
Compiling Sandboxes: Formally Verified
Software Fault Isolation

Frédéric Besson1(B) , Sandrine Blazy1 , Alexandre Dang1, Thomas Jensen1,
and Pierre Wilke2

1 Inria, Univ Rennes, CNRS, IRISA, Rennes, France
frederic.besson@inria.fr

2 CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA, Rennes, France

Abstract. Software Fault Isolation (SFI) is a security-enhancing pro-
gram transformation for instrumenting an untrusted binary module so
that it runs inside a dedicated isolated address space, called a sandbox.
To ensure that the untrusted module cannot escape its sandbox, exist-
ing approaches such as Google’s Native Client rely on a binary verifier
to check that all memory accesses are within the sandbox. Instead of
relying on a posteriori verification, we design, implement and prove cor-
rect a program instrumentation phase as part of the formally verified
compiler CompCert that enforces a sandboxing security property a pri-
ori. This eliminates the need for a binary verifier and, instead, leverages
the soundness proof of the compiler to prove the security of the sand-
boxing transformation. The technical contributions are a novel sandbox-
ing transformation that has a well-defined C semantics and which sup-
ports arbitrary function pointers, and a formally verified C compiler that
implements SFI. Experiments show that our formally verified technique
is a competitive way of implementing SFI.

1 Introduction

Isolating programs with various levels of trustworthiness is a fundamental secu-
rity concern, be it on a cloud computing platform running untrusted code pro-
vided by customers, or in a web browser running untrusted code coming from
different origins. In these contexts, it is of the utmost importance to provide
adequate isolation mechanisms so that a faulty or malicious computation can-
not compromise the host or neighbouring computations.

There exists a number of mechanisms for enforcing isolation that intervene at
various levels, from the hardware up to the operating system. Hypervisors [10],
virtual machines [2] but also system processes [17] can ensure strong isolation
properties, at the expense of costly context switches and limited flexibility in
the interaction between components. Language-based techniques such as strong
typing offer alternative techniques for ensuring memory safety, upon which access
control policies and isolation can be implemented. This approach is implemented
e.g. by the Java language for which it provides isolation guarantees, as proved
by Leroy and Rouaix [21]. The isolation is fined-grained and very flexible but
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 499–524, 2019.
https://doi.org/10.1007/978-3-030-17184-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_18&domain=pdf
http://orcid.org/0000-0001-6815-0652
http://orcid.org/0000-0002-0189-0223
http://orcid.org/0000-0001-9681-644X
https://doi.org/10.1007/978-3-030-17184-1_18

500 F. Besson et al.

the security mechanisms, e.g. stack inspection, may be hard to reason about [7].
In the web browser realm, JavaScript is dynamically typed and also ensures
memory safety upon which access control can be implemented [29].

1.1 Software Fault Isolation

Software Fault Isolation (SFI) is an alternative for unsafe languages, e.g. C,
where memory safety is not granted but needs to be enforced at runtime by
program instrumentation. Pioneered by Wahbe et al. [35] and popularised by
Google’s Native Client [30,37,38], SFI is a program transformation which con-
fines a software component to a memory sandbox. This is done by pre-fixing
every memory access with a carefully designed code sequence which efficiently
ensures that the memory access occurs within the sandbox. In practice, the sand-
box is aligned and the sandbox addresses are thus of the form 0xY Z where Y is a
fixed bit-pattern and Z is an arbitrary bit-pattern i.e., Z ∈ [0x0 . . . 0, 0xF . . . F].
Hence, enforcing that memory accesses are within the sandbox range of addresses
can be efficiently implemented by a masking operation which exploits the binary
representation of pointers: it retains the lowest bits Z and sets the highest bits
to the bit-pattern Y .

Traditionally, the SFI transformation is performed at the binary level and
is followed by an a posteriori verification by a trusted SFI verifier [23,31,35].
Because the verifier can assume that the code has undergone the SFI transforma-
tion, it can be kept simple (almost syntactic), thereby reducing both verification
time and the Trusted Computing Base (TCB). This approach to SFI can be
viewed as a simple instance of Proof Carrying Code [25] where the compiler is
untrusted and the binary verifier is either trusted or verified.

Traditional SFI is well suited for executing binary code from an untrusted
origin that must, for an adequate user experience, start running as soon as
possible. Google’s Native Client [30,37] is a state-of-the-art SFI implementation
which has been deployed in the Chrome web browser for isolating binary code in
untrusted pages. ARMor [39] features the first fully verified SFI implementation
where the TCB is reduced to the formal ARM semantics in the HOL proof-
assistant [9]. RockSalt [24] is a formally verified implementation of an SFI verifier
for the x86 architecture, demonstrating that an efficient binary verifier can be
obtained from a machine-checked specification.

1.2 Software Fault Isolation Through Compilation

A downside of the traditional SFI approach is that it hinders most compiler opti-
misations because the optimised code no longer respects the simple properties
that the SFI verifier is capable of checking. For example, the SFI verifier expects
that every memory access is immediately preceded by a specific syntactic code
pattern that implements the sandboxing operation. A semantically equivalent
but syntactically different code sequence would be rejected. An alternative to
the a posteriori binary verifier approach is Portable Software Fault Isolation
(PSFI), proposed by Kroll et al. [16]. In this methodology, there is no verifier

Compiling Sandboxes: Formally Verified Software Fault Isolation 501

to trust. Instead isolation is obtained by compilation with a machine-checked
compiler, such as CompCert [18]. Portability comes from the fact that PSFI
can reuse existing compiler back-ends and therefore target all the architectures
supported by the compiler without additional effort.

PSFI is applicable in scenarios where the source code is available or the
binary code is provided by a trusted third-party that controls the build process.
For example, the original motivation for Proof Carrying Code [25] was to pro-
vide safe kernel extensions [26] as binary code to replace scripts written in an
interpreted language. This falls within the scope of PSFI. Another PSFI scenario
is when the binary code is produced in a controlled environment and/or by a
trusted party. In this case, the primary goal is not to protect against an attacker
trying to insert malicious code but to prevent honest parties from exposing a
host platform to exploitable bugs. This is the case e.g. in the avionics industry,
where software from different third-parties is integrated on the same host that
needs to ensure strong isolation properties between tasks whose levels of criti-
cality differ. In those cases, PSFI can deliver both security and a performance
advantage. In Sect. 8, we provide experimental evidence that PSFI is competitive
and sometimes outperforms SFI in terms of efficiency of the binary code.

1.3 Challenges in Formally Verified SFI

PSFI inserts the masking operations during compilation and does away with
the a posteriori SFI verifier. The challenge is then to ensure that the security,
enforced at an intermediate representation of the code, still holds for the run-
ning code. Indeed, compiler optimisation often breaks such security [33]. The
insight of Kroll et al. is that a safety theorem of the compiled code (i.e., that its
behaviour is well-defined) can be exploited to obtain a security theorem for that
same compiled code, guaranteeing that it makes no memory accesses outside its
sandbox. We explain this in more detail in Sect. 2.2.

One challenge we face with this approach is that it is far from evident that
the sandboxing operations and hence the transformed program have well-defined
behaviour. An unsafe language such as C admits undefined behaviours (e.g. bit-
wise operations on pointers), which means that it is possible for the observational
behaviour of a program to differ depending on the level of optimisation. This is
not a compiler bug: compilers only guarantee semantics preservation if the code
to compile has a well-defined semantics [36]. Therefore, our SFI transformation
must turn any program into a program with a well-defined semantics.

The seminal paper of Kroll et al. emphasises that the absence of unde-
fined behaviour is a prerequisite but they do not provide a transformation that
enforces this property. More precisely, their transformation may produce a pro-
gram with undefined behaviours (e.g. because the input program had unde-
fined behaviours). This fact was one of the motivation for the present work, and
explains the need for a new PSFI technique. One difficulty is to remove unde-
fined behaviours due to restrictions on pointer arithmetic. For example, bitwise
operators on pointers have undefined C semantics, but traditional masking oper-
ations of SFI rely heavily on these operators. Another difficulty is to deal with

502 F. Besson et al.

indirect function calls and ensure that, as prescribed by the C standard, they
are resolved to valid function pointers. To tackle these problems, we propose an
original sandboxing transformation which unlike previous proposals is compliant
with the C standard [13] and therefore has well-defined behaviour.

1.4 Contributions

We have developed and proved correct CompCertSfi, the first full-fledged, fully
verified implementation of SFI inside a C compiler. The SFI transformation is
performed early in the compilation chain, thereby permitting the generated code
to benefit from existing optimisations that are performed by the back-end. The
technical contributions behind CompCertSfi can be summarised as follows.

– An original design and implementation of the SFI transformation based on
well-defined pointer arithmetic and which supports function pointers. This
novel design of the SFI transformation is necessary for the safety proof.

– A machine-checked proof of the security and safety of the SFI transforma-
tion. Our formal development is available online [1].

– A small, lightweight runtime system for managing the sandbox, built using a
standard program loader and configured by compiler-generated information.

– Experimental evidence demonstrating that the portable SFI approach is com-
petitive and sometimes even outperforms traditional SFI, in particular state-
of-the-art implementations of (P)Native Client.

The rest of the paper is organised as follows. In Sect. 2, we present background
information about the CompCert compiler (Sect. 2.1) and the PSFI approach
(Sect. 2.2). Section 3 provides an overview of the layout of the sandbox and the
masking operations implementing our SFI. In Sect. 4 we explain how to overcome
the problem with undefined pointer arithmetic and define masking operations
with a well-defined C semantics. Section 5 describes how control-flow integrity in
the presence of function pointers can be achieved by a sligthly more flexible SFI
policy which allows reads in well-defined areas outside the sandbox. Section 6
specifies the SFI policy in more detail, and describes the formal Coq proofs
of safety and security. Section 7 presents the design of our runtime library and
how it exploits compiler support. Experimental results are detailed in Sect. 8.
Section 9 presents related work and Sect. 10 concludes.

2 Background

This section presents background information about the CompCert compiler
[18] and the Portable Software Fault Isolation proposed by Kroll et al. [16].

2.1 CompCert

The CompCert compiler [18] is a machine-checked compiler programmed and
proved correct using the Coq proof-assistant [22]. It compiles C programs down

Compiling Sandboxes: Formally Verified Software Fault Isolation 503

Fig. 1. Cminor syntax

to assembly code through a succession of compiler passes which are shown to be
semantics preserving. CompCert features an architecture independent front-
end. The back-end supports four main architectures: x86, ARM, PowerPC and
RiscV. To target all the back-ends without additional effort, our secure trans-
formation is performed in the compiler front-end, at the level of the Cminor
language that is the last architecture-independent language of the CompCert
compiler chain. Our transformation can obviously be applied on C programs by
first compiling them into Cminor, and then applying the transformation itself.

The Cminor language is a minimal imperative language with explicit stack
allocation of certain local variables [19]. Its syntax is given in Fig. 1. Constants
range over 32-bit and 64-bit integers but also IEEE floating-point numbers.
It is possible to get the address of a global variable gl or the address of the
stack allocated local variables (i.e., stk denotes the address of the current stack
frame). In CompCert parlance, a memory chunk κ specifies how many bytes
need to be read (resp. written) from (resp. to) memory and whether the result
should be interpreted as a signed or unsigned quantity. For instance, the memory
chunk is16 denotes a 16-bit signed integer and f64 denotes a 64-bit floating-
point number. In Cminor, memory accesses, written [e]κ, are annotated with the
relevant memory chunk κ. Expressions are built from pseudo-registers, constants,
unary (�) and binary (�) operators. CompCert features the relevant unary and
binary operators needed to encode the semantics of C. Expressions are side-effect
free but may contain memory reads.

Instructions are fairly standard. Similarly to a memory read, a memory store
[e1]κ = e2 is annotated by a memory chunk κ. In Cminor, a function call such
as e(e1 . . . , en)σ represents an indirect function call through a function pointer
denoted by the expression e, σ is the signature of the function and e1 . . . , en are
the arguments. A direct call is a special case where the expression e is a constant
(function) pointer. Cminor is a structured language and features a conditional,
a block construct {s} and an infinite loop loop s. Exiting the nth enclosing loop
or block can be done using an exit n instruction. Cminor is structured but
gotos towards a symbolic label lb are also possible. Returning from a function is
done by a return instruction. Cminor is equipped with a small-step operational
semantics. The intra-procedural and inter-procedural control flows are modelled
using an explicit continuation which therefore contains a call stack.

CompCert Soundness Theorem. Each compiler pass is proved to be
semantics preserving using a simulation argument. Theorem 1 states semantics
preservation.

504 F. Besson et al.

Theorem 1 (Semantics Preservation). If the compilation of program p suc-
ceeds and generates a target program tp, then for any behaviour beh of program
tp there exists a behaviour of p, beh ′, such that beh improves beh ′.

In this statement, a behaviour is a trace of observable events that are typi-
cally generated when performing external function calls. CompCert classifies
behaviours depending on whether the program terminates normally, diverges or
goes wrong. A goes wrong behaviour corresponds to a situation where the pro-
gram semantics gets stuck (i.e., has an undefined behaviour). In this situation,
the compiler has the liberty to generate a program with an improved behaviour
i.e., the semantics of the transformed program may be more defined (i.e., it may
not get stuck at all or may get stuck later on).

The consequence is that Theorem 1 is not sufficient to preserve a safety prop-
erty because the target program tp may have behaviours that are not accounted
for in the program p and could therefore violate the property. Corollary 1 states
that in the absence of going-wrong behaviour, the behaviours of the target pro-
gram are a subset of the behaviours of the source program.

Corollary 1 (Safety preservation). Let p be a program and tp be a target
program. Consider that none of the behaviours of p is a going-wrong behaviour.
If the compilation of p succeeds and generates a target program tp, then any
behaviour of program tp is a behaviour of p.

As a consequence, any (safety) property of the behaviours of p is preserved by
the target program tp. In Sect. 2.2, we show how the PSFI approach leverages
Corollary 1 to transfer an isolation property obtained at the Cminor level to
the assembly code.

Going-wrong behaviours in CompCert. As safety is an essential property
of our PSFI transformation, we give below a detailed account of the going-wrong
behaviours of the CompCert languages with a focus on Cminor.

Undefined evaluation of expressions. CompCert’s runtime values are dynami-
cally typed and defined below:

values � v ::= undef | int(i32) | long(i64) | single(f32) | float(f64) | ptr(b, o)
Values are built from numeric values (32-bit and 64-bit integers and floating point
numbers), the undef value representing an indeterminate value, and pointer
values made of a pair (b, o) where b is a memory block identifier and o is an
offset which, depending on the architecture, is either a 32-bit or a 64-bit integer.

For Cminor, like all languages of CompCert, the unary (�) and binary
(�) operators are not total. They may directly produce going-wrong behaviours
e.g. in case of division by int(0). They may also return undef if (i) the argu-
ments are not in the right range e.g. the left-shift int(i) << int(32); or (ii)
the arguments are not well-typed e.g. int(i) +int float(f). Pointer arithmetic
is strictly conforming to the C standard [13] and any pointer operation that is
implementation-defined according to the standard returns undef .

Compiling Sandboxes: Formally Verified Software Fault Isolation 505

Fig. 2. Pointer arithmetic in CompCert

The precise semantics of pointer operations is given in Fig. 2. For simplicity,
we provide the semantics for a 64-bit architecture. Pointer operations are often
only defined provided that the pointers are valid, written V , or weakly valid,
written W . This validity condition requires that the offset o of a pointer ptr(b, o)
is strictly within the bounds of the block b. The weakly valid condition refers
to a pointer whose offset is either valid or one-past-the-end of the block b. Any
pointer arithmetic operation that is not listed in Fig. 2 returns undef . This is
in particular the case for bitwise operations which are typically used for the
masking operation needed to implement SFI.

The indeterminate value undef is not per se a going-wrong behaviour. Yet,
branching over a test evaluating to undef , performing a memory access over an
undef address and returning undef from the main function are going-wrong
behaviours.

Memory accesses are ruled by a unified memory model [20] that is used through-
out the whole compiler. The memory is made of a collection of separated blocks.
For a given block, each offset o below the block size is given a permission
p ∈ {r,w, . . . } and contains a memory value

mval � mv ::= undef | byte(b) | [ptr(b, o)]n

where b is a concrete byte value and [ptr(b, o)]n represents the nth byte of the
pointer ptr(b, o) for n ∈ {1 . . . 8}. A memory write storev(κ,m, a, v) is only
defined if the address a is a pointer ptr(b, o) to an existing block b such that
the memory locations (b, o), . . . , (b, o+ | κ | −1) have the permission w and the
offset o satisfies the alignment constraint of κ. A memory read loadv(κ,m, a)
is only defined under similar conditions with the additional restriction that not
reading all the consecutive fragments of a pointer returns undef .

Control-flow transfers may go-wrong if the target of the control-flow transfer is
not well-defined. Hence, a goto lb instruction goes wrong if, in the current func-
tion, there is no statement labelled by lb; and an exit n instruction goes wrong
if there are less than n enclosing blocks around the statement containing the
exit instruction. A conditional if e then s1 else s2 goes wrong if the expression
e does not evaluate to int(i) for some i. Also, the execution goes wrong if the

506 F. Besson et al.

last statement of a function is not a return instruction. Last but not least, a
function call x := e(e1 . . . , en)σ goes wrong if the expression e does not evaluate
to a pointer ptr(b, 0) where b is a function pointer with signature σ.

We show in Sect. 4 how our transformation ensures that pointer arithmetic
and memory accesses are always well-defined. Section 5 shows how we make sure
indirect calls are always correctly resolved. Section 6 shows that, together with
other statically checkable verifications, our PSFI transformation rules out all
possible going-wrong behaviours.

2.2 Portable Software Fault Isolation

Kroll, Stewart and Appel have pioneered the concept of Portable Software Fault
Isolation (PSFI) [16] whereby SFI is enforced by a pass of the compiler front-end
that is architecture independent. The main expected advantage is that isolation
is implemented, once and for all, for any target architecture. Moreover, the gen-
erated code is optimised by the back-end passes of the compiler. Compared to
traditional SFI, there is no architecture-specific binary verifier but instead the
compiler enters the TCB. The key insight of Kroll et al. is to leverage a formally
verified compiler, namely CompCert, to transfer a security proof of isolation
obtained at the Cminor level through the compiler back-end, with minimal
proof effort. In the following, we recall the only basic properties that a Cminor
SFI transformation needs to satisfy so that isolation holds at assembly level.

In CompCert’s terms, the sandbox is identified by a dedicated memory
block sb. A Cminor program is secure (Property 1) under the condition that all
its memory accesses are performed within the sandbox.

Property 1 (Program security). A Cminor program p is secure if all its memory
accesses are within the sandbox block sb.

After compilation, the assembly code is secure if its observable behaviours are
the same as the observable behaviours of the Cminor program. In order to
apply CompCert’s semantics preservation theorem (more precisely Corollary 1),
it remains to ensure that the Cminor program has a well-defined semantics
(Property 2).

Property 2 (Program safety). A Cminor program p is safe if all its behaviours
are well-defined, i.e., not wrong.

Kroll et al. state Property 1 by means of an instrumented Cminor seman-
tics which gets stuck in case of memory accesses outside the sandbox. They
prove formally that the additional semantic safeguards are never triggered for a
transformed program.

Kroll et al. also sketch some necessary steps to prove the Property 2 of safety
but do not propose a formal proof. This leaves open a number of challenging
issues such as whether it is feasible to define a masking operation that has a
defined Cminor semantics and how to deal with indirect function calls through
function pointers, More generally, the work leaves open whether a formal proof

Compiling Sandboxes: Formally Verified Software Fault Isolation 507

of Property 2 on safety is possible given the restrictions of CompCert’s semantics
(notably pointer arithmetic) and without relying on axioms asserting properties
of an external masking primitive. One of the central contributions of this work
is to provide a positive answer to this question and propose solutions to these
issues where neither the sandboxing of memory accesses nor the sandboxing
of function pointers is part of a TCB. The transformation that circumvents
the limitations imposed by pointer arithmetic is original and, we surmise, is
a necessary component to transfer security down to assembly. For a precise
comparison with Kroll et al. see Sect. 9).

3 A Thread-Aware Sandbox

The memory address space of a C program is partitioned into a runtime stack
of frames, a heap and a dedicated space for global variables. The address space
of a sandboxed program is re-organised to fit into a single global variable, sb,
where the global variables, the heap and the stack frames are relocated. Figure 3a
depicts the memory layout of the program after our SFI transformation. Each
global variable is relocated and allocated in the sandbox at a given offset, and
each global memory access of the program is translated into a memory access in
the sandbox. For managing the heap it suffices to use a sandbox-aware malloc
implementation that allocates memory inside the sandbox.

To prevent buffer overflows, a standard approach consists in introducing a so-called
shadow stack that is used to store the function stack frames. Our implementation
supports multi-threaded applications and therefore there are as many shadow stacks
as there are threads. Upon thread creation, we allocate a novel shadow stack in the
sandbox. The shadow-stack pointer is passed as an additional argument to each function
call. This is efficient when arguments are passed by register, with the only drawback
of reserving an additional register. Frames are allocated by incrementing the shadow-
stack pointer at function entry. All accesses to the original stack are then translated into
accesses to the sandbox shadow stack. The following Example 1 and the code snippet
in Fig. 3 illustrate the essence of the transformation.

Fig. 3. Sandbox transformation

508 F. Besson et al.

Example 1. The Cminor program of Fig. 3b declares a global variable g initialised to
the 64-bit integer 5. The function foo allocates a stack frame of 8 bytes that will be
used to store a 64-bit local variable. By convention, the current stack frame is called
stk. The function foo calls the function bar with as arguments the value of g and the
address of the local variable stk; and returns the value, presumably updated by bar,
of the local variable.

Syntactically, the program of Fig. 3c only performs memory accesses on the global
sandbox sb variable. The size of sb variable is 2k for some predefined k. At thread
creation, a shadow stack is allocated by our sandbox-aware malloc in the sandbox after
the statically allocated global variables. For our program, the unique global variable g
is stored at offset 0 and spans over 8 bytes. Therefore, the initial value of the shadow-
stack pointer sp is 8. After the transformation, the function foo reserves the space
for the local variable stk by incrementing the pseudo-register sp. The function bar
is called with the incremented shadow-stack pointer sp1, the value stored at offset 0
in the sandbox (i.e., the value of the global variable g) and the address of the local
variable stk which is given by the value of the stack pointer sp. At function exit, the
value of the local variable stk is returned by dereferencing the shadow-stack pointer sp.

Our SFI transformation enforces the isolation security policy stipulating that all
memory accesses are performed within the sandbox sb—at the Cminor level. However,
this holds because the semantics gets stuck (i.e., the semantics goes wrong) whenever
the program performs an access outside the bounds of the sandbox. As explained earlier,
the compiler is free to translate this into an insecure program that would escape the
sandbox at runtime. To get a formal security guarantee, it is necessary to transform
further the Cminor program to rule out any behaviour that goes wrong i.e., ensure
Property 2. Given the numerous undefined behaviours of the C language, ruling out any
going-wrong behaviour may seem a daunting task. In general, this requires to ensure
both memory safety and control-flow integrity. The following two sections describe how
we can exploit the SFI transformation and the knowledge that all memory accesses are
inside the sandbox to ensure both memory safety and control-flow integrity.

4 Memory-Safe Masking

For SFI, memory safety is obtained by making sure that every memory access is per-
formed inside the sandbox. Starting from an analysis of the standard SFI solution, we
present our own design which satisfies the additional requirements of being compliant
with the semantic restrictions of CompCert and with a strict interpretation of the C
standard.

4.1 Standard SFI Masking of Addresses

Standard SFI transformations ensure memory safety by masking memory accesses. The
gist of it is to allocate a sandbox sb of size 2k at a 2k aligned memory address, say &sb =
tag × 2k. Under those constraints, enforcing that an address A is within the bounds
of the sandbox can essentially be done by replacing the high-address bits by those of
tag . Using bitwise operations, this can be done by the expression (A&(2k−1))|tag×2k,
where & is the bitwise and and | is the bitwise or. More visually, this can be written
(A&1 · · · 1

︸ ︷︷ ︸

k

)|tag 0 · · · 0
︸ ︷︷ ︸

k

.

Compiling Sandboxes: Formally Verified Software Fault Isolation 509

At binary level, this masking transformation is defined and the cost is modest: two
bitwise operations. However, this masking operation has no well-defined C semantics.
This is also the case for the semantics of CompCert and in particular for the Cminor
language. The reason is twofold: bitwise operations over pointer values return undef
and concrete addresses (e.g. tag × 2 k) are not pointers for CompCert where they are
represented by a block and an offset (see Fig. 2).

4.2 Specialised Masking for 32-Bit Sandboxes

For 32-bit sandboxes, there exists a variant of the sandboxing primitive which has the
advantages (1) that the sandbox address does not need to be aligned; (2) that the cost
of masking may be reduced to a single instruction. In its simplest form, the masking
primitive is defined by

&sb + (A − &sb)64→32→64

where &sb is the symbolic address of the sandbox. The subtraction of &sb extracts
the offset of the pointer and the double (unsigned) cast 64 → 32 → 64 has the effect
of truncating the offset to a 32-bit quantity that is therefore within the bounds of a
32-bit sandbox. At first sight, this masking is less efficient than the standard masking
but it is efficient for typical address computations which require both displacement and
scaling (e.g. A = t + k + k′ ∗ i32→64 where t is a 64-bit address, k and k′ are constants
and i is a 32-bit integer). Assuming that each cast or arithmetic operation is mapped
to a single instruction1, the masked address A can be computed using 8 instructions:
4 instructions for computing the address A and 4 more for the sandboxing primitive.
Using simple properties of modular arithmetic, it is possible to distribute the 64 → 32
cast over addition and multiplication to obtain the following equivalent formulation of
the sandboxed address:

&sb + A′
32→64 with A′ = t64→32 + c1 + c2 ∗ i

where c1 and c2 are compile-time constants: c1 = (k − &sb)64→32 and c2 = k′
64→32.

Using this formulation, the address A′ still requires 4 instructions but the cost of the
sandboxing is reduced to 2 instructions making it on par with the standard sandboxing.
On x86, 32-bit registers are just zero-extended 64-bit registers. Therefore, the cast
A′

32→64 is actually redundant and the overhead induced by the sandboxing is reduced
to a single instruction. Our experiments (see Sect. 8.2) validate the practical advantage
of this encoding.

Still, as for the standard sandboxing, this sanboxing primitive has no semantics
in CompCert due to the limitations of pointer arithmetic. As a consequence, the
solution of Kroll et al. [16] does not give actual code for the masking primitive, but
rather axiomatise its behaviour as an external function. This prevents optimisations
such as common subexpression elimination or function inlining from happening and
induces the cost of a function call for each memory access.

4.3 Towards Well-Defined Pointer Arithmetic

To illustrate the limitations of pointer arithmetic, we examine the semantic behaviour
of the standard sandboxing primitive (the specialised sandboxing primitive has similar

1 Some architecture have rich addressing modes allowing for more compact encodings.

510 F. Besson et al.

issues). The standard sandboxing primitive can be written (A&(2k−1)) |&sb where &sb
is the address of the sandbox variable. If sb is allocated at runtime at address tag × 2 k

for some tag, this formulation is equivalent at binary level. Again, this heavily relies
on pointer arithmetic that is undefined and on information about where the sandbox
is linked at runtime.

Consider the alternative formulation (A&(2 k−1)) + &sb where the bitwise | is
replaced by a +. This formulation has the advantage that incrementing a pointer,
here sb, is well-defined (see Fig. 2). As on modern hardware, both addition and bitwise
operations take a single cycle, the difference in efficiency should be negligible. Moreover,
at least for x86, the addition can be compiled into the addressing mode.

Still, this does not solve our issue. To understand this, suppose that A is a pointer.
In this case, the bitwise &, whose purpose is to extract the pointer offset, is still unde-
fined. Therefore, the whole expression (A&(2k−1)) + &sb is undefined. Because deref-
erencing an undefined expression is a going-wrong behaviour, the compiled program
may have an arbitrary runtime behaviour and escape the sandbox. A prerequisite for
our masking primitive is therefore to ensure that the evaluation is defined i.e., different
from undef . As all the semantic operators of CompCert are strict in undef (if any
argument is undef , so is the result), a necessary condition is that A is not undef . As
A can be obtained from any expression, a challenge is to ensure that every expression
evaluates to a defined value. A particular difficulty is that the many undefined pointer
operations (see Fig. 2) cannot be detected by runtime checks.

4.4 Arithmetisation of the Heap

To tackle this challenge and ensure that every computation is defined, we propose
an original and radical approach which ensures syntactically that pointers are neither
stored in memory nor in local variables. As a result, the program is only manipulating
integer values and memory addresses are only constructed by the sandboxing primi-
tives. This approach implies, as a side-effect, that our previously undefined masking
primitives are defined. Let asb be the runtime address of the symbolic address &sb of
the sandbox. The masking of an address A can be written

A′ +&sb

where A′ is either defined by A′ = A&(2k−1) or A′ = (A − asb)64→32→64 . As A is
necessarily an integer, A′ is necessarily a defined integer and therefore A′+&sb returns
a defined pointer ptr(sb, o) that is necessarily inside the sandbox.

An additional subtlety is that memory accesses are indexed by a memory chunk κ
which mandates an alignment constraint (e.g. the chunk i64 mandates an 8-byte aligned
address). As a result, the masking primitive is parameterised by the chunk κ and the
masking primitive for i64 is A′&mski64 +&sb where mski64 = (2 k−3−1) × 2 3 .

Only computing over numeric values is facilitated by the fact that the sandboxed
program is only manipulating pointers relative to a single object, the sandbox. There-
fore, a solution could be to only compute with pointer offsets. This is not totally
satisfactory because the null pointer (i.e., 0) would be undistinguishable from the base
pointer ptr(sb, 0). Instead, we use the integer asb that is the integer runtime address
of the sandbox (i.e., we have asb = &sb) and perform the following transformation t
over program expressions.

Compiling Sandboxes: Formally Verified Software Fault Isolation 511

t(&sb) = asb
t(c) = c for c ∈ {i32 , i64 , f32 , f64}
t(�e) = � t(e)
t(e1�e2) = t(e1)� t(e2)
t([e]κ) = [mskκ(t(e))]

The operators � and � ensure that, if the expressions are well-typed, they never return
the undef value. Typical examples include division, modulus, and bitwise shifts. We
transform expressions so that they evaluate to an arbitrary value when their original
semantics is undefined. For example, we transform the left-shift operations on 32-bit
integers so that the resulting expression always has a shift amount less than 32:

Similarly, we transform divisions and modulus in the following way, to rule out the
undefined cases of division by zero and signed division of MIN_SIGNED by -1:

a/b � (a+(a==MIN_SIGNED & b==-1))/(b+(b==0)).

We can prove that the resulting division expression is always defined. Most of the other
expressions are always defined and do not need further transformations.

5 Enforcement of Control-Flow Integrity

Correct sandboxing of code requires some degree of control-flow integrity. Existing
SFI implementations enforce a weak form of control-flow integrity which only ensures
that jumps are aligned and within a sandbox of code. This is achieved by inserting a
masking operation before indirect jumps, that will mask the target address to ensure
that the jump is within the sandbox. Additional padding with no-ops is inserted to
ensure that all the instructions are indeed aligned [30,37,38]. We enforce a stronger,
more traditional, form of control-flow integrity where any control-flow transfer has a
well-defined Cminor semantics.

5.1 Relaxation of the Cminor SFI Property

Intraprocedural control-flow integrity is ensured by simple syntactic checks. For
instance, they ensure that a goto lb has a corresponding label lb and that an exit n
has at least n enclosing blocks. The semantics of Cminor prescribes that function calls
and returns necessarily match. For this to still hold at the assembly level where the
return address is explicitly stored in the stack frame, it is sufficient to prove that the
Cminor program has no going-wrong behaviour. To ensure control-flow integrity, the
only remaining issue is due to indirect calls through function pointers. Our control-flow
integrity counter-measure implements software trampolines and ensures that an indi-
rect call with signature σ can only be resolved by a function pointer towards a function
with signature σ.

For this purpose, the existing Cminor SFI security policy i.e., Property 1, which
rules out any memory access outside the sandbox is too restrictive. As we shall see,
the implementation of trampolines necessitates controlled memory reads, outside the
sandbox, within compiler-generated variables. To accommodate for this extension, we
propose a slightly relaxed SFI security property which, in addition to memory accesses
inside the sandbox, authorises other memory reads in read-only regions.

512 F. Besson et al.

Property 3. A Cminor program is secure if all its memory accesses are within either
the sandbox block sb or some read-only memory.

This relaxed property still ensures the integrity of the runtime because all memory
writes are confined to the sandbox. Note that Property 3 and Property 1 are equivalent
if the trusted runtime library has no read-only memory. This can be achieved at modest
cost by modifying slightly the source code and remove the C type qualifier const which
instructs the compiler that the memory is read-only.

5.2 Control-Flow Integrity of Indirect Calls

In Sect. 4, we have eluded the presence of function pointers. They actually perfectly
fit our strategy of encoding pointers by integers. In this case, each function pointer is
encoded as an index and the trampoline code translates the index into a valid function
pointer.

Consider a function f of signature σ and suppose that the function pointer &f
is compiled into the index i. The reverse mapping from indexes to function point-
ers is obtained from a compiler-generated array variable Aσ such that Aσ[i] = &f .
The array variable Aσ is made of all the function pointers with signature σ. The
array variable is also padded with a default function pointer such that its length
is a power of two. At the call site, the instruction e(e1 . . . , en)σ is transformed into
[te&mskσ +&Aσ](te1 , . . . , ten)σ where te, te1 . . . , ten are transformed expressions such
that all memory accesses are masked and mskσ is the binary mask ensuring that the
index te is within the bounds of the variable Aσ. In our actual implementation, we opti-
mise direct calls and in this case bypass the trampoline. Therefore, when the expression
e is a constant pointer &f to an existing function with signature σ, we generate directly
(&f)(te1 . . . , ten). As a result, only C code using indirect calls goes through the tram-
poline code.

Though our implementation only exploits the relaxation of Property 3 for the sake of
trampolines, a more aggressive implementation could sometimes avoid to relocate read-
only memory inside the sandbox. This could have a positive impact on optimisations
which exploit the immutability of read-only memory.

6 Safety and Security Proofs

We next give an overview of our fully verified Coq proof of security and safety.

6.1 Security Proof

Property 3 is an informal formulation of our security property that is formally stated as
a Cminor instrumented semantics. This semantics mimics the Cminor semantics with
the exception that memory accesses are restricted: a memory read is either performed
within the sandbox or in a read-only memory region; a memory write is necessarily
performed within the sandbox.

The goal of the security proof is to show that all the memory accesses abide by
the restrictions of the instrumented semantics. This is stated by Theorem 2 which
establishes that for a transformed program tp, no behaviour of the standard Cminor
semantics gets stuck for the instrumented Cminor semantics.

Compiling Sandboxes: Formally Verified Software Fault Isolation 513

Theorem 2 (Security). For any transformed program tp, every behaviour of tp in the
standard semantics of Cminor is also a behaviour of tp in the instrumented semantics.

The proof is based on the standard technique of forward simulation that is used in
CompCert to ensure the preservation of semantics by compiler passes. Here, the for-
ward simulation has the distinctive feature of relating the same (transformed) program
equipped with a standard and an instrumented semantics. Since the only difference
between the two semantics is that memory accesses must be secure, the crux of the
proof lies in the correctness of the masking primitive, as stated in the following lemma.

Lemma 1. For any masked expression e, if e evaluates to some pointer ptr(b, o), then
b is the block of the sandbox i.e., sb.

The proof relies on the definition of the masking primitive: a masked expression e is
of the form e′ + &sb. Since &sb evaluates to the pointer ptr(sb, 0), then if the whole
expression evaluates to a pointer ptr(b, o), necessarily b = sb.

6.2 Safety Proof
In order to benefit from CompCert’s semantic preservation theorem and transport
our security proof to the compiled assembly program, we must also prove that the
sandboxed program is safe, i.e., it never gets stuck. We address all the going-wrong
behaviours that we enumerated in Sect. 2.1. The well-formedness properties of a pro-
gram (calling only defined functions, accessing only defined variables, jumping only
to defined labels, exiting from no more blocks than currently enclosed in) are checked
statically and make the transformation fail if they are violated. Next, the memory
accesses require the addresses to be valid and adequately aligned: our masking oper-
ation ensures that this is always the case. Then, the evaluation of expressions must
always be defined: this has mostly been dealt with the arithmetisation of the memory
(Sect. 4.4). Finally, function calls should always be performed with the appropriate
number of well-typed arguments. This is easy to check statically for direct function
calls, but requires trampolines (as described in Sect. 5.2) for indirect function calls.
The following sandbox invariant encapsulates all these conditions.

Definition 1 (Sandbox Invariant). A state S of program P satisfies the sandbox
invariant if the following conditions are satisfied:

1. indirect control-flow transfers are well-defined in P (e.g. goto instructions in the
functions of P only jump to defined labels);

2. every function of P ends with an explicit return;
3. every function of P is well-typed;
4. every function of P starts by explicitly initialising its local variables;
5. the global array Aσ for signature σ contains function pointers to functions of sig-

nature σ;
6. the environment for local variables and the memory in S only contain properly

initialised, numerical values.

Properties 1, 2, 3 are ensured by a set of syntactic checks over the bodies of all the
functions of the program. Property 4 is enforced by our function transformation which
inserts assignments that explicitly initialise all declared local variables. Property 5 is
ensured by construction of the arrays for function pointers. All these properties can
be established solely on the program body and do not change during the execution of
the program. By contrast, Property 6 cannot be checked statically and depends on the
state of the program at each point.

514 F. Besson et al.

Safe Evaluation of Expressions. A necessary condition for the safe evaluation of
expressions is that the program is well typed. CompCert does not generate these type
guarantees so we have integrated a verified (simple) type-inference algorithm for Cmi-
nor programs. Type-checking alone is not sufficient to rule out undefined behaviours
of C operators, but together with the transformations explained in Sect. 4.4, we prove
the following lemma about the evaluation of transformed expressions.

Lemma 2 (Safe evaluation of expressions). In a memory state and a well-typed
environment for local variables containing only defined numerical values, the transfor-
mation of any well-typed expression e evaluates to a defined numerical value.

Lemma 2 follows directly from the properties of our expression transformation.

Safety of Calls through Trampolines. As mentioned in Sect. 5, we implement
software trampolines to secure function calls through function pointers. To ensure the
safety of indirect function calls, we maintain a map smap from function signatures
to the corresponding array identifier and the length of this array. The proof of safety
relies on the fact that for every function f of signature σ present in a program, we
have smap(σ) = (Aσ, lσ) such that all offsets lower than lσ in Aσ contain a pointer
to a function of signature σ. The safety proof of indirect calls itself is not hard, but
we need to set up this signature map and establish invariants relating it to the global
environment of the program.

Safety Theorem. Considering the invariants defined in Definition 1, we prove
Lemma 3 which is our main technical result.

Lemma 3 (Safety). For any Cminor program state S that satisfies the invariants,
either S is a final state or there exists a sequence of steps from S to some S′ such that
S′ also satisfies the invariants.

A subtlety of the proof is that at function entry, the local variables carry the value
undef and therefore the sandbox invariant only holds after they have been initialised
by a sequence of assignments (see Property 4 of Definition 1).

Using Lemma 3, we can show Property 2, in the form of Theorem 3.

Theorem 3 (Safety of the transformation). All behaviours of the transformed
program are well-defined, i.e., not wrong.

Proof. A going-wrong behaviour occurs precisely when a state is reached, from which
no further step can be taken, though it is not a final state. Lemma3, together with a
proof that the initial state of the transformed prorgam satisfies the invariants, tells us
that no such reachable state exists, concluding the proof. ��

As a result, we benefit from CompCert’s semantic preservation theorem and can
transport the security proof down to the assembly program.

Theorem 4 (Security of the compiled program). Let p be a transformed Cminor
program. If p compiles into the assembly program tp, then tp is secure.

The proof uses Corollary 1 and Theorem 2 to conclude that the behaviours of tp are
the same as those of p, and hence secure.

Compiling Sandboxes: Formally Verified Software Fault Isolation 515

7 SFI Runtime and Library

Our modified CompCert compiler, CompCertSfi, takes as input a C program unit in
the form of a list of C files. Each C file is first compiled down to the Cminor language
using the existing passes of the CompCert compiler. Then, all the Cminor programs
are syntactically linked [14] together to form the program unit to be isolated inside the
sandbox. CompCertSfi comes with a lightweight runtime and a generic support for
interfacing with a trusted library (e.g. a libC). An originality of our approach is that
the runtime is using a standard program loader. Moreover, the runtime gets some of
its configuration through compiler-generated variables.

7.1 Loading the SFI Application

The sandboxed code is linked with our runtime library by a linker script which specifies
where to load at runtime the sb variable, viewed as the data segment. The compiler
also emits a sandbox configuration map which contains the symbolic address of the
sandbox, its numeric value at runtime, the total size of the sandbox and the range of
addresses reserved for global variables.

Our runtime code is executed before starting the sandboxed main function. It first
checks that the sandbox is properly linked according to the sandbox configuration map,
sets the shadow-stack pointer and initialises the sandbox heap using our sandbox-aware
implementation of malloc based on ptmalloc32.

By construction, our runtime stack is free of buffer overruns. Yet, if the recursion
is too deep, the stack may overflow. Therefore, the runtime inserts an unmapped page
guard at the bottom of the stack and intercepts the segmentation fault. This protection
suffices provided that the size of each function stack frame does not exceed a page;
which can be checked at compile-time. Eventually, after copying its arguments inside
the sandbox, the runtime calls the main function of the sandboxed application.

7.2 Monitoring Calls to the Runtime Library

The runtime library is trusted and therefore part of the TCB. To ensure isolation, each
call towards the runtime library is monitored to check the validity of the arguments.
For this purpose, a call to a library function, say foo, is renamed in the object file into a
call to a function sb_foo which sanitises its arguments before really calling the function
foo. The verifications are library specific but usually straightforward to implement. For
stdio, the FILE structures are allocated by the runtime outside of the sandbox. Hence,
the returned FILE* cannot be dereferenced to corrupt the FILE structure. To prevent
the sandboxed program to forge FILE* pointers, the runtime maintains at all time the
set of valid FILE*. For variadic functions e.g., printf, we statically compile the format
into a sequence of safe primitive calls. (We reject programs using formats computed
at runtime). For functions in string, we check beforehand that the range of memory
accesses is within the range of the sandbox. We also allow callbacks and therefore a
runtime function may take a function pointer as argument. To ensure that the function
is valid, the runtime is using the trampoline programming pattern presented in Sect. 5.2.

2 http://www.malloc.de/malloc/ptmalloc3-current.tar.gz.

http://www.malloc.de/malloc/ptmalloc3-current.tar.gz

516 F. Besson et al.

7.3 Communication via Global Variables

Programs may not only communicate via function calls but also directly via global
variables. For the libC, this includes e.g. stdout or errno. To ensure isolation, Com-
pCertSfi relocates those variables inside the sandbox but also generates a global
variable map which is an array variable of the form

{&n1, o1, . . . ,&ni, oi, . . . ,&nm, om}
where &ni is the symbolic address of a global variable and oi is its offset in the sandbox.
Using this information, the runtime has the ability to synchronise the values of the
variables inside and outside the sandbox. For example, at program startup, the value
of stdout (a stream pointer) is copied inside the sandbox at the relevant offset. This
allows the sandboxed program to call stdio functions but protects the integrity of the
stream. For errno, it is the responsibility of each runtime library call to synchronise
the value of errno in the sandbox.

8 Experiments

We have evaluated our PSFI approach over the CompCert benchmark suite and a port
of Quake. All the experiments have been carried over a quad-core Intel 6600U laptop
at 2.6 GHz with 16 GB of RAM running Linux Fedora 27. For Quake, we explain
how to adapt the code to our runtime library and verify the absence of noticeable
slowdown. For the other benchmarks, we make a more detailed performance evaluation
and compare CompCertSfi with CompCert, gcc, clang but also the state-of-the-
art (P)NaCl implementation of SFI. In our experiments, all the benchmarks are ordered
by increasing running time. Moreover, for computing a runtime overhead, the running
time is obtained by taking the harmonic mean of 3 consecutive runs.

8.1 Porting Quake

Quake engines come in various flavours and we use the tyr-quake3 implementation
linking with Xlib. The port requires the addition of several functions to our runtime
library from Xlib and the libC. Most of them are not problematic and require no or
little modification. For instance, the getopt function which is used to parse command-
line options is using the global variables optarg, optind, opterr, and optopt. As
explained in Sect. 7.3, the runtime library copies the values of these variables at reserved
places inside the sandbox.

Other functions, e.g. gethostbyname, allocate memory on their own and return a
pointer to this piece of data which is therefore not accessible to the sandboxed code. For
the specific case of gethostbyname, the library provides the function gethostbyname_r
which, instead of allocating memory, takes as argument a data-structure that is filled
by the function. In our case, we pass as argument a sandbox allocated piece of memory.
This does not solve our problem entirely as inner pointers may still point outside the
sandbox. To cope with this issue, we perform a deep copy of the relevant piece of data
inside the sandbox.

A last issue is that the video memory is shared between the application and the X
server using the system call shmat. Fortunately, the libC provides the relevant flags to

3 https://disenchant.net/git/tyrquake.git.

https://disenchant.net/git/tyrquake.git

Compiling Sandboxes: Formally Verified Software Fault Isolation 517

bind shared memory at a specific address. Hence, we were able to allocate it inside the
sandbox thus allowing a seamless communication with the X server. After these mod-
ifications, the sandboxed Quake runs without noticeable slowdown which is encour-
aging and an indication of the good overall performance of our sandboxing technique.
In the following, we complement this with a more precise runtime evaluation for the
CompCert benchmarks.

8.2 PSFI Overhead: Impact of Sandboxing Primitives

Next, we compare the efficiency of a standard masking primitive (Sect. 4.1) with a
specialised version for 32-bit sandboxes (Sect. 4.2).

Figure 4 shows the overhead of the standard sandboxing primitive with respect to
the specialised sandboxing primitive. There are 6 benchmarks for which the overhead
incurred by the standard sandboxing is above 10% reaching 40% for 2 benchmarks.
These cases illustrate the significant performance advantage that is sometime obtained
by the specialised sandboxing. For some benchmarks, the standard sandboxing outper-
forms our optimised sandboxing. Yet when it does it is by a very small margin (below
3%). Overall, for the vast majority of our benchmarks, the specialised sandboxing
primitive is very competitive.

In Sect. 4.1, we gave theoretical arguments for the advantage of the specialised
sandboxing. Another argument comes from the fact that the specialised sandboxing
is easier to optimise. First, note that the standard and the specialised sandboxing
primitives are both using a bitwise mask but for different purposes. For the standard
primitive, it is used to enforce that the pointer is within the sandbox bounds but
also to enforce alignment constraints. For the specialised primitive, it is only used to
enforce alignment constraints. Using the existing CompCert dataflow framework, we
have implemented an alignment analysis that is quite effective at removing redundant
alignment masks. To enable more optimisations, we explicit alignment constraints in
the Cminor code program (e.g. by specifying that function arguments of a pointer
type are necessarily aligned). Thus, our experimental results are explained by both the
theoretical advantages given in Sect. 4.2 and the effectiveness of our alignment analysis.

Fig. 4. Overhead of standard w.r.t specialised sandboxing

518 F. Besson et al.

8.3 PSFI Overhead: Impact of Compiler Back-End

As a second experiment, we evaluate the overhead of our PSFI transformation for various
compilers: CompCert, gcc and clang. CompCert is a moderately optimising com-
piler and the benchmarks run significantly faster using gcc and clang. In Fig. 5, the
baseline is given by the minimum of the execution times of the three compilers without
PSFI instrumentation. The black bar is the overhead of a compiler (e.g. CompCert),
with respect to the baseline and the grey bar is the overhead of the same compiler but
with the PSFI transformation (e.g. CompCertSfi). In order to use gcc and clang, we
implement a trusted decompiler from our securedCminor programs toClight, a subset
of C in CompCert. These Clight programs are then compiled with gcc or clang.

For a fair comparison, we should compare programs for which we actually have
a reasonable security guarantee. We have a formal proof of security and safety (see
Sect. 6) for the sandboxed Cminor program, and we are confident that our syntax-
directed decompiler preserves this property. For CompCert, this would suffice to pre-
serve the security of the compiled Clight code, but this is not the case for gcc and
clang because of semantic discrepancies between the compilers. To limit this risk,
we have set the compiler flags to instruct gcc and clang to adhere to the speci-
ficity of CompCert semantics: signed integer arithmetic is defined and so are wraps
around (flag -fwrapv), strict aliasing is irrelevant (flag -fno-strict-aliasing), and
floating-point arithmetic is strictly IEEE 754 compliant (flags -frounding-math and
-fsignaling-nans). We also instruct the compilers to ignore any knowledge about the
C library (-fno-builtin).

Our experimental results are shown in Fig. 5. In Fig. 5a, we have the overhead of
CompCert and CompCertSfi. The overhead of CompCert over gcc and clang is
expected and corroborates existing results4. For 10% of the benchmarks, the overhead
CompCertSfi over CompCert is negligible and sometimes the PSFI transformation
even improves performance. Those are programs for which the PSFI transformation
introduces few masking operations, if any. For 41% of the benchmarks, the overhead is
below 10% and can be considered, for most applications, a reasonable efficiency/security
trade-off. For all the other benchmarks except binarytrees and vmach, the overhead is
below 25%. The two remaining benchmarks have a significant overhead reaching 82%
for binarytrees. This corresponds to programs which are memory intensive and where
sandboxing cannot be optimised.

In Fig. 5b and c, we perform the same experiments but with gcc and clang. The
results have some similarities but also have visible differences. For about 60% of the
benchmarks the overhead is below 20%. Moreover, for both compilers, the average over-
head is similar: 22% for gccSfi and 24% for clangSfi. Yet, on average gccSfi makes
a better job at optimising our benchmarks and best clangSfi for about 75% of the
benchmarks. For the rest of the benchmarks, we observe a significant overhead, up to
20%, indicating that the PSFI transformation hinders certain aggressive optimisations.
The results also seem to indicate that optimisations are fragile as the overhead is not
always consistent across compilers. The case of the integr benchmark is particularly
striking because it runs with negligible overhead for clangSfi but exhibits the worst
case overhead for gccSfi. The integr program is using a function pointer inside a loop
and we suspect that gccSfi, unlike clangSfi, fails to optimise the program due to the
inserted trampoline code. Though less striking, the benchmarks fftw and raytracer
follow the opposite trend; these are programs where the overhead of clangSfi is much
higher than gccSfi.
4 http://compcert.inria.fr/compcert-C.html#perfs.

http://compcert.inria.fr/compcert-C.html#perfs

Compiling Sandboxes: Formally Verified Software Fault Isolation 519

Fig. 5. Overhead of PSFI:CompCert, clang, gcc, (P)NaCl

8.4 PSFI Versus (P)NaCl

We also compare our compiler-based SFI approach with (P)NaCl [30], which to our
knowledge is one of the most mature implementations of SFI. Figure 5d shows the
overhead of CompCertSfi, gccSfi, clangSfi with respect to (P)NaCl. The baseline
is given by the best among NaCl and PNaCl. The best of clangSfi and gccSfi is
given in dark gray and CompCertSfi is given in light grey.

We first analyse the results of CompCertSfi. Our benchmarks are ordered by
increasing runtime. The first 5 benchmarks have a runtime below one second. They are
not representative of the performance of both approaches but only illustrate the fact
that (P)NaCl has a startup penalty due to the verification of the binary and the setup
of the sandbox. The overhead peaks above 75% for two programs (i.e., fib and integr).
As the PSFI transformation keeps fib unmodified and only inserts a trampoline call in
integr, these programs only highlight the limited optimisations performed by Com-
pCert. Of the remaining benchmarks, 40% of them run faster or have similar speed
with CompCertSfi. For those benchmarks, the average overhead of CompCertSfi
w.r.t (P)NaCl is around 9%. Except for a few programs whose overhead skyrockets
due to CompCert not being specialised for speed, we can say that CompCertSfi
performance is comparable to (P)NaCl, having programs with better speed in both
sides and a large number having similar results.

520 F. Besson et al.

We also matched gccSfi/clangSfi against (P)NaCl to compare the impact on
performance of more aggressive optimisations. Here 60% of the programs are faster
with gccSfi/clangSfi. Among the remaining programs, lzw and chomp are programs
for which the (P)NaCl code runs faster than the optimised gcc clang code without
the PSFI transformation. As (P)NaCl is based on clang, more investigation is needed
to understand this paradox that may be explained by code running outside the sand-
box i.e. the trusted runtime library. Among the remaining benchmarks, binarytrees
and lists still show a noticeable overhead. Those are recursive micro-benchmarks for
which our PSFI is costly (see Fig. 5). For lists, 99% of the time is spent in a tight loop
where only a single address is masked. For binarytrees, 70% of the time is spent in the
runtime code of malloc and free and therefore this highlights the fact that our imple-
mentation is less efficient than the (P)NaCl counterpart. Overall these results indicate
that our implementation of SFI is competitive with (P)NaCl, given similar compilers.
Furthermore speed can be improved with more sandbox-dedicated optimisations; these
would be harder for (P)NaCl to check.

9 Related Work

Since Wahbe et al. [35] proposed their initial technique for SFI, there has been a number
of proposals for efficiently confining untrusted software to a memory sandbox (see [23,
24,31,32,34,37,39]). One of the most prominent is Google’s Native Client (NaCl) [37],
which provides an infrastructure for executing untrusted native code in a web browser.
NaCl was specifically targeted at executing computation-intensive applications without
incurring a performance penalty. Certain features (in particular self-modifying code)
were ruled out. These restrictions were addressed in a subsequent work [3].

RockSalt [24] is an SFI verifier for x86 code which has been developed and formally
verified with the proof assistant Coq. The major contribution of RockSalt is to provide a
formal model of the x86 architecture, from which it is possible to extract a decoder for a
subset of the very rich set of x86 instructions, and build a verifier for the NaCl sandbox
policy. Their experiments show that the formally verified checker performs marginally
better than the NaCl verifier. In comparison, our approach avoids the complexities of
the x86 instruction set by relying on the CompCert compiler back-end to produce
binaries whose adherence to the sandbox policy is guaranteed by a combination of
a sandbox verification at a higher level (Cminor) and the CompCert’s correctness
theorem.

ARMor [39] is using the binary rewriter Diablo [28] to implement SFI for ARM
processors. Using an untrusted program analysis, a proof of SFI safety is automatically
constructed using the HOL theorem prover. ARMor was tested with some programs
of the MiBench benchmark [11], namely BitCount and StringSearch. These programs
required 2.5 and 8 h respectively to prove the memory safety and control-flow integrity
of the executables, which means that the approach is not practically viable as it is.

Kroll et al. [16] proposed PSFI as an alternative methodology to the standard,
verification-based SFI. In PSFI, the sandbox is built by inserting the necessary mask-
ing instructions during compilation. This means that the correctness of the transfor-
mation can be argued at an intermediate stage in the compilation where the program
representation retains a high-level structure. Our work extends the seminal proposal in
a number of ways that we detail below. Unlike Kroll et al., we exclude from the TCB
the masking primitive and the trampoline mechanism for calling external functions.
In our implementation, these crucial components are written entirely in Cminor and

Compiling Sandboxes: Formally Verified Software Fault Isolation 521

proved correct without introducing trusted, unproved, code. Kroll et al. sketch a proof
of safety but do not identify the issue of pointer arithmetic. To sidestep the semantics
limitation of pointer arithmetic, we introduce a compile-time encoding of pointer as
integers. This transformation is instrumental for our Coq verified proof of safety, which
itself is mandatory to transfer security down to assembly.

Since the seminal work of Norrish [27], several works propose formal semantics of
the C language [8,12,15]. All these share the limitations of CompCert with respect to
pointer arithmetic. Recent works specifically aim at providing a more defined semantics
for pointers. The proposal of Besson et al. [4] is able to cope with most existing low-level
pointer manipulations and has been ported to CompCert [5,6]. Yet, it has nonetheless
limitations and the design of our PSFI transformation would not benefit from the
increased expressiveness. The semantics of Kang et al. [14] is more permissive because,
after a cast, a pointer is indistinguishable from an integer value. To our knowledge, their
semantics has not been ported to the CompCert compiler. Our SFI transformation
has the advantage of being compatible with the existing semantics of CompCert with
the caveat that pointers needs to be explicitly compiled into integers.

10 Conclusion

We have presented CompCertSfi, a formally verified implementation of Software Fault
Isolation based on the CompCert compiler. Our approach provides security guaran-
tees at runtime when the source code may be malicious or has security vulnerabilities
but the build process is trusted. This is typically the case when a final product is built
using code originating from multiple third parties. Our work shows that it is possible
to perform security-enhancing compilation that is both formally verified and competi-
tive with existing approaches in terms of efficiency. CompCertSfi does not rely on a
posteriori binary verification for guaranteeing security, and hence has a reduced TCB
compared to traditional SFI solutions. The reduction in TCB is obtained through a
formal, machine-checked proof of the fact that the security guaranteed by our SFI trans-
formation in the compiler front-end, still holds at the assembly level. Key to achieving
this property has been to fine-tune the transformation (and in particular its pointer
manipulations) to ensure that the secured program has a well-defined semantics.

The impact of SFI has been evaluated on a series of benchmarks, showing that the
transformed code can in a few cases be more efficient, and that the average runtime
overhead incurred is about 9%. We have evaluated the impact of back-end optimi-
sation on the transformed code on three different compilers. The gains vary, with
clang being more efficient than CompCert and gcc, and CompCert being slightly
more efficient than gcc. The experiments show that CompCertSfi combined with an
aggressive back-end optimiser can sometimes achieve performances superior to Native
Client implementations. In addition, there is still room for further optimisation of the
generated code. We have observed that existing optimisations are sometimes hindered
by our SFI transformation, so we gain by having more optimisation before the SFI
transformation. We also intend to investigate optimisations for removing redundant
sandboxing operations and in particular hoisting sandboxing outside loops.

522 F. Besson et al.

References

1. Supplementary material. https://www.irisa.fr/celtique/ext/compcertsfi
2. Andronick, J., Chetali, B., Ly, O.: Using Coq to verify Java CardTM applet isolation

properties. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 335–
351. Springer, Heidelberg (2003). https://doi.org/10.1007/10930755_22

3. Ansel, J., et al.: Language-independent sandboxing of just-in-time compilation and
self-modifying code. In: PLDI, pp. 355–366 (2011)

4. Besson, F., Blazy, S., Wilke, P.: A precise and abstract memory model for C using
symbolic values. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 449–468.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1_24

5. Besson, F., Blazy, S., Wilke, P.: CompCertS: a memory-aware verified C compiler
using pointer as integer semantics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 81–97. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66107-0_6

6. Besson, F., Blazy, S., Wilke, P.: A verified CompCert front-end for a memory model
supporting pointer arithmetic and uninitialised data. J. Autom. Reasoning (2018,
accepted for publication)

7. Besson, F., de Grenier de Latour, T., Jensen, T.P.: Interfaces for stack inspection.
J. Funct. Program. 15(2), 179–217 (2005)

8. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
POPL. ACM (2012)

9. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14052-5_18

10. Guanciale, R., Nemati, H., Dam, M., Baumann, C.: Provably secure memory iso-
lation for Linux on ARM. J. Comput. Secur. 24(6), 793–837 (2016)

11. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.:
MiBench: a free, commercially representative embedded benchmark suite, pp. 3–14.
Institute of Electrical and Electronics Engineers Inc., United States (2001)

12. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: PLDI,
pp. 336–345. ACM, June 2015

13. ISO: ISO C Standard 1999. Technical report (1999)
14. Kang, J., Kim, Y., Hur, C., Dreyer, D., Vafeiadis, V.: Lightweight verification of

separate compilation. In: POPL, pp. 178–190. ACM (2016)
15. Krebbers, R.: An operational and axiomatic semantics for non-determinism and

sequence points in C. In: POPL. ACM (2014)
16. Kroll, J.A., Stewart, G., Appel, A.W.: Portable software fault isolation. In: CSF,

pp. 18–32. IEEE (2014)
17. Larus, J.R., Hunt, G.C.: The singularity system. Commun. ACM 53(8), 72–79

(2010)
18. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–

115 (2009)
19. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446

(2009)
20. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model. In:

Program Logics for Certified Compilers. Cambridge University Press (2014)

https://www.irisa.fr/celtique/ext/compcertsfi
https://doi.org/10.1007/10930755_22
https://doi.org/10.1007/978-3-319-12736-1_24
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18

Compiling Sandboxes: Formally Verified Software Fault Isolation 523

21. Leroy, X., Rouaix, F.: Security properties of typed applets. In: Vitek, J., Jensen,
C.D. (eds.) Secure Internet Programming, Security Issues for Mobile and Dis-
tributed Objects. LNCS, vol. 1603, pp. 147–182. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48749-2_7

22. The Coq development team: The Coq proof assistant reference manual (2017).
http://coq.inria.fr, version 8.7

23. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: Proceed-
ings of the 15th Conference on USENIX Security Symposium, USENIX-SS 2006,
vol. 15. USENIX Association (2006)

24. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: RockSalt: better,
faster, stronger SFI for the x86. In: PLDI, pp. 395–404. ACM (2012)

25. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119. ACM Press (1997)
26. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: OSDI,

pp. 229–243. ACM (1996)
27. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
28. Put, L.V., Chanet, D., Bus, B.D., Sutter, B.D., Bosschere, K.D.: DIABLO: a reli-

able, retargetable and extensible link-time rewriting framework. In: In IEEE Inter-
national Symposium On Signal Processing And Information Technology (2005)

29. Richards, G., Hammer, C., Nardelli, F.Z., Jagannathan, S., Vitek, J.: Flexible
access control for JavaScript. In: OOPSLA, pp. 305–322. ACM (2013)

30. Sehr, D., et al.: Adapting software fault isolation to contemporary CPU archi-
tectures. In: 19th USENIX Security Symposium, pp. 1–12. USENIX Association
(2010)

31. Sehr, D., et al.: Adapting software fault isolation to contemporary CPU archi-
tectures. In: Proceedings of the 19th USENIX Conference on Security, USENIX
Security 2010, p. 1. USENIX Association (2010)

32. Shu, R., et al.: A study of security isolation techniques. ACM Comput. Surv. 49(3),
50:1–50:37 (2016)

33. Simon, L., Chisnall, D., Anderson, R.J.: What you get is what you C: controlling
side effects in mainstream C compilers. In: EuroS&P, pp. 1–15. IEEE (2018)

34. Sinha, R., et al.: A design and verification methodology for secure isolated regions.
In: PLDI, pp. 665–681. ACM (2016)

35. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: SOSP, pp. 203–216. ACM (1993)

36. Wang, X., Chen, H., Cheung, A., Jia, Z., Zeldovich, N., Kaashoek, M.: Undefined
behavior: what happened to my code? In: APSYS (2012)

37. Yee, B., et al.: Native client: a sandbox for portable, untrusted x86 native code.
In: S&P, pp. 79–93. IEEE (2009)

38. Yee, B., et al.: Native client: a sandbox for portable, untrusted x86 native code.
Commun. ACM 53(1), 91–99 (2010)

39. Zhao, L., Li, G., Sutter, B.D., Regehr, J.: ARMor: fully verified software fault
isolation. In: EMSOFT, pp. 289–298. ACM (2011)

https://doi.org/10.1007/3-540-48749-2_7
http://coq.inria.fr

524 F. Besson et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Compiling Sandboxes: Formally Verified Software Fault Isolation
	1 Introduction
	1.1 Software Fault Isolation
	1.2 Software Fault Isolation Through Compilation
	1.3 Challenges in Formally Verified SFI
	1.4 Contributions

	2 Background
	2.1 CompCert
	2.2 Portable Software Fault Isolation

	3 A Thread-Aware Sandbox
	4 Memory-Safe Masking
	4.1 Standard SFI Masking of Addresses
	4.2 Specialised Masking for 32-Bit Sandboxes
	4.3 Towards Well-Defined Pointer Arithmetic
	4.4 Arithmetisation of the Heap

	5 Enforcement of Control-Flow Integrity
	5.1 Relaxation of the Cminor SFI Property
	5.2 Control-Flow Integrity of Indirect Calls

	6 Safety and Security Proofs
	6.1 Security Proof
	6.2 Safety Proof

	7 SFI Runtime and Library
	7.1 Loading the SFI Application
	7.2 Monitoring Calls to the Runtime Library
	7.3 Communication via Global Variables

	8 Experiments
	8.1 Porting Quake
	8.2 PSFI Overhead: Impact of Sandboxing Primitives
	8.3 PSFI Overhead: Impact of Compiler Back-End
	8.4 PSFI Versus (P)NaCl

	9 Related Work
	10 Conclusion
	References

