
Faster Convolutional Neural Networks in
Low Density FPGAs Using Block Pruning

Tiago Peres1 , Ana Gonçalves1 , and Mário Véstias2(B)

1 ISEL, Instituto Politécnico de Lisboa, Lisbon, Portugal
2 INESC-ID, ISEL, Instituto Politécnico de Lisboa, Lisbon, Portugal

mvestias@deetc.isel.ipl.pt

Abstract. Convolutional Neural Networks (CNNs) are achieving
promising results in several computer vision applications. Running these
models is computationally very intensive and needs a large amount of
memory to store weights and activations. Therefore, CNN typically run
on high performance platforms. However, the classification capabilities
of CNNs are very useful in many applications running in embedded plat-
forms close to data production since it avoids data communication for
cloud processing and permits real-time decisions turning these systems
into smart embedded systems. In this paper, we improve the inference
of large CNN in low density FPGAs using pruning. We propose block
pruning and apply it to LiteCNN, an architecture for CNN inference that
achieves high performance in low density FPGAs. With the proposed
LiteCNN optimizations, we have an architecture for CNN inference with
an average performance of 275 GOPs for 8-bit data in a XC7Z020 FPGA.
With our proposal, it is possible to infer an image in AlexNet in 5.1 ms
in a ZYNQ7020 and in 13.2 ms in a ZYNQ7010 with only 2.4% accuracy
degradation.

Keywords: Convolutional Neural Network · FPGA · Block pruning

1 Introduction

A CNN consists of a series of convolutional layers where the output of a layer
is the input of the next. Each layer generates an output feature map (OFM)
with specific characteristics of the input image or of the previous input feature
map (IFM). Each feature map is obtained from the convolution of a filter and
the IFM. The last layers of the CNN are usually the fully connected (FC) lay-
ers that associate a matching probability of the image with one of the classes.
Besides convolutional and fully connected layers there may be other layers, like
the pooling layer and a non-linear layer (e.g. ReLU).

AlexNet [1], a large CNN, won the ImageNet Challenge. It consists of five
convolutional layers plus three FC layers. Different number of kernels with dif-
ferent sizes are applied at each layer with a total of 61M weights requiring a 724
MACC (Multiply-accumulate) operations. Other CNN models have followed, like
VGG-16 [2], GoogleNet [3] and ResNet [4].
c© Springer Nature Switzerland AG 2019
C. Hochberger et al. (Eds.): ARC 2019, LNCS 11444, pp. 402–416, 2019.
https://doi.org/10.1007/978-3-030-17227-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17227-5_28&domain=pdf
http://orcid.org/0000-0003-1771-4934
http://orcid.org/0000-0002-0512-7487
http://orcid.org/0000-0001-8556-4507
https://doi.org/10.1007/978-3-030-17227-5_28

Faster Convolutional Neural Networks in Low Density FPGAs 403

Executing a CNN model (inference) can be done on the same platform used to
train it or in an embedded computing platform with strict performance, memory
and energy constraints. In a vast set of embedded applications, it is advantageous
or necessary to have the inference process near the data input sensor so that
important information can be extracted at the image sensor instead of sending
the information to the cloud and wait for the answer. Also, in systems where
the communication latency and data violations are undesirable, like autonomous
vehicles, local processing at the sensor is also desirable.

A common feature of these CNN models is the high number of weights and
operations. Due to the limited performance and memory of many embedded
platforms it is very important to find architectural solutions to run large CNN
inferences in low hardware density embedded platforms. Recently, a high per-
formance architecture for CNN inference - LiteCNN - was proposed [5]. With
a peak performance of 410 GOPs in a ZYNQ7020 FPGA (Field-Programmable
Gate Array) it does an inference of AlexNet in about 17 ms.

To improve the processing delay of the inference, pruning (weight cut) can
be applied, usually to the FC layers followed by data quantization. The method
permits to reduce the number of operations to be performed as well as the
memory size to store the weights. The problem of the method is that the sparsity
introduced challenges the regular structures of computing datapaths. To reduce
the sparsity problem caused by pruning, we propose a block pruning technique
in which weights are pruned in blocks. We have studied the impact of pruning
and the block size over the performance and area of LiteCNN.

The following has been considered for the optimization of LiteCNN:

– We have implemented a flow based on Caffe [6] and Ristretto [7] to optimize
networks using block pruning followed by quantization;

– LiteCNN was upgraded to support the implementation of block pruned CNN;
– A performance model for pruned LiteCNN was developed to allow design

space exploration;
– Tradeoffs among performance, area and accuracy were obtained allowing the

designer to choose the most appropriate LiteCNN configuration for a partic-
ular CNN model.

The paper is organized as follows. Section 2 describes the state of art on
FPGA implementations of CNNs and optimization methods based on pruning.
Section 3 describes the flow used to explore block pruning and quantization.
Section 4 describes the LiteCNN architecture, the modifications necessary to
support pruning and the performance model. Section 5 describes the results on
inference accuracy and area/performance of LiteCNN running well-known CNNs
and compare them to previous works. Section 6 concludes the paper.

2 Related Work

Common general processing units achieve only a few hundred GFLOPs with low
power efficiency. This performance is scarce for cloud computing and the energy

404 T. Peres et al.

consumption is too high for embedded computing. GPUs (Graphics Processing
Units) and dedicated processors (e.g. Tensor Processing Unit - TPU) offer dozens
of TOPs and therefore appropriate for cloud computing.

FPGAs are increasingly being used for CNN inference for its high perfor-
mance/energy efficiency, because it permits to implement a dedicated hardware
architecture for each CNN model. This is an important feature if we want to
apply it to embedded computing.

A few authors considered low density FPGAs as the target device. In [8] small
CNNs are implemented in a ZYNQ XC7Z020 with a performance of 13 GOPs
with 16 bit fixed-point data. In [9] the same FPGA is used to implemented big
CNN models, like VGG16, with data represented with 8 bits achieving perfor-
mances of 84 GOPs. In [10] the authors implemented a pipelined architecture in a
ZYNQ XC7Z020 with data represented with 16-bit fixed point. The architecture
achieves 76 GOPs with high energy efficiency.

Previous works [11] show that dynamic fixed-point with 8 bits guarantee sim-
ilar accuracies compared to those obtained with 32-bit floating point represen-
tations. This reduction is essential to implement CNN in target platforms with
low on-chip memory and low resources. LiteCNN is a configurable architecture
that can be implemented in small density FPGAs. The architecture has a peak
performance of 410 GOPs in a ZYNQ XC7Z020 with 8-bit dynamic fixed-point
data representation for activations and weights. This was a great performance
improvement over previous implementations in the same FPGA.

In [12] deep neural networks are compressed using pruning, trained quan-
tization and huffman coding. The techniques are applied on CPU and GPU
implementations. Results show that pruning on, e.g., AlexNet results in 91%
weight cut without sacrificing accuracy. In [13] pruning is considered to improve
CNN execution implemented in FPGA, similar to what is done in [14]. The
architecture dynamically skips computations with zeros. The problem is that
they keep a dense format to store the matrix requiring to be all loaded from
memory. Also, they target high density FPGAs. In [15] the authors use a large
FPGA with enough capacity to store all weights on-chip after pruning. This is
not possible in low FPGAs with scarce internal memory.

In [16] the pruning is adapted to the underlying hardware matching the
pruning structure to the data-parallel hardware arithmetic unit. The method is
applied to CPU and GPU. In this paper we propose a similar approach with block
pruning. The best block pruning is found and then the hardware architecture is
adapted to its size.

We have improved CNN inference in LiteCNN by exploring block pruning
in the fully connected layers followed by dynamic fixed-point quantization of all
layers. The new LiteCNN architecture keeps the peak performance since we do
not skip zero values, but the inference delay was reduced by more than 70% since
we have reduced the number of fully connected weights to be transmitted from
external memory to LiteCNN, the major performance bottleneck at FC layers.

Faster Convolutional Neural Networks in Low Density FPGAs 405

3 Framework for Data Reduction

A framework to explore the block pruning of weights in fully connected weights
followed by data quantization was developed based on Caffe [6] as the main
framework and Ristretto for data quantization. The Framework trains the net-
work and generates a file of trained weights.

Pruning can be implemented with different metrics and methods to reduce
the number of weights. In this work we have considered the weights magnitude.
A percentage of weights whose magnitude is closer to zero is iteratively removed
according to the flow in Fig. 1.

Check magnitude of weights

Remove a percentage of
weights with low magnitude

Train CNN

Check Precision

Cut more?
yes

no

Datawidth Reduction

Done

Train CNN

Fig. 1. Network pruning flow

In the first step we train the network or start with a pre-trained network.
Then, a percentage of weights with low magnitude (below a predefined threshold)
is pruned. The network is trained again with single precision floating-point. We
check if the precision allows more pruning. When no more pruning is allowed,
we apply Ristretto to reduce the data size. From the results, we extract the
fixed-point quantifications for each layer.

Pruning introduces sparsity in the kernels of weights which degrades the
performance. Also, introduces an overhead associated with the index information
of the sparse vector of weights. To improve the hardware implementation and the
performance of pruned networks we introduce the block pruning which performs
a coarse pruning with blocks of weights. The method reduces the index overhead
data and permits to efficiently use the parallel MACs of the processing units.

The technique permits to prune blocks of weights (similar to what is done in
[16]) instead of single weights (see example in Fig. 2).

406 T. Peres et al.

-3 9 7 -5 1 -4 3 4 6 10 2 -2 -1 6 1 7

3 5 6

0 0 0 0 0 0 0 0 0 0 0 0 -3 9 7 -5

0 0 0 0 0 0 0 0 6 10 2 -2 -3 9 7 -5

-3 9 7 -5 0 0 0 0 0 0 0 0 0 0 0 0

-3 9 7 -5 0 0 0 0 6 10 2 -2 0 0 0 0

75%

50%

Average

Ascending order of average

Blocks of size 4

Original order

Prune
75%

50%

6 3 5 3,75

3,75

Fig. 2. Pruning method for blocks of four weights

The proposed method determines the average magnitude of a block of
weights, sort them and then the blocks with the lowest average magnitude are
pruned limited by a pruned percentage. The remaining blocks are stored as a
sparse vector where each position contains the block of weights and the index of
the next block.

4 LiteCNN Architecture

4.1 LiteCNN Architecture

The Lite-CNN architecture consists of a cluster of processing elements (PE) to
calculate dot-products, a memory buffer to store on-chip the initial image and
the OFMs, one module to send activations and two modules to send and to
receive weights to/from the PEs (see Fig. 3).

DDR Send Weights PE Cluster

Bias Memory

Memory Buffer
Send

Neurons

Receive
Neurons
Address

Generator

Address
Generator

Fig. 3. Block diagram of the Lite-CNN architecture

Faster Convolutional Neural Networks in Low Density FPGAs 407

The architecture executes layers one at a time. The execution of layers work
as follows:

– Before starting the execution of a layer, the architecture is configured for the
specific characteristics of the layer. It also specifies if there is a pooling layer
at the output of the feature maps being calculated;

– The input image and the intermediate feature maps are stored on-chip. Since
the layers are executed one at a time, the on-chip only has to be enough to
store the IFM and OFM of any layer;

– For the first convolutional layer, the image is loaded from external memory.
For the others, the IFM is already in on-chip memory. At the same time,
kernels are read from external memory and sent to the PEs. Besides the
weights, the kernel includes the bias value which is stored in the bias memory.
Each PE receives one kernel. So, each PE calculates the activations associated
with one OFM;

– The initial image or intermediate feature maps in the on-chip memory are
broadcasted to all PEs;

– After each calculation of a complete dot product associated with a kernel, all
PEs send the output activations back to the receive neurons module that adds
the bias and stores the result in the on-chip memory to be used by the next
layer. If the layer is followed by pooling, this module saves the activations in
a local memory and wait for the other members of the pooling window;

– The process repeats until finishing the convolution between the image and
the kernels. After that, the next kernels are loaded from memory and the
process repeats until running all kernels of a layer.

The process allows overlapping of kernel transfer and kernel processing. While
the PEs process their kernels, in case the local memory is enough to store two
different kernels, the next kernels are loaded at the same time. This is funda-
mental in the fully connected layers where the number of computations is the
same as the number of weights.

Also, in case the on-chip memory is not enough to store the whole image and
the OFM (usually the first layer is the one that requires more on-chip memory),
the image is cut into pieces which are convolved separately.

The PE cluster contains a set of PEs. Each PE (see Fig. 4) has a local memory
to store kernels and arithmetic units to calculate the dot product in parallel.

Each PE stores a different kernel and so it is responsible for calculating the
activations of the output feature map associated with the kernel. This way mul-
tiple output feature maps are calculated in parallel. Also, in convolutional layers,
the same kernel is applied to different blocks of the IFM and produce different
neurons of its OFM. The number of output neurons to be processed in parallel
in each PE is configurable. For example, to calculate two activations in paral-
lel it receives two input activations from the feature memory in parallel. This
mechanism permits to explore the intra-output parallelism. Finally, weights and
activations are stored in groups, that is, multiple weights and activations are

408 T. Peres et al.

LocalMem

Dot
Product

64

weightIn

wrAddr

rdAddr

activationsIn

64

64

+
a
c
c

+
a
c
c

Dot
Product

activationsIn

activationsOut

activationsOut

Fig. 4. Architecture of the processing elements

read in parallel in a single memory access (e.g., with 8-bit data, a 64 mem-
ory word contains eight neurons or weights) permitting to explore dot-product
parallelism.

The block sendWeights is configured to send kernels to the PE cluster. The
block receives data from direct memory access (DMA) units that retrieve data
from external memory and send it to the PEs in order. It includes a bias memory
to store the bias associated with each kernel.

The sendNeurons and receiveNeurons blocks are responsible for broadcast-
ing activations from the feature memory to the PEs and receive dot products
from the PEs, respectively. The send neurons module includes a configurable
address generator. The receive neurons module implements the pooling layer in
a centralized manner.

Most of the previous approaches use dedicated units to calculate 2D convolu-
tions. The problem is that the method becomes inefficient when the same units
have to run different window sizes. Lite-CNN transforms 3D convolutions into a
long dot product to become independent of the window size. Pixels of the initial
image, activations of feature maps and weights of kernels are stored in order (z,
x, y) (see Fig. 5).

Each neuron of an OFM is calculated as a dot product between the 3D kernel
of size xk×yk×zk and the correspondent neurons of the IFM of size xp×yp×zp
(see Fig. 5b), where zp is the number of IFMs. The weights of kernel are all read
sequentially from memory since they are already ordered. The neurons are also
read in sequence from memory but after xk × zk neurons it has to jump to the
next yk adding an offset to the address of the input feature memory being read.
For a layer without stride nor followed by pooling, the offset is xp × zp.

LiteCNN also implements a method to reduce the number of multiplications
by half [5] leading to a considerable reduction in the hardware resources required
to implement a convolutional or fully connected layers.

Faster Convolutional Neural Networks in Low Density FPGAs 409

Input Feature Maps

z
x

y Kernel1Kernel1

zk

a) b)

Fig. 5. Reading mode of images, feature maps and weights

We have extended LiteCNN to support pruned FC layers as follows:

– The sparse vectors of weights are sent to the local memory of PEs. The next
address index is stored in the parity bits of the BRAMs which were not used
in the original LiteCNN. When the size of the index is not enough, we consider
extra zero blocks in the middle;

– Activations are sent to the processing elements keeping its dense format and
multiply-accumulated by the respective weights. If the activation index cor-
responds to a zero weight block then its is multiplied by zero keeping the
pipeline full.

This solution has no computational advantage, since the number of opera-
tions is the same as the case without pruning, but the weight data to be read from
memory is considerably reduced. Since the data reduction method is applied in
the fully connected layers where the data access is the bottleneck and not the
computations, the method permits to achieve high performance improvements,
as will been seen in the results. Also, it simplifies the implementation of the
PEs permitting to keep the operating frequency and only a small increase in the
required hardware resources.

The main modification of the LiteCNN datapath was in the arithmetic core
of the PE (see Fig. 6).

Two different datapath modifications are considered. One in which the block
size times the quantized datawidth (8 bits) equals 64 (Fig. 6a). In this case, each
block has 8 weights the same number of activations received in parallel by the
core. The second datapath is when the block size times the quantized datawidth
(8 bits) equals 32. In this case, the blocks have only 4 weights and so are read
in words of 32 bits. Since the core receives 8 activations in parallel, we read two
independent groups of weights from two independent local memories (Fig. 6b).

4.2 Performance Model of LiteCNN

The performance model provides an estimate of the inference execution time of
a CNN network on the LiteCNN architecture with block pruning. The model
determines the time to process each layer.

410 T. Peres et al.

Local Memory

=?
MUX

‘0’
Activation
address

localAddrinc

Core

64

64

Local Memory

=?
MUX

‘0’
Activation
address

localAddrinc

Core

32

32

Local Memory

=?
MUX

‘0’

localAddrinc

32

32

Activations
64

Activations
64

a) Architecture used when (block size x 8) = 64

b) Architecture used when (block size x 8) = 32

Fig. 6. Modified datapath of the PE to support weight pruning

Considering convolutional layers, the time to transfer all kernels depends on
the number of kernels, nKernel, the size of kernels, kernelSize, the number of
bits used to represent weights, nBit and the memory bandwidth, BW. The total
number of bytes, tConvByte, transferred in each convolutional layer is given by
Eq. 1.

tConvByte = nKernel × kernelSize× nBit

8
(1)

The number of cycles to execute a convolutional layer, conCycle, is

convCycle =
⌈
nKernel

nCore

⌉
× nConv × kernelSize

nMAC
(2)

where nCore is the number of processing elements, nConv is the number of 3D
convolutions and nMAC is the number of parallel multiply-accumulations of each
PE (intra-output parallelism). From these two equations, the total execution
time, convExec depends on the local memory capacities. If local memories of PEs
have enough space to store two kernels, than communication and processing of
kernels can overlap, otherwise, they must be serialized. Considering an operating
frequency, freq de execution time is given by Eq. 4.

convExec =
tByte

BW
+

convCycle

freq
without overlap (3)

convExec = max(
tByte

BW
,
convCycle

freq
) with overlap (4)

For the totally connected layers, the equation to determine the number of
bytes to transfer all kernels, tFCByte, must consider the size of the pruning
blocks, bSize, and the pruning percentage, prune, (see Eq. 5).

Faster Convolutional Neural Networks in Low Density FPGAs 411

tFCByte = nKernel × kernelSize× nBit

8
× 100 − prune

100
× 1 + bSize

bSize
(5)

The equation to determine the number of cycles to process the FC layer is
given by:

fcCycle =
⌈
nKernel

nCore

⌉
× kernelSize

nMAC
× nParallel (6)

Since in the fully connected layers there is no intra-output parallelism, only
one line of parallel MACs of the PE is used. Given the number of intra-output
parallel processing lines, nParallel, the number of processing cycles is multiplied
by this value.

The total execution time of FC layers is similar to 4.

fcExec =
tFCByte

BW
+

fcCycle

freq
without overlap (7)

fcExec = max(
tFCByte

BW
,
fcCycle

freq
) with overlap (8)

The total execution of a CNN inference in LiteCNN is the sum of the time to
transfer the image to FPGA and the result from FPGA (imageSize+result(bytes)

BW)
plus the time to process each layer. Between layers there is negligible configura-
tion time of the architecture to adapt to the layer done by the ARM processor
of ZYNQ.

We have checked the accuracy of the model from the results of LiteCNN 8×8
running AlexNet. The delay obtained with the model without pruning is about
1% lower (16.94 ms) against (17.1 ms) of the implementation.

5 Results

We describe the results of the pruning methodology with LeNet, Cifar10-full and
AlexNet. All LiteCNN architectures were implemented with Vivado 2017.3 in the
ZedBoard with a ZYNQ XC7Z020 and in a ZYBO board with a ZYNQ7010 and
run at 200 MHz.

For each CNN we found the relation between block pruning and accuracy. For
AlexNet (the larger and most demanding CNN) we have determined the relation
between pruning and delay. All results of accuracy are for top-1 classification,
since the state-of-the-art works we are comparing also use this metric. Similar
tradeoffs were obtained when the top-5 accuracy is used as the metric.

LiteCNN was configured and implemented with 4, 8 and 16 bit dynamic fixed-
point (fixed-point numbers in different layers may have different scaling factors),
with different block pruning sizes and for each configuration the number of cores
was adjusted to obtain a similar area (see the area results in Table 1).

412 T. Peres et al.

Table 1. Area occupation for different block size configurations of LiteCNN

Activation×Weight 4 × 4 8 × 8 16 × 16

Block size 8 16 4 8 2 4

PEs 60 64 64 64 38 38

MACC/PE 32 32 16 16 16 16

LUT 47661 47477 47830 43378 45232 43614

DSP 220 220 220 220 220 220

BRAM (36 Kbits) 130 130 130 130 132 132

Peak GOPs 768 819 410 410 243 243

85

90

95

100

0 20 40 60 80 100

Ac
cu

ra
cy

 (%
)

Pruning (%)

LeNet

B1
B2
B4
B8
B16

50
55
60
65
70
75

0 20 40 60 80 100

Ac
cu

ra
cy

 (%
)

Pruning (%)

Cifar10-Full

B1
B2
B4
B8
B16

50

52

54

56

0 20 40 60 80 100

Ac
cu

ra
cy

 (%
)

Pruning (%)

AlexNet

B1
B2
B4
B8
B16

Fig. 7. Variation of accuracy with pruning percentage and block size

The table gives the number of processing elements and the number of MACC
in each PE. A line with the peak performance was also included (The peak
performance takes into consideration that the architecture reduces the number
of multiplications to half).

For each CNN, we have determined the accuracy of the network for different
pruning percentages with different block sizes and 8 bit dynamic fixed-point
quantization (see Fig. 7, where Bx is the configuration with block size x).

From the results, we observe that the size of the pruning block has a small
influence over the accuracy, except for a block of 16. In this worst case, the lost
in accuracy is about 4%. Similar results were obtained with 16 bit quantization
since the accuracy difference between 8 bit and 16 bit quantizations is small
(around 1.5%).

Faster Convolutional Neural Networks in Low Density FPGAs 413

0

10

20

30

40

0 20 40 60 80 100

De
la

y
(m

s)

Pruning (%)

AlexNet

B8 (8x8)
B4 (16x16)

Fig. 8. Variation of delay with pruning percentage for configuration B8 and B4

In order to keep a fair comparison with previous works, we have determined
the delay of configurations B8 (activation×weight = 8×8) and B4 (activation×
weight = 16 × 16) for AlexNet for different pruning percentages (see Fig. 8).

Pruning has a big impact in the inference delay of AlexNet in LiteCNN since
the execution bottleneck of AlexNet is in the fully connected layers because of
the huge number of weights to be transferred from external memory. Pruning
FC layers reduces the communication time and consequently the whole inference
process.

We have also tested with LeNet and Cifar10-Full. With LeNet the delay
reduces from 0.1 ms to 0.01 ms when we increase pruning from 10% to 90%. In
the case of Cifar10-Full the impact is negligible since the only FC layer of the
network has only 2.2% of the total number of weights of the CNN.

We have compared configuration B4 with 16 bit quantization and 8 bit quan-
tization, both with 90% of pruning (1% accuracy loss) with previous works run-
ning AlexNet. The overall results are shown in Table 2.

Compared to previous works implemented in the ZYNQ xc7z020, in partic-
ular the best implementation from [19], the peak performance and the ratios
GOPs/kLUT and GOPs/DSP of LiteCNN are about 2× better and the latency
is about 5× better. LiteCNN (8 × 8 configuration) reduces the latency of the
original implementation of LiteCNN without pruning (17 ms) to only 5.1 ms
with only 1% accuracy loss. This delay allows an inference performance of 196
images/s in a ZYNQ xc7z020.

With LiteCNN we could map AlexNet in the smallest SoC FPGA from Xilinx
- ZYNQ7010 - in a ZYBO board. As expected, inference delays are higher because
it has less resources (less PEs) and since the available on-chip RAM is not enough
to hold the image and the first OFM, the image has to be halved and processed
separately. However, notably, it can run AlexNet in real-time (30 fps).

To better understand the impact of pruning of FC weights on the inference
delay, we have determined the time to execute convolutional layers and the time
to execute FC layers (see Fig. 9). The graph indicates the observed GOPs (and
the percentage of peak performance).

Without pruning, the execution time of FC layers is higher than that of
convolutional layers. The execution time of FC layers is dominated by the com-

414 T. Peres et al.

Table 2. Performance comparison of Lite-CNN with other works in low density
ZYNQ7020 and ZYNQ7010 SoC FPGAs

Work Format Freq (MHz) GOPs GOPs/LUT GOPs/DSP Latency (ms) Acc.

ZYNQ 7020

[17] 16× 16 100 19 0.35 0.08 71.75 (a)

[18] 16× 16 150 20 0.38 0.09 — (a)

[19] 16× 16 125 38 0.73 0.17 52.4 (a)

[10] 16× 16 200 80 1.5 0.36 16.7(b) (a)

[9] 8× 8 214 84 1.6 0.38 — 53.9

LiteCNN 16× 16 200 139 3.2 0.63 10.1 53.7

LiteCNN 8× 8 200 275 6.3 1.25 5.1 53.5

ZYNQ 7010

LiteCNN 8× 8 200 275 6.3 1.25 13.2 53.5
(a)Authors assume accuracy close to that obtained with floating-point - 55.9%
(b)With pruning and image batch

0

5

10

15

20

25

30

w/o pruning w/ pruning

De
la

y
(m

s)

Configura ons of LiteCNN

Inference delay - AlexNet (7020)

Conv. Delay

FC Delay

275 GOPs
67%

81 GOPs
20%

0

5

10

15

20

25

30

w/o pruning w/ pruning

De
la

y
(m

s)

Configura ons of LiteCNN

Inference delay - AlexNet (7010)
Conv. Delay

FC Delay

56 GOPs
49%

110 GOPs
96%

Fig. 9. Execution time of convolutional and FC layers for LiteCNN with and without
pruning running AlexNet

munication of weights from external memory. This fact degrades the average
GOPs. Pruning FC weights improves the real GOPs of the architecture. The
real GOPs improves when LiteCNN is mapped on ZYNQ7010. In this case, the
execution time of FC layers is about the same (the memory bandwidth is the
same in both FPGAs) and the execution time of convolutional layers increase.
So, the implementation in ZYNQ7010 is more efficient.

6 Conclusions

In this work we have proposed block pruning and modified the LiteCNN archi-
tecture to support pruned regular networks. The extended LiteCNN with con-
figurable pruning datapath proposed in this work permits to improve the per-
formance/area efficiency while keeping the inference accuracy of the CNN. This
is fundamental for embedded systems with low resources.

Faster Convolutional Neural Networks in Low Density FPGAs 415

The results show that block pruning achieves very good accuracies and at
the same time simplifies the hardware implementation for regular CNN.

We are now studying the relation between pruning and data size reduction.

Acknowledgment. This work was supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2019 and was also
supported by project IPL/IDI&CA/2018/LiteCNN/ISEL through Instituto Politécnico
de Lisboa.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, NIPS 2012, pp. 1097–1105.
Curran Associates Inc., USA (2012)

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of the 3rd International Conference on Learning
Representations (2015)

3. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pp. 1–9, June 2015

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
pp. 770–778, June 2016

5. Véstias, M.P., Duarte, R.P., de Sousa, J.T., Neto, H.: Lite-CNN: a high-
performance architecture to execute CNNs in low density FPGAs. In: Proceedings
of the 28th International Conference on Field Programmable Logic and Applica-
tions (2018)

6. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093 (2014)

7. Gysel, P., Pimentel, J., Motamedi, M., Ghiasi, S.: Ristretto: a framework for empir-
ical study of resource-efficient inference in convolutional neural networks. IEEE
Trans. Neural Netw. Learn. Syst. 29, 5784–5789 (2018)

8. Venieris, S.I., Bouganis, C.S.: fpgaConvNet: a framework for mapping convolu-
tional neural networks on FPGAs. In: 2016 IEEE 24th Annual International Sym-
posium on Field-Programmable Custom Computing Machines, FCCM, pp. 40–47,
May 2016

9. Guo, K., et al.: Angel-Eye: a complete design flow for mapping CNN onto embedded
FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 37(1), 35–47 (2018)

10. Gong, L., Wang, C., Li, X., Chen, H., Zhou, X.: MALOC: a fully pipelined FPGA
accelerator for convolutional neural networks with all layers mapped on chip. IEEE
Trans. Comput.-Aided Des. Integr. Circ. Syst. 37(11), 2601–2612 (2018)

11. Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convo-
lutional neural networks. In: Proceedings of the 4th International Conference on
Learning Representations (2016)

12. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and Huffman coding. CoRR, abs/1510.00149
(2015)

http://arxiv.org/abs/1408.5093

416 T. Peres et al.

13. Nurvitadhi, E., et al.: Can FPGAs beat GPUs in accelerating next-generation
deep neural networks? In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA 2017, pp. 5–14. ACM,
New York (2017). https://doi.org/10.1145/3020078.3021740

14. Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N.E., Moshovos,
A.: Cnvlutin: ineffectual-neuron-free deep neural network computing. In: 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture,
ISCA, pp. 1–13, June 2016

15. Fujii, T., Sato, S., Nakahara, H., Motomura, M.: An FPGA realization of a deep
convolutional neural network using a threshold neuron pruning. In: Wong, S., Beck,
A.C., Bertels, K., Carro, L. (eds.) ARC 2017. LNCS, vol. 10216, pp. 268–280.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56258-2 23

16. Yu, J., Lukefahr, A., Palframan, D., Dasika, G., Das, R., Mahlke, S.: Scalpel:
customizing DNN pruning to the underlying hardware parallelism. SIGARCH
Comput. Archit. News 45(2), 548–560 (2017). https://doi.org/10.1145/3140659.
3080215

17. Wang, Y., Xu, J., Han, Y., Li, H., Li, X.: DeepBurning: automatic generation of
FPGA-based learning accelerators for the neural network family. In: 2016 53rd
ACM/EDAC/IEEE Design Automation Conference, DAC, pp. 1–6, June 2016

18. Sharma, H., et al.: From high-level deep neural models to FPGAs. In: 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO, pp.
1–12, October 2016

19. Venieris, S.I., Bouganis, C.: fpgaConvNet: mapping regular and irregular convolu-
tional neural networks on FPGAs. IEEE Trans. Neural Netw. Learn. Syst. 30(2),
326–342 (2019)

https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1007/978-3-319-56258-2_23
https://doi.org/10.1145/3140659.3080215
https://doi.org/10.1145/3140659.3080215

	Faster Convolutional Neural Networks in Low Density FPGAs Using Block Pruning
	1 Introduction
	2 Related Work
	3 Framework for Data Reduction
	4 LiteCNN Architecture
	4.1 LiteCNN Architecture
	4.2 Performance Model of LiteCNN

	5 Results
	6 Conclusions
	References

