Dongdai Lin
Kazue Sako (Eds.)

Public-Key Cryptography -
PKC 2019

22nd IACR International Conference

on Practice and Theory of Public-Key Cryptography
Beijing, China, April 14-17, 2019

Proceedings, Part |

LNCS 11442

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA

11442

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Dongdai Lin - Kazue Sako (Eds.)

Public-Key Cryptography —
PKC 2019

22nd TACR International Conference

on Practice and Theory of Public-Key Cryptography
Beijing, China, April 14-17, 2019
Proceedings, Part I

@ Springer

Editors

Dongdai Lin Kazue Sako

SKLOIS, Institute of Information Security Research Laboratories
Engineering NEC Corporation

Chinese Academy of Sciences Kawasaki, Japan

Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17252-7 ISBN 978-3-030-17253-4 (eBook)

https://doi.org/10.1007/978-3-030-17253-4
Library of Congress Control Number: 2019936577
LNCS Sublibrary: SL4 — Security and Cryptology

© International Association for Cryptologic Research 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-17253-4

Preface

The 22nd TACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2019) was held April 14-17, 2019, in Beijing, China. The
conference is sponsored by the International Association for Cryptologic Research
(IACR) and focuses on all technical aspects of public-key cryptography. These
proceedings consist of two volumes including 42 papers that were selected by the
Program Committee from 173 submissions. Each submission was assigned to at least
three reviewers while submissions co-authored by Program Committee members
received at least five reviews. During the discussion phase, the Program Committee
used quite intensively a recent feature of the review system, which allows Program
Committee members to anonymously ask questions to the authors. The reviewing and
selection process was a challenging task and we are deeply grateful to the Program
Committee members and external reviewers for their hard and thorough work. Many
thanks also to Shai Halevi for his assistance with the Web submission and review
software. We thank the authors for promptly responding to the questions raised by the
committee, which helped us understand the content of their submissions.

The conference program also included an invited talk by Tatsuaki Okamoto (NTT).
We would like to thank the invited speaker as well as all the other speakers and the
authors of all submissions for their contributions to the program and conference.
Finally, we would like to thank Xiaoyun Wang, the general chair, and all the members
of local Organizing Committee for organizing a great conference and all the conference
attendees for making this conference a truly intellectually stimulating event through
their active participation.

April 2019 Dongdai Lin
Kazue Sako

PKC 2019

22nd TACR International Conference on Practice and Theory
of Public-Key Cryptography

Beijing, China
April 14-17, 2019

Sponsored and Organized by

International Association for Cryptologic Research
State Key Laboratory of Information Security
State Key Laboratory of Cryptology

TopSec Technologies Inc.

Institute of Information Engineering, Chinese Academy of Sciences
Chinese Association for Cryptologic Research

General Chair

Xiaoyun Wang

Program Co-chairs
Dongdai Lin

Kazue Sako

Steering Committee

Michel Abdalla
Yvo Desmedt
Goichiro Hanaoka

Aggelos Kiayias
Dongdai Lin
David Naccache
Tatsuaki Okamoto
David Pointcheval
Kazue Sako

Moti Yung
Yuliang Zheng

Tsinghua University, China

SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences, China

Security Research Laboratories, NEC Corporation,
Japan

Ecole Normale Supérieure, France

University of Texas at Dallas, USA

National Institute of Advanced Industrial Science
and Technology, Japan

University of Edinburgh, UK

Chinese Academy of Sciences, China

Ecole Normale Supérieure, France

NTT Labs, Japan

Ecole Normale Supérieure, France

NEC Security Research Laboratories, Japan

Google and Columbia University, USA

University of Alabama at Birmingham, USA

viii PKC 2019

Program Committee

Erdem Alkim
Diego F. Aranha

Chris Brzuska
Dario Catalano
Nishanth Chandran
Sanjit Chatterjee
Jie Chen

Jung Hee Cheon
Craig Costello

Yi Deng

Leo Ducas

Nico Déttling
Dario Fiore
Pierre-Alain Fouque
Feng Hao

Tibor Jager

Marc Joye
Tancréde Lepoint
Benoit Libert
Helger Lipmaa
Feng-Hao Liu
Takahiro Matsuda
Pratyay Mukherjee
Satoshi Obana
Miyako Okubo
Arpita Patra
Ludovic Perret
Thomas Peters
Benny Pinkas
Bertram Poettering

Antigoni Polychroniadou

Alessandra Scafuro
Jae Hong Seo
Qiang Tang
Huaxiong Wang
Yu Yu

Organizing Committee

Xiaofeng Chen
Yu Chen

Shugin Fan

Ondokuz Mayis University, Turkey

Aarhus University, Denmark and University
of Campinas, Brazil

Alto University, Finland

University of Catania, Italy

Microsoft, India

Indian Institute of Sciences, India

East China Normal University, China

Seoul National University, Korea

Microsoft Research, USA

Chinese Academy of Sciences, China

CWI Amsterdam, The Netherlands

Cispa Helmholtz Center (i.G.), Germany

IMDEA Software Institute, Spain

Rennes University, France

University of Warwick, UK

Paderborn University, Germany

OneSpan, Belgium

SRI International, USA

CNRS and ENS de Lyon, France

University of Tartu, Estonia

Florida Atlantic University, USA

AIST, Japan

Visa Research, USA

Hosei University, Japan

NICT, Japan

Indian Institute of Science, India

Sorbonne University, France

UC Louvain, Belgium

Bar-Ilan University, Israel

Royal Holloway, University of London, UK

Cornell Tech, USA

NC State University, USA

Hanyang University, South Korea

New Jersey Institute of Technology, USA

Nanyang Technological University, Singapore

Shanghai Jiaotong University, China

Xidian University, China

SKLOIS, Institute of Information Engineering,
CAS, China

State Key Laboratory of Cryptology, China

Xinyi Huang
Ming Li

Zhe Liu

Chunming Tang
Anyu Wang

Jian Weng
Baofeng Wu

Fangguo Zhang
Yunlei Zhao

Additional Reviewers

Benjamin Dowling
Behzad Abdolmaleki
Masayuki Abe
Martin R. Albrecht
Pedro G. M. R. Alves
Gilad Asharov
Nuttapong Attrapadung
Karim Baghery

Shi Bai

Marshall Ball
Manuel Barbosa
Hridam Basu
Carsten Baum
Pascal Bemmann
Fabrice Benhamouda
Pauline Bert
Francesco Berti
Ward Beullens
Sauvik Bhattacharya
Olivier Blazy
Katharina Boudgoust
Florian Bourse
Xavier Bultel

Olive Chakraborty
Biniy Chen

Long Chen
Rongmao Chen

Yu Chen

Wonhee Cho

Fujian Normal University, China

SKLOIS, Institute of Information Engineering,

CAS, China

Nanjing University of Aeronautics and Astronautics,

China
Guangzhou University, China

SKLOIS, Institute of Information Engineering,

CAS, China
Jinan University, China

SKLOIS, Institute of Information Engineering,

CAS, China
Sun Yat-sen University, China
Fudan University, China

Ashish Choudhury
Peter Chvojka
Sadro Coretti
Geoffroy Couteau
Edouard Cuvelier
Prem Laxman Das
Bernardo David
Amit Deo
Apoorvaa Deshpande
Julien Devigne
Ning Ding

Lucas Enloe
Jieun Eom

Naomi Ephraim
Xiong Fan
Antonio Faonio
Luca De Feo
Daniele Friolo
Georg Fuchsbauer
Ben Fuller

Tommaso Gagliardoni

Steven Galbraith
Tatiana Galibus
Chaya Ganesh
Romain Gay
Peter Gazi

Kai Gellert
Nicholas Genise
Satrajit Ghosh

X PKC 2019

Irene Giacomelli
Junqing Gong
Alonso Gonzalez
Jens Groth

Fabrice Ben Hammouda
Kyoohyung Han
Abida Haque
Javier Herranz
Clemens Heuberger
Minki Hhan
Hyunsook Hong
Seungwan Hong
Jingwei Hu

Qiong Huang
Xinyi Huang
Huisu Jang
Christian Janson
Jinhyuck Jeong
Yun-Seong Ji
Shaoquan Jiang
Zhang Jiang
Charanjit Jutla

R. Kabaleeshwaran
Saqib A. Kakvi
Koray Karabina
Shuichi Katsumata
Yutaka Kawai
Hamidreza Khoshakhlagh
Dongwoo Kim
Duhyeong Kim
Jaeyun Kim
Jiseung Kim
Minkyu Kim
Fuyuki Kitagawa
Susumu Kiyoshima
Kamil Kluczniak
Francgois Koeune
Yashvanth Kondi
Toomas Krips
Shravan Kumar
Rafael Kurek
Fabien Laguillaumie
Junzuo Lai

Qiqi Lai

Hyung Tae Lee
Joohee Lee

Kiwoo Lee
Jiangtao Li

Jie Li

Changlu Lin
Fuchun Lin
Qipeng Liu
Shengli Liu

Zhe Liu

Zhen Liu

Patrick Longa
Steve Lu

Yuan Lu

Lin Lyu

Shunli Ma

Varun Madathil
Monosij Maitra
Giulio Malavolta
Mark Manulis
Chloe Martindale
Daniel Masny
Peihan Miao
Rafael Misoczki
Payman Mohassel
Fabrice Mouhartem
Yi Mu

Sayantan Mukherjee
Pierrick Méaux
Michael Naehrig
Kartik Nayak
Khoa Nguyen
David Niehues
Ryo Nishimaki
Luca Nizzardo
Ariel Nof

Koji Nuida

Sai Lakshmi Bhavana Obbattu
Cristina Onete
Emmanuella Orsini
Jiaxin Pan

Tapas Pandit
Lorenz Panny
Jong Hwan Park
Alain Passelégue
Sikhar Patranabis
Alice Pellet-Mary
Geovandro Pereira

Olivier Pereira
Rachel Player

S. Puria

Erick Purwanto
Baodong Qin

Chen Qian

Mario Di Raimondo
Somindu C. Ramanna
Divya Ravi

Joost Renes

Amanda Cristina Davi Resende

Melissa Rossi
Arnab Roy

Paul Rosler
Mohamed Sabt
Yusuke Sakai
Jonas Schneider
Peter Scholl

Jacob Schuldt
Sven Schige
Adam Sealfon
Sruthi Sekar
Minhye Seo
Akash Shah
Kazumasa Shinagawa
Adam Shull

Janno Siim

Luisa Siniscalchi
Benjamin Smith
Azam Soleimanian
Yongha Son
Katerina Sotiraki
Shifeng Sun

Willy Susilo
Koutarou Suzuki
Benjamin Hong Meng Tan
Radu Titiu

Junichi Tomida
Rotem Tsabary
Daniel Tschudi

PKC 2019 Xi

Anselme Tueno
Dominque Unruh
Muthuramakrishnan Venkitasubramaniam
Daniele Venturi
Sameer Wagh
Michael Walter
Hailong Wang
Liping Wang
Luping Wang
Yu-chen Wang
Yuyu Wang
Zhedong Wang
Weigiang Wen
Joanne Woodage
Shota Yamada
Takashi Yamakawa
Avishay Yanay
Guomin Yang
Kang Yang
Rupeng Yang
Xu Yanhong
Donggeon Yhee
Jingyue Yu
Yang Yu

Zuoxia Yu
Aaram Yun
Michal Zajac
Ming Zeng

Cong Zhang
Jiang Zhang
Juanyang Zhang
Kai Zhang

Liang Feng Zhang
Mingwu Zhang
Rui Zhang
Xiaojun Zhang
Qian Zhao
Yunlei Zhao
Linfeng Zhou
Giorgos Zirdelis

Contents — Part 1

Cryptographic Protocols

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 3
Eyal Kushilevitz and Tamer Mour

Lossy Algebraic Filters with Short Tags. 34
Benoit Libert and Chen Qian

Non-interactive Keyed-Verification Anonymous Credentials. 66
Geoffroy Couteau and Michael Reichle

Digital Signatures

Shorter Ring Signatures from Standard Assumptions. 99
Alonso Gonzalez

Efficient Attribute-Based Signatures for Unbounded Arithmetic
Branching Programs 127
Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

Efficient Invisible and Unlinkable Sanitizable Signatures 159
Xavier Bultel, Pascal Lafourcade, Russell W. F. Lai, Giulio Malavolta,
Dominique Schréder, and Sri Aravinda Krishnan Thyagarajan

Group Signatures with Selective Linkability 190
Lydia Garms and Anja Lehmann

Let a Non-barking Watchdog Bite: Cliptographic Signatures

with an Offline Watchdog 221
Sherman S. M. Chow, Alexander Russell, Qiang Tang, Moti Yung,
Yongjun Zhao, and Hong-Sheng Zhou

Zero-Knowledge

Zero-Knowledge Elementary Databases with More Expressive Queries 255
Benoit Libert, Khoa Nguyen, Benjamin Hong Meng Tan,
and Huaxiong Wang

Efficient Non-Interactive Zero-Knowledge Proofs in Cross-Domains

Without Trusted Setup. 286
Michael Backes, Lucjan Hanzlik, Amir Herzberg, Aniket Kate,
and Ivan Pryvalov

X1v Contents — Part 1

Shorter Quadratic QA-NIZK Proofs.
Vanesa Daza, Alonso Gonzalez, Zaira Pindado, Carla Rafols,
and Javier Silva

Short Discrete Log Proofs for FHE and Ring-LWE Ciphertexts
Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler

Publicly Verifiable Proofs from Blockchains.
Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

Identity-Based Encryption

Identity-Based Broadcast Encryption with Efficient Revocation.
Aijun Ge and Puwen Wei

Tightly Secure Hierarchical Identity-Based Encryption.
Roman Langrehr and Jiaxin Pan

Leakage-Resilient Identity-Based Encryption in Bounded Retrieval Model
with Nearly Optimal Leakage-Ratio.
Ryo Nishimaki and Takashi Yamakawa

Additively Homomorphic IBE from Higher Residuosity.
Michael Clear and Ciaran McGoldrick

Fundamental Primitives (I)

Upper and Lower Bounds for Continuous Non-Malleable Codes.
Dana Dachman-Soled and Mukul Kulkarni

Improved Security Evaluation Techniques for Imperfect Randomness

from Arbitrary Distributions
Takahiro Matsuda, Kenta Takahashi, Takao Murakami,
and Goichiro Hanaoka

On Tightly Secure Primitives in the Multi-instance Setting.
Dennis Hofheinz and Ngoc Khanh Nguyen

Author Index e

Contents — Part 11

Public Key Encryptions

Collusion Resistant Broadcast and Trace from Positional
Witness Encryption oo 3
Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters

Break-glass Encryption 34
Alessandra Scafuro

Registration-Based Encryption from Standard Assumptions 63
Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody,
Ahmadreza Rahimi, and Sruthi Sekar

Functional Encryption

FE for Inner Products and Its Application to Decentralized ABE. 97
Zhedong Wang, Xiong Fan, and Feng-Hao Liu

Decentralizing Inner-Product Functional Encryption. 128
Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss,
and Hendrik Waldner

Non-zero Inner Product Encryption Schemes from Various Assumptions:
LWE,DDH and DCR i 158
Shuichi Katsumata and Shota Yamada

Function Private Predicate Encryption for Low Min-Entropy Predicates. 189
Sikhar Patranabis, Debdeep Mukhopadhyay, and Somindu C. Ramanna
Obfuscation Based Cryptography

Adaptively Single-Key Secure Constrained PRFs for NC' 223
Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki,
Shota Yamada, and Takashi Yamakawa

Obfuscating Simple Functionalities from Knowledge Assumptions 254
Ward Beullens and Hoeteck Wee

Xvi Contents — Part II

Re-encryption Schemes

What About Bob? The Inadequacy of CPA Security
for Proxy Reencryption 287
Aloni Cohen

Adaptively Secure Proxy Re-encryption. 317
Georg Fuchsbauer, Chethan Kamath, Karen Klein,
and Krzysztof Pietrzak

Fundamental Primitives (II)

Generic Constructions of Robustly Reusable Fuzzy Extractor............ 349
Yunhua Wen, Shengli Liu, and Dawu Gu

Safety in Numbers: On the Need for Robust Diffie-Hellman
Parameter Validation e 379
Steven Galbraith, Jake Massimo, and Kenneth G. Paterson

Hunting and Gathering — Verifiable Random Functions from Standard
Assumptions with Short Proofs. 408
Lisa Kohl

Post Quantum Cryptography

Lattice-Based Revocable (Hierarchical) IBE with Decryption Key
Exposure Resistance 441
Shuichi Katsumata, Takahiro Matsuda, and Atsushi Takayasu

Towards Non-Interactive Zero-Knowledge for NP from LWE. 472
Ron D. Rothblum, Adam Sealfon, and Katerina Sotiraki

More Efficient Algorithms for the NTRU Key Generation Using
the Field Norm. 504
Thomas Pornin and Thomas Prest

Efficiently Masking Binomial Sampling at Arbitrary Orders
for Lattice-Based Crypto 534
Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Giineysu

Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 565
Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson,
Frederik Vercauteren, and Ingrid Verbauwhede

Reducing the Key Size of McEliece Cryptosystem
from Automorphism-induced Goppa Codes via Permutations 599
Zhe Li, Chaoping Xing, and Sze Ling Yeo

Contents — Part II Xvii

Key Encapsulation Mechanism with Explicit Rejection in the Quantum
Random Oracle Model. 618
Haodong Jiang, Zhenfeng Zhang, and Zhi Ma

Factoring Products of Braids via Garside Normal Form 646
Simon-Philipp Merz and Christophe Petit

Author Index e 679

Cryptographic Protocols

®

Check for
updates

Sub-logarithmic Distributed Oblivious
RAM with Small Block Size

Eyal Kushilevitz and Tamer Mour®)

Computer Science Department, Technion, 32000 Haifa, Israel
eyalk@cs.technion.ac.il, tamer.mour@technion.ac.il

Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a client to securely execute RAM programs over data that is stored
in an untrusted server. Distributed Oblivious RAM is a variant of ORAM,
where the data is stored in m > 1 servers. Extensive research over the
last few decades have succeeded to reduce the bandwidth overhead of
ORAM schemes, both in the single-server and the multi-server setting,
from O(v/N) to O(1). However, all known protocols that achieve a sub-
logarithmic overhead either require heavy server-side computation (e.g.
homomorphic encryption), or a large block size of at least £2(log® N).
In this paper, we present a family of distributed ORAM construc-
tions that follow the hierarchical approach of Goldreich and Ostrovsky
[17]. We enhance known techniques, and develop new ones, to take bet-
ter advantage of the existence of multiple servers. By plugging efficient
known hashing schemes in our constructions, we get the following results:
1. For any number m > 2 of servers, we show an m-server ORAM
scheme with O(log N/ loglog N) overhead, and block size £2(log? N).
This scheme is private even against an (m — 1)-server collusion.
2. A three-server ORAM construction with O(w(1) - log N/ loglog N)
overhead and a block size almost logarithmic, i.e. £2(log'*¢ N).
We also investigate a model where the servers are allowed to perform a
linear amount of light local computations, and show that constant over-
head is achievable in this model, through a simple four-server ORAM
protocol. From theoretical viewpoint, this is the first ORAM scheme with
asymptotic constant overhead, and polylogarithmic block size, that does
not use homomorphic encryption. Practically speaking, although we do
not provide an implementation of the suggested construction, evidence
from related work (e.g. [12]) confirms that despite the linear computa-
tional overhead, our construction is practical, in particular when applied
to secure computation.

Keywords: Oblivious RAM - Multi-server setting -
Secure computation - Private storage

A full version is available on arXiv.org e-Print archive as arXiv:1802.05145 [cs.CR].
Research supported by ISF grant 1709/14, BSF grant 2012378, NSF-BSF grant
2015782, and a grant from the Ministry of Science and Technology, Israel, and the
Department of Science and Technology, Government of India.

© International Association for Cryptologic Research 2019

D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11442, pp. 3-33, 2019.
https://doi.org/10.1007/978-3-030-17253-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17253-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-17253-4_1

4 E. Kushilevitz and T. Mour

1 Introduction

Since it was first introduced by Goldreich and Ostrovsky [17], the Oblivious RAM
problem has attracted a lot of attention (see, e.g. [22,33,35]). Throughout the
past three decades, efficient ORAM protocols were constructed (e.g. [18,34]),
their various applications, such as secure storage [4,28], secure processors [32],
and secure multi-party computation [20,25], were studied, and their limits were
considered [1,17,24].

Standard Model. The standard ORAM model considers a setting where a client
outsources his data to an untrusted server that supports read and write opera-
tions only. The goal of an ORAM simulation is to simulate any RAM program
that the client executes over the remote data, so that the same computation is
performed, but the view of the server during the interaction would provide no
information about the client’s private input and the program executed, except
their length. Clearly, encryption can be employed to hide the content of the
data, but the sequence of reads and write locations itself might leak information
as well. Thus, the focus of ORAM protocols is to hide the access pattern made
to the server. The main metric considered in ORAM research is the bandwidth
overhead of an ORAM scheme (shortly referred to as “overhead”), which is the
multiplicative increase in the amount of communication incurred by an oblivious
simulation relative to a regular run of the simulated program. In this standard
model, researchers have been able to improve the overhead from O(log® N) [17]
to O(log N) [5,34,35], where N is the number of data blocks in storage, and thus
reaching the optimal overhead in that model due to the matching impossibility
results of Goldreich and Ostrovsky [17] and Larsen and Nielsen [24].

In an attempt to achieve sub-logarithmic overhead, research has deviated
from the standard model (e.g. [4,19,25]). For instance, by allowing the server
to perform some local computation, multiple works [4,11,14] could achieve a
constant overhead. However, this improvement comes at a cost: the server per-
forms heavy homomorphic encryption computation which practically becomes
the actual bottleneck of such schemes.

Distributed Oblivious RAM. Another interesting line of work, often referred to
as Distributed Oblivious RAM [1,19,38, etc.], was initiated by Ostrovsky and
Shoup [28] and later refined by Lu and Ostrovsky [25], and considers the multi-
server setting. We denote by (m,t)-ORAM an ORAM scheme that involves
m > 1 servers, out of which t < m servers might collude. In the two-server
setting, Zhang et al. [38] and Abraham et al. [1] construct (2,1)-ORAMs with
sub-logarithmic overhead. In order to achieve O(log, N) overhead (for any d € N)
using their construction, Abraham et al. require that the size of a memory block,
i.c. the data unit retrieved in a single query to the RAM, is £2(dlog” N) (with
larger blocks the asymptotic overhead increases). For example, for an over-
head of O(log N/loglog N), one has to work with blocks of relatively large
size of Q(log3 N), which may be undesired in many applications. Zhang et al.
require a polynomial block size of 2(N€) for a constant bandwidth blowup.

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 5

Other attempts to achieve low overhead in the multi-server setting [26] were
shown to be vulnerable to concrete attacks [1]. These recent developments in
distributed ORAM raise the following question, which we address in this paper:

Can we construct a sub-logarithmic distributed ORAM with a small block size?

Known sub-logarithmic ORAMs [1,38] belong to the family of tree-based
ORAMs [33]. One of the key components in tree-based ORAMs is a position
map that is maintained through a recursive ORAM. Such a recursion imposes
the requirement for a large polylogarithmic block size!. Thus, it seems that a
positive answer to the question above will come, if at all, from constructions of
the other well-studied type of ORAMs, those based on the hierarchical solution
of [17]. By applying the hierarchical approach to the distributed setting, Lu and
Ostrovsky [25] obtained the first logarithmic hierarchical ORAM scheme. In this
paper, we show how to take a further advantage of the multiple servers in order
to beat the logarithmic barrier, and still use a relatively small block size, with
constructions in both the two-server and three-server settings. In addition, we
consider the case where t > 1, and show how to generalize our two-server solution
to an (m,m — 1)-ORAM, with the same asymptotic complexity, for any m > 2.

ORAM for Secure Computation. An interesting application of ORAM is its inte-
gration in multi-party computation (MPC) protocols for RAM programs on large
data. The possibility of using ORAM for MPC was first pointed out by Ostro-
vsky and Shoup [28], and was revisited by more recent works [20,25] due to the
increasing interest in applied secure computation. Despite the extensive improve-
ments in the practicality of secure circuit evaluation protocols, the theoretical
framework for MPC protocols for RAM evaluation, given in [20,25,28] and other
works, encountered major obstacles toward achieving practical efficiency.

A new line of work [12,19,36,37] studies the practicality of (distributed)
ORAM in MPC, and observes that the traditional ORAM approaches were
designed for the client-server model, and that in the MPC context, a focus on
a different set of efficiency measures and optimizations is required in order to
achieve better performance. For instance, constructions where the client com-
plexity is optimized, even in exchange for server-side work that is linear in NV
per read/write, perform better than classic schemes, where server work is usually
limited. In this context, the new cryptographic primitive of function secret shar-
ing (FSS), introduced by Boyle et al. [7], was shown to be useful for constructing
schemes that are practically efficient [12], or that have low interaction [19]. How-
ever, despite their practical efficiency, none of the mentioned schemes achieve
sub-logarithmic overhead, thus leaving us with the following question:

Can we achieve sub-logarithmic ORAM that is “optimized for MPC”?
! To the best of our knowledge, the only tree-based ORAM that bypasses recursion,

due to Wang et al. [19], works in a different model where linear server work is allowed
(see preceding discussion).

6 E. Kushilevitz and T. Mour
Table 1. Comparison of ORAM schemes.

Scheme H m ‘ t ‘ Overhead ‘ Block size ‘Server work
Goldreich-Ostrovsky [17] 1 - O(log® N) 2(log N) -
Kushilevitz et al. [22] 1 - O(lolzghz)gNN) 2(log N) -
Wang et al. [35] 1 - O(log N -w(1)) | £2(log? N) -
Asharov et al. [5] 1 - O(log N) 2(log N) -
Lu-Ostrovsky [25] 2 1 O(log N) 2(log N) polylog
Chan et al. [9)] 3 1 O(log? N) 2(log N) -
Zhang et al. [38] 2 1 O(1) N2(N€) polylog
Abraham et al. [1] 2 1 O(log, N) w(dlog? N) polylog
Doerner-Shelat [12] 2 1 O(V'N) 2(log N) linear
Gordon et al. [19] 2 1 O(log N) 2(log N) linear

Our 4-server construction
Instantiation 1 ‘ ‘ 4 ‘ 1 ‘ o(1) ‘ 2(Xlog N) ‘ linear

Our 3-server construction
Instantiation 2 3 1 | O(logg N -w(l)) | £2(dlogN) polylog
d=loe” N Ol (1) 2(oght N)
Instantiation 3 3 1 O(log, N) 2(dlog!-® N) | polylog
d=log® N o(1o'g°ﬁ,]ng) 2(log!-5+¢ N)

Our m-server construction
Instantiation 4 (m>2lm—1] O(2l) | 2(log? N) | polylog

We show that by allowing the servers to perform linear computations per
RAM step, we can achieve a four-server ORAM scheme with a small constant
overhead. Our constructions strictly improve over the two-server ORAM schemes
from [12,19], which were shown to perform well in practical implementations, in
terms of overhead and computation, both asymptotically and concretely.

1.1 Owur Contribution and Technical Overview

Sub-logarithmic Distributed ORAM Constructions. Our main contri-
bution is a family of distributed hierarchical ORAM constructions with any
number of servers. Our constructions make a black-box use of hashing schemes.
Instantiating our constructions with hashing schemes that were previously used
in ORAM [8,18,25], yields state-of-the-art results (see Table 1). We elaborate.

A Three-Server ORAM Protocol. By using techniques from [25] over the bal-
anced hierarchy from [22], and using two-server PIR [10] as a black box,
we are able to construct an efficient (3,1)-ORAM scheme. Instantiating the
scheme with cuckoo hash tables (similarly to [18,22,25]) achieves an overhead
of O(w(1) -log,; N) with a block size of B = 2(dlog N). Thus, for any € > 0, we
achieve O(w(1) - log N/ loglog N) overhead with B = 2(log"t® N).

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 7

In the classic hierarchical solution from [17], the data is stored in log N lev-
els, and the protocol consists of two components: queries, in which target virtual
blocks are retrieved, and reshuffles, which are performed to properly maintain
the data structure. Roughly speaking, in a query, a single block is downloaded
from every level, resulting in log N overhead per query. The reshuffles cost log V
overhead per level, and log® N overall. Kushilevitz et al. [22] suggest to balance
the hierarchy by reducing the number of levels to log N/loglog N. In the bal-
anced hierarchy, however, one has to download log N blocks from a level in every
query. Thus, balancing the hierarchy “balances”, in some sense, the asymptotic
costs of the queries and reshuffles, as they both become log? N /loglog N.

At a high level, we carefully apply two-server techniques to reduce the over-
head, both of the queries and the reshuffles, from the single-server ORAM of
[22]. More specifically, to reduce the queries cost, we use two-server PIR to
allow the client to efficiently read the target block from the log N positions, it
had otherwise have to download, from every level. By requiring the right (rel-
atively small) block size, the cost of PIRs can be made constant per level and,
therefore, log N/loglog N in total. To reduce the reshuffles cost, we replace the
single-server reshuffles with cheaper two-server reshuffles, that were first used by
Lu and Ostrovsky [25], and that incur only a constant overhead per level.

So far, it sounds like we are already able to achieve log N/loglog N over-
head using two servers only. However, combining two-server PIR and two-server
reshuffles is tricky: each assumes a different distribution of the data. In stan-
dard two-server PIR, the data is assumed to be identically replicated among the
two servers. On the other hand, it is essential for the security of the two-server
reshuffles from [25] that every level in the hierarchy is held only by one of the
two servers, so that the other server, which is used to reshuffle the data, does not
see the access pattern to the level. We solve this problem by combining the two
settings using three servers: every level is held only by two of the three servers
in a way that preserves the security of the two-server reshuffles and, at the same
time, provides the required setting for two-server PIR.

An (m,m — 1)-ORAM Protocol. We take further advantage of the existence
of multiple servers and construct, for any integer m > 2, an m-server ORAM
scheme that is private against a collusion of up to m — 1 servers. Using oblivious
two-tier hashing [8], our scheme achieves an overhead of O(log N/loglog N), for
which it requires B = 2(log? N) (see Theorem 4 and Instantiation 4).

We begin by describing a (2,1)-ORAM scheme, then briefly explain how to
extend it to any number of servers m > 2. Let us take a look back at our three-
server construction. We were able to use both two-server PIR and two-server
reshuffles using only a three-server setting. Now that we restrict ourselves to
using two servers, we opt for the setting where the two servers store identical
replicates of the entire data structure. Performing PIR is clearly still possible,
but now that the queries in all levels are made to the same two servers, we
cannot perform Lu and Ostrovsky’s [25] two-server reshuffles securely. Instead,
we use oblivious sort (or, more generally, oblivious hashing) to reshuffle the
levels. Oblivious sort is a sorting protocol in the client-server setting, where the

8 E. Kushilevitz and T. Mour

server involved learns nothing about the obtained order of blocks. Oblivious sort
is used in many single-server hierarchical ORAMs (e.g. [17,22]), where it incurs
log N overhead per level. Since we aim for a sub-logarithmic overhead, we avoid
this undesired blowup by performing oblivious sort over the tags of the blocks
only (i.e. their identities) which are much shorter, rather than over the blocks
themselves. We require a block size large enough such that the gap between the
size of the tags and the size of the blocks cancels out the multiplicative overhead
of performing oblivious sort. Once the tags are shuffled into a level, it remains
to match them with the blocks with the data. That is where the second server is
used. We apply a secure two-server “matching procedure” which, at a high level,
lets the second server to randomly permute the data blocks and send them to
the server holding the shuffled tags. The latter can then match the data to the
tags in an oblivious manner. Of course, the data exchange during the matching
has to involve a subtle cryptographic treatment to preserve security.

The above scheme can be generalized to an (m, m—1)-ORAM, for any m > 2.
The data is replicated in all servers involved, and m-server PIR is used. The
matching procedure is extended to an m-server procedure, where all the servers
participate in randomly permuting the data.

ORAM with Constant Overhead for Secure Computation. We also
investigate “ORAM for practical MPC”, where we allow linear server-side work
and focus on client efficiency, and show that constant overhead is achievable in
this model (see Table 1). The proposed scheme, described below, applies function
secret sharing over secret-shared data, thus avoiding the need for encrypting the
data using symmetric encryption (unlike existing schemes, e.g. [12,19]).

A Simple Four-Server ORAM Protocol. Inspired by an idea first suggested
in [28], we combine private information retrieval (PIR) [10], and PIR-write [28],
to obtain a four-server ORAM. To implement the PIR and PIR-write protocols
efficiently, we make a black-box use of distributed point functions (DPFs) [7,16],
i.e. function secret sharing schemes for the class of point functions. Efficient
DPF's can be used to construct (i) a (computational) two-server PIR protocol if
the data is replicated among the two servers, or (ii) a two-server PIR-write pro-
tocol for when the data is additively secret-shared among the two servers. These
two applications of DPF's are combined as follows: we create two additive shares
of the data, and replicate each share twice. We send each of the four shares (two
pairs of identical shares) to one of the four servers. A read is simulated with two
instances of PIR, each invoked with a different pair of servers holding the same
share. A write is simulated with two instance of PIR-write, each invoked with a
different pair of servers holding different shares.

We stress that the client in all of our constructions can be described using a
simple small circuit, and therefore, our schemes can be used to obtain efficient
secure multi-party protocols, following [25].

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 9

1.2 Related Work

Classic Hierarchical Solution. The first hierarchical ORAM scheme appeared in
the work of Ostrovsky [27] and later in [17]. In this solution, the server holds
the data in a hierarchy of levels, growing geometrically in size, where the i
level is a standard hash table with 2¢ buckets of logarithmic size, and a hash
function h;(-), which is used to determine the location of blocks in the hash
table: block of address v may be found in level 7 (if at all) in bucket h;(v). The
scheme is initiated when all blocks are in the lowest level. An access to a block
with a virtual address v is simulated by downloading bucket h;(v) from every
level i. Once the block is found, it is written back to the appropriate bucket
in the smallest level (i = 0). As a level fills up, it is merged down with the
subsequent (larger) level ¢+ 1, which is reshuffled with a new hash function h;41
using oblivious sorting. Thus, a block is never accessed twice in the same level
with the same hash function, hence the obliviousness of the scheme. Using AKS
sorting network [3] for the oblivious sort achieves an O(log® N') overhead.

Balanced Hierarchy. Up until recently, the best known single-server ORAM
scheme for general block size, with constant client memory, was obtained by
Kushilevitz et al. [22], using an elegant “balancing technique”, that reduces the
number of levels in the hierarchy of [17], in exchange for larger levels. Their
scheme achieves an overhead of O(log2 /loglog N), using oblivious cuckoo hash-
ing (first applied to ORAM in [18,31]). An alternative construction, recently
proposed by Chan et al. [8], follows the same idea, but replaces the relatively
complex cuckoo hashing with a simpler oblivious hashing that is based on a
variant of the two-tier hashing scheme from [2].

Tree-Based ORAM. Another well-studied family of ORAM schemes is tree-based
ORAMs (e.g. [33,35]), where, as the name suggests, the data is stored in a tree
structure. The first ORAMs with a logarithmic overhead, in the single-server
model, were tree-based [34,35]. However, tree-based ORAMs usually require a
large block size of at least B = 2(log® N).

Optimal ORAM with General Block Size. The recent work of Asharov et al.
[5], which improves upon the work of Patel et al. [30], succeeds to achieve opti-
mal logarithmic overhead with general block size (due to known lower bounds
[17,24]). Both results are based on the solution from [17] and use non-trivial
properties of the data in the hierarchy to optimize the overhead.

Distributed ORAM Constructions. Ostrovsky and Shoup [28] were the first to
construct a distributed private-access storage scheme (that is not read-only).
Their solution is based on the hierarchical ORAM from [17]. However, their
model is a bit different than ours: they were interested in the amount of commu-
nication required for a single query (rather than a sequence of queries), and they
did not limit the work done by the servers. Lu and Ostrovsky [25] considered
the more general ORAM model, defined in Sect.2.1. They presented the first

10 E. Kushilevitz and T. Mour

two-server oblivious RAM scheme, and achieved a logarithmic overhead with
a logarithmic block size by bypassing oblivious sort, and replacing it with an
efficient reshuffling procedure that uses the two servers.

The tree approach was also studied in the multi-server model. Contrary to
the hierarchical schemes, known distributed tree-based ORAMs [1,38] beat the
logarithmic barrier. The improvement in overhead could be achieved by using
k-ary tree data structures, for some parameter k& = w(1). However, these con-
structions suffer from a few drawbacks, most importantly, they require a large
polylogarithmic (sometimes polynomial) block size.

ORAM Constructions for MPC with Linear Computational Overhead. The work
of Ostrovsky and Shoup [28], as well as some recent works [12,19] have consid-
ered the model where the servers are allowed to perform a linear amount of
light computations. Both the works of Doerner and Shelat [12] and Wang et al.
[19] elegantly implement techniques from the standard model (square-root con-
struction, and tree structure, respectively), and use the efficient PIR protocol
from [7], to construct practically efficient two-server ORAM schemes with lin-
ear server-side computation per access and bandwidth overhead matching their
analogues in the single-server setting (see Table 1).

1.3 Paper Organization

Section 2 contains formal definitions and introduces cryptographic tools that we
use. In Sect.3, we present our four-server ORAM. In Sect.4, we provide an
overview of the hierarchical ORAM framework, on which our main distributed
ORAM constructions are based. In Sects. 5 and 6, we present these constructions.
Due to space limit, de-amortization of our constructions, and a discussion of their
application to secure computation, are left to the full version.

2 Preliminaries

2.1 Model and Problem Definition

The RAM Model. We work in the RAM model, where a RAM machine consists
of a CPU that interacts with a (supposedly remote) RAM storage. The CPU has
a small number of registers, therefore it uses the RAM storage for computations
over large data, by performing reads and writes to memory locations in the RAM.
A sequence of £ queries is a list of £ tuples (op1, v1, 1), - - -, (0pe, ve, T¢), where op;
is either Read or Write, v; is the location of the memory cell to be read or written
to, and x; is the data to be written to v; in case of a Write. For simplicity of
notation, we unify both types of operations into an operation known as an access,
namely “Read then Write”. Hence, the access pattern of the RAM machine is the
sequence of the memory locations and the data (vy,x1),..., (ve, xp).

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 11

Oblivious RAM Simulation. A (single-server) oblivious RAM simulation, shortly
ORAM simulation, is a simulation of a RAM machine, held by a client as a CPU,
and a server as RAM storage. The client communicates with the server, and
thus can query its memory. The server is untrusted but is assumed to be semi-
honest, i.e. it follows the protocol but attempts to learn as much information
as possible from its view about the client’s input and program. We also assume
that the server is not just a memory machine with I/O functionality, but that
it can perform basic local computations over its storage (e.g. shuffle arrays,
compute simple hash functions, etc.). We refer to the access pattern of the RAM
machine that is simulated as the wvirtual access pattern. The access pattern that
is produced by the oblivious simulation is called the actual access pattern. The
goal of ORAM is to simulate the RAM machine correctly, in a way that the
distribution of the view of the server, i.e. the actual access pattern, would look
independent of the virtual access pattern.

Definition 1 (ORAM, informal). Let RAM be a RAM machine. We say that
a (probabilistic) RAM machine ORAM is an oblivious RAM simulation of RAM,
if (i) (correctness) for any virtual access patterny = ((v1,21), ..., (ve,z¢)), the
output of RAM and ORAM at the end of the client-server interaction is equal with
probability > 1 —negl(¢), and (ii) (security) for any two virtual access patterns,
y,z, of length £, the corresponding distribution of the actual access patterns
produced by ORAM, denoted y and Z, are computationally indistinguishable.

An alternative interpretation of the security requirement is as follows: the
view of the server, during an ORAM simulation, can be simulated in a way that
is indistinguishable from the actual view of the server, given only £.

Distributed Oblivious RAM. A distributed oblivious RAM simulation is the ana-
logue of ORAM simulation in the multi-server setting. To simulate a RAM
machine, the client now communicates with m semi-honest servers. With the
involvement of more servers, we can hope to achieve schemes that are more
efficient as well as schemes that protect against collusions of ¢ servers.

Definition 2 (Distributed ORAM, informal). An (m,t)-ORAM simulation
(0 <t <m) is an oblivious RAM simulation of a RAM machine, that is invoked
by a CPU client and m remote storage servers, and that is private against a
collusion of t corrupt servers. Namely, for any two actual access patterns y, z
of length £, the corresponding combined view of any t servers during the ORAM
stmulation (that consists of the actual access queries made to the t servers) are
computationally indistinguishable.

Parameters and Complezity Measures. The main complexity measure in which
ORAM schemes compete is the bandwidth overhead (or, shortly, overhead).
When the ORAM protocol operates in the “balls and bins” manner [17], where
the only type of data exchanged between the client and servers is actual memory
blocks, it is convenient to define the overhead as the amount of actual memory
blocks that are queried in the ORAM simulation to simulate a virtual query to

12 E. Kushilevitz and T. Mour

a single block. However, in general, overhead is defined as the blowup in the
number of information bits exchanged between the parties, relative to a non-
oblivious execution of the program. Following the more general definition, the
overhead is sometimes a function of the block size B. Clearly, we aim to achieve
a small asymptotic overhead with block size as small as possible.

Other metrics include the size of the server storage and the client’s local
memory (in blocks), and the amount and type of the computations performed by
the servers (e.g. simple arithmetics vs. heavy cryptography). We note that all of
these notions are best defined in terms of overhead, compared to a non-oblivious
execution of the program, e.g. storage overhead, computational overhead, etc.

2.2 Private Information Retrieval

Private information retrieval (PIR) [10] is a cryptographic primitive that allows
a client to query a database stored in a remote server, without revealing the iden-
tity of the queried data block. Specifically, an array of n blocks X = (z1,...,z,)
is stored in a server. The client, with input ¢ € [n], wishes to retrieve x;, while
keeping i private. PIR protocols allow the client to do that while minimizing the
number of bits exchanged between the client and server. PIR is studied in two
main settings: single-server PIR, where the database is stored in a single server,
and the multi-server setting, where the database is replicated and stored in all
servers, with which the client communicates simultaneously. More specifically,
an (m,t)-PIR is a PIR protocol that involves m > 1 servers and that is secure
against any collusion of ¢ < m servers. It was shown in [10] that non-trivial
single-server PIRs cannot achieve information-theoretic security. Such schemes
are possible with two servers (or more). Moreover, many known two-server PIRs
(both information theoretic and computational, e.g. [6,7,10,13]) do not involve
heavy server-side computation, like homomorphic encryption or number theo-
retic computations, as opposed to known single-server protocols (e.g. [15,23]).

3 A Simple Four-Server ORAM with Constant Overhead

We present our four-server ORAM protocol with constant bandwidth overhead
and linear server-side computation per access. The protocol bypasses the need
for symmetric encryption as it secret-shares the data among the servers. We use
distributed point functions [16] (see Sect. 3.1 below) as a building block.

Theorem 1 (Four-server ORAM). Assume the existence of a two-party DPF
scheme for point functions {0,1}"™ — {0,1}™ with share length A(n,m) bits.
Then, there exists a (4,1)-ORAM scheme with linear* server-side computation
per access and bandwidth overhead of O(A(log N, B)/B) for a block size of B =
2(A(log N, 1)).

2 Up to polylogarithmic factors.

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 13

Instantiating our scheme with the DPF from [7] obtains the following.

Instantiation 1. Assume the existence of one-way functions. Then, there exists
a (4,1)-ORAM scheme with linear server-side computation per access and con-
stant bandwidth overhead for a block size of B = 2(Alog N), where X is a security
parameter.

3.1 Building Block: Distributed Point Functions

Distributed Point Functions (DPF), introduced by Gilboa and Ishai [16], are a
special case of the broader cryptographic primitive called Function Secret Shar-
ing (FSS) [7]. Analogous to standard secret sharing, an FSS allows a dealer to
secret-share a function f among two (or more) participants. Each participant
is given a share that does not reveal any information about f. Using his share,
each participant p;, for ¢ € {0,1}, can compute a value f;(x) on any input z in
f’s domain. The value f(x) can be computed by combining fo(z) and fi(x). In
fact, f(x) = fo(xz) + fi1(x). Distributed point function is an FSS for the class of
point functions, i.e., all functions P, : {0,1}™ — {0,1}™ that are defined by
P,y(a) = b and P,p(a’) = 0™ for all a’ # a. Boyle et al. [7] construct a DPF
scheme where the shares given to the parties are of size O(An+m), where A is a
security parameter, that is the length of a PRG seed. We are mainly interested
in the application of DPFs to PIR and PIR~write [7,16].

3.2 Overview

Similarly to the schemes of [12,19], we apply DPF-based PIR [7] to allow the
client to efficiently read records from a replicated data. If we allow linear server-
side computation per access, the task of oblivious reads becomes trivial by using
DPFs. The remaining challenge is how to efficiently perform oblivious writes to
the data.

The core idea behind the scheme is to apply DPFs not only for PIR, but also
for a variant of PIR-write. PIR-write (a variant of which was first investigated
in [28]) is the write-only analog of PIR. We use DPFs to construct a simple
two-server PIR-write where every server holds an additive share of the data.
Our PIR-write protocol is limited in the sense that the client can only modify
an existing record by some difference of his specification (rather than specifying
the new value to be written). If the client has the ability to read the record in a
private manner, then this limitation becomes irrelevant.

We combine the read-only PIR and the write-only PIR-write primitives to
obtain a four-server ORAM scheme that enables both private reads and writes.
In the setup, the client generates two additive shares of the initial data, X°, X!
st. X = X°® X!, and replicates each of the shares. Each of the four shares
obtained is given to one of the servers. For a private read, the client retrieves
each of the shares X% X!, using the DPF-based PIR protocol, with the two
servers that hold the share. For a private write, the proposed PIR-write protocol
is invoked with pairs of servers holding different shares of the data.

14 E. Kushilevitz and T. Mour

We remark that our method to combine PIR and PIR-write for ORAM is
inspired by the 8-server ORAM scheme presented in [28], in which an elementary
4-server PIR-write protocol was integrated with the PIR from [10].

3.3 Oblivious Read-Only and Write-Only Schemes

Basic PIR and PIR-Write. Recall the classic two-server PIR protocol, proposed
in [10]. To securely retrieve a data block x; from an array X = (x1,...,2x) that
is stored in two non-colluding servers Sy and &7, the client generates two random
N-bit vectors, € and e} such that e? @ e! = e;, where e; is the i*" unit vector,
and sends e? to Sp. In other words, the client secret-shares the vector e; among
the two servers. Then, each server, computes the inner product z? := X - €% and
sends it to the client. It is easy to see that x; = 29 @ z}.

The same approach can be used for two-server PIR-write. However, now we
require that the data is shared, rather than replicated, among the two servers.
Namely, server S, holds a share of the data X?, such that X°@® X! = X. In order
to write a new value &; to the i*" block in the array, the client secret-shares the
vector (Z; ® x;)e; to the two servers. Each of the servers adds his share to X b
and obtains a new array Xb. After this update, the servers have additive shares
of X with the updated value of x;. Notice that we assume that the client already
read and knows x;; this is not standard in the PIR-write model.

Efficient PIR and PIR-Write via DPFs. In the heart of the PIR and PIR-write
protocols described above is the secret sharing of vectors of size N. Applying
standard additive secret sharing yields protocols with linear communication cost.
Since we share a very specific type of vectors, specifically, unit vectors and their
multiples, standard secret sharing is an overkill. Instead, we use DPFs. The
values of a point function P, , : [N] — {0,1}" (that evaluates z at 4, and zero
elsewhere) can be represented by a multiple of a unit vector v; , := xe;. Hence,
one can view distributed point functions as a means to “compress”’ shares of
unit vectors and their multiples. We can use DPFs to share such a vector among
two participants py and p1, as follows. We secret-share the function P; ; using a
DPF scheme, and generate two shares Pgw and P},. For b € {0,1}, share Pib@ is
sent to participant p,. The participants can compute their shares of the vector
v;. ¢ by evaluating their DPF share on every input in [N]. Namely, p, computes
his share v}, := (P},(1),...,P?,(n)). From the correctness of the underlying
DPF scheme it holds that vZ - ® vl . = Vi . Further, from the security of the
DPF, the participants do not learn anything about the vector v;, except the
fact that it is a multiple of a unit vector. Using the DPF construction from
[7], we have a secret sharing scheme for unit vectors and their multiples, with
communication complexity O(Alog N + m), assuming the existence of a PRG

G :{0,1}* — {0,1}™.

3.4 Construction of Four-Server ORAM

Initial Server Storage. Let SJ,8?,St and Si be the four servers involved in
the protocol. Let X = (z1,...,zy) be the data consisting of N blocks, each of

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 15

size B = §2(A(log N, 1)) bits. In initialization, the client generates two additive
shares of the data, X° = (29,...,2%) and X! = (21,...,2%). That is, X° and
X1 are two random vectors of N blocks, satisfying X°® X! = X. For b € {0, 1},
the client sends X° to both S} and S?. Throughout the ORAM simulation, we
maintain the following invariant: for b € {0,1}, S and S? have an identical array
X? such that XY and X! are random additive shares of X.

Query Protocol. To obliviously simulate a read/write query to the i" block in
the data, the client first reads the value z; via two PIR queries: a two-server PIR
with 8§ and S to retrieve z¥, and a two-server PIR with S} and S to retrieve
xl. The client then computes x; using the two shares. Second, to write a new
value Z; to the data (which can possibly be equal to x;), the client performs two
identical invocations of two-server PIR-write, each with servers Sp and S} for
b € {0,1}. It is important that S§,S? (for b € {0,1}) receive an identical PIR-
write query, since otherwise, they will no longer have two identical replicates.

3.5 Analysis

The security of the scheme follows directly from the security of the underlying
DPF protocol from [7]. It remains to analyze the bandwidth cost. To simulate
a query, the client sends each of the servers two DPF shares: one for reading of
length A(log N, 1) bits, and another for writing of length A(log N, B). With a
block size of B = £2(A(log N, 1)) this translates to O(A(log N, B)/B) bandwidth
overhead. Each of the servers, in return, answers by sending two blocks.

4 The Balanced Hierarchical ORAM Framework

In this section, we lay the groundwork for our constructions in the standard
distributed ORAM model, that are presented later in Sects.5 and 6.

4.1 Main Building Block: Hashing

Hashing, or more accurately, oblivious hashing, has been a main building block of
hierarchical ORAM schemes since their first appearance in [27]. Various types of
hashing schemes, each with different parameters and properties, were plugged in
ORAM constructions in an attempt to achieve efficient protocols (e.g. [8,17,18]).
Hashing stands at the heart of our constructions as well. However, since we make
a generic black-box use of hashing, we do not limit ourselves to a specific scheme,
but rather take a modular approach.

We consider an (n,m, s)-hashing scheme®, H, to be defined by three proce-
dures: Gen for key generation, Build for constructing a hash table T of size m
that contains n given data elements, using the generated key, and Lookup for
querying T for a target value. The scheme may also use a stash to store at most

3 Implicitly stated parameters may be omitted for brevity.

16 E. Kushilevitz and T. Mour

s elements that could not be inserted into 7. In a context where a collection of
hashing schemes operate simultaneously (e.g. ORAMS), a shared stash may be
used by all hash tables. We denote by Chyila(H) and Clookup(H), the build-up
complexity and the query complexity of H (resp.) in terms of communication
(in the client-server setting).

An oblivious hashing scheme is a scheme whose Build and Lookup procedures
are oblivious of the stored data and the queried elements (respectively). In the
full version, we provide formal definitions and notation for the above, and survey
a few of the schemes that were used in prior ORAM works.

4.2 Starting Point: Single-Server ORAM of Kushilevitz et al. [22]

Overview. The starting point of our distributed ORAM constructions in
Sects.5 and 6 is the single-server scheme from [22]. In standard hierarchical
ORAMSs, the server stores the data in log N levels, where every level is a hash
table, larger by a factor of 2 than the preceding level. Kushilevitz et al. changed
this by having L = log,; N levels, where the size of the i‘" level is proportional
o (d—1)-d*~!. Having less levels eventually leads to the efficiency in overhead,
however, since level i + 1 is larger by a factor of d (no longer constant) than
level 4, merging level ¢ with level i 4+ 1 becomes costly (shuffling an array of size
(d—1)-d" every (d—1)-d"~! queries). To solve this problem, every level is stored
in d — 1 separate hash tables of equal size in a way that allows us to reshuffie
every level into a single hash table in the subsequent level.

Theorem 2 ([8,22]). Let d be a parameter, and define L = log; N. Assume
the existence of one-way functions, and a collection {H;} |, where H; is an
oblivious (d*~k,-,-)-hashing scheme, with a shared stash of size s. Then there

exists a single-server ORAM scheme that achieves the following overhead for
block size B = 2(log N).

L
C‘1|J|
O<k+s+2d-qookup +Z Bdildlk. >

i=1

A special variant of the theorem was proven by Kushilevitz et al. [22]. In
their work, they use a well-specified collection of hashing schemes (consist-
ing of both standard and cuckoo hashing [29]), and obtain an overhead of
O(log? N/loglog N). The modular approach to hierarchical ORAM was taken
by Chan et al. [8], in light of their observations regarding the conceptual com-
plexity of cuckoo hashing, and their construction of a simpler oblivious hashing
scheme that achieves a similar result. Our results in the distributed setting fit
perfectly in this generic framework, as they are independent of the underlying
hashing schemes. Below, we elaborate the details of the construction from [22],
as a preparation towards the following sections.

Data Structure. The top level, indexed i = 0, is stored as a plain array of size
k. As for the rest of the hierarchy, the i*" level (i = 1...L) is stored in d — 1

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 17

hash tables, generated by an oblivious (d*~'k, -, -)-hashing scheme H;. For every
i=1,...,Land j =1,...,d — 1, let T/ be the j'* table in the i*" level, and
let n{ be its corresponding key. All hashing schemes in the hierarchy share a
stash S*. The keys /{{ can be encrypted and stored remotely in the server. Also,
the client stores and maintains a counter ¢ that starts at zero, and increments
by one after every virtual access is simulated. The ORAM simulation starts with
the initial data stored entirely in the lowest level.

Blocks Positioning Invariant. Throughout the ORAM simulation, every data
block in the virtual memory resides either in the top level, or in one of the hash
tables in the hierarchy, or in the shared stash. The blocks are hashed according to
their virtual addresses. The data structure does not contain duplicated records.

Blocks Flow and Reshuffles. Once a block is queried, it is inserted into the top
level, therefore the level fills up after k queries. Reshuffles are used to push blocks
down the hierarchy and prevent overflows in the data structure. Basically, every
time we try to insert blocks to a full level, we clear the level by reshuffling its
blocks to a lower level. For instance, the top level is reshuffied every k queries.

In every reshuffle, blocks are inserted into the first empty hash table in the
highest level possible, using the corresponding Build procedure, with a freshly
generated key. Thus, the first time the top level is reshuffled (after round k), its
blocks are inserted to the first table in the next level, i.e. T, which becomes
full. The top level fills up again after k queries. This time, the reshuffle is made
to T2, as T} is not empty anymore. After d — 1 such reshuffles, the entire first
level becomes full, therefore, after d - k queries, we need to reshuffle both the top
level and the first level. This time, we insert all blocks in these levels into 775

Observe that this mechanism is analogous to counting in base d: every level
represents a digit, whose value is the number of full hash tables in the level. An
increment of a digit with value d — 1, equivalently - insertion to a full level, is
done by resetting the digit to zero, and incrementing the next digit by 1, that is,
reshuffling the level to a hash table in the next level (see Fig.1). We formalize
the process as follows: in every round ¢t = t' - k, levels 0,...,i are reshuffled
down to hash table T/ ;, where i is the maximal integer for which d' | ¢, and
j = (¢ mod d**1)/d". Notice that level i is reshuffled every k - d* queries.

d=6
t =360k = 14004 - k = I
o | | | | | o | | | — | —|
| o | o | s] | S— | — | S— s— —
L 11 1L 11 11 | L 1L 11 1L 11 1
L 11 11 11 I 1 1 L 11 I 1] 1 I 1 |
Hierarchy prior to reshuffle Hierarchy after reshuffle

Fig. 1. A demonstration of the flow of blocks during an ORAM simulation with d = 6.
A gray cell indicates a full hash table, a white one is an empty table.

* In the scheme of [22], the shared stash is ‘virtualized’, and is re-inserted into the
hierarchy. We roll-back this optimization in preparation to our constructions.

18 E. Kushilevitz and T. Mour

Query. In order to retrieve a data block with virtual address v, the client searches
for the block in the top level and the stash first. Then, for every level 4, the client
scans hash tables T} using H;.Lookup procedure, in reverse order, starting with
the table that was last reshuffled into. Once the target block was found, the scan
continues with dummy queries. This is important for security (see Claim 4).

5 A Three-Server ORAM Scheme

Below, we formally state our first result in the standard distributed ORAM
model: an efficient three-server ORAM scheme.

Theorem 3 (Three-server ORAM using regular hashing). Let d be a
parameter, and define L = log; N. Assume the ezistence of one-way functions,
and a collection {H;}L |, where H; is a (d""(k + s),m;,s)-hashing scheme.
Then, there exists a (3,1)-ORAM scheme that achieves an overhead of

L
"
ofkersey)
< i:ld 'k

for block size B = 2(adlog N + slogd), where o := max; Clookup(Hi)-

We propose two different instantiations of our construction, each with a different
collection of hashing schemes that was used in prior ORAM works [8,18,22].
Both instantiations yield sub-logarithmic overhead, and their parameters are
very close. However, Instantiation 3 may be conceptually simpler (due to [8]).
More details about the used hashing schemes can be found in the full version.

First, we plug in the collection of hashing schemes used by Goodrich and
Mitzenmacher [18], and later by Kushilevitz et al. [22]. The collection mainly
consists of cuckoo hashing schemes, however, since stashed cuckoo hashing was
shown to have a negligible failure probability only when the size of the hash
table is polylogarithmic in N (specifically, £2(log” N)) [18], standard hashing
with bucket size log N/ loglog N is used in the first ©(log, log N) levels. We point
out that in both mentioned works [18,22], the stash size for cuckoo hashing is
logarithmic. In our instantiation, we use a stash of size ©(w(1)-log N/ loglog N).
Although [18] proved that failure probability is negligible in N when the stash
is of size s = O(log N) and the size of the table is m = 2(log” N) (by extending
the proof for constant stash size from [21]), their proof works whenever the
value m~®() is negligible in N, and in particular, when we choose s = O(w(1) -
log N/ loglog N).

Instantiation 2 (Three-server ORAM using cuckoo hashing). Assume
the existence of one-way functions. Let d be a parameter at most polylogarithmic
in N. Then, there exists a three-server ORAM scheme that achieves overhead of

O(logy N - w(1)) for B = §2(dlog N).

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 19

When d = log® N for a constant € € (0, 1), we achieve an overhead of O(w(1)-
log N/loglog N) with B = O(log' ™ N).

Alternatively, we can use the simple two-tier hashing scheme from [2], with
buckets of size log”**¢ N, to achieve the following parameters.

Instantiation 3 (Three-server ORAM using two-tier hashing). Assume
the existence of one-way functions. Let d be a parameter at most polylogarithmic
in N. Then, there exists a three-server ORAM scheme that achieves overhead of
O(log, N) for block size B = 2(dlog"**¢ N).

For d = log®N, we obtain an overhead of O(log N/loglog N) with B =
O(log""*2¢ N).

5.1 Overview

Our three-server scheme is based on the single-server balanced hierarchical struc-
ture of Kushilevitz et al. [22] (described in Sect.4). We take advantage of the
existence of multiple servers and reduce the overhead as follows.

Reduce Query Cost Using PIR. One of the consequences of balancing the hier-
archy is having multiple hash tables in a level, in any of which a target block
can reside. More specifically, if 7}1,...,1}‘#1 are the hash tables at level 1,
then a block with address v can possibly reside in any of the positions in
T![H;.Lookup(v,s])] for j = 1,---,d — 1. To retrieve such a block, we could
basically download all blocks in these positions, i.e. ZiL:1(d — 1)Clookup (H;)
blocks in total. This already exceeds the promised overhead. Instead, we use
PIR to extract the block efficiently without compromising the security of the
scheme. For every level i, starting from the top, we invoke a PIR protocol over
the array that consists of the (d — 1)Clookup(H;) possible positions for v in the
level.

Performing PIR queries requires that the client knows the exact position
of the target block in the queried array, namely, in which bucket, out of the
d — 1 possibilities, block v resides, if at all. Therefore, the client first downloads
the addresses of all blocks in the array, and only then performs the PIR query.
Although some PIR protocols in the literature (e.g. [7]) do not impose this
requirement, we still need to download the addresses since it is essential for the
security of the protocol that the client re-writes the address of the queried block.

An address of a block can be represented using log N bits. Thus, down-
loading the addresses of all possible positions in all levels costs us Y1 (d —
1)Clookup(H;) log N bits of communication. If we choose B = 2(adlog N) for
a = max; Clookup(H;), this cost translates to the desirable O(L) overhead. Two-
server PIRs work in the model where the data is replicated and stored in two
non-colluding servers. Thus, every level in the hierarchy, except the top level,
will be stored, accessed, and modified simultaneously in two of the three servers.

20 E. Kushilevitz and T. Mour

Reduce Reshuffles Cost by Bypassing Oblivious Hashing. We use a variant of the
reshuffle procedure suggested by Lu and Ostrovsky [25]. Their protocol works in
a model with two non-colluding servers, where one server stores the odd levels,
and the other stores the even levels. Before reshuffling a level, the servers gather
all blocks to be reshuffled, permute them randomly, and exchange them through
the client, who re-encrypts them and tags them with pseudorandom tags. The
level is then reshuffled by one server using some regular hashing scheme (not
necessarily oblivious), and is sent to the other server, record by record, through
the client. The security of their scheme follows from the following observations:

(i) the blocks are re-encrypted and permuted randomly before the reshuffle,

eliminating any dependency on prior events,

(ii) the blocks are hashed according to pseudorandom tags, hence their order is
(computationally) independent of their identities,

(iii) the server that holds a level cannot distinguish between dummy queries and
real ones since he was not involved in the reshuffle, and

(iv) the server that reshuffles the level (and can tell a dummy query) does not
see the accesses to the level at all.

Applying this method naively when each of the servers holds the entire hier-
archy might reveal information about the access pattern since (iii) and (iv) no
longer hold. Therefore, we should adapt their method wisely, while having two
replicates of every level, to allow performing PIR queries. A straight forward
implementation would require four servers: two holding replicates of the odd
levels, and two holding replicates of the even levels. However, this can be done
using three servers only by having every pair of servers (out of the three possible
pairs) hold every third level.

5.2 Full Construction

Data Structure. The data is virtually viewed as an array of N blocks, each of
size 2(adlog N) bits. Every block therefore has a virtual address in [N].

Distributed Server Storage. The data structure is identical to that from [22],
however, our scheme uses three servers, Sy, S1, and S, to store the data. The
top level is stored in all servers. Every other level is held by two servers only:
for j=0,..., L%J, So and 87 share replicates of levels ¢ = 35, S; and Sy share
replicates of levels 3j + 1, and Sy and Sy both hold all levels i = 35 + 2.

Dummy Blocks. Dummy blocks are blocks that are not “real” (not part of the
virtual memory), but are treated as such, and assigned dummy virtual addresses.
From the point of view of the ‘reshuffler’ server, a dummy block, unlike an empty
block, cannot be distinguished from a real block. We use two types of dummy
blocks, both essential for the security of the scheme.

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 21

(i) Dummy Hash Blocks. Dummy hash blocks replace real blocks once they
are read and written to the top level. The security of our scheme relies on
the fact that all blocks in the hierarchy are of distinct addresses, hence the
importance of this replacement.

(ii) Dummy Stash Blocks. Dummy stash blocks are created by the client to fill
in empty entries in the hierarchy. Since our scheme uses a stash to handle
overflows, the number of blocks in the stash and in each of the hash tables
is not deterministic and is dependent on the access pattern. To hide this
information from the server that performs the reshuffling of a level, we fill
all empty entries in the stash, and some of the empty entries in the hash
tables, with dummy stash blocks.

Block Headers. To properly manage the data, the client needs to know the
identity of every block it downloads (i.e. its virtual address). Therefore, every
entry in the server storage contains, besides the data of the block, a header that
consists of the virtual address of the block, which can be either an address in
[N], a numbered dummy address, such as ‘dummyHashot’ or ‘dummyStashor’,
or just ‘empty’. The length of the header is O(log N) bits, thus does not affect
the asymptotic block size. Unless explicitly stated otherwise, the headers are
downloaded, uploaded and re-encrypted together with the data. An entry with
a block of virtual address v and data z is denoted by the tuple (v, x).

Tags. Since we use the servers for reshuffling the levels, we wish to hide the
virtual addresses of the blocks to be reshuffled. We use pseudorandom tags to
replace these addresses, as first suggested in [25]. The tags are computed using
a keyed PRF, F§, that is known to the client only. When generating a new hash
table, the server hashes the blocks according to their tags (rather than their
virtual addresses). Furthermore, to eliminate any dependency between tags that
are seen in different reshuffles, the client keeps an epoch €] for every hash table
Tij in the hierarchy. The epoch of a table is updated prior to every reshuffle, and
is used, together with 4 and j, to compute fresh tags for blocks in the table. The
epochs can be stored remotely in the servers to avoid large client storage.

Protocol. We refer to the balanced hierarchy of [22] as our starting point.

Query. We replace the reads performed by the client with PIR protocols that
are executed over arrays in the data. Specifically, the first PIR is performed over
the stash to retrieve the target block if it is found there. The top level can be
downloaded entirely since it has to be re-written anyway. The search continues
to the other levels in the hierarchy in the order specified in Sect.4. The target
block can possibly reside in any of the d — 1 hash tables in a level, therefore,
the client invokes a PIR protocol to extract the target block out of the many
possible positions. Every PIR in the procedure is preceded by downloading the
headers in the queried array, using which the client knows the position of the
target block. A technical detailed description is provided in Algorithm 1.

22

E. Kushilevitz and T. Mour

Algorithm 1. Three-Server Construction: Query

1:
2:
3:

—_

11:
12:

13:
14:

15:
16:

17:
18:

19:
20:

21:

O L XD

Allocate a local register of the size of a single record.

Initialize a flag found « 0.

Download the top level, one record at a time. If v is found at some entry (v,x)
then store z in the local register, and mark found « 1.

: Download all headers from S. If v was found among these headers, let p be its

position, and mark found < 1. Otherwise, let p be a position of a random entry in
the stash. Invoke PIR(S,p) to fetch (v,x) with any two of the three servers, and
store z in the register.

: for every level i =1...L do

th— [t/k]

7« [(t' mod d*)/d""]

headers «— ()

for every hash table j =r...1 do
If found = false, compute the corresponding tag of v, 7 «— Fs(i, 7, ez,v).
Otherwise, assign 7 « Fi(i,, e, dummy o t).
QJ — H;.Lookup(T, k)
Download all headers of entries in Tij [QfL and append them to headers. If
one of the headers says v, mark found < true.

end for
Let p be the position of v in headers if it was found there, or a random value
in {1,..., |headers|} otherwise.

Let A be the array of entries corresponding to headers in headers.
Invoke PIR(A, p) to fetch (v, z) with the two servers holding level i, and store
x in the register (if v was not found in headers this would be a dummy PIR).
Re-encrypt headers, and upload it back to the two servers, while changing v to
dummyHash o't.
end for
If the query is a write query, overwrite x in the register.
Read each entry of the entire top level from both servers one at a time, re-encrypt
it, then write it back, with the following exception: if the entry (v,x) was first
found at the top level, then overwrite x with the (possibly) new value from the
register, otherwise, write (v,) in the first empty spot of the form (empty,).
Increment the counter ¢, and reshuffle the appropriate levels.

Reshuffles. Let S, and Sp, be the two servers holding level i + 1, and let S, be
the other server. Reshuffling levels 0, ..., into hash table 77 .1 is performed as
follows. As a first step, we send all non-empty blocks that should be reshuffled
(including stash) to S., by having the servers exchange the blocks they hold
in levels 0,...,7 and the stash, through the client, one block at a time, in a
random order. Besides forwarding the blocks to S, the client also re-encrypts
every block and re-tags it with a fresh tag (using epochs, as already mentioned).
Once S, has all tagged blocks, he can create a new hash table and stash using the
appropriate Build procedure. He then sends the hash table and stash, one record
at a time, to the client. The client re-encrypts all records, and forwards them to
the other two servers, who store the hash table in Tf+17 and the stash to its place.

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 23

Algorithm 2. Three-Server Construction: Reshuffle

Reshuffling into table Tin
Let S, and Sy be the servers holding level i + 1, and let S. be the other server.

1:

Every server of the three allocates a temporary array. For every level ¢ between
levels 1 and i, let S¢ be the server with the smallest id that holds level £. For every
such ¢, S¢ inserts all records in level £ to its temporary array. In addition, one of
the servers, say So, inserts all stash records into its temporary array.

Sc applies a random permutation on its temporary array, and sends the records
one by one to the client. The client re-encrypts each record and sends it to Sp.
Sy inserts all records it receives to its array. Sp permutes its array randomly, and
forwards it to S, through the client (who re-encrypts them). S,, in his turn, also
inserts all received records, applies a random permutation, and sends them one by
one to the client.

The client re-encrypts every non-empty record (v, z) and sends it to S, together
with a tag, which is the output of the PRF Fi(i+1, 7, eg_H, v), where e;41 is the new
epoch of Tijﬂ. Note that v may be a virtual memory address, or a dummy value.
In this step, dummy records are treated as real records and only empty records are
discarded.

. S receives di(k + s) tagged records, which are all records that should be reshuffled

into Tijﬂ. It generates a new key &} « H;.Gen(NN), and constructs a hash table and

a stash (Tij,S) — Hi.Build(,%g,Y)7 where Y is the set of tagged records received

from the client. If the insertion fails, a new key is generated (this happens with a

negligible probability). S. then informs the client about the number of elements

inside the stash, o, and the key fig7 then sends both the hash table Tij and the

stash one record at a time to the client.

As the client receives entries from S. one at a time, it re-encrypts each record and

sends it to both S, and S, without modifying the contents except:

(a) The first o empty records in the table the client receives from S, are encrypted
as (dummyStash or, -), incrementing r each time.

(b) Subsequent empty records from the table are encrypted as (empty,).

(c) Every empty record in the stash is re-encrypted as (dummyStashor,-), incre-
menting r each time.

S, and Sp, store the table records in level ¢ 4+ 1 in the order in which they were

received, and store the stash records at the top level.

The client uses dummy stash blocks to replace as many empty blocks as needed
to get a full hash table, and a full stash. This is important since we do not want
to reveal the load of the stash to the server that does the next reshuffle. The
reshuffle procedure is described in full details in Algorithm 2.

5.3 Analysis

Complexity. We begin with analyzing the complexity of the described scheme.

24 E. Kushilevitz and T. Mour

Storage Complezity. The combined server storage contains a stash of size s, a
top level of size k, and two duplicates of every other level ¢, consisting of d — 1

hash tables of size m; each. In total, we have O (s + k+ Zle dmi>.

The client uses constant working memory as he only receives and forwards
records, one at a time. The client does not need to keep the headers he downloads
prior to PIR queries, as it is sufficient to keep the position of the target block.

QOverhead. We now analyze the cost of performing a single query. First, consider
the communication cost of downloading the headers for the PIRs. The PIRs are
performed over the stash and each of the levels ¢ = 1,..., L. The number of
headers downloaded amounts to s + ZiL:1(d — 1)Clookup(H;) < s+ aL(d—1),
which is equivalent to O(L) blocks of the required minimum size. Overall, L + 1
PIR queries are invoked. For levels i = 1,..., L, the PIR queries are performed
over arrays of size at most (d — 1)Clookup(H;). By using the classic two-server
PIR from [10], this costs (d — 1)Clookup(H;) < ad bits and a single block per
level. The stash adds s bits and a block. All of this sums up to no more than
O(L) data blocks. The client also downloads O(k) blocks from the top level.
Next, consider the reshuffles. Blocks are reshuffled down to some hash table
in the i*" level if 7 is the smallest integer for which (¢/k) mod d* # 0. This occurs
whenever t/k is a multiple of d*~!, but not of d*, i.e., at most once every k-d'~!
queries. During the reshuffle of a hash table 7}, the number of blocks transmitted
is asymptotically bounded by the size of Tij and the size of the stash, which is

O(m;). Hence, the amortized overhead of the reshuffles is O(Zle)

Security. Next, we present the security proof for our construction. We prove
that the access pattern to any of the servers is oblivious and independent on the
input. We describe a simulator Sim, (for a € {0, 1,2}), that produces an output
that is indistinguishable from the view of server S, during the execution of the
protocol, upon any sequence of virtual queries, given only its length.

Lemma 1 (Security of the three-server ORAM). Let View,(y) be the
view of server S, during the execution of the three-server ORAM protocol,
described in Algorithms 1 and 2, over a virtual access pattern y = ((v1,21),. ..,
(ve,xp)). For a € {0,1,2}, there exists a simulator Sim,, such that for every
y of length £, the distributions Simg(¢) and View,(y) are computationally
indistinguishable.

Proof Sketch. As in all previous works, we assume that the client uses one-way
functions to encrypt and authenticate the data held in the servers, and therefore,
encrypted data is indistinguishable by content (notice that the client re-encrypts
every piece of data before sending it). We replace the keyed tagging functions,
that are modeled as PRF's, with random functions. These steps can be formalized
using proper standard hybrid arguments, which we avoid for brevity.

We begin by inspecting the view of the servers during the reshuffles. The
procedure starts with the servers exchanging all blocks stored in levels 1,...,7

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 25

and in the stash, and sending them to S.. It is essential for security that the
number of these blocks is independent of the input, as argued in Claims 1 and 2.
We refer the reader to the full version for full proofs for these two claims, and
all claims to follow.

Claim 1. Throughout the ORAM simulation, the stash is always full.

Claim 2. Let t be a multiple of k, and denote t' = t/k. For every 1 <1i < L,
define rt ;= | (¢ mod d*)/d'*~1|. Then,

(i) the top level is full prior to the reshuffle at round t, and is empty afterwards.
(1) for every other level 1 < i < L, once the reshuffle is completed, the first rt

tables in level i (i.e., T} ..,Tﬁ) are full (contain d'(k + s) records each),

P00

and all other tables in level i are empty.

Claim 1 follows immediately from Step 5 of Algorithm 2. For Claim 2 follows
from the analogy of the reshuffles to counting in base d (see Sect. 4) (notice that
r! can be also defined as the ith digit in the base d representation of ¢').

Having shown that the amount of data exchanged during the first steps of
the reshuffling procedure depends only on ¢, we can simulate the view of any of
the servers by a sequence of arbitrary encrypted data of the appropriate length.
Next, S, receives (k + s) - d* tagged encrypted records (Claim 2). Since dummy
records are numbered uniquely, and virtual records are never duplicated, these
records always have unique addresses. We formalize this in Claim 3 below.

Claim 3. At all times during the execution, any non-empty record of the form
(v,) will appear at most once in all hash tables in the hierarchy.

Since the addresses of the records are unique, their tags will be unique as
well (with overwhelming probability). This implies the following.

Corollary 1. The tagging function Fy(-) will not be computed twice on the same
input throughout the executions of Algorithm 2 during the ORAM simulation.

Hence, by assuming Fj is a random function, the view of S. can be simulated
as a sequence of (k + s) - d* arbitrary encrypted records with random distinct
tags. Once S, successfully creates the hash table, it sends it to S, and S, via
the client. The size of the hash table is fixed. The entries of the hash tables are
encrypted, and can be simulated as an arbitrary sequence of encrypted records.

To summarize, to simulate the view of the servers during the reshuffling
phase, Sim,(£) and Sim;(¢) output a sequence of encrypted arbitrary records of
the appropriate length (which is fixed due to Claims 1 and 2), whereas Sim.(¥)
outputs a sequence of encrypted arbitrary records that are tagged using distinct
uniform values (a,b, ¢ alternate between 0, 1,2 throughout the phases). From
Corollary 1 and the security of the underlying symmetric encryption and PRFs,
these outputs are indistinguishable from the views of the servers at the reshuffles.

We proceed to simulating the access pattern during queries. A query for a
block v begins, independently of v, with downloading all blocks in the top level,

26 E. Kushilevitz and T. Mour

and all headers in the stash. Next, a PIR is invoked over the stash From the secu-
rity of the underlying PIR, there exist two simulators Simg ™ (m), Sim} ™ (m),
that simulate the individual views of the two servers (resp.) 1nv01ved in the pro-
tocol, given only the size of the queried array, m. We use these simulators to
simulate the view of the servers involved in the this and all following PIRs.

It remains to show that the identity of the blocks over which the PIRs
are called, i.e. the values Q! that a server S, sees during the execution of
Algorithm 1, can be simulated as well. Recall that, at every execution of the
algorithm, Qj is computed for every i, j, as H;. Lookup(T k1), where 7 is a tag
computed using F, and] is the used hash key. We denote by (QJ)a the sequence
of Qz values seen by S, at all executions of Algorithm 1 during the ORAM sim-
ulation (these values correspond to levels i that are stored in S,). We also denote
by (7)a and (k?), the values used to compute (Q?),.

Claim 4. The same v will not be queried upon twice at the same hash table (in
Algorithm 1) between two reshuffles of the table during the ORAM execution.

Dummy queries are numbered uniquely. The order in which we traverse the
hierarchy, and the fact that no real queries are made after the block is found,
ensure that Claim 4 is true for real queries as well. Hence, the following holds.

Corollary 2. The tagging function Fs will not be computed twice on the same
input throughout the executions of Algorithm 1 during the ORAM simulation.

From Corollary 2, and since S, is not involved in the hashing of (7)., we get:

Claim 5. The sequence (7)., defined above, is comp. indistinguishable from a
uniform sequence of unique tags, given the view of S, during the reshuffles.

Claim 6. The sequence <I€g>a, defined above, is comp. indistinguishable from a
uniform sequence of hash keys, given the view of S, during the reshuffies.

In Claims 5 and 6, we show that (1), and (k!), are indistinguishable from
sequences of uniformly chosen values, given the view of S,. Therefore, to simulate
the values (Q7),, the simulator Sim,(¢) computes the output of H;.Lookup for
uniformly random tags and hash keys. This completes the proof of Lemma 1.

6 A Family of Multi-server ORAM Schemes

We present our following last result.

Theorem 4 ((m,m — 1)-ORAM wusing oblivious hashing). Let d be a
parameter, and define L = log; N. Assume the ezistence of one-way functions,
and a collection {H;}L |, where H; is an oblivious (d"~*(k + s),m;, s)-hashing
scheme. Then, for any m > 2, there exists an (m,m — 1)-ORAM scheme that
achieves the following overhead for block size B = 2(8log N + adlog N)

L
m
Olk+L+> —— >
(i:ld 'k

where o 1= max; Clookup(H;) and f := max; %(119)

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 27

Here, oblivious two-tier hashing [8] performs slightly better than other can-
didates (e.g. oblivious cuckoo hashing [18]).

Instantiation 4 ((m,m—1)-ORAM using two-tier hashing). Assuming the
existence of one-way functions, there exists, for anym > 2, a (m,m—1)-ORAM

scheme with overhead of O(log N/loglog N) for block size of B = 2(log® N).

We first present the special case of our construction in the two-server setting,
and then generalize it the case where m > 2.

6.1 Two-Server ORAM: Overview

We base our two-server construction on the the (3,1)-ORAM from Sect. 5.

Back to Oblivious Hashing. Now that we limit ourselves to using two servers
only, each of which has to hold a replicate of the data for the PIR queries, we
lose the ability to perform the reshuffles through a “third-party”. Hence, we
require now that the underlying hashing schemes are oblivious, and the build-up
of the hash table is done using the oblivious Build procedures, where the client
is the CPU, and one of the servers takes the role of the RAM.

Recall that the tags were essential for the security of the three-server scheme
since the reshuffles were made by one of the servers, to which we did not want
to reveal the identity of the blocks being reshuffled. Now that the reshuffling is
done using oblivious hashing that hides any information about the records that
are being hashed, or the hash keys used to hash them, using tags is not necessary
anymore. Instead, the blocks are hashed, and accessed, by their headers.

Optimizing the Reshuffles. Naively creating a hash table at level ¢ using H;.Build,
incurs an overhead of Cpiq(H;). We observe that in any hashing scheme, the
only input relevant for the build-up of a hash table is the tags or, in our case, the
headers of the blocks being reshuffled. Thus, we suggest the following solution.
The reshuffles are modified so that the build-up of the hash tables is given, as
input, the set of headers, rather than the blocks themselves. Since the headers are
smaller than the blocks by a factor of at least § := max; %, the overhead
incurred by the build-ups is cut by 3, making it linear in d*~'k.

Matching Data to Headers. As the headers are hashed, we still have to move the
data to the new hash table. We securely match the data elements to the headers,
by tagging them, and letting the servers to permute them randomly.

6.2 Two-Server ORAM: Full Construction

Data Structure. We start with the scheme from Sect.5. The server storage
remains as is, except the entire data structure is now replicated in the two
servers. This is guaranteed to be the case at the end of every round in the
protocol.

28 E. Kushilevitz and T. Mour

Query. Every virtual access is simulated as described in Algorithm 1, with the
exception that the target block is queried upon in the hash tables by its virtual
address, rather than its tag: H;.Lookup(v, &]) rather than H;.Lookup(T, 7). Also,
all reads and writes, as well as the PIR queries, are made now to Sy and Sj.

Reshuffles. The reshuffles are still performed in the same frequency. However, the
roles of the servers change, as only two servers participate in the protocol. First,
So prepares all headers of blocks that have to be reshuffled into the destination
hash table, and, together with the client, invokes the appropriate oblivious Build
procedure to hash the blocks into a new hash table.

We now match the data to the headers using our matching procedure. We
begin by tagging the headers. Sy sends the shuffled headers, one by one to the
client, who decrypts every header and tags it using a new epoch, then sends it
back to Sp. The headers corresponding to empty slots are tagged using numbered
values, e.g. ‘empty o 1. Notice that the number of empty slots in the hash table
and stash, combined, is fixed and independent of the input. Next, S; sends the
records (headers and data) that correspond to the shuffled headers, one by one,
in a random order. Among the actual records, S; also sends as many (numbered)
empty records as required to match the number of empty slots in the hash table.
The client tags every record he receives from &7, and forwards it Sy together
with its tag. Sp now matches every record he receives to a header in the hash
table or stash, according to the tags. He then sends the new hash table and stash
to 81, through the client. See Algorithm 3 for full details.

6.3 Two-Server ORAM: Analysis

Complexity. The query complexity is identical to that of the three-server con-
struction, and is equal to O(k + L). To obliviously construct a hash table and a
stash for a level i, the client and the servers exchange Cgyila(H;) = O(Bd k)
records (recall § := max; %(IIZ)) However, since the build-up is done over tags
of size log N bits, rather than whole blocks of size 2(31log N), this translates to
O(d*='k) overhead in blocks. The matching procedure has a linear cost in the
size of the level, that is O(m;). This amortizes to O(1 +m;/d"~1k) overhead per

level, and O(L + Zle i) overall.

Security. Following Definition 2, it suffices to prove the following Lemma.

Lemma 2 (Security of the two-server ORAM). Let View,(y) be the view
of server S, during the execution of the two-server ORAM protocol, described
in Sect. 6, over a virtual access pattern y = ((v1,x1), ..., (ve,x¢)). There exist
simulators Simg, Simy, such that for every y of length £, and every a € {0,1} the
distributions Sim,(£) and View,(y) are computationally indistinguishable.

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 29

Algorithm 3. Two-Server Construction: Reshuffle

Reshuffling headers into table Tin
1: Sp sends all records in levels 1,...,7 and the stash, one by one, to the client. The
client re-encrypts every record he receives and forwards it to S1, while eliminating
all empty records. S; inserts every record he receives to a temporary array Y.
Server &1 now sends every header in Y back to Sp, through the client.

2: Let Y be the array of encrypted headers received by Sp. The client generates
a fresh hashing key /if — H;.Gen(N), and, together with Sp, invokes (T, S') —
H;.Build(x7,Y) to obliviously hash the headers into a hash table and stash.

Matching data to headers.

3: Sp sends (T, S’), record by record, to the client. The client decrypts every header
v he receives, and computes a tag 7 «— Fs(i + 1,7, egH, v). If the header is empty,
then 7 — Fs(i+1,7, eg_H, empty o z), where z is a counter that starts at 1 and and
increments after every empty header. Notice that the number of empty headers,
denoted by Z, depends only on ¢. The client sends the tag back to Sp.

4: 81 inserts Z empty records (emptyol,-),..., (emptyoZ,-) to Y. Server S; permutes
Y randomly, and sends it, one record at a time, to the client.

5: The client re-encrypts every record (v, x) it receives, and sends it to Sp with a tag
7, that is the output of Fs on v with the appropriate epoch.

6: So matches every tagged record it receives to one of the tags it received in Step 3,
and inserts the corresponding record to its appropriate slot (either in Tor S).

7: At this point, Sp holds the newly reshuffled hash table and stash, headers and data.
The tags are discarded. Sp sends both the table and the stash to 81, via the client.
Both servers replace the old stash and T}, ; with the new data.

Proof Sketch. Again, we assume that encryption is secure and tagging functions
are random. Consider the view of the servers at the reshuffles. Claims 1 and 2
hold true here as well, therefore, the amount of encrypted data exchanged in Step
1 of Algorithm 3 is oblivious. From the obliviousness of the hashing scheme, the
view seen in Step 2 can be simulated with an access pattern for an arbitrary
execution of the oblivious H;.Build procedure. As for the matching procedure,
the view of S7 consists of the new hash table and stash, both encrypted and of
fixed size. Sy receives a sequence of tags computed using F for a sequence of
headers. We claim that these headers are unique. A proof of the claim is also
provided in the full version.

Claim 7. The tagging function Fs(-) will not be computed twice on the same
input in Step 3 of Algorithm 3 throughout the executions of the algorithms during
the ORAM simulation.

Hence, the tags seen by Sy are indistinguishable from uniform distinct values,
and Simg simulates them as such. Lastly, Sy receives a sequence of tagged records.
The records are encrypted and can be simulated. The tags were obtained by
tagging the same set of unique headers, however, in an order that is uniformly
and independently chosen by &; and that is not known to Sy. Therefore, we let
Simg to output the tags he has previously generated, permuted randomly.

30 E. Kushilevitz and T. Mour

To simulate the access pattern for the queries we rely on the obliviousness of
the Lookup procedure: the sequence of H;.Lookup(v, k]) values is indistinguish-
able from a sequence generated for an arbitrary sequence of addresses v using
random hash keys. Thus, Sim4 just generates random keys using Gen, and com-
putes Lookup for arbitrary inputs. The transcripts of the PIRs can be simulated

from the definition of two-server PIR.

6.4 From Two Servers to m Servers

Lastly, we briefly show how to transform our two-server ORAM to an (m,m—1)-
ORAM for m > 2. Please refer to the full version for a detailed analysis.

Query Using Multi-server PIR. To obliviously simulate a query to a block, the
client follows the protocol used in the two-server construction (Algorithm 1).
However, now that we want to achieve privacy against any colluding subset of
corrupt servers, we use an m-server PIR protocol which guarantees such a pri-
vacy. That is, instead of invoking two-server PIRs to query blocks from the stash
and hierarchy levels, the client now uses an (m,m — 1)-PIR protocol involving
all m servers, where the joint view of any m — 1 servers is (computationally)
independent of the target index. In particular, we can use the straight-forward
m-server generalization of the basic PIR protocol from [10]. Since this protocol,
as well as many known m-server PIRs, follow the standard PIR setting where
the data is assumed to be replicated in all of the servers, the servers during the
ORAM execution will hold identical replicates of the same data structure.

Ezxtending the Matching Procedure. Reshuffles of levels are done in the same
frequency, and in a very similar manner as in the two-server protocol. We only
change the matching procedure. To match the content to the tags, we cannot
rely only on two servers, since they might be both corrupt. Instead, all servers
participate. The reshuffling procedure from Algorithm 3 is followed up to Step 5.
After the client receives the permuted records from S7, he re-encrypts them and
forwards them to Ss. Ss, in its turn, randomly permutes the records it receives,
and forwards them to Ss (if it exists), through the client. This continues until
all servers, except Sy, have received the records and permuted them. Once they
all had, the client tags the records and sends them to Sy, who matches them to
the shuffled headers. Lastly, the final hash table and stash are sent to all servers.

Acknowledgments. We thank Yuval Ishai, Rafail Ostrovsky and Benny Pinkas for
useful comments.

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 31

References

1.

10.

11.

12.

13.

14.

15.

16.

Abraham, 1., Fletcher, C.W., Nayak, K., Pinkas, B., Ren, L.: Asymptotically tight
bounds for composing ORAM with PIR. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 91-120. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8_5

Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Parallel randomized
load balancing. In: Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, STOC 1995, pp. 238-247. ACM, New York (1995)
Ajtai, M., Komlés, J., Szemerédi, E.: An 0(n log n) sorting network. In: Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC 1983,
pp. 1-9. ACM, New York (1983)

Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131-148. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54631-0_8

Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Shi, E.: OptORAMa: optimal
oblivious RAM. Cryptology ePrint Archive, Report 2018/892 (2018)

Barkol, O., Ishai, Y., Weinreb, E.: On locally decodable codes, self-correctable
codes, and t-private PIR. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P.
(eds.) APPROX/RANDOM -2007. LNCS, vol. 4627, pp. 311-325. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-74208-1_23

Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337-367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6_12

Chan, T.-H.H., Guo, Y., Lin, W.-K., Shi, E.: Oblivious hashing revisited, and
applications to asymptotically efficient ORAM and OPRAM. Cryptology ePrint
Archive, Report 2017/924 (2017)

Chan, T.-H.H, Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is less:
perfectly secure oblivious algorithms in the multi-server setting. Cryptology ePrint
Archive, Report 2018/851 (2018)

Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965-981 (1998)

Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
ORAM: a constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 145-174. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0_6

Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, pp. 523-535. ACM, New York (2017)

Dvir, Z., Gopi, S.: 2-Server PIR with subpolynomial communication. J. ACM
63(4), 39:1-39:15 (2016)

Fletcher, C.W., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM: single
online roundtrip, constant bandwidth oblivious RAM. TACR Cryptology ePrint
Archive, 2015:1065 (2015)

Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803-815. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468-65

Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640—
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35

https://doi.org/10.1007/978-3-662-54365-8_5
https://doi.org/10.1007/978-3-662-54365-8_5
https://doi.org/10.1007/978-3-642-54631-0_8
https://doi.org/10.1007/978-3-540-74208-1_23
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/978-3-642-55220-5_35

32

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

E. Kushilevitz and T. Mour

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431-473 (1996)

Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576-587. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22012-8_46

Gordon, D., Katz, J., Wang, X.: Simple and efficient two-server ORAM. Cryptology
ePrint Archive, Report 2018/005 (2018)

Gordon, S.D., et al.: Secure two-party computation in sublinear (amortized) time.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS 2012, pp. 513-524. ACM, New York (2012)

Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing
with a stash. STAM J. Comput. 39(4), 1543-1561 (2009)

Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 143-156. Society
for Industrial and Applied Mathematics, Philadelphia (2012)

Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, p. 364. IEEE Com-
puter Society, Washington, DC (1997)

Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 523-542.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_18

Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377-396. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_22

Moataz, T., Blass, E., Mayberry, T.: CHffORAM: a constant communication
ORAM without homomorphic encryption. Cryptology ePrint Archive, Report
2015/1116 (2015)

Ostrovsky, R.: Efficient computation on oblivious RAMs. In: Proceedings of the
Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990,
pp- 514-523. ACM, New York (1990)

Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
STOC 1997, pp. 294-303. ACM, New York (1997)

Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122-144 (2004)
Patel, S., Persiano, G., Raykova, M., Yeo, K.: PanORAMa: oblivious RAM with
logarithmic overhead. Cryptology ePrint Archive, Report 2018/373 (2018)
Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502-519. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7_27

Ren, L., Yu, X., Fletcher, C.W., van Dijk, M., Devadas, S.: Design space exploration
and optimization of path oblivious RAM in secure processors. SSIGARCH Comput.
Archit. News 41(3), 571-582 (2013)

Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)?)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011. LNCS, vol.
7073, pp. 197-214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0_11

https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

34.

35.

36.

37.

38.

Sub-logarithmic Distributed Oblivious RAM with Small Block Size 33

Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer Communications
Security, CCS 2013, pp. 299-310. ACM, New York (2013)

Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS 2015, pp. 850-861. ACM, New York
(2015)

Wang, X., Huang, Y., Chan, T.-H., Shelat, A., Shi, E.: SCORAM: oblivious RAM
for secure computation. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2014, pp. 191-202. ACM, New York
(2014)

Zahur, S., et al.: Revisiting square-root ORAM: efficient random access in multi-
party computation. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
218-234, May 2016

Zhang, J., Ma, Q., Zhang, W., Qiao, D.: MSKT-ORAM: a constant bandwidth
ORAM without homomorphic encryption. Cryptology ePrint Archive, Report
2016/882 (2016)

l‘)

Check for
updates

1

As introduced by Peikert and Waters a decade ago [39], lossy trapdoor functions
(LTFs) are function families where injective functions — which are efficiently
invertible using a trapdoor - are computationally indistinguishable from many-
to-one functions, wherein the image is drastically smaller than the domain. Since
their introduction, they drew a lot of attention [19,23,24,43,45] and revealed
powerful enough to imply chosen-ciphertext (IND-CCA2) security [39], deter-
ministic public-key encryption in the standard model [9,15,41], as well as encryp-
tion schemes achieving the best possible security against selective-opening (SO)

Lossy Algebraic Filters with Short Tags

Benoit Libert!2(®) and Chen Qian®

1 CNRS, Laboratoire LIP, Lyon, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),
Lyon, France
benoit.libert@ens-lyon.fr
3 Univ Rennes, CNRS, IRISA, Rennes, France

Abstract. Lossy algebraic filters (LAFs) are function families where
each function is parametrized by a tag, which determines if the function
is injective or lossy. While initially introduced by Hofheinz (Eurocrypt
2013) as a technical tool to build encryption schemes with key-dependent
message chosen-ciphertext (KDM-CCA) security, they also find applica-
tions in the design of robustly reusable fuzzy extractors. So far, the only
known LAF family requires tags comprised of ©(n?) group elements for
functions with input space Zj,, where p is the group order. In this paper,
we describe a new LAF family where the tag size is only linear in n and
prove it secure under simple assumptions in asymmetric bilinear groups.
Our construction can be used as a drop-in replacement in all applications
of the initial LAF system. In particular, it can shorten the ciphertexts of
Hofheinz’s KDM-CCA-secure public-key encryption scheme by 19 group
elements. It also allows substantial space improvements in a recent fuzzy
extractor proposed by Wen and Liu (Asiacrypt 2018). As a second con-
tribution, we show how to modify our scheme so as to prove it (almost)
tightly secure, meaning that security reductions are not affected by a
concrete security loss proportional to the number of adversarial queries.

Keywords: Lossy algebraic filters - Efficiency - Tight security -
Standard assumptions

Introduction

adversaries [2,5] or using imperfect randomness [1].

© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11442, pp. 34-65, 2019.
https://doi.org/10.1007/978-3-030-17253-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17253-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-17253-4_2

Lossy Algebraic Filters with Short Tags 35

Lossy ALGEBRAIC FILTERS. Lossy algebraic filters (LAFs) are a variant LTFs
introduced by Hofheinz [25] as a tool enabling the design of chosen-ciphertext-
secure encryption schemes with key-dependent message (KDM-CCA) security
[6]. Recently, they were also used by Wen and Liu [44] in the construction of
robustly reusable fuzzy extractors. In LAF families, each function takes as argu-
ments an input = and a tag t, which determines if the function behaves as a
lossy or an injective function. More specifically, each tag t = (¢, t,) is comprised
of an auxiliary component t,, which may consist of any public data, and a core
component t.. For any auxiliary component t,, there should exist at least one
tc such that ¢t = (tc,t,) induces a lossy function fiag(t,-). LAFs strengthen the
requirements of lossy trapdoor functions in that, for any lossy tag t, the function
fiae(t, x) always reveals the same information about the input x, regardless of
which tag is used. In particular, for a given evaluation key ek, multiple evalu-
ations fiag(t1,),..., fiar(tn,x) for distinct lossy tags do not reveal any more
information about x than a single evaluation. On the other hand, LAFs depart
from lossy trapdoor functions in that they need not be efficiently invertible using
a trapdoor. For their applications to KDM-CCA security [25] and fuzzy extrac-
tors [44], lossy algebraic filters are expected to satisfy two security properties.
The first one, called indistinguishability, requires that lossy tags be indistinguish-
able from random tags. The second one, named evasiveness, captures that lossy
tags should be hard to come by without a trapdoor.

So far, the only known LAF realization is a candidate, suggested by Hofheinz
[25], which relies on the Decision Linear assumption (DLIN) [12] in groups
with a bilinear map. While efficient and based on a standard assumption, it
incurs relatively large tags comprised of a quadratic number of group elements
in the number of input symbols. More precisely, for functions admitting inputs
X = (21,...,7,)" € Z,, where p is the order of a pairing-friendly G, the core
components t. contain ©(n?) elements of G. For the application to KDM-CCA
security [25] (where t. should be part of ciphertexts), quadratic-size tags are not
prohibitively expensive as the encryption scheme of [25, Section 4] can make
do with a constant n (typically, n = 6). In the application to fuzzy extractors
[44], however, it is desirable to reduce the tag length. In the robustly reusable
fuzzy extractor of [44], the core tag component . is included in the public helper
string P that allows reconstructing a secret key from a noisy biometric reading
w. The latter lives in a metric space that should be small enough to fit in the
input space Zj of the underlying LAF family. Even if p is exponentially large
in the security parameter A, a constant n would restrict biometric readings to
have linear length in A. Handling biometric readings of polynomial length thus
incurs n = w(1), which results in large tags and longer public helper strings.
This motivates the design of new LAF candidates with smaller tags.

OUR RESULTS. The contribution of this paper is two-fold. We first construct a
new LAF with linear-size tags and prove it secure under simple, constant-size
assumptions (as opposed to g-type assumptions, which are described using a lin-
ear number of elements in the number of adversarial queries) in bilinear groups.
The indistinguishability and evasiveness properties of our scheme are implied

36 B. Libert and C. Qian

by the Decision 3-party Diffie-Hellman assumption (more precisely, its natural
analogue in asymmetric bilinear maps), which posits the pseudorandomness of
tuples (g, 9%, ¢, g%, g*¢), for random a,b,c €g Zyp. For inputs in Z;;, where p is
the group order, our core tag components only consist of O(n) group elements.
These shorter tags are obtained without inflating evaluation keys, which remain
of length O(n) (as in [25]).

As a second contribution, we provide a second LAF realization with O(n)-size
tags where the indistinguishability and evasiveness properties are both almost
tightly related to the underlying hardness assumption. Namely, our security
proofs are tight — or almost tight in the terminology of Chen and Wee [16]
— in that the gap between the advantages of the adversary and the reduction
only depends on the security parameter, and not on the number of adversarial
queries. In the LAF suggested by Hofheinz [25], the proof of evasiveness relies
on the unforgeability of Waters signatures [42]. As a result, the reduction loses
a linear factor in the number of lossy tags obtained by the adversary. In our
second construction, we obtain tight reductions by replacing Waters signatures
with (a variant of) a message authentication code (MAC) due to Blazy, Kiltz
and Pan [7]. As a result, our proof of evasiveness only loses a factor O(\) with
respect to the Symmetric eXternal Diffie-Hellman assumption (SXDH). If our
scheme is plugged into the robustly reusable fuzzy extractor of Wen and Liu
[44], it immediately translates into a tight proof of robustness in the sense of the
definition of [44]. While directly using our second LAF in the KDM-CCA-secure
scheme of [25] does not seem sufficient to achieve tight key-dependent message
security, it may still provide a building block for future constructions of tightly
KDM-CCA-secure encryption schemes with short ciphertexts.

TECHNIQUES. Like the DLIN-based solution given by Hofheinz [25], our evalua-
tion algorithms proceed by computing a matrix-vector product in the exponent,
where the matrix is obtained by pairing group elements taken from the core tag
t. with elements of the evaluation key. Here, we reduce the size of ¢, from O(n?)
to O(n) group elements using a technique suggested by Boyen and Waters [14]
in order to compress the evaluation keys of DDH-based lossy trapdoor functions.
In the pairing-based LTF of [14], the evaluation key contains group elements
{(Ri, Si) = (g7, (W - w)™)by, {(V; = g% Hy = (b1 - w)"5)}2_,. Using a sym-
metric bilinear maps e : G X G — G, these make it possible to compute the

off-diagonal elements of a matrix
G(Ri, HJ)) 1/(5—14)

M; ;= e(g,h)"™ = (76(5 7
iy Vi

V(i,j) € [n] x [n]\{(G,9)}ie, (1)
via a “two equation” technique borrowed from the revocation system of Lewko,
Sahai and Waters [33]. By including {D; = e(g,g)""V - e(g, g)}_; in the evalua-
tion key, the LTF of [14] allows the evaluator to compute a matrix (M; ;); jemn
such that M, ; = e(g,9)"% if i # j and M, ; = e(g,9)""" - e(g,9)™ and for
which m; = 1 (resp. m; = 0), for all ¢ € [n], in injective (resp. lossy) func-
tions. The indistinguishability of lossy and injective evaluation keys relies on the

Lossy Algebraic Filters with Short Tags 37

fact that (1) is only computable when ¢ # j, making it infeasible to distinguish
{D; = e(g, h)"" - (g,)}y from {D; = elg, by},

Our first LAF construction relies on the “two equation” technique of [33] in a
similar way with the difference that we include {(V; = g%, H; = (h? -u)"}7_, in
the evaluation key ek, but {(R;,S;) = (¢", (h*-u)")}™_; is now part of the core
tag components t.. This makes it possible to compute off-diagonal elements of
(M;,j)i jem) by pairing elements of ek with those of £.. To enable the computation
of diagonal elements {M; ;}7_;, we augment core tag components by introducing
pairs (D;, E;) € G?, which play the same role as {D; = e(g,9)""% - e(g,9)}1;
in the LTF of [14]. In lossy tags, {(D;, E;)}?, are of the form

(Di, Ey) = (R He ()7, g"), (2)

for a random p; €g Zjp, where 7 is a chameleon hashing of all tag components.
Such pairs {(D;, E;)}?_; allow the evaluator to compute

e(Dmg)

Mii = e(Hg (1), E;)

=e(g,h)""" vi € [n],

which results in a rank-one matrix (M; ;); je[n), Where M; ; = e(g,h)""7. When
computed as per (2), {(D;, E;)}, can be seen as “blinded” Waters signatures
[42]. Namely, (g,h,V; = ¢g¥*) can be seen as a verification key; h¥i is the cor-
responding secret key; and r; € Z, serves as a blinding factor that ensures the
indistinguishability of (D;, E;) from random pairs. Indeed, the Decision 3-party
Diffie-Hellman (D3DH) assumption allows proving that h™ i is computation-
ally indistinguishable from random given (g, h, g*7, g"*). In our proof of indistin-
guishability, however, we need to rely on the proof technique of the Boneh-Boyen
IBE [11] in order to apply a hybrid argument that allows gradually replacing
pairs {(D;, E;)}?_; by random group elements.

In our proof of evasiveness, we rely on the fact that forging a pair of the
form (D;, E;) = (h""i - Hg(7)P*, g%) on input of (g, h, g"") is as hard as solving
the 2-3-Diffie-Hellman problem [32], which consist in finding a non-trivial pair
(g",g" %) € G* x G* on input of (g,9% ¢°). In turn, this problem is known to
be at least as hard as breaking the Decision 3-party Diffie-Hellman assumption.

The above techniques allow us to construct a LAF with O(n)-size tags and
evaluation keys made of O(n + \) group elements under a standard assumption.
Our first LAF is actually described in terms of asymmetric pairings, but it can
be instantiated in all types (i.e., symmetric or asymmetric) of bilinear groups.
Our second LAF construction requires asymmetric pairing configurations and
the Symmetric eXternal Diffie-Hellman (SXDH) assumption. It is very similar
to our first construction with the difference that we obtain a tight proof of
evasiveness by replacing Waters signatures with a variant of a MAC proposed
by Blazy, Kiltz and Pan [7]. In order for the proofs to go through, we need to
include n MAC instances (each with its own keys) in lossy tags, which incurs
evaluation keys made of O(n - \) group elements. We leave it is an interesting
open problem to achieve tight security using shorter evaluation keys.

38 B. Libert and C. Qian

RELATED WORK. All-but-one lossy trapdoor functions (ABO-LTFs) [39] are
similar to LAFs in that they are lossy function families where each function
is parametrized by a tag that determines if the function is injective or lossy.
They differ from LAFs in two aspects: (i) They should be efficiently invert-
ible using a trapdoor; (ii) For a given evaluation key ek, there exists only one
tag for which the function is lossy. The main motivation of ABO-LTFs is the
construction of chosen-ciphertext [40] encryption schemes. All-but-many lossy
trapdoor functions (ABM-LTFs) are an extension of ABO-LTFs introduced by
Hofheinz [24]. They are very similar to LAFs in that a trapdoor makes it possi-
ble to dynamically create arbitrarily many lossy tags using. In particular, each
tag t = (tc,ta) consists of an auxiliary component ¢, and a core component t.
so that, by computing ¢. as a suitable function of ¢,, the pair ¢ = (¢, t,) can
be made lossy, but still random-looking. The motivation of ABM-LTFs is the
construction chosen-ciphertext-secure public-key encryption schemes in scenar-
ios, such as the selective-opening setting [2, 18], which involve multiple challenge
ciphertexts [24]. They also found applications in the design of universally com-
posable commitments [20]. Lossy algebraic filters differ from ABM-LTFs in that
they may not have a trapdoor enabling efficient inversion but, for any lossy tag
t = (tc,ta), the information revealed by fiar(¢,z) is always the same (i.e., it is
completely determined by x and the evaluation key ek).

LAFs were first introduced by Hofheinz [25] as a building block for KDM-
CCA-secure encryption schemes, where they enable some form of “plaintext
awareness” . In the security proofs of KDM-secure encryption schemes (e.g., [10]),
the reduction must be able to simulate encryptions of (functions of) the secret
key. When the adversary is equipped with a decryption oracle, the ability to pub-
licly compute encryptions of the decryption key may be a problem as decryption
queries could end up revealing that key. LAFs provide a way reconcile the con-
flicting requirements of KDM and CCA2-security by introducing in each cipher-
text a LAF-evaluation of the secret key. By having the simulator encrypt a lossy
function of the secret key, one can keep encryption queries from leaking too
much secret information. At the same time, adversarially-generated ciphertexts
always contain an injective function of the key, which prevents the adversary
from learning the secret key by publicly generating encryptions of that key.

Recently, Wen and Liu [44] appealed to LAFs in the design of robustly
reusable fuzzy extractors. As defined by Dodis et al. [17], fuzzy extractors allow
one to generate a random cryptographic key R — together with some public helper
string P — out of a noisy biometric reading w. The key R need not be stored as
it can be reproduced from the public helper string P and a biometric reading w’
which is sufficiently close to w. Reusable fuzzy extractors [13] make it possible to
safely generate multiple keys Rq,..., R; (each with its own public helper string
P,) from correlated readings wy, ..., w; of the same biometric source. Wen and
Liu [44] considered the problem of achieving robustness in reusable fuzzy extrac-
tors. In short, robustness prevents adversaries from covertly tampering with the
public helper string P; in order to affect the reproducibility of R;. The Wen-
Liu [44] fuzzy extractor relies on LAFs to simultaneously achieve reusability and

Lossy Algebraic Filters with Short Tags 39

robustness assuming a common reference string. Their solution requires the LAF
to be homomorphic, meaning that function outputs should live in a group and,
for any tag t and inputs x1, x2, we have fiap(t,z1+2z2) = fiar(t, z1)- fiar(t, z2).
The candidate proposed by Hofheinz [25] and ours are both usable in robustly
reusable fuzzy extractors as they both satisfy this homomorphic property. Our
scheme offers the benefit of shorter public helper strings P since these have to
contain a LAF tag in the fuzzy extractor of [44].

The tightness of cryptographic security proofs was first considered by Bellare
and Rogaway [4] in the random oracle model [3]. In the standard model, it drew
a lot of attention in digital signatures and public-key encryption the recent years
(see, e.g., [7,16,21,22,26-28,34,35]). In the context of all-but-many lossy trap-
door functions, a construction with tight evasiveness was put forth by Hofheinz
[24]. A tightly secure lattice-based ABM-LTF was described by Libert et al. [36]
as a tool enabling tight chosen-ciphertext security from lattice assumptions. To
our knowledge, the only other prior work considering tight reductions for lossy
trapdoor functions is a recent result of Hofheinz and Nguyen [29]. In particu-
lar, tight security has never been obtained in the context of LAFs, nor in fuzzy
extractors based on public-key techniques.

2 Background

2.1 Lossy Algebraic Filters

We recall the definition of Lossy Algebraic Filter (LAF) from [25], in which the
distribution over the function domain may not be the uniform one.

Definition 1. For integers £iap(N), n(N) > 0, an (€ar, n)-lossy algebraic filter
(LAF) with security parameter X consists of the following PPT algorithms:

Key Generation. LAF.Gen(1) outputs an evaluation key ek and a trapdoor
key tk. The evaluation key ek specifies an f ap-bit prime p as well as the
description of a tag space T = 1. x T,, where I is efficiently samplable. The
disjoint sets of injective and non-injective tags are called Tinj and Thon-inj =
T\ Tinj, respectively. We also define the subset of lossy tags Tiess to be a subset
of Tnon-inj, Which induce very lossy functions. A tagt = (tc,ta) is described by
a core part tc € 1. and an auxiliary part ty € T,. A tag may be injective, or
lossy, or neither. The trapdoor tk allows sampling lossy tags.

Evaluation. LAF.Eval(ek,t, X) takes as inputs an evaluation key ek, a tag t €
T and a function input X € Zy. It outputs an image Y = fer +(X).

Lossy Tag Generation. LAF.LTag(tk,t,) takes as input the trapdoor key tk,
an auziliary part t, € T, and outputs a core part tc such thatt = (tc,ta) € Tioss
forms a lossy tag.

In addition, LAF has to meet the following requirements:

Lossiness. For any (ek,tk) & LAF.Gen(1%), the following conditions should be
satisfied.

40 B. Libert and C. Qian

a. For any t € Tij, fert(.) should behave as an injective function (note that
fe_k}t() is mot required to be efficiently computable given tk).

b. For any auziliary tag t, € T, and any t. < LAF.LTag(tk,t.), we have
t = (tc,ta) € Tioss, meaning that fex(.) is a lossy function. Moreover, for
any input X = (21,...,2,) € Zy and any t = (tc,ta) € Tioss, fer,i(X) is
completely determined by >, v; - x; mod p for coefficients {v;}1—, that
only depend on ek.

Indistinguishability. Multiple lossy tags are computationally indistinguishable
from random tags, namely:

Advy ™ (\) == | PrlA(1?, ek) AP ETE(R) = 1) — Pr{A(1Y, k)97) = 1]

is negligible for any PPT algorithm A, where (ek,tk) & LAF.Gen(1*) and
O7.(+) is an oracle that assigns a random core tag t. <~ 1c to each auxiliary
tag ta € T, (rather than a core tag that makes t = (tc,ta) lossy). Here Q
denotes the number of oracle queries made by A.
Evasiveness. Non-injective tags are computationally hard to find, even with
access to an oracle outputting multiple lossy tags, namely:
AdVSf\SQ ()\) — PI"[A(]./\, ek)LAF.LTag(tk,-), LAF .IsInjective(tk,-) c I\on—inj]
is negligible for legitimate adversary A, where (ek,ik, tk) & LAF.Gen(1*) and
A is given access to the following oracle:
— LAF.LTag(tk,) which acts exactly as the lossy tag generation algorithm.
— LAF.IsInjective(tk,) that takes as input a tag t = (tc,ta). It outputs O if
t € Tnon-inj = T \Tinj and 1 if t € Tij. If t € T, the oracle outputs L.
We denote by Q1 and Qo the number of queries to LAF.LTag(tk,-) and
LAF.IsInjective(tk, -), respectively. By “legitimate adversary”, we mean that
A is PPT and never outputs a tag t = (tc,ta) such that t. was obtained by
imwvoking the LAF.LTag oracle on t,.

In our construction, the tag space 7 will not be dense (i.e., not all elements
of the ambient algebraic structure are potential tags). However, elements of the
tag space 7 will be efficiently recognizable given ek.

We note that the above definition of evasiveness departs from the one used
by Hofheinz [25] in that it uses an additional LAF.IsInjective(tk,-) oracle that
uses the trapdoor tk to decide whether a given tag is injective or not. However,
this oracle will only be used in our tightly secure LAF (and not in our first
construction). Its only purpose is to enable a modular use of our tightly evasive
LAF in applications to KDM security [25] or robustly reusable fuzzy extractors
[44]. Specifically, by invoking the LAF.IsInjective(tk, -) oracle, the reduction from
the security of a primitive to the underlying LAF’s evasiveness does not have to
guess which adversarial query involves a non-lossy tag.

Lossy Algebraic Filters with Short Tags 41

2.2 Chameleon Hash Functions

A chameleon hash function [31] is a tuple of algorithms CMH = (CMKg, CMhash,
CMswitch) which contains an algorithm CMKg that, given a security parameter
1", outputs a key pair (hk,td) « G(1*). The randomized hashing algorithm
outputs y = CMhash(hk, m,r) given the public key hk, a message m and ran-
dom coins 7 € Rpgsh. On input of messages m, m’, random coins r € Rpash
and the trapdoor key td, the switching algorithm r' < CMswitch(td, m,r,m’)
computes 1’ € Rpqsn such that CMhash(hk, m,r) = CMhash(hk, m’,r’'). The
collision-resistance property mandates that it be infeasible to come up with
pairs (m/,r") # (m,r) such that CMhash(hk, m,r) = CMhash(hk, m’,r’) with-
out knowing the trapdoor key tk. Uniformity guarantees that the distribution
of hash values is independent of the message m: in particular, for all hk, and
all messages m,m’, the distributions {r «— Rpasn : CMHash(hk,m,r)} and
{r < Rhasn : CMHash(hk,m’,r)} are identical.

2.3 Hardness Assumptions

Definition 2. Let (G, G, Gr) be bilinear groups of order p. The First Decision
3-Party Diffie-Hellman (D3DH1) assumption holds in (G,G,Gr) if no PPT
distinguisher can distinguish the distribution

The D3DH1 assumption has a natural analogue where the pseudorandom value
lives in G instead of G.

Definition 3. The Second Decision 3-Party Diffie-Hellman (D3DH2)
assumption holds in (G,G,Gr) if no PPT algorithm can distinguish between
the distribution

Dy :={(9.:9,9%9".9%9%3",9°.9") | g & G,§ & G, a,b,c & L}
DO = {(gvgagaagbvgcagaagbhgcagz) | g & Gvg (i G: Cl,b, C, 2z ‘i Zp}

We also need a computational assumption which is implied by D3DH2. The
2-3-CDH was initially introduced [32] in ordinary (i.e., non-pairing-friendly)
discrete-logarithm hard groups. Here, we extend it to asymmetric bilinear groups.

Definition 4 ([32]). Let (G,G) be a bilinear groups of order p with generators
g € G and § € G. The 2-out-of-3 Computational Diffie-Hellman (2-3-CDH)
assumption says that, given (g, g%, §%, g%, ¢°) for randomly chosen a,b < Z,, no
PPT algorithm can find a pair (g",g") such that r # 0.

It is known (see, e.g., [37]) that any algorithm solving the 2-3-CDH prob-
lem can be used to break the D3DH2 assumption. On input of (g,g, g%,
g%, 9¢,G% 8%, 6% 9°), where z = abc or z €g Zy,, the reduction can simply run

42 B. Libert and C. Qian

a 2-3-CDH solver on input of (g, g%, g°, §%, §°). If the solver outputs a non-trivial
pair of the form (Ry, Ry) = (¢9",9"%"), the D3DH2 distinguisher decides that
z = abc if and only if e(R1, §%) = e(Ra, §°).

In our constructions, we actually rely on a weaker variant of D3HD1, called
wD3HD1, where §% is not given. In our tightly secure construction (which
requires asymmetric pairings), we need to rely on the following variant of
wD3HD1.

Definition 5. Let (G,G, Gr) be bilinear groups of order p. The Randomized
weak Decision 3-Party Diffie-Hellman (R-wD3DH1) assumption holds in

(G, G, Gr) if no PPT distinguisher can distinguish the distribution

Dy := {{(9,5}79‘“’,91’,90791’,?/ﬁgaibc)}?:l lg &G, <G,
7

We do not know if DSDH1 or wD3DHI1 can be tightly reduced to R-wD3DH1
(the only reduction we are aware of proceeds via a hybrid argument). In asym-
metric pairings, however, we can give a tight reduction between R-wD3DH]1 and
a combination of wD3DH1 and SXDH.

Lemma 1. There is a tight reduction from the wD3DHI1 assumption and the
DDH assumption in G to the R-wD3DHI1 assumption. More precisely, for any
R-wD3DH1 adversary B, there exist distinguishers By and By which run in about
the same time as B and such that

Advg PP (N < Advig?® P () + Adv T (N),
where the second term denotes By ’s advantage as a DDH distinguisher in G.

Proof. To prove the result, we consider the following distribution:

Dint = {{(9,9,g“"”‘,gb,gc,ﬁb,éﬁgz‘“’i)}fil g &G, §&G,

R R *
a1,...,00,b,¢,2 & Zp, a<—Zp}}

A straightforward reduction shows that, under the wD3DH1 assumption, D,
is computationally indistinguishable from D;,;. We show that, under the DDH
assumption in G, D;,; is computationally indistinguishable from Dy. Moreover,
the reduction is tight in that the two distinguishers have the same advantage.

First, we show that, under the wD3DH1 assumption, D;,; is computationally
indistinguishable from D;.

Lossy Algebraic Filters with Short Tags 43

We can build a wD3DH1 distinguisher B; from any distinguisher for Dy
and Dy,;. With (g,9,9% ¢%,¢% 4% ¢, T) as input where ¢ & G, § & G and
a,b,c < Z,, By uniformly draws «;, ..., aq < Z, and computes

D5’1 = {{(g,g’ga-ai7gb’gc7gb’gc7Ta7:)}iQ:1 | ap,...,0Q &£ Zp} .

It is easy to see that if T = ¢g*¢, then Dp, is identical to D;. If T €r G, then
Dp, is distributed as D,,:. Hence, any distinguisher between D; and D;,; with
Dpg, implies a distinguisher By for the wD3DH1 problem.

Next, we show that, under the DDH assumption in G, D;,; is computationally
indistinguishable from Dy. In order to build a DDH distinguisher By out of a
distinguisher between D;,; and Dy, we use the random self-reducibility of the
DDH assumption.

Lemma 2 (Random Self-Reducibility [38]). Letting G be a group of prime
order p, there exists a PPT algorithm R that takes as input (g, g%, g%, g%) € G*,
for any a,b,c € Zy, and returns a triple (9%, 6" ,9°) € G? such that:

~ If ¢ =ab mod q, then V' is uniformly random in Z, and ¢’ = ab'.
- Ifc# ab mod g, then V', ¢’ €r Z, are independent and uniformly random.

On input of (g,¢%,¢% T) € G* where ¢ & G and z,a < Z,, By uses
algorithm R to generate () instances {(gz,g"”,Ti)}?Zl. Next, By draws § & G,
a,b,c <= Z, and defines the following distribution:

Di, = {{(9,9.(9™)" a", 6,3, 5° TO}Z, 1§ & Ga,bec £ 7,).

We observe that, if T = ¢g*%, we have T; = g= for all ¢ € [@]. In this case,
Dp, is identical to D;n:. In contrast, if T €r G, the random self-reducibility
ensures that T4,...,Tp €r G are ii.d, meaning that Dg, is identical to Dy.
Using a distinguisher between D;,; and Dy and feeding it with Dg,, we obtain
a distinguisher By for the DDH problem in G. a

3 A Lossy Algebraic Filter with Linear-Size Tags

We present a LAF based on DDH-like assumptions with tags of size O(n), where
n is the number of input symbols when the input is viewed as a vector over Z,,.
Our tags are comprised of 4n elements of G, which outperforms the construction
of [25] for n > 4. In his application to KDM-CCA security [25], Hotheinz uses a
LAF scheme with n = 6, in which case we decrease the tag size from 43 to 24
group elements' and thus shorten ciphertexts by 19 group elements.

! The LAF of [25] was described in terms of symmetric pairings but it extends to
asymmetric pairings e : G x G — G where tags are comprised of elements in G.

44 B. Libert and C. Qian

The construction is inspired by the lossy TDF of [14] and relies on the revoca-
tion technique of Lewko, Sahai and Waters [33] (LSW) in the same way. In asym-
metric pairings e : G x G — Gr, the evaluation key contains a set of LSW cipher-
texts {(V; = g%, H; = (hi - @)®7)}}_,, while each core tag component t. can be
seen as containing a set of LSW secret keys {(R;, S;) = (9", (h*-u)")}_,, allow-
ing the evaluator compute M;; = e(g, iL)”‘”J‘ for any pairwise distinct indices
i # j. In lossy tags (fc,ta), diagonal elements {M;;}? , are handled by having
t. contain Waters signatures (D;, E;) = (h™" - Hg(7)"¢, g"*), where p; €r Z,
and Hg : {0,1}* — G is an algebraic hash function mapping the output 7 of a
chameleon hash function to the group G. For indistinguishability purposes, pairs
{(D;, E;)}_, are not immediately recognizable as Waters signatures because the
underlying secret key A" is blinded by a random exponent r; = log, (R;). Still,
running the verification algorithm of Waters signatures on (D;, E;) allows the
evaluation algorithm to derive M;; = e(g, h)™', so that (M 5)i jepn) forms a
rank-1 matrix. In injective tags, {(D;, E;)}?_; are uniformly distributed in G, so
that (M; ;)i jen is the sum of a rank-1 matrix and a diagonal matrix.

3.1 Description
Key Generation. LAF.Gen(1*) conducts the following steps.

1. Choose bilinear groups (G,G,GT) of prime order p > 2% with ran-
dom generators g, h,u <~ G and G, h, @ & G subject to the constraints
log,(h) = log;(h) and log,(u) = log ().

2. Choose a chameleon hash function CMH = (CMKg, CMhash, CMswitch),
where the hashing algorithm CMhash : {0,1}* X Rpasn — {0,1}% has
output length L € poly()\). Generate a pair (hkcwmu, tdcmn) «— CMKg(1*)
made of a hashing key hkcyy and a trapdoor tdemy.

3. Choose random exponents wy, . ..,wy, < Z, and define

Wy, = g"*, Wy, = g** Vk € [0, L]

that will be used to instantiate two hash functions Hg : {0,1}Y — G,
Hg : {0,1}* — G which map any string m € {0, 1} to

L L
Hg(m) =W, - H W;ﬂ[k]’ He(m) =W - H W:[k]’
k=1 k=1

respectively. Note that e(g, Hg(m)) = e(Hg(m), §) for any m € {0,1}%.

4. Let n € poly(n) be the desired input length. For each j € [n], choose
v; < Z, and define

Vi =g", Hy = (b -a)™ Vj € [n].

5. Output the evaluation key ek and the lossy tag generation key tk, which
consist of

ek = (hkCMHa 9, h7 u, g7 }Ala ’&’ {Wk7Wk}£:0’ {‘A/J’HJ};L:I)’
tk = (tdCMHv {Uj}?ﬂ)'

Lossy Algebraic Filters with Short Tags 45

The tag space T = T¢ X Tyy, is defined as a product of 7, = {0,1}* and
7o :={({Ri, Si» Di, Ei}}— 1, Thash) | Thash € Remn A
Vi e [n]: (Ri,Si,Di, B;) € G** A e(Ri, h' - 4) = e(Si,9)},

where G* := G\ {1g}. The range of the function family is Rng, = G} and
its domain is Zj.

Lossy Tag Generation. LAF.LTag(tk,t,) takes in an auxiliary tag component
ta € {0,1}* and uses tk = (tdcwn, {vitj=,s {wi}f_) to generate a lossy tag
as follows.

1. For each i € [n], choose r; <~ Z and compute

R, =g", Sy = (h'-u)" Vi € [n]. (3)
2. For each i € [n], choose p; <~ Z, and compute

D; = h™" - Hg(1)", E;, = g™ Vi € [n],

where 7 € {0, 1}* is chosen uniformly in the range of CMhash.
3. Use the trapdoor tdcymuy to find 7hesn € Rhuaskh such that

7 = CMhash (hkhash; (ta7 {Rz; Sia Di7 Ei}?:l); rhash) S {07 1}L

and output the tag ¢t = (tc, ta), where tc = ({R;, Si, Di, Ei Y1, Thash)-
Each lossy tag is associated with a matrix (Mm)ije[n] = (e(g,ﬁ)m.uj)ij’
which is a rank-1 matrix in the exponent. Its diagonal entries consist of

Q(D“g) 7

M;; = m =e(g,h)"" Vi € [n], (4)

while its non-diagonal entries

M= (LD gy) e (DY

()

are obtained by pairing tag component (R;,S;) with evaluation key compo-
nents (Vj, H;).
Random Tags. A random tag can be publicly sampled as follows.
1. For each i € [n], choose r; <~ Z% and compute {R;, S;}7; as in (3).

2. For each i € [n], choose (D;, E;) <~ G* x G* uniformly at random.
3. Choose Thash & Rhash-

Finally, output the tag ¢t = (tc, ta), where tc = ({R;, Si, Di, Ei Y1, Thash)-

46 B. Libert and C. Qian
We note that, in both random and lossy tags, we have e(R;, 4¢ - h) = e(S;, §)
for all i € [n], so that elements of 7 are publicly recognizable.

Evaluation. LAF.Eval(ek,t,x) takes in the function input x € Z, as well as
the tag t = (¢, ta). It parses tc as ({R;, Si, Di, Ei Y, hasn) and proceeds as
follows.

1. Return L if there exists i € [n] such that e(R;, h* - @) # e(S;, §).
2. Compute the matrix (Mm»)i’je[n] e G*" as

e(Dia g)

Mt = (8, Ha (1)

Vieln (6)

where 7 = CMhash (hkhash, (ta,{Ri,Si, Di, B} 1), rhash), and

vy = ()T e ep @, 0
Note that, since R; = g™ and S; = (h*-)" for some r; € Z,, we have
M;; = e(g, h)mvites, Vi € [n] (8)
M ;= e(g, h)"™™, Vi # j,
for some vector (wi,...,wn)' € Zy, that only contains non-zero entries if

t = (t,ta) is injective.
3. Compute the vector (Vr;)

j € [n].
4. Use the input x = (z1,...,2,)" € Zy to compute

as Vr; = e(h,V;) = e(g,h)" for each

J€[n]

Jj=1
Y, =[] M Vi € [n]
j=1

and output Y = (Yp,Y1,...,Y,)" € G%H.

While the above construction inherits the ©(A)-size public keys of Waters
signatures [42], we believe that it can be adapted to other signature schemes in
the standard model (e.g., [8,30]) so as to obtain shorter evaluation keys.

INJECTIVITY AND LOSSINESS. For any injective tag, all entries of the vector
(w1,...,wn) " are non-zero in (8). We can use Y, to ensure that the function is
injective. As long as w; # 0 for all i € [n], the evaluation algorithm (9) yields a
vector Y = (Y, Y1,...,Yy,) € Gr}ﬂ of the form

Yo = e(g, h)>i=1 i
Vi = e(g, b ®itriien vt Vi € [n],

Lossy Algebraic Filters with Short Tags 47

meaning that z; € Z,, is uniquely determined by (Yp,Y;) and (R;, D;, E;) (note
that the triple (R;, D;, E;) uniquely defines w;).

For any lossy tag, the evaluation outputs Y = (Y, Y1,...,Y,) € G such
that

Yo = e(g, fL)Z_?:l V5T
Y; = e(g, h)"Xi=1 Vi Vi € [n],

which always reveals the same information Z;;l v; - ; mod p about the input
vector x = (x1,...,2,) ", no matter which tag is used.

3.2 Security

The proof of indistinguishability relies on the wD3DH1 assumption via a hybrid
argument over the queries to the LAF.LTag(tk,-) oracle and over the pairs
{(D;, E;)}?_4 produced by LAF.LTag(tk,-) at each query. Using the R-wD3DH1
assumption, it is possible to modify the proof so as to use a hybrid argument
over the pairs {(D;, E;)}?_; only (meaning that all queries to LAF.LTag(tk, -) are
processed in parallel at each game transition). However, this proof would require
the SXDH assumption — which only holds in asymmetric pairings — to apply the
result of Lemma 1. In contrast, the proof of Theorem 1 allows instantiations in
all bilinear group configurations, even in symmetric pairings.

The proof of Theorem 1 uses a hybrid argument to gradually replace pairs
{(D;, E;)}_; by truly random group elements in outputs of the lossy tag gen-
eration oracle. To this end, it relies on the proof technique of the Boneh-Boyen
IBE [11] in the proof of Lemma 3. Namely, in order to embed a D3DH1 instance
(g,h, g%, g™, T . h™+ Yk} in the k-th pair (Dg, Fk), for indexes i > k, the reduc-
tion has to simulate A" for a known r; € Z, and an unknown h"%.

Theorem 1. The above LAF provides indistinguishability under the wD3DH1
assumption in (G,G,Gr).

Proof. We first recall that, for any injective or non-injective tag t = (tc,ta),

the core component t. = ({R;, Si, Di, E;i}'_1, Thask) iImply a matrix (M”)2 i)

where the off-diagonal entries are M;; = e(g, fl)”‘”ﬂ' and the diagonal entries
are of the form (8). In injective tags, the vector (wy,...,wn) € Z} only con-
tains non-zero entries. In lossy tags, we have (wq,...,w,)’ = 0". We define
a sequence of hybrid games. In Game(q), the adversary has access to the real
oracle LAF.LTag(tk,.) oracle that always outputs lossy tags. In Game(q), the
adversary is given access to an oracle O (.) that always outputs random tags.

Game(, ;) (1 </ <Q,1 <k <n): In this game, the adversary interacts with a
hybrid oracle LAF.LTag(e’k)(tk7 .). At the p-th query, this oracle outputs tags
) = (tg“),tg”)) such that

- If p < ¢, the tag tg”) = ({R:i,Si, D;, E;} 1, Thasn) implies a matrix

(M(“.) (1) (H))T

i)i’je[n] of th