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Abstract. We present an identity-Based encryption (IBE) scheme that
is group homomorphic for addition modulo a “large” (i.e. superpolyno-
mial) integer, the first such group homomorphic IBE. Our first result
is the construction of an IBE scheme supporting homomorphic addi-
tion modulo a poly-sized prime e. Our construction builds upon the IBE
scheme of Boneh, LaVigne and Sabin (BLS). BLS relies on a hash func-
tion that maps identities to eth residues. However there is no known way
to securely instantiate such a function. Our construction extends BLS
so that it can use a hash function that can be securely instantiated. We
prove our scheme IND-ID-CPA secure under the (slightly modified) eth

residuosity assumption in the random oracle model and show that it sup-
ports a (modular) additive homomorphism. By using multiple instances
of the scheme with distinct primes and leveraging the Chinese Remain-
der Theorem, we can support homomorphic addition modulo a “large”
(i.e. superpolynomial) integer. We also show that our scheme for e > 2 is
anonymous by additionally assuming the hardness of deciding solvability
of a special system of multivariate polynomial equations. We provide a
justification for this assumption by considering known attacks.

1 Introduction

Identity-Based Encryption (IBE), first proposed by Shamir [1], and first con-
structed by Boneh and Franklin [2] (based on bilinear pairings) and Cocks [3]
(based on quadratic residuosity), is centered around the notion that a user’s
public key can be efficiently derived from an identity string and system-wide
public parameters. The public parameters are chosen by a Trusted Authority
(TA) along with a master secret key, which is used to extract secret keys for
user identities. In this work, we present an IBE that is group homomorphic for
addition modulo a smooth square-free integer. An encryption scheme is said to
be group homomorphic if its decryption algorithm is a group homomorphism
(known as Group Homomorphic Encryption (GHE) [4]). Although GHE only
permits evaluation of a single algebraic operation, it is a very powerful primitive
for the following reasons:
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1. It is used as a building block in protocols for Private Information Retrieval
[5], Electronic Voting [6–10], Oblivious Polynomial Evaluation [11], Private
Outsourced Computation [12] and the Millionaire’s Problem [13].

2. Fully Homomorphic Encryption (FHE) is currently impractical for many
applications, and even if it were to become more practical, it may add unnec-
essary overhead, especially in applications that only require a single algebraic
operation.

GHE is the “classical” flavor of homomorphic encryption. It allows unbounded
applications of the group operation. Goldwasser and Micali [14] constructed the
first GHE scheme. The Goldwasser-Micali (GM) cryptosystem supports addition
modulo 2 i.e. the XOR operation. Other additively-homomorphic GHE schemes
from the literature include Benaloh [6], Naccache-Stern [15], Okamoto-Uchiyama
[16], Paillier [17] and Damg̊ard-Jurik [10]. Other instances of GHE include [18–20].

Existing identity-based GHE (IBGHE) schemes such as those based on pair-
ings are typically multiplicatively homomorphic. It is a well-known that a scheme
with a multiplicative homomorphism can be transformed into one with an addi-
tive homomorphism, where the addition takes place in the exponent, and a dis-
crete logarithm problem must be solved to recover the result. In this case, we
usually get a bounded (aka “quasi”) additively homomorphic scheme, but it is
not group homomorphic in the sense of the definition considered in this paper
since one cannot perform an unbounded number of homomorphic operations.
However, to the best of our knowledge, the only existing “pure” (i.e. supporting
modular addition) additively-homomorphic instance of IBGHE in the literature
is the variant of the Cocks scheme due to Clear, Hughes and Tewari [21] that is
XOR-homomorphic i.e. it supports addition modulo 2. Applications of IBGHE
are explored in [21] but can be extended to private information retrieval (PIR)
[22] (instantiating the protocol from [5] with an IBGHE scheme instead of a
public-key GHE scheme), data aggregation in wireless sensor networks (IBE has
been applied to wireless sensor networks already in [23–26]) and participatory
sensing (Günther et al. [27] use additively homomorphic IBE for data aggrega-
tion in a participatory sensing system).

1.1 Our Results

Our main contribution is the construction of an IBGHE for addition modulo a
poly-sized prime e. Our construction builds on the IBE scheme of Boneh, LaV-
igne and Sabin (BLS) [28], which uses a hash function that maps identities to
eth residues; there is no known way to securely instantiate such a function. We
extend BLS so that it uses a hash function that can be securely instantiated. We
prove our scheme IND-ID-CPA secure under a (slightly modified) eth residuosity
assumption in the random oracle model. Indeed this is the same assumption
that BLS is proved secure under. We then show that our scheme supports homo-
morphic addition modulo a poly-sized prime e and prove that it satisfies the
properties of an IBGHE.
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Our second contribution is to use multiple instances of the scheme with dis-
tinct primes and to leverage the Chinese Remainder Theorem to support homo-
morphic addition modulo a “large” (i.e. superpolynomial) integer, the first such
IBE scheme supporting an unbounded number of operations1, solving an open
problem mentioned in [21]. Below we consider the advantages of a scheme that
supports homomorphic addition with such a “large” range.

Our third contribution is to show that our scheme for e > 2 is anonymous
by additionally assuming the hardness of deciding solvability of a special sys-
tem of multivariate polynomial equations. We investigate this problem from a
cryptanalytic perspective and provide justification in light of known attacks for
assuming its hardness.

1.2 Practicality and Applications

While the space complexity of ciphertexts in our scheme is high, requiring e2 group
elements, there are contexts where it may be of import, which we now discuss.

Pairings-based IBE schemes that support an additive homomorphism in the
exponent rely on Pollard’s lambda algorithm to extract the result. Let B be a
bound on the result. Pollard’s lambda algorithm has time complexity of O(

√
B).

Suppose we require B to be exponentially large. The runtime for extracting the
result with Pollard’s lambda algorithm is exponential for such B. In contrast, our
CRT scheme gives polynomial running time for this case. We also compare with
LWE-based IBE schemes. The GPV scheme [29] is perhaps the simplest LWE-
based IBE scheme and its security is also proved in the random oracle model. We
consider a comparison for 80 bits of security and B = 280. We used the estimator
of Albrecht, Player and Scott [30] to derive suitable parameters for LWE for
an instantiation of GPV. For 80 bits of security and B = 280, the size of a
ciphertext in GPV (modified to support an additive homomorphism with bound
B) is approximately the same as ours (of the order of 3 MB). Our scheme however
has significantly smaller public parameters - by a factor of several thousand but
has considerably worse running time for encryption, decryption and evaluation.

An example real-world application is that of data aggregation, a common
practice in Machine Learning and related fields. Günther et al. [27] use additively
homomorphic IBE for data aggregation in participatory sensing. A bound of 280

might be required if the data were real numbers with high precision requirements,
which can be represented as integers in fixed point form.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter λ, written
negl(λ), if it is asymptotically bounded from above by the reciprocal of all poly-
nomials in λ.
1 LWE-based additively homomorphic IBE can be constructed with an a superpolyno-

mial range but supporting only a theoretically bounded number of operations, albeit
the bound is more than sufficient for practical purposes.



Additively Homomorphic IBE from Higher Residuosity 499

For a probability distribution D, we denote by x
$←− D that x is sampled

according to D. If S is a set, y
$←− S denotes that y is sampled from x according

to the uniform distribution on S.
The support of a predicate f : A → {0, 1} for some domain A is denoted by

supp(f), and is defined by the set {a ∈ A : f(a) = 1}.
The set of contiguous integers {1, . . . , k} for some k > 1 is denoted by [k].

2.2 Identity Based Encryption

Definition 1. An Identity Based Encryption (IBE) scheme is a tuple of PPT
algorithms (G,K,E,D) defined with respect to a message space M, an identity
space I and a ciphertext space Ĉ as follows:

• G(1λ):
On input (in unary) a security parameter λ, generate public parameters PP
and a master secret key MSK. Output (PP,MSK).

• K(MSK, id):
On input master secret key MSK and an identity id ∈ I: derive and output a
secret key skid for identity id.

• E(PP, id,m):
On input public parameters PP, an identity id ∈ I, and a message m ∈ M,
output a ciphertext c ∈ C ⊆ Ĉ that encrypts m under identity id.

• D(skid, c):
On input a secret key skid for identity id ∈ I and a ciphertext c ∈ Ĉ, output
m′ if c is a valid encryption under identity id; output a failure symbol ⊥
otherwise.

2.3 Public-Key GHE

An important subclass of partial homomorphic encryption is the class of public-
key encryption schemes that admit a group homomorphism between their cipher-
text space and plaintext space. This class corresponds to what is considered
“classical” HE [4], where a single group operation is supported, most usually
addition. Gjøsteen [18] examined the abstract structure of these cryptosystems
in terms of groups, and characterized their security as relying on the hardness of
a subgroup membership problem. Armknecht, Katzenbeisser and Peter [4] rigor-
ously formalized the notion, and called it group homomorphic encryption (GHE).
We recap with the formal definition of GHE by Armknecht, Katzenbeisser and
Peter [4].

Definition 2 (GHE, Definition 1 in [4]). A public-key encryption scheme
E = (G,E,D) is called group homomorphic, if for every (pk, sk) ← G(1λ), the
plaintext space M and the ciphertext space Ĉ (written in multiplicative notation)
are non-trivial groups such that

• the set of all encryptions C := {c ∈ Ĉ | c ← Epk(m),m ∈ M} is a non-trivial
subgroup of Ĉ
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• the restricted decryption D∗
sk := Dsk|C is a group epimorphism (surjective

homomorphism) i.e.

D∗
sk is surjective and ∀c, c′ ∈ C : Dsk(c · c′) = Dsk(c) · Dsk(c′)

• sk contains an efficient decision function δ : Ĉ → {0, 1} such that

δ(c) = 1 ⇐⇒ c ∈ C

• the decryption on Ĉ \ C returns the symbol ⊥.

2.4 Identity-Based Group Homomorphic Encryption (IBGHE)

Definition 3 (Identity Based Group Homomorphic Encryption
(IBGHE), Based on [21]). Let E = (G,K,E,D) be an IBE scheme with
message space M, identity space I and ciphertext space ̂C. The scheme E is
group homomorphic if for every (PP,MSK) ← G(1λ), every id ∈ I, and every
skid ← K(MSK, id), the message space (M, ·) is a non-trivial group, and there is
a binary operation ∗ : ̂C2 → ̂C such that the following properties are satisfied for
the restricted ciphertext space ̂Cid = {c ∈ ̂C : Dskid(c) �= ⊥}:
GH.1: The set of all encryptions Cid = {c | c ← E(PP, id,m),m ∈ M} ⊆ ̂Cid

is a non-trivial group with respect to the operation ∗.
GH.2: The restricted decryption D∗

skid
:= Dskid|Cid

is surjective and ∀c, c′ ∈
Cid Dskid(c ∗ c′) = Dskid(c) · Dskid(c

′).

We are interested in schemes whose plaintext space forms a group and which
allow that operation to be homomorphically applied an unbounded number of
times. There exist schemes however that do not satisfy all the requirements of
GHE, namely their ciphertext space does not form a group but instead forms a
quasigroup (a group without associativity). We can define what we call Quasi-
group Homomorphic Encryption (QHE) analogously to Definition 2 by replacing
the term ‘group’ with ‘quasigroup’ in the definition. An example of such a scheme
is the Cocks’ IBE [3], which was shown to be inherently XOR-homomorphic by
Joye [31].

2.5 eth Residuosity

An integer x is said to be a quadratic residue modulo an integer m if x is congruent
to a square modulo m. We denote the set of quadratic residues modulo p asQR(m).
The Legendre symbol of an integer x modulo a prime p is defined as

(

x

p

)

=

⎧

⎪

⎨

⎪

⎩

0 if p|x
1 if x ∈ QR(p)
−1 otherwise
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The Jacobi symbol generalizes the Legendre symbol to composite moduli. For a
composite modulus m = pa1

1 · · · pan
n , it is defined as

(

x

m

)

=
(

x

p1

)a1

· · ·
(

x

pn

)an

We now generalize quadratic residues to eth power residues. We define the
eth power residue symbol as follows:

Definition 4 (Based on Definition 4.1 in [32]). Let e ≥ 2 be an integer, and
let ζe ∈ Q̄ be a primitive eth root of unity (note that Q̄ is the algebraic closure of
Q). Let K be the number field Q(ζe), and let OK = Z[ζe] be the ring of integers
in K. Let p be a prime ideal of OK that does not contain e. For x ∈ OK , the eth

power residue symbol of x mod p, denoted
(

x

p

)

e

is defined as

(

x

p

)

e

=

{

0 if x ∈ p

ζi
e if x /∈ p

where i is the unique integer modulo e such that ζi
e ≡ x(N (p)−1)/e (mod p) and

N (p) is the norm of p.
If a is an ideal that factors as a = p1

k1 · · · pnkn where p1, . . . , pn are prime

ideals, then
(

x

a

)

e

is defined as

(

x

a

)

e

:=
(

x

p1

)k1

e

· · ·
(

x

pn

)kn

e

Let e ≥ 2 be an integer. Let N be a positive integer. An integer x ∈ Z∗
N

is said to be an eth residue modulo N if there is an integer y ∈ Z∗
N such that

ye ≡ x mod N . We denote the set of eth residues in Z∗
N by ER(N). A superset

of ER(N) is the set of integers in Z∗
N with a power residue symbol of 1, which

we denote as PR(N).

Definition 5 (eth Residuosity (ER) Assumption). For a PPT algorithm
RSAgen(λ) that generates two equally sized primes p and q, the eth residuosity
assumption is that the following two distributions are computationally indistin-
guishable2

{(N, v) : (p, q) ← RSAgen(λ), N ← pq, v
$←− ER(N)}

≈
C

{(N, v) : (p, q) ← RSAgen(λ), N ← pq, v
$←− PR(N) \ ER(N)}.

2 Any PPT distinguisher has only a negligible advantage (in λ) of distinguishing the
distributions.
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Let N = pq be a product of two primes p and q with p ≡ q ≡ 1 mod e. An
eth root of unity in ZN is an integer μ such that μe ≡ 1 mod N . The trivial root
of unity is 1. A root of unity μ is said to be degenerate if either μ ≡ 1 mod p
or μ ≡ 1 mod q since given such a μ one can trivially learn the factorization of
N . For one of the schemes in this work, it is necessary to publish a nontrivial,
non-degenerate root of unity as part of the public parameters. This is in order
to compute the eth power residue symbol which is needed for the scheme. It is
believed that revealing such a root of unity does not make factorization of N
easier, but nevertheless it serves as additional information for the adversary, and
therefore must be made explicit in the assumption we use for security. Hence,
we follow [28] and modify the ER assumption to incorporate this information.

Definition 6 (Modified eth Residuosity (MER) Assumption, [28]). Let
Z be the set of nontrivial, non-degenerate roots of unity in ZN . For a PPT algo-
rithm RSAgen(λ) that generates two equally sized primes p and q, the modified
eth residuosity assumption is that the following two distributions are computa-
tionally indistinguishable

{(N, v, μ) : (p, q) ← RSAgen(λ), N ← pq, v
$←− ER(N), μ $←− Z}

≈
C

{(N, v, μ) : (p, q) ← RSAgen(λ), N ← pq, v
$←− PR(N) \ ER(N), μ $←− Z}.

3 Our Additively Homomorphic IBE

Boneh, LaVigne and Sabin [28] presented an IBE scheme whose security relies
on the MER assumption. However, their scheme uses a hash function that maps
identity strings to eth residues in ZN . It is not known how such a function can
be instantiated without compromising security. We extend their construction
so that it uses a hash function that can be instantiated. We then prove our
construction secure under the MER assumption in the random oracle model.
We show that the construction is group homomorphic for the additive group
(Ze,+) for prime e i.e. we show it meets the criteria for IBGHE. This is the only
additively group-homomorphic IBE we are aware of with a message space larger
than 2 elements. First, we need to introduce some functions that are used by the
scheme along with an overview on how eth power residue symbols are computed
for integers in ZN .

3.1 eth Power Residue Symbols in ZN

Let e ≥ 2 be an integer. Let N = pq be a product of two primes p and q with

p ≡ q ≡ 1 mod e. The symbol
(

x

N

)

e

for integers x is always 1 for odd e and ±1

for even e, so for e > 2, we need to find a way to extract more information about
x so we can map it to one of e symbols. We follow the approach taken in [32].
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Let ζe and K be as defined in Definition 4. Note that we can take K to be
Q[x]/Φe(x) where Φe(x) is the eth cyclotomic polynomial; accordingly, we have
ζe = x. Given p and q, we can compute an element μ ∈ Z∗

N that is a primitive
root of unity modulo p and modulo q. In schemes described later, we require that
μ be published as part of the public parameters. For a fixed μ, we define the
ideal N = NOK + (ζe − μ)OK . Let μp = μ mod p and μq = μ mod q. We also
define the ideals p = pOK + (ζe − μp)OK and q = qOK + (ζe − μq)OK . It holds
that N = pq. Squirrel [33] gives a polynomial time algorithm for computing the

eth residue symbol
(

x

a

)

e

for any x ∈ OK and any ideal in OK (such as N for

example). It is an interesting problem for future work to find a more efficient
algorithm tailored to the ideal N.

Furthermore, we define a function JN : ZN → {0, . . . , e − 1} as follows

J(x) =

⎧

⎨

⎩

0 if gcd(x,N) �= 1

i if gcd(x,N) = 1 and
(

x

N

)

e

= ζi
e

Additionally, we define Jp analogous to JN except with ideal p and modulus p,
and similarly, we define Jq using ideal q and modulus q. When an integer x is an
eth power residue modulo N , we have JN (x) = 0. We establish some important
properties:

•
JN (x) ≡ Jp(x) + Jq(x) mod e ∀x ∈ ZN (3.1)

• Homomorphic property

JN (xy) ≡ JN (x) + JN (y) mod e ∀x, y ∈ Z∗
N (3.2)

The homomorphic property is also satisfied by Jp and Jq.

3.2 Boneh, LaVigne and Sabin (BLS) Scheme

We now describe the BLS scheme. While the scheme is described as an IBE in
[28], as aforementioned, there is no efficient means to securely realize the hash
function it depends on3. We present it here as a public-key scheme, and in fact
the security proof in [28] treats it as such.

The scheme is parameterized by a prime e. Note the scheme employs the func-
tion JN which implicitly uses the root of unity μ published in the public key.
3 This is with absolute correctness. There is an alternative approach to the one we

present here that achieves probabilistic correctness, but the parameters can be set so
that it is correct with all but negligible probability. It is however less space efficient.
The idea is that the hash function gives multiple (say k = poly(λ)) elements whose
eth residue symbol is 1 and at least one of them will be an eth residue with all but
negligible probability. The ciphertext contains k encryptions, as opposed to e < k in
our approach, thus making this approach less space-efficient than ours.
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• Gen(1λ): Generate two RSA primes p and q with e|p − 1 and e|q − 1 and let
N = pq. Uniformly choose a nontrivial, nondegenerate root of unity μ ∈ ZN .
Uniformly sample an integer r

$←− Z∗
N and set v ← re mod N . Output (pk :=

(N,μ, v), sk := r).
• Encrypt(pk,m): Given public key pk := (N,μ, v) and message m ∈ {0, . . . , e−

1}, perform the following steps. Generate a uniformly random polynomial

f(x) $←− Z∗
N [x] of degree e−1 and compute g(x) ← f(x)e mod xe − v. Choose

a uniformly random t
$←− Z∗

N and compute the polynomial c(x) ← g(x)
t .

Output CT := (c(x), d := m + JN (t) mod e).
• Decrypt(sk,CT): Given secret key sk := r and ciphertext CT := (c(x), d),

output d + JN (c(r)) mod e.

BLS is proven semantically secure under the MER assumption in the standard
model.

3.3 Our Construction

Our approach to circumventing the uninstantiability of the hash function
employed in the IBE-version of BLS is akin to the original Cocks scheme. As
part of the public parameters, we publish e−1 eth non-residues (with JN (x) = 0
for all non-residues x). Then for any integer a satisfying J(a) = 0, either a is an
eth residue or its product with one of the e−1 non-residues is an eth residue. We
also make some simplifications to BLS such as removing an element of Ze from
the ciphertext. We assume a hash function H : {0, 1}∗ → {x ∈ ZN : JN (x) = 0}
that maps identity strings to elements of x ∈ ZN with JN (x) = 0 (i.e. the power
residue symbol of the element is 1).

The scheme is parameterized with a prime e. We make use of the functions
JN and Jp defined earlier which implicitly use a root of unity μ published in the
public parameters.

Remark 1. We sometimes omit “mod N” for ease of presentation. This is par-
ticularly the case for products involving the elements αi (as described below) to
avoid clutter.

• Setup(1λ): Generate two RSA primes p and q with e|p− 1 and e|q − 1 and let

N = pq. Sample uniformly an element γ
$←− Z∗

N with JN (γ) = 0 and Jp(γ) �=
0. For every i ∈ [e], set αi ← γi−1 mod N . Uniformly choose a nontrivial,
nondegenerate root of unity μ ∈ ZN . Output PP := (N,μ, α1, . . . , αe) and
MSK := (p, q, α1, . . . αe).

• KeyGen(MSK, id): Given master secret key MSK := (p, q, α1, . . . , αe) and an
identity string id ∈ {0, 1}∗, compute a ← H(id). Check which of α1·a, . . . , αe·a
is an eth residue and let the index in the list be i. Then compute the eth root
of αi · a using p and q; denote this root by r. Output skid = (i, r).

• Encrypt(PP, id,m): Given public parameters PP := (N,μ, α1, . . . , αe), an iden-
tity string id ∈ {0, 1}∗ and a message m ∈ {0, . . . , e − 1}, first compute
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a ← H(id). We define the subalgorithm E that takes an integer v and mes-
sage m′ as input and outputs a polynomial in ZN [x].
E(v,m′) :

– Generate a uniformly random polynomial f(x) $←− Z∗
N [x] of degree e − 1.

– Compute g(x) ← f(x)e mod xe − v.

– Choose a uniformly random t
$←− Z∗

N such that J(t) = m′.
– Output the polynomial c(x) = t · g(x).

The encryption algorithm outputs CT = (a, E(α1 · a,m), . . . , E(αe · a,m)).
• Decrypt(skid,CT) : On input a secret key skid := (i, r) and a ciphertext CT :=

(a, c1(x), . . . , ce(x)), output m ← JN (ci(r)).

Correctness The correctness of decryption follows in the same way as BLS; since,
f(x)3 = g(x)3 + (x3 − αi · a), we have f(r)3 = g(r)3 when r3 ≡ αi · a and
JN (tg(r)3) = JN (t). It is necessary that the product of one of the αi’s with a
gives an eth residue. An element of v ∈ Z∗

N is an eth residue iff JN (v) = Jp(v) = 0.
Let k = Jp(a). Then multiplying a with an element α satisfying JN (α) = 0 and
Jp(α) = e − k guarantees that the resulting element is an eth residue (recall
that Jp(xy) = Jp(x) + Jp(y) mod e). So we need to show that for each z ∈ Ze,
there is an αi with Jp(αi) = z. In the setup, we sample a γ with JN (γ) = 0 and
Jp(γ) �= 0. Let g = Jp(γ). Then Jp(γj) = jg mod e for j ∈ {0, . . . , e − 1} and
since e is prime, this generates all elements in the additive group Ze.

Security Now we will reduce the security of our construction to that of BLS.
When we refer to BLS hereafter, we will assume that its encryption algorithm is
the same as E above i.e. it outputs a polynomial CT := c(x) = t · g(x). This does
not affect its security. However, there is an obstacle that we must contend with
in the security reduction. Given a BLS public key, we cannot generate a γ ∈
PR(N) \ER(N) (note that this is precisely the set {x : JN (x) = 0 ∧ Jp(x) �= 0})
with probability 1 which is needed to correctly simulate the public parameters of
our scheme. To address this, we consider a modified BLS scheme, denoted BLS′,
that generates such a γ and outputs it as part of the public key. We first show
that BLS′ is semantically secure under the MER assumption. Then we will base
our security reduction on BLS′.

Lemma 1. BLS′ is IND-CPA secure under the MER assumption.

Proof. We will prove the lemma via a hybrid argument.

Game 0: This is the real IND-CPA game.

Game 1: We make one change from Game 0, namely we set γ ← ue mod N for
a uniformly chosen u

$←− Z∗
N .

Game 0 and Game 1 are computationally indistinguishable due to MER. In
Game 0, γ is sampled uniformly from PR(N) \ ER(N) and in Game 1, γ is
sampled uniformly from ER(N).
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Game 2: The change we make in this game is to encrypt a fixed element w ∈ Ze

instead of mb, where m0 ∈ Ze and m1 ∈ Ze are the challenge messages and b is
a random bit. The adversary has a zero advantage in this game.

Game 1 and Game 2 are computationally indistinguishable by the semantic
security of BLS. Given a BLS public key (N,μ, v), we use these values in the
public key and generate γ as in Game 2. When the adversary provides the
challenge plaintexts (m0,m1), we choose a random b and forward the challenge
plaintexts (mb, w) to the BLS challenger, and return the challenge ciphertext CT∗

provided by the BLS challenger. If CT∗ encrypts mb then Game 1 is perfectly
simulated whereas if it encrypts w, Game 2 is perfectly simulated. Therefore,
a non-negligible advantage distinguishing the hybrids implies a non-negligible
advantage breaking the semantic security of BLS. ��
Theorem 1. Our scheme is IND-ID-CPA secure under the MER assumption
in the random oracle model.

Proof. Let A be the adversary in the IND-ID-CPA game against our scheme. We
show that a non-negligible advantage by A implies a non-negligible advantage
against the IND-CPA security of BLS′. We construct a simulator S that interacts
in the IND-CPA game and simulates the view of A. The hash function H in our
IBE scheme is modeled as a random oracle. We now describe how S works.

Given a public key (N,μ, v, γ) of BLS′ by the IND-CPA challenger, S uses
this information to construct public parameters (N,μ, α1, . . . , αe), which it gives
to A. Let Q be the number of non-adaptive calls to the random oracle H. We
assume that A makes a call to H for identity id prior to making a secret key
query for id. The simulator picks a random k ∈ [Q]. The simulator answers calls
to H as follows. On the j-th call to H with identity string idj , perform the
following steps:

• If j = k:
• Choose a random i

$←− [e].
• Add tuple (idk,⊥, i) to table T .
• Output v · α−1

i mod N .
• Else:

• Choose a random i
$←− [e].

• Choose a random r
$←− Z∗

N .
• Add tuple (idj , r, i) to T .
• Output re · α−1

i .

The simulator handles secret key queries as follows. On querying the secret key
for identity id, perform the following steps.

• If id = idk, output a random bit and abort the simulation.
• Fetch tuple (idj , r, i) from T with idj = id.
• Output r.
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When A sends its target identity id∗ and pair of challenge plaintexts (m0,m1),
the simulator checks if id∗ = idk. If this is not the case, S outputs a random
bit and aborts. Otherwise, it forwards (m0,m1) to the IND-CPA challenger.
Subsequently, the IND-CPA challenger gives S its challenge ciphertext CT∗ :=
c∗(x). The simulator performs the following steps:

• Fetch (idk,⊥, i) from T .
• Set ci(x) ← c∗(x).
• Set a ← v · α−1

i mod N

• Compute cj(x) ← E(αj · a, uj) with uj
$←− Ze for all j ∈ [e] \ {i}.

• Set CT ← (a, c1(x), . . . , ce(x)).

The simulator then gives CT to A as its challenge ciphertext. We claim that CT
is identically distributed to a ciphertext in the real game. Firstly, since a · αi ≡
v mod N , we have that ci(x) is perfectly simulated. For all other j ∈ [e] with
j �= i, the element a · αj is an eth non-residue. It is shown in [28] that ciphertext
polynomials computed with an eth non-residue give no information about the
plaintext. Therefore, in the view of A, the challenge ciphertext CT is perfectly
simulated. Finally, S outputs A’s guess bit. The probability that the simulation
does not abort is 1/Q. It follows that if A has advantage ε attacking the IND-ID-
CPA security of our scheme then S has advantage ε/Q attacking the IND-CPA
security of BLS′. Since a non-negligible ε would contradict Lemma 1 assuming
MER holds, the result follows. ��

3.4 Homomorphism

We now show that our construction is additively homomorphic for the group
(Ze,+). Given two ciphertexts CT1 := (a, c1(x), . . . , ce(x)) and CT2 :=
(a, d1(x), . . . , de(x)) encrypted with the same identity id with a = H(id), we
compute the i-th component of the resulting ciphertext as ei(x) = ci(x) · di(x)
(mod xe − αi · a) for i ∈ [e]. Consider the i-th component of the ciphertexts
such that αi · a ∈ ZN is an eth residue. Suppose we have that ci(x) = t1 · f1(x)e

(mod xe − αi · a) and di(x) = t2 · f2(x)e (mod xe − αi · a). Let r be the eth root
of αi ·a. To see that multiplication modulo (xe −αi ·a) is homomorphic, observe
that

JN (ci(x)di(x) (mod x
e − αi · a)(r)) = JN ((t1 · f1(x)

e
) · (t2 · f2(x)

e
) (mod x

e − αi · a)(r))(3.3)
= JN ((t1 · t2)(f1(x) · f2(x))

e
(mod x

e − αi · a)(r)) (3.4)
= JN ((t1 · t2) · (f1(r) · f2(r))

e
) (3.5)

= JN (t1 · t2) (3.6)
= JN (t1) + JN (t2) (mod e) (3.7)

Recall the homomorphic property of JN i.e. JN (xy) = JN (x)+JN (y) mod e.
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Keeping with the notation we have established so far, let us first fix some
identity id ∈ {0, 1}∗. Let (i, r) be a secret key for id. The ciphertext space Ĉid is
defined as follows:

Ĉid � {(a, (c1(x), . . . , ce(x)) ∈ Ze
N : deg(c1) = · · · = deg(ce) = e − 1,

(ci(r)

N

)
e

�= 0,

cj(x) is invertible in ZN [x]/(xe − αj · a) ∀j ∈ [e]}.

The binary operation ∗ can be defined on Ĉ as follows: given two ciphertexts
CT1 := (a1, c1(x), . . . , ce(x)) and CT2 := (a2, d1(x), . . . , de(x)), their product
under ∗ is defined as CT′ := (a1, c1(x) ·d1(x) (mod xe −α1 ·a1), . . . , ce(x) ·de(x)
(mod xe − αe · a1) if a1 = a2, and CT′ := Z otherwise, where Z ∈ Ĉ is the null
ciphertext.

Lemma 2. (Ĉid, ∗) is a group.

Proof. It is sufficient to consider a single component of the ciphertext because the
same analysis applies for each component. Let v = αi ·a for some j. We can view
the j-th component as an element in the ring Ra = ZN [x]/(xe−v). Let c(x) be the
j-th polynomial component of a ciphertext in Ĉid. By definition, c(x) is invertible.

Consider the case where j = i. By definition, we have
(

c(r)
N

)

e

�= 0. Applying

∗ to c(x) and any other element of Ĉid preserves this condition. Therefore Ĉid is
closed under ∗. It follows (Ĉf , ∗) is a group. ��
We denote the set of legal encryptions under identity id by Cid. We have the
following straightforward lemma:

Lemma 3. (Cid, ∗) is a subgroup of Ĉid.

Proof. We focus on a single component, say the j-th, of a ciphertext. Let c(x)
be such a component. Then c(x) is of the form t · f(x)e for some f(x) that is
a unit4 in ZN [x]/(xe − αj · a) and t ∈ Z∗

N . Naturally we have that c(x) ∈ Ĉid.
Multiplying c(x) by another element d(x) with the same form yields an element
of the same form. ��
Theorem 2. Our scheme is an IBGHE scheme i.e. it satisfies Definition 3.

Proof. By Lemma 3 the scheme satisfies GH.1. By the derivation given in
Eqs. 3.3–3.7 the scheme satisfies GH.2. Therefore the scheme is an IBGHE. ��

4 We omitted an explicit check for this in the encryption algorithm since a non-unit
occurs with negligible probability.
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3.5 Homomorphic Addition Modulo a “Large” Modulus

Our scheme supports homomorphic addition modulo a “small” (i.e. poly-sized)
prime. However if we use multiple instances of the scheme with distinct primes,
we can leverage the Chinese Remainder Theorem to support addition modulo a
square-free integer M provided M factors into a polynomial number of poly-sized
primes. Hence we can support modular addition with an exponentially-large mod-
ulus. This is the first IBE scheme admitting a modular additive homomorphism
with a superpolynomial modulus, solving an open problem mentioned in [21].

Concretely, suppose our desired square-free modulus is M = p1 · · · pn. We
employ n instances of our scheme {Ei}i∈[n] with the e parameter for Ei set to pi

for all i ∈ [n].

• Setup(1λ): Output (PP := (PP1, . . . ,PPn),MSK := (MSK1, . . . ,MSKn) where
(PPi,MSKi) ← Ei.Setup(1λ) for i ∈ [n].

• KeyGen(MSK := (MSK1, . . . ,MSKn), id): Output sk := (sk1, . . . , skn) where
ski ← Ei.KeyGen(MSKi, id) for i ∈ [n].

• Encrypt(PP := (PP1, . . . ,PPn), id,m): Output c := (c1, . . . , cn) where ci ←
Ei.Encrypt(PPi,m mod pi) for i ∈ [n].

• Decrypt(sk := (sk1, . . . , skn), c := (c1, . . . , cn)) : Output CRT((m1, . . . ,mn),
(p1, . . . , pn)) where mi ← Ei.Decrypt(ski, ci) for i ∈ [n].

• Additive Homomorphism: Let ∗i denote the binary operation on the
ciphertext space of Ei. We define ∗, the binary operation on the ciphertext
space of this construction, as follows:

• c ∗ c′ = (c1, . . . , cn) ∗ (c′
1, . . . , c

′
n) � (c1 ∗1 c′

1, . . . , cn ∗n c′
n)

The ciphertext space complexity of this scheme is
∑

p2i .

3.6 Anonymity

The XOR-homomorphic scheme CHT mentioned earlier is not anonymous as a
result of a test due to Galbraith5. Consider an identity id and let a = H(id).
Ciphertexts in CHT are a pair of polynomials (c(x), d(x)) ∈ (ZN [x])2. We will
consider only a single ciphertext component here, say the first (c(x)), which is
encrypted with respect to a. The observations also hold with respect to the sec-
ond component by replacing a with −a. We define Galbraith’s Test for ciphertext
polynomials as the function GT : ZN × ZN [x] → {−1, 0,+1} given by

GT(a, c(x)) =
(

c20 − c21a

N

)

.

For encryptions c(x) (recall we are just considering one component) encrypted
under identity id, we have GT(a, c(x)) = 1. For encryptions c′(x) under a different
identity, it is the case that GT(a, c′(x)) = 1 with probability negligibly close
to 1/2.

5 Reported as emerging from personal communication in [34].
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For convenience, let us denote our scheme that extends BLS, as described
above, for the case of e = 2 (i.e. admitting an XOR homomorphism) by E2.
Although E2 is algorithmically different to CHT, it shares many of the same
properties. In particular it is easy to see that Galbraith’s test is applicable in
the same way. An anonymous variant of CHT was proposed in [35] and the
techniques are also applicable to E2. However the approach to achieve anonymity
in [35] loses the homomorphic property i.e. one cannot homomorphically operate
on anonymized ciphertexts.

We now turn our attention to investigating whether our scheme for the case
of e > 2 is anonymous. We will denote our scheme for this case by Ee. As usual,
for identity id, we let a = H(id). We define the ciphertext space Ĉ for a single
component as Ĉ := {c(x) ∈ Z∗

N [x] : deg(c(x)) = e − 1} (the analysis holds
analogously for the other components). Now consider the subset Ca ⊂ Ĉ, which
are the set of polynomials (for a single component) in the image of the encryption
algorithm with respect to a; that is, we have Ca := {t · f(x)e mod xe − a : t ∈
Z∗

N , f(x) ∈ Z∗
N [x], deg(f(x)) = e−1}. Also we need to define a subset C

(0)
a ⊂ Ca

of Ca that corresponds to encryptions of the identity element 0 with respect to a.

Definition 7 (Algebraic Equation Set). The algebraic equation set for a
ciphertext c(x) ∈ Ĉ with respect to a is derived as follows. The unknowns are
the coefficients z0, ..., z

e−1 of the polynomial f(x) generated during encryption.
Raising f(x) to the power of e and reducing according to the equivalence relation
xe ≡ a induced by the quotient of the ring Z∗

N [x]/(xe − a) yields a set of e
multivariate polynomials in z0, ..., z

e−1 of degree e, one for each coefficient of
the result. The algebraic equation set is formed by letting the polynomial for the
i-th coefficient of the result equal to ci for i ∈ 0, . . . , e − 1. For example, the
algebraic equation set for e = 3 is

z30 + az31 + a2z32 + 6az0z1z2 = c0

3z20z1 + 3az0z
2
2 + 3az21z2 = c1

3z20z2 + 3z0z
2
1 + 3az1z

2
2 = c2

We now define a subset C
(0)
a

′ ⊂ C
(0)
a of the honest encryptions of 0 as C

(0)
a

′ :=
{t · f(x)e mod xe − a : t ∈ ER(N), f(x) ∈ Z∗

N [x], deg(f(x)) = e − 1} i.e. the
t ∈ Z∗

N used during encryption is an eth residue. We have the following lemma.

Lemma 4. The algebraic equation set for c(x) ∈ Ĉ with respect to a has a
solution if and only if c(x) ∈ C

(0)
a

′.

Proof. Let R = Z∗
N [x]/(xe −a). A solution to the algebraic equation set for c(x)

is a polynomial f(x) such that f(x)e = c(x) (in R). Therefore t = 1, an eth

residue and thus we have c(x) ∈ C
(0)
a

′. Conversely, let c(x) be an element of
C

(0)
a

′. We can write c(x) = t · f(x)e ∈ R. Since t = re is an eth residue for some
r ∈ Z∗

N , we have that r · f(x) ∈ R is a solution to the algebraic equation set,
which secures the lemma. ��

We have an additional lemma.
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Lemma 5. The sets C
(0)
a and C

(0)
a

′ are computationally indistinguishable
assuming the hardness of MER.

Proof. An algorithm that distinguishes between C
(0)
a \C

(0)
a

′ and C
(0)
a

′ can be used
to construct an algorithm that solves MER. Given a MER challenge t ∈ {x ∈
ZN : JN (t) = 0}, an element c(x) is generated by computing t ·f(x)e mod xe − a

for f(x) $←− Z∗
N [x], deg(f(x)) = e − 1. If t is a non-residue then c(x) is uniformly

distributed in the first distribution. Otherwise, it is uniformly distributed in the
second distribution. An algorithm that distinguishes the distributions can thus
solve MER. By extension, the statement of the lemma follows. ��

Let A = {x ∈ Z∗
N : JN (x) = 0}. We are now ready to define the assumption

under which we prove anonymity of Ee.

Definition 8. (Special Polynomial Equations Solvability (SPES(e)

Assumption). Given (a, c(x)) ∈ A × Ĉ where a
$←− A, consider an algorithm

A that decides the solvability of the algebraic equation set for c(x) with respect
to a. Let S be the set of instances in A × Ĉa that are solvable and let S̄ be the
unsolvable instances. The advantage of A deciding correctly AdvA is defined as

AdvA � Pr[s $←− S : A(s) → 1] − Pr[s̄ $←− S̄ : A(s̄) → 1].

The SPES(e) assumption for prime e > 2 is that for every PPT algorithm A it
holds that AdvA < negl(λ).

Remark 2. Deciding solvability of a system of multivariate polynomial equations
in general is NP-complete. However for the special system of equations of interest
here, with certain structure, we must make an explicit assumption about the
hardness of deciding its solvability.

Lemma 6. The sets Ca and Ĉ \ Ca are computationally indistinguishable for

a
$←− A assuming the hardness of SPES and MER.

Proof. By semantic security of Ee, via the MER assumption, shown in
Theorem 1, it holds that Ca is computationally instinguishable from C

(0)
a . Then

by invoking Lemma 5, we have that C
(0)
a is computationally indistinguishable

from C
(0)
a

′. Now Lemma 4 tells us that the solvable instances for SPES are the
set C

(0)
a

′. The unsolvable instances are Ĉ \C
(0)
a

′. By the hardness of SPES, these
sets are therefore computationally indistinguishable. The result follows. ��
Theorem 3. Ee for e > 2 is anonymous under the SPES and MER assump-
tions.

Proof. In the anonymity security game, the adversary chooses two target iden-
tities id and id′.
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Game 0: This is the real game.

Game 1: In this game, we change how the challenge ciphertext is generated
if the challenger’s bit β = 0 (i.e. using identity id). If β = 0, we sample the
challenge ciphertext uniformly from Ĉ instead of Ca where a is what is returned
by H(id).

To invoke Lemma 6 to argue indistinguishability of Ĉ and Ca, we need to
program the output of the random oracle H on identity id to be a, which is
distributed correctly. In a similar manner to the proof of Theorem 1, we must
guess one of the identities the adversary chooses from its queries to H and abort
with a random bit if we guessed incorrectly. This step loses a factor of roughly
1/Q where Q is the number of queries to H prior choosing the target identities.

Game 2: In this game, we change how the challenge ciphertext is generated
if the challengers bit β = 1 (i.e. using identity id′). If β = 1, we sample the
challenge ciphertext uniformly from Ĉ instead of Cb where b is what is returned
by H(id′).

Indistinguishability follows in the same manner as the transition between
Game 0 to Game 1.

The adversary has zero advantage in this game as it learns no information
about β. The result follows. ��

3.7 Cryptanalytic Investigation of SPES

The main practical approach for solving a system of multivariate polynomial
equations is via computing a reduced Gröbner basis. For a sufficient number of
equations, solvability can be decided by checking if the reduced Gröbner basis
is {1} [36], which means the system is inconsistent (no solution exists). Buch-
berger [36,37] introduced an algorithm for computing a Gröbner basis. The time
complexity of this algorithm is difficult to analyze but is estimated to be dou-
bly exponential in the number of variables. Therefore for e = Ω(log λ) with
security parameter λ this approach is intractable. For such values of e, a stan-
dard technique is to use resultants to eliminate variables. However to eliminate
variables such that only a constant number remain, leads to polynomials with
superpolynomial degree in λ. In view of this state of affairs, since Gröbner basis
computation is the best known practical approach for solving multivariate equa-
tions, we conjecture that SPES(e) is hard for e = Ω(log λ). We now focus on
small (constant) values of e. For example we are interested in knowing whether
SPES(3) is hard.

We used a variant of Buchberger’s algorithm in Sage to compute Gröbner
bases and conduct experimental analysis. Our experimental results show that
with overwhelming probability the reduced Gröbner basis in the lexicographic
monomial ordering for the SPES(e) system consists of e polynomials where the
last polynomial (when ordered lexicographically) in the basis is a univarate poly-
nomial in ze−1 of the form

∑ee−1

i=0 aiz
i·e
e−1 for coefficients ai ∈ ZN . This is the case

whether the system is solvable or not. Buchberger’s criterion for unsolvability,
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i.e. checking if the reduced Gröbner basis is {1}, does not pertain because we
have an insufficient number of equations. We now have a univariate polynomial
over ZN . However to the best of our knowledge, there are no known feasible
attacks on deciding solvability of such polynomials when N is an RSA modu-
lus. Inspecting the form of the univariate polynomial above, it is not difficult to
see that deciding solvability of polynomials of this form for general coefficients
ai is at least as hard as the eth residuosity problem. This gives evidence that
the problem we are faced with (for a certain distribution of coefficients) has the
potential to be hard but we cannot provide a reduction or firmer conclusion on
its exact hardness for the distribution of coefficients encountered. Nevertheless,
in light of the evidence, we conjecture that SPES(e) is hard for constant prime
e > 2. We invite the community to conduct further cryptanalysis.
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