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Abstract. The coalgebraic p-calculus provides a generic semantic
framework for fixpoint logics with branching types beyond the standard
relational setup, e.g. probabilistic, weighted, or game-based. Previous
work on the coalgebraic p-calculus includes an exponential time upper
bound on satisfiability checking, which however requires a well-behaved
set of tableau rules for the next-step modalities. Such rules are not avail-
able in all cases of interest, in particular ones involving either integer
weights as in the graded p-calculus, or real-valued weights in combina-
tion with non-linear arithmetic. In the present work, we prove the same
upper complexity bound under more general assumptions, specifically
regarding the complexity of the (much simpler) satisfiability problem
for the underlying one-step logic, roughly described as the nesting-free
next-step fragment of the logic. The bound is realized by a generic global
caching algorithm that supports on-the-fly satisfiability checking. Exam-
ple applications include new exponential-time upper bounds for satis-
fiability checking in an extension of the graded u-calculus with poly-
nomial inequalities (including positive Presburger arithmetic), as well as
an extension of the (two-valued) probabilistic p-calculus with polynomial
inequalities.

1 Introduction

Modal fixpoint logics are a well-established tool in the temporal specification,
verification, and analysis of concurrent systems. One of the most expressive log-
ics of this type is the modal p-calculus [2,3,20], which features explicit least and
greatest fixpoint operators; roughly speaking, these serve to specify liveness prop-
erties (least fixpoints) and safety properties (greatest fixpoints), respectively.
Like most modal logics, the modal p-calculus is traditionally interpreted over
relational models such as Kripke frames or labelled transition systems. The grow-
ing interest in more expressive models where transitions are governed, e.g., by
probabilities, weights, or games has sparked a commensurate growth of tempo-
ral logics and fixpoint logics interpreted over such systems; prominent examples
include probabilistic u-calculi [5,17,24], the alternating-time p-calculus [1], and
the monotone p-calculus, which contains Parikh’s game logic [28]. The graded
p-calculus [21] features next-step modalities that count successors; it is stan-
dardly interpreted over Kripke frames but, as pointed out by D’Agostino and
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Visser [6], graded modalities are more naturally interpreted over so-called multi-
graphs, where edges carry integer weights, and in fact this modification leads to
better bounds on minimum model size for satisfiable formulas.

Coalgebraic logic [29,34] has emerged as a unifying framework for modal
logics interpreted over such more general models. It is based on casting the
transition type of the systems at hand as a set functor, and the systems in
question as coalgebras for this type functor, following the paradigm of univer-
sal coalgebra [31]; additionally, modalities are interpreted as so-called predicate
liftings. The coalgebraic p-calculus [4] caters for fixpoint logics within this frame-
work, and essentially covers all mentioned (two-valued) examples as instances.
It has been shown that satisfiability checking in a coalgebraic u-calculus is in
EXPTIME, provided that one exhibits a set of tableau rules for the modalities,
so-called one-step rules, that is tractable in a suitable sense (an assumption made
also in our own previous work on the flat [14] and alternation-free [16] fragments
of the coalgebraic p-calculus). Such rules are known for many important cases,
notably including alternating-time logics, the probabilistic p-calculus even when
extended with linear inequalities, and game logic [4,22,36]. There are, however,
important cases where such rule sets are currently missing, and where there is
in fact little perspective for finding suitable rules. One prominent case of this
kind is graded modal logic; further cases arise when logics over systems with
non-negative real weights, such as probabilistic systems, are taken beyond linear
arithmetic to include polynomial inequalities.

The object of the current paper is to fill this gap by proving a generic
ExPTIME upper bound for coalgebraic p-calculi in the absence of tractable sets
of modal tableau rules. The method we use instead is to analyse the so-called
one-step satisfiability problem of the logic on a semantic level — this problem is
essentially the satisfiability problem of a very small fragment of the logic, the one-
step logic, which excludes not only fixpoints, but also nested next-step modali-
ties, with a correspondingly simplified semantics that no longer involves actual
transitions. E.g. the one-step logic of the relational u-calculus is interpreted over
models essentially consisting of a set with a distinguished subset, abstracting
the successors of a single state that is not itself part of the model. We have
applied this principle to satisfiability checking in coalgebraic (next-step) modal
logics [35], coalgebraic hybrid logics [26], and reasoning with global assumptions
in coalgebraic modal logics [23]. It also appears implicitly in work on automata
for the coalgebraic p-calculus [8], which however establishes only a doubly expo-
nential upper bound in the case without tractable modal tableau rules.

Our main example applications are on the one hand the graded modal u-
calculus and its extension with (monotone) polynomial inequalities, including
Presburger modalities, i.e. (monotone) linear inequalities, and on the other hand
the extension of the (two-valued) probabilistic p-calculus [4,24] with (monotone)
polynomial inequalities. While the graded p-calculus as such is known to be in
ExPTIME [21], the other mentioned instances of our result are, to our best
knowledge, new. At the same time, our proofs are fairly simple, even compared
to specific ones, e.g. for the graded p-calculus.
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Technically, we base our results on an automata-theoretic treatment by means
of standard parity automata with singly exponential branching degree (in par-
ticular on modal steps), thus precisely enabling the singly exponential upper
bound, in contrast to previous work in [8] where the introduced A-automata
lead to doubly exponential branching on modal steps in the resulting satisfia-
bility games. Our algorithm witnessing the singly exponential time bound is, in
fact, a global caching algorithm [11,12], and is able to decide the satisfiability
of nodes on-the-fly, that is, possibly before the tableau is fully expanded, thus
offering a perspective for practically feasible reasoning. A side result of our app-
roach is a criterion for a polynomial bound on branching in models, which holds
in all our examples.

Organization. In Sect.2, we recall the basics of the coalgebraic p-calculus.
We outline our automata-theoretic approach in Sect.3, and present the global
caching algorithm and its runtime analysis in Sect. 4. Soundness and complete-
ness of the algorithm are proved in Sect. 5.

2 The Coalgebraic p-Calculus

We recall basic definitions in coalgebraic logic [29,34] and the coalgebraic u-
calculus [4].

Syntax. We fix a modal similarity type A, that is, a set of modal operators with
assigned finite arities, possibly including propositional atoms as nullary modal-
ities. For readability, we restrict the technical development to unary modalities,
noting that all proofs generalize to higher arities by just writing more indices; in
fact, we will liberally use higher arities in examples. We assume that A is closed

under duals, i.e., that for each modal operator O € A, there is a dual O € A

such that O = Q for all © € A. Let V be an infinite set of fizpoint variables.
Formulas of the coalgebraic p-calculus (over A) are given by the grammar

Vb= L | T|YvAG|vVe| V| X | puX.0|vX. ¢ VeAdXeV.

As usual, 1 and v take least and greatest fixpoints, respectively. Negation is
not included but can be defined as usual. Throughout, we use n € {u,v} as
a placeholder for fixpoint operators; we briefly refer to formulas of the form
nX. ¢ as fixpoints. Fixpoint operators bind their fixpoint variables, so that we
have standard notions of bound and free fixpoint variables; a formula is closed
if it contains no free fixpoint variables. We assume w.l.o.g. that all formulas are
clean, i.e. each fixpoint variable appears in at most one fixpoint operator, and
irredundant, i.e. each bound variable is used at least once. Moreover, we restrict
to guarded formulas, in which all occurrences of fixpoint variables are separated
by at least one modal operator from their binding fixpoint operator (this is
standard although possibly not w.l.o.g. [9]). For © € A, we denote by size(Q)
the length of a suitable representation of ©; for natural or rational numbers
indexing O, we assume binary representation. The length || of a formula is its
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length over the alphabet {L, T,A,V}UAUV U{nX.| X € V}, while the size
size()) of 1 is defined by counting size(©) for each © € A (and 1 for all other
operators). The alternation depth ad(nX.v) of a fixpoint nX.¢ is the maximal
depth of nesting of such alternating least and greatest fixpoints in 1) that depend
on X, tweaked to be even for least fixpoint formulas and odd for greatest fixpoint
formulas (that is, starting with ad(uX.v)) = 2 and ad(vX.¢p) = 1 for closed
v). For a more detailed definition of various flavours of alternation depth, see
e.g. [27].

Semantics. As indicated above, the branching type of the underlying systems
is a parameter of the framework, given by fixing a Set-endofunctor 7. Ele-
ments of TU should be thought of as structured collections over U that serve
as collections of successors of states — e.g. in the most basic example, classi-
cal relational systems, T is powerset P. Formulas are then interpreted over
T-coalgebras (C,§) consisting of a set C of states and a transition function
& : C — TC that assigns a structured collection {(x) € T'C of successors (and
observations) to z € C; e.g. P-coalgebras are just Kripke frames, as they assign
a set of successors to each state. We interpret each modal operator © € A as
a T-predicate lifting [©], that is, a natural transformation [O] : @ — Q o TP
where Q : Set°” — Set denotes the contravariant powerset functor. Predicate
liftings thus are families of functions [O]y : Q(U) — Q(TU) satistying natu-
rality, i.e. [O]u(f~A]) = (TF)H[V]v(A)] for f: U — V and A C V, where
£~ denotes preimage. E.g. the standard relational box modality is interpreted
by [OJu(A) = {B € P(U) | B C A}. For sets U C V, we write U = V \ U
for the complement of U in V when V is understood from the context. We

require that duality of modal operators is respected, i.e. [Q](A) = [Q]v A for
A C U. To ensure existence of fixpoints, we require that all [O] are monotone,
ie. AC B CU implies [Q]y(A4) C [O]u(B).

A wvaluation is a partial function i : V + P(C) that assigns sets i(X) of states
to fixpoint variables X. The extension [¢]; C C of a formula ¢ in a T-coalgebra
(C,¢) is defined by the expected clauses for propositional operators and

[©v): = € I[VTe([¥]0)] [uX. ¢] = LFP([¥]F)
[X]i = i(X) [vX.¢]; = GFP([¢]7),

where LFP and GFP compute the least and greatest fixpoints of their argu-
ment functions, respectively, where [¢]* (A) = [¥]ifx—a) for A C C, and where
([ X — A)(X) = A and (i[X — A)(Y) = i(Y) for Y # X. In particular,
the extension is invariant under unfolding of fixpoints, i.e. [nX.¢¥]; = [Y[X —
nX.9]];. For closed formulas v, the valuation i is irrelevant, so we write [¢/]
instead of [¢];. A state x € C satisfies a closed formula v (denoted x |= ) if
x € [¢]. Given a set Z, we define the set A(Z) = {Vz |V € A,z € Z} of modal
literals (over Z). A closed formula x is satisfiable if there is a coalgebra (C, &)
and a state x € C' such that = = x.

Example 1. We now detail several instances of the coalgebraic u-calculus; for
further examples, e.g. the alternating-time p-calculus, see [4].
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1. To obtain the standard modal u-calculus [19] (which contains CTL as a frag-
ment), we take A = {Q,0} U P where P is a set of propositional atoms, seen
as nullary modalities. The semantics is captured by TU = P(U) x P(P), so
that T-coalgebras are Kripke models, as they assign to each state a set of
successors and a set of atoms satisfied in the state. The relevant predicate
liftings are

[0lu(A) ={(B,Q) e TU | AnB #0} [OJu(A) ={(B,Q) € TU | B C A}

and [pju = {(B,Q) € TU | p € Q}, a nullary predicate lifting. Standard
example formulas include the CTL-formula AF p = pX. (pVOX), which states
that on all paths, p eventually holds, and the fairness formula vX. Y. ((p A
0X) Vv QY), which asserts the existence of a path on which p holds infinitely
often.

2. We interpret the graded p-calculus [21] over multigraphs [6], i.e. T-coalgebras
for the multiset functor T' = B, defined by

BU) ={0:U — NU {oo}} B(f)(0)(v) = 2w fuy=0 ()

for sets U,V and functions f: U — V, 6 : U — NU{oco}. Thus B-coalgebras
(C,€) assign multisets £(z) to states z € C, with the intuition that x has
y € C as successor with multiplicity m if £(x)(y) = m. We use the modal
similarity type A = {(m), [m] | m € NU{co}} and define the predicate liftings

[(m)u(4) = {6 € BWU) [ 0(4) > m} [[m]]u(A) = {0 € BU) | 0(4) < m}

for sets U and A C U, where §(A) = ., 0(a). E.g. a state satisfies vX. (YA
(1)X) if it is the root of an infinite binary tree in which ¢ is satisfied globally.

3. Similarly, the two-valued probabilistic p-calculus [4,24] is obtained by using
the distribution functor 7" = D that maps sets U to probability distributions
over U with countable support, defined by

DU) ={d:U = (@Q@nI0,1]) | Xyep d(u) = 1}.

Then T-coalgebras are just Markov chains. We use the modal similarity type
A={(p),[p] | p€QN0,1]} and define the predicate liftings

[p)lu(A) = {d e DU) | d(A) > p} [lp]lu(A) = {d € DU) | d(A) < p},

for sets U and A C U, where again d(A) =" . 4 d(a).

4. We interpret the graded p-calculus with polynomial inequalities over the
semantic domain from item 2 (i.e. multigraphs). We put A = {Lp 3, Mp |
p € Noo[X1,...,X,],b,n € N} (that is, p ranges over multivariate polynomi-
als with positive integer coefficients) and define the predicate liftings

[[Lp,b]]U(Alv cee 7An) = {9 € B(U) | p(e(Al)a EERE G(An)) > b)}
[M, ] (As,. .., An) = {0 € BU) | p(0(AL),...,0(A4,)) <b)},
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for sets U and Ay, ..., A, C U, where §(A) = 3" . , 0(a). This logic subsumes
the Presburger p-calculus, that is, the extension of the graded p-calculus with
(monotone) linear inequalities, which may be seen as the fixpoint variant of
Presburger modal logic [7]. E.g. the formula pY. (rV Lox, 4 x22(pAY, g \Y))
says that the current state is the root of a finite tree all whose leaves satisfy r,
and each of whose inner nodes has n; children satisfying p and ng children
satisfying ¢ where 2n; +n3 > 2. One sees an apparent coding of the logic into
the graded p-calculus, which however incurs exponential blowup.

5. Similarly, we use the semantic domain from item 3, Markov chains, to
obtain the probabilistic p-calculus with polynomial inequalities [23]: We put
A=A{L,p,Mpp | p € Qs0[X1,...,X,],0 € Qs0,n € N} (i.e. p ranges over
polynomials) and

[Lpslu(A1,...,An) ={d € DU) | p(d(A1),...,d(A,)) > b}

HMP,bHU(Alv ce >An) = {d € D(U) | p(d(Ail)v SRR d(An)) < b}

for sets U and Ay,..., A, C U. This logic presumably does not encode into
the probabilistic p-calculus as in 3 above, and can express constraints on inde-
pendent products of events (see also [25]). E.g. the formula vY. Lx, x, 0.9(p A
Y,q AY) says roughly that two independently sampled successors of the cur-
rent state will satisfy p and ¢, respectively, and then satisfy the same property
again, with probability at least 0.9.

(The modalities in the last two items are inevitably less general than in the
corresponding next-step logics [7,23], due to the need to ensure monotonicity.)

3 Tracking Automata

We use parity automata (e.g. [13]) that track single formulas along paths through
potential models to decide whether it is possible to construct a model in which
all least fixpoint formulas are eventually satisfied. Formally, (nondeterministic)
parity automata are tuples A = (V, X, A, qo, @) where V is a set of nodes; X' is a
finite set, the alphabet; A CV x X x V is the transition relation assigning a set
A(v,a) ={u| (v,a,u) € A} of nodesto allv € V and a € X; g9 € V is the initial
node; and a : A — N is the priority function, assigning priorities a(v,a,u) € N
to transitions (v,a,u) € A (this is the standard in recent work since it yields
slightly more succinct automata). If A is a (partial) functional relation, then A
is said to be deterministic, and we denote the corresponding partial function by
6 : V xX + V. The automaton A accepts an infinite word w = wq, w1, ... € X if
there is a w-path through A on which the highest priority that is passed infinitely
often is even; formally, the language that is accepted by A is defined by L(A) =
{w € X¥ | Ip € run(A,w). max(Inf(a o p)) is even}, where run(A,w) denotes
the set of infinite sequences (po, wo, p1), (p1, w1, p2),... € A¥ such that py = qo
and where, given an infinite sequence S, Inf(S) denotes the elements that occur
infinitely often in S. Here, we see infinite sequences p € U“ over some set U as
functions N — U and write p; to denote the i-th element of p.
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We now fiz a target formula x and put ng = |x|, n1 = size(x). We let F
denote the Fischer-Ladner closure [20] of x; i.e. F contains all formulas that
can arise as subformulas when unfolding each fixpoint in x exactly once. We put
k = max{ad(¢) | ¥ € F} and selections = P(F N A(F)) (F N A(F) is the set of
modal literals in F'). We have |F| < n and hence [selections| < 2.

Definition 2 (Tracking automaton). The tracking automaton for x is a non-
deterministic parity automaton A, = (F, X, A, g, ), where gy = X,

X ={(¥oV¢1,0) € F x {0,1}} U{(¥o A 1,0) € F x {0}}U
{(nX.11,0) € F x {0}} U selections ,

and for ¥, vg, 91 € F, k € selections and b € {0, 1},

A(p, k) ={o € F [ Y € N A({tho})}
A, (o V P1,0)) = {vbp | = ho V 1} U{Y | ¥ # o V 1}
A, (Yo A p1,0)) = {0, Y1 | ¥ = o A1} U{Y | # o A1}
A, (nX.4p1,0)) = {1 [X = Y] [ =nX 1} U{Y | o # nX. 91}

E.g. the last clause means that when tracking the unfolding of a fixpoint nX. ¢
at 1, we track ¢ to the unfolding ¥1[X — 9] if ¥ equals the unfolded fixpoint,
and to 1 otherwise; similarly for the other clauses, and in particular a modal
literal v = Q1) is only tracked to g through a selection k if Qg € k, i.e. if k
selects O to be tracked. The priority function « is derived from the alternation
depths of formulas, counting only unfoldings of fixpoints (i.e. all other transitions
have priority 1). Formally, a(,0,¢') = 1 if ¢p = ¢’ or 4 is not a fixpoint literal;
if 1 is a fixpoint literal and ¢ # ¢, then we put a(y,o0,9’) = ad(v).

Intuitively, words from X* encode infinite paths through coalgebras (C,§) in
which states x € C are labelled with sets I(z) of formulas, where letters
k € selections encode modal steps from states x € C' with label [(x) to states
y € C with label {¢ | Oy € kN i(z)}. The automaton is built to accept
L(A,) = BadBranch, where BadBranch, is the set of words that encode a path
on which a least fixpoint formula 1 is unfolded infinitely often without being
dominated by any outer fixpoint formula (i.e. one with alternation depth greater
than ad(¢))). Letters (¢ V 1, b) choose disjuncts according to b, while for let-
ters (o A1, 0), the tracking automaton is nondeterministic, reflecting the fact
that bad fixpoints can reside in either 9o or 1;. The automaton A, has size ng
and priorities 1 to k. Using a standard construction (e.g. [18]), we transform A,
into an equivalent Biichi automaton of size ngk. Then we determinize the Biichi
automaton using, e.g., the Safra/Piterman-construction [30,32] and obtain an
equivalent deterministic parity automaton with priorities 0 to 2ngk — 1 and size
O(((nok)")?). Finally we complement this parity automaton by increasing every
priority by 1, obtaining a deterministic parity automaton B, = (D, X, 6, vo, )
of size O(((nok)!)?), with priorities 1 to 2nok and with

L(By) = L(A,) = BadBranch, =: GoodBranch,,
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i.e. By is a deterministic parity automaton that accepts the words that encode
paths along which satisfaction of least fixpoints is never deferred indefinitely. We
define a labelling function { : D,, — P(F) mapping each state of B, (e.g. a Safra
tree) to the set of formulas occurring in it.

Remark 3. It has been noted that the standard tracking automata for
alternation-free formulas are, in fact, Co-Biichi automata [10,16] and that
the tracking automata for aconjunctive formulas are limit-deterministic par-
ity automata [15]. These considerably simpler automata can be determinized to
deterministic Biichi automata of size 3™ and to deterministic parity automata
of size O((nok)!) and with 2ngk priorities, respectively. This observation also
holds true for the tracking automata in this work so that for formulas of suit-
able syntactic shape, Lemma 11 below yields accordingly lower bounds on the
runtime of our satisfiability checking algorithm.

4 Global Caching for the Coalgebraic p-Calculus

We now introduce a generic global caching algorithm for satisfiability in the
coalgebraic p-calculus. Given an input formula y, the algorithm expands the
determinized and complemented tracking automaton B, step by step and prop-
agates (un)satisfiability through this graph; the algorithm terminates as soon as
the initial node vy is marked as (un)satisfiable. The algorithm bears similarity to
standard game-based algorithms for p-calculi [8,9,15]; however, it crucially devi-
ates from these algorithms in the treatment of modal steps: Intuitively, our algo-
rithm decides whether it is possible to remove some of the modal transitions as
well as one of the transitions from each reachable pair ((¢)o V1), 0), ((oVi1),1)
of disjunction transitions within the automaton B, in such a way that the result-
ing sub-automaton of B, is totally accepting, that is, accepts any word for which
there is an infinite run. In doing so, it is crucial that the labels of state nodes v
in the reduced automaton are one-step satisfiable, in a sense introduced next, in
the set of states that are reachable from v by the remaining modal transitions.
Propagating (un)satisfiability over modal transitions thus involves one-step sat-
isfiability checking, a functor-specific problem that in many instances can be
solved in time singly exponential in size(y). In previous work [8], a variant of
one-step satisfiability has been used in satisfiability games for coalgebraic u-
calculi, which however leads to a doubly exponential number of modal moves for
one of the players and hence does not yield a singly exponential upper bound on
satisfiability checking (unless a suitable set of tableau rules is provided).

Definition 4 (One-step satisfiability problem [26,33,35]). Let V be a finite
set, let v C A(V) such that a # b whenever Qya,Vsb € v, and let U C P(V).
The one-step satisfiability problem for inputs v and U is to decide whether
TU N [v]i # 0, where

[v]i = Noae [PHu € U a € u}.
We put size(v) = Y o,c,5ize(V), and denote the time it takes to solve the
problem on v, U with size(v) = a and |V| = b (hence |U| < 2°) by t(a, b).
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Remark 5. We keep the definition of the actual one-step logic as mentioned in
the introduction somewhat implicit in the above definition of the one-step satis-
fiability problem. One can see that it contains two layers: a purely propositional
layer embodied in U, which postulates which propositional formulas over V are
satisfiable; and a modal layer with nesting depth of modalities uniformly equal
to 1, embodied in the set v, which specifies constraints on an element of TU.

Example 6. For the standard modal p-calculus (Examplel.1), the one-step
satisfiability problem is to decide for given v C A(V) and U C P(V) whether
there is A € P(U) N [v]1, that is, a subset A C U such that for each Qa € v,
there is u € A such that a € u, and for each Oa € v and each u € A, a € u. Here
we have t(a,b) < a -2 where a = size(v), b = |V/|. For the graded p-calculus
(Example 1.2), the one-step satisfiability problem is to decide for v, U as above
whether there is a multiset § € B(U) such that > O(u) > m for each
(m)a € v and Zuewa@ O(u) < m for each [m]a € v.

ueU|a€u

Definition 7 (States and Prestates). A node v of B, is a state if its label
contains only modal literals (I(v) C A(F)), and otherwise a prestate, in which
case we fix ¢, € [(v)\ A(F). We write states, prestates C D, for the sets of states
and prestates, respectively.

We next define 2ngk-ary set functions f and ¢ that compute one-step
(un)satisfiability w.r.t. their argument sets.

Definition 8 (One-step propagation). For sets G C D, and X =
Xi,..., X2n0k S P(G)2n0k, we put

f(X) ={v € prestates | Ib € {0,1}.6(v, (¢v, b)) € Xg(v,(1p,,6)) }U
{v € states | T(U1§i§2nok s Ni(v)]: # 0}
g(X) ={v € prestates | Vb € {0,1}.0(v, (¥, b)) € Xpw, (v, .5)) FU
)
(

D

D

{v € states | T(Uy<i<ange Xi(v)) N [()]1 = 0},
where B(v, (,,b)) abbreviates (v, (¢, b),d(v, (¥,,b))) and where
Xi(v) = {l(u) | u € X;,3k € selections. 6(v, k) = u, B(v, k,u) =i}.

Since for states v, [(v) C A(F) and X;(v) C P(F) for all ¢, one-step propagation
steps for states are instances of the one-step satisfiability problem with |V| = |F|,
solvable in time t(n1,ng) because size(l(v)) < ny and |F| < ng.

Definition 9 (Propagation). Given a set G, we put

Ec = NongkXongk- - - - 12 X2.m X1 f(X)
Ac = MangrXongk -- -T2 X2 X1.9(X),

where X = X;,..., Xop,r for X; C G, where n; = p for odd 4, n; = v for even ¢
and where 7 =y and 1 = v.
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The set E¢g contains nodes v € G for which there are choices for all disjunctions
and modal transitions that are reachable from v within G (as indicated at the
beginning of the section) such that the labels of all reachable states in the chosen
sub-automaton of B,, are one-step satisfiable and such that on all paths through
the chosen sub-automaton, the highest priority that is passed infinitely often
is even, the intuition being that no least fixpoint is unfolded infinitely often
without being dominated. Dually, the set A contains nodes for which there
exist no such suitable choices.

We recall that vg € D, is the initial state of the determinized and comple-
mented tracking automaton B, . The algorithm expands B, step-by-step starting
from wg; for prestates u, the expansion step adds nodes according to the fixed
non-modal formula v, that is to be expanded next (Definition 7), and for states,
the expansion follows all (matching) selections. The order of expansion can be
chosen freely, e.g. by heuristic methods. Optional intermediate propagation steps
can be used judiciously to realize on-the-fly solving.

Algorithm 10 (Global caching). To decide the satisfiability of the input for-
mula Y, initialize the sets of unerpanded and expanded nodes, U = {vp} and
G = 0, respectively.

1. Expansion: Choose some unexpanded node u € U, remove u from U, and
add u to G. If u is a prestate, then add the set {d(u,0) | 0 € N (¢, x{0,1})}
to U. If w is a state, then add the set {§(u, %) | s € selections} to U.

2. Optional propagation: Compute Eg and/or Ag. If vg € Eg, then return

‘satisfiable’, if vg € A, then return ‘unsatisfiable’.

If U # (), then continue with step 1.

4. Final propagation: Compute Eq. If vy € Eg, then return ‘satisfiable’, other-
wise return ‘unsatisfiable’.

@

Lemma 11. Algorithm 10 runs in time O(((nok)!)*™* . t(ny,ng)).

Proof. The loop of the algorithm expands the determinized and complemented
tracking automaton node by node and hence is executed at most |D,| €
O(((ngk)!)?) C 20(noklogno) times. A single expansion step can be implemented
in time (O(2™) since propositional expansion is unproblematic and for the
modal expansion of a state w, all (matching) selections, of which there are
(at most) 2™, have to be considered. A single propagation step consists in
computing two fixpoints of nesting depth 2ngk of the functions f and g over
P(D,)?"F and can hence be implemented in time 2(|D,|?"* - t(nq,n0)) €
O(((nok!)2)2m0k t(ny, ng)) C 20k log notlog(t(n1,m0)) poting that a single com-
putation of f(X) and g(X) for a tuple X € P(D,)?"°* can be implemented
in time O(t(n1,n0)) — this has been noted above for states, and prestates are
unproblematic. Thus the complexity of the whole algorithm is dominated by the
complexity of the propagation step. O

Corollary 12. If the one-step satisfiability problem of a coalgebraic logic can
be solved in time t(a,b) exponential in a + b on inputs v C A(V), U C P(V)
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with size(v) = a, |V| = b, then the satisfiability problem of the corresponding
coalgebraic p-calculus is in EXPTIME.

Since the existence of a tractable set of tableau rules implies the required
time bound on one-step satisfiability, the above result subsumes earlier bounds
obtained by tableau-based approaches in [4,15,16]; however, it covers additional
example logics for which no suitable tableau rules are known. In particular we
have

Proposition 13. The satisfiability problems of the following logics are in
ExXPTIME:

the standard p-calculus,

the graded p-calculus,

the (two-valued) probabilistic p-calculus,

the graded p-calculus with polynomial inequalities,

the (two-valued) probabilistic p-calculus with polynomial inequalities.

Cuds Lo do =

(Tractable sets of tableau rules have previously been claimed for the graded [36]
and Presburger [22] p-calculus but have since been discovered to be flawed [23].)

Proof. Tt suffices to show that the respective one-step satisfiability problems
can be solved on inputs v C A(V), U C P(V) with size(v) = a and |V]| = b
in singly exponential time in a + b, i.e. in time t(a,b) € 2P+ for p at most
polynomial. E.g. for standard relational modalities, we have t(a,b) = a - 2* =
2b+loga see Example 6. While the bounds can be established by relatively easy
arguments (e.g. using known bounds on sizes of solutions of systems of real or
integer linear inequalities) for all of our remaining example logics, we import
them from previous work for brevity. For the one-step satisfiability problem of
graded modal logic, by [21, Lemma 1], we have t(a,b) < (2-2¢ + 2)° < 2ab+2b;
the Lemma uses counters to check joint one-step satisfiability of constraints and
directly extends to the one-step satisfiability problem of graded modal logic with
monotone polynomial inequalities, in which case we require n counters for each
n-ary polynomial. The bound for (two-valued) probabilistic modal logic (with
polynomial inequalities) is shown in [23, Example 7]. O

Remark 14. We also obtain a polynomial bound on branching width in models
for all our example logics simply by importing Lemma 6 and the observations in
Example 7 from [23]. With the exception of the standard p-calculus, this bound
appears to be new in all our example logics. Of course, for graded and Presburger
p-calculi, polynomial branching holds only in their coalgebraic semantics, i.e.
over multigraph models but not over Kripke models.

5 Soundness and Completeness

We now prove the central result, that is, the soundness and completeness of
Algorithm 10. As the sets Eg and Ag grow monotonically with G, it suffices
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to prove equivalence of satisfiability and containment of the initial node vy in
E := Ep, . Our program is as follows: We show that vy € E if and only if there is
a pre-semi-tableau (Definition 15) for y with unfolding timeouts (Definition 17),
which in turn is the case if and only if yx is satisfiable. We establish the latter
equivalence by constructing a model for y from a given pre-semi-tableau with
unfolding timeouts and, for the converse direction, extracting a pre-semi-tableau
with unfolding timeouts from the model.

Definition 15 (Pre-semi-tableau). Given a ternary relation R C A x B x A
and a € A, b € B, we generally write R(a) = {a’ € A|3b € B.(a,b,d’) € R} and
R(a,b) ={d' € A| (a,b,d') € R}. Let W C D, and put U = W N prestates and
V = Wstates. Given a ternary relation L C W x X x W | the pair (W, L) is a pre-
semi-tableau for x if the following conditions hold: L C &; T'(L(v)) N [l(v)]1 #
() for all v € V; for each u € U, there is exactly one b € {0,1} such that
L(u, (¢, b)) = {0(u, (04, b))}, and for all other 0 € X, L(u,0) = 0; and there
is no L-cycle that contains only elements from U. A path through a pre-semi-
tableau is an infinite sequence (vg, 09), (v1,01),... € (W x X)¥ such that for all
i, vit1 € L(v;,0;). We denote the first state that is reachable by zero or more
L-steps from a node v € W by [v] (since there is no L-cycle within U, such a
state always exists).

Given a state v, the relation L of a pre-semi-tableau thus picks a set L(v) of
nodes in which I(v) is one-step satisfiable; given a prestate u, L picks a single
(pre)state that is obtained from u by transforming the formula ,,.

Definition 16 (Tracking timeouts). Given a path p = (vo, 09), (v1,01),. ..
through a pre-semi-tableau, we say that priority ¢ occurs (at position j) in p if
B(vj,05,v41) = 1, recalling that § is the priority function of the determinised
and complemented tracking automaton B,. Then the path p has tracking time-
outs M = (Mangk,---,m1) if for each odd 1 < ¢ < 2ngk, priority 7 occurs at
most m; times in p before some priority greater than i occurs in p. Nothing is
said about the m; for even ¢, which are in fact irrelevant and serve only to ease
notation. A node w € W in a pre-semi-tableau (W, L) has tracking timeouts m
if every path through (W, L) starting at w has tracking timeouts 7. A pre-semi-
tableau (W, L) has tracking timeouts if each w € W has tracking timeouts m for
some 7.

Intuitively, a pre-semi-tableau (W, L) has tracking timeouts if every word that
encodes an infinite L-path through W is accepted by B,. The next definition is
geared towards characterizing non-acceptance by A, :

Definition 17 (Traces and unfolding timeouts). Let (W, L) be a graph
with L C W x X' x W and labeling function [ : W — P(F). Given an L-path
p = (vo,00), (v1,01),... (with (v;,04,vi41) € L for i > 0) and a sequence of
formulas ¥ = g, 41, ..., we say that ¥ is a trace of ¢y along p (we also say
that p contains the trace ¥) if ¢; € l(v;) and ;41 € A(W;,0;) for all i. For
i with ¢; = nX.y for some fixpoint variable X and some formula v, we say
that ¥ wunfolds at level ad(v;) at position ¢. Then the trace ¥ has unfolding
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timeout m € N for g at level j if ¥ unfolds at most m times at level j before
¥ unfolds at some level greater than j. The path p has unfolding timeouts for
Yo at level j if there is, for all its traces ¥ of 1)y, some m such that ¥ has
unfolding timeout m for iy at level j. A node w € W has unfolding timeouts
at level j for some formula ¢ if every path through (W, L) that starts at w
and that contains infinitely many steps (v;,0;) such that o; € selections has
unfolding timeouts for ¢ at level i. (Since fixpoint variables are by assumption
guarded by modal operators, it suffices to require timeouts just for such paths
that contain infinitely many modal steps.) A node w € W has unfolding timeouts
m = (mg,...,my) for some formula ¢ if every path through (W, L) that starts
at w and that contains infinitely many steps (v;, ;) such that o; € selections
has, for each odd 1 < ¢ < k, unfolding timeouts m for ¢ at level i; again the
unfolding timeouts for even i, that is, for greatest fixpoints, are irrelevant. The
graph (W, L) has unfolding timeouts if for each element w € W and each formula
¥ € l(v), there is some vector m such that w has unfolding timeouts 7 for 1. We
denote the set of nodes that have unfolding timeouts m for ¢ by uto(«,m) C W.

A graph (W, L) has unfolding timeouts if for all words that encode an infinite
L-path through (W, L), all runs of the nondeterministic tracking automaton A,
on the word are non-accepting. We recall that a run of A, is accepting if it
unfolds some least fixpoint infinitely often without having it dominated.

Lemma 18. Let (W, L) be a pre-semi-tableau. Then (W, L) has tracking time-
outs if and only if it has unfolding timeouts.

Proof. We recall that B, is obtained from A, by determinization and subse-

quent complementation so that we have L(B,) = L(A,). The result thus follows
directly from the fact that having tracking timeouts means that B, accepts all
words that encode a path in (W, L) while having unfolding timeouts means that
A, does not accept any word that encodes a path in (W, L). O

Lemma 19. We have vy € E if and only if there is a pre-semi-tableau for x
that has tracking timeouts.

Combining Lemmas 19 and 18, we obtain

Corollary 20. We have vy € E if and only if there is a pre-semi-tableau for x
that has unfolding timeouts.

We now show that satisfiability of x and the existence of a semi-pre-tableau for
x with unfolding timeouts coincide.

Definition 21. Given a pre-semi-tableau (W, L) with set of states V', we put

—

[Wl={veV|iw) ey} [Wlm=IN{lu] €V |ue uto(y,m)}

where ¥ € F, where Fp_ denotes propositional entailment and where m is a
vector of k natural numbers.
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Thus we have v € [¢]# if there is a node v € W such that [u] = v and u
has timeouts m for ¢. This serves to ease the proofs of the upcoming existence
and truth lemmas as it anchors the timeout vector 7 at the node u instead of
anchoring it at the state v which may not have timeouts m for ¢ (namely, if a
greatest fixpoint is unfolded on the L-path from u to v).

Definition 22 (Strong coherence). Let (W, L) be a pre-semi-tableau with
set V of states. A coalgebra C = (V,€) is strongly coherent if for all states v € V,
for all formulas Qi € F and for all timeout-vectors 7,

GRS [[Ow]]m implies {(v) € [[(?]]([W)Hm)
Strongly coherent coalgebras exist over pre-semi-tableaux:

Lemma 23 (Existence). Let (W, L) be a pre-semi-tableau with set of states V.
Then there is a strongly coherent coalgebra over V.

Since all least fixpoint literals are satisfied after finitely many unfolding steps
in strongly coherent coalgebras with unfolding timeouts, they are models, i.e.
satisfy all the formulas in their labels:

Lemma 24 (Truth). In strongly coherent coalgebras that have unfolding time-
outs, we have that for all ¢ € F,

—

[4] < [4].

Definition 25 (Timed-out satisfaction). Given sets U C W, a function f :
P(W) — P(W) and an ordinal number A\, we define fA(U) = U if A = 0,
AMU) = FANU) i A = XN+ 1 and fAU) = Upey f5U) if X is a limit-
ordinal. The target formula y is clean so that it contains, for each fixpoint
variable X € V, at most a single fixpoint literal nX.1y as a subformula; we
denote this formula by 6(X). Given a coalgebra (C, ), a formula ¢ and a vector
A= (..., ;) of ordinal numbers, we define [¢]* = [¢]; where i : V - P(C)
is defined, for fixpoint variables X; that occur freely in ¢ and for which we have
0(X;) = X0, by i(X;) = ([W;]77)™ (0) if n = p and by i(X;) = [vX;4,]s
if n = v, where i'(X;/) is undefined for j* > j and where i'(X;/) = i(X; ) for
j' < j. Again the timeouts for greatest fixpoint variables are irrelevant and serve
only to ease notation.

Definition 26 (Strongly supporting Kripke frame). Let (C, ) be a coal-
gebra. For states € C and formulas 1 such that z € [¢], let Ay denote the
least vector of ordinal numbers such that = € [)]**. Also let, for v € F, 1 be
the subformula of y such that 1 is obtained from v by repeatedly replacing free
variables X by 6(X). A graph (C, L) with L C C' x X' x C and with labeling func-
tion I : C' — P(F) such that I(z) = {¢ € F | x € [¢]} is a strongly supporting
Kripke frame (for C,¢) if
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—forall y € Fand z € C, if z ¢ [¢], then L(x, (¢),b)) = 0 for b € {0,1};
if z € [¢], then we distinguish upon the shape of ¢: if ¢ = 1y V 91, then
we require L(z, (1,b)) = {x} for exactly one b € {0,1} with € [¢,]*% and
L(z, (1,b)) = 0, where T =0, 0 = 1; if ¢ = 1)y A by or ¥ = nX.1bg, then we
require L(z, (1,0)) = {z}.

— for all z € C and K € selections, we have L(z,k) = {y} for some y € A =

O@we,{ﬂﬂ)\%ﬂ if A#0, and L(z, k) = () otherwise.
Lemma 27. FEvery coalgebra has a strongly supporting Kripke frame.

Definition 28. Given a coalgebra (C, £) with strongly supporting Kripke frame
(C, L), a formula ¢ and a valuation i : V - P(C), we define [¢)]¥ by the same
clauses as [1]; in all cases except the following:
[o Vnli ={z € C'| = €[] b e {0,1}, L(z, (g0 V ¢1,b)) = {z}}
[Qdoli ={z € C'| (Tg2)((2)) € [VN(gal[ol D}
[uX 4ho]F ={2 € C'| x has unfolding timeouts at level ad(uX.¢)
for uX.¢oin (C, L)},

where pX.4pg = pX.¢o and Yo V 1p1 = ¢ V ¢1, and where g, : C — {y,. |
L(z,k) = {yx}} is defined by g, (c) =y, if and only if kK = {QyY € F | c € [¢]}.

Strongly supporting Kripke frames have unfolding timeouts:

Lemma 29. For all coalgebras (C,&) with strongly supporting Kripke frame
(C, L), all formulas ¥ and all valuations i : V + P(C), we have []; C []F.

Lemma 30 (Soundness). Let x be satisfiable. Then a pre-semi-tableau for x
with unfolding timeouts can be constructed over a subset of D,,.

Proof (Sketch). By Lemmas 27 and 29, any model of x has a strongly supporting
Kripke frame (C, L) with unfolding timeouts. We derive a pre-semi-tableau for
x from (C, L), inheriting unfolding timeouts. O

Corollary 31 (Soundness and completeness). We have
vo € E if and only if x is satisfiable.

Our model construction moreover yields the same bound on minimum model
size as in earlier work on the coalgebraic p-calculus [4]:

Corollary 32 (Small model property). Let x be a satisfiable coalgebraic p-
calculus formula. Then x has a model of size O(((nk)!)?) € 20(nklogn),
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6 Conclusion

We have shown that the satisfiability problem of the coalgebraic p-calculus is
in EXpTIME, subject to establishing a suitable time bound on the much sim-
pler one-step satisfiability problem. Prominent examples include the graded p-
calculus, the (two-valued) probabilistic p-calculus, and extensions of the prob-
abilistic and the graded p-calculus, respectively, with (monotone) polynomial
inequalities; the EXPTIME bound appears to be new for the last two logics. We
have also presented a generic satisfiability algorithm that realizes the time bound
and supports global caching and on-the-fly solving. Moreover, we have obtained
a polynomial bound on minimum branching width in models for all example
logics mentioned above.
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