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Abstract The ongoing technical improvement of robotic assistants, such as robot
vacuum cleaners, telepresence robots, or shopping assistance robots, requires a pow-
erful but unobtrusive form of communication between humans and robots. The capa-
bilities of robots are expanding, which entails a need to improve and increase the
perception of all possible communication channels. Therefore, themodalities of text-
or speech-based communication have to be extended by body language and direct
feedback such as non-verbal communication. In order to identify the feelings or
bodily reactions of their interlocutor, we suggest that robots should use unobtrusive
vital data assessment to recognize the emotional state of the human. Therefore, we
present the concept of vital data recognition through the robot touching and scan-
ning body parts. Thereby, the robot measures tiny movements of the skin, muscles,
or veins caused by the pulse and heartbeat. Furthermore, we introduce a camera-
based, non-body contact optical heart rate recognition method that can be used in
robots in order to identify humans’ reactions during robot-human communication or
interaction. For the purpose of heart rate and heart rate variability detection, we have
used standard cameras (webcams) that are located inside the robot’s eye. Although
camera-based vital sign identification has been discussed in previous research, we
noticed that certain limitations with regard to real-world applications still exist. We
identified artificial light sources as one of the main influencing factors. Therefore,
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we propose strategies that aim to improve natural communication between social
robots and humans.

Keywords Vital data · Activity · Recognition · Autonomous computing ·
Optical · Camera · Webcam · Wearable computing · Assistive technology

5.1 Motivation

Nowadays, robots pervade many areas of technology and daily life. Examples of
these, such as mechanical workers in the important field of assembly, manufactur-
ing, and production show the possibilities that emerge by applying robots. Since
developments in machine learning and artificial intelligence drive the capabilities of
robots, new application fields arise, such as that of social assistance. Social robots
will entertain, train, educate, or simply interact with users in the sameway as humans
do (Korn, 2018). During a conversation between a human and a social robot, much
information has to be exchanged (even exceeding themodality of speech). This infor-
mation includes optical, tactile, and acoustical modalities such as facial expressions,
prosody of speech, and body language. Moreover, in a conversation, it is necessary to
know if the counterpart is nervous or somehow affected by the discussion. To assist
in this non-verbal communication, emotion recognition enabled by detecting human
vital signs would be very beneficial. Usually, the recognition of vital signs is per-
formed by applying wearable sensors attached to the human body. Depending on the
parameters measured, theses sensors tend to be obtrusive (e.g., wearable electrocar-
diography (ECG) sensors, heart rate chest straps) and require constant usage in order
to provide gapless recording of data. Therefore, a touchless vital data recognition
system for social robots is very beneficial for health care or communication purposes.
In addition, or for special purposes, a light touch of the social robot on the user’s
body enables the robot to feel vital data, and this provides additional capabilities to
enhance the natural communication (Fig. 5.1).

Due to the possible mobility of social robots, new environment-based require-
ments arise that lead to certain considerations with regard to the analysis of the
transmitted signal quality. This leads to the following research questions:

• How can communication between a social robot and a human become more nat-
ural?

• Which of the vital data modalities can be assessed touchlessly?
• Which parameters influence the quality of touchless vital data recognition (via
cameras) in the application field of social robots?

• In particular, what is the most relevant confounding factor for camera-based heart
rate recognition and how can we deal with it?
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Fig. 5.1 Cameras in the eye of the robot detect pulse rate and heart rate variability in order to
enable natural communication between the social robot and the human

5.2 Related Work

Since robots are performing tasks in the home environment, the user desires the robots
to have natural language capabilities (Goodrich, 2007). Speech interfaces support a
natural communication modality and therefore support the identification of a user by
recognizing individual speech habits or voice and language characteristics (Zissman,
1996). The combination of communicationmodalities enhances the total understand-
ing and reliability of information exchange (e.g., McGurk effect) (Nath, 2012). We
propose the identification of vital data for emotion detection since physiological
signals show a strong correlation to emotions. However, whether emotions can be
recognized reliably from physiological signals is still a matter of research (Jerritta,
2011). The most common signals for emotion detection are ECG signals for heart
rate and heart rate variability, skin conductivity, respiration rate, and skin temper-
ature. These parameters provide good results in terms of classification of emotions
(Haag, 2004). Simple emotion detection can be achieved even with a reduced feature
set (e.g., by analyzing ECG and respiratory signals only) (He, 2017).

The assessment of vital data by social robots is possible by direct body contact
and by a touchless sensing. Such vital data assessment should be as unobtrusive as
possible. This supports the natural communication and an agreeable feeling. During
a normal conversation between humans, it is normal to touch the hand or arm of the
interlocutor. It is of interest, if a robot is also accepted to assess relevant data to judge
the human’s feeling, mood, or emotion.
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5.2.1 Touchy Sensors

Social robotsmight look like humans, but they can also be pet- orMuppet-like, comic
figures, or even androids. The physical contact between robot and human is mainly
by soft touch and body contact (Figs. 5.2 and 5.3).

Fig. 5.2 Care Robot Paro, it
is touch sensitive and
interacts with users while
being fondled Source
CC-BY-SA-2.0 (Biggs 2005)

Fig. 5.3 Toy-like robots
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When a human is stroking the fur of a pet or is holding the hand of a robot, the
integrated sensors of the social robot are able to measure simple but also complex
vital data. A short contact is sufficient to measure the temperature and galvanic skin
response very easily. In addition, the assessment of more advanced information is
also possible.Direct contactwith the skin enables electro-technical-based assessment
methods. For example, an electrocardiogram (ECG) helps to detect the heart rate
(HR) or heart rate variability (HRV) and provides basic stress parameters. Capacitive
sensing might identify the respiration rate, and electromyography (EMG) is used for
muscle activity detection.

Furthermore, remarkable parameters are the frequency and amplitude of muscle
vibrations. Each muscle of a mammal performs tiny movements, resulting in a light
vibration. This low-amplitude muscle vibration was first reported in the early 1960s
(Rohracher, 1964), and this phenomenon is correlated to some body conditions,
e.g., level of stress, medication, temperature distribution or hints of diseases such
as Parkinson’s or other neural degeneration diseases. Muscle activity can also be
measured by electromyography (EMG) (Clancy, 2002), but recent accelerometry
is also sensitive enough to detect muscle vibration (Bieber, 2013). While electro-
technicalmethods usually needmultiple body contacts to detect potential differences,
accelerometry needs only one.

The measurement of a single point acceleration of the skin even provides infor-
mation about the heart (Matthies, Haescher, Bieber, Salomon, & Urban, 2016). The
physical movement of the heart and the blood flow through the body also cause
movements of the body and skin. These tiny movements have characteristic patterns
and may describe heart anomalies. This technique of measuring forces on the heart
is called ballistocardiography or seismocardiography (Inan, 2015).

5.2.2 Optical Sensors

A touchless technology for the identification of vital data is the usage of optical
information. Thefirst non-invasive blood oxygen saturationmeter SpO2was invented
in 1935 (Matthes, 1935). With this, the skin of the ear was illuminated in order to
measure the amount of light passing through the tissue. For the optical and volumetric
measurement of the skin, only one frequency band (the color of the light spectrum)
is needed (Fig. 5.4).

This technique is referred to as photoplethysmography (PPG) (Hertzman, 1937).
It can be performed by analyzing the reflected light (reflective PPG) or light that
shines through the tissue (transmissive PPG). Medical oxygen saturation meters
(SpO2) attached to the finger mainly apply the transmissive approach, while fitness
trackers, smart bands, or smart watches, located on thewrist, mainly use the reflective
approach. All of the devices use light-emitting diodes (LEDs) as the source of light
for an appropriate illumination. The applied colors vary between the light of the
green or red light diodes.
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Fig. 5.4 False color image of a face with and without oxygen-enriched blood

The general concept for heart rate recognition with cameras is based on the identi-
fication of periodic change in skin color. Therefore, the camera detects skin-reflected
light illuminated by sourceswithin the surroundings of the user (Poh, 2011). An addi-
tional LED or comparable dedicated light source is not needed but provides better
results. Blood with a higher oxygen saturation reflects light differently than blood
with a lower oxygen saturation. With every heartbeat, the saturation changes and
so does the light reflection (Kong, 2013). The facial skin shows a high degree of
perfusion and therefore reflects light differently during the cardiac cycle. The effect
of reflection characteristics is influenced by multiple factors, including varying tis-
sue volume, tissue tension, and other side effects. Cameras detect the heart rate as a
change in color, which is not visible to the human eye (Wu, 2012).

The optimal position for detecting changes in skin color is the forehead. This
position is favorable because in a conversation with a robot, the head of the human is
usually pointed toward the robot. Therefore, an integrated face detection algorithm in
the social robot identifies the position of the eyes and the forehead region quite easily.
The average of the green color channel values of the detected forehead region changes
with every pulse cycle. The pulse rate can be determined by analyzing the resulting
data stream. For the sake of data processing, we selected only part of the forehead
image, the so-called region of interest (ROI).We recorded datawith a camera (camera
model IDS UI-306xCP-C) in a laboratory setting at constant lighting. The camera
was mounted statically.

A social robot that is equipped with a camera for pulse rate detection should be
able to move around in order to interact in different rooms or surroundings. Hence,
the accuracy of pulse detection should be tolerant of user-specific effects (e.g., head
movements) and environmental constraints. Therefore, we need to consider the main
influencing effects of touchless vital data recognition via cameras.

The identification of heart rate by examination of the skin color depends on two
general categories of parameter:

• Technical Parameters
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• Environmental Parameters.

Both categories will be discussed in the following sections.

5.2.2.1 Technical Parameters

The quality of camera pictures depends on several factors. These include the image
sensor, lens, processing hardware, and other factors.

Image sensor size: Digital cameras vary in design, size, energy consumption, and
image quality. High-end cameras consist of an image sensor with a large physical
size in comparison with compact cameras. When the image sensor is larger, more
light can reach the individual pixel areas on the sensor. The Advanced Photo System
type-C (APS-C) is an image sensor format approximately equivalent in size to the
Advanced Photo System “classic” negatives of 25.1× 16.7 mm. In contrast, cameras
of compact devices such as the iPhone 5S have an image sensorwith the size of 4.54×
3.42 mm.

F-factor: Another parameter that determines howmuch light reaches the sensor is
defined by the aperture size. The f-number of an optical system such as a camera lens
is the ratio of the system’s focal length to the diameter of the entrance pupil (Smith,
2007). It is a dimensionless number that is a quantitative measure of shutter speed
and therefore an important concept in photography. It is also known as the focal ratio,
f-ratio, or f-stop (Smith, 2005). The higher the f-ratio, the better the exposure. This
applies to most applications. An iPhone 5S camera has an f/2.2 lens.

Photosensitivity: Analog film provides specific sensitivity to light. This sensitivity
is measured and numbered as an ISO speed. The product of ISO and shutter speed
controls the brightness of the photo. The base ISO describes the speed of the highest
image quality, minimizing as much noise as possible. Digital sensors only have a
single sensitivity, which is mainly defined by the signal-to-noise ratio (SNR). The
SNR is measured in decibels (dB). The higher the SNR, the better. A good value is
about 40 dB (Baer, 2000).

Speed: The digital image sensor needs time to take a photo or to sense the frame of
a video. For the recognition of pulse or respiration rate, at least a double sampling rate
is necessary in order to meet the Nyquist–Shannon sampling theorem. Almost every
digital video sensor is capable of providing 24 frames per second as the sampling
rate (Etoh et al., 2001). Therefore, vital data recognition is possible.

Resolution: Higher pixel density is often correlated to better video quality. Since
each camera has its own parameter set (screen size, field-of-view, etc.), we have to
focus on the resolution of the face itself and not on the entire screen. Since we are
focusing on the change in color of the green channel, the resolution of the ROI is
relevant but is not of substantial importance. The number of pixels within the ROI
might be 100, 1000, or even higher but is not the defining quality parameter. Hence,
the low resolution of a standard video graphics array (VGA) video is sufficient for
pulse recognition (Mestha, 2014).
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Automatic functions: For analyzing the change in color within the region of inter-
est, stable recording is required. Some cameras perform automatic white calibration
or brightness adjustment for enhanced imaging (Weng, 2005). Due to discontinuity
or changes in color, the automatic functions affect the vital data recognition and lead
to errors or additional noise.

5.2.2.2 Environment Parameters

Vital data recognition via reflective PPG approaches with cameras works well in
laboratory settings (Irani, 2014). Therefore, it has to be considered that real-world
scenarios with social robots might involve additional challenges. These can be clas-
sified as follows:

Motion artifacts: The image sensor of the robot is not mounted in a fixed frame.
Therefore, the camera might experience vibration caused by a cooling fan, a power
transformer, or by the motions of the robot itself. Furthermore, the communicating
counterparts’ movements while speaking or performing natural body language have
to be considered.

Optical considerations: During a conversation, the spatial constellation between
robot and dialog partner might vary due to the change of distance or the optical angle.
Hair or makeup might cover the region of interest. Moreover, glasses worn by the
user might disturb the face recognition algorithm.

Light source: The communication between a social robot and a human can take
place in an indoor environment. In that case, the brightness of the light and the
light source itself may lead to signal noise or disturbances. Artificial light sources
particularly influence the signal noise.

Temperature: The sensing of changes in color depends on the perfusion of the skin.
In addition to this, the temperature of the environment also influences the blood flow.
Other effects include physical parameters of the user (e.g., skin flexibility, drugs,
coffee, etc.).

A camera-based touchless vital data recognition system must be aware of the
influencing parameters. Moreover, the recognition system has to have implemented
algorithms for identifying the major disturbances in order to adapt.

5.3 Detection Algorithm

In order to measure the pulse signal, a video stream has to be captured by a camera
first. Therefore, it is necessary to detect the human’s face, then identify the forehead
and a suitable part of it (ROI). Subsequently, we determine the average intensity of
the green color channel within the red-green-blue (RGB) signal in the ROI. This
signal is the basis for recognizing the pulse wave. Therefore, we first need to track
the face within the video stream. To accomplish this, the face-tracking algorithms of
the OpenCV library can be applied (Bradski & Kaehler, 2008). In order to reduce
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motion artifacts, one could perform face tracking on every frame. As this would
result in reduced performance, the face-tracking frequency is reduced (once every
25 frames) and a larger main ROI is defined instead. This main ROI has the size
of the whole forehead with another smaller region inside of it. This inner region
moves with the head movement in each frame. This way, it follows the movement
of the forehead without constant face tracking. This means a low requirement for
computational power and ensures a stable sampling and frame rate.

Before evaluating the values of the ROI, it is necessary to remove motion artifacts
with the help of filtering. Therefore, we check each pixel inside the ROI to determine
if their green value was an outlier compared to the averaged value of the ROI from
the preceding frame. Outliers are defined as pixel values that are beyond the 3 ∗ σ

(standard deviation) threshold within one frame.
Let now f (t) be the recorded raw signal of the ROI at a time t and m f (t) the

mean of f (t). For the detection of outliers, we use low-pass and high-pass filters
with sliding window. Butterworth filtering is also an option. For sliding window, we
are not concentrating on just the current frame of the footage but on the mean of the
last four frames.

Let ROI be a frame of p ∗ q pixels. Then the mean of one frame is calculated as:

m f (t) = 1

p ∗ q
∗

p∑

i=0

q∑

j=0

f (t)[i, j].

With these values, we can apply our filters:

• Low-pass filter:

ml(t) = m f (t−1) ∗ (1 − α) + m f (t) ∗ α, withα = 0.05

• High-pass filter:

mh(t) = m f (t) − ml(t)

Finally, we apply the sliding window to the filtered value to get our filtered mean
value:

m = 1

4
∗

3∑

i=0

mh(t−i).

If a Butterworth filter is applied, we recommend cutting off frequencies below and
above normal heart rates (sampling rate = frames per second (FPS), lower cutoff
frequency = 0.52, upper cutoff frequency = 5.02).

After removing all outliers, the average green value of all leftover pixels is deter-
mined.
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The resulting pulse curve allows us to determine a reliable pulse signal (Fig. 5.5).
Subsequently, a fast Fourier transformation and peak detection serve to identify the
heart rate and heart rate variability.

5.4 Optimization Strategies

Social robots usually apply cost-efficient cameras. These customary web cameras
provide moderate resolutions and frame rates. They are usually optimized for video
conferencing and reduced data traffic. In contrast to this, heart rate or heart rate
variability detection scenarios require a focus on image quality.

Motion within a video sequence leads to major artifacts in the heart rate signal.
Therefore, face recognition and head tracking technologies support the readjustment
of the ROI and the assessment of a change in color. Furthermore, reference regions
allow motion compensation as well as general changes in the color or brightness.
Therefore, reference regions in the face might compensate for automatic functions
or may stabilize the lighting situation (Fig. 5.5).

The change in color within the ROI leads to a periodic signal that corresponds to
the heart rate, as presented in Fig. 5.6.

The frame rate of most customary cameras is sufficient for vital data recognition
since less than 10 Hz are needed for sampling the heart rate and heart rate variability,
or for providing respiration rate recognition (RR).

Natural daylight provides almost white light that consists of a sufficient amount
of green light for our study. Furthermore, daylight is a continuous light source and
provides a setting for very good measurements. In contrast, artificial light highly
influences the recorded data and produces signal noise.

Fig. 5.5 Region of interest (blue) and reference region (red)
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The analysis of artificial light in our measurements showed a tremendous change
in brightness for higher frequencies. The normal power supply of the lights in our
lab (located in Germany) is alternating current (AC) with a frequency of 50 Hz.
This means that the voltage changes polarity 50 times per second. Thus, the light
gets brighter with the maximum voltage and less bright in the zero-crossing zone.
The zero-crossing happens 100 times per second so that the lights have a pulsation
of 100 times per second. The intensity of the maximum brightness and the least
brightness depends on the light technology. A neon light loses 50% of its intensity
during the zero-crossing (Brundrett, 1974). Modern LED lights are affected even
more by the pulsating current than neon lights or standard bulbs. The pulsating effect
is also dependent on the ballast unit used. Summering up almost every artificial light
pulsates (Fig. 5.7).

The changing brightness leads to an aliasing effect and influences the quality of
data. In contrast to Figs. 5.4 and 5.5, Fig. 5.8 illustrates the high noise effect on the
red and green zones caused by the pulsation of artificial light.

During our research with robots, we applied the robots’ camera for heart rate
and heart rate variability recognition. This research was performed mainly in indoor
environments. We identified the surrounding light source and implemented a filter to
minimize the aliasing effect. By using a digital filter, we could reduce the noise due to
the very frequent changes in brightness. Furthermore, wemodified the environmental
lighting as soon as we noticed that the light conditions were insufficient for our
measurements.

Fig. 5.6 Heart rate signal of the subject

Fig. 5.7 Pulsating green LED light (left) and the received camera data (graph on the right)
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Fig. 5.8 Aliasing effect of
the signal due to the
pulsation of artificial light

5.5 Study

In order to evaluate the performance of camera-based human–robot interaction, we
conducted a lab studywith eight participants. The study included twodifferent camera
systems: a Philips SPC 1300NC (webcam) and an IDS UI-306xCP-C (professional
camera). The webcam was integrated into our social robot (Fig. 5.1) as an eye. The
social robot was designed by us and originally used as a physical avatar (Sauer &
Gobel, 2003). Although it was possible to measure a reliable pulse wave with the
Philips camera and the social robot, we mostly applied the IDS since we could store
video streams for later processing and analysis at higher resolutions and frame rates.

The setting for the study was a normal office workplace; the IDS camera was
mounted on the monitor. The participants were advised to work at the computer. The
average measurement duration was 15 min. The participants had to behave normally,
as if they were not being recorded.

Our studies had two main purposes:

To identify which light intensity provides the highest heart rate accuracy
To estimate the percentage of time in which valid data is measurable using the heart
rate recognition algorithm provided.

In total, we recorded about 100,000 samples under various light conditions. We
found out that the heart rate accuracy is highly dependent on the brightness of the
surrounding light (Fig. 5.9). Lower light intensity results in more dominant noise,
which leads to varying light and color data. On the other hand, light which is too
intense results in total reflectance and therefore overexposure of the skin. Optical
saturation hinders a change in light intensity due to overexposure. The trend line
(Fig. 5.7) indicates that, in order to achieve optimal results, the most useful light
intensity is in the upper quartile.

In our study, we also investigated the amount of time required for valid identifica-
tion of the pulse rate during camera surveillance. Therefore, we measured the total
amount of time with valid and invalid pulse rates for all subjects. The subjects had to
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Fig. 5.9 Trend line of the delta of the heart rate signal (y) proportional to the measured green value
of the pixels (x)

behave naturally while performing normal computer work. They were allowed to go
to the restroom, talk to colleagues, or read printouts. In our tests, we found that for
50% of the time valid pulse detection was possible. 33% of the pulse detection was
invalid because the OpenCV algorithm was not able to detect a face. This happened
because the subject was unavailable, or the face could not be detected due to rotation,
movement, or bad exposure. Unrealistic pulse rates were detected in the remaining
17% of the time and therefore excluded.

We also tested a scenario in which the subjects had to keep the head motionless
while facing the camera the whole time. We identified that by using the aforemen-
tioned restriction under good light conditions, the pulse recognition was valid 95%
of the time. Of course, keeping the head motionless is not a reasonable scenario
for real-life applications since the many tasks one performs involve plenty of head
motions. In addition to this, some of the subjects reported neck pain after several
minutes.

5.6 Discussion

We were able to identify that face-to-face communication between a robot and a
human enables a direct view of the subject’s forehead. During our research with
robots, we applied the robots’ camera for heart rate and heart rate variability recog-
nition. We found out that social robots could measure stress, strain, emotions, or
medical parameters. This leads to the question of in which social situations this tech-
nology should be used. We think that social robots perfectly meet the care demands
for elderly who are lonely or suffering from dementia. With the increasing potential
of artificial intelligence, social robots will become very useful for entertainment but
also as acquaintances or even friends. Their emotion detection leads to better under-
standing of the human by the robot, though of course, we hope that a robot will never
be a better friend than a human is. The capability of vital data detection may also
be very useful in hospital or care environments, so in future, rather than impersonal
systems, nice robots will monitor patients.
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Fig. 5.10 Detected heart rate variability (HRV, red) and pulse rate (blue) via a camera-based reflec-
tive PPG approach

Unfortunately, this technology may have some social implications. Some people
might feel uncomfortable with robots collecting their vital signals (either through or
without touch). Furthermore, we can imagine that companies will use social robots
to perform job interviews. The robot could ask specific questions and act like a
polygraph, a lie detector. This scenario is also possible in a medical setting where
doctors using social robots to obtain true answers frompatients during the anamnesis.
We should be aware that we are giving a further piece of capability to a robot that
only a human had before. This might lead to the circumstance that a human can be
assisted but can also be replaced.

Improving the face-tracking algorithm and lighting would greatly increase the
amount of valid heart rate values. Our study shows that the recognition of heart
rate and heart rate variability (Fig. 5.8) is possible. Therefore, camera-based vital
data recognition allows touchless emotion recognition. In our study, we achieved
assessment of a valid pulse rate for onlyhalf the time themeasurementwasperformed.
This is only a very rough estimation but indicates that the concept has a high potential
and can be improved (Fig. 5.10).

We consider artificial light sources as well as movement artifacts and brightness
change as the main noise in vital data recognition. A possible improvement might be
achieved by transforming the RGBdata into another color space, e.g., hue-saturation-
value color space (HSV). This is currently under examination.

A simple recording of the environment in slow motion (e.g., iPhone 6s with
240 frames per second) demonstrates the varying light conditions. Social robots
might also illuminate the person with whom they are communicating in the future.
Furthermore, robots might use the invisible light spectra or infrared to extend their
scanning possibilities.

The authors of “Emotion recognition using bio-sensors: First steps towards an
automatic system.” (Haag, 2004) states that wearing biosensors is less disturbing
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than being “watched” by a camera. We think that a friendly-looking social robot that
is interacting with the interlocutor is not perceived as annoying or indiscrete.

5.7 Conclusion

In order to achieve natural communication between social robots and humans, impor-
tant modalities have to be addressed. In the process of communication, social robots
might apply a camera to identify the heart rate, heart rate variability or respiration
rate of a user to enable the detection of emotional states. Since social robots will
mostly be used indoors and in the homes of users, many sources of noise and dis-
turbance might affect the camera-based vital data recognition. As one of the main
noise factors, we identified the artificial light that surrounds the social robot. Aliasing
filters can be used to reduce that noise in combination with an adapted frame rate to
avoid side effects.

A sensitive conversational partner is capable of reacting to changing emotional
states during a conversation. Our approach involves the integration of sensitivity in
order to measure and understand the feelings of the interlocutor. In future appli-
cations, we envision social robots changing their facial expressions or skin color
according to their emotional state to enable an exchange of emotional states with
other social robots and humans. We are aware of the fact that social robots might
receive more information about the emotional state than the interlocutors may want.
This leads to interesting future scenarios that might involve social robots in job
interviews, patient anamneses, and social or chaplain tasks, or even in polygraph
(lie-detection) applications.

Our future work will focus on improving the vital sign recognition with cameras
as well as the natural communication between social robots and humans.
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