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Preface

The 22nd IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2019) was held April 14–17, 2019, in Beijing, China. The
conference is sponsored by the International Association for Cryptologic Research
(IACR) and focuses on all technical aspects of public-key cryptography. These
proceedings consist of two volumes including 42 papers that were selected by the
Program Committee from 173 submissions. Each submission was assigned to at least
three reviewers while submissions co-authored by Program Committee members
received at least five reviews. During the discussion phase, the Program Committee
used quite intensively a recent feature of the review system, which allows Program
Committee members to anonymously ask questions to the authors. The reviewing and
selection process was a challenging task and we are deeply grateful to the Program
Committee members and external reviewers for their hard and thorough work. Many
thanks also to Shai Halevi for his assistance with the Web submission and review
software. We thank the authors for promptly responding to the questions raised by the
committee, which helped us understand the content of their submissions.

The conference program also included an invited talk by Tatsuaki Okamoto (NTT).
We would like to thank the invited speaker as well as all the other speakers and the
authors of all submissions for their contributions to the program and conference.
Finally, we would like to thank Xiaoyun Wang, the general chair, and all the members
of local Organizing Committee for organizing a great conference and all the conference
attendees for making this conference a truly intellectually stimulating event through
their active participation.

April 2019 Dongdai Lin
Kazue Sako
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Sub-logarithmic Distributed Oblivious
RAM with Small Block Size

Eyal Kushilevitz and Tamer Mour(B)

Computer Science Department, Technion, 32000 Haifa, Israel
eyalk@cs.technion.ac.il, tamer.mour@technion.ac.il

Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a client to securely execute RAM programs over data that is stored
in an untrusted server. Distributed Oblivious RAM is a variant of ORAM,
where the data is stored in m > 1 servers. Extensive research over the
last few decades have succeeded to reduce the bandwidth overhead of
ORAM schemes, both in the single-server and the multi-server setting,
from O(

√
N) to O(1). However, all known protocols that achieve a sub-

logarithmic overhead either require heavy server-side computation (e.g.
homomorphic encryption), or a large block size of at least Ω(log3 N).

In this paper, we present a family of distributed ORAM construc-
tions that follow the hierarchical approach of Goldreich and Ostrovsky
[17]. We enhance known techniques, and develop new ones, to take bet-
ter advantage of the existence of multiple servers. By plugging efficient
known hashing schemes in our constructions, we get the following results:
1. For any number m ≥ 2 of servers, we show an m-server ORAM

scheme with O(log N/ log log N) overhead, and block size Ω(log2 N).
This scheme is private even against an (m − 1)-server collusion.

2. A three-server ORAM construction with O(ω(1) · log N/ log log N)
overhead and a block size almost logarithmic, i.e. Ω(log1+ε N).

We also investigate a model where the servers are allowed to perform a
linear amount of light local computations, and show that constant over-
head is achievable in this model, through a simple four-server ORAM
protocol. From theoretical viewpoint, this is the first ORAM scheme with
asymptotic constant overhead, and polylogarithmic block size, that does
not use homomorphic encryption. Practically speaking, although we do
not provide an implementation of the suggested construction, evidence
from related work (e.g. [12]) confirms that despite the linear computa-
tional overhead, our construction is practical, in particular when applied
to secure computation.

Keywords: Oblivious RAM · Multi-server setting ·
Secure computation · Private storage

A full version is available on arXiv.org e-Print archive as arXiv:1802.05145 [cs.CR].
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4 E. Kushilevitz and T. Mour

1 Introduction

Since it was first introduced by Goldreich and Ostrovsky [17], the Oblivious RAM
problem has attracted a lot of attention (see, e.g. [22,33,35]). Throughout the
past three decades, efficient ORAM protocols were constructed (e.g. [18,34]),
their various applications, such as secure storage [4,28], secure processors [32],
and secure multi-party computation [20,25], were studied, and their limits were
considered [1,17,24].

Standard Model. The standard ORAM model considers a setting where a client
outsources his data to an untrusted server that supports read and write opera-
tions only. The goal of an ORAM simulation is to simulate any RAM program
that the client executes over the remote data, so that the same computation is
performed, but the view of the server during the interaction would provide no
information about the client’s private input and the program executed, except
their length. Clearly, encryption can be employed to hide the content of the
data, but the sequence of reads and write locations itself might leak information
as well. Thus, the focus of ORAM protocols is to hide the access pattern made
to the server. The main metric considered in ORAM research is the bandwidth
overhead of an ORAM scheme (shortly referred to as “overhead”), which is the
multiplicative increase in the amount of communication incurred by an oblivious
simulation relative to a regular run of the simulated program. In this standard
model, researchers have been able to improve the overhead from O(log3 N) [17]
to O(log N) [5,34,35], where N is the number of data blocks in storage, and thus
reaching the optimal overhead in that model due to the matching impossibility
results of Goldreich and Ostrovsky [17] and Larsen and Nielsen [24].

In an attempt to achieve sub-logarithmic overhead, research has deviated
from the standard model (e.g. [4,19,25]). For instance, by allowing the server
to perform some local computation, multiple works [4,11,14] could achieve a
constant overhead. However, this improvement comes at a cost: the server per-
forms heavy homomorphic encryption computation which practically becomes
the actual bottleneck of such schemes.

Distributed Oblivious RAM. Another interesting line of work, often referred to
as Distributed Oblivious RAM [1,19,38, etc.], was initiated by Ostrovsky and
Shoup [28] and later refined by Lu and Ostrovsky [25], and considers the multi-
server setting. We denote by (m, t)-ORAM an ORAM scheme that involves
m > 1 servers, out of which t < m servers might collude. In the two-server
setting, Zhang et al. [38] and Abraham et al. [1] construct (2, 1)-ORAMs with
sub-logarithmic overhead. In order to achieve O(logd N) overhead (for any d ∈ N)
using their construction, Abraham et al. require that the size of a memory block,
i.e. the data unit retrieved in a single query to the RAM, is Ω(d log2 N) (with
larger blocks the asymptotic overhead increases). For example, for an over-
head of O(log N/ log log N), one has to work with blocks of relatively large
size of Ω(log3 N), which may be undesired in many applications. Zhang et al.
require a polynomial block size of Ω(N ε) for a constant bandwidth blowup.
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Other attempts to achieve low overhead in the multi-server setting [26] were
shown to be vulnerable to concrete attacks [1]. These recent developments in
distributed ORAM raise the following question, which we address in this paper:

Can we construct a sub-logarithmic distributed ORAM with a small block size?

Known sub-logarithmic ORAMs [1,38] belong to the family of tree-based
ORAMs [33]. One of the key components in tree-based ORAMs is a position
map that is maintained through a recursive ORAM. Such a recursion imposes
the requirement for a large polylogarithmic block size1. Thus, it seems that a
positive answer to the question above will come, if at all, from constructions of
the other well-studied type of ORAMs, those based on the hierarchical solution
of [17]. By applying the hierarchical approach to the distributed setting, Lu and
Ostrovsky [25] obtained the first logarithmic hierarchical ORAM scheme. In this
paper, we show how to take a further advantage of the multiple servers in order
to beat the logarithmic barrier, and still use a relatively small block size, with
constructions in both the two-server and three-server settings. In addition, we
consider the case where t > 1, and show how to generalize our two-server solution
to an (m,m − 1)-ORAM, with the same asymptotic complexity, for any m > 2.

ORAM for Secure Computation. An interesting application of ORAM is its inte-
gration in multi-party computation (MPC) protocols for RAM programs on large
data. The possibility of using ORAM for MPC was first pointed out by Ostro-
vsky and Shoup [28], and was revisited by more recent works [20,25] due to the
increasing interest in applied secure computation. Despite the extensive improve-
ments in the practicality of secure circuit evaluation protocols, the theoretical
framework for MPC protocols for RAM evaluation, given in [20,25,28] and other
works, encountered major obstacles toward achieving practical efficiency.

A new line of work [12,19,36,37] studies the practicality of (distributed)
ORAM in MPC, and observes that the traditional ORAM approaches were
designed for the client-server model, and that in the MPC context, a focus on
a different set of efficiency measures and optimizations is required in order to
achieve better performance. For instance, constructions where the client com-
plexity is optimized, even in exchange for server-side work that is linear in N
per read/write, perform better than classic schemes, where server work is usually
limited. In this context, the new cryptographic primitive of function secret shar-
ing (FSS), introduced by Boyle et al. [7], was shown to be useful for constructing
schemes that are practically efficient [12], or that have low interaction [19]. How-
ever, despite their practical efficiency, none of the mentioned schemes achieve
sub-logarithmic overhead, thus leaving us with the following question:

Can we achieve sub-logarithmic ORAM that is “optimized for MPC”?

1 To the best of our knowledge, the only tree-based ORAM that bypasses recursion,
due to Wang et al. [19], works in a different model where linear server work is allowed
(see preceding discussion).
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Table 1. Comparison of ORAM schemes.

Scheme m t Overhead Block size Server work

Goldreich-Ostrovsky [17] 1 - O(log3 N) Ω(logN) -

Kushilevitz et al. [22] 1 - O( log2 N
log log N

) Ω(logN) -

Wang et al. [35] 1 - O(logN · ω(1)) Ω(log2 N) -

Asharov et al. [5] 1 - O(logN) Ω(logN) -

Lu-Ostrovsky [25] 2 1 O(logN) Ω(logN) polylog

Chan et al. [9] 3 1 O(log2 N) Ω(logN) -

Zhang et al. [38] 2 1 O(1) Ω(Nε) polylog

Abraham et al. [1] 2 1 O(logd N) ω(d log2 N) polylog

Doerner-Shelat [12] 2 1 O(
√

N) Ω(logN) linear

Gordon et al. [19] 2 1 O(logN) Ω(logN) linear

Our 4-server construction

Instantiation 1 4 1 O(1) Ω(λ logN) linear

Our 3-server construction

Instantiation 2 3 1 O(logd N · ω(1)) Ω(d logN) polylog

d = logε N O( log N
log log N

· ω(1)) Ω(log1+ε N)

Instantiation 3 3 1 O(logd N) Ω(d log1.5 N) polylog

d = logε N O( log N
log log N

) Ω(log1.5+ε N)

Our m-server construction

Instantiation 4 m ≥ 2 m − 1 O( log N
log log N

) Ω(log2 N) polylog

We show that by allowing the servers to perform linear computations per
RAM step, we can achieve a four-server ORAM scheme with a small constant
overhead. Our constructions strictly improve over the two-server ORAM schemes
from [12,19], which were shown to perform well in practical implementations, in
terms of overhead and computation, both asymptotically and concretely.

1.1 Our Contribution and Technical Overview

Sub-logarithmic Distributed ORAM Constructions. Our main contri-
bution is a family of distributed hierarchical ORAM constructions with any
number of servers. Our constructions make a black-box use of hashing schemes.
Instantiating our constructions with hashing schemes that were previously used
in ORAM [8,18,25], yields state-of-the-art results (see Table 1). We elaborate.

A Three-Server ORAM Protocol. By using techniques from [25] over the bal-
anced hierarchy from [22], and using two-server PIR [10] as a black box,
we are able to construct an efficient (3, 1)-ORAM scheme. Instantiating the
scheme with cuckoo hash tables (similarly to [18,22,25]) achieves an overhead
of O(ω(1) · logd N) with a block size of B = Ω(d log N). Thus, for any ε > 0, we
achieve O(ω(1) · log N/ log log N) overhead with B = Ω(log1+ε N).
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In the classic hierarchical solution from [17], the data is stored in log N lev-
els, and the protocol consists of two components: queries, in which target virtual
blocks are retrieved, and reshuffles, which are performed to properly maintain
the data structure. Roughly speaking, in a query, a single block is downloaded
from every level, resulting in log N overhead per query. The reshuffles cost log N
overhead per level, and log2 N overall. Kushilevitz et al. [22] suggest to balance
the hierarchy by reducing the number of levels to log N/ log log N . In the bal-
anced hierarchy, however, one has to download log N blocks from a level in every
query. Thus, balancing the hierarchy “balances”, in some sense, the asymptotic
costs of the queries and reshuffles, as they both become log2 N/ log log N .

At a high level, we carefully apply two-server techniques to reduce the over-
head, both of the queries and the reshuffles, from the single-server ORAM of
[22]. More specifically, to reduce the queries cost, we use two-server PIR to
allow the client to efficiently read the target block from the log N positions, it
had otherwise have to download, from every level. By requiring the right (rel-
atively small) block size, the cost of PIRs can be made constant per level and,
therefore, log N/ log log N in total. To reduce the reshuffles cost, we replace the
single-server reshuffles with cheaper two-server reshuffles, that were first used by
Lu and Ostrovsky [25], and that incur only a constant overhead per level.

So far, it sounds like we are already able to achieve log N/ log log N over-
head using two servers only. However, combining two-server PIR and two-server
reshuffles is tricky: each assumes a different distribution of the data. In stan-
dard two-server PIR, the data is assumed to be identically replicated among the
two servers. On the other hand, it is essential for the security of the two-server
reshuffles from [25] that every level in the hierarchy is held only by one of the
two servers, so that the other server, which is used to reshuffle the data, does not
see the access pattern to the level. We solve this problem by combining the two
settings using three servers: every level is held only by two of the three servers
in a way that preserves the security of the two-server reshuffles and, at the same
time, provides the required setting for two-server PIR.

An (m,m − 1)-ORAM Protocol. We take further advantage of the existence
of multiple servers and construct, for any integer m ≥ 2, an m-server ORAM
scheme that is private against a collusion of up to m−1 servers. Using oblivious
two-tier hashing [8], our scheme achieves an overhead of O(log N/ log log N), for
which it requires B = Ω(log2 N) (see Theorem 4 and Instantiation 4).

We begin by describing a (2, 1)-ORAM scheme, then briefly explain how to
extend it to any number of servers m > 2. Let us take a look back at our three-
server construction. We were able to use both two-server PIR and two-server
reshuffles using only a three-server setting. Now that we restrict ourselves to
using two servers, we opt for the setting where the two servers store identical
replicates of the entire data structure. Performing PIR is clearly still possible,
but now that the queries in all levels are made to the same two servers, we
cannot perform Lu and Ostrovsky’s [25] two-server reshuffles securely. Instead,
we use oblivious sort (or, more generally, oblivious hashing) to reshuffle the
levels. Oblivious sort is a sorting protocol in the client-server setting, where the
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server involved learns nothing about the obtained order of blocks. Oblivious sort
is used in many single-server hierarchical ORAMs (e.g. [17,22]), where it incurs
log N overhead per level. Since we aim for a sub-logarithmic overhead, we avoid
this undesired blowup by performing oblivious sort over the tags of the blocks
only (i.e. their identities) which are much shorter, rather than over the blocks
themselves. We require a block size large enough such that the gap between the
size of the tags and the size of the blocks cancels out the multiplicative overhead
of performing oblivious sort. Once the tags are shuffled into a level, it remains
to match them with the blocks with the data. That is where the second server is
used. We apply a secure two-server “matching procedure” which, at a high level,
lets the second server to randomly permute the data blocks and send them to
the server holding the shuffled tags. The latter can then match the data to the
tags in an oblivious manner. Of course, the data exchange during the matching
has to involve a subtle cryptographic treatment to preserve security.

The above scheme can be generalized to an (m,m−1)-ORAM, for any m > 2.
The data is replicated in all servers involved, and m-server PIR is used. The
matching procedure is extended to an m-server procedure, where all the servers
participate in randomly permuting the data.

ORAM with Constant Overhead for Secure Computation. We also
investigate “ORAM for practical MPC”, where we allow linear server-side work
and focus on client efficiency, and show that constant overhead is achievable in
this model (see Table 1). The proposed scheme, described below, applies function
secret sharing over secret-shared data, thus avoiding the need for encrypting the
data using symmetric encryption (unlike existing schemes, e.g. [12,19]).

A Simple Four-Server ORAM Protocol. Inspired by an idea first suggested
in [28], we combine private information retrieval (PIR) [10], and PIR-write [28],
to obtain a four-server ORAM. To implement the PIR and PIR-write protocols
efficiently, we make a black-box use of distributed point functions (DPFs) [7,16],
i.e. function secret sharing schemes for the class of point functions. Efficient
DPFs can be used to construct (i) a (computational) two-server PIR protocol if
the data is replicated among the two servers, or (ii) a two-server PIR-write pro-
tocol for when the data is additively secret-shared among the two servers. These
two applications of DPFs are combined as follows: we create two additive shares
of the data, and replicate each share twice. We send each of the four shares (two
pairs of identical shares) to one of the four servers. A read is simulated with two
instances of PIR, each invoked with a different pair of servers holding the same
share. A write is simulated with two instance of PIR-write, each invoked with a
different pair of servers holding different shares.

We stress that the client in all of our constructions can be described using a
simple small circuit, and therefore, our schemes can be used to obtain efficient
secure multi-party protocols, following [25].
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1.2 Related Work

Classic Hierarchical Solution. The first hierarchical ORAM scheme appeared in
the work of Ostrovsky [27] and later in [17]. In this solution, the server holds
the data in a hierarchy of levels, growing geometrically in size, where the ith

level is a standard hash table with 2i buckets of logarithmic size, and a hash
function hi(·), which is used to determine the location of blocks in the hash
table: block of address v may be found in level i (if at all) in bucket hi(v). The
scheme is initiated when all blocks are in the lowest level. An access to a block
with a virtual address v is simulated by downloading bucket hi(v) from every
level i. Once the block is found, it is written back to the appropriate bucket
in the smallest level (i = 0). As a level fills up, it is merged down with the
subsequent (larger) level i+1, which is reshuffled with a new hash function hi+1

using oblivious sorting. Thus, a block is never accessed twice in the same level
with the same hash function, hence the obliviousness of the scheme. Using AKS
sorting network [3] for the oblivious sort achieves an O(log3 N) overhead.

Balanced Hierarchy. Up until recently, the best known single-server ORAM
scheme for general block size, with constant client memory, was obtained by
Kushilevitz et al. [22], using an elegant “balancing technique”, that reduces the
number of levels in the hierarchy of [17], in exchange for larger levels. Their
scheme achieves an overhead of O(log2 / log log N), using oblivious cuckoo hash-
ing (first applied to ORAM in [18,31]). An alternative construction, recently
proposed by Chan et al. [8], follows the same idea, but replaces the relatively
complex cuckoo hashing with a simpler oblivious hashing that is based on a
variant of the two-tier hashing scheme from [2].

Tree-Based ORAM. Another well-studied family of ORAM schemes is tree-based
ORAMs (e.g. [33,35]), where, as the name suggests, the data is stored in a tree
structure. The first ORAMs with a logarithmic overhead, in the single-server
model, were tree-based [34,35]. However, tree-based ORAMs usually require a
large block size of at least B = Ω(log2 N).

Optimal ORAM with General Block Size. The recent work of Asharov et al.
[5], which improves upon the work of Patel et al. [30], succeeds to achieve opti-
mal logarithmic overhead with general block size (due to known lower bounds
[17,24]). Both results are based on the solution from [17] and use non-trivial
properties of the data in the hierarchy to optimize the overhead.

Distributed ORAM Constructions. Ostrovsky and Shoup [28] were the first to
construct a distributed private-access storage scheme (that is not read-only).
Their solution is based on the hierarchical ORAM from [17]. However, their
model is a bit different than ours: they were interested in the amount of commu-
nication required for a single query (rather than a sequence of queries), and they
did not limit the work done by the servers. Lu and Ostrovsky [25] considered
the more general ORAM model, defined in Sect. 2.1. They presented the first
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two-server oblivious RAM scheme, and achieved a logarithmic overhead with
a logarithmic block size by bypassing oblivious sort, and replacing it with an
efficient reshuffling procedure that uses the two servers.

The tree approach was also studied in the multi-server model. Contrary to
the hierarchical schemes, known distributed tree-based ORAMs [1,38] beat the
logarithmic barrier. The improvement in overhead could be achieved by using
k-ary tree data structures, for some parameter k = ω(1). However, these con-
structions suffer from a few drawbacks, most importantly, they require a large
polylogarithmic (sometimes polynomial) block size.

ORAM Constructions for MPC with Linear Computational Overhead. The work
of Ostrovsky and Shoup [28], as well as some recent works [12,19] have consid-
ered the model where the servers are allowed to perform a linear amount of
light computations. Both the works of Doerner and Shelat [12] and Wang et al.
[19] elegantly implement techniques from the standard model (square-root con-
struction, and tree structure, respectively), and use the efficient PIR protocol
from [7], to construct practically efficient two-server ORAM schemes with lin-
ear server-side computation per access and bandwidth overhead matching their
analogues in the single-server setting (see Table 1).

1.3 Paper Organization

Section 2 contains formal definitions and introduces cryptographic tools that we
use. In Sect. 3, we present our four-server ORAM. In Sect. 4, we provide an
overview of the hierarchical ORAM framework, on which our main distributed
ORAM constructions are based. In Sects. 5 and 6, we present these constructions.
Due to space limit, de-amortization of our constructions, and a discussion of their
application to secure computation, are left to the full version.

2 Preliminaries

2.1 Model and Problem Definition

The RAM Model. We work in the RAM model, where a RAM machine consists
of a CPU that interacts with a (supposedly remote) RAM storage. The CPU has
a small number of registers, therefore it uses the RAM storage for computations
over large data, by performing reads and writes to memory locations in the RAM.
A sequence of � queries is a list of � tuples (op1, v1, x1), . . . , (op�, v�, x�), where opi

is either Read or Write, vi is the location of the memory cell to be read or written
to, and xi is the data to be written to vi in case of a Write. For simplicity of
notation, we unify both types of operations into an operation known as an access,
namely “Read then Write”. Hence, the access pattern of the RAM machine is the
sequence of the memory locations and the data (v1, x1), . . . , (v�, x�).
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Oblivious RAM Simulation. A (single-server) oblivious RAM simulation, shortly
ORAM simulation, is a simulation of a RAM machine, held by a client as a CPU,
and a server as RAM storage. The client communicates with the server, and
thus can query its memory. The server is untrusted but is assumed to be semi-
honest, i.e. it follows the protocol but attempts to learn as much information
as possible from its view about the client’s input and program. We also assume
that the server is not just a memory machine with I/O functionality, but that
it can perform basic local computations over its storage (e.g. shuffle arrays,
compute simple hash functions, etc.). We refer to the access pattern of the RAM
machine that is simulated as the virtual access pattern. The access pattern that
is produced by the oblivious simulation is called the actual access pattern. The
goal of ORAM is to simulate the RAM machine correctly, in a way that the
distribution of the view of the server, i.e. the actual access pattern, would look
independent of the virtual access pattern.

Definition 1 (ORAM, informal). Let RAM be a RAM machine. We say that
a (probabilistic) RAM machine ORAM is an oblivious RAM simulation of RAM,
if (i) (correctness) for any virtual access pattern y := ((v1, x1), . . . , (v�, x�)), the
output of RAM and ORAM at the end of the client-server interaction is equal with
probability ≥ 1 − negl(�), and (ii) (security) for any two virtual access patterns,
y,z, of length �, the corresponding distribution of the actual access patterns
produced by ORAM, denoted ỹ and z̃, are computationally indistinguishable.

An alternative interpretation of the security requirement is as follows: the
view of the server, during an ORAM simulation, can be simulated in a way that
is indistinguishable from the actual view of the server, given only �.

Distributed Oblivious RAM. A distributed oblivious RAM simulation is the ana-
logue of ORAM simulation in the multi-server setting. To simulate a RAM
machine, the client now communicates with m semi-honest servers. With the
involvement of more servers, we can hope to achieve schemes that are more
efficient as well as schemes that protect against collusions of t servers.

Definition 2 (Distributed ORAM, informal). An (m, t)-ORAM simulation
(0 < t < m) is an oblivious RAM simulation of a RAM machine, that is invoked
by a CPU client and m remote storage servers, and that is private against a
collusion of t corrupt servers. Namely, for any two actual access patterns y,z
of length �, the corresponding combined view of any t servers during the ORAM
simulation (that consists of the actual access queries made to the t servers) are
computationally indistinguishable.

Parameters and Complexity Measures. The main complexity measure in which
ORAM schemes compete is the bandwidth overhead (or, shortly, overhead).
When the ORAM protocol operates in the “balls and bins” manner [17], where
the only type of data exchanged between the client and servers is actual memory
blocks, it is convenient to define the overhead as the amount of actual memory
blocks that are queried in the ORAM simulation to simulate a virtual query to
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a single block. However, in general, overhead is defined as the blowup in the
number of information bits exchanged between the parties, relative to a non-
oblivious execution of the program. Following the more general definition, the
overhead is sometimes a function of the block size B. Clearly, we aim to achieve
a small asymptotic overhead with block size as small as possible.

Other metrics include the size of the server storage and the client’s local
memory (in blocks), and the amount and type of the computations performed by
the servers (e.g. simple arithmetics vs. heavy cryptography). We note that all of
these notions are best defined in terms of overhead, compared to a non-oblivious
execution of the program, e.g. storage overhead, computational overhead, etc.

2.2 Private Information Retrieval

Private information retrieval (PIR) [10] is a cryptographic primitive that allows
a client to query a database stored in a remote server, without revealing the iden-
tity of the queried data block. Specifically, an array of n blocks X = (x1, . . . , xn)
is stored in a server. The client, with input i ∈ [n], wishes to retrieve xi, while
keeping i private. PIR protocols allow the client to do that while minimizing the
number of bits exchanged between the client and server. PIR is studied in two
main settings: single-server PIR, where the database is stored in a single server,
and the multi-server setting, where the database is replicated and stored in all
servers, with which the client communicates simultaneously. More specifically,
an (m, t)-PIR is a PIR protocol that involves m > 1 servers and that is secure
against any collusion of t < m servers. It was shown in [10] that non-trivial
single-server PIRs cannot achieve information-theoretic security. Such schemes
are possible with two servers (or more). Moreover, many known two-server PIRs
(both information theoretic and computational, e.g. [6,7,10,13]) do not involve
heavy server-side computation, like homomorphic encryption or number theo-
retic computations, as opposed to known single-server protocols (e.g. [15,23]).

3 A Simple Four-Server ORAM with Constant Overhead

We present our four-server ORAM protocol with constant bandwidth overhead
and linear server-side computation per access. The protocol bypasses the need
for symmetric encryption as it secret-shares the data among the servers. We use
distributed point functions [16] (see Sect. 3.1 below) as a building block.

Theorem 1 (Four-server ORAM). Assume the existence of a two-party DPF
scheme for point functions {0, 1}n → {0, 1}m with share length Λ(n,m) bits.
Then, there exists a (4, 1)-ORAM scheme with linear2 server-side computation
per access and bandwidth overhead of O(Λ(log N,B)/B) for a block size of B =
Ω(Λ(log N, 1)).

2 Up to polylogarithmic factors.
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Instantiating our scheme with the DPF from [7] obtains the following.

Instantiation 1. Assume the existence of one-way functions. Then, there exists
a (4, 1)-ORAM scheme with linear server-side computation per access and con-
stant bandwidth overhead for a block size of B = Ω(λ log N), where λ is a security
parameter.

3.1 Building Block: Distributed Point Functions

Distributed Point Functions (DPF), introduced by Gilboa and Ishai [16], are a
special case of the broader cryptographic primitive called Function Secret Shar-
ing (FSS) [7]. Analogous to standard secret sharing, an FSS allows a dealer to
secret-share a function f among two (or more) participants. Each participant
is given a share that does not reveal any information about f . Using his share,
each participant pi, for i ∈ {0, 1}, can compute a value fi(x) on any input x in
f ’s domain. The value f(x) can be computed by combining f0(x) and f1(x). In
fact, f(x) = f0(x) + f1(x). Distributed point function is an FSS for the class of
point functions, i.e., all functions Pa,b : {0, 1}n → {0, 1}m that are defined by
Pa,b(a) = b and Pa,b(a′) = 0m for all a′ �= a. Boyle et al. [7] construct a DPF
scheme where the shares given to the parties are of size O(λn+m), where λ is a
security parameter, that is the length of a PRG seed. We are mainly interested
in the application of DPFs to PIR and PIR-write [7,16].

3.2 Overview

Similarly to the schemes of [12,19], we apply DPF-based PIR [7] to allow the
client to efficiently read records from a replicated data. If we allow linear server-
side computation per access, the task of oblivious reads becomes trivial by using
DPFs. The remaining challenge is how to efficiently perform oblivious writes to
the data.

The core idea behind the scheme is to apply DPFs not only for PIR, but also
for a variant of PIR-write. PIR-write (a variant of which was first investigated
in [28]) is the write-only analog of PIR. We use DPFs to construct a simple
two-server PIR-write where every server holds an additive share of the data.
Our PIR-write protocol is limited in the sense that the client can only modify
an existing record by some difference of his specification (rather than specifying
the new value to be written). If the client has the ability to read the record in a
private manner, then this limitation becomes irrelevant.

We combine the read-only PIR and the write-only PIR-write primitives to
obtain a four-server ORAM scheme that enables both private reads and writes.
In the setup, the client generates two additive shares of the initial data, X0,X1

s.t. X = X0 ⊕ X1, and replicates each of the shares. Each of the four shares
obtained is given to one of the servers. For a private read, the client retrieves
each of the shares X0,X1, using the DPF-based PIR protocol, with the two
servers that hold the share. For a private write, the proposed PIR-write protocol
is invoked with pairs of servers holding different shares of the data.
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We remark that our method to combine PIR and PIR-write for ORAM is
inspired by the 8-server ORAM scheme presented in [28], in which an elementary
4-server PIR-write protocol was integrated with the PIR from [10].

3.3 Oblivious Read-Only and Write-Only Schemes

Basic PIR and PIR-Write. Recall the classic two-server PIR protocol, proposed
in [10]. To securely retrieve a data block xi from an array X = (x1, . . . , xN ) that
is stored in two non-colluding servers S0 and S1, the client generates two random
N -bit vectors, e0i and e1i such that e0i ⊕ e1i = ei, where ei is the ith unit vector,
and sends eb

i to Sb. In other words, the client secret-shares the vector ei among
the two servers. Then, each server, computes the inner product xb

i := X · eb
i and

sends it to the client. It is easy to see that xi = x0
i ⊕ x1

i .
The same approach can be used for two-server PIR-write. However, now we

require that the data is shared, rather than replicated, among the two servers.
Namely, server Sb holds a share of the data Xb, such that X0⊕X1 = X. In order
to write a new value x̂i to the ith block in the array, the client secret-shares the
vector (x̂i ⊕ xi)ei to the two servers. Each of the servers adds his share to Xb,
and obtains a new array X̂b. After this update, the servers have additive shares
of X with the updated value of xi. Notice that we assume that the client already
read and knows xi; this is not standard in the PIR-write model.

Efficient PIR and PIR-Write via DPFs. In the heart of the PIR and PIR-write
protocols described above is the secret sharing of vectors of size N . Applying
standard additive secret sharing yields protocols with linear communication cost.
Since we share a very specific type of vectors, specifically, unit vectors and their
multiples, standard secret sharing is an overkill. Instead, we use DPFs. The
values of a point function Pi,x : [N ] → {0, 1}m (that evaluates x at i, and zero
elsewhere) can be represented by a multiple of a unit vector vi,x := xei. Hence,
one can view distributed point functions as a means to “compress” shares of
unit vectors and their multiples. We can use DPFs to share such a vector among
two participants p0 and p1, as follows. We secret-share the function Pi,x using a
DPF scheme, and generate two shares P 0

i,x and P 1
i,x. For b ∈ {0, 1}, share P b

i,x is
sent to participant pb. The participants can compute their shares of the vector
vi,x by evaluating their DPF share on every input in [N ]. Namely, pb computes
his share vb

i,x := (P b
i,x(1), . . . , P b

i,x(n)). From the correctness of the underlying
DPF scheme, it holds that v0

i,x ⊕ v1
i,x = vi,x. Further, from the security of the

DPF, the participants do not learn anything about the vector vi,x except the
fact that it is a multiple of a unit vector. Using the DPF construction from
[7], we have a secret sharing scheme for unit vectors and their multiples, with
communication complexity O(λ log N + m), assuming the existence of a PRG
G : {0, 1}λ → {0, 1}m.

3.4 Construction of Four-Server ORAM

Initial Server Storage. Let S0
0 ,S0

1 ,S1
0 and S1

1 be the four servers involved in
the protocol. Let X = (x1, . . . , xN ) be the data consisting of N blocks, each of
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size B = Ω(Λ(log N, 1)) bits. In initialization, the client generates two additive
shares of the data, X0 = (x0

1, . . . , x
0
N ) and X1 = (x1

1, . . . , x
1
N ). That is, X0 and

X1 are two random vectors of N blocks, satisfying X0 ⊕X1 = X. For b ∈ {0, 1},
the client sends Xb to both Sb

0 and Sb
1. Throughout the ORAM simulation, we

maintain the following invariant: for b ∈ {0, 1}, Sb
0 and Sb

1 have an identical array
Xb, such that X0 and X1 are random additive shares of X.

Query Protocol. To obliviously simulate a read/write query to the ith block in
the data, the client first reads the value xi via two PIR queries: a two-server PIR
with S0

0 and S0
1 to retrieve x0

i , and a two-server PIR with S1
0 and S1

1 to retrieve
x1

i . The client then computes xi using the two shares. Second, to write a new
value x̂i to the data (which can possibly be equal to xi), the client performs two
identical invocations of two-server PIR-write, each with servers S0

b and S1
b for

b ∈ {0, 1}. It is important that Sb
0,Sb

1 (for b ∈ {0, 1}) receive an identical PIR-
write query, since otherwise, they will no longer have two identical replicates.

3.5 Analysis

The security of the scheme follows directly from the security of the underlying
DPF protocol from [7]. It remains to analyze the bandwidth cost. To simulate
a query, the client sends each of the servers two DPF shares: one for reading of
length Λ(log N, 1) bits, and another for writing of length Λ(log N,B). With a
block size of B = Ω(Λ(log N, 1)) this translates to O(Λ(log N,B)/B) bandwidth
overhead. Each of the servers, in return, answers by sending two blocks.

4 The Balanced Hierarchical ORAM Framework

In this section, we lay the groundwork for our constructions in the standard
distributed ORAM model, that are presented later in Sects. 5 and 6.

4.1 Main Building Block: Hashing

Hashing, or more accurately, oblivious hashing, has been a main building block of
hierarchical ORAM schemes since their first appearance in [27]. Various types of
hashing schemes, each with different parameters and properties, were plugged in
ORAM constructions in an attempt to achieve efficient protocols (e.g. [8,17,18]).
Hashing stands at the heart of our constructions as well. However, since we make
a generic black-box use of hashing, we do not limit ourselves to a specific scheme,
but rather take a modular approach.

We consider an (n,m, s)-hashing scheme3, H, to be defined by three proce-
dures: Gen for key generation, Build for constructing a hash table T of size m
that contains n given data elements, using the generated key, and Lookup for
querying T for a target value. The scheme may also use a stash to store at most

3 Implicitly stated parameters may be omitted for brevity.
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s elements that could not be inserted into T . In a context where a collection of
hashing schemes operate simultaneously (e.g. ORAMs), a shared stash may be
used by all hash tables. We denote by CBuild(H) and CLookup(H), the build-up
complexity and the query complexity of H (resp.) in terms of communication
(in the client-server setting).

An oblivious hashing scheme is a scheme whose Build and Lookup procedures
are oblivious of the stored data and the queried elements (respectively). In the
full version, we provide formal definitions and notation for the above, and survey
a few of the schemes that were used in prior ORAM works.

4.2 Starting Point: Single-Server ORAM of Kushilevitz et al. [22]

Overview. The starting point of our distributed ORAM constructions in
Sects. 5 and 6 is the single-server scheme from [22]. In standard hierarchical
ORAMs, the server stores the data in log N levels, where every level is a hash
table, larger by a factor of 2 than the preceding level. Kushilevitz et al. changed
this by having L = logd N levels, where the size of the ith level is proportional
to (d − 1) · di−1. Having less levels eventually leads to the efficiency in overhead,
however, since level i + 1 is larger by a factor of d (no longer constant) than
level i, merging level i with level i + 1 becomes costly (shuffling an array of size
(d−1) ·di every (d−1) ·di−1 queries). To solve this problem, every level is stored
in d − 1 separate hash tables of equal size in a way that allows us to reshuffle
every level into a single hash table in the subsequent level.

Theorem 2 ([8,22]). Let d be a parameter, and define L = logd N . Assume
the existence of one-way functions, and a collection {Hi}L

i=1, where Hi is an
oblivious (di−1k, ·, ·)-hashing scheme, with a shared stash of size s. Then there
exists a single-server ORAM scheme that achieves the following overhead for
block size B = Ω(log N).

O

(
k + s +

L∑
i=1

d · CLookup(Hi) +
L∑

i=1

CBuild(Hi)
di−1k

)

A special variant of the theorem was proven by Kushilevitz et al. [22]. In
their work, they use a well-specified collection of hashing schemes (consist-
ing of both standard and cuckoo hashing [29]), and obtain an overhead of
O(log2 N/ log log N). The modular approach to hierarchical ORAM was taken
by Chan et al. [8], in light of their observations regarding the conceptual com-
plexity of cuckoo hashing, and their construction of a simpler oblivious hashing
scheme that achieves a similar result. Our results in the distributed setting fit
perfectly in this generic framework, as they are independent of the underlying
hashing schemes. Below, we elaborate the details of the construction from [22],
as a preparation towards the following sections.

Data Structure. The top level, indexed i = 0, is stored as a plain array of size
k. As for the rest of the hierarchy, the ith level (i = 1 . . . L) is stored in d − 1
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hash tables, generated by an oblivious (di−1k, ·, ·)-hashing scheme Hi. For every
i = 1, . . . , L and j = 1, . . . , d − 1, let T j

i be the jth table in the ith level, and
let κj

i be its corresponding key. All hashing schemes in the hierarchy share a
stash S4. The keys κj

i can be encrypted and stored remotely in the server. Also,
the client stores and maintains a counter t that starts at zero, and increments
by one after every virtual access is simulated. The ORAM simulation starts with
the initial data stored entirely in the lowest level.

Blocks Positioning Invariant. Throughout the ORAM simulation, every data
block in the virtual memory resides either in the top level, or in one of the hash
tables in the hierarchy, or in the shared stash. The blocks are hashed according to
their virtual addresses. The data structure does not contain duplicated records.

Blocks Flow and Reshuffles. Once a block is queried, it is inserted into the top
level, therefore the level fills up after k queries. Reshuffles are used to push blocks
down the hierarchy and prevent overflows in the data structure. Basically, every
time we try to insert blocks to a full level, we clear the level by reshuffling its
blocks to a lower level. For instance, the top level is reshuffled every k queries.

In every reshuffle, blocks are inserted into the first empty hash table in the
highest level possible, using the corresponding Build procedure, with a freshly
generated key. Thus, the first time the top level is reshuffled (after round k), its
blocks are inserted to the first table in the next level, i.e. T 1

1 , which becomes
full. The top level fills up again after k queries. This time, the reshuffle is made
to T 2

1 , as T 1
1 is not empty anymore. After d − 1 such reshuffles, the entire first

level becomes full, therefore, after d ·k queries, we need to reshuffle both the top
level and the first level. This time, we insert all blocks in these levels into T 1

2 .
Observe that this mechanism is analogous to counting in base d: every level

represents a digit, whose value is the number of full hash tables in the level. An
increment of a digit with value d − 1, equivalently - insertion to a full level, is
done by resetting the digit to zero, and incrementing the next digit by 1, that is,
reshuffling the level to a hash table in the next level (see Fig. 1). We formalize
the process as follows: in every round t = t′ · k, levels 0, . . . , i are reshuffled
down to hash table T j

i+1, where i is the maximal integer for which di | t′, and
j = (t′ mod di+1)/di. Notice that level i is reshuffled every k · di queries.

Fig. 1. A demonstration of the flow of blocks during an ORAM simulation with d = 6.
A gray cell indicates a full hash table, a white one is an empty table.

4 In the scheme of [22], the shared stash is ‘virtualized’, and is re-inserted into the
hierarchy. We roll-back this optimization in preparation to our constructions.
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Query. In order to retrieve a data block with virtual address v, the client searches
for the block in the top level and the stash first. Then, for every level i, the client
scans hash tables T j

i using Hi.Lookup procedure, in reverse order, starting with
the table that was last reshuffled into. Once the target block was found, the scan
continues with dummy queries. This is important for security (see Claim 4).

5 A Three-Server ORAM Scheme

Below, we formally state our first result in the standard distributed ORAM
model: an efficient three-server ORAM scheme.

Theorem 3 (Three-server ORAM using regular hashing). Let d be a
parameter, and define L = logd N . Assume the existence of one-way functions,
and a collection {Hi}L

i=1, where Hi is a (di−1(k + s),mi, s)-hashing scheme.
Then, there exists a (3, 1)-ORAM scheme that achieves an overhead of

O

(
k + L +

L∑
i=1

mi

di−1k

)

for block size B = Ω(αd log N + s log d), where α := maxi CLookup(Hi).

We propose two different instantiations of our construction, each with a different
collection of hashing schemes that was used in prior ORAM works [8,18,22].
Both instantiations yield sub-logarithmic overhead, and their parameters are
very close. However, Instantiation 3 may be conceptually simpler (due to [8]).
More details about the used hashing schemes can be found in the full version.

First, we plug in the collection of hashing schemes used by Goodrich and
Mitzenmacher [18], and later by Kushilevitz et al. [22]. The collection mainly
consists of cuckoo hashing schemes, however, since stashed cuckoo hashing was
shown to have a negligible failure probability only when the size of the hash
table is polylogarithmic in N (specifically, Ω(log7 N)) [18], standard hashing
with bucket size log N/ log log N is used in the first Θ(logd log N) levels. We point
out that in both mentioned works [18,22], the stash size for cuckoo hashing is
logarithmic. In our instantiation, we use a stash of size Θ(ω(1) · log N/ log log N).
Although [18] proved that failure probability is negligible in N when the stash
is of size s = Θ(log N) and the size of the table is m = Ω(log7 N) (by extending
the proof for constant stash size from [21]), their proof works whenever the
value m−Θ(s) is negligible in N , and in particular, when we choose s = Θ(ω(1) ·
log N/ log log N).

Instantiation 2 (Three-server ORAM using cuckoo hashing). Assume
the existence of one-way functions. Let d be a parameter at most polylogarithmic
in N . Then, there exists a three-server ORAM scheme that achieves overhead of
O(logd N · ω(1)) for B = Ω(d log N).



Sub-logarithmic Distributed Oblivious RAM with Small Block Size 19

When d = logε N for a constant ε ∈ (0, 1), we achieve an overhead of O(ω(1) ·
log N/ log log N) with B = O(log1+ε N).

Alternatively, we can use the simple two-tier hashing scheme from [2], with
buckets of size log0.5+ε N , to achieve the following parameters.

Instantiation 3 (Three-server ORAM using two-tier hashing). Assume
the existence of one-way functions. Let d be a parameter at most polylogarithmic
in N . Then, there exists a three-server ORAM scheme that achieves overhead of
O(logd N) for block size B = Ω(d log1.5+ε N).

For d = logε N , we obtain an overhead of O(log N/ log log N) with B =
O(log1.5+2ε N).

5.1 Overview

Our three-server scheme is based on the single-server balanced hierarchical struc-
ture of Kushilevitz et al. [22] (described in Sect. 4). We take advantage of the
existence of multiple servers and reduce the overhead as follows.

Reduce Query Cost Using PIR. One of the consequences of balancing the hier-
archy is having multiple hash tables in a level, in any of which a target block
can reside. More specifically, if T 1

i , . . . , T d−1
i are the hash tables at level i,

then a block with address v can possibly reside in any of the positions in
T j

i [Hi.Lookup(v, κj
i )] for j = 1, · · · , d − 1. To retrieve such a block, we could

basically download all blocks in these positions, i.e.
∑L

i=1(d − 1)CLookup(Hi)
blocks in total. This already exceeds the promised overhead. Instead, we use
PIR to extract the block efficiently without compromising the security of the
scheme. For every level i, starting from the top, we invoke a PIR protocol over
the array that consists of the (d − 1)CLookup(Hi) possible positions for v in the
level.

Performing PIR queries requires that the client knows the exact position
of the target block in the queried array, namely, in which bucket, out of the
d − 1 possibilities, block v resides, if at all. Therefore, the client first downloads
the addresses of all blocks in the array, and only then performs the PIR query.
Although some PIR protocols in the literature (e.g. [7]) do not impose this
requirement, we still need to download the addresses since it is essential for the
security of the protocol that the client re-writes the address of the queried block.

An address of a block can be represented using log N bits. Thus, down-
loading the addresses of all possible positions in all levels costs us

∑L
i=1(d −

1)CLookup(Hi) log N bits of communication. If we choose B = Ω(αd log N) for
α = maxi CLookup(Hi), this cost translates to the desirable O(L) overhead. Two-
server PIRs work in the model where the data is replicated and stored in two
non-colluding servers. Thus, every level in the hierarchy, except the top level,
will be stored, accessed, and modified simultaneously in two of the three servers.
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Reduce Reshuffles Cost by Bypassing Oblivious Hashing. We use a variant of the
reshuffle procedure suggested by Lu and Ostrovsky [25]. Their protocol works in
a model with two non-colluding servers, where one server stores the odd levels,
and the other stores the even levels. Before reshuffling a level, the servers gather
all blocks to be reshuffled, permute them randomly, and exchange them through
the client, who re-encrypts them and tags them with pseudorandom tags. The
level is then reshuffled by one server using some regular hashing scheme (not
necessarily oblivious), and is sent to the other server, record by record, through
the client. The security of their scheme follows from the following observations:

(i) the blocks are re-encrypted and permuted randomly before the reshuffle,
eliminating any dependency on prior events,

(ii) the blocks are hashed according to pseudorandom tags, hence their order is
(computationally) independent of their identities,

(iii) the server that holds a level cannot distinguish between dummy queries and
real ones since he was not involved in the reshuffle, and

(iv) the server that reshuffles the level (and can tell a dummy query) does not
see the accesses to the level at all.

Applying this method naively when each of the servers holds the entire hier-
archy might reveal information about the access pattern since (iii) and (iv) no
longer hold. Therefore, we should adapt their method wisely, while having two
replicates of every level, to allow performing PIR queries. A straight forward
implementation would require four servers: two holding replicates of the odd
levels, and two holding replicates of the even levels. However, this can be done
using three servers only by having every pair of servers (out of the three possible
pairs) hold every third level.

5.2 Full Construction

Data Structure. The data is virtually viewed as an array of N blocks, each of
size Ω(αd log N) bits. Every block therefore has a virtual address in [N ].

Distributed Server Storage. The data structure is identical to that from [22],
however, our scheme uses three servers, S0,S1, and S2, to store the data. The
top level is stored in all servers. Every other level is held by two servers only:
for j = 0, . . . , �L

3 �, S0 and S1 share replicates of levels i = 3j, S1 and S2 share
replicates of levels 3j + 1, and S2 and S0 both hold all levels i = 3j + 2.

Dummy Blocks. Dummy blocks are blocks that are not “real” (not part of the
virtual memory), but are treated as such, and assigned dummy virtual addresses.
From the point of view of the ‘reshuffler’ server, a dummy block, unlike an empty
block, cannot be distinguished from a real block. We use two types of dummy
blocks, both essential for the security of the scheme.
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(i) Dummy Hash Blocks. Dummy hash blocks replace real blocks once they
are read and written to the top level. The security of our scheme relies on
the fact that all blocks in the hierarchy are of distinct addresses, hence the
importance of this replacement.

(ii) Dummy Stash Blocks. Dummy stash blocks are created by the client to fill
in empty entries in the hierarchy. Since our scheme uses a stash to handle
overflows, the number of blocks in the stash and in each of the hash tables
is not deterministic and is dependent on the access pattern. To hide this
information from the server that performs the reshuffling of a level, we fill
all empty entries in the stash, and some of the empty entries in the hash
tables, with dummy stash blocks.

Block Headers. To properly manage the data, the client needs to know the
identity of every block it downloads (i.e. its virtual address). Therefore, every
entry in the server storage contains, besides the data of the block, a header that
consists of the virtual address of the block, which can be either an address in
[N ], a numbered dummy address, such as ‘dummyHash◦t’ or ‘dummyStash◦r’,
or just ‘empty’. The length of the header is O(log N) bits, thus does not affect
the asymptotic block size. Unless explicitly stated otherwise, the headers are
downloaded, uploaded and re-encrypted together with the data. An entry with
a block of virtual address v and data x is denoted by the tuple (v, x).

Tags. Since we use the servers for reshuffling the levels, we wish to hide the
virtual addresses of the blocks to be reshuffled. We use pseudorandom tags to
replace these addresses, as first suggested in [25]. The tags are computed using
a keyed PRF, Fs, that is known to the client only. When generating a new hash
table, the server hashes the blocks according to their tags (rather than their
virtual addresses). Furthermore, to eliminate any dependency between tags that
are seen in different reshuffles, the client keeps an epoch ej

i for every hash table
T j

i in the hierarchy. The epoch of a table is updated prior to every reshuffle, and
is used, together with i and j, to compute fresh tags for blocks in the table. The
epochs can be stored remotely in the servers to avoid large client storage.

Protocol. We refer to the balanced hierarchy of [22] as our starting point.

Query. We replace the reads performed by the client with PIR protocols that
are executed over arrays in the data. Specifically, the first PIR is performed over
the stash to retrieve the target block if it is found there. The top level can be
downloaded entirely since it has to be re-written anyway. The search continues
to the other levels in the hierarchy in the order specified in Sect. 4. The target
block can possibly reside in any of the d − 1 hash tables in a level, therefore,
the client invokes a PIR protocol to extract the target block out of the many
possible positions. Every PIR in the procedure is preceded by downloading the
headers in the queried array, using which the client knows the position of the
target block. A technical detailed description is provided in Algorithm 1.
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Algorithm 1. Three-Server Construction: Query
1: Allocate a local register of the size of a single record.
2: Initialize a flag found ← 0.
3: Download the top level, one record at a time. If v is found at some entry (v, x)

then store x in the local register, and mark found ← 1.

4: Download all headers from S. If v was found among these headers, let p be its
position, and mark found ← 1. Otherwise, let p be a position of a random entry in
the stash. Invoke PIR(S, p) to fetch (v, x) with any two of the three servers, and
store x in the register.

5: for every level i = 1 . . . L do
6: t′ ← �t/k�
7: r ← �(t′ mod di)/di−1�
8: headers ← ∅
9: for every hash table j = r . . . 1 do

10: If found = false, compute the corresponding tag of v, τ ← Fs(i, j, e
j
i , v).

Otherwise, assign τ ← Fs(i, j, e
j
i , dummy ◦ t).

11: Qj
i ← Hi.Lookup(τ, κj

i )

12: Download all headers of entries in T j
i [Qj

i ], and append them to headers. If
one of the headers says v, mark found ← true.

13: end for
14: Let p be the position of v in headers if it was found there, or a random value

in {1, . . . , |headers|} otherwise.

15: Let A be the array of entries corresponding to headers in headers.
16: Invoke PIR(A, p) to fetch (v, x) with the two servers holding level i, and store

x in the register (if v was not found in headers this would be a dummy PIR).

17: Re-encrypt headers, and upload it back to the two servers, while changing v to
dummyHash ◦ t.

18: end for
19: If the query is a write query, overwrite x in the register.
20: Read each entry of the entire top level from both servers one at a time, re-encrypt

it, then write it back, with the following exception: if the entry (v, x) was first
found at the top level, then overwrite x with the (possibly) new value from the
register, otherwise, write (v, x) in the first empty spot of the form (empty, ·).

21: Increment the counter t, and reshuffle the appropriate levels.

Reshuffles. Let Sa and Sb be the two servers holding level i + 1, and let Sc be
the other server. Reshuffling levels 0, . . . , i into hash table T j

i+1 is performed as
follows. As a first step, we send all non-empty blocks that should be reshuffled
(including stash) to Sc, by having the servers exchange the blocks they hold
in levels 0, . . . , i and the stash, through the client, one block at a time, in a
random order. Besides forwarding the blocks to Sc, the client also re-encrypts
every block and re-tags it with a fresh tag (using epochs, as already mentioned).
Once Sc has all tagged blocks, he can create a new hash table and stash using the
appropriate Build procedure. He then sends the hash table and stash, one record
at a time, to the client. The client re-encrypts all records, and forwards them to
the other two servers, who store the hash table in T j

i+1, and the stash to its place.
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Algorithm 2. Three-Server Construction: Reshuffle
Reshuffling into table T j

i+1

Let Sa and Sb be the servers holding level i + 1, and let Sc be the other server.
1: Every server of the three allocates a temporary array. For every level � between

levels 1 and i, let S� be the server with the smallest id that holds level �. For every
such �, S� inserts all records in level � to its temporary array. In addition, one of
the servers, say S0, inserts all stash records into its temporary array.

2: Sc applies a random permutation on its temporary array, and sends the records
one by one to the client. The client re-encrypts each record and sends it to Sb.
Sb inserts all records it receives to its array. Sb permutes its array randomly, and
forwards it to Sa through the client (who re-encrypts them). Sa, in his turn, also
inserts all received records, applies a random permutation, and sends them one by
one to the client.

3: The client re-encrypts every non-empty record (v, x) and sends it to Sc, together

with a tag, which is the output of the PRF Fs(i+1, j, ej
i+1, v), where ei+1 is the new

epoch of T j
i+1. Note that v may be a virtual memory address, or a dummy value.

In this step, dummy records are treated as real records and only empty records are
discarded.

4: Sc receives di(k + s) tagged records, which are all records that should be reshuffled

into T j
i+1. It generates a new key κj

i ← Hi.Gen(N), and constructs a hash table and

a stash (T j
i , S) ← Hi.Build(κ

j
i , Y ), where Y is the set of tagged records received

from the client. If the insertion fails, a new key is generated (this happens with a
negligible probability). Sc then informs the client about the number of elements
inside the stash, σ, and the key κj

i , then sends both the hash table T j
i and the

stash one record at a time to the client.

5: As the client receives entries from Sc one at a time, it re-encrypts each record and
sends it to both Sa and Sb without modifying the contents except:
(a) The first σ empty records in the table the client receives from Sc are encrypted

as (dummyStash ◦ r, ·), incrementing r each time.
(b) Subsequent empty records from the table are encrypted as (empty, ·).
(c) Every empty record in the stash is re-encrypted as (dummyStash ◦ r, ·), incre-

menting r each time.
6: Sa and Sb store the table records in level i + 1 in the order in which they were

received, and store the stash records at the top level.

The client uses dummy stash blocks to replace as many empty blocks as needed
to get a full hash table, and a full stash. This is important since we do not want
to reveal the load of the stash to the server that does the next reshuffle. The
reshuffle procedure is described in full details in Algorithm 2.

5.3 Analysis

Complexity. We begin with analyzing the complexity of the described scheme.
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Storage Complexity. The combined server storage contains a stash of size s, a
top level of size k, and two duplicates of every other level i, consisting of d − 1
hash tables of size mi each. In total, we have O

(
s + k +

∑L
i=1 dmi

)
.

The client uses constant working memory as he only receives and forwards
records, one at a time. The client does not need to keep the headers he downloads
prior to PIR queries, as it is sufficient to keep the position of the target block.

Overhead. We now analyze the cost of performing a single query. First, consider
the communication cost of downloading the headers for the PIRs. The PIRs are
performed over the stash and each of the levels i = 1, . . . , L. The number of
headers downloaded amounts to s +

∑L
i=1(d − 1)CLookup(Hi) ≤ s + αL(d − 1),

which is equivalent to O(L) blocks of the required minimum size. Overall, L + 1
PIR queries are invoked. For levels i = 1, . . . , L, the PIR queries are performed
over arrays of size at most (d − 1)CLookup(Hi). By using the classic two-server
PIR from [10], this costs (d − 1)CLookup(Hi) < αd bits and a single block per
level. The stash adds s bits and a block. All of this sums up to no more than
O(L) data blocks. The client also downloads O(k) blocks from the top level.

Next, consider the reshuffles. Blocks are reshuffled down to some hash table
in the ith level if i is the smallest integer for which (t/k) mod di �= 0. This occurs
whenever t/k is a multiple of di−1, but not of di, i.e., at most once every k ·di−1

queries. During the reshuffle of a hash table T j
i , the number of blocks transmitted

is asymptotically bounded by the size of T j
i and the size of the stash, which is

O(mi). Hence, the amortized overhead of the reshuffles is O(
∑L

i=1
mi

di−1k ).

Security. Next, we present the security proof for our construction. We prove
that the access pattern to any of the servers is oblivious and independent on the
input. We describe a simulator Sima (for a ∈ {0, 1, 2}), that produces an output
that is indistinguishable from the view of server Sa during the execution of the
protocol, upon any sequence of virtual queries, given only its length.

Lemma 1 (Security of the three-server ORAM). Let Viewa(y) be the
view of server Sa during the execution of the three-server ORAM protocol,
described in Algorithms 1 and 2, over a virtual access pattern y = ((v1, x1), . . . ,
(v�, x�)). For a ∈ {0, 1, 2}, there exists a simulator Sima, such that for every
y of length �, the distributions Sima(�) and Viewa(y) are computationally
indistinguishable.

Proof Sketch. As in all previous works, we assume that the client uses one-way
functions to encrypt and authenticate the data held in the servers, and therefore,
encrypted data is indistinguishable by content (notice that the client re-encrypts
every piece of data before sending it). We replace the keyed tagging functions,
that are modeled as PRFs, with random functions. These steps can be formalized
using proper standard hybrid arguments, which we avoid for brevity.

We begin by inspecting the view of the servers during the reshuffles. The
procedure starts with the servers exchanging all blocks stored in levels 1, . . . , i
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and in the stash, and sending them to Sc. It is essential for security that the
number of these blocks is independent of the input, as argued in Claims 1 and 2.
We refer the reader to the full version for full proofs for these two claims, and
all claims to follow.

Claim 1. Throughout the ORAM simulation, the stash is always full.

Claim 2. Let t be a multiple of k, and denote t′ = t/k. For every 1 ≤ i ≤ L,
define rt

i := �(t′ mod di)/di−1�. Then,

(i) the top level is full prior to the reshuffle at round t, and is empty afterwards.
(ii) for every other level 1 ≤ i ≤ L, once the reshuffle is completed, the first rt

i

tables in level i (i.e., T 1
i , . . . , T

rt
i

i ) are full (contain di(k + s) records each),
and all other tables in level i are empty.

Claim 1 follows immediately from Step 5 of Algorithm 2. For Claim 2 follows
from the analogy of the reshuffles to counting in base d (see Sect. 4) (notice that
rt
i can be also defined as the ith digit in the base d representation of t′).

Having shown that the amount of data exchanged during the first steps of
the reshuffling procedure depends only on t, we can simulate the view of any of
the servers by a sequence of arbitrary encrypted data of the appropriate length.
Next, Sc receives (k + s) · di tagged encrypted records (Claim 2). Since dummy
records are numbered uniquely, and virtual records are never duplicated, these
records always have unique addresses. We formalize this in Claim 3 below.

Claim 3. At all times during the execution, any non-empty record of the form
(v, ·) will appear at most once in all hash tables in the hierarchy.

Since the addresses of the records are unique, their tags will be unique as
well (with overwhelming probability). This implies the following.

Corollary 1. The tagging function Fs(·) will not be computed twice on the same
input throughout the executions of Algorithm 2 during the ORAM simulation.

Hence, by assuming Fs is a random function, the view of Sc can be simulated
as a sequence of (k + s) · di arbitrary encrypted records with random distinct
tags. Once Sc successfully creates the hash table, it sends it to Sa and Sb via
the client. The size of the hash table is fixed. The entries of the hash tables are
encrypted, and can be simulated as an arbitrary sequence of encrypted records.

To summarize, to simulate the view of the servers during the reshuffling
phase, Sima(�) and Simb(�) output a sequence of encrypted arbitrary records of
the appropriate length (which is fixed due to Claims 1 and 2), whereas Simc(�)
outputs a sequence of encrypted arbitrary records that are tagged using distinct
uniform values (a, b, c alternate between 0, 1, 2 throughout the phases). From
Corollary 1 and the security of the underlying symmetric encryption and PRFs,
these outputs are indistinguishable from the views of the servers at the reshuffles.

We proceed to simulating the access pattern during queries. A query for a
block v begins, independently of v, with downloading all blocks in the top level,
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and all headers in the stash. Next, a PIR is invoked over the stash. From the secu-
rity of the underlying PIR, there exist two simulators SimPIR

0 (m),SimPIR
1 (m),

that simulate the individual views of the two servers (resp.) involved in the pro-
tocol, given only the size of the queried array, m. We use these simulators to
simulate the view of the servers involved in the this and all following PIRs.

It remains to show that the identity of the blocks over which the PIRs
are called, i.e. the values Qj

i that a server Sa sees during the execution of
Algorithm 1, can be simulated as well. Recall that, at every execution of the
algorithm, Qj

i is computed, for every i, j, as Hi.Lookup(τ, κ
j
i ), where τ is a tag

computed using Fs, and κj
i is the used hash key. We denote by 〈Qj

i 〉a the sequence
of Qj

i values seen by Sa at all executions of Algorithm 1 during the ORAM sim-
ulation (these values correspond to levels i that are stored in Sa). We also denote
by 〈τ〉a and 〈κj

i 〉a the values used to compute 〈Qj
i 〉a.

Claim 4. The same v will not be queried upon twice at the same hash table (in
Algorithm 1) between two reshuffles of the table during the ORAM execution.

Dummy queries are numbered uniquely. The order in which we traverse the
hierarchy, and the fact that no real queries are made after the block is found,
ensure that Claim 4 is true for real queries as well. Hence, the following holds.

Corollary 2. The tagging function Fs will not be computed twice on the same
input throughout the executions of Algorithm 1 during the ORAM simulation.

From Corollary 2, and since Sa is not involved in the hashing of 〈τ〉a, we get:

Claim 5. The sequence 〈τ〉a, defined above, is comp. indistinguishable from a
uniform sequence of unique tags, given the view of Sa during the reshuffles.

Claim 6. The sequence 〈κj
i 〉a, defined above, is comp. indistinguishable from a

uniform sequence of hash keys, given the view of Sa during the reshuffles.

In Claims 5 and 6, we show that 〈τ〉a and 〈κj
i 〉a are indistinguishable from

sequences of uniformly chosen values, given the view of Sa. Therefore, to simulate
the values 〈Qj

i 〉a, the simulator Sima(�) computes the output of Hi.Lookup for
uniformly random tags and hash keys. This completes the proof of Lemma 1.

6 A Family of Multi-server ORAM Schemes

We present our following last result.

Theorem 4 ((m,m − 1)-ORAM using oblivious hashing). Let d be a
parameter, and define L = logd N . Assume the existence of one-way functions,
and a collection {Hi}L

i=1, where Hi is an oblivious (di−1(k + s),mi, s)-hashing
scheme. Then, for any m ≥ 2, there exists an (m,m − 1)-ORAM scheme that
achieves the following overhead for block size B = Ω(β log N + αd log N)

O

(
k + L +

L∑
i=1

mi

di−1k

)

where α := maxi CLookup(Hi) and β := maxi
CBuild(Hi)

di−1k .
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Here, oblivious two-tier hashing [8] performs slightly better than other can-
didates (e.g. oblivious cuckoo hashing [18]).

Instantiation 4 ((m,m−1)-ORAM using two-tier hashing). Assuming the
existence of one-way functions, there exists, for any m ≥ 2, a (m,m−1)-ORAM
scheme with overhead of O(log N/ log log N) for block size of B = Ω(log2 N).

We first present the special case of our construction in the two-server setting,
and then generalize it the case where m > 2.

6.1 Two-Server ORAM: Overview

We base our two-server construction on the the (3, 1)-ORAM from Sect. 5.

Back to Oblivious Hashing. Now that we limit ourselves to using two servers
only, each of which has to hold a replicate of the data for the PIR queries, we
lose the ability to perform the reshuffles through a “third-party”. Hence, we
require now that the underlying hashing schemes are oblivious, and the build-up
of the hash table is done using the oblivious Build procedures, where the client
is the CPU, and one of the servers takes the role of the RAM.

Recall that the tags were essential for the security of the three-server scheme
since the reshuffles were made by one of the servers, to which we did not want
to reveal the identity of the blocks being reshuffled. Now that the reshuffling is
done using oblivious hashing that hides any information about the records that
are being hashed, or the hash keys used to hash them, using tags is not necessary
anymore. Instead, the blocks are hashed, and accessed, by their headers.

Optimizing the Reshuffles. Naively creating a hash table at level i using Hi.Build,
incurs an overhead of CBuild(Hi). We observe that in any hashing scheme, the
only input relevant for the build-up of a hash table is the tags or, in our case, the
headers of the blocks being reshuffled. Thus, we suggest the following solution.
The reshuffles are modified so that the build-up of the hash tables is given, as
input, the set of headers, rather than the blocks themselves. Since the headers are
smaller than the blocks by a factor of at least β := maxi

CBuild(Hi)
di−1k , the overhead

incurred by the build-ups is cut by β, making it linear in di−1k.

Matching Data to Headers. As the headers are hashed, we still have to move the
data to the new hash table. We securely match the data elements to the headers,
by tagging them, and letting the servers to permute them randomly.

6.2 Two-Server ORAM: Full Construction

Data Structure. We start with the scheme from Sect. 5. The server storage
remains as is, except the entire data structure is now replicated in the two
servers. This is guaranteed to be the case at the end of every round in the
protocol.
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Query. Every virtual access is simulated as described in Algorithm 1, with the
exception that the target block is queried upon in the hash tables by its virtual
address, rather than its tag: Hi.Lookup(v, κj

i ) rather than Hi.Lookup(τ, κ
j
i ). Also,

all reads and writes, as well as the PIR queries, are made now to S0 and S1.

Reshuffles. The reshuffles are still performed in the same frequency. However, the
roles of the servers change, as only two servers participate in the protocol. First,
S0 prepares all headers of blocks that have to be reshuffled into the destination
hash table, and, together with the client, invokes the appropriate oblivious Build
procedure to hash the blocks into a new hash table.

We now match the data to the headers using our matching procedure. We
begin by tagging the headers. S0 sends the shuffled headers, one by one to the
client, who decrypts every header and tags it using a new epoch, then sends it
back to S0. The headers corresponding to empty slots are tagged using numbered
values, e.g. ‘empty ◦ 1’. Notice that the number of empty slots in the hash table
and stash, combined, is fixed and independent of the input. Next, S1 sends the
records (headers and data) that correspond to the shuffled headers, one by one,
in a random order. Among the actual records, S1 also sends as many (numbered)
empty records as required to match the number of empty slots in the hash table.
The client tags every record he receives from S1, and forwards it S0 together
with its tag. S0 now matches every record he receives to a header in the hash
table or stash, according to the tags. He then sends the new hash table and stash
to S1, through the client. See Algorithm 3 for full details.

6.3 Two-Server ORAM: Analysis

Complexity. The query complexity is identical to that of the three-server con-
struction, and is equal to O(k + L). To obliviously construct a hash table and a
stash for a level i, the client and the servers exchange CBuild(Hi) = O(βdi−1k)
records (recall β := maxi

CBuild(Hi)
di−1k ). However, since the build-up is done over tags

of size log N bits, rather than whole blocks of size Ω(β log N), this translates to
O(di−1k) overhead in blocks. The matching procedure has a linear cost in the
size of the level, that is O(mi). This amortizes to O(1+mi/di−1k) overhead per
level, and O(L +

∑L
i=1

mi

di−1k ) overall.

Security. Following Definition 2, it suffices to prove the following Lemma.

Lemma 2 (Security of the two-server ORAM). Let Viewa(y) be the view
of server Sa during the execution of the two-server ORAM protocol, described
in Sect. 6, over a virtual access pattern y = ((v1, x1), . . . , (v�, x�)). There exist
simulators Sim0,Sim1, such that for every y of length �, and every a ∈ {0, 1} the
distributions Sima(�) and Viewa(y) are computationally indistinguishable.
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Algorithm 3. Two-Server Construction: Reshuffle
Reshuffling headers into table T j

i+1

1: S0 sends all records in levels 1, . . . , i and the stash, one by one, to the client. The
client re-encrypts every record he receives and forwards it to S1, while eliminating
all empty records. S1 inserts every record he receives to a temporary array Y .
Server S1 now sends every header in Y back to S0, through the client.

2: Let Ŷ be the array of encrypted headers received by S0. The client generates

a fresh hashing key κj
i ← Hi.Gen(N), and, together with S0, invokes (T̂ , Ŝ) ←

Hi.Build(κ
j
i , Ŷ ) to obliviously hash the headers into a hash table and stash.

Matching data to headers.
3: S0 sends (T̂ , Ŝ), record by record, to the client. The client decrypts every header

v he receives, and computes a tag τ ← Fs(i + 1, j, ej
i+1, v). If the header is empty,

then τ ← Fs(i + 1, j, ej
i+1, empty ◦ z), where z is a counter that starts at 1 and and

increments after every empty header. Notice that the number of empty headers,
denoted by Z, depends only on i. The client sends the tag back to S0.

4: S1 inserts Z empty records (empty◦1, ·), . . . , (empty◦Z, ·) to Y . Server S1 permutes
Y randomly, and sends it, one record at a time, to the client.

5: The client re-encrypts every record (v, x) it receives, and sends it to S0 with a tag
τ , that is the output of Fs on v with the appropriate epoch.

6: S0 matches every tagged record it receives to one of the tags it received in Step 3,

and inserts the corresponding record to its appropriate slot (either in T̂ or Ŝ).

7: At this point, S0 holds the newly reshuffled hash table and stash, headers and data.
The tags are discarded. S0 sends both the table and the stash to S1, via the client.
Both servers replace the old stash and T j

i+1 with the new data.

Proof Sketch. Again, we assume that encryption is secure and tagging functions
are random. Consider the view of the servers at the reshuffles. Claims 1 and 2
hold true here as well, therefore, the amount of encrypted data exchanged in Step
1 of Algorithm 3 is oblivious. From the obliviousness of the hashing scheme, the
view seen in Step 2 can be simulated with an access pattern for an arbitrary
execution of the oblivious Hi.Build procedure. As for the matching procedure,
the view of S1 consists of the new hash table and stash, both encrypted and of
fixed size. S0 receives a sequence of tags computed using Fs for a sequence of
headers. We claim that these headers are unique. A proof of the claim is also
provided in the full version.

Claim 7. The tagging function Fs(·) will not be computed twice on the same
input in Step 3 of Algorithm 3 throughout the executions of the algorithms during
the ORAM simulation.

Hence, the tags seen by S0 are indistinguishable from uniform distinct values,
and Sim0 simulates them as such. Lastly, S0 receives a sequence of tagged records.
The records are encrypted and can be simulated. The tags were obtained by
tagging the same set of unique headers, however, in an order that is uniformly
and independently chosen by S1 and that is not known to S0. Therefore, we let
Sim0 to output the tags he has previously generated, permuted randomly.
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To simulate the access pattern for the queries we rely on the obliviousness of
the Lookup procedure: the sequence of Hi.Lookup(v, κj

i ) values is indistinguish-
able from a sequence generated for an arbitrary sequence of addresses v using
random hash keys. Thus, SimA just generates random keys using Gen, and com-
putes Lookup for arbitrary inputs. The transcripts of the PIRs can be simulated
from the definition of two-server PIR.

6.4 From Two Servers to m Servers

Lastly, we briefly show how to transform our two-server ORAM to an (m,m−1)-
ORAM for m > 2. Please refer to the full version for a detailed analysis.

Query Using Multi-server PIR. To obliviously simulate a query to a block, the
client follows the protocol used in the two-server construction (Algorithm 1).
However, now that we want to achieve privacy against any colluding subset of
corrupt servers, we use an m-server PIR protocol which guarantees such a pri-
vacy. That is, instead of invoking two-server PIRs to query blocks from the stash
and hierarchy levels, the client now uses an (m,m − 1)-PIR protocol involving
all m servers, where the joint view of any m − 1 servers is (computationally)
independent of the target index. In particular, we can use the straight-forward
m-server generalization of the basic PIR protocol from [10]. Since this protocol,
as well as many known m-server PIRs, follow the standard PIR setting where
the data is assumed to be replicated in all of the servers, the servers during the
ORAM execution will hold identical replicates of the same data structure.

Extending the Matching Procedure. Reshuffles of levels are done in the same
frequency, and in a very similar manner as in the two-server protocol. We only
change the matching procedure. To match the content to the tags, we cannot
rely only on two servers, since they might be both corrupt. Instead, all servers
participate. The reshuffling procedure from Algorithm 3 is followed up to Step 5.
After the client receives the permuted records from S1, he re-encrypts them and
forwards them to S2. S2, in its turn, randomly permutes the records it receives,
and forwards them to S3 (if it exists), through the client. This continues until
all servers, except S0, have received the records and permuted them. Once they
all had, the client tags the records and sends them to S0, who matches them to
the shuffled headers. Lastly, the final hash table and stash are sent to all servers.
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useful comments.



Sub-logarithmic Distributed Oblivious RAM with Small Block Size 31

References

1. Abraham, I., Fletcher, C.W., Nayak, K., Pinkas, B., Ren, L.: Asymptotically tight
bounds for composing ORAM with PIR. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 91–120. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 5

2. Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Parallel randomized
load balancing. In: Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, STOC 1995, pp. 238–247. ACM, New York (1995)
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Abstract. Lossy algebraic filters (LAFs) are function families where
each function is parametrized by a tag, which determines if the function
is injective or lossy. While initially introduced by Hofheinz (Eurocrypt
2013) as a technical tool to build encryption schemes with key-dependent
message chosen-ciphertext (KDM-CCA) security, they also find applica-
tions in the design of robustly reusable fuzzy extractors. So far, the only
known LAF family requires tags comprised of Θ(n2) group elements for
functions with input space Z

n
p , where p is the group order. In this paper,

we describe a new LAF family where the tag size is only linear in n and
prove it secure under simple assumptions in asymmetric bilinear groups.
Our construction can be used as a drop-in replacement in all applications
of the initial LAF system. In particular, it can shorten the ciphertexts of
Hofheinz’s KDM-CCA-secure public-key encryption scheme by 19 group
elements. It also allows substantial space improvements in a recent fuzzy
extractor proposed by Wen and Liu (Asiacrypt 2018). As a second con-
tribution, we show how to modify our scheme so as to prove it (almost)
tightly secure, meaning that security reductions are not affected by a
concrete security loss proportional to the number of adversarial queries.

Keywords: Lossy algebraic filters · Efficiency · Tight security ·
Standard assumptions

1 Introduction

As introduced by Peikert and Waters a decade ago [39], lossy trapdoor functions
(LTFs) are function families where injective functions – which are efficiently
invertible using a trapdoor - are computationally indistinguishable from many-
to-one functions, wherein the image is drastically smaller than the domain. Since
their introduction, they drew a lot of attention [19,23,24,43,45] and revealed
powerful enough to imply chosen-ciphertext (IND-CCA2) security [39], deter-
ministic public-key encryption in the standard model [9,15,41], as well as encryp-
tion schemes achieving the best possible security against selective-opening (SO)
adversaries [2,5] or using imperfect randomness [1].
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Lossy Algebraic Filters. Lossy algebraic filters (LAFs) are a variant LTFs
introduced by Hofheinz [25] as a tool enabling the design of chosen-ciphertext-
secure encryption schemes with key-dependent message (KDM-CCA) security
[6]. Recently, they were also used by Wen and Liu [44] in the construction of
robustly reusable fuzzy extractors. In LAF families, each function takes as argu-
ments an input x and a tag t, which determines if the function behaves as a
lossy or an injective function. More specifically, each tag t = (tc, ta) is comprised
of an auxiliary component ta, which may consist of any public data, and a core
component tc. For any auxiliary component ta, there should exist at least one
tc such that t = (tc, ta) induces a lossy function fLAF(t, ·). LAFs strengthen the
requirements of lossy trapdoor functions in that, for any lossy tag t, the function
fLAF(t, x) always reveals the same information about the input x, regardless of
which tag is used. In particular, for a given evaluation key ek, multiple evalu-
ations fLAF(t1, x),. . . , fLAF(tn, x) for distinct lossy tags do not reveal any more
information about x than a single evaluation. On the other hand, LAFs depart
from lossy trapdoor functions in that they need not be efficiently invertible using
a trapdoor. For their applications to KDM-CCA security [25] and fuzzy extrac-
tors [44], lossy algebraic filters are expected to satisfy two security properties.
The first one, called indistinguishability, requires that lossy tags be indistinguish-
able from random tags. The second one, named evasiveness, captures that lossy
tags should be hard to come by without a trapdoor.

So far, the only known LAF realization is a candidate, suggested by Hofheinz
[25], which relies on the Decision Linear assumption (DLIN) [12] in groups
with a bilinear map. While efficient and based on a standard assumption, it
incurs relatively large tags comprised of a quadratic number of group elements
in the number of input symbols. More precisely, for functions admitting inputs
x = (x1, . . . , xn)� ∈ Z

n
p , where p is the order of a pairing-friendly G, the core

components tc contain Θ(n2) elements of G. For the application to KDM-CCA
security [25] (where tc should be part of ciphertexts), quadratic-size tags are not
prohibitively expensive as the encryption scheme of [25, Section 4] can make
do with a constant n (typically, n = 6). In the application to fuzzy extractors
[44], however, it is desirable to reduce the tag length. In the robustly reusable
fuzzy extractor of [44], the core tag component tc is included in the public helper
string P that allows reconstructing a secret key from a noisy biometric reading
w. The latter lives in a metric space that should be small enough to fit in the
input space Z

n
p of the underlying LAF family. Even if p is exponentially large

in the security parameter λ, a constant n would restrict biometric readings to
have linear length in λ. Handling biometric readings of polynomial length thus
incurs n = ω(1), which results in large tags and longer public helper strings.
This motivates the design of new LAF candidates with smaller tags.

Our Results. The contribution of this paper is two-fold. We first construct a
new LAF with linear-size tags and prove it secure under simple, constant-size
assumptions (as opposed to q-type assumptions, which are described using a lin-
ear number of elements in the number of adversarial queries) in bilinear groups.
The indistinguishability and evasiveness properties of our scheme are implied
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by the Decision 3-party Diffie-Hellman assumption (more precisely, its natural
analogue in asymmetric bilinear maps), which posits the pseudorandomness of
tuples (g, ga, gb, gc, gabc), for random a, b, c ∈R Zp. For inputs in Z

n
p , where p is

the group order, our core tag components only consist of O(n) group elements.
These shorter tags are obtained without inflating evaluation keys, which remain
of length O(n) (as in [25]).

As a second contribution, we provide a second LAF realization with O(n)-size
tags where the indistinguishability and evasiveness properties are both almost
tightly related to the underlying hardness assumption. Namely, our security
proofs are tight – or almost tight in the terminology of Chen and Wee [16]
– in that the gap between the advantages of the adversary and the reduction
only depends on the security parameter, and not on the number of adversarial
queries. In the LAF suggested by Hofheinz [25], the proof of evasiveness relies
on the unforgeability of Waters signatures [42]. As a result, the reduction loses
a linear factor in the number of lossy tags obtained by the adversary. In our
second construction, we obtain tight reductions by replacing Waters signatures
with (a variant of) a message authentication code (MAC) due to Blazy, Kiltz
and Pan [7]. As a result, our proof of evasiveness only loses a factor O(λ) with
respect to the Symmetric eXternal Diffie-Hellman assumption (SXDH). If our
scheme is plugged into the robustly reusable fuzzy extractor of Wen and Liu
[44], it immediately translates into a tight proof of robustness in the sense of the
definition of [44]. While directly using our second LAF in the KDM-CCA-secure
scheme of [25] does not seem sufficient to achieve tight key-dependent message
security, it may still provide a building block for future constructions of tightly
KDM-CCA-secure encryption schemes with short ciphertexts.

Techniques. Like the DLIN-based solution given by Hofheinz [25], our evalua-
tion algorithms proceed by computing a matrix-vector product in the exponent,
where the matrix is obtained by pairing group elements taken from the core tag
tc with elements of the evaluation key. Here, we reduce the size of tc from O(n2)
to O(n) group elements using a technique suggested by Boyen and Waters [14]
in order to compress the evaluation keys of DDH-based lossy trapdoor functions.

In the pairing-based LTF of [14], the evaluation key contains group elements
{(Ri, Si) = (gri , (hi · u)ri)}n

i=1, {(Vj = gvj ,Hj = (hj · u)vj )}n
j=1. Using a sym-

metric bilinear maps e : G × G → GT , these make it possible to compute the
off-diagonal elements of a matrix

Mi,j = e(g, h)ri·vj =
(e(Ri,Hj)

e(Si, Vj)

)1/(j−i)

∀(i, j) ∈ [n] × [n] \ {(i, i)}n
i=1 (1)

via a “two equation” technique borrowed from the revocation system of Lewko,
Sahai and Waters [33]. By including {Di = e(g, g)ri·vi · e(g, g)}n

i=1 in the evalua-
tion key, the LTF of [14] allows the evaluator to compute a matrix (Mi,j)i,j∈[n]

such that Mi,j = e(g, g)ri·vj if i �= j and Mi,i = e(g, g)ri·vi · e(g, g)mi and for
which mi = 1 (resp. mi = 0), for all i ∈ [n], in injective (resp. lossy) func-
tions. The indistinguishability of lossy and injective evaluation keys relies on the
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fact that (1) is only computable when i �= j, making it infeasible to distinguish
{Di = e(g, h)ri·vi · e(g, g)}n

i=1 from {Di = e(g, h)ri·vi}n
i=1.

Our first LAF construction relies on the “two equation” technique of [33] in a
similar way with the difference that we include {(Vj = gvj ,Hj = (hj ·u)vj }n

j=1 in
the evaluation key ek, but {(Ri, Si) = (gri , (hi ·u)ri)}n

i=1 is now part of the core
tag components tc. This makes it possible to compute off-diagonal elements of
(Mi,j)i,j∈[n] by pairing elements of ek with those of tc. To enable the computation
of diagonal elements {Mi,i}n

i=1, we augment core tag components by introducing
pairs (Di, Ei) ∈ G

2, which play the same role as {Di = e(g, g)ri·vi · e(g, g)}n
i=1

in the LTF of [14]. In lossy tags, {(Di, Ei)}n
i=1 are of the form

(Di, Ei) = (hri·vi · HG(τ)ρi , gρi), (2)

for a random ρi ∈R Zp, where τ is a chameleon hashing of all tag components.
Such pairs {(Di, Ei)}n

i=1 allow the evaluator to compute

Mi,i =
e(Di, g)

e(HG(τ), Ei)
= e(g, h)ri·vi ∀i ∈ [n],

which results in a rank-one matrix (Mi,j)i,j∈[n], where Mi,j = e(g, h)ri·vj . When
computed as per (2), {(Di, Ei)}n

i=1 can be seen as “blinded” Waters signatures
[42]. Namely, (g, h, Vi = gvi) can be seen as a verification key; hvi is the cor-
responding secret key; and ri ∈ Zp serves as a blinding factor that ensures the
indistinguishability of (Di, Ei) from random pairs. Indeed, the Decision 3-party
Diffie-Hellman (D3DH) assumption allows proving that hri·vi is computation-
ally indistinguishable from random given (g, h, gvi , gri). In our proof of indistin-
guishability, however, we need to rely on the proof technique of the Boneh-Boyen
IBE [11] in order to apply a hybrid argument that allows gradually replacing
pairs {(Di, Ei)}n

i=1 by random group elements.
In our proof of evasiveness, we rely on the fact that forging a pair of the

form (Di, Ei) = (hri·vi · HG(τ)ρi , gρi) on input of (g, h, gvi) is as hard as solving
the 2-3-Diffie-Hellman problem [32], which consist in finding a non-trivial pair
(gr, gr·ab) ∈ G

∗ × G
∗ on input of (g, ga, gb). In turn, this problem is known to

be at least as hard as breaking the Decision 3-party Diffie-Hellman assumption.
The above techniques allow us to construct a LAF with O(n)-size tags and

evaluation keys made of O(n+λ) group elements under a standard assumption.
Our first LAF is actually described in terms of asymmetric pairings, but it can
be instantiated in all types (i.e., symmetric or asymmetric) of bilinear groups.
Our second LAF construction requires asymmetric pairing configurations and
the Symmetric eXternal Diffie-Hellman (SXDH) assumption. It is very similar
to our first construction with the difference that we obtain a tight proof of
evasiveness by replacing Waters signatures with a variant of a MAC proposed
by Blazy, Kiltz and Pan [7]. In order for the proofs to go through, we need to
include n MAC instances (each with its own keys) in lossy tags, which incurs
evaluation keys made of O(n · λ) group elements. We leave it is an interesting
open problem to achieve tight security using shorter evaluation keys.
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Related Work. All-but-one lossy trapdoor functions (ABO-LTFs) [39] are
similar to LAFs in that they are lossy function families where each function
is parametrized by a tag that determines if the function is injective or lossy.
They differ from LAFs in two aspects: (i) They should be efficiently invert-
ible using a trapdoor; (ii) For a given evaluation key ek, there exists only one
tag for which the function is lossy. The main motivation of ABO-LTFs is the
construction of chosen-ciphertext [40] encryption schemes. All-but-many lossy
trapdoor functions (ABM-LTFs) are an extension of ABO-LTFs introduced by
Hofheinz [24]. They are very similar to LAFs in that a trapdoor makes it possi-
ble to dynamically create arbitrarily many lossy tags using. In particular, each
tag t = (tc, ta) consists of an auxiliary component ta and a core component tc
so that, by computing tc as a suitable function of ta, the pair t = (tc, ta) can
be made lossy, but still random-looking. The motivation of ABM-LTFs is the
construction chosen-ciphertext-secure public-key encryption schemes in scenar-
ios, such as the selective-opening setting [2,18], which involve multiple challenge
ciphertexts [24]. They also found applications in the design of universally com-
posable commitments [20]. Lossy algebraic filters differ from ABM-LTFs in that
they may not have a trapdoor enabling efficient inversion but, for any lossy tag
t = (tc, ta), the information revealed by fLAF(t, x) is always the same (i.e., it is
completely determined by x and the evaluation key ek).

LAFs were first introduced by Hofheinz [25] as a building block for KDM-
CCA-secure encryption schemes, where they enable some form of “plaintext
awareness”. In the security proofs of KDM-secure encryption schemes (e.g., [10]),
the reduction must be able to simulate encryptions of (functions of) the secret
key. When the adversary is equipped with a decryption oracle, the ability to pub-
licly compute encryptions of the decryption key may be a problem as decryption
queries could end up revealing that key. LAFs provide a way reconcile the con-
flicting requirements of KDM and CCA2-security by introducing in each cipher-
text a LAF-evaluation of the secret key. By having the simulator encrypt a lossy
function of the secret key, one can keep encryption queries from leaking too
much secret information. At the same time, adversarially-generated ciphertexts
always contain an injective function of the key, which prevents the adversary
from learning the secret key by publicly generating encryptions of that key.

Recently, Wen and Liu [44] appealed to LAFs in the design of robustly
reusable fuzzy extractors. As defined by Dodis et al. [17], fuzzy extractors allow
one to generate a random cryptographic key R – together with some public helper
string P – out of a noisy biometric reading w. The key R need not be stored as
it can be reproduced from the public helper string P and a biometric reading w′

which is sufficiently close to w. Reusable fuzzy extractors [13] make it possible to
safely generate multiple keys R1, . . . , Rt (each with its own public helper string
Pi) from correlated readings w1, . . . , wt of the same biometric source. Wen and
Liu [44] considered the problem of achieving robustness in reusable fuzzy extrac-
tors. In short, robustness prevents adversaries from covertly tampering with the
public helper string Pi in order to affect the reproducibility of Ri. The Wen-
Liu [44] fuzzy extractor relies on LAFs to simultaneously achieve reusability and
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robustness assuming a common reference string. Their solution requires the LAF
to be homomorphic, meaning that function outputs should live in a group and,
for any tag t and inputs x1, x2, we have fLAF(t, x1+x2) = fLAF(t, x1) ·fLAF(t, x2).
The candidate proposed by Hofheinz [25] and ours are both usable in robustly
reusable fuzzy extractors as they both satisfy this homomorphic property. Our
scheme offers the benefit of shorter public helper strings P since these have to
contain a LAF tag in the fuzzy extractor of [44].

The tightness of cryptographic security proofs was first considered by Bellare
and Rogaway [4] in the random oracle model [3]. In the standard model, it drew
a lot of attention in digital signatures and public-key encryption the recent years
(see, e.g., [7,16,21,22,26–28,34,35]). In the context of all-but-many lossy trap-
door functions, a construction with tight evasiveness was put forth by Hofheinz
[24]. A tightly secure lattice-based ABM-LTF was described by Libert et al. [36]
as a tool enabling tight chosen-ciphertext security from lattice assumptions. To
our knowledge, the only other prior work considering tight reductions for lossy
trapdoor functions is a recent result of Hofheinz and Nguyen [29]. In particu-
lar, tight security has never been obtained in the context of LAFs, nor in fuzzy
extractors based on public-key techniques.

2 Background

2.1 Lossy Algebraic Filters

We recall the definition of Lossy Algebraic Filter (LAF) from [25], in which the
distribution over the function domain may not be the uniform one.

Definition 1. For integers �LAF(λ), n(λ) > 0, an (�LAF, n)-lossy algebraic filter
(LAF) with security parameter λ consists of the following PPT algorithms:

Key Generation. LAF.Gen(1λ) outputs an evaluation key ek and a trapdoor
key tk. The evaluation key ek specifies an �LAF-bit prime p as well as the
description of a tag space T = Tc × Ta, where Tc is efficiently samplable. The
disjoint sets of injective and non-injective tags are called Tinj and Tnon-inj =
T \Tinj, respectively. We also define the subset of lossy tags Tloss to be a subset
of Tnon-inj, which induce very lossy functions. A tag t = (tc, ta) is described by
a core part tc ∈ Tc and an auxiliary part ta ∈ Ta. A tag may be injective, or
lossy, or neither. The trapdoor tk allows sampling lossy tags.

Evaluation. LAF.Eval(ek, t,X) takes as inputs an evaluation key ek, a tag t ∈
T and a function input X ∈ Z

n
p . It outputs an image Y = fek,t(X).

Lossy Tag Generation. LAF.LTag(tk, ta) takes as input the trapdoor key tk,
an auxiliary part ta ∈ Ta and outputs a core part tc such that t = (tc, ta) ∈ Tloss

forms a lossy tag.

In addition, LAF has to meet the following requirements:

Lossiness. For any (ek, tk) R← LAF.Gen(1λ), the following conditions should be
satisfied.
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a. For any t ∈ Tinj, fek,t(.) should behave as an injective function (note that
f−1

ek,t(.) is not required to be efficiently computable given tk).
b. For any auxiliary tag ta ∈ Ta and any tc

R← LAF.LTag(tk, ta), we have
t = (tc, ta) ∈ Tloss, meaning that fek,t(.) is a lossy function. Moreover, for
any input X = (x1, . . . , xn) ∈ Z

n
p and any t = (tc, ta) ∈ Tloss, fek,t(X) is

completely determined by
∑n

i=1 vi · xi mod p for coefficients {vi}n
i=1 that

only depend on ek.

Indistinguishability. Multiple lossy tags are computationally indistinguishable
from random tags, namely:

AdvA,ind
Q (λ) :=

∣∣ Pr[A(1λ, ek)LAF.LTag(tk,·) = 1] − Pr[A(1λ, ek)OTc (·) = 1]
∣∣

is negligible for any PPT algorithm A, where (ek, tk) R← LAF.Gen(1λ) and
OTc

(·) is an oracle that assigns a random core tag tc
R← Tc to each auxiliary

tag ta ∈ Ta (rather than a core tag that makes t = (tc, ta) lossy). Here Q
denotes the number of oracle queries made by A.

Evasiveness. Non-injective tags are computationally hard to find, even with
access to an oracle outputting multiple lossy tags, namely:

AdvA,eva
Q1,Q2

(λ) := Pr[A(1λ, ek)LAF.LTag(tk,·), LAF.IsInjective(tk,·) ∈ Tnon-inj]

is negligible for legitimate adversary A, where (ek, ik, tk) R← LAF.Gen(1λ) and
A is given access to the following oracle:
– LAF.LTag(tk, ·) which acts exactly as the lossy tag generation algorithm.
– LAF.IsInjective(tk, ·) that takes as input a tag t = (tc, ta). It outputs 0 if

t ∈ Tnon-inj = T \Tinj and 1 if t ∈ Tinj. If t �∈ T , the oracle outputs ⊥.
We denote by Q1 and Q2 the number of queries to LAF.LTag(tk, ·) and
LAF.IsInjective(tk, ·), respectively. By “legitimate adversary”, we mean that
A is PPT and never outputs a tag t = (tc, ta) such that tc was obtained by
invoking the LAF.LTag oracle on ta.

In our construction, the tag space T will not be dense (i.e., not all elements
of the ambient algebraic structure are potential tags). However, elements of the
tag space T will be efficiently recognizable given ek.

We note that the above definition of evasiveness departs from the one used
by Hofheinz [25] in that it uses an additional LAF.IsInjective(tk, ·) oracle that
uses the trapdoor tk to decide whether a given tag is injective or not. However,
this oracle will only be used in our tightly secure LAF (and not in our first
construction). Its only purpose is to enable a modular use of our tightly evasive
LAF in applications to KDM security [25] or robustly reusable fuzzy extractors
[44]. Specifically, by invoking the LAF.IsInjective(tk, ·) oracle, the reduction from
the security of a primitive to the underlying LAF’s evasiveness does not have to
guess which adversarial query involves a non-lossy tag.
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2.2 Chameleon Hash Functions

A chameleon hash function [31] is a tuple of algorithms CMH = (CMKg,CMhash,
CMswitch) which contains an algorithm CMKg that, given a security parameter
1λ, outputs a key pair (hk, td) ← G(1λ). The randomized hashing algorithm
outputs y = CMhash(hk,m, r) given the public key hk, a message m and ran-
dom coins r ∈ Rhash. On input of messages m,m′, random coins r ∈ Rhash

and the trapdoor key td, the switching algorithm r′ ← CMswitch(td,m, r,m′)
computes r′ ∈ Rhash such that CMhash(hk,m, r) = CMhash(hk,m′, r′). The
collision-resistance property mandates that it be infeasible to come up with
pairs (m′, r′) �= (m, r) such that CMhash(hk,m, r) = CMhash(hk,m′, r′) with-
out knowing the trapdoor key tk. Uniformity guarantees that the distribution
of hash values is independent of the message m: in particular, for all hk, and
all messages m,m′, the distributions {r ← Rhash : CMHash(hk,m, r)} and
{r ← Rhash : CMHash(hk,m′, r)} are identical.

2.3 Hardness Assumptions

Definition 2. Let (G, Ĝ,GT ) be bilinear groups of order p. The First Decision
3-Party Diffie-Hellman (D3DH1) assumption holds in (G, Ĝ,GT ) if no PPT
distinguisher can distinguish the distribution

D1 := {(g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, gabc) | g R← G, ĝ R← Ĝ, a, b, c R← Zp}
D0 := {(g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, gz) | g R← G, ĝ R← Ĝ, a, b, c, z R← Zp}.

The D3DH1 assumption has a natural analogue where the pseudorandom value
lives in Ĝ instead of G.

Definition 3. The Second Decision 3-Party Diffie-Hellman (D3DH2)
assumption holds in (G, Ĝ,GT ) if no PPT algorithm can distinguish between
the distribution

D1 := {(g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, ĝabc) | g R← G, ĝ R← Ĝ, a, b, c R← Zp}
D0 := {(g, ĝ, ga, gb, gc, ĝa, ĝb, ĝc, ĝz) | g R← G, ĝ R← Ĝ, a, b, c, z R← Zp}.

We also need a computational assumption which is implied by D3DH2. The
2-3-CDH was initially introduced [32] in ordinary (i.e., non-pairing-friendly)
discrete-logarithm hard groups. Here, we extend it to asymmetric bilinear groups.

Definition 4 ([32]). Let (G, Ĝ) be a bilinear groups of order p with generators
g ∈ G and ĝ ∈ Ĝ. The 2-out-of-3 Computational Diffie-Hellman (2-3-CDH)
assumption says that, given (g, ga, ĝa, gb, ĝb) for randomly chosen a, b R← Zp, no
PPT algorithm can find a pair (gr, gr·ab) such that r �= 0.

It is known (see, e.g., [37]) that any algorithm solving the 2-3-CDH prob-
lem can be used to break the D3DH2 assumption. On input of (g, ĝ, ga,
gb, gc, ĝa, ĝb, ĝc, ĝz), where z = abc or z ∈R Zp, the reduction can simply run
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a 2-3-CDH solver on input of (g, ga, gb, ĝa, ĝb). If the solver outputs a non-trivial
pair of the form (R1, R2) = (gr, gr·ab), the D3DH2 distinguisher decides that
z = abc if and only if e(R1, ĝ

z) = e(R2, ĝ
c).

In our constructions, we actually rely on a weaker variant of D3HD1, called
wD3HD1, where ĝa is not given. In our tightly secure construction (which
requires asymmetric pairings), we need to rely on the following variant of
wD3HD1.

Definition 5. Let (G, Ĝ,GT ) be bilinear groups of order p. The Randomized
weak Decision 3-Party Diffie-Hellman (R-wD3DH1) assumption holds in
(G, Ĝ,GT ) if no PPT distinguisher can distinguish the distribution

D1 :=
{

{(g, ĝ, gai , gb, gc, ĝb, ĝc, gaibc)}Q
i=1 | g R← G, ĝ R← Ĝ,

a1, . . . , aQ, b, c R← Zp}
}

D0 :=
{

{(g, ĝ, gai , gb, gc, ĝb, ĝc, gzi)}Q
i=1 | g R← G, ĝ R← Ĝ,

a1, . . . , aQ, z1, . . . , zQ, b, c R← Zp}
}

.

We do not know if D3DH1 or wD3DH1 can be tightly reduced to R-wD3DH1
(the only reduction we are aware of proceeds via a hybrid argument). In asym-
metric pairings, however, we can give a tight reduction between R-wD3DH1 and
a combination of wD3DH1 and SXDH.

Lemma 1. There is a tight reduction from the wD3DH1 assumption and the
DDH assumption in G to the R-wD3DH1 assumption. More precisely, for any
R-wD3DH1 adversary B, there exist distinguishers B1 and B2 which run in about
the same time as B and such that

AdvR-wD3DH1
B (λ) ≤ AdvwD3DH1

B1
(λ) + AdvDDH1

B2
(λ),

where the second term denotes B2’s advantage as a DDH distinguisher in G.

Proof. To prove the result, we consider the following distribution:

Dint :=
{

{(g, ĝ, ga·αi , gb, gc, ĝb, ĝc, gz·αi)}Q
i=1 | g R← G, ĝ R← Ĝ,

α1, . . . , αQ, b, c, z R← Zp, a R← Z
�
p}

}

A straightforward reduction shows that, under the wD3DH1 assumption, D1

is computationally indistinguishable from Dint. We show that, under the DDH
assumption in G, Dint is computationally indistinguishable from D0. Moreover,
the reduction is tight in that the two distinguishers have the same advantage.

First, we show that, under the wD3DH1 assumption, Dint is computationally
indistinguishable from D1.
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We can build a wD3DH1 distinguisher B1 from any distinguisher for D1

and Dint. With (g, ĝ, ga, gb, gc, ĝb, ĝc, T ) as input where g R← G, ĝ R← Ĝ and
a, b, c R← Zp, B1 uniformly draws αi, . . . , αQ

R← Zp and computes

DB1 :=
{

{(g, ĝ, ga·αi , gb, gc, ĝb, ĝc, Tαi)}Q
i=1 | α1, . . . , αQ

R← Zp

}
.

It is easy to see that if T = gabc, then DB1 is identical to D1. If T ∈R G, then
DB1 is distributed as Dint. Hence, any distinguisher between D1 and Dint with
DB1 implies a distinguisher B1 for the wD3DH1 problem.

Next, we show that, under the DDH assumption in G, Dint is computationally
indistinguishable from D0. In order to build a DDH distinguisher B2 out of a
distinguisher between Dint and D0, we use the random self-reducibility of the
DDH assumption.

Lemma 2 (Random Self-Reducibility [38]). Letting G be a group of prime
order p, there exists a PPT algorithm R that takes as input (g, ga, gb, gc) ∈ G

4,
for any a, b, c ∈ Zp, and returns a triple (ga, gb′

, gc′
) ∈ G

3 such that:

– If c = ab mod q, then b′ is uniformly random in Zp and c′ = ab′.
– If c �= ab mod q, then b′, c′ ∈R Zp are independent and uniformly random.

On input of (g, gz, gα, T ) ∈ G
4, where g R← G and z, α R← Zp, B2 uses

algorithm R to generate Q instances {(gz, gαi , Ti)}Q
i=1. Next, B2 draws ĝ R← Ĝ,

a, b, c R← Zp and defines the following distribution:

DB2 :=
{

{(g, ĝ, (gαi)a, gb, gc, ĝb, ĝc, Ti)}Q
i=1 | ĝ R← Ĝ, a, b, c R← Zp

}
.

We observe that, if T = gz·α, we have Ti = gz·αi for all i ∈ [Q]. In this case,
DB2 is identical to Dint. In contrast, if T ∈R G, the random self-reducibility
ensures that T1, . . . , TQ ∈R G are i.i.d, meaning that DB2 is identical to D0.
Using a distinguisher between Dint and D0 and feeding it with DB2 , we obtain
a distinguisher B2 for the DDH problem in G. 	


3 A Lossy Algebraic Filter with Linear-Size Tags

We present a LAF based on DDH-like assumptions with tags of size O(n), where
n is the number of input symbols when the input is viewed as a vector over Zp.
Our tags are comprised of 4n elements of G, which outperforms the construction
of [25] for n > 4. In his application to KDM-CCA security [25], Hofheinz uses a
LAF scheme with n = 6, in which case we decrease the tag size from 43 to 24
group elements1 and thus shorten ciphertexts by 19 group elements.

1 The LAF of [25] was described in terms of symmetric pairings but it extends to
asymmetric pairings e : G × Ĝ → GT where tags are comprised of elements in G.
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The construction is inspired by the lossy TDF of [14] and relies on the revoca-
tion technique of Lewko, Sahai and Waters [33] (LSW) in the same way. In asym-
metric pairings e : G×Ĝ → GT , the evaluation key contains a set of LSW cipher-
texts {(V̂j = ĝvj , Ĥj = (ĥj · û)vj )}n

j=1, while each core tag component tc can be
seen as containing a set of LSW secret keys {(Ri, Si) = (gri , (hi ·u)ri)}n

i=1, allow-
ing the evaluator compute Mi,j = e(g, ĥ)ri·vj for any pairwise distinct indices
i �= j. In lossy tags (tc, ta), diagonal elements {Mi,i}n

i=1 are handled by having
tc contain Waters signatures (Di, Ei) = (hri·vi · HG(τ)ρi , gρi), where ρi ∈R Zp

and HG : {0, 1}L → G is an algebraic hash function mapping the output τ of a
chameleon hash function to the group G. For indistinguishability purposes, pairs
{(Di, Ei)}n

i=1 are not immediately recognizable as Waters signatures because the
underlying secret key hvi is blinded by a random exponent ri = logg(Ri). Still,
running the verification algorithm of Waters signatures on (Di, Ei) allows the
evaluation algorithm to derive Mi,i = e(g, ĥ)ri·vi , so that (Mi,j)i,j∈[n] forms a
rank-1 matrix. In injective tags, {(Di, Ei)}n

i=1 are uniformly distributed in G, so
that (Mi,j)i,j∈[n] is the sum of a rank-1 matrix and a diagonal matrix.

3.1 Description

Key Generation. LAF.Gen(1λ) conducts the following steps.

1. Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with ran-
dom generators g, h, u R← G and ĝ, ĥ, û R← Ĝ subject to the constraints
logg(h) = logĝ(ĥ) and logg(u) = logĝ(û).

2. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch),
where the hashing algorithm CMhash : {0, 1}∗ × Rhash → {0, 1}L has
output length L ∈ poly(λ). Generate a pair (hkCMH, tdCMH) ← CMKg(1λ)
made of a hashing key hkCMH and a trapdoor tdCMH.

3. Choose random exponents w0, . . . , wL
R← Zp and define

Wk = gwk , Ŵk = ĝwk ∀k ∈ [0, L]

that will be used to instantiate two hash functions HG : {0, 1}L → G,
H

Ĝ
: {0, 1}L → Ĝ which map any string m ∈ {0, 1}L to

HG(m) = W0 ·
L∏

k=1

W
m[k]
k , H

Ĝ
(m) = Ŵ0 ·

L∏
k=1

Ŵ
m[k]
k ,

respectively. Note that e(g,H
Ĝ
(m)) = e(HG(m), ĝ) for any m ∈ {0, 1}L.

4. Let n ∈ poly(n) be the desired input length. For each j ∈ [n], choose
vj

R← Zp and define

V̂j = ĝvj , Ĥj = (ĥj · û)vj ∀j ∈ [n].

5. Output the evaluation key ek and the lossy tag generation key tk, which
consist of

ek :=
(
hkCMH, g, h, u, ĝ, ĥ, û, {Wk, Ŵk}L

k=0, {V̂j , Ĥj}n
j=1

)
,

tk :=
(
tdCMH, {vj}n

j=1

)
.
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The tag space T = Tc × Taux is defined as a product of Ta = {0, 1}∗ and

Tc := {
(
{Ri, Si,Di, Ei}n

i=1, rhash

)
| rhash ∈ RCMH ∧

∀i ∈ [n] : (Ri, Si,Di, Ei) ∈ G
∗4 ∧ e(Ri, ĥ

i · û) = e(Si, ĝ)},

where G
∗ := G \ {1G}. The range of the function family is Rngλ = G

n+1
T and

its domain is Z
n
p .

Lossy Tag Generation. LAF.LTag(tk, ta) takes in an auxiliary tag component
ta ∈ {0, 1}∗ and uses tk =

(
tdCMH, {vj}n

j=1, {wk}L
k=0

)
to generate a lossy tag

as follows.

1. For each i ∈ [n], choose ri
R← Z

∗
p and compute

Ri = gri , Si = (hi · u)ri ∀i ∈ [n]. (3)

2. For each i ∈ [n], choose ρi
R← Zp and compute

Di = hri·vi · HG(τ)ρi , Ei = gρi ∀i ∈ [n],

where τ ∈ {0, 1}L is chosen uniformly in the range of CMhash.
3. Use the trapdoor tdCMH to find rhash ∈ Rhash such that

τ = CMhash
(
hkhash, (ta, {Ri, Si,Di, Ei}n

i=1), rhash

)
∈ {0, 1}L

and output the tag t = (tc, ta), where tc = ({Ri, Si,Di, Ei}n
i=1, rhash).

Each lossy tag is associated with a matrix
(
Mi,j

)
i,j∈[n]

=
(
e(g, ĥ)ri·vj

)
i,j

,
which is a rank-1 matrix in the exponent. Its diagonal entries consist of

Mi,i =
e(Di, ĝ)

e(Ei,HĜ
(τ))

= e(g, ĥ)ri·vi ∀i ∈ [n], (4)

while its non-diagonal entries

Mi,j =
(e(Ri, Ĥj)

e(Si, V̂j)

)1/(j−i)

= e(g, ĥ)ri·vj ∀(i, j) ∈ [n] × [n] \ {(i, i)}n
i=1,

(5)

are obtained by pairing tag component (Ri, Si) with evaluation key compo-
nents (V̂j , Ĥj).

Random Tags. A random tag can be publicly sampled as follows.

1. For each i ∈ [n], choose ri
R← Z

∗
p and compute {Ri, Si}n

i=1 as in (3).
2. For each i ∈ [n], choose (Di, Ei)

R← G
∗ × G

∗ uniformly at random.
3. Choose rhash

R← Rhash.

Finally, output the tag t = (tc, ta), where tc = ({Ri, Si,Di, Ei}n
i=1, rhash).
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We note that, in both random and lossy tags, we have e(Ri, û
i · ĥ) = e(Si, ĝ)

for all i ∈ [n], so that elements of T are publicly recognizable.

Evaluation. LAF.Eval(ek, t,x) takes in the function input x ∈ Z
n
p as well as

the tag t = (tc, ta). It parses tc as ({Ri, Si,Di, Ei}n
i=1, rhash) and proceeds as

follows.

1. Return ⊥ if there exists i ∈ [n] such that e(Ri, ĥ
i · û) �= e(Si, ĝ).

2. Compute the matrix
(
Mi,j

)
i,j∈[n]

∈ G
n×n
T as

Mi,i =
e(Di, ĝ)

e(Ei,HĜ
(τ))

∀i ∈ [n] , (6)

where τ = CMhash
(
hkhash, (ta, {Ri, Si,Di, Ei}n

i=1), rhash

)
, and

Mi,j =
(e(Ri, Ĥj)

e(Si, V̂j)

)1/(j−i)

∀(i, j) ∈ [n] × [n] \ {(i, i)}n
i=1, (7)

Note that, since Ri = gri and Si = (hi · u)ri for some ri ∈ Zq, we have

Mi,i = e(g, ĥ)ri·vi+ωi , ∀i ∈ [n] (8)

Mi,j = e(g, ĥ)ri·vj , ∀i �= j,

for some vector (ω1, . . . , ωn)� ∈ Z
n
p that only contains non-zero entries if

t = (tc, ta) is injective.
3. Compute the vector

(
VT,j

)
j∈[n]

as VT,j = e(h, V̂j) = e(g, ĥ)vj for each
j ∈ [n].

4. Use the input x = (x1, . . . , xn)� ∈ Z
n
p to compute

Y0 =
n∏

j=1

V
xj

T,j (9)

Yi =
n∏

j=1

M
xj

i,j ∀i ∈ [n]

and output Y = (Y0, Y1, . . . , Yn)� ∈ G
n+1
T .

While the above construction inherits the Θ(λ)-size public keys of Waters
signatures [42], we believe that it can be adapted to other signature schemes in
the standard model (e.g., [8,30]) so as to obtain shorter evaluation keys.

Injectivity and lossiness. For any injective tag, all entries of the vector
(ω1, . . . , ωn)� are non-zero in (8). We can use Y0 to ensure that the function is
injective. As long as ωi �= 0 for all i ∈ [n], the evaluation algorithm (9) yields a
vector Y = (Y0, Y1, . . . , Yn) ∈ G

n+1
T of the form

Y0 = e(g, ĥ)
∑n

j=1 vj ·xj

Yi = e(g, ĥ)ωi·xi+ri·
∑n

j=1 vj ·xj ∀i ∈ [n],
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meaning that xi ∈ Zp is uniquely determined by (Y0, Yi) and (Ri,Di, Ei) (note
that the triple (Ri,Di, Ei) uniquely defines ωi).

For any lossy tag, the evaluation outputs Y = (Y0, Y1, . . . , Yn) ∈ G
n+1
T such

that

Y0 = e(g, ĥ)
∑n

j=1 vj ·xj

Yi = e(g, ĥ)ri·
∑n

j=1 vj ·xj ∀i ∈ [n],

which always reveals the same information
∑n

j=1 vj · xj mod p about the input
vector x = (x1, . . . , xn)�, no matter which tag is used.

3.2 Security

The proof of indistinguishability relies on the wD3DH1 assumption via a hybrid
argument over the queries to the LAF.LTag(tk, ·) oracle and over the pairs
{(Di, Ei)}n

i=1 produced by LAF.LTag(tk, ·) at each query. Using the R-wD3DH1
assumption, it is possible to modify the proof so as to use a hybrid argument
over the pairs {(Di, Ei)}n

i=1 only (meaning that all queries to LAF.LTag(tk, ·) are
processed in parallel at each game transition). However, this proof would require
the SXDH assumption – which only holds in asymmetric pairings – to apply the
result of Lemma 1. In contrast, the proof of Theorem 1 allows instantiations in
all bilinear group configurations, even in symmetric pairings.

The proof of Theorem 1 uses a hybrid argument to gradually replace pairs
{(Di, Ei)}n

i=1 by truly random group elements in outputs of the lossy tag gen-
eration oracle. To this end, it relies on the proof technique of the Boneh-Boyen
IBE [11] in the proof of Lemma 3. Namely, in order to embed a D3DH1 instance
(g, h, gvk , grk , T

?= hrk·vk) in the k-th pair (Dk, Ek), for indexes i > k, the reduc-
tion has to simulate hri·vk for a known ri ∈ Zp and an unknown hvk .

Theorem 1. The above LAF provides indistinguishability under the wD3DH1
assumption in (G, Ĝ,GT ).

Proof. We first recall that, for any injective or non-injective tag t = (tc, ta),
the core component tc = ({Ri, Si,Di, Ei}n

i=1, rhash) imply a matrix
(
Mi,j

)
i,j∈[n]

where the off-diagonal entries are Mi,j = e(g, ĥ)ri·vj and the diagonal entries
are of the form (8). In injective tags, the vector (ω1, . . . , ωn)� ∈ Z

n
p only con-

tains non-zero entries. In lossy tags, we have (ω1, . . . , ωn)� = 0n. We define
a sequence of hybrid games. In Game(0,0), the adversary has access to the real
oracle LAF.LTag(tk, .) oracle that always outputs lossy tags. In Game(Q,n), the
adversary is given access to an oracle OTc(.) that always outputs random tags.

Game(�,k) (1 ≤ � ≤ Q, 1 ≤ k ≤ n): In this game, the adversary interacts with a
hybrid oracle LAF.LTag(�,k)(tk, .). At the μ-th query, this oracle outputs tags
t(μ) = (t(μ)c , t

(μ)
a ) such that

– If μ < �, the tag t
(μ)
c = ({Ri, Si,Di, Ei}n

i=1, rhash) implies a matrix(
M

(μ)
i,j

)
i,j∈[n]

of the form (8) where (ω(μ)
1 , . . . , ω

(μ)
n )� is uniform over Z

n
p .
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– If μ = �, t
(μ)
c = ({Ri, Si,Di, Ei}n

i=1, rhash) implies a matrix
(
M

(μ)
i,j

)
i,j∈[n]

of the form (8) where the first k entries of (ω(μ)
1 , . . . , ω

(μ)
n )� are uniform

over Zp and its last n − k entries are zeroes.
– If μ > �, the matrix

(
M

(μ)
i,j

)
i,j∈[n]

implied by the core tag component

t
(μ)
c = ({Ri, Si,Di, Ei}n

i=1, rhash) is a rank-1 matrix in the exponent since
(ω(μ)

1 , . . . , ω
(μ)
n )� = 0n.

Lemma 3 shows that, for all pairs (�, k) ∈ [Q] × [n], these games are
computationally indistinguishable from one another, which yields the stated
result. 	


Lemma 3. For each k ∈ [n] and � ∈ [Q], Game(�,k) is computationally indistin-
guishable from Game(�,k−1) if the wD3DH1 assumption holds. Under the same
assumption, Game(�,1) is computationally indistinguishable from Game(�−1,n).

Proof. For the sake of contradiction, assume that there exists � ∈ [Q], k ∈
[n] such that the adversary A can distinguish Game(�,k) from Game(�,k−1) with
noticeable advantage (the indistinguishability of Game(�−1,n) and Game(�,1) can
be proved in a completely similar way). We build a wD3DH1 distinguisher B that
inputs (g, ĝ, ga, gb, gc, ĝb, ĝc, T ) with the goal of deciding if T = gabc or T ∈R G.

To this end, B defines h = gb, ĥ = ĝb and V̂k = ĝc. It picks α R← Zp and
defines û = ĥ−k · ĝα as well as u = h−k · gα, which implicitly sets vk = c. This
allows defining

Ĥk = (ĥk · û)c = (ĝc)α,

In addition, B defines (W0,W1, . . . ,WL) ∈ G
L+1 and (Ŵ0, Ŵ1, . . . , ŴL) ∈ Ĝ

L+1

by setting

Wi = (gb)αi · gβi , Ŵi = (ĝb)αi · ĝβi ∀i ∈ {0, . . . , L}

for randomly chosen α0, . . . , αL
R← Zp, β0, . . . , βL

R← Zp. Then, B chooses vi
R←

Zp for each i ∈ [n] \ {k} and defines the rest of the evaluation key ek by setting

V̂i = ĝvi , Ĥi = (ĥi · û)vi , ∀i ∈ [n] \ {k}

Then, at each invocation of the LAF.LTag(tk, .) oracle, B responds as follows.
At the μ-th query t

(μ)
a , it generates a core tag t

(μ)
c such that

– If μ < �, t
(μ)
c = ({Ri, Si,Di, Ei}n

i=1, rhash) contains {D̂i, Êi}n
i=1 uniformly

random pairs whereas {Ri, Ŝi}n
i=1 are chosen as in the real algorithm sampling

random tags.
– If μ = �, t

(μ)
c = ({Ri, Si,Di, Ei}n

i=1, rhash) is generated as follows. It sets

Rk = ga, Sk = (ga)α.
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As for indexes i �= k, it chooses r1, . . . , rk−1, rk+1, . . . , rn
R← Zp and sets

Ri = gri , Si = (hi · u)ri ∀i ∈ [n] \ {k}.

It generates the pairs {Di, Ei}n
i=1 by choosing (Di, Ei)

R← G
2 at random for

each i ∈ [k − 1]. The k-th pair (Dk, Ek) is defined as

Dk = T · HG(τ)ρk , Ek = gρk . (10)

for a randomly chosen ρk
R← Zp. As for {Di, Ei}n

i=k+1, they are obtained by
choosing a random τ = τ [1] . . . τ [L] ∈ {0, 1}L in the range of CMhash and
choosing ρi

R← Zp before setting

Di = HG(τ)ρi · (gc)
−ri·

β0+
∑L

i=1 βi·τ[i]

α0+
∑L

i=1 αi·τ[i] (11)

Ei = gρi · (gc)
− ri

α0+
∑L

i=1 αi·τ[i]

which can be written

Di = gbc·ri · HG(τ)ρ̃i = hvk·ri · HG(τ)ρ̃i

Ei = gρ̃i

if we define ρ̃i = ρi − c·ri

α0+
∑L

i=1 αi·τ [i]
. Note that the reduction B fails if

α0 +
∑L

i=1 αi · τ [i] = 0 but this only occurs with negligible chance since the
coordinates (α0, . . . , αL) ∈ Z

L
p are independent of A’s view. Finally, B uses

the trapdoor tdCMH of the chameleon hash function to find coins rhash ∈ RCMH

such that τ = CMhash
(
hkhash, (ta, {Ri, Si,Di, Ei}n

i=1), rhash

)
.

– If μ > �, the tags are generated as lossy tags. To this end, B proceeds as in
the previous case, except that all elements {Di, Ei}n

i=1 (and not only the last
n − k ones) are generated as per (11).

It is easy to see that, if T = gabc, the pair (Dk, Ek) of (10) can be written

Dk = hvk·rk · HG(τ)ρk , Ek = gρk ,

meaning that A’s view is the same as in Game(�,k−1). In contrast, if T ∈R G,
then (Dk, Ek) can be written

Dk = hωk+vk·rk · HG(τ)ρk , Ek = gρk ,

for some uniformly random ωk ∈R Zp. In this case, A’s view corresponds to
Game(�,k). 	


The evasiveness property is established by Theorem 2 for which a proof is
given in the full version of the paper.

Theorem 2. The above LAF provides evasiveness assuming that: (i) CMH is
a collision-resistant chameleon hash function; (ii) The wD3DH1 and 2-3-CDH
assumptions both hold in (G, Ĝ,GT ).
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Recall that the wD3DH1 and 2-3-CDH assumptions are implied by the
D3DH1 and D3DH2 assumptions, respectively. Theorems 1 and 2 thus guarantee
the D3DH1 and D3DH2 assumptions suffice to ensure the indistinguishability
and evasiveness properties of our LAF construction (indeed, chameleon hash
functions also exist under these assumptions).

3.3 Towards All-But-Many Lossy Trapdoor Functions

Our LAF construction can be modified to construct an all-but-many lossy trap-
door function [24]. Recall that ABM-LTFs do not require evaluations on lossy
tags to always output the same information about the input: on any lossy tag,
the image size is only required to be much smaller. On the other hand, ABM-
LTFs require that, for any injective tag, the function be efficiently invertible
using a trapdoor.

Our construction can be turned into an ABM-LTF in the following way. In
the evaluation algorithm, a binary input vector x = (x1, . . . , xn)� ∈ {0, 1}n is
mapped to the output (Y0, . . . , Yn) ∈ G

n+1
T , where Y0 =

∏n
i=1 e(Ri, ĥ)xi and

Yj =
n∏

i=1

Mxi
i,j ∀j ∈ [n],

which can be written

Y0 = e(g, ĥ)
∑n

i=1 ri·xi

Yj = e(g, ĥ)ωj ·xj+vj ·
∑n

i=1 ri·xi ∀j ∈ [n].

Using ik = (v1, . . . , vn) ∈ Z
n
p as an inversion key, one can decode the j-th input

bit as xj = 0 (resp. xj = 1) if Yj/Y
vj

0 = 1GT
(resp. Yj/Y

vj

0 �= 1GT
).

Unfortunately, the above ABM-LTF does not seem immediately usable in the
application to selective-opening chosen-ciphertext security, which was suggested
in [24]. The reason is that our tags have a special and publicly recognizable
structure, where (Ri, Si) both depend on the same exponent ri ∈ Zp. In the
selective-opening setting, the problem arises when the adversary chooses to cor-
rupt some senders, at which point the reduction should reveal the random coins
used to create lossy/injective tags. In our construction, this would entail to reveal
ri ∈ Zp, which is incompatible with our proofs of indistinguishability and eva-
siveness. In the ABM-LTF constructions of [24,36], lossy tags are explainable
because they are pseudorandom, which allows the reduction to pretend that they
have been randomly sampled in their ambient space. Here, the special structure
of lossy/injective tags prevents us from explaining the generation of lossy tags
in the same way for corrupted senders. The only apparent way to sample a
pair (Ri, Si) satisfying e(Ri, ĥ

i · û) = e(Si, ĝ) is to choose ri ∈ Zp and compute
(Ri, Si) = (gri , (hi · u)ri).

We thus leave it as an open problem to build an ABM-LTF with explainable
linear-size tags under DDH-like assumptions.
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4 A Lossy Algebraic Filter With Tight Security

In this section, we modify our first LAF construction in such a way that we can
prove it tightly secure under constant-size assumptions.2 To this end, we replace
Waters signatures by a variant of the MAC described by Blazy, Kiltz and Pan
[7], which is itself inspired by the Naor-Reingold PRF [38].

4.1 A Variant of the BKP MAC

The MAC construction below is identical to the signature scheme implied by the
IBE scheme of [7, Appendix D] with two differences which prevent public verifica-
tion in order to obtain a pseudo-random MAC instead of a digital signature. The
signature scheme of [7] was actually designed by transposing a pseudo-random
MAC from standard DDH-hard groups to bilinear groups in order to enable
public verification. Here, we cannot immediately use the MAC of [7] because we
need bilinear maps in the evaluation algorithm of our LAF.

In order to obtain a pseudo-random MAC, we thus modify the signature
scheme of [7] by introducing an additional randomizer r ∈ Zp and an extra
group element h, of which the discrete logarithm logg(h) serves as a private
verification key.

Keygen(1λ, 1L): Given a security parameter λ and a message length L ∈ poly(λ),
choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with
generators g, h R← G, ĝ R← Ĝ.

1. Choose θ, α, β R← Zp and compute ĝθ ∈ Ĝ. For each μ ∈ {0, 1}, choose
vectors xμ = (x1,μ, . . . , xL,μ) R← Z

L
p , yμ = (y1,μ, . . . , yL,μ) R← Z

L
p .

2. Set v = α + θ · β and zμ = xμ + θ · yμ ∈ Z
L
p . Compute V̂ = ĝv and, for

each μ ∈ {0, 1}, define Ẑμ = (Ẑ1,μ, . . . , ẐL,μ) = ĝzμ .

Output a secret key skmac = (α, β,x0,x1,y0,y1, η), where η = logg(h), and
public parameters consisting of pp =

(
(G, Ĝ,GT ), g, ĝ, h, ĝθ, (V̂ , Ẑ0, Ẑ1)

)
.

Mac.Sig(pp, skmac,M): To generate a MAC for M = m[1] . . . m[L] ∈ {0, 1}L

using skmac = (x, y,x0,x1,y0,y1, η), choose r, ρ R← Zp and compute

σ1 = hα·r · gρ·(
∑L

k=1 xk,m[k])

σ2 = hβ·r · gρ·(
∑L

k=1 yk,m[k])

σ3 = gρ

σ4 = gr

2 While the assumption of Definition 5 is described using O(Q) group elements, it
tightly reduces to wD3DH1 and DDH which both take a constant number of group
elements to describe.
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Mac.Ver(pp, skmac,M, σ): Given skmac = (α, β,x0,x1,y0,y1, η) and an L-bit
message M = m[1] . . . m[L], a purported MAC σ = (σ1, σ2, σ3, σ4) is accepted
if and only if

e(σ1, ĝ) · e(σ2, ĝ
θ) = e(σ4, V̂ )η · e(σ3,

L∏
k=1

Ẑk,m[k]). (12)

We note that the verification algorithm can be modified in such a way that it
does not require any pairing evaluation. The above description is just meant to
simplify the presentation of the security proof of our LAF construction.

The proof is essentially identical to that of [7] but we give it for completeness.
We note that, in the security definitions of MACs, the adversary is generally
allowed to make verification queries. Here, for simplicity, we prove unforgeability
in a game where the adversary knows η = logg(h), which allows it to run the
verification oracle itself. This dispenses us with the need for a verification oracle.

Lemma 4. The above construction is an unforgeable MAC assuming that the
SXDH assumption holds in (G, Ĝ). Namely, any forger A making Q MAC queries
and QV verification queries within running time tA has advantage at most

Advuf-mac
A (λ) ≤ AdvDDH2

B1
(λ) + 2L · AdvDDH1

B2
(λ),

where B1 and B2 are PPT distinguishers against the DDH assumption in G1 and
G2, respectively, which run in time tA + (Q + QV ) · poly(λ).

Proof. To prove the result, we consider a sequence of games. For each index i,
we call Wi the event that the challenger outputs 1 in Gamei.

Game0: This is the real game MAC security game, where the adversary A is
additionally given η = logg(h) in such a way that it can run the verification
algorithm (and test whether Eq. (12) holds) by itself. The challenger out-
puts 1 if and only if A eventually outputs a pair (M�, σ� = (σ�

1 , σ
�
2 , σ

�
3 , σ

�
4))

satisfying

e(σ�
1 , ĝ) · e(σ�

2 , ĝ
θ) = e(σ�

4 , V̂ )η · e(σ�
3 ,

L∏
k=1

Ẑk,m�[k]), (13)

where M� = m�[1] . . . m�[L] ∈ {0, 1}L, although M� was not previously
queried to the MAC oracle. By definition, Pr[W0] = Advuf-mac

A (λ).
Game1: In this game, we modify again the verification oracle as follows. When

A outputs a pair (M�, σ� = (σ�
1 , σ

�
2 , σ

�
3 , σ

�
4)) such that M� was not queried

to the MAC oracle but (M�, σ�) still satisfies (13), the challenger checks if

σ�
1 = σ�

4
η·α · σ�

3

∑L
k=1 xk,m�[k] (14)

σ�
2 = σ�

4
η·β · σ�

3

∑L
k=1 yk,m�[k] .



Lossy Algebraic Filters with Short Tags 53

We call E1 the event that equalities (14) are satisfied. If they are not satisfied,
the challenger outputs 0. Otherwise, it outputs 1 as it did in Game0. If we
denote by E0 the analogue of event E1 in Game0, we have

Pr[W0] = Pr[W0 ∧ E0] + Pr[W0 ∧ ¬E0]
= Pr[W1 ∧ E1] + Pr[W0 ∧ ¬E0] = Pr[W1] + Pr[W0 ∧ ¬E0]

since Pr[W1 ∧ ¬E1] = 0. Lemma 5 shows that event W0 ∧ ¬E0 would
contradict the DDH assumption in Ĝ: namely, we have Pr[W0 ∧ ¬E0] ≤
AdvDDH2(λ), which implies |Pr[W1] − Pr[W0]| ≤ AdvDDH2(λ).

We now use a sub-sequence of L hybrid games over the input bits of queried
messages. For convenience, we define Game2.0 to be identical to Game1.

Game2.i (1 ≤ i ≤ L): In this sub-sequence of games, we modify the key genera-
tion phase and the MAC oracle in the following way.

– At the beginning of the game, the challenge defines V̂ = ĝv for a random
v R← Zp.

– MAC queries are handled as follows. Let R : {0, 1}i → Zp be a truly
random function mapping i-bit input to Zp. At each message M queried
by A, the challenger computes (σ3, σ4) = (gρ, gr) for random ρ, r R← Zp.
Then, it outputs (σ1, σ2, σ3, σ4), where

σ1 = h(v−θ·R(m[1]...m[i]))·r · gρ·(
∑L

k=1 xk,m[k])

σ2 = hR(m[1]...m[i])·r · gρ·(
∑L

k=1 yk,m[k])

When the adversary outputs (M�, σ� = (σ�
1 , σ

�
2 , σ

�
3 , σ

�
4)) satisfying (13) for a

new message M�, the challenger checks if the following equalities are satisfied:

σ�
1 = σ�

4
η·(v−θ·R(m�[1]...m�[i])) · σ�

3

∑L
k=1 xk,m�[k] (15)

σ�
2 = σ�

4
η·R(m�[1]...m�[i]) · σ�

3

∑L
k=1 yk,m�[k] .

If so, the challenger outputs 1. Otherwise, it outputs 0. Lemma 6 shows that
Game2.i is indistinguishable from Game2.(i−1) under the DDH assumption in
G. Namely, |Pr[W2.i] − Pr[W2.(i−1)]| ≤ AdvDDH1(λ).

In Game2.L, we claim that Pr[W2.L] = 1/p. Indeed, the equalities (15) can
only hold by pure chance when i = L because m�[1] . . . m�[L] was never
involved in an output of the MAC oracle. Hence, the random function output
R(m�[1] . . . m�[L]) is perfectly independent of A’s view. Since Pr[W2.0] = Pr[W1],
we obtain the claimed upper bound for Pr[W0]. 	


Lemma 5. In Game0, we have Pr[W0 ∧ ¬E0] ≤ AdvDDH2(λ).

Proof. Towards a contradiction, let us assume that, in Game1, the adversary A
can output a pair (M�, σ� = (σ�

1 , σ
�
2 , σ

�
3 , σ

�
4)) satisfying (13) but not (14). We
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construct a distinguisher B for the DDH assumption in Ĝ. Our distinguisher B
takes as input (ĝ, ĝθ, ĝω, T̂ ) ∈ Ĝ

4 and decides if T̂ = ĝα·ω or T̂ ∈R Ĝ. To this
end, B will compute a pair of the form (w,wθ) ∈ G

2 with w �= 1G, which allows
solving the given DDH instance in Ĝ by testing if e(w, T̂ ) = e(wθ, ĝω). Indeed,
the latter equality holds if and only if T̂ = ĝα·ω.

The reduction B runs the real key generation algorithm and answers all
MAC and verification queries exactly as in Game1. By hypothesis, B has non-
negligible probability of outputting a pair (M�, σ� = (σ�

1 , σ
�
2 , σ

�
3 , σ

�
4)) satisfying

(13) although

σ�
1 �= σ�

4
η·α · σ�

3

∑L
k=1 xk,m�[k] , σ�

2 �= σ�
4

η·β · σ�
3

∑L
k=1 yk,m�[k] .

At this point, B uses skmac to construct a different valid MAC (σ′
1, σ

′
2, σ

�
3 , σ

�
4)

satisfying (13) and such that (σ′
1, σ

′
2) �= (σ�

1 , σ
�
2). Namely, B computes

σ′
1 = σ�

4
η·α · σ�

3

∑L
k=1 xk,m�[k] , σ′

2 = σ�
4

η·β · σ�
3

∑L
k=1 yk,m�[k] .

By dividing the two verification equations for (σ′
1, σ

′
2, σ

�
3 , σ

�
4) and (σ�

1 , σ
�
2 , σ

�
3 , σ

�
4),

we get

e(σ�
1/σ′

1, ĝ) · e(σ�
2/σ′

2, ĝ
θ) = 1GT

meaning that σ�
1/σ′

1 = (σ′
2/σ�

2)
θ. Since σ�

1 �= σ′
1, this provides B with a

non-trivial pair (w,wθ) =
(
σ′
2/σ�

2 , σ
�
1/σ′

1

)
, which is sufficient to solve DDH

in Ĝ. 	


Lemma 6. Under the DDH assumption in G, the challenger outputs 1 with
about the same probabilities in Game3.(i−1) and Game3.i. We have

|Pr[W2.i] − Pr[W2.(i−1)]| ≤ 2 · AdvDDH1(λ).

(The proof is given in the full version of the paper.)

4.2 The LAF Construction

In order to apply a hybrid argument in our proof of indistinguishability, we need
to use n instances of the MAC of Sect. 4.1, each of which has its own secret key
skmac,j and its own set of public parameters ppj =

(
g, ĝ, h, ĝθj , (V̂j , Ẑj,0, Ẑj,1)

)
.

As a result, we need an evaluation key containing Θ(n · L) group elements.
We leave it as an open problem to shorter the evaluation while retaining tight
security and short tags.
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Key Generation. LAF.Gen(1λ) conducts the following steps.

1. Choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with
generators g, h R← G, ĝ R← Ĝ and let η = logg(h).

2. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch),
where the hashing algorithm CMhash : {0, 1}∗ × Rhash → {0, 1}L has
output length L ∈ poly(λ). Generate a pair (hkCMH, tdCMH) ← CMKg(1λ)
made of a hashing key hkCMH and a trapdoor tdCMH.

3. Generate n keys for the MAC of Sect. 4.1 which all share the same param-
eters g, h ∈ G, ĝ ∈ Ĝ. Namely, for each j ∈ [n], conduct the following
steps.

a. Choose θj
R← Zp and compute ĝθj ∈ Ĝ.

b. For each μ ∈ {0, 1}, choose vectors xj,μ = (xj,1,μ, . . . , xj,L,μ) R← Z
L
p

and yj,μ = (yj,1,μ, . . . , yj,L,μ) R← Z
L
p .

c. Compute zj,μ = xj,μ+θj ·yj,μ and Ẑj,μ = ĝzj,μ = (ĝzj,1,μ , . . . , gzj,L,μ)
for each μ ∈ {0, 1}.

d. Choose αj , βj
R← Zp and compute V̂j = ĝαj+θj ·βj .

e. Define skmac,j = (αj , βj ,xj,0,xj,1,yj,0,yj,1).

4. Choose u R← G and ĥ, û R← Ĝ subject to the constraints logg(h) = logĝ(ĥ)
and logg(u) = logĝ(û).

5. Define

Ĥj = (ĥj · û)αj+θj ·βj ∀j ∈ [n].

6. Output the evaluation key ek and the lossy tag generation key tk, which
consist of

ek :=
(
g, h, u, ĝ, ĥ, û, {ĝθj }n

j=1, {Ẑj,μ}j∈[n],μ∈{0,1}, {V̂j , Ĥj}n
j=1, hkCMH

)
,

tk := ({skmac,j}n
j=1, η, tdCMH).

The tag space T = Tc × Taux is defined as a product of Ta = {0, 1}∗ and

Tc := {({Ri, Si,Di, Ei, Fi}n
i=1, rhash) | rhash ∈ Rhash ∧

∀i ∈ [n] : (Ri, Si,Di, Ei, Fi) ∈ G
5 ∧ e(Ri, ĥ

i · û) = e(Si, ĝ)}.

The range of the function family is Rngλ = G
n+1
T and its domain is Z

n
p .

Lossy Tag Generation. LAF.LTag(tk, ta) takes in an auxiliary tag component
ta ∈ {0, 1}∗ and uses tk = ({skmac,j}n

j=1, η) to generate a lossy tag as follows.

1. For each i ∈ [n], choose ri
R← Zp and compute

Ri = gri , Si = (hi · u)ri ∀i ∈ [n]. (16)
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2. Choose a random string τ ∈ {0, 1}L in the range of CMhash. Then, for
each i ∈ [n], choose ρi

R← Zp and compute

Di = hαi·ri · gρi·(
∑L

k=1 xi,k,τ[k]),

Ei = hβi·ri · gρi·(
∑L

k=1 yi,k,τ[k]), ∀i ∈ [n] (17)
Fi = gρi .

3. Use the trapdoor tdCMH of the chameleon hash function to find random
coins rhash ∈ Rhash such that

τ = CMhash(hkCMH, (ta, {Ri, Si,Di, Ei, Fi}n
i=1), rhash) ∈ {0, 1}L.

4. Output the tag t = (tc, ta), where tc = ({Ri, Si,Di, Ei, Fi}n
i=1, rhash).

Each lossy tag corresponds to a matrix
(
Mi,j

)
i,j∈[n]

=
(
e(g, ĥ)ri·(αj+θj ·βj)

)
i,j

,
which forms a rank-1 matrix in the exponent. Its diagonal entries consist of

Mi,i =
e(Di, ĝ) · e(Ei, ĝ

θi)

e(Fi,
∏L

k=1 Ẑi,k,τ [k])
= e(g, ĥ)ri·(αi+θi·βi) ∀i ∈ [n], (18)

while its non-diagonal entries

Mi,j =
(e(Ri, Ĥj)

e(Si, V̂j)

)1/(j−i)

(19)

= e(g, ĥ)ri·(αj+θj ·βj) ∀(i, j) ∈ [n] × [n] \ {(i, i)}n
i=1,

are obtained by pairing tag component (Ri, Si) with evaluation key compo-
nents (V̂j , Ĥj).

Random Tags. A random tag can be publicly sampled as follows.

1. For each i ∈ [n], choose ri
R← Zp and compute {Ri, Si}n

i=1 as in (16).
2. For each i ∈ [n], choose (Di, Ei, Fi)

R← G
3 uniformly at random.

3. Choose rhash
R← Rhash.

Output the tag t = (tc, ta), where tc = ({Ri, Si,Di, Ei, Fi}n
i=1, rhash).

We note that, in both random and lossy tags, we have e(Ri, û
i · ĥ) = e(Si, ĝ) for

all i ∈ [n], so that elements of T are publicly recognizable.

Evaluation. LAF.Eval(ek, t,x) takes in the input x ∈ Z
n
p and the tag t = (tc, ta).

It parses tc as ({Ri, Si,Di, Ei, Fi}n
i=1, rhash) and does the following.

1. Return ⊥ if there exists i ∈ [n] such that e(Ri, ĥ
i · û) �= e(Si, ĝ).

2. Compute the matrix
(
Mi,j

)
i,j∈[n]

∈ G
n×n
T as

Mi,i =
e(Di, ĝ) · e(Ei, ĝ

θi)

e(Fi,
∏L

k=1 Ẑi,k,τ [k])
∀i ∈ [n] , (20)
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where τ = CMhash(hkCMH, (ta, {Ri, Si,Di, Ei, Fi}n
i=1), rhash) ∈ {0, 1}L,

and

Mi,j =
(e(Ri, Ĥj)

e(Si, V̂j)

)1/(j−i)

∀(i, j) ∈ [n] × [n] \ {(i, i)}n
i=1, (21)

Since Ri = gri and Si = (hi · u)ri for some ri ∈ Zq, we have

Mi,i = e(g, ĥ)ri·(αi+θi·βi)+ωi , ∀i ∈ [n] (22)

Mi,j = e(g, ĥ)ri·(αj+θj ·βj), ∀i �= j,

for some vector (ω1, . . . , ωn)� ∈ Z
n
p that only contains non-zero entries if

t = (tc, ta) is injective.
3. Compute the vector

(
VT,j

)
j∈[n]

as VT,j = e(h, V̂j) = e(g, ĥ)αj+θj ·βj for
each j ∈ [n].

4. Use the input x = (x1, . . . , xn)� ∈ Z
n
p to compute

Y0 =
n∏

j=1

V
xj

T,j (23)

Yi =
n∏

j=1

M
xj

i,j ∀i ∈ [n]

and output Y = (Y0, Y1, . . . , Yn)� ∈ G
n+1
T .

The lossiness/injectivity properties can be analyzed exactly in the same way
as in the construction of Sect. 3. Indeed, by defining vj = αj + θj · βj for each
j ∈ [n], we find that {V̂ }n

j=1 and (Mij)i,j∈[n] are distributed as in Sect. 3.

4.3 Security

Theorem 3. The above LAF provides indistinguishability assuming that the
wD3DH1 assumption holds in (G, Ĝ,GT ) and that the DDH assumptions holds
in G. The advantage of any PPT distinguisher A making Q queries within time
tA is bounded by

Advindist(λ) ≤ n · (AdvwD3DH1
B1

(λ) + AdvDDH1
B2

(λ))

for PPT algorithm B1, B2 running in time tA + Q · poly(λ).

Proof. We define a sequence of hybrid games. In Game0, the adversary has access
to the real oracle LAF.LTag(tk, .) oracle that always outputs lossy tags. In Gamen,
the adversary is given access to an oracle OTc(.) that always outputs random tags
in the tag space T .
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Game′
ξ(1 ≤ ξ ≤ n): The adversary interacts with an oracle LAF.LTag(�,k)(tk, .)

that outputs tags t = (tc, ta) with the following hybrid distribution. In the
core component tc = ({Ri, Si,Di, Ei, Fi}n

i=1, rhash), the first ξ − 1 tuples
{(Ri, Si,Di, Ei, Fi)}ξ

i=1 of tc are random group elements satisfying the equal-
ity e(Ri, ĥ

i · û) = e(Si, ĝ). The last n− ξ tuples {(Ri, Si,Di, Ei, Fi)}n
i=ξ+1 are

generated exactly as in lossy tags. The ξ-th tuple (Rξ, Sξ,Dξ, Eξ, Fξ) has a
special distribution where e(Rξ, ĥ

ξ · û) = e(Sξ, ĝ), Dξ is completely random
in G and

Eξ = hβξ·logg(Rξ) · gρξ·
∑L

k=1 yξ,k,τ[k] ,

Fξ = gρξ

Gameξ (1 ≤ ξ ≤ n): The adversary interacts with an oracle LAF.LTag(�,k)(tk, .)
that outputs t = (tc, ta) such that the first ξ tuples {(Ri, Si,Di, Ei, Fi)}ξ

i=1

of tc are random subject to the constraint e(Ri, ĥ
i · û) = e(Si, ĝ) while

{(Ri, Si,Di, Ei, Fi)}n
i=ξ+1 are generated as in lossy tags.

For each index ξ ∈ [n], Lemma 7 shows that Game′
ξ is computationally indis-

tinguishable from Gameξ−1 if the R-wD3DH1 assumption holds. In a second
step, Lemma 8 shows that Game′

ξ is indistinguishable from Gameξ under the
DDH assumption in G. By applying Lemma 1, we obtain that the scheme pro-
vides indistinguishability under tight reductions from the hardness of wD3DH1
and that of the DDH problem in G. 	


Lemma 7. Game′
ξ is computationally indistinguishable from Gameξ−1 under the

R-wD3DH1 assumption. The advantage of any PPT distinguisher between the
two games can be bounded by Advξ′−(ξ−1)(λ) ≤ AdvR-wD3DH1(λ).

Proof. Let us assume that there exists ξ ∈ [n] such that the adversary A can
distinguish Game′

ξ from Gameξ−1 with non-negligible advantage. We build a R-
wD3DH1 distinguisher B that takes as input {(g, ĝ, gai , gb, gc, ĝb, ĝc, Ti)}Q

i=1 with
the goal of deciding if Ti = gaibc for each i ∈ [Q] or if {Ti}Q

i=1 are all independent
and uniformly distributed over G.

To this end, B defines h = gb, ĥ = ĝb. It also picks θ′
ξ, β

′
ξ

R← Zp uniformly
and sets

ĝθξ = (ĝb)θ′
ξ , V̂ξ = (ĝ)c · ĝθ′

ξ·β′
ξ ,

which implicitly defines

αξ = c, βξ = β′
ξ/b, θξ = b · θ′

ξ.

It chooses ν R← Zp and defines û = ĥ−ξ · ĝν as well as u = h−ξ · gν . This allows
defining

Ĥξ = (ĥξ · û)c+θ′
ξ·β′

ξ = (V̂ξ)ν ,
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For all indexes j ∈ [n] \ {ξ}, it chooses αj , βj , θj
R← Zp and faithfully computes

V̂j = ĝαj+θj ·βj and

Ĥj = (ĥj · û)αj+θj ·βj .

Then, it constructs the MAC secret keys {xj,μ,yj,μ}n
j=1 for randomly chosen

vectors xj,μ = (xj,1,μ, . . . , xj,L,μ) R← Z
L
p , yj,μ = (yj,1,μ, . . . , yj,L,μ) R← Z

L
p . For

each j ∈ [n], it defines

Ŷ j,μ = (Ŷj,1,μ, . . . , Ŷj,L,μ) = ĝyj,μ , Y j,μ = (Yj,1,μ, . . . , Yj,L,μ) = gyj,μ

X̂j,μ = (X̂j,1,μ, . . . , X̂j,L,μ) = ĝxj,μ , Xj,μ = (Xj,1,μ, . . . , Xj,L,μ) = gxj,μ .

Then, it computes

Ẑj,μ = X̂j,μ · Ŷ θj

j,μ ∀j ∈ [n] \ {ξ}
Ẑξ,μ = X̂ξ,μ · (ĝb)yξ,μ·θ′

ξ

At the t-th invocation of the LAF.LTag(tk, .) oracle, B sets

Rξ = gat , Sξ = (gat)ν = (hξ · u)at ,

where gat is fetched from the t-th input tuple (g, ĝ, gat , gb, gc, ĝb, ĝc, Tt). For all
indexes i �= ξ, it chooses r1, . . . , rξ−1, rξ+1, . . . , rn

R← Zp and sets

Ri = gri , Si = (hi · u)ri ∀i ∈ [n] \ {ξ}.

It generates the triples {Di, Ei, Fi}n
i=1 by choosing (Di, Ei, Fi)

R← G
3 at random

for each i ∈ [ξ − 1]. The ξ-th triple (Dk, Ek, Fk) is defined as

Dξ = Tt ·
( L∏

k=1

Ŷξ,k,τ [k]

)ρξ ,

Eξ = (gat)β′
ξ ·

( L∏
k=1

Ŷξ,k,τ [k]

)ρξ ,

Fξ = gρξ .

for a randomly chosen ρξ
R← Zp and τ R← {0, 1}L. As for {Di, Ei, Fi}n

i=ξ+1, they
are obtained by choosing choosing ρi, ri

R← Zp before setting

Di = (gb)αi·ri
( L∏

k=1

Xξ,k,τ [k]

)ρi
, Ei = (gb)βi·ri

( L∏
k=1

Yξ,k,τ [k]

)ρi
, Fi = gρi .

Then, it uses the trapdoor tdCMH of the chameleon hash function to find coins
rhash ∈ Rhash such that τ = CMhash(hkCMH, (ta, {Ri, Si,Di, Ei, Fi}n

i=1), rhash).
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It is easy to see that, if Tt = gatbc, the triple (Dξ, Eξ, Fξ) can be written

Dξ = hαξ·rξ ·
( L∏

k=1

X̂ξ,k,τ [k]

)ρξ ,

Eξ = hβξ·rξ ·
( L∏

k=1

Ŷξ,k,τ [k]

)ρξ

Fξ = gρξ ,

meaning that A’s view is the same as in Gameξ−1. In contrast, if Tt ∈R G, it
can be written Tt = gatbc+zt for some uniformly random zt ∈R Zp. In this case,
(Dξ, Eξ, Fξ) can be written

Dξ = hzt+αξ·rξ ·
( L∏

k=1

X̂ξ,k,τ [k]

)ρξ ,

Eξ = hβξ·rξ ·
( L∏

k=1

Ŷξ,k,τ [k]

)ρξ ,

Fξ = gρξ ,

for some random zt ∈R Zp that does not appear anywhere else. In this case, A’s
view corresponds to Game′

ξ. 	


Lemma 8. Gameξ is computationally indistinguishable from Game′
ξ under the

DDH assumption in G. The advantage of any PPT distinguisher between the
two games can be bounded by Advξ-ξ′

(λ) ≤ AdvDDH1(λ).

Proof. We assume that there exists ξ ∈ [n] such that A can tell apart Game′
ξ from

Gameξ with noticeable advantage. We build a distinguisher B that takes as input
Q tuples {(g, gai , gai·b, gb, Ti)}Q

i=1 in G
5 with the goal of deciding if Ti = gaib

for each i ∈ [Q] or if {Ti}Q
i=1 are independent and uniformly distributed over G.

This assumption is known (see, e.g., [38, Lemma 4.4]) to have a tight reduction
from the DDH assumption.

To this end, B defines h = gη, ĥ = ĝη for a random η R← Zp. It also computes
ĝθξ for a randomly chosen θξ

R← Zp. Then, it picks vξ
R← Zp uniformly and sets

V̂ξ = ĝvξ .

Implicitly, B will define

βξ = b, αξ = vξ − b · θξ

although it does not know (αξ, βξ). It chooses û ∈ Ĝ and u ∈ G by setting u = gν

and û = ĝν for a random ν R← Zp. Then, B defines

Ĥξ = (ĥξ · û)vξ .
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For all indexes j ∈ [n] \ {ξ}, it chooses αj , βj , θj
R← Zp and faithfully computes

V̂j = ĝαj+θj ·βj and

Ĥj = (ĥj · û)αj+θj ·βj .

Then, it constructs the MAC secret keys {xj,μ,yj,μ}n
j=1 by for randomly chosen

vectors xj,μ = (xj,1,μ, . . . , xj,L,μ) R← Z
L
p , yj,μ = (yj,1,μ, . . . , yj,L,μ) R← Z

L
p . For

each j ∈ [n], it defines

Ŷ j,μ = (Ŷj,1,μ, . . . , Ŷj,L,μ) = ĝyj,μ , Y j,μ = (Yj,1,μ, . . . , Yj,L,μ) = gyj,μ

X̂j,μ = (X̂j,1,μ, . . . , X̂j,L,μ) = ĝxj,μ , Xj,μ = (Xj,1,μ, . . . , Xj,L,μ) = gxj,μ .

Then, it computes

Ẑj,μ = X̂j,μ · Ŷ θj

j,μ ∀j ∈ [n].

For each t ∈ [Q], the t-th invocation of the LAF.LTag(tk, .) oracle is handled
by setting

Rξ = gat , Sξ = (gat)η·ξ+ν = (hξ · u)at ,

where gat is fetched from the t-th input tuple (g, gat , gat·b, gb, Tt). For all indexes
i �= ξ, it chooses r1, . . . , rξ−1, rξ+1, . . . , rn

R← Zp and sets

Ri = gri , Si = (hi · u)ri ∀i ∈ [n] \ {ξ}.

It generates the triples {Di, Ei, Fi}n
i=1 by choosing (Di, Ei, Fi)

R← G
3 at random

for each i ∈ [ξ − 1]. The ξ-th triple (Dk, Ek, Fk) is defined by sampling Dξ
R← G

uniformly and setting

Eξ = T η
t ·

( L∏
k=1

Ŷξ,k,τ [k]

)ρξ ,

Fξ = gρξ .

for randomly chosen ρξ
R← Zp and τ R← {0, 1}L. As for {Di, Ei, Fi}n

i=ξ+1, they
are obtained by choosing choosing ρi, ri

R← Zp before setting

Di = hαi·ri
( L∏

k=1

Xξ,k,τ [k]

)ρi
, Ei = hβi·ri

( L∏
k=1

Yξ,k,τ [k]

)ρi
, Fi = gρi .

Then, it uses the trapdoor tdCMH of the chameleon hash function to obtain coins
rhash ∈ Rhash such that τ = CMhash(hkCMH, (ta, {Ri, Si,Di, Ei, Fi}n

i=1), rhash).
We observe that, if Tt = gat·b for each t ∈ [Q], the triples (Dξ, Eξ, Fξ) are

distributed as Dξ ∈R G and

Eξ = hβξ·logg(Rξ) ·
( L∏

k=1

Ŷξ,k,τ [k]

)ρξ

Fξ = gρξ ,
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so that A’s view is the same as in Game′
ξ. In contrast, if Tt ∈R G, it can be

written Tt = gatb+zt for some uniformly random zt ∈R Zp that does not appear
anywhere else. In this case, (Dξ, Eξ, Fξ) is just a triple of uniformly random
group elements, meaning that A’s view is the same as in Gameξ. 	


Theorem 4. The above LAF provides evasiveness under the SXDH and
wD3DH1 assumptions, assuming that CMH is a collision-resistant chameleon
hash function. Namely, for any PPT evasiveness adversary, there exist efficient
algorithms B0, B1, B2, B3 with comparable running time and such that

AdvA,eva
Q ≤ AdvCMH-CR

B0
(λ) + n · AdvwD3DH1

B1
(λ)

+n · AdvDDH2
B2

(λ) + 2n · (1 + L) · AdvDDH1
B3

(λ),

(The proof is given in the full version of the paper.)
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Abstract. Anonymous credential (AC) schemes are protocols which
allow for authentication of authorized users without compromising their
privacy. Of particular interest are non-interactive anonymous creden-
tial (NIAC) schemes, where the authentication process only requires the
user to send a single message that still conceals its identity. Unfortu-
nately, all known NIAC schemes in the standard model require pairing
based cryptography, which limits them to a restricted set of specific
assumptions and requires expensive pairing computations. The notion
of keyed-verification anonymous credential (KVAC) was introduced in
(Chase et al., CCS’14) as an alternative to standard anonymous cre-
dential schemes allowing for more efficient instantiations; yet, making
existing KVAC non-interactive either requires pairing-based cryptogra-
phy, or the Fiat-Shamir heuristic.

In this work, we construct the first non-interactive keyed-verification
anonymous credential (NIKVAC) system in the standard model, with-
out pairings. Our scheme is efficient, attribute-based, supports multi-
show unlinkability, and anonymity revocation. We achieve this by build-
ing upon a combination of algebraic MAC with the recent designated-
verifier non-interactive zero-knowledge (DVNIZK) proof of knowledge
of (Couteau and Chaidos, Eurocrypt’18). Toward our goal of building
NIKVAC, we revisit the security analysis of a MAC scheme introduced
in (Chase et al., CCS’14), strengthening its guarantees, and we intro-
duce the notion of oblivious non-interactive zero-knowledge proof system,
where the prover can generate non-interactive proofs for statements that
he cannot check by himself, having only a part of the corresponding wit-
ness, and where the proof can be checked efficiently given the missing
part of the witness. We provide an efficient construction of an oblivi-
ous DVNIZK, building upon the specific properties of the DVNIZK proof
system of (Couteau and Chaidos, Eurocrypt’18).
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1 Introduction

1.1 Anonymous Credentials

Anonymous credentials, introduced in the seminal work of Chaum [14], allow
users to authenticate in an anonymous way to a variety of services. Each user can
receive credentials from authorities, and register pseudonyms with authorities
and verifiers. These pseudonyms are associated to the identity of the user, but
should be unlinkable to its exact identity. That is, another entity should not be
able to check whether two pseudonyms are associated with the same identity.
Authorities can issue credentials to users which can be shown to verifiers, and
the presentation of a credential should only leak the information that the user
knows the identity associated to the pseudonym, and owns a credential from
the authority for this identity. This guarantees the anonymity of users. In order
for credentials to make sense, they must be unforgeable: a user should not be
able to present a credential without having received one from the authority
first. Due to their wide range of real-world applications, anonymous credentials
have received a constant attention from the cryptographic community [1,2,4,6–
9,13,17,21,23,24,26,29].

Non-interactive Anonymous Credentials. Non-interactive anonymous cre-
dentials (NIAC) are anonymous credentials where the process of showing pos-
session of a valid credential to a verifier requires sending a single message from
the user to the verifier. Non-interactivity in anonymous credentials is considered
to be a highly desirable security property, and was the focus on an important
research effort [3,4,24]. However, a downside of existing NIAC scheme is that
all known constructions in the standard model require the use of pairing based
cryptography, which limits their efficiency (since pairing are a relatively expen-
sive cryptographic operation) and restricts the set of assumptions their security
can be based on. While some interactive anonymous credential schemes can be
made non-interactive in the random oracle model under the Fiat-Shamir trans-
form, this is known to provide only heuristic security arguments in the standard
model [10,20,22].

Keyed-Verification Anonymous Credential. Most commonly, anonymous
credential schemes allow for a single credential to be shown more than once
to multiple verifiers. The notion of keyed-verification anonymous credentials
(KVAC) was introduced in [13]; it restricts credential to only be valid with respect
to one verifier and requires the authority and verifier to share a secret key.
The key observation of [13] is that such restricted anonymous credentials can
be instantiated very efficiently, using algebraic message authentication codes.
Therefore, in numerous applications where the restriction to keyed-verification
is not an issue, they can be used to allow for more efficient instantiations. Think
for example of a bus company issuing monthly pass, where the pass must be
shown each time a user boards a bus; here, it is reasonable to assume that the
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bus device can share a secret-key with the bus company (since both belong to
the same organisation).

A downside of the KVAC scheme of [13], however, is that the process of
showing possession of a credential requires an interactive protocol between the
user and the verifier. This protocol can be made non-interactive, but this either
requires the Fiat-Shamir transform (leading to a protocol secure in the random
oracle model only), or the use of pairing-based cryptography, nullifying the effi-
ciency advantages of KVAC with respect to their publicly verifiable counterpart.

1.2 Our Contribution

In this work, we construct the first non-interactive keyed-verification anonymous
credential scheme (NIKVAC) in the standard model, without relying on pairing-
based cryptography. Our NIKVAC is very expressive: it natively supports multi-
show unlinkability (i.e., when showing possession of a credential multiple time
to a verifier, the latter cannot tell whether these correspond to the same user)
or pseudonyms (the verifier knows a pseudonym that he can link a credential to,
but that he cannot link to the actual identity of the user), without any additional
cost (i.e., we do not require to generate an additional commitment to the identity
and prove knowledge of its content to obtain pseudonyms, as in most alternative
approaches; rather, such commitments are natively and implicitly defined by our
scheme). Our NIKVAC is also attribute-based (it supports vectors of attributes as
opposed to identities, and can handle a variety of relations on the attributes), and
supports anonymity revocation (there exists a global trapdoor which a trusted
authority can use to revoke the anonymity of a misbehaving user, efficiently
extracting his identity from any accepting credential).

While our scheme is the first NIKVAC in the standard model without pairings,
we observe (this is in fact the starting point of our work) that there is a rela-
tively natural construction of a NIKVAC which is obtained by starting with the
(interactive) scheme of [13], and replacing the underlying zero-knowledge proof
system by the designated-verifier non-interactive zero-knowledge proof system
of [11]. While this observation is interesting in itself, the security analysis of the
resulting construction does not present major technical difficulties (although it
is not entirely straightforward). In this work, we refine this approach, adopting a
different strategy to better exploit the structural properties of the proof system
of [11]. Our optimized approach provides strong efficiency improvements (which
we detail in Sect. 1.6) over the previous alternative.

1.3 Our Approach

Our starting point is the interactive KVAC scheme of [13]. In this scheme, a
credential is an algebraic MAC signature on the identity of the user. Anonymous
presentation of a credential is done (informally) by masking the credential, and
providing some zero-knowledge proofs of knowledge of the identity together with
the masking informations satisfying the appropriate relation, which allows the
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verifier (who knows the secret MAC key) to check that the masked credential
does indeed verify correctly with respect to the (hidden) identity of the user.

To make this scheme non-interactive, the basic observation is that it suffices
to rely on a designated-verifier non-interactive zero-knowledge (DVNIZK) proof
of knowledge of the appropriate values. Unlike their publicly-verifiable counter-
part, there exists efficient constructions of DVNIZK proof systems which does
not rely on pairings. However, until recently, all known constructions of DVNIZK
proof systems [12,16,18] suffered from two important downside, each of them
preventing their use in a NIKVAC scheme:

– they can only deal with existential statements, while anonymous credentials
crucially rely on proving knowledge of the signed identity, and

– they only satisfy a bounded notion of security, where the soundness of the
proof is only guaranteed to hold if the prover is restricted to query a verifica-
tion oracle an a priori bounded number of times. In an anonymous credential
system, however, the users can interact freely with a verifier and receive feed-
back on whether proofs of credential possession was accepted or not; hence,
for all of these scheme, a malicious user could forge a credential which is
accepted by the verifier even though it was not issued by the authority, by
interacting a sufficient (polynomial) number of times with the verifier.

This situation recently changed with the introduction in [11] of the first DVNIZK
proof system which allows to provide proofs of knowledge of a witness, for a wide
variety of algebraic statements, where soundness is unbounded (it holds even if
the prover is given arbitrary access to a verification oracle). Furthermore, the
framework of [11] allows for efficient DVNIZK proofs, directly proportional to the
size of the algebraic statement to be proven.

A natural approach toward building a NIKVAC scheme is therefore to rely on
the KVAC scheme of [13], and to replace the underlying zero-knowledge proofs by
appropriate DVNIZK, using the framework of [11]. However, while this approach
should lead to a secure NIKVAC, it misses the opportunity to exploit the specific
structure of the scheme of [11] to get improved efficiency guarantees. Therefore,
we choose instead to tackle the problem directly and construct an optimized
NIKVAC system, heavily building upon the specific structure of the DVNIZK
of [11].

1.4 Our Techniques

To describe our strategy, it is helpful to start from a natural but insecure app-
roach. As in [13], a credential will simply be a signature on the identity of the
user using an algebraic MAC. To show possession of a credential, the user can
simply send this credential (but not his identity) and prove with a DVNIZK that
he knows an identity such that the MAC verification algorithm returns 1 when
given as input this identity and the credential. A first observation is that this
approach allows for a straightforward optimization: in the most common set-
ting, the verifier must know a pseudonym associated to the user (which cannot
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be linked to his identity), which will usually take the form of a commitment to
the identity of the user. We observe, however, that a DVNIZK proof of knowl-
edge within the framework of [11] does already include an encryption of the
witness, and the proof of knowledge property does in particular guarantee that
the witness whose knowledge is proven is indeed the one encrypted in the proof.
Therefore, it is not necessary to add a commitment to the identity and prove
that the committed value is the one for which the user knows a credential; rather,
the user can simply compute this encryption ahead of time (this does not require
knowing the credential) and send it to the verifier, which will store it as being
the user pseudonym. Then, each time the user wants to authenticate, he only
have to generate the “missing part” of the proof with respect to this encryption.
This strongly reduces the size of the proof (since the proof does not need to
include an explicit proof regarding a commitment anymore), and allows to reuse
a significant portion of the proof across many authentications.

However, the natural approach of disclosing a credential σ and proving knowl-
edge of an identity that verifies correctly with respect to σ fails, for two reasons:

– First, the above approach does not guarantee anonymity, because the verifier
(who knows the secret MAC key) could find out the identity of the user
simply by colluding with the authority, and evaluating the MAC verification
algorithms on all identities previously submitted to the authority, to find out
which one verifies correctly with respect to this credential.

– Second, and more importantly, the MAC verification requires knowledge of
the secret MAC key, which the user does not know; hence, he cannot possibly
issue a proof that his credential verifies correctly, since checking this statement
does already require knowing the secret MAC key.

We first explain how we address the second concern. Our idea is to build upon
the specific malleability property of the DVNIZK proof system of [11] to build
an oblivious DVNIZK proof system, which allows the prover to issue a proof for
a statement even if he does not know himself whether the statement does hold.
This does not contradict the security of the MAC scheme, since the proof system
is not publicly verifiable: hence, even after he builds the proof, the prover cannot
check by himself whether this proof verifies correctly. Intuitively, the prover will
construct a “partial non-interactive proof” which is malleable in the following
sense: given this proof and the secret MAC key, the verifier can reconstruct
himself the complete proof that the credential verifies correctly. If the prover
does not know the appropriate witness, the reconstructed proof will not verify
correctly. The partial proof should not leak any more information about the
witness held by the prover than what is leaked by the reconstructed proof; hence,
by the zero-knowledge property of the DVNIZK proof system, this proof will only
reveal whether the statement (which depends on both the prover witness and
the secret key known to the verifier) is true. We believe that the concept of non-
interactive oblivious proofs, which allows to prove that a statement is true while
knowing only a part of the witness to a verifier knowing the “missing part”
of the witness, might be of independent interest (we briefly elaborate on this
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in Sect. 1.5); in particular, it formalizes the approach taken (in the interactive
setting) in previous works on keyed-verification anonymous credentials [13].

To tackle the first concern, the prover will randomize his credential and
mask it with appropriate random values, and issue a partial proof that the
unmasked credential does verify with respect to the secret key. We formalize
both properties at once by introducing a new primitive, oblivious designated-
verifier non-interactive zero-knowledge proofs of knowledge, which can be used
to prove statements non-interactively even when the prover only knows a part of
the witness, and can be simulated by a simulator that does not know neither the
witness nor the word for which the proof is constructed, guaranteeing that the
verifier will not only be unable to recover the witness, but also that he cannot
possibly recover the credential, which would allow him to break anonymity by
colluding with the authority.

Next, we provide an optimized construction of an oblivious DVNIZK proof
system for the language of valid credentials, building upon the DVNIZK proof
system of [11]. Proving security of the resulting proof system, however, runs
into a subtle issue: when considering the more general setting of attribute-based
anonymous credentials, where the user will have a secret vector of attributes
instead of a secret identity, the unforgeability property of the underlying MAC
scheme does not suffice to prove the soundness of the oblivious proof system.
We provide two alternatives to overcome this issue:

– When the vector of attributes is of length one (i.e., when we restrict our
attention to non-attribute-based anonymous credentials, where the secret of
the user is only his identity), we show that the public parameters of the MAC
scheme suffice to reduce the security directly to the unforgeability of the MAC
scheme. This setting already captures many possible applications.

– In the general setting, where the vector of attributes can be longer than
1, we show that the security can be proven if the MAC scheme satisfies a
stronger notion of unforgeability, which we call extended unforgeability. Then,
we revisit the security analysis of one of the two MAC schemes constructed
in [13], which is secure in the generic group model, and prove that this scheme
does in fact already satisfy extended unforgeability. While the second MAC
scheme constructed in [13] (which is based on the decisional Diffie-Hellman
assumption) does plausibly satisfy extended unforgeability, we leave it as
an interesting open problem to prove it under a standard assumption, or
to construct a MAC scheme with extended unforgeability under the DDH
assumption. We note that considering algebraic MACs with stronger unforge-
ability guarantees is a relatively natural approach in the setting of anonymous
credentials (see e.g. [3,4]), but the specific strengthening we require in our
construction was not, to our knowledge, considered in previous works.

There is an additional requirement which we must take care of: the MAC
schemes of [13] are only proven secure in groups of prime order, while the
most natural instantiation of the DVNIZK proof system of [11] typically requires
composite-order groups. While the security of their DDH-based MAC easily
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extends to the composite order setting by assuming in addition that it is infeasi-
ble for any polytime adversary to find a generator of a strict subgroup (which is a
standard and well-studied assumption), the proof of their generic-group-model-
based (GGM-based) MAC is unconditional, hence it assumes that the adversary
is unbounded, in which case there is an explicit attack on the composite-order
variant of the scheme where the unbounded adversary constructs an invalid
MAC signature in a strict subgroup of the group. We therefore revisit the secu-
rity proof of the GGM-based MAC, and show that it holds in the generic group
model assuming in addition that the adversary is polynomially bounded, and
that the computational subgroup assumption holds. Altogether, we show that
this gives rise to a highly optimized NIKVAC. In the next section, we discuss in
more details the efficiency of our scheme.

1.5 Applications of Oblivious DVNIZK

Given the intermediate abstraction of oblivious designated non-interactive zero-
knowledge proofs, the construction of NIKVAC follows very naturally. In fact, we
could have provided a direct construction of NIKVAC from this approach, with-
out formalizing the intermediate primitive. However, we believe that oblivious
DVNIZKs can be interesting in their own right. We elaborate below.

Secure computation protocols allow a group of parties to securely evaluate
a public function on their joint private input. We focus in this discussion on
the case of two parties for simplicity. A common approach to secure two-party
computation is to first design a scheme secure against passive adversaries, which
do not deviate from the specifications of the protocol, and then to use zero-
knowledge proofs to let all adversaries prove their honest behavior throughout
the protocol. This transformation makes the protocol secure against malicious
adversaries, which can deviate arbitrarily from the specifications of the proto-
col. To obtain round-efficient compilation of passively secure computation pro-
tocols into maliciously secure protocols, the most natural strategy is to rely on
(designated-verifier) non-interactive zero-knowledge proofs (an alternative is to
use implicit zero-knowledge proofs [5], but this adds two more rounds to the
protocol) to prove honest behavior of each user after each round.

Oblivious DVNIZK allow for an alternative compilation strategy, which starts
from a protocol with stronger security guarantees, but is in general more efficient.
Let us call (informally) half-maliciously secure a secure computation protocol
which is passively secure, and such that no malicious adversary can compromise
the privacy of the inputs (but can possibly compromise the correctness of the
computation). Let Π be a half-maliciously secure protocol, securely computing a
function f . Let (x1, x2) denote the inputs of the parties. To convert Π into a fully
secure protocol, we first modify Π to include commitments (c1, c2) to the inputs
(if Π does not already include them). Then, to guarantee full security, one of the
parties, which we call the prover, must send a single oblivious DVNIZK to the
other party (the receiver) at the very end of the protocol, which is a proof that
y = f(x1, x2), where y is the output of the protocol, and (x1, x2) is committed
in (c1, c2). Note that the prover does not have the full witness for this statement
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(since it depends, in particular, on the private input of the verifier), but the
prover and the verifier jointly have the full witness, allowing the verifier to check
the proof without further interaction. This is in contrast with DVNIZK-based
compilation, which requires proving honest behavior of all users at each round
(here, we only prove correctness of the computation in the last round). We leave
the formal proof of this observation to future work.

1.6 Efficiency

There is, to our knowledge, no existing previous construction of NIKVAC in the
standard model. However, as we pointed out previously, there is a relatively
natural construction which is obtained by starting from the scheme of [13],
and replacing the underlying zero-knowledge proofs by DVNIZKs instantiated
with [11]. Let us call this construction the CMZ + CC construction. We use
CMZ + CC as a basis for comparison with our improved construction. We focus
on the communication cost of showing possession of a credential, since the com-
putation is directly proportional to the communication (hence, an improvement
factor with respect to communication translates to a comparable improvement
factor with respect to computation), and since the cost of issuing a credential
depends on the specific secure computation scheme used to implement it, which
is not the focus of our work (we require the same blind issuance of an algebraic
MAC as in previous works on KVAC).

For simplicity, we focus on the cost obtained when implementing the MAC
with the more efficient GGM-based MAC scheme of [13]; when using the other,
DDH-based MAC scheme, all costs must be roughly scaled up by 50% (up to
constants), and the improvement factor of our method compared to the naive
approach will be essentially identical. Let β denote the length of the vector
of attributes. In the minimal setting where the verifier knows a pseudonym,
implemented as a commitment to the user’s vector of attributes, instantiating
the zero-knowledge proofs in [13] using the DVNIZK proof system of [11] leads
to a proof size of 3β + 3 group elements, and 6β + 2 ciphertexts (in a typical
instantiation of the DVNIZK of [11], the group will be a composite order abelian
group, and the encryption scheme will be the Paillier encryption scheme).

In comparison, our proof of credential possession requires sending β + 2 group
elements, and 2β + 2 ciphertexts. Furthermore, all the ciphertexts can be sent
once for all to the verifier (they form the pseudonym of the prover); each new
credential presentation then requires only generating and sending β + 2 group
elements (in comparison, the pseudonym in [13] is a tuple of β commitments,
hence sending the pseudonym ahead of time saves only β group elements). For
the important case of β = 1 attribute, and instantiating the DVNIZK with Paillier
and a 2048-bit modulus, this corresponds to a factor of improvement of more
than 7 in the proof size compared to [13]. In addition, using an optimization
which we describe in the full version [15], the number of ciphertexts can be
further reduced, from 2β + 2 to 2β. We summarize the comparison between our
scheme and CMZ+CC in the Table 1.
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Table 1. Comparison of our optimized NIKVAC to a direct construction from [13] with
the DVNIZK of [11].

NIKVACa CMZ+CC This work This work (full version [15])

β attributes, group element length n, ciphertext size m

Pseudonym size βn (2β + 2)m 2βm

Proof size (2β + 3)n + (6β + 2)m (β + 2)n (β + 2)n

Prover computationb (5β + 2)A + (3β + 1)(B + C) (2β + 3)A (2β + 3)A

Assumption GGM+IND-CPA GGM+IND-CPA GGM+IND-CPA + short-exp dlog

(with Paillier) 1 attribute, group element length 2048, ciphertext size 4096

Pseudonym size 256 Byte 2048 Byte 1024 Byte

Proof size 5,38 kB 756 Byte 756 Byte

Prover computation 7A + 4(B + C) 5A 5A

Assumption GGM+Paillier GGM+Paillier GGM+Paillier + short-exp dlog
aWe consider a minimal setting where the prover shows possession of a valid credential with respect to

an identity committed in a pseudonym known to the verifier. We use the GGM-based scheme of [13] as

the underlying algebraic MAC (the efficiency gain of our approach is essentially the same if one uses the

DDH-based MAC of [13]).
bA denotes the cost of an exponentiation in the group G, B denotes the cost of an encryption, C

denotes the cost of an homomorphic scalar multiplication. We note that, under the short-exponent

discrete logarithm assumptions, all exponentiations in G (resp. all homomorphic scalar multiplications)

can be performed with exponents (resp. scalars) of length at most 256 bits.

Eventually, we sketch a straightforward computational optimization (assum-
ing an instantiation with the Paillier scheme and a 2048-bit modulus for con-
creteness): the exponents manipulated when constructing and verifying the proof
are either attributes, random coins, or masks. If attributes are, say, up to 128-
bit long, then under the short-exponent discrete logarithm assumption (which
states that it is hard to find x from gx even if x is random but short, e.g. 128-
bit long), all exponents can be taken either 128-bit long (for the attributes and
the random coins) or 256-bit long (for the masks, since they must statistically
mask the attributes over the integers). This makes computing exponentiations
and scalar multiplications considerably more efficient than with full-size (i.e.,
2048-bit) values.

Comparison with Plain [13]. We briefly comment on the comparison with
the plain scheme of [13] (which is either interactive, or non-interactive in the
random oracle model). Our main efficiency bottleneck is the fact that we use
the DVNIZK of [11], which requires to use a large order group.1 Therefore, using
natural parameters, we manipulate group elements of size 2048 bits, and cipher-
texts of size 4096 bits. In constrast, [13] can work exclusively with group ele-
ments and exponents over any DDH-hard group, e.g. of size 256 bits. However,
the proof size of [13] (not counting the size of the pseudonym) is β + 2 group
elements and 3β+2 256-bit exponents, for a total of 256 Byte. Our proof system
achieves a proof size 756 Byte, less than three times larger in spite of our use
of an 8-time larger group - and unlike [13], it is secure in the standard model

1 In [11], the size of the group must be equal to the size of the plaintext space of a
DVNIZK-friendly encryption scheme, such as Paillier.
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(the ratio remains essentially the same if we instantiate instead the underlying
MAC scheme with the DDH-based scheme of [13]).

1.7 Organization

In Sect. 2, we recall necessary preliminaries (further preliminaries are given in the
full version [15]). In Sect. 3, we recall the definition of MAC schemes, introduce
a general algebraic MAC scheme, and define the stronger notion of extended
unforgeability. In Sect. 4, we formally define non-interactive keyed-verification
anonymous credentials and their security properties. In Sect. 5, we introduce the
concept of oblivious DVNIZK and their security properties, provide an explicit
instantiation tailored to our application, and formally prove its security. In
Sect. 6, we show how to construct a non-interactive keyed-verification anony-
mous credential from a MAC scheme and an oblivious DVNIZK proof system.
Eventually, in the full version [15], we prove that the first MAC scheme of [13]
satisfies extended unforgeability in the generic group model (with composite
order groups), and we describe further improvements to our NIKVAC construc-
tion relying on the short-exponent discrete logarithm assumption.

2 Preliminaries

Throughout this paper, λ denotes the security parameter. A probabilistic poly-
nomial time algorithm (PPT, also denoted efficient algorithm) runs in time
polynomial in the (implicit) security parameter λ. A positive function f is neg-
ligible if for any polynomial p there exists a bound B > 0 such that, for any
integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs with over-
whelming probability when its probability is at least 1 − negl(λ) for a negligible
function negl. Given a finite set S, the notation x

$← S means a uniformly ran-
dom assignment of an element of S to the variable x. We represent adversaries
as interactive probabilistic Turing machines; the notation A O indicates that the
machine A is given oracle access to O. Adversaries will sometime output an
arbitrary state st to capture stateful interactions.

Abelian Groups and Modules. We use additive notation for groups for
convenience, and write (G, ) for an abelian group of order k. When it is clear
from the context, we denote 0 its neutral element (otherwise, we denote it 0G).
We denote by ord(G) the order of G. We denote by • the scalar-multiplication
algorithm (i.e. for any (x,G) ∈ Zk × G, x • G = G G . . . G, where the
sum contains x terms). Observe that we can naturally view G as a Zk-module
(G, , •), for the ring (Zk,+, ·). For simplicity, we write G for (−1) • G. We
use lower case to denote elements of Zk, upper case to denote elements of G,
and bold notations to denote vectors. We extend the notations ( , ) to vectors
and matrices in the natural way, and write x • G to denote the scalar product
x1 •G1 . . . xt •Gt (where x,G are vectors of the same length t). For a vector
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v, we denote by vᵀ its transpose. By GGen(1λ), we denote a probabilistic efficient
algorithm that, given the security parameter λ, generates an abelian group G in
which the CSG and DLSE assumption defined below holds in respect to λ. Note
that this implies that the normal discrete log problem is hard in this group, as
well. In the following, we write (G, k) $← GGen(1λ). Additionally, we denote by
GGen(1λ, k) a group generation algorithm that allows us to select the order k
beforehand.

RSA Groups. A strong prime is a prime p = 2p′ + 1 such that p′ is also
a prime. We call RSA modulus a product n = pq of two strong primes. We
denote by ϕ Euler’s totient function; it holds that ϕ(n) = (p − 1)(q − 1). We
denote by Jn the cyclic subgroup of Z∗

n of elements with Jacobi symbol 1 (the
order of this group is ϕ(n)/2), and by QRn the cyclic subroup of squares of Z∗

n

(which is also a subgroup of Jn and has order ϕ(n)/4). By Gen(1λ), we denote a
probabilistic efficient algorithm that, given the security parameter λ, generates
a strong RSA modulus n and secret parameters (p, q) where n = pq, such that
the best known algorithm for factoring n takes time 2λ. In the following, we
write (n, (p, q)) $← Gen(1λ) and call abelian groups with order n composite order
groups, if n is a RSA modulus.

Generic Group Model. The generic group model (GGM) was introduced in
[31] and is an idealized model of groups. It captures groups with no additional
structure apart from being a group. In such generic groups, the only possibility
of attacking a cryptographic primitive is utilizing generic algorithms which only
make use of group operations.

In proofs, the generic group model is captured by giving an adversary access
to the group through random encodings of the group elements as bitstrings and
a group operation oracle. Note that if a cryptographic primitive is proven secure
in the GGM, it only ensures that it can not be broken with generic algorithms.
In order to simulate the oracle in this work, we will require the following lemma,
based on [30].

Lemma 1 (Generalised Schwartz-Zippel). Let (n, (p, q)) $← Gen(1λ),G $←
GGen(1λ, n) and F ∈ Zn[x1, x2, .., xl] with F �= 0∧deg(F ) = d ≥ 0. Let p′ ∈ {p, q}
and P a subgroup of G of order p′. It holds that

Pr
[
x = (x1, x2, .., xl)

$← P
l : F (x) = 0

]
≤ d

p′

2.1 Assumptions

Computational Subgroup Assumption (CSG). The computational subgroup
assumption states that no bounded adversary can output a generator for a non-
trivial subgroup. Or more formally, for all PPT adversaries A , it holds that
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Pr

⎡
⎣

(n, (p, q)) $← Gen(1λ),
G

$← GGen(1λ, n),
G ← A (G, n),

: G �= 0G ∧ (p • G = 0G ∨ q • G = 0G)

⎤
⎦ ≤ μ(λ)

where μ(λ) = negl(λ).

Decisional-Diffie-Hellman (DDH) Assumption. Let G be a group with order
n. For all PPT adversaries A it holds that

∣∣∣∣Pr
[

a, b, c
$← Zn : A (G,A,B,C) = 1

A ← a • G,B ← b • G,C ← ab • G

]
−

Pr
[

a, b, c
$← Zn : A (G,A,B,C) = 1

A ← a • G,B ← b • G,C ← c • G

]∣∣∣∣ ≤ μ(λ)

2.2 Encryption Schemes

A public-key encryption scheme S is a triple of PPT algorithms (S.KeyGen,
S.Enc, S.Dec), such that S.KeyGen generates encryption and decryption keys
(ek, dk), S.Encek, given a plaintext, outputs a (randomized) ciphertext, and
S.Decdk, given a ciphertext, outputs a plaintext. An encryption scheme must
be correct (S.Encdk(S.Encek(m)) = m for every message m) and IND-CPA secure
(no adversary can distinguish between the encryptions of two messages of its
choice). Because of space constraints, we defer to the full version [15] the formal
definition of encryption schemes and their security properties.

In this work, we will focus on additively homomorphic encryption schemes,
which are homomorphic for both the message and the random coin. More for-
mally, we require that the message space M and the random source R are
integer sets (ZM ,ZR) for some integers (M,R), and that there exists an effi-
cient operation ⊕ such that for any (ek, sk) $← KeyGen(1λ), any (m1,m2) ∈ Z

2
M

and (r1, r2) ∈ Z
2
R, denoting (Ci)i≤2 ← (S.Encek(mi; ri))i≤2, it holds that

C1 ⊕ C2 = S.Encek(m1 + m2 mod M ; r1 + r2 mod R). We say an encryption
scheme is strongly additive if it satisfies these requirements. Note that the exis-
tence of ⊕ implies (via a standard square-and-multiply method) the existence
of an algorithm that, on input a ciphertext C = S.Encek(m; r) and an integer
ρ ∈ Z, outputs a ciphertext C ′ = S.Encek(ρm mod M ; ρr mod R). We denote
by ρ 
 C the external multiplication of a ciphertext C by an integer ρ, and by
� the operation C ⊕ (−1) 
 C ′ for two ciphertexts (C,C ′). We will sometimes
slightly abuse these notations, and write C⊕m (resp. C�m) for a plaintext m to
denote C ⊕ S.Encek(m; 0) (resp. C � S.Encek(m; 0)). We extend in a natural way
the algorithm Enc over vectors: for vectors m = (mi)i ∈ Z

∗
M and r = (ri)i ∈ Z

∗
R

of the same size, S.Encek(m; r) denotes the vector (S.Encek(mi, ri))i. We extend
the algorithm Dec to vectors of ciphertexts in a similar way.

The Paillier Encryption Scheme. The Paillier encryption scheme [27] is
a well-known additively homomorphic encryption scheme over Zn for an RSA
modulus n. We describe here a standard variant [19,25], where the random coin
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is an exponent over Jn rather than a group element. Note that the exponent
space of Jn is Zϕ(n)/2, which is a group of unknown order; however, it suffices to
draw exponents at random from Zn/2 to get a distribution statistically close from
uniform over Zϕ(n)/2. The IND-CPA security of the Paillier encryption scheme
reduces to the DCR assumption, which states that it is computationally infeasible
to distinguish random n’th powers over Z

∗
n2 from random elements of Z∗

n2 .

– KeyGen(1λ): run (n, (p, q)) $← Gen(1λ), pick g
$← Jn, set h ← gn mod n2,

and compute δ ← n−1 mod ϕ(n) (n and ϕ(n) are relatively prime). Return
ek = (n, h) and dk = δ;

– Enc(ek,m; r): given m ∈ Zn, for a random r
$← Zn/2, compute and output

c ← (1 + n)m · hr mod n2;
– Dec(dk, c): compute x ← cdk mod n and c0 ← [c · x−n mod n2]. Return m ←

(c0 − 1)/n.

DVNIZK-Friendly Encryption Scheme. We say that a strongly additive
encryption scheme is DVNIZK -friendly, when it satisfies the following additional
properties:

– Coprimality Property: we require that the size M of the plaintext space and
the size R of the random source are coprime, i.e., gcd(M,R) = 1;

– Decodable: for any (ek, sk) $← KeyGen(1λ), the function fek : m �→ Encek(m; 0)
must be efficiently invertible (i.e., there is a PPT algorithm, which is given
ek, computing f−1

ek on any value from the image of fek).

Note that the Paillier cryptosystem is DVNIZK-friendly: (gcd(n, ϕ(n)) = 1,
and any message m can be efficiently recovered from Encek(m; 0) = (1+n)m mod
n2).

2.3 Non-interactive Zero-Knowledge Proof of Knowledge Systems

A (designated-verifier) non-interactive zero-knowledge (DVNIZK) proof system
for a language L is a quadruple (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify), as fol-
lows: Π.Setup generates the setup parameters; Π.KeyGen generate the (public)
proving key and the verification key (which is private in a designated-verifier
scheme, and public in a publicly-verifiable one); Π.Prove, given the proving key,
a word x an a witness w for x ∈ L , outputs a proof π; and Π.Verify, given the
verification key, x, and π, outputs either accept or reject.

A DVNIZK proof system must be complete (if x ∈ L , the verifier accept),
sound (if x /∈ L , no malicious prover can cause the verifier to accept; we usually
want a stronger security notion, unbounded extractability, which states that a
polytime extractor can extract a valid witness from any accepting proof, even
if the proof was adversarially generated with arbitrary access to a verification
oracle), and zero-knowledge (the proof can be simulated without knowledge of
the witness). Because of space constraints, we defer to the full version [15] the
formal definition of DVNIZKs and their security properties.
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The DVNIZK of Chaidos and Couteau. This DVNIZK proof of knowledge
system was introduced in [11] and satisfies composable zero-knowledge, and sta-
tistical adaptive unbounded knowledge-extractability. The proofs are generated
for statements defined by a linear map over G:

Let k be an integer, (G, ) be an abelian group of order k, and (α, β, γ)
be three integers. Let G ∈ G

α denote a vector of public parameters, and let
C ∈ G

β denote a public word. This system considers statements StΓ(G,C)
defined by a linear map Γ : (Gα,Gβ) �→ G

γ×β such that StΓ(G,C core-
sponds to the statement “I know x ∈ Z

γ
k such that x • Γ(G,C) = C”. Let

S = (S.KeyGen, S.Enc, S.Dec) denote a DVNIZK-friendly encryption scheme with
plaintext space Zk. The algorithms (ΠK.Setup,ΠK.KeyGen,ΠK.Prove,ΠK.Verify)
form a DVNIZK of knowledge ΠK for a statement StΓ(G,C) over a word C ∈ G

β ,
with public parameters G ∈ G

α, defined by a linear map Γ : (Gα,Gβ) �→ G
γ×β :

– ΠK.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Note that
ek defines a plaintext space Zk and a random source ZR. As the IND-CPA and
strong additive properties of S require R to be unknown, we assume that a
bound B on R is publicly available. We denote � ← 2λkB.

– ΠK.KeyGen(1λ): pick e ← Z�, set pk ← S.Encek(0; e) and vk ← e.
– ΠK.Prove(pk,C,x): on a word C ∈ Z

β
k , with witness x for the statement

StΓ(G,C), pick x′ $← Z
γ
k , r

$← Z
γ
2λB

, compute

X ← S.Encek(x; r),
X′ ← S.Encek(x′; 0) � (r 
 pk) = S.Encek(x′;−e · r),
C′ ← x′ • Γ(G,C),

and output π ← (X,X′,C′).
– ΠK.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that e 
 X ⊕ X′ is

decodable, and decode it to a vector d ∈ Z
γ
k . Check that

d • Γ(G,C) = e • C C′.

If all checks succeeded, accept. Otherwise, reject.

3 Message Authentication Codes

In this section, we recall the definition of message authentication codes (MAC),
and outline a general MAC scheme (which we call “abstract MAC”), which uni-
fies several existing MAC scheme with a natural algebraic structure. Then, we
introduce a stronger unforgeability notion for this abstract MAC scheme. In the
full version [15], we prove that one of the MAC schemes of [13] does satisfy this
security notion in the generic group model.
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3.1 Definition

Definition 1 (Message Authentication Code). We recall the definition of
a message authentication code. A message authentication code (MAC) M is a
quadruple of PPT algorithms (M.Setup,M.KeyGen,M.Sign,M.Verify), such that

– M.Setup(1λ) generates the public parameters pp of the MAC. We assume that
pp specifies the tag space S and the message space M;

– M.KeyGen(pp) generates and outputs a key sk and optionally public issuer
parameters ipp.

– M.Signsk(m) given the message m ∈ M, outputs a tag σ;
– M.Verifysk(m,σ) given the message m ∈ M and a tag σ ∈ S, outputs a bit b

whose value depends on the validity of the tag σ with respect to m.

We assume for simplicity that once generated, the public parameters pp are
implicitly passed as an argument to the algorithms (M.KeyGen,M.Sign,
M.Verify).

Definition 2 (Correctness of a MAC). A Message Authentication Code M
is correct if for any pp

$← M.Setup(1λ), any sk
$← M.KeyGen(pp), any message

m ∈ M and for σ
$← M.Signsk(m), it holds that M.Verifysk(m,σ) = 1.

Definition 3 (UF-CMVASecurity of a MAC). A MAC M is UF-CMVA secure
if for any PPT adversary A , it holds that

Pr

⎡
⎢⎣

Q ← ∅, pp
$← M.Setup(1λ),

sk
$← M.KeyGen(pp), : M.Verifyk(m,σ) = 1 ∧ m /∈ Q

(m,σ) $← A Osk[Q](pp)

⎤
⎥⎦ ≤ 1

2
+ μ(λ)

for some function μ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers
to verification and signing queries:

– O.Sign(m) sets Q ← Q ∪ {m} and outputs M.Signsk(m);
– O.Verify(m,σ) outputs M.Verifysk(m,σ).

In this paper we will need algebraic MACs which means that the signing and
verification algorithms require only group operations to be performed.

3.2 An Abstract MAC Scheme

Let G be an abelian group of order n. Given a vector x = (x0, · · · , xβ) for some
integer β, we denote by Hx : Z

β
n �→ Zn the affine function which, on input

(m1, · · · ,mβ), outputs x0 +
∑β

i=1 xi · mi. Consider now the following generic
MAC scheme, parametrized with integers (α, β):

– M.Setup(1λ) : pick a generator G of G and output pp ← (G, n, G, α, β);
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– M.KeyGen(pp) : pick α vectors (ki)i≤α ∈ (Zβ+1
n )α (which can be either ran-

dom or fixed) of length β + 1, and α random group elements (Gi)i≤α
$← G

α.
Set Hi,j ← k−1

i,j • G for i ∈ [1..α], j ∈ [1..β], G′
i ← ki,0 • Gi for i ∈ [1..α], and

ipp ← ((Hi,j)1≤j≤β)i≤α, (Gi, G
′
i)i≤α). Output sk = (ki)i≤α and ipp.

– M.Signsk(m) : given a message m = (m1, ..,mβ) ∈ Z
β
n , pick a random group

element U
$← G and output

σ ← (U, (Hki(m) • U)i≤α).

– M.Verifysk(m, σ) : parse σ as (U, (Vi)i≤α) and check that for i = 1 to α,
Vi = Hki(m) • U .

Example 1. The scheme MACGGM from [13] is obtained by setting α = 1, and
sampling the key k uniformly at random. This scheme is UF-CMVA-secure in
the generic group model. Similarly, we recover the scheme MACDDH from [13] by
setting α = 3, sampling k1, k2 at random, and setting k3 ← (k3,0, 0, · · · , 0) for
a uniformly random k3,0. This scheme is UF-CMVA-secure under the decisional
Diffie-Hellman assumption.

Note that for our construction of an anonymous credential scheme, we will
require the security of the underlying MAC scheme to hold in a group of com-
posite order. In the full version [15], we slightly modify MACGGM and prove that
the modified version is secure in non-prime order groups in the generic group
model.

3.3 Extended Unforgeability

The UF-CMVA security property states that no PPT adversary should be able
to forge a MAC on a message, even given access to signing and verification
oracles, as long as this message was never queried to the signing oracle. One can
consider stronger notions of unforgeability, where the adversary is given access to
an additional oracle. In particular, it will be useful in our setting to consider the
following extended unforgeability property for the abstract MAC scheme defined
above:

Definition 4 (Extended Unforgeability). An abstract MAC M is
XUF-CMVA secure if for any PPT adversary A , it holds that

Pr

⎡
⎢⎣

Q ← ∅, pp
$← M.Setup(1λ),

sk
$← M.KeyGen(pp), : M.Verifysk(m,σ) = 1 ∧ m /∈ Q

(m,σ) $← A Osk[Q](pp)

⎤
⎥⎦ ≤ 1

2
+ μ(λ)

for some function μ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers
to verification and signing queries, as well as another specific type of query:

– O.Sign(m) sets Q ← Q ∪ {m} and outputs M.Signsk(m);
– O.Verify(m,σ) outputs M.Verifysk(m,σ);
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– O.Check((Ai,j)i≤α,j≤β , (Bi,j)i≤α,j≤β) checks
∑β

j=1 ki,j•Ai,j =
∑β

j=1 ki,j•Bi,j

for all i ≤ α, and outputs 1 iff all checks succeed (note: the O.Check oracle
could equivalently check whether

∑β
j=1 ki,j • Ai,j = 0).

In the full version [15], we will prove that the scheme MACGGM from [13],
which was proven UF-CMVA-secure over prime order groups in the generic group
model in [13], is in fact XUF-CMVA -secure in the generic group model over
composite order groups (the use of groups of composite order is required for
compatibility of the MAC scheme with the DVNIZK scheme of [11]), under the
computational subgroup assumption. Note that, while it is uncommon to prove
security in the GGM under an additional assumption, it is necessary here: there
exists an explicit attack against the security of the MAC if the adversary is able to
compute a generator of a strict subgroup of G. However, in the usual formulation
of the GGM, the adversary is unbounded and receives as input the order of the
group, hence he can trivially factor this order and efficiently compute generators
of strict subgroups of G, showing that MACGGM is in fact not unconditionally
secure in the GGM over composite order groups.

4 Non-interactive Keyed-Verification Anonymous
Credentials

In this section, we formally introduce non-interactive keyed-verification anony-
mous credentials and their security properties. Our definition mostly follows the
blueprint of [13].

Definition 5 (Non-interactive Keyed-Verification Anonymous Cre-
dentials). An non-interactive keyed-verification anonymous credentials
(NIKVAC) scheme Θ is a set of algorithms (Θ.Setup,Θ.CredKeyGen,Θ.BlindIssue,
Θ.BlindObtain,Θ.Show,Θ.ShowVerify) such that

– Θ.Setup(1λ), outputs the public parameters pp of the AC and a trapdoor td,
the public parameters fix the set of supported statements Φ, the universe
of attributes U and are passed to the following algorithms implicitly, the
trapdoor can be used to revoke anonymity;

– Θ.CredKeyGen(pp), generates a secret key sk and public issuer parameters ipp
for an issuing organization;

– Θ.BlindIssue(sk, S) ↔ Θ.BlindObtain(ipp, (m1, ...,ml)), interactively generates
a credential cred for the attributes (m1, ..,ml) ∈ U , where S ⊂ {m1, ..,ml}
(here, S refers to the subset of attributes that the user wants to keep private;
it allows to flexibly choose which attributes should be revealed, and which
should not);

– Θ.Show(ipp, cred, (m1, ...,ml),Φ), outputs a proof of possession π of a cre-
dential cred for organization with issuer parameters ipp in respect to the
attributes (m1, ..,ml) ∈ U with associated statements Φ ∈ Φ;

– Θ.ShowVerify(sk, π,Φ), checks the proof π with sk with respect to the state-
ments Φ ∈ Φ;
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which satisfies the correctness, anonymity, unforgeability, blind issuance and key-
parameter consistency properties defined below.

We define two extra algorithms to simplify the security definitions:

– Issue(sk, (m1, ..,ml)): generates a credential for the attributes (m1, ..,ml)
using sk;

– CredVerify(sk, (m1, ..,ml), cred): verifies the credential cred using sk.

Here we define correctness, which guarantees that Issue always outputs proper
credentials and that a proof of possession for a valid credential verifies correctly.

Definition 6 (Correctness). A NIKVAC scheme Θ is correct if it holds that

Pr

⎡
⎢⎢⎣

(pp, td) $← Θ.Setup(1λ), (m1, ..,ml)
$← U ,

(sk, ipp) $← Θ.CredKeyGen(1λ),
cred

$← Issue(sk, (m1, ..,ml)),
b

$← CredVerify(sk, (m1, ..,ml), cred)

: b = 1

⎤
⎥⎥⎦ = 1

and

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(pp, td) $← Θ.Setup(1λ),
Φ ∈ Φ, (m1, ..,ml)

$← U with Φ(m1, ..,ml) = 1,
(sk, ipp) $← Θ.CredKeyGen(1λ),
cred

$← Issue(sk, (m1, ..,ml)),
π

$← Θ.Show(ipp, cred, (m1, ...,ml),Φ)
b

$← Θ.ShowVerify(sk, π,Φ),

: b = 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

Unforgeability ensures that users cannot successfully show credentials with-
out having received one from the authority.

Definition 7 (Unforgeability). A NIKVAC scheme Θ is unforgeable if for any
PPT adversary A it holds that

Pr

⎡
⎢⎢⎣

pp
$← Setup(1λ), Q ← ∅,

(sk, ipp) $← Θ.CredKeyGen(1λ),
(Φ, π) $← A Osk[Q](pp, ipp),
b

$← Θ.ShowVerify(sk, π,Φ),

: b = 1 ∧ ∀(m1, ..,ml) ∈ Q :
Φ(m1, ..,ml) = 0

⎤
⎥⎥⎦ ≤ μ(λ)

for some function μ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers
to issuing and verification queries:

– O.Issue(m1, ..,ml) sets Q ← Q ∪ {m1, ..,ml} and outputs Issue(sk, ipp,
(m1, ..,ml));

– O.Verify(Φ, π) outputs Θ.ShowVerify(sk, π,Φ).
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Anonymity ensures that a user that shows a credential stays anonymous.
Note that, as observed in [13], this simulation-style notion of anonymity implies
in particular the standard notion of multi-show unlinkability, which states that
anonymity is preserved throughout multiple presentations of the credential (a
property which is not satisfied by e.g. U-Prove [28]).

Definition 8 (Anonymity). A NIKVAC scheme Θ is anonymous if for any
PPT adversary A , there exists a PPT simulator Sim such that it holds that
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

(pp, td)
$← Θ.Setup(1λ),

(sk, ipp)
$← Θ.CredKeyGen(1λ),

(Φ, cred, (m1, .., ml), st)
$← A (pp, ipp, sk),

π
$← Θ.Show(ipp, cred, (m1, ..., ml), Φ)

:
CredVerify(sk, (m1, .., ml), cred)
= 1 ∧ Φ(m1, .., ml) = 1 ∧
A (st, π) = 1

⎤

⎥
⎥
⎥
⎥
⎦

−

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(pp, td)
$← Θ.Setup(1λ),

(sk, ipp)
$← Θ.CredKeyGen(1λ),

(Φ, cred, (m1, .., ml), st)
$← A (pp, ipp, sk),

π
$← Sim(ipp, sk, Φ)

:
CredVerify(sk, (m1, .., ml), cred)
= 1 ∧ Φ(m1, .., ml) = 1 ∧
A (st, π) = 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ μ(λ)

for some function μ(λ) = negl(λ).

Blind Issuance. The protocol BlindIssue ↔ BlindObtain defines a secure two-
party protocol for the function f((S, pp, ipp), (sk, r), (m1, ..,ml)) for shared input
(S, pp, ipp), issuer input (sk, r) and user input (m1, ..,ml) which returns cred ←
Issue(sk, (m1, ..,ml); r) to the user, if the input is correct. Since we will not cover
this property explicitly in this paper, refer to [13] for more details.

Definition 9 (Key-Parameter Consistency). A NIKVAC scheme Θ fulfills
the key-parameter consistency property if for any PPT adversary A , it holds
that

Pr

[
(pp, td) $← Θ.Setup(1λ), for i ∈ {0, 1},

(ipp, sk0, sk1)
$← A (pp) : (ipp, ski) ∈ {x | x

$← Θ.CredKeyGen(1λ)}

]
≤ μ(λ)

for some function μ(λ) = negl(λ).

4.1 Additional Properties

Anonymity Revocation. The following property would allow a trusted third
party to revoke anonymity if desired.

Definition 10 (Extractability). A NIKVAC scheme Θ is extractable if there
exists an efficient extractor Ext such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(pp, td) $← Θ.Setup(1λ),
Φ ∈ Φ, (m1, ..,ml)

$← U ,
(sk, ipp) $← Θ.CredKeyGen(1λ),
cred

$← Issue(sk, (m1, ..,ml)),
π

$← Θ.Show(ipp, cred, (m1, ...,ml),Φ)

: (m1, ..,ml) ← Ext(td, π)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1
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5 Oblivious Designated-Verifier Non-interactive
Zero-Knowledge

In this section, we introduce oblivious (designated-verifier, non-interactive) zero-
knowledge proof system. Intuitively, an oblivious DVNIZK enhances the security
and the functionality of a DVNIZK with two properties:

– First, the oblivious DVNIZK on a word x can be used to show knowledge of
a witness w such that Rsk(x,w) = 1, where Rsk is a secret witness relation,
which depends on a secret information which is not known to the prover.
The knowledge of sk is not required to generate a proof – but it is, obviously,
necessary to verify the proof.

– Second, we consider words x which can be divided in subwords (x0, x1), such
that x0 is a public subword, while x1 is a private subword. The privacy of x1

is ensured by requiring, for the zero-knowledge property, the existence of a
simulator which can simulate a proof without knowing the witness w and/or
x1. Note that this formalism is mainly chosen for notational convenience: the
word x1 could always be thought of as being part of the witness. However,
defining it as a part of the word allows us to set the secret relation Rsk to be
exactly the MAC verification, where the word is the signature and the witness
is the message, in our concrete instantiation.

5.1 Definition

Definition 11 (Oblivious DVNIZK). An oblivious designated-verifier non-
interactive zero-knowledge proof of knowledge Π for a family of secret witness
relations {Rcrs(·, ·, ·)}crs (which take as input triples (sk, x, w) where sk is a secret
relation key, x is a word, and w is a witness for the relation Rcrs(sk, ·, ·)) is a five-
tuple (Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) of efficient algorithms
such that

– Π.Setup(1λ), on input the security parameter in unary, outputs a pair (crs, td)
where crs is a common reference string and td is a trapdoor ;

– Π.RelSetup(crs), on input crs, outputs a pair (sk, ipp), where sk is a secret
relation key, and ipp are public issuer parameters;

– Π.KeyGen(crs), on input crs, outputs a pair (pk, vk) where pk is a public
proving key, and vk is a secret verification key ;

– Π.Prove(crs, pk, ipp, (x0, x1), w), on input crs, the public key pk, the issuer
parameters ipp, a word (x0, x1), where x0 is a public subword and x1 is a
secret subword, and a witness w such that Rcrs(sk, (x0, x1), w) = 1, outputs a
proof π;

– Π.Verify(crs, pk, ipp, x0, vk, sk, π), on input crs, the public key pk, the issuer
parameters ipp, the public subword x0, the verification key vk, the secret
relation key sk, and a proof π, outputs a bit b ∈ {0, 1};

which satisfies the completeness, oblivious zero-knowledge, and oblivious
knowledge-extractability properties defined below.
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Definition 12 (Completeness). An oblivious DVNIZK proof system Π =
(Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) for a family of secret witness
relations {Rcrs}crs satisfies completeness if for every (crs, td) in the image of
Π.Setup(1λ), every (sk, ipp) in the image of Π.RelSetup(crs), every (pk, vk, sk) in
the image of Π.KeyGen(crs), every ((x0, x1), w) such that Rcrs(sk, (x0, x1), w) = 1,
and every π in the image of Π.Prove(pk, ipp, (x0, x1), w), it holds that Π.Verify(pk,
ipp, x0, vk, sk, π) = 1.

Definition 13 (Oblivious Zero-Knowledge). An oblivious DVNIZK proof
system Π = (Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) for a family of
witness relations {Rcrs}crs satisfies oblivious zero-knowledge if for any stateful
PPT Adv, there exists a probabilistic polynomial-time simulator Sim such that
∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣

(crs, td) $← Π.Setup(1λ),
(pk, vk) $← Π.KeyGen(crs), : (Rcrs(sk, (x0, x1), w) = 1)
((x0, x1), w, ipp, sk) ← A (crs, pk, vk), ∧(A (π) = 1)
π ← Π.Prove(crs, pk, ipp, (x0, x1), w),

⎤
⎥⎥⎦−

Pr

⎡
⎢⎢⎣

(crs, td) $← Π.Setup(1λ),
(pk, vk, sk) $← Π.KeyGen(crs), : (Rcrs(sk, (x0, x1), w) = 1)
((x0, x1), w, sk, ipp) ← A (crs, pk, vk), ∧(A (π) = 1)
π ← Sim(crs, pk, ipp, x0, vk, sk),

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
≤ μ(λ)

where μ(λ) = negl(λ).

Definition 14 ((O0,O1)-Knowledge-Extractability). An oblivious DVNIZK
proof system Π = (Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) for a fam-
ily of secret witness relations {Rcrs}crs satisfies (O0,O1)-knowledge-extractability
if the following two conditions hold:

– for every PPT adversary A , there is an efficient extractor Ext such that

where V denotes Π.Verify(crs, pk, ipp, ·, vk, sk, ·);
– there exists an efficient simulator that simulates the answers of Π.Verify(crs,
pk, ipp, ·, vk, sk, ·), which is not given sk but is instead given oracle access to
O1[sk].

5.2 Instantiation

We now provide an instantiation of an oblivious DVNIZK suitable for our con-
struction. At a high level, the secret witness relation we consider will be the one
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that checks, for triples (sk, x, w), that the message w is the one signed in the cre-
dential x (with respect to the secret key sk of the abstract MAC scheme defined in
Sect. 3.1). Our construction heavily builds upon the DVNIZK proof system of [11].
Let S = (S.KeyGen, S.Enc, S.Dec) denote a DVNIZK-friendly encryption scheme
with plaintext space Zn and M = (M.Setup,M.KeyGen,M.Sign,M.Verify) be a
MAC scheme, which we assume to have the abstract structure given in Sect. 3.1,
over a group G of order n with generator G. We will consider the following wit-
ness relation: Rcrs(sk, x, w), given as input a vector x = (U, (Vi)i≤α) ∈ G

α+1

of group elements, a witness w = (m1, · · · ,mβ), and given sk, checks that
M.Versk(m1, · · · ,mβ , x) = 1, where sk = (ki)i≤α is the MAC key. Since the
purpose of the public word x0 is mainly to allow more expressivity when con-
sidering a more complex relation, and we focus here on the most basic relation
(the scheme can be enhanced to work with more complex relations), we simply
consider that x = x1 is entirely a secret word. The scheme works as follows:

– Π.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ) and pp
$← M.Setup(1λ).

Output crs ← (ek, pp). Note that ek defines a plaintext space Zn and a random
source ZR. As the IND-CPA and strong additive properties of S require R to
be unknown, we assume that a bound B on R is publicly available. We denote
� ← 2λnB.

– Π.RelSetup(crs) : same as M.KeyGen, namely: pick α vectors (ki)i≤α ∈ (Zβ
n )α

(which can be either random or fixed) of length β, and α random group
elements (Gi)i≤α

$← G
α. Set Hi,j ← k−1

i,j • G for i ∈ [1..α], j ∈ [1..β], G′
i ←

ki,0 • Gi for i ∈ [1..α], and ipp ← ((Hi,j)1≤j≤β)i≤α, (Gi, G
′
i)i≤α). Output

sk = (ki)i≤α and ipp.
– Π.KeyGen(crs) : pick e ← Z�, set pk ← S.Encek(0; e) and vk ← e. Output

(pk, vk).
– Π.Prove(crs, pk, ipp, x, w) : given x = (U, (Vi)i≤α) and a witness w = m, pick

(m′, t, t′) $← Z
β
n × (Zα

n )2, (rm , rt)
$← Z

β
2λB

× Z
α
2λB, z

$← Zn. Let (t′
j )j≤β =

(t′1,j , · · · , t′α,j)j≤β denote uniformly random additive shares of t′ over Z
α
n .

Compute

(U ′, (V ′
i )i≤α) ← (z • U, ((z • Vi) (ti • G))i≤α)

Wi,j ← m′
j • U ′ (t′i,j • Hi,j) for i ∈ [1..α], j ∈ [1..β]

(Xm ,Xt) ← (S.Encek(m; rm ), S.Encek(t; rt)),
X′

m ← S.Encek(m′; 0) � (rm 
 pk) = S.Encek(m′;−e · rm ),
X′

t ← S.Encek(t′; 0) � (rt 
 pk) = S.Encek(t′;−e · rt),

and output π ← (U ′, (V ′
i )i≤α, (Wi,j)i≤α,j≤β ,Xm ,Xt ,X

′
m ,X′

t).
– Π.Verify(crs, pk, ipp, vk, sk, π) : parse π as

(U ′, (V ′
i )i≤α, (Wi,j)i≤α,j≤β ,Xm ,Xt ,X

′
m ,X′

t).
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Check that e 
 Xm ⊕ X′
m and e 
 Xt ⊕ X′

t are decodable, and decode them
to vectors dm ,dt . Reconstruct

(W ′
i )i≤α ←

⎛
⎝

β∑
j=1

ki,j • Wi,j

⎞
⎠

i≤α

and check that

(e • (V ′
i (ki,0 • U ′)) W ′

i )i≤α = (dm • (ki,j • U ′)1≤j≤β)i≤α dt • G.

Output 1 if and only if all checks succeeded.

Theorem 2. The scheme Π is an oblivious designated-verifier zero-knowledge
proof of knowledge for the family of secret witness relations {Rcrs}crs, whose obliv-
ious zero-knowledge property reduces to the semantic security of the DVNIZK-
friendly encryption scheme S, and which satisfies statistical (O0,O1)-knowledge
extractability for the oracle O0[sk] ≡ M.Signsk, and an oracle O1[sk] which is
either

– M.Verifysk(·, ·) if β = 1, or
– M.Verifysk(·, ·) together with M.Checksk(·, ·) otherwise.

5.3 Extensions and Optimizations

In itself, the above oblivious DVNIZK does not seem to provide a strong unforge-
ability guarantee. Indeed, recall that the unforgeability of keyed-verification
anonymous credential states (informally) that it should be infeasible to come up
with a pair (m, σ) such that M.Versk(m, σ) = 1 and Φ(m) = 1, if all previous
queries to the signing authority where on vectors m′ such that Φ(m′) = 0. The
exact choice of Φ depends on the particular application; typically, Φ(m) could
correspond to the statement that m is the value committed in some pseudonym
known to the verifier; that way, the condition “all previous queries to the signing
authority where on vectors m′ such that Φ(m′) = 0” boils down to the standard
guarantee of anonymous credentials: it should be infeasible to come up with an
accepting credential on a vector that was never signed before by the authority.
But Φ can also check a more complex statement on the vector of attributes (e.g.
it could check that the attribute “age” is above 18).

In the construction given above, we directly focus on enforcing
M.Versk(m, σ) = 1; there is no additional Φ to, for example, bind m to a com-
mitment. However, we observe that this typical choice of Φ is for free in our
construction above. Indeed, a proof π does contain, by construction, a perfectly
binding commitment (in fact, an encryption with S) of the vector m, which
is Xm . Furthermore, it will immediately follow from the security analysis that
the proof does not only guarantee the knowledge of a witness w = m (recov-
ered by the extractor): it further guarantees that this witness is exactly the one
encrypted in Xm . Therefore, to bind the user to a pseudonym known to the ver-
ifier, it is unnecessary to add a commitment to m. Instead, the user can simply
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compute (Xm ,Xt ,X
′
m ,X′

t) in advance (observe that this does not require the
knowledge of a credential) and send it to the verifier, who will simply define it to
be the pseudonym of the user. Then, each time he wants to show possession of
a credential (U, (Vi)i≤α), the user only needs to compute the missing part of the
proof, (U ′, (V ′

i )i≤α, (Wi,j)i≤α,j≤β). This significantly reduces the size of a proof
of possession, and in scenario where Φ is only intended to check that the vector
matches with a pseudonym, the basic construction suffices as is. Of course, it can
be extended to more complex statements Φ, as long as they fit in the framework
of statements handled by [11].

5.4 Security Analysis

Completeness follows from a straightforward (although tedious) inspection. We
now establish oblivious zero-knowledge and (O0,O1)-knowledge extractability.

Oblivious Zero-Knowledge. We exhibit a simulator Sim which simulates a
proof π given (crs, pk, ipp, x0, vk = e, sk = (ki)i≤α). Note that Sim is not given
the witness w nor x1. The simulator Sim proceeds as follows:

Pick (m̃,m′,dm , t, t′,dt)
$← (Zβ

n )3 × (Zα
n )3, (rm , rt)

$← Z
β
2λB

× Z
α
2λB . Let

(t′
j )j≤β = (t′1,j , · · · , t′α,j)j≤β denote uniformly random additive shares of t′ over

Z
α
n . Compute

(U ′, (V ′
i )i≤α) $← G

α+1

(W ′
i )i≤α ← (dm • (ki,j • U ′)1≤j≤β)i≤α dt • G e • (V ′

i (ki,0 • U ′))i≤α

(Xm ,Xt) ← (S.Encek(m̃; rm ), S.Encek(t; rt)),
(X′

m ,X′
t) ← (S.Encek(dm − e · m̃;−e · rm ), S.Encek(dt − e · t;−e · rt)).

Then, for i ∈ [1..α], j ∈ [1..β], pick random Wi,j conditioned on

W ′
i =

β∑
j=1

ki,j • Wi,j ,

and output π ← (U ′, (V ′
i )i≤α, (Wi,j)i≤α,j≤β ,Xm ,Xt ,X

′
m ,X′

t).
We now show how to use an adversary Adv which outputs ((x0, x1), w, ipp, sk)

and distinguishes π ← Π.Prove(crs, pk, ipp, (x0, x1), w) from π ← Sim(crs, pk, ipp,
, x0, vk, sk) conditioned on Rcrs(sk, (x0, x1), w) = 1 to break the semantic secu-
rity of S. The reduction obtains m from Adv, samples a random m̃, and sends
(m, m̃) to a challenger for the IND-CPA game of S. It receives a ciphertext
Xm . It samples (m′,dm , t, t′,dt)

$← (Zβ
n )2 × (Zα

n )3, rt
$← Z

α
2λB as before,

and sets X′
m ← S.Encek(dm ; 0) � Xm 
 e. Finally, it computes (U ′, (V ′

i )i≤α),
(Wi,j)i≤α,j≤β , and (Xt ,X

′
t) as before. Observe that (U ′, (V ′

i )i≤α) are distributed
identically in the real game and the simulated game; direct calculations show
that when Xm encrypts m, the proof π is distributed exactly as in the real
game, while when Xm encrypts m̃, the proof π is distributed exactly as in the
simulated game.
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((O0,O1)-Knowledge-Extractability). We now turn our attention to the (O0,
O1)-knowledge extractability property. The extractor Ext proceeds as follows:
given a proof π = (U ′, (V ′

i )i≤α, (Wi,j)i≤α,j≤β ,Xm ,Xt ,X
′
m ,X′

t), it computes
m ← S.Dectd(Xm ), t ← S.Dectd(Xt), and outputs x ← (U ′, (V ′

i ti • G)i≤α),
and w ← m. We now analyze the probability that Rcrs(sk, (x0, x1), w) = 0 ∧
Π.Verify(crs, pk, ipp, x0, vk, sk, π) = 1. To do so, we proceed in two steps:

Game 1. In this game, we modify the behavior of the oracle Π.Verify(crs, pk,
ipp, vk, ·, sk, ·) that Adv is given access to. Namely, the oracle is not given vk
anymore. Rather, we generate vk as before, and set eR ← vk mod R. Each time
Adv sends a query π to the oracle, we proceed as follows: we parse π as

π = (U ′, (V ′
i )i≤α, (Wi,j)i≤α,j≤β ,Xm ,Xt ,X

′
m ,X′

t),

and use td to decrypt (Xm ,Xt ,X
′
m ,X′

t), obtaining vectors (m, t,m′, t′). Then,
we perform the following checks:

1. we check that −eR 
 (Xm � m) = X′
m � m′;

2. we check that −eR 
 (Xt � t) = X′
t � t′;

3. we check V ′
i ti • G = Hki

(m) • U ′ for every i ≤ α (that is, we run
M.Versk(m, σ) on the MAC σ = (U ′(V ′

i ti • G)i≤α));

4. we reconstruct (W ′
i )i≤α ←

(∑β
j=1 ki,j • Wi,j

)
i≤α

and check W ′
i t′i • G =

∑β
j=1(ki,j · m′

j) • U ′ for every i ≤ α.

Note that this follows exactly the proof strategy of [11, Section 3.3]. It follows by
the exact same argument that it is statistically infeasible to distinguish the sim-
ulated oracle in Game 1 from the real oracle, and the distinguishing advantage is
at most Q(α+1)p, where p is the smallest prime factor of n and Q is the number
of queries of Adv to the oracle. Intuitively, the argument stems from the fact that
if Adv ever submits a proof that would be accepted by the oracle, but not by
the simulated oracle (or the converse), then this proof information-theoretically
determines vk. However, even given eR = vk mod R, it follows from the chinese
remainder theorem that the value vk mod n remains statistically hidden, since vk
was initially picked at random in Z� and � satisfies � > 2λnR. Observe that game
already suffices to establish that the probability of Rcrs(sk, (x0, x1), w) = 0 ∧
Π.Verify(pk, vk, sk, π) = 1 must be negligible, since in this game the simula-
tion of Π.Verify does in particular check that Rcrs(sk, (x0, x1), w) = 1. However,
the simulation of Π.Verify still uses sk; to establish the second property of the
(O0,O1)-knowledge-extractability, we proceed with a second game.

Game 2. In this game, we further modify the simulated oracle, so that it does not
use sk anymore. Instead, the simulation will itself rely on the MAC verification
oracle. More precisely, the key sk is only used in the checks 3 and 4 of Game
1. The third check is straightforward given oracle access to M.Verifysk(·, ·): just
call M.Verifysk(m, σ) with σ = (U ′, (V ′

i ti • G)i≤α) (this is perfectly identical
to the third check in the previous game).
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The fourth check, however, is more problematic, since it’s not clear how to
reconstruct the (W ′

i )i≤α without knowing sk. Rewriting a bit the fourth check,
we need to check is

β∑
j=1

ki,j • Wi,j t′i • G =
β∑

j=1

ki,j • (m′
j • U ′)

for every i ≤ α. Letting (t′i,1, · · · , t′i,β) denote an arbitrary additive sharing of t′i
for every i ≤ α, this equation can be rewritten as

β∑
j=1

ki,j • (Wi,j t′i,j • Hi,j) =
β∑

j=1

ki,j • (m′
j • U ′)

Now, we distinguish two cases:

– Case 1. If it holds that β = 1, corresponding to the case where the vector
of attributes has length 1 (or, equivalently, we consider a simplified scenario
without attributes, and credentials computed directly on the identity of the
user), then the equation becomes

ki,1 • (m′
1 • U ′ Wi,1) = t′i • G.

Observe that this check can be performed efficiently: since we are given Hi,1 =
k−1

i,1 • G, this is perfectly equivalent to checking

m′
1 • U ′ Wi,1 = t′i • Hi,1

for every i ≤ α, which does not require the knowledge of sk.
– Case 2. In the general case, where β can be larger than 1, there is no immedi-

ate shortcut. In this case, we have to rely on a MAC with a stronger unforge-
ability property, the XUF-CMVA security property defined in Sect. 3, and we
simulate the verification using the following two oracles:

• M.Verify(m,σ) outputs M.Verifysk(m,σ);
• M.Check((Ai,j)i≤α,j≤β(Bi,j)i≤α,j≤β) checks

∑β
j=1 ki,j •Ai,j =

∑β
j=1 ki,j •

Bi,j for all i ≤ α, and outputs 1 iff all checks succeed,
where the first oracle allows to check the third equation, and the second oracle
allows to check the last equation.

In both cases, it is immediate to see that the answers of the simulated oracle
are distributed exactly as in Game 1. Furthermore, the simulation only requires
access to an oracle O1[sk], which is M.Verify in case 1, and the pair of oracles
M.Verify,M.Check in case 2.

6 A Construction of NIKVAC from Algebraic MAC
and Oblivious DVNIZK

In this section, we will use the system introduced in Sect. 5 to construct a NIKVAC
scheme Θ.
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6.1 Construction

Let M be a MAC and Φ a set of statements for attributes m1, ..,ml. Let ΠΦ be
an oblivious DVNIZK system which runs on a common Setup algorithm with M
for the relation Rcrs, for crs

$← M.Setup(1λ), defined as

Rcrs((x0, x1), (m1, ..,ml), k) = 1 iff M.Verifyk((m1, ..,ml), x1) = 1 ∧ Φ(m1, ..,ml),

where x0 is a public word needed to prove the statements Φ and ΠΦ.RelSetup =
M.KeyGen. We assume ΠΦ satisfies (O0,O1)-knowledge-extractability, where
O0[k](·) = M.Signk(·) and O1[k] is either the MAC verification oracle, if M is
UF-CMVA secure (and the attribute vectors are of length 1), or the MAC verifi-
cation and additional check oracle, if M is XUF-CMVA secure. Since x0 depends
on the choice of Φ, we omit it entirely in the following and simply set x = x1.
Note that ΠΦ.Setup,ΠΦ.CredKeyGen do not rely on the choice of Φ, so we sim-
ply write Π.Setup,Π.CredKeyGen. We now construct a NIKVAC scheme using
{ΠΦ}Φ.

– Θ.Setup(1λ), outputs (pp, td) $← Π.Setup(1λ), we assume that pp fixes the
supported statements Φ, the universe of attributes U is the message space of
M ;

– Θ.CredKeyGen(pp), runs (pk, vk) $← Π.KeyGen(pp), (k, ippM ) $← Π.RelSetup
(pp), outputs secret key sk ← (vk, k) and issuer parameters ipp ← (pk, ippM ),
we assume that CredKeyGen satisfies key-parameter consistency;

– Θ.BlindIssue(sk, S) ↔ Θ.BlindObtain(ipp, (m1, ...,ml)), performs a secure two-
party computation that issues a tag of M to the user on valid input, we assume
that this protocol satisfies blind issuance property2;

– Θ.Show(ipp, cred, (m1, ...,ml),Φ), parses ipp as (pk, ippM ) outputs π
$←

ΠΦ.Prove(pk, ippM , cred, (m1, ...,ml));
– Θ.ShowVerify(sk, π,Φ), parses sk as (vk, k) and ipp as (pk, ippM ), checks

ΠΦ.Verify(pk, ippM , vk, k, π).

6.2 Security Analysis

For Θ, the functions Issue and CredVerify are defined as follows:

– Issue(sk, (m1, ..,ml)): for sk = (vk, k) outputs M.Signk(m1, ..,ml);
– CredVerify(sk, (m1, ..,ml), cred): for sk = (vk, k) outputs M.Verifyk((m1, ..,

ml), cred).

Theorem 3 (Correctness). The NIKVAC scheme Θ satisfies correctness if
M is correct and ΠΦ is complete.

2 The protocol depends highly on the chosen MAC scheme. Thus, we omit details in
abstract instantiation.
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Proof. Let (pp, td) ← Θ.Setup(1λ), (m1, ..,ml)
$← U , (sk, ipp) $← Θ.CredKeyGen

(pp) and credIssue(sk, (m1, ..,ml)). It follows that CredVerify(sk, (m1, .., ml),
cred) = 1 from the correctness of the MAC scheme M .

Now, let (pp, td) ← Θ.Setup(1λ), Φ $← Φ, (m1, ..,ml)
$← U with Φ(m1, ..,

ml) = 1, (sk = (vk, k), ipp) $← Θ.CredKeyGen(pp) and cred
$← Issue(sk,

(m1, ..,ml)). Let π
$← Θ.Show(ipp, cred, (m1, ..,ml),Φ). Note that Rk(cred,

(m1, ..,ml)) = 1 and thus Θ.ShowVerify(sk, π,Φ) = 1 by the completeness of
ΠΦ.

Theorem 4 (Unforgeability). The NIKVAC scheme Θ is unforgeable if M is
unforgeable and ΠΦ is (O0,O1)-knowledge-extractable for all Φ ∈ Φ.

Proof. Let A be a PPT adversary on the unforgeability of Θ. We build an
adversary B which either breaks the unforgeability of M (so either the UF-CMVA
or XUF-CMVA security) or the (O0,O1)-knowledge-extractability of ΠΦ for some
Φ ∈ Φ.

B receives (crs, pk, ippM )3 and access to a proof verification oracle VΦ and
an MAC issuing oracle O0 (defined in Sect. 6.1) from the (O0,O1)-knowledge-
extractability4 game with ΠΦ for Φ ∈ Φ. B sends pp ← crs, ipp ← (pk, ippM ) to
A and gives access to the following issuing and verification oracle O:

– O.Issue(m1, ..,ml) sets Q ← Q ∪ {m1, ..,ml} and outputs O0(m1, ..,ml);
– O.Verify(Φ, π) outputs VΦ(π).

By the second property of definition 14, VΦ(·) can be simulated only using O1

without access to the secret key. Now, all answers to queries which require the
secret MAC key can be computed using solely access to the MAC oracles. Note
that B simulates the unforgeability game of Θ with overwhelming probability. At
some point, if A is successful, he will output π,Φ such that the pair (π,Φ) verifies
correctly and for all queried (m1, ..,ml) ∈ Q : Φ(m1, ..,ml) = 0. Subsequently,
B forwards π to the (O0,O1)-knowledge-extractability game for ΠΦ, which in
turn forwards the extracted values (x1, w) to the MAC unforgeability game.

We now analyze the success probability of B assuming A is successful. If B
won the (O0,O1)-knowledge-extractability game, we are finished. In the other
case, the MAC unforgeability game receives (x1 = σ,w = (m1, ..,ml)). Because
A is successful, π verifies correctly with regards to Θ and thus also verifies
correctly with regards to ΠΦ. Because B failed the first game, it necessarily
holds that R(σ, (m1, ..,ml)) = 1. Since ∀(m′

1, ..,m
′
l) ∈ Q : Φ(m′

1, ..,m
′
l) = 0 and

Φ(m1, ..,ml) = 1, it holds that (m1, ..,ml) /∈ Q and σ verifies correctly. Thus, B
breaks the unforgeability of M . ��
Theorem 5 (Anonymity). The NIKVAC scheme Θ is anonymous if ΠΦ sat-
isfies oblivious zero-knowledge.

3 The parameters (crs, pk, ippM ) are fixed for all Φ ∈ Φ, since they do not depend on
the particular choice of Φ.

4 In this proof, this refers to the first property of definition 14.
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Proof. Let A be an adversary on the anonymity of Θ. We construct an adversary
B that breaks the oblivious zero-knowledge property of ΠΦ for some Φ ∈ Φ with
overwhelming probability if A is successful.

B receives crs, pk, vk from the zero-knowledge game with ΠΦ for some arbi-
trary Φ ∈ Φ. Note that these values are independent of the particular choice
of Φ. B then runs (k, ippM ) $← M.KeyGen(crs) and sends pp ← crs, ipp ←
(pk, ippM ), sk ← (vk, k) to A . In turn, B receives (Φ, cred, (m1, ..,ml)) from
A . Next, B outputs (cred, (m1, ..,ml), k, ippM ) to the oblivious zero-knowledge
game for the now fixed Φ and receives π in return which he forwards to A .
Note that B simulates the anonymity game with overwhelming probability.
Also, Rcrs(sk, cred, (m1, ..,ml)) = 1 ⇐⇒ CredVerify(sk, (m1, ..,ml), cred) =
1 ∧ Φ(m1, ..,ml). The simulation of π in the zero-knowledge game only uses
ipp, sk,Φ and will thus be a simulation for the anonymity game. Otherwise, π is
built honestly in both games and thus, if A is successful, B is successful with
overwhelming probability. ��

Missing Properties. The missing properties are blind issuance and key-
parameter consistency. In practice, key-parameter consistency can easily be ful-
filled by adding additional commitments to the components of the secret key
and the two-party computation for blind issuance depends highly on the struc-
ture of the MAC scheme and can be implemented with any standard two party
computation protocol; we briefly outline a possible candidate for an optimized
version of our scheme in the full version [15].
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Abstract. Ring signatures, introduced by Rivest, Shamir and Tau-
man (ASIACRYPT 2001), allow to sign a message on behalf of a set
of users while guaranteeing authenticity and anonymity. Groth and
Kohlweiss (EUROCRYPT 2015) and Libert et al. (EUROCRYPT 2016)
constructed schemes with signatures of size logarithmic in the number
of users. An even shorter ring signature, of size independent from the
number of users, was recently proposed by Malavolta and Schröder (ASI-
ACRYPT 2017). However, all these short signatures are obtained relying
on strong and controversial assumptions. Namely, the former schemes are
both proven secure in the random oracle model while the later requires
non-falsifiable assumptions.

The most efficient construction under mild assumptions remains the
construction of Chandran et al. (ICALP 2007) with a signature of size
Θ(

√
n), where n is the number of users, and security is based on the

Diffie-Hellman assumption in bilinear groups (the SXDH assumption in
asymmetric bilinear groups).

In this work we construct an asymptotically shorter ring signature
from the hardness of the Diffie-Hellman assumption in bilinear groups.
Each signature comprises Θ( 3

√
n) group elements, signing a message

requires computing Θ( 3
√

n) exponentiations, and verifying a signature
requires Θ(n2/3) pairing operations. To the best of our knowledge, this
is the first ring signature based on bilinear groups with o(

√
n) signatures

and sublinear verification complexity.

1 Introduction

Ring signatures, introduced by Rivest, Shamir and Tauman [28], allow to anony-
mously sign a message on behalf of a ring of users R = {P1, . . . , Pn}, only if the
signer belongs to that ring. That is, no one outside R can forge a valid sig-
nature and an honestly computed signature reveals no information about the
actual signer. Unlike other similar primitives such as group signatures [7], ring
signatures are not coordinated: each user generates secret/public keys on his
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own—i.e. no central authorities—and might sign on behalf of a ring without the
approval or assistance of the other members.

The original motivation for ring signatures was anonymous leakage of secrets.
Suppose a high rank officer wants to leak some sensitive document to a journalist
without revealing its identity. To do so, it signs this document using a ring
signature where the ring contains all other high rank officers. The journalist is
convinced that some high rank officer signed the document, but it has no clue
who, while this leakage might go unnoticed for the rest of officers.

More recently, ring signatures have also found applications in the construction
of confidential transactions for cryptocurrencies. In a usual (non-anonymous)
transaction the user computes a signature that assesses if is allowed to spend
coins. In cryptocurrencies like Monero, a user form a ring from public keys in the
blockchain to issue a ring signature on the transaction. Thereby, the anonymity
properties of the ring signature guarantee untraceability of the transaction and
fungibility, i.e. two coins can be mutually substituted. Given the practical use-
fulness of ring signatures, it becomes crucial to study and improve its efficiency
and security.

1.1 Related Work

The efficiency of a ring signature might be splitted into three parameters: the sig-
nature size, the time required for computing a signature, and the time required
for verifying a signature. Among these metrics, the signature size has received the
most attention and improvements in the size usually imply improvement in the
other metrics. In terms of signature size, two of the most efficient constructions
have signature size logarithmic in the size of the ring [18,23]. Both construc-
tions rely on the random oracle model, which is an idealization of hash functions
with known theoretical inconsistencies [13]. Malavolta et al. constructed a con-
stant size ring signature without random oracles [24] using SNARKS [8,11,17]
as a subroutine, which are known to require controversial non-falsifiable assump-
tions such as the knowledge of exponent assumption [12,26]. Unlike traditional
falsifiable assumptions (e.g. DDH), is not possible to efficiently check whether
the adversary effectively breaks the assumption yielding non-explicit security
reductions [26]. In practice, random oracles and non-falsifiable assumptions offer
great efficiency at the price of less understood security guarantees. Therefore, we
believe that it is important and challenging to explore practical constructions
from milder assumptions.

Using only standard assumptions like RSA, Chase and Lysyanskaya proposed
a ring signature scheme whose size is independent from the number of users [6].
Their ring signature is built on top of signatures of knowledge and accumula-
tors, following Dodis et al. [9]. The scheme description is only sketched and no
proof of security is given but, for fairness (as also noted in [24]), their work is
previous to the (now standard) formal definition of ring signatures of Bender
et al. [2]. Anyway, signatures of knowledge are built on top of simulation sound
NIZK which in turn is built from standard NIZK. The underlying statements
involve multiplications modulo φ(N) and exponentiations modulo N , where N
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an RSA modulus. To the best of our knowledge, no efficient NIZK schemes under
standard assumptions are known for statements of this kind. Thus, the only alter-
native under standard assumptions seems the NIZK for circuit satisfiability of
Groth, Ostrovsky and Sahai [20]. A naive implementation of this protocol would
require, at least, perfectly binding bit-by-bit commitments of integers in ZN .
Typically, N requires 1024 bits so this solution requires at least 1024 elements
of a bilinear group. On contrast, our construction is far more efficient than that
for any n < 104. Although it might be possible to avoid committing bit-by-bit,
there would be still many challenges. For example, it would require a NIZK proof
that a = by mod N , for a, b ∈ ZN , y ∈ Zφ(N), for which the only solution seems
to be committing to y bit-by-bit (in order to use binary exponentiation) leading
again to proofs of ∼ 1024 group elements. Our conclusion is that is not clear
how to implement Chase and Lysyanskaya’s ring signature in a practical way.

Despite Chase and Lysyanskaya’s construction, without random oracles or
non-falsifiable assumptions all constructions have signatures of size linear in the
size of the ring, being the sole exception the Θ(

√
n) ring signature of Chandran

et al. [5]. They construct a simple and elegant ring signature which at its core
implements a set-membership proof, i.e. a proof that some committed public key
belongs to the set of public keys of the ring users. Their set-membership proof
is quite strong, in the sense that the verification keys may be even chosen by
the adversary. Going a step forward, we will build a more efficient but weaker
set-membership proof which is still useful for building ring signatures.

We note that no improvements in the signature size have been made within
a decade. In fact, although two previous works claim to construct signatures of
constant [4] or logarithmic [16] size, in the full version (see [15]) of this work we
show that one construction fails to give a correct proof of security and the other
is in fact of size Θ(n). The only (non-asymptotic) improvements we are aware
of are [14,27].

1.2 Our Contribution

In this work we present the first ring signature based on bilinear groups whose
signature size is asymptotically smaller than Chandran et al.’s, and whose secu-
rity is proven under falsifiable assumptions and without random oracles. The
signature consists of Θ( 3

√
n) group elements, computing a signature requires

Θ( 3
√

n) exponentiations, and verifying a signature requires Θ(n2/3) pairings.
Our ring signature is perfectly anonymous, i.e. it completely hides the iden-
tity of the actual signer, and is computationally infeasible to forge signatures for
non-members of the ring.

As a first step, we construct a Θ( 3
√

n) ring signature whose security relies on a
security assumption—the permutation pairing assumption—introduced by Groth
and Lu [19] in an unrelated setting: proofs of correctness of a shuffle. While the
assumption is “non-standard”, in the sense that is not a “DDH like” assumption,
it is a falsifiable assumption and it was proven hard in generic symmetric bilin-
ear groups by Groth and Lu. We work on asymmetric groups (Type III groups
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[10]) and thus we give a natural translation of the permutation pairing assump-
tion which we also prove secure in generic asymmetric bilinear groups.

We give a second construction which is solely based on the security of the
DDH assumption in both base groups (the so called SXDH assumption). The
construction is highly inspired in the first construction, but we manage to get
rid of the permutation pairing assumption and further shorten the size of the
signature. A comparison of our ring signatures and Chandran et al.’s is given in
Table 1.

Table 1. Comparison of Chandran et al.’s ring signature and ours for a ring of size
n. ‘Signature generation’ is given in number of exponentiations, ‘Verification’ is given
in number of pairings, and all other rows are given in number of group elements. The
security of the three schemes is proved under the unforgeability of the Boneh-Boyen
signature scheme plus the corresponding assumption indicated in the row ‘Assump-
tion’. The last row states if the key generation algorithm erases its random coins after
generating the verification and secret keys.

Chandran et al. [5] Section 3.2 Section 4.2

CRS size G1/G2 4/4 4/4 4/8

Verification key size G1/G2 1/0 2/5 10/9

Signature size G1/G2 12
√

n + 10/15
√

n + 8 24 3√n + 36/34 3√n + 24 18 3√n + 30/34 3√n + 18

Signature generation #exps. 37
√

n + 23 80 3√n + 71 72 3√n + 61

Verification #pairings 2n + 60
√

n + 38 8n2/3 + 162 3√n + 118 8n2/3 + 122 3√n + 94

Assumption SXDH PPA SXDH

Erasures No Yes No

1.3 Technical Overview

Most ring signature constructions have followed the next approach. Given a ring
of users, defined by the set of their verification keys, and a message: (a) sign
the message, (b) prove in zero-knowledge knowledge of a signature which can be
verified using some committed/randomized verification key, and then (c) prove
in zero-knowledge that this verification key belongs to the set of public keys in
the ring. The most expensive part is (c) and is sometimes called a set-membership
proof.

We observe that, when proving unforgeability, all the verification keys form-
ing the ring are honestly generated. Indeed, it only makes sense to guarantee
unforgeability when all the members of the ring are honest (otherwise the adver-
sary knows at least one secret key) and thus the set-membership proof might
assume that all verification keys were honestly generated. It turns out that all the
schemes we are aware of, in particular Chandran et al.’s, obviate this property,
meaning that their set-membership proofs work even for adversarially chosen
verification keys. We ask the following natural question.

Can we construct more efficient set membership proofs (without random
oracles or non-falsifiable assumptions) when verification keys are sampled
from a known distribution?
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We answer this question in the affirmative constructing a Θ( 3
√

n) set member-
ship proof specially tailored to the case when the verification keys are honestly
sampled. In contrast, Chandran et al.’s proof is of size Θ(

√
n) but it makes no

assumption on the verification keys distribution.

Our Construction from the Permutation Pairing Assumption. Our
main technical tools are two hash functions compatible with Groth-Sahai proofs.

The first function, h, is second-preimage resistant under a slightly differ-
ent notion of collision. Given A = (a1, . . . ,am) randomly sampled from the
domain of h, it is hard to find A′ such that h(A′) = h(A) whenever A′ is not
a permutation of A. We give a simple instantiation of h based on the permu-
tation pairing assumption (PPA). For simplicity, consider a symmetric bilinear
group G of order q and generated by P (it can be extended to asymmetric
bilinear groups as we show in Sect. 2.1). This assumption states that, given
a1 = (x1P, x2

1P), . . . ,am = (xmP, x2
mP), for x1, . . . , xm ← Zq, the only way to

compute a′
1 = (y1P, y2

1P), . . . ,a′
m = (ymP, y2

mP) such that
∑m

i=1 a′
i =

∑m
i=1 ai

is to take A′ as a permutation of the columns of A. It is straightforward to
note that h(A) :=

∑m
i=1 ai is second-preimage resistant “modulo permutations”,

given the hardness of PPA.
Our second function, g, is collision-resistant in the traditional sense. It uses

A as key and returns gA(vk1, . . . , vkm) =
∑m

i=1 e(ai, vki) for vk1, . . . , vkm ∈ G.
Groth and Lu conjectured that it is hard to find non-trivial vk1, . . . , vkm ∈
G such that

∑m
i=1 e(ai, vki) = 0 when each ai is of the form (xiP, x2

i P) and
xi ← Zq [19]. They give some evidence that this assumption might be true
proving its hardness in the generic bilinear group model. It follows that g is
collision resistant given the hardness of the aforementioned assumption. In order
to be more compatible with Groth-Sahai proofs (say, structure-preserving) we
compute g’s outputs in the base group, instead of the target group GT . To
render gA(vk) ∈ G efficiently computable we make skiai publicly available,
where vki = skiP, and redefine g as gA(vk) =

∑
i skiai. Note that the discrete

logarithm in base PT = e(P,P) of g defined over GT and the discrete logarithm
in base P of g defined over G remain the same.

Each ai will be taken from the ring member’s verification key and hence, since
all these verification keys are honestly sampled, when proving unforgeability we
may assume that A is honestly sampled from the PPA distribution.

The Basic Construction. In our ring signature, each user possesses an
“extended verification key” which contains the verification key of a Boneh-
Boyen signature scheme vk = skP plus a and ska, where sk is the correspond-
ing secret key.1 We want to show that some commitment c opens to vk and

1 Although any signature scheme compatible with Groth-Sahai proofs suffices
(e.g. structure preserving signatures), we would rather keep it simple and stick to
Boneh-Boyen signature which, since the verification key is just one group element,
simplifies the notation and reduces the size of the final signature.
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vk ∈ {vk1, . . . , vkn}. To do so, we arrange the n elements of the ring into n2/3

blocks of size m = 3
√

n. We use the following notation: for {s1, . . . , sn} define
si,j := s(i−1)m+j , where 1 ≤ i ≤ n2/3, 1 ≤ j ≤ m. Assume that vk = vkμ,ν .

Split (a1, . . . ,an) into Ai := (ai,1, . . . ,ai,m) and (vk1, . . . , vkn) into vki =
(vki,1, . . . , vki,m), for 1 ≤ i ≤ n2/3, and define H := {h(A1), . . . , h(An2/3)} and
G := {gA1(vk1), . . . , gA

n2/3 (vkn2/3)}. We use Chandran et al.’s set-membership
proof of size Θ(

√
n) to prove knowledge of some h(Aμ) ∈ H. Since |H| = n2/3,

this proof is of size Θ( 3
√

n). Then we prove knowledge of A′, a preimage of h(Aμ)
such that a′

1 = aμ,ν . Using Groth-Sahai proofs it requires commitments to the
3
√

n columns of A′ plus a Θ(1) proof that h(A′) = h(Aμ). Hence, this part of
the proof adds up to Θ( 3

√
n) group elements.

We give a second set-membership proof of knowledge of some gAμ′ (vkμ′) ∈
G such that μ′ = μ (this is straightforward to do with Chandran et al.’s
set-membership proof). We commit to vk′, a permutation of vkμ such that
vk′

1 = vkμ,ν (and consistent with A′), and we prove using Groth-Sahai proofs
that gAμ′ (vkμ′) = gA′(vk′). Again, this part of the proof adds Θ( 3

√
n) group

elements.
The proof that h(A′) = h(Aμ) implies that A′ is a permutation of Aμ, which

can be equivalently written as A′ = AμP, where P is some permutation matrix.
Given that e(gA′(vk′),P) = e(AμP,vk′) = e(gAμ

(Pvk′),P) = e(gAμ
(vkμ),P),

the collision resistance of g implies that vk′
1, . . . , vk′

m is a permutation of
vkμ,1, . . . , vkμ,m. We conclude that vkμ,ν = vk′

1 is in the ring.

Getting Rid of the Permutation Pairing Assumption. The PPA-based
ring signature has the disadvantage that the PPA is not a constant-size assump-
tion and belongs to the class of the so called q-assumptions (such as the Strong
Diffie-Hellman assumption among others). It is then desirable to have a similar
construction under more standard constant-size assumptions such as the SXDH
assumption.

Consider the set of binary vectors of size m and the function h defined as
the hamming weight of a binary vector h(β) =

∑m
i=1 βi. Analogously as with

the PPA, h(β) = h(β′) and β,β′ ∈ {0, 1}m implies that β′ is a permutation
of β. (Note that in this case β′ is a permutation of β unconditionally.) We
use this property of binary vectors as a replacement of the PPA. Define also
gβ (vk) :=

∑
i βivki. Although g is longer collision resistant, it turns out that

proofs that h(β′) = h(β) and gβ ′(vk′) = gβ (vk) will still allow us to prove
unforgeability.2

Each possible ring member generates a single β ∈ {0, 1} and her extended
verification key contains commitments a = Com(β), d = Com(βvk), and vk.
Additionally it contains π, a Groth-Sahai proof that β ∈ {0, 1}, and θ, a

2 Even when the adversary only knows a commitment to β, as it will be in our case, g is
not collision resistant. For small rings, the adversary may guess β with non-negligible
probability and solve

∑
i βi(vki − vk′

i) = 0 for some non trivial vk′. However, this
adversary is not even not aware that it has found a collision.
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Groth-Sahai proof that y = βvk where y is d’s opening. Although g and
h are not efficiently computable from the extended verification keys, it is
possible to compute commitments to h(β) and gβ (vk) using the homomor-
phic properties of Groth-Sahai commitments. Indeed Com(h(β)) =

∑
i ai and

Com(gβ (vk)) =
∑

i di. Using this fact together with the re-randomizability of
Groth-Sahai proofs (see [1]) we will emulate the ring signature in the PPA
setting.

Assume the signer wish to sign on behalf of the ring R = {vk1,1, . . . , vkn2/3,m}
knowing the secret key corresponding to vkμ,ν . Define A1, . . . ,An2/3 as in the
PPA construction and let β1, . . . ,βn2/3 the respective openings. In the first part
of the signature, the signer proves knowledge of some Com(h(βμ)) from H =
{Com(h(β1)), . . . ,Com(h(βn2/3))} and then commits to A′, a permutation of
a re-randomization of Aμ such that a′

1 is a re-randomization of aμ,ν . Then it
shows with a Groth-Sahai proof that (a)

∑
i a′

i −Com(h(βμ)) = Com(0), and (b)
β′
1 . . . , β′

m ∈ {0, 1} re-randomizing proofs πμ,1, . . . , πμ,m. It follows that β′, the
vector of openings of A′, is a permutation of βμ, the vector of openings of Aμ.

In the second part the signer proves knowledge of some Com(gβμ
(vkμ)) from

G = {Com(gβ1(vk1)), . . . ,Com(gβ
n2/3 (vkn2/3))} and computes commitments c′

1,

. . . , c′
m to vk′

1 = vkμ,1, . . . , vk′
m = vkμ,m, respectively. In Sect. 4.1 we show that,

from dμ,1, . . . ,dμ,m and θμ,1, . . . , θμ,m one can derive a proof that
∑

i β′
ivk′

i =∑
i βμ,ivkμ,i, or equivalently a proof that gβ ′(vk′) = gβμ

(vkμ).
Zero-knowledge of the set-membership proof implies perfect anonymity of

the ring signature, and follows from the fact that all proofs are statistically
independent of vk when the Groth-Sahai CRS is perfectly hiding. Soundness
implies unforgeability, and follows from the following argument.

Without loss of generality, we may assume that vkμ has not repeated entries
since the verifier might drop all repeated entries in R without changing the
statement. Suppose an adversary wish to convince the verifier that vk = vk′

1 is
in R while in fact vk /∈ R. In particular, this implies that vk′

1 is different from
each of vkμ,1, . . . , vkμ,m. By the pigeonhole principle, there must be also some
vkμ,i that is different from each of vk′

1, . . . , vk′
m.

Since we can guess such μ, i pair beforehand with non negligible probability
1/Q, where Q is the maximum number of verification keys. We can jump to a
game where we program A = (a1, . . . ,aQ) such that its opening β ∈ {0, 1}Q is
of hamming weight 1 and βμ,i = 1. By the hiding property of the commitment
scheme, which is based on the SXDH assumption, the adversary notices such
change in A only with negligible probability. Given that β′ is a permutation of
β, in this game the equation

∑
i β′

ivk′
i =

∑
i βμ,ivkμ,i is in fact vk′

j = vkμ,i, for
some 1 ≤ j ≤ m, and hence the adversary has 0 probability of winning.

The Erasures Assumption. A ring signature must tolerate the adaptive cor-
ruption of the verification keys. That is, an adversary may adaptively ask for
the random coins used for generating the verification keys. In the PPA-based
ring signature, this amounts to reveal xi and x2

i which is incompatible with the
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PPA (unless one considers a much stronger interactive assumption). The only
alternative seems to be assume that the key generation algorithm can erase its
random coins.3

But this is not the case for the SXDH-based construction. To avoid erasures,
each possible ring member samples the extended verification key with β = 0.
Thereby, Every answer to a corruption query is of the form 0, sk plus all the
random coins used to generate the extended verification key.

We can argue as before that an adversary may produce some vk /∈ R with
roughly the same probability even if A is computed from a random binary vector
β of hamming weight 1 with the unique 1 in the right place. In this case we can
answer all corruption queries with the exception of the unique verification key
for which β = 1. But anyway, the probability that the adversary corrupts this
verification key is no greater than 1/Q so we can safely abort if this is the case.
The rest of the argument is exactly as before.

Relation to [14]. Our construction is similar to the set membership proof of
González et al. [14, Appendix D.2] also of size Θ( 3

√
n). There, the CRS contains

a matrix A of size 2 × m that is used to compute 3
√

n hashes of n2/3 of subsets
of verification keys of size 3

√
n. Then some hidden hash is shown to belong to

the set for n2/3 hashes. These hashes are computed as a linear combination of
the columns of A with the verification keys.

One could turn this construction into a ring signature including vkA in each
verification key. However, the fact that A is fixed implies that signatures of
size Θ( 3

√
n) can be obtained only when n ≤ m3. So, asymptotically, this is not

a Θ( 3
√

n) signature. Furthermore, the verification key will be of size Θ(m). In
contrast, our ring signature verification keys are of size Θ(1) and the size of the
ring is unbounded.

2 Preliminaries

We write PPT as a shortcut for probabilistic polynomial time Turing machine.
Let Gena be some PPT which on input 1λ, where λ is the security parameter,

returns the group key which is the description of an asymmetric bilinear group
gk := (q,G1,G2,GT , e,P1,P2,PT = e(P1,P2), q), where G1, G2, and GT are
groups of prime order q, the element Ps is a generator of Gs, and e : G1 ×G2 →
GT is an efficiently computable and non-degenerated bilinear map. We will use
additive notation for the group operation of all groups.

Elements in Gs are denoted implicitly as [a]s := aPs, where a ∈ Zq, s ∈
{1, 2, T}. The pairing operation is written as a product ·, that is [a]1 · [b]2 =
[a]1[b]2 = [b]2[a]1 = e([a]1, [b]2) = [ab]T . Vectors and matrices are denoted in
boldface. Given a matrix T = (ti,j), [T]s is the natural embedding of T in Gs,
that is, the matrix whose (i, j)th entry is ti,jPs. Given a matrix S with the same
number of rows as T, we define S|T as the concatenation of S and T.

3 We elaborate more on the erasures assumption for ring signatures in the full version
of this work [15].
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2.1 Hardness Assumptions

We use a natural translation to asymmetric groups of the permutation pairing
assumption introduced by Groth and Lu.

Definition 1 (Permutation Pairing Assumption [19]). Let Qm =

m times
︷ ︸︸ ︷
Q| . . . |Q,

where concatenation of distributions is defined in the natural way and Q : a =
( x

x2 ), x ← Zq. We say that the m-permutation pairing assumption holds relative
to Gena if for any adversary A

Pr

⎡

⎢
⎢
⎢
⎢
⎣

gk ← Gena(1λ);A ← Qm;
([Z]1, [z]2) ← A(gk, [A]1, [A]2) :
(i)

∑m
i=1[zi]1 =

∑m
i=1[ai]1,

(ii) ∀i ∈ [m] [z1,i]1[1]2 = [1]1[zi]2 and [z2,i]1[1]2 = [z1,i]1[zi]2,
and Z is not a permutation of the columns of A

⎤

⎥
⎥
⎥
⎥
⎦

,

where [Z] = [z1| · · · |zm]1 ∈ G
2×m
1 , [A]1 = [a1| · · · |am]1 ∈ G

2×m
1 , [z]2 = [(z1, . . . ,

zm)]2 ∈ G
1×m
2 , is negligible in λ.

Groth and Lu proved the hardness of the PPA in generic symmetric bilinear
groups [19]. In the full version of this work we show that the m-PPA in generic
asymmetric groups is as hard as the PPA in generic symmetric groups [15].

For constructing the function g in the PPA instantiation we require the
assumption that is hard to find [x]2 ∈ G

m
2 \{0} such that [x�]2[A�]1 = 0, where

A ← Qm. Groth and Lu proved the generic hardness of the natural translation of
this assumption to symmetric groups [19]. We observe that this assumption cor-
responds to a kernel assumption [25], the Q�

m-KerMDH assumption in symmetric
groups.

Definition 2 (Kernel Diffie-Hellman Assumption in G [25]). Let gk ←
Gena(1λ) and D�,k a distribution over Z

�×k
q . The Kernel Diffie-Hellman assump-

tion in G (D�,k-KerMDHGs
) says that every PPT Algorithm has negligible advan-

tage in the following game: given [A], where A ← D�,k, find [x] ∈ G
�, x �= 0,

such that [x]�[A] = [0]T .

Our assumption is the natural translation of the Q�
m-KerMDH assumption

to asymmetric groups, where [A]s is also given in G3−s. Such assumption is
a weaker variant of a split KerMDH assumption, introduced in [14], where the
adversary might find an element in Ker(A) which is splitted between G1 and G2.

Definition 3 (Split Kernel Diffie-Hellman Assumption [14]). Let gk ←
Gena(1λ) and D�,k a distribution over Z

�×k
q . The Split Kernel Diffie-Hellman

assumption (D�,k-SKerMDH) says that every PPT Algorithm has negligible
advantage in the following game: given [A]1, [A]2, where A ← D�,k, find
[x]1 ∈ G

�
1, [y]2 ∈ G

�
2, x �= y, such that [x]�1 [A]1 = [y]�2 [A]2.

Our weaker variant restricts the adversary to give solutions only in G1 (i.e. [y]2 =
0), while we simply refer to it as the Q�

m-SKerMDH. González et al. proved that,
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in generic asymmetric groups, the D�,k-SKerMDH is as hard as the D�,k-KerMDH
assumption in symmetric groups, for any distribution D�,k [14]. We conclude
that the Q�

m-SKerMDH is hard in generic asymmetric groups (and of course, the
weaker variant that we will be using).

Finally, we recall also the definition of the Decisional Diffie-Hellman assump-
tion (in matrix notation).

Definition 4 (Decisional Diffie-Hellman (DDH) in Gs). Let gk ←
Gena(1λ) and let A := (a, 1)�, a ← Zq. We say that the DDH assumption
holds relative to Gena if for all PPT adversaries D

AdvDDH,Gens
(D) := |Pr[D(gk, [A]s, [Aw]s) = 1] − Pr[D(gk, [A]s, [z]s) = 1]|

is negligible in λ, where the probability is taken over gk ← Gena(1λ), a ← Zq,
w ← Zq, [z]2 ← G

2
s, and the coin tosses of the adversary. We say that the Sym-

metric eXternal Diffie-Hellman (SXDH) assumption holds if the DDH assump-
tion holds in both G1 and G2.

2.2 Ring Signature Definition

We follow Chandran et al.’s definitions [5], which extends the original definition
of Bender et al. [2] by including a CRS and perfect anonymity. We allow erasures
in the key generation algorithm.

Definition 5 (Ring Signature). A ring signature scheme consists of a
quadruple of PPT algorithms (CRSGen,KeyGen,Sign,Verify) that respectively,
generate the common reference string, generate keys for a user, sign a message,
and verify the signature of a message. More formally:

– CRSGen(gk), where gk is the group key, outputs the common reference string
ρ.

– KeyGen(ρ) is run by the user. It outputs a public verification key vk and a
private signing key sk.

– Signρ,sk(m,R) outputs a signature σ on the message m with respect to the
ring R = {vk1, . . . , vkn}. We require that (vk, sk) is a valid key-pair output
by KeyGen and that vk ∈ R.

– Verifyρ,R(m,σ) verifies a purported signature σ on a message m with respect
to the ring of public keys R and reference string ρ. It outputs 1 if σ is a valid
signature for m with respect to R and ρ, and 0 otherwise.

The quadruple (CRSGen,KeyGen,Sign,Verify) is a ring signature with perfect
anonymity if it has perfect correctness, computational unforgeability and perfect
anonymity as defined below.

Definition 6 (Perfect Correctness). We require that a user can sign any
message on behalf of a ring where she is a member. A ring signature (CRSGen,
KeyGen,Sign,Verify) has perfect correctness if for any unbounded adversary A we
have:
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Pr

⎡

⎣
gk ← Gen(1λ); ρ ← CRSGen(gk); (vk, sk) ← KeyGen(ρ);
(m,R) ← A(ρ, vk, sk);σ ← Signρ,sk(m;R) :
Verifyρ,R(m,σ) = 1 or vk /∈ R

⎤

⎦ = 1

Definition 7 (Computational Unforgeability). A ring signature scheme
(CRSGen,KeyGen,Sign,Verify) is unforgeable if it is infeasible to forge a ring
signature on a message without controlling one of the members in the ring. For-
mally, it is unforgeable when for all PPT adversaries A we have that

Pr
[

gk ← Gen(1λ); ρ ← CRSGen(gk); (m,R, σ) ← AVKGen,Sign,Corrupt(ρ) :
Verifyρ,R(m,σ) = 1

]

is negligible in λ, where

– VKGen on query number i selects randomness wi, computes (vki, ski) :=
KeyGen(ρ;wi) and returns vki.

– Sign(i,m,R) returns σ ← Signρ,ski
(m,R), provided (vki, ski) has been gener-

ated by VKGen and vki ∈ R.
– Corrupt(i) returns ski provided (vki, ski) has been generated by VKGen. (The

fact that wi is not revealed allows the erasure of the random coins used in the
generation of (vki, ski)).

– A outputs (m,R, σ) such that Sign has not been queried with (∗,m,R) and R
only contains keys vki generated by VKGen where i has not been corrupted.

Definition 8 (Perfect Anonymity). A ring signature scheme (CRSGen,
KeyGen,Sign,Verify) has perfect anonymity, if a signature on a message m under
a ring R and key vki0 looks exactly the same as a signature on the message m
under the ring R and key vki1 , where vki0 , vki1 ∈ R. This means that the signer’s
key is hidden among all the honestly generated keys in the ring. Formally, we
require that for any unbounded adversary A:

Pr

⎡

⎣
gk ← Gen(1λ); ρ ← CRSGen(gk);

(m, i0, i1, R) ← AKeyGen(ρ)(ρ); σ ← Signρ,ski0
(m, R) :

A(σ) = 1

⎤

⎦ =

Pr

⎡

⎣
gk ← Gen(1λ); ρ ← CRSGen(gk);

(m, i0, i1, R) ← AKeyGen(ρ)(ρ); σ ← Signρ,ski1
(m, R) :

A(σ) = 1

⎤

⎦

where A chooses i0, i1 such that (vki0 , ski0), (vki1 , ski1) have been generated by
the oracle KeyGen(ρ).

2.3 Groth-Sahai Proofs in the SXDH Instantiation

The Groth Sahai (GS) proof system is a non-interactive witness indistinguish-
able proof system (and in some cases also zero-knowledge) for the language of
quadratic equations over a bilinear group. The admissible equation types must
be in the following form:

my∑

j=1

f(αj , yj) +
mx∑

i=1

f(xi, βi) +
mx∑

i=1

my∑

j=1

f(xi, γi,jyj) = t, (1)
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where α ∈ A
my

1 , β ∈ Amx
2 , Γ = (γi,j) ∈ Z

mx×my
q , t ∈ AT , and A1, A2, AT ∈

{Zq,G1,G2,GT } are equipped with some bilinear map f : A1 × A2 → AT .
The GS proof system is a commit-and-prove proof system, that is, the prover

first commits to solutions of Eq. (1) using the GS commitments, and then com-
putes a proof that the committed values satisfies Eq. (1).

GS proofs are perfectly sound when the CRS is sampled from the perfectly
binding distribution, and perfectly witness-indistinguishable when sampled from
the perfectly hiding distribution. Computational indistinguishability of both dis-
tributions implies either perfect soundness and computational witness indistin-
guishability or computational soundness and perfect witness-indistinguishability.

Further, Belenky et al. noted that Groth-Sahai proofs can be re-randomized
[1]. This means that, given commitments and proofs showing the satisfiability of
some equation, on can compute new proofs which looks exactly as fresh proofs
(i.e. computed with fresh randomness) for the same equation, even without know-
ing the commitment openings nor the randomness. In this work compute such
proofs for integer equations β(β − 1) = 0 and βx = y.

2.4 Groth-Sahai Commitments

Following Groth and Sahai’s work [21], in asymmetric groups and using the
SXDH assumption, GS commitments are vectors in G

2
γ , γ ∈ {1, 2}, the form

GS.Comckγ ([x]γ ; r) :=

(
[0]γ
[x]γ

)

+ rγ

[

u1 −
(

0
1

)]

γ

+ r2[u2]γ

GS.Comckγ (x; r) := x[u1]γ + r[u2]γ

where ckγ := [u1|u2]γ , and u2 are sampled from the same distribution as A, the
matrix from Definition 4. The GS reference string is formed by the commitment
keys ck1, ck2 and u1 := wu2+e2 in the perfectly binding setting, and u1 := wu2

in the perfectly hiding setting, for w ← Zq.
We define commitments to row vectors as the horizontal concatenation of

commitments to each of the coordinates. That is, for x ∈ Z
m
q and r ∈ Z

m
q

GS.Comckγ
(x�; r�) := [u1]γx� + [u2]γr� ∈ G

2×m
γ .

Given a Groth-Sahai commitment [c]γ , we will say that [c′]γ is a re-
randomization of [c]γ if [c′]γ = [c]γ + GS.Comcks

(0; δ), for δ ← Zq.

2.5 Boneh-Boyen Signatures

Boneh and Boyen introduced a short signature—each signature consists of only
one group element—which is secure against existential forgery under weak cho-
sen message attacks without random oracles [3]. The verification of the validity
of any signature-message pair can be written as a set of pairing product equa-
tions. Thereby, using Groth-Sahai proofs one can show the possession of a valid
signature without revealing the actual signature.
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We construct our ring signature using Boneh-Boyen signatures, but we could
replace the Boneh-Boyen signature scheme with any structure preserving sig-
nature scheme secure under milder assumptions (e.g. [22]). We rather keep it
simple and stick to Boneh-Boyen signature which, since the verification key is
just one group element, simplifies the notation and reduces the size of the final
signature.

Definition 9 (weak Existential Unforgeability (wUF-CMA)). We say
that a signature scheme Σ = (KGen,Sign,Ver) is wUF-CMA if for any PPT
adversary A

Pr

⎡

⎣
gk ← Gena(1λ), (m1, . . . ,mqsig) ← A(gk), (sk, vk) ← KGen(1λ),
(m,σ) ← A(Signsk(m1), . . . ,Signsk(mqsig)) :
Vervk(m,σ) = 1 and m /∈ {m1, . . . ,mqsig}

⎤

⎦

is negligible in λ.

The Boneh-Boyen signature described bellow is wUF-CMA under the m-
strong Diffie-Hellman assumption.

BB.KeyGen: Given a group key gk, pick x ← Zq. The secret/public key pair is
defined as (sk, vk) := (x, [x]3−s).

BB.Sign: Given a secret key sk ∈ Zq and a message m ∈ Zq, output the signature

[σ]s :=
[

1
x+m

]

s
. In the unlikely case that x + m = 0 we let [σ]s := [0]s.

BB.Ver: On input the verification key [vk]3−s, a message m ∈ Zq, and a signature
[σ]s, verify that [m + x]3−s[σ]s = [1]T .

It is direct to prove knowledge of a Boneh-Boyen signature for some mes-
sage m under some committed verification key with a Groth-Sahai proof for
the verification equation. In our SXDH based ring signature we need to prove
a slightly different statement. Since we have a commitment to the secret key
[c]2 = Comck2(x; s) = x[w1]2 + s[w2]2 we need to show that

e([σ]1,m[w1]2 + [c]2) − [w1]T = e([s̃]1, [w2]2), (2)

for some [s̃]1 ∈ G1.

2.6 Chandran et al.’s Set-Membership Proof

The core of Chandran et al.’s ring signature is a set-membership proof of size
Θ(

√
n) for a set S ⊂ Gγ , γ ∈ {1, 2}, of size n. Assume that S = {[s1]γ , . . . , [sn]γ}.

The proof arranges elements of the set in a matrix of size m×m, where m :=
√

n,

[S]γ :=

(
[s1,1]γ ··· [s1,m]γ

...
. . .

...
[sm,1]γ ··· [sm,m]γ ,

)

where si,j := s(i−1)m+j for 1 ≤ i, j ≤ m.

Let [sα]γ the element for which the prover wants to show that [sα]γ ∈ S and
let iα, jα such that sα = siα,jα

. The prover selects the jα th column of [S]γ and
then the iα th element of that column. To do so, the prover commits to
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1. b1, . . . , bm ∈ {0, 1} such that bj = 1 iff j = jα,
2. b′

1, . . . , b
′
m ∈ {0, 1} such that b′

i = 1 iff i = iα,
3. [κ1]γ := [s1,jα

]γ , . . . , [κm]γ := [sm,jα
]γ .

Using Groth-Sahai proofs, the prover proves that

i. b1(b1 − 1) = 0, . . . , bm(bm − 1) = 0, b′
1(b

′
m − 1) = 0, . . . , b′

m(b′
m − 1) = 0,

ii.
∑m

i=1 bi = 1 and
∑m

i=1 b′
i = 1,

iii. [κ1]γ =
∑m

j=1 bj [s1,j ]γ , . . . , [κm]γ =
∑m

j=1 bj [sm,j ]γ ,
iv. [sα]γ =

∑m
i=1 b′

i[κi]γ .

Equations i and ii prove that (b1, . . . , bm) and (b′
1, . . . , b

′
m) are unitary vectors,

equation iii proves that ([κ1]γ , . . . , [κm]γ)� is a column of [S]γ , and equation iv
proves that [sα]γ is an element of ([κ1]γ , . . . , [κm]γ).

In our SXDH based ring signature we need this set-membership to show that
some vector [s]γ is the re-randomization of one of the elements of the set of
commitments S = {[s]γ , . . . , [sn]γ} ⊆ G

2
γ . That is, there exists some δ ∈ Zq such

that [s]γ −GS.Comckγ
(0; δ) ∈ S. The proof remains the same but now the prover

computes re-randomizations

3’. [κ1]γ := [s1,jα
]γ + GS.Comckγ

(0; δ1), . . . , [κm]γ := [sm,jα
]γ + GS.Comckγ

(0; δm),

and Groth-Sahai proofs that

iii’. [κ1]γ − ∑m
j=1 bj [s1,j ]γ = GS.Comckγ

(0; δ1), . . . , [κm]γ − ∑m
j=1 bj [sm,j ]γ =

GS.Comckγ
(0; δm),

iv’. [s]γ − ∑m
i=1 b′

i[κi]γ = GS.Comckγ
(0; δ − δiα

).

2.7 Hash Functions

We recall the definition of a hash function plus a weaker notion where the
adversary needs to find a second preimage (see [29]). We consider a function
h : K × M → Y and an algorithm KGen which on input a group key randomly
samples an element from K.

Definition 10 (Collision Resistance). We say that h is a hash-function fam-
ily with collision resistance if for all PPT adversary A

AdvCol
h (A) := Pr[k ← KGen(1λ), (x, x′) ← A(k) : x �= x′ and hk(x) = hk(x′)]

is negligible in λ.

We use a weaker variant of collision resistance for our hash function based
on the PPA assumption.

Definition 11 (Second-Preimage Resistance). We say that h is a hash-
function family with always second-preimage resistance if for all PPT adver-
sary A

AdvSec
h (A) := Pr

[
k ← KGen(gk), x ← M, x′ ← A(k, x) :

x �= x′ and hk(x) = hk(x′)

]

is negligible in λ.
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3 Our Construction in the PPA Setting

The high level description of our PPA based ring signature was already given in
Sect. 1.3. Next we proceed to formally define the hash functions h and g a then
we give the formal description and security proof of the protocol.

3.1 The Hash Functions h and g

We instantiate Definition 10 with the function g and 11 with h defined as follows.
For h, M = Qm, Y = G

2
1, KGen = Gena, and

h(A) :=
∑

([a]1,[a]2)∈A

[a]1, where

Qm := {A ∈ Z
2×m
q : A = (a1| · · · |am) and ai = (ai,1, ai,2)� s.t. ai,2 = a2

i,1} and

Qm = {A : ∃A ∈ Qm s.t. A′ = ∪m
i=1([ai]1, [ai]2)}.

It might seem odd to define Qm as sets of vectors in both groups while h only
require elements in one group. However, this will be crucial in the security proof
of our ring signature, where we need to compute [vka]2, for some vk ∈ Zq,
without knowledge of a. For simplicity, we may just write h(A) for A ⊆ G

2
1

(which is still well defined).
Given a second preimage h, it is trivial to construct an adversary break-

ing the m-PPA assumption. Indeed, Let [A]1, [A]2 the challenge of the m-PPA
assumption and let A the set of columns of [A]1 and [A]2, which is clearly uni-
formly distributed in Qm. Then given any A′ ∈ Qm such that A′ �= A and
h(A) = h(A′), it holds that [A′]1, the matrix whose columns are the first com-
ponents of the elements of A′, is not a permutation of [A]1 and hence breaks
m-PPA assumption. Then for any adversary A there is an adversary B such that
AdvaPreg (A) = Advm-PPA(B).

In the case of g, M = G
m
2 , Y = G

2
2, and KGenglobal picks a group description

gk ← Gena(1λ), while KGenlocal picks [a]1 ∈ G
2×m
1 , where a ← Q1, and the

function is defined as
g[A]1([x]2) := [Ax]2.

Although not efficiently computable, one can efficiently check if g[A]1([x]2) =
g[A]1([x

′]2) using the pairing operation. Further, in our scheme we will publish
values of the form [aixi]2 which will render g efficiently computable.

Given a collision [x]2, [x′]2 for g, then ([x]2 − [x]′2) �= [0] is in the kernel of
[A]1. Therefore, is trivial to prove that for any adversary A against static collision
resistance there is an adversary B such that AdvColg (A) = AdvQ�

m-SKerMDH(B),
whenever A ← Qm.

We note that given A ∈ Qm, [A]1 ∈ G
2×m
1 , [x]2 ∈ G

m
2 , [y]1 ∈ G

2
2 and [y′]1 ∈

G
1
2 one can express the statements A ∈ Qm, g[A]1([x]2) = [y]2, and h(A) = [y′]1

as (3), (4), and (5), respectively.

e([a1]1, [1]2) = e([1]1, [b1]2) and
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e([a2]1, [1]2) = e([a1]1, [b1]2) for each ([a]1, [b]2) ∈ A (3)
m∑

j=1

e([ai,j ]1, [xi]1) = e([1]1, [yi]2) for each i ∈ {1, 2} (4)

∑

([a]1,[a]2)∈A

[ai]1 = [y′
i]1 for each i ∈ {1, 2}. (5)

Hence, one can compute Groth-Sahai proofs of size Θ(m), Θ(1), and Θ(1), respec-
tively, for the satisfiability of each statement.

Finally, we prove a simple lemma that relates both functions.

Lemma 1. Let A ← Qm, A′ ∈ Qm, [x]2, [x′]2 ∈ G
m
2 , and [A]1, [A′]1 the matri-

ces whose columns are the first component of the elements of A and A′, respec-
tively. Then h(A) = h(A′) and g[A]1([x]2) = g[A′]1([x

′]2) implies that A′ is
a second preimage of h(A) or there exists a permutation matrix P such that
g[A]1([x]2) = g[A]1([Px′]2).

Proof. If A �= A′, then A′ is a second preimage of h(A). Else, there is a permu-
tation matrix P such that [A′]1 = [AP]1. Then

g[A]1([x]2) = g[A′]1([x
′]2) ⇐⇒ g[A]1([x]2) = g[AP]1([x

′]2) = g[A]1([Px′]2).

3.2 Our Ring Signature

In the following let n := |R|,m := 3
√

n, and for 1 ≤ α ≤ n define 1 ≤ μ ≤ n2/3

and 1 ≤ ν ≤ m such that α = (μ − 1)m + ν. For a sequence {s}1≤i≤n we define
sμ,ν := s(μ−1)m+ν . Consider OT = (OT.KeyGen,OT.Sign,OT.Ver) a one-time
signature scheme.

CRSGen(gk): Pick a perfectly hiding CRS for the Groth-Sahai proof system crsGS
and define (ck1, ck2) := crsGS. Note that crsGS can be also used for the Θ(

√
n)

set-membership of Chandran et al. The CRS is ρ := (gk, crsGS).
KeyGen(ρ): Pick a ← Q and (sk, [vk]2) ← BB.KeyGen(gk), compute [a]1, [a]2

and then erase a (but if not erased we prove security under the (�,m)-
PPA). The secret key is sk and the extended verification key is ṽk :=
([vk]2, [a]1, [a]2,a[vk]2).

Signρ,sk(m,R): Let α the index of the signer with respect to R.
1. Compute (skot, vkot) ← OT.KeyGen(gk) and σot ← OT.Signskot

(m,R).
2. Compute [c]2 := GS.Comck2([vkα]2; r), r ← Z

2
q, [σ]1 ← BB.Signskα

(vkot),
[d]1 := GS.Comck1([σ]1; s), s ← Z

2
q, and a GS proof πBB that BB.Ver[vk]2(

[σ]1, vkot) = 1.
3. For 1 ≤ i ≤ n2/3, let [κi]2 = ([vki,1]2, . . . , [vki,m]2)�, Ai =

{([ai,1]1, [ai,1]2), . . . , ([ai,m]1, [ai,m]2)}, and [Ai]1 := [ai,1| · · · |ai,m]1.
Define the sets H = {h(A1), . . . , h(An2/3)} and G = {g[A1]1([κ1]2) . . . ,
g[A

n2/3 ]1([κn2/3 ]2)}.
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4. Let [x]1 := h(Aμ) and [y]2 = g[Aμ]1([κμ]2). Compute GS commitments
to [x]1 and [y]2 and compute proofs πG and πH that they belong to
G and H, respectively. It is also proven that they appear in the same
positions reusing the commitments to b1, . . . , bm and b′

1, . . . , b
′
m, used in

the set-membership proof of Chandran et al., which define [x]1’s and [y]2’s
position in H and G respectively.

5. Let [κ′]2 := ([vkα]2, [vkμ,1]2, . . . , [vkα−1]2, [vkα+1]2, . . . , [vkμ,m]2)� ∈
G

m
2 , [A′]1 := [aα|aμ,1| · · · |aα−1|aα+1| · · · |aμ,m]1 ∈ G

2×m
1 and A′ =

{([aμ,1]1, [aμ,1]2), . . . , ([aμ,1]1, [aμ,1]2)}. Compute GS commitments to all
but the first element of [κ′]2 (note that [c]2 is a commitment to the first
element of [κ′]2). Compute also a GS proof πg that g[A′]1([κ

′]2) = [y]2, a
GS proof πh that h(A′) = [x]1, and a GS proof πQm

that A′ ∈ Qm.
6. Return the signature σ := (vkot, σot, [c]2, [d]1, πBB, πG, πH , πg, πh, πQm

).
(GS proofs include commitments to variables).

Verifyρ,R(m,σ): Verify the validity of the one-time signature and of all the
proofs. Return 0 if any of these checks fails and 1 otherwise.

We prove the following theorem which states the security of our construction.

Theorem 1. The scheme presented in this section is a ring signature scheme
with perfect correctness, perfect anonymity and computational unforgeability
under the Qgen-permutation pairing assumption, the Q�

Qgen
-SKerMDH assump-

tion, the SXDH assumption, and the assumption that the one-time signa-
ture and the Boneh-Boyen signature are unforgeable. Concretely, for any PPT
adversary A against the unforgeability of the scheme, there exist adversaries
B1,B2,B3,B4,B5 such that

Adv(A) ≤ AdvSXDH(B1) + AdvQgen-PPA(B2) + AdvQ�
Qgen

-SKerMDH(B3)

+ Qgen(QsignAdvOT(B4) + AdvBB(B5)),

where Qgen and Qsign are, respectively, upper bounds for the number of queries
that A makes to its VKGen and Sign oracles.

Proof. Perfect correctness follows directly from the definitions. Perfect
anonymity follows from the fact that the perfectly hiding Groth-Sahai CRS
defines perfectly hiding commitments and perfect witness-indistinguishable
proofs, information theoretically hiding any information about ṽk.

We say that an unforgeability adversary is “eager” if makes all its queries to
the VKGen oracle at the beginning. Note that any non-eager adversary A′ can
be perfectly simulated by an eager adversary that makes Qgen queries to VKGen
and answers A′ queries to VKGen “on demand”. This is justified by the fact that
the output of VKGen is independent of all previous outputs.

W.l.o.g. we assume that A is an eager adversary. Computational unforgeabil-
ity follows from the indistinguishability of the following games

Game0: This is the real unforgeability experiment. Game0 returns 1 if the adver-
sary A produces a valid forgery and 0 if not.
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Game1: This is game exactly as Game0 with the following differences:
• The Groth-Sahai CRS is sampled together with its discrete logarithms

from the perfectly binding distribution. Note that the discrete loga-
rithms of the CRS allow to open the Groth-Sahai commitments.

• At the beginning, variables err2 and err3 are initialized to 0 and a
random index i∗ is chosen from {1, . . . , Qgen}.

• On a query to Corrupt with argument i, if i = i∗ set err3 ← 1 and
proceed as in Game0.

• Let (m,R, σ) the purported forgery output by A. If [vk]2, the opening
of commitment [cμ,ν ]2 from σ, is not equal to [vki∗ ]2, set err3 ← 1. If
[vk]2 /∈ R, then set err2 = 1.

Game2: This is game exactly as Game1 except that, if err2 is set to 1, Game2
aborts.

Game3: This is game exactly as Game2 except that, if err3 is set to 1, Game3
aborts.

Since in Game1 variables err2 and err3 are just dummy variables, the only differ-
ence with Game0 comes from the Groth-Sahai CRS distribution. It follows that
there is an adversary B1 against SXDH such that |Pr[Game0 = 1]−Pr[Game1 =
1]| ≤ AdvSXDH(B1).

Lemma 2. There exist adversaries B2 and B3 against the Qgen-permutation
pairing assumption and against the Q�

Qgen
-KerMDH assumption, respectively,

such that

|Pr[Game2 = 1] − Pr[Game1 = 1]| ≤ AdvQgen-PPA(B2) + AdvQ�
Qgen

-SKerMDH(B3).

Proof. Note that

Pr[Game1 = 1] = Pr[Game1 = 1|err2 = 0]Pr[err2 = 0]
+ Pr[Game1 = 1|err2 = 1]Pr[err2 = 1]

≤ Pr[Game2 = 1] + Pr[Game1 = 1|err2 = 0]
=⇒ |Pr[Game2 = 1] − Pr[Game1 = 1]| ≤ Pr[Game1 = 1|err2 = 1].

We proceed to bound this last probability constructing two adversaries against
collision resistance of g and preimage resistance of h. Let 1 ≤ μ ≤ n2/3 the index
defined in πG and πS .

Consider an adversary Ah that finds a second preimage of h when M = QQgen .
Ah receives as challenge B ∈ QQgen and honestly simulates Game1 with the
following exception. On the i th query of A to VKGen picks (sk, [vk]) ←
BB.KeyGen(1λ) and sets (ski, ṽki) := (sk, ([vk]2, [bi]1, [bi]2, sk[bi]2)), where
([bi]1, [bi]2) is the i th element of B. When A corrupts the i th party, it
returns ski but it might also request ai to its oracle if we are proving secu-
rity under the (�,m)-PPA assumption. When A outputs and πQm

, Ah extracts
A′ = {([a′

1]1, [a
′
1]2), . . . , ([a

′
m]1, [a′

m]2} and returns A′ ∪Āμ, where Āμ := B \Aμ.
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Consider another adversary Ag against the collision resistance of g when
M = G

Qgen . B receives as challenge [B]1 ∈ G
2×Qgen

1 and [B]2 ∈ G
2×Qgen

2 and
honestly simulates Game1 embedding [B]1, [B]2 in the user keys in the same
way as Ah. When A outputs [c]2,GS.Comck2([κ

′
2]2), . . . ,GS.Comck2([κ

′
m]2), Ag

extracts [vk], [κ′
2], . . . , [κ

′
m]. W.l.o.g. assume that B = Aμ|Āμ, where Āμ is some

matrix whose rows are the discrete logs of the elements of Āμ. Ag attempts to
extract a permutation matrix P such that [A′]1 = [Aμ]1P. If there is no such

permutation matrix, then Ag aborts. Else, Ag returns
(

[κμ]2
[0]2

)

,

(
P[κ′]2
[0]2

)

∈
G

Qgen

2 , where [κ′
1] is the opening of [c].

Perfect soundness of proof πg (recall that the Groth-Sahai CRS is perfectly
binding) implies that

g[A′]1([κ
′]2) = [y]2.

Perfect soundness of proof πg and πQm
implies that

h(A′) = [x]1 and A′ ∈ Qm.

Given perfect soundness of proofs πG, πH , it holds that

g[A′]1([κ
′]2) = g[Aμ]1([κμ]2)

h(A′) = h(Aμ).

By Lemma 1 we get that either A′ �= Aμ is a second preimage for h(Aμ), thus
A′ ∪ Āμ �= B and Ah is successful, or there exists a permutation matrix P, which
is the one that Ag searches, such that g[Aμ]1(P[κ′]2) = g[Aμ]1([κμ]2). err2 = 1
implies that [vk]2 = [κ′

1]2 �= [κμ,i]2, for all 1 ≤ i ≤ m, and thus P[κ′]2 �= [κμ]2
and, since [B]1 = [Aμ|Āμ]1,

g[Aμ]1(P[κ′]2) = g[B]1

(
P[κ′]2
[0]2

)

= g[Aμ]1([κμ]2) = g[B]1

(
[κμ]2
[0]2

)

and Ag is successful.
As stated in Sect. 2.7, from Ah we can construct an adversary B2 that breaks

the Qgen-PPA assumption and from Ag we can construct an adversary B3 that
breaks the Q�

m-SKerMDH assumption, with the same advantages. We conclude
that

Pr[Game1 = 1|err2 = 1] ≤AdvQgen-PPA(B2) + AdvQ�
Qgen

-SKerMDH(B3)

Lemma 3.
Pr[Game3 = 1] ≥ 1

Qgen
Pr[Game2 = 1].

Proof. It holds that

Pr[Game3 = 1] = Pr[Game3 = 1|err3 = 0]Pr[err3 = 0]
= Pr[Game2 = 1|err3 = 0]Pr[err3 = 0]
= Pr[err3 = 0|Game2 = 1]Pr[Game2 = 1].
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The probability that err3 = 0 given Game2 = 1 is the probability that the
Qcor calls to Corrupt do not abort and that [vk]2 = [vki∗ ]2. Since A is an eager
adversary, at the i th call to Corrupt the index i∗ is uniformly distributed over the
Qgen−i+1 indices of uncorrupted users. Similarly, when A outputs its purported
forgery, the probability that [vk]2 = [vki∗ ]2 is 1/(Qgen − Qcor), since [vk]2 ∈ R
(or otherwise Game2 would have aborted). Therefore

Pr[err2 = 1|Game2 = 1] =
Qgen − 1

Qgen

Qgen − 2

Qgen − 1
. . .

Qgen − Qcor

Qgen − Qcor + 1

1

Qgen − Qcor
=

1

Qgen
.

Lemma 4. There exist adversaries B4 and B5 against the unforgeability of the
one-time signature scheme and the weak unforgeability of the Boneh-Boyen sig-
nature scheme such that

Pr[Game3 = 1] ≤ QsigAdvOT(B4) + AdvBB(B5)

Proof. We construct adversaries B4 and B5 as follows.
B4 receives vk†

ot and simulates Game3 honestly but with the following dif-
ferences. It chooses a random j∗ ∈ {1, . . . , Qsig} and answer the j∗ th query to
Sign(i,m†, R†) honestly but computing σ†

ot querying on (m†, R†) its oracle and
setting vk†

ot as the corresponding one-time verification key. Finally, when A out-
puts its purported forgery (m,R, (σot, vkot, . . .)), B4 outputs the corresponding
one-time signature.

B5 receives [vk]2 and simulates Game3 honestly but with the following dif-
ferences. Let i := 0. B5 computes (ski

ot, vki
ot) ← OT.KeyGen(gk), for each

1 ≤ i ≤ Qsig and queries its signing oracle on (vk1
ot, . . . , vk

Qsig

ot ) obtaining
[σ1]1, . . . , [σQsig ]1. On the i∗ th query of A to the key generation algorithm, B5

picks a ← Q and outputs ṽk := ([vk]2, [a]1, [a]2,a[vk]2). When A queries the
signing oracle on input (i∗,m,R), B5 computes an honest signature but replaces
vkot with vki

ot and [σ]1 with [σi]2, and then adds 1 to i. Finally, when A outputs
its purported forgery (m,R, (σot, vkot, [c]2, [d]1, . . .)), it extracts [σ]1 from [d]1 as
its forgery for vkot.

Let E be the event where vkot, from the purported forgery of A, has been
previously output by Sign. We have that

Pr[Game3 = 1] ≤ Pr[Game3 = 1|E] + Pr[Game3 = 1|¬E].

Since (m,R) has never been signed by a one-time signature and that, conditioned
on E, the probability of vkot = vk†

ot is 1/Qsig, then

QsigAdvOT(B4) ≥ Pr[Game3 = 1|E]

Finally, if ¬E holds, then [σ] is a forgery for vkot and thus

AdvBB(B5) ≥ Pr[Game3 = 1|¬E]
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4 Our Construction in the SXDH Setting

Our construction follow the high-level description depicted in Sect. 1.3 with the
only difference that we do not use the verification key of the Boneh-Boyen signa-
ture vk, but a commitment to the secret key x. The only reason is efficiency since
in this way we use Groth-Sahai proofs for integer equations instead of equations
involving group elements.

For β ∈ {0, 1}m we define h(β) :=
∑m

i=1 βi and gβ (x) :=
∑m

i=1 βixi. Unlike
the PPA-based construction, we do not prove collision resistance of h or g (g is
not collision resistant). Instead, these functions are only used as shorthand and
to keep an intuitive link with the PPA-based construction.

In the high level description of our ring signature in the SXDH setting from
Sect. 1.3 it was left to show how to derive a proof that gβ ′(x′) = gβμ

(xμ), which
is described in following section.

4.1 NIZK Proof that gβ ′(x′) = gβ(x)

Let [U]1 and [W]2 Groth-Sahai commitment keys. Consider [ai]1 = Com(βi; ri),
[ci]2 = Com[W]2(xi; s), and [di] = Com[U]1(yi; t), where yi = βixi, β ∈ {0, 1},
r, s, t ∈ Zq, and 1 ≤ i ≤ m. Consider also [g]1, a re-randomization of∑m

i=1[di]1 = Com(gβ (x)), and [A′]1 and [C′]2 permutations of re-randomizations
of [A]1 := ([a1]| · · · |[am]) and [C]2 := ([c1]2| · · · |[cm]2), respectively. We want to
construct a proof that gβ ′(x′) = gβ (x), or equivalently

∑m
i=1 β′

ix
′
i =

∑m
i=1 βixi,

only from the extended verification keys and the random coins used in the re-
randomizations.

Apart from [ai]1, [ci]2, [di]1, the extended verification key contains Groth-
Sahai proofs [ψi]2, [ωi]1 for the equation βixi = yi. Each of these proofs satisfy
the verification equation

[ai]1[c�
i ]2 − [di]1[w�

1 ]2 = [u2]1[ψ�
i ]2 + [ωi]1[w�

2 ]2.

[A′]1, [C′]2 and [g]1 are computed as [A′]1 = [A]1P + [u2]1δ�
a , [C′]2 =

[C]2P + [w2]2δ�
c , and [g]1 =

∑m
i=1[di]1 + [u2]1δg, where P is a permutation

matrix and δa, δc ∈ Z
m
q and δg ∈ Zq. The right side of the verification equation

for equation
∑m

i=1 β′
ix

′
i − y = 0, where y =

∑n
i=1 βixi is the opening of [d′]1 and

β′,x′ are the openings of [A′]1 and [C′]2 respectively, is equal to

[A′]1[C′�]2 − [d′]1[w�
1 ]2

= [A]1PP�[C�]2 + [A]1Pδc[w�
2 ]2 + [u2]1δ�

a [C′�]2 − [d′]1[w�
2 ]2

=
m∑

i=1

([ai]1[c�
i ]2 − [di]1[w�

1 ]) + [A]1Pδc[w�
2 ]2 + [u2]1(δ�

a [C′�]2 − δg[w�
1 ]2)

= [u2]1

(
m∑

i=1

[ψi]1 + [C′]2δa − δg[w1]2

)�
+

(
m∑

i=1

[ωi]1 + [A]1Pδc

)

[w�
2 ]2.



120 A. González

The last equation indicates that the proof must be the terms multiplying
[u2]1 and [w�

2 ]2 plus randomization terms. That is, for ξ ← Zq

[ψ′]2 =
m∑

i=1

[ψi]1 + [C′]2δa − δg[w1]2 + ξ[w2]2

[ω′]1 =
m∑

i=1

[ωi]1 + [A]1Pδc − ξ[u2]1. (6)

Assuming [d′]1 is correctly computed, the proof is sound because it satisfy
the Groth-Sahai verification equation for

∑m
i=1 β′

ix
′
i − ∑m

i=1 βixi = 0. Further-
more, the proof is uniformly distributed conditioned on satisfying the verification
equation and thus follows exactly the same distribution as a fresh Groth-Sahai
proof.

4.2 Our Ring Signature

In the following let n := |R|,m := 3
√

n, and for 1 ≤ α ≤ n define 1 ≤ μ ≤ n2/3 and
1 ≤ ν ≤ m such that α = (μ−1)m+ν. For a sequence {s}1≤i≤n we define sμ,ν :=
s(μ−1)m+ν . Consider OT = (OT.KeyGen,OT.Sign,OT.Ver) a one-time signature
scheme. We assume that ring descriptions don’t contain repeated elements.

CRSGen(gk): Pick three perfectly hiding CRS for the Groth-Sahai proof sys-
tem ck1, ck2, ck

′
2, where ck1 := [U]1, ck2 := [V]2, ck′

2 := [W]2. We use
ck1, ck2 for the Θ(

√
n) set-membership of Chandran et al. The CRS is

ρ := (gk, ck1, ck2, ck
′
2).

KeyGen(ρ): Pick (x, [x]2) ← BB.KeyGen(gk), compute [a]1 := Com[U]1(β =
0; r), where r ← Zq, plus a Groth-Sahai proof π that β(β − 1) = 0. Compute
also [c]2 = GS.Comck′

2
(x; s), [d]1 := GS.Comck1(y; t), where s, t ← Zq, and a

proof [ψ]2, [ω]1 that βx = y. The secret key is x and the extended verification
key is ṽk := ([x]2, [a]1, [c]2, [d]1, π, [ψ]2, [ω]1).

Signρ,x(m,R): Let α = (μ − 1)m + ν the index of the signer with respect to R.
1. Compute (skot, vkot) ← OT.KeyGen(gk) and σot ← OT.Signskot

(m,R).
2. For 1 ≤ i ≤ n2/3, let [Ai]1 := [ai,1| . . . |ai,m]1, [hi]1 :=

∑m
j=1[ai,j ]1

and [gi]1 :=
∑m

j=1[di,j ]1. Define the sets H = {[h1]2, . . . , [hn2/3 ]2} and
G = {[g1]2 . . . , [gn2/3 ]2}.

3. Let [h]1 := [hμ]+δh[u1]1 and [g]1 = [gμ]1+δg[u2]1, δg, δh ← Zq. Compute
proofs πG and πH that they belong to G and H, respectively. It is also
proven that they appear in the same positions reusing the commitments to
b1, . . . , bm and b′

1, . . . , b
′
m, used in the set-membership proof of Chandran

et al., which define [h]1’s and [g]2’s positions in H and G respectively.
4. Let [C′]2 := [cμ,ν |cμ,1| · · · |cμ,m]2 + [w2]2δ�

c and [A′]1 := [aμ,ν |aμ,1| · · · |
aμ,m]1 + [u2]1δ�

a ∈ G
2×m
1 , where δa, δc ← Z

m
q (the ν-th row is moved

to the front of each matrix). Use [Aμ]1, [C′]2, P the permutation matrix
that swaps the first element with the ν-th element, and [ψμ,i]2, [ωμ,i]1
plus δa, δc, δg to derive πg = ([ψ′]2, [ω′]1), a proof that gβ ′(x′) = gβ (x),
as in Eq. (6).
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5. Compute a proof πh that h(β′) = h(βμ) as the GS proof that
∑m

i=1[a
′
i]1−

[h]1 = δ̃h[u2], where δ̃h =
∑m

i=1 δa,i − δh.
6. Compute a GS proof πbits that β′, the vector of openings of A′, belongs

to {0, 1}m re-randomizing proofs πμ,ν , πμ,1, . . . , πμ,m.
7. Compute [σ]1 ← BB.Signxμ,ν

(vkot), [f ]1 ← GS.Comck1([σ]1), and a GS
proof πBB of satisfiability of Eq. (2) with [cμ,ν ]2 the commitment to the
secret key.

8. Return the signature σ := (vkot, σot, [f ]1, [A′]2, [C′]2, [g]1, [h]1,
πG, πH , πg, πh, πbits, πBB). (GS proofs include commitments to variables).

Verifyρ,R(m,σ): Verify the validity of the one-time signature and of all the
proofs. Return 0 if any of these checks fails and 1 otherwise.

We prove the following theorem which states the security of our construction.

Theorem 2. The scheme presented in this section is a ring signature scheme
with perfect correctness, perfect anonymity and computational unforgeability
under the SXDH assumption, and the assumption that the one-time signature
and the Boneh-Boyen signature are unforgeable. Concretely, for any PPT adver-
sary A against the unforgeability of the scheme, there exist adversaries B1,B2,B3

such that

Adv(A) ≤ (Q2
gen + 1)AdvSXDH(B1) + QgenQsigAdvOT(B2) + QgenAdvBB(B3),

where Qgen and Qsign are, respectively, upper bounds for the number of queries
that A makes to its VKGen and Sign oracles.

Proof. Perfect correctness follows directly from the definitions. Perfect
anonymity follows from the fact that the perfectly hiding Groth-Sahai com-
mitment keys defines perfectly hiding commitments and perfect witness-
indistinguishable proofs, information theoretically hiding any information about
ṽk and x. Further, the re-randomized commitments are random elements G

1
2 or

G
2
2, and hence independent of the original commitments, and the re-randomized

proofs follows the same distribution of the honest proofs and hence, they don’t
reveal any information about ṽk and x.

We say that an unforgeability adversary is “eager” if makes all its queries to
the VKGen oracle at the beginning. Note that any non-eager adversary A′ can
be perfectly simulated by an eager adversary that makes Qgen queries to VKGen
and answers A′ queries to VKGen “on demand”. This is justified by the fact that
the output of VKGen is independent of all previous outputs.

W.l.o.g. we assume that A is an eager adversary. Computational unforgeabil-
ity follows from the indistinguishability of the following games

Game0: This is the real unforgeability experiment. Game0 returns 1 if the adver-
sary A produces a valid forgery and 0 if not.

Game1: This is game exactly as Game0 with the following differences:
• The commitment key ck′

2 is sampled together with its discrete log-
arithms from the perfectly binding distribution. Note that the dis-
crete logarithms of ck′

2 allow to open commitments [ci]2 and [cj ]2 for
i ∈ [Qgen] and j ∈ [m].
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• At the beginning, variables err1, err2, err3 and err4 are initialized to 0
and random index i∗ from {1, . . . , Qgen} is chosen.

• On a query to Corrupt with argument i, if i = i∗ set err3 ← 1.
• Let (m,R, σ) the purported forgery output by A.

∗ If [x]2 /∈ R, then set err1 = 1.
∗ If i∗ �= (m − 1)μ + i for all i ∈ [m], where μ is the index defined

in πG and πH , or there is some j ∈ [m] such that [xi∗ ]2 = [x′
j ]2,

then set err2 ← 1.
∗ If [x′

1]2, the opening of commitment [c′
1]2 from σ, is not equal to

[xi∗ ]2, set err4 ← 1.
Game2: This is game exactly as Game1 except that, if err1 is set to 1, Game2

aborts.
Game2,1: This game is exactly as Game1 except that, if at the onset err1 = 0 or

err2 = 1, Game2,1 aborts.
Game2,2: This game is exactly as Game2,1 except that in the i∗th query to VKGen

commitment [ai∗ ]1 is set to Com[U]1(βi∗ = 1; ri∗), ri∗ ← Zq. Addition-
ally, if err3 is set to 1 abort.

Game2,3: This game is exactly as Game2,2 except that ck1 and ck2 are sampled
from the perfectly binding distribution.

Game3: This is game exactly as Game2 except that, if err3 or err4 are set to 1,
Game3 aborts.

Game4: This is game exactly as Game3 except that, if err3 is set to 1, Game4
aborts.

Since in Game1 variables err1, err2 and err3 are just dummy variables, the only
difference with Game0 comes from ck′

2 distribution. Similarly, the only difference
between Game2,2 and Game2,3 comes from ck1 and ck2 distribution. It follows
that there an adversaries B1,B2 against SXDH such that |Pr[Game0 = 1] −
Pr[Game1 = 1]| ≤ AdvSXDH(B1) and |Pr[Game2,2 = 1] − Pr[Game2,3 = 1]| ≤
AdvSXDH(B2).

Lemma 5.

Pr[Game1 = 1] ≤ Pr[Game2 = 1] + Qgen Pr[Game2,1 = 1]

Proof.

Pr[Game1 = 1] = Pr[Game1 = 1|err1 = 0]Pr[err1 = 0]
+ Pr[Game1 = 1|err1 = 1]Pr[err1 = 1]

≤ Pr[Game2 = 1] + Pr[Game1 = 1|err1 = 1]Pr[err1 = 1]

Now we proceed to bound Pr[Game1 = 1|err1 = 1]Pr[err1 = 1]. It holds that

Pr[Game2,1 = 1] = Pr[Game1 = 1, err1 = 1, err2 = 0]
= Pr[err2 = 0|Game1 = 1, err1 = 1]Pr[Game1 = 1, err1 = 1]

≥ 1
Qgen

Pr[Game1 = 1|err1 = 1]Pr[err1 = 1].
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where the last inequality follows from the fact that err1 = 1 implies that [x′
1]2 /∈ R

and then x′
i �= xμ,k for all k ∈ [m]. Given that all entries of xμ must be different,

there is least one j ∈ [m] such that xμ,j �= x′
k for all k ∈ [m]. Since j∗ is

completely hidden to the adversary, it follows that Pr[err2 = 0|Game1 = 1, err1 =
1] ≥ Pr[j∗ = (m − 1)μ + j] = 1/Qgen.

Lemma 6. Pr[Game2,1 = 1] ≤ Qgen Pr[Game2,2 = 1]

Proof. Since ck1 and ck2 are perfectly hiding there is no information revealed
about β through the extended verification keys or the signatures. Then, it holds
that Pr[Game2,2 = 1] = Pr[err3 = 0|Game2,1 = 1]Pr[Game2,1 = 1] and Pr[err3 =
0|Game2,1 = 1] is the probability that the Qcorr calls to Corrupt do not abort.
Since A is an eager adversary, the probability that i∗ doesn’t hit any of the Qcorr

corrupted users is (Qgen − Qcorr)/Qgen ≥ 1/Qgen and then Pr[Game2,2 = 1] ≥
1/Qgen Pr[Game2,1 = 1].

Lemma 7. Pr[Game2,3 = 1] = 0

Proof. Since ck1, ck2 and ck′
2 are perfectly binding, all Groth-Sahai proofs are

perfectly sound. If πbits and πh are valid proofs, then β′, the opening of [A′], is
a permutation of βμ. Since err1 = 1 and err2 = 0, it holds that xi∗ = xμ,i∗

μ
, for

some i∗μ ∈ [m], and xμ,i∗ �= x′
j for all j. Furthermore, since βi∗ = βμ,i∗

μ
= 1, then

βj∗ = 1 for some unique j∗ ∈ [m].
Finally, equation

∑m
i=1 β′

ix
′
i =

∑m
i=1 βμ,ixμ,i becomes x′

j∗ = xμ,i∗
μ
, and there-

fore can’t be satisfied. We conclude that πbits, πh, and πg can’t be valid proofs
simultaneously and thus Pr[Game2,3 = 1] = 0.

Lemma 8.
Pr[Game2 = 1] ≤ Qgen Pr[Game3 = 1].

Proof. It holds that

Pr[Game3 = 1] = Pr[Game3 = 1|err3 = 0, err4 = 0]Pr[err3 = 0, err4 = 0]
= Pr[Game2 = 1|err3 = 0, err4 = 0]Pr[err3 = 0, err4 = 1]
= Pr[err3 = 0, err4 = 0|Game2 = 1]Pr[Game2 = 1].

The probability that err3 = 0 and err4 = 0 given Game3 = 1 is the probability
that the Qcorr calls to Corrupt do not abort and that [x′

1]2 = [xi∗ ]2. Since A is
an eager adversary, the probability that i∗ doesn’t hit any of the Qcorr corrupted
users is Qgen − Qcorr/Qgen. Similarly, when A outputs its purported forgery, the
probability that [x′

1]2 = [xi∗ ]2 is 1/(Qgen − Qcorr), since [x′
1]2 ∈ R (or otherwise

Game3 would have aborted). Therefore

Pr[err3 = 0, err4 = 0|Game2 = 1] =
Qgen − Qcorr

Qgen

1
Qgen − Qcorr

=
1

Qgen
.

Lemma 9. There exist adversaries B3 and B4 against the unforgeability of the
one-time signature scheme and the weak unforgeability of the Boneh-Boyen sig-
nature scheme such that

Pr[Game3 = 1] ≤ QsigAdvOT(B3) + AdvBB(B4)
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Proof. We construct adversaries B3 and B4 as follows.
B3 receives vk†

ot and simulates Game3 honestly but with the following dif-
ferences. It chooses a random j∗ ∈ {1, . . . , Qsig} and answer the j∗ th query to
Sign(i,m†, R†) honestly but computing σ†

ot querying on (m†, R†) its oracle and
setting vk†

ot as the corresponding one-time verification key. Finally, when A out-
puts its purported forgery (m,R, (σot, vkot, . . .)), B3 outputs the corresponding
one-time signature.

B4 receives [x]2 and simulates Game3 honestly but with the following dif-
ferences. Let i := 0. B4 computes (ski

ot, vki
ot) ← OT.KeyGen(gk), for each

1 ≤ i ≤ Qsig and queries its signing oracle on (vk1
ot, . . . , vk

qsig
ot ) obtaining

[σ1]1, . . . , [σQsig ]1. On the i∗ th query of A to the key generation algorithm, B4

it computes [a]1 := β[u1]1 + r[u2], for β = 0, [c]2 = [x]2w1 + s[w2]2 and
[d]1 = y[u1]1 + t[u2]1 and [ψ]2, [ω]1 as a Groth-Sahai proof for equation βx = y,
for β = y = 0. The proof πbits that β ∈ {0, 1} is honestly computed and A out-
puts vk := ([x]2, [a]1, [c]2, [d]1, [ψ]2, [ω]1, π). When A queries the signing oracle
on input (i∗,m,R), B4 computes an honest signature but replaces vkot with vki

ot

and [σ]1 with [σi]2, and then adds 1 to i. Finally, when A outputs its purported
forgery (m,R, (σot, vkot, [f ]2, [A′]1, . . .)), it extracts [σ]1 from [f ]1 as its forgery
for vkot.

Let E be the event where vkot, from the purported forgery of A, has been
previously output by Sign. We have that

Pr[Game4 = 1] ≤ Pr[Game4 = 1|E] + Pr[Game4 = 1|¬E].

Since (m,R) has never been signed by a one-time signature and that, conditioned
on E, the probability of vkot = vk†

ot is 1/Qsig, then

QsigAdvOT(B4) ≥ Pr[Game4 = 1|E]

Finally, if ¬E holds, then [σ]1 is a forgery for vkot and thus

AdvBB(B4) ≥ Pr[Game4 = 1|¬E].
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25. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 27

26. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6
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Abstract. This paper presents the first attribute-based signature (ABS)
scheme in which the correspondence between signers and signatures is
captured in an arithmetic model of computation. Specifically, we design a
fully secure, i.e., adaptively unforgeable and perfectly signer-private ABS
scheme for signing policies realizable by arithmetic branching programs
(ABP), which are a quite expressive model of arithmetic computations.
On a more positive note, the proposed scheme places no bound on the size
and input length of the supported signing policy ABP’s, and at the same
time, supports the use of an input attribute for an arbitrary number of
times inside a signing policy ABP, i.e., the so called unbounded multi-use
of attributes. The size of our public parameters is constant with respect
to the sizes of the signing attribute vectors and signing policies available
in the system. The construction is built in (asymmetric) bilinear groups
of prime order, and its unforgeability is derived in the standard model
under (asymmetric version of) the well-studied decisional linear (DLIN)
assumption coupled with the existence of standard collision resistant
hash functions. Due to the use of the arithmetic model as opposed to
the boolean one, our ABS scheme not only excels significantly over the
existing state-of-the-art constructions in terms of concrete efficiency, but
also achieves improved applicability in various practical scenarios. Our
principal technical contributions are (a) extending and refining the tech-
niques of Okamoto and Takashima [PKC 2011, PKC 2013], which were
originally developed in the context of boolean span programs, to the
arithmetic setting; and (b) innovating new ideas to allow unbounded
multi-use of attributes inside ABP’s, which themselves are of unbounded
size and input length.
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1 Introduction

Attribute-based signatures (ABS), introduced in the seminal work of Maji et al.
[19], is an ambitious variant of digital signatures that simultaneously enforce fine-
grained control over authentication rights and conceal the identity of signers.
An ABS scheme is associated with a predicate family R = {R(Y, ·) : X →
{0, 1} | Y ∈ Y}, where X is a universe of possible signing attributes and Y is
a collection of admissible signing policies over the attributes of X . A central
authority holds a master signing key and publishes system public parameters.
Using its master signing key, the authority can issue restricted signing keys to
individual signers corresponding to the attributes X ∈ X possessed by them.
Such a constrained signing key associated with some attribute X ∈ X allows
a signer to sign messages under only those signing policies Y ∈ Y which are
satisfied by X, i.e., for which R(Y,X) = 1. The signatures can be verified by
any one using solely the public parameters.

In an ABS scheme, by verifying a signature on some message with respect
to some claimed signing policy, a verifier gets convinced that the signature is
indeed generated by someone holding some attributes satisfying the policy. In
particular, generating a valid signature on any message under any signing policy
is (computationally) infeasible for any group of colluding signers, none of whom
individually possesses a signing attribute that satisfies the signing policy, by
pooling their attributes together. This is the so called unforgeability property of
an ABS scheme. The second property of an ABS scheme, which ensures that given
a signature, it is impossible to trace the exact signer or signing attributes used
to create it, is known as signer privacy. This notion of ABS is sometimes referred
to as a message-policy ABS. Another flavor of this notion that interchanges the
roles of signing attributes and signing policies is called a key-policy ABS. In
addition to being an exciting cryptographic primitive in its own right, ABS has
found countless important practical applications ranging from attribute-based
messaging and attribute-based authentication to anonymous credential systems,
trust negotiations, and leaking secrets (see [19–21,31] for more details). In this
paper, we will deal with the message-policy variant since this variant is more
natural and better suited in most of the aforementioned real-life applications
of ABS.

Since their inception, ABS have been intensively studied in a long sequence
of interesting works, and just like any other access-control primitive, a central
theme of research in those works has been to expand the expressiveness of the
allowable class of signing policies in view of implementing this delicate signature
paradigm in scenarios where the relationship between the signing attributes and
policies is more and more sophisticated. Starting with the early works [10,17–
19,31], which can handle threshold signing policies, the class of admissible signing
policies has been progressively enlarged to boolean formulas or span programs
by Maji et al. [20], Okamoto and Takashima [22,23] as well as El Kaafarani et al.
[5,6], and further to general circuits by Tang et al. [33], Sakai et al. [29], Tsabary
[34], as well as El Kaafarani and Katsumata [7], based on various computational
assumptions on bilinear groups and lattices, as well as in different security models
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such as random oracle model, generic group model, and standard model. Very
recently, Datta et al. [4] and Sakai et al. [30] have constructed ABS schemes which
can even realize Turing machines as signing policies. On the other hand, Bellare
and Fuchsbauer [3] have put forward a versatile signature primitive termed as
policy-based signatures (PBS) and have presented a generic construction of an
ABS scheme from a PBS scheme. This generic construction, when instantiated
with their proposed PBS scheme for general NP languages, results in an ABS
scheme which can realize any NP relation as signing policy.

Two other important parameters determining the quality and applicability of
ABS schemes are (a) supporting signing policies of unbounded polynomial size
and input length, and (b) allowing the use of a signing attribute for a unbounded
polynomial number of times inside a signing policy, i.e., the so called unbounded
multi-use of attributes. Here, the term “unbounded” means not fixed by the
public parameters. Out of the existing ABS schemes mentioned above, the only
schemes which achieves both these parameters simultaneously and are somewhat
practicable are the constructions due to Sakai et al. [29,30]. While Okamoto and
Takashima were able to realize unbounded multi-use of attributes in an updated
version of their ABS scheme [23], namely, [24], their scheme cannot handle signing
policies of unbounded size and input length. On the other hand, the ABS scheme
of Datta et al. [4] features both the above properties, but are based on heavy-
duty cryptographic tools such as indistinguishability obfuscation.

From the above review of the available ABS schemes, it is evident that
research in the field of ABS has already reached the pinnacle in terms of expres-
siveness and unboundedness of the supported signing policies, as well as in terms
of accommodating unbounded multi-use of attributes. Despite of this massive
progress, one significant limitation that still persists in the current state of the
art in this area is that all the existing ABS constructions consider the relation-
ship between the signing attributes and policies only in some boolean model
of computation, i.e., in those schemes the signing attributes are treated as bit
strings and the policies are defined by sets of boolean operations. This raises the
following natural question:

Can we construct an ABS scheme which captures the relationship between the
signing attributes and policies in some arithmetic model of computation, while at
the same time, supports signing policies having unbounded size and input length,
as well as unbounded multi-use of attributes?

In an arithmetic-model-based ABS scheme, signing attributes are considered
to be elements of some finite field Fq, and signing policies are represented by
collections of field operations, i.e., additions and multiplications over the field
Fq. The above question is not only intriguing from a theoretical perspective as
the arithmetic model is a more structured one compared to its boolean coun-
terpart, it is also of a high significance from several practical view points. Most
importantly, since arithmetic computations arise in many real-life scenarios, this
question has a natural motivation when the concrete efficiency of most of the
applications of ABS discussed above is considered. For instance, note that it is
possible to capture any arithmetic relationships between the signing attributes
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and policies by employing the state-of-the-art ABS schemes of Sakai et al. for
general circuits and Turing machines [29,30] by representing an arithmetic com-
putation by an equivalent boolean computation that replaces each field operation
by a corresponding boolean sub-computation. Given the bit representation of the
signing attributes, this approach can be used to simulate any arithmetic relation
with an overhead which depends on the boolean complexity of the field opera-
tions. While providing reasonable asymptotic efficiency in theory (e.g., via fast
integer multiplication techniques [8]), the concrete overhead of this approach is
enormous. Moreover, scenarios may arise where one does not have access to the
bits of the signing attributes and must treat them as atomic field elements. Note
that in view of similar efficiency and applicability issues with boolean compu-
tations, arithmetic variants of various important cryptographic primitives have
already been considered in the last few years. Examples include arithmetic gar-
bled circuits [2], arithmetic multi-party computations [15], verifiable arithmetic
computations [28], and so on. An even more fascinating aspect of the above ques-
tion is to simultaneously support unbounded signing policies and unbounded
multi-use of attributes in the arithmetic setting. These properties are especially
significant for making the scheme resilient to potential usage situations which
may arise after the scheme is setup. It can be readily inferred from the scarcity
of existing ABS schemes supporting unbounded signing policies and unbounded
multi-use of attributes simultaneously, even in the boolean setting, that achiev-
ing both these properties at the same time is a rather challenging task in any
computational model.

Our Contribution

In this paper, we provide an affirmative answer to the above important question.
For the first time in the literature, we design an ABS scheme where the relation-
ship between the signing attributes and policies are considered in an arithmetic
model of computation. More specifically, we construct an ABS scheme in which
signing attributes are represented as elements of a finite field Fq and the sign-
ing policies are expressed as arithmetic branching programs (ABP) [11,12] of
unbounded polynomial size and input length over Fq. While not capable of cap-
turing most general relations like arbitrary circuits or Turing machines, ABP’s
are a quite powerful model for realizing a wide range of relations that arise in
practice, namely, the relations which can be expressed as polynomials over some
finite field. In particular, note that there is a linear-time algorithm that can con-
vert any Boolean formula, Boolean branching program, or arithmetic formula to
an ABP only with a constant blow-up in the representation size. Thus, in terms
of expressiveness of supported signing policies, our ABS scheme subsumes all the
existing ABS schemes except those for general circuits or Turing machines. On a
more positive note, we place no restriction on the number of times an attribute
can be used inside the description of a signing policy ABP.

The proposed scheme enjoys perfect signer privacy and unforgeability against
adversaries which are allowed to make an arbitrary polynomial number of signing
key and signature queries adaptively. Our scheme is built in asymmetric bilinear
groups of prime order, and its unforgeability is derived under the simultaneous
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external decisional linear (SXDLIN) assumption [1], which is the asymmetric ver-
sion of and in fact equivalent to the well-studied decisional linear (DLIN) assump-
tion, coupled with the existence of standard collision resistant hash functions.
Observe that asymmetric bilinear groups of prime order are now considered to
be both faster and more secure in the cryptographic community following the
recent progress of analysing bilinear groups of composite order and symmetric
bilinear groups instantiated with elliptic curves of small characteristics.

While our ABS construction is less expressive compared to the state-of-the-
art schemes of Sakai et al. [29,30], due to the use of the arithmetic model as
opposed to the boolean one, our scheme outperforms those constructions by
a large margin in terms of concrete efficiency. In fact, as we demonstrate in
Table 1 and explain in Remark 3.1, even for a very simple signing policy such
as an equality test over some finite field Fq, where q is a 128-bit prime integer,
our scheme can give more than 136 times better results compared to the one of
[29], which is also built in asymmetric prime-order bilinear group setting under
the symmetric external Diffie-Hellman (SXDH) assumption. Hence, it is evident
that our scheme is a far more advantageous choice in most real-life applications
of ABS, which often do not require the most general forms of signing policies
but do require high performance.

Our ABS construction is developed directly from the scratch. On the techni-
cal side, our contribution is two fold: Firstly, we extend and refine the ABS con-
struction techniques devised by Okamoto and Takashima [22,23] in the context
of boolean formulas to the arithmetic setting. Secondly and more interestingly,
we develop new ideas to support unbounded multi-use of attributes inside arith-
metic signing policies, which themselves can be of an arbitrary size and input
length.

Table 1. Comparison of concrete efficiency for 128-bit prime q

Schemes Computational
assumptions

Signature size Pairings needed
in verification

[29] SXDH At least 4102 |g| At least 4102

Ours SXDLIN 26 |g| 30

The values presented in this table is for the signing policy ABP
f : Fq → Fq defined by f(x1) = x1 − a1, where a1 is a constant
belonging to Fq.
In this table, |g| represents the size of a group element.

Overview of Our Techniques

In order to design our ABS scheme for ABP’s, we start with the high level
approach adopted by Okamoto and Takashima [22,23]. At the top level of strat-
egy, this approach considers an extension of the Naor’s paradigm, which was
originally proposed for converting an identity-based encryption (IBE) scheme
to a digital signature scheme. The idea is to build a message-policy ABS
scheme by augmenting a ciphertext-policy attribute-based encryption (ABE)
scheme [25,35].
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Just like a message-policy ABS scheme, a ciphertext-policy ABE scheme has
an associated predicate family R = {R(Y, ·) : X → {0, 1} | Y ∈ Y}, where X and
Y comprise respectively of the admissible decryption attributes and policies. A
central authority holds a master secret key and publishes public system parame-
ters. Anyone can encrypt a message, which is also referred to as a payload, with
respect to any decryption policy Y ∈ Y using solely the public parameters. A
decrypter may obtain a restricted decryption key from the authority correspond-
ing to the attributes X ∈ X it possesses. Using such a restricted decryption key
for X ∈ X the decrypter can recover the payload from only those ciphertexts
which are generated with respect to a policy Y ∈ Y such that R(Y,X) = 1. In
particular, it is (computationally) infeasible to decrypt a ciphertext generated
with respect to some decryption policy Y ∈ Y for any collection of colluding
decrypters, none of whom individually possesses an attribute that satisfies Y ,
by pooling their attributes together. An ABE ciphertext contains the associated
decryption policy in the clear, and hence this security property of an ABE scheme
is referred to as payload hiding.

Roughly speaking, in the approach of Okamoto and Takashima [22,23], a
signing key for some signing attribute X ∈ X in the ABS scheme corresponds
to a decryption key for X in the underlying ABE scheme. On the other hand,
a signature on some message msg under some claimed signing policy Y ∈ Y is
verified by generating a verification-text that corresponds to a ciphertext of msg
under Y in the underlying ABE scheme. The most challenging part of this app-
roach is that no straightforward counterpart of a signature in ABS exists in ABE,
and moreover, the privacy property of signatures, which is a vital requirement
of an ABS scheme has no corresponding notion in ABE. In order to tackle these
issues, Okamoto and Takashima [22,23] devised a novel technique, which they
termed as “rerandomization with specialized delegation”, where a signature in
the ABS scheme generated with respect to some signing policy Y using a signing
key for some attribute X can be interpreted to be a random ABE decryption key
specialized to decrypt only those ABE ciphertexts which have Y as the associ-
ated decryption policy. As for the security of the resulting ABS scheme, the idea
is to reduce the unforgeability of the ABS scheme to the payload-hiding security
of the underlying ABE scheme. On the other hand, the signer privacy is ensured
by the careful rerandomized delegation procedure employed in the generation of
signatures. While this high level description of the approach may sound quite
simple, the actual realization, however, is quite delicate and involves many sub-
tle aspects. Okamoto and Takashima [22,23] addressed those technical huddles
in the context of boolean span programs by using various additional ideas.

We first explain how we adopt the above high level construction methodology
to the context of ABP’s, which is a rather non-trivial task. In order to design
our scheme, we utilize the machineries of the dual pairing vector spaces (DPVS)
[25,27]. A highly powerful feature of DPVS is that one can completely or partially
hide a linear subspace of the whole vector space by concealing the basis of that
subspace or the basis of its dual subspace respectively from the public parame-
ters. In DPVS-based constructions, a collection of pairs of mutually dual vector
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spaces {Vı, V
∗
ı }ı∈[N ] along with a bilinear pairing e : Vı×V

∗
ı → GT for all ı ∈ [N ],

constructed from a standard bilinear group paramsG = (q, G1, G2, GT , g1, g2, e)
of prime order q is used. Typically, for all ı ∈ [N ], a pair of dual orthonormal
bases (Bı, B

∗
ı ) of (Vı, V

∗
ı ) is generated using a secret random invertible linear

transformation B (ı) over Fq during setup, and portions of (Bı, B
∗
ı ), say (̂Bı, ̂B

∗
ı )

for ı ∈ [N ] is used as the public parameters. Thus, the remaining portions of the
bases (Bı\̂Bı, B

∗
ı \̂B

∗
ı ) for ı ∈ [N ] remain hidden from the outside world. This pro-

vides a strong framework for various kinds of information-theoretic tricks in the
public-key setting by exploiting various nice properties of linear transformations.

In order to extend the techniques of Okamoto and Takashima [22,23] to
the setting of ABP’s, we first look for a representation of ABP’s using some
span program like structure, which supports “linear reconstruction”. The linear
reconstruction property is important for our scheme since we need to reconstruct
some secrets in the exponents of group elements. We observe that Ishai and Wee
[13] have devised a polynomial-time algorithm that given an ABP f , outputs an
arithmetic span program (ASP) S = (U, ρ) such that for any �x ∈ F

n
q , f(�x) =

0 ⇐⇒ S accepts �x. ASP’s are the arithmetic counterpart of boolean span
programs. An ASP S is described as a pair S = (U, ρ), where U is a set of pairs
of vectors U = {(�y(j), �z(j))}j∈[m] ⊂ (F�

q)
2 for some �,m ∈ N and ρ is a mapping

ρ : [m] → [n]. S accepts �x ∈ F
n
q ⇐⇒ �e(�,�) ∈ span〈xρ(j)�y

(j) + �z(j) | j ∈ [m]〉,

where �e(�,�) = (
�−1

︷ ︸︸ ︷

0, . . . , 0, 1) and span refers to the standard linear span of vectors.
With this representation at hand, we proceed to extending the ABS scheme of
Okamoto and Takashima [22,23] to the ABP setting.

The most important difficulty we face here is with the application of the
rerandomization with special delegation technique to generate the signatures
due to a fundamental difference in the structures of the boolean and arithmetic
span programs. Recall that a boolean span program over n boolean variables is
represented as P = (P ∈ F

m×�
q , ρ : [m] → [n]), and P accepts a boolean string

�x ∈ F
n
2 ⇐⇒ �e(�,�) ∈ span〈�p(j) | j ∈ [m] ∧ xρ(j) = 1〉, where �p(j) ∈ F

�
q is the jth

row vector of P . This means while evaluating a boolean span program on some
input, the input only determines which vectors are to be included in the linear
span and does not affect the description of the included vectors as such. Roughly
speaking, in the ABS construction of [22,23], the randomized special delegation
is applied by masking the actual coefficients (Ωj)j∈[m] ∈ F

m
q of the linear span

of the vectors {�p(j)}j∈[m] of a signing policy P = (P ∈ F
m×�
q , ρ) resulting in the

vector �e(�,�) when P accepts some boolean signing attribute string �x ∈ F
n
2 , with

the coefficients (Ω′
j)j∈[m] ∈ F

m
q of some random linear combination of the vectors

{�p(j)}j∈[m] that results in the zero vector �0�. More precisely, while generating
a signature under P = (P , ρ) using a secret key for �x ∈ F

n
2 , one computes

Ωj + Ω′
j for all j ∈ [m]. This rerandomization works for ensuring signer privacy,

i.e., for erasing the information of the specific signing attribute string �x ∈ F
n
2

from the signature for boolean span programs because seeing the rerandomized
coefficients (Ωj +Ω′

j)j∈[m], one cannot decide which Ωj ’s were 0 in the real linear
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span, and hence the information of the actual boolean attribute string �x ∈ F
n
2 is

completely erased via this rerandomization.
This rerandomization technique is, however, no longer sufficient in case of

ASP’s. This is because, while evaluating an ASP S = (U = {(�y(j), �z(j))}j∈[m] ⊂
(F�

q)
2, ρ : [m] → [n]) on some input vector �x ∈ F

n
q , the description of

the vectors, whose linear span needs to be considered, namely, the vectors
{xρ(j)�y

(j) + �z(j)}j∈[m] itself depends on the specific input vector �x ∈ F
n
q used.

Therefore, even if the above randomized masking is applied, the result would
still leak information of the specific vector �x used.

In order to overcome this issue, we apply a more clever rerandomization.
Roughly speaking, we randomize not only the linear-combination-coefficients,
but also the input values {xρ(j)}j∈[m]. We consider a random linear combina-
tion of the vectors {�y(j), �z(j)}j∈[m] that leads to the zero vector �0�, i.e., we
compute random ((Ω′

j)j∈[m], (Ω′′
j )j∈[m]) such that

∑

j∈[m]

(Ω′
j�y

(j) + Ω′′
j �z(j)) = �0�.

Then, we use the scalars (Ω′
j)j∈[m] to mask (Ωjxρ(j))j∈[m] and (Ω′′

j )j∈[m] to
mask (Ωj)j∈[m], where (Ωj)j∈[m] are the coefficients of the vectors {xρ(j)�y

(j) +
�z(j)}j∈[m] in the linear combination resulting in �e(�,�). More precisely, while gen-
erating a signature under some ASP S using a signing key for �x ∈ F

n
q , we compute

Ωjxρ(j) + Ω′
j and Ωj + Ω′′

j for all j ∈ [m]. Observe that this rerandomization
not only erases the actual values of the linear combination coefficients (Ωj)j∈[m]

but also the information of the actual input �x for which the linear combination
is evaluated.

Now, note that unlike the schemes of [22,23], in which the size and input
length of the supported span programs are bounded by the public parame-
ters, our goal is to support ABP’s, and hence ASP’s by the above discussion,
of unbounded size and input length. For this, we start by extending the tech-
niques called “indexing” and “consistent randomness amplification”, developed
by Okamoto and Takashima in [26] in the context of ABE for boolean span pro-
grams, to our setting of ASP’s. Roughly speaking, in the ABS constructions of
[22,23], once parts of a set of pairs of dual orthonormal bases {̂Bı, ̂B

∗
ı }ı∈[n] are

published as the public parameters, the input length of the signing policy span
programs becomes fixed to n. The proof of adaptive unforgeability of the scheme
follows the so called “dual system encryption” methodology [36], and crucially
makes use of certain information-theoretic arguments. The randomness of the
secret linear transformations {B (ı)}ı∈[n] used to generate the bases {Bı, B

∗
ı }ı∈[n],

whose parts are included in the public parameters, acts as the source of entropy
for those information-theoretic arguments.

In contrast, in the unbounded setting, the input length of the signing pol-
icy span programs are not fixed by the public parameters. In particular, in our
unbounded ABS scheme, the public parameters would only consist of a con-
stant number of pairs of dual orthonormal bases. Thus, the randomness con-
tained in the public parameters (which is just a constant amount with respect
to the length of the input attribute vectors n) is clearly insufficient for the dual
system encryption arguments on adaptive security. To supply the additional
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randomness required for the security reduction, we adopt the indexing tech-
nique of [26], and for all ι ∈ [n], embed two dimensional prefix vectors σι(1, ι)
and μj(ι,−1) within the components corresponding to the ιth attribute in sign-
ing keys and verification-texts respectively, where σι and μj are freshly sampled
random elements of Fq. However, this method of supplying linear-in-n amount of
additional randomness is still not sufficient. This is because, for the application
of the dual system encryption methodology, such randomness introduced by the
indexing technique needs to be expanded to the hidden subspaces of signing keys
and verification-texts, and the distribution of the expanded randomness should
also be adjusted to the conditions imposed on the queries of the adversary in
the unforgeability experiment. To resolve the problem, we attempt to employ
the consistent randomness amplification technique similar to [26].

However, recall that our objective is not limited to only supporting sign-
ing policies of unbounded size and input length. We additionally want to allow
unbounded multi-use of attributes inside the signing policies. As we explain
below, the consistent randomness amplification technique of Okamoto and
Takashima [26] does not suffice for achieving both these goals simultaneously.
Therefore, we need to innovate new technical ideas to accomplish our target.
In terms of technicality, this is the most sophisticated part of this paper. In
fact, the techniques we devise in this segment are pretty much general, and we
strongly believe they will find more applications in various other DPVS-based
construction in the future.

Roughly speaking, the single use restriction in DPVS-based adaptively
secure constructions of attribute-based primitives arise from the use of a cru-
cial information-theoretic lemma, the so called “pairwise independence lemma”
(Lemma 3 in [25]), while employing the dual system encryption paradigm in the
security proofs. This technique requires a one-to-one correspondence between a
pair of a key part and a verification-text or ciphertext part through the map ρ of
the policy span program considered. However, in the multi-use scenario, one key
part corresponds to multiple verification-text or ciphertext parts. Even when a
generalized version of the pairwise independence lemma [25] is used, the max-
imum number of times an attribute can be used inside a policy span program
remains bounded by the public parameters. While some attempts were made
to mitigate the issue in the context of ABE [16,32], those were only partially
successful.

On the other hand, Okamoto and Takashima successfully resolved the multi-
use issue in the context of ABS in an updated version of [23], namely, [24] by
introducing a new technique, which they termed as “one-dimensional localization
of inner product values”. The main idea of this technique is to embed a specific
inner product value for an unbounded (with respect to the public parameters)
number of times in a certain one-dimension of the hidden subspace of a sign-
ing key or verification-text, while erasing all informations of the inner product
value from all the remaining dimensions of the hidden subspace. This technique
is applied in two steps. First a “special linear transformation” step is applied
over the hidden segments of a signing key and a verification-text. This step
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localizes the inner product values in certain one-dimension of the hidden sub-
space. But, some informations of the inner product values still remain in the
other dimensions of the hidden subspace. To completely remove those informa-
tions, random values are “injected” into those dimensions of the hidden sub-
space. This second step is executed via a computational transition based on the
underlying computational assumption, and thus is not problematic to directly
extend to the unbounded setting. However, the first step, i.e., the special linear
transformation step is information theoretic, and crucially relies on the secret
randomness used to generate the public parameters. Since the public parame-
ters only uses a constant amount of secret randomness in the unbounded setting,
such an information-theoretic transition cannot be applied.

The most intuitive way-out to the above issue is to use the indexing and
consistent randomness amplification techniques of [26] to supply the additional
randomness required for the transition just as it is used to resolve similar issues
in extending the dual system encryption proof technique to the unbounded set-
ting. Unfortunately, the consistent randomness amplification technique of [26] is
only capable of computationally simulating the application of a random linear
transformation to the hidden segment of a key component and the corresponding
segment of a verification-text component. Such a random linear transformation
suffices for the application of the pairwise independence lemma to complete a
security proof based on the dual system encryption paradigm. However, the
one-dimensional localization technique requires the application of certain spe-
cific linear transformations over the hidden segments of a signing key and a
verification-text that crucially depend on the associated signing attribute vector
of the signing key being considered.

To resolve this issue, we devise a more sophisticated technique. Very roughly,
we first computationally simulate the effect of random linear transformations
over the hidden subspaces on the verification-text side. This step corresponds to
the transition between the hybrid experiments Hyb0′ and Hyb1 in the proof of
unforgeability of our ABS construction (proof of Theorem 4.2). Next, we com-
putationally amplify the randomness provided by the two-dimensional prefix
vectors to the hidden subspaces on the signing key side. This is the transi-
tion from Hyb2-(χ−1)-9 to Hyb2-χ-1 in the unforgeability proof. After this step,
we computationally alter the random linear transformations to specific ones on
the verification-text side. This step is executed while moving from Hyb2-χ-1 to
Hyb2-χ-2 in the proof of unforgeability. Finally, we computationally adjust the
randomness expanded to the hidden segments on the signing key side to match
the specific linear transformations to be applied on that side. This transformation
is achieved via the transition between Hyb2-χ-2 and Hyb2-χ-3 in our unforgeability
proof. We stress that the above explanation of our highly involved techniques is
merely a bird’s eye-view. For a comprehensive understanding of our techniques
please refer to our detail security proof presented in Sect. 4.
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2 Preliminaries

In this section we present the backgrounds required for the rest of this paper.

2.1 Notations

Let λ ∈ N denotes the security parameter and 1λ be its unary encoding. Let Fq

for any prime q ∈ N denotes the finite field of integers modulo q. For d ∈ N and
c ∈ N ∪ {0} (with c < d), we let [d] = {1, . . . , d} and [c, d] = {c, . . . , d}. For any
set Z, z

U←− Z represents the process of uniformly sampling an element z from
the set Z, and 	Z signifies the size or cardinality of the set Z. For a probabilistic
algorithm P, we denote by Π

R←− P(Θ) the process of sampling Π from the
output distribution of P with a uniform random tape on input Θ. Similarly, for
any deterministic algorithm D, we write Π = D(Θ) to denote the output of D on
input Θ. We use the abbreviation PPT to mean probabilistic polynomial-time.
We assume that all the algorithms are given the unary representation 1λ of the
security parameter λ as input, and will not write 1λ explicitly as input of the
algorithms when it is clear from the context. For any finite field Fq and d ∈ N,
let �v denote the (row) vector (v1, . . . , vd) ∈ F

d
q , where vi ∈ Fq for all i ∈ [d].

The all zero vector in F
d
q will be denoted by �0d, while the canonical basis vectors

in F
d
q will be represented by �e(d,i) = (

i−1
︷ ︸︸ ︷

0, . . . , 0, 1,

d−i
︷ ︸︸ ︷

0, . . . , 0) for i ∈ [d]. For any
two vectors �v, �w ∈ F

d
q , �v · �w stands for the inner product of the vectors �v and

�w, i.e., �v · �w =
∑

i∈[d]

viwi ∈ Fq. For any s ∈ N and any collection of s vectors

{�v(i)}i∈[s] ⊂ F
d
q , we denote by span〈�v(i) | i ∈ [s]〉 the subspace of F

d
q spanned

by {�v(i)}i∈[s]. For any multiplicative group G, let v represents a d-dimensional
(row) vector of group elements, i.e., v = (gv1 , . . . , gvd) ∈ G

d for some d ∈ N,
where �v = (v1, . . . , vd) ∈ F

d
q . We use M =

(

mk,i

)

to represent a d × r matrix for
some d, r ∈ N with entries mk,i ∈ Fq. By M� we will signify the transpose of
the matrix M and by det(M ) the determinant of the matrix M . Let GL(d, Fq)
denote the set of all d × d invertible matrices over Fq. A function negl : N → R

+

is said to be negligible if for every c ∈ N, there exists T ∈ N such that for all
λ ∈ N with λ > T , |negl(λ) | < 1/λc.

2.2 Arithmetic Branching Programs and Arithmetic Span
Programs

Here we formally define the notions of arithmetic branching programs (ABP)
and arithmetic span programs (ASP), and explain the connection between them.
These computational models will be used to represent the signing policies in our
ABS construction.
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Definition 2.1 (Arithmetic Branching Programs: ABP [11,12]): A
branching program (BP) Γ is defined by a 5-tuple Γ = (V,E,v0,v1, φ), where
(V,E) is a directed acyclic graph, v0,v1 ∈ V are two special vertices called the
source and the sink respectively, and φ is a labeling function for the edges in
E. An arithmetic branching program (ABP) Γ over a finite field Fq computes
a function f : F

n
q → Fq for some n ∈ N. In this case, the labeling function φ

assigns to each edge in E either a degree one polynomial function in one of the
input variables with coefficients in Fq or a constant in Fq. Let ℘ be the set of
all v0-v1 paths in Γ . The output of the function f computed by the ABP Γ on

some input �x = (x1, . . . , xn) ∈ F
n
q is defined as f(�x) =

∑

P∈℘

[

∏

e∈P

φ(e)|�x
]

, where

for any e ∈ E, φ(e)|�x represents the evaluation of the function φ(e) at �x. We
refer to 	V + 	E as the size of the ABP Γ .

Ishai and Kushilevitz [11,12] showed how to relate the computation performed
by an ABP to the computation of the determinant of a matrix.

Lemma 2.1 ([11]): Given an ABP Γ = (V,E,v0,v1, φ) computing a function
f : F

n
q → Fq, we can efficiently and deterministically compute a function L

mapping an input �x ∈ F
n
q to a (	V −1)× (	V −1) matrix L(�x) over Fq such that

the following holds:

– det(L(�x)) = f(�x).
– Each entry of L(�x) is either a degree one polynomial in a single input variable

xi (i ∈ [n]) with coefficients in Fq or a constant in Fq.
– L(�x) contains only −1’s in the subdiagonal, i.e., the diagonal just below the

main diagonal, and 0’s below the subdiagonal.

Specifically, L is obtained by removing the column corresponding to v0 and the
row corresponding to v1 in the matrix AΓ −I, where AΓ is the adjacency matrix
for Γ and I is the identity matrix of the same size as AΓ .

Note that there is a linear-time algorithm that converts any Boolean formula,
Boolean branching program, or arithmetic formula to an ABP with a constant
blow-up in the representation size. Thus, ABP’s can be viewed as a stronger
computational model than all the others mentioned above.

Definition 2.2 (Arithmetic Span Programs: ASP [13,14]): An arithmetic
span program (ASP) S = (U, ρ) over n variables is a collection of pairs of vectors
U = {(�y(j), �z(j))}j∈[m] for some m ∈ N, where for all j ∈ [m], (�y(j), �z(j)) ∈ (F�

q)
2

for some � ∈ N, and a function ρ : [m] → [n]. We say that �x ∈ F
n
q satisfies S if

and only if �e(�,�) ∈ span〈xρ(j)�y
(j) + �z(j) | j ∈ [m]〉.

The following lemma shows a connection between the two arithmetic com-
putational models defined above.

Lemma 2.2 ([13]): There exists an efficient algorithm that given an ABP Γ =
(V,E,v0,v1, φ) of size m + 1 computing some function f : F

n
q → Fq for some

n,m ∈ N, constructs an ASP S = (U = {(�y(j), �z(j))}j∈[m] ⊂ (F(m+1)
q )2, ρ : [m] →

[n]) such that for all �x ∈ F
n
q , f(�x) = 0 ⇐⇒ S accepts �x.
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Proof: The algorithm starts with constructing a modified ABP Γ ′ for f from
the input ABP Γ , by first replacing each edge e ∈ E with a pair of edges labeled
φ(e) and 1, and then adding an edge labeled 1 connecting the sink in Γ to a
newly created sink node. Clearly, the modified ABP Γ ′ has m+2 vertices, where
every vertex has at most one incoming edge having a label of degree 1. Next, it
applies the transformation of Lemma 2.1 to Γ ′ to obtain the (m + 1) × (m + 1)
matrix representation L of Γ ′. By Lemma 2.1, we clearly have det(L(�x)) = f(�x)
for all �x ∈ F

n
q , and L is of the following form:

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

� � � . . . � � 0
−1 � � . . . � � 0
0 −1 � . . . � � 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 � 0
0 0 0 . . . 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where the �’s indicates polynomial functions of degree at most 1 in some input
variable xi (i ∈ [n]). Also, observe that since each vertex in Γ ′ has at most
one incoming edge having a label of degree one, for all j ∈ [m], each entry of
the jth column of the matrix L depends on one and the same input variable xi

(i ∈ [n]) and hence can be expressed as xi�y
(j) + �z(j) for some pair of vectors

(�y(j), �z(j)) ∈ (F(m+1)
q )2. Further, it is immediate from the structure of L that the

first m columns of L are linearly independent. Now, observe that f(�x) = 0 ⇐⇒
det(L(�x)) = 0 ⇐⇒ �e(m+1,m+1), which is the (m + 1)th column of L, lies in the
linear span of the first m columns of L, i.e., �e(m+1,m+1) ∈ span〈xi�y

(j)+�z(j) | j ∈
[m] ∧ the jth column of L depends on xi (i ∈ [n])〉. The algorithm outputs the
ASP S = (U = {(�y(j), �z(j))}j∈[m] ⊂ (F(m+1)

q )2, ρ : [m] → [n]), where ρ : [m] → [n]
is defined by ρ(j) = i if the jth column of L depends on xi. This ASP S is clearly
the desired one by the above explanation. Hence Lemma 2.2 follows. �


2.3 Bilinear Groups and Dual Pairing Vector Spaces

In this section, we will provide the necessary backgrounds on bilinear groups and
dual pairing vector spaces, which are the primary building blocks of our ABS
construction.

Definition 2.3 (Bilinear Group): A bilinear group paramsG = (q, G1, G2, GT ,
g1, g2, e) is a tuple of a prime q ∈ N; cyclic multiplicative groups G1, G2, GT

of order q each with polynomial-time computable group operations; generators
g1 ∈ G1, g2 ∈ G2; and a polynomial-time computable non-degenerate bilinear
map e : G1 × G2 → GT , i.e., e satisfies the following two properties:

– Bilinearity : e(gΥ
1 , gΥ̂

2 ) = e(g1, g2)Υ Υ̂ for all Υ, Υ̂ ∈ Fq.
– Non-degeneracy : e(g1, g2) �= 1GT

, where 1GT
denotes the identity element of

the group GT .
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A bilinear group is said to be asymmetric if no efficiently computable isomor-
phism exists between G1 and G2. Let Gbpg be an algorithm that on input
the unary encoded security parameter 1λ, outputs a description paramsG =
(q, G1, G2, GT , g1, g2, e) of a bilinear group.

Definition 2.4 (Dual Pairing Vector Spaces: DPVS [25,27]): A dual pair-
ing vector space (DPVS) paramsV = (q, V, V∗, GT , A, A∗, e) formed by the direct
product of a bilinear group paramsG = (q, G1, G2, GT , g1, g2, e) is a tuple of a
prime q ∈ N; d-dimensional vector spaces V = G

d
1, V

∗ = G
d
2 over Fq for some d ∈

N, under vector addition and scalar multiplication defined componentwise in the

usual manner; canonical bases A = {a(i) = (
i−1

︷ ︸︸ ︷

1G1 , . . . , 1G1 , g1,

d−i
︷ ︸︸ ︷

1G1 , . . . , 1G1)}i∈[d]

and A
∗ = {a∗(i) = (

i−1
︷ ︸︸ ︷

1G2 , . . . , 1G2 , g2,

d−i
︷ ︸︸ ︷

1G2 , . . . , 1G2)}i∈[d] of V and V
∗ respectively,

where 1G1 and 1G2 are the identity elements of the groups G1 and G2 respec-
tively; and a pairing e : V×V

∗ → GT defined by e(v,w) =
∏

i∈[d]

e(gvi
1 , gwi

2 ) ∈ GT

for all v = (gv1
1 , . . . , gvd

1 ) ∈ V, w = (gw1
2 , . . . , gwd

2 ) ∈ V
∗. Observe that the newly

defined map e is also non-degenerate bilinear, i.e., e also satisfies the following
two properties:

– Bilinearity : e(Υv, ̂Υw) = e(v,w)Υ Υ̂ for all Υ, ̂Υ ∈ Fq, v ∈ V, and w ∈ V
∗.

– Non-degeneracy : If e(v,w) = 1GT
for all w ∈ V

∗, then v = (
d

︷ ︸︸ ︷

1G1 , . . . , 1G1).
Similar statement also holds with the vectors v and w interchanged.

For any ordered basis W = {w(1), . . . ,w(d)} of V (or V
∗), and any vector �v ∈ F

d
q ,

let (�v)W represent the vector in V (or V
∗ accordingly) formed by the linear

combination of the members of W with the components of �v as the coeffi-
cients, i.e., (�v)W =

∑

i∈[d]

viw
(i) ∈ V (or V

∗ accordingly). Also, for any s ∈ N

and any collection of s vectors {v(i)}i∈[s] of V (or V
∗), we will denote by

span〈v(i) | i ∈ [s]〉 the subspace of V (or V
∗ accordingly) spanned by the set

of vectors {v(i)}i∈[s]. The DPVS generation algorithm Gdpvs takes in the unary
encoded security parameter 1λ, a dimension value d ∈ N, along with a bilinear
group paramsG = (q, G1, G2, GT , g1, g2, e)

R←− Gbpg(), and outputs a description
paramsV = (q, V, V∗, GT , A, A∗, e) of DPVS with d-dimensional V and V

∗.

We now describe random dual orthonormal basis generator Gob [25,27] in Fig. 1.
This algorithm will be utilized as a sub-routine in our ABS construction.

2.4 Collision-Resistant Hash Functions

Here we will formally describe the notion of collision-resistant hash functions
which will be used as an ingredient of our ABS construction.
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Fig. 1. Dual orthonormal basis generator GOB

� Syntax: A hash function family H associated with a bilinear group generator
GBPG and a polynomial poly(·) consists of the following two polynomial-time
algorithms:

KGen(): The hashing key generation algorithm is a probabilistic algorithm that
takes as input the unary encoded security parameter 1λ, and samples a hash-
ing key hk from the key space HKλ, which is a probability space over bit
strings parameterized by λ.

H
(λ,poly)
hk : D = {0, 1}poly(λ) → Fq\{0}: A deterministic function that maps an
element of D = {0, 1}poly to an element of Fq\{0} with q being the first
element of the output paramsG = (q, G1, G2, GT , g1, g2, e) of Gbpg on input 1λ.

� Collision Resistance: A hash function family H associated with Gbpg and
poly(·) is said to be collision resistant if for any PPT adversary M, for any
security parameter λ and any hk

R←− KGen(), the advantage of M in finding a
collision, defined as

AdvH,CR
M (λ) = Pr[Υ1, Υ2 ∈ D = {0, 1}poly(λ) ∧ Υ1 �= Υ2∧

H
(λ,poly)
hk (Υ1) = H

(λ,poly)
hk (Υ2) | (Υ1, Υ2)

R←− M(hk, D)]

is negligible, i.e., AdvH,CR
M (λ) ≤ negl(λ), where negl is some negligible function.
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2.5 The Notion of Attribute-Based Signatures for
Arithmetic Branching Programs

Let for some prime q ∈ N, F (q)
abp denote the class of all functions f : F

n
q → Fq for

any n = p(λ) ∈ N, where p is an arbitrary polynomial, realizable by some ABP of
polynomial size over Fq. In this section, we will formally define the notion of an
attribute-based signature (ABS) scheme for the predicate family R(q)

z-abp defined as
R(q)

z-abp = {R
(q)
z-abp(f, ·) : F

n
q → {0, 1} | f : F

n
q → Fq ∈ F (q)

abp}, where R
(q)
z-abp(f, �x) =

1 if f(�x) = 0, and R
(q)
z-abp(f, �x) = 0 otherwise for all f : F

n
q → Fq ∈ F (q)

abp and
�x ∈ F

n
q . As stated in Lemma 2.2, there exists a polynomial-time algorithm that

on input any f : F
n
q → Fq ∈ F (q)

abp, constructs an ASP S = (U, ρ) such that for

any �x ∈ F
n
q , it holds that R

(q)
z-abp(f, �x) = 1 ⇐⇒ f(�x) = 0 ⇐⇒ S accepts �x.

Therefore, for the rest of this paper, we will identify predicates R
(q)
z-abp(f, ·) ∈

R(q)
z-abp by their corresponding ASP-representations S = (U, ρ) computed using

the algorithm of Lemma 2.2.

� Syntax: An attribute-based signature (ABS) scheme for some predicate family
R(q)

z-abp consists of an associated message space M ⊆ {0, 1}∗, a signature space
Σ, along with the following PPT algorithms:

ABS.Setup(): The setup algorithm takes as input the unary encoded security
parameter 1λ. It outputs the public parameters mpk and the master signing
key msk.

ABS.KeyGen(mpk,msk, �x): The signing key generation algorithm takes as input
the public parameters mpk, the master signing key msk, along with a signing
attribute vector �x ∈ F

n
q for some n = p(λ) ∈ N. It outputs a signing key

sk(�x).
ABS.Sign(mpk, �x, sk(�x), S,msg): The signing algorithm takes as input the public

parameters mpk, a signing attribute string �x ∈ F
n
q for some n = p(λ) ∈ N,

a signing key sk(�x) for �x, a signing policy R
(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp

represented as an ASP S = (U, ρ), and a message msg ∈ M. It outputs either
a signature sig ∈ Σ or the distinguished symbol ⊥ indicating failure.

ABS.Verify(mpk, S, (msg, sig)): The verification algorithm takes as input the pub-
lic parameters mpk, a signing policy R

(q)
z-abp(f, ·) ∈ R(q)

z-abp represented as an
ASP S = (U, ρ), and a message-signature pair (msg, sig) ∈ M × Σ. It outputs
either 1 or 0.

� Correctness: An ABS scheme for some predicate family R(q)
z-abp is said to be

correct if for any security parameter λ, any n = p(λ) ∈ N, any signing policy
predicate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp represented as an ASP S = (U, ρ),

any signing attribute vector �x ∈ F
n
q , any (mpk,msk) R←− ABS.Setup(), and any

sk(�x) R←− ABS.KeyGen(mpk, msk, �x), if S accepts �x, then

Pr[1 R←− ABS.Verify(mpk, S, (msg, sig)) | sig R←− ABS.Sign(mpk, �x, sk(�x), S,msg)]
≥ 1 − negl(λ) ,
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where negl is some negligible function, and the probability is taken over the
random coins of ABS.Sign and ABS.Verify.

� Signer Privacy: An ABS scheme for some predicate family R(q)
z-abp is said to

achieve perfect signer privacy if for any security parameter λ, any n = p(λ) ∈ N,
any message msg ∈ M, any (mpk,msk) R←− ABS.Setup(), any signing policy
R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP representation S = (U, ρ), any two
signing attribute vectors �x, �x′ ∈ F

n
q such that S accepts both �x and �x′, any signing

keys sk(�x) R←− ABS.KeyGen(mpk,msk, �x), sk(�x′) R←− ABS.KeyGen(mpk, msk, �x′),
the distributions of the signatures outputted by ABS.Sign(mpk, �x, sk(�x), S,msg)
and ABS.Sign(mpk, �x′, sk(�x′), S,msg) are equivalent.

� Existential unforgeability: Existential unforgeability of an ABS scheme for
some predicate class R(q)

z-abp against adaptive-predicate-adaptive-message attack
is defined through the following experiment between a stateful probabilistic
adversary A and a stateful probabilistic challenger B:

• B generates (mpk,msk) R←− ABS.Setup() and sends mpk to A.
• A may adaptively make any polynomial number of queries of the following

types to B:
– Signing Key Generation Query : When A requests the generation of a

signing key for some signing attribute vector �x ∈ F
n
q for some n = p(λ) ∈

N, B generates a signing key sk(�x) R←− ABS.KeyGen(mpk,msk, �x) and
stores the signing key sk(�x).

– Signature Generation Query : When A specifies a signing key for some
signing attribute vector �x ∈ F

n
q for some n = p(λ) ∈ N that it has

already requested B to generate, and requests the generation of a sig-
nature using that signing key on some message msg ∈ M under some
signing policy R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp represented as an

ASP S = (U, ρ) such that S accepts �x, B creates a signature sig R←−
ABS.Sign(mpk, �x, sk(�x), S,msg) and stores it.

– Signing key/Signature Reveal Query : When A requests B to reveal an
already created signing key corresponding to some signing attribute vector
�x ∈ F

n
q for some n = p(λ) ∈ N or an already created signature on some

message msg ∈ M under some signing policy R
(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈

R(q)
z-abp for some n = p(λ) ∈ N represented by an ASP S = (U, ρ), B

provides A with the respective queried item.
We would like to emphasize that when a signing key or signature generation
query is made, A does not receives the signing key or signature that B cre-
ates. A receives it only when it makes a reveal query for that signing key or
signature.

• At the end of interaction A outputs a triplet (S,msg, sig), where S is the
ASP-representation of a signing policy R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp for
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some n = p(λ) ∈ N, msg ∈ M, and sig ∈ Σ. A wins if the following conditions
hold simultaneously:
(a) 1 = ABS.Verify(mpk, S, (msg, sig)).
(b) A has not made a signature reveal query on msg under S.
(c) S does not accept any signing attribute string �x ∈ F

n
q for which A has

requested to reveal a signing key.

An ABS scheme for some predicate family R(q)
z-abp is said to be existentially

unforgeable against adaptive-predicate-adaptive-message attack if for any PPT
adversary A, for any security parameter λ, the advantage of A in the above
experiment, defined as

AdvABS,UF
A (λ) = Pr[A wins in the unforgeability experiment]

is negligible in λ, i.e., AdvABS,UF
A (λ) ≤ negl(λ), where negl is some negligible

function.

3 The Proposed ABS Scheme

In this section, we will present our ABS scheme for a predicate family R(q)
z-abp

parameterized by some prime q ∈ N as defined in Sect. 2.5. Let M ⊂ {0, 1}∗ be
the message space associated with our ABS scheme. We emphasize that in our
construction the functions ρ included within the description of ASP’s are not
necessarily injective, and thus our ABS scheme supports unbounded multi-use of
attributes within the signing policies. In our scheme description and in the proof
of security n = p(λ) ∈ N for an arbitrary polynomial p.

ABS.Setup(): The setup algorithm takes as input the unary encoded security
parameter 1λ. It proceeds as follows:
1. It first generates (params, {Bı, B

∗
ı }ı∈[0,2])

R←− Gob(2, (4, 14, 8)).
2. Then, it sets the following:

̂B0 = {b(0,1), b(0,4)},

̂B
∗
0 = {b∗(0,3)},

̂B1 = {b(1,1), . . . , b(1,4), b(1,13), b(1,14)},

̂B
∗
1 = {b∗(1,1), . . . , b∗(1,4), b∗(1,11), b∗(1,12)},

̂B2 = {b(2,1), b(2,2), b(2,7), b(2,8)},

̂B
∗
2 = {b∗(2,1), b∗(2,2), b∗(2,5), b∗(2,6)}.

3. Next, it samples a hashing key hk
R←− KGen() for a hash function family

H associated with the bilinear group generator Gbpg used as a subroutine
of Gob and a polynomial poly(·), where poly represents the length of the
bit string formed by concatenating a message belonging to M and the
binary representation of an ASP representing a signing policy predicate
in R(q)

z-abp.
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4. It outputs the public parameters mpk = (hk, params, {̂Bı, ̂B
∗
ı }ı∈[0,2]) and

the master signing key msk = b∗(0,1).

ABS.KeyGen(mpk,msk, �x): The signing key generation algorithm takes as input
the public parameters mpk, the master signing key msk, and a signing
attribute vector �x ∈ F

n
q . It executes the following steps:

1. First, it samples ω
U←− Fq\{0}, ϕ0

U←− Fq, and computes

k∗(0) = (ω, 0, ϕ0, 0)B∗
0
.

2. Next, for ι ∈ [n], it samples σι
U←− Fq, �ϕ(ι) U←− F

2
q, and computes

k∗(ι) = (σι(1, ι), ω(1, xι),�06, �ϕ(ι),�02)B∗
1
.

3. Then, it samples �ϕ(n+1,1), �ϕ(n+1,2) U←− F
2
q, and computes

k∗(n+1,1) = (ω(1, 0),�02, �ϕ(n+1,1),�02)B∗
2
,

k∗(n+1,2) = (ω(0, 1),�02, �ϕ(n+1,2),�02)B∗
2
.

4. It outputs the signing key sk(�x) = (k∗(0), . . . ,k∗(n),k∗(n+1,1),k∗(n+1,2)).

ABS.Sign(mpk, �x, sk(�x), S,msg): The signing algorithm takes in the public
parameters mpk, a signing attribute string �x ∈ F

n
q , a signing key sk(�x) =

(k∗(0), . . . ,k∗(n),k∗(n+1,1),k∗(n+1,2)) for �x, a signing policy predicate
R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp with ASP representation S = (U =
{(�y(j), �z(j))}j∈[m] ⊂ (F�

q)
2, ρ : [m] → [n]), along with a message msg ∈ M. If

S does not accept �x, it outputs ⊥. Otherwise, i.e., if S accepts �x, it operates
as follows:
1. It first computes (Ωj)j∈[m] ∈ F

m
q such that �e(�,�) =

∑

j∈[m]

Ωj(xρ(j)�y
(j) +

�z(j)).
2. Next, it samples ξ

U←− Fq\{0}, and ((Ω′
j)j∈[m], (Ω′′

j )j∈[m])
U←− (Fm

q )2 such
that

∑

j∈[m]

(Ω′
j�y

(j) + Ω′′
j �z(j)) = �0�.

3. After that, it samples r∗(0) U←− span〈b∗(0,3)〉 and computes

s∗(0) = ξk∗(0) + r∗(0).

4. Then, for j ∈ [m], it samples σ′
j

U←− Fq, r∗(j) U←− span〈b∗(1,11), b∗(1,12)〉,
and computes

s∗(j) = ξΩjk
∗(ρ(j))+σ′

j(b
∗(1,1)+ρ(j)b∗(1,2))+Ω′′

j b∗(1,3)+Ω′
jb

∗(1,4)+r∗(j).

5. Next, it samples r∗(m+1) U←− span〈b∗(2,5), b∗(2,6)〉 and computes

s∗(m+1) = ξ(k∗(n+1,1) + H
(λ,poly)
hk (msg‖S)k∗(n+1,2)) + r∗(m+1).
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6. It outputs the signature sig = (s∗(0), . . . , s∗(m+1)).
ABS.Verify(mpk, S, (msg, sig)): The verification algorithm takes as input the pub-

lic parameters mpk, a signing policy predicate R
(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈

R(q)
z-abp having ASP-representation S = (U = {(�y(j), �z(j))}j∈[m] ⊂ (F�

q)
2, ρ :

[m] → [n]), a message-signature pair (msg ∈ M, sig = (s∗(0), . . . , s∗(m+1))).
It proceeds as follows:
1. It generates a verification-text (c(0), . . . , c(m+1)) as follows:

(a) It first samples �u = (u1, . . . , u�)
U←− F

�
q, and computes sj = �u · �y(j),

s′
j = �u · �z(j) for j ∈ [m].

(b) Next, it samples u, η0
U←− Fq, and computes

c(0) = (−u − u�, 0, 0, η0)B0 .

(c) Then, for j ∈ [m], if s∗(j) /∈ V
∗
1, then it outputs 0. Otherwise, it

samples μj
U←− Fq, �η(j) U←− F

2
q, and computes

c(j) = (μj(ρ(j),−1), (s′
j , sj),�06,�02, �η(j))B1 .

(d) Then, it samples κ
U←− Fq, �η(m+1) U←− F

2
q, and computes

c(m+1) = ((u − κH
(λ,poly)
hk (msg‖S), κ),�02,�02, �η(m+1))B2 .

2. It outputs 0 if e(b(0,1), s∗(0)) = 1GT
.

3. It outputs 1 if
∏

j∈[0,m+1]

e(c(j), s∗(j)) = 1GT
. It outputs 0 otherwise. Here,

1GT
is the identity element of the group GT .

� Correctness: The correctness of the proposed ABS construction can be
verified as follows: For any signature sig = (s∗(0), . . . , s∗(m+1)) on a message
msg ∈ M under a signing policy predicate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp

having ASP representation S = (U = {(�y(j), �z(j))}j∈[m] ⊂ (F�
q)

2, ρ : [m] → [n])
generated using a signing key sk(�x) = (k∗(0), . . . ,k∗(n),k∗(n+1,1),k∗(n+1,2)) for
a signing attribute vector �x ∈ F

n
q such that S accepts �x, and any verification-text

(c(0), . . . , c(m+1)) generated while executing ABS.Verify, we have
∏

j∈[0,m+1]

e(c(j), s∗(j))

= e(c(0),k∗(0))ξ
∏

j∈[m]

e(c(j),k∗(ρ(j)))ξΩj

∏

j∈[m]

[e(c(j), b∗(1,3))Ω′′
j e(c(j), b∗(1,4))Ω′

j ]·

[e(c(m+1),k∗(n+1,1))e(c(m+1),k∗(n+1,2))H
(λ,poly)
hk (msg‖S)]ξ

= g
ξω(−u−u�)
T

∏

j∈[m]

g
ξωΩj(xρ(j)sj+s′

j)

T

∏

j∈[m]

g
(Ω′

jsj+Ω′′
j s′

j)

T gξωu
T

= g
ξω(−u−u�)
T g

ξω(�u·∑j∈[m] Ωj(xρ(j)�y
(j)+�z(j)))

T g
�u·∑j∈[m](Ω

′
j�y(j)+Ω′′

j �z(j))

T gξωu
T

= g
ξω(−u−u�)
T g

ξω(�u·�e(�,�))
T g�u·�0�

T gξωu
T = g

ξω(−u−u�)
T gξωu�

T 1GT
gξωu

T = 1GT
.
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The above follows from the expressions of (c(0), . . . , c(m+1)), (s∗(0), . . . , s∗(m+1)),
(k∗(0), . . . ,k∗(n),k∗(n+1,1),k∗(n+1,2)), and the dual orthonormality property of
{Bı, B

∗
ı }ı∈[0,2]; in conjunction with the facts that

∑

j∈[m]

Ωj(xρ(j)�y
(j)+�z(j)) = �e(�,�)

(since S accepts �x), and
∑

j∈[m]

(Ω′
j�y

(j) + Ω′′
j �z(j)) = �0� (by selection).

Remark 3.1 (Discussion on the Concrete Efficiency of the Proposed
ABS Scheme): In order to understand the concrete efficiency gains of our
ABS scheme over the state-of-the-art scheme of [29], let us consider the per-
formance of both the schemes for a simple signing policy ABP f : Fq → Fq

defined by f(x1) = x1 − a1 for all x1 ∈ Fq, where q is a 128-bit prime integer
and a1 is a constant belonging to Fq. We have already presented the summary
of this efficiency analysis in Table 1 in the Introduction section. For the con-
sidered ABP, we have R

(q)
z-abp(f, x1) = 1 ⇐⇒ f(x1) = 0 ⇐⇒ x1 = a1.

By applying the algorithm of [13], we can represent the ABP f by the ASP
S = (U = {(�y(1) = (1, 0), �z(1) = (−a,−1))}, ρ | 1 �→ 1). Hence, it can be readily
verified from the description of the proposed ABS scheme above that in this
scheme, a signature sig = (s∗(0), s∗(1), s∗(2)) on some message msg ∈ M under
R

(q)
z-abp(f, ·) would consist of only 26 group elements, namely, 4 group elements

for s∗(0), 14 group elements for s∗(1), while 8 group elements for s∗(2). On the
other hand, to verify the signature, a verifier would have to compute 30 pair-
ing operations, namely, 4 pairing operations to verify whether e(b(0,1), s∗(0)) =
1GT

and 26 pairing operations to verify whether
∏

j∈[0,2]

e(c(j), s∗(j)) = 1GT
,

where (c(0), c(1), c(2)) is the verification-text computed during the verification
procedure.

Now, let us look into the size of a signature computed for the same signing
policy using the ABS scheme of Sakai et al. [29]. Observe that in this scheme, sign-
ing policies are considered as boolean circuits. So, we must express R

(q)
z-abp(f, ·) as

a boolean circuit. Clearly, the boolean circuit that simulates R
(q)
z-abp(f, ·) would

have 128 input gates to take as input the bit representation of x1. Moreover, in
order to simulate the equality test x1 = a1 over Fq using boolean operations,
the circuit would need to implement 127 boolean AND gates, where the first
boolean AND gate would connect the first and second bits of x1, the second one
would connect the earlier AND gate with the third bit of x1, and so on. Also,
for all i ∈ [128], the wire connecting the ith bit of x1 to an AND gate must
pass through a NOT gate if the ith bit of a1 is 0. For instance, if we represent
the ith bit of an element b ∈ Fq by b[i] for all i ∈ [128], and some a1 ∈ Fq has
binary representation 110 . . . 01, then the boolean circuit simulating R

(q)
z-abp(f, ·)

with this a1 would be

(((. . .((x1[1] AND x1[2])AND (NOT x1[3])) . . .)
AND (NOT x1[127]))AND x1[128]).

Hence, it follows that the boolean circuit that realizes R
(q)
z-abp(f, ·) would have

128 input gates, 127 AND gates along with some additional NOT gates. Further,
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note that the ABS scheme of [29] considers representing signing policies using
boolean circuits consisting of NAND gates only. Since 3 NAND gates are required
to simulate each AND gate, and 1 NAND gate is needed to simulate each NOT
gate, it follows that the boolean circuit simulating R

(q)
z-abp(f, ·) using only NAND

gates would consist of at least 128 input gates and at least 127 NAND gates.
Now, notice that a signature in the scheme of [29] consists of Groth-Sahai com-
mitments and proofs [9] for each wire of the signing policy circuit for which it is
being generated, and verification requires checking all those proofs. Therefore,
it is immediate from the performance figures presented in Tables 1 and 2 of [29]
that a signature on some message with respect to the boolean circuit simulat-
ing R

(q)
z-abp(f, ·) in this scheme would include at least 4102 group elements, and

verification of the signature would require at least 4102 pairing operations.
Thus, it is clear that in terms of concrete efficiency, even for a very simple

signing policy such as an equality test over Fq, our ABS scheme gives more than
136 times better results compared to the one of [29].

4 Security

Theorem 4.1 (Signer Privacy): The proposed ABS scheme achieves perfect
signer privacy (as per the security model described in Sect. 2.5).

Proof: In order to prove Theorem 4.1, we introduce the following signing algo-
rithm, we call ABS.AltSign, that generates signatures on messages using the
master signing key msk and do not use any attribute-specific signing key sk(�x).

ABS.AltSign(mpk,msk, S,msg): This algorithm takes in the public parameters
mpk, the master signing key msk, a signing policy predicate R

(q)
z-abp(f, ·) :

F
n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation S = (U = {(�y(j), �z(j))}j∈[m]

⊂ (F�
q)

2, ρ : [m] → [n]), and a message msg ∈ M. It proceeds as follows:
1. If S = {(( ̂Ωj)j∈[m], ( ̂Ω′

j)j∈[m]) ∈ (Fm
q )2 | ∑

j∈[m]

( ̂Ωj�y
(j)+ ̂Ω′

j�z
(j)) = �e(�,�)} =

∅, then it outputs ⊥ indicating failure. Otherwise, it samples (( ̂Ωj)j∈[m],

( ̂Ω′
j)j∈[m])

U←− S.

2. Next, it samples ω̂
U←− Fq\{0}, υ̂0

U←− Fq, and computes

s∗(0) = (ω̂, 0, υ̂0, 0)B∗
0
.

3. For j ∈ [m], it samples σ̂j
U←− Fq, �̂υj

U←− F
2
q, and computes

s∗(j) = (σ̂j(1, ρ(j)), ( ̂Ω′
j , ̂Ωj),�06, �̂υ

(j)
,�02)B∗

1
.
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4. Then, it samples �̂υ
(m+1) U←− F

2
q and computes

s∗(m+1) = (ω̂(1,H
(λ,poly)
hk (msg‖S)),�02, �̂υ

(m+1)
,�02)B∗

2
.

5. It outputs the signature sig = (s∗(0), . . . , s∗(m+1)).

Remark 4.1: Note that using the ABS.AltSign algorithm, one can generate a
correctly verifiable signature on any message msg ∈ M under any signing pol-
icy predicate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation
S = (U = {(�y(j), �z(j))}j∈[m] ⊂ (F�

q)
2, ρ : [m] → [n]) even without knowing any

signing attribute string �x ∈ F
n
q accepted by S. However, in order to execute this

algorithm, one should have access to the master signing key msk – something
which a signer does not have access to in the real world (and an adversary in the
unforgeability experiment). Hence, the above algorithm should only be viewed
as a virtual one used in the security proof. Also, note that if the set S defined in
the ABS.AltSign algorithm above is empty, then it is impossible that there exists
some signing attribute string �x ∈ F

n
q accepted by S, and hence no signature can

ever be generated under S, even in the real world.

Clearly, in order to prove Theorem 4.1 it is enough to show that the following
statement is true:
For any security parameter λ ∈ N, any message msg ∈ M, any signing
attribute string �x ∈ F

n
q , any signing policy predicate R

(q)
z-abp(f, ·) : F

n
q →

{0, 1} ∈ R(q)
z-abp having ASP-representation S = (U = {(�y(j), �z(j))}j∈[m] ⊂

(F�
q)

2, ρ : [m] → [n]) such that S accepts �x, any (mpk,msk) R←− ABS.Setup(1n),

and any sk(�x) R←− ABS.KeyGen(mpk,msk, �x), the distributions of the sig-
natures outputted by ABS.Sign(mpk, �x, sk(�x), S,msg) and those outputted by
ABS.AltSign(mpk,msk, S,msg) are equivalent.
In the proposed ABS scheme, sig = (s∗(0), . . . , s∗(m+1)) R←− ABS.Sig(mpk, �x,
sk(�x), S,msg) is computed as

s∗(0) = (p0, 0, 0, υ0)B∗
0
,

s∗(j) = (σ̄j(1, ρ(j)), �p(j),�06, �υ(j),�02)B∗
1

for j ∈ [m],

s∗(m+1) = (�p(m+1),�02, �υ(m+1),�02)B∗
2
,

such that p0 = ξω, σ̄j = ξσρ(j)Ωj + σ′
j , �p(j) = (ξωΩj + Ω′′

j , ξωxρ(j)Ωj + Ω′
j)

for j ∈ [m], and �p(m+1) = ξω(1,H
(λ,poly)
hk (msg‖S)), where ω, ξ

U←− Fq\{0},

{σι}ι∈[n], {σ′
j}j∈[m], υ0

U←− Fq, {�υ(j)}j∈[m+1]
U←− F

2
q, (Ωj)j∈[m] ∈ F

�
q with

∑

j∈[m]

Ωj(xρ(j)�y
(j) + �z(j)) = �e(�,�), and ((Ω′

j)j∈[m], (Ω′′
j )j∈[m])

U←− (Fm
q )2 with

∑

j∈[m]

(Ω′
j�y

(j) + Ω′′
j �z(j)) = �0�.
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On the other hand sig = (s∗(0), . . . , s∗(m+1)) R←− ABS.AltSign(mpk,msk, S,
msg) is computed as

s∗(0) = (p̂0, 0, υ̂0, 0)B∗
0
,

s∗(j) = (σ̂j(1, ρ(j)), �̂p
(j)

,�06, �̂υ
(j)

,�02)B∗
1

for j ∈ [m],

s∗(m+1) = (�̂p
(m+1)

,�02, �̂υ
(m+1)

,�02)B∗
2
,

such that p̂0 = ω̂, �̂p
(j)

= ( ̂Ω′
j ,

̂Ωj) for j ∈ [m], and �̂p
(m+1)

= ω̂(1,H
(λ,poly)
hk

(msg‖S)), where ω̂
U←− Fq\{0}, {σ̂j}j∈[m], υ̂0

U←− Fq, {�̂υ(j)}j∈[m+1]
U←− F

2
q, and

(( ̂Ωj)j∈[m], ( ̂Ω′
j)j∈[m])

U←− S = {(( ̂Ωj)j∈[m], ( ̂Ω′
j)j∈[m]) ∈ (Fm

q )2 | ∑

j∈[m]

( ̂Ωj�y
(j) +

̂Ω′
j�z

(j)) = �e(�,�)}.
Observe that the distributions {(ξω, (ξωxρ(j)Ωj + Ω′

j)j∈[m], (ξωΩj +

Ω′′
j )j∈[m]) | ω, ξ

U←− Fq\{0}, ((Ω′
j)j∈[m], (Ω′′

j )j∈[m])
U←− (Fm

q )2 with
∑

j∈[m]

(Ω′
j�y

(j) +

Ω′′
j �z(j)) = �0�, (Ωj)j∈[m] ∈ F

m
q with

∑

j∈[m]

Ωj(xρ(j)�y
(j) + �z(j)) = �e(�,�)}

and {(ω̂, ( ̂Ωj)j∈[m], ( ̂Ω′
j)j∈[m]) | ω̂

U←− Fq\{0}, (( ̂Ωj)j∈[m], ( ̂Ω′
j)j∈[m])

U←− S}
are equivalent. Also, the distributions {(σ̄j = ξΩjσρ(j) + σ′

j)j∈[m] | ξ
U←−

Fq\{0}, {σι}ι∈[n], {σ′
j}j∈[m]

U←− Fq, (Ωj)j∈[m] ∈ F
m
q with

∑

j∈[m]

Ωj(xρ(j)�y
(j) +

�z(j)) = �e(�,�)} and {(σ̂j)j∈[m] | {σ̂j}j∈[m]
U←− Fq} are equivalent. Thus, the

distributions of sig R←− ABS.Sign(mpk, �x, sk(�x), S,msg) and that of sig R←−
ABS.AltSign(mpk,msk, S,msg) are equivalent. This completes the proof of
Theorem 4.1. �

Theorem 4.2 (Existential Unforgeability): The proposed ABS scheme is
existentially unforgeable against adaptive-predicate-adaptive-message attack (as
per the security model described in Sect. 2.5) under the SXDLIN assumption [1].

Proof: In order to prove Theorem 4.2, we consider a sequence of hybrid
experiments which differ from one another in the construction of the signing
keys/signatures queried by the adversary A and/or the verification-text used by
the challenger B to verify the validity of the forged signature outputted by A
at the end of the experiment. The first hybrid corresponds to the real unforge-
ability experiment described in Sect. 2.5, while the last hybrid corresponds to
one in which the probability that a forged signature outputted by A passes the
verification is negligible. We argue that A’s winning probability changes only by
a negligible amount in each successive hybrid experiment, thereby establishing
Theorem 4.2. The overall structure of our reduction is demonstrated in Fig. 2.
The intermediate computational problems, e.g., Problem 1, Problem 2 etc. used
in the reduction (as can be seen in Fig. 2) are presented in the full version of the



Efficient ABS for Unbounded Arithmetic Branching Programs 151

paper. Let qkey and qsig be the total number of signing keys and signatures A
requests B to reveal during the experiment. The sequence of hybrid experiments
are described below. In the description of the hybrids a part framed by a box
indicates coefficients which are altered in a transition from its previous hybrid.

Fig. 2. Structure of the hybrid reduction for the proof of Theorem 4.2

� Sequence of Hybrid Experiments

Hyb0: This is the real unforgeability experiment described in Sect. 2.5.

Hyb0′ : This experiment is the same as Hyb0 except the following:

1. When A makes a signing key generation query for some signing attribute
string �x ∈ F

n
q , B only records �x, but creates no actual signing key.

2. When a signature query is made by A on some message msg ∈ M under
some signing policy predicate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP-
representation S = (U, ρ) to be created using a signing key for some signing
attribute string �x ∈ F

n
q for which it has already made a signing key generation

query, B simply records the triple (msg, S, �x), but creates no actual signature.
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3. When A issues a signing key reveal query for some signing attribute string
�x ∈ F

n
q which has been already recorded, B creates the queried signing key

as sk(�x) R←− ABS.KeyGen(mpk,msk, �x), and returns it to A. On the other
hand, when A issues a signature reveal query for some triple (msg, S, �x) ∈
M × R(q)

z-abp × F
n
q which has been already recorded, B creates the queried

signature as sig R←− ABS.AltSign(mpk,msk, S,msg), where the ABS.AltSign
algorithm is described in the proof of Theorem4.1, and hands sig to A.

Thus, in this experiment for h ∈ [qkey], the hth signing key for signing
attribute string �x(h) ∈ F

n
q requested by A to reveal is generated as sk(�x(h)) =

(k∗(h,0), . . . ,k∗(h,n),k∗(h,n+1,1),k∗(h,n+1,2)) such that

k∗(h,0) = (ωh, 0, ϕh,0, 0)B∗
0
,

k∗(h,ι) = (σh,ι(1, ι), ωh(1, x(h)
ι ),�06, �ϕ(h,ι),�02)B∗

1
for ι ∈ [n],

k∗(h,n+1,1) = (ωh(1, 0),�02, �ϕ(h,n+1,1),�02)B∗
2
,

k∗(h,n+1,2) = (ωh(0, 1),�02, �ϕ(h,n+1,2),�02)B∗
2
,

(4.1)

where ωh
U←− Fq\{0}, {σh,ι}ι∈[n], ϕh,0

U←− Fq, {�ϕ(h,ι)}ι∈[n], �ϕ(h,n+1,1),

�ϕ(h,n+1,2) U←− F
2
q.

On the other hand, for t ∈ [qsig], the tth signature associated with the
triple (msgt, St, �x

(t)) ∈ M × R(q)
z-abp × F

n
q that A requests to reveal, where

St = (Ut = {(�y(t,j), �z(t,j))}j∈[mt] ⊂ (F�t
q )2, ρt : [mt] → [n]), is created as

sigt = (s∗(t,0), . . . , s∗(t,mt+1)) such that

s∗(t,0) = (ω̂t, 0, υ̂t,0, 0)B∗
0
,

s∗(t,j) = (σ̂t,j(1, ρt(j)), ( ̂Ω′
t,j ,

̂Ωt,j),�06, �̂υ
(t,j)

,�02)B∗
1

for j ∈ [mt],

s∗(t,mt+1) = (ω̂(1,H
(λ,poly)
hk (msgt‖St)),�02, �̂υ

(t,mt+1)
,�02)B∗

2
,

(4.2)

where ω̂t
U←− Fq\{0}, {σ̂t,j}j∈[mt], υ̂t,0

U←− Fq, {�̂υ(t,j)}j∈[mt+1]
U←− F

2
q, and

(( ̂Ωt,j)j∈[mt], ( ̂Ω′
t,j)j∈[mt])

U←− St = {(( ̂Ωt,j)j∈[mt], ( ̂Ω′
t,j)j∈[mt]) ∈ (Fmt

q )2 |
∑

j∈[mt]

( ̂Ωt,j�y
(t,j) + ̂Ω′

t,j�z
(t,j)) = �e(�t,�t)}.

Finally, in this experiment, the verification-text used to verify the forged
signature outputted by A on some message msg ∈ M under some signing policy
predicate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation S =
(U = {(�y(j), �z(j))}j∈[m] ⊂ (F�

q)
2, ρ : [m] → [n]) is generated as (c(0), . . . , c(m+1))

such that

c(0) = (−u − u�, 0, 0, η0)B0 ,

c(j) = (μj(ρ(j),−1), (s′
j , sj),�06,�02, �η(j))B1 for j ∈ [m],

c(m+1) = ((u − κH
(λ,poly)
hk (msg‖S), κ),�02,�02, �η(m+1))B2 ,

(4.3)
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where �u = (u1, . . . , u�)
U←− F

�
q, sj = �u · �y(j), s′

j = �u · �z(j) for j ∈ [m], u, {μj}j∈[m],

κ, η0
U←− Fq, and {�η(j)}j∈[m+1]

U←− F
2
q.

Here {Bı, B
∗
ı }ı∈[0,2] is the collection of dual orthonormal bases generated by

B during the setup phase of the experiment.

Hyb1: This experiment is analogous to Hyb0′ except that in this experiment, the
verification-text used to verify the forged signature outputted by A on some mes-
sage msg ∈ M under some signing policy predicate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈

R(q)
z-abp having ASP-representation S = (U = {(�y(j), �z(j))}j∈[m] ⊂ (F�

q)
2, ρ : [m] →

[n]) is generated as (c(0), . . . , c(m+1)) such that

c(0) = (−u − u�, −ũ� , 0, η0)B0 ,

c(j) = (μj(ρ(j),−1), (s′
j , sj), (s̃′

j , s̃j) ,�02, �r(j) ,�02, �η(j))B1 for j ∈ [m],

c(m+1) = ((u − κH
(λ,poly)
hk (msg‖S), κ), �r(m+1) ,�02, �η(m+1))B2 ,

(4.4)

where �̃u = (ũ1, . . . , ũ�)
U←− F

�
q, s̃j = �̃u · �y(j), s̃′

j = �̃u · �z(j) for j ∈ [m],

{�r(j)}j∈[m+1]
U←− F

2
q, and all the other variables are generated as in Hyb0′ .

Hyb2-χ-1 (χ ∈ [qkey]): Hyb2-0-9 coincides with Hyb1. This experiment is the same
as Hyb2-(χ−1)-9 with the only exception that in this experiment, the χth sign-
ing key for signing attribute string �x(χ) ∈ F

n
q requested by A to reveal is

generated as sk(�x(χ)) = (k∗(χ,0), . . . ,k∗(χ,n),k∗(χ,n+1,1),k∗(χ,n+1,2)) such that
k∗(χ,n+1,1),k∗(χ,n+1,2) are given by Eq. (4.1), and

k∗(χ,0) = (ωχ, ω̃χ , ϕχ,0, 0)B∗
0
,

k∗(χ,ι) = (σχ,ι(1, ι), ωχ(1, x(χ)
ι ), ω̃χ(1, x(χ)

ι ) ,�04, �ϕ(χ,ι),�02)B∗
1

for ι ∈ [n],
(4.5)

where ω̃χ
U←− Fq\{0} and all the other variables are generated as in Hyb2-(χ−1)-9.

Hyb2-χ-2 (χ ∈ [qkey]): This experiment is analogous to Hyb2-χ-1 except that in
this experiment, the verification-text used to verify the forged signature out-
putted by A on some message msg ∈ M under some signing policy pred-
icate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation S = (U =
{

(�y(j), �z(j))
}

j∈[m]
⊂ (F�

q)
2, ρ : [m] → [n]) is generated as (c(0), . . . , c(m+1)) such

that c(0), c(m+1) have the same form as in Eq. (4.4) and

c(j) = (μj(ρ(j),−1), (s′
j , sj), (s̃′

j , s̃j),�02, (s̃′
j , s̃j)Z (ρ(j)) ,�02, �η(j))B1 for j ∈ [m],

(4.6)
where Z (ι) ∈ {Z ∈ GL(2, Fq) | �e(2,2) = (1, x(χ)

ι )(Z−1)�} for ι ∈ [n], and all the
other variables are generated as in Hyb2-χ-1.

Hyb2-χ-3 (χ ∈ [qkey]): This experiment is the same as Hyb2-χ-2 with the only
exception that in this experiment, the χth signing key for signing attribute
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string �x(χ) ∈ F
n
q requested by A to reveal is generated as sk(�x(χ)) =

(k∗(χ,0), . . . ,k∗(χ,n),k∗(χ,n+1,1),k∗(χ,n+1,2)) such that k∗(χ,0) is given by Eq.
(4.5), k∗(χ,n+1,1),k∗(χ,n+1,2) are given by Eq. (4.1), and

k∗(χ,ι) = (σχ,ι(1, ι), ωχ(1, x(χ)
ι ), �02 ,�02, (0, ω̃χ) , �ϕ(χ,ι),�02)B∗

1
for ι ∈ [n], (4.7)

where all the variables are generated as in Hyb2-χ-2.

Hyb2-χ-4 (χ ∈ [qkey]): This experiment is identical to Hyb2-χ-3 except that in this
experiment, the verification-text used to verify the forged signature outputted by
A on some message msg ∈ M under some signing policy predicate R

(q)
z-abp(f, ·) :

F
n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation S = (U = {(�y(j), �z(j))}j∈[m] ⊂
(F�

q)
2, ρ : [m] → [n]) is generated as (c(0), . . . , c(m+1)) such that c(0), c(m+1)

have the same form as in Eq. (4.4) and

c(j) = (μj(ρ(j),−1), (s′
j , sj), �a(j) ,�02, ( ãj , �̃u · (x(χ)

ρ(j)�y
(j) + �z(j))),

�02, �η(j))B1 for j ∈ [m],
(4.8)

where {ãj}j∈[m]
U←− Fq, {�a(j)}j∈[m]

U←− F
2
q, and all the other variables are gener-

ated as in Hyb2-χ-3.

Hyb2-χ-5 (χ ∈ [qkey]): This experiment is the same as Hyb2-χ-4 with the only
exception that in this experiment, the χth signing key for signing attribute
string �x(χ) ∈ F

n
q requested by A to reveal is generated as sk(�x(χ)) =

(k∗(χ,0), . . . ,k∗(χ,n),k∗(χ,n+1,1),k∗(χ,n+1,2)) such that {k∗(χ,ι)}ι∈[n] are given by
Eq. (4.7), k∗(χ,n+1,1),k∗(χ,n+1,2) are given by Eq. (4.1), and

k∗(χ,0) = (ωχ, �χ , ϕχ,0, 0)B∗
0
, (4.9)

where �χ
U←− Fq, and all the other variables are generated as in Hyb2-χ-4.

Hyb2-χ-6 (χ ∈ [qkey]): This experiment is analogous to Hyb2-χ-5 except that in
this experiment, the verification-text used to verify the forged signature out-
putted by A on some message msg ∈ M under some signing policy predi-
cate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation S = (U =
{(�y(j), �z(j))}j∈[m] ⊂ (F�

q)
2, ρ : [m] → [n]) is generated as (c(0), . . . , c(m+1)) such

that c(0), c(m+1) have the same form as in Eq. (4.4) and {c(j)}j∈[m] are given
by Eq. (4.6) where s̃j = �̃u · �y(j), s̃′

j = �̃u · �z(j) for j ∈ [m], Z (ι) ∈ {Z ∈ GL(2, Fq) |
�e(2,2) = (1, x(χ)

ι )(Z−1)�} for ι ∈ [n], and all the other variables are generated as
in Hyb2-χ-5.

Hyb2-χ-7 (χ ∈ [qkey]): This experiment is analogous to Hyb2-χ-6 with the
only exception that in this experiment, the χth signing key for signing
attribute string �x(χ) ∈ F

n
q requested by A to reveal is generated as

sk(�x(χ)) = (k∗(χ,0), . . . ,k∗(χ,n),k∗(χ,n+1,1),k∗(χ,n+1,2)) such that k∗(0) is given
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by Eq. (4.9), {k∗(χ,ι)}ι∈[n] are given by Eq. (4.5), and k∗(χ,n+1,1),k∗(χ,n+1,2) are
given by Eq. (4.1), where all the variables are generated as in Hyb2-χ-6.

Hyb2-χ-8 (χ ∈ [qkey]): This experiment is analogous to Hyb2-χ-7 except that in
this experiment, the verification-text used to verify the forged signature out-
putted by A on some message msg ∈ M under some signing policy predi-
cate R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation S = (U =
{(�y(j), �z(j))}j∈[m] ⊂ (F�

q)
2, ρ : [m] → [n]) is generated as (c(0), . . . , c(m+1)) such

that {c(j)}j∈[0,m+1] have the same form as in Eq. (4.4), where {�r(j)}j∈[m]
U←− F

2
q,

and all the other variables are generated as in Hyb2-χ-7.

Hyb2-χ-9 (χ ∈ [qkey]): This experiment is analogous to Hyb2-χ-8 with the only
exception that in this experiment, the χth signing key for signing attribute
string �x(χ) ∈ F

n
q requested by A to reveal is generated as sk(�x(χ)) =

(k∗(χ,0), . . . ,k∗(χ,n),k∗(χ,n+1,1),k∗(χ,n+1,2)) such that k∗(0) is given by Eq. (4.9),
and {k∗(χ,ι)}ι∈[n], k∗(χ,n+1,1),k∗(χ,n+1,2) are given by Eq. (4.1), where all the
variables are generated as in Hyb2-χ-8.

Hyb3: This experiment is identical to Hyb2-qkey-9 except that in this exper-
iment, the verification-text used to verify the forged signature outputted
by A on some message msg ∈ M under some signing policy predicate
R

(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation S = (U = {(�y(j),

�z(j))}j∈[m] ⊂ (F�
q)

2, ρ : [m] → [n]) is generated as (c(0), . . . , c(m+1)) such that
{c(j)}j∈[m+1] have the same form as in Eq. (4.4), and

c(0) = (−u − u�, v , 0, η0)B0 , (4.10)

where v
U←− Fq, and all the other variables are generated as in Hyb2-qkey-9.

Hyb4-π (π ∈ [qsig]): Hyb4-0 coincides with Hyb3. This experiment is the same
as Hyb4-(π−1) except that in this experiment, the πth signature associated with

the triple (msgπ, Sπ, �x(π)) ∈ M × R(q,n)
z-abp × F

n
q that A requests to reveal, where

Sπ = (Uπ = {(�y(π,j), �z(π,j))}j∈[mπ] ⊂ (F�π
q )2, ρπ : [mπ] → [n]), is created as

sigπ = (s∗(π,0), . . . , s∗(π,mπ+1)) such that {s∗(π,j)}j∈[mπ] have the same form as
in Eq. (4.2), and

s∗(π,0) = (ω̂π, ζπ,0 , υ̂π,0, 0)B∗
0
,

s∗(π,mπ+1) = (ω̂π(1,H
(λ,poly)
hk (msgπ‖Sπ)), �ζ(π,mπ+1) , �̂υ

(π,mπ+1)
,�02)B∗

2
,

(4.11)

where ζπ,0
U←− Fq, �ζ(π,mπ+1) U←− F

2
q, and all the other variables are generated as

in Hyb4-(π−1).

Hyb5: This experiment is identical to Hyb4-qsig except that in this exper-
iment, the verification-text used to verify the forged signature outputted
by A on some message msg ∈ M under some signing policy predicate
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R
(q)
z-abp(f, ·) : F

n
q → {0, 1} ∈ R(q)

z-abp having ASP-representation S = (U = {(�y(j),

�z(j))}j∈[m] ⊂ (F�
q)

2, ρ : [m] → [n]) is generated as (c(0), . . . , c(m+1)) such that
{c(j)}j∈[m+1] have the same form as in Eq. (4.4), and

c(0) = ( w , v, 0, η0)B0 , (4.12)

where w
U←− Fq, and all the other variables are generated as in Hyb5-qsig .

� Analysis
Let us now denote by Adv

(i)
A (λ) the probability that A wins in Hybi for

i ∈ {0, 0′, 1, {2-χ-k}χ∈[qkey],k∈[9], 3, {4-π}π∈[qsig], 5}. By definition, we clearly

have AdvABS,UF
A (λ) ≡ Adv

(0)
A (λ), Adv

(1)
A (λ) ≡ Adv

(2-0-9)
A (λ), and Adv

(3)
A (λ) ≡

Adv
(4-0)
A (λ). Hence, we have

AdvABS,UF
A (λ) ≤

∣

∣

∣Adv
(0)
A (λ) − Adv

(0′)
A (λ)

∣

∣

∣ +
∣

∣

∣Adv
(0′)
A (λ) − Adv

(1)
A (λ)

∣

∣

∣ +
∑

χ∈[qkey]

[ ∣

∣

∣Adv
(2-(χ−1)-9)
A (λ) − Adv

(2-χ-1)
A (λ)

∣

∣

∣ +

∑

k∈[8]

∣

∣

∣Adv
(2-χ-K)
A (λ) − Adv

(2-χ-(K+1))
A (λ)

∣

∣

∣

]

+

∣

∣

∣Adv
(2-qkey-9)
A (λ) − Adv

(3)
A (λ)

∣

∣

∣ +
∑

π∈[qsig]

∣

∣

∣Adv
(4-(π−1)
A (λ) − Adv

(4,π)
A (λ)

∣

∣

∣ +

∣

∣

∣Adv
(4-qsig)
A (λ) − Adv

(5)
A (λ)

∣

∣

∣ + Adv
(5)
A (λ).

(4.13)

We prove that each term on the RHS of Eq. (4.13) is negligible under
the SXDLIN assumption. See the full version for details. Hence Theorem 4.2
follows. �
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Abstract. Sanitizable signatures allow designated parties (the sanitiz-
ers) to apply arbitrary modifications to some restricted parts of signed
messages. A secure scheme should not only be unforgeable, but also pro-
tect privacy and hold both the signer and the sanitizer accountable.
Two important security properties that are seemingly difficult to achieve
simultaneously and efficiently are invisibility and unlinkability. While
invisibility ensures that the admissible modifications are hidden from
external parties, unlinkability says that sanitized signatures cannot be
linked to their sources. Achieving both properties simultaneously is cru-
cial for applications where sensitive personal data is signed with respect
to data-dependent admissible modifications. The existence of an efficient
construction achieving both properties was recently posed as an open
question by Camenisch et al. (PKC’17). In this work, we propose a solu-
tion to this problem with a two-step construction. First, we construct
(non-accountable) invisible and unlinkable sanitizable signatures from
signatures on equivalence classes and other basic primitives. Second, we
put forth a generic transformation using verifiable ring signatures to turn
any non-accountable sanitizable signature into an accountable one while
preserving all other properties. When instantiating in the generic group
and random oracle model, the efficiency of our construction is compa-
rable to that of prior constructions, while providing stronger security
guarantees.

1 Introduction

Sanitizable signature schemes introduced by Ateniese et al. [1] are signature
schemes that allow a certain degree of controlled malleability: The signer signs
messages along with some “admissible modifications” with respect to another
party called the sanitizer. The sanitizer can (only) convert a given message-
signature pair into one that is admissible. When necessary, the signer can
(dis)prove the authorship of a given signature to the public which is modelled by
a party called the judge. Over the years, the originally informal security prop-
erties [1] were formalized [6,7] and strengthened [25]. Beyond unforgeability,
c© International Association for Cryptologic Research 2019
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sanitizable signatures provide one with meaningful privacy guarantees, which
are important when signing and sanitizing sensitive data. Furthermore, account-
ability of the signatures prevents the parties from misbehaving as they may
eventually get caught. New properties, such as invisibility, were recently pro-
posed [2,10]. To summarize, we recall the security properties which we consider
in this work:

Immutability: The sanitizer cannot modify non-admissible messages.
Accountability: The signer cannot accuse the sanitizer (vice versa) of signing.
Transparency: Non-sanitized and sanitized signatures are indistinguishable.
Invisibility: The class of admissible modifications are hidden from external
parties.
Unlinkability: Sanitized signatures cannot be linked to their sources.

Applications. Ateniese et al. [1] suggested a wide range of applications of sani-
tizable signatures, including multicast transmission, database outsourcing, pro-
tecting health information, and secure routing. As an example, we highlight the
importance of invisibility and unlinkability of sanitizable signatures for signing
medical records. Suppose that a physician signs medical records of patients using
a sanitizable signature scheme. The patients can then sanitize the medical record
for different purposes. For example, they may (1) remove the personal informa-
tion and delegate the anonymized record for analysis; (2) remove everything
except for the personal information for financing purposes, in such a way that
the receivers are convinced of the authenticity of the record. As discussed in [7],
unlinkability ensures that colluding receivers cannot reconstruct the full medical
records since they cannot link records sanitized from the same source.

However, suppose that the admissible modifications chosen by the physician,
are data-dependent. For instance, patients suffering from certain sensitive medi-
cal condition that might possibly lead them to be discriminated against, may be
allowed to change the fields corresponding to these conditions to NO, while other
patients not suffering from any of these conditions are not allowed to change any
of the fields to YES. Such a policy of assigning admissible modifications prevents
the former patients from facing discrimination when revealing such conditions
is not necessary, while preventing the latter patients from getting hold of drugs
which are otherwise only issued to patients suffering from those conditions. The
security property invisibility is crucial for such a scenario, since the receiver of
a sanitized medical record can otherwise easily tell whether the corresponding
patient suffers from a sensitive condition by just checking whether changing the
corresponding field in the record is modifiable or not.

1.1 Open Problem

As discussed above, achieving both unlinkability and invisibility is desirable for
certain applications. Obviously, realizing both notions simultaneously is rather
easy from a theoretical point of view using common “encrypt and prove” tech-
niques. Although the feasibility is clear, doing so efficiently turns out to be
challenging.
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One obvious starting point to answer this question is the idea to lift an
existing invisible sanitizable signature scheme to an unlinkable one. Following
this path does not seem to be fruitful, because existing invisible constructions
adopt the “chameleon-hash-then-sign” paradigm: The main ingredients in this
approach are a signature scheme for which the signer has the secret key, and
a chameleon hashing scheme1 for which the sanitizer has the trapdoor. To sign
a message, the signer first splits the message into � message blocks, some of
which are “admissible”, meaning that they are allowed to be changed by the
sanitizer, while some are not. The signer then computes the chameleon hashes
of the individual message blocks, in such a way that the sanitizer can recover
the trapdoors corresponding to the admissible blocks, and sign the hash values.
Later, the sanitizer can change the admissible blocks by using the trapdoors to
“explain” the hash values with new messages.

Under the “chameleon-hash-then-sign” paradigm, we can see that signatures
are inherently linkable. This is because all signatures which are sanitized from a
fresh signature contain the same set of hash values. One can of course hide the
hash values by using generic non-interactive zero-knowledge arguments, but that
would not yield a practical scheme. Therefore, [10] and [2] posed the following
open problem:

“How to construct (efficient) sanitizable signature schemes which are
simultaneously unlinkable and invisible?”

In this work, we answer this question by constructing the first efficient invisible
and unlinkable sanitizable signature scheme.

1.2 Our Techniques

To solve the problem of constructing an efficient unlinkable and invisible saniti-
zable signature scheme, we suggest a modular approach visualized with the help
of Fig. 1.

Weak Sanitizable Signatures
(Section 4.1)

Verifiable Ring Signatures

Sanitizable Signatures

Generic Transformation (Section 4.2)

Fig. 1. Outline of our approach.

First, we decouple the problem by presenting a generic transformation that
turns any “weak” sanitizable signature scheme, which is not accountable, into an
1 A chameleon hashing scheme allows to generate a probabilistic hash function H

together with a trapdoor. With the latter, one can efficiently compute a randomness
r when given any message m and hash value h such that h = H(m, r).
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accountable one while preserving or upgrading all other properties. Our trans-
formation is very efficient as it only requires a verifiable [28] ring signature2.
Recall that a ring signature scheme allows a signer to sign messages on behalf
of an ad-hoc group picked during signature generation. Verifiability in this con-
text means that a signer can (dis)prove the authorship of a given signature a
posteriori. The basic idea of our transformation is as follows.

To sign (resp. sanitize), the signer (resp. the sanitizer) runs the sign (resp.
sanitize) algorithm of the weak sanitizable signature scheme, and signs the
whole output (ignoring the underlying structure) with a verifiable ring signa-
ture scheme, where the ring is composed by the verification keys of the signer
and the sanitizer. The resulting scheme is accountable because the signer can
(dis)prove the authorship of a certain signature using the accountability prop-
erty of the ring signature itself. Our transformation does not only preserve the
underlying properties of the (non-accountable) sanitizable signature scheme, but
it also strengthens some of them: If the underling scheme is weakly immutable
(resp. weakly unlinkable), then the resulting scheme is immutable (resp. unlink-
able). Loosely speaking, weak immutability considers a forgery as legitimate if
it corresponds to a pre-determined sanitizer, as opposed to any sanitizer. On
the other hand, weak unlinkability restricts the queries of the adversary to the
sanitization oracle to consist exclusively of honestly generated signatures.

Next, we tackle the main problem of constructing an invisible and unlink-
able (non-accountable) sanitizable signature scheme. The (long-term) public and
secret keys of the signer are the verification and signing keys of a certain signa-
ture scheme, which we refer to as the outer-layer scheme. To sign a message, the
signer splits the message into � message blocks, and generates � pairs of signing
and verification keys of an inner-layer signature scheme. Naturally, the signer
signs each message block with the corresponding inner signing key, and signs
the verification keys with its (long-term) outer secret key. To allow sanitization,
the signer additionally delegates the inner signing keys corresponding to the
admissible blocks by encrypting them under the sanitizer public key. Note that
all message blocks are treated equally, which is critical for invisibility, except
for the generation of the ciphertext. By the semantic security of the encryption
scheme, the signature is still invisible to the eyes of an external observer.

To generate signatures for sanitized messages, the sanitizer simply uses the
delegated inner signing keys to sign the modified message blocks. However, the
resulting sanitized signature is now linkable since the outer signature on the
inner verification keys and the keys themselves remain unchanged. To resolve this
issue, we need to craft an inner signature scheme with some special properties.
Our inner signatures scheme is very similar to the Boneh–Lynn–Shacham (BLS)
signature scheme [4] and works as follows: The public key consists of two group

2 We remark that verifiable ring signatures can be implemented from unique [18],
linkable [27], accountable [35], or traceable [21] ring signatures, so the transformation
also works with these kinds of signature.
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elements (Gx
1 , Gxy

1 ) and the secret key y ∈ Zq can be used to sign a message m
by computing σ := H(m)y ∈ G2. The verification is done using the pairing

e (Gx
1 , σ) = e (Gxy

1 ,H(m)) .

The difference with respect to BLS lies in the extra term of the public key whose
role will appear clear in a moment. The property that we need is that the keys
and the signatures are publicly re-randomizable, i.e., one can compute consistent
scalings of both the signature and the public key

(σ, (Gx
1 , Gxy

1 )) �→ (σ, (Gx
1 , Gxy

1 ))r :=
(
σr,

(
Grx

1 , Grx·y
1

))
.

It is easy to see that the resulting key-signature pair is still consistent, i.e., the
verification checks out. Unfortunately, it turns out that the re-randomization
strategy of above is too simplistic and it is prone to mix-and-match attacks. We
therefore devise a slightly more sophisticated re-randomization procedure

(σ, (Gx
1 , Gxy

1 )) �→ (
σs,

(
Grx

1 , Grx·sy
1

))
.

which scales the two elements of the public keys by two different scalars r and
rs respectively. Fortunately, this does not affect the correctness of the scheme.

Table 1. Size of the parameters.

Sig. SK San. SK Sig. PK San. PK Signature Proof

(� + 1) Z
∗
q 2 Z

∗
q

1 G1+

� G2

2 G1

(� + 5) Z
∗
q+

(2� + 11) G1+

(� + 2) G2

2 Z
∗
q+

3 G1

The last obstacle towards decorrelating signed and sanitized signatures is a
mechanism to publicly rerandomize the outer signature so that it is consistent
with the rerandomized inner verification keys. More concretely, the problem is to
rerandomize signatures of (Gx1

1 , . . . , Gx�
1 ) and (Gx1y1

1 , . . . , Gx�y�

1 ) to signatures of
(Grx1

1 , . . . , Grx�
1 ) and (Grsx1y1

1 , . . . , Grsx�y�

1 ) respectively. It turns out that equiv-
alence class signatures (EQS) [22] provide exactly such functionality.

1.3 Our Results

To summarize, in this paper we present the following results:

– We present the first efficient sanitizable signature scheme which simultane-
ously achieves unlinkability and invisibility. This resolves an open problem
posed by Camenisch et al. [10]. Our construction is over type-III pairing
groups. It uses an equivalence class signature (EQS) scheme, a public-key
encryption (PKE) scheme, a hash function (modeled as a random oracle)
with images living in G2, and a verifiable ring signature (VRS) scheme.
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We suggest to instantiate our construction with the EQS scheme of Fuchs-
bauer, Hanser, and Slamanig [19], the PKE scheme obtained by applying the
Fujisaki-Okamoto transformation [20] to the ElGamal encryption scheme [15],
and the VRS scheme of Bultel and Lafourcade [9]. The efficiency of such an
instantiation is summarized in Tables 1 and 2.

– We construct weak sanitizable signatures from equivalence class signatures
and other basic primitives. The scheme is weak in the sense that it satisfies
weak immutability, weak unlinkability, strong proof-restricted transparency3,
and strong invisibility, but not accountability.

– We present a generic transformation from weak sanitizable signatures to fully-
fledged sanitizable signatures, using VRS. Fully-fledged sanitizable signa-
tures satisfy immutability, unlinkability, strong proof-restricted transparency,
strong invisibility, and strong accountability. The transformation is very effi-
cient as it ignores the structure of the underlying weak sanitizable signature
scheme. This allows the future design of sanitizable signatures to focus on
achieving other properties while not worrying about accountability.

Table 2. Dominating operations in algorithms.

Op. Signing Sanitizing Verifying Proving Judging

Exp.
(4� + 11) G1+

(� + 2) G2

(2� + 14) G1+

(� + 2) G2

8 G1 3 G1 4 G1

Pairings - - 4� + 6 - -

1.4 Related Work

An alternative definition of accountability called non-interactive public account-
ability was given by Brzuska et al. [8]. This variant of accountability is mutually
exclusive with transparency. Several existing works [7,9,17,26] proposed schemes
that are both transparent and unlinkable. Recently, Krenn et al. [25] propose the
“strong” versions of unforgeability, (non-interactive public) accountability, and
transparency.

The above works do not consider the notion of invisibility which dates
back to the original work by Ateniese et al. [1], and was formalized by
Camenisch et al. [10]. Beck et al. [2] refined the notion to strong invisibility
and proposed a scheme that is both strongly invisible and strongly account-
able. Recently Fischlin et al. [16] show that an invisible (but not unlinkable nor
transparent) sanitizable signature scheme can be obtained from any public key
encryption scheme.

Miyazaki et al. [29] also considered “invisible sanitizable signatures” which
is actually a different primitive known as redactable signatures [13] as discussed
in [10]. Extensions of sanitizable signatures such as the multi-sanitizer setting [12]
3 Our construction actually achieves perfect strong (non-proof-restricted)

transparency.
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and a setting where the modification capabilities of the sanitizer are limited [11]
were also considered. Other primitives related to sanitizable signatures include
homomorphic signatures [23,24], redactable signatures [5,13,31], and proxy sig-
natures [30,32,34]. To the best of our knowledge, none of the existing works
present an efficient sanitizable signature scheme that simultaneously achieves
all of the five security properties, and in particular unlinkability and invisibility
together.

2 Preliminaries

Throughout this work we denote by λ ∈ N the security parameter and by poly(λ)
any function that is bounded by a polynomial in λ. We denote any function that
is negligible in the security parameter by negl(λ). We say that an algorithm
is PPT if it is modelled as a probabilistic Turing machine whose running time
is bounded by some function poly (λ). Given a set S, we denote by x ← S
the sampling of and element uniformly at random from S, and we denote by
x ← A(in) the output of the algorithm A on input in. The elements of the set
{1, . . . , n} are succinctly represented as [n]. Next we define the necessary notions
for understanding our constructions.

2.1 Class-Hiding Groups

Let BG := (G1,G2,GT , g1, g2, gT , e, q) ← BGGen(1λ) be the description of a
multiplicative bilinear group of prime order q generated by some efficient PPT
algorithm BGGen(1λ). Let X̄ = (X1, . . . , X�) ∈ G

�
1 and ρ ∈ Zq. We write X̄ :=

(X1, . . . , X�)ρ := (Xρ
1 , . . . , Xρ

� ). We then define the equivalence relation

R := {(M̄, N̄) : ∃� > 1, ρ ∈ Z
∗
q s.t . (M̄, N̄) ∈ G

�
1 × G

�
1 ∧ N̄ = M̄ρ}.

For a vector M̄ ∈ G
�
1 for some � > 1, its equivalence class is defined by

[M̄ ]R := {N̄ ∈ G
�
1 : (M̄, N̄) ∈ R}.

Next we define the notion of class hiding for a relation R, which intuitively says
that it should be hard to distinguish elements from the same equivalence class
from randomly sampled group elements4.

Definition 1 (Class-Hiding). A relation R is said to be class-hiding if for all
� > 1 and for all PPT adversaries A there exists a negligible function negl(λ)
such that
∣
∣
∣
∣Pr

[
b′ = b : b ← {0, 1};BG ← BGGen(1λ); (M,M0) ← (G�

1)
2;

M1 ← [M ]R; b′ ← A(BG,M,Mb)

]
− 1

2

∣
∣
∣
∣ ≤ negl(λ) .

The following lemma was proven (in different wordings) by Hanser and
Slamanig [22]:

Lemma 1 ([22]). R is class-hiding if and only if the DDH assumption holds
in G1.
4 Class-hiding was originally introduced [22] as a property of equivalence class

signatures.
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2.2 Equivalence Class Signatures

Equivalence class signatures allow users to sign representatives of the equivalence
classes defined above, such that a representative and its corresponding signature
can be adapted to give a fresh signature of a random representative in the same
class. Below, we recall the formal definition of equivalence class signatures [22].

Definition 2 (EQS). An equivalence class signature (EQS) scheme is defined
with respect to a bilinear group description BG and a message length � > 1.
An EQS scheme is a tuple of PPT algorithms (KGen,Sign,ChgRep,Vf,VfKey)
defined as follows:
(pk, sk) ← KGen(BG, 1�): The key generation algorithm inputs a group BG and
the message length 1�. It outputs a key pair (pk, sk).
σ ← Sign(sk, M̄): The signing algorithm inputs the secret key sk and a message
M̄ ∈ G

�
1. It outputs a signature σ on the equivalence class [M̄ ]R.

σ′ ← ChgRep(pk, M̄ , σ, ρ): The change representation algorithm inputs the public
key pk, a message M̄ ∈ G

�
1, a signature σ on the equivalence class [M̄ ]R, and a

scalar ρ. It outputs a new signature σ′ on the (same) equivalence class [M̄ρ]R =
[M̄ ]R.
b ← Vf(pk, M̄ , σ): The signature verification algorithm inputs the public key pk,
a message M̄ ∈ G

�
1, and a signature σ. It returns b = 1 if σ is a valid signature

under pk on the equivalence class [M̄ ]R, and b = 0 otherwise.
b ← VfKey(pk, sk): The key verification algorithm inputs a public key pk and a
secret key sk. It returns b = 1 if the keys are consistent and b = 0 otherwise.

We refer the reader to [22] for a formal treatment of correctness. We define
existential unforgeability under random message attacks (EUF-CMA) in the
following.

Definition 3 (EUF-CMA). An EQS scheme is said to be existentially
unforgeable under chosen message attacks (EUF-CMA) if for all � > 1, for
all n ∈ poly(λ), and for all PPT adversaries A,

Pr

⎡

⎣1 = Vf(pk,M∗, σ∗) ∧
∀M ∈ Q : [M ]R 
= [M∗]R

:
BG ← BGGen(1λ);
(pk, sk) ← KGen(BG, 1�);
(M∗, σ∗) ← ASign(sk,·)(pk)

⎤

⎦ ≤ negl(λ) .

Next we recall the notion of signature adaptation which captures the fact
that signatures output by ChgRep are distributed like fresh signatures on the
new representative.

Definition 4 (Perfect Signature Adaptation). An EQS scheme is said
to perfectly adapt signatures if for all tuples (sk, pk, M̄ , σ, ρ) such that
VfKey(pk, sk) = 1, Vf(pk, M̄ , σ) = 1, M̄ ∈ G

�
1 for some � > 1, and ρ ← Z

∗
q

it holds that

ChgRep(pk, M̄ , σ, ρ) and Sign(sk, M̄ρ)

are identically distributed.
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2.3 Verifiable Ring Signatures

Ring Signatures allow users to sign a message anonymously within a group of
users, where the group is chosen upon signature creation in an ad-hoc way. Ver-
ifiable Ring Signatures (VRS) allow each user of the group to prove a posteriori
whether he is the signer of a given message or not. VRS was formally defined
and constructed in [28]. Below, we recall the syntax of VRS.

Definition 5 (Verifiable Ring Signature (VRS)). A Verifiable Ring Signa-
ture (VRS) scheme is a tuple of six algorithms VRS = (Setup,KGen,Sign,Verify,
Prove, Judge) defined as follows:
pp ← Setup(1λ): On input the security parameter 1λ, return the public parame-
ters pp.
(pk, sk) ← KGen(pp): On input the public parameters pp, return a pair of signer
public/private keys (pk, sk).
σ ← Sign(sk, L,m): On input the secret key sk, a ring L, and a message m,
return a signature σ on the message m under the set of public keys L.
b ← Verify(L,m, σ): On input a ring L, a message m, and a signature σ, return
a bit b or the distinguished symbol ⊥.
π ← Prove(L,m, σ, pk, sk): On input a ring L, a message m, a signature σ, a
public key pk, and a secret key sk, return a proof π.
b ← Judge(L,m, σ, pk, π): On input a ring L, a message m, a signature σ, a
public key pk, and a proof π, return a bit b or the distinguished symbol ⊥. By
convention, if b = 1 (resp. 0) then π proves that σ was (resp. was not) generated
by the signer corresponding to the public key pk.

A VRS is required to be (strongly) unforgeable, (strongly) accountable,
anonymous, and (strongly) non-seizable. For their formal definitions we refer
to the full version.

3 Definition of Sanitizable Signatures

In the following we recall the syntax of sanitizable signatures. Let the signer
and the sanitizer be denoted by S and Z respectively. Throughout this work we
consider messages m = (m1, . . . ,m�) to be tuples of � parts for some � > 1,
where mk ∈ {0, 1}∗ for all k ∈ �, and represent the admissible modification as
a bit string α = α1‖ . . . ‖α� ∈ {0, 1}�. We write αk = 1 if and only if the k-th
block is admissible. For ease of exposition, we sometimes write k ∈ α instead of
αk = 1.

Let δ be a function which maps a message m to another message m′ = δ(m).
Also, we say that δ is an admissible modification, denoted by α(δ) = 1, if and
only if for all messages m and m′ = δ(m), it holds that m′

k = mk for all k ∈ α.

Definition 6 (Sanitizable Signature Scheme). A sanitizable signature
scheme consists of the PPT algorithms (Setup,KGenS,KGenZ,Sign,San,Verify,
Prove, Judge).
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pp ← Setup(1λ, 1�): The setup algorithm inputs the security parameter 1λ and
the (maximum) length 1� of the messages and creates a public parameter pp.
(pkS, skS) ← KGenS(pp): The signer key generation algorithm inputs the pub-
lic parameter pp and outputs (pkS, skS), the public and secret key of the signer
respectively.
(pkZ, skZ) ← KGenZ(pp): The sanitizer key generation algorithm inputs the public
parameter pp and outputs (pkZ, skZ), the public and secret key of the sanitizer
respectively.
σ ← Sign(skS, pkZ,m, α): The signing algorithm inputs a message m ∈ ({0, 1}∗)�,
a signer private key skS, a sanitizer public key pkZ, as well as a description α of
the admissible modifications to m by the sanitizer and outputs a signature σ.
σ′ ← San(pkS, skZ,m, δ, σ): The sanitizing algorithm takes as input a message
m ∈ ({0, 1}∗)�, a description δ of the desired modifications to m, a signature
σ, the signer public key pkS, and a sanitizer private key skZ. It outputs a new
signature σ′.
b ← Verify(pkS, pkZ,m, σ): The verification algorithm inputs a message m, a sig-
nature σ, a signer public key pkS, as well as a sanitizer public key pkZ and
outputs a bit b.
π ← Prove(skS, pkZ,m, σ): The proof algorithm takes as input a signer private
key skS, a message m, a signature σ, and a sanitizer public key pkZ and outputs
a proof π.
d ← Judge(pkS, pkZ,m, σ, π): The judge algorithm inputs a message m, a sig-
nature σ, signer and sanitizer public keys pkS, pkZ, and proof π. It outputs a
decision d ∈ {S,Z} indicating whether the message-signature pair was created by
the signer or the sanitizer.

For a sanitizable signature scheme the usual correctness properties should hold,
saying that genuinely signed or sanitized messages are accepted and that a gen-
uinely created proof by the signer leads the judge to decide in favor of the signer.
For a formal approach to correctness see [6].

3.1 Unlinkability and Invisibility

In the original definition of unlinkability by Brzuska et al. [7], the property was
modeled using an experiment where the adversary gets access to, among other
oracles, a “left-or-right sanitize” oracle LoRSanitO, which inputs two message-
modification-signature tuples and outputs a sanitized signature produced from
one of the tuples. The adversary’s task is to decide which tuple is used for the
sanitization.

To define LoRSanitO, Brzuska et al. assumed that the description of admissi-
ble modifications α can be recovered from a valid signature, so that LoRSanitO
can recover the admissible modifications from both input signatures and check
whether they are equal. Note that if this check is omitted, then the adversary
can trivially decide which signature is used by querying the sanitize oracle SanO
on the output of LoRSanitO.



Efficient Invisible and Unlinkable Sanitizable Signatures 169

Fig. 2. Oracles for sanitizable signatures
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Fig. 3. Security experiments for sanitizable signatures. Oracles are defined in Fig. 2.

Brzuska et al. did not explicitly state if such recovery can be done publicly
or requires a secret key. Indeed, in all existing constructions of unlinkable sani-
tizable signatures [7], the recovery mechanism is public, which violates invisibil-
ity. Therefore, to achieve unlinkability and invisibility simultaneously, we must
explicitly state that the admissible modifications can be recovered from a valid
signature (hopefully only) with the corresponding sanitizer secret key. We say
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that a sanitizable signature scheme has privately extractable admissible modifi-
cations, if there exists a PPT algorithm ExtAdm which performs the following:

α ← ExtAdm(pkS, skZ, σ): The admissible modifications extraction algorithm
inputs a signer public key pkS, a sanitizer secret key skZ, and a signature. It
outputs a description α of the admissible modifications.

In what follows, we only consider sanitizable signature schemes which have
privately extractable admissible modifications.

3.2 Security of Sanitizable Signatures

We require a sanitizable signature scheme to be immutable, strongly account-
able, strongly invisible, strongly proof-restrictedly transparent, and unlinkable.
Different variations of these properties were defined in the literature [2,6,7,25].
We will recall the definitions below for completeness. Additionally, we define the
notions of weak immutability and weak unlinkability, which are achieved by our
first construction. Our second construction then upgrades these properties to
their regular counterparts.

We remark that (strong) unforgeability and privacy were considered in the
literature. It is known that (strong) signer accountability and (strong) sani-
tizer accountability together imply (strong) unforgeability, while (strong) proof-
restricted transparency implies proof-restricted privacy [6,25]. Unlinkability is
also shown to imply privacy [7]. We therefore do not consider unforgeability and
privacy explicitly.

Immutability. Immutability requires that a malicious sanitizer cannot change
inadmissible blocks. That is, an adversary should not be able to produce a forgery
(pk∗

Z,m∗, σ∗), such that m∗ cannot be produced by any admissible modifications
delegated to pk∗

Z. Note that the set of admissible modifications of a signature is
bound to (the public key of) the sanitizer to which the signature is issued. We
also consider a relaxed notion called weak immutability, where a forgery is not
considered valid if m∗ can be produced by a modification which is admissible for
some (not necessarily pk∗

Z) sanitizers.

Definition 7 (Immutability [6]). A sanitizable signature scheme Π is said
to be immutable if for all PPT adversaries A, the probability that the experi-
ment Pr

[
ExpImmutabilityA,Π(1λ) = 1

] ≤ negl(λ) where ExpImmutabilityA,Π(1λ)
is defined in Fig. 3. Additionally, we say that Π is weakly immutable if, in the
experiment wExpImmutabilityA,Π(1λ), the condition pk∗

Z = pkZ,i in the dashed
box is dropped.

Strong Transparency. Transparency means that sanitized signatures look like
non-sanitized signatures. Rigorously speaking, transparency cannot be achieved
if one is given oracle access to a prove oracle, which distinguishes sanitized
signatures from fresh signatures. A relaxed notion, known as proof-restricted
transparency is thus considered, which requires that one cannot decide whether
a signature is sanitized or fresh, without the help of the prove oracle.
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Definition 8 (Strong (Proof-Restricted) Transparency [25]). A sanitiz-
able signature scheme Π is strongly proof-restrictedly transparent if for all PPT
adversaries A,

|Pr
[
ExpTransparency0A,Π(1λ) = 1

]
− Pr

[
ExpTransparency1A,Π(1λ) = 1

]
|≤ negl(λ)

where ExpTransparencyb
A,Π(1λ) is defined in Fig. 3. If

Pr
[
ExpTransparency0A,Π(1λ) = 1

]
= Pr

[
ExpTransparency1A,Π(1λ) = 1

]

then we say Π is perfectly strongly proof-restrictedly transparent. Furthermore, if
the step Q = Q‖(δ(m), σ′) in the Sign/SanOb oracle (highlighted in the dashed
box) is dropped, so that Q remains empty throughout the experiment, then we
simply say Π is perfectly strongly transparent.

Strong Accountability. This property demands that the origin of a (possibly
sanitized) signature should be undeniable by the signer.

Definition 9 (Strong Sanitizer-Accountability [25]). A sanitizable signa-
ture scheme Π is strongly sanitizer-accountable if for all PPT adversaries A,

Pr
[
ExpSanAccA,Π(1λ) = 1

] ≤ negl(λ)

where ExpSanAccA,Π(1λ) is defined in Fig. 3.

Definition 10 (Strong Signer-Accountability [25]). A sanitizable signature
scheme Π is strongly signer-accountable if for all PPT adversaries A,

Pr
[
ExpSigAccA,Π(1λ) = 1

] ≤ negl(λ)

where ExpSigAccA,Π(1λ) is defined in Fig. 3.

Invisibility. Invisibility requires that the admissible modifications of a signature
are hidden from an external observer.

Definition 11 (Strong Invisibility [2]). A sanitizable signature scheme Π is
strongly invisible if for all PPT adversaries A,

|Pr [ExpInvisibility0A,Π(1λ) = 1
] − Pr

[
ExpInvisibility1A,Π(1λ) = 1

] | ≤ negl(λ)

where ExpInvisibilityb
A,Π(1λ) is defined in Fig. 3.

Unlinkability. Unlinkability means that one cannot decide the source of a given
sanitized signature, unless it is revealed trivially by the message. The notion is
modeled by considering an experiment where the adversary is given a “left-or-
right sanitize” oracle LoRSanitO which, on input two signatures, sanitizes one of
them and returns the resulting signature. We also consider a relaxed notion called
weak unlinkability, where the adversary is only allowed to query LoRSanitO on
honestly generated signatures.
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Definition 12 (Weak Unlinkability). A sanitizable signature scheme SS is
weakly unlinkable if for all PPT adversaries A,

|Pr [wExpUnlink0A,SS(1
λ) = 1

] − Pr
[
wExpUnlink1A,SS(1

λ) = 1
] | ≤ negl(λ)

where wExpUnlinkb
A,SS(1

λ) is defined in Fig. 3.

Definition 13 (Unlinkability [6]). A sanitizable signature scheme SS is
unlinkable if for all PPT adversaries A,

|Pr [ExpUnlink0A,SS(1
λ) = 1

] − Pr
[
ExpUnlink1A,SS(1

λ) = 1
] | ≤ negl(λ)

where ExpUnlinkb
A,SS(1

λ) is defined in Fig. 3.

4 Construction

We propose a two-step construction of sanitizable signatures with immutability,
strong accountability, strong proof-restricted transparency, strong invisibility,
and unlinkability. In the first step, using equivalence class signatures and other
basic primitives, we construct a scheme with weak immutability, perfect strong
transparency, strong invisibility, and weak unlinkability. This scheme does not
achieve accountability. Next, we show how one can transform any schemes with
these properties one with all desirable properties, using verifiable ring signatures.

4.1 Construction I: Achieving Unlinkability and Invisibility

Let � > 1 be an integer. Let EQS be an equivalence class signature scheme, H :
{0, 1}∗ → G2 be a hash function (to be modeled as a random oracle), and PKE be
a public-key encryption scheme. We present in Fig. 4 a construction of sanitizable
signatures Π1. The construction satisfies weak immutability, strong invisibility,
perfect strong transparency, and weak unlinkability, but not accountability.

Informally, the signer issues signatures as follows. On input a message m =
m1‖ . . . ‖m�, the signer samples � fresh BLS-like public and secret keys, which
are used to sign the � messages. Concretely, the i-th public key consists of a tuple
(Xi, Yi) ∈ G

2
1 with Yi = Xyi

i for some yi ∈ Zq, and the secret key is yi. It then
signs the vectors X̄ = (X1, . . . , X�) and Ȳ = (Y1, . . . , Y�) using EQS. Next, in the
same way as in [2], it encrypts the BLS-like secret keys yi corresponding to the
admissible message blocks using the PKE public key of the sanitizer. Finally, it
outputs the signature which consists of two EQS signatures, � BLS-like signatures
and public keys, and a PKE ciphertext.

To sanitize, the sanitizer decrypts the PKE ciphertext and obtains the BLS-
like secret keys corresponding to the admissible blocks, which are then used to
sign the corresponding modified messages. Using the homomorphic property of
the BLS-like scheme, the sanitizer can rerandomize X̄ and Ȳ to X̄r and Ȳ r·s

respectively, and rerandomize the signatures accordingly so that they are com-
patible with the new public keys. Using the signature adaptation properties of
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Fig. 4. Construction of weak sanitizable signatures. Prove and Judge always output ε
(the empty string) and S (the signer) respectively, and are omitted.
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EQS, it can also obtain fresh-looking EQS signatures on X̄r and Ȳ r·s respectively.
Finally, the sanitizer re-encrypts the new BLS-like secret keys, and outputs the
signature.

Since we do not aim to provide accountability, the prove algorithm always
returns the empty string ε and the judge algorithm always outputs S. The cor-
rectness of Π1 follows trivially from the correctness of the building blocks. Below,
we state our main theorem and we defer its proof to Sect. 5.

Theorem 1. Let q > 2λ. If EQS is EUF-CMA-secure, then Π1 is weakly
immutable in the generic group and random oracle model. If PKE is IND-CCA-
secure, then Π1 is strongly invisible. If EQS perfectly adapts signatures, then
Π1 is perfectly strongly transparent (and hence also perfectly strongly proof-
restrictedly transparent). If the equivalence relation R is class-hiding, EQS per-
fectly adapt signatures, and PKE is correct and is IND-CCA-secure, then Π1 is
weakly unlinkable in the generic group random oracle model.

Finally, we remark that it is trivial to extend the construction to the multi-
sanitizer setting by encrypting the (possibly different subsets of) BLS-like keys
for different sanitizers.

4.2 Construction II: Generic Transformation for Accountability

In this section, we show a generic transformation (Fig. 5), from any weakly
immutable, non-accountable, strongly invisible, strongly proof-restricted trans-
parent, and weakly unlinkable schemes Π1, to an immutable, strongly account-
able, strongly invisible, strongly proof-restricted transparent, and unlinkable
scheme Π2, using a verifiable ring signature scheme VRS.

An overview of the transform follows. The signer signs the public key of the
sanitizer and the message in σSS using Π1, then signs σSS in σVRS using VRS,
where the ring contains the public key of the signer and the public key of the
sanitizer. The signer outputs the signature σ = (σSS, σVRS). To sanitize, the
sanitizer sanitizes σSS using Π1 to produce σ′

SS, then signs σ′
SS in σ′

VRS using
VRS. The sanitized signature is σ′ = (σ′

SS, σ
′
VRS). To verify any signature σ =

(σSS, σVRS), the verifier uses the verification algorithm of Π1 on σSS and the
verification algorithm of VRS on σVRS. To prove that a signature σ′ = (σ′

SS, σ
′
VRS)

is sanitized, the signer proves that he did not generate σ′
VRS using the prove

algorithm of VRS, which gives accountability.
Next, we sketch why the other security properties are preserved. For concise-

ness, we omit the qualitative attributes such as strong and proof-restricted in
the following discussion. First, since Π1 is weakly immutable, the sanitizer is not
able to forge the part σ′

SS of a sanitized signature for a non-admissible message
nor changing the sanitizer public key (which is signed as a message of Π1). This
implies that the resulting scheme is immutable. Next, since Π1 is transparent,
one cannot guess whether a signature is sanitized or not from the part σSS. On
the other hand, since VRS is anonymous, one cannot guess whether the part
σVRS was created by the signer or by the sanitizer. Combining both properties,
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Fig. 5. Generic transformation from weak to fully-fledged sanitizable signatures.

we conclude that one cannot guess whether the signature was sanitized or not,
i.e., Π2 is transparent. Thirdly, Π1 is invisible, so the part σSS hides all informa-
tion about the possible modifications of the message. Moreover, The signature
σVRS contains no information about the modifiable parts of the message. This
implies that Π2 is invisible. Finally, Π1 is unlinkable, so the first part σ′

SS of a
sanitized signature hides any information about the original signature, and the
second part σ′

VRS does not depend on the original signature, so our resulting
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scheme Π2 is also unlinkable. Note that Π1 is weakly unlinkable in the sense
that it is no longer secure if the adversary is allowed to send fresh signatures to
the oracle LoRSanitO. This does not impact the security of Π2, because σSS is
signed in σVRS, so to produce a fresh signature (σ′

SS, σ
′
VRS), the adversary should

be able to forge σ′
VRS, which is supposed to be hard under the hypothesis that

the VRS scheme is unforgeable.
The correctness of Π2 follows trivially from the correctness of Π1 and VRS.

Below, we state the formal security results for the construction. Due to space
constraints, we refer to the full version of this work for the formal security proofs.

Theorem 2. If Π1 is weakly immutable, then Π2 is immutable. If Π1 is weakly
unlinkable, and VRS is strongly unforgeable, then Π2 is unlinkable. If Π1 is
strongly invisible then Π2 is strongly invisible. If VRS is strongly accountable,
then Π2 is strongly signer accountable. If VRS is strongly non-seizable, then Π2

is strongly sanitizer accountable. If VRS is anonymous and Π1 is strongly proof-
restrictedly transparent, then Π2 is strongly proof-restrictedly transparent.

We remark that verifiable ring signatures can be constructed generically from
linkable ring signatures [27], which in turn can be generically constructed from
unique ring signatures [18]. It is also possible to use any stronger primitive
such as traceable [21] or accountable [35] ring signatures, as long as the signers
are accountable. Furthermore, the transform can be easily extended to a multi-
sanitizer setting by signing with respect to a ring which consists of the signer and
multiple sanitizers. Depending on the variant of ring signatures used, we obtain
different flavors of accountability. As the implications are straightforward, we do
not elaborate further.

5 Security Proof for Construction I

The following proof uses the generic group model abstraction of Shoup [33] and
we refer the reader to [3] for a comprehensive introduction to the bilinear group
model. Here we state the central lemma useful for proving facts about generic
attackers.

Lemma 2 (Schwartz-Zippel). Let F (X1, . . . , Xm) be a non-zero polynomial
of degree d ≥ 0 over a field F. Then the probability that F (x1, . . . , xm) = 0 for
randomly chosen values (x1, . . . , xm) in F

n is bounded from above by d
|F| .

5.1 Weak Immutability

Proof (Weak Immutability). To prove that Π1 is weakly immutable, we first show
the generic hardness of the following problem.
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Lemma 3. Let (G1,G2,GT , G1, G2, GT , e, q) ← BGGen(1λ) with q > 2λ, and
a, b, c ← Zq. For all generic group adversary A, the probability that A on input
(G1, G

a
1 , G

b
1, G2, G

b
2, G

c
2) outputs (Gu

1 , Gv
1, G

x
1 , Gy

1, G
z
2) such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

au − x = 0
bv − y = 0
cy − xz = 0
v 
= 0

is negligible.

Proof. Let (Gu
1 , Gv

1, G
x
1 , Gy

1 , G
z
2) be the output of A. Since A is generic, it holds

that

u = u1 + uaa + ubb

v = v1 + vaa + vbb

x = x1 + xaa + xbb

y = y1 + yaa + ybb

z = z1 + zbb + zcc

for some coefficients u1, ua, ub, v1, va, vb, x1, xa, xb, y1, ya, yb, z1, zb, zc ∈ Zq. By
the relation au−x = 0, we have −x1 +(u1 −xa)a−xbb+uaa2 +ubab = 0. Note
that f(A,B) := −x1+(u1−xa)A−xbB+uaA2+ubAB is a quadratic polynomial
in the variables A and B. Suppose f is not a zero polynomial, by the Schwartz-
Zippel lemma (Lemma 2), for a, b ← Zq, the probability that f(a, b) = 0 is upper
bounded by 2/q < 21−λ which is negligible. Therefore we can assume that f is
always zero. In particular, we have x1 = xb = 0. Similarly, by examining the
relation bv − y = 0, we can assume that v1 = yb, and y1 = ya = 0. We can
therefore write x = xaa and y = ybb. Next, we examine the relation cy −xz = 0,
which implies

ybbc − xaz1a − xazbab − xazcac = 0.

Using the Schwartz-Zippel lemma again, we can assume that yb = 0. However,
this means that v = v1 = yb = 0, which contradicts with the fourth relation
v 
= 0. ��

Now, suppose there exists a generic group adversary A against the weak
immutability of Π1. We construct a generic group adversary C which solves the
problem defined in Lemma3. C receives as challenge (G1, G

a
1 , G

b
1, G2, G

c
2) from

its challenger. It then simulates the ExpImmutability experiment for A by setting
the public parameters and the signer keys honestly. Without loss of generality,
assume that A makes Q1 = poly(λ) signing oracle queries and Q2 = poly(λ)
random oracle queries for H(). C additionally samples i†, j† ← [Q1] as a guess
of which Sign oracle query A will attack against, k† ← [�] as the index of the
inadmissible block that will be modified in the forgery message, l† ← [Q2] as a
guess of which H() oracle query A will include as the inadmissible modification
in the forgery message.
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Answering Random Oracle Queries. Upon receiving (kl,ml) as the l-th distinct
query to the H() oracle, if l 
= l†, C answers the query by picking tl ← Z

∗
q and

return hl := Gtl
2 ∈ G2 to A. If l = l†, then C sets hl = Gc

2 where Gc
2 was received

as a challenge as described above. If (kl,ml) was a message that was queried
previously, then reply with the same response as before.

Answering Sign Oracle Queries. Upon receiving (pkZ,,mi, αi) as the i-th query
to the SignO oracle, if i 
= i† and i 
= j†, C answers the query honestly by running
the procedures as defined in the SignO oracle.

In the case i = i† or i = j†, C generates the signature honestly except for the
following changes:

1. If i = i†, then C picks the elements Xi†,1, . . . , Xi†,� as follows. C picks Xi†,k† =
Ga

1 which it had received from its challenger in the beginning. For all other
k ∈ [�] \ {k†}, C generates the Xk honestly by picking xi†,k ← Z

∗
q and setting

Xi†,k = G
x

i†,k

1 (as done in the SignO oracle). The rest of the signature is
generated as in the SignO oracle.

2. Suppose i = j†. If k† ∈ αj† , or (k†,mj†,k†) = (kl† ,ml†), then abort. Other-
wise, let t† be such that H(k†‖mj†,k†) = Gt†

2 . C first generates Xi†,1, . . . , Xi†,�

by picking xj†,k ← Z
∗
q and setting Xj†,k := G

x
j†,k

1 for all k ∈ [�]. Then C
picks the elements Yi†,1, . . . , Yi†,� as follows. C picks Yj†,k† = Gb

1 which it
had received from its challenger in the beginning. It then generates σj†,k†

as (Gb
2)

t†
x

j†,k† . For all other k 
= k†, C generates the Yj†,k and the rest of
the signature honestly as done in the SignO oracle. Note that as we assume
k† /∈ αj† in this case, the value yj†,k† is not needed to generate the signature.
Therefore the signature can be simulated faithfully.

Answering Prove Oracle Queries. The Prove oracle is trivially simulatable since
the Prove algorithm always returns ε.

Clearly, assuming that C did not abort, C simulates the wExpImmutability
experiment for A faithfully. Eventually, A outputs (pk∗

Z,m∗, σ∗) as a forgery such
that Verify(pk†

S, pk
∗
Z,m∗, σ∗) = 1, and m∗

k 
= mi,k for some i, k such that k /∈ αi.
Since Q1, � ∈ poly(λ), with non-negligible probability it holds that m∗

k† 
= mj†,k†

and k† /∈ αj† . Moreover, since Q2 ∈ poly(λ), with non-negligible probability it
holds that (k†,m∗

k†) = (kl† ,ml†). If that is the case, then the abort conditions
in the above procedures of answering sign oracle queries are never triggered.

Parse σ∗ as (μ∗, η∗, {σ∗
j ,X∗

j , Y ∗
j }�

j=1, c
∗). By the EUF-CMA-security of EQS,

with overwhelming probability we have that [X∗
1 , . . . , X∗

� ]R = [Xi∗,1, . . . , Xi∗,�]R
for some i∗, and [Y ∗

1 , . . . , Y ∗
� ]R = [Yj∗,1, . . . , Y

∗
j∗,�]R for some j∗ (otherwise we can

construct an adversary against the EUF-CMA-security of EQS by simply out-
putting μ or η). Therefore, there exists r, s ∈ Zq such that (Xi∗,1, . . . , Xi∗,�)r =
(X∗

1 , . . . , X∗
� ) and (Yj∗,1, . . . , Y

∗
j∗,�)

r·s = (Y ∗
1 , . . . , Y ∗

� ).
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Since Q1 ∈ poly(λ), it happens with non-negligible probability that (i†, j†) =
(i∗, j∗). Suppose this is the case. Let k′ be arbitrary with k′ 
= k†. C extracts Gr

1

and Grs
1 by computing

(X∗
k′)

1
x

i∗,k′ = G
r·(xi∗,k′)· 1

x
i∗,k′

1 = Gr
1

(Y ∗
k′)

1

(x
j∗,k′)·(y

j∗,k′) = (Gr·s
1 )

(x
j∗,k′)·(y

j∗,k′)
(x

j∗,k′)·(y
j∗,k′) = Gr·s

1 .

Since Verify(pkS, pk
∗
Z,m∗, σ∗) = 1, this implies that Y ∗

k† = Gr·s·b
1 
= G1. This

means that r · s 
= 0. Furthermore, we have

e(X∗
k† , σ

∗
k†) = e(Y ∗

k† ,H(k†‖m∗
k†))

e(Xr
i†,k† , σ

∗
k†) = e(Y r·s

j†,k† , G
c
2)

e(Gr·a
1 , σ∗

k†) = e(Gr·s·b
1 , Gc

2)

σ∗
k† = G

s·b·c
a

2

Now, set C outputs (Gu
1 , Gv

1, G
x
1 , Gy

1, G
z
2) := (Gr

1, G
r·s
1 , Gr·a

1 , Gr·s·b
1 , G

s·b·c
a

2 ). By a
routine calculation, one can verify that au − x = 0, bv − y = 0, cy − xz = 0
and v 
= 0. Since A only performs generic group operations, so does C, which
contradicts with Lemma 3. ��

5.2 Strong Invisibility

Proof (Strong Invisibility). We prove strong invisibility by hybrid argu-
ment. We define an intermediate experiment Hybb which is identical to
ExpInvisibilityb

A,Π(1λ) for both b ∈ {0, 1}, except for the following changes: When
answering LoRAdmOb oracle queries, the challenger signs with respect to the
policy α0 ◦ α1 instead of αb. We argue that, in the view of the adversary, the
experiments Hybb and ExpInvisibilityb

A,Π(1λ) are computationally indistinguish-
able for b ∈ {0, 1}. Suppose that is the case, since obviously Hyb0 is functionally
equivalent to Hyb1, it holds that ExpInvisibility0A,Π(1λ) is computationally indis-
tinguishable to ExpInvisibility1A,Π(1λ).

Before proving the claim above, we state two key observations. First, note
that the signatures returned by the LoRAdmOb oracle in the all experiments are
identically distributed if pkZ 
= pk†

Z (since now it must hold that α0 = α1 for the
oracle to not abort). In the case pkZ = pk†

Z, the signatures returned by the oracle
are almost identically distributed, except for the ciphertext c. In particular, in the
experiment ExpInvisibilityb

A,Π(1λ), the ciphertext is an encryption of the message
(αb, {ζb,i}�

i=0), where ζb,i = xi for all i ∈ αb, and is zero otherwise. On the other
hand, in Hybb, the ciphertext is an encryption of the message (α0 ◦α1, {ζb,i}�

i=0),
where ζb,i = xi for all i ∈ α0 ◦ α1, and is zero otherwise.

The second observation is that, due to the restriction imposed on the SanO′

oracle, the values xi for all i ∈ (αb−(α0◦α1)) are never used in any experiments.



Efficient Invisible and Unlinkable Sanitizable Signatures 181

With the above observations, we show how one can construct an algorithm
C, which breaks the IND-CCA-security of PKE, using a distinguisher which dis-
tinguishes Hybb from ExpInvisibilityb

A,Π(1λ). C receives a public key pkPKE from
the IND-CCA challenger, and acts as the challenger of either the experiment
ExpInvisibilityb

A,Π(1λ) or Hybb by setting pk†
Z := pkPKE and generating other keys

honestly.
Let (pkZ,mj , αj,0, αj,1) be thej-th query to the LoRAdmOb oracle. C answers

the query honestly if pkZ 
= pk†
Z. In the case where pkZ = pk†

Z, C generates
the ciphertext cj in the following way. It samples yj,i ←$Z

∗
q for all i ∈ [�], and

prepares

ζb,j,i :=

{
yj,i i ∈ αj,b

0 otherwise
, ∀i ∈ [�] ζ ′

b,j,i :=

{
yj,i i ∈ αj,0 ◦ αj,1

0 otherwise
, ∀i ∈ [�]

τb,j := (αj,b, {ζb,j,i}�
i=1) τ ′

b,j := (αj,0 ◦ αj,1, {ζ ′
b,j,i}�

i=1)

and queries the EncOb oracle provided by the IND-CCA challenger on (τb,j , τ
′
b,j)

and receive cj . C generates the rest of the signature honestly.
Upon receiving a query (pkS,m, δ, σ) to the SanO′ oracle, C parses σ

as (μ, η, {σi,Xi, Yi}�
i=1, c) and checks if c = cj for some j. If so, it uses

{yj,i}i∈αj,0∩αj,1 to answer the oracle query. If not, it queries the DecO oracle
provided by the IND-CCA challenger on c, receives τ = (α, {ζi}i∈�), and uses it
to answer the oracle query.

Clearly, depending on the choice of the IND-CCA challenger, our adversary
simulates either the experiment ExpsInvisbΠ,A(1λ) or Hybb faithfully. Therefore,
if there exists a distinguisher which distinguishes the two experiments with a
certain probability, then our adversary can guess the choice of the IND-CCA
challenger with the same probability. ��

5.3 Perfect Strong Transparency

Proof (Perfect Strong Transparency). We show that the construction is perfectly
strongly transparent through hybrid argument. First, observe that the Prove
algorithm, and hence also the ProveO oracle, always returns the empty string ε,
it is safe to drop the step Q = Q‖(δ(m), σ′) in the Sign/SanOb oracle.

Now, let Q = poly(λ) be the number of queries that the adversary A make
to the Sign/SanOb oracle. We define the hybrids Hyb0, . . . ,Hybq as follows. The
hybrid Hyb0 is identical to ExpTrans0Π,A(1λ). For j ∈ [Q], Hybj is almost identical
to Hybj−1, except that in the former the j-th query to the Sign/SanOb is answered
as in ExpTrans1Π,A(1λ). That is, the first j signatures returned by Sign/SanOb

are sanitized, while the last Q − j signatures are freshly signed. Note that HybQ

is identical to ExpTrans1Π,A(1λ). Obviously, if Pr
[
Hybj−1 = 1

]
= Pr

[
Hybj = 1

]

for all j ∈ [Q], then Pr
[
ExpTrans0Π,A(1λ) = 1

]
= Pr

[
ExpTrans1Π,A(1λ) = 1

]
.

Fix j ∈ [Q]. In the following, we show that Pr
[
Hybj−1 = 1

]
= Pr

[
Hybj = 1

]
.

Let (m, δ, α) be the j-th query of A to the Sign/SanOb oracle. If δ /∈ α, then
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the oracle returns ⊥ in both experiments and thus the equality holds trivially.
Otherwise, let m′ := δ(m), and let σ′ be the response. In Hybj−1, the signature
σ′ is drawn from a distribution D where

D :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ :

xi, yi ← Z
∗
q , Xi := Gxi

1 , Yi := Xyi

i , ∀i ∈ [�]
μ ← EQS.Sign(sk†

S, (X1, . . . , X�))
η ← EQS.Sign(sk†

S, (Y1, . . . , Y�))
σi ← H(i‖m′

i)
yi , ∀i ∈ [�]

ζi :=

{
yi i ∈ α

0 otherwise
, ∀i ∈ [0, �]

τ := (α, {ζi}i∈[�])
c ← PKE.Enc(pk†

Z, τ)
σ := (μ, η, {σi,Xi, Yi}�

i=1, c)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Replacing xi and yi with r · xi and s · yi respectively for some r, s ← Z
∗
q , we

obtain a distribution D′ = D where

D′ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ :

r, s ← Z
∗
q

xi, yi ← Z
∗
q , Xi := Gxi

1 , Yi := Xyi

i , ∀i ∈ [�]
μ ← EQS.Sign(sk†

S, (X1, . . . , X�)r)
η ← EQS.Sign(sk†

S, (Y1, . . . , Y�)r·s)
σi ← H(i‖m′

i)
s·yi , ∀i ∈ [�]

ζi :=

{
s · yi i ∈ α

0 otherwise
, ∀i ∈ [�]

τ := (α, {ζi}i∈[�])
c ← PKE.Enc(pk†

Z, τ)
σ := (μ, η, {σi,X

r
i , Y r·s

i }�
i=1, c)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

By the perfect adaption of EQS, the distribution of EQS.Sign(sk†
S, (X1, . . . , X�)r)

and EQS.Sign(sk†
S, (Y1, . . . , Y�)r·s) is identical to that of ChgRep(pk†

S, (X1, . . . ,

X�), μ′, r) and ChgRep(pk†
S, (Y1, . . . , Y�), η′, r · s), where μ′ ← EQS.Sign(sk†

S,

(X1, . . . , X�)) and η′ ← EQS.Sign(sk†
S, (Y1, . . . , Y�)). Therefore, we obtain a dis-

tribution D′′ = D′ with

D′′ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ :

r, s ← Z
∗
q

xi, yi ← Z
∗
q , Xi := Gxi

1 , Yi := Xyi

i , ∀i ∈ [�]
μ′ ← EQS.Sign(sk†

S, (X1, . . . , X�))
η′ ← EQS.Sign(sk†

S, (Y1, . . . , Y�))
μ ← ChgRep(pk†

S, (X1, . . . , X�), μ′, r)
η ← ChgRep(pk†

S, (Y1, . . . , Y�), η′, r · s)
σi ← H(i‖m′

i)
s·yi , ∀i ∈ [�]

ζi :=

{
s · yi i ∈ α

0 otherwise
, ∀i ∈ [�]

τ := (α, {ζi}i∈[�])
c ← PKE.Enc(pk†

Z, τ)
σ := (μ, η, {σi,X

r
i , Y r·s

i }�
i=1, c)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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Note that in Hybj , the signature σ′ is drawn exactly from D′′. Therefore we can
conclude that Hybj−1 and Hybj are functionally equivalent. ��

5.4 Weak Unlinkability

Proof (Weak Unlinkability). To show that the experiments wExpUnlinkb
Π,A(1λ),

where b ∈ {0, 1}, are computationally indistinguishable in the view of the adver-
sary we define the following sequence of hybrids.

Hybb
0 : Defined as wExpUnlinkb

Π,A(1λ).
Hybb

1 : Defined as Hybb
0, except that an additional list L̃ is initialized empty

at the beginning of the experiment. Then, when a ciphertext c ←
PKE.Enc(pk†

Z, τ) is generated in the subroutine Sign of the oracle SignO, a
new entry (c, τ, {xi, yi}i∈[�]) is added to L̃. The wLoRSanit oracle runs the
following modified version of the subroutine ˜San: On input a certain c̃, it first
checks whether there is an entry (c̃, τ̃ , {x̃i, ỹi}i∈[�]) in L̃ and, if so, proceeds
by setting τ = τ̃ . Otherwise the algorithm aborts.

Hybb
2 : Defined as Hybb

1, except that the ciphertext c is computed as c ←
PKE.Enc(pk†

Z, (α, 0�)) in the SignO oracle. The suboutine ˜San also computes
c′ ← PKE.Enc(pk†

Z, (α, 0�)).
Hybb

3 : Defined as Hybb
2, except that the subroutine ˜San is modified to com-

pute the signatures μ′ and η′ as μ′ ← EQS.Sign(sk†
S, (X

′
1, . . . , X

′
�)) and

η′ ← EQS.Sign(sk†
S, (Y

′
1 , . . . , Y

′
� )), respectively.

Hybb
4 : Defined as Hybb

3, except that the subroutine ˜San samples a fresh
tuple (Z1, . . . , Z�) ← G

�
1 is sampled and (X ′

1, . . . , X
′
�) := (Z1, . . . , Z�) and

(Y ′
1 , . . . , Y

′
� ) := (Z ỹ1

1 , . . . , Z ỹ�

� )s.
Hybb

5 : Defined as Hybb
4, except that the subroutine ˜San samples a tuple

(w1, . . . , w�) ← Z
�
q and computes σ′

i as H(m′
i)

wi and (Y ′
1 , . . . , Y

′
� ) as

(Zw1
1 , . . . , Zw�

� ).

Observe that in the experiment Hybb
5 the output of the wLoRSanit oracle in Hybb

5

is completely decorrelated from the random coin b. It follows that for all PPT
adversaries we have that

∣
∣Pr

[
Hyb05 = 1

] − Pr
[
Hyb15 = 1

]∣∣ ≤ negl(λ) .

We now proceed by showing the indistinguishability of each pair of hybrids.

Lemma 4. Suppose PKE is correct. Then for all PPT A and b ∈ {0, 1} it holds
that

∣
∣
∣Pr

[
Hybb

0 = 1
]

− Pr
[
Hybb

1 = 1
]∣∣
∣ ≤ negl(λ) .

Proof (of Lemma 4). The experiments differ in the fact that in Hybb
1 the LoRSanit

oracle aborts when queried on some c̃ such that no entry (c̃, ·) is present in L̃. This
implies that c̃ was not produced by the signing oracle SignO, therefore also Hybb

0

aborts on the same input. The indistinguishability follows by the correctness of
the encryption scheme. ��
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Lemma 5. Suppose PKE is IND-CCA secure. Then for all PPT A and b ∈
{0, 1},

∣
∣
∣Pr

[
Hybb

1 = 1
]

− Pr
[
Hybb

2 =
]∣∣
∣ ≤ negl(λ) .

Proof (of Lemma 5). The lemma follows by a simple reduction to the (multiple-
message) CCA-security of the encryption scheme. On input a public key pk†

Z, the
reduction computes c by querying the challenger on (τ, (α, 0�)) and plugging in
the corresponding ciphertext c∗. The ciphertext c′ is computed analogously. The
oracle SanO is simulated by passing the input ciphertexts c̃ to the decryption
oracle and setting τ to be the corresponding output. It is easy to show that in
the one case the reduction perfectly simulates the distributions of Hybb

1 and in
the other case it is identical to Hybb

2. By the CCA-security of the encryption
scheme the claim follows. ��
Lemma 6. If EQS perfectly adapts signatures, then for all PPT A and b ∈
{0, 1}, ∣

∣
∣Pr

[
Hybb

2 = 1
]

− Pr
[
Hybb

3 = 1
]∣∣
∣ = 0.

Proof (of Lemma 6). Trivial. ��
Lemma 7. Let q > 2λ. For all generic group adversary A and b ∈ {0, 1} it
holds that

∣
∣
∣Pr

[
Hybb

3 = 1
]

− Pr
[
Hybb

4 = 1
]∣∣
∣ ≤ negl(λ) .

Proof (of Lemma 7). First observe that in Hybb
4 (with a slight notation abuse)

(Y ′
1 , . . . , Y

′
� ) = (Z ỹ1

1 , . . . , Z ỹ�

� )s = (X ′
1, . . . , X

′
�)

s(ỹ1,...,ỹ�)

whereas in Hybb
3

(Y ′
1 , . . . , Y

′
� ) = (Y1, . . . , Y�)r·s = (X ỹ1

1 , . . . , X ỹ�

� )r·s = (X ′
1, . . . , X

′
�)

s(ỹ1,...,ỹ�).

Therefore if the tuple (X ′
1, . . . , X

′
�) has the same distribution in both experiments

the indistinguishability follows. It remains to show that
(

G1,
X1, . . . , X�

Z1, . . . , Z�

)
≈

(
G1,

X1, . . . , X�

Xr
1 , . . . , Xr

�

)

over the random choice of (Z1, . . . , Z�, r). It is easy to show that the two dis-
tributions are indistinguishable by the hardness of the decisional Diffie-Hellman
problem [14]. For completeness, and as a warm-up for the proof of the next
lemma, we show that this holds in the generic group model. For ease of expo-
sition, we denote symbolically Xk := Gxk

1 and Zk := Gzk
1 for all k ∈ [�]. For

the left distribution we can rewrite all equations that the adversary learns as
symbolic degree 1 polynomials

x1x1 + . . . + x�x� + z1z1 + . . . + z�z� + c = 0
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for some coefficients (x1, . . . , x�, z1, . . . , z�, c). For the right distributions we have

x1x1 + . . . + x�x� + z1x1r + . . . + z�x�r + c = 0.

Since (x1, . . . , x�) and (z1, . . . , z�) are uniformly chosen, by Lemma 2 all coeffi-
cients in the left distribution must be 0 with all but negligible probability. The
same holds for the right distribution, since r is uniformly sampled. It follows
that a generic adversary cannot learn any non-trivial relation when it is given
either the left or the right distribution. Therefore the left and right distributions
look identical. ��
Lemma 8. Let q > 2λ. For all generic group adversary A and b ∈ {0, 1} it
holds that

∣
∣
∣Pr

[
Hybb

4 = 1
]

− Pr
[
Hybb

5 = 1
]∣∣
∣ ≤ negl(λ) .

Proof (of Lemma 8). The two experiments differ in the way the variables
(Y ′

1 , . . . , Y
′
� ) and (σ′

1, . . . , σ
′
�) are computed. Suppose that H(i‖mi) and H(i‖m′

i)

are programed to G
t0i
2 and G

t1i
2 respectively, where (t01, t

1
1, . . . , t

0
� , t

1
�) is a randomly

sampled vector in Z
2�
q . The indistinguishability of the two hybrids reduces to

arguing about the proximity of the following distributions
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G1,
Gy1

1 , . . . , Gy�

1 ,
Gz1

1 , . . . , Gz�
1 ,

Gsy1z1
1 , . . . , Gsy�z�

1 ,

G2,

G
t01y1
2 , . . . , G

t0�y�

2 ,

G
st11y1
2 , . . . , G

st1�y�

2 ,

G
t01
2 , . . . , G

t0�
2 ,

G
t11
2 , . . . , G

t1�
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≈

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G1,
Gy1

1 , . . . , Gy�

1 ,
Gz1

1 , . . . , Gz�
1 ,

Gw1z1
1 , . . . , Gw�z�

1 ,

G2,

G
t01y1
2 , . . . , G

t0�y�

2 ,

G
t11w1
2 , . . . , G

t1�w�

2 ,

G
t01
2 , . . . , G

t0�
2 ,

G
t11
2 , . . . , G

t1�
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the LHS corresponds to the distributions in Hybb
4 and the RHS corresponds

to the distributions in Hybb
5. Note that all non-trivial relations that the generic

attacker can learn are restricted to certain polynomials of degree at most 2. For
illustration, we can symbolically write the relations obtained from the RHS as

∑

i∈[�],j∈[�]

ai,j

(
t1i wi · wjzj

)
+

∑

i∈[�],j∈[�]

bi,j

(
t1i wi · yj

)

+
∑

i∈[�],j∈[�]

ci,j
(
t0i yi · wjzj

)
+

∑

i∈[�],j∈[�]

di,j

(
t0i yi · yj

)

+
∑

i∈[�],j∈[�],b∈{0,1}
ebi,j

(
tbi · wjzj

)
+

∑

i∈[�],j∈[�],b∈{0,1}
fbi,j

(
tbi · yj

)

+
∑

i∈[�],j∈[�]

gi,j

(
t1i wi · zj

)
+

∑

i∈[�]

hi

(
t1i wi

)
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+
∑

i∈[�],j∈[�]

ii,j
(
t01yi · zj

)
+

∑

i∈[�]

ji
(
t01yi

)

+
∑

i∈[�],j∈[�],b∈{0,1}
kbi,j

(
tbi · zj

)
+

∑

i∈[�],b∈{0,1}
lbi

(
tbi

)

+
∑

i∈[�]

mi(yi) +
∑

i∈[�]

ni(zi)

+
∑

i∈[�]

oi(wizi) +p

= 0.

whereas for the LHS the equation is identical except that all occurrences of wi

and wj are replaced with yi · s and yj · s, respectively. Since all variables are
uniformly distributed, by Lemma2 we have that the coefficient of each unique
monomial must be 0 with all but negligible probability. It is left to argue that
each non-trivial relation obtained on the RHS imply also a corresponding non-
trivial relation on the LHS, and viceversa. By inspection we isolate the pairs

⎛

⎝
∑

i∈[�],j∈[�],b∈{0,1}
ebi,j

(
tbi · wjzj

)
,

∑

i∈[�],j∈[�]

gi,j

(
t1i wi · zj

)
⎞

⎠

and ⎛

⎝
∑

i∈[�],j∈[�],b∈{0,1}
fbi,j

(
tbi · yj

)
,
∑

i∈[�]

ji(t0i yi)

⎞

⎠

that have potentially common monomials. For the latter case it is enough to
observe that the monomials are identical for both the LHS and the RHS distri-
butions as they are independent of wi and s for all i ∈ [�]. Therefore if

∑

i∈[�],j∈[�],b∈{0,1}
fi,j(tbi · yj) +

∑

i∈[�]

ji(t0i yi) = 0

in the RHS then so it does in the LHS, and vice versa. For the former case we
have that collisions occur only when i = j and b = 1, as otherwise the monomials
are distinct and therefore any non trivial set of coefficients will not cancel out
(with very high probability). Setting i = j and b = 1, for the RHS we have the
following constraint

∑

i∈[�]

e1i,i
(
t1i wizi

)
+

∑

i∈[�]

gi,i

(
t1i wizi

)
= 0

which implies that, with overwhelming probability, for all i ∈ [�] it holds that
e1i,i = −gi,i. Applying this constraint to the LHS we obtain a corresponding
non-trivial relation

∑

i∈[�]

e1i,i
(
st1i yizi

)
+

∑

i∈[�]

gi,i

(
st1i yizi

)
= 0.
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The reverse direction holds with an identical argument. Since there is a bijection
between the non-trivial relations on the LHS and those on the RHS, we can
conclude that the view of A in the two cases are indistinguishable. ��
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Abstract. Group signatures allow members of a group to anonymously
produce signatures on behalf of the group. They are an important build-
ing block for privacy-enhancing applications, e.g., enabling user data to
be collected in authenticated form while preserving the user’s privacy.
The linkability between the signatures thereby plays a crucial role for
balancing utility and privacy: knowing the correlation of events signifi-
cantly increases the utility of the data but also severely harms the user’s
privacy. Therefore group signatures are unlinkable per default, but either
support linking or identity escrow through a dedicated central party or
offer user-controlled linkability. However, both approaches have signifi-
cant limitations. The former relies on a fully trusted entity and reveals
too much information, and the latter requires exact knowledge of the
needed linkability at the moment when the signatures are created. How-
ever, often the exact purpose of the data might not be clear at the point
of data collection. In fact, data collectors tend to gather large amounts
of data at first, but will need linkability only for selected, small subsets
of the data. We introduce a new type of group signature that provides
a more flexible and privacy-friendly access to such selective linkability.
When created, all signatures are fully unlinkable. Only when strictly
needed or desired, should the required pieces be made linkable with the
help of a central entity. For privacy, this linkability is established in
an oblivious and non-transitive manner. We formally define the require-
ments for this new type of group signatures and provide an efficient
instantiation that provably satisfies these requirements under discrete-
logarithm based assumptions.

1 Introduction

Group signatures are a powerful and well-studied primitive that allow members
of a group to sign messages on behalf of the group in an anonymous way [2,4,9,
10,21,22,28,32–34]. That is, a verifier of a group signature is assured that it was
signed by a valid member of the group, but it does not learn anything about the
identity of the signer, or even whether two signatures stem from the same user.

L. Garms—Work done as an intern at IBM Research – Zurich.

c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11442, pp. 190–220, 2019.
https://doi.org/10.1007/978-3-030-17253-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17253-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-17253-4_7


Group Signatures with Selective Linkability 191

This makes group signatures highly suited whenever data is collected that needs
to be authenticated while, at the same time, the privacy of the data sources must
be respected and preserved. In particular when data is collected from users, the
protection of their privacy is of crucial importance, and sees increased attention
due to the recently introduced General Data Protection Regulation (GDPR) [1],
Europe’s new privacy regulation. In fact, the GDPR creates strong incentives for
data collectors to thoroughly protect users’ data and implement the principle of
data minimization, as data breaches are fined with up to 4% of an enterprises
annual turnover.

When aiming to implement such techniques for privacy and data protection,
one needs to find a good balance with utility though: data gets collected in order
to be analysed and to generate new insights. For these processes it is usually
necessary to know the correlation among different data events, as they carry a
crucial part of the information. For instance, when a group of users measure and
upload their blood pressure via wearable activity trackers, several high value
measurements are not critical when they are distributed over many participants,
but might be alarming when originating from a single user.

Often the exact purpose of the data might not be clear at the point of data
collection. In fact, given the rapid advancements in machine learning and the
ubiquitously available and cheap storage, data collectors tend to gather large
amounts of data at first, and will only use small subsets for particular appli-
cations as they arise. A famous example are the Google Street View cars that
inadvertently recorded public Wi-Fi data like SSID information, which later got
used to improve Google’s location services.

Ideally, the data should be collected and stored in authenticated and unlink-
able form, and only the particular subsets that are needed later on should be
correlated in a controlled and flexible manner.

Linkability in Group Signatures. To address the tension between privacy
and utility, group signatures often have built-in measures that control linkability
of otherwise anonymously authenticated information. Interestingly, despite the
long line of work on this subject, none of the solutions provides the functionality
to cater for the flexibility needed in practice: They either recover linkablity in a
privacy-invasive way or offer control only in a static manner.

Group Signatures with Opening. Standard group signatures [4,5,9,10,22,34]
guarantee full unlinkability of signatures, except to the group manager (or ded-
icated opening authority) that owns a so-called opening key. The opening key
allows the group manager, when given a signature, to recover the signer’s iden-
tity. Originally, the opening was intended to prevent abuse of anonymity, and
rather meant to be used in extreme situations. Clearly, the opening capability
can also be leveraged to determine the linkability of various data events, but at
high costs for privacy: every request for linkability will recover the full identity
of the signer, and the central group manager learns the (signed) data of the data
collectors and their correlation.
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Group Signatures with Controlled Linkability. A more suitable solution are group
signatures with controlled linkability [29,30,37]. In these schemes, signatures are
unlinkable except to a dedicated linking authority with a secret key: on input
two signatures it tells whether they stem from the same user or not. This is
much better then revealing the identity of the user, but still relies on a fully
trusted entity that will learn the collectors’ signed data. Further, this approach
does not scale well for applications where a data collector is interested in the
correlations within a large data set. To link a data set of n signed entries, each
pair of signatures would have to be compared, which would require n(n − 1)/2
requests to the linking authority. Another related concept are traceable group
signatures [31] where a dedicated entity can generate a tracing trapdoor for each
user which allows to trace this user’s signatures. This approach is not suitable
for our use case of controlled data linkage either, as it requires knowledge of
the users’ identities behind the anonymous group signatures or trapdoors for all
users, and also needs every signature to be tested for every trapdoor.

Group Signatures with User-Controlled Linkability. Finally, schemes with user-
controlled linkability exist, mostly in the context of Direct Anonymous Attes-
tation (DAA) [6,11,12,14,15] or anonymous credentials [19,35]. For linkability,
a so-called basename is chosen alongside the message and all signatures with
the same basename can easily be linked, but signatures for different basenames
remain unlinkable. In contrast to solutions with opening or linking authorities,
the linkability here can be publicly verified: a signature in such schemes contains
a pseudonym that is deterministically derived from the user’s secret key and
the basename. Thus, the user re-uses the same pseudonym whenever he wants
to be linkable. On the downside, this linkage is immediate and static. That is,
the users have to choose at the beginning whether they want to disclose their
data in a fully unlinkable manner, or linked w.r.t. a context-specific pseudonym.
There is no option to selectively correlate the data after it has been disclosed.
Therefore, users, or rather the data collectors allowing the use of such protocols,
will hesitate to choose the option of unlinkability, as they fear to lose too much
information by the irreversible decorrelation.

Our Contributions. In this work we overcome the aforementioned limita-
tions by introducing a new type of group signatures that allows for flexible
and selective linkability. We achieve that functionality by combining ideas from
the different approaches discussed above: Group signatures are associated with
pseudonyms, but pseudonyms are all unlinkable per default. Only when needed,
a set of signatures – or rather the pseudonyms – can be linked in an efficient
manner through a central entity, the converter. The converter receives a batch of
pseudonymous data and transforms them into a consistent representation, mean-
ing that all pseudonyms stemming from the same user will be converted into the
same value. To preserve the privacy of the users and their data, the converter
correlates the data in a fully blind way, i.e., not learning anything about the
pseudonyms he transforms. We term these new form of group signatures CLS,
which stands for convertably linkable (group) signatures.
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Security and Privacy for CLS . A crucial property that we want from pseudonym
conversions is that they establish linkability only strictly within the queried data,
i.e., linked pseudonyms from different queries should not be transitive. Other-
wise, different re-linked data sets with overlapping input data could be pieced
together, thereby gradually eroding the user’s privacy. Aiming for such non-
transitivity has an immediate impact on the overall setting: we need to channel
both, the pseudonyms and messages, blindly through the converter, as trans-
forming pseudonyms without the messages would require linkability between
the in- and outputs of the conversion query, which in turn allows to correlate
outputs from different queries.

We formally define the security of CLS through a number of security games,
strongly inspired by the existing work on group signatures and DAA [4,5,15].
That is, we want signatures to be fully anonymous and unlinkable bearing in
mind the information that is revealed through the selective linkability. We dis-
cuss that the classic anonymity notion adapted to our setting won’t suffice, as
it cannot guarantee the desired non-transitivity. In fact, capturing the achiev-
able privacy and non-transitivity property in the presence of adaptive conversion
queries was one of the core challenges of this work, and we formalize this property
through a simulation-based definition. If the converter is corrupt, then unlink-
ability of signatures no longer holds, but the adversary should neither be able
to trace signatures to a particular user, nor harm the obliviousness of queries
which is captured in the conversion blindness and join anonymity properties.
The guarantees in terms of unforgeability are captured through non-frameability
and traceability requirements. The former says that corrupt users should not be
able to impersonate honest users, and the latter guarantees that the power of
an adversary should be bounded by the number of corrupt users he controls.

From a corruption point of view, we assume the data collector to be at most
honest-but-curious towards the converter, i.e., even a corrupt data collector will
only query pseudonym-message pairs that it has received along with a valid sig-
nature. We consider this a reasonable assumption, as data collectors that will use
such a CLS scheme do so in order to implement the principle of data minimization
on their own premises, and don’t have an incentive to cheat themselves.

Efficient Instantiation. We propose an efficient construction of such CLS
schemes, following the classical sign-and-encrypt paradigm that underlies most
group signatures. Roughly, we use BBS+ signatures [3] for attesting group mem-
bership, i.e., a user will blindly receive a BBS+ signature from the group issuer
on a secret key y chosen afresh by the user. To sign a message m on behalf of the
group, the user computes a signature-proof-of-knowledge (SPK) for m where he
proves knowledge of such an issuer’s signature on its secret key and also encrypts
it’s user key (or rather its “public key” version hy) under the converter’s public
key. The ciphertext that encrypts hy serves as the pseudonym nym.

When the converter is asked to recover the correlations for a set of k
pseudonym-message pairs (nym1,m1), . . . (nymk,mk), it blindly decrypts each
pseudonym and blindly raises the result to the power of r which is chosen fresh for
every conversion query, but used consistently within. That is, all pseudonyms
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belonging to the same user will be mapped to the same query-specific DDH
tuple hyr which allows for linkage of data within the query, but guarantees
that converted pseudonyms remain unlinkable across queries. To achieve obliv-
iousness and non-transitivity of conversions, we encrypt all pseudonyms and
messages with a re-randomisable (homomorphic) encryption scheme under the
blinding key of the data collector. The re-randomisation is applied by the con-
verter before he returns the transformed values, which ensures that the data
collector cannot link the original and the converted pseudonyms by any cryp-
tographic value. Clearly, if the associated messages are unique, then the data
collector can link in- and outputs anyway, but our scheme should not introduce
any additional linkage. Given that the pseudonyms are encryptions under the
converter’s public key, we need to add the second layer of encryption in a way
that it doesn’t interfere with the capabilities of the inner ciphertext. Using a
nested form of ElGamal encryption [23] gives us these properties as well as the
needed re-randomisability.

Finally, we prove that our instantiation satisfies the desired security and pri-
vacy requirements under the DDH, q-SDH and DCR assumption in the random
oracle model. Our construction relies on type-3 pairings and performs most of
the work in G1 which comes with significant efficiency benefits. In fact, we show
that our construction is reasonably efficient considering the increased flexibility
when establising the linkability in such a selective and controlled manner.

Other Related Work. A number of results exist that establish convertible
pseudonyms in the setting of distributed databases and have inspired our work.
Therein, the data gets created and maintained in a distributed manner. For
privacy, related data is stored under different, database-specific pseudonyms that
are seemingly unlinkable and can only be correlated by a central entity that
controls the data flow. While the initial approach by Galindo and Verheul [26]
required the converter to be a trusted third party, Camenisch and Lehmann [17,
18] later showed how the converter can operate in an oblivious manner. However,
none of these solutions supports authenticated data collection and [26] and [17]
even let the (trusted) converter establish all pseudonyms. The pseudonym system
in [18] bootstraps pseudonyms in a blind way from a user secret, but for every
new pseudonym that requires the user, converter and targeted data base to
engage in an interactive protocol. Clearly, this is not practical for a setting
where users frequently want to upload data. Further, all schemes re-use the same
pseudonym for a user within a database, whereas our solution creates fresh and
unlinkable pseudonyms for every new data item.

2 Preliminaries

This section presents all building blocks and assumptions that are needed for
our CLS construction. We use ElGamal encryption as re-randomisable and homo-
morphic encryption scheme that is chosen plaintext secure, BBS+ signatures [3],
and standard proof protocols.
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Bilinear Maps & q-SDH Assumption. Let G1, G2, GT be cyclic groups of
prime order p. A map e : G1 × G2 → GT must satisfy the following conditions:
bilinearity, i.e., e(gx

1 , gy
2 ) = e(g1, g2)xy; non-degeneracy, i.e., for all generators

g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there exists an
efficient algorithm G(1τ ) that outputs a bilinear group (p, G1, G2, GT , e, g1, g2),
and an efficient algorithm to compute e(a, b) for all a ∈ G1, b ∈ G2.

We use type-3 pairings [25] in this work, i.e., we do not assume G1 = G2

or the existence of an isomorphism between both groups in our scheme and
security proofs. The advantage of type-3 pairings is that they enjoy the most
efficient curves.

q-Strong Diffie Hellman Assumption (q-SDH). There are two versions of the q-
Strong Diffie Hellman Assumption. The first version, given by Boneh and Boyen
in [7], is defined in a type-1 or type-2 pairing setting. We use their second version
of that definition that supports type-3 pairings and was stated in the journal
version of their paper [8].

Given (g1, g
χ
1 , g

(χ)2

1 , ..., g
(χ)q

1 , g2, g
χ
2 ) such that g1 ∈ G1, g2 ∈ G2, output

(g
1

χ+x

1 , x) ∈ G1 × Zp\{−χ}.

BBS+ Signatures. Our scheme will make use of BBS+ signatures given by
Au et al. [3], and inspired by BBS group signatures introduced in [9].

Key Generation: Take (h1, h2) ←$ G
2
1, x ←$ Z

∗
p, w ← gx

2 , and set sk = x and
pk = (w, h1, h2).

Signature: On input a message m ∈ Zp and secret key x, pick e, s ←$ Zp and
compute A ← (g1hs

1h
m
2 )

1
e+x . Output signature σ ← (A, e, s).

Verification: On input a public key (w, h1, h2) ∈ G2 × G
2
1, message m ∈ Zp,

and purported signature (A, e, s) ∈ G1×Z
2
p, check e(A,wge

2) = e(g1hs
1h

m
2 , g2).

When proving the unforgability of our scheme (called traceability in our
setting), we will make use of techniques from [14] which prove the unforgeability
of BBS+ signatures in the type-3 setting. Originally, Au et al. [3], proved the
BBS+ signature secure under the first version of the q-SDH assumption given
in [7], making use of the isomorphism between the groups in the security proof.

Re-randomisable ElGamal Encryption. We use the ElGamal encryption
scheme [23] with public parameters (G1, g, p), such that the DDH problem is
hard with respect to τ , i.e p is a τ bit prime.

Key Generation: Choose sk ←$ Z
∗
p, pk ← gsk, and output (pk, sk).

Encryption: On input (pk,m), choose r ←$ Z
∗
p, and output c ← (gr, pkrm).

Decryption: On input (sk, (c1, c2)), output m ← c2c
−sk
1 .

ElGamal encryption is chosen-plaintext secure under the DDH assumption.
In our construction, we will use the homomorphic property of ElGamal, i.e., if
C1 ∈ Enc(pk,m1), and C2 ∈ Enc(pk,m2), then C1 � C2 ∈ Enc(pk,m1 · m2).
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We further use that ElGamal ciphertexts c = Enc(pk,m) are publicly re-
randomisable in the sense that a re-randomised version c′ of c looks indistin-
guishable from a fresh encryption of the underlying plaintext m. The following
procedure clearly satisfies this:

Re-randomisation: On input (pk, (c1, c2)), get r′ ←$ Z
∗
p and output

(c1gr′
, c2pkr′

).

2.1 Proof Protocols

We follow the notation defined in [16] when referring to zero-knowledge proofs of
knowledge of discrete logarithms. For example PK{(a, b, c) : y = gahb∧ỹ = g̃ah̃c}
denotes a zero knowledge proof of knowledge of integers a, b and c such that
y = gahb and ỹ = g̃ah̃c hold. SPK denotes a signature proof of knowledge, that
is a non-interactive transformation of a proof PK, e.g., using the Fiat-Shamir
heuristic [24] in the random oracle. Using the Fiat-Shamir heuristic, the witness
can be extracted from these proofs by rewinding the prover and programming
the random oracle. Alternatively, these proofs can be extended to be online-
extractable, by verifiably encrypting the witness to a public key defined in the
common reference string. Clearly this requires a trusted common reference string.
We underline the values that we need to be online-extractable in our proofs.

We require the proof system to be simulation-sound and zero-knowledge.
The latter roughly says that there must exist a simulator that can generate
simulated proofs which are indistinguishable from real proofs from the view of
the adversary. The simulation-soundness is a strengthened version of normal
soundness and guarantees that an adversary, even after having seen simulated
proofs of false statements of his choice, cannot produce a valid proof of a false
statement himself.

3 Definition & Security Model for CLS

In this section we first introduce the syntax and generic functionality of CLS and
then present the desirable security and privacy properties for such schemes.

The following entities are involved in an CLS scheme: an issuer I, a set of
users U = {uidi}, a Verifier V and a converter C. The issuer I is the central entity
that allows users to join the group. Once joined, a user can then sign on behalf of
the group in a pseudonymous way. That is, a verifier V can test the validity of a
signature w.r.t the group’s public key but does not learn any information about
the particular user that created the signature. Most importantly, we want the
pseudonymously signed data to be linkable in a controlled yet blind manner. Such
selected linkability can be requested through the converter C that can blindly
transform tuples of pseudonym-message pairs into a consistent representation.
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3.1 Syntax of CLS

Our notation closely follows the definitional framework for dynamic group sig-
natures given in [5]. We stress that our algorithms (and security notions) are
flexible enough to cover settings where multiple verifiers and converters exist.
For the sake of simplicity, however, we focus on the setting where there is only
one entity each.

Definition 1 (CLS). A convertably linkable group signature scheme CLS con-
sists of the following algorithms:

Setup & Key Generation. We model key generation individually per party, and
refer to (param, ipk, cpk) as the group public key gpk.

Setup(1τ ) → param: on input a security parameter 1τ , outputs param, the pub-
lic parameters for the scheme.

IKGen(param) → (ipk, isk): performed by the issuer I, outputs the issuer secret
key isk, and the issuing public key ipk.

CKGen(param) → (cpk, csk): performed by the Converter C, outputs the con-
verter secret key csk, and the converter public key cpk.

BKGen(param) → (bpk, bsk): performed by the verifier V1, outputs a blinding
secret key, bsk, and blinding public key, bpk. As the key is only used for
blinding purposes, (bpk, bsk) can be ephemeral. We write BPK as the public
key space induced by BKGen.

Join, Sign & Verify. As in standard dynamic group signatures we have a dedi-
cated join procedure that a user has to complete with the issuer. All users that
have successfully joined the group can then create pseudonymous signatures on
behalf of the group, i.e., that verify w.r.t. the group public key bpk. For ease of
expression we treat the pseudonym nym as a dedicated part of the signature.

〈Join(gpk), Issue(isk, gpk)〉: a user uid joins the group by engaging in a interac-
tive protocol with the Issuer I. The user uid and Issuer I perform algorithms
Join and Issue respectively. These are input a state and an incoming message
respectively, and output an updated state, an outgoing message, and a deci-
sion, either cont, accept, or reject. The initial input to Join is the group public
key, gpk, whereas the initial input to Issue is the issuer secret key, isk, and
the issuer public key ipk. If the user uid accepts, Join has a private output of
gsk[uid].

Sign(gpk,gsk[uid],m) → (nym, σ): performed by the user with identifier uid,
with input the group public key gpk, the user’s secret key gsk[uid], and a
message m. Outputs a pseudonym nym and signature σ.

Verify(gpk,m, nym, σ) → {0, 1}: performed by the Verifier V. Outputs 1 if σ is
a valid signature on m for pseudonym nym under the group public key gpk,
and 0 otherwise.

1 For sake of simplicity we state the algorithms for the setting where the requester
and receiver of conversions is the same party, namely the verifier. However, our
algorithms work in a public key setting to facilitate more general settings as well.
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Blind Conversion. Finally, we want our pseudonymous group signatures to be
blindly convertable. Thus, we introduce a dedicated Blind and Unblind proce-
dure for the verifier and a Convert algorithm that requires the converter’s secret
key. The latter transforms the unlinkable pseudonyms in a consistent manner,
i.e., outputting converted pseudonyms that are consistent whenever the input
pseudonyms belong to the same user.

Blind(gpk, bpk, (nym,m)) → (cnym, c): performed by the verifier V on input a
pseudonym-message pair(nym,m) and blinding public key bpk, group public
key gpk. Outputs a blinded pseudonym and message.

Convert(gpk, csk, bpk, {(cnymi, ci)}k) → {(cnymi, ci)}k: performed by the con-
verter C, on input k blinded pseudonym-message tuples {(cnymi, ci)}k =
((cnym1, c1), ..., (cnymk, ck)), and the public blinding key bpk used. Outputs
converted pseudonyms {(cnymi, ci)}k = ((cnym1, c1), ..., (cnymk, ck))

Unblind(bsk, (cnym, c)) → (nym,m): performed by the Verifier V on input a
converted pseudonym-message tuple, and the blinding secret key bsk. Outputs
an unblinded converted pseudonym-message tuple (nym,m).

We sometimes make the randomness r used in these algorithms explicit, and
e.g. write Blind(gpk, bpk, (nym,m); r).

3.2 Security Properties

We want that CLS schemes enjoy roughly the same security and privacy proper-
ties as group signatures when taking the added linkability into account. Defining
these properties when pseudonyms can be selectively and adaptively converted
is very challenging, though, as it requires a lot of care to avoid trivial wins while
keeping the adversary as powerful as possible.

In a nutshell, we require the following guarantees from convertably link-
able group signatures, where (join) anonymity and non-transitivity capture the
privacy-related properties and non-frameability and traceability formalize the
desired unforgeability.

(Join) Anonymity: Pseudonymous signatures should be unlinkable and
untraceable (to a join session) even when the issuer and verifier are corrupt.
When the converter is honest, unlinkability holds for all signatures for which
the associated pseudonyms have not been explicitly linked through a conver-
sion request. If the converter is corrupt and also controlled by the adversary,
unlinkability is no longer possible, yet the anonymity of joins must remain.

Non-transitivity: Converted pseudonyms should be non-transitive, i.e., the
verifier should not be able to link the outputs of different convert queries.
Otherwise, a corrupt verifier would be able to gradually link together all
pseudonyms that have ever been queried to the converter.

Conversion Blindness: The converter learns nothing about the pseudonyms
(and messages) it receives and the transformed pseudonyms it computes.

Non-frameability: An adversary controlling the issuer and some corrupt users,
should not be able to impersonate other honest users, i.e., create pseudony-
mous signatures that would be linked to a pseudonym of an honest user.
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Traceability: An adversary should not be able to create more signatures that
remain unlinkable in a conversion than he controls corrupt users.

Clearly, any re-linked subset of the originally anonymous data increases
the risk of re-identification. Thus, the converter could enforce some form of
access control to the re-linked data, e.g., only converting a certain amount
of pseudonyms at once. The non-transitivity requirement then ensures that
a corrupt verifier cannot further aggregate the individually learned data. We
stress that our security properties only formalize the achievable privacy for the
pseudonyms and signatures. They do not and cannot capture information leak-
age through the messages that the users sign. This is the case for all group
signatures though, and not special to our setting.

Oracles & State. The security notions we formalize in the following make use
a number of oracles which keep joint state, e.g., keeping track of queries and
the set of corrupted parties. We present the detailed description of all oracles in
Fig. 1 and an overview of them and their maintained records below.

ADDU (join of honest user & honest issuer) Creates a new honest user for
uid and internally runs a join protocol between the honest user and honest
issuer. At the end, the honest user’s secret key gsk[uid] is generated and from
then on signing queries for uid will be allowed.

SNDU (join of honest user & corrupt issuer) Creates a new honest user
for uid and runs the join protocol on behalf of uid with the corrupt issuer. If
the join session completes, the oracle will store the user’s secret key gsk[uid].

SNDI (join of corrupt user & honest issuer) Runs the join protocol on
behalf of the honest issuer with corrupt users. For joins of honest users, the
ADDU oracle must be used.

SIGN This oracle returns signatures for honest users that have successfully joined
(via ADDU or SNDU, depending on the game).

CONVERT The oracle returns a set of converted pseudonyms along with their
messages. To model that conversion is triggered by an at most honest-but-
curious verifier, we request V to provide the unblinded set of pseudonyms
along with signatures. The conversion will only be done when all signatures
are valid. The oracle then internally blinds the pseudonym-message pairs and
returns the blinded input, the randomness used for the blinding along with
the converted output. When this oracle is used in the anonymity game, it
further checks that the input does not allow the adversary to trivially win by
converting the challenge pseudonym together with pseudonyms from either
of the challenge users.

All oracles have access to the following records maintained as global state:

HUL List of uid’s of honest users, initially set to ∅. New honest users can be
added by queries to the ADDU oracle (when the issuer is honest) or SNDU
oracle (when the issuer is corrupt).
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CUL List of corrupt users that have (requested) to join the group. Initially set
to ∅, new corrupt users can be added through the SNDI oracle if the issuer
is honest. If the issuer is corrupt, we do not keep track of corrupt users.

SL List of (uid,m, nym, σ) tuples requested from the SIGN oracle.

Helper Algorithms. We introduce two additional algorithms for notational sim-
plicity in our security games: Identify and UnLink. Roughly, Identify allows to

Fig. 1. Oracles used in our security games
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test whether a pseudonym belongs to a certain uid by exploiting the converta-
bility of pseudonyms. That is, we create a second signature for gsk[uid] and use
the converter’s secret key to test whether both are linked. If so, Identify returns
1. This algorithm already uses our second helper algorithm UnLink internally,
which takes a list of (correctly formed) pseudonym-message pairs and returns 1
if they are all unlinkable and 0 otherwise.

Identify(gpk, csk, uid,m, nym)

(nym′, σ′) ← Sign(gpk,gsk[uid], 0)

if UnLink(gpk, csk, ((nym, m), (nym′, 0))) = 0 return 1

else return 0

UnLink(gpk, csk, ((nym1,m1), ..., (nymk,mk)))

(bpk, bsk) ← BKGen(param)

∀i ∈ [1, k] (cnymi, ci) ← Blind(gpk, bpk, (nymi, mi))

{(cnymi, ci)}k ← Convert(gpk, csk, bpk, {(cnymi, ci)}k)

∀i ∈ [1, k] (nymi, mi) ← Unblind(bsk, (cnymi, ci))

if ∃(i, j) with i �= j s.t. nymi = nymj return 0

else return 1

For even more simplicity we often omit the keys for the algorithms (as they
are clear from the context). That is, we write Identify(uid, nym) which will indi-
cate whether the pseudonym nym belongs to the user with identity uid or not.
Likewise we write UnLink(nym1, . . . , nymk) to test whether all pseudonyms are
uncorrelated or not.

Correctness. CLS signatures should be correct and consistent when being
produced by honest parties. More precisely, we formulate correctness via three
requirements: Correctness of sign guarantees that signatures formed using the
Sign algorithm with a user secret key generated honestly will verify correctly.
Correctness of conversion guarantees that after blinding, converting and then
unblinding correctly, the output will be correctly linked messages/pseudonyms.
Consistency is a stronger variant of conversion-correctness and requires that the
correlations of pseudonyms established through the conversion procedure must
be consistent across queries. More precisely, if a conversion query reveals that
two pseudonym nym1 and nym2 are linked, and another one that nym2 and
nym3 are linked, then it must also hold that a conversion query for nym1 and
nym3 returns linked pseudonyms. We require that this property even holds for
maliciously formed pseudonyms, which will be a helpful property in some of
our security proofs. For space reasons, the detailed correctness definitions are
deferred to the full paper [27].

Anonymity (Corrupt Issuer & Verifier). This security requirement cap-
tures the desired anonymity properties when both the issuer and verifier are
corrupt. Just as in conventional group signatures, we want that the signatures
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of honest users are unlinkable and cannot be traced back to a user’s join session
with the corrupt issuer. To model this property, we let the adversary output uid’s
of two honest users together with a message and return a challenge (nym∗, σ∗)
that is created either by user uid0 or uid1. For anonymity, the adversary should
not be able to determine the user’s identity better than by guessing.

In our setting, this property must hold when the corrupt verifier has access
to the conversion oracle where it can obtain linked subsets of the pseudonymous
data. To avoid trivial wins, the adversary is not allowed to make conversion
queries that link the challenge pseudonym nym∗ to another pseudonym belong-
ing to one of the two honest challenge users.

Definition 2 (Anonymity). A CLS scheme satisfies anonymity if for all poly-
nomial time adversaries A the following advantage is negligible in τ :

∣
∣
∣Pr[Expanon−0

A,CLS (τ) = 1] − Pr[Expanon−1
A,CLS (τ) = 1]

∣
∣
∣ .

Experiment: Expanon−b
A,CLS (τ)

param ← Setup(1τ ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

(uid∗
0, uid∗

1, m
∗, st) ← ASNDU,SIGN,CONVERT(choose, gpk, isk)

if uid∗
0 /∈ HUL or gsk[uid∗

0] =⊥ or uid∗
1 /∈ HUL or gsk[uid∗

1] =⊥ return 0

(nym∗, σ∗) ← Sign(gpk,gsk[uid∗
b ], m

∗)

b∗ ← ASNDU,SIGN,CONVERT(guess, st, nym∗, σ∗)

return b∗

Non-transitivity (Corrupt Issuer & Verifier). The second privacy-related
property we want to guarantee when both the issuer and verifier are corrupt,
is the strict non-transitivity of conversions. This ensures that the outputs of
separate convert queries cannot be linked together, further than what is already
possible due the messages queried. For example if nym1 and nym2 are outputs by
two separate convert queries, the adversary should not be able to decide whether
they were derived from the same pseudonym or not. Otherwise the verifier could
gradually build lists of linked pseudonyms, adding to these during every convert
query and eventually recover the linkability among all pseudonymous signatures.

To model non-transitivity of conversions we use a simulation-based approach,
requiring the indistinguishability of an ideal and a real world. In the real world,
all convert queries are handled normally through the CONVERT oracle defined
in Fig. 1. Whereas in the ideal world, the converted pseudonyms are produced by
a simulator SIM through the CONVSIM oracle defined below. For a conversion
request of input (nym1,m1, σ1), . . . , (nymk,mk, σk) the simulator will only learn
which of the messages belong together, i.e., are associated to pseudonyms that
belong to the same user uid. For honest users this can be looked up through
the records of the signing oracle that stores tuples (uid,mi, nymi, σi) for each
signing query. Thus, we let the simulator mimic the conversion output for all
pseudonyms stemming form honest users, and convert pseudonyms from corrupt
users normally (as there is no privacy to guarantee for them anyway). Finally, the
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CONVSIM oracle outputs a random shuffle of the correctly converted pseudonyms
of corrupt users, and the simulated ones for honest users. As mentioned before,
we assume the verifier to be honest-but-curious, which we enforce by request-
ing the adversary to output valid signatures along with the pseudonyms to be
converted and handle the blinding step within the conversion oracle.

Definition 3 (Non-transitivity). A CLS scheme satisfies non-transitivity if
for all polynomial time adversaries A there exists an efficient simulator SIM
such that the following advantage is negligible in τ :

∣
∣
∣Pr[Expnontrans−0

A,CLS (τ) = 1] − Pr[Expnontrans−1
A,CLS (τ) = 1]

∣
∣
∣ .

Experiment: Expnontrans−b
A,CLS (τ)

param ← Setup(1τ ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

b∗ ← ASNDU,SIGN,CONVX(guess, gpk, isk)

where the oracle CONVX works as follows:

if b = 0 (real world) then CONVX is the standard CONVERT oracle

if b = 1 (ideal world) then CONVX is the simulated CONVSIM oracle

return b∗

CONVSIM((nym1,m1, σ1), . . . , (nymk,mk, σk), bpk)

if ∃i ∈ [1, k] s.t. Verify(gpk, mi, nymi, σi) = 0 or bpk /∈ BPK return ⊥
Set CL ← ∅

Compute (cnymi, ci) ← Blind(gpk, bpk, (nymi, mi); ri) for i = 1, . . . , k

∀i ∈ [1, k] // determine message clusters Luid for honest users and list CL of corrupt pseudonyms

if (uid, mi, nymi, σi) ∈ SL // pseudonyms from honest users

if Luid does not exist, create Luid ← {mi} else set Luid ← Luid ∪ {mi}
else CL ← CL ∪ {(ci, cnymi)} // pseudonyms from corrupt users

{(cnymi, ci)}i=1,...k′ ← Convert(gpk, csk, bpk,CL) for k′ ← |CL| // normally convert corrupt nyms

Let Luid1 , . . . Luidk′′ be the non-empty message clusters created above

{(cnymi, ci)}i=k′+1,...k ← SIM(gpk, bpk, Luid1 , . . . Luidk′′ ) // simulate conversion for honest nyms

Let {(cnym′
i, c

′
i)}i=1,...k be a random permutation of {(cnymi, ci)}i=1,...k

return ({(cnymi, ci, ri)}i=1,...,k, {(cnym′
i, c

′
i)}i=1,...k, r1, . . . , rk)

Anonymity vs. Non-transitivity. Note that non-transitivity is not covered by the
anonymity notion defined before: A scheme that satisfies anonymity could output
the converted pseudonyms in the exact same order as the input ones, allowing triv-
ial linkage between the in- and output of each conversion request. Thus, whenever
the same pseudonym is used as input to several conversion queries, this would
enable the linkability of the transformed pseudonyms across the different conver-
sions, which is exactly what non-transitivity aims to avoid. On the first glance, it
might seem odd that having transitive conversions does not harm our anonymity
property. However, transitivity is only useful when several pseudonyms belong-
ing to the same user appear in each conversion request with one pseudonym being
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re-used in all these sessions. In the anonymity game, the challenge pseudonym is
not allowed to be used in combination with any other pseudonym stemming from
either of the challenge users (as this would make the definition unachievable), and
thus the transitivity of conversions can not be exploited.

Conversion Blindness (Corrupt Issuer & Converter). A crucial prop-
erty of our signatures is that they can be converted in an oblivious manner,
i.e., without the converter learning anything about the pseudonyms or messages
it converts. In particular, this blindness property ensures the unlinkability of
blinded inputs across several conversion requests. Conversion blindness should
hold if both the issuer and converter are corrupt, but the verifier is honest. We
formalize this property in a classic indistinguishability style: the adversary out-
puts two tuples of pseudonym-message pairs and receives a blinded version of
either of them. Given that blinding of pseudonyms is a public-key operation we
don’t need an additional blinding oracle. In fact, we don’t give the adversary any
oracle access at all in this game. He already corrupts the issuer and converter,
and this property does not distinguish between honest and corrupt users, thus
we simply assume that the adversary has full control over all users as well.

Definition 4 (Conversion Blindness). A CLS scheme satisfies conversion
blindness if: for all polynomial time adversaries A the following advantage is
negligible in τ :

∣
∣
∣Pr[Expblind−conv−0

A,CLS (τ) = 1] − Pr[Expblind−conv−1
A,CLS (τ) = 1]

∣
∣
∣ .

Experiment: Expblind−conv−b
A,CLS (τ)

param ← Setup(1τ ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk), (bpk, bsk) ← BKGen(param)

(st, (nym0, m0), (nym1, m1)) ← A(choose, gpk, isk, csk, bpk)

(cnym∗, c∗) ← Blind(gpk, bpk, (nymb, mb))

b∗ ← A(guess, st, cnym∗, c∗)

return b∗

Join Anonymity (Corrupt Issuer & Converter & Verifier). The final
privacy related property we require from a CLS is the anonymity of joins even
if all central entities are corrupt. Here the challenge is that the adversary, con-
trolling the issuer, converter and verifier, should not be able to link signatures
of an honest user back to a particular join session. This is the best one can hope
for in this corruption setting as unlinkability of signatures (as guaranteed by
our anonymity property) is no longer possible: the corrupt converter can sim-
ply convert all signatures/pseudonyms into a consistent representation. Such a
property does not exist in conventional group signatures, as therein a corrupt
opener can always reveals the join identity. In our setting, signatures can only
be linked instead of being opened and thus anonymity of the join procedure can
and should be preserved.
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To model this property we let the adversary output two identities of honest
users uid0, uid1 that have successfully joined. We then give the adversary access
to a signing oracle for one them. This is done by adding the challenge user uid∗

(where uid∗ stands for a dummy handle) to the list of honest users HUL with
user secret key gsk[uidb]. Thus, in the second stage of the game, the adversary
can invoke the SIGN oracle on uid∗ to receive signatures of messages of his choice
for the challenge user. The adversary wins if he can determine the bit b better
than by guessing. To avoid trivial wins, the adversary is not allowed to see any
signature directly from uid0 or uid1.

Definition 5 (Join Anonymity). A CLS scheme satisfies join anonymity if:
for all polynomial time adversaries A the following advantage is negligible in τ :

∣
∣
∣Pr[Expanon−join−0

A,CLS (τ) = 1] − Pr[Expanon−join−1
A,CLS (τ) = 1]

∣
∣
∣ .

Experiment: Expanon−join−b
A,CLS (τ)

param ← Setup(1τ ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

(st, uid0, uid1) ← ASNDU,SIGN(choose, gpk, isk, csk)

if uid0 or uid1 /∈ HUL or gsk[uid0] =⊥ or gsk[uid1] =⊥ return ⊥
Choose uid∗,HUL ← HUL ∪ {uid∗},gsk[uid∗] ← gsk[uidb]

b∗ ← ASNDU,SIGN(guess, st, uid∗)

return b∗ if (uidd, ∗) /∈ SL for d = 0, 1 else return 0

Non-frameability (Corrupt Issuer & Converter & User). This notion
captures the desired unforgeability properties when the issuer, converter and
some of the users are corrupt, and requires that an adversary should not be
able to impersonate an honest user. Our definition is very similar to the non-
frameability definitions in standard group signature or DAA schemes [4–6].
Roughly, the only part we have to change is how we detect that an honest user
has been framed. In group signatures, non-frameability exploits the presence of
the group manager that can open signatures and requests that an adversary can-
not produce signatures that will open to an honest user who hasn’t created said
signature. Here we have the converter instead of the group manager (or dedi-
cated opening authority), and thus express non-frameability through the linkage
that is created in a conversion. More precisely, an adversary should not be able
to produce a valid signature (nym∗, σ∗) that within a conversion request would
falsely link to a signature of an honest user. For generality (and sake of brevity),
we use our helper function Identify that we introduced at the beginning of this
section to express that the adversary’s signature should not be recognized as a
signature of an honest user.

Definition 6 (Non-frameability). A CLS scheme satisfies non-frameability if
for all polynomial time adversaries A, the advantage Pr[Expnonframe

A,CLS (τ) = 1] is
negligible in τ .
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Experiment: Expnonframe
A,CLS (τ)

param ← Setup(1τ ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

(uid, m∗, nym∗, σ∗) ← ASNDU,SIGN(gpk, isk, csk)

return 1 if all of the following conditions are satisfied:

Verify(gpk, m∗, nym∗, σ∗) = 1 and

Identify(uid, m∗, nym∗) = 1 where uid ∈ HUL and

(uid, m∗, nym∗, σ∗) /∈ SL

Traceability (Corrupt Converter & User). Our final requirement formal-
izes the unforgeability properties when only the converter and some users are cor-
rupt. In this setting, an adversary should not be able to output more pseudony-
mous signatures that remain unlinkable in a conversion than the number of users
it has corrupted. This is again an adaptation of the existing traceability notions
for group signatures with an opening authority [4,5] or user-controlled linkabil-
ity [6]. Interestingly, in the latter work (that is closer to our setting than standard
group signatures), two traceability notions where introduced: While one is sim-
ilar in spirit to our notion, a second property guarantees that all signatures of
corrupt users can be traced back to the exact signing key that the corrupt user
has established in the join protocol with the honest issuer. This seems a bit of
an odd requirement, as it is not noticeable in the real world. In fact, we do not
limit the strategy of the adversary in that way and only require his power to be
bounded by the amount of corrupt users he controls.

Our definition stated below uses our helper algorithm UnLink that we intro-
duced at the beginning of this section and that internally uses the Convert algo-
rithm to detect whether pseudonyms are unlinkable or not. Note that UnLink
returns 1 only if all inputs are mutually unlinkable, i.e., there is not a single
tuple of input pseudonyms that got converted to the same value.

Definition 7 (Traceability). A CLS scheme satisfies traceability if for all poly-
time adversaries A the advantage Pr[Exptrace

A,CLS(τ) = 1] is negligible in τ .

Experiment: Exptrace
A,CLS(τ)

param ← Setup(1τ ), (ipk, isk) ← IKGen(param), (cpk, csk) ← CKGen(param)

gpk ← (param, ipk, cpk),HUL, CUL, SL ← ∅

((m1, nym1, σ1), ..., (mk, nymk, σk)) ← AADDU,SNDI,SIGN(gpk, csk)

return 1 if all of the following conditions are satisfied:

∀j ∈ [1, k] : Verify(gpk, mj , nymj , σj) = 1 and (∗, mj , nymj , σj) /∈ SL and

k > |CUL| and

UnLink(gpk, csk, ((nym1, m1), ..., (nymk, mk))) = 1
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4 Our CLS Construction

We now present our construction that securely realizes such CLS group signa-
tures. Our scheme follows the classical sign-and-encrypt paradigm: we use BBS+
signatures [3] for attesting group membership, i.e., a user will blindly receive a
BBS+ signature from the group issuer on the user’s secret key y. To sign a mes-
sage m on behalf of the group, the user computes a SPK for m where he proves
knowledge of a BBS+ signature on y and also encrypts hy under the converter’s
public key. The ElGamal ciphertext that encrypts hy serves as the associated
pseudonym nym.

To blind a set of k pseudonym-message pairs (nym1,m1), . . . (nymk,mk) for
conversion, the verifier encrypts each value under its own ElGamal public key.
As the pseudonyms are already ElGamal ciphertexts themselves, this results in a
nested double-encryption of hy being encrypted under both keys. The converter
then decrypts the “inner” part of the ciphertext and blindly raises the result to
a random value r. This r is chosen fresh for every conversion query, but used
consistently within. That is, all pseudonyms belonging to the same user will be
mapped to the same query-specific DDH tuple hyr. Finally, the converter re-
randomises all ciphertexts and shuffles them to destroy any linkage between the
in- and output tuples—this is crucial for achieving the desired non-transitivity
property. The verifier then simply decrypts the received tuples and can link
correlated data via the converted pseudonyms cnymi.

4.1 Detailed Description of CLS–DDH

Setup & Key Generation. We use a bilinear group (p, G1, G2, GT , e, g1, g2) with
g1 and g2 being generators of G1 and G2 respectively. Further, we need four
additional generators g, h and h1, h2 in G1, where h1, h2 are used for the BBS+
part, and g, h will be used for the ElGamal encryption.

Setup(1τ )

(p, G1, G2, GT , e, g1, g2) ← G(1τ ), g, h, h1, h2 ←$ G1

return param ← (G1, G2, GT , p, e, g1, g2, g, h, h1, h2)

IKGen(param)

isk ←$ Z
∗
p, ipk ← gisk

2

return (ipk, isk)

CKGen(param)

csk ←$ Z
∗
p, cpk ← gcsk

return (cpk, csk)

BKGen(param)

bsk ←$ Z
∗
p, bpk ← gbsk

return (bpk, bsk)

Join. To join the group, users perform an interactive protocol with the issuer to
obtain their user secret key and group credential. Roughly, the gsk[uid] of a user
consists of a secret key y ∈ Z

∗
p and a BBS+ signature (A, x, s) of I on y, where

A = (g1h
y
1h

s
2)

1/(isk+x). The detailed protocol of 〈Join(gpk), Issue(isk, gpk)〉 is
given in Fig. 2.
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Fig. 2. Join protocol of our CLS–DDH construction.

Sign & Verify. To sign a message m under gsk[uid] = (A, x, y, s), the user proves
knowledge of a BBS+ credential (A, x, s) on its secret key y and also encrypts
hy under the converter’s public key cpk. The proof π then proves knowledge of
the BBS+ credential and asserts that the encryption contains the same value y.
From π we only need the value y to be online extractable. We use the improved
SPK from Camenisch et al. [14] who have shown how to move most of the work
from GT to G1 and thus yield a much faster instantiation than the original proof
by Au et al. [3]. For verification, one verifies the proof π and some correctness
properties of the re-randomised versions of A that are sent along with the proof.
In more detail, Sign and Verify are defined as follows:

Sign(gpk,gsk[uid],m)

parse gsk[uid] = (A, x, y, s), gpk = (ipk, cpk)

α ←$ Z
∗
p, nym1 ← gα, nym2 ← cpkαhy, r1, r2, r3 ←$ Z

∗
p,

A′ ← Ar1 , Â ← A′−x(g1h
y
1hs

2)
r1 , d ← (g1h

y
1hs

2)
r1h−r2

2 , r3 ← r−1
1 , s′ ← s − r2r3

π ← SPK{(x, y, r2, r3, s
′, α) : nym1 = gα ∧ nym2 = cpkαhy

∧ Â/d = A′−xhr2
2 ∧ g1h

y
1 = dr3h−s′

2 }(m)

σ ← (A′, Â, d, π), nym ← (nym1, nym2)

return (nym, σ)

Verify(gpk,m, nym, σ)

parse σ = (A′, Â, d, π)

return 1 if A′ �= 1G1 , e(A′, ipk) = e(Â, g2),

and π holds for A′, Â, d, nym, m w.r.t. gpk
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Blind Conversions. When the verifier wants to learn which of the pseudony-
mously received messages belong together, it sends a batch of pseudonym-
message pairs in blinded form to the converter. That is, it encrypts the mes-
sages and pseudonyms using ElGamal encryption. The pseudonyms are ElGa-
mal ciphertexts itself and we roughly wrap them in another encryption layer.
The converter then blindly decrypts the pseudonyms, i.e., decrypts the “inner”
part of the ciphertext, which yields hy encrypted under the verifiers blinding key
bpk. To ensure non-transitivity, i.e., restrict the linkage of pseudonyms to hold
only within the queried batch, the converter blindly raises the encrypted hy to a
random exponent r. This value is chosen afresh for every batch but used consis-
tently within the query, i.e., all pseudonyms that belong to the same user with
secret key y will be mapped consistently to hyr. To ensure that the ciphertexts
and their order cannot leak any additional information, we let the converter re-
randomize and shuffle all ciphertexts before he returns them to the verifier. Both
the verifier and the converter are assumed to be at most honest-but-curious, and
so proofs that they have performed Blind and Convert correctly are not needed.

Blind(gpk, bpk, nym,m)

parse gpk = (ipk, cpk), nym = (nym1, nym2)

α, β, γ ←$ Z
∗
p

cnym1 ← nym1g
β , cnym2 ← gα, cnym3 ← nym2cpkβbpkα

c1 ← gγ , c2 ← bpkγm

cnym ← (cnym1, cnym2, cnym3), c ← (c1, c2)

return (cnym, c)

Convert(gpk, csk, bpk, ((cnym1, c1), ..., (cnymk, ck)))

parse cnymi = (cnymi,1, cnymi,2, cnymi,3), ci ← (ci,1, ci,2), r ←$ Z
∗
p

for i = 1, . . . k :

cnym′
i,1 ← cnymr

i,2, cnym′
i,2 ← (cnymi,3cnym−csk

i,1 )r // decrypt nym and raise to r

r1, r2 ←$ Z
∗
p // re-randomize all ciphertexts

cnym′′
i,1 ← cnym′

i,1g
r1 , cnym′′

i,2 ← cnym′
i,2bpkr1

c′
i,1 ← ci,1g

r2 , c′
i,2 ← ci,2bpkr2

choose random permutation Π, for i = 1, . . . , k : (cnymi, ci) ← (cnym′′
Π(i), c

′
Π(i))

return ((cnym1, c1), ..., (cnymk, ck))

Unblind(bsk, (cnym, c))

parse cnym = (cnym1, cnym2), c ← (c1, c2)

nym ← cnym2cnym−bsk
1 , m ← c2c

−bsk
1

return (nym, m)
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4.2 Security of CLS–DDH

We now show that our scheme satisfies all security properties defined in Sect. 3.
More precisely, we show that the following theorem holds (using the type-3
pairing version of the q-SDH assumption given in [8]).

Theorem 1. The CLS–DDH construction presented in Sect. 4.1 is a secure CLS
as defined in Sect. 3 if the DDH assumption holds in G1, the q-SDH assumption
holds, and the SPK is simulation-sound, zero-knowledge and online extractable
(for the underlined values).

In the following we focus on the proof of non-transitivity which was the most
challenging property to define and prove. For the other properties we provide
short proof sketches and refer for the detailed proofs to the full paper [27].

Lemma 1. The CLS–DDH construction presented in Sect. 4.1 satisfies
anonymity if the DDH assumption holds in G1, and the SPK is unbounded
simulation-sound, zero knowledge and online extractable (for the underlined
values).

Proof (sketch). Roughly, anonymity follows from the unlinkability property of
BBS+ signatures, the CPA-security from ElGamal (used to compute the pseudo-
nyms under cpk), and the DDH assumption (for showing that the conversion
doesn’t leak any information). Recall that in this setting, the converter is honest,
i.e., A does not know csk but is given access to the CONVERT oracle. Thus, the
surprising part might be that CPA encryption is sufficient, despite the converter
having to decrypt the blinded pseudonyms. However, in the security proof we
can simulate decryption queries by computing the converted pseudonyms from
scratch and returning fresh encryptions of them (under bpk) to the adversary.
That is, here we use that the convert algorithm returns re-randomised cipher-
texts which, for ElGamal encryption, are distributed as fresh encryptions. To
recover the plaintext, i.e., hy that needs to be encrypted under bpk, we either
look up hy from our internal records (when the pseudonyms stem from honest
users) or extract y from π (when the pseudonym belongs to a corrupt user).
Thus, for each tuple (mi, nymi, σi) sent to the CONVERT we check if an entry
(uidi,mi, nymi, σi) in the list of created signatures SL exist, and if so we look up
the hyi value we have chosen when mimicking the join protocol for this honest
user uidi. For computing the converted pseudonyms, we then simply compute
cnymi = Enc(bpk, hyir) for a fresh r. Note that in the case of pseudonyms from
corrupt users it is not sufficient to extract just hy, which would be much more
efficient than extracting y: When we have to embed a DDH challenge in the con-
verted output, we won’t be privy of the converter’s exponent r that is supposed
to be used in all converted pseudonyms hyir. Knowing y we can simply compute
Ry for R = gr being a part of the DDH challenge. 	

Lemma 2. The CLS–DDH construction presented in Sect. 4.1 satisfies non-
transitivity if the DDH assumption holds in G1, and the SPK is unbounded
simulation-sound, zero knowledge and online extractable (for the underlined
value).
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Proof. For proving non-transitivity, we have to show that there exists an efficient
simulator SIM that makes the real and simulated game indistinguishable. We
start by describing the simulator and then explain why the real and simulated
conversion oracles CONVERT and CONVSIM are indistinguishable.

SIM(gpk, bpk, Luid1 , . . . Luidk′ )

l ← 0, ∀j ∈ [1, k′]

nym′ ←$ G1; ∀m ∈ Luidj

l ← l + 1, (cnyml, cl) ← Blind(gpk, bpk, (nym′, m))

return ((cnym1, c1), . . . (cnyml, cl))

We assume that an adversary A exists, that makes q queries to the SNDU
oracle for distinct user identifiers, that guesses b correctly in the non-transitivity
game with SIM given above and wins with probability ε + 1/2.

We will stepwise make the real-world (b=0) and the simulated world (b=1)
equivalent, using a sequence of Games Hj for j = 0, . . . , q. The idea is that in
Game Hj we will not use simulated conversions for all users uid1, . . . , uidj in
order of when they were queried to SNDU. More precisely, we define Game Hj

to be as given in Fig. 3 with all other oracles identical to in the non-transitivity
experiment. Let Sj be the event that A guesses b correctly in Game Hj , with the
simulator given above. Game Hj keeps track of the queries to SNDU, adding the
first j queries uid to a set UL. Then during queries to CONVSIM, if a signature
of a user in UL is queried, these are treated in the same way as pseudonyms for
corrupted users, i.e., they are normally converted using the Convert algorithm.

Game H0 is identical to the non-transitivity game, because UL is empty.
Therefore, Pr[S0] = ε + 1/2. In Game Hq, UL contains all honest users, and so
the CONVSIM oracle is now identical to the CONVERT oracle, and inputs to the
adversary are now independent of b, therefore Pr[Sq] = 1/2.

We now show that if an adversary can distinguish Games Hj and Hj+1, we
can turn this into a distinguisher Dj that can break the DDH assumption. We
describe the reduction and the additional simulation that is needed therein in
Figs. 4 and 5.

We now argue that when a DDH tuple (D1,D2,D3,D4) is input to Dj , the
inputs to A are distributed identically to in Game Hj+1; when a DDH tuple is
not input, the inputs to A are distributed identically to in Game Hj . That is for
D1 = h,D2 = ha,D3 = hb,D4 = hc, the oracles provided by Dj will be exactly
as in Hj+1 when c = ab, and as in Hj otherwise.

First, note that gpk, csk, isk are distributed identically as to the non-
transitivity game, as χ is chosen randomly and independently when setting
h1 ← hχ.

Simulating the SNDU Oracle. The SNDU oracle only differs from the oracle in
the non-transitivity experiment during the (j + 1)-th query by embedding D2

of the DDH challenger into the user’s “public key” H using knowledge of χ.
Clearly, H is distributed identically as when computed normally, and πH can be



212 L. Garms and A. Lehmann

Fig. 3. Description of Game Hj and the changes to the SNDU and CONVSIM oracles.

simulated due to the zero-knowledge property of the proof system. Note that y
is not defined for this honest user, but this is not output to A, or used in the
next stage of the protocol.

Simulating the SIGN Oracle. The SIGN oracle is identical to the oracle in the
non-transitivity experiment, when uid �= uid′ is queried. When uid′ is queried,
we simply encrypt D2 instead of hy.

This is consistent with SNDU, as H = Dχ
2 . Further, A′, d′ are chosen ran-

domly and independently, and Â = A′isk and so these are distributed identically
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Fig. 4. Oracles for Dj our distinguishing algorithm for the DDH problem. The
CONVERT oracle remains unchanged, and the CONVSIM oracle using the DDH chal-
lenge is given in Fig. 4.

to in Sign. The SPK π can be simulated due to the zero knowledge property of
the proof system.

Simulating the CONVSIM Oracle. What remains to be shown is that the
CONVSIM oracle created by Dj either behaves identical to the CONVSIM oracle
in Game Hj or as in Hj+1, depending on whether its input was a DDH tuple or
not. We know that D3 = hr̃ for some r̃ and thus it must hold that Dyr

3 = hr̃ry.
Finally, we derive cnym by encrypting Dyr

3 from scratch under bpk, which is not
noticeable to the adversary due to the re-randomisation that is applied in the
conversion algorithm.

If (D1,D2,D3,D4) is a DDH tuple, then Dr
4 = hr̃rỹ. Therefore as ỹ = yuid′ ,

the inputs to A are also distributed identically to in Game Hj+1. Whereas if
(D1,D2,D3,D4) is not a DDH tuple, then Dr

4, is distributed identically to nym′,
which was chosen randomly and independently. Therefore the inputs to A are
distributed identically to in Game Hj .

Reduction to the DDH problem. Therefore the probability that Dj outputs 1 if
it was given a valid DDH tuple as input is Pr[Sj+1], and Pr[Sj ] is the probability
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Fig. 5. The CONVSIM oracle used by distinguisher Dj given in Fig. 5. To avoid con-
fusion, we write uid′ to refer to the j + 1-th user that has joined the group (and for
which Dj embedded the DDH challenge).

that Dj outputs 1 when the input was not a DDH tuple. The advantage of Dj

is then |Pr[Sj ] − Pr[Sj+1]|, therefore |Pr[Sj ] − Pr[Sj+1]| = εDDH.
Overall, for our sequence of games H0 to Hq it holds that |Pr[S0]−Pr[Sq]| �

qεDDH and thus ε � qεDDH is negligible. This concludes our proof that the CLS–
DDH construction satisfies non-transitivity. 	

Lemma 3. The CLS–DDH construction presented in Sect. 4.1 satisfies conver-
sion blindness if the DDH assumption holds in G1.

Proof (sketch). Given that all a corrupt converter sees are ElGamal ciphertexts
that are encrypted under a key bpk for which bsk is not known to the adversary,
the proof for conversion blindness is a straightforward reduction to the CPA-
security of ElGamal which holds under the DDH assumption. 	

Lemma 4. The CLS–DDH construction presented in Sect. 4.1 satisfies join
anonymity if the DDH assumption holds in G1, and the SPK is zero knowledge.

Proof (sketch). For proving that adversary A cannot break the join anonymity
of our CLS–DDH construction we have to show that it is infeasible to link a join
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session of an honest user to the user’s signatures. In this setting the adversary
controls both the converter and issuer. The only value the corrupt issuer learns
during the join protocol from an honest user is H = hy

1 for the user’s secret
y and πH , the proof of knowledge of y. When receiving signatures from the
user, the adversary can use the converter’s secret key to recover hy from nym
and also sees π, the proof-of-knowledge of a BBS+ signature on y. By the zero-
knowledge property of the proof system, neither π nor πH leak any information
about y. It is easy to see that an adversary that can link hy

1 and hy for the
independent generators h1 and h can be turned into an adversary breaking the
DDH assumption. 	

Lemma 5. The CLS–DDH construction presented in Sect. 4.1 satisfies non-
frameability if the DL assumption holds in G1, and the SPK is simulation-
sound and zero knowledge.

Proof (sketch). If an adversary A exists that can break the non-frameability of
our CLS–DDH scheme, then we can build an adversary A′ that breaks the discrete
logarithm assumption. Recall that non-frameability ensures that an adversary
should not be able to create a valid signature that Convert will falsely link to
signatures of an honest user. In the proof we embed re-randomized versions
of a DL challenge D = hy in the join protocol for all users, i.e., using Dr

instead of H when receiving the BBS+ signature from the corrupt issuer. We
also set the public parameters such that h1 = hz for a random exponent z.
For signature queries we use the knowledge of z to compute proper looking
pseudonyms, and then mimic the SPK by choosing A′, d′ randomly, setting Â ←
A′isk, and simulating π. If the adversary outputs his forgery (nym∗, σ∗,m) we
extract y from π∗ contained in σ∗. Clearly, this also relies on the simulation
soundness and zero-knowledge property of the proof system. 	

Lemma 6. The CLS–DDH construction presented in Sect. 4.1 satisfies trace-
ability if the q-SDH assumption holds, and the SPK is simulation-sound, zero
knowledge and online extractable.

Proof (sketch). We show that if an adversary A can break traceability for the
CLS–DDH construction then we can build an adversary A′ that breaks the q-
SDH assumption. Roughly, to win the traceability game the adversary must
be able to create more signatures that remain unlinkable in Convert than users
he controls, which requires A to forge BBS+ signatures. Our proof closely fol-
lows the revised proof of the unforgeability of BBS+ signatures given in [14].
Note that this uses the newer version of the q-SDH assumption [8] that sup-
ports type-3 pairings, which in turn allows to prove the unforgeability of BBS+
signatures in the type-3 pairing setting. 	


4.3 Instantiation of SPK and Efficiency

We now discuss how to securely instantiate the online-extractable SPK’s used
in our CLS–DDH construction and state the computational cost and lengths of
signatures and pseudonyms.
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Instantiation of SPK’s. We have two non-interactive zero-knowledge proofs of
knowledge in our scheme: πH used in the join protocol for proving knowledge
of y in H = hy

1, and π proving knowledge of a BBS+ signature on y and that
nym encrypts the same y. In both cases we need the witness y to be online
extractable. For this, we additionally encrypt y under a public key that needs to
be added to param (and to which in security proof we will know the secret key
for), and extend π and πH to prove that the additional encryption contains the
same y that is used in the rest of the proof. For the verifiable encryption of y we
use Paillier encryption [20], that is secure under the DCR assumption [36].

For transforming interactive into non-interactive zero-knowledge proofs we
rely on the Fiat-Shamir heuristic that ensures security in the random oracle
model. Due to this, we can now state Corollary 1.

Corollary 1. The CLS–DDH construction presented in Sect. 4.1, with the SPK
instantiated as above, is a secure CLS as defined in Sect. 3 under the DDH,
q-SDH and DCR assumption in the random oracle model.

Computational Cost. We give the operations required for the entities involved
in the scheme in the table below. We denote k exponentiation in group Gi by
kexpGi

, k hash function calls by khash, and k pairing operations by kpair. We
denote k exponentiations in Z

∗
n2 due to the Paillier encryption used, by kexpZ∗

n2
.

Entity Algorithm Computational Cost

User Sign 16exp
G1

+ 15exp
Z

n2
+ 1hash

Verifier Verify 12exp
G1

+ 11exp
Z

n2
+ 1hash + 2pair

Blind 6exp
G1

Unblind 2exp
G1

Converter Convert(k pseudonyms input) 7kexp
G1

Pseudonym & Signature Length. We give the sizes of pseudonyms and
signatures in terms of the amount of group elements below. We denote the length
required to represent k elements in G1 as kG1, k outputs of a hash function as
kH, and k elements in Z

∗
n2 , due to the Paillier encryption used, as kZ

∗
n2 .

Pseudonym Signature

Original Blinded Converted Unblinded Converted

nym cnym cnym nym σ

2G1 3G1 2G1 1G1 3G1 6Zp 1H 6Z
∗
n2
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5 Conclusion and Future Work

In this work we have introduced a new form of group signatures that support
flexible and controlled linkability: data can be collected in authenticated and
fully unlinkable form, whilst still allow the data to be obliviously relinked by
queries to a central entity. We have formalized the required security properties
in a dynamic model, i.e., users are able to join the scheme, and proposed an
efficient scheme that satisfies these requirement under discrete logarithm and
Paillier assumptions in the random oracle model.

There are a number of open problem we consider to be interesting avenues
for future work: Compared with the anonymity requirements of conventional
dynamic group signatures, our anonymity notions are somewhat weaker as we
do not allow the adversary to corrupt the two challenge users after it received
the challenge signature. This means that our privacy related requirements do not
yield forward anonymity. Given the conversion functionality that is inherent in
our setting, achieving such stronger notion seems challenging, if not even impos-
sible. In fact, for the related problem of group signatures with user-controlled
linkability with signature-based revocation, forward anonymity has not been
achieved by any of the existing schemes either.

Another direction for further work would be to investigate how to achieve
security against fully malicious verifiers. On a high level, this will require to
forward blinded versions of the users’ signatures to the converter, allowing him
to check the validity of the blinded inputs. The challenge is to do this while
preserving the converter’s capability to blindly decrypt and transform the inputs.

In a similar vein, we have considered the verifier to be both the data collector
and data processor so far. However, our blind and unblind algorithms already
cater for a more flexible setting, as they are specified in the public-key setting.
That is, the verifier could blind and push the data to be linked towards a dedi-
cated data processor holding the secret unblinding key. This has the advantage
that data storage and processing can be strictly separated. For such a setting
it might be desirable to preserve the authenticity of the data throughout the
process, i.e., the blind conversion must also take the signatures as input and
transform them into valid signatures for the re-linked pseudonyms.
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1 Introduction

Modern cryptography has been spectacularly successful. We have already seen
a flurry of cryptographic tools with versatile functionalities and rigorous secu-
rity analyses. Yet, the formal security guarantees come with an implicit caveat
– they only hold if the implementations faithfully realize the specifications the
formal security proof is analyzing. Our experiences tell us that implementa-
tion can be tricky. Programming bugs may go undetected and subtle errors can
make the implementation faulty. Apart from unintended blunders which may
spoil the security guarantee, implementations of cryptographic algorithms can
be subverted with fully adversarial implementations which look correct even
under fairly intensive (black-box) testing. Such kind of subversion, or in gen-
eral, kleptographic attack [27,28], is not just a pathological concern, but has
been understood as a real threat since the Snowden revelations [22]. Concretely
speaking, whenever a “third-party” software library or hardware device is relied
upon by a bigger cryptographic system, it is hard to assert its security even if
the said cryptographic system is “provably secure” in the traditional sense.

At a high level, kleptography considers a “proud-but-curious” adversary
whose goal is to break the security of a certain cryptographic primitive by sup-
plying a malformed implementation of it without being detected. Under such a
setting, the adversary has many viable attack strategies. For example, the mali-
cious implementation of a signature verification algorithm may always return
“1” when seeing a certain hard-coded string1. For another example, the sub-
verted randomized (e.g., encryption) algorithm may leak secret information via
a steganographic channel [4,23]. These general and powerful attack strategies
are undetectable under offline black-box testing. Given these attacks, it is not
surprising that all existing defense mechanisms rely on extra trust assumptions,
such as trusted online reverse firewall [10,16,21], trusted key generation algo-
rithm [2,5], trusted initialization [17], etc.

Recently, Russell et al. [23] proposed a framework (called cliptography) for
systematically studying how to secure cryptographic primitives in the presence
of kleptographic attacks, i.e., how to clip the power of kleptographic attacks.
The framework is characterized by three parties: an adversary, who may provide
potentially subverted implementations of cryptographic algorithms; a “watch-
dog”, who either certifies or rejects the implementations by subjecting them
to (black-box) interrogation according to the genuine specification of the algo-
rithms; and a challenger, who plays with the adversary in a conventional security
game, but now using the potentially subverted implementations. This frame-
work is capable of capturing a wide range of subversion capabilities and defense
mechanisms.

1 This can be viewed as applying the input-triggered attack [13] to signature schemes.
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– Online watchdog vs. offline watchdog. We can define two flavors of
watchdogs, depending on the information given to it. The strong (and less
attractive) model of online watchdog [23] is provided with access to the full
transcript of the challenger-adversary security game. It could be valuable
for establishing feasibility results, but in practice, it is not easy to instantiate
such a watchdog, as it has to piggyback on the implementations, collecting all
communication transcripts to detect abnormal inputs, and “barking” all the
time. The weaker (and perhaps more attractive) model is the offline watchdog
model [23,25]. The watchdog simply interrogates the supplied implementa-
tions, comparing them with the specification of the primitives, and declares
them to be “fit” or “unfit.” In other words, the watchdog only needs to “bark”
once, and then it can go offline afterward.

– Partial subversion vs. complete subversion. The adversary may be more
interested in subverting certain cryptographic algorithms than the others. For
instance, if the attack goal is to learn the secret signing key, the attacker will
be less interested in subverting the verification algorithm than the signing
algorithm, since the verification result can only carry 1-bit of information and
it is likely to be kept locally. It is thus still worthy to consider the partial-
subversion model, in which some algorithms can be explicitly excluded from
subversion in the security game. Some subversion defense methods are estab-
lished in this model, e.g., honest key generation algorithm and honest verifica-
tion algorithm of a digital signature scheme [2]. The cliptography framework
by Russell et al. [23] can easily capture partial subversion by letting the chal-
lenger run the genuine algorithm in the security game. Of course, it is of
great importance to consider a more powerful adversary who can launch a
complete subversion which subverts all the relevant cryptographic elements
of a scheme [23] (excluding the computing base).

– Trusted computing base. Note that the complete-subversion model above
only refers to the functional components, i.e., the cryptographic algorithms,
which should be distinguished from the user computing base for basic opera-
tions such as ⊕, =, “reassembly”, etc. The trusted computing base for (some
of) these operations is provided by the architecture, which is normally not
under the control of the cryptography implementation/library provider.
Russell et al. [23,25] recently proposed the split-program strategy for immu-
nizing kleptographic attacks on randomized algorithms. The idea of this non-
black-box technique is to decompose the algorithm into a constant number
of smaller components. The adversary can still provide subverted implemen-
tations of all these components but the challenger will faithfully amalgamate
these components into a fully functional implementation, which will be used
in the security game. Note that all components are still subject to black-box
interrogation by the (online/offline) watchdog. Such non-black-box testing
and trusted amalgamation can be captured by simply providing specifica-
tions of all small components of the algorithm to the watchdog.
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Current Status of Subversion-Resistant Signatures. To the best of our
knowledge, only three previous works considered subversion-resistant signature
schemes. The work by Ateniese et al. [2] not only relies on a priori “verifiability”
condition which essentially requires an online watchdog to instantiate, but also
assumes trusted key generation algorithm (or requires a trusted online “reverse
firewall”). The result of Russell et al. [23], despite in the complete-subversion
model, (explicitly) requires an online watchdog too. Fischlin and Mazaheri [17]
recently proposed a new defense mechanism called “self-guarding” which requires
users to have a trusted initialization phase to generate genuine message signature
pairs for randomly chosen messages. We continue the pursuit of reducing the
trust assumption needed for subversion-resistant signature schemes.

1.1 Our Contributions

We investigate subversion-resistant EUF-CMA-secure (simply put, cliptographic)
digital signature schemes in the above framework with only an offline watchdog.

A Simple Generic Construction in the Partial-Subversion Model. We
start with a simple construction which works for any existing signature schemes.
So, one can just apply a simple “patch”, or install a “small” (due to its simplic-
ity) add-on without changing the underlying system. Note that for this generic
construction, the verification algorithm is still trusted.

How Difficult Is Our Problem? First, note that the key generation can be han-
dled by the recent double-splitting technique [25]. The main difficulty appears in
the Sign algorithm. Recall that one potential catastrophe of a subverted signing
algorithm is the revelation of the secret key. It is relatively easier to discover
such a subversion if the secret key is blatantly output as the “signature”. A
more sophisticated kleptographic attacker will hide this secret. When the sign-
ing algorithm is randomized, it provides a convenient subliminal channel. A
natural preventative measure is to use clean randomness to re-randomize the
signatures (if they are publicly re-randomizable), with the existence of a crypto-
graphic reverse firewall [21]. Alternatively, a unique signature scheme, in which
there is only one valid signature for each message, simply does not feature any
subliminal channel. These explain in a high-level way the feasibility results of
Ateniese et al. [2]. Nevertheless, many signature schemes, especially those effi-
cient ones with security proven in the standard model, are randomized (e.g. [8]).
So our first question is: can we upgrade the signing algorithm of a probabilistic
signature scheme?

Our Generic Construction. A general defense against input-triggered attacks [13]
is to mandate that the subverted implementation only takes a random message.
Russell et al. [25] construct subversion-resistant encryption schemes in the offline-
watchdog model with this idea. The encryption algorithm invokes two instances
of encryption, one encrypting u ⊕ m and the other encrypting u. Adopting this
strategy näıvely in the context of signature signing does not work. The scheme
Sign

spec
(sk,m) = (Sign′

spec
(sk, u), Sign′

spec
(sk, u ⊕ m), u) is trivially forgeable.
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We fixed this forgeable scheme by two techniques: (i) Domain-separation:
We append different special symbols to the inputs in the two invocations, so
that the output of the first invocation cannot be interpreted as the second one
(and vice versa); (ii) One-time random tag: We also need to make sure that no
one can mix-and-match (the components of) signatures for different messages to
create new forgeries. To do so, we further include a random tag r that binds the
two signature components together, also making sure that they are one-use only.
We note that the domain-separation technique has been used in other contexts,
such as random oracle instantiation. Similar one-time random tag structure has
also appeared in the context of structure-preserving signature [1], but their work
does not randomize the message to be signed.

Moreover, to handle the subliminal channel attack due to biased randomness,
we decouple the randomness generation from the randomized algorithm [25]. The
randomness generation can be further handled via the double-splitting technique,
while the deterministic counterpart for signing can be safeguarded by only an
offline watchdog as we feed only uniform messages as input.

FDH-Based Construction in the Complete-Subversion Model. Our
main contribution is a secure signature scheme in the complete-subversion model
which further handles the subverted verification algorithm.2 This is the first sig-
nature scheme that achieves such security goals. The simple generic construction
above cannot handle subversion of verification algorithm. Indeed, it is not clear
how to generically apply the randomization strategy to the potentially adversar-
ial inputs to be fed to the verification (i.e., the message m and the signature σ),
such that the signature verification algorithm still works on these randomized
inputs, without jeopardizing the unforgeability of the signature scheme.

Our second construction hence does not take the generic randomization app-
roach, but instead handles the classical full-domain hash (FDH) [7,11] paradigm.
In this paradigm, the signing algorithm first hashes the message and then inverts
the hashed value via a trapdoor one-way permutation. The adversary is supposed
to provide the implementation of each algorithm: KGimpl, Signimpl, Verifyimpl and
also the implementation of the hash himpl.

First, we note that the key generation can be handled the same way as our
generic transformation above applying the recent double-splitting technique [25].

Regarding the hash function, we utilize the recent work of Russell et al. [26],
which provides a simple construction that can correct a subverted random oracle,
such that the resulting function will be as good as an ideal random function.
The construction requires some public randomness that is generated after the
implementation of the hash is supplied. To apply their theorems [26], and ensure
that the “corrected” hash can be considered to be a random oracle, we need
to ensure (i) the subversion disagrees on its specification only at a negligible

2 As elaborated above, the trusted computing base including operations like “⊕” and
“=” are still in place. They are actually necessary due to the known (simple) trigger
attacks [13] assuming only an offline watchdog. Our goal is to reduce the number of
trusted functional components, and keep the remaining as simple as possible, e.g.,
without any trusted large group operations.
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fraction; (ii) there is randomness that can be generated and published after
the malicious implementations are supplied; (iii) “interpret” their “replacement
lemma” [26] such that it is suitable for our application. Point (iii) is more complex
than it looks, especially when all the other algorithms are subverted. See below.

It is challenging to deal with the signing algorithm. To avoid the signing
implementation to leak the secret triggered by some hidden input, we will apply
the “corrected” random oracle [26] to the message before passing it into the evalu-
ation function of the underlying one-way permutation. The adversary is required
to provide the implementation of the inversion function, and the implementation
of the hash, separately, to enforce the actual inputs to the implementation of
inversion function are sk, h̃R(m), which are generated by a known distribution.

However, we remark that simply viewing h̃R as a good random oracle
g(·) (trivially applying the replacement lemma [26]) is still problematic. As
the subverted Invimpl could simply use g(z) as the backdoor and output the
secret key sk directly when z appears in a signing query (i.e., Sign

impl
(sk, z) =

Invimpl(sk, g(z)) = sk).
The problem here is that the adversary can query random oracle when gener-

ating the implementations and plant the trigger accordingly. To defend against
such attack, we have to disable the adversary from making useful random oracle
queries during the implementation-generation phase. Observe that if we have
some randomness R generated after Sign

impl
is provided, and R is involved in

the “encoding” of the message before sending to Invimpl, then the above problem
could be mitigated. Luckily, the correction function from [26] already involves
randomness generated after the time that implementations are provided. What
we need to adapt here is to derive a “stronger replacement theorem” that the
correction function of [26] is actually “as good as” (in the sense of indifferen-
tiability) a keyed hash (where, the key could be public, but sampled after the
implementation is provided). See Sect. 4.3 for details.

Finally, it is also tricky to deal with the verification algorithm. Suppose the
implementation of the verification takes input public key pk and a message-
signature pair (m,σ), and outputs 0 or 1 to decide whether the signature is
valid. The input-triggered attack again can be applied here in a way that, for
some randomly chosen message m∗, Verify

impl
(·,m∗, ·) always outputs 1. Opening

up the verification functionality of the full-domain hash signature, it is actually
to check whether evaluating the signature equals to the (“corrected”) hash of
the message. We propose to do such canonical verification explicitly, that the
equality operation (and the “corrected” hash) will be done by the user. The
adversary will provide the implementation of the evaluation function. This simple
decomposition of the verification functionality changes the task of the adversarial
implementation from targeting one bit to predicting a random value, which is
the output of the “corrected” hash. We remark here that, as above, the use of the
public randomness is also critical to prevent the adversary from making useful
random oracle queries during the manufacturing phase of Verify

impl
.

There still exists a subtler attack, that the attacker might use the trigger
signature material σ∗ to directly carry the information of hR(m∗). This has to
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be resolved by strictly restricting the length of σ∗ and doing a length check.
As σ∗ first needs to carry certain trigger information which is independent of
the output of hR(m∗), this thus burns the information needed for a precise
prediction of the value of hR(m∗).

1.2 Related Works

Kleptography introduced by Young and Yung [27,28] primarily highlighted the
possibility of subverting key generation and left open the problem of defending
against such subversion. A recent line of work of Russell et al. [23,25,26] has ini-
tiated a systematic study of cliptography about defending against kleptographic
attacks by redesigning the specification and leveraging architectural tools. In
particular, they provided a subversion-resistant digital signature, assuming an
online watchdog [23].

Also recently, new attacks and defense mechanisms in the kleptographic set-
ting keep appearing. In particular, Bellare et al. [5] studied subverted randomized
encryption algorithms, building a steganographic channel that leaks secrets bit
by bit. Indeed, subliminal channel attacks turn out to be the major obstacle in
this area, and have been further explored by Ateniese et al. [2], Bellare et al. [3,4],
Degabriele et al. [13], Dodis et al. [15], and Liu et al. [19]. A common feature of
these works [3–5,13] is to adopt deterministic algorithms and to assume honest
key generation to defend against subliminal channel attacks.

Furthermore, these works do not rely merely on testing. In fact, most
require an a priori “decryptability” condition which demands that every mes-
sage encrypted using the implementation should be decrypted correctly using
the specification. A notable exception is the work of Degabriele et al. [13].
However, it relies on an online watchdog that possesses access to the actual
challenger-adversary communication transcript (including the internal state of
the challenger).

Another research line [10,16,21] considered defense mechanisms with a
“reverse firewall” that faithfully “re-randomizes” incoming and outgoing commu-
nication. On one hand, this model is attractive as it may permit quite general
feasibility results. On the other hand, it relies on an independent component
which is a source of trusted randomness (which generalized the “trusted war-
den” [14] used to eliminate subliminal channels in authentication protocols) and
“re-randomizable” structure of the underlying algorithms.

Recently, Fischlin and Mazaheri [17] proposed a new defense mechanism
called “self-guarding”, which assumes that a genuine version of the cryptographic
implementations is available before they get substituted. The self-guarding prim-
itive then leverages information gathered using that genuine implementation at
the initial phase to re-randomize potentially malicious inputs like the reverse
firewall approach (assuming trusted basic operations like exclusive-or or group
operation). They constructed several self-guarding primitives including digital
signature schemes. Besides the trusted “setup”, their signature construction
comes at a price that verification/signing key size and signature size all inflate
by a factor of O(λ) where λ is the security parameter.
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Finally, also motivated by the doubt on the implementation, cryptographers
(e.g., [18,29]) studied combiners of cryptographic primitives such that as long
there exists one component primitive is secure, even if it is not known which one
is that, the combined primitive remains secure.

Organization. In Sect. 2, we define the security for subversion-resistant digital
signature. In Sect. 3, we give our first construction – a simple and generic scheme
in the partial-subversion model; in Sect. 4, we give our second construction – an
FDH-based signature scheme in the complete-subversion model. Both construc-
tions use only an offline watchdog. Finally, the crooked indifferentiability model
can be found at Appendix A.

2 Definition of Subversion-Resistant Signatures

First, we recall the definition of subversion-resistant signatures [23]. Its goal
is fairly simple: the security of the digital signature scheme – unforgeability –
should be preserved even one uses the malicious implementations supplied by the
adversary, as long as the adversarial implementation is not detected. The detec-
tion is done by a trusted entity called watchdog who has the specification of the
algorithms and it will interrogate (via oracle accesses of) the implementation
to see whether it is consistent with the specification. The subversion-resistant
signature game is defined as the classical unforgeability game, except that the
challenger will use the implementations supplied by the adversary instead of the
specification of the algorithms. In particular, the challenger runs the key gener-
ation algorithm KGimpl to generate the challenged signing key and verification
key, uses the signing functionality Sign

impl
to answer signing queries and use the

implementation of verification functionality Verify
impl

to verify the final forgery
that the adversary made. Definition 1 formalizes the high-level description above.
It can be viewed as a special case of the cliptographic game [23, Definition 2]
under the context of digital signature schemes.

Definition 1. A specification Πspec = (KGspec,Signspec,Verifyspec) for a digital
signature scheme Π is subversion-resistant in the offline-watchdog model, if
there exists a probabilistic polynomial-time (ppt) watchdog W, s.t., for any ppt

adversary A playing the security game (Fig. 1) with the challenger C, either the
advantage of the adversary A in the security game AdvA(1λ) = Pr[bC = 1]
is negligible, or the detection probability DetW,A(1λ) of the watchdog W with
respect to A is non-negligible. Here, DetW,A(1λ) is defined by

∣
∣Pr[WKGimpl,Signimpl,Verifyimpl(1λ) = 1] − Pr[WKGspec,Signspec,Verifyspec(1λ) = 1]

∣
∣ .
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Fig. 1. Subversion-resistant signature game in the offline-watchdog model

As discussed earlier in Sect. 1, depending on the watchdog power, there could
be different variants of the above model. The most realistic watchdog only per-
forms one-time testing, which is called an offline watchdog. In practice, an offline
watchdog can be some industrial labs or security experts. We can also consider a
more stringent online watchdog that additionally checks all communication tran-
scripts between the challenger and the adversary. The online-watchdog model has
been explicitly considered under the context of digital signatures [23]. Clearly, an
online watchdog is much powerful and makes the design of subversion-resistant
scheme easier, but it is also more costly to realize an online watchdog. An online
watchdog has to piggyback on the implementation and actively monitor all com-
munications of an implementation.

Unfortunately, with only an offline watchdog, it is impossible to achieve
unforgeability in the kleptographic setting [2], even if only the Sign algorithm is
subverted. To see, recall the input-triggered attack mentioned above: the sub-
verted signing algorithm Sign

impl
simply outputs the secret key when signing on

a hard-coded trigger message m which is selected uniformly by the adversary. It
is obvious that the adversary can make one single signing query to totally break
the unforgeability. Previous work [23] got around this by introducing an online
watchdog. Another work [2] introduced a “verifiability” assumption – any sig-
nature generated by the malicious signing implementation should be verified by
the genuine Verify algorithm. This verifiability assumption can only be ensured
with an online watchdog. This impossibility holds when the implementation is
used as a black box, without doing any post-processing. We will show below that
if the user can do some basic operation, e.g., equality check and “⊕”, then it
is possible to construct a digital signature scheme secure against the powerful
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kleptographic attack, with only an offline watchdog that performs non-black-box
testing (i.e., trusted amalgamation).

3 A Simple Generic Construction in the Standard Model

We propose a generic transformation on the signing algorithm which leads us to
a new randomized subversion-resistant signature scheme in the offline-watchdog
model from any deterministic signature scheme that is existentially unforgeable
against adaptive chosen-message attack (EUF-CMA, cf., Definition 8) (assum-
ing trusted verification and “⊕”). Our transformation (modulo the underlying
algorithms) holds in the standard model3, and can be easily generalized to han-
dle randomized signatures as well. As discussed in Sect. 2, previous subversion-
resistant signature schemes either rely on an online watchdog [23], or an online
reverse firewall [10], or a strong “verifiability” assumption [2].

Figure 2 below formally describes our construction. For the sake of simplicity,
we describe the transformation for deterministic signature schemes first, and then
show how to generalize the result to handle randomized schemes.

Key Generation. We handle the key generation by adopting the recently
proposed double-splitting technique [25, Theorem 3.5], which we recall in
Appendix B. This guarantees that the implementation of a carefully designed
specification of key generation can be used as good as the specification, as long as
the randomness generation algorithm is executed independently. We refer to [25]
for details. Our result can be lifted to allow malicious key generation by directly
applying the existing technique [25].

Sign. We augment the specification of the signing algorithm dSign
spec

with a
random tag generator RGspec and a random message generator MGspec, i.e.,
Sign

spec
= (RGspec, MGspec, dSignspec). RGspec and MGspec are merely for gener-

ating uniformly random tags and messages of a certain length. Therefore, they
can also be handled4 by the double-splitting technique [25, Theorem 3.4], sim-
ilar to the key generation algorithm. To sign a message m, the user first runs
MGimpl (the implementation) to sample a random message u, and compute a
message m′ = u⊕m. The user also runs RGimpl to generate a random tag r from
some super-polynomial-size domain. The user will call dSign

impl
twice to sign

two distinct messages m1 = (r||u||“1”) and m2 = (r||m′||“2”) = (r||u ⊕ m||“2”),
where “1” and “2” are two special symbols. The ultimate output of the signing
algorithm is σ = (r, u, σ1, σ2) where σ1, σ2 are the corresponding output of the
two invocations of dSign

impl
.

Verify. Verification works straightforwardly: parse σ as (r, u, σ1, σ2), compute
m′ = u ⊕ m, compose m1 and m2 (using trusted “⊕”), and verify σ1 and σ2.
3 In the full version [24] of [25], the authors discussed how to achieve subversion-

resistant randomness generation in the standard model, at the cost of efficiency. See
Appendix B and [24] for details.

4 RGspec and MGspec will be split into three pieces exactly in Fig. 14.
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Fig. 2. Subversion-resistant signature scheme SSspec in the offline-watchdog model

Before detailing the security analysis, we briefly explain how our design
ensures security. First, KGspec is subversion resistant because we are directly
applying the result in [25] (also see Theorem 5). Second, the Sign

spec
algorithm

is subversion resistant because by design the input to dSign′
spec

comes from a
public (uniform) distribution. A simple watchdog can further guarantee that
dSign

impl
is consistent with the specification when the output is sampled from

SK × R × M × {“1”, “2”}, where SK denotes the space of signing keys, R
denotes the super-polynomial-size tag space, and M denotes the message space.
Third, the special symbols (“1” and “2”) and the random tag r ensure EUF-CMA-
security as follows: (1) the two special symbols separate the input domain so that
the output of the first invocation of dSign′

spec
(with “1” appended) cannot be the

output of the second invocation (with “2” appended) for a forgery of Sign
spec

,
and vice versa; (2) the random tag r drawn from a super-polynomial-size domain
makes sure that the signature σ = (σ1, σ2) for some message m is one-use only:
the adversary cannot mix-and-match different signatures to create new forgeries.

Theorem 1. For any EUF-CMA-secure deterministic digital signature scheme
SS ′

spec
, the specification SSspec described in Fig. 2 is subversion resistant in

the trusted-amalgamation model, assuming a trusted “⊕” operation and trusted
the verification algorithm, and RGspec outputs uniformly random tag from some
super-polynomial-size domain.

Proof. The watchdog for SSspec is a combination of the watchdogs of the under-
lying components, including watchdogs for key generation (KGspec), random
tag generation (RGspec), random message generation (MGspec). There is also a
watchdog that makes sure dSign

impl
is consistent with the specification on inputs
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sampled from SK × R × M × {“1”} and SK × R × M × {“2”} (cf. Theorem 7)
because these two distributions are both public.

To see, the inputs to dSign′
spec

consist of the signing key sk from KGenimpl
and the concatenation of the following: a uniformly random tag r from RGimpl,
a uniform message u or u ⊕ m (where u comes from MGimpl), and a special
symbol (“1” or “2”). With the trusted “⊕” operation, u ⊕ m will look uniform
to dSign′

impl
, hence its distribution is also MGimpl.

The rest of the proof consists of two parts. The first part is a series of
game transitions showing that from the adversary’s point of view, the subversion
game (as defined in Fig. 1) is indistinguishable from a standard EUF-CMA game
(namely SS impl is replaced by SSspec), conditioned on the event that the watch-
dogs above do not detect any abnormal behavior of SS impl. The second part
shows that SSspec is indeed EUF-CMA-secure, so that the adversary’s advantage
is indeed negligible.

Now we sketch the game changes and explain the negligible differences arise
during a series of game transitions from SS impl to SSspec, conditioned on the
watchdog’s result (Verify

impl
is assumed trusted). Let the advantage of the adver-

sary A in game Gi be AdvGi

A .

Game-0. G0 is the original game as described in Fig. 1 with a trusted
amalgamation.

Game-1. G1 is identical to G0 except that the key generation implementation
KGimpl is replaced by its specification KGspec.

Lemma 1. |AdvG0
A − AdvG1

A | ≤ negl(λ).

Proof. This lemma follows straightforwardly from Theorem 5 [25, Theorem 3.5].
Namely, if KGen is split into RG0,RG1, Φ, dKG, and RG0,RG1 are executed inde-
pendently, the resulting implementation would be stego-free, i.e., indistinguish-
able from the specifications even to the adversary. (The formal definition of
stego-freeness is recalled in Appendix B. Readers are referred to [25] for a more
detailed discussion.) �

Game-2. G2 is the same as G1 except MGimpl is replaced by MGspec.

Game-3. G3 is the same as G2 except RGimpl is replaced by RGspec.

Lemma 2. |AdvG2
A − AdvG1

A | ≤ negl(λ) and |AdvG3
A − AdvG2

A | ≤ negl(λ).

Proof. These two inequalities follow directly from Theorem 4 [25, Theorem 3.4].
Taking the first inequality as an example, if there exists an adversary A such
that |AdvG2

A − AdvG1
A | is non-negligible, we can build another adversary B

breaking stego-freeness game for MGimpl. The reduction is straightforward: B
simulates the rest of the game for A, receives all malicious implementations
(MGimpl, dSign

impl
, etc.), but forwards only MGimpl to its own watchdog and

challenger. Whenever A queries the signing oracle for some mi, B asks its own
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challenger to obtain ui generated either by MGimpl or by MGspec, and uses ui

to compute appropriate responses for A using implementations provided by A.
Finally, B outputs whatever A outputs. It is easy to see that the simulation is
perfect, and the advantage of B is the same as the advantage of A. The second
inequality follows the same argument. �

Game-4. G4 is the same as G3 except dSign′
impl

is replaced by dSign′
spec

. Note
that in G4, all the implementations have been replaced by their genuine specifi-
cations.

Lemma 3. |AdvG4
A − AdvG3

A | ≤ negl(λ).

Proof. This again follows from Theorem 5 using a similar argument as in
Lemma 1. Note that the inputs to dSign′ are drawn from public distributions
(either SK × R × M × {“1”} or SK × R × M × {“2”}). �

Finally, we need to show that AdvG4
A is indeed negligible, which is equivalent

to showing that SSspec is indeed an EUF-CMA-secure signature scheme. To this
end, we design a simple reduction algorithm reducing the EUF-CMA-security
of Sign

spec
to that of dSign′

spec
. Suppose there is an adversary A that breaks

EUF-CMA-security of Sign
spec

, we design an adversary B that breaks dSign′
spec

.
For any signing query m, B randomly chooses (r, u), and submits signing queries
(r||u||“1”) and (r||u ⊕ m||“2”) to the oracle OdSign′

spec(·). B locally maintains a
list of records in the form (r, u,m, σ1, σ2) where σ1, σ2 are the responses from
OdSign′

spec(·), and forwards σ = (r, u, σ1, σ2) to A. Eventually A outputs a forgery
(σ∗,m∗), where σ∗ = (r∗, u∗, σ∗

1 , σ
∗
2), with non-negligible probability.

To see how B can extract a valid forgery for dSign′
spec

from A’s forgery
(σ∗,m∗), notice that by (σ∗,m∗) being a valid forgery for Sign

spec
, it means that

both (σ∗
1 , (r

∗||u∗||“1”)) and (σ∗
2 , (r

∗||u∗ ⊕ m∗||“2”)) are valid message-signature
pairs for dSign′

spec
, and that A has never queried the signing oracle for m∗.

The latter indicates that B’s local list does not contain any entry in the form
(·, ·,m∗, ·, ·). We discuss several cases:

1. Tag r∗ does not appear in any entries of B’s record: Both (σ∗
1 , (r

∗||u∗||“1”))
and (σ∗

2 , (r
∗||u∗ ⊕ m∗||“2”)) are valid forgeries for dSign′

spec
;

2. Tag r∗ exists in some records in the form (r∗, u, ·, ·, ·): By our assumption that
the tags are supposed to be drawn from a super-polynomial-size space, with
overwhelming probability all the tags in B’s record are unique. Without loss
of generality, assume that this unique record is (r∗, u,m, σ1, σ2). That means
(r∗||u||“1”) and (r∗||u⊕m||“2”) are the only queries sent to OdSign′

spec(·) which
begin with tag r∗. If u∗ �= u, then (σ∗

1 , (r
∗||u∗||“1”)) must be a valid forgery

for dSign′
spec

;
3. r∗ and u∗ appear in a unique entry of the form (r∗, u∗,m, σ1, σ2): Using the

same argument above, (r∗||u∗||“1”) and (r∗||u∗ ⊕m||“2”) are the only queries
sent to OdSign′

spec(·) which begin with tag r∗. It must hold that m∗ �= m.
Otherwise, A must have asked for a signature for m∗ from B. Given that
m∗ �= m, (σ∗

2 , (r
∗||u∗ ⊕ m∗||“2”)) must be a valid forgery for dSign′

spec
.
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By our assumption that dSign′
spec

is EUF-CMA-secure, AdvG4
A is negligible.

Putting all the lemmas above together, we complete our proof. �
It is straightforward to generalize Theorem 1 to handle randomized signa-

tures. Basically, the randomized signing algorithm rSign
spec

(sk,m) needs to be
split into two components RG′

spec
(1λ) and dSign

spec
(r; (sk,m)). RG′

spec
generates

uniform randomness needed by rSign
spec

, and dSign
spec

is a deterministic algo-
rithm, so that for all sk, m, it holds that rSign

spec
(sk,m) = dSign

spec
(RG′

spec
(1λ);

(sk,m)). Both RG′
spec

and dSign
spec

can be made subversion-resistant easily. The
security proof above only needs to be augmented with an additional hybrid game
that replaces RG′

impl
with RG′

spec
.

Corollary 1. For any EUF-CMA-secure (randomized) digital signature scheme
SS ′

spec
, the specification SSspec described above is subversion-resistant in the

trusted-amalgamation model, assuming a trusted “⊕” operation and trusted ver-
ification algorithm, and RGspec outputs uniformly random tag from some super-
polynomial-size domain.

4 FDH-Based Signatures Under Complete Subversion

Now we describe our second construction of signature scheme which only requires
an offline watchdog when all cryptographic algorithms (KG,Sign,Verify) and the
hash functions are subjected to subversion. Our scheme follows the full-domain
hash [7,11] paradigm, one of the most classical applications of random oracles.

4.1 High-Level Ideas

In an FDH-based signature scheme, the signing algorithm first hashes the mes-
sage and then inverts the hashed value using a trapdoor one-way permuta-
tion. Suppose the adversary can subvert the implementation of each algorithm:
KGimpl,Signimpl,Verifyimpl and also the implementation of the hash himpl. Several
natural questions arise. Let us examine the algorithms one by one.

As discussed in the introduction, we will handle those algorithms one by one.
Here we elaborate a bit more. The intuition for defending against the trigger
is that the Sign algorithm cannot be fed with a random message. Without the
trusted re-randomization, our idea is to hash the message. While hashing alone
does not resolve the problem as the trigger can be trivially propagated through
the hash. One simple observation is to hash the message together with some
random element that is not known to the attacker, e.g., public-key material.
Now, this naturally leads us to consider hash subversion.

Fortunately, Russell et al. [26] provided a simple construction that can correct
a subverted random oracle, such that the resulting function will be as good as
an ideal random function. To apply their theorems [26], we need to ensure (i)
the subversion disagrees with its specification only at a negligible fraction; (ii)
there is randomness that can be generated and published after the malicious
implementations are supplied; (iii) interpret the “replacement” lemma to be
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suitable for our application. Requirement (i) is easy and repeatedly used in the
cliptography literature [23,25]. As the hash function is a deterministic function,
the offline watchdog can simply evaluate the implementation and compare with
the output of the specification. For (ii), observe that the implementation of key
generation KGimpl will produce a public key, which should be unpredictable to
the adversary (otherwise, the watchdog can keep sampling to find a collision
to differentiate KGimpl from KGspec). It follows that if KGimpl can be treated as
honestly generated (see above), we can extend the key generation to also output
some randomness R which will be part of the public key. Requirement (iii) is a
bit subtler. Simply replacing the corrected hash with a trusted random oracle is
not enough. See the next point of subverting Sign

impl
and Sect. 4.3 below.

The traditional implementation of the verification takes input public key pk
and a message-signature pair (m,σ), and outputs 0 or 1 to decide whether
the signature is valid. The input-triggered attack can be applied here easily.
Verify

impl
(·,m∗, ·) can just always outputs 1 for some randomly chosen mes-

sage m∗ (or a special signature element σ∗). In the full-domain hash, opening up
the verification functionality, it is actually to check whether evaluating the sig-
nature is equal to the (“corrected”) hash of the message. We first propose to do
such a canonical verification explicitly, that the equality operation will be done by
the user. The adversary will provide the implementation of the evaluation func-
tion of the one-way permutation. This simple decomposition of the verification
functionality changes the task of the adversarial implementation from targeting
one bit to predicting a random value, which is the output of the “corrected”
hash. We remark here that, same as above, the use of the public randomness is
also important for preventing the adversary from making useful random oracle
queries during the manufacturing phase of Verify

impl
.

There still exists a subtler attack, that the attacker might use the trigger
signature material σ∗ to directly carry the information of hR(m∗). Such kind
of attack looks like the “big brother” A is communicating directly to the “little
brother” – the subverted implementation for action items. This has to be resolved
by strictly restricting the length of σ∗ and doing a length check. We note that in
the setting of FDH, since we use trapdoor one-way permutation, thus the length
is tight, and the simple length checking already works. See the proof of Lemma 7.

4.2 Our Subversion-Resistant FDH-Based Signature Scheme
in the Offline-Watchdog Model

Given a trapdoor one-way permutation, with specification denoted by Fspec :=
(KGF

spec
, EvalF

spec
, InvF

spec
), and a public hash function (or a family of hash func-

tions for consistency) with specification
{

hi : {0, 1}∗ → {0, 1}n
}

i=0,...,�
, where

we assume the message space is M = {0, 1}n; we construct a subversion-resistant
signature scheme SS with specification SSspec := (KGSS

spec
,SignSS

spec
,VerifySS

spec
).

Note that the family of {hi}�
i=1 may be simply derived from one hash using

different indices, e.g., ∀x, hi(x) = h(i, x), where i = 1, . . . , � = 3n + 1.
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– Key generation: (pk, sk) ← KGSS
spec

(λ), where KGSS
spec

5 is given by:
The algorithm generates (f, tdf ) ← KGF

spec
(λ), and R := r1, . . . , r� ←

{0, 1}n�.

The algorithm sets pk := (f,R) and sk := tdf ;
– Sign: σ ← SignSS

spec
(pk, sk,m), where SignSS

spec
:= ({hi}�

i=0, Invspec) is given by:

Upon receiving message m, the algorithm first computes m̃ = hR(m) =

h0

(

⊕�
i=1 hi(m⊕ri)

)

, and then generate the signature as σ = InvF
spec

(sk, m̃).

Sign
spec

:= ({hi}�
i=1, Invspec) means, explicitly, the adversary should follow

this decomposition, and provide implementations of {h̃i}�
i=1 and Invimpl indi-

vidually.
– Verification: b ← VerifySS

spec
(pk,m, σ), where VerifySS

spec
:= ({hi}�

i=1,Evalspec)
is given by:

Upon receiving message-signature pair (m,σ) and a public key pk, the algo-
rithm only proceeds if the length of σ∗ is correct (equals to the hash out-

put length n), it then computes m̃ = hR(m) = h0

(

⊕�
i=1 hi(m ⊕ ri)

)

, if

EvalSS
spec

(pk, σ) = m̃, set b := 1; otherwise, set b := 0. Here, pk = (f,R).

Likewise, VerifySS
spec

:= ({hi}�
i=1,Evalspec) means that for Verify the adversary

should supply the implementation of Evalimpl (while {hi} can be reused).

4.3 How to Use the Replacement Theorem [26]

To prepare us for the security proof, we first strengthen the previous result
about correcting random oracle. Let us recall the replacement theorem [26] for
establishing that a corrected random oracle is as good as a truly random function
when used in larger systems.

General Replacement with Crooked Indifferentiability. Security-preserving
replacement has been shown in the indifferentiability framework [20]: if C G

is indifferentiable from F , then C G can replace F in any cryptosystem, and
the resulting cryptosystem in the G model is at least as secure as that in the F
model. It has been shown [26] that the replacement property can also hold in the
crooked indifferentiability framework (see Appendix A.2 and [26] for a detailed
definition).

To model “as secure” (when correcting a subverted object) when used in
larger systems (see illustration in Fig. 3 excluding R), consider an ideal primitive
G, we can define the G-crooked-environment Ê as follows: Initially, the crooked
environment Ê manufactures and then publishes a subverted implementation
5 We remark here that the KGSS

spec algorithm will be split into four pieces exactly as [25].
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of G, denoted by G̃. Then Ê runs the attacker A, and the cryptosystem P is
developed. In the G model, cryptosystem P has oracle accesses to C whereas
attacker A has oracle accesses to G; note that, C has oracle accesses to G̃, not
directly to G. In the F model, both P and A have oracle accesses to F . Finally,
the crooked environment Ê returns a binary decision output. It was shown [26]
that if a construction C is G-crooked indifferentiable with another object F , CG

would be as secure as F when used in any larger system P.

Fig. 3. Environment ̂E interacts with cryptosystem P and Attacker A: In the G model
(left), P has oracle accesses to C whereas A has oracle accesses to G; the algorithm C
has oracle accesses to the subverted G̃. In the F model, both P and SA have oracle
accesses to F .

An Easier-to-Use Interpretation for Correcting Subverted Random Oracles.
Using the definition and the theorem as is, however, will cause some trouble when
applying the result of correcting a subverted random oracle, especially when
plugging it to a larger system. We first reflect the public randomness generated
after implementation is provided more explicitly in the model. Moreover, we also
need to adjust the “ideal world” a little bit so that the targeted ideal object (in
particular, a random oracle here) is also utilizing such public randomness, which
yields a slightly stronger object of (ideal) keyed hash. These two adjustments
will be critical for the application to our FDH construction.

For simplicity, we focus only on random oracles here. Consider a random ora-
cle G, we augment the G-crooked-environment Ê as follows: Initially, the crooked
environment Ê deploys the attacker A to query G for some preprocessing. It
follows immediately Ê deploys the crooked implementation G̃ and the cryptosys-
tem P (which itself could be malicious or containing subverted components).
Some randomness R is then drawn and published, which is utilized by con-
struction C . On the other hand, in the world using random oracle F , originally
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after R is generated, F(·) becomes F(R, ·) (with the first half of inputs fixed
by a randomly selected R). The interactions among A,P, E and the rest of the
definition of “as secure” remain the same. See Fig. 3.

Definition 2. Consider random oracles G and F (both with variable input
length). A cryptosystem P is said to be at least as secure in the augmented
G-crooked model with algorithm C as in the F model, if for any augmented G-
crooked-environment Ê and any attacker A in the augmented G-crooked model,
there exists an attacker SA in the F model, such that:

Pr[Ê(PC G̃
,AG) = 1] − Pr[Ê(PF ,SF

A ) = 1] ≤ ε.

where ε is a negligible function of the security parameter λ.

We can prove a similar theorem as the replacement theorem [26] for the aug-
mented definition (with essentially an identical proof technique, see the dashed
frames in Fig. 4 and we refer to [26] for details).

Corollary 2. Let P be a cryptosystem with oracle accesses to a random ora-
cle F . Let C be an algorithm such that C G is G-crooked-indifferentiable from F .
Then cryptosystem P is at least as secure in the augmented G-crooked model
with algorithm C as in the F model.

4.4 Security Analysis

Theorem 2. If Fspec is a trapdoor permutation, the specification of {hi}i=0,...,�

are random oracles, then the signature scheme SS with specification SSspec con-
structed above is subversion resistant with an offline watchdog, assuming the
“⊕” and “=” operations are honestly carried out (and execute the pieces inde-
pendently as [25]).

Fig. 4. Construction of attacker SA from attacker A and simulator S
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Proof. First, to simplify the presentation of the analysis in the cliptographic
setting, we ignore the checking phase of the offline watchdog in the game tran-
sitions, while taking the simple guarantees such as deterministic function will
be correct on an overwhelming portion of inputs as the condition. The secu-
rity can then be seen simply by walking through the sequence of game hopping
over games Gi’s (closer to the usual case). Let the advantage of adversary A in
game Gi be AdvGi

A .

Game-0. G0 is exactly the same security game as defined in Definition 1 (the exe-
cute phase with the challenger C using implementations provided by the adver-
sary A) instantiating with our construction described in Sect. 4.2. See Fig. 5.

Game-1. G1 is identical to G0 except that the key generation implementation
KGimpl is substituted with its specification KGspec. See Fig. 6.

Lemma 4. |AdvG0
A − AdvG1

A | ≤ negl(λ).

Proof. The proof is identical to the one for Lemma 1. �

Game-2. G2 is identical to G1 except that the message encoding function using
corrected hash h̃R(·) is replaced with a truly random g parameterized by R, i.e.,
g(R, ·). See Fig. 7.

Lemma 5. |AdvG1
A − AdvG2

A | ≤ negl(λ).

Proof. This follows directly from Corollary 2 that the corrected function using
subverted random oracle h̃R(·) can be replaced with a truly random function g
indexed by the randomness R which is generated after.

We can simply view the augmented h-crooked environment in the corollary as
the actual adversary here in the game, and the larger cryptosystem P is simply
composed of the signature implementations. �

Fig. 5. Game-0: The original cliptographic signature game
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Fig. 6. Game-1: Honest key generation

Game-3. G3 is identical to G2 except that the implementation of the actual
signing function Invimpl is substituted with its specification Invspec. See Fig. 8.

Lemma 6. |AdvG2
A − AdvG3

A | ≤ negl(λ).

Proof. Now we need to demonstrate that when a keyed hash is used (the key
is public but sampled after the implementation of the signing functionality is
provided), Invspec is actually stego-free in the sense that the adversary cannot
distinguish whether she is interacting with Invimpl or Invspec, even if she can
freely choose potentially triggered inputs.

Fig. 7. Game-2: Corrected keyed hash
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Fig. 8. Game-3: Honest Sign

Let us first look at a simpler challenge game. Consider a random oracle
h : {0, 1}∗ → {0, 1}n. Suppose an attacker A makes some q1 number of queries
to h, define a target set T ⊂ {0, 1}n with a polynomially large size q2, generate
uniform randomness R with length λ, and R public. The adversary will try
to find an input x such that h(R, x) falls into T . It is not hard to see that
Pr[h(R, x) ∈ T ] = q1q2

2λ which is negligible in λ if the adversary makes one
attempt (and remains negligible if A makes polynomially many attempts).

Now instantiating such statement under our setting: simply using the points
that Invimpl differ from Invspec to define such T (the offline watchdog ensures that
the “discrepancy set” T has to be exponentially small). Now when the adversary
makes a signing query m, it is to find such an input that makes the output of
g(R,m) to fall into the target set T . This probability would be negligible. It
follows that the output of Invimpl and Invspec when evaluating on g(R, x) will be
the same for an overwhelming probability for every x. Thus Invimpl satisfies the
stego-free notion even with an adversarially chosen input x. �

Game-4. G4 is identical to G3 except that the implementation of the actual
verification function Evalimpl is substituted with its specification Evalspec. Now
all the implementations are actually honestly generated, thus G4 essentially falls
back to the classical unforgeability game for FDH signatures. See Fig. 9.
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Fig. 9. Game-4: Honest Verify

Lemma 7. |AdvG3
A − AdvG4

A | ≤ negl(λ).

Proof. Now we need to demonstrate that when a keyed hash is used (the key
is public but sampled after the implementation of the signing functionality is
provided), and a trusted equality test is in place, Evalimpl performs essentially
the same as Evalspec when predicting an output of g(R,m∗).

Suppose Evalimpl(f, σ∗) �= Evalspec(f, σ∗), that means σ∗ falls into the set of
inputs that Evalimpl and Evalspec differ. To escape from the watchdog’s detection
of this inconsistency, those inputs must contain at least ω(λ) bits of entropy
about some trigger that Evalimpl can explore to recognize those inputs to deviate
from the specification. Otherwise, the watchdog would be able to trivially find
such a trigger point. Moreover, that information is independent of g(R,m∗), as R
is chosen after Evalimpl was created. On the other hand, since |σ∗| = |g(R,m∗)|,
there are at most n − ω(λ) bits left in σ∗ that can contain information about
g(R,m∗). While g(R,m∗) is a uniform value in the range of Evalspec, it follows
that for any σ∗, Pr[Evalimpl(σ∗) = g(R,m∗)] = negl(λ). �

G4 is essentially the original FDH security game, thus putting together all
those lemmas, we can complete the proof. �

A The Model: Crooked Indifferentiability

A.1 Preliminary: Indifferentiability

The notion of indifferentiability proposed in the elegant work of Maurer et al. [20]
has been found very useful for studying the security of hash function and many
other primitives. This notion is an extension of the classical notion of indistin-
guishability, when one or more oracles are publicly available. The indifferentiabil-
ity notion is originally given in the framework of random systems [20] providing
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interfaces to other systems. Coron et al. [12] demonstrate an equivalent indif-
ferentiability notion but in the framework of Interactive Turing Machines (as
in [9]). The indifferentiability formulation in this subsection is essentially taken
from Coron et al. [12]. In the next subsection, we will introduce our new notion,
crooked indifferentiability.

Defining Indifferentiability. An ideal primitive is an algorithmic entity which
receives inputs from one of the parties and returns its output immediately to
the querying party. We now proceed to the definition of indifferentiability [12,20]:

Definition 3 (Indifferentiability [12,20]). A Turing machine C with oracle
accesses to an ideal primitive G is said to be (tD, tS , q, ε)-indifferentiable from an
ideal primitive F , if there is a simulator S, such that for any distinguisher D, it
holds that:

∣
∣Pr[DC ,G = 1] − Pr[DF,S = 1]

∣
∣ ≤ ε .

The simulator S has oracle accesses to F and runs in time at most tS . The
distinguisher D runs in time at most tD and makes at most q queries. Similarly,
C G is said to be (computationally) indifferentiable from F if ε is a negligible
function of the security parameter λ (for polynomially bounded tD and tS). See
Fig. 10.

Fig. 10. Indifferentiability: Distinguisher D either interacts with algorithm C and ideal
primitive G, or with ideal primitive F and simulator S. Algorithm C has oracle access
to G, while simulator S has oracle access to F .

As illustrated in Fig. 10, the role of the simulator is to simulate the ideal
primitive G so that no distinguisher can tell whether it is interacting with C
and G, or with F and S; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F . Note that the simulator does
not see the distinguisher’s queries to F ; however, it can call F directly when
needed for the simulation.

Replacement. It is shown that [20] if C G is indifferentiable from F , then C G

can replace F in any cryptosystem, and the resulting cryptosystem is at least as
secure in the G model as in the F model.

We use the definition of [20] to specify what it means for a cryptosystem to be
at least as secure in the G model as in the F model. A cryptosystem is modeled
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as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment E which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has
oracle access to C whereas attacker A has oracle access to G. In the F model,
both P and A have oracle access to F . The definition is illustrated in Fig. 11.

Fig. 11. Environment E interacts with cryptosystem P and attacker A: In the G model
(left), P has oracle access to C whereas A has oracle access to G. In the F model, both
P and SA have oracle access to F .

Definition 4. A cryptosystem is said to be at least as secure in the G model with
algorithm C as in the F model, if for any environment E and any attacker A in
the G model, there exists an attacker SA in the F model, such that:

Pr[E(PC ,AG) = 1] − Pr[E(PF ,SF
A ) = 1] ≤ ε.

where ε is a negligible function of the security parameter λ. Similarly, a cryp-
tosystem is said to be computationally at least as secure, etc., if E, A, and SA
are polynomial-time in λ.

We have the following security-preserving (replacement) theorem, which says
that when an ideal primitive is replaced by an indifferentiable one, the security
of the “bigger” cryptosystem remains.

Theorem 3 ([12,20]). Let P be a cryptosystem with oracle accesses to an ideal
primitive F . Let C be an algorithm such that C G is indifferentiable from F . Then
cryptosystem P is at least as secure in the G model with algorithm C as in the F
model.

A.2 Crooked Indifferentiability

The ideal primitives that we focus on in this paper are random oracles. A random
oracle [6] is an ideal primitive which provides a random output for each new
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query, and for the identical input queries the same answer will be given. Next, we
will formalize a new notion called crooked indifferentiability. Our formalization is
for random oracles. We remark that the formalization can be trivially extended
for all ideal primitives.

Crooked Indifferentiability for Random Oracles. As mentioned in the Introduc-
tion, we are considering to repair a subverted random oracle, such that the
corrected construction can be used as good as an unsubverted one. It is thus
natural to consider the indifferentiability notion. However, we need to adjust
the notion to reflect the subversion and to avoid trivial impossibility. There are
two main modifications to the original indifferentiability notion.

1. The deterministic construction will have oracle accesses to the random oracle
only via the subverted implementation H̃ but not via the ideal primitive H.
This creates lots of difficulty (and even impossibility) for us to develop a
suitable construction. For that reason, the construction is allowed to access
to trusted but public randomness r.

2. The simulator will also have oracle accesses to the subverted implementa-
tion H̃ and also the public randomness r.

The second one is necessary. It is clearly impossible to have an indifferentiability
definition with a simulator that has no accesses to H̃, as the distinguisher can
simply make query an input such that C will use a value that is modified by H̃
while S has no way to reproduce it. More importantly, we will show below that,
the security will still be preserved to replace an ideal random oracle with a con-
struction satisfying our definition (with an augmented simulator). We will prove
the security-preserving (i.e., replacement) theorem from [20] and [12] similarly
with our adapted notions.

Definition 5 (H-crooked indifferentiability). Consider a distinguisher D̂
and the following multi-phase real execution.

Initially, the distinguisher D̂ who has oracle accesses to ideal primitive H,
publishes a subverted implementation of H, and denotes it by H̃.

Secondly, a uniformly random string r is sampled and published.
Thirdly, a deterministic construction C is developed: the construction C has

random string r as input, and has oracle accesses to H̃ (which can be considered
as a crooked version of H).

Finally, the distinguisher D̂, after having random string r as input, and oracle
accesses to the pair (C ,H), returns a decision bit b. Often, we call D̂ the H-
crooked-distinguisher.

In addition, consider the corresponding multi-phase ideal execution with the
same H-crooked-distinguisher D̂, where ideal primitive F is provided.

The first two phases are the same (as those in the real execution).
In the third phase, a simulator S will be developed: the simulator has random

string r as input, and has oracle accesses to H̃, as well as the ideal primitive F .
In the last phase, the H-crooked-distinguisher D̂, after having random string r

as input, and having oracle accesses to an alternative pair (F ,S), returns a
decision bit b.
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We say that construction C is (t
̂D, tS , q, ε)-H-crooked-indifferentiable from

ideal primitive F , if there is a simulator S so that for any H-crooked-
distinguisher D̂, it satisfies that the real execution and the ideal execution are
indistinguishable. Specifically, the following difference should be upper bounded
by ε(λ):

∣
∣
∣
∣

Pr
u,r,H

[

H̃ ← D̂ : D̂C H̃(r),H(λ, r) = 1

]

− Pr
u,r,F

[

H̃ ← D̂ : D̂F,SH̃,F (r)(λ, r) = 1

]∣
∣
∣
∣
.

Here u is the coins of D̂, H : {0, 1}λ → {0, 1}λ and F : {0, 1}k → {0, 1}k denote
random functions. See Fig. 12 for a detailed illustration of the last phase in both
the real and ideal executions.

Fig. 12. H-crooked Indifferentiability: distinguisher ̂D, in the first phase, manufactures
and publishes a subverted implementation denoted by H̃, for ideal primitive H; then
in the second phase, a random string r is published; after that, in the third phase,
algorithm C , and simulator S are developed; the H-crooked-distinguisher ̂D, in the
last phase, either interacting with algorithm C and ideal primitive H, or with ideal
primitive F and simulator S, returns a decision bit. Here, algorithm C has oracle
accesses to H̃, while simulator S has oracle accesses to F and H̃.

B Stego-Free Specifications for Randomness Generation
and Randomized Algorithms with Known Input
Distribution

We recall the definition of stego-free randomness generation and stego-free ran-
domized algorithms with public input distributions [25], and the general results
that yield stego-free specifications for them in the trusted-amalgamation model.

Definition 6 (Stego-free randomness generation [25, Definition 3.1]). For
a randomized algorithm G with specification Gspec, we say such specification Gspec

is stego-free in the offline-watchdog model, if there exists a ppt watchdog W so
that for any ppt adversary A playing the game in Fig. 13 with challenger C, at
least one of the following conditions hold:

AdvA is negligible or DetW,A is non-negligible,
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Fig. 13. Stego-freeness game for randomness generation

where AdvA(1λ) = |Pr[bC = 1] − 1
2 | and DetW,A(1λ) = |Pr[WGimpl(1λ) = 1] −

Pr[WGspec(1λ) = 1]|.

Theorem 4 ([25, Theorem 3.4]). Consider randomness generation RG with
specification (RG0

spec
, RG1

spec
, Φspec) as described below (see Fig. 14):

– Given 1λ, RG0
spec

and RG1
spec

output uniformly random strings of length λ;
– Φspec is a hash function so that Φspec(w) has length 
|w|/2�;
– the specification for RG(1λ) is the trusted composition:

Φspec(RG0
spec

(1λ),RG1
spec

(1λ)).

Then RGspec is stego-free if Φspec is modeled as a random oracle.

Note that the above theorem only asserts how to purify randomness gen-
eration algorithm G in the random oracle model by splitting G into a constant
number of components. It is possible to extend the result to the standard model if
we are willing to have polynomially many segments. Such result is demonstrated
in the full version [24] of [25]. We quote their result as follows:

Fig. 14. Subversion-resistant specification for randomness generation
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Proposition 1 ([24]). There exists a specification for the randomness gener-
ation that outputs n bits that is stego-free with the trusted amalgamation and
O(nε/ log n) segments for any constant ε. Similar results hold for randomized
algorithms with public input distribution.

The definition and theorems above cover elementary randomness generation
algorithms that only takes a security parameter as input. They can be generalized
to consider algorithms that take additional inputs from a large domain in which
the adversary specifies a randomized input generator IG, which implicitly defines
G(1λ, IG(1λ)). This class of randomized algorithm includes key generation and
bit encryption etc.

Formally, let G be a randomized algorithm using λ random bits for inputs
of length n. The stego-free game is revised as follows: the challenges {yi} are
generated by first sampling mi ← IG(1λ), and then obtaining yi ← Gβ(1λ,mi)
by calling Gβ . The watchdog is provided oracle access to IG to test Gimpl.

Definition 7 (Stego-free randomized algorithm [25, Definition 3.2]). For
a randomized algorithm G, we say the specification Gspec is stego-free in the
offline-watchdog model, if there exists an offline ppt watchdog W, for any ppt

adversary A playing the following game in Fig. 15 with challenger C, such that
either

AdvA is negligible, or, DetW,A is non-negligible,

where AdvA(1λ) = |Pr[bC = 1] − 1
2 | and DetW,A(1λ) = |Pr[WGimpl(1λ) = 1] −

Pr[WGspec(1λ) = 1]|.
Russell et al. [25] established a general transformation yielding a stego-

free specification for randomized algorithms with a public input distribution.
Consider a randomized algorithm G which uses λ random bits for inputs of
length n. Let (dG,RG) denote the natural specification of G that isolates ran-
domness generation: RG(1λ) produces λ uniformly random bits and dG(r,m)
is a deterministic algorithm so that for every m ← IG(1λ), G(m) is equal to
dG(RG(1λ,m)) for n = |m|. Consider the transformed specification for G of the
form (RG0,RG1, Φ, dG) where dG is as above. RG0(1λ) and RG1(1λ) output λ
uniform bits, and Φ is a hash function that carries strings of length 2λ to strings
of length λ. We have the following theorem:

Theorem 5 ([25, Theorem 3.5]). For any randomized algorithm G, consider
the specification Gspec := (RGspec, dGspec), where RGspec and dGspec are as above.
Let (RG0

spec
,RG1

spec
, Φspec) be the double-split specification of RGspec as in Fig. 14.

Gspec is stego-free with a trusted amalgamation (according to Definition 7). Here
Φspec is modeled as a random oracle.
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Fig. 15. Stego-freeness game for randomized algorithms with input distribution
{1λ} × IG

C Signature Schemes

A signature scheme is a triple of algorithms SS = (KGen,Sign,Verify). The
KGen algorithm takes as input the security parameter λ and outputs a pair of
verification/signing key (vk, sk). The Sign algorithm takes as input sk, a message
m ∈ M (and random coins r ∈ R if Sign is probabilistic), and outputs a signature
σ ∈ Σ. The Verify algorithm takes as input vk and a pair (m,σ) and outputs a
bit indicating whether the signature is valid for message m under vk.

Definition 8 (Existential unforgeability). Let SS = (KGen, Sign, Verify) be
a signature scheme. We say that SS is (t, q, ε)-existentially unforgeable under
adaptive chosen-message attack (EUF-CMA-secure) if for all ppt adversaries A
running in time t it holds:

Pr
[
Verify(vk, (m∗, σ∗)) = 1
∧ m∗ /∈ Q :

(vk, sk) ← KGen(1λ);
(m∗, σ∗) ← ASign(sk,·)(vk)

]

≤ ε

where Q = {m1, . . . ,mq} denotes the set of queries to the signing oracle. When-
ever ε(λ) = negl and q = poly, we simply say that SS is EUF-CMA-secure.
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Abstract. Zero-knowledge elementary databases (ZK-EDBs) are cryp-
tographic schemes that allow a prover to commit to a set D of key-value
pairs so as to be able to prove statements such as “x belongs to the sup-
port of D and D(x) = y” or “x is not in the support of D”. Importantly,
proofs should leak no information beyond the proven statement and even
the size of D should remain private. Chase et al. (Eurocrypt’05) showed
that ZK-EDBs are implied by a special flavor of non-interactive com-
mitment, called mercurial commitment, which enables efficient instanti-
ations based on standard number theoretic assumptions. On the other
hand, the resulting ZK-EDBs are only known to support proofs for simple
statements like (non-)membership and value assignments. In this paper,
we show that mercurial commitments actually enable significantly richer
queries. We show that, modulo an additional security property met by
all known efficient constructions, they actually enable range queries over
keys and values – even for ranges of super-polynomial size – as well as
membership/non-membership queries over the space of values. Beyond
that, we exploit the range queries to realize richer queries such as k-
nearest neighbors and revealing the k smallest or largest records within
a given range. In addition, we provide a new realization of trapdoor mer-
curial commitment from standard lattice assumptions, thus obtaining
the most expressive quantum-safe ZK-EDB construction so far.

Keywords: Zero-knowledge databases · Expressive queries ·
Lattice-based commitments

1 Introduction

Zero-knowledge sets (ZKS), as introduced by Micali, Rabin and Kilian [21], allow
a prover P to commit to a finite set S without revealing its size. The commitment
is generated such that the prover can efficiently and non-interactively prove
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the membership or non-membership of certain elements x in the committed
set S. The zero-knowledge property mandates that proofs reveal no information
beyond the truth of the statement: even its cardinality should remain hidden.
The soundness property captures the prover’s inability to prove contradictory
statements “x ∈ S” and “x �∈ S” about the same S.

Zero-knowledge elementary databases (ZK-EDBs) generalize the notion of
zero-knowledge sets to elementary databases (EDBs). An EDB D is a partial
function: a set of key-value pairs (x, y) where each key x of the universe occurs
at most once and thus takes at most one value y = D(x). For syntactic reasons,
keys x not in D are assigned D(x) =⊥. Each query x obtains a response D(x) and
a proof of its correctness. Again, proofs should reveal no information beyond the
value D(x): particularly the number of records in D. Here, soundness requires the
infeasibility of proving two distinct values y, y′ for any given x. Micali et al. [21]
described an elegant construction of ZK-EDB based on the discrete logarithm
assumption, which was generalized by Chase et al. [5,6] to a general design of
ZK-EDBs from a lower-level primitive called mercurial commitment.

In short, mercurial commitments are commitment schemes which generate
commitments in either a hard or soft mode. The former satisfies the usual bind-
ing property while the latter allows the sender to create dummy commitments
that do not commit the sender to any message. The ZK-EDB constructions of
[5,6,21] combine mercurial commitments with a Merkle tree [20], where each
internal node contains a mercurial commitment to its two children. The exis-
tence of dummy commitments is exactly what allows the sender to commit to
the database in polynomial time without revealing its size. The latter is hid-
den by having a super-polynomial upper bound on the number of leaves in the
Merkle tree. Each leaf is assigned to a key x and contains a real commitment to
the value y = D(x) and every internal node contains a commitment to its two
children. By storing a dummy commitment at the root of each empty subtree,
the sender is able to commit to the entire D = {(x, y)} in polynomial time.

While efficient and based on standard assumptions, the ZK-EDB realizations
of [5,6,21] have relatively limited expressivity; only simple statements like “x
does not belong in D” or “x is in D with value y = D(x)” can be proved. In
this paper, we show that mercurial commitments actually enable proofs of more
involved statements like range queries over keys and values as well as k-nearest
neighbour and k-minimum/maximum queries. As special cases, our techniques
make it possible to prove membership or non-membership over values, which
was not known to be possible without revealing the database size.

Our Contribution. In this paper, we investigate the extent to which expres-
sive queries can be proven with efficient ZK-EDB protocols from mercurial com-
mitments. We extend the constructions of [5,6,21] to allow the prover to con-
vincingly answer queries of the form “Give me all database records (x, y) ∈ D
whose keys x lie within the range [ax, bx]”. For any [ax, bx] of super-polynomial
length, we show that a simple tweak in mercurial commitments allows effi-
cient, polynomial-sized proofs of correctness of the response without leaking
the database size.
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In a second step, we extend this technique so as to handle range queries
over values. Namely, for a super-polynomially large interval [ay, by], we allow
the prover to answer queries “Send me all records (x, y) ∈ D with values y in
the interval [ay, by]”. Again, we can prove correctness of the response in zero-
knowledge with a polynomial-size proof. As a special case of range queries over
values, we can prove statements like “No key x of the database is assigned the
value y” or “y occurs in D and the corresponding set of keys is D−1(y)”. We note
that previous ZK-EDB protocols [5,6,21] were unable to handle such statements
while hiding the database size: the only way to prove that no record of the form
(∗, y) exists was to prove inequalities yi �= y for all records (xi, yi).

In a third step, we also handle range queries over records. Namely, each query
consists of a “narrow” rectangle [ax, bx] × [ay, by] and the response consists of
all records (x, y) such that x ∈ [ax, bx] and y ∈ [ay, by]. Here, we can handle
rectangles of polynomial width [ay, by] and super-polynomial height [ax, bx] with
a proof size which is linear in the size of [ay, by] and the number of records
in [ax, bx] × [ay, by]. However, the proof length does not depend on (bx − ax),
allowing it to be very large. As a special case [x, x] × [y, y] of range query over
records, we can efficiently prove that specific records (x, y) do not belong to D,
which amounts to saying “if x is in D at all, the corresponding value is not y”. In
the full version of this paper, we apply range queries to enable more interesting
queries such as k-nearest neighbour and k-minimim/maximum. In the following,
we refer to ZK-EDB protocols supporting such richer queries as “Zero-knowledge
expressive elementary database” (ZK-EEDB).

We insist on building ZK-EEDBs without interaction or random oracles: as
in [5,6,21], only a common reference string is assumed, which is necessary for
NIZK proofs in the standard model anyway [1]. Our constructions are instan-
tiable with existing mercurial commitments based on standard number theoretic
assumptions. We identify a new equivocation property of mercurial commitments
which is actually present in a generic construction of trapdoor mercurial com-
mitment from Σ-protocols due to Catalano et al. [2]. Since the number theoretic
constructions of [5,6,21] can be seen as instantiations of the general construc-
tion of [2], this immediately provides us with ZK-EEDBs based on the discrete
logarithm and factoring/RSA assumptions. In addition, we provide a new con-
struction of trapdoor mercurial commitment (TMC) based on a well-studied
assumption in standard (i.e., non-ideal) lattices. Our new lattice-based TMC is
a direct construction, which is not implied by the generic construction of [2];
rather, it draws inspiration from [21]. In non-ideal lattices, it performs better
than TMC schemes implied by [2] under the same assumptions.

Our Techniques. Our setting involves a database owner who publishes a
short string comD that commits him to a particular database D consisting of
records, which are key-value pairs (x,D(x)), where x,D(x) ∈ [0, 2�). The prover
is required to answer queries and prove that the response is consistent with the
committed database D in zero-knowledge, including not revealing how many keys
x are in the support [D] of D. For this purpose, we follow the approach of using
mercurial commitments [5,6].
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In mercurial commitments, the binding property is relaxed by allowing the
committer to softly open a commitment and say “The commitment opens to this
message if it can be opened at all”. During the commitment phase, the sender
can either create a hard commitment, which can be hard/soft-opened to a unique
message, or a soft commitment, which it can soft-open to any message. Unlike
soft commitments, hard commitments can be opened both in the soft and the
hard way, but soft openings can never contradict hard ones. Besides, hard and
soft commitments should be computationally indistinguishable.

When a Merkle tree has a super-polynomial number of leaves, the prover
has to store a soft commitment at the root of each empty sub-tree in order to
commit to an EDB in polynomial time. In order to prove that some key is not
in the database, the prover can soft-open all soft commitments on the path that
connects the corresponding leaf to the root while generating the missing soft
commitments at the time of proving non-membership.

When it comes to generating a proof for a range query [ax, bx] over keys, the
difficulty is to find a way to convince a verifier that no key of [ax, bx] was omitted
in the response. If [ax, bx] is super-polynomially large, we cannot generate proofs
of non-membership for all elements of [ax, bx] that are not in the support [D]
of D. Our solution to this problem is to rely on the Subset Cover framework of
Naor, Naor and Lotspiech [25] and find the smallest set of nodes P that contains
an ancestor of all leaves [ax, bx] \ [D] and no ancestor of those in [ax, bx] ∩ [D].
For each node x ∈ P, we can have the prover convince the verifier that the soft
commitment associated to x (which is created if it did not exist yet and authen-
ticated via a path from x to the root) is really a soft commitment, by revealing
the soft-commitment coins. For the sake of proving the zero-knowledge prop-
erty, we need that the simulator be able to create fake commitments which can
be subsequently equivocated by revealing fake hard/soft openings or pretending
that they were soft commitments. For this purpose, we thus define a new equiv-
ocation property of mercurial commitments by requiring that fake commitments
be not only equivocable as defined by prior works [2], but also “explainable” as
soft commitments by using a trapdoor to compute plausible soft commitment
coins. Fortunately, all known trapdoor mercurial commitments based on stan-
dard assumptions [2,5] satisfy this additional equivocation property. By using
the Complete Subtree technique of Naor et al. [25], we are able to prove range
queries [ax, bx] in zero-knowledge with proofs of size O(� · |R| · log(bx − ax)),
where R = [ax, bx] ∩ [D] and � is the height of the Merkle tree.

In order to handle range queries over values, our idea is to have the prover
commit to D by generating two Merkle trees. While the first one is computed in
the same way as in ordinary ZK-EDBs, the second tree is used as a “reversed
database” D−1: namely, the keys of D−1 are the values y of D and their values are
ZKS commitments to all the keys x ∈ D−1(y) such that (x, y) ∈ D. The reversed
database D−1 thus uses nested Merkle trees in that each leaf y of D−1 may be
assigned a value comD−1

y
, which is itself a size-hiding Merkle tree commitment

whose non-empty leaves contain the keys x of D that map to y. Of course, we
need to prevent the prover from cheating by using inconsistent Merkle trees in



Zero-Knowledge Elementary Databases with More Expressive Queries 259

the two commitments comD and comD−1 . To this end, we thus have proofs of
membership consist of authentication paths in the two Merkle trees. By doing
so, we can show that no dishonest prover can prove contradictory statements
without breaking the binding property of the mercurial commitment scheme.
Our NIZK proofs for range queries readily carry over to prove the correctness
of responses to range queries over values [ay, by]. In particular, it yields a simple
method of proving that a given value is not reached by the partial function D.

Our lattice-based trapdoor mercurial commitment is statistically hiding and
computationally binding under the Short-Integer-Solution (SIS) assumption [24].
It builds on the lattice-based trapdoor commitment (KTX) of Kawachi et al. [16]
and Micciancio-Peikert trapdoors [22]. While partially inspired by the discrete-
log-based construction of [5], it is a direct construction with large message space
which is not implied by the generic constructions of [2,5,6].

Intuitively, we generate two public matrices A0,A1, the former to be applied
to messages and the latter to determine the mode of the commitment. When
producing a commitment to some message, using a random matrix R, we first
compute a matrix B = [A1 | B1], where B1 = A1R (resp. B1 = G − A1R) if
the commitment is a hard (resp. soft) one. The pair A0,B can be considered the
public key of an instance of the KTX commitment scheme, with an associated
trapdoor for B if the mercurial commitment is a soft one.

A mercurial commitment to a message, µ, is a commitment, “public key”
pair, C = (c = Aµ + Br,B1) for some commitment randomness r. The two
flavors of openings are straightforward: Soft openings to µ are simply openings
of c to µ with the associated “public key” A0,B = [A | B1]. Hard openings,
on the other hand, have an additional step of showing that B1 = A1R for some
R, essentially demonstrating that the “public key” does not have an embedded
trapdoor.

Catalano et al. [2, Section 5] built a TMC scheme with large message space
from any trapdoor commitment where a Σ-protocol allows proving knowledge of
an opening to 0. For this purpose, the Σ-protocol is required to have a large chal-
lenge space, which becomes the message space of the TMC scheme. In the lattice
setting, the only known Σ-protocols [19] with large challenge space operate over
ideal lattices and thus require less standard assumptions than non-ideal lattices.
Moreover, their honest-verifier zero-knowledge property relies on the prover per-
forming rejection sampling and outputting a simulated transcript only with some
probability, say 1/c, for some constant c. Since the TMC scheme of [2, Section 5]
generates hard commitments by running the HVZK simulator of the underly-
ing Σ-protocol, the hard-committer can only produce a properly distributed
hard commitment after c attempts on average. Our TMC scheme eliminates
the need for several attempts and only requires one attempt to generate a hard
commitment.

Related Work. Ostrovsky, Rackoff and Smith [28] described protocols han-
dling orthogonal multi-dimensional range queries for committed databases allow-
ing for d-dimensional key spaces. While their protocols extend to provide pri-
vacy by means of zero-knowledge proofs, they do not hide the database size.
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Chase et al. [5,6] and Catalano et al. [2] described size-hiding constructions of
ZK-EDBs under general assumptions. In particular, Catalano, Dodis and Vis-
conti [2] gave simplified security definitions for (trapdoor) mercurial commit-
ments and showed how to obtain them from one-way functions in the shared
random string model.

An EDB D is a partial function: a set of key-value pairs (x, y) where each key
x of the universe occurs at most once and thus takes at most one value y = D(x).

Liskov [18] considered the notion of updatable zero-knowledge databases in
the random oracle model. Prabhakaran and Xue [31] put forth the similar notion
of statistically hiding sets, which allows for more efficient constructions. For
the sake of efficiency, Kate et al. [15] considered quasi-database commitments
which do not aim at hiding the database size. Catalano, Fiore and Messina [4]
suggested a technique for compressing proofs of non-membership in ZK-EDB
protocols. Libert and Yung [17] extended their idea to compress both proofs of
membership and non-membership, while Catalano and Fiore [3] achieved similar
proof compressions under more standard number theoretic assumptions.

An orthogonal line of work investigated the feasibility of stronger definitions
in size-hiding database commitments. Gennaro and Micali [9] formalized the
notion of independent ZK-EDBs, which prevents adversaries from correlating
their committed databases to those of honest committers. In the plain model,
Chase and Visconti [7] considered zero-knowledge protocols providing stronger
simulation-based security at the expense of an interactive commitment phase.

The aforementioned constructions all relate to elementary databases. Ghosh
et al. [11] formalized the notion of zero-knowledge lists. In the random oracle
model, they gave size-hiding protocols where the prover can demonstrate the
order in which elements appear in a committed list. Goyal et al. [13] gave black-
box constructions of size-hiding database commitments supporting more general
queries. Their goal is orthogonal to ours as they rely on the “MPC-in-the-head”
technique [14] to obtain black-box constructions using interaction. Here, we aim
at non-interactive constructions in the standard model from standard assump-
tions, although we restrict ourselves to range queries.

We also mention a large body of work devoted to authenticated data struc-
tures [12,26,27,29,30,32]. We insist that these result address a different problem
than ours as they stand in the three party setting. Namely, in order to achieve
a better efficiency, they assume that the committer is a honest database owner
that always faithfully computes commitments whereas proofs are generated by
an untrusted server. While reasonable in some applications (e.g., certificate revo-
cation with a trusted certification authority [26]), the assumption of a honest
committer is too much to ask for in other settings. With a pricing database,
for example, it is desirable to have guarantees against price discrimination by
the database owner. For this reason, we focus on the two-party setting which
is usually more challenging and results in less efficient schemes. Our protocols
are indeed less efficient than the range queries of Ghosh et al. [12] – which, to
our knowledge, is the best size-hiding construction handling range queries in the
three-party setting – but they do not assume a trusted committer.
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2 Preliminaries

Notations. In our notations, λ always stands for the security parameter. Let ε
denote the empty string. For x ∈ {0, 1}�, let x′ be the binary string that is equal
to x except with the final bit flipped and x0 be (x1 respectively) the string of
length � + 1 with 0 (1 respectively) appended to x. Besides that, we denote the
string consisting of the first i bits of x with x|i. For a string of length �, x|0 = ε
and x|� = x. For a set S, U(S) denotes the uniform distribution over S and
x ← U(S) means that element x is sampled from the distribution U(S).

For another elementary database D = {(x,D(x))} ⊂ [0, 2�) × [0, 2�), a set of
key-value pairs, let [D] denote the set of keys x ∈ [0, 2�) such that there exists
a y ∈ [0, 2�) with (x, y) ∈ D. We write D(x) =⊥ to indicate that there exists no
y ∈ [0, 2�) such that (x, y) ∈ D. We write x ∈ D to say that (x,D(x)) ∈ D for
some D(x) ∈ [0, 2�), if there is no ambiguity. For a range R = [ax, bx] × [ay, by],
we use [R] to denote [ax, bx].

2.1 Trapdoor Mercurial Commitments

Informally, trapdoor mercurial commitments (TMC) are commitment schemes
with two flavors of commitments and openings: hard and soft. Hard commit-
ments are like regular commitments to a message M and can only be hard-
and soft-opened to M . Hard openings are like regular openings for hard com-
mitments. Soft commitments commit to no particular message and cannot be
hard-opened at all but can be soft-opened to any message. Soft openings tease
that a commitment potentially opens to some message M , and corresponds to the
statement “if this commitment can be hard-opened at all, it can only be to M”.
Following the definitions proposed by Catalano, Dodis and Visconti [2], TMC
consists of ten PPT algorithms, (Setup, HCommit, HOpen, HVerify, SCommit,
SOpen, SVerify, MFake, HEquivocate,SEquivocate).

– (mpk,msk) ← Setup(1λ): Taking security parameter λ as input, outputs a
public mercurial commitment key mpk and secret mercurial trapdoor msk.

– C ← HCommit(mpk,M ;R): Taking public key mpk, message M and random
coins R as inputs, outputs a hard commitment C for M .

– π ← HOpen(mpk,M ;R): Taking public key mpk, message M and random
coins R as inputs, outputs a hard opening π for C of M .

– HVerify(mpk,M,C, π): Taking public key mpk, message M , commitment C
and hard opening π as inputs, accepts if π proves that C is a valid hard
commitment to M and rejects otherwise.

– C ← SCommit(mpk;R): Taking public key mpk and random coins R as
inputs, output a soft commitment C to no message in particular.

– τ ← SOpen(mpk,M, flag;R): Given mpk, M , a flag flag and random coins
R, if flag = H, output soft opening τ “associated” to hard commitment
C = HCommit(mpk,M ;R). Otherwise, flag = S and τ is a soft opening
“associated” to the soft commitment C = SCommit(mpk;R) for message M .
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– SVerify(mpk,M,C, τ): Taking public key mpk, message M , commitment C
and soft opening τ , accepts if C can be potentially hard opened to M in the
future and rejects otherwise.

– C ← MFake(msk;R): Taking secret key msk and random coins R as inputs,
outputs a “fake” commitment C that are initially not tied to any message.

– π ← HEquivocate(msk,M ;R): Taking secret key msk, message M and ran-
dom coins R, outputs a supposedly valid hard opening π (hard-fake) of the
fake commitment C = MFake(msk;R) to M .

– τ ← SEquivocate(msk,M ;R): Taking secret key msk, message M and random
coins R, outputs a supposedly valid soft opening τ (soft-fake) of the fake
commitment C = MFake(msk;R).

Remark 1. In many cases, including all currently known constructions, the soft
opening of a hard commitment is a proper part of the hard opening to the
same message. Therefore, SVerify performs a proper subset of the tests done by
HVerify. Such trapdoor mercurial commitment schemes are called proper.

Correctness. Trapdoor mercurial commitments are correct if, with overwhelm-
ing probability, for all (mpk,msk) ← Setup(1λ), and message space M

– Hard commitments: For all messages M ∈ M and for all random coins R, if
C = HCommit(mpk,M ;R), then
1. for all τ ← SOpen(mpk,M,H;R), SVerify(mpk,M,C, τ) accepts.
2. for all π ← HOpen(mpk,M ;R), HVerify(mpk,M,C, π) accepts.

– Soft commitments: For all coins R, if C ← SCommit(mpk;R), then for all
M ∈ M and τ ← SOpen(mpk,M,S;R), SVerify(mpk,M,C, τ) accepts.

– Equivocations: For all random coins R, if C ← MFake(msk;R), then for all
M ∈ M, the following conditions are satisfied w.h.p.
1. If π ← HEquivocate(msk,M ;R), HVerify(mpk,M,C, π) accepts.
2. If τ ← SEquivocate(msk,M ;R), SVerify(mpk,M,C, τ) accepts.
3. If R′ ← FakeExplain(msk,R), we have C = SCommit(mpk;R′).

Security. The security properties are similar to trapdoor commitments, bind-
ing, hiding and equivocation, except they are modified to accommodate the two
different flavors of commitments and openings.

– Mercurial-binding : Given mpk, no PPT adversary A can find C,M, π,M ′, π′

(respectively C,M, τ,M ′, π′) such that π (respectively τ) is a valid hard
(respectively soft) opening of C to M and π′ is a valid hard opening of C to
M �= M ′.

– Mercurial-hiding : No PPT adversary A, given mpk, can find a message M ∈
M where it can distinguish a random hard commitment/soft opening tuple
(M,HCommit(mpk,M ;R),SOpen(mpk,M,H;R)) from a random soft com-
mitment/soft opening tuple (M,SCommit(mpk;R), SOpen(mpk,M,S;R)).

In particular, the mercurial-binding property implies that A cannot find C
which can be soft-opened or hard-opened to one message and then hard-opened
to another: a soft opening can never disagree with a hard opening. This also
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implies the infeasibility of hard opening a commitment C to some message and
simultaneously explain it as a soft commitment.

Catalano et al. [2] formalized the hiding properties of trapdoor mercurial
commitments with several equivocation properties. They require the existence
of an algorithm producing fake commitments which can be equivocated in a
hard and soft way using a trapdoor. Even if the trapdoor is public, it should
be infeasible to distinguish fake commitments and their equivocations into hard
(resp. soft) commitments from hard (resp. soft) commitments and their hard
(resp. soft) openings. On top of these three equivocation properties, we introduce
a 4-th property called Soft-Explain equivocation (or SE equivocation for short).
Namely, the trapdoor msk should make it possible to explain a fake commitment
by outputting plausible random coins that explain it as a soft commitment.

– Equivocation: There are three related conditions for equivocation that have
to be satisfied by mercurial commitments. Each is defined by a pair of games,
one real and one ideal, and no PPT adversary A can distinguish between
them, even if the trapdoor key msk is given at the beginning of each game,
real or ideal. In all games R denotes a set of random coins sampled from the
appropriate distribution.

• HH Equivocation: The real game has A choose a message M ∈ M
and receive (M , HCommit(mpk,M ;R),HOpen(mpk,M ;R)) while the
ideal game has A choose a message M ∈ M and obtain the tuple
(M,MFake(msk;R),HEquivocate(msk,M ;R)).

• HS Equivocation: The real game has A choose a message M ∈ M
and receive (M , HCommit(mpk,M ;R),SOpen(mpk,M ;R)) while the
ideal game has A choose a message M ∈ M and obtain the tuple
(M,MFake(msk;R),SEquivocate(msk,M ;R)).

• SS Equivocation: The real game has A first get C = SCommit(mpk;R),
then choose M ∈ M and finally receive SOpen(mpk,M,S;R) while the
ideal game has A first get C = MFake(msk;R), then choose M ∈ M and
receive SEquivocate(msk,M ;R).

Remark 2. As noted by Catalano et al. [2], HS and SS equivocation implies
mercurial-hiding. In addition, for proper mercurial commitments, HH equivoca-
tion implies HS equivocation. So it suffices to verify HH and SS equivocations and
mercurial-binding for the security of any proper mercurial commitment scheme.

2.2 Merkle Trees

Let T� denote a full and complete binary tree of depth �, with the depth of
the root defined as 0 and leaves �. Nodes at depth i > 0 are labeled with i-bit
binary strings corresponding to the i-bit binary decomposition of 0 to 2i − 1.
Let [a, b], [a, b) denote the set {a, a + 1, . . . , b − 1, b} and {a, a + 1, . . . , b − 1}
respectively. For any node x in the tree T�, we let x′ mean its sibling in the
tree. We call the canonical covering of [a, b], P[a,b], the unique minimal set of
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nodes of T� such that each node in [a, b] is the descendant of some node in P[a,b]

and for every node in x ∈ P[a,b], the subtree rooted at x has leaves that are all
within [a, b].

Zero-Knowledge Elementary Databases and Sets. Proposed by Micali,
Rabin and Kilian [21], zero-knowledge elementary databases (ZK-EDB) and
sets (ZKS) enable efficient answers to membership queries in zero-knowldege.
ZK-EDB is a scheme that allows one to commit to a secret database D of records
and non-interactively produce proofs of (non-)membership. Membership queries
on D committed in comD take a key x as input and expect an answer

(
x,D(x)

)

which is the record in D corresponding to the key x if x ∈ D. In particular,
zero-knowledge sets are ZK-EDBs where D(x) = 1 if x ∈ D.

Formally, a ZK-EDB has four algorithms (Init, ComDB, ProveQ, VerifyQ),

– (crs, tk) ← Init(1λ): Taking security parameter λ as input, generates and
outputs common reference string (CRS) crs and trapdoor information tk.

– (com,Δ) ← ComDB(crs,D): Taking the CRS crs and database D as inputs,
outputs a commitment of D, com, and opening information Δ.

– Πx ← ProveQ(crs, (com,Δ), x): Taking the CRS crs, database commitment
and opening information (com,Δ) and key x as inputs, outputs a proof Πx

of either x ∈ D or x �∈ D.
– y ← VerifyQ(crs, com, x,Πx): Taking the CRS crs, database commitment

com, key x and proof Πx as inputs, outputs y where

y =

⎧
⎪⎨

⎪⎩

D(x), if x ∈ [D];
⊥, if x �∈ [D];
bad, if it otherwise believes that the prover is cheating.

Security. The three security properties of ZK-EDB are completeness, soundness
and zero-knowledge. The first one requires that honestly generated proofs always
satisfy verification with VerifyQ. Soundness mandates that provers be unable to
produce a key x and successful proofs Πx, Π ′

x such that they do not verify to the
same value y. Finally, zero-knowledge implies that each proof Πx only reveals
the value D(x) and nothing else about D.

Merkle Trees from Trapdoor Mercurial Commitments. Although Micali
et al. constructed ZKS and ZK-EDB specifically from number-theoretic assump-
tions, Chase et al. [5,6] introduced the TMC primitive and showed that ZKS and
ZK-EDB are simply Merkle trees built with TMC. The key to their size-hiding
property is that TMC allows a committer compute portions of the Merkle tree
that do not contain database elements only when required in proofs.

We detail four algorithms, BuildTree, HOpenPath, SOpenPath and VerifyPath,
which we will use in Sects. 3 and 4. These algorithms encapsulate the construction
of a ZK-EDB scheme from TMC in [5,6]: ComDB corresponds to BuildTree,
ProveQ to HOpenPath and SOpenPath based on the value D(x) and VerifyQ to
VerifyPath. Let λ be a security parameter, (crs, tk) ← Setup(1λ) and a database
D = {(x,D(x)) | (x,D(x)) ∈ [0, 2�) × [0, 2�)}.
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• (com,Δ) ← BuildTree(crs,D): Taking as inputs CRS crs and database D,
build a Merkle tree of depth �, indexed by strings in

⋃�
i=0{0, 1}i, as follows:

1. For each leaf j ∈ {0, 1}� with D(j) �=⊥, Cj = HCommit(crs,D(j);Rj).
For every leaf j with its sibling j′ ∈ D but j �∈ D, set Cj =
SCommit(crs;Rj).
For all other leaves j, set Cj = nil.

2. At depth i from � − 1 to 0 and each ρ ∈ {0, 1}i, define Cρ as follows. For
all ρ such that Cρ0, Cρ1 �= nil, set Cρ = HCommit(crs, (Cρ0, Cρ1);Rρ).
For all ρ such that Cρ was defined but not Cρ′ , Cρ′ = SCommit(crs;Rρ′).
For any other string ρ ∈ {0, 1}i, set Cρ = nil.

3. After the end of Step 2, if the value at the root Cε = nil, meaning
{Cj} = ∅, then set Cε = SCommit(crs;Rε).

Output com = Cε and Δ = {Rj}, the set of random coins for all commitments
computed in the steps above.

• Πz ← HOpenPath(crs, (com,Δ), z): Given crs, a database commitment com
and the opening information Δ for a database D and a key z ∈ D, define the
hard authentication path for z ∈ D as the set of hard openings for nodes in
indices z = z|�, z|�−1, . . . , z|1 which form a path from z to the root ε = z|0.
Proceed to decommit all the nodes on the path as follows:
1. Compute πz ← HOpen(crs, (z,D(z));Rz).
2. At each depth j from � − 1 to 0, compute the hard opening for Cz|j to

(Cz|j0, Cz|j1), πz|j ← HOpen(crs, (Cz|j0, Cz|j1);Rz|j ).
Output Πz = (D(z), {Cz|j , C(z|j)′}1≤j≤�, {πz|j}0≤j≤�).

• Πz ← SOpenPath(crs, (com,Δ), z): Taking as inputs CRS crs, database com-
mitment com and opening information Δ for a database D and a key z ∈ D,
define the soft authentication path for z �∈ D as the set of soft openings for
nodes at indices z = z|�, z|�−1, . . . , z|1 which form a path from z to the root
ε = z|0. Let h be the largest value such that Cz|h �= nil.
1. If the complete path does not exist, i.e., Cz = nil, fill it out to leaf z:

a. Compute Cz = SCommit(crs;Rz), Cz′ = SCommit(crs;Rz′).
b. At depth j from � − 1 to h + 1, compute Cz|j = SCommit(crs;Rz|j )

and C(z|j)′ = SCommit(crs;R(z|j)′).
2. Otherwise, Cz = SCommit(crs;Rz) and we proceed to the next step.
3. Produce soft openings to nodes along the path from leaf z to the root.

a. Compute τz = SOpen(crs,⊥,S;Rz), soft opening of Cz to ⊥.
b. At depth j from �− 1 to h+1, compute soft openings of Cz|j to their

children, τz|j = SOpen(crs, (Cz|j0, Cz|j1),S;Rz|j ).
c. For j from h to 1, compute τz|h = SOpen(crs, (Cz|h0, Cz|h1),H;Rz|h).
d. If Cε = SCommit(crs;Rε), set τε = SOpen(crs, (Cz|0 , Cz|1),S;Rε).

Otherwise, τε = SOpen(crs, (Cz|0 , Cz|1),H;Rε)
Output Πz = (⊥, {Cz|j , C(z|j)′}1≤j≤�, {τz|j}0≤j≤�). Also, add any random
coins used when a path is filled out to Δ for use with later proofs.
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• ans ← VerifyPath(crs, com, z,Πz): Taking as inputs CRS crs, database com-
mitment com, key z and proof Πz, check the proof which has two possible
forms:

– D(z) �=⊥: Πz = (D(z), {Cz|j , C(z|j)′}1≤j≤�, {πz|j}0≤j≤�).
1. Run HVerify(crs,D(z), Cz, πz) and set ans = bad if it rejects.
2. Otherwise, for j from � − 1 to 0, run HVerify(crs, (Cz|j0, Czj1, πz|j )

and set ans = bad if any of them reject.
If ans �= bad, then set and output ans = D(z).

– D(z) =⊥: Πz = (⊥, τz, {Cz|j , C(z|j)′}1≤j≤�, {τz|j}0≤j≤�).
1. Run SVerify(crs,⊥, Cz, τz) and set ans = bad if it does not accept.
2. Otherwise, for j from �−1 to 0, run SVerify(crs, (Cz|j0, Czj1, τz|j ) and

set ans = bad if any of them do not accept.
If ans �= bad, then set and output ans =⊥.

Complete Subtree Method. We recall the complete subtree method proposed
by Naor, Naor and Lotspiech [25], which is one of the algorithms in the subset-
cover framework. This technique is also used by Ghosh et al. [12] to obtain one-
dimensional range queries in the three party setting. This work, on the other
hand, is in the two party setting which is more challenging to realize.

For a full and complete binary tree of depth �, T�, with nodes indexed by
binary strings of length up to �. Every node x of T� defines a subset Sx of leaves,
those in the full and complete subtree rooted at x. Conversely, for a given set of
leaves R, a directed Steiner Tree, denoted by ST (R) in T�, is induced. ST (R)
is the minimal subtree (rooted at ε) of T� that connects all the leaves in R. Let
P = {p1, . . . , pm} be the set of nodes that are adjacent to nodes of outdegree
one in ST (R), which is the canonical covering of [0, 2�)\R. Naor, Naor and
Lotspiech [25] found that the size of P is upper-bounded by |R| log(2�/|R|).

2.3 Background on Lattices

Lattices. Let n,m, and q ≥ 2 be integers. For matrix A ∈ Z
n×m
q , define the

m-dimensional lattice:

Λ⊥(A) =
{
x ∈ Z

m : A · x = 0 mod q
}

⊆ Z
m.

For any u in the image of A, define Λu(A) =
{
x ∈ Z

m : A · x = u mod q
}
.

Definition 1 (SISn,m,q,β). Given a uniformly random matrix A ∈ Z
n×m
q , find

a non-zero vector v ∈ Λ⊥(A) such that ‖v‖ ≤ β.

If m,β ∈ poly(n) and q > β · ω(
√

n log n), then the SISn,m,q,β problem is at
least as hard as lattice problem SIVPγ for some γ = β ·Õ(

√
n) (see, e.g., [10,23]).

Gaussian Distributions. For integer m > 0, let DZm,σ be the discrete Gaussian
distribution over Z

m with parameter σ > 0. In the following lemmas, we review
several well-known facts from [10].

Lemma 1. We have Pr
[
‖r‖ > σ

√
m | r ←↩ DZm,σ

]
≤ 2−m.
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Lemma 2. Let n be a positive integer, q be a prime, m ≥ 2n log q and σ =
Ω(

√
n log q log n). Then, for a uniformly random A ∈ Z

n×m
q and for r ←↩ DZm,σ,

the distribution of u = A · r mod q is statistically close to uniform over Z
n
q .

Moreover, the conditional distribution of r given u is DΛu(A),σ.

Lemma 3. For σ ≥ Õ(
√

m), the min-entropy of DZm,σ is at least m − 1.

When sampling a matrix R = [r1 | · · · | rw] ∈ Z
m×w, where ri ←↩ DZm,σ for

all i = 1, . . . , w, we will use the notation R ←↩ DZm×w,σ.
Trapdoors for Lattices. We will employ the lattice trapdoors introduced by
Micciancio and Peikert [22]. For any positive integer k, let Ik denote the identity
matrix of order k. Let n be a positive integer, q ∈ poly(n) be a modulus and
w = n�log q�. Define the gadget matrix G = In ⊗ (1, 2, . . . , 2�log q�−1) ∈ Z

n×w
q .

Let m = m̄ + w, for some m̄ > w. A trapdoor for matrix A ∈ Z
n×m
q is a

matrix R ∈ Z
m̄×w such that A

[
R
Iw

]
= G. In particular, if A = [Ā | G− Ā ·R],

where Ā ∈ Z
n×m̄
q , then R is a trapdoor for A.

Lemma 4 ([22]). Let n, q, w, m̄,m be as above. Then, there exists a PPT algo-
rithm TrapGen(n,m, q) that outputs a matrix A ∈ Z

n×m
q together with a trapdoor

R ∈ Z
m̄×w, such that the distribution of A is statistically close to uniform.

Moreover, for any u ∈ Z
n
q and σ = Ω(

√
n log q log n), there exists a PPT

algorithm SampleD(R,A,u, σ) that outputs r ∈ Z
m sampled from a distribution

statistically close to DΛu(A),σ.

As shown by Micciancio and Peikert, a trapdoor for matrix A ∈ Z
n×m
q can

be efficiently extended into a trapdoor for any matrix B ∈ Z
n×(m+w)
q of the form

B = [A | A′], where matrix A′ ∈ Z
n×w
q .

3 Zero-Knowledge Expressive Elementary Database
from Trapdoor Mercurial Commitments

We construct a new flavor of size-hiding zero-knowledge database, called zero-
knowledge expressive elementary database (ZK-EEDB). It allows databases D to
be secretly committed in a public digest and several queries on D to be efficiently
answered in zero-knowledge. The databases supported by ZK-EEDB are sets of
records, which are key-value pairs

(
x,D(x)

)
∈ [0, 2�) × [0, 2�) and the queries

supported by ZK-EEDB include queries over keys and values.
Besides membership over keys which was previously considered by Micali,

Rabin and Kilian [21] in zero-knowledge elementary database, ZK-EEDB enables
range queries over records of D, generalizing range queries over keys and values.
We introduce the ability to generate proofs of correctness for answers to range
queries over values in zero-knowledge with ZK-EEDB. The membership query
over values, in this work, is the query which, given y, asks for the set D−1(y) =
{xi | xi ∈ [D] such that D(xi) = y}. A range query over values is membership
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extended to a range of values [ay, by]. From our techniques, we gain the ability
to prove correctness of answers to range queries over records that is efficient for
any super-polynomial range of keys.

First, we introduce new notations for values of a database D and the query
types considered in ZK-EEDB. Following that, ZK-EEDB is formally defined
and its security properties detailed. Then, we describe our techniques that enable
efficient range queries over records of a database D. Finally, we end the section
with a construction with TMC.

A Database of Values, D−1. In this work, we consider queries over values of
a database D in addition to queries over its keys. To achieve it efficiently, we use
an alternate view of D, called D−1, which is essentially a “reversed directory”:
namely, D−1 is the set {(y,D−1(y)) | y ∈ [0, 2�)}, where D−1(y) = {x | x ∈
D and D(x) = y}. The key-space of the database D−1 is thus the value-space of
D and each key y ∈ [D−1] has a value D−1(y), which is the set of keys x ∈ [D]
that are assigned the value y (i.e., D(x) = y).

Queries in ZK-EEDB. Note that the answer to any query should come with
a proof of correctness. We now describe a specific kind of query supported by
our ZK-EEDB primitive which actually captures a total of six different queries.

• Range (Record) queries: Given a range R = [ax, bx]×[ay, by] ⊂ [0, 2�)×[0, 2�),
they return the set L of records such that L = D ∩ ([ax, bx] × [ay, by]).

– For general R = [ax, bx] × [ay, by], [ax, bx] can be super-polynomial in �.
– Range queries over values (resp. keys) correspond to the input range

[0, 2�) × [ay, by] (resp. [ax, bx] × [0, 2�)). For such queries, the interval
[ay, by] (resp. [ax, bx]) can be super-polynomial or even exponential in �.

– Membership queries over records (resp. values and keys) correspond to
the input range [x, x] × [y, y] (resp. [0, 2�) × [y, y] and [x, x] × [0, 2�)).

3.1 Zero-Knowledge Expressive Elementary Database

ZK-EEDB has four algorithms: Init, ComDB, ProveRQ, VerifyRQ.

– (crs, tk) ← Init(1λ): Takes as input security parameter λ and outputs a com-
mon reference string (CRS) crs and trapdoor key tk.

– (com,Δ) ← ComDB(crs,D): Takes in crs and a database D = {(x,D(x))}. It
returns a commitment com to D and a decommitment information Δ.

– ΠR ← ProveRQ(crs, (com,Δ),R): Inputs crs, a database commitment and
decommitment information (com,Δ) and a range R. It returns a proof of
correctness ΠR of the range query with input range R ⊂ [0, 2�) × [0, 2�).

– L ← VerifyRQ(crs, com,R,ΠR): Inputs crs, a database commitment com, a
range R ⊂ [0, 2�) × [0, 2�) and a purported proof ΠR. It returns

z =

{
D ∩ R, if the proof is correct;
bad, if the proof is deemed invalid.
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We consider the same properties as in standard ZK-EDB protocols: namely,
completeness, soundness and zero-knowledge, adapted to support the more
expressive queries in ZK-EEDB. Correctness mandates that, for any query,
correctly computed proofs satisfy the verification algorithm. Zero-knowledge
requires that there exist an efficient simulator which is only granted oracle access
to the database and outputs proofs for queries that are indistinguishable from
those produced by a real prover using the real database as a witness. Soundness
requires that no contradictory statements about the committed database can be
proven by the adversary. Informally speaking, no PPT adversary can find two
ranges R,R′ and proofs Π,Π ′ for which there exists a record (x, y) ∈ R ∩ R′

that is in the answer to the first query but not the second. Formally, we have

– Completeness: For all databases D and all keys x, we have
Pr[crs ← Init(1λ); (com,Δ) ← ComDB(crs,D);

ΠR ← ProveRQ(crs, (com,Δ),R);
VerifyRQ(crs, com,R,ΠR) �= bad] = 1 − ν(λ),

for some negligible function ν(·).
– Soundness: For any PPT algorithm P′, the probability

Pr[crs ← Init(1λ); (com,R,Π,R′,Π ′) ← P′(crs);
(
VerifyRQ(crs, com,R,Π) = L �= bad

)

∧
(
VerifyRQ(crs, com,R′,Π ′) = L′ �= bad

)

∧ (∃(x, y) ∈ R ∩ R′ s.t. ((x, y) ∈ L) ∧ ((x, y) �∈ L′)],
is bounded by ν(λ), for some negligible function ν(·).

– Zero-Knowledge: For any PPT adversary A and any efficiently computable
database D, there exists an efficient simulator consisting of a triple of algo-
rithms (SInit, SCom, SProveQD) such that the outputs of the following two
experiment outputs are indistinguishable:
Real experiment :
1. Let crs ← Init(1λ), (com,Δ) ← ComDB(crs,D) and s0 = Π0 = ε.
2. For 1 ≤ i ≤ n, we have (Ri, si) ← A(crs, com,Π0, . . . , Πi−1, si−1) and A

gets a real proof Πi = ProveRQ(crs, (com,Δ),Ri).
The experiment outputs (crs,R1,Π1, . . . ,Rn,Πn).
Ideal experiment :
1. Let (crs′, st0) ← SInit(1λ), (com′, st1) ← SCom(st0) and s0 = Π ′

0 = ε.
2. For 1 ≤ i ≤ n, we have (Ri, si) ← A(crs′, com′,Π ′

0, . . . , Π
′
i−1, si−1) and

A gets a simulated proof Π ′
i ← SProveRQD(crs′, st1,Ri).

The experiment outputs (crs′,R1,Π
′
1, . . . ,Rn,Π ′

n).

In the ideal experiment, SProveQD is an oracle that is allowed to invoke
a database oracle D and receive the set of records D ∩ R for any range R =
[ax, bx] × [ay, by] chosen by the adversary.

Here, a few comments about our security definitions are in order. We recall
that, in size-hiding database commitments, the commitment must be shorter
than the database since, otherwise, an upper bound on the database size is
leaked. This naturally leads us to use statistically-hiding commitments, where
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we cannot properly speak of the “content” of a commitment since valid openings
exist for any database. What matters is thus what the adversary is able to prove
about the commitments it generates. In non-interactive size-hiding database
commitments (at least under falsifiable assumptions), soundness can only be
defined by preventing proofs for conflicting statements. In standard ZK-EDBs,
it means one cannot prove distinct values for any key in a committed DB. For
ZK-EEDBs, we extend it to range queries which are akin to batch queries. Our
definition of soundness is thus adjusted to account for the answer being a set of
records instead a value.

In the definitions of Ostrovsky et al. [28], soundness includes that, for any
valid proofs produced by the prover, there exists a valid database compatible
with the proven statements. This property is straightforward to show in our
scheme and can be added to our model. Furthermore, although range queries
can admit exponentially large ranges, it is still necessary to hide database size to
maintain the zero-knowledge property of ZK-EEDB, which requires that verifiers
leak nothing beyond the statements involved in all queries.

3.2 A Construction of ZK-EEDB from TMC: Initialization
and Commitment Generation

In this section, we describe how to initialize a ZK-EEDB instance and commit to
a database D by exploiting two size-hiding trees. Details of the proof generation
and verification for ZK-EEDB queries are deferred to Sect. 4.

ZK-EEDB Database Commitments from TMC. To construct ZK-EEDBs,
our idea is to use two Merkle trees to commit to the database D, each in a
different representation. While ordinary ZK-EDBs consist of a single Merkle
tree, ZK-EEDB relies on two size-hiding trees: (i) A (key) Merkle tree of height
�, which commits to a value D(x) at each leaf x ∈ [D]; (ii) A (value) Merkle tree
also of height � that is two-tiered: each leaf y stores a commitment to the root
value of a size-hiding Merkle tree that accumulates D−1

y . Here, D−1
y = {(x, 1) |

(x, y) ∈ D} is a zero-knowledge set encoded as a ZK-EDB with keys x and value
1 if and only if (x, y) ∈ D.

The value Merkle tree can be seen as a commitment to the reversed database
D−1

com = {(y, comD−1
y

) | D−1(y) �= ∅}. Although defined differently earlier, we
use D−1 from here on to denote D−1

com. This is the main technique enabling
efficient queries over values and records: Soft-opening paths in the value Merkle
tree allow us to efficiently prove statements about non-membership of a value
y (i.e., D contains no record of the form (∗, y)). In existing single-tree-based
constructions of ZK-EDBs, such queries are simply impossible to prove in zero-
knowledge as each key must be separately proven to not have D(x) = y (which
betrays the database size and is highly inefficient). However, in ZK-EEDB, the
root value of the Merkle tree that accumulates D−1

y is simply revealed to be
empty by explaining the value stored at the leaf y in the value Merkle tree is a
soft commitment Cy and showing a soft authentication path from y to the root.
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With two commitments to the same database under different representations,
we need to add checks to enforce that the two Merkle trees are consistent with
each other. Whenever a record is proven to be in D via comD and the first Merkle
tree, the same record is also proven to be correctly committed in comD−1 using
the second Merkle tree. This prevents malicious provers from proving contradic-
tory statements as both commitments have to agree at any record that has been
proven to be in D. We insist that a cheating prover cannot win by using inconsis-
tent databases in the two trees since, even by doing so, it will remain unable to
prove contradictory statements without breaking the binding properties of the
underlying mercurial commitment.

We now describe the initialization and commitment algorithms, Init and
ComDB for ZK-EEDB from the TMC scheme, TMC.

– (crs, tk) ← Init(1λ): compute and return (crs, tk) ← TMC.Setup(1λ).
– (com,Δ) ← ComDB(crs,D):

1. Compute (comD,ΔD) ← BuildTree(crs,D).
2. For every y with D−1(y) �= ∅, compute commitments of D−1

y by running
(comD−1

y
,ΔD−1

y
) ← BuildTree(crs,D−1

y ).
3. Compute (comD−1 ,ΔD−1) with BuildTree(crs,D−1).

Return (com = (comD, comD−1),Δ = (ΔD, {comD−1
y

}y∈[D−1],ΔD−1)).

Fig. 1. The value Merkle tree in ZK-EEDB with authentication paths for (4, 5) ∈ D.

4 Queries in ZK-EEDB

We first show how to prove correctness for answers to range queries in zero-
knowledge for some database D committed with a Merkle tree and TMC scheme.
Then, we apply the techniques to construct the ProveRQ and VerifyRQ algorithms
in ZK-EEDB. Let the TMC scheme used, TMC, be implicit in the algorithms.

4.1 Range Queries with a Single Merkle Tree

For a single Merkle tree, a range query is an interval [a, b] ⊆ [0, 2�) of keys. Our
range query proofs uses two key ideas: Steiner trees and a set of novel explanation
algorithms. We can split the leaves in [a, b] into two sets, R ⊆ [D] with values
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in D, and the others, [a, b]\R. Proving correctness for [a, b] means showing that
every x ∈ R is a member of [D] and the remaining keys [a, b]\R are not.

The Steiner tree characterizes the minimum set of nodes that have to be
hard-opened to form the authentication paths for every leaf in R. At the same
time, it defines a polynomial-sized covering set for the remaining keys [a, b]\R.
Then, the explanation algorithms are used to reveal that the covering set consists
of soft commitments, so no hard authentication paths can be built from leaves
in [a, b]\R to the root of the Merkle tree.

Explanations for Trapdoor Mercurial Commitments. For our purposes,
we introduce three new algorithms Explain,EVerify,FakeExplain to the syntax
of TMC schemes. These algorithms reveal and verify that a commitment is a
soft commitment and produce a “fake” proof that a fake commitment is a soft
commitment. Explain is used by the prover when producing range proofs, EVerify
is used by the verifier when checking if proofs are correct and FakeExplain is used
by the simulator from the zero-knowledge property.

Note that Catalano et al. [2]’s construction of TMCs, and thus all known
TMC schemes, can be easily adapted to support the three new algorithms intro-
duced in this work. This is given in the full version of this work.

– R ← Explain(mpk;R): On input of the public commitment key mpk and
random coin R such that C = SCommit(mpk;R), it outputs the random coin
R that explains C as a soft commitment.

– EVerify(mpk,C,R): On input of the public commitment key mpk, a commit-
ment C and random coins R, it accepts if R is deemed as convincing evidence
that C is a soft commitment.

– R′ ← FakeExplain(msk;R): On input of the public commitment key mpk
and random coins R such that C = MFake(mpk;R), this algorithm outputs
random coins R′ such that C = SCommit(mpk;R′).

It is straightforward to see that EVerify will only accept if the inputs are
soft commitment, explanation or fake commitment, fake explanation pairs. If
an adversary can produce explanations for some hard commitment that EVerify
accepts, then mercurial binding is broken: The explanation can be adapted to
produce soft-openings to any message like fake commitments which contradicts
the mercurial binding property that hard commitments can only be hard-/soft-
opened to a unique message.

With these three new algorithms, we require an additional equivocation prop-
erty, soft-explain (SE) equivocation, for the security of TMC schemes.

– SE Equivocation: The real game provides A with a soft commitment C =
SCommit(mpk;R) and the corresponding random coins R. The ideal game
provides A with a fake commitment C = MFake(msk;R) and a fake expla-
nation R′ ← FakeExplain(msk;R) of C as a soft commitment.

Optimized Proof of Membership for an Interval. A naive method to prove
membership of a set of keys of D lying in some interval [a, b], R, is to return
|R| many hard authentication paths. This is sub-optimal as there are duplicated
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hard openings as authentication paths merge closer to the root of the Merkle
tree. We show how the Steiner tree yields the optimal set of hard openings.

For a set of leaves R ⊆ [D] ∩ [a, b], let ST (R) be the Steiner tree of R, the
minimal subtree connecting the leaves of R to the root. We use ST (R)j to mean
the set of nodes in ST (R) at depth j. We define the authentication Steiner tree
of R, ΠR, as the set of hard openings for each node in ST (R): namely, hard
openings πx to D(x) for each leaf x ∈ R, and πy to (Cy, Cy′) for each internal
node y ∈ ST (R)\R. By definition, hard authentication paths for all x ∈ R are
in ΠR above which has O(|R| · �) nodes. The mechanism and its verification is
formalized in HOpenST and VerifyST with (com,Δ) ← BuildTree(crs,D).

– ΠR ← HOpenST(crs, (com,Δ),R): With inputs CRS crs, database commit-
ment com, decommitment information Δ and set R ⊆ [D], return ΠR as
follows:
1. For each leaf x ∈ R, compute πx ← HOpen(crs,D(x);Rx).
2. For j from �−1 to 0 and z ∈ ST (R)j , the set of nodes in ST (R) at depth

j, compute πz ← HOpen(crs, (Cz0, Cz1);Rz).
Set ΠR = ({(x,D(x)), πx}x∈R, {Cz, Cz′ , πz}z∈ST (R)\R).

– L ← VerifyST(crs, com,R,ΠR): With inputs CRS crs, database commitment
com, set R,
1. For each leaf x ∈ R, compute HVerify(crs,D(x), Cx, πx) and continue if

all verifications accept. Otherwise, set and output L = bad.
2. For j from �−1 to 0 and z ∈ ST (R)j , the set of nodes in ST (R) at depth

j, compute HVerify(crs, (Cz0, Cz1), Cz, πz) and continue if all verifications
accept. Otherwise, set and output L = bad.

Return L = R if L �= bad.

Proof of Non-membership for an Interval. With the authentication Steiner
tree for R proving that keys x ∈ R are in [D], we need to show that the other
keys in [a, b]\R do not appear in D. This is achieved with a crucial observation:
If an internal node y′ is a soft commitment or nil, then no descendant of y′

has a valid hard authentication path and cannot be in [D]. So, we use Explain
to prove that no leaves in [a, b]\R have a hard authentication path to the root.
In particular, if P is the canonical covering of [a, b]\R, we have Cx = nil or
SCommit(mpk;Rx) for any node x ∈ P after BuildTree(crs,D).

The values Cz of z ∈ P are explained as soft commitments to show
that the leaves [a, b]\R cannot be involved in a proof of membership. With
R = {x1, . . . , xm}. The canonical coverings of intervals [a, x1 −1] and [xm +1, b]
may not be siblings of nodes in ST (R) but descendants instead. In those cases,
we compute soft authentication paths from these canonical coverings to the
ancestors which are siblings of some nodes in ST (R). Those z ∈ P whose sib-
lings z′ are in ST (R) do not need additional proof elements. The entire process
adds O

(
|R| · log((b − a)/|R|)

)
nodes which is only a constant factor larger than

|ST (R)| = |R| · �. Thus, the entire range proof has size O(|R| · �), independent
of the length of the input interval and allows for exponentially large inputs.
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– Π[a,b] ← OpenI(crs, (com,Δ), [a, b]): If a = b, prove membership of a with
HOpenPath and non-membership with SOpenPath. Otherwise proceed as fol-
lows. Let R be the set of keys in [D] ∩ [a, b].

• If R = ∅, set Π[a,b],R = nil and let P be the canonical covering of the
leaves in [a, b]. For each x ∈ P:
1. Compute Cq ← SCommit(crs;Rq) if Cq = nil for q = x, x′.
2. Compute Rx ← Explain(crs, Cx;Rx).
3. For i from |x| − 1 to 0, compute Cq ← SCommit(crs;Rx|i) if either

of q = x|i, (x|i)′ has not been computed previously. Then, compute
τx|i ← SOpen(crs, (Cx|i0, Cx|i1);Rx|i).

Set Π[a,b],P = {Rx, {Cx|i0, Cx|i1, τx|i}0≤i≤|x|−1}x∈P , proofs that Cx is a
soft commitment and committed to com for x ∈ P.

• Otherwise, R �= ∅ and compute the authentication Steiner tree of R,
Π[a,b],R ← HOpenST(crs, (com,Δ),R).
1. (Explain canonical covering.) Let P be the canonical covering of the

keys in [a, b]\R, for x ∈ P, compute Rx ← Explain(crs, Cx;Rx)
2. (Prove connection to ST (R).) If x′ �∈ ST (R), let hx be such that

x|hx
= y′ for some y ∈ ST (R). For i from |x| − 1 to hx, compute

τx|i ← SOpen(crs, (Cx|i0, Cx|i1);Rx|i).
Set Π[a,b],P = {Rx, {Cx|i0, Cx|i1, τx|i}hx≤i≤|x|−1}x∈P , proving Cx are soft
commitments and their paths to com meet ST (R) for x ∈ P[a,b].

Output Π[a,b] = (Π[a,b],P ,Π[a,b],R) and add the randomness of any commit-
ments computed to Δ.

– L ← VerifyI(crs, com,R,Π[a,b]): If a = b, Π[a,b] = Πa and compute y ←
VerifyPath(crs, com, a,Πa). Set L′ = {(a, y)} if y �∈ {⊥, bad} and L′ = ∅ if
y =⊥. If a �= b, let the proof Π[a,b] = (Π[a,b],P ,Π[a,b],R), where R denotes the
set of keys returned. Set L′ = ∅ and proceed as follows.

• If R = ∅, Π[a,b],R = nil, Π[a,b],P = {Rx, {Cx|i0, Cx|i1, τx|i}0≤i≤|x|−1}x∈P .
For each x ∈ P, where P is the canonical covering of [a, b]:
a. Compute EVerify(crs, Cx, Rx) to check that Cx is a soft commitment.

Set y = bad if it is not.
b. For i from |x|−1 to 0, compute SVerify(crs, (Cx|i0, Cx|i1), Cx, τx) and

set y = bad if any verification fails.
• Otherwise, (Π[a,b],R = ({(x,D(x)), πx}x∈R, {Cz, Cz′ , πz}z∈ST (R)\R) and

Π[a,b],P = {Rx, {Cx|i0, Cx|i1, τx|i}hx≤i≤|x|−1}x∈P .
1. Compute L′ ← VerifyST(crs, com,R,Π[a.b],R) to check the authenti-

cation Steiner tree.
2. (Check canonical covering of [a, b]\R.) Let P be the canonical cover-

ing of the keys in [a, b]\R. For each x ∈ P:
a. Compute EVerify(crs, Cx, Rx) and set y = bad if it fails.
b. For i from |x| − 1 to hx, compute SVerify(crs, (Cx0, Cx1), τx) and

set y = bad if any verification fails.
If L′ and y �= bad, set and output L = L′.
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4.2 Range Queries over Records in ZK-EEDB

Let (crs, tk) ← Init(1λ) and (com,Δ) ← ComDB(crs,D) be the ZK-EEDB com-
mitment and decommitment information of a database D and consider an arbi-
trary range R = [ax, bx] × [ay, by]. Correctness of its answer is proved in zero-
knowledge with several membership and range proofs in the Merkle trees built
in ComDB. Due to space constraints, we sketch the algorithms for range proof
generation and verification and defer its formal description the full version of
this work.

ProveRQ. The value Merkle tree can be seen as a two-tiered size-hiding com-
mitment to D, by storing commitments to D−1(y) for every possible value in
the universe y ∈ [0, 2�). Proofs of membership of a record (x, y) on the value
Merkle tree would comprise of two parts. First, the committer proves that the
value at some leaf x is a hard commitment to 1 in the commitment comD−1

y
. This

shows that the record (x, y) is in some database committed in some commitment
comD−1

y
, which we next prove to be the commitment to D−1

y . We achieve this by
proving that comD−1

y
is committed in the value at leaf y in the ZK-EEDB com-

mitment of the value Merkle tree, comD−1 .
Moving into the sketch of the algorithm, we begin with the most straightfor-

ward case: range queries over keys with R = [ax, bx]× [0, 2�). For this, we simply
use OpenI to prove (non-)membership of all keys in [ax, bx] of the key Merkle
tree. Then, for consistency, we prove that each record (x,D(x)) is committed
in the value Merkle tree as well. Next, for range queries over values with range
[0, 2�) × [ay, by], the procedure is similar. We use OpenI on the first tier of the
value Merkle tree with the interval [ay, by], which proves that some values do
not occur in D and the remaining values store commitments to some non-empty
D−1

y . After that, we simply reveal the entire Merkle tree for each non-empty D−1
y

with OpenI on the interval [0, 2�). Finally, for consistency, we generate the hard
authentication path from leaf x to the root of the key Merkle tree for each record
(x, y) that is shown to be in D from the value Merkle tree.

Finally, we describe the proof generation for range queries over records with
R = [ax, by] × [ay, by]. We start in the first tier of the value Merkle tree, and
prove that comD−1

y
is the commitment to D−1

y for each y ∈ [ay, by]; a hard (resp.
soft) authentication path from y to the root of the value Merkle tree is generated
for those that are non-empty (resp. empty) in [ax, bx]. Then, for each y ∈ D−1

y ,
we use OpenI to prove (non-)membership of all the keys in the interval [ax, bx].
Consistency is proven in the same way as range queries over values.

VerifyRQ. To verify range proofs, we verify proofs for the key and value Merkle
tree separately for the set of records L returned. For the key Merkle tree, the
process is straightforward; we either verify a (non-)membership proof for an
interval [ax, bx] in range queries over keys or a set of hard authentication paths
in the other two range queries. Proofs for the value Merkle tree consists of
verifying that records are committed in some commitments which purport to be
of D−1

y . These supposed commitments of D−1
y are then verified to be what they
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are by checking that they are committed in comD−1 . Proofs fail verification if
any of the sub-proofs are incorrect.

For range queries over keys, honestly computed range proofs Π contain a
(non-)membership proof for all keys x ∈ [ax, bx] which we verify with VerifyI.
Then, for consistency, Π also contains individual hard authentication paths for
each record (x,D(x)) ∈ L from leaf x to a claimed commitment of D−1(D(x))
and hard authentication path from leaf D(x) to the root of the value Merkle
tree whose value is comD−1 . These are verified with the authentication path
verification algorithm VerifyPath.

Let L denote the set of records returned by the prover and Π be the range
proof. For range queries over values, the set L can be partitioned into L =⋃

y∈V{(xi,D(xi) = y)}, where V is the set of unique values that occur in L.
Then, we only need to verify (non-)membership proofs for all keys in D−1(y)
for y ∈ V, to check that the records returned are correctly commited in some
claimed commitment of D−1(y). Finally, we verify (non-)membership proofs for
the interval y ∈ [ay, by] of the value Merkle tree using VerifyI to check that
the claimed commitments to D−1

y for y ∈ [ay, by] are valid and the remaining
D−1

y ’s are empty. Consistency checks are straightforward, each record returned
is checked to have a valid hard authentication path in Π with VerifyPath.

Lastly, for range queries over records, consistency checks are identical to
range queries over values and so we focus on the differences in the value Merkle
tree. Instead of checking only y ∈ V, we have to do verify the (non-)membership
proof for the interval [ax, bx] with the claimed comD−1

y
for every y ∈ [ay, by].

This is done with VerifyI. Finally, we check that the claimed commitments to
D−1

y are correctly committed with valid hard or soft authentication paths, for
every y ∈ [ay, by], to the root of the value Merkle tree whose value is comD−1 .

Proof Sizes. There are three cases with different input ranges R and proof
sizes, which is taken to be the number of nodes to open or explain. Let L denote
the answer to the range query with input R = [ax, bx] × [ay, by].

First, the general case where [ax, bx] and [ay, by] are not [0, 2�). We partition
L =

⋃
y∈[ay,by ]

Ly based on the value of the record. The proof consists of (by−ay)
authentication paths in the value Merkle tree, the same number of authentication
Steiner trees, one in every Merkle tree with root value comD−1

y
for y ∈ [ay, by]

and finally |L| authentication paths in the key Merkle tree. The Steiner trees and
paths would have O(|Ly|�) and � nodes each respectively. This brings the total
proof size to O(

(
(by − ay)(1 + K) + |L|

)
�) nodes, where K = maxy∈[ay,by ] |Ly|.

Next, we consider range queries over values with R = [0, 2�) × [ay, by]. Let
V be the set of distinct values in the answer set L, which we partition into
disjoint subsets based on the value of the record, i.e., L =

⋃
y∈V Ly. Since the

only difference between this and the general case is that use OpenI, we have
only one authentication Steiner tree for the value Merkle tree and |V| many
Steiner trees for each D−1

y with y ∈ V. Therefore, the proof size for this case is
O(

(
|L| + |V|(1 + K)

)
�) with K = maxy∈V |Ly|.

Lastly, for range queries over keys with R = [ax, bx] × [0, 2�), the proof
consists of the authentication Steiner tree of L in the key Merkle tree and O(|L|)
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authentication paths in the Merkle tree and some set of Merkle trees with root
value comD−1

y
where (x, y) ∈ L. In total, the proof size is O(|L|�).

Overall, ProveRQ supports super-polynomial intervals [ax, bx] over the key-
space for any query and value-space for range queries over values. For range
queries over records, only polynomial length intervals [ay, by] are supported.

4.3 Security of the ZK-EEDB Construction

Recall that ZK-EEDB has three properties, correctness, soundness and zero-
knowledge. Correctness can be verified from the construction of ZK-EEDB easily.

Theorem 1. The ZK-EEDB resulting from this construction is sound if the
TMC scheme is mercurial-binding.

Proof. Suppose that the adversary can produce two contradicting range queries
with valid proofs, R,Π and R′,Π ′. There must exist a record (x, y) ∈ R ∩ R′

in L = VerifyRQ(crs, com,R,Π) but not L′ = VerifyRQ(crs, com,R′,Π ′). There
are two cases in this situation: (i) There exists another record (x, y′) ∈ L′ such
that y′ �= y; (ii) There exists no y′ ∈ [0, 2�) such that (x, y′) ∈ L′.

In case (i), both (x, y) and (x, y′) have valid proofs that they are committed
in comD. This means that Π and Π ′ contain two valid hard decommitments to
distinct values in two distinct authentication paths for the leaf x of the Merkle
tree of comD. This breaks the mecurial-binding property of the TMC scheme in
the same way as in the proof of the soundness property in ordinary ZK-EDBs.

In case (ii), there exists no record with key x in L′. This implies that Π ′

contains a proof that (x, 1) �∈ D−1
y and therefore x �∈ D−1(y). However, Π does

contain a proof that (x, 1) ∈ D−1
y , leading to a contradiction between Π and Π ′.

For this to happen, the first possibility is that the two proofs differ in their
commitments comD−1

y
of D−1(y). If so, the value at leaf y of the Merkle tree

of comD−1 has a valid hard opening to one value in Π while in Π ′, the value
at the leaf or some node along its path to the root is either explained as a
soft commitment or soft-opened to a message contradicting the hard opening.
This contradicts the mercurial-binding property of the TMC scheme, which says
that a mercurial commitment cannot be soft-opened to one message and hard-
opened to a different one. The second possibility is that the commitments comD−1

y

are identical in both Π and Π ′ but the two proofs depart within the Merkle
tree with root value comD−1

y
. Since Π proves that (x, 1) ∈ D−1

y , it contains
a hard authentication path from leaf x to the root. However, Π ′ proves that
(x, 1) �∈ D−1

y , meaning either: (a) The value at leaf x is a soft commitment;
(b) Some node along the path from leaf x to the root is explained as a soft
commitment in Π ′. Either way, Π shows that the value at some node is a hard
commitment whereas Π ′ shows that otherwise, the value at the same node either
explained as a soft commitment or soft-opened to a message that contradicts the
hard opening in Π. As before, this contradicts the mercurial-binding property
of the TMC scheme.



278 B. Libert et al.

Theorem 2. The ZK-EEDB resulting from this construction satisfies the zero-
knowledge property if the TMC scheme satisfies the four equivocation properties.

Proof. The zero-knowledge property follows from the equivocation properties
enabled by the trapdoor in the TMC scheme. The ZK-EEDB simulator (SInit,
SCom, SProveRQD), which is constructed below, is similar to the ZK-EDB sim-
ulator. However, a key change is that SProveRQD additionally uses FakeExplain.
To simulate range proofs, FakeExplain allows explaining fake commitments as
soft commitments when some subtrees have to be proved empty.

– (crs′, st0) ← SInit(1λ): Run (crs, tk) ← Init(1λ) and output the common
reference string and simulator state (crs′ = crs, st0 = tk).

– (com′, st1) ← SCom(st0): Compute com′
D ← MFake(crs′;R0) and com′

D−1 ←
MFake(crs′;R1) and output (com′ = (com′

D, com′
D−1), st1 = (R, tk)).

– Π ′ ← SProveRQD(crs′, st1,R = [ax, bx] × [ay, by]): Obtain the set S = D ∩ R
by querying the database oracle and let S ′ ∈ st1 contain the commitments
and proofs that were computed in previous queries. We denote with SD−1 ,
the set of distinct values in S. Then, let [S]D−1

y
be the set of keys in [S] whose

values in D are y. Compute Π ′ as follows:
1. The answer defines several Steiner trees and paths that are needed to

prove the correctness of the answer to the adversary.
a. If [ay, by] = [0, 2�), then S induces an authentication Steiner tree,

ST ([S]) in the Merkle tree of com′
D and |S| many authentication

paths, L and Ly, in the Merkle trees of com′
D−1 and com′

D−1
y

for y ∈
SD−1 respectively.

b. If [ax, bx] = [0, 2�), then SD−1 defines an authentication Steiner tree,
ST (SD−1) in the Merkle tree of com′

D−1 and similar Steiner trees
ST ([S]y) in the Merkle trees of com′

D−1
y

for y ∈ SD−1 . Finally, [S]
defines |[S]| many authentication paths L in the Merkle tree of com′

D.
c. If neither [ax, bx] not [ay, by] are [0, 2�), then SD−1 defines |ST (SD−1)|

paths, L in the Merkle tree of com′
D−1 and Steiner trees ST ([S]y) in

the Merkle trees of com′
D−1

y
for y ∈ SD−1 . [S] also defines an authen-

tication Steiner tree ST ([S]) in the Merkle tree of com′
D.

2. For each range type, let N be the set of nodes in the trees and paths
induced by the answer D ∩ R. Then, for every node x ∈ N\S ′, compute
fake commitments Cx ← MFake(crs;Rx).

3. For the fake commitments created in Step 2 and their parents, com-
pute appropriate hard and soft decommitments and explanations using
HEquivocate, SEquivocate and FakeExplain to simulate an honest proof.

4. Add the fake commitments, hard and soft decommitments and explana-
tions computed in Steps 1 and 2 to the state st1.

The output of the simulator is indistinguishable from that of an honest prover
because of the equivocation properties of the TMC scheme used. There are two
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types of outputs from the simulator, the CRS from initialization and fake com-
mitments, decommitments and explanations in proofs to queries from the adver-
sary. The simulated CRS is indistinguishable from a real CRS one as both are
trapdoor mercurial commitment keys. From the four equivocation properties of
the TMC scheme, the joint distribution of fake commitments and their hard/soft
equivocations or explanations are statistically indistinguishable from hard/soft
commitments and their hard/soft openings or explanations. ��

5 Lattice Instantiations

5.1 A Trapdoor Mercurial Commitment from Standard Lattices

Let λ ∈ N be a security parameter. The scheme works with message space
M = {0, 1}l, where l ∈ poly(λ). For a dimension n = O(λ) and prime modulus
q = Õ(l · n2 + n4), let w = n�log q�, m̄ = 2n�log q� and m = m̄ + w. Choose a
Gaussian parameter σ = Ω(

√
n log q log n).

– (mpk,msk) ← Setup(1λ): Choose a matrix A0 ←↩ U(Zn×l
q ). Run algorithm

TrapGen(n,m, q) (Lemma 4) to generate a pair (A1,T), where A1 ∈ Z
n×m
q is

statistically close to uniform and T ∈ Z
m̄×w is its trapdoor.

Output mpk = (A0,A1) and msk = T.
– C ← HCommit(mpk,µ; (R, r)): Given a message µ ∈ {0, 1}l and randomness
R ←↩ DZm×w,σ and r ←↩ DZm+w,σ, define B = [A1 | B1] ∈ Z

n×(m+w)
q , where

B1 = A1 ·R ∈ Z
n×w
q . Then, compute c = A0 ·µ+B · r ∈ Z

n
q and output the

hard commitment C = (c,B1) ∈ Z
n
q × Z

n×w
q .

– π ← HOpen(mpk, μ; (R, r): Output π = (R, r) ∈ Z
m×w × Z

m+w.
– HVerify(mpk,µ,C, π): Given a commitment C = (c,B1) ∈ Z

n
q ×Z

n×w
q and a

purported hard opening π = (R, r), proceed as follows.
1. Return 0 if R = [r1 | . . . | rw] has a column such that ‖ri‖ > σ

√
m or if

‖r‖ > σ
√

m + w.
2. Let B = [A1 | B1] ∈ Z

n×(m+w)
q . Return 1 if B1 = A1 · R and c =

A0 · µ + B · r.
– C ← SCommit(mpk; (R, r)): Given R ←↩ DZm×w,σ and r ←↩ DZm+w,σ, com-

pute the matrix B = [A1 | G − A1 · R] ∈ Z
n×(m+w)
q and c = B · r ∈ Z

n
q .

Output C = (c,B1) ∈ Z
n
q ×Z

n×w
q , where B1 = G−A1 ·R. Note that matrix

R is a trapdoor for B.
– τ ← SOpen(mpk,µ, flag; (R, r)):

• If flag = S, we must have C = (c,B1) = (B · r,G − A1 · R). Compute
c′ = c − A0 · µ and sample r′ ← SampleD(R,B, c′, σ) (Lemma 4).
Then, output τ = r′ ∈ Z

m+w, which satisfies c = A0 · µ + B · r′ and
‖r′‖ ≤ σ

√
m + w with overwhelming probability (Lemma 1).

• If flag = H, output τ = r ∈ Z
m+w.

– SVerify(mpk,µ,C, τ): Let C = (c,B1) ∈ Z
n
q × Z

n×w
q and τ = r ∈ Z

m+w

and define B = [A1 | B1] ∈ Z
n×(m+w)
q . Return 1 if c = A0 · µ + B · r and

‖r‖ ≤ σ
√

m + w. Otherwise, return 0.
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– C ← MFake(mpk; (R, r)): Given R ←↩ DZm×w,σ and r ←↩ DZm+w,σ, compute
B = [A1 | B1] ∈ Z

n×(m+w)
q , where B1 = A1 · R, and compute c = B · r.

Output C = (c,B1).
– π ← HEquivocate(msk,µ; (R, r)): Let msk = T ∈ Z

m̄×w and let the fake
commitment be C = (c,B1) = (B · r,A1 · R), where B = [A1 | A1 · R].
Compute c′ = c−A0 ·µ. Then, extend T into a trapdoor TB for the matrix
B = [A1 | A1 · R] and sample r′ ← SampleD(TB,B, c′, σ). Output π =
(R, r′) ∈ Z

m×w × Z
m+w.

– τ ← SEquivocate(msk,µ; (R, r)): Let msk = T ∈ Z
m̄×w and let the fake

commitment be C = (c,B1) = (B · r,A1 · R), where B = [A1 | A1 · R].
Compute c′ = c−A0 ·µ. Then, extend T into a trapdoor TB for the matrix
B = [A1 | A1 · R] and sample r′ ← SampleD(TB,B, c′, σ). Output τ = r′ ∈
Z

m+w.
– (R′, r′) ← FakeExplain(msk; (R, r)): Given msk = T ∈ Z

m̄×w together with
a Gaussian matrix R = [r1 | . . . | rw] ←↩ DZm×w,σ and a vector r ←↩ DZm+w,σ

such that C = (c,B1) = (B · r,A1 · R) is a fake commitment, set r′ = r and
use the trapdoor T for A1 to sample a small-norm R′ = [r′

1 | . . . | r′
w] such

that A1 · R′ = G − A1 · R. To do this, let G = [g1 | . . . | gw], and for each
i ∈ [w], sample r′

i ← SampleD(T,A1,gi − A1 · ri).
Then, output (R′, r′) which satisfy C = (c,B1) = (B · r′,G − A1 · R′).

5.2 Analysis

We prove that the trapdoor mercurial commitment scheme described in Sect. 5.1
satisfies the correctness and security properties defined in Sect. 2.1.

Correctness. By Lemma 1, with overwhelming probability, samples from dis-
crete Gaussian distributions DZm,σ and DZm+w,σ have their Euclidean norms
bounded by σ

√
m and σ

√
m + w, respectively. Moreover, the outputs of SampleD

are statistically close to discrete Gaussian samples, by Lemma 4. Therefore, if
proofs π and τ are generated as in Sect. 5.1, then they should pass the verifi-
cations for Euclidean norms performed by algorithms HVerify and SVerify. Note
further that the equations modulo q verified by these algorithms must hold by
construction. As a result, the scheme is correct with overwhelming probability.
Security. In the following lemmas, we show that the proposed scheme satisfies
mercurial-binding under the SIS assumption, and HH, HS, SS and SE equivoca-
tion in the statistical sense.

Lemma 5. The scheme is mercurial-binding under the SISn,m,q,β assumption,
with β = σ · (l

√
m̄ +

√
σmm̄(σ2w3 + 2m)).

Proof. Since the scheme is a proper mercurial commitment (i.e., hard openings
contain their corresponding soft opening as a proper subset), we only need to
consider the hard-soft case. Towards a contradiction, let us assume that the
adversary can come up with a commitment C = (c,B1) ∈ Z

n
q × Z

n×w
q which it

can hard-open to a message µ and soft-opened to a different message µ′. This
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means that the adversary can output (µ,R, r) ∈ {0, 1}l × Z
m×w × Z

m+w and
(µ′, r′) ∈ {0, 1}l × Z

m+w such that B1 = A1 · R and

c = A0 · µ + [A1 | A1 · R] · r = A0 · µ′ + [A1 | A1 · R] · r′. (1)

Assuming that such a mercurial-binding adversary A exists, we can build a
SISn,m,q,β solver B which takes as input a SISn,m,q,β instance A ∈ Z

n×m̄
q and

finds a non-zero vector v
 ∈ Z
m̄ of Λ⊥(A) such that ‖v
‖ ≤ β. To this end, B

samples R0 ←↩ Dm̄×l
Z,σ , R1 ←↩ Dm̄×m

Z,σ and defines

A0 = A · R0 ∈ Z
n×l
q , A1 = A · R1 ∈ Z

n×m
q .

Note that, by Lemma 2, matrices A0 and A1 are statistically close to the
distributions U(Zn×l

q ) and U(Zn×m
q ), respectively. The adversary A is given

mpk = (A0,A1) and, assuming that it can output (µ,R, r) and (µ′, r′) sat-
isfying (1) for distinct µ �= µ′, we have

A0 · (µ − µ′)) = A1 · [Im | R] · (r′ − r) mod q.

This implies that

v
 = R0 · (µ − µ′) + R1 · [Im | R] · (r − r′) ∈ Z
m̄ (2)

is a short vector of Λ⊥(A) with norm ‖v
‖ ≤ σ · (l
√

m̄ +
√

σmm̄(σ2w3 + 2m)).
Moreover, we claim that it is non-zero with overwhelming probability. Indeed,
(µ−µ′) ∈ {−1, 0, 1}l has at least one non-zero coordinate by hypothesis. Given
that the columns of R0 have at least Ω(n) bits of min-entropy conditionally
on A0 = A · R0 (by Lemmas 2 and 3), the product R0 · (µ − µ′) is a linear
combination (with coefficients in {−1, 0, 1}) of the columns of R0 which contains
a completely unpredictable term. Hence, the right-hand-side member of (2) can
only cancel over Z

m̄ with negligible probability. ��

Lemma 6. The scheme provides HH, HS, SS and SE equivocation in the sta-
tistical sense.

Proof. For any message µ, we show that the distribution of fake commitments
and their hard equivocations to µ is statistically close to that of hard commit-
ments and their hard openings to µ.

We note that B1 is generated in the same way in both fake and hard commit-
ments. Moreover, since A1 is statistically uniform over Z

n×m
q , Lemma 2 implies

that the distribution
{
(A1,B1) = (A1,A1 · R) | R ←↩ DZm×w,σ

}
is statistically

close to the distribution U(Zn×m
q ) × U(Zn×w

q ), meaning B ∼ U(Zn×(m+w)
q ) in

both hard and fake commitments. By Lemma 2, we find that the distribution of
fake commitments (c,B1), which is given by {([A1 | B1] ·r,B1) | r ←↩ DZm+w,σ},

is in turn statistically close to U(Zn
q ) × U(Zn×(m+w)

q ). This implies that the dis-
tribution of fake commitments remains statistically unchanged if we compute c
as c = A·µ+B·r instead of c = B·r. We call ideal1 this modification of the ideal
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experiment. Moreover, by Lemma 2 again, we know that, for any statistically
uniform matrix A ∼ U

(
Z

n×(m+w)
q

)
, the distribution

{
(A,A · r, r) ∈ Z

n×(m+w)
q × Z

n
q × Z

m+w | r ←↩ DZm+w,σ

}
(3)

is statistically close to
{

(A,u, r) ∈ Z
n×(m+w)
q × Z

n
q × Z

m+w | u ←↩ U(Zn
q ), r ←↩ DΛu(A),σ

}
. (4)

Consequently, we can modify ideal1 by changing the way to equivocate the fake
commitment. Instead of using extending T into a trapdoor for B = [A1 | B1]
and using it to sample r in a coset of the lattice Λ⊥(B), we just reveal the vector
r ←↩ DZm+w,σ that was used to compute c = A·µ+B·r. If we call this experiment
ideal2, we find it statistically indistinguishable from the ideal experiment thanks
to the statistical closeness of (3) and (4). We observe that ideal2 is nothing but
the real HH equivocation experiment since B1 is generated in the same way in
both experiments. This shows the HH equivocation property. The HS and SS
equivocation properties can be shown in a completely similar way.

As for the SE equivocation property, it follows from two observations. First,
Lemma 2 implies that the distributions

Dfake :=
{
A1 · R | R ←↩ DZm×w,σ

}
, Dsoft :=

{
G − A1 · R′ | R′ ←↩ DZm×w,σ

}

are both statistically close to U(Zn×w
q ). Hence, the adversary’s view remains

statistically the same if we generate fake commitments by sampling B1 from Dsoft

instead of Dfake in the ideal experiment. Moreover, since distributions (3) and (4)
are statistically close, A’s view remains statistically the same after modification.
instead of using the trapdoor T of Λ⊥(A1), we reveal the Gaussian matrix R′,
used to get B1 = G − A1 · R′ after sampling R′ ←↩ DZm×w,σ. With this, the
result is identical to the real game, proving the SE property. ��

5.3 Remarks

The scheme from Sect. 5.1 produces commitments of the form C = (c,B1) ∈
Z

n
q ×Z

n×w
q , and thus, have length k = n(w + 1)�log q� bits. Its message space is

M = {0, 1}l, where l can vary depending on the context.
The scheme leads to a lattice-based ZK-EEDB system, following the con-

structions of Sects. 3 and 4. In this system, the following 4 different message
lengths, {l1, l2, l3, l4}, are considered.

1. At leaves of the first tree, we commit to values of bit-length l1 = �.
2. At non-leaf nodes in both trees, since we commit to 2 commitment strings,

we work with message length l2 = 2k.
3. At leaves of the second tree, we store commitments to D−1(y), which is a

commitment string of bit-length l3 = k.
4. When building a commitment of D−1

y = {(x, 1) | (x, y) ∈ D}, we also work
with message length l4 = 1.



Zero-Knowledge Elementary Databases with More Expressive Queries 283

To handle these message lengths, we need only adjust the number of columns in
A0 ∈ Z

n×l
q , with l = max{l1, l2, l3, l4}. For each i ∈ [4], we use A0,i ∈ Z

n×li
q , the

matrix that is the first li columns of A0, to commit to a length-li message.
A description of an authentication path with its commitment strings requires

ζ = O(l · k) bits, which is Õ(λ3) when l = O(λ). Fortunately, this can be
greatly reduced if the TMC scheme is adapted to the ring setting. As shown
by Micciancio and Peikert [22] and later by Ducas and Micciancio [8], with
appropriate choice of parameters, all the lattice-based cryptographic ingredients
of Sect. 2.3 can be adapted to the ring setting. This lets us use w = O(log q)
(instead of w = O(n log q)), thereby reducing the commitment size and ζ by a
factor of O(λ). We refer to the full version of this work for the details.
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Abstract. With the recent emergence of efficient zero-knowledge (ZK)
proofs for general circuits, while efficient zero-knowledge proofs of alge-
braic statements have existed for decades, a natural challenge arose to
combine algebraic and non-algebraic statements. Chase et al. (CRYPTO
2016) proposed an interactive ZK proof system for this cross-domain
problem. As a use case they show that their system can be used to prove
knowledge of a RSA/DSA signature on a message m with respect to
a publicly known Pedersen commitment gmhr. One drawback of their
system is that it requires interaction between the prover and the ver-
ifier. This is due to the interactive nature of garbled circuits, which
are used in their construction. Subsequently, Agrawal et al. (CRYPTO
2018) proposed an efficient non-interactive ZK (NIZK) proof system for
cross-domains based on SNARKs, which however require a trusted setup
assumption.

In this paper, we propose a NIZK proof system for cross-domains that
requires no trusted setup and is efficient both for the prover and the ver-
ifier. Our system constitutes a combination of Schnorr based ZK proofs
and ZK proofs for general circuits by Giacomelli et al. (USENIX 2016).
The proof size and the running time of our system are comparable to
the approach by Chase et al. Compared to Bulletproofs (SP 2018), a
recent NIZK proofs system on committed inputs, our techniques achieve
asymptotically better performance on prover and verifier, thus presenting
a different trade-off between the proof size and the running time.

1 Introduction

Zero-knowledge (ZK) proofs, introduced by Goldwasser, Micali, and Rackoff [25],
are one of the central cryptographic building blocks, which allow a prover to
c© International Association for Cryptologic Research 2019
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convince a verifier that a statement is true without revealing any other informa-
tion. Goldreich, Micali, and Wigderson showed that ZK proofs for NP-languages
are possible [24], which opened up a number of new research directions in
cryptography.

Zero-knowledge proof systems are an essential building block used in many
privacy-preserving systems, e.g. anonymous credential systems [12] and voting
protocols [7,26]. Unfortunately, only a few systems have been used in practice.
The main reason is that ZK proofs for general statements are usually ineffi-
cient. Thus, the research focus switched from general statements to interesting
subclasses. In particular, a prover can efficiently prove knowledge of discrete
logarithms in groups of known [18,34] and unknown [6,14] order. Those proofs
were extended to allow other statements, e.g., equivalence of discrete logarithms,
or knowledge of representation. The main advantage was that using the Fiat-
Shamir transformation [21] one can make those systems non-interactive (NIZK),
i.e. no interaction between the prover and the verifier is necessary to generate
the proof, and transform honest-verifier ZK protocols into full ZK. Groth and
Sahai [20,28] further extended the class of efficient NIZK proofs to statements
about pairing product equations. The common factor of those proofs is that
they are restricted to algebraic groups and cannot be efficiently used to prove
statements about non-algebraic structures, e.g., the SHA hash function or the
AES encryption scheme.

The problem of efficient interactive ZK proofs for non-algebraic statements
was solved by Jawurek et al. [30]. Their system allows to efficiently prove
statements of the following form: “The prover knows an input x such that
y = SHA(x) for some public y”. Unfortunately, one cannot apply the Fiat-
Shamir transformation to make those proofs non-interactive. The system is based
on garbled circuits [37], which are private coin protocols, which in turn makes
the system inherently interactive. Giacomelli et al. [23] addressed this limitation
and introduced ZKBoo, a non-interactive proof system for arithmetic circuits,
based on the “MPC-in-the-head” technique [29]. In their system, the proof size
depends linearly on the number of gates, input and output wires. This work
was further improved by Chase et al. [16] with the introduction of the ZKB++
system. The authors were able to reduce the proof size by a constant factor and
addressed post-quantum security of the construction. Ames et al. [4] proposed
Ligero, a NIZK proof system based on the “MPC-in-the-head” technique, which
has the proof size proportional to the square root of the verification circuit size.

An interesting line of research present succinct non-interactive zero-
knowledge proofs (SNARKs) [9,22,27]. They allow compact proofs and very
efficient verification, but require a complex trusted setup and the prover has
to perform a number of public key operations (i.e. modular exponentiations or
equivalently elliptic curve point multiplications) proportional to the circuit size.
The setup algorithm can be executed by a trusted party or by the participants
of the system using multi-party computation (MPC).

While there exist efficient proofs for algebraic and non-algebraic statements,
it became a natural challenge to combine both worlds and create a proof system
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that would work efficiently in both, algebraic and non-algebraic, domains. Obvi-
ously, one can implement algebraic structure directly using non-algebraic state-
ments by defining all group operations as functions. This approach introduces a
significant overhead in size of the proven statement, which increases the size of
the proof and the number of required computations. As noted by [3], depending
on the group size, the circuit for computing a single exponentiation could be
thousands or millions of gates. Alternatively, one can implement arithmetic cir-
cuit directly using algebraic statements by treating each gate in a circuit as an
algebraic function and proving relations between gates. The prover’s/verifier’s
work and the proof size would be linear in the number of gates, and in case
of hash functions or block ciphers it could be tens of thousands of public key
operations and group elements.

The first attempt to efficiently solve this cross-domain problem was the
Crypto’16 work by Chase et al. [17]. Their system can be used e.g. to prove
that a given algebraic commitment (e.g. Pedersen commitment) C is a commit-
ment to x, where F (x) = 1 and F is expressed as a boolean circuit. The authors
show that an efficient proof system for this statement can be used as a building
block to construct more efficient proofs of knowledge of a signature and a com-
mitted message for RSA-FDH, DSA and EC-DSA signatures. Their system can
be extended to a scenario, where we have k commitments to x1, . . . , xk and the
input x is the concatenation x1|| . . . ||xk of values in those commitments.

Chase et al. propose two constructions of their proof system. For the first the
number of public key operations is linear in the size of x and that of symmetric
key operations is proportional to the number Fg of gates in F . The second
construction reduced the number of public key operations to a number linear in
the security parameter λ, but this comes at a cost of additional symmetric key
operations which are proportional to Fg + |x| · λ. Unfortunately, their approach
is based on the ZK proofs from [30] and the proof system is therefore interactive
by nature.

Bünz et al. [11] presented at S&P’18 efficient NIZK range proofs called Bul-
letproofs. Those proofs can also be used for proving statements expressed as
arithmetic circuits with algebraically committed inputs. The proof technique
relies on discrete log assumptions and the Fiat-Shamir transformation. While
Bulletproofs produce relatively short proofs, the prover’s work is still expensive,
specifically, the prover has to perform a number of public key operations linear
in the circuit size.

At Crypto’18, Agrawal, Ganesh, and Mohassel [3] presented non-interactive
zero-knowledge proofs for composite statements. Whereas the authors addressed
the same problem of constructing zero-knowledge proofs in cross-domains, theirs
and our proposals differ in the underlying cryptographic blocks that handle
the arithmetic part of the proof system. Specifically, their proofs are based on
Σ-protocols and SNARKs [22]. As already noted, SNARKs allow for short proofs
and fast verification of arithmetic statements, however they require a trusted
setup for generating the common reference string (CRS) for a particular circuit
F . Typically, the CRS needs to be regenerated for a different circuit F ′. This



Efficient Non-Interactive Zero-Knowledge Proofs in Cross-Domains 289

is not desirable in some applications such as ZCash, where an expensive MPC
protocol has to be run to generate a CRS [2].

Our Contribution. In this work, we present an efficient (both for the prover
and the verifier) non-interactive zero-knowledge proof system for cross-domains
that requires no trusted setup assumption. Our system uses ZKB++ [16] as
a building block, which is based on a technique called “MPC-in-the-head” [29].
The idea is that the prover represents the circuit F as a multi-party computation
(MPC) and generates three shares x1⊕x2⊕x3 = x, where x is the original input
of the prover. The prover then performs the MPC computation using the values
x1, x2, x3 and given a challenge e ∈ {1, 2, 3} returns the view of computations
performed with inputs xe and xe+1. Executing these steps a number of times
decreases the soundness error of the proof. What is more, we can apply the Fiat-
Shamir transformation and allow the prover to compute this challenge itself,
making the system non-interactive.

We extend this idea to allow algebraic statements. To illustrate our solution
let us consider a simple example where the prover publishes y = SHA(x) and
a Pedersen commitment C = gx · hr. In this case, the prover wants to convince
the verifier that he knows x. To do so, he performs the “MPC-in-the-head” as
in ZKB++ and computes Pedersen commitments to all bits of the values x1,
x2, x3. Upon receiving a challenge e ∈ {1, 2, 3}, additionally to the views of the
MPC the prover opens all commitments to the bits of xe and xe+1. Finally, to
bind the “MPC-in-the-head” part to the Pedersen commitment C, the prover
computes commitments to the bits of the value xe ⊕xe+1 ⊕xe+2 and proves that
these commitments contain the binary representation of the same value that is
in C. As in ZKB++, this extended system has to be executed several times in
order to decrease the probability of the prover cheating the verifier. However,
in contrast to [17] we can apply the Fiat-Shamir transformation to get a NIZK
system.

The number of public key operations in our system is proportional to |x| · λ.
This follows directly from the way we combine both domains. Each round we
have to prove that the commitments to the bits of xe⊕xe+1⊕xe+2 are the binary
representation of x. We solve this obstacle by committing to full values of the
ZKB++ share and not to its bits and show that we can still compute the XOR
value of them because 2 out of 3 values are revealed by the ZKB++ protocol.
This unique technique allows us to further decrease the number of public key
operations to O(|x| + λ).

The contribution of this paper can be summarized as follows. We are the
first to present an efficient (both for the prover and the verifier) non-interactive
zero-knowledge (NIZK) proof system for algebraic and non-algebraic domains
(cross-domains) that requires no trusted setup. The solution is based on a
combination of ZKBoo [16,23] with standard Schnorr based proofs [15,34].
Using our techniques, we obtain the efficient non-interactive proof of knowledge
(proof of possession) of DSA/RSA signatures, without revealing the signature
itself.



290 M. Backes et al.

Applications. A straightforward application of zero-knowledge proofs in cross-
domains are anonymous credentials. Chase et al. [17] observed that many existing
credential systems [5,8,10,12,13] rely on signature schemes that are tailored in a
specific way to provide the desired properties of the system. The user proves that
he knows a value x and a signature under this value. Using zero-knowledge proofs
in cross-domains allows to use standard signature schemes like RSA-FDH or DSA
for which there exist no efficient proof system in the standard algebraic setting.
In contrast to the system by Chase et al. our proofs are non-interactive, which
means that they can be used to construct round-optimal anonymous credential
systems. This implies that using our techniques, one can create concurrently
secure systems based on RSA and DSA signatures.

Another application of NIZK in cross-domains, mentioned in [3], are proofs of
solvency for Bitcoin exchanges. In this scenario, an exchange wants to prove to its
customers that it is solvent, i.e. that it has enough Bitcoins to cover its liabilities.
To this end, the exchange would need to prove the control over some Bitcoin
addresses. A certain Bitcoin address is a 160-bit hash of a public ECDSA key [1].
The corresponding proof is a proof of knowledge x such that H(gx) = y, where
H is a hash-function such as SHA-256. Here, only y is public, and the exchange
would like to keep its public key part gx hidden, otherwise an adversary could
track the movement of exchanges associated with its public key. Since the Bitcoin
network does not require a trusted setup assumption, proofs of solvency based on
the approach by [3] would require a trusted CRS generation to be done. On the
other hand, since our techniques do not require any trusted setup assumption,
they can be used directly to prove solvency for Bitcoin exchanges. The proof
system would additionally include a proof of equality of discrete logarithm of a
committed value and another committed value. More specifically, a prover would
need to prove knowledge of x such that H(gx) = y for some public y. Here the
input to the circuit H is gx. The prover has to commit to gx as Comgx and to
x as Comx and use the proof of equality of discrete logarithm of a committed
value and another committed value, for which we refer to [17].

Note that ours and the proof system by Chase et al. [17] or any other system
cannot be post-quantum secure if the underlying security assumptions in the
algebraic domain (integer factorization, discrete logarithms) can be broken by a
quantum adversary [35].

Comparison with Existing Techniques. We compare ours and prior work on
zero-knowledge proofs in cross-domains in Table 1. We discuss the efficiency of
the constructions based on a circuit F and a committed input x. For the algebraic
part of the proof system, Σ-protocols are used in all ZK proof systems presented
in the table. Σ-protocols require a constant number of public-key operations for
a single algebraic statement and do not require any trusted setup assumption.
The approach by Chase et al. [17] is the only interactive protocol in the table.
In their first construction, the arithmetic part of the proof system is based on
garbled circuits, whose prover’s/verifier’s cost amounts to O(|F |) of symmetric-
key operations. The number of public key operations is linear in the input size
|x|. In the second construction, Chase et al. achieve the number of public key
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operations independent of |x| at the cost of increasing the circuit that has to
be garbled. Various techniques to reduce computation, communication, memory
requirements of garbled circuits are available, e.g. [32,36,38]; in [31] XOR-gates
can be garbled essentially at no cost. In Bulletproofs [11], the prover has to
perform a constant number of public key operations for each multiplication gate
of the circuit, while the verifier is more efficient due to the multi-exponentiation
trick. The proof size in Bulletproofs is logarithmic in the number of multiplication
gates in the arithmetic circuit for verifying the witness. The approach by Agrawal
et al. [3], which is based on SNARKs, is the only protocol that requires a trusted
setup assumption and produces constant proofs. Verifier’s work does not depend
on the circuit size, and the number of public key operations is linear in the input
size. Prover’s work requires a number of public key operations linear in the
circuit size. We analyze efficiency of our Construction 2. As we show in Sect. 3.4,
it requires O(|x| + λ) public key operations, while the number of symmetric-key
operations is O(|F | ·λ), since ZKB++ protocol has to be repeated to reduce the
soundness error to a negligible value. Proof size is dominated by ZKB++ and
amounts to O((|F |λ + |x|)λ).

Table 1. Comparison of ZK proof systems in cross-domains for a circuit F with an
algebraically committed input x, where |F | denotes the circuit size, |x| the number of
input bits. We denote by λ the security parameter, by pub a public-key operation, by
sym a symmetric-key operation.

Non-
inter-
active

Without
trusted
setup

Prover’s work Verifier’s work Communication/
Proof size

CGM16 [17]
Constr.1

No Yes O(|x| · pub + |F | ·
sym)

O(|x| · pub + |F | ·
sym)

O((|F |+ |x|)λ)

CGM16 [17]
Constr.2

No Yes O(λ · pub +
(|F |+ |x|λ) · sym)

O(λ · pub +
(|F |+ |x|λ) · sym)

O((|F |+ |x|λ)λ)

BBB+18 [11] Yes Yes O(|F | · pub) O(
|F |

log(|F |) · pub) O(log(|F |)λ)
AGM18 [3] Yes No O((|F |+ λ) · pub) O((|x|+ λ) · pub) O(λ)

This work Yes Yes O((|x|+λ) ·pub+
(|F | · λ) · sym)

O((|x|+λ) ·pub+
(|F | · λ) · sym)

O((|F |λ+ |x|)λ)

Paper Outline. The rest of the paper is organized as follows. Section 2 con-
tains preliminaries. In Sect. 3, we develop our solution for NIZK proofs in cross-
domains. The section starts with the problem statement for NIZK proofs in
cross-domains. Then, in Sect. 3.1 we present our first attempt cross-domain
NIZK proof system based on ZKB++ followed by its security analysis. Next,
in Sect. 3.2 we present an improved version and its security analysis. Finally,
in Sect. 3.3 we describe the optimization technique to reduce the number of
public key operations and in Sect. 3.4 we perform efficiency analysis of our con-
structions. In Sect. 4, we complement NIZK proofs in cross-domains to allow
OR-proofs. Section 5 concludes.
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2 Preliminaries

In this section we recall the notions of commitment schemes, zero-knowledge
and Σ-protocols. We also recall the details of the ZKBoo protocol introduced by
Giacomelli et al. [23].

2.1 Homomorphic Commitment Schemes

Let us by Mck denote the message space of the commitment scheme and by
OIck the space of opening information (also called randomness).

Definition 1 (Commitment Scheme). A commitment scheme consists of the
following PPT algorithms (Gen,Com,Open):

Gen(λ): on input security parameter λ, this algorithm outputs a commitment key
ck, which is an implicit input for the below algorithms.

Com(m, r): on input message m and opening information r, this deterministic
algorithm outputs a commitment Cm.

Open(Cm,m, r): on input commitment Cm, message m and opening information
r, this algorithm outputs a bit {0, 1}.

Definition 2 (Perfect Hiding). A commitment scheme is perfectly hiding, if
for all adversaries A we have:

Pr[ck ← Gen(λ), (m0, m1, st) ← A(ck), r ←$ OIck, C ← Com(m0, r) : A(st, C) = 1] =

Pr[ck ← Gen(λ), (m0, m1, st) ← A(ck), r ←$ OIck, C ← Com(m1, r) : A(st, C) = 1].

Definition 3 (Computational Binding). A commitment scheme is compu-
tationally binding, if for all PPT adversaries A we have:

|Pr[(ck) ← Gen(λ), (m0, r0,m1, r1) ← A(ck) : m0 �= m1 ∧
Com(m0, r0) = Com(m1, r1)]| ≤ AdvbindingA (λ),

where we require that m0,m1 ∈ Mck, r0, r1 ∈ OIck and AdvbindingA (λ) is negligible
in the security parameter λ.

Definition 4 (Equivocality). A commitment scheme is equivocal, if there
exists an algorithm Eval and an alternative Gen′ algorithm that additionally
to the commitment key ck returns a trapdoor τ such that given a commitment
C = Com(m, r) we have C = Com(m′,Eval(τ,m′, (C,m, r))) for any message
m′, i.e. Eval can be used to compute the randomness to open C to an arbitrary
value.

Moreover, we assume that there exists an efficient extraction algorithm Extrck
that given two openings of the same commitment, i.e. (m1, r1,m2, r2) where
Com(m1, r1) = Com(m2, r2) and m1 �= m2, returns the trapdoor τ .
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We require that a commitment scheme is binding, hiding and equivocal.
Additionally, in this paper we assume that the used commitment scheme has
the following homomorphic property: for all m1,m2 ∈ Mck and r1, r2 ∈ OIck we
have: Com(m1, r1) ·Com(m2, r2) = Com(m3, r3), where m3 = m1 + m2 and r3 =
r1 + r2. This homomorphism allows us to introduce multiplication by a known
scalar, i.e. given C = Com(m, r) we can compute C ′ = [k]C = Com(k · m, k · r),
where by [k]C we denote multiplication of commitment C by a public scalar
k. What is more, for a given commitment Cb = Com(b, r) to a bit b, we can
easily compute the exclusive-or on this hidden value with a known bit α. If
α = 0, we leave C unchanged, otherwise, if α = 1, we compute Cb⊕α = C1/Cb =
Com(1 − b,−r), where C1 = Com(1, 0) is formally a commitment to 1 with no
randomness (instead of sampling it, it is set to 0). Note that for commitments
Cx = Com(x, r) =

∏
i∈[0,|x|−1][2

i]Cx[i] =
∏

i∈[0,|x|−1][2
i]Com(x[i], rx[i]), where

x[i] is the i-th bit of x, we can compute a commitment Cx⊕α for a known α.
To do so, we apply the above technique bitwise, i.e. to commitments Cx[i] and
using the new values we then compute the commitment Cx⊕α. Notice, that this
operation changes the opening information, which is now

∑
i∈[0,|x|−1](−1)α[i]rx[i],

i.e. Cx⊕α = Com(x ⊕ α,
∑

i∈[0,|x|−1](−1)α[i]rx[i]).
An example of a scheme that has those properties is the one introduced by

Pedersen [33]. There, given a commitment key ck = (g, h, q, p), a message m ∈ Zq

and an opening information r ∈ Z
∗
q the commitment is of the form Com(m, r) =

gm ·hr mod p. Multiplying two commitments Com(m1, r1) ·Com(m2, r2) we get
gm1+m2hr1+r2 , which is a commitment to message m1+m2 mod q with opening
information r1+r2 mod q, as required. Note that the commitment scheme is also
equivocal and that there exists an extraction algorithm Extrck (to this end, one
simply needs to choose public parameters g, h with a known discrete logarithm).

2.2 Zero-Knowledge Proofs

Let R ⊂ {0, 1}∗ ×{0, 1}∗ be an efficiently computable binary relation, for which
R(x,w) = 1 ⇐⇒ (x,w) ∈ R. We call x a statement and w a witness. A very
simple example of such a relation is R = {(x,w) : x = SHA(w)}, where we
are given a SHA value as part of the statement and the preimage is part of
the witness. Obviously, given both values we can easily verify that R(x,w) = 1
by computing the SHA value on w and comparing it with x. We will assume
that |w| ≤ poly(|x|), which means that the witness length should be polynomial
in the statement length. We will denote by LR the language consisting of true
statements in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

We call a cryptographic protocol between two PPT parties, the prover P and
the verifier V an argument for language LR if it has the following properties.
Using communication P wants to convince V that x ∈ LR, where x is a publicly
known statement. Obviously, the prover has some extra private input, e.g. he
knows a witness for which R(x,w) = 1.

At the end of the protocol the verifier outputs accept if he is convinced and
reject otherwise. The protocol is complete if for all x ∈ LR an honest prover
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always convinces an honest verifier. We also require that if x �∈ LR, then a
cheating prover has only a small chance ε (called soundness error) to convince
an honest verifier. This property should hold for all possible statements not
in the language, i.e. for all x �∈ LR we have Pr[V(x) = accept] ≤ ε. Finally,
we require a property called zero-knowledge (ZK). Informally, this means that
whatever strategy a verifier follows, he learns nothing besides whether x ∈ LR. It
follows that he cannot get any information about the private input of the prover.
A weaker notion of ZK is called honest-verifier ZK (HVZK). Zero-knowledge
property in this case holds only for a verifier, who does not deviate from the
protocol.

A special case of such arguments are Σ-protocols, which follow a specific
communication pattern similar to the letter Σ. In the rest of the paper we will
only consider this type of protocols.

Definition 5 (Σ-Protocol). A protocol ΠR between a prover P and a verifier
V is a Σ-protocol for relation R if:

– The protocol consists of three phases:
1. (Commit) P sends a message a to V,
2. (Challenge) V picks a random e and sends it to P,
3. (Response) P sends a second message z to V.

– ΠR is complete - if both parties are honest, then for all x ∈ LR we have
Pr[(P,V)(x) = 1] = 1.

– ΠR is s-special sound - for any x and any set of s accepting conversations
T = {(a, ei, zi)}i∈{1,...,s}, where ei �= ej if i �= j, there exists an efficient
algorithm Extr that on input T outputs w such that R(x,w) = 1.

– ΠR is a special honest-verifier ZK (HVZK) - there exists a PPT simulator
SIM such that on input x ∈ LR outputs a triple (a′, e, z′) with the same
probability distribution of real conversations (a, e, z) of the protocol.

The last property ensures only that Σ-protocols are ZK if the verifier is
honest and does not base his challenge e on the first message of the prover. Σ-
protocols have found many applications in the design of efficient identification
and signature schemes. The main advantage of using those protocols is that
using the Fiat-Shamir transformation [21], they can be made non-interactive in
the random oracle model. What is more, using this technique the protocol is ZK
even if the verifier is dishonest. Note that if the challenge e is chosen from a
set of cardinality c, then s-special soundness implies that the soundness error is
(s − 1)/c.

Notation. Given two commitments Cx = Com(x, rx) and Cy = Com(y, ry) we
will denote by P{(Cx ≡ Cy)} the prover’s part and by V{(Cx ≡ Cy)} the ver-
ifier’s part of a Σ-protocol, where the prover tries to convince the verifier that
it knows openings (x, rx) and (y, ry) of public commitments Cx and Cy, respec-
tively, such that x = y. There exist very efficient Σ-protocols for the above
mentioned Pedersen commitments. In such a case, the witness is composed of
the committed value x and the opening informations rx and ry. We may some-
times append the notation to denote a subroutine algorithm such as Commit,
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Response, or Reconstruct. The Commit subroutine has a special output nota-
tion. We denote by (st, a) the result of Commit execution, where st denotes an
internal state and a the output.

Notation for a Bit Commitment. We will also use this notion for a spe-
cial case, where the prover wants to show that the value committed in Cx =
Com(x, rx) is a bit, i.e. x ∈ {0, 1}. We will use P{(Cx ≡ C0) ∨ (Cx ≡ C1)}
to denote this special case. Note that we do not necessarily require the use of
commitments to values 0 (C0) and 1 (C1), as there exist more efficient real-
izations, i.e. given a commitment C = gx · hr the prover simply shows that it
knows the discrete logarithm of C or C/g to the base of h, and therefore C0

and C1 may be omitted. Moreover, we will use
∏|x|−1

i=0 C2i·x[i] = Com(x, r) to
denote a commitment to x, where x =

∑|x|−1
i=0 2ix[i], r =

∑|x|−1
i=0 2irx[i], and

Cx[i] = Com(x[i], rx[i]).

2.3 ZKBoo/ZKB++

Giacomelli et al. [23] proposed ZKBoo, an efficient Σ-protocol based on the idea
“MPC-in-the-head” [29]. Subsequently, Chase et al. [16] presented ZKB++, the
successor of ZKBoo, which has more compact proofs. As both versions of the
protocols differ primarily in technical aspects, our techniques can be applied to
either version. The main advantage of this system over the one by Jawurek et al.
[30] is that it can be made non-interactive using the Fiat-Shamir transformation.

ZKBoo/ZKB++ work for arithmetic functions F with prover’s input x and
the verifier holding no private input. Let y denote the output of function, i.e.
y = F (x). To create such a zero-knowledge proof of x, the prover splits the input
into 3 shares (x1, x2, x3) and for each pair xi, xi+1 runs the function F ′(xi, xi+1)
to obtain yi. F ′ is constructed in such a way that the correctness property of
ZKBoo/ZKB++ ensures y1 ⊕ y2 ⊕ y3 = y. The prover commits to all three
views. The verifier sends a challenge e ∈ {1, 2, 3}, which can be replaced by the
output of the random oracle applied on appropriate inputs. The prover opens
input shares (xe, xe+1) and the randomness used in computing F ′(xe, xe+1) in
the corresponding two views. The verifier then checks whether ye was correctly
computed or not. Another property of F ′ is that two out of three views leak no
information about the input x (the property is called 2-privacy; for more details
we refer to Definition 3 in [23]). The protocol is 3-special sound and the soundness
error of the protocol is 2/3. Therefore, to reduce the soundness error to a neg-
ligible value the prover runs multiple independent rounds of ZKBoo/ZKB++
protocol. In Fig. 5 in Appendix we present the non-interactive version of the
ZKB++ protocol.



296 M. Backes et al.

3 Combining ZKB++ with Algebraic Commitments

In this section we present our main contribution: a Σ-protocol for statements in
cross-domains. Throughout this paper we will consider the following statement
as the main building block that can be composed to create proofs for more
general statements.

Statement 1. Prove that there exists x such that F (x) = 1 and x is committed
to Cx, where x is a |x|-bit number, F is an arithmetic circuit, and the commit-
ment scheme is based on the group structure of order larger than 2|x| and allows
some homomorphic operations.

The naive approach to prove this statement is just to implement all algebraic
operations as a part of the circuit F and execute the ZKB++ protocol. However,
Chase et al. [17] already noticed that expressing modular exponentiation in a
boolean circuit would be computationally too expensive and fairly inefficient.
In particular, since the number of gates increases non-linearly in the size of the
input, this also means that the proof size increases at the same rate and so does
the time required to compute the proof. As we will show, there exists a more
efficient way of realizing this kind of proofs.

3.1 Our Technique - First Approach

We propose the following technique, in which we take advantage of:

(1) the fact that the ZKB++ protocol is a Σ-protocol,
(2) the additive sharing of the prover’s input x in the group Z2 in ZKB++,
(3) that Σ-protocols can be executed in parallel,
(4) a multiplicatively homomorphic commitment scheme in the group Zq; for

simplicity we assume that 2|x| < q, the other case is addressed in Sect. 3.3.

The overall idea is to combine a ZKB++ round with zero-knowledge proofs
that input bits of x are bound to the public commitment. This part involves
ZK proofs for all individual bits of the ZKB++ input and the three exclusive-or
based bit shares. In particular, we prove that the exclusive-or value of those
shares is given in a commitment and is equal to the bit representation of x. We
then prove that values in the commitments match the real shares by giving open-
ing information for 2 out of 3 commitments, depending on the shares revealed
by ZKB++. More details can be found in Construction 1.

Construction 1 (Cross-ZKB++ First Attempt). Let x[i] denote the i-th
bit of input x, i.e. x = (. . . , x[1], x[0]). In the following, we describe necessary
steps to add to the ZKB++ protocol (Fig. 5) in order to realize the connection
between the input bits (. . . , x[1], x[0]) of the function F and the public commit-
ment Cx, as defined in Statement 1.
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– (Commit Phase)—The prover follows the steps specified by the ZKB++ proto-
col. Then, for each bit i of input x the prover commits to x[i] and to the respec-
tive input shares x[i]1, x[i]2, x[i]3 and gets Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3 . Again, for
each bit i the prover executes the commit phase of a Σ-protocol (with challenge
space {1, 2, 3}) for the following algebraic statement:

P{((Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)
) ∧ (

∏

i∈[0,|x|−1]

C2i·x[i] ≡ Cx)∧
(
(Cx[i]1 · Cx[i]2 · Cx[i]3 ≡ Cx[i]) ∨ (Cx[i]1 · Cx[i]2 · Cx[i]3 ≡ C2+x[i])

)}.

(1)

The prover sends commitments {Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3}i∈[0,|x|−1], and the
commitments from the ZKB++ protocol and the Σ-protocol to prove the state-
ment Eq. (1) to the verifier.

– (Challenge Phase)—The verifier sends the challenge e ∈ {1, 2, 3}.
– (Response Phase)—The prover executes the last phase of the ZKB++ and the

other proofs, and sends the result to the verifier. Additionally, he sends the
opening information for commitments Cx[i]e , Cx[i]e+1 , for all i ∈ [0, |x| − 1].

To verify the result the verifier follows the steps specified by the ZKB++
protocol and additionally performs the following checks: reject if the opening is
wrong or the bits of the shares don’t match the bits in the ZKB++ views, or if
any of the additional algebraic proofs is invalid.

We present in Figs. 1 and 2 the detailed description of Construction 1, instan-
tiated with t rounds of ZKB++ and made non-interactive using the Fiat-Shamir
transformation.

Note that the proof system Eq. (1) does not explicitly enforce Cx[i]1 , Cx[i]2 ,
Cx[i]3 to be commitments to bits. However, as we show in the proof of
Theorem 1, it is the case.

Security Analysis

Lemma 1. Assuming the ZKB++ protocol is complete, the Σ-protocols for the
algebraic statements are complete and the used commitment scheme is homo-
morphic, then Construction 1 is a complete Σ-protocol for the statement in
Problem 1.

Proof. Follows by inspection. ��
Theorem 1. Assuming the ZKB++ protocol is 3-special sound, the Σ-protocols
for the algebraic statements are 2-special sound and the used commitment scheme
is homomorphic and equivocal, then Construction 1 is a 3-special sound Σ-
protocol for Statement 1.

Proof. We will prove this theorem by constructing an efficient algorithm
ExtrCross that using 3 accepting tuples (a, e1, z1), (a, e2, z2) and (a, e3, z3) can
compute w∗ = (x∗, r∗), such that F (x∗) = 1 and Cx = Com(x∗, r∗), which is a
valid witness for the proven statement.
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p ← Prove(x, Cx = Com(x, r))

1 : // (Commit step)

2 : (stζ , aζ) ← ZKBF .Commit(x)

3 : foreach i ∈ [0, |x| − 1] do

4 : Cx[i] = Com(x[i], ri)

5 : foreach ρ ∈ [1, t] do

6 : Extract shares x[i](ρ)1 , x[i](ρ)2 , x[i](ρ)3 from stζ

7 : C
x[i](ρ)

1
= Com(x[i](ρ)1 , r

x[i](ρ)
1

)

8 : C
x[i](ρ)

2
= Com(x[i](ρ)2 , r

x[i](ρ)
2

)

9 : C
x[i](ρ)

3
= Com(x[i](ρ)3 , r

x[i](ρ)
3

)

10 : (stx, ax) ← P{
∏

i∈[0,|x|−1]

C2i·x[i] ≡ Cx}.Commit(x,
∑|x|−1

i=0
2i · ri, r)

11 : foreach i ∈ [0, |x| − 1] do

12 : (stx[i], ax[i]) ← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Commit(x[i], ri)

13 : foreach ρ ∈ [1, t] do

14 : Cx[i](ρ) = C
x[i](ρ)

1
· C

x[i](ρ)
2

· C
x[i](ρ)

3

15 : (stx[i](ρ) , ax[i](ρ)) ← P{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Commit(

16 : x[i](ρ)1 + x[i](ρ)2 + x[i](ρ)3 , r
x[i](ρ)

1
+ r

x[i](ρ)
2

+ r
x[i](ρ)

3
, ri)

17 : // output of (Commit step)

18 : a = (aζ , (Cx[i])|x|, (Cx[i](ρ)
1

)|x|·t, (Cx[i](ρ)
2

)|x|·t, (Cx[i](ρ)
3

)|x|·t,

19 : ax, (ax[i])|x|, (ax[i](ρ))|x|·t)

20 : // (Challenge step)

21 : e ← H(a)

22 : // (Response step)

23 : rζ ← ZKBF .Response(e, stζ)

24 : rx ← P{
∏

i∈[0,|x|−1]

C2i·x[i] ≡ Cx}.Response(e, stx)

25 : foreach i ∈ [0, |x| − 1] do

26 : rx[i] ← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Response(e, stx[i])

27 : foreach ρ ∈ [1, t] do

28 : rx[i](ρ) ← P{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Response(e, stx[i](ρ))

29 : return (e, a, rζ , rx, (rx[i])|x|, (rx[i](ρ))|x|·t,

30 : (x[i](ρ)e , r
x[i](ρ)

e
)|x|·t, (x[i]

(ρ)
e+1, rx[i](ρ)

e+1
)|x|·t)

Fig. 1. Description of Cross-ZKB++ (First Attempt) Prove algorithm for function
F (x) = 1 with a committed input Cx = Com(x, r), made non-interactive using the
Fiat-Shamir transformation and with t rounds of ZKB++.
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{Reject, Accept} ← Verify(Cx, p)

1 : // Reconstruct step

2 : Parse p as (e, a, rζ , rx, (rx[i])|x|, (rx[i](ρ))|x|·t,

3 : (x[i](ρ)e , r
x[i](ρ)

e
)|x|·t, (x[i]

(ρ)
e+1, rx[i](ρ)

e+1
)|x|·t)

4 : Parse a as (aζ , (Cx[i])|x|, (Cx[i](ρ)
1

)|x|·t, (Cx[i](ρ)
2

)|x|·t, (Cx[i](ρ)
3

)|x|·t,

5 : ax, (ax[i])|x|, (ax[i](ρ))|x|·t)

6 : foreach i ∈ [0, |x| − 1] do

7 : foreach ρ ∈ [1, t] do

8 : Reject if C
x[i](ρ)

e
�= Com(x[i](ρ)e , r

x[i](ρ)
e

) or C
x[i](ρ)

e+1
�= Com(x[i](ρ)e+1, rx[i](ρ)

e+1
)

9 : (st′
ζ , a′

ζ) ← ZKBF .Reconstruct(e, rζ)

10 : Reject if (x(ρ)
e )t, (x

(ρ)
e+1)t do not match respective values in st′

ζ

11 : a′
x ← V{

∏

i∈[0,|x|−1]

C2i·x[i] ≡ Cx}.Reconstruct(e, rx)

12 : foreach i ∈ [0, |x| − 1] do

13 : a′
x[i] ← V{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Reconstruct(e, rx[i])

14 : foreach ρ ∈ [1, t] do

15 : Cx[i](ρ) = C
x[i](ρ)

1
· C

x[i](ρ)
2

· C
x[i](ρ)

3

16 : a′
x[i](ρ) ← V{(Cx[i](ρ) ≡ Cx[i]) ∨ (Cx[i](ρ) ≡ C2+x[i])}.Reconstruct(e, rx[i](ρ))

17 : a′ = (a′
ζ , (Cx[i])|x|, (Cx[i](ρ)

1
)|x|·t, (Cx[i](ρ)

2
)|x|·t, (Cx[i](ρ)

3
)|x|·t,

18 : a′
x, (a′

x[i])|x|, (a
′
x[i](ρ))|x|·t)

19 : e′ ← H(a′)

20 : Accept if e′ = e, otherwise Reject.

Fig. 2. Description of Cross-ZKB++ (First Attempt) Verify algorithm for function
F (x) = 1 with a committed input Cx = Com(x, r), made non-interactive using the
Fiat-Shamir transformation and with t rounds of ZKB++.

The algorithm works as follows:

1. First it uses the 3-special soundness of the ZKB++ protocol to extract a
value xZKB for which F (xZKB) = 1.

2. It uses the 2-special soundness of the Σ-protocols for the algebraic statements
to extract the values x[i], for all i ∈ [0, |x|−1], and the corresponding opening
information rx[i].

We now show the rest of his steps. Without loss of generality, let us assume
that e1 = 1, e2 = 2 and e3 = 3. For all i ∈ [0, |x|−1] let w2 = (x, r, x[i], rx[i], x[i]1,
rx[i]1 , x[i]2, rx[i]2 , x[i]3, rx[i]3) be the witness extracted in step 2 and w1 = (xZKB)
be the witness extracted in step 1. Moreover, for i ∈ {1, 2, 3} let rx[i]ei

and
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rx[i]ei+1 be the opening information to commitments Cx[i]ei
and Cx[i]ei+1 , where

we know that Cx[i]ei
= Com(x[i]ei

, rx[i]ei
) and Cx[i]ei+1 = Com(x[i]ei+1, rx[i]ei+1).

We now turn to the following observation. If at some point the algorithm
ExtrCross encounters two different opening information to one commitment, i.e.
Com(a, b) = Com(c, d) it can use (a, b, c, d) to compute the equivocal trapdoor
and open any commitment to an arbitrarily value. In particular, it can use this
trapdoor to open commitment Cx to the value xZKB , i.e. in case x �= xZKB

we can use (x, r) and the equivocal trapdoor to compute x∗ = xZKB and the
corresponding r∗ such that Cx = Com(x∗, r∗), which would constitute a valid
witness w∗.

We now proceed with the proof and notice that due to the verification done
by the verifier and the extracted witness w2, we know that

Cx[i]1 = Com(x[i]1, rx[i]1) = Com(x[i]e1 , rx[i]e1
) = Com(x[i]e3+1, rx[i]e3+1),

Cx[i]2 = Com(x[i]2, rx[i]2) = Com(x[i]e2 , rx[i]e2
) = Com(x[i]e1+1, rx[i]e1+1),

Cx[i]3 = Com(x[i]3, rx[i]3) = Com(x[i]e3 , rx[i]e3
) = Com(x[i]e2+1, rx[i]e2+1),

and that for i ∈ {1, 2, 3} x[i]ei
are bits that correspond to disclosed views in the

ZKB++ protocol. Thus, it follows that x[i]1 = x[i]e1 , x[i]2 = x[i]e2 and x[i]3 =
x[i]e3 and in particular that xZKB [i] = x[i]1 ⊕ x[i]2 ⊕ x[i]3 for all i ∈ [0, |x| − 1].

We will now argue that because of the soundness of the proof system used
in step 2, for all i ∈ [0, |x| − 1] we have x[i] = x[i]1 ⊕ x[i]2 ⊕ x[i]3 = xZKB [i]. Let
us take a look at the following table.

x[i]1 x[i]2 x[i]3 x[i]1 + x[i]2 + x[i]3 x[i]1 + x[i]2 + x[i]3 − 2 x[i]1 ⊕ x[i]2 ⊕ x[i]3
0 0 0 0 -2 0
0 0 1 1 -1 1
0 1 0 1 -1 1
0 1 1 2 0 0
1 0 0 1 -1 1
1 0 1 2 0 0
1 1 0 2 0 0
1 1 1 3 1 1

The two rows x[i]1 + x[i]2 + x[i]3 and x[i]1 + x[i]2 + x[i]3 − 2 correspond
to the value that the commitment Cx[i] = Com(x[i], rx[i]) can be opened to.
However, due to the fact that the statement contains the additional constraint
that the commitment opens to a bit, we conclude that for (x[i], rx[i]) we have
x[i] = xZKB [i] (we used the coloured background to highlight the only way that
witness w2 can be correct).

Finally, we know that since the witness w2 is correct, it follows that:
∑

i∈[0,|x|−1]

2i · x[i] = x.
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However, since x[i] is the i-th bit of xZKB this means that xZKB = x and the
ExtrCross can return w∗ = (x∗, r∗) = (xZKB ,

∑
i∈[0,|x|−1] 2

i · rx[i]), which is a
valid opening for Cx, where F (x∗) = 1.

We conclude that the values returned by ExtrCross are a valid witness
for Statement 1. ��
Theorem 2. Assuming the ZKB++ protocol and the Σ-protocols for the alge-
braic statements are HVZK and the commitment scheme is perfectly hiding, then
Construction 1 is a HVZK Σ-protocol for Statement 1.

Proof. We will show how to construct a simulator SIM that on input in
Statement 1, outputs a transcript (a, e, z). The simulator works as follows:

– It runs the simulator for ZKB++ receiving a transcript (a′, e, z′), where z′

contains all the bits x[i]e and x[i]e+1. SIM chooses open information rx[i]e ,
rx[i]e+1 and computes commitments Cx[i]e = Com(x[i]e, rx[i]e), Cx[i]e+1 =
Com(x[i]e+1, rx[i]e+1). Note that the openings rx[i]e , rx[i]e+1 are part of the
response z. Commitment to the bits x[i] and the bits x[i]e+2 are not opened,
so the simulator can compute Cx[i] and Cx[i]e+2 as commitments to zero.

– SIM runs the simulator for the Σ-protocol for the algebraic statements
receiving (a′′, e′′, z′′). Note that since this simulator should work for all pos-
sible challenges, there is a non-negligible probability that e′′ = e. Otherwise,
SIM just restarts it.

– Finally, SIM sets a = (a′, a′′, {Cx[i], Cx[i]1 , Cx[i]2 , Cx[i]3}i∈[0,|x|−1]) and z =
(z′, z′′, {rx[i]e , rx[i]e+1}i∈[0,|x|−1])

Since all the simulators used by SIM generate valid transcripts it remains to
show that the commitments Cx[i] and Cx[i]e+2 generated by SIM are indistin-
guishable from values in real transcripts. However, this follows directly by the
perfectly hiding property of the commitment scheme. ��
Lemma 2. The soundness error of the Σ-protocol presented in Construction 1
is 2/3 and it has to be executed λ/(log2(3)−1) times/rounds to achieve a sound-
ness error of 2−λ.

Proof. The soundness error is implied directly from 3-special soundness of the
protocol (Theorem 1) and the challenge space of cardinality 3. The number of
rounds, let us denote it t, is simply the solution of equation (2/3)t = 2−λ. ��

3.2 Improved Version

The main disadvantage of Construction 1 is that we have to compute O(|x| · t)
commitments, which influences the number of public key operations we have to
additionally compute. The |x| factor is present because for each round ρ ∈ [1, t]
the relation x[i](ρ)1 ⊕x[i](ρ)2 ⊕x[i](ρ)3 = x[i](ρ) is expressed as a conjunction of two
possible statements and we commit to the bits of the input x in every round.
In the following, we optimize Construction 1 to increase efficiency by decreasing
the number of commitment to O(|x| + t).
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Firstly, we notice that we can use the same commitments to bits of x for
every round that we repeat the protocol and instead of committing to the bits
of the ZKB++ shares we actually compute commitment to the whole values,
saving a lot of computations. Note that this idea will only work if the input to
ZKB++ is smaller that the order of the algebraic group that we use, otherwise
the bitwise exclusive-or of those values will not constitute a accepting input to
the ZKB++ circuit (i.e. x1 ⊕ x2 ⊕ x3 is not always equal to (x1 mod q) ⊕ (x2

mod q) ⊕ (x3 mod q)). However, in the next subsection we show how to make
the protocol work for ZKB++ input without a size constraint.

Secondly, the bits x[i](ρ)
e(ρ) and x[i](ρ)

e(ρ)+1
are revealed in the response step of

the ZKB++ protocol (Fig. 5). Based on this observation, we can change the
relation

x[i](ρ)1 ⊕ x[i](ρ)2 ⊕ x[i](ρ)3 = x[i]

and express the third share using the hidden value x, i.e.

x[i](ρ)
e(ρ)+2 = x[i] ⊕ (x[i](ρ)

e(ρ) ⊕ x[i](ρ)
e(ρ)+1).

We now take into account that this relation is constructed for known bits and
that we can express Ca⊕α for a given Ca and α using homomorphic properties
of the commitment scheme. Thus, we can actually compute a commitment to
x[i](ρ)

e(ρ)+2 using the commitments to bits of x and the revealed bits of values

x[i](ρ)
e(ρ) and x[i](ρ)

e(ρ)+1 . We use this commitment to bind the value x[i](ρ)1 ⊕x[i](ρ)2 ⊕
x[i](ρ)3 with the value x inside the commitment Cx.

In Construction 2 we describe those ideas in more detail. We will show a
single round of the protocol, which only has a soundness error of 2/3 but below
present the idea how decrease the soundness error efficiently. Our protocol is
divided into four essential steps:

1. committing to bits of x,
2. proving using a Schnorr based Σ-protocol that those commitments contain a

bit,
3. a ZKB++ proof that there exists a xZKB such that F (xZKB) = 1, and
4. constant number of commitments Cx1 , Cx2 , Cx3 , which ensure x = xZKB .

Thus, if one would run the protocol many times, this still would require the
computation of O(|x| · t) commitments.

We solve this problem by taking advantage of the fact that Schnorr based Σ-
protocols can use a larger challenge space that decreases the soundness error
without repeating the protocol. Unfortunately, this does not apply for the
ZKB++ part and for this to work we have to use a special kind of challenge. Let
e1, . . . , eρ be the challenges used for the ρ runs of the ZKB++ protocol, then
we can use e.g. eΣ =

∑
i∈[0,ρ−1] 3

i · ei+1 in step 2. In other words, we execute
the first two steps once using the challenge eΣ and simultaneously run the last
two steps ρ-times, where each ZKB++ execution challenged respectively using
e1, . . . , eρ.
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This simple trick allows us to increase the efficiency of the proof. Now the
prover only has to compute a constant number of commitments per round and
commit to the bits of the input x only once.

Construction 2 (Cross-ZKB++). In the following, we describe necessary
steps to add to the ZKB++ protocol (Fig. 5) in order to realize the connection
between the input bits x = (. . . , x[1], x[0]) to the function F , where x < q and
the public commitment Cx in group of order q, as defined in Statement 1.

– (Commit Phase)—The prover executes the commit step of the ZKB++ proto-
col using input x, where Cx = Com(x, r). The prover chooses random opening
informations r1, . . . r|x|−1 and commits to the bits x[i] by computing:

Cx[i] = Com(x[i], ri), for i ∈ [1, |x| − 1].

To compute the remaining commitment he uses the opening information r0 =
r − ∑

i∈[1,|x|−1] 2
i · ri. Note that because of the homomorphic properties of

the commitment scheme this means that Cx =
∏

i∈[0,|x|−1][2
i]Cx[i] = Com(2i ·

x[i], 2i · ri). For each bit i of input x the prover executes the commit step of
a Σ-protocol for the following algebraic statement:

P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}. (2)

The next step is also different. In this protocol we commit to the full values
of the respective input shares x1, x2, x3 and get Cx1 , Cx2 , Cx3 , where Cx1 =
Com(x1, rx1), Cx2 = Com(x2, rx2), Cx3 = Com(x3, rx3). The prover sends
commitments {Cx[i]}i∈[0,|x|−1], Cx1 , Cx2 , Cx3 and the commitments from the
ZKB++ protocol and the Σ-protocol Eq. (2) to the verifier.

– (Challenge Phase)—The verifier sends the challenge e ∈ {1, 2, 3} to the
prover.

– (Response Phase)—The prover executes the response step for ZKB++, the Σ-
protocol and sends the result to the verifier. Knowing e, the prover computes
α = xe⊕xe+1, where by α[i] we will denote its i-th bit. Using the homomorphic
exclusive-or described in Subsect. 2.1, he then computes the commitment

Cz =
∏

i∈[0,|x|−1]

[2i]Cx[i]⊕α[i],

which is
Com(xe+2,

∑

i∈[0,|x|−1]

(−1)α[i]rx[i]).

Finally, the prover sends the opening information rxe
, rxe+1 for commitments

Cxe
, Cxe+1 and value rz = rxe+2 − ∏

i∈[0,|x|−1](−1)α[i]rx[i].

To verify the result the verifier follows the steps specified by the ZKB++
protocol and additionally performs the following checks: reject if the opening is
wrong or the shares in the commitments do not match the ones in the ZKB++
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views, or if any of the additional algebraic proofs is invalid. The verifier aborts
if Cx �= ∏

i∈[0,|x|−1][2
i]Cx[i]. Knowing the shares xe, xe+1 and the openings rxe

,
rxe+1 , the verifier also computes Cz =

∏
i∈[0,|x|−1][2

i]Cx[i]⊕αi
and checks that

Cz · Com(0, rz) = Cxe+2 .

We present in Figs. 3 and 4 the detailed description of Construction 2, instan-
tiated with t rounds of ZKB++ and made non-interactive using the Fiat-Shamir
transformation.

Security Analysis

Lemma 3. Assuming the ZKB++ protocol is complete, the Σ-protocols for the
algebraic statements are complete and the used commitment scheme is homo-
morphic, then Construction 2 is a complete Σ-protocol for the statement in
Problem 1.

Proof. Follows by inspection. ��
Theorem 3. Assuming the ZKB++ protocol is 3-special sound the used Σ-
protocols are 2-special sound and the used commitment scheme is homomor-
phic and equivocal, then Construction 2 is a 3-special sound Σ-protocol for
Problem 1.

Proof. As in the proof of Theorem 1 we will construct an efficient algorithm
ExtrCross that using 3 accepting tuples (a, e1, z1), (a, e2, z2) and (a, e3, z3) can
compute a witness that the statement is true. The extraction algorithm will
return a value x and an opening information r such that F (x) = 1 and Cx =
Com(x, r), which is a valid witness for the proven statement. We will now describe
the idea behind the algorithm ExtrCross, which is as follows:

– First it uses the 3-special soundness of the ZKB++ protocol to extract a
value xZKB for which F (xZKB) = 1.

– It uses the 2-special soundness of the proof system for Eq. (2) to extract the
bits x[i], for all i ∈ [0, |x| − 1], and the opening information rx[i].

– It computes rZKB , as described below, and returns (x∗, r∗) = (xZKB , rZKB)
as a valid witness.

We will now show how ExtrCross computes witness w∗ = (x∗, r∗) and that
the returned values are valid. Let w2 = ({x[i], rx[i]}i∈[0,|x|−1]) be the witness
extracted in step 2 and w1 = (xZKB) be the witness extracted in step 1. More-
over, let rxe

and rxe+1 be the opening information to commitments Cxe1
, Cxe2

and Cxe3
, where we know that Cxe1

= Com(xe1 , rxe1
), Cxe2

= Com(xe2 , rxe2
)

and Cxe3
= Com(xe3 , rxe3

).
Again we observe that if the algorithm ExtrCross encounters two different

opening information to one commitment the equivocal trapdoor can be used to
open the commitment Cx to the value w1 = xZKB .



Efficient Non-Interactive Zero-Knowledge Proofs in Cross-Domains 305

p ← Prove(x, Cx = Com(x, r))

1 : // (Commit step)

2 : (stζ , aζ) ← ZKBF .Commit(x)

3 : foreach i ∈ [1, |x| − 1] do

4 : Cx[i] = Com(x[i], ri)

5 : r0 = r −
∑

i∈[1,|x|−1]

2i · ri

6 : Cx[0] = Com(x[0], r0)

7 : foreach i ∈ [0, |x| − 1] do

8 : (stx[i], ax[i]) ← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Commit(x[i], ri)

9 : foreach ρ ∈ [1, t] do

10 : Extract shares x
(ρ)
1 , x

(ρ)
2 , x

(ρ)
3 from stζ

11 : C
x
(ρ)
1

= Com(x(ρ)
1 , r

x
(ρ)
1

), C
x
(ρ)
2

= Com(x(ρ)
2 , r

x
(ρ)
2

), C
x
(ρ)
3

= Com(x(ρ)
3 , r

x
(ρ)
3

)

12 : a = (aζ , (Cx[i])|x|, (ax[i])|x|, (Cx
(ρ)
1

)t, (Cx
(ρ)
2

)t, (Cx
(ρ)
3

)t) // output of (Commit step)

13 : // (Challenge step)

14 : e ← H(a)

15 : // (Response step)

16 : rζ ← ZKBF .Response(e, stζ)

17 : foreach i ∈ [0, |x| − 1] do

18 : rx[i] ← P{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Response(e, stx[i])

19 : foreach ρ ∈ [1, t] do

20 : α(ρ) = x(ρ)
e ⊕ x

(ρ)
e+1

21 : C(ρ)
z =

∏

i∈[0,|x|−1]

[2i]Cx[i]⊕α(ρ)[i]

22 : r(ρ)z = r
x
(ρ)
e+2

−
∏

i∈[0,|x|−1]

(−1)α[i]rx[i]

23 : return (e, a, rζ , (rx[i])|x|, (x
(ρ)
e , r

x
(ρ)
e

)t, (x
(ρ)
e+1, rx

(ρ)
e+1

)t, (r(ρ)z )t)

Fig. 3. Description of Cross-ZKB++ Prove algorithm for function F (x) = 1 with a
committed input Cx = Com(x, r), made non-interactive using the Fiat-Shamir trans-
formation and with t rounds of ZKB++.

We now proceed with the proof and notice that since all the tuples are accept-
ing, we conclude that the openings of the commitments Cx1 , Cx2 , Cx3 are valid.
This is the case because we have valid openings (xe1 , rxe1

), (xe2 , rxe2
), (xe3 , rxe3

).
It follows that the binary representations of x1, x2, x3 correspond to the correct
input of the ZKB++ protocol and we have xZKB = x1 ⊕x2 ⊕x3. Note that this
is only true because xZKB is shorter that the order of the used group. Moreover,
we know that by construction:
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{Reject, Accept} ← Verify(Cx, p)

1 : // Reconstruct step

2 : Parse p as (e, a, rζ , (rx[i])|x|, (x
(ρ)
e , r

x
(ρ)
e

)t, (x
(ρ)
e+1, rx

(ρ)
e+1

)t, (r(ρ)z )t)

3 : Parse a as (aζ , (Cx[i])|x|, (ax[i])|x|, (Cx
(ρ)
1

)t, (Cx
(ρ)
2

)t, (Cx
(ρ)
3

)t)

4 : Reject if Cx �=
∏

i∈[0,|x|−1]

[2i]Cx[i]

5 : foreach ρ ∈ [1, t] do

6 : Reject if C
x
(ρ)
e

�= Com(x(ρ)
e , r

x
(ρ)
e

) or C
x
(ρ)
e+1

�= Com(x(ρ)
e+1, rx

(ρ)
e+1

)

7 : α(ρ) = x(ρ)
e ⊕ x

(ρ)
e+1

8 : C(ρ)
z =

∏

i∈[0,|x|−1]

[2i]Cx[i]⊕α(ρ)[i]

9 : Reject if C(ρ)
z · Com(0, r(ρ)z ) �= C

x
(ρ)
e+2

10 : (st′
ζ , a′

ζ) ← ZKBF .Reconstruct(e, rζ)

11 : Reject if (x(ρ)
e )t, (x

(ρ)
e+1)t do not match respective values in st′

ζ

12 : foreach i ∈ [0, |x| − 1] do

13 : a′
x[i] ← V{(Cx[i] ≡ C0) ∨ (Cx[i] ≡ C1)}.Reconstruct(e, rx[i])

14 : a′ = (a′
ζ , (Cx[i])|x|, (a

′
x[i])|x|, (Cx

(ρ)
1

)t, (Cx
(ρ)
2

)t, (Cx
(ρ)
3

)t)

15 : e′ ← H(a′)

16 : Accept if e′ = e, otherwise Reject.

Fig. 4. Description of Cross-ZKB++ Verify algorithm for function F (x) = 1 with a
committed input Cx = Com(x, r), made non-interactive using the Fiat-Shamir trans-
formation and with t rounds of ZKB++.

Cx =
∏

i∈[0,|x|−1]

[2i]Com(x[i], rx[i]),

and that x[i] are bits.
Let e = e1, the ExtrCross computes commitment Cz =

∏
i∈[0,|x|−1][2

i]Cx[i]⊕αi
,

where α = xe ⊕xe+1. Since we know that for e1 we receive an accepting state, we
know that Cz ·Com(0, rz) = Cxe+2 = Com(xe+2, rxe+2). This basically means that
ExtrCross can open Cz to xe+2 using randomness rxe+2 − rz. We now distinguish
two cases:

1. the openings of Cz and Cxe+2 are different, i.e. this means that

∑

i∈[0,|x|−1]

2i(x[i] ⊕ αi) �= xe+2,

2. the openings of Cz and Cxe+2 are the same.
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In the first case we notice that ExtrCross knows openings of the commit-
ment Cz to two different values. Thus, it can use an extractor Extrck to com-
pute the equivocality trapdoor for the commitment scheme and compute rZKB

as Eval(τ, xZKB , (Cx,
∑

i∈[0,|x|−1] 2
ix[i],

∑
i∈[0,|x|−1] 2

irx[i])). In other words, the
extraction algorithm ExtrCross uses the trapdoor to open the commitment from
the statement to the value xZKB for which F (xZKB) = 1. This means that the
returned values are a valid witness for the proven statement. In the second case
we know that: ∑

i∈[0,|x|−1]

2i(x[i] ⊕ αi) = xe+2.

This means that r∗ =
∑

i∈[0,|x|−1] 2
irx[i] is an opening of the commitment Cx

to a value x′ for which we know that x′ ⊕ xe ⊕ xe+1 = xe+2. It follows that
x′ = xe ⊕ xe+1 ⊕ xe+2 = xZKB . Thus, in this case ExtrCross can also return
w∗ = (xZKB , r∗), which ends the proof. ��
Theorem 4. Assuming the ZKB++ protocol is HVZK and the commitment
scheme is perfectly hiding, then Construction 2 is a HVZK Σ-protocol for
Statement 1.

Proof. We will show how to construct a simulator SIM that on input of a
statement as in Statement 1 with commitment Cx, outputs a transcript (a, e, z).
The simulator works as follows:

– It runs the simulator for ZKB++ receiving a transcript (a′, e, z′), where z′

contains the shares xe and xe+1.
– SIM chooses randomness rxe

, rxe+1 and computes commitments Cxe
=

Com(xe, rxe
), Cx[i]e+1 = Com(xe+1, rxe+1). Note that the openings for those

commitments are part of the response z. Commitments to the bits of x[i] and
to xe+2 are not opened, so the simulator can compute the commitments Cx[i]

and Cxe+2 as follows.
– For i ∈ [1, |x| − 1] it computes commitments Cx[i] as commitments to 0.

For j = 0 it uses the homomorphic properties of the commitment scheme to
compute Cx[j] such that Cx =

∏|x|−1
i=0 [2i]Cx[i].

– It then chooses a randomness rz and computes

Cxe+2 =
∏

i∈[0,|x|−1]

C2i·(x[i]⊕xe[i]⊕xe+1[i]) · Com(0,−(rz)).

– SIM runs the simulator for the Σ-protocol for the algebraic statement receiv-
ing (a′′, e′′, z′′). Note that since this simulator should work for all possible
challenges, there is a non-negligible probability that e′′ = e. Otherwise, SIM
just restarts it.

– Finally, SIM sets a = (a′, a′′, Cx1 , Cx2 , Cx3 , {Cx[i]}i∈[0,|x|−1]) and z = (z′, z′′,
rxe

, rxe+1 , rz)

��
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Lemma 4. The soundness error of the Σ-protocol presented in Construction 2
is 2/3.

Proof. It is implied directly from 3-special soundness of the protocol
(Theorem 3) and the challenge space of cardinality 3. ��

3.3 Optimization for Large Input Space

We now show how to reduce the number of public key operations to be propor-
tional to the message space of the commitment scheme and independent of the
input size of the function F , which is desirable when the input to the ZKB++
circuit is large and required if we want to use Construction 2 for such circuits.
This optimization will utilize the properties of modular arithmetics.

Let F (m) = 1 be a function that has to be proven in the cross-domains,
and let m ≥ q where [0, q − 1] is the message space of the commitment scheme.
The prover proceeds as follows. Instead of committing to m, it commits to C =
Comq(m′), where m′ satisfies m′ < q and m = k · q + m′ and proves the relation
between m and m′ as part of F . Let the original cross-domain statement be
described as: P{m : (F (m) = 1) ∧ (Cm = Comq(m, r))}. Then the optimized
version is defined as:

P{m,m′, k : (Fopt(m,m′, k, q) = 1) ∧ Cm = Comq(m′, r)},

where
Fopt(m,m′, k, q) = (F (m) = 1 ∧ (m = m′ + k · q)) .

It is easy to see that Cm can be opened either to m, or to m′, as both values are
equal modulo q. Furthermore, the prover indeed proves that m and m′ are equal
modulo q. Finally, the prover proves that m′ is the value committed to in Cm.

This solution requires us to create an arithmetic circuit as part of the statement
proven by ZKB++. Fortunately, this is a standard integer multiplication circuit
of a number k < |x| and q = O(λ). We can view such a multiplication as the
addition of q, k-bit numbers. Since adding two k-bit numbers can be done using
O(k) gates, it follows that this multiplication can be done using O(k · q) gates,
which is also O(|x|·λ). In particular, we have that this can be done using O(|F |·λ)
gates, because |x| < |F |. Thus, the asymptotic number of symmetric operations
remains the same and we only introduce a slight overhead using this technique.

3.4 Efficiency

We will discuss the computation overhead and increase in the proof size of our
techniques. We will compare both constructions for Statement 1 and focus only
on public key operations, i.e. exponentiations and multiplications in the used
group G of order q, where 	q = log q. Let us assume that we run both protocols
ρ times for input x and that we use Pedersen commitments. Moreover, we will
by 	ZKB denote the proof size of the ZKB++ protocol, by 	Σ the proof size of
the Σ-protocol for Eq. (1) and by 	G the size of group elements.
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In such a case the proof size of Construction 1 is ρ · (	ZKB + 	Σ + 4 · |x| ·
	G +2 · |x| · 	q), which asymptotically is O(|x| ·ρ). Construction 2 was introduced
to decrease this by depending less on Σ-protocols for algebraic statements and
using the homomorphic properties of the commitment scheme. When executed
in parallel, the proof size is ρ · (	ZKB + (3 · |x| + 3) · 	G + 2 · |x| · 	q + 3 · 	q),
which is better but still O(|x| ·ρ). Fortunately, we have shown that certain parts
of the computations can be reused throughout every round. Therefore, for an
optimized version of Construction 2 we end up with a proof size of ρ · (	ZKB +
3 · 	G + 3 · 	q) + |x| · (3 · 	G + 2 · 	q), which is O(|x| + ρ).

To compute the proof in Construction 1 we have to compute 4 · ρ · |x| com-
mitments and compute the proof for statement Eq. (1), which strongly depends
on the instantiation but it requires at least O(ρ · |x|) exponentiations. Comput-
ing commitments to bits costs one exponentiation and one multiplication. In
the end, for this construction we require O(ρ · |x|) exponentiations. In case of
Construction 2 we have to compute |x| · (3 · 	G)+ρ ·3 · 	G commitments and 2 · |x|
exponentiations for the proof for statement Eq. (2). We also have to compute
the commitment Cz, which requires us to compute |x| · ρ multiplications in G.
Given the fact, that we assumed that |x| is of the size of log q it follows that
the cost of those multiplications is comparable with ρ exponentiations in G. It
follows, that for this construction we require only O(|x| + ρ) exponentiations.

4 NIZK OR-proofs in Cross-Domains

Proofs of partial knowledge [19], also known as OR-proofs, allow to efficiently
prove only a part of a statement, without revealing, which part has been proven.
Below we show how to prove the most simple OR-statement in cross-domains,
which can be used as a basis for proving more complex statements.

Statement 2. Prove knowledge of x1 s.t. F (x1) = 1 or knowledge of x2 such
that y = gx2 , where F is an arithmetic circuit.

We are going to use ZKB++ for proving the first part and the standard
Schnorr proof for the second part. Since the both parts of the proof system are Σ-
protocols, a challenge e will be “distributed” between these parts as e = e1 + e2.
Assume e1 ∈ Zp and e2 ∈ Zq, where p > q. The prover generates e1 or e2 and
derives the remaining element based on e. Both e1 and e2 should have the same
distribution regardless of the part that is being proved. Depending on which
part is being proved, we proceed as follows. Given e ∈ Zp, to prove the first
part the prover picks e2 ←R Zq and computes e1 = e − k · e2, where k = �p/q�.
Given e ∈ Zp, to prove the second part the prover picks e1 ←R Zp and computes
e′
2 = e−e1 ∈ Zp. To preserve the distribution of e2, the prover performs rejection

sampling: it further computes the largest p′ that satisfies p′ = k ·q ≤ p for integer
k and rejects and regenerates e1 if e1 > Zp′ , otherwise e2 ← e′

2(mod q). It is
easy to see that the probability of rejection is at most 1/2, and e1 and e2 are
distributed identically regardless of which part has been proven.
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Remark 1. If p >> q, it suffices to stay in Zp and convert an element from Zp

to Zq by taking its residue.

The prover knows x to a public function F , such that y = F (x), where y is public.
t denotes the number of (parallel) rounds.

p ← Prove(x)

1. (Commit step) For each round ρ ∈ [1, t]: Sample random tapes k
(ρ)
1 , k

(ρ)
2 , k

(ρ)
3

and simulate the MPC protocol to get an output view View
(ρ)
j and output

share y
(ρ)
j .

(x(ρ)
1 , x

(ρ)
2 , x

(ρ)
3 ) ← Share(x, k

(ρ)
1 , k

(ρ)
2 , k

(ρ)
3 )

= (G(k(ρ)
1 ), G(k(ρ)

2 ), x ⊕ G(k(ρ)
1 ) ⊕ G(k(ρ)

2 ))

View
(ρ)
j ← Upd(...Upd(x(ρ)

j , x
(ρ)
j+1, k

(ρ)
j , k

(ρ)
j+1)...)

y
(ρ)
j ← Output(View(ρ)

j )

Commit D
(ρ)
j ← H ′(k(ρ)

j ,View
(ρ)
j ), let a(ρ) = (y(ρ)

1 , y
(ρ)
2 , y

(ρ)
3 , D

(ρ)
1 , D

(ρ)
2 , D

(ρ)
3 )

and let a = a(1), . . . , a(t) be the output of this step.
2. Compute the challenge: e ← H(a). Interpret e such that for ρ ∈ [1, t], e(ρ) ∈

{1, 2, 3}.
3. (Response step) For each round ρ ∈ [1, t]: let b(ρ) = (y(ρ)

e(ρ)+2
, D

(ρ)
e(ρ)+2

) and

set z(ρ) ← (View(ρ)
e(ρ)+1

, k
(ρ)
e(ρ) , k

(ρ)
e(ρ)+1

). If e(ρ) �= 1, add x
(ρ)
3 to z(ρ). Let r ←

[(b(1), z(1)), . . . , (b(t), z(t))] be the output of this step.
4. Output p ← [e, r].

b ← V erify(y, p):
1. (Reconstruct step) For each round ρ ∈ [1, t]: Run the MPC protocol to re-

construct the views. In particular: compute x
(ρ)
e(ρ) , x

(ρ)
e(ρ)+1

using z(ρ) as part

of r of p in one of the following ways: x
(ρ)
1 ← G(k(ρ)

1 ), x
(ρ)
2 ← G(k(ρ)

2 ), or x
(ρ)
3

given as part of z(ρ).
Obtain View

(ρ)
e(ρ)+1

from z(ρ) and compute

View
(ρ)
e ← Upd(...Upd(x(ρ)

j , x
(ρ)
j+1, k

(ρ)
j , k

(ρ)
j+1)...), y

(ρ)
e(ρ) ← Output(View(ρ)

e(ρ)),

y
(ρ)
e(ρ)+1

← Output(View(i)
e(ρ)+1

), y
(i)
e(ρ)+2

← y ⊕ y
(i)
e(ρ) ⊕ y

(i)
e(ρ)+1

.

Compute the commitments for views View
(ρ)
e(ρ) and View

(ρ+1)
e(ρ) . For j ∈

{e(ρ), e(ρ) + 1}:
D

(ρ)
j ← H ′(k(ρ)

j ,View
(ρ)
j ).

Let a′(ρ) = (y(ρ)
1 , y

(ρ)
2 , y

(ρ)
3 , D

(ρ)
1 , D

(ρ)
2 , D

(ρ)
3 ) and note that y

(ρ)
e(ρ)+2

and D
(ρ)
e(ρ)+2

are part of z(ρ). Let a′ = (a′(1), . . . , a′(t)) be the output of this step.
2. Compute the challenge: e′ ← H(a′). If e′ = e, output Accept, otherwise

output Reject.

Fig. 5. Non-interactive ZKB++ [16].
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5 Conclusion

Zero-knowledge proofs are an essential component in various protocols, includ-
ing payment, electronic voting, anonymous credential systems. Proofs based on
algebraic groups and for arithmetic circuits represent two different domains.
In this work, we presented an efficient Σ-protocol in cross-domains, which can
be used to prove the possession of standard RSA/DSA signatures. Moreover,
the protocol can be executed non-interactively using the Fiat-Shamir transfor-
mation. It follows, that our results can be applied to build round-optimal and
concurrent-secure anonymous credentials based on standard signature schemes.
Our techniques are especially beneficial when applied for large circuits and when
the prover’s running time is critical. As future work, it would be interesting to
explore whether the approach by Ames et al. [4] can be used to achieve yet more
efficient and compact NIZK proofs in cross-domains.
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and Javier Silva1

1 Universitat Pompeu Fabra, Barcelona, Spain
vanesa.daza@upf.edu

2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),

Lyon, France

Abstract. Despite recent advances in the area of pairing-friendly Non-
Interactive Zero-Knowledge proofs, there have not been many efficiency
improvements in constructing arguments of satisfiability of quadratic
(and larger degree) equations since the publication of the Groth-Sahai
proof system (JoC’12). In this work, we address the problem of aggre-
gating such proofs using techniques derived from the interactive set-
ting and recent constructions of SNARKs. For certain types of quadratic
equations, this problem was investigated before by González et al. (ASI-
ACRYPT’15). Compared to their result, we reduce the proof size by
approximately 50% and the common reference string from quadratic to
linear, at the price of using less standard computational assumptions. A
theoretical motivation for our work is to investigate how efficient NIZK
proofs based on falsifiable assumptions can be. On the practical side,
quadratic equations appear naturally in several cryptographic schemes
like shuffle and range arguments.

1 Introduction

NIZK in Bilinear Groups. Non-Interactive Zero-Knowledge Proofs allow to con-
vince any party of the truth of a statement without revealing any other informa-
tion. They are a very useful building block in the construction of cryptographic
protocols. Since the first pairing-friendly NIZK proof system of Groth, Ostrovsky
and Sahai [19] many different constructions have emerged in different models
and under different assumptions, for various types of statements. Compared to
a plain discrete logarithm setting, bilinear groups have a rich structure which is
specially amenable to construct NIZK proofs.

Among this variety of results, there are three particularly interesting families
with different advantages in terms of generality, efficiency or strength of the
assumptions. On the one hand, there is a line of research initiated by Groth,
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Ostrovsky and Sahai [19] and which culminated in the Groth-Sahai proof system
[21]. The latter result provides relatively efficient proofs for proving satisfiability
of several types of quadratic equations in bilinear groups based on standard
assumptions. Although several works have tried to improve the efficiency of
Groth-Sahai proofs [8,30], for many equation types they still remain the best
alternative based on falsifiable assumptions.

Another family of results are the constructions of quasi-adaptive NIZK (QA-
NIZK) arguments, initiated by Jutla and Roy [22] and leading to very effi-
cient proofs of very concrete statements. Most notably, given a bilinear group
gk := (p,G1,G2,GT , e,P1,P2), proving membership in linear spaces in G

m
1 or

G
m
2 , for some m ∈ N, requires only one group element [23,24]. The power of the

quasi-adaptive notion of zero-knowledge allows to specialize the common refer-
ence string to the language one is proving membership in, trading generality for
efficiency under very weak computational assumptions. Other works have con-
structed proofs for different languages in the QA-NIZK setting, like the proof
for bilateral spaces (linear spaces in G

m
1 ×G

n
2 ) [14], or, beyond linear spaces, the

language of vector commitments to integers opening to a boolean vector [14] or
shuffles and range proofs [15].

Finally, in the last few years, an extremely successful line of research has
constructed succinct non-interactive arguments of knowledge (zk-SNARKs) [7,
11,16,17,27] for NP complete languages, which are not only constant-size (inde-
pendent of the witness size) but which are also very efficient in a concrete sense.
One of the main downsides of SNARKs is that their security relies on knowl-
edge of exponent assumptions, a very strong type of assumptions classified as
non-falsifiable [29]. However, one cannot achieve succinctness (proofs essentially
independent of the size of the statement being proved and its witness) and secu-
rity based on falsifiable assumptions at the same time, as per the impossibility
result by Gentry and Wichs [12].

Commit-and-Prove. In a broad sense, we can think of many of the results in
these three families as commit-and-prove schemes [5]. This is very clear for the
Groth-Sahai proof system, which has even been recasted in the commit-and-
prove formalism by Escala and Groth [8]. This is probably less obvious for some
results in the QA-NIZK setting. However, as noted already in the first QA-NIZK
construction of membership in linear spaces [22], in these cases one can often
think of the statement as a commitment to the witness. For instance, in the
case of proving that a vector y in the exponent is in the linear span of the
columns of some matrix A, this means that y = Aw and we can think of y as
a commitment to w . Finally, in the case of many SNARK constructions, e.g. [7]
the commitment is usually a “knowledge commitment”—from which the witness
is extracted in the soundness proof using knowledge assumptions—while the rest
can be considered the “proof”.

With this idea in mind, it is interesting to compare these three approaches
for constructing proofs of satisfiability of d equations in n variables in bilinear
groups in terms of proof size. We observe that for linear equations, while the
original Groth-Sahai proof system required O(n) group elements for the commit
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step and O(d) for the “prove” one, recent works have shown how to aggregate the
proof in the quasi-adaptive setting [14,23], reducing the “prove” step to O(1) in
many cases. For quadratic equations in the other hand, we summarize the three
different approaches in Table 1.

Table 1. Three different approaches for proving quadratic equations in bilinear groups.
For concreteness, assume that one wants to prove that a set of values x1, . . . , xn form
a bitstring, that is, satisfiability of xi(xi − 1) = 0.

Construction Assumption Commitment size Proof size CRS size

Groth-Sahai [19] Falsifiable O(n) O(n) O(1)

QA-NIZK [14] Falsifiable O(n) 10|G1| + 10|G2| O(n2)

SNARKs [7] Non-falsifiable |G1| + |G2| 2|G1| O(n)

Motivation. Quadratic equations are much more powerful than linear ones. In
particular, they allow to prove boolean Circuit Sat, but they are also important
to prove other statements like range, shuffle proofs or validity of an encrypted
vote. While for proving statements about large circuits non-falsifiable assump-
tions are necessary to get around impossibility results, it would be desirable to
eliminate them in less demanding settings, to understand better what the secu-
rity claims mean in a concrete sense. As in the QA-NIZK arguments for linear
spaces, there are even natural situations in which the statement is already “an
encrypted witness”, and it seems unnatural to use the full power of knowledge of
exponent assumptions in these cases (for instance, in the case of vote validity).

In summary, it is worth investigating efficiency improvements for quadratic
equations under falsifiable assumptions. In particular, aggregating the “prove”
step would be an important step towards this goal. The techniques for the linear
case do not apply to the quadratic one, and we are only aware of one result
in aggregating the proof of quadratic equations, namely the bitstring argument
of González et al. [14] for proving that a set of commitments to integers opens
to boolean values. There is a large concrete gap between this result and the
others in the non-falsifiable setting both in terms of the size of the proof and
the common reference string. Thus, it is natural to ask if it is possible to reduce
the gap and improve on this result importing techniques from SNARKs in the
falsifiable setting.

1.1 Our Results

We introduce new techniques to aggregate proofs of quadratic equations. First,
in Sect. 3.1, we construct a proof system for proving that d equations of the
type Xi(Xi − 2) = 0 are satisfied, where Xi is an affine combination of some
a1, . . . , an. The size of the proof is constant and the set of commitments to
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the variables is of size linear in n, and the size of the CRS is linear in d. The
prover computes a number of exponentiations linear in n + d, while the verifier
computes a number of pairings linear in d. Our proof system is perfect zero-
knowledge and computationally sound under a variant of the so-called target
strong Diffie-Hellman assumption. These assumptions belong to the broader class
of q-assumptions, where each instance of the problem is of size proportional to
some integer q, which in our case is the number of equations. In particular, the
bitstring language of [14] can be formulated as such a system of equations. In
Sect. 3.2 we discuss as a particular case an argument for unit vector, and argue
how to modify our general proof system so that it can be proven sound under
static assumptions (the full details are in the full version). A typical application
of membership in these languages is for computing disjunctions of statements
such as “the committed verification key is equal to V1, or V2, . . . , or Vm”, which
might be expressed as vk =

∑m
i=1 biVi, bi ∈ {0, 1} and (b1, . . . , bm) is a unit

vector.
Next, in Sect. 4, we generalize the previous argument to prove that d equa-

tions of the type (Xi − z1)(Xi − z2) . . . (Xi − zm) = 0 are satisfied, where Xi is
an affine combination of the variables a1, . . . , an. For this we combine techniques
from the interactive setting of [4] for proving set membership in a set of size m
of Zp with ideas from Sect. 3.1 and from quasi-adaptive aggregation [23]. In the
full version, we illustrate how to use this for improved range proofs in bilinear
groups under falsifiable assumptions.

Finally, in Sect. 5 we discuss two approaches to construct shuffle arguments.
They are the most efficient in terms of proof size in the common reference string
model under falsifiable assumptions in bilinear groups (comparing favorably even
to the best constructions in the generic bilinear group model [10]), but they have
large public parameters (quadratic in the shuffle size) (Tables 2 and 3).

Table 2. The table shows the proof sizes (not including commitments) and CRS sizes
of our constructions. We consider d variables and n equations, and m is the size of the
set from the set membership proof. The Assumptions 6, 7 and 8 are new.

Language Proof size CRS size Assumption

Section 3.1 Quadratic equations 4|G1|+ 6|G2| (d+O(1))|G1|
+(d+ 3n+O(1))|G2|

q-STSDH (7)

Section 3.2 Unit vector 6|G1|+ 6|G2| (4(n+ 1) +O(1))|G1|
+(5(n+ 1) +O(1))|G2|

1-STSDH (7)

Section 4.2 Set Membership 6|G1|+ 6|G2| (mn+ 2n+ 3m+O(1))|G1|
+(5mn+O(1))|G2|

Z-GSDH (6),
q-QTSDH (8)
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Table 3. Comparison of our shuffle arguments with state-of-the-art arguments. Note
that PPA stands for the Pairing Permutation Assumption and SPA for the Simultane-
ous Pairing Assumption.

Proof size CRS size Assumption

[18] 15n + 246 2n + 8 PPA, SPA, DLIN

[10] (4n − 1)|G1| + (3n + 1)|G2| O(n)(|G1| + |G2|) Bilinear generic
group model

[15] (4n + 17)|G1| + 14|G2| O(n2)|G1| + O(n)|G2| SXDH,
SSDP [15]

Section 5.1 (4n + 11)|G1| + 8|G2| O(n2)|G1| + O(n)|G2| SXDH,
1-STSDH (7)

Section 5.2 (2n + 11)|G1| + 8|G2| O(n2)(|G1| + |G2|) SXDH,
n-QTSDH (7)

1.2 Our Techniques

Let G1,G2,GT be groups of prime order p and let e : G1 × G2 → GT be a
bilinear map. Both SNARKs and our schemes can be seen as “commit-and-
prove” schemes [8]: in the first step we commit to the solution of the equations.
In the case of SNARKs, the knowledge assumption allows to extract the solutions
from a constant-size commitment during the soundness proof, but we are trying
to avoid using these assumptions, so we require perfectly binding commitments
for each element of the solution. The second step is a proof of the opening of the
commitments verifying the equations.

Let r1, . . . , rd ∈ Zp. The “prove” part is handled with a polynomial aggre-
gation technique in which satisfiability of a set of d equations is encoded into a
polynomial p(X) such that p(rj) = 0 if and only if the jth equation is satisfied.
To prove that d equations are satisfied, one needs to prove that p(X) is divisible
by
∏d

j=1(X − rj). The key to succinctness is that the divisibility condition is
only checked at a secret point s chosen by the trusted party who generates the
CRS. This preserves soundness as long as the prover only knows s (or powers
thereof) in G1 or G2, but not its discrete logarithm.

In the soundness proof, the witness is extracted from the knowledge commit-
ment, and then used to find some rj such that p(rj) �= 0 and compute auxiliary
information which, together with the proof, allows to break a hard problem,
e.g. the q-Target Strong Diffie-Hellman Assumption in [7]. Under non-falsifiable
assumptions the commitments, even if perfectly binding, can be only opened in
the source groups, instead of in Zp. This has an impact on the soundness proof,
as it is not possible to eliminate some terms in the proof to find a solution to
the q-TSDH assumption, so we need to consider a more flexible assumption.
Furthermore, since the solutions define the coefficients of polynomial p(X), our
access to this polynomial is much more limited.

For our set-membership proof we start from the following insight: the satisfi-
ability of equation b(b − 1) = 0 can be proven showing knowledge of a signature
for b if only signatures for 0 or 1 are known. This approach can be easily extended
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for larger sets of solutions as done by Camenisch et al. [4]. To express the validity
of many signature and message pairs, we again encode the signature verification
equations as a problem of divisibility of polynomials.

This requires the signature verification to be expressible as a set of quadratic
equations. While structure preserving signatures clearly solve this problem, it is
overkill, since we only need unforgeability against static queries. Further, even
the generic group construction of [17] requires at least 3 group elements. We
choose basic Boneh-Boyen signatures since each signature consists of only one
group element. Our argument needs to solve other technical difficulties which
are explained in more detail in Sect. 4.

1.3 Related Works

The recent line of research in SNARKs started with [16], in which the first
sub-linear arguments without random oracles were presented, but with CRS of
quadratic size. Subsequent works have defined alternative models for the encod-
ing of the circuit [7,11,17,26], reducing the CRS size to linear and obtaining
smaller proofs, going as small as 3 group elements in the case of [17]. In partic-
ular, our encodings are based on those of [7,11].

When considering falsifiable assumptions, one classic way to prove quadratic
equations in the non-interactive setting makes use of Groth-Sahai proofs [20],
which are quite efficient and can be aggregated to obtain a constant-size proof
of many equations.

In this work, we also use techniques from QA-NIZK proofs. This model was
introduced in [22] to build proofs of membership in linear subspaces over G1 or
G2. It was later improved to make proofs constant-size (independent of the size
of the witness) [23–25] and adapted to the asymmetric setting [14]. Although
introduced initially to build proofs of linear equations, the QA-NIZK setting
has also been used to build the first constant-size aggregated proofs of some
quadratic equations under standard assumptions [14], in particular the proof
that a set of commitments open to bits.

The usage of signatures for proving membership in a set dates back to the
work of Camenisch et al. [4] in the interactive setting, and in the non-interactive
setting by Rial et al. [31]. Both works achieve constant-size proofs but without
aggregation (i.e. proving n instances requires O(n) communication). Set member-
ship proofs were also recently investigated by Bootle and Groth [3] in the interac-
tive setting. They construct proofs logarithmic in the size of the set and aggregate
n instances with a multiplicative overhead of O(

√
n). In the non-interactive set-

ting, González et al. constructed set membership proofs of size linear in the size
of the set and aggregated many instances without any overhead [15].

1.4 Organization

In Sect. 2 we establish the assumptions required for our proofs, present the rel-
evant security definitions and recall the subschemes that we will make use of,
namely ElGamal encryption, Boneh-Boyen signatures, Groth-Sahai proofs and
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proofs of membership in linear spaces. In Sect. 3, we present our proof system for
satisfiability of quadratic equations. In Sect. 4 we present an aggregated argu-
ment to prove membership in a set of Zp. In Sect. 5 we discuss new approaches
to construct shuffle arguments. In the full version, we give an argument to prove
that a commitment opens to a unit vector which can be proven secure based
on a static assumption. We also discuss the application of the set membership
argument in Zp to range proof.

2 Preliminaries

2.1 Bilinear Groups and Implicit Notation

Let G be some probabilistic polynomial time algorithm which on input 1λ, where
λ is the security parameter, returns the group key which is the description
of an asymmetric bilinear group gk := (p,G1,G2,GT , e,P1,P2), where G1,G2

and GT are additive groups of prime order p, the elements P1,P2 are genera-
tors of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable, non-
degenerate bilinear map, and there is no efficiently computable isomorphism
between G1 and G2.

Elements in Gγ are denoted implicitly as [a]γ := aPγ , where γ ∈ {1, 2, T}
and PT := e(P1,P2). For simplicity, we often write [a]1,2 for the pair [a]1, [a]2.
The pairing operation will be written as a product ·, that is [a]1 · [b]2 = [a]1[b]2 =
e([a]1, [b]2) = [ab]T . Vectors and matrices are denoted in boldface. Given a matrix
T = (ti,j), [T]γ is the natural embedding of T in Gγ , that is, the matrix whose
(i, j)th entry is ti,jPγ . We denote by |Gγ | the bit-size of the elements of Gγ .

In refers to the identity matrix in Z
n×n
p , 0m×n refers to the all-zero matrix

in Z
m×n
p , and en

i the ith element of the canonical basis of Zn
p (simply I, 0, and

e i, respectively, if n,m are clear from the context).

Given a set R = {r1, . . . , rd} ⊂ Zp, we denote by �i(X) =
∏

j �=i

(X − ri)
(rj − ri)

the

ith Lagrange interpolation polynomial associated to R.

2.2 Hardness Assumptions

Definition 1. Let �, k ∈ N. We call D�,k a matrix distribution if it outputs (in
PPT time, with overwhelming probability) matrices in Z

�×k
p . We define Dk :=

Dk+1,k.

The following applies for Gγ , where γ ∈ {1, 2}.

Assumption 1 (Matrix Decisional Diffie-Hellman Assumption in Gγ

[9]). For all non-uniform PPT adversaries A,

|Pr[A(gk, [A]γ , [Aw]γ) = 1] − Pr[A(gk, [A]γ , [z]γ) = 1]| ≈ 0,

where the probability is taken over gk ← G(1λ), A ← D�,k,w ← Z
k
p, [z]γ ← G

�
γ

and the coin tosses of adversary A.
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Intuitively, the D�,k-MDDH assumption means that it is hard to decide
whether a vector is in the image space of a matrix or it is a random vector,
where the matrix is drawn from D�,k. In this paper we will refer to the following
matrix distributions:

Lk : A =

⎛

⎜
⎝

a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 ... ak
1 1 ... 1

⎞

⎟
⎠ , U�,k : A =

( a1,1 ... a1,k

.

.

.
. . .

.

.

.
a�,1 ... a�,k

)

,

where ai, ai,j ← Zp. The Lk-MDDH Assumption is the k-linear family of Deci-
sional Assumptions and corresponds to the Decisional Diffie-Hellman (DDH)
Assumption in Gγ when k = 1. The SXDH Assumption states that DDH holds
in Gγ for all γ ∈ {1, 2}. The U�,k-MDDH assumption is the Uniform Assumption
and is the weakest of all matrix assumptions of size � × k.

Additionally, we will be using the following family of computational
assumptions:

Assumption 2 (Kernel Diffie-Hellman Assumption in Gγ [28]). For all
non-uniform PPT adversaries A:

Pr
[
[x]3−γ ← A(gk, [A]γ) : x �= 0 ∧ x�A = 0

] ≈ 0,

where the probability is taken over gk ← G(1λ), A ← D�,k and the coin tosses of
adversary A.

The D�,k-KerMDHGγ
Assumption is not stronger than the D�,k-MDDHGγ

Assumption, since a solution to the former allows to decide membership in
Im([A]γ). In asymmetric bilinear groups, there is a natural variant of this
assumption.

Assumption 3 (Split Kernel Diffie-Hellman Assumption [14]). For all
non-uniform PPT adversaries A:

Pr
[
[r]1, [s]2 ← A(gk, [A]1,2) : r �= s ∧ r�A = s�A

] ≈ 0,

where the probability is taken over gk ← G(1λ), A ← D�,k and the coin tosses of
adversary A.

While the Kernel Diffie-Hellman Assumption says one cannot find a non-zero
vector in one of the groups which is in the co-kernel of A, the split assumption
says one cannot find different vectors in G

�
1 × G

�
2 such that the difference of

the vector of their discrete logarithms is in the co-kernel of A. As a particular
case, [14] considers the Split Simultaneous Double Pairing Assumption in G1,G2

(SSDP) which is the RL2-SKerMDH Assumption, where RL2 is the distribution
which results of sampling a matrix from L2 and replacing the last row by random
elements.

q-Assumptions. We first recall the q-Strong Diffie-Hellman and q-Target
Strong Diffie-Hellman assumptions, which essentially tell us that inversion is
hard in the exponent, even when given q powers of the element to invert.
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Assumption 4 (q-Strong Diffie Hellman Assumption in Gγ, q-SDH [2]).
For all non-uniform PPT adversaries A:

Pr
[(

r, [ν]γ
)

← A(gk, {[si]γ}q
i=1) : ν =

1
s − r

]

≈ 0,

where the probability is taken over gk ← G(1λ), s ← Zp and the coin tosses of
adversary A.

Assumption 5 (q-Target Strong Diffie-Hellman Assumption, q-
TSDH [1]). For all non-uniform PPT adversaries A:

Pr
[

(r, [ν]T ) ← A(gk, {[si]1,2}q
i=1) : ν =

1
s − r

]

≈ 0,

where the probability is taken over gk ← G(1λ), s ← Zp and the coin tosses of
adversary A.

The soundness proofs of our schemes will rely on the following variations of
the two assumptions above.

Assumption 6 (Z-Group Strong DH Assumption in Gγ , Z-GSDH).
Let Z ⊂ Zp such that #Z = q. For all non-uniform PPT adversaries A:

Pr

[

([z1]1, [z2]γ , [ν]2) ← A (gk,Z, [ε]1,2, {[si]1,2}q
i=1

)
:

z1 �∈ Z ∧ z2 = εz1

ν =
∏

z∈Z(s−z)

s−z1

]

≈ 0,

where the probability is taken over gk ← G(1λ), s, ε ← Zp and the coin tosses of
adversary A.

The name is motivated by the fact that it is a variant of the q-SDH Assump-
tion in which the adversary must only give [z1]1 in the group G1, instead of
giving it in Zp as in the q-SDH Assumption.

Assumption 7 (q-Square TSDH Assumption, q-STSDH). For all non-
uniform PPT adversaries A:

Pr

[

(r, [β1]1, [β2]2, [ν]T ) ← A (gk, [ε]2, {[si]1,2}q
i=1

)
:

β1 �= ±1
β2 = εβ1 ∧ ν = β2

1−1
s−r

]

≈ 0,

where the probability is taken over gk ← G(1λ), s, ε ← Zp and the coin tosses of
adversary A.

Note that the challenger knows ε, s, so this assumption is falsifiable.
Indeed, upon receiving (r, [β1]1, [β2]2, [ν]T ), the challenger verifies that [β1]1 �=
[±1]1, e([1]1, [β2]2) = e(ε[β1]1, [1]2), and ε(s − r)[ν]T = e([β1]1, [β2]2) −
e([ε]1, [1]2). A similar argument can be made for the other assumptions in this
section.
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Assumption 8 (q-Quadratic TSDH Assumption, q-QTSDH). For all
non-uniform PPT adversaries A:

Pr

⎡

⎢
⎣

(
r, [β1]1, [β2]1, [β̃1]2, [β̃2]2, [ν]T

)
← A (gk, [ε]1,2, {[si]1,2}q

i=1

)
:

β1β̃1 �= 1
β2 = εβ1 ∧ β̃2 = εβ̃1 ∧ ν = β1β̃1−1

s−r

⎤

⎥
⎦ ≈ 0,

where the probability is taken over gk ← G(1λ), s, ε ← Zp and the coin tosses of
adversary A.

2.3 Building Blocks

ElGamal Encryption. We denote by Enc[sk](m, r) the lifted ElGamal encryp-
tion of message m with randomness r and public key [sk]. Using implicit group
notation, ElGamal encryption is as follows:

[
c1
c2

]

= Enc[sk](m, r) = m[e2] + r

[
1
sk

]

,

where if one knows the secret key sk in Zp, then one can recover the message in G

by computing [c2]−sk[c1] = [m]. ElGamal encryption is semantically secure under
the DDH assumption. It can be seen as a commitment scheme, in which case
it is perfectly binding and computationally hiding under the DDH assumption,
and in fact this is how we will use it in our schemes.

Boneh-Boyen Signatures [2]. We briefly recall Boneh-Boyen signatures. Let
G1,G2,GT , e : G1 ×G2 → GT be a bilinear group. Messages are elements of Zp,
and signatures are elements of G2. The secret key is sk ∈ Zp, and the public key
(verification key) is [sk]1 ∈ G1. To sign a message x ∈ Zp, the signer computes

[σ]2 =
[

1
sk − x

]

2

The verifier accepts the signature if the equation e([sk]1 − [x]1, [σ]2) = [1]T
holds. Boneh-Boyen signatures are existentially unforgeable under the q-SDH
assumption.

Dual-Mode Commitments and Groth-Sahai Proofs [20]. Groth-Sahai
proofs allow to prove satisfiability of quadratic equations in bilinear groups in the
non-interactive setting. More precisely, Groth-Sahai proofs deal with equations
of the form

my∑

j=1

ajyj +
mx∑

i=1

bixi +
mx,my∑

i,j=1

γi,jxiyj = t,

in which the set of variables is divided into two disjoint subsets X = {x1, . . . , xmx
}

and Y = {y1, . . . , ymy
}, and depending on the type of equation X,Y ⊂ Zp
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(quadratic equations in Zp), X ⊂ Zp,Y ⊂ Gγ (multi-exponentiation equations in
Gγ) for γ ∈ {1, 2} or X ⊂ G1 and Y ⊂ G2 (pairing product equations). Here the
product means a bilinear operation which is multiplication in Zp, exponentiation
or the pairing operation.

The scheme can be seen as a commit-and-prove scheme [8], where in the first
step the prover gives commitments to the solutions, and in the second provides a
proof that these commitments verify the corresponding equation. In particular,
the commitments used are dual-mode commitments, that is, commitments that
can be either perfectly binding or perfectly hiding, and we can switch from one
to the other with an indistinguishable change of security game. More precisely,
Groth-Sahai commitments to field elements z ∈ Zp and group elements [z] ∈ G

are, respectively:

Com(z;w) = z [u ] + w[u1], Com([z];w1, w2) =
[

0
z

]

+ w1[u1] + w2[u2],

where [u ], [u1], [u2] are vectors in G
2 given in the commitment key, and their

definitions depend on whether we want the commitments to be perfectly binding
or perfectly hiding.

Groth-Sahai proofs are sound, witness-indistinguishable and, in many cases,
zero-knowledge. More precisely, the proof is always zero-knowledge for quadratic
equations in Zp and multi-exponentiation equations, and also for pairing product
equations provided that t = 1.

QA-NIZK Arguments of Membership in Linear Spaces [22]. We describe
some languages for which there exist constant-size QA-NIZK arguments of mem-
bership which will be used as building blocks in our constructions. These lan-
guages are (i) linear subspaces of Gm

γ , γ ∈ {1, 2} [23,24], and (ii) bilateral linear
subspaces, that is, linear subspaces of Gm

1 × G
n
2 [14]. For γ ∈ {1, 2},

L[M]γ := {[x ]γ ∈ G
n
γ : ∃w ∈ Z

t
q, x = Mw}, (i)

L[M]1,[N]2 := {([x ]1, [y ]2) ∈ G
m
1 × G

n
2 : ∃w ∈ Z

t
q, x = Mw , y = Nw}, (ii)

We use LS (BLS) to designate (bilateral) linear subspace proof systems for the
languages L[M]γ (L[M]1,[N]2). These proof systems verify strong soundness, which
essentially means that they are sound even when the discrete logarithm of the
matrices is given. This property is formally defined in González et al. [14].

Case (i) can be instantiated based on the Kernel Diffie-Hellman Assumption
2, and the proof has size |Gγ |, whereas (ii) can be based on the Split Kernel
Diffie-Hellman Assumption 3, and the proof has size 2|G1| + 2|G2|.

3 Proving Satisfiability of Quadratic Equations

In this section we present a scheme in which soundness is based on the q-STSDH
Assumption.
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3.1 Arguments for Quadratic Equations from q-Assumptions

Intuition. Given n, d ∈ N, the number of variables and equations, respectively,
we build a proof system for the family of languages

Lquad,ck =

⎧
⎪⎨

⎪⎩
([c]1,V, b) ∈ G

2n
1 × Z

n×d
p × Z

d
p

∣
∣
∣
∣
∣
∣
∣

∃a ,w ∈ Z
n
p s.t

[c]1 = Comck(a ,w) and
{
a�v j + bj

}d

j=1
∈ {0, 2}

⎫
⎪⎬

⎪⎭

where [c]1 = Comck(a ,w) is a vector of ElGamal encryptions. This generalizes
to any other perfectly binding commitment of the form [c]1 = Comck(a ;w) =
[U1a + U2w ]1 for ck = ([U1]1, [U2]1), and [U1]1, [U2]1 are from a witness sam-
pleable distribution.

We follow the approach of Danezis et al. [7] and encode the equations

a�v j + bj ∈ {0, 2}
into a Square Span Program (SSP): we construct n + 1 polynomials
v0(X), . . . , vn(X) and a target polynomial t(X), where deg(vi) < deg(t) = d
for all i ∈ {0, . . . , n}. This codification asserts that a witness a satisfies the set
of equations if and only if t(X) divides p(X), where

p(X) =

(

v0(X) +
n∑

i=1

aivi(X)

)2

− 1.

The polynomials vi(X), i ∈ {1, . . . , n}, are defined as the interpolation polyno-
mials of the coefficients vij of V at r1, . . . , rd, which are fixed, arbitrary, pairwise
different points of Zp. Similarly, v0(X) is the interpolation polynomial of bj − 1
at the same points. That is, if v j is the jth column of V,

a�v j + bj − 1 =
n∑

i=1

aivij + bj − 1 =
n∑

i=1

aivi(rj) + v0(rj).

Note that the statement Z ∈ {0, 2} is equivalent to (Z−1)2−1 = 0 and hence,
the polynomial p(X) interpolates the left side of this equation in r1, . . . , rd when
Z is replaced by a�v j + bj − 1 for each j ∈ {1, . . . , d}. The target polynomial
t(X) =

∏d
i=1(X − ri) is 0 at r1, . . . , rd and therefore encodes the right sides.

This codification gives us the equivalence: the equations hold if and only if t(X)
divides p(X).

Danezis et al. constructed a SNARK for this statement, “t(X) divides p(X)”,
which is very efficient because it just checks that the divisibility relation holds at
a single secret point s ∈ Zp whose powers [s]1, [s]2, . . . , [sd]1, [sd]2 are published
in the CRS. That is, the proof essentially shows “in the exponent” that

p(s) = h(s)t(s),

where h(X) = p(X)/t(X). When all the equations hold, h(X) is a polynomial
and the evaluation at s can be constructed as a linear combination of the powers
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of s in the CRS. When some equation does not hold, h(X) is a rational function,
and its evaluation at s is no longer efficiently computable from the CRS. The
actual proof system has some additional randomization elements to achieve Zero-
Knowledge, but its soundness follows from this argument.

In the scheme of Danezis et al., the prover outputs a perfectly hiding commit-
ment to the witness. In the soundness proof, one uses a knowledge of exponent
assumption to extract the witness in Z

n
p from the commitment. The witness is

used to derive a reduction from breaking soundness to the d-TSDH Assumption.
More precisely, it follows from the SSP characterization that if the equation with
index j∗ does not hold, then p(X) = q(X)(X − rj∗) + b, for some b �= 0. From
the extracted value of the witness a one can identify at least one such j∗ and
also recover the coefficients of q(X) and the value b in Zp. From the verification
equation, the reduction can obtain

[
p(s)

s − rj∗

]

T

=
[

q(s) +
b

s − rj∗

]

T

(1)

and using b, q(s) derive
[

1
s − rj∗

]

T

.

In other words, there are two ways in which the Danezis et al.’s scheme (as
well as most other SNARKs) use knowledge assumptions: (a) extracting vectors
of committed values from one single group element (beyond what is information-
theoretically possible), and (b) extract in the base field, so computing discrete
logarithms. Our goal is to avoid knowledge of exponent assumptions, so to cir-
cumvent (a) we change the scheme to include perfectly binding commitments to
the witness. However, we still have to deal with (b), as our commitments to a
can only be opened to [a ]γ ∈ Gγ . Therefore, we are no longer able to compute
[q(s)]T since it requires to compute terms of the form [aiajs

k]T from [ai]1, [aj ]2
and powers of s in one of the groups, in any case it would be a multiplication of
three group elements.

At this point, we would like to be able to include in the proof a commitment
that allows the reduction to extract q(s), but the fact that q(s) is “quadratic”
in the witness makes this difficult. For this reason, we factor q(X) into two
polynomials q1(X) and q2(X). In the soundness game we will program the CRS1

to depend on an index j∗ and let the prover compute binding commitment to
[q2(s)]2, while [q1(s)]1 can be directly computed from the proof. From these
factors we are able to compute [q(s)]T . However, extracting b in Zp to obtain
a reduction to the q-TSDH problem seems difficult, so we will rely on a more
flexible security assumption where we do not need to remove b. The idea of the
new assumption is to give the adversary powers of s in the source groups and
ask the adversary to output

(

rj∗ , [β]1,
[

b

s − rj∗

]

T

)

, where β2 − 1 = b.

1 This is why we lose a factor 1/d in the soundness reduction.



Shorter Quadratic QA-NIZK Proofs 327

However, this is not a hard problem, as the adversary can set b as a combination
of s− rj∗ to achieve elimination of the denominator in b

s−rj∗ . For example, if an
adversary sets β = s − rj∗ + 1, it can compute a valid solution as (rj∗ , [β]1, [s −
rj∗ + 2]T ). To prevent this type of attacks from happening, we add an element
[ε]2 ∈ G2 to the challenge, and ask the adversary to output [εβ]2 too, so that β
cannot be set as a function of s (since the adversary will not be able to compute
εs in G2). We call the modified assumption the q-STSDH, which is proven to be
generically secure (see full version). Further, it can be easily checked that the
assumption is falsifiable as we note in Sect. 2.2. To make sure that we can extract
[εβ]2 from the prover’s output and also that the rest of the elements of the proof
are of the right form, we will require the prover to show that its output is in a
given linear space.

Scheme Description. Given n, d ∈ N we construct a QA-NIZK argument for
the language Lquad,ck .

Setup.

– Algorithm K0(gk , n, d) samples ck = [u ]1 ← L1. A commitment Comck (a ;w)
is the concatenation of Encck (ai;wi) = [aie2+wiu ]1. That is, Comck (a ;w) =
[U1a +U2w ]1, where U1,U2 are 2n×n matrices such that U1 has e2 in the
diagonal and [U2]1 has u in the diagonal.

– Algorithm K1(gk , ck , n, d) picks s ← Zp,
{

φ̂i

}

i∈{1,...,n+1}
← Z

3
p, Q2 ← U3,3

and generates also the CRS for proving membership in bilateral linear spaces
of Sect. 2, BLS.CRS, for the linear spaces generated by the matrices:

[M]1 =

⎡

⎢
⎢
⎢
⎣

e2

. . .
e2

u
. . .

u

0

v1(s) . . . vn(s) 0 t(s) 0

⎤

⎥
⎥
⎥
⎦

1

∈ G
(2n+1)×(2n+4)
1 ,

[N]2 =
[

v1(s) . . . vn(s)
φ̂1 . . . φ̂n

0
t(s) 0
φ̂n+1 Q2

]

2

∈ G
4×(2n+4)
2 .

The CRS includes the elements
(

gk , ck ,
{[

si
]
1,2

}

i∈{1,...,d}
,
{[

φ̂i

]

2

}

i∈{1,...,n+1}
, [Q2]2,BLS.CRS

)

.

Prover. The prover P with input (CRS, [c]1,V, b,a) picks δ ← Zp, r q.2 ← Z
3
p

and defines the polynomial

p(X) =

(

v0(X) +
n∑

i=1

aivi(X) + δt(X)

)2

− 1 ∈ Zp[X],
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where each vi(X), for i ∈ {1, . . . , n}, is the interpolation polynomial of the com-
ponents vij of V at points rj , for j ∈ {1, . . . , d}, and v0(X) is the interpolation
polynomial of bj − 1 at the same points. It then computes h(X) = p(X)

t(X) , which
is a polynomial in Zp[X] because a satisfies the equations, and the following
elements:

[V ]1 = [
∑n

i=1 aivi(s) + δt(s)]
1

[V ]2 = [
∑n

i=1 aivi(s) + δt(s)]
2

[H]1 = [h(s)]1 [q2]2 =
[∑n

i=1 aiφ̂i + δφ̂n+1 + Q2r q.2

]

2
.

The prover can compute all these elements as linear combinations of the powers
of s in the CRS. The prover also computes a BLS proof ψ of

([c]1, [V ]1 , [V ]2 , [q2]2)
� ∈ Im

(
[M]1
[N]2

)

with witness (a ,w , δ, r q.2)
� ∈ Z

2n+4
p .

Finally, it sends the proof π to the verifier, where π :=
(

[H]1 , [V ]1,2 ,

[q2]2 , ψ

)

.

Verifier. The verifier V with input (CRS, [c]1,V, b, π) checks whether the
equation

e([v0(s) + V ]1 , [v0(s) + V ]2) − [1]T = e([H]1 , [t(s)]2) (2)

holds and BLS.verify(ψ) = 1. If both conditions hold, it returns 1, else it returns 0.

Completeness. This property is based on the perfect completeness of member-
ship in bilateral spaces, and the observation that the left hand side of the verifi-
cation equation is e ([v0(s) + V ]1 , [v0(s) + V ]2) − [1]T =

[
(v0(s) + V )2 − 1

]
T

=
[p(s)]T , and the right hand side is e ([H]1 , [t(s)]2) = e ([h(s)]1 , [t(s)]2) = [p(s)]T .

Soundness. We introduce a technical lemma that we will use in the following
to prove the soundness of the scheme.

Lemma 1. Let v(X) be a polynomial in Zp[X]. For any r ∈ Zp, we define q2(X)
and β as the quotient and remainder, respectively, of the polynomial division of
v(X) by X − r, i.e. v(X) = q2(X)(X − r) + β. If p(X) = v(X)2 − 1, then

p(X) = (v(X) + β) q2(X)(X − r) + β2 − 1.

Proof. By definition, p(X) = v(X)2 − 1, if we expand this expression using the
definition of q2(X) we have:

p(X) = v(X) (q2(X)(X − r) + β) − 1 = v(X)q2(X)(X − r) + v(X)β − 1

= v(X)q2(X)(X − r) + q2(X)(X − r)β + β2 − 1

= (v(X) + β)q2(X)(X − r) + β2 − 1. ��
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Theorem 1. Let AdvSound(A) be the advantage of any PPT adversary A
against the soundness of the scheme. There exist PPT adversaries B1,B3 against
the L1-MDDHG2 and d-STSDH Assumptions, respectively, and an adversary B2

against strong soundness of the BLS proof such that

AdvSound(A) ≤ d
(
2AdvL1-MDDH,G2(B1) + AdvBLS(B2) + Advd-STSDH(B3)

)
.

Proof. In order to prove soundness we will prove indistinguishability of the
following games.

– Real: This is the real soundness game. The output is 1 if the adversary pro-
duces a false accepting proof, i.e. if there is some equation a�v i + bi �∈ {0, 2}
and the verifier accepts the proof.

– Game0: This game is identical to the previous one, except that the commit-
ment key u is chosen by the game.

– Game1: This game is identical to the previous one, except that some j∗ ←
{1, . . . , d} is chosen and the game aborts if a satisfies the j∗-th equation, i.e.
[a ]�1 v j∗ + [bj∗ ]1 ∈ {[0]1, [2]1}.

– Game2: For r = rj∗ and i ∈ {1, . . . , n+1} let αi(X) and βi be the quotient and
the reminder of the polynomial division of vi(X) by X − rj∗ if i ∈ {1, . . . , n},
and of t(X) by X − rj∗ if i = n + 1. This game is identical to the previous
one, except that Q2 is now a uniformly random matrix conditioned on having
rank 1, and each

[
φ̂i

]

2
is changed to

[
φ̂i

]

2
= [αi(s)]2e2 + βi[ε]2e3 + [Q2]2r i,

where ε ← Zp, r i ← Z
3
p and e i is the ith vector of the canonical basis of Z3

p.

Obviously, the games Real and Game0 are indistinguishable.

Lemma 2. Pr[Game0(A) = 1] ≤ d · Pr[Game1(A) = 1].

Proof. If A breaks soundness, at least one equation does not hold. Thus the
challenger has at least a probability of 1

d of guessing this equation. ��
Lemma 3. There exists a L1-MDDHG2 adversary B1 such that

|Pr[Game1(A) = 1] − Pr[Game2(A) = 1]| ≤ 2AdvL1-MDDH,G2(B1).

We use a direct application of the rank problem, which is reducible to MDDH,
to prove the above Lemma. See the full version for the details.

Lemma 4. There exists an adversary B2 against the strong soundness of the
BLS proof and a d-STSDH adversary B3 such that

Pr[Game3(A) = 1] ≤ AdvBLS(B2) + Advd-STSDH(B3).
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Proof. For any adversary which breaks soundness A, let E be the event that

([c]1, [V ]1, [V ]2, [q2]2)� ∈ Im
(

[M]1
[N]2

)

of Sect. 2 and E be the complementary

event. Obviously,

Pr[Game3(A) = 1] ≤ Pr[Game3(A) = 1|E] + Pr[Game3(A) = 1|E]. (3)

We can bound the second summand by the advantage of an adversary B2 against
the strong soundness of BLS. Such an adversary receives [M]1, [N]2 sampled
according to the distribution specified by Game3 and the witness that proves
that M,N are sampled according to this distribution, which is s (see strong
soundness, defined in full version). It also generates the BLS.CRS, and the rest
of the CRS is chosen in the usual way. Adversary B2 can use the output of A to
break the soundness of BLS in a straightforward way.

In the following, we bound the first term of the sum in Eq. (3) by construct-
ing an adversary B3 which breaks the d-STSDH Assumption in the case that E
happens. Note that in this case there exists a witness (a ,w , δ, r q.2)

� of mem-

bership in Im
(

[M]1
[N]2

)

. Further, this witness is partially unique, because [c]1

is a perfectly binding commitment, so a ,w , δ are uniquely determined, and in
particular this uniquely determines the polynomial p(X).

We now describe the full reduction. Adversary B3 receives a challenge of the
d-STSDH Assumption and plugs it in the CRS. The rest of the elements are
chosen by adversary B3 with the distribution specified by the game. The CRS
is then sent to the soundness adversary A, who eventually outputs π for the
corresponding [c]1.

Adversary B3 extracts [a ]1 ∈ G1 from the knowledge of u ∈ Z
2
p and aborts if

the j∗-th equation is satisfied. By definition e([v0(s) + V ]1 , [v0(s) + V ]2)−[1]T =
[p(s)]T . If we divide both sides of the verification equation (2) by s − rj∗ ,

[
p(s)

s − rj∗

]

T

= e

(

[H]1 ,

[
t(s)

s − rj∗

]

2

)

= e

⎛

⎝[H]1 ,

⎡

⎣
∏

i�=j∗
(s − ri)

⎤

⎦

2

⎞

⎠ , (4)

so the adversary B3 can compute
[

p(s)
s − rj∗

]

T

from [H]1 and the powers of [s]1,2

in the CRS. On the other hand, if we apply Lemma 1 to p(X), we have
[

p(s)
s − rj∗

]

T

=
[

(v(s) + β)q2(s) +
β2 − 1
s − rj∗

]

T

, (5)

and we have β2 − 1 �= 0 (otherwise the j∗-th equation is satisfied, in which case
the game aborts). We describe in the following how B3 can compute right side
of (5) and the elements to break the d-STSDH Assumption.

B3 can compute [β]1 =
∑n

i=0[ai]1βi and also [v(s)+β]1 = [V ]1+[β]1, because
it knows [V ]1 from the proof π and the extracted values [ai]1, and βi are the
reminders of dividing vi(X) by X − rj∗ .
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Since B3 sampled Q2 itself, it can recover [q2(s)]2 and [εβ]2 from [q2]2 because
it can compute two vectors v2, v3 ∈ Z

3
p such that v�

i [Q2]2 = 0 , v�
i ej = 0 if

i �= j and v�
i ej = 1 if i = j. B3 multiplies these vectors by q2 (which is correctly

computed, because E holds), resulting in:

v�
2 [q2]2 =

[
v�
2

n+1∑
i=1

ai (αi(s)e2 + βiεe3 + Q2r i) + v�
2 Q2rq.2

]
2

=

[
n+1∑
i=1

aiαi(s)

]
2

,

v�
3 [q2]2 =

[
n+1∑
i=1

aiβiε

]
2

.

From these values, B3 can compute [q2(s)]2 and [εβ]2 by adding [α0(s)]2 and
β0[ε]2 to the above extracted elements, respectively:

[

α0(s) +
n+1∑

i=1

aiαi(s)

]

2

= [q2(s)]2, β0[ε]2 +

[

ε
n+1∑

i=1

aiβi

]

2

= [εβ]2.

From these values and [v(s) + β]2, computed above, B can derive

[(v(s) + β)q2(s)]T as e([v(s)+β]1, [q2(s)]2), and from Eq. (5) recover
[

β2 − 1
s − rj∗

]

T

.

Finally, B3 returns
(

rj∗ , [β]1, [εβ]2,
[

β2 − 1
s − rj∗

]

T

)

, breaking the d-STSDH

Assumption. ��

Zero-Knowledge. We describe the simulation algorithm (S1,S2). S1(gk) out-
puts (CRS, τ = {s}, τBLS), the common reference string computed in the usual
way plus the simulation trapdoor s ∈ Zp and the simulation trapdoor of the
bilateral spaces membership proof.
Simulator S2(CRS, [c]1, τ, τBLS): This algorithm samples V S ∈ Zp,

[
qS
2

]
2

← G
3
2,

and defines:
[
HS
]
1

=
[
(V S)2 − 1

t(s)

]

1

.

S also constructs ψS ← BLS.simulator(CRS, [c]1 ,
[
V S
]
1
,
[
V S
]
2
,
[
qS
2

]
2
, τBLS).

The algorithm outputs π := ([c]1 ,
[
V S
]
1
,
[
V S
]
2
,
[
qS
2

]
2
, ψS).

Theorem 2. The scheme above is Perfect Zero-Knowledge.

Proof. The key idea behind the proof is that all its the elements can be seen as
perfectly hiding commitments to a , where a is the opening of [c]1. For any V S

and any a , there always exists a compatible δ. Further, since Q2 has full rank,[
qS
2

]
2

is compatible with any values a , δ.
[
HS
]
1

is uniquely determined by V S

and the rest of the elements of the CRS. Finally, perfect zero-knowledge follows
from the perfect zero-knowledge property of the bilateral space membership
proof. ��
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3.2 Unit Vector from Static Assumptions

In our argument for aggregating quadratic equations, we obtain succinctness
following the usual polynomial aggregation technique used in most SNARK con-
structions (e.g. [7,11]), namely, the set of interpolation points r1, . . . , rd ∈ Zp is
public, while the evaluation point s is only known in the exponent. We can con-
sider a dual approach in which s ∈ Zp is public but r1, . . . rd are in the exponent.
We observe that this leads to a trade-off between the type of assumption (q-type
vs. static) and size of the CRS (linear vs. quadratic). The second construction
reminds us the beginnings of SNARKs, where the CRS was quadratic in the
circuit size. The construction is still interesting for proving that a set of n bind-
ing commitments to integers open to n binary values (b1, . . . , bn) ∈ {0, 1}n such
that

∑
bi = 1. In this case, a simple modification of the proof system of Sect. 3.1

leads to a scheme with computational soundness based on static assumptions
and linear CRS. The full scheme and its security proof are presented in full
version. The unit vector argument can be used, for instance, to improve the
constructions of the best pairing-based constructions of ring signature schemes
without random oracles and based on falsifiable assumptions [6,13]. It also leads
to a shuffle argument, described in Sect. 5.1.

4 Aggregated Set Membership Arguments

In the construction of Sect. 3.1, if V is the identity matrix and b = 0 , the
equations aV + b ∈ {0, 2}d just prove that each ai ∈ {0, 2}. In this section
we consider a generalization and build a proof system which proves that some
perfectly binding commitments open to ai ∈ Z = {z1, . . . , zm} ⊂ Zp. The proof
is constant-size and uses the Boneh-Boyen signature scheme (the basic scheme
from [2, Sect. 4.3]) together with a technique to aggregate quadratic equations
similar to the one of Sect. 3.1 and inspired by the quadratic span programs of
Gennaro et al. [11].

First, in Sect. 4.1, we describe how to construct an argument of membership
for a single a ∈ Z and then in Sect. 4.2 we show how to aggregate the argument.
In the full version we show how to apply these ideas to construct a range proof.

4.1 Non-aggregated Set Membership Argument

Intuition. We build a constant-size proof of membership for polynomially-large
sets in Zp with linear CRS. The idea is to give in the common reference string
Boneh-Boyen signatures to each element of the set. The proof of membership is
just a proof of knowledge of a valid signature. Recall that [σ]2 is a valid signature
for x if and only if

e([sk − x]1, [σ]2) − [1]T = [0]T .

The statement x ∈ Z is proven committing to x and to [σ]2 =
[

1
sk−x

]

2
, and

giving a Groth-Sahai proof for the satisfiability of the verification equation.
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The problem with this approach is that it is not possible to extract x ∈ Zp

from its Groth-Sahai commitment, but only [x]1 ∈ G1. Therefore, it is not clear
how to reduce soundness to the EUF-CMA security of Boneh-Boyen, as the
reduction can only output a “relaxed form” of forgery ([x]1, [σ]2), for some x /∈ Z,
instead of (x, [σ]2).2

It turns out that Boneh-Boyen signatures are not unforgeable when purported
forgeries are pairs of the form ([x]1, [σ]2). The problem is that [x]1 may be
dependent of sk, whereas this is impossible when x ∈ Zp must be given. Indeed,
for any message of the form [sk − x]1 one might compute a forgery as [1/x]2.

To solve this issue, we force the prover to commit to [εx]1, where the discrete
logarithm of [ε]1 remains hidden. Since [sk ·ε]1 is not given, the adversary cannot
choose x to be a function of sk.

Scheme Description. We give a proof of membership in Z = {z1, . . . , zm} ⊂
Zp. More precisely, we build a proof for the family of languages:

Lmemb,Z,ck :=
{
[c]1 ∈ G

2
1

∣
∣∃w ∈ Zp s.t. [c]1 = Comck(x;w) and x ∈ Z } .

Setup. Parameters for the Boneh-Boyen signatures are generated. Choose ε ←
Zp. The CRS contains [ε]2, signatures [σj ]2 =

[
1

sk−zj

]

2
of each zj ∈ Z, and the

Groth-Sahai CRS. The simulation trapdoor is ε and the GS simulation trapdoor
for equations which are right-simulatable3.

Prover. If x ∈ Z, then there is some pair ([y]2, [σ]2), where [σ]2 is in the CRS,
such that

e([sk]1 − [x]1, [σ]2) = [1]T and [y]2 = x[ε]2.

The prover produces a Groth-Sahai proof of the equations:

e ([sk]1 − [X]1, [Σ]2) = [1]T and [Y ]2 = X[ε]2

where X,Y,Σ are the variables.

Verifier. Accept if and only if both proofs are valid.

Theorem 3. The argument above is computationally quasi-adaptively sound
under the Z-GSDH Assumption in G2 and the soundness of Groth-Sahai proofs.

Proof. We construct an adversary B against the Z-GSDH assumption, which
receives gk := (p,G1,G2,GT , e,P1,P2) together with [ε]1,2 and {[si]1,2}m

i=1 from

2 An alternative is of course to commit to x bit-by-bit to make it extractable, but it
is completely impractical.

3 See Ràfols [30]. These are statements for which only the commitments in G2 need
to be perfectly hiding and where it is sufficient to get the simulation trapdoor to
equivocate commitments in G2.
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the challenger. The adversary defines a new generator for G2, P2 = [
∏m

i=1(s −
zi)]2, defines a new group key gk := (p,G1,G2,GT , e,P1,P2), and defines [sk]1 =
[s]1. Note that we use implicit notation with respect to P1,P2 and not with
respect to the new generators.

The adversary can now build the signatures
⎛

⎜
⎝zj [ε]2,

⎡

⎢
⎣

m∏

i=1
i�=j

(s − zi)

⎤

⎥
⎦

2

⎞

⎟
⎠ =

(

zj [ε]2,
1

sk − zj
P2

)

which are valid with respect to the group key gk.
Let A be an adversary against our set membership proof. Adversary B

runs A with the new group key gk, Groth-Sahai commitment keys for which
it knows the discrete logarithm (in order to open commitments), and signatures
([σ1]2, . . . , [σm]2). Suppose that A wins by producing an accepting proof for some
x �∈ Z. From the adversary’s proof and committed values one can extract [x]1
and ([y∗]2, [σ∗]2) and, from perfect soundness of Groth-Sahai proofs, it follows
that

e([sk]1 − [x]1, [σ∗]2) = e(P1,P2) and [y∗]2 = x[ε]2.

This implies that [σ∗]2 =
[∏m

j=1(sk−zj)

sk−x

]

2
, and hence ([x]1, [y∗]2, [σ∗]2) is a solu-

tion to the Z-GSDH problem. ��

Theorem 4. The argument above is composable zero-knowledge under the com-
posable zero-knowledge property of Groth-Sahai proofs.

Proof. The proof simulator uses the Groth-Sahai trapdoor and ε to simulate the
Groth-Sahai proof of both equations (note that even though the commitment
[c]1 is part of the statement, both equations are right-simulatable when ε is
known). ��

4.2 Aggregated Set Membership Argument

Let Z ⊂ Zp, m = |Z|, and n ∈ N. We construct a QA-NIZK argument for the
following language

Lmemb,Z,ck :=
{

[c]1 ∈ G
2n
1

∣
∣
∣
∣
∃w ∈ Z

n
p s.t. [c]1 = Comck(x ;w)

and x1, . . . , xn ∈ Z
}

,

where [c]1 = Comck(x ;w) is a vector of ElGamal encryptions. The generalization
to other perfectly binding commitments is straightforward.

Intuition. To express the validity of n signature and message pairs, we construct
polynomials v(X), y(X), which encode the set of n verification equations for the
Boneh-Boyen signatures. Given the set R = {r1, . . . , rn} ⊂ Zp, recall that we
denote as �i(X) the ith Lagrange interpolation polynomial associated to R.
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We define v0(X) as the constant polynomial v0(X) = sk, and t(X) =∏
rj∈R(X − rj). The set of polynomials v0(X), {�i(X)}n

i=0, t(X) accepts
x1, . . . , xn if and only if t(X) divides (v0(X) − v(X))y(X) − 1, where

v(X) =
n∑

j=1

xi�i(X), y(X) =
m∑

i=1

σk(i)�i(X),

and σk(i) is the signature of some zk(i) such that xi = zk(i).
That is, at any point rj ∈ R, if xj = v(rj), then y(rj) is a valid signature of

xj . This follows from

(v0(X) − v(X))y(X) − 1 = h(X)t(X) for some polynomial h(X)
=⇒ (v0(rj) − v(rj))y(rj) − 1 = 0 ⇐⇒ (sk − xj)y(rj) − 1 = 0.

In particular, if j ∈ [n] is such that xj /∈ Z, then y(rj) is a forgery for xj . For
simplicity, in this exposition we ignore the issue mentioned in previous section
about commitment extractability, but this is taken into account in the argument.

Note that to compute y(X) given �i(X) in some source group, the prover
would need to know the discrete logarithm of the signatures. To render the
interpolation polynomials efficiently computable, we include in the CRS the
terms [σis

j ]2, where σi = 1
sk−zi

, for all i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, and all
other values which require the signature’s discrete logarithm. Consequently, our
CRS is of size O(nm).

A direct instantiation of techniques from Sect. 3.1 requires perfectly binding
commitments to each of the signatures and hence, a proof of size linear in the
number of statements. But it turns out that perfectly binding commitments to
signatures are not necessary for proving membership in Z. To achieve this, we
use a trick similar to Sect. 3.1. We program the CRS in order to extract a valid
signature for xj∗ , for a random j∗ ∈ {1, . . . , n}, in such a way that the adversary
might only detect the change in the CRS with negligible probability.

Scheme Description. Given m,n ∈ N and a set Z ⊂ Zp, |Z| = m, we construct
a QA-NIZK argument for the language Lmemb,Z,ck .

Setup.

– Algorithm K0(gk) sets ck = [u ]1 ← L1.
– Algorithm K1(gk , ck) picks s ← Zp,

{
φi, φ̂i

}

i∈{1,...,n+1}
← Z

3
p × Z

4
p, Q1 ←

U3,3,Q2 ← U4,4, picks a Boneh-Boyen secret key sk ← Zp, generates signa-
tures [σ1]2, . . . , [σm]2 for each element in Z and generates also crsΠ1 and crsΠ2
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for proving membership in the linear spaces generated, respectively, by the
matrices M,N, where:

The CRS includes the elements

Prover. The prover P(CRS, [c]1,x ,w) picks δv, δy ← Zp, r q.1 ← Z
3
p, r q.2 ← Z

4
p

and defines the polynomials

v(X) =
n∑

i=1

xi�i(X) + δvt(X), y(X) =
n∑

i=1

σk(i)�i(X) + δyt(X)

h(X) =
(v0(X) − v(X))y(X) − 1

t(X)

where v0(rj) = sk, for all j ∈ {1, . . . , n}, t(X) =
∏

r∈R(X − r) and �i(X) is the
ith Lagrangian interpolation polynomial associated to R. By definition of the
language, each xi is equal to zk(i), for some k(i) ∈ {1, . . . , m}.

The prover computes the following elements:

[H]1 = [h(s)]1
[V ]1 = [v(s)]1 [q1]1 = [

∑n
i=1 xiφi + δvφn+1 + Q1r q.1]1

[Y ]2 = [y(s)]2 [q2]2 =
[∑n

i=1 σk(i)φ̂i + δyφ̂n+1 + Q2r q.2

]

2
.

The prover also computes two LS proofs

ψ1 ← Π1.LS.prove

⎛
⎜⎜⎝crsΠ1 ,

⎡
⎣

c

V

q1

⎤
⎦

1

,

⎛
⎜⎜⎝

x

w

δv

rq.1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ , ψ2 ← Π2.LS.prove

⎛
⎝crsΠ2 ,

[
Y

q2

]

2

,

⎛
⎝

y

δy

rq.2

⎞
⎠

⎞
⎠ ,

where y = (y1,1, y1,2, . . . , yn,m) and yi,j is equal to 1 if i = k(j) and 0 otherwise.
Finally, it sends the proof π to the verifier, where

π := ([H]1 , [V ]1 , [Y ]2 , [q1]1 , [q2]2 , ψ1, ψ2) .
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Verifier. The verifier V(CRS, π) checks whether the equation

e([H]1 , [t(s)]2) = e([v0(s)]1 − [V ]1, [Y ]2) − [1]T holds, and

Π1.LS.verify

⎛

⎝crsΠ1 ,

⎡

⎣
c
V
q1

⎤

⎦

1

, ψ1

⎞

⎠ = 1, Π2.LS.verify

(

crsΠ2 ,

[
Y
q2

]

2

, ψ2

)

= 1.

If all of these conditions hold, it returns 1, else 0.

Completeness. If x1, . . . , xn ∈ Z then (v0(rj) − v(rj))y(rj) − 1 = (xk(j) +
sk)σk(j) − 1 = 0 for all j, and thus (v0(X) − v(X))y(X) = 1 mod t(X).
This implies that h(X) is a well defined polynomial in Zp[X] such that
e ([h(s)]1 , [t(s)]2) = e ([v0(s) − v(s)]1 , [y(s)]2) − [1]T . It is easy to check that

⎛

⎝
c
V
q1

⎞

⎠ = M

⎛

⎜
⎜
⎝

x
w
δv

r q.1

⎞

⎟
⎟
⎠ and

(
Y
q2

)

= N

⎛

⎝
y
δy

r q.2

⎞

⎠ ,

where y = (y1,1, . . . , ym,n), and therefore ψ1, ψ2 are valid proofs.

Soundness

Theorem 5. Let AdvPS(A) be the advantage of a PPT adversary A against the
soundness of the scheme. There exist PPT adversaries B1,B2,B3,1,B3,2,B4,B5

such that

AdvPS(A) ≤ n ( 2AdvL1-MDDH,G1(B1) + 3AdvL1-MDDH,G2(B2) + AdvLS,Π1(B3,1)
+AdvLS,Π2(B3,2) + AdvZ-GSDH,G1(B4) + Advn-QTSDH(B5)) .

Proof. In order to prove soundness we will prove indistinguishability of the
following games.

– Real: This is the real soundness game. The output is 1 if the adversary pro-
duces a false accepting proof, i.e. if there is some xi /∈ Z and the verifier
accepts the proof.

– Game0: This game is identical to the previous one, except that the commit-
ment key u is chosen by the game in order to extract [x ]1 from [c]1.

– Game1: This game is identical to the previous one, except that some j∗ ←
{1, . . . , n} is chosen and the game aborts if the extracted value [x ]1 is such
that [xj∗ ]1 ∈ [Z]1.

– Game2: For i = 1, . . . , n, let αi(X) and βi be the quotient and the reminder,
respectively, of dividing �i(X) by X − rj∗ . Let αn+1(X) and βn+1 be the
quotient and the reminder of dividing t(X) by X − rj∗ . This game is iden-
tical to the previous one, except that Q1 is now a uniformly random matrix
conditioned on having rank 1, and for i = 1, . . . , n + 1, [φi]1 is changed to

[φi]1 = [αi(s)]1e3
2 + βi[ε]1e3

3 + [Q1]1r i,

where e3
j is the jth vector of the canonical basis of Z3

p, r i ← Z
3
p, ε ← Zp.
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– Game3: Let αi(X) and βi be defined as above. This game is identical to the
previous one, except that Q2 is now a uniformly random matrix conditioned
on having rank 1, and each

[
φ̂i

]

2
is now defined as

[
φ̂i

]

2
= [αi(s)]2e4

2 + [βi]2e4
3 + βi[ε]2e4

4 + [Q2]2r̃ i,

where e4
j is the jth vector of the canonical basis of Z4

p, r̃ i ← Z
4
p and ε ← Zp

is the same value used in the definition of [φi]1.

Obviously, the games Real and Game0 are indistinguishable. The proofs of
indistinguishablility of Game1,Game2 and Game2,Game3 are the same as their
analogues in Sect. 3.1, which can be found in the full version. We proceed to
prove that in Game3 the adversary wins only with negligible probability.

Lemma 5. There exists adversaries B3,i against the soundness of Πi.LS, an
adversary B4 against Z-GSDH in G1, and an adversary B5 against n-QTSDH
such that

Pr[Game3(A) = 1] ≤ AdvLS(B3,1) + AdvLS(B3,2) + Advn-QTSDH(B4) + AdvZ-GSDH,G1(B5).

Proof. Let E1 be the event where (c, V, q1) is not in the image of M, E2 the
event that (Y, q2) is not in the image of N, and E3 = E1 ∪ E2. Then

Pr[Game3(A) = 1] ≤ Pr[Game3(A) = 1|E1] + Pr[Game3(A) = 1|E2] +
+ Pr[Game3(A) = 1|E3], (6)

and, clearly,

Pr[Game3(A) = 1|E1]+Pr[Game3(A) = 1|E2] ≤ AdvΠ1.LS(B3,1)+AdvΠ2.LS(B3,2).

We now proceed to bound Pr[Game3(A) = 1|E3]. Conditioned on E3,
there exist some x †,w , δv, r q.1 and y†, δy, r q.2 such that (c, V, q1)� =
M(x †,w , δv, r q.1)� and (Y, q2)� = N(y†, δy, r q.2)�. Given that c is perfectly
binding, it must be that x = x †. It follows that V =

∑n
i=1 xi�i(s)+δvt(s) = v(s)

and Y = y†(s) for some polynomial y†(X) =
∑n

i=1

∑m
j=1 y†

i,jσi�i(X) + δyt(X).
Further, except with probability 1/q, each ei

j is linearly independent of the
columns of [Q1]1, [Q2]2, so one can extract from [q1]1 (resp. [q2]2) the coefficients
of these vectors in its expression in terms of [Q1]1, e3

2, e
3
3 (resp. [Q2]2, e4

2, e
4
3, e

4
4),

which are:

[∑n+1
i=1 xiαi(s)∑n+1
i=1 xiβiε

]

1

=

[
α(s)

βε

]

1

and

⎡

⎢
⎣

∑m,n
i,j=1 y†

i,jσiα̃j(s) + δyα̃n+1(s)
∑m,n

i,j=1 y†
i,jσiβj + δyβ̃n+1

∑m,n
i,j=1 y†

i,jσiβjε + δyβ̃n+1ε

⎤

⎥
⎦

2

=

⎡

⎣
α̃(s)

β̃

β̃ε

⎤

⎦

2

where xn+1 = δv and α(X), α̃(X) are the quotients and β, β̃ are the reminders
of dividing, respectively, v(X) and y(X) by X − rj∗ .
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If we divide both sides of the verification equation by (s−rj∗), and we denote
by α0(s), β0 we get that

e

(

[H]1,
[

t(s)
s − rj∗

]

2

)

=
1

s − rj∗
(e([v0(s)]1 − [v(s)]1, [y(s)]2) − [1]T )

=
1

s − rj∗

[
(v0(s) − v(s))(α̃(s)(s − rj∗) + β̃) − 1

]

T

= [(v0(s) − v(s))α̃(s) + α(s)β̃]T +

[
(v0(s) − β)β̃ − 1

s − rj∗

]

T

Note that β = v(rj∗) = xj∗ , v0(s) = sk and thus if (v0(s) − β)β̃ − 1 = 0, then β̃
is a valid signature for xj∗ .

Let E4 the event (v0(s) − β)β̃ − 1 = 0 and thus Pr[Game4(A) = 1|E3] ≤ Pr[
Game4(A) = 1|E4 ∩ E3] + Pr[Game4(A) = 1|E4 ∩ E3].

We build an adversary B4 against Assumption 6 which receives gk, {[ski]1,
[ski]2}i∈[m], [ε]1,2. Essentially, the adversary works as the one described in
Sect. 4.1 for the (non-aggregated) set membership argument. It simulates
Game4(A) computing all the discrete logarithms of the CRS itself, except for
the Boneh-Boyen secret key, [ε]1,2, and the signatures in the CRS are com-
puted as in Sect. 4.1. When A outputs [q1]1, [q2]2, B4 extracts [βε]1, [β̃]2 and
returns ([xj∗ ]1, [βε]1, [β̃]2). In the case E4, we have already argued that β̃
is a valid signature for xj∗ , and in this game xj∗ /∈ S. We conclude that
Pr[Game4(A) = 1|E4 ∩ E3] ≤ AdvZ-GSDH,G1(B4).

We also construct B5 an adversary against Assumption 8. It receives as
input [ε]1, [ε]2, [s]1, [s]2, . . . , [sd]1[sd]2 and it starts a simulation of Game4(A),
by sampling honestly the rest of the elements of the CRS. Finally, A outputs
[V ]1, [Y ]2, [q1]1, [q2]2 as part of the purported proof for [c]1. We will see in the
following how B4 computes [ν]T :=

[
(v0(s)−β)β̃−1

s−rj∗

]

T
and returns ([v0(s) − β]1 ,

[(v0(s) − β)ε]1, [β̃]2, [β̃ε]2, [ν]T ), with (v0(s) − β)β̃ − 1 �= 0, breaking
Assumption 8.

The values [α̃(s)]2, [β̃]2 and [β̃ε]2 are extracted from [q2]2, while [α(s)]1, [βε]1
are extracted from [q1]1, [β]1 = [xj∗ ]1 is extracted from [c]1, β0 = sk, and
[v0(s)ε]1 = sk[ε]1 can be computed by B5 because it sampled sk. The value [ν]T
is computed as

[ν]T := e

(

[H]1,
[

t(s)
s − rj∗

]

2

)

− e([v0(s)]1 − [V ]1, [α̃(s)]2) − e
(
[α(s)]1, [β̃]2

)
.

Zero-Knowledge. The proof of perfect zero-knowledge is essentially the same
as for Theorem 2. Note that [V ]1, [Y ]2, [q1]1, [q2]2 are independent of x , while
[H]1 is the unique solution to the verification equation. Perfect zero-knowledge
of the argument of membership in linear spaces implies that the proofs ψ1, ψ2

can be simulated with the same distribution as honest proofs.
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5 Shuffle Arguments

From our results, we can construct two different shuffle arguments in the CRS
model under falsifiable assumptions. They both follow the basic template of
the shuffle argument of [15]. Let [c1]2, [c2]2 be two vectors of n ciphertexts
which open to vectors of plaintexts [m1]2, [m2]2, respectively, and we want to
prove that m2 is a permutation of m1. The shuffle argument of [15] consists
of the following steps. The CRS includes a vector of group elements [z ]1 =
([z1]1, . . . , [zn]1) sampled uniformly and independently. The prover chooses a per-
mutation [x ]1 = ([x1]1, . . . , [xn]1) of [z ]1 and proves: (1) xi ∈ Z = {z1, . . . , zn}
for all i ∈ {1, . . . , n}, (2)

∑
xi =

∑
zi and (3)

∑
zim1,i =

∑
xim2,i.

The first two steps force x to be a permutation of z : if all xi ∈ Z and their
sum equals the sum of all the elements in Z and x is not a permutation, the
prover has found a non-trivial combination of elements of Z which is 0, which is a
type of kernel problem. The last step links this fact with m2 being a permutation
of m1.

In both our constructions and in the original argument of [15], Steps (2)
and (3) are handled with the following Groth-Sahai equations, in which upper-
case letters are variables for which the prover has provided commitments: (2)∑

[Xi]1 =
∑

[zi]1 and (3)
∑

e([zi]1, [M1,i]2) =
∑

e([Xi]1, [M2,i]2).
We next specify two different ways of proving Step 1, which results in two

different constructions with different performance.

5.1 Unit Vector Argument

The first approach is the closest to the work of González et al. [15]. There, Step 1
is rewritten as proving that x = z�B , for a matrix B = (b1| . . . |bn) ∈ {0, 1}n2

,
where the bi are unitary vectors (not necessarily different, as this is handled
by step 2). The approach of [15] is to adopt a commit-and-prove strategy using
arguments for linear spaces and the bitstring argument of [14]. The ‘prove’ part
is constant-size, but the ‘commit’ part is a priori quadratic, as we would need
to commit to each entry of the matrix B .

To overcome this and obtain linear complexity, they switch to shrinking com-
mitments to each row b∗

i of B , which take only two elements each. Obviously
these commitments cannot be perfectly binding, and this fact interferes with
the extraction step in soundness proof. However, a key step in their argument is
that they set these commitments in a way that one single coordinate j∗ (which
remains unknown to the adversary) is perfectly binding. Thus the corresponding
column is uniquely determined and can be extracted in the proof. From here, it
is concluded that an adversary cannot cheat in the j∗-th ciphertext, and since
j∗ is unknown to the adversary, general soundness is reduced to this case with a
tightness loss of 1/n. Note that this is on top of the factor 1/n from the bitstring
argument, resulting in a soundness loss of 1/n2.

We observe that we can plug our unit vector argument instead of the one
from [14], modified to accept shrinking commitments to each of the rows of B as
those in [15]. We include an additional game at the beginning of the soundness
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proof of the unit vector argument, in which we choose a random coordinate and
abort if the corresponding commitment is not in the language. From here on the
proof works as in unit vector presented in the full version. This proof inherits the
disadvantages of [15], namely the quadratic CRS and the tightness loss in the
security reduction, but we improve the proof size from (4n+17)|G1|+14|G2| to
(4n + 11)|G1| + 8|G2| and our proof still uses falsifiable and static assumptions.

5.2 Argument of Membership in a Set of Group Elements

Another approach to Step 1, instead of the aggregated unit vector proofs, is to
prove directly membership in a subset Z = {[z1]1, . . . , [zn]1} ⊂ G1. Note that
the set is witness sampleable and in particular, the discrete logarithms might
be known when generating the CRS. More precisely, we want to construct an
argument for the language

Lmemb-group,Z,ck :=
{

[c]1 ∈ G
2
1

∣
∣∃w ∈ Zp s.t. [c]1 = Comck([x]1; w) and [x]1 ∈ Z

}
,

and for efficiency, the proof should be aggregated. This can be achieved by
modifying the aggregated membership proof in a subset of Zp from Sect. 4.2.
Note that there we had x ∈ Zp, and this was necessary to produce the proof,
so to ensure completeness when the prover knows only [x]1 ∈ Z ⊂ G1, we
provide additional elements in the CRS. This is possible because the set is witness
sampleable. More precisely, x was involved in the definition of the terms

[V ]1 = [v(s)]1, where v(X) =
n∑

i=1

xi�i(X) + δvt(X),

[q1]1 =

[
n∑

i=1

xiφi + δvφn+1 + Q1r q.1

]

1

,

so we include the elements {[zi�j(s)]1, [ziφj ]1}i,j∈{1,...,n} in the CRS. The proof
works exactly the same, as the reduction could only open the commitments in
the group.

We can use this to prove Step 1 of the shuffle argument above. In this case,
the CRS size is still quadratic in the number of ciphertexts, but we avoid losing
the second factor 1/n in the reduction, and the proof consists only of the com-
mitments to [xi]1 and a constant number of elements. More precisely, the proof
size is (2n + 11)|G1| + 8|G2|.

References

1. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 27

2. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

https://doi.org/10.1007/978-3-540-28628-8_27


342 V. Daza et al.

3. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree
polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp.
561–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 19

4. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

5. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

6. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
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Abstract. In applications of fully-homomorphic encryption (FHE) that
involve computation on encryptions produced by several users, it is
important that each user proves that her input is indeed well-formed.
This may simply mean that the inputs are valid FHE ciphertexts or,
more generally, that the plaintexts m additionally satisfy f(m) = 1 for
some public function f . The most efficient FHE schemes are based on the
hardness of the Ring-LWE problem and so a natural solution would be to
use lattice-based zero-knowledge proofs for proving properties about the
ciphertext. Such methods, however, require larger-than-necessary param-
eters and result in rather long proofs, especially when proving general
relationships.

In this paper, we show that one can get much shorter proofs (roughly
1.25 KB) by first creating a Pedersen commitment from the vector cor-
responding to the randomness and plaintext of the FHE ciphertext. To
prove validity of the ciphertext, one can then prove that this commit-
ment is indeed to the message and randomness and these values are in
the correct range. Our protocol utilizes a connection between polyno-
mial operations in the lattice scheme and inner product proofs for Ped-
ersen commitments of Bünz et al. (S&P 2018). Furthermore, our proof of
equality between the ciphertext and the commitment is very amenable
to amortization – proving the equivalence of k ciphertext/commitment
pairs only requires an additive factor of O(log k) extra space than for one
such proof. For proving additional properties of the plaintext(s), one can
then directly use the logarithmic-space proofs of Bootle et al. (Eurocrypt
2016) and Bünz et al. (IEEE S&P 2018) for proving arbitrary relations
of discrete log commitment.

Our technique is not restricted to FHE ciphertexts and can be applied
to proving many other relations that arise in lattice-based cryptography.
For example, we can create very efficient verifiable encryption/decryption
schemes with short proofs in which confidentiality is based on the hard-
ness of Ring-LWE while the soundness is based on the discrete logarithm
problem. While such proofs are not fully post-quantum, they are ade-
quate in scenarios where secrecy needs to be future-proofed, but one only
needs to be convinced of the validity of the proof in the pre-quantum era.
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We furthermore show that our zero-knowledge protocol can be easily
modified to have the property that breaking soundness implies solving
discrete log in a short amount of time. Since building quantum comput-
ers capable of solving discrete logarithm in seconds requires overcoming
many more fundamental challenges, such proofs may even remain valid
in the post-quantum era.

1 Introduction

Fully-homomorphic encryption (FHE) allows for evaluations of arbitrary func-
tions over encrypted data. The traditional application of this primitive is out-
sourcing – a user encrypts his data and sends it to a server who performs the
(intensive) computation and returns back the encrypted result. In this scenario,
the user is the only one affected by the outcome of the computation, and so it
is not necessary for him to prove that his ciphertexts he submitted to the server
are properly formed.

There are other applications of FHE, however, that involve computations
on ciphertexts submitted by several users [LTV12,MW16,PS16]. For example,
multi-key FHE allows the server to compute over ciphertexts encrypted under
different keys and produce a result that can then be jointly decrypted by the
participating parties. One can also use FHE in a “distributed ledger” (e.g.
[ABB+18]) setting where users can submit ciphertexts encrypted under some
particular public key and a computation can be performed by anyone on behalf
of the holder of the secret key to produce an encrypted output. This is useful
in scenarios where certain entities (the holder of the secret key in our example)
wish to perform only a limited amount of computation.

For the above scenarios where more than one user is involved, it is impor-
tant that each party provides a zero-knowledge proof that his input is a valid
FHE ciphertext – otherwise the final output may, unknowingly to anyone else,
be constructed from invalid data. It may furthermore be necessary to prove
that the encrypted message satisfies certain additional properties dictated by
the protocol. For encryptions based on the discrete logarithm problem, such
proofs can be very efficiently constructed for certain relations using techniques
in [CS03] and for general circuits using the more recent logarithmic space proofs
for discrete logarithms [BCC+16,BBB+17]. FHE schemes, on the other hand,
are constructed from LWE (or LWE-like) encryption schemes (e.g. [BGV12]),
which unfortunately do not enjoy such practical proofs. For example, the most
efficient verifiable encryption scheme for Ring-LWE [LN17] ciphertexts only han-
dles linear relations B �m = �t and gives proofs of knowledge of an �m′ satis-
fying B �m′ = c · �t, where c is some polynomial with small coefficients. This
is satisfactory in some scenarios (see [LN17] for examples), but is not general
enough for many other applications. Obtaining proofs without the polynomial c
even for simple relations would make the proof sizes on the order of megabytes
(cf. [LLNW18]).
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In this work, we take a different approach for creating such proofs. An FHE
(or more generally, a Ring-LWE) ciphertext can be written as

A�s = �t (1)

where A is the public key, �t is the ciphertext, and �s consists of the randomness
and the message. All operations are performed over some polynomial ring Rq =
Zq[X]/(f) for some integer q and a monic, irreducible polynomial f ∈ Z[X] of
degree d.

The main result of the current work is an efficient protocol for proving knowl-
edge of �s with small coefficients in the above equation. Our strategy is to first
create a joint Pedersen commitment t = Com(�s) to all the coefficients in �s, and
prove in zero-knowledge that these coefficients, when interpreted as a polynomial
vector �s, satisfy (1). At the same time, the proof will also show that the coeffi-
cients of �s are in the required range for valid Ring-LWE ciphertexts. Moreover,
if we have many Ring-LWE ciphertexts �t1, . . . ,�tk, then the size of our proof is
only approximately an additive factor of O(log k) larger than the proof for one
equation in (1).

Once we have a Pedersen commitment of the coefficients of �s, we can addi-
tionally use the aforementioned very efficient zero-knowledge proofs for discrete
logarithm commitments [BCC+16,BBB+17] to prove arbitrary properties of the
plain-text contained in �s. This gives us a verifiable encryption scheme (and also
a verifiable decryption scheme) for Ring-LWE ciphertexts (see Sect. 1.5). As an
example of the proof size, a proof of ciphertext validity of a Ring-LWE encryp-
tion scheme in (9) requires only 1.25 KB.

1.1 Post-quantum Security

One of the side advantages of FHE based on Ring-LWE is that the encryption
scheme remains secure against quantum attacks (assuming that the Ring-LWE
problem is post-quantum secure). Since Pedersen commitments are statistically-
hiding and all the proofs are statistical zero-knowledge, the secrecy of the cipher-
text and the Pedersen commitment is still based on just Ring-LWE. The sound-
ness of the proofs, however, is based on the hardness of the discrete log problem
and is therefore not post-quantum.

Having the soundness of the proof not be post-quantum is still, for many
scenarios, acceptable even if we do foresee quantum computers appearing in
the future. For example, all proofs created until quantum computers capable
of breaking discrete log actually appear would still be valid. Furthermore, the
protocol can be easily altered to force the prover to create his Pedersen com-
mitment and the zero-knowledge proof with “fresh” randomly-chosen generators
and complete his proof in a specified amount of time.1 Breaking the soundness

1 If the proof is to be made non-interactive, the randomness for creating the genera-
tors could come from some public randomness beacons (e.g. the NIST randomness
beacon).
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of this proof system would thus require solving the discrete log problem using a
quantum computer within a prescribed (e.g. several seconds) time interval.

While building a quantum computer capable of breaking cryptographic prob-
lems presents a very substantial scientific and engineering challenge, building one
that is capable of solving such problems in seconds is a potentially significantly
harder problem. For a 2048-bit number, under some reasonable assumptions on
the error rate and the speed of each gate computation on a superconducting
platform, this would take around 27 h and a billion physical qubits [FMMC12].
A trapped-ion based computer with very low error rate would need 110 days to
perform the same operation [LWF+17]. One can sometimes decrease the run-
ning time by utilizing more qubits, but there are several other roadblocks that
would keep the computation time from decreasing beyond certain barriers (c.f.
[Gid18] for a discussion). While it is too early to guess when (or if) it will be
possible to run Shor’s algorithm in under a minute, it certainly appears to be a
problem that will require overcoming many more fundamental challenges even
after a “basic” fault-tolerant universal quantum computer is built.

1.2 Other Applications

Our general result gives a way to prove knowledge that the secret �s in the lin-
ear equation (1) is the same as in the commitment Com(�s), where Com(·) is
a Pedersen commitment to the individual coefficients of �s. Because (1) is quite
generic, it can be used to represent many relations throughout lattice cryptogra-
phy. For example, ciphertexts, commitments, public keys in encryption/signature
schemes, etc. are all of this form. One can therefore apply our protocol as a first
step in a larger protocol that needs to prove something about the secret �s.
For example, verifiable encryption and decryption schemes (where the prover or
decryptor needs to prove that the plaintext m satisfies f(m) = 1 for some public
function f) has many applications (c.f. [CS03]) and such schemes that retain the
post-quantum secrecy of the ciphertext can thus be built using our techniques.
We sketch the construction in Sect. 1.5 and note that proving validity of FHE
ciphertexts is just a special case of verifiable encryption.

1.3 Previous Related Work

A connection between Ring-LWE and discrete log commitments has been previ-
ously explored by Benhamouda et al. [BCK+14]. The construction in the current
paper is completely different and enjoys significant advantages (both theoretical
and practical) over the aforementioned prior work. Firstly, the modulus q in (1)
has to be the same as the group size underlying the discrete log commitment
for the proof in [BCK+14] – and taking q ≈ 2256 would require making the
Ring-LWE/FHE scheme significantly less efficient than it needs to be (typical
sizes of q are ≈ 230). Secondly, the protocol in [BCK+14] requires a separate
Pedersen commitment for every coefficient of �s rather than one commitment for
all the coefficients of �s. Thirdly, the proof is a Σ-protocol with soundness error
1/d (where n is the degree of f) and so needs to be repeated around a dozen
times. While [BCK+14] did not provide concrete parameters, we would estimate
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that our proofs would be shorter by 2–3 orders of magnitude. And additionally,
our current proof can be amortized for proving k equations as in (1) while only
incurring an O(log k) additive overhead.

Our work can also be seen as complementary to that of Fiore, Gennaro, and
Pastro [FGP14] where they give a succinct proof that the evaluation in the FHE
scheme was performed correctly for certain types of functions.

1.4 High Level Overview of the Protocol

Our general proof is for k copies of (1) – in other words a proof of a matrix
S ∈ Rm×k

q with bounded coefficients such that

AS = T mod (f , q). (2)

We will explicitly write out which modular reductions occur as it will change
throughout the protocol.

In this overview, we will sketch the proof of a simpler version of (2), which
is just a Ring-LWE/Ring-SIS equation

m∑

i=1

aisi = t mod (f , q) (3)

where ai, t, si ∈ Rq and the coefficients of si have absolute value less than B.
Afterwards, we will explain how this can be extended to the full proof of (2).
Let G be a group of size p ≤ 2256 in which the discrete problem is hard.

The prover first rewrites (3) so that it is entirely over the ring Z[X] – i.e.
there are no reductions modulo q and f :

m∑

i=1

aisi = t − r1 · q − r2 · f . (4)

The polynomials r1 and r2 are not unique, but we would like them to simul-
taneously have small coefficients and be of small degree. We show that r1 can be
of degree 2(d−1) and have coefficients of absolute value at most d

2 (Bm+‖f‖∞),
while r2 can have degree d − 2 with coefficients having absolute value at most
1
2 (q − 1).

The prover creates a Pedersen commitment t = Com(s1, . . . , sm, r1, r2) ∈
G where each integer coefficient of si and ri is in the exponent of a different
generator gj .2 The prover sends t to the verifier.

2 If we would like to achieve post-quantum security based on the assumption that
discrete log cannot be solved in a prescribed amount of time, then the gi should not
be known to the prover before the start of the proof. This can be arranged by either
having the verifier sending them (or more precisely, send a short seed that expands
into the prescribed number of generators) at the start of the protocol or using a
randomness beacon in non-interactive proofs.
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The verifier chooses a random challenge element α ∈ Zp and sends it to the
prover. The prover now needs to give several proofs. In the real protocol, all these
will be combined into one proof, but for ease of exposition, we will explain them
separately here. The first proof is a range proof πs,r from [BBB+17] showing
that all the committed values in t are in the correct ranges. The second proof is
a proof that (4) evaluated at α holds true over the field Zp. By the Schwartz-
Zippel lemma, this implies that with probability > 1−2d/|G|, this equation also
holds true over the polynomial ring Zp[X]. Since we have already proven that
the coefficients of si and ri are relatively small and we assumed that q is also
small (compared to p), we know that if (4) holds true in Zp[X], then it also
holds over Z[X] because no reduction modulo p takes place. This will complete
the proof. We now just have to prove that (4) evaluated at α holds true mod p.

Define the matrices

U =
[
a1(α ) · · · am(α) q f(α)

]
mod p, S =

⎡

⎢⎢⎢⎢⎣

− s1 −
· · ·

− sm −
− r1 −
− r2 −

⎤

⎥⎥⎥⎥⎦
, V =

⎡

⎢⎢⎣

1
α
. . .

αd−1

⎤

⎥⎥⎦ mod p,

(5)
where the rows of S consist of the integer coefficients of si and ri with the
constant coefficient being in the leftmost column row and the coefficients of

Xd−1 being in the rightmost (e.g. if si =
d−1∑
j=0

σjX
j , then the ith row of S is

[
σ0 σ1 · · · σd−1

]
. With this notation, observe that the matrix product

SV =
[
s1(α) · · · sm(α) r1(α) r2(α)

]T mod p,

and so

USV =
m∑

i=1

ai(α)si(α) + r1(α)q + r2(α)f(α) mod p.

Thus if we prove that

USV = t(α) mod p, (6)

then we will end up proving that (4) evaluated at α is true modulo p. Since
U, V and t(α) are public and we have a commitment to the coefficients of S, we
can apply an extension of the inner-products proofs from [BCC+16,BBB+17]
to prove our linear relation.3 To complete the protocol, the prover simply sends
π, πs,r to the verifier and he accepts if all the proofs are correct.

3 The “inner-product” proofs in [BCC+16,BBB+17] show that the vectors committed
to in a Pedersen commitment satisfy a linear relation. This can also be extended to
matrices.
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Combining the Two Proofs. In the real protocol which we describe in Sect. 5,
we combine the two proofs πs,r and π into one. The reason is that the range
proof πs,r in [BBB+17] works by writing each coefficient in binary, storing a
matrix of these coefficients, and then giving a proof that each coefficient of
the decomposition is 0 or 1 (the number of these coefficients then implies the
range). Due to the fact that the ranges of the si and ri are different, storing
these in the same matrix would require us to increase the size of the matrix to
accommodate the largest coefficients, which would be wasteful. Thus instead of
proving the matrix equation (6), we write these out as a series of appropriate
equations (each of varying lengths) where the coefficients of S are in binary and
prove those instead. This allows us to do a range proof and the proof of (6) in
one step.

We provide explicit details of the above algorithm in Sect. 5. We additionally
obtain a tighter security proof of the inner-product proof of [BCC+16,BBB+17]
by using a different extraction strategy, described in Sect. 3. In addition, our
zero-knowledge range proof is somewhat simpler than the one in [BBB+17]
because our range proof is constructed on top of a zero-knowledge inner product
proof instead of the original Bulletproof inner product proof which is not zero-
knowledge. This allows for not blinding the vectors in the range proof simplifying
extraction and saving two rounds of the protocol. The additional complexity in
the inner product proof is basically just a Schnorr proof (see Sect. 4). These
small improvements may be of independent interest.

Some Observations About the Proof Strategy. The reason that we con-
verted (3) into (4) and then used the Schwartz-Zippel lemma for proving (4) is
for reducing the time complexity of the proof. An alternate, simpler, procedure
for proving (3) would have been the following: first write (3) as

m∑

i=1

aisi = t + r1q mod f , (7)

and create the commitments ts and tr1 as before. Now, observe that polynomial
multiplication aisi can be written as a matrix/vector product As, where column
j (labeled from 0 to d − 1) of A consists of the coefficients of the d − 1 degree

polynomial aiX
j mod f and s is a vector of coefficients of si. Thus

m∑
i=1

aisi can

be written as a matrix/vector product itself. Then one could directly apply the
modified inner-product proof to prove (7) modulo p, which would again imply
that this equation holds true over Z (since the coefficients are all much smaller
than p), and so this implies (3).

The main problem with the above approach is that the matrices A are d × d
matrices, and so the proof of matrix/vector product would require O(d2) expo-
nentiations (or multiplications in elliptic curve groups) in G. For typical values of
d > 1000, this operation is quite expensive and could take several minutes even
on a reasonably powerful machine. Our proof, on the other hand, takes advan-
tage of the fact that the operations can be interpreted over the ring Zp[X] for a
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very large p and one can then prove polynomial equality via the Schwartz-Zippel
lemma. Since polynomial evaluation is an inner-product of d-dimensional vec-
tors, constructing a matrix product proof only requires O(d) exponentiations per
evaluation. Note that this is also the reason that our proofs would be much less
computationally efficient for proving relations over Z (i.e. LWE/SIS relations).

Another issue to draw attention to is that the polynomial equations we want
to prove are modulo q, whereas the proofs are done modulo a larger p. As men-
tioned before, the reason for this is that in typical cryptographic applications
of the Ring-LWE/Ring-SIS problems (such as FHE), the modulus q is not very
large (smaller than 240). On the other hand, the discrete log commitments must
be performed over a much larger-size group. If, however, an application called
for the modulus q to be a large prime, then our proof could use q = p, and we
would never need to switch to working over Z[X] – we could always work over
Zq[X] and have no need for the polynomial r1.

Simultaneously Proving k Polynomial Equations. The proof for prov-
ing knowledge of S satisfying (2) is a straightforward extension of the above-
described algorithm with the strategy for the proof being the same. First, we
will prove that in the analogue of (4),

AS = T − qR1 − fR2, (8)

all the coefficients of S,R1,R2 are small and then prove that the above equation
holds, with high probability, over the ring Zp[X] for a very large p. This will imply
that (8) also holds over Z[X], and thus (2) is true. We now describe the protocol
in slightly more detail.

The first step of the protocol remains virtually identical with the prover
committing to S and R1,R2. After receiving the challenge α, the prover again
wishes to show that the coefficients of S,R1,R2 are in the appropriate ranges
and prove the equality of (8) where each polynomial is evaluated at α.

If we define In ∈ Z
n×n to be the identity matrix, then one can rewrite what

we would like to prove as

[
A(α) qIn f(α)In

] ·
⎡

⎣
S(α)
R1(α)
R2(α)

⎤

⎦ = T(α) mod p.

If, for a polynomial m×k matrix S, we create the m× (kd) integer matrix �S
by writing each polynomial in S as a row consisting of its d coefficients (the way
that si were expanded in the matrix S in (5)), then we can rewrite the above
equation as

[
A(α) qIn f(α)In

] ·
⎡

⎣
�S
�R1

�R2

⎤

⎦ ·

⎛

⎜⎜⎝Ik ⊗

⎡

⎢⎢⎣

1
α
. . .

αd−1

⎤

⎥⎥⎦

⎞

⎟⎟⎠ = T(α) mod p.
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Since all the matrices in the above equation except

⎡

⎣
�S
�R1

�R2

⎤

⎦ are public, we can

again apply the modified inner-product proof from [BCC+16,BBB+17] to prove
the equality modulo p. And again, as before, our real protocol would combine
the range proof and modified inner-product proof into one proof.

1.5 Application to Verifiable Encryption and Decryption
for Ring-LWE Ciphertexts

Notice that the first step of our proof involved creating a Pedersen commitment
t to the coefficients of S. The rest of the proof then went on to show that the
commitment is really to an S satisfying (2). Since at the end of the protocol,
we end up with a Pedersen commitment to S, we can use another SNARK (e.g.
one from [BBB+17]) that proves arbitrary relations of its committed values.
Thus just proving knowledge of S naturally gives rise to verifiable encryption
and decryption schemes for Ring-LWE encryption, as we sketch below.

In a verifiable encryption scheme, the encryptor produces an encryption of
a message m and a ZKPoK that the ciphertext is a valid encryption to m and
that f(m) = 1 for a public function f . Consider the following “usual” encryption
scheme based on Ring-LWE [LPR13]:

The secret key are polynomials s, e with small, bounded coefficients and the
public key consists of a random polynomial a ∈ Rq and t = as + e ∈ Rq.

The encryption of a message m ∈ Rq, where all coefficients of m are in the
range [0, p), is created as in the below equation, where r, e1, e2 are polynomials
with bounded coefficients.

[
pa p 0 0
pt 0 p 1

]
·

⎡

⎢⎢⎣

r
e1
e2
m

⎤

⎥⎥⎦ =
[
u
v

]
(9)

For a verifiable encryption scheme, we can use our proof system with A ∈
R2×4

q and S ∈ R4×1
q to create a Pedersen commitment(s) to S and prove that

all the coefficients of r, ei,m lie within their prescribed bounds and that (9) is
satisfied by the commitment(s) representing S. The preceding proves knowledge

of the plaintext m for the ciphertext
[
u
v

]
.

To decrypt a ciphertext
[
u
v

]
, the decryptor first computes

v − us = p(er + e2 − se1) + m. (10)

Since all the coefficients of the above equation are small, no reduction modulo
q takes place and this equation holds true over Z[X]. Computing v − us mod p
therefore recovers m.
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To construct a verifiable decryption scheme, let g = er + e2 − se1 from
the above equation. Let β be a bound on g such that no reduction modulo
q takes place in (10) and so decryption still works (i.e. β should be less than
approximately q/p). Then the decryptor should be able to prove knowledge of
s, e,g,m in the following equation with coefficients of s, e having the appropriate
bounds and m having all coefficients in [0, p).

[
a 1 0 0
u 0 p 1

]
·

⎡

⎢⎢⎣

s
e
g
m

⎤

⎥⎥⎦ =
[
t
v

]
. (11)

Proving the above shows that m is a valid decryption. To show that there
is only one possible decryption (i.e. only one possible solution to the above
equation), suppose there exist two solutions:

[
a 1 0 0
u 0 p 1

]
·

⎡

⎢⎢⎣

s
e
g
m

⎤

⎥⎥⎦ =
[
t
v

]
and

[
a 1 0 0
u 0 p 1

]
·

⎡

⎢⎢⎣

s′

e′

g′

m′

⎤

⎥⎥⎦ =
[
t
v

]
. (12)

If s �= s′, then the first row of (12) implies a non-zero solution to

a(s − s′) + (e − e′) = 0.

Writing a as above can either be shown to be impossible either via an
information-theoretic argument or via the computational assumption that the
Ring-SIS problem [PR06,LM06] is hard.4

If s = s′, then the second row of (12) implies that p(g− g′) + (m−m′) = 0.
Since the coefficients are small enough that no reduction modulo q takes place,
the preceding implies that m−m′ is a multiple of p, which implies that m = m′

(since the coefficients of m − m′ are in the range (−p, p).)

1.6 Open Problems

We have shown how linear relations over polynomial rings can have very com-
pact proofs by converting the problem into a form that is compatible with the
compact SNARKs in [BCC+16,BBB+17]. While the proofs are small, creating
such proofs may require on the order of hundreds of thousands of exponenti-
ations. It would therefore be interesting to see whether one can transform the
problem into a form compatible with SNARKS that are less compact but may
require fewer operations, such as for example those in [WTS+18]. Since the latter
proofs are particularly tailored to parallelizable functions, they may also result
in rather efficient proofs for LWE/SIS ciphertexts, and not require one to work
over polynomial rings. We leave this direction as an open problem.
4 In general, the polynomial a is created as H(seed), where H is a cryptographic hash

function and the seed is public. It is therefore a valid assumption that a is random
in Rq.
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2 Notation

We use bold letters f for polynomials, arrows for column vectors as in �v, and
capital letters A for matrices. Vectors and matrices of polynomials are denoted
by bold letters �v with arrows and bold capital letters M, respectively. We write
R = Z[X]/(f) for the ring of integer polynomials modulo a monic irreducible
polynomial f ∈ Z[X], Rq for the quotient ring R/qR for some prime q and
similarly Zp for Z/pZ.

Let �v1 ∈ Z
n
p and �v2 ∈ Z

n
p be two vectors over Zp. Then we write 〈�v1, �v2〉 ∈ Zp,

�v1 ◦ �v2 ∈ Z
n
p and �v1 ⊗ �v2 ∈ Z

n2

p for their inner product, componentwise product
and tensor product, respectively.

Norms. The absolute value |a| of an element a ∈ Zq is defined to be the absolute
value of the centralized representative in {−(q−1)/2, . . . , (q−1)/2}. The infinity
norm ‖s‖∞ of a polynomial s ∈ Rq is the maximum absolute value of all of its
coefficients. Likewise, the infinity norm ‖�s‖∞ of a vector of polynomials is the
maximum over the infinity norms of its coefficient polynomials.

Multi Exponentiations. For a group G of order p, written multiplicatively,
and vectors �g = (g1, . . . , gn)T ∈ Gn and �a = (a1, . . . , an)T ∈ Z

n
p we use the

notation
�g�a = ga1

1 . . . gan
n ∈ G.

Throughout the paper the group G will be understood to be cyclic of prime order
p with hard computational discrete-log problem. A Pedersen multi-commitment
over generators �g ∈ Gn, u ∈ G to a vector �v ∈ Z

n
p with randomness ρ

$← Zp

is given by the multi-exponentiation t = �g�vuρ. This is clearly perfectly hiding
and computationally binding under the assumption that it is hard to compute a
non-trivial discrete-log relation between the generators �g, u. The latter problem
is easily seen to be equivalent to the discrete-log problem.

Serializing Matrices to Vectors. We will need to serialize matrices A ∈ Z
n×m
p

to vectors. For this reason we define functions

Serialize : Zn×m
p → Z

nm
p , A 
→ �a

where �a contains the coefficients of A in row major order. So if A = (aij), 0 ≤
i ≤ n−1, 0 ≤ j ≤ m−1, then �a = (ai) with ami+j = aij . In many programming
languages, most notably C, this is how matrices are stored in memory so that
Serialize is a non-operation in these languages. We extend Serialize to polynomial
matrices over Z[X] by first expanding each polynomial to its row coefficient
vector and then proceeding as before.
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Expanding Integers to Their Binary Representation. We will also need
to map integers to their binary representation, including negative integers. For
this we define the function

Binaryb : {−2b−1, . . . , 2b−1 − 1} → {0, 1}b, z 
→ �z

that maps a signed b-bit integer to its binary representation using two’s comple-
ment. More precisely, �z = (z0, . . . , zb−1)T is defined by

z = z0 + z12 + · · · + zb−22b−2 − zb−12b−1.

Again this representation for signed integers is used by all modern CPU’s and
Binary is a non-operation. We extend Binary to vectors where Binary is applied
to each coefficient individually.

3 Forking Lemma

For proving the security of proof systems based on the Bulletproof technique from
[BBB+17] one needs a special forking lemma which shows that it is possible to
obtain many accepting transcripts from a prover for challenges that are organized
in a large tree. The forking lemma used in the Bulletproof paper goes back
to [BCC+16, Lemma 1]. It is only stated in terms asymptotic in the security
parameter. Moreover, the tree finding algorithm for computing the tree that is
given and analyzed in the proof of the forking lemma does not try to avoid
collisions between the challenges. But it is necessary that there are no collision
so that the transcripts can be used for extraction. Therefore, in order to compute
the success probability of the tree finding algorithm, the collision probability has
to be taken into account in addition to the failure probability of the prover. For
a 256 bit curve, the collision probability gets quite large for moderately sized
trees and as a result of this the reasoning of the forking lemma only applies
to provers whose failure probability 1 − ε is small. Concretely, to obtain a tree
of accepting transcripts of height μ where every inner node has n children one
needs ε > nμ/285. For example in the case of the Bulletproof inner product
proof, where n = 4 and μ = log l with l the length of the vectors, ε > l2/285

and the forking lemma only proves the inner product proof to be sound with
soundness error 2−35 if l = 225, a length easily reached in our application. One
would need to repeat the proof four times in order to get below 2−128.

We give a different forking lemma with a different extraction algorithm
together with a concrete analysis in this section. Our forking lemma achieves
negligible soundness error. It is still non-tight though, which is unavoidable as
one needs to obtain nμ = llog n transcripts. We stress that we do not think that
this non-tightness in the security proof allows for any actual attacks for 256 bit
curves. Let us start by recalling the definition of a tree of accepting transcripts.
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Definition 3.1. Let P∗ be a deterministic prover for a (2μ+1)-move interactive
proof protocol where the honest verifier V sends μ challenges in steps 2, 4, . . . , 2μ.
An (n1, . . . , nμ)-tree of accepting transcripts associated with P∗ is a tree of height
μ of the following form. Every node in level i, 0 ≤ i ≤ μ − 1, has precisely
ni+1 children, all nodes except the root are labeled by a challenge and each leaf
additionally contains the transcript obtained by interacting with P∗ and sending
the challenges in the path from the root to this leaf. Moreover, the challenges in
all nodes with the same parent are distinct and V accepts all transcripts in the
leaves.

Lemma 3.2. Let P∗ be a deterministic prover for a (2μ + 1)-move interactive
proof protocol where the honest verifier V sends μ = log(l) uniformly random
challenges from a set C of size p in steps 2, 4, . . . , 2μ. Then there exists an algo-
rithm tree-finder that, when given rewindable black-box access to P∗, com-
putes an (n1, . . . , nμ)-tree of accepting transcripts with probability at least 1/4 in
expected time at most

O

(
llog n+log α log l

ε

)
(l → ∞)

for every α >
(

1
1−n/p

)2

and with n = max1≤i≤μ−1 ni under the assumption

that P∗ convinces V with probability ε ≥ αμ

α−1
nμ

p = llog α

α−1
nμ

p . Running P∗ once is
assumed to take unit time.

Proof. We construct tree-finder = tree-finder(1) as a recursive algorithm
with tree-finder(i), i = 1, . . . , μ, interacting with P∗ from the 2i-th move
onward. A naive first approach would be as follows. For i < μ, tree-finder(i)
would run P∗ until and including move 2i + 1 sending a uniformly random
challenge ci ∈ C in step 2i. Then the algorithm would call tree-finder(i + 1).
Afterwards it would rewind P∗ back to just after step 2(i − 1) + 1 and repeat
the process for a total of ni different challenges. So in the second iteration
tree-finder(i) would sample a uniform challenge from C\{ci}. The tree-finding
algorithm tree-finder(μ) in the last level would send a last challenge cμ and
check whether the interaction with P∗ led to a valid proof, i.e. V would accept
the proof. Then it would repeat for as many last challenges cμ as needed to
get nμ valid proofs for nμ different cμ. The problem with this approach is that
in any level for many challenges ci there might only be very few continuations
ci+1, . . . , cμ that lead to valid proofs (or none at all). Hence the tree-finding
algorithm might run into dead ends where tree-finder(μ) runs for a very long
time or does not terminate at all.

For fixed challenges c1, . . . , ci−1, let εi be the acceptance probability over
all uniform continuations ci, . . . , cμ. In particular ε1 = ε. Then for some ci let
εi+1 = εi+1(ci) be the acceptance probability under the additional condition that
the i-th challenge is ci. Now from a standard heavy rows/averaging argument we
know εi+1 ≥ εi/α, α > 1, for at least a fraction of 1 − 1/α of the ci. Therefore
our solution to the problem is as follows. After choosing ci, tree-finder(i)
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estimates εi+1 by running P∗ until the end for many continuations ci+1, . . . , cμ

and counting the number of valid proofs. Then the tree finding algorithm only
continues with ci if the acceptance probability does not decrease too much by
fixing ci. The complete algorithm is as follows where 1 < λ <

√
α and Ti are

specified later.

1: function tree-finder(i)
2: Initialize tree as a tree containing only an empty root
3: C′ = ∅
4: while |C′| < ni do
5: if i = μ then
6: Run P∗ until the end using a fresh challenge

cμ
$← C \ C′ and let tr be the transcript of the

full interactive proof
7: if proof is valid then
8: Append new leaf (cμ, tr) to the root of tree
9: C′ = C′ ∪ {cμ}

10: end if
11: else
12: repeat
13: Run P∗ up to and including step 2i + 1 using a

fresh challenge ci
$← C \ C′

14: count = 0
15: for j = 1, . . . , Ti do
16: Run P∗ until the end with fresh challenges

ci+1, . . . , cμ
$← C

17: if proof is valid then
18: count = count + 1
19: end if
20: Rewind P∗ back to just after step 2i + 1
21: end for
22: if count < λTi

ε
αi then

23: Rewind P∗ back to just after step 2(i − 1) + 1
24: end if
25: until count >= λTi

ε
αi

26: tree ′ ←tree-finder(i + 1)
27: Label root of tree ′ by ci and append tree ′ to the root

of tree
28: C′ = C′ ∪ {ci}
29: end if
30: end while
31: return tree
32: end function
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We analyze the algorithm under the assumption εi ≥ ε/αi−1. The challenge
ci is chosen and the acceptance probability εi+1 = εi+1(ci) estimated during the
loop in lines 12–25. We define the following probabilities in one iteration of the
loop.

p0 = Pr
[
count < λTi

ε

αi

]
,

p1 = Pr
[
count ≥ λTi

ε

αi
and εi+1(ci) ≥ ε

αi

]
,

p2 = Pr
[
count ≥ λTi

ε

αi
and εi+1(ci) <

ε

αi

]
.

So p0, p1 and p2 are the probabilities of continuing the loop, choosing a “good”
challenge ci, and choosing a “bad” challenge, respectively. Note that p0 + p1 +
p2 = 1. By the heavy rows argument, with probability at least 1 − 1/

√
α − n/p,

εi+1(ci) ≥ ε/(
√

α · αi−1). Therefore and by the Chernoff bound,

p1 = Pr
[
count ≥ λTi

ε

αi
and εi+1 ≥ ε

αi

]

≥ Pr
[
count ≥ λTi

ε

αi
and εi+1 ≥ ε√

α · αi−1

]

= Pr
[
εi+1 ≥ ε√

α · αi−1

]
Pr

[
count ≥ λTi

ε

αi

∣∣∣∣ εi+1 ≥ ε√
α · αi−1

]

≥
(

1 − 1√
α

− n

p

)
Pr

[
count ≥ λTi

ε

αi

∣∣∣∣ εi+1 ≥ ε√
α · αi−1

]

≥
(

1 − 1√
α

− n

p

)
Pr

[
count ≥ λ√

α
Tiεi+1

∣∣∣∣ εi+1 ≥ ε√
α · αi−1

]

≥
(

1 − 1√
α

− n

p

) (
1 − Pr

[
count ≤ λ√

α
Tiεi+1

∣∣∣∣ εi+1 ≥ ε√
α · αi−1

])

≥
(

1 − 1√
α

− n

p

) (
1 − exp

(
− (1 − λ/

√
α)2

2
Tiεi+1

))

≥
(

1 − 1√
α

− n

p

) (
1 − exp

(
− (

√
α − λ)2

2
√

α
Ti

ε

αi

))
= p′

1

On the other hand we find for p2,

p2 = Pr
[
εi+1 <

ε

αi

]
Pr

[
count ≥ λTi

ε

αi

∣∣∣ εi+1 <
ε

αi

]

≤ Pr
[
count ≥ (1 + δ)Tiεi+1

∣∣∣ εi+1 <
ε

αi

]

≤ exp
(

−1
3

min(δ, δ2)εi+1Ti

)
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where we have set δ > 0 such that (1 + δ)εi+1 = λε/αi, i.e. δ = λε
αiεi+1

− 1. We
want to bound min(δ, δ2)εi+1 from below. Notice that

δ2εi+1 =
λ2ε2

α2iεi+1
− 2λε

αi
+ εi+1

is strictly decreasing on the interval εi+1 ∈ [0, ε/αi[. Hence,

δ2εi+1 >
λ2ε

αi
− 2λε

αi
+

ε

αi
=

ε

αi
(λ − 1)2.

Moreover, δεi+1 > (λ − 1) ε
αi and therefore

p2 < exp
(

− (λ − 1)2

3
Ti

ε

αi

)
= p′

2.

We set λ such that the arguments of the exponential function in p′
1 and p′

2 are
equal; that is,

(
√

α − λ)2

2
√

α
=

(λ − 1)2

3
.

Then p′
1 = (1 − 1/

√
α − n/p)(1 − p′

2). With these probabilities we now calculate
the probability that the loop ends with a bad ci. It is given by

pbad =
∞∑

j=0

pk
0p2 =

p2
1 − p0

=
p2

p1 + p2
=

1
1 + p1/p2

<
1

1 + p′
1/p′

2

=
p′
2

p′
1 + p′

2

.

The probability that the first-level tree-finder(1) chooses n1 good challenges
c1 is (1 − pbad)n1 . Under this condition our assumption ε2 ≥ ε/α is true for the
second-level tree finders and they all choose only good challenges with prob-
ability (1 − pbad)n1n2 . Write N =

∑μ−1
i=1 (n1 . . . ni) ≤ ∑μ−1

i=1 ni = nμ−n
n−1 <

nμ = (2log n)μ = (2μ)log n = llog n for n = max1≤i≤μ−1 ni. We see that with
probability (1 − pbad)N only good challenges are chosen in the whole execution
of the tree-finding algorithm and the assumption is true for all invocations of
tree-finder(i). Now, by the Bernoulli inequality,

(1 − pbad)N ≥ 1 − Npbad > 1 − Np′
2

p′
2 + p′

1

= 1 − Np′
2

p′
2 + (1 − 1/

√
α − n/p)(1 − p′

2)

> 1 − Np′
2

1 − 1/
√

α − n/p
,

which is bigger than 1/2 if p′
2 ≤ (1 − 1/

√
α − n/p)/(2N), which in turn is

implied by

Ti =
3

(λ − 1)2
αi

ε
ln

(
2N

1 − 1/
√

α − n/p

)
= O

(
llog α+log n

ε

)
(l → ∞).
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The expected number of iterations of the loop in lines 12−25 under the condition
that a good ci is chosen is

∞∑

j=1

j
pj−1
0 p1

p1/(1 − p0)
= (1 − p0)

∞∑

j=1

jpj−1
0

=
1

1 − p0
=

1
p1 + p2

<
1
p′
1

=
1

(1 − 1/
√

α − n/p)(1 − p′
2)

= O(1)

and each iteration takes time Ti + 1. So with probability at least 1/2 the condi-
tioned expected runtime of the whole tree finding algorithm is at most

t =
μ−1∑

i=1

ni 1
p′
1

(Ti + 1) +
nμ−1nμ

ε/αμ−1 − nμ/p

<
1
p′
1

μ−1∑

i=1

niTi +
1
p′
1

llog n +
nμ

n

llog n+log α

ε

=
1
p′
1

3
(λ − 1)2

1
αn − 1

ln
(

2N

1 − 1/
√

α − n/p

)
llog n+log α

ε

+
nμ

n

llog n+log α

ε
+

1
p′
1

llog n

= O

(
llog n+log α log l

ε

)
.

Here we have used ε ≥ αμnμ/((α − 1)p) which implies ε/αμ−1 − nμ/p ≥ ε/αμ =
ε/llog α. When we are not so lucky and some bad challenges are chosen the
algorithm might run for a long time but we just limit the runtime to 2t. Then
the probability for obtaining a full n-tree of accepting transcripts is at least
1
2 (1 − 1

2 ) = 1
4 since the probability that an algorithm with expected runtime t

runs longer than 2t is at most 1/2. Notice that in expected time 8t we can obtain
an n-tree of accepting transcripts. ��

Example. The implied constant in the big-O statement for the runtime of the
extractor is readily computed from the formulas in the proof of Lemma 3.2. For
example in the case where p ≈ 2256, n = 4, l = 225 and α = 1.3, one finds that
λ ≈ 1.075 and the implied constant is about 1564.

4 Zero-Knowledge Inner Product Proof

In an inner product proof there is a commitment t = �g�v1�h�v2uρ to two vectors
whose inner product x = 〈�v1, �v2〉 is publicly known. The goal is to prove knowl-
edge of an opening to t that really fulfills this inner product relation. In this
section we give a variant of the Bulletproof inner product proof which differs
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in that it is zero-knowledge. In the original protocol, after folding the vectors
down to just 1-dimensional elements, the prover reveals the opening to the com-
mitment. The main difference of the modified protocol from this section is that
instead of revealing the opening it uses a Schnorr-type proof to prove knowl-
edge of an opening in zero-knowledge, in a way that also proves the necessary
product relation. With a zero-knowledge inner product proof at hand we can sig-
nificantly simplify our main protocol compared to the similar Bulletproof range
proof from [BBB+17]. For example, our proof is only three round compared to
the five rounds of the range proof. The advantage stems from the fact that the
secret vectors do not have to be blinded which is the reason for much of the
complication in the Bulletproof range proof. We write �Π〈·,·〉(·; ·) for our inner
product proof protocol, which is detailed in Fig. 1.

The length l of the secret vectors �v1, �v2 is assumed to be a power of two.
In the main protocol from Sect. 5 we need an inner product proof for vectors of
arbitrary length but it is trivial to achieve this by just padding the vectors with
zeros. If t = �g�v1�h�v2uρ is a commitment to two vectors of length l which is not
a power of two, we can just interpret this as a commitment to vectors of length
2	log l
 over more generators �g′, �h′. Notice that the inner product of the padded
vectors stays the same.

Theorem 4.1. The protocol given in Figs. 1 and 2 is complete, perfectly hon-
est verifier zero-knowledge and generalized special sound under the discrete-log
assumption. So there is an extractor E that, when given rewindable black-box
access to a deterministic prover P∗, either outputs an opening �v∗

1 , �v
∗
2 ∈ Z

l
p,

ρ∗ ∈ Zp of t, i.e. t = �g�v∗
1�h�v∗

2 uρ∗
, such that x = 〈�v∗

1 , �v
∗
2〉, or a non-trivial discrete-

log relation between �g,�h, u and two auxiliary generators e, f ∈ G. The extractor
E runs in expected time at most O(l2+log α log l/ε) for some α > 1, for example
α = 1.3, when P∗ has acceptance probability ε ≥ 10 α

α−1 llog α/p. Running P∗

once is assumed to take unit time.

Proof. The subprotocol without the first move is a 2μ + 1 move protocol for
μ = log(l) + 1, which fulfills the prerequisites of the forking lemma given in
Lemma 3.2. After sending a uniformly random generator a = eb of the group
G for a uniform b ∈ Zp, the extractor E can thus use tree-finder to obtain
a (4, . . . , 4, 5)-tree of accepting transcripts of this subprotocol. More precisely,
with probability at least 1/2 over the choice of a, the verifier V will accept with
probability at least ε/2 ≥ αμ

α−1nμ/p. Therefore tree-finder will be successful
with probability at least 1/8. If it is not successful, E restarts.

Consider the 5 accepting transcripts from neighboring leaves with the same
parent node. Only the last challenges differ in the transcripts and we have the 5
verification equations

(t′′)ciw(w′)c−1
i = gz1,ihz2,iac−1

i z1,iz2,iuτi (13)
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Prover P Verifier V

Inputs:

�g,�h ∈ Gl; u ∈ ,g�G �h, u, t, x

�v1, �v2 ∈ Z
l
p; ρ ∈ Zp

t = �g�v1�h�v2uρ

x = 〈�v1, �v2〉

a� a
$← G

t′ = tax t′ = tax

The parties run (g, h, t′′; v1, v2, ρ
′) = folding(�g,�h, a, u, t′;�v1, �v2, ρ) where the se-

crets v1, v2, ρ
′ ∈ Zp are such that t′′ = gv1hv2av1v2uρ′

.

y1, y2, σ, σ′ $← Zp

w = gy1hy2ay1v2+y2v1uσ

w′ = ay1y2uσ′ w, w′
�

c� c
$← Z

×
p

z1 = y1 + cv1

z2 = y2 + cv2

τ = cρ′ + σ + c−1σ′ z1, z2, τ �

(t′′)cw(w′)c−1 ?= gz1hz2ac−1z1z2uτ

Fig. 1. Zero-knowledge inner product Bulletproof �Π〈·,·〉(·; ·). It proves knowledge of

an opening to a Pedersen commitment t = �g�v1�h�v2uρ such that the vectors �v1 and �v2
fulfill an inner product relation 〈�v1, �v2〉 = x.

for i = 1, . . . , 5 with distinct ci ∈ Zp. Let (λ1, λ2, λ3)T ∈ Z
3
p be the solution of

the linear system ⎛

⎝
1 1 1
c1 c2 c3
c−1
1 c−1

2 c−1
3

⎞

⎠

⎛

⎝
λ1

λ2

λ3

⎞

⎠ =

⎛

⎝
0
1
0

⎞

⎠ .

It exists because it is well-known that the determinant of this Vandermonde
matrix is equal to −(c1c2c3)−1(c1 − c2)(c1 − c3)(c2 − c3) �= 0. Now raise the first
3 equations in 13 for i = 1, 2, 3 to the powers of λi and multiply them. This gives

t′′ = gv∗
1 hv∗

2 ax∗
uτ∗
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Prover P Verifier V

Inputs:

�g,�h ∈ Gl; a, u ∈ ,g�G �h, a, u, t

�v1, �v2 ∈ Z
l
p; ρ ∈ Zp

t = �g�v1�h�v2a〈�v1,�v2〉uρ

Outputs:

g, h ∈ t,h,gG ′

v1, v2, ρ
′ ∈ Zp

t′ = gv1hv2av1v2uρ′

If l > 1, define l′ = l
2

and write �g = �gt
�gb

)
, �h =

�ht
�hb

)
, �vi = �vi,t

�vi,b

)
, where �gj ,�hj , �vi,j ∈

Gl′ for i = 1, 2, j = t, b. Then,

σ−1, σ1
$← Zp

t−1 = �g
�v1,b
t

�h
�v2,t
b a〈�v1,b,�v2,t〉uσ−1

t1 = �g
�v1,t
b

�h
�v2,b
t a〈�v1,t,�v2,b〉uσ1 t−1, t1 �

c� c
$← Z

×
p

�v′
1 = �v1,t + c−1�v1,b

�v′
2 = �v2,t + c�v2,b

ρ′′ = c−1σ−1 + ρ + cσ1

and both parties compute �g′ = �gt ◦ �gc
b , �h′ = �ht ◦ �hc−1

b and t′′ = tc−1

−1 ttc
1. They re-

cursively run (g, h, t′; v1, v2, ρ
′) = folding(�g′,�h′, a, u, t′′;�v′

1, �v
′
2, ρ

′′) where P knows
�v′
1, �v′

2, ρ′′ such that t′′ = (�g′)�v′
1(�h′)�v′

2a〈�v′
1,�v′

2〉uρ′′
.

Else g = �g, h = �h ∈ G, and P knows v1 = �v1, v2 = �v2, ρ
′ = ρ ∈ Zp, such that

t′ = t = gv1hv2av1v2uρ′
.

Fig. 2. Bulletproof folding protocol folding(�g,�h, a, u, t;�v1, �v2, ρ). This reduces a Ped-

ersen multi-commitment of the form t = �g�v1�h�v2a〈�v1,�v2〉uρ to a new commitment
t′ = gv1hv2av1v2uρ′

with the same (inner) product structure but in dimension 1. Fur-
thermore, given an opening for t′ having the correct inner product structure, one can
extract an opening for t that also has the inner product structure by using the extractor
from the forking lemma (Lemma 3.2).
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where for example v∗
1 =

∑3
i=1 λiz1,i. In the same manner we can extract openings

for w and w′,

w = gy∗
1 hy∗

2 ax∗
wuσ∗

,

w′ = g(y
′
1)

∗
h(y′

2)
∗
ax∗

w′ u(σ′)∗
.

With these openings to t′′, w and w′ we can reconstruct the equations in (13)
and get

(t′′)ciw(w′)c−1
i

= gciv
∗
1+y∗

1+c−1
i (y′

1)
∗
hciv

∗
2+y∗

2+c−1
i (y′

2)
∗
acix

∗+x∗
w+c−1

i x∗
w′ uciρ

∗+σ∗+c−1
i (σ′)∗

= gz1,ihz2,iac−1
i z1,iz2,iuτi

By comparing exponents we either find a non-trivial discrete-log relation between
g, h, a, u, which gives a relation between �g,�h, u, e since E knows expressions of
g, h, a, u as powers of �g,�h, u, e. Or we have

cix
∗ + x∗

w + c−1
i x∗

w′ = c−1
i z1,iz2,i

= c−1
i

(
civ

∗
1 + y∗

1 + c−1
i (y′

1)
∗) (

civ
∗
2 + y∗

2 + c−1
i (y′

2)
∗) .

Multiplying this equation by c3i yields a polynomial of degree 4 which has five
roots ci. Hence it must be the zero polynomial and from the leading coefficient
we get x∗ = v∗

1v
∗
2 and thus

t′′ = gv∗
1 hv∗

2 av∗
1v∗

2 uτ∗
.

The extractor performs this process for all parents in the second-to-last level
μ−1 = log(l) of the tree of accepting transcripts. Then, with the same techniques
and as is detailed in [BBB+17], the extractor can invert all the log(l) folding steps
and either compute a non-trivial discrete-log relation or an opening �v1, �v2, x

∗, ρ∗

of t′ = tax,
tax = �g�v∗

1�h�v∗
2 ax∗

uρ∗
,

such that x∗ = 〈�v1, �v2〉. If x∗ = x then E has an opening of t as stated in the
theorem. If not, E starts over from scratch but samples a challenge generator
a′ = f b′ ∈ Zp for the first move. By this E obtains an opening

t(a′)x = �g�v∗∗
1 �h�v∗∗

2 (a′)x∗∗
uρ∗∗

,

and can compute

�g�v∗
1−�v∗∗

1 �h�v∗
2−�v∗∗

2 eb(x∗−x)f b′(x∗∗−x)uρ∗−ρ∗∗
= 1,

which is a non-trivial discrete-log relation. Not taking into account the simple
arithmetic over Zp, the expected running time of E is at most 16 times the
expected running time of tree-finder.
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We turn to the zero-knowledge property. The first message by the verifier
containing the generator a and all the messages in the folding protocol are inde-
pendently uniformly random. This is because all the cross-terms t−1, t1 are inde-
pendently blinded with independently random factors uσ−1 and uσ1 . So the sim-
ulator can just choose a

$← G and all messages in the folding protocol uniformly
randomly. From these messages the honest verifier computes the generators g, h
and the commitment t′′. Now it remains to simulate the Schnorr-type protocol
at the end for proving knowledge of an opening of t′′ that obeys the product
relation. This is made possible by how we set up the verification equation. The
simulator first samples c

$← Zp, and then z1, z2
$← Zp, which are independent

from the previously chosen messages because of y1 and y2, respectively. Then he
chooses w′ $← G which is independent because of the blinding factor uσ′

. Last
the simulator samples τ

$← Zp which is still uniformly random because of σ. Now
w ∈ G is not independent anymore but instead fully determined by the previous
choices and the simulator can compute it correctly as

w = (t′′)−c(w′)−c−1
gz1hz2ac−1z1z2uτ ,

which clearly makes the verification equation true.

5 The Main Protocol

In this section we present in detail our protocol to prove knowledge of a matrix
S ∈ Rm×k

q consisting of short polynomials of infinity norm less than B such that

AS = T over Rq (14)

where A ∈ Rn×m
q and T ∈ Rn×k

q are public.
First, when A, S, T are lifted to matrices over Z[X], the equation is true

modulo q and f . So there are matrices R1,R2 over Z[X] such that

AS + qR1 + fR2 = T over Z[X]. (15)

More precisely, notice that T − AS ∈ (Z[X])n×k consists of polynomials of
degree at most 2(d−1) and infinity norm less than mdBq/2 when we use central
representatives for coefficients in Zq. Moreover, T−AS is a multiple of f modulo
q. So we can exactly divide T−AS by f over Zq[X] to obtain R2 with polynomials
of degree at most d − 2 and coefficients in {−(q − 1)/2, . . . , (q − 1)/2}. Then,
dividing T−AS−fR2 by q yields R1 with polynomials of degree at most 2(d−1)
and infinity norm less than (mdB + d ‖f‖∞)/2. Next, for a prime p we have

AS + qR1 + fR2 = T over Zp[X], (16)

and then for an α ∈ Zp the equation

A(α)S(α) + qR1(α) + f(α)R2(α) = T(α) over Zp[X]. (17)
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Conversely, by the Schwartz-Zippel lemma, if Eq. (17) is true for a uniformly
random α, then Eq. (16) holds with probability at least 1 − 2(d − 1)/p. In this
case, if p ≥ 2(mdB + d ‖f‖∞)q, Eq. (15) is true since no reduction modulo p
takes place, and Eq. (14) follows. So in order to prove knowledge of a matrix
S ∈ Sm×k

B as in Eq. (14), it suffices to prove knowledge of matrices S, R1 and
R2 of integer polynomials whose coefficients have absolute value less than B,
B1 = (mdB + d ‖f‖∞)/2 and B2 = q/2, respectively, such that Eq. (17) is true
for a uniformly random α.

We describe our strategy for conducting such a proof. If we expand all poly-
nomials in the secret matrices S, R1, R2 to their coefficient row vectors of dimen-
sions d, 2d−1 and d−1, respectively, and hence consider the matrices as integer
matrices S, R1, R2, then, with �αd = (1, α, . . . , αd−1)T , we can equivalently write

A(α)S(Ik ⊗ �αd) + qR1(Ik ⊗ �α2d−1) + f(α)R2(Ik ⊗ �αd−1) = T(α). (18)

Now a natural strategy would be to produce a Pedersen multi-commitment over
a group of order p to the secret matrices S, R1, R2. Then one could prove that
the matrices fulfill Eq. (18) by reducing them to integers using in the order
of log(mkd) bulletproof folding steps. In addition one would also need to give
a range proof that the coefficients of the matrices are sufficiently small. For
increased efficiency we combine these proofs in one single proof.

The usual method for range proofs consists of expressing the coefficients
by their binary representations so that the range follows from the number of
bits used per coefficient. The proof that this representation really only contains
bits in {0, 1} is most easily done via an inner product proof as in [BBB+17].
Therefore we want to reduce Eq. (18) to an inner product equation which then
can be integrated into the range proof. To this end we first multiply from both
sides by uniformly random vectors �β ∈ Z

k
p and �γ ∈ Z

n
p , so that

�γTA(α)S(�β ⊗ �αd) + q�γT R1(�β ⊗ �α2d−1) + f(α)�γT R2(�β ⊗ �αd−1) = �γTT(α)�β.

This equation implies Eq. (18) with probability at least 1−2/p. Next we serialize
the secret matrices to column vectors �s ∈ Z

mkd, �r1 ∈ Z
nk(2d−1) and �r2 ∈ Z

nk(d−1)

in row-major order. With these the last equation is equivalent to the inner prod-
uct equation

〈
A(α)T�γ ⊗ �β ⊗ �αd, �s

〉
+

〈
q�γ ⊗ �β ⊗ �α2d−1, �r1

〉
+

〈
f(α)�γ ⊗ �β ⊗ �αd−1, �r2

〉

= �γTT(α)�β.

Finally, we expand each secret vector one more time and replace the coefficients
by their binary representation using two’s complement for negative numbers.
We get
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〈
A(α)T�γ ⊗ �β ⊗ �αd ⊗�2b,Binaryb(�s)

〉

+
〈
q�γ ⊗ �β ⊗ �α2d−1 ⊗�2b1 ,Binaryb1(�r1)

〉

+
〈
f(α)�γ ⊗ �β ⊗ �αd−1 ⊗�2b2 ,Binaryb2(�r2)

〉

= �γTT(α)�β, (19)

where �2b = (1, 2, . . . , 2b−2,−2b−1)T , b = �log(B)� + 1, b1 = �log(B1)� + 1 =
�log(mdB + d ‖f‖∞)� and b2 = �log(B2)� + 1 = �log(q)�. For the sake of clarity
in what follows we concatenate the public and secret vectors and define

�v = A(α)T�γ ⊗ �β ⊗ �αd ⊗�2b ‖ q�γ ⊗ �β ⊗ �α2d−1 ⊗�2b1 ‖ f(α)�γ ⊗ �β ⊗ �αd−1 ⊗�2b2 ,

�s1 = Binaryb(�s) ‖ Binaryb1(�r1) ‖ Binaryb2(�r2)

so that we can write 〈�v,�s1〉 = �γTT(α)�β.
It remains to prove that the secret vector �s1 only contains coefficients in

{0, 1}. As usual this is done by proving that there is a second vector �s2, the
vector with all bits flipped, such that �s1 ◦ �s2 = �0 and �s1 + �s2 = �1. The first
property holds with probability at least 1 − 1/p if 〈�ϕ,�s1 ◦ �s2〉 = 〈�ϕ ◦ �s2, �s1〉 = 0
for a uniformly random vector �ϕ. Similarly, the second property follows with
overwhelming probability from 〈�ϕ,�s1 + �s2〉 = 〈�ϕ,�s1〉 + 〈�ϕ ◦ �s2,�1〉 = 〈�ϕ,�1〉. We
incorporate both inner product equations into Eq. (19) and arrive at

〈
�v + �ϕ ◦ �s2 + ψ�ϕ,�s1 + ψ�1

〉
= �γTT(α)�β + ψ

〈
�v,�1

〉
+ (ψ + ψ2)

〈
�ϕ,�1

〉

where ψ ∈ Zp is another uniformly random field element with the purpose of
separating the three inner product equations.

When given a Pedersen multi-commitment to the vectors �s2 and �s1 it is easy
to compute a commitment to �v1 = �v + �ϕ ◦ �s2 + ψ�ϕ and �v2 = �s1 + ψ�1. It might
be unclear at first how to multiply �s2 componentwise with �ϕ inside the multi-
commitment, which means each coefficient has to be multiplied by a different
value. There is a standard trick to do this. Suppose �g ∈ Gl is the vector of gen-
erators underlying �s2. Then we just reinterpret this part of the commitment as
a commitment over generators �g′ = �g�ϕ−1

. Since �g�s2 = (�g�ϕ−1
)�ϕ◦�s2 = (�g′)�s2 , our

original commitment containing �s2 over �g thus becomes a commitment contain-
ing �ϕ ◦ �s2 over �g′. Now given the commitment to �v1 and �v2 we prove that the
inner product of these vectors of dimension l = mkdb+nk(2d−1)b1+nk(d−1)b2
is equal to x = �γTT(α)�β + ψ〈�v,�1〉 + (ψ + ψ2)〈�ϕ,�1〉. It follows with overwhelm-
ing probability that �s1 gives rise to a matrix S ∈ Rm×k

q of short polynomials
such that AS = T over Rq. For the inner product proof we make use of Bullet-
proofs, which have communication cost logarithmic in l. But in contrast to the
range proof in [BBB+17], we do not blind the vectors and instead use a variant
of the Bulletproof inner product proof that is zero knowledge. Here one first
reduces the vectors to dimension 1 and then uses a zero-knowledge Schnorr-type
proof for the one-dimensional base case. See Fig. 3 for the complete protocol and
Theorem 5.1 for its security. We state the zero-knowledge inner product Bullet-
proof in Fig. 1.
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Theorem 5.1. If p ≥ 2(mdB+d ‖f‖∞)q, then the protocol in Fig. 3 is complete,
perfectly honest verifier zero-knowledge and generalized special sound under the
discrete-log assumption in the sense that there is an extractor E with the follow-
ing properties. When given rewindable black-box access to a deterministic prover
P∗ that convinces the honest verifier with probability ε ≥ 100l/p, E either out-
puts a solution S∗ ∈ Rm×k

q to AS∗ = T, which consists of polynomials whose
coefficients fit in b = �log(B)� + 1 bits, or a non-trivial discrete-log relation
between generators of the group G. The extractor E runs in expected time at
most O(l2.4 log l/ε). Running P∗ once is assumed to take unit time.

Proof. Completeness is clear from the discussion at the beginning of Sect. 5 and
the zero-knowledge property follows immediately from the fact that the inner
product proof is honest verifier zero-knowledge; see Theorem 4.1. Let us now
prove soundness. The extractor E runs P∗, sends uniformly random challenges
in the second move and then uses the extractor for the inner product proof
assuming acceptance probability ε/2 to get an opening for t, c.f. Theorem 4.1.
From an averaging argument we know that for at least half of the challenges in
the second move the inner product proof π is valid with probability at least ε/2.
Then, since ε/2 > 10αllog α/((α−1)p) for α ≥ 1.3, the conditions of Theorem 4.1
are met. So after an expected number of 2 trials we can assume that E either
has a non-trivial discrete-log relation or an opening �v∗

1 , �v
∗
2 , ρ

∗ of t, i.e.

t = (�g′)�v
∗
1�h�v∗

2 uρ∗
,

such that 〈�v∗
1 , �v

∗
2〉 = x. Since t = w(�g′)�v+ψ�ϕ�hψ, we get the opening �ϕ ◦ �s∗

2 =
�v∗
1 − �v − ψ�ϕ, �s∗

1 = �v∗
2 − ψ�1, ρ∗ for w such that

〈�v,�s∗
1〉 +

〈
�v, ψ�1

〉
+ 〈�ϕ ◦ �s∗

2, �s
∗
1〉 +

〈
�ϕ ◦ �s∗

2, ψ�1
〉

+ 〈ψ�ϕ,�s∗
1〉 +

〈
ψ�ϕ, ψ�1

〉

= 〈�v,�s∗
1〉 + 〈�ϕ,�s∗

1 ◦ �s∗
2〉 + ψ 〈�ϕ,�s∗

1 + �s∗
2〉 + ψ2

〈
�ϕ,�1

〉
+ ψ

〈
�v,�1

〉

= �γTT(α)�β + ψ
〈
�v,�1

〉
+ (ψ + ψ2)

〈
�ϕ,�1

〉
.

The last equation is equivalent to

〈�v,�s∗
1〉 + 〈�ϕ,�s∗

1 ◦ �s∗
2〉 + ψ

〈
�ϕ,�s∗

1 + �s∗
2 −�1

〉
= �γTT(α)�β,

which can be interpreted as a multivariate polynomial P over Zp in n+k + l +2
variables that evaluates to zero at (α, �β,�γ, �ϕ, ψ). If the polynomial is the zero
polynomial it follows that

�s∗
1 ◦ �s∗

2 = 0 and �s∗
1 + �s∗

2 = �1

so �s∗
1 is a binary vector with entries s∗

1,i ∈ {0, 1}. Write S∗ ∈ (Z[X])m×k for
the polynomial matrix in which the coefficient of Xν , 0 ≤ ν ≤ d − 1, of the
polynomial in the (i, j)-th entry, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ k − 1, is given by

s∗
1,bdki+bdj+bν + s∗

1,bdki+bdj+bν+12 + · · · + s∗
1,bdki+bdj+bν+(b−2)2

b−2

− s∗
1,bdki+bdj+bν+(b−1)2

b−1.
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Proceed similarly for R∗
1,R

∗
2 ∈ (Z[X])n×k starting from coefficient s∗

1,bdkm and
s∗
1,bdkm+b1(2d−1)kn of �s∗

1, respectively. In other words, S∗,R∗
1 and R∗

2 are such
that

Binaryb(Serialize(S∗)) ‖ Binaryb1(Serialize(R∗
1)) ‖ Binaryb2(Serialize(R∗

2))
= �s∗

1.

By construction the polynomials in S∗, R∗
1 and R∗

2 have coefficients that fit
in b, b1 and b2 bits, respectively. Then, since 〈�v,�s∗

1〉 = �γTT(α)�β, it follows by
inspection

�γT
(
AS∗ + qR∗

1 + fR∗
2 − T

)
(α)�β = 0 in Zp.

The coefficient of Xν of the polynomial in the (i, j)-th entry of the matrix in the
middle corresponds to the coefficient of ανβjγi of our multivariate polynomial
P that we assume to be zero. So,

AS∗ + qR∗
1 + fR∗

2 = T over Zp[X]

but from our assumption on p this equation is even true over Z[X] and we finally
get AS∗ = T over Rq.

It remains to consider the case where P �= 0. Note that in this case the
polynomial is of total degree at most 2d. Consequently, it can evaluate to zero at
no more than 2dpn+k+l+1 points in Z

n+k+l+2
p (this is just a counting version of

the Schwartz-Zippel lemma). Now the extractor E reruns P∗ but sends a uniform
challenge (α, �β,�γ, �ϕ, ψ) ∈ Z

n+k+l+2
p from the set of non-roots of P . Then E again

tries to extract from the inner product proof and continues in this fashion until he
is successful for a second time. At least for a fraction of 1

2 − 2d
p of the non-roots,

the inner product proof is accepted with probability at least ε/2. So after an
expected number of roughly 2 trials E will get a non-trivial discrete-log relation
or new multivariate polynomial P ′ that is zero outside of the small set of roots
of our original polynomial P so that P ′ must be different to P . But then, since
P and P ′ are in one-to-one correspondence to openings of the commitment t,
we must have two different openings and can compute a non-trivial discrete-log
relation. We see the total expected runtime of E is at most 4 times the expected
runtime of the extractor of the inner product proof. ��

5.1 Proof Size

The communication size of our protocol from Fig. 3 is very small. Instead of all
the individual challenges in the second move the verifier can just send a short
seed that is expanded to the challenges with the help of a XOF. Moreover, in
the non-interactive version of the protocol via the Fiat-Shamir transform the
challenges are expanded from public information and the first message. So such
a non-interactive proof only consists of the first message and the inner product
proof of size logarithmic in l. Simple counting shows that one full non-interactive
proof consists of 2�log l� + 3 group elements and 3 elements of Zp. If a 256 bit
elliptic curve is used for G, then this results in 64�log l� + 192 bytes per proof.
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Prover P Verifier V
Inputs:

A ∈ Rn×m
q ,S ∈ Sm×k

B A,T, b, b1, b2, l, �g,�h, u

T = AS ∈ Rn×k
q

b = �log(B)� + 1

b1 = �log(mdB + d ‖f‖∞)�
b2 = �log(q)�
l = mkdb + nk(2d − 1)b1

+ nk(d − 1)b2

�g,�h ∈ Gl, u ∈ G

R2 = (T − AS)/f over Zq[X]

R1 = (T − AS − fR2)/q over Z[X]

�s = Serialize(S) ∈ Z
mkd

�r1 = Serialize(R1) ∈ Z
nk(2d−1)

�r2 = Serialize(R2) ∈ Z
nk(d−1)

�s1 = Binaryb(�s) ‖ Binaryb1
(�r1)

‖ Binaryb2
(�r2)

�s2 = �s1 +�1 ∈ Z
l
2 (XOR)

ρ
$← Zp

w = �g�s2�h�s1uρ w �

α
$← Z

×
p , �β

$← (Z×
p )k, �γ

$← (Z×
p )n

α, � ψ,ϕ�,γ�,β� � ϕ
$← (Z×

p )l, ψ
$← Z

×
p

�g′ = �g� ϕ−1
�g′ = �g� ϕ−1

�v = A(α)T�γ ⊗ �β ⊗ � αd ⊗�2b �v = A(α)T�γ ⊗ �β ⊗ � αd ⊗�2b

‖ q�γ ⊗ �β ⊗ � α2d−1 ⊗�2b1 ‖ q�γ ⊗ �β ⊗ � α2d−1 ⊗�2b1

‖ f(α)�γ ⊗ �β ⊗ � αd−1 ⊗�2b2 ∈ Z
l
p ‖ f(α)�γ ⊗ �β ⊗ � αd−1 ⊗�2b2

t = w(�g′)�v+ ϕ�ψ �hψ t = w(�g′)�v+ ϕ�ψ �hψ

�v1 = �v + � ϕ◦ �s2 + ϕ�ψ

�v2 = �s1 + ψ�1

x = 〈�v1, �v2〉 x = �γTT(α)�β + ψ
〈
�v,�1

〉

+ (ψ + ψ2)〈 ,ϕ� �1〉 ∈ Zp

The parties run the zero-knowledge inner product proof �Π〈·,·〉(�g′,�h, u, t, x;�v1, �v2, ρ)
and the verifier V accepts if he accepts in �Π〈·,·〉(·; ·).

Fig. 3. Discrete-log based zero-knowledge proof of knowledge of a short solution to a
matrix equation over Rq.
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5.2 Number of Exponentiations

Computing multi-exponentiations over G is by far the most time-consuming
operation in our main protocol. We count the number of exponentiations to be
performed by the prover and verifier in order to estimate the time needed to
execute the protocol. The prover computes l exponentiations for �g′, l + 1 expo-
nentiations for t and only 1 exponentiation for w (�s1 and �s2 are binary) plus the
exponentiations in the inner product proof. The verifier computes 2l + 1 expo-
nentiations and those from the inner product proof. In the inner product proof
the prover has to compute 2·2	log l
−i+6 exponentiations in the i-th folding level,
i = 0, . . . , �log l�−1. This amounts to 4·2	log l
+6�log l�−4 < 8l+6 log l+2 expo-
nentiations for the full Bulletproof folding. In addition there are 6 exponentia-
tions needed for the Schnorr-type proof. The verifier performs 4�log l� < 4 log l+1
exponentiations for the folding protocol and 6 exponentiations for the verifica-
tion equation. This can be heavily optimized by delaying exponentiations; see
[BBB+17, Section 6.2]. We conclude that the total exponentiation costs for the
prover and verifier are less than 10l + 6 log l + 10 and 2l + 4 log l + 10 exponen-
tiations.

5.3 Example

We return to the example of a verifiable encryption scheme from Sect. 1.5. In
the case of verifiable encryption, one has to prove a matrix equation A�s = �t
with parameters n = 2, m = 4, k = 1, B = 4. For the ring Rq, a common
example for encrypting messages that are binary polynomials (c.f. [ADPS16]) is
setting f = X1024 + 1 and q being a prime of about 13 bits, and p = 2. With
these parameters we find the length l of the secret vectors �s1 and �s2 in the inner
product proof to be equal to 100296. It then follows from above that the prover
and verifier need to compute about 724986 and 200667 exponentiations to run
our protocol for this application. With current CPUs one exponentiation on a
256 bit elliptic curve can be computed in about 35000 cycles (see https://bench.
cr.yp.to/results-dh.html), which amounts to roughly 85000 exponentiations per
second. So computing one of our proofs should be possible in less than 10 s.
This can then be improved by using specialized algorithms for computing multi-
exponentiations, in particular Pippenger’s algorithm [Pip80]. The size of the
proof is 1.25 kbyte.
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Abstract. A proof system is publicly verifiable, if anyone, by looking
at the transcript of the proof, can be convinced that the corresponding
theorem is true. Public verifiability is important in many applications
since it allows to compute a proof only once while convincing an unlim-
ited number of verifiers.

Popular interactive proof systems (e.g., Σ-protocols) protect the wit-
ness through various properties (e.g., witness indistinguishability (WI)
and zero knowledge (ZK)) but typically they are not publicly verifiable
since such proofs are convincing only for those verifiers who contributed
to the transcripts of the proofs. The only known proof systems that are
publicly verifiable rely on a non-interactive (NI) prover, through trust
assumptions (e.g., NIZK in the CRS model), heuristic assumptions (e.g.,
NIZK in the random oracle model), specific number-theoretic assump-
tions on bilinear groups or relying on obfuscation assumptions (obtaining
NIWI with no setups).

In this work we construct publicly verifiable witness-indistinguishable
proof systems from any Σ-protocol, based only on the existence of a
very generic blockchain. The novelty of our approach is in enforcing a
non-interactive verification (thus guaranteeing public verifiability) while
allowing the prover to be interactive and talk to the blockchain (this
allows us to circumvent the need of strong assumptions and setups).
This opens interesting directions for the design of cryptographic proto-
cols leveraging on blockchain technology.

1 Introduction

Blockchains are a surprising reality. Bitcoin, Ethereum, Cardano, Ripple, Zcash
etc. [3,9,19,45,49] are all examples of permissionless1 blockchains used to imple-
ment a cryptocurrency. Above all, Bitcoin [45] was the first cryptocurrency and
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the first decentralized blockchain, and recently has celebrated 10 years of life.
From a technical point of view, the robustness achieved by Bitcoin – which is
a completely decentralized system developed by the voluntary effort of a large
community – has motivated the cryptographic community to study the under-
lying consensus protocol in order to rigorously define what security properties
it actually achieves and under which assumptions on the adversary [1,2,24,46].
Specifically, the works by Garay et al. [24] and Pass et al. [46] identify three
properties achieved by the Bitcoin backbone protocol: consistency, which means
that any two honest parties should share the same view of the blockchain, up to
T blocks; chain growth, which means that the blockchain, as seen by the honest
parties, will grow with a steady rate; and chain quality, which states that for
any sequence of consecutive blocks, at least a fraction of them are contributed
by honest parties. Such security properties have been adopted in all subsequent
blockchain designs [2,34,47,48], enforcing the intuition that any blockchain pro-
tocol, taken as a black box, must guarantee them.

In this paper, we investigate how to leverage the sole assumption that a
blockchain exists to achieve cryptographic tasks that do not seem possible with-
out trust assumptions, heuristic security, strong computational assumptions or
specific number-theoretic assumptions.

Publicly Verifiable Witness-Indistinguishable Proofs2 (of Knowledge). We look at
the problem of achieving “privacy-preserving” but still publicly verifiable proof
systems. In a proof system a prover P wishes to convince a verifier V that a
statement x ∈ L is true, where L is an NP language. A proof system is privacy-
preserving if the transcript of the proof somehow protects the privacy of the
witness used in the proof, that is, it satisfies a witness hiding/indistinguishability
(WH, WI) property [21] or zero-knowledge property [28]. A proof system is
publicly verifiable, if any one, by looking at the transcript of the proof, can be
convinced that the theorem is true. The verification procedure is therefore non-
interactive. Public verifiability is useful in many settings where a prover would
like to reuse the same proof with many verifiers, or in general when we want the
proof to be transferable.

Public verifiability and witness hiding/indistinguishability are two important
properties that are easy to achieve separately. To achieve public verifiability,
ignoring any protection for the witness, one can simply publish the witness. If
instead only witness hiding/indistinguishability is desired, ignoring public ver-
ifiability, there is a rich body of literature that explores many constructions,
under several assumptions and for various languages. For example, WI proof
systems for all NP are known from minimal assumptions [21,23], and various
Σ-protocols [17] for specific languages, such as the language of DDH tuples
[16,50] are WH/WI3.

2 In the introduction, informally we will generically use the word “proof” to refer also
to computationally sound proofs [44].

3 Every perfect special honest-verifier zero-knowledge (SHVZK) is WI [16]. If a
Σ-protocol is computational SHVZK, then it could not enjoy the WI property [11],
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Instead, achieving public verifiability and witness indistinguishability at the
same time, is very non-trivial. In particular, any interactive witness indistin-
guishable proof, is intrinsically not publicly verifiable, since no one, besides the
verifier who chooses the messages in the protocol, can be guaranteed that the
prover did not know the messages in advance and thus believe in the validity of
the proof. If the WI proof system is public coin, one could use the Fiat-Shamir
transform [22] and replace the messages of the verifier with the output of the
random oracle. However, this is an heuristic assumption that we wish to avoid
towards providing publicly verifiable WI proof systems. We also would like to
avoid trusted setups that have been widely used to get NIZK [6,13,21,31,38–
41]. A relaxed trusted setup was used by [30] where there are multiple common
reference strings and a majority of them is required to be honest. While such
assumption is more realistic, we notice that the construction of [30] is based on a
setup that does not reflect what is available in the real world. Our goal is to end
up with publicly verifiable proofs that can be run exploiting a generic blockchain
as setup.

The above discussion seemingly suggests that for a WI proof to be publicly
verifiable, it must be either non-interactive. The only known non-interactive
witness-indistinguishable proof systems without trusted setups and heuristic
assumptions are due to:

– Groth, Ostrovsky and Sahai [31], and is based on specific number-theoretic
hardness assumptions in bilinear groups. Such a scheme is not a proof of
knowledge (for some languages, membership of an instance is trivially check-
able by inspection, as for the case of knowledge of one out of two discrete
logarithms, and what really matters is to make sure that a succeeding prover
always knows a witness proving the truthfulness of the theorem).

– Bitansky and Paneth [5], and is based on indistinguishable obfuscation [26]
and one-way permutations. In particular, their construction leverages the
existence of witness encryption schemes [27] and the existence of ZAPs [18].
As in [31], the proposed approach does not provide the proof of knowledge
property.

This is somewhat unsatisfactory. Given that we have a rich portfolio of inter-
active WI proof systems (and a large part of it consists of Σ-protocols), under
various (weaker) complexity assumptions, optimized for different languages and
that provide also proof-size optimizations, we would like to use these systems also
when public verifiability is required. In this paper we ask the following question:

Can we construct a publicly-verifiable WI proof system given any
Σ-protocol, by leveraging only the existence of a blockchain, and without
any additional assumption?

however [25] shows that the OR-composition of computational SHVZK Σ-protocols
is WI when all involved instances are true.
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Goyal and Goyal in [29] proposed to use specific blockchains to construct a
non-interactive zero-knowledge proof of knowledge. They do so by assuming the
existence of a non-interactive WI proof system in the standard model (therefore
inheriting all the limitations discussed above) that they use in conjunction with
the assumption that the underlying blockchain is based on a proof-of-stake (PoS)
consensus protocol. Their construction crucially leverages the PoS setting, and in
addition also imposes other specific requirements on the cryptographic primitives
used in the underlying consensus protocol (i.e., they require that the blockchain
protocol uses a signature scheme which keys can be used also in a CPA-secure
encryption scheme).

Our Contribution. As main contribution of this work we show how to construct
a publicly verifiable WI proof systems from any Σ-protocol essentially assuming
only the chain quality property of any blockchain4.

We relax the connection between non-interactiveness and public verifiabil-
ity by proposing a novel approach which consists in having an execution of a
Σ-protocol where the prover is interactive, but the verifier’s message is some-
how played by the blockchain, making the verification process completely non-
interactive for anyone who has access to the blockchain. If the underlying Σ-
protocol additionally satisfies the delayed-input property (that is, a prover can
compute the first round without knowing the theorem that she will prove, then
our proof system allows preprocessing of the first message, and the actual proof
can be computed in one-shot, therefore is completely non-interactive (modulo
just one round of offline preprocessing done by the prover without knowing which
instance will be proven and when). We also discuss the case of on-chain and off-
chain verifiability depending on the blocksize supported by the blockchain and
the communication efficiency of the underlying Σ-protocol.

Additionally, we observe that our publicly verifiable WI could be used in
the construction of [29] to obtain a publicly verifiable ZK proof of knowledge
with improved complexity assumptions relying on PoS blockchains. While the
above observation might look an interesting improvement over the state-of-the
art, more interestingly as additional contribution in this work we discuss some
issues in the approach of [29] that can seemingly be addressed only by relying on
additional assumptions (possibly implicit in [29] but that we believe it is worthy
to make explicit).

1.1 Our Techniques

In order to construct publicly verifiable WI proofs we start with any
Σ-protocol [17]. A Σ-protocol is a 3-round public-coin proof system that satisfies
special soundness and special honest-verifier zero-knowledge (HVZK) properties,
where the first and third round are computed by the prover and the second round

4 The actual assumption is a bit different but is essentially captured by the chain qual-
ity property and some natural requirements that are seemingly satisfied by known
blockchains.
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is a random string sent by the verifier. A transcript (a, c, z) of a Σ-protocol is
not publicly verifiable, indeed, due to the special HVZK property, anyone could
come up with an accepting transcript by choosing c on its own. Our goal is
to compute c in a verifiable manner, without relying on the random oracle, but
simply leveraging the properties of any blockchain.

Challenge 1: Extracting Random Bits from Any Blockchain. Several works [4,7]
have investigate the possibility of implementing a publicly verifiable beacon from
the bitcoin blockchain. In particular, Bentov, Gabizon and Zuckerman in [4]
show that, under stronger assumptions on the adversary (i.e., assuming that the
adversary would not too often discard blocks that she computed), it is possible
to extract unbiased and publicly verifiable bits from the bitcoin blockchain and
thus realize a publicly verifiable beacon. Their result is somehow unsatisfactory
for our goals since (1) it is tailored to bitcoin, (2) it makes additional assumptions
on the adversary beyond the generic properties of a blockchain.

Our observation is that for our purposes we do not need the strong guarantees
required by a publicly verifiable beacon. In particular, we don’t need to precisely
identify which string is random, we only need to ensure that, within a long string
of bits, there exists a subsequence of λ bits that is sufficiently unpredictable to
the adversary. In other words, in our setting, we can relax the requirement that
the challenge c is a string of λ random bits, and instead consider c to be a much
longer string composed by τ substrings c1, . . . , cτ , and the guarantee is that some
of the substrings have sufficient min-entropy and are independently generated.

This relaxation allows us to extract enough random bits by essentially only
assuming that the blockchain satisfies a property that is very similar to the η-
chain quality property defined in [46]. Recall that η-chain quality states that for
any K consecutive blocks in any chain held by some honest party, the fraction of
blocks that were contributed by honest parties is at least η, with overwhelming
probability in K. Our assumption is similar in the sense that we additionally
observe that a block generated by an honest party must contain strings with high
min-entropy, at the very least for the cryptographic material required to generate
a block that must be unpredictable to an adversary (e.g., a wallet identifier used
by the miner to cash the reward). More specifically, for each block created by a
honest party, we identify a field that contains high min-entropy material (and
discard the data concerned the transactions since they could have 0 entropy). We
only need to assume that a constant number of blocks in a long enough sequence
of blocks are computed by distinct honest parties (or even the same party as
long as the special field is computed with independent randomness), then these
chunks of the blocks can legitimately be considered as independent sources of
randomness. Putting the above things together, we can think of K consecutive
blocks as K potential sources of randomness, out of which a constant η (notice
that we don’t need a constant fraction, but just a constant) are guaranteed to
be independent and have high min-entropy.

Our idea is therefore to leverage the above observations along with a multiple-
source randomness extractor. The 3-source randomness extractor of Lin [36],
given in input 3 high min-entropy independent sources, outputs a λ-bit truly
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random string. By using the η-chain quality property and the observation we
made about honest blocks, our goal is to retrieve 3 honest blocks on which to
apply the extractor. Since we don’t know which blocks are honest, we will just
consider all possible

(
K
3

)
triples of distinct blocks over last K blocks of the

blockchain. The η-chain quality guarantees that at least 3 of them are honest.
We are guaranteed that there exists a triple of honest block chunks that are
independent high min-entropy sources (we stress again, that we will consider
only certain strings of the blocks that contain high min-entropy information, we
also note that such strings have to be sufficiently long and have sufficient min-
entropy for the output of the randomness extractor to be statistically close to
uniform). By running the 3-source extractor on input such triple we will obtain
a random string.

Are We Done by Just Using ZAPs? Since our approach consists in extracting
random bits from the blockchain, one potential shortcut to obtain a publicly
verifiable WI proof could consist of using the extracted bits as the first round
of a ZAP, therefore requiring that the prover just computes the second round.
This solution however comes with several shortcomings that we want to avoid.

First of all, the second round of the ZAP requires computational assumptions
that are not necessarily used by the blockchain. For instance, the ZAP of [18]
requires doubly-enhanced trapdoor permutations. In our case, we aim at relying
on collision-resistant hash functions only.

Second, a ZAP is not a proof of knowledge and therefore is not useful when
knowledge of the witness is what really matters. Indeed we will construct a proof
of knowledge.

Third, as we observed above, our guarantee is only that 1 out of
(
K
3

)
retrieved

strings is random, but we don’t know which one. The ZAP of [18] relies on an
extremely long random string sent by the verifier. Obtaining such a huge random
string (even assuming that we can extract many huge strings so that at least
one of them is random), through extraction of random bits from the blocks
of current blockchains is not realistic. Because of the above shortcomings, we
devised a more elaborated construction that is in spirit much close to available
blockchains, avoiding strong additional assumptions.

Challenge 2: Size of the Transcript and Off-Chain Public Verifiability. Given
that we are able to extract random5 bits from the blockchain, our proof system
starting from a Σ-protocol and ending with a publicly verifiable WI proof follows
naturally the Fiat-Shamir transform, and it works as follows.

The prover computes τ first rounds a1, . . . , aτ of the Σ-protocol and pub-
lishes them on the blockchain B, where τ =

(
K
3

)
. Then, P waits for K new

blocks (where K depends on the chain-consistency and chain-quality properties)
added to the blockchain after the first message was posted. Let us denote such
blocks as B1, . . . , BK . The prover obtains challenges c1, . . . , cτ by evaluating the

5 We stress that we obtain a random string that is an unknown position in a vector
of

(
K
3

)
strings.
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randomness extractor6 on τ triples of distinct blocks in the set {B1, . . . , BK}.
Finally, P publishes the third rounds z1, . . . , zτ .

The above approach works only when each message ai fits in the space allowed
for a transaction in a block of the blockchain. This might not be necessarily true
for any Σ-protocol. Some Σ-protocols might require a first round that is cubic
or more in the security parameter and in the length of the statement, and once
concretely instantiated, it might easily lead to a first round of few megabytes
(and perhaps gigabytes if the instance is really large, also considering potential
NP reductions), which can obviously be beyond what is allowed by a blockchain.

To overcome this problem, we propose to upload the hash of the first message,
i.e., H(sid|a1||..||aτ ) for an arbitrarily specified handle sid, on the blockchain.
Then each ci is computed as above, and then the third round would consist
in revealing the ai’s and the answer zi’s to the verifier only. We call this the
extended transcript. This approach allows public verifiability off-chain. That is,
the entire proof cannot be downloaded from the blockchain, but must be obtained
from another source (either the prover itself or another repository), and this is the
standard way non-interactive proofs have always been propagated to be verified.
We stress that the verifier here would not contribute in the computation of the
transcript, she only needs to see the extended version of the transcript. Thus
the proof is still reusable many times and is verifiable non-interactively (i.e., it is
publicly verifiable). To choose a collision-resistant hash function H, we leverage
the blockchain again. We observe that in all existent blockchains, the blocks are
chained using a public collision-resistant hash function, that we can use in our
proof system.

If instead a transaction of the blockchain can accommodate an ai and a
zi of the underlying Σ-protocol, then we even get a better property (i.e., on-
chain public verifiability) since the NIWI proof will appear completely in the
blockchain and therefore there is no need to think about propagating a proof to
reach several verifiers.

Additional Properties. Our publicly verifiable WI proof system achieves also
additional properties such as:

– Pre-processing: if the underlying Σ-protocol is delayed input, that is, it allows
the prover to compute the first round without knowing the theorem to be
proven, then a prover can pre-process the first round, and then simply com-
pute z when necessary. To leverage this property the underlying Σ-protocol
must be an adaptive-input WI proof of knowledge. This additional require-
ment however does not significantly restrict the class of suitable Σ-protocols
since there are known transformations that add such properties [10,12].

– Proof of knowledge: if the underlying WI proof system is special sound, then
we show that our NIWI is also a proof of knowledge. The idea is that in
the reduction, our knowledge extraction can simulate the blockchain to the
malicious prover and change the relevant subsequence of the honest blocks

6 More specifically, only some specific parts of the blocks are given as input to the
randomness extractor.
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(i.e., the cryptographic material bringing high min-entropy) in order to change
the output of the randomness extractor and obtain a new challenge.

– Statistical WI PoK: when instantiating our compiler with the LS Σ-
protocol [35] and its underlying commitments with a statistically hiding com-
mitment scheme from collision-resistant hash functions, we obtain a statisti-
cal WI PoK system. Statistical WI allows to protect the privacy of the secret
for ever, even w.r.t. future quantum/unbounded adversaries. The collision-
resistant hash function that we use is again the one inferred by the blockchain.

On Achieving Publicly Verifiable Zero Knowledge. A natural next step is to use
our publicly verifiable NIWI to construct a publicly verifiable zero-knowledge
proof. For example, we could plug our NIWI in the construction provided
in [29], that works on any NIWI. This would seemingly produce a NIZK without
the strong hardness assumptions (i.e., a NIWI in the standard model required
by [29]). We observe, however, that the approach taken in [29] to achieve the
zero-knowledge property is affected by some issues that can be apparently tack-
led only by making additional assumptions on the blockchain protocol that do
not seem to be applicable to real-world scenarios. We discuss such issues of
the construction of [29] in Sect. 4. In conclusion, achieving publicly verifiable
zero knowledge with mild assumptions w.r.t. the most currently used real-world
blockchains is an interesting open question.

2 Definitions

Preliminary. We denote the security parameter by λ and use “||” as concatena-
tion operator (i.e., if a and b are two strings then by a||b we denote the concate-
nation of a and b). For a finite set Q, x ← Q sampling of x from Q with uniform
distribution. We use the abbreviation ppt that stays for probabilistic polynomial
time. We use poly(·) to indicate a generic polynomial function. A polynomial-
time relation R (or polynomial relation, in short) is a subset of {0, 1}∗ × {0, 1}∗

such that membership of (x,w) in R can be decided in time polynomial in |x|.
For (x,w) ∈ R, we call x the instance and w a witness for x. For a polynomial-
time relation R, we define the NP-language LR as LR = {x|∃ w : (x,w) ∈ R}.
Analogously, unless otherwise specified, for an NP-language L we denote by R
the corresponding polynomial-time relation (that is, R is such that L = LR).
We will denote by Pst a stateful algorithm P with state st.

Definition 1 (Computational indistinguishability). Let X = {Xλ}λ∈N

and Y = {Yλ}λ∈N be ensembles, where Xλ’s and Yλ’s are probability distribution
over {0, 1}l, for same l = poly(λ). We say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N

are computationally indistinguishable, denoted X ≈ Y , if for every ppt dis-
tinguisher D there exists a negligible function ν such that for sufficiently large
λ ∈ N,

∣
∣
∣Pr

[
t ← Xλ : D(1λ, t) = 1

] − Pr
[

t ← Yλ : D(1λ, t) = 1
] ∣
∣
∣ < ν(λ).
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We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from
a sample of Xλ, it is possible to omit the auxiliary input 1λ. In this paper we also
use the definition of Statistical Indistinguishability. This definition is the same
as Definition 1 with the only difference that the distinguisher D is unbounded.
In this case use X ≡s Y to denote that two ensembles are statistically indistin-
guishable.

The definitions of standard tools can be found in Appendix A.

2.1 Blockchain Protocols

The next two sections follow almost verbatim (with some changes) from [29,46].
A blockchain protocol Γ consists of 4 polynomial-time algorithms
(UpdateState,GetRecords,Broadcast, GetHash) with the following syntax.

– UpdateState(1λ, st): It takes as input the security parameter λ, local state st
and outputs the updated state st′.

– GetRecords(1λ, st): It takes as input the security parameter λ and state st. It
outputs the longest ordered sequence of valid blocks B (or simply blockchain)
contained in the state variable, where each block in the chain itself contains
an unordered sequence of records messages.

– Broadcast(1λ,m): It takes as input the security parameter λ and a message
m, and broadcasts the message over the network to all nodes executing the
blockchain protocol. It does not give any output.

– GetHash(1λ,B): It takes as input a security parameter 1λ and a blockchain B,
and outputs the description of a collision-resistant hash function h(·) publicly
available in B.

As in [24,46] the blockchain protocol is also parameterized by a validity
predicate V that captures semantics of any particular blockchain application.
We will indicate with ΓV a blockchain protocol Γ that has validate predicate V.

Remark on the Algorithm GetHash. We are assuming that a blockchain protocol
Γ makes use of a collision-resistant hash function h(·) to maintain the blockchain
structure (i.e., to chain the blocks). We explicitly add this algorithm since the
same collision-resistant hash function used to chain blocks will then be used
in cryptographic protocols that make use of the blockchain. Our assumption is
obviously satisfied by the existing blockchains.

Execution of Γ V. At a very high level, the execution of the protocol ΓV pro-
ceeds in rounds that model time steps. Each participant in the protocol runs
the UpdateState algorithm to keep track of the current (latest) blockchain state.
This corresponds to listening on the broadcast network for messages from other
nodes. The GetRecords algorithm is used to extract an ordered sequence of blocks
encoded in the blockchain state variable, which is considered as the common pub-
lic ledger among all the nodes. The Broadcast algorithm is used by a party when
she wants to post a new message m on the blockchain. Note that the message m
is accepted by the blockchain protocol only if it satisfies the validity predicate
V given the current state, (i.e., the current sequence of blocks).
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Following prior works [24,33,46], we define the protocol execution following
the activation model of the Universal Composability framework of [8] (though
like [29] we will not prove UC-security of our results). For any blockchain pro-
tocol ΓV(UpdateState, GetRecords, Broadcast, GetHash), the protocol execution
is directed by the environment Z(1λ) where λ is the security parameter. The
environment Z activates the parties as either honest or corrupt, and is also
responsible for providing inputs/records to all parties in each round. All the cor-
rupt parties are controlled by the adversary A that can corrupt them adaptively
after that the execution of ΓV started. The adversary is also responsible for
delivery of all network messages. Honest parties start by executing UpdateState
on input 1λ with an empty local state st = ε.

– In round r, each honest party Pi potentially receives a message(s) m from
Z and potentially receives incoming network messages (delivered by A). It
may then perform any computation, broadcast a message (using Broadcast
algorithm) to all other parties (which will be delivered by the adversary; see
below) and update its local state sti. It could also attempt to “add” a new
block to its chain (e.g., by running the mining procedure).

– A is responsible for delivering all messages sent by parties (honest or cor-
rupted) to all other parties. A cannot modify the content of messages broad-
cast by honest parties, but it may delay or reorder the delivery of a message
as long as it eventually delivers all messages within a certain time limit. The
identity of the sender is not known to the recipient.

– At any point Z can communicate with adversary A.

Blockchain Notation. With the notation B ≤ B′ we will denote that the
blockchain B is a prefix of the blockchain B′. We denote by B�n the chain
resulting from “pruning” the last n blocks in B. In the paper we will consider a
block in the blockchain as a string s and a sub-string of s as a part of a block
(a sub-block).

Let P be a party playing in ΓV protocol, the view of P consists of the messages
received during the execution of ΓV, along with its randomness and its inputs.
Let ExecΓ V

(A,H,Z, 1λ) be the random variable denoting the joint view of all
parties in the execution of protocol ΓV with adversary A and set of honest parties
H in environment Z. This joint view view fully determines the execution. Let
ΓV
view(A,H,Z, 1λ) denote an execution of ΓV(A,H,Z, 1λ) producing view as joint

view.

Some Constraints on the Adversary. In order show that a blockchain enjoys some
useful properties like chain quality, prior works [24,46] restrict their analysis
to compliant executions of ΓV. Such blockchain implementation assume some
restrictions on the power of the adversary. For instance, they require that any
broadcasted message is delivered in a maximum number of time steps, as we
have specified earlier, or could require secure erasure for honest parties. Those
works showed that certain desirable security properties are respected except with
negligible probability in any compliant execution. Obviously when in our work
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we claim results assuming some properties of the blockchain, we are taking into
account compliant executions of the underlying blockchain protocol only. The
same is done by [29].

Properties of a ΓV Protocol. The following section is taken verbatim from [29],
and the following properties where defined in previous works [24,46].

Chain consistency predicate. Let Consistent be the predicate such that
Consistentη(view) = 1 iff for all rounds r ≤ r̃ and all parties Pi, Pj (potentially
the same) in view such that Pi is honest at round r with blockchain B and
Pj is honest at round r̃ with blockchain B̃, we have that B�η ≤ B̃.

Definition 2 (Chain Consistency). A blockchain protocol ΓV satisfies n0(·)-
consistency with adversary A, honest parties H, and environment Z, if there
exists a negligible function ν(·) such that for every λ ∈ N, η > n0(·) the follow-
ing holds:

Pr
[
Consistentη(view) = 1

∣
∣view ← ExecΓ V

(A,H,Z, 1λ)
]

≥ 1 − ν(λ).

Chain quality predicate. Let Quality be the predicate such that Qualityη
A

(view, μ) = 1 iff for all rounds r ≥ η and all parties Pi in view such that Pi is
honest at round r with blockchain B, we have that out of η last blocks in B
at least μ fraction of blocks are “honest”.

Note that a block is said to be honest iff it is mined by an honest party.

Definition 3 (Chain Quality). A blockchain protocol ΓV satisfies (μ(·), n0(·))-
chain quality with adversary A, honest parties H, and environment Z, if there
exists a negligible function ν(·) such that for every λ ∈ N, η > η0(λ) the following
holds:

Pr
[
Qualityη

A(view, μ(λ)) = 1
∣
∣view ← ExecΓ V

(A,H,Z, 1λ)
]

≥ 1 − ν(λ).

In the rest of the paper we will indicate with (μ(·), n0(·)) the chain quality
parameters of ΓV.

2.2 Definitions of Publicly Verifiable WI Arguments of Knowledge

Here we define publicly verifiable proofs over a blockchain. The main insight
of our definition is that the verification is non-interactive, and the verifier does
not need to be a party involved in the blockchain. The prover instead needs to
actively interact with the blockchain.
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Definition 4. A pair of stateful ppt algorithms Π = (P,V) over a blockchain
protocol ΓV is a publicly verifiable argument system for the NP-language L with
witness relation R if it satisfies the following properties:

Completeness. ∀ x,w s.t. R(x,w) = 1, ∀ ppt adversary A and set of honest
parties H and environment Z, assuming that P ∈ H, there exist negligible
functions ν1(·), ν2(·) such that:

Pr

⎡

⎢
⎢
⎣

view ← ExecΓ V

(A,H,Z, 1λ)

V(x, π,B) = 1 : π ← PstP (x,w)

B = GetRecords(1λ, stj)

⎤

⎥
⎥
⎦ ≥ 1 − ν1(|x|) − ν2(λ)

where stP denotes the state of P during the execution ΓV
view(A,H,Z, 1λ).

The running time of P is polynomial in the size of the blockchain
B = GetRecords(1λ, stj) where stj is the state of Pj ∈ H at the end of the
execution ΓV

view(A,H,Z, 1λ)7. Furthermore stj is the state of an honest party
Pj ∈ H at the end of the execution ΓV

view(A,H,Z, 1λ).
If all message of π are in the blockchain then the proof is on-chain, and is
off-chain otherwise.

Soundness. ∀ x /∈ L, ∀ stateful ppt adversary A and set of honest parties H
and environment Z, there exist negligible functions ν1(·), ν2(·) such that:

Pr

⎡

⎢
⎢
⎣

view ← ExecΓ V

(A,H,Z, 1λ)

V(x, π,B) = 1 : π, x ← AstA

B = GetRecords(1λ, stj)

⎤

⎥
⎥
⎦ ≤ ν1(|x|) + ν2(λ)

where stA denotes the state of A during the execution ΓV
view(A,H,Z, 1λ).

Furthermore stj is the state of an honest party Pj ∈ H at the end of the
execution ΓV

view(A,H,Z, 1λ).

Definition 5. A public verifiable argument system Π = (P,V) over a blockchain
protocol ΓV for the NP-language L with witness relation R is an argument of
Knowledge (AoK) if it satisfies the following property.

Argument of Knowledge (AoK). There is a stateful ppt algorithm E such that
for all x, any stateful ppt adversary A and any set of honest parties H and
environment Z, there exist negligible functions ν1(·), ν2(·) such that:

{
(viewA) : view ← ExecΓV

(A, H, Z, 1λ)

}
≈

{
(viewA) : view ← ExecΓV

(A, E, Z, 1λ)

}

and

Pr

⎡
⎢⎢⎣

view ← ExecΓV
(A, E, Z, 1λ)

V(x, π,B) = 0 ∨ R(x, w) = 1 : B = GetRecords(1λ, stj)

w ← E(π, x), (π, x) ← AstA

⎤
⎥⎥⎦ ≥ 1 − ν1(|x|) − ν2(λ)

7 Note that after that P outputs π, the execution of Γ V
view(A, H, Z, 1λ) could still

continue even though stP will not change anymore.
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where stA denotes the state of A during the execution ΓV
view(A, E ,Z, 1λ) and

viewA is the view of A in view. Furthermore stj is the state of an honest party
Pj ∈ H at the end of the execution ΓV

view(A,H,Z, 1λ).

Definition 6. A publicly verifiable argument system Π = (P,V) over a
blockchain protocol ΓV for the NP-language L with witness relation R is witness
indistinguishable (WI) if it satisfies the following property:

∀ x,w0, w1 s.t. R(x,w0) = 1 and R(x,w1) = 1, ∀ stateful ppt adversary A and
set of honest parties H and environment Z, assuming that P ∈ H it holds
that:

{
(viewA, π) : view ← ExecΓ V

(A,H,Z, 1λ), π ← PstP (x,w0)
}

≈
{

(viewA, π) : view ← ExecΓ V

(A,H,Z, 1λ), π ← PstP (x,w1)
}

where stP denotes the state of P during the execution ΓV
view(A,H,Z, 1λ) and

viewA8 is the view of A in view.

Definition 7 (Min-Entropy). Let X be a random variable with finite support
X . The min-entropy H∞(X) of X is defined by

H∞(X) = min
x∈X

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X a (n, λ)-source, where λ is the min-entropy of X
(i.e., λ = H∞(X)).

Definition 8 (Honest Block Generation Algorithm). An honest block-
generation algorithm is a randomized ppt algorithm HB : {0, 1}∗ → {0, 1}n,
where n = poly(λ), such that there exists a deterministic function s such that
for all x ∈ {0, 1}∗, v = s(HB(x)), |v| = n it holds that

H∞(s(HB(x))) ≥ λ

and therefore s(HB(·)) is a (n, λ)-source.

Assumption 1. Let ΓV be a blockchain protocol. There exists t = poly(λ) such
that the probability that a sequence of t consecutive blocks in a blockchain B
generated via ΓV does not include at least 3 blocks computed by a HB is negligible
in λ.

8 Note that viewA can contain auxiliary inputs from the execution of Γ V(A, H, Z, 1λ)
that could continue after that π is computed.
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3 Publicly Verifiable WI AoK

In order to construct an off-chain publicly verifiable non-interactive witness indis-
tinguishable argument of knowledge Πwi = (Pwi,Vwi) over a blockchain protocol
ΓV = (UpdateState,GetRecords,Broadcast,GetHash) for the NP-language L9 we
make use of the following tools:

– A 3-round delayed-input public-coin adaptive-input WI adaptive-input spe-
cial sound proof system ΠΣ = (PΣ ,VΣ) for the NP-language L with instance
length �;

– An efficient procedure ExtProc that on input a 3-source randomness extractor
En,λ and a sequence of t = 3 · q10 blocks B1, . . . , Bt computes the following
steps:
1. Construct a set of sub-blocks (through the function s) adding a sub-block

for each block in the sequence {B1, . . . , Bt}.
2. Evaluate En,λ on all the possible subsets of 3 elements of the set of sub-

blocks.
3. Output all the

(
t
3

)
evaluations of En,λ.

Πwi = (Pwi,Vwi) works as follows.

Pwi on input parameters (�, s, t), an instance x and a witness w s.t. R(x,w) = 1
computes the following steps, where x and w are used in the 7th step.

1. Set stP = ε and run stP = UpdateState(1λ, stP).
2. Run B = GetRecords(1λ, stP), h(·) = GetHash(1λ,B).
3. Let τ =

(
t
3

)
. For i = 1, . . . , τ : compute Σ1

i ← PΣ(1λ, �).
4. Compute α ← h(Σ1

1 , || . . . ||Σ1
τ )11 and post α on the blockchain by running

Broadcast(1λ, α).
5. Run stP = UpdateState(1λ, stP), B = GetRecords(1λ, stP) and wait until α is

posted on the blockchain and further the chain is extended by t blocks.
6. Let B∗ be the block of the blockchain B where the message α is posted and

let B1, ..., Bt be the t consecutive blocks of the blockchain B after B∗. Run
{Σ2

i }τ
i=1 = ExtProc(En,λ, B1, ..., Bt).

7. For i = 1, . . . , τ compute Σ3
i ← PΣ(Σ2

i , x, w).
8. Run stP = UpdateState(1λ, stP) and B′ = GetRecords(1λ, stP).
9. Set π = (x, α, {Σ1

i , Σ2
i , Σ3

i }τ
i=1,B

′) and output π.

Vwi on input the statement x, π = (α, {Σ1
i , Σ2

i , Σ3
i }τ

i=1,B
′), and a blockchain B̃

works as follows. If the message α is not posted on the blockchain B′ then
Vwi outputs 0 otherwise she continues with the following steps.

9 We remark that our results require that Assumption 1 is not violated.
10 q is s.t. q ≥ n0(λ) where (μ(·), n0(·)) are the chain quality parameters of Γ V.
11 The hash value of the string Σ1

1 , || . . . ||Σ1
τ is computed through a Merkle Tree [43],

therefore α corresponds to the root of a Merkle Tree.
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Let B∗ be the block of the blockchain B′ where the message α is posted.
Let B1, . . . , Bt be t blocks of the blockchain B′ after B∗. Vwi computes h(·) =
GetHash(1λ,B′), {Σ2

i }τ
i=1 = ExtProc(En,λ, B1, . . . , Bt) and outputs 1 if the fol-

lowing conditions are satisfied:

1. B′ ≤ B̃;
2. α = h(Σ1

1 , || . . . ||Σ1
τ );

3. VΣ(x,Σ1
i , Σ2

i , Σ3
i ) = 1 for i = 1, . . . , τ .

Theorem 1. Under Assumption 1 and assuming the existence of one-to-one
one-way functions12, Πwi = (Pwi,Vwi) is a publicly verifiable off-chain adaptive-
input witness-indistinguishable argument of knowledge over a blockchain protocol
ΓV = (UpdateState,GetRecords,Broadcast,GetHash) for NP.

Completeness. Completeness follows by the chain consistency of ΓV, the com-
pleteness of ΠΣ and the definitions of h,En,λ. We note that a candidate to
instantiate ΠΣ = (PΣ ,VΣ) is the construction of [20] that is delayed-input, and
adaptive-input secure in the variant of [10].

A Note on the Delayed-Input Property of Πwi. Fixing any x,w, s.t. R(x,w) = 1,
we note that Pwi is using x,w just to compute the 7th step of Πwi. Therefore, Πwi

can compute the first 6 steps of Πwi as a preprocessing phase, without knowing
x or w (just the size is required). Then when (in any point in the future) x,w
will be available Pwi computes the last 3 steps of Πwi.

We also want to point out that Theorem 1 holds even when there is no
delayed-input property, therefore for any WI Σ-protocol, however in this case
x,w are needed by Pwi already when she computes the 1st step of Πwi.

Adaptive-Input Witness Indistinguishability. In order to show that Πwi enjoys
the witness indistinguishability property we will consider the following 2 hybrid
experiments.

Let H0(λ) be defined as the execution of Πwi, where Pwi uses the witness w0.
Let H1(λ) be defined as the execution of Πwi, where Pwi uses the witness w1. Let
A be the adversary as defined in Definition 6. The output of each experiment is
the pair (π, viewA), where π is the transcript of Πwi computed in the experiment
and viewA is the view of A in the experiment.

Claim 1. For every x,w0, w1 s.t. R(x,w0) = 1 and R(x,w1) = 1 chosen adap-
tively by A it holds that H0(λ) ≈ H1(λ).

Proof. Suppose by contradiction the above claim does not hold, then it is possible
to construct a malicious verifier V∗

Σ that breaks the adaptive-input WI property
of ΠΣ . Let CH be the challenger of adaptive WI game of ΠΣ . V∗

Σ will interact as
a proxy between CH and A for the messages {Σ1

i , Σ3
i }τ

i=1 and she will compute

12 The need of one-to-one one-way functions will be removed by Corollary 1. Theorem 1
also needs the existence of CRHFs, but as specified earlier we are assuming that a
blockchain protocol along with a genesis block already specifies a CRHF.
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all other messages following Pwi of H0 (of H1). In the end of the interaction V∗
Σ

will output the output of A.
In more details, V∗

Σ receives {Σ̃1
i }τ

i=1 from CH and sets Σ1
i = Σ̃1

i for
i = {1, . . . , τ}, then to compute the other steps of Πwi, until Step 7, she acts
as Pwi of H0 (of H1). In particular in Step 6 V∗

Σ computes {Σ2
i }τ

i=1 as Pwi of H0

(of H1) does. V∗
Σ sends {Σ2

i }τ
i=1 to CH along with x,w0, w1 obtained from A. V∗

Σ

receives {Σ̃3
i }τ

i=1 from CH and sets Σ3
i = Σ̃3

i for i = {1, . . . , τ}, V∗
Σ completes

the computations of π precisely as Pwi does in both H0 and H1. At the end of the
execution V∗

Σ outputs what A outputs. The proof is concluded observing that if
CH uses the witness w0 to compute {Σ̃3

i }τ
i=1 then the reduction is distributed as

H0. Instead if CH uses the witness w1 to compute {Σ̃3
i }τ

i=1 then the reduction
is distributed as H1.

From Claim 1 we can conclude that H0(λ) ≈ H1(λ).

High-Level Overview of the Proof of Adaptive-Input Soundness. Assume by con-
tradiction that there exists P� that produces with probability non-negligible p
an accepting π of Πwi w.r.t. x /∈ L, where x is adaptively chosen by P�.

The proof will proceeds in 3 steps:

(1) We will describe an efficient procedure Proc that internally executes
ΓV(P�,H,Z, 1λ). Proc will use a specific rewinding strategy.

(2) We will prove that with non-negligible probability Proc outputs
(x,Σ1

y , Σ2
y , Σ3

y), (x̃, Σ̃1
y , Σ̃2

y , Σ̃3
y) s.t. Σ1

y = Σ̃1
y and Σ2

y �= Σ̃2
y .

(3) We will use the output of Proc to reach a contradiction. In more details,
we note that by the adaptive-input soundness of ΠΣ there exists an algo-
rithm that on input (x,Σ1

y , Σ2
y , Σ3

y) and (x̃, Σ1
y , Σ̃2

y , Σ̃3
y) in polynomial time

outputs w, w̃ s.t. R(x,w) = 1 and R(x̃, w̃) = 1. Therefore we reach a con-
tradiction since we were assuming that x /∈ L.

Adaptive-Input Soundness. We will now proceed more formally. Assume by con-
tradiction that there exists P� that produces with probability non-negligible p
an accepting π of Πwi w.r.t. x /∈ L, where x is adaptively chosen by P�.

Let us fix y ∈ {1, ..., τ} and consider the following experiment Proc(y).
Proc(y):

1. Sample at random a long enough string ω and execute ΓV(P�,H,Z, 1λ) emu-
lating all the honest parties H using different substrings of ω as randomnesses.

2. If P� sends x and an accepting π = (α, {Σ1
i , Σ2

i , Σ3
i }τ

i=1,B) w.r.t x compute
step 3 and abort otherwise.

3. Let B̃ be the blockchain that is defined by the state of some honest party
after that the message α is posted by P�, and let B∗ be the block in B̃ where
this message is posted.s that participate in the execution of Γ only after the
block B∗. Rewind the execution of ΓV(P�,H,Z, 1λ) just after the block B∗

is created.
4. Sample at random a long enough string ω′ and continue the execution of

ΓV(P�,H,Z, 1λ) emulating all the honest parties H using different substrings
of ω′ as randomnesses.
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5. If P� sends x̃ and an accepting π̃ = (α̃, {Σ̃1
i , Σ̃2

i , Σ̃3
i }τ

i=1,B) w.r.t. x̃ compute
the following steps and abort otherwise.

5.1. If (Σ̃1
y �= Σ1

y) stop and output (Σ̃1
1 , || . . . ||Σ̃1

y || . . . ||Σ̃1
τ , Σ1

1 , || . . . ||
Σ1

y || . . . ||Σ1
τ ).

5.2. If (Σ̃2
y �= Σ2

y) stop and output (x,Σ1
y , Σ2

y , Σ3
y), (x̃, Σ1

y , Σ̃2
y , Σ̃3

y).
5.3. If (Σ̃2

y = Σ2
y) stop and output 0.

Claim 2. The probability that Proc obtains from P� two accepting transcripts
π, π̃ of Πwi respectively in Step 2 and in Step 5 is at least p2.

We note that the views defined by ExecΓ V

(P�,H,Z, 1λ) before and after a
rewind are statistically close because the procedure Proc acts in the same way
after and before a rewind, using just a different randomness for emulating the
honest parties. Therefore the view of P� before a rewind is statistically close
to the view of P� after a rewind. Since, before step 3 we are assuming (by
contradiction) that P� will compute an accepting π of Πwi w.r.t. x /∈ L with
non-negligible probability p, after a rewind P� will do the same with the same
probability. From the above arguments we can conclude that the claim holds.

Claim 3. For every y ∈ {1, ..., τ} if Proc(y) receives an accepting π̃ in Step 5,
then Proc(y) outputs 0 with negligible probability.

Let B1, ..., Bt be the blocks used by P� to run {Σ2
i }τ

i=1 = ExecProc
(En,λ, B1, ..., Bt). From Assumption 1 it follows that at least 3 independent sub-
blocks have enough13 min-entropy. Therefore at least one 2nd round of ΠΣ

obtained by ExecProc is distributed statistically close to the uniform distribu-
tion over {0, 1}λ. Let us call this 2nd round of ΠΣ the good challenge. It also
follows from Assumption 1 that this min-entropy comes from the randomnesses
used to run HB by honest parties. Let us call the independent sub-blocks with
enough min-entropy the good sub-blocks. Note that the procedure Proc after a
rewind changes the randomness used by the honest parties and thus from the
definition of En,λ the good challenge produced by ExecProc will change before
and after the rewind with overwhelming probability.

Claim 4. For every y ∈ {1, ..., τ} if Proc(y) receives an accepting π̃ in Step 5,
then Proc(y) outputs (Σ̃1

1 , || . . . ||Σ̃1
y || . . . ||Σ̃1

τ , Σ1
1 , || . . . ||Σ1

y || . . . ||Σ1
τ ) s.t. (Σ̃1

y �=
Σ1

y) with negligible probability.

Suppose that the claim does not hold. We will show a ppt Ah that breaks the
collision resistance of h(·). Ah chooses y at random from {1, . . . , τ} and follows
the steps of Proc(y). Ah outputs what Proc(y) outputs.

From Claim 3 it follows that if Proc(y) receives an accepting π̃ in Step 5 it
outputs 0 with negligible probability, therefore P� produces two accepting proofs
π and π̃ that contain two accepting transcripts of ΠΣ , namely (x,Σ1

y , Σ2
y , Σ3

y)

13 From Assumption 1, it follows that there are at least λ bits of min-entropy in each
of the 3 sub-blocks.
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and (x̃, Σ1
y , Σ̃2

y , Σ̃3
y). These two accepting transcripts of ΠΣ (by contradiction)

differ also in the first round, but Σ̃1
y , Σ1

y are s.t. h(Σ̃1
1 , || . . . ||Σ̃1

y || . . . ||Σ̃1
τ ) =

h(Σ1
1 , || . . . ||Σ1

y || . . . ||Σ1
τ ) since both π and π̃ are accepting. We can conclude

that Ah succeeds to find a collision for h(·) with non-negligible probability.
From Claims 2, 3, 4 it follows that Proc outputs (x,Σ1

y , Σ2
y , Σ3

y), (x̃, Σ1
y ,

Σ̃2
y , Σ̃3

y) with probability at least p2 therefore, due to the adaptive-input sound-
ness of ΠΣ , using (x,Σ1

y , Σ2
y , Σ3

y) and (x̃, Σ1
y , Σ̃2

y , Σ̃3
y) it is possible to compute

and extract w, w̃ s.t. R(x,w) = 1 and R(x̃, w̃) = 1. Therefore we reach a con-
tradiction since we were assuming that x /∈ L.

AoK. Let P� be an adversary that with non-negligible probability produces an
accepting π of Πwi w.r.t. x, where x is adaptively chosen by P�. Then, we show
an extractor E that with oracle access to P� in expected polynomial time outputs
w s.t. R(x,w) = 1.

E works as follows. E runs the firs 2 steps of Proc and if it obtains a first
accepting transcript of Πwi w.r.t. x, then it rewinds P� until it obtains a second
accepting transcript of Πwi, or a specific bound on the number of attempts is
reached. E applies the same rewinding procedure described in steps 3 and 4 of
Proc.

Let us denote as colliding transcripts, two transcripts (Σ1, Σ2, Σ3) and
(Σ̃1, Σ̃2, Σ̃3) of ΠΣ w.r.t. x and x̃, s.t. Σ1 = Σ̃1 and Σ2 �= Σ̃2. We make
the following observations:

Obs. (1) If in one of the rewinds P� gives a second accepting transcripts of
Πwi then from Claims 2, 3, 4 it follows that E obtains two colliding transcripts
of ΠΣ .

Obs. (2) If E is able to obtain from P� two colliding transcripts of ΠΣ for
statements x, x̃ then E runs the extractor of ΠΣ and obtains in polynomial time
w, w̃ s.t. R(x,w) = 1 and R(x̃, w̃) = 1.

Obs. (3) For the same arguments exposed in Claim 2 in each rewind the view
of P� before a rewind is statistically close to the view of P� after a rewind.

Therefore from standard arguments it follows that in expected polynomial
time E outputs w s.t. R(x,w) = 1 with overwhelming probability.

We note that a candidate to instantiate ΠΣ = (PΣ ,VΣ) is the construction
of LS [20] that is delayed-input, and adaptive-input in the variant of [10]. Fur-
thermore if the underling commitment scheme of LS is instantiate from CRHFs,
then LS enjoys the statistical WI property. Since we can obtain the description
of a CRHF from GetHash, it follows that it is possible to instantiate Πwi over a
blockchain protocol ΓV without requiring additional computational assumptions.

Corollary 1. If Assumption 1 holds, then Πwi = (Pwi,Vwi) is a publicly ver-
ifiable off-chain statistical adaptive-input witness indistinguishable AoK over
a blockchain protocol ΓV = (UpdateState,GetRecords,Broadcast,GetHash) for
NP14.

14 Again, we are implicitly assuming that a CRHF comes for free from a blockchain.
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3.1 An On-Chain Publicly Verifiable WI AoK

In order to construct an on-chain publicly verifiable non-interactive witness indis-
tinguishable argument of knowledge Πwi = (Pwi,Vwi) over blockchain protocol
ΓV

n = (UpdateState,GetRecords,Broadcast,GetHash) for the NP-language L we
make use of the following tools:

– A 3-round communication-efficient15 delayed-input public-coin adaptive-
input WI adaptive-input special sound proof system ΠΣ = (PΣ ,VΣ) for L
with instance length �;

– An efficient procedure ExtProc that on input a 3-source randomness extractor
En,λ and a sequence of t = 3 · q16 blocks B1, . . . , Bt computes the following
steps:
1. Construct a set of sub-blocks (through the function s) adding a sub-block

for each block in the sequence {B1, . . . , Bt}.
2. Evaluate En,λ on all the possible subsets of 3 elements of set of sub-blocks.
3. Output all the

(
t
3

)
evaluations of En,λ.

Πwi = (Pwi,Vwi) works as follow.

Pwi on input the parameter �, an instance x and a witness w s.t. R(x,w) = 1
computes the following steps, where x,w are used in the 5th step.

1. Set stP = ε and run stP = UpdateState(1λ, stP).
2. Set τ =

(
t
3

)
. For i = 1, . . . , τ compute Σ1

i ← PΣ(1λ, �) and post Σ1
i on the

blockchain by executing Broadcast(1λ, Σ1
i ).

3. Run stP = UpdateState(1λ, stP) and B = GetRecords(1λ, stP) wait until the
messages {Σ1

i }τ
i=1 are posted on the blockchain and further the chain is

extended by t blocks.
4. Let B∗ be the last block of the blockchain B where the messages {Σ1

i }τ
i=1

are posted and let B1, ..., Bt be t blocks of the blockchain B after B∗. Run
{Σ2

i }τ
i=1 = ExtProc(En,λ, B1, . . . , Bt).

5. For i = 1, . . . , τ compute Σ3
i ← PΣ(Σ2

i , x, w) and post Σ3
i on the blockchain

executing Broadcast(1λ, Σ3
i ).

6. Run st′P = UpdateState(1λ, stP), B′ = GetRecords(1λ, st′P) and wait for mes-
sages {Σ3

i }τ
i=1 to be posted on the blockchain.

7. Set π = ({Σ1
i , Σ2

i , Σ3
i }τ

i=1,B
′).

Vwi on input the statement x, π = ({Σ1
i , Σ2

i , Σ3
i }τ

i=1,B
′), and a blockchain B̃.

If the messages {Σ1
i }τ

i=1 are not posted on the blockchain B′ Vwi outputs 0
otherwise she continues with the following steps.

Let B∗ be the last block of the blockchain B′ where the messages {Σ1
i }τ

i=1 are
posted. Let B1, . . . , Bt be t blocks of the blockchain B′ after B∗. Vwi computes
{Σ2

i }τ
i=1 = ExtProc(En,λ, B1, . . . , Bt) and outputs 1 if the following conditions

are satisfied:
15 For this construction we require that the messages of ΠΣ are small enough to be

posted in a block of the blockchain.
16 q is s.t. q ≥ n0(λ) where (μ(·), n0(·)) are the chain quality parameters of Γ V.
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1. B′ ≤ B̃;
2. The blockchain B′ contains the messages {Σ1

i , Σ3
i }τ

i=1, and the messages
{Σ3

i }τ
i=1 are posted at least t blocks after B∗;

3. VΣ(x,Σ1
i , Σ2

i , Σ3
i ) = 1 for i = 1, . . . , τ .

Theorem 2. If Assumption 1 holds, then Πwi = (Pwi,Vwi) is a publicly verifiable
on-chain adaptive-input witness indistinguishable argument of knowledge over a
blockchain protocol ΓV = (UpdateState,GetRecords,Broadcast,GetHash) for NP-
language L.

The proof is almost identical to the one showed for Theorem 1 and therefore
we omit it.

A Note on the Delayed-Input Property of Πwi. Fixing any x,w, s.t. R(x,w) = 1,
as for the off-chain construction also in this construction Pwi is using x,w just
to compute the 5th step of Πwi. Therefore, Πwi can compute the first 4 steps of
Πwi as a preprocessing phase, without knowing x or w (just the size is required).
Then when (in any point in the future) x,w will be available Pwi computes the
last 2 steps of Πwi.

We also want to point out that Theorem 2 holds for any WI Σ-protocol, even
without the delayed-input property. However in this case x,w are needed by Pwi

already when she computes the 1st step of Πwi.

On the Instantiation of the Adaptive-Input Special-Sound ΠΣ . We note that the
work of [12] shows a compiler that works for a class of delayed-input perfect
Σ-protocol described in [14,15,42]. This compiler on input a perfect Σ-protocol
Π outputs a variant of Π that is adaptive-input special sound. The compiler
does not require any additional assumption.

4 On Publicly Verifiable Zero Knowledge via [29]

Our publicly verifiable WI argument of knowledge in the blockchain model
focuses on using a blockchain (as much as possible) as a black-box, therefore
using the generic properties that a blockchain offers (in a black-box sense),
such as chain consistency and chain quality, and some other natural assump-
tions that seemingly make sense with respect to known real-world blockchains.
A natural challenging open question consists of obtaining a publicly verifiable
zero-knowledge argument using a generic blockchain. The reason why we see
this very challenging is that there are several subtleties that seem to be very
non-trivial to address without making strong assumptions on the underlying
blockchain protocol, and therefore losing generality.

Consider the NIZK constructed in [29]. Their construction works for proof-of-
stake based blockchains only and the underlying assumption is that no adversary
can control the majority of stake, at any point in time, and thus she cannot com-
pute a fork. This assumption is leveraged in the zero-knowledge proof where one
assumes that the simulator, controlling the honest parties, controls a majority of
the stake (technically the secret keys associated to the public addresses owning a
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majority of the stake), and this information can be used to compute a fork at any
point in time. Given such special power for the simulator, the zero-knowledge
argument of [29] consists of a set of n encryptions e1, . . . , en and a NIWI proof
for the theorem: “(e1, . . . , en) are valid encryptions under public keys of n stake-
holders” AND “either they are encryptions of shares of a witness for x ∈ L or of
shares of a valid fork of the blockchain”. One of the most appealing properties
of this scheme is that the size of the NIZK is independent of the number of
total stakeholders, but depends only on parameters concerning the blockchain
chain-quality property.

First of all notice that construction of [29] focuses on proof-of-stake based
blockchains in order to have a proof that can be sound for ever. Indeed the same
approach would fail if a proof-of-work is used instead of a proof-of-stake since
clearly in the future an adversary would be able to compute a fork in the past,
and therefore an accepting proof of a false theorem.

We note, however, that the approach of [29] has a subtle issue that prevents
this construction to be usable in generic proof-of-stake blockchains. The issue
stems from the fact that the non-interactive proof consists of encryptions of
shares of the witness under the public keys of n stakeholders. The idea behind
this approach was that as long as the majority of such keys belongs to a honest
“stake” (and assume that the latter will never collude), one can assume that
the adversary will never collect enough keys to decrypt the witness. However,
this assumption seems to be unsubstantiated in general, if we don’t make any
assumption on the proof-of-stake blockchain protocol. To see why, assume that
honest stakeholders decide to refresh their keys often, in particular, assume that
upon each transaction they decide to move their stake from a public key pki

to a freshly computed public key pk′
i and, in order to publicly disable the old

pki, they will simply publish ski. This behavior could even be required in the
blockchain protocol, and therefore always executed by honest parties. Note that,
in this case, the assumption on the majority of stake is still preserved. Indeed,
the majority of stake is still controlled by the honest parties. However, the keys
have evolved and thus the keys used at time t in a zero-knowledge proof might
be completely exposed at time t + δ (for some δ > 0) thus invalidating the ZK
property. We note that this issue exists even in presence of static adversaries
(which is the assumption in [29]) since the honest parties remain honest parties
throughout, they simply change their keys and this is not prohibited by the
blockchain protocol (and in general it could be even enforced).

More in general, the scenario described above suggests that the above app-
roach to design a non-interactive zero-knowledge proof system cannot retain any
security in presence of an adversary who can somehow obtain the keys after hav-
ing observed the zero-knowledge proof. Even assuming that keys do not evolve
over time (and a party would never expose her old secret on the blockchain),
there are few realistic scenarios that would allow an adversary to obtain such
keys, in a blockchain setting. In such setting is indeed more natural to assume
that the adversary is adaptive, and the corrupted parties can be chosen over
time, for example, depending on the content of the blockchain, or the stake
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gained or lost by a certain key. Since parties are rational, it might be convenient
to them to “sell” their secret keys with lower stake in exchange for a public
key with slightly higher stake. Thus, assuming that a zero-knowledge proof was
computed using keys (ki1 , . . . , kin

), an adversary could target such keys, and
at later stage, when the total stake of the system has increased, the adversary
can corrupt the stakeholders associated to those keys, in such a way that the
adversary still does not possess the majority of the stake – and thus the proof
of stake assumption is not invalidated– but she has enough information to break
the zero-knowledge property (for instance in the case of [29] the adversary has
enough informations to decrypt the witness).

Finally we also remark that current blockchains exist because of the rewards
that participants hope to obtain sharing their resources for the execution of
the blockchain protocol. It is therefore natural to think that an honest party
would be fine with giving up the secret key corresponding to a currently empty
wallet receiving back a revenue. It is completely unknown to an honest party
of a blockchain protocol the fact that there could be a cryptographic protocol
designed on top of the blockchain that relies on honest parties keeping private
some secret keys for ever, even in case they do not have any value.

A Standard Tools

Definition 9 (One-way function (OWF)). A function f : {0, 1}∗ → {0, 1}∗

is called one way if the following two conditions hold:

– there exists a deterministic polynomial-time algorithm that on input y in the
domain of f outputs f(y);

– for every ppt algorithm A there exists a negligible function ν, such that for
every auxiliary input z ∈ {0, 1}poly(λ):

Pr
[

y←{0, 1}∗ : A(f(y), z) ∈ f−1(f(y))
]

< ν(λ).

We say, also, that a OWF f is a one-way permutation (OWP) if f is a permu-
tation.

Definition 10 (Hash Function [32]). An hash function is a pair of ppt algo-
rithms Π = (Gen,H) fulfilling the following:

– Gen is a probabilistic algorithm which takes as input a security parameter λ
and outputs a key s.

– There exists l = poly(λ) such that H is (deterministic) polynomial time algo-
rithm that takes as input a key s and any string x ∈ {0, 1}∗ and outputs a
string H(s, x) ∈ {0, 1}l.

Definition 11 (Collision-Resistant Hash Functions (CRHFs) [32]). A
hash function Π = (Gen,H) is collision resistant if for all ppt adversaries A
there exists a negligible function ν such that:

Pr
[

H(s, x) = H(s, x′) ∧ x �= x′ : s ← Gen(1λ), (x, x′) ← A(s)
] ≤ ν(λ)
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In this paper we denote by h(·) a CRHFs where the description of the hash
function (i.e., the key s) is publicly available either in the blockchain protocol
or in the genesis block of the blockchain.

Definition 12 (Witness Indistinguishable (WI)). An argument/proof sys-
tem Π = (P,V), is Witness Indistinguishable (WI) for a relation R if, for every
malicious ppt verifier V∗, there exists a negligible function ν such that for all
x,w,w′ such that (x,w) ∈ R and (x,w′) ∈ R it holds that:

∣
∣
∣ Pr 〈P(w),V∗〉(x) = 1 − Pr 〈P(w′),V∗〉(x) = 1

∣
∣
∣ < ν(|x|).

Obviously one can generalize the above definitions of WI to their natural
adaptive-input variants, where the adversarial verifier can select the statement
and the witnesses adaptively, before the prover plays the last round. We note
that [23] prove that WI is preserved under self-concurrent composition, i.e. when
multiple instance of Π are played concurrently.

Definition 13 (Proof/argument system). A pair of ppt interactive algo-
rithms Π = (P,V) constitute a proof system (resp., an argument system) for
an NP-language L, if the following conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RL, it holds that:

Pr [ 〈P(w),V〉(x) = 1 ] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P�,
there exists a negligible function ν such that for every x /∈ L and every z:

Pr [ 〈P�(z),V〉(x) = 1 ] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-
input completeness if P needs x and w only to compute the last round and V
needs x only to compute the output. Before that, P and V run having as input
only the size of x. The notion of delayed-input completeness was defined in [12].

An interactive protocol Π = (P,V) is public coin if, at every round, V simply
tosses a predetermined number of coins (i.e. a random challenge) and sends the
outcome to the prover. Moreover we say that the transcript τ of an execution
b = 〈P(z),V〉(x) is accepting if b = 1.

A 3-round protocol Π = (P,V) for a relation R is an interactive protocol
played between a prover P and a verifier V on common input x and private
input w of P s.t. (x,w) ∈ R. In a 3-round protocol the first message a and the
third message z are sent by P and the second messages c is played by V. At the
end of the protocol V decides to accept or reject based on the data that he has
seen, i.e. x, a, c, z.

We usually denote the message c sent by V as a challenge, and as challenge
length the number of bit of c.
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Definition 14 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for
a relation R is a Σ-Protocol if the following properties hold:

– Completeness: if (P,V) follow the protocol on input x and private input w to
P s.t. (x,w) ∈ R, V always accepts.

– Special soundness: if there exists a polynomial time algorithm such that, for
any pair of accepting transcripts on input x, (a, c1, z1) (a, c2, z2) where c1 �=
c2, outputs witnesses w such that (x,w) ∈ R.

– Special Honest Verifier Zero-knowledge (SHVZK): there exists a ppt simula-
tor algorithm S that for any x ∈ L, security parameter λ and any challenge
c works as follow: (a, z) ← S(1λ, x, c). Furthermore, the distribution of the
output of S is computationally indistinguishable from the distribution of a
transcript obtained when V sends S as challenges and P runs on common
input x and any w such that (x,w) ∈ R.

Definition 15. A perfect Σ-Protocol is Σ-Protocol that satisfies a strong
SHVZK requirement, that is:

Perfect Special Honest Verifier Zero-knowledge: there exists a ppt simulator
algorithm S that for any x ∈ L, security parameter λ and any challenge c works
as follow: (a, z) ← S(1λ, x, c). Furthermore, the distribution of the output of S
is perfect indistinguishable from the distribution of a transcript obtained when
V sends S as challenges and P runs on common input x and any w such that
(x,w) ∈ R.

Theorem 3 [16]. Every perfect Σ-protocol is perfect WI.

Theorem 4 [25]. The OR-composition of Σ-Protocols is WI.

Definition 16. A delayed-input 3-round system Π = (P,V) for relation R
enjoys adaptive-input special soundness if there exists a polynomial time algo-
rithm Ext such that, for any pair of accepting transcripts a, c1, z1 for input x1

and a, c2, z2 for input x2 with c1 �= c2, outputs witnesses w1 and w2 such that
(x1, w1) ∈ R and (x2, w2) ∈ R.

Definition 17 (Proof of Knowledge [37]). A protocol that is complete Π =
(P,V) is a proof of knowledge (PoK) for the relation RL if there exist a prob-
abilistic expected polynomial-time machine Ext, called the extractor, such that
for every algorithm P�, there exists a negligible function ν, every statement
x ∈ {0, 1}λ, every randomness r ∈ {0, 1}� and every auxiliary input z ∈ {0, 1}�,

Pr [ 〈P�
r (z),V〉(x) = 1 ] ≤ Pr

[
w ← ExtP�

r (z)(x) : (x,w) ∈ R
]

+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK)
if the above condition holds w.r.t. any ppt P�.

In this paper we also consider the adaptive-input PoK/AoK property for all
the protocols that enjoy delayed-input completeness. Adaptive-input PoK/AoK
ensures that the PoK/AoK property still holds when a malicious prover can
choose the statement adaptively at the last round.
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Definition 18. Let X,Y be two random variables that takes values in V (i.e.,
V is the union of supports of X and Y ). The statistical distance between X and
Y is defined as follows:

1
2

∑

v∈V

|Pr [ X = v ] − Pr [ Y = v ] |.

Definition 19 [36] [s - Source Extractor]. A function En,λ : {{0, 1}n}s →
{0, 1}m is an extractor for independent (n, λ) sources that uses s sources and out-
puts m bits with error ε, if for any s independent (n, λ) sources X1,X2, . . . , Xs,
we have that

|En,λ(X1,X2, . . . , Xs) − Um| ≤ ε

where | · | denotes the statistical distance.

The author of [36] gave a construction of a 3-source extractor, with parame-
ters λ ≥ log12 n, m = 0.9λ and ε = 2−λω(1)

.
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Abstract. Identity-based broadcast encryption (IBBE) is an effective
method to protect the data security and privacy in multi-receiver scenar-
ios, which can make broadcast encryption more practical. This paper fur-
ther expands the study of scalable revocation methodology in the setting
of IBBE, where a key authority releases a key update material periodi-
cally in such a way that only non-revoked users can update their decryp-
tion keys. Following the binary tree data structure approach, a concrete
instantiation of revocable IBBE scheme is proposed using asymmetric
pairings of prime order bilinear groups. Moreover, this scheme can with-
stand decryption key exposure, which is proven to be semi-adaptively
secure under chosen plaintext attacks in the standard model by reduc-
tion to static complexity assumptions. In particular, the proposed scheme
is very efficient both in terms of computation costs and communication
bandwidth, as the ciphertext size is constant, regardless of the number
of recipients. To demonstrate the practicality, it is further implemented
in Charm, a framework for rapid prototyping of cryptographic primitives.

Keywords: Broadcast encryption · Revocation ·
Asymmetric pairings · Provable security · Constant size ciphertext

1 Introduction

Broadcast encryption (BE), first introduced by Fiat and Naor [13], is a cryp-
tographic paradigm that enables delivering encrypted content over a broadcast
channel in a way that only qualified users are able to decrypt. For a BE in the
public key setting, there is a dealer which is employed to generate and distribute
decryption keys for users. A sender can encrypt to a set of receivers by choosing
their public keys adaptively, and the encrypted data can be decrypted only by
the user with the private key in the set of receivers. A BE scheme is collusion
resistant if no extra information about the encrypted data is leaked, even if all
users that are not qualified collude together. BE has a wide range of applications
such as pay-TV, encrypted file systems and digital right management.
c© International Association for Cryptologic Research 2019
D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11442, pp. 405–435, 2019.
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Identity-based encryption (IBE) is an advanced form of public key encryption
in which the public key of a user is some unique information about the identity of
the user (e.g., a user’s IP or email address). Moreover, as public keys are derived
from identifiers, IBE scheme eliminates the need for a public key infrastructure
(PKI). In the IBE system, a trusted third party called the private key generator
(PKG) can generate the corresponding secret keys associated with each user’s
public identities. A sender who has access to the public parameters of the system
can encrypt a message using the receiver’s identity as the public key, and only
the intended receiver who obtains its decryption key from PKG can decrypt.

Identity-based broadcast encryption (IBBE) can be seen as a natural gen-
eralization of IBE, i.e., BE in the identity-based setting, which recognizes the
users in a BE scheme with their identities, instead of indexes assigned by the
system. The number of valid identities in the IBBE scheme can be exponential
with the security parameter, while the number of public keys in the public key
broadcast setting is only polynomial with the security parameter. IBBE is an
effective method to protect the data security and privacy in multi-receiver sce-
narios. In an IBBE scheme, a sender can broadcast an encrypted message to any
set of intended users, which is called privileged set. If the size of the privileged
set is 1, the resulting IBBE scheme would be an IBE scheme obviously. For the
trivial solution to construct an IBBE scheme which encrypts the message once
for each identity using an IBE scheme, the resulting ciphertext would be linear
in the privileged set, which is inefficient especially for a large set of receivers.

In 2007, Delerablée [11] presented the first IBBE scheme with constant size
ciphertext, though it is only weak selective-ID secure in the random oracle model.
This construction makes use of the hybrid encryption paradigm: key encapsula-
tion mechanism (KEM) and data encapsulation mechanism (DEM) framework
where the broadcast ciphertext only encrypts a short symmetric key used to
encrypt the long messages, which is also adopted by most BE schemes [15].
Very recently, Ramanna [31] proposed a novel IBBE scheme with constant size
ciphertext that can achieve adaptive security in the standard model.

One desirable functionality of multi-user cryptosystems is the support for
membership revocation. For example, malicious users should be driven out imme-
diately from the system, and even for the honest users should be revoked if
their private keys get stolen or lost. Key revocation is well studied in BE such
as [19,28]. However, realizing efficient user revocation mechanism in the IBE
setting turned out to be very challenging. Compared with traditional public key
encryption in the PKI setting, IBE simplifies the key management problem by
avoiding public key certificates. Therefore, users cannot be easily revoked by
digital certificates and certificate revocation lists. As a result, the key revocation
problem in IBE is not as simple as in tradition PKI setting.

The first practical IBE scheme, proposed by Boneh and Franklin [5] from
the Weil pairing, also suggested a straightforward revocation method for IBE
schemes: dividing the lifetime of the system into discrete time periods and
refreshing the private key for non-revoked users periodically. Unfortunately, this
approach is not scalable and very inefficient because all non-revoked users should
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update their private keys via a secure channel, and the workload on the PKG
grows linearly in the number of non-revoked users. To address this problem,
Boldyreva et al. [6] proposed a scalable revocable IBE (RIBE) scheme which
employed the tree based revocation techniques from [28] to reduce the PKG’s
workload to only logarithmic (instead of linear) in the number of users. Moreover,
each non-revoked user can derive a decryption key from the public update key,
while revoked users cannot compute their decryption keys. There is no secure
channel that is required for non-revoked users to update their private keys.

After the work of Boldyreva et al. [6], Seo and Emura [33] introduced a
new security notion called decryption key exposure resistance (DKER), which
can better capture the realistic threat of IBE system. Generally speaking, this
security definition can guarantee that the confidentiality of ciphertexts is not
compromised even if a user’s decryption key at some periods has been exposed.
Though DKER seems to be a natural security notion, Seo and Emura have
proved that Boldyreva et al.’s RIBE scheme is vulnerable against decryption key
exposure. Using Boldyreva et al.’s revocation methodology, Seo and Emura [33]
also proposed the first RIBE scheme that is adaptive secure with DKER, which
has become the default security requirements for RIBE scheme. Since then, a
lot of followup works of RIBE schemes with DKER have been proposed. Among
them, the most recently scheme by Watanabe et al. [38] based on the modified
Jutla-Roy IBE scheme [16] is the first adaptively secure RIBE scheme with
DKER that can achieve short public parameters in prime order groups.

As the set of qualified users can change in each broadcast emission, efficient
revocation of individual users or user groups is the primary objective of broadcast
encryption. For the IBBE scheme, which is a natural generalization of BE in
the identity-based setting, however, there is still no provably secure scalable
revocation methodology has been proposed so far, even in Boldyreva et al.’s
security model. Motivated by this, we further expand the study of revocable
IBBE (RIBBE). We mainly focus on the construction of RIBBE scheme with
DKER. In particular, we would like to have a construction that has constant size
ciphertexts, which is more efficient and less bandwidth consuming compared with
schemes of ciphertexts that are linear in the set of receivers.

Our Contribution. In this paper, we propose a novel construction of revocable
IBBE scheme with constant size ciphertexts. To prove its security with DKER,
we first define the syntax of revocable IBBE scheme using KEM-DEM paradigm
and its security model, which takes into account the realistic threat of decryption
key exposure for the scenario of IBBE. To the best of our knowledge, this is
the first construction of revocable IBBE with provable security. Specifically, our
revocable IBBE scheme has the following merits.

1. Our scheme is a KEM which can produce a symmetric key along with a
header, thus long messages can be encrypted under the short symmetric key.
For simplicity, we only discuss the header size in the KEM, which is constant
in our construction, regardless of the number of underlying receivers, which is
very efficient both in the communication overheads and computational costs.
Furthermore, only 4 group elements together with a tag are needed in the
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ciphertexts header of our revocable IBBE scheme, which can be comparable
to the revocable IBE scheme in [38]. Moreover, we implement it in Charm
framework [2], more details of which can be deferred to Sect. 6.

2. The public parameters in our scheme is linear in the maximum size of the
privileged identities set: m, which is predetermined and fixed in the setup
phase. The private key for each user is linear in the value of m∗ log2N , where
the maximal value of system users N is also a predetermined value in the
setup phase of the revocable IBBE system.

3. Our scheme also follows Boldyreval et al.’s revocation methodology [6] with
the binary-tree data structure approach, which reduces the amount of work
in key update from linear to logarithmic complexity in the maximal number
of system users N . For each time period, the PKG will broadcast update key
information through a public channel, which is useless for already revoked
users. Only the non-revoked user can combine the update key and his private
key to derive a decryption key that can be used to decrypt proper ciphertexts.
More precisely, according to [33], the size of update key is O(rlog2(N/r)) if
r � N/2, or O(N − r) if r > N/2, where r is the number of revoked users.

4. Our construction is built upon prime order bilinear groups of Type-3 pair-
ings under mild variants of the Symmetric eXternal Diffie-Hellman (SXDH)
assumption: the Augmented Decisional Diffie-Hellman on G1 (ADDH1) and
Decisional Diffie-Hellman on G2 (DDH2). Note that ADDH1 assumption is
first defined by Watanabe et al. in [38], which is proved in the generic bilinear
group model.

5. With regard to the security, our revocable IBBE scheme is semi-adaptively
secure with DKER under chosen plaintext attacks. Semi-adaptive security,
first proposed by Chen and Wee [10], is a notion of security that lies between
selective and adaptive security for functional encryption systems. More par-
ticularly, if we set the maximum size of receivers m to be m = 1, the resulting
revocable IBBE scheme is a revocable IBE system, which can achieve adaptive
security with DKER.

At a high level, our design approach is very similar to the Seo and Emura’s
technique of transforming IBE to RIBE in [33,38]. Firstly, there should be a basic
IBE scheme that satisfies the requirement of (1) the secret key re-randomization
property and (2) applicability of Boneh-Boyen technique [4]. Then, an adaptively
secure RIBE scheme with DKER is constructed by applying the Seo-Emura
technique. Similarly, we also employ a basic IBBE scheme and the Boneh-Boyen
IBE scheme [4] as the building blocks. To achieve short ciphertexts and fast
decryption, the basic IBBE is derived from the most recently proposed IBBE
scheme of Ramanna [31], with necessary modifications mainly for the public
parameters part to achieve the secret key re-randomization property. The secu-
rity of the revocable IBBE scheme with DKER can be reduced to the adaptive
security of the basic IBBE scheme. We note that it is not a trivial work to
construct a revocable IBBE with adaptive security even given a revocable IBE
scheme. The primary challenge in the security proof is how to simulate decryp-
tion keys for identities of the privileged recipients. While there is only one target
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identity in the setting of RIBE, there will be multiple private keys and decryp-
tion keys that can be used to decrypt the challenge ciphertext. Note that the
privileged recipients are chosen adaptively by the adversary, even the number
of privileged recipients is unknown until the challenge phase, which makes it
more complicated to simulate in the security proof. We partially overcome these
issues by using the semi-adaptive security model, where the adversary should
submit the privileged recipients just after receiving the public parameters. More
technique will be needed to achieve adaptive security for revocable IBBE. As
a side product, we also propose a new construction of revocable IBE scheme
with adaptive security, which can be as a complementary of Watanabe et al.’s
revocable IBE scheme [38]. In addition, because of using a different strategy, the
adaptive security proof of the resulting RIBE scheme in this paper seems more
succinct, compared with the security proof in the full version of [38].

Related Work. Hierarchical identity-based encryption (HIBE) is another
extension of IBE which further supports a key delegation functionality. Revo-
cable HIBE can support the revocation of user’s private keys to manage the
dynamic credentials of users in an HIBE system. Several improvement and vari-
ants with different properties have been proposed since the first revocable HIBE
scheme with DKER introduced by Seo and Emura in [34]. Among them, the
most popular revocable HIBE must be those given in [12,24,35], the security
of which are proven in the selective model where an adversary should submits
the challenge identity or the revocation list before he receives the public parame-
ters. Revocable HIBE with DKER that is secure in the adaptive adversary model
has been proposed in [20,36]. Unfortunately, these constructions are built upon
composite order (product of three primes) bilinear groups, which is inefficient
to implement compared with prime order groups implementation. We note that,
contrary to HIBE, no organization of the users is needed in our revocable IBBE
scheme to have constant size of ciphertexts, i.e., no hierarchy between identities
in our revocable IBBE system.

Besides bilinear maps on elliptic curve, lattice is also a powerful tool to build
cryptographic primitives. Lattice-based constructions, which are conjectured to
be resistant to attacks by both classical and quantum computers, are currently
important candidates for post-quantum cryptography. Chen et al. [8] proposed
the first revocable IBE scheme (without DKER) in the lattice setting. Recently,
Katsumata et al. [17] solved the open problem of achieving revocable (H)IBE
with DKER in the lattice setting by proposing a new tool called the level con-
version keys without relying on the key re-randomization property. In addition,
revocable IBE scheme from codes with rank metric is proposed in [7], which is
only proven selective security in the random oracle model.

We stress that the notion of revocation in this paper is referred to indirect
revocation sometimes, since the key authority indirectly enables revocation by
forcing revoked users to be unable to update their keys. A direct revocation
mechanism has been studied for attribute-based encryption [3] and predicate
encryption [27]. This approach requires the sender to carry out the revocation by
specifying a set of revoked users in the ciphertext, and hence it does not need any
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private key update procedures on the recipients’s side. Recently, another notion
of recipient-revocable identity-based broadcast encryption has been proposed
in [22,32], which mainly focuses on how to remove some of the recipients from
the set of receivers stated in the original ciphertext after the ciphertext has
been generated, but without revealing the message content. Therefore, these
systems [22,32] cannot follow the notion of revocable IBBE in this paper.

Server-aided revocable IBE, recently proposed by Qin et al. [30], is a novel
system where most of the workloads on users are outsourced to an untrusted
server. The server manages users’ public key and key updates sent by the PKG
periodically, and users can compute decryption keys without communicating
with either the PKG or the server. Server-aided revocable IBE [29] and server-
aide directly revocable predicate encryption [23] in the lattice setting have been
proposed recently, which can satisfy selective security without DKER. It is pos-
sible to employ this construction methodology in our revocable IBBE scheme,
which can obtain a server-aided revocable IBBE scheme with DKER.

Organization. The rest of the paper is organized as follows. In the next section,
we review some preliminaries used throughout this paper, including the rigor-
ous definitions and security model of revocable IBBE scheme. In Sect. 3, we
present an adaptive secure IBBE scheme with short ciphertexts modified from
Ramanna’s original inner production encryption scheme [31], which is used as
the core building block of our revocable IBBE scheme. In Sect. 4, we propose a
concrete construction of revocable IBBE with DKER that can achieve constant
size of ciphertext, together with proof of security in Sect. 5. To show its practi-
cability we implement the proposed scheme in Sect. 6. Finally, Sect. 7 concludes
this paper.

2 Preliminaries

2.1 Asymmetric Pairings and Hardness Assumptions

Let G1,G2,GT be cyclic multiplicative groups of the same prime order p. Let g be
a generator of G1 and h be a generator of G2. A bilinear map e : G1 ×G2 → GT

has the following properties:

– Bilinearity: For all g ∈ G1, h ∈ G2 and all a, b ∈ Z
∗
p, e(ga, hb) = e(g, h)ab.

– Non-degeneracy: e(g, h) �= 1.
– Computability: It is efficient to compute e(u, v) for any u ∈ G1 and v ∈ G2.

It is called symmetric (or Type-1) pairing if G1 = G2; otherwise, the pairing
is asymmetric. Two types of asymmetric pairing can be further classified: Type-
2 and Type-3. If there is an efficiently computable isomorphism either from G2

to G1 or from G1 to G2, then the bilinear map e is called a Type-2 pairing. If
no efficiently computable isomorphism is known, then we call it Type-3 pairing.
Our constructions in this work are based on Type-3 pairing, which is the most
efficient setting from an implementation point according to [9,14].
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The security of our construction is based on the Augmented Decisional Diffie-
Hellman on G1 (ADDH1), which is proved security in the generic bilinear group
model by Watanabe et al. [38], and Decisional Diffie-Hellman on G2 (DDH2)
assumptions. Below, we describe these assumptions.

Let G = (p, e,G1,G2,GT ) be a Type-3 pairing with generators g1 ∈ G1 and
g2 ∈ G2. Denote D = (g1, g

μ
1 , gα2

1 , gβα
1 , g2, g

α
2 , gβα

2 , gβα2
2 , g

1/β
2 ) with the following

distribution: α, α2, μ
R←− Zp, β, η

R←− Z
∗
p. A PPT algorithm A given D and Z,

whose task is to distinguish Z = Z0 = gμα2
1 (the case A will output 0) or

Z = Z1 = gμα2+η
1 (the case A will output 1), has advantage AdvADDH1

G,A (λ) in
solving the ADDH1 problem as:

AdvADDH1
G,A (λ) = |Pr [A(G,D, Z0) = 1] − Pr [A(G,D, Z1) = 1]| .

Definition 1. We say that the ADDH1 assumption holds if the advantage for
all PPT adversaries AdvADDH1

G,A (λ) is negligible in the security parameter λ in
solving the ADDH1 problem relative to a Type-3 pairing G of the group G1.

Now we introduce the DDH2 assumption, which is defined as follows.

Definition 2. We say that the DDH2 assumption holds for the group G2 of
Type-3 pairing G = (p, e,G1,G2,GT ) if the advantage AdvDDH2

G,A (λ) which equals
∣
∣Pr [A(G,D, gμα

2 ) = 1] − Pr
[

A(G,D, gμα+η
2 ) = 1

]∣
∣ is negligible in λ for all PPT

algorithms A with D = (g1, g2, g
μ
2 , gα

2 ) and the distribution: α, μ
R←− Zp, η

R←− Z
∗
p.

Note that the dual of the above Definition 2 with the roles of G1 and G2

reversed is Decisional Diffie-Hellman in G1 (DDH1) assumption. The Symmetric
eXternal Diffie-Hellman (SXDH) assumption holds if both DDH1 and DDH2
problems are intractable. It can be easily verified that ADDH1 problem is not
harder than DDH1, as an instance of DDH1 is embedded in the instance of
ADDH1, and an algorithm to solve DDH1 can also be used to solve the ADDH1.

2.2 KUnodes Algorithm

To achieve scalable user revocation, we follow the node selection algorithm
KUNode algorithm by using a binary tree data structure as in the previous RIBE
schemes [6,21,33,38]. We employ similar notations as follows. For a binary tree
BT with N leaves, we denote by root the root node of BT. For a non-leaf node θ,
we write θL and θR as the left and right child of θ, respectively. For a leaf node
η, we write Path(η) as the set of nodes on the path from η to root (both η and
root are inclusive). Each user is assigned to a leaf node η of BT. If a user who is
associated with η is revoked on a time period t, then (η, t) is in the revocation
list RL, i.e., (η, t) ∈RL.

The KUNode algorithm which takes as input a binary tree BT, a revocation
list RL as well as a time period t, is executed as follows. It first sets X := Y := ∅.
For each (ηi, ti) ∈ RL, if ti � t then it adds Path(ηi) to X as: X := X∪Path(ηi).
Then, for each x ∈ X, it will add xL to Y for the case xL /∈ X, and it will add
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xR to Y for the case xR /∈ X. Finally, it will output Y if Y �= ∅. Otherwise, for
the case Y = ∅, it will output Y = {root}.

Note that the output of KUNode algorithm Y is a minimal set of nodes in BT
such that for any leaf node η listed in RL, it must hold that Path(η) ∩ Y = ∅.
But for the non-revoked leaf node η′, there is exactly one node θ ∈ Y such that
θ is an ancestor of η′. Two instances of the KUNode algorithm for the graphical
description are illustrated below in Fig. 1.

Fig. 1. Two instances of the KUNode algorithm

2.3 Syntax of Revocable IBBE Scheme

A revocable IBBE scheme RIBBE is described as follows: For simplicity, we
omit the description of the security parameter λ and the public parameter PP
in the input of all algorithms except for the Setup algorithm.

– Setup(λ,m,N): The setup algorithm takes as input the security parameter
λ, the maximum size m of the set of privileged identities for one encryption
together with the maximum number of users N , and it returns the public
parameters PP , the master secret key MSK, the initial revocation list RL =
∅ and a state ST . The algorithm also defines the identity space ID, the time
space T and the key space K for the DEM.

– SKGen(MSK, ID, ST ): The secret key generation algorithm takes as input
the master secret key MSK, an identity ID ∈ ID, and the state information
ST . It outputs a private key SKID associated with ID and updated ST .

– KeyUp(MSK,T,RL, ST ): The key update generation algorithm takes as
input the master secret key MSK, a key update time T ∈ T , the revocation
list RL and the state ST , and then outputs the update key KUT .

– DKGen(SKID,KUT ): The decryption key generation algorithm takes a
secret key SKID and key update KUT as input, and outputs a decryption
key DKID,T or a symbol ⊥ indicating that ID has been revoked by time T .

– Encap(T, S): The encapsulation algorithm takes as input the current time
T ∈ T and a set of identities S = {ID1, ..., IDn} with n ≤ m, and it returns
a pair (Hdr,K), where Hdr is called the header and K ∈ K is the session
key for the symmetric encryption scheme.
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When a message M ∈ {0, 1}∗ is broadcasted to receivers in S, the sender
can compute the encryption CM of M under the symmetric key K ∈ K of
DEM and broadcasts (T, S,Hdr,CM ). We will refer to (T, S,Hdr) as the full
header and CM as the broadcast body.

– Decap(T, S,Hdr,DKID,T ): This algorithm takes as input the full header
(T, S,Hdr) with a set of identities S = {ID1, ..., IDn} (satisfying that n ≤ m),
a decryption key DKID,T �= ⊥ corresponding an identity ID and time T .
If ID ∈ S the algorithm outputs the session key K which is then used to decrypt
the broadcast body CM to obtain the original message M .

– Revoke(ID, T,RL, ST ): The stateful revocation algorithm takes an identity
to be revoked ID ∈ ID, a revocation time T ∈ T , the current revocation list
RL and the state ST as input, and outputs an updated revocation list RL.

Correctness. The correctness property requires that for all security parameter
λ ∈ N, all (PP,MSK) ← Setup(λ,m,N), all possible state ST , a revocation
list RL and for all sets S ⊆ ID with |S| ≤ m, if ID ∈ S is not revoked on the
time T ∈ T , then for (SKID, ST ) ← SKGen(MSK, ID, ST ), (KUT , ST ) ←
KeyUp(MSK,T,RL, ST ), DKID,T ← DKGen(SKID,KUT ), (Hdr,K) ←
Encap(T, S), it should be satisfied that: Decap(T, S,Hdr,DKID,T ) = K.

REMARK. Note that for m = 1, the above definition of revocable IBBE
scheme is equal to a revocable IBE system, as is used in [33,38].

2.4 Security Models

The security model of RIBE was first introduced by Boldyreva et al. [6] and it
was refined by Seo and Emura [33] by considering the realistic threat of decryp-
tion key exposure. We define IND-CPA security of a revocable IBBE system
with decryption key exposure resistant, which is indistinguishable against cho-
sen plaintext attacks for adaptive adversary. We basically refine the definition
of [33], by adding extra restrictions for the scenario of broadcast encryption [15].
We describe the security model using the following IND-CPA game between a
PPT adversary A and a challenger C.

Setup: The challenger C runs Setup(λ,m,N) algorithm of the revocable IBBE
scheme RIBBE to get the public parameters PP , the master secret key MSK,
a revocation list RL and a state ST . C keeps MSK,RL, ST to itself and gives
PP to the adversary A.

Key Extraction Phase 1: The adversary A can make a polynomial number
of key extraction queries adaptively, which are processed as follows:

– If this is a private key query for an identity ID, then it gives the corresponding
private key SKID to A by running SKGen(MSK, ID, ST ) algorithm;

– If this is an update key query for the time T , then it gives the corresponding
update key KUT to A by running KeyUp(MSK,T,RL, ST ) algorithm;

– If this is a decryption key query for ID and T , then it gives the corresponding
decryption key DKID,T to A by running DKGen(SKID,KUT ) algorithm;
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– If this is a revocation key query for an identity to be revoked ID and
a revocation time T , then it updates the revocation list RL by running
Revoke(ID, T,RL, ST ) algorithm with the following restriction: The revo-
cation query cannot be queried at a time period T if the update key query
for T was issued.

We note that the update key query and the revocation query can be queried at
a time period which is later or equal to that of all previous queries, which means
they are requested in non-decreasing order of time. In addition, the decryption
key query cannot be queried at T before issuing T to the update key query.

Challenge: When A decides that phase 1 is over, a challenge time T ∗ and a
challenge privileged set S∗ = {ID1, ID2, ..., IDn} with n ≤ m are provided with
the following constraints:

– If a private key query for an identity ID ∈ S∗ has been requested, then this
identity ID must be revoked at some time T ≤ T ∗;

– There is no decryption key query for any (ID, T ∗) with ID in S∗.

C runs Encap algorithm to obtain (Hdr,K0) = Encap(S∗, T ∗) and choose a
random K1 from the key space K. C then picks a random coin β ∈ {0, 1} and
returns (Hdr,Kβ) to A.

Key Extraction Phase 2: The adversary A can continue to issue a polynomial
number of additional key extraction queries as phase 1 with the same constraints,
C will respond as before.

Guess: Eventually, the adversary A outputs a guess β′ ∈ {0, 1}, and wins the
game if β′ = β.

Definition 3 (Adaptive Security). Let AdvIND-CPA
A,RIBBE = |Pr(β′ = β) − 1/2| be the

advantage for A in winning the IND-CPA game defined above. We say that a
revocable IBBE scheme is adaptively secure under chosen plaintext attacks if for
all polynomial-time adversary A, the advantage in winning the above experiment
AdvIND-CPA

A,RIBBE is negligible with respect to the security parameter λ.

This security model above can capture realistic threat of decryption key
exposure, as the adversary can make decryption key queries. This model reflects
the scenario where all users get together and collude as in ordinary IBBE, since
the adversary can get any user’s private key except for S∗. Furthermore, even
users in S∗ can be corrupted, as long as they are revoked before the challenge
time T ∗. This is called adaptive security as the privileged set S∗ is not chosen
at the beginning. We can also define the selective security that is weaker than
adaptive security similarly, except that the challenge S∗ and T ∗ must be declared
by the adversary before it sees the public parameters. In addition, we can define
the semi-adaptive security that lies between selective and adaptive security.
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Definition 4 (Selective Security). The selective security of revocable IBBE
under chosen plaintext attacks is similar to the adaptive security except that
the adversary A should submit a challenge set S∗ and challenge time T ∗ before
it receives the public parameters. The advantage is defined as AdvsIND-CPA

A,RIBBE =
|Pr(β′ = β) − 1/2|. We say that a revocable IBBE scheme is secure under chosen
plaintext attacks in the selective model if for all polynomial-time adversary A,
the advantage in winning the above experiment AdvsIND-CPA

A,RIBBE is negligible with
respect to the security parameter λ.

Definition 5 (Semi-adaptive Security). The semi-adaptive security of revocable
IBBE under chosen plaintext attacks is similar to the adaptive security except
that the adversary A should submit a challenge set S∗ after it receives the public
parameters but before it makes any key extraction query. The advantage is defined
as AdvsaIND-CPA

A,RIBBE = |Pr(β′ = β) − 1/2|. We say that a revocable IBBE scheme is
semi-adaptively secure under chosen plaintext attacks if for all polynomial-time
adversary A, the advantage in winning the above experiment AdvsaIND-CPA

A,RIBBE is
negligible with respect to the security parameter λ.

3 The Basic IBBE Scheme

We now present our construction of identity-based broadcast encryption scheme
with short ciphertexts. The core of our construction relies on realizing the inclu-
sion relationship between one identity and a subset of identities from inner
product. Note that the technique of deriving an IBBE scheme from the inner
production encryption can be traced to the work of Katz et al. [18]. For each
identity ID ∈ Zp, we can express it by setting a vector x = (x0, x1, · · · , xm),
where xi = IDi mod p for i = 0, 1, ...,m. For a subset S = {ID1, ID2, ..., IDn}
with n � m, we can define a vector y = (y0, y1, · · · , ym), where PS [Z] =
∏

IDj∈S (Z − IDj) =
∑n

i=0 yiZ
i. If n < m, the coordinates yn+1, · · · , ym are

all set to 0. It is easy to verify that PS [ID] =
∑m

i=0 yi(ID)i = 〈x,y〉 = 0 if and
only if ID ∈ S.

3.1 Construction

As stated before, our basic IBBE scheme shares the same high level structure
as the construction in [31]. In order to achieve the secret key re-randomization
property, each component of the master secret key needs to be available in the
public parameters in some form of elements in source groups. We note that the
extra public group elements, especially for the part of (gβα

1 , gβα1
2 , gβα2

2 , g
1/β
2 ),

will play an important role in the security proof of the subsequent revocable
IBBE scheme. It is also worth mentioning that the security proof cannot be
immediately applied, since some materials of the master secret key from [31]
have been exposed in the public parameters. More precisely, our basic IBBE
scheme

∏

IBBE is constructed as follows.
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– Setup(λ,m): Generate a Type-3 pairing G = (p, e,G1,G2,GT ) of prime
order p > 2λ with two random generators g1 ∈ G1 and g2 ∈ G2. Let m
be the maximum size of the legitimate set for one encryption, two random
(m + 1)-dimensional vectors are chosen from Zp with u1 = (u1,0, u1,1, · · · ,

u1,m), u2 = (u2,0, u2,1, · · · , u2,m). Choose α1, α2, w1, w2
R←− Zp, b, β

R←− Z
∗
p,

set u = u1+bu2 = (u0, u1, · · · , um), w = w1+bw2, α = α1+bα2, and compute
U1 = gu1 , W1 = gw

1 , gT = e(g1, g2)α. The master key is MSK = (gα1
2 , gα2

2 ),
and the public parameter PP is defined to be:
PP = (g1, gb

1,U1,W1, gT , g2, g
u1
2 , gu2

2 , gw1
2 , gw2

2 , gβα
1 , gβα1

2 , gβα2
2 , g

1/β
2 ).

– KeyGen(PP,MSK, ID): For a user with an identity ID ∈ Zp, this algo-

rithm chooses r
R←− Zp and random tags ktag1, · · · , ktagm

R←− Zp. The private
key SKID = {K1,K2,K3, (K4,i,K5,i, ktagi)m

i=1} is defined to be:
K1 = gα1

2 · (gw1
2 )r,K2 = gα2

2 · (gw2
2 )r,K3 = gr

2. For i = 1, 2, ...,m:
K4,i = ((gw1

2 )ktagi · g
u1,i

2 /(gu1,0
2 )(ID)i

)r, K5,i = ((gw2
2 )ktagi · g

u2,i

2 /

(gu2,0
2 )(ID)i

)r.
– Encap(PP, S): Assuming that the privileged set is S = {ID1, ID2, ..., IDn}

with n � m for notational simplicity. The algorithm defines a vector
y = (y0, y1, · · · , ym) as the coefficient from PS [Z] =

∏

IDj∈S (Z − IDj) =
∑n

i=0 yiZ
i. It then picks randomly s, ctag ∈ Zp, and computes the ses-

sion key K = gT
s which is used to encrypt the message, together with

the header Hdr = (C1, C2, C3, ctag), where C1 = gs
1, C2 = gsb

1 , C3 =
(W ctag

1 ·
∏n

i=0 (gui
1 )yi)s.

– Decap(PP, S,Hdr, SKID): The algorithm defines the vector y = (y0,
y1, · · · , ym) according to the set S from the polynomial PS [Z] as above. It
then computes ktag =

∑m
i=1 yi · ktagi. If ktag = ctag, the output is ⊥. Oth-

erwise it computes:

A = (e(C1,
∏m

i=1 Kyi

4,i) · e(C2,
∏m

i=1 Kyi

5,i)/e(C3,K3))
1

ktag−ctag , and returns
the session key: K = e(C1,K1) · e(C2,K2) · A−1.

CORRECTNESS . We observe that if ID ∈ S, we have 〈x,y〉 =
∑m

i=0 yi(ID)i =
0, and y0 = −

∑m
i=1 yi(ID)i. Then we have:

∏m

i=1
Kyi

4,i = ((gw1
2 )

∑m
i=1 yiktagi ·

∏m

i=1
(gu1,i

2 )yi/
∏m

i=1
(gu1,0

2 )
∑m

i=1 yi(ID)i

)r

= (gw1
∑m

i=1 yiktagi

2 · g
∑m

i=0 yiu1,i

2 )r = (gw1·ktag
2 · g

∑m
i=0 yiu1,i

2 )r;
∏m

i=1
Kyi

5,i = (gw2·ktag
2 · g

∑m
i=0 yiu2,i

2 )r;

e(C1,
∏m

i=1
Kyi

4,i)e(C2,
∏m

i=1
Kyi

5,i) = e(gs
1, g

r(w·ktag+
∑m

i=0 yiui)
2 );

A = (e(C1,
∏m

i=1
Kyi

4,i)e(C2,
∏m

i=1
Kyi

5,i) · e(C3,K3)−1)
1

ktag−ctag = e(gs
1, g

rw
2 );

K = e(C1,K1)e(C2,K2)A−1 = e(gs
1, g

α1+rw1
2 )e((gb

1)
s, gα2+rw2

2 )/e(gs
1, g

rw
2 )

= e(gs
1, g

α1
2 )e((gb

1)
s, gα2

2 ) = e(gs
1, g

α1+bα2
2 ) = gT

s.
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3.2 Security Proof

We prove the security of the above basic IBBE scheme inspired from Ramanna’s
original inner production encryption scheme [31] following the theorem:

Theorem 1. Suppose the DDH1, DDH2 and ADDH1 assumptions hold in the
Type-3 pairing G = (p, e,G1,G2,GT ), the basic IBBE scheme

∏

IBBE in Sect. 3.1
is adaptively secure.

Our security proof is obtained by applying the Waters’ dual system methodol-
ogy [37] via a hybrid argument over a sequence of games. Before we describe
these games, we introduce the semi-functional headers and secret keys in terms
of a transformation on a normal header or key. Note that these algorithms are
provided for definitional purposes and only used in the security proof, but not in
a real system. In particular, they do not need to be efficiently computable from
the public parameters and the master secret key MSK.

SFEncap(PP,MSK,S, gw1
1 , gu1

1 ): The algorithm first runs the Encap algo-
rithm on a set S = {ID1, ..., IDn} to generate a normal header-session key pair
(Hdr′,K ′) with Hdr′ = (C ′

1, C
′
2, C

′
3, ctag′). Then it randomly chooses μ ∈ Zp,

and sets the semi-functional session key K = K ′ · e(gμ
1 , gα1

2 ), together with
C2 = C ′

2, ctag = ctag′. It then sets C1 = C ′
1 · gμ

1 , C3 = C ′
3 · g

μ(〈y ,u1〉+ctag·w1)
1 ,

where y = (y0, y1, · · · , ym) is the coefficient from PS [Z] =
∏

IDj∈S (Z − IDj) =
∑n

i=0 yiZ
i. The resulting header Hdr = (C1, C2, C3, ctag) is returned as the

semi-functional header. Additionally, gw1
1 and gu1

1 are needed to generate the
semi-functional header in this algorithm.

SFKeyGen(PP,MSK, ID, g
1/b
2 ): The algorithm first runs the KeyGen algo-

rithm to generate a normal private key SK ′
ID = {K ′

1,K
′
2,K

′
3, (K

′
4,i,K

′
5,i,

ktag′
i)

m
i=1}. Then it chooses a random γ ∈ Zp, and sets K1 = K ′

1 · gγ
2 ,K2 = K ′

2/

g
γ/b
2 , leaving the other elements {K3, (K4,i,K5,i)m

i=1} and the tags {(ktagi)m
i=1}

unchanged. The resulting key SKID = {K1,K2,K3, (K4,i,K5,i, ktagi)m
i=1} is

returned as the semi-functional secret key. Note that g
1/b
2 is also needed in this

algorithm.
We observe that if one applies the decapsulation procedure with a semi-

functional key and a normal header, decapsulation will succeed as e(C1, g
γ
2 ) =

e(C2, g
γ/b
2 ). That is, a normal header when decapsulated with a semi-functional

user key returns the corresponding normal session key. Similarly, decapsulation
of a semi-functional header by a normal key will also succeed because of:

A′ = e(gμ
1 ,

∏m
i=1 Kyi

4,i)/e(gμ(〈y ,u1〉+ctag·w1)
1 ,K3)

1
ktag−ctag = e(gμ·w1

1 , gr
2),

e(gμ
1 ,K1)/A′ = e(gμ

1 , gβα1
2 · (gw1

2 )r)/e(gμ·w1
1 , gr

2) = e(gμ
1 , gβα1

2 ),
which equals the extra component of the semi-functional session key. However,
when a semi-functional key is used to decapsulate a semi-functional header, the
resulting session key will have an additional term of e(gμ

1 , gγ
2 ) · e(gs

1, g
γ
2 ), which

means decapsulation will fail when both the header and user’s key are semi-
functional.
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We now present a sequence of games between an adversary A and a challenger
C defined as follows:

– GameReal: The real IBBE security game, which is basically follows the adap-
tive security model of [15].

– Game0: The same as GameReal, except that the challenge header and session
key are semi-functional.

– Gamek: The same as Game0, except that the first k private keys are semi-
functional for 1 � k � q, where q is the number of key extraction queries
made by the adversary A.

– GameFinal: The same as Gameq, except that the challenge session key is a
random element of GT .

Our proof will process as follows, which can show that each game defined above is
indistinguishable from the next under a complexity assumption. First, we transit
from GameReal to Game0, where the adversary A’s advantage is bounded by the
DDH1 assumption. Then we transit from Gamek−1 to Gamek for each 1 � k � q,
and the adversary A’s advantage is bounded by the DDH2 assumption. We note
that in Gameq both the challenge header and all the private keys are semi-
functional. At this point all private keys the challenger C gives out are useless
in decapsulating the header. Finally, we transit Gameq to GameFinal under the
ADDH1 assumption. It is easy to check that the header-session key pair given
to the adversary A is independent with β in GameFinal, where the adversary has
no advantage unconditionally.

We denote AdvGameReal
A,IBBE , AdvGame0

A,IBBE, AdvGamek
A,IBBE (1 � k � q) and AdvGameFinal

A,IBBE

as the advantage in GameReal, Game0, Gamek and GameFinal, respectively. Our
hybrid argument is accomplished in the following lemmas:

Lemma 1. If there is an adversary A with
∣
∣
∣AdvGameReal

A,IBBE − AdvGame0
A,IBBE

∣
∣
∣ = ε, we

can build an algorithm C0 with advantage AdvDDH1
C0,G = ε in breaking the DDH1

assumption for the Type-3 pairing G.

Lemma 2. Suppose that there exists an adversary A that makes at most q

queries with advantage
∣
∣
∣Adv

Gamek−1
A,IBBE − AdvGamek

A,IBBE

∣
∣
∣ = ε for some k where 1 �

k � q. Then we can build an algorithm Ck with advantage AdvDDH2
Ck,G = ε in

breaking the DDH2 assumption for the Type-3 pairing G.

Lemma 3. If there is an adversary A with
∣
∣
∣Adv

Gameq

A,IBBE − AdvGameFinal

A,IBBE

∣
∣
∣ = ε, we

can build an algorithm C with advantage AdvADDH1
C,G = ε in breaking the ADDH1

assumption for the Type-3 pairing G.

The indistinguishability of GameReal and Game0 as well as that of Gamek−1

and Gamek for 1 � k � q can be proved similarly as the way in [31]. Due to space
constraints, the proof for Lemmas 1 and 2 is omitted here, but can be found in
the full version. Here we only present the proof for Lemma 3 in Appendix A,
which is the most non-trivial part in the theorem.
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In addition, we note that the value of β is information theoretically hidden
from the adversary A in GameFinal, the probability in which A wins is exactly 1

2 .

Hence, A has no advantage in GameFinal:
∣
∣
∣AdvGameFinal

A,IBBE − 1
2

∣
∣
∣ = 0. Thus, we have

the advantage of A in breaking the security of our basic IBBE scheme
∏

IBBE:

Adv
IND - CPA
A,IBBE =

∣
∣
∣Adv

GameReal
A,IBBE − 1

2

∣
∣
∣ �

∣
∣
∣Adv

GameReal
A,IBBE − Adv

GameFinal
A,IBBE

∣
∣
∣ +

∣
∣
∣Adv

GameFinal
A,IBBE − 1

2

∣
∣
∣

�
∣
∣
∣Adv

GameReal
A,IBBE − Adv

Game0
A,IBBE

∣
∣
∣ +

q∑

k=1

∣
∣
∣Adv

Gamek−1
A,IBBE − Adv

Gamek
A,IBBE

∣
∣
∣ +

∣
∣
∣Adv

Gameq
A,IBBE − Adv

GameFinal
A,IBBE

∣
∣
∣

= Adv
DDH1
C,G + q · Adv

DDH2
C,G + Adv

ADDH1
C,G .

Since the number of key extraction queries q is bounded by polynomial size, the
advantage AdvIND-CPA

A,IBBE defined above is negligible under the DDH1, DDH2 and
ADDH1 assumptions. This completes the proof of Theorem 1. ��

4 Construction of Revocable IBBE Scheme

In this section, we present an efficient revocable IBBE scheme with constant size
of headers, which is proven semi-adaptively secure in the standard model based
on the IBBE scheme described in Sect. 3.1. Here we basically follow the simple
two-level HIBE (without delegating property) strategy in our construction. That
is, the first level using the adaptively secure IBBE scheme in Sect. 3.1, is assigned
for the identity, and the second level using the selectively secure Boneh-Boyen
IBE [4], is assigned for the polynomial bounded time period. Our revocable IBBE
scheme

∏

RIBBE is described as follows:

– Setup(λ,m,N): Given the security parameter λ, PKG generates a Type-3
pairing G = (p, e,G1,G2,GT ) of prime order p. Also, two random generators
g1 ∈ G1 and g2 ∈ G2 are chosen as well as e(g1, g2) ∈ GT is computed.
As the maximum number of privileged identities is m, PKG then chooses
from Zp two random (m + 1)-dimensional vectors u1 = (u1,0, u1,1, · · · , u1,m),
u2 = (u2,0, u2,1, · · · , u2,m). Assuming that there are at most N users in the
revocable IBBE systems, where N is a power of two for simplicity, a binary
tree BT with N leaves is chosen. To generate the system public parameters
PP , the authority PKG does the following:
1. Choose randomly b

R←− Z
∗
p, α1, α2, w1, w2, z1, z2, ẑ1, ẑ2

R←− Zp;
2. Set u = u1 + bu2, w = w1 + bw2, α = α1 + bα2;
3. Compute U1 = gu1 , W1 = gw

1 , gT = e(g1, g2)α, Z1 = gz1+b·z2
1 , Ẑ1 =

gẑ1+b·ẑ2
1 ;

4. Finally, output public parameters to be:
PP = (g1, gb

1,U1,W1, Z1, Ẑ1, gT , g2, g
u1
2 , gu2

2 , gw1
2 , gw2

2 , gz1
2 , gz2

2 , gẑ1
2 , gẑ2

2 ).
The master key is defined MSK = (gα1

2 , gα2
2 ), and the revocation list is

RL = ∅.
– SKGen(PP,MSK, ID, ST ): Assuming that the domain of identities ID

to be Zp. For a user associated with an identity ID ∈ Zp, PKG picks an
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unassigned leaf node η randomly from BT and stores ID in this node η. For
each node θ ∈ Path(BT, η), the authority does the following:
1. Recall Hθ = (H1,θ,H2,θ) from BT if it was defined. Otherwise, choose

H1,θ,H2,θ
R←− G2 and store Hθ in the node θ;

2. Choose rθ, ktag1,θ, · · · , ktagm,θ
R←− Zp;

3. Compute K1,θ = H1,θ · (gw1
2 )rθ ,K2,θ = H2,θ · (gw2

2 )rθ ,K3,θ = grθ
2 ;

For each i = 1, 2, ...,m:
K4,i,θ = g

rθ(u1,i−(ID)i·u1,0+ktagi,θ·w1)

2 , K5,i,θ = g
rθ(u2,i−(ID)i·u2,0+ktagi,θ·w2)

2 .
Return the private secret key SKID and an updated state ST with

SKID = {K1,θ,K2,θ,K3,θ, (K4,i,θ,K5,i,θ, ktagi,θ)m
i=1}θ∈Path(BT,η).

– KeyUp(PP,MSK, T,RL, ST ): PKG parses MSK as (gα1
2 , gα2

2 ), and pub-
lishes key updates at time period T for each node θ ∈ KUNode(BT,RL, T )
in the following steps:
1. Retrieve Hθ = (H1,θ,H2,θ) from the state ST (As noted in [33], Hθ is

always pre-defined in the SKGen algorithm).
2. Choose sθ

R←− Zp, and compute:
KU1,θ = gα1

2 g
sθ(z1+T ·ẑ1)
2 H−1

1,θ ,KU2,θ = gα2
2 g

sθ(z2+T ·ẑ2)
2 H−1

2,θ ,KU3,θ = gsθ
2 .

Return the key update KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T ).
– DKGen(PP, SKID,KUT ): Parse KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈J and

SKID = {K1,θ,K2,θ,K3,θ, (K4,i,θ,K5,i,θ, ktagi,θ)m
i=1}θ∈I for some set of nodes

I and J . The user will return ⊥ if I ∩ J = ∅. Otherwise, choose θ ∈ I ∩ J ,
r′
θ, s

′
θ ∈ Zp, compute DKID,T = {DK1,DK2,DK3,DK ′

3, (DK4,i,DK5,i,
ktagi)m

i=1}:
DK1 = K1,θ · KU1,θ · g

r′
θ·w1

2 g
s′

θ·(z1+T ·ẑ1)
2 , DK2 = K2,θ · KU2,θ · g

r′
θ·w2

2

g
s′

θ·(z2+T ·ẑ2)
2 ,

DK3 = K3,θ · g
r′

θ
2 ,DK ′

3 = KU3,θ · g
s′

θ
2 . For i = 1, 2, ...,m: ktagi = ktagi,θ,

DK4,i = K4,i,θ ·gr′
θ·(u1,i−(ID)i·u1,0+ktagi·w1)

2 , DK5,i = K5,i,θ ·gr′
θ·(u2,i−(ID)i·u2,0+ktagi·w2)

2 .

– Encap(PP, T, S): To encrypt the privileged identity set S = {ID1,
ID2, ..., IDn} with n � m, the algorithm defines a vector y = (y0, y1, · · · , ym)
as the associated coefficient from: PS [Z] =

∏

IDj∈S (Z − IDj) =
∑n

i=0 yiZ
i.

Note that the coordinates yn+1, · · · , ym are all set to 0 if n < m. Given
the public parameters PP with U1 = gu1 = (gu0

1 , gu1
1 , · · · , gum

1 ), it picks
s, ctag

R←− Zp, and computes the session key K = gT
s and the header

Hdr = (C1, C2, C3, C4, ctag) with C1 = gs
1, C2 = (gb

1)
s, C3 = (Z1 · ẐT

1 )s, C4 =
(W ctag

1 ·
∏n

i=0 (gui
1 )yi)s.

– Decap(PP, T, S,Hdr,DKID,T ): For ID ∈ S, it parses DKID,T and Hdr
as {DK1,DK2,DK3, DK ′

3, (DK4,i,DK5,i, ktagi)m
i=1} and (C1, C2, C3,

C4, ctag), respectively. This algorithm then computes ktag =
∑m

i=1 yi · ktagi,
where yi is the coefficient of the polynomial PS [Z]. If ktag = ctag, the output
is ⊥. Otherwise it computes:
A = e(C1,DK1) · e(C2,DK2)/e(C3,DK ′

3),

B = (e(C1,
∏n

i=1 (DK4,i)
yi) · e(C2,

∏n
i=1 (DK5,i)

yi)/e(C4,DK3))
1

ktag−ctag ,
and returns K = A/B as the session key.
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– Revoke(ID, T,RL, ST ): This revocation algorithm updates the revocation
list RL by adding (η, ID, T ), where η is the leaf node associated with ID.

CORRECTNESS . The correctness of our revocable RIBBE scheme follows from
the correctness analysis of IBBE in Sect. 3.1, and it is omitted here.

5 Security Analysis

Theorem 2. If the ADDH1 assumption and DDH2 assumption hold, the pro-
posed revocable IBBE scheme

∏

RIBBE is semi-adaptively secure under chosen
plaintext attacks. More particularly, if we set the maximum size of the set of
receivers for one encryption m to be m = 1, the above revocable IBBE scheme
∏

RIBBE is a revocable IBE system
∏

RIBE, which is adaptively secure against
chosen plaintext attacks under the same assumptions.

The proof of Theorem 2 proceeds in the following two lemmas: Lemma 4 and
Lemma 5. We first provide a reduction in the semi-adaptive model to the (non-
revocable) basic IBBE scheme

∏

IBBE described in Sect. 3.1, which has been
proven to be adaptively secure in Sect. 3.2 under the ADDH1 and DDH2 assump-
tions. Therefore, the revocable IBBE scheme

∏

RIBBE is semi-adaptivey secure
under the ADDH1 and DDH2 assumptions.

Lemma 4. If the underlying IBBE scheme
∏

IBBE described in Sect. 3.1 is adap-
tively secure against chosen plaintext attacks, then the proposed revocable IBBE
scheme

∏

RIBBE in Sect. 4 is semi-adaptively secure. Furthermore, if there exists
an adversary A attacking the semi-adaptive security of

∏

RIBBE with a non-
negligible advantage AdvsaIND-CPA

A,RIBBE = ε, then there exists an adversary C against
the adaptive security of

∏

IBBE with advantage AdvIND-CPA
C,IBBE = ε

2|T | , which is also
non-negligible. Here T is the set of time periods, the size of which is polynomial
bounded in the security parameter λ.

Proof. Suppose there exists an adversary A that attacks the above revocable
IBBE scheme

∏

RIBBE with a non-negligible advantage ε, we will construct a
PPT algorithm C to break the adaptive security of the basic IBBE scheme

∏

IBBE

described in Sect. 3.1.
At the beginning, C receives public parameters of the IBBE scheme

∏

IBBE:
(g1, gb

1,U1 = gu1+bu2
1 ,W1 = gw1+bw2

1 , gT , g2, g
u1
2 , gu2

2 , gw1
2 , gw2

2 , gβα
1 , gβα1

2 , gβα2
2 ,

g
1/β
2 ). During the process, C can access to the secret key generation oracle

KeyGenIBBE(·), that is, if C sends this oracle KeyGenIBBE(·) an identity ID,
then it will receive a private key of SKID = {K1,K2,K3, (K4,i,K5,i, ktagi)m

i=1}
with:
K1 = gα1

2 · (gw1
2 )r,K2 = gα2

2 · (gw2
2 )r,K3 = gr

2,
K4,i = ((gw1

2 )ktagi · g
u1,i

2 /(gu1,0
2 )(ID)i

)r, K5,i = ((gw2
2 )ktagi · g

u2,i

2 /(gu2,0
2 )(ID)i

)r.
Then C interacts with A as follows:

Setup: C should guess the right time period T ∗ that A will submit the target
identity in the challenge ciphertext phase. For the rest of the proof, assuming
that C’s guess is correct, which holds with probability 1/ |T |. Note that C will
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terminate the simulation once C finds that the guess is wrong, and a random bit
β′ will be outputted. C then proceeds as follows:

1. It first creates a binary tree BT with N leaves. It initializes RL and ST as
an empty set respectively.

2. C chooses z′
1, z

′
2, ẑ

′
1, ẑ

′
2

R←− Zp and computes:
Z1 = gz1+b·z2

1 = g
z′
1

1 (gb
1)

z′
2/(gβα

1 )T ∗
, Ẑ1 = gẑ1+b·ẑ2

1 = g
ẑ′
1

1 (gb
1)

ẑ′
2(gβα

1 ),
gz1
2 = g

z′
1

2 /(gβα1
2 )T ∗

, gz2
2 = g

z′
2

2 /(gβα2
2 )T ∗

, gẑ1
2 = g

ẑ′
1

2 gβα1
2 , gẑ2

2 = g
ẑ′
2

2 gβα2
2 ,

which implicitly sets:
z1 = z′

1 − T ∗ · βα1, z2 = z′
2 − T ∗ · βα2, ẑ1 = ẑ′

1 + βα1, ẑ2 = ẑ′
2 + βα2.

3. C then sends to A the public parameters of
∏

RIBBE as:
PP = (g1, gb

1,U1,W1, Z1, Ẑ1, gT , g2, g
u1
2 , gu2

2 , gw1
2 , gw2

2 , gz1
2 , gz2

2 , gẑ1
2 , gẑ2

2 ).

Challenge Set: A submits a challenge set S∗ = {ID∗
1 , ID∗

2 , ..., ID∗
n} to the

challenger C, which will be used in the challenge ciphertexts. For each identity
ID∗

i ∈ S∗, C assigns ID∗
i to a random leaf η∗

i from BT and saves (ID∗
i , η∗

i )
to ST .

Key Extraction Phase 1: A may adaptively make a polynomial number of
queries, which are processed as follows:

– If this is a private key query for an identity ID, C performs the following:
1. It first checks whether ID ∈ S∗ or not. If ID ∈ S∗, then the leaf η∗

from BT has already been assigned for ID, and C can retrieve (ID, η∗)
from ST . Otherwise, ID /∈ S∗, C assigns ID to a random leaf η from BT
and saves (ID, η) to ST . We denote N∗ as all the nodes from the root
node to the leaf nodes which are assigned to identities in the challenge
set S∗: N∗ =

⋃n
i=1 Path(BT, η∗

i ), where η∗
i is the leaf node assigned to

ID∗
i ∈ S∗.

2. For each node θ ∈ Path(BT, η), C can retrieve Hθ if it was defined.
Otherwise, it chooses Hθ = (H1,θ,H2,θ)

R←− G2 and stores Hθ in the
node θ. Note that θ can be further divided into the following two types
according to N∗:

• Case θ ∈ N∗: C chooses rθ, ktag1,θ, · · · , ktagm,θ
R←− Zp, and com-

putes:
K1,θ = H1,θ · (gw1

2 )rθ ,K2,θ = H2,θ · (gw2
2 )rθ ,K3,θ = grθ

2 ;
K4,i,θ = g

rθ(u1,i−(ID)i·u1,0+ktagi,θ·w1)

2 ,K5,i,θ = g
rθ(u2,i−(ID)i·u2,0+ktagi,θ·w2)

2 .

• Case θ /∈ N∗: In this case, ID /∈ S∗. C transfers ID to the
oracle: KeyGenIBBE(·), and gets the private key {K1,K2,K3, (K4,i,

K5,i, ktagi)m
i=1}. C further chooses rθ, ktag1,θ, · · · , ktagm,θ

R←− Zp,
sets ktagi,θ = ktagi,θ + ktagi, and computes: K1,θ = K1 · (gw1

2 )rθ ·
H1,θ,K2,θ = K2 · (gw2

2 )rθ · H2,θ,K3,θ = K3 · grθ
2 , K4,i,θ = K4,i ·

g
rθ(u1,i−(ID)i·u1,0+ktagi,θ·w1)
2 ,

K5,i,θ = K5,i · g
rθ(u2,i−(ID)i·u2,0+ktagi,θ·w2)
2 .
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3. Finally, it stores and outputs the private key SKID to A with:
SKID = {K1,θ,K2,θ,K3,θ, (K4,i,θ,K5,i,θ, ktagi,θ)m

i=1}θ∈Path(BT,η).
– If this is an update key query for the time T , C first runs KUNode(BT,RL, T )

algorithm with the current revocation list RL and time T . For each node
θ ∈ KUNode(BT,RL, T ), C can retrieve Hθ if it was defined. Otherwise, it
chooses Hθ = (H1,θ,H2,θ)

R←− G2 and stores Hθ in the node θ. Then it chooses

sθ
R←− Zp, checks whether θ ∈ N∗, and computes:

• Case θ ∈ N∗: KU1,θ = (gz1
2 (gẑ1

2 )T )sθH−1
1,θ (g

1
β
2 )− z′

1+T ẑ′
1

T−T ∗ ,

KU2,θ = (gz2
2 (gẑ2

2 )T )sθH−1
2,θ (g

1
β
2 )−

z′
2+T ẑ′

2
T−T ∗ , KU3,θ = gsθ

2 (g
1
β
2 )− 1

T−T ∗ .
REMARK . Note that for T = T ∗, there will be no node θ such that θ ∈
KUNode(BT,RL, T ) ∩ N∗, as the corresponding SKID must be revoked
before T ∗ according to the restriction.

• Case θ /∈ N∗: KU1,θ = (gz1
2 (gẑ1

2 )T )sθH−1
1,θ ,KU2,θ = (gz2

2 (gẑ2
2 )T )sθH−1

2,θ ,
KU3,θ = gsθ

2 .
Finally, C stores and outputs the update key KUT to A with:
KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T ).

– If this is a decryption key query for an identity ID and time T , on the one
hand, C can generate the corresponding decryption key DKID,T by running
DKGen(SKID,KUT ) algorithm: C will create and store the private key SKID

if ID has never been queried to the private key or the decryption key before
(otherwise, C can use the stored SKID). In addition, A had to issue the
update key query for the time T before issuing the decryption query, and
hence KUT was already generated at that time, which can be retrieved by
C. On the other hand, C can directly generate the decryption key DKID,T if
ID is not revoked before T (otherwise, C can output ⊥) without resorting to
the DKGen(SKID,KUT ) algorithm:

• Case ID ∈ S∗: C selects random exponents s, r, ktag1, · · · , ktagm
R←− Zp

and creates the decryption DKID,T as:

DK1 = (gz1
2 (gẑ1

2 )T )s(gw1
2 )r(g

1
β
2 )− z′

1+T ẑ′
1

T−T ∗ ,

DK2 = (gz2
2 (gẑ2

2 )T )s(gw2
2 )r(g

1
β
2 )− z′

2+T ẑ′
2

T−T ∗ , DK3 = gr
2,DK ′

3 = gs
2,

DK4,i = g
r(u1,i−(ID)i·u1,0+ktagi·w1)
2 ,DK5,i = g

r(u2,i−(ID)i·u2,0+ktagi·w2)
2 .

• Case ID /∈ S∗: In this case, C transfers ID to the oracle: KeyGenIBBE(·),
and gets the private key {K1,K2,K3, (K4,i,K5,i, ktagi)m

i=1}. C further

chooses s
R←− Zp, and computes:

DK1 = K1 · (gz1
2 (gẑ1

2 )T )s,DK2 = K2 · (gz2
2 (gẑ2

2 )T )s,DK3 = K3,
DK ′

3 = gs
2;

DK4,i = K4,i,DK5,i = K5,i, ktagi = ktagi.
REMARK. Note that T will never equal to T ∗ in the case of ID ∈ S∗ accord-
ing to the restriction in the security model of Sect. 2.4.
Finally, C stores and outputs the decryption key DKID,T to A with:
DKID,T = {DK1,DK2,DK3,DK ′

3, (DK4,i,DK5,i, ktagi)m
i=1}.
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– If this is a revocation key query for an identity to be revoked ID and
a revocation time T , then C updates the revocation list RL by running
Revoke(ID, T,RL, ST ) algorithm.

Challenge Cihphertexts: Once A decides that the Key Extraction Phase 1
is over, C sends the challenge privileged set S∗ = {ID∗

1 , ID∗
2 , ..., ID∗

n} to the chal-
lenger in the IND-CPA game of the IBBE scheme

∏

IBBE and gets (Hdr∗,K∗) with
Hdr∗ = (C∗

1 , C∗
2 , C∗

3 , ctag∗). Note that (Hdr∗,K∗
0 ) is obtained from the challenger

of
∏

IBBE by running Encap algorithm with (Hdr∗,K∗
0 ) = Encap(S∗), and K∗

1 is
a random element from the key space K of

∏

IBBE. It is C’s task to decide K∗ = K∗
0

or K∗ = K∗
1 . C sets C1 = C∗

1 , C2 = C∗
2 , C3 = (C∗

1 )z′
1+T ∗ẑ′

1 · (C∗
2 )z′

2+T ∗ẑ′
2 , C4 =

C∗
3 , ctag = ctag∗ and sends (Hdr = (C1, C2, C3, C4, ctag),K∗) to A as the chal-

lenge header and session key pair.

Key Extraction Phase 2: Same as Key Extraction Phase 1.

Guess: Finally, A outputs a guess β′ ∈ {0, 1}, and C will transfer it to the
challenger in the IND-CPA game of the IBBE scheme

∏

IBBE.
Now we show that the simulation is correct. That is, the distribution of all

the above transcriptions between A and C is identical to the real experiment
from the viewpoint of A. Firstly, the public parameters PP is correct as the
exponents z′

1, z
′
2, ẑ

′
1, ẑ

′
2 ∈ Zp are randomly chosen. Secondly, we show that the

private keys are correct. For each node θ ∈ Path(BT, η), it can be easily verified
that the private keys are of the same distribution in the case of θ ∈ N∗. In the
case of θ /∈ N∗, the private key for (K1,θ,K2,θ) is also correctly distributed from
the setting H ′

1,θ = K1,θ · H1,θ,H
′
2,θ = K2,θ · H2,θ, r

′
θ = r + rθ as

K1,θ = K1 · (gw1
2 )rθ · H1,θ = (gα1

2 · H1,θ) · (gw1
2 )r+rθ = H ′

1,θ · (gw1
2 )r′

θ ,

K2,θ = K2 · (gw2
2 )rθ · H2,θ = (gα1

2 · H1,θ) · (gw2
2 )r+rθ = H ′

2,θ · (gw2
2 )r′

θ .
Thirdly, we show that the update key is correct. In case of θ ∈ N∗, we

have that a time related update key is correctly distributed from the setting
s′

θ = sθ − 1
β(T−T ∗) as it holds that:

KU1,θ = (gz1
2 (gẑ1

2 )T )sθH−1
1,θ (g

1
β
2 )− z′

1+T ẑ′
1

T−T ∗ = (gz′
1−T ∗βα1

2 (gẑ′
1

2 gβα1
2 )T )sθg

− z′
1+T ẑ′

1
β(T−T ∗)

2

H−1
1,θ

= gα1
2 (gz′

1+T ẑ′
1

2 g
(T−T ∗)βα1
2 )sθg

−
z′
1+T ẑ′

1
β(T−T ∗)

2 · g−α1
2 · H−1

1,θ

= gα1
2 (gz′

1+T ẑ′
1

2 g
(T−T ∗)βα1
2 )sθ · (gα1β(T−T ∗)+z′

1+T ẑ′
1

2 )
− 1

β(T−T ∗) · H−1
1,θ

= gα1
2 (gz′

1+T ẑ′
1

2 g
(T−T ∗)βα1
2 )

sθ− 1
β(T−T ∗) · H−1

1,θ

= gα1
2 (gz′

1+T ẑ′
1

2 g
(T−T ∗)βα1
2 )s′

θ · H−1
1,θ

= gα1
2 (gz1

2 (gẑ1
2 )T )s′

θ · H−1
1,θ ,

KU2,θ = (gz2
2 (gẑ2

2 )T )sθH−1
2,θ (g

1
β
2 )−

z′
2+T ẑ′

2
T−T ∗ = (gz′

2−T ∗βα2
2 (gẑ′

2
2 gβα2

2 )T )sθg
− z′

2+T ẑ′
2

β(T−T ∗)
2

H−1
2,θ

= gα2
2 (gz′

2+T ẑ′
2

2 g
(T−T ∗)βα2
2 )sθg

− z′
2+T ẑ′

2
β(T−T ∗)

2 · g−α2
2 · H−1

2,θ
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= gα2
2 (gz′

2+T ẑ′
2

2 g
(T−T ∗)βα2
2 )s′

θ · H−1
2,θ = gα2

2 (gz2
2 (gẑ2

2 )T )s′
θ · H−1

2,θ ,

KU3,θ = gsθ
2 (g

1
β
2 )− 1

T−T ∗ = g
sθ− 1

β(T−T ∗)
2 = g

s′
θ

2 .
In case of θ /∈ N∗, the update key is correctly distributed from the setting

H ′
1,θ = gα1

2 H1,θ,H
′
2,θ = gα1

2 H2,θ, s′
θ = sθ as:

KU1,θ = (gz1
2 (gẑ1

2 )T )sθH−1
1,θ = gα1

2 (gz1
2 (gẑ1

2 )T )sθg−α1
2 H−1

1,θ = gα1
2 (gz1

2 (gẑ1
2 )T )sθ

(H ′
1,θ)

−1,

KU2,θ = (gz2
2 (gẑ2

2 )T )sθH−1
2,θ = gα2

2 (gz2
2 (gẑ2

2 )T )sθ (H ′
2,θ)

−1, KU3,θ = gsθ
2 = g

s′
θ

2 .
Fourthly, we show that the decryption key is correct. As we have

proved before, both the private key SKID and the update key KUT

are correctly distributed, the resulting decryption key must be cor-
rectly distributed by running the DKGen(SKID,KUT ) algorithm. Further-
more, if ID is not revoked before T , we can prove that the decryp-
tion key for (DK1,θ,DK2,θ) is also correctly distributed directly with
SKID = {K1,θ,K2,θ,K3,θ, (K4,i,θ,K5,i,θ, ktagi,θ)m

i=1}θ∈Path(BT,η) and KUT =
{KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T ).

In the case of ID ∈ S∗, there must exist a node θ ∈ KUNode(BT,RL, T ) ∩

N∗ with KU1,θ = (gz1
2 (gẑ1

2 )T )sθH−1
1,θ (g

1
β
2 )−

z′
1+T ẑ′

1
T−T ∗ = gα1

2 (gz1
2 (gẑ1

2 )T )s′
θ · H−1

1,θ and
K1,θ = H1,θ · (gw1

2 )rθ . According to the DKGen(SKID,KUT ) algorithm:
K1,θ ·KU1,θ = H1,θ ·(gw1

2 )rθ ·gα1
2 (gz1

2 (gẑ1
2 )T )s′

θ ·H−1
1,θ = gα1

2 ·(gw1
2 )rθ ·(gz1

2 (gẑ1
2 )T )s′

θ ,
K2,θ ·KU2,θ = H2,θ ·(gw2

2 )rθ ·gα2
2 (gz2

2 (gẑ2
2 )T )s′

θ ·H−1
2,θ = gα2

2 ·(gw2
2 )rθ ·(gz2

2 (gẑ2
2 )T )s′

θ .

Thus, DK1 = K1,θ · KU1,θ · g
r′

θ·w1
2 g

s′
θ·(z1+T ·ẑ1)

2 and DK2 = K2,θ · KU2,θ ·
g

r′
θ·w2

2 g
s′

θ·(z2+T ·ẑ2)
2 have the correct distribution.

In the case of ID /∈ S∗, as K1,θ = K1 ·(gw1
2 )rθ ·H1,θ,K2,θ = K2 ·(gw2

2 )rθ ·H2,θ

and KU1,θ = (gz1
2 (gẑ1

2 )T )sθH−1
1,θ ,KU2,θ = (gz2

2 (gẑ2
2 )T )sθH−1

2,θ , it is easy to check:
K1,θ ·KU1,θ = K1 ·(gw1

2 )rθ ·H1,θ ·(gz1
2 (gẑ1

2 )T )sθH−1
1,θ = K1 ·(gw1

2 )rθ ·(gz1
2 (gẑ1

2 )T )sθ ,
K2,θ ·KU2,θ = K2 · (gw2

2 )rθ ·H1,θ(gz2
2 (gẑ2

2 )T )sθH−1
1,θ = K2 · (gw2

2 )rθ · (gz2
2 (gẑ2

2 )T )sθ .
Thus, DK1 and DK2 also have the correct distribution.

Finally, we show that the challenge ciphertext is correct. For the challenge
session key K∗

0 = gs
T , the challenge header Hdr∗ = (C∗

1 , C∗
2 , C∗

3 , ctag∗) that
C receives with a privileged set S∗ = {ID∗

1 , ID∗
2 , ..., ID∗

n} is of the following
distribution: C∗

1 = gs
1, C

∗
2 = (gb

1)
s, C∗

3 = (W ctag
1 ·

∏n
i=0 (gui

1 )yi)s. Thus, for the
same privileged set S∗, the challenge header Hdr = (C1, C2, C3, C4, ctag) that
A is given from C is also well formed since:
C3 = (Z1 · ẐT ∗

1 )s = (gz′
1

1 (gb
1)

z′
2(gβα

1 )−T ∗ · (gẑ′
1

1 (gb
1)

ẑ′
2(gβα

1 ))T ∗
)s

= (gz′
1+ẑ′

1·T ∗

1 (gb
1)

z′
2+ẑ′

2·T ∗
)s = (C∗

1 )z′
1+ẑ′

1·T ∗ · (C∗
2 )z′

2+ẑ′
2·T ∗

.
From the above simulation, we have Pr[β = β′|β = 0] = 1

2 +AdvsaIND-CPA
A,RIBBE

/

|T |
as the simulation is correctly distributed. In addition, Pr[β = β′|β = 1] = 1

2 since
K∗

1 is a random element from the key space K and is completely independent with
Hdr∗ in the view of A. Therefore, we have the following equation:
AdvIND-CPA

C,IBBE =
∣
∣Pr[β′ = β] − 1

2

∣
∣ =

∣
∣ 1
2 Pr[β = β′|β = 0] + 1

2 Pr[β = β′|β = 1] − 1
2

∣
∣

=
∣
∣
∣

1
2|T |AdvsaIND-CPA

A,RIBBE + 1
4 + 1

4 − 1
2

∣
∣
∣ = 1

2|T |AdvsaIND-CPA
A,RIBBE = ε

2|T | .
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This completes the proof of Lemma 4. ��

Lemma 5. The resulting revocable IBE scheme
∏

RIBE is adaptively secure
under chosen plaintext attacks for m = 1, if the basic IBBE scheme

∏

IBBE

described in Sect. 3.1 is adaptively secure. Furthermore, suppose there is an
adversary A attacking the adaptive security of

∏

RIBE with a non-negligible
advantage AdvIND-CPA

A,RIBE = ε, then there exists an adversary C against the adaptive
security of

∏

IBE (m = 1 of
∏

IBBE) with advantage AdvIND-CPA
A,RIBE = ε

|T |(q1+1) ,
which is also non-negligible. Note that q1 is the maximum number of queries
for different identities of private keys and decryption keys before the challenge
phase, and T is the set of time periods, which are both polynomial size.

Proof. If there exists an adversary A that attacks the above revocable IBE
scheme

∏

RIBE with a non-negligible advantage, we will construct a PPT algo-
rithm C to break the adaptive security of the IBE scheme

∏

IBE for m = 1
described in Sect. 3.1. In the following proof, we will omit some detailed discus-
sion due to page limitation. Especially, we focus on the part that are different
from the proof of Lemma 4.

At the beginning, C receives public parameters of the IBE scheme
∏

IBE: (g1, gb
1,U1 = gu1+bu2

1 ,W1 = gw1+bw2
1 , gT , g2, g

u1
2 , gu2

2 , gw1
2 , gw2

2 , gβα
1 , gβα1

2 ,

gβα2
2 , g

1/β
2 ) with u1 = (u1,0, u1,1),u2 = (u2,0, u2,1) for m = 1. During the pro-

cess, C can access to the secret key generation oracle KeyGenIBE(·), which
can receive a private key of SKID = {K1,K2,K3,K4,K5, ktag} with: K1 =
gα1
2 · (gw1

2 )r,K2 = gα2
2 · (gw2

2 )r,K3 = gr
2, K4 = ((gw1

2 )ktagg
u1,1
2 (g−u1,0

2 )ID)r,K5 =
((gw2

2 )ktagg
u2,1
2 (g−u2,0

2 )ID)r.
As the adversary A won’t declare the target identity ID∗ and time period

T ∗ at the initial phase for the adaptive security model, C should first guess the
right T ∗ that A submits the target identity in the challenge phase, which holds
with probability 1/ |T | for polynomial-size T .

Furthermore, for the challenge ID∗, C should guess the exact index of queries
i∗ that A issues ID∗ to the SKGen or DKGen oracles for the first time. More
precisely, i∗ ∈ {1, 2, · · · , q1} denotes that A first issues ID∗ to C at the i∗-th
identity for the private key query or the decryption key query in the Key
Extraction Phase 1, where q1 is the maximum number of private key queries
and the decryption key queries before the challenge phase. i∗ = q1 + 1 denotes
that A does not query any private key or decryption for ID∗, but it can issue
a private key query or decryption key query for ID∗ in the Key Extraction
Phase 2. C makes a random guess i∗ ∈ {1, 2, · · · , q1, q1+1} for the adversary A.
Similar as in [33], the adversary A can be divided into the following two types:
A is a Type-1 adversary if i∗ ∈ {1, 2, · · · , q1}; and A is a Type-2 adversary if
i∗ = q1 + 1. Note that A is a still a Type-2 adversary even A has never queried
ID∗ for any private key or decryption key , in which case the target identity
ID∗ is already known by C in the challenge phase. In the rest of the proof, we
assume that C’s guess for i∗ is right, which hold with probability 1/(q1 + 1) (a
loss of polynomial in security parameter λ). Once C finds the guess is wrong, it
terminates the simulation and outputs a random bit β′ ∈ {0, 1}.
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Setup: C first creates a binary tree BT with N leaves. It chooses a random leaf
node η∗ for a target identity ID∗ in advance, that is, η∗ is pre-assigned to ID∗

that will be used in the challenge phase. C then chooses z′
1, z

′
2, ẑ

′
1, ẑ

′
2

R←− Zp and
computes: Z1 = gz1+b·z2

1 = g
z′
1

1 (gb
1)

z′
2/(gβα

1 )T ∗
, Ẑ1 = gẑ1+b·ẑ2

1 = g
ẑ′
1

1 (gb
1)

ẑ′
2(gβα

1 ),
gz1
2 = g

z′
1

2 /(gβα1
2 )T ∗

, gz2
2 = g

z′
2

2 /(gβα2
2 )T ∗

, gẑ1
2 = g

ẑ′
1

2 gβα1
2 , gẑ2

2 = g
ẑ′
2

2 gβα2
2 . Finally,

the public parameters PP of
∏

RIBE is then sent to A with:
PP = (g1, gb

1,U1,W1, Z1, Ẑ1, gT , g2, g
u1
2 , gu2

2 , gw1
2 , gw2

2 , gz1
2 , gz2

2 , gẑ1
2 , gẑ2

2 ).

Key Extraction Phase 1 for Type-1 Adversary: A is a Type-1 adversary
in the case of i∗ � q1. C will keep an integer i to count the number of queries
from A for private key or decryption key up to the current time. C interacts with
A in the following steps:

– If this is a private key query for an identity ID, C performs as follows:
• Case i < i∗: It assigns ID to a random leaf η from BT and stores ID in

the leaf node η if ID is first issued to C for the private key or decryption
key, otherwise, C uses the stored leaf node η for ID. For each node θ ∈
Path(BT, η), C can retrieve Hθ if it was defined. Otherwise, it chooses
Hθ = (H1,θ,H2,θ)

R←− G2 and stores Hθ in the node θ. θ can be further
divided into the following two types:
1. If θ ∈ Path(BT, η∗): In this situation, C chooses rθ, ktagθ

R←− Zp, and
computes: K1,θ = H1,θ · (gw1

2 )rθ , K2,θ = H2,θ · (gw2
2 )rθ , K3,θ = grθ

2 ,

K4,θ = g
rθ(u1,1−(ID)·u1,0+ktagθ·w1)
2 , K5,θ = g

rθ(u2,1−(ID)·u2,0+ktagθ·w2)
2 .

2. If θ /∈ Path(BT, η∗): In this situation, C transfers ID to the oracle:
KeyGenIBE(·), and gets the private key {K1, K2, K3, K4, K5, ktag}. C fur-

ther chooses rθ, ktag′
θ

R←− Zp, and computes: ktagθ = ktag′
θ + ktag,

K1,θ = K1 · (gw1
2 )rθ · H1,θ, K2,θ = K2 · (gw2

2 )rθ · H2,θ, K3,θ = K3 · grθ
2 ,

K4,θ = K4 ·grθ(u1,1−ID·u1,0+ktagθ·w1)
2 , K5,θ = K5 ·grθ(u2,1−ID·u2,0+ktagθ·w2)

2 .
• Case i = i∗: C identifies this identity ID as the target identity ID∗ and

stores ID∗ in the leaf node η∗, which is pre-assigned in the Setup phase.
For each node θ ∈ Path(BT, η∗), C can retrieve Hθ if it was defined.
Otherwise, it chooses Hθ = (H1,θ,H2,θ)

R←− G2 and stores Hθ in the node

θ. C further chooses rθ, ktagθ
R←− Zp, and computes:

K1,θ = H1,θ · (gw1
2 )rθ ,K2,θ = H2,θ · (gw2

2 )rθ ,K3,θ = grθ
2 ,

K4,θ = g
rθ(u1,1−ID·u1,0+ktagθ·w1)
2 ,K5,θ = g

rθ(u2,1−ID·u2,0+ktagθ·w2)
2 .

• Case i > i∗: C does the same process as in the case of i < i∗.
Finally, C stores and outputs the private key SKID to A with:
SKID = {K1,θ,K2,θ,K3,θ,K4,θ,K5,θ, ktagθ}θ∈Path(BT,η).

– If this is an update key query for the time T , C first runs KUNode(BT,RL, T )
algorithm with the current revocation list RL and time T . For each node
θ ∈ KUNode(BT,RL, T ), C can retrieve Hθ if it was defined. Otherwise, it
chooses Hθ = (H1,θ,H2,θ)

R←− G2 and stores Hθ in the node θ. Then it chooses

sθ
R←− Zp, and computes:

• If θ ∈ Path(BT, η∗): KU1,θ = (gz1
2 (gẑ1

2 )T )sθ · H−1
1,θ · (g

1
β
2 )

− z′
1+T ẑ′

1
T−T ∗ ,

KU2,θ = (gz2
2 (gẑ2

2 )T )sθ · H−1
2,θ · (g

1
β
2 )

− z′
2+T ẑ′

2
T−T ∗ , KU3,θ = g

sθ
2 · (g

1
β
2 )

− 1
T−T ∗ .
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• If θ /∈ Path(BT, η∗) : KU1,θ = (gz1
2 (gẑ1

2 )T )sθ H−1
1,θ , KU2,θ = (gz2

2 (gẑ2
2 )T )sθ H−1

2,θ ,
KU3,θ = gsθ

2 .

Finally, C stores and outputs the update key KUT to A with:
KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T ).

– If this is a decryption key query for an identity ID and time T , C can generate
the corresponding decryption key DKID,T by running DKGen(SKID,KUT )
algorithm: C will create and store the private key SKID following the same
process as responding the private key query for ID, if ID has never been
queried to the private key or the decryption key before (otherwise, C can
use the stored SKID). In addition, A had to issue the update key query for
the time T before issuing the decryption query, and hence KUT was already
generated at that time, which can be retrieved by C.

– If this is a revocation key query for an identity to be revoked ID and
a revocation time T , then C updates the revocation list RL by running
Revoke(ID, T,RL, ST ) algorithm.

Key Extraction Phase 1 for Type-2 Adversary: In this case, i∗ = q1 + 1.
For a Type-2 adversary A, there is no need for C to keep an integer i to count
the number of queries from A, as the target identity ID∗ that A issues is only
after the challenge phase, which is already known by C. C interacts with A in
the following steps:

– If this is a private key query for an identity ID, C performs the same procedure
as in the case of i < i∗ for the Type-1 adversary.

– For the rest of queries, including the update key query, decryption key query
and revocation key query, C acts same as above in the key extraction phase
1 for Type-1 adversary.

Challenge: Now A sends the challenge identity ID∗ and time T ∗ to C. We
assume that C’s guess is right, which holds with probability 1/ |T | (q1 + 1).
Once C finds the guess is wrong, it terminates the simulation and outputs a
random bit β′ ∈ {0, 1}. C then sends the challenge identity ID∗ to the chal-
lenger in the IND-CPA game of the IBE scheme

∏

IBE and gets (Hdr∗,K∗) with
Hdr∗ = (C∗

1 , C∗
2 , C∗

3 , ctag∗). Note that (Hdr∗,K∗
0 ) is obtained from the chal-

lenger of
∏

IBE by running Encap algorithm with (Hdr∗,K∗
0 ) = Encap(S∗),

and K∗
1 is a random element from the key space K of

∏

IBE. C sets C1 =
C∗

1 , C2 = C∗
2 , C3 = (C∗

1 )z′
1+T ∗ẑ′

1 · (C∗
2 )z′

2+T ∗ẑ′
2 , C4 = C∗

3 , ctag = ctag∗ and sends
(Hdr = (C1, C2, C3, C4, ctag),K∗) to A as the challenge header and session key
pair.

Key Extraction Phase 2: Same as Key Extraction Phase 1.

Guess: Finally, A outputs a guess β′ ∈ {0, 1}, and C will transfer it to the
challenger in the IND-CPA game of the IBE scheme

∏

IBE.
We note that during the simulation, C can access to the secret key generation

oracle KeyGenIBE(·) only for identities that ID �= ID∗. A can query the private
key for ID∗ or the decryption key related to ID∗ related to time T �= T ∗. In
this case, C can also simulate the correct private key SKID∗ or decryption key



Identity-Based Broadcast Encryption with Efficient Revocation 429

DKID∗,T , the distribution of which is identical to those in the real experiment.
Furthermore, we can prove that the distribution of all transcriptions between A
and C is same as those generated by real algorithm. The analysis is very similar
to the proof of Lemma 4, and is omitted here.

The reduction loss in our security proof is 1
|T |(q1+1) , where q1 is the maximum

number of queries for different identities of private keys and decryption keys.
That is, for an adversary A with advantage AdvIND-CPA

A,RIBE = ε in breaking IND-
CPA security of

∏

RIBE, there is an algorithm V with advantage AdvIND-CPA
A,RIBE =

ε
|T |(q1+1) in breaking adaptive security of

∏

IBE.
This completes the proof of Lemma 5. ��

6 Experimental and Evaluation

To demonstrate its practicality, we implement the proposed revocable IBBE
scheme in Python 3.3.1 using the Charm 0.43 framework [2], a programming
framework for cryptographic primitives. For the Type-3 pairings, we choose the
default Miyaji-Nakabayashi-Takano elliptic curve group [26] with base field size
224 bits (MNT224) to establish our scheme, which can provide 96-bit security
level [39]. All programs are running on a laptop with Intel� CoreTM i3-4010U
CPU@1.70 GH and 4.0 GB RAM using operating system 32-bit Ubuntu 13.04.

Figures 2 and 3 demonstrate the average time costs of all kinds of algorithms
in our scheme. The data is measured by the benchmark tool provided by Charm.
The average time cost is recorded after running each program using the MNT224
curve and other related parameters for 100 times. We perform the experiment
in the following way: first setup the system with the maximum size of privileged
set m and the total number of system users N , then generate a secret key,
update key periodically via a public channel for the revocation list RL, generate
the decryption key, encrypt a message given a privileged set S and decrypt the
ciphertext.

Figure 2 (left) plots the influence of the maximum size of privileged set m
on the efficiency of our scheme, where m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the total
number of system users is set to be N = 64, and there is no users is revoked
(i.e., RL = ∅). For the Encap algorithm, the privileged identity is set as

Fig. 2. Average time cost of all algorithms for different choices of m and d
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S = {user1@email.com, ...,userm@email.com} for m = 1, 2, ..., 10. The user with
identity user1@email.com that is not revoked can always correctly decrypt dur-
ing this experiment. Note that for m = 1, this is an adaptively secure revocable
IBE scheme, which is proven in Lemma 5. As we see in Fig. 2(a), SKGen algo-
rithm consumes the most computation costs. This is because (3m+3) ∗ (log2N)
elements are needed for each private key, which will take O(m ∗ (log2N)) expo-
nentiation operations of G2. The operations on group G2 are more expensive
than that of G1, about 11 times for exponentiations according to [1]. Note that
the private key is generated only one time from PKG via a secure channel for
each user in the system. For the more frequent activity of KeyUp algorithm in
the PKG side, the average time cost is bounded by just 0.14 s.

Figure 2 (right) plots the time taken by the total number of system users
N ∈ {22, 23, 24, 25, 26, 27, 28, 29, 210, 211, 212}, in which case the maximum size of
privileged set for one encryption is set to be m = 10, and the revocation list RL =
∅. One can see that the time cost of the Setup algorithm grows exponentially
in the depth d of the binary tree, which means the computation overhead is
still linear in the number of system users N , where N = 2d. The reason is that
PKG should assign each identity into a random leaf node in the binary tree, and
maintain the state information ST . It is worth mentioning that PKG can use a
pseudorandom generator instead of storing the random values for each node in
the binary tree, which is suggested in the Libert-Vergnaud scheme [25]. In terms
of secret key generation algorithm SKGen, the computation overhead is linear
in the depth of the binary tree, as the secret key is associated with the path
from root to the leaf node. The compution overhead of the DKGen, Decap
and KeyUp algorithms are all under 1 s, which are independent of the number
of system users. specifically, the average time cost of the Encap algorithm is
just 31.2 ms, which makes our revocable IBBE scheme very efficient.

Figure 3 (left) demonstrates the time cost of KeyUp algorithm for differ-
ent numbers of users to be revoked r from 1 to 50, where the total number
of system users is set to be N = 64. Note that the random leaf node assign-
ment technique [33] is used in our scheme. When a new user joins the sys-
tem, it is assigned a random leaf node in the tree. In our implementation,
each identity is pre-assigned a random leaf node via the built-in function

Fig. 3. Average time cost of KeyUp algorithm for different numbers of r
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random.shuffle () in the system setup phase. The revocation list is RL =
{user1@email.com, ...,userj@email.com} for j = 1, 2, ..., 50. We can see that the
time overhead of this KeyUp algorithm in all cases is upper bounded by 2.5 s.
More specifically, if each identity is assigned a leaf node in sequence without
the random leaf node assignment technique [33], the average time costs of the
KeyUp algorithm would be present in Fig. 3 (right). We can say that r = 32
will have the least computation overhead, as there will be only one node in the
KUNode algorithm of the KeyUp algorithm.

7 Conclusion

Providing an efficient revocation mechanism is necessary in the IBE setting and
BE setting where a large number of users are involved, especially when con-
sidering practical deployments of these cryptosystems. It is more desirable that
the sender does not need to know the revocation list, and only the receiver
needs to check the revocation list of his credential to decrypt ciphertext. We
further expand the study of scalable revocation methodology in the setting of
IBBE, and then present a concrete instantiation of revocable IBBE scheme with
DKER, which is motivated by a new revocable IBE scheme recently proposed
in [38]. To build our revocable IBBE scheme, we first propose an adaptive IBBE
scheme derived from [31]. Then we can construct a revocable IBBE scheme with a
security reduction to the aforementioned IBBE scheme. The proposed scheme is
very efficient both in terms of computation costs and communication overheads,
as the ciphertext size is constant, independent of the number of recipients. Our
scheme can withstand decryption key exposure, which is proved its semi-adaptive
security under mild variants of the SXDH assumption. As a side contribution,
we also present an adaptive secure revocable IBE scheme with DKER, which
can be seen as a complementary of Watanabe et al.’s revocable IBE scheme [38].
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A Proof of Lemma 3 in Sect. 3.2

Proof. Given a PPT adversary A achieving a non-negligible difference ε in
advantage between Gameq and GameFinal, we will create a PPT algorithm C to
break the ADDH1 assumption. Let (g1, g

μ
1 , gα2

1 , gβα
1 , g2, g

α
2 , gβα

2 , gβα2
2 , g

1/β
2 , Z =

gμα2+η
1 ) be the instance of ADDH1 problem in G that C has to solve, i.e., to

decide whether η = 0 or a random value in Z
∗
p. Note that in Gameq, all the user

keys returned to A are semi-functional and so is the challenge header and session
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key. C will simulate either Gameq or GameFinal with A, depending on the value
of η.

Setup: At the beginning, C chooses random exponents u1 = (u1,0, · · · , u1,m),

u2 = (u2,0, · · · , u2,m), w1, w2
R←− Zp and b

R←− Z
∗
p, and sets the public parameters

PP :

g1 := g1, g
b
1,U1 := gu1+bu2

1 ,W1 := gw1+bw2
1 , gT := e(g1, gα

2 ),

g2 := g2, g
u1
2 , gu2

2 , gw1
2 , gw2

2 , gβα
1 , gβα1

2 := gβα
2 /(gβα2

2 )b, gβα2
2 , g

1/β
2 .

Note that this implicitly sets α1 := α − bα2, and the secret exponents (α1, α2)
in MSK are not available to C.

Key Extraction: When the adversary A requests a secret key extract query for
an identity ID ∈ Zp, C creates a semi-functional key. It does this by choosing

random exponents r, γ′, ktag1, · · · , ktagm
R←− Zp, which implicitly sets γ := γ′ +

bα2. The semi-functional key elements are computed as:
K1 = gα1

2 (gw1
2 )rgγ

2 = gα
2 (gw1

2 )rgγ′
2 ,K2 = gα2

2 (gw2
2 )r/gγb−1

2 = (gw2
2 )r/gγ′b−1

2 ,
K3 = gr

2.
For i = 1, 2, ...,m:
K4,i = ((gw1

2 )ktagi · g
u1,i

2 /(gu1,0
2 )(ID)i

)r, K5,i = ((gw2
2 )ktagi · g

u2,i

2 /(gu2,0
2 )(ID)i

)r.
This is a properly distributed semi-functional key, which can be easily verified.

Challenge: Once the public parameters PP and the keys for all key extraction
queries are given, A provides a challenge privileged set S∗ = {ID1, ID2, ..., IDn}.
C first computes the vector y = (y0, y1, · · · , ym) according to S∗ as the coefficient
from PS∗ [Z] =

∏

IDj∈S∗ (Z − IDj). It then picks randomly s, ctag ∈ Zp, and
computes the challenge header Hdr = (C1, C2, C3, ctag) as follows:
C1 = gs

1 · gμ
1 , C2 = gsb

1 , C3 = (W ctag
1 ·

∏n
i=0 (gui

1 )yi)s · gμ(〈y ,u1〉+ctag·w1)
1 ). In addi-

tion, the challenge session key K is set to be: K = gT
s · e(gμ

1 , gα
2 )/e(Z, gb

2).
One can verify that the challenge header Hdr = (C1, C2, C3, ctag) has proper

semi-functional forms. Furthermore, if Z = gμα2
1 (i.e., η = 0), then K is a

properly distributed semi-functional session key. In this case, C has properly
simulated Gameq. If η is a random value in Z

∗
p, which means Z = gμα2+η

1 is a
random element in G1, then K is uniformly distributed and is independent of
all other components. In this case, C has properly simulated GameFinal.

Guess: Eventually, the adversary A will output a guess β′ of β. The challenger
C then outputs 0 to guess that Z = gμα2

1 if β′ = β; otherwise, it outputs 1 to
indicate that Z = gμα2+η

1 is a random element of G1. Also, C simulates Gameq if
η = 0 and GameFinal if η ∈ RZ

∗
p. Therefore, C can use A’s output to distinguish

Z = gμα2
1 from random with the same advantage that A has in distinguishing

Gameq from GameFinal.
This completes the proof of Lemma 3. ��
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Abstract. We construct the first tightly secure hierarchical identity-
based encryption (HIBE) scheme based on standard assumptions, which
solves an open problem from Blazy, Kiltz, and Pan (CRYPTO 2014).
At the core of our constructions is a novel randomization technique that
enables us to randomize user secret keys for identities with flexible length.

The security reductions of previous HIBEs lose at least a factor of Q,
which is the number of user secret key queries. Different to that, the
security loss of our schemes is only dependent on the security parameter.
Our schemes are adaptively secure based on the Matrix Diffie-Hellman
assumption, which is a generalization of standard Diffie-Hellman assump-
tions such as k-Linear. We have two tightly secure constructions, one with
constant ciphertext size, and the other with tighter security at the cost
of linear ciphertext size. Among other things, our schemes imply the first
tightly secure identity-based signature scheme by a variant of the Naor
transformation.

Keywords: Hierarchical identity-based encryption · Tight security ·
Affine message authentication codes

1 Introduction

1.1 Motivation

Tight security. Reductions are useful tools for proving the security of public-
key cryptographic schemes. Asymptotically, a reduction shows that if there is
an efficient adversary A that breaks the security of a scheme then we can have
another adversary R that solves the underlying computationally hard problem.
Concretely, a reduction provides a security bound for the scheme, εA ≤ � · εR,1
where εA is the success probability of A and εR is that of R. Ideally, it is more
desirable to have � as small as a constant. We say a reduction is tight if � is a
small constant and the running time of A is approximately the same as that of R.

1 Here we ignore the additive negligible terms for simplicity.
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Most of the current works have considered the tightness notion called “almost
tight security”, where � may linearly (or, even better, logarithmically) depend
on the security parameter, but not on the size of A.2 Recently, tightly secure
cryptographic schemes drew a large amount of attention (e.g. [1,3,8,11,12,16–
18]), since tightly secure schemes do not need to compensate for any security loss.
(Hierarchical) identity-based encryption. The concept of identity-based
encryption (IBE) was proposed by Shamir [31] to simplify the management of
public keys and certificates. With an IBE scheme, one can encrypt a message
under a recipient’s identity id (for instance, email address or ID card number),
and this encrypted message can be decrypted with user id’s secret key from a
trusted authority. The first constructions of IBE were given in 2001 [4,9,30] in
the random oracle model.

A hierarchical IBE (HIBE) scheme [14,22] generalizes the concept of IBE
and provides more functionality by forming levels of a hierarchy. In an L-level
HIBE, a hierarchical identity is a vector of maximal L identities, and a user at
level i can delegate a secret key for its descendants at level i′ (where i < i′ ≤ L).
Moreover, a user at level i is not supposed to decrypt any encryption from a
recipient which is not amongst its descendants. HIBE schemes not only are more
general than IBE schemes (for instance, an IBE is simply a 1-level HIBE), but
also provide numerous applications. Most famous ones are CCA-secure IBEs [5]
and identity-based signatures [24] from HIBE. Both implications are tight.

Adaptive security is a widely accepted security notion for (H)IBEs, where an
adversary is allow to adaptively choose a challenge identity id∗ after it sees the
(master) public key and Q-many user secret keys for adversarial chosen identities.
To achieve adaptive security in the standard model, the early IBE constructions
require either non-tight reductions to the hardness of the underlying assump-
tions [7,23,27,33], or Q-type, non-static assumptions [13].

In 2013, Chen and Wee constructed the first tightly secure IBE based on
static assumptions in the standard model [8]. After that, several works have
been done to improve its efficiency and achieve stronger security [3,16,19,21].
However, constructing an L-level HIBE for L > 1 with a tight (i.e., independent
of Q) security reduction to a standard assumption remains open.
HIBEs meet tightness: difficulties and the hope. Before analyzing the
difficulties of achieving tightly secure HIBE, we consider the security loss of the
current state-of-the-art HIBEs. The L-level HIBE from [33] has a relatively large
security loss, QL, which depends on both Q and L. Although the security loss of
more recent HIBEs [3,8,15,27,32] does not depends on the number of maximal
levels L, they are still not tight and lose a factor of Q.

In general, it is harder to construct HIBEs than IBEs, since HIBEs allow
public delegation of user secret keys, given the corresponding ancestor’s secret
key. Hence, given a tightly secure IBE, there is no (tight) black-box transforma-
tion to HIBE. The works of Lewko and Waters [28] show the potential difficulty

2 In this paper, we do not distinguish almost tight security from tight security, but we
will detail the security loss in the security proof and comparison of our schemes.
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of constructing HIBE with tight reductions. More precisely, [28] proves that it
is hard to have an HIBE scheme with security loss less than exponential in
L, if the HIBE has rerandomizable user secret keys (over all “functional” user
secret keys).

The first attempt of constructing tightly secure HIBEs is due to Blazy, Kiltz,
and Pan (cf. the proceeding version and the first full version of [3]), where
they tightly transform algebraic message authentication code (MAC) schemes
to (H)IBE schemes. As long as the algebraic MAC has tight security, the result-
ing (H)IBE is tightly secure. The first version of their paper contains a tightly
secure delegatable MAC, which results in a tightly secure HIBE. The resulting
HIBE has bypassed the impossibility result of [28] and their user secret keys are
only rerandomizable over all keys generated by the user secret key generation
algorithm, which is only a subspace of all “functional” keys. However, shortly
after its publication, a flaw was found in a proof step of the delegatable MAC,
and they remove this tightly secure delegatable MAC from their paper. The
flaw is basically due to the fact that the BKP randomization technique failed
to randomize MAC tags (which is an important part of user secret keys) for
hierarchical identities.

The hope of achieving tight security for HIBEs lies in developing a novel
method that enables randomization of user secret keys for identities with flexible
level.

1.2 Our Contributions

We answer the aforementioned open question affirmatively with two tightly
secure hierarchical identity-based encryption schemes with identity space ID :=
({0, 1}α)≤L: One with constant ciphertext size (in terms of the number of group
elements) and O(αL2) security loss, and the other with ciphertext size linear
in L but O(αL) security loss. Both schemes are the first tightly secure HIBEs.
We compare our schemes with the existing HIBE schemes in prime-order pairing
groups in Table 1.

Furthermore, via the known tight transformations from [24] and [5], our
HIBEs imply the first tightly secure identity-based signature and tightly CCA-
secure HIBEs almost for free. We note that an (L+1)-level HIBE tightly implies
an L-level CCA-secure HIBE via the CHK transformation [5] in the single-
challenge setting.
Core idea. In a nutshell, the technical novelty of our constructions is a new
randomization technique that enables us to randomize user secret keys with
flexible identity length. This technique is motivated by the recent tightly CCA-
secure public-key encryption of Gay et al. [11].

At the core of our constructions lie two new pseudorandom message authen-
tication code (MAC) schemes for messages with flexible length. Their pseudo-
randomness can be proven with tight reductions to the Matrix Decisional Diffie-
Hellman (MDDH) assumption [10]. The MDDH assumption is a generalization
of the known standard Diffie-Hellman assumptions, such as the k-linear (k-LIN)
assumption. Our MAC schemes have algebraic structures compatible with the
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Table 1. Comparison of L-level HIBEs with identity-space ID = ({0, 1}λ)≤L in prime-
order pairing groups. ‘|mpk|’, ‘|usk|’ and ‘|C|’ stand for the size of master public key,
user secret key and ciphertext. We count the number of group elements in G1,G2, and
GT . For a scheme that works in symmetric pairing groups, we write G := G1 = G2. Q
is the number of user secret key queries by the adversary.

BKP transformation. In the end, together with a variant of the BKP frame-
work [3], we can tightly randomize user secret keys with hierarchical identities
and we have tightly secure HIBEs.
A closer look at the BKP framework. The BKP framework proposes
the notion of affine MACs and transforms it to an (H)IBE scheme with pairings.
Their transformation is tightness-preserving. Under the MDDH assumption, if
the affine MAC is tightly secure, then the (H)IBE is also tightly secure. It is
worth mentioning that the BKP transformation and its variants are widely used
in constructing identity-based encryption [19] with multi-challenge CCA security,
predicate encryption [6,34], quasi-adaptive NIZK [26], and structure-preserving
signature [12,25] based on standard, static assumptions.

We recall their tightly secure MAC, MACNR, based on the Naor-Reingold
pseudorandom function [29], which is implicitly in the Chen-Wee (CW) IBE [8]
as well. MACNR is defined over an additive prime-order group G2 := 〈P2〉 and its
message space is corresponding to the identity space of the resulting IBE. We
use the implicit notation [x]2 := xP2 from [10]. MACNR chooses B ∈ Z

(k+1)×k
q

according to the underlying assumption. For message space M := {0, 1}α, its
secret key is defined as

skMAC :=
(

(xi,b)1≤i≤α,b=0,1 , x′
0

)
∈ (

Z
k·2
q

)α × Zq

and its MAC tag contains a message-independent vector [t]2 and a message-
dependent value [u]2 in the form of

t = Bs ∈ Z
k
q for s $←Z

k
q

u =
∑

i
x�

i,mi
t + x′

0 ∈ Zq

, (1)

where B denotes the first k rows of B. The BKP transformation requires the
MAC scheme has psedorandomness against chosen-message attacks (PR-CMA
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security), which is a decisional variant of the standard existential unforgeabil-
ity against chosen-message attacks (EUF-CMA security). In order to provide
a simpler and more intuitive discussion, we consider the standard EUF-CMA
security of MACNR, where an adversary A is allowed to see many MAC tags
τm := ([tm]2, [um]2) on messages m of its choice and tries to forge a fresh and
valid forgery (m∗, τ∗) which satisfies Eq. (1).

Following the CW argument [8], by a hybrid argument on the bit length of
m, one can show that the value [u]2 is pseudorandom such that it is hard for an
adversary to forge. By embedding the problem challenge in t and xi+1,1−b, the
CW argument can manage to develop the following random function RFi+1 for
(i + 1)-bit messages from a random function RFi for i-bit messages on-the-fly:

RFi+1(m|i+1) =
{
RFi(m|i) (if mi+1 = b)
RFi(m|i) + RF′

i(m|i) (if mi+1 = 1 − b)
, (2)

where b is the guess for the (i + 1)-th bit of m∗ and m|i is the first i bits of
m. Such an argument works well if messages have fixed length. For messages m
with fixed length, an adversary can see the output of either RFi (in Hybrid i) or
RFi+1 (in Hybrid i+1), but not both. However, that is not the case for messages
m′ with flexible length.

Concretely, identities for HIBEs are messages with flexible level. If we follow
the CW and BKP arguments, we first need to develop a random function at the
2-level based on that at the 1-level. The critical case happens when we switch
from Hybrid α (the end of randomization at the 1-level) to Hybrid α + 1 (the
beginning of randomization at the 2-level). If we define RFα+1 (with message
space {0, 1}α ∪{0, 1}α+1) via Eq. (2) based on random functions RFα,RF′

α (with
message space {0, 1}α), then we have RFα+1(m) = RFα+1(m||b) for a m ∈ {0, 1}α

and that means the resulting RFα+1 is not a random function for messages with
flexible level.

1.3 Our Approach: Independent Randomization

To circumvent the aforementioned problem, we propose a suitable pseudoran-
dom MAC, which isolates the tag randomization for messages with different
levels. Our strategy is to randomize tags for messages with only one level first,
and then for those with two levels, and so on. By a novel use of the recent sub-
space randomization refined from [11], tags for messages with different levels are
randomized independently.
Affine MACs with levels. We consider a new notion of affine MACs, called
affine MACs with levels, and we give two constructions of it. This new notion
considers messages with flexible levels and enable us to develop independent ran-
dom functions RFα for messages with only one level (i.e., in {0, 1}α), and RF′

2·α
for messages with only two levels (i.e., in {0, 1}2α), and so on. For simplicity, we
present an overview of our technique in terms of 2-level HIBEs (L = 2), namely,
the hierarchical identity space ID := ({0, 1}α)≤2. We denote 1-level messages
as m ∈ {0, 1}α and 2-level messages as m′ ∈ {0, 1}α·2.
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Our first MAC construction MAC1’s secret keys have the form of

skMAC1 :=
(

(xi,b)i,b , (x̂j,b)1≤j≤2α,b , x′
0

)
∈ (

Z
k·2
q

)α × (
Z

k·2
q

)α·2 × Zq.

Value u in the MAC tags for m ∈ {0, 1}α and m′ ∈ {0, 1}2α has the form of

um :=
α∑

i=1
x�

i,mi
t + x′

0 ∈ Zq

um′ :=
α∑

i=1
x�

i,m′
i
t +

2α∑
j=1

x̂�
j,m′

j
t + x′

0 ∈ Zq

. (3)

By a similar argument as in the BKP we can randomize all the um for 1-level
messages m and, after the first level messages randomization, um has the form

um :=
α∑

i=1
x�

i,mi
t + RFα(m),

namely, we replace x′
0 with RFα(m), but this affects the um′ for 2-level messages

m′ as well. More precisely, um′ carries the random function RFα and has the form

um′ :=

⎛
⎝

α∑
i=1

x�
i,m′

i
+

2α∑
j=1

x̂�
j,m′

j

⎞
⎠ t + RFα(m′

|α).

If we continue to randomize um′ , we will run into the exact same problem as in
the CW or BKP randomization.

Motivated by [11], we hide RFα in some orthogonal space. By switching t
into the “right” span, RFα appears in um, but gets canceled in um′ . Concretely,
we choose B $←Z

3k×k
q and B⊥ ∈ Z

3k×2k
q is a kernel matrix of B such that

(B⊥)�B = 0. We replace t $←Z
k
q with larger t $←Z

3k
q . We embed the random

function RFα into the kernel of B and uy (y ∈ {m,m′}) has the form

uy :=
( ∼ + RFα(y|α)(B⊥)�)

t + x′
0

where “∼” denotes corresponding summation terms. During the randomization for
1-level messages, if we choose t ∈ Span(B) :=

{
v | ∃s ∈ Z

k
q : v = Bs

}
for 2-level

messages m′, then RFα will get canceled out; and if we choose t /∈ Span(B) for
1-level messages m, then RFα will appear and um gets randomized. After the ran-
domization for 1-level messages, um′ for 2-level messagesm′ is distributed the same
as in Eq. (3) so that we can start 2-level randomization from a constant random
function RF′

0(ε) multiplying with (B⊥)�, where ε denotes the empty string.
The way of developing RFα (or RF′

2·α, respectively) from RF0 (or RF′
0,

respectively) is similar to [11]. Roughly, we choose two random matrices
B0, B1

$←Z
3k×k
q and decompose Z

3k
q into the span of B, B0, B1. The span of
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Fig. 1. Solid lines mean orthogonal: B�B∗
0 = B�

1 B∗
0 = 0 = B�B∗

1 = B�
0 B∗

1 ∈ Z
k×k
q .

B⊥ is decomposed into that of B∗
0 ∈ Z

3k×k
q and B∗

1 ∈ Z
3k×k
q . An overview of the

orthogonal relations between all these matrices is given in Fig. 1. After the decom-
position of linear spaces, RFi(m|i)(B⊥)� = RF(0)

i (m|i)(B∗
0)� + RF(1)

i (m|i)(B∗
1)�.

By using the MDDH assumption, we can switch [t]2 to the right span and develop
RFi+1(m|i+1)(B⊥)� from RFi(m|i)(B⊥)� in a tight fashion.

In order to have public delegation, the user secret keys at level 1 contain
delegation terms [x̂�

j,bt]2. Since our randomization at different levels are isolated,
the published terms will not affect our randomization strategy. Details are given
in Sect. 3.1. In the end, our security reduction loses a factor of O(αL2) due to
L-many randomization loops and the fact that in each loop a additional factor
of O(αL) is required. Applying a variant of the BKP transformation (cf. Sect. 4),
we obtain the first HIBE scheme with tight security.
Achieving tighter security. Our second MAC construction (MAC2 in
Sect. 3.2) parallelizes the above randomization strategy and it has a scheme with
security loss O(αL). The cost of doing this is to have different ti at different level
for a message with L levels, which results in an HIBE with O(L)-size ciphertext
via the BKP transformation.

1.4 More Related Work and Open Problems

Bader et al. [2] use some idea from the BKP HIBE to construct digital signature
schemes with corruptions, but it does not involve any randomization for messages
with flexible length, and thus it does not have the same issue as the BKP.

Very recently, Hofheinz, Jia, and Pan [19] extend the BKP construction with
the information-theoretical Cramer-Shoup-like argument of [11] to answer multi-
ple challenge ciphertext queries for IBE. However, we do not know whether their
technique and a similar one from [16] can work directly here to construct tightly
multi-challenge secure HIBE. We leave achieving tight multi-challenge security
for HIBEs as an open problem. Another interesting direction is to improve the
efficiency of our schemes.

2 Preliminaries

Notations. We use x
$← S to denote the process of sampling an element x from

S uniformly at random if S is a set. For positive integers k > 1, η ∈ Z
+ and a

matrix A ∈ Z
(k+η)×k
q , we denote the upper square matrix of A by A ∈ Z

k×k
q and
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the lower η rows of A by A ∈ Z
η×k
q . Similarly, for a column vector v ∈ Z

k+η
q , we

denote the upper k elements by v ∈ Z
k
q and the lower η elements of v by v ∈ Z

η
q .

For a string m ∈ Σn, mi denotes the i-th component of m (1 ≤ i ≤ n) and m|i
denotes the prefix of length i of m.

Furthermore for a p-tuple of bit strings m ∈ ({0, 1}n)p, we use �m� to denote
the string m1|| . . . ||mp. Thus for 1 ≤ i ≤ np �m�i denotes the i-th bit of
m1|| . . . ||mp and �m�|i denotes the i-bit-long prefix of m1|| . . . ||mp.

All our algorithms are probabilistic polynomial time unless we stated other-
wise. If A is an algorithm, then we write a

$← A(b) to denote the random variable
that outputted by A on input b.
Games. Following [3], we use code-based games to define and prove security. A
game G contains procedures Init and Finalize, and some additional procedures
P1, . . . ,Pn, which are defined in pseudo-code. Initially all variables in a game are
undefined (denoted by ⊥), all sets are empty (denote by ∅), and all partial maps
(denoted by f : A ��� B) are totally undefined. An adversary A is executed in
game G (denote by GA) if it first calls Init, obtaining its output. Next, it may
make arbitrary queries to Pi (according to their specification), again obtaining
their output. Finally, it makes one single call to Finalize(·) and stops. We use
GA ⇒ d to denote that G outputs d after interacting with A, and d is the output
of Finalize.

2.1 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description G := (G1,G2,GT , q, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, P1 and P2 are
generators of G1 and G2, respectively, and e : G1 ×G2 is an efficient computable
(non-degenerated) bilinear map. Define PT := e(P1, P2), which is a generator in
GT . In this paper, we only consider Type III pairings, where G1 
= G2 and there
is no efficient homomorphism between them. All our constructions can be easily
instantiated with Type I pairings by setting G1 = G2 and defining the dimension
k to be greater than 1.

We use implicit representation of group elements as in [10]. For s ∈ {1, 2, T}
and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation of a in Gs.
Similarly, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the implicit repre-

sentation of A in Gs. Span(A) := {Ar|r ∈ Z
m
q } ⊂ Z

n
q denotes the linear span

of A, and similarly Span([A]s) := {[Ar]s|r ∈ Z
m
q } ⊂ G

n
s . Note that it is efficient

to compute [AB]s given ([A]s, B) or (A, [B]s) with matching dimensions. We
define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the matrix Diffie-Hellman (MDDH) and
related assumptions [10].

Definition 1 (Matrix distribution). Let k, � ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
q of full rank k in polynomial

time.
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Without loss of generality, we assume the first k rows of A $← D�,k form an
invertible matrix. The D�,k-matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A $← D�,k, w $←Z

k
q and u $←Z

�
q.

Definition 2 (D�,k-matrix Diffie-Hellman assumption). Let D�,k be a
matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-matrix Diffie-Hellman
(D�,k-MDDH) assumption holds relative to GGen in group Gs if for all PPT
adversaries A, it holds that

Advmddh
D�,k,GGen,s(A) := |Pr[A(G, [A]s, [Aw]s) = 1] − Pr[A(G, [A]s, [u]s) = 1]|

is negligible where the probability is taken over G $←GGen(1λ), A $← D�,k, w $←Z
k
q

and u $←Z
�
q.

The uniform distribution is a particular matrix distribution that deserves
special attention, as an adversary breaking the U�,k assumption can also distin-
guish between real MDDH tuples and random tuples for all other possible matrix
distributions. For uniform distributions, they stated in [11] that Uk-MDDH and
U�,k-MDDH assumptions are equivalent.

Definition 3 (Uniform distribution). Let k, � ∈ N with � > k. We call U�,k

a uniform distribution if it outputs uniformly random matrices in Z
�×k
q of rank

k in polynomial time. Let Uk := Uk+1,k.

Lemma 1 (U�,k-MDDH ⇔ Uk-MDDH [11]). Let �, k ∈ N+ with � > k. An
U�,k-MDDH instance is as hard as an Uk-MDDH instance. Precisely, for each
adversary A there exists an adversary B and vice versa with

Advmddh
U�,k,GGen,s(A) = Advmddh

Uk,GGen,s(B)

and T (A) ≈ T (B).

Lemma 2 (D�,k-MDDH ⇒ Uk-MDDH [10]). Let �, k ∈ N+ with � > k and let
D�,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an
D�,k instance. Precisely, for each adversary A there exists an adversary B with

Advmddh
Uk,GGen,s(A) ≤ Advmddh

D�,k,GGen,s(B)

and T (A) ≈ T (B).

For Q ∈ N, W $←Z
k×Q
q , U $←Z

�×Q
q , consider the Q-fold D�,k-MDDH problem

which is distinguishing the distributions ([A], [AW]) and ([A], [U]). That is, the
Q-fold D�,k-MDDH problem contains Q independent instances of the D�,k-MDDH
problem (with the same A but different wi). By a hybrid argument one can show
that the two problems are equivalent, where the reduction loses a factor Q. The
following lemma gives a tight reduction. For the uniform distribution U�,k, the
security loss � − k can be avoided by applying Lemma 3 to the Uk distribution
and then use Lemma 1 on each of the Uk instances to get a U�,k instance.
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Lemma 3 (Random self-reducibility [10]). For � > k and any matrix dis-
tribution D�,k, D�,k-MDDH is random self-reducible. In particular, for any Q ≥ 1
and any adversary A there exists a adversary B with

(� − k)Advmddh
D�,k,GGen,s(A) + 1

q − 1
≥ Advmddh,Q

D�,k,s (B) := |Pr [B (G, [A] , [AW] ⇒ 1)]

− Pr [B (G, [A] , [U] ⇒ 1)] |,

where G $←GGen
(
1λ

)
, A $← D�,k, W $←Z

k×Q
q , U $←Z

(k+1)×Q
q , and T (A) ≈

T (B) + Q · poly (λ).

2.2 Hierarchical Identity-Based Key Encapsulation

We recall syntax and security of a hierarchical identity-based key encapsulation
mechanism (HIBKEM). We only consider HIBKEM in this paper. By adapting
the transformation for public-key encryption in [20] to the HIBE setting, one
can easily prove that every HIBKEM can be transformed (tightly) into an HIBE
scheme with a (one-time secure) symmetric cipher.

Definition 4 (Hierarchical identity-based key encapsulation mecha-
nism). A hierarchical identity-based key encapsulation mechanism (HIBE)
HIBKEM consists of three PPT algorithms HIBKEM = (Gen,Del,Ext,Enc,Dec)
with the following properties.

– The probabilistic key generation algorithm Gen(par) returns the (master) pub-
lic/secret key and delegation key (pk, sk, dk). Note that for some of our con-
structions dk is empty. We assume that pk implicitly defines a hierarchical
identity space ID = S≤L, for some base identity set S, and a key space K,
and ciphertext space C.

– The probabilistic user secret key generation algorithm Ext(sk, id) returns a secret
key usk[id] and a delegation value udk[id] for hierarchical identity id ∈ ID.

– The probabilistic key delegation algorithm Del(dk, usk[id], udk[id], id ∈
Sp, idp+1 ∈ S) returns a user secret key usk[id|idp+1] for the hierarchical iden-
tity id′ = id | idp+1 ∈ Sp+1 and the user delegation key udk[id′]. We require
1 ≤ |id| ≤ m − 1.

– The probabilistic encapsulation algorithm Enc(pk, id) returns a symmetric key
K ∈ K together with a ciphertext C with respect to the hierarchical identity
id ∈ ID.

– The deterministic decapsulation algorithm Dec(usk[id], id,C) returns a decap-
sulated key K ∈ K or the reject symbol ⊥.
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For correctness we require that for all λ ∈ N, all pairs (pk, sk) generated by
Gen(λ), all id ∈ ID, all usk[id] generated by Ext(sk, id) and all (K, c) generated
by Enc(pk, id):

Pr[Dec(usk[id], id,C) = K] = 1.

Moreover, we also require the distribution of usk[id|idp+1] from Del(usk[id],
udk[id], id, idp+1) is identical to the one from Ext(sk, id|idp+1).

In our HIBKEM definition we make the delegation key dk explicit to make
our constructions more readable. We define indistinguishability (IND-HID-CPA)
against adaptively chosen identity and plaintext attacks for a HIBKEM via games
IND-HID-CPAreal and IND-HID-CPArand from Fig. 2.

Fig. 2. Games IND-HID-CPAreal and IND-HID-CPArand for defining IND-HID-CPA-
security. For any identity id ∈ Sp, Prefix(id) denotes the set of all prefixes of id.

Definition 5 (IND-HID-CPA Security). A hierarchical identity-based key
encapsulation scheme HIBKEM is IND-HID-CPA-secure if for all PPT A,

Advind-hid-cpaHIBKEM (A) := | Pr[IND-HID-CPAA
real ⇒ 1] − Pr[IND-HID-CPAA

rand]|

is negligible.

3 Affine MAC with Levels

The core of our HIBE constructions is a Message Authentication Code with
suitable algebraic structures and we call it affine MAC with levels. This is a
generalization of the delegatable, affine MAC used in [3], namely, a delegatable,
affine MAC is affine MAC with levels with �(p) = 1 for all p ∈ {1, . . . L}.

Definition 6 (Affine MAC with levels). An affine MAC with levels MAC
consists of three PPT algorithms (GenMAC,Tag,VerMAC) with the following
properties:
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– GenMAC (G2, q, P2) gets a description of a prime-order group (G2, q, P2) and
returns a secret key skMAC :=

(
B, (xl,i,j)1≤l≤�(L),1≤i≤L,1≤j≤�′(l,i) , x′

0

)
where

B ∈ Z
n×n′
q , xl,i,j ∈ Z

n
q for l ∈ {1, . . . , �(L)}, i ∈ {1, . . . , L}, and j ∈

{0, . . . , �′ (l, i)} and x′
0 ∈ Zq.

– Tag
(
skMAC,m ∈ Sp≤L

)
returns a tag τ :=

(
([tl]2)1≤l≤�(p) , [u]2

)
where

tl := Bsl for sl
$←Z

n′
q (1 ≤ l ≤ �(p))

u :=
�(p)∑
l=1

⎛
⎝

p∑
i=1

�′(l,i)∑
j=1

fl,i,j

(
m|i

)
x�

l,i,j

⎞
⎠ tl + x′

0 (4)

– VerMAC (skMAC,m, τ = ([t]2 , [u]2)) checks, whether Eq. (4) holds.

The messages of MAC have the form m = (m1, . . . ,mp) where p ≤ L and mi ∈ S.
After the transformation to an HIBE, S will be the base set of the identity space
and L will be the maximum number of levels. The functions fl,i,j : Si → Zq must
be public, efficiently computable functions. The parameters � : {1, . . . , p} → N+,
n, n′ ∈ N+ and �′ : {1, . . . , p} × {1, . . . , L} → N+ (1 ≤ i ≤ L) are arbitrary,
scheme-depending parameters. The function � must be monotonous increasing.

Security Model. As security model for affine MACs with levels we use
HPR0-CMA-security as defined by the games in Fig. 3. This is a generalization
of the HPR0-CMA-security for delegatable, affine MACs defined in [3].

Fig. 3. Games HPR0-CMAreal, and HPR0-CMArand for defining HPR0-CMA security for
affine MACs with levels.
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Definition 7 (HPR0-CMA Security). An affine MAC with levels is HPR0-CMA
secure in G2 if for all PPT adversaries A the function

Advhpr0-cma
MAC,G2

(A) :=
∣∣∣Pr

[
HPR0-CMAA

real ⇒ 1
]

− Pr
[
HPR0-CMAA

rand ⇒ 1
]∣∣∣

is negligible.

3.1 Our First Construction

Let (G2, q, P2) be a group of prime order q. Our first affine MAC with lev-
els MAC1[U3k,k] := (GenMAC,Tag,VerMAC) with message space ID := S≤L :=
({0, 1}α)≤L is defined in Fig. 4. The identity vectors bit-length α and the maxi-
mum length L of the identity vectors can be chosen freely.3 The resulting HIBE
from this MAC has constant ciphertext length.

MAC1[U3k,k] has n := 3k and n′ := k where k ∈ N+ can be chosen arbi-
trary. To match the formal definition, xi,j,b should be renamed to xi,2j−b and
fi,2j−b(m|i) :=

(�
m|i

�
j

?= b
)

. Then we get �(p) = 1 and �′ (1, i) = 2iα.

Fig. 4. Our first affine MAC

3 A different bitlength on each level is possible as well, but we assume it is α on each
level to ease notation.
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Theorem 1 (Security of MAC1[U3k,k]). MAC1[U3k,k] is tightly HPR0-CMA
secure in G2 under the Uk-MDDH assumption for G2. Precisely, for all adver-
saries A there exists an adversary B with

Advhpr0-cma
MAC1[U3k,k],G2

(A) ≤ (
4 (α + 1) L + 4αL2) (

Advmddh
Uk,GGen,G2(B) + 1

q − 1

)

+ LQ

q2k

and T (B) ≈ T (A) + Q · poly (λ).

Proof. The proof uses a hybrid argument with the hybrids G0 (the HPR0-CMAreal
game), G1, G2,̂ı,0, G2,̂ı,1, G2,̂ı,2,ĵ,0–G2,̂ı,2,ĵ,3, G2,̂ı,3, G2,̂ı,4, and G2,̂ı,5 for ı̂ ∈
{1, . . . , L} and ĵ ∈ {1, . . . , ı̂α}, and finally G3. The hybrids are given in Figs. 5
and 6. A summary can be found in Table 2. They make use of random functions
RFı̂,ĵ : {0, 1}ĵ → Z

1×2k
q , RF(0)

ı̂,ĵ : {0, 1}ĵ → Z
1×k
q , and RF(1)

ı̂,ĵ : {0, 1}ĵ → Z
1×k
q ,

defined on-the-fly. ��

Table 2. Summary of the hybrids of Figs. 5 and 6. Eval queries with p = ı̂ draw t
from the set described by the second column and add the randomness ru (m) t to u or
choose u uniform random. The Chal query adds the term rh0 (m�)� to h0 if m� has
length ı̂. The column “Transition” displays how we can switch to this hybrid from the
previous one. The background colors indicate repeated transitions.
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Fig. 5. Hybrids for the security proof of MAC1[U3k,k]. The notion a += b is shorthand
for a := a + b. The algorithm RerandomizeTag is only helper function and not an oracle
for the adversary.

Lemma 4 (G0 � G1).

Pr[GA
0 ⇒ 1] = Pr[GA

1 ⇒ 1]

Proof. In game G1 each time the adversary queries a tag for a message m where
he queried a tag for m before, the adversary will get a rerandomized version
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of the first tag he queried. The rerandomized tag is identically distributed to
a fresh tag: t′ := t + Bs′ is uniformly random in Span (B), when s′ is uniform
random in Z

k
q . Together with u′ := u +

∑p
i=1

(∑iα
j=1 x�

i,j,�m�j
Bs′

)
we get a valid

message tag for m, when ([t]2 , [u]2) is a valid tag for m.
Note that the rerandomization uses only the “public key” returned by the

Init-Oracle, so it could actually be carried out by the adversary herself. To put
it in a nutshell, repeated Eval-queries for a message m will leak no information,
that is not already leaked by the first Eval-query for m or by the“public key”.4

��
Lemma 5 (G1 � G2,1,0).

Pr[GA
1 ⇒ 1] = Pr[GA

2,1,0 ⇒ 1]

Proof. These two games are equivalent. ��
Lemma 6 (G2,̂ı,0 � G2,̂ı,1). For all adversaries A there exists an adversary B
with

∣∣Pr
[
GA
2,̂ı,0 ⇒ 1] − Pr[GA

2,̂ı,1 ⇒ 1
]∣∣ ≤ Advmddh

Uk,GGen,G2(B) + 1
q − 1

and T (B) ≈ T (A) + Q · poly (λ).

Proof. These two games are equivalent except that in Eval-queries with p = ı̂
the value t is chosen uniformly random from Span (B) in G2,̂ı,0 and uniformly
random from Z

3k
q in game G2,̂ı,1. Since for all computed values it is enough

to have [B]2 instead of B, this leads to a straight forward reduction to the
QL-fold U3k,k-MDDH assumption. Remember that by Lemma 1, the U3k,k-MDDH
assumption is equivalent to the Uk-MDDH assumption.

The running time of B is dominated by the running time of A plus some
(polynomial) overhead that is independent of T (A) for the group operations in
each oracle query. ��
Lemma 7 (G2,̂ı,1 � G2,̂ı,3). For all ı̂ ∈ {1, . . . , L}, ĵ ∈ {1, . . . , ı̂α − 1} and all
adversaries A there exists an adversary B with

∣∣Pr
[
GA
2,̂ı,1 ⇒ 1

] − Pr
[
GA
2,̂ı,3 ⇒ 1

]∣∣ ≤ 4ı̂α

(
Advmddh

Uk,GGen,G2(B) + 1
q − 1

)

and T (B) ≈ T (A) + Q · poly (λ).

Proof. To prove this transition, we introduce new hybrids G2,̂ı,2,ĵ,1, G2,̂ı,2,ĵ,2 and
G2,̂ı,2,ĵ,3 for ı̂ ∈ {1, . . . , L} and ĵ ∈ {1, . . . , ı̂α − 1}. The hybrids are given in
Fig. 6.

Lemma 7 follows directly from Lemmas 8, 9, 10, 11, 12 and 13. ��

4 The same technique can be used to prove the IBE of [3] secure with duplicated
Ext-queries. Thus they work without a pseudorandom function.
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Fig. 6. Hybrids for the transition from G2,ı̂,ĵ to G2,ı̂,ĵ+1. The notion a += b is shorthand
for a := a + b. The algorithm RerandomizeTag is defined in Fig. 5.
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Lemma 8 (G2,̂ı,1 � G2,̂ı,2,0,0).

Pr
[
GA
2,̂ı,1 ⇒ 1

]
= Pr

[
GA
2,̂ı,2,0,0 ⇒ 1

]

Proof. These two games are equivalent. When changing in G2,̂ı,1 the secret values
xı̂,1,b to xı̂,1,b + B⊥ (RFı̂,0 (ε))� (for b ∈ {0, 1}), we get game G2,̂ı,2,0,0. The
distribution of xı̂,1,b and xı̂,1,b + B⊥ (RF1,0 (ε))� is identical. Note that the term
B⊥ (RF1,0 (ε))� cancels out in the master public key and in the user delegation
keys of Eval-queries with p < ı̂. ��
Lemma 9 (G2,̂ı,2,ĵ,0 � G2,̂ı,2,ĵ,1). For all adversaries A there exists an adver-
sary B with

∣∣Pr
[
GA
2,̂ı,2,ĵ,0 ⇒ 1

] − Pr
[
GA
2,̂ı,2,ĵ,1 ⇒ 1

]∣∣ ≤ 2
(
Advmddh

Uk,GGen,G2(B) + 1
q − 1

)

and T (B) ≈ T (A) + Q · poly (λ).

Proof. These two games are equivalent except that the value t is generated
uniformly random from Z

3k
q in game G2,̂ı,2,ĵ,0 and from either Span (B|B0) or

Span (B|B1) depending on the bit �m�ĵ+1 in game G2,̂ı,2,ĵ,1. We can switch from
G2,̂ı,2,ĵ,0 to G2,̂ı,2,ĵ,1 with two Q-fold U3k,k-MDDH challenges. Remember that the
U3k,k-MDDH assumption is equivalent to the Uk-MDDH assumption by Lemma 1.

To achieve that, we first switch t for �m�ĵ+1 = 0 from a random vector in Z
3k
q

to t := Bs1 + s2 where s1
$←Z

k
q and s2

$←Z
3k
q . This change is only conceptual.

Then we change s2 from a random vector in Z
3k
q to a random vector in the span of

B0 via the MDDH assumption. More precisely, let ([B0]2 , [Z]2) ∈ G
3k×(k+Q)
2 be

a Q-fold U3k,k-MDDH challenge. For the i-th Eval query with �m�ĵ+1 = 0, the
reduction B computes [t]2 := [Bs1 + Z [i]]2, where s1

$←Z
k
q and Z [i] is the i-th

column vector of Z. Furthermore, in order to make sure that the column vectors
of (B|B0|B1) form a random basis of Z3k

q , the reduction B chooses B, B1
$← U3k,k

such that (B|B1) has rank 2k and (B|B1)⊥ b = 0 for all column vectors b of
B0. We note that the latter one can be done over group G2 by knowing B and
B1 over Zq.

Until now, if Z is uniform then B simulates the game G2,̂ı,2,ĵ,0, else if Z is from
Span(B0) then B simulates the game G2,̂ı,2,ĵ,1 for messages with �m�ĵ+1 = 0.

By using the same argument, we can switch t for �m�ĵ+1 = 1 from a random
vector in Z

3k
q to a random vector in Span(B|B1).

The running time of B is dominated by the running time of A plus some
(polynomial) overhead that is independent of T (A) for the group operations in
each oracle query. ��
Lemma 10 (G2,̂ı,2,ĵ,1 � G2,̂ı,2,ĵ,2).

Pr
[
GA
2,̂ı,2,ĵ,1 ⇒ 1

]
= Pr

[
GA
2,̂ı,2,ĵ,2 ⇒ 1

]
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Proof. First of all, we replace in game G2,̂ı,2,ĵ,1 the term RFı̂,ĵ

(
�m�|ĵ

) (
B⊥)�

with RF(0)
ı̂,ĵ+1

(
�m�|ĵ+1

)
(B∗

0)� + RF(1)
ı̂,ĵ

(
�m�|ĵ

)
(B∗

1)�. This does not change the
distribution, since B∗

0, B∗
1 is a basis for Span

(
B⊥)

.
We define

RF(0)
ı̂,ĵ+1

(
�m�|ĵ+1

)
:=

⎧
⎨
⎩
RF(0)

ı̂,ĵ

(
�m�|ĵ

)
if �m�ĵ+1 = 0

RF(0)
ı̂,ĵ

(
�m�|ĵ

)
+ RF′(0)

ı̂,ĵ

(
�m�|ĵ

)
if �m�ĵ+1 = 1

where RF′(0)
ı̂,ĵ : {0, 1}ĵ+1 → Z

1×k
q is another independent random function. Since

RF(0)
ı̂,ĵ does not appear in game G2,̂ı,2,ĵ,2 anymore, RF(0)

ı̂,ĵ+1 is a random function.
The Eval-queries with p 
= ı̂ use the same code in both games and Eval-

queries with p = ı̂ and �m�ĵ+1 = 0 are distributed identically in both games, by
definition of RF(0)

ı̂,ĵ+1.
The Eval-queries with p = ı̂ and �m�ĵ+1 = 1 are distributed identically in

both games, since for those queries t ∈ Span (B|B1) and both B and B1 are
orthogonal to B∗

0 and thus RF(0)
ı̂,ĵ+1

(
�m�|ĵ+1

)
(B∗

0)� t = 0.
The Chal query uses the same code if p 
= ı̂ and otherwise it is distributed

identically if �m��ĵ+1 = 0. For the case �m��ĵ+1 = 1 note that xı̂,ĵ+1,1 is identi-
cally distributed as xı̂,ĵ+1,1+B∗

0w for w $←Z
k
q and w is hidden from the adversary

except for the Chal query: In all Eval-queries with p 
= ı̂ only xı̂,ĵ+1,1B is used
and thus the B∗

0-part cancels out. In the Eval-queries with p = ı̂ there is either
�m�ĵ+1 = 0 which means that xı̂,ĵ+1,1 is not used to compute the tag or there
is �m�ĵ+1 = 1 which means that t ∈ Span (B|B1) and thus the B∗

0 -part of
xı̂,ĵ+1,1 cancels out. All in all this means that the value h0 is the only one in the
game that depends on w and thus the B∗

0-part of h0 is uniformly random to the
adversary. Especially h0 is distributed identically in both games. ��
Lemma 11 (G2,̂ı,2,ĵ,2 � G2,̂ı,2,ĵ,3).

Pr
[
GA
2,̂ı,2,ĵ,2 ⇒ 1

]
= Pr

[
GA
2,̂ı,2,ĵ,3 ⇒ 1

]

Proof. We define

RF(1)
ı̂,ĵ+1

(
�m�|ĵ+1

)
:=

⎧
⎨
⎩
RF(1)

ı̂,ĵ

(
�m�|ĵ

)
+ RF′(1)

ı̂,ĵ

(
�m�|ĵ

)
if �m�ĵ+1 = 0

RF(1)
ı̂,ĵ

(
�m�|ĵ

)
if �m�ĵ+1 = 1

where RF′(1)
ı̂,ĵ : {0, 1}ĵ+1 → Z

1×k
q is another independent random function. Since

RF(1)
ı̂,ĵ in not used in game G2,̂ı,2,ĵ,3, RF(1)

ı̂,ĵ+1 is a random function.
The argument, that the games G2,̂ı,2,ĵ,2 and G2,̂ı,2,ĵ,3 are identically dis-

tributed, is the same as in Lemma 10, just with the roles of 0 and 1
swapped. ��
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Lemma 12 (G2,̂ı,2,ĵ,3 � G2,̂ı,2,ĵ+1,0). For ĵ < ı̂α and all adversaries A there
exists an adversary B with

∣∣Pr
[
GA
2,̂ı,2,ĵ,3 ⇒ 1

] − Pr
[
GA
2,̂ı,ĵ+1 ⇒ 1

]∣∣ ≤ 2
(
Advmddh

Uk,GGen,G2(B) + 1
q − 1

)

and T (B) ≈ T (A) + Q · poly (λ).

Proof. The transition is the reverse of Lemma 9. ��
Lemma 13 (G2,̂ı,2,̂ıα,3 � G2,̂ı,3).

∣∣Pr
[
GA
2,̂ı,2,̂ıα,3 ⇒ 1

] − Pr
[
GA
2,̂ı,3 ⇒ 1

]∣∣ ≤ Q

q2k

Proof. In game G2,̂ı,2,̂ıα,3 the Chal-query evaluates RFı̂,̂ıα only for the input
value m�

1|| . . . ||m�
ı̂ (if p ≥ ı̂, otherwise it does not use RFı̂,̂ıα at all). Assume

Prefix (m�) ∩ QM = ∅, otherwise the adversary has lost the game anyway. In
each user secret key query with p = ı̂ the value RFı̂,̂ıα (m)

(
B⊥)� t is part of u.

This is the only place where RFı̂,̂ıα (m) is used, since only the first Eval-query
for each message evaluates the random function. Thus each query outputs a uni-
formly random value for u when tp /∈ Span (B), which happens with probability
≥ 1 − 1/

(
q2k

)
. In this case the games are distributed identically. ��

Lemma 14 (G2,̂ı,3 � G2,̂ı,4).

Pr
[
GA
2,̂ı,3 ⇒ 1

]
= Pr

[
GA
2,̂ı,4 ⇒ 1

]

Proof. The games execute the same code if p < ı̂ and otherwise we can argue
that xı̂,1,�m��1

and xı̂,1,�m��1
− B⊥ (RFı̂,̂ıα (m�))� are identical distributed. All

Eval-queries and the “public key” returned by Init make only use of xı̂,1,�m��1
B,

so the B⊥ (RFı̂,̂ıα (·))� part cancels out. ��
Lemma 15 (G2,̂ı,4 � G2,̂ı,5). For all adversaries A there exists an adversary B
with

∣∣Pr
[
GA
2,̂ı,4 ⇒ 1

] − Pr
[
GA
2,̂ı,5 ⇒ 1

]∣∣ ≤ Advmddh
Uk,GGen,G2(B) + 1

q − 1

and T (B) ≈ T (A) + Q · poly (λ).

Proof. The transition is the reverse of Lemma 6. ��
Lemma 16 (G2,̂ı,5 � G2,̂ı+1,0). For ı̂ < L

Pr
[
GA
2,̂ı,5 ⇒ 1

]
= Pr

[
GA
2,̂ı+1,0 ⇒ 1

]
.

Proof. These two games are equivalent. ��
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Lemma 17 (G2,L,5 � G3).

Pr
[
GA
2,L,5 ⇒ 1

]
= Pr

[
GA
3 ⇒ 1

]
.

Proof. In game G2,L,5 the value x′
0 is only used to compute h1, thus h1 is a

uniform random value to A and the games are distributed identical. ��

Summary. To prove Theorem 1 combine Lemmas 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16 and 17 to change h1 from real to random and then apply all Lemmas
in reverse order to get to the HPR0-CMArand game. ��

3.2 Our Second Construction

Let (G2, q, P2) be a group of prime order q. Our second affine MAC with lev-
els MAC1[U3k,k] := (GenMAC,Tag,VerMAC) with message space ID := S≤L :=
({0, 1}α)≤L is defined in Fig. 7. The identity vectors bit-length α and the maxi-
mum length L of the identity vectors can be chosen freely. The difference to the
first construction is that this MAC uses a different tl on each level (�(p) = p) and
thus needs no delegation keys. This leads to shorter user secret keys and allows
a more efficient reduction. However, this comes at the price of larger ciphertexts.
Formally, this MAC uses �′ (l, i) = 0 for i < p and �′ (l, i) = 2iα for i = p.

Fig. 7. Our second affine MAC with levels based on [11]
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Theorem 2 (Security of MAC2[U3k,k]). MAC2[U3k,k] is tightly HPR0-CMA
secure in G2 under the Uk-MDDH assumption for G2. Precisely, for all adver-
saries A there exists an adversary B with

Advhpr0-cma
MAC2[U3k,k],G2

(A) ≤ (2 + 8αL)
(
Advmddh

Uk,GGen,G2(B) + 1
q − 1

)
+ Q

q2k

and T (B) ≈ T (A) + Q · poly (λ).

The proof uses a hybrid argument with the hybrids G0 (the HPR0-CMAreal
game), G1, G2, G3,ĵ for ĵ ∈ {1, . . . , Lα}, G3,ĵ,1–G3,ĵ,3 for ĵ ∈ {1, . . . , Lα − 1}, and
finally G4. The hybrids are given in Figs. 8 and 9. A summary can be found in
Table 3.

The arguments to switch between the hybrids are similar to the first con-
struction. A detailed proof can be found in the full version.

Table 3. Summary of the hybrids of Figs. 8 and 9. Eval queries draw t from the
set described by the second column and add the randomness

∑p

i=1 ru (m, i) ti to u or
choose u uniform random. The Chal query adds the term rh0 (m�, i) h to each h0,i.
Throughout this table g(ĵ, i) := max {ĵ, iα}. The background color indicates repeated
transitions.
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Fig. 8. Hybrids for the security proof of MAC2[U3k,k]. The notion a += b is shorthand
for a := a + b.
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Fig. 9. Hybrids for the transition from G3,ĵ to G3,ĵ+1. The notion a += b is shorthand
for a := a + b.
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4 Transformation to HIBE

Any affine MAC with levels can be transformed tightly to a hierarchical identity-
based key encapsulation mechanism (HIBKEM) under the Dk-MDDH assump-
tion. The transformation is shown in Fig. 10. It is a generalization of the trans-
formation from delegatable, affine MACs to HIBKEMs in [3]. We only consider
HIBKEM here and one can easily prove that every HIBKEM can be transformed
(tightly) into an HIBE scheme with a (one-time secure) symmetric cipher by
adapting a similar transformation for public-key encryption in [20].

Theorem 3 (Security of the HIBKEM transformation). The HIBKEM
HIBKEM [MAC, Dk] is IND-HID-CPA secure in G under the Dk-MDDH assump-
tion for G1 if MAC is HPR0-CMA secure in G2. Precisely, for all adversaries A
there exists adversaries B1 and B2 with

Advind-hid-cpaHIBKEM[MAC,Dk],G(A) ≤ Advhpr0-cma
MAC,G2

(B1) + Advmddh
Dk,GGen,G1(B2)

and T (B1) + T (B2) ≈ T (A) + Q · poly (λ).

The detailed proof of Theorem 3 can be found in full version.

4.1 Instantiations

MDDH. The result of applying the HIBKEM transformation to MAC1[U3k,k] is
shown in Fig. 11. The scheme has α

(
L2 + L

) (
4k2 + k

)
+3k2+2k group elements

in the public key and 4k + 1 group elements in the ciphertext. The user secret
keys have at most α

(
L2/2 + L/2 − 1

)
(k + 1)+4k +1 group elements. Identities

that are deeper in the hierarchy have smaller secret keys, since the user secret
key size is dominated by the size of the delegation keys. On the last level, the
user secret keys consist of only 4k + 1 keys.

The result of applying the HIBKEM transformation to MAC2[U3k,k] is shown
in Fig. 12. The scheme has α

(
L2 + L

) (
4k2 + k

)
+ 3k2 + 2k group elements in

the public key and 3Lk + k + 1 group elements in the ciphertext. The user secret
keys have at most 3Lk + k + 1 group elements. Identities that are deeper in the
hierarchy have larger secret keys.

The schemes have both the same public key. The first scheme has smaller
ciphertexts, while the second has a more efficient reduction and smaller user
secret keys in the worst case.

SXDH. With a type III pairing, both of our schemes can be instantiated with
the SXDH assumption. The results can be found in the full version.
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Fig. 10. The transformation of an affine MAC with levels to a HIBKEM.
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Fig. 11. The resulting scheme HIBKEM [MAC1[U3k,k], Dk].
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Fig. 12. The resulting scheme HIBKEM [MAC2[U3k,k], Dk].
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Abstract. We propose new constructions of leakage-resilient public-key
encryption (PKE) and identity-based encryption (IBE) schemes in the
bounded retrieval model (BRM). In the BRM, adversaries are allowed to
obtain at most �-bit leakage from a secret key and we can increase � only
by increasing the size of secret keys without losing efficiency in any other
performance measure. We call �/|sk| leakage-ratio where |sk| denotes a
bit-length of a secret key. Several PKE/IBE schemes in the BRM are
known. However, none of these constructions achieve a constant leakage-
ratio under a standard assumption in the standard model. Our PKE/IBE
schemes are the first schemes in the BRM that achieve leakage-ratio
1− ε for any constant ε > 0 under standard assumptions in the standard
model.

As previous works, we use identity-based hash proof systems (IB-HPS)
to construct IBE schemes in the BRM. It is known that a parameter for
IB-HPS called the universality-ratio is translated into the leakage-ratio
of the resulting IBE scheme in the BRM. We construct an IB-HPS with
universality-ratio 1−ε for any constant ε > 0 based on any inner-product
predicate encryption (IPE) scheme with compact secret keys. Such IPE
schemes exist under the d-linear, subgroup decision, learning with errors,
or computational bilinear Diffie-Hellman assumptions. As a result, we
obtain IBE schemes in the BRM with leakage-ratio 1 − ε under any of
these assumptions. Our PKE schemes are immediately obtained from
our IBE schemes.

1 Introduction

1.1 Background

Modern cryptography have been placing much importance on provable security.
In a traditional theory of provable security, we often assume that secret values
(e.g., secret key, randomness etc.) are perfectly hidden from an adversary, and
give a security proof in such models. On the other hand, developments of side
channel attacks have discovered that an adversary may obtain partial informa-
tion of these secret values, and some cryptographic schemes can be broken due
to the leakage even though they are provably secure in the model where secret
c© International Association for Cryptologic Research 2019
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values are perfectly hidden. To withstand these attacks, Akavia et al. [AGV09]
initiated the study of leakage resilient cryptography, where leakages from secret
values are captured in a security model, and their security is proven even if
a certain amount of secret values is leaked to an adversary. There have been
vast amount of studies on leakage resilient cryptography including public key
encryption, identity-based encryption, attribute-based encryption, digital sig-
natures, identification, zero-knowledge proofs etc. [NS12,ADN+09,HLWW16,
LRW11,KP17,KV09,BSW13,ADW09,GJS11].

Relative-Leakage and Absolute-Leakage. If a whole secret key is leaked,
then no security remains. Thus we have to bound an amount of leakages an
adversary can obtain to prove security in the presence of leakages. There are two
possible choices for the way to bound an amount of leakage. In the first choice
called the relative-leakage model, we bound a leakage-ratio 0 < α < 1, and we
allow an adversary to obtain α · |sk|-bit leakage from a secret key sk, where |sk|
denotes a bit-length of sk. In the second choice called the absolute-leakage model,
we bound an absolute amount � of leakage (which we call a absolute-leakage-
bound), and we allow an adversary to obtain �-bit leakage from a secret key. This
model is especially useful when considering security against malware attacks,
where an adversary persistently obtains some parts of secret key remotely. If � is
set to be very large (say, many gigabytes), it is difficult for such an adversary to
obtain more than � bits of a secret key. We note that any scheme in the relative-
leakage model can be also seen as one in the absolute-leakage model. Suppose
that one has a scheme resilient to leakage of leakage-ratio α in the relative-
leakage model. We can obtain a scheme resilient to absolute-leakage-bound � by
simply increasing the security parameter so that |sk| > α�.

Bounded Retrieval Model. As seen above, a scheme in the relative-leakage
model can also be seen as one in the absolute-leakage model by increasing the
security parameter. However, this does not serve as a satisfactory solution con-
sidering efficiency. To increase an absolute-leakage-bound �, we have to increase
the security parameter, which means that the efficiency of the whole system
becomes less efficient when � is set larger. Considering a situation where we set
� to be extremely large, it is desirable that we can increase � by just increasing
the secret key size without affecting efficiencies of other parts (e.g., public key
size, encryption-time, decryption-time in the case of PKE). This goal is usually
referred to as the bounded retrieval model (BRM) [DLW06,Dzi06].

PKE and IBE in BRM. All known constructions of PKE and IBE schemes in
the BRM follow the same template proposed by Alwen et al. [ADN+09]. Specif-
ically, they introduced a primitive called identity-based hash proof system (IB-
HPS), which is a generalization of a hash proof system [CS02], and gave a generic
construction of PKE and IBE schemes in the BRM based on that. Moreover,
they gave three concrete constructions of IB-HPS based on (1) truncated aug-
mented bilinear Diffie-Hellman exponent (TABDHE) assumption, (2) learning
with errors (LWE) assumption, and (3) quadratic residuosity (QR) assumption,
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where the second and the third constructions are in the random oracle model.1 As
a result, they obtained PKE and IBE schemes in the BRM based on any of these
assumptions. Leakage-ratios of these schemes are 1/2 − ε, O( 1

poly(λ) ), and 1 − ε,
respectively, where ε is an arbitrary constant. Subsequently, Chen et al. [CZLC16]
constructed IB-HPSs based on the decisional bilinear Diffie-Hellman (DBDH)
and the decisional square bilinear Diffie-Hellman (DSBDH) assumptions in the
random oracle model. Based on them, one can construct PKE and IBE schemes
in the BRM with leakage-ratio 1/2 − ε for an arbitrary constant ε.

Hazay et al. [HLWW16] showed that, in fact, an IB-HPS is generically con-
structed from any IBE scheme.2 As a result, one can construct PKE and IBE
schemes in the BRM from any IBE scheme. However, one drawback of their
construction is a poor leakage-ratio. Namely, the leakage-ratio of their scheme
is O( log(λ)

poly(λ) ). In that case, if one wants to set an absolute-leakage-bound to be

�, then a secret key size is O(poly(λ)
log(λ) · �), which is significantly larger than �.

Hopefully, we want to make the leakage-ratio close to 1 so that we can set a
secret key size to be almost equal to � for an absolute-leakage-bound �. However,
the only known construction of PKE and IBE schemes in the BRM that achieve
such high leakage-ratio is the one based on the LWE assumption in the random
oracle model. If one only relies on a standard assumption in the standard model,
then the only known way to construct PKE and IBE schemes in the BRM is just
instantiating the generic construction by Hazay et al. [HLWW16], which results
in poor leakage-ratio O( log(λ)

poly(λ) ). Thus the following problem remains open:

Is it possible to construct PKE and IBE schemes in the BRM whose leakage-ratio
is almost equal to 1 based on a standard assumption in the standard model?

1.2 Our Contribution

We give a generic construction of IB-HPS based on any inner product encryp-
tion (IPE) scheme. As a result, we obtain PKE and IBE schemes in the BRM
based on any IPE scheme. The leakage-ratio of our constructions is n

n+|skIPE(n)|
where n is an arbitrary integer and |skIPE(n)| denotes a length of secret key of
an underlying IPE scheme associated with an n-dimensional vector. In partic-
ular, if an underlying IPE scheme is fully key-compact (i.e., |skIPE(n)| does not
depend on n), then leakage-ratio can be made arbitrarily close to 1 by increasing
n. For example, there are some known constructions of fully key-compact IPE
schemes based on the d-linear (d-Lin) assumption [CGW15] and the subgroup-
decision assumption on composite order pairing [Wee14] with adaptive security,
and the learning-with-errors (LWE) assumption [AFV11] with selective security.
Moreover, we give a construction of a fully key-compact selectively secure IPE
1 They can be proven secure in the standard model if one assumes non-standard

interactive versions of these assumptions.
2 In [HLWW16], IB-HPS is called identity-based weak hash proof system (IB-wHPS)

for compatibility to their notion of weak hash proof system. We stress that IB-HPS
in [ADN+09] and IB-wHPS in [HLWW16] mean completely the identical primitive.
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Table 1. The “|ct|” column shows ciphertext-length of IBE schemes in the BRM,
Sel and Ad denote selective and adaptive securities, ε and δ are arbitrary constants
larger than 0, λ denotes the security parameter, N denotes a composite number in
underlying hard problems, |skIBE| and |ctIBE| denote the length of a secret key and a
ciphertext of an underlying IBE scheme, n denotes an arbitrary parameter supposed
to be a dimension of vectors in IPE, |skIPE|(n) and |ctIPE|(n) denotes the length of a
secret key and a ciphertext of an underlying IPE scheme with dimension n, and ROM
means the random oracle model.

Reference Leakage-ratio |ct| Sel/Ad Assumption

[ADN+09] 1
2

− ε O(λ2) Ad TABDHE

[ADN+09] 1
O(N)

O(N) Ad QR (ROM)

[ADN+09] 1 − ε O(λ4) Ad LWE (ROM)

[CZLC16] 1
2

− ε O(λ2) Ad DBDH (ROM)

[CZLC16] 1
2

− ε O(λ2) Ad DSBDH (ROM)

[HLWW16] (1 − ε) log(λ)
|skIBE| O(λ2|ctIBE|) Sel/Ad Sel/Ad IBE

Ours (1 − ε) n
n+|skIPE(n)| O(nλ|ctIPE(n)|) Sel/Ad Sel/Ad IPE

Ours + [CGW15] 1 − ε O(d3λ4) Ad d-Lin

Ours + [Wee14] 1 − ε O(N3λ) Ad SD

Ours + [AFV11] 1 − ε Õ(λ4+δ) Sel LWE

Ours + Appendix A 1 − ε O(λ4) Sel CBDH

scheme based on the computational bilinear Diffie-Hellman (CBDH) assumption.
Each of these schemes gives new PKE and IBE schemes in the BRM model. In
particular,

– We obtain the first PKE and selective/adaptive IBE schemes in the BRM
whose leakage-ratio is arbitrarily close to 1 based on standard assumptions
including d-Lin, LWE and CBDH assumptions in the standard model.

– Our CBDH-based construction is the first selectively secure IBE scheme
whose leakage-ratio is arbitrarily close to 1 based on a search assumption
on pairing groups even in the relative-leakage model where we allow the effi-
ciency of a scheme to depend on the amount of leakage.

A comparison of IBE schemes in the BRM among known and our construc-
tions is given in Table 1. We omit the comparison among PKE schemes in the
BRM since all known constructions of PKE in the BRM are just degenera-
tions of IBE in the BRM. We note that the selective security suffices for this
degeneration.
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1.3 Technical Overview

IB-HPS. We first roughly explain the definition of IB-HPS. An IB-HPS can
be seen as an identity-based key encapsulation mechanism (IB-KEM) with
a special “invalid encapsulation algorithm”. It consists of a setup algorithm
Setup(1λ) R→ (pp,msk), a key generation algorithm KeyGen(msk, id) R→ skid, a
valid encapsulation algorithm Encap(id) R→ (ct, k), an invalid encapsulation algo-
rithm Encap∗(id) R→ ct, and a decapsulation algorithm Decap(skid, id, ct)

R→ k.
The correctness requires that a ciphertext generated by Encap is correctly decap-
sulated to the corresponding encapsulated key. A special feature of IB-HPS is
that if we decapsulate an invalid ciphertext ct∗ generated by Encap∗ by a secret
key skid, then the resulting key k

R← Decap(skid, id, ct∗) has a certain entropy
given any fixed pp, id and ct∗. That is, there are many possible values of secret
keys skid for each id, and the value of k R← Decap(skid, id, ct∗) depends on which
skid was used for the decapsulation. As security, we require that valid and invalid
ciphertexts are computationally indistinguishable even if an adversary can obtain
one secret key per identity for all identities including the challenge identity used
for generating the ciphertext to distinguish.

IBE in BRM from IB-HPS. Alwen et al. [ADN+09] proved that we can
construct a leakage resilient IBE scheme in the BRM based on any IB-HPS. The
leakage-ratio of the resulting IBE scheme depends on the parameter called the
universality-ratio of the underlying IB-HPS. Roughly speaking, the universality-
ratio is defined to be n

|skid| where 2n is the number of possible skid for each id and
|skid| denotes the bit-length of skid. They proved that the leakage-ratio of the
resulting IBE scheme could be made arbitrarily close to the universality-ratio
of the underlying IB-HPS. Thus, the problem of constructing IBE schemes in
the BRM with high leakage-ratio is translated into the problem of constructing
IB-HPS with high universality-ratio.

IB-HPS from Any IBE. Here, we explain the idea of the work by
Hazay et al. [HLWW16] that constructed an IB-HPS based on any IBE scheme.
The setup algorithm of the IB-HPS (denoted by HPS) is the same as that of the
IBE scheme and uses the same pp and msk. Let EncIBE and KeyGenIBE denote
the encryption and key generation algorithms of the underlying IBE scheme.
Then, the key generation algorithm KeyGenHPS, valid encapsulation algorithm
EncHPS, and invalid encapsulation algorithm Enc∗

HPS of HPS work as follows. In
the description of Enc∗

HPS, differences from EncHPS are highlighted in red letters.

KeyGenHPS(msk, id) : It picks r
R← {0, 1}, computes sk′

id
R← KeyGenIBE(id‖r), and

sets skid := (sk′
id, r). That is, skid consists of secret keys for identities that are

either id‖0 or id‖1, plus the random bit r that represents which identities
were chosen.

EncHPS(id) : It picks k ∈ {0, 1}, computes ctb
R← EncIBE(id‖b, k) for b ∈ {0, 1},

and outputs a ciphertext ct := (ct0, ct1) and an encapsulated key k. That is,
ct0 and ct1 encrypt the same value k under identities id‖0 and id‖1, respec-
tively. The encapsulated key is defined to be k.



Leakage-Resilient Identity-Based Encryption in Bounded Retrieval Model 471

Enc∗
HPS(id) : It picks k0, k1 ∈ {0, 1} for b ∈ {0, 1}, computes ctb

R←
EncIBE(id‖b, kb) for b ∈ {0, 1}, and outputs a ciphertext ct := (ct0, ct1). That
is, ct0 and ct1 encrypt independently random values k0 and k1 under identi-
ties id‖0 and id‖1, respectively. We note that this algorithm does not output
an encapsulated key.

It is easy to see that the indistinguishability of valid and invalid cipher-
texts can be reduced to the security of the underlying IBE scheme because an
adversary never obtains secret keys for identities id‖0 and id‖1 simultaneously.3

A valid ciphertext generated by EncHPS can be correctly decapsulated because
either ct0 or ct1, both of which encapsulate the same key k, can be decrypted
with skid. On the other hand, for an invalid ciphertext, ct0 and ct1 encapsu-
late independent keys k0 and k1. Therefore the decapsulation result depends on
r that was used as randomness to generate a secret key. This means that the
above IB-HPS has 2 different skid for each id, and each of them decapsulate an
invalid ciphertext to a different value.4 However, since the size of skid is poly(λ),
the universality-ratio of the above IB-HPS is 1

poly(λ) , which is far from 1. They

also showed that the universality-ratio can be improved to O( log(λ)
poly(λ) ) by modify-

ing the above scheme to choose r from [poly(λ)] instead of {0, 1} and modifying
other algorithms accordingly. However, this is still far from optimal.

First Step: Parallel Repetition. As a first step to achieve higher universality-
ratio, we consider a variant of the above IB-HPS via parallel repetition. Let n ∈ N

be an arbitrarily chosen parameter and bin(i) denote a binary representation of
i. The setup algorithm of the “n-parallel variant” (denoted by n-HPS) is the
same as that of the IBE scheme, and use the same pp and msk. Then, the key
generation algorithm KeyGenn-HPS, valid encapsulation algorithm Encn-HPS, and
invalid encapsulation algorithm Enc∗

n-HPS of n-HPS as follows. In the description
of Enc∗

n-HPS, differences from Encn-HPS are highlighted in red letters.

KeyGenn-HPS(msk, id) : It picks r1, ..., rn
R← {0, 1}, computes sk′

id,i
R←

KeyGenIBE(id‖bin(i)‖ri) for i ∈ [n], and outputs a secret key
skid := ({sk′

id,i}i∈[n], {ri}i∈[n]). That is, skid consists of secret keys for iden-
tities that are either id‖bin(i)‖0 or id‖bin(i)‖1, plus random bits {ri}i∈[n]

that represent which identities were chosen.
Encn-HPS(id) : It picks k1, ..., kn ∈ {0, 1}, computes cti,b

R← EncIBE(id‖bin(i)‖b, ki)
for i ∈ [n] and b ∈ {0, 1}, and outputs a ciphertext ct := {cti,b}i∈[n],b∈{0,1}
and an encapsulated key k :=

⊕
i∈[n] ki. That is, cti,0 and cti,1 encrypt the

same value ki under identities id‖bin(i)‖0 and id‖bin(i)‖1, respectively, for
each i ∈ [n]. The encapsulated key is defined to be k :=

⊕
i∈[n] ki.

3 Here, it is crucial that an adversary obtains at most one secret key for each identity
in the security model of IB-HPS.

4 Here we assumed that KeyGenIBE is deterministic so that sk′
id is determined by id.

This can be assumed without loss of generality since we can derandomize KeyGenIBE
by using a pseudorandom function.
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Enc∗
n-HPS(id) : It picks k1,b, ..., kn,b ∈ {0, 1} for b ∈ {0, 1}, computes cti,b

R←
EncIBE(id‖bin(i)‖b, ki,b) for i ∈ [n] and b ∈ {0, 1}, and outputs a ciphertext
ct := {cti,b}i∈[n],b∈{0,1}. That is, cti,0 and cti,1 encrypt independently random
values ki,0 and ki,1 under identities id‖bin(i)‖0 and id‖bin(i)‖1, respectively,
for each i ∈ [n]. We note that this algorithm does not output an encapsulated
key.

The indistinguishability of valid and invalid ciphertexts can be reduced to
the security of the underlying IBE scheme similarly to the case for HPS. Next, we
calculate the universality-ratio of n-HPS. For each id, the number of possible skid
is 2n since different {ri}i∈[n] give different skid. On the other hand, skid contains
n secret keys of the underlying IBE scheme, each of them has a size of poly(λ).
As a result, the universality-ratio of n-HPS is still 1

poly(λ) , which is even not
better than that of HPS. Hence, to achieve better universality-ratio, we need an
additional idea.

Our Idea: Compressing Secret Keys. As seen above, the reason for the
poor universality-ratio of n-HPS is that a secret key of the scheme contains
many secret keys of the underlying IBE scheme. Our idea is to compress them.
Towards this goal, we introduce a notion called multi-identity-based encryption
(MIBE). MIBE works similarly to IBE except that a secret key is associated
with multiple identities, and the key can be used to decrypt a ciphertext that
is encrypted under any of these identities. If we do not care about the size of a
secret key, then it is trivial to construct an MIBE scheme from any IBE scheme:
we can just let a secret key of the MIBE consist of a tuple of those of the
IBE. The crucial property for our purpose is key-compactness, which means that
the size of a secret key does not depend on the number of identities the key is
associated with. With such a key-compact MIBE, the universality-ratio of n-HPS
is dramatically improved because a secret key of the IB-HPS consists of a single
secret key of MIBE whose size is poly(λ) that does not depend on n. Then, the
universality-ratio is n

n+poly(λ) . By increasing n, we can make it arbitrarily close
to 1.

MIBE from IPE. The final challenge is to construct a key-compact MIBE.
We show that a key-compact MIBE scheme can be constructed from any key-
compact IPE scheme where key-compactness of an IPE scheme means that its
secret key size does not depend on the dimension of the vector space. In an
IPE scheme, a ciphertext and a secret key are associated with vectors x and y
respectively, and the ciphertext is decryptable by the secret key if and only if
xTy = 0. Suppose that we have a key-compact IPE scheme with vector space
Z

n+1
q . We construct a key-compact MIBE scheme whose identity space is Zq and

secret key can be associated with n different identities as follows. To generate
a secret key skid1,...,idn associated with a set (id1, ..., idn) of identities, we first
compute a vector y = (y0, ..., yn) ∈ Z

n+1
q such that

∏n
i=1(X − idn) =

∑n
i=0 yiX

i

as a polynomial in the indeterminate X. The secret key skid1,...,idn is set to
be a secret key associated with y of the underlying IPE scheme. To encrypt
a message under an identity id∗, we encrypt the message under the vector
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x = (1, id∗, (id∗)2, ..., (id∗)n) by the encryption algorithm of the underlying IPE.
Since we have xTy =

∑n
i=0 yi(id∗)i =

∏n
i=1(id

∗ − idn), we have xTy = 0 if
and only if id∗ ∈ {id1, ..., idn}. Therefore, this gives a construction of an MIBE
scheme. We note that this construction is implicit in the work by Katz, Sahai and
Waters [KSW08]. In the above construction, a secret key of the MIBE scheme
consists of one secret key of the underlying IPE scheme. Therefore, if the under-
lying IPE scheme is key-compact, then the resulting MIBE is also key-compact.
Finally, we note that IPE schemes with desirable key-compactness are known
to exist based on various standard assumptions. Putting everything together,
we can construct a leakage resilient IBE scheme in the BRM with leakage-ratio
arbitrarily close to 1 based on these standard assumptions.

1.4 Discussion

Notes on Efficiency of Our IBE. One may think that our scheme does
not satisfy the definition of IBE in the BRM since the efficiency of our IBE
scheme (including encryption time, decryption time, ciphertext size etc.) depends
on the parameter n, which is a dimension of a vector space in the underlying
IPE. However, our scheme actually satisfies the definition. This is because we
do not directly use our IB-HPS itself as an IBE scheme, and we use the com-
piler by Alwen et al. [ADN+09] to convert our IB-HPS to IBE scheme (in the
BRM). Since their compiler is general and applicable to any IB-HPS, we obtain
an IBE scheme in the BRM. To explain this in more detail, we briefly recall
their compiler. In their construction of an IBE scheme in the BRM, a “key-size
parameter” m and a “locality-parameter” t are set appropriately,5 and the pub-
lic parameter is exactly the same as that of the underlying IB-HPS, a secret
key for an identity id consists of secret keys for identities id‖bin(1)...id‖bin(m)
generated by the key generation algorithm of the underlying IB-HPS, and an
encryption algorithm given a message m, randomly picks {r1, ..., rt} R← [m],
runs the encapsulation algorithm of the underlying IB-HPS under identities
id‖bin(r1)...id‖bin(rt) to obtain (ct1, k1), ..., (ctt, kt), and outputs a ciphertext
(r1, ..., rt, ct1, ..., ctt,m ⊕ g(k1, ..., kt)) where g is a universal hash function. We
remark that the efficiency of the scheme (except the secret key size) just depends
on t and does not depend on m. Their main theorem [ADN+09, Theorem 5.1]
shows that we can increase an absolute-leakage-bound � of the scheme just by
increasing m and without increasing t, and the leakage-ratio of the IBE scheme is
almost the same as the universality-ratio of the underlying IB-HPS. Thus, when
we plug our IB-HPS from IPE (with a fixed dimension n) into their construc-
tion, we can arbitrarily increase an absolute-leakage-ratio � just by increasing m
neither increasing n nor t. Since what affect the efficiency of the IBE scheme is
only n and t, and not m, we can increase an absolute-leakage-ratio � without
sacrificing the efficiency.

5 In their paper, they use “n” instead of “m” for representing a “key-size” parameter.
We use m for avoiding confusion with the dimension for IPE.
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On Further Improving the Leakage-Ratio. In this paper, we propose IBE
and PKE schemes in the BRM with leakage-ratio 1 − ε for arbitrary constant
ε > 0. A natural question is if we can further achieve leakage-ratio 1− 1

poly(λ) for
any polynomial poly, which is optimal. The reason why we cannot achieve such a
leakage-ratio is that we rely on Alwen et al.’s theorem [ADN+09] (Theorem 1),
which gives an IBE scheme in the BRM with leakage-ratio β(1 − ε) where β
is the universality-ratio of the underlying IB-HPS and ε > 0 is an arbitrary
constant. As long as we rely on this theorem, the resulting leakage-ratio cannot
be better than 1 − ε for constant ε > 0. Though it seems that it is possible to
achieve leakage-ratio 1 − 1

poly(λ) , by extending the theorem to treat the case of
sub-constant ε, the analysis is rather complicated, and thus we simply rely on
their theorem as a black-box to make the presentation of our results simpler.
We note that if we consider schemes in the relative-leakage model where the
efficiency of a scheme can depend on a leakage bound �, then our constructions
easily yield schemes with leakage-ratio 1 − 1

poly(λ) .

1.5 Related Work

Here, we review existing works on leakage-resilient PKE and IBE schemes in
other models. We remark that in all these models, the efficiency of schemes
degrades with the leakage bound unlike ones in the BRM.

Leakage Resilient PKE/IBE in the Relative-leakage Model. We review
existing works on leakage resilient PKE and IBE schemes in the relative-leakage
model. Naor and Segev [NS12] proposed the first PKE scheme whose leakage
resilience can be reduced to standard assumptions. Namely, they gave a generic
construction of leakage-resilient PKE scheme based on a hash proof system.
Subsequently, various constructions of leakage-resilient PKE schemes have been
proposed [DHLW10b,BG10,HLWW16,BLSV18,QL13,QL14].

Chow et al. [CDRW10] proposed a leakage resilient IBE scheme based on the
DBDH assumption with leakage-ratio 1/3 − o(1). Kurosawa and Phong [KP17]
proposed leakage resilient IBE and IPE schemes based on the DLIN (2-Lin)
and SXDH (1-Lin) assumptions with optimal leakage-ratio 1 − o(1) (they also
constructed IBE and IPE schemes in an extended leakage model explained below,
but its leakage-ratio is not optimal).

Continual Leakage Model. Brakerski et al. [BKKV10] and Dodis et al.
[DHLW10a] concurrently introduced the notion of continual leakage model
(CLM), where there is a notion of time periods and secret information is updated
at the end of each time period. Adversaries are allowed to obtain a limited
amount of secret information in each time period, but there is no limitation on
the total amount of information that they obtained in all time periods. Braker-
ski et al. constructed PKE, IBE, and signature schemes from the DLIN or SXDH
assumptions in the CLM. Dodis et al. constructed signature and identification
schemes and authenticated key agreement protocols from the d-Lin assumption
in the CLM.
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Subsequently, Lewko et al. [LRW11] constructed adaptively secure IBE and
attribute-based encryption (ABE) schemes based on the subgroup decision
assumption in the CLM. In their scheme, adversaries are allowed to obtain leak-
age even from master-secret keys. Yu et al. [YAX+16] constructed adaptively
secure ABE schemes for wider classes of functionality based on composite-order
pairing groups in the CLM. Zhang et al. [ZCG+18] constructed adaptively secure
ABE schemes for wider classes of functionality based on prime-order pairing
groups (the d-Lin assumption) in the CLM.

Hard-to-Invert Leakage. Dodis et al. [DKL09] introduced the notion of cryp-
tography with hard-to-invert auxiliary inputs, where adversaries are given aux-
iliary input h(s) such that it is computationally hard to find s from h(s) (s
is secret information). Dodis et al. [DKL09] constructed symmetric encryption
schemes from a non-standard variant of the learning parity with noise assump-
tion in that model. Dodis et al. [DGK+10] constructed PKE schemes from the
DDH or LWE assumption in that model. Yuen et al. [YCZY12] considered IBE
schemes in an extended leakage model that is a combination of the CLM and
hard-to-invert auxiliary input model.

2 Preliminaries

2.1 Notations

For any natural number n, [n] denotes the set {1, . . . , n}. x
R← S denotes x

is randomly chosen from a finite set S, and y
R← A(x; r) denotes that y is an

output of a randomized algorithm A with input x and randomness r. We say that
a function f(·) : N → [0, 1] is negligible if for all positive polynomials p(·) and
all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say that an algorithm
A is probabilistic polynomial time (PPT) if there exists a polynomial p such
that a running time of A with input length λ is less than p(λ). For a bit string
x, |x| denotes the bit-length of x. The min-entropy of a random variable X is
H∞(X) := − log(maxx Pr[X = x]). We often denote poly to mean an unspecified
polynomial and negl to mean an unspecified negligible function.

2.2 Pseudorandom Function

Definition 1. An deterministic function PRF : K × D → R computable in
polynomial time is said to be a pseudorandom function (PRF) if for any PPT
adversary A,

AdvPRF,A(λ) := |Pr[1 ← APRF(K·)(1λ)] − Pr[1 ← ARand(·)(1λ)]|

is negligible where K
R← K and Rand

R← F(D,R) where F(D,R) denotes the set
of all functions from D to R.
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2.3 Identity-Based Encryption

We define IBE, and its leakage-resilient security (in the bounded retrieval model).
An IBE scheme consists of the following algorithms.

Setup(1λ, 1�) R→ (pp,msk): This is the setup algorithm that takes the security
parameter 1λ and the leakage parameter 1� as input6 and outputs a public
parameter pp and a master secret key msk. All other algorithms implicitly
include pp as an input.

KeyGen(msk, id) R→ skid: This is the key generation algorithm that takes a master
secret key msk and an identity id as input, and outputs a secret key skid
associated with the identity id.

Enc(id,m) R→ ct: This is the encryption algorithm that takes an identity id and
a message m, and outputs a ciphertext ct.

Dec(skid, id, ct) → m: This is the decryption algorithm that takes a secret key
skid, an identity id and a ciphertext ct as input, and outputs a message m.

Fig. 1. The experiment for defining the leakage-resilience for IBE

Remark 1. In our definition, we explicitly give id to Dec as an input, which differs
from a commonly-used definition. We define in this way because id need not be
hidden, and thus it is natural to separate it from a secret key. We note that this
modification does not lose any generality because we can simply include id in
skid. This modification slightly affects the leakage-ratio defined below, but the
difference is negligible when � = ω(|id|).
6 Since we consider a leakage resilient IBE, we give the leakage parameter 1� as input,

which means a maximum amount of leakage bits the scheme tolerates.
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Correctness. For any (pp,msk) produced by Setup(1λ, 1�), any id ∈ ID, any
m ∈ M, we have

Pr

[

m �= m′
∣
∣
∣
∣
∣

skid
R← KeyGen(msk, id),

ct
R← Enc(id,m),m′ := Dec(skid, id, ct)

]

= negl(λ)

Leakage-resilience. Leakage resilience of an IBE scheme IBE is defined by
the experiment ExptLR-CPA

IBE,A (λ, �) for an adversary A = (A1,A2) described in
Fig. 1. We say that a PPT adversary A is admissible if it does not query id∗

to KG(msk, ·), and at the end of the experiment, we have Lid∗ ≤ � or Lid∗ is
undefined (i.e., A never queries id∗ to Leak). We say that an PPT adversary
A is selectively admissible if in addition to the above, A1 can be divided into
two stages A1-1 and A1-2: A1-1 is given 1λ and not allowed to access to any
oracle, and returns (id∗, stpre), and A1-2 is given (pp, stpre) and allowed to access
to oracles KG(msk, ·) and Leak(·, ·), and returns (m0,m1, st).

Definition 2. We say that an IBE scheme IBE is adaptively leakage resilient if
for any polynomial �(λ), any admissible adversary A, if the advantage

AdvLR-CPAIBE,A (λ, �) := 2 · |Pr[ExptLR-CPAIBE,A (λ, �) = 1] − 1/2|
is negligible in λ. We define selective leakage resilience of IBE analogously
by replacing “any admissible adversary A” in the above definition with “any
selectively admissible adversary A”. We define leakage-ratio α of the scheme
to be minimal value of �

|skid| where (pp,msk) R← Setup(1λ, 1�) and skid
R←

KeyGen(msk, id).

Remark 2. In our security model, we assume that an adversary obtains a leakage
from one decryption key per one identity, and cannot obtain a leakage from a
master secret key. This is the same model as the ones in [CDRW10,ADN+09,
KP17]. Some works (e.g., [LRW11]) consider stronger security models where
an adversary obtains leakages from many secret keys of the same identity and
leakages from a master secret key.

Bounded Retrieval Model.
Next, we define leakage resilient IBE in the BRM [ADN+09]7.

Definition 3 ([ADN+09, Def. 6.2]). We say that an IBE scheme is adaptively
(resp. selectively) leakage-resilient in the bounded retrieval model (BRM), if the
scheme is adaptively (resp. selectively) leakage-resilient, and the public parameter
size, master secret key size, ciphertext size, encryption time, and decryption time
(and the number of secret key bits read by decryption) are independent of the
leakage bound �. More formally, there exist polynomials ppsize, msksize, ctsize,
encT, decT, such that, for any polynomial � and any (pp,msk) R← KeyGen(1λ, 1�),
id ∈ ID, m ∈ M, ct R← Enc(id,m), the scheme satisfies:
7 In [ADN+09], they only consider the adaptive security. We also define the selective

security similarly.
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1. Public parameter size is |pp| ≤ O(ppsize(λ)), master secret key size is |msk| ≤
O(msksize(λ)), ciphertext size is |ct| ≤ O(ctsize(λ, |m|)).

2. Run-time of Enc(id,m) is ≤ O(encT(λ, |m|)).
3. Run-time of Dec(ct, sk), and the number of bits of sk accessed, is ≤

O(decT(λ, |m|)).

2.4 Inner Product Encryption

We define inner product encryption (IPE) and its security. We remark that we
do not define the leakage resilience for IPE because we do not construct a leakage
resilient IPE scheme, and we just use a (non-leakage resilient) IPE scheme as a
building block to construct a leakage resilient IBE scheme in the BRM. An IPE
scheme consists of the following algorithms.

Setup(1λ, 1n) R→ (pp,msk): This is the setup algorithm that takes the security
parameter 1λ and the vector-dimension 1n as input and outputs a public
parameter pp and a master secret key msk. The public parameter pp specifies
a vector space Z

n
q . All other algorithms implicitly include pp as an input.

KeyGen(msk,y ∈ Z
n
q ) R→ sky : This is the key generation algorithm that takes a

master secret key msk and a vector y ∈ Z
n
q as input, and outputs a secret key

sky associated with the vector y.
Enc(x,m) R→ ct: This is the encryption algorithm that takes a vector x ∈ Z

n
q

and a message m, and outputs a ciphertext ct.
Dec(sky ,y, ct) → m: This is the decryption algorithm that takes a secret key

sky , a vector y and a ciphertext ct as input, and outputs a message m.

Correctness. For any (pp,msk) produced by Setup(1λ, 1n), any x,y ∈ Z
n
q such

that xT · y = 0, any m ∈ M, we have

Pr

[

m �= m′
∣
∣
∣
∣
∣

sky
R← KeyGen(msk,y),

ct
R← Enc(x,m),m′ := Dec(sky ,y, ct)

]

= negl(λ)

Security. Security of an IPE scheme IPE is defined by the experiment
ExptCPAIPE,A(λ, n) for an adversary A = (A1,A2) described in Fig. 2. We say that

Fig. 2. The experiment for defining the security for IPE
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a PPT adversary A is admissible if it does not query y satisfying (x∗)T · y = 0
to KeyGen(msk, ·). We say that a PPT adversary A is selectively admissible if
in addition to the above, A1 can be divided into two stages A1-1 and A1-2: A1-1

is given (1λ, 1n) and not allowed to access to any oracle, and returns (x∗, stpre),
and A1-2 is given (pp, stpre) and allowed to access to oracles KeyGen(msk, ·), and
returns (m0,m1, st).

Definition 4. We say that an IPE scheme IPE is adaptively secure if for any
polynomial n(λ), any admissible adversary A, if the advantage

AdvCPAIPE,A(λ, n) := 2 · |Pr[ExptCPAIBE,A(λ, n) = 1] − 1/2|
is negligible in λ. We define selective security of IPE analogously by replac-
ing “any admissible adversary A” in the above definition with “any selectively
admissible adversary A”.

Key-Compactness. We say that an IPE scheme is fully key-compact if for any
polynomial n = n(λ), any (pp,msk) produced by Setup(1λ, 1n), any y ∈ Z

n
q , and

any sky produced by KeyGen(msk,y), we have

|sky | = poly(λ)

where poly is a fixed polynomial that does not depend on n.

2.5 Identity-Based Hash Proof System (IB-HPS)

An identity-based hash proof system (IB-HPS) [ADN+09] consists of five PPT
algorithms Π = (Setup,KeyGen,Encap,Encap∗,Decap).

Setup(1λ): This is the setup algorithm that takes the security parameter 1λ as
an input, and outputs a public parameter pp and a master secret key msk.
All other algorithms implicitly include pp as an input.

KeyGen(msk, id): This is the key generation algorithm that takes a master secret
key msk and an identity id as inputs, and outputs a identity secret key skid.

Encap(id): This is the valid encapsulation algorithm that takes an identity id as
an input and outputs a valid ciphertext ct and a encapsulated key k.

Encap∗(id): This is the invalid encapsulation algorithm that takes an identity id
as an input and outputs an invalid ciphertext ct′.

Decap(skid, id, ct): This is the decapsulation algorithm that takes an identity
secret key skid, an identity id and a ciphertext ct as inputs, and outputs an
encapsulated key k.

We require that an IB-HPS satisfies the following properties.

Correctness. For any (pp,msk) produced by Setup(1λ), any id ∈ ID, we have

Pr

[

k �= k′
∣
∣
∣
∣
∣

skid
R← KeyGen(msk, id)

(ct, k) R← Encap(id), k′ := Decap(skid, id, ct)

]

= negl(λ)
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Valid/Invalid Ciphertext Indistinguishability. The valid ciphertexts gener-
ated by Encap and the invalid ciphertexts generated by Encap∗ should be indis-
tinguishable even given a secret key of a challenge identity. In particular, we
define an experiment ExptindΠ,A for an IB-HPS Π and an adversary A = (A1,A2)
as described in Fig. 3.

Fig. 3. The experiment for defining valid/invalid ciphertext indistinguishability for
IB-HPS

We say that a PPT adversary A is admissible if it does not makes the same
query to KeyGen(msk, ·) twice. We say that a PPT adversary A is selectively
admissible if in addition to that, A1 is given 1λ instead of pp and not allowed to
access to KeyGen(msk, ·).

A1 is only given 1λ instead of pp and does not make any query. We note that
we do not prohibit an adversary from querying id∗. That is, valid and invalid
ciphertexts under an identity id∗ are indistinguishable even if an adversary is
given one secret key that corresponds to id∗.

Definition 5. We say that an IB-HPS Π is adaptively secure if for any admis-
sible adversary A, the advantage AdvindΠ,A(λ) := 2 · |Pr[ExptindΠ,A(λ) = 1] − 1/2|
is negligible. We define selective security of IB-HPS analogously by replacing
“any PPT adversary A” in the above definition with “any selectively admissible
adversary A”.

Universality. Another property of IB-HPS is universality. An IB-HPS is said
to be (n, ρ)-universal if the number of possible values of skid

R← KeyGen(msk, id)
is larger than 2n, and any distinct pair of them decrypts a randomly generated
invalid ciphertext to the same message with probability at most ρ. In other
words, {Decap(ct, id, ·) : ct R← Enc∗(pp)} is a family of ρ-universal functions.

Definition 6 [ADN+09, Def. 3.1]. We say that an IB-HPS Π is (n, ρ)-universal
if for any fixed values of (pp,msk) produced by Setup(1λ), id ∈ ID, the following
hold:

1. H∞(skid) ≥ n where skid
R← KeyGen(msk, id).
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2. For any fixed distinct skid �= skid produced by KeyGen(msk, id),

Pr
ct

R←Encap∗(id)

[Decap(skid, id, ct) = Decap(skid, id, ct)] ≤ ρ.

We say that Π has a universality-ratio β if there exists n and a constant ρ < 1
such that Π is (n, ρ)-universal and we have β < n

|skid| for any (pp,msk) produced
by Setup(1λ), any id and any skid produced by KeyGen(msk, id).

Alwen et al. [ADN+09] gave a construction of an IBE scheme in the BRM
based on an (n, ρ)-universal IB-HPS, and prove that the leakage-ratio α of their
IBE scheme can be arbitrarily close to the universality-ratio β of an underlying
IB-HPS. More formally, they proved the following theorem8.

Theorem 1 ([ADN+09, Theorem 6.1]). If there exists an adaptively (resp.
selectively) secure IB-HPS with universality-ratio β > c for some constant c,
then for any constant ε > 0 and any polynomial v, there exists an adaptively
(resp. selectively) leakage-resilient IBE scheme in the BRM with message space
M = {0, 1}v and:

1. Master public/secret key size is the same as that of the underlying IB-HPS.
2. Ciphertext-size/encryption-time/decryption-time are t = O(v + λ) times

larger than that of the underlying IB-HPS.
3. Leakage-ratio is α ≥ β(1−ε) for sufficiently large values of the leakage param-

eter �.

3 Generic Construction of IB-HPS from IPE

In this section, we give a generic construction of IB-HPS based on any IPE
scheme. Interestingly, universality-ratio of a resulting IB-HPS is related to key-
compactness of an underlying IPE scheme. Especially, if an underlying IPE is
fully key-compact, then the universality-ratio of the resulting IB-HPS can be
arbitrarily close to 1. We give our construction through an intermediate primitive
called multi-identity-based encryption (MIBE).

3.1 Multi-identity-Based Encryption

Here, we introduce a notion of MIBE, which is a variant of IBE such that a secret
key is associated with multiple identities. Then we show a key-compactness-
preserving conversion from IPE to MIBE. An MIBE scheme consists of four
PPT algorithms (Setup,KeyGen,Enc,Dec).

Setup(1λ, 1n) R→ (pp,msk): This is the setup algorithm that takes the security
parameter 1λ and the identity-multiplicity 1n as inputs and outputs a public
parameter pp and a master secret key msk. All other algorithms implicitly
include pp as an input.

8 Though Alwen et al. [ADN+09] only gave a proof for the case of the adaptive security,
the proof can be straightforwardly extended to the selective case.
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KeyGen(msk, (id1, ..., idn)) R→ sk(id1,...,idn): This is the key generation algorithm
that takes a master secret key msk and identities id1, ..., idn as inputs, and
outputs secret key sk(id1,...,idn) associated with the set {id1, ..., idn}.

Enc(id,m) R→ ct: This is the encryption algorithm that takes an identity id and
a message m as inputs, and outputs a ciphertext ct.

Dec(skid1,...,idn , (id1, ..., idn), ct) → m: This is the decryption algorithm that takes
a secret key sk(id1,...,idn), a set of identities (id1, ..., idn) and a ciphertext ct as
inputs, and outputs a message m.

Correctness. For any (pp,msk) produced by Setup(1λ), any n ∈ N, any
id1, ..., idn ∈ IDn, any i ∈ [n], and any message m, we have

Pr

[
m �= m′

∣∣∣∣∣ sk(id1,...,idn)
R← KeyGen(msk, (id1, ..., idn))

(ct, k)
R← Enc(idi,m),m′ := Dec(sk(id1,...,idn), (id1, ..., idn), ct)

]
= negl(λ)

Fig. 4. The experiment for defining the security for MIBE

Security. The security of an MIBE scheme MIBE is defined by the experiment
ExptCPAMIBE,A(λ) for an adversary A = (A1,A2) described in Fig. 4. We say that
a PPT adversary A is admissible if for any query (id1, ..., idn) made by A, we
have id∗ /∈ {id1, ..., idn}. We say that A is selectively admissible if in addition
to the above, A1 can be divided into two stages A1-1 and A1-2: A1-1 is given
1λ and not allowed to access to any oracle, and returns (id∗, stpre), and A1-2

is given (pp, stpre) and allowed to access to oracles KeyGen(msk, ·), and returns
(m0,m1, st).

Definition 7. We say that a MIBE scheme MIBE is adaptively secure if for any
admissible adversary A, if the advantage

AdvCPAMIBE,A(λ) := 2 · |Pr[ExptCPAMIBE,A(λ) = 1] − 1/2|

is negligible. We define selective security of MIBE analogously by replacing “any
admissible adversary A” in the above definition with “any selectively admissible
adversary A”.
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Key-Compactness. We say that an MIBE scheme is fully key-compact if
for any polynomial n = n(λ), any (pp,msk) produced by Setup(1λ, 1n), any
id1, ..., idn, and skid1,...,idn produced by KeyGen(msk, (id1, ..., idn)), we have

|skid1,...,idn | = poly(λ)

where poly is a fixed polynomial that does not depend on n.

Remark 3. If we do not require the key-compactness, it is trivial to construct an
MIBE scheme from any IBE scheme.

3.2 MIBE from IPE

Here, we give a key-compactness-preserving construction of an MIBE scheme
based on an IPE scheme. Actually, this construction is implicit in the work by
Katz, Sahai and Waters [KSW08]. We give the full description for completeness.
Let IPE = (SetupIPE,KeyGenIPE,EncIPE,DecIPE) be an IPE scheme. We construct
an MIBE scheme MIBE = (SetupMIBE,KeyGenMIBE,EncMIBE,DecMIBE) as follows.

SetupMIBE(1λ, 1n): This algorithm runs (pp,msk) R← SetupIPE(1λ, 1n+1) and out-
puts (pp,msk). If pp specifies vector space Z

n
q as an IPE scheme, an identity-

space of MIBE is specified to be Zq.
KeyGenMIBE(msk, (id1, ..., idn) ∈ Z

n
q ): This algorithm computes

{
yi ∈

Zq

}

i∈
{

0,...,n
} such that

∏n
i=1(X − idn) =

∑n
i=0 yiX

i as a polynomial in the

indeterminate X, sets y := (y0, ..., yn), runs sky
R← KeyGenIPE(msk,y) and

outputs sk(id1,...,idn) := sky .
EncMIBE(id,m): This algorithm sets x := (1, id, id2, ..., idn), where idi denotes the

i-th power of id on Zq, runs ct
R← EncIPE(x,m) and outputs ct.

DecMIBE(sk(id1,...,idn), (id1, ..., idn), ct): This algorithm computes y similarly to in
KeyGenMIBE, runs m

R← DecIPE(sk(id1,...,idn),y, ct) and outputs m.

Correctness. Suppose that we have id ∈ {id1, ..., idn}. Let x := (1, id, id2, ..., idn)
and y be the vector associated with {id1, ..., idn} specified as in the description
of KeyGenMIBE. Then we have xTy =

∑n
i=0 yiid

i =
∏n

i=1(id− idn) = 0. Therefore
the correctness of MIBE follows from the correctness of IPE.

Security

Theorem 2. If IPE is adaptively (resp. selectively) secure, then MIBE is adap-
tively (resp. selectively) secure. Moreover, if IPE is fully key-compact, then MIBE
is fully key-compact.

Proof. First, it is easy to see that MIBE is fully key-compact if IPE is fully key-
compact since a decryption key sk(id1,...,idn) of MIBE consists of a single secret
key sky of IPE whose size is polynomial in λ due to the full key-compactness of
IPE. Then, we reduce the security of MIBE to IPE. Here, we only give the proof
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for the adaptive case because the selective case can be proven similarly. Let
A = (A1,A2) be an admissible adversary against the adaptive security of MIBE.
Then we construct an adversary B = (B1,B2) against the adaptive security of
IPE as follows.

BKeyGenIPE(msk,·)
1 (pp): This algorithm runs AKeyGenMIBE(msk,·)

1 (pp). When A1 queries
(id1, ..., idn) to KeyGenMIBE(msk, ·), B1 computes {yi ∈ Zq}i∈{0,...,n} such
that

∏n
i=1(X − idn) =

∑n
i=0 yiX

i, sets y := (y0, ..., yn), queries y to its
own oracle KeyGenIPE(msk, ·) to obtain sky , sets sk(id1,...,idn) := sky , and
returns sk(id1,...,idn) as a response by the oracle KeyGenMIBE(msk, ·). When A1

outputs (id∗,m0,m1, st), B1 sets x∗ := (1, id∗, (id∗)2, ..., (id∗)n) and outputs
(x∗,m0,m1, st).

BKeyGenIPE(msk,·)
2 (ct∗, st): This algorithms runs AKeyGenMIBE(msk,·)

2 (ct∗, st). When A2

queries (id1, ..., idn) to KeyGenMIBE(msk, ·), B2 computes {yi ∈ Zq}i∈{0,...,n}
such that

∏n
i=1(X − idn) =

∑n
i=0 yiX

i, sets y := (y0, ..., yn), queries y to
its own oracle KeyGenIPE(msk, ·) to obtain sky , sets sk(id1,...,idn) := sky , and
returns sk(id1,...,idn) as a response by the oracle KeyGenMIBE(msk, ·). When A2

outputs ĉoin, B2 outputs ĉoin.

It is easy to see that B perfectly simulates KeyGenMIBE(msk, ·) for A, and the
challenge ciphertext simulated by B is a correct encryption of mcoin where coin
is the random coin chosen by the challenger in the experiment B is involved.
Therefore, we have AdvCPAMIBE,A(λ) = AdvCPAIPE,B(λ). What is left is to prove that
B is admissible if A is admissible. Let y = (y0, ..., yn) be the corresponding
vector to a queried set of identities (id1, ..., idn) by A, i.e., y satisfies

∏n
i=1(X −

idn) =
∑n

i=0 yiX
i, and x∗ := (1, id∗, (id∗)2, ..., (id∗)n). Then we have (x∗)Ty =∑n

i=0 yi(id∗)i =
∏n

i=1(id
∗ − idn) �= 0 where the last inequality holds because

we have id∗ /∈ {id1, ..., idn} due to the admissibility of A. This completes the
proof. �

3.3 IB-HPS from MIBE

Here, we give a construction of an IB-HPS based on any MIBE scheme. Moreover,
we show that if the underlying MIBE scheme is fully key-compact, then the
universality-ratio of the resulting IB-HPS can be made arbitrarily close to 1.

Let MIBE = (SetupMIBE,KeyGenMIBE,EncMIBE,DecMIBE) be an MIBE scheme
with a message space M and an identity space {0, 1}�id . We assume that there
exists a positive integer �k such that {0, 1}�k can be embedded into M, i.e.,
there exists an efficiently computable injective function σ : {0, 1}�k → M. In
the following, we often identify k ∈ {0, 1}�k with σ(k) and treat k as an ele-
ment of M. Let PRF : K × {0, 1}�id → R where R denotes the randomness
space for KeyGenMIBE. Then for any positive integer n, we construct an IB-HPS
Πn = (SetupHPS,KeyGenHPS,EncapHPS,Encap

∗
HPS,DecapHPS) with identity space

{0, 1}�id−�log n	−1 and key space {0, 1}�k as follows, where bin(m) denotes a binary
representation of an integer m.
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SetupHPS(1λ): This algorithm generates (pp,msk) R← SetupMIBE(1λ, 1n), chooses
a PRF key K

R← K, and outputs pp and (msk,K) as its public parameter and
master secret key.

KeyGenHPS((msk,K), id): This algorithm picks ri
R← {0, 1} for i ∈ [n], generates

sk′
id

R← KeyGenMIBE(msk, (id‖bin(1)‖r1, ..., id‖bin(n)‖rn);PRF(K, id)), and out-
puts skid := (sk′

id, {ri}i∈[n]).
EncapHPS(id): This algorithm picks ki ∈ {0, 1}�k for i ∈ [n], generates cti,b

R←
EncMIBE(id||bin(i)||b, ki) for i ∈ [n] and b ∈ {0, 1}, sets ct := {cti,b}i∈[n],b∈{0,1}
and k :=

⊕
i∈[n] ki, and outputs (ct, k).

Encap∗
HPS(id): This algorithm picks ki,b ∈ {0, 1}�k for i ∈ [n] and b ∈ {0, 1},

generates cti,b
R← EncMIBE(id||bin(i)||b, ki,b) for all i ∈ [n], b ∈ {0, 1}, sets

ct := {cti,b}i∈[n],b∈{0,1}, and outputs ct.
DecapHPS(skid, id, ct):

This algorithm parses (sk′
id, {ri}i∈[n]) ← skid and {cti,b}i∈[n],b∈{0,1} ← ct,

runs k′
i ← DecMIBE(sk′

id, (id||bin(1)||r1, ..., id||bin(n)||rn), cti,ri
), and outputs

k :=
⊕

i∈[n] k
′
i

Correctness. Correctness of Πn is easy to see given the correctness of MIBE.

Security

Theorem 3. If MIBE is adaptively (resp. selectively) secure MIBE scheme, then
Πn is an adaptively (resp. selectively) secure and (n, 2−�k)-universal IB-HPS
with the universality-ratio n

n+�sk(n) where �sk(n) denotes the maximum length of

sk generated by KeyGenMIBE(msk, ·) where (pp,msk) R← SetupMIBE(1λ, 1n). Espe-
cially, if MIBE is fully key-compact, then we can make the universality-ratio
arbitrarily close to 1 by increasing n.

Proof
Valid/Invalid Ciphertext Indistinguishability. First, we prove that Πn

is adaptively (resp. selectively) secure if MIBE is adaptively (resp. selectively)
secure. Here, we only give the proof for the adaptive case because the selec-
tive case can be proven similarly. We assume that there exists a PPT adversary
A = (A1,A2) that breaks the adaptive security of Πn. We consider the following
sequence of hybrid games.

Game0: This game simulates the environment of ExptindΠn,A(λ) for the case of
coin = 0 (where A is always given a valid ciphertext) to A. ĉoin output by A
is treated as the output of this game.

Game′
0: This game is the same as Game0 except that the challenger uses a fresh

randomness instead of PRF(K, id) when responding to A’s key generation
queries. We denote this modified key generation oracle by KeyGen′

HPS(msk, ·).
We note that K is not needed for simulating KeyGen′

HPS(msk, ·).
Game′

x: For x = 0, ..., n, we consider the following games. We remark
that the definitions of Game′

0 given above and below is consistent.
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Game′
x :

(pp,msk) R← SetupMIBE(1λ)
(id∗, stA) R← AKeyGen′

HPS(msk,·)
1 (pp)

For i = 1 to x
ki,0, ki,1

R← {0, 1}�k

For i = x + 1 to n
ki,0

R← {0, 1}�k

ki,1 := ki,0

For i ∈ [n], b ∈ {0, 1}
ct∗i,b

R← EncMIBE(id∗||bin(i)||b, ki,b)
ct∗ := {ct∗i,b}i∈[n],b∈{0,1}

ĉoin
R← AKeyGen′

HPS(msk,·)
2 (ct∗, stA)

Return ĉoin.

It is easy to see that Game′
n simulates the environment of ExptindΠn,A(λ) given

coin = 1 (where A is always given an invalid ciphertext) to A. Therefore, we
have |Pr[1 R← Game0] − Pr[1 R← Game′

n]| = AdvindΠn,A(λ). We prove that this is
negligible by showing the following lemmas.

Lemma 1. There exists a PPT adversary B against PRF such that |Pr[Game0 =
1] − Pr[Game′

0 = 1]| = AdvPRF,B(λ).

Proof. The PRF key K is used only when simulating the key generation oracle,
and evaluations of the PRF on the same input id is not repeated more than once
since A is not allowed to query the same identity more than once. Therefore,
it is straightforward to reduce the distinguishing advantage between these two
games to the security of PRF. �

Lemma 2. For x ∈ [n], there exists an admissible adversary B against MIBE
such that |Pr[Game′

x−1 = 1] − Pr[Game′
x = 1]| = AdvCPAMIBE,B(λ).

Proof. We assume that A distinguishes Game′
x and Game′

x+1, and construct a
PPT adversary B = (B1,B2) that breaks the adaptive security of MIBE. We
describe B below.

BKeyGenMIBE(msk,·)
1 (pp): It runs (id∗, stA) R← AKeyGen′

HPS(msk,·)
1 (pp) where B simu-

lates KeyGen′
HPS to A1 as follows. When A1 makes its j-th query id(j)

to KeyGen′
HPS, it randomly picks r

(j)
i

R← {0, 1} for i ∈ [n], queries
(id(j)‖bin(1)‖r

(j)
1 , ..., id(j)‖bin(n)‖r

(j)
n ) to its own oracle KeyGenMIBE to obtain

sk
(j)
id

′
, and gives (sk(j)

id

′
, {r

(j)
i }i∈[n]) to A1 as a response from the oracle

KeyGen′
HPS. If there exists j ∈ [Q] such that id∗ = id(j), then it sets r∗

x := r
(j)
x .

Otherwise it picks r∗
x

R← {0, 1}. It picks kx,0, kx,1
R← {0, 1}�k and sets stB :=

(stA, r∗
x, kx,0, kx,1). Then, B1 outputs (id‖bin(x)‖(1 − r∗

x), kx,r∗
x
, kx,1−r∗

x
, stB).

BKeyGenMIBE(msk,·)
2 (ct∗MIBE, stB): It parses {cti,b}i∈[n],b∈{0,1} ← ct∗ and (stA, r∗

x) ←
stB. It picks ki,0, ki,1

R← {0, 1}�k for i = 1, ..., x − 1. It picks ki,0
R←

{0, 1}�k and sets ki,1 := ki,0 for i = x + 1, ..., n. It computes ct∗i,b
R←

EncMIBE(id‖bin(i)‖b, ki,b) for all (i, b) ∈ ([n] × {0, 1}) \ {(x, 1 − r∗
x)}, and

sets ct∗x,1−r∗
x

:= ct∗MIBE. Then, it sets ct∗HPS := {ct∗i,b}i∈[n],b∈{0,1} and runs
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ĉoin
R← AKeyGen′

HPS(msk,·)
2 (ct∗HPS, stA) where B2 simulates KeyGen′

HPS(msk, ·) as
follows. When A2 makes a j-th query id(j) to KeyGen′

HPS(msk, ·) (where
the number of query is counted through A1 and A2), if id(j) �= id∗, then
B2 randomly picks r

(j)
i

R← {0, 1} for i ∈ [n], and otherwise it randomly
picks r

(j)
i

R← {0, 1} for i ∈ [n] \ {x} and sets r
(j)
x := r∗

x. Then, B2 queries
(id(j)‖bin(1)‖r

(j)
1 , ..., id(j)‖bin(n)‖r

(j)
n ) to its own oracle KeyGenMIBE(msk, ·) to

obtain sk
(j)
id

′
, and gives (sk(j)

id

′
, {r

(j)
i }i∈[n]) to A2 as a response from the oracle

KeyGen′
HPS(msk, ·). Finally, B2 outputs coin′.

This completes the description of B. First, we can see that B is admissible because
B’s query to its oracle never contains id∗‖bin(x)‖(1 − r∗

x). If the random coin
chosen by the challenger of ExptCPAMIBE,B, which is the experiment B is involved in, is
0, then B perfectly simulates Game′

x−1 to A, and if the coin is 1, then B perfectly
simulates Game′

x to A. Therefore we have |Pr[Game′
x−1 = 1]−Pr[Game′

x = 1]| =
AdvCPAMIBE,B(λ) as desired. �

Due to the above lemmas and the triangle inequality, if PRF is a secure
PRF and MIBE is adaptively secure, then |Pr[1 R← Game0] − Pr[1 R← Game′

n]| =
AdvindΠ,A(λ) is negligible, and thus Πn is adaptively secure.

Universality. We prove that Πn is (n, 2−�k)-universal. First, for any fixed
(msk, pp) and id ∈ {0, 1}�id , we have H∞(skid) = n where skid

R←
KeyGenHPS(msk, id) because a different choice of {ri}i∈[n] ∈ {0, 1}n gives a
different value of skid. For any fixed (msk, pp) and id ∈ {0, 1}�id , let skid =
(sk′

id, {ri}i∈[n]) and skid = (sk′
id, {ri}i∈[n]) be distinct secret keys produced by

KeyGenHPS(msk, id). Since the first component sk′
id in a secret key skid is determin-

istically derived from msk, id, and {ri}i∈[n], we must have {ri}i∈[n] �= {ri}i∈[n].
Let ct be an invalid ciphertext generated by Encap∗(id), i.e., we pick ki,b ∈ {0, 1}�k

for i ∈ [n] and b ∈ {0, 1}, generate cti,b
R← EncMIBE(id||bin(i)||b, ki,b) for all i ∈ [n],

b ∈ {0, 1} and set ct := {cti,b}i∈[n],b∈{0,1}. Then, we have Decap(skid, id, ct) =
⊕n

i=1 ki,ri
and Decap(skid, id, ct) =

⊕n
i=1 ki,ri

by the correctness of MIBE. Since
there exists i∗ ∈ [n] such that ri∗ �= ri∗ and ki∗,0 and ki∗,1 are independently ran-
dom, Decap(skid, id, ct) and Decap(skid, id, ct) are independently random. There-
fore, we have

Pr
ct

R←Encap∗(id)

[Decap(skid, id, ct) = Decap(skid, id, ct)] ≤ 2−�k .

Therefore Πn is (n, 2−�k)-universal. Since a secret key skid of Πn consists of a
secret key sk′

id of MIBE and an n-bit string {ri}i∈[n], the secret key size of Πn

is n + �sk(n). Therefore, the universality-ratio of Πn is n
n+�sk(n) . Especially, if

MIBE is fully key-compact, then �sk(n) is a fixed polynomial in λ that does not
depend on n, and thus we can make the universality-ratio arbitrarily close to 1
by increasing n. �
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4 Leakage Resilient IBE in BRM

Here, we first observe that combining Theorems 1, 2, and 3, we can construct
a leakage resilient IBE scheme in the BRM based on any IPE scheme, and the
leakage-ratio of the resulting IBE scheme can be made arbitrary close to 1 if the
underlying IPE is fully key-compact. Then we give some instantiations for it.

4.1 Construction from IPE

Combining Theorems 1, 2, and 3, we obtain the following corollary.

Corollary 1. Suppose we have an adaptively (resp. selectively) secure fully key-
compact IPE scheme with vector space Z

n
q whose secret key size is |skIPE(n)|

where q = λω(1) and the dimension n ∈ N can be flexibly chosen by the setup
algorithm. Then for any n = poly(λ) and constant ε > 0, we can construct an
adaptively (resp. selectively) secure leakage resilient IBE scheme in the BRM
with identity-space {0, 1}
 log q

2 � and message space {0, 1}v such that

1. Public parameter/master secret key size is almost the same as that of the
underlying IPE scheme.

2. Ciphertext-size/encryption-time/decryption-time are O(n(v+λ)) times larger
than that of the underlying IPE with dimension n.

3. leakage-ratio is (1 − ε)( n
n+|skIPE(n)| ) for sufficiently large values of the leakage

parameter �.

Especially, by choosing sufficiently large n = O(|skIPE(n)|), we can make the
leakage-ratio 1 − ε for any constant ε > 0.

Proof. Suppose we have an adaptively (resp. selectively) secure fully key-
compact IPE scheme with vector space Z

n
q . By Theorem 2, we can con-

struct an adaptively (resp. selectively) secure fully key-compact MIBE scheme
whose identity-space is {0, 1}
log q� and public parameter/master secret key
size, ciphertext-size/encryption-time/decryption-time, are almost the same as
those of the underlying IPE. Then by Theorem 3, for any n ∈ N, we can
construct an adaptively (resp. selectively) secure IB-HPS whose identity-space
is {0, 1}
log q�−
log(n)�−1, master public/secret key size is the same as that
of the underlying IPE scheme, ciphertext-size/encryption-time/decryption-time
differ by a factor of O(n) from those of the underlying IPE with dimension
n, and universality-ratio n

n+|skIPE(n)| . Here, for sufficiently large λ, we have


log q� − 
log n� − 1 > 
 log q
2 � since we have q = λω(1) and n = poly(λ). There-

fore the identity-space of IB-HPS can be restricted to {0, 1}
 log q
2 �. Finally, by

applying Theorem 1 to this IB-HPS, we obtain Corollary 1. Especially, for any
constant ε′ > 0, if we set n > |skIPE(n)|

ε′ then we have n
n+|skIPE(n)| > 1

1+ε′ . Thus we
can make the leakage-ratio arbitrarily close to 1. �
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4.2 Instantiations

By Corollary 1, we can construct a leakage resilient IBE scheme in the BRM
whose leakage-ratio is arbitrarily close to 1 based on any fully key-compact IPE
scheme. We give a list of possible instantiations below. Note that all constructions
are secure in the standard model. In the following, |skIPE| and |ctIPE(n)| denotes
the size of a secret key and a ciphertext when the dimension is set to be n.
(Remark that since these schemes are fully-key-compact, |skIPE| does not depend
on n.)

1. Wee constructed an adaptively secure IPE scheme from the subgroup decision
assumption on composite-order pairing groups [Wee14]. The construction is
fully key-compact since a secret key for vector y ∈ Z

n
N consists of 2 group

elements where N is the order of a group and consists of three distinct primes.
A ciphertext of the scheme consists of n elements of the group. Namely, we
have |skIPE| = O(N) and |ctIPE(n)| = O(nN). For any constant ε > 0, we can
set n = O(N) to achieve the leakage-ratio 1 − ε. In this case, the ciphertext
size of the resulting IBE scheme is O(N3λ).

2. Chen et al. constructed an adaptively secure IPE scheme from the d-Lin
assumption on prime-order pairing groups [CGW15]. The construction is fully
key-compact since a secret key for vector y ∈ Z

n
q consists of 2(d + 1) group

elements where q is the order of a group. If we use the 1-Lin (i.e., SXDH)
assumption, only 4 group elements. A ciphertext of the scheme consists of
(n + 1)(d + 1) group elements and a message masking part. Namely, we have
|skIPE| = O(dλ) and |ctIPE(n)| = O(ndλ). For any constant ε > 0, we can set
n = O(dλ) to achieve the leakage-ratio 1 − ε. In this case, the ciphertext size
of the resulting IBE scheme is O(d3λ4).

3. Agrawal et al. constructed a selectively secure IPE scheme from the LWE
assumption [AFV11]. The construction is fully key-compact since a secret
key for a vector y ∈ Z

n
q is a vector of small length in Z

m where m does not
depend on n. More precisely, a secret key consists of a vector of length of
O(σ

√
m) (with overwhelming probability) in Z

2m, and a ciphertext consists
of O(n log q) vectors in Z

m
q where we can set q = poly(λ, n), m = O(λ1+δ)

and σ = poly(λ, n) where δ > 0 is an arbitrary constant. Namely, we have
|skIPE| = Õ(λ1+δ) and |ctIPE(n)| = O(nλ1+δ). For any constant ε > 0, we can
set n = Õ(λ1+δ) to achieve the leakage-ratio 1−ε. In this case, the ciphertext
size of the resulting IBE scheme is Õ(λ4+3δ).

4. We constructed a selectively secure IPE scheme from the CBDH assump-
tion. This construction is an extension of Boneh-Boyen selectively secure
IBE [BB04] and can be seen as a selectively secure variant of the scheme
proposed by Chen et al. [CGW15] (which is an adaptively secure IPE scheme
under the d-Lin assumption). The construction is fully key compact since
a secret key for vector y ∈ Z

n
q consists of 2 group elements where q is the

order of a group. A ciphertext consists of n+1 group elements and a message
masking part. Namely, we have |skIPE| = O(λ) and |ctIPE(n)| = O(nλ). For
any constant ε > 0, we can set n = O(λ) to achieve the leakage-ratio 1 − ε.
In this case, the ciphertext size of the resulting IBE scheme is O(λ4).
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A Key-Compact IPE from CBDH or DBDH

Here, we give constructions of a fully key-compact selectively secure IPE scheme
based on the CBDH or DBDH assumptions. The constructions are simple exten-
sions of the Boneh-Boyen IBE [BB04] and can be seen as selectively secure vari-
ants of the adaptively secure short secret key IPE scheme by Chen, Gay, and
Wee [CGW15].

A.1 Definitions

First, we define pairing groups and CBDH and DBDH assumptions for it. Let G1,
G2 and GT be groups of prime order q associated with a pairing e : G1 × G2 →
GT . We require e to satisfy the following two properties.

Bilinearity For all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zq, it holds that e(ga
1 , gb

2) =
e(g1, g2)ab.

Non-degeneracy If g1 and g2 generate G1 and G2 respectively, then
e(g1, g2) �= 1.

Definition 8 (Computational Bilinear Diffie-Hellman Assumption). We say
that the computational bilinear Diffie-Hellman (CBDH) assumption holds if for
any PPT adversary A, we have

AdvcbdhA (λ) := Pr[e(g1, g2)xyz R← A(g1, g
α
1 , gβ

1 , gγ
1 , g2, g

α
2 , gβ

2 , gγ
2 )] = negl(λ)

where g1
R← G1, g2

R← G2 and α, β, γ
R← Zq.

Definition 9 (Decisional Bilinear Diffie-Hellman Assumption). We say that
the decisional bilinear Diffie-Hellman (DBDH) assumption holds if for any PPT
adversary A, we have

|Pr[A(g1, g
α
1 , gβ

1 , gγ
1 , g2, g

α
2 , gβ

2 , gγ
2 , T0) = 1]

−Pr[A(g1, g
α
1 , gβ

1 , gγ
1 , g2, g

α
2 , gβ

2 , gγ
2 , T1) = 1]| = negl(λ)

where g1
R← G1, g2

R← G2, α, β, γ
R← Zq, T0 := e(g1, g2)αβγ , and T1

R← GT .

By the Goldreich-Levin theorem [GL89], the following lemma holds.

Lemma 3 (Hardcore security of CBDH). If the CBDH assumption holds, then
there exists a family GL of functions hc : GT → {0, 1} such that

|Pr[A(g1, g
α
1 , gβ

1 , gγ
1 , g2, g

α
2 , gβ

2 , gγ
2 , hc, T0) = 1]

−Pr[A(g1, g
α
1 , gβ

1 , gγ
1 , g2, g

α
2 , gβ

2 , gγ
2 , hc, T1) = 1]| = negl(λ)

where g1
R← G1, g2

R← G2, α, β, γ
R← Zq, hc

R← GL, T0 := hc(e(g1, g2)αβγ), and
T1

R← {0, 1}.
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A.2 Construction

We first describe our IPE scheme based on the CBDH assumption.

Setup(1λ, 1n): It generates parameters of a pairing group ppbm := (q,G1,G2,

GT , e, g1, g2), chooses hc
R← GL, α, β

R← Zq and ri
R← Zq for i ∈ [n],

sets v := gα
1 , w := e(g1, g2)αβ and ui := gri

1 for i ∈ [n], and outputs
pp := (ppbm, v, w, u1, ..., un) and msk := (gαβ

2 , r1, ..., rn). All other algorithms
implicitly include pp as an input. The message space is {0, 1} and the vector
space Z

n
q .

KeyGen(msk,y = (y1, ..., yn)): It chooses s
R← Zq, sets k0 := gs

2, k1 := gαβ
2 ·

(g
∑n

i=1 yiri

2 )s, and outputs sky := (k0, k1).
Enc(x = (x1, ..., xn),m ∈ GT ): It chooses γ

R← Zq, computes C0 := gγ
1 , Ci :=

(vxiui)γ for i ∈ [n], and Cm := m ⊕ hc(wγ), and outputs ctx :=
(C0, C1, ..., Cn, Cm).

Dec(sky ,y = (k0, k1), ctx = (C0, C1, ..., Cn, Cm)): It outputs m := Cm ⊕
hc(e(C0, k1)e(

∏n
i=1(C

yi

i ), k0)−1).

Correctness. Let x ∈ Z
n
q and y ∈ Z

n
q be vectors such that xT · y = 0 and

m ∈ {0, 1} be any message. Suppose that ctx = (C0, C1, ..., Cn, Cm) and sky =
(k1, k2) are generated as (msk, pp) R← Setup(1λ, 1n), ctx

R← Enc(x,m), and sky
R←

KeyGen(msk,y = (y1, ..., yn)). Then we have

e(C0, k1) · e(
n∏

i=1

(Cyi

i ), k0)−1

= e(gγ
1 , g

αβ+s
∑n

i=1 yiri

2 ) · e(g
∑n

i=1 yiγ(αxi+ri)
1 , gs

2)
−1

= e(g1, g2)αβγ+γs
∑n

i=1 yiri · e(g1, g2)−γs(α
∑n

i=1 xiyi+
∑n

i=1 yiri)

= e(g1, g2)αβγ .

Thus, the decryption correctly works since wγ = e(g1, g2)αβγ .

Key-Compactness. A secret key sky for a vector y consists of two group
elements of G2, and its size is independent from the demension n. Therefore the
scheme is fully key-compact.

Security

Theorem 4. If the CBDH assumption holds, then the above scheme is selec-
tively secure.

Proof. Suppose that there exists a PPT adversary A = ((A1-1,A1-2),A2) that
breaks the selective security of the above IPE scheme. We construct a PPT
algorithm B that breaks the hardcore security of CBDH as follows.
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B(g1, g
α
1 , gβ

1 , gγ
1 , g2, g

α
2 , gβ

2 , gγ
2 , hc, T ): The goal of B is to distinguish if T =

hc(e(g1, g2)αβγ) or T
R← {0, 1}. It first runs (x∗, stA,pre)

R← A1-1(1λ, 1n). Then
it picks r′

i
R← Zq for i ∈ [n], sets v

R← gα
1 , w := e(gα

1 , gβ
2 ), ui := g

r′
i

1 ·(gα
1 )−x∗

i (this
implicitly sets ri := r′

i − αx∗
i mod q), and pp := (v, w, u1, ..., un), and runs

(m0,m1, st)
R← AKeyGen(msk,·)

1-2 (pp, stA,pre) where the way to simulate the oracle
KeyGen(msk, ·) is described below. Then B picks coin R← {0, 1}, sets C∗

0 := gγ ,
C∗

i := (gγ)r′
i for i ∈ [n], C∗

m := mcoin ⊕ T , and ct∗ := (C∗
0 , C∗

1 , ..., C∗
n, C∗

m),
and runs ĉoin

R← AKeyGen(msk,·)
2 (ct∗, st) where the way to simulate the oracle

KeyGen(msk, ·) is described below. Finally, B outputs (ĉoin ?= coin).

KeyGen(msk, ·): Here, we describe the way to simulate KeyGen(msk, ·) by B.
Given a key query y = (y1, ..., yn), it first computes η := (x∗)T · y. If η = 0,
then it aborts. Otherwise it picks s′ R← Zq, sets k0 := gs′

2 · (gβ
2 )1/η and k1 :=

(g
∑n

i=1 yir
′
i · (gα)−η)s′ · (gβ)

∑n
i=1 yir

′
i/η, and returns sky := (k0, k1). We omit

sub/super-script of
∑n

i=1 below for ease of notation. Now, we set s := s′+β/η,
then we can rewrite

k1 = gs′ ∑
yi(ri+αx∗

i )−s′αη+β/η
∑

yi(ri+αx∗
i )

= g(s′+β/η)
∑

yiri+s′α(
∑

yix
∗
i −η)+αβ/η

∑
yix

∗
i

= gs
∑

yiri+αβ (∵ (x∗)T · y =
∑

yix
∗
i = η)

This perfectly simulate secret keys.
For the target ciphertext, C∗

0 = gγ , and for i = 1, ..., n, we have

C∗
i = (gr′

i)γ

= (gαx∗
i

1 · g
r′
i−αx∗

i
1 )γ

= (vx∗
i ui)γ

If T = hc(e(g1, g2)αβγ), then C∗
m is also simulated correctly. On the other

hand, if T
R← {0, 1}, no information of coin is given to A, and thus the

probability that B outputs 1 is 1/2. Therefore we have

Pr[1 R← B|T = hc(e(g1, g2)αβγ)] − Pr[1 R← B|T R← {0, 1}] =
AdvCPAIPE,A(λ)

2
.

i Thus, B can break the hardcore security of CBDH if A breaks the selec-
tive security of the IPE scheme. This immediately implies that if the CBDH
assumption holds, then the scheme is selectively secure by Lemma 3.

�

If we use the DBDH assumption, we can set the message space of the scheme
to GT .
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Abstract. We present an identity-Based encryption (IBE) scheme that
is group homomorphic for addition modulo a “large” (i.e. superpolyno-
mial) integer, the first such group homomorphic IBE. Our first result
is the construction of an IBE scheme supporting homomorphic addi-
tion modulo a poly-sized prime e. Our construction builds upon the IBE
scheme of Boneh, LaVigne and Sabin (BLS). BLS relies on a hash func-
tion that maps identities to eth residues. However there is no known way
to securely instantiate such a function. Our construction extends BLS
so that it can use a hash function that can be securely instantiated. We
prove our scheme IND-ID-CPA secure under the (slightly modified) eth

residuosity assumption in the random oracle model and show that it sup-
ports a (modular) additive homomorphism. By using multiple instances
of the scheme with distinct primes and leveraging the Chinese Remain-
der Theorem, we can support homomorphic addition modulo a “large”
(i.e. superpolynomial) integer. We also show that our scheme for e > 2 is
anonymous by additionally assuming the hardness of deciding solvability
of a special system of multivariate polynomial equations. We provide a
justification for this assumption by considering known attacks.

1 Introduction

Identity-Based Encryption (IBE), first proposed by Shamir [1], and first con-
structed by Boneh and Franklin [2] (based on bilinear pairings) and Cocks [3]
(based on quadratic residuosity), is centered around the notion that a user’s
public key can be efficiently derived from an identity string and system-wide
public parameters. The public parameters are chosen by a Trusted Authority
(TA) along with a master secret key, which is used to extract secret keys for
user identities. In this work, we present an IBE that is group homomorphic for
addition modulo a smooth square-free integer. An encryption scheme is said to
be group homomorphic if its decryption algorithm is a group homomorphism
(known as Group Homomorphic Encryption (GHE) [4]). Although GHE only
permits evaluation of a single algebraic operation, it is a very powerful primitive
for the following reasons:
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1. It is used as a building block in protocols for Private Information Retrieval
[5], Electronic Voting [6–10], Oblivious Polynomial Evaluation [11], Private
Outsourced Computation [12] and the Millionaire’s Problem [13].

2. Fully Homomorphic Encryption (FHE) is currently impractical for many
applications, and even if it were to become more practical, it may add unnec-
essary overhead, especially in applications that only require a single algebraic
operation.

GHE is the “classical” flavor of homomorphic encryption. It allows unbounded
applications of the group operation. Goldwasser and Micali [14] constructed the
first GHE scheme. The Goldwasser-Micali (GM) cryptosystem supports addition
modulo 2 i.e. the XOR operation. Other additively-homomorphic GHE schemes
from the literature include Benaloh [6], Naccache-Stern [15], Okamoto-Uchiyama
[16], Paillier [17] and Damg̊ard-Jurik [10]. Other instances of GHE include [18–20].

Existing identity-based GHE (IBGHE) schemes such as those based on pair-
ings are typically multiplicatively homomorphic. It is a well-known that a scheme
with a multiplicative homomorphism can be transformed into one with an addi-
tive homomorphism, where the addition takes place in the exponent, and a dis-
crete logarithm problem must be solved to recover the result. In this case, we
usually get a bounded (aka “quasi”) additively homomorphic scheme, but it is
not group homomorphic in the sense of the definition considered in this paper
since one cannot perform an unbounded number of homomorphic operations.
However, to the best of our knowledge, the only existing “pure” (i.e. supporting
modular addition) additively-homomorphic instance of IBGHE in the literature
is the variant of the Cocks scheme due to Clear, Hughes and Tewari [21] that is
XOR-homomorphic i.e. it supports addition modulo 2. Applications of IBGHE
are explored in [21] but can be extended to private information retrieval (PIR)
[22] (instantiating the protocol from [5] with an IBGHE scheme instead of a
public-key GHE scheme), data aggregation in wireless sensor networks (IBE has
been applied to wireless sensor networks already in [23–26]) and participatory
sensing (Günther et al. [27] use additively homomorphic IBE for data aggrega-
tion in a participatory sensing system).

1.1 Our Results

Our main contribution is the construction of an IBGHE for addition modulo a
poly-sized prime e. Our construction builds on the IBE scheme of Boneh, LaV-
igne and Sabin (BLS) [28], which uses a hash function that maps identities to
eth residues; there is no known way to securely instantiate such a function. We
extend BLS so that it uses a hash function that can be securely instantiated. We
prove our scheme IND-ID-CPA secure under a (slightly modified) eth residuosity
assumption in the random oracle model. Indeed this is the same assumption
that BLS is proved secure under. We then show that our scheme supports homo-
morphic addition modulo a poly-sized prime e and prove that it satisfies the
properties of an IBGHE.
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Our second contribution is to use multiple instances of the scheme with dis-
tinct primes and to leverage the Chinese Remainder Theorem to support homo-
morphic addition modulo a “large” (i.e. superpolynomial) integer, the first such
IBE scheme supporting an unbounded number of operations1, solving an open
problem mentioned in [21]. Below we consider the advantages of a scheme that
supports homomorphic addition with such a “large” range.

Our third contribution is to show that our scheme for e > 2 is anonymous
by additionally assuming the hardness of deciding solvability of a special sys-
tem of multivariate polynomial equations. We investigate this problem from a
cryptanalytic perspective and provide justification in light of known attacks for
assuming its hardness.

1.2 Practicality and Applications

While the space complexity of ciphertexts in our scheme is high, requiring e2 group
elements, there are contexts where it may be of import, which we now discuss.

Pairings-based IBE schemes that support an additive homomorphism in the
exponent rely on Pollard’s lambda algorithm to extract the result. Let B be a
bound on the result. Pollard’s lambda algorithm has time complexity of O(

√
B).

Suppose we require B to be exponentially large. The runtime for extracting the
result with Pollard’s lambda algorithm is exponential for such B. In contrast, our
CRT scheme gives polynomial running time for this case. We also compare with
LWE-based IBE schemes. The GPV scheme [29] is perhaps the simplest LWE-
based IBE scheme and its security is also proved in the random oracle model. We
consider a comparison for 80 bits of security and B = 280. We used the estimator
of Albrecht, Player and Scott [30] to derive suitable parameters for LWE for
an instantiation of GPV. For 80 bits of security and B = 280, the size of a
ciphertext in GPV (modified to support an additive homomorphism with bound
B) is approximately the same as ours (of the order of 3 MB). Our scheme however
has significantly smaller public parameters - by a factor of several thousand but
has considerably worse running time for encryption, decryption and evaluation.

An example real-world application is that of data aggregation, a common
practice in Machine Learning and related fields. Günther et al. [27] use additively
homomorphic IBE for data aggregation in participatory sensing. A bound of 280

might be required if the data were real numbers with high precision requirements,
which can be represented as integers in fixed point form.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter λ, written
negl(λ), if it is asymptotically bounded from above by the reciprocal of all poly-
nomials in λ.
1 LWE-based additively homomorphic IBE can be constructed with an a superpolyno-

mial range but supporting only a theoretically bounded number of operations, albeit
the bound is more than sufficient for practical purposes.
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For a probability distribution D, we denote by x
$←− D that x is sampled

according to D. If S is a set, y
$←− S denotes that y is sampled from x according

to the uniform distribution on S.
The support of a predicate f : A → {0, 1} for some domain A is denoted by

supp(f), and is defined by the set {a ∈ A : f(a) = 1}.
The set of contiguous integers {1, . . . , k} for some k > 1 is denoted by [k].

2.2 Identity Based Encryption

Definition 1. An Identity Based Encryption (IBE) scheme is a tuple of PPT
algorithms (G,K,E,D) defined with respect to a message space M, an identity
space I and a ciphertext space Ĉ as follows:

• G(1λ):
On input (in unary) a security parameter λ, generate public parameters PP
and a master secret key MSK. Output (PP,MSK).

• K(MSK, id):
On input master secret key MSK and an identity id ∈ I: derive and output a
secret key skid for identity id.

• E(PP, id,m):
On input public parameters PP, an identity id ∈ I, and a message m ∈ M,
output a ciphertext c ∈ C ⊆ Ĉ that encrypts m under identity id.

• D(skid, c):
On input a secret key skid for identity id ∈ I and a ciphertext c ∈ Ĉ, output
m′ if c is a valid encryption under identity id; output a failure symbol ⊥
otherwise.

2.3 Public-Key GHE

An important subclass of partial homomorphic encryption is the class of public-
key encryption schemes that admit a group homomorphism between their cipher-
text space and plaintext space. This class corresponds to what is considered
“classical” HE [4], where a single group operation is supported, most usually
addition. Gjøsteen [18] examined the abstract structure of these cryptosystems
in terms of groups, and characterized their security as relying on the hardness of
a subgroup membership problem. Armknecht, Katzenbeisser and Peter [4] rigor-
ously formalized the notion, and called it group homomorphic encryption (GHE).
We recap with the formal definition of GHE by Armknecht, Katzenbeisser and
Peter [4].

Definition 2 (GHE, Definition 1 in [4]). A public-key encryption scheme
E = (G,E,D) is called group homomorphic, if for every (pk, sk) ← G(1λ), the
plaintext space M and the ciphertext space Ĉ (written in multiplicative notation)
are non-trivial groups such that

• the set of all encryptions C := {c ∈ Ĉ | c ← Epk(m),m ∈ M} is a non-trivial
subgroup of Ĉ
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• the restricted decryption D∗
sk := Dsk|C is a group epimorphism (surjective

homomorphism) i.e.

D∗
sk is surjective and ∀c, c′ ∈ C : Dsk(c · c′) = Dsk(c) · Dsk(c′)

• sk contains an efficient decision function δ : Ĉ → {0, 1} such that

δ(c) = 1 ⇐⇒ c ∈ C

• the decryption on Ĉ \ C returns the symbol ⊥.

2.4 Identity-Based Group Homomorphic Encryption (IBGHE)

Definition 3 (Identity Based Group Homomorphic Encryption
(IBGHE), Based on [21]). Let E = (G,K,E,D) be an IBE scheme with
message space M, identity space I and ciphertext space ̂C. The scheme E is
group homomorphic if for every (PP,MSK) ← G(1λ), every id ∈ I, and every
skid ← K(MSK, id), the message space (M, ·) is a non-trivial group, and there is
a binary operation ∗ : ̂C2 → ̂C such that the following properties are satisfied for
the restricted ciphertext space ̂Cid = {c ∈ ̂C : Dskid(c) �= ⊥}:
GH.1: The set of all encryptions Cid = {c | c ← E(PP, id,m),m ∈ M} ⊆ ̂Cid

is a non-trivial group with respect to the operation ∗.
GH.2: The restricted decryption D∗

skid
:= Dskid|Cid

is surjective and ∀c, c′ ∈
Cid Dskid(c ∗ c′) = Dskid(c) · Dskid(c

′).

We are interested in schemes whose plaintext space forms a group and which
allow that operation to be homomorphically applied an unbounded number of
times. There exist schemes however that do not satisfy all the requirements of
GHE, namely their ciphertext space does not form a group but instead forms a
quasigroup (a group without associativity). We can define what we call Quasi-
group Homomorphic Encryption (QHE) analogously to Definition 2 by replacing
the term ‘group’ with ‘quasigroup’ in the definition. An example of such a scheme
is the Cocks’ IBE [3], which was shown to be inherently XOR-homomorphic by
Joye [31].

2.5 eth Residuosity

An integer x is said to be a quadratic residue modulo an integer m if x is congruent
to a square modulo m. We denote the set of quadratic residues modulo p asQR(m).
The Legendre symbol of an integer x modulo a prime p is defined as

(

x

p

)

=

⎧

⎪

⎨

⎪

⎩

0 if p|x
1 if x ∈ QR(p)
−1 otherwise
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The Jacobi symbol generalizes the Legendre symbol to composite moduli. For a
composite modulus m = pa1

1 · · · pan
n , it is defined as

(

x

m

)

=
(

x

p1

)a1

· · ·
(

x

pn

)an

We now generalize quadratic residues to eth power residues. We define the
eth power residue symbol as follows:

Definition 4 (Based on Definition 4.1 in [32]). Let e ≥ 2 be an integer, and
let ζe ∈ Q̄ be a primitive eth root of unity (note that Q̄ is the algebraic closure of
Q). Let K be the number field Q(ζe), and let OK = Z[ζe] be the ring of integers
in K. Let p be a prime ideal of OK that does not contain e. For x ∈ OK , the eth

power residue symbol of x mod p, denoted
(

x

p

)

e

is defined as

(

x

p

)

e

=

{

0 if x ∈ p

ζi
e if x /∈ p

where i is the unique integer modulo e such that ζi
e ≡ x(N (p)−1)/e (mod p) and

N (p) is the norm of p.
If a is an ideal that factors as a = p1

k1 · · · pnkn where p1, . . . , pn are prime

ideals, then
(

x

a

)

e

is defined as

(

x

a

)

e

:=
(

x

p1

)k1

e

· · ·
(

x

pn

)kn

e

Let e ≥ 2 be an integer. Let N be a positive integer. An integer x ∈ Z
∗
N

is said to be an eth residue modulo N if there is an integer y ∈ Z
∗
N such that

ye ≡ x mod N . We denote the set of eth residues in Z
∗
N by ER(N). A superset

of ER(N) is the set of integers in Z
∗
N with a power residue symbol of 1, which

we denote as PR(N).

Definition 5 (eth Residuosity (ER) Assumption). For a PPT algorithm
RSAgen(λ) that generates two equally sized primes p and q, the eth residuosity
assumption is that the following two distributions are computationally indistin-
guishable2

{(N, v) : (p, q) ← RSAgen(λ), N ← pq, v
$←− ER(N)}

≈
C

{(N, v) : (p, q) ← RSAgen(λ), N ← pq, v
$←− PR(N) \ ER(N)}.

2 Any PPT distinguisher has only a negligible advantage (in λ) of distinguishing the
distributions.
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Let N = pq be a product of two primes p and q with p ≡ q ≡ 1 mod e. An
eth root of unity in ZN is an integer μ such that μe ≡ 1 mod N . The trivial root
of unity is 1. A root of unity μ is said to be degenerate if either μ ≡ 1 mod p
or μ ≡ 1 mod q since given such a μ one can trivially learn the factorization of
N . For one of the schemes in this work, it is necessary to publish a nontrivial,
non-degenerate root of unity as part of the public parameters. This is in order
to compute the eth power residue symbol which is needed for the scheme. It is
believed that revealing such a root of unity does not make factorization of N
easier, but nevertheless it serves as additional information for the adversary, and
therefore must be made explicit in the assumption we use for security. Hence,
we follow [28] and modify the ER assumption to incorporate this information.

Definition 6 (Modified eth Residuosity (MER) Assumption, [28]). Let
Z be the set of nontrivial, non-degenerate roots of unity in ZN . For a PPT algo-
rithm RSAgen(λ) that generates two equally sized primes p and q, the modified
eth residuosity assumption is that the following two distributions are computa-
tionally indistinguishable

{(N, v, μ) : (p, q) ← RSAgen(λ), N ← pq, v
$←− ER(N), μ $←− Z}

≈
C

{(N, v, μ) : (p, q) ← RSAgen(λ), N ← pq, v
$←− PR(N) \ ER(N), μ $←− Z}.

3 Our Additively Homomorphic IBE

Boneh, LaVigne and Sabin [28] presented an IBE scheme whose security relies
on the MER assumption. However, their scheme uses a hash function that maps
identity strings to eth residues in ZN . It is not known how such a function can
be instantiated without compromising security. We extend their construction
so that it uses a hash function that can be instantiated. We then prove our
construction secure under the MER assumption in the random oracle model.
We show that the construction is group homomorphic for the additive group
(Ze,+) for prime e i.e. we show it meets the criteria for IBGHE. This is the only
additively group-homomorphic IBE we are aware of with a message space larger
than 2 elements. First, we need to introduce some functions that are used by the
scheme along with an overview on how eth power residue symbols are computed
for integers in ZN .

3.1 eth Power Residue Symbols in ZN

Let e ≥ 2 be an integer. Let N = pq be a product of two primes p and q with

p ≡ q ≡ 1 mod e. The symbol
(

x

N

)

e

for integers x is always 1 for odd e and ±1

for even e, so for e > 2, we need to find a way to extract more information about
x so we can map it to one of e symbols. We follow the approach taken in [32].



Additively Homomorphic IBE from Higher Residuosity 503

Let ζe and K be as defined in Definition 4. Note that we can take K to be
Q[x]/Φe(x) where Φe(x) is the eth cyclotomic polynomial; accordingly, we have
ζe = x. Given p and q, we can compute an element μ ∈ Z

∗
N that is a primitive

root of unity modulo p and modulo q. In schemes described later, we require that
μ be published as part of the public parameters. For a fixed μ, we define the
ideal N = NOK + (ζe − μ)OK . Let μp = μ mod p and μq = μ mod q. We also
define the ideals p = pOK + (ζe − μp)OK and q = qOK + (ζe − μq)OK . It holds
that N = pq. Squirrel [33] gives a polynomial time algorithm for computing the

eth residue symbol
(

x

a

)

e

for any x ∈ OK and any ideal in OK (such as N for

example). It is an interesting problem for future work to find a more efficient
algorithm tailored to the ideal N.

Furthermore, we define a function JN : ZN → {0, . . . , e − 1} as follows

J(x) =

⎧

⎨

⎩

0 if gcd(x,N) �= 1

i if gcd(x,N) = 1 and
(

x

N

)

e

= ζi
e

Additionally, we define Jp analogous to JN except with ideal p and modulus p,
and similarly, we define Jq using ideal q and modulus q. When an integer x is an
eth power residue modulo N , we have JN (x) = 0. We establish some important
properties:

•
JN (x) ≡ Jp(x) + Jq(x) mod e ∀x ∈ ZN (3.1)

• Homomorphic property

JN (xy) ≡ JN (x) + JN (y) mod e ∀x, y ∈ Z
∗
N (3.2)

The homomorphic property is also satisfied by Jp and Jq.

3.2 Boneh, LaVigne and Sabin (BLS) Scheme

We now describe the BLS scheme. While the scheme is described as an IBE in
[28], as aforementioned, there is no efficient means to securely realize the hash
function it depends on3. We present it here as a public-key scheme, and in fact
the security proof in [28] treats it as such.

The scheme is parameterized by a prime e. Note the scheme employs the func-
tion JN which implicitly uses the root of unity μ published in the public key.
3 This is with absolute correctness. There is an alternative approach to the one we

present here that achieves probabilistic correctness, but the parameters can be set so
that it is correct with all but negligible probability. It is however less space efficient.
The idea is that the hash function gives multiple (say k = poly(λ)) elements whose
eth residue symbol is 1 and at least one of them will be an eth residue with all but
negligible probability. The ciphertext contains k encryptions, as opposed to e < k in
our approach, thus making this approach less space-efficient than ours.
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• Gen(1λ): Generate two RSA primes p and q with e|p − 1 and e|q − 1 and let
N = pq. Uniformly choose a nontrivial, nondegenerate root of unity μ ∈ ZN .
Uniformly sample an integer r

$←− Z
∗
N and set v ← re mod N . Output (pk :=

(N,μ, v), sk := r).
• Encrypt(pk,m): Given public key pk := (N,μ, v) and message m ∈ {0, . . . , e−

1}, perform the following steps. Generate a uniformly random polynomial

f(x) $←− Z
∗
N [x] of degree e−1 and compute g(x) ← f(x)e mod xe − v. Choose

a uniformly random t
$←− Z

∗
N and compute the polynomial c(x) ← g(x)

t .
Output CT := (c(x), d := m + JN (t) mod e).

• Decrypt(sk,CT): Given secret key sk := r and ciphertext CT := (c(x), d),
output d + JN (c(r)) mod e.

BLS is proven semantically secure under the MER assumption in the standard
model.

3.3 Our Construction

Our approach to circumventing the uninstantiability of the hash function
employed in the IBE-version of BLS is akin to the original Cocks scheme. As
part of the public parameters, we publish e−1 eth non-residues (with JN (x) = 0
for all non-residues x). Then for any integer a satisfying J(a) = 0, either a is an
eth residue or its product with one of the e−1 non-residues is an eth residue. We
also make some simplifications to BLS such as removing an element of Ze from
the ciphertext. We assume a hash function H : {0, 1}∗ → {x ∈ ZN : JN (x) = 0}
that maps identity strings to elements of x ∈ ZN with JN (x) = 0 (i.e. the power
residue symbol of the element is 1).

The scheme is parameterized with a prime e. We make use of the functions
JN and Jp defined earlier which implicitly use a root of unity μ published in the
public parameters.

Remark 1. We sometimes omit “mod N” for ease of presentation. This is par-
ticularly the case for products involving the elements αi (as described below) to
avoid clutter.

• Setup(1λ): Generate two RSA primes p and q with e|p− 1 and e|q − 1 and let

N = pq. Sample uniformly an element γ
$←− Z

∗
N with JN (γ) = 0 and Jp(γ) �=

0. For every i ∈ [e], set αi ← γi−1 mod N . Uniformly choose a nontrivial,
nondegenerate root of unity μ ∈ ZN . Output PP := (N,μ, α1, . . . , αe) and
MSK := (p, q, α1, . . . αe).

• KeyGen(MSK, id): Given master secret key MSK := (p, q, α1, . . . , αe) and an
identity string id ∈ {0, 1}∗, compute a ← H(id). Check which of α1·a, . . . , αe·a
is an eth residue and let the index in the list be i. Then compute the eth root
of αi · a using p and q; denote this root by r. Output skid = (i, r).

• Encrypt(PP, id,m): Given public parameters PP := (N,μ, α1, . . . , αe), an iden-
tity string id ∈ {0, 1}∗ and a message m ∈ {0, . . . , e − 1}, first compute
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a ← H(id). We define the subalgorithm E that takes an integer v and mes-
sage m′ as input and outputs a polynomial in ZN [x].
E(v,m′) :

– Generate a uniformly random polynomial f(x) $←− Z
∗
N [x] of degree e − 1.

– Compute g(x) ← f(x)e mod xe − v.

– Choose a uniformly random t
$←− Z

∗
N such that J(t) = m′.

– Output the polynomial c(x) = t · g(x).
The encryption algorithm outputs CT = (a, E(α1 · a,m), . . . , E(αe · a,m)).

• Decrypt(skid,CT) : On input a secret key skid := (i, r) and a ciphertext CT :=
(a, c1(x), . . . , ce(x)), output m ← JN (ci(r)).

Correctness The correctness of decryption follows in the same way as BLS; since,
f(x)3 = g(x)3 + (x3 − αi · a), we have f(r)3 = g(r)3 when r3 ≡ αi · a and
JN (tg(r)3) = JN (t). It is necessary that the product of one of the αi’s with a
gives an eth residue. An element of v ∈ Z

∗
N is an eth residue iff JN (v) = Jp(v) = 0.

Let k = Jp(a). Then multiplying a with an element α satisfying JN (α) = 0 and
Jp(α) = e − k guarantees that the resulting element is an eth residue (recall
that Jp(xy) = Jp(x) + Jp(y) mod e). So we need to show that for each z ∈ Ze,
there is an αi with Jp(αi) = z. In the setup, we sample a γ with JN (γ) = 0 and
Jp(γ) �= 0. Let g = Jp(γ). Then Jp(γj) = jg mod e for j ∈ {0, . . . , e − 1} and
since e is prime, this generates all elements in the additive group Ze.

Security Now we will reduce the security of our construction to that of BLS.
When we refer to BLS hereafter, we will assume that its encryption algorithm is
the same as E above i.e. it outputs a polynomial CT := c(x) = t · g(x). This does
not affect its security. However, there is an obstacle that we must contend with
in the security reduction. Given a BLS public key, we cannot generate a γ ∈
PR(N) \ER(N) (note that this is precisely the set {x : JN (x) = 0 ∧ Jp(x) �= 0})
with probability 1 which is needed to correctly simulate the public parameters of
our scheme. To address this, we consider a modified BLS scheme, denoted BLS′,
that generates such a γ and outputs it as part of the public key. We first show
that BLS′ is semantically secure under the MER assumption. Then we will base
our security reduction on BLS′.

Lemma 1. BLS′ is IND-CPA secure under the MER assumption.

Proof. We will prove the lemma via a hybrid argument.

Game 0: This is the real IND-CPA game.

Game 1: We make one change from Game 0, namely we set γ ← ue mod N for
a uniformly chosen u

$←− Z
∗
N .

Game 0 and Game 1 are computationally indistinguishable due to MER. In
Game 0, γ is sampled uniformly from PR(N) \ ER(N) and in Game 1, γ is
sampled uniformly from ER(N).
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Game 2: The change we make in this game is to encrypt a fixed element w ∈ Ze

instead of mb, where m0 ∈ Ze and m1 ∈ Ze are the challenge messages and b is
a random bit. The adversary has a zero advantage in this game.

Game 1 and Game 2 are computationally indistinguishable by the semantic
security of BLS. Given a BLS public key (N,μ, v), we use these values in the
public key and generate γ as in Game 2. When the adversary provides the
challenge plaintexts (m0,m1), we choose a random b and forward the challenge
plaintexts (mb, w) to the BLS challenger, and return the challenge ciphertext CT∗

provided by the BLS challenger. If CT∗ encrypts mb then Game 1 is perfectly
simulated whereas if it encrypts w, Game 2 is perfectly simulated. Therefore,
a non-negligible advantage distinguishing the hybrids implies a non-negligible
advantage breaking the semantic security of BLS. ��
Theorem 1. Our scheme is IND-ID-CPA secure under the MER assumption
in the random oracle model.

Proof. Let A be the adversary in the IND-ID-CPA game against our scheme. We
show that a non-negligible advantage by A implies a non-negligible advantage
against the IND-CPA security of BLS′. We construct a simulator S that interacts
in the IND-CPA game and simulates the view of A. The hash function H in our
IBE scheme is modeled as a random oracle. We now describe how S works.

Given a public key (N,μ, v, γ) of BLS′ by the IND-CPA challenger, S uses
this information to construct public parameters (N,μ, α1, . . . , αe), which it gives
to A. Let Q be the number of non-adaptive calls to the random oracle H. We
assume that A makes a call to H for identity id prior to making a secret key
query for id. The simulator picks a random k ∈ [Q]. The simulator answers calls
to H as follows. On the j-th call to H with identity string idj , perform the
following steps:

• If j = k:
• Choose a random i

$←− [e].
• Add tuple (idk,⊥, i) to table T .
• Output v · α−1

i mod N .
• Else:

• Choose a random i
$←− [e].

• Choose a random r
$←− Z

∗
N .

• Add tuple (idj , r, i) to T .
• Output re · α−1

i .

The simulator handles secret key queries as follows. On querying the secret key
for identity id, perform the following steps.

• If id = idk, output a random bit and abort the simulation.
• Fetch tuple (idj , r, i) from T with idj = id.
• Output r.
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When A sends its target identity id∗ and pair of challenge plaintexts (m0,m1),
the simulator checks if id∗ = idk. If this is not the case, S outputs a random
bit and aborts. Otherwise, it forwards (m0,m1) to the IND-CPA challenger.
Subsequently, the IND-CPA challenger gives S its challenge ciphertext CT∗ :=
c∗(x). The simulator performs the following steps:

• Fetch (idk,⊥, i) from T .
• Set ci(x) ← c∗(x).
• Set a ← v · α−1

i mod N

• Compute cj(x) ← E(αj · a, uj) with uj
$←− Ze for all j ∈ [e] \ {i}.

• Set CT ← (a, c1(x), . . . , ce(x)).

The simulator then gives CT to A as its challenge ciphertext. We claim that CT
is identically distributed to a ciphertext in the real game. Firstly, since a · αi ≡
v mod N , we have that ci(x) is perfectly simulated. For all other j ∈ [e] with
j �= i, the element a · αj is an eth non-residue. It is shown in [28] that ciphertext
polynomials computed with an eth non-residue give no information about the
plaintext. Therefore, in the view of A, the challenge ciphertext CT is perfectly
simulated. Finally, S outputs A’s guess bit. The probability that the simulation
does not abort is 1/Q. It follows that if A has advantage ε attacking the IND-ID-
CPA security of our scheme then S has advantage ε/Q attacking the IND-CPA
security of BLS′. Since a non-negligible ε would contradict Lemma 1 assuming
MER holds, the result follows. ��

3.4 Homomorphism

We now show that our construction is additively homomorphic for the group
(Ze,+). Given two ciphertexts CT1 := (a, c1(x), . . . , ce(x)) and CT2 :=
(a, d1(x), . . . , de(x)) encrypted with the same identity id with a = H(id), we
compute the i-th component of the resulting ciphertext as ei(x) = ci(x) · di(x)
(mod xe − αi · a) for i ∈ [e]. Consider the i-th component of the ciphertexts
such that αi · a ∈ ZN is an eth residue. Suppose we have that ci(x) = t1 · f1(x)e

(mod xe − αi · a) and di(x) = t2 · f2(x)e (mod xe − αi · a). Let r be the eth root
of αi ·a. To see that multiplication modulo (xe −αi ·a) is homomorphic, observe
that

JN (ci(x)di(x) (mod x
e − αi · a)(r)) = JN ((t1 · f1(x)

e
) · (t2 · f2(x)

e
) (mod x

e − αi · a)(r))(3.3)
= JN ((t1 · t2)(f1(x) · f2(x))

e
(mod x

e − αi · a)(r)) (3.4)
= JN ((t1 · t2) · (f1(r) · f2(r))

e
) (3.5)

= JN (t1 · t2) (3.6)
= JN (t1) + JN (t2) (mod e) (3.7)

Recall the homomorphic property of JN i.e. JN (xy) = JN (x)+JN (y) mod e.
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Keeping with the notation we have established so far, let us first fix some
identity id ∈ {0, 1}∗. Let (i, r) be a secret key for id. The ciphertext space Ĉid is
defined as follows:

Ĉid � {(a, (c1(x), . . . , ce(x)) ∈ Z
e
N : deg(c1) = · · · = deg(ce) = e − 1,

(ci(r)

N

)
e

�= 0,

cj(x) is invertible in ZN [x]/(xe − αj · a) ∀j ∈ [e]}.

The binary operation ∗ can be defined on Ĉ as follows: given two ciphertexts
CT1 := (a1, c1(x), . . . , ce(x)) and CT2 := (a2, d1(x), . . . , de(x)), their product
under ∗ is defined as CT′ := (a1, c1(x) ·d1(x) (mod xe −α1 ·a1), . . . , ce(x) ·de(x)
(mod xe − αe · a1) if a1 = a2, and CT′ := Z otherwise, where Z ∈ Ĉ is the null
ciphertext.

Lemma 2. (Ĉid, ∗) is a group.

Proof. It is sufficient to consider a single component of the ciphertext because the
same analysis applies for each component. Let v = αi ·a for some j. We can view
the j-th component as an element in the ring Ra = ZN [x]/(xe−v). Let c(x) be the
j-th polynomial component of a ciphertext in Ĉid. By definition, c(x) is invertible.

Consider the case where j = i. By definition, we have
(

c(r)
N

)

e

�= 0. Applying

∗ to c(x) and any other element of Ĉid preserves this condition. Therefore Ĉid is
closed under ∗. It follows (Ĉf , ∗) is a group. ��
We denote the set of legal encryptions under identity id by Cid. We have the
following straightforward lemma:

Lemma 3. (Cid, ∗) is a subgroup of Ĉid.

Proof. We focus on a single component, say the j-th, of a ciphertext. Let c(x)
be such a component. Then c(x) is of the form t · f(x)e for some f(x) that is
a unit4 in ZN [x]/(xe − αj · a) and t ∈ Z

∗
N . Naturally we have that c(x) ∈ Ĉid.

Multiplying c(x) by another element d(x) with the same form yields an element
of the same form. ��
Theorem 2. Our scheme is an IBGHE scheme i.e. it satisfies Definition 3.

Proof. By Lemma 3 the scheme satisfies GH.1. By the derivation given in
Eqs. 3.3–3.7 the scheme satisfies GH.2. Therefore the scheme is an IBGHE. ��

4 We omitted an explicit check for this in the encryption algorithm since a non-unit
occurs with negligible probability.
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3.5 Homomorphic Addition Modulo a “Large” Modulus

Our scheme supports homomorphic addition modulo a “small” (i.e. poly-sized)
prime. However if we use multiple instances of the scheme with distinct primes,
we can leverage the Chinese Remainder Theorem to support addition modulo a
square-free integer M provided M factors into a polynomial number of poly-sized
primes. Hence we can support modular addition with an exponentially-large mod-
ulus. This is the first IBE scheme admitting a modular additive homomorphism
with a superpolynomial modulus, solving an open problem mentioned in [21].

Concretely, suppose our desired square-free modulus is M = p1 · · · pn. We
employ n instances of our scheme {Ei}i∈[n] with the e parameter for Ei set to pi

for all i ∈ [n].

• Setup(1λ): Output (PP := (PP1, . . . ,PPn),MSK := (MSK1, . . . ,MSKn) where
(PPi,MSKi) ← Ei.Setup(1λ) for i ∈ [n].

• KeyGen(MSK := (MSK1, . . . ,MSKn), id): Output sk := (sk1, . . . , skn) where
ski ← Ei.KeyGen(MSKi, id) for i ∈ [n].

• Encrypt(PP := (PP1, . . . ,PPn), id,m): Output c := (c1, . . . , cn) where ci ←
Ei.Encrypt(PPi,m mod pi) for i ∈ [n].

• Decrypt(sk := (sk1, . . . , skn), c := (c1, . . . , cn)) : Output CRT((m1, . . . ,mn),
(p1, . . . , pn)) where mi ← Ei.Decrypt(ski, ci) for i ∈ [n].

• Additive Homomorphism: Let ∗i denote the binary operation on the
ciphertext space of Ei. We define ∗, the binary operation on the ciphertext
space of this construction, as follows:

• c ∗ c′ = (c1, . . . , cn) ∗ (c′
1, . . . , c

′
n) � (c1 ∗1 c′

1, . . . , cn ∗n c′
n)

The ciphertext space complexity of this scheme is
∑

p2i .

3.6 Anonymity

The XOR-homomorphic scheme CHT mentioned earlier is not anonymous as a
result of a test due to Galbraith5. Consider an identity id and let a = H(id).
Ciphertexts in CHT are a pair of polynomials (c(x), d(x)) ∈ (ZN [x])2. We will
consider only a single ciphertext component here, say the first (c(x)), which is
encrypted with respect to a. The observations also hold with respect to the sec-
ond component by replacing a with −a. We define Galbraith’s Test for ciphertext
polynomials as the function GT : ZN × ZN [x] → {−1, 0,+1} given by

GT(a, c(x)) =
(

c20 − c21a

N

)

.

For encryptions c(x) (recall we are just considering one component) encrypted
under identity id, we have GT(a, c(x)) = 1. For encryptions c′(x) under a different
identity, it is the case that GT(a, c′(x)) = 1 with probability negligibly close
to 1/2.

5 Reported as emerging from personal communication in [34].
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For convenience, let us denote our scheme that extends BLS, as described
above, for the case of e = 2 (i.e. admitting an XOR homomorphism) by E2.
Although E2 is algorithmically different to CHT, it shares many of the same
properties. In particular it is easy to see that Galbraith’s test is applicable in
the same way. An anonymous variant of CHT was proposed in [35] and the
techniques are also applicable to E2. However the approach to achieve anonymity
in [35] loses the homomorphic property i.e. one cannot homomorphically operate
on anonymized ciphertexts.

We now turn our attention to investigating whether our scheme for the case
of e > 2 is anonymous. We will denote our scheme for this case by Ee. As usual,
for identity id, we let a = H(id). We define the ciphertext space Ĉ for a single
component as Ĉ := {c(x) ∈ Z

∗
N [x] : deg(c(x)) = e − 1} (the analysis holds

analogously for the other components). Now consider the subset Ca ⊂ Ĉ, which
are the set of polynomials (for a single component) in the image of the encryption
algorithm with respect to a; that is, we have Ca := {t · f(x)e mod xe − a : t ∈
Z

∗
N , f(x) ∈ Z

∗
N [x], deg(f(x)) = e−1}. Also we need to define a subset C

(0)
a ⊂ Ca

of Ca that corresponds to encryptions of the identity element 0 with respect to a.

Definition 7 (Algebraic Equation Set). The algebraic equation set for a
ciphertext c(x) ∈ Ĉ with respect to a is derived as follows. The unknowns are
the coefficients z0, ..., z

e−1 of the polynomial f(x) generated during encryption.
Raising f(x) to the power of e and reducing according to the equivalence relation
xe ≡ a induced by the quotient of the ring Z

∗
N [x]/(xe − a) yields a set of e

multivariate polynomials in z0, ..., z
e−1 of degree e, one for each coefficient of

the result. The algebraic equation set is formed by letting the polynomial for the
i-th coefficient of the result equal to ci for i ∈ 0, . . . , e − 1. For example, the
algebraic equation set for e = 3 is

z30 + az31 + a2z32 + 6az0z1z2 = c0

3z20z1 + 3az0z
2
2 + 3az21z2 = c1

3z20z2 + 3z0z
2
1 + 3az1z

2
2 = c2

We now define a subset C
(0)
a

′ ⊂ C
(0)
a of the honest encryptions of 0 as C

(0)
a

′ :=
{t · f(x)e mod xe − a : t ∈ ER(N), f(x) ∈ Z

∗
N [x], deg(f(x)) = e − 1} i.e. the

t ∈ Z
∗
N used during encryption is an eth residue. We have the following lemma.

Lemma 4. The algebraic equation set for c(x) ∈ Ĉ with respect to a has a
solution if and only if c(x) ∈ C

(0)
a

′.

Proof. Let R = Z
∗
N [x]/(xe −a). A solution to the algebraic equation set for c(x)

is a polynomial f(x) such that f(x)e = c(x) (in R). Therefore t = 1, an eth

residue and thus we have c(x) ∈ C
(0)
a

′. Conversely, let c(x) be an element of
C

(0)
a

′. We can write c(x) = t · f(x)e ∈ R. Since t = re is an eth residue for some
r ∈ Z

∗
N , we have that r · f(x) ∈ R is a solution to the algebraic equation set,

which secures the lemma. ��
We have an additional lemma.
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Lemma 5. The sets C
(0)
a and C

(0)
a

′ are computationally indistinguishable
assuming the hardness of MER.

Proof. An algorithm that distinguishes between C
(0)
a \C

(0)
a

′ and C
(0)
a

′ can be used
to construct an algorithm that solves MER. Given a MER challenge t ∈ {x ∈
ZN : JN (t) = 0}, an element c(x) is generated by computing t ·f(x)e mod xe − a

for f(x) $←− Z
∗
N [x], deg(f(x)) = e − 1. If t is a non-residue then c(x) is uniformly

distributed in the first distribution. Otherwise, it is uniformly distributed in the
second distribution. An algorithm that distinguishes the distributions can thus
solve MER. By extension, the statement of the lemma follows. ��

Let A = {x ∈ Z
∗
N : JN (x) = 0}. We are now ready to define the assumption

under which we prove anonymity of Ee.

Definition 8. (Special Polynomial Equations Solvability (SPES(e)

Assumption). Given (a, c(x)) ∈ A × Ĉ where a
$←− A, consider an algorithm

A that decides the solvability of the algebraic equation set for c(x) with respect
to a. Let S be the set of instances in A × Ĉa that are solvable and let S̄ be the
unsolvable instances. The advantage of A deciding correctly AdvA is defined as

AdvA � Pr[s $←− S : A(s) → 1] − Pr[s̄ $←− S̄ : A(s̄) → 1].

The SPES(e) assumption for prime e > 2 is that for every PPT algorithm A it
holds that AdvA < negl(λ).

Remark 2. Deciding solvability of a system of multivariate polynomial equations
in general is NP-complete. However for the special system of equations of interest
here, with certain structure, we must make an explicit assumption about the
hardness of deciding its solvability.

Lemma 6. The sets Ca and Ĉ \ Ca are computationally indistinguishable for

a
$←− A assuming the hardness of SPES and MER.

Proof. By semantic security of Ee, via the MER assumption, shown in
Theorem 1, it holds that Ca is computationally instinguishable from C

(0)
a . Then

by invoking Lemma 5, we have that C
(0)
a is computationally indistinguishable

from C
(0)
a

′. Now Lemma 4 tells us that the solvable instances for SPES are the
set C

(0)
a

′. The unsolvable instances are Ĉ \C
(0)
a

′. By the hardness of SPES, these
sets are therefore computationally indistinguishable. The result follows. ��
Theorem 3. Ee for e > 2 is anonymous under the SPES and MER assump-
tions.

Proof. In the anonymity security game, the adversary chooses two target iden-
tities id and id′.
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Game 0: This is the real game.

Game 1: In this game, we change how the challenge ciphertext is generated
if the challenger’s bit β = 0 (i.e. using identity id). If β = 0, we sample the
challenge ciphertext uniformly from Ĉ instead of Ca where a is what is returned
by H(id).

To invoke Lemma 6 to argue indistinguishability of Ĉ and Ca, we need to
program the output of the random oracle H on identity id to be a, which is
distributed correctly. In a similar manner to the proof of Theorem 1, we must
guess one of the identities the adversary chooses from its queries to H and abort
with a random bit if we guessed incorrectly. This step loses a factor of roughly
1/Q where Q is the number of queries to H prior choosing the target identities.

Game 2: In this game, we change how the challenge ciphertext is generated
if the challengers bit β = 1 (i.e. using identity id′). If β = 1, we sample the
challenge ciphertext uniformly from Ĉ instead of Cb where b is what is returned
by H(id′).

Indistinguishability follows in the same manner as the transition between
Game 0 to Game 1.

The adversary has zero advantage in this game as it learns no information
about β. The result follows. ��

3.7 Cryptanalytic Investigation of SPES

The main practical approach for solving a system of multivariate polynomial
equations is via computing a reduced Gröbner basis. For a sufficient number of
equations, solvability can be decided by checking if the reduced Gröbner basis
is {1} [36], which means the system is inconsistent (no solution exists). Buch-
berger [36,37] introduced an algorithm for computing a Gröbner basis. The time
complexity of this algorithm is difficult to analyze but is estimated to be dou-
bly exponential in the number of variables. Therefore for e = Ω(log λ) with
security parameter λ this approach is intractable. For such values of e, a stan-
dard technique is to use resultants to eliminate variables. However to eliminate
variables such that only a constant number remain, leads to polynomials with
superpolynomial degree in λ. In view of this state of affairs, since Gröbner basis
computation is the best known practical approach for solving multivariate equa-
tions, we conjecture that SPES(e) is hard for e = Ω(log λ). We now focus on
small (constant) values of e. For example we are interested in knowing whether
SPES(3) is hard.

We used a variant of Buchberger’s algorithm in Sage to compute Gröbner
bases and conduct experimental analysis. Our experimental results show that
with overwhelming probability the reduced Gröbner basis in the lexicographic
monomial ordering for the SPES(e) system consists of e polynomials where the
last polynomial (when ordered lexicographically) in the basis is a univarate poly-
nomial in ze−1 of the form

∑ee−1

i=0 aiz
i·e
e−1 for coefficients ai ∈ ZN . This is the case

whether the system is solvable or not. Buchberger’s criterion for unsolvability,
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i.e. checking if the reduced Gröbner basis is {1}, does not pertain because we
have an insufficient number of equations. We now have a univariate polynomial
over ZN . However to the best of our knowledge, there are no known feasible
attacks on deciding solvability of such polynomials when N is an RSA modu-
lus. Inspecting the form of the univariate polynomial above, it is not difficult to
see that deciding solvability of polynomials of this form for general coefficients
ai is at least as hard as the eth residuosity problem. This gives evidence that
the problem we are faced with (for a certain distribution of coefficients) has the
potential to be hard but we cannot provide a reduction or firmer conclusion on
its exact hardness for the distribution of coefficients encountered. Nevertheless,
in light of the evidence, we conjecture that SPES(e) is hard for constant prime
e > 2. We invite the community to conduct further cryptanalysis.
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cations. London Mathematical Society Lecture Notes Series, vol. 251, pp. 535–545.
Cambridge University Press (1998)
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Abstract. Recently, Faust et al. (TCC’14) introduced the notion of con-
tinuous non-malleable codes (CNMC), which provides stronger security
guarantees than standard non-malleable codes, by allowing an adversary
to tamper with the codeword in a continuous way instead of one-time
tampering. They also showed that CNMC with information theoretic
security cannot be constructed in the 2-split-state tampering model,
and presented a construction in the common reference string (CRS)
model from collision-resistant hash functions and non-interactive zero-
knowledge proofs.

In this work, we ask if it is possible to construct CNMC from weaker
assumptions. We answer this question by presenting lower as well as
upper bounds. We show that it is impossible to construct 2-split-state
CNMC, with no CRS, for one-bit messages from any falsifiable assump-
tion, thus establishing the lower bound. We additionally provide an upper
bound by constructing 2-split-state CNMC for one-bit messages, assum-
ing only the existence of a family of injective one way functions. We
note that in a recent work, Ostrovsky et al. (CRYPTO’18) considered
the construction of a relaxed notion of 2-split-state CNMC from minimal
assumptions.

We also present a construction of 4-split-state CNMC for multi-bit
messages in CRS model from the same assumptions. Additionally, we
present definitions of the following new primitives: (1) One-to-one com-
mitments, and (2) Continuous Non-Malleable Randomness Encoders,
which may be of independent interest.

Keywords: Continuous non-malleable codes ·
Black-box impossibility · Split-state

1 Introduction

Non-Malleable Codes (NMC). Non-malleable codes were introduced by
Dziembowski, Pietrzak and Wichs [37] as a relaxation of error-correcting codes,
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and are useful in settings where privacy—but not necessarily correctness—is
desired. The main application of non-malleable codes proposed in the litera-
ture is for protecting a secret key stored on a device against tampering attacks,
although non-malleable codes have also found applications in other of areas of
cryptography [24,25,49] and theoretical computer science [20].

Continuous Non-Malleable Codes (CNMC). Importantly, standard non-
malleable codes achieve security only against one-time tampering. So in appli-
cations, the non-malleable encoding of a secret key must be continually decoded
and re-encoded, incurring overhead in computation and in generation of random-
ness for re-encoding. This motivated a stronger notion of non-malleable codes,
continuous non-malleable codes (CNMC), introduced by Faust et al. [40]. This
definition allows many-time tampering–i.e. the adversary can continuously tam-
per with the codeword and observe the effects of the tampering. Due to known
impossibility results, there must also be a “self-destruct” mechanism: If, upon
decode, the device detects an error, then a “self-destruct” mechanism, which
erases the secret key, is triggered, rendering the device useless.

The notion of CNMC with respect to a tampering class F is as follows: Given
a coding scheme Π = (E,D), where E is the encoding function and D is the
decoding function, the adversary interacts with an oracle OΠ(C), parameterized
by Π and an encoding of a message m, C ← E(m). We refer to the encoding C
as the “challenge” encoding. In each round, the adversary submits a tampering
function f ∈ F . The oracle evaluates C ′ = f(C). If D(C ′) = ⊥, the oracle
outputs ⊥ and a “self-destruct” occurs, aborting the experiment. If C ′ = C, the
oracle outputs a special message “same.” Otherwise, the oracle outputs C ′. We
emphasize that the entire tampered codeword is returned to the adversary in this
case. A CNMC is secure if for every pair of messages m0,m1, the adversary’s
view in the above game is computationally indistinguishable when the message
is m0 or m1.

Recently, Ostrovsky et al. [63] proposed a relaxed definition of CNMC (suffi-
cient for many applications) along with a construction, in which the oracle OΠ(C)
returns, if valid, the decoding of the tampered codewordD(C ′) (or “same”) instead
of the tampered codeword C ′ as in the standard (original) definition of [40]. In
terms of applications, the difference between the original notion (which we con-
sider in this paper) and the notion of [63], is that the notion we consider captures
stronger types of side-channel attacks: Our notion provides security against an
adversary who tampers and additionally learns information about the modified
codeword C ′ through other side-channels. As a concrete example, an interesting
research direction is to compose a split-state CNMC (under the original defini-
tion) with a leakage-resilient circuit compiler, such as the compiler of Ishai, Sahai
and Wagner [51], in order to yield a compiler that simultaneously provides security
against tampering with memory and leakage on computation. For more discussion
and comparison of this paper with [63] see Sect. 1.2.

Split-State Tampering. One of the most well-studied tampering classes for non-
malleable codes is split-state tampering. Here, the codeword is split into sections
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and the adversarial tampering function may tamper each section independently.
The case of 2-split-state tampering, where the codeword is split into two sections,
is of particular interest. See Sect. 1.4 for a discussion of prior work on NMC and
CNMC against split-state tampering.

Information-Theoretic Impossibility. The original CNMC paper of [40] showed
an information-theoretic impossibility result for 2-split-state CNMC. To aid
the subsequent discussion, we present an outline of this result. The impossi-
bility result considers a property of 2-split-state CNMC known as (perfect)
“uniqueness.” Informally, perfect uniqueness means that there do not exist
triples (x, y, z) such that either (1) y �= z ∧ D(x, y) �= ⊥ ∧ D(x, z) �= ⊥ OR
(2) x �= y ∧ D(x, z) �= ⊥ ∧ D(y, z) �= ⊥. First, a perfectly unique CNMC can-
not be information-theoretically secure since, given L, the split-state tampering
function can find the unique R such that D(L,R) �= ⊥ and then tamper based
on m = D(L,R). On the other hand, if the CNMC is not perfectly unique, then
the following is an efficient attack (with non-uniform advice): Given a tuple
L′
1, L

′
2, R

′ such that D(L′
1, R

′) �= ⊥ and D(L′
2, R

′) �= ⊥, the adversary can learn
L bit-by-bit by using the following tampering function in the i-th round: fL does
the following: If the i-th bit of L is equal to 0, replace L with L′

1. Otherwise,
replace L′ with L′

2. fR always replaces R with R′. Now, in the i-th round, if the
oracle returns (L′

1, R
′), then the adversary learns that the i-th bit of L is equal

to 0. If the oracle returns (L′
2, R

′), then the adversary learns that the i-th bit of
L is equal to 1. Once L is fully recovered, the adversary can tamper based on
m = D(L,R).

The Computational Setting. The above shows that the CNMC setting is distin-
guished from other NMC settings, since information-theoretic (unconditional)
security is impossible. Prior work has shown how to construct 2-split-state
CNMC in the CRS model under the assumptions of collision-resistant hash
functions and NIZK. On the other hand, CNMC’s imply commitment schemes,
which in turn imply OWF. It remains to determine where CNMC lies in terms
of complexity assumptions and what are the minimal computational assump-
tions needed to achieve CNMC. As mentioned previously, a very recent work of
Ostrovsky et al. [63] addressed minimizing computational assumptions under a
relaxed definition of CNMC. See Sect. 1.2 for more details.

Black-Box Reductions. In general, it is not feasible to unconditionally rule out
the construction of a primitive G from a cryptographic assumption H, since
unconditionally ruling it out is as hard as proving P �= NP . Despite this, we can
still show that the proof techniques we have at hand cannot be used to construct
G from assumption H. In the literature, this is typically done by showing that
there is no black-box reduction from primitive G to assumption H. In this work,
what we mean by a black-box reduction is a reduction that accesses the adversary
in an input/output fashion only. However, we allow non-black-box usage of the
assumption H in both the construction and the proof (see Definition 6 for a
formal definition tailored to CNMC). While there are some exceptions [12,14],
the vast majority of cryptographic reductions are black-box in the adversary.
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1.1 Our Results

We present upper and lower bounds for CNMC in the 2-split-state model.
First, we show that with no CRS, single-bit CNMC in the 2-split-state model
(with a black-box security proof) is impossible to construct from any falsifiable
assumption.

Theorem 1 (Informal). There is no black-box reduction from a single-bit, 2-
split-state, CNMC scheme Π = (E,D) to any falsifiable assumption.

On the other hand, in the CRS model, we show how to achieve single-bit
CNMC in the 2-split-state model from injective one-way functions.

Theorem 2. Assuming the existence of an injective one-way function family,
there is a construction of a 2-split-state CNMC for encoding single bit, in the
CRS model. Moreover, the corresponding reduction is black-box.

Actually, we show a somewhat more general result: First, we define a (to
the best of our knowledge) new type of commitment scheme called one-to-one
commitment schemes in the CRS model. Informally, these commitment schemes
have the additional property that with all but negligible probability over Σ pro-
duced by CRS generation, for every string com, there is at most a single string
d that will be accepted as a valid decommitment for com (See Definition 9 for
a formal definition). We also define the notion of a 2-split-state CNM Random-
ness Encoder, which is the continuous analogue of the non-malleable random-
ness encoder recently introduced by [54] (See Definition 5). We then show the
following:

Theorem 3. Assuming the existence of one-to-one commitment schemes in the
CRS model, there is a construction of a 2-split-state CNM Randomness Encoder
in the CRS model. Moreover, the corresponding reduction is black-box.

One-to-one commitment schemes in the CRS model can be constructed from
any injective one-way function family. Furthermore, we show (see the full version
of this paper [27]) that 2-split-state CNM Randomness Encoders in the CRS
model imply 2-split-state CNMC for encoding single bit, in the CRS model.
We therefore obtain Theorem 2 as a corollary. Moreover, CNMC with perfect
uniqueness in the CRS model implies one-to-one commitment schemes in the
CRS model in a straightforward way (refer to the full version of this paper [27]).

We leave open the question of constructing CNMC in the CRS model
from (non-injective) one-way functions and/or showing a black-box separation
between the two primitives. Finally, we extend the techniques from our single-bit
construction above to achieve the following:

Theorem 4. Assuming the existence of one-to-one commitment schemes in the
CRS model, there is a construction of a multi-bit, 4-split-state CNMC in the
CRS model. Moreover, the corresponding reduction is black-box.
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Are Prior CNMC Reductions “black-box”? Prior CNMC reductions often pro-
ceed in a sequence of hybrids, where in the final hybrid, the description of the
adversary is incorporated in the definition of a leakage function. It is then shown
that the leakage-resilience properties of an underlying encoding imply that the
view of the adversary is statistically close when the encoded message is set to m0

or m1. While this may seem like non-black-box usage of the adversary, we note
that typically the leakage-resilience of the underlying encoding is information-
theoretic. When converting a hybrid-style proof to a reduction, the reduction
will choose one of the hybrid steps at random and use the fact that a distin-
guisher between some pair of consecutive hybrids implies an adversary breaking
an underlying assumption. Therefore, reductions of the type discussed above
are still black-box in the adversary, pairs of consecutive hybrids whose indistin-
guishability is implied by a computational assumption yield a reduction in which
the adversary is used in a black-box manner.

1.2 Comparison with Ostrovsky et al. [63]

The CNMC notion considered in this work is the original continuous non-
malleable codes notion, first introduced in [40] and then further studied in several
follow-up works (including [35,41,52]). Recently, Ostrovsky et al. [63] introduced
a relaxed notion of CNMC,1 which is sufficient for many applications. In the work
of Ostrovsky et al. [63], they refer to the original notion as “continuous super-
non-malleability” (since it is analogous to “super-non-malleability”, a notion
that was introduced in the non-continuous setting [42]). They then presented a
construction achieving the relaxed definition (which they simply call “continu-
ous non-malleability”), against 2-split-state tampering functions, assuming the
existence of injective one-way functions in the plain model (without CRS).

The difference between the two CNMC notions is that in the original CNMC
notion, the tampering oracle returns the entire modified codeword C ′ if C ′ =
f(C) �= C and D(C) �= ⊥, whereas the relaxation only requires the oracle to
return D(C ′) but not C ′ itself. The original notion captures stronger types of
tampering attacks; specifically, it provides security against an adversary who
learns arbitrary additional information about the modified codeword C ′ through
other side-channels.

Our result and the result of [63] are complementary and together give a full
picture of the landscape of assumptions required for CNMC. Our work shows
that it is necessary to rely on setup assumptions (CRS) in order to achieve
the original, stronger security definition of CNMC. Moreover, if one is will-
ing to assume the existence of a CRS, we show that this type of CNMC can
be achieved from nearly minimal computational assumptions. In contrast, if
one is not willing to assume the existence of a CRS, the work of [63] achieves
weaker security guarantees in the plain model (with no setup assumptions) from

1 A similar relaxed definition was previously given for a variant of CNMC, known as
R- CNMC [38], but in this setting it was shown that it is actually impossible to
achieve the stronger notion.
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the same computational assumptions. We also note that the work of Ostrovsky
et al. [63] explicitly lists the question we address in this work as an interesting
open problem. They state:

Interesting open questions related to our work are, for instance, whether
continuous non-malleability can be achieved, under minimal assump-
tions, together with additional properties, such as strong non-malleability,
super-non-malleability, augmented non-malleability, and locality . . .

1.3 Technical Overview

Lower Bound. Recall that prior work has shown that if a CNMC is not perfectly
unique, then there is an efficient attack (with non-uniform advice). Thus, it
remains to show that there is no black-box reduction from a single-bit, perfectly
unique CNMC scheme to any falsifiable assumption. We use the meta-reduction
approach, which is to prove impossibility by showing that given only black-
box access to the split-state adversary, A = (AL, AR), the reduction cannot
distinguish between the actual adversary and a simulated (efficient) adversary
(which is possibly stateful). Since the view of the reduction is indistinguishable
in the two cases, the reduction must also break the falsifiable assumption when
interacting with the simulated adversary. But this in turn means that there is
an efficient adversary (obtained by composing the reduction and the simulated
adversary), which contradicts the underlying falsifiable assumption. Consider
the following stateless, inefficient, split-state adversary A = (AL, AR), which
leverages the uniqueness property of the CNMC scheme: The real adversary,
given L (resp. R), recovers the corresponding unique valid codeword (L,R) (if
it exists) and decodes to get the bit b. If b = 0, the real adversary encodes
a random bit b′ using internal randomness that is tied to (L,R), and outputs
the left/right side as appropriate. If b = 1 or there is no corresponding valid
codeword, the real adversary outputs the left/right side of a random encoding
of a random bit, b′′ (generated using internal randomness that is tied to L or R
respectively). The simulated adversary is stateful and keeps a table containing
all the L and R values that it has seen. Whenever a L (resp. R) query is made,
the simulated adversary first checks the table to see if a matching query to R
(resp. L) such that D(L,R) �= ⊥ was previously made. If not, the simulated
adversary chooses a random encoding, (L′, R′), of a random bit b′, stores it in
the table along with the L/R query that was made and returns either L′ or R′ as
appropriate. If yes, the simulated adversary finds the corresponding R (resp. L)
along with the pair (L′, R′) stored in the table. The simulated adversary then
decodes (L,R) to find out b. If b = 0, the simulated adversary returns either L′ or
R′ as appropriate. Otherwise, the simulated adversary returns the left/right side
of an encoding of a random bit b′′. The uniqueness property allows us to prove
that the input/output behavior of the real adversary is identical to that of the
simulated adversary. See Sect. 3 for additional details. For a discussion on why
our impossibility result does not hold for the relaxed CNMC notion considered
by [63], see the full version of this paper [27].
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Upper Bound. For the upper bound, we construct a new object called a con-
tinuous non-malleable randomness encoder (see Definition 5), which is the con-
tinuous analogue of the non-malleable randomness encoder recently introduced
by [54]. Informally, a continuous non-malleable randomness encoder is just a
non-malleable code for randomly chosen messages. It is then straightforward to
show that a continuous non-malleable randomness encoder implies a single-bit
continuous non-malleable code (see the full version of this paper [27] for details).

At a high level, the difficulty in proving continuous non-malleability arises
from the need of the security reduction to simulate the interactive tampering
oracle, without knowing the message underlying the “challenge” encoding. The
approach of prior work such as [40] was to include a NIZK Proof of Knowledge in
each part of the codeword to allow the simulator to extract the second part of the
encoding, given the first. This then allowed the simulator (with some additional
leakage) to respond correctly to a tampering query, while knowing only one of
the two split-states of the original encoding. In our setting, we cannot use NIZK,
since our goal is to reduce the necessary complexity assumptions; therefore, we
need a different extraction technique.2 Our main idea is as follows: To respond to
the i-th tampering query, we run the adversarial tampering function on random
(simulated) codewords (L′, R′) that are consistent with the output seen thus
far (denoted Outi−1

A ) and keep track of frequent outcomes (occurring with non-
negligible probability) of the tampering function, ̂L, ̂R. I.e. SL (resp. SR) is
the set of values of ̂L (resp. ̂R) such that with non-negligible probability over
choice of L′ (resp. R′), it is the case that ̂L = fL(L′) (resp. ̂R = fR(R′)). We
then show that if the outcome of the tampering function applied to the actual
“challenge” split-state L or R is not equal to one of these frequent outcomes (i.e.
fL(L) /∈ SL or fR(R) /∈ SR), then w.h.p. the decode function D outputs ⊥. This
will allow us to simulate the experiment with only a small amount of leakage
(to determine which of the values in SL/SR should be outputted). Note that,
while the sets SL/SR are small, and so only a few bits are needed to specify the
outcome, conditioned on the outcome being in SL/SR, the CNMC experiment
runs for an unbounded number of times, and so even outputting a small amount
of information in each round can ultimately lead to unbounded leakage. To solve
this problem, we also consider the most frequent outcome in the sets SL/SR.
This is the value of ̂L (resp. ̂R) that occurs with the highest probability when
fL(L′) (resp. fR(R′)) is applied to consistent L′ (resp. R′). Note that if a value ̂L′

(resp. ̂R′) is not the most frequent value, then it occurs with probability at most
1/2. We argue that, for each round i of the CNMC experiment, the probability
that a value ̂L′ (resp. ̂R′) that is not the most frequent value is outputted by
fL (resp. fR) and self-destruct does not occur is at most 1/2. This allows us
to bound, w.h.p., the number of times in the entire tampering experiment that
2 Note that our extraction technique is inefficient. This is ok, since the goal of the

extraction technique is simply to show that the view of the adversary can be
simulated given a small amount of leakage on each of the two split-states. Then,
information-theoretic properties of the encoding are used to show that the view of
the adversary must be independent of the random encoded value.
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the value outputted by fL (resp. fR) is not the most frequent value. Thus, when
the value outputted by fL (resp. fR) is the most frequent value, the leakage
function outputs nothing, since the most frequent value can be reconstructed
from the given information. In contrast, if the value outputted by fL (resp.
fR) is not the most frequent value, but is in the sets SL/SR, then it has a
small description and, moreover, this event occurs a bounded number of times.
Therefore, we can afford to leak this information up to some upperbounded
number of rounds, while the total amount of leakage remains small relative to
the length of the encoding. Looking ahead, our construction will use a two-source
extractor, whose properties will guarantee that even given the leakage (which
contains all the information needed to simulate the CNMC experiment), the
decoded value remains uniform random.

To show that if the outcome of the tampering function is not in SL or SR,
then decode outputs ⊥ w.h.p., we first use the “uniqueness” property, which says
that for every ̂L = fL(L) (resp. ̂R = fR(R)), there is at most a single “match”, ̂R′

(resp. ̂L′), such that DΣ(̂L, ̂R′) �= ⊥ (resp. DΣ(̂L′, ̂R) �= ⊥). Given the “unique-
ness” property, it is sufficient to show that for every setting of L,Outi−1

A

Pr[fR(R) = ̂R′ ∧ ̂R′ /∈ SR | L ∧ Outi−1
A ] ≤ negl(n) (1)

and that for every setting of R ∧ Outi−1
A

Pr[fL(L) = ̂L′ ∧ ̂L′ /∈ SL | R ∧ Outi−1
A ] ≤ negl(n). (2)

To prove the above, we first argue that for the “challenge” codeword, (L,R),
the split-states L and R are conditionally independent, given Outi−1

A (assuming
no ⊥ has been outputted thus far) and an additional simulated part of the code-
word. This means that the set of frequent outcomes SL (resp. SR) conditioned
on Outi−1

A is the same as the set of frequent outcomes SL (resp. SR) conditioned
on both Outi−1

A and R (resp. L). So for any ̂R /∈ SR,

Pr[fR(R) = ̂R | L ∧ Outi−1
A ] ≤ negl(n)

and for any ̂L /∈ SL,

Pr[fL(L) = ̂L | R ∧ Outi−1
A ] ≤ negl(n).

Since ̂R′ (resp. ̂L′) is simply a particular setting of ̂R /∈ SR (resp. ̂L /∈ SL), we
have that (1) and (2) follow.

For the above analysis, we need the encoding scheme to possess the following
property: The L,R sides of the “challenge” codeword are conditionally indepen-
dent given Outi−1

A (and an additional simulated part of the codeword), but any
tampered split-state fL(L) or fR(R) created by the adversary has at most a
single “match,” ̂R′ or ̂L′.

To explain how we achieve this property, we briefly describe our construction.
Our construction is based on a non-interactive, equivocal commitment scheme in
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the CRS model and a two-source (inner product) extractor. Informally, an equiv-
ocal commitment scheme is a commitment scheme with the normal binding and
hiding properties, but for which there exists a simulator that can output simulated
commitments which can be opened to both 0 and 1. In the CRS model, the simu-
lator also gets to sample a simulated CRS. Moreover, the CRS and commitments
produced by the simulator are indistinguishable from real ones.

To encode a random value m, random vectors cL, cR such that 〈cL, cR〉 =
m are chosen. We generate a commitment com to cL||cR. The commitment
scheme has the additional property that adversarially produced commitments
are statistically binding (even if an equivocal commitment has been released)
and have at most a single valid decommitment string. The left (resp. right)
split-state L (resp. R) consists of com and an opening of com to the bits of
cL (resp. cR). The special properties of the commitment scheme guarantee the
“perfect uniqueness” property of the code. In the security proof, we replace
the statistically binding commitment com in the “challenge” codeword with an
equivocal commitment. Thus, each split-state of the challenge encoding, L (resp.
R), contains no information about cR (resp. cL). Moreover, assuming “⊥” is not
yet outputted, the output received by the adversary in the experiment at the
point that the i-th tampering function is submitted, denoted Outi−1

A is of the
form (f1

L(L) = v1, f
1
R(R) = w1), . . . , (f i−1

L (L)) = vi−1, f
i−1
R (R) = wi−1), where

for j ∈ [i − 1], vj is equal to the left value outputted in response to the j-th
query and wj is equal to the right value outputted in response to the j-th query.
(note that vj/wj can be set to “same” if the tampering function leaves L/R
unchanged). This allows us to argue that the distribution of L | Outi−1

A , R (resp.
R | Outi−1

A , L) is identical to the distribution of L | Outi−1
A (resp. R | Outi−1

A )
which implies that the left and right hand sides are conditionally independent
given Outi−1

A and the equivocal commitment, as desired. See Sect. 4 for additional
details.

Extension to 4-State CNMC in CRS Model from OWF. To encode a message
m we now generate random (cL,1, cR,1, cL,2, cR,2) conditioned on 〈cL,1, cR,1〉 +
〈cL,2, cR,2〉 = m (where addition is over a finite field). Now, we generate a com-
mitment com to cL,1||cR,1||cL,2||cR,2. Each of the four split states now consists
of com and an opening of com to the bits of cL,b (resp. cR,b). The analysis is
similar to the previous case and requires the property that at each point in the
experiment the distribution of 〈cL,1, cR,1〉 (resp. 〈cL,2, cR,2〉) is uniform random,
conditioned on the output thus far. Our techniques are somewhat similar to those
used in [35] in their construction of 2t-split-state continuously non-malleable
codes from t-split-state one-way continuously non-malleable codes. See the full
version of this paper [27] for additional details.

1.4 Additional Related Work

Non-Malleable Codes. The notion of non-malleable codes (NMC) was formalized
in the seminal work of Dziembowski, Pietrzak and Wichs [37]. Split-state classes
of tampering functions subsequently received a lot of attention with a long line of
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works, including [2–4,8,19,36,53,57,60]. Other works focused on various other
classes of tampering functions, including [7,9–11,18,39]. NMC have also been
considered in several other models for various applications such as in [15,17,30].
Other works on non-malleable codes include [6,16,17,22,28,29,35,40,41,52,55].

Continuous Non-Malleable Codes. Continuous Non-Malleable codes (CNMC)
were introduced by Faust et al. [40]. They gave a construction based on collision
resistant hash functions and non-interactive zero knowledge proof systems in
the CRS model. They also showed the impossibility of constructing 2-split state
CNMC information theoretically. Subsequently, Jafargholi and Wichs [52] pre-
sented a general study of CNMCs and its variants with some existential results.
Aggarwal et al. [5] gave the first information theoretic construction in the 8-
split-state model. Recently, Damg̊ard et al. [31] gave the first construction of
information theoretic CNMC against permutations. Faonio et al. [38] considered
a variant of CNMC against split-state tampering where the codeword is refreshed
(to avoid self-destruct) in the CRS model. For a discussion related to the recent
work of Ostrovsky et al. [63], see Sect. 1.2 and refer to the full version of this
paper [27] for further details.

Non-Malleable Randomness Encoders (NMRE). NMRE were introduced
recently by Kanukurthi et al. [54] as a building block for constructing efficient
(constant-rate) split-state NMC. In this work, we present the stronger variant
Continuous NMRE which allows continual tampering in split-state model.

Bounds on Non-Malleable Codes. Cheragachi and Guruswami [21] studied the
“capacity” of non-malleable codes and their work has been instrumental in
asserting the claims of efficient constructions for non-malleable codes since then
(cf. [2,7,8]). A similar study was presented in [28] for locally decodable and
updatable NMC. This work studies bounds for continuous non-malleable codes
in terms of complexity assumptions.

Black-Box Separations. Impagliazzo and Rudich ruled out black-box reductions
from key agreement to one-way function in their seminal work [50]. Their ora-
cle separation technique was subsequently used to rule out black-box reduc-
tions between various other primitives (cf. [48,69] and many more). The meta-
reduction technique (cf. [1,13,26,43,45–47,64,65,68]) has been useful for ruling
out larger classes of reductions—where the construction is arbitrary (non-black-
box), but the reduction uses the adversary in a black-box manner. The meta-
reduction technique is often used to provide evidence that construction of some
cryptographic primitive is impossible under “standard assumptions” (e.g. falsi-
fiable assumptions or non-interactive assumptions).

2 Definitions and Preliminaries

We present some standard notations and definitions, along with important lem-
mas related to randomness extractors, and the definition of strong one-time
signature schemes in the full version of this paper [27] due to lack of space.

We present some more definitions in the following sections.
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2.1 CNMC

Definition 1 (Coding Scheme [37]). A coding scheme, Code = (E,D), con-
sists of two functions: a randomized encoding function E : {0, 1}λ → {0, 1}n, and
a deterministic decoding function D : {0, 1}n → {0, 1}λ ∪{⊥} such that, for each
m ∈ {0, 1}λ, Pr [D(E(m)) = m] = 1 (over the randomness of encoding function).

Definition 2 (Split-State Encoding Scheme in the CRS model [40]). A
split-state encoding scheme in common reference string (CRS) model is a tuple
of algorithms, Code = (CRSGen,E,D) specified as follows:

– CRSGen takes the security parameter as input and outputs the CRS, Σ ←
CRSGen(1λ).

– E takes a message x ∈ {0, 1}λ as input along with the CRS Σ, and outputs a
codeword consisting of two parts (X0,X1) such that X0,X1 ∈ {0, 1}n.

– D takes a codeword (X0,X1) ∈ {0, 1}2n as input along with the CRS Σ and
outputs either a message x′ ∈ {0, 1}λ or a special symbol ⊥.

Consider the following oracle, OCNM((X0,X1), (T0,T1)) which is parame-
trized by the CRS Σ and “challenge” codeword (X0,X1) and takes functions
T0,T1 : {0, 1}n → {0, 1}n as inputs.

OCNM(Σ, (X0,X1), (T0,T1)) :

(X ′
0,X

′
1) = (T0(X0),T1(X1))

If (X ′
0,X

′
1) = (X0,X1) return same∗

If DΣ(X ′
0,X

′
1) = ⊥, return ⊥ and “self destruct”

Else return (X ′
0,X

′
1).

“Self destruct” here means that once DΣ(X ′
0,X

′
1) outputs ⊥, the oracle answers

all the future queries with ⊥.

Definition 3 (Continuous Non Malleability [40]). Let Code = (CRSGen,E,
D) be a split-state encoding scheme in the CRS model. We say that Code is q-
continuously non-malleable code, if for all messages x, y ∈ {0, 1}λ and all PPT
adversary A it holds that

{

CTamperA,x(λ)
}

λ∈N
≈c

{

CTamperA,y(λ)
}

λ∈N
where,

CTamperA,x(λ)
def
=

{

Σ ← CRSGen(1λ); (X0,X1) ← EΣ(x);

outA ← AOCNM(Σ,(X0,X1),(·,·)); output : outA

}

and A asks total of q queries to OCNM.

The following is an equivalent formulation

Definition 4 (Continuous Non Malleability [40], equivalent formula-
tion). Let Code = (CRSGen,E,D) be a split-state encoding scheme in the CRS
model. We say that Code is q-continuously non-malleable code, if for all mes-
sages m0, m1 ∈ {0, 1}λ, all PPT adversary A and all PPT distinguishers D it
holds that

Pr[D(outbA) = b] ≤ 1/2 + negl(λ)
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where b ← {0, 1} and

outbA ← AOCNM(Σ,(Xb
0 ,Xb

1),(·,·)) : Σ ← CRSGen(1λ); (Xb
0,X

b
1) ← EΣ(mb)

and A asks total of q queries to OCNM.

2.2 Continuous Non-Malleable Randomness Encoder

The following definition is an adaptation of the notion of Non-Malleable Ran-
domness Encoders [54] to the continuous setting.

Definition 5. Let Code = (CRSGen,CNMREnc,CNMRDec) be such that
CRSGen takes security parameter λ as input and outputs a string of length Σ1 =
poly(λ) as CRS. CNMREnc : {0, 1}Σ1 × {0, 1}r → {0, 1}λ × ({0, 1}n1 , {0, 1}n2)
is defined as CNMREnc(r) = (CNMREnc1,Σ(r),CNMREnc2,Σ(r)) = (m, (x0, x1))
and CNMRDec : {0, 1}Σ1 × {0, 1}n1 × {0, 1}n2 → {0, 1}λ.

We say that (CRSGen,CNMREnc,CNMRDec) is a continuous non-malleable
randomness encoder with message space {0, 1}λ and codeword space {0, 1}n1 ×
{0, 1}n2 , for the distribution R on {0, 1}r with respect to the 2-split-state family
F if the following holds true:

– Correctness:

Pr
r←R

[CNMRDecΣ(CNMREnc2,Σ(r)) = CNMREnc1,Σ(r)] = 1

– Continuous Non-Malleability:

(Σ,CNMREnc1,Σ(R), outΣ,A(R)) ≈c (Σ,Uλ, outΣ,A(R))

where Σ ← CRSGen(1λ), R is a uniform random variable over {0, 1}r, Uλ is
a uniform random variable over {0, 1}λ and outΣ,A(R) is defined as follows:

outΣ,A(R) ← AOCNM(Σ,(X0,X1),(·,·)) : (X0,X1) ← CNMREnc2,Σ(R)

where OCNM runs with CNMRDec as decoding algorithm.

2.3 Falsifiable Assumptions and Black-Box Reductions

Definition 6. A falsifiable assumption consists of ppt interactive challenger
C(1λ) that runs in time poly(λ) and a constant 0 ≤ δ < 1. The challenger C
interacts with a machine A and may output special symbol win. If this occurs, A
is said to win C. For any adversary A, the advantage of A over C is defined as:

Adv(C,δ)
A = |Pr

[A(1λ) wins C(1λ)
] − δ|,

where the probability is taken over the random coins of A and C. The assumption
associated with the tuple (C, δ) states that for every (non-uniform) adversary
A(1λ) running in time poly(λ),

Adv(C,δ)
A = negl(λ).

If the advantage of A is non-negligible in λ then A is said to break the
assumption.



Upper and Lower Bounds for Continuous Non-Malleable Codes 531

Definition 7. Let Π = (E,D) be a split-state CNMC. We say that the non-
malleability of Π can be proven via a black-box reduction to a falsifiable assump-
tion, if there is an oracle access machine M(·) such that for every (possibly inef-
ficient) Π-adversary P∗, the machine MP∗

runs in time poly(λ) and breaks the
assumption.

2.4 Equivocal Commitment Scheme

Definition 8 (Commitment Scheme). A (non-interactive) commitment
scheme in the CRS model for the message space M, is a triple (CRSGen,
Commit,Open) such that:

– Σ ← CRSGen(1k) generates the CRS.
– For all m ∈ M, (c, d) ← CommitΣ(m) is the commitment/opening pair for

the message m. Specifically; c is the commitment value for m, and d is the
opening.

– OpenΣ(c, d) → m̃ ∈ M ∪ {⊥}, where ⊥ is returned when c is not a valid
commitment to any message.

The commitment scheme must satisfy the standard correctness requirement,

∀k ∈ N,∀m ∈ M and Σ ∈ CRS, Pr [OpenΣ(CommitΣ(m)) = m] = 1

where, CRS is the set of all possible valid CRS’s generated by CRSGen(1k)
and where the probability is taken over the randomness of Commit.

The commitment scheme provides the following 2 security properties:

– Hiding: It is computationally hard for any adversary A to generate two mes-
sages m0,m1 ∈ M such that A can distinguish between their corresponding
commitments. Formally, for any PPT adversary A = (A1,A2) it should hold
that:

Pr

[

b = b′
∣

∣

∣

∣

∣

Σ ← CRSGen(1k), (m0,m1, α) ← A1(Σ),
b ←r {0, 1}, (c, d) ← CommitΣ(mb), b′ ← A2(c, α)

]

≤ 1
2

+ negl(k)

– Binding: It is computationally hard for any adversary A to find a triple
(c, d, d′) such that both (c, d) and (c, d′) are valid commitment/opening pairs
for some m,m′ ∈ M respectively, and m �= m′. Formally, for any PPT adver-
sary A it should hold that:

Pr

[

m �= m′∧
m,m′ �= ⊥

∣

∣

∣

∣

∣

Σ ← CRSGen(1k), (c, d, d′) ← A(Σ),
m ← OpenΣ(c, d),m′ ← OpenΣ(c, d′)

]

≤ negl(k)

Definition 9 (One-to-One Commitment Scheme in the CRS Model).
Let (CRSGen,Commit,Open) be a bit-commitment scheme in CRS model. We
say that (CRSGen,Commit,Open) is a one-to-one commitment scheme if with
all but negligible probability over b ← {0, 1}, Σ ← CRSGen(1λ), (com, d) ←
CommitΣ(b), d′ = d is the unique string such that Open(com, d′) �= ⊥.
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Definition 10. Let (CRSGen,Commit,Open) be a bit-commitment scheme in
CRS model. We say that (CRSGen,Commit,Open) is a non-interactive equiv-
ocable bit-commitment scheme in the CRS model if there exists an efficient
probabilistic algorithm SEq which on input 1λ outputs a 4-tuple (Σ′, c′, d′

0, d
′
1)

satisfying the following:

– Pr[OpenΣ′(c′, d′
b) = b] = 1 for b ∈ {0, 1}.

– For b ∈ {0, 1}, it holds that outCommit(b) ≈ε outSEq
(b) where the random

variables outCommit(b) and outSEq
(b) are defined as follows:{

Σ ← CRSGen(1λ); (c, d) ← CommitΣ(b);
outCommit(b) : (Σ, c, d)

}
≈

{
(Σ′, c′, d′

0, d′
1) ← SEq(1

λ);
outSEq

(b) : (Σ′, c′, d′
b)

}

We now present variant of the commitment scheme presented by Naor in [61],
specifically we present the same construction in CRS model. This is also pre-
sented in [32].

Let n > 0 be an integer, let G : {0, 1}n → {0, 1}3n be a PRG.

– CRSGen(1n): Output a uniform random string Σ of length 3n.
– CommitΣ(b): Choose uniform random seed s ∈ {0, 1}n and compute t = G(s).

If b = 0, set c := t. If b = 1, set c := t ⊕ Σ. Output c. Output decommitment
d = s.

– OpenΣ(c, d): If c = G(d), then output 0. Else if, c = G(d) ⊕ Σ, then output
1. Output ⊥ otherwise.

Claim 2.1. The scheme presented above is an equivocal commitment scheme.

The proof of Claim 2.1 can be found in the full version of this paper [27].

2.5 One-to-One Equivocal Commitment

The scheme presented in Sect. 2.4 is not necessarily a one-to-one commitment
scheme, since for PRG G, there may exist two different seeds s and s′ such that
G(s) = G(s′). In this case both s, s′ are valid decommitments of the same bit.

We therefore, present a modification of the above scheme that allows us
to achieve an equivocal commitment scheme with the one-to-one property:
for every statistically binding commitment, there is at most a single open-
ing string that will be accepted by the receiver during the decommitment
phase. As an underlying ingredient, we use any commitment scheme Π =
(CRSGenΠ ,CommitΠ ,OpenΠ) (not necessarily equivocal) with the above prop-
erty. Such a commitment scheme can be constructed straightforwardly e.g. from
injective one-way functions. Let n > 0 be an integer, let G : {0, 1}n → {0, 1}3n

be PRG.

– CRSGen(1n): Run CRSGenΠ(1n) to generate ΣΠ . Output Σ = ΣΠ , Σ1, Σ2

where Σ1, Σ2 are uniform random strings of length 3n.
– Commit(Σ, b): Choose uniform random seeds s1, s2 ∈ {0, 1}n and compute

t1 = G(s1), t2 = G(s2). Choose β ∈ {0, 1}. Set c1 = t1 ⊕ (b · Σ1).
Set c2 = t2 ⊕ (β · Σ2). Generate (comβ , sΠ) ← Commit(ΣΠ , s1||s2) and
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(com1−β , ·) ← Commit(ΣΠ , 02n). Output commitment (c1, c2, com0, com1)
along with decommitment information (β||s1||s2||sΠ). In the following, we
sometimes write Commit(Σ, b;β), explicitly including the randomness β in
the input.

– Open(Σ, c, s): Parse c = (c1, c2, com0, com1) and s = β||s1||s2||sΠ . If c2 =
G(s2), check that β = 0. If c2 = G(s2) ⊕ Σ2, check that β = 1. Run
Open(ΣΠ , comβ , sΠ) and check that it outputs s1||s2. Otherwise, output ⊥.
If c1 = G(s1), output 0. If c1 = G(s1) ⊕ Σ1, output 1. Output ⊥ otherwise.

Clearly, by the binding of the original commitment scheme and the one-to-one
property of Π, the modified scheme has the one-to-one property.

To create equivocal commitments/openings one can do the following: Run
CRSGenΠ(1n) to generate ΣΠ . Choose uniform random seeds s01, s

1
1, s

0
2, s

1
2 ∈

{0, 1}n and compute t01 = G(s01), t02 = G(s02), t11 = G(s11), t12 = G(s12).
Choose β ← {0, 1} Generate comβ = Commit(ΣΠ , s01||sβ

2 ) and com1−β =
Commit(ΣΠ , s11||s1−β

2 ). Set c1 = t01. Set c2 = t02. Set Σ1 = c1⊕t11. Set Σ2 = c2⊕t12.
Output (c1, c2, com0, com1).

To open the commitment to a 0, output (β||s01||sβ
2 ||openβ), where openβ is

the decommitment information for comβ .
To open the commitment to a 1, output (1 − β||s11||s1−β

2 ||open1−β), where
open1−β is the decommitment information for com1−β .

We note the following important property: For any commitment string c, and
any CRS Σ, any two valid openings for c s = β||s1||s2||sΠ , s′ = β′||s′

1||s′
2||s′

Π ,
it must be the case that β �= β′.

2.6 Equivocal Commitment (with Extra Properties) in the CRS
Model

Let Π ′ = (Gen′
Com,Com′,Open′,S′

Eq), be an equivocal, one-to-one bit commit-
ment scheme in the CRS model (given in Sect. 2.5). Let (GenSign,Sign,Verify) be
a strong, one-time signature scheme (for definition, see the full version [27]). We
construct Π = (GenCom,Com,Open,SEq), which is an equivocal commitment
scheme, with several additional properties that we describe at the end of the
section and which will be useful for our constructions in Sect. 4.

Key Generation GenCom is as Follows: On input security parameter 1λ, run
Gen′

Com 2t·� times to generate t pairs of vectors of CRS’s [(Σ0,i,j
Eq , Σ1,i,j

Eq )]i∈[�],j∈[t],
where t is the length of the verification key vk output by GenSign.

Commitment Com is as Follows: To commit to a message m := m1, . . . ,m� of
length �, generate a key pair (vk, sk) ← GenSign. For i ∈ [�], choose βi ← {0, 1} at
random. For i ∈ [�], j ∈ [t], generate (comi,j , di,j) ← Com′(Σvkj ,i,j ,mi;βi), where
for each i ∈ [�], [comi,j ]j∈[t] is the (bit-by-bit) commitment and [di,j ]j∈[t] is the
(bit-by-bit) decommitment information. Generate σ ← Signsk([comi,j ]i∈[�],j∈[t]).
Output commitment com = (vk, [comi,j ]i∈[�],j∈[t], σ). A sender can decommit
separately to any set of bits of the message m. Decommitment information for
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a set S of message bits consists of d[S] = [di,j ]i∈S,j∈[t], where di,j is the decom-
mitment information corresponding to the j-th bit of the i-th instance. We also
denote the decommitment for the mi as di := di,1, di,2, . . . di,t.

Decommitment Open w.r.t. a Set S: Given a set S, a commitment com,
and an opening [di,j ]i∈S,j∈[t], Open does the following: Parse commitment as
(vk, [comi,j ]i∈[�],j∈[t], σ). (1) Check that Verifyvk([comi,j ]i∈[�],j∈[t], σ) = 1 (2) For
i ∈ S, j ∈ [t], check that di,j is a valid decommitment for comi,j w.r.t. CRS
Σvkj ,i,j .

Equivocal CRS Generation and Commitment SEq is as Follows: On
input security parameter 1λ, generate a key pair (vk, sk) ← GenSign. Run S′

Eq

t · � times to generate [Σvkj ,i,j ]i∈[�],j∈[t], equivocal commitments [comi,j ]i∈[�],j∈[t]

and decommitments [(d0i,j , d
1
i,j)]i∈[�],j∈[t]. Note that for each i ∈ [�], all equiv-

ocal commitments use the same value of β := βi. Run Gen′
Com t · � times to

generate [Σ1−vkj ,i,j ]i∈[�],j∈[t]. Set ΣEq := [(Σ0,i,j
Eq , Σ1,i,j

Eq )]i∈[�],j∈[t]. Compute σ ←
Signsk([comi,j ]i∈[�],j∈[t]). Output (Σ = ΣEq, com = (vk, [comi,j ]i∈[�],j∈[t], σ), d0 =
[d0i,j ]i∈[�],j∈[t], d

1 = [d1i,j ]i∈[�],j∈[t]).

Additional Check Functionality: Given a Σ and commitments com =
(vk, [comi,j ]i∈[�],j∈[t], σ), com′ = (vk′, [com′

i,j ]i∈[�],j∈[t], σ
′), CheckΣ(com, com′)

outputs 1 if (1) vk = vk′; (2) Verifyvk([com′
i,j ]i∈[�],j∈[t], σ

′) = 1.

Additional Properties:

1. With overwhelming probability over generation of Σ, for every set S ⊆ [�]
and every string com, there is at most a single string d[S] such that
OpenΣ(S, com, d[S]) = 1. This property is achieved by using the equivocal,
one-to-one, commitment scheme given in Sect. 2.5 as the underlying commit-
ment scheme.

2. Given a pair (Σ, com), a PPT adversary outputs com′ such that com �= com′

but CheckΣ(com, com′) = 1 with negligible probability. This property follows
from the security of the one-time signature scheme.

3. Given equivocal commitment (ΣEq, com), for every string com′, if
CheckΣEq

(com, com′) = 0 then (with overwhelming probability over genera-
tion of ΣEq) com′ has at most one valid opening. Specifically, for every set S ⊆
[�], there is at most a single string d[S] such that OpenΣEq

(S, com′, d[S]) = 1.
Again, this property is achieved by using the equivocal, one-to-one, commit-
ment scheme given in Sect. 2.5 as the underlying commitment scheme.

We elaborate on the third property, since it is less straightforward than
the first two. First, note that the third property is a type of “simulation
soundness” property, which essentially says that given an equivocal commit-
ment, the only way to construct a different commitment with more than
one valid opening is by forging a signature. This type of construction, where
the CRS is indexed by bits of a signature verification key, has been used
in various settings in the literature, such as in the construction of one-time
simulation-sound NIZK, as well as CCA-secure encryption and non-malleable
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encryption [23,34,58,66,67]. In more detail, assume the adversary is given an
equivocal commitment (ΣEq, com), where ΣEq = [(Σ0,i,j

Eq , Σ1,i,j
Eq )]i∈[�],j∈[t], and

com = (vk, [comi,j ]i∈[�],j∈[t], σ). It is sufficient to show that any commitment
output by the adversary com′ = (vk′, [com′

i,j ]i∈[�],j∈[t], σ
′), where vk′ �= vk

can have at most a single valid opening relative to any set S ⊆ [�]. Assume
vk′ �= vk and that com′ has two valid openings relative to a set S. These
openings must be of the form [si,j,0]i∈S,j∈[t] = [βi||si,j,0

1 ||si,j,0
2 ||si,j,0

Π ]i∈S,j∈[t]

[si,j,0]i∈S,j∈[t] = [1 − βi||si,j,1
1 ||si,j,1

2 ||si,j,1
Π ]i∈S,j∈[t]. Since vk′ �= vk there must

be at least one j ∈ [t] such that vk′
j = 1 − vkj . But [Σ1−vkj ,i,j ]i∈[�],j∈[t] were

generated via Gen′
Com, so it is guaranteed with overwhelming probability that

any string com′
i,j relative to Σ1−vkj ,i,j has at most a single valid decommitment.

Therefore βi||si,j,0
1 ||si,j,0

2 ||si,j,0
Π and 1−βi||si,j,1

1 ||si,j,1
2 ||si,j,1

Π cannot both be valid
decommitments, leading to contradiction.

3 Impossibility of CNMC with No CRS

In this section we present Theorem 5, stating the impossibility of constructing
CNMC without CRS.

Theorem 5. There is no black-box reduction from a single-bit CNMC scheme
Π = (E,D) to any falsifiable assumption, unless the assumption is false.

We know from prior work that continuous NMC are impossible in the info-
theoretic setting. Assume we have a construction of single-bit, continuous NMC
from some falsifiable assumption with no CRS. We only allow black-box usage
of the adversary in the reduction. However, the underlying assumption can be
used in a non-black-box way in the construction/proof.

Preliminaries. Given adversary A = (AL, AR), we say that A has advantage α
in the simplified no-Σ CNMC game against construction Π = (E,D) if:

∣

∣

∣Pr[D(AL(L), AR(R)) �= ⊥ | (L,R) ← E(1n, 0)]

−Pr[D(AL(L), AR(R)) �= ⊥ | (L,R) ← E(1n, 1)]
∣

∣

∣ = α,

Clearly, if A = (AL, AR) has non-negligible advantage in the simplified no-Σ
CNMC game, it can be used to break the CNMC security of Π = (E,D).

Definition 11. A tuple (x, y, z) is bad relative to CNMC scheme Π = (E,D) if
either:

– y �= z ∧ D(x, y) �= ⊥ ∧ D(x, z) �= ⊥ OR
– x �= y ∧ D(x, z) �= ⊥ ∧ D(y, z) �= ⊥.

Definition 12. A single-bit CNMC Π = (E,D) in the standard (no CRS model)
is perfectly unique if there exist no bad tuples relative to Π = (E,D).
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We next present the following two lemmas, which, taken together, imply
Theorem 5.

Lemma 1. If a single-bit CNMC scheme Π = (E,D) is not perfectly unique
then it is insecure.

This is immediate, since if a bad tuple exists, it can be given to the adversary
as non-uniform advice. Then the same attack from the literature (reviewed in
the introduction) can be run.

Lemma 2. There is no BB reduction from a single-bit CNMC scheme Π =
(E,D) which is perfectly unique to any falsifiable assumption.

The basic idea is that, given only black-box access to the split-state adver-
sary, A = (AL, AR), the reduction cannot tell the difference between the actual
adversary and a simulated adversary. The simulated adversary simply waits to get
matchingL andR queries from the reduction, decodes, and re-encodes a fresh value
that is related to the decoded value. The challenges are that the L and R queries
are not received simultaneously. In fact, there could be many queries interleaved
between a L and R match. So the simulated adversary must return a value upon
seeing the L or R half before seeing the other half and before knowing whether the
encoded value is a 0 or a 1. Therefore, the simulated adversary does the follow-
ing: It keeps a table containing all the L and R values that it has seen. Whenever
a L or R query is made, the simulated adversary first checks the table to see if
a matching query was previously made. If not, the simulated adversary chooses
a random encoding, (L′, R′), of a random bit b′, stores it in the table along with
the L/R query that was made and returns either L′ or R′ as appropriate. If yes,
the simulated adversary finds the corresponding L/R along with the pair (L′, R′)
stored in the table. The simulated adversary then decodes (L,R) to find out b. If
b = 0, the simulated adversary returns either L′ or R′ as appropriate. Otherwise,
the simulated adversary returns the left/right side of an encoding of a random bit
b′′. We prove that the view generated by the reduction interacting with this adver-
sary is identical to the view of the reduction interacting with the following real
adversary: The real adversary, given L or R, recovers the corresponding unique
valid codeword (L,R) (if it exists) and decodes to get the bit b. If b = 0, the real
adversary encodes a random bit b′ = RO1(L||R) using randomness r = RO2(L||R)
(where RO1,RO2 are random oracles internal to the real adversary that are used
to generate consistent randomness across invocations) and outputs the left/right
side as appropriate. Otherwise (i.e. if the corresponding unique codeword does not
exist or if D(L,R) = 1), the real adversary outputs the left/right side of encoding
of a random bit, b′′ = RO3(L) (or b′′ = RO3(R)) using randomness r′′ = RO4(L)
(or r′′ = RO4(R)) (where RO3,RO4 are random oracles internal to the real adver-
sary that are used to generate consistent randomness across invocations). Note
that since the CNMC is perfectly unique, the real adversary obtains non-negligible
advantage of 1 − negl(n) in the simplified no-Σ CNMC game.

Proof. We will construct a meta-reduction as follows:
Consider the following inefficient, split state adversary A = (AL, AR) with

internal random oracles RO1,RO2, RO3, and RO4:
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AL: On input L, find the unique R such that D(L,R) �= ⊥ (if it exists). Let b :=
D(L,R). If b = 0, encode b′ = RO1(L||R) using randomness r = RO2(L||R) to
obtain (L′, R′) := E(b′; r) and output L′. If such R does not exist or if b = 1,
compute a random encoding of a random bit b′′ = RO3(L) using randomness
r′′ = RO4(L) to obtain (L′′, R′′) := E(b′′, r′′) and output L′′.

AR: On input R, find the unique L such that D(L,R) �= ⊥ (if it exists). Let b :=
D(L,R). If b = 0, encode b′ = RO1(L||R) using randomness r = RO2(L||R) to
obtain (L′, R′) := E(b′; r) and output R′. If such L does not exist or if b = 1,
compute a random encoding of a random bit b′′ = RO3(R) using randomness
r′′ = RO4(R) to obtain (L′′, R′′) := E(b′′, r′′) and output R′′.

Clearly, A succeeds with advantage 1−negl(n) in the simplified no-Σ CNMC
game.

The following adversary A′ simulates the above efficiently: Let T be a table
that records internal randomness. T is initialized to empty. A′ is a stateful adver-
sary that proceeds as follows:

1. On input L, check if the corresponding R such that D(L,R) �= ⊥ has been
queried. If yes, decode to get bit b := D(L,R). If b = 0, check the table
T to recover (R,L′, R′). Output L′. Otherwise, if L ∈ T then output L′′

corresponding to entry (L,L′′, R′′). If L /∈ T , choose a random encoding of a
random bit b′′: (L′′, R′′) ← E(b′′). Store (L,L′′, R′′) in T . and output L′′.

2. On input R, check if the corresponding L such that D(L,R) �= ⊥ has been
queried. If yes, decode to get bit b := D(L,R). If b = 0, check the table
T to recover (L,L′, R′). Output R′. Otherwise, if R ∈ T then output R′′

corresponding to entry (R,L′′, R′′). If R /∈ T , choose a random encoding of a
random bit b′′: (L′′, R′′) ← E(b′′). Store (R,L′′, R′′) in T and output R′′.

By properties of the random oracle, the view of the reduction Red when
interacting with A versus A′ are equivalent.

Since the reduction succeeds when interacting with Real adversary A with
non-negligible probability p and since the view of the reduction is identical when
interacting with A or A′, Red interacting with A′ must also succeed with non-
negligible probability p. But Red composed with A′ yields an efficient adversary,
leading to an efficient adversary breaking the underlying falsifiable assumption,
which is a contradiction.

4 2-State CNMC for One-Bit Messages

In this section we prove the following theorem:

Theorem 6. Assuming the existence of one-to-one commitment schemes in the
CRS model, there is a construction of a 2-split-state CNM Randomness Encoder
in the CRS model.

The corollary is immediate, given the transformation in the full version [27].
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Corollary 1. Assuming the existence of one-to-one commitment schemes in the
CRS model, there is a construction of a single-bit, 2-split-state CNMC in the
CRS model.

Notation and Parameters. λ is security parameter and length of encoded ran-
domness. � = �(λ) ∈ Θ(λ2) and we assume for simplicity that λ|�. Sets
SL, SR ⊆ [2�] are defined as follows: SL = [�], SR = [2�]\[�]. yo = yo(�) ∈ Θ(�1/2),
yt = yt(�) ∈ Θ(�1/2).
The construction of the 2-state CNM Randomness Encoder is given in Fig. 1.

Fig. 1. Construction of 2-State, Continuous, Non-Malleable Randomness Encoder.

To prove Theorem 6, we show that the construction above is a secure CNM
Randomness Encoder, via the following sequence of hybrids.

Hybrid 0: This is the “Real” security experiment.

Hybrid 1: The experiment is identical to Hybrid 0 except we modify the decode
algorithm from DΣ to D1

Σ to abort if the tampered codeword submitted is differ-
ent from the challenge codeword and the Check function outputs 1. Specifically,
let (L := (com, d[SL]), R = (com, d[SR])) be the “challenge” codeword (i.e. the
codeword generated by the security experiment) (Fig. 2).
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Fig. 2. Decode in Hybrid 1.

Hybrid 2: The experiment is identical to Hybrid 1, except we switch to equivocal
commitments in the codeword (L,R) that is given to the adversary. Specifically,
CRSGen is replaced with CRSGen2 and the challenge codeword is generated as
shown in Fig. 3.

Fig. 3. Gen and Challenge Codeword generation in Hybrid 2.

Hybrid 3: The experiment is identical to Hybrid 2, except we modify D1 to D3,
which aborts if the outcome of f i

L(L) or f i
R(R) is not a “likely value.”

Specifically, given (ΣEq, com, d0 = d01 . . . d02�, d
1 = d11 . . . d12�) and the adver-

sary’s current output Outi−1
A = ̂Out

i−1

A , we define the sets SL, SR, S ′
L, S ′

R as:

– SL contains all values of ̂L′ that occur with probability at least ε = 1/2yo/3,
where values of ̂L′ are sampled as follows: Sample ĉL conditioned on the
output of the experiment in Hybrid 2 thus far being equal to Outi−1

A = ̂Out
i−1

A .
Compute equivocal decommitment of com: ̂d[SL] := [dĉL[i]

i ]i∈SL
. Apply f i

L to
̂L = (com, ̂d[SL]) to obtain ̂L′ (or “same” if the output is ̂L itself).

– SR contains all values of ̂R′ that occur with probability at least ε = 1/2yo/3,
where values of ̂R′ are sampled as follows: Sample ĉR conditioned on the
output of the experiment in Hybrid 2 thus far being equal to Outi−1

A = ̂Out
i−1

A .
Compute equivocal decommitment of com: ̂d[SR] := [dĉR[i]

i ]i∈SR
. Apply f i

R to
̂R = (com, ̂d[SR]) to obtain ̂R′ (or “same” if the output is ̂R itself).



540 D. Dachman-Soled and M. Kulkarni

– Let S ′
L ⊆ SL be the set of ̂L′ such that there is a “matching” ̂R′ ∈ SR such

that D1
ΣEq

(̂L′, ̂R′) �= ⊥.

– Let S ′
R ⊆ SR be the set of ̂R′ such that there is a “matching” ̂L′ ∈ SL such

that D1
ΣEq

(̂L′, ̂R′) �= ⊥.

Note that the decode oracle is now stateful and depends on the current round
of interaction, as well as the outputs returned in previous rounds. Specifically,
note that the sets S ′

L, S ′
R change in each round i, since the likely outputs depend

on the tampering function (f i
L, f i

R) submitted by the adversary in round i, and

are conditioned on the output Outi−1
A = ̂Out

i−1

A seen by the adversary thus far
in rounds 1, . . . , i − 1 (Fig. 4).

Fig. 4. Decode in Hybrid 3.

Hybrid 4: The experiment is identical to Hybrid 3, except we modify D3 to D4

which aborts if there are more than yt number of queries f i
L (resp. f i

R) such that
the outcome of f i

L(L) (resp. f i
R(R)) is not the most “likely value”. Specifically,

at the beginning of the experiment, we initialize counters countL, countR to 0.
We also define L∗ (resp. R∗) to be the element of S ′

L (resp. S ′
R) that occurs most

frequently. More precisely, we consider the sets

L∗ := argmaxL′∈S′
L

Pr[f i
L(̂L) = L′ | Outi−1

A = ̂Out
i−1

A ].

R∗ := argmaxR′∈S′
R

Pr[f i
R( ̂R) = R′ | Outi−1

A = ̂Out
i−1

A ].

Then L∗ (resp. R∗) is defined to be the lexicographically first element in L∗

(resp. R∗) (Fig. 5).

Claim 4.1. Hybrids 0 and 1 are computationally indistinguishable.

This follows from the additional properties of the equivocal commitment
scheme given in Sect. 2.6.

Claim 4.2. Hybrids 1 and 2 are computationally indistinguishable.

This follows from the security of the equivocal commitment scheme.
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Fig. 5. Decode in Hybrid 4.

Claim 4.3. Hybrids 2 and 3 are ε · 2q-close, where ε = 1/2yo/3 and yo ∈ O(�1/2).

Proof. To prove indistinguishability of Hybrids 2 and 3, it is sufficient to show
that for each i ∈ [q], Pr[f i

L(L) /∈ S ′
L ∧ D1

ΣEq
(f i

L(L), f i
R(R)) �= ⊥] ≤ ε and

Pr[f i
L(R) /∈ S ′

R ∧ D1
ΣEq

(f i
L(L), f i

R(R)) �= ⊥] ≤ ε. The result then follows by a
union bound over the q LHS and q RHS queries.

To bound the above, we in fact show something stronger: (1) for each i ∈ [q],

each value of Outi−1
A = ̂Out

i−1

A (which does not contain a ⊥ output) and each
value of R = ̂R,

Pr[f i
L(L) /∈ S ′

L ∧ D1
ΣEq

(f i
L(L), f i

R(R)) �= ⊥ | R = ̂R ∧ Outi−1
A = ̂Out

i−1

A )] ≤ ε;

and (2) for each i ∈ [q], each value of Outi−1
A = ̂Out

i−1

A (which does not contain
a ⊥ output) and each value of L = ̂L,

Pr[f i
R(R) /∈ S ′

R ∧ D1
ΣEq

(f i
L(L), f i

R(R)) �= ⊥ | L = ̂L ∧ Outi−1
A = ̂Out

i−1

A )] ≤ ε.

We first fix (ΣEq, com, d0 = d01 . . . d02�, d
1 = d11 . . . d12�). Note that for fixed

ΣEq, com, d0 = d01 . . . d02�, d
1 = d11 . . . d12�, there is a bijection φL (resp. φR)

between cL (resp. cR) and (com, d[SL]) (where d[SL] := [dcL[i]
i ]i∈SL

). There-
fore the probability of a particular value of cL (resp. cR) occurring is equiv-
alent to the probability of L = φL(cL) (resp. R = φR(cR)) occurring. Addi-
tionally, Let ρL (resp. ρR) be the function that given f i

R(R) (resp. f i
L(L))

returns the unique L′ (resp. R′) if it exists such that, D1
ΣEq

(L′, f i
R(R)) �= ⊥

(resp. D1
ΣEq

(f i
L(L), R′) �= ⊥). Note that L′ (resp. R′) is equal to “same” if and

only if f i
R(R) = “same” (resp. f i

L(L) = “same”). To see why this is so, recall
that in D1, ⊥ is outputted if ˜L �= L and CheckΣ(com, c̃om) = 1 or ˜R �= R
and CheckΣ(com, c̃om

′) = 1. Now, if L′ is equal to same, then it must be that
CheckΣ(com, c̃om) = 1. Therefore, by the above, the only value of f i

R(R), for
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which ⊥ will not be output is f i
R(R) = “same”. The same is true for the case

that f i
R(R) = “same”.

We first show that for i ∈ [q], cL, cR are conditionally independent given

OutiA = ̂Out
i

A. This follows from the fact that the information contained in
̂Out

i

A is of the form (f1
L(φL(cL)) = v1, f

1
R(φR(cR)) = w1), . . . , (f i

L(φL(cL)) =
vi, f

i
R(φR(cR)) = wi), where for j ∈ [i], vj is equal to the L′ value outputted

in response to the j-th query and wj is equal to the R′ value outputted in
response to the j-th query. (note that vj/wj can be set to “same” if the tampering
function leaves L/R unchanged). Thus, the distribution of cL, cR conditioned on
(f1

L(φL(cL)) = v1, f
1
R(φR(cR)) = w1), . . . , (f i

L(φL(cL)) = vi, f
i
R(φR(cR)) = wi)

is equal to (U� | (f1
L(φL(U�)) = v1, . . . , f

i
L(φL(U�)) = vi)) × (U� | (f1

R(φR(U�)) =
w1, . . . , f

i
R(φR(U�)) = wi)). Moreover, due to the discussion above, L,R are also

conditionally independent given Outi−1
A = ̂Out

i−1

A . Therefore, to show (1), we

note that for every (̂L, ̂R, ̂Out
i−1

A ), Pr[L = ̂L | R = ̂R ∧ Outi−1
A = ̂Out

i−1

A )] =

Pr[L = ̂L | Outi−1
A = ̂Out

i−1

A )]. So we have that for every fixed R = ̂R (for which

Pr[R = ̂R ∧ Outi−1
A = ̂Out

i−1

A )] > 0), and every L′ /∈ S ′
L, Pr[f i(L) = L′ | R =

̂R ∧ Outi−1
A = ̂Out

i−1

A )] ≤ ε. Therefore,

Pr[f i
L(L) /∈ S ′

L ∧ D1
ΣEq

(f i
L(L), f i

R(R)) �= ⊥ | R = ̂R ∧ Outi−1
A = ̂Out

i−1

A )]

= Pr[f i
L(L) /∈ S ′

L ∧ (

f i
L(L) = ρL(f i

R(R))
) | R = ̂R ∧ Outi−1

A = ̂Out
i−1

A )]
≤ ε.

The proof for (2) is analogous.

Claim 4.4. Hybrids 3 and 4 are statistically indistinguishable.

Proof. To prove indistinguishability of Hybrids 3 and 4, we must show
that the probability that the event (1) f i

L(L) is not most frequent and
D3

ΣEq
(f i

L(L), f i
R(R)) �= ⊥ or event (2) f i

R(R) is not most frequent and
D3

ΣEq
(f i

L(L), f i
R(R)) �= ⊥ occurs more than yt times in a single execution is

at most (1/2)yt .
We first analyze the event (1). Recall that set S ′

L contains values, L′, that
occur with probability p in some experiment. By “most frequent value” in S ′

L,
we mean the value L′ in S ′

L with the maximum associated probability p. Note
that if L′ is not the most frequent value, the associated probability p is at most
1/2, since otherwise, the probabilities will sum to more than 1. More precisely, if
f i

L(L) = L′ is not the most frequent query in S ′
L then, by definition of the set S ′

L

and the above argument, Pr[f i
L(̂L) = L′ | Outi−1

A = ̂Out
i−1

A ] ≤ 1/2. Recall that
in the proof of the previous claim, we have shown that for i ∈ {0, . . . , q}, L,R
are conditionally independent given OutiA. Therefore, Pr[f i

L(L) = L′ | Outi−1
A =

̂Out
i−1

A ∧ R = ̂R] ≤ 1/2. This implies that for every fixed R = ̂R (for which

Pr[R = ̂R ∧ Outi−1
A = ̂Out

i−1

A ] > 0),
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Pr[f i
L(L) �= L∗ ∧ D3

ΣEq
(f i

L(L), f i
R(R)) �= ⊥ | R = ̂R ∧ Outi−1

A = ̂Out
i−1

A )]

≤ Pr[f i
L(L) �= L∗ ∧ f i

L(L) = ρL(f i
R(R)) | R = ̂R ∧ Outi−1

A = ̂Out
i−1

A )]
≤ 1/2.

We consider the number of adversarial queries such that both f i
L(L) = L′

is not the most frequent value (L∗) ∈ S ′
L and D3

ΣEq
(f i

L(L), f i
R(R)) �= ⊥. (note

that the total number of adversarial queries can be much higher). By the above
argument, the probability that there are yt number of rounds i such that both
f i

L(L) = L′ is not the most frequent value (L∗) ∈ S ′
L and D3

ΣEq
(f i

L(L), f i
R(R)) �=

⊥ is at most (1/2)yt ∈ negl(λ). Thus, we have concluded the proof for event (1).
The proof for event (2) is analogous.

We finally show the main technical claim of this section, which completes the
proof of Theorem 6.

Claim 4.5. In Hybrid 4, the encoded randomness 〈cL, cR〉 is statistically close to
uniform, given the view of the adversary.

Proof. Towards proving the claim, we consider the following leakage functions:

Leakage Function on cL: Fix ΣEq, com, d0, d1, universal hash h : {0, 1}α →
{0, 1}yo ∈ H (where α is the length of a single split-state of the encoding)
and adversary A. On input cL, set output OutA to “” and OutL to “”. Set
L = (com, [dcL[i]

i ]i∈[�]). Repeat the following in rounds i = 1, 2, . . .:

1. Obtain the next tampering function (fL, fR) from adversary A. If A termi-
nates then terminate with output OutL.

2. Set L′ := fL(L). If L′ ∈ S ′
L, then:

(a) Find the unique ̂R′ ∈ S ′
R such that D1

ΣEq
(L′, ̂R′) �= ⊥. Return (L′, ̂R′) to

the adversary. Set OutA = OutA||(L′, ̂R′).
(b) If L′ is not the most frequent output in S ′

L, set OutL := OutL||(i||h(L′))
If |OutL| > (log(q) + yo) · yt then terminate with output OutL :=
OutL||(i||⊥).

3. If L′ /∈ S ′
L, output ⊥ to the adversary and terminate with output OutL :=

OutL||(i||⊥).

The leakage function for the RHS is analogous.
We now show that given OutL and OutR we can reconstruct the full output

sequence for the adversary’s view with probability 1 − 2q
ε2·2yo = 1 − 2q

2y0/3 in the
following way:

Fix ΣEq, com, d0 = d01 . . . d02�, d
1 = d11 . . . d12�, universal hash h ← H and

adversary A. Set output OutA to “” and OutL to “”. Repeat the following in
rounds i = 1, 2, . . . , q:

1. Obtain the next tampering function (fL, fR) from adversary A given its
current view, OutA.

2. If (i,⊥) ∈ OutL or (i,⊥) ∈ OutR, set OutA = OutA||⊥ and abort.
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3. If (i, y) ∈ OutL, for some y �= ⊥, set L′ = ̂L′ such that ̂L′ ∈ S ′
L and

h(̂L′) = y.
4. If (i, ·) /∈ OutL, set L′ = ̂L′ such that ̂L′ ∈ S ′

L is the most frequent value.
5. If (i, y) ∈ OutR, for some y �= ⊥, set R′ = ̂R′ such that ̂R′ ∈ S ′

R and
h( ̂R′) = y.

6. If (i, ·) /∈ OutR, set R′ = ̂R′ such that ̂R′ ∈ S ′
R is the most frequent value.

7. If L′ = “same” and R′ = “same” output “same” and set OutA = OutA||
“same”.

8. Else if one of L′, R′ is “same” and not the other, set OutA = OutA||⊥ and
abort.

9. Else Parse L′ := (com, d[SL]) and R′ := (com′, d[SR]). If com �= com′, set
OutA = OutA||⊥ and abort.

10. Otherwise, set OutA = OutA||(L′, R′).

It can be determined by inspection that the incorrect value is output only if
in one of the at most 2q instances, there are two distinct values ̂L′, ̂L′′ ∈ S ′

L or
̂R′, ̂R′′ ∈ S ′

R such that h(̂L′) = h(̂L′′) or h( ̂R′) = h( ̂R′′). Due to universality of
h and the fact that |S ′

L| = |S ′
R| = 1/ε, this can occur with probability at most

2q
ε2·2yo , as claimed.3

Since |OutL| ≤ (log(q) + yo) · yt ≤ 2yo · yt ≤ c · � for constant c < 1 and
|OutR| ≤ (log(q) + yo) · yt ≤ 2yo · yt ≤ c · � for constant c < 1, we can use the
properties of the inner product extractor (check the full version of this paper [27]
for more details.) to argue that 〈cL, cR〉 is statistically close to uniform random,
given OutL,OutR. Moreover, since we have shown that the view of the adversary
in the Hybrid 4 can be fully reconstructed given OutL,OutR, we have that, in
the Hybrid 4, the encoded randomness 〈cL, cR〉 is statistically close to uniform,
given the adversary’s view in the CNMC experiment.
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Abstract. Dodis and Yu (TCC 2013) studied how the security of cryp-
tographic primitives that are secure in the “ideal” model in which the dis-
tribution of a randomness is the uniform distribution, is degraded when
the ideal distribution of a randomness is switched to a “real-world” (pos-
sibly biased) distribution that has some lowerbound on its min-entropy
or collision-entropy. However, in many constructions, their security is
guaranteed only when a randomness is sampled from some non-uniform
distribution (such as Gaussian in lattice-based cryptography), in which
case we cannot directly apply the results by Dodis and Yu.

In this paper, we generalize the results by Dodis and Yu using the
Rényi divergence, and show how the security of a cryptographic primi-
tive whose security is guaranteed when the ideal distribution of a ran-
domness is a general (possibly non-uniform) distribution Q, is degraded
when the distribution is switched to another (real-world) distribution R.
More specifically, we derive two general inequalities regarding the Rényi
divergence of R from Q and an adversary’s advantage against the secu-
rity of a cryptographic primitive. As applications of our results, we show
(1) an improved reduction for switching the distributions of distinguish-
ing problems with public samplability, which is simpler and much tighter
than the reduction by Bai et al. (ASIACRYPT 2015), and (2) how the dif-
ferential privacy of a mechanism is degraded when its randomness comes
from not an ideal distribution Q but a real-world distribution R. Finally,
we show methods for approximate-sampling from an arbitrary distribu-
tion Q with some guaranteed upperbound on the Rényi divergence (of
the distribution R of our sampling methods from Q).
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1 Introduction

1.1 Background and Motivation

Most cryptographic primitives such as encryption and signature schemes, are
defined using a probabilistic algorithm that internally generates and uses ran-
domness, and their security is typically defined and analyzed assuming that the
randomness used by the algorithm is sampled from some pre-determined “ideal”
distribution. Let us call it an ideal model. For example, in the case of encryp-
tion and signature schemes, their key generation algorithm is typically defined
as a probabilistic algorithm that takes a randomness chosen from the uniform
distribution as input, and we evaluate their security by estimating the prob-
ability of any possible adversary (with some resource constraint, e.g. running
time, memory size, the number of oracle queries) violating the security of the
considered schemes is sufficiently small. However, randomness available in the
real world may not necessarily come from the ideal distribution with which the
security of cryptographic primitives is analyzed. It is often the case that ran-
domness used for generating some secret parameter (such as a secret key) could
be biased and/or estimating its exact distribution could be difficult, for example,
a situation of using randomness generated based on some physical phenomena
(radiation, thermal noise, etc.) [5], a situation in which its partial information
is possibly leaked, or a situation of using randomness generated from biometric
information [8], to name a few. Even if a cryptographic primitive is guaranteed
to be secure in the ideal model via a formal security proof, the security of the
primitive is no longer guaranteed in the real world when such a “real-world”
randomness is used.

Regarding such “ideal” vs. “real-world” randomness problem, Dodis and
Yu [11] studied how the security of a cryptographic primitive in the ideal
model where the distribution of its randomness is the uniform distribution U ,
is degraded when the distribution is switched to another (“real-world”) possi-
bly biased distribution R. In particular, they showed that for all cryptographic
primitives categorized as unpredictability applications (e.g. one-way functions,
message authentication codes, and signature schemes) and for some (but not all)
cryptographic primitives categorized as indistinguishability applications satisfy-
ing the so-called “square-friendly” property [4,9,11] (e.g. pseudorandom func-
tions and IND-CPA secure encryption schemes), their security is not totally
lost even if the distribution of a randomness is switched to a real-world distri-
bution R that satisfies some entropy criteria. More specifically, Dodis and Yu
showed two inequalities that show how an adversary’s advantage against the
security of a cryptographic primitive could increase when the min-entropy or
collision-entropy of the real-world distribution R is decreased, compared to the
ideal model in which its distribution is the uniform distribution U and has the
maximum entropy.

However, an ideal distribution, which we denote by Q throughout this paper,
of a randomness used by cryptographic primitives is in general not necessarily
the uniform distribution. For example, there are constructions in lattice-based
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cryptography in which a secret key is sampled from the (discrete) Gaussian
distribution (e.g. [2,16]), and randomness (a noise vector) used in the encryption
procedure is chosen according to a biased distribution so that 0 appears more
often than other values (e.g. [15]). When implementing these constructions in
practice, again the real-world distribution R of a randomness may not necessarily
follow the ideal distribution Q. However, for these constructions, we cannot
directly apply the results by Dodis and Yu [11], since their results are restricted
to the case in which the ideal distribution Q of a randomness is the uniform
distribution.

The main motivation of our work is to generalize and extend the results by
Dodis and Yu [11], so that we can apply the analogues of their results to a wider
class of distributions as the ideal distribution Q.

1.2 Our Results

As mentioned above, we generalize and extend the results by Dodis and Yu
[11] so that the analogues of their results can be applied to a wider class of
distributions as the ideal distribution Q of a randomness. The main tool we use
in this paper is the Rényi divergence [21,23], which is a measure of divergence
between distributions, and has recently been found useful in security evaluations
of cryptographic primitives [1,3,6,19,22].

Our results are summarized as follows:

– In Sect. 3, we show two general lemmas that serve as the main tools through-
out the paper, which are inequalities on two expectations each taken over
arbitrary distribution Q and over R, respectively (where intuitively, Q is an
“ideal” distribution and R is a “real-world” distribution), and involve the
Rényi divergence of R from Q. These lemmas are generalizations of the lem-
mas shown by Dodis and Yu [11], who showed similar inequalities involving
the min-entropy and collision-entropy of the “real-world” distribution R, and
theirs can only handle the case where the “ideal” distribution Q is the uniform
distribution.

– Based on our general lemmas, in Sect. 4, we show general techniques for eval-
uating security of a cryptographic primitive (or, we use the term “applica-
tion” following the style of [11] from here on) in case the distribution of
a parameter (such as a secret key and/or a randomness) is switched from
an ideal distribution Q to an arbitrary “real-world” distribution R, using
the Rényi divergence. As in [11], we show two types of results, one regard-
ing unpredictability applications and the other regarding “square-friendly”
indistinguishability applications. These results are generalizations of the cor-
responding results by Dodis and Yu [11], where their results only capture the
case in which the ideal distribution Q is the uniform distribution.

– In Sect. 5, we show two applications of the above general results: one applica-
tion from our general security evaluation technique for square-friendly indis-
tinguishability applications from Sect. 4, and the other application from one
of our lemmas in Sect. 3.
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• Our first application is for switching the distribution of a problem instance
in distinguishing problems that satisfy the property called public sam-
plability, formalized by Bai et al. [3]. Using the Rényi divergence, they
showed a reduction from the hardness of a problem in this class to the
hardness of the same problem but in which the distribution of a param-
eter behind a problem instance is switched from an original distribution
Q to another distribution R. We show that distinguishing problems with
public samplability are square-friendly in the sense of [4,9,11], thereby we
can apply our above result on the general security evaluation technique
of square-friendly applications under switching distributions to obtain a
quantitatively improved reduction. Although our results are not applica-
ble to the case in which the order α of the Rényi divergence is less than
2, our result gives a simpler and much tighter reduction than that of [3]
for all α ≥ 2. Concretely, if we compare the ratio of the running time and
the advantage of the reduction algorithm (which is sometimes called the
“work factor”, and a smaller value means a tighter reduction) for the same
order of the Rényi divergence, the work factor of our reduction (solving
the problem under distribution Q) is always at least O(ε−2) times smaller
than that of the reduction shown in [3], where ε denotes the advantage of
an underlying adversary (solving the problem under distribution R). For
the details, see Sect. 5.1.

• As the second application, we show that how differential privacy [12–14]
of a mechanism is degraded when the randomness used by the mechanism
comes from not an ideal distribution Q but a real-world distribution R,
using the Rényi divergence of order ∞. It is typical that non-uniform
distributions that are uncommon in the constructions of cryptographic
primitives (e.g. the Laplace distribution, the matrix Bingham distribu-
tion [7]), are used in the literature of differential privacy. Thus, although
simple, we believe that this result is useful. For the details, see Sect. 5.2.

– Finally, motivated by the difficulty of sampling randomness from non-uniform
distributions in computer implementations in practice, and in the light of
the usefulness and versatility of the Rényi divergence in cryptography, in
Sect. 6, we show two methods for approximate sampling from an arbitrary
distribution Q by using a uniformly chosen random string via the inversion
sampling (a.k.a. inverse transform sampling), with the guarantee that the
Rényi divergence of the distribution of our sampling method (which we denote
by R) from the target ideal distribution Q, is upperbounded. We show two
results: one for the Rényi divergence of order 2 and the other for the Rényi
divergence of order ∞.

We remark that previously, Yao and Li [24] showed some generalization
of Dodis and Yu’s lemmas [11] using Rényi entropy (which incorporates min-
entropy and collision-entropy as special cases), and corresponding techniques for
evaluating security of unpredictability and square-friendly indistinguishability
applications, in a similar way we do in this paper. Interestingly, [24] uses the
Hölder inequality as a main tool, which we also use for showing one of our tech-
nical lemmas in Sect. 3. Like [11], however, the results of [24] are only applicable
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to the case in which the ideal distribution is the uniform distribution (and the
real-world distribution has some high Rényi entropy), and our results in this
paper are more general than their main theorems [24, Theorems 3.2 and 3.3] in
the sense that the latter can be derived from ours. On the other hand, Yao and
Li also studied the application of their results to a setting where the real-world
distribution only has some high computational version of Rényi entropy, which
is a setting we do not explore in this work. It would be interesting to investigate
whether results with computational variants of Rényi divergence analogous to
[24] can be established.

1.3 Paper Organization

The rest of the paper is organized as follows. In Sect. 2, we review basic notation
and the definitions used in the paper. In Sect. 3, we show two general lemmas
that are used throughout the subsequent sections. In Sect. 4, we show two gen-
eral techniques for evaluating the security of cryptographic primitives, one for
unpredictability applications and the other for “square-friendly” indistinguisha-
bility applications. In Sect. 5, we show two applications of the results from the
previous sections, one for an improved reduction for a class of distinguishing
problems called distinguishing problems with public samplability, and the other
for differential privacy. In Sect. 6, we propose two inversion sampling methods
for arbitrary discrete distributions, with some guaranteed upperbounds on the
Rényi divergence.

2 Preliminaries

In this section, we review the basic notation and the definitions for the Rényi
divergence and entropy, and some useful lemmas.

2.1 Basic Notation

N, Z≥0, R, and R≥0 denote the set of all natural numbers, all non-negative
integers, all real numbers, and all non-negative real numbers, respectively. For
n ∈ N, we define [n] := {1, . . . , n}. If S is a finite set, then “|S|” denotes its
size, and “x ←R S” denotes that x is chosen uniformly at random from S. If
X is a distribution (over some set), then “x ←R X” denotes that x is chosen
according to the distribution X , and “[X ]” denotes the support of X , i.e. [X ] :=
{x|Pr[X = x] > 0}. In this paper, we only treat discrete distributions.

If A is a probabilistic algorithm, then “A(x)” denotes the distribution of
A’s output when it takes x as input and uses an internal randomness chosen
according to some prescribed distribution, and if we need to specify a particular
randomness r used by A, we denote it by “A(x; r)” (in which case the computa-
tion of A is deterministic that takes x and r as input).
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2.2 Hölder Inequality

Here, we recall the Hölder inequality.

Lemma 1 (Hölder Inequality). Let n ∈ N, and let (a1, . . . , an) and (b1, . . . ,
bn) be sequences of real numbers. Let α, β ∈ (1,∞) be real numbers such that
1
α + 1

β = 1. Then, it holds that

∑

i∈[n]

|ai · bi| ≤
(∑

i∈[n]

|ai|α
) 1

α ·
(∑

i∈[n]

|bi|β
) 1

β

.

Note that the case of α = β = 2 implies the Cauchy-Schwarz inequality.

2.3 Rényi Divergence

Here, we recall the definition of Rényi divergence in the form typically used in
cryptography.1

Definition 1. Let Q and R be distributions such that [R] ⊆ [Q], and let α > 1
be a real number. The Rényi divergence of order α (or α-Rényi divergence, for
short) of the distribution R from the distribution Q, denoted by RDα(R‖Q), is
defined by

RDα(R‖Q) :=
( ∑

z∈[Q]

Pr[R = z]α

Pr[Q = z]α−1

) 1
α−1

,

and the ∞-Rényi divergence of R from Q is given by

RD∞(R‖Q) := max
z∈[Q]

Pr[R = z]
Pr[Q = z]

.

It is known that the Rényi divergence is non-decreasing in its order, and not
less than 1 when α > 1 (see [23]). Thus, for any distributions Q and R and
1 < α < α′, we have 1 ≤ RDα(R‖Q) ≤ RDα′(R‖Q).

It is also known that the Rényi divergence enjoys several (multiplicative)
analogues of the properties satisfied by the statistical distance (see [3, Lemma
2.9]). Here, we recall the so-called probability preservation property of the Rényi
divergence.

Lemma 2 (Probability Preservation). Let Q and R be distributions over
the same set X such that [R] ⊆ [Q] ⊆ X. Then, for all E ⊆ X and α ∈ (1,∞),
it holds that

Pr[R ∈ E] ≤ min
{ (

RDα(R‖Q) · Pr[Q ∈ E]
)α−1

α

, RD∞(R‖Q) · Pr[Q ∈ E]
}

.

1 In a non-cryptographic context, it is typical to define the α-Rényi divergence as the
logarithm of the quantity RDα defined here [23].
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2.4 Entropy

Here, we recall the definitions of entropy.

Definition 2. Let X (resp. Y) be a distribution defined over a set X (resp. Y ).

– The min-entropy of X , denoted by H∞(X ), is defined by

H∞(X ) := − log2
(
max
x∈X

Pr[X = x]
)
.

– The average collision-entropy of X given Y, denoted by H2(X|Y), is defined
by

H2(X|Y) := − log2
(

E
y←RY

[∑

x∈X

Pr[X = x|Y = y]2
])

.

3 General Lemmas for Switching Distributions

In this section, we show two lemmas that are used as the main tools for showing
our results in the subsequent sections. Our lemmas are generalizations of the
lemmas shown by Dodis and Yu [11]. Thus, for reference we first recall their
lemmas in Sect. 3.1. We then show our lemmas in Sect. 3.2.

3.1 Lemmas by Dodis and Yu

Dodis and Yu [11] showed the following lemmas. Actually, they only state the
lemmas for functions taking bitstrings as input, but the lemmas straightfor-
wardly generalize for functions with any domain. Thus, we state such versions.

Lemma 3 (Lemma 1 in [11]). Let X be a finite set, R be a distribution over
X, and U be the uniform distribution over X. Then, for any (deterministic)
non-negative function f : X → R≥0, we have

E[f(R)] ≤ |X| · 2−H∞(R) · E[f(U)].

Lemma 4 (Adapted from Lemmas 5 and 7 in [11]2). Let X and Y be
finite sets, and (R,S) be a joint distribution over X × Y . Let U be the uniform
distribution over X. Then, for any (deterministic) real-valued function f : X ×
Y → R, we have

∣∣∣E[f(R,S)]
∣∣∣ ≤

√
|X| · 2−H2(R|S) · E[f(U ,S)2] and

∣∣∣E[f(R,S)] − E[f(U ,S)]
∣∣∣ ≤

√
(|X| · 2−H2(R|S) − 1) · E[f(U ,S)2].

2 Lemma 7 in [11] is attributed to Barak et al. [4].
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3.2 Our Lemmas

Our first lemma is as follows.

Lemma 5. Let Q and R be distributions over the same set X such that [R] ⊆
[Q] ⊆ X. Then, for any (deterministic) real-valued function f : X → R and any
α ∈ (1,∞), we have

∣∣∣E[f(R)]
∣∣∣ ≤ min

{(
RDα(R‖Q) · E

[
|f(Q)| α

α−1

])α−1
α

, RD∞(R‖Q) · E
[
|f(Q)|

]}
.

(1)

Relation to Dodis and Yu’s Lemma. Before providing the proof, let us remark
that the above lemma is a generalization of Lemma 3 and the first inequality
in Lemma 4. To see this, note that for any distribution R over some set X and
the uniform distribution U over X, we have RD∞(R‖U) = maxx∈X

Pr[R=x]
Pr[U=x] =

|X| · 2−H∞(R), and thus Lemma 3 can be obtained by setting Q = U in our
lemma for non-negative functions. Also, let S be an arbitrary distribution over
some set Y that forms a joint distribution (R,S) over X × Y . Then, we have

RD2
(
(R,S)‖(U ,S)

)
=

∑

(x,y)∈X×Y

Pr[R = x ∧ S = y]2

Pr[U = x ∧ S = y]

=
∑

(x,y)∈X×Y

(Pr[R = x|S = y] · Pr[S = y])2
1

|X| · Pr[S = y]

= |X| ·
∑

y∈Y

Pr[S = y] ·
(∑

x∈X

Pr[R = x|S = y]2
)

= |X| · 2−H2(R|S),

and thus, the first inequality in Lemma 4 can be obtained by setting R in our
lemma to be (R,S) explained here, setting Q = (U ,S), and then invoking our
lemma for general real-valued functions and α = 2.

Proof of Lemma 5. For each z ∈ [Q], let rz := Pr[R = z] and qz := Pr[Q = z].
The bound regarding the ∞-Rényi divergence can be shown as follows:

∣∣∣E[f(R)]
∣∣∣ ≤

∑

z∈[Q]

rz · |f(z)|
(∗)
≤

∑

z∈[Q]

RD∞(R‖Q) · qz · |f(z)|

= RD∞(R‖Q) · E
[
|f(Q)|

]
,

where the inequality (*) uses the probability preservation property (Lemma 2),
which implies rz ≤ RD∞(R‖Q) · qz.

The bound for a general α ∈ (1,∞) does not simply follow from the prob-
ability preservation property, but can be shown using the Hölder inequality
(Lemma 1). Specifically, we have
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∣∣∣E[f(R)]
∣∣∣ ≤

∑

z∈[Q]

(
rz · q

− α−1
α

z

)
· q

α−1
α

z · |f(z)|

(∗)
≤
( ∑

z∈[Q]

(
rz · q

− α−1
α

z

)α) 1
α ·
( ∑

z∈[Q]

(
q

α−1
α

z · |f(z)|
) α

α−1
)α−1

α

=
( ∑

z∈[Q]

rα
z · q−(α−1)

z

) 1
α ·
( ∑

z∈[Q]

qz · |f(z)| α
α−1

)α−1
α

=
(
RDα(R‖Q)α−1

) 1
α ·
(
E
[
|f(Q)| α

α−1

])α−1
α

,

where the inequality (*) is due to the Hölder inequality. Note that the rightmost
is equivalent to the first bound in Eq. (1). �� (Lemma 5)

Note that if the range of a function f is [0, 1], then f(z)a ≤ f(z) holds for
every a ≥ 1, and thus the inequalities in Lemma 5 can be slightly simplified. For
our purpose, it is useful to formally state it as a corollary, which can be seen as
a generalization of the probability preservation property (Lemma 2).

Corollary 1 (Special Case of Lemma 5). Let Q and R be the same as
in Lemma 5. Then, for any (deterministic) function f : X → [0, 1] and any
α ∈ (1,∞), we have

E[f(R)] ≤ min
{ (

RDα(R‖Q) · E[f(Q)]
)α−1

α

, RD∞(R‖Q) · E[f(Q)]
}

.

Our second lemma is as follows. Similarly to our first lemma, the lemma here
is a generalization of the second inequality in Lemma 4.

Lemma 6. Let Q and R be distributions over the same set X such that [R] ⊆
[Q] ⊆ X. Then, for any (deterministic) real-valued function f : X → R, we have

∣∣∣E[f(R)] − E[f(Q)]
∣∣∣ ≤

√
(RD2(R‖Q) − 1) · E[f(Q)2]. (2)

Proof of Lemma 6. Let c ∈ R≥0. Using the same notation as in the proof of
Lemma 5, we have
∣∣∣E[f(R)] − c · E[f(Q)]

∣∣∣ =
∣∣∣
∑

z∈[Q]

( rz√
qz

− c · √
qz

)
· √

qz · f(z)
∣∣∣

≤
√√√√

∑

z∈[Q]

( rz√
qz

− c · √
qz

)2
·
√∑

z∈[Q]

qz · f(z)2

=

√√√√
∑

z∈[Q]

r2z
qz

− 2c ·
∑

z∈[Q]

rz + c2 ·
∑

z∈[Q]

qz ·
√

E[f(Q)2]

=
√

(RD2(R‖Q) − 2c + c2) · E[f(Q)2],
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where the inequality is due to the Cauchy-Schwarz inequality (Lemma 1 with
α = β = 2), and the last equality uses

∑
z∈[Q] rz =

∑
z∈[Q] qz = 1. Then, Eq. (2)

is obtained by taking c = 1.3 �� (Lemma 6)

4 General Security Evaluation Techniques via Rényi
Divergence

In this section, we show general techniques for evaluating security in case the
distribution of a parameter (e.g. a secret key, randomness etc.) in a security
game is switched from an “ideal” distribution Q to an arbitrary “real-world”
distribution R, using the Rényi divergence.

Specifically, in Sect. 4.1, we first recall the definition of an abstract security
game in the style of [11] that abstractly captures most security games used in
cryptography, in particular unpredictability applications and indistinguishability
applications. There, we also recall the notion of “square-security” [4,11]. It plays
an important role when showing results for “square-friendly” applications, which
is a class of applications including all unpredictability applications and many
indistinguishability applications.

Then, in Sects. 4.2 and 4.3, we show general results on how the security of
applications in the “ideal” model in which a parameter is drawn from an ideal
distribution Q, is “degraded” in the “real-world” model in which a parameter is
drawn from an arbitrary distribution R. Our result for unpredictability applica-
tions is given in Sect. 4.2, and our result for square-friendly indistinguishability
applications is given in Sect. 4.3.

4.1 Definitions

Abstract Security Game. We define a general type of cryptographic applications
in the same manner as [11]. The security of a cryptographic application Π is
defined via an interactive security game between a probabilistic adversary A
and a probabilistic challenger C(r), where C is fixed by the definition of Π,
and r ∈ X is a “parameter”4 in the security game that is drawn from some
distribution, which we wish to switch to another distribution using the Rényi
divergence. The game can have an arbitrary structure, and after the interaction
with the adversary A, the challenger C(r) outputs a bit. If C(r) outputs 1 (resp.
0), A is said to win (resp. lose) the game. As usual, we consider two types of
cryptographic applications: unpredictability applications and indistinguishability
applications. The former type captures applications in which it is hard for an
adversary to compute some value (e.g. a preimage of a one-way function, forging a
signature on a fresh message), and the latter type captures applications in which

3 We can also obtain the proof of the case α = 2 of our first lemma by setting c = 0
in this proof. Setting other values for c does not seem to give us any merit.

4 In [11], r was called a “secret key”. Since r can be any value sampled in the security
game, we call it just a “parameter”.
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it is hard for an adversary to guess the challenge bit chosen by the challenger
(e.g. security of a pseudorandom function, IND-CPA security of an encryption
scheme).

Given a particular parameter r ∈ X, let WinA(r) be the probability that A
wins in the security game played with the challenger C(r), where the probability
is over the choice of the randomness consumed by A and C(r). Then, we define
the advantage AdvA(r) of A on r (against particular C fixed by an application
Π) as follows:

AdvA(r) :=

{
WinA(r) (for unpredictability applications)
2 · WinA(r) − 1 (for indistinguishability applications)

.

The actual advantage of an adversary in a security game is defined by taking
(the absolute value of) the expectation over the choice of the parameter r in
the game. In this paper, as in [11], we will treat ordinary security and “square-
security”, the latter of which takes the expectation of the squared value of the
advantage and plays an important role for the results on indistinguishability
applications that are “square-friendly”. The (square-)security of Π in case the
parameter r is chosen according to a distribution X , is called (square-)security
in the X -model.

Definition 3 (Security and Square-Security (Adapted from [11])). Let
X be a distribution over the parameter space X. We say that an application Π
is

– (T, ε)-secure in the X -model, if for all adversaries A with resource5 T , it holds
that |E[AdvA(X )]| ≤ ε.
|E[AdvA(X )]| is called the advantage of A in the X -model.

– (T, σ)-square-secure in the X -model, if for all adversaries A with resource T ,
it holds that E[AdvA(X )2] ≤ σ.
E[AdvA(X )2] is called the square-advantage of A in the X -model.

4.2 General Result for Unpredictability Applications

Our result for unpredictability applications is stated as follows.

Theorem 1. Let Π be an unpredictability application. Let Q and R be distri-
butions over the parameter space X satisfying [R] ⊆ [Q] ⊆ X. Then, for any
adversary A against the security of Π, it holds that6

E[AdvA(R)] ≤ FQ→R
(
E[AdvA(Q)]

)
,

5 Resource of an adversary abstractly models all of an adversary’s efficiency measures,
e.g. the running time, the circuit size, the number of oracle queries, etc.

6 Note that for unpredictability applications, the absolute value of an adversary A’s
advantage can be removed.
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where the function FQ→R(·) is defined by

FQ→R(ε) := min

⎧
⎪⎪⎨

⎪⎪⎩

minα∈(1,∞)

(
RDα(R‖Q) · ε

)α−1
α

,

RD∞(R‖Q) · ε,

ε +
√

(RD2(R‖Q) − 1) · ε

⎫
⎪⎪⎬

⎪⎪⎭
.

In particular, if Π is (T, ε)-secure in the Q-model, then Π is also (T, FQ→R(ε))-
secure in the R-model.

This theorem shows how the security of an unpredictability application under
a real-world distribution R is guaranteed in terms of its security under an ideal
distribution Q, via the Rényi divergence. In particular, this theorem gives us
an implication to the standard asymptotic-style security: If an unpredictability
application is secure in the Q-model in the asymptotic sense (i.e. any efficient
adversary’s advantage in the Q-model is bounded by a negligible function of
a security parameter), it remains secure in the R-model as long as the Rényi
divergence of some order α ∈ (1,∞] is bounded by a polynomial of the security
parameter.

Proof of Theorem 1. Let A be any adversary against the security of Π. Since
Π is an unpredictability application, the range of AdvA(·) is [0, 1]. Thus, A’s
advantage in the R-model (resp. Q-model) is E[AdvA(R)] (resp. E[AdvA(Q)]).
Then, E[AdvA(R)] ≤ minα∈(1,∞)(RDα(R‖Q)·E[AdvA(Q)])

α−1
α and E[AdvA(R)] ≤

RD∞(R‖Q) ·E[AdvA(Q)], are obtained by applying Corollary 1 to the advantage
function AdvA(·).

To complete the proof, it remains to show E[AdvA(R)] ≤ E[AdvA(Q)] +√
(RD2(R‖Q) − 1) · E[AdvA(Q)]. By the triangle inequality, we have

E[AdvA(R)] ≤ E[AdvA(Q)] +
∣∣∣E[AdvA(R)] − E[AdvA(Q)]

∣∣∣.

Regarding the second term in the right hand side, due to Lemma 6, we have
∣∣∣E[AdvA(R)] − E[AdvA(Q)]

∣∣∣ ≤
√

(RD2(R‖Q) − 1) · E[AdvA(Q)2]

≤
√

(RD2(R‖Q) − 1) · E[AdvA(Q)],

where we use AdvA(·)2 ≤ AdvA(·), which is in turn because its range is [0, 1].
Combining the two inequalities yields the desired inequality. �� (Theorem 1)

4.3 General Result for Square-Friendly Indistinguishability
Applications

Here, we show our general result for “square-friendly” indistinguishability appli-
cations, which is done via the notion of square-security.

We first show how the security of any application (including both unpre-
dictability and indistinguishability applications) under a real-world distribution
R is guaranteed from its square-security (and ordinary security) under an ideal
distribution Q, via the 2-Rényi divergence RD2(R‖Q).
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Lemma 7. Let Π be an (unpredictability/indistinguishability) application. Let
Q and R be distributions over the parameter space X satisfying [R] ⊆ [Q] ⊆ X.
Then, for any adversary A against the security of Π, it holds that

∣∣∣E[AdvA(R)]
∣∣∣ ≤ GQ→R

( ∣∣∣E[AdvA(Q)]
∣∣∣, E[AdvA(Q)2]

)
,

where the function GQ→R(·, ·) is defined by

GQ→R(ε, σ) := min
{ √

RD2(R‖Q) · σ, ε +
√

(RD2(R‖Q) − 1) · σ
}

. (3)

In particular, if Π is (simultaneously) (T, ε)-secure and (T, σ)-square-secure in
the Q-model, then Π is also (T,GQ→R(ε, σ))-secure in the R-model.7

Proof of Lemma 7. Let A be any adversary against the security of Π. Then, apply-
ing the first bound in Eq. (1) in Lemma 5 with α = 2 to the advantage function
AdvA(·), we immediately obtain |E[AdvA(R)]| ≤ √

RD2(R‖Q) · E[AdvA(Q)2].
To complete the proof, it remains to show |E[AdvA(R)]| ≤ |E[AdvA(Q)]| +√

(RD2(R‖Q) − 1) · E[AdvA(Q)2]. By the triangle inequality, we have
∣∣∣E[AdvA(R)]

∣∣∣ ≤
∣∣∣E[AdvA(Q)]

∣∣∣+
∣∣∣E[AdvA(R)] − E[AdvA(Q)]

∣∣∣.

Regarding the second term in the right hand side, due to Lemma 6, we have
∣∣∣E[AdvA(R)] − E[AdvA(Q)]

∣∣∣ ≤
√

(RD2(R‖Q) − 1) · E[AdvA(Q)2].

Combining the two inequalities yields the desired inequality. �� (Lemma 7)

Next, we would like to establish the implication of the security of an indis-
tinguishability application to its square-security, but unfortunately it is known
that for some indistinguishability applications, their square-security is not nec-
essarily implied by the ordinary security. Fortunately, however, the works of
Barak et al. [4] and Dodis and Yu [11] showed that for some indistinguishabil-
ity applications in which the so-called “double-run trick” is applicable, ordinary
(non-square) security does imply its corresponding square-security. Dodis and
Yu formalized a sufficient condition for such indistinguishability applications as
what they call simulatability. It is this property that makes indistinguishability
applications square-friendly. We recall the definition here.

Definition 4 (Simulatability [11]). Consider an indistinguishability applica-
tion Π in the security game of which possibly there is a “failure predicate”8 F

7 Note that the first bound does not involve the (non-square) advantage |E[AdvA(Q)]|,
and hence is true regardless of the (non-square) security of Π in the Q-model.

8 A failure predicate models the restrictions in a security game that typically pre-
vent an adversary from winning the game trivially, e.g., submitting the challenge
ciphertext as a decryption query in the IND-CCA security game of an encryption
scheme.
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(that is efficiently checkable by both an adversary A and the challenger C(r))
such that C(r) regards A as winning the game if A succeeds in guessing the chal-
lenge bit and does not violate F , while if A violates F , the challenger flips a
random coin on behalf of A and uses it to decide if A wins the game or not9. We
say that Π is (T ′, T, γ)-simulatable, if for any parameter r and any adversary A
whose resource is T and that never violates the failure predicate F , there exists
an adversary B (against the security of Π) with resource T ′ (for some T ′ ≥ T )
such that:

1. The execution between B and “real” C(r) defines two independent executions
between a copy Ai of A and a “simulated” challenger Ci(r), for i = 1, 2. In
particular, except reusing the same r, A1, C1(r), A2, and C2(r) use fresh and
independent randomness, including independent challenge bits b1 and b2.

2. The challenge bit b used by the “real” C(r) is equal to the challenge bit b2
used by the “simulated” C2.

3. Before making its guess b′ of the challenge bit b, B learns the values b1, b′
1,

and b′
2, where each b′

i denotes Ai’s guess for bi.
4. The probability of B violating the failure predicate F is at most γ.

Though it might look somewhat complicated, as noted in [11], simulatability
is satisfied by many natural indistinguishability applications, such as IND-CPA
and IND-CCA security of encryption schemes, (weak) pseudorandom functions.
Looking ahead, in Sect. 5.1, we will see another example of indistinguishability
applications with simulatability, which is called “distinguishing problems with
public samplability” formalized by Bai et al. [3].

We now show that for indistinguishability applications that satisfy simulata-
bility as defined above, their square-security is indeed implied by the ordinary
security. This is a generalized version of [11, Lemma 4].

Lemma 8. Let X be a distribution over the parameter space X. If an indis-
tinguishability application Π is (T ′, T, γ)-simulatable (with T ′ ≥ T ), then for
any adversary A with resource T against the security of Π, there exists another
adversary B with resource T ′ against the security of Π, such that

E[AdvA(X )2] ≤
∣∣∣E[AdvB(X )]

∣∣∣+ γ.

In particular, if Π is (T ′, ε)-secure in the X -model and (T ′, T, γ)-simulatable,
then Π is also (T, ε + γ)-square-secure in the X -model.

Proof of Lemma 8. This theorem can be shown via the “double-run trick” [4,11].
Let Π be an indistinguishability application that is (T, T ′, γ)-simulatable. Let
A be any adversary with resource T against the security of Π, and let B be

9 This is to offset an adversary’s advantage in case it violates the failure predicate F .
How an adversary’s advantage is affected in case it violates the failure predicate F is
not explicit in the definition of [11], and thus we adopt (seemingly) the most natural
choice which is also convenient for our purpose.
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the adversary (corresponding to A and the challenger C(r), where r is chosen
according to X ) with resource T ′ against the security of Π, which is guaranteed
to exist by the (T ′, T, γ)-simulatability of Π. We augment B as an adversary
against the security of Π so that when B successfully finishes the two executions
of A (without violating the failure predicate), if b′

1 = b1 then B sets b′ := b′
2,

otherwise sets b′ := 1−b′
2, and outputs b′ as its guess for the challenge bit, which

we denote by b2. Let F be the event that B violates the failure predicate. Then,
due to the (T ′, T, γ)-simulatability, both of B’s simulations of the challenger
C(r) for A are perfect as long as F does not happen, and whether F happens is
independent of the choice of r and whether b′

1 = b1 or b′
2 = b2 occurs. Hence, B’s

advantage on a fixed parameter r can be calculated as follows:

AdvB(r) = 2 · WinB(r) − 1 = 2 · Pr[b′ = b2] − 1

= 2 ·
(
Pr[b′

1 = b1 ∧ b′
2 = b2 ∧ F] + Pr[b′

1 �= b1 ∧ b′
2 �= b2 ∧ F] +

1
2

Pr[F]
)

− 1

= (1 − Pr[F]) ·
(
2 · Pr[b′

1 = b1 ∧ b′
2 = b2] + 2 · Pr[b′

1 �= b1 ∧ b′
2 �= b2] − 1

)
.

Here, Pr[b′
1 = b1 ∧ b′

2 = b2] (resp. Pr[b′
1 �= b1 ∧ b′

2 �= b2]) corresponds to the
probability (which does not include the choice of r) that A wins (resp. loses) the
game played with C(r) twice, and thus is equal to WinA(r)2 (resp. (1−WinA(r))2).
Hence, we have

AdvB(r) = (1 − Pr[F]) ·
(
2 · WinA(r)2 + 2 · (1 − WinA(r))2 − 1

)

= (1 − Pr[F]) ·
(
2 · WinA(r) − 1

)2

= (1 − Pr[F]) · AdvA(r)2.

From this equality, Pr[F] ≤ γ, and the fact that the square-advantage is at most
1, we obtain

∣∣∣E[AdvB(X )]
∣∣∣ = (1 − Pr[F]) · E[AdvA(X )2] ≥ E[AdvA(X )2] − γ,

which is equivalent to the inequality stated in the theorem. �� (Lemma 8)

Combining Lemma 8 with Lemma 7, we obtain our general result for square-
friendly indistinguishability applications. Specifically, the following theorem
shows how the security of an indistinguishability application satisfying simu-
latability under a real-world distribution R is guaranteed in terms of its security
under an ideal distribution Q, via the 2-Rényi divergence RD2(R‖Q).

Theorem 2. Let Q and R be distributions over the parameter space X sat-
isfying [R] ⊆ [Q] ⊆ X. If an indistinguishability application Π is (T ′, T, γ)-
simulatable (with T ′ ≥ T ), then for any adversary A with resource T against the
security of Π, there exists an adversary B with resource T ′ against the security
of Π, such that

∣∣∣E[AdvA(R)]
∣∣∣ ≤ GQ→R

( ∣∣∣E[AdvA(Q)]
∣∣∣,
∣∣∣E[AdvB(Q)]

∣∣∣+ γ
)
,
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where the function GQ→R(·, ·) is defined as in Eq. (3) of Lemma 7. In particular,
if Π is (T ′, ε)-secure in the Q-model and (T ′, T, γ)-simulatable, then Π is also
(T,GQ→R(ε, ε + γ))-secure in the R-model.

It would be an interesting question whether our general result for indistin-
guishability applications can be extended to those without simulatability.

5 Applications

In this section, we show some applications of our results from Sects. 3 and 4.
Specifically, in Sect. 5.1, we show an improved reduction for a class of distin-

guishing problems, called distinguishing problems with public samplability for-
malized by Bai et al. [3], using our results for indistinguishability applications
with simulatability given in Sect. 4. Next, in Sect. 5.2, we show how one of the
general lemmas shown in Sect. 3 is useful for assessing the differential privacy
[12–14] of a privacy mechanism in which randomness (a.k.a. “noise”) comes from
a “real-world” distribution in terms of its differential privacy with an ideal ran-
domness distribution.

5.1 Tighter Reduction for Distinguishing Problems with Public
Samplability

In [3], Bai et al. formalized a class of distinguishing problems called distinguishing
problems with public samplability. Informally, a distinguishing problem is said
to have public samplability if given a problem instance x which is generated
according to one of distributions D0(r) or D1(r) where r denotes a parameter
chosen from some distribution common to both D0 and D1, we can efficiently
sample a “fresh” sample from both D0(r) and D1(r), regardless of whether the
original x comes from D0(r) or D1(r). One example of such a problem is the
learning with errors (LWE) problem, which is a problem to decide, given a
matrix/vector pair (A,b), whether the vector b is of the form b = A ·s+e where
s is a secret vector and e is a small “noise” vector, or b is chosen uniformly
at random. It has public samplability because given a problem instance x =
(A,b), one can sample fresh LWE problem instances having the same A. (In
this example, r is the matrix A.)

Bai et al. showed a reduction that reduces the hardness of a distinguishing
problem with public samplability to the hardness of the same problem in which
the distribution of a parameter r is changed to another distribution, using the
Rényi divergence.

Our result in this subsection is a tighter reduction than the one by Bai
et al. To formally show our result and give a comparison, we first recall the
formal definition of distinguishing problems with public samplability, and then
recall the result by Bai et al.

Definition 5 (Distinguishing Problem with Public Samplability [3]). A
distinguishing problem is a type of indistinguishability application and consists
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of a tuple D = (X,D0,D1) where X is the parameter space, and D0 and D1

are (possibly probabilistic) functions with domain X. In the security game of D,
the challenger C(r) (which receives a parameter r ∈ X as input) first picks the
challenge bit b ∈ {0, 1} uniformly at random, samples x ←R Db(r), and gives x
to an adversary A. When A returns its guess b′ for b, C(r) decides that A wins
(resp. loses) the game if b′ = b (resp. b′ �= b) and outputs 1 (resp. 0).

We say that a distinguishing problem D = (X,D0,D1) is publicly samplable,
if there exists a probabilistic algorithm S (called the sampling algorithm) satisfy-
ing the following properties:

– S takes a bit b and a sample x (output by D0 or D1) as input, and outputs
some value x′.10

– For any (r, b) ∈ X × {0, 1} and any values x output by Db(r),
• The output of S(0, x) is distributed identically to a fresh sample chosen

according to the distribution D0(r).
• The output of S(1, x) is distributed identically to a fresh sample chosen

according to the distribution D1(r).

Theorem 3 (Theorem 4.2 of [3]). Let D = (X,D0,D1) be a distinguishing
problem with public samplability, and let S be the corresponding sampling algo-
rithm whose running time is TS. Let Q and R be distributions over the parameter
space X such that [R] ⊆ [Q] ⊆ X. Then, for any adversary A against the security
of D with running time TA and advantage |E[AdvA(R)]| = εA in the R-model,
and for any α ∈ (1,∞], there exists another adversary B against the security of
D with running time TB and advantage |E[AdvB(Q)]| = εB in the Q-model, such
that:

TB ≤ 64
ε2A

log2

⎛

⎝8 · RDα(R‖Q)

ε
2+ 1

α−1
A

⎞

⎠ · (TA + TS), and

εB ≥ 1

23+
1

α−1 · RDα(R‖Q)
· ε

2+ 1
α−1

A .

Now, we show our result.

Theorem 4. Let D = (X,D0,D1), R, and Q be the same as in Theorem 3.
Then, for any adversary A against the security of D with running time TA and
advantage |E[AdvA(R)]| = εA in the R-model, there exists another adversary B
against the security of D with running time TB and advantage |E[AdvB(Q)]| = εB
in the Q-model, such that:

TB = 2TA + TS + τ,

εB ≥ 1
RD2(R‖Q)

· ε2A

(
≥ 1

RDα(R‖Q)
· ε2A for anyα ∈ [2,∞]

)
, (4)

where τ represents some (small) constant independent of TA and εA.
10 We stress that S is not given as input the parameter r used to generate a sample x,

but may instead infer whatever it needs to know from x for generating x′.
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Note that the Rényi divergence is non-decreasing regarding the order α (see [23]),
and thus RDα(R‖Q) ≤ RDα′(R‖Q) holds for all α < α′. Thus, Eq. (4) implies
εB ≥ 1

RDα(R‖Q) · ε2A for every α ∈ [2,∞] as well. Hence, although our reduction is
not applicable for α ∈ (1, 2), otherwise ours strictly improves and is much simpler
and tighter than the reduction of Bai et al. [3] for every α ∈ [2,∞], both in terms
of the running time and the distinguishing advantage of the reduction algorithm
B. More concretely, the ratio TB · ε−1

B (sometimes called the work factor, and a
smaller value means a tighter reduction) of our reduction is ≈ 2 ·RD2(R‖Q) ·TA ·
ε−2
A , while that of Bai et al. is as large as Õ(RDα(R‖Q) · TA · ε

−(4+ 1
α−1 )

A ).11 It is
Õ(RD2(R‖Q) · TA · ε−5

A ) for α = 2 and Õ(RD∞(R‖Q) · TA · ε−4
A ) for α = ∞.

Proof of Theorem 4. We will show that a distinguishing problem with public
samplability satisfies (2T +TS+τ, T, 0)-simulatability in the sense of Definition 4,
and then invoke Theorem 2 to conclude the proof.

To see that any distinguishing problem with public samplability D = (X,D0,
D1) satisfies (2T + TS + τ, T, 0)-simulatability, consider an adversary A against
the security of D with running time T , and consider the corresponding adversary
B′ against the security of D for showing (2T +TS + τ, T, 0)-simulatability, which
interacts with the challenger C(r) as follows:

B′ is initially given a sample x chosen according to Db(r), where b is the chal-
lenge bit chosen by C(r) in the security game of B′ (and r is sampled according
to Q, possibly unknown to B′). Then, B′ picks the challenge bit b1 ∈ {0, 1} in
the “first run” for A uniformly at random, and generates x1 ←R S(b1, x). B′ then
executes A twice, first with input x1 and second with input x, where for each
execution B′ uses a fresh randomness for A. Let b′

1 (resp. b′
2) be the output of A

in the first (resp. second) run of A.
By design, the running time of this B′ is 2T + TS + τ for some small τ inde-

pendent of A. Furthermore, due to the property of S, B′ simulates the challenger
C(r) perfectly for A in both of the executions, so that the challenge bit for A
in the first (resp. second) execution is b1 (resp. b). Also, there is no notion of
failure predicate in a distinguishing problem. Consequently, B′ satisfies all the
properties of (2T + TS + τ, T, 0)-simulatability.

Then, by Theorem 2, for any adversary A against the security of D with
running time TA and advantage |E[AdvA(R)]| = εA in the R-model, there
exists another adversary B against the security of D with running time TB =
2TA + TS + τ and advantage |E[AdvB(Q)]| = εB in the Q-model satisfying
εA ≤ √

RD2(R‖Q) · εB. This inequality is equivalent to Eq. (4). �� (Theorem 4)

11 If we adopt the approach of Micciancio and Walter [18] that regards
(“running time”) · (“advantage”)−2 (which corresponds to the steps needed to solve
a distinguishing problem with a constant advantage) of the best adversary as the
“bit security” of a problem, the difference between our reduction and that of Bai
et al. will be even larger.
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5.2 Switching Distributions in Differential Privacy

Intuitively, a differentially private mechanism (for some statistical task) takes a
data set D as input, and uses its internal randomness r (typically called “noise”
in the context of differential privacy) to produce a “sanitized” version of a true
answer computed from D so that it is hard to tell whether any individual’s data
was included in D. It is often the case that the distribution of a randomness r
used in a differentially private mechanism is not the uniform distribution, e.g.
the Laplace distribution [12].

Here, we would like to consider the problem of how differential privacy in the
setting where a randomness is drawn from an ideal distribution Q is degraded
if we use a randomness drawn from another distribution R. Using one of our
lemmas in Sect. 3, we show a simple technique to assess differential privacy under
such switching of distributions of a randomness via the ∞-Rényi divergence.

We note that the connection between differential privacy and the ∞-Rényi
divergence is almost immediate from their definitions, and has already been
mentioned in existing works (say, [17]). However, we are not aware of any work
that formally states a statement in the form that we show below. We also note
that our result only covers the case where randomness distributions are discrete,
while many works on differential privacy use continuous distributions.

Below, we recall the definition of a differentially private mechanism and then
give our result. (We adopt the so-called approximate differential privacy [13].)

Let n ≥ 1 and let D be the data space. We say that two data sets D,D′ ∈ Dn

are neighboring if D and D′ have exactly one distinct entry. As in [10], we
parameterize differential privacy with not only the privacy budget (ε and δ) but
also the distribution of randomness used by a mechanism.

Definition 6. Let n ≥ 1 and D be as above. Let M : Dn → R be a probabilistic
algorithm whose randomness space is some finite set X. Let ε, δ ≥ 0 be real
numbers, and let X be a distribution over X. We say that M satisfies (X , ε, δ)-
differential privacy if for every neighboring data sets D,D′ ∈ Dn and for every
T ⊆ R, we have

Pr
r←RX

[M(D; r) ∈ T ] ≤ eε · Pr
r←RX

[M(D′; r) ∈ T ] + δ.

Theorem 5. Let n ≥ 1 and D be as above, and let M be a probabilistic algorithm
whose randomness space is some set X. Let R and Q be distributions such that
[R] = [Q] ⊆ X. Let ε, δ ≥ 0. Then, if M satisfies (Q, ε, δ)-differential privacy,
then M also satisfies (R, ε′, δ′)-differential privacy, where

ε′ = ε + ln RD∞(R‖Q) + ln RD∞(Q‖R) and δ′ = RD∞(R‖Q) · δ.

Proof of Theorem 5. Fix arbitrarily neighboring data sets D,D′ ∈ Dn and T ⊆ R.
For each r ∈ X, define fD(r) := Pr[M(D; r) ∈ T ] and fD′(r) := Pr[M(D′; r) ∈
T ]. Note that the range of these functions is [0, 1], and we have E[fD(R)] =
Prr←RR[M(D; r) ∈ T ], E[fD(Q)] = Prr←RQ[M(D; r) ∈ T ], and we have similar
equations for fD′ . Now, for D,D′, T , we have
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Pr
r←RR

Pr[M(D; r) ∈ T ] = E[fD(R)]

(∗)
≤ RD∞(R‖Q) · E[fD(Q)]
(†)
≤ RD∞(R‖Q) ·

(
eε · E[fD′(Q)] + δ

)

(‡)
≤ RD∞(R‖Q) · eε · RD∞(Q‖R) · E[fD′(R)] + RD∞(R‖Q) · δ

= RD∞(R‖Q) · eε · RD∞(Q‖R) · Pr
r←RR

[M(D′; r) ∈ T ] + RD∞(R‖Q) · δ,

where the inequalities (*) and (‡) use Corollary 1 and the inequality (†) uses the
(Q, ε, δ)-differential privacy of M that implies E[fD(Q)] = Prr←RQ[M(D; r) ∈
T ] ≤ eε · Prr←RQ[M(D′; r) ∈ T ] + δ = eε · E[fD′(Q)] + δ. Since the choice of D,
D′, and T is arbitrary, we can conclude that M satisfies (R, ε′, δ′)-differential
privacy with the claimed ε′ and δ′. �� (Theorem 5)

6 Approximate Sampling with Guaranteed Rényi
Divergence Bound Using Uniform Randomness

There are a number of (not necessarily cryptographic) applications in which we
wish to sample random elements from distributions that are not the uniform dis-
tribution, e.g. the discrete Gaussian distribution in lattice-based cryptography
(e.g. [20]), the Laplace distribution [12,14] (and other complicated distributions
such as the matrix Bingham distribution [7]) in the literature of differential pri-
vacy, to name a few. However, it is not always easy (and sometimes impossible)
for computers to sample a randomness that exactly follows a target distribution.
Thus, a lot of efforts have been made for approximately sampling a random-
ness from the target distribution using a randomness drawn from the uniform
distribution (over bitstrings), so that the sampling method is implementable by
computers. One of the basic approaches used for such approximate sampling of
a randomness is the inversion sampling method (a.k.a. inverse transform sam-
pling), which is the focus in this section.

We propose two computer-friendly inversion sampling methods for an arbi-
trary discrete distribution Q using a randomness drawn from the uniform dis-
tribution over bitstrings.

– The first method, given in Sect. 6.1, has the guarantee that the actual distri-
bution R of a randomness sampled by our method has a guarantee that the
2-Rényi divergence R from Q is upperbounded by some number that depends
on the size of the support of the distribution and the bit-length of the ran-
domness. More concretely, when using an n-bit string for each sampling from
a distribution Q the size of whose support is m, then the distribution R of
our first sampling method guarantees RD2(R‖Q) ≤ 1 + m/2n.

– The second method, given in Sect. 6.2, has a similar property to the first
method, but it has a guaranteed ∞-Rényi divergence bound. Concretely,
under the same setting as above, our second sampling method guarantees
RD∞(R‖Q) ≤ (1 +

√
m/2n)2.
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Throughout this section, for simplicity, we work with distributions over [m]
for some m ∈ N (but our proposals straightforwardly generalize to distribu-
tions with an arbitrary finite support). Note that in this case, a distribution D
can be identified with an m-dimensional vector (p1, . . . , pm) ∈ [0, 1]m such that∑

i∈[m] pi = 1, where pi := Pr[D = i] for each i ∈ [m].

Our Approach. Recall that the inversion sampling method is based on the inverse
of the cumulative distribution function (CDF) of a distribution D = (p1, . . . , pm).
More specifically, let c0 = 0 and ci := Pr[1 ≤ D ≤ i] =

∑
j∈[i] pi for all i ∈ [m],

then given a uniformly random value x in the interval [0, 1), the sampling method
outputs k such that ck−1 ≤ x < ck. Hence, the problem is reduced to showing
how to construct a table of the CDF of a distribution.

Given a target distribution Q = (q1, . . . , qm), our approach is to consider
an approximated version R = (r1, . . . , rm) of Q such that (1) each ri can be
described by an n-bit string, and (2) the α-Rényi divergence (α ∈ {2,∞}) of R
from Q has an upperbound dependent on m and n. Note that (1) means that
each ri is of the form Ri/2n for some Ri ∈ Z≥0 with Ri ≤ 2n and it holds
that

∑
i∈[m] Ri = 2n, which in turn implies that any value of the CDF of R can

be expressed by an n-bit string, and thus R can be exactly sampled by using
a uniformly random n-bit string. Hence, to achieve the goal, it is sufficient to
show how to construct such R given Q.

The high-level structure for both of our proposed methods is common, and
quite simple and intuitive. For convenience, instead of working with a dis-
tribution, we work with its scaled-up version, i.e. a vector (Q1, . . . , Qm) =
(2n · q1, . . . , 2n · qm) ∈ ([0, 2n])m.

1. From the original vector (Q1, . . . , Qm), we construct its “tail-cut” version
(Q̃1, . . . , Q̃m). That is, if some value Qi is too small, Q̃i is set as 0, while
the suppressed values are distributed (added) to the non-zero positions in
(Q̃1, . . . , Q̃m) so that

∑
i∈[m] Q̃i = 2n holds.

2. We construct an integer vector (R1, . . . , Rm) ∈ (Z≥0)m from (Q̃1, . . . , Q̃m),
so that each Ri is “close” to Q̃i and

∑
i∈[m] Ri = 2n holds. The resulting

integer vector (R1, . . . , Rm) is a scaled-up version of our desired distribution
R = (r1, . . . , rm). Note that the distribution R obtained in this way satisfies
the property that each ri can be represented by an n-bit string.

Although simple in a high-level structure, the details are quite different between
our first and second proposed methods due to the difference between the 2-
Rényi divergence and the ∞-Rényi divergence. For each method, we have to
carefully choose the definition of (Q̃i)i∈[m] (in particular, the threshold for the
tail cutting), and how to approximate (Q̃i)i∈[m] by the integer vector (Ri)i∈[m],
so that we have the desired upperbound of the α-Rényi divergence (α ∈ {2,∞}).
For the details, see the actual proofs.

Supporting Lemma. In the proofs of both of our sampling methods, we will use
the following supporting lemma, whose proof is given in Appendix A.
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Lemma 9. Let k ∈ N, and let A = (a1, . . . , ak) ∈ (R≥0)k be a vector satisfying∑
i∈[k] ai ∈ N. Then, there exists a constructive procedure for constructing a

vector B = (b1, . . . , bk) ∈ (Z≥0)k satisfying the following two properties:

1.
∑

i∈[k] bi =
∑

i∈[k] ai.
2. For each i ∈ [k], let di := bi − ai. Then, |di| ≤ 1 holds for all i ∈ [k], and

|di − dj | ≤ 1 holds for all i, j ∈ [k].

6.1 Approximate Sampling with a 2-Rényi-Divergence Bound

The following theorem captures our first sampling method.

Theorem 6. Let n,m ∈ N. Let Q = (q1, . . . , qm) be a distribution whose support
is [m]. Then, there is a constructive procedure for constructing a distribution
R = (r1, . . . , rm) over [m] satisfying the following two properties:

– (Samplable Using Uniform Random Bits): Each ri can be described by
using at most n-bits. Namely, for all i ∈ [m], ri is of the form ri = Ri

2n , where
Ri ∈ Z≥0 and Ri ≤ 2n.

– (Upperbound of 2-Rényi Divergence): The 2-Rényi divergence of R from
Q is upperbounded as follows:

RD2(R‖Q) ≤ 1 +
m

2n
. (5)

Proof of Theorem 6. If m = 1, then q1 = 1, and thus by defining r1 := 1, the
theorem trivially holds. Hence, from here on we assume m ≥ 2, i.e. the support
of Q contains at least two elements. Then, first of all, note that for proving the
theorem, it is sufficient to consider the case that Q = (q1, . . . , qm) is “ordered”
in the following way:

0 < q1 ≤ · · · ≤ qm < 1. (6)

Specifically, for a general “non-ordered” distribution Q′ = (q′
1, . . . , q

′
m) with

support [m], let π : [m] → [m] be a permutation such that Q = (q1, . . . , qm) =
(q′

π−1(1), . . . , q
′
π−1(m)) satisfying Eq. (6). Then, we construct a distribution R =

(r1, . . . , rm) satisfying the two properties guaranteed by the theorem with respect
to the ordered distribution Q, and finally obtain the desired distribution R′ =
(r′

1, . . . , r
′
m) by defining r′

i = rπ(i) for every i ∈ [m]. Then, R′ obtained in this
way satisfies the two properties with respect to the original distribution Q′:
π preserves the first property of R, and we have RD2(R′‖Q′) =

∑
i∈[m]

r′2
i

q′
i

=
∑

i∈[m]

r2
π(i)

qπ(i)
=
∑

i∈[m]
r2

i

qi
= RD2(R‖Q). Hence, we can focus on the case that Q

is ordered in the sense of Eq. (6).
Let N := 2n, and let Qi := N · qi for all i ∈ [m]. Then,

∑
i∈[m] Qi = N holds

due to the fact that Q is a probability distribution, and Eq. (6) implies

0 < Q1 ≤ · · · ≤ Qm < N. (7)
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Next, we note that showing how to construct a distribution R = (r1, . . . , rm)
satisfying the desired properties with respect to Q, is reduced to showing how
to construct an integer vector (R1, . . . , Rm) ∈ (Z≥0)m satisfying

∑
i∈[m] Ri = N

and

Z :=
∑

i∈[m]

(Ri − Qi)2

Qi
≤ m. (8)

To see this, define the probability distribution R = (r1, . . . , rm) by ri = Ri/N
for every i ∈ [m] (which guarantees

∑
i∈[m] ri = 1). Then, we have

RD2(R‖Q) =
∑

i∈[m]

r2i
qi

=
∑

i∈[m]

(Ri/N)2

Qi/N
=

1
N

∑

i∈[m]

((Ri − Qi) + Qi)2

Qi

=
1
N

(∑

i∈[m]

(Ri − Qi)2

Qi
+ 2 ·

∑

i∈[m]

Ri −
∑

i∈[m]

Qi

)

(∗)
=

1
N

(Z + 2N − N) = 1 +
Z

N
,

where the equality (*) is due to
∑

i∈[m] Ri =
∑

i∈[m] Qi = N . Since N = 2n, the
right hand side of the above equality is exactly that of Eq. (5) if Z ≤ m.

Hence, our task is to show how to construct a vector (R1, . . . , Rm) ∈ (Z≥0)m

satisfying
∑

i∈[m] Ri = N and Eq. (8). To this end, we introduce the following
values m∗ and S:

m∗ := max
{

� ∈ {0} ∪ [m]
∣∣∣ Q� ≤ 1

2
∧
∑

i∈[�]

Qi ≤ m − � − 1
2

}
,

S :=
∑

i∈[m∗]

Qi,

where for convenience we define Q0 := 0. Note that the definition of m∗ implies
m∗ ≤ m − 1. Indeed, m = m∗ cannot hold because this and the condition∑

i∈[m∗] Qi ≤ m−m∗−1
2 imply

∑
i∈[m] Qi < 0, which contradicts

∑
i∈[m] Qi = N .

Furthermore, due to the definitions of m∗ and S, the following inequalities hold,
which will be used later in the proof:

Lemma 10.

Qm∗+1 > min
{ 1

2
,

m − m∗

2(m∗ + 1)

}
and S ≤ min

{ m∗

2
,

m − m∗ − 1
2

}
.

Proof of Lemma 10. The definitions of m∗ and S directly imply (a) S =∑
i∈[m∗] Qi ≤ m−m∗−1

2 , (b) Qm∗ ≤ 1
2 , and (c) either Qm∗+1 > 1

2 or
∑

i∈[m∗+1] Qi

> m−m∗
2 . Here, the condition (b) and Eq. (7) imply S ≤ m∗·Qm∗ ≤ m∗

2 . Combin-
ing this with the condition (a), we immediately obtain S ≤ min{m∗

2 , m−m∗−1
2 }.

It remains to show Qm∗+1 > min{ 1
2 , m−m∗

2(m∗+1)}. Assume towards a contradic-

tion that Qm∗+1 ≤ 1
2 and Qm∗+1 ≤ m−m∗

2(m∗+1) simultaneously hold. Then, on the
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one hand, Qm∗+1 ≤ 1
2 and the condition (c) imply

∑
i∈[m∗+1] Qi > m−m∗

2 .
On the other hand, Qm∗+1 ≤ m−m∗

2(m∗+1) and Eq. (7) imply
∑

i∈[m∗+1] Qi ≤
(m∗ +1) ·Qm∗+1 ≤ m−m∗

2 , and thus we have reached a contradiction. Hence, we
can conclude that Qm∗+1 > min{ 1

2 , m−m∗
2(m∗+1)} holds as well. �� (Lemma 10)

Now, as an intermediate step for constructing the desired vector
(R1, . . . , Rm), we consider the following modified vector (Q̃1, . . . , Q̃m), which
is the “tail-cut” version of (Q1, . . . , Qm), such that for every i ∈ [m]:

Q̃i :=

{
0 if 1 ≤ i ≤ m∗

Qi + S
m−m∗ if m∗ + 1 ≤ i ≤ m

.

(We note that the above definition covers the case of m∗ = 0, which implies
S = 0 and thus Q̃i = Qi for all i ∈ [m].) Note that 0 ≤ Q̃i ≤ N for all i ∈ [m],
and they preserve the sum N of the original vector (Q1, . . . , Qm):

∑

i∈[m]

Q̃i =
m∑

i=m∗+1

Q̃i =
m∑

i=m∗+1

(
Qi +

S

m − m∗
)

=
m∑

i=m∗+1

Qi + S

=
m∑

i=m∗+1

Qi +
m∗∑

i=1

Qi = N.

Our target vector (R1, . . . , Rm) is constructed by approximating the above
defined modified vector (Q̃1, . . . , Q̃m) by integers. Specifically, we define R1 =
· · · = Rm∗ = 0. The remaining values Ri for i ≥ m∗ + 1, are constructed by
using the supporting lemma (Lemma 9). Specifically, by setting k := m − m∗

and ai := Q̃m∗+i for every i ∈ [m − m∗], we have a vector A = (a1, . . . , ak)
satisfying

∑
i∈[k] ai =

∑m
i=m∗+1 Q̃i = N . Then, we apply Lemma 9 to this

vector A and obtain a vector B = (b1, . . . , bk) ∈ (Z≥0)k, from which we define
Rm∗+i := bi for every i ∈ [k] = [m−m∗]. Note that the first property guaranteed
by Lemma 9 implies

∑
i∈[k] bi =

∑m
i=m∗+1 Ri = N , and the second property of

the lemma guarantees that we have |di − dj | ≤ 1 for all i, j ∈ [m − m∗], where
di := bi − ai = Rm∗+i − Q̃m∗+i for each i ∈ [m − m∗].

So far, we have defined the vector (R1, . . . , Rm) ∈ (Z≥0)m that satisfies∑
i∈[m] Ri =

∑m
i=m∗+1 Ri = N . Hence, it remains to show that Eq. (8), i.e.,

Z ≤ m, is satisfied. Calculating Z gives us the following inequality:

Z =
m∑

i=1

(Ri − Qi)2

Qi
=

m∗∑

i=1

(0 − Qi)2

Qi
+

m∑

i=m∗+1

(Ri − Qi)2

Qi

≤ S +
1

Qm∗+1
·

m∑

i=m∗+1

(Ri − Qi)2 (9)

where the inequality uses S =
∑m∗

i=1 Qi and Qm∗+1 ≤ Qi for every i ≥ m∗ + 1.
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In order to show that Eq. (9) is further upperbounded by m, we wish to
upperbound the sum

∑m
i=m∗+1(Ri − Qi)2. For doing this, we do some prepara-

tion. Notice that for every i ∈ [m − m∗], we have

Rm∗+i − Qm∗+i = Rm∗+i − Q̃m∗+i + Q̃m∗+i − Qm∗+i = di +
S

m − m∗ .

Due to the second property satisfied by a vector obtained via Lemma 9, for all
i, j ∈ [m − m∗], we have

∣∣∣ (Rm∗+i − Qm∗+i) − (Rm∗+j − Qm∗+j)
∣∣∣ = |di − dj | ≤ 1. (10)

Moreover, we have
m∑

i=m∗+1

(Ri − Qi) =
m∑

i=1

(Ri − Qi) −
m∗∑

i=1

(Ri − Qi)
(∗)
= N − N +

m∗∑

i=1

Qi
(†)
= S, (11)

where the equality (*) uses
∑m

i=1 Ri =
∑m

i=1 Qi = N and the property that
Ri = 0 for all i ∈ [m∗], and the equality (†) is due to the definition of S.

We now use the following supporting lemma to upperbound
∑m

i=m∗+1(Ri −
Qi)2, whose proof is given in Appendix B.

Lemma 11. Let k ∈ N. Let A = (a1, . . . ak) ∈ R
k be any vector satisfying

|ai − aj | ≤ 1 for all i, j ∈ [k]. Let α :=
∑

i∈[k] ai. Then,

∑

i∈[k]

a2
i ≤ α2

k
+

k

4
.

Let k := m − m∗ and a′
i := (Rm∗+i − Qm∗+i) for every i ∈ [k]. By Eq. (11),

we have α :=
∑

i∈[k] a
′
i =

∑m
i=m∗+1(Ri − Qi) = S ≤ m−m∗−1

2 ≤ m−m∗
2 . Also,

Eq. (10) guarantees that |a′
i − a′

j | ≤ 1 holds for all i, j ∈ [k]. Then, by applying
Lemma 11 to the vector (a′

1, . . . , a
′
k), we obtain

m∑

i=m∗+1

(Ri − Qi)2 =
∑

i∈[k]

a′2
i ≤ α2

k
+

k

4
=

S2

m − m∗ +
m − m∗

4
≤ m − m∗

2
.

Using this inequality and Lemma 10 in Eq. (9), we have

Z ≤ S +
1

Qm∗+1
·

m∑

i=m∗+1

(Ri − Qi)2

≤ min
{ m∗

2
,

m − m∗ − 1
2

}
+ max

{
2,

2(m∗ + 1)
m − m∗

}
· m − m∗

2

= min
{ m∗

2
,

m − m∗ − 1
2

}
+ max

{
m − m∗, m∗ + 1

}

=

{
m − m∗

2 if m∗ ≤ m−1
2

m+m∗+1
2 if m∗ > m−1

2

.

Recall that we have 0 ≤ m∗ ≤ m−1. Hence, regardless of the value m∗, we have
Z ≤ m, as required. This completes the proof of the theorem. �� (Theorem 6)
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6.2 Approximate Sampling with a ∞-Rényi-Divergence Bound

The following theorem captures our second sampling method.

Theorem 7. Let n,m ∈ N. Let Q = (q1, . . . , qm) be a distribution whose support
is [m]. Then, there is a constructive procedure for constructing a distribution
R = (r1, . . . , rm) over [m] satisfying the following two properties:

– (Samplable Using Uniform Random Bits): Each ri can be described by
using at most n-bits. Namely, for all i ∈ [m], ri is of the form ri = Ri

2n , where
Ri ∈ Z≥0 and Ri ≤ 2n.

– (Upperbound of ∞-Rényi Divergence): The ∞-Rényi divergence of R
from Q is upperbounded as follows:

RD∞(R‖Q) ≤
(

1 +
√

m

2n

)2

. (12)

Proof of Theorem 7. If m = 1, then q1 = 1, and thus by defining r1 := 1, the
theorem trivially holds. Hence, from here on we assume m ≥ 2. Then, with
exactly the same reason as in the proof of Theorem 6, it is sufficient to consider
the case that Q = (q1, . . . , qm) satisfies the “ordered” condition 0 < q1 ≤ · · · ≤
qm < 1.

Let N = 2n, and let Qi = N · qi for all i ∈ [m]. Then,
∑

i∈[m] Qi = N holds
due to the fact that Q is a probability distribution, and the “ordered” condition
implies

0 < Q1 ≤ · · · ≤ Qm < N. (13)

Next, we note that due to the definition of the ∞-Rényi divergence, showing
how to construct a distribution R = (r1, . . . , rm) satisfying Eq. (12), is equivalent
to showing how to construct an integer vector (R1, . . . , Rm) ∈ (Z≥0)m satisfying∑

i∈[m] Ri = N and

max
i∈[m]

Ri

Qi
≤
(

1 +
√

m

N

)2

, (14)

since it holds that RD∞(R‖Q) = maxi∈[m]
ri

qi
= maxi∈[m]

Ri/N
Qi/N = maxi∈[m]

Ri

Qi
.

To this end, we introduce the following values S∗, m∗, and S:

S∗ :=
√

m√
N +

√
m

· N,

m∗ := max
{

� ∈ {0} ∪ [m]
∣∣∣
∑

i∈[�]

Qi ≤ S∗ <
∑

i∈[�+1]

Qi

}
,

S :=
∑

i∈[m∗]

Qi,

where for convenience we define Q0 := 0. Here, the definition of S∗ may look
somewhat sudden and bizarre. This is the value of x that minimizes the function
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f(x) := N
N−x + m

x in the interval x ∈ (0, N), so that f(S∗) = (1 +
√

m
N )2 holds

(which can be checked by considering the zero of the first-order derivative of f).
Note that this is the desired upperbound of maxi∈[m]

Ri

Qi
to be shown.

Our proof from here on is heading to showing how to bound RD∞(R‖Q)
by using the above minimum. We note that the definition of m∗ implies that
m∗ is strictly smaller than m, because

∑
i∈[m∗] Qi ≤ S∗ < N =

∑
i∈[m] Qi.

Furthermore, the definitions of m∗ and S imply the following inequality, which
will be used later in the proof.

Lemma 12.
Qm∗+1 ≥ S∗

m
. (15)

Proof of Lemma 12. If m∗ = 0, then we have Q1 > S∗, and thus Qm∗+1 ≥ S∗
m is

trivially satisfied. Hence, from here on we consider the case m∗ ≥ 1.
By the definitions of m∗ and S, we have S =

∑
i∈[m∗] Qi ≤ S∗ <∑

i∈[m∗+1] Qi = S + Qm∗+1. This implies Qm∗+1 > S∗ − S. Furthermore, we
also have Qm∗+1 ≥ S

m∗ because otherwise (i.e., Qm∗+1 < S
m∗ ) we have 0 < Q1 ≤

· · · ≤ Qm∗ < S
m∗ , which implies

∑
i∈[m∗] Qi = Q1 + · · · + Qm∗ < m∗ · S

m∗ = S,
contradicting the definitions of m∗ and S.

So far, we have seen Qm∗+1 > S∗ − S and Qm∗+1 ≥ S
m∗ , equivalently,

Qm∗+1 ≥ max
{

S∗ − S,
S

m∗
}

. (16)

We now show that Eq. (15) holds regardless of the values m∗ and S. This is
shown by considering the following two cases covering all possibilities:

Case S ≤ m−1
m · S∗: Note that

S ≤ m − 1
m

· S∗ ⇐⇒ S ≤
(
1 − 1

m

)
· S∗ ⇐⇒ S∗ − S ≥ S∗

m
.

Hence, by Eq. (16), we have Qm∗+1 ≥ S∗ − S ≥ S∗
m .

Case S > m−1
m · S∗: By dividing both sides of the condition of this case by

m∗ ≥ 1, we obtain
S

m∗ >
m − 1
m∗ · S∗

m

(∗)
≥ S∗

m
,

where the inequality (*) uses m−1
m∗ ≥ 1, which holds because of the condition

m∗ < m. Hence, by Eq. (16), we have Qm∗+1 ≥ S
m∗ > S∗

m .

As seen above, Qm∗+1 ≥ S∗
m holds in any case. �� (Lemma 12)

Now, as an intermediate step for constructing the desired vector
(R1, . . . , Rm), we consider the following modified vector (Q̃1, . . . , Q̃m), which
is the “tail-cut” version of (Q1, . . . , Qm), such that for every i ∈ [m]:

Q̃i :=

{
0 if 1 ≤ i ≤ m∗

Qi · N
N−S if m∗ + 1 ≤ i ≤ m

.
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(We note that the above definition covers the case of m∗ = 0, which implies
S = 0 and thus Q̃i = Qi for all i ∈ [m].) Note that 0 ≤ Q̃i ≤ N for all i ∈ [m],
and they preserve the sum N of the original vector (Q1, . . . , Qm):

∑

i∈[m]

Q̃i =
m∑

i=m∗+1

Q̃i =
N

N − S
·

m∑

i=m∗+1

Qi =
N

N − S
·
(∑

i∈[m]

Qi −
∑

i∈[m∗]

Qi

)

=
N

N − S
· (N − S) = N.

Our target vector (R1, . . . , Rm) is constructed by approximating the above
defined modified vector (Q̃1, . . . , Q̃m) by integers, in the same manner as what
we do in the proof of Theorem 6. Specifically, we define R1 = · · · = Rm∗ = 0.
The remaining values Ri for i ≥ m∗ +1, are constructed by using the supporting
lemma (Lemma 9). Specifically, by setting k := m − m∗ and ai := Q̃m∗+i for
every i ∈ [m − m∗], we have a vector A = (a1, . . . , ak) satisfying

∑
i∈[k] ai =

∑m
i=m∗+1 Q̃i = N . Then, we apply Lemma 9 to this vector A and obtain a

vector B = (b1, . . . , bk) ∈ (Z≥0)k, from which we define Rm∗+i := bi for every
i ∈ [k] = [m − m∗]. Note that the first property guaranteed by Lemma 9 implies∑

i∈[k] bi =
∑m

i=m∗+1 Ri = N , and the second property of the lemma guarantees

that we have |di| ≤ 1 for all i ∈ [m − m∗], where di := bi − ai = Rm∗+i − Q̃m∗+i

for each i ∈ [m − m∗].
So far, we have defined the vector (R1, . . . , Rm) ∈ (Z≥0)m that satisfies∑

i∈[m] Ri =
∑m

i=m∗+1 Ri = N . Hence, it remains to show maxi∈[m]
Ri

Qi
≤ (1 +√

m
N )2. To this end, we use the following lemma as an intermediate step.

Lemma 13. For every i ∈ [m], we have

Ri

Qi
≤ N

N − S
+

1
Qm∗+1

. (17)

Proof of Lemma 13. For i ∈ [m∗], we have Ri

Qi
= 0 due to Ri = 0, and thus

Eq. (17) is trivially satisfied.
For showing the remaining case, fix any i ∈ {m∗ + 1, . . . ,m}. Recall that

|Ri − Q̃i| ≤ 1 holds due to the second property of the vector obtained from
Lemma 9, and thus we have Ri ≤ Q̃i + 1. Dividing both sides of this inequality
by Qi > 0, we have

Ri

Qi
≤ Q̃i

Qi
+

1
Qi

(∗)
=

N

N − S
+

1
Qi

(†)
≤ N

N − S
+

1
Qm∗+1

,

where the equality (*) uses the definition of Q̃i for i ∈ {m∗ + 1, . . . ,m}, and the
inequality (†) uses Qm∗+1 ≤ Qi for all i ∈ {m∗ + 1, . . . , m}, which is due to the
“ordered” condition (Eq. (13)). The above shows that Eq. (17) is satisfied for
i ∈ {m∗ + 1, . . . , m} as well. �� (Lemma 13)
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Now, combining Lemmas 12 and 13, we obtain

max
i∈[m]

Ri

Qi
≤ N

N − S
+

m

S∗
(∗)
≤ N

N − S∗ +
m

S∗
(†)
=
(

1 +
√

m

N

)2

,

where the inequality (*) is due to S ≤ S∗, and the equality (†) is just a direct cal-
culation. (As mentioned earlier, S∗ is the value minimizing the function f(x) =

N
N−x + m

x in the domain 0 < x < N such that we have f(S∗) = (1 +
√

m
N )2.)

This completes the proof of the theorem. �� (Theorem 7)

Acknowledgement. The authors would like to thank the anonymous reviewers of
PKC 2019 for their helpful comments.

A Proof of Lemma 9

Let k ∈ N and A = (a1, . . . , ak) ∈ (R≥0)k such that
∑

i∈[k] ai ∈ N. For each
i ∈ [k], let δi := �ai� − ai. Also, define

Δ :=
∑

i∈[k]

δi =
∑

i∈[k]

�ai� −
∑

i∈[k]

ai.

Note that since
∑

i∈[k] ai ∈ N and δi ∈ [0, 1) for every i ∈ [k], the definition of
Δ implies Δ ∈ Z≥0 and Δ < k. Furthermore, let Sup and Slow be subsets of [k]
satisfying the following four conditions:

– (1) Sup ∪ Slow = [k]
– (2) Sup ∩ Slow = ∅
– (3) |Sup| = Δ
– (4) max{δi|i ∈ Slow} ≤ min{δi|i ∈ Sup}.

Using them, define the vector B = (b1, . . . , bk) such that for every i ∈ [k],

bi :=

{
�ai� if i ∈ Slow

�ai� − 1 if i ∈ Sup

.

By definition, every bi is an integer. Since ai ∈ R≥0 for every i ∈ [k], we have
bi ∈ Z≥0 for every i ∈ Slow. Note also that by the definitions of Δ and Sup,
we have |{i ∈ [k]|δi > 0}| ≥ Δ = |Sup|, and thus ai > 0 holds for every
i ∈ Sup, which implies bi = �ai� − 1 ≥ 0 for every i ∈ Sup. Hence, we have
B = (b1, . . . , bk) ∈ (Z≥0)k.

In the following we confirm that the vector B defined above satisfies both of
the properties. Regarding the first property, we have

∑

i∈[k]

bi =
∑

i∈Slow

�ai� +
∑

i∈Sup

(�ai� − 1)

(∗)
=
∑

i∈[k]

�ai� − Δ =
∑

i∈[k]

(ai + δi) −
∑

i∈[k]

δi =
∑

i∈[k]

ai,
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where the equality (*) uses |Sup| = Δ. Hence, B satisfies the first property.
It remains to show that B satisfies the second property. For each i ∈ [k], let

di := bi − ai =

{
δi if i ∈ Slow

δi − 1 if i ∈ Sup

.

Recall that δi ∈ [0, 1) holds for every i ∈ [k]. Thus, we have |di| ≤ 1 for all
i ∈ [k]. Furthermore, for every (i, j) ∈ [k]2, we have

|di − dj | =

⎧
⎪⎨

⎪⎩

|δi − δj | if (i, j) ∈ (Slow)2 or (i, j) ∈ (Sup)2

|1 − (δj − δi)| if (i, j) ∈ Slow × Sup

|δi − δj − 1| if (i, j) ∈ Sup × Slow

.

From the above, it is immediate that |di − dj | ≤ 1 holds for the cases (i, j) ∈
(Slow)2 and (i, j) ∈ (Sup)2. Also, for the case (i, j) ∈ Slow × Sup, we have δi ≤ δj

due to the condition (4) of Slow and Sup, and thus we have |1 − (δj − δi)| ≤ 1.
Similarly, for the case (i, j) ∈ Sup × Slow, we have δi ≥ δj , and thus we have
|δi − δj − 1| ≤ 1. Hence, we have |di − dj | ≤ 1 for any pair (i, j) ∈ [k]2. This
shows that the vector B satisfies the second property as well. �� (Lemma 9)

B Proof of Lemma 11

Fix arbitrarily a number k ∈ N and a vector (a1, . . . , an) ∈ R
k satisfying |ai −

aj | ≤ 1 for all i, j ∈ [k], and let α :=
∑

i∈[k] ai. We will show that
∑

i∈[k] a
2
i ≤

α2

k + k
4 holds, which proves the lemma.

Let amin := min{ai}i∈[k], and δi := ai − amin for each i ∈ [k]. Note that due
to the given condition of the vector (a1, . . . , ak), δi ∈ [0, 1] holds for all i ∈ [k].
We also have

α =
∑

i∈[k]

ai =
∑

i∈[k]

(
amin + δi

)
= kamin +

∑

i∈[k]

δi

⇐⇒
∑

i∈[k]

δi = α − kamin. (18)

Furthermore, for each i ∈ [k], we have

a2
i = (amin + δi)2 = a2

min + 2aminδi + δ2i

≤ a2
min + (2amin + 1) · δi, (19)

where the inequality uses δ2i ≤ δi, which is due to δi ∈ [0, 1].
Now, consider the sum of squares

∑
i∈[k] a

2
i . We have
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∑

i∈[k]

a2
i

(∗)
≤
∑

i∈[k]

(
a2
min + (2amin + 1) · δi

)

= ka2
min + (2amin + 1) ·

∑

i∈[k]

δi

(†)
= ka2

min + (2amin + 1) · (α − kamin)

= −k
(
amin −

(α

k
− 1

2

))2
+

α2

k
+

k

4

≤ α2

k
+

k

4
,

where the inequality (*) uses Eq. (19), and the equality (†) uses Eq. (18).
�� (Lemma 11)
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1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Proceedings of USENIX Security 2016, pp. 327–343. USENIX
Association (2016)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

3. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: using the Rényi divergence rather than the statistical
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gence. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol.
10624, pp. 347–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70694-8 13

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of STOC 2005, pp. 84–93. ACM (2005)

21. Rényi, A.: On measures of entropy and information. In: Proceedings of Fourth
Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–
561. University of California Press (1961)

22. Takashima, K., Takayasu, A.: Tighter security for efficient lattice cryptography via
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Abstract. We initiate the study of general tight reductions in cryptog-
raphy. There already exist a variety of works that offer tight reductions
for a number of cryptographic tasks, ranging from encryption and signa-
ture schemes to proof systems. However, our work is the first to provide a
universal definition of a tight reduction (for arbitrary primitives), along
with several observations and results concerning primitives for which
tight reductions have not been known.

Technically, we start from the general notion of reductions due to
Reingold, Trevisan, and Vadhan (TCC 2004), and equip it with a quan-
tification of the respective reduction loss, and a canonical multi-instance
extension to primitives. We then revisit several standard reductions
whose tight security has not yet been considered. For instance, we revisit
a generic construction of signature schemes from one-way functions, and
show how to tighten the corresponding reduction by assuming collision-
resistance from the used one-way function. We also obtain tightly secure
pseudorandom generators (by using suitable rerandomisable hard-core
predicates), and tightly secure lossy trapdoor functions.

1 Introduction

Motivation. To argue for the security of a cryptographic scheme, we usually
employ a security reduction (or simply reduction). A reduction formalises that
the only way to break the scheme is to solve an underlying computational prob-
lem (such as factoring a large integer). More specifically, a reduction turns any
adversary A on the scheme into a problem solver B. Hence, if the problem is
hard to solve, then the scheme must be secure.

Most existing reductions are however loose, in the sense that B’s success is
much lower (or its runtime much higher) than that of A. For instance, for most
existing encryption schemes, the best known reduction in a multi-user, multi-
ciphertext scenario yields Bs whose success degrades linearly in the number of
users and/or ciphertexts. Hence, in a large-scale setting, this reduction loss can
easily be in the order of, say, 230.
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In contrast, a tight reduction yields problem solvers B which have the same
success (and running time) as A.1 A loose reduction gives quantitatively lower
guarantees than a tight one. For instance, suppose one would like to give a key
length recommendation for a scheme based on the currently best attacks on the
underlying computational problem. In this case, loose reductions lead to larger
key length recommendations, and thus to a (perhaps substantially) less efficient
scheme.

In this work, we are interested in tight reductions, in particular in a setting
in which the scheme or primitive is used multiple times.

State of the Art. The tightness of reductions (in particular for schemes in a
multi-instance scenario) has first been considered by Bellare, Boldyreva, and
Micali [6]. Since their work, a variety of tightly secure constructions for con-
crete cryptographic building blocks (such as encryption [1,17,18,26,27,34,35],
identity-based encryption [3,7,11,22,28], digital signatures [2,25,34,35], or zero-
knowledge proofs [17,27]) have been proposed.

On the other hand, the notion of a reduction has been formalised early on
in cryptography (e.g., in the context of black-box separations such as [31,43,
45]).2 We note that these works were mostly interested in the (non-)existence of
reductions for certain types of schemes, and do not take into account reduction
loss. Hence, currently there is no general (i.e., formal but primitive-independent)
definition of a tight reduction.

Our Contribution. We provide the first general definition of a tight reduction,
and revisit several classical reductions (with an emphasis on their tightness). We
obtain the following results:

– We obtain a new (and tighter) security reduction for the classical construction
of signatures from one-way functions [23,32,44].

– We also obtain tightly secure pseudorandom generators by instantiating the
classical construction of Blum and Micali [8] with a suitable (i.e., rerandomis-
able) hard-core predicate.

– Finally, we show that the DDH-based lossy trapdoor functions of Peikert and
Waters [42] are tightly secure in a multi-instance scenario.

In the following, we will outline our definition and results.

Our New Definition. Our definition of tight security adapts the general defi-
nition of reductions due to Reingold, Trevisan, and Vadhan [43]. First, we will
consider the tightness of a reduction as an additional property of that reduction.
Additionally, we will formalise the “multi-instance version” of a given primi-
tive (taking into account a suitably modified multi-instance security game and
potential global parameters).
1 Of course, there are other interesting properties (such as memory usage [4]) of a

given adversary A one would want a reduction to preserve.
2 We also remark that other formalisations of cryptographic assumptions exist, e.g.,

[14,38].
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Perhaps most interestingly, this modification allows to define the notion of
a “tightly extensible primitive”. Intuitively, a primitive X is tightly extensible
relative to another primitive Y if the multi-instance version of X can be tightly
reduced to Y . For instance, it is easy to see that one-way functions are tightly
extensible relative to collision-resistant hash functions (CRHFs). In fact, a simple
extension of an argument of Damg̊ard [12] shows that any compressing CRHF h
already is a one-way function in the multi-instance setting: suppose an algorithm
A successfully finds a preimage x′

i for one of potentially many given images h(xi).
Since h is compressing, we have x′

i �= xi with probability at least 1/2, so that
(xi, x

′
i) forms a collision. This holds even if we require “adaptive” one-wayness3,

in the sense that A may get selected preimages xi upon request (and then loses
the inversion game in those instances of course).

Our Results. We now outline the results mentioned above.
First, we revisit the classical construction of signatures from one-way func-

tions from [23,32,44]. This construction uses the one-time signature scheme of
Lamport [33], which in turn uses many (i.e., L = O(λ), where λ is the security
parameter) instances of a given one-way function f . Each forged (one-time) sig-
nature implies an inversion of one instance of f . The problem here is that it is
not clear a priori which instance is inverted. Hence, the corresponding security
reduction for the one-time signature scheme (as formalized, e.g., in [20]) loses a
factor of L, which of course is inherited by the security reduction of the overall
signature scheme.

This loss of L can essentially be avoided if we assume that f is collision-
resistant. Concretely, recall our observation above that f (when viewed as an
adaptive one-way function) is tightly extensible relative to itself (when viewed as
a CRHF). In particular, an adversary that inverts one out of many f -instances
can be turned into a collision finder for f with a reduction loss of only 2. Hence,
any forged one-time signature can be converted into an f -collision with proba-
bility of at least 1/2, and we can save a factor of L/2 in the overall reduction.

Next, we consider pseudorandom generators (PRGs) G that are tightly exten-
sible (relative to themselves). In other words, we are looking for a G such that
the pseudorandomness of many G(xi) instances (for independently chosen seeds
xi) can be tightly reduced to the pseudorandomness of a single G(x). This prop-
erty leads to tighter reductions whenever G is used multiple times (e.g., in one
or many instances of a larger scheme).

Note that an almost trivial solution to this problem can be found under
the DDH assumption (assuming groups with dense representations, such that
random group elements are random bitstrings). Namely, recall that the DDH
assumption states that for a generator g and random exponents a, b, c, the tuple
(ga, gb, gab) is computationally indistinguishable from (ga, gb, gc). Now the DDH
assumption is known to be rerandomisable (e.g., [6, Lemma 1]), in the sense
a distinguisher between many (gai , gbi , gaibi) and many (gai , gbi , gci) can be

3 This notion is not related to the notion of adaptive one-way functions from [40] in
which an adversary gets access to a full inversion oracle for the function.
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converted into a DDH distinguisher, with (almost) no reduction loss. Hence,
defining G(a, b) = ga||gb||gab yields a tightly extensible PRG.

Here, however, we are interested in constructions from (potentially) weaker
assumptions. To this end, we revisit the PRG of Blum and Micali [8]. This PRG
assumes a one-way permutation f with a hard-core predicate b, and defines
G(x) = f(x)||b(x).4 We set f(x) = gx (which also means we require a group with
dense representations), and b(x) to be the Legendre symbol (x

p ) of x modulo the
group order p.5 Under a suitable computational assumption (that appears to lie
in between the CDH and DDH assumptions), b is indeed a hard-core predicate
of f . Most importantly, and unlike with other hard-core predicates, f and b are
rerandomisable: given f(x) and b(x), it is easy to compute f(ax) and b(ax) (for
a known random a). Hence, by rerandomising PRG images, we can show the
tight extensibility of this G.6

Finally, we consider the tight extensibility of lossy trapdoor functions
(LTDFs) relative to themselves. Our motivation to consider LTDFs is that they
form an abstract tool which is already known to imply tightly (IND-CPA-)secure
encryption in the single-user (but multi-ciphertext) setting [42]. A tightly exten-
sible LTDF can be additionally useful in settings with many instances (e.g.,
users). Here, our main result is that the DDH-based LTDF construction of Peik-
ert and Waters [42] is already tightly extensible. The corresponding argument is
somewhat technical, but relies on the rerandomisability of the DDH assumption
(as outlined already above).

We note that this last result does not yield interesting new tightly secure
encryption schemes. In fact, already the ElGamal scheme is tightly IND-CPA-
secure under the DDH assumption [6]. Rather, we view our last result as concep-
tual: it shows that an abstract building block (that was already known to enable
“partially tight” reductions) is tightly secure even in a multi-instance setting.

There are areas of cryptography where we have not looked at applying tight
extensibility. For example, a natural question would be if we can build tightly
extensible symmetric encryption schemes or even more complicated protocols
(e.g. zero-knowledge). More importantly, it is an open question whether this
notion can be used in constructing more efficient and more secure primitives
which could not be shown using current state-of-the-art methods.

2 Preliminaries

In this section we review standard notation and cryptographic definitions we use
in later sections. We also provide relevant background related to formal notion
of black-box reductions.

4 For simplicity, we only consider a PRG that stretches its seed x by one bit.
5 Slightly simplifying, we ignore the unlikely case x = 0 and treat (x

p
) as a bit.

6 We note that the Legendre symbol has already been considered as a hard-core pred-
icate by Damg̊ard [13], although, to the best of our knowledge, its rerandomisability
has not been investigated before.
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2.1 Notation

Let N be the set of natural numbers and Zn be the set of integers modulo n. We
denote the security parameter by λ ∈ N and assume that it is implicitly given to
all algorithms in the unary representation 1λ, unless stated otherwise. An algo-
rithm here is defined as a stateless Turing machine. Algorithms are randomised
and PPT means “probabilistic polynomial time” in the (unary) security parame-
ter λ. For a randomised algorithm A, we denote T(A) for the worst-case runtime
of A, parametrized over λ. Also, we describe (y1, . . . ) ←$ A(1λ, x1, . . . ; r) as an
event when A gets (1λ, x1, . . . ) as input, uses fresh random coins r and outputs
(y1, . . . ). If A is determininstic then we simply write (y1, . . . ) ← A(1λ, x1, . . . ).
Let us write AB to denote that A has black-box access to algorithm B, mean-
ing it sees only its input-output behaviour. We define queries(AB , B) to be the
worst-case number of messages/queries sent by B to A (parametrized by λ). On
the other hand, A(·) means that A expects a black-box access to some other
algorithm.

For a finite set S, we denote its cardinality by |S| and write s ←$ S meaning
that we choose an element s from S uniformly at random. For a function f :
A → B and C ⊂ A, we define f |C : C → B as f |C(x) = f(x). We write poly(λ)
to denote the set of polynomials in λ. A function v : N → R

≥0 is negligible if for
any c ∈ N, limλ→∞ v(λ)λc = 0. We let negl(λ) denote an unspecified negligible
function in λ. Throughout the paper, ⊥ denotes an error symbol.

Denote X = {Xλ}λ∈N,Y = {Yλ}λ∈N as ensembles of random variables over
some countable set S indexed by λ. Then, X and Y are statistically indistin-
guishable (X s≈ Y) if Δ(Xλ, Yλ) = 1

2

∑
s∈S |Pr[X = s] − Pr[Y = s]| = negl(λ).

Moreover, X and Y are computationally indistinguishable (X c≈ Y) if for every
PPT algorithm A:

|Pr[1 ←$ A(1λ,Xλ)] − Pr[1 ←$ A(1λ, Yλ)]| = negl(λ).

2.2 Cryptographic Primitives

One-Way Functions. Intuitively, we say that a function is one-way (OWF) if
it is easy to compute but hard to invert. Using our notation, we formalise it as
follows:

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is one-way if:

• There exists a deterministic polynomial-time algorithm f so that

∀λ ∈ N,Pr[f(x) ← f(1λ, x) : x ←$ {0, 1}λ] = 1.

• For every PPT algorithm A,

Pr[f(y) = f(x) : x ←$ {0, 1}λ, y ←$ A(1λ, f(x))] = negl(λ).
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Most of the time, we do not deal with a single one-way function but rather with
a collection of one-way functions. That is, we consider a set F = {f} of functions
f that each have a finite domain, but may be parameterized over the security
parameter (and other public parameters such as a fixed group). In that case, we
choose f at random for the currently given security parameter (and potentially
other parameters), and sample x uniformly at random from f ’s domain.

In the case of a family F of parameterized one-way functions f (with finite
domain Df ), we say that F is a family of one-way permutations if f is bijective
and f(Df ) = Df .

We also recall the notion of a hard-core predicate introduced by Goldreich
et al. [21].

Definition 2. Let b : {0, 1}∗ → {0, 1} be a function and u ←$ {0, 1}. Then, b is
a hardcore-bit predicate for function f : {0, 1}∗ → {0, 1}∗ if

(f(x), b(x))
c≈ (f(x), u)

Goldreich et al. provide in [21] a construction of a one-way function with hard-
core predicate from any given one-way function.

Lossy Trapdoor Functions. We say that a function f is a trapdoor function
if it is easy to compute f(x) and also easy to invert if we know some “special
information” (called trapdoor) but hard to invert without trapdoor. The notion
of a lossy trapdoor function was introduced by Peikert et al. [41]. A tuple of PPT
algorithms (Sinj , Sloss, F, F−1) is called a collection of (n, k)−lossy trapdoor
functions (LTDF) if:

• Sinj outputs (s, t) where s is a function index and t its trapdoor, F (s, ·)
computes a deterministic injective function f over the domain {0, 1}n, and
F−1(t, ·) computes f−1,

• Sloss outputs (s,⊥) and F (s, ·) computes a deterministic function f over the
domain {0, 1}n whose image has size at most 2n−k,

• For (s1, t1) ←$ Sinj and (s2,⊥) ←$ Sloss,

s1
c≈ s2.

Peikert et al. also define all-but-one trapdoor functions in order to construct an
IND-CCA encryption scheme. In this paper we concentrate more on LTDFs but
our results can be easily generalised to the second notion.

Pseudorandom Generators. A function G : {0, 1}k → {0, 1}l, where k < l,
is a pseudorandom generator (PRG) if given random x from {0, 1}k, no PPT
adversary can distinguish G(x) and a random element from {0, 1}l.

Definition 3. Let G : {0, 1}k → {0, 1}l be a function where k < l, and let
x ←$ {0, 1}k and u ←$ {0, 1}l be uniformly chosen. Then, G is a pseudorandom
generator if

G(x)
c≈ u.
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H̊astad et al. [24] show that one can construct a pseudorandom generator from
any one-way function. Unfortunately, their security reduction has a large loss,
i.e., is far from tight. Since then, more efficient constructions of PRGs from
OWFs with much tighter reductions have been discovered [29] but they still
suffer from a large reduction loss. On the other hand, Blum and Micali [8] provide
a construction of a PRG from a one-way permutation which loses a factor of l.

Hashing. A family of functions H = {hi : A → B} is universal if for every
distinct x, x′ ∈ A,Prh ←$ H[h(x) = h(x′)] = 1/|B|. Moreover, we say that H
is pairwise independent if, for every distinct x, x′ ∈ A and every y, y′ ∈ B,
Prh ←$ H[h(x) = y ∧ h(x′) = y′] = 1/|B|2.

A hash function H : {0, 1}k → {0, 1}l, where k > l, is collision resistant if for
any PPT adversary A, Pr[(x, y) ←$ A(1λ, h) : h(x) = h(y)] = negl(λ). Similarly
we can define a collection of collision-resistant hash functions.

2.3 Cryptographic Assumptions

We briefly state the most common computational and decisional problems in
public-key cryptography. Let G be a cyclic group (that may depend on the
security parameter λ) of order p where p is a λ-bit prime. Also, let g ∈ G be a
generator of G. We denote 〈G〉 to be the description of G.

• Discrete Logarithm Problem (DLOG) - we say that the discrete logarithm
problem is hard in G if for every PPT algorithm A:

Pr[x ←$ A(〈G〉, p, g, gx) : x ←$ Zp] = negl(λ).

• Computational Diffie-Hellman Problem (CDH) - we say that the computa-
tional Diffie-Hellman problem is hard in G if for every PPT algorithm A:

Pr[gxy ←$ A(〈G〉, p, g, gx, gy) : x, y ←$ Zp] = negl(λ).

• Decisional Diffie-Hellman Problem (DDH) - we say that the decisional Diffie-
Hellman problem is hard in G if for z ←$ Zp:

(〈G〉, p, g, gx, gy, gxy)
c≈ (〈G〉, p, g, gx, gy, gz).

2.4 Public Key Schemes

Public-Key Encryption. A public-key encryption scheme for a given security
parameter λ is a triple of PPT algorithms (Gen;Enc;Dec) such that:

• (pk, sk) ←$Gen(1λ) is the key generation algorithm which takes a security
parameter λ and outputs a pair (pk, sk) where pk and sk are called public
and secret keys respectively,

• c ←$Enc(pk,m) is the encryption algorithm which takes a public key pk, a
message m and returns a ciphertext c,
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• m ← Dec(sk, c) is the decryption algorithm which takes a secret key sk,
ciphertext c and returns a message m or ⊥ if given ciphertext is invalid.

A public-key encryption must satisfy the correctness condition, meaning that
for every message m and every security parameter λ, if (pk, sk) ←$Gen(1λ) then
Dec(sk,Enc(pk,m)) = m.

We recall basic notions of security for public-key encryption schemes. We
say that an encryption scheme E = (Gen;Enc;Dec) is IND-CPA secure (has
indistinguishable ciphertexts under chosen plaintext attack) if there exists no
PPT adversary A which wins the following game with non-negligible probability:

1. Challenger C generates (pk, sk) ←$Gen(1λ) and sends pk to A.
2. Adversary A sends messages (m0,m1) to C. Challenger then selects a bit b

uniformly at random and returns c ←$Enc(pk,mb).
3. At the end, A sends a bit b′ to the challenger. Then, A wins if b = b′ and

loses otherwise.

Similarly, we define IND-CCA security (indistinguishability under chosen cipher-
text attack). We say that E is IND-CCA secure if there exists no PPT adversary
A which wins a similar game to the one described above (with non-negligible
probability), but this time A also has access to decryption oracle ODec which on
input c′ returns ⊥ if c = c′ and Dec(sk, c′) otherwise.

One-Time Signatures. A signature scheme consists of a tuple of PPT algo-
rithms (Gen;Sign;Ver) satisfying the following conditions:

• (vk, sk) ←$Gen(1λ) is the key generation algorithm, which takes a security
parameter λ and outputs a pair (vk, sk) where vk and sk are called verification
and signing keys respectively,

• c ←$Sign(sk,m) is the signing algorithm which takes the signing key sk, a
message m and returns a signature σ,

• b ← Ver(vk,m, σ) is the verification algorithm which takes the verification
key vk, message m and signature σ and returns a bit b.

Any signature scheme must satisfy the correctness condition meaning that for
every message m and every security parameter λ, if (vk, sk) ←$Gen(1λ) then
Ver(vk,m,Sign(sk,m)) = 1.

We now define a security notion for signature schemes called existential
unforgeability under a one-time chosen message attack (EUF-OTCMA). We
say that the signature scheme E = (Gen;Sign;Ver) is EUF-OTCMA secure if
there is no PPT adversary A which wins the following game with non-negligible
probability:

1. Challenger C generates (vk, sk) ← Gen(1λ) and sends vk to A.
2. Adversary A sends message a m to C. Challenger then returns σ =

Sign(sk,m).
3. Finally, A outputs a pair (m′, σ′) b′. Then, A wins if Ver(vk,m′, σ′) = 1 and

m′ �= m and loses otherwise.

Strong unforgeable one-time signatures can be constructed from a one-way func-
tion as well as collision-resistant hash functions.
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2.5 Fully Black-Box Reductions

We review the framework of Reingold et al. [43] on security reductions. For sim-
plicity, we only consider fully black-box reductions against uniform adversaries.
There are many formal definitions of reductions (such as [5,16,30,43]) but in this
paper we focus on work by Reingold et al. [43], mainly due to its simplicity and
the ease to modify their framework to suit our needs. Using their notation, prim-
itive P is a pair

〈
FP , RP

〉
where FP is a set of functions f : {0, 1}∗ → {0, 1}∗

and RP is a relation over pairs (f,M) for f ∈ FP and machine M . One can
think of FP as implementations of primitive P and RP as security conditions on
FP . For example, if we think of P as a one-way function, the set of implementa-
tions could be a set of one-way functions. On the other hand, RP would be the
standard one-wayness game. Depending on the application, it might be useful
to define FP such that it only corresponds to efficient (e.g., realizable through
PPT machines) implementations.

There is a fully-BB reduction from a primitive P =
〈
FP , RP

〉
to Q =〈

FQ, RQ

〉
if there exist PPT machines G,S such that:

• for every function f ∈ FQ, Gf ∈ FP ,
• for every function f ∈ FQ and every adversary A, (Gf ,A) ∈ RP =⇒

(f, SA) ∈ RQ.

As mentioned in [43], this definition of reduction does not apply to non-uniform
or information-theoretic notions of security. They also define different types of
reductions such as semi-black-box or relativizing reductions.

3 Notion of Tight Reduction

In this section we formalise the notion of tight reduction by adapting the frame-
work of Reingold et al. (RTV) [43]. Roughly speaking, we represent security
conditions as a security game instead of a set of relations. Thus, we could for-
mally define what we mean by “breaking one primitive with about the same
success as the other primitive” in terms of probabilities. Then, we define what
a multi-instance version of a primitive is. At the end, we give a few examples of
cryptographic primitives which satisfy our framework.

3.1 Primitives and Reductions

We start by stating what a primitive is and what it means for it to be secure.

Definition 4. A primitive P is a tuple
〈
P, SP , FP , RP , σ

〉
where:

• P is a triple of sets (A,B,C) where C ⊂ A,
• FP is a subset of {f : A → B},
• SP is a PPT setup algorithm which sends parameters (r1, . . .) to RP ,
• R

(·,·)
P is a PPT security algorithm which gets parameters (r1, . . .) from SP .

• σ : N → R is a security threshold.

We say that f is an implementation of P if f ∈ FP .
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There are three main differences between this definition and the one proposed
by Reingold et al. Firstly, P = (A,B,C) is a triple of sets which describe the
domain, co-domain and the challenge space respectively. Indeed, an implemen-
tation f is a function from A to B and the security game RP can call f only
on inputs in C (e.g. A = {0, 1}∗ and C = {0, 1}λ). This modification enables us
to characterize implementations which are defined on more abstract mathemat-
ical models (e.g. groups, rings) rather than on {0, 1}∗. Secondly, RP is now an
algorithm which expects black-box access to both an implementation f and an
adversary A. One can think of RP as a security game, e.g. one-wayness game
or IND-CCA game. Here, we want to associate for each pair (f,A) a value in
[0, 1] which corresponds to the probability of A winning the RP game against f
(see Definition 5). This adjustment helps us introduce the notion of a security
loss. Eventually, we introduce a setup algorithm SP which sends some values
to RP . This machine could as well send nothing or just provide fresh random
coins which RP would use in its game. However, this addition will be very useful
in defining the multi-instance setting of a primitive. Informally, we can define a
new security game R′ which represents the security of P in the multi-user setting
as follows: given parameters (r1, . . .) from SP , run n independent copies of RP

and send (r1, . . .) as setup parameters to each of them. Then, R′ returns a bit
depending on what the n copies returned earlier. This idea is formally defined
in Subsect. 3.2.

Definition 5. Let P =
〈
P, SP , FP , RP , σ

〉
be a primitive and P = (A,B,C).

Take f ∈ FP and any algorithm A. We define the advantage of A in breaking
f as

Advpf,A(λ) := |Pr[Rf |C ,A
P = 1] − σ(λ)|

where the probability is defined over random coins in the system. We say that A
P−breaks f if Advpf,A(λ) is non-negligible. Primitive P is called secure if there
exists an implementation f of P such that there are no PPT algorithms A that
P−break f .

From the definition above one observes that we do not assign each pair (f,A) a
binary value (that would indicate, e.g., whether it satisfies a relation or not), but
a probability. Therefore, the notion of a primitive from [43] is a generalisation
of our definition. Indeed, any primitive in our sense can be easily transformed
into a primitive from RTV definition: let P =

〈
P, SP , FP , RP , σ

〉
be a primitive

in our sense and define a primitive P ′ =
〈
F ′

P , R′
P

〉
such that F ′

P = FP and
R′

P = {(f,A)|AP-breaks f}. Then, primitives P and P ′ are equivalent. On the
other hand, it is not clear if implication in the opposite direction holds. It is
unknown if given relation set R we can construct a PPT algorithm R which
could be equivalent to R, meaning that (f,A) ∈ R ⇐⇒ |Pr[Rf,A = 1] − σ(λ)|
is not negligible. An obvious brute force solution would be to check all elements
of R but this could take exponential time. Despite the fact that our definition
of a primitive is less general, it allows us to spot relations between two distinct
advantages and consequently, to formally define a security loss.
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Using our previous definitions we formalise the notion of a (tight) fully black-
box reduction.

Definition 6 (C-tightness). Let P =
〈
P1, SP , FP , RP , σ

〉
and Q =

〈
P2, SQ,

FQ, RQ, τ
〉

be primitives. Then, there is a fully black-box reduction from P to Q

if there exist algorithms G(·), S(·) such that:

• for every implementation f of Q, Gf is an implementation of P ,
• for every implementation f of Q and every (unbounded) algorithm A, if A

P -breaks Gf then SA Q-breaks f .

We require that Gf is PPT for every f ∈ FQ, and that SA is PPT for every
PPT A. Let C: N → R be a function. We say that the reduction is C-tight (and

write P
C

↪−→ Q) if:

• for every algorithm A, T(SA) = T(A) + queries(SA,A) · n1(λ) + n2(λ) for
some n1, n2 ∈ poly(λ) that do not depend on A78,

• for every implementation f of Q and every algorithm A:

Advp
Gf ,A(λ) ≤ C(λ) · Advq

f,SA(λ) + negl(λ). (1)

In particular, we say that the reduction is fully-tight if C = 1, tight if C = a
for a ∈ N and almost-tight if C ∈ poly(λ).

We say that G is a generic construction of P from Q and S is an actual reduction.
The first condition for a tight reduction states that the runtime of SA should be
about the same as the runtime of the adversary A. This prevents the reduction
S from running many copies of A. An alternative way to formalise this condition
would be to use the definition of a time-success ratio from [24] and combine it
with the security loss C. However, in this paper we do not calculate exactly the
runtime of SA9 and thus, we omit such formalities. Note that we allow a tight
reduction to do some small enough amount of work proportional to the number of
queries it gets from A. Hence, some reductions, which are commonly considered
as tight (e.g. ElGamal encryption scheme to DDH), would be also classified as
tight by our definition. Further, the second condition from the definition of tight
reduction assures that the success of an adversary A breaking the primitive is
always about as large as the success of the reduction SA breaking the other one.

We note that reductions with security loss L, which depends on the number
of queries made by A, are still almost-tight as long as L = poly(λ). This observa-
tion includes recent identity-based encryption (IBE) schemes [10,19] with secu-
rity loss O(log Q), where Q is the number of IBE secret key queries. In these
reductions, we have that Q ≤ 2λ and consequently, they are still almost-tight in
our definition.

We can get some simple but useful properties of tight reductions from the
definition above. For example, they satisfy the transitivity property.
7 Recall that queries(SA, A) denotes the worst-case number of queries/messages from

A to S.
8 Runtime of A is included in T(SA).
9 As long as it is similar to the runtime of A.
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Lemma 1. Let P,Q,R be primitives such that P
C

↪−→ Q and Q
D

↪−→ R, where

C,D ∈ poly(λ). Then, P
E

↪−→ R, where E(λ) = C(λ) · D(λ).

Proof. Let (G,S) be a tight reduction from P to Q and (G′, S′) be a tight
reduction from Q to R. Define:

Ḡ(·) = GG′(·)
, S̄(·) = S′S(·)

.

We claim that (Ḡ, S̄) gives a reduction from P to R.
Take f ∈ FR. Then, G′f is an implementation of Q. Therefore, Ḡf = GG′f

is an implementation of P . Now, take any f ∈ FR and algorithm A. Note that
there are some negligible functions negl1(λ), negl2(λ) and negl(λ) such that:

Advp
Ḡf ,A(λ) ≤ C(λ) · Advq

G′f ,SA(λ)| + negl1(λ)

≤ C(λ) · (D(λ) · Advrf,S̄A(λ) + negl1(λ)) + negl2(λ)

= C(λ)D(λ) · Advrf,S̄A(λ) + negl(λ)

= E(λ) · Advrf,S̄A(λ) + negl(λ)

(2)

by the definition of the almost-tight reduction. Therefore, we have shown that
(Ḡ, S̄) is a E−tight reduction from P to R. ��

The notion of computational indistinguishability (≈, see Sect. 2) can also
be recast in our definitional framework. Let Ω1, Ω2, S be finite sets and Xλ :
Ω1 → S, Yλ : Ω2 → S be random variables (parametrized over λ). We define
fX,Y : Ω1 × Ω2 → S × S as fX,Y (u) = (Xλ(u), Yλ(u)). Then, the [Xλ;Yλ]
primitive is a tuple

〈
P, SX,Y , FX,Y , RX,Y , 1

2

〉
, where P = (Ω1×Ω2, S×S,Ω1×Ω2),

FX,Y = {fX,Y }, SX,Y sends b ←$ {0, 1} to RX,Y , and RX,Y is the following game:
generate (u0, u1) ←$ Ω1 × Ω2 and send (u0, u1) to an implementation f ∈ FX,Y .
Then, get back (v1, v2) from f and take b from SX,Y . Output vb to an adversary
A and eventually get back b′ from A. Then, the adversary A wins if b = b′.

3.2 Multi-instance Setting

Using notions from Subsect. 3.1 we define the multi-instance setting of a primi-
tive. Informally, this means that an adversary now interacts with (polynomially)
many independent copies of the security game, so it gets more information. How-
ever, the winning condition would be almost the same as in the single-instance
case, e.g. returning a preimage or guessing a bit (see Fig. 1). We define it for-
mally for a primitive P =

〈
P, SP , FP , RP , σ

〉
in terms of the security algorithm

RP . We, however, provide two definitions of the multi-instance setting due to
the differences between computational and decisional problems.

Definition 7. (∃/∀-Multi-instance Setting). Let n(λ) be a polynomial in λ
and P =

〈
P, SP , FP , RP , σ

〉
be a primitive. Then, the ∃MIn(P ) primitive (resp.

∀MIn(P )) is a primitive
〈
P,S,F ,R∃, σ

〉
(resp.

〈
P,S,F ,R∀, σ

〉
) such that F =

FP , S = SP and R∃ (resp. R∀) is defined in Fig. 2 (left) (resp. right).
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RPRP

SP

RP

AdversaryImplementation

(r1, . . .)(r1, . . .) (r1, . . .)

Fig. 1. New security game for the three-instance version of primitive P =〈
P, SP , FP , RP , σ

〉
is described as the green dashed box. (Color figure online)

Rf |C ,A
∃ (1λ, r1, . . .)

1 : Initialise n(λ) ind. copies of R
f |C ,A
P

2 : send (r1, . . .) to each of them

3 : as the setup parameters

4 : if one of the copies returns 1

5 : return 1

6 : else return 0

Rf |C ,A
∀ (1λ, r1, . . .)

1 : Initialise n(λ) ind. copies of R
f |C ,A
P

2 : send (r1, . . .) to each of them

3 : as the setup parameters

4 : if all of the copies return 1

5 : return 1

6 : else return 0

Fig. 2. Security algorithms for ∃MIn(P ) (on the left) and ∀MIn(P ) (on the right). They
get as input the security parameter λ (in unary) and parameters (r1, . . .) from the
setup algorithm SQ. Here, we assume that R has black-box access to implementation
f (restricted to the domain C, where P = (A, B, C)) and adversary A.

Now we provide examples of cryptographic primitives in the multi-instance
setting using definitions above.

Example 1. Let OWF =
〈
POWF, SOWF, FOWF, ROWF, 0

〉
be the primitive of a

one-way function. That is, POWF = (A,B,C), FOWF is a collection of func-
tions f : A → B, and ROWF is a standard one-wayness game (i.e. ROWF gen-
erates x uniformly at random from C, gets f(x) by calling an implementa-
tion f and returns 1 only if adversary can guess the preimage of f(x)). For
simplicity, when we write OWFp(λ), where p = poly(λ), we mean OWF with
POWF = ({0, 1}∗, {0, 1}∗, {0, 1}p(λ)) which is closer to the standard definition of
a one-way function. The security game for ∃MIn(OWF) would be as follows: it
generates x1, . . . , xn independently and uniformly at random from C, then it
gets f(x1), . . . , f(xn) by calling f and sends to adversary. The winning condi-
tion is that adversary returns a preimage of one of the values it was given i.e. x
satisfying f(x) = f(xi) for some i. On the other hand, in ∀MIn(OWFp(λ)), the
adversary wins if it returns preimages for all values f(x1), . . . , f(xn). In prac-
tice, the ∃MIn(OWFp(λ)) setting is more common and therefore we focus on the
former case.
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Example 2. Let us define a primitive PRG =
〈
PPRG, SPRG, FPRG, RPRG, 1

2

〉
of a

pseudorandom generator where PPRG = (A,B,C) such that C = A and |B| >
|A|. Let FPRG be a collection of functions G : A → B and let SPRG generate a
bit b ←$ {0, 1}. We also define RPRG, given bit b, to generate random x ∈ C and
output the image G(x) of an implementation G if b = 0 and uniformly random
value from B otherwise. The adversary wins if it can guess the bit b. Then, the
security game for ∀MIn(PRG) would be as follows: given bit b from the setup
algorithm, generate and send G(x1), . . . , G(xn) for some x1, . . . , xn ∈ A if b = 0
or n uniformly random elements from B if b = 1. The winning condition here is
that adversary guesses the bits for all of the n subgames which is equivalent to
guessing the bit b.

Now, consider ∃MIn(PRG). We claim that it is not secure. Note that in this
case adversary wins if it guesses the bit b for one of the n subgames. In other
words, it has n chances to guess b. Thus, an adversary which just sends 1 to a
random subgame and 0 to another one will always win one of these two games
(because b ∈ {0, 1}) and consequently, break ∃MIn(PRG). Therefore, we only
analyse the security of ∀MIn(PRG).

Example 3. We define a primitive corresponding to an IND-CPA secure public-
key encryption scheme as PKE =

〈
PPKE, SPKE, FPKE, RPKE,

1
2

〉
where, as before,

SPKE does the sampling b ←$ {0, 1}, RPKE is the IND-CPA game and FPKE con-
tains encryption schemes. Note that ∃MIn(PKE) is not secure due to the same
reasons as the ∃-multi instance pseudorandom generator. On the other hand,
∀MIn(PKE) yields the definition of an encryption scheme in the multi-user set-
ting by Bellare et al. [6]. In a similar fashion we can define IND-CCA secure
PKE schemes.

One observes that one can slightly change the definition of a primitive in
order to get a definition of “multi-ciphertext setting”. If we give SPKE black-box
access to an implementation and let it also generate keys (pk, sk) instead of RPKE

then the security game for ∀MIn(PKE) is indeed an IND-CPA game with many
ciphertexts. However, we do not consider the multi-ciphertext security in this
paper so we omit defining it formally here.

We also introduce the notion of a primitive being tightly extensible, meaning that
a reduction from its multi-instance setting admits the same security loss as in
the single-instance case.

Definition 8. Let P be a primitive and C : N → R be a function. Then, P is
(C,∀)-tightly extensible (resp. (C,∃)-tightly extensible) with respect to primitive
Q if:

• P
C

↪−→ Q,

• ∀n ∈ poly(λ), ∀MIn(P )
C

↪−→ Q (resp.∃MIn(P )
C

↪−→ Q).
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Based on what we have already defined, we can formally state the main
problem of this paper:

Problem. Suppose that P
C

↪−→ Q. Show that P is (C,∃( or ∀))-tightly exten-
sible w.r.t. Q.

There are two standard approaches to show that P is tightly extensible
w.r.t. Q. Namely, (i) somehow tightly reduce the multi-instance primitive to the
single case, (ii) modify the former reduction and apply re-randomisation/self-
reducibility techniques to eventually obtain the same security loss, or (iii) hide
the factor of n in the statistical difference. In Sect. 4 we discuss these meth-
ods used in practical examples. When we apply (i), we use the following simple
lemma.

Lemma 2. Let n be a polynomial in λ and let P and Q be primitives such

that P =
〈
P1, SP , FP , RP , σ

〉 C
↪−→ Q =

〈
P2, SQ, FQ, RQ, τ

〉
and let (G,S) be

such a reduction. Define P/Q to be the primitive
〈
P1, SP ,F , RP , σ

〉
such that

F = {Gf : f ∈ FQ}. Then, if ∃MIn(P )
D

↪−→ P/Q (resp. ∀MIn(P )
D

↪−→ P/Q) then

∃MIn(P )
C·D

↪−−→ Q (resp. ∀MIn(P )
C·D

↪−−→ Q). In particular, if D = 1 then P is
(C,∃) (resp. (C,∀))-tightly extensible w.r.t. Q.

Proof. Using the notation above, it is easy to see that P
C

↪−→ Q implies P/Q
C

↪−→ Q.
The result holds by this simple observation and by Lemma 1. ��

4 Tightly Extensible Primitives

We provide a few constructions of tightly extensible primitives from more general
primitives. In principle, we first take a tight reduction from the single-instance
primitive and see if we can extend it (in a tight way) to the multi-instance setting
or otherwise, use the Lemma 2. In the first subsection, we demonstrate the use
of definitions from Sect. 3, and derive formal proofs. In the later subsections,
however, we focus more on showing novel techniques to extend reductions to the
multi-instance setting.

4.1 One-Wayness of Collision-Resistant Hash Functions

It is well-known that signatures schemes can be constructed from one-way func-
tions [23,32,44]. Concretely, we can use the Lamport construction [33] of a one-
time signature scheme from one-way functions, and then extend these one-time
signatures to full signatures using Merkle trees [37]. The corresponding reduc-
tion is far from tight, and not known to scale well to the multi-user setting.
Here, we consider the same construction under a slightly stronger assumption
(namely, collision-resistance) of the used one-way function. We will show that
this stronger assumption enables a much tighter security reduction.
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We start by defining collision-resistant hash functions w.r.t. the definition
of a primitive from Sect. 3. Define CRHF =

〈
PCRHF, SCRHF, FCRHF, RCRHF, 0

〉

as follows: PCRHF = ({0, 1}∗, {0, 1}λ, {0, 1}∗), SCRHF returns no parameters,
FCRHF = {h : {0, 1}∗ → {0, 1}λ} and RCRHF is the collision resistance game,
i.e. it waits until it gets (x, x′) from adversary, checks if x �= x′ and then calls
the implementation h to check if h(x) = h(x′).

Let us define an adaptive one-way function. Specifically, we denote
AOWF =

〈
POWF, SOWF, FOWF, RAOWF, 0

〉
, where POWF, SOWF, FOWF are defined in

Example 1. Also, RAOWF is defined identically as ROWF, but here adversary can
also send a message lose, in which case RAOWF outputs back the challenge
preimage x and automatically returns 0. Similarly as in Example 1, we use the
notation AOWFp(λ) when POWF = ({0, 1}∗, {0, 1}∗, {0, 1}p(λ)). Clearly, security
of OWF implies (tightly) the AOWF security. Interestingly, we cannot conclude
the same for ∃MIn(OWF) and ∃MIn(AOWF).

Damg̊ard [12] showed that h, when considered as a function with domain
{0, 1}λ+1, is also a (adaptive) one-way function. Indeed, if there exists an adver-
sary A which can find preimage of h(x) for uniformly random x, then we can
construct adversary SA which breaks the collision-resistance of h as follows:
given h, choose random x and send h(x) to A. Let x′ be the output of A. Then,
return the pair (x, x′). Note that with non-negligible probability (over x and
x′), we have x �= x′. Hence, adversary SA wins the collision-resistance game and
additionally, the reduction itself is clearly tight.

Damg̊ard’s argument in fact nicely extends to the multi-instance setting:

Theorem 1. Let CRHF be the primitive of a collision-resistant hash function
and AOWF2λ be the primitive of a one-way function defined in Example 1. Then,
AOWF2λ is (2,∃)-tightly extensible w.r.t. CRHF.

Proof. We first reprove that AOWF2λ
2

↪−→ CRHF. Let us define PPT algorithms
G· and S· as in Fig. 3. Clearly, both G and S run in polynomial time. One can
observe that G is a generic construction. Indeed, G only forwards all the queries
from/to an implementation and hence, ∀h ∈ FCRHF, Gh = h. In particular,
Gh : {0, 1}∗ → {0, 1}λ is a function, so Gh ∈ FOWF. Now, suppose that there

Gh(1λ)

1 : if G is queried on x:

2 : send x to h

3 : get y from h

4 : return y

SA(1λ)

1 : x ←$ {0, 1}2λ

2 : send h(x) to A
3 : if A outputs lose, send x to A and abort

4 : Othewise, get x′ from A and return (x, x′)

Fig. 3. PPT algorithms G and S.
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exists an algorithm A which OWF2λ-breaks Gh. We want to prove that SA

CRHF-breaks h. Using the variables x and x′ from Fig. 3, one observes that:

Advcrhfh,SA(λ) = Pr[Rh,SA

CRHF = 1]

= Pr[x �= x′ ∧ h(x) = h(x′)]

≥ Pr[x �= x′ ∧ h(x) = h(x′) | |h−1(h(x))| ≥ 2] · Pr[|h−1(h(x))| ≥ 2],
(3)

where h−1(u) = {v ∈ {0, 1}2λ : h(v) = u}. Clearly, |h−1(h(x))| ≥ 1. Note that
Pr[x �= x′ | h(x) = h(x′) ∧ |h−1(h(x))| ≥ 2] ≥ 1

2 since adversary A does not
know, given h(x), if S chose exactly x or some other element in h−1(h(x)) (it
exists h−1(h(x)) ≥ 2). Hence, if we denote X = |h−1(h(x))|, then we eventually
have X−1

X ≥ 1/2. Using this observation and the fact that h(x) is generated by
S with the same distribution as the challenge by ROWF, we deduce that:

Advcrhfh,SA(λ) ≥ 1
2

Pr[h(x) = h(x′) | |h−1(h(x))| ≥ 2] · Pr[|h−1(h(x))| ≥ 2]

≥ 1
2

Pr[h(x) = h(x′)] − 1
2

Pr[|h−1(h(x))| = 1]

≥ 1
2
AdvowfGh,A(λ) − 1

2
Pr[|h−1(h(x))| = 1].

(4)

The only thing to compute here is Pr[|h−1(h(x))| = 1]. Let a1, . . . , am ∈ {0, 1}2λ

be the bit-strings such that |h−1(h(ai))| = 1 for i = 1, . . . , m. Clearly, we have
that h(a1), . . . , h(am) are pairwise distinct. Also {h(a1), . . . , h(am)} ⊂ {0, 1}λ,
and therefore m ≤ 2λ. Thus, Pr[|h−1(h(x))| = 1] = m

22λ ≤ 2λ

22λ = 1
2λ . By substi-

tuting this result into Eq. 4 and reordering both sides we get:

2Advcrhfh,SA(λ) +
1
2λ

≥ AdvaowfGh,A(λ),

which concludes that AOWF2λ
2

↪−→ CRHF.
Now, we have to prove that ∃MIn(AOWF2λ)

2
↪−→ CRHF for any n ∈ poly(λ).

Denote n = n(λ). We define the reduction (Ḡ, S̄) as in the Fig. 4. One observes
that Ḡ and S̄ are both PPT algorithms, and also Ḡ = G is a generic construction
of ∃MIn(AOWF2λ) from CRHF. Suppose that there exists an algorithm A which
OWF2λ-breaks Gh for some h ∈ FCRHF. We extend the previous argument for
many instances as follows (the probabilities are calculated over x1, . . . , xn, x′

which are defined in Fig. 4):

Advcrhfh,S̄A(λ) = Pr[Rh,S̄A

CRHF = 1]

= Pr[xi �= x′ ∧ h(xi) = h(x′)]
≥ Pr[xi �= x′ ∧ h(xi) = h(x′) | E] · Pr[E],

(5)
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Ḡh(1λ)

1 : if G is queried on x:

2 : send x to h

3 : get y from h

4 : return y

S̄A(1λ)

1 : x1, . . . , xn ←$ {0, 1}2λ, U = ∅
2 : send h(x1), . . . , h(xn) to A
3 : if A returns lose in the i-th subgame:

4 : send back xi and set U ← U ∪ {i}
5 : if A returns some x′ in the i-th subgame:

6 : if h(x′) = h(xi), return (x′, xi)

Fig. 4. PPT algorithms G and S.

where E =
n∧

i=1

|h−1(h(xi))| ≥ 2. In the similar fashion as before, we have that

Pr[xi �= x′ | h(xi) = h(x′) ∧ E] ≥ 1
2 . Hence,

Advcrhfh,S̄A(λ) ≥ 1
2

Pr[h(xi) = h(x′) | E] · Pr[E]

≥ 1
2
Adv

min(aowf)

Ḡh,A (λ) − 1
2

Pr[¬E].
(6)

By the union bound, we compute:

Pr[¬E] = Pr[
n∨

i=1

|h−1(h(xi))| = 1] ≤
n∑

i=1

Pr[|h−1(h(xi))| = 1] =
n

2λ
. (7)

Eventually, by reordering both sides of Eq. 6 we get that ∃MIn(AOWF2λ)
2

↪−→
CRHF:

2Advcrhfh,S̄A(λ) +
n

2λ
≥ Adv

min(aowf)

Ḡh,A (λ).

��
Even though this proof is not complicated, the theorem itself can be useful in
constructing secure one-time signature schemes (OTS) with small security loss.
Let us first define OTS using the definition of a primitive from Sect. 3. That is,
OTS =

〈
POTS, SOTS, FOTS, ROTS, 0

〉
, where P = ({0, 1}∗, {0, 1}∗, {0, 1}∗), SOTS

does not send any global parameters, FOTS is the set of all signature schemes
and ROTS represents the EUF-OTCMA game.

Let f be a one-way function and let n be a polynomial in λ. Consider the
Lamport’s one-time signature scheme [33] (GenL;SignL;VerL) for messages of
length n = n(λ), meaning:

• GenL(λ): generate 2n random values xi,j and compute yi,j = f(xi,j) for j ∈
{0, 1}, i ∈ {1, . . . , , n}. Then, set sk = {x1,0, . . . , xn,0, x1,1, . . . , xn,1} and vk =
{y1,0, . . . , yn,0, y1,1, . . . , yn,1}.
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• SignL(m, sk): for message m = m1m2 . . . mn, output σ = σ1σ2 . . . σn where
σi = xi,mi

.
• VerL(vk,m, σ): for signature σ = σ1σ2 . . . σn and message m = m1m2 . . . mn,

check if f(σi) = yi,mi
for all i = 1, . . . , n. If so, return 1 and 0 otherwise.

Lamport proved that this scheme is EUF-OTCMA secure by giving a reduction
to the one-wayness of f which admits the security loss of 2n. We show how to
tightly reduce it to the adaptive one-wayness of f in the multi-instance setting.

Theorem 2. Let n ∈ poly(λ) and OTS and AOWF2λ be the primitives of a one-
time signature scheme and one-way function respectively. Then, there exists a
fully-tight fully black-box reduction from OTS to ∃MI2n(AOWF2λ).

Proof. As usual, let us define PPT algorithms G and S as in Fig. 5. We can
see that G represents the Lamport construction of a one-time signature scheme.
In particular, G is a signature scheme and also, G is a generic construction
of OTS from ∃MI2n(AOWF2λ). Now, let us consider S and suppose that S is
given f(x1,0), . . . , f(xn,1) from R∃MI2n(AOWF2λ). If A requests a signature on
m′ = m′

1...m
′
n then we abort 1 + m′

1 · n-th, ..., n + m′
n · n-th subgames of

R∃MI2n(AOWF2λ) and consequently, get back preimages xi,m′
i
, ..., xn,m′

n
. Eventu-

ally, when A outputs a valid forgery (m,σ), then we must have m �= m′. So,
there exists some index i such that mi �= m′

i
10. This means that f(σi) = yi,mi

and therefore, S wins the i + mi · n-th subgame of R∃MI2n(AOWF2λ). Hence, we
end up with a tight reduction which admits security loss 1. ��
Combining the previous two results we get that it is possible to construct a
one-time signature scheme, which can be reduced to a collision-resistant hash

Gf (1λ)

1 : if G is queried on Gen(1λ):

2 : run GenL(λ) by calling f

3 : if G is queried on Sign(m, sk):

4 : run SignL(m, sk)

5 : if G is queried on Ver(vk, m, σ):

6 : run VerL(vk, m, σ)

SA(1λ)

1 : receive (y1,0, . . . , yn,0, y1,1, . . . , yn,1)

2 : vk = (y1,0, . . . , yn,1)

3 : send vk to A
4 : if A requests a signature on m′:

5 : for i = 1, ..., n

6 : send lose to i + m′
i · n-th subgame

7 : get back xi,m′
i

8 : send σ = x1,m′
1
...xn,m′

n
to A

9 : if A outputs (m, σ = σ1, . . . , σn):

10 : find i so that mi �= m′
i

11 : send σi to i + mi · n-th subgame

Fig. 5. PPT algorithms G and S. Here, (GenL; SignL;VerL) is the Lamport signature
scheme.

10 If A has not requested a signature before, then we just set i = 1.
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function with the loss of 2. Thus, we managed to eliminate the factor n and if
one wants to apply Merkle trees, the overall reduction to CRHF from a secure
signature scheme would have the security loss of O(l), where l is the number of
signing queries.

4.2 A Rerandomisable Hard-Core Predicate

Blum and Micali [8] provided a construction of a pseudorandom generator from
a one-way permutation. Let f be a one-way permutation and b be its hard-core
predicate. Then, the function G(x) = f(x)||b(x) is a pseudo-random generator.
Now, our aim is to construct, given f and b, a tightly extensible pseudo-random
generator w.r.t. some certain mathematical assumption. We find suitable f and
b such that we can apply Lemma 2. Note that in order to do this, we need a
rerandomisation property from these functions. For instance, given b(x) and a
value a, we should somehow be able to compute b(ax). We will choose a one-way
permutation on a group where the discrete logarithm problem is hard and use
properties of Legendre symbol to construct a rerandomisable hard-core predicate.

Background. Let a ∈ Z be an integer and p be a prime number such that
p � a. We say that a is a quadratic residue mod p if there exists x ∈ Z \ {0}
so that x2 ≡ a(mod p). If there is no such x, then a is a quadratic non-residue
mod p. It is a well-known fact that in {1, . . . , p − 1} there are exactly (p − 1)/2
quadratic residues (and also (p − 1)/2 quadratic non-residues) mod p. Clearly,
the quadratic residues form a subgroup of Z

∗
p.

The Legendre symbol is defined as follows:

(
a

p
) =

⎧
⎪⎨

⎪⎩

0 if p|a
1 if a is a quadratic residue mod p

−1 if a is a quadratic non-residue mod p

One of useful properties of the Legendre symbol is that it is homomorphic,
meaning (a

p )( b
p ) = (ab

p ) for any a, b. Moreover, by the Euler’s criterion, the
Legendre symbol can be computed efficiently.

The LGR Problem. We propose a new computational problem, called Legen-
dre Problem (LGR).

Definition 9. Let p be a λ-bit prime number and let G be a group of order p
with generator g. We say that the Legendre Problem (LGR) is hard in G if for
all PPT algorithms A,

Advlgr
G,A[(λ)] := Pr[b ←$ A(〈G〉, p, g, gx) : x ←$ Zp, b =

1 + (x
p )

2
] =

1
2

+ negl(λ).

Equivalently, define a primitive LGRG =
〈
PLGR, SLGR, FLGR, RLGR, 1

2

〉
such that

PLGR = (Zp, G, Zp), SLGR sends parameters (G, p, g) to RP and FLGR = {fg},
where fg is defined by a �→ ga. The security game RLGR first chooses random
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x ←$ Zp, sends x to an implementation f ∈ FLGR of LGRG and gets back y. Then,
it outputs y to adversary A. When it receives b ∈ {0, 1} from A, it returns a
value of the statement b = (1 + (x

p ))/2.

One observes that the Legendre Problem is not harder than the discrete loga-
rithm problem. Indeed, given gx, solving the discrete logarithm problem yields x,
from which one can directly compute (x

p ). A more interesting question is whether
LGR is as hard as DLOG. We first show that LGR is at least as hard as DDH.

Lemma 3. Let G be a group of prime order p and suppose that DDH is hard in
G. Then, the Legendre Problem is also hard in G.

Proof. Suppose there exists a PPT algorithm A which solves LGR with a non-
negligible advantage. We construct a PPT algorithm SA which wins the DDH
game as follows. S first generates random a, b, c ←$ Zp. Next, given gx, gx, gz,
where z = xy or z is random, S sends gax, gby, gcz to A and gets (ax

p ), ( by
p ), ( cz

p )
respectively. Then, S simply extracts (x

p ), (y
p ), ( z

p ) (e.g. by (x
p )(a

p ) = (ax
p )) and

returns the value of statement (x
p )(y

p ) = ( z
p ). Note that if z = xy then this

will always be true. On the other hand, if z is random, then the probability
that ( z

p ) = b for b ∈ {−1, 1} is 1/2. All in all, S wins the DDH game with
non-negligible probability. The reduction itself, however, is far from tight11. ��

Legendre’s symbol has already been used in building pseudorandom gener-
ators [13,36,46]. For example, Damg̊ard [13] applied specific subsequences of
the sequence of Legendre symbols modulo a prime to obtain a pseudorandom
generator. Security of such constructions, however, rely on empirical results or
additional unproven conjectures.

Our Construction. We build a tightly extensible pseudorandom generator
with respect to the Legendre assumption. Let G be a densely presentable group
with generator g of prime order p, i.e. a group which satisfies the property that
for x ∈ Zp, the map x �→ gx is a permutation (e.g. [9]). We define PRGG to be the
primitive from Example 2 with P = (Zp, G × {0, 1}, Zp). Then, the construction
is presented as follows.

Theorem 3. Let G be a densely presentable group of prime order p where the
Legendre problem is hard. Denote g ∈ G to be a generator of G. Then, PRGG is
(2,∀)-tightly extensible w.r.t. LGRG.

Proof. Define f : Zp → G as x �→ gx, b : Zp → {0, 1} as x �→ (1 + (x
p ))/2 and

eventually, F (x) := f(x)||b(x). Clearly, if the Legendre Problem is hard in G
then f is a one-way permutation and b is a hard-core predicate for f .

11 On the other hand, one can actually derive a simple tight reduction from ∀MI3(LGR)
to DDH.
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Blum and Micali [8] showed that F is a pseudorandom generator. In this case,
the generic reduction is fully-tight. Thus, by Lemma 2 it is enough to reduce the
multi-instance setting of F to the single-instance with security loss 2. Suppose
that there exists an adversary A which can win the n-multi-instance game for the
pseudorandom generator F . We construct an adversary SA that wins a single-
instance game as follows. Given (u||v) (u ∈ G, v ∈ {0, 1}), toss a fair coin n
times. For the i-th trial, where i = 1, . . . , n, if we get heads - generate random
xi ←$ Zp and set yi = F (xi). On the other hand, if the coin comes out tails, we
choose random ai ←$ Zp and set yi = uai ||vi where vi = (1 + (ai

p )(2v − 1))/2.
Then, send y1, . . . , yn to adversary A and eventually output what A returns.

Let us assume that x �= 012. In order to analyse correctness of this reduction,
we have to consider two cases. First, suppose that u = gx for some x. Then,
v = (1 + (x

p ))/2 or v = (1 − (x
p ))/2.

Case 1: v = (1+(x
p ))/2. Let us fix i and consider the i-th trial of flipping the

coin. If it comes out heads, then yi = F (xi) for randomly chosen xi. Otherwise,
we get that vi = (1 + (ai

p )(x
p ))/2 = (1 + (aix

p ))/2 and thus yi = F (xi) where
xi = aix for uniformly random ai. Therefore, for each i we have yi = F (xi) and
also x1, . . . , xn are independently, uniformly random in Zp.

Case 2: v = (1 − (x
p ))/2. Let us denote yi = gsi ||ti where si ∈ Zp, t ∈ {0, 1}.

We need to show that for every α1, . . . , αn ∈ Zp and β1, . . . , βn ∈ {0, 1} we have

Pr[s1 = α1, . . . , sn = αn, t1 = β1, . . . , tn = βn] =
1

2npn
.

This is the same as showing Pr[t1 = β1, . . . , tn = βn|s1 = α1, . . . , sn = αn] ·
Pr[s1 = α1, . . . , sn = αn] = 1

2npn . Note that Pr[s1 = α1, . . . , sn = αn] = 1/pn

because x �= 0 and si = aix or si = xi for random ai, xi. Now, consider
Pr[t1 = β1, . . . , tn = βn|s1 = α1, . . . , sn = αn]. Clearly, this is the same as
Pr[t1 = β1|s1 = α1, . . . , sn = αn]n. Firstly, assume that β1 = (1 + (α1

p ))/2 and
let X denote the output of tossing a coin for the first time (and say H - heads,
T - tails). Then, Pr[t1 = β1|X = H, s1 = α1, . . . , sn = αn] = 1 because if
SA gets heads then it generates fresh F (x1) and in this case x1 = s1 = α1 so
t1 = (1 + (α1/p))/2 = β1. On the other hand, if the coin comes out tails then
we have αi = si = aix. Also, t1 = v1 = (1 − (ai

p )(x
p )/2 = (1 − (α1

p ))/2 �= β1

and hence Pr[t1 = β1|X = T, s1 = α1, . . . , sn = αn] = 0. Consequently, we get
Pr[t1 = (1 + (α1

p ))/2|s1 = α1, . . . , sn = αn] = (1 + 0)/2 = 1/2. Using a similar
argument it can be shown that Pr[t1 = (1−(α1

p ))/2|s1 = α1, . . . , sn = αn] = 1/2.
Thus, Pr[t1 = β1, . . . , tn = βn|s1 = α1, . . . , sn = αn] = 1/2n and the result
holds. In particular, if v = (1 − (x

p ))/2 then all the values yi sent to A look
independently and uniformly random.

12 This occurs with an overwhelming probability.
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In conclusion, we obtain the following results:

Pr[1 ←$ SA(u||v) | (u||v) ←$ F ] = Pr[1 ←$ A(y1, ..., yn) | (y1, ..., yn) ←$ F ],

and also Pr[1 ←$ SA(u||v) | (u||v) ←$ G × {0, 1}] = α, where

α ≥ 1
2

Pr[1 ←$ SA(u||v) | (u||v) ←$ G × {0, 1} ∧ v = (1 − (
x

p
))/2]

=
1
2

Pr[1 ←$ A(y1, ..., yn) | (y1, ..., yn) ←$ G × {0, 1}]. (8)

Thus, we get a tight fully black-box reduction from ∀MIn(PRGG) to PRGG/LGRG

which admits the security loss of 2. Hence, by Lemma 2 the result holds. ��
A rerandomisable hard-core predicate can be potentially also very useful in con-
structing a tightly extensible encryption scheme out of a computational problem
(rather than a decisional one). However, it is not known how it can concretely
be used, for example, because we do not have any information about functions
related to DLOG being trapdoor one-way functions.

4.3 Tightly Extensible Lossy Trapdoor Functions

Our aim is to construct IND-CPA secure encryption schemes in the multi-
user setting from lossy trapdoor functions in a tight way. In order to do so,
we introduce tightly secure LTDFs in the multi-instance setting. Let LTDF =〈
PLTDF, SLTDF, FLTDF, RLTDF,

1
2

〉
be a primitive of lossy trapdoor functions, i.e.

PLTDF defines the domain, codomain and challenge space, FLTDF is a collection
of LTDFs, SLTDF provides a random bit to RLTDF and RLTDF runs a game where
the goal is to distinguish a lossy function from an injective one. As before, let
PKE be a public-key encryption scheme with its security game being IND-CPA.
For exact same reasons as in PRGs or PKE cases, it is sensible only to consider
∀MIn(LTDF) for the multi-instance setting. Also, denote DDH as a primitive rep-
resenting the DDH assumption (formal definition is not required here). Peikert
et al. [41] showed that:

PKE
2

↪−→ LTDF
λ

↪−→ DDH.

Using these results, we show the following:

∀MIn(PKE)
2

↪−→ ∀MIn(LTDF)
1

↪−→ LTDF/DDH
λ

↪−→ DDH. (9)

Primitive LTDF/DDH is a construction of a lossy trapdoor function from a DDH
group by Peikert et al.

Clearly, LTDF
2

↪−→ DDH implies LTDF/DDH
2

↪−→ DDH and so we concentrate
on proving the first two reductions.

Theorem 4. Let n ∈ poly(λ). Then, ∀MIn(PKE)
2

↪−→ ∀MIn(LTDF).
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Proof. We use the construction of Peikert et al. Let (Sinj , Sloss, F, F−1) be
a collection of (m, k)-lossy trapdoor functions. Let H be a family of pair-
wise independent hash functions from {0, 1}m to {0, 1}l for l ≤ k − 2 log(1/ε)
where ε = negl(λ). The message space is {0, 1}l. Define the encryption scheme
E = (Gen;Enc;Dec) where:

• Gen(1λ) takes an injective trapdoor function (s, t) ←$ Sinj and a hash function
h ←$ H. Then, it sets pk = (s, h) and sk = (t, h).

• Enc(pk,m) first generates random x ←$ {0, 1}m. Then, it sets c1 = F (s, x)
and c2 = m ⊕ h(x). It outputs c = (c1, c2).

• Dec(sk, c) computes x = F−1(t, c1) and returns c2 ⊕ h(x).

Peikert et al. proved that E is an IND-CPA secure scheme. We show that if
(Sinj , Sloss, F, F−1) is a LTDF in the multi-instance setting then E is a IND-
CPA tightly secure scheme in the multi-user setting. We do it using the same
technique as Peikert et al. Consider the following variables:

– Variable X0: choose (s1, t1), . . . , (sn, tn) ←$ Sinj , x1, . . . , xn ←$ {0, 1}m and
also h1, . . . , hn ∈ H. Then the value of X0 is

(s1, . . . , sn, h1, . . . , hn, F (s1, x1), . . . , F (sn, xn), h(x1), . . . , h(xn)).

– Variable X1: choose (s1, t1), . . . , (sn, tn) ←$ Sloss, x1, . . . , xn ←$ {0, 1}m and
also h1, . . . , hn ∈ H. Then the value of X1 is

(s1, . . . , sn, h1, . . . , hn, F (s1, x1), . . . , F (sn, xn), h(x1), . . . , h(xn)).

– Variable X2: choose (s1, t1), . . . , (sn, tn) ←$ Sloss, x1, . . . , xn ←$ {0, 1}m and
also r1, . . . , rn ∈ {0, 1}l. Then the value of X2 is

(s1, . . . , sn, h1, . . . , hn, F (s1, x1), . . . , F (sn, xn), r1, . . . , rn).

– Variable X3: choose (s1, t1), . . . , (sn, tn) ←$ Sinj , x1, . . . , xn ←$ {0, 1}m and
also r1, . . . , rn ∈ {0, 1}l. Then the value of X3 is

(s1, . . . , sn, h1, . . . , hn, F (s1, x1), . . . , F (sn, xn), r1, . . . , rn).

Lemma 4 ([41], generalized). Let X0,X1,X2,X3 be random variables defined
as above. Then, {X0} c≈ {X1} s≈ {X2} c≈ {X3}.
Proof. Note that X0 and X1 are computationally indistinguishable because
of the multi-setting indistinguishability property of LTDFs. Identical argu-
ment works for X2 and X3. In order to show that X1 and X2 are statisti-
cally indistinguishable we use the result by Peikert et al. ([41], Lemma 3.4)
for the single-instance case. Then, by the standard hybrid argument we get
Δ(X1,X2) ≤ n · ε(λ) which is still negligible. ��
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One observes that, by Lemma 4, the encryption scheme E is indeed IND-CPA
in the multi-user setting. Moreover, the reduction is still tight because only the
statistical difference between X1 and X2 is dependent on the number of instances
n. This completes the proof. ��

In a similar way we can define the multi-instance All-But-One LTDFs and use
them to construct IND-CCA secure scheme in the multi-user setting. One could
take the construction provided by Peikert et al. and extend the proof of security
to many instances. This approach would give us a reduction with security loss
O(qdec), the same as in the single-instance case. However, we omit the formal
proof here.

Let us consider the construction of a pseudorandom generator provided by
Peikert et al., i.e. define G(x) = (h1(F (s, x)), h2(x)), for h1, h2 ←$ H. By Lemma
3.4 in [41] and the Leftover Hash Lemma (e.g. [15]), if (Sinj , Sloss, F, F−1) is a
collection of lossy trapdoor functions then G is a pseudorandom generator. One
observes that this result can be easily extended to the multi-instance setting
thanks to Lemma 4. This example and Theorem 4 show that multi-instance
LTDFs can be useful in constructing more general primitives in the multi-
instance setting. We now present how to build such primitives from a standard
assumption, namely DDH.

Constructing Tightly Extensible LTDFs. We focus on proving the second
reduction in (2) which involves encrypting matrices in a way similar to ElGamal
encryption scheme. Suppose we work with a group G of prime order p and gen-
erator g. For simplicity, we write [x] = gx for x ∈ Zp. We write small bold letters
(e.g. x,y) for column vectors and capital bold letters (e.g. A,U) for matrices.
We denote At to be the transpose of A. For simplicity, we write [x] = gx for
x ∈ Zp and similarly [x] = ([x1], . . . , [xm]) for x = (x1, . . . , xm). We use identical
notation [A] also for matrix A.

For a matrix A with at least 2 rows, we write WLR(A) for a matrix A without
last row. Similarly, we define WLC(A) for A without last column. We will use the
following simple observation.

Observation 1. Let m,n, k ≥ 2 and A,B be m × n and n × k matrices in G
respectively. Then, WLR(AB) = WLR(A)B and WLC(AB) = AWLC(B)

We briefly recall the method for encrypting matrix M ∈ Z
m×m
p by Peikert

et al. Firstly, we generate secret keys z = (z1, . . . , zm) ∈ Z
m
p and set sk = z, pk =

[z]. Also, denote hi = [zi]. Then, choose uniformly random r1, . . . , rm ∈ Zp. The
encryption of M is a matrix C = (Ci,j) where Ci,j = ([ri], [mi,j ][zi]ri). The
construction of a LTDF (Sinj , Sloss, F, F−1) from a DDH group looks as follows.

• Sinj first selects group parameters (G, p, g). Then, it returns (C, t) where C
is a matrix encryption of the identity I and t consists of secret keys z.

• Sloss selects group parameters (G, p, g) and returns (C,⊥) where C is a matrix
encryption of zero matrix 0.

• F takes as input (C,x), where C is a function index and x ∈ {0, 1}m, and
returns y = xC.
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• F−1 takes as input y = ((y1,0, y1,1), . . . , (ym,0, ym,1)) and the trapdoor z =
(z1, . . . , zm). Then, it returns x = (x1, . . . , xm) where xi = logg(yi,1/yzi

i,0) (it
can be efficiently computed since xi is a bit).

Security of this lossy trapdoor function relies heavily on the fact that the
matrix encryption scheme described above gives indistinguishable ciphertexts if
the DDH assumption holds [39,41]. The key observation is that if DDH is hard
in G, then for randomly chosen x,y ∈ Z

m
p , [xyt] is indistinguishable from a

uniformly random chosen matrix U ←$ Gm×m. We claim that this is also true
for many instances, i.e. for randomly chosen xi,yi ∈ Z

m
p where i = 1, . . . , n,

([x1yt
1], . . . , [xnyt

n]) is indistinguishable from a uniformly random chosen matrix
([U1], . . . , [Un]) where Ui ←$ Z

m×m
p . We write it formally as follows.

Theorem 5. Let n be a polynomial in λ and m ≥ 2. Define primitive Pm =〈
P, SP , FP RP , 1

2

〉
where:

• P = (Zm
p × Z

m
p , Zm×m

p , Zm
p × Z

m
p ),

• SP sends group information (G, p, g) to RP ,
• FP contains only a function f defined by f(x,y) = xyt,
• RP first generates x,y ←$ Z

m
p , calls f to get xyt, samples b ←$ {0, 1} and sets

U = xyt if b = 0 and U ←$ Z
m×m
p if b = 1. Finally, it sends ([x], [y], [U])

along with (G, p, g) to adversary A. Security game RP returns 1 if A guesses
the bit b.

Then, ∀MIn(Pm)
1

↪−→ Pm.

Proof. Assume first that there exists a PPT algorithm C1, which given a triple
([x], [y], [U]) sent by RP , returns another triple ([x′], [y′], [U′]) such that: (i)
y′ = y, (ii) x′ is uniformly random, (iii) if b = 0 then U′ = x′y′t and if b = 1
then U′ is uniformly random with probability 1 − negl(λ). In a similar fashion
we can define a PPT algorithm C2 which does the same thing as C1 but it fixes
x instead of y. Note that if C1 exists then clearly C2 also exists.

Now, suppose there exists an adversary A which ∀MIn(Pm)−breaks f . We
construct an adversary SA which Pm-breaks f as follows. Given a triple v =
([x], [y], [U]) from RP , it runs n independent copies of C1 on input v and gets
back outputs v1, . . . ,vn. Next, it runs n independent copies of C2 where the i-th
copy of C2 gets as input vi. Then, collect the outputs w1, . . . ,wn and pass them
to A. Eventually, when A returns a bit b′, output b′. Note that this reduction
is tight by the property (iii) of C1 and by standard hybrid argument. Therefore,
what we have left is to construct an algorithm C1 (Fig. 6).

Consider the following algorithm for C1 in Fig. 6. Note that we are able to
compute [x′] and [U′] in lines 3 and 4 even though we do not know values for
x′,U′. Clearly, property (i) is satisfied. Also, x′ is uniformly random because of
the randomness of r̃. The most challenging part is to show (iii).

First, suppose that b = 0. So we have U = xyt. Hence, U′ = RU + r̃yt =
Rxyt + r̃yt = (Rx + r̃)yt = x′yt. Now, consider the case b = 1. Then, U is a
uniformly random matrix. We want to show that U′ is also a uniformly random
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C1(1λ, G, p, g, [x], [y], [U])

1 : R ←$Z
m×m
p

2 : r̃ ←$Z
m
p

3 : [x′] = [Rx+ r̃]

4 : [U′] = [RU+ r̃yt]

5 : return ([x′], [y], [U′])

Fig. 6. PPT algorithm for C1.

matrix with overwhelming probability. Denote x = (x1, . . . , xm) and assume
that xm �= 0 (this occurs with an overwhelming probability). We slightly change
the algorithm for C1: we first choose random x′ = (x′

1, . . . , x
′
m), r̃ = (r̃1, . . . , r̃m)

from Z
m
p and R̃ = (R̃i,j) ∈ Z

m×(m−1)
p . Next, we set r = (r1, . . . , rm), where

ri = xm
−1(x′

i − r̃i −∑m−1
j=1 xjR̃i,j), and R =

(
R̃

∣
∣ r

)
. Note that this change does

not affect the input/output behaviour of C1. Moreover, we can rewrite R as:

R =

⎛

⎜
⎜
⎜
⎝

r̃1 R̃1,1 R̃1,2 · · · R̃1,m−1 x′
1

r̃2 R̃2,1 R̃2,2 · · · R̃2,m−1 x′
2

...
...

...
...

...
r̃m R̃m,1 R̃m,2 · · · R̃m,m−1 x′

m

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −x−1
m

1 0 · · · 0 −x1x
−1
m

0 1 · · · 0 −x2x
−1
m

...
...

. . .
...

...
0 0 · · · 1 −xm−1x

−1
m

0 0 · · · 0 x−1
m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10)

Denote R̄ and M as the left-hand side and the right-hand side matrices respec-
tively. Also, define A = MU and R̂ such that R̄ =

(
R̂

∣
∣x′). Note that the

first column of M is the (additive) inverse of the last column of M. Conse-
quently, we get the same property in A. Moreover, WLR(M) is clearly invertible
and thus U being uniformly random matrix implies that WLR(A) = WLR(M)U
is also uniformly random. For simplicity, let us denote a to be the last row of
A, A1 = WLR(A) and A2 be the matrix A1 without the first row (which is the
inverse of the last row of A). Then, by the observations above we can expand
U′ as follows:

U′ = RU + r̃yt

=
((
R̂

∣
∣0

)
+

(
0

∣
∣x′))A + r̃yt

= R̂A1 + x′at + r̃yt (11)

=
((

r̃
∣
∣0

)
+

(
0

∣
∣
∣ R̃

))
A1 + x′at + r̃yt

= r̃(yt − at) + R̃A2 + x′at.

This is equivalent to U′t =
(
y − a

∣
∣At

2

) (
r̃
∣
∣
∣ R̃

)t

+ ax′t. Note that
(
y − a

∣
∣At

2

)

is with high probability an invertible matrix because A1 is uniformly random.



608 D. Hofheinz and N. K. Nguyen

Moreover, we chose
(
r̃
∣
∣
∣ R̃

)
uniformly at random and therefore U′ is also uni-

formly random (with probability 1 − negl(λ)). ��

Similarly as in [41], we obtain ∀MIn(LTDF)
1

↪−→ ∀MIn(Pm). Hence,

∀MIn(LTDF)
1

↪−→ LTDF/DDH follows from the Theorem 5 applied to the con-
struction by Peikert et al. along with the random self-reducibility of DDH. Thus,
combining (9) with Lemma 2 we obtain the following.

Theorem 6. LTDF is (λ,∀)-tightly extensible w.r.t. DDH and PKE is (2λ,∀)-
tightly extensible w.r.t. DDH.

All in all, we have provided a new way of constructing multi-user IND-CPA
encryption schemes out of a DDH group using tightly extensible lossy trapdoor
functions. We leave it as an open question whether it is possible to obtain tightly
extensible LTDFs from different standard assumptions, such as lattices.
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