Miller-Rabin testing, where t is determined by the bit-
size of p and q. Since p and q are 1024 and 1023 bits respectively, t = 3 rounds of
Miller-Rabin are performed, at least in versions prior to OpenSSL 1.1.0i (released
14th August 2018). From version 1.1.0i onwards, t was increased to 5, with the
aim of achieving 128 bits of security instead of 80 bits.4 This change was made
independently of our work and does not appear to have been influenced by the
results of [AMPS18]: the numbers 3 and 5 were selected based on estimates
for the average case performance of Miller-Rabin primality testing, with the
OpenSSL developers implicitly assuming that p and q are generated randomly
rather than maliciously.

For the DH parameter set given in Example 5, we know that q has ϕ(q)/28

Miller-Rabin non-witnesses, and thus a probability of approximately 1/28 of
being declared prime by a single round of Miller-Rabin testing. Hence this DH
parameter set will be accepted by DH check as being valid with probability
approximately 2−24 (and the lower probability of 2−40 since version 1.1.0i of
OpenSSL).

This may seem like a small probability, and indeed it is in a scenario where,
say, malicious DH parameters are hard-coded into a server by a developer with
the hope of later compromising honestly established TLS sessions between a
client and a server: only 1 in 224 sessions would be successfully established, and
the malicious DH parameters would be quickly spotted if ever careful validation
were to be carried out.

Consider instead a PAKE scenario like that envisaged by Bleichenbacher
[Ble05]. Here, a client and server use some hypothetical PAKE protocol which
relies on DH parameters as part of the protocol, with the server supplying the
DH parameters. Assume OpenSSL’s DH parameter validation is used by the
client. Then an attacker impersonating the server to the client has a 1 in 224

chance of fooling the client into using a weak set of DH parameters. For specific
PAKE protocols, this may allow the client’s password to be recovered thereafter.
For example, this is the case for SRP [Wu00,TWMP07], as seen in [Ble05]. It
is also true of J-PAKE [Hao17]: in this protocol, the client in a first flow sends
values g1 = gx1 , g2 = gx2 , while the server sends g3 = gx3 , g4 = gx4 (along with
proofs of knowledge of the exponents). In the second flow in J-PAKE, the client
sends (g1g3g4)x2s where s is the password or a derivative of it. At this point, the
attacker aborts the protocol, and uses its ability to solve the DLP to recover x2

from the first flow and then again to recover x2s and thence s from the second
flow.

We pick SRP and J-PAKE here only as illustrative examples; many other pro-
tocols would be similarly affected. We also note that the specification for using
SRP in TLS [TWMP07] makes careful mention of the need to use trusted DH
parameters, and gives examples of suitable parameter sets. However, [TWMP07]

4 Interestingly, the last time these iteration counts were changed was in February 2000
(OpenSSL version 0.9.5), before which they were all 2, independent of the bit-size
of the number being tested.
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states that clients SHOULD only accept group parameters that come from a
trusted source, leaving open the possibility for implementations to use parame-
ters from untrusted sources (to remove that possibility the IETF reserved term
“MUST” should have been used). Meanwhile J-PAKE [Hao17] just assumes that
the DH parameters are agreed in advance and suggests some methods and sources
for obtaining parameters. This does not remove the possibility of the parties
using bad parameters and side-steps the important problem of parameter verifi-
cation.

The power of the attack in the PAKE scenario is that the client has a secret
that an attacker would like to learn; the attacker then gains an advantage by
impersonating the server in a standard attack scenario. This is different from a
protocol like TLS where there is no such static secret and the server is usually
authenticated and therefore hard to impersonate; there we require a “malicious
developer” attack scenario.

The attack can be carried out repeatedly to boost its success probability,
and it can be done across a large population of users in a stealthy manner. Thus
even a small per-attempt success probability of 2−24 may represent a significant
weakness in practice.

As remediation, we recommend that OpenSSL and other cryptographic
libraries modify their DH parameter testing code to carry out stronger primal-
ity tests – as our analysis shows, 3 rounds of random-base Miller-Rabin testing
is insufficient; 5 rounds is better in that it reduces the success probability of
our attack to 2−40, but this is still far from the 128-bit security level that the
OpenSSL developers have targeted.

5 The Elliptic Curve Setting

An elliptic curve over a prime field Fp in short Weierstrass form is the set of
solutions (x, y) ∈ Fp×Fp satisfying an equation of the type y2 = x3+ax+b, where
a, b ∈ Fp satisfy 4a3 + 27b2 �= 0, together with the point at infinity O. When
using a scheme such as Elliptic Curve Diffie-Hellman (ECDH), one typically
transmits a description of the used curve via a set of domain parameters as part
of the protocol, uses hard-coded parameters, or uses a standardised ‘named’
curve. An ECDH parameter set is typically composed of (p,E, P, q, h), where E
is a description of the elliptic curve equation (typically represented by a and b),
P is a base point that generates a subgroup of order q on the curve and h is the
cofactor of this subgroup.

Analogously to our attacks on the parameter sets on finite field DH, we
can create malicious ECDH parameter sets. The idea is to first construct a
composite number q that is designed to be declared ‘probably prime’ by a target
implementation of a probabilistic primality test but which is actually reasonably
smooth, then retroactively construct a curve of suitable order n = h ·q. This can
be done using the algorithm of Bröker and Stevenhagen [BS05].

Depending on the specific structure of n, a composite order will expose ECDH
to attacks like Lim-Lee style small subgroup attacks as in [LL97], or may aid in
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solving the Elliptic Curve Discrete Logarithm Problem (ECDLP) in the order q
subgroup. For this we would use the Pohlig-Hellman algorithm to solve ECDLP
in time O(B1/2) where B is an upper bound on the largest prime factor of q.
For example, we could produce a 256-bit q with 4 prime factors, and hope to
use the algorithm of Bröker and Stevenhagen to find a suitable curve over a
256-bit prime p of order n = h · q possibly even with h = 1. During parameter
validation, q would pass a single round of the Miller-Rabin test with probability
1/8. And the ECDLP could be solved with effort approximately 4 · 232 = 234

group operations.

5.1 The Algorithm of Bröker and Stevenhagen

For completeness, we give a short exposition of the algorithm of Bröker and
Stevenhagen [BS05].

An elliptic curve E over Fp has #E(Fp) = p + 1 − t points where |t| < 2
√

p.
The endomorphism ring of E contains Z[

√
t2 − 4p], which is a subring of the

imaginary quadratic field K = Q(
√

t2 − 4p). Conversely, if E is an elliptic curve
over a number field whose endomorphism ring is the ring of integers of K, then
(by the Complex Multiplication theory of elliptic curves) the reduction modulo p
of E is an elliptic curve over Fp and, by taking a suitable isomorphism (a twist),
we may ensure that the reduced curve has p + 1 − t points.

The algorithm of Bröker and Stevenhagen exploits these ideas. Given an
integer n, the first step is to construct a prime p and an integer t such that
p + 1 − t = n and such that Q(

√
t2 − 4p) has small discriminant D. Once this is

done, the curve E is constructed using standard tools in Complex Multiplication
(namely the Hilbert class polynomial).

We now briefly sketch the first step of the algorithm. The input is an integer
n, and we wish to construct an elliptic curve with n points.

Let D < 0 be a discriminant of an imaginary quadratic field. We will try to
find (p, t) such that t2 − 4p = f2D for some f ∈ N. We also need p + 1 − t = n
and so p = n + t − 1. If t2 − 4p = f2D then

(t − 2)2 − f2D = t2 − f2D − 4t + 4 = 4(p − t + 1) = 4n.

Hence, to construct a curve with n points it suffices to choose a discriminant D,
solve the equation w2 − f2D = 4n, and then check whether n + (w + 2) − 1 =
n + w + 1 is prime. Note that if � | n then w2 − f2D ≡ 0 (mod �) and so
(D

� ) �= −1.
An important ingredient is Cornacchia’s algorithm, which solves the equation

w2 − f2D = 4n (note that D < 0, so the left hand side is positive definite and
the equation only has finitely many solutions). Cornacchia’s algorithm starts by
taking as input an integer x0 such that x2

0 ≡ D (mod 4n).
Putting everything together, the algorithm is as follows (we refer to [BS05]

for the full details). Let n = �1 · · · �k be the target group order. Search over all
D < 0 such that D ≡ 0, 1 (mod 4), up to some bound |D| < Dbound. Ensure
that (D

�i
) ≥ 0 for all �i | n. Determine all solutions x0 ∈ Z/4nZ such that x2

0 ≡ D
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(mod 4n) and run Cornacchia’s algorithm for each. Whenever we find an integer
solution w2 − f2D = 4n check whether p = n + w + 1 is prime. If so, output
(p, t).

Note that the algorithm is not guaranteed to succeed for a given integer n,
because we are restricting to |D| < Dbound. In our application this is not a
serious problem, because we are able to generate many viable choices for n.

In practice one usually desires elliptic curves of order q (supposed to be
prime) or whose group order is 4q (Edwards and Montgomery curves have group
order divisible by 4). We make one remark about the case when n = 4q is even.
If D is odd then any solution (w, f) to w2 − f2D = 4n has w odd, and so t is
odd. If n is odd then this means p = n+w +1 is odd, which is all good, whereas
if n is even then p cannot be prime when D is odd, so when n is odd we must
use odd discriminants D. On the other hand, when n is even then we can take
D even (so that w and t will be even and so p = n + w + 1 will be odd).

5.2 Examples

We implemented the algorithm of Bröker and Stevenhagen [BS05] in SAGE, and
ran it with q that are 256-bit Carmichael numbers with 3 and 4 prime factors, all
congruent to 3 mod 4. These were generated using methods described in Sect. 3.
By design, these values of q pass random-base Miller-Rabin primality testing
with probability 1/4 and 1/8 per iteration, respectively. We used an early abort
strategy for each q and estimate a success probability of roughly 1/4 for each
q we tried. When successful, the computations took less than a minute on a
laptop. The SAGE code for the first stage (finding p, t) of the 3-prime case can
be found in the full version [GMP19].

Example 7. Set q = q1q2q3 where:

q1 = 12096932041680954958693771
q2 = 36290796125042864876081311
q3 = 133066252458490504545631471

Then q is a Carmichael number with 3 prime factors that are all congruent to
3 mod 4, so q passes random-base Miller-Rabin primality testing with probability
1/4 per iteration. Using the algorithm of Bröker and Stevenhagen, we obtain the
elliptic curve E(Fp) defined by y2 = x3 + 5, where

p = 58417055476151343628013443570006259007184622249466895656635947464036346655953

such that #E(Fp) = q and p has 256 bits. Every point P on this curve
satisfies [q]P = O, the point at infinity, so any point can be used as a generator
(of course such points may not have order q, but if q is accepted as being prime
then this will not matter). The Pohlig-Hellman algorithm can be used to solve
the ECDLP on this curve using about 3 ·242.5 group operations, since the largest
prime factor of q has 85 bits.
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Example 8. Set q = q1q2q3q4 where:

q1 = 2758736250382478263
q2 = 8276208751147434787
q3 = 30346098754207260883
q4 = 91038296262621782647

Then q is a Carmichael number with 4 prime factors that are all congruent to
3 mod 4, so q passes random-base Miller-Rabin primality testing with probability
1/8 per iteration. Using the algorithm of Bröker and Stevenhagen, we obtain the
elliptic curve E(Fp) defined by y2 = x3 + 2, where

p = 63076648027364534028465951740325404957612973168788427535105160157981242952139

such that q = #E(Fp) and p has 256 bits. Every point P on this curve
satisfies [q]P = O, the point at infinity, so any point can be used as a generator.
The Pohlig-Hellman algorithm can be used to solve the ECDLP on this curve
using about 4 · 233.5 group operations, since the largest prime factor of q has 67
bits.

The two examples above both construct examples of order q. We were also
able to construct examples of order 4q, compatible with applications that use
Montgomery or Edwards curves, see for example [BL07,BCLN16].

We have not attempted to do it, but we see no reason why similar examples
could not be constructed where q passes fixed-base Miller-Rabin primality tests
with probability 1, as per [Ble05].

These examples illustrate the necessity for careful parameter validation, in
particular robust primality testing of q, when accepting bespoke curves in cryp-
tographic applications.

6 Conclusion and Recommendations

The best countermeasure to malicious DH and ECDH parameter sets is for
protocols and systems to use only widely vetted sets of parameters, and to elim-
inate any options for using bespoke parameters. This is already widely done in
the elliptic curve setting, not necessarily because parameter validation is hard,
but because suitable parameter generation is non-trivial in the first place, and
because safe and efficient implementation is much easier with a limited and well-
understood set of curves. Nevertheless, issues can still arise with the provenance
of parameter sets. In short, it is difficult to eliminate suspicion that a curve may
have a hidden backdoor unless the generation process is fully explained and has
demonstrably little opportunity for manipulation; see [BCC+15] for an exten-
sive treatment. Similar concerns apply in the finite field setting, in the light
of [Gor93,FGHT17].

On the flip-side is the argument that, in the finite field setting, using a
common set of DH parameters may be inadvisable because, with the best known
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algorithms for finding discrete logarithms, the cost of solving many logarithms
can be amortised over the cost of a large pre-computation, making commonly
used DH parameter an even more attractive target. This was a crucial factor
in assessing the impact of the Logjam attack on 512-bit DH arising in export
cipher suites in TLS [ABD+15].

Our work adds to the weight of argument in favour of using only limited sets
of carefully vetted DH parameters even in the finite field setting. This approach
was recently adopted in TLS 1.3, for example, which in contrast to earlier ver-
sions of the protocol only supports a small set of DH and ECDH parameter sets,
with the allowed DH parameters being specified in [Gil16].

If bespoke parameters must be used, then implementations should employ
robust primality testing as part of parameter validation, using, for example, at
least 64 rounds of Miller-Rabin tests, or the Baillie-PSW primality test for which
there are no known pseudoprimes, cf. [AMPS18].
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Abstract. A verifiable random function (VRF) is a pseudorandom func-
tion, where outputs can be publicly verified. That is, given an output
value together with a proof, one can check that the function was indeed
correctly evaluated on the corresponding input. At the same time, the
output of the function is computationally indistinguishable from random
for all non-queried inputs.

We present the first construction of a VRF which meets the follow-
ing properties at once: It supports an exponential-sized input space, it
achieves full adaptive security based on a non-interactive constant-size
assumption and its proofs consist of only a logarithmic number of group
elements for inputs of arbitrary polynomial length.

Our construction can be instantiated in symmetric bilinear groups
with security based on the decision linear assumption. We build on the
work of Hofheinz and Jager (TCC 2016), who were the first to construct
a verifiable random function with security based on a non-interactive
constant-size assumption. Basically, their VRF is a matrix product in
the exponent, where each matrix is chosen according to one bit of the
input. In order to allow verification given a symmetric bilinear map, a
proof consists of all intermediary results. This entails a proof size of Ω(L)
group elements, where L is the bit-length of the input.

Our key technique, which we call hunting and gathering, allows us to
break this barrier by rearranging the function, which – combined with
the partitioning techniques of Bitansky (TCC 2017) – results in a proof
size of � group elements for arbitrary � ∈ ω(1).

1 Introduction

A pseudorandom function is, roughly speaking, a function that can be efficiently
evaluated if provided a key, but - given only black-box access - is computationally
indistinguishable from a truly random function. Since introduced by Goldreich,
Goldwasser and Micali [16] in 1986, pseudorandom functions have been proven
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useful in many applications. Nevertheless, their security guarantee is somewhat
one-sided, as by definition a receiver not knowing the key cannot be sure that
indeed he obtained the output value of the pseudorandom function.

To open doors to a wider range of applications, in 1999 Micali, Rabin and
Vadhan [28] introduced the concept of verifiable random functions. A verifiable
random function is a pseudorandom function, for which the key holder – in
addition to the image – provides a proof of correct evaluation. The security
requirement is unique provability, i.e. for each preimage there exists a valid proof
for at most one function value. Verifiable random functions are applicable in
many contexts, like [4,6,24,26,29,30].

In order to achieve unique provability, the key holder has to publish a ver-
ification key, which can be viewed as a commitment to the function, such that
even a maliciously chosen verification key commits to at most one function.

At first glance, employing a pseudorandom function together with a zero-
knowledge proof seems promising. But, aiming for a non-interactive construction,
the following problem arises. As proven in [17], non-interactive zero knowledge
proofs require a common reference string. Letting a possibly malicious key holder
choose this common reference string compromises soundness.

Recent generic constructions [5,7,18] choose a similar approach and build
verifiable random functions based on non-interactive witness-indistinguishable
proofs, which by [19] exist without trusted set-up based on standard assump-
tions. All of them, though, lack efficient instantiations.

At the birth of verifiable random functions, [28] took a different path. Namely,
theirs and the following constructions build on functions which have an implicit
and an explicit representation. While the implicit representation serves as the
commitment to the function which can be published without compromising
pseudorandomness, the explicit representation allows efficient evaluation. For
instance, given a function with image in Zp, one can think of the function values
in the exponent of some suitable group as an implicit representation, from which
the function cannot be computed efficiently, but which commits the key holder
to exactly one function.

A number of constructions [1,11,12,27] followed this line of work, but up
until the work of Hohenberger and Waters in 2010 [21] all of them come with
some limitation: Either they are based on an interactive assumption, or they
only allow polynomial-sized input space, or they do not achieve full adaptive
security. In the following we only consider verifiable random functions which
suffer from none of those limitations (so-called verifiable random functions with
all desired properties). While there are many constructions of VRFs with all
desired properties (see Fig. 1), they all come at a cost: Either they have to rely
on a non-constant-size assumption (i.e. an assumption depending on the security
parameter and/or on some quantity of the adversary), or require large proofs.
Thus, the following question was left open:

Open question. Do verifiable random functions with all desired properties exist
such that further
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Fig. 1. Comparison with previous efficient constructions of VRFs with all desired prop-
erties. The second and third column give an overview of the sizes of the verification
key and the proof in number of group elements, respectively. Throughout, by λ we
denote the security parameter, by L the input length (a canonical choice is L = λ) and
by 0 < η ≤ 1 an arbitrary constant (representing a trade-off between size of the verifica-
tion key and security loss). In the fourth column we provide the underlying assump-
tion. DDHE refers to the decisional Diffie-Hellman exponent assumption (see [21]),
and DDH and DLIN to the decisional Diffie-Hellman and the decision linear assump-
tion respectively. In the last column we give an overview of the security loss (in O-
notation). Here, ε ≥ 1/poly(λ) and Q ≤ poly(λ) refer to the advantage and the number
of evaluation queries of the adversary, respectively. The constructions [20,23,25,33,35]
and our first construction require an error correcting code {0, 1}L → {0, 1}n with mini-
mal distance nμ. For the security loss of [23,25,35] we refer to [35], Table 2 (in the eprint
version) and [25], Table 1 (in the eprint version). There, γ is such that μ = 1 − 2−1/γ .
Note that γ can be chosen as close to 1 as desired by choosing μ < 1/2 and n large
enough (see [15], Appendix E.1). For [20,33] and our first construction, the admissible
hash function is instantiated with [27], where μ is constant and n ∈ O (L). Note that
the security loss stems from using the artifical abort technique by [34]. For our second
construction we use the admissible hash function of [7]. We only give the most efficient
instantiation of [35] and [25] regarding the proof size, as this is the focus of our work.
As the generic constructions [5,7,18] do not come with efficient instantiations, they are
omitted in the overview.

(A) the VRF security can be based on a standard constant-size assumption
AND

(B) the proof consists of o(L) group elements, where L is the bit-length of the
input?

While previously only either part on its own was tackled ((A) by Hofheinz and
Jager [20] and (B) by Yamada [35] and Katsumata [25]), our work answers this
question affirmatively. Further, to our knowledge our construction constitutes
the only verifiable random function with all desired properties that requires
only � group elements in the proof, where � ∈ ω(1) arbitrary. We achieve this at
the price of larger verification keys and a larger security loss in the reduction to
the underlying assumption.
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Additionally, we give an instantiation which achieves the same efficiency
(regarding the size of the verification key and proofs) as the recent work of
Yamada [35], but based on a constant-size assumption.

We leave it as an open question to construct verifiable random functions
with all desired properties that have short proofs and a short verification key.
It is worth mentioning that, when allowing the input space to be polynomial-
sized, even constructions with constant key and proof size (in number of group
elements) exist [12].

Why constructing verifiable random functions is difficult. The main
source of difficulty in constructing adaptively secure verifiable random functions
is the requirement of unique provability. To see this, consider the reduction of
pseudorandomness of the VRF to the underlying assumption. While the reduc-
tion has to answer all evaluation queries x with the unique function value y
together with a corresponding proof, the reduction hopes to solve the underly-
ing problem with the function value y� corresponding to the challenge value x�.
This imposes the following challenges in addressing the stated open question.

(A) In order to explain why many previous approaches rely on non-constant-size
assumptions, we take [27] as a starting point. The core of the construction
is simply the Naor-Reingold pseudorandom function [3], which, given a
secret key (ai,j)i∈{1,...,L},j∈{0,1} of randomly chosen exponents and an input
x ∈ {0, 1}L, evaluates to

g
∏L

i=1 ai,xi .

To reduce the security of the pseudorandom function to the decisional Diffie-
Hellman assumption, Naor and Reingold [31] employ a hybrid argument,
where they gradually randomize images given to the adversary. Using the
same proof technique in order to prove VRF security, the reduction would
have to provide proofs for random values. Recall that by unique provabil-
ity even for a verification key which is set up maliciously there exists at
most one function value for every preimage which has a validating proof.
The reduction has thus no possibility to simulate proofs. As the result of
employing a different proof strategy, the security of the verifiable random
function has to be based on a non-constant-size computational assumption
depending on the input length L of the VRF. Namely, given oracle access
to g

∏
i∈S′ zi for every proper subset S′

� S := {z1, . . . , zL}, it is assumed
to be difficult to compute g

∏
i∈S zi .

As non-constant-size assumptions become stronger with increasing input
length (or even worse depend on the number of adversarial queries [21]),
basing the VRF security on constant-size assumptions is desirable.
The only work overcoming the described difficulty and achieving security
based on a constant-size assumption so far is [20], who use a more complex
underlying function, allowing them to again employ a hybrid argument in
the proof of security. Their work will be the starting point of our construc-
tion.

(B) As the adversary is allowed to choose the evaluation and the challenge query
adaptively, the reduction has to partition the input space ahead of time,
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such that with noticeable probability it embeds the underlying problem in
the challenge query x�, but is at the same time able to answer all evaluation
queries x(1), . . . , x(Q).
A common strategy to achieve this is via admissible hash functions [3,8,
10,14,20,23,27] for partitioning. A function (or encoding) {0, 1}L → Σn

(for some n ∈ N and alphabet Σ) is called admissible hash function, if
there exists an efficient sampling algorithm returning a word Y ∈ Σn and
a subset of indices I ⊆ {1, . . . , n}, such that for any choice of x(1), . . . , x(Q)

and x� /∈ {x(1), . . . , x(Q)} with noticeable probability we have

x� ∈ Y := {x ∈ {0, 1}L | ∀i ∈ I : AHF(x)i = Yi}

and
{x(1), . . . , x(Q)} ⊆ Z := {0, 1}L\Y.

Therefore, the reduction can embed the underlying problem into all ele-
ments of Y, while being able to answer all evaluation queries in Z. The
choice of the encoding is crucial, as an adversary may try to minimize the
probability of successful partitioning by maliciously choosing the queries.
The most efficient instantiation [14,27] achieve n = Θ(L) for Σ = {0, 1} by
employing a suitable error correcting code with sufficiently large minimal
distance.
In most constructions employing admissible hash functions, the reduction
embeds Y in some way into the public parameters, leading to parameter
sizes of at least n · |Σ| [2,8–10,20,23]. In constructions of verifiable random
functions a larger verification key often affects the proof size. This is due
to the fact that the proof typically consists of intermediate results in order
to make the output value verifiable (e.g. by employing a bilinear map). For
this reason most previous constructions inherently require proofs to consist
of Ω(L) group elements.

Strategies to achieve short proofs. Recall that an admissible hash func-
tion AHF : {0, 1}L → Σn partitions a space into Y := {x ∈ {0, 1}L | ∀i ∈
I : AHF(x)i = Yi} and Z := {0, 1}L \ Y. Note that the relevant information in
Y (which has to be embedded into the public parameters in some way) only
consists of |I| bits (which is typically logarithmic in Q, where Q is the number
of evaluation queries). Yamada [35] achieves shorter proofs by encoding the rel-
evant information of Y into a bitstring consisting of only ω(log Q) components
and employing an admissible hash function based on the shorter bitstring. Kat-
sumata [25] follows a similar approach and can be viewed as a combination of
[35] and [23] to achieve security based on a weaker assumption.

While we build on the same observation, we follow a different strategy.
Namely, we remove the dependency of the proof size on n and |Σ| by rear-
ranging the underlying pseudorandom function. As a result, our proof size only
depends on the number of chosen indices |I|.

The instantiation of admissible hash functions by Lysyanskaya [27] (so-called
substring matching), which is also employed in [20], yields |I| ∈ O (log Q)
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(= O (log λ) for Q ∈ poly(λ)). This results in a proof size of ω(log λ) and a
verification key size of ω(λ log λ) (in number of group elements).

We observe that we can reduce the proof size even further to ω(1) group ele-
ments, by using the admissible hash function of Bitansky [7] (so-called substring
matching over polynomial alphabet). This entails verification keys of ω(λ2+2η)
group elements (where 0 < η ≤ 1 is an arbitrary constant influencing the secu-
rity loss). The reason for the larger verification is that the underlying encoding
function has to satisfy stronger properties in order to achieve |I| ∈ ω(1) and
comes thus with larger parameters n and |Σ|.

Note that the efficiency gain in our approach (and similar in [25,35]) crucially
relies on the restriction to adversaries that ask a polynomially bounded number
of evaluation queries Q. One could thus consider the construction of [20] with
input size L = ω(log λ) (where λ is the security parameter), thereby obtaining
a verifiable random function with proofs consisting of o(λ) group elements. We
want to emphasize that in this approach, proofs still consist of Ω(L) group
elements and are thus linear regarding the input size. We, on the other hand,
achieve proof size o(λ) in number of group elements independent of the input
size (assuming the length of the input to be polynomially bounded).

Restricting to polynomial size adversaries, one could also achieve proofs of
size o(L) (in number of group elements) by evaluating the VRF on H(x) for
a collision resistant hash function H : {0, 1}L → {0, 1}ω(log λ). This approach,
however, requires an exponential assumption, whereas we obtain short proofs
solely relying on the decision linear assumption.

1.1 Technical Overview

In the following we want to give an overview on how we achieve proofs consisting
of ω(1) group elements. Roughly, our strategy is to rearrange the function from
[20]. Recall that the raw-VRF of [20] is a matrix product in the exponent, where
each factor depends on one bit of a suitable encoding of the input. Instead, we
will have each factor depend on all bits of the encoding, and only take a product
over |I| factors, where I is the index set stemming from partitioning via an
admissible hash function AHF. For |I| ∈ ω(1), we employ the instantiation of
admissible hash functions by Bitansky [7].

It is worth noting that instantiating [20] with the admissible hash function
of [7] would, on the contrary, yield larger proofs of size ω(L), as the technique
of Bitansky requires n ∈ ω(L) for the output dimension of the encoding, which
determines the proof size of [20].

We start by presenting the concept of verifiable vector hash functions
(VVHF) introduced in [20], which can be seen as a pre-step of a VRF. Next, we
give an overview of partitioning via admissible hash functions. This technique is
employed by [20] and this work to construct an adaptively programmable VVHF,
which in turn yields an adaptively secure VRF (via a generic transformation of
[20]). As we build on the techniques of [20], we start with an overview of their
approach, before presenting our construction.
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Verifiable vector hash functions. Let G be a group of prime-order p with
generator g. For a vector v = (v1, v2, v3) ∈ Z

3
p we employ the notation of [13]

and write gv to denote (gv1 , gv2 , gv3) ∈ G
3 (and accordingly for matrices). A

VVHF takes an evaluation key ek and an input x and outputs a vector gv ∈ G
3

and a proof π (which can be verified given a verification key vk), such that the
following holds:

– Unique provability: As for VRFs, there exists at most one image vector gv ∈
G

3, for which a valid proof π exists (even for maliciously chosen verification
keys).

Instead of pseudorandomness, the security property we require from a VVHF
is adaptive programmability (AP). That is, given a basis {gb1 , gb2 , gb3} of G

3,
there exists an alternative way of generating a verification key vk together with
a trapdoor td (in the following referred to as trapdoor key generation), which
allows evaluating the VVHF “in the given basis”, i.e. given a trapdoor td and
an input x, one can efficiently generate coefficients cx

1 , cx
2 , cx

3 ∈ Z
3
p together with

a proof π, such that π is a valid proof for the output gv := g
∑3

i=1 cx
i bi . Further,

we require the following:

– Indistinguishability: The trapdoor verification keys are indistinguishable from
real verification keys.

– Well-distributed outputs: With noticeable probability (that is with probability
at least 1/poly(λ)), for any polynomially bounded number of input values
x(1), . . . , x(Q) and any designated input x� with x� /∈ {x(1), . . . , x(Q)}, we
have cx(ν)

3 = 0 for all ν ∈ {1, . . . , Q} and cx�

3 �= 0 (where cx
3 is the third

coefficient of the trapdoor evaluation on input x and trapdoor td). In other
words, with noticeable probability the image vectors of all input values except
the designated one lie in the 2-dimensional subspace of G

3 generated by gb1

and gb2 .

As shown in [20], this property together with the decision linear assumption in
G suffices to construct verifiable random functions. The idea is to embed a part
of the challenge of the decision linear assumption in gb3 .

Partitioning via admissible hash functions. In order to achieve well-
distributed outputs one has to partition the preimage space into a set Y and
a set Z := {0, 1}L\Y, such that for any polynomially bounded number of input
values x(1), . . . , x(Q) and any designated input x� with x� /∈ {x(1), . . . , x(Q)}, we
have x� ∈ Y and x(ν) ∈ Z for all ν ∈ {1, . . . , Q} with noticeable probability.
Then, one can set up the trapdoor key generation algorithm such that for all
x ∈ Z it holds cx

3 = 0, and for all x ∈ Y it holds cx
3 �= 0 (where cx

3 is the third
coefficient of the trapdoor evaluation on input x).

Recall that admissible hash functions partition the space by employing a
suitable encoding AHF : {0, 1}L → Σn for some polynomial-sized alphabet Σ
and n ∈ N. To choose a partitioning, a subset of the indices I ⊆ {1, . . . , n} of
suitable size and a word Y ←R Σn are drawn at random. The partitioning is
chosen as
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j\k 0 1

1

2

3

4

n ≈ L

j\k 1 2 3 4 . . . σ ≥ n

1

2

3

4

n = L1+1/η

Fig. 2. A graphic representation of partitioning via substring matching and partitioning
via substring matching over a polynomial alphabet Σ = {1, . . . , σ}. In both cases we
chose I = {1, 4} (marked in light gray) and further Y = (0, 0, 1, 0, . . . , 1) ∈ {0, 1}n and
Y ′ = (1, 3, 4, 3, . . . , 2) ∈ Σn (marked in gray and black). A word x lies in the set Y if
and only if AHF(x) agrees with Y on the entries in black (and for Y ′ accordingly). Note
that only the information in the light gray rows is necessary for partitioning. Recall
that L is the bit-length of the input and 0 < η ≤ 1 an arbitrary constant.

Y := {x ∈ {0, 1}L | ∀i ∈ I : AHF(x)i = Yi}.

For a graphic representation we refer to Fig. 2. On the left-hand side the par-
tioning via substring matching of [27] is depicted, whereas on the right-hand side
we present the partioning via substring matching over a polynomial alphabet by
[7]. Note that for the probability of successful partitioning, the underlying code
and the index set size |I| are crucial. The instantiation [27] achieves noticeable
probability employing an error correcting code with minimal distance μn (for
some constant μ < 1) and |I| ∈ ω(log λ). Error correcting codes satisfying this
requirement exist with n = Ω(L) and Σ = {0, 1}.

To get by with |I| ∈ ω(1), [7] requires larger minimal distance of the
underlying code for the following reason. An adversary could fix x� and then
choose x(1), . . . , x(Q) such that AHF(x�) and AHF(x(ν)) are “close” (for each
ν ∈ {1, . . . , Q}). The smaller |I| is, the more likely it gets that one of the
AHF(x(ν)) agrees with AHF(x�) on all indices in I, and thus the more likely it
gets that partitioning is not successful. This requirement on the encoding results
in n = L1+1/η and increased alphabet size of σ := |Σ| ≥ n. Here, 0 < η ≤ 1 is
an arbitrary constant influencing the probability of successful partitioning.

The VVHF of Hofheinz and Jager [20]. The VVHF of [20] can be seen
as a multi-dimensional version of the Naor-Reingold pseudorandom function. In
order to achieve adaptive programmability, input values are first encoded using a
suitable admissible hash function. To set up the evaluation and verification key,
the key generation algorithm draws matrices (Mj,k)j∈{1,...,n},k∈Σ in Z

3×3
p and a

vector u ∈ Z
3
p at random. Note that this can be viewed as choosing a matrix for

every cell of the partitioning table (as depicted in Fig. 2). The evaluation key is

ek :=
(
(Mj,k)j∈{1,...,n},k∈Σ ,u

)
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and the corresponding verification key is defined as

vk :=
((

gMj,k
)
j∈{1,...,n},k∈Σ

, gu
)

.

On input of the evaluation key ek and a value x ∈ {0, 1}L, the evaluation
algorithm computes the output

g

(∏n
j=1 Mj,AHF(x)j

)�·u
,

i.e. the representation of AHF(x) decides which matrices are used.The corre-
sponding proof π := (π1, . . . , πn−1) consists of all intermediate values

πι := g

(∏ι
j=1 Mj,AHF(x)j

)�·u

for ι ∈ {1, . . . , n− 1} and has thus linear size. Given the verification key, a proof
can be verified employing a symmetric bilinear map.

For trapdoor key generation, the following property of a matrix product is
employed in [20]: Let U0, . . . ,Un be 2-dimensional subspaces of Z

3
p and for all

j ∈ {1, . . . , n}, k ∈ Σ let Mj,k be such that M�
j,k · Uj−1 = Uj .1 Then:

(i) If there exists a j� ∈ {1, . . . , n} such that Mj�,AHF(x)j� is of rank 2, then
(
∏n

j=1 Mj,AHF(x)j
)� maps Z

3
p (and thus in particular Z

3
p \ U0) to Un.

(ii) If for all j ∈ {1, . . . , n} the matrix Mj,AHF(x)j
is of rank 3, then the product

(
∏n

j=1 Mj,AHF(x)j
)� maps Z

3
p \ U0 to Z

3
p \ Un.

Let I ⊆ {1, . . . , n} and Y ∈ Σn constitute a partitioning of {0, 1}L with
Y := {x ∈ {0, 1}L | ∀i ∈ I : AHF(x)i = Yi} and Z = {0, 1}L\Y. Recall that to
achieve well-distributed outputs, the goal is to set up trapdoor key generation
such that x ∈ Z ⇔ cx

3 = 0.
In [20] this is achieved as follows. Given a basis {gb1 , gb2 , gb3} of G

3, the
trapdoor key generation algorithm chooses vector spaces U0, . . . ,Un−1 ⊆ Z

3
p and

a vector u ←R Z
3
p\U0 at random. Further, it defines Un as the subspace generated

by b1 and b2, and chooses Mj,k at random (subject to M�
j,k ·Uj−1 = Uj) of rank

2, whenever j ∈ I and k �= Yj (and of full-rank otherwise). In other words, it
chooses all matrices corresponding to light gray cells in Fig. 2 of rank 2, and
all matrices corresponding to white, gray or black cells of rank 3. This implies
that at least one matrix of rank 2 is part of the evaluation if and only if x ∈ Z
(as in this case at least for one light gray line a matrix corresponding to the
non-black cell is hit). And, by the choice of u, Un together with (i), we have
cx
3 = 0 whenever at least one of the matrices in the product is of rank 2.

Note that, as gb1 , gb2 and thus Un are only known in the exponent, the
trapdoor key generation algorithm can only compute gMn,k in the exponent (for

1 For matrix M ∈ Z
3
p and subspaces U , V ⊆ Z

3
p, by M� · U = V we denote the

property that for all u ∈ U we have M�u ∈ V and for each v ∈ V there exists a u
with M�u = v.
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all k ∈ Σ). This does not hinder evaluation, as all matrices Mj,k for j < n, k ∈ Σ
are known in Z

3×3
p .

Note that the strategy of [20] requires the product to be taken over all indices
of AHF(x). As the proof has to comprise all intermediate steps of the product
in order to be verifiable with a symmetric pairing, the proof size is inherently
linear in n and thus in L. We now explain how to overcome this barrier.

Towards our construction. Observe that hypothetically in order to achieve
well-distributed outputs it would suffice to multiply all matrices with j ∈ I
(in other words to skip all white rows in Fig. 2), thereby allowing much shorter
proofs. The problem is, of course, that evaluation has to be independent of I.

We resolve this issue by setting up the underlying function in a different way.
First of all, in order to be independent of I, the function evaluation has to be
dependent on all indices of AHF(x) (and not only the ones in a fixed index set
I). To this end, we first pretend |I| = 1. The idea is to replace the product by a
sum, which can be evaluated directly given the verification key without requiring
a pairing. More precisely, the prototype of our VVHF is of the form

g
(
∑n

j=1 Mj,AHF(x)j
)�u

.

The key in our proof of adaptive programmability are two observations concern-
ing the sum of matrices. Namely, let U0, U1 be 2-dimensional subspaces of Z

3
p

and for all j, k let Mj,k be such that M�
j,k · U0 = U1. Then:

(iii) If Mj,AHF(x)j
is of rank 2 for all j, (

∑n
j=1 Mj,AHF(x)j

)� maps Z
3
p (and thus

in particular Z
3
p \ U0) to U1.

(iv) If there exists exactly one j� ∈ {1, . . . , n} such that Mj�,AHF(x)j� is of
full rank (and the rest of the matrices are of rank at most 2), then the
sum (

∑n
j=1 Mj,AHF(x)j

)� maps Z
3
p \ U0 to Z

3
p \ U1. (This is due to the fact

that for any z ∈ Z
3
p \ U0 it holds (

∑n
j=1,j �=j� Mj,AHF(x)j

)� · z ∈ U1 and
Mj�,AHF(x)j� · z ∈ Z

3
p \ U1.)

Now, given a basis {gb1 , gb2 , gb3} of G
3, the trapdoor key generation algo-

rithm chooses a random 2 dimensional vector space U0 ⊆ Z
3
p, defines U1 as the

vector space generated by b1 and b2. Further, the algorithm chooses a vector
u ∈ Z

3
p \ U0 at random, and chooses Mj,k of rank 3 if j ∈ I and k = Yj , and

of rank 2 otherwise. This corresponds to choosing the matrix corresponding to
the single black cell in the partitioning table in Fig. 2 of rank 3, and all other
matrices (corresponding to gray, light gray and white cells) of rank 2. We have

x ∈ Z ⇒ ∀j ∈ {1, . . . , n} : Mj,AHF(x)j
is of rank 2

(iii)⇒
n∑

j=1

M�
j,AHF(x)j

· u ∈ U1,

x ∈ Y ⇒ Mj�,AHF(x)j� is of rank 3 for j� ∈ I
(iv)⇒

n∑

j=1

M�
j,AHF(x)j

· u ∈ Z
3
p\U1.
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Our construction of a VVHF with short proofs. For |I| > 1, the idea is
to repeat this strategy for every i ∈ I and multiply the results. Note that in
order to have evaluation completely oblivious to I (which may vary in size), we
employ an upper bound � on the size of I. (Recall that for the instantiation of
Bitansky [7], we can choose any � ∈ ω(1).)

We can now present our final construction. For every i ∈ {1, . . . , �} we choose
a fresh set of matrices (Mi,j,k)j∈{1,...,n},k∈Σ , each uniformly at random from
Z
3×3
p and further a vector u ←R Z

3
p. Our evaluation key is of the form

ek :=
(
(Mi,j,k)i∈{1,...,	},j∈{1,...,n},k∈Σ ,u

)

and the verification key is defined as

vk :=
((

gMi,j,k
)
i∈{1,...,	},j∈{1,...,n},k∈Σ

, gu
)

.

To evaluate our VVHF on input x, we compute

g

(∏�
i=1

∑n
j=1 Mi,j,AHF(x)j

)�
u

and publish the proof π := (π1, . . . , π	−1) consisting of the intermediate steps in
computing the product, that is

πι := g

(∏ι
i=1

∑n
j=1 Mi,j,AHF(x)j

)�
u

for all ι ∈ {1, . . . , � − 1}.
Trapdoor key generation proceeds as follows. For i ∈ {1, . . . , |I|}, let ji refer

to the i-th index in I. On input of a basis {gb1 , gb2 , gb3} of G
3, we choose vector

spaces U0, . . . ,U	−1 ⊆ Z
3
p of dimension 2 and define U	 to be the vector space

generated by b1,b2. Further, we choose u ∈ Z
3
p \U0 and matrices Mi,j,k subject

to Mi,j,k · Ui−1 = Ui as follows:

– For all i ∈ {1, . . . , |I|}, we choose Mi,ji,Yji
of rank 3.

– For all i ∈ {|I| + 1, . . . , �} and all k ∈ Σ, we choose Mi,1,k of rank 3. (These
matrices constitute dummy matrices in order to make evaluation oblivious to
|I|.)

– For all other indices i, j, k we choose Mi,j,k of rank 2.

To go back to Fig. 2, this can be viewed as setting up � copies of the partitioning
table, where for i ∈ {1, . . . , |I|} we choose only the matrix corresponding to the
black cell in row ji (i.e. in the i-th light gray row) of rank 3 and all other matrices
of rank 2. For i ∈ {|I| + 1, . . . , �}, we choose all matrices corresponding to the
first row of rank 3 (and all other matrices of rank 2). During evaluation, for each
i ∈ {1, . . . , �}, we sum up all matrices corresponding to the cells (j,AHF(x)j)
for j ∈ {1, . . . , n}. Whenever x ∈ Y, we hit exactly one matrix of rank 3 for
all i ∈ {1, . . . , �}, as for i ≤ |I| we hit the matrix corresponding to (ji, Yji

) and
for i > |I| we always hit one matrix in the first row. Therefore, by (iv) and (ii)
the output will be an element of Z

3
p\U	. For all x ∈ Z, on the other hand, there
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exists at least one i ∈ {1, . . . , |I|} for which the matrix of rank 3 is not part of
the sum. Thus, by (iii) and (i) the output will be an element of U	.

Note that similar to [20] the trapdoor key generation algorithm can only
compute gM�,j,k in the exponent for all j ∈ {1, . . . , n}, k ∈ Σ, which is sufficient
as all other matrices are known in Z

3×3
p .

Similar to [20], indistinguishability of verification keys generated by the trap-
door key generation from real verification keys can be proven via a hybrid argu-
ment, employing the decision linear assumption (or more precisely, the 3-rank
assumption), which states that it is computationally indistinguishable whether
a matrix was drawn uniformly at random from {gM ∈ G

3×3 | M has rank 3} or
from {gM ∈ G

3×3 | M has rank 2}.
We call our approach hunting and gathering, as our strategy is to hunt out

all values AHF(x) disagreeing with Y on at least one index in I. We do so by
setting up � sets of matrices and gathering the matrices corresponding to the
characters of AHF(x) for each of these sets. If AHF(x) disagrees with Y on the
i-th index of I, then this will show up in the sum of matrices corresponding to
the i-th set.

2 Preliminaries

We will use the following notation throughout this paper. By λ ∈ N we denote the
security parameter. By L := L(λ) ∈ N we denote the input length, a canonical
choice is L = λ. Further, by the constant d ≥ 3 we denote the parameter of
our assumption. We implicitly assume all other parameters to depend on λ. For
an arbitrary set S, by x ←R S we denote the process of sampling an element
x from S uniformly at random. Throughout, p ∈ N will be prime. We interpret
vectors v ∈ Z

d
p as column-vectors, i.e. v ∈ Z

d×1
p . Further, by vj we denote the

j-th entry of v for j ∈ {1, . . . , d}. We say that a function is negligible in λ if
its inverse vanishes asymptotically faster than any polynomial in λ. We say that
A is probabilistic polynomial time (PPT), if A is a probabilistic algorithm with
running time polynomial in λ. We use y ← A(x) to denote that y is assigned
the output of A running on input x.

In order to formally treat uniqueness of proofs, we take the notion of certified
bilinear group generators from [20]. Note that in the following all numbered
references refer to the eprint version [22] of [20].

Definition 1 (Certified bilinear group generator [22, Definition 2.1/2.2]).
A bilinear group generator is a PPT algorithm BG.Gen that on input 1λ outputs
G = (p, G, GT , ◦, ◦T , e, ϕ, ϕT ) ← BG.Gen(1λ) such that the following are satisfied

– p is a 2λ-bit prime
– G and GT are subsets of {0, 1}λ, defined by algorithmic descriptions of maps

ϕ : Zp → G and ϕT : Zp → GT

– ◦ and ◦T are algorithmic descriptions of efficiently computable maps ρ : G ×
G → G and ρT : GT × GT → GT , such that the following hold
i. (G, ◦) and (GT , ◦T ) form algebraic groups
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ii. ϕ is a group isomorphism from (Zp,+) to (G, ◦)
iii. ϕT is a group isomorphism from (Zp,+) to (GT , ◦T )

– e is the description of an efficiently computable non-degenerate bilinear map
e : G × G → GT , that is
i. e(ϕ(1), ϕ(1)) �= ϕT (0)
ii. for all a ∈ Zp : e(ϕ(a), ϕ(1)) = e(ϕ(1), ϕ(a)) = ϕT (a)

In the following we will only include ϕ(1) in the description of G. Note that
this suffices, as ϕ(1) uniquely determines ϕ and ϕT .

We say a group generator is certified, if there exists a deterministic polyno-
mial time algorithm BG.Vfy = (BG.Vfy1,BG.Vfy2) with the following properties

Parameter validation. Given a string G, the algorithm BG.Vfy1(G) outputs 1
if and only if G has the form G = (p, G, GT , ◦, ◦T , e, ϕ(1)) ← BG.Gen(1λ) and
all requirements from above are satisfied.

Recognition and unique representation of elements in G. Further, we
require that each element in G has unique representation, which can be effi-
ciently recognized. That is, on input of two strings Π and s, BG.Vfy2(Π, s)
outputs 1 if and only if BG.Vfy1(Π) = 1 and it holds that s = ϕ(x) for some
x ∈ Zp.

Let G = (p, G, GT , ◦, ◦T , e, ϕ(1)) ← BG.Gen(1λ) be a bilinear group. We use
the representation of group elements introduced in [13]. Namely, for a ∈ Zp,
define [a] := ϕ(a) ∈ G as the implicit representation of a in G. More generally,
for any n,m ∈ N and any matrix A = (aij) ∈ Z

n×m
p we define [A] as the implicit

representation of A in G:

[A] :=

⎛

⎜
⎝

ϕ(a11) ... ϕ(a1m)
...

...
ϕ(an1) ... ϕ(anm)

⎞

⎟
⎠ ∈ G

n×m

Note that from [a] ∈ G it is hard to compute the value a if the Discrete
Logarithm assumption holds in G. Obviously, given [a], [b] ∈ G and a scalar
x ∈ Zp, one can efficiently compute [ax] ∈ G and [a + b] ∈ G.

We give the (d − 1)-linear assumption in a similar form as provided in [20].
This is equivalent to the standard formulation in [13].

Definition 2 ((d − 1)-linear assumption [22, Assumption 5.3]). Let G ←
BG.Gen(1λ) be the description of a bilinear group. The (d−1)-linear assumption
over G states that for all PPT adversaries A the advantage

Adv
(d−1)−lin
G,A :=

∣
∣Pr[A(1λ,G, [c], [d], [

d−1∑

i=1

di/ci]) | c,d ←R Z
d−1
p ]

− Pr[A(1λ,G, [c], [d], [r]) | c,d ←R Z
d−1
p , r ←R Zp]

∣
∣

is negligible in λ.
For d = 2, this corresponds to the decisional Diffie-Hellman assumption

(DDH).
For d = 3, this corresponds to the decision linear assumption (DLIN).
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Note that given a bilinear group with symmetric pairing, the decisional Diffie-
Hellman assumption does not hold. For the most efficient instantiation, we thus
choose d = 3 for this work.

The following assumption can be viewed as a relaxation of the (d − 1)-linear
assumption.

Definition 3 (d-rank assumption [22, Assumption 4.1]). Again, let G ←
BG.Gen(1λ) be the description of a bilinear group. The d-rank assumption over
G states that for all PPT adversaries A the advantage

Advd−rank
G,A :=

∣
∣Pr[A(1λ,G, [M]) | M ←R Z

d×d
p of rank d − 1]

− Pr[A(1λ,G, [M]) | M ←R Z
d×d
p of rank d]

∣
∣

is negligible in λ.

By e : G
d×d ×G

d → G
d
T we denote the natural componentwise extension of e

to G
d×d × G

d, that is let M = (mi,j)i,j ∈ Z
d×d
p be a matrix and x = (xi)i ∈ Z

d
p

be a vector, then

e : G
d×d × G

d → G
d
T , ([M], [x]) →

⎛

⎜
⎝

e([m1,1], [x1]) ◦T · · · ◦T e([m1,d], [xd])
...

e([md,1], [x1]) ◦T · · · ◦T e([md,d], [xd])

⎞

⎟
⎠ .

2.1 Verifiable Vector Hash Functions and Verifiable Random
Functions

Basically, verifiable vector hash functions (VVHF) are a pre-stage of verifiable
random functions, where the image is a vector space. Further, instead of pseudo-
randomness of the output, VVHFs are required to be adaptively programmable.
An adaptively programmable VVHF has a trapdoor key generation algorithm
which is indistinguishable from standard key generation and further meets well-
distributed outputs, which allows transforming it to a verifiable random func-
tion via the generic transformation [20] whenever the decision linear assumption
holds in the underlying group. In the following we will recall the definition of
adaptively programmable VVHFs from [20], recall the definition of a verifiable
random function (VRF) and present the generic transformation from an adap-
tively programmable VVHF to a VRF (without proof).

Definition 4 (Verifiable vector hash function (VVHF) [22, Definition
3.1]). Let BG.Gen be a bilinear group generator and let d ∈ N. A verifiable
vector hash function (VVHF) for BG.Gen with domain {0, 1}L and range G

d is
a tuple of PPT algorithms VVHF := (VVHF.Gen,VVHF.Eval,VVHF.Vfy) with the
following properties.

– VVHF.Gen(G) for G ← BG.Gen, outputs a verification key vk and an evalua-
tion key ek.
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– VVHF.Eval(ek , x) for an evaluation key ek and x ∈ {0, 1}L, outputs a function
value [v] ∈ G

d and a corresponding proof of correctness π.
– VVHF.Vfy(vk , [v], π, x) is a deterministic algorithm that outputs a bit b ∈

{0, 1}.
Further, we require the following to hold.

Correctness. We say that VVHF is correct, if for all λ, all G in the image of
BG.Gen(1λ), all (vk , ek) in the image of VVHF.Gen(G), all x ∈ {0, 1}L and
all ([v], π) in the image of VVHF.Eval(ek , x) we have

VVHF.Vfy(vk , [v], π, x) = 1.

Unique provability. We say that a verifiable vector hash function VVHF sat-
isfies unique provability, if for all possible vk (not necessarily created by
VVHF.Gen), all x ∈ {0, 1}L, all [v0], [v1] ∈ G

d and all possible proofs π0, π1

we have

VVHF.Vfy(vk , [v0], π0, x) = VVHF.Vfy(vk , [v1], π1, x) = 1 =⇒ [v0] = [v1].

In other words, for any x ∈ {0, 1}L there exists a valid proof for at most one
function value.

Note that the following definition slightly differs from the notion of adap-
tive programmability in [20]. Namely, we additionally provide the algorithm
VVHF.TrapGen with the parameter Q in the experiment for well-distributed out-
puts. Note that employing admissible hash functions to achieve full-adaptive
security, in [20] VVHF.TrapGen already implicitly depends on Q to achieve
well-distributed outputs. This does not affect the generic transformation from
a verifiable vector hash function to a verifiable random function, as for
this transformation the existence of a suitable tuple of trapdoor algorithms
(VVHF.TrapGen,VVHF.TrapEval) suffices (without requiring explicit knowledge
of Q).

Definition 5 (Adaptive programmability [22, Definition 3.3]). We say
that a verifiable vector hash function (VVHF.Gen,VVHF.Eval,VVHF.Vfy)
is adaptively programmable (AP), if an additional tuple of algorithms
(VVHF.TrapGen,VVHF.TrapEval) with the following properties exist.

– VVHF.TrapGen(G, Q, [B]) for a bilinear group G ←R BG.Gen(1λ), a parameter
Q which is polynomially bounded in λ and a matrix [B] ∈ G

d×d, outputs a
verification key vk and a trapdoor td.

– VVHF.TrapEval(td , x) for a trapdoor td and x ∈ {0, 1}L, outputs a vector
c ∈ Z

d
p and a proof π.

Further, we require the following.
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Fig. 3. VVHF Indistinguishability experiment. Note that Ocheck always uses td and
VVHF.TrapEval, independently of bit b.

Correctness. We say that (VVHF.TrapGen,VVHF.TrapEval) satisfies correct-
ness respective to VVHF.Vfy, if for all λ ∈ N, for all bilinear groups G
in the image of BG.Gen(1λ), for all Q that are polynomially bounded in λ,
for all [B] ∈ G

d×d, for all x ∈ {0, 1}L for all (vk , td) in the image of
VVHF.TrapGen(G, Q, [B]), for all (c, π) in the image of VVHF.TrapEval(td , x)
and for all [v] := [B] · c it holds

VVHF.Vfy(vk , [v], π, x) = 1.

Indistiguishability. We define an indistinguishability experiment in Fig. 3. We
say that (VVHF.TrapGen,VVHF.TrapEval) satisfies indistinguishability, if for
all Q polynomial in λ and all PPT adversaries A we have that

Advvhf−ind
VVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ)

:=
∣
∣
∣
∣Pr[Expvhf−ind

VVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ) = 1] − 1
2

∣
∣
∣
∣

is negligible in λ. In other words, we require that verification keys generated
by VVHF.TrapGen are indistinguishable from verification keys generated by
VVHF.Gen.

Well-distributed outputs. Let Q be polynomial in λ and let x(1), . . . , x(Q),
x� ∈ {0, 1}L arbitrary with x� /∈ {x(1), . . . , x(Q)}. Let G ← BG.Gen(1λ),
B ←R Z

d×d
p of rank d and (vk , td) ← VVHF.TrapGen(G, Q, [B]). Further, for

all ν ∈ {1, . . . , Q} let (c(ν), π) ←R VVHF.TrapEval(td , x(ν)) and (c�, π) ←R

VVHF.TrapEval(td , x�). Let Prwell−distr
(VVHF.TrapGen,VVHF.TrapEval),λ,Q({x(ν)}ν , x�) be

the probability that c
(ν)
d = 0 for all ν ∈ {1, . . . , Q} and c�

d �= 0 (where
the probability is taken over the random coins of BG.Gen,VVHF.TrapGen,
VVHF.TrapEval and the random choice of B).
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Fig. 4. The VRF security experiment.

We say that (VVHF.TrapGen,VVHF.TrapEval) satisfies well-distributed out-
puts, if for all Q polynomial in λ and all x(1), . . . , x(Q), x� ∈ {0, 1}L with
x� /∈ {x(1), . . . , x(Q)} we have

Prwell−distr
(VVHF.TrapGen,VVHF.TrapEval),λ,Q({x(ν)}ν , x�) ≥ 1

poly(λ)
.

Definition 6 (Verifiable random functions [27], Notation [22, Definition
5.1]). Let VRF := (VRF.Gen,VRF.Eval,VRF.Vfy) be a tuple of polynomial-time
algorithms of the following form.

– VRF.Gen(1λ) outputs a secret key sk and a verification key vk.
– VRF.Eval(sk , x) for a secret key sk and an input x ∈ {0, 1}L, outputs a func-

tion value y ∈ S (where S is a finite set) and a proof π.
– VRF.Vfy(vk , x, y, π) is a deterministic algorithm that for a verification key vk,

an input x ∈ {0, 1}L, an output y ∈ S and a proof π, outputs a bit b ∈ {0, 1}.

We say VRF is a verifiable random function, if the following properties hold.

Correctness. For all λ ∈ N, for all (vk , sk) in the image of VVHF.Gen(1λ), for
all x ∈ {0, 1}L and for all (y, π) in the image of VVHF.Eval(sk , x) it holds

VRF.Vfy(vk , x, y, π) = 1.

Unique provability. We say that a verifiable random function VRF satisfies
unique provability, if for all possible vk (not necessarily created by VRF.Gen),
all x ∈ {0, 1}L, all y0, y1 ∈ S and all possible proofs π0, π1 we have

VRF.Vfy(vk , x, y0, π0) = VRF.Vfy(vk , x, y1, π1) = 1 =⇒ y0 = y1.

In other words, for any x ∈ {0, 1}L there exists a valid proof for at most one
function value.
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Pseudorandomness. We define a VRF security experiment in Fig. 4. We say
that a verifiable random function VRF is pseudorandom, if for all PPT adver-
saries A = (A1,A2) we have that

AdvvrfVRF,A(λ) :=
∣
∣
∣
∣Pr[ExpvrfVRF,A(λ) = 1] − 1

2

∣
∣
∣
∣

is negligible in λ. In other words, we require that the output of VRF.Eval is
indistinguishable from random values in S.

Given a verifiable vector hash function with adaptive programmability, one
can obtain a verifiable random function via the generic construction of [20]. As
we will employ this generic transformation, we want to recall it in the following.

Let BG.Gen be a certified bilinear group generator according to Definition 1.
Let VVHF := (VVHF.Gen,VVHF.Eval,VVHF.Vfy) be a vector hash function
according to Definition 4. Let VRF := (VRF.Gen,VRF.Eval,VRF.Vfy) be defined
as follows.

– VRF.Gen(1λ) runs G ← BG.Gen(1λ) and (ek , vk ′) ← VVHF.Gen(G). Further,
it chooses a random vector w ←R (Z�

p)
d, defines sk := (G, ek ,w) and vk :=

(G, vk ′, [w]) and outputs (vk , sk).
– VRF.Eval(sk , x) for sk = (G, ek ,w) and x ∈ {0, 1}L first runs

([v], π′) ← VVHF.Eval(ek , x).

Then, VRF.Eval computes the function value y and an additional proof [z] ∈
G

d as

y :=
d∏

i=1

[
vi

wi

]
and [z] :=

[(
v1
w1

,
v2
w2

, . . . ,
vd

wd

)�]

,

where,
∏

corresponds to the ◦ operation over G. Finally, VRF.Eval sets π :=
([v], π′, [z]) and outputs (y, π).

– VRF.Vfy(vk , x, y, π) outputs 1 if and only if all of the following properties are
satisfied:

• The verification key vk has the form vk = (G, vk ′, [w]) such that [w] ∈ Z
d
p

and the bilinear group parameters and the group elements contained in
vk are valid, which can be checked by running BG.Vfy1 and BG.Vfy2.

• The input x is an element of {0, 1}L.
• The proof π has the form π = ([v], π′, [z]) with VVHF.Vfy(vk ′, [v], π′, x) =

1 and both vectors [v] and [z] contain only validly-encoded group ele-
ments, which can be checked by running BG.Vfy2.

• It holds that [zi] = [vi/wi] for all i ∈ {1, . . . , d} and y = [
∑d

i=1 vi/wi].
This can be checked by testing

e([zi], [wi])
?= e([vi], [1]) ∀i ∈ {1, . . . , d} and y

?=
k∏

i=1

[zi].
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By the following theorem this construction yields a verifiable random function.
For a proof we refer to [20].

Theorem 1 ([22, Theorem 5.2/5.4]). If the (d−1)-linear assumption holds rel-
ative to BG.Gen and if the tuple VVHF := (VVHF.Gen,VVHF.Eval,VVHF.Vfy) is
an adaptively programmable hash function, then VRF := (VRF.Gen,VRF.Eval,
VRF.Vfy) is a verifiable vector hash function satisfying all requirements of
Definition 6.

2.2 Partitioning Based on Admissible Hash Functions

In order to achieve verifiable random functions with adaptive security, we have
to partition the input space into Y and Z such that with noticeable probability
all evaluation queries are in Z while the challenge query is in Y.

One commonly used method for partitioning are admissible hash functions,
a concept first formalized in [8]. As [14] we allow the output space to consist of
vectors over a alphabet Σ of polynomial size.

Definition 7 (Admissible hash functions, [8,14]). Let n be polynomial in λ
and Σ an alphabet of size σ := |Σ| polynomial in λ. Let

AHF : {0, 1}L → Σn,

Y ∈ Σn and I ⊆ {1, . . . , n} define the partitioning

Y :=
{
x ∈ {0, 1}L | AHF(x)j = Yj for all j ∈ I

}
and Z := {0, 1}L \ Y.

We say that AHF is Q-admissible, if there exists a PPT algorithm AHF.Part
that on input (1λ, Q) returns a value Y ∈ Σn and a set of indices I ⊆ {1, . . . , n},
such that for any x(1), . . . , x(Q), x� ∈ {0, 1}L with x� /∈ {x(1), . . . , x(Q)} we have

PrpartAHF,AHF.Part,λ,Q({x(ν)}ν , x�) := Pr[x� ∈ Y ∧ x(ν) ∈ Z ∀ν ∈ {1, . . . , Q}]

≥1/poly(λ),

where the probability is taken over the random coins of AHF.Part. We say that
AHF is an admissible hash function (AHF) if AHF is Q-admissible for all Q that
are polynomially bounded in λ.

For our construction we will employ two instantiations of admissible hash
functions. The first is the so-called substring matching by [27]. In [7] this parti-
tioning method is generalized to polynomial output alphabets. This allows us to
shrink the proof size even to ω(1) group elements.

Note that a common problem arising using partitioning techniques is that the
abort probability of the security experiment might depend on the sequence of
queries of the adversary. While in [7] this issue is resolved by requiring so-called
balanced partitioning as proposed in [23], in [20] the artificial abort technique
from [34] is employed going from verifiable vector hash functions to verifiable
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random functions. As we apply the transformation of [20] in a black-box way,
for our purposes the concept of admissible hash functions is sufficient.

Substring matching. In the following we give the instantiation of admissible
hash function from Lysyanskaya [27]. To this aim let Enc : {0, 1}L → {0, 1}n be
an error correcting code with minimal distance μn for a constant μ (i.e. any
two codewords differ in at least μn positions). Note that there exist efficient
instantiations of Enc with n ∈ O (L). For a proof of the following lemma we
refer to [14], Theorem 2.

Lemma 1 ([7,14,27]). Let AHF : {0, 1}L → {0, 1}n be an error correcting code
with minimal distance μn for a constant μ. Then there exists an algorithm
AHF.Part such that AHF is an admissible hash function. In particular, for any
x(1), . . . , x(Q), x� ∈ {0, 1}L we have

PrpartAHF,AHF.Part,λ,Q({x(ν)}ν , x�) ≥ (2Q)−1/(μ log e)/2

Further, the size of the set I returned by AHF.Part(1λ, Q) is logarithmic in λ for
any Q which is polynomially bounded in λ.

Substring matching over polynomial alphabets. The original instantiation
by Bitansky [7] requires n ∈ Ω(L2) and an error correcting code with minimum
distance n − L + 1. To achieve a smaller verification key, we observe that it is
actually sufficient to choose a code with n ∈ Ω(L1+η) for some constant η > 0
with minimum distance at least n−L+1. A suitable instantiation for both is the
following code from [32]. We only give the encoding function, as it is sufficient
for our purposes.

Remark 1 (Reed-Solomon-Code). Let σ ≥ n such that σ is a prime-power and
let Σ := Fσ be the finite field consisting of σ elements. Let u1, . . . , un ∈ Fσ be
n pairwise different elements and for x ∈ {0, 1}L let px ∈ Fσ[X] be defined via
px[X] :=

∑L−1
i=0 xiX

i. Then

Enc : {0, 1}L → Σn, x → (px(u1), . . . , px(un))

defines a code. Further, for x �= y ∈ {0, 1}L the polynomial px − py �= 0 has
degree at most L−1. The code has thus minimal distance n−L+1 as required.

As the following lemma slightly deviates from the original lemma in [7], we
provide a proof.

Lemma 2 ([7] Section 4.1.1 (in the eprint version)). Let 0 < η ≤ 1 be
a constant and let n, σ ∈ O (

L1+η
)

such that AHF : {0, 1}L → Σn is an error
correcting code with minimal distance n−L+1 and alphabet size |Σ| = σ. Then,
there exists an algorithm AHF.Part such that AHF is an admissible hash function
such that for any x(1), . . . , x(Q), x� ∈ {0, 1}L we have

PrpartAHF,AHF.Part,λ,Q({x(ν)}ν , x�) ≥ (2Q)−1−1/η−O(1/ log λ)/2

Further, the size of the set I returned by AHF.Part(1λ, Q) is constant for any Q
which is polynomially bounded in λ.
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Proof. We define AHF.Part as the algorithm that on input (1λ, Q) chooses a
random value Y ←R Σn, sets c := log(2Q)/(η log λ), and returns Y together
with random subset I ⊆ {1, . . . , n} of size c.

Let i1, . . . , iι ∈ {1, . . . , n}. Then by i[ι] we denote the set {i1, . . . , iι}. First,
assume S := {x(1), . . . , x(Q)} and x� to be fixed. Then, for any x(ν) ∈ S, we have

Pr
I⊂{1,...,n},|I|=c

[
AHF(x(ν))

∣
∣
I

= AHF(x�)
∣
∣
I

]

=
c∏

j=1

Pr
ij /∈i[j−1]

[
AHF(x(ν))ij

= AHF(x�)ij

∣
∣
∣AHF(x(ν))

∣
∣
i[j−1]

= AHF(x�)
∣
∣
i[j−1]

]

≤
c∏

j=1

(
L − j

n

)
≤

c∏

j=1

1
Lη

= L−cη,

where the first inequality follows from the fact that two codewords of AHF have
at most L−1 bits in common and the second inequality from n = L1+η. Further,
for any fixed x�, I, we have

Pr
Y ←Σn

[AHF(x�)
∣
∣
I

= Y
∣
∣
I
] = σ−c.

Via a union bound we obtain

PrpartAHF,AHF.Part,λ,Q({x(ν)}ν , x�) ≥ σ−c · (1 − Q · L−cη)

≥ (2Q)−1−1/η−log C/(η log λ)/2,

where C is a constant with σ ≤ C · n1+η.
Further, we have |I| = c ∈ O (1) as η constant and log(2Q) ∈ O (log λ) for

any Q which is polynomially bounded in λ.

3 Verifiable Random Function with Short Proofs

In this section we present our construction of an adaptively programmable verifi-
able vector hash function, which can be seen as a rearrangement of the VVHF of
[20]. Via our technique of hunting and gathering we achieve significantly shorter
proofs. Applying the generic transformation of [20] (see Theorem 1) finally yields
an adaptively secure verifiable random function. For the resulting sizes of verifi-
cation key and proofs for different instantiations of the admissible hash function,
we refer to Remark 2 subsequent to our construction.

Definition 8. Let AHF : {0, 1}L → Σn together with AHF.Part be an admissible
hash function and � be an upper bound on the set I ⊆ {1, . . . , n} output by
AHF.Part(1λ, Q) (for Q polynomial in λ). Let BG.Gen be a certified bilinear group
generator and let G ←R BG.Gen(1λ). We define a verifiable vector hash function
VVHF := (VVHF.Gen,VVHF.Eval,VVHF.Vfy) as follows.
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– VVHF.Gen is a probabilistic algorithm that on input of group parameters G
samples matrices Mi,j,k ←R Z

d×d
p for all i ∈ {1, . . . , �}, j ∈ {1, . . . , n} and

k ∈ Σ uniformly at random. Further the algorithm samples a vector u ←R

Z
d
p\{0} and outputs the evaluation key

ek :=
(
(Mi,j,k)i∈{1,...,	},j∈{1,...,n},k∈Σ ,u

)

and the verification key

vk :=
(
[Mi,j,k]i∈{1,...,	},j∈{1,...,n},k∈Σ , [u]

)
.

– VVHF.Eval is an algorithm that on input of an evaluation key ek and a preim-
age x ∈ {0, 1}L first computes the admissible hash value X := AHF(x) ∈ Σn

of x and further, for each ι ∈ {1, . . . , �}, the vector

vι :=

⎛

⎝
ι∏

i=1

n∑

j=1

Mi,j,Xj

⎞

⎠

�

u. (1)

Finally, VVHF.Eval outputs the image

[v] := [v	]

and the proof
π := [v1, . . . ,v	−1] .

– VVHF.Vfy is an algorithm that on input of a verification key vk, a preimage
x with image AHF(x) = X = (X1, . . . , Xn) ∈ Σn, an image [v] = [v	] and a
proof π = [v1, . . . ,v	−1] checks whether for all ι ∈ {1, . . . , �} and [v0] := [u]
it holds

e([1d], [vι]) = e(
n∑

j=1

[
Mι,j,Xj

]�
, [vι−1]) (2)

and returns 1 if and only if this is the case.

Remark 2. Recall that we consider inputs of arbitrary polynomial length L. The
following numbers correspond to d = 3 (i.e. security based on the decision linear
assumption).

The admissible hash function by Lysyanskaya [27] (see Lemma 1) has param-
eters � ∈ ω(log L), n ∈ O (L) and |Σ| = 2. Therefore, instantiating our con-
struction with this AHF and applying the generic transformation of [20] yields
a verifiable random function with proofs of size 3(� + 1) ∈ ω(log λ) and a verifi-
cation key of size 18�n + 6 ∈ ω(L log λ) (in number of group elements).

Alternatively, the admissible hash function by Bitansky [7] (see Lemma 2)
comes with parameters � ∈ ω(1) and n, |Σ| ∈ O (

L1+η
)

for an arbitrary con-
stant η > 0. Employing this instantiation (together with the generic transfor-
mation of [20]) thus yields a verifiable random function with proofs consisting of
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3(� + 1) ∈ ω(1) group elements and a verification key comprising 18�n + 6 ∈
ω(L2+2η) group elements.

Note that the additional 3 ·2 group elements in the proofs and the additional
3 group elements in the verification key stem from the generic transformation
(see Theorem 1).

Lemma 3 (Correctness and unique provability). The tuple VVHF given
in Definition 8 is a verifiable vector hash function.

Proof. Correctness. Let ek and vk as in Definition 8. Let x ∈ {0, 1}L and X :=
AHF(x). Let [v] = [v	] be an image and π = [v1, . . . ,v	−1] be a corresponding
proof computed by the algorithm VVHF.Eval on input ek , x. Let [v0] := [u].
For all ι ∈ {1, . . . , �} we have

vι =

⎛

⎝
ι∏

i=1

n∑

j=1

Mi,j,Xj

⎞

⎠

�

u =
n∑

j=1

M�
ι,j,Xj

·
⎛

⎝
ι−1∏

i=1

n∑

j=1

Mi,j,Xj

⎞

⎠

�

u

︸ ︷︷ ︸
=vι−1

by (1), and thus (2) follows.
Unique provability. For each ι ∈ {1, . . . , �} there exists exactly one vι sat-

isfying (2) respective to the verification key and v0, . . . ,vι−1. As the group
described by G satisfies recognition and unique representation of group ele-
ments, unique provability follows.

Lemma 4 (Adaptive Programmability). If the d-rank assumption holds
relative to BG.Gen, then the verifiable vector hash function VVHF =
(VVHF.Gen,VVHF.Eval,VVHF.Vfy) given in Definition 8 satisfies adaptive pro-
grammability. More precisely, there exist a tuple of trapdoor algorithms
(VVHF.TrapGen,VVHF.TrapEval), such that the following hold.

Correctness. (VVHF.TrapGen,VVHF.TrapEval) satisfies correctness respective
to VVHF.Vfy.

Indistinguishability. For any Q polynomially bounded in λ and any PPT
adversaries A with running time tA, there exists a PPT adversary B with
running time tB ≈ tA such that

Advvhf−ind
VVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ) ≤ � · Advd−rank

G,B (λ) + O
(

�nσ

p

)
.

Well-distributed outputs. For any polynomial Q in λ and for any
x(1), . . . , x(Q), x� ∈ {0, 1}L with x� /∈ {x(1), . . . , x(Q)} it holds

Prwell−distr
(VVHF.TrapGen,VVHF.TrapEval),λ,Q({x(ν)}ν , x�) = PrpartAHF,AHF.Part,λ,Q({x(ν)}ν , x�)

≥ 1
poly(λ)

.

Proof. We define the following tuple of algorithms:
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– VVHF.TrapGen is a probabilistic algorithm that on input of the group param-
eters G, a parameter Q (which is required to be polynomially bounded in λ)
and a matrix [B] ∈ Z

d×d
p proceeds as follows.

First, VVHF.TrapGen samples for each i ∈ {0, . . . , � − 1} a subspace Ui of
dimension d − 1 independently and uniformly at random. U	 is defined to be
the subspace spanned by the first d − 1 unit vectors. Further, the algorithm
chooses u ←R Z

d
p\U0.

Next, VVHF.TrapGen runs AHF.Part to obtain (Y, I) ← AHF.Part(1λ, Q) and
samples Ti,j,k ∈ Z

d×d
p for each i ∈ {1, . . . , �}, j ∈ {1, . . . , n}, k ∈ Σ as follows.

• Let ji be the i-th value in I. Then, for each i ∈ {1, . . . , |I|}, the algorithm
samples a matrix Ti,ji,Yji

∈ Z
d×d
p uniformly of rank d subject to

T�
i,ji,Yji

· Ui−1 = Ui.

• Further, for each i ∈ {|I| + 1, . . . , �} and all k ∈ Σ, again the algorithm
samples a matrix Ti,1,k ∈ Z

d×d
p uniformly of rank d subject to

T�
i,1,k · Ui−1 = Ui.

• For the remaining i ∈ {1, . . . , �}, j ∈ {1, . . . , n} and k ∈ Σ the algorithm
samples Ti,j,k ∈ Z

d×d
p uniformly of rank d − 1 subject to

T�
i,j,k · Z

d
p = Ui.

Finally, the algorithm sets

[Mi,j,k] :=

{
[Ti,j,k] if i ∈ {1, . . . , � − 1}
Ti,j,k · [B]� if i = �

for all i ∈ {1, . . . , �}, j ∈ {1, . . . , n} and k ∈ Σ and outputs the trapdoor

td :=
(
(Ti,j,k)i∈{1,...,	},j∈{1,...,n},k∈Σ ,u, [B]

)

and the verification key

vk :=
(
[Mi,j,k]i∈{1,...,	},j∈{1,...,n},k∈Σ , [u]

)
.

– VVHF.TrapEval is a probabilistic algorithm that on input of a trapdoor td
and a preimage x ∈ {0, 1}L first computes the admissible hash value X :=
AHF(x) ∈ Σn of x and further, for each ι ∈ {1, . . . , �}, the vector

vι :=

⎛

⎝
ι∏

i=1

n∑

j=1

Ti,j,Xj

⎞

⎠

�

u. (3)

Finally, VVHF.TrapEval outputs the vector

c := v	

and the proof
π := [v1, . . . ,v	−1] .
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In the following we prove that the tuple (VVHF.TrapGen,VVHF.TrapEval) meets
the required properties.

Correctness. Let (td , vk) be the output of VVHF.TrapGen on input (G, Q, [B]).
Let x ∈ {0, 1}L be an input value and let X := AHF(x) its encoding. Let
c = v	 and π = [v1, . . . ,v	−1] be provided by VVHF.TrapEval on input [B].
Then, for ι ∈ {1, . . . , � − 1} Eq. (3) yields

vι =

⎛

⎝
ι∏

i=1

n∑

j=1

Ti,j,Xj

⎞

⎠

�

u =

⎛

⎝
ι∏

i=1

n∑

j=1

Mi,j,Xj

⎞

⎠

�

u

and for ι = � we have

B · c = B ·
⎛

⎝
	∏

i=1

n∑

j=1

Ti,j,Xj

⎞

⎠

�

u =
n∑

j=1

B · T�
	,j,Xj︸ ︷︷ ︸

=M�
�,j,Xj

·

⎛

⎜
⎜
⎝

	−1∏

i=1

n∑

j=1

Ti,j,Xj︸ ︷︷ ︸
=Mi,j,Xj

⎞

⎟
⎟
⎠

�

u.

Thus, correctness follows from the correctness of VVHF.Eval.
Indistinguishability. The proof strategy follows the one of Lemma 4.6 in [22]

closely. For κ ∈ {1, . . . , �} we define the following algorithm VVHF.TrapGen(κ).
– First, the algorithm VVHF.TrapGen(κ) samples (d − 1)-dimensional sub-

spaces U0, . . . ,Uκ ⊆ Z
d
p and a vector u ←R Z

d
p \ U0 uniformly at random.

– Second, the algorithm calls AHF.Part on input (1λ, Q) to obtain Y and I.
– For all i ≤ κ, the algorithm chooses Ti,j,k according to VVHF.TrapGen

and sets Mi,j,k := Ti,j,k for all j ∈ {1, . . . , n}, k ∈ Σ.
– For all i > κ, the algorithm chooses Mi,j,k ←R Z

d×d
p for all j ∈

{1, . . . , n}, k ∈ Σ.
We define the following series of games. We consider the indistinguishability
experiment of Definition 4. In game G0 the verification key is generated by
the VVHF.Gen algorithm and in game G2 the verification key is generated by
the VVHF.TrapGen algorithm. We prove the indistinguishability of G0 and G2

by a series of games. We define game G1.κ to be the game where VVHF.Gen is
replaced by VVHF.TrapGen(κ), respectively. By εκ we denote the probability
that an adversary A outputs 1 in Gi, that is εκ := Pr[A outputs 1]. It remains
to show that for every PPT adversary A, |ε0 − ε2| is negligible.
Transition G0 � G1.0: In game G1.0 the vector u is chosen uniformly at

random from Z
d
p\U0 for a random subspace U0 instead of uniformly random

from Z
d
p \ {0}. As the view of A is independent of U0 we obtain ε1 = ε0.

Transition G1.κ−1 � G1.κ: Given an adversary A, we construct an adver-
sary B on the d-rank problem as follows. Let [A] be the input to B. Then
B sets up the verification key as follows

– First, B samples (d−1)-dimensional subspaces U0, . . . ,Uκ−1 ⊆ Z
d
p and

a vector u ←R Z
d
p \ U0 uniformly at random.



Hunting and Gathering 433

– Next, the algorithm calls AHF.Part on input (1λ, Q) to obtain Y and I.
– For all i ≤ κ − 1, j ∈ {1, . . . , n}, k ∈ Σ, B chooses Ti,j,k according to
VVHF.TrapGen and sets Mi,j,k := Ti,j,k.

– For i = κ, j ∈ {1, . . . , n}, k ∈ Σ, the adversary proceeds as follows.
Whenever VVHF.TrapGen would choose a matrix Tκ,j,k of rank d−1,
B chooses a fresh Rj,k ←R Z

d×d
p and sets [Mκ,j,k] := [Tκ,j,k] :=

Rj,k · [A]�. Whenever VVHF.TrapGen would choose a matrix Tκ,j,k

of rank d, B chooses a fresh basis {cj,k
1 , . . . , cj,k

d−1} of Uκ−1 (this is effi-
ciently computable as B chooses Uκ−1 itself) and further d−1 vectors
[dj,k

1 ], . . . , [dj,k
d−1] in the image of [A]. Further, B chooses cj,k

d ,dj,k
d ←R

Z
d
p, such that Cj,k :=

(
cj,k
1 | · · · |cj,k

d

)
is invertible. Finally, B sets

[Dj,k] :=
[
dj,k
1 | · · · |dj,k

d

]
and [Mκ,j,k] := [Tκ,j,k] := ([Dj,k] · C−1

j,k)�.

– For all i > κ, B chooses Mi,j,k ←R Z
d×d
p for all j ∈ {1, . . . , n}, k ∈ Σ.

Now, B forwards the verification key to A. To answer evaluation queries,
for ι ≥ κ the adversary B can compute [vι] as

[vι] =

⎛

⎝
κ+1∏

i=ι

n∑

j=1

M�
i,j,AHF(x)j

[Mκ,j,AHF(x)j
]�

1∏

i=κ−1

n∑

j=1

M�
i,j,AHF(x)j

⎞

⎠u.

(Note that the factors are multiplied in reverse order, as we moved the
transpose into the product in the above equation.)
It remains to prove that if A has rank d− 1, then B simulates game Gκ−1

and Gκ otherwise. We first consider the case that A has rank d − 1. Let
Uκ := [A] · Z

d
p be the d − 1-dimensional image of [A]. Then the following

holds
– For all j ∈ {1, . . . , n}, k ∈ Σ the matrix Rj,k · [A]� is of rank d − 1

with ([A] · R�
j,k) · Z

d
p = [A] · Z

d
p = Uκ. Further, note that for every

j, k, Tκ,j,k := Rj,k · [A]� is distributed independently and uniformly
at random conditioned on Tκ,j,k · Z

d
p = Uκ.

– For all j ∈ {1, . . . , n}, k ∈ Σ the vectors [dj,k
1 ], . . . , [dj,k

d−1] form a basis
of Uκ and further Dj,k is full rank with overwhelming probability2.
In this case ([Dj,k] · C−1

j,k)� is full rank with

([Dj,k] · C−1
j,k) · Uκ−1 = [Dj,k] · (C−1

j,k · Uκ−1)
︸ ︷︷ ︸
={z∈Zd

p|zd=0}

= Uκ.

Again, note that for every j, k, Tκ,j,k := ([Dj,k] ·C−1
j,k)� is distributed

independently and uniformly at random conditioned on Tκ,j,k·Uκ−1 =
Uκ.

2 More precisely, with probability at least 1 − (d − 1)/p − 1/p = 1 − d/p.
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We now assume that A is full rank. Due to the invertibility of A, for all
j ∈ {1, . . . , n}, k ∈ Σ the matrix Rj,k · [A]� is distributed uniformly at
random over G

d×d. As further [Dj,k] is distributed uniformly at random
over G

d×d, the same holds for ([Dj,k] · C−1
j,k)�.

Finally, on input b from A, B outputs “rank d − 1” if b = 0 and “rank
d” otherwise. Altogether, we obtain

|εi.κ − εi.κ−1| ≤ Advd−rank
G,B (λ) + O(nσ/p).

Transition G1.	 � G2: In game G2 the subspace U	 is the subspace spanned
by the first d − 1 unit vectors (instead of chosen uniformly at random).
Further, M	,j,k is defined to equal T	,j,k · [B]�. Recall that B ←R Z

d×d
p

is chosen uniformly at random from all invertible matrices. Now, in both
games G1.	 and game G2, M�

	,j,k maps U	−1 to a uniform d−1 dimensional
subspace (namely, in game G2 to the space spanned by the first d − 1
column vectors of B). We have thus

ε2 = ε1.	.

Finally, we obtain

Advvhf−ind
VVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ) = |ε2 − ε0|

= |ε1.	 − ε1.0|

≤
	∑

κ=1

|ε1.κ − ε1.κ−1|

≤ � · Advd−rank
G,B (λ) + O(�nσ/p).

Well-distributed outputs. Let x(1), . . . , x(Q), x� ∈ {0, 1}L be arbitrary with
x /∈ {x(1), . . . , x(Q)}. Recall that by Definition 7 choosing Y and I partitions
the preimage space into sets

Y :=
{
x ∈ {0, 1}L | AHF(x)j = Yj for all j ∈ I

}
and Z := {0, 1}L \ Y.

We hope that we have x� ∈ Y and x(ν) ∈ Z for all ν ∈ {1, . . . , Q}. As AHF is
an admissible hash function, this is the case at least with probability

PrpartAHF,AHF.Part,λ,Q({x(i)}i, x
�) ≥ 1

poly(λ)
.

Let cx the output vector of VVHF.TrapEval on input x ∈ {0, 1}L. To prove
well-distributed outputs by previous considerations it suffices to show

cx
d = 0 ⇔ x ∈ Z.

Note that by construction of the subspace U	 we have cx
d = 0 ⇔ cx ∈ U	. For

all x ∈ {0, 1}L, ι ∈ {1, . . . , �} let

vx
ι :=

⎛

⎝
ι∏

i=1

n∑

j=1

Ti,j,AHF(x)j

⎞

⎠

�

u. (4)
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Recall that u ∈ Z
d
p\U0 and that for all Ti,j,k we have T�

i,j,k · Uι−1 = Uι.
Therefore, it holds vx

ι ∈ Uι if

vx
ι−1 ∈ Uι−1 OR

n∑

j=1

T�
ι,j,AHF(x)j

· (Zd
p\Uι−1) ⊆ Uι.

In order to prove the claim it thus suffices to show
(i) x ∈ Z ⇒ ∃ι ∈ {1, . . . , �} :

∑n
j=1 T�

ι,j,AHF(x)j
· (Zd

p\Uι−1) ⊆ Uι and
(ii) x ∈ Y ⇒ ∀ι ∈ {1, . . . , �} :

∑n
j=1 T�

ι,j,AHF(x)j
· (Zd

p\Uι−1) ⊆ Z
d
p\Uι.

Let jι be the ι-th index in I. For all x ∈ Z there exist a ι ∈ {1, . . . , |I|} with
AHF(x)jι

�= Yjι
. By construction for this ι we have T�

ι,j,AHF(x)j
·Zd

p = Uι for all
j ∈ {1, . . . , n}. This implies in particular

∑n
j=1 T�

ι,j,AHF(x)j
· (Zd

p\Uι−1) ⊆ Uι

as required. We thus have x ∈ Z =⇒ cx
d = 0.

For all x ∈ Y and for all ι ∈ {1, . . . , |I|} it holds AHF(x)jι
= Yjι

. By con-
struction we have T�

ι,jι,Yjι
· (Zd

p\Uι−1) = Z
d
p\Uι. For all ι ∈ {1, . . . , |I|},

uι−1 ∈ Z
d
p\Uι−1 we thus have

n∑

j=1

T�
ι,j,AHF(x)j

· uι−1 = T�
ι,jι,AHF(x)jι

· uι−1
︸ ︷︷ ︸

∈Zd
p\Uι

+
∑

j �=jι

T�
ι,j,AHF(x)j

· uι−1

︸ ︷︷ ︸
∈Uι

∈ Z
d
p\Uι.

Further, for all ι > |I| we have Tι,j,k uniform of rank d (subject to T�
ι,j,k ·

Uι−1 = Uι) if and only if j = 1. For all ι > |I|, uι−1 ∈ Z
d
p\Uι−1 it thus holds

n∑

j=1

T�
ι,j,AHF(x)j

· uι−1 = T�
ι,1,AHF(x)1

· uι−1
︸ ︷︷ ︸

∈Zd
p\Uι

+
n∑

j=2

T�
ι,j,AHF(x)j

· uι−1

︸ ︷︷ ︸
∈Uι

∈ Z
d
p\Uι.

Altogether, we obtain x ∈ Y =⇒ cx
d �= 0.
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Abstract. Revocable identity-based encryption (RIBE) is an extension
of IBE that supports a key revocation mechanism, which is an indispens-
able feature for practical cryptographic schemes. Due to this extra fea-
ture, RIBE is often required to satisfy a strong security notion unique to
the revocation setting called decryption key exposure resistance (DKER).
Additionally, hierarchal IBE (HIBE) is another orthogonal extension of
IBE that supports key delegation functionalities allowing for scalable
deployments of cryptographic schemes. So far, R(H)IBE constructions
with DKER are only known from bilinear maps, where all constructions
rely heavily on the so-called key re-randomization property to achieve
the DKER and/or hierarchal feature. Since lattice-based schemes seem
to be inherently ill-fit with the key re-randomization property, no con-
struction of lattice-based R(H)IBE schemes with DKER are known.

In this paper, we propose the first lattice-based RHIBE scheme with
DKER without relying on the key re-randomization property, departing
from all the previously known methods. We start our work by provid-
ing a generic construction of RIBE schemes with DKER, which uses as
building blocks any two-level standard HIBE scheme and (weak) RIBE
scheme without DKER. Based on previous lattice-based RIBE construc-
tions without DKER, our result implies the first lattice-based RIBE
scheme with DKER. Then, building on top of our generic construction,
we construct the first lattice-based RHIBE scheme with DKER, by fur-
ther exploiting the algebraic structure of lattices. To this end, we prepare
a new tool called the level conversion keys, which enables us to achieve
the hierarchal feature without relying on the key re-randomization
property.

1 Introduction

Identity-based encryption (IBE) is an advanced form of public key encryption,
where an arbitrary string can be used as user’s public keys. One extension of
IBE is hierarchical IBE (HIBE), which further supports a key delegation func-
tionality; an attractive feature for scalable deployments of IBE. However, as
opposed to ordinary public key encryption, (H)IBE does not support a key/user
c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11443, pp. 441–471, 2019.
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revocation mechanism due to the absence of the public key infrastructures and
there are no trivial ways to drive malicious users out from an ordinary (H)IBE
system. Therefore, adding a key revocation mechanism to (H)IBE is considered
to be one of the important research themes when considering practical deploy-
ments of (H)IBE. For instance, Boneh and Franklin [7] proposed a method for
adding a simple revocation mechanism to any IBE system. However, the bottle-
neck of their proposal was its efficiency. The number of keys generated for every
time period was proportional to the number of all users in the IBE system and
the scheme did not scale if the number of users became too large. Since then,
constructing an (H)IBE scheme with a scalable revocation mechanism has been
a sought-after goal. Below, we refer to (H)IBE that allows for such a scalable
revocation mechanism as revocable (H)IBE.

The first revocable IBE (RIBE) scheme was proposed by Boldyreva et al. [6].
RIBE requires three types of keys: a secret key, a key update, and a decryption
key. As in IBE, each user is issued a secret key that is associated with his iden-
tity. However, in order to achieve the key revocation mechanism, each user’s
secret key itself does not allow them to decrypt ciphertexts. To allow the users
to decrypt, the key generation center (KGC) broadcasts key updates for every
time period through a public channel. Roughly, the key update incorporates
public information of the users that are currently allowed in the system. Specif-
ically, although the key update is meaningless information to revoked users, it
allows non-revoked users to combine with their secret keys to derive a decryp-
tion key, which effectively enables them to properly decrypt ciphertexts. To
achieve a scalable revocation mechanism, Boldyreva et al. utilized a subset cover
framework called the complete subtree (CS) method [25], so that the size of
the key update sent by the KGC in each time period will be logarithmic in the
number of system users. The work of Boldyreva et al. [6] attracted numerous
followup works [15,18,20,33,37] and their RIBE construction was also extended
to revocable hierarchical IBE (RHIBE) which simultaneously support scalable
key revocation and key delegation functionalities [13,17,19,32,34,35].

Considering that RIBE and RHIBE were introduced by envisioning the real-
world use of (H)IBE systems, their security definitions should take into account
as many realistic threats and attack scenarios as possible. For example, leakage of
decryption keys due to social/cyber attacks or unexpected human errors are com-
mon incidents in practice. Motivated by this, Seo and Emura [33,35] introduced
a security notion unique to R(H)IBE called decryption key exposure resistance
(DKER). Roughly speaking, this security notion guarantees that an exposure
of a user’s decryption key at some time period will not compromise the confi-
dentiality of ciphertexts that are encrypted for different time periods—a clearly
desirable security guarantee in practice. After the introduction of the new secu-
rity notion DKER, it has quickly become one of the default security requirements
for R(H)IBE and attracted many followup works concerning R(H)IBE schemes
with DKER [13,15,17–19,23,28,29,32,35,37]. So far constructions of R(H)IBE
schemes with DKER are all based on bilinear or multilinear maps.
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State of affairs of Lattice-based R(H)IBE. Lattice-based cryptography has
been paid much attention in the last decade, however, construction of R(H)IBE
schemes with DKER has been rather elusive. In 2012, Chen et al. [10] pro-
posed the first lattice-based RIBE scheme without DKER; a work before the now
default security notion of DKER was formalized by Seo and Emura [33], build-
ing on top of the standard IBE constructions of [1,8]. The only followup work
was done recently by Takayasu and Watanabe [36] who partially solved the prob-
lem of achieving RIBE with DKER by proposing a variant of [10]. Unfortunately,
their scheme only satisfies bounded DKER, a strictly weaker notion than DKER,
which only allows a bounded number of decryption keys to be leaked. Therefore,
constructing an RIBE scheme with (unbounded) DKER based on lattices still
remains an unsolved problem. This is in sharp contrast with the bilinear map
setting where many constructions are known [13,15,17–19,32,33,35,37]. More-
over, extending the RIBE scheme of Chen et al. [10] to the hierarchal setting
seems to be highly non-trivial since no construction of lattice-based RHIBEs are
known regardless of the scheme being DKER or not.

One of the main reasons why constructing R(H)IBE schemes with DKER
in the lattice-setting has been difficult is because the algebraic structure
of lattices seems to be ill-fit with the so-called key re-randomization prop-
erty. So far, all RIBE schemes [15,18,23,29,33,37] and RHIBE schemes with
DKER [13,17,19,28,32,35] are based on number theoretical assumptions, e.g.,
bilinear maps and multilinear maps, which all rely heavily on this key re-
randomization property. At a high level, this is the property with which each
user can re-randomize their key so that the re-randomized key is distributed
identically to (or at least statistically close to) a key generated using a fresh
randomness. In essence, this is the central property that enables DKER. Fur-
thermore, this property is also heavily utilized when generating the children’s
secret keys for fixed randomness without using any secret information, hence,
achieving the hierarchal feature. However, unfortunately, due to the difference
in the algebraic structure of bilinear, multilinear maps and lattices, we are cur-
rently unaware of any way of achieving the key re-randomization property from
lattices.1 Therefore, to construct lattice-based R(H)IBE schemes with DKER,
it seems that we must deviate from prior methodologies and develop new tech-
niques.
Our Contributions. In this paper, we propose the first lattice-based R(H)IBE
scheme with DKER secure under the learning with errors (LWE) assumption.
The techniques used in this work highly depart from previous works that rely on
the key re-randomization property for achieving DKER and the key delegation
functionality. Specifically, we show a generic construction of an RIBE scheme
with DKER from any two-level standard HIBE scheme and RIBE scheme with-
out DKER, thus bypassing the necessity of the key re-randomization property.

1 A knowledgeable reader familiar with lattice-based cryptography may wonder why
the existing RIBE schemes [10,36] cannot be easily modified to support the property
by using short trapdoor bases. We provide detailed discussions on why this simple
modification is insufficient in Sect. 2.



444 S. Katsumata et al.

Then, building on top of the idea of our generic construction, we further exploit
the algebraic structure of lattices to construct an RHIBE scheme with DKER.
We provide a brief summary of our work below and refer the detailed technical
overview to Sect. 2.

Our first contribution is a generic construction of RIBE with DKER from
any RIBE without DKER and two-level HIBE. The new tools we introduce to
circumvent the necessity of the key re-randomization property are called leveled
ciphertexts and leveled decryption keys. At a high level, each “level” for the
leveled ciphertexts and decryption keys is associated to the RIBE scheme without
DKER and the two-level HIBE scheme, respectively; one level is responsible for
achieving the revocation mechanism and the other is responsible for the key
re-randomization mechanism. Therefore, informally, our leveled structure allows
for a partial key re-randomization mechanism. Using the lattice-based RIBE
scheme without DKER of Chen et al. [10] and any lattice-based HIBE scheme,
e.g., [1,8], our result implies the first lattice-based RIBE scheme with DKER.
Furthermore, since any IBE schemes can be converted to an HIBE scheme [12]
(in the selective-identity model) and any RIBE scheme without DKER implies
an IBE scheme, our result also implies a generic conversion of any RIBE scheme
without DKER into an RIBE scheme with DKER.

Our second contribution is the construction of the first lattice-based RHIBE
scheme with DKER. It is built on top of the idea of our generic construction and
further exploits the algebraic structure unique to lattices. Namely, to achieve
the key delegation functionality, i.e., hierarchal feature, we additionally intro-
duce a tool called level conversion keys. In essence, this tool enables a user to
convert his (secret) decryption key to a (public) key update for users of different
hierarchal levels. In other words, the level conversion key allows one to delegate
his key to its children without re-randomizing his key. Although the idea is sim-
ple, the concrete machinery to blend the level conversion keys securely into the
construction is rather contrived and we refer the details to Sect. 2.

Finally, we state some side contributions worth highlighting in our paper.
Firstly, we re-formalize the syntax and security definitions for R(H)IBE. For
instance, since previous security definitions [6,33–35] had some ambiguity (e.g.
in some cases it is not clear when the values such as secret keys and key updates
are generated during the security game), it was up to the readers to interpret the
definitions and the proofs. Therefore, in our work we provide a refined security
definition for R(H)IBE which in particular is a more rigorous and explicit treat-
ment than the previous definitions. Secondly, we provide a formal treatment on
an implicit argument that has been frequently adopted in the R(H)IBE litera-
ture. In particular, we introduce a simple yet handy “strategy-dividing lemma”,
which helps us simplify the security proofs for R(H)IBE schemes in general. For
the details, see Sect. 4.
Related Works. Boldyreva et al. [6] proposed the first RIBE scheme that
achieved selective-identity security from bilinear maps and Libert and
Vergnaud [20] extended their results to the adaptive setting. The first lattice-
based RIBE scheme was proposed by Chen et al. [10] and the first RHIBE scheme
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was proposed by Seo and Emura [34] based on bilinear maps. Recently, Chang
et al. [9] proposed an RIBE scheme from codes with rank metric in the random
oracle model.

After Seo and Emura [33] introduced the security notion of DKER and pro-
posed the first RIBE scheme with DKER, several improvements and variants
have been proposed. These works consist of RIBE [15,18,37] and RHIBE [13,
17,19,35] from bilinear maps, and those from multilinear maps [23,28,29]. From
lattices, Takayasu and Watanabe [36] proposed an RIBE scheme with bounded
DKER; a strictly weaker notion then DKER.

Server-aided RIBE [11,26,30] is a variant of RIBE where most of the compu-
tation of the users are delegated to an untrusted server. The revocation mech-
anism we study in this paper is sometimes referred to as indirect revocation. A
direct revocation mechanism does not require key updates and has been discussed
for attribute-based encryption [4,5] and predicate encryption [27]. Recently, Ling
et al. proposed the first lattice-based directly revocable predicate encryption
scheme [21] and its server-aided variant [22].
Roadmap. In Sect. 2, we provide an overview of our constructions. In Sect. 3, we
recall basic tools for lattice-based cryptography. In Sect. 4, we introduce formal
definitions for RHIBE. In Sect. 5, we show a generic construction of RIBE with
DKER. Finally, in Sect. 6, we show our main result concerning the first lattice-
based RHIBE scheme with DKER.
Notations. Before diving into the technical details, we prepare some notations.
Let N be the set of all natural numbers. For non-negative integers n, n′ ∈ N

with n ≤ n′, we define [n, n′] := {n, n + 1, . . . , n′}, and we extend the definition
for n > n′ by [n, n′] = ∅. For notational convenience, for n ∈ N, we define
[n] := [1, n]. Throughout the paper, λ ∈ N denotes the security parameter.

As usual in the literature of (R)HIBE, an identity ID of a user at level
� in the hierarchy in an RHIBE scheme is expressed as a length-� vector
ID = (id1, · · · , id�). In order not to mix up with an identity ID = (id1, id2, . . . )
treated in an RHIBE scheme and its element idi, we sometimes call the former a
hierarchical identity and the latter an element identity. We refer to the set of all
element identities as the element identity space and denote it by ID. We assume
the element identity space is determined only by the security parameter λ. Thus,
for example, the space to which level-� identities belong is expressed as (ID)�.
For notational convenience, for � ∈ N we define (ID)≤� :=

⋃
i∈[�](ID)i, and

the hierarchal identity space IDh := (ID)≤L. We denote by “kgc” the special
hierarchical identity for the level-0 user, i.e., the key generation center (KGC).

Like an ordinary vector, we consider a prefix of hierarchical identities. For
example, for a level-� hierarchical identity ID = (id1, . . . , id�) and t ≤ �, ID[t]

represents the length-t prefix of ID, i.e., ID[t] = (id1, . . . , idt). We denote by
“pa(ID)” the identity of its parent (i.e. the direct ancestor), namely, if ID ∈ (ID)�,
then pa(ID) := ID[�−1] = (id1, . . . , id�−1), and pa(ID) for a level-1 identity ID ∈
ID is defined to be kgc. Furthermore, we denote by “prefix(ID)” the set consisting
of itself and all of its ancestors, namely, prefix(ID) := {ID[1], ID[2], . . . , ID[|ID|] =
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ID}. Also, for ID ∈ (ID)�, we denote by “ID‖ID” as the subset of (ID)�+1 that
contains all the members who have ID as its parent.

2 Technical Overview

In this section, we provide the technical overview of our results. In order to
make the lattice-based RHIBE overview easier to follow, we present the details
of our generic construction of RIBE with DKER using lattice terminologies. The
general idea presented below translates naturally to our generic construction.
To this end, we first prepare two standard hash functions used in lattice-based
cryptography: one for the users ID ∈ IDh = ID≤L, where each element identity
space is defined by ID = Z

n
q \ {0n}, and another for the time period2 t ∈ T ⊂

Z
n
q \ {0n}. In particular, for a user ID = (id1, . . . , id�) ∈ (Zn

q \ {0n})≤L and time
period t ∈ Z

n
q \ {0n} we use the following hash functions E(·) and F(·):

E(ID) := [B1 + H(id1)G| · · · |B� + H(id�)G] ∈ Z
n×�m
q ,

F(t) := BL+1 + H(t)G ∈ Z
n×m
q , (1)

where (Bj)j∈[L+1] are random matrices in Z
n×m
q chosen at setup of the scheme

and G is the gadget matrix [24]. Here, H : Z
n
q → Z

n×n
q is a specific hash

function used to encode an identity to a matrix, and its definition is provided
in Sect. 3. Notice that for any ID ∈ (Zn

q \ {0n})� and id�+1 ∈ Z
n
q \ {0n}, we have

E(ID‖id�+1) = [E(ID)|B�+1 + H(id�+1)G]. Finally, we define E(kgc) := ∅.

Review of RIBE without DKER. We first recall Chen et al.’s lattice-based
RIBE scheme without DKER [10] in Fig. 1. Here, A and u in the master public
key PP are a matrix in Z

n×m
q and a vector in Z

n
q , respectively, and TA is the

trapdoor associated with A. Other terms will be explained as we proceed with
our technical overview. Below, we see why the scheme realizes the revocation
mechanism while it does not satisfy DKER. One feature of RIBE construction is
that the KGC maintains a binary tree where each user is assigned to a randomly

PP := (A,u, hash functions E(·),F(·)), skkgc := TA

ct := (c0 := u�s+ noise+M
⌊

q
2

⌋
, c1 := [A|E(ID)|F(t)]�s+ noise)

skID := (eID,θ)θ s.t. [A|E(ID)]eID,θ = uθ

kut := (et,θ)θ s.t. [A|F(t)]et,θ = u− uθ

dkID,t := dID,t s.t. [A|E(ID)|F(t)]dID,t = u

Fig. 1. Chen et al.’s RIBE scheme

2 As we will show in Sect. 4, the time period space is a set of natural numbers {1, 2, . . .}.
Here, we assume that there is an efficient hash function that maps each natural
number to a distinct vector in Z

n
q \ {0n}.
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selected leaf. Furthermore, a random vector uθ ∈ Z
n
q is uniquely assigned to

each node θ of the binary tree. Below, we explain the three types of keys which
are core tools to realize the revocation mechanism: A secret key for a user ID is
a tuple of short vectors skID = (eID,θ)θ, where each short vector eID,θ ∈ Z

2m is
associated to a random vector uθ such that

[A|E(ID)]eID,θ = uθ.

Since uθ is an independent random vector and the ciphertext c0 only depends on
u, the vector eID,θ in skID itself is useless for decrypting a ciphertext ct. Hence,
in each time period the KGC broadcasts a key update which is also a tuple of
short vectors kut = (et,θ)θ, where each short vector et,θ is associated to a random
vector uθ such that

[A|F(t)]et,θ = u − uθ.

Similarly to above, et,θ in kut itself is useless for decrypting a ciphertext ct.
Now, we explain how the revocation mechanism works. By utilizing the complete
subtree (CS) method [25], the KGC is able to broadcast key updates so that there
is no common node θ in kut and skID of revoked IDs, while there is at least one
common node θ in kut and skID of non-revoked IDs. Then, eID,θ in skID and et,θ
in kut of the common node θ enable a non-revoked ID to derive a well-formed
decryption key dID,t ∈ Z

3m which is a short vector satisfying

[A|E(ID)|F(t)]dID,t = u.

It can be easily checked that dID,t can be obtained by simply adding eID,θ and et,θ
in a component-wise fashion. Note that if eID,θ and et,θ are short vectors, then
so is dID,t. Then, the vector enables us to recover the plaintext by computing

c0 − c�
1 dID,t ≈ M

⌊q

2

⌋
.

The main insight of this construction is that only non-revoked users can use the
key updates to eliminate the random factor uθ to obtain a short vector dID,t that
is bound to the public matrix [A|E(ID)|F(t)] and public vector u with which a
ciphertexts ct is created.

Although the scheme is proven to be a secure RIBE scheme without DKER,
it clearly does not satisfy DKER. Indeed, there is a concrete attack even with a
single decryption key query (i.e., decryption key exposure) on the target ID∗. The
attack is as follows: assume that the adversary obtains a decryption key dkID∗,t

for the target ID∗ and a time period t 	= t∗. Since key updates are publicly
broadcast, the adversary also obtains kut and kut∗ . Since user ID∗ will not be
revoked unless skID∗ was revealed to the adversary, the key updates kut and kut∗
will share a common node θ∗ with the secret key.3 Therefore, recalling that dkID∗,t

3 To be more precise, there are cases kut and kut∗ might not share a common node,
however, A can always adaptively revoke other users so that this holds.



448 S. Katsumata et al.

was a simple component-wise addition of eID∗,θ∗ in skID∗ and et,θ∗ in kut, A can
first recover the secret key component eID∗,θ∗ from (dkID∗,t, et,θ∗), which he can
then combine it with et∗,θ∗ in kut∗ to create the decryption key dID∗,t∗ for the
challenge time period t∗. Specifically, this decryption key allows the adversary
to completely break the scheme. In reality, this corresponds to the fact that once
a decryption key for a certain time period is exposed to an adversary, then all
the messages of distinct time periods may also be compromised. In essence, this
attack relies on the fact that the decryption key leaks partial information on the
secret key, which can then be used to construct decryption keys of all distinct
time periods.

In all the previous bilinear map-based constructions, the above problem was
circumvented by relying on the so-called key re-randomization property. Infor-
mally, this property allows one to re-randomize the decryption key, hence even
if the decryption key is leaked, it would be impossible to restore the original
secret key. In the above construction, this idea would correspond to re-sampling
a short random vector d̄ID,t such that

[A|E(ID)|F(t)]d̄ID,t = u

using his original decryption key dID,t. Indeed, if the distribution of d̄ID,t is
independent of the original decryption key dID,t, this modification would prevent
the above attack, since the adversary will not be able to recover the secret
key component eID∗,θ∗ anymore using the above strategy. However, such a re-
sampling procedure is computationally infeasible, since otherwise we would be
able to trivially solve the small integer solution (SIS) problem.

Readers familiar with lattice-based constructions of (non-revocable) HIBE
may think that we could achieve the key re-randomization property by simply
using a short trapdoor basis as the secret key instead of a vector. Indeed, if
we add a short trapdoor basis T[A|E(ID)] as a part of the secret key skID, the
user ID will be able to sample a short vector d̄ID,t 	= dID,t, since anybody can
efficiently extend the trapdoor basis T[A|E(ID)] to T[A|E(ID)|F(t)] and thus sample
a random vector d̄ID,t such that [A|E(ID)|F(t)]d̄ID,t = u. However, this approach
does not mesh well with the above revocation mechanism, since now the user
ID can derive decryption keys dID,t for every time period without requiring the
key updates kut. Therefore, adding a short trapdoor basis to the secret key
provides too much flexibility to the users and we completely lose the mechanism
for supporting revocation.

Constructing RIBE with DKER. To summarize so far, the main bottleneck
of Chen et al.’s RIBE scheme without DKER is that it satisfies the key revocation
mechanism, but seems challenging to extend it to satisfy DKER. On the other
hand, adding a short trapdoor basis would definitely be useful for achieving
DKER, however, it seems to contradict with the revocation mechanism. In the
following, we show that we can carefully combine these two seemingly conflicting
ideas together. The concrete construction of our lattice-based RIBE scheme with
DKER is illustrated in Fig. 2. The boxed items denote the changes made from
the previous figure.
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PP := (A, Ā ,u, hash functions E(·),F(·)), skkgc := (TA, TĀ )

ct :=

⎛
⎝ c0 := u�(s+ s̄ ) + noise+M

⌊
q
2

⌋
,

c1 := [A|E(ID)|F(t)]�s+ noise, c̄1 := [Ā|E(ID)|F(t)]�s̄+ noise

⎞
⎠

skID := (eID,θ)θ, T[Ā|E(ID)]

)
s.t. [A|E(ID)]eID,θ = uθ

kut := (et,θ)θ s.t. [A|F(t)]et,θ = u− uθ

dkID,t := dID,t, d̄ID,t

)
s.t. [A|E(ID)|F(t)]dID,t = u, [Ā|E(ID)|F(t)]d̄ID,t = u

Fig. 2. Our RIBE scheme with DKER

Our construction relies on a tool we call leveled ciphertexts and leveled
decryption keys; the terminology should become more intuitive and helpful in
the hierarchical setting that we explain later. Here, we call an element asso-
ciated with a matrix A and Ā level-1 and level-2, respectively. In particular,
c1, c̄1 and dID,t, d̄ID,t in Fig. 2 are the level-1, level-2 ciphertexts and decryption
keys, respectively. Here, the level-1 components c1 and dID,t correspond to Chen
et al.’s RIBE scheme without DKER and are responsible for achieving the revo-
cation mechanism. On the other hand, the level-2 components c̄1 and d̄ID,t are
the newly introduced elements that will help us achieve DKER. Since the two
decryption keys for levels-1 and 2 are in one-to-one correspondence with the
ciphertexts (c1, c̄1) for levels-1 and 2, both of the decryption keys are required
to recover the underlying message as follows:

c0 − c�
1 dID,t

︸ ︷︷ ︸
level-1 component

− c̄�
1 d̄ID,t

︸ ︷︷ ︸
level-2 component

≈ M
⌊q

2

⌋
.

In particular, if either level of the decryption key is missing, the message cannot
be recovered. Separating the role of the decryption keys is the main idea that
allows us to associate the two seemingly conflicting properties of revocation and
key re-randomization to each level of the decryption keys.

First, we observe that the above RIBE scheme achieves the revocation mech-
anism since it simply inherits this property from the underlying Chen et al.’s
RIBE scheme without DKER. Furthermore, we achieve DKER by incorporating
the aforementioned trapdoor idea; we add a trapdoor T[Ā|E(ID)] to the secret
key skID. Using this short trapdoor basis T[Ā|E(ID)], we can now sample a level-2
decryption key d̄ID,t for each time period independently from the previous time
periods. Namely, using T[Ā|E(ID)], we can sample a short vector d̄ID,t such that

[Ā|E(ID)|F(t)]d̄ID,t = u,

where d̄ID,t leaks no information of the secret key skID. Hence, although we are not
able to completely re-randomize the decryption key dkID,t = (dID,t, d̄ID,t), we can
partially re-randomize the decryption key by sampling a new level-2 decryption
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key d̄ID,t for each time period; even if dkID,t is compromised, this alone will not
be sufficient for constructing decryption keys for other time periods. Indeed, we
show that this partial key re-randomization property is sufficient to prove the
DKER security.

In Sect. 5, we formalize and prove the above idea by providing a generic
construction of RIBE with DKER, using as building blocks any RIBE without
DKER and 2-level HIBE. At a high level, the 2-level HIBE scheme is responsible
for the key re-randomization property and is the core component that allows us
to convert non-DKER secure RIBE schemes into DKER secure RIBE schemes.

Constructing RHIBE from Lattices. Next, we show an overview of our
lattice-based RHIBE construction. For simplicity of presentation and since we
can add DKER via the above idea, we do not take into account DKER in the fol-
lowing RHIBE construction. Specifically, we explain how to construct an RHIBE
scheme without DKER by modifying Chen et al.’s RIBE scheme.

Before getting into detail, we prepare some notations used for the hierarchal
setting. In the following, let L be the maximum depth of the hierarchy, where
we treat the KGC as level-0. In RHIBE, all level-i users ID for i ∈ [0, L − 1],
including the KGC, maintain a binary tree BTID to manage their children users
in ID‖ID. Furthermore, a random vector uID,θ ∈ Z

n
q is uniquely assigned to each

node θ of the binary tree BTID. The level-(� − 1) user pa(ID) creates the secret
key skID of the level-� user ID, and the user ID derives his own decryption key
dkID,t by combining his own secret key skID and the key updates kupa(ID),t that
are broadcast by the parent user pa(ID). Throughout the overview, we assume
ID represents an level-� user.

Introducing Leveled Secret Keys: Due to the complex nature of our scheme, we
believe it to be helpful to provide the intuition of our scheme following a series
of modifications, where our final scheme without DKER is depicted in Fig. 6.
Our starting point is illustrated in Fig. 3, where as before, the box indicates the
changes made from the prior scheme.

PP := ( (Ai)i∈[L] ,u, hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct := c0 := u�s+ noise+M
⌊

q
2

⌋
, c1 := [ A� |E(ID)|F(t)]�s+ noise

)
skID := (eID,θ)θ, (T[Ai|E(ID)])i∈[�+1,L]

)
s.t. [ A� |E(ID)]eID,θ = upa(ID),θ

kupa(ID),t := (epa(ID),t,θ)θ s.t. [ A� |E(pa(ID))|F(t)]epa(ID),t,θ = u− upa(ID),θ

dkID,t := dID,t s.t. [ A� |E(ID)|F(t)]dID,t = u

Fig. 3. Leveled secret key and i-leveled ciphertext

Toward resolving the incompatibility of the key delegation property and the
key revocation mechanism, the scheme in Fig. 3 utilizes leveled ciphertexts as
done in the prior non-hierarchal scheme in Fig. 2. Furthermore, we introduce
a new tool called leveled secret keys in this scheme. Here, we call an element
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associated with a matrix Ai level-i, respectively. In particular, the ciphertext ct
of a level-� user ID is a level-� ciphertext since c1 is associated with A�. The main
trick of the scheme in Fig. 3 is that a secret key skID for a level-� user consists
of level-i secret keys for i ∈ [�, L], where the level-� secret key (eID,θ)θ and the
other level-i secret keys T[Ai|E(ID)] for i ∈ [� + 1, L] serve a different purpose.
The level-� secret key in skID is a tuple of short vectors of the form (eID,θ)θ each
of which satisfies

[A�|E(ID)]eID,θ = [A�|E(pa(ID))|B� + H(id�)G]eID,θ = upa(ID),θ, (2)

and serves the same purpose as the original Chen et al.’s RIBE scheme. Namely,
the level-� secret key of a level-� user is used for decrypting its own level-�
ciphertext, where the detailed procedure will be explained later. The remaining
level-i secret keys in skID for i ∈ [� + 1, L] are trapdoors of the form T[Ai|E(ID)]

in skID and serves the purpose of delegation. Concretely, using the trapdoor
T[Ai|E(ID)] for i ∈ [� + 1, L], the level-� user ID can sample all level-i secret
keys for his children ID‖id�+1 ∈ ID‖ID; a set of short vectors (eID‖id�+1,θ)θ such
that [Ai|E(ID‖id�+1)]eID‖id�+1,θ = uID,θ and trapdoors T[Ai|E(ID‖id�+1)] for i ∈
[� + 2, L]. In addition, the level-� user ID can also use the level-(� + 1) trapdoor
T[A�+1|E(ID)] in skID to derive key updates kuID,t. Here, a level-(�−1) user pa(ID)’s
key update kupa(ID),t is a tuple of short vectors (epa(ID),t,θ)θ such that

[A�|E(pa(ID))|F(t)]epa(ID),t,θ = u − upa(ID),θ. (3)

Then, from Eqs. (2) and (3), the level-� user ID can derive a well-formed decryp-
tion key dkID,t which is a short vector of the form dID,t satisfying

[A|E(ID)|F(t)]dID,t = [A|E(pa(ID))|B� + H(id�)G|F(t)]dID,t = u.

Hence, the scheme in Fig. 3 properly supports the key delegation functionality.
Furthermore, at first glance, the scheme also supports the key revocation

mechanism. Since the level-� secret key (eID,θ)θ of the level-� user ID is exactly
the same as the secret key used by user ID in Chen et al.’s RIBE scheme, it
simply inherits the revocation mechanism. In particular, user ID will not be able
to decrypt his level-� ciphertext without his parent’s key update kupa(ID),t, which
will no longer be provided once user ID is revoked. However, unfortunately, this
scheme is trivially flawed and does not meet the security notion of RHIBE. In
RHIBE, we require the user ID to be revoked once any of his ancestors ID[i] ∈
prefix(ID) for i ∈ [� − 1] is revoked. In other words, once a user is revoked from
the system, then all of its descendants must also be revoked. It can be easily
checked that this requirement is not met by our above RHIBE scheme. Since the
level-� user ID has the full trapdoor T[Ai|E(ID)] for i ∈ [� + 1, L] as part of its
secret key, nothing is preventing user ID from continuing on generating secret
keys and key updates for his children.

Introducing Leveled Decryption Keys: To fix the above issue concerning key
revocation, we further modify the scheme as in Fig. 4. From now on, we fur-
ther modify the definition of level-i ciphertext, and call a tuple

(u�si + noise, ci = [Ai|E(ID[i])|F(t)]�si + noise)
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PP := ((Ai)i∈[L],u, hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=

⎛
⎝ c0 := u� (s1 + · · ·+ s�) + noise+M

⌊
q
2

⌋
,

(ci := [Ai|E(ID[i])|F(t)]�si + noise)i∈[�]

⎞
⎠

skID := ((eID,θ), (T[Ai|E(ID)])i∈[�+1,L]) s.t. [A�|E(ID)]eID,θ = uθ

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t)i∈[�−1] ) s.t. [A�|E(pa(ID))|F(t)]epa(ID),t,θ = u− uθ,

[Ai|E(ID[i])|F(t)]fID[i],t = u

dkID,t := dID,t, (fID[i],t)i∈[�−1]
)

s.t. [A�|E(ID)|F(t)]dID,t = u

Fig. 4. Multiple leveled ciphertext and key update

a level-i ciphertext since ci is associated with the public matrix Ai and both
components are associated with the same secret vector si. In this scheme, we
modify the ciphertext for a level-� user ID to contain all the level-i ciphertexts
for i ∈ [�], where each level-i ciphertext is associated with the public matrix Ai

and an identity ID[i]. The idea behind this modification is to revoke any user
ID whose ancestors were revoked by including some information specific to the
ancestors in the ciphertext. In particular, if some ancestor at level i ∈ [� − 1]
were to be revoked, then the level-i ciphertext ci should become undecryptable,
hence maintaining the secrecy of the plaintext M. To make this idea work, we
must now provide user ID with new components to allow decryption of the level-
i ciphertexts for i ∈ [� − 1]. We achieve this by introducing a new tool called
leveled decryption keys. A leveled decryption key for a level-� user ID consists
of level-i decryption keys for i ∈ [�]. Similarly to leveled secret keys, the level-�
decryption key dID,t and the other level-i decryption keys fID[i],t for i ∈ [� − 1]
serve a different purpose. The level-� decryption key denoted as dID,t in dkID,t

serves the same purpose as in the previous schemes. The level-i decryption key
for i ∈ [� − 1] denoted as fID[i],t in dkID,t is the actual decryption key used by its
ancestor at level-i. Although we use a different notation, fID[i],t is equivalent to
dID[i],t such that

[Ai|E(ID[i])|F(t)]fID[i],t = [Ai|E(ID[i])|F(t)]dID[i],t = u. (4)

In particular, each ancestor at level-i for i ∈ [�−1] broadcasts their own decryp-
tion key fID[i],t (See kupa(ID),t in Fig. 4) and the user ID sets the level-i decryption
key for i ∈ [� − 1] as fID[i],t. It can be easily verified that user ID can correctly
decrypt his ciphertext as follows:

c0 − c�
� dID,t

︸ ︷︷ ︸
level-� component

−
�−1∑

i=1

c�
i fID[i],t

︸ ︷︷ ︸
level-i component

≈ M
⌊q

2

⌋
.
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PP := ((Ai)i∈[L], (uk)k∈[L] , hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=

(
c0 := u�

�(s1 + · · · s�) + noise+M
⌊

q
2

⌋
,

(ci := [Ai|E(ID[i])|F(t)]�si + noise)i∈[�]

)

skID := ((eID,θ), (T[Ai|E(ID)])i∈[�+1,L]) s.t. [A�|E(ID)]eID,θ = uθ,

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t,k)i∈[�−1],k∈[�,L] )

s.t. [A�|E(pa(ID))|F(t)]epa(ID),t,θ = u� − uθ, [Ai|E(ID[i])|F(t)]fID[i],t,k = uk

dkID,t := (dID,t, (fID[i],t,�)i∈[�−1] ) s.t. [A�|E(ID)|F(t)]dID,t = u�

Fig. 5. (k, i)-leveled ciphertext and decryption key

However, this scheme is obviously insecure, since the level-i ancestors are
required to publicly broadcast their level-i decryption key fID[i],t(= dID[i],t), which
can in turn be used by anybody to decrypt the level-i ciphertexts of that par-
ticular ancestor.

Making the Levels Two-Dimensional: For the scheme in Fig. 4 to be secure,
decryption keys of the ancestors should not be made public via the key updates.
Specifically, a ciphertext aimed for a user should not contain the same level as
of his ancestors, since otherwise the decryption keys of the ancestors must be
made public. For the purpose, we further modify the scheme as in Fig. 5. To this
end, we incorporate multiple public vectors (uk)k∈[L], and redefine the notion of
leveled ciphertexts and leveled decryption keys to be two-dimensional. Here, we
refer to an element associated with a vector uk and a matrix Ai as level-(k, i),
respectively. For example, we call a tuple

(u�
k si + noise, ci = [Ai|E(ID[i])|F(t)]�si + noise)

a level-(k, i) ciphertext since the first component is associated with the public
vector uk, and the latter component ci is associated with the public matrix
Ai, and both components are associated with the same secret vector si. In
particular, a ciphertext for a level-� user ID consists of level-(�, i) ciphertexts for
i ∈ [�]. Accordingly, we must provide user ID with a redefined leveled decryption
key to allow decryption of the two-dimensional leveled ciphertexts. Specifically,
we provide a level-� user ID with level-(�, i) decryption keys for i ∈ [�], where
again the level-(�, �) decryption key dID,t and the other level-(�, i) decryption
keys fID[i],t,� for i ∈ [� − 1] serve a different purpose. The level-(�, �) decryption
key denoted as dID,t is constructed and serves the exact same purpose as in
the previous scheme. The level-(�, i) decryption keys for i ∈ [� − 1] are denoted
as fID[i],t,�. As before, these decryption keys fID[i],t,� are broadcast as part of
the parent’s key updates kupa(ID),t, however, the way they are defined is slightly
different from the previous scheme. Namely, the level-(�, i) decryption key fID[i],t,�

satisfies

[Ai|E(ID[i])|F(t)]fID[i],t,� = u�,
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Note that it is u� and not u as in Eq. (4). Using this, a level-� user ID can decrypt
its ciphertext as follows:

c0 − c�
� dID,t

︸ ︷︷ ︸
level-(�,�) component

−
�−1∑

i=1

c�
i fID[i],t,�

︸ ︷︷ ︸
level-(�,i) component

≈ M
⌊q

2

⌋
,

where each level of the ciphertext and decryption keys are in one-to-one corre-
spondence with each other. Note that the level-� user ID uses only level-(�, i)
decryption keys fID[i],t,� for i ∈ [� − 1] provided in the key update kupa(ID),t to
decrypt his own ciphertext. He simply forwards the remaining level-(k, i) decryp-
tion keys fID[i],t,k for (k, i) ∈ [� + 1, L] × [� − 1] as part of his key update kuID,t.

One can see that the problem in the previous scheme of Fig. 4 is now resolved,
since the public term fID[i],t,� can only be used in combination with the level-
(�, i) ciphertext. In other words, due to the two-dimensional level, fID[i],t,� is only
useful for decrypting ciphertexts of level-� users. Furthermore, since the level-
(�, �) decryption key dID,t still remains secret, the publicly broadcast decryption
keys fID[i],t,� for i ∈ [�−1] alone are insufficient for decrypting the ciphertexts sent
to user ID. The remaining problem with this approach is that there is currently no
way for the level-(�− 1) ancestors pa(ID) to create the level-(k, �− 1) decryption
keys (fID[�−1],t,k)k∈[�,L] which they must broadcast as part of the key updates
kupa(ID),t. Specifically, since they do not have the trapdoor T[A�−1|E(ID[�−1])], they
cannot simply sample the level-(k, � − 1) decryption keys (fID[�−1],t,k)k∈[�,L] for
every time period.

Introducing Level Conversion Keys: Finally, we arrive at our proposed RHIBE
scheme (without DKER) illustrated in Fig. 6. We overcome our final obstacle by
introducing a tool called level conversion keys. In the scheme of Fig. 5, a level-�
parent user ID is able to create his level-(�, �) decryption key dID,t by himself
although he cannot compute the level-(k, �) decryption keys (fID,t,k)k∈[�+1,L] in
the key updates kuID,t (which corresponds to (fID[�−1],t,k)k∈[�,L] in kupa(ID),t of
level-(� − 1) users in the figure). To overcome the issue, we define a level-[�, k]
conversion key (fID,k)k∈[�+1,L] of a level-� user ID satisfying

PP := ((Ai)i∈[L], (uk)k∈[L], hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=
(

c0 := u�
� (s1 + · · · s�) + noise+M

⌊
q
2

⌋
,

(ci := [Ai|E(ID[i])|F(t)]�si + noise)i∈[�]

)
skID := ((eID,θ), (fID,k)k∈[�+1,L] , (T[Ai|E(ID)])i∈[�+1,L]) s.t. [A�|E(ID)]eID,θ = uθ,

[A�|E(ID)]fID,k = uk − u�

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t,k)i∈[�−1],k∈[�,L])
s.t. [A�|E(pa(ID))|F(t)]epa(ID),t,θ = u� − uθ, [Ai|E(ID[i])|F(t)]fID[i],t,k = uk

dkID,t := (dID,t, (fID[i],t,�)i∈[�−1]) s.t. [A�|E(ID)|F(t)]dID,t = u�

Fig. 6. Level conversion key
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[A�|E(ID)]fID,k = uk − u�.

To compute level-(k, �) decryption keys (fID,t,k)k∈[�+1,L] in key updates kuID,t,
the level-[�, k] conversion key allows the user ID to convert his secret level-(�, �)
decryption key dID,t which satisfies

[A�|E(ID)|F(t)]dID,t = u�

into a public level-(k, �) decryption key fID,t,k which satisfies

[A�|E(ID)|F(t)]fID,t,k = uk,

where the conversion is a simple component-wise addition. Since the scheme sup-
ports both the key delegation functionality and the key revocation mechanism,
it can be shown to be a secure RHIBE scheme without DKER.

Adding DKER to the Construction: To make the above lattice-based RHIBE
scheme in Fig. 6 satisfy DKER, we will use the same idea incorporated in our
generic construction of RIBE with DKER. Specifically, we add one more level
to the above scheme and wrap a standard HIBE scheme around it to manage
the partial key re-randomization property. The concrete construction appears in
Sect. 6.

3 Preliminaries

In this section, we briefly summarize the basic tools used in lattice-based cryp-
tography. We treat vectors in their column form. For a vector v ∈ R

n, denote
‖v‖ as the standard Euclidean norm. For a matrix R ∈ R

n×n, denote ‖R‖GS

as the longest column of the Gram-Schmidt orthogonalization of R and denote
‖R‖2 as the largest singular value. We denote Im as the m × m identity matrix
and 0n×m as the n × m zero matrix. We sometimes simply write 0n to denote
(column) zero vectors.

Lattices. A (full-rank-integer) m-dimensional lattice Λ in Z
m is a set of the

form {
∑

i∈[m] xibi|xi ∈ Z}, where B = {b1, · · · ,bm} are m linearly independent
vectors in Z

m. We call B the basis of the lattice Λ. For any positive integers
n,m and q ≥ 2, a matrix A ∈ Z

n×m
q and a vector u ∈ Z

n
q , we define Λ⊥

q (A) =
{z ∈ Z

m|Az = 0n mod q} and Λu
q (A) = {z ∈ Z

m|Az = u mod q}.

Gaussian Measures. Let DΛ,σ denote the standard discrete Gaussian distribu-
tion over Λ with a Gaussian parameter σ. We summarize some basic properties
of discrete Gaussian distributions.

Lemma 1 ([14]). Let Λ be an m-dimensional lattice. Let T be a basis for Λ, and
suppose σ ≥ ‖T‖GS · ω(

√
log m). Then Pr[‖x‖2 > σ

√
m : x ← DΛ,σ] ≤ negl(m).
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Lemma 2 ([14]). Let n,m, q be positive integers such that m ≥ 2n log q and q a
prime. Let σ be any positive real such that σ ≥ ω(

√
log n). Then for A ← Z

n×m
q

and e ← DZm,σ, the distribution of u = Ae mod q is statistically close to
uniform over Z

n
q . Furthermore, for a fixed u ∈ Z

n
q , the conditional distribution

of e ← DZm,σ, given Ae = u mod q for a uniformly random A in Z
n×m
q is

DΛu
q (A),σ with all but negligible probability.

Sampling Algorithms. We review some of the algorithms for sampling short
vectors from a given lattice.

Lemma 3. Let n,m, m̄, q > 0 be positive integers with m ≥ 2nlog q� and q a
prime. Then, we have the following polynomial time algorithms:

TrapGen(1n, 1m, q) → (A,TA)([2,3,24]): a randomized algorithm that outputs a
full rank matrix A ∈ Z

n×m
q and a basis TA ∈ Z

m×m for Λ⊥
q (A) such that A is

statistically close to uniform and ‖TA‖GS = O
(√

n log q
)

with overwhelming
probability in n.

SampleLeft(A,F,u,TA, σ) → e([1,24]): a randomized algorithm that, given
as input a full rank matrix A ∈ Z

n×m
q , a matrix F ∈ Z

n×m̄
q , a vec-

tor u ∈ Z
n
q , a basis TA ∈ Z

m×m of Λ⊥
q (A), and a Gaussian parameter

σ ≥ ‖TA‖GS · ω
(√

log m
)
, outputs a vector e ∈ Z

m+m̄ sampled from a distri-
bution statistically close to DΛu

q ([A|F]),σ.
([24]): There exists a fixed full rank matrix G ∈ Z

n×m
q such that the lattice

Λ⊥
q (G) has a publicly known basis TG ∈ Z

m×m with ‖TG‖GS ≤
√

5.

For simplicity, we omit the SamplePre algorithm of [1], since in our paper it
will be used as a public algorithm to sample from the lattice Z

m. The following
algorithms allow one to securely delegate a trapdoor of a lattice to an arbitrary
higher-dimensional extension, with a slight loss in quality. It can be obtained by
combining the works of [8] and [1] in a straightforward manner.

Lemma 4. Let n,m, m̄, q > 0 be positive integers with m > n and q a prime.
Then, we have the following polynomial time algorithms:

ExtRndLeft(A,F,TA, σ) → T[A|F]: a randomized algorithm that, given as input
matrices A ∈ Z

n×m
q ,F ∈ Z

n×m̄
q , a basis TA of Λ⊥

q (A), and a Gaussian
parameter σ ≥ ‖TA‖GS ·ω(

√
log n), outputs a matrix T[A|F] ∈ Z

(m+m̄)×(m+m̄)

distributed statistically close to (DΛ⊥
q ([A|F]),σ)m+m̄.

ExtRndRight(A,G,R,TG, σ) → T[A|AR+G]: a randomized algorithm that, given
as input full rank matrices A,G ∈ Z

n×m
q , a matrix R ∈ Z

m×m, a basis
TG of Λ⊥

q (G), and a Gaussian parameter σ ≥ ‖R‖2 · ‖TG‖2 · ω(
√

log n)
outputs a matrix T[A|AR+G] ∈ Z

2m×2m distributed statistically close to
(DΛ⊥

q ([A|AR+G]),σ)2m.

We use the standard map to encode identities as matrices in Z
n×n
q .



Lattice-Based R(H)IBE with DKER 457

Definition 1 ([1]). Let n, q be positive integers with q a prime. We say that a
function H : Zn

q → Z
n×n
q is a full-rank difference (FRD) map if: for all distinct

ID, ID′ ∈ Z
n
q , the matrix H(ID)−H(ID′) ∈ Z

n×n
q is full rank, and H is computable

in polynomial time in n log q.

Hardness Assumption. The security of our RIBE scheme is reduced to the
learning with errors (LWE) assumption introduced by Regev [31].

Assumption 1 (Learning with Errors). For integers n,m, a prime q, a
real α ∈ (0, 1) such that αq > 2

√
n, and a PPT algorithm A, the advan-

tage for the learning with errors problem LWEn,m,q,DZm,αq
of A is defined as∣

∣Pr
[
A(A,A�s + x) = 1

]
− Pr [A(A,v + x) = 1]

∣
∣, where A ← Z

n×m, s ← Z
n,

x ← DZm,αq, v ← Z
m. We say that the LWE assumption holds if the above

advantage is negligible for all PPT A.

4 Formal Definitions for Revocable Hierarchical
Identity-Based Encryption and a Supporting Lemma

In this section, we give formal definitions for RHIBE in Sect. 4.1. Then, in
Sect. 4.2, we explain a simple and yet handy lemma that we call the “strategy-
dividing lemma”, which helps us simplify security proofs of R(H)IBE schemes
in general.

4.1 Revocable Hierarchical Identity-Based Encryption

As mentioned in the introduction, we re-formalize the syntax of RHIBE. Com-
pared to the existing works on RHIBE, our syntax of RHIBE treats each user’s
secret key, state information, and revocation list in a simplified manner. Thus,
we first explain our treatments of them, and then proceed to introducing the
formal syntax and security definitions.

On the Role of a Secret Key. In the literature of R(H)IBE, typically, the
entity who has the power to derive a secret key for lower-level users (i.e., the
KGC in RIBE, and non-leaf users in RHIBE), is modeled as a stateful entity,
and is supposed to maintain a so-called “state”, in addition to its own secret
key. The state information typically contains the information with which the
revocation mechanism is realized, and needs to be treated confidentially. Since
it is after all another type of secret information, in our syntax, we merge the
roles of the state information and a secret key. Hence, in our model, each user is
supposed to maintain its own secret key that is generated by its parent, and it
could be updated after performing the key generation algorithm (for generating
a secret key for its child) and the key update information generation algorithm.

On the Treatment of Revocation Lists. Note that unlike in standard revo-
cable (non-hierarchical) IBE, the key update information and revocation lists of
users are maintained individually by their corresponding parent users in RHIBE.



458 S. Katsumata et al.

In our syntax of R(H)IBE, we treat a revocation list just as a subset of (the
corresponding children’s) identity space. More specifically, the revocation list
of a user with identity ID ∈ (ID)� contains identities that belong to the set
ID‖ID ⊆ (ID)�+1.

In the literature, for R(H)IBE, it is typical to consider the “revoke” algorithm
whose role is to add an identity of a user to be revoked into the revocation list.
We do not explicitly introduce such an algorithm as part of our syntax, since it
is a simple operation of appending revoked users to a list.

Syntax. An RHIBE scheme Π consists of the six algorithms (Setup,Encrypt,
GenSK,KeyUp,GenDK,Decrypt) with the following interface:

Setup(1λ, L) → (PP, skkgc): This is the setup algorithm that takes the security
parameter 1λ and the maximum depth of the hierarchy L ∈ N as input, and
outputs a public parameter PP and the KGC’s secret key skkgc (also called a
master secret key).
We assume that the plaintext space M, the time period space T :=
{1, 2, . . . , tmax}, where tmax is polynomial in λ, the element identity space
ID, and the hierarchical identity space IDh := (ID)≤L are determined only
by the security parameter λ, and their descriptions are contained in PP.

Encrypt(PP, ID, t,M) → ct: This is the encryption algorithm that takes a public
parameter PP, an identity ID, a time period t, and a plaintext M as input,
and outputs a ciphertext ct.

GenSK(PP, skpa(ID), ID) → (skID, sk′
pa(ID)): This is the secret key generation algo-

rithm that takes a public parameter PP, a parent’s secret key skpa(ID), and an
identity ID ∈ IDh as input, and may update the parent’s secret key skpa(ID).
Then, it outputs a secret key skID for the identity ID and also the parent’s
“updated” secret key sk′

pa(ID).
KeyUp(PP, t, skID,RLID,t, kupa(ID),t) → (kuID,t, sk

′
ID): This is the key update infor-

mation generation algorithm that takes a public parameter PP, a time period
t, a secret key skID (of a user with ID ∈ (ID)≤L−1 ∪ {kgc}), a revocation
list RLID,t ⊆ ID‖ID, and a parent’s key update kupa(ID),t as input, and may
update the secret key skID. Then, it outputs a key update kuID,t and also the
“updated” secret key sk′

ID.
In the special case ID = kgc, we define kupa(kgc),t := ⊥ for all t ∈ T , i.e., a key
update is not needed for generating the KGC’s key update kukgc,t.

GenDK(PP, skID, kupa(ID),t) → dkID,t or ⊥: This is the decryption key generation
algorithm that takes a public parameter PP, a secret key skID (of a user with
ID ∈ (ID)≤L), and a parent’s key update kupa(ID),t as input, and outputs
a decryption key dkID,t for time period t or the special “invalid” symbol ⊥
indicating that ID or some of its ancestor has been revoked.

Decrypt(PP, dkID,t, ct) → M: This is the decryption algorithm that takes a public
parameter PP, a decryption key dkID,t, and a ciphertext ct as input, and
outputs the decryption result M.

Correctness. We require the following to hold for an RHIBE scheme. Infor-
mally, we require a ciphertext corresponding to a user ID for time t to be properly
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decrypted by user ID if the user or any of its ancestor is not revoked on time t.
To fully capture this, we consider all the possible scenarios of creating the secret
key for user ID. Namely, for all λ ∈ N, L ∈ N, (PP, skkgc) ← Setup(1λ, L), � ∈ [L],
ID ∈ (ID)�, t ∈ T , M ∈ M, RLkgc,t ⊆ ID, RLID[1],t ⊆ ID[1]‖ID, . . . ,RLID[�−1],t ⊆
ID[�−1]‖ID, if ID′ 	∈ RLpa(ID′),t holds for all ID′ ∈ prefix(ID), then we require
M′ = M to hold after executing the following procedures:

(1) (kukgc,t, skkgc) ← KeyUp(PP, t, skkgc,RLkgc,t,⊥).
(2) For all ID′ ∈ prefix(ID) (in the short-to-long order), execute (2.1) and (2.2):

(2.1) (skID′ , sk′
pa(ID′)) ← GenSK(PP, skpa(ID′), ID

′).
(2.2) (kuID′,t, sk

′
ID′) ← KeyUp(PP, t, skID′ ,RLID′,t, kupa(ID′),t).4

(3) dkID,t ← GenDK(PP, skID, kupa(ID),t).5

(4) ct ← Encrypt(PP, ID, t,M).
(5) M′ ← Decrypt(PP, dkID,t, ct).

We note that, the most stringent way to define correctness would be to also
capture the fact that the secret keys skID can be further updated after executing
GenSK. In particular, the output of KeyUp, which takes as input the secret key
skID, may differ in general before and after GenSK is run. Therefore, to be more
precise, we should also allow an arbitrary (polynomial) number of executions
of GenSK in between steps (2.1) and (2.2). However, we defined correctness as
above for the sake of simplicity and readability. We note that our scheme satisfies
the more stringent correctness (which will be obvious from the construction).

Security Definition. Here, we give a formal security definition for RHIBE.
It seems to us that since the previous security definitions [6,33–35] have

some ambiguous treatment in the security game, it was up to the readers to
interpret the definitions and the proofs. Therefore, in our work, we provide a
refined security definition for RHIBE which in particular is a more rigorous and
explicit treatment than the previous definitions.

Specifically, we explicitly separate the secret key generation and secret key
reveal queries, so that we can capture a situation where some skID has been gen-
erated but not revealed to an adversary. Furthermore, we combine the “revoke”
and “key update” queries in the previous definitions into the single “revoke & key
update” query, and introduce the notion of the “current time period” tcu ∈ T
which is coordinated with the adversary’s revoke & key update query. These
make all the key updates of non-revoked users to be well-defined throughout the
security game.

Formally, let Π = (Setup,Encrypt,GenSK,KeyUp,GenDK,Decrypt) be an
RHIBE scheme. We will only consider selective-identity security, which is defined
via a game between an adversary A and the challenger C. The game is param-
eterized by the security parameter λ and a polynomial L = L(λ) representing
the maximum depth of the identity hierarchy. Moreover, the game has the global
counter tcu, initialized with 1, that denotes the “current time period” with which
C’s responses to A’s queries are controlled. The game proceeds as follows:
4 If |ID′| = L, then this step is skipped.
5 Here, skID is the latest secret key that is the result of the step (2).
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At the beginning, A sends the challenge identity/time period pair (ID∗, t∗) ∈
(ID)≤L × T to C. Next, C runs (PP, skkgc) ← Setup(1λ, L), and prepares a list
SKList that initially contains (kgc, skkgc), and into which identity/secret key
pairs (ID, skID) generated during the game will be stored. From this point on,
whenever a new secret key is generated or an existing secret key is updated for an
identity ID ∈ (ID)≤L∪{kgc} due to the execution of GenSK or KeyUp, C will store
(ID, skID) or update the corresponding entry (ID, skID) in SKList, and we will
not explicitly mention this addition/update. Then, C executes (kukgc,1, sk′

kgc) ←
KeyUp(PP, tcu = 1, skkgc,RLkgc,1 = ∅,⊥) for generating a key update for the
initial time period tcu = 1. After that, C gives PP and kukgc,1 to A.

From this point on, A may adaptively make the following five types of queries
to C:

Secret Key Generation Query: Upon a query ID ∈ (ID)≤L from A,
C checks if (ID, ∗) /∈ SKList and (pa(ID), skpa(ID)) ∈ SKList for some
skpa(ID), and returns ⊥ to A if this is not the case. Otherwise, C executes
(skID, sk′

pa(ID)) ← GenSK(PP, skpa(ID), ID). If ID ∈ (ID)≤L−1, then C further-
more executes (kuID,tcu , sk

′
ID) ← KeyUp(PP, tcu, skID,RLID,tcu = ∅, kupa(ID),tcu).

Then, C returns kuID,tcu to A if ID ∈ (ID)≤L−1, or returns nothing to A if
ID ∈ (ID)L.6

We require that all identities ID appearing in the following queries (except
the challenge query) be “activated”, in the sense that skID is generated via
this query and hence (ID, skID) ∈ SKList.

Secret Key Reveal Query: Upon a query ID ∈ (ID)≤L from A, C checks if
the following condition is satisfied:

• If tcu ≥ t∗ and ID′ /∈ RLpa(ID′),t∗ for all ID′ ∈ prefix(ID∗), then ID /∈
prefix(ID∗).7

If this condition is not satisfied, then C returns ⊥ to A. Otherwise, C finds
skID from SKList, and returns it to A.

Revoke & Key Update Query: Upon a query RL ⊆ (ID)≤L (which denotes
the set of identities that are going to be revoked in the next time period)
from A, C checks if the following conditions are satisfied simultaneously:

• RLID,tcu ⊆ RL for all ID ∈ ID≤L−1 ∪ {kgc} that appear in SKList.8

• For all identities ID such that (ID, ∗) ∈ SKList and ID′ ∈ prefix(ID), if
ID′ ∈ RL then ID ∈ RL.9

6 We stress that just making this query does not give the secret key skID to A. It
is captured by the “Secret Key Reveal Query” explained next. Furthermore, we
provide the key updates to A unconditionally, since they are typically broadcast via
an insecure channel and are not meant to be secret.

7 In other words, this check ensures that if ID∗ or any of its ancestors was not revoked
before the challenge time period t∗, then skID will not be revealed for any ID ∈
prefix(ID∗). Without this condition, there is a trivial attack on any RHIBE scheme.

8 This check ensures that the identities that have already been revoked will remain
revoked in the next time period.

9 In other words, this check ensures that if some ID is revoked, then all of its descen-
dants are also revoked.
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• If tcu = t∗ − 1 and skID′ for some ID′ ∈ prefix(ID∗) has already been
revealed by the secret key reveal query ID′, then ID′ ∈ RL.10

If these conditions are not satisfied, then C returns ⊥ to A.
Otherwise C increments the current time period by tcu ← tcu + 1. Then, C
executes the following operations (1) and (2) for all “activated” and non-
revoked identities ID, i.e., ID ∈ (ID)≤L−1 ∪ {kgc}, (ID, ∗) ∈ SKList, and
ID /∈ RL, in the breadth-first order in the identity hierarchy:
(1) Set RLID,tcu ← RL ∩ (ID‖ID), where we define kgc‖ID := ID.
(2) Run (kuID,tcu , sk

′
ID) ← KeyUp(PP, tcu, skID,RLID,tcu , kupa(ID),tcu), where

kupa(kgc),tcu := ⊥.
Finally, C returns all the generated key updates {kuID,tcu}(ID,∗)∈SKList to A.

Decryption Key Reveal Query: Upon a query (ID, t) ∈ (ID)≤L × T from
A, C checks if the following conditions are simultaneously satisfied:

• t ≤ tcu.
• ID 	∈ RLpa(ID),t

• (ID, t) 	= (ID∗, t∗).11

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C
finds skID from SKList, runs dkID,t ← GenDK(PP, skID, kupa(ID),t), and returns
dkID,t to A.12

Challenge Query: A is allowed to make this query only once. Upon a query
(M0,M1) from A, where it is required that |M0| = |M1|, C picks the challenge
bit b ∈ {0, 1} uniformly at random, runs ct∗ ← Encrypt(PP, ID∗, t∗,Mb), and
returns the challenge ciphertext ct∗ to A.

At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.

The above completes the description of the game. In this game, A’s selective-
identity security advantage AdvRHIBE-selΠ,L,A (λ) is defined by AdvRHIBE-selΠ,L,A (λ) := 2 ·
|Pr[b′ = b] − 1/2|.

Definition 2. We say that an RHIBE scheme Π with depth L satisfies
selective-identity security, if the advantage AdvRHIBE-selΠ,L,A (λ) is negligible for all
PPT adversaries A.

10 In other words, this check is to ensure that if the secret key skID′ of some ancestor
ID′ of ID∗ (or ID∗ itself) has been revealed to A, then ID′ is revoked in the next time
period.

11 In previous works [33,35], A is disallowed to obtain not only dkID∗,t∗ (which is clearly
necessary to avoid a trivial attack), but also decryption keys dkID′,t∗ for all ID′ ∈
prefix(ID∗). Our relaxed condition here makes the defined security stronger since A
is able to obtain additional information without any restrictions.

12 Note that kupa(ID),t must have been already generated at this point due to the con-
dition t ≤ tcu.
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4.2 Strategy-Dividing Lemma

In the literature of R(H)IBE, a typical security proof for an R(H)IBE scheme
goes as follows:

(1) classify an adversary’s strategies into multiple pre-determined types, say
Type-1 to Type-n for some n ∈ N that cover all possible strategies, and

(2) for each i ∈ [n], prove that any adversary that is promised to follow the
Type-i strategy (and never break the promise) has negligible advantage in
attacking the considered scheme.

Here, it is implicitly assumed that the above mentioned “type-classification-
based” security proof is sufficient for proving security against arbitrary adver-
saries that may decide their attack strategies adaptively during the game.

For completeness, we formalize the above implicit argument as a simple yet
handy “strategy-dividing lemma”, which helps us simplify security proofs for
R(H)IBE schemes in general. Since this is an implicit argument that has been
frequently adopted in the R(H)IBE literatures, we provide it in the full version.

5 Generic Construction of RIBE with DKER

In this section, we show a “security-enhancing” generic construction for RIBE.
Namely, we show how to construct an RIBE scheme with DKER by combining
an RIBE scheme without DKER and a 2-level (non-revocable) HIBE scheme.

Let r.Π = (r.Setup, r.Encrypt, r.GenSK, r.KeyUp, r.GenDK, r.Decrypt) be an
RIBE scheme (without DKER) with identity space r.ID, plaintext space r.M,
and time period space r.T . Let h.Π = (h.Setup, h.Encrypt, h.GenSK, h.Delegate,
h.Decrypt) be a 2-level HIBE scheme with element identity space h.ID and plain-
text space h.M. We assume r.ID = h.ID, r.M = h.M, and r.T ⊆ h.ID. Fur-
thermore, we assume that the plaintext space is finite and forms an abelian group
with the addition “+” as the group operation.

Using these ingredients, we construct an RIBE scheme Π = (Setup,Encrypt,
GenSK,KeyUp,GenDK,Decrypt) with DKER as follows. The identity space ID,
the plaintext space M, and the time period space T of the constructed RIBE
scheme Π are, respectively, ID = r.ID = h.ID, M = r.M = h.M, and T =
r.T ⊆ h.ID.

Setup(1λ) → (PP, skkgc): It takes the security parameter 1λ as input, and runs
(r.PP, r.skkgc) ← r.Setup(1λ) and (h.PP, h.skkgc) ← h.Setup(1λ). Then, it
outputs a public parameter PP := (r.PP, h.PP) and the KGC’s secret key
skkgc := (r.skkgc, h.skkgc).

Encrypt(PP, ID, t,M) → ct: It takes a public parameter PP = (r.PP, h.PP),
an identity ID ∈ ID, a time period t ∈ T , and a plaintext M ∈ M as
input, and samples a pair (r.M, h.M) ∈ M2 uniformly at random, sub-
ject to r.M + h.M = M. Then, it runs r.ct ← r.Encrypt(r.PP, ID, t, r.M)
and h.ct ← h.Encrypt(h.PP, (ID, t), h.M). Finally, it outputs a ciphertext
ct := (r.ct, h.ct).
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GenSK(PP, skkgc, ID) → (skID, sk′
kgc): It takes a public parameter PP =

(r.PP, h.PP), the KGC’s secret key skkgc = (r.skkgc, h.skkgc), and an identity
ID ∈ ID as input, and runs (r.skID, r.sk′

kgc) ← r.GenSK(r.PP, r.skkgc, ID) and
h.skID ← h.GenSK(h.PP, h.skkgc, ID). Then, it outputs a secret key skID :=
(r.skID, h.skID) for the identity ID and also the KGC’s updated secret key
sk′

kgc := (r.sk′
kgc, h.skkgc).

KeyUp(PP, t, skkgc,RLt) → (kut, sk′
kgc): It takes a public parameter PP =

(r.PP, h.PP), a time period t ∈ T , the KGC’s secret key skkgc =
(r.skkgc, h.skkgc), and a revocation list RLt ⊆ ID as input, and, runs
(r.kut, r.sk′

kgc) ← r.KeyUp(r.PP, t, r.skkgc,RLt). Then, it outputs a key update
kut := r.kut and also the KGC’s updated secret key sk′

kgc := (r.sk′
kgc, h.skkgc).

GenDK(PP, skID, kut) → dkID,t or ⊥: It takes a public parameter PP =
(r.PP, h.PP), a secret key skID = (r.skID, h.skID), and a key update kut = r.kut
as input, and runs r.dkID,t ← r.GenDK(r.PP, r.skID, r.kut) and h.skID,t ←
h.Delegate(h.PP, h.skID, t). Then, it outputs a decryption key dkID,t :=
(r.dkID,t, h.skID,t) for time period t, except that if r.dkID,t = ⊥, then it returns
the special “invalid” symbol ⊥ indicating that ID has been revoked.

Decrypt(PP, dkID,t, ct) → M: It takes a public parameter PP = (r.PP, h.PP), a
decryption key dkID,t = (r.dkID,t, h.skID,t), and a ciphertext ct = (r.ct, h.ct)
as input, and then runs r.M ← r.Decrypt(r.PP, r.dkID,t, r.ct) and h.M ←
h.Decrypt(h.PP, h.skID,t, h.ct). If r.M = ⊥ or h.M = ⊥, then it returns ⊥.
Otherwise, it outputs the decryption result M := r.M + h.M.

It is immediate to see that the correctness of the constructed RIBE scheme
Π follows from that of the building blocks. The security of Π is guaranteed by
the following theorem.

Theorem 1. If the underlying RIBE scheme r.Π satisfies weak selective-identity
(resp. weak adaptive-identity) security and the underlying 2-level HIBE scheme
h.Π satisfies selective-identity (resp. adaptive-identity) security, then the result-
ing RIBE scheme Π satisfies selective-identity (resp. adaptive-identity) security.

Proof Overview. Here, we explain an overview of the proof. In the actual proof,
we consider the following two attack strategies of an adversary against the RIBE
scheme Π that are mutually exclusive and cover all possibilities:

– Type-I: The adversary issues a valid secret key reveal query on ID∗.
– Type-II: The adversary does not issue a valid secret key reveal query on ID∗.

Whether an adversary has deviated from one strategy is easy to detect. Due to
the strategy-dividing lemma, it suffices to show that for each type of adversary
(that is promised to follow the attack strategy), its advantage is negligible. In
particular, we show that the security of the RIBE scheme Π against Type-I
(resp. Type-II) adversary is guaranteed by the security of the underlying RIBE
scheme r.Π (resp. 2-level HIBE scheme h.Π).



464 S. Katsumata et al.

6 RHIBE from Lattices

In this section, we first explain our treatment on binary trees, the CS method,
and the parameters used in the scheme. Then, we show our proposed scheme in
Sect. 6.1 and discuss the security in Sect. 6.2.

On the Treatment of Binary Trees and the CS Method. Every user ID
such that |ID| ≤ L − 1 (including KGC) maintains a binary tree BTID as part of
his secret key skID. We assume that auxiliary information such as user identities
ID and vectors in Z

n
q can be stored in the nodes of binary trees. The binary tree

along with the CS method is the mechanism used by the parent to manage its
children, i.e., keep track whether a child is revoked or not. We use θ to denote
a node in a binary tree. We use η when we emphasize that the node θ is a leaf
node. Let Path(BTpa(ID), ηID) denote the set of nodes which are on the path along
the root of BTpa(ID) to the leaf ηID. Note that the size of Path(BTpa(ID), ηID) is
O(log N). We define the CS method by the following four algorithms:

CS.SetUp(N) → BTpa(ID): It takes the number of users N as input, and outputs
a binary tree BTpa(ID) with at least N and at most 2N leaves.

CS.Assign(BTpa(ID), ID) → (ηID, BTpa(ID)): It takes a binary tree BTpa(ID) and an
identity ID as inputs, and randomly assigns the user identity ID to a leaf
node ηID, to which no other IDs have been assigned yet. Then, it outputs a
leaf ηID and an “updated” binary tree BTpa(ID).

CS.Cover(BTpa(ID),RLpa(ID),t) → KUNode(BTpa(ID),RLpa(ID),t): It takes a binary
tree BTpa(ID) and a revocation list RLpa(ID),t as inputs, and outputs a set
of nodes KUNode(BTpa(ID),RLpa(ID),t). Here, the subtrees with root θ ∈
KUNode(BTpa(ID),RLpa(ID),t) cover all leaves ηID in BTpa(ID) for ID 	∈ RLpa(ID),t

and do not cover any leaves ηID for ID ∈ RLpa(ID),t.
CS.Match(Path(BTpa(ID), ηID),KUNode(BTpa(ID),RLpa(ID),t)) → θ or ∅: It takes

Path(BTpa(ID), ηID) and KUNode(BTpa(ID),RLpa(ID),t) as inputs, and outputs an
arbitrary node θ ∈ Path(BTpa(ID), ηID)∩KUNode(BTpa(ID),RLpa(ID),t) if it exists.
Otherwise, it outputs ∅.

Looking ahead, at a high level, all parents maintain the children to whom
it has generated secret keys by the binary tree BTpa(ID). The secret keys
skID will include some (partial) secret information that are associated with
a node in Path(BTpa(ID), ηID). To revoke a set of users RLpa(ID),t, the parent
constructs the key update kupa(ID),t by running CS.Cover and generates a set
of nodes KUNode(BTpa(ID),RLpa(ID),t), which represents the set of users that
are not revoked. Similarly to above, each node in KUNode(BTpa(ID),RLpa(ID),t)
will include some (partial) secret information. We note that the size of
KUNode(BTpa(ID),RLpa(ID),t) is O(R log(N/R)), where R =

∣
∣RLpa(ID),t

∣
∣. Notably,

the size of the key update kupa(ID),t will be logarithmic in N . Then, any user ID
who is not revoked can run the CS.Match algorithm to obtain a node θ which is
included both in Path(BTpa(ID), ηID) and KUNode(BTpa(ID),RLpa(ID),t). Combining
the two partial secret information embedded in the nodes, user ID will be able to
construct the decryption key dkID,t which allows him to decrypt the ciphertext.
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Parameters. Let L denote the maximum depth of the hierarchy and N
denote the maximum number of children each parent manages. Furthermore,
let n,m, q be positive integers such that q is a prime and α, α′, (σi)L

i=0 be
positive reals denoting the Gaussian parameters. Finally, we set the plaintext
space as M = {0, 1}, the element identity space as ID = Z

n
q \ {0n}, and

the hierarchal identity space as IDh := (Zn
q \ {0n})≤L. We also encode the

time period space T = {1, 2, · · · , tmax} into a polynomial sized subset of Zn
q . In

the following, for readability, we may simply address each space ID, IDh, T as
T = ID = Z

n
q \ {0n}, IDh = (Zn

q \ {0n})≤L, unless stated otherwise.

6.1 Construction

We provide our RHIBE scheme below. The intuition of the construction follows
the explanation given in Sect. 2. Due to the complex nature of our scheme, we
encourage readers to go back to Sect. 2 whenever needed.

Setup(1n, L) → (PP, skkgc): The setup algorithm is run by the KGC. It takes
the security parameter 1n and the maximum depth of the hierarchy L
as input, and runs (Ai,TAi

) ← TrapGen(1n, 1m, q) for i ∈ [L + 1]. It
also samples uniformly random matrices (Bj)j∈[L+1] ← (Zn×m

q )(L+1) and
vectors (uk)k∈[L] ← (Zn

q )L. Finally, it creates a binary tree by running
BTkgc ← CS.SetUp(N) and outputs

PP :=
(
(Ai)i∈[L+1], (Bj)j∈[L+1], (uk)k∈[L]

)
, skkgc :=

(
BTkgc, (TAi

)i∈[L+1]

)
.

Recall here that the matrices Bj define the hash functions E(·) and F(·)
stated in Eq. (1) in Sect. 2.

Encrypt(PP, ID = (id1, . . . , id�), t,M) → ct: On input an identity ID ∈ (Zn
q )� at

depth � ∈ [L] and time period t ∈ Z
n
q , it first samples �+1 uniformly random

vectors (si)i∈[�], sL+1 ∈ Z
n
q . Then it samples x ← DZ,αq,xi ← DZ(i+2)m,α′q for

i ∈ [�] and xL+1 ← DZ(�+2)m,α′q, and sets

⎧
⎪⎪⎨

⎪⎪⎩

c0 = u�
� (s1 + · · · + s� + sL+1) + x + M

⌊q

2

⌋
,

ci = [Ai|E(ID[i])|F(t)]�si + xi for i ∈ [�],

cL+1 = [AL+1|E(ID)|F(t)]�sL+1 + xL+1.

Finally, it outputs a ciphertext ct := (c0, c1, . . . , c�, cL+1) ∈ Zq ×Z
3m
q × · · · ×

Z
(�+2)m
q × Z

(�+2)m
q .

GenSK(PP, skpa(ID), ID) → (skID, sk′
pa(ID)): The secret key generation algorithm is

run by a parent user pa(ID) at level �− 1, where 1 ≤ � ≤ L, to create a secret
key for its child ID.13 It first runs (BTpa(ID), ηID) ← CS.Assign(BTpa(ID), ID).

13 Recall that a user at level 0 corresponds to the kgc, i.e., for any level-1 user ID ∈
Z
n
q \ {0n}, pa(ID) = kgc.
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Then, for each node θ ∈ Path(BTpa(ID), ηID), it checks whether a vector
upa(ID),θ ∈ Z

n
q has already been assigned. If not, pick a uniformly random vec-

tor upa(ID),θ ∈ Z
n
q and update skpa(ID) by storing upa(ID),θ in node θ ∈ BTpa(ID).

Next, it samples vectors eID,θ, fID,k ∈ Z
(�+1)m for θ ∈ Path(BTpa(ID), ηID), k ∈

[�+1, L], respectively, such that [A�|E(ID)]eID,θ = upa(ID),θ, [A�|E(ID)]fID,k =
uk − u� by running SampleLeft(·) with trapdoor T[A�|E(pa(ID))]

14 and Gaus-
sian parameter σ�. Then, it extends its bases by running the following algo-
rithm for i ∈ [� + 1, L + 1]: T[Ai|E(ID)] ← ExtRndLeft([Ai|E(pa(ID))], B� +
H(id�)G, T[Ai|E(pa(ID))], σ�−1), where T[Ai|E(ID)] ∈ Z

(�+1)m×(�+1)m. Here,
recall that E(ID) = [E(pa(ID))|B� + H(id�)G]. Finally, it runs BTID ←
CS.SetUp(N) and outputs,

skID =
(
BTID,Path(BTpa(ID), ηID), (eID,θ)θ∈Path(BTpa(ID),ηID),

(fID,k)k∈[�+1,L], (T[Ai|E(ID)])i∈[�+1,L+1]

)

along with its updated secret key sk′
pa(ID).

KeyUp(PP, t, skID,RLID,t, kupa(ID),t) → (kuID,t, sk
′
ID): The key update information

generation algorithm is run by user ID at level �, where 0 ≤ � ≤ L − 1,
to create a key update kuID,t for time period t for its children. It first runs
KUNode(BTID,RLID,t) ← CS.Cover(BTID,RLID,t), and checks whether uID,θ is
defined for each node θ ∈ KUNode(BTID,RLID,t). If not, it picks a random
uID,θ ∈ Z

n
q and updates skID by storing uID,θ in the node θ ∈ BTID. Then, for

each node θ, it samples eID,t,θ ∈ Z
(�+2)m such that [A�+1|E(ID)|F(t)]eID,t,θ =

u�+1 − uID,θ by running SampleLeft(·) with trapdoor T[A�+1|E(ID)] and Gaus-
sian parameter σ�+1.
At this point, the algorithm behaves differently depending on � ≥ 1 or � = 0
(i.e., ID = kgc). In case � ≥ 1, it computes its own decryption key dkID,t,
which includes a vector dID,t ∈ Z

(�+2)m, using the decryption key generation
algorithm GenDK(PP, skID, kupa(ID,t)) defined below, and computes the follow-
ing vectors for k ∈ [� + 1, L]: fID,t,k = dID,t + [fID,k‖0m] ∈ Z

(�+2)m. Here, [·‖·]
denotes vertical concatenation of vectors.
Finally, it extracts (fID[i],t,k ∈ Z

(i+2)m)(i,k)∈[�−1]×[�+1,L] from its ancestor’s
key update information kupa(ID),t and outputs

kuID,t =
(
KUNode(BTID,RLID,t), (eID,t,θ)θ∈KUNode(BTID,RLID,t),

(fID[i],t,k)(i,k)∈[�]×[�+1,L]

)

and the possibly updated sk′
ID.

In case � = 0, it skips all the above procedures and simply outputs

kuID,t = (KUNode(BTID,RLID,t), (eID,t,θ)θ∈KUNode(BTID,RLID))

14 There are two exceptions for this algorithm. In the special case ID = kgc, recall
that we set T[A1|E(kgc)] as TA1 , which is included in the skkgc. In the other special
case when � = L, we no longer sample fID,k, since this vector is only required for
delegating key updates to its children, which users at level L do not have.
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and the possibly updated sk′
ID.15

GenDK(PP, skID, kupa(ID),t) → dkID,t or ⊥: The decryption key generation algo-
rithm is run by user ID at level �, where 1 ≤ � ≤ L. It extracts
Path(BTpa(ID), ηID) in skID and KUNode(BTpa(ID),RLpa(ID),t) in kupa(ID),t, and
runs θ/∅ ← CS.Match(Path(BTpa(ID), ηID),KUNode(BTpa(ID),RLpa(ID),t)). If the
output is ∅, it outputs ⊥. Otherwise, it extracts eID,θ, epa(ID),t,θ ∈ Z

(�+1)m in
skID, kupa(ID),t, respectively, and parses it as

eID,θ = [eLID,θ‖eRID,θ], epa(ID),t,θ = [eLpa(ID),t,θ‖eRpa(ID),t,θ],

where eLID,θ, e
L
pa(ID),t,θ ∈ Z

�m and eRID,θ, e
R
pa(ID),t,θ ∈ Z

m. Then, it computes

dID,t = [eLID,θ + eLpa(ID),t,θ‖eRID,θ‖eRpa(ID),t,θ] ∈ Z
(�+2)m.

It further samples gID,t ∈ Z
(�+2)m such that [AL+1|E(ID)|F(t)]gID,t = u� by

running SampleLeft(·) with trapdoor T[AL+1|E(ID)] and Gaussian parameter
σ�.
Finally, in case � ≥ 2, it extracts (fID[i],t,�)i∈[�−1] from kupa(ID),t and outputs
dkID,t = (dID,t, (fID[i],t,�)i∈[�−1],gID,t). Otherwise, in case � = 1, it simply out-
puts dkID,t = (dID,t,gID,t).

Decrypt(PP, dkID,t, ct) → M: The decryption algorithm is run by user ID
at level �, where 1 ≤ � ≤ L. It first parses the ciphertext ct as
(c0, c1, · · · , c�, cL+1). Then, in case � ≥ 2, it uses its decryption key dkID,t =
(dID,t, (fID[i],t,�)i∈[�−1],gID,t) and computes

c′ = c0 −
�−1∑

i=1

f�
ID[i],t,�

ci − d�
ID,tc� − g�

ID,tcL+1 ∈ Zq. (5)

Otherwise, in case � = 1, it uses its decryption key dkID,t = (dID,t,gID,t) and
computes

c′ = c0 − d�
ID,tc1 − g�

ID,tcL+1 ∈ Zq.

Finally, it compares c′ and � q
2� treating them as integers in Z, and outputs 1

in case |c′ − � q
2�| < � q

4� and 0 otherwise.

Correctness. Let a ciphertext be aimed for user ID and time period t. To check
correctness, we only need to consider the case where all the ancestors of ID are
not revoked. In other words, we check that user ID will be able to obtain all the
required components to construct the decryption key dID,t when provided with
all the key updates kuID′,t from ID′ ∈ prefix(ID)\{ID}.

Lemma 5. Assume O((α + mL2σLα′)q) ≤ q/5 holds with overwhelming proba-
bility. Then the above scheme has negligible decryption error.

15 The branch in the algorithm is due to the fact that for the special case � = 0, i.e.,
ID = kgc, we have kupa(ID),t = ⊥ for all T and there exists no decryption key dkID,t.
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Remarks. Note that for simplicity we defined correctness of RHIBE to hold with
probability one in Sect. 4. Therefore, to be consistent with our definition, we can
use standard techniques to modify our lattice-based construction to have no
decryption error by considering a bound on the secret/noise vectors.

6.2 Security

Theorem 2. The above RHIBE scheme Π is selective-identity secure assuming
the hardness of the LWEn,m+1,q,χ problem, where χ = DZm+1,αq.

Proof Overview. Here, we provide an overview of the proof. Let A be a PPT
adversary that attacks the selective-identity security of the RHIBE scheme Π
with non-negligible advantage. In addition, let (ID∗ = (id∗

1, . . . , id
∗
�∗), t∗) be the

challenge identity/time period pair that A sends to the challenger at the begin-
ning of the game. Similarly to the RIBE adversary in Sect. 5, the strategy taken
by A can be divided into the following two types that are mutually exclusive,
where the first type can be further divided into � types of strategies that are
mutually exclusive:

– Type-I: A issues secret key reveal queries on at least one ID ∈ prefix(ID∗).
– Type-I-i∗: A issues a secret key reveal query on ID∗

[i∗] but not on any
ID ∈ prefix(ID∗

[i∗−1]).
– Type-II: A does not issue secret key reveal queries on any ID ∈ prefix(ID∗).

Due to the strategy-dividing lemma, it suffices to prove security against each
type of adversary independently. In our proof we provide two types of security
reduction: one for when A follows the Type-I-i∗ (1 ≤ i∗ ≤ �∗) strategy and
another for when A follows the Type-II strategy. Let us provide a brief overview
of the reduction when we are against a Type-I-i∗ adversary A. The general idea
holds for Type-II adversaries as well.

Our goal is to modify the challenger through a sequence of games so that in
the end he would be able to simulate the game against the Type-I-i∗ adversary
A using only the trapdoors {TA}i∈[L+1]\{i∗}. At a high level, this allows the
challenger to embed his LWE challenge into the matrix Ai∗ included in the
public parameter PP. The following Table 1 depicts all the possible scenarios
where the challenger requires the trapdoor TAi∗ , either implicitly or explicitly,
in the real game to respond to A’s queries. For readers familiar with the RIBE

Table 1. Items for which the challenger requires TAi∗ to construct.

ID ∈ (ID)i∗
ID ∈ (ID)i∗−1 (In case i∗ ≥ 3)

ID ∈ (ID)≤i∗−2

Secret Key Generation (skID)
(eID,θ)θ∈Path(BTpa(ID),ηID

)

(fID,k)k∈[i∗+1,L]

T[Ai∗ |E(ID)] T[Ai∗ |E(ID)]

Revoke & Key Update (kuID,t) (fID,t,k)k∈[i∗+1,L] (eID,t,θ)θ∈KUNode(BTID,RLID,t)
−

Decryption Key Reveal (dkID,t) dID,t − −
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scheme without DKER of Chen et al. [10], it may be helpful to point out that the
way we modify the challenger so that he no longer requires TAi∗ to construct
(eID,θ)θ in the secret key generation query and (eID,t,θ)θ in the revoke & key
update query is very similar to the technique used in [10]. This is mainly because
these components are those responsible for achieving the revocation mechanism.
Our proof deviates from prior works when we modify the challenger so that he
no longer requires TAi∗ to construct (fID,k)k in the secret key generation query
and (fID,t,k)k in the revoke & key update query, since these are the newly added
components for achieving DKER.
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Abstract. Non-interactive zero-knowledge (NIZK) is a fundamental
primitive that is widely used in the construction of cryptographic schemes
and protocols. Despite this, general purpose constructions of NIZK proof
systems are only known under a rather limited set of assumptions that
are either number-theoretic (and can be broken by a quantum computer)
or are not sufficiently well understood, such as obfuscation. Thus, a basic
question that has drawn much attention is whether it is possible to con-
struct general-purpose NIZK proof systems based on the learning with
errors (LWE) assumption.

Our main result is a reduction from constructing NIZK proof sys-
tems for all of NP based on LWE, to constructing a NIZK proof system
for a particular computational problem on lattices, namely a decisional
variant of the Bounded Distance Decoding (BDD) problem. That is, we
show that assuming LWE, every language L ∈ NP has a NIZK proof
system if (and only if) the decisional BDD problem has a NIZK proof sys-
tem. This (almost) confirms a conjecture of Peikert and Vaikuntanathan
(CRYPTO, 2008).

To construct our NIZK proof system, we introduce a new notion that
we call prover-assisted oblivious ciphertext sampling (POCS), which we
believe to be of independent interest. This notion extends the idea of
oblivious ciphertext sampling, which allows one to sample ciphertexts
without knowing the underlying plaintext. Specifically, we augment the
oblivious ciphertext sampler with access to an (untrusted) prover to help
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it accomplish this task. We show that the existence of encryption schemes
with a POCS procedure, as well as some additional natural requirements,
suffices for obtaining NIZK proofs for NP. We further show that such
encryption schemes can be instantiated based on LWE, assuming the
existence of a NIZK proof system for the decisional BDD problem.

1 Introduction

The learning with errors (LWE) problem, introduced by Regev [Reg09], has had
a profound impact on cryptography. The goal in LWE is to find a solution to a set
of noisy linear equations modulo a large integer q, where the noise is typically
drawn from a discrete Gaussian distribution. The assumption that LWE cannot
be broken in polynomial time can be based on worst-case hardness of lattice
problems [Reg09,Pei09] and has drawn immense interest in recent years.

Immediately following its introduction, LWE was shown to imply the exis-
tence of many important cryptographic primitives such as public-key encryption
[Reg09], circular secure encryption [ACPS09], oblivious transfer [PVW08], cho-
sen ciphertext security [PW08,Pei09], etc. Even more remarkably, in recent years
LWE has been used to achieve schemes and protocols above and beyond what
was previously known from other assumptions. Notable examples include fully
homomorphic encryption [BV14], predicate encryption and certain types of func-
tional encryption (see, e.g., [AFV11,GKP+13,GVW15]), and even obfuscation
of certain expressive classes of computations [WZ17,GKW17].

Despite this amazing list of applications, one major primitive that has resisted
all LWE based attempts is general purpose Non-Interactive Zero-Knowledge
(NIZK) proof systems for NP.1 A NIZK proof system for a language L ∈ NP,
as introduced by Blum et al. [BFM88], is a protocol between a probabilistic
polynomial-time prover P and verifier V in the Common Random String (CRS)
model. The prover, given an instance x ∈ L, a witness w, and the random string
r, produces a proof string π which it sends to the verifier. Based only on x,
the random string r and the proof π, the verifier can decide whether x ∈ L.
Furthermore, the protocol is zero-knowledge: the proof π reveals nothing to the
verifier beyond the fact that x ∈ L.

Non-interactive zero-knowledge proofs have been used extensively in cryp-
tography, with applications ranging from chosen ciphertext security and non-
malleability [NY90,DDN03,Sah99], multi-party computation with a small num-
ber of rounds (see, e.g., [MW16]), low-round witness-indistinguishability [DN07]
to various types of signatures (e.g. [BMW03,BKM06]) and beyond.

Currently, general purpose NIZK proof systems (i.e., NIZK proof systems for
all of NP) are only known based on number theoretic assumptions (e.g., the
hardness of factoring integers [FLS99] or the decisional linear assumption or
symmetric external Diffie-Hellman assumption over bilinear groups [GOS12])
or from indistinguishability obfuscation [SW14,BP15] (see Sect. 1.2 for further
1 As a matter of fact, resolving this question carries a symbolic cash prize; see https://

simons.berkeley.edu/crypto2015/open-problems.

https://simons.berkeley.edu/crypto2015/open-problems
https://simons.berkeley.edu/crypto2015/open-problems
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discussion). We remark that the former class of assumptions can be broken by
a quantum computer [Sho99] whereas the assumption that indistinguishability
obfuscation exists is not yet well understood. Thus, the following basic question
remains open:

Can we construct NIZK proofs for all of NP based on LWE?

1.1 Our Results

Our main result is a completeness theorem reducing the foregoing question to
that of constructing a NIZK proof system for one particular computational prob-
lem. Specifically, we will consider a decisional variant of the bounded distance
decoding (BDD) problem.

Recall that in the BDD problem, the input is a lattice basis and a target
vector which is very close to the lattice. The problem is to find the nearby
lattice point. This is very similar to the closest vector problem CVP except that
here the vector is guaranteed to be within the λ1 radius of the lattice, where
λ1 denotes the length of the shortest non-zero lattice vector (more specifically,
the problem is parameterized by α ≥ 1 and the guarantee is that the point
is at distance λ1/α from the lattice). BDD can also be viewed as a worst-case
variant of LWE and is known to be (up to polynomial factors) equivalent to the
shortest-vector problem (more precisely, GapSVP) [LM09].

In this work, we consider a decisional variant of BDD, which we denote by
dBDD. The dBDDα,γ problem, is a promise problem, parameterized by α ≥ 1
and γ ≥ 1, where the input is a basis B of a lattice L and a point t. The goal
is to distinguish between pairs (L, t) such that the point t has distance at most
λ1(L)

α from the lattice L from tuples in which t has distance at least γ · λ1(L)
α

from L.
Our main result can be stated as follows:

Theorem 1 (Informal; see Theorem 2).
Suppose that LWE holds and that dBDDα,γ has a NIZK proof system (where

α and γ depend on the LWE parameters). Then, every language in NP has a
NIZK proof system.

Since dBDD is a special case of the well studied GapCVP problem, a NIZK for
GapCVP would likewise suffice for obtaining NIZKs for all of NP based on LWE.

Relation to [PV08]. Theorem 1 (almost) confirms a conjecture of Peikert and
Vaikuntanathan [PV08]. More specifically, [PV08] conjectured that a NIZK proof-
system for a specific computational problem related to lattices would imply
a NIZK proof-system for every NP language. The problem that Peikert and
Vaikuntanathan consider is GapSVP whereas the problem that we consider is
the closely related dBDD problem. While BDD is known to be no harder than
GapSVP [LM09] (and the same can be shown for dBDD, see Proposition 1), these
results are shown by Cook reductions and so a NIZK for one problem does not
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necessarily yield a NIZK for the other. In particular, we do not know how to
extend Theorem 1 to hold with respect to GapSVP.

Tradeoff Between the Modulus and Gap. The tradeoff between α and γ and the
LWE parameters is quantified precisely in the technical sections (see Theorem 2).
Roughly speaking, we need both α and γ to be small relative to 1/β, where β
is the magnitude of the LWE error divided by the LWE modulus q. This trade-
off allows us to obtain NIZK proof systems for NP from a variety of parameter
regimes. In particular, given a NIZK proof system for dBDDα,γ where α and γ are
polynomial in the security parameter, we can instantiate Theorem1 even assum-
ing LWE with a polynomial-size modulus. On the other hand, it suffices to have
a NIZK for dBDDα,γ with respect to a super-polynomial or even subexponential
α or γ, assuming LWE with a super-polynomial or subexponential modulus.

Furthermore, we emphasize that it suffices for us that dBDDα,γ has a non-
interactive computational zero-knowledge proof-system under the LWE assump-
tion. However, it is entirely plausible that dBDDα,γ has an (unconditional) non-
interactive statistical zero-knowledge proof system (NISZK).

1.2 Related Works

Non-Interactive Zero-Knowledge. Non-interactive zero-knowledge proofs were
first introduced by Blum, Feldman and Micali [BFM88], who also constructed a
NIZK proof system for all of NP based on the Quadratic Residuocity assump-
tion. Later work by Feige, Lapidot and Shamir [FLS99] gave a construction under
(an idealized version of) trapdoor permutations. Together with additional con-
tributions of Bellare and Yung [BY96] and Goldreich [Gol11], this yields NIZK
proofs for NP based on factoring (using a variant of Rabin’s [Rab79] trapdoor
permutation collection).

Groth, Ostrovsky and Sahai [GOS12] construct a more efficient general pur-
pose NIZK proof-system based on hardness assumptions on groups equipped
with bilinear maps. Groth and Sahai [GS08] also construct a NIZK proof system
for specific problems related to such bilinear groups. Groth [Gro10] constructs
highly efficient NIZK proofs assuming certain “knowledge of exponent” assump-
tions (which in particular are not falsifiable, in the sense of [Nao03]). More
recently, constructions of NIZK arguments and proofs based on indistinguisha-
bility obfuscation were given by Sahai and Waters [SW14] and Bitansky and
Paneth [BP15].

Another method for constructing non-interactive zero-knowledge proofs is
via the Fiat-Shamir heuristic [FS86], for reducing interaction in (public-coin)
interactive proofs. Loosely speaking, the Fiat-Shamir heuristic uses a cryp-
tographic hash-function to compute the verifier’s messages, and the resulting
protocol is known to be secure in the random-oracle model [BR93]. However,
replacing the random oracle with a concrete hash function may lead to an inse-
cure protocol [CGH04,GK03], and so it is highly desirable to construct NIZK
protocols whose security does not depend on random oracles. In recent works,
Kalai et al. [KRR17] and Canetti et al. [CCRR18] construct hash functions for
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which the Fiat-Shamir heuristic is sound when applied to interactive proofs (i.e.,
with statistical soundness). However, they use very strong assumptions such as
the existence of encryption schemes in which the success probability of a key-
dependent message (KDM) key recovery attack succeeds only with exponentially
small probability.

As mentioned above, Peikert and Vaikuntanathan [PV08] conjecture that a
NIZK proof-system for GapSVP would suffice to obtain NIZK for all of NP based
on LWE. [PV08] also suggest that one approach to proving this conjecture is
to translate the prior approach of Blum et al. [BDSMP91], which referred to
the quadratic residuosity problem, to lattices. Our approach differs from that
suggested by [PV08] and is more similar to the [FLS99] paradigm.

Recently, Kim and Wu [KW18] showed a construction of multi-theorem NIZK
argument for NP from standard lattice assumptions in the preprocessing model.
In the preprocessing multi-theorem model, a trusted setup algorithm produces
proving and verification keys, which are reusable for an unbounded number of
theorems.

Zero-Knowledge Proofs for Specific Lattice Problems. Highly relevant to our
assumption of a NIZK proof system for dBDDα,γ are several works on zero-
knowledge of lattice problems. Goldreich and Goldwasser [GG00] show that the
complement of GapSVPγ and GapCVPγ , with parameter γ = Θ(

√
n/ log n), has

an honest-verifier SZK protocol. Combined with results on the structure of SZK
(see [Vad99]), this implies that GapSVPγ and GapCVPγ themselves are in SZK.
Subsequently, Micciancio and Vadhan [MV03] show that GapSVPγ and GapCVPγ

are in SZK for the same approximation factor even with an efficient prover (given
the shortest or closest lattice point, resp., as an auxiliary input). Building on
the protocol of [MV03], Goldwasser and Kharchenko [GK05] use the connection
between Atjai-Dwork ciphertexts and GapCVP to construct a proof of plaintext
knowledge.

Peikert and Vaikuntanathan [PV08] construct non-interactive statistical
zero-knowledge (NISZK) protocols for a variety of lattice problems and in par-
ticular leave the question of whether GapSVPγ has a NISZK proof system as an
open problem. Most recently, Alamati et al. [APSD17] construct NISZK and SZK
protocols for approximating the smoothing parameter of a lattice.

Lastly, we mention that starting with the work of Stern et al. [Ste96], sev-
eral works [KTX08,Lyu08,LNSW13,LLM+16,dPL17] have constructed zero-
knowledge proofs for lattice problems in the context of identification schemes.

1.3 Technical Overview

Let L ∈ NP be an arbitrary NP language. Our goal is to construct a NIZK
proof system for L. The starting point for our construction is an (unconditional)
NIZK proof system for L in the hidden-bits model, a framework introduced by
Feige et al. [FLS99] and made explicit by Goldreich [Gol01]. In the hidden-bits
model, the prover P has access to a string of uniformly random bits r ∈ {0, 1}N .
Given the input x and a witness w, the prover can decide to reveal some subset
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I ⊂ [N ] of the bits to the verifier, and in addition sends a proof-string π. The
verifier, given only the input x, the revealed bits rI , and the proof π, decides
whether x ∈ L. Note that the unrevealed bits remain entirely hidden from the
verifier. A hidden-bits proof is zero-knowledge if there exists a simulator S that
generates a view that is indistinguishable from that of the verifier (including in
particular the revealed bits rI).

Feige et al. [FLS99] show that every NP language has a NIZK proof sys-
tem in the hidden bits model. Furthermore, they show how to implement the
hidden bits model, in a computational sense, using (doubly enhanced) trapdoor
permutations,2 thereby obtaining a NIZK proof system for NP under the same
assumption.

Following Goldreich’s presentation, we shall also aim to enforce the hidden-
bits model using cryptography. In contrast to [FLS99,Gol01], however, rather
than using trapdoor permutations, we shall use an encryption scheme that sat-
isfies some strong yet natural properties. The main technical challenge will be
in constructing an LWE-based encryption scheme that satisfies these properties.

We begin by describing the two most intuitive properties that we would like
from our public-key encryption scheme (G,E,D).

1. Oblivious Sampling of Ciphertexts: Firstly, we require the ability to
sample ciphertexts while remaining entirely oblivious to the underlying mes-
sages. More precisely, we assume that there exists an algorithm Sample that,
given a public key pk, samples a random ciphertext c ← Sample(pk) such that
the plaintext value σ = Dsk(c) is hidden, even given the random coins used
to sample c.3 Encryption schemes that have oblivious ciphertext sampling or
OCS procedures are known in the literature (see, e.g., [GKM+00,GR13]).

2. NIZK proof for Plaintext Value: Secondly, we require a NIZK proof for
a specific task, namely proving that a given ciphertext c = Epk(σ) is an
encryption of the bit σ (with respect to the public-key pk). Note that this is
indeed an NP task, since the secret key sk is a witness to the fact that c is
an encryption of σ.4 In particular, we require that the honest prover strategy
can be implemented efficiently given access to this witness (i.e., the secret
key sk).

With these two ingredients in hand we can describe the high-level strat-
egy for implementing the hidden-bits model. The idea is that the common ran-
dom string will contain N sequences ρ1, . . . , ρN of random coins for the OCS
procedure. Our NIZK prover chooses a public-key/secret-key pair (pk, sk) and
generates the ciphertexts c1, . . . , cN , where ci = Sample(pk; ρi) (i.e., an oblivi-
ously sampled ciphertext with respect to the public key pk and randomness ρi).

2 Doubly enhanced trapdoor permutations were actually introduced in [Gol11] (with
the motivation of implementing the hidden-bits model). See further discussion in
[GR13,CL17].

3 In particular, the naive algorithm that chooses at random b ∈ {0, 1} and outputs
Epk(b) is not oblivious since its random coins fully reveal b.

4 For simplicity, we focus for now on schemes with perfect correctness.
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The prover further computes the corresponding plaintext bits σ1, . . . , σN , where
σi = Decsk(ci) (which it can compute efficiently, since it knows the secret key
sk). The prover now runs the hidden-bits prover with respect to the random bit
sequence (σ1, . . . , σN ) and obtains in return a subset I ⊆ [N ] of coordinates and
a proof-string π. To reveal the coordinates (σi)i∈I , we use the second ingredi-
ent: our NIZK proof for proving the plaintext value of the ciphertexts (ci)i∈I .
Intuitively, the OCS guarantee allows the other bits (σi)i/∈I to remain hidden.

Certifying Public Keys. An issue that we run into when trying to implement the
blueprint above is that a cheating prover may choose to specify a public key pk
that is not honestly generated. Given such a key, it is not clear a priori that the
prover cannot control the distribution of the hidden bits, or even equivocate by
being able to claim that a single ciphertext ci is both an encryption of the bit 0
and an encryption of the bit 1. This leads to actual attacks that entirely break
the soundness of the NIZK proof system.

A closely related issue actually affects the [FLS99] NIZK construction (based
on doubly enhanced trapdoor permutations) and was pointed out by Bellare
and Yung [BY96].5 More specifically, in the [FLS99] protocol the prover needs
to specify the index of a permutation (which is analogous to the public key in our
setting). However, [BY96] observed that if the prover specifies a function that
is not a permutation, then it can violate soundness. They resolved this issue by
constructing a NIZK proof system for proving that the index indeed specifies a
permutation6.

We follow the [BY96] approach by requiring conditions (1) and (2) above,
as well as a NIZK proof for certifying public keys. Thus, our NIZK prover also
supplies a NIZK proof that the public key that it provides is valid.

Instantiating our Approach with LWE. So far the approach outlined is
basically the [FLS99] implementation of the hidden bits model (where we replace
the trapdoor permutations with a suitable encryption scheme). However, when
trying to instantiate it using LWE, we encounter significant technical challenges.

For our encryption scheme, we will use Regev’s [Reg09] scheme which uses
n-dimensional vectors over the integer ring Zq. The public key in this scheme
consists of (1) a matrix A ← Z

n×m
q , where m = Θ(n · log(q)), and (2) a vector

bT = sT · A + eT , where s ← Z
n
q is the secret key, and e is drawn from an

n-dimensional discrete Gaussian.
To instantiate the approach outlined above we require three procedures: (1)

an oblivious ciphertext sampler (OCS), (2) a NIZK proof system for plaintext
values, and (3) a NIZK proof system for certifying public keys. We discuss these
three requirements in increasing order of complexity.

5 Further related issues were recently uncovered by Canetti and Lichtenberg [CL17].
6 Actually, the [BY96] protocol only certifies that the index specifies a function that

is close to a permutation (i.e., they provide a non-interactive zero-knowledge proof
of proximity, a notion recently formalized by Berman et al. [BRV17]) which suffices
in this context.
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NIZK proof for Validating Public Keys. Recall that a public key in this encryption
scheme is of the form (A,b) ∈ Z

n×m
q × Z

m
q , where bT = sT · A + eT for error

vector e ∈ Z
m
q drawn from a discrete Gaussian and in particular having bounded

entries (with all but negligible probability). To validate the public key we shall
construct a NIZK proof system that proves that for the input public key (A,b),
there exists a vector s ∈ Z

n
q such that sT · A is very close to bT 7.

Producing such a NIZK proof system is where we need (for the first time)
our additional assumption that dBDD has a NIZK proof-system. Indeed, proving
that there exists s ∈ Z

n
q such that sT ·A is very close to bT is a dBDD instance:

we must show that the distance of the vector b from the lattice spanned by the
rows of A is a lot smaller than the length of the shortest non-zero vector of this
lattice. We note that since the matrix A is random (it will part of the CRS),
we know that (with very high probability) the length of the shortest non-zero
vector is large.

NIZK proof for Plaintext Value. The second procedure that we need is a NIZK
proof-system that certifies that a given ciphertext encrypts a bit σ. To see how we
obtain this, we first need to recall the encryption procedure in Regev’s [Reg09]
scheme. To encrypt a bit σ ∈ {0, 1}, one selects at random r ← {0, 1}m and
outputs the ciphertext (c, ω), where c = A · r and ω = bT · r + σ · ⌊ q

2

⌋
.

Thus, given an alleged public key (A,b) ∈ Z
n×m
q ×Z

m
q and ciphertext (c, ω) ∈

Z
n
q ×Zq, we basically want to ensure that there exists a vector s ∈ Z

n
q such that

bT ≈ sT · A and ω + σ · ⌊ q
2

⌋ ≈ sT · c, where σ ∈ {0, 1} is the alleged plaintext
value. Put differently, we want to ensure that the vector

[
b,

(
ω + σ · ⌊ q

2

⌋)]
is

close to the lattice spanned by the rows of [A, c]. Thus, this problem can also
be reduced to an instance of dBDD.

Oblivious Sampling of Ciphertexts. The last ingredient that we need is a proce-
dure for obliviously sampling ciphertexts in Regev’s encryption scheme. This is
the main technical challenge in our construction.

A first idea for such an OCS procedure is simply to generate a random pair
(c, ω), where c ← Z

n
q and ω ← Zq. Intuitively, this pair corresponds to a high

noise encryption of a random bit. The problem though is precisely the fact that
(c, ω) is a high noise ciphertext. That is, sT · c− ω will be close to neither 0 nor
	q/2
. In particular, the above NIZK proof for certifying plaintext values only
works for low noise ciphertexts.

This issue turns out to be a key one which we do not know how to handle
directly. Instead, we shall bypass it by introducing and considering a general-
ization of OCS in which the (untrusted) prover is allowed to assist the verifier
to perform the sampling. We refer to this procedure (or rather protocol) as a

7 Actually, it is important for us to also establish that s is unique. We enforce this by
having the matrix A be specified as part of the CRS (rather than by the prover).
Indeed, it is not too difficult to show that a lattice spanned by a random matrix A
does not have short vectors and therefore b cannot be close to two different lattice
points.
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prover-assisted oblivious ciphertext sampler (POCS). Thus, a POCS is a protocol
between a sampler S, which is given the secret key (and will be run by the prover
in our NIZK proof), and a checker C which is given the public key (and will be
run by the verifier). The common input to the protocol is a random string ρ. The
sampler basically generates a sampled ciphertext c and sends it to the checker,
who runs some consistency checks. If the sampler behaves honestly and ρ is sam-
pled randomly, then the sampled ciphertext c should correspond to an encryption
of a random bit σ and the checker’s validation process should pass. Furthermore,
the protocol should satisfy the following (loosely stated) requirements:

– (Computational) Hiding: The value σ = Decsk(c) is computationally hid-
den from the checker. That is, it is computationally infeasible to predict the
value of σ from c and pk, even given the random coins ρ.

– (Statistical) Binding: For any value of ρ there exists a unique value σ such
that for every (possibly cheating) sampler strategy S∗, with high probability
either the checker rejects or the generated ciphertext c corresponds to an
encryption of σ.

With some care, such a POCS procedure can replace the OCS procedure
(which did not use a prover) in our original outline. The key step therefore is con-
structing a POCS procedure for Regev’s encryption scheme, which we describe
next.

A POCS Procedure for Regev’s Encryption Scheme. Fix a public key (A,b) and
let s be the corresponding secret key. The random input string for our POCS
procedure consists of a vector ρ ∈ Z

n
q and a value τ ∈ Zq. The pair (ρ, τ) should

be thought of as a (high noise) Regev encryption. Denote by e = τ − sT · ρ the
noise in this ciphertext.

As discussed above, since (ρ, τ) corresponds to a high noise ciphertext, we
cannot have the sampler just output it as is. Rather we will have the sampler
output a value τ ′ = sT · ρ + e′ + σ′ · ⌊ q

2

⌋
, where e′ is drawn from the same

noise distribution as fresh encryptions (i.e., low noise), and the value of the
encrypted bit σ′ will be specified next. Observe that (ρ, τ ′) corresponds to a
fresh encryption of σ′, and so we will need to make sure that σ′ is random and
that the hiding and binding properties hold.

To do so, we will define σ′ as follows: If |e′ − e| ≤ q/4, then set σ′ = 0, and
otherwise set σ′ = 1. Observe that in either case it must be that

∣
∣
∣e′ + σ′ ·

⌊q

2

⌋
− e

∣
∣
∣ ≤ q/4 . (1)

We would like our checker to enforce that Eq. (1) holds. Initially this seems
problematic since our checker has access to none of e, e′, and σ′. However, the
checker does have access to τ and τ ′, and it holds that:

|τ ′ − τ | =
∣
∣
∣sT · ρ + e′ + σ′ ·

⌊q

2

⌋
− sT · ρ − e

∣
∣
∣ =

∣
∣
∣e′ + σ′ ·

⌊q

2

⌋
− e

∣
∣
∣

and so we simply have our checker verify that |τ ′ − τ | ≤ q/4.
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It is not too hard to see that σ′ is an unbiased bit in this construction.
Moreover, it is unbiased even conditioned on ρ (since its value is entirely unde-
termined until τ is chosen). Thus, the checker only sees a fresh encryption of a
random bit σ′ which, by the hardness of LWE, hides the value of σ′.

To see that the scheme is binding, observe that for most choices of ρ and τ the
(cheating) sampler cannot equivocate to two values τ ′ and τ ′′ which correspond
to different plaintext bits, as long as both have small noise. Hence, the sampler
cannot equivocate to two different valid ciphertexts. This concludes the overview
of our construction.

1.4 Organization

In Sect. 2 we provide definitions and notation used throughout this work (defining
in particular NIZK and the hidden bits model, as well as giving sufficient back-
ground on lattices). In Sect. 3 we formalize our abstraction of “prover-assisted
oblivious ciphertext sampling” (POCS) and show that encryption schemes admit-
ting such a procedure (as well as some specific NIZK proof systems) imply NIZKs
for NP. Finally, in Sect. 4 we show how to instantiate the foregoing framework
using LWE.

2 Preliminaries

We follow the notation and definitions as in [Gol01].
For a distribution μ, we use x ← μ to denote that x is sampled from the

distribution μ, and for a set S we use x ← S to denote that x is sampled
uniformly at random from the set S. We use X

c≈ Y , X
s≈ Y and X ≡ Y to

denote that the distributions X and Y are computationally indistinguishable,
statistically close and identically distributed, respectively (where in the case of
computational indistinguishability we actually refer to ensembles of distributions
parameterized by a security parameter).

2.1 Public-Key Encryption with Public Randomness

For simplicity we restrict our attention to bit-encryption schemes (where mes-
sages consist of single bits). We will define a variant of public-key encryption in
which all algorithms, including the adversary, have access to some public ran-
domness. We emphasize that this public randomness is an additional input to
the key generation algorithm and is revealed also to the adversary. In addition
to the public randomness, the key generation algorithm is allowed to toss addi-
tional private random coins that are not revealed. To avoid cluttering notation,
we will assume that the public key includes the public randomness.

Definition 1 (Public-Key Encryption with Public Randomness). A
public-key encryption scheme with public randomness is a triple of PPT algorithms
(Gen,Enc,Dec) such that:
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1. The key-generation algorithm Gen(1κ, ρpk) on input public randomness ρpk (and
while tossing additional private random coins) outputs a pair of keys (pk, sk),
where pk includes ρpk.

2. The encryption algorithm Enc(pk, σ), where σ ∈ {0, 1}, outputs a ciphertext c.
We denote this output by c = Encpk(σ).

3. The deterministic decryption algorithm Dec(sk, c) outputs a message σ′. We
denote this output by σ′ = Decsk(c).

We require that for every σ ∈ {0, 1}, except with negligible probability over the
public randomness ρpk, the keys (pk, sk) ← Gen(1κ, ρpk) and the randomness of
the encryption scheme, we have that Decsk(Encpk(σ)) = σ.

Semantic security [GM84] is defined as follows:

Definition 2 (Semantic Security with Public Randomness). A public-key
encryption scheme with public randomness is semantically secure if the distribu-
tions (pk, Epk(0)) and (pk, Epk(1)) are computationally indistinguishable, where
ρpk ← {0, 1}poly(κ) and (pk, sk) ← Gen(1κ, ρpk).

Note that, clearly, any public-key encryption scheme is also a public-key
scheme with public randomness, where ρpk is null. Nevertheless, this notion will
be useful in our constructions.

2.2 Non-Interactive Zero-Knowledge Proofs

Non-interactive Zero-knowledge Proofs are a fundamental cryptographic primi-
tive introduced by Blum et al. [BFM88].

Definition 3 (NIZK). A non-interactive (computational) zero-knowledge proof
system (NIZK) for a language L is a pair of probabilistic polynomial-time algo-
rithms (P, V ) such that:

– Completeness: For every x ∈ L and witness w for x, we have

Pr
R

[
V (x,R, P (x,R,w)) = 1

]
> 1 − negl(|x|)

where R ← {0, 1}poly(|x|). If the foregoing condition holds with probability 1,
then we say that the NIZK has perfect completeness.

– Soundness: For every x /∈ L and every (possibly inefficient) cheating prover
P ∗, we have

Pr
R

[
V (x,R, P ∗(x,R)) = 1

]
< negl(|x|)

where R ← {0, 1}poly(|x|).
– Zero-Knowledge: There exists a probabilistic polynomial-time simulator S

such that the ensembles {(x,R, P (x,R,w))}x∈L and {S(x)}x∈L are computa-
tionally indistinguishable, where R ← {0, 1}poly(|x|).

The random input R received by both P and V is referred to as the common
random string or CRS.
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We extend the definition of NIZK to promise problems in the natural way.
We can further define a NIZK proof system with adaptive soundness by allow-

ing the cheating prover to specify the input x as well as the purported witness w.

Definition 4 (Adaptive Soundness for NIZK). A NIZK proof system (P, V )
is adaptively sound if it satisfies the following property. For any κ ∈ N and any
(possibly inefficient) cheating prover P ∗ producing output (x,w) ∈ {0, 1}κ, we
have

Pr
R,

(x,w)←P ∗(1κ,R)

[V (x,R,w) = 1 and x /∈ L] < negl(κ) .

Remark 1 (Achieving Adaptive Soundness). By standard amplification tech-
niques, any ordinary NIZK proof may be transformed into one which is adaptively
sound (see, e.g. [Gol01, Chapter 4]).

The Hidden Bits Model. The hidden-bits model was introduced by Goldre-
ich [Gol01, Section 4.10.2] as an appealing abstraction of the NIZK proof system
of Feige, Lapidot and Shamir [FLS99].

Definition 5 (Hidden Bits Proof-System). A hidden-bits proof system for a
language L is a pair of PPT algorithms (P, V ) such that the following conditions
hold:

– (Completeness) For all x ∈ L and witnesses w for x,

Pr[V (x,RI , I, π) = 1] > 1 − negl(|x|) ,

where R is a uniformly random string of bits (of length poly(|x|)), (I, π) ←
P (x,R,w) for I a subset of the indices of R, and RI is the substring of R
corresponding to the indices in I.

– (Soundness) For all x /∈ L and any computationally unbounded cheating
prover P ∗, we have

Pr[V (x,RI , I, π) = 1] < negl(|x|)
where R again is a uniformly random string of bits and (I, π) ← P ∗(x,R).

– (Zero-knowledge) There exists a probabilistic polynomial-time simulator S
such that the ensembles {(x,RI , I, π)}x∈L and {S(x)}x∈L are computation-
ally indistinguishable, where R is a uniformly random string of bits and
(I, π) ← P (x,R).

Feige et al. [FLS99] and Goldreich [Gol01] showed that every NP language
has a hidden-bits proof system unconditionally (where the hidden-bits string is
of polynomial length and the prover strategy is implemented efficiently given the
NP witness).

Lemma 1 (See [Gol01, Section 4.10.2]). For any language L ∈ NP, there
exists a zero-knowledge hidden-bits proof system for L. Moreover, the proof-
system has perfect completeness.
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2.3 Lattices and Learning with Errors

In this section we give some basic definitions and lemmata about lattices and
the Learning With Errors (LWE) assumption.

Standard Notation. We let the elements of the ring Zq be identified with the
representatives

{− ⌊
q
2

⌋
, . . . ,

⌈
q
2

⌉ − 1
}
.

We denote by [x, y] the concatenation of vectors or matrices. For example,
if x ∈ Z

n
q and y ∈ Zq, then [x, y] is a vector in Z

n+1
q , whose first n components

correspond to the n components of x and whose last component is y. Similarly, if
X ∈ Z

n×m
q and y ∈ Z

n
q , then [X,y] is a matrix in Z

n×(m+1)
q , whose last column

is y.
For x ∈ Zq, we denote by |x| the value in

[
0,
⌊

q
2

⌋]
such that |x| = x if x < q/2

and |x| = q − x otherwise. Namely, |x| is the distance from 0 in Zq. Similarly,

for x ∈ Z
n
q we denote by ‖x‖ the 2 norm, namely ‖x‖ =

√∑ |xi|2, where xi

are the coordinates of x and |·| is as defined above.
Lastly, we denote by 	·�q : Zq → {0, 1} the function:

	x�q =
{

0 if x ∈ [−	q/4
 , �q/4�]
1 otherwise .

Lattices. A lattice Λ is an additive subgroup of Z
m. Every lattice is finitely

generated as all integer linear combinations of a set of linearly independent row
vectors8 B. We call this set a basis for the lattice and its cardinality the rank of
the lattice. We denote by Λ(A) the lattice that is generated by the rows of A
(which might or might not be a basis) and by B(A) a basis of the lattice Λ(A).
We denote by λ1(Λ) the length of the shortest nonzero lattice vector:

λ1(Λ) = min
x∈Λ\{0}

‖x‖ .

We note the following standard lemma about lattice bases.

Lemma 2. Let A ∈ Z
n×m with m ≥ n, there is an efficient algorithm to com-

pute B(A). Namely, given a generating set of a lattice, we can efficiently compute
a basis for the same lattice.

A special family of lattices with numerous applications in cryptographic is
the family of q-ary lattices.

Definition 6. A lattice Λ is called aq-ary lattice if qZm ⊆ Λ. Equivalently, Λ is
q-ary if x ∈ Λ if and only if (x mod q) ∈ Λ.

We denote a q-ary lattice by Λq. More specifically, if A ∈ Z
n×m
q then we

denote by Λq(A) the lattice:

Λq(A) = {y ∈ Z
m : ∃s ∈ Z

n
q s.t. yT = sTA} + qZm.

8 In the literature, typically B is defined as a set of column vectors. However, for our
applications it is more convenient to use row vectors.
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Decisional Bounded Distance Decoding Problem. We define some well-
studied lattice problems as well as the decisional Bounded Distance Decoding
(dBDD) variant which we use extensively in this work. We also present a reduc-
tion from dBDD to the GapSVP problem, showing that dBDD is (up to polyno-
mial loss in the parameters) at most as hard as GapSVP.

Definition 7. For a given parameter γ > 1, the promise problem GapSVPγ =
(YES,NO) with input a basis B ∈ Z

n×m and parameter r > 0 is defined as:

– (B, r) ∈ YES if λ1(Λ(B)) < r, and
– (B, r) ∈ NO if λ1(Λ(B)) > γr.

Definition 8. For a given parameter α ≥ 1, the promise search problem BDDα

with input a basis B ∈ Z
n×m, a target vector t ∈ R

m such that dist(Λ(B), t) <
λ1(B)

α outputs a lattice vector v ∈ Λ(B) such that ‖t − v‖ = dist(Λ(B), t).

We define a decisional version of the BDDα problem.

Definition 9. For two given parameters α ≥ 1 and γ > 1, the promise problem
dBDDα,γ = (YES,NO) with input a basis B ∈ Z

n×m and a target vector t ∈ R
m

is defined as:

– (B, t) ∈ YES if dist(t, Λ(B)) ≤ λ1(Λ(B))
α ; and

– (B, t) ∈ NO if dist(t, Λ(B)) > γ · λ1(Λ(B))
α .

In order to establish the complexity of the dBDD problem, we show that it
is at most as hard as the well studied lattice problem GapSVP.

Proposition 1. The problem dBDDα,γ is Cook-reducible to GapSVPmin(
√

γ,α/2)

where γ and α are polynomially-bounded.

Proof. Let (B, t) be an input of dBDDα,γ . First, using binary search and a
GapSVP√

γ oracle, we compute an r such that λ1(B)√
γ ≤ r ≤ √

γ · λ1(B).
From [LM09], BDDα is reducible to GapSVPα/2 with α polynomially-

bounded. Therefore, the GapSVPα/2 oracle returns an alleged closest vector v to
t. If v ∈ Λ(B) and ‖t − v‖ ≤ √

γ · r
α , we output 1. Else, we output 0.

Indeed, if dBDDα,γ(B, t) ∈ YES, then there is a vector v ∈ Λ(B) such that
‖t − v‖ ≤ λ1(B)

α ≤ √
γ · r

α and GapSVPα/2 returns this vector. On the other
hand, if dBDDα,γ(B, t) ∈ NO, then for every vector v ∈ Λ(B) it holds that
‖t − v‖ > γ · λ1(B)

α ≥ √
γ · r

α , so there is no vector v for which we output 1.

We remark that even though there is a reduction from dBDD to GapSVP,
a NIZK proof system for GapSVP does not automatically imply a NIZK proof
system for dBDD since it is a Cook reduction (rather than a Karp reduction).
In particular, we do not know if a NIZK for GapSVP implies a NIZK for dBDD.
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Learning with Errors. We proceed to define the main cryptographic assump-
tion we use: Learning With Errors (LWE). First, we define the (one-dimensional)
discrete Gaussian distribution:

Definition 10. For q ∈ N \ {0} and parameter β > 0, the discrete Gaussian
probability distribution χβ is simply the Gaussian distribution restricted to Zq:

χβ(x) ∝
{

exp(−π|x|2/(βq)2) if x ∈ [−	q/2
 , �q/2�] ∩ Z

0 otherwise

With the definition of the Discrete Gaussian distribution in hand, we are
ready to define LWE:

Definition 11. The (Decisional) Learning With Error (LWE) assumption with
parameters n, q, β, denoted by LWEn,q,β, states that:

(A,b)
c≈ (A, r)

where A ← Z
n×m
q with m = poly(n, log(q)), bT = sTA + eT , s ← Z

n
q , e ← χm

β

and r ← Z
m
q .

We utilize the fact that if A ← Z
n×m
q with m large enough, then there is a

unique s such that bT ≈ sTA. The proof of this fact follows from bounding the
shortest vector in the lattice and observing that if s1, s2 are such that sT

1 A ≈
sT
2 A, then (sT

1 − sT
2 )A ≈ 0. The following lemma can be shown by a standard

argument with a union bound over all nonzero vectors s ∈ Z
n
q .

Lemma 3. Let n, q ∈ N, and m ≥ 2n log(q). Then

Pr
A←Z

n×m
q

[
λ1(Λq(A)) ≤ q/4

]
≤ q−n .

3 From Prover-Assisted Oblivious Sampling to NIZKs

In this section we introduce the abstraction of a prover-assisted procedure for
oblivious ciphertext sampling (POCS) for a public-key encryption scheme (as
outlined in the introduction), and show how to combine this notion with NIZK
proofs of the validity of public keys and plaintext values to obtain NIZK proofs
for any NP language.

3.1 Definitions: Valid Public Keys, Ciphertexts and POCS

The first definition we consider is the notion of a valid set PK of public keys.
Intuitively, we would like this set to correspond precisely to public keys in the
support of the key-generation algorithm. However, due to specifics of our instan-
tiation with LWE, we need to be more lenient and allow public keys that are
not quite in the support of the key-generation algorithm but are nevertheless
sufficiently well-formed (e.g., keys with a higher level noise).
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Loosely speaking, a valid public key pk is associated with two sets C
(0)
pk

and C
(1)
pk , which correspond to “valid” ciphertexts with respect to that key of

messages 0 and 1, respectively. We first require that honestly sampled public
keys be valid. We further require that for all valid public keys (i.e., even those
not in the support of the key generation algorithm), the associated sets C

(0)
pk and

C
(1)
pk are disjoint (i.e. no ciphertext is a valid encryption both of 0 and of 1)9.

Definition 12 (Valid Public Keys). Let (Gen,Enc,Dec) be a public-key
encryption scheme with public randomness. For a given security parameter κ,
let VPK = (VPKκ)κ∈N be an ensemble of sets, where for each κ ∈ N, each
pk ∈ VPKκ is associated with a pair of sets

(
C

(0)
pk , C

(1)
pk

)
and public randomness

ρpk. We say that VPK is valid if it satisfies the following properties.

1. For all (pk, sk) ∈ Gen(1κ, ·), we have pk ∈ VPKκ.
2. For every b ∈ {0, 1} we have that cb ∈ C

(b)
pk with all but negligible probability

over the choice of public randomness ρpk, keys (pk, sk) ← Gen(1κ, ρpk), and
ciphertext cb ← Encpk(b).

3. With all but negligible probability over the public randomness ρpk, for all pk ∈
VPKκ with public randomness ρpk, it holds that C

(0)
pk ∩ C

(1)
pk = ∅.

We next formalize the notion of a prover-assisted oblivious ciphertext sampler
(POCS). This is an extension of oblivious ciphertext samplers (OCS), which (to
the best of our knowledge) were introduced by Gertner et al. [GKM+00]. An
OCS procedure allows one to sample a ciphertext so that the underlying plaintext
remains hidden. In this work we introduce a relaxation of this notion in which
the sampling is assisted by an untrusted prover.

More specifically, a POCS protocol consists of two procedures, a sampler and
a checker, which both have access to a shared random string ρ. The sampler also
receives as input the secret-key of the scheme and generates a ciphertext c. The
checker receives c, as well as the random string ρ and the public-key (but not
the secret-key) and performs a test to ensure that c encodes an unbiased bit
depending on the randomness ρ. Jumping ahead, we remark that the role of the
sampler is played by the prover in our NIZK, whereas the role of the checker is
played by the verifier.

We require that the POCS procedure satisfy the following loosely stated
properties:

1. For honestly sampled ciphertexts c, the checker should accept with over-
whelming probability.

2. Given pk, ρ and an honestly sampled ciphertext c, the corresponding plaintext
bit Decsk(c) is computationally hidden.

9 Note that in the actual definition we only require the latter to hold with high proba-
bility over the choice of the public randomness for every valid public key. The notion
of encryption schemes with public randomness is discussed in Sect. 2.1.
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3. For a given random string ρ, except with a small probability there should
not exist both an encryption c0 of 0 and an encryption c1 of 1 that pass the
checker’s test. Thus, for any given ciphertext (even a maliciously generated
one) that passes the test, the corresponding plaintext bit is almost always
fully determined.

4. The sampled plaintext bit should be (close to) unbiased. The latter should
hold even with respect to a malicious sampler. In our actual instantiation of
POCS (via LWE, see Sect. 4), the plaintext bit will have a small but noticeable
(i.e., inverse polynomial) bias. Thus, our definition of POCS leaves the bias
as a parameter, which we denote by ε.

5. The procedure satisfies the following “zero-knowledge like” simulation prop-
erty: given only the public-key pk and plaintext bit σ, it should be possible
to generate the distribution (ρ, c) of the sampling procedure, conditioned on
Decsk(c) = σ. This property is captured by the EncryptAndExplain procedure
below. In our actual formalization we only require that this property holds in
a computational sense (i.e., the simulated distribution should only be com-
putationally indistinguishable from the actual sampling procedure). While a
statistical requirement may seem like a more natural choice here, we use a
computational notion due to a technical consideration in the LWE instantia-
tion. See Sect. 4.3 for details.

We proceed to the formal definition of a POCS encryption scheme.

Definition 13 (Prover-assisted Oblivious Ciphertext Sampler (POCS)).
For a parameter ε = ε(κ) ∈ [0, 1], a (1 − ε(κ))-binding prover-assisted oblivious
ciphertext sampler (POCS), with respect to a valid set of public keys VPK =
{VPKκ}κ∈N for an encryption scheme (Gen,Enc,Dec) with public randomness,
is a triple of PPT algorithms Sample, Check, and EncryptAndExplain satisfying
the following properties:

– Complete:

Pr
ρpk,ρ←{0,1}poly(κ)

(pk,sk)←Gen(1κ,ρpk)

[
Check

(
pk, ρ,Sample(sk, ρ)

)
= 1

]
> 1 − negl(κ).

– Unbiased: For any κ ∈ N, pk ∈ VPKκ and any b ∈ {0, 1}, we have that:

Pr
ρ←{0,1}poly(κ)

[
∃c ∈ C

(b)
pk such that Check(pk, ρ, c) = 1

]
≥ 1/2 − negl(κ).

– Statistically binding: With probability 1 − negl(κ) over the public random-
ness ρpk, we have for all pk ∈ VPKκ with public randomness ρpk that

Pr
ρ←{0,1}poly(κ)

[

∃c0 ∈ C
(0)
pk , c1 ∈ C

(1)
pk s.t.

Check(pk, ρ, c0) = 1 and
Check(pk, ρ, c1) = 1

]

< ε(κ).

We emphasize that ε(κ) is a parameter and is not necessarily negligible.
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– Simulatable: For every N = poly(κ) it holds that:
(
pk, (ρi)N

i=1, (ci)N
i=1, (σi)N

i=1

)
c≈
(
pk, (ρ′

i)
N
i=1, (c

′
i)

N
i=1, (σ

′
i)

N
i=1

)
,

where ρpk ← {0, 1}poly(κ), (pk, sk) ← Gen(1κ, ρpk), and for every i ∈ [N ],
it holds that ρi ← {0, 1}poly(κ), ci ← Sample(sk, ρi), and σi = Decsk(ci),
σ′

i ← {0, 1} and (ρ′
i, c

′
i) ← EncryptAndExplain(pk, σ′).

– Computationally hiding: Let ρpk, ρ ← {0, 1}poly(κ), (pk, sk) ←
Gen(1κ, ρpk), and c ← Sample(sk, ρ). Then, for all probabilistic polynomial-
time adversaries A,

Pr
[A(pk, ρ, c) = Decsk(c)

] ≤ 1
2

+ negl(κ).

Remark 2 (Relaxing the Hiding Property). We remark that for our construc-
tion of NIZK a weaker hiding property suffices, in which the adversary is only
given the random string ρ (but not the ciphertext c). Although this definition is
strictly weaker, we find it less natural and choose to define the hiding property
as specified above.

We next prove two useful propositions showing that the computational hid-
ing property of the POCS implies a hiding property resembling semantic secu-
rity for the EncryptAndExplain sampling algorithm. Specifically, we show that
the encrypted bit remains hidden given both the ciphertext and the explaining
randomness produced by the EncryptAndExplain algorithm. The intuition is anal-
ogous to the usage of the double enhancement property of trapdoor permutations
in the construction of NIZKs (see, e.g., [GR13]).

Proposition 2. Suppose (Gen,Enc,Dec) has a (1−ε)-binding POCS with respect
to an ensemble of valid public keys VPK. Then, for all probabilistic polynomial-
time adversaries A,

Pr
[A(pk, ρ, c) = σ

] ≤ 1
2

+ negl(κ),

where ρpk, ρ ← {0, 1}poly(κ), (pk, sk) ← Gen(1κ, ρpk), σ ∈ {0, 1}, and (ρ, c) ←
EncryptAndExplain(pk, σ).

Proof. This follows immediately from the simulatable and computationally hid-
ing properties of the POCS.

Proposition 3. Suppose (Gen,Enc,Dec) has a (1−ε)-binding POCS with respect
to an ensemble of public keys VPK. It holds that

(pk, ρ0, c0)
c≈ (pk, ρ1, c1),

where the public randomness ρpk ← {0, 1}poly(κ), the keys (pk, sk) ← Gen
(1κ, ρpk), (ρ0, c0) ← EncryptAndExplain(pk, 0) and (ρ1, c1) ← EncryptAndExplain
(pk, 1).
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Proof. This follows from Proposition 2 by a standard argument, similar to the
equivalence of semantic security and indistinguishability of encryptions (see, e.g.
[Gol04]).

We now define two promise problems for which we will later assume the
existence of suitable NIZKs. The first problem that we consider is that of distin-
guishing public keys which are in the support of the key-generation algorithm
(i.e., were honestly generated) from ones which are invalid (i.e., not in the set of
valid public keys).

Let (Gen,Enc,Dec) be a public-key encryption scheme and let us denote by
VPK an ensemble of valid public-keys. We define the promise problem GoodPK =
(GoodPKYes,GoodPKNo) where:

GoodPKYes =
{
pk : pk ∈

⋃

κ

Gen(1κ)
}

GoodPKNo =
{
pk : pk /∈

⋃

κ

VPKκ

}
.

We also define a related promise problem GoodCT, which corresponds to
triplets containing a public key, ciphertext and a single-bit message. Formally,
the problem is defined as GoodCT = (GoodCTYes,GoodCTNo), where:

GoodCTYes =
{

(pk, c, b) : pk ∈
⋃

κ

Gen(1κ) and c ∈ Encpk(b)
}

GoodCTNo =
{

(pk, c, b) : pk ∈
⋃

κ

VPKκ and c /∈ C
(b)
pk

}
.

3.2 From POCS to NIZK

In this section we state and prove our transformation of encryption schemes that
support POCS and suitable NIZKs for GoodPK and GoodCT, to general purpose
NIZKs for NP. This is captured by the following lemma:

Lemma 4. Let (Gen,Enc,Dec) be a public-key encryption scheme with public
randomness, and VPK be a valid set of public keys (as in Definition 12). Suppose
the following conditions hold.

– (Gen,Enc,Dec) has a (1 − ε)-binding POCS with respect to VPK, for some
sufficiently small ε = 1/poly(κ).

– There is a NIZK for GoodPK.
– There is a NIZK for GoodCT.

Then, there exists a NIZK for every language L ∈ NP.

Proof. Let L ∈ NP. By Lemma 1, there exists a hidden-bits zero knowledge
proof system (Phb, Vhb) for L (with perfect completeness). We shall use this
proof-system to construct a NIZK for L, using the assumptions in the theorem’s
statement.
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We first give a proof system satisfying a weak notion of soundness. Specifi-
cally, we shall weaken soundness by assuming that the cheating prover is con-
strained to choose a public-key pk before reading the CRS. To be more precise,
since the public randomness of the pk comes from the CRS, the prover must
choose the public key pk before reading any other part of the CRS. Also, the
verifier is only required to reject inputs x /∈ L only with inverse polynomial
probability (rather than with all but negligible probability). Using standard
amplification techniques, we will subsequently transform this into a full-fledged
NIZK (achieving the standard notion of soundness).

We assume without loss of generality that the NIZK proof systems that we
have for GoodPK and GoodCT have adaptive soundness (see Remark 1). Our
base NIZK protocol, achieving only the aforementioned weak soundness notion,
is given in Protocol 1.

Protocol 1 Let L ∈ NP. Let (Ppk, Vpk) and (Pct, Vct) be adaptively sound NIZK
proof systems for the promise problems GoodPK and GoodCT, respectively, and
let (Phb, Vhb) be a hidden-bits proof system for L that uses N = N(n) hidden bits
for inputs of length n ∈ N. Consider the following non-interactive proof system.

– Input x ∈ {0, 1}n.
– Common random string ρ = (ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN ).
– Prover’s witness w ∈ {0, 1}poly(n).
– Prover P , given x, w and ρ, performs the following:

1. Let (pk, sk) ← Gen(1n, ρpk).
2. Let πpk ← Ppk(pk, rpk, sk).
3. For i ∈ [N ], let ci ← Sample(sk, ρi) and let bi = Decsk(ci)10.
4. Let (I, πhb) ← Phb(x, (b1, . . . , bm), w).
5. For i ∈ I, let πi ← Pct((pk, ci, bi), ri, sk).
6. Let cI = (ci)i∈I , bI = (bi)i∈I , πI = (πi)i∈I .
7. Output π = (pk, I, πpk, πhb, cI , bI , πI).

– Verifier V performs the following:
1. Verify NIZK proofs by running Vpk(pk, rpk, πpk) and Vct((pk, ci, bi), ri, πi)

for every i ∈ I. Reject if any of these tests rejects.
2. Check that Check(pk, ρi, ci) = 1 for every i ∈ I. Reject if any of these

checks fail.
3. Invoke Vhb(x, bI , I, πhb), and accept if and only if it accepts.

Observe that both the verifier and prover are PPT algorithms. Thus, to show
that Protocol 1 is a (weak) NIZK, we need to establish completeness, (weak)
soundness and zero-knowledge.

10 Jumping ahead, we note that for our final NIZK protocol, achieving standard sound-
ness, we will need to repeat steps 3–6 for � = poly(κ) times for the same pk to
amplify soundness.
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Completeness. From the completeness of the NIZKs (Ppk, Vpk) and (Pct, Vct), we
have that the verifiers Vpk and Vct (for each i ∈ [N ]) accept with all but negligible
probability. By the completeness property of the POCS, we have that with all
but negligible probability, the verifier’s invocation of Check outputs 1 for each
i ∈ I.

By the perfect completeness of the hidden-bits proof system, verifier Vhb

accepts for x ∈ L.11 Consequently, with probability 1−negl(n), all of the verifier’s
tests pass for x ∈ L and a proof produced by the honest prover.

Zero-Knowledge. We first define the simulator S. Let Shb be the simulator for
the hidden bits proof-system (Phb, Vhb), let Spk be the simulator for the NIZK
(Ppk, Vpk), and let Sct be the simulator for the NIZK (Pct, Vct). On input x ∈
{0, 1}n, simulator S performs the following.

1. Sample public randomness ρpk, and let (pk, sk) ← Gen(1n, ρpk).
2. Sample (πpk, rpk) ← Spk(pk) (recall that πpk is the simulated proof string and

rpk is the simulated CRS).
3. Sample (I, πhb, bI) ← Shb(x), where bI = (bi)i∈I . Set bi = 0 for every i ∈

[N ] \ I.
4. For i ∈ [N ], sample (ρi, ci) ← EncryptAndExplain(pk, bi).
5. For i ∈ I, sample (πi, ri) ← Sct(pk, ci, bi).
6. For i ∈ [N ] \ I, let ri ← {0, 1}poly(n).
7. Let cI = (ci)i∈I , πI = (πi)i∈I

8. Output simulated proof π = (pk, I, πpk, πhb, cI , bI , πI) and simulated common
random string ρ = (ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN ).

Due to lack of space, we defer the proof of indistinguishability of the real and
simulated distributions to the full version [RSS18].

Weak soundness. We first prove a weak notion of soundness with respect to
provers that are constrained to choose the public key pk before reading the CRS,
other than the public randomness for generating the public-key. Subsequently
we will apply an amplification argument to achieve full soundness.

Let us fix x /∈ L and a cheating prover P ∗, and let us sample a CRS ρ =
(ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN ). Let π = (pk, I, πpk, πhb, cI , bI , πI) be the proof
produced by P ∗ on input ρ, where P ∗ is first given only ρpk and produces pk,
and subsequently is given the full CRS ρ and produces the rest of the proof π.
By the adaptive soundness of the NIZKs (Ppk, Vpk) and (Pct, Vct), unless pk ∈
VPK and ci ∈ C

(bi)
pk for each i ∈ I, the verifier V will reject with all-but-

negligible probability. Additionally, with all-but-negligible probability, the public
randomness ρpk in the CRS is such that the statistical binding property of the
POCS holds. In the sequel we condition on these events occurring.

11 Here we are utilizing the fact that the hidden-bits proof-system has perfect complete-
ness to save us the effort of arguing that the hidden bits are indeed (sufficiently)
unbiased.
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For a given valid public key pk ∈ VPK and σ ∈ {0, 1}, define U
(σ)
pk to be the

set of randomnesses ρ (for the POCS procedure) that correspond to a ciphertext
c ∈ C

(σ)
pk but no ciphertext in C

(1−σ)
pk . That is,

U
(σ)
pk =

{
ρ∈{0, 1}poly(κ)

: ∃c∈C
(σ)
pk s.t. Check(pk, ρ, c) = 1 and ∀c

′ ∈ C
(1−σ)
pk ,Check(pk, ρ, c

′
) = 0

}
.

The set U
(σ)
pk consists of randomness that can be uniquely interpreted as an

encryption of σ and not of 1 − σ. Consequently, we have that U
(0)
pk ∩ U

(1)
pk = ∅.

By the unbiased and stastically binding properties of the POCS, we have that

Pr
ρ

[
ρ ∈ U

(σ)
pk

]
≥ 1/2 − ε − negl(κ),

where ε = ε(κ) is the binding parameter of the POCS.
Note that U

(0)
pk ∩U

(1)
pk = ∅. Arbitrarily fix a set Upk consisting half of elements

of U
(0)
pk and half of elements of U

(1)
pk such that

Pr
ρ

[ρ ∈ Upk] ≥ 1 − 2ε − negl(κ).

Recall that we first constrain the prover to choosing pk before reading any
part of the CRS other than the public randomness ρpk. Let Upk be the set defined
above. Then, with probability 1 − 2εN the strings ρ1, . . . , ρN are all in Upk.
Conditioning on this event, we have that the sequence b1, . . . , bN is unbiased and
uniquely determined by ρ1, . . . , ρN . Consequently, by the soundness of the hidden
bits proof system (Phb, Vhb) we have that with all but negligible probability, in
this event Vhb will reject since x /∈ L. Therefore, it follows that the verifier V will
reject with probability at least 1−2εN −negl(n), which is at least 1/3−negl(n)
for ε = 1/N2.

Amplification. We now transform Protocol 1 into a protocol with full soundness.
We modify Protocol 1 as follows. After choosing the public key pk, the prover

runs steps 3–6 of Protocol 1  = poly(n) times on different portions of the CRS,
generating  independently sampled (I, πhb, CI , bI , πI). The verifier checks each
of these separately, rejecting if any test fails.

Completeness and zero-knowledge of the new protocol follow immediately
from the same argument as before. It remains to prove (full-fledged) soundness.
As before, we have that the verifier will reject with probability 1−negl(n) unless
pk ∈ VPK and the public randomness ρpk in the CRS satisfies the statistical
binding property of the POCS, so we can condition on these events. For a fixed
pk, we have from the soundness of Protocol 1 that on a single iteration of steps
3–6, the verifier will reject with probability at least 1/3−negl(n) on x /∈ L. Since
the public key pk has polynomial size, applying a union bound over public keys,
we can take  = poly(n) sufficiently large that with probability 1 − negl(n), the
verifier will reject for every public key.12 Consequently soundness holds in the
amplified protocol.
12 The argument here resembles the standard argument for obtaining adaptively sound

NIZKs from NIZKs that only have non-adaptive soundness.
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4 Instantiating with LWE

In this section we show that, assuming the hardness of LWE and the existence of
a NIZK proof system for dBDD, Regev’s [Reg09] LWE-based encryption scheme
satisfies the conditions of Lemma 4 and therefore yields NIZK proof-systems for
all of NP:

Theorem 2. Let κ be the security parameter. Let n = n(κ) ∈ N, q = q(κ) ∈ N,
β = β(κ), α = α(κ) ≥ 1 and γ = γ(κ) > 1, such that n = poly(κ) and

β = o

(
1

log(κ)max(α,γ)
√

n log(q)

)
. Assume that the following conditions hold:

– The LWEn,q,β assumption holds; and
– There exists a NIZK proof system for dBDDα,γ .

Then, there exists a NIZK proof system for every language L ∈ NP.

Section Organization. In Sect. 4.1, we present Regev’s [Reg09] encryption
scheme. In Sect. 4.2, we present the NIZK proof systems for certifying public
keys and plaintext values for this encryption scheme (based on the NIZK proof
system for dBDD in the hypothesis of Theorem 2). In Sect. 4.3, we show that
Regev’s encryption has a POCS procedure. Finally, in Sect. 4.4, we use the tools
developed in the prior subsections to prove Theorem2.

4.1 Regev’s Encryption Scheme

A public-key encryption scheme based on the LWE assumption was introduced
in [Reg09]. We present the scheme of [Reg09], phrased as an encryption scheme
with public randomness in the sense of Definition 1.

Construction 5. Let κ be the security parameter. Let n = n(κ) ∈ N, q = q(κ) ∈
N, m = 2n log(q), β = β(κ) ∈ [0, 1] such that n = poly(κ) and β = o(1/

√
m). We

define the encryption scheme (Gen,Enc,Dec) with public randomness as follows:

– Public Randomness: The public randomness is a matrix A ← Z
n×m
q . We

assume without loss of generality that λ1(A) > q/413.
– Key Generation Gen(1κ,A): Sample s ← Z

n
q \{0}, and e ← χm

β , where χβ is
a discrete Gaussian with parameter β (see Definition 10). Let bT = sT ·A+eT .
We assume without loss of generality that

∥
∥sT · A − bT

∥
∥ =

∥
∥eT

∥
∥ ≤ 

√
mβq,

where  = ω(log(κ))14. Set the public key to be (A,b) and the secret key to
be s.

13 From Lemma 3 this happens with overwhelming probability.
14 Since the complementary event happens with negligible probability in κ, in case it

does happen we choose the public-keys to have zero noise.
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– Encryption Enc(A,b) (σ): On input a message σ ∈ {0, 1}, sample r ←
{0, 1}m and output (c, ω), where c = A · r and ω = bT · r + σ · ⌊ q

2

⌋
. We

assume without loss of generality15 that
∥
∥
∥
∥s

T · [A, c] −
[
b,

(
ω − σ ·

⌊q

2

⌋)]T
∥
∥
∥
∥ ≤ 2

√
mβq,

where  = ω(log(κ)).
– Decryption Decs

(
(c, ω)

)
: Output σ =

⌊
sT · c − ω

⌉
q
.

Regev [Reg09] proved that a variant of this scheme is semantically secure
(under the LWE assumption).

Proposition 4. (c.f. [Reg09]). Let n = n(κ) ∈ N, q = q(κ) ∈ N and
β = β(κ) ∈ [0, 1] such that β = o(1/

√
m) and n = poly(κ). If the LWEn,q,β

assumption holds, then Construction 5 is semantically secure.

In order to use the results of Sect. 3, we need to show that Construction 5
admits a POCS procedure. As our first step, we define a valid set of public keys.
Later, we shall show NIZK proofs for the related promise problems GoodPK and
GoodCT as well as a POCS procedure for Construction 5.

Fix a security parameter κ. Let n = poly(κ), q = q(κ), and β = β(κ) be
parameters and set m = 2n log(q). In the sequel, we omit κ from the notation
to avoid cluttering. In addition, we set  = ω(log(κ)), emax = 

√
mβq, 1 ≤ α <

q
8emax

and γ > 1. We assume that the following hold:

– β < 1
16
γ

√
m

;
– the LWEn,q,β assumption holds; and
– there exists a NIZK proof system for dBDDα,γ/4.

Now, we define a set (of alleged public keys) VPK for (Gen,Enc,Dec). Later
we will argue that it is in fact a valid set of public keys as per Definition 12. Let

VPK =
{

(A,b) ∈ Z
n×m
q × Z

m
q : ∃ s ∈ Z

n
q s.t.

∥
∥sT · A − bT

∥
∥ ≤ γemax

}
. (2)

We note that the noise level allowed in Eq. (2) is larger by a multiplicative
γ factor than the noise level that exists in honestly generated public keys.

For each pk = (A,b) ∈ VPK and σ ∈ {0, 1}, define C
(σ)
pk ⊆ Z

n
q × Zq as:

C
(σ)
pk =

{
(c, ω) : ∃ s′ ∈ Z

n
q s.t.

∥
∥
∥
∥s

′T · [A, c] −
[
b,

(
ω − σ ·

⌊q

2

⌋)]T
∥
∥
∥
∥ ≤ 2γemax

}

(3)
The noise level allowed in Eq. (3) is also larger by a multiplicative γ factor

than the noise level that exists in honestly generated ciphertexts.
15 Again, the complementary event happens with negligible probability, in which case

we can output a ciphertext with zero noise.
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Remark 3. As noted in the introduction, we would like for VPK to contain
only the honestly generated public keys and C

(σ)
pk to contain only the honestly

generated encryptions of σ with respect to pk. However, introducing a gap in
the definitions allows us to rely on NIZKs for suitable approximation problems.

We conclude this section by showing that VPK is indeed a valid set of public
keys.

Proposition 5. The set VPK is a valid set of public keys.

Due to lack of space, we defer the proof to the full version [RSS18].

4.2 NIZKs for Validating Keys and Ciphertexts

Now that we have defined a valid set of public keys VPK, we prove that Con-
struction 5 satisfies the conditions of Lemma 4. To do so we assume the existence
of a NIZK proof system for dBDD. Using this NIZK, we obtain NIZK proof sys-
tems for the promise problems GoodPK and GoodCT (with respect to VPK).

Lemma 6. Assume there exists a NIZK proof system for dBDDα,γ/4. Then,
there exists a NIZK proof system for the promise problem GoodPK (with respect
to VPK).

Lemma 7. Assume there exists a NIZK proof system for dBDDα,γ/4. Then,
there exists a NIZK proof system for the promise problem GoodCT (with respect
to VPK).

We defer the proofs of Lemmas 6 and 7 to the full version [RSS18].

4.3 A POCS Procedure for Regev’s Scheme

The last and most challenging condition that we need is to prove that Construc-
tion 5 has a POCS procedure.

Lemma 8. Construction 5 has a (1 − 4γ
√

mβ)-binding POCS procedure with
respect to VPK.

The rest of Sect. 4.3 is devoted to the proof of Lemma 8.

Proof. (Proof of Lemma 8).
For technical convenience and simplicity, we assume for now that q ≡ 2

(mod 4). The case that q �≡ 2 (mod 4) adds some mild complications in order to
avoid introducing a small, but noticeable bias (i.e., roughly 1/q) in the obliviously
sampled bits. We describe how to extend our approach to general q in the full
version [RSS18]16.

16 Alternatively, we could reduce the bias to be negligible using Von Neumann’s trick
[VN61] for transforming a biased source to an almost unbiased source.
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Let us first describe the algorithms Sample and Check. The Sample algorithm
takes as input a secret key sk = s and randomness (ρ, τ) ∈ Z

n
q ×Zq, and outputs

a ciphertext.
The algorithm Sample transforms a high noise ciphertext (ρ, τ) into a valid

Regev’s ciphertext under the secret key s.

Sample
(
s, (ρ, τ)

)
:

1. Sample e ← χ√
mβ . Let ω0 = sT · ρ + e and ω1 = ω0 +

⌊
q
2

⌋
.

2. If |τ − ω0| < |τ − ω1|, set σ = 0. Otherwise, set σ = 1.
3. Output (ρ, ωσ), which is a valid ciphertext for the message σ.

The Check algorithm takes as input a public key pk = (A,b), randomness
(ρ, τ) ∈ Z

n
q × Zq, and an alleged ciphertext (ρ′, ω′) ∈ Z

n
q × Zq, and outputs a

singlebit denoting acceptance or rejection.

Check
(
pk, (ρ, τ), (ρ′, ω′)

)
:

If ρ′ = ρ and |ω′ − τ | ≤ q
4 , accept. Otherwise, reject.

Finally, we describe the EncryptAndExplain algorithm, which takes as input a
public key pk = (A,b) and a message σ ∈ {0, 1} and produces randomness and
a ciphertext that are close to the distribution induced by Sample.

EncryptAndExplain
(
(A,b), σ

)
:

1. Sample r ← {0, 1}m. Compute ρ′ = A · r and ω′ = bT · r+ σ · ⌊ q
2

⌋
. Note that

(ρ′, ω′) is a fresh encryption of σ.
2. Sample τ ′ ← Zq subject to |τ ′ − ω′| < q

4 .
3. Output

(
(ρ′, τ ′), (ρ′, ω′)

)
.

We now show that these algorithms satisfy each of the conditions of Definition 13.

Complete. Let (ρ, τ) ← Z
n
q ×Zq and (ρ′, ω′) ← Sample(s, (ρ, τ)). By construction

ρ′ = ρ and |τ − ω′| ≤ q
4 , and so Check always accepts.

Unbiased. We defer the proof that this scheme is unbiased to the full version
[RSS18].

Statistically Binding. Let pk = (A,b) ∈ VPK with public randomness A ←
Z

n×m
q . By construction λ1(A) > q/4, so there exists a unique s such that∥

∥sT · A − bT
∥
∥ ≤ γemax. We assume that the above holds for A.

Therefore, it holds that:

C
(σ)
pk =

{
(c, ω) ∈ Z

n
q × Zq :

∥
∥
∥
∥s

T · [A, c] −
[
b,

(
ω − σ ·

⌊q

2

⌋)]T
∥
∥
∥
∥ ≤ 2γemax

}
.
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We remark that in this case, (c, ω) ∈ C
(0)
pk if and only if

(
c, ω +

⌊
q
2

⌋) ∈ C
(1)
pk .

Furthermore,

Pr
ρ,τ

[
∃ (c0, ω0) ∈ C

(0)
pk ,∃ (c1, ω1) ∈ C

(1)
pk s.t.

Check(pk, (ρ, τ), (c0, ω0)) = 1,
Check(pk, (ρ, τ), (c1, ω1)) = 1

]

= Pr
ρ,τ

⎡

⎢
⎢
⎣∃ω0,∃ω1 ∈ Zq s.t.

∣
∣sT · ρ − ω0

∣
∣ ≤ γemax,∣

∣sT · ρ − ω1 − ⌊
q
2

⌋∣∣ ≤ γemax,
|ω0 − τ | ≤ q/4,
|ω1 − τ | ≤ q/4

⎤

⎥
⎥
⎦

≤ Pr
ρ,τ

[(∣
∣sT · ρ − τ

∣
∣ ≤ γemax +

q

4

)
and

(∣∣
∣sT · ρ −

(
τ +

⌊q

2

⌋)∣∣
∣ ≤ γemax +

q

4

)]

≤ Pr
r

[(
|r| ≤ γemax +

q

4

)
and

(∣∣
∣r +

⌊q

2

⌋∣∣
∣ ≤ γemax +

q

4

)]

≤ Pr
r

[
r ∈

[q

4
− γemax,

q

4
+ γemax

]
∪
[
−q

4
− γemax,−q

4
+ γemax

]]

≤ 4γ
√

mβ.

The first equality follows from the definition of C
(0)
pk and C

(1)
pk and the descrip-

tion of Check. More specifically, the conditions
∣
∣sT · ρ − ω0

∣
∣ ≤ γemax and

∣
∣sT · ρ − ω1 − ⌊

q
2

⌋∣∣ ≤ γemax follow from the fact that (c0, ω0) ∈ C
(0)
pk and

(c1, ω1) ∈ C
(1)
pk , respectively. The conditions |ω0 − τ | ≤ q/4 and |ω1 − τ | ≤ q/4

follow from Check(pk, (ρ, τ), (c0, ω0)) = 1 and Check(pk, (ρ, τ), (c1, ω1)) = 1
respectively. The next inequality follows from the triangle inequality. Next, we
replace sT · ρ − τ by a uniformly random element r of Zq. Then, we note that r
has to belong to a set of size at most 4γemax ≤ 4γ

√
mβq, which happens with

probability at most 4γ
√

mβ. The last inequality then follows.

Simulatable. Let N = poly(κ). Sample A ← Z
n×m
q and (pk, sk) =

(
(A,b), s

) ←
Gen(1κ,A) and consider the following two experiments:

– For i ∈ [N ], let (ρi, τi) ← Z
n
q × Zq, (ρi, ωi) ← Sample(s, (ρi, τi)), σi =

Decs((ρi, ωi)). Output
(
pk, (ρi, τi, ωi, σi)i∈[N ]

)
.

– For i ∈ [N ], let σ′
i ∈R {0, 1}. Set

(
(ρ′

i, τ
′
i), (ρ

′
i, ω

′
i)
) ← EncryptAndExplain

(pk, σ′
i). Output

(
pk, (ρ′

i, τ
′
i , ω

′
i, σ

′
i)i∈[N ]

)
.

In the full version [RSS18] we show that the outputs of these two experiments
are computationally indistinguishable.

Computationally Hiding. Given public key pk = (A,b) and randomness (ρ, τ),
the procedure Sample simply computes a fresh encryption (ρ, ω) using the secret-
key variant of Regev’s scheme. Let σ = Decs((ρ, ω)). Then similarly to the above
proof (

pk,ρ, τ, ω, σ
) ≡ (

pk,ρ, τ ′, ω′, σ
)
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where ω′ = sT · ρ + σ · ⌊ q
2

⌋
+ e, with e ← χ√

mβ and τ ′ sampled uniformly such
that |τ ′ − ω′| < q/4.

Then, since τ ′ is a randomized function of ω′, the computational hiding
property of the POCS follows immediately from the semantic security of Regev’s
encryption scheme.

This concludes the proof of Lemma 8 for q ≡ 2 (mod 4). We describe how to
extend the proof to general q in the full version [RSS18]. The main difficulty is
to sample the boundary points with the correct probability.

4.4 Putting It All Together (Proof of Theorem 2)

We now complete the proof of Theorem 2. We have shown that all of the condi-
tions of Lemma 4 hold, as follows.

1. By Proposition 5, Construction 5 has a valid set of public keys VPK.
2. By Lemma 8, Construction 5 has a POCS with respect to VPK.
3. By Lemma 6, there is a NIZK for GoodPK.
4. By Lemma 7, there is a NIZK for GoodCT.

Theorem 2 then follows immediately by Lemma 4.
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Abstract. NTRU lattices [13] are a class of polynomial rings which
allow for compact and efficient representations of the lattice basis, there-
by offering very good performance characteristics for the asymmetric
algorithms that use them. Signature algorithms based on NTRU lattices
have fast signature generation and verification, and relatively small sig-
natures, public keys and private keys.

A few lattice-based cryptographic schemes entail, generally during the
key generation, solving the NTRU equation:

fG − gF = q mod xn + 1

Here f and g are fixed, the goal is to compute solutions F and G to
the equation, and all the polynomials are in Z[x]/(xn + 1). The exist-
ing methods for solving this equation are quite cumbersome: their time
and space complexities are at least cubic and quadratic in the dimension
n, and for typical parameters they therefore require several megabytes
of RAM and take more than a second on a typical laptop, precluding
onboard key generation in embedded systems such as smart cards.

In this work, we present two new algorithms for solving the NTRU
equation. Both algorithms make a repeated use of the field norm in tower
of fields; it allows them to be faster and more compact than existing algo-
rithms by factors Õ(n). For lattice-based schemes considered in practice,
this reduces both the computation time and RAM usage by factors at
least 100, making key pair generation within range of smart card abilities.

1 Introduction

NTRU lattices are a class of trapdoor lattices that were introduced by [13], as
the core object in which the NTRUEncrypt asymmetric encryption algorithm
is expressed. Given a monic polynomial φ ∈ Z[x] of degree n, the lattice is
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generated by two “short” polynomials f and g modulo φ. The coefficients of f
and g are very small integers (in NTRUEncrypt, they are limited to {−1, 0, 1}).
The polynomial f and g are secret, but their ratio:

h = g/f mod φ mod q (1)

for a given, small integer q, is public. The polynomial f is chosen so as to be
invertible modulo φ and q. q is not necessarily prime.

NTRU lattices offer good performance characteristics; they have been reused
in several other asymmetric schemes. Some of these schemes require the lattice
trapdoor to be “complete”, which means that beyond knowledge of f and g, the
private key owner must know two other short polynomials F and G that fulfill
the NTRU equation:

fG − gF = q (2)

A complete NTRU trapdoor is required for example in the signature scheme
NTRUSign [12], an identity-based encryption scheme [8], the signature scheme
Falcon [18], and the hierarchical identity-based encryption scheme LATTE [4].

Finding the shortest solution (for a given norm) is a hard problem; however,
computing a solution which is short enough for the purpose of running an algo-
rithm based on complete NTRU lattices, is doable. Solving the NTRU equation
is then part of the key generation process.

While the NTRU equation looks simple, solving it in an efficient manner
is nontrivial. Existing algorithms for finding a solution [12,21] have time and
space complexities that are at least cubic and quadratic in the dimension n,
respectively. For typical parameter sizes, this translates in practice into requiring
several megabytes of RAM and taking around 2 s on a typical computer.1 This
precludes implementation in many constrained, embedded systems. One could
argue that being able to implement the key generation on an embedded device is
not too important since one could simply generate it externally and copy-paste
the key in the device, but keeping the private key in a tamper-resistant device
for its complete lifecycle is often desirable for security (as there is no external
exposure at any time) and compliance (e.g. to the FIPS 140-2 norm [16]).

In this article, we show how we can leverage the field norm in polynomial rings
to achieve much improved performance for solving the NTRU equation. It allows
us to propose two new algorithms based on the field norm, which provide better
(time and space) complexities than existing algorithms by quasilinear factors in
n (precisely, at least O(n/ log n)). As a by-product, we developed an improved
algorithm for computing polynomial resultants, when one of the polynomials is
a cyclotomic (see Sect. 3). Table 1 compares the asymptotic complexity achieved
by our new techniques with existing known methods.

We implemented both the classic resultant-based NTRU solver, and our new
algorithms, with similar optimization efforts and tools. This allowed direct mea-
sures of the performance improvement of our techniques, which corroborated the

1 All the timings in this document are provided for a MacBook Pro laptop (Intel Core
i7-6567U @ 3.30 GHz), running Linux in 64-bit mode.
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Table 1. Comparison of our new methods for solving the NTRU equation with exist-
ing ones. B denotes an upper bound on log ‖f‖, log ‖g‖. The tag [K] indicates that
Karatsuba’s algorithm was used for large integer multiplications, and [SS] indicates
the Schönhage-Strassen algorithm was used.

Method Time complexity Space complexity

Resultant [12] Õ(n(n2 + B)) O(n2B)

HNF [21] Õ(n3B) O(n2B)

TowerSolverR
(Algorithm 4)

O((nB)log2(3) log n) [K] O(n(B + log n) log n)

Õ(nB) [SS]

TowerSolverI
(Algorithm 5)

O((nB)log2(3) log2 n) [K] O(n(B + log n))

Õ(nB) [SS]

asymptotic analysis: for a typical degree (n = 1024), the new methods are faster
and smaller than the classic algorithms, both by a factor of 100 or more.

1.1 Techniques

Our algorithms rely on repeatedly applying the project-then-lift paradigm, a
well-known paradigm in algorithmic number theory and cryptanalysis which
consists of projecting a problem onto a subset in which it becomes easier, before
lifting the solution to the original set.

In our case, we rely on using the presence of towers of fields and towers of
rings. As an illustration, let us consider the following tower of fields:

K� / K�−1 / . . . / K1 / K0 = Q

where ∀i, Ki = Q[x]/(x2i

+ 1), and the associated tower of rings (which are the
rings of integers of the corresponding fields) with n = 2�:

Z[x]/(xn + 1) � Z[x]/(xn/2 + 1) � · · · � Z[x]/(x2 + 1) � Z

It is well known that the field norm can map any element f ∈ Z[x]/(xn +1) onto
a smaller ring of its tower. This fact is exploited in the “overstretched NTRU”
attack [1], where problems are mapped to a smaller ring, then solved, at which
point the solution is lifted back to the original ring.

However, what is not exploited in these works is the fact that the field norm
plays nicely with towers of fields: for a tower of field extensions L/K/J and f ∈ L,
we have NK/J ◦NL/K(f) = NL/J(f) (where N denotes the field norm). This fact
is at the heart of our algorithms.

We first repeatedly use the field norm to project over Z equations which are
originally over Z[x]/(xn + 1); this is the descent phase. It turns out that these
equations can be solved much faster over Z. We then use the properties of the
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field norm to lift our solutions back in Z[x]/(xn+1); this is the lifting phase. This
simple principle allows us to gain a factor at least Õ(n) over classical algorithms.

We apply a few additional tricks such as memory-laziness, the use of residue
number systems, or the fact that in cyclotomic fields, the Galois conjugates of an
element in FFT or NTT representation are straightforward to compute. These
techniques make our implementation faster and more memory-efficient.

1.2 Applications

Our new algorithms impact at least four existing lattice-based schemes.

NTRUSign. The first scheme which entails solving this equation in the key
generation is NTRUSign [12]. In its current form, this scheme is however insecure,
but for reasons independent of the key generation.

Falcon. In the signature scheme Falcon [18], the costliest part of the key gener-
ation consists of solving an NTRU equation. Without our techniques, it would
require about 233 clock cycles on a recent laptop computer, and 3 MBytes of
RAM, for the highest security level, limiting its usability for many embedded
devices. As we gain a factor 100 in speed and memory, this significantly widens
the range of the devices on which Falcon can be entirely implemented.

DLP. The setup phase of the identity-based encryption scheme DLP [8] is iden-
tical to the key generation of Falcon. The same remark as above applies.

LATTE. Very recently, Campbell and Groves [4] introduced LATTE, a hier-
archical identity-based encryption scheme which essentially combines [8] with
the Bonsai trees construction of [5]. At each extraction of a user secret key,
LATTE needs to solve a generalized NTRU equation. More precisely, given
f1, . . . , fk ∈ Z[x]/(φ), it needs to compute F1, . . . , Fk ∈ Z[x]/(φ) such that

∑
fiFi = q

and k may in practice be equal to 3 or 4 (see [4, slide 23]). Our techniques can
be extended in a straightforward way to solve this kind of equation. The impact
for LATTE is even more important than for the aforementioned works, as an
authority may need to perform many extractions (typically, one per user and
per key renewal period).

1.3 Related Works

The NTRU equation was first introduced and solved in [12].
Another method for solving the NTRU equation was suggested by Stehlé

and Steinfeld [21], using the Hermite Normal Form. The most space-efficient
algorithm for computing the HNF is due to Micciancio and Warinschi [15]; how-
ever, like the method based on resultants, it has quadratic space complexity and
quasi-cubic time complexities, and does not solve the RAM usage issue.
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The use we make of the field norm is reminiscent of the “overstretched
NTRU” attack by [1], except that these works are cryptanalytic and use the
field norm once, whereas ours uses it repeatedly and improves cryptographic
constructions.

1.4 Roadmap

In Sect. 2, we introduce our notations, and recall the classic resultant-based
algorithm; we also describe some known mathematical tools that we will use in
our new algorithm. In Sect. 3, we present a novel method for computing specific
cases of resultants; our new algorithm builds on this method, and is described
in Sect. 4, where we also show how it can be viewed as an optimisation of the
classic resultant-based algorithm. Implementation issues are discussed in Sect. 5.

2 Preliminaries

We denote by Z, Q, R, C the ring of integers and the fields of rational, real and
complex numbers. For a > 0, b > 1, we denote by logb a the logarithm of a in
the basis b, with the convention log a = log2 a. For an integer r > 0, we denote
by Zr the ring of integers modulo r.

2.1 Polynomial Rings and Fields

Let Z[x] be the ring of polynomials with integer coefficients (thereafter called
integral polynomials). Let φ be a non-zero monic integral polynomial of degree
n ≥ 1 (i.e. φ = xn +

∑n−1
i=0 φix

i). Euclidean division of any integral polynomial
by φ is well-defined and yields a unique remainder of degree less than n; we can
therefore define Z[x]/(φ), the ring of integral polynomials modulo φ.

Similarly, we define Q[x]/(φ), C[x]/(φ) and Zr[x]/(φ). When φ is irreducible
in Z[x], it is also irreducible in Q[x], and Q[x]/(φ) is a field. In this article, we will
work modulo polynomials φ which are irreducible in Q[x]; however, in general,
C[x]/(φ) and Zr[x]/(φ) are not fields.

2.2 Matrices and Vectors

While the point of using polynomial rings to represent lattices is to avoid com-
putations related to matrices and vectors, we will still use such algebraic objects
in some proofs.

We will denote matrices in bold uppercase (e.g. B) and vectors in bold low-
ercase (e.g. v). We use the row convention for vectors.

The p-norm of a vector v is denoted ‖v‖p, and, by convention, ‖v‖ = ‖v‖2.
We recall that for v ∈ C

n and 0 < r ≤ p ≤ ∞, and with the convention 1/∞ = 0:

‖v‖p ≤ ‖v‖r ≤ n( 1
r − 1

p )‖v‖p. (3)
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For a polynomial f ∈ C[x]/(φ), where φ is a monic polynomial of degree n,
we denote by Cφ(f) the n × n matrix whose j-th row consists in the coefficients
of xj−1f mod φ:

Cφ(f) =

⎡

⎢⎢⎣

f mod φ
xf mod φ

. . .
xn−1f mod φ

⎤

⎥⎥⎦ (4)

When φ is clear from context, we will simply note C(f). One can check that
when φ = xn + 1, the matrix Cφ(f) is a skew-circulant matrix.

The operator f ∈ C[x]/(φ) 	→ C(f) is a ring isomorphism onto its image. In
particular, for all f, g ∈ C[x]/(φ), we have:

C(f + g) = C(f) + C(g)
C(fg) = C(f)C(g) (5)

2.3 Fast Integer Multiplication

Our techniques, when applied to solving the NTRU equation, imply the use of
large integers. Asymptotic computational costs depend on the time complexity
of multiplying two such integers. We denote by M(b) that complexity, when the
size in bits of the two integers is bounded by b:

– if we use Karatsuba’s algorithm, then M(b) = O(blog2(3)) ≈ O(b1.585);
– with the Schönhage-Strassen algorithm [19], M(b) = Θ(b · log b · log log b).

Karatsuba’s algorithm is more efficient for small values of b, but the Schönhage-
Strassen algorithm [19] is asymptotically better. When giving the time complex-
ities of our improved algorithms, we will consider both methods.

It shall be noted that asymptotic complexity is a reasonable estimate of
performance only for “large enough” parameters. In our implementations, we
found that for typical parameters (degree n up to 1024), the bottleneck was not
integer multiplication, but rather Babai’s reduction, which entails performing
floating-point operations.

2.4 Cyclotomic Polynomials

Most lattice-based cryptographic algorithms that use polynomial rings to repre-
sent structured lattices rely on cyclotomic polynomials (some notable exceptions
being e.g. [3,20]). Cyclotomic polynomials have some properties that make them
ideal for use of the field norm.

Definition 1. For an integer m ≥ 1, the m-th cyclotomic polynomial is:

Φm =
∏

0<k<m
gcd(k,m)=1

(
x − e2iπ(k/m)

)
(6)
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Cyclotomic polynomials have the following well-known properties:

– They are in Z[x] and are irreducible in Q[x].
– The degree of Φm is ϕ(m), where ϕ denotes Euler’s function: ϕ(m) = |Z×

m|.
– If n = 2�, then Φ2n = xn + 1.
– If p is a prime factor of m, then:

Φmp(x) = Φm(xp) (7)

Since cyclotomic polynomials are irreducible, Q[x]/(Φm) is a field for all
m ≥ 1; we will call them cyclotomic fields.

2.5 The Field Norm

The field norm is the central tool we use in our algorithms, and the key to their
efficiency. In this section, we recall its definition, as well as a few properties.

Definition 2 (Field Norm). Let K be a number field, and L be a Galois exten-
sion of K. We denote by Gal(L/K) the Galois group of the field extension L/K.
The field norm NL/K : L → K is a map defined for any f ∈ L by the product of
the Galois conjugates of f :

NL/K(f) =
∏

g∈Gal(L/K)

g(f) (8)

Equivalently, NL/K(f) can be defined as the determinant of the K-linear map
ψf : a ∈ L 	→ fa.

It is clear from the definition that the field norm is a multiplicative mor-
phism. In addition, the field norm is compatible with composition: for a tower
of extensions L/K/J, it holds that NL/K ◦NK/J(f) = NL/J(f).

For conciseness, K and L may be omitted from the subscript when clear from
context. For example, when f ∈ L and K is the unique largest proper subfield of
L, then we denote N(f) = NL/K(f). In addition, if f ∈ L and L sits atop a field
tower that is clear from context, then we may abusively denote by Ni(f) the
i-times composition of N. For example, if we consider the following field tower:

Q[x]/(xn + 1) / Q[x]/(xn/2 + 1) / . . . / Q[x]/(x2 + 1) / Q (9)

with n = 2�, then Ni(f) sends f ∈ Q[x]/(xn + 1) to Q[x]/(xn/(2i) + 1).

The Case of Cyclotomic Extensions. For cyclotomic extensions, the field
norm can be expressed in a form which is convenient for us. Let m,n > 0 be
integers such that n|m, L = Q[x]/(Φm) and K = Q[y]/(Φn). The morphism
y 	→ xm/n defines a field extension L/K. The Galois conjugates ga(f) of f ∈ L

are then of the form
ga(f)(x) = f(xa) (10)



More Efficient Algorithms for the NTRU Key Generation 511

for the set of a ∈ Zm verifying a = 1 mod n. This provides a simple and efficient
way of computing the norm NL/K(f) =

∏
a ga(f), especially in FFT or NTT.

In the particular case where n = 2�, L = Q[x]/(Φ2n) and K = Q[y]/(Φn), the
field norm is particularly simple to express. Any f ∈ L can be “split” into its
coefficients of even and odd degrees:

f = fe(x2) + xfo(x2) (11)

with fo, fe ∈ K. Noting ψf : a ∈ L 	→ fa, we have

NL/K(f) = det K(ψf ) = det
[

fe fo

yfo fe

]
= f2

e − yf2
o (12)

2.6 Resultants

Resultants are powerful tools in number theory. Among other applications, they
allow to keep track of coefficient growth when computing the (pseudo-)GCD of
polynomials in Z[x], and they play a crucial role in a previous algorithm by
[12] which solves the NTRU equation. We will see (in Sect. 3) that our first
application of the field norm is an efficient algorithm to compute resultants
between a cyclotomic polynomial φ of degree n, and another polynomial of degree
less than n.

Definition 3 (Resultant). Let f, g be two polynomials in C[x], of degrees n
and m, respectively. We denote their coefficients and roots as follows:

f(x) =
n∑

j=0

fjx
j = fn

n−1∏
j=0

(x − αj)

g(x) =
m∑

k=0

gkxk = gm

m−1∏
k=0

(x − βk)
(13)

The resultant of f and g is defined by either of these two equivalent definitions:

1. Res(f, g) = fm
n gn

m

∏
j,k

(αj − βk) = fm
n

∏
j

g(αj) = (−1)mngn
m

∏
k

f(βk)

2. Res(f, g) = det(Syl(f, g)), where Syl(f, g) denotes the Sylvester matrix of f
and g:

Syl(f, g) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn 0 · · · 0 gm 0 · · · 0

fn−1 fn
. . .

...
... gm

. . .
...

... fn−1
. . . 0

...
. . . 0

...
...

. . . fn g1 gm

f0 fn−1 g0
. . .

...
...

0
. . .

... 0
. . . g1

...
...

. . . f0
...

...
. . . g0 g1

0 · · · 0 f0 0 · · · 0 g0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)
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The second definition makes it clear that if f and g are integral polynomials,
then their resultant will also be an integer.

The resultant of f and g can be computed with the Euclidean Algorithm on
polynomials. The Extended Euclidean Algorithm (also called Extended GCD)
furthermore keeps track of intermediate quotients in order to yield Bézout coef-
ficients, i.e. polynomials u and v in C[x] such that uf + vg = Res(f, g). When
f and g are integral polynomials, the Bézout coefficients will also be integral
polynomials.

In addition to these definitions, the following proposition will be useful for
providing bounds over the resultant.

Proposition 1. If g is monic with distinct roots over C, then, for all f ∈
C[x]/(g), Res(g, f) = det(Cg(f)).

Proof. For a fixed g, all the matrices Cg(f) are co-diagonalizable:

Cg(f) = V−1 × D × V

Where V is the Vandermonde matrix associated to the roots of g, and D is the
diagonal matrix which diagonal terms are the evaluations of f over the roots of
g. As a consequence, det Cg(f) = detD =

∏
g(γ)=0 f(γ) = Res(g, f). �

2.7 Fast Fourier Transform and Number Theoretic Transform

The Fast Fourier Transform, and its variant the Number Theoretic Transform,
are powerful tools that allow for efficient computations in polynomial rings. The
field norm, in particular, can be very simply and quickly evaluated when the
operands use the FFT or NTT representation. Most of the speed-ups obtained
by our techniques come from the interaction between the field norm and the
FFT/NTT.

Let φ ∈ Q[x] be a monic polynomial of degree n, with n distinct roots
(γj)0≤j<n over C. For f ∈ C[x]/(φ), its Fourier Transform f̂ is defined as:

f̂ =
(
f(γj)

)
0≤j<n

(15)

The Fourier Transform is an isomorphism between C[x]/(φ) and C
n. Therefore,

for f, g ∈ C[x]/(φ), the Fourier transform of f + g and fg can be computed by
term-wise addition and multiplication, respectively, of f̂ and ĝ.

The Fast Fourier Transform (or FFT) is a well-known algorithm for comput-
ing the Fourier Transform of f in the special case of φ = xn+1 with n = 2� [7,10].
The FFT has time complexity O(n log n) operations in C; the inverse transform
can also be computed with similar efficiency. In particular, the FFT allows for
computing the product of two polynomials modulo φ with complexity O(n log n).
The FFT can be extended to other moduli, especially cyclotomic polynomials.

The Number Theoretic Transform (or NTT) is the analog of the Fourier
Transform over the finite field Zr for a given prime r. The NTT is well-defined
as long as φ splits over Zr; when φ = xn + 1, it suffices that r = 1 mod 2n.
As in the case of the FFT, the NTT can be computed in O(n log n) elementary
operations in Zr for some moduli, in particular cyclotomic polynomials.
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2.8 Babai’s Reduction

Before we show how to solve the NTRU equation, we present one last tool
which plays an important role in this process: Babai’s reduction, or rather a
generalization of it. This reduction transforms a solution of the NTRU equation
into another solution with shorter polynomials. We first define the adjoint.

Definition 4 (Adjoint). Let φ ∈ Q[x] be monic with distinct roots (γj) over C.
For f ∈ C[x]/(φ), we define its adjoint f� as the unique polynomial in C[x]/(φ)
such that for each γj:

f�(γj) = f(γj) (16)

where · denotes the complex conjugation.

Existence and uniqueness are easily obtained by noticing that, in FFT rep-
resentation, computing the adjoint is equivalent to replacing each Fourier coef-
ficient with its conjugate.

If f ∈ R[x]/(φ), then f� ∈ R[x]/(φ). Indeed, if γ is a root of φ, then γ is also
a root of φ, and f(γ) = f(γ); therefore, f�(γ) = f�(γ) for all roots γ of φ. This
property is achieved only by real polynomials, i.e. polynomials whose complex
coefficients are all real numbers.

The adjoint allows us to define Reduce (Algorithm 1), which is a straightfor-
ward generalization of Babai’s nearest plane algorithm [2] over Z[x]/(φ)-modules.
For inputs f, g, F,G ∈ Z[x]/(φ), the Reduce algorithm computes F ′ and G′ of
close to minimal size such that fG − gF = fG′ − gF ′:

Algorithm 1. Reduceφ(f, g, F,G)
Require: f, g, F, G ∈ Z[x]/(φ)
Ensure: F ′, G′ ∈ Z[x]/(φ) such that fG′ − gF ′ = fG − gF mod φ
1: do
2: k ←

⌊
Ff�+Gg�

ff�+gg�

⌉

3: (F, G) ← (F − kf, G − kg)
4: while k �= 0
5: return F, G

Several iterations may be needed, especially if k is computed in low precision.
Indeed, in practice the coefficients of the polynomials F,G can be extremely
large before reduction, and it is therefore more efficient to compute k with a
low precision (e.g. using double values in the C programming language) over
approximations of the polynomial coefficients: this allows the use of the FFT
representation, where polynomial multiplications and adjoints are easily com-
puted. Each iteration then yields an approximate k value with small coefficients
(with scaling). Of course, using floating-point arithmetic means that one could
be stuck in an infinite loop, but this is easily thwarted by exiting the algorithm
as soon as the norm of (F,G) stops decreasing.
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We note that computation of k involves a division of polynomials modulo
φ. In FFT representation, division is simply applied term by term. Since φ is
irreducible over Q[x], no division by 0 occurs here. In practice, though, use of
approximate values in low precision may (rarely) yield situations where we end
up dividing by 0. As will be explained in Sect. 5.1, occasional failures can easily
be tolerated in the context of key pair generation for a cryptographic algorithm.

In this article, we will use Reduce in several places, each time with polyno-
mials f, g, F,G that fulfill the NTRU equation (Eq. 2). If fG − gF = q, then,
heuristically, the Reduce algorithm computes F ′ and G′ such that the coefficients
of F ′ and G′ have about the same maximal size as the coefficients of f and g.

2.9 Solving the NTRU Equation with Resultants

We now present the first known method for solving the NTRU equation (Eq. 2):
given f and g in Z[x]/(φ), find F and G in Z[x]/(φ) such that fG−gF = q, where
q is a given relatively small integer. Our techniques are best demonstrated by
showing how they apply to, and speed up, this classic NTRU solving algorithm.

This method works for any monic φ irreducible over Q[x]; it was introduced
in [12] and an implementation can be found in [8]. It relies on Bézout equations
over Z[x]:

– First, we compute Bézout coefficients s, s′, t, t′ ∈ Z[x], and integers Rf and
Rg, such that:

sf + s′φ = Rf

tg + t′φ = Rg
(17)

Since φ is irreducible over Q[x], it is guaranteed that we can enforce the
condition Rf , Rg ∈ Z. The s′ and t′ polynomials do not actually need to be
computed; only s and t are used thereafter.

– We compute the GCD δ of Rf and Rg, along with Bézout coefficients u, v ∈ Z

such that:
uRf + vRg = δ (18)

– If δ is a divisor of q, we can then combine Eqs. 17 and 18, yielding a solution
to Eq. 2: (uq

δ
s
)
f +

(vq

δ
t
)
g = q mod φ (19)

Since Q is a field and φ is irreducible over Q[x], finding solutions s, t ∈
Q[x], Rf = Rg = 1 to Eq. 17 is doable via the extended GCD. Because Z is
not a field but only an integral domain, we cannot straightforwardly apply the
extended GCD on Z[x]. However, by scaling the solutions in Q[x], one may obtain
solutions in Z[x] which verify Rf = Res(φ, f) and Rg = Res(φ, g) (see e.g. [9,
Corollary 6.21])2.

2 Several techniques (on-the-fly rescaling, computation modulo small primes, etc.)
have been proposed to make the extended GCD more efficient (for an overview, see
e.g. [9, Chapter 6]), but they result in the same bounds over Rf , Rg.
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In practice, one may get |Rf | and |Rg| to be smaller than |Res(f, φ)| and
|Res(g, φ)|, but usually not by much. In the general case, these bounds are tight
(e.g. for f = 1 − kx, φ = 1 + x).

Using this method, combined with Babai’s reduction to obtain a short solu-
tion (F,G), yields the Algorithm 2.

Algorithm 2. ResultantSolverφ,q(f, g)
Require: f, g ∈ Z[x]/(φ)
Ensure: Polynomials F, G such that Equation 2 is verified
1: Compute Rf ∈ Z and s ∈ Z[x] such that sf = Rf mod φ
2: Compute Rg ∈ Z and t ∈ Z[x] such that tg = Rg mod φ
3: Compute u, v ∈ Z such that uRf + vRg = GCD(Rf , Rg)
4: if δ = GCD(Rf , Rg) is not a divisor of q then
5: abort
6: (F, G) ← (−(vq/δ)s, (uq/δ)t) � At this point, fG − gF = q already
7: Reduce(f, g, F, G)
8: return F, G

Correctness. One can show that if φ is irreducible over Q[x], then Algorithm2
fails if and only the NTRU equation does not have a solution for the inputs
(f, g). This will also be true for our new algorithms. Of course, handling such
cases is important (and has been studied in [21]), but since our algorithms are
“optimal” in this regard (they fail if and only if there is no solution at all), we
consider this to be outside the scope of this document.

Lemma 1 (Complexity of ResultantSolver for φ = xn + 1 and q = 1). Let
φ = xn+1, q = 1, deg(f),deg(g) < n and the euclidean norms of f, g be bounded
by some value: log ‖f‖, log ‖g‖ ≤ B. Algorithm2 (ResultantSolver) runs in space
O(n2B) and time O(n(n2 + B)(log n + log B)2).

Proof. We perform a step-by-step analysis of Algorithm2.

S1. We have |Rf | ≤ |Res(f, φ)| = |det Cφ(f)| since φ is monic with distinct
roots. In addition:

|det Cφ(f)| ≤ ‖f‖n
2 (upper bound)

|det Cφ(f)| ≈ √
2πn

[
‖f‖2

e

]n

(heuristic)
(20)

For any square matrix B = {b1, . . . ,bn}, we have |det(B)| =
∏

i ‖b̃i‖ ≤∏
i ‖bi‖, where b̃i denotes the orthogonalization of bi with respect to the

previous rows. In our case:
• The upper bound uses the fact that each row of Cφ(f) has a norm ≤ ‖f‖2.
• For the heuristic approximation, we modelize each row of Cφ(f) as a ran-

dom vector of size ‖f‖2, so that the orthogonalization of the i-th row has

a norm
√

n+1−i
n ‖f‖2. Of course, in our case the vectors are not indepen-

dent, however this heuristic gives good approximations in practice.
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The proven upper bound yields log |Rf | = O(nB). We even have log |Rf | =
Θ(nB) with the heuristic.
To finish the study of this step, we bound log ‖p‖∞. Since C(p) = RfC(f)−1,
a straigthforward application of Cramer’s rule yields ‖p‖∞ ≤ ‖f‖n−1, so
log ‖p‖∞ = O(nB).

S2. The analysis is identical and yields log |Rg|, log ‖s‖∞ = O(nB).
S3. The extended GCD algorithm finds u, v such that |u| < |Rg| and |v| < |Rf |.

Since log |Rf | and log |Rg| both are in O(nB), the same asymptotic bound
applies to log |u| and log |v|.

S6. From the previous items, we have log ‖F‖∞, log ‖G‖∞ = O(nB).
S7. This step can be performed with a space overhead O(n) using Algorithm 1

with precision O(1).

Overall, the logarithms of |u|, |v| and of each coefficient of p, s, F,G are in O(nB),
so the total space complexity is in O(n2B).

The time complexity is now easy to analyze. The costliest steps are S1 and
S2, and according to [9, Corollary 6.39] they can be performed in time O(n(n2 +
B)(log n + log B)2), which concludes the proof. �

3 Improved Algorithm for Computing Resultants

Our first application of the field norm is an improved algorithm for computing
polynomial resultants, which we present in this section. This algorithm, by itself,
is not sufficient to significantly reduce the CPU and RAM costs of the classic
NTRU equation solving algorithm (ResultantSolver, described in Sect. 2.9); how-
ever, it is an important step toward the construction of our improved solver.
Moreover, this algorithm may prove useful to other applications that use resul-
tants but not necessarily NTRU lattices.

Let φ = Φpm be the pm-th cyclotomic polynomial for some integers p and
m, n = ϕ(m) its degree and K = Q[x]/(φ).

Let f ∈ K. It is well-known that the field norm NK/Q(f) is equal to the resul-
tant Res(φ, f), however we re-explain the intuition here for cyclotomic polyno-
mials. We recall that the resultant of f with φ can be computed as:

Res(φ, f) =
n−1∏

j=0

f(γj) (21)

where the γj values are the roots of φ over C.
As noted previously, K is a field extension of Q[x]/(Φm) by the morphism

y 	→ xp. We can thus group the n roots of φ into n/p sets {γjζ
k}, each set using

a base root γj multiplied by ζk, for k = 0 to p − 1, and ζ = e2iπ/p a primitive
p-th root of unity. It is easily shown that these n/p sets are a partition of the n
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roots of φ. To ease notation, we number here the base roots from 1 to n/p. This
yields the following:

Res(φ, f) =
n/p∏

j=1

p−1∏

k=0

f(γjζ
k) =

n/p∏

j=1

N(f)(γj) (22)

Note that the γj (the base roots of our sets) are exactly the roots of Φm. Thus:

Res(Φpm, f) = Res(Φm,N(f)) (23)

In other words, we can divide the degree of φ by p, by replacing f with N(f).
We may note that, in FFT representation, computing the field norm is no

more than multiplying together the Fourier coefficients along the groups into
which the roots of φ are partitioned.

As we saw in Sect. 2.6, the resultant Res(φ, f) can also be defined as the
determinant of the Sylvester matrix of φ and f . As such, it can be expressed
as a polynomial expression of the coefficients of f and φ. The result above then
expresses an equality of the expressions of Res(Φpm, f) and Res(Φm,N(f)) that
will hold over any other field where Φpm has n roots. In particular, if f is an
integral polynomial and r is a prime such that pm divides r − 1, then we can
perform all computations modulo r; notably, we can use the NTT. In NTT
representation, just like in FFT representation, the field norm of f is computed
by simply multiplying the NTT coefficients together along the partition groups
of the roots of φ.

An important special case is n = 2�. The cyclotomic polynomial is then
φ = xn +1 = Φ2n, and p = 2. We can furthermore apply the process repeatedly:
we replace Res(xn +1, f) with Res(xn/2 +1,N(f)), then Res(xn/4 +1,N(N(f))),
and so on. We thus obtain a very simple, recursive algorithm for computing
resultants of f with xn + 1:

Algorithm 3. TowerResultantn(f)
Require: f ∈ Z[x]/(xn + 1) with n = 2�

Ensure: Rf = Res(xn + 1, f)
1: if n = 1 then
2: return f0

3: return TowerResultantn/2(N(f))

If f is an integral polynomial, then algorithm TowerResultant can be com-
puted modulo any prime r such that n divides r − 1; this yields the resultant
modulo r. Using sufficiently many such small primes allows rebuilding the resul-
tant value with the Chinese Remainder Theorem. Modulo each small prime r,
the NTT can be used, with cost O(n log n) operations in Zr, followed by n − 1
multiplications in Zr. The total cost will then depend on how many small primes
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we need, i.e. what is the maximum size of the resultant Res(xn + 1, f). The fol-
lowing lemma gives us a bound on that size:

Lemma 2. Let the L1-norm of f be bounded: log ‖f‖1 ≤ C. Then:
log |Res(xn + 1, f)| ≤ nC.

Proof. We recall that p̂ denote the Fourier transform of p over the roots of φ
(here, φ = xn + 1). We have:

‖N̂(f)‖∞ = ‖(f(γ)f(−γ)){γ}‖∞ ≤ ‖(f(γ)){γ}‖∞‖(f(−γ)){γ}‖∞ = ‖f̂‖2∞ (24)

where γ runs over all the roots of xn + 1. Therefore, for any 0 ≤ j ≤ log n, we
have ‖N̂ j(f)‖∞ ≤ ‖f̂‖2j

∞. Using classical properties of p-norms, it follows that:

‖N j(f)‖2 =
1√
n/2j

‖N̂ j(f)‖2 ≤ ‖N̂ j(f)‖∞ ≤ ‖f̂‖2j

∞ ≤ ‖f‖2j

1 (25)

When 2j = n, corresponding to the end of the recursion in algorithm TowerRe-
sultant, the result follows. �

Therefore, if the L1-norm of f is bounded by 2C , the resultant can be
expressed over at most nC bits. The number of required small primes for
the computation, using the NTT, is then O(nC), yielding a total time cost
of O(n2C log n); space complexity is O(nC) (the size needed to represent the
result).

This improved resultant computation can be applied to the classic NTRU
equation solver:

– Res(φ, f) is computed modulo many small primes r, as explained above.
– The Bézout coefficient s such that sf = Res(φ, f) is also computed modulo

each r; since Zr is a field, f can be inverted modulo φ, allowing for computing
s efficiently, in particular with the NTT.

– When enough small primes have been used, the complete resultant Res(φ, f)
can be rebuilt, as well as the Bézout coefficient s, by applying the CRT on
all individual monomials.

While this new algorithm reduces the time cost of ResultantSolver, it does
not help with the space complexity: indeed, the coefficients of s have all about
the same size as the resultant, and there are n of them. We will now show how
the field norm yields new recursive formulas for solving the NTRU equation,
that allow for a dramatic improvement in space complexity.

4 Improved Algorithms for Solving the NTRU Equation

This section presents new techniques and algorithms for solving the NTRU equa-
tion (Eq. 2). These algorithms result from the recursive application of the field
norm to the classic NTRU solver itself, building on the improvements made to
resultants and described in the previous section.
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We will first present the outline and the intuition of our techniques in
Sect. 4.1. In Sect. 4.2, we present a recursive algorithm based on our observa-
tions, and in Sect. 4.3, we present a slightly slower but more memory-efficient
iterative algorithm. Finally, in Sect. 4.4, we will provide analyses for the time
and memory requirements of both algorithms.

4.1 Outline

Let m, p > 0 be integers, L = Q[x]/(Φpm), K = Q[y]/(Φm) and N = NL/K.
Suppose that we have a given integer q and two polynomials f, g ∈ Z[x]/(Φpm),
and we want to find F,G ∈ Z[x]/(Φpm) such that:

fG − gF = q (26)

On the other hand, suppose that for N(f),N(g), which are in the smaller ring
Z[y]/(Φm), we already know F ′, G′ ∈ Z[y]/(Φm) such that:

N(f)G′ − N(g)F ′ = q (27)

We claim that we can use the solutions F ′, G′ to Eq. 27 to deduce solutions
F,G for Eq. 26. Indeed, we recall that N(f) =

∏
g∈Gal(L/K) g(f) = ff×, where

f× =
∏

g∈Gal(L/K)× g(f) denotes the product of all the Galois conjugates of f
except itself, and we have a similar equality for g. Equation 27 is then equivalent
to:

ff×G′(xp) − gg×F ′(xp) = q (28)

which is an equality in the larger ring Z[x]/(Φpm). From this last equation, it
follows that F = g×F ′(xp) and G = f×G′(xp) are valid solutions for the NTRU
equation.

From these observations, we can now give the outline of our algorithms for
solving the NTRU equation: (1) use the field norm to project it to a smaller
subring, (2) solve the equation in the smaller ring, (3) use Eq. 28 to lift the
solutions back in the original ring. However, and contrary to the “overstretched
NTRU” attack [1], we do not perform the projection and lifting steps once, but
repeatedly. More precisely:

– we project f, g onto a smaller subring until we reach the ring of integers Z;
we call it the descent phase;

– once we obtain solutions in Z, we lift them repeatedly until we are back to
the original ring; we call this the lifting phase.

The multiple projections and liftings are key to the efficiency of our algo-
rithms: performing them once would only yield gains in a O(1) factor, but we
will show that their repetition allows to gain factors larger than Õ(n) in theory,
and in practice a factor 100 for a typical value n = 1024.

The flow of our two algorithms is summarized in the Fig. 1. The descent
phase is represented in the middle column, and the lifting phase is represented
in the right column.
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Fig. 1. Outline of Algorithms 4 and 5 for solving Eq. 2.

4.2 A Recursive Algorithm

In the special case of φ = xn + 1 with n = 2�, we can apply these formulas
with p = 2, and then do so again on φ′ = xn/2 + 1, repeatedly. This yields the
TowerSolverR algorithm, expressed as follows:

Algorithm 4. TowerSolverRn,q(f, g)
Require: f, g ∈ Z[x]/(xn + 1) with n a power of two
Ensure: Polynomials F, G such that Equation 2 is verified
1: if n = 1 then
2: Compute u, v ∈ Z such that uf − vg = GCD(f, g)
3: if δ = GCD(f, g) is not a divisor of q then
4: abort
5: (F, G) ← (vq/δ, uq/δ)
6: return (F, G)
7: else
8: f ′ ← N(f) � f ′, g′, F ′, G′ ∈ Z[x]/(xn/2 + 1)
9: g′ ← N(g)

10: (F ′, G′) ← TowerSolverRn/2,q(f
′, g′)

11: F ← g×(x)F ′(x2) � F, G ∈ Z[x]/(xn + 1)
12: G ← f×(x)G′(x2)
13: Reduce(f, g, F, G)

14: return (F, G)

The informal explanation of why algorithm TowerSolverR uses much less space
than the classic solver (ResultantSolver) is that, at each recursion step, the size
of individual coefficients roughly doubles, but the degree is halved, so there are
only half as many coefficients to store. The algorithm relies on Babai’s reduction
(Reduce) to bring back the coefficients of the newly computed (F,G) to about
the same size as the coefficients of (f, g) for this recursion level. A formal space
complexity analysis is given in Lemma 3.
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Correctness. If it outputs a solution (termination is addressed below), the cor-
rectness of Algorithm 4 is immediate. Indeed, correctness is clear at the deepest
recursion level, and if the algorithm is correct for (f, g) ∈ Z[x]/(xn/2 + 1), then
Eqs. 27 and 28 assure us that it will be correct for (f, g) ∈ Z[x]/(xn + 1).

Other Cyclotomic Polynomials. Algorithm TowerSolverR can be extended
to arbitrary cyclotomic polynomials. Each iteration corresponds to a case where
Q[x]/(Φm) is considered as an extension of Q[x]/(Φm′), where m′ divides m.
The degree is divided by m/m′, while average coefficient size grows by a factor
approximately m/m′. The exact order in which successive divisions are applied
on the degree is a matter of choice.

For instance, if we consider φ = Φ2304 = x768 − x384 + 1, then the algorithm
may first apply a division of the degree by 3, yielding sub-polynomials modulo
x256−x128+1, then doing seven degree halving steps to bring the NTRU solving
problem down to modulus x2 − x + 1.

On the other hand, an implementation could first perform the seven degree
halvings, down to modulus x6 −x3 +1, and only then perform the division by 3.
Both options have similar algorithmic complexity in time and space, but one may
be more efficient than the other, depending on specific implementation context.

Finally, we would like to mention the polynomials of the form xp − x − 1
for a prime p, as used in NTRU Prime [3]. The deliberate lack of nontrivial
subfield when working with these polynomials makes it seemingly hard to apply
our techniques there in a straightforward way, but a recent work [14] suggest
that it might be possible.

4.3 An Iterative Algorithm

Each recursion involves computing N(f) and N(g), then saving them while
the algorithm is invoked again on these two polynomials. However, all the
Ni(f),Ni(g) can be recomputed from f, g. Therefore, we may adopt a memory-
lazy strategy and avoid storing the intermediate Ni(f),Ni(g), instead recomput-
ing them when needed. This yields a slower but more space-efficient iterative
algorithm, described in algorithm TowerSolverI.

Compared to Algorithm 4, Algorithm 5 therefore performs a balanced trade-
off by a factor  = log n between speed and memory.

4.4 Complexity Analysis

We now formally study the complexities of TowerSolverR and TowerSolverI.

Lemma 3 (Space complexity analysis). Let q = 1 and the euclidean norms
of f, g be bounded: log ‖f‖, log ‖g‖ ≤ B. We also note  = log n. Algorithms 4
(TowerSolverR) and 5 (TowerSolverI) run in space O(n(B+)) and O(n(B+)),
respectively.
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Algorithm 5. TowerSolverIn,q(f, g)
Require: f, g ∈ Z[x]/(xn + 1) with n a power of two
Ensure: Polynomials F, G such that Equation 2 is verified
1: (f ′, g′) ← (f, g)
2: for i ← 1, . . . , log n do
3: (f ′, g′) ← (N(f ′), N(g′)) � At that point, f ′ and g′ have degree 0

4: Compute u, v ∈ Z such that uf ′ − vg′ = GCD(f, g)
5: if δ = GCD(f, g) is not a divisor of q then
6: abort
7: (F, G) ← (vq/δ, uq/δ)
8: for i ← log n, . . . , 1 do
9: (f ′, g′) ← (f, g)

10: for j ← 1, . . . , i − 1 do
11: (f ′, g′) ← (N(f ′), N(g′))

12: (F, G) ← (g′×F, f ′×G)
13: Reduce(f ′, g′, F, G)

14: return (F, G)

Proof. We start with Algorithm 4 (TowerSolverR). It is clear that we have the
following tower of recursive calls:

TowerSolverRn,q(f, g) → TowerSolverRn/2,q(N(f),N(g)) → . . .

· · · → TowerSolverR1,q(N�(f),N�(g))

We now bound the space needed by internal variables.

1. From Eqs. 3 and 25, each Ni(f),Ni(g) takes O(n(B + )) bits.
2. We now bound the (euclidean) norm of (F,G). First, we consider its norm

after reduction. Noting V = Span((f, g)), the vector (F,G) can be uniquely
decomposed over V ⊕ V ⊥ as:

(F,G) = (F̃ , G̃) + (F̆ , Ğ)

where (F̃ , G̃) ∈ V ⊥, and (F̆ , Ğ) ∈ V .
We first bound the norm of (F̃ , G̃): a simple computation shows (F̃ , G̃) =(

f�

ff�+gg� , g�

ff�+gg�

)
. This remains true when we evaluate F̃ , G̃ over 0, so if

we note f =
∑

0≤j<n ajx
−j and F̃ =

∑
0≤j<n Ajx

j , then for any 0 ≤ i < n:

A2
i = |(x−iF̃ )(0)|2 =

a2
i

|(ff� + gg�)(0)|2 ≤ a2
i

(‖f‖2 + ‖g‖2)2 (30)

where Eq. 30 uses the following facts:
– First equality: Ai = (x−iF )(0);
– Second equality: for any polynomial p, (x−ip)� = xip� and p�(0) = p(0);
– Inequality: for any polynomial p, pp�(0) = ‖p‖2.
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Summing Eq. 30 over all the i’s yields ‖F̃‖ ≤ ‖f‖
‖f‖+‖g‖ . Similarly, we get

‖G̃‖ ≤ ‖g‖
‖f‖+‖g‖ , which yields ‖(F̃ , G̃)‖ ≤ 1. It now remains to bound ‖(F̆ , Ğ)‖:

if (F,G) is reduced using Babai’s round-off algorithm, the triangle inequality
ensures that ‖(F̆ , Ğ)‖ ≤ n/2‖(f, g)‖; it if is reduced using the nearest plane
algorithm, the pythagorean inequality ensures that ‖(F̆ , Ğ)‖2 ≤ n/4‖(f, g)‖2.
In both cases, we have:

‖(F,G)‖2 = ‖(F̃ , G̃)‖2 + ‖(F̆ , Ğ)‖2 ≤ 1 +
n2

4
‖(f, g)‖2 (31)

and it follows that (F,G) can be stored in space O(n(B+)). Of course, we also
have to handle (F,G) when it is computed from F ′, G′, f×, g× and is there-
fore not yet reduced. We have ‖F‖ ≤ √

n
2 ‖F ′‖‖g‖ and ‖G‖ ≤ √

n
2 ‖G′‖‖f‖.

From the inequalities 25 and 31, it follows that (F,G) can be stored in space
O(n(B + )) even before reduction.

Algorithm 4 needs to store  successive values of (Ni(f),Ni(g)), each taking
space O(n(B + )), as well as one set of polynomials F ′, G′, F,G at once, each
taking space O(n(B + )). The space complexity of Algorithm 4 is therefore
O(n((B + ))).

For Algorithm 5, the previous analysis remains valid, except that only a con-
stant number of values (Ni(f),Ni(g))’s need to be stored simultaneously, as they
can all be recomputed from (f, g) in space O(n(B + )), according to Lemma 2.
The space complexity of algorithm is therefore O(n(B + )). �

We now study the time complexities of Algorithms 4 and 5.

Lemma 4 (Time complexity analysis). With the conditions of Lemma 3,
the time complexities of Algorithms 4 (TowerSolverR) and 5 (TowerSolverI) are:

– Õ(nB) for Algorithm4 with Schönhage-Strassen;
– Õ(nB) for Algorithm5 with Schönhage-Strassen;
– O((nB)log2(3)) for Algorithm4 with Karatsuba;
– O((nB)log2(3)2) for Algorithm5 with Karatsuba;

We note that while the complexities given with Schönhage-Strassen are much
better than with Karatsuba, they are misleading as the Õ hides constant and
logarithmic factors which are not negligible in practice. The complexities given
with Karatsuba reflect much more accurately the running times that we observe
for typical values of n and B.

Proof. For i ∈ �0, �, let Bi = log max(‖Ni(f)‖, ‖Ni(g)‖). Using Eq. 25 and the
fact that ‖f‖1 ≤ ‖f‖22, we have Bj ≤ 2j+1B. The two costliest steps in our
algorithms are the descent (computing Ni(f),Ni(g) for increasing i) and the
lifting (computing F [i], G[i] for decreasing i).

– Descent. Computing Ni+1(f) from Ni(f) is essentially as costly as an NTT
and an inverse NTT, which both take time O( n

2i log( n
2i )M(Bi)).



524 T. Pornin and T. Prest

Thus, it can be done in time Di = O( n
2i · log n

2i · (2iB)log2(3)) with Karatsuba,
or Õ(nB) with Schönhage-Strassen (see Sect. 2.3). This step is repeated 
times (once for each depth) for Algorithm4, and O(2) times ( − i times for
the depth i) for Algorithm 5.

– Lifting. From Eq. 31, we know that Ni(f),Ni(g), F [i+1], G[i+1] have the log
of their euclidean norm bounded by Bi + log n

2i , so computing F,G at the
recursion depth i can be done in time Ri = O( n

2i log( n
2i )M(Bi + log n

2i )). In
both algorithms, this step is repeated once for each depth.

In Algorithm 5, the descent is the costliest part as computing Ni+1(f) from
Ni(f) is done O(2) times ( − i times for the depth i). Its time complexity is
therefore

∑
0≤i<�( − i)Di, which ends the proof for Algorithm5.

In Algorithm 4, the lifting is the costliest part as each individual step
is slightly more expensive than for the descent. Its time complexity is then∑

0≤i<� Ri, which ends the proof for Algorithm4. �

General Case for q. The analysis above covered the situation where the right-
hand side of the NTRU equation is q = 1. In the general case, we may target
another value of q, usually a small integer. This is done by multiplying values by
q at some point in the lifting phase. In the description of algorithms TowerSolverR
and TowerSolverI, that multiplication was done right after the GCD, but it could
be done later on. In any case, multiplying by q increases the size of polynomial
coefficients by log q bits, and Babai’s reduction will in practice absorb these bits.
In the worst case, the log q bits subsist to the last step, implying a space overhead
of at most O(n log q) bits. The same remark applies to ResultantSolver.

Failure probability. We note that Algorithms 4 and 5 can both possibly abort.
However, we note that they do so if and only if the NTRU equation has no
solution for the inputs (f, g). Indeed, if there exist F,G such that fG − gF =
q mod (xn + 1), then N�(f)N�(G) − N�(g)N�(F ) = q in Z. Thus, if the NTRU
equation can be solved, then Algorithms 4 and 5 will not fail and will solve it.

Output quality. An important notion is the quality of the solutions (F,G),
for example its Euclidean norm or its Gram-Schmidt norm (as defined in e.g.
[8,11]). For any of these metrics, our algorithms will output solutions of exactly
the same quality as existing algorithms.

Indeed, the set of solutions is of the form {(F0+rf,G0+rg)|r ∈ Z[x]/(xn+1)},
where (F0, G0) denotes an arbitrary solution pair. For any element in this set,
Algorithm 1 will output the same solution, so the Euclidean norm of the output
will be the same for Algorithms 2, 4 and 5. On the other hand, for a fixed input
(f, g), all the solutions to the NTRU equation have the same Gram-Schmidt
norm (see e.g. [8, Lemma 3]).
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5 Implementation Issues and Performances

Our new solving algorithm (TowerSolverI) is implemented as part of the key
generation process of Falcon [18], a signature scheme submitted to the NIST call
for post-quantum cryptographic schemes [17]. Falcon uses modulus φ = xn + 1
(with n = 2�) or φ = xn − xn/2 + 1 (with n = 3 · 2�); these two sub-cases are
called “binary” and “ternary”, respectively. Our implementation supports the
binary case for all degrees from 2 to 1024, and the ternary case for all degrees
from 12 to 768; only the higher degrees (512, 768 and 1024) provide sufficient
security, but the lower values are convenient to test the correctness of the key
generation process.

In the context of Falcon, the target q value for the NTRU equation is fixed
to q = 12289 (binary case) or q = 18433 (ternary case). The coefficients of the
secret polynomials f and g are generated with a discrete Gaussian distribution
of standard deviation 1.17

√
q/(2n) in the binary case, thus a size of a few bits

at most; they are slightly larger in the ternary case, but in practice it can be
assumed that they always fit over 8 bits each for normal key sizes.

We implemented TowerSolverI, and measured the costs of the various steps
so as to estimate the computational overhead of TowerSolverI when compared
to TowerSolverR. We also implemented the classic solver ResultantSolver, as a
baseline to estimate the impact of our new techniques based on the field norm.
Test system is a MacBook Pro laptop (Intel Core i7-6567U clocked at 3.30 GHz),
running Linux in 64-bit mode. Implementations are in C and do not use platform
integer types larger than 64 bits. Obtained performance is the following, for
modulus φ = x1024 + 1:

Algorithm CPU (ms) RAM (kB)

Classic algorithm: ResultantSolver 2000 3300

New algorithm (iterative): TowerSolverI 20 30

New algorithm (recursive): TowerSolverR 17 40

The following subsections describe various optimizations and other local tech-
niques that together allow for these substantial performance gains. The source
code can also be browsed on the Falcon Web site:

https://falcon-sign.info/impl/falcon-keygen.c.html

5.1 Value Sizes

The analyses presented in Sect. 4 allow computing absolute bounds on the size
of intermediate values and resultants. However, these bounds are substantially
larger than average cases.

An important point is that, in the context of key pair generation, it is accept-
able for the solving algorithm to occasionally fail. Indeed, there are unavoidable

https://falcon-sign.info/impl/falcon-keygen.c.html
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failure conditions, when (for instance) the randomly generated f polynomial is
not invertible in Zq[x]/(φ). If such a case arises, then it suffices to generate new
random f and g. Similarly, we may arbitrarily reject (f, g) pairs for which the
NTRU equation can be solved, but some internal implementation threshold is
exceeded: such rejections imply a reduction of the space of possible keys, but have
no significant impact on security as long as rejections are relatively infrequent.
Even rejecting half of potential private keys only gives one bit of information to
attackers.

Therefore, it is acceptable to measure the average maximum size of interme-
diate values, and use such sizes as the basis for memory allocation, with some
margin. For instance, the theoretical maximum bound on the coefficients of f
and g at maximum recursion depth (when they are constant polynomials, and
equal to their resultants with x + 1) is about 12000 bits (for n = 1024); how-
ever, in practice, their average size was measured to be about 6308 bits, with
a standard deviation of less than 25 bits. We can thus assume that they will
almost always fit in 6500 bits, and may simply reject the very rare cases when
that assumption does not hold.

This methodology allows the use of static memory allocation, that offers
strong guarantees on memory usage and also helps with making the key gener-
ation process memory access pattern uncorrelated with the secret values.

5.2 RNS, CRT and NTT

A Residue Number System is a representation of an integer z by storing z mod rj

for a number of moduli rj . Any integer in a range of length no more than the
product of the rj has a unique representation and can be unambiguously recom-
puted with the Chinese Remainder Theorem. Integers in RNS representation
can be added and multiplied by simply computing the result modulo each rj .

In our implementation, we use moduli rj which are prime numbers slightly
below, but close to, 231. We furthermore require that φ has n distinct roots
modulo each rj ; in the binary case, this is achieved by ensuring that rj = 1 mod
2n. We precomputed 521 such primes, ranging from 2135955457 to 2147473409.

Computations modulo any rj can be done with branchless code, which pro-
motes efficiency. In the C language, addition is implemented thus:

static inline uint32_t
modp_add(uint32_t a, uint32_t b, uint32_t p)
{

uint32_t d;

d = a + b - p;
d += p & -(d >> 31);
return d;

}

This function computes the sum of a and b modulo p; the operation a+b-p is
first computed modulo 232; if the result would have been negative, then the most
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significant bit will be set; we then extend that bit into a full-word mask in order
to conditionally add the modulus again if necessary.

For multiplications, we use Montgomery multiplication:

static inline uint32_t
modp_montymul(uint32_t a, uint32_t b, uint32_t p, uint32_t p0i)
{

uint64_t z, w;
uint32_t d;

z = (uint64_t)a * (uint64_t)b;
w = ((z * p0i) & (uint64_t)0x7FFFFFFF) * p;
d = (uint32_t)((z + w) >> 31) - p;
d += p & -(d >> 31);
return d;

}

Montgomery multiplication of a by b modulo p computes ab/R mod p, where R
is a power of 2 greater than p (here, R = 231). The parameter p0i is a pre-
computed value equal to −p−1 mod 231. An integer a modulo p is said to be
in “Montgomery representation” if it is kept as the value aR mod p; converting
to and from Montgomery representation is done by computing a Montgomery
multiplication with, respectively, R2 mod p or 1. The Montgomery multiplica-
tion of two integers which are in Montgomery representation, is equal to the
Montgomery representation of the product of the two integers.

The Chinese Remainer Theorem (CRT), given z1 = z mod t1 and z2 = z mod
t2, where t1 and t2 are prime to each other, allows recomputing z modulo t1t2
with the following equation:

z = z1 + t1((t−1
1 mod t2)(z1 − z2) mod t2) (32)

In our case, we use the CRT to convert an integer back from RNS represen-
tation, applying it on the moduli rj one by one. At each step, we have the value
z modulo t1 and t2, where:

t1 =
∏

j<k

rj

t2 = rk

(33)

The inverse of t1 modulo t2 is precomputed and stored along with the prime
rk itself. The CRT formula above can thus be applied with:

– a reduction of a big integer modulo rk;
– a subtraction and a multiplication modulo rk;
– a multiplication of a small integer (modulo rk) with a large integer (t1);
– an addition of two large integers.

This process can be done in place, if big integers are represented in basis 231,
i.e. as sequences of 31-bit words; restricting words to 31 bits (instead of 32) also
makes computations easier in standard C, where carry flags are not available. The
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aggregate products of rj could be precomputed, but they can also be recomputed
on the fly, for better space efficiency. If z fits over w words of 31 bits, and
is represented in RNS modulo w small primes rj , then the whole process of
converting z back to a big integer in basis 231 has cost O(w2) step, and is done
mostly in place (we need an extra buffer of w words to rebuild the product of
rj , but that value may be shared if we have several integers z to convert).

It shall be noted that applying the CRT with rj moduli one by one is not the
most efficient method with regards to time complexity. For instance, we could
assemble the rj with a balanced binary tree, and use Karatsuba or Schönhage-
Strassen for multiplications (each modular multiplication can be performed with
two integer multiplications with Montgomery’s method). However, such methods
are more complex to implement, and require some extra space. In our implemen-
tation, the CRT reconstruction contributes only a small part to the total runtime
cost, and can be performed mostly in-place.

In the course of the TowerSolverI algorithm, we often keep polynomials whose
coefficients are both in RNS and NTT representations:

– The RNS representation means that a polynomial f ∈ Z[x]/(φ) is replaced
with w polynomials fj ∈ Zrj

[x]/(φ).
– Each such polynomial fj is furthermore in NTT representation (the moduli rj

where chosen so that φ splits over Zrj
, thereby allowing that representation).

As the algorithm goes deeper through the recursion, the degree of polynomials
lowers, but the coefficients grow, thus requiring more moduli rj . A common
pattern is the following:

– Some polynomial inputs are provided modulo w small primes rj and in NTT
representation.

– The output is computed modulo these w small primes rj , again in NTT
representation. Moreover, the inverse NTT is applied on the inputs for each
rj .

– When all w small primes have been used, the CRT is applied to rebuild the
full input coefficients.

– The rebuilt coefficients are then used to pursue the computation modulo w′

more small primes rj , each time computing the NTT.

5.3 Binary GCD

At the deepest recursion level, the polynomials f and g are plain integers (poly-
nomials modulo x + 1 are constant), and the NTRU equation becomes a clas-
sic GCD computation with Bézout coefficients. Nominally, this algorithm uses
repeated divisions, which are expensive and complex to implement. In order
to both simplify and speed up that step, we use a binary GCD variant. The
algorithm can be expressed as follows:

– Values a, b, u0, u1, v0 and v1 are initialized and maintained with the following
invariants:

a = fu0 − gv0
b = fu1 − gv1

(34)
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Initial values are:
a = f

u0 = 1
v0 = 0
b = g

u1 = g
v1 = f − 1

(35)

– At each step, a or b is reduced: if a and/or b is even, then it is divided by 2;
otherwise, if both values are odd, then the smaller of the two is subtracted
from the larger, and the result, now even, is divided by 2. Corresponding
operations are applied on u0, v0, u1 and v1 to maintain the invariants. Note
that computations on u0 and u1 are done modulo g, while computations on
v0 and v1 are done modulo f .

– Algorithm stops when a = b, at which point the common value is the GCD
of f and g.

This algorithm works only if both f and g are odd; otherwise, we cannot
reliably compute divisions by 2 modulo f or g. Applying the principle explained
in Sect. 5.1, we simply reject (f, g) pairs that would yield even resultants; this
represents a reduction of the key space by a factor of 3, i.e. a loss of about
1.58 bits, which is considered negligible, as far as security is concerned. This
rejection is easily done as a preliminary step, in which the resultants Res(φ, f)
and Res(φ, g) are computed modulo 2: analysis of the TowerResultant algorithm
in that specific case, when φ = xn + 1 and n = 2�, shows that it suffices to add
the coefficients of f modulo 2 (and similarly g).

The algorithm cost is quadratic in the size of the operands. The description
above is bit-by-bit; in practice, we see that the decisions in the algorithm depend
only on the few highest and lowest bits of each operand at each step. The imple-
mentation can thus be made considerably faster (experimentally, by a factor of
about 12) by using the high and low bits to compute the action of 31 successive
steps, and applying them on the values together with multiplications.

5.4 Babai’s Reduction

When reducing candidate (F,G) relatively to (f, g), we must compute a reduc-
tion factor k:

k =
⌊

Ff� + Gg�

ff� + gg�

⌉
(36)

The polynomial division can be implemented efficiently in FFT representation
with floating-point values. This implies, however, a loss of precision: thus, the
resulting k will be only approximate, and the reduction will need to be applied
repeatedly until F and G have reached an adequate size or cannot be reduced
any further.

In our implementation, we extract the high bits of f , g, F and G and compute
k with the FFT and a scaling factor, such that the resulting coefficients for k
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are equal to small integers (that fit on 30 bits each) multiplied by 2s for some
integer s. We shall then subtract kf and kg from F and G, respectively.

The computation of kf and kg is the most expensive part of the reduction.
We have the choice between two methods:

1. Use a plain quadratic algorithm: if the degree is d, we thus need d2 multipli-
cations of a big integer (a coefficient of f or g) by a small integer (a coefficient
of k).

2. Use the RNS representation and the NTT to compute the multiplication of
k by f .

In general terms, throughout the TowerSolverI algorithm, we use polynomials
of degree d with coefficients of size w words, such that dw remains roughly equal
to n (coefficients double in size when the degree is halved). Babai’s reduction will
require O(w) iterations (at that point, the size of F and G is about three times
the size of f and g). The plain quadratic algorithm involves d2 multiplications of
a big integer (size w words) by a small one, thus O(d2w) operations per step, and
a total of O((dw)2) = O(n2). The use of NTT, however, implies the following
elements:

– f and g must be converted to RNS and NTT. This is done once for the whole
reduction. Conversion to RNS is O(w2d); the NTT has cost O(wd log d).

– For each iteration, k must be converted to NTT modulo each of the small
primes (O(wd log d)), multiplied with f and g (O(wd)), and converted back
to big integers for the subtraction (O(w2d) for the CRT of d values of size w
words each).

Thus, the RNS+NTT method has cost O(w3d+w2d log d) = O(n(w2+w log d)).
At low recursion depth, where w is small and d is large, this method is thus faster
than the plain quadratic algorithm; however, at high depth, w becomes large, the
CRT cost dominates, and the plain quadratic algorithm becomes faster. There-
fore, there is threshold at which implementation strategies should be switched.

In our implementation, we found that the threshold was at depth 4: when the
polynomial degree is n/16 or more, the NTT method is faster. This threshold
heavily depends on implementation details and the involved hardware, and thus
should be measured.

5.5 Asymptotic and Real Performance

Asymptotic analysis would call for using big integer arithmetics, and efficient
algorithms, e.g. Karatsuba or Schönhage-Strassen for integer multiplications.
But such analysis is a valid approximation of real implementation performance
only when inputs are “large enough”. Our experience, when implementing the
algorithms in the case of Falcon, is that practical degrees such as n = 1024 are
below that threshold. This is why our code uses for instance RNS and a simple
quadratic CRT process; our measures indicate that the dominant cost remains
Babai’s reduction.
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With our use of quadratic algorithms for RNS and CRT, the expected asymp-
totic time complexity (for values of q and coefficients of f and g small enough to
be considered “elementary”) of TowerSolverI is O(n2 log n), while ResultantSolver
would use O(n3). For n = 1024, this implies a factor of n/ log n ≈ 100, which
matches measured time.

Similarly, TowerSolverR is theoretically faster than TowerSolverI, since it sto-
res intermediate values instead of recomputing them; but the execution time
overhead of TowerSolverI is, in practice, less than 15%. We prioritized space
efficiency and used TowerSolverI.

6 Conclusion and Open Problems

We presented the use of the field norm to optimize some computations on polyno-
mial rings, in particular resultants and solving the NTRU equation. A practical
consequence of the latter is that the post-quantum signature algorithm Falcon is
fully usable on small microcontrollers or even smartcards, since 32 kB of RAM
are enough to run our algorithm even for a long-term security NTRU lattice
(degree n = 1024): all operations related to signatures (signature production,
verification, and key pair generation) can fit on such constrained hardware.

We list below some open questions.

Non-cyclotomic polynomials. In our description, we covered the case of
cyclotomic polynomials as moduli. The method can be extended to other moduli;
in fact, for every modulus φ = φ′(xd) for some d > 1, application of the “field
norm” can divide the degree by d for purposes of computing resultants and
solving the NTRU equation. This holds even if φ is not irreducible over Q[x],
i.e. if Q[x]/(φ) is not, in fact, a field. The description of the general case remains
a problem to explore; however, the use of reducible moduli in NTRU lattices is
usually not recommended.

Floating-point arithmetic. Efficient implementation still relies, for Babai’s
reduction, on FFT and floating-point numbers. Fixed-point representation is
probably usable, but the required range and precision must still be investigated.
Whether the reduction may be performed efficiently without the FFT is an open
problem.

Large integers. While our gains, in terms of memory, are significant, we still
need to handle large integers. From an implementation complexity point of view,
it would be interesting to get rid of large integers, for example by performing all
operations in RNS, without negatively impacting the running time and memory
requirements of our algorithms.
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Other applications to cryptographic constructions. We think it is worth-
while to investigate whether our techniques can improve the efficiency of other
cryptographic algorithms. In addition, just like we provided a constructive appli-
cation of the field norm (as opposed to [1]), a constructive application of the trace
(as opposed to [6]) would be, in our opinion, very interesting. Finally, [14] showed
that an algebraic perspective is not necessary in the case of [1]; this raises the
question of whether it is in our case.

Applications to cryptanalysis. A final line of research would be to use our
techniques to improve the attacks based on the field norm [1], or even on the
field trace [6].
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Abstract. With the rising popularity of lattice-based cryptography, the
Learning with Errors (LWE) problem has emerged as a fundamental core
of numerous encryption and key exchange schemes. Many LWE-based
schemes have in common that they require sampling from a discrete
Gaussian distribution which comes with a number of challenges for the
practical instantiation of those schemes. One of these is the inclusion of
countermeasures against a physical side-channel adversary. While several
works discuss the protection of samplers against timing leaks, only few
publications explore resistance against other side-channels, e.g., power.
The most recent example of a protected binomial sampler (as used in
key encapsulation mechanisms to sufficiently approximate Gaussian dis-
tributions) from CHES 2018 is restricted to a first-order adversary and
cannot be easily extended to higher protection orders.

In this work, we present the first protected binomial sampler which
provides provable security against a side-channel adversary at arbitrary
orders. Our construction relies on a new conversion between Boolean
and arithmetic (B2A) masking schemes for prime moduli which out-
performs previous algorithms significantly for the relevant parameters,
and is paired with a new masked bitsliced sampler allowing secure and
efficient sampling even at larger protection orders. Since our proposed
solution supports arbitrary moduli, it can be utilized in a large variety of
lattice-based constructions, like NewHope, LIMA, Saber, Kyber, HILA5,
or Ding Key Exchange.

1 Introduction

Ever since the first publication by Kocher [24], protection against side-channel
analysis (SCA) has become an essential optimization goal for designers of
c© International Association for Cryptologic Research 2019
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security-critical applications. It has been shown numerous times that an adver-
sary, which does not only have access to the inputs and outputs of a system
but can also measure some physical characteristics (e.g., timing) of the target,
is capable of extracting sensitive information from an unprotected implementa-
tion with ease [18]. This affects especially embedded systems, as they (a) allow
extensive physical access to the adversary enabling the exploitation of additional
side-channels (e.g., power, EM) which requires more sophisticated protection
schemes, and (b) often possess only limited resources which makes the integra-
tion of dedicated countermeasures a complex task.

One important type of countermeasure in this context is masking [9]. Its core
idea is splitting the sensitive information into multiple shares and transforming
the target implementation to securely compute on these shares. Based on certain
assumptions, it is possible to prove that an adversary needs to combine at least t
intermediate values (so called probes) of the circuit to extract any sensitive data.
In practice, an increase in the number of required probes exponentially increases
the attack complexity given a sufficient level of noise in the measurements [32].
The seminal work of Ishai et al. [22] introduces a security model, which identifies
the attack situation described above. It introduces the probing model, that allows
to prove the security of a masked gadget. Still, the imprudent composition of
such gadgets can introduce security flaws, due to the extra information that an
adversary might be able to extract when using the outputs of a gadget as input
to another one. The notion of Strong Non-Interference (SNI), introduced in [5],
provides stronger conditions that ensure a secure composition of masked gadgets.

While for common symmetric and asymmetric constructions the applica-
tion of masking schemes has been extensively examined and achieves a high
level of security and efficiency, this is still ongoing research for most post-
quantum schemes. First approaches to achieve first-order side-channel security
were made [10,11,25,28], but the overhead for higher-order masking of post-
quantum cryptography has not been studied, except in [6] for the specific GLP
signature scheme [20]. However, GLP has not been submitted to the standard-
ization process for post-quantum cryptography run by the National Institute of
Standards and Technology (NIST) [26]. Among those 69 complete and proper
submissions to this competition, lattice-based cryptography is clearly the largest
group with a total of 29 submissions due to advantages, such as reasonable
parameter sizes, simple implementation, as well as advanced constructions like
identity-based encryption and homomorphic encryption. The competition explic-
itly takes into account the ease of integration of physical countermeasures as an
evaluation metric [27], which is therefore a primary contribution of this work.

Most of the lattice-based encryption and key exchange schemes rely on the
Learning with Errors (LWE) problem or variants like Ring-LWE for which many
of them require noise polynomials with small Gaussian distributed coefficients.
For small standard deviations, the binomial sampler as presented in [1] and
implemented in [2] is the best choice as it has a constant run time by design,
is easy to implement and does not require any precomputed tables. However,
applying masking schemes to sampling algorithms for protection against side-
channel analysis is a non-trivial task. It has been shown in [25] by Oder et al.
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that this can easily become even the bottleneck of an implementation, causing
a performance overhead of more than 400%.

This reduction in performance stems mostly from the mixture of different
masking schemes. Oder et al. initially generate uniformly-random bits by run-
ning SHAKE for a given seed. Using a pseudo random number generator (PRNG)
is common as a first step in such samplers and, as shown in [25], needs to
include side-channel countermeasures as well. From this uniform randomness,
the approximated Gaussian randomness is derived, e.g., [1] proposes to subtract
the Hamming weight of two uniform bit vectors. For both steps, Boolean mask-
ing is an obvious choice, since many PRNGs rely on Boolean operations and
the computation of the Hamming weight requires bit-wise manipulations of the
shares, which is complex for arithmetic masking (assuming not every bit is sep-
arately masked). However, the subsequent operations in the lattice scheme favor
arithmetic masking. Therefore, it is necessary to apply a conversion at some
point of the protected sampler.

Related work. In [6], Barthe et al. propose the first provably-secure sampler
for arbitrary orders. However, the targeted GLP signature schemes requires a
uniform sampler, which poses different challenges to the implementer than a
binomial one. Thus, their results cannot be straight-forwardly transferred to
protect a binomial sampler, as required for many NIST submissions.

One of these submissions is NewHope [1] and its potential for physical pro-
tection was evaluated in [25], where, as part of their construction, Oder et al.
presented a masked binomial sampler. However, it was heavily-optimized for
first-order protection and not easily extendable to higher orders. In addition,
their results show that masking such a sampler can severely impact the perfor-
mance of the whole scheme. Therefore, it is an open problem how to efficiently
protect binomial samplers against side-channel adversaries.

While the authors of [25] convert Boolean-masked bits to arithmetic shares,
they do not formally specify the conversion algorithm. Such Boolean-to-
arithmetic (B2A) conversions have been extensively researched [7,8,12–14,16,
21,23,30,33] as many symmetric primitives mix Boolean and arithmetic oper-
ations. However, they focus solely on power-of-two moduli. In contrast, many
lattice schemes employ other moduli (not necessarily power-of-two) to allow
optimizations. For these cases, it is necessary to apply specific conversions (in
the following denoted as B2Aq). The first of such conversion algorithms which
work with arbitrary moduli was proposed in [6] based on the cubic conversion
of [14] and proven to be secure at arbitrary orders. Since these algorithms are a
non-negligible part of masking a binomial sampler, any improvements regarding
the conversion will also improve the sampling performance.

Our contribution. Our first contribution is a revised version of the quadratic
B2A algorithm of [14] which is combined with some of the ideas outlined in [6].
While this is technically straightforward, we still provide the essential proof of
security, resulting in A2Bq and B2Aq algorithms with the best asymptotic run
time complexity (i.e., O(n2 log k), where k denotes the bit size of the operands
and n the number of shares) to date.
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As a second contribution, we present a new B2Aq conversion with a run time
complexity of O(n2 · k). Our new algorithm is proven to be t − SNI enabling
composition with n = t + 1 shares. While its asymptotic complexity is worse
than our quadratic adaption of [6], it still significantly reduces the conversion
time for relevant values of k. The new algorithm even outperforms the established
standard B2A algorithms for power-of-two moduli for certain parameters (e.g.,
n ≥ 11 for k = 32). Therefore, it is not only relevant for our considered use case,
but might also improve the performance of masked symmetric algorithms.

Thirdly, relying on B2Aq conversions we propose two masked binomial sam-
plers for lattice-based encryption and key exchange schemes. The first sampler is
a higher-order extension of the approach from [25], while the second variant uses
bitslicing to further increase the throughput. Again, we prove both solutions to
be t − SNI to enable easy composition in larger constructions, e.g., for CCA2-
transformations. This results in the first provable SCA-protected binomial sam-
plers at arbitrary orders. Since our proposed solutions support arbitrary moduli,
they can be adopted in a large variety of NIST submissions, e.g., NewHope [1],
LIMA [31], Saber [15], Kyber [3], HILA5 [29], or Ding Key Exchange [17].

Finally, we present an ARM Cortex-M4F microcontroller implementation of
our constructions to evaluate their performance on a popular embedded proces-
sor platform. We find that our new B2Aq conversion improves the performance of
the samplers over the adaption of [6] up to a factor of 46, while our new bitsliced
sampler improves the performance over a generalized version of the approach
of [25] up to a factor of 15. The combination of both approaches results in the
currently most-efficient masked binomial sampler. At first-order, it even out-
performs the implementation from [25], which is highly-optimized for first-order
security, while our contribution provides generic protection for arbitrary orders.

Organization of the paper. In Sect. 2, we start by briefly reviewing the state-
of-the-art regarding B2A conversions and masked binomial sampling. In Sect. 3,
we provide the adaption of the quadratic B2Aq from [14] using the prime addi-
tion from [6] and its corresponding proof of security. In Sect. 4, our new B2Aq

algorithm is presented and compared to the current state-of-the-art considering
both standard and prime moduli. Finally in Sect. 5, we propose our new masked
sampling algorithms and conduct a case study using the parameters of the NIST
submission NewHope.

2 Background

In this section, we first introduce the notation used throughout this paper and
the considered notions of physical security. Then we briefly introduce the B2A
algorithms relevant to our work and review the masked binomial sampler of [25].

2.1 Notation

In the rest of the paper we denote with q a prime number, with B2A the stan-
dard conversion from Boolean to arithmetic masking and with B2Aq the same
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transformation for prime moduli. We will indicate with k the bit size of the
conversion, κ the bit size of the input vectors of the samplers, n the number of
shares and t the security order. Moreover, the lower case will be used for Boolean
encoding and the upper one for arithmetic encoding. Operations on the whole
encoding, i.e., vector of shares, are denoted in bold and performed share-wise,
e.g., z = x ⊕ y. We denote the k bits of a share as

(
x
(k)
i . . . x

(1)
i

)
= xi, i.e., the

least-significant bit (LSB) of xi is written as x
(1)
i (resp. x(1) denotes the LSB

of x).

2.2 Notions of Physical Security

Counteracting side-channel analysis via masking informally means to randomize
the information leaked during the computation of sensitive variables in order to
make the representation of such variables independent from the actual processed
data. The security of a masking scheme has been formalized for the first time
by Ishai et al. in [22]. Their seminal work introduces the t-probing model, where
an adversary is allowed to read up to t wires in a circuit (the so called probes).
Every sensitive variable s is encoded into n shares si, such that the sum of them
gives the original masked variable s and only the combination of all the shares
gives some information about s. In order to keep this independence throughout
the whole circuit, every operation is performed on the shares si and, especially in
the case of non-linear operations, it makes use of additional randomness, which
helps to guarantee that every t-tuple of intermediate variables is independent
from at least one of the shares of s. Such transformed gates are commonly called
gadgets and, in order to provide sound claims of their composability, they must
satisfy the conditions of one of the following definitions.

Definition 1 (t − NI). A given gadget G is t-Non-Interfering (t − NI), if every
set of t probes can be simulated by using at most t shares of each input.

Definition 2 (t−SNI). A given gadget G is t-Strong-Non-Interfering (t−SNI),
if every set of t1 probes on the internal values and t2 probes on the output values,
with t1 + t2 ≤ t, can be simulated by using at most t1 shares of each input.

Both definitions have been introduced in [4] and are refinements of the original
definition of probing security, given in [22]. They require the existence of a sim-
ulator, which can simulate the adversary’s view, without accessing the sensitive
variables, using only part of their shares. In particular, the definition of t − SNI
is important when designing a gadget, which is supposed to be part of a bigger
algorithm. In this case indeed, using the output of a gadget as input to another
one might add sensitive information to the knowledge of the adversary and t−NI
would not be sufficient to ensure global security. On the other hand, the con-
ditions of t − SNI are stronger, since they require an independence between the
number of probes on the output shares and the number of the shares needed to
perform the simulation, therefore they allow to compose gadgets securely. In the
rest of the paper, we will prove our algorithms to be t−SNI making them suited
to be composed with other gadgets as part of a larger circuit.
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2.3 Conversion from Boolean to Arithmetic Masking

The first sound transformation from Boolean to arithmetic masking (B2A) has
been proposed by Goubin in [19] and it is based on the fact that the function
Φ(x, r) : F2k × F2k �→ F2k such that

Φ(x, r) = (x ⊕ r) − r mod 2k (1)

is affine in r over F2. The algorithm is very efficient, since it has a run time
complexity of O(1), i.e., independent of the size of the inputs k. However, the
initial algorithm was only proven secure against a first-order adversary (t = 1).

The first B2A algorithm secure at higher orders was presented in [14]. Instead
of relying on the aforementioned affine relationship Φ(x, r), the main idea is to
first initialize the shares (Ai)1≤i≤n−1 with random samples in F2k . Then they
are used to generate a random encoding A′ of the form

∑n
i=1 A′

i = −∑n−1
i=1 Ai

mod 2k. This encoding is given to a higher-order secure arithmetic-to-Boolean
(A2B) conversion algorithm to compute the Boolean shares

⊕
i yi =

∑
i A′

i

mod 2k, which are then added to the input encoding x via a Boolean-masked
addition algorithm. This results in

⊕
i

zi =
⊕

i

xi +
⊕

i

yi = x −
n−1∑
i=1

Ai mod 2k.

Using the function FullXOR : Fn
2k �→ F2k [14], which securely decodes a given

input encoding, the remaining share of A is set to An = FullXOR(z), which
completes the transformation given

n∑
i=1

Ai =
n−1∑
i=1

Ai + (x −
n−1∑
i=1

Ai) = x mod 2k.

In theory, the aforementioned framework can be instantiated with any secure
A2B and Boolean-masked addition algorithm. In practice, however, there is only
one secure higher-order A2B algorithm to the best of our knowledge, which was
also published in the same work [14]. Its underlying concept is rather simple.
Each share of the arithmetic input encoding A is first transformed to a Boolean
encoding with n shares. These n Boolean encodings are then added together
using a Boolean-masked addition algorithm resulting in a Boolean encoding x
with

⊕
i xi =

∑
i Ai mod 2k. With a simple addition algorithm this basic ver-

sion has a cubic complexity of O(n3 · k). In [14], the authors also propose an
improved version which relies on recursion and has a quadratic complexity of
O(n2 · k). Instead of summing the input shares Ai sequentially one by one, the
main algorithm splits the n shares into two halves of �n

2 � and 	n
2 
, and recur-

sively calls itself for the two halves. The resulting encodings are then added
together as

x =
(
A1 + · · · + A�n/2�

)
+

(
A�n/2�+1 + · · · + An

)

=
(
y1 ⊕ · · · ⊕ y�n/2�

)
+

(
z1 ⊕ · · · ⊕ z�n/2�

)

x = x1 ⊕ · · · ⊕ xn. (2)
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The complexity of both these B2A and A2B algorithms can be improved by using
a more efficient masked addition algorithm, e.g., using the logarithmic addition
from [13] reduces the run time complexity of both directions to O(n2 · log k).

An alternative higher-order B2A conversion algorithm relying on the affine
relation given in Eq. (1) was recently presented by Bettale et al. in [7] following
previous work of [21] and [12]. Since it is not based on the Boolean-masked addi-
tion of shares, its run time is independent of the input bit size. This makes it
especially efficient for small values of n for which it is possible to achieve a signif-
icant speedup over the previous solutions based on [14]. For increasing number
of shares, however, the performance of the new algorithm quickly deteriorates
given its asymptotic run time complexity of O(2n).

Conversion with prime moduli. All the aforementioned approaches assume
an arithmetic modulus of the form 2k, i.e., a power of two, and cannot be directly
applied for prime moduli. The foundation for some very basic solutions for A2Bq

and B2Aq conversions were given in [25]. However, the algorithms were not strictly
formalized, their application is very specific to the presented use case, and their
security is limited to a first-order adversary. Therefore, we refrain from giving
further details on both algorithms and will only briefly mention their B2Aq app-
roach when discussing the masked binomial sampler in the next subsection.

The first generic solution for arbitrary orders was recently given in [6]. The
authors present a new Boolean-masked addition algorithm which works modulo
a prime q with 2k ≥ 2q. Based on this adder, both the A2B and B2A algorithms
from [14] can be changed to feature moduli other than a power-of-two. Their B2Aq

solution is given in Algorithm 1 which as the approach from [14] relies on an A2B
conversion. Due to page limitations, we do not discuss all algorithms necessary for
the conversion inside the paper (e.g., FullXOR) and instead refer to their original
publications1. In their work, the authors only provide the proofs for an adaption
of the A2B algorithm from [14] with cubic complexity (cf. Algorithm2). In Sect. 3,
we complement their work by providing the security proofs for an adaption
of the conversion algorithm with quadratic complexity (cf. Algorithm3) which
leads to conversions for both directions with currently the lowest complexity of
O(n2 · log k).2

2.4 Masked Sampler from [25]

The construction of [25] initially uses a Boolean-masked SHAKE core to gen-
erate masked pseudo-random bits with a uniform distribution. As defined in

1 In the full version of this paper, all algorithms are given as supplementary material.
2 The authors of [6] also hint that the k-independent algorithm of [7] can be adopted to

other moduli. However, we did not find a working solution. Nevertheless, an adapted
algorithm would share the exponential complexity of the original making it only
viable for small number of shares and, therefore, not a generic solution for masking
at any order. In addition, the bit sizes considered in our case study are relatively
small which would further decrease the benefit of a prime-adjusted algorithm.
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Algorithm 1. SecBoolArithModp [6]
Input: x = (xi)1≤i≤n ∈ F

k
2 such that

⊕
i xi = x ∈ F

k
2

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

i Ai = x mod q

1: (Ai)1≤i≤n−1
$← Fq

2: (Ai)
′
1≤i≤n−1 ← q − (Ai)1≤i≤n−1

3: A′
n ← 0

4: y ← SecArithBoolModp (A′)
5: z ← SecAddModp (x,y)
6: An ← FullXOR(z)

Algorithm 2. SecArithBoolModp (cubic) [6]
Input: A = (Ai)1≤i≤n ∈ Fq such that

∑
i Ai = x mod q ∈ Fq

Output: x = (xi)1≤i≤n ∈ F
k
2 with 2k > 2q such that

⊕
i xi = x

1: (xi)1≤i≤n ← 0
2: for j = 1 to n do
3: (yi)1≤i≤n ← (Aj , 0, . . . , 0)
4: y ← RefreshXOR(y, k)
5: x ← SecAddModp(x,y, k)
6: end for

the specification of NewHope, the sampler takes two 8-bit vectors (x, y) of
this pseudo-randomness as input and computes the difference of the Hamming
weight between them. Since the subsequent operations of the lattice scheme are
performed modulo q = 12289, the masked sampler needs to convert from Boolean
masking to arithmetic masking modulo the prime q. Again, the B2Aq conversion
is not explicitly given and analyzed in [25], but rather directly integrated in the
overlying algorithm. In particular, the authors exploit that Boolean-masked bits
(x1, x2) with x1 ⊕ x2 = x provide the following arithmetic relation

x = x1 + x2 − 2 · x1 · x2 (3)

which is used to transform these Boolean masked bits to an arithmetic encoding
modulo q. The resulting masked sampler (cf. Algorithm 4 in [25]) is highly-
customized for a first-order adversary and the authors do not provide any dis-
cussion on how to extend this approach to higher orders. Our new higher-order
B2Aq conversion algorithm, given in Sect. 4, relies on this arithmetic relation as
well, but contains further optimizations to significantly improve the efficiency
and security at higher orders.

3 Improved Higher-Order B2Aq from [6]

In this section, we discuss the adaption of the B2Aq conversion algorithm with
quadratic complexity from [14] to the setting of prime moduli. The basic idea was
already proposed in [6] without any concrete instantiation or proof. Nevertheless,
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Algorithm 3. SecArithBoolModp (quadratic)
Input: A = (Ai)1≤i≤n ∈ Fq such that

∑
i Ai = x mod q ∈ Fq

Output: x = (xi)1≤i≤n ∈ F
k
2 with 2k > 2q such that

⊕
i xi = x

1: if n=1 then
2: x1 ← A1

3: end if
4: (yi)1≤i≤�n/2� ← SecArithBoolModp

(
(Ai)1≤i≤�n/2�

)

5: (yi)1≤i≤n ← RefreshXOR
(
(y1, . . . , y�n/2�, 0, . . . , 0), k

)

6: (zi)1≤i≤�n/2� ← SecArithBoolModp
(
(Ai)�n/2�+1≤i≤n

)

7: (zi)1≤i≤n ← RefreshXOR
(
(z1, . . . , z�n/2�, 0, . . . , 0), k

)

8: x ← SecAddModp(y, z)

we provide the algorithmic description of the adjusted conversion and prove
its t − SNI property to enable comparison with our new approach of Sect. 4.

3.1 Construction

In the original algorithm from [6], SecBoolArithModp calls the simple version of
SecArithBoolModp, i.e., the shares are added sequentially as depicted in Algo-
rithm2, which leads to a run time complexity of O(n3 · log k). To improve
this, we adapt the recursive structure previously discussed in Eq. (2). In par-
ticular, the input encoding given to SecArithBoolModp is split into two sets
of �n/2� and 	n/2
 elements. These are then separately given to a new call of
SecArithBoolModp and the resulting Boolean encodings are summed to derive
the correct result. This comes with the advantage that each sub routine pro-
cesses a smaller number of shares which reduces the complexity of the refresh
and addition, decreasing the overall complexity to O(n2 · log k).

The complete A2Bq algorithm with quadratic complexity is given in Algo-
rithm3 which would simply replace the call to SecArithBoolModp in Algorithm 1
to derive a corresponding quadratic B2Aq conversion. To map the �n/2� (resp.
	n/2
) Boolean shares to the n shares required for the secure masked addition,
we choose to rely on the t − SNI-refresh RefreshXOR from [6] instead of the
Expand function from [14]. To this end, the Boolean encodings are first padded
with zeros and the resulting n shares are refreshed. An exemplary structure for
the case n = 4 is depicted in Fig. 2.

3.2 Security

The t − SNI security of SecBoolArithModp in Algorithm 1, when using
the quadratic version of SecArithBoolModp, relies on the fact that
SecArithBoolModp itself is t − SNI. Before proceeding with proving that Algo-
rithm3 is t − SNI, we give the following Lemma.

Lemma 1. Given a circuit C as in Fig. 1, where f, g are t − SNI gadgets and h
is t − NI, the circuit C is t − SNI.
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f

t − SNI

Sf

g

t − SNI

Sg

h

t − NI

Sh
1

Sh
2

Fig. 1. Recurrent scheme in Algorithm 3

Proof. Let Ω = (I,O) be the set of adversarial observations on C, where I are
the probes on the internal values and O the ones on the output values, with
|I| + |O| ≤ t. In particular, let If be the set of probes on f, Ig the set of probes
on g and Ih be the set of probes on h, with |If ∪ Ig ∪ Ih| ≤ |I|.

We prove the existence of a simulator which can simulate the adversary’s
view by using at most |I| input shares, analyzing the circuit from right to left.

Gadget h. Since h is t−NI and |Ih ∪O| ≤ t, then there exist two observation
sets Sh

1 ,Sh
2 such that |Sh

1 | ≤ |Ih ∪ O|, |Sh
2 | ≤ |Ih ∪ O| and the gadget can be

simulated using at most |Sh
1 | + |Sh

2 | shares of the inputs.

Gadget f. Since f is t−SNI and |If∪Sh
1 | ≤ t, then there exists an observation

set Sf such that |Sf| ≤ |If| and the gadget can be simulated using at most |Sf|
shares of the inputs.

Gadget g. Since g is t−SNI and |Ig∪Sh
2 | ≤ t, then there exists an observation

set Sg such that |Sg| ≤ |Ig| and the gadget can be simulated using at most |Sg|
shares of the inputs.

Combining the previous steps of the simulation, we can claim that C can be
simulated by using at most |Sf ∪ Sg| ≤ |If| + |Ig| ≤ |I| shares of the inputs,
completing the proof. �

Proposition 1. SecArithBoolModp in Algorithm3 is t − SNI, for t = n − 1.

Proof. In order to prove SecArithBoolModp to be t − SNI we iteratively split
the circuit in sub-circuits Ci, for i = 2, . . . , n as in Fig. 2, where in particular
Cn := SecArithBoolModp and we prove the thesis by induction on i ∈ N.

We remark that C2 is of the form of the circuit in Fig. 1. Indeed RefreshXOR is
t−SNI and SecAddModp is t−NI, as proven in [6]. Therefore thanks to Lemma 1,
the circuit C2 is t − SNI.

Let us suppose now that Cn−2 is t − SNI and we prove the thesis for Cn.
Since the composition of t−SNI gadgets is still t−SNI, as pointed out in [4],

we know that both Cn−2((Ai)1≤i≤�n/2�) and Cn−2((Ai)�n/2�+1≤i≤n) composed
with the RefreshXOR gadget are t − SNI. Therefore, the circuit Cn can be rep-
resented as the circuit in Fig. 1, with f = RefreshXOR(Cn−2((Ai)1≤i≤�n/2�)),
g = RefreshXOR(Cn−2((Ai)�n/2�+1≤i≤n)) and h = SecAddModp. From Lemma 1
we conclude therefore that Cn is t − SNI, completing the proof. �
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x1 RefreshXOR

x2 RefreshXOR

SecAddModp RefreshXOR

x3 RefreshXOR

x4 RefreshXOR

SecAddModp RefreshXOR

C2
SecAddModp O

C2

C4

Fig. 2. Structure of SecArithBoolModp in Algorithm 3 for n = 4

4 A New B2Aq Conversion Algorithm

In this section, we present our new B2Aq conversion algorithm. Initially, we
describe how the aforementioned arithmetic relationship of Boolean-masked bits
can be used to construct a higher-order-secure conversion algorithm. We use this
bit-wise transformation to derive a generic method to convert Boolean encodings
to arithmetic encodings for arbitrary bit size k, number of shares n, and modulus
q. The security of our solution is extensively proven and the t − SNI property
is shown. In the last subsection, we compare the performance of our proposal
not only against the new SecArithBoolModp (quadratic) algorithm for a prime
modulus, but also against standard B2A conversions assuming a modulus of 2k.

4.1 Conversion for x ∈ F2

Firstly, we discuss how to securely transform the Boolean shares (x1, x2) ∈ F2

with x1 ⊕ x2 = x into arithmetic shares (A1, A2) with A1 + A2 = x mod q
for some arbitrary modulus q. For conciseness, we will not explicitly indicate
every time that the arithmetic operations are done modulo q. To perform the
conversion, the Boolean shares are transformed to the arithmetic encodings
B1 + B2 = x1 and C1 + C2 = x2. This results in the following equations

x = x1 ⊕ x2 = (B1 + B2) ⊕ (C1 + C2)
= (B1 + B2) + (C1 + C2) − 2 · (B1 + B2) · (C1 + C2).
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Algorithm 4. SecB2Aq−Bit (simple)
Input: x = (xi)1≤i≤n ∈ F2 such that

⊕
i xi = x

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

i Ai = x mod q
1: (Ai)1≤i≤n ← 0
2: for j = 1 to n do
3: (Bi)1≤i≤n ← (xj , 0, . . . , 0)
4: B ← RefreshADD(B, q)
5: C ← SecMul(A,B)
6: A ← A + B − 2 · C
7: end for

Before deriving the final arithmetic encoding A, we have to sample a fresh
random element R ∈ Fq to secure the shared multiplication (B1+B2) ·(C1+C2).
Now, it is easily possible to compute the shares as

A1 = B1 + C1 + R − 2 · B1 · C1 − 2 · B1 · C2

A2 = B2 + C2 − R − 2 · B2 · C1 − 2 · B2 · C2.

Extending this simple first-order approach to arbitrary n simply requires a
proper refresh and multiplication algorithm, as described in Algorithm4.

However, similarly as before, the algorithm has a run time complexity of
O(n3), i.e., cubic in the number of shares, and, therefore, quickly becomes inef-
ficient for increasing security orders. Therefore, we further optimize the simple
version of the conversion to increase the performance significantly.

1. Instead of using the t − SNI refresh RefreshADD for every iteration round,
we found that it is sufficient to use a t − NI refresh for every round and only
perform a final t − SNI refresh at the end. This reduces the complexity of the
refresh for every iteration from O(n2) to O(n).

2. Instead of multiplying two complete encodings as SecMul(A,B)3, we do not
refresh xj and instead compute the component-wise multiplication A · xj .
Obviously, this requires that the encoding A is independent of xj , which we
achieve with the aforementioned t − NI refresh. In this way, we save another
operation with O(n2) and reduce it to O(n). Furthermore, we can save n − 1
operations of the addition A + xj .

3. Similar to the previous conversions, we vary the number of considered shares
in each iteration, e.g., for j = 2 the operations are done on two shares. Note
that we cannot use the same recursive approach as the previous examples,
because it would not allow us to employ the second optimization.

The optimized conversion is given in Algorithm 5, which now has a run time
complexity of O(n2). Its structure is depicted in Fig. 3.

Correctness. We prove the correctness of B2Aq−Bit, since the refreshing after-
wards does not change the decoded output. The proof is based on the following
3 SecMul is implemented similar to SecAnd of [14].
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Algorithm 5. SecB2Aq−Bit (optimized)
Input: x = (xi)1≤i≤n ∈ F2 such that

⊕
i xi = x ∈ F2

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

i Ai = x mod q
A ← B2Aq−Bit(x)
A ← RefreshADD(A, q)

Algorithm 6. B2Aq−Bit

Input: x = (xi)1≤i≤n ∈ F2 such that
⊕

i xi = x ∈ F2

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

i Ai = x mod q
1: A ← x1

2: for j = 2 to n do
3: A ← B2A

(j)
q−Bit(A, xj)

4: end for

property, already mentioned in Eq. (3). Given x1, x2 ∈ F2, the XOR between the
two bits can be written as x1 ⊕ x2 = x1 + x2 − 2 · x1 · x2. Generalizing to the
case of n values, it is easy to see that

n⊕
i=1

xi = ((((x1 ⊕ x2) ⊕ x3) . . . ) ⊕ xn) =
n−1⊕
i=1

xi + xn − 2 ·
n−1⊕
i=1

xi · xn (4)

Now, adding the output shares of Algorithm6 we get

n∑
i=1

Ai =
n∑

i=1

Bi − 2 ·
n∑

i=1

Bi · xn + xn =
n−1∑
i=1

Ai − 2 ·
n−1∑
i=1

Ai · xn + xn

=
n−1⊕
i=1

xi − 2 ·
n−1⊕
i=1

xi · xn + xn

which, for Eq. 4, is exactly
⊕n

i=1 xi.

Security. In the following propositions we show that our conversion scheme
SecB2Aq−Bit in Algorithm 5 satisfies the t − SNI property, when t = n − 1. We
underline that t − SNI ensures that our conversion algorithm can be securely
composed in larger circuits.

Proposition 2. B2A
(2)
q−Bit in Algorithm7 is 1 − NI.

Proof. Let us suppose that the adversary has exactly 1 probe w in Algorithm 7.
This belongs to the following possible groups:

(1) x1, x2

(2) B2
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Algorithm 7. B2A(n)q−Bit

Input: A = (Ai)1≤i≤n−1 ∈ Fq such that
∑

i Ai = x; xn ∈ F2

Output: C = (Ci)1≤i≤n ∈ Fq such that
∑

i Ci = (x ⊕ xn) mod q

1: Bn
$← Fq

2: B1 ← A1 − Bn mod q
3: for j = 2 to n − 1 do

4: R
$← Fq

5: Bj ← Aj − R mod q
6: Bn ← Bn + R mod q
7: end for
8: for j = 1 to n do
9: Cj ← Bj − 2 · (Bj · xn) mod q

10: end for
11: C1 ← C1 + xn mod q

x1 B2A
(2)
q−Bit B2A

(3)
q−Bit

. . . B2A
(n)
q−Bit RefreshADD A

x2 x3 xn

C2

C3

Cn := B2Aq−Bit

Fig. 3. Structure of SecB2Aq−Bit in Algorithm 5.

(3) B1 := A1 − B2 = x1 − B2

(4) B1 · x2 = (x1 − B2) · x2, b := B1 − 2(B1 · x2)
(5) B2 · x2, B2 − 2(B2 · x2)
(6) b + x2 = (B1 − 2(B1 · x2)) + x2

We construct a set of indexes I of cardinality 1, by adding the index 1 (resp. 2)
if w = x1 (resp. w = x2). The simulation of the probe w, by using at most 1
share of the inputs, is straightforward.

– If the probe w is in group (1), by construction 1 ∈ I or respectively 2 ∈ I.
Thus the values can be simulated as x1 (resp. x2) as in the real algorithm.

– If the probe w is in one of the groups from (2) to (6), thanks to the presence
in the computation of w of the random values B1 or B2, it is simulated by
assigning it to a random and independent value in Fq. �

We remark that the algorithm is not t − SNI. Indeed, if an adversary probes the
output share (B1 −2(B1 ·x2))+x2 = ((x1 −B2)−2((x1 −B2) ·x2))+x2 and the
internal value B2, then the adversary gets the knowledge of two inputs shares,
contradicting the definition of t − SNI.

In the following proposition we prove that the algorithm B2Aq−Bit is t −NI.
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Proposition 3. B2Aq−Bit in Algorithm6 is t − NI.

Proof. In the following, we denote with Ci the execution of Algorithm 6 until
the ith iteration of the for, for i = 2, . . . , n, as indicated in Fig. 3. In particular
Cn := B2Aq−Bit.

We prove the thesis by induction on the value i. From Proposition 2 the
condition is satisfied for the case of i = 2.

Let now assume that Ci is (i − 1) − NI for all i ≤ n − 1 and we show that
under this condition Cn is t − NI as well. First of all let us denote with A

(i)
j the

output shares of Ci for all i ≤ n − 1 and with j = 1, . . . , n. We can classify the
internal and output values of Cn in the following groups:

(1) Bj for j = 2, . . . , n, r
(2) An−1

1 ,
(3) b1 := An−1

1 − B2 − · · · − Bj , with j = 2, . . . , n

(4) A
(n−1)
j − rj =: bj , with j = 2, . . . , n

(5) A
(n)
1 = (An−1

1 − B2 − · · · − Bn) + xn = b1 + xn

(6) A
(n)
j = (A(n−1)

j − rj) − 2((A(n−1)
j − rj) · xn) = bj − 2(bj · xn)

(7) xn

Let us suppose w.l.o.g. that an adversary has Ω probes on Cn with |Ω| = t =
t1+· · ·+tn, where t1+· · ·+ti are the probes on Ci. We show that the adversary’s
observation on Cn can be simulated by using at most t shares of the input.

We first construct a set of indexes I accordingly to the following instructions:
for each probe in group (5), add n to I, and for each probe in group (6), add n
to I. The simulation follows the steps below.

– Step 1. The probes in group (1) are simulated by assigning them to a random
and independent value in Fq.

– Step 2. Since by hypothesis B2A
(n−1)
q−Bit is t − NI, the probes in group (2) can

be simulated by using at most t1 + · · · + tn−1 shares.
– Step 3. If a probe is in group (3) and at least one of the B2, . . . , Bj is not

in Ω, then the values can be assigned to a random and independent value.
Otherwise, if B2, . . . , Bj ∈ Ω, then since B2A

(n−1)
q−Bit is t −NI the probes can be

simulated by using at most t1+ · · ·+tn−1 shares of the input and the assigned
values of B2, . . . , Bj in Step 1. Otherwise, if a sum An−1

1 −B2 −· · ·−Bk ∈ Ω,
with k < j and Bk+1, . . . , Bj ∈ Ω, then the values can be computed as in the
real execution of the algorithm, by using the values Bk+1, . . . , Bj assigned in
Step 1 and the simulated sum An−1

1 − B2 − · · · − Bk, in one of the phases of
this Step.

– Step 4. If a probe is in group (4) and rj /∈ Ω, then the values can be assigned
to a random and independent value. Otherwise, if rj ∈ Ω, then since B2A(n−1)

q−Bit

is t −NI the probes can be simulated by using at most t1 + · · · + tn−1 shares
and the value rj assigned in Step 1.
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– Step 5. If a probe is in group (5) and b1 ∈ Ω, then by construction n ∈ I
and we can compute the value as in the algorithm, by using the b1 simulated
at Step 3 and xn. Otherwise, if b1 /∈ Ω, we can simulate b1 as in Step 3, by
using at most t1 + · · · + tn+1 input shares and xn, since n ∈ I.

– Step 6. If a probe is in group (6) and bj ∈ Ω, then by construction n ∈ I
and we can compute the value as in the algorithm, by using the bj simulated
at Step 4 and xn. Otherwise, if bj /∈ Ω, we can simulate bj as in Step 4, by
using at most t1 + · · · + tn+1 input shares and xn, since n ∈ I.

– Step 7. If a probe is in group (7), by construction n ∈ I and we can trivially
simulate xn.

In all the steps listed above, we showed that the simulation uses at most t input
shares, as required from Definition 1, completing the proof. �
Before proceeding with the next proposition, we remind that the refreshing
scheme added at the end of SecB2Aq−Bit is an algorithm presented in [6] and
proven to be t − SNI. The t − SNI security of SecB2Aq−Bit relies exactly on the
introduction of this gadget after the computation of SecB2Aq−Bit. We see below
a more detailed security proof.

Proposition 4. SecB2Aq−Bit in Algorithm5 is t − SNI.

Proof. The t − SNI security of SecB2Aq−Bit easily follows from the fact that
B2Aq−Bit is t − NI and RefreshADD is t − SNI.

Let Ω = (I,O) be the set of probes on SecB2Aq−Bit, where I1 are the probes
on the internal wires of B2Aq−Bit and I2 are the probes on the internal wires of
RefreshADD, with |I| = |I1| + |I2| ≤ t1 and |I| + |O| ≤ t.

Since RefreshADD is t−SNI and |I2∪O| ≤ t, then there exists an observation
set S2 such that |S2| ≤ |I2| and the gadget can be simulated from its input shares
corresponding to the indexes in S2.

Since SecB2Aq−Bit is t − NI and |I1 ∪ S2| ≤ |I1 ∪ I2| ≤ t, then it exists an
observation set S1 such that |S1| ≤ |I1 ∪ S2| and the gadget can be simulated
from its input shares corresponding to the indexes in S1.

Now, composing the simulators that we have for the two gadgets RefreshADD
and SecB2Aq−Bit, all the probes of the circuit can be simulated from |S1| ≤
|I1|+ |I2| ≤ t1 shares of the input x and therefore, according to Definition 2, the
circuit in Fig. 3 is t − SNI. �

4.2 Conversion for x ∈ F2k

While the current solution is very efficient and simple, it only computes the
correct results for Boolean encodings of bit values. Otherwise, the arithmetic
property does not hold anymore. In order to extend our approach to include
arbitrary bit sizes, we apply the previous conversion to each input bit separately
and combine with component-wise addition. This trivially results in a complexity
of O(n2 ·k), as we have k calls to SecB2Aq−Bit. The complete conversion is given
in Algorithm 9 and its basic structure for k = 3 is depicted in Fig. 4.
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Algorithm 8. RefreshADD (based on RefreshXOR [6])
Input: A = (Ai)1≤i≤n ∈ Fq such that

∑
i Ai = x mod q, modulus q

Output: B = (Bi)1≤i≤n ∈ Fq such that
∑

i Bi = x mod q
1: B ← A
2: for i = 1 to n − 1 do
3: for j = 1 + i to n do

4: R
$← Fq

5: Bi ← Bi + r
6: Bj ← Bj − r
7: end for
8: end for

Algorithm 9. SecB2Aq

Input: x = (xi)1≤i≤n ∈ F2k such that
⊕

i xi = x ∈ F2k

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

i Ai = x mod q
1: A ← SecB2Aq−Bit ((x >> (k − 1)) ∧ 1)
2: for j = 2 to k do
3: B ← SecB2Aq−Bit ((x >> (k − j)) ∧ 1)
4: A ← 2 · A + B mod q
5: end for

Correctness. Let us assume that 2k ≤ q. It is easy to see that for each
i = 1, . . . , n the output shares are of the following form

Ai = 20 · B2Aq−Bit(x
(1)
i ) + 21 · B2Aq−Bit(x

(2)
i ) + · · · + 2k−1 · B2Aq−Bit(x

(k)
i )

and therefore
∑n

i=1 Ai = x mod q.

Security. As done for the previous algorithms, we give in the following the
proof of security according to the t − SNI property, for t ≤ n − 1.

Proposition 5. SecB2Aq in Algorithm9 is t − SNI, with t ≤ n − 1.

Proof. Proving that Algorithm9 is t−SNI follows from the fact that SecB2Aq−Bit

is t − SNI and from the structure of the algorithm itself, depicted in Fig. 4.
First, we define Ci, for i = 1, . . . , k as in Fig. 4, where C1 := SecB2Aq−Bit and

Cn := SecB2Aq. We prove the thesis by induction on i ∈ N.
Thanks to Proposition 4, C1 is t − SNI.

We suppose now that Ci is t − SNI for all i = 1, . . . , n − 1 and we prove that Cn

is t − SNI. Let Ω = (I,O) be the set of adversarial observations on Cn, where I
are the ones on the internal values and O the ones on the output values, with
|I|+ |O| ≤ t. In particular, let I1 be the set of probes on +, I2 the set of probes
on 2·, I3 be the set of probes on Cn−1 and I4 be the set of probes on SecB2Aq−Bit,
with

∑
j |Ij | ≤ |I|.

We prove the existence of a simulator which can simulate the adversary’s
view by using at most |I| input shares. We proceed with the analysis of the
circuit from right to left.
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x(3) SecB2Aq−Bit

x(2) SecB2Aq−Bit

2·

+

x(1) SecB2Aq−Bit

I4

S4

2·

I2

S2

+

I1

S1
2

S1
1

O

C1

C2 I3

C3

S3

Fig. 4. Structure of SecB2Aq in Algorithm 9 for k = 3.

Since + is a linear operation and |I1∪O| ≤ t, then there exist two observation
sets S1

1 ,S1
2 such that |S1

1 | ≤ |I1 ∪ O|, |S1
2 | ≤ |I1 ∪ O| and the gadget can be

simulated using at most |S1
1 | + |S1

2 | shares of the inputs.
Since 2· is a linear operation and |I2∪S1

2 | ≤ t, then there exists an observation
set S2 such that |S2| ≤ |I2 ∪ S1

2 | and the gadget can be simulated using at most
|S2| + |S1

2 | shares of the inputs.
Since, for the assumption step, Cn−1 is t − SNI and moreover |I3 ∪ S2| ≤ t,

there exists an observation set S3 such that |S3| ≤ |I3| and the gadget can be
simulated using at most |S3| shares of the inputs.

Since SecB2Aq−Bit is t − SNI and moreover |I4 ∪ S1
1 | ≤ t, there exists an

observation set S4 such that |S4| ≤ |I4| and the gadget can be simulated using
at most |S4| shares of the inputs.

By combining the steps above, we see that Cn can be simulated by using
in total |S3 ∪ S4| ≤ |I3| + |I4| ≤ |I| input shares, completing the proof. �

4.3 Performance Analysis

We analyze both of our new conversion algorithms regarding the number of
required operations and randoms. They are compared to the cubic conversion
from [6] for a prime modulus q = 12289 as used in NewHope. Furthermore, we
compare SecB2Aq to the conversions from [14] and [7], since they are currently
the fastest algorithms for power-of-two moduli secure at arbitrary orders4.
4 Note that there are order-optimized algorithms which can provide an even better

performance for specific values of t (i.e., Goubin [19] for t = 1, and Hutter and
Tunstall [21] for t = 2). However, for power-of-two moduli our SecB2Aq is only
competitive for larger values of t, and we, thus, exclude these specific examples from
the comparison.
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Table 1. Operation count for Boolean-to-arithmetic conversions with prime mod-
ulo q = 12289 for (A) SecB2Aq, (B) SecBoolArithModp (cubic) [6], and (C)
SecArithBoolModp (quadratic).

Number of Operations. For comparison, we estimate the number of oper-
ations of the different Boolean-to-arithmetic conversions. Similar to [12], we
assume that randomness generation takes unit time, and we do not consider
the modulo reductions. For [14] we use the estimation given in [12]5, and for [7]
the authors provide a closed equation to compute the number of operations. Our
newly-proposed SecB2Aq has a run time complexity6 of

TSecB2Aq(n, k) =
9kn2

2
+

5kn

2
− 2n − 3k.

We compare the B2Aq conversions considering the prime modulus from the
NIST submission NewHope q = 12289. It should be noted that the modular
addition SecAddModp requires 2k > 2q. Therefore, we always call the function
SecBoolArithModp with k′ = 	log2 2q
 = 15 in this evaluation. The results are
presented in Table 1. It is noticeable that SecB2Aq outperforms both versions
of SecBoolArithModp significantly. This is mostly due to the small values of k.
It is expected that for larger k the quadratic variant of SecBoolArithModp is
the most efficient B2Aq conversion, as it scales with O(log k) instead of O(k).
Nevertheless, for our case study we obtain a large performance improvement by
using SecB2Aq, since we need to transform either 1- or 5-bit variables.

Additionally, we compare our new algorithms with the state-of-the-art B2A
conversions assuming a modulus of 2k for different values of k. The resulting per-
formances are given in Table 2. As expected, the algorithm of [7] outperforms all
other solutions for small n. Surprisingly, however, our new conversion SecB2Aq

outperforms the approach of [14] for the considered values of k. We expect that,
for larger bit sizes and by incorporating a logarithmic adder, [14] will eventually
outperform our approach.7 Nevertheless, for k = 32, which is used in many sym-
metric algorithms, our SecB2Aq−Bit does provide a performance improvement

5 Note that there is typo in the final equation: T ′
n = 2n + Tn + Bn + 3n2 + n.

6 In the full version of the paper we derive the complexity of the remaining algorithms.
7 It was shown in [13] that the logarithmic adder offers a significant improvement over

the linear approach for k > 32 at first-order.
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Table 2. Operation count for Boolean-to-arithmetic conversions mod 2k for (A)
SecB2Aq, (D) Bettale et al. [7], and (E) Coron et al. [14]. The bold operation counts
indicate that our new algorithm provides the best performance of the considered algo-
rithms for a given value of k.

even for standard moduli assuming n ≥ 11. We further want to note that our
algorithm comes with a proof of t − SNI, which allows composability with other
modules under certain assumptions [5].

Randomness Complexity. We estimate the number of required random bits
for the different Boolean-to-arithmetic conversions. We denote the bit size of the
input encoding as k1 and for samples in Fq, where q is not a power-of-two, we
assume k2 = 	log2 q
 bits. A more detailed discussion of the sampling process
of such values is provided in the case study. Again, for [7] the authors pro-
vide a closed equation to compute the number of random elements. Our newly-
proposed SecB2Aq has a randomness complexity of RSecB2Aq(n, k1) = k2k1(n2−n).

As before, we initially compare the B2Aq conversions considering the prime
modulus from the NIST submission NewHope q = 12289. The results are pre-
sented in Table 3 and again SecB2Aq outperforms SecBoolArithModp. However,
it should be noted that all random samples for SecB2Aq are from Fq, while
SecBoolArithModp only requires (n−1) random values from Fq and the remain-
ing are sampled from F2k1 , which can be more efficient depending on the RNG.

In the typical use cases of a power-of-two modulus (like in symmetric crypto),
there is no difference between k1 and k2 and thus we evaluate the number of RNG
calls instead of random bits for this case. The resulting performances are given
in Table 4. Again, the algorithm of [7] outperforms all other solutions for small
n, while SecB2Aq provides the best performance for certain values of k and n.
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Table 3. Required random bits for Boolean-to-arithmetic conversions with q =12289
for (A) SecB2Aq, (B) SecBoolArithModp (cubic) [6], and (C) SecArithBoolModp

(quadratic). Note that sampling from Fq is estimated with �log2 q� bits.

Table 4. Number of RNG calls for Boolean-to-arithmetic conversions mod 2k for (A)
SecB2Aq, (D) Bettale et al. [7], and (E) Coron et al. [14]. The bold call counts indicate
that our new algorithm provides the best performance of the considered algorithms for
a given value of k.

5 Higher-Order Masked Binomial Sampling

Our sampling algorithms assume that they are given two variables (x, y) that
have a length of κ bits and are Boolean-encoded as (x,y). This is in accordance
with many of the aforementioned schemes which rely on a PRNG (Boolean-
masked) to produce uniform pseudo-randomness. The sampler needs to compute
HW(x) − HW(y) in a secure fashion on these encodings and produce arithmetic
shares A with

∑
i Ai = HW(x) − HW(y) mod q for a given modulus q to fit the

subsequent lattice operations. Since this conversion can be done with any of the
aforementioned B2Aq schemes, the algorithms contain a generic function call.
Initially, we present a generalization of [25], before proposing a more efficient
sampling algorithm based on bitslicing. Both algorithms are proven to be t−SNI
and their performances are compared using NewHope as a case study.
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Algorithm 10. SecSampler1
Input: x = (xi)1≤i≤n ∈ F2κ , y = (yi)1≤i≤n ∈ F2κ such that

⊕
i xi = x,

⊕
i yi = y

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

i Ai = HW(x) − HW(y) mod q
1: (Ai)1≤i≤n ← 0
2: for j = 0 to κ − 1 do
3: B ← B2Aq ((x >> j) ∧ 1)
4: C ← B2Aq ((y >> j) ∧ 1)
5: A ← A + B mod q
6: A ← A − C mod q
7: end for

5.1 Generalization of [25]

As briefly discussed in Sect. 2.4, the bits of (x,y) are transformed separately to
arithmetic shares. We extend this approach in Algorithm 10 to be generic for any
number of shares n, modulus q, and length of the bit-vectors κ. In particular, we
first transform each of the 2κ bits separately to an arithmetic encoding modulo
q. These are then summed component-wise to compute the Hamming weight of
each variable and the results are subtracted again component-wise.

Correctness. The correctness of SecSampler1 follows directly by the construc-
tion of the algorithm. Indeed, since at every iteration of the loop

A = B2Aq ((x >> 0) ∧ 1) − B2Aq ((y >> 0) ∧ 1)
+ · · · + B2Aq ((x >> κ − 1) ∧ 1) − B2Aq ((y >> κ − 1) ∧ 1)

we have
∑

i

Ai =
∑

i

(
B2Aq ((xi >> 0) ∧ 1) − B2Aq ((yi >> 0) ∧ 1) + . . .

+ B2Aq ((xi >> κ − 1) ∧ 1) − B2Aq ((yi >> κ − 1) ∧ 1)
)

= HW(x) − HW(y) mod q

Security. The security of the sampler described in Algorithm 10 can be easily
derived from its basic structure and utilization of t − SNI gadgets.

Proposition 6. Sampler1 in Algorithm10 is t − SNI, with t ≤ n − 1

Proof. We point out that the t−SNI security of both considered B2Aq algorithms,
i.e., SecB2Aq−Bit proven in Proposition 4 and SecArithBoolModp in Proposi-
tion 1, receiving independent inputs, guarantees that every loop of Algorithm10
represents a t − SNI gadget and therefore the output A can be securely injected
in the sum of the following loop. �
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Algorithm 11. SecBitAdd
Input: x = (xi)1≤i≤n ∈ F2κ such that

⊕
i xi = x, λ = �log2(κ + 1)� + 1

Output: z = (zi)1≤i≤n ∈ F2λ such that
⊕

i zi = HW(x)
1: (ti)1≤i≤n ← 0
2: (zi)1≤i≤n ← 0
3: for j = 1 to κ do
4: t(1) ← z(1) ⊕ x(j)

5: w ← x(j)

6: for l = 2 to λ do
7: w ← SecAnd(w, z(l−1))
8: t(l) ← z(l) ⊕ w
9: end for

10: z ← t
11: end for

z SecBitAdd

I4

SecBitSub

I3

SecConstAdd

I2

B2Aq

I1

S4 S3
1 S2 S1

A
O

y

S3
2

κ

Fig. 5. Structure of SecSampler2 in Algorithm 15 (lines 1–4).

5.2 New Bitsliced Masked Binomial Sampler

In our improved sampler SecSampler2, we first compute the Hamming weight of
x on the Boolean encodings using bitslicing to significantly increase the through-
put. We further improve the performance by directly subtracting the Hamming
weight of y from the result, again using bitslicing. In this way, the sampler only
requires a single conversion. However, to correctly map the sign of the difference
(i.e., negative values would be transformed incorrectly) it is necessary to add
κ before converting. A generic algorithm to add such a constant to a Boolean
encoding is provided in Algorithm13. However, for specific values of κ this can
be significantly optimized, e.g., for κ = 8 as in NewHope the addition can be
done with only component-wise XOR, as shown in Algorithm14. Finally, after
the B2Aq conversion, the additional κ needs to be subtracted to recover the cor-
rect result, and this can be done component-wise on the arithmetic shares. The
complete procedure is given in Algorithm 15. Since the input variables are in a
bitsliced format, we directly denote the j-th bit of the l-th share of x as x

(j)
l .
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Algorithm 12. SecBitSub
Input: z = (zi)1≤i≤n ∈ F2λ ,y = (yi)1≤i≤n ∈ F2κ such that

⊕
i zi = z and

⊕
i yi = y,

λ = �log2(κ + 1)� + 1
Output: z = (zi)1≤i≤n ∈ F2λ such that

⊕
i zi = z − HW(y)

1: (ti)1≤i≤n ← 0
2: for j = 1 to κ do
3: t(1) ← z(1) ⊕ y(j)

4: w ← y(j)

5: for l = 2 to λ do
6: u ← z(l−1)

7: u1 ← ¬u1

8: w ← SecAnd(w,u)
9: t(l) ← z(l) ⊕ w

10: end for
11: z ← t
12: end for

Algorithm 13. SecConstAdd
Input: x = (xi)1≤i≤n ∈ F2λ , λ = �log2(κ + 1)� + 1
Output: y = (yi)1≤i≤n ∈ F2λ such that

⊕
i yi = x + κ

1: (ti)1≤i≤n ← (κ, 0, . . . , 0)
2: t ← RefreshXOR(t, λ)
3: y ← SecAdd(x, t)

Correctness. The correctness of SecSampler2 is easy to show.
∑

i

Ai = B2Aq(SecConstAdd(SecBitSub(SecBitAdd(x),y), κ)) − κ

= B2Aq(SecConstAdd(SecBitSub(HW(x),y), κ)) − κ

= B2Aq(SecConstAdd(HW(x) − HW(y), κ)) − κ

= B2Aq(HW(x) − HW(y) + κ) − κ = HW(x) − HW(y) mod q.

Security. Before proving the security of SecSampler2 in Algorithm 15, we
briefly summarize the security properties which its subroutines satisfy.

First we show that SecBitAdd in Algorithm 11 is t − NI and we start the
analysis by focusing on its structure. We recall that SecAnd [14] is t − SNI and
it receives at every iteration independent inputs (line 7). The output of each
SecAnd is added with a XOR to a value independent from its inputs (line 8),
therefore the entire inner loop (lines 6–9) represents a t − SNI gadget. This
is recursively composed in the outer loop (lines 3–11) providing the outputs
(t(2), . . . , t(λ)) and preserving the t − SNI property. Additionally, at every itera-
tion of the outer loop, x(j) is added with a XOR to z(1) (line 4), resulting in the
output t(1) = x(1) + . . . + x(κ). Let us suppose an attacker probes a set
of t1 values P1 on the shares (t(2), . . . , t(λ)) or on the internal values produced
during the concatenation of the inner loop, and a set of t2 values P2 on the
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Algorithm 14. SecConstAdd (optimized for κ = 8)
Input: x = (xi)1≤i≤n ∈ F2λ

Output: y = (yi)1≤i≤n ∈ F2λ such that
⊕

i yi = x + 8
1: y ← x
2: y(5) ← y(5) ⊕ y(4)

3: y
(4)
1 ← y

(4)
1 ⊕ 1

Algorithm 15. SecSampler2
Input: x = (xi)1≤i≤n ∈ F2κ , y = (yi)1≤i≤n ∈ F2κ , κ, such that

⊕
i xi = x,

⊕
i yi = y

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

i Ai = HW(x) − HW(y) mod q
1: z ← SecBitAdd(x)
2: z ← SecBitSub(z,y)
3: z ← SecConstAdd(z, κ)
4: A ← B2Aq (z)
5: A1 ← A1 − κ mod q

computation of t(1), with t1 + t2 ≤ t. In particular let tO1 , tO2 be the probes on
the output values and tI1, t

I
2 the ones on the internals, with tO1 + tI1 = t1 and

tI2 + tO2 = t2. The t − SNI of the inner loop guarantees that every value in P1

can be simulated by using at most tI1 shares of the inputs. On the other hand,
because of the linearity of the computation of t(1), the probes in P2 can be
simulated using at most tI2 + tO2 shares of the input. Therefore, by Definition 1,
SecBitAdd is t − NI.

Now, since SecBitSub in Algorithm 12 follows the same procedure as Algo-
rithm11, with the exception of Lines 6 and 7, which simply add a negation to
the interested value, then it is t − NI as well.

As for SecConstAdd in Algorithm 13, from [6] we know that RefreshXOR is
t − SNI and SecAdd is t −NI. Therefore it is easy to see that the composition of
them, as it appears in Algorithm 13, is t − NI. Regarding the optimized version
of SecConstAdd in Algorithm 14, here the security comes directly from the fact
that the algorithm is linear.

Proposition 7. SecSampler2 in Algorithm15 is t − SNI, with t ≤ n − 1

Proof. Before proceeding with the proof, we point out that SecSampler2 is given
by the circuit in Fig. 5 with the addition of a share-wise sum between the output
share A1 and the public value −κ (line 5 of Algorithm 15). Since the simula-
tion of such value depends only on the simulation of A1, the security level of
SecSampler2 is not influenced by this additional operation and it corresponds
to the one of the algorithm in Fig. 5.

Let Ω = (I,O) be the set of adversarial observations on the circuit in Fig. 5,
where I are the ones on the internal values and O on the output shares, with |I|+
|O| ≤ t. In particular, let I1 be the set of probes on B2Aq, I2 on SecConstAdd,
I3 on SecBitSub and I4 on SecBitAdd, with

∑
j |Ij | ≤ |I|.

We prove the existence of a simulator which simulates the adversary’s view
by using at most |I| input shares, analyzing of the circuit from right to left.



Efficiently Masking Binomial Sampling at Arbitrary Orders 559

Since B2Aq is t−SNI, there exists an observation set S1 such that |S1| ≤ |I1|
and the gadget can be simulated using at most |S1| shares of its input.

Since SecConstAdd is t−NI and |I2∪S1| ≤ t, then there exist an observation
set S2 such that |S2| ≤ |I2 ∪ S1| and the gadget can be simulated using at most
|S2| shares of the inputs.

Since SecBitSub is t −NI and |I3 ∪ S2| ≤ t, then there exist two observation
sets S3

1 ,S3
2 such that |S3

1 | ≤ |I3 ∪ S2|, |S3
2 | ≤ |I3 ∪ S2| and the gadget can be

simulated using at most |S3
1 | + |S3

2 | shares of the inputs.
Since SecBitAdd is t − NI and |I4 ∪ S3

1 | ≤ t, then there exist an observation
set S4 such that |S4| ≤ |I4 ∪ S3

1 | and the gadget can be simulated using at most
|S4| shares of the inputs.

By combining the steps above, we see that SecSampler2 can be simulated by
using in total |S4| ≤ |I4| + |S3

1 | ≤ |I4| + |I3| + |S2| ≤ |I4| + |I3| + |I2| + |S1| ≤
|I4| + |I3| + |I2| + |I1| ≤ |I| input shares, proving that it is t − SNI. �

5.3 Performance Analysis

To better compare the two sampling approaches, we derive the run time com-
plexity for both. The calls to B2Aq and SecConstAdd are not substituted, since
their performance strongly depends on the used parameters, which may allow
further optimizations, e.g., Algorithm14. With λ = 	log2(κ + 1)
 + 1, we derive

TSecSampler1(n, κ) = 2κTB2Aq
(n, 1) + 6nκ,

TSecSampler2(n, κ) = TSecBitAdd(n, κ) + TSecBitSub(n, κ) + TSecConstAdd(n, κ)
+ TB2Aq

(n, λ) + n

= TB2Aq (n, λ) + TSecConstAdd(n, κ)

+ 7κλn2 − 7κn2 + 7κλn + κλ − 5κn − κ + n.

It is noticeable that SecSampler2 requires only one conversion of λ bits, while
SecSampler1 consists of 2κ conversion of one bit. This can lead to significant
advantages for the former approach assuming small κ as shown in the case study.

Regarding the randomness complexity, we observe a similar trend:

RSecSampler1(n, κ) = 2κRB2Aq
(n, 1),

RSecSampler2(n, κ) = RSecBitAdd(n, κ)
+ RSecBitSub(n, κ) + RSecConstAdd(n, κ) + RB2Aq

(n, λ)

= RB2Aq (n, λ) + RSecConstAdd(n, κ) + κλn2 − κn2 − κλn + κn

5.4 Case Study: NewHope

To concretely evaluate the performance of our proposed sampling algorithms, we
conduct a case study using the parameters of the NIST submission NewHope.
We set the length of the bit-vectors to κ = 8 and the prime to q = 12289. The
same prime can be found in multiple NIST submissions, like Kyber and HILA5.
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The parameter κ is usually different though and for Kyber set to 3, 4, or 5
and for HILA5 set to 16. Both sampling approaches are evaluated with the
proposed B2Aq conversions SecB2Aq and SecArithBoolModp (quadratic). The
latter is instantiated with k′ = 	log2 2q
 = 15 as discussed in the previous
section.

We implement all variants on a 32-bit ARM Cortex-M4F microcontroller
embedded in an STM32F4 DISCOVERY board with 1 Mbyte of flash memory,
192 kbyte of RAM, a floating-point unit (FPU), and a true random number
generator (TRNG). The TRNG needs 40 cycles of a 48 MHz clock to generate a
random 32-bit value. The sampling of a true random value runs simultaneously
to other computations of the microcontroller. Assuming a sufficient amount of
clock cycles between two calls to the TRNG, a sample will be generated without
any wait cycles and therefore the average TRNG call will be much faster than
40 cycles at 48 MHz. The maximum clock frequency of the microcontroller is
168 MHz. We use the CYCCNT register of the data watchpoint and trace unit of
the microcontroller to measure the performance of our implementation.

To prevent timing leakage, our implementations have a secret-independent
running time. In particular, we refrained from using conditional statements or
instructions with varying execution time in critical parts of our implementation.
We furthermore disabled the data and instruction cache of our target micro-
controller. For the implementation of the B2Aq conversions, we need uniform
random numbers mod q = 12289. The TRNG of our development board outputs
32 uniform random bits. To sample a uniform random number mod q, we split
the 32-bit output of the TRNG into two 14-bit vectors and drop the remaining
four bits. We then check whether the first 14-bit vector is smaller than q or not.
If yes, we accept and return the value. If not we also check the second value. If
this check fails again, we get more true random 32-bit vectors from the TRNG
until we find a valid sample. This means that there is a q

214 = 0.75 probability
of a sample being accepted and a 0.25 probability of a sample being rejected.
Such a sampling approach does not have a constant run time, but it still does
not introduce a timing leakage, as the time required to generate a valid sample
is completely independent from the value of the generated sample.

The results of our implementation can be seen in Table 5, where the compari-
son for n = 2 also includes the masked binomial sampler from Oder et al. [25]8.
It is noticeable that SecB2Aq outperforms SecArithBoolModp (quadratic) for
every order. As discussed before, this huge speed-up is due to the specific param-
eters of the case study. Indeed the bit sizes of the input k = 1, 5 do not fulfill the
requirement of 2k > 2q, which thwarts its performance since we need to instan-
tiate it with a larger k′. This is especially problematic for SecSampler1, which
requires conversions with k = 1. Overall, our SecSampler2 offers a significant

8 In contrast to [25], our cycle counts do not include the generation of the input bit
vectors. Therefore, our 3,757 cycles for one sample do not match the 6 million cycles
for 1024 coefficients reported in [25]. However, as the generation of the input samples
is a constant overhead that is independent from the sampling algorithm or the B2Aq
conversion, we decided to exclude it from our measurements.
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Table 5. Cycle counts for masked sampling of one binomial distributed coefficient
using the B2A conversions (A) SecB2Aq and (C) SecBoolArithModp (quadratic). We
excluded the generation of the input bit vectors for better comparison as this is a
constant overhead for all approaches.

improvement over SecSampler1 for both conversion algorithms and it even out-
performs the approach from Oder et al. [25], that is highly optimized for n = 2.
Applying a similar degree of optimization to our proposed sampler for this special
case would help to decrease the number of cycles even further.

6 Conclusions

In this work, we initially presented two new conversion techniques to transform
Boolean shares to arithmetic shares that work with arbitrary moduli and orders.
While the first provides the best asymptotic complexity of B2Aq algorithm with
O(n2 log k), the second proposal offers a significant performance improvement
for relevant bit sizes. It can even be applied in symmetric cryptography as for
certain number of shares (e.g., n ≥ 11 for k = 32), it outperforms previous work
that is optimized for power-of-two moduli. Using these conversions as basis, we
further constructed masked binomial sampling algorithms. To evaluate them,
we developed implementations for a popular microcontroller platform to obtain
realistic performance measurements. Thereby, we show that the combination of
SecB2Aq with our bitsliced sampler outperforms previous work and leads to the
currently most-efficient masked binomial sampling algorithm for the considered
parameters. Our work helps to better understand the overhead cost for masking
of post-quantum cryptography and, thus, is an important contribution for the
evaluation of these schemes in the ongoing NIST standardization process.
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30. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over Boolean masking
towards first- and second-order resistance in hardware. In: Malkin, T., Kolesnikov,
V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–
578. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 27

31. Smart, N.P., et al.: LIMA-1.1: a PQC encryption scheme. Technical report,
National Institute of Standards and Technology (2017). https://lima-pq.github.
io/files/lima-pq.pdf

32. Standaert, F.-X., et al.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 7

33. Won, Y.-S., Han, D.-G.: Efficient conversion method from arithmetic to Boolean
masking in constrained devices. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol.
10348, pp. 120–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64647-3 8

https://doi.org/10.1007/978-3-319-28166-7_27
https://lima-pq.github.io/files/lima-pq.pdf
https://lima-pq.github.io/files/lima-pq.pdf
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-319-64647-3_8
https://doi.org/10.1007/978-3-319-64647-3_8


Decryption Failure Attacks on IND-CCA
Secure Lattice-Based Schemes

Jan-Pieter D’Anvers1(B), Qian Guo2,3, Thomas Johansson3,
Alexander Nilsson3, Frederik Vercauteren1, and Ingrid Verbauwhede1

1 imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452,
3001 Leuven-Heverlee, Belgium

{janpieter.danvers,frederik.vercauteren,
ingrid.verbauwhede}@esat.kuleuven.be

2 Department of Informatics, University of Bergen, Box 7803, 5020 Bergen, Norway
qian.guo@uib.no

3 Department of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{thomas.johansson,alexander.nilsson}@eit.lth.se

Abstract. In this paper we investigate the impact of decryption fail-
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1 Introduction

The position of integer factorization and the discrete logarithm problem as a cor-
nerstone for asymmetric cryptography is being threatened by quantum comput-
ers, as their ability to efficiently solve these mathematical problems compromises
the security of current asymmetric primitives. These developments have led to
the emergence of post-quantum cryptography and motivated NIST to organize
a post-quantum cryptography standardization process, with the goal of stan-
dardizing one or more quantum-resistant public-key cryptographic primitives.
Submissions originate from various fields within post-quantum cryptography,
such as lattice-based, code-based and multivariate cryptography.

Lattice-based cryptography has recently developed into one of the main
research areas in post-quantum cryptography. Lattice-based submissions to the
NIST Post-Quantum process can be broadly put into one of two categories:
NTRU-based schemes (e.g. [39,47]) and schemes based on the learning with
errors (LWE) hard problem [36]. A lot of research has been done on their security,
such as provable post-quantum secure transformations from IND-CPA to IND-
CCA secure schemes [25,29,38,46], security estimates of post-quantum prim-
itives [3,4] and provable reductions for various hard problems underlying the
schemes [7,11,32,35,36].

A striking observation is that numerous proposed Key Encapsulation Mech-
anisms (KEM’s) have a small failure probability during decryption, in which the
involved parties fail to derive a shared secret key. This is the case for the majority
of schemes based on lattices, codes or Mersenne primes. The probability of such
failure varies from 2−64 in Ramstake [45] to 2−216 in New Hope [41], with most
of the failure probabilities lying around 2−128. As this failure is dependent on the
secret key, it might leak secret information to an adversary. However, reducing
this probability has a price, as the parameters should be adjusted accordingly,
resulting in a performance loss. An approach used by some schemes is to use
error-correcting codes to decrease the failure probability. This leads to a reduc-
tion in the communication overhead, but makes the scheme more vulnurable to
side-channel attacks.

As suggested by the wide range of failure probabilities in the NIST submis-
sions, the implications of failures are still not well understood. In the absence of
a clear evaluation technique for the impact of the failure rate, most NIST sub-
missions have chosen a bound on the decryption failure probability around 2−128

based on educated guessing. As far as we know, only NIST-submission Kyber
[40] provides an intuitive reasoning for its security against decryption failure
attacks, but this approximation is not tight. They introduce a methodology that
uses Grover’s search algorithm to find ciphertexts that have a relatively high
probability of triggering a decryption failure.

1.1 Related Works

The idea of exploiting decryption errors has been around for a long time and
applies to all areas of cryptography [9]. For lattice-based encryption systems, the
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Ajtai-Dwork scheme and NTRU have been a target for attacks using decryption
failures. Hall, Goldberg, and Schneier [23] developed a reaction attack which
recovers the Ajtai-Dwork private key by observing decryption failures. Hoffstein
and Silverman [24] adapted the attack to NTRU and suggested modifying NTRU
to use the Fujisaki-Okamoto transform [18] to protect against such attacks. Fur-
ther work in this direction is given in [28], [26] and [19]. Fluhrer [17] described
an attack against Ring-Learning with Errors (RLWE) schemes. In [15] his work
was extended to more protocols and in [8] a chosen-ciphertext attack on the
proposal HILA5 [37] was given, using decryption failures.

These attacks are chosen-ciphertext attacks on proposals with only IND-
CPA-security and can be thwarted using an appropriate transformation to
a chosen-ciphertext secure scheme, such as the Fujisaki-Okamoto transforma-
tion [18]. Hofheinz et al. [25] and later Jiang et al. [29] proved a bound on
the impact of the failure rate on an IND-CCA secure KEM that is constructed
using this transformation, but their bounds are squared in the failure proba-
bility in the quantum oracle setting, which seems a very conservative result.
Guo, Johansson and Stankovski [22] proposed a key-recovery attack against the
IND-CCA-secure version of QC-MDPC, which is a code-based scheme. It uses
a distinguishing property that “colliding pairs” in the noise and the secret can
change the decryption failure rate.

1.2 Contributions

In this paper we investigate the requirements for KEM’s to resist decryption
failure cryptanalysis. Having better security estimates can benefit the param-
eter selection process, resulting in improved security and efficiency. We focus
on IND-CCA secure KEM’s based on the (Ring/Module-)Learning with Errors
and (Ring/Module-)Learning with Rounding paradigms. Nonetheless, the gen-
eral method can also be applied to investigate the impact of failures on other
schemes.

The exploitation of decryption failures of an IND-CCA secure cryptographic
scheme proceeds in two main steps: obtaining ciphertexts that result in a decryp-
tion failure and estimating the secret based on these ciphertexts. In the first step,
an adversary can use failure boosting to find ‘weak’ input vectors that artificially
enlarge the failure rate of the scheme. In Sect. 3, we examine how an adversary
can generate these ‘weak’ ciphertexts that increase the failure probability. We
provide a theoretical framework and a Python implementation1 to calculate an
estimate of the minimum effort required for an adversary to obtain one failing
ciphertext.

Once ciphertexts that trigger a decryption failure are collected, they can
be used to estimate the secret. In Sect. 4, we study how much information is
leaked by the collected failures. We develop a statistical model to estimate the
secret from the failures and determine the residual entropy of the secret after a

1 The software is available at https://github.com/danversjp/failureattack.

https://github.com/danversjp/failureattack
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certain number of failures is collected. The estimate of the secret can be used to
construct an easier problem that can be solved faster.

Section 5 combines failure boosting and the secret estimation technique
from Sect. 4 to estimate the security of schemes based on (Ring/Module)-
Learning with Errors and (Ring/Module)-Learning with Rounding under an
attack exploiting decryption failures. We show that an attacker could signifi-
cantly reduce the security of some schemes if he is able to perform sufficient
decryption queries. However, for most NIST submissions, the number of decryp-
tion queries required is above practical limits.

In Sect. 6 we propose a new generic weak-key (multi-target) model exploiting
the fact that a fraction of keys employed can have much higher error probability if
the chosen weak ciphertexts satisfy certain key-related properties. The detailed
attack procedure is similar to the attack discussed in the previous sections.
It first consists of a precomputation phase where special messages and their
corresponding error vectors are generated. Secondly, the messages are submitted
for decryption and some decryption errors are observed. Finally, a phase with a
statistical analysis of the messages/errors causing the decryption errors reveals
the secret key.

In Sect. 7 we apply the model to ss-ntru-pke, a version of NTRUEncrypt tar-
geting the security level of NIST-V. The proposed attack is an adaptive CCA
attack with complexity below the claimed security level. We provide a Rust
implementation2 where parts of the attack are simulated.

2 Preliminaries

2.1 Notation

Let Zq be the ring of integers modulo q represented in (−q/2, q/2], let Rq denote
the ring Zq[X]/(Xn +1) and let Rk1×k2

q denote the ring of k1 ×k2 matrices over
Rq. Matrices will be represented with bold uppercase letters, while vectors are
represented in bold lowercase. Let Aij denote the element on the ith row and
jth column of matrix A, and let Aijk denote the kth coefficient of this element.
Denote with A:j the jth column of A.

The rounding operation �x�q→p is defined as �p/q · x� ∈ Zp for an element
x ∈ Zq, while abs(·) takes the absolute value of the input. These operations
are extended coefficient-wise for elements of Rq and Rk1×k2

q . The two-norm of a
polynomial a ∈ Rq is written as ‖a‖2 and defined as

√∑
i a2

i , which is extended

to vectors as ‖a‖2 =
√∑

i ‖a i‖22. The notation a ← χ(Rq) will be used to
represent the sampling of a ∈ Rq according to the distribution χ. This can be
extended coefficient-wise for A ∈ Rk1×k2

q and is denoted as A ← χ(Rk1×k2
q ). Let

2 The software is available at https://github.com/atneit/ss-ntru-pke-attack-simul
ation.

https://github.com/atneit/ss-ntru-pke-attack-simulation
https://github.com/atneit/ss-ntru-pke-attack-simulation
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U be the uniform distribution. Denote with χ1 ∗ χ2 the convolution of the two
distributions χ1 and χ2, and denote with χ∗n = χ ∗ χ ∗ χ ∗ · · · ∗ χ ∗ χ

︸ ︷︷ ︸
n

the nth

convolutional power of χ.

2.2 Cryptographic Definitions

A Public Key Encryption (PKE) is defined as a triple of functions PKE =
(KeyGen, Enc, Dec), where the key generation KeyGen returns a secret key sk and
a public key pk, where the encryption Enc produces a ciphertext c from the
public key pk and the message m ∈ M, and where the decryption Dec returns
the message m′ given the secret key sk and the ciphertext c.

A Key Encapsulation Mechanism (KEM) consists of a triple of functions
KEM = (KeyGen, Encaps, Decaps), where KeyGen generates the secret and public
keys sk and pk respectively, where Encaps generates a key k ∈ K and a ciphertext
c from a public key pk, and where Decaps requires the secret key sk, the public
key pk and the ciphertext c to return a key k or the decryption failure symbol ⊥.
The security of a KEM can be defined under the notion of indistinguishability
under chosen ciphertext attacks (IND-CCA),

Advind-cca
KEM (A) =

∣∣∣∣∣∣
P

⎛

⎝b′ = b :
(pk, sk) ← KeyGen(), b ← U({0, 1}),

(c, d, k0) ← Encaps(pk),
k1 ← K, b′ ← ADecaps(pk, c, d, kb),

⎞

⎠ − 1
2

∣∣∣∣∣∣
.

2.3 LWE/LWR Problems

The decisional Learning with Errors problem (LWE) [36] consists of distin-
guishing a uniform sample (A,U ) ← U(Zk1×k2

q × Z
k1×m
q ) from an LWE-sample

(A,B = AS + E), were A ← U(Zk1×k2
q ) and where the secret vectors S and

E are generated from the small distributions χs(Zk2×m
q ) and χe(Zk1×m

q ) respec-
tively. The search LWE problem states that it is hard to recover the secret S
from the LWE sample.

This definition can be extended to Ring- or Module-LWE [30,32] by using
vectors of polynomials. In this case, the problem is to distinguish the uniform
sample (A,U ) ← U(Rk1×k2

q ×Rk1×m
q ) from a generalized LWE sample (A,B =

AS + E) in which A ← U(Rk1×k2
q ) and where the secret vectors S and E are

generated from the small distribution χs(Rk2×m
q ) and χe(Rk1×m

q ) respectively.
Analogous to the LWE case, the search problem is to recover the secret S from
a generalized LWE sample.

The decisional generalized Learning with Rounding (LWR) problem [7] is
defined as distinguishing the uniform sample (A, �U �q→p), with A ← U(Rk1×k2

q )
and U ← U(Rk1×m

q ) from the generalized LWR sample (A,B = �AS�q→p) with
A ← U(Rk1×k2

q ) and S ← χs(Rk2×m
q ). In the analogous search problem, one has

to find S from a generalized LWR sample.
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2.4 (Ring/Module-)LWE Based Encryption

Let gen be a pseudorandom generator that expands seedA into a uniformly
random distributed matrix A ∈ Rk×k

q . Define enc as an encoding function that
transforms a message m into a polynomial representation, and dec as the inverse
decoding function. A general (Ring/Module-)LWE based PKE, consisting of a
key generation, an encryption and a decryption phase, can then be constructed
as described in Algorithms 1, 2 and 3 respectively. The randomness required for
the generation of the secrets S ′

B , E ′
B and E ′′

B during the encryption, is generated
pseudorandomly from the uniformly distributed seed r that is given as an input.

Algorithm 1. PKE.KeyGen

Input:
Output: Public key pk = (B , seedA), secret key sk = SA).
1) seedA ← U({0, 1}256)
2) A ← gen(seedA) ∈ Rl×l

q

4) SA ← χs(R
l×m
q ),EA ← χe(R

l×m
q )

5) B = �ASA + EA�q→p

Algorithm 2. PKE.Enc

Input: Public key pk = (B , seedA), message m, randomness r
Output: Ciphertext c = (V ′,B’ )
1) A ← gen(seedA) ∈ Rl×l

q

2) S ′
B ← χs(R

l×m
q ),E ′

B ← χe(R
l×m
q )

3) E ′′
B ← χe(R

m×m
q )

4) Br = �B�p→q

5) B ′ = �ATS ′
B + E ′

B�q→p

6) V ′ = �BT
r S

′
B + E ′′

B + enc(m)�q→t

Algorithm 3. PKE.Dec

Input: Secret key sk = SA, ciphertext c = (V ′,B’ )
Output: Message m′

1) B ′
r = �B ′�p→q

2) V ′
r = �V ′�t→q

3) V = B ′T
r SA

4) m′ = dec(V ′
r − V )
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Using this general framework, specific schemes can be described with appro-
priate parameter choices. When the ring Rq is chosen as Zq, the encryption
is LWE-based as can be seen in FrodoKEM [33] and Emblem [42]. A value of
l = 1 indicates a Ring-LWE based scheme including New Hope [5], LAC [31],
LIMA [43] or R.Emblem [42]. If l 	= 1 and Rq 	= Zq, the scheme is based on
the Module-LWE hard problem such as Kyber [10]. When referring to Kyber
throughout this paper, we will consider the original version that includes round-
ing. The special case that χe = 0 corresponds to (Module/Ring)-LWR-based
schemes such as Round2 [6] and Saber [13]. In Lizard [12], a combination of
an LWE and LWR problem is proposed. In most (Ring/Module-)LWE based
schemes, q = p and no rounding is performed in the calculation of B and B ′,
while t is in most schemes much smaller than q leading to a drastic rounding
of V ′.

We define UA, U ′
B en U ′′

B as the errors introduced by the rounding opera-
tions, which is formalized as follows:

UA = ASA + EA − Br , (1)
U ′

B = ATS ′
B + E ′

B − B ′
r , (2)

U ′′
B = BT

r S
′
B + E ′′

B + enc(m) − V ′
r . (3)

Let S be the vector constructed as the concatenation of the vectors −SA

and EA + UA, let C be the concatenation of E ′
B + U ′

B and S ′
B , and let

G = E ′′
B + U ′′

B . An attacker that generates ciphertexts can compute C and G
and tries to obtain information about S . These variables are summarized below:

S =
( −SA

EA + UA

)
, C =

(
E ′

B + U ′
B

S ′
B

)
, G = E ′′

B + U ′′
B . (4)

After the execution of this protocol, the two parties will arrive at the same
key if the decoding dec(V ′

r−V ) equals m. The term V ′
r−V can be rewritten as

(EA +UA)TS ′
B −ST

A(E ′
B +U ′

B)+(E ′′ +U ′′
B)+enc(m) = STC +G+enc(m).

The message can be recovered if and only if abs(STC + G) < qt for a certain
threshold qt that is scheme dependent.

We will say that a (decryption) failure occurred if the parties do not arrive
at a common key due to a coefficient of abs(STC + G) that is larger than qt,
and will define F (C ,G) as the probability of a decryption failure given C and
G averaged over all S , which can be expressed as

∑
S P (abs(STC + G) >

qt | S)P (S).

2.5 Fujisaki-Okamoto Transformation

Using the Fujisaki-Okamoto transform [18,25], one can transform a chosen plain-
text secure PKE to an IND-CCA secure KEM. On top of the encryption from the
PKE, the KEM defines an encapsulation and decapsulation function as described
in Algorithms 4 and 5, using hash functions H and G.
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Algorithm 4. KEM.Encaps

Input: Public key pk
Output: Ciphertext c, key K
1) m ← U({0, 1}256)
2) r = G(m)
3) c = PKE.Enc(pk, m, r)
4) K = H(r)

Algorithm 5. KEM.Decaps

Input: Public key pk, secret key sk, ciphertext c
Output: Key K or ⊥
1) m′ = PKE.Dec(sk, c)
2) r′ = G(m′)
3) c′ = PKE.Enc(pk, m′, r′)
4) If c = c′:
5) K = H(r)
6) Else:
7) K =⊥

3 Weak-Ciphertext Failure Boosting

In this section, we will develop a method to estimate the minimum amount of
work to obtain one ciphertext that triggers a decryption failure. In contrast to
an honest party that generates ciphertexts randomly, an attacker can search for
ciphertexts that have a higher failure probability than average, which will be
called ‘weak’. As C and G are the only terms with which an attacker can influ-
ence decryption failures, the search for weak ciphertexts boils down to the search
for weak (C ,G). However, the pair (C ,G) is generated through a hash H() with
random seed r, and during decryption it is checked whether the generator of the
ciphertext knew the preimage r of (C ,G). Therefore an attacker is forced to
resort to a brute force search, which can be sped up at most quadratically using
Grover’s algorithm [20].

To find a criterion for our search, we sort all possible (C ,G) according to an
increasing failure probability F (C ,G). This list can then be divided into two sets
using a threshold failure probability ft: weak vectors with a failure probability
higher or equal than ft, and strong vectors with lower failure probability. Let
f() be the deterministic function that generates C and G from the random seed
r. For a certain ft, we can calculate the probability of generating a weak pair:
α = P (F (C ,G) > ft | r ← U , (C ,G) = f(H(r))), and the probability of a
decryption failure when a weak pair is used: β = P (abs(STC + G) > qt | r ←
U , (C ,G) = f(H(r)), F (C ,G) > ft).

The amount of work for an adversary to find a weak pair (C ,G) is pro-
portional to α−1, but can be sped up quadratically using Grover’s algorithm
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on a quantum computer, resulting in an expected workload of
√

α−1. On the
other hand, the probability of a decryption failure given a weak pair cannot
be improved using quantum computation assuming that the adversary has no
quantum access to the decryption oracle. This assumption is in agreement with
the premise in the NIST Post-Quantum Standardization Call for Proposals [2].
The expected work required to find a decryption failure given ft is therefore the
expected number of queries using weak ciphertexts times the expected amount
of work to find a weak ciphertext, or (α · β)−1 with a classical computer and
(
√

α ·β)−1 with a quantum computer. An optimization over ft gives the minimal
effort to find one decryption failure.

3.1 Practical Calculation

For most schemes, the full sorted list (C ,G) is not practically computable,
but using some observations and assumptions, an estimate can be found. The
next three steps aim at calculating the distribution of the failure probability
F (C ,G), i.e. what is the probability of finding a (C ,G) pair with a certain
failure probability f . This distribution gives enough information to calculate α
and β for a certain ft.

First, we can remove the hash H(.) in the probability expression by assum-
ing the output of f(H(.)) given random input r to behave as the probability
distributions (χC , χG), resulting in: α = P (F (C ,G) > ft | (C ,G) ← (χC , χG))
and β = P (abs(STC + G) > qt | (C ,G) ← (χC , χG), F (C ,G) > ft).

Secondly, we assume that the coefficients of STC are normally distributed,
which is reasonable as the coefficients are a sum of 2(l · n) distributions that
are somewhat close to a Gaussian. The coefficients of the polynomial (STC )ij

will be distributed with mean μ = 0 because of symmetry around 0, while the
variance can be calculated as follows, after defining χe+u as the distribution of
the coefficients of EA + UA:

var((STC )ijk) = var(
l−1∑

i=0

n−1∑

k=0

C ijksijk +
2l−1∑

i=l

n−1∑

k=0

C ijkeijk) (5)

where: sijk ← χs and eijk ← χe+u (6)

=
l−1∑

i=0

n−1∑

k=0

C 2
ijkvar(χs) +

2l−1∑

i=l

n−1∑

k=0

C 2
ijkvar(χe+u) (7)

= ‖(E ′
B + U ′

B):j‖22var(χs) + ‖(S ′
B):j‖22var(χe+u) . (8)

Therefore, the variance of the coefficients of STC for a given C is the same
for all coefficients in the same column. This variance will be denoted as σ2

j

for coefficients in the jth column of STC . Furthermore, following the Gaussian
assumption, the failure probability given σ2

j is the same as the failure probability
given the jth column of C .
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In the third step we gradually calculate the distribution of the failure prob-
ability. We start from the distribution of the failure probability of the coeffi-
cient at the ijkth position given σj , denoted with χcoef | σ. This distribution
expresses the probability of finding a G so that the failure probability is equal
to fijk given a certain value of C (or equivalently σ2

j ) and can be expressed as
follows:

P (fijk |G ← χG,C ) , (9)

where:

fijk = P (abs(STC + G)ijk > qt |G,C ) (10)

≈ P (abs(x + Gijk) > qt |G, x ← N (0, σ2
j ), σ2

j ) . (11)

The distribution χcol | σ, which models the probability of a failure in the jth

column of abs(STC + G) given σ2
j , can be calculated using the convolution of

the distributions of the mn individual coefficient failures χcoef | σ as follows:

χcol | σ = χ∗nm
coef | σ . (12)

The conditioning on σ2
j is necessary to counter the dependency between the

coefficients of the columns of abs(STC + G), which are dependent as a result
of sharing the same variance σ2

j .
The distribution of failure probabilities in the jth column of STC , denoted

as χcol, can then be calculated using a weighted average over the possible values
of σ2

j as follows:

χcol =
∑

lc

P (f | f ← χ∗nm
col,σ)P (σ2

j = lc) . (13)

Finally we can calculate the full failure distribution χFAIL as the convolution
of the m probability distributions corresponding to the failure distributions of
the different columns. This convolution does not have the dependency on σ2

j as
failures of different columns are independent conditioned on C and G, therefore:

χFAIL = χ∗m
col . (14)

From this failure distribution, we can calculate α and β for an arbitrary value
of ft:

α = P (f > ft | f ← χFAIL) , (15)

β =

∑
f>ft

f · P (f | f ← χFAIL)
α

. (16)
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We want to stress that this calculation is not exact, mainly due to the Gaus-
sian assumption in the second step. More accurate estimates could be obtained
with a more accurate approximation in step 2, tailored for a specific scheme. In
this case, the assumptions and calculations of step 1 and step 3 remain valid. For
the estimations of LAC [31] in subsequent paragraphs, we followed their app-
roach for the calculation of the effect of the error correcting code. Note that this
is not an exact formula as the inputs of the error correcting code are correlated
through their polynomial structure.

In Fig. 1 we compare the values of α and β calculated using the technique
described above, with exhaustively tested values on a variant of LAC128 without
error correction. For step 2 of the practical calculation, we use both a Gaussian
approximation as well as a binomial approximation that is more tailored for
LAC. We can observe that our estimation of the effect of failure boosting is
relatively close to reality.

Fig. 1. The failure rate of one weak ciphertext (β) as a function of the work required
to generate one weak ciphertext (α) on a classical computer for LAC128 without error
correction.

3.2 Applications of Failure Boosting

Failure boosting is a useful technique in at least three scenarios: first, if there is
no multi-target protection, second, if the adversary can only perform a limited
number of queries to the decryption oracle and third, if the adversary has access
to a quantum computer.

In some (Ring/Module-)LWE/LWR schemes, the seed r is the only input to
the pseudorandom generator that generates C and G. This paves the way to
a multi-target attack where precomputed weak values of r can be used against
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multiple targets: after choosing the parameter ft, the adversary can generate
weak ciphertexts in approximately α−1 time (

√
α−1 if he has access to a quantum

computer). Each precomputed sample has then a failure probability of β against
every target. Figure 2 shows the failure probability of one weak ciphertext versus
the amount of work to generate that ciphertext on a classical computer. Multi-
target protection, for example by including the public key into the generation of
C en G as proposed in Kyber [10] and Saber [13] is a relatively cheap option to
resolve this issue.

Fig. 2. The failure rate of one weak ciphertext (β) as a function of the work required
to generate one weak ciphertext (α) on a classical computer.

If the adversary can only perform a limited number of decryption queries, for
example 264 in the NIST Post-Quantum Standardization Call for Proposals [2],
the adversary can use failure boosting to reduce the number of required decryp-
tion queries. To this end, he chooses the parameter ft so that the inverse of the
failure probability β−1 equals the decryption query limit nd, which results in a
probability of finding a decryption failure of approximately (1− e−1) ≈ 0.63. To
find i failures with similar probability, the failure probability should be brought
up so that β−1 = nd/i. Since the amount of work to generate one input of the
decryption query is approximately α−1 (

√
α−1 quantumly), the total amount of

work expected is α−1β−1, (
√

α−1β−1 quantumly). Figure 3 shows the expected
total amount of work to find one decryption failure with a classical computer,
versus the failure rate of one weak ciphertext.
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Fig. 3. The expected amount of work (α−1β−1) on a classical computer, as a function
of the failure rate of one weak ciphertext (β). The red dotted line indicates a failure
rate of 2−64. (Color figure online)

An adversary with a quantum computer always benefits from failure boosting,
as the search for weak ciphertexts can be sped up using Grover’s algorithm.
However, this speedup is not quadratic if the adversary has no quantum access
to the decryption oracle. Figure 4 shows the total amount of expected work to
find one decryption failure, versus the amount of work to find one weak ciphertext
on a quantum computer

√
α−1.

4 Estimation of the Secret

Finding a decryption failure does not immediately break the security of the
KEM, but it does provide extra information to an adversary. In this section we
will investigate how much this information leaks about the secret. An adversary
that has obtained ciphertexts that produce decryption failures can use them to
make an estimation of the secret S .

When a failure occurs, we know that at least one coefficient of abs(STC+G)
is larger than the threshold qt. This leads to a classification of the coefficients
in the set of fail coefficients vf and no-fail coefficients vs. To each coefficient at
position (i, j, k), a vector of integers s can be associated by taking the coefficients
of S :i. Similarly, the coefficient can be linked to a vector of integers c calculated
as a function of C :j and k, so that the multiplication sc equals that coefficient.

No-fail vectors will contain negligible information about the secret s, but
failure vectors do carry clues, as the threshold exceeding value of the coefficients
of STC + G implies a correlation between the corresponding c and s. This
correlation can be positive, in case of a large positive value of the coefficient, or
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Fig. 4. The expected amount of work (
√

α−1β−1) as a function of the work required
to generate one weak ciphertext (

√
α−1) on a classical computer.

negative, in case of a large negative value of the coefficient. Consequently, the fail
coefficients can be further divided into the sets of positive vfp and negative vfn

fail coefficients respectively. Moreover, negative fail vectors can be transformed
into positive fail vectors by multiplication with −1. Note that failure coefficients
at position (i, j, k) will only contain information about the jth column of S , which
is why the estimation of the columns of S can be performed independently.

4.1 One Positive Failure Vector

We will first examine the case where we know one positive fail vector c and
associated coefficient Gi,j,k, which we will denote with g. This corresponds to
the case where one failing ciphertext and the location and sign of the error is
known. The question is how much the knowledge about c and g can improve
our estimate of the associated secret s. Applying Bayes’ theorem and assuming
independence between the coefficients of c and s that are on different positions,
we can write:

P (si | c, g, sc > qt − g) ≈ P (si | ci, g, sc > qt − g) (17)

=
P (sc > qt − g | si, ci, g)P (si | ci, g)

P (sc > qt − g | ci, g)
(18)

=
P (

∑j �=i
j sjcj > qt − g − sici | si, ci, g)P (si)

P (sc > qt − g | ci, g)
. (19)
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The improved estimates for the coefficients of s can in turn be used to get
an estimate sest that minimizes its variance E[(sest − s)2] as follows:

0 =
d

dsest,i
E((sest,i − si)2) (20)

= 2
∑

si

(sest,i − si)P (si) , (21)

or: sest,i =
∑

si

si · P (si) . (22)

The estimate of s gives the estimate of the jth column of S , which can be
divided trivially in an approximation SA,est of (SA):j and EA,est of (EA+UA):j .
These vectors can be used to transform the original (Ring/Module-)LWE/LWR
sample (A,A(SA):j + (EA +UA):j) into a (Ring/Module-)LWE alike problem
with a smaller secret variance by subtracting ASA,est + EA,est. This results in
the sample (A,A((SA):j −SA,est)+(EA +UA):j −EA,est), which is a problem
with smaller secret (SA):j − SA,est and noise (EA + UA):j − EA,est. We will
call this new problem the simplified problem.

4.2 Multiple Fail Vectors

Having access to m positive fail vectors c(1) . . . c(m) from the same column, with
corresponding values of G as g(1) . . . g(m), an adversary can improve his estimate
of P (s) and therefore obtain a better estimate sest, assuming that the failure
vectors ci are independent conditioned on s. This corresponds to knowing m
failing ciphertexts and the location and sign of their errors.

P (si | c(1) . . . c(m), g(1) . . . g(m)) ≈ P (si | c(1)
i . . . c

(m)
i , g(1) . . . g(m)) (23)

=
P (c

(1)
i . . . c

(m)
i | si, g

(1) . . . g(m))P (si | g(1) . . . g(m))

P (c
(1)
i . . . c

(m)
i | g(1) . . . g(m))

(24)

=
P (si)

∏m
k=1 P (c

(k)
i | si, g

(k))
∏m

k=1 P (c
(k)
i | g(k))

. (25)

Similar to Eq. 19, P (ci | si, g
(k)) can be calculated as:

P (ci | si, g, sc > qt − g) =
P (sc > qt − g | si, ci, g)P (ci | si, g)

P (sc > qt − g | si, g)
(26)

=
P (

∑j �=i
j sjcj > qt − g − sici | si, ci, g)P (ci)

P (sc > qt − g | si, g)
. (27)

In subsequent calculations, each value of the coefficient of g is taken as the
maximum possible value.
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4.3 Classification of Vectors

The above approach assumes a prior knowledge of the exact position and sign
of the errors. This information is needed to link coefficients of C with their
corresponding coefficient of S . However, this is not always a trivial problem.
For most schemes there are three sources of extra information that will allow to
perform this classification with a high probability using only a few decryption
failures.

Firstly, a large coefficient of G would induce a higher failure probability for
the corresponding coefficient of the error term STC +G. Thus, failures are more
likely to happen at positions linked to that coefficient of G. Moreover, a positive
value of the coefficient suggests a positive error so that c ∈ vfp, while a negative
value hints at a negative error, or c ∈ vfn.

Secondly, as vectors c ∈ vf are correlated with the secret s, they are also
correlated with each other. Therefore, vectors c ∈ vf are more correlated between
each other than a vector c ∈ vf with a vector c ∈ vs. Moreover, a high positive
correlation suggests that the vectors share the same class vfp or vfn, while
a high negative correlation indicates that the vectors have a different classes.
This allows for a clustering of the fail vectors using the higher than average
correlation, under the condition that the correlation difference is high enough.
This correlation difference is related to the failure rate: a low failure rate implies
a higher correlation because only ciphertexts that are highly correlated with the
secret lead to a failure rate in this case. For example, Fig. 5 shows an estimate
of the correlations between vectors of the classes vfp (pos), vfn (neg) and vs

(nofail) in Kyber768. This approach does not work for schemes with strong error
correcting codes (ECC) such as LAC, as the bit error rate before correction is
relatively high for these types of algorithms, leading to a relatively low correlation
between failure vectors.

Fig. 5. The probability of a certain value of the correlation between different classes
of vectors in Kyber768.
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In case of a ring/module structure of the coefficients of S , an additional
structure arises leading to an artifact in which some pairs of no-fail coeffi-
cients within the same polynomial also have high correlation of their corre-
sponding vectors. Imagine a pair of failure coefficients at positions (i, j, k1)
and (i, j, k2) from different decryption failures a, b, with corresponding matri-
ces C (a) and C (b). The correlation of the vectors c(a) and c(b) can be written
as Xk1C

(a)T
:,j Xk2C

(b)
:,j = Xk1+k2C

(a)T
:,j C

(b)
:,j , from which is clear that the vectors

from C (a) and C (b), with respective positions (i, j, k1 − t) and (i, j, k2 + t) have
the same correlation. The clustering will thus result in n classes, with one class
containing the failure vectors. Combining this information with the information
of the first method gives an adversary the failure vectors with high probability.
Otherwise, an adversary can estimate the secret n times and check the validity
of the result using the (Ring/Module-)LWE/LWR problem.

Finally, for schemes that use error correcting codes to reduce their failure
probability, side channel leakage during the error correction might reveal infor-
mation on the presence or position of failure coefficients. Note that if this is the
case, it might not even be necessary to obtain a decryption failure since failing
coefficients could also be collected on successful decryptions where there is at
least one failing coefficient.

4.4 Implications

Figure 6 depicts the relative variance reduction of the secret as a function of the
number of positive failure vectors for various schemes. For schemes that have
a very low failure probability for individual coefficients of STC + G, such as
Kyber, Saber and FrodoKEM, the variance of the secret drastically reduces upon
knowing only a few failing ciphertexts. Assuming that the simplified problem,
that takes into account the estimate of the secret, has the same complexity
as a regular (Ring/Module-)LWE problem with similar secret variance, we can
calculate the remaining hardness of the simplified problem as a function of the
number of positive failure vectors as shown in Fig. 7 using the toolbox provided
by Albrecht et al. [4] using the Q-core sieve estimate.

The effectiveness of the attack declines as the failure probability of the indi-
vidual coefficients increases, since the correlation between the secret and the fail-
ing ciphertext is lower in this case. This can be seen in the case of LAC, where
the individual coefficients have relatively high failure rates due to a strong error
correcting code. On the other hand, a failing ciphertext will contain multiple
errors, making it easier to collect multiple failure vectors.

Note that once one or more failures are found, they can be used to estimate
the secret. This estimate in turn can be used to improve the search for weak
ciphertexts by considering F (C ,G) as

∑
S P (FAIL(C ,G),S), where S is not

sampled from χS , but from the new probability distribution χSest
. Therefore,

the search for weak keys could become easier the more failures have been found.
However, we do not take this effect into account in this paper.
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Fig. 6. The relative reduction in entropy as a function of the number of positive failure
vectors

5 Weak-Ciphertext Attack

Using the failure boosting technique from Sect. 3 and the secret estimation
method from Sect. 4, we can lower the security of a (Ring/Module-)LWE/LWR
scheme on the condition that its failure rate is high enough. To this end, we first

Fig. 7. The hardness of the simplified problem as a function of the number of positive
failure vectors
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collect i decryption failures using the failure boosting technique, which would
cost approximately i

√
α−1β−1 work. Then, the exact error position and failure

type should be determined for all of the failure vectors using the techniques
of Subsect. 4.3. Based on this information, the secret can be estimated, which
in turn can be used to simplify the (Ring/Module-)LWE/LWR problem. These
last two operations require a negligible amount of work compared to finding
decryption failures. Finally, we need to solve the simplified problem, with has
a complexity Ssimplified(i) as estimated in Sect. 4. The total amount of work is
therefore O(Ssimplified(i) + i

√
α−1β−1), which is depicted in Fig. 8 as a function

of the number of failures i. Note that the practical security of Kyber relies on
an error term EA as well as a rounding term UA. Both are taken into account
in the security calculation.

Fig. 8. The full amount of work to break the scheme as a function of the number of
collected decryption failures

Table 1 gives an overview of the original hardness of the scheme before decryp-
tion failure usage S, and the attack cost Ssimplified(i) + i

√
α−1β−1 using decryp-

tion failures for ideal values of i and ft, which are calculated through a brute force
sweep. The number of collected decryption failures i and the expected number
of decryption queries iβ−1 is also included. These values are calculated assum-
ing that the adversary can perform an unlimited number of decryption queries.
From this table we can see that the security of Kyber and Saber is considerably
reduced. This is due to the fact that finding a failure is easier than breaking
the security of the scheme S. For the case of FrodoKEM976, the security is not
affected as the work to obtain a failure is considerably larger than breaking the
security S.
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In other situations such as a multi-target attack or having only a limited num-
ber of decryption queries, other values of ft and i will obtain optimal results. For
example in a multi-target attack scenario one would select a higher threshold ft

to be able to efficiently re-use the precomputation work α−1 for weak ciphertexts
and therefore reduce the overall work. A limit on the number of decryptions nd

could make it necessary to increase the amount of precomputational work α−1

in order to reduce the failure rate β−1 < nd/i. This would make the attack more
expensive or might even invalidate it. For example, the NIST Post-Quantum
Standardization Process decryption limit is set to 264, which rules out a decryp-
tion failure attack on schemes with a low enough failure rate such as Saber and
Kyber, which can be deduced from Fig. 3. As such, the security of this schemes
is not affected within the NIST framework.

6 A Weak-Key Attack Model

In this section we elaborate a weak-key (multi-target) attack model when the
adversary can only have a limited number of decryption queries to one user
but multiple users can be queried. We observe that for certain keys, the error
probability can be much higher when applying the failure boosting technique,
i.e., choosing ‘weak’ ciphertexts as discussed in Sect. 3, if the chosen ciphertexts
satisfy certain key-related properties. The major targets are the same as before –
lattice-based NIST post-quantum proposals with CCA security using some CCA
transformations.

We set the maximum number of ciphertexts that can be submitted to a node
with a public key to be 2K and we set the maximum number of public keys in the
system to be 2L. Referring again to the NIST Post-Quantum Standardization
Process, they have indicated in their call that at least K = 64 can be considered.
In the discussion forum [1] for the same project, we have also seen researchers
mentioning that L = 64 can be considered. We will adopt K = L = 64 in
the further sections since it seems these values are not questioned, although

Table 1. The security of different schemes with and without decryption failures

original attack reduction decryption decryption

security cost factor failures queries

Saber 2184 2139 245 77 2131

FireSaber 2257 2170 287 233 2161

Kyber768 2175 2142 233 42 2131

Kyber1024 2239 2169 270 159 2158

LAC256 2293 297† 2196 106 · 56 280

FrodoKEM976 2188 2188 20 0 0
† Note that it seems not straightforward for LAC256 to obtain the exact position and
type of the errors, which is required to obtain this result
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larger values of K and L can give more powerful attacks and could definitely
be relevant. For example, comparing with attacks on symmetric schemes, such
attacks may require a number of plaintext-ciphertext pairs that are close to the
number of possible keys (like 2200), and still they are considered valid attacks.

The proposed attack procedure is split in three steps.

1. Do a precomputation step to establish pairs of messages and corresponding
ciphertexts and let informally the set F denote error vectors corresponding
to the different messages, which are equivalent to the (C ,G) pairs chosen
before. These selected error vectors should be with particular properties, e.g,
with large norm and/or with several large entries in certain positions, etc.

2. Send the ciphertexts contained in F and assume that we learn the decrypted
messages. Assume further that a subset have been erroneously decrypted
(wrong decoding due to too large error) and let F ′ be the error vectors causing
decryption failure. The cardinality of this set could be larger than average
if certain properties (related to F) of the secret vector hold. So we submit
the set of ciphertexts to each node holding a public key. The node giving
the largest decryption failure rate is selected as the target public key for the
attack.

3. Do statistical testing on the set F ′ (and possibly the set F) to establish
relationships between the secret key and given the noise vectors leading to
a decryption failure. Analyzing their correlation, we may be able to recover
partial secrets, which can considerably reduce the solving complexity of the
underlying hard problem. We are then able to perform a full key-recovery
attack via classic approaches such as lattice reduction algorithms.

Note that the above procedure is very close to the weak-ciphertext attack
described in the previous sections. One major difference is that here we choose
the set F of ‘weak’ ciphertexts to be related to the ‘weak’ keys targeted, while
in the prior, the ‘weak’ ciphertexts are chosen to have a larger decryption failure
rate averaged over all keys.

We discuss the three steps briefly. In the precomputation step, we can observe
a first difference between different schemes. Most schemes include the public key
in the generation of the noisy vectors (as input in the hash function generating
the noise). This means that a constructed set F can only be used for a single
public key and a new such set must be constructed for the next public key.
For simplicity, we assume |F| = 2K and note that the number of nodes with
a public key is 2L. If we set the computational complexity of precomputing a
set F to be 2λ, the overall complexity of this first step is 2λ+L. On the other
hand, there are also schemes where error vectors are generated independent of
the public key (e.g. LAC). In such a case the same set F can be used on all public
keys and the complexity is only 2λ. We could also use Grover’s search algorithm
to accelerate the pre-computation step, as discussed in Sect. 3. However, since
the pre-quantum and post-quantum security goals in the NIST Post-Quantum
Standardization Process are different for a certain security level, this quantum
acceleration may not help us to break the claimed security level of a submission.
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For the second step, the idea is that among many public keys, there will
be one where the corresponding secret values have a property that causes more
decryption errors than on average. So to increase the decryption error probability
to a reasonable and detectable level, we consider that a special property in the
secret value is held with probability at least p′, where 0 < p′ < 1. We then
assume that p′ = 2−L, so we can expect that this special property in the secret
value holds for one public key. As mentioned, with respect to the CCA security,
NIST restricts to have at most 264 decryption calls to each user (public key). So
in order to distinguish a special property in the secret value corresponding to a
public key, one needs to get the failure rate for this case to be larger than 2−64.

Finally, in the statistical testing part, we have a set of error vectors that
have caused decryption errors. There seems to be a plethora of methods that can
be used to recover secret values. For instance, the strong maximum-likelihood
approach has been discussed in Sect. 4 and heuristic approaches can also be
applied. A general approach that we can adopt is to consider a smaller part of
the secret vector under reconstruction, and select the most probable values for
this part, based on the observed error vectors in F . Then one combines such
guesses for different parts and builds an approximation of a secret vector. A
good approximation will mostly be sufficient as it can be used in lattice-basis
reduction algorithms.

We note that in many applications, the challenge is to detect the first decryp-
tion failure, since we can usually have adaptive approaches to find more failures
afterwards with a lower complexity. This idea is further demonstrated in the
next section where an adaptive CCA attack on ss-ntru-pke will be presented,
and also in a code-based application [34].

7 A Weak-Key Attack on ss-ntru-pke

We have applied the described weak-key approach and provide the details of
attacking ss-ntru-pke, a version in the submission to the NIST Post-Quantum
Standardization Process – NTRUEncrypt [47]. Connected is also the provably
secure NTRU [44] whose security is based purely on the hardness of Ring-
LWE. NTRUEncrypt with different parameter choices has been around for a long
time and is one of the most competitive lattice-based schemes when it comes to
performance.

Note that our attack in this section is in the pre-quantum (classic) security
framework due to the different security goal for NIST-V when Grover’s algorithm
is considered. We adopt the notations from the NTRUEncrypt submission [47]
throughout this section.

7.1 The ss-ntru-pke Scheme

ss-ntru-pke is the version of NTRUEncrypt targeting the highest security level,
being 256 bits. This scheme achieves CCA2 security via the NAEP trans-
form [27], a transform similar to the Fujisaki-Okamoto transformation with an
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additional mask. We give a very brief explanation of the scheme. For most of the
description and details, we refer to [47]. In the key generation (see Algorithm 6),
two secret polynomials f ,g ∈ R are selected, where the coordinates are chosen
from a discrete Gaussian Xσ distribution with standard deviation σ. A public
key is formed by computing h = g/(pf + 1).

Algorithm 6. ss-ntru-pke.KeyGen

Input: Parameter sets Param = {N, p, q, σ} and a seed.
Output: Public key h and secret key (f ,g).
1) Instantiate Sampler with X N

σ and seed;
2) f ← Sampler, g ← Sampler;
3) h = g/(pf + 1) mod q;

We show in Algorithm 7 the encryption algorithm of ss-ntru-pke and in Algo-
rithm 8 the decryption algorithm, both from the original proposal [47]. In these
descriptions, Hash() represents a hash function, and B represents a set including
all binary polynomials with degree at most N −1. The Pad() operation is a func-
tion to ensure the message has sufficient entropy, and the Extract() operation is
the inverse of Pad().

In each encryption of a message m, two polynomials r, e ∈ R are generated,
where the coordinates are again chosen from a discrete Gaussian distribution
Xσ with standard deviation σ. This randomness source uses a seed generated as
Hash(m,h). This means that each choice of a message m will generate also the
polynomials r, e ∈ R. Let us denote this by

(r, e) = G(m,h).

Algorithm 7. ss-ntru-pke.Encrypt

Input: Public key h, message msg of length mlen, Param and a seed.
Output: Ciphertext c.
1) m = Pad(msg, seed);
2) rseed = Hash(m|h);
3) Instantiate Sampler with X N

σ and rseed;
4) r ← Sampler, e ← Sampler;
5) t = p · r ∗ h;
6) tseed = Hash(t);
7) Instantiate Sampler with B and tseed;
8) mmask ← Sampler;
9) m′ = m - mmask (mod p);
10) c = t + p · e + m′;
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In decryption, with ciphertext c, one computes the message by computing

f ∗ c =p · r ∗ g + p · e ∗ f + m′ ∗ f .

A decryption error occurs if ||p · r ∗ g+ p · e ∗ f +m′ ∗ f ||∞ > q/2. This basically
translates to ||r ∗ g + e ∗ f ||∞ > q/4 as p = 2 and the last term is much smaller
than the first two.

The proposed parameters for ss-ntru-pke for the security level of NIST-V are
shown in Table 2. The decoding error probability is estimated to be less than
2−80 in [47].

Table 2. Proposed ss-ntru-pke parameters.

N q p R σ ε Security

1024 230 + 213 + 1 2
Zq [x]

xN+1
724 < 2−80 V

7.2 The Attack

We now follow the approach of the previous section and describe an attack. The
detailed attack is shown in Algorithm 9, where a more efficient CCA2 version is
adopted. We define an equivalence relation for two polynomials u(x), v(x) ∈ R
if u(x) = xi ·v(x)

(
mod xN + 1

)
, or if u(x) = −xi ·v(x)

(
mod xN + 1

)
, for i ∈ Z.

Algorithm 8. ss-ntru-pke.Decrypt

Input: Secret key f, public key h, ciphertext c, and Param.
Output: result.
1) m′ = f ∗ c (mod p);
2) t = c − m′;
3) tseed = Hash(t);
4) Instantiate Sampler with B and tseed;
5) mmask ← Sampler;
6) m = m′ + mmask (mod p);
7) rseed = Hash(m|h);
8) Instantiate Sampler with X N

σ and rseed;
9) r ← Sampler;
10) e = p−1 (t − r ∗ h);
11) if ||e||∞ is big then

result = ⊥;

else
result = Extract(m);
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Algorithm 9. The CCA2 attack against ss-ntru-pke

Input: A number (say 264) of public keys.
Output: The secret polynomials (f ,g) of one public key.
1) Collect messages/ciphertexts with special form for all public keys;
2) Submit them for decryption and determine a weak public key h;
1’) Prepare messages/ciphertexts with special form for this weak key h;
2’) Submit them for decryption and collect the decryption results;
3) Use statistical analysis to have a guess (f̂ , ĝ) close to the corresponding
secret key (f ,g);
4) Use lattice reduction algorithms to recover the secret key (f ,g);

Attack step 1 – pre-computation.
We pick random messages m and generate corresponding (r, e) = G(m,h)

for a given public key h. We keep only vectors e equivalent to a polynomial that
has the first l (e.g., l = 2) positions with the same sign and each with size larger
than c · σ, where c is a constant determining the computational effort of finding
such error vectors. These vectors form our chosen set F .

We set l = 2 to illustrate the idea in a concrete attack. For one position, the
probability that the entry is larger than cσ is 1 − erf(c/

√
2). As we can start

from any position, the probability to have two consecutive positions with the
same sign and entries larger than cσ is pe = N ∗ (1 − erf(c/

√
2))2/2. If we set pe

to be 2−120, then c can be as large as 9.193.

Attack step 2 – submit ciphertexts for decryption.
We then send the ciphertexts corresponding to the noise vectors in F to the

decryption algorithm. If the targeted secret key f is also equivalent to a polyno-
mial that has the first l (e.g., l = 2) positions with the same sign and each with
size larger than cs ·σ, where cs is another constant, then the decoding errors can
be detectable. We expect to collect several errors and store their corresponding
error vectors (r, e). The probability to have two consecutive positions with the
same sign and entries larger than csσ is ps = N ∗ (1 − erf(cs/

√
2))2/2. If we set

ps to be 2−64, then cs can be as large as 6.802.
If we run 2120 precomputation steps for each stored vector with the desired

properties, then the overall complexity is 2248 since ps = 2−64. Let C1 denote
2·cscσ2. We can then have a coefficient in r∗g+e∗f whose absolute contribution
from these two big entries is at least C1 = 225.97. We consider the probabilistic
behavior of the remaining (2N − 2) positions. As the coefficients of r,g, e, f
are all sampled from a Gaussian distribution with mean 0 and stand deviation
σ = 724, the expected norm of the rest vector in f ,g with 2N −2 entries is about√

2N − 2 ·σ. Given a public key, f ,g is fixed. Thus, this coefficient of r∗g+e∗ f
can be approximated as C1 +Φ0, where Φ0 is Gaussian distribution with mean 0
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and standard deviation
√

2N − 2 · σ2. As the error appears when this coefficient
is larger than q/4, the error probability3 can be approximated as

Pe =

(

1 − erf(
q/4 − C1√
2(2N − 2)σ2

)

)

· 1
2
.

We obtain a decoding error probability of 2−57.3 for this example.
Thus we can obtain about 26.7 errors from the 264 decryption trails.

An adaptive CCA attack. If we keep the previous setting, i.e., a CCA1
attack, the cost is larger than 2248. However, we can adopt a much more pow-
erful attack model, namely an adaptive CCA (CCA2) attack, consisting of two
phases. In the first phase, the attacker spends half of his computational power
to determine a weak key; in the later phase, he would put all his remaining
resources into attacking this weak key.

To be more specific, we first prepare 263 messages/ciphertexts for each of the
264 public keys. Then we expect two errors corresponding to one key, which can
be claimed as a weak key.

We can also reduce the precomputation work for each key to 289, if there
are 264 public keys. We have c = 7.956 and the error probability is 2−62.0, so
we expect to have two errors in the testing stage. We then spend 2216 work on
another precomputation to have 263 messages with c to be 10.351, done only for
this weak key. The error probability in the second phase is estimated as 2−53.0,
so we can have 210 errors. The overall complexity is 2217.

Attack step 3 – statistical analysis.
In this step we will try to recover the secret f . Let us first assume that f has

its two big entries in the first two positions of the vector. Then the position in
e∗ f where the error occurs, denoted i0, is the position where the two significant
coefficients in e and those in f coincide. We now transform each e in such a way
that its two big entries are also to be found in the first two positions. This is
done by replacing e with the corresponding equivalent vector where the two big
entries are in the first two positions. Assuming M decryption errors, this now
gives us the following knowledge from the received decryption errors:

N−1∑

i=2

e
(j)
i fi + N

(j)
i > q/4 − 2 · cscσ

2,

for j = 1 . . . M and where N (j) denotes the remaining contribution to the noise.
Finally we note that assuming that f has its two big entries in the first two
positions is not a restriction, as such an f vector will just be an equivalent

3 The error can occur in both directions. We omit the term

(

1 − erf( q/4+C1√
2(2N−2)σ2

)

)

· 1
2

as it is negligible compared with

(

1 − erf( q/4−C1√
2(2N−2)σ2

)

)

· 1
2

for C1 a very big positive

integer.
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vector of the true f . So we need only to recover f and then check all equivalent
vectors.

We next show how to derive more knowledge of f ,g with statistical tools.

A heuristic approach. As we have assumed that the two big entries in
(f ,g) (or (e, r)) are the first two entries, we use K (or Vi for 1 ≤ i ≤ M) to
denote a vector consisting of the remaining 2N − 2 entries. Thus, the size of K
(or Vi) can be estimated as

√
(2N − 2)σ.

We adopt the heuristic assumptions from [19] that all the errors are very
close to the folding bound q/4, meaning that all the messages leading to an
error belong to a hyperplane

Vi · K =
q

4
− C1,

where C1 is the contribution from the two significant entries.
Thus, the mean vector V̂ of Vi should be close to a scaled vector of K, i.e.,

V̂ =
∑M

i=1 Vi

M
≈ q/4 − C1

‖K‖2 K.

We can have an estimation K̂ = (2N−2)σ2

q/4−C1
V̂. If we round the entries of K to the

nearest integer in Zq, we obtain an estimation (f̂ , ĝ) of the secret vector (f ,g).
The remaining question is how good this estimation can be? We heuristically

answer this question using the central limit theorem.
Each observation Vi with approximated norm

√
2N − 2σ can be viewed as

the summation of the signal point

q/4 − C1

‖K‖2 K,

and a noise vector with squared norm

(2N − 2)σ2 − (q/4 − C1)2

(2N − 2)σ2
.

By the central limit theorem, if we have M observations, then the squared
norm (variance) of the noise can be reduced by a factor of M . Hence, the error
norm should be √

1
M

·
(

(2N − 2)σ2 − (q/4 − C1)2

(2N − 2)σ2

)
.

As we consider K̂ instead of V̂, the true error norm should be resized as

(2N − 2)σ2

q/4 − C1
·
√

1
M

·
(

(2N − 2)σ2 − (q/4 − C1)2

(2N − 2)σ2

)
. (28)

Using this formula, we can have a candidate with error norm 0.169
√

2N − 2σ,
assuming that 1024 errors have been collected.
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Table 3. The simulated error rates v.s. the estimated error rates.

q error rate

-estimated- -simulated-

q = 229 2−9.05 2−9.19

q = 229 + 226 2−12.64 2−12.96

q = 229 + 227 2−16.91 2−17.09

q = 229 + 227 + 226 + 225 2−24.62 2−24.57

Attack step 4 – lattice reduction.
If (Δf ,Δg) = (f ,g)− (f̂ , ĝ) is small, we can recover it using lattice reduction

algorithms efficiently. Thus, we obtain the correct value of (f ,g).
If we have the error size to be only 0.169

√
2N − 2σ, as assumed in the pre-

vious step, using the LWE estimator from Albrecht et al. [4], it takes about 2181

time and 2128 memory if one uses sieving to implement the SVP oracle in BKZ.
Though the authors of [47] discussed about memory constraint for applying siev-
ing in lattice-based cryptanalysis, we believe it is reasonable to assume for 2128

memory when considering a scheme targeting the classic 256-bit security level.
Another possibility is to implement the SVP oracle using tuple sieving, further
reducing the memory complexity to 2117. The time complexity then increases to
2223, but still far from achieving the claimed 256-security level.

7.3 Experimental Results

We have implemented some of the parts of the attack to check performance
against theory. We have chosen exactly the same parameters in ss-ntru-pke as
well as in the attack, except for the q value, which in the experiment was set to
the values shown in Table 3. The reason being that is we wanted to lower the
decryption error rate so that simulation was possible.

We put two consecutive entries in f each of size 6.2 ·σ and we generated error
vectors with two large positive entries each of size 9.2 · σ. For such choice, we
first verified the decryption error probabilities, as seen in Table 3. These match
the theoretical results well.

Table 4. The simulated error norm v.s. the estimated error norm. (M = 1024)

q error norm /(
√

2N − 2σ)

-estimated- -simulated-

q = 229 0.487 0.472

q = 229 + 226 0.391 0.360

q = 229 + 227 0.326 0.302

q = 229 + 227 + 226 + 225 0.261 0.250
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Table 5. The simulated error norm v.s. the estimated error norm. (q = 229 + 227 +
226 + 225)

M error norm /(
√

2N − 2σ)

-estimated- -simulated-

M = 256 0.522 0.490

M = 512 0.369 0.348

M = 1024 0.261 0.250

M = 1536 0.213 0.212

For each choice of q we then collected up to M = 210+29 = 1536 error vectors
and processed them in a statistical analysis step, to get a good approximation
of (f ,g). As the heuristic approach described, we first created an approximation

of (f ,g), say denoted by (f̂ , ĝ), by simply computing f̂i = E ·
∑M−1

j=0 e
(j)
i

M as the
value in the ith position. Here E is a constant that makes the norm of the vector
to be as the expected norm of f . Clearly, this is a very simple way of exploring
the dependence between fi and ei, but still it seems to be sufficient.

We have plotted the simulated error norms for various q and M in Figure 9.
Furthermore, we show in Tables 4 and 5 the comparison between the simulated
error norms and the estimated error norms according to Eq. 28.
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Fig. 9. Error norm as a function of the number of collected error vectors.
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In the prior table, M is fixed to 1024 and q varies, while in the latter table, q
is fixed to 229+227+226+225 and M varies. We see that in all the cases, the sim-
ulated data match the estimated data well, though the simulation seems always
better than the estimation, i.e., with smaller error norms. Another observation
from Table 5 is that the estimation using the central limit theorem becomes more
accurate when M becomes larger, which is also very reasonable.

7.4 Summarizing the Attack

The best attack is a CCA2 type attack where we in precomputation use
289+63 = 2152 operations to derive 263 special ciphertexts that are submitted
for decryption. With probability 2−64 the secret f has the desired property of
two consecutive big entries. If so, we will most likely see several decoding errors
and such a weak key has been detected. When the weak key has been detected,
we perform yet another precomputation that uses 2216 operations to derive 263

additional special ciphertexts again submitted for decryption. We receive in
expectation 1024 decryption errors and the knowledge from the error vectors
will allow us to reconstruct f without too much trouble using lattice reduction
algorithms, as experimental results strongly indicated. The overall complexity
is thus approximately 2217 if the SVP oracle in BKZ is implemented via lattice
sieving. Actually, the cost of the lattice reduction algorithms in the final stage is
not the bottleneck, since we can employ other powerful statistical tools in Step 3
(e.g., the Maximum Likelihood Test approach) to make this cost negligible.

8 Conclusion

In this paper we introduced a method to increase the decryption failure rate of
a scheme, based on the search for ‘weak’ ciphertexts. This method benefits an
adversary in at least three scenarios: if he has access to a quantum computer, if he
can only perform a limited number of decryption queries or if he wants to stage a
multi-target attack on schemes that do not have the appropriate protection. We
explicitly calculated the effect of failure boosting in these scenarios for various
(Ring/Module-)LWE/LWR schemes. We also proposed a method to estimate
the secret key given ciphertexts that lead to decryption failures. The remaining
security after a certain number of decryption failures was calculated, given the
exact location of the error. We suggested three methods to obtain the exact
location of errors in failing ciphertexts. Finally, we estimated the security of
several schemes under an attack that optimally uses these decryption failures
and show that for some schemes the security is drastically reduced if an attacker
can perform sufficient decryption queries. However, for most NIST post-quantum
standardization candidates, the expected number of required decryption queries
is too high for a practical attack. We also identify the changes to this attack
under a multi-target scenario or when an attacker has only access to a limited
number of decryption queries.
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We further proposed a generic weak-key attack model against lattice-based
schemes, which is slightly different from the previous attack, based on the obser-
vation that the error probability can be much higher for certain ‘weak’ keys.
We applied this model to attacking ss-ntru-pke, a version in the NTRUEncrypt
submission to the NIST Post-Quantum Standardization Process. Specifically, we
have presented an adaptive CCA attack on the claimed 256-bit classic security
level (NIST-V) of ss-ntru-pke. This attacking idea can be treated as extension of
reaction attacks [16,22] that already jeopardize the CCA security of MDPC and
LDPC based crypto-systems.
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Abstract. In this paper, we propose a new general construction to
reduce the public key size of McEliece cryptosystems constructed from
automorphism-induced Goppa codes. In particular, we generalize the
ideas of automorphism-induced Goppa codes by considering nontrivial
subsets of automorphism groups to construct Goppa codes with a nice
block structure. By considering additive and multiplicative automor-
phism subgroups, we provide explicit constructions to demonstrate our
technique. We show that our technique can be applied to automorphism-
induced Goppa codes based cryptosystems to further reduce their key
sizes.

1 Introduction

Since the introduction of public-key cryptography in the 1970’s, all the public-key
cryptosystems that have been proposed fall into two broad categories, namely,
the classical schemes and the quantum-resistant schemes. The former category
comprises most of the schemes used today. They are primarily built up from
computational number theoretic problems including integer factoring problem
and discrete logarithm problem in different groups. While such schemes are gen-
erally believed to be secure against classical computers, their security has been
shown to be vulnerable to quantum algorithms such as the Shor algorithm [34].

On the other hand, the class of quantum-resistant schemes, as the name
implies, includes schemes whose security is not threatened by existing quantum
algorithms. Such schemes are further classified by their underlying mathemat-
ical problems into various classes including code-based cryptosystems, lattice-
based cryptosystems, hash-based cryptosystems, multivariate cryptosystems or
schemes based on elliptic curve isogenies [8]. Among these classes, the code-
based cryptography is one of the oldest, dating back to the work of McEliece in
1978 [27].
c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11443, pp. 599–617, 2019.
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Essentially, code-based cryptography refers to the class of schemes whose
security relies on hard problems in coding theory, such as the general decoding
problem. Concretely, the classical code-based encryption scheme works as fol-
lows. Let M be a generator matrix of an [n, k, 2t + 1]-linear code C with a fast
decoder. Let S be a k × k invertible matrix and let P be an n × n permutation
matrix. Let M ′ = SMP . Then, the public key is M ′ while the secret key com-
prises the matrices S,M and P . To encrypt a message x, one chooses an error
e with Hamming weight t and computes c = xM ′ + e. To recover x, one first
computes c′ = cP−1. Use the decoder with respect to M to decode c′ to obtain
c′′ ∈ C. Since c′′ = xS, one can recover x using S−1.

An alternative but equivalent code-based encryption scheme was proposed
by Niederreiter in [31] in which the parity-check matrix instead of the generator
matrix was used. In this scheme, a message is converted into a vector of Hamming
weight t and encryption is performed by multiplying this vector with the parity
check matrix. Once again, decryption is accomplished via a fast decoder while
the security is based on the difficulty of the syndrome decoding problem.

The above descriptions only outline the essential ideas of code-based schemes.
Variants of these schemes have been proposed to achieve different forms of secu-
rity such as the CCA2 security [20]. The main advantage of code-based cryp-
tosystems lies in its efficient operations leading to very efficient encryption and
decryption. As such, it continues to draw much interest to design new code-
based cryptographic primitives. For instance, in the recent NIST submissions,
several proposals on code-based key encapsulation mechanisms were proposed
[1], including [2,3]. Essentially, any code C used in the schemes must satisfy the
main property, namely, it has an efficient decoder using a particular matrix M
but multiplying this matrix with a random matrix transforms the corresponding
code into a random code. In addition, the code used should not exhibit any struc-
tural weakness to recover the private key. The first family of codes suggested by
McEliece in [27] is the family of Goppa codes. Subsequently, other families of
codes are proposed, including algebraic geometric codes [19], Reed-Muller codes
[35], Reed Solomon codes [31], and more recently, MDPC codes [30]. While all
these codes have an efficient decoding algorithm, the structures exhibited by
some of the codes make them vulnerable to other attacks. Ideally, one hopes
to construct public keys with reasonably short lengths such that the underlying
structures are properly concealed. Quasi-cyclic MDPC codes are more recent
designs that seem promising to achieve these two goals simultaneously. On the
other hand, codes such as Reed-Muller codes and Reed Solomon codes, while
providing short public keys, have all been broken [23,28]. In terms of security,
Goppa codes seem to be the strongest as they have withstood structural attacks
since they were first proposed by McEliece. However, they suffer from the dis-
advantage of having large public key sizes.

As such, it is an interesting problem to consider sub-classes of Goppa codes
to better balance the security and public key size requirements. One common
approach adopted is to employ quasi-cyclic or quasi-dyadic Goppa codes [7,29] or
more generally, codes with a nontrivial automorphism group [6]. Indeed, in [14],
the authors showed that existing quasi-cyclic and quasi-dyadic constructions are
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induced from nontrivial automorphism subgroups of the rational function field.
The main advantage to use a code with a nontrivial automorphism group G is
that there exists a subset of basis codewords such that this subset together with
their permutations induced by G form the whole basis of the code. As such,
this allows one to use the subset of codewords as the public key instead of the
entire basis, thereby reducing the size of the public key. Nonetheless, the size
reduction leads to a trade-off with respect to its resistance to structural attacks.
In particular, it was shown in [4,14,15] that the public/private key pair of such
codes is equivalent to a public/private key pair of another code with smaller
parameters. Algebraic cryptanalysis can then be performed on the corresponding
codes with smaller parameters and successful attacks following this approach
were carried out in [16,17]. As such, one must select the parameters carefully in
order to balance the trade-off and to achieve the desired security level [3].

In this paper, we generalize the approach of automorphism-induced code
constructions to seek for Goppa codes with compact public key sizes. Instead
of finding codes with nontrivial automorphism groups, we will construct Goppa
codes that are a union of different subcodes and their permutations. Specifically,
we solve the following problem.

Problem 1: Construct Goppa codes C that contain a subset S of linearly inde-
pendent codewords satisfying the following properties:

– For each c ∈ S, there exists a set of permutations Pc such that σ(c) ∈ C for
all σ ∈ Pc;

– B =
⋃

c∈S

(⋃
σ∈Pc

σ(c)
)

is a basis of C.

By finding such codes C, one can then use the set S as its public key.
Observe that the automorphism-induced codes including the quasi-cyclic and
quasi-dyadic codes are examples of the codes we seek. In these cases, all the Pc

are identical and equal to the automorphism group of the code. While this con-
struction allows one to use the set S as the public key, the automorphism group
can be exploited to reduce the security of the scheme with respect to algebraic
attacks.

This paper seeks to provide other classes of Goppa codes that satisfy the
conditions of Problem1. In our constructions, the sets Pc are no longer auto-
morphism groups of the codes. Instead, we consider only subsets of permutations
of each codeword. In this way, our codes become resistant to the algebraic attacks
of [4,14,15] as the folding operation does not lead to an invariant subcode (see
Sect. 2.3 for the relevant definitions). Moreover, our construction is generic in
the sense that it can be applied to reduce the key size of existing code-based
schemes from Goppa codes.

In this paper, we first provide conditions for permutations of codewords to lie
in the code. We then construct codes with a partial quasi-cyclic and quasi-dyadic
structure. We demonstrate that the codes we construct are not vulnerable to the
algebraic attacks of [14,16,17]. Finally, we apply our technique to automorphism-
induced Goppa codes to obtain compact and secure Goppa codes. We show with
concrete examples that our technique can reduce the public key sizes in BigQuake
[3] by at least half.
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The subsequent sections are structured as follows. First, we recall Goppa
codes and their permutations. We also review automorphism-induced Goppa
codes and the associated algebraic attacks. We then present our new construc-
tion that exploits subsets of automorphism groups to yield codes with a nice
permutation structure. In Sect. 4, we provide a security discussion of our con-
struction. Finally, we present an algorithm that combines our technique with
existing quasi-cyclic constructions to obtain Goppa codes with reduced public
key sizes.

2 Preliminaries

In this paper, we always assume that q = 2m for an integer m ≥ 2. Let Fq denote
the finite field with q elements.

2.1 Goppa Codes

We first review the definition of Goppa codes [27]. In the following, we present
a construction that is relevant for this work.

Definition 1 (Goppa code). Let t and n be positive integers with t < n ≤ q.
Let g(x) ∈ Fq[x] be a polynomial of degree t and let L = {γ1, · · · , γn} be an
ordered set containing n distinct elements of Fq such that g(γi) �= 0 for 1 ≤ i ≤ n.
The Goppa code Γ (L, g) is defined as

Γ (L, g) =

{

c = (c1, · · · , cn) ∈ F
n
2 :

n∑

i=1

ci

x − γi
≡ 0 (mod g(x))

}

.

The polynomial g(x) is called the Goppa polynomial. When g(x) is irreducible,
Γ (L, g) is called an irreducible Goppa code. In this paper, we call the ordered set
L the Goppa support.

Some of the main properties of Goppa codes are summarized below.

Remark 1. (i) The Goppa code Γ (L, g) is a subfield subcode of generalized Reed-
Solomon codes. In fact, the class of Goppa codes is a special case of alternant
codes.

(ii) The Goppa code Γ (L, g) is a binary linear code and has dimension at least
n − mt, and minimum distance at least t + 1.

(iii) If g(x) has no multiple roots, then Γ (L, g) has minimum distance at least
2t + 1. In particular, an irreducible Goppa code Γ (L, g) has minimum dis-
tance at least 2t + 1.

Given a Goppa support L and a Goppa polynomial g(x), a parity-check
matrix of Γ (L, g) is given by H = V D, where
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V =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
γ1 γ2 . . . γn

γ2
1 γ2

2 . . . γ2
n

. . . . . . . . . . . .
γt−1
1 γt−1

2 . . . γt−1
n

⎞

⎟
⎟
⎟
⎟
⎠

(1)

and
D = diag(1/g(γ1), 1/g(γ2), . . . , 1/g(γn)). (2)

One of the nice properties of Goppa codes lies in its efficient decodability. In
particular, there exists a polynomial-time decoding algorithm for Goppa codes
[24] that can decode up to t errors.

Fix a ∈ F
∗
q , b ∈ Fq, c ∈ F

∗
q . For a Goppa support L ⊂ Fq, let L′ = {a−1x − b :

x ∈ L}. Then, for any g ∈ Fq[x], it is easy to check that the Goppa codes Γ (L, g)
and Γ (L′, cg(ax+ b)) are equal. Consequently, for any Goppa code, one can find
at least q(q − 1) different Goppa supports and monic Goppa polynomials that
define the given code.

The following result follows directly from the definition of Goppa codes [24].

Lemma 1. Fix L ⊂ Fq. For any two polynomials g1(x) and g2(x), one has:

Γ (L, g1(x)) ∩ Γ (L, g2(x)) = Γ (L, lcm(g1(x), g2(x))).

2.2 Permutations of Goppa Codes

In this subsection, we take a look at permutations of Goppa codes.
For a positive integer n, let Sn denote the symmetric group on n symbols.

We let Sn act on the vector space F
n
2 via

σ(c) = σ(c1, · · · , cn) = (cσ(1), · · · , cσ(n))

for σ ∈ Sn and c = (c1, · · · , cn) ∈ F
n
2 . Then, σ(C) = {σ(c) : c ∈ C} is also a

code with the same parameters as the code C.

Definition 2. The automorphism group of a code C ⊆ F
n
2 is defined as

Aut(C) = {σ ∈ Sn : σ(c) ∈ C for all c ∈ C}.

In particular, σ ∈ Aut(C) if and only if σ(C) = C.

We next show that there exist permutations σ ∈ Sn such that σ(C) is itself
a Goppa code.

Let F = Fq(x) denote the rational function field over Fq. We denote by
Aut(F/Fq) the automorphism group of F over Fq, i.e.,

Aut(F/Fq) = {σ : F → F, where σ is an Fq-automorphism of F}. (3)
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It is clear that an automorphism σ ∈ Aut(F/Fq) is uniquely determined by σ(x).
It is well known that every automorphism σ ∈ Aut(F/Fq) is given by

σ(x) =
ax + b

cx + d
(4)

for some constants a, b, c, d ∈ Fq with ad − bc �= 0 (see [11]). Denote by GL2(q)
the general linear group of 2 × 2 invertible matrices over Fq. Thus, every matrix

A =
(

a b
c d

)

∈ GL2(q) induces an automorphism of F given by (4). Two matrices

of GL2(q) induce the same automorphism of F if and only if they belong to the
same coset of Z(GL2(q)), where Z(GL2(q)) stands for the center {aI2 : a ∈ F

∗
q}

of GL2(q). This implies that Aut(F/Fq) is isomorphic to the projective linear
group PGL2(q) := GL2(q)/Z(GL2(q)). Thus, we can identify Aut(F/Fq) with
PGL2(q).

Consider the subgroup of PGL2(q),

AGL2(q) :=
{(

a b
0 1

)

: a ∈ F
∗
q , b ∈ Fq

}

. (5)

AGL2(q) is called the affine linear group. Every element A =
(

a b
0 1

)

∈ AGL2(q)

defines an affine automorphism σa,b(x) = ax + b.
The following lemma is straightforward to verify.

Lemma 2. Let b ∈ Fq. Then,

ord(σa,b) =
{

ord(a) if a �= 1,
2 otherwise

We recall the definition of a group action on a set and some of its basic
properties.

Definition 3 ([22]). A group G action on a set S is a mapping from G × S to
S to satisfying the following properties:

(i) g1 · (g2 · s) = (g1g2) · s for all g1, g2 ∈ G, s ∈ S,
(ii) 1 · s = s for all s ∈ S.

Definition 4. Let G be a group acting on a set S. The equivalence class {g · s :
g ∈ G} is called the orbit of G containing s.

Remark 2. (i) The orbits of two different elements in S are either equal or
disjoint. In particular, S is partitioned into a disjoint union of orbits.

(ii) For s ∈ S, let Gs denote the stabilizer subgroup of G that fixes s under the
group action, that is Gs = {g : g ∈ G|g · s = s}. Then, the orbit containing s
has |G|/|Gs| different elements.
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For any element g ∈ G, the action of g induces a permutation on the set
S. In fact, g restricted to any orbit O is a permutation of O. In particular,
let L = {γ1, . . . , γn} be a disjoint union of G-orbits. Then, for any σ ∈ G and
1 ≤ i ≤ n, there exists j such that σ ·γi = γj . In this case, we will simply denote
the corresponding permutation in Sn as σ(i) = j.

Definition 5. Let L be a subset of Fq containing n distinct elements. For any
σ ∈ Sn, we say that L is invariant under σ if σ(L) = L. If L is invariant under
every σ in a subgroup G of Sn, we say that L is G-invariant. In particular, if L
is a disjoint union of G-orbits, L is G-invariant.

Remark 3. Consider a group action of AGL2(q) on Fq defined by σa,b · γ =
a−1(γ − b). One easily checks that this is a group action. Then, one has σa,b(x−
γ) = a(x − σa,b · γ).

Proposition 1. Let G be a subgroup of AGL2(q) and let L ⊂ Fq be a disjoint
union of G-orbits. Let g ∈ Fq[x]. For any σ ∈ G, one has

σ(Γ (L, g)) = Γ (L, g(σ−1(x))).

Proof. Write L = {γ1, . . . , γn}. Here, it suffices to show that σ(Γ (L, g)) ⊂
Γ (L, g(σ−1(x))). Let c = (c1, c2, . . . , cn) ∈ Γ (L, g). By definition, we have:

n∑

i=1

ci

x − γi
≡ 0 mod g(x).

Applying σ−1 to both sides of the equivalence relation Remark 3 yields

n∑

i=1

ci

x − σ−1 · γi
≡ 0 mod g(σ−1(x)).

Since L is a union of G-orbits, for each i = 1, . . . , n, there exists some j such
that γj ∈ L and σ(γj) = γi. Rearranging the equation then gives:

n∑

i=1

cσ(i)

x − γi
≡ 0 mod g(σ−1(x)),

and this proves our desired result.

2.3 Automorphism-induced Goppa Codes

In Proposition 1, suppose further that there exists some α ∈ F
∗
q such that

g(σ−1) = αg. Then, it follows that σ(Γ (L, g)) = Γ (L, g), that is, σ is in the
automorphism group of Γ (L, g). In other words, for any c ∈ Γ (L, g), the per-
muted codeword σi(c) lies in the code as well for i = 1, 2, . . .. This property
enables one to construct generator matrices of the code exhibiting a nice struc-
ture, thereby reducing the public key size of schemes built from these codes.
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As such, a common approach to construct McEliece-based schemes with
shorter keys is to employ Goppa codes induced by subgroups of AGL2(q) (or
more generally, subgroups of projective semi-linear groups of Aut(F/Fq)). For
instance, in [6], the author described alternant codes that can be constructed
from prescribed automorphism subgroups of which, Goppa codes form a special
case. These codes resulted in quasi-cyclic, quasi-dyadic and monoidic alternant
codes which were subsequently employed to construct McEliece-based schemes
with compact keys [2,3,7,29].

We review the main ideas of this approach below. Here, we are presenting
the ideas in a more general manner to facilitate the discussion in the remainder
of the paper.

Let G be a subgroup of AGL2(q) of size r. Suppose that there are at least
s G-orbits of size r. Let L be a union of s of these orbits and let n = rs. Let
t = dr for some positive integer d and let g(x) be a polynomial of degree t
that is invariant under the G-action, i.e., for every σ ∈ G, there exists α ∈ F

∗
q

such that g(σ(x)) = αg(x). From Proposition 1, it follows that for every σ ∈ G,
σ(Γ (L, g)) = Γ (L, g). Hence, Γ (L, g) is a Goppa code with G as a subgroup of
Aut(Γ (L, g)).

One common way to construct the G-invariant polynomial g(x) is as follows.
Pick an irreducible polynomial f(x) of degree d. Define

g(x) = f(
∏

σ∈G
σ(x)).

Then, g(x) is invariant under any σ ∈ G. In [6,14], the authors classified poly-
nomials invariant under some particular subgroups of AGL2(q).

Denote the orbits in L by Oi, i = 1, 2, . . . , s. For each orbit Oi, fix a rep-
resentative βi. Fix an order in G, that is G = {σ1, σ2, . . . , σr}. With this order,
write Oi = {σ1 · βi, σ2 · βi, . . . , σr · βi}. It is clear that for any σ ∈ G, σ induces
the same permutation for each orbit. We denote this permutation by σ̃.

Order the elements in L as L = O1||O2|| . . . ||Os = {(σ1 · β1 . . . σr ·
β1), . . . , (σ1 ·βs . . . σr ·βs)}. Let c = (c1, . . . , cn) ∈ Γ (L, g). We partition c as c =
(cO1 || . . . ||cOs

), where each cOi
corresponds to the entries indexed by elements in

Oi with i ∈ {1, . . . , s}. Then for each σ ∈ G, cσ = (cσ̃(O1)|| . . . ||cσ̃(Os)) ∈ Γ (L, g).
Next, we seek to construct a generator matrix for Γ (L, g) having a nice form.

Let k denote the dimension of Γ (L, g). Suppose further that k = n − mt. Let
k0 = k/r = (s − md).

Consider a generator matrix M of Γ (L, g). Without any loss of generality,
suppose that M can be put in systematic form (for otherwise, choose other βi’s),
that is, M = (I,B), where B is a k × (n − k) matrix. Label the rows of M by
Mi. Define P (L, g) := {M1,Mr+1, . . . ,M(k0−1)r+1}. For each c ∈ P (L, g), form
the matrix

c(G) =

⎛

⎜
⎝

σ1(c)
...

σr(c)

⎞

⎟
⎠ .
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Finally, form the generator matrix

M(L, g) =

⎛

⎜
⎝

c1(G)
...

ck0(G)

⎞

⎟
⎠ ,

for ci = M(i−1)r+1. Note that since M is in systematic form, each ci = M(i−1)r+1

is such that the i-th block is of the form (1, 0, . . . , 0) while the other blocks in
the first k0 blocks are (0, 0, . . . , 0).

Theorem 1. The matrix M(L, g) constructed above is a generator matrix of
Γ (L, g).

Proof. First, it is clear that for each c ∈ P (L, g) and for each σ ∈ G, σ(c) ∈
Γ (L, g). It thus remains to show that M(L, g) has rank k. Observe that for
each c ∈ P (L, g), c(G) is an r × n matrix. Further, c(G) can be viewed as a
concatenation of s r × r square matrices where each square matrix is in fact
cO(G) for an orbit O contained in L. Consider the first k0 blocks of ci(G). By
our choice of ci, we see that the i-th block of ci(G) is a permutation matrix while
all other blocks are 0. Hence, the first k columns of M(L, g) have the form

⎛

⎜
⎜
⎝

A 0 . . . 0
0 A . . . 0

. . . . . . . . . . . .
0 0 . . . A

⎞

⎟
⎟
⎠ ,

where A = x(G) and x = (1, 0, . . . , 0). Since the rank of A is r, the desired result
follows.

Two particular subgroups of AGL2(q) of interest are the multiplicative cyclic
subgroup of order r|(q −1) and the additive subgroup of order 2v for 1 ≤ v ≤ m.
Concretely, the former comprises automorphisms of the form σa(x) = ax for
a ∈ F

∗
q of order r and gives rise to quasi-cyclic Goppa codes [3,7]. In this case,

the orbits in the Goppa support L are cosets of the subgroup of F
∗
q of order

r and the Goppa polynomial is of the form g(x) = f(xr) for some irreducible
polynomial f(x) ∈ Fq[x].

On the other hand, the additive subgroup construction results in quasi-dyadic
Goppa codes [2,29]. Let V be any F2-subspace of Fq with dimension v. The
additive automorphism group consists of automorphisms of the form σb(x) =
x+ b for all b ∈ V . Thus, the orbits in L are all cosets of V in Fq, each of size 2v

and the Goppa polynomial is of the form f(L(x)), where f(x) is an irreducible
polynomial and L(x) =

∏
b∈V (x + b).

Observe from Theorem 1 that it suffices to provide the set P (L, g) in order
to construct the generator matrix of Γ (L, g), that is, these codes are examples
of the codes we seek in Problem 1. In other words, when using this code in
McEliece-based schemes, the public key size can be reduced. However, matrices
with such nice structure also reduce the number of unknowns to mount algebraic
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attacks, thereby weakening the security with respect to structural attacks. One
way to perform algebraic cryptanalysis is to consider the parity-check equations
using the parity-check matrix H = V D where V and D are defined in Eqs. 1 and
2, respectively, and treating the γi’s and 1/g(γi)’s as unknowns. One then tries to
solve the system of equations using algebraic solving tools such as Gröbner basis
algorithms. In the case of automorphism-induced Goppa codes, the unknowns
for the Goppa support are reduced to the elements of the subgroup as well as the
orbit representatives. At the same time, since g(a) is identical for all a in the same
orbit of L, the number of unknowns of the diagonal matrix in Eq. 2 is reduced to
the number of orbits. Essentially, it was shown in [4,14] that one can construct
Goppa codes with much smaller parameters from these automorphism-induced
codes, namely, via folded codes and invariant codes defined as follows.

Definition 6. Let C = Γ (L, g) be a Goppa code induced by an automorphism
subgroup G so that L is a disjoint union of G-orbits. For c ∈ C, define Punc(c)
as the codeword obtained from c by puncturing on a set of representatives for
the orbits in L.

– The folded code φ(C) is the subcode of C defined as:

φ(C) = {Punc(
∑

σ∈G
σ(c)) : c ∈ C}.

– The invariant code CG is the subcode of C defined by:

CG = {Punc(c) : c ∈ C|σ(c) = c for all σ ∈ G}.
Clearly, the folded code is a subcode of the invariant code. In [4,14], it was

shown that for the quasi-cyclic case, these two subcodes are identical and equal
to Γ (L′, f(x)), where L′ is a set of representatives of orbits in L and g(x) = f(xr)
with r being the order of the cyclic subgroup of F∗

q .

3 Partial Quasi-cyclic and Partial Quasi-dyadic Goppa
Codes

In this section, we present a more general construction for codes satisfying the
properties in Problem1, namely, we do not restrict to nontrivial automorphism
subgroups of the code. In other words, our codes may have trivial automorphism
groups but contain subsets of codewords and sets of permutations where these
codewords and their corresponding permutations generate the whole code. These
constructions will prevent an attacker from finding folded and invariant subcodes
of the code.

First, we give a sufficient condition for a permuted codeword of a code to
remain in the code.

Lemma 3. Given a linear code C and a permutation σ ∈ Sn, C ′ = C ∩ σ(C) is
also a linear code. Suppose that C ′ is nontrivial. For any codeword c ∈ C ′, one
has σ−1(c) ∈ C. Further, if σ−1(c) ∈ σ(C), then σi(c) ∈ C ′ for i ∈ Z.
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Proof. Since c ∈ C ′ ⊆ σ(C), it follows that σ−1(c) ∈ C. In the case where
σ−1(c) ∈ σ(C), then σ−1(c) ∈ C ′. Based on the fact that c, σ−1(c) ∈ C ′ and σ
is a permutation, one can continue to apply σ−1 many times and the result is
still a codeword of C ′.

Remark 4. Suppose that σ has order 2. Then σ(c) ∈ σ(C)∩σ(σ(C)) = σ(C)∩C.

More generally, let σ0 be the identity permutation and let σ1, . . . , σl be l
distinct permutations in Sn. Suppose that for a linear code C, the code C ′ =⋂l

i=0 σi(C) is nontrivial. Then for c ∈ C ′ and for all i = 1, 2, . . . , l, σ−1
i (c) ∈ C.

In terms of Goppa codes, one has the following result.

Lemma 4. Let L be a subset of n distinct elements from Fq. Let σ1, . . . , σl be
l distinct automorphisms from AGL2(q) such that L is invariant under each
σi, i = 1, 2, . . . , l. Let g(x) ∈ Fq[x] be such that g(x), g(σ1(x)), . . . , g(σl(x)) are
pairwise co-prime. Define G(x) =

∏l
i=0 g(σi(x)). If Γ (L,G(x)) is nontrivial,

then for every codeword c ∈ Γ (L,G(x)), the permuted codeword σi(c) lies in
Γ (L, g(x)). Moreover, if σ0 = id, σ1, . . . , σl form a subgroup of AGL2(q), then
each σi(c) lies in Γ (L,G(x)).

Proof. From Lemma 1 and Proposition 1, one has

Γ (L,G(x)) =
l⋂

i=0

Γ (L, g(σi(x))

=
l⋂

i=0

σ−1
i (Γ (L, g)).

Hence, it follows from the above argument that for i ∈ {1 . . . l} and c ∈
Γ (L,G(x)) lies in the code Γ (L, g) as well. For the latter part, if G =
{σ0, σ1, . . . , σl} is a group, then Γ (L, g(x)g(σ1(x)) . . . g(σl(x))) is a code with
G as its automorphism subgroup.

There are different ways one can apply Lemma 4 to construct Goppa codes
with more permuted codewords. Here, we provide two different constructions.

In the following, we assume that n = lmt for some positive integer l.

Proposition 2 (Partial quasi-dyadic construction). Let l = 2v, i.e., n =
2vmt for some positive integer v ≤ m/2. Let V be a v-dimensional subspace of
Fq. Write V as V = {b0, b1, b2, . . . , b2v−1} with b0 = 0. Let L contain mt different
cosets of V under some ordering. Let g(x) be an irreducible polynomial of degree
t such that the Goppa code Γ (L, g) has dimension k = n − mt = (2v − 1)mt.
For i = 0, 1, . . . , 2v − 1, define σi as the automorphism where σi(x) = x + bi.
Define h(x) =

∏2v−1
i=0 g(σi(x)). Suppose that the code Γ (L, h) is the trivial code.

Then, one can construct a subset P (L, g) of Γ (L, g) satisfying the conditions of
Problem 1.
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Proof. Fix a σi with i �= 0 and let hi(x) = h(x)
g(σi(x))

. Let C = Γ (L, hi(x)).
Clearly, C is a subcode of Γ (L, g(x)). For each codeword c ∈ C, one has σj(c) ∈
Γ (L, g(x)) for j �= i. In particular, σj(C) is a subcode of Γ (L, g(x)) for all j �= i
(since the order of σj is 2). We claim that for j1, j2 such that i, j1, j2 are all
distinct, one has σj1(C) ∩ σj2(C) is the trivial code. Indeed, σj(Γ (L, hi)) =
Γ (L,

∏
e�=i g(σeσj(x))). Thus, by the assumption that the g(σi(x))’s are coprime

and Lemma 1, σj1(Γ (L, hi(x))) ∩ σj2(Γ (L, hi(x))) = Γ (L, h(x)) which is trivial
by our assumption. In addition, since dim(σj(C)) ≥ n − (2v − 1)mt = mt, it
follows that dim(σj(C)) = mt for all j �= i. Let P (L, g) be a basis of C. Then,
P (L, g) satisfies the conditions of Problem 1 by letting the set of permutations
to be {σj : j �= i}.

Proposition 3 (Partial quasi-cyclic construction). Let r be a positive inte-
ger with r|(q − 1). Let n = rmt. Let H be a subgroup of F

∗
q of order r. Let L

be a disjoint union of mt cosets of H in some order. Fix an irreducible polyno-
mial g(x) of degree t such that the Goppa code Γ (L, g) has dimension (r −1)mt.
For each a ∈ H, let σa be the automorphism such that σa(x) = ax. Define
h(x) =

∏
a∈H g(ax). Suppose that the code Γ (L, h) is trivial. Then, one can find

a set P (L, g) of mt linearly independent vectors that satisfies the conditions of
Problem 1.

Proof. Fix a generator a of H. Define ga(x) =
∏r−2

i=0 g(aix). Let C be the code
C = Γ (L, ga). By Proposition 4, for all i = 1, . . . , r −2, we have σai(c) ∈ Γ (L, g)
for all c ∈ C, that is, σai(C) ⊂ Γ (L, g) for i = 2, 3, . . . , r. We claim that
Γ (L, g) is a disjoint union of C, σa2(C), . . . , σar−1(C). First, we show that for
i �= j, σai(C) ∩ σaj (C) is trivial. Now, we have σai(C) = Γ (L, ha(σa−i(x))) =
Γ (L,

∏
w �=r−1−i g(σaw(x))). Similarly, σaj (C) = Γ (L,

∏
w �=r−1−j g(σaw(x))).

From Lemma 1, σai(C) ∩ σaj (C) = Γ (L, h) which is trivial. Since dim(C) ≥
n − (r − 1)mt = mt, the claim follows. Consequently, one may choose P (L, g) as
a basis of C.

Remark 5. – In both Propositions 2 and 3, we have dim(Γ (L, h)) ≥ n −
deg(h)m = 0. In practice, this code is trivial for most cases.

– In fact, one can generalize the results to non-irreducible polynomials g. In
this case, one needs to check that the polynomials g(σ(x))’s are all pairwise
coprime for all the automorphisms σ involved.

Remark 6. Just as in Theorem 1, one may transform P (L, g) such that P (L, g)
takes the following form. Let

P (L, g) = (S1||S2|| . . . Smt−1||Smt),

where each Si is an mt×r matrix and for i = 1, 2, . . . ,mt−1, Si is 0 everywhere
except at the (i, 1)-position. Thus, one may use Smt as the public key.

From Propositions 2 and 3, we see that one can generalize the construction
to any subgroup of AGL2(q). More precisely, we give the general construction in
the next theorem and the proof is similar to the proofs of Propositions 2 and 3.



Reducing the Key Size of McEliece Cryptosystem via Permutations 611

Theorem 2. Let t be a positive integer. Let G be a subgroup of AGL2(q) and
let L be a disjoint union of mt G-orbits under the action of G on Fq. Let n =
|L| = |G|mt. Let g(x) be an irreducible polynomial of degree t such that the code
Γ (L, g(x)) has dimension n − mt. Define h(x) =

∏
σ∈G g(σ(x)). Assume that

Γ (L, h) is trivial. Fix a σ ∈ G where σ is not the identity automorphism and
let G′ = G\{σ}. Construct C = Γ (L,

∏
σ′∈G′ g(σ′(x))). Then, we may take a

basis of C as the set P (L, g) in Problem 1 with the set of permutations to be the
permutations in G′.

4 Security Discussion

In general, there are two classes of attacks on McEliece scheme, namely, infor-
mation set decoding (ISD) attacks and structural attacks. The former attacks
were proposed in [32] as a generic decoding attack. Essentially, such attacks seek
to perform the decoding directly from the public matrix given. In its most basic
form, an adversary tries to guess k positions such that the submatrix restricted
to these positions is invertible and the error vector, restricted to these positions,
has very small Hamming weight. Such properties will enable the adversary to
brute force the error entries at these positions and subsequently, discover the
message. Other improvements and variants were later proposed to improve the
attack [5,9,10,12,18,21,25,26,36]. So far, the best attack has complexity 20.0967n

[26], where n is the code length.
On the other hand, the structural attacks attempt to take advantage of the

structure of the specific code used. For random Goppa codes, one can perform a
brute force search on the Goppa polynomial and/or the elements in the Goppa
support. In [33], an algorithm known as the support splitting algorithm was
proposed which can correct permutation of the support elements once the Goppa
polynomial and the set of support elements are known.

In addition, one can launch an algebraic attack on a Goppa code C with
Goppa polynomial g as follows. Consider the equations:

n∑

i=1

cix
j
iy

w
i = 0 (6)

for c = (c1, . . . , cn) ∈ C, 0 ≤ j ≤ t−1 when w = 1 and 0 ≤ j ≤ 2t−1 when w = 2,
x1, x2, . . . , xn are the unknowns for the Goppa support and yi = 1/g(xi). Recall
that these equations come from the parity-check equations (refer to Eqs. 1 and
2). Hence, solving for the unknowns will give the Goppa support and together
with the knowledge of the yi’s will enable one to recover g(x). Thus the challenge
remains to solve the above system.

Observe that when j = 0 yields k linear equations in the unknowns yi’s. Thus,
one way to solve the system is to guess the remaining mt yi’s which results in a
system in the xi’s. By considering the k�2 log2 t� equations which are powers of
2, one can then solve for the unknowns xi’s. The complexity of the approach is
asymptotically O(2m2t). Other approaches exist to solve the system [15,16] but
the complexities of these approaches are more difficult to estimate.
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As mentioned in Subsect. 2.3, the automorphism-induced Goppa codes are
more vulnerable to algebraic attacks as compared to random Goppa codes. This
is due to the existence of invariant subcodes which are themselves Goppa codes
with smaller supports and lower degree Goppa polynomials. In particular, for
an automorphism-induce Goppa code, particularly quasi-cyclic code, such that
it has length n, degree t Goppa polynomial and automorphism group of order l,
the invariant code has length n/l with degree t/l Goppa polynomial. A thorough
security analysis of quasi-cyclic Goppa codes can be found in [3].

For our construction, only subsets of the automorphism subgroup of AGL2(q)
are used. In particular, we typically remove an element σ from a subgroup G of
AGL2(q) (see Theorem 2).

Thus, a similar folding operation will be of the form
∑

σ′∈G,σ′ �=σ

σ′(c)

for any c in the code. Since the coordinates of c on each orbit are unlikely to be
identical, one cannot use the same trick to puncture the code or to construct an
invariant code.

However, one may attempt to mount an algebraic attack on our constructions.
In Propositions 2 and 3, suppose that V and H are known, respectively (this

assumption is valid as one can exhaustively search for them). Referring to the
system of equations in 6 and the structure of the Goppa support as a disjoint
union of cosets, the unknowns for the Goppa support are reduced to finding mt
representatives in the orbits. However, since our choice of g(x) is such that it
is not invariant under any automorphism used in the construction, there is no
clear relationship between the yi’s that we can exploit. Consequently, one has
to solve a system of equations in mt unknowns in the xi’s and n unknowns in
the yi’s. Once again, by exploiting the k linear relationships among the yi’s, one
way to solve the system is to perform a brute force search on the remaining
free mt yi’s. Alternatively, one can search through all possible mt xi’s and solve
the resulting linear equations in the yi’s. In either case, the time complexity
is O(2m2t). Hence, unlike the quasi-cyclic or quasi-dyadic constructions, we see
that our constructions do not weaken the security of the codes with respect to
algebraic attacks.

5 Practical Implementation Considerations

5.1 Practical Implementation Scheme

Observe that our constructions place some restrictions on the choice of the
parameters. For instance, we require n to be an integral multiple of mt. More-
over, the reduction factor is at most (n − mt)/mt = k/(n − k). Thus, to achieve
a large reduction size, we need t to be small. However, t needs to be sufficiently
large to prevent an exhaustive search on the error vector, or more generally, to
guard against the state-of-the-art information set-decoding attacks. In addition,
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for fixed m and t, n cannot be too large to prevent the distinguishing attack
[13]. On the other hand, even though the automorphism-induced codes are more
vulnerable to algebraic attacks, the relatively large gap between the complexity
of these attacks and the information set-decoding attacks give some room to
choose the parameters appropriately for any security level. As such, we propose
combining the two constructions to achieve a greater key reduction for a desired
security level. The following algorithm gives a possible construction meeting a
given security level. Here, we only consider the quasi-cyclic construction as the
dyadic construction is similar.

1. Fix a security parameter λ.
2. Fix m such that q − 1 = 2m − 1 has small factors.
3. For any two distinct integers l1 and l2 with l1l2|(q − 1) and gcd(l1, l2) = 1,

do the following:
– Pick a t0 satisfying the following two conditions:

• (
q
t0

) ≥ 2λ;
• A [l1l2mt0, (l1l2−l1)mt0, 2l1t0] Goppa code achieves the security level

with respect to the information set-decoding attacks.
4. Let t = l1t0 and n = l1l2mt0.
5. Let H be a subgroup of F∗

q of order l1l2 and pick a generator a of H.
6. Let L be a disjoint union of mt0 different cosets of H and randomly choose

an ordering of the cosets.
7. Randomly pick a polynomial g0(x) of degree t0. Let g(x) = g0(xl1).
8. Let h(x) =

∏l2−2
i=0 g(ail1x) and f(x) =

∏l2−1
i=0 g(ail1x)

9. Construct the code Γ (L, g), Γ (L, h) and Γ (L, f).
10. If dim(Γ (L, f)) �= 0 or dim(Γ (L, h)) �= mt or dim(Γ (L, g)) �= (l2 − 1)mt,

choose another g0(x).
11. Otherwise, return Γ (L, g).

By Proposition 3, for all c ∈ Γ (L, h) and for i = 0, 1, . . . , l2 − 2, we have
σal1i(c) ∈ Γ (L, g). Moreover, Γ (L, h) is a quasi-cyclic code induced by a sub-
group of H of order l1. Consequently, one can find a set P (L, g) of cardinality
mt0 such that for all i = 0, 1, . . . , l2−2, j = 0, 1, . . . , l1 −1, σal1i+l2j (c) ∈ Γ (L, g)
whenever c ∈ P (L, g). Similar to Theorem 1 and Remark 6, one can construct
an mt0 × mt matrix that can be extended to a generator matrix of Γ (L, g).
Consequently, the public key size of such a code is l1m

2t20.
In our construction, by our choice of t0, we ensure that it is secure against a

brute force search on all possible g0(x) and in fact, it is resistant to the existing
known structural attacks (see Sect. 4). In addition, we have ensured that the
code Γ (L, g) is secure against message recovery attacks.

Remark 7. By employing only the quasi-cyclic construction, one gets a public
key size of (l2−1)l1m2t20. Thus, we see that our technique can be further applied
to quasi-cyclic constructions to yield more compact public keys.



614 Z. Li et al.

5.2 Concrete Parameters

We apply our constructions to the parameters in BigQuake [3] to reduce the pub-
lic key size and to keep the desired security level. We give 3 groups of parameters
corresponding to 3 different security levels and each group comprises two code
parameters in Table 1. The first is the code parameters from BigQuake [3] and
the second is the reduced code parameters we get after applying our scheme to
the first code. Now we explain the notations of each column of Table 1 as follows.

– λ: security level of the parameters.
– m: extension degree of the finite field.
– [n, k, t] denotes the resulting Goppa code parameters, n for the code length,

k for the code dimension and t for the error correcting ability.
– l1: the size of the quasi-cyclic group which acts on x.
– l2: the size of the partial quasi-cyclic group which acts on the Goppa polyno-

mial g(x). This column is not applicable to the BigQuake [3] code parameters.
– ωmsg: the logarithm of the work load of ISD, which is computed using the
CaWoF [37] library.

– Size(bytes): the resulting public key size.

From Table 1, we can see that our scheme reduces the public key size of
BigQuake by at least half. We remark that the parameters given in Table 1 may
be vulnerable to other attacks. Here we show the parameters solely to illustrate
the power our construction which, to our best knowledge, are secure against
current known attacks. In fact, our construction can be applied to most of the
existing Goppa codes based constructions to reduce the public key size without
compromising the security level.

Table 1. More compact public key parameters by applying our construction to
BigQuake

λ m [n, k, t] l1 l2 ωmsg Size (bytes)

AES128 12 [3510, 2418, 91] 13 NA 132 25389

16 [12240, 11520, 45] 5 17 143 12960

AES192 18 [7410, 4674, 152] 19 NA 195 84132

18 [8208, 5472, 152] 19 3 213 49248

AES256 18 [10070, 6650, 190] 19 NA 263 149625

18 [10260, 6840, 190] 19 3 267 76950

Remark 8. The public key size of the foregoing scheme does not involve the
parameter l2. Therefore one could select a bigger l2 to keep the public key size
and ensure that the increased code parameters n and k will still make the code
resistant to, even by a large margin improved and powerful ISD attacks in the
future. Alternatively, one is able to exploit this property of our scheme to mini-
mize the public key size by selecting very small l1 and very big l2, and increasing
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t0 to some reasonable value. Note that this only applies to big enough m, for
otherwise it will suffer from some algebraic attacks. In conclusion, one can vary
the parameters l1, l2, t0,m, n appropriately to get a compact public key achieving
the desired security level with respect to all known attacks.
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Abstract. The recent post-quantum cryptography standardization
project launched by NIST increased the interest in generic key encapsu-
lation mechanism (KEM) constructions in the quantum random oracle
(QROM). Based on a OW-CPA-secure public-key encryption (PKE),
Hofheinz, Hövelmanns and Kiltz (TCC 2017) first presented two generic
constructions of an IND-CCA-secure KEM with quartic security loss in
the QROM, one with implicit rejection (a pseudorandom key is return
for an invalid ciphertext) and the other with explicit rejection (an abort
symbol is returned for an invalid ciphertext). Both are widely used in
the NIST Round-1 KEM submissions and the ones with explicit rejection
account for 40%. Recently, the security reductions have been improved
to quadratic loss under a standard assumption, and be tight under a non-
standard assumption by Jiang et al. (Crypto 2018) and Saito, Xagawa
and Yamakawa (Eurocrypt 2018). However, these improvements only
apply to the KEM submissions with implicit rejection and the techniques
do not seem to carry over to KEMs with explicit rejection.

In this paper, we provide three generic constructions of an IND-CCA-
secure KEM with explicit rejection, under the same assumptions and
with the same tightness in the security reductions as the aforemen-
tioned KEM constructions with implicit rejection (Crypto 2018, Euro-
crypt 2018). Specifically, we develop a novel approach to verify the valid-
ity of a ciphertext in the QROM and use it to extend the proof techniques
for KEM constructions with implicit rejection (Crypto 2018, Eurocrypt
2018) to our KEM constructions with explicit rejection. Moreover, using
an improved version of one-way to hiding lemma by Ambainis, Hamburg
and Unruh (ePrint 2018/904), for two of our constructions, we present
tighter reductions to the standard IND-CPA assumption. Our results
directly apply to 9 KEM submissions with explicit rejection, and pro-
vide tighter reductions than previously known (TCC 2017).

c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11443, pp. 618–645, 2019.
https://doi.org/10.1007/978-3-030-17259-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17259-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-17259-6_21


Key Encapsulation Mechanism with Explicit Rejection in the QROM 619

Keywords: Quantum random oracle model ·
Key encapsulation mechanism · Explicit rejection ·
Generic construction

1 Introduction

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [1] is consid-
ered to be a standard security notion of a key encapsulation mechanism (KEM).
Efficient IND-CCA-secure KEMs are usually constructed in the random oracle
model (ROM) [2], where a hash function is idealized to be a publicly accessi-
ble random oracle (RO). Generic constructions of an efficient IND-CCA-secure
KEM in the ROM are well studied by Dent [3] and Hofheinz, Hövelmanns and
Kiltz [4].

The constructions of IND-CCA-secure KEMs in [4] are essentially vari-
ous KEM variants of the Fujisaki-Okamoto (FO) transformation [5,6] and the
REACT/GEM transformation [7,8], which turn a weakly secure public-key
encryption (PKE) into an IND-CCA-secure KEM. These constructions can
be classified into two categories according to the value for an invalid cipher-
text during the decapsulation. One category contains the constructions with
explicit rejection which return a rejection symbol ⊥ when decapsulating an
invalid ciphertext, including FO⊥, FO⊥

m, QFO⊥
m, U⊥, U⊥

m, QU⊥
m, where FO

denotes the class of transformations that turn a PKE with standard security
(one-wayness against chosen- plaintext attacks (OW-CPA) or indistinguishabil-
ity against chosen-plaintext attacks (IND-CPA)) into an IND-CCA KEM, U
denotes the class of transformations that turn a PKE with non-standard secu-
rity (e.g., OW-PCA, one-way against plaintext checking attack [7,8]) or a deter-
ministic PKE (DPKE, where the encryption algorithm is deterministic) into an
IND-CCA-secure KEM, m1 (without m) means K = H(m) (K = H(m, c)), �⊥
(⊥) means implicit (explicit) rejection and Q means an additional Targhi-Unruh
hash [9] (a length-preserving hash function that has the same domain and range
size) is added into the ciphertext. The second category contains the KEM con-
structions with implicit rejection where a pseudorandom key is returned for an
invalid ciphertext, including FO�⊥, FO�⊥

m, QFO�⊥
m, U�⊥, U�⊥

m, QU�⊥
m.

Recently, the National Institute of Standards and Technology (NIST)
launched a Post-Quantum Cryptography Project and published a call for submis-
sions of quantum-resistant public-key cryptographic algorithms including digital-
signature, PKE, and KEM (or key exchange) [10]. Among the 69 Round-1 sub-
missions [10], there are 39 KEM proposals. Specially, 25 NIST submissions fol-
lowed above constructions in [4] to achieve IND-CCA security.

Generic constructions in the ROM have gathered renewed interest in the post-
quantum setting, where adversaries are equipped with a quantum computer. In
the real world, quantum adversary can execute hash functions (the instantiation
of the RO) on an arbitrary superposition of inputs. Therefore, for evaluating
the post-quantum security, one needs to perform the analysis in the quantum

1 The message m here is picked at random from the message space of underlying PKE.
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random oracle model (QROM), introduced by [11]. Unfortunately, the QROM is
quite difficult to work with, since many proof techniques in the ROM including
adaptive programmability or extractability, have no analog in the QROM [11].

Hofheinz et al. [4] first presented two generic KEM constructions in the
QROM, QFO�⊥

m and QFO⊥
m, where a Targhi-Unruh hash [9] is used to follow the

technique in [9,12] to prove the QROM security. However, the security reductions
are highly non-tight with quartic loss.

Subsequently, Saito, Xagawa and Yamakawa [13] and Jiang et al. [14]
extended the technique in [11] to remove the Targhi-Unruh hash and tighten
above security reductions. Jiang et al. [14] presented security reductions for
FO�⊥

m and FO�⊥ with quadratic loss from standard OW-CPA security of under-
lying PKE. Saito et al. [13] proposed a new security notion for DPKE called
the disjoint simulatability (DS) security, and showed that the U�⊥

m transforma-
tion can convert a DS-secure DPKE into an IND-CCA-secure KEM with a tight
security reduction. However, above improvements were only achieved for KEM
constructions with implicit rejection due to the obstacle that the simulator needs
to verify the validity of a ciphertext [13,14].

Among the 25 NIST submissions where the generic constructions in [4] are
used, 10 submissions (40%) use generic KEM constructions with explicit rejection
[10] including EMBLEM and R.EMBLEM, Lepton, NTRU-HRSS-KEM, BIG
QUAKE, DAGS, HQC, LOCKER, QC-MDPC, RQC and ThreeBears. Except
ThreeBears [15] which provides a sketch of a QROM security reduction with
quadratic loss based on their specific scheme, the other 9 submissions that use the
transformation QFO⊥

m or QFO⊥2 only have a highly non-tight QROM security
reduction with quartic loss.

In this paper, we focus on generic constructions of an IND-CCA-secure KEM
with explicit rejection, under the same assumptions and with the same tightness
in security reduction as KEMs with implicit rejection [13,14].

1.1 Our Contributions

We present three generic constructions of an IND-CCA-secure KEM with explicit
rejection, HFO⊥

m, HFO⊥ and HU⊥
m, from a weakly secure PKE, by revisiting the

plaintext confirmation method in the QROM (refer to Subsect. 1.2 for details).
HFO⊥

m, HFO⊥ and HU⊥
m are identical with the existing generic constructions

with explicit rejection QFO⊥
m, QFO⊥ and QU⊥

m in [4] except for the hash used in
plaintext confirmation. In HFO⊥

m, HFO⊥ and HU⊥
m, a conventional hash function

works. In contrast, in QFO⊥
m, QFO⊥ and QU⊥

m, the hash function is required to
be length-preserving, a Targhi-Unruh hash function. A length-preserving hash
function will lead to a significant increase of encapsulation size in the case that
the message space elements are strictly larger than a single hash value, e.g.,
NTRU-HRSS-KEM [16]. Thus, our constructions can directly help to reduce the
encapsulation size for these KEM schemes.
2 Actually, QFO⊥ was not definitely presented by [4]. But, its construction is the same

as QFO⊥
m except that K = H(m, c) and its security can be easily derived from the

security proof of QFO⊥
m in [4].
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Table 1. Generic KEM constructions with explicit rejection in the QROM.

Constructions Underlying security Security bound

QFO⊥
m and QFO⊥ [4] OW-CPA q

√
q2δ + q

√
ε

Our HFO⊥
m and HFO�⊥ IND-CPA q

√
δ +

√
qε

Our HFO⊥
m and HFO�⊥ OW-CPA q

√
δ + q

√
ε

Our HU⊥
m DS ε

In terms of QROM security reductions, ours are much tighter than the ones
of QFO⊥

m and QFO⊥ in [4], see Table 1. For any correctness error3 δ (0 ≤ δ < 1),
our obtained security bounds for HFO⊥

m and HFO⊥ are both ε′ ≈ q
√

δ + q
√

ε

which are much tighter than ε′ ≈ q
√

q2δ + q
√

ε in [4], where ε′ is the success
probability of an adversary against the IND-CCA security of the resulting KEM,
ε is the success probability of another adversary against the OW-CPA security
of the underlying PKE, and q is the total number of B’s queries to various
oracles. For HU⊥

m, the IND-CCA security of the resulting KEM is tightly reduced
to the DS security of the underlying DPKE with perfect correctness4. That
is, our generic constructions with explicit rejection achieve the same tightness
in security reductions under identical assumptions as the corresponding KEM
constructions with implicit rejection FO�⊥

m, FO�⊥ and U�⊥
m in [13,14]. Moreover,

we also present tighter QROM security reductions, ε′ ≈ q
√

δ +
√

qε, for HFO⊥
m

and HFO⊥ based on the IND-CPA security of the underlying PKE.
Accordingly, our tighter QROM security reductions can directly provide

more reliable security guarantee for the IND-CCA-secure KEM submissions with
explicit rejection where QFO⊥

m and QFO⊥ are used, e.g., NTRU-HRSS-KEM
[16], see Table 2.

Table 2. IND-CCA-secure KEM submissions for which our tighter security reduc-
tions of HFO⊥

m and HFO⊥ can directly provide more reliable security guarantee in the
QROM.

Constructions Submission

HFO⊥
m NTRU-HRSS-KEM,DAGS,QC-MDPC

HFO⊥ EMBLEM and R.EMBLEM, Lepton, BIG QUAKE, HQC, LOCKER, RQC

1.2 Techniques

The difference between KEM constructions with explicit rejection and implicit
rejection is the behavior of the decapsulation algorithm on an invalid ciphertext.
3 The probability of decryption failure in a legitimate execution of the scheme.
4 Perfect correctness, i.e., δ = 0 is required by [13]. Here, we just follow this

assumption.
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In a KEM construction with implicit rejection, a pseudorandom key is returned
instead of a rejection symbol ⊥, which prevents the adversary from judging
the validity of a ciphertext by querying the decapsulation oracle. Thus, the
simulation of a decapsulation oracle does not need to verify if a given ciphertext
is valid or not, and can use an identical hidden random orale Hq to answer the
decapsulation queries for both valid ciphertexts and invalid ciphertexts [13,14].

However, in the case of explicit rejection, the simulation of the decapsulation
oracle has to first verify the validity of a given ciphertext, which is the key
obstacle for the techniques in [13,14] to carry over. Here, before showing how
to overcome this obstacle, we first review two general methods [3,4] used in the
ROM to achieve an IND-CCA-secure KEM construction with explicit rejection,
the γ-spreadness assumption and plaintext confirmation.

γ-spread. By assuming the underlying PKE to be γ-spread, we can obtain
a KEM construction with explicit rejection. A γ-spread PKE, introduced by
Fujisaki and Okamoto [5,6], roughly speaking, requires that ciphertexts (gener-
ated by the probabilistic encryption algorithm) have sufficiently large entropy.
It plays an important role in the ROM security proofs of the original FO trans-
formation [5,6], and FO⊥

m and FO⊥ (the KEM variants of FO transformation)
in [4]. If the underlying PKE is γ-spread, we can easily verify the validity of
a ciphertext by checking if the ciphertext is derived by using the randomness
produced by the RO [4–6]. In the ROM, adversarial queries to the RO can be
recorded by a list, which makes the above checking feasible. Unfortunately, as
discussed in [14], in the QROM, it is difficult to learn the actual content of an
adversarial RO query.

Plaintext confirmation. Adding an extra hash value of the plaintext to the
ciphertext, called plaintext confirmation5, is another method to achieve a con-
struction with explicit rejection. This method was first introduced by [3, Table 4]
in the ROM, in the context of a generic construction of an IND-CCA-secure KEM
with explicit rejection based on a OW-CPA-secure DPKE, which can be viewed
as a simpler version of the REACT construction. Our HU⊥

m transformation is
essentially the same as [3, Table 4].

In particular, a valid ciphertext c = (c1, c2) is produced by c1 = Enc(pk,m),
c2 = H ′(m) for some m, where Enc is the encryption algorithm of the underlying
DPKE. In the ROM, the validity of a ciphertext (c = (c1, c2)) can be verified by
testing if (c1, c2) is contained in a list (m,c1,c2), where m is an adversarial query
input to H ′, (c1 = Enc(pk,m), c2 = H ′(m)) is the corresponding ciphertext.
However, this verification method will not work in the QROM due to the same
reason as in the case of the γ-spreadness assumption method that it’s hard to
learn adversarial query inputs.

In [4], Hofheinz et al. follow Targhi and Unruh’s technique [9,12] and simulate
H ′ using a random polynomial of degree 2qH′ over a finite field F2n , where qH′ is
the number of adversarial queries to H ′ and n is the range size of H ′. For a given

5 This name comes from Bernstein and Persichetti’s paper [17].
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ciphertext c = (c1, c2), the simulator verifies the validity by checking if c1 lies
within the encryptions of the roots of H ′(X) − c2. To make H ′ invertible, H ′ is
required to be length-preserving. Additionally, the technique in [4,9] requires two
instances of the one-way to hiding (OW2H) lemma [18, Lemma 6.2], which is a
practical tool to prove the indistinguishability between games where the random
oracles are reprogrammed. Nevertheless, the OW2H lemma will inherently incur
a quadratic security loss. Thus, the security reductions of QFO⊥

m and QFO�⊥ in
[4] suffer a quartic security loss.

In this paper, we develop a novel verification method for the KEM con-
struction with explicit rejection based on plaintext confirmation, and circum-
vent the learning of adversarial queries. Specifically, the simulator replaces H ′

by H ′
q ◦ Enc(pk, ·)6, where H ′

q is a secret random function that is not given
to the adversary. We require Enc(pk, ·) to be indistinguishable from an injec-
tive function for any efficient quantum adversary. Thus, in the adversary’s view,
H ′

q ◦ Enc(pk, ·) is a perfect random oracle. Then, we note that if c is a valid
ciphertext, H ′

q(c1) = c2, and if c is invalid, then H ′
q(c1) = c2 with negligi-

ble probability. Thereby, using H ′
q, we can verify the validity of a ciphertext

c = (c1, c2) just by testing if H ′
q(c1) = c2 or not.

With this novel verification method for the validity of a ciphertext, we can
extend the techniques in [13,14] to the constructions with explicit rejection in
this paper. Thus, the OW2H lemma is instantiated only once in the security
reductions for HFO⊥ and HFO⊥

m, and never used during the security reduc-
tion for HU⊥

m, which lead to the same security loss as the corresponding KEM
constructions with implicit rejection in [13,14].

Tighter reduction from IND-CPA. Different from the adversary against
the OW-CPA security of PKE, the adversary against the IND-CPA security
of PKE knows the plaintexts m0 and m1 of which one is encrypted to obtain
the challenge ciphertext. Thus, the simulator can make an elaborate analysis of
the RO-query inputs, e.g., testing whether m0 (or m1) has been queried to the
RO [4], and determine which one of the query inputs can be used to break the
IND-CPA security instead of just uniformly choosing at random. Particularly, in
the ROM, [4] presents tight reductions for FO transformations from IND-CPA
security of underlying PKE to IND-CCA security of resulting KEM. However,
the techniques in [4] require the simulator to maintain a RO-query list which is
difficult to implement in the QROM. In our case, we instead use a semi-classical
oracle technique (refer to Lemma 3 for details), recently introduced by Ambainis,
Hamburg and Unruh [19], to test whether m0 (or m1) has been queried. Then,
the security bound q

√
δ + q

√
ε is improved to be q

√
δ +

√
qε.

1.3 Discussion

As in prior works [4,13,14], we do not provide a general definition of
explicit/implicit rejection on the KEM level. Although on first sight it
6 Such a non-adaptive RO programming technique is also used in [11,13,14].
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seems these notions could be clearly defined, it turns out that capturing
implicit/explicit rejection appropriately on the KEM level (rather than on the
construction level) is quite challenging. This seems to be mostly due to the
fact that the notion of an “invalid ciphertext”, on which the definition of
explicit/implicit rejection would likely be based, remains elusive as well. There-
fore, we only discuss explicit/implicit rejection on the construction level, as was
also done in [15,17].

KEMs either have implicit rejection or explicit rejection, or do not satisfy
either of these two. The advantages and disadvantages of explicit rejection and
implicit rejection for specific KEM constructions have been discussed by [15]
and [17]. The goal of this paper is not to take part in this discussion, but rather
to expand the proof techniques from KEMs with implicit rejection to KEMs
with explicit rejection. In particular, we show security reductions in the QROM
for our generic KEM constructions with explicit rejection that preserve the same
assumptions and tightness as previously known for KEMs with implicit rejection
[13,14].

1.4 Related Work

In a concurrent and independent work, Zhandry [20] presented a proof in the
QROM for original FO transformation in [5,6] from OW-CPA security of under-
lying PKE and one-time security of underlying symmetric key encryption to
quantum CCA security of resulting PKE (quantum CCA security of PKE [21] is
identical to CCA security except that adversaries can make decryption queries
in quantum superpositions). However, the security proofs for KEM variants of
FO transformation in this paper were not presented and the tightness was not
discussed either. Moreover, their proof techniques are quite different from ours,
and require γ-spread assumption of underlying PKE.

1.5 Future Work

We note that the Targhi-Unruh hash is removed in generic KEM constructions
with implicit rejection [13,14]. However, a conventional extra hash (although not
a Targhi-Unruh hash) is still required in our generic KEM constructions with
explicit rejection, just like in the generic construction in the ROM [3, Table 4].
The ThreeBears [15] claims that removing this extra hash will not significantly
impact the IND-CCA security of their KEM scheme even though the explicit
rejection is used. Indeed, it seems possible that if the underlying PKE has some
specific algebraic structure which can be used for the validity verification of the
ciphertext, this extra hash can be removed even in a construction with explicit
rejection.

In our future work, we will research the specific algebraic structure of the
underlying PKE, which can help to achieve an IND-CCA-secure KEM construc-
tion with explicit rejection and without this extra hash.
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2 Preliminaries

Symbol description. A security parameter is denoted by λ. The abbreviation
PPT stands for probabilistic polynomial time. K, M, C and R are denoted as
key space, message space, ciphertext space and randomness space, respectively.
Given a finite set X, we denote the sampling of a uniformly random element
x by x

$← X. Denote the sampling from some distribution D by x←D. x =?y
is denoted as an integer that is 1 if x = y, and otherwise 0. Pr[P : G] is the
probability that the predicate P holds true where free variables in P are assigned
according to the program in G. Denote deterministic (probabilistic) computation
of an algorithm A on input x by y := A(x) (y ← A(x)). Let |X| be the cardinality
of set X. AH means that the algorithm A gets access to the oracle H. f ◦ g(·)
means f(g(·)).

2.1 Quantum Random Oracle Model

We refer the reader to [22] for basic of quantum computation.
Random oracle model (ROM) [2] is an idealized model, where a hash func-

tion is modeled as a publicly accessible random oracle. In quantum setting, an
adversary with quantum computer can off-line evaluate the hash function on an
arbitrary superposition of inputs. As a result, the quantum adversary should be
allowed to query the random orale with quantum state. We call this the quantum
random oracle model (QROM), introduced by Boneh et al. [11]. Particularly, [11]
argued that to prove post-quantum security one needs to prove security in the
QROM.

Tools. Next, we will present several existing lemmas that we will use throughout
the paper.

Lemma 1 (Simulating the random oracle [23, Theorem 6.1]). Let H be an
oracle drawn from the set of 2q-wise independent functions uniformly at random.
Then the advantage any quantum algorithm making at most q queries to H has
in distinguishing H from a truly random function is identically 0.

Lemma 2 (Generic search problem [14,24,25]). Let γ ∈ [0, 1]. Let Z be a
finite set. F : Z → {0, 1} is the following random function: For each z, F (z) = 1
with probability pz (pz ≤ γ), and F (z) = 0 else. Let N be the function with
∀z : N(z) = 0. If an oracle algorithm A makes at most q quantum queries to F
(or N), then

∣∣Pr[b = 1 : b ← AF ] − Pr[b = 1 : b ← AN ]
∣∣ ≤ 2q

√
γ.

Particularly, the probability of A finding a z such that F (z) = 1 is at most 2q
√

γ,
i.e., Pr[F (z) = 1 : z ← AF ] ≤ 2q

√
γ.
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One way to hiding (OW2H) lemma [18, Lemma 6.2] is a practical tool to argue
the indistinguishability between games where the random oracles are repro-
grammed. Following are improved versions of OW2H lemma, recently introduced
by [19].

Lemma 3 (Semi-classical OW2H [19, Theorem 1]). Let S ⊆ X be random.
Let O1, O2 be oracles with domain X and codomain Y such that O1(x) = O2(x)
for any x /∈ S. Let z be a random bitstring. (O1, O2, S and z may have arbi-
trary joint distribution D.) Let fS be the indicator function, where fS(x) = 1 if
x ∈ S and 0 otherwise. Let OSC

S be an oracle that performs the semi-classical
measurements corresponding to the projectors My when queried with |x〉, where
My :=

∑
x∈X:fS(x)=y |x〉〈x| (y ∈ 0, 1). Let O2\S (“O2 punctured on S”) be an

oracle that first queries OSC
S and then O2.

Let AO1(z) be an oracle algorithm with query number d. Denote Find as the
event that in the execution of AO2\S(z), OSC

S ever outputs 1 during semi-classical
measurements.

Let

Pleft = Pr[b = 1 : (O1,O2, S, z)←D, b ← AO1(z)]
Pright = Pr[b = 1 ∧ ¬Find : (O1,O2, S, z)←D, b ← AO2\S(z)]

Pfind := Pr[Find : (O1,O2, S, z)←D,AO2\S(z)].

Then
|Pleft − Pright| ≤ √

(d + 1)Pfind and
∣∣√Pleft − √

Pright

∣∣ ≤ √
(d + 1)Pfind.

Remark: There are several other definitions of Pright in [19, Theorem 1]. In this
paper, we just need above definition in our security proofs.

Semi-classical oracle. Roughly speaking, semi-classical oracle OSC
S only mea-

sures the output |fS(x)〉 but not the input |x〉. Formally, for a query to OSC
S

with
∑

x,z ax,z|x〉|z〉, OSC
S does the following

1. initialize a single qubit L with |0〉,
2. transform

∑
x,z ax,z|x〉|z〉|0〉 into

∑
x,z ax,z|x〉|z〉|fS(x)〉,

3. measure L.
Then, after performing a semi-classical measurement, the query state will
become

∑
x,z:fS(x)=y ax,z|x〉|z〉 (non-normalized) if the measurement outputs

y (y ∈ 0, 1).

Lemma 4 (Search in semi-classical oracle [19, Corollary 1]). Suppose that
S and z are independent, and that A is a q-query algorithm. Let Pmax :=
maxx∈X Pr[x ∈ S]. Then

Pr[Find : AOSC
S (z)] ≤ 4q · Pmax.

Lemma 5 (OW2H, Probabilities [19, Theorem 3]). Let S ⊆ X be random.
Let O1, O2 be oracles with domain X and codomain Y such that O1(x) = O2(x)
for any x /∈ S. Let z be a random bitstring. (O1, O2, S and z may have arbitrary
joint distribution D.)
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Let AO1(z) be an oracle algorithm with query number d. Let BO1 be an oracle

algorithm that on input z does the following: pick i
$← {1, . . . , d}, run AO1(z)

until (just before) the i-th query, measure all query input registers in the compu-
tational basis, and output the set T of measurement outcomes. (When A makes
less than i queries, B outputs ⊥ /∈ X.)

Let

Pleft = Pr[b = 1 : (O1,O2, S, z)←D, b ← AO1(z)]
Pright = Pr[b = 1 : (O1,O2, S, z)←D, b ← AO2(z)]

Pguess := Pr[S ∩ T �= ∅ : (O1,O2, S, z)←D,T ← BO1(z)].

Then
|Pleft − Pright| ≤ 2d

√
Pguess and

∣
∣√Pleft − √

Pright

∣
∣ ≤ 2d

√
Pguess.

2.2 Cryptographic Primitives

Definition 1 (Public-key encryption). A public-key encryption scheme
PKE = (Gen,Enc,Dec) consists of a triple of polynomial time (in the secu-
rity parameter λ) algorithms and a finite message space M.

– Gen(1λ) → (pk, sk): the key generation algorithm, is a probabilistic algo-
rithm which on input 1λ outputs a public/secret key-pair (pk, sk). Usually,
for brevity, we will omit the input of Gen.

– Enc(pk,m) → c: the encryption algorithm Enc, on input pk and a message
m ∈ M, outputs a ciphertext c ← Enc(pk,m). If necessary, we make the
used randomness of encryption explicit by writing c := Enc(pk,m; r), where

r
$← R (R is the randomness space).

– Dec(sk, c) → m: the decryption algorithm Dec, is a deterministic algorithm
which on input sk and a ciphertext c outputs a message m := Dec(sk, c) or
a rejection symbol ⊥/∈ M.

A PKE is determined if Enc is deterministic. We denote DPKE to stand for
a determined PKE.

Definition 2 (Correctness [4]). A public-key encryption scheme PKE is δ-
correct if

E[max
m∈M

Pr[Dec(sk, c) �= m : c ← Enc(pk,m)]] ≤ δ,

where the expectation is taken over (pk, sk) ← Gen. We say a PKE is perfectly
correct if δ = 0.

Next, we define three security notions, one-wayness against chosen-plaintext
attacks (OW-CPA) of PKE, indistinguishability against chosen-plaintext attacks
(IND-CPA) of PKE, and disjoint simulatability (DS) of DPKE.

Definition 3 (OW-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define OW − CPA game
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of PKE as in Fig. 1. Define the OW − CPA advantage function of an adversary
A against PKE as

AdvOW-CPA
PKE (A) := Pr[OW-CPAA

PKE = 1].

Game OW-CPA

1 : (pk, sk) ← Gen

2 : m∗ $← M
3 : c∗ ← Enc(pk, m∗)

4 : m′ ← A(pk, c∗)

5 : return m′ =?m∗

Game IND-CPA

1 : (pk, sk) ← Gen

2 : b ← {0, 1}
3 : (m0, m1)←A(pk)

4 : c∗ ← Enc(pk, mb)

5 : b′ ← A(pk, c∗)

6 : return b′ =?b

Fig. 1. Game OW-CPA and game IND-CPA for PKE.

Definition 4 (IND-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define IND − CPA game of
PKE as in Fig. 1, where m0 and m1 have the same length. Define the IND − CPA
advantage function of an adversary A against PKE as

AdvIND-CPA
PKE (A) :=

∣∣Pr[IND-CPAA
PKE = 1] − 1/2

∣∣ .

Definition 5 (DS-secure DPKE [13]). Let DM denote an efficiently sam-
pleable distribution on a set M. A DPKE scheme (Gen,Enc,Dec) with plaintext
and ciphertext spaces M and C is DM-disjoint simulatable if there exists a PPT
algorithm S that satisfies the following.

– Statistical disjointness:

DisjPKE,S := max
(pk,sk)∈Gen(1λ;Rgen)

Pr[c ∈ Enc(pk,M) : c ← S(pk)]

is negligible, where Rgen denotes a randomness space for Gen.
– Ciphertext indistinguishability: For any PPT adversary A,

AdvDS-IND
PKE,DM,S(A) :=

∣
∣∣∣∣∣

Pr
[
A(pk, c∗) → 1 :

(pk, sk) ← Gen;m∗ ← DM;
c∗ = Enc(pk,m∗)]

]

−Pr[A(pk, c∗) → 1 : (pk, sk) ← Gen; c∗ ← S(pk)]

∣
∣∣∣∣∣

is negligible.

Definition 6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms Gen, Encaps and Decaps.

– Gen(1λ) → (pk, sk): the key generation algorithm Gen outputs a key pair
(pk, sk). Usually, for brevity, we will omit the input of Gen.
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– Encaps(pk) → (K, c): the encapsulation algorithm Encaps, on input pk, out-
puts a tuple (K, c), where K ∈ K and ciphertext c is said to be an encapsula-
tion of the key K. If necessary, we make the used randomness of encapsulation
explicit by writing (K, c) := Encaps(pk; r), where r ∈ R (R is the randomness
space).

– Decaps(sk, c) → K: the deterministic decapsulation algorithm Decaps, on
input sk and an encapsulation c, outputs either a key K := Decaps(sk, c) ∈ K
or a rejection symbol ⊥/∈ K.

Next, we now define a security notion for KEM: indistinguishability against
chosen-ciphertext attacks (IND-CCA).

Definition 7 (IND-CCA-secure KEM). We define the IND − CCA game
as in Fig. 2 and the IND − CCA advantage function of an adversary A against
KEM as

AdvIND-CCA
KEM (A) :=

∣∣Pr[IND-CCAA
KEM = 1] − 1/2

∣∣ .

Game IND-CCA

1 : (pk, sk) ← Gen

2 : b
$← {0, 1}

3 : (K∗
0 , c∗) ← Encaps(pk)

4 : K∗
1

$← K
5 : b′ ← ADecaps(pk, c∗, K∗

b )

6 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 2. IND-CCA game for KEM.

Following the work [4], we also make the convention that the number qH of
the adversarial queries to H counts the total number of times H is executed in
the experiment. That is, the number of A’s explicit queries to H plus the number
of implicit queries to H made by the experiment.

3 Generic KEM Constructions with Explicit Rejection

Using Targhi-Unruh technique [9], Hofheinz et al. [4] first presented two generic
constructions of an IND-CCA-secure KEM with explicit rejection QFO⊥

m and
QFO�⊥

m in the QROM, by reducing the OW-CPA security of underlying PKE
scheme to the IND-CCA security of resulting KEM with quartic security loss.
These two constructions are widely used to achieve IND-CCA security in the
NIST Round-1 KEM submissions [10]. Subsequently, Jiang et al. [14] improved
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above security loss to be quadratic for FO�⊥
m and FO�⊥. For the transformation U�⊥

m

in [4], Saito et al. [13] gave a tight reduction from the DS security of underlying
perfectly correct DPKE to the IND-CCA security of resulting KEM. However,
the proof techniques in [13,14] are restricted to the KEM constructions with
implicit rejection.

Encaps(pk)

1 : m
$← M

2 : c1 = Enc(pk, m;G(m))

3 : c2 = H ′(m)

4 : c = (c1, c2)

5 : K := H(m)

6 : return (K, c)

Decaps(sk, c)

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if Enc(pk, m′;G(m′)) = c1 ∧ H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Fig. 3. IND-CCA-secure KEM−I = HFO⊥
m[PKE, G, H, H ′]

Encaps(pk)

1 : m
$← M

2 : c1 = Enc(pk, m;G(m))

3 : c2 = H ′(m)

4 : c = (c1, c2)

5 : K := H(m, c)

6 : return (K, c)

Decaps(sk, c)

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if Enc(pk, m′;G(m′)) = c1 ∧ H ′(m′) = c2

4 : return K := H(m′, c)

5 : else return ⊥

Fig. 4. IND-CCA-secure KEM−II = HFO⊥[PKE, G, H, H ′]

Encaps(pk)

1 : m
$← M

2 : c1 = Enc(pk, m)

3 : c2 = H ′(m)

4 : c = (c1, c2)

5 : K := H(m)

6 : return (K, c)

Decaps(sk, c)

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if Enc(pk, m′) = c1 ∧ H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Fig. 5. IND-CCA-secure KEM−III = HU⊥
m[DPKE, H, H ′]
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In this section, first, we will present three generic constructions of an IND-
CCA-secure KEM with explicit rejection, HFO⊥

m, HFO⊥ and HU⊥
m, correspond-

ing the implicit ones, i.e., FO�⊥
m , FO�⊥ and U�⊥

m in [4,13,14]. Then, assuming
OW-CPA security of underlying PKE, we will provide security reductions for
HFO⊥

m and HFO⊥ with quadratic security loss. Particularly, we also present
tighter security reductions for HFO⊥

m and HFO⊥ with the IND-CPA security
assumption of underlying PKE. Finally, we will give a tight security reduction
for HU⊥

m, from the DS security of underlying perfectly correct DPKE to the
IND-CCA security of resulting KEM.

To a public-key encryption scheme PKE = (Gen, Enc, Dec) with message
space M and randomness space R, hash functions G : M → R, H : {0, 1}∗ →
{0, 1}n and H ′ : M → {0, 1}n′7, we associate KEM−I = HFO⊥

m[PKE, G,H,H ′],
KEM−II = HFO⊥[PKE, G,H,H ′], and KEM−III = HU⊥[PKE,H,H ′], shown8

in Figs. 3, 4 and 5, respectively. To make the presentation concise, we make the
convention that K = {0, 1}n.

Remark: Explicit (implicit resp.) rejection9 means a rejection symbol ⊥ (pseu-
dorandom key, resp.) is returned for an invalid ciphertext, where we use a
construction-dependent definition of invalid ciphertext. For KEM-I and KEM-II
(KEM-III, resp.), we say a ciphertext c = (c1, c2) is invalid if there is no m′ such
that (c1, c2) �= (Enc(pk,m′;G(m′)),H ′(m′)) ((c1, c2) �= (Enc(pk,m′),H ′(m′)),
resp.).

Theorem 1 (PKE IND-CPA
QROM⇒ (KEM-I IND-CCA). If PKE is δ-

correct, for any IND-CCA adversary B against KEM-I, issuing at most qD

queries to the decapsulation oracle Decaps, at most qG (qH , qH′) queries to the
random oracle G (H, H ′), there exists an IND-CPA adversary A against PKE

such that AdvIND-CCA
KEM-I (B) ≤ 2

√
2(qG + qH + 1)AdvIND-CPA

PKE (A) + 4 (qG+qH+1)2

|M| +

4qG

√
δ + qD

2n′ and the running time of A is about that of B.

Proof. Let B be an adversary against the IND-CCA security of KEM-I, issuing
at most qD queries to the decapsulation oracle Decaps, at most qG (qH , qH′)
queries to the random oracle G (H, H ′). Denote ΩG, ΩH , ΩH′ , ΩHq

and ΩH′
q

as
the sets of all functions G : M → R, H : M → {0, 1}n, H ′ : M → {0, 1}n′

, Hq :
C1 → {0, 1}n and H ′

q : C1 → {0, 1}n′
, respectively, where C1 is the ciphertext

space of underlying PKE scheme. Consider the games in Fig. 6.

Game G0. Since game G0 is exactly the IND-CCA game,
∣∣Pr[GB

0 ⇒ 1] − 1/2
∣∣ = AdvIND-CCA

KEM-I (B).

7 We assume that G, H, H ′ are not used in the algorithms of PKE, including Gen,
Enc and Dec.

8 The key generation algorithms Gen in KEM-I, KEM-II and KEM-III are the same
as the ones in corresponding underlying PKEs.

9 There may exist some KEMs with neither explicit nor implicit rejection.
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Given (pk, sk) and m ∈ M, define “bad” randomness Rbad(pk, sk,m)
and “good” randomness Rgood(pk, sk,m) = R \ Rbad(pk, sk,m), where
Rbad(pk, sk,m) = {r ∈ R : Dec(sk,Enc(pk,m; r)) �= m}. Let

δ(pk, sk,m) =
|Rbad(pk, sk,m)|

|R|
as the fraction of bad randomness and δ(pk, sk) = maxm∈M δ(pk, sk,m). Thus,
δ = E[δ(pk, sk)], where the expectation is taken over (pk, sk)←Gen.

GAMES G0 − G8

1 : (pk, sk) ← Gen;G $← ΩG

2 : G′ $← ΩG′ ;G := G′ //G1 − G3

3 : g(·) = Enc(pk, ·;G(·))
4 : H

$← ΩH ;H ′ $← ΩH′ //G0 − G1

5 : Hq
$← ΩHq ;H

′
q

$← ΩH′
q

6 : m∗ $← M
7 : r∗ := G(m∗)

8 : r∗ $← R //G6 − G8

9 : c∗
1 := Enc(pk, m∗; r∗) //G0 − G7

10 : m′∗ $← M //G8

11 : c∗
1 := Enc(pk, m′∗; r∗) //G8

12 : c∗
2 := H ′(m∗) //G0 − G1

13 : c∗
2 := H ′

q(c
∗
1) //G2 − G8

14 : c∗ = (c∗
1, c

∗
2)

15 : k∗
0 := H(m∗)

16 : k∗
0

$← K //G6 − G8

17 : k∗
1

$← K; b $← {0, 1}
18 : b′ ← BG,H,H′,Decaps(pk, c∗, k∗

b ) //G0 − G4

19 : G̈ := G; G̈(m∗) $← R //G5 − G6

20 : Ḧ := H; Ḧ(m∗) $← K //G5 − G6

21 : g(·) = Enc(pk, ·; G̈\m∗(·)) //G5 − G6

22 : b′ ← BG̈\m∗,Ḧ\m∗,H′,Decaps(pk, c∗, k∗
b )//G5 − G6

23 : b′ ← BG\m∗,H\m∗,H′,Decaps(pk, c∗, k∗
b )//G7 − G8

24 : return b′ =?b

H(m) //G2 − G8

1 : return Hq ◦ g(m)

H ′(m) //G2 − G8

1 : return H ′
q ◦ g(m)

Decaps (c �= c∗) //G0 − G2

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if g(m′) = c1 ∧ H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Decaps (c �= c∗) //G3 − G8

1 : Parse c = (c1, c2)

2 : if H ′
q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

Fig. 6. Games G0-G8 for the proof of Theorem 1

Let G′ be a random function such that G′(m) is sampled according to the
uniform distribution in Rgood(pk, sk,m). Let ΩG′ be the set of all functions G′.
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Game G1. In game G1, we replace G by G′ that uniformly samples from “good”
randomness at random, i.e., G′ $← ΩG′ . First, let’s show that any adversary
distinguishing G0 from G1 can be converted into an adversary distinguishing G
from G′ in the following way.

Construct an adversary B
˜G(pk, sk) against the distinguishing problem

between G and G′ by taking the accessible oracle G̃ as G, simulating B’s
view and outputting in the same way as G0 and G1. We note that for any
(pk, sk) generated by Gen, if G̃ = G, B

˜G(pk, sk) perfectly simulates G0 and
Pr[1 ← BG : (pk, sk)] = Pr[GB

0 ⇒ 1 : (pk, sk)]. If G̃ = G′, B
˜G(pk, sk) perfectly

simulates G1 and Pr[1 ← BG′
: (pk, sk)] = Pr[GB

1 ⇒ 1 : (pk, sk)].
Thus,

∣∣Pr[GB
0 ⇒ 1 : (pk, sk)] − Pr[GB

1 ⇒ 1 : (pk, sk)]
∣∣

=
∣
∣∣Pr[1 ← BG : (pk, sk)] − Pr[1 ← BG′

: (pk, sk)]
∣
∣∣ .

Next, we will show that any adversary distinguishing G from G′ can be
converted into an adversary distinguishing F1 from F2, where F1 is a function
such that F1(m) is sampled according to Bernoulli distribution Bδ(pk,sk,m), i.e.,
Pr[F1(m) = 1] = δ(pk, sk,m) and Pr[F1(m) = 0] = 1 − δ(pk, sk,m), and F2 is a
constant function that always outputs 0 for any input.

AF (pk, sk)

1 : Pick a 2qG-wise function f

2 : b′′ ← B
˜G(pk, sk)

3 : return b′′

˜G(m)

1 : if F (m) = 0

2 : ˜G(m) = Sample(Rgood(pk, sk, m); f(m))

3 : else

4 : ˜G(m) = Sample(Rbad(pk, sk, m); f(m))

5 : return ˜G(m)

Fig. 7. AF for the proof of Theorem 1

Given any adversary B
˜G(pk, sk), we construct an adversary AF (pk, sk) as

in Fig. 7. Sample(Y) is a probabilistic algorithm that returns a uniformly

distributed y
$← Y. Sample(Y; f(m)) denotes the deterministic execution of

Sample(Y) using explicitly given randomness f(m). Note that G̃ = G if F = F1

and G̃ = G′ if F = F2. Thus, for any fixed (pk, sk) generated by Gen,
Pr[1 ← AF1 : (pk, sk)] = Pr[1 ← BG : (pk, sk)] and Pr[1 ← AF2 : (pk, sk)] =
Pr[1 ← BG′

: (pk, sk)]. Conditioned on a fixed (pk, sk) we obtain by Lemma 2
∣∣∣Pr[1 ← BG : (pk, sk)] − Pr[1 ← BG′

: (pk, sk)]
∣∣∣

=
∣∣Pr[1 ← AF1 : (pk, sk)] − Pr[1 ← AF2 : (pk, sk)]

∣∣ ≤ 2qG

√
δ(pk, sk).
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As
∣∣Pr[GB

0 ⇒ 1 : (pk, sk)] − Pr[GB
1 ⇒ 1 : (pk, sk)]

∣∣ can be bounded by the
maximum distinguishing probability between G and G′ for B

˜G(pk, sk),
∣∣Pr[GB

0 ⇒ 1 : (pk, sk)] − Pr[GB
1 ⇒ 1 : (pk, sk)]

∣∣ ≤ 2qG

√
δ(pk, sk).

By averaging over (pk, sk)←Gen we finally obtain
∣
∣Pr[GB

0 ⇒ 1] − Pr[GB
1 ⇒ 1]

∣
∣ ≤ 2qGE[

√
δ(pk, sk)] ≤ 2qG

√
δ.

Game G2. In this game, replace H and H ′ by Hq ◦ g and H ′
q ◦ g respectively,

where
g(·) = Enc(pk, ·;G(·)).

Note that g in this game is an injective function since it only samples from
“good” randomness. Thus, the distributions of H in G1 and G2 are identical.
Therefore,

Pr[GB
1 ⇒ 1] = Pr[GB

2 ⇒ 1].

Game G3. In game G3, the Decaps oracle is changed that it makes no use of the
secret key sk any more. When B queries the Decaps oracle on c = (c1, c2) (c �=
c∗), K := Hq(c1) is returned if H ′

q(c1) = c2, otherwise ⊥. Let m′ := Dec(sk, c1)
and consider the following three cases.

Case 1: Enc(pk,m′;G(m′)) = c1 and H ′(m′) = c2. Since H = Hq ◦ g and
H ′ = H ′

q ◦ g, both Decaps oracles in G2 and G3 return the same value
Hq(c1).

Case 2: Enc(pk,m′;G(m′)) = c1 and H ′(m′) �= c2. In this case, H ′(m′) =
H ′

q(c1) �= c2. Therefore, both Decaps oracles in G2 and G3 return ⊥.
Case 3: Enc(pk,m′;G(m′)) �= c1. In G2, the Decaps oracle returns ⊥.

In G3, note that if there exists an m′′ such that Enc(pk,m′′;G(m′′)) =
c1, m′′ = m′ since G in this game only samples from “good” random-
ness. That is, Enc(pk,m′;G(m′)) = c1 which contradicts the condition
Enc(pk,m′;G(m′)) �= c1. Therefore, above m′′ does not exist. Meantime,
we also note that B’s queries to H ′ can only help him get access to H ′

q at
ĉ1 such that Enc(pk, m̂;G(m̂)) = ĉ1 for some m̂, thus H ′

q(c1) is uniformly
random in B’s view. As a result, in this case, Pr[H ′

q(c1) = c2] = 1
2n′ and the

Decaps oracle in G3 also returns ⊥ with probability 1 − 1
2n′ .

By the union bound, we know that G2 and G3 can be distinguished with prob-
ability at most qD

2n . That is,

∣∣Pr[GB
2 ⇒ 1] − Pr[GB

3 ⇒ 1]
∣∣ ≤ qD

2n′ .

Game G4. In game G4, we switch the G that only samples from “good” ran-
domness back to an ideal random oracle G. Then, similar to the case of G0 and
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G1, the distinguishing problem between G3 and G4 can also be converted to the
distinguishing problem between G and G′. Using the same analysis method in
bounding the difference between G0 and G1, we can have

∣∣Pr[GB
3 ⇒ 1] − Pr[GB

4 ⇒ 1]
∣∣ ≤ 2qG

√
δ.

Let G̈ (Ḧ) be the function that G̈(m∗) = ṙ∗ (Ḧ(m∗) = k̇∗
0), and G̈ = G

(Ḧ = H) everywhere else, where ṙ∗ and k̇∗
0 are picked uniformly at random from

R and K.

Game G5. In game G5, replace G and H by G̈\m∗ and Ḧ\m∗ respectively. Note
that in this game for B’s query to G (H), G̈\m∗ (Ḧ\m∗) will first query OSC

m∗ ,
i.e., perform a semi-classical measurement, and then query G̈ (Ḧ). Let Find be
the event that OSC

m∗ ever outputs 1 during semi-classical measurements of B′s
queries to G and H. Note that the state after semi-classical measurements is
exactly the state just before querying G̈ and Ḧ. Thus, if the event ¬Find that
OSC

m∗ always outputs 0 happens, there will be no m∗ term for the state just before
querying G̈ and Ḧ (that is, the amplitude corresponding to |m∗〉 will be 0) and
B never learns the values of G(m∗) and H(m∗). Therefore, if ¬Find happens, bit
b is independent of B’s view. Hence,

Pr[GB
5 ⇒ 1 ∧ ¬Find] = 1/2 Pr[¬Find : G5] = 1/2(1 − Pr[Find : G5]).

Let (G×H)(·) = (G(·),H(·)), (G̈×Ḧ)(·) = (G̈(·), Ḧ(·)), and (G̈×Ḧ)\m∗(·) =
(G̈\m∗(·), Ḧ\m∗(·)). If one wants to make queries to G (or H) by accessing to
G × H, he just needs to prepare a uniform superposition of all states in the
output register responding to H (or G). The number of total queries to G × H
is at most qG + qH . Let H̄q be the function that H̄q(c∗

1) =⊥ and H̄q = Hq

everywhere else.

AG×H(pk, c∗
1, H(m∗), H̄q)

1 : H ′
q

$← ΩH′
q

2 : g(·) = Enc(pk, ·;G(·))
3 : c∗

2 = H ′
q(c

∗
1)

4 : c∗ = (c∗
1, c

∗
2)

5 : k∗
0 = H(m∗)

6 : k∗
1

$← K
7 : b

$← {0, 1}
8 : b′ ← BG,H,H′,Decaps(pk, c∗, k∗

b )

9 : return b′ =?b

H ′(m)

1 : return H ′
q ◦ g(m)

Decaps (c �= c∗)

1 : Parse c = (c1, c2)

2 : if H ′
q(c1) = c2

3 : return K := H̄q(c1)

4 : else return ⊥

Fig. 8. AG×H for the proof of Theorem 1.
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Let AG×H be an oracle algorithm on input (pk, c∗
1,H(m∗), H̄q)10 in Fig. 8.

Sample pk, m∗, G, Hq, H and c∗
1 in the same way as G4 and G5, i.e., (pk, sk) ←

Gen, m∗ $← M, G
$← ΩG, Hq

$← ΩHq
, H := Hq◦g and c∗

1 = Enc(pk,m∗;G(m∗)).
Then, AG×H on input (pk, c∗

1,H(m∗), H̄q) perfectly simulates G4. If we replace
G × H by (G̈ × Ḧ)\m∗, A(G̈×Ḧ)\m∗

on input (pk, c∗
1,H(m∗), H̄q) perfectly sim-

ulates G5.
Applying Lemma 3 with X = M, Y = (R,K), S = {m∗}, O1 = G × H,

O2 = G̈ × Ḧ and z = (pk, c∗
1,H(m∗), H̄q), we can have

∣∣Pr[GB
4 ⇒ 1] − Pr[GB

5 ⇒ 1 ∧ ¬Find]∣∣ ≤
√

(qG + qH + 1)Pr[Find : G5].

Game G6. In game G6, replace r∗ := G(m∗) and k∗
0 := H(m∗) by r∗ $← R and

k∗
0

$← K. We do not care about B’s output, but only whether the event Find
happens. Note that in G5 and G6, there is no information of (G(m∗),H(m∗)) in
the oracle (G̈ × Ḧ)\m∗. Thus, apparently,

A(1λ, pk)

1 : m0
$← M

2 : m1
$← M

3 : b′′ $← {0, 1}
4 : r∗ $← R
5 : c∗

1 = Enc(pk, mb′′ ; r∗)

6 : c∗
2 = H ′

q(c
∗
1)

7 : c∗ = (c∗
1, c

∗
2)

8 : k∗ $← K
9 : Pick a 2qG-wise function G

10 : Pick a 2qH -wise function Hq

11 : Pick a 2qH′ -wise function H ′
q

12 : g(·) := Enc(pk, ·;G(·))
13 : b′ ← BG\m0,H\m0,H′,Decaps(pk, c∗, k∗)

14 : return Find

H(m)

1 : return Hq ◦ g(m)

H ′(m)

1 : return H ′
q ◦ g(m)

Decaps (c �= c∗)

1 : Parse c = (c1, c2)

2 : if H ′
q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

Fig. 9. Adversary A for the proof of Theorem 1

10 H̄q here in the input of AG×H is the whole truth table of H̄q. One may wonder that
the size of AG×H ’s memory needs to be exponentially large. Don’t worry about this.
H̄q is just taken as an oracle to make queries (with at most qH times) in actual
games. That is, we can also take H̄q as an accessible oracle instead of a whole truth
table.
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Pr[Find : G5] = Pr[Find : G6].

Game G7. In game G7, replace G̈ and Ḧ by G and H. Since G(m∗) and H(m∗)
have never been used for simulating B’s view,

Pr[Find : G6] = Pr[Find : G7].

Game G8. In game G8, use m′∗ instead of m∗ for generating the challenge
ciphertext, but keep using the original m∗ for G\m∗ and H\m∗, where m′∗ is
chosen uniformly and independently of m∗. Note that the information of m∗ in
this game only exists in the oracles G\m∗ and H\m∗. By Lemma 4,

Pr[Find : G8] ≤ 4
qG + qH + 1

|M| .

Next, we show that any adversary distinguishing G7 from G8 can be con-
verted into an adversary against the IND-CPA security of underlying PKE
scheme. Construct an adversary A on input (1λ, pk) as in Fig. 9. Then, according
to Lemma 1, if b′′ = 0, A perfectly simulates G7 and Pr[Find : G7] = Pr[1 ←
A : b′′ = 0]. If b′′ = 1, A perfectly simulates G8 and Pr[Find : G8] = Pr[1 ← A :
b′′ = 1]. Since AdvIND-CPA

PKE (A) = 1/2 |Pr[1 ← A : b′′ = 0] − Pr[1 ← A : b′′ = 1]|,
|Pr[Find : G7] − Pr[Find : G8]| = 2AdvIND-CPA

PKE (A).

Finally, combing this with the bounds derived above, we can conclude that

Adv
IND-CCA
KEM-I (B) ≤ 4qG

√
δ +

qD
2n′ + 2

√

2(qG + qH + 1)AdvIND-CPA
PKE (A) + 4

(qG + qH + 1)2

|M| .

��
Theorem 2 (PKE OW-CPA

QROM⇒ KEM-I IND-CCA). If PKE is δ-
correct, for any IND-CCA adversary B against KEM-I, issuing at most qD

queries to the decapsulation oracle Decaps, at most qG (qH , qH′) queries to
the random oracle G (H, H ′), there exists a OW-CPA adversary A against

PKE such that AdvIND-CCA
KEM-I (B) ≤ 4qG

√
δ + qD

2n′ + 2(qG + qH) ·
√

AdvOW-CPA
PKE (A)

and the running time of A is about that of B.

Different from FO⊥
m, HFO⊥

m adds the plaintext confirmation and adopts explicit
rejection for decapsulation. In [14, Theorem 2], a security proof of FO⊥

m is given.
The sole and key obstacle of applying the proof techniques in [14, Theorem 2] to
HFO⊥

m is the validity verification of ciphertext when simulating the decapsulation
oracle. Fortunately, this can be overcome with the same verification method
used in the proof of Theorem1. Thus, combing the proofs of Theorem 1 and [14,
Theorem 2], we can obtain a proof of Theorem2, see Appendix A.

Different from the one in KEM-I, the hash function H in KEM-II takes
both the plaintext m and the ciphertext c as input. Using the same proof
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method in [14, Theorem 1], we can divide the H-inputs (m, c) into two
categories, matched inputs and unmatched inputs, by judging whether c =
(Enc(pk,m;G(m)),H ′(m)), and replace H by Hq◦g only for the matched inputs.
Then, following the proofs of Theorems 1 and 2, we can derive Theorems 3 and 4.

Theorem 3 (PKE IND-CPA
QROM⇒ KEM-II IND-CCA). If PKE is δ-

correct, for any IND-CCA adversary B against KEM-II, issuing at most qD

queries to the decapsulation oracle Decaps, at most qG (qH , qH′) queries to the
random oracle G (H, H ′), there exists an IND-CPA adversary A against PKE

such that AdvIND-CCA
KEM-II (B) ≤ 2

√
2(qG + qH + 1)AdvIND-CPA

PKE (A) + 4 (qG+qH+1)2

|M| +

4qG

√
δ + qD

2n′ and the running time of A is about that of B.

Theorem 4 (PKE OW-CPA
QROM⇒ KEM-II IND-CCA). If PKE is δ-

correct, for any IND-CCA adversary B against KEM-II, issuing at most qD

queries to the decapsulation oracle Decaps, at most qG (qH , qH′) queries to the
random oracle G (H, H ′), there exists a OW-CPA adversary A against PKE

such that AdvIND-CCA
KEM-II (B) ≤ 4qG

√
δ + qD

2n′ +2(qG + qH) ·
√

AdvOW-CPA
PKE (A) and the

running time of A is about that of B.

Theorem 5 (PKE DS
QROM⇒ KEM-III IND-CCA). If PKE is determinis-

tic and perfectly correct, for any IND-CCA adversary B against KEM-III, issuing
at most qD queries to the decapsulation oracle Decaps, at most qH (qH′) queries
to the random oracle H (H ′), there exists an adversary A against the DS secu-
rity with an algorithm S such that AdvIND-CCA

KEM-III (B) ≤ qD

2n′ + AdvDS-IND
PKE,UM,S(A) +

DisjPKE,S, where UM is the uniform distribution in M, and the running time
of A is about that of B.

Proof. Let B be an adversary against the IND-CCA security of KEM-III, issuing
at most qD queries to Decaps, at most qH (qH′) queries to H (H ′). We follow
the notations ΩH , ΩH′ , ΩHq

and ΩH′
q

in Theorem 1. Consider the games in
Fig. 10.

Game G0. Since game G0 is exactly the IND-CCA game,
∣∣Pr[GB

0 ⇒ 1] − 1/2
∣∣ = AdvIND-CCA

KEM-III (B).

Game G1. Replace H and H ′ by Hq ◦ g and H ′
q ◦ g respectively, where

g(·) = Enc(pk, ·).

As PKE is perfectly correct, g is an injective functions. Thus, Hq ◦ g (H ′
q ◦ g) is

also a uniformly random function as H (H ′) in G0. Therefore, we can have

Pr[GB
0 ⇒ 1] = Pr[GB

1 ⇒ 1].
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GAMES G0 − G3

1 : (pk, sk) ← Gen

2 : H
$← ΩH ;H ′ $← ΩH′ //G0

3 : Hq
$← ΩHq ;H

′
q

$← ΩH′
q

4 : m∗ $← M
5 : c∗

1 := Enc(pk, m∗) //G0 − G2

6 : c∗
1←S(pk) //G3

7 : c∗
2 := H ′(m∗) //G0

8 : c∗
2 := H ′

q(c
∗
1) //G1 − G3

9 : c∗ = (c∗
1, c

∗
2)

10 : k∗
0 := H(m∗) //G0

11 : k∗
0 := Hq(c∗

1) //G1 − G3

12 : k∗
1

$← K
13 : b

$← {0, 1}
14 : b′ ← BH,H′,Decaps(pk, c∗, k∗

b )

15 : return b′ =?b

H(m) //G1 − G3

1 : return Hq(Enc(pk, m))

H ′(m) //G1 − G3

1 : return H ′
q(Enc(pk, m))

Decaps (c �= c∗) //G0 − G1

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if Enc(pk, m′) = c1 ∧ H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Decaps (c �= c∗) //G2 − G3

1 : Parse c = (c1, c2)

2 : if H ′
q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

Fig. 10. Games G0-G3 for the proof of Theorem 3

Game G2. In game G2, the Decaps oracle is changed that it makes no use of
the secret key sk any more. When B queries the Decaps oracle on c = (c1, c2)
(c �= c∗), K := Hq(c1) is returned if H ′

q(c1) = c2, otherwise ⊥.
Let m′ := Dec(sk, c1). Consider the following three cases.

Case 1: If Enc(pk,m′) �= c1. In this case, the Decaps oracle in G1 returns ⊥.
We note that B’s queries to H ′ can only help him get access to H ′

q at ĉ1
such that Enc(pk, m̂) = ĉ1 for some m̂. Such a m̂ that Enc(pk, m̂) = c1 does
not exist due to the perfect correctness of underlying DPKE. Thus, H ′

q(c1)
is uniformly random in B’s view and H ′

q(c1) �= c2 with probability 1 − 1
2n′ .

Therefore, the Decaps oracle in G2 returns ⊥ with probability 1 − 1
2n′ .

Case 2: Enc(pk,m′) = c1 ∧ H ′(m′) = c2. In this case, H ′(m′) =
H ′

q(Enc(pk,m′)) = H ′
q(c1) = c2. Thus, both Decaps oracles in G1 and

G2 return the same value H(m′) = Hq ◦ g(m′) = Hq(c1).
Case 3: Enc(pk,m′) = c1 ∧ H ′(m′) �= c2. In this case, H ′(m′) =

H ′
q(Enc(pk,m′)) = H ′

q(c1) �= c2, both Decaps oracles in G1 and G2 return
⊥.

Therefore, the Decaps oracles in G1 and G2 output different values with prob-
ability at most 1

2n′ . By the union bound we obtain
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∣∣Pr[GB
1 ⇒ 1] − Pr[GB

2 ⇒ 1]
∣∣ ≤ qD

2n′ .

Game G3. In game G3, c∗
1 is given by c∗

1 ← S(pk). Then, we can bound∣∣Pr[GB
2 ⇒ 1] − Pr[GB

3 ⇒ 1]
∣∣ and

∣∣Pr[GB
3 ⇒ 1] − 1/2

∣∣ as in the proof of U�⊥
m [13,

Theorem 4.2].
Construct an adversary A on input (1λ, pk, c∗

1) that does the following:

1. Pick a 2qH -wise (2qH′ -wise) independent function uniformly at random and
use it to simulate the random oracle Hq (H ′

q). The random oracle H (H ′) is
simulated by Hq ◦ g (H ′

q ◦ g), where g(·) = Enc(pk, ·).
2. Let c∗

2 = H ′
q(c

∗
1), c∗ = (c∗

1, c
∗
2), k∗

0 = Hq(c∗
1), k∗

1
$← K and b

$← {0, 1}.
3. Answer the decapsulation queries by using the Decaps oracle as in G2 and

G3.
4. Invoke b′ ← BH,H′,Decaps(pk, c∗, k∗

b ).
5. Return b′ =?b.

Obviously, A perfectly simulates G2 if c∗
1 = Enc(pk,m∗) (m∗ $← M) and G3 if

c∗
1←S(pk). Therefore,

∣∣Pr[GB
2 ⇒ 1] − Pr[GB

3 ⇒ 1]
∣∣ ≤ AdvDS-IND

PKE,UM,S(A),

Let Bad be the event that c∗
1 ∈ Enc(pk,M) in G3. Then, Pr[Bad] ≤

DisjPKE,S . We note that if ¬Bad happens, Hq(c∗
1) is uniformly random in B’s

view since queries to H can only reveal Hq(c) for c ∈ Enc(pk,M). There-
fore, Pr[GB

3 ⇒ 1 : ¬Bad] = 1/2. We also note that
∣∣Pr[GB

3 ⇒ 1] − 1/2
∣∣ ≤

Pr[Bad] +
∣
∣Pr[GB

3 ⇒ 1 : ¬Bad] − 1/2
∣
∣. Thus,

∣∣Pr[GB
3 ⇒ 1] − 1/2

∣∣ ≤ DisjPKE,S .

Combing the above bounds, Theorem 5 is proven. ��
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A Proof of Theorem2

Proof. Let B be an adversary against the IND-CCA security of KEM-I, issuing
at most qD queries to the decapsulation oracle Decaps, at most qG (qH , qH′)
queries to the random oracle G (H, H ′). Follow the same notations ΩG, ΩH ,
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ΩH′ , ΩHq
, ΩH′

q
, ΩG′ and C1 as in the proof of Theorem 1. Consider the games

in Figs. 11 and 13.

Game G0. Since game G0 is exactly the IND-CCA game,
∣∣Pr[GB

0 ⇒ 1] − 1/2
∣∣ = AdvIND-CCA

KEM-I (B).

Game G1. In game G1, we replace G by G′ that uniformly samples from “good”
randomness at random, i.e., G′ $← ΩG′ .

Game G2. In this game, replace H and H ′ by Hq ◦ g and H ′
q ◦ g respectively,

where
g(·) = Enc(pk, ·;G(·)).

Game G3. In game G3, the Decaps oracle is changed that it makes no use of
the secret key sk any more. When B queries the Decaps oracle on c = (c1, c2)
(c �= c∗), K := Hq(c1) is returned if H ′

q(c1) = c2, otherwise ⊥.

Game G4. In game G4, we switch the G that only samples from “good” ran-
domness back to an ideal random oracle G.

Using the same analysis as in the proof of Theorem1, we can have

∣∣Pr[GB
0 ⇒ 1] − Pr[GB

4 ⇒ 1]
∣∣ ≤ 4qG

√
δ +

qD

2n′ .

Let G̈ (Ḧ) be the function that G̈(m∗) = ṙ∗ (Ḧ(m∗) = k̇∗
0), and G̈ = G

(Ḧ = H) everywhere else, where ṙ∗ and k̇∗
0 are picked uniformly at random from

R and K.

Game G5. In game G5, replace G and H by G̈ and Ḧ respectively. In this game,
bit b is independent of B’s view. Hence,

Pr[GB
5 ⇒ 1] = 1/2.

Let (G × H)(·) = (G(·),H(·)) and (G̈ × Ḧ)(·) = (G̈(·), Ḧ(·)). Let H̄q be
the function that H̄q(c∗

1) =⊥ and H̄q = Hq everywhere else. Define AG×H as
in Fig. 12. Sample pk, m∗, G, Hq, H and c∗

1 in the same way as G4 and G5,

i.e., (pk, sk) ← Gen, m∗ $← M, G
$← ΩG, Hq

$← ΩHq
, H := Hq ◦ g and

c∗
1 = Enc(pk,m∗;G(m∗)), where g(·) = Enc(pk, ·;G(·)).

Then, AG×H on input (pk, c∗
1,H(m∗), H̄q) perfectly simulates G4. If we

replace G × H by G̈ × Ḧ, AG̈×Ḧ on input (pk, c∗
1,H(m∗), H̄q) perfectly sim-

ulates G5.
Let BG̈×Ḧ be an oracle algorithm that on input (pk, c∗

1,H(m∗), H̄q) does the

following: pick i
$← {1, . . . , qG +qH}, run AG̈×Ḧ(pk, c∗

1,H(m∗), H̄q) until the i-th
query, measure the argument of the query in the computational basis, output
the measurement outcome. Define game G6 as in Fig. 13.
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GAMES G0 − G5

1 : (pk, sk) ← Gen;G $← ΩG

2 : Hq
$← ΩHq ;H

′
q

$← ΩH′
q

3 : G′ $← ΩG′ ;G := G′ //G1 − G3

4 : g(·) = Enc(pk, ·;G(·))
5 : H

$← ΩH ;H ′ $← ΩH′ //G0 − G1

6 : m∗ $← M
7 : c∗

1 := Enc(pk, m∗;G(m∗))

8 : c∗
2 := H ′(m∗) //G0 − G1

9 : c∗
2 := H ′

q(c
∗
1) //G2 − G5

10 : c∗ = (c∗
1, c

∗
2)

11 : k∗
0 := H(m∗)

12 : k∗
1

$← K
13 : b

$← {0, 1}
14 : b′ ← BG,H,H′,Decaps(pk, c∗, k∗

b )//G0 − G4

15 : G̈ := G; G̈(m∗) $← R //G5

16 : Ḧ := H; Ḧ(m∗) $← K //G5

17 : g(·) = Enc(pk, ·; G̈(·) //G5

18 : b′ ← BG̈,Ḧ,H′,Decaps(pk, c∗, k∗
b )//G5

19 : return b′ =?b

H(m) //G2 − G5

1 : return Hq(g(m))

H ′(m) //G2 − G5

1 : return H ′
q(g(m))

Decaps (c �= c∗) //G0 − G2

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if g(m′) = c1 ∧ H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Decaps (c �= c∗) //G3 − G5

1 : Parse c = (c1, c2)

2 : if H ′
q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

Fig. 11. Games G0-G5 for the proof of Theorem 2

AG×H(pk, c∗
1, H(m∗), H̄q)

1 : H ′
q

$← ΩH′
q

2 : g(·) = Enc(pk, ·;G(·))
3 : c∗

2 = H ′
q(c

∗
1)

4 : c∗ = (c∗
1, c

∗
2)

5 : k∗
0 = H(m∗)

6 : k∗
1

$← K
7 : b

$← {0, 1}
8 : b′ ← BG,H,H′,Decaps(pk, c∗, k∗

b )

9 : return b′ =?b

H ′(m)

1 : return H ′
q ◦ g(m)

Decaps (c �= c∗)

1 : Parse c = (c1, c2)

2 : if H ′
q(c1) = c2

3 : return K := H̄q(c1)

4 : else return ⊥

Fig. 12. AG×H for the proof of Theorem 2.
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GAMES G6

1 : i
$← {1, . . . , qG + qH}

2 : (pk, sk) ← Gen;G $← ΩG

3 : Hq
$← ΩHq ;H

′
q

$← ΩH′
q

4 : H(·) = Hq(Enc(pk, ·;G(·)))
5 : m∗ $← M
6 : r∗ $← R
7 : G̈ := G; G̈(m∗) = r∗

8 : g(·) := Enc(pk, ·; G̈(·))
9 : c∗

1 = Enc(pk, m∗;G(m∗))

10 : c∗
2 = H ′

q(c
∗
1)

11 : c∗ = (c∗
1, c

∗
2)

12 : k∗ $← K
13 : Ḧ := H; Ḧ(m∗) = k∗

14 : run BG̈,Ḧ,H′,Decaps(pk, c∗, H(m∗))

15 : until the i−th query to G̈ × Ḧ

16 : measure the argument m̂

17 : return m̂ =?m∗

Decaps (c �= c∗)

1 : Parse c = (c1, c2)

2 : if H ′
q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

GAMES G7

1 : i
$← {1, . . . , qG + qH}

2 : (pk, sk) ← Gen;G $← ΩG

3 : Hq
$← ΩHq ;H

′
q

$← ΩHq

4 : H(·) = Hq(Enc(pk, ·;G(·)))
5 : m∗ $← M
6 : r∗ $← R
7 : g(·) := Enc(pk, ·;G(·))
8 : c∗

1 = Enc(pk, m∗; r∗)

9 : c∗
2 = H ′

q(c
∗
1)

10 : c∗ = (c∗
1, c

∗
2)

11 : k∗ $← K
12 : run BG,H,H′,Decaps(pk, c∗, k∗)

13 : until the i−th query to G × H

14 : measure the argument m̂

15 : return m̂ =?m∗

H ′(m)

1 : return H ′
q ◦ g(m)

Fig. 13. Game G6 and game G7 for the proof of Theorem 2

Applying Lemma 5 with X = M, Y = (R,K), S = {m∗}, O1 = G̈ × Ḧ,
O2 = G × H and z = (pk, c∗

1,H(m∗), H̄q), we can have

∣∣Pr[GB
4 ⇒ 1] − Pr[GB

5 ⇒ 1]
∣∣ ≤ 2(qG + qH)

√
Pr[GB

6 ⇒ 1].

Rearrange game G6 into game G7, see Fig. 13. Clearly, Pr[GB
6 ⇒ 1] =

Pr[GB
7 ⇒ 1]. Then, we construct an adversary A against the OW-CPA secu-

rity of PKE such that AdvOW-CPA
PKE (A) = Pr[GB

7 ⇒ 1]. The adversary A on input
(1λ, pk, c∗

1) does the following:

1. Run the adversary B in game G7.
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2. Pick a 2qG (2qH , 2qH′)-wise independent function uniformly at random and
use it to simulate the random oracle G (Hq, H ′

q). The random oracle H (H ′)
is simulated by Hq ◦ g (H ′

q ◦ g). Use G × H to answer B’s queries to both G
and H.

3. Let c∗
2 = H ′

q(c
∗
1) and c∗ = (c∗

1, c
∗
2).

4. Answer the decapsulation queries by using the Decaps oracle as in Fig. 13.
5. Select k∗ $← K and respond to B’s challenge query with (c∗, k∗).
6. Select i

$← {1, . . . , qG + qH}, measure the argument m̂ of the i-th query to
G × H and output m̂.

It is obvious that AdvOW-CPA
PKE (A) = Pr[GB

7 ⇒ 1]. Combing this with the
bounds derived above, we can conclude that

AdvIND-CCA
KEM-I (B) ≤ 4qG ·

√
δ +

qD

2n′ + 2(qH + qG) ·
√
AdvOW-CPA

PKE (A).

��
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Abstract. Braid groups are infinite non-abelian groups naturally aris-
ing from geometric braids. For two decades they have been proposed for
cryptographic use. In braid group cryptography public braids often con-
tain secret braids as factors and it is hoped that rewriting the product of
braid words hides individual factors. We provide experimental evidence
that this is in general not the case and argue that under certain condi-
tions parts of the Garside normal form of factors can be found in the
Garside normal form of their product. This observation can be exploited
to decompose products of braids of the form ABC when only B is known.

Our decomposition algorithm yields a universal forgery attack on
WalnutDSATM, which is one of the 20 proposed signature schemes that
are being considered by NIST for standardization of quantum-resistant
public-key cryptography. Our attack on WalnutDSATM can universally
forge signatures within seconds for both the 128-bit and 256-bit security
level, given one random message-signature pair. The attack worked on
99.8% and 100% of signatures for the 128-bit and 256-bit security levels
in our experiments.

Furthermore, we show that the decomposition algorithm can be used
to solve instances of the conjugacy search problem and decomposition
search problem in braid groups. These problems are at the heart of other
cryptographic schemes based on braid groups.

1 Introduction

Continuous progress in quantum computing and the prospect of large scale quan-
tum computers necessitate the development of quantum-resistant cryptographic
algorithms. Currently, the security of most widespread algorithms relies on the
hardness of the discrete logarithm problem, the elliptic-curve discrete logarithm
problem or the integer factorization problem. All of these mathematical problems
can be solved using Shor’s quantum algorithm [41]. Even though quantum com-
puters with sufficient processing power to pose a threat to current cryptographic
applications presumably do not yet exist, researchers, intelligence agencies and
the industry aspire to develop cryptographic systems that remain safe once
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such devices come into being. Current approaches to attain quantum-resistance
include cryptography based on codes, isogenies, lattices and multivariate poly-
nomials over finite fields [19,35,37,43]. Another approach are cryptographic sys-
tems based on non-abelian groups [22]. Indeed no quantum algorithm to solve
the hidden subgroup problem (the core problem solved by Shor’s algorithm for
finite abelian groups) is known for general non-abelian groups.

The conjugacy search problem is a fundamental decision problem in combi-
natorial group theory.

Definition 1. Given two braids X,Y ∈ BN where Y = C · X · C−1 for some
C ∈ BN , the conjugacy search problem (CSP) in braid groups is to find C̃ ∈ BN

such that Y = C̃ · X · C̃−1.

The asserted computational difficulty of the CSP and its variations has inspired
many cryptographic primitives on non-abelian groups such as [3,33].

To establish standards for quantum-secure cryptography [39] the National
Institute of Standards and Technology (NIST) is currently evaluating public-key
algorithms [39]. One of the 20 signature schemes being considered for standard-
isation is WalnutDSATM [6] operating on braid groups.

NIST’s ongoing standardization project and thus the potential for widespread
use of WalnutDSATM and other braid group algorithms make a thorough security
analysis and understanding of the braid group vital. WalnutDSATM has been
analysed before [10,29,34] bringing some weaknesses of the signature scheme
to light. However, the attacks could be thwarted by increasing parameters and
slightly changing the protocol [40]. A fundamental assumption underlying the
security of WalnutDSATM is that individual factors in a product of three braids
are “obfuscated” when they are presented in some normal form.

Our contribution: In this paper, we describe how the Garside normal forms
of factors relate to the Garside normal form of their product. Together with an
observation based on experiments, we use this to locate single factors in a product
of braids and to decompose certain products in braid groups. More precisely, we
give an algorithm that can recover the factors of a product ABC ∈ BN up to
the centre of the group when only B is known.

Signatures of WalnutDSATM can be written as a braid word W1·E ·W2, where
W1 and W2 are secret braids and E is a deterministic encoding of the message.
The product is presented rewritten, e.g. in normal form, with the explicit aim of
obfuscating individual factors. Our observations imply that W1 and W2 can in
fact be efficiently recovered up to the centre of the group. Replacing E by the
encoding of any other message yields a new universal forgery attack that works
within seconds on most random message-signature pairs.

Related work: Braid groups have been suggested for cryptographic purposes for
two decades [22] and protocols such as the Anshel-Anshel-Goldfeld key exchange
[4] and Ko et al.’s protocol [33] have been studied extensively. A newer protocol
sharing some design components with WalnutDSATM is the Algebraic Eraser [5].
This scheme and the Anshel-Anshel-Goldfeld key exchange have been subject to
numerous attacks which were mostly based on representation theory [8,9,31] or
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on a length-based approach [30,38]. Yet, the same cryptanalytic techniques do
not seem to apply to WalnutDSATM.

Considerable work has been devoted towards a solution of the conjugacy
search problem (CSP) in braid groups. Apart from heuristic approaches such as
the previously mentioned length-based attacks, the most successful approaches
use summit sets [13,24,25].

Responsible Disclosure Process: We provided the designers of
WalnutDSATM with the details of our attack on the 20th of August. They
acknowledged that the attack works. To prevent malicious use of our attack on
the signature scheme or similar products by SecureRF, we agreed to postpone
the publication of our findings until the 21st of November.

Outline: In Sect. 2, we provide preliminary results on braid groups and
the Garside normal form. In Sect. 3 we present the current instantiation of
WalnutDSATM and how it was modified to thwart previous attacks. Section 4
gives our algorithm to recover the factors of a braid ABC presented by its
normal form when the braid B is known. In Sect. 5 we describe our attack on
WalnutDSATM and discuss potential countermeasures. Section 6 shows how the
decomposition algorithm can be used to solve instances of the conjugacy search
problem. We conclude our work in Sect. 7.

2 Braid Groups

This section provides preliminary mathematical background on braid groups.
In Sect. 2.1 we define braid groups and provide their algebraic presentation.
Section 2.2 defines the colored Burau representation of braid groups which is
needed to explain WalnutDSATM but not essential for the understanding of our
contribution. In Sect. 2.3 we define the Garside normal form. A reader familiar
with braid groups and the Garside normal form may proceed to Sect. 3.

2.1 Artin Presentation

Let N be a positive integer and let BN denote the braid group on N strands
introduced by Emil Artin [7]. Geometrically, the elements of a braid group are
the equivalence classes of N strands under ambient isotopy, i.e. we consider two
braids the same if we can distort one into the other without breaking any strand.
Artin proved that BN is indeed a group with presentation

BN =
〈
b1, . . . , bN−1

∣∣∣ bibi+1bi = bi+1bibi+1

bibj = bjbi for |i − j| ≥ 2

〉
, (1)

where the group operation is given by concatenation of the strings. Thus, we can
represent any braid of BN as a finite, non-unique word in the so called Artin
generators bi. Imagining our strands lying in a plane and numbering the strands
from left to right, the generator bi corresponds to the i-th strand crossing over
the (i + 1)-th strand.
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Figures 1 and 2 illustrate the relations given in Presentation (1).

=

Fig. 1. bibi+1bi = bi+1bibi+1

=. . . . . .

Fig. 2. bibj = bjbi, if |i − j| ≥ 2

Note that there is a natural homomorphism sending elements of BN to the
induced permutations in the symmetric group SN . More precisely, each Artin
generator bi is sent to the transposition πi := (i, i + 1). For some braid word
bε1
i1

. . . bεk
ik

the induced permutation is πε1
i1

. . . πεk
ik

. Since the corresponding permu-
tations respect the relations in Presentation (1), sending braids to their induced
permutations is a well-defined homomorphism. Clearly, this homomorphism from
BN to SN is surjective. Braids in the kernel, i.e. braids inducing the identity per-
mutation, are called pure braids.

It is well known that the group of pure braids can be generated by gij ,
1 ≤ i < j ≤ N [12], where

gij := bj−1 · bj−2 · · · · · bi+1 · b2i · b−1
i+1 · · · · · b−1

j−2 · b−1
j−1. (2)

The generator gij may be depicted geometrically as braid where the j-th string
passes behind the strings (j − 1), . . . , (i + 1), in front of the i-th string and then
behind the strings i, . . . , j − 1 back to the j-th position.

2.2 Colored Burau Representation

The colored Burau representation of braid groups which we will describe in this
section is used to define WalnutDSATM and its underlying problem. A reader
who is mainly interested in the structure being preserved in products of Garside
normal forms may want to skip this section.

Let q be the power of a prime and let Fq[t±1
1 , . . . , t±1

N ] be the ring of Laurent
polynomials with coefficients in the finite field Fq with q elements. There exists
an action of SN on Fq[t±1

1 , . . . , t±1
N ], where a permutation acts on the indices

of the variables of the Laurent polynomial. That is, for every σ ∈ SN and f ∈
Fq[t±1

1 , . . . , t±1
N ]

f(t1, . . . , tN ) �→ σf = f(tσ(1), . . . , tσ(N))

The action of SN extends to GLN (Fq[t±1
1 , . . . , t±1

N ]) by applying it entry-wise. For
σ ∈ SN and M ∈ GLN (Fq[t±1

1 , . . . , t±1
N ]), we denote the action by M �→ σM .
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The colored Burau matrices of each Artin generator are defined as follows [6]:

CB(b1) :=

⎛
⎜⎜⎜⎝

−t1 1
1

. . .
1

⎞
⎟⎟⎟⎠ and CB(bi) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
. . .
ti −ti 1

. . .
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the ti are written in the i-th row for 2 ≤ i ≤ N − 1. Equipping the
semidirect product GLN (Fq[t±1

1 , . . . , t±1
N ]) � SN with the operation

(M1, σ1) · (M2, σ2) = (M1 · σ1M2, σ1σ2),

one obtains a group and one can check that the map

Φ : BN → GLN

(
Fq[t±1

1 , . . . , t±1
N ]

)
� SN (3)

bi �→ (
CB(bi), πi

)
,

where πi denotes the transposition (i, i + 1) ∈ SN , extends to a group homo-
morphism. This group homomorphism is called colored Burau representation of
BN [16].

2.3 Garside Normal Form

A normal form in a group is a canonical way to represent the elements and thus
it provides an opportunity to compare them.

Garside was the first to develop a normal form for braid groups [23] which
was improved most notably by Thurston [21] and Elrifai and Morton [20] leading
to what is known as the Garside normal form today. For further normal forms
in braid groups see [11,15,18].

In this section we reproduce some results that led to the development of the
Garside normal form to introduce terminology necessary for the explanation of
our observation in Sect. 4.

Let B+
N denote the monoid of positive braids in BN which are the braids

that can be written as a product of positive powers of Artin generators. This is
a well-defined monoid as all the defining relations in the presentation of braid
groups (1) contain only positive powers of Artin generators.

We denote Garside’s “fundamental braid” [23] by Δ. Recall that this braid
is the unique positive braid in which any two strands cross exactly once and it
is of central importance in the Garside normal form. We recall some properties
of the fundamental braid due to Garside [23].

Proposition 2. Let BN be the braid group on N strands. For i = 1, . . . , N − 1,
we have

biΔ = ΔbN−i.

In particular Δ2 commutes with every generator and lies in the centre of BN .
In fact, the centre of BN is cyclic and generated by Δ2.
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Remark 3. Let τ be the inner automorphism of BN conjugating elements with
Δ, i.e.

τ : BN → BN

β �→ ΔβΔ−1

Let W = bε1
i1

. . . bεk
ik

∈ BN with εj ∈ {0, 1}. Then the previous Proposition implies

τ(W ) = ΔWΔ−1 = τ(bi1)
ε1 . . . τ(bik)εk = bε1

N−i1
. . . bεk

N−ik
.

In particular, τ2 is the identity automorphism. We will continue to denote this
automorphism by τ and call it the reflection in BN throughout this paper.

Proposition 4. [23] For any generator bi, i = 1, . . . , N −1, we can find positive
braids xi and yi ∈ B+

N such that

bixi = Δ = yibi.

An explicit description of the braids xi, yi is given at the same place. Together
with Proposition 2 this observation can be used to rewrite any representation of
an element of BN efficiently in the form ΔrP , where r ∈ Z and P is a positive
braid that cannot be written as a positive word containing Δ as a subword.
Listing all possible words P and choosing the lexicographically minimal one for
P yields the initial normal form due to Garside. This algorithm has exponential
running time in the number of strands N and the braid length, so it is not
completely satisfactory from a computational point of view. However, we have
the following natural partial order in the monoid of positive braids.

Definition 5. Let a, b ∈ B+
N . We write a ≤ b if ac = b for some c ∈ B+

N . We
say a is a prefix of b. This is a partial order invariant under left multiplication,
i.e. a ≤ b implies da ≤ db for all d ∈ B+

N .

Let 1 denote the identity in BN . We see that 1 ≤ A if and only if A ∈ B+
N .

Given a partial order as in Definition 5 one may wonder whether there is a
greatest common prefix in some sense.

Proposition 6. [23] For any two elements a, b ∈ B+
N there exists a unique ele-

ment d such that d ≤ a, d ≤ b and that d′ ≤ d for every common prefix d′ of a
and b.

Definition 7. Using the same notation as in the previous proposition, we call
d the greatest common divisor (gcd) of a and b and we write d = a ∧ b.

Elrifai and Morton [20] and Thurston [21] independently developed two different
algorithms to compute the normal form of a braid in polynomial time building on
top of Garside’s results. The centrepiece of their work is to consider the following
braids.

Definition 8. The positive prefixes of Δ are called permutation braids, i.e. A ∈
BN is a permutation braid if and only if 1 ≤ A ≤ Δ.
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Permutation braids are exactly those positive braids with any pair of strands
crossing at most once and thus uniquely determined by the permutation they
induce.

Instead of listing exponentially many representatives and choosing the lexi-
cographically minimal one, the idea of Thurston, Elrifai and Morton was to write
a braid word β as a product of permutation braids

β = ΔrA1 · · · Ak,

where uniqueness is achieved by requiring each letter to appear as far to the left
as possible.

Definition 9. A product of permutation braids AiAi+1 is called left-weighted
if AiAi+1 ∧ Δ = Ai.

That is, if we move any crossing from Ai+1 to Ai the resulting braid would not
be a permutation braid anymore. This allows us to formulate the Garside left
normal form.

Theorem 10 (Garside left normal form). Every braid β can be represented
uniquely by a braid word

ΔrA1 · · · Ak,

where r ∈ Z, 1 < Ai < Δ and AiAi+1 is a left-weighted product for 1 ≤ i ≤ k.

Definition 11. Consider the notation of the preceding Theorem 10. We call
the integer k the canonical length of β and the integer r the infimum of β.

For details on the algorithms to compute the Garside left normal form we refer
to [20,21]. Using the approach of Elrifai and Morton the normal form of some
given positive braid word bi1 . . . bik can be computed in time O(k2N), where k
is the number of Artin generators of the braid word given. Thurston’s alterna-
tive but equivalent solution computes the left normal form of a positive braid
word given as a product of permutation braids A1 . . . Ak′ with time complexity
O(k′2N log N) [21]. Note, this might be faster than the previous algorithm as
most permutation braids are a product of multiple Artin generators.

We want to point out that similar observations as the ones we will state in
Sect. 4 for the Garside normal form hold for other normal forms such as the
Birman-Ko-Lee (BKL) normal form as well. In particular, structure in the BKL
normal form can be exploited directly to attack WalnutDSATM or solve instances
of the conjugacy search problem too. However, using the Garside normal form
turned out to be slightly more efficient in our experiments which is why we will
mean the Garside left normal form when talking about left normal forms for the
remainder of this paper.

3 WalnutDSATM

WalnutDSATM is a digital signature scheme operating on braid groups. It was
proposed by Anshel, Atkins, Goldfeld and Gunnels [6]. This Section summa-
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rizes the newest version of the signature scheme. In Sect. 3.1 we define E-
Multiplication and cloaking elements and state the underlying hardness assump-
tion of WalnutDSATM. The section is not necessary to understand our attack,
but these basic building blocks are needed to define the signature scheme itself.
Section 3.2 provides details about parameters used and the signature genera-
tion and validation. Finally, we will give a brief overview of previous work
on WalnutDSATM showing that our approach is fundamentally disparate in
Sect. 3.3.

3.1 E-MultiplicationTM and Cloaking Elements

E-Multiplication was first introduced as a one-way function [5] and it is a foun-
dation of WalnutDSATM.

Let F
×
q denote the non-zero elements of the finite field Fq. An N -tuple of the

form
τ = (τ1, . . . , τN ) ∈ (F×

q )N

will be called “T-values” in the following. Given such a tuple, we can evaluate
any Laurent polynomial Fq[t±1

1 , . . . , t±1
N ] at τ , denoted ↓τ :

↓τ : Fq[t±1
1 , . . . , t±1

N ] → Fq

f �→ f(τ1, . . . , τN )

Similarly, we can evaluate any matrix M ∈ GLN (Fq[t±1
1 , . . . , t±1

N ]) to M ↓τ by
doing so entrywise.

E-Multiplication is a right action of the colored Burau group
GLN (Fq[t±1

1 , . . . , t±1
N ]) � SN on GLN (Fq) × SN . We will follow the notation of

[6] denoting E-Multiplication with a star: 	.
For a single Artin generator bi, E-Multiplication is defined as

(M,σ) 	 Φ(bi) :=
(
M · σ(CB(bi)) ↓τ , σ · πi

)
,

where πi = (i, i + 1) ∈ SN and Φ is the map given in Eq. (3). For a general
braid β represented by bε1

i1
. . . bεk

ik
with εj ∈ {−1, 1}, we define E-Multiplication

inductively left-to-right as

(M,σ) 	 Φ(β) := (M,σ) 	
(
CB(bi1)

ε1 , πε1
i1

)
	 · · · 	

(
CB(bik)εk , πεk

ik

)
.

Remark 12. Following the notation of [6], we write (M,σ)	β instead of (M,σ)	
Φ(β) for β ∈ BN . Moreover, we denote by P the map

P : BN → GLN (Fq) × SN (4)
β �→ (Id, id) 	 β.

The security of WalnutDSATM is based on the computational hardness assump-
tion of the reversing E-Multiplication (REM) problem.
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Definition 13. Given an ordered pair (M,σ) ∈ GLN (Fq) × SN such that
(M,σ) = (Id, id) 	 β for some braid β ∈ BN . The reversing E-Multiplication
(REM) problem is to find a braid β′ such that (Id, id) 	 β′ = (M,σ).

In particular inverting the map given in (4) is assumed to be hard. Reversing
E-Multiplication is enough to break WalnutDSATM, indeed we will see that the
ability to solve the REM problem allows to forge the signature of one message
and that solving two instances of the REM problem allows the recovery of the
private key from the public key.

However, our attack on WalnutDSATM bypasses the problem of reversing E-
Multiplication. We will see that our attack works solely on braids and is therefore
independent of the colored Burau representation and of the size q of the under-
lying field Fq.

Another basic building block of WalnutDSATM are certain braids termed
cloaking elements.

Definition 14. A braid is called cloaking element of (M,σ) ∈ GLN (Fq)×SN , if
it stabilizes (M,σ) under the right action of the braid group via E-Multiplication.

In WalnutDSATM cloaking elements of the following form are generated [40].

Proposition 15. Let (M,σ) ∈ GLN (Fq) × SN . Assume τa = −τ−1
b for two T-

values with indices 1 ≤ a < b ≤ N . Let σw denote the permutation induced by
some braid w ∈ BN and let bi be an Artin generator for 1 ≤ i ≤ N − 1. If

σw(i) = σ−1(a) and σw(i + 1) = σ−1(b),

the braid w · b±4
i · w−1 cloaks (M,σ).

Proof. This is an immediate consequence of
(
CBi(τa) · CBi(−τ−1

a )
)2 = IdN .

Remark 16. Cloaking elements as proposed by the designers of WalnutDSATM

depend only on the permutation σ and not on the matrix M of the element they
are stabilizing. Therefore, we will say that some braid cloaks a permutation σ.

For further details on the generation of cloaking elements in WalnutDSATM we
refer interested readers to the original implementation by SecureRF [1] or our
implementation in magma [14] (see [36]). However, our attack will be indepen-
dent of the way cloaking elements are generated.

Concealed cloaking elements are cloaking elements for which the cloaked per-
mutation is not public. Given a braid word W , concealed cloaking elements are
added to the word by splitting W into two braid words W1 and W2 at a ran-
dom location and inserting a braid cloaking the permutation induced by W1 in
between.

3.2 The Signature Scheme

Key Generation and Parameter Values. Before any message can be signed,
the following system wide public parameters need to be fixed:
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– The rank N of the braid group BN .
– A rewriting algorithm R : BN → BN , i.e. an algorithm transforming a braid

word w into an equivalent braid word R(w). For example, one can use algo-
rithms computing normal forms [11,23], Dehornoy’s handle reduction [17] or
the stochastic rewriting algorithm introduced in [2].

– A finite field Fq.
– T-values = {τ1, τ2, . . . , τN} ∈ (F×

q )N , such that τa = −τ−1
b for some publicly

known integers 1 ≤ a < b ≤ N .
– The number of concealed cloaking elements that will be added.
– A hash function H : {0, 1}∗ → {0, 1}2k for some k. Our attack will not depend

on any weaknesses of the hash function and therefore we can treat H as a
random oracle.

Next, the signer chooses braid words w and w′ by choosing uniformly at random l
Artin generators or their inverses. The secret key of the signer is the pair (w,w′),
while the public key is (P(w),P(w′)) where P is the map given in Remark 12.
Note, the length of the private braids w and w′ is chosen large enough to prevent
brute force attacks from being effective.

Later, we will see that the success of our new attack is independent of all
parameters but N .

As of the 21st of November 2018, the use of the following parameters is
suggested for WalnutDSATM:

claimed security level 128-bit security level 256-bit security level

N 10 10

q 231 − 1 261 − 1

l 132 287

concealed cloaking elts 12 24

H SHA2-256 SHA2-512

Message Encoding. In order for signatures to provide integrity and authen-
ticity, a signer must encode the message that is to be signed into the signature.
The Walnut digital signature algorithm requires the message to be mapped onto
a pure braid.

To encode a message in WalnutDSATM it is hashed using the publicly known
hash function H. Then every two bits of the output specify one pure braid
generator (see (2)) and the encoding E(H(m)) of a message m is the product of
all pure braid generators selected. As the exact choice of pure braid generators
is irrelevant for our attack we refer to [40] for a full description.

Signature Generation. A signer needs to perform the following steps to gen-
erate a signature.
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1. Compute the encoded message E
(
H(m)

)
.

2. Generate cloaking elements v, v1, v2 as given by Proposition 15 for the identity
and the permutations induced by the private braids w,w′, respectively.

3. Add the required number of concealed cloaking elements in randomly chosen
locations in the braid words W1 := v1 · w−1 · v or W2 := w′ · v2.

4. Use a rewriting algorithm R to obtain a rewritten braid word

Sig := R(
W1 · E(H(m)) · W2

)
,

which is the signature for m.

Signature Verification. To verify a signature, a receiver computes E(H(m))
and checks whether

Matrix
(P(w) 	 Sig

)
= Matrix

(P(E(H(m)))
) · Matrix

(P(w′)
)

(5)

comparing the matrix parts of GLN (Fq) × SN . If both sides of the equation
are equal, the receiver accepts the signature as valid. It is easy to check that
legitimately produced signatures satisfy (5).

3.3 Previous Work on WalnutDSATM

We want to give a brief overview of previous attacks on the Walnut digital
signature algorithm [10,29,34] and the changes they have triggered in the scheme
to patch the weaknesses. Moreover, this section shows that our attack uses a
completely different approach.

Factorization Attacks. The first attack on a previous version of
WalnutDSATM was published by Hart et al. [29]. In the previous version both
secret braids were equal and the public key only consisted of the image of this
one secret braid under the map P : BN → GLN (Fq) × SN (see Remark 12).

The attack exploited a malleability property of the signatures, enabling an
attacker to forge a signature by solving a factorization problem in a group of
matrices. Trying to destroy the malleability property, the designers of Walnut
started using two different private braids. However, Beullens [10,40] showed that
the following malleability property holds in this case too.

Theorem 17. [10] Let m, m1 and m2 be messages and let h, h1 and h2 be the
matrix parts of P(

E(H(m))
)
, P(

E(H(m1))
)
and P(

E(H(m2))
)
, respectively.

For braids w1, w2, w3 ∈ BN , we have

(i) If h = h−1
1 and Sig1 is a valid signature for m1 under the public key(P(w1),P(w2)

)
, then Sig−1

1 is a valid signature for m under the public key(P(w2),P(w1)
)
.

(ii) If h = h1 · h2 and Sig1,Sig2 are valid signatures for m1 and m2 under the
public keys

(P(w1),P(w2)
)
and

(P(w2),P(w3)
)
respectively, then Sig1 ·Sig2

is a valid signature for m under the public key
(P(w1),P(w3)

)
.
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Suppose, an attacker wants to forge a signature for the message m under
the public key

(P(w),P(w′)
)
. Clearly, they can compute the matrix h =

Matrix
(P(

E(H(m))
))

. Next, the attacker collects pairs of messages and sig-
natures (mi,Sigi) that are valid under the same public key. By the malleability
properties, it suffices to find a factorization h = hi1 · h−1

i2
· hi3 . . . h−1

im−1
· him to

get a valid signature for m, where hi denotes the matrix part of P(
E(H(mi))

)
.

Such a factorization can be obtained by writing h · h−1
1 as a product of

elements of the set

{
hih

−1
j | i 	= j; 1 ≤ i, j ≤ k

} ⊆
{(

X Y
0 1

)
| X ∈ GLN−1(Fq), Y ∈ F

N−1
q

}
. (6)

An algorithm to solve this factorization problem with time complexity O(
q

N−1
2

)
was proposed by Hart et al. [29]. However, the factorizations contained roughly
225 elements of the set given in (6) and consequently the forged signature

Sig = Sigi1 · Sig−1
i2

· · · Sig−1
im−1

· Sigim · Sig−1
1

satisfies the verification equation, but can be easily detected due to its enormous
length. By imposing an upper limit on the length of valid signatures as was done
in the implementation submitted to NIST, the attack was blocked. In contrast,
the forgeries produced by our attack will be of the same length as legitimately
produced signatures.

Collision Search Attack. Beullens and Blackburn [10,40] realized that the
originally proposed 4-bit encoder was not injective and that it mapped to a
set of braids where the matrix parts under the function P were lying in a
surprisingly low dimensional, 13 dimensional, affine subspace over Fq. This
made the scheme susceptible to a generic collision search attack. More pre-
cisely, it was possible to find pairs of distinct messages m1 and m2 such that
P(E(H(m1))) = P(E(H(m2))) for sufficiently small q using a generic collision
search algorithm. Beullens and Blackburn implemented the collision search due
to van Oorschot and Wiener [44] which takes |P(

E(H({0, 1}))
)| 1

2 ≤ q6.5 evalu-
ations of P ◦ E ◦ H.

Recall that a signature is accepted as valid if (5) is satisfied. Given a collision
of m1 and m2, an attacker can query a signature for m1 and gets automatically a
valid signature for m2. Consequently, the signature scheme was not existentially
unforgeable [28].

To counter the attack the designers of WalnutDSATM changed the encoder to
the 2-bit version described previously, where P(

E(H({0, 1}∗))
)

lies in an affine
subspace of dimension (N − 2)2 + 1 [40] over Fq, which is greater than 13 for
N ≥ 6. Together with a significant raise of the parameters N and q, the generic
collision search attack became ineffective. Our attack will be independent of q,
but we will see that it can be defeated to some extend by further increasing the
parameter N .
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Reversing E-Multiplication. The last attack presented in [10] solves the
underlying problem of WalnutDSATM, reversing E-Multiplication (REM) [see
Definition 13], directly.

Note, it suffices to solve a single instance of the REM problem to forge a
signature of a freely chosen message or solve two instances of the REM problem
to obtain an equivalent pair of secret braids from the public key. Thus, the
hardness of this problem is crucial for the security of WalnutDSATM.

The attack exploits that E-Multiplication restricted to pure braids is a group
homomorphism which maps the chain of subgroups

{e} = P1 ⊂ P2 ⊂ · · · ⊂ PN ⊂ BN

to a nice chain of subgroups in GLN (Fq). Here, Pi ⊂ BN denotes the subgroup
of pure braids on N strings that can be identified with the pure braids of Bi

or, formulated differently, the pure braids that can be written in the genera-
tors b1, . . . , bi−1. Exploiting this subgroup structure, the REM problem can be
solved by successively reducing the problem to a smaller subgroup using col-
lision searches. The authors of [10] suggest moreover a slightly finer chain of
subgroups for the first reductions which are the most costly ones to improve the
performance of the algorithm further.

The resulting attack requires O(q
N
2 −1) E-Multiplications, and was blocked

by a significant increase in the parameters q and N . As mentioned before, our
attack will be independent of q and can only be defeated to some extent by
increasing N significantly.

Uncloaking Signatures. The most recent attack is due to Kotov, Menshov
and Ushakov [34]. They give a heuristic attack which operates purely on braids.
The attack removes cloaking elements of a previous version of the Walnut digital
signature algorithm without concealed cloaking elements.

The authors observed that cloaking elements in WalnutDSATM are always
generated in such a way that the strands corresponding to the inverse T-values
cross each other (see Proposition 15). Since T-values are public, an attacker can
trace all strands and find “critical positions” in a signature where there might be
a cloaking element. This allows a length-based attack: Note that untwisting the
middle part of cloaking elements produces a trivial braid. An attacker guesses the
location of cloaking elements and tries to remove them by untwisting the critical
position. When multiplying signatures with removed cloaking elements together,
more precisely one such signature multiplied with the inverse of another, further
elements cancel out. If the remaining word is of significantly shorter length, one
has heuristic evidence that the cloaking elements have been removed successfully.

The uncloaking procedure on multiple signatures leads to a system of conju-
gacy equations in BN (potentially with errors). Once again this can be heuristi-
cally solved using a length-based approach. For earlier work about length-based
attacks we refer amongst others to [30,38].

To patch Walnut, concealed cloaking elements, i.e. cloaking elements that
are inserted in random locations before and after the encoded message, were
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introduced. Removing multiple concealed cloaking elements that are not inserted
consecutively into the signature appears to be more difficult.

The designers of WalnutDSATM suggested to insert

κ ≥ 2 · (security level in bits)
log2(N !)

(7)

concealed cloaking elements [40]. For N = 10 this yields the values given in
the table in Sect. 3.2. However, the number κ was estimated under the assump-
tion that one needs to know the permutation of a cloaking element in order to
remove it. As this does not hold, the efficacy of this countermeasure has been
disputed [40].

We will see that the success of our attack is independent of the number of
concealed cloaking elements inserted to the signature the way it was suggested by
the designers of WalnutDSATM. However, we will discuss in Sect. 5.3 that adding
a significant number of concealed cloaking elements to the encoded message
might thwart our attack at the cost of enlarging signatures and slowing down
the signature generation and verification.

4 Decomposition of Products in Braid Groups

The use of normal forms as “obfuscation procedures” in cryptographic schemes
such as WalnutDSATM suggests that properties of single braids are well hidden in
the normal form of their product. In this section, we will see that this is in general
not the case. More precisely, we will argue that we can expect some (potentially
reflected) permutation braids of factors with sufficiently large canonical length
to appear in the normal form of their product.

In Sect. 4.1 we prove how the permutation braids of factors relate to the
permutation braids of their product. Together with the experimental results of
Sect. 4.2 this yields the observation stated in the previous paragraph. In Sect. 4.3
we show how the observation can be exploited under certain conditions to recover
the factors of products of the form ABC ∈ BN up to the centre 〈Δ2〉, when B
is known. The algorithm to decompose products of braids will be at the heart
of our cryptanalysis of WalnutDSATM in Sect. 5 and our new solutions to the
conjugacy and decomposition search problems in Sect. 6.

4.1 Garside Normal Form of Products

Recall that bi = ΔbN−iΔ
−1 = τ(bN−i) for i = 1, . . . , N − 1 by Proposition 2

and Remark 3. Let Δa · A1 . . . An and Δb · B1 . . . Bm be the normal forms of two
elements A,B ∈ BN respectively. Pushing all Δ’s in the product AB to the front
yields

AB = Δa · A1 . . . An · ΔbB1 . . . Bm = Δa+b · τ b(A1) . . . τ b(An)B1 . . . Bm (8)

= Δa+b · τ b′
(A1) . . . τ b′

(An)B1 . . . Bm,
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for b′ ≡ b (mod 2) since τ2 is the identity map. This is a product of permutation
braids by the following Lemma of which we will omit the straightforward proof.

Lemma 18. Let 1 ≤ A1, A2 ≤ Δ be elements of BN . Then 1 ≤ τ(A1), τ(A2) ≤
Δ too. Furthermore, A1A2 is a left-weighted product if and only if τ(A1)τ(A2)
is left-weighted.

Thus, (8) is a product of permutation braids but in general not left-weighted.
However, we see that τ(A1) . . . τ(An) is a left-weighted product by Lemma18
and thus the following Lemma is an immediate consequence.

Lemma 19. Let Δa · A1 . . . An and Δb · B1 . . . Bm be the left normal forms of
the braids A,B ∈ BN respectively. Let b′ ≡ b (mod 2), then

Δa+b · τ b′
(A1) · · · τ b′

(An)B1 · · · Bm

is the left normal form of AB if and only if τ b′
(An)B1 is a left-weighted product.

Clearly, the condition will not be met for most A,B ∈ BN . When computing
the left normal form of AB in general, new Δ’s might be created in the process
of computing the left-weighted product of τ b(A1) . . . τ b(An)B1 . . . Bm. Moving
these Δ’s to the front results in reflections of all leftward permutation braids,
which yields the following proposition.

Proposition 20. Let A, B ∈ BN and let Δa · A1 . . . An and Δb · B1 . . . Bm be
their left normal form respectively. The left normal form of AB is

Δa+b+k · τ b+k(A1) . . . τ b+k(An−c) · X1 . . . Xl,

for some integer 0 ≤ c ≤ n and permutation braids X1, . . . , Xl, where k ∈ Z

is the number of Δ’s that are created when computing the left normal form of
τ b(A1) . . . τ b(An)B1 . . . Bm.

Note that we have Δk ·X1 . . . Xl = τ b(An−CN+1) . . . τ b(An)·B1 . . . Bm. The algo-
rithms to compute the Garside left normal form visualize the previous propo-
sition quite well. If A1 · · · An is a left normal form and we multiply with an
Artin generator bi on the right, this modifies the last permutation braid if
Anbi ∧Δ 	= An ∧Δ. If An is not changed all leftward permutation braids are still
in left normal form and we are done. If An is changed two conditions must be
met for An−1 to be changed as well. First, Anbi ∧Δ must contain another Artin
generator bj in the set of all Artin generators the word can start with compared
to An ∧ Δ. And second, An−1bj ∧ Δ 	= An−1 ∧ Δ. This process continues induc-
tively to the left until some permutation braid is not changed anymore. If one
of the changed permutation braids becomes Δ during this process, it is moved
to the front by reflecting all leftward permutation braids.

Remark 21. It is not hard to find particular braids for which the previous propo-
sition does not contain a lot of information as c = n. This happens for example,
if B = A−1 when the product vanishes or if A and B are braids that do not
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share common strands and thus commute. However, in the next section we will
see that for every N and randomly chosen braids A,B ∈ BN the expected value
for c is bounded independently of n.

Clearly, if c is smaller than n the permutation braids in the left normal forms of
A and AB coincide on the left hand side up to reflection. Next, we show that
the rightmost permutation braids of the left normal forms of B and AB coincide
too. The following Proposition due to Elrifai and Morton provides us with a link
between multiplication of a braid on the left and on the right.

Proposition 22. [20] Let Δu ·x1 . . . xm be the left normal form of X. Then the
left normal form of X−1 is X−1 = Δ−u−m ·x′

m . . . x′
1, where x′

i := τ−u−i(x−1
i Δ)

for i = 1, . . . ,m.

The braid x−1
i Δ is called the right complement of xi. Let δ denote the map

sending permutation braids to their right complement. It is easy to check that
δ induces a bijection on the permutation braids and δ2 = τ .

Proposition 23. Let A, B ∈ BN and let Δa · A1 . . . An and Δb · B1 . . . Bm be
their left normal form respectively. The left normal form of AB is

Δa+b+k · Y1 . . . Yl · Bc+1 . . . Bm,

for some integer 0 ≤ c ≤ m and permutation braids Y1, . . . , Yl, where k ∈ Z

is the number of Δ’s that are created when computing the left normal form of
τ b(A1) . . . τ b(An)B1 . . . Bm.

Proof. Clearly, we can show the proposition for A−1 and B−1 instead of A and
B. More precisely, we show that the permutation braids on the right hand side
of A−1B−1 coincide with the ones of B−1.

By Proposition 20 we know that the left normal form of B1 . . . BmA1 . . . An

is
Δkτk(B1) . . . τk(Bm−c)X1 . . . Xl, (9)

for some 0 ≤ c ≤ m, k ∈ Z and permutation braids X1, . . . , Xl. Propo-
sition 22 implies that the left normal form of (B1 . . . BmA1 . . . An)−1 =
A−1

n . . . A−1
1 B−1

m . . . B−1
1 is

Δ−k−(m−c+l) · X ′
l . . . X ′

1 · (
τk(Bm−c)

)′
. . .

(
τk(B1)

)′

= Δ−k−(m−c+l) · X ′
l . . . X ′

1 · τ−m+c
(
δ(Bm−c)

)
. . . τ−1

(
δ(B1)

)
, (10)

using
(
τk(Bi)

)′ = τk−i
(
δ(τk(Bi))

)
= δ2(k−i)

(
δ2k+1(Bi)

)
= τ−i

(
δ(Bi)

)
.

Simultaneously, the left normal form of B−1
m . . . B−1

1 is τ−m(δ(Bm)) . . .
τ−1(δ(B1)) by Proposition 22. Comparing with (10), we see that the left nor-
mal forms of B−1

m . . . B−1
1 and A−1

n . . . A−1
1 B−1

m . . . B−1
1 coincide on the rightmost

m − c permutation braids. This finishes the proof.



662 S.-P. Merz and C. Petit

4.2 Penetration Distance

In this section we provide experimental results to estimate the size of the para-
meter c in Propositions 20 and 23 for “randomly” chosen braids A and B. We
will find that for every N this expectation is uniformly bounded independently
of the canonical lengths of the factors A and B.

Since the braid group BN is infinite for N ≥ 2, choosing braids at random is
a non-trivial task. In practice, there are various ways to choose braids of BN in
a randomized manner. However, different methods result in different probability
distributions on BN .

Recall that every braid word can be rewritten as an element of the monoid
of positive braids B+

N which we introduced in Sect. 2.3. Let |x| denote the length
of a positive braid x ∈ B+

N , i.e. the number of Artin generators occurring in
any positive braid word representing x. Since the defining relations of the braid
group (and the braid monoid) are homogeneous, this is well-defined.

We start by recalling some results due to Gebhardt and Tawn [27] who stud-
ied the Garside normal forms of random braids. They analysed statistical prop-
erties of the normal forms of positive braids of length k generated using two
methods:

(i) Choose uniformly at random k Artin generators bi ∈ {b1, . . . , bN−1} and
concatenate them, i.e. choose uniformly at random a braid word from the
set of all positive braid words of B+

N of length k. We say that we generate
positive words of length k uniformly at random.

(ii) Consider the set of all braids that can be represented by a braid word of
length k and choose uniformly at random one braid from this set. We say
that we generate uniformly at random positive braids of length k.

Note, the number of words representing the same element of B+
N depends on the

element. Therefore, both variants yield different probability distributions on the
set of all braids that can be represented by positive braid words of length k.

However, the implementation of the second method is significantly more dif-
ficult in practice (see [26] for an algorithm that runs polynomially in N and
k) which is why most (cryptographic) applications generate “random braids”
similarly to the first method.

Following the terminology of Gebhardt and Tawn, we call conjugation with
Δ, i.e. a reflection, of a permutation braid a trivial change. We define the pene-
tration distance as follows.

Definition 24. [27] For two braids A and B, the penetration distance pd(A,B)
for the product AB is the number of permutation braids at the end of the
normal form of A which undergo a non-trivial change in the normal form of the
product. I.e.

pd(A,B)=cl(A)−max{i ∈ {0, . . . , cl(A)} :AΔ− inf (A) ∧Δi = ABΔ− inf (AB) ∧Δi}

where cl(·) denotes the canonical length and inf(·) the infimum of a braid.
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Based on their experiments, Gebhardt and Tawn conjectured the following.

Conjecture 25. [27] Let A ∈ BN be a braid which is randomly chosen from either
the uniformly generated random words or from the uniformly generated random
braids of length k and let bi be a randomly chosen Artin generator of BN . Then
the expected penetration distance is bounded independently of the length k of the
braid, i.e. there exists some C such that for all k

E(pd(A, bi)) < C.

The conjecture raises the question whether there still exists an upper bound for
the expected penetration distance of the product AB of two randomly chosen
braids or braid words independently of their lengths. That is when B is an arbi-
trary randomly chosen braid or braid word as well instead of a single randomly
chosen Artin generator.

For the purpose of investigating this question, we conducted an experiment in
magma [14]. We generated 2.000 instances of pairs of braid words A,B ∈ BN for
different given lengths using the built-in random function of the braid package
in magma. To obtain a “random” braid of given length k, this function chooses
uniformly at random ai from X ∪ X−1\a−1

i−1 for k = 1, . . . , k, where X and X−1

is the set of Artin generators and their inverses respectively. In other words, the
built-in random function chooses uniformly at random a braid word from the
set of all freely reduced braid words of a given length k.

Given such pairs of randomly generated braid words A,B, we computed the
product AB and the penetration distance for each particular instance. This was
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done by comparing the permutation braids in the left normal forms of A and
AB directly. The diagram in Fig. 3 shows the average penetration distance with
respect to the lengths of A and B for different values of N .

We observe that for each N the average penetration distance increases with
the word lengths of the random braids and eventually converges to some bound.
Furthermore, these bounds increase with the number of strands N of the braid
group. Note that for our attack on WalnutDSATM we will be mainly interested
in estimates for N = 10 because this is the parameter used.

The convergence suggests that for every N there exists an upper bound for
the expected penetration distance of the product of randomly generated freely
reduced braid words independently of their lengths.

Conjecture 26. Let A,B ∈ BN be braid words that are picked uniformly at ran-
dom from all freely reduced braid words of length k. Then there exists a CN ∈ N

such that for all k, we have

E(pd(A,B)) < CN .

Plotting the distribution of penetration distances for products of randomly cho-
sen freely reduced braid words for different lengths we noted that most data
points are distributed closely around the mean.

Now, Conjeture 26 has significant importance for Proposition 20. Let A and
B be two randomly chosen braids of canonical length n and m respectively.
Assuming Conjecture 26, i.e. assuming that the expected penetration distance is
bounded by some CN independently of the lengths of A and B, Proposition 20
implies that we expect at least the leftmost n−CN permutation braids of A and
AB to coincide up to reflection whenever n ≥ CN .

Looking at the proof of Proposition 23 we see that CN is a bound for the
expected size of the parameter c too. This is because the inverse of freely reduced
braid words of a given length is a freely reduced braid word of the same length.
Thus, drawing freely reduced braid words of a given length from the braid group
BN has the same probability distribution as drawing their inverses. Hence, if A
and B are two randomly chosen braids of canonical length n and m, we expect
at least the m − CN rightmost permutation braids of B and AB to coincide
whenever m ≥ CN .

4.3 The Algorithm

We use the last part of this section to describe how our observation can be
utilised to decompose products ABC of braids A,B,C ∈ BN , when B is known.
More precisely, we discuss how to recover A′ ≡ A (mod Δ2), C ′ ≡ C (mod Δ2)
such that AC = A′C ′. Here, by (mod Δ2) we mean up to multiplication with
powers of Δ2. Later, we can apply this algorithm to break WalnutDSATM and
solve instances of the conjugacy and decomposition search problems.

Let A = Δa · A1 . . . An, B = Δb · B1 . . . Bm, and C = Δc · C1 . . . Cr be the
left normal forms of randomly chosen freely reduced braid words A,B,C ∈ BN .
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Assume that m is greater than the CN given by Conjecture 26. We have discussed
in the previous section that we can expect the left normal form of BC to be of
the form

Δa+b+k · τ c+k(B1) . . . τ c+k(Bm−CN
) · Y1 . . . Yl

for some permutation braids Y1, . . . , Yl such that Δk · Y1 . . . Yl =
τ c(Bj+1) . . . τ c(Bm) · Δ−cC and k ∈ Z is the number of fundamental
braids Δ that are being created when computing the left-weighted form of
τ c(Bj+1) . . . τ c(Bm)C1 . . . Cr.

Now, if the part of the normal form of B that was preserved into BC is
of canonical length greater than CN + 1, which we expect to happen for m ≥
2CN + 1, the left normal form of A(BC) is expected to be of the form

Δa+b+c+k+k′ · X1 . . . Xr · τ c+k(BCN+1) . . . τ c+k(Bm−CN
) · Y1 . . . Yl (11)

by Proposition 23 and the previous section, where Δk′ · X1 . . . Xr is a left-
weighted product of permutation braids equal to τ b+c+k(A1) . . . τ b+c+k(An) ·
τ c+k(B1) . . . τ c+k(Bi) if the centre of B equals Δ2 which we expect for suffi-
ciently long B.

We will keep this notation for the remainder of this section. Let the left
normal form of a given ABC be

Δu · X1 . . . Xr · τ c+k(Bi) . . . τ c+k(Bj) · Y1 . . . Yl,

where u = a+b+c+k+k′. By the previous discussion, we know that i−j > 0 can
be expected for randomly chosen freely reduced braid words A, B and C ∈ BN

with B of canonical length greater than 2CN + 1.
It is now a straightforward procedure to recover A′ ≡ A (mod Δ2) and C ′ ≡

C (mod Δ2) such that AC = A′C ′ knowing only B:

1. Compute the left normal forms of B and ABC.
2. Check, whether there is a contiguous subsequence Bi1 . . . Bi2 of permutation

braids of the left normal form of B for some 1 ≤ i ≤ i1 < i2 ≤ j ≤ m
in the left normal form of ABC using a string-matching algorithm. If such
a subsequence is found, save the location in the left normal form of B and
ABC and go to 3. Otherwise, do the same search for contiguous subsequences
τ(Bi1) . . . τ(Bi2) of τ(B) in the left normal form of ABC.
If no common subsequence of permutation braids can be found either, we
terminate the process and cannot recover the factors. If multiple common
subsequences are found, we run the following steps for every of the finitely
many possible solution. Notice, the latter is not very likely to happen for
randomly chosen braid words and sufficiently long subsequences.

3. Split the braid B or τ(B) = τ(B1) . . . τ(Bm) at Bi1 resp. τ(Bi1) into two
parts. Then, do the same for ABC. Denote the parts BI , BII , ABCI , and
ABCII .
Note that we find the subsequence τ c+k(Bi) . . . τ c+k(Bj) in B or τ(B) depend-
ing on whether c + k leaves residue 0 or 1 modulo 2, since τ2 is the identity.
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Thus, even though we know neither c nor k we can determine the residue of
c + k (mod 2) which we denote by (c + k)′.
Using the notation of previous paragraphs, we compute

BI := Δb · τ c+k(B1) . . . τ c+k(Bi1)

BII := τ c+k(Bi1+1) . . . τ c+k(Bm)

ABCI := Δa+b+c+k+k′ · X1 . . . Xr · τ c+k(Bi) . . . τ c+k(Bi1)

ABCII := τ c+k(Bi1+1) . . . τ c+k(Bj) · Y1 . . . Yl

4. Compute

A′ : = ABCI · B−1
I · Δ−(c+k)′

= Δa+b+c+k+k′ · X1 . . . Xr · τ c+k(Bi−1)−1 . . . τ c+k(B1)−1 · Δ−b−(c+k)′

= Δa+c+k−(c+k)′ · A1 . . . An

and

C′ : = Δ(c+k)′ · B−1
II · ABCII

= Δ(c+k)′ · τ c+k(Bm)−1 . . . τ c+k(Bi1+1)
−1 · τ c+k(Bi1+1) . . . τ c+k(Bj) · Y1 . . . Yl

= Δ(c+k)′ · τ c+k(Bm)−1 . . . τ c+k(Bj+1)
−1Δ−kτ c(Bj+1) . . . τ c(Bm) · C1 . . . Cr

= Δ−k+(c+k)′
C1 . . . Cr

Since a + c + k − (c + k)′ ≡ a (mod 2) and −k + (c + k)′ ≡ c (mod 2), we have
recovered A′ ≡ A (mod Δ2) and C ′ ≡ C (mod Δ2). Using c ≡ −k + (c + k)′

(mod 2), we have furthermore

A′C ′ = Δa+c · τ c(A1) . . . τ c(An) · C1 . . . Cl = AC.

The success rate of this decomposition algorithm will be discussed in Sect. 6.

5 New Attack on WalnutDSATM

In this section we want to present our attack on the group-based signature
scheme WalnutDSATM which is an application of the decomposition algorithm
we have developed in Sect. 4.

In Sect. 5.1 we present the idea behind our attack on WalnutDSATM, before
providing experimental results on the success of our attack in Sect. 5.2. In
Sect. 5.3 we discuss how different parameters influence the running time and
success rate of our attack and we suggest one potential countermeasure.



Factoring Products of Braids via Garside Normal Form 667

5.1 Universal Forgery Attack

Let m be a message with the legitimately produced signature Sig ∈ BN . Recall
that the braids corresponding to signatures of WalnutDSATM have a represen-
tative braid word of the form

Sig = W1 · E(H(m)) · W2,

where E(H(m)) is the encoded message and W1,W2 ∈ BN are braids of the form
v1 ·w−1 ·v and w′ ·v2 with additional concealed cloaking elements inserted. Here,
w,w′ ∈ BN are the private braids of the signer and v, v1, v2 are braids cloaking
the identity of SN and the permutations induced by w and w′, respectively.

It is easy to see that the braid Sig′ := W1 ·E(H(m′)) ·W2 is a valid signature
for the message m′. Hence, the ability to locate E(H(m)) in a legitimate signa-
ture and replacing it by E(H(m′)) for an arbitrarily chosen message m′ gives
rise to a universal forgery attack.

To prevent attackers from finding the encoded message by just parsing
through the signature, the designers of WalnutDSATM suggested an obfuscation
procedure. That is, the application of a rewriting algorithm such as the Gar-
side normal form, BKL normal form [11], stochastic rewriting [2] or Dehornoy’s
handle reduction [17] to the braid before appending the signature to a message.

Note that rewriting changes only the representative of the same braid. Con-
sequently, normal forms are the strongest way to obfuscate signatures because
every attacker can compute them given another representative of the same braid.

Our experimental results in the next section will show that most legitimately
produced signatures of WalnutDSATM are susceptible to the decomposition algo-
rithm described in Sect. 4.3. Since anybody can compute the encoding of a mes-
sage m, this allows us to recover W ′

1 ≡ W1 (mod Δ2) and W ′
2 ≡ W2 (mod Δ2)

such that W ′
1 · W ′

2 = W1 · W2 given only one valid signature W1 · E(H(m)) · W2

of any m. As W ′
1 ·E(H(m′)) ·W ′

2 = W1 ·E(H(m′)) ·W2, this is enough to obtain
forged signatures for any other message m′.

Proposition 27. Let W1 · E(H(m)) · W2 ∈ BN be a valid signature for some
message m and let W ′

1,W
′
2 ∈ BN such that W ′

1 ≡ W1 (mod Δ2), W ′
2 ≡ W2

(mod Δ2) and W1 · W2 = W ′
1 · W ′

2. Then,

W ′
1 · E

(
H(m′)

) · W ′
2

is a valid signature for any message m′.

Computation of universal forgeries: Given a signature Sig = W1 ·E(
H(m)

)·
W2 and the corresponding message m, an adversary computes the encoded mes-
sage E

(
H(m)

)
and uses the procedure described in Sect. 4.3 to recover two

braids W ′
1, W ′

2 such that W ′
1 ≡ W1 (mod Δ2), W ′

2 ≡ W2 (mod Δ2) and
W ′

1 ·W ′
2 = W1 ·W2. By Proposition 27, this suffices to compute a valid signature

for any message m′:
Sig′ = W ′

1 · E
(
H(m′)

) · W ′
2
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Comparison to legitimately produced signatures: Since W1 and W2 are
legitimately produced and do not depend on E

(
H(m)

)
, it is impossible to dis-

tinguish a forged signature of the form W ′
1 · E(

H(m′)
) · W ′

2 from a legitimately
produced signature for m′. In particular, the length of our forgeries is the same
as the one of legitimately produced signatures.

However, given two signatures one could recognize that at least one was likely
forged. Note an attacker can solve this issue by adding an additional concealed
cloaking element to W1 and W2.

Complexity: In our decomposition algorithm of Sect. 4.3, we need to compute
the Garside normal form of Sig and E

(
H(m)

)
in the first step. Using Thurston’s

method, this takes time in O(|Sig|2N log N) and O(|E(H(m))|2N log N) respec-
tively. Here | · | means the number of permutation braids of the given positive
braid word, not necessarily in left normal form.

The second step of the algorithm requires to find a common contiguous sub-
sequence of permutation braids in the normal forms. Fixing a length Len for
the common subsequence that we want to find, the naive algorithm compares
O(rl) products of Len permutation braids, where r and l denote the canoni-
cal length of E(H(m)) and Sig respectively. We implemented this naive app-
roach in our attack on WalnutDSATM (see [36]). A more efficient solution is to
use the Knuth–Morris–Pratt string-searching algorithm [32]. Running this algo-
rithm on all contiguous subsequence of permutation braids of length Len from
the (reflected) encoding and the signature takes O(r(l + Len)) comparisons of
permutation braids.

For WalnutDSATM, we have |E(H(m))| ≤ |Sig|. As the number of permuta-
tion braids in the Garside normal is minimal compared to other positive braid
words we have moreover r ≤ |E(H(m))| and l ≤ |Sig| and thus recovering
the positions and whether the subsequence of the encoding in the signature is
reflected takes O(|Sig|2) comparisons of permutation braids. Since the rest of
the decomposition algorithm runs in linear time, the algorithm to forge signa-
tures is dominated by the time it takes to compute the Garside normal form, i.e
O(|Sig|2N log N).

Note that generating legitimate signatures is quadratic in N too. Moreover,
the Garside normal form of a signature might need to be computed as well,
depending on the rewriting algorithm used in the generation of WalnutDSATM

signatures.

Improvements: As the encoded message is located in between of two braids
W1 and W2 of roughly the same size in the signature, we anticipate to find the
subsequence of the permutation braids of τk

(
E(H(m))

)
roughly in the middle

of the signature. Therefore, it is faster on average to start the search for common
permutation braids in the middle part of the signature and encoding.

5.2 Experimental Results

We have implemented the relevant parts of WalnutDSATM and our attack
in magma [14]. The source code of our implementations can be found on
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GitHub [36]. For our experiments we used the recommended parameters as listed
in Sect. 3.2 for the two security levels. In particular, the number of strands N
was set to 10.

By Sect. 4 we know that the crucial part for our decomposition algorithm to
work is finding a (potentially reflected) contiguous subsequence of permutation
braids of the normal form of E(H(m)) in the normal form of the signature of m.
We generated 1.000 instances of signatures for randomly chosen messages m and
both security levels. In our experiment, we were able to locate such a common
subsequence of permutation braids in the normal forms of τk

(
E(H(m))

)
and

W1 · E(H(m)) · W2 for either k = 0 or 1 in all instances. The following table,
Fig. 4, shows the canonical lengths of the common subsequences we found for
the 128- and 256-bit parameters respectively.

length of common subsequence 128-bit security level 256-bit security level
mean 100 238

minimum 19 153
maximum 142 288

Fig. 4. Lengths of common subsequences of permutation braids of encodings and sig-
natures

To put this into context, we measured the canonical length of encoded mes-
sages. For the 128-bit parameters, encoded messages had canonical lengths rang-
ing from 112 to 165 with a mean of 140. The range for 256-bit parameters was
248 to 310 with a mean of 280 permutation braids.

To determine the position of a common subsequence of permutation braids
in (reflected) encoded message τk

(
E(H(m))

)
and signature Sig, we compared a

specified number Len of permutation braids of τk
(
E(H(m))

)
and Sig for k = 0, 1

at a time. Note that finding common subsequences of a given length is faster
than finding all common subsequences of arbitrary lenghts.

The larger the number Len it becomes less likely that a common subsequence
appears in the signature just by coincidence. However, we want it to be small
enough to actually find a common subsequence in most cases. Fixing Len = 15
turned out to be a good choice in our implementation but taking Len = 10 or
20 leads to almost the same results.

Later, we will see that increasing the number of strands N in the Walnut
digital signature algorithm would lead to shorter common subsequences of per-
mutation braids. In this situation we can improve our algorithm to find the
common position and whether k = 0 or 1 by reducing Len inductively whenever
we can not find a common subsequence of permutation braids for k = 0 and 1
until we find one or Len = 0.

Testing our entire attack on randomly generated instances, 99.8% of legiti-
mately produced signatures for the 128-bit parameters turned out to allow our
universal forgery attack. For the 256-bit security level all 100% of signatures
were susceptible.
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The algorithm to recover the braids W ′
1 and W ′

2 and thus to produce universal
forgeries takes time less than a second for the 128-bit and only a couple seconds
for the 256-bit parameters.

The higher success rate for the 256-bit parameters can be explained with the
output of the hash function being twice as long. This results in the normal form
of the encoding containing roughly twice as many permutation braids. Therefore,
it is more likely to find a common contiguous subsequence of permutation braids
in the left normal forms of the signature and the (reflected) encoded message.

5.3 Countermeasures

Finally, we want to discuss how different parameters of WalnutDSATM influence
the running time and success rate of our attack and we suggest one potential
countermeasure. Here, the success rate means the proportion of signatures that
allows a universal forgery attack.

Independence from q: Unlike the attacks [10,29], our attack works on the
braids only and thus independently of the colored Burau representation. In par-
ticular, it is independent of the size q of the underlying finite field Fq.

Increasing the length of the private braids: Increasing the number of
concealed cloaking elements or the length of private braids makes both W1 and
W2 and consequently the signature larger. We see that the running time of our
attack is quadratic in the length of the signature and thus it slows down our
attack a little bit, while simultaneously enlarging the size of signatures.

We have seen in Sect. 4.3 that the expected number of permutation braids
that change non-trivially when multiplying with randomly chosen braid words
on the left and right is bounded independently of their length. Therefore, we
do not expect enlarging W1 and W2 to have a great influence on the success of
our attack. Indeed, we generated random instances of Walnut signatures using
different lengths for private keys. This did not seem to have any influence on the
number of permutation braids found as a common subsequence in the signature
and the (reflected) encoding. The success rate of the attack did not change even
for very long private braids either.

For private braids randomly chosen from freely reduced words of length
15.000 Artin generators (instead of 287), our attack is still successful within
a few minutes while legitimate signatures reach the imposed upper limit for the
length of signatures that are being accepted as valid in the current implementa-
tion of WalnutDSATM. Consequently, increasing the length of private braids is
not useful to thwart our attack.

Increasing N : Looking at the formula for the running time, increasing N is
another way to slow down the attack slightly.

More interesting, however, is that increasing N decreases the success rate.
We conducted an experiment generating WalnutDSATM instances for different
values of N . Figure 5 shows the percentage of signatures allowing our universal
forgery attack out of 1.500 randomly generated Walnut instances depending
on N .
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Fig. 5. Success rate of universal forgery attack depending on N

We have seen in Fig. 3 that raising N influences the number of permuta-
tion braids that are expected to change when multiplying with braids on the
right. For multiplication on the left, we obtained the same result. At the same
time the canonical length of the encoding remains constant when scaling up N
since it only depends on the length of the output of the hash function used in
WalnutDSATM. Combined, this implies that the expected length of the common
subsequence of permutation braids of signature and encoding shrinks when rais-
ing N . Note that we cannot just reduce the length of the output of the hash
function as the signature scheme would become vulnerable to collision search
attacks [40].

As our attack does not work anymore once there is no common subsequence of
permutation braids left, this explains the decreasing success rate when increasing
N . In the 256-bit version the hash function has a longer output and therefore the
common subsequence of permutation braids of encoding and signature is larger
than in the 128-bit setting. This justifies, why the success probability decreases
slower when increasing N for the 256-bit security level. Moreover, we measured
the success of our attack by checking whether we recovered the braids W1 and
W2 modulo their centre successfully. For large N it is more likely that the centre
of the encoding E(H(m)) does not equal Δ2 and as we recover braids W1 and
W2 modulo the centre of E(H(m)) this might not be accepted as valid.

Considering our experiment shown in Fig. 5, the success of our attack seems
to decrease exponentially when increasing N . However, this would increase the
size of the public keys and slow down the signature verification quadratically in
N . Moreover, one could fear that with N increasing and the hash output length
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constant, the encoding will not have good mixing properties. It might be possible
to isolate the encoding in the signature just parsing through the braid, therefore
leading to other weaknesses.

Adding additional cloaking elements to the encoded message: Finally,
one could add some randomness to the encoder altering the permutation braids
in the signature corresponding to the encoding which can be done by adding
concealed cloaking elements (see Sect. 3.1) to the encoding. This countermeasure
was independently found and suggested by the WalnutDSATM team in a private
correspondence.

Clearly, the previously described attack to recover W1 and W2 modulo
Δ2 does not necessarily work anymore after adding cloaking elements to the
encoding. However, forging signatures is possible as long as we can find at
least one permutation braid in the signature corresponding to a permutation
braid in the encoding and the encoding separates the permutation braids of
W1 and W2. This is, because we have P

(
E(H(m))∗

I · E(H(m))−1
I

)
= (Id, id)

and P
(
E(H(m))−1

II · E(H(m))∗
II

)
= (Id, id), where E(H(m))∗

i are the parts
of the encoding E(H(m)) containing additionally concealed cloaking elements.
Together with the fact that all encodings are pure braids, we have therefore for
k = 0 or 1

P
(
SigI · τk(

E(H(m))−1
I · E(H(m′)) · E(H(m))−1

II

) · SigII

)

= P
(
W1 · E(H(m))∗IE(H(m))−1

I · E(H(m′)) · E(H(m))−1
II E(H(m))∗II · W2

)

= P(
W1 · E(H(m′)) · W2

)
.

We know that this still satisfies (5) and thus it is a valid signature for m′. Hence,
even though an attacker can not recover W1 and W2 up to the centre they can
still compute a forged signature for any message m′ as long as they find a single
permutation braid from the encoding in the signature at the correct position.

Consequently, to counter the attack one needs to make sure that all permu-
tation braids originating from the encoding in the signature are changed. Our
experiments show that introducing one cloaking element changes sometimes only
5 permutation braids in their surrounding for N = 10. Considering the canonical
length of common subsequences measured in Sect. 5, we would therefore expect
that at least 30 and 60 additional concealed cloaking elements need to be added
for the two security levels. However, it might be necessary to add even more
cloaking elements to prevent being susceptible to our attack after applying an
uncloaking procedure such as the one due to Kotov, Menshov, and Ushakov [34]
to critical positions in the middle of the signature eventually removing concealed
cloaking elements.

Altogether, adding additional concealed cloaking elements to the encoding
is the best way we found to thwart our attack. Yet, it would slow down the
signature generation as all additional concealed cloaking elements need to be
generated separately and it would enlarge the signatures of WalnutDSATM.
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6 Application to the Conjugacy and Decomposition
Search Problem

Another problem that can be solved using our decomposition algorithm from
Sect. 4 is the decomposition search problem which can be formulated for the
braid group as follows.

Definition 28. Given two elements X,Y of the braid group BN and two subsets
A,B ∈ BN . The decomposition search problem (DSP) is to find elements a ∈ A
and b ∈ B such that Y = aXb.

It is straightforward to construct key exchange protocols based on this problem,
assuming that elements of A and B commute with each other [33,42]. Here, our
decomposition algorithm of the previous subsection can be used to recover a and
b for some instances up to elements of the centre of X, given Y = aXb.

Recall that our algorithm to solve DSP by decomposing the braid Y is not
only fast but also requires almost no memory. Given B and a product of braids
ABC in BN , the decomposition algorithm of Sect. 4 is dominated by the time
it takes to compute the Garside normal form of ABC, i.e. O(|ABC|2N log N)
using Thurston’s approach where |ABC| denotes the number of permutation
braids a given positive braid word of ABC is written in. Note, that the Garside
normal form can be computed even faster in practice [27].

We analysed the success of our decomposition algorithm for randomly chosen
braid words A, B and C. To this end we generated uniformly at random freely
reduced braid words A,B,C ∈ BN of given lengths using magma [14]. Given the
product ABC and B, we applied the decomposition algorithm and considered
a run successful whenever we were able to recover A and C up to the centre of
BN , i.e. up to multiplication by powers of Δ2.

Figure 6 shows the percentage of successful recoveries depending on the word
lengths of A,B and C for different numbers of strands N . We see that the attack
is very successful for sufficiently long randomly chosen braid words reaching 100%
success rate. Moreover, we see that this “sufficient” length increases with N . This
is no surprise since the bound of Conjecture 26 increases with N as previously
noticed. Thus, for words that are shorter it is less likely to find a contiguous
subsequence of (reflected) permutation braids of B in ABC.

Moreover, for randomly chosen words B of short length it is more likely
that the centre of the braid associated to B does not equal the centre of the
braid group generated by Δ2. Therefore, braids recovered for short B using our
decomposition algorithm might not be accepted as valid in our experiments.

Clearly, the conjugacy search problem (Definition 1) is a special case of the
decomposition search problem and our decomposition algorithm can be used to
solve instances of the conjugacy search problem too. Indeed, a successful run of
the decomposition algorithm provides us with a braid C̃ equal to C up to the
centre of X, given X and Y = C · X · C−1. Consequently C̃ is a solution to the
conjugacy search problem, as

Y = C · X · C−1 = C̃ · X · C̃−1.
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Recall that our decomposition algorithm needs a common subsequence of
permutation braids of τk(X) and Y = C · X · C−1, for k = 0 or 1, to work. By
Sect. 4.2, we can expect this for braid words X and C that are chosen uniformly
at random whenever X has sufficiently large canonical length depending on
N . However, in the case of the conjugacy search problem we can apply our
decomposition algorithm for some short X as well, exploiting that X and Y are
conjugate.

This is because C can be recovered by applying the decomposition algorithm
to the braids Xn and Y n = (C · X · C−1)n = C · Xn · C−1 with larger canonical
length instead of X and Y , where n is a positive integer. We tested this procedure
for randomly generated braid words of a given length X and C. Whenever the
decomposition algorithm was not able to find a common subsequence in the
permutation braids of τk(X) and Y = C ·X ·C−1 for k = 0 or 1, we tried it on Xn

and Y n instead. In our experiments we used n = 4 and reran the decomposition
algorithm on powers at most 3 times. The result of our experiments can be seen
in Fig. 7 and shows clearly that the decomposition algorithm works in the case
of CSP for shorter words than for the DSP displayed in Fig. 6.

However, we want to point out that there is not always an n such that
Xn and Y n share a potentially reflected subsequence of permutation braids.
Indeed, the minimal counterexample is N = 4, X = b1 and Y = b2b1b

−1
2 ,

where bi are Artin generators. We denote permutation braids by their induced
permutation. The left normal forms of Xn and Y n are the products (1, 2)n and
(1, 3, 2, 4)(2, 3)n−1(1, 3, 2) respectively, which do not share a single permutation
braid.
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Fig. 6. Success rate of decomposition algorithm for instances of the DSP

Due to the vast use of the CSP, DSP and its variants in the design of crypto-
graphic protocols, studying further applications of our decomposition algorithm
and a thorough comparison with other solutions to the conjugacy and decom-
position search problem in braid groups will be subject to future work.
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Fig. 7. Success rate of decomposition algorithm for instances of the CSP

7 Conclusion and Further Work

In cryptographic schemes based on braid groups, products of braids are often
constructed involving secret braids as factors, and it is hoped that rewriting the
product will hide the individual factors. We demonstrated that this is not the
case for randomly chosen braid words. We provided an algorithm to compute
individual components of products ABC when B is known and ABC is presented
in normal form. We expect this decomposition to work for randomly chosen
braids A, B and C if B is of canonical length greater than 2CN +1, where CN is
the number given by Conjecture 26. In Sect. 4.2 we estimated CN experimentally
for some values of N .

As an application of our decomposition algorithm we presented a new univer-
sal forgery attack on the previously unbroken instantiation of WalnutDSATM.
Given a single random message-signature pair, our attack allows to forge signa-
tures for arbitrary messages within seconds for the 128-bit and 256-bit security
levels. Hereby, the forgeries are indistinguishable from legitimately produced sig-
natures. Our experiments showed that 99.8% and 100% of legitimately produced
signatures in WalnutDSATM can be used in our new attack for the claimed 128-
bit and 256-bit security levels respectively. In contrast to previous attacks, our
attack produces signatures that are identically distributed as legitimate signa-
tures and applies to all versions of WalnutDSATM. Unlike the previous attacks
in [10,29], our attack works on the braids only. Thus, it does not depend on the
colored Burau representation of the braid group and is independent of the size
q of the underlying finite field Fq. We have further discussed how other parame-
ters influence the success probability and running time of our universal forgery
attack. Adding sufficiently many concealed cloaking elements to the encoding
may thwart our attack at the cost of increasing the length of signatures and
slowing down the signature generation algorithm.

As another application, we provide a new algorithm for solving the conjugacy
and decomposition search problems, two problems at the heart of other crypto-
graphic systems based on braid groups [22]. The running time of this algorithm
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is dominated by the time it takes to compute the Garside normal form of ABC
but also requires almost no memory to work.

We leave a full theoretical analysis of our decomposition algorithm for prod-
ucts of braids to further work. In particular, a proof of Conjecture 26 would be
very interesting, even from a purely mathematical point of view. Conjecture 25
due to Gebhardt and Tawn [27] which would provide a partial solution is yet to
be proven as well.

Improving our attack, finding different countermeasures and studying the
efficiency of the one suggested by us might be of interest for further research
regarding WalnutDSATM. More generally, we believe that our decomposition
algorithm is applicable to other cryptographic schemes that have been suggested
for braid groups. Researching further applications and a thorough comparison of
our new solution to the conjugacy and decomposition search problems in braid
groups to existing approaches will be subject for future work.
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