
Group Signatures with Selective
Linkability

Lydia Garms1(B) and Anja Lehmann2

1 Royal Holloway, University of London, Egham, UK
Lydia.Garms.2015@live.rhul.ac.uk

2 IBM Research - Zurich, Rüschlikon, Switzerland
anj@zurich.ibm.com

Abstract. Group signatures allow members of a group to anonymously
produce signatures on behalf of the group. They are an important build-
ing block for privacy-enhancing applications, e.g., enabling user data to
be collected in authenticated form while preserving the user’s privacy.
The linkability between the signatures thereby plays a crucial role for
balancing utility and privacy: knowing the correlation of events signifi-
cantly increases the utility of the data but also severely harms the user’s
privacy. Therefore group signatures are unlinkable per default, but either
support linking or identity escrow through a dedicated central party or
offer user-controlled linkability. However, both approaches have signifi-
cant limitations. The former relies on a fully trusted entity and reveals
too much information, and the latter requires exact knowledge of the
needed linkability at the moment when the signatures are created. How-
ever, often the exact purpose of the data might not be clear at the point
of data collection. In fact, data collectors tend to gather large amounts
of data at first, but will need linkability only for selected, small subsets
of the data. We introduce a new type of group signature that provides
a more flexible and privacy-friendly access to such selective linkability.
When created, all signatures are fully unlinkable. Only when strictly
needed or desired, should the required pieces be made linkable with the
help of a central entity. For privacy, this linkability is established in
an oblivious and non-transitive manner. We formally define the require-
ments for this new type of group signatures and provide an efficient
instantiation that provably satisfies these requirements under discrete-
logarithm based assumptions.

1 Introduction

Group signatures are a powerful and well-studied primitive that allow members
of a group to sign messages on behalf of the group in an anonymous way [2,4,9,
10,21,22,28,32–34]. That is, a verifier of a group signature is assured that it was
signed by a valid member of the group, but it does not learn anything about the
identity of the signer, or even whether two signatures stem from the same user.

L. Garms—Work done as an intern at IBM Research – Zurich.

c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11442, pp. 190–220, 2019.
https://doi.org/10.1007/978-3-030-17253-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17253-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-17253-4_7

Group Signatures with Selective Linkability 191

This makes group signatures highly suited whenever data is collected that needs
to be authenticated while, at the same time, the privacy of the data sources must
be respected and preserved. In particular when data is collected from users, the
protection of their privacy is of crucial importance, and sees increased attention
due to the recently introduced General Data Protection Regulation (GDPR) [1],
Europe’s new privacy regulation. In fact, the GDPR creates strong incentives for
data collectors to thoroughly protect users’ data and implement the principle of
data minimization, as data breaches are fined with up to 4% of an enterprises
annual turnover.

When aiming to implement such techniques for privacy and data protection,
one needs to find a good balance with utility though: data gets collected in order
to be analysed and to generate new insights. For these processes it is usually
necessary to know the correlation among different data events, as they carry a
crucial part of the information. For instance, when a group of users measure and
upload their blood pressure via wearable activity trackers, several high value
measurements are not critical when they are distributed over many participants,
but might be alarming when originating from a single user.

Often the exact purpose of the data might not be clear at the point of data
collection. In fact, given the rapid advancements in machine learning and the
ubiquitously available and cheap storage, data collectors tend to gather large
amounts of data at first, and will only use small subsets for particular appli-
cations as they arise. A famous example are the Google Street View cars that
inadvertently recorded public Wi-Fi data like SSID information, which later got
used to improve Google’s location services.

Ideally, the data should be collected and stored in authenticated and unlink-
able form, and only the particular subsets that are needed later on should be
correlated in a controlled and flexible manner.

Linkability in Group Signatures. To address the tension between privacy
and utility, group signatures often have built-in measures that control linkability
of otherwise anonymously authenticated information. Interestingly, despite the
long line of work on this subject, none of the solutions provides the functionality
to cater for the flexibility needed in practice: They either recover linkablity in a
privacy-invasive way or offer control only in a static manner.

Group Signatures with Opening. Standard group signatures [4,5,9,10,22,34]
guarantee full unlinkability of signatures, except to the group manager (or ded-
icated opening authority) that owns a so-called opening key. The opening key
allows the group manager, when given a signature, to recover the signer’s iden-
tity. Originally, the opening was intended to prevent abuse of anonymity, and
rather meant to be used in extreme situations. Clearly, the opening capability
can also be leveraged to determine the linkability of various data events, but at
high costs for privacy: every request for linkability will recover the full identity
of the signer, and the central group manager learns the (signed) data of the data
collectors and their correlation.

192 L. Garms and A. Lehmann

Group Signatures with Controlled Linkability. A more suitable solution are group
signatures with controlled linkability [29,30,37]. In these schemes, signatures are
unlinkable except to a dedicated linking authority with a secret key: on input
two signatures it tells whether they stem from the same user or not. This is
much better then revealing the identity of the user, but still relies on a fully
trusted entity that will learn the collectors’ signed data. Further, this approach
does not scale well for applications where a data collector is interested in the
correlations within a large data set. To link a data set of n signed entries, each
pair of signatures would have to be compared, which would require n(n − 1)/2
requests to the linking authority. Another related concept are traceable group
signatures [31] where a dedicated entity can generate a tracing trapdoor for each
user which allows to trace this user’s signatures. This approach is not suitable
for our use case of controlled data linkage either, as it requires knowledge of
the users’ identities behind the anonymous group signatures or trapdoors for all
users, and also needs every signature to be tested for every trapdoor.

Group Signatures with User-Controlled Linkability. Finally, schemes with user-
controlled linkability exist, mostly in the context of Direct Anonymous Attes-
tation (DAA) [6,11,12,14,15] or anonymous credentials [19,35]. For linkability,
a so-called basename is chosen alongside the message and all signatures with
the same basename can easily be linked, but signatures for different basenames
remain unlinkable. In contrast to solutions with opening or linking authorities,
the linkability here can be publicly verified: a signature in such schemes contains
a pseudonym that is deterministically derived from the user’s secret key and
the basename. Thus, the user re-uses the same pseudonym whenever he wants
to be linkable. On the downside, this linkage is immediate and static. That is,
the users have to choose at the beginning whether they want to disclose their
data in a fully unlinkable manner, or linked w.r.t. a context-specific pseudonym.
There is no option to selectively correlate the data after it has been disclosed.
Therefore, users, or rather the data collectors allowing the use of such protocols,
will hesitate to choose the option of unlinkability, as they fear to lose too much
information by the irreversible decorrelation.

Our Contributions. In this work we overcome the aforementioned limita-
tions by introducing a new type of group signatures that allows for flexible
and selective linkability. We achieve that functionality by combining ideas from
the different approaches discussed above: Group signatures are associated with
pseudonyms, but pseudonyms are all unlinkable per default. Only when needed,
a set of signatures – or rather the pseudonyms – can be linked in an efficient
manner through a central entity, the converter. The converter receives a batch of
pseudonymous data and transforms them into a consistent representation, mean-
ing that all pseudonyms stemming from the same user will be converted into the
same value. To preserve the privacy of the users and their data, the converter
correlates the data in a fully blind way, i.e., not learning anything about the
pseudonyms he transforms. We term these new form of group signatures CLS,
which stands for convertably linkable (group) signatures.

Group Signatures with Selective Linkability 193

Security and Privacy for CLS . A crucial property that we want from pseudonym
conversions is that they establish linkability only strictly within the queried data,
i.e., linked pseudonyms from different queries should not be transitive. Other-
wise, different re-linked data sets with overlapping input data could be pieced
together, thereby gradually eroding the user’s privacy. Aiming for such non-
transitivity has an immediate impact on the overall setting: we need to channel
both, the pseudonyms and messages, blindly through the converter, as trans-
forming pseudonyms without the messages would require linkability between
the in- and outputs of the conversion query, which in turn allows to correlate
outputs from different queries.

We formally define the security of CLS through a number of security games,
strongly inspired by the existing work on group signatures and DAA [4,5,15].
That is, we want signatures to be fully anonymous and unlinkable bearing in
mind the information that is revealed through the selective linkability. We dis-
cuss that the classic anonymity notion adapted to our setting won’t suffice, as
it cannot guarantee the desired non-transitivity. In fact, capturing the achiev-
able privacy and non-transitivity property in the presence of adaptive conversion
queries was one of the core challenges of this work, and we formalize this property
through a simulation-based definition. If the converter is corrupt, then unlink-
ability of signatures no longer holds, but the adversary should neither be able
to trace signatures to a particular user, nor harm the obliviousness of queries
which is captured in the conversion blindness and join anonymity properties.
The guarantees in terms of unforgeability are captured through non-frameability
and traceability requirements. The former says that corrupt users should not be
able to impersonate honest users, and the latter guarantees that the power of
an adversary should be bounded by the number of corrupt users he controls.

From a corruption point of view, we assume the data collector to be at most
honest-but-curious towards the converter, i.e., even a corrupt data collector will
only query pseudonym-message pairs that it has received along with a valid sig-
nature. We consider this a reasonable assumption, as data collectors that will use
such a CLS scheme do so in order to implement the principle of data minimization
on their own premises, and don’t have an incentive to cheat themselves.

Efficient Instantiation. We propose an efficient construction of such CLS
schemes, following the classical sign-and-encrypt paradigm that underlies most
group signatures. Roughly, we use BBS+ signatures [3] for attesting group mem-
bership, i.e., a user will blindly receive a BBS+ signature from the group issuer
on a secret key y chosen afresh by the user. To sign a message m on behalf of the
group, the user computes a signature-proof-of-knowledge (SPK) for m where he
proves knowledge of such an issuer’s signature on its secret key and also encrypts
it’s user key (or rather its “public key” version hy) under the converter’s public
key. The ciphertext that encrypts hy serves as the pseudonym nym.

When the converter is asked to recover the correlations for a set of k
pseudonym-message pairs (nym1,m1), . . . (nymk,mk), it blindly decrypts each
pseudonym and blindly raises the result to the power of r which is chosen fresh for
every conversion query, but used consistently within. That is, all pseudonyms

194 L. Garms and A. Lehmann

belonging to the same user will be mapped to the same query-specific DDH
tuple hyr which allows for linkage of data within the query, but guarantees
that converted pseudonyms remain unlinkable across queries. To achieve obliv-
iousness and non-transitivity of conversions, we encrypt all pseudonyms and
messages with a re-randomisable (homomorphic) encryption scheme under the
blinding key of the data collector. The re-randomisation is applied by the con-
verter before he returns the transformed values, which ensures that the data
collector cannot link the original and the converted pseudonyms by any cryp-
tographic value. Clearly, if the associated messages are unique, then the data
collector can link in- and outputs anyway, but our scheme should not introduce
any additional linkage. Given that the pseudonyms are encryptions under the
converter’s public key, we need to add the second layer of encryption in a way
that it doesn’t interfere with the capabilities of the inner ciphertext. Using a
nested form of ElGamal encryption [23] gives us these properties as well as the
needed re-randomisability.

Finally, we prove that our instantiation satisfies the desired security and pri-
vacy requirements under the DDH, q-SDH and DCR assumption in the random
oracle model. Our construction relies on type-3 pairings and performs most of
the work in G1 which comes with significant efficiency benefits. In fact, we show
that our construction is reasonably efficient considering the increased flexibility
when establising the linkability in such a selective and controlled manner.

Other Related Work. A number of results exist that establish convertible
pseudonyms in the setting of distributed databases and have inspired our work.
Therein, the data gets created and maintained in a distributed manner. For
privacy, related data is stored under different, database-specific pseudonyms that
are seemingly unlinkable and can only be correlated by a central entity that
controls the data flow. While the initial approach by Galindo and Verheul [26]
required the converter to be a trusted third party, Camenisch and Lehmann [17,
18] later showed how the converter can operate in an oblivious manner. However,
none of these solutions supports authenticated data collection and [26] and [17]
even let the (trusted) converter establish all pseudonyms. The pseudonym system
in [18] bootstraps pseudonyms in a blind way from a user secret, but for every
new pseudonym that requires the user, converter and targeted data base to
engage in an interactive protocol. Clearly, this is not practical for a setting
where users frequently want to upload data. Further, all schemes re-use the same
pseudonym for a user within a database, whereas our solution creates fresh and
unlinkable pseudonyms for every new data item.

2 Preliminaries

This section presents all building blocks and assumptions that are needed for
our CLS construction. We use ElGamal encryption as re-randomisable and homo-
morphic encryption scheme that is chosen plaintext secure, BBS+ signatures [3],
and standard proof protocols.

Group Signatures with Selective Linkability 195

Bilinear Maps & q-SDH Assumption. Let G1, G2, GT be cyclic groups of
prime order p. A map e : G1 × G2 → GT must satisfy the following conditions:
bilinearity, i.e., e(gx

1 , gy
2) = e(g1, g2)xy; non-degeneracy, i.e., for all generators

g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there exists an
efficient algorithm G(1τ) that outputs a bilinear group (p, G1, G2, GT , e, g1, g2),
and an efficient algorithm to compute e(a, b) for all a ∈ G1, b ∈ G2.

We use type-3 pairings [25] in this work, i.e., we do not assume G1 = G2

or the existence of an isomorphism between both groups in our scheme and
security proofs. The advantage of type-3 pairings is that they enjoy the most
efficient curves.

q-Strong Diffie Hellman Assumption (q-SDH). There are two versions of the q-
Strong Diffie Hellman Assumption. The first version, given by Boneh and Boyen
in [7], is defined in a type-1 or type-2 pairing setting. We use their second version
of that definition that supports type-3 pairings and was stated in the journal
version of their paper [8].

Given (g1, g
χ
1 , g

(χ)2

1 , ..., g
(χ)q

1 , g2, g
χ
2) such that g1 ∈ G1, g2 ∈ G2, output

(g
1

χ+x

1 , x) ∈ G1 × Zp\{−χ}.

BBS+ Signatures. Our scheme will make use of BBS+ signatures given by
Au et al. [3], and inspired by BBS group signatures introduced in [9].

Key Generation: Take (h1, h2) ←$ G
2
1, x ←$ Z

∗
p, w ← gx

2 , and set sk = x and
pk = (w, h1, h2).

Signature: On input a message m ∈ Zp and secret key x, pick e, s ←$ Zp and
compute A ← (g1hs

1h
m
2)

1
e+x . Output signature σ ← (A, e, s).

Verification: On input a public key (w, h1, h2) ∈ G2 × G
2
1, message m ∈ Zp,

and purported signature (A, e, s) ∈ G1×Z
2
p, check e(A,wge

2) = e(g1hs
1h

m
2 , g2).

When proving the unforgability of our scheme (called traceability in our
setting), we will make use of techniques from [14] which prove the unforgeability
of BBS+ signatures in the type-3 setting. Originally, Au et al. [3], proved the
BBS+ signature secure under the first version of the q-SDH assumption given
in [7], making use of the isomorphism between the groups in the security proof.

Re-randomisable ElGamal Encryption. We use the ElGamal encryption
scheme [23] with public parameters (G1, g, p), such that the DDH problem is
hard with respect to τ , i.e p is a τ bit prime.

Key Generation: Choose sk ←$ Z
∗
p, pk ← gsk, and output (pk, sk).

Encryption: On input (pk,m), choose r ←$ Z
∗
p, and output c ← (gr, pkrm).

Decryption: On input (sk, (c1, c2)), output m ← c2c
−sk
1 .

ElGamal encryption is chosen-plaintext secure under the DDH assumption.
In our construction, we will use the homomorphic property of ElGamal, i.e., if
C1 ∈ Enc(pk,m1), and C2 ∈ Enc(pk,m2), then C1 � C2 ∈ Enc(pk,m1 · m2).

196 L. Garms and A. Lehmann

We further use that ElGamal ciphertexts c = Enc(pk,m) are publicly re-
randomisable in the sense that a re-randomised version c′ of c looks indistin-
guishable from a fresh encryption of the underlying plaintext m. The following
procedure clearly satisfies this:

Re-randomisation: On input (pk, (c1, c2)), get r′ ←$ Z
∗
p and output

(c1gr′
, c2pkr′

).

2.1 Proof Protocols

We follow the notation defined in [16] when referring to zero-knowledge proofs of
knowledge of discrete logarithms. For example PK{(a, b, c) : y = gahb∧ỹ = g̃ah̃c}
denotes a zero knowledge proof of knowledge of integers a, b and c such that
y = gahb and ỹ = g̃ah̃c hold. SPK denotes a signature proof of knowledge, that
is a non-interactive transformation of a proof PK, e.g., using the Fiat-Shamir
heuristic [24] in the random oracle. Using the Fiat-Shamir heuristic, the witness
can be extracted from these proofs by rewinding the prover and programming
the random oracle. Alternatively, these proofs can be extended to be online-
extractable, by verifiably encrypting the witness to a public key defined in the
common reference string. Clearly this requires a trusted common reference string.
We underline the values that we need to be online-extractable in our proofs.

We require the proof system to be simulation-sound and zero-knowledge.
The latter roughly says that there must exist a simulator that can generate
simulated proofs which are indistinguishable from real proofs from the view of
the adversary. The simulation-soundness is a strengthened version of normal
soundness and guarantees that an adversary, even after having seen simulated
proofs of false statements of his choice, cannot produce a valid proof of a false
statement himself.

3 Definition & Security Model for CLS

In this section we first introduce the syntax and generic functionality of CLS and
then present the desirable security and privacy properties for such schemes.

The following entities are involved in an CLS scheme: an issuer I, a set of
users U = {uidi}, a Verifier V and a converter C. The issuer I is the central entity
that allows users to join the group. Once joined, a user can then sign on behalf of
the group in a pseudonymous way. That is, a verifier V can test the validity of a
signature w.r.t the group’s public key but does not learn any information about
the particular user that created the signature. Most importantly, we want the
pseudonymously signed data to be linkable in a controlled yet blind manner. Such
selected linkability can be requested through the converter C that can blindly
transform tuples of pseudonym-message pairs into a consistent representation.

Group Signatures with Selective Linkability 197

3.1 Syntax of CLS

Our notation closely follows the definitional framework for dynamic group sig-
natures given in [5]. We stress that our algorithms (and security notions) are
flexible enough to cover settings where multiple verifiers and converters exist.
For the sake of simplicity, however, we focus on the setting where there is only
one entity each.

Definition 1 (CLS). A convertably linkable group signature scheme CLS con-
sists of the following algorithms:

Setup & Key Generation. We model key generation individually per party, and
refer to (param, ipk, cpk) as the group public key gpk.

Setup(1τ) → param: on input a security parameter 1τ , outputs param, the pub-
lic parameters for the scheme.

IKGen(param) → (ipk, isk): performed by the issuer I, outputs the issuer secret
key isk, and the issuing public key ipk.

CKGen(param) → (cpk, csk): performed by the Converter C, outputs the con-
verter secret key csk, and the converter public key cpk.

BKGen(param) → (bpk, bsk): performed by the verifier V1, outputs a blinding
secret key, bsk, and blinding public key, bpk. As the key is only used for
blinding purposes, (bpk, bsk) can be ephemeral. We write BPK as the public
key space induced by BKGen.

Join, Sign & Verify. As in standard dynamic group signatures we have a dedi-
cated join procedure that a user has to complete with the issuer. All users that
have successfully joined the group can then create pseudonymous signatures on
behalf of the group, i.e., that verify w.r.t. the group public key bpk. For ease of
expression we treat the pseudonym nym as a dedicated part of the signature.

〈Join(gpk), Issue(isk, gpk)〉: a user uid joins the group by engaging in a interac-
tive protocol with the Issuer I. The user uid and Issuer I perform algorithms
Join and Issue respectively. These are input a state and an incoming message
respectively, and output an updated state, an outgoing message, and a deci-
sion, either cont, accept, or reject. The initial input to Join is the group public
key, gpk, whereas the initial input to Issue is the issuer secret key, isk, and
the issuer public key ipk. If the user uid accepts, Join has a private output of
gsk[uid].

Sign(gpk,gsk[uid],m) → (nym, σ): performed by the user with identifier uid,
with input the group public key gpk, the user’s secret key gsk[uid], and a
message m. Outputs a pseudonym nym and signature σ.

Verify(gpk,m, nym, σ) → {0, 1}: performed by the Verifier V. Outputs 1 if σ is
a valid signature on m for pseudonym nym under the group public key gpk,
and 0 otherwise.

1 For sake of simplicity we state the algorithms for the setting where the requester
and receiver of conversions is the same party, namely the verifier. However, our
algorithms work in a public key setting to facilitate more general settings as well.

198 L. Garms and A. Lehmann

Blind Conversion. Finally, we want our pseudonymous group signatures to be
blindly convertable. Thus, we introduce a dedicated Blind and Unblind proce-
dure for the verifier and a Convert algorithm that requires the converter’s secret
key. The latter transforms the unlinkable pseudonyms in a consistent manner,
i.e., outputting converted pseudonyms that are consistent whenever the input
pseudonyms belong to the same user.

Blind(gpk, bpk, (nym,m)) → (cnym, c): performed by the verifier V on input a
pseudonym-message pair(nym,m) and blinding public key bpk, group public
key gpk. Outputs a blinded pseudonym and message.

Convert(gpk, csk, bpk, {(cnymi, ci)}k) → {(cnymi, ci)}k: performed by the con-
verter C, on input k blinded pseudonym-message tuples {(cnymi, ci)}k =
((cnym1, c1), ..., (cnymk, ck)), and the public blinding key bpk used. Outputs
converted pseudonyms {(cnymi, ci)}k = ((cnym1, c1), ..., (cnymk, ck))

Unblind(bsk, (cnym, c)) → (nym,m): performed by the Verifier V on input a
converted pseudonym-message tuple, and the blinding secret key bsk. Outputs
an unblinded converted pseudonym-message tuple (nym,m).

We sometimes make the randomness r used in these algorithms explicit, and
e.g. write Blind(gpk, bpk, (nym,m); r).

3.2 Security Properties

We want that CLS schemes enjoy roughly the same security and privacy proper-
ties as group signatures when taking the added linkability into account. Defining
these properties when pseudonyms can be selectively and adaptively converted
is very challenging, though, as it requires a lot of care to avoid trivial wins while
keeping the adversary as powerful as possible.

In a nutshell, we require the following guarantees from convertably link-
able group signatures, where (join) anonymity and non-transitivity capture the
privacy-related properties and non-frameability and traceability formalize the
desired unforgeability.

(Join) Anonymity: Pseudonymous signatures should be unlinkable and
untraceable (to a join session) even when the issuer and verifier are corrupt.
When the converter is honest, unlinkability holds for all signatures for which
the associated pseudonyms have not been explicitly linked through a conver-
sion request. If the converter is corrupt and also controlled by the adversary,
unlinkability is no longer possible, yet the anonymity of joins must remain.

Non-transitivity: Converted pseudonyms should be non-transitive, i.e., the
verifier should not be able to link the outputs of different convert queries.
Otherwise, a corrupt verifier would be able to gradually link together all
pseudonyms that have ever been queried to the converter.

Conversion Blindness: The converter learns nothing about the pseudonyms
(and messages) it receives and the transformed pseudonyms it computes.

Non-frameability: An adversary controlling the issuer and some corrupt users,
should not be able to impersonate other honest users, i.e., create pseudony-
mous signatures that would be linked to a pseudonym of an honest user.

Group Signatures with Selective Linkability 199

Traceability: An adversary should not be able to create more signatures that
remain unlinkable in a conversion than he controls corrupt users.

Clearly, any re-linked subset of the originally anonymous data increases
the risk of re-identification. Thus, the converter could enforce some form of
access control to the re-linked data, e.g., only converting a certain amount
of pseudonyms at once. The non-transitivity requirement then ensures that
a corrupt verifier cannot further aggregate the individually learned data. We
stress that our security properties only formalize the achievable privacy for the
pseudonyms and signatures. They do not and cannot capture information leak-
age through the messages that the users sign. This is the case for all group
signatures though, and not special to our setting.

Oracles & State. The security notions we formalize in the following make use
a number of oracles which keep joint state, e.g., keeping track of queries and
the set of corrupted parties. We present the detailed description of all oracles in
Fig. 1 and an overview of them and their maintained records below.

ADDU (join of honest user & honest issuer) Creates a new honest user for
uid and internally runs a join protocol between the honest user and honest
issuer. At the end, the honest user’s secret key gsk[uid] is generated and from
then on signing queries for uid will be allowed.

SNDU (join of honest user & corrupt issuer) Creates a new honest user
for uid and runs the join protocol on behalf of uid with the corrupt issuer. If
the join session completes, the oracle will store the user’s secret key gsk[uid].

SNDI (join of corrupt user & honest issuer) Runs the join protocol on
behalf of the honest issuer with corrupt users. For joins of honest users, the
ADDU oracle must be used.

SIGN This oracle returns signatures for honest users that have successfully joined
(via ADDU or SNDU, depending on the game).

CONVERT The oracle returns a set of converted pseudonyms along with their
messages. To model that conversion is triggered by an at most honest-but-
curious verifier, we request V to provide the unblinded set of pseudonyms
along with signatures. The conversion will only be done when all signatures
are valid. The oracle then internally blinds the pseudonym-message pairs and
returns the blinded input, the randomness used for the blinding along with
the converted output. When this oracle is used in the anonymity game, it
further checks that the input does not allow the adversary to trivially win by
converting the challenge pseudonym together with pseudonyms from either
of the challenge users.

All oracles have access to the following records maintained as global state:

HUL List of uid’s of honest users, initially set to ∅. New honest users can be
added by queries to the ADDU oracle (when the issuer is honest) or SNDU
oracle (when the issuer is corrupt).

200 L. Garms and A. Lehmann

CUL List of corrupt users that have (requested) to join the group. Initially set
to ∅, new corrupt users can be added through the SNDI oracle if the issuer
is honest. If the issuer is corrupt, we do not keep track of corrupt users.

SL List of (uid,m, nym, σ) tuples requested from the SIGN oracle.

Helper Algorithms. We introduce two additional algorithms for notational sim-
plicity in our security games: Identify and UnLink. Roughly, Identify allows to

Fig. 1. Oracles used in our security games

Group Signatures with Selective Linkability 201

test whether a pseudonym belongs to a certain uid by exploiting the converta-
bility of pseudonyms. That is, we create a second signature for gsk[uid] and use
the converter’s secret key to test whether both are linked. If so, Identify returns
1. This algorithm already uses our second helper algorithm UnLink internally,
which takes a list of (correctly formed) pseudonym-message pairs and returns 1
if they are all unlinkable and 0 otherwise.

Identify(gpk, csk, uid,m, nym)

(nym′, σ′) ← Sign(gpk,gsk[uid], 0)

if UnLink(gpk, csk, ((nym, m), (nym′, 0))) = 0 return 1

else return 0

UnLink(gpk, csk, ((nym1,m1), ..., (nymk,mk)))

(bpk, bsk) ← BKGen(param)

∀i ∈ [1, k] (cnymi, ci) ← Blind(gpk, bpk, (nymi, mi))

{(cnymi, ci)}k ← Convert(gpk, csk, bpk, {(cnymi, ci)}k)

∀i ∈ [1, k] (nymi, mi) ← Unblind(bsk, (cnymi, ci))

if ∃(i, j) with i �= j s.t. nymi = nymj return 0

else return 1

For even more simplicity we often omit the keys for the algorithms (as they
are clear from the context). That is, we write Identify(uid, nym) which will indi-
cate whether the pseudonym nym belongs to the user with identity uid or not.
Likewise we write UnLink(nym1, . . . , nymk) to test whether all pseudonyms are
uncorrelated or not.

Correctness. CLS signatures should be correct and consistent when being
produced by honest parties. More precisely, we formulate correctness via three
requirements: Correctness of sign guarantees that signatures formed using the
Sign algorithm with a user secret key generated honestly will verify correctly.
Correctness of conversion guarantees that after blinding, converting and then
unblinding correctly, the output will be correctly linked messages/pseudonyms.
Consistency is a stronger variant of conversion-correctness and requires that the
correlations of pseudonyms established through the conversion procedure must
be consistent across queries. More precisely, if a conversion query reveals that
two pseudonym nym1 and nym2 are linked, and another one that nym2 and
nym3 are linked, then it must also hold that a conversion query for nym1 and
nym3 returns linked pseudonyms. We require that this property even holds for
maliciously formed pseudonyms, which will be a helpful property in some of
our security proofs. For space reasons, the detailed correctness definitions are
deferred to the full paper [27].

Anonymity (Corrupt Issuer & Verifier). This security requirement cap-
tures the desired anonymity properties when both the issuer and verifier are
corrupt. Just as in conventional group signatures, we want that the signatures

202 L. Garms and A. Lehmann

of honest users are unlinkable and cannot be traced back to a user’s join session
with the corrupt issuer. To model this property, we let the adversary output uid’s
of two honest users together with a message and return a challenge (nym∗, σ∗)
that is created either by user uid0 or uid1. For anonymity, the adversary should
not be able to determine the user’s identity better than by guessing.

In our setting, this property must hold when the corrupt verifier has access
to the conversion oracle where it can obtain linked subsets of the pseudonymous
data. To avoid trivial wins, the adversary is not allowed to make conversion
queries that link the challenge pseudonym nym∗ to another pseudonym belong-
ing to one of the two honest challenge users.

Definition 2 (Anonymity). A CLS scheme satisfies anonymity if for all poly-
nomial time adversaries A the following advantage is negligible in τ :

∣
∣
∣Pr[Expanon−0

A,CLS (τ) = 1] − Pr[Expanon−1
A,CLS (τ) = 1]

∣
∣
∣ .

Experiment: Expanon−b
A,CLS (τ)

param ← Setup(1τ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

(uid∗
0, uid∗

1, m
∗, st) ← ASNDU,SIGN,CONVERT(choose, gpk, isk)

if uid∗
0 /∈ HUL or gsk[uid∗

0] =⊥ or uid∗
1 /∈ HUL or gsk[uid∗

1] =⊥ return 0

(nym∗, σ∗) ← Sign(gpk,gsk[uid∗
b], m

∗)

b∗ ← ASNDU,SIGN,CONVERT(guess, st, nym∗, σ∗)

return b∗

Non-transitivity (Corrupt Issuer & Verifier). The second privacy-related
property we want to guarantee when both the issuer and verifier are corrupt,
is the strict non-transitivity of conversions. This ensures that the outputs of
separate convert queries cannot be linked together, further than what is already
possible due the messages queried. For example if nym1 and nym2 are outputs by
two separate convert queries, the adversary should not be able to decide whether
they were derived from the same pseudonym or not. Otherwise the verifier could
gradually build lists of linked pseudonyms, adding to these during every convert
query and eventually recover the linkability among all pseudonymous signatures.

To model non-transitivity of conversions we use a simulation-based approach,
requiring the indistinguishability of an ideal and a real world. In the real world,
all convert queries are handled normally through the CONVERT oracle defined
in Fig. 1. Whereas in the ideal world, the converted pseudonyms are produced by
a simulator SIM through the CONVSIM oracle defined below. For a conversion
request of input (nym1,m1, σ1), . . . , (nymk,mk, σk) the simulator will only learn
which of the messages belong together, i.e., are associated to pseudonyms that
belong to the same user uid. For honest users this can be looked up through
the records of the signing oracle that stores tuples (uid,mi, nymi, σi) for each
signing query. Thus, we let the simulator mimic the conversion output for all
pseudonyms stemming form honest users, and convert pseudonyms from corrupt
users normally (as there is no privacy to guarantee for them anyway). Finally, the

Group Signatures with Selective Linkability 203

CONVSIM oracle outputs a random shuffle of the correctly converted pseudonyms
of corrupt users, and the simulated ones for honest users. As mentioned before,
we assume the verifier to be honest-but-curious, which we enforce by request-
ing the adversary to output valid signatures along with the pseudonyms to be
converted and handle the blinding step within the conversion oracle.

Definition 3 (Non-transitivity). A CLS scheme satisfies non-transitivity if
for all polynomial time adversaries A there exists an efficient simulator SIM
such that the following advantage is negligible in τ :

∣
∣
∣Pr[Expnontrans−0

A,CLS (τ) = 1] − Pr[Expnontrans−1
A,CLS (τ) = 1]

∣
∣
∣ .

Experiment: Expnontrans−b
A,CLS (τ)

param ← Setup(1τ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

b∗ ← ASNDU,SIGN,CONVX(guess, gpk, isk)

where the oracle CONVX works as follows:

if b = 0 (real world) then CONVX is the standard CONVERT oracle

if b = 1 (ideal world) then CONVX is the simulated CONVSIM oracle

return b∗

CONVSIM((nym1,m1, σ1), . . . , (nymk,mk, σk), bpk)

if ∃i ∈ [1, k] s.t. Verify(gpk, mi, nymi, σi) = 0 or bpk /∈ BPK return ⊥
Set CL ← ∅

Compute (cnymi, ci) ← Blind(gpk, bpk, (nymi, mi); ri) for i = 1, . . . , k

∀i ∈ [1, k] // determine message clusters Luid for honest users and list CL of corrupt pseudonyms

if (uid, mi, nymi, σi) ∈ SL // pseudonyms from honest users

if Luid does not exist, create Luid ← {mi} else set Luid ← Luid ∪ {mi}
else CL ← CL ∪ {(ci, cnymi)} // pseudonyms from corrupt users

{(cnymi, ci)}i=1,...k′ ← Convert(gpk, csk, bpk,CL) for k′ ← |CL| // normally convert corrupt nyms

Let Luid1 , . . . Luidk′′ be the non-empty message clusters created above

{(cnymi, ci)}i=k′+1,...k ← SIM(gpk, bpk, Luid1 , . . . Luidk′′) // simulate conversion for honest nyms

Let {(cnym′
i, c

′
i)}i=1,...k be a random permutation of {(cnymi, ci)}i=1,...k

return ({(cnymi, ci, ri)}i=1,...,k, {(cnym′
i, c

′
i)}i=1,...k, r1, . . . , rk)

Anonymity vs. Non-transitivity. Note that non-transitivity is not covered by the
anonymity notion defined before: A scheme that satisfies anonymity could output
the converted pseudonyms in the exact same order as the input ones, allowing triv-
ial linkage between the in- and output of each conversion request. Thus, whenever
the same pseudonym is used as input to several conversion queries, this would
enable the linkability of the transformed pseudonyms across the different conver-
sions, which is exactly what non-transitivity aims to avoid. On the first glance, it
might seem odd that having transitive conversions does not harm our anonymity
property. However, transitivity is only useful when several pseudonyms belong-
ing to the same user appear in each conversion request with one pseudonym being

204 L. Garms and A. Lehmann

re-used in all these sessions. In the anonymity game, the challenge pseudonym is
not allowed to be used in combination with any other pseudonym stemming from
either of the challenge users (as this would make the definition unachievable), and
thus the transitivity of conversions can not be exploited.

Conversion Blindness (Corrupt Issuer & Converter). A crucial prop-
erty of our signatures is that they can be converted in an oblivious manner,
i.e., without the converter learning anything about the pseudonyms or messages
it converts. In particular, this blindness property ensures the unlinkability of
blinded inputs across several conversion requests. Conversion blindness should
hold if both the issuer and converter are corrupt, but the verifier is honest. We
formalize this property in a classic indistinguishability style: the adversary out-
puts two tuples of pseudonym-message pairs and receives a blinded version of
either of them. Given that blinding of pseudonyms is a public-key operation we
don’t need an additional blinding oracle. In fact, we don’t give the adversary any
oracle access at all in this game. He already corrupts the issuer and converter,
and this property does not distinguish between honest and corrupt users, thus
we simply assume that the adversary has full control over all users as well.

Definition 4 (Conversion Blindness). A CLS scheme satisfies conversion
blindness if: for all polynomial time adversaries A the following advantage is
negligible in τ :

∣
∣
∣Pr[Expblind−conv−0

A,CLS (τ) = 1] − Pr[Expblind−conv−1
A,CLS (τ) = 1]

∣
∣
∣ .

Experiment: Expblind−conv−b
A,CLS (τ)

param ← Setup(1τ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk), (bpk, bsk) ← BKGen(param)

(st, (nym0, m0), (nym1, m1)) ← A(choose, gpk, isk, csk, bpk)

(cnym∗, c∗) ← Blind(gpk, bpk, (nymb, mb))

b∗ ← A(guess, st, cnym∗, c∗)

return b∗

Join Anonymity (Corrupt Issuer & Converter & Verifier). The final
privacy related property we require from a CLS is the anonymity of joins even
if all central entities are corrupt. Here the challenge is that the adversary, con-
trolling the issuer, converter and verifier, should not be able to link signatures
of an honest user back to a particular join session. This is the best one can hope
for in this corruption setting as unlinkability of signatures (as guaranteed by
our anonymity property) is no longer possible: the corrupt converter can sim-
ply convert all signatures/pseudonyms into a consistent representation. Such a
property does not exist in conventional group signatures, as therein a corrupt
opener can always reveals the join identity. In our setting, signatures can only
be linked instead of being opened and thus anonymity of the join procedure can
and should be preserved.

Group Signatures with Selective Linkability 205

To model this property we let the adversary output two identities of honest
users uid0, uid1 that have successfully joined. We then give the adversary access
to a signing oracle for one them. This is done by adding the challenge user uid∗

(where uid∗ stands for a dummy handle) to the list of honest users HUL with
user secret key gsk[uidb]. Thus, in the second stage of the game, the adversary
can invoke the SIGN oracle on uid∗ to receive signatures of messages of his choice
for the challenge user. The adversary wins if he can determine the bit b better
than by guessing. To avoid trivial wins, the adversary is not allowed to see any
signature directly from uid0 or uid1.

Definition 5 (Join Anonymity). A CLS scheme satisfies join anonymity if:
for all polynomial time adversaries A the following advantage is negligible in τ :

∣
∣
∣Pr[Expanon−join−0

A,CLS (τ) = 1] − Pr[Expanon−join−1
A,CLS (τ) = 1]

∣
∣
∣ .

Experiment: Expanon−join−b
A,CLS (τ)

param ← Setup(1τ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

(st, uid0, uid1) ← ASNDU,SIGN(choose, gpk, isk, csk)

if uid0 or uid1 /∈ HUL or gsk[uid0] =⊥ or gsk[uid1] =⊥ return ⊥
Choose uid∗,HUL ← HUL ∪ {uid∗},gsk[uid∗] ← gsk[uidb]

b∗ ← ASNDU,SIGN(guess, st, uid∗)

return b∗ if (uidd, ∗) /∈ SL for d = 0, 1 else return 0

Non-frameability (Corrupt Issuer & Converter & User). This notion
captures the desired unforgeability properties when the issuer, converter and
some of the users are corrupt, and requires that an adversary should not be
able to impersonate an honest user. Our definition is very similar to the non-
frameability definitions in standard group signature or DAA schemes [4–6].
Roughly, the only part we have to change is how we detect that an honest user
has been framed. In group signatures, non-frameability exploits the presence of
the group manager that can open signatures and requests that an adversary can-
not produce signatures that will open to an honest user who hasn’t created said
signature. Here we have the converter instead of the group manager (or dedi-
cated opening authority), and thus express non-frameability through the linkage
that is created in a conversion. More precisely, an adversary should not be able
to produce a valid signature (nym∗, σ∗) that within a conversion request would
falsely link to a signature of an honest user. For generality (and sake of brevity),
we use our helper function Identify that we introduced at the beginning of this
section to express that the adversary’s signature should not be recognized as a
signature of an honest user.

Definition 6 (Non-frameability). A CLS scheme satisfies non-frameability if
for all polynomial time adversaries A, the advantage Pr[Expnonframe

A,CLS (τ) = 1] is
negligible in τ .

206 L. Garms and A. Lehmann

Experiment: Expnonframe
A,CLS (τ)

param ← Setup(1τ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

(uid, m∗, nym∗, σ∗) ← ASNDU,SIGN(gpk, isk, csk)

return 1 if all of the following conditions are satisfied:

Verify(gpk, m∗, nym∗, σ∗) = 1 and

Identify(uid, m∗, nym∗) = 1 where uid ∈ HUL and

(uid, m∗, nym∗, σ∗) /∈ SL

Traceability (Corrupt Converter & User). Our final requirement formal-
izes the unforgeability properties when only the converter and some users are cor-
rupt. In this setting, an adversary should not be able to output more pseudony-
mous signatures that remain unlinkable in a conversion than the number of users
it has corrupted. This is again an adaptation of the existing traceability notions
for group signatures with an opening authority [4,5] or user-controlled linkabil-
ity [6]. Interestingly, in the latter work (that is closer to our setting than standard
group signatures), two traceability notions where introduced: While one is sim-
ilar in spirit to our notion, a second property guarantees that all signatures of
corrupt users can be traced back to the exact signing key that the corrupt user
has established in the join protocol with the honest issuer. This seems a bit of
an odd requirement, as it is not noticeable in the real world. In fact, we do not
limit the strategy of the adversary in that way and only require his power to be
bounded by the amount of corrupt users he controls.

Our definition stated below uses our helper algorithm UnLink that we intro-
duced at the beginning of this section and that internally uses the Convert algo-
rithm to detect whether pseudonyms are unlinkable or not. Note that UnLink
returns 1 only if all inputs are mutually unlinkable, i.e., there is not a single
tuple of input pseudonyms that got converted to the same value.

Definition 7 (Traceability). A CLS scheme satisfies traceability if for all poly-
time adversaries A the advantage Pr[Exptrace

A,CLS(τ) = 1] is negligible in τ .

Experiment: Exptrace
A,CLS(τ)

param ← Setup(1τ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

((m1, nym1, σ1), ..., (mk, nymk, σk)) ← AADDU,SNDI,SIGN(gpk, csk)

return 1 if all of the following conditions are satisfied:

∀j ∈ [1, k] : Verify(gpk, mj , nymj , σj) = 1 and (∗, mj , nymj , σj) /∈ SL and

k > |CUL| and

UnLink(gpk, csk, ((nym1, m1), ..., (nymk, mk))) = 1

Group Signatures with Selective Linkability 207

4 Our CLS Construction

We now present our construction that securely realizes such CLS group signa-
tures. Our scheme follows the classical sign-and-encrypt paradigm: we use BBS+
signatures [3] for attesting group membership, i.e., a user will blindly receive a
BBS+ signature from the group issuer on the user’s secret key y. To sign a mes-
sage m on behalf of the group, the user computes a SPK for m where he proves
knowledge of a BBS+ signature on y and also encrypts hy under the converter’s
public key. The ElGamal ciphertext that encrypts hy serves as the associated
pseudonym nym.

To blind a set of k pseudonym-message pairs (nym1,m1), . . . (nymk,mk) for
conversion, the verifier encrypts each value under its own ElGamal public key.
As the pseudonyms are already ElGamal ciphertexts themselves, this results in a
nested double-encryption of hy being encrypted under both keys. The converter
then decrypts the “inner” part of the ciphertext and blindly raises the result to
a random value r. This r is chosen fresh for every conversion query, but used
consistently within. That is, all pseudonyms belonging to the same user will be
mapped to the same query-specific DDH tuple hyr. Finally, the converter re-
randomises all ciphertexts and shuffles them to destroy any linkage between the
in- and output tuples—this is crucial for achieving the desired non-transitivity
property. The verifier then simply decrypts the received tuples and can link
correlated data via the converted pseudonyms cnymi.

4.1 Detailed Description of CLS–DDH

Setup & Key Generation. We use a bilinear group (p, G1, G2, GT , e, g1, g2) with
g1 and g2 being generators of G1 and G2 respectively. Further, we need four
additional generators g, h and h1, h2 in G1, where h1, h2 are used for the BBS+
part, and g, h will be used for the ElGamal encryption.

Setup(1τ)

(p, G1, G2, GT , e, g1, g2) ← G(1τ), g, h, h1, h2 ←$ G1

return param ← (G1, G2, GT , p, e, g1, g2, g, h, h1, h2)

IKGen(param)

isk ←$ Z
∗
p, ipk ← gisk

2

return (ipk, isk)

CKGen(param)

csk ←$ Z
∗
p, cpk ← gcsk

return (cpk, csk)

BKGen(param)

bsk ←$ Z
∗
p, bpk ← gbsk

return (bpk, bsk)

Join. To join the group, users perform an interactive protocol with the issuer to
obtain their user secret key and group credential. Roughly, the gsk[uid] of a user
consists of a secret key y ∈ Z

∗
p and a BBS+ signature (A, x, s) of I on y, where

A = (g1h
y
1h

s
2)

1/(isk+x). The detailed protocol of 〈Join(gpk), Issue(isk, gpk)〉 is
given in Fig. 2.

208 L. Garms and A. Lehmann

Fig. 2. Join protocol of our CLS–DDH construction.

Sign & Verify. To sign a message m under gsk[uid] = (A, x, y, s), the user proves
knowledge of a BBS+ credential (A, x, s) on its secret key y and also encrypts
hy under the converter’s public key cpk. The proof π then proves knowledge of
the BBS+ credential and asserts that the encryption contains the same value y.
From π we only need the value y to be online extractable. We use the improved
SPK from Camenisch et al. [14] who have shown how to move most of the work
from GT to G1 and thus yield a much faster instantiation than the original proof
by Au et al. [3]. For verification, one verifies the proof π and some correctness
properties of the re-randomised versions of A that are sent along with the proof.
In more detail, Sign and Verify are defined as follows:

Sign(gpk,gsk[uid],m)

parse gsk[uid] = (A, x, y, s), gpk = (ipk, cpk)

α ←$ Z
∗
p, nym1 ← gα, nym2 ← cpkαhy, r1, r2, r3 ←$ Z

∗
p,

A′ ← Ar1 , Â ← A′−x(g1h
y
1hs

2)
r1 , d ← (g1h

y
1hs

2)
r1h−r2

2 , r3 ← r−1
1 , s′ ← s − r2r3

π ← SPK{(x, y, r2, r3, s
′, α) : nym1 = gα ∧ nym2 = cpkαhy

∧ Â/d = A′−xhr2
2 ∧ g1h

y
1 = dr3h−s′

2 }(m)

σ ← (A′, Â, d, π), nym ← (nym1, nym2)

return (nym, σ)

Verify(gpk,m, nym, σ)

parse σ = (A′, Â, d, π)

return 1 if A′ �= 1G1 , e(A′, ipk) = e(Â, g2),

and π holds for A′, Â, d, nym, m w.r.t. gpk

Group Signatures with Selective Linkability 209

Blind Conversions. When the verifier wants to learn which of the pseudony-
mously received messages belong together, it sends a batch of pseudonym-
message pairs in blinded form to the converter. That is, it encrypts the mes-
sages and pseudonyms using ElGamal encryption. The pseudonyms are ElGa-
mal ciphertexts itself and we roughly wrap them in another encryption layer.
The converter then blindly decrypts the pseudonyms, i.e., decrypts the “inner”
part of the ciphertext, which yields hy encrypted under the verifiers blinding key
bpk. To ensure non-transitivity, i.e., restrict the linkage of pseudonyms to hold
only within the queried batch, the converter blindly raises the encrypted hy to a
random exponent r. This value is chosen afresh for every batch but used consis-
tently within the query, i.e., all pseudonyms that belong to the same user with
secret key y will be mapped consistently to hyr. To ensure that the ciphertexts
and their order cannot leak any additional information, we let the converter re-
randomize and shuffle all ciphertexts before he returns them to the verifier. Both
the verifier and the converter are assumed to be at most honest-but-curious, and
so proofs that they have performed Blind and Convert correctly are not needed.

Blind(gpk, bpk, nym,m)

parse gpk = (ipk, cpk), nym = (nym1, nym2)

α, β, γ ←$ Z
∗
p

cnym1 ← nym1g
β , cnym2 ← gα, cnym3 ← nym2cpkβbpkα

c1 ← gγ , c2 ← bpkγm

cnym ← (cnym1, cnym2, cnym3), c ← (c1, c2)

return (cnym, c)

Convert(gpk, csk, bpk, ((cnym1, c1), ..., (cnymk, ck)))

parse cnymi = (cnymi,1, cnymi,2, cnymi,3), ci ← (ci,1, ci,2), r ←$ Z
∗
p

for i = 1, . . . k :

cnym′
i,1 ← cnymr

i,2, cnym′
i,2 ← (cnymi,3cnym−csk

i,1)r // decrypt nym and raise to r

r1, r2 ←$ Z
∗
p // re-randomize all ciphertexts

cnym′′
i,1 ← cnym′

i,1g
r1 , cnym′′

i,2 ← cnym′
i,2bpkr1

c′
i,1 ← ci,1g

r2 , c′
i,2 ← ci,2bpkr2

choose random permutation Π, for i = 1, . . . , k : (cnymi, ci) ← (cnym′′
Π(i), c

′
Π(i))

return ((cnym1, c1), ..., (cnymk, ck))

Unblind(bsk, (cnym, c))

parse cnym = (cnym1, cnym2), c ← (c1, c2)

nym ← cnym2cnym−bsk
1 , m ← c2c

−bsk
1

return (nym, m)

210 L. Garms and A. Lehmann

4.2 Security of CLS–DDH

We now show that our scheme satisfies all security properties defined in Sect. 3.
More precisely, we show that the following theorem holds (using the type-3
pairing version of the q-SDH assumption given in [8]).

Theorem 1. The CLS–DDH construction presented in Sect. 4.1 is a secure CLS
as defined in Sect. 3 if the DDH assumption holds in G1, the q-SDH assumption
holds, and the SPK is simulation-sound, zero-knowledge and online extractable
(for the underlined values).

In the following we focus on the proof of non-transitivity which was the most
challenging property to define and prove. For the other properties we provide
short proof sketches and refer for the detailed proofs to the full paper [27].

Lemma 1. The CLS–DDH construction presented in Sect. 4.1 satisfies
anonymity if the DDH assumption holds in G1, and the SPK is unbounded
simulation-sound, zero knowledge and online extractable (for the underlined
values).

Proof (sketch). Roughly, anonymity follows from the unlinkability property of
BBS+ signatures, the CPA-security from ElGamal (used to compute the pseudo-
nyms under cpk), and the DDH assumption (for showing that the conversion
doesn’t leak any information). Recall that in this setting, the converter is honest,
i.e., A does not know csk but is given access to the CONVERT oracle. Thus, the
surprising part might be that CPA encryption is sufficient, despite the converter
having to decrypt the blinded pseudonyms. However, in the security proof we
can simulate decryption queries by computing the converted pseudonyms from
scratch and returning fresh encryptions of them (under bpk) to the adversary.
That is, here we use that the convert algorithm returns re-randomised cipher-
texts which, for ElGamal encryption, are distributed as fresh encryptions. To
recover the plaintext, i.e., hy that needs to be encrypted under bpk, we either
look up hy from our internal records (when the pseudonyms stem from honest
users) or extract y from π (when the pseudonym belongs to a corrupt user).
Thus, for each tuple (mi, nymi, σi) sent to the CONVERT we check if an entry
(uidi,mi, nymi, σi) in the list of created signatures SL exist, and if so we look up
the hyi value we have chosen when mimicking the join protocol for this honest
user uidi. For computing the converted pseudonyms, we then simply compute
cnymi = Enc(bpk, hyir) for a fresh r. Note that in the case of pseudonyms from
corrupt users it is not sufficient to extract just hy, which would be much more
efficient than extracting y: When we have to embed a DDH challenge in the con-
verted output, we won’t be privy of the converter’s exponent r that is supposed
to be used in all converted pseudonyms hyir. Knowing y we can simply compute
Ry for R = gr being a part of the DDH challenge. 	

Lemma 2. The CLS–DDH construction presented in Sect. 4.1 satisfies non-
transitivity if the DDH assumption holds in G1, and the SPK is unbounded
simulation-sound, zero knowledge and online extractable (for the underlined
value).

Group Signatures with Selective Linkability 211

Proof. For proving non-transitivity, we have to show that there exists an efficient
simulator SIM that makes the real and simulated game indistinguishable. We
start by describing the simulator and then explain why the real and simulated
conversion oracles CONVERT and CONVSIM are indistinguishable.

SIM(gpk, bpk, Luid1 , . . . Luidk′)

l ← 0, ∀j ∈ [1, k′]

nym′ ←$ G1; ∀m ∈ Luidj

l ← l + 1, (cnyml, cl) ← Blind(gpk, bpk, (nym′, m))

return ((cnym1, c1), . . . (cnyml, cl))

We assume that an adversary A exists, that makes q queries to the SNDU
oracle for distinct user identifiers, that guesses b correctly in the non-transitivity
game with SIM given above and wins with probability ε + 1/2.

We will stepwise make the real-world (b=0) and the simulated world (b=1)
equivalent, using a sequence of Games Hj for j = 0, . . . , q. The idea is that in
Game Hj we will not use simulated conversions for all users uid1, . . . , uidj in
order of when they were queried to SNDU. More precisely, we define Game Hj

to be as given in Fig. 3 with all other oracles identical to in the non-transitivity
experiment. Let Sj be the event that A guesses b correctly in Game Hj , with the
simulator given above. Game Hj keeps track of the queries to SNDU, adding the
first j queries uid to a set UL. Then during queries to CONVSIM, if a signature
of a user in UL is queried, these are treated in the same way as pseudonyms for
corrupted users, i.e., they are normally converted using the Convert algorithm.

Game H0 is identical to the non-transitivity game, because UL is empty.
Therefore, Pr[S0] = ε + 1/2. In Game Hq, UL contains all honest users, and so
the CONVSIM oracle is now identical to the CONVERT oracle, and inputs to the
adversary are now independent of b, therefore Pr[Sq] = 1/2.

We now show that if an adversary can distinguish Games Hj and Hj+1, we
can turn this into a distinguisher Dj that can break the DDH assumption. We
describe the reduction and the additional simulation that is needed therein in
Figs. 4 and 5.

We now argue that when a DDH tuple (D1,D2,D3,D4) is input to Dj , the
inputs to A are distributed identically to in Game Hj+1; when a DDH tuple is
not input, the inputs to A are distributed identically to in Game Hj . That is for
D1 = h,D2 = ha,D3 = hb,D4 = hc, the oracles provided by Dj will be exactly
as in Hj+1 when c = ab, and as in Hj otherwise.

First, note that gpk, csk, isk are distributed identically as to the non-
transitivity game, as χ is chosen randomly and independently when setting
h1 ← hχ.

Simulating the SNDU Oracle. The SNDU oracle only differs from the oracle in
the non-transitivity experiment during the (j + 1)-th query by embedding D2

of the DDH challenger into the user’s “public key” H using knowledge of χ.
Clearly, H is distributed identically as when computed normally, and πH can be

212 L. Garms and A. Lehmann

Fig. 3. Description of Game Hj and the changes to the SNDU and CONVSIM oracles.

simulated due to the zero-knowledge property of the proof system. Note that y
is not defined for this honest user, but this is not output to A, or used in the
next stage of the protocol.

Simulating the SIGN Oracle. The SIGN oracle is identical to the oracle in the
non-transitivity experiment, when uid �= uid′ is queried. When uid′ is queried,
we simply encrypt D2 instead of hy.

This is consistent with SNDU, as H = Dχ
2 . Further, A′, d′ are chosen ran-

domly and independently, and Â = A′isk and so these are distributed identically

Group Signatures with Selective Linkability 213

Fig. 4. Oracles for Dj our distinguishing algorithm for the DDH problem. The
CONVERT oracle remains unchanged, and the CONVSIM oracle using the DDH chal-
lenge is given in Fig. 4.

to in Sign. The SPK π can be simulated due to the zero knowledge property of
the proof system.

Simulating the CONVSIM Oracle. What remains to be shown is that the
CONVSIM oracle created by Dj either behaves identical to the CONVSIM oracle
in Game Hj or as in Hj+1, depending on whether its input was a DDH tuple or
not. We know that D3 = hr̃ for some r̃ and thus it must hold that Dyr

3 = hr̃ry.
Finally, we derive cnym by encrypting Dyr

3 from scratch under bpk, which is not
noticeable to the adversary due to the re-randomisation that is applied in the
conversion algorithm.

If (D1,D2,D3,D4) is a DDH tuple, then Dr
4 = hr̃rỹ. Therefore as ỹ = yuid′ ,

the inputs to A are also distributed identically to in Game Hj+1. Whereas if
(D1,D2,D3,D4) is not a DDH tuple, then Dr

4, is distributed identically to nym′,
which was chosen randomly and independently. Therefore the inputs to A are
distributed identically to in Game Hj .

Reduction to the DDH problem. Therefore the probability that Dj outputs 1 if
it was given a valid DDH tuple as input is Pr[Sj+1], and Pr[Sj] is the probability

214 L. Garms and A. Lehmann

Fig. 5. The CONVSIM oracle used by distinguisher Dj given in Fig. 5. To avoid con-
fusion, we write uid′ to refer to the j + 1-th user that has joined the group (and for
which Dj embedded the DDH challenge).

that Dj outputs 1 when the input was not a DDH tuple. The advantage of Dj

is then |Pr[Sj] − Pr[Sj+1]|, therefore |Pr[Sj] − Pr[Sj+1]| = εDDH.
Overall, for our sequence of games H0 to Hq it holds that |Pr[S0]−Pr[Sq]| �

qεDDH and thus ε � qεDDH is negligible. This concludes our proof that the CLS–
DDH construction satisfies non-transitivity. 	

Lemma 3. The CLS–DDH construction presented in Sect. 4.1 satisfies conver-
sion blindness if the DDH assumption holds in G1.

Proof (sketch). Given that all a corrupt converter sees are ElGamal ciphertexts
that are encrypted under a key bpk for which bsk is not known to the adversary,
the proof for conversion blindness is a straightforward reduction to the CPA-
security of ElGamal which holds under the DDH assumption. 	

Lemma 4. The CLS–DDH construction presented in Sect. 4.1 satisfies join
anonymity if the DDH assumption holds in G1, and the SPK is zero knowledge.

Proof (sketch). For proving that adversary A cannot break the join anonymity
of our CLS–DDH construction we have to show that it is infeasible to link a join

Group Signatures with Selective Linkability 215

session of an honest user to the user’s signatures. In this setting the adversary
controls both the converter and issuer. The only value the corrupt issuer learns
during the join protocol from an honest user is H = hy

1 for the user’s secret
y and πH , the proof of knowledge of y. When receiving signatures from the
user, the adversary can use the converter’s secret key to recover hy from nym
and also sees π, the proof-of-knowledge of a BBS+ signature on y. By the zero-
knowledge property of the proof system, neither π nor πH leak any information
about y. It is easy to see that an adversary that can link hy

1 and hy for the
independent generators h1 and h can be turned into an adversary breaking the
DDH assumption. 	

Lemma 5. The CLS–DDH construction presented in Sect. 4.1 satisfies non-
frameability if the DL assumption holds in G1, and the SPK is simulation-
sound and zero knowledge.

Proof (sketch). If an adversary A exists that can break the non-frameability of
our CLS–DDH scheme, then we can build an adversary A′ that breaks the discrete
logarithm assumption. Recall that non-frameability ensures that an adversary
should not be able to create a valid signature that Convert will falsely link to
signatures of an honest user. In the proof we embed re-randomized versions
of a DL challenge D = hy in the join protocol for all users, i.e., using Dr

instead of H when receiving the BBS+ signature from the corrupt issuer. We
also set the public parameters such that h1 = hz for a random exponent z.
For signature queries we use the knowledge of z to compute proper looking
pseudonyms, and then mimic the SPK by choosing A′, d′ randomly, setting Â ←
A′isk, and simulating π. If the adversary outputs his forgery (nym∗, σ∗,m) we
extract y from π∗ contained in σ∗. Clearly, this also relies on the simulation
soundness and zero-knowledge property of the proof system. 	

Lemma 6. The CLS–DDH construction presented in Sect. 4.1 satisfies trace-
ability if the q-SDH assumption holds, and the SPK is simulation-sound, zero
knowledge and online extractable.

Proof (sketch). We show that if an adversary A can break traceability for the
CLS–DDH construction then we can build an adversary A′ that breaks the q-
SDH assumption. Roughly, to win the traceability game the adversary must
be able to create more signatures that remain unlinkable in Convert than users
he controls, which requires A to forge BBS+ signatures. Our proof closely fol-
lows the revised proof of the unforgeability of BBS+ signatures given in [14].
Note that this uses the newer version of the q-SDH assumption [8] that sup-
ports type-3 pairings, which in turn allows to prove the unforgeability of BBS+
signatures in the type-3 pairing setting. 	

4.3 Instantiation of SPK and Efficiency

We now discuss how to securely instantiate the online-extractable SPK’s used
in our CLS–DDH construction and state the computational cost and lengths of
signatures and pseudonyms.

216 L. Garms and A. Lehmann

Instantiation of SPK’s. We have two non-interactive zero-knowledge proofs of
knowledge in our scheme: πH used in the join protocol for proving knowledge
of y in H = hy

1, and π proving knowledge of a BBS+ signature on y and that
nym encrypts the same y. In both cases we need the witness y to be online
extractable. For this, we additionally encrypt y under a public key that needs to
be added to param (and to which in security proof we will know the secret key
for), and extend π and πH to prove that the additional encryption contains the
same y that is used in the rest of the proof. For the verifiable encryption of y we
use Paillier encryption [20], that is secure under the DCR assumption [36].

For transforming interactive into non-interactive zero-knowledge proofs we
rely on the Fiat-Shamir heuristic that ensures security in the random oracle
model. Due to this, we can now state Corollary 1.

Corollary 1. The CLS–DDH construction presented in Sect. 4.1, with the SPK
instantiated as above, is a secure CLS as defined in Sect. 3 under the DDH,
q-SDH and DCR assumption in the random oracle model.

Computational Cost. We give the operations required for the entities involved
in the scheme in the table below. We denote k exponentiation in group Gi by
kexpGi

, k hash function calls by khash, and k pairing operations by kpair. We
denote k exponentiations in Z

∗
n2 due to the Paillier encryption used, by kexpZ∗

n2
.

Entity Algorithm Computational Cost

User Sign 16exp
G1

+ 15exp
Z

n2
+ 1hash

Verifier Verify 12exp
G1

+ 11exp
Z

n2
+ 1hash + 2pair

Blind 6exp
G1

Unblind 2exp
G1

Converter Convert(k pseudonyms input) 7kexp
G1

Pseudonym & Signature Length. We give the sizes of pseudonyms and
signatures in terms of the amount of group elements below. We denote the length
required to represent k elements in G1 as kG1, k outputs of a hash function as
kH, and k elements in Z

∗
n2 , due to the Paillier encryption used, as kZ

∗
n2 .

Pseudonym Signature

Original Blinded Converted Unblinded Converted

nym cnym cnym nym σ

2G1 3G1 2G1 1G1 3G1 6Zp 1H 6Z
∗
n2

Group Signatures with Selective Linkability 217

5 Conclusion and Future Work

In this work we have introduced a new form of group signatures that support
flexible and controlled linkability: data can be collected in authenticated and
fully unlinkable form, whilst still allow the data to be obliviously relinked by
queries to a central entity. We have formalized the required security properties
in a dynamic model, i.e., users are able to join the scheme, and proposed an
efficient scheme that satisfies these requirement under discrete logarithm and
Paillier assumptions in the random oracle model.

There are a number of open problem we consider to be interesting avenues
for future work: Compared with the anonymity requirements of conventional
dynamic group signatures, our anonymity notions are somewhat weaker as we
do not allow the adversary to corrupt the two challenge users after it received
the challenge signature. This means that our privacy related requirements do not
yield forward anonymity. Given the conversion functionality that is inherent in
our setting, achieving such stronger notion seems challenging, if not even impos-
sible. In fact, for the related problem of group signatures with user-controlled
linkability with signature-based revocation, forward anonymity has not been
achieved by any of the existing schemes either.

Another direction for further work would be to investigate how to achieve
security against fully malicious verifiers. On a high level, this will require to
forward blinded versions of the users’ signatures to the converter, allowing him
to check the validity of the blinded inputs. The challenge is to do this while
preserving the converter’s capability to blindly decrypt and transform the inputs.

In a similar vein, we have considered the verifier to be both the data collector
and data processor so far. However, our blind and unblind algorithms already
cater for a more flexible setting, as they are specified in the public-key setting.
That is, the verifier could blind and push the data to be linked towards a dedi-
cated data processor holding the secret unblinding key. This has the advantage
that data storage and processing can be strictly separated. For such a setting
it might be desirable to preserve the authenticity of the data throughout the
process, i.e., the blind conversion must also take the signatures as input and
transform them into valid signatures for the re-linked pseudonyms.

Acknowledgments. The first author is supported by the UK Government as part
of the CDT in Cyber Security program at Royal Holloway University of London
(EP/K035584/1). The second author was supported by the European Union’s Hori-
zon 2020 research and innovation program under Grant Agreement Number 768953
(ICT4CART).

References

1. EU general data protection regulation. https://gdpr-info.eu
2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure

coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 16

https://gdpr-info.eu
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16

218 L. Garms and A. Lehmann

3. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

6. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin and
Camenisch [13], pp. 56–73

8. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

10. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

11. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri,
V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 132–145. ACM Press,
October 2004

12. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol.
6101, pp. 181–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13869-0 12

13. Cachin, C., Camenisch, J.L. (eds.): EUROCRYPT 2004. LNCS, vol. 3027. Springer,
Heidelberg (2004). https://doi.org/10.1007/b97182

14. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3 1

15. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8 10

16. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 25

17. Camenisch, J., Lehmann, A.: (Un)linkable pseudonyms for governmental
databases. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1467–1479.
ACM Press, October 2015

18. Camenisch, J., Lehmann, A.: Privacy-preserving user-auditable pseudonym sys-
tems. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P),
pp. 269–284. IEEE (2017)

https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1007/b97182
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-662-49387-8_10
https://doi.org/10.1007/978-3-662-49387-8_10
https://doi.org/10.1007/978-3-642-01001-9_25

Group Signatures with Selective Linkability 219

19. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

20. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

21. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

22. Chaum, D.: Some weaknesses of “weaknesses of undeniable signatures” (rump ses-
sion). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 554–556.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 54

23. ElGamal, T.: On computing logarithms over finite fields. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 396–402. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 28

24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

25. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

26. Galindo, D., Verheul, E.R.: Microdata sharing via pseudonymization. Joint
UNECE/Eurostat work session on statistical data confidentiality (2007)

27. Garms, L., Lehmann, A.: Group signatures with selective linkability (2019).
https://eprint.iacr.org/2019/027

28. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

29. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Short group signatures
with controllable linkability. In: 2011 Workshop on Lightweight Security & Privacy:
Devices, Protocols and Applications (LightSec), pp. 44–52. IEEE (2011)

30. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with
controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013)

31. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin and
Camenisch [13], pp. 571–589

32. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 12

33. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

34. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 36

35. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46513-8 14

https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/3-540-46416-6_54
https://doi.org/10.1007/3-540-39799-X_28
https://doi.org/10.1007/3-540-39799-X_28
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2019/027
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/11426639_12
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/3-540-46513-8_14

220 L. Garms and A. Lehmann

36. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

37. Slamanig, D., Spreitzer, R., Unterluggauer, T.: Adding controllable linkability to
pairing-based group signatures for free. In: Chow, S.S.M., Camenisch, J., Hui,
L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 388–400. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13257-0 23

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-319-13257-0_23

	Group Signatures with Selective Linkability
	1 Introduction
	2 Preliminaries
	2.1 Proof Protocols

	3 Definition & Security Model for CLS
	3.1 Syntax of CLS
	3.2 Security Properties

	4 Our CLS Construction
	4.1 Detailed Description of CLS–DDH
	4.2 Security of CLS–DDH
	4.3 Instantiation of SPK and Efficiency

	5 Conclusion and Future Work
	References

