
Designing a Query Language
Using Keyword Pairs for Spatial

and Temporal Search

Yuanyuan Wang1(B) , Panote Siriaraya2, Haruka Sakata2, Yukiko Kawai2,3 ,
and Keishi Tajima4

1 Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
y.wang@yamaguchi-u.ac.jp

2 Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
spanote@gmail.com, kawai@cc.kyoto-su.ac.jp

3 Osaka University, 5-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
4 Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

tajima@i.kyoto-u.ac.jp

Abstract. Our goal is to design a query language based on two keywords
for spatial and temporal search by using a single textual query in an intu-
itive way. This language as a form of syntactic sugar can express com-
plex spatio-temporal queries which include conditions on range, direc-
tion, time length and size which are difficult to express through textual
queries in conventional keyword-based search systems. To express these
conditions, our proposed language introduces 12 spatio-temporal opera-
tors such as arithmetic and directional operators which enables users to
combine and manipulate spatial and temporal areas. Also, we use “space
characters” (the space-key) between keywords which are used to express
the geographical distance or time-length between matching objects in an
intuitive way for general users. In this paper, we provide an overview of
our proposed search system where we can retrieve maps and web doc-
uments to highlight how the query language could be put into practice
by using complex spatio-temporal queries. Finally, we discuss the results
of a user study carried out to evaluate the potential usefulness of our
proposed search system.

Keywords: Query language · Spatial and temporal search ·
Space-key search · Spatio-temporal operators

1 Introduction

Although nonverbal search services continue to increase in modern society, have
you ever been to conscious about using a space-key (�) while typing search
queries? Probably “no” because space characters do not usually have important
meaning in keyword search other than in the conjunction of the components. We
propose to give a valuable and useful role to space characters in search queries
c© Springer Nature Switzerland AG 2019
Y. Kawai et al. (Eds.): W2GIS 2019, LNCS 11474, pp. 118–135, 2019.
https://doi.org/10.1007/978-3-030-17246-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17246-6_10&domain=pdf
http://orcid.org/0000-0001-8181-3465
http://orcid.org/0000-0003-2627-6673
https://doi.org/10.1007/978-3-030-17246-6_10

A Query Language Using Keyword Pairs for Spatial and Temporal Search 119

Fig. 1. Example of map search using proposed operators.

based on two keywords. Space characters are useful and powerful for expressing
spatio-temporal relationship in queries for maps, images, videos, and web pages,
while it is easy to use and intuitive for users.

While, simple keyword-based queries have been widely adopted in search
systems because of their ease of use, they are not good at expressing spatial
and temporal relationships. Such queries are difficult to find appropriate maps,
images, and videos, when more complex requests are needed. For example, when
we travelling by car, to find a famous pizza parlor within 100–500 m from our
current position on a map service supporting keyword queries, we need four
transactions: (1) search for pizza parlors on the map by using a keyword query,
(2) also identify current position on the map, (3) limit the query result to those
which are within 500 m from the current position, and (4) also exclude those
which are within 100 m from the current position. Queries including more com-
plex conditions are even harder to execute in a single transaction. Such queries
include: (Q1) “Find all pizza parlors which are within 500 m from our current
position and within 500 m from location B”, (Q2) “Find all pizza parlors which
are within the range of 100–500 m from my current position”, (Q3) “Find all
pizza parlors that are within 500 m from my current position which are also
within 500 m from location B”, and (Q4) “Find all pizza parlors located to
the north of and are also within 500 m from my current position”. As shown
in these examples, it is difficult to process complex search requests using sim-
ple keyword-based queries. Systems only supporting such keyword-based queries

120 Y. Wang et al.

require multiple steps including non-textual interactions or need to use very
complicated query languages to process them.

On the other hand, there have been much research on spatial logic or alge-
bra. In a spatial database of PostGIS1, the spatial search task with location
queries can be run in SQL, and they can represent complex spatial conditions in
queries, they require users to learn and understand the programming-language-
like syntax, and as a result, they are too complicated for general users in many
applications. They are, therefore, impractical for the use in such systems.

In this paper, we propose a query language based on two keywords that
expresses spatial queries within a single query statement with a concise and
intuitive syntax so that general users can easily specify complex queries. Our
approach uses the length of spaces between two keywords in queries to express
conditions on geographical distances and time-length between objects matching
the two keywords. This allows us to express queries as a form of syntactic sugar
including complicated spatio-temporal conditions in a very simple and intuitive
way. In the conventional systems, queries “A�B” and “A������B” return the
same results containing both “A” and “B”. In our query language however, these
two queries have a different meaning: the latter means “Search the 6 nearest B
objects from A”. For example, a query searching for B within 5 km from A on the
map is expressed by “A�5km�B”. A similar spatio-temporal operation can also
be used for retrieving documents and video. For example, a query searching for
a document containing “B” within 5 sentences from “A” is expressed by “A�5
sentences�B”.

Our language also introduces 12 operators including set operators and spatio-
temporal operators to express queries including conditions on directions, ranges,
angles and time. Figure 1 shows an example of map search using operators ([+] [-]
[*] [^]). For example, Q1 shown above can be expressed by using a union operator
([+]) as follows: (A�800m) + (B�800m)�pizza parlor, which aims to identify all
the pizza parlors found within the combined region which is within 800 m from A
and within 800 m from B (see Fig. 1(a)). Q2 can be expressed by using a range
operator ([-]) as follows: (A�800m) − (B�600m)�pizza parlor, which aims to
identify all the pizza parlors located within 800 m from A and excluding those
which are located within 600 m from B (see Fig. 1(b)). Q3 can be expressed by
using a set operator ([*]) as follows: (A�0.5km�pizza parlor) * (B�0.5km�pizza
parlor), which aims to identify all pizza parlors located within 0.5 km both from
A and from B (see Fig. 1(c)) and Q4 can also be expressed by using directional
condition operators ([^] or [θ]) as follows: A�^500m�pizza parlor, which aims
to identify all pizza parlors located to the north of and are within 500 m from
A (see Fig. 1(d)). We also introduce the property operator ([$]), which is used
to test properties of objects matching to query keywords. For example, a query
“current position�500m$20people�pizza parlor” retrieves pizza parlors within
500 m which can cater to 20 people.

The remainder of this paper is structured as follows. In Sect. 2, we discuss pre-
vious research which has been carried out related to map, text and video search.

1 https://postgis.net/.

https://postgis.net/

A Query Language Using Keyword Pairs for Spatial and Temporal Search 121

Afterward, in Sect. 3, we provide a definition of spatio-temporal operators and
provide examples of how they could be applied to query data. Section 4 describes
the structure and components of a spatio-temporal search system. Section 5 pro-
vides application examples of an implemented spatio-temporal search system.
Section 6 discusses our proposed search method with a user study. Finally, in
Sect. 7, we conclude this paper and discuss future works.

2 Related Work

2.1 Map Search

Most of the current major location services such as Google Maps or Bing Maps
focus on finding certain locations within a specified geographical area or the
best routes (e.g., shortest distance, most economical) matching given query key-
words. For example, when you want to find restaurants in Kyoto station, a query
“restaurant�in�Kyoto station” could be used to find restaurants in Kyoto sta-
tion, and when you want to find supermarkets around Tokyo station, the query
“supermarket�near�Tokyo station” could be used to find supermarkets around
Tokyo station. In regards to finding appropriate routes, there have been many
studies aimed at helping users locate simple and memorable [3,19], comfortable
[10,15,17], safe [5,9,12], or aesthetically pleasing routes [16] in map services,
as well as studies which seek to personalize the search results, by identifying
locations which better match the latent interests of users [11,21].

These search systems are often designed for general users and they only utilize
keyword matching algorithms to process user search queries. For example, users
can simply input a query such as “supermarket in Tokyo station” to search for
supermarkets around Tokyo station. However, these systems cannot satisfy users
when they wish to retrieve more complex and precise search requests. Although
several API systems, i.e., Bing Maps APIs2 and Google Maps Platform3 provide
access to more advanced features of map search systems, they are often limited
to single-process tasks (e.g., finding places within a specific distance, geocoding
a certain location name). Therefore, in this paper, we propose a novel spatio-
temporal query language as a form of syntactic sugar that can express conditions
on distance and time-length between objects matching the query keywords in
an intuitive way for general users, and we also show the demonstration for map
search. For example, we can issue a query “Tokyo station�500m�supermarket”
to find supermarkets within 500 m from Tokyo station.

2.2 Spatio-Temporal Search for Text and Video

Proximity operators are used in some document search systems or Web search
engines to narrow search results by limiting them to those that have certain query
keywords placed within a specified distance or in the specified order. For example,
2 https://www.microsoft.com/en-us/maps/choose-your-bing-maps-api.
3 https://cloud.google.com/maps-platform/.

https://www.microsoft.com/en-us/maps/choose-your-bing-maps-api
https://cloud.google.com/maps-platform/

122 Y. Wang et al.

ScienceDirect and Scopus utilize a proximity operator (W/n) which retrieve
documents where query keywords appear within n words [4]. For example, a
query “microscopy W/3 gfp” could be used to find literature containing the
word “microscopy” that is within 3-word lengths of the word “gfp”. Oracle Text
utilize a proximity operator (near) which requires the query keywords to appear
within a default number of word distances [8]. For instance, a query “near((dog,
cat), 6)” could be used to search for all documents which include the word
“dog” that is within 6-word lengths of the word “cat”. In our case, we express
constraints on the distance between query keywords (or objects matching query
keywords) by using space characters (�) between the query keywords, allowing
general users to easily express queries that include spatio-temporal conditions.

Video interval operators such as union, intersection, concatenation, and their
set-variants have been devised to allow users to programmatically edit videos
[7,20]. Although researchers have defined several interval operations to compute
new intervals from existing intervals, the new intervals cannot satisfy users’
search requests as they lack certain types of algebraic operators such as differ-
ence. However, given a set of fragmentarily indexed video shots, these operations
generally produce fragmentary intervals and thus cannot always produce appro-
priate intervals which users generally intend to find. Pradhan et al. also proposed
interval operators called glue join operations for composing longer intervals from
a set of short annotated intervals [13,14,18]. These studies focus on using oper-
ators to compose semantically meaningful video intervals and determines how
to efficiently evaluate them. On the other hand, the purpose of our research is
to design a query syntax that can express spatio-temporal conditions in an easy
and intuitive way.

3 Spatio-Temporal Query Language

In this research, we define 12 operations including set operations and spatio-
temporal operations by text for use in search operations. We mainly show exam-
ples taken from map search tasks, but we also show examples from Web search
and video search tasks.

Definition 1: The syntax of the most primitive unit of the spatio-temporal
query is defined as follows: A�spatio-temporal length�α. A and α are key-
words, with A denoting the location of the origin for a spatio-temporal search
for the object with the property α. This permits us to use more than two con-
tiguous spaces from the first appearing space (�) by using the space-key. The
part corresponding to “spatio-temporal length (spatio-temporal operator)”
should follow after the last space (�) in those contiguous spaces. When con-
tinuous spaces are used, the spatio-temporal length would represent the N
nearest locations with the property α, where N is represented by the number
of continuous spaces.
(Example): A�800m�α

denotes a query statement to identify the α objects which exist inside the
region 800 m from the origin point A.

A Query Language Using Keyword Pairs for Spatial and Temporal Search 123

Fig. 2. Set operators.

Table 1. Spatial operators by using the space-key

Operator �* �^ �_ �@ �[x-y] �$ �#
Processing Surrounding Direction (north/up) Direction (south/down) Angle Range Size Time

(Example): A���α
denotes a query statement to identify the 3 nearest α objects from the
origin point A.

Definition 2: The spatio-temporal length used in the syntax above are repre-
sented by a unit distance (e.g., 100 m, 1 sentence, etc.). For example, the unit
distance “800 m” could be used following the � spatio-temporal operator.

Definition 3: The keywords (e.g., A and α) used in the primitive unit of the
spatio-temporal query would be encapsulated within a double quotation mark
(e.g., “Tokyo tower” or “Grand Central Terminal, New York” for A or “pizza
shop” or for α). In addition, various spatial, directional and distance operators
could be used to impose conditions when conducting a spatio-temporal search.

Definition 4: Each primitive spatio-temporal search unit could be combined
with other units through the use of spatial, directional, and distance operators
in a mathematical expression format as follows: SQ1 ∪ SQ2 ∪ ... = SQ+.
(Example): (A�800m�α) + (B�500m�α)

denotes a query to identify the union of the α objects within 800 m from
point A and the region within 500 m from point B.

3.1 Set Operators

The standard set operators can also be used as spatial-temporal operations for
the query unit defined previously [1,6]. These include the union [+], difference
[−], and intersection [*] operators. Users could use such operations to manipulate
the spatial region they wish to search into. Examples of queries including these
operators are shown below:

Union calculation (Ex.1): (A�3km�α)+ (B�3km�α)
denotes the union of the spatial region within 3 km from point A AND the
spatial region within 3 km from point B (see Fig. 2(a)).

Difference calculation (Ex.2): (A�3km�α) − (B�3km�α)
denotes the spatial region within 3 km from point A which is NOT within
3 km from point B (see Fig. 2(b)).

124 Y. Wang et al.

Fig. 3. Spatial operators.

Fig. 4. Range operators.

Intersection calculation (Ex.3): (A�3km�α)* (B�3km�α)
denotes the spatial region that is within 3 km from point A which is ALSO
within 3 km from point B (see Fig. 2(c)).

All set operators (union [+], difference [−], intersection [*]) can be used
to search for objects with the properties identified in the query unit. For exam-
ple, the aforementioned (A�3km�α)* (B�3km�α) query would search for objects
with the property α which is located within the spatial region that is the result
of the intersection between 3 km from points A and B. Note that only union [+]
and intersection [*] can be used between two search objects if the search objects
have different types (e.g., restaurant and hotel).

3.2 Spatial Operators

Table 1 shows the 7 spatial operators which could be used to further denote dis-
tance and direction within our proposed spatial-temporal search queries. Exam-
ples of four expressions which use these operators (within, distance, direction,
and angle) are described below:

Within operation (Ex.4): A�3km�α
retrieves the α objects which are within 3 km from point A (Fig. 3(a)).

Distance operation (Ex.5): A�*3km�α
retrieves the α objects that are 3 km away from point A (Fig. 3(b)).

Direction operation (Ex.6): A�^3km�α
retrieves the α objects which are to the north of, and within 3 km from, point
A (see Fig. 3(c)).

Angle operation (Ex.7): A�3km@90�α
retrieves the α objects which exist within 3 km in the 90◦ counterclockwise
direction from point A (i.e., is east of point A) (see Fig. 3(d)).

A Query Language Using Keyword Pairs for Spatial and Temporal Search 125

Table 2. Time operators by using the space-key

Operator �#* �#< �#> �#[x-y] �#$
Processing Around Before After Range Current

Fig. 5. Example of document extraction by Web search.

3.3 Range Operators

Next, we show three examples of the range operations shown in Table 1.

Range operation (Ex.8): A�[3km-1km]�α
retrieves the α objects in the spatial region from 1 km to 3 km from point
A (see Fig. 4(a)). The same condition can also be expressed by the following
query, which uses the “difference” operator [−]: (A�3km�α) − (A�1km�α).

Range operation (Ex.9): (A�[3km-1km]�α) + (B�[3km-1km]�α)
retrieves the α objects which exist inside the spatial region from 1 km to 3 km
either from point A and from point B (see Fig. 4(b)).

Range operation (Ex.10): (A�[3km-1km]�α) * (B�[3km-1km]�α)
retrieves the α objects which exist inside the spatial region from 1 km to 3 km
both from point A and from point B (see Fig. 4(c)).

3.4 Size Operators

Below is an example query including the size operator shown in Table 1. The
size operator [$] extracts the size of the corresponding property of object α and
uses it as a unit of measure (e.g., 1 city block = 0.5 km). This operator is placed
immediately after the corresponding object size.

Size operation (Ex.11): A�3km$10units�α
retrieves the α objects that have a size of 10 units within 3 km from point A.

126 Y. Wang et al.

3.5 Time Operators

Time operator [#] shown in Table 1 can be used to formulate time-based search
queries. Table 2 shows five different time operators which could be used. For
the map search, the time operators express conditions on time distance from
point A to α (e.g., the time needed to travel from point A to the α objects).
The computation of the route and the required time for the route is system
dependent (see Sect. 4 for more details).

Time operation (Ex.12): A�#3min�α
retrieves the α objects that are within 3 min from point A.

Time operation (Ex.13): A�#*3min�α
retrieves the α objects that are 3 min away from point A.

Time operation (Ex.14): A�^#3min�α
retrieves the α objects that are to the north of, and within 3 min of point A.

Time operation (Ex.15): A�#3min@90�α
retrieves the α objects that are within 3 min from point A and ALSO in the
rotated 90◦ counterclockwise from the east direction of point A.

3.6 Applied to Web and Video Search

In addition to the map search, our proposed spatio-temporal query language
could also be applied to Web search and video search.

Application Examples for Web Search. The spatio-temporal query lan-
guage expresses conditions to extract documents from point A to the α objects.

Within operation: A�3lines�α
retrieves the lines including the α objects which are within the third line
from point A (see Fig. 5(a)).

Range operation: A�*3lines�α
retrieves the lines including the α objects that are 3 lines away from point
A (see Fig. 5(a)(b)).

Direction operation: A�#<3lines�α
retrieves the lines including the α objects which are before 3 lines from point
A (see Fig. 5(b)).

Here, the α object can also be used as an extension (e.g., .png) or a link.

Direction operation: A�#<3lines�.jpg
retrieves the .jpg files (images) which are before 3 lines from point A.

Direction operation: A�#<3lines�URL
retrieves the URL links which are before 3 lines from point A.

In addition to searching the line, a paragraph could also be searched. Further-
more, it is possible to perform a search that takes visual direction into account
by using DOM analysis. This allows a visual search of where on the page the
object exists.

A Query Language Using Keyword Pairs for Spatial and Temporal Search 127

Fig. 6. Example of interval extraction by video search.

Direction operation: A�^3lines�.jpg
retrieves the .jpg files (images) which are above of and is within 3 lines from
point A.

Range operation: A�[@180-@90]�.jpg
retrieves the .jpg files (images) which layout in the position from the rotated
90◦ counterclockwise to the rotated 180◦ counterclockwise from the east direc-
tion (left side) of point A.

Application Examples for Video Search. The spatio-temporal query lan-
guage expresses conditions on video frame extraction from point A to the α
objects.

Time operation: A�#3min�α
retrieves the α video frames that are within 3 min from point A.

Time operation: A�#*3min�α
retrieves the α video frames that are 3 min away from point A.

Time operation: A�#<3min�α
retrieves the α video frames which are before 3 min from point A.

Furthermore, it is possible to perform a search that takes visual direction into
account by video frame analysis. This allows a visual search of where on the
video it exists.

Direction operation: A�^3min�α
retrieves the α video frames which are above of and within 3 min from point
A.

Direction operation: A�[@270-@90]�α
retrieves the video frames contain α which exist in the screen from the rotated
90◦ counterclockwise to the rotated 270◦ counterclockwise from the east direc-
tion of point A (see Fig. 6).

128 Y. Wang et al.

Fig. 7. Overview of the spatio-temporal search system.

4 Spatio-Temporal Search System

In this section, we explain the structure of our proposed spatio-temporal search
system (see Fig. 7). The system consists of three main components: (1) a Web
Input/Output component that processes user requests and output them to the
appropriate format; (2) an interpreter component that parses and processes
queries including the spatio-temporal operators; and (3) the data processing
program component which is developed by the system developer to link the
spatio-temporal search system to appropriate data sources.

4.1 Web Input/Output Processing

By using our system, a client sends an HTTP request to the server with details
of the query including spatio-temporal operators and requested data type (map,
web page, video) as API parameters. For example, the client retrieving map
information by a spatial query A�^3km�α sends the following GET request to
the server: www.hoge.com/map/?q=A++^3km+α (or l=A&space=3km&q=α).

The data type and the query specified by the client is then passed to the
interpreter and the data processing components. These components would parse
the query, process the request, and send the results back to the Web In/Output
Processing component which would transmit the results back to the client as an
HTTP response in a data format such as JSON or XML format for API.

A Query Language Using Keyword Pairs for Spatial and Temporal Search 129

4.2 Interpreter and Data Processing

The role of the interpreter component is to process the spatial-temporal oper-
ators sent as the request from the users. This component consists of a query
parser, a spatio-temporal data converter, and a spatio-temporal data calculator.
For the parser, the role is to analyze the user query and determine the appro-
priate operations and procedures to process it. For example, when users input
the following query: (A�^3km�α * B�^3km�α) + (C�^5km�β + D�^1km�β).

It would be processed by the parser into the following steps:

Var1= A�^3km�α * B�^3km�α (step 1)
Var2= C�^5km�β + D�^1km�β (step 2)
Result= Var1 + Var2 (step 3)

Next, these steps would then be processed by the interpreter. Each spatial
variable is sent to the data converter to convert the elements (i.e., A�^3km
or B�^3km) in the query to spatial regions which represents the correct dis-
tribution of those elements. The conversion program would access information
provided by the data processing component to calculate the appropriate regions.
For example, when processing the element “A�^3km�shops” for a map, the data
processing component would calculate the geographical location of point A as
well as the geographical locations of shops within a 3 km radius. If the system
developer has specified Google API as the data source, the corresponding data
would be obtained through a Web request sent to the API servers. Alterna-
tively, if the developer specified an internal SQL database as the data source,
the corresponding data are obtained through an SQL request. The same process
would also be carried out for the other elements “B�^3km�α”, “C�^5km�β”,
and “D�^1km�β”.

After the data has been converted, the spatial operators are then processed.
For example, if the request query contains the intersection operator [*] in step 1,
it would calculate the spatial region which is the overlap between the converted
A�^3km and B�^3km regions. After all the calculations have been completed,
the result is sent back to the client in the appropriate data type (JSON or XML,
etc.) as specified by the data processing component.

5 Demonstrative Applications

A prototype of the spatio-temporal search system4 was implemented as a REST-
FUL Web service using Node.js. The current system supports spatial map search,
with the input being the requested as a spatial query (an HTTPS GET request)
and the output being an array of locations which match the spatial query
(returned using the JSON data format). The operation expression within the
spatial query was parsed using the Shunting-yard algorithm. Google Maps API
was used in the data processing proportion to identify the various locations
specified in the primitive spatial query unit (e.g., “Times Square”) and their
4 http://yklab.kyoto-su.ac.jp/∼sakata/spatialQueryDemo/.

http://yklab.kyoto-su.ac.jp/~sakata/spatialQueryDemo/

130 Y. Wang et al.

Fig. 8. Spatial query language demo application4.

geographical positions. The system could also later be easily adapted to utilize
other data sources such as Open Street Map data or a customized SQL database
as well.

5.1 Applications of Map Search

To highlight how the system could be useful in practice, a number of Web appli-
cations were created which utilized our proposed spatial search query language.
The first application was a Web interface for our search system which users
could use to test the query language or search for locations using the spatial
query language. Users would be able to use the spatial, range, and directional
operations described in Sect. 3 as well as mathematical expressions such as brack-
ets to compose their search queries. After clicking the search button, the system
would send the user’s query to the search system server and would then return
the search results received from the server onto the map. For example, Fig. 8
shows the results of the query: ((“Times Square”�700m�“restaurant”) * (“Grand
Central”�1km�“restaurant”)) * (“Pennsylvania station”�1km�“restaurant”),
which aims to identify all restaurants located within 700 m of Times Square
and 1 km from Grand Central and Pennsylvania station. One potential use-case
for such a query is to create a “meet up feature”, which would identify potential
meeting places for three users based on their starting locations. For example,
when one user works near Times Square and the other near Grand Central and
the final near Pennsylvania station and the system would need to find a restau-
rant that is equally near to all three of their workplaces for them to meet for
lunch. The Web interface system also provides an instruction page where the
various operators in our query language are explained and a number of exam-
ples shown (see Fig. 8). Users could click on the “Try it!” button to examine

A Query Language Using Keyword Pairs for Spatial and Temporal Search 131

Fig. 9. Space-key search application for novice users6.

the search results of the examples and could also freely modify the example
operations.

Furthermore, another application of the map search which utilized our pro-
posed query language (only using the “space-key” for a more simple and intuitive
search) was also developed. This application was conceptualized by looking at
how non-professional common users generally used location-based mapping ser-
vices. Although route navigation was a commonly used feature, users also gen-
erally used location-based services to quickly identify different types of nearby
venues and then find out how they could travel to such locations. Therefore,
we developed an android application (“space-key search” application) which uti-
lized the primitive unit of our spatial query language to allow users to search for
nearby venues (users are able to search for nearby locations using only the space-
key). For example, the user would enter the query “current location����cafe”,
to find the four nearest cafes to them on auto adjust map zooming (see Fig. 9).
Clicking on the markers would show details of the venue (the address, review
scores etc.) as well as a link with the details of the route to the store. The applica-
tion itself could be downloaded from Google Play store5 (in Japanese). A mobile
Web version of this application6 was also developed for evaluation purposes.

5 https://play.google.com/store/apps/details?id=com.kawaiLab.spatialQuery.
6 https://yklab.kyoto-su.ac.jp/∼sakata/simple/spatialQuary.

https://play.google.com/store/apps/details?id=com.kawaiLab.spatialQuery
https://yklab.kyoto-su.ac.jp/~sakata/simple/spatialQuary

132 Y. Wang et al.

Fig. 10. Example of web document search (Color figure online).

5.2 Applications of Web Document Search

Figure 10 shows an example of a web document search by the keywords “Xiang
Xiang” and “panda”. The search results are shown in the yellow portion, the
gray portion, and the green portion. The yellow portion is the result of the
search query: Xiang Xiang�^panda, which is used to search all the sentences
between “Xiang Xiang” and “panda” where “panda” precedes “Xiang Xiang”
(see Fig. 10(b)). The grey portion and the green portion are the results of
the search query: panda�^Xiang Xiang, which is used to search all the sen-
tences between “panda” and “Xiang Xiang” where “Xiang Xiang” precedes
“panda” (see Fig. 10(c)(d)). The green portion is the result of the query:
panda�#<4lines�Xiang Xiang, which is used to search for all the sentences
including the keyword “Xiang Xiang” are before 4 lines from the keyword
“panda” (see Fig. 10(d)). The picture shown in the red color is the result of
the search query: panda�#<1line�.wmv, which is used to search a .wmv file is
before 1 line from the keyword “panda” (see Fig. 10(a)).

6 Preliminary User Study

To evaluate the potential usefulness of our proposed query language, a user
evaluation study was carried out in which 15 students from a university-level
computer science course were recruited and asked to carry out a series of location
search tasks. Participants had previous experience in using Google Maps in their
daily life and were not familiar with the places which were used in the search
assignments. Overall, the main aim was to determine whether such an operation
based query language would be feasible for developers to learn and use. Each
participant was asked to use both our proposed query language through the
Web interface system which was developed (spatial language condition) as well
as through the Google Maps system (Google map condition) to complete 5 search
assignments.

A Query Language Using Keyword Pairs for Spatial and Temporal Search 133

Each search assignment consisted of a task to search for places (e.g., pizza
parlor) near a specific location (e.g., The White House). For example, one task
consisted of trying to find the number of pizza parlors located within 500 m of
Times Square. In another task, participants were asked to find the number of
pizza parlors located within 700 m of Times Square which is also located 1000 m
from the Empire State Building. Written instructions and examples were pro-
vided to help participants complete the tasks and introduce the various spatial
operators. An objective measurement of performance was obtained by measuring
the time participants spent on each task. To measure subjective user experience,
the System Usability Scale (SUS) was used [2], which involved the rating of
perceived effectiveness, efficiency, and satisfaction.

Overall, participants rated a higher SUS score for the spatial language condi-
tion (Mean = 70.17, SD = 13.09) than the Google map condition (Mean = 24.46,
SD = 10.61) (t(13) = 7.24, p< 0.001)). In addition, participants were able to
complete the tasks using less time (seconds) in the spatial language condi-
tion (Mean = 82.27, SD = 28.18) then the Google map condition (Mean = 180.86,
SD = 49.25) (t(13) =−8.219, p < 0.001). Therefore, it seems that at least for
search tasks which involve the combination and manipulation of spatial regions,
the proposed query language search system could indeed be useful.

7 Conclusion

In this paper, we proposed a novel spatio-temporal query language for spatial
and temporal search which can be used to express complex search queries in a
text equation format. Also, we use “space characters” (the space-key) between
keywords which are used to express the geographical distance or time-length
between matching objects in an easy and intuitive way for general users. We
implemented a prototype of our proposed system as a RESTFUL Web service
and developed some applications of map search and web document search to
showcase how the query language could be used. We also experimented with
Google Maps for map search and the results from our user study highlighted the
potential usefulness of our proposed query language.

In the future, we look to expand our spatio-temporal query language to other
search domains such as image or video search. Although, we have shown how our
proposed query language could be used in map search and web document search,
our proposed query language could easily be applied to spatial and temporal
search within images and videos as well. For example, a query searching for
video frames within a video that contains the object “B” and are within 10 s
from the object “A” is expressed by “A�10sec�B”.

Acknowledgment. The work in this paper is partially supported by JSPS KAKENHI
Grant Numbers 16H01722, 17K12686.

134 Y. Wang et al.

References

1. Spatial Databases with Application to GIS. Morgan Kaufmann Publishers Inc.,
San Francisco (2002)

2. Brooke, J.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194),
4–7 (1996)

3. Duckham, M., Kulik, L.: “Simplest” paths: automated route selection for naviga-
tion. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol.
2825, pp. 169–185. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39923-0 12

4. Elsevier: Elsevier R&D Solution: How can I search literature with reduced
noise? Utilization of “proximity operator” in ScienceDirect & Scopus,
19 August 2015. http://jp.elsevier.com/ data/assets/pdf file/0017/263240/Tips
Scopus 201508.pdf

5. Fu, K., Lu, Y.C., Lu, C.T.: Treads: a safe route recommender using social media
mining and text summarization. In: Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pp.
557–560. ACM (2014)

6. Güting, R.H., Schneider, M.: Moving Objects Databases. Elsevier, Amsterdam
(2005)

7. Hwang, E., Subrahmanian, V.: Querying video libraries. J. Vis. Commun. Image
Represent. 7(1), 44–60 (1996)

8. Khosla, R.: Oracle text reference: 11g release 2 (11.2), b61357, 06 October 2015.
https://docs.oracle.com/cd/E16338 01/text.112/b61357/title.htm

9. Kim, J., Cha, M., Sandholm, T.: SocRoutes: safe routes based on tweet sentiments.
In: Proceedings of the 23rd International Conference on World Wide Web, pp. 179–
182. ACM (2014)

10. Liang, H.W., Hwang, Y.H.: Mobile phone use behaviors and postures on public
transportation systems. PLoS ONE 11(2), e0148419 (2016)

11. Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Personalized tour recommenda-
tion based on user interests and points of interest visit durations. In: Proceedings of
the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 1778–
1784. AAAI Press (2015). http://dl.acm.org/citation.cfm?id=2832415.2832496

12. Mata, F., et al.: A mobile information system based on crowd-sensed and official
crime data for finding safe routes: a case study of Mexico City. Mob. Inf. Syst.
2016, 1–11 (2016)

13. Pradhan, S., Sogo, T., Tajima, K., Tanaka, K.: A new algebraic approach to retrieve
meaningful video intervals from fragmentarily indexed video shots. In: Arisawa,
H., Catarci, T. (eds.) Advances in Visual Information Management. ITIFIP, vol.
40, pp. 11–30. Springer, Boston, MA (2000). https://doi.org/10.1007/978-0-387-
35504-7 2

14. Pradhan, S., Tajima, K., Tanaka, K.: A query model to synthesize answer intervals
from indexed video units. IEEE Trans. Knowl. Data Eng. 13(5), 824–838 (2001)

15. Quercia, D., Aiello, L.M., Schifanella, R., Davies, A.: The digital life of walkable
streets. In: International World Wide Web Conferences, pp. 875–884 (2015)

16. Quercia, D., Schifanella, R., Aiello, L.M.: The shortest path to happiness: recom-
mending beautiful, quiet, and happy routes in the city. In: Proceedings of the 25th
ACM Conference on Hypertext and Social Media, pp. 116–125. ACM (2014)

17. Su, H., Zheng, K., Huang, J., Jeung, H., Chen, L., Zhou, X.: CrowdPlanner: a
crowd-based route recommendation system. In: 2014 IEEE 30th International Con-
ference On Data Engineering (ICDE), pp. 1144–1155. IEEE (2014)

https://doi.org/10.1007/978-3-540-39923-0_12
https://doi.org/10.1007/978-3-540-39923-0_12
http://jp.elsevier.com/__data/assets/pdf_file/0017/263240/Tips_Scopus_201508.pdf
http://jp.elsevier.com/__data/assets/pdf_file/0017/263240/Tips_Scopus_201508.pdf
https://docs.oracle.com/cd/E16338_01/text.112/b61357/title.htm
http://dl.acm.org/citation.cfm?id=2832415.2832496
https://doi.org/10.1007/978-0-387-35504-7_2
https://doi.org/10.1007/978-0-387-35504-7_2

A Query Language Using Keyword Pairs for Spatial and Temporal Search 135

18. Sujeet, P., Tajima, K., Tanaka, K.: Interval glue operations and answer filter-
ing for video data retrieval. IPSJ Trans. Databases (TOD) 40(3), 80–90 (1999).
https://ci.nii.ac.jp/naid/110002724879/en/

19. Wakamiya, S., Kawasaki, H., Kawai, Y., Jatowt, A., Aramaki, E., Akiyama, T.:
Lets not stare at smartphones while walking: memorable route recommendation
by detecting effective landmarks. In: Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, pp.
1136–1146. ACM, New York (2016). https://doi.org/10.1145/2971648.2971758

20. Weiss, R., Duda, A., Gifford, D.K.: Composition and search with a video algebra.
IEEE Multimed. 2(1), 12–25 (1995)

21. Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: LCARS: a location-content-aware
recommender system. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 221–229. ACM (2013)

https://ci.nii.ac.jp/naid/110002724879/en/
https://doi.org/10.1145/2971648.2971758

	Designing a Query Language Using Keyword Pairs for Spatial and Temporal Search
	1 Introduction
	2 Related Work
	2.1 Map Search
	2.2 Spatio-Temporal Search for Text and Video

	3 Spatio-Temporal Query Language
	3.1 Set Operators
	3.2 Spatial Operators
	3.3 Range Operators
	3.4 Size Operators
	3.5 Time Operators
	3.6 Applied to Web and Video Search

	4 Spatio-Temporal Search System
	4.1 Web Input/Output Processing
	4.2 Interpreter and Data Processing

	5 Demonstrative Applications
	5.1 Applications of Map Search
	5.2 Applications of Web Document Search

	6 Preliminary User Study
	7 Conclusion
	References

