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Abstract. We consider a language together with the subword relation,
the cover relation, and regular predicates. For such structures, we con-
sider the extension of first-order logic by threshold- and modulo-counting
quantifiers. Depending on the language, the used predicates, and the
fragment of the logic, we determine four new combinations that yield
decidable theories. These results extend earlier ones where only the lan-
guage of all words without the cover relation and fragments of first-order
logic were considered.
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1 Introduction

The subword relation (sometimes called scattered subword relation) is a simple
example of a well-quasi ordering [7]. This property allows its prominent use in the
verification of infinite-state systems [4]. The subword relation can be understood
as embeddability of one word into another. This embeddability relation has been
considered for other classes of structures like trees, posets, semilattices, lattices,
graphs etc. [8–11,14–16,22,23].

We are interested in logics over the subword order. Prior work on this has
concentrated on first-order logic where the universe consists of all words over
some alphabet. In this setting, we already have a rather precise picture about the
border between decidability and undecidability: For the subword order alone, the
∃∗-theory is decidable [17] and the ∃∗∀∗-theory is undecidable [6,12]. If we add
constants to the signature, already the ∃∗-theory becomes undecidable [6]. With
regular predicates, the two-variable theory is decidable, but the three-variable
theory is undecidable [12].

Thus, the decidable theories identified so far leave little room to express
natural properties. First, the universe is confined to the set of all words and
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by Labex DigiCosme, Université Paris-Saclay, project VERICONISS.

c© The Author(s) 2019
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predicates for subsets quickly incur undecidability. Moreover, neither in the ∃∗-,
nor in the two-variable fragment of first-order logic, one can express the cover
relation �· (i.e., “u is a proper subword of v and there is no word properly between
these two”). As another example, one cannot express threshold properties like
“there are at most k subwords with a given property” in any of these two logics.

In this paper, we aim to identify decidable logics that are more expressive.
To that end, we consider four additions to the expressivity of the logic:

– Instead of all words over some alphabet, the universe is a language L.
– We add regular predicates or constants to the structure.
– Besides the subword order, we also consider the cover relation �·.
– We add threshold and modulo counting quantifiers to the logic.

Formally, this means we consider structures of the form

(L,�,�·, (K ∩ L)K regular, (w)w∈L),

where the universe is a language L ⊆ Σ∗, � is the subword ordering, �· is the
cover relation, there is a predicate K∩L for each regular K ⊆ Σ∗, and a constant
symbol for each w ∈ L. Moreover, we consider fragments of the logic C+MOD,
which extends first-order logic by threshold- and modulo-counting quantifiers.

The key idea of this paper is to find decidable theories by varying the uni-
verse L and thereby either (i) simplify the structure (L,�) enough to obtain
decidability even with the extensions above or (ii) generalize existing results
that currently only apply to L = Σ∗. This leads to the following results.

1. First, we require L to be bounded. This means, we have L ⊆ w∗
1 · · · w∗

m

for some words w1, . . . , wm ∈ Σ∗. Then, as soon as L is context-free, the
C+MOD-theory of the whole structure is decidable (Theorem 3.4).

2. To lift the boundedness restriction, we show that if L is regular, we still
obtain decidability for the whole structure if we stay within the two-variable
fragment C+MOD2 (Corollary 4.8). This generalizes the decidability of the
FO2-theory without the cover relation as shown in [12, Theorem 5.5].

3. Moreover, we consider a regular universe, but lift the two-variable
requirement. To get decidability, we restrict quantifiers and available pred-
icates: We show that for regular L, the Σ1-theory of the structure (L,�)
is decidable (Theorem 5.1). In the case L = Σ∗, this had been shown in
[17, Prop. 2.2].

4. Finally, we place a further restriction on L, but in return obtain decidability
with constants. We show that if L is regular and every letter is “frequent” in L
(see Sect. 6), then the Σ1-theory of the structure (L,�, (w)w∈L) is decidable
(Theorem 6.2). Note that, by [6, Theorem 3.3], this theory is undecidable if
L = Σ∗.

Our first result is shown by a first-order interpretation of the structure in
(N,+). Since L ⊆ w∗

1 · · · w∗
n, instead of words, one can argue about vectors

(x1, . . . , xn) ∈ N
n for which wx1

1 · · · wxn
n ∈ L. For the interpretation, we use

the fact that semilinearity of context-free languages yields a Presburger formula
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expressing wx1
1 · · · wxn

n ∈ L for (x1, . . . , xn) ∈ N
n. Moreover, Presburger defin-

ability of wx1
1 · · · wxn

n � wy1
1 · · · wyn

n for (x1, . . . , xn) ∈ N
n and (y1, . . . , yn) ∈ N

n is
a simple consequence of the subword relation being rational, which was observed
in [12]. The first-order interpretation of our structure in (N,+) then enables us
to employ decidability of the C+MOD-theory of the latter structure [1,5,21].
(Note that this decidability does not follow directly from Presburger’s result
since in first-order logic, one cannot make statements like “the number of wit-
nesses x ∈ N satisfying . . . is even”). A similar interpretation in (N,+) was used
in [6] for various algorithms concerning (Σ∗,�, (w)w∈Σ∗) for fragments of FO
related to bounded languages.

Our second result extends an approach from [12] for decidability of the FO2-
theory of the structure (Σ∗,�, (L)L regular). The authors of [12] provide a quan-
tifier elimination procedure showing that every unary relation FO2-definable in
this structure is regular. Our extended quantifier-elimination procedure uses the
same invariant, now relying on the following two properties:

– The class of regular languages is closed under counting images under unam-
biguous rational relations.
This can be shown either directly or (as we do here) using weighted
automata [20].

– The proper subword, the cover, and the incomparability relation are unam-
biguous rational.

Our third result extends the decidability of the Σ1-theory of (Σ∗,�)
from [17]. In [17], decidability is a consequence of the fact that every finite
partial order can be embedded into (Σ∗,�) if |Σ| ≥ 2. This certainly fails for
general regular languages: (a∗,�) can only accomodate linear orders. However,
we can distinguish two cases: If L is a bounded language, then decidability of
the Σ1-theory of (L,�) follows from our first result. If L is not bounded, then
we show that again every finite partial order embeds into (L,�). To this end,
we first extend a well-known property of unbounded regular languages, namely
that there are x, u, v, y ∈ Σ∗ with x{u, v}∗y ⊆ L such that |u| = |v| and u 	= v.
We show that here, u, v can be chosen so that uv is a primitive word. We then
observe that for large enough n, any embedding of the word (uv)n−1 into (uv)n

must hit either the left-most position or the right-most position in (uv)n. This
enables us to argue that for large enough n, sending a tuple (t1, . . . , tm) ∈ {0, 1}m

to xvt1(uv)n · · · vtm(uv)ny is in fact an embedding of ({0, 1}m,≤) into (L,�),
where ≤ denotes coordinate-wise comparison. Since any partial order with ≤ m
elements embeds into ({0, 1}m,≤), this completes the proof.

Regarding our fourth result, we know from [6] that decidability of the
Σ1-theory of (L,�, (w)w∈L) does not hold for every regular L: Undecidability
holds already for L = {a, b}∗. Therefore, we require that every letter is frequent
in L, meaning that in some automaton for L, every letter occurs in every cycle.
In case L is bounded, we can again invoke our first result. If L is not bounded,
we deduce from the frequency condition that for every w ∈ Σ∗, there are only
finitely many words in L that do not have w as a subword. Removing those
finitely many words preserves unboundedness, so that every finite partial order
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embeds in L above w. We then proceed to show that for such languages, any
Σ1-sentence is effectively equivalent to a sentence where constants are only used
to express that all variables take values above a certain word w. Since every
finite partial order embeds above w, this implies decidability.

The full version of this work is available as [18].

2 Preliminaries

Throughout this paper, let Σ be some finite alphabet. A word u = a1a2 . . . am

with a1, a2, . . . , am ∈ Σ is a subword of a word v ∈ Σ∗ if there are words
v0, v1, . . . , vm ∈ Σ∗ with v = v0a1v1a2v2 · · · amvm. In that case, we write u � v;
if, in addition, u 	= v, then we write u � v and call u a proper subword of v. If
u,w ∈ Σ∗ such that u � w and there is no word v with u � v � w, then we say
that w is a cover of u and write u �· w. This is equivalent to saying u � w and
|u| + 1 = |w| where |u| is the length of the word u. If neither u is a subword of
v nor vice versa, then the words u and v are incomparable and we write u ‖ v.
For instance, aa � babbba, aa �· aba, and aba ‖ aabb.

Let S = (L, (Ri)i∈I , (wj)j∈J) be a structure, i.e., L is a set, Ri ⊆ Lni is a
relation of arity ni (for all i ∈ I), and wj ∈ L for all j ∈ J . Then, formulas ϕ of
the logic C+MOD are defined by the following grammar:

ϕ :: = (s = t) | Ri(s1, . . . , sni
) | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃≥kx ϕ | ∃p mod qx ϕ

where s, t, s1, . . . , sni
are variables or constants wj with j ∈ J , i ∈ I, k ∈ N, and

p, q ∈ N with p < q. We call ∃≥k a threshold counting quantifier and ∃p mod q

a modulo counting quantifier. The semantics of these quantifiers is defined as
follows:

– S |= ∃≥kx α iff |{w ∈ L | S |= α(w)}| ≥ k
– S |= ∃p mod qx α iff |{w ∈ L | S |= α(w)}| ∈ p + qN

For instance, ∃0 mod 2x α expresses that the number of elements of the structure
satisfying α is even. Then

(∃0 mod 2x α
)∨(∃1 mod 2x α

)
holds iff only finitely many

elements of the structure satisfy α. The fragment FO+MOD of C+MOD com-
prises all formulas not containing any threshold counting quantifier. First-order
logic FO is the set of formulas from C+MOD not mentioning any counting quan-
tifier. Let Σ1 denote the set of first-order formulas of the form ∃x1 ∃x2 . . . ∃xn : ψ
where ψ is quantifier-free; these formulas are also called existential.

The threshold quantifier ∃≥k can be expressed using the existential quantifier,
only. Consequently, the logics FO+MOD and C+MOD are equally expressive.
The situation changes when we restrict the number of variables that can be
used in a formula: Let FO+MOD2 and C+MOD2 denote the set of formulas
from FO+MOD and C+MOD, respectively, that use the variables x and y, only.
Then, the existence of ≥3 elements in the structure is expressible in C+MOD2,
but not in FO+MOD2.
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In this paper, we will consider the following structures:

– The largest one is (L,�,�·, (K ∩ L)K regular, (w)w∈L) for some L ⊆ Σ∗. The
universe of this structure is the language L, we have two binary predicates
(� and �·), a unary predicate K ∩ L for every regular language K, and we
can use every word from L as a constant.

– The other extreme is the structure (L,�) for some L ⊆ Σ∗ where we consider
only the binary predicate �.

– Finally, we will also prove results on the intermediate structure (L,�, (w)w∈L)
that has a binary relation and any word from the language as a constant.

For any structure S and any of the logics L, the L-theory of S is the set of
sentences from L that hold in S.

A non-deterministic finite automaton is called non-degenerate if every state
lies on a path from an initial to a final state. A language L ⊆ Σ∗ is bounded
if there are a number n ∈ N and words w1, w2, . . . , wn ∈ Σ∗ such that L ⊆
w∗

1 w∗
2 · · · w∗

n. Otherwise, it is unbounded.
For a monoid M , a subset S ⊆ M is called rational if it is a homomorphic

image of a regular language. In other words, there exists an alphabet Δ, a regular
R ⊆ Δ∗, and a homomorphism h : Δ∗ → M with S = h(R). In particular, if
Σ1, Σ2 are alphabets and M = Σ∗

1 × Σ∗
2 , then a subset S ⊆ Σ∗

1 × Σ∗
2 is rational

iff there is an alphabet Δ, a regular R ⊆ Δ∗, and homomorphisms hi : Δ∗ → Σ∗
i

with S = {(h1(w), h2(w)) | w ∈ R}. This fact is known as Nivat’s theorem [2].
For an alphabet Γ , a word w ∈ Γ ∗, and a letter a ∈ Γ , let |w|a denote the

number of occurrences of the letter a in the word w. The Parikh vector of w is
the tuple ΨΓ (w) = (|w|a)a∈Γ ∈ N

Γ . Note that ΨΓ is a homomorphism from the
free monoid Γ ∗ onto the additive monoid (NΓ ,+).

3 The FO+MOD-Theory with Regular Predicates

The aim of this section is to prove that the full FO+MOD-theory of the structure

(L,�,�·, (K ∩ L)K regular, (w)w∈L)

is decidable for L bounded and context-free. This is achieved by interpreting
this structure in (N,+), i.e., in Presburger arithmetic whose FO+MOD-theory
is known to be decidable [1,5,21]. We start with three preparatory lemmas.

Lemma 3.1. Let K ⊆ Σ∗ be context-free, w1, . . . , wn ∈ Σ∗, and g : Nn → Σ∗

be defined by g(m) = wm1
1 wm2

2 · · · wmn
n for all m = (m1,m2, . . . , mn) ∈ N

n. The
set g−1(K) = {m ∈ N

n | g(m) ∈ K} is effectively semilinear.

Proof. Let Γ = {a1, a2, . . . , an} be an alphabet and define the monoid homo-
morphism f : Γ ∗ → Σ∗ by f(ai) = wi for all i ∈ [1, n].

Since the class of context-free languages is effectively closed under inverse
homomorphisms and under intersections with regular languages, the language

L = f−1(K) ∩ a∗
1a

∗
2 · · · a∗

n = {u ∈ a∗
1a

∗
2 · · · a∗

n | f(u) ∈ K}
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is effectively context-free. Its Parikh image ΨΓ (L) ⊆ N
n is effectively semilin-

ear [19]. Moreover, ΨΓ (L) equals the set g−1(K) from the lemma. ��
Lemma 3.2. Let w1, . . . , wn ∈ Σ∗ and g : Nn → Σ∗ be defined by g(m) =
wm1

1 wm2
2 · · · wmn

n for all m = (m1,m2, . . . , mn) ∈ N
n. The set {(m,n) ∈ N

n ×
N

n | g(m) � g(n)} is semilinear.

Proof. Let Γ = {a1, a2, . . . , an} be an alphabet and define the monoid homo-
morphism f : Γ ∗ → Σ∗ by f(ai) = wi for all i ∈ [1, n]. One first shows that

S2 = {(u, v) | u, v ∈ a∗
1a

∗
2 . . . a∗

n, f(v) � f(v)}

is rational. We now employ Nivat’s theorem. It tells us that there are a regular
language R over some alphabet Δ and two homomorphisms h1, h2 : Δ∗ → Γ ∗

so that we can write S2 = {(
h1(w), h2(w)

) | w ∈ R}. Since R is regular, its
Parikh-image ΨΔ(R) = {ΨΔ(w) | w ∈ R} is semilinear [19]. There are monoid
homomorphisms p1, p2 : NΔ → N

n with ΨΓ (hi(w)) = pi(ΨΔ(w)) for all i ∈ {1, 2}
and w ∈ Δ∗. With these, the image H = {(p1(ΨΔ(w)), p2(ΨΔ(w))

) | w ∈ R}
of the set ΨΔ(R) under the monoid homomorphism (p1, p2) : NΔ → N

n × N
n is

semilinear. It turns out that this set equals the set from the lemma. ��
Lemma 3.3. Let w1, w2, . . . , wn ∈ Σ∗, L ⊆ w∗

1w
∗
2 · · · w∗

n be context-free, and
g : Nn → Σ∗ be defined by g(m) = wm1

1 wm2
2 · · · wmn

n for every tuple m =
(m1,m2, . . . , mn) ∈ N

n. Then there exists a semilinear set U ⊆ N
n such that g

maps U bijectively onto L.

Proof. The set U contains, for each u ∈ L, the lexicographically minimal tuple
m ∈ N

n with g(m) = u. Then, Lemmas 3.1 and 3.2 and the closure of the class
of semilinear sets under first-order definitions imply the required properties. ��

Now we can prove the main result of this section.

Theorem 3.4. Let L ⊆ Σ∗ be context-free and bounded. Then the FO+MOD-
theory of (L,�,�·, (K ∩ L)K regular, (w)w∈L) is decidable.

Proof. It suffices to prove the decidability for the structure S = (L,�, (K ∩
L)K regular) since the theory of the structure from the theorem can be reduced
to that of S (x �· y gets replaced by its definition and xθw by ∃y : y ∈ {w} ∧ xθy
where θ is any binary relation symbol).

Since L is bounded, there are words w1, w2, . . . , wn ∈ Σ∗ such that L is
included in w∗

1 w∗
2 · · · w∗

n. For an n-tuple m = (m1,m2, . . . , mn) ∈ N
n we define

g(m) = wm1
1 wm2

2 · · · wmn
n ∈ Σ∗.

1. By Lemma 3.3, there is a semilinear set U ⊆ N
n that is mapped by g bijec-

tively onto L.
2. The set {(m,n) | g(m) � g(n)} is semilinear by Lemma 3.2.
3. For any regular language K ⊆ Σ∗ the set {m ∈ N

n | g(m) ∈ K} ⊆ N
n is

effectively semilinear by Lemma 3.1.
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From these semilinear sets, we obtain first-order formulas λ(x), σ(x, y), and
κK(x) in the language of (N,+) such that, for any m,n ∈ N

n, we have

1. (N,+) |= λ(m) ⇐⇒ m ∈ U ,
2. (N,+) |= σ(m,n) ⇐⇒ g(m) � g(n), and
3. (N,+) |= κK(m) ⇐⇒ g(m) ∈ K.

One then defines, from an FO+MOD-formula ϕ(x1, . . . , xk) in the language of
S, an FO+MOD-formula ϕ′(x1, . . . , xk) in the language of (N,+) such that

(N,+) |= ϕ′(m1, . . . ,mk) ⇐⇒ S |= ϕ(g(m1), . . . , g(mk)).

(This construction can be found in the full version [18] and increases the formula
size at least exponentially.)

Consequently, any sentence ϕ from FO+MOD in the language of S is trans-
lated into an equivalent sentence ϕ′ in the language of (N,+). By [1,5,21], valid-
ity of the sentence ϕ′ in (N,+) is decidable. ��

4 The C+MOD2-Theory with Regular Predicates

It is the aim of this section to show that the C+MOD2-theory of the structure
(L,�,�·, (K ∩ L)K regular, (w)w∈L) is decidable for any regular language L. To
this aim, we first show that the C+MOD2-theory of

S = (Σ∗,�,�·, (L)L regular)

is decidable. This decidability proof extends the proof from [12] for the decidabil-
ity of the FO2-theory of (Σ∗,�, (L)L regular). It provides a quantifier-elimination
procedure (see Sect. 4.3) that relies on the following two properties:

1. The class of regular languages is closed under counting images under unam-
biguous rational relations (Sect. 4.2) and

2. the proper subword, the cover, and the incomparability relation are unam-
biguous rational (Sect. 4.1).

4.1 Unambiguous Rational Relations

Recall that, by Nivat’s theorem, a relation R ⊆ Σ∗ ×Σ∗ is rational if there exist
an alphabet Γ , a homomorphism h : Γ ∗ → Σ∗ × Σ∗, and a regular language
S ⊆ Γ ∗ such that h maps S surjectively onto R. We call R an unambiguous
rational relation if, in addition, h maps S injectively (and therefore bijectively)
onto R. Note that these are precisely the relations accepted by unambiguous
2-tape-automata.

While the class of rational relations is closed under unions, this is not the
case for unambiguous rational relations (e.g., R = {(amban, am) | m,n ∈ N} ∪
{(amban, an) | m,n ∈ N} is the union of unambiguous rational relations but not
unambiguous). But it is closed under disjoint unions.
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Lemma 4.1. For any alphabet Σ, the cover relation �· and the relation � \�·
are unambiguous rational.

Proof. For i ∈ {1, 2}, let Σi = Σ × {i} and Γ = Σ1 ∪ Σ2. Furthermore, let the
homomorphism proji : Γ ∗ → Σ∗ be defined by proji(a, i) = a and proji(a, 3−i) =
ε for all a ∈ Σ. Finally, let the homomorphism proj : Γ ∗ → Σ∗ × Σ∗ be defined
by proj(w) = (proj1(w),proj2(w)).

– The regular language

Sub =

(
⋃

a∈Σ

((
Σ2 \ {(a, 2)})∗ (a, 2) (a, 1)

)
)∗

Σ2
∗.

is mapped bijectively onto the subword relation.
– Let S be the regular language of words from Sub with precisely one more

occurrence of letters from Σ2 than from Σ1. Then S is mapped bijectively
onto the relation �·, hence this relation is unambiguous rational.

– Similarly, let S′ denote the regular language of all words from Sub with at
least two more occurrences of letters from Σ2 than from Σ1. It is mapped
bijectively onto the relation � \�·, i.e., � \�· is unambiguous rational. ��

Lemma 4.2. For any alphabet Σ, the incomparability relation

‖ = {(u, v) ∈ Σ∗ × Σ∗ | neither u � v nor v � u}
is unambiguous rational.

Proof. We will show that the following three relations are unambiguous rational:

1. R1 = {(u, v) | |u| < |v| and not u � v},
2. R2 = {(u, v) | |u| = |v| and u 	= v}, and
3. R3 = {(u, v) | |u| > |v| and not v � u}.

The result follows since ‖ is the disjoint union of these relations. Let Σi, Γ , proji,
and proj be defined as in the previous proof. First, the regular language

Inc2 = (Σ2Σ1)∗ · {(a, 2)(b, 1) | a, b ∈ Σ, a 	= b} · (Σ2Σ1)∗.

is mapped by proj bijectively onto R2.
From [12, Lemma 5.2], we learn that (u, v) ∈ R1 ∪ R2 if, and only if,

– u = a1a2 . . . a�u
′ for some � ≥ 1, a1, . . . , a� ∈ Σ, u′ ∈ Σ∗, and

– v ∈ (Σ \ {a1})∗a1 (Σ \ {a2})∗a2 · · · (Σ \ {a�−1})∗a�−1 (Σ \ {a�})+v′ for some
word v′ ∈ Σ∗ with |u′| = |v′|.

Consequently, proj maps the following language bijectively onto R1 ∪ R2:

Inc1,2 =

( ⋃
a∈Σ

((
Σ2 \ {(a, 2)})∗

(a, 2)(a, 1)
))∗

·
⋃

a∈Σ

((
Σ2 \ {(a, 2)})+(a, 1)

)
· (Σ2Σ1)

∗

and since Inc2 ⊆ Inc1,2, proj maps Inc1 = Inc1,2 \ Inc2 bijectively onto R1. The
claim regarding R3 follows analogously. ��
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4.2 Closure Properties of the Class of Regular Languages

Let R ⊆ Σ∗ × Σ∗ be an unambiguous rational relation and L ⊆ Σ∗ a regular
language. We want to show that the languages of all words u ∈ Σ∗

with |{v ∈ L | (u, v) ∈ R}| ≥ k (1)
(with |{v ∈ L | (u, v) ∈ R}| ∈ p + qN, respectively) (2)

are effectively regular for all k ∈ N and all 0 ≤ p < q, respectively (this does
not hold for arbitrary rational relations). It is straightforward to work out direct
automata constructions for this. However, the full details of this are somewhat
cumbersome. Instead, we provide a proof via weighted automata, which enables
us to split the two constructions into several simple steps.

Let S be a semiring. A function r : Σ∗ → S is realizable over S if there
are n ∈ N, λ ∈ S1×n, a homomorphism μ : Σ∗ → Sn×n, and ν ∈ Sn×1 with
r(w) = λ · μ(w) · ν for all w ∈ Σ∗. The triple (λ, μ, ν) is a presentation of
dimension n or a weighted automaton for r.

In the following, we consider the semiring N
∞, i.e., the set N∪{∞} together

with the commutative operations + and · (with x+∞ = ∞ for all x ∈ N∪{∞},
x · ∞ = ∞ for all x ∈ (N∪ {∞}) \ {0}, and 0 · ∞ = 0). Sometimes, we will argue
about sums of infinitely many elements from N

∞, which are defined as expected.

Proposition 4.3. Let Γ and Σ be alphabets, f : Γ ∗ → Σ∗ a homomorphism,
and χ : Γ ∗ → N

∞ a realizable function over N
∞. Then the following function r

is effectively realizable over N
∞:

r = χ ◦ f−1 : Σ∗ → N
∞ : u �→

∑

w∈Γ ∗
f(w)=u

χ(w)

Proof. The homomorphism f can be written as f = f2 ◦ f1 where f1 : Γ ∗ → Γ ∗

is non-expanding (i.e., f1(a) ∈ Γ ∪ {ε} for all a ∈ Γ ) and f2 : Γ ∗ → Σ∗ is
non-erasing (i.e., f2(a) ∈ Σ+ for all a ∈ Γ ). Then r = (χ ◦ f−1

1 ) ◦ f−1
2 . Then

χ′ = χ ◦ f−1
1 is effectively realizable by [3, Lemma 2.2(b)].

Let (λ, μ, ν) be a presentation of dimension n for χ′. For σ ∈ Σ ∪ {ε}, set
Γσ = {b ∈ Γ | f2(b) = σ}. Furthermore, define the matrix M ∈ (N∞)n×n by

Mij =

{
∞ if there is w ∈ Γ ∗

ε with n < |w| ≤ 2n and μ(w)ij > 0
∑

w∈Γ
≤n
ε

μ(w)ij otherwise.

Then Mij =
∑

w∈Γ ∗
ε

μ(w)ij for all i, j ∈ [1, n]. Setting λ′ = λ · M and

μ′(a) =
∑

b∈Γa

(
μ(b) · M

)
for all a ∈ Σ

defines the presentation (λ′, μ′, ν) for the function r = χ′ ◦ f−1
2 . ��
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Lemma 4.4. Let R ⊆ Σ∗×Σ∗ be an unambiguous rational relation and L ⊆ Σ∗

be regular. Then the following function r is effectively realizable over N
∞:

r : Σ∗ → N
∞ : u �→ |{v ∈ L | (u, v) ∈ R}|

Proof. Since R is unambiguous rational, so is R ∩ (Σ∗ × L), i.e., there are an
alphabet Γ , homomorphisms f, g : Γ ∗ → Σ∗, and a regular language SL ⊆ Γ ∗

such that
(f, g) : Γ ∗ → Σ∗ × Σ∗ : w �→ (

f(w), g(w)
)

maps SL bijectively onto R ∩ (Σ∗ × L). Since SL is regular, its characteristic
function χ is effectively realizable by [20, Prop. 3.12]. One then shows that r is
the function χ ◦ f−1 as in Proposition 4.3. ��

We now come to the main result of this section.

Proposition 4.5. Let R ⊆ Σ∗ × Σ∗ be an unambiguous rational relation and
L ⊆ Σ∗ be regular. Then, for k ∈ N and for p, q ∈ N with p < q, the set H of
words w satisfying (1) and (2), respectively, is effectively regular.

Let R denote the rational relation mentioned before Lemma4.1. Then a word
amban has ≥2 “R-partners” iff it has an even number of “R-partners” iff m 	= n.
Hence, the above proposition does not hold for arbitrary rational relations.

Proof. Let r be the function from Lemma 4.4. Setting x ≡ y iff x = y or k ≤
x, y < ∞ defines a congruence ≡ on N

∞. Then S∞
k = N

∞/≡ is a finite semiring
and the function s : Σ∗ → S∞

k : u �→ [r(u)] is effectively realizable. Since the
semiring S∞

k is finite, the “level sets” s−1([i]) = {u ∈ Σ∗ | s(u) ≡ i} are
effectively regular by [20, Prop. 4.5]. Since s−1([k])∪s−1([∞]) is the language of
words u satisfying (1), the first result follows.

For the second language, we consider the congruence ≡ ⊆ N
∞ × N

∞ with
x ≡ y iff x = y or q ≤ x, y < ∞ and x − y ∈ qN. ��

4.3 Quantifier Elimination for C+MOD2

Our decision algorithm employs a quantifier alternation procedure, i.e., we will
transform an arbitrary formula into an equivalent one that is quantifier-free.
As usual, the heart of this procedure handles formulas ψ = Qy ϕ where Q is
a quantifier and ϕ is quantifier-free. Since the logic C+MOD2 has only two
variables, any such formula ψ has at most one free variable. In other words, it
defines a language K. The following lemma shows that this language is effectively
regular, such that ψ is equivalent to the quantifier-free formula x ∈ K.

Lemma 4.6. Let ϕ(x, y) be a quantifier-free formula from C+MOD2 in the lan-
guage of the structure S = (Σ∗,�,�·, (L)L regular). Then the sets

{x ∈ Σ∗ | S |= ∃≥ky ϕ} and {x ∈ Σ∗ | S |= ∃p mod qy ϕ}
are effectively regular for all k ∈ N and all p, q ∈ N with p < q.
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Proof. Since ϕ is quantifier-free, we can rewrite it into a Boolean combination
of formulas of the form x ∈ K and y ∈ L for some regular languages K and L,
x � y and y � x, and x �· y and y �· x.

There are six possible relations between the two variables x and y in the
partial order: we can have x = y, x�·y or vice versa, x � y∧¬x�·y or vice versa,
or x ‖ y. Let θi(x, y) for 1 ≤ i ≤ 6 be formulas describing these relations.

Hence ϕ is equivalent to
∨

1≤i≤6

(
θi ∧ ϕ). In this formula, any occurrence of

ϕ appears in conjunction with precisely one of the formulas θi. Depending on
this formula θi (i.e., the relation between x and y), we can simplify ϕ to ϕi by
replacing the atomic subformulas that compare x and y by true or false. As a
result, the formula ϕ is equivalent to

∨
1≤i≤6

(
θi ∧ ϕi) where the formulas ϕi are

Boolean combinations of formulas of the form x ∈ K and y ∈ L for some regular
languages K and L.

Now let k ∈ N. Since the formulas θi are mutually exclusive, we get

∃≥ky ϕ ≡ ∃≥ky
∨

1≤i≤6

(θi ∧ ϕi) ≡
∨

(∗)

∧

1≤i≤6

∃≥kiy (θi ∧ ϕi)

where the disjunction (∗) extends over all (k1, . . . , k6) ∈ N
6 with

∑
1≤i≤6 ki = k.

Hence it suffices to show that

{x ∈ Σ∗ | ∃≥ky (θi ∧ ϕ)} (3)

is effectively regular for all 1 ≤ i ≤ 6, all k ∈ N, and all Boolean combinations
ϕ of formulas of the form x ∈ K and y ∈ L where K and L are regular lan-
guages. We can find regular languages KM and LM and a finite set I such that
ϕ is equivalent to

∨
M∈I (x ∈ KM ∧ y ∈ LM ) and such that this disjunction is

exclusive. Hence the set from (3) equals the union of the sets

{x ∈ Σ∗ | ∃≥ky (θi ∧ x ∈ KM ∧ y ∈ LM )} = KM ∩ {x ∈ Σ∗ | ∃≥ky ∈ LM : θi}︸ ︷︷ ︸
HM

for M ∈ I. The set HM is effectively regular by Proposition 4.5 and Lemmas 4.1
and 4.2. Since the language in the claim of the lemma is a Boolean combination
of such sets, the first claim is demonstrated; the second follows similarly. ��

The only atomic formulas with a single variable x are x ∈ L with L regular,
x = x, x � x (which are equivalent to x ∈ Σ∗), and x �· x (which is equivalent
to x ∈ ∅). Hence, any quantifier-free formula with a single free variable x is a
Boolean combination of statements of the form x ∈ L. Lemma 4.6 thus implies:

Theorem 4.7. Let S = (Σ∗,�,�·, (L)L regular). Let ϕ(x) be a formula from
C+MOD2. Then the set {x ∈ Σ∗ | S |= ϕ} is effectively regular.

Corollary 4.8. Let L ⊆ Σ∗ be a regular language. Then the C+MOD2-theory
of the structure SL = (L,�,�·, (K ∩ L)K regular, (w)w∈L) is decidable.
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Proof. Let ϕ ∈ C+MOD2 be a sentence. We build ϕL by (1) restricting all
quantifications to L, (2) replace xθw by ∃y : y ∈ {w} ∧ xθy, and dually for yθw
for all w ∈ L and all binary relations θ.

With S the structure from Theorem 4.7, we obtain S |= ϕL ⇐⇒ SL |= ϕ.
By Theorem 4.7, the language {x | S |= ϕL} is regular (since ϕL is a sentence,
it is ∅ or Σ∗). Hence ϕL holds iff this set is nonempty, which is decidable. ��

5 The Σ1-Theory

In this section, we study for which regular languages L the Σ1-theory of the
structure (L,�) is decidable. If L is bounded, then decidability follows from
Theorem 3.4. In the case of (Σ∗,�), decidability is known as well [17]. Here, we
prove decidability for every regular language L. Note that in terms of quantifier
block alternation, this is optimal: The Σ2-theory is undecidable already in the
simple case of ({a, b}∗,�) [6].

Theorem 5.1. For every regular L ⊆ Σ∗, the Σ1-theory of (L,�) is decidable.

Observe that very generally, the Σ1-theory of a partially ordered set (P,≤) is
decidable if every finite partial order embeds into (P,≤): In that case, a formula
with n variables is satisfied in (P,≤) if and only if it is satisfied for some finite
partial order with at most n elements. This is used to obtain decidability for the
case L = Σ∗ with |Σ| ≥ 2 in [17].

As mentioned above, if L is bounded, decidability follows from Theorem3.4.
If L is unbounded, it is well-known that there is a subset x{p, q}∗y ⊆ L such that
|p| = |q| and p 	= q (see Lemma 5.2). Since in that case, the monoids ({a, b}∗, ·)
and ({p, q}∗, ·) are isomorphic, it is tempting to assume that ({a, b}∗,�) embeds
into ({p, q}∗,�) and thus into (x{p, q}∗y,�). However, that is not the case. If
L = {ab, ba}∗, then the downward closure of any infinite subset of L includes
all of L. Since, on the other hand, ({a, b}∗,�) has infinite downward closed
strict subsets such as a∗, it cannot embed into (L,�). Nevertheless, the rest
of this section demonstrates that every finite partial order embeds into (L,�)
whenever L is an unbounded regular language. By the previous paragraph, this
implies Theorem 5.1.

We recall a well-known property of unbounded regular languages.

Lemma 5.2. If L ⊆ Σ∗ is not bounded, then there are x, y, p, q ∈ Σ∗ such that
|p| = |q|, p 	= q, and x{p, q}∗y ⊆ L.

Proof. Let A be any non-degenerate deterministic finite automaton accepting
L. Then at least one strongly connected component of A is not a cycle since
otherwise, L would be bounded. Hence, there is a state s and prefix-incomparable
words u, v, each of which is read on a cycle starting in s. Since u and v are prefix-
incomparable, the words p = uv and q = vu are distinct, but equally long. Since
A is non-degenerate, there are words x, y ∈ Σ∗ with x{p, q}∗y ⊆ L. ��
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To have some control over how words can embed, we prove a stronger version
of Lemma 5.2. Two words p, q ∈ Σ∗ are conjugate if there are x, y ∈ Σ∗ with
p = xy and q = yx. A word p ∈ Σ∗ is primitive if there is no q ∈ Σ∗ with
p ∈ qq+.

Proposition 5.3. For every unbounded regular language L ⊆ Σ∗, there are
x, u, v, y ∈ Σ∗ such that |u| = |v|, the word uv is primitive, and x{u, v}∗y ⊆ L.

Proof. Since L is unbounded and regular, Lemma5.2 yields words x, y, p, q ∈ Σ∗

with |p| = |q|, p 	= q, and x{p, q}∗y ⊆ L. Then the words r = pq and s = pp
are not conjugate, because every conjugate of a square is a square. Moreover,
|r| = |s|, and x{r, s}∗y ⊆ x{p, q}∗y ⊆ L. Let n = |r|, u = rsn−1, and v = sn.
Towards a contradiction, suppose uv = rs2n−1 is not primitive. Then there is a
word w ∈ Σ∗ with rs2n−1 ∈ ww+. Depending on whether |w| ≥ n or |w| < n,
we have n ≤ |wt| ≤ n2 either for t = 1 or for t = n. It follows that r is a prefix
of wt and that wt is a suffix of sn, implying that r is a factor of sn. Since r and
s are not conjugate, this is impossible. ��

We are now ready to describe how to embed a finite partial order into (L,�).
Observe that every finite partial order with m elements embeds into ({0, 1}m,≤)
where ≤ is the componentwise order. Hence, it suffices to embed this partial order
into ({u, v}∗,�). We do this as follows. Let n = |uv| + m + 3 and define, for a
tuple t = (t1, . . . , tm) ∈ {0, 1}m,

ϕm(t1, . . . , tm) = vt1(uv)n · · · vtm(uv)n.

Then, clearly, s ≤ t implies ϕm(s) � ϕm(t). The converse requires a careful
analysis of how prefixes of ϕm(s) can embed into prefixes of ϕm(t). For x, y ∈ Σ∗,
we write x ↪→ y if x, but no word xa with a ∈ Σ is a subword of y. In other
words, x ↪→ y if x is a prefix-maximal subword of y. This gives us a criterion for
non-embeddability: If x has a strict prefix x0 with x0 ↪→ y, then certainly x 	� y.
In this case, the word x1 with x = x0x1 is called residue. We show the following:

Lemma 5.4. Let u, v ∈ Σ∗ be words such that |u| = |v| and uv is primitive.
Then, for all �, n ∈ N with n > |uv| + � + 2, we have

(i) (uv)n ↪→ v(uv)n,
(ii) (uv)�v(uv)n−�−1 ↪→ (uv)n, and
(iii) (uv)1+�v(uv)n−�−2 ↪→ v(uv)n.

For this lemma, it is crucial to observe that for a primitive word w and n > |w|+1,
any embedding of wn−1 into wn must either hit the left-most or the right-most
position in wn. To conclude that s 	≤ t implies ϕm(s) 	� ϕm(t), we argue about
prefixes of the form pi = vs1(uv)n · · · vsi(uv)n and qi = vt1(uv)n · · · vti(uv)n for
i ∈ [1,m]. If s 	≤ t, let i ∈ [1,m] be the index with si = 1, ti = 0 and sj ≤ tj
for all j ∈ [1, i − 1]. Then clearly pi−1 � qi−1. In fact, Lemma 5.4 (i) implies
that even pi−1 ↪→ qi−1, since x ↪→ y and x′ ↪→ y′ imply xy ↪→ x′y′. Then, by
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Lemma 5.4 (ii), pi = pi−1v(uv)n−1(uv) has a residue of uv in qi = qi−1(uv)n.
To conclude ϕm(s) 	� ϕm(t), it remains to be shown that this can never be
rectified when considering prefixes pj and qj for j = i + 1, . . . , m. To this end,
Lemma 5.4 (ii) and (iii) tell us that if pj has a residue of (uv)� in qj , then the
word pj+1 has a residue of (uv)� or even (uv)�+1 in qj+1.

6 The Σ1-Theory with Constants

In this section, we study for which languages L the structure (L,�, (w)w∈L) has
a decidable Σ1-theory. From Theorem 3.4, we know that this is the case whenever
L is bounded. However, there are very simple languages for which decidability
is lost: If |Σ| ≥ 2, then the Σ1-theory of (Σ∗,�, (w)w∈Σ∗) is undecidable [6].
Here, we present a sufficient condition for the Σ1-theory of (L,�, (w)w∈Σ∗) to
be decidable.

Let L ⊆ Σ∗. We say that a letter a ∈ Σ is frequent in L if there is a real
constant δ > 0 so that |w|a ≥ δ · |w| for all but finitely many w ∈ L. Our
sufficient condition requires that all letters be frequent in L. If L is regular, this
is equivalent to saying that in every non-degenerate automaton for L, every cycle
contains every letter. An example of such a language is {ab, ba}∗.

We shall prove that this condition implies decidability of the Σ1-theory of
(L,�, (w)w∈Σ∗). If L is bounded, decidability already follows from Theorem3.4.
In case L is unbounded, we employ our results from Sect. 5 to show another
embeddability result. For w ∈ Σ∗, let w↑ = {u ∈ Σ∗ | w � u} denote the
upward closure of {w} in (Σ∗,�). We will show that if L is unbounded, then for
each w ∈ Σ∗, the decomposition of L = (L \ w↑) ∪ (L ∩ w↑) yields two simple
parts: The set L \ w↑ is finite and the set L ∩ w↑ embeds every finite partial
order. This simplifies the conditions under which a Σ1-sentence is satisfied.

Lemma 6.1. Let L ⊆ Σ∗ be an unbounded regular language where every letter
is frequent. For every w ∈ Σ∗, the set L \ w↑ is finite and L ∩ w↑ is unbounded.

Proof. In a non-degenerate automaton A for L, every cycle must contain every
letter. Therefore, if A has n states and v ∈ L has |v| > n·|w|, then a computation
for v must contain some state more than |w| times, which implies w � v and
hence v /∈ L\w↑. Therefore, L\w↑ is finite. This implies that L∩w↑ is unbounded:
Otherwise L = (L ∩ w↑) ∪ (L \ w↑) would be bounded as well. ��
Theorem 6.2. Let L ⊆ Σ∗ be an unbounded regular language where every letter
is frequent. Then the Σ1-theory of (L,�, (w)w∈L) is decidable.

Proof. For decidability, we may assume that we are given a formula ϕ that is a
disjunction of conjunctions of literals of the following forms (where x and y are
arbitrary variables and w an arbitrary word from L):

(i) x � w
(ii) x 	� w

(iii) w � x
(iv) w 	� x

(v) x � y
(vi) x 	� y
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Step 1. We first show that literals of types (i) and (iv) can be eliminated. To
this end, we observe that for each w ∈ L, both of the sets {u ∈ L | u � w}, and
{u ∈ L | w 	� u} are finite (in the latter case, this follows from Lemma6.1). Thus,
every conjunction that contains a literal x � w or w 	� x, constrains x to finitely
many values. Therefore, we can replace this conjunction with a disjunction of
conjunctions that result from replacing x by one of these values. (Here, we might
obtain literals u � v or u 	� v, but those can be replaced by other equivalent
formulas). We repeat this until there are no more literals of the form (i) and (iv).
Step 2. We now eliminate literals of the form (ii). Note that the language {u ∈
L | u 	� w} is upward closed in (L,�). Since L is regular, we can compute the
finite set of minimal elements of this set. Thus, x 	� w is equivalent to a finite
disjunction of literals of the form w′ � x. The resulting formula ψ is a disjunction
of conjunction of literals of the form (iii), (v), (vi).
Step 3. To check satisfiability, we may assume that ψ is a conjunction of literals
of the form (iii), (v), (vi). We can write ψ as γ1∧γ2, where γ1 is a conjunction of
literals of the form (iii) and γ2 is a conjunction of literals of the form (v) and (vi).
We claim that ψ is satisfiable if and only if γ2 is satisfiable in some partial order.
The “only if” direction is trivial, so suppose γ2 is satisfied by some finite partial
order (P,≤) and let w ∈ Σ∗ be a concatenation of all words occurring in γ1. By
Lemma 6.1, L ∩ w↑ is unbounded, which implies that (P,≤) can be embedded
into (L ∩ w↑,�) (see Sect. 5). This means, there exists a satisfying assignment
where even w � x for every variable x. In particular, it satisfies ψ = γ1 ∧ γ2. ��

Open Questions

We did not consider complexity issues. In particular, from [13], we know that
the FO2-theory of the structure (Σ∗,�, (w)w∈Σ∗) can be decided in elementary
time. We are currently working out the details for the extension of this result
to the C+MOD2-theory of the structure (L,�, (w)w∈L) for regular languages L.
We reduced the FO+MOD-theory of the full structure (for L context-free and
bounded) to the FO+MOD-theory of (N,+), which is known to be decidable in
elementary time [5]. Our reduction increases the formula exponentially due to
the need of handling statements of the form “there is an even number of pairs
(x, y) ∈ N

2 such that ...” It should be checked whether the proof from [5] can be
extended to handle such statements in FO+MOD for (N,+) directly.

Finally, our results raise an interesting question: For which regular languages
L does the structure (L,�, (w)w∈L) have a decidable Σ1-theory? If every letter
is frequent in L, we have decidability. For example, this applies to L = {ab, ba}∗

or L = {ab, baa}∗ ∪ bb{abb}∗. If L = Σ∗ for |Σ| ≥ 2, we have undecidability [6].
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