
Chapter 9
Improved Sample Complexity in Sparse
Subspace Clustering with Noisy and
Missing Observations

In this chapter, we show the results of the new CoCoSSC algorithm. The content is
organized as follows: The main results concerning CoCoSSC algorithm are shown
in Sect. 9.1. Following Sect. 9.1, we show the full proofs in Sect. 9.2. In Sect. 9.3,
we show the performance for CoCoSSC algorithm and some related algorithms
numerically. Finally, we conclude this work with some future directions.

9.1 Main Results About CoCoSSC Algorithm

We introduce our main results by analyzing the performance of COCOSSC under
both the Gaussian noise model and the missing data model. Similar to [WX16], the
quality of the computed self-similarity matrix {ci}Ni=1 is assessed using a subspace
detection property (SDP):

Definition 9.1 (Subspace Detection Property (SDP), [WX16]) The self-simila
rity matrix {ci}Ni=1 satisfies the subspace detection property if (1) for every i ∈ [N ],
ci is a non-zero vector; and (2) for every i, j ∈ [N ], cij �= 0 implies that xi and xj

belong to the same cluster.

Intuitively, the subspace detection property asserts that the self-similarity matrix
{ci}Ni=1 has no false positives, where every non-zero entry in {ci}ni=1 links two data
points xi and xj to the same cluster. The first property in Definition 9.1 further rules
out the trivial solution of ci ≡ 0.

Part of this chapter is in the paper titled “Improved Sample Complexity in Sparse Subspace
Clustering with Noisy and Missing Observations” by Yining Wang, Bin Shi et al. (2018) presently
under review for publication in AISTATS.
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The SDP stated in Definition 9.1 is, however, not sufficient for the success
of a follow-up spectral clustering algorithm, or any clustering algorithm, as the
“similarity graph” constructed by connecting every pairs of (i, j) with cij �= 0
might be poorly connected. Such “graph connectivity” is a well-known open
problem in sparse subspace clustering [NH11] and remains largely unsolved except
under strong assumptions [WWS16]. Nevertheless, in practical scenarios the SDP
criterion correlates reasonably well with clustering performance [WX16, WWS15a]
and therefore we choose to focus on the SDP success condition only.

9.1.1 The Non-Uniform Semi-Random Model

We adopt the following non-uniform semi-random model throughout the paper:

Definition 9.2 (Non-Uniform Semi-Random Model) Suppose yi belongs to clus-
ter S� and let yi = U�αi , where U� ∈ R

n×d� is an orthonormal basis of U�

and αi is a d�-dimensional vector with ‖αi‖2 = 1. We assume that αi are
i.i.d. distributed according to an unknown underlying distribution P�, and that the
density p� associated with P� satisfies

0 < C · p0 ≤ p�(α) ≤ C · p0 < ∞ ∀α ∈ R
d� , ‖α‖2 = 1

for some constants C,C, where p0 is the density of the uniform measure on {u ∈
R

d� : ‖u‖2 = 1}.
Remark 9.1 Our non-uniform semi-random model ensures that ‖yi‖2 = 1 for all
i ∈ [N ], a common normalizing assumption made in previous works on sparse
subspace clustering [SC12, SEC14, WX16]. However, such a property is only
used in our theoretical analysis, and in our COCOLASSO algorithm the norms of
{yi}Ni=1 are assumed unknown. Indeed, if the exact norms of ‖yi‖2 are known to the
data analyst the sample complexity in our analysis can be further improved, as we
remarked in Remark 9.3.

The non-uniform semi-random model considers fixed (deterministic) subspaces
{S�}, but assumes that data points within each low-dimensional subspace are inde-
pendently generated from an unknown distribution P� with densities bounded away
and above from below. This helps simplifying the “inter-subspace incoherence”
(Definition 9.6) in our proof and yields interpretable results.

Compared with existing definitions of semi-random models [SC12, WX16,
HB15, PCS14], the key difference is that in our model data are not uniformly
distributed on each low-dimensional subspace. Instead, it is assumed that the data
points are i.i.d., and that the data density is bounded away from both above and
below. Such non-uniformity rules out algorithms that exploit the E[yi] = 0 property
in traditional semi-random models which is too strong and rarely holds true in
practice.
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Because the underlying subspaces are fixed, quantities that characterize the
“affinity” between these subspace are needed because closer subspaces are harder
to distinguish from each other. We adopt the following affinity measure, which was
commonly used in previous works on sparse subspace clustering [WX16, WWS15a,
CJW17]:

Definition 9.3 (Subspace Affinity) Let Uj and Uk be two linear subspaces of Rn

of dimension dj and dk . The affinity between Uj and Uk is defined as χ2
j,k :=

cos2 θ
(1)
jk + · · · + cos2 θ

(min(dj ,dk))

jk , where θ
(�)
jk is the �th canonical angle between

Uj and Uk .

Remark 9.2 χjk = ‖U	
j Uk‖F , where Uj ∈ R

n×dj , Uk ∈ R
n×dk are orthonormal

basis of Uj ,Uk .

Throughout the paper we also write χ := maxj �=k χj,k .
For the missing data model, we need the following additional “inner-subspace”

incoherence of the subspaces to ensure that the observed data entries contain
sufficient amount of information. Such incoherence assumptions were widely
adopted in the matrix completion community [CR09, KMO10, Rec11].

Definition 9.4 (Inner-Subspace Incoherence) Fix � ∈ [L] and let U� ∈ R
n×d� be

an orthonormal basis of subspace U�. The subspace incoherence of U� is the smallest
μ� such that

max
1≤i≤n

‖e	
i U�‖2

2 ≤ μ�d�/n.

With the above definitions, we are now ready to state the following two theorems
which give sufficient success conditions for the self-similarity matrix {ci}ni=1
produced by COCOLASSO.

Theorem 9.1 (The Gaussian Noise Model) Suppose λ 
 1/
√

d and �jk 

σ 2

√
log N

n
for all j, k ∈ [N ]. Suppose also that N� ≥ 2Cd�/C. There exists a

constant K0 > 0 such that, if

σ < K0

(
n/d3 log2(CN/C)

)1/4
,

then the optimal solution {ci}Ni=1 of the COCOSSC estimator satisfies the subspace
detection property (SDP) with probability 1 − O(N−10).

Theorem 9.2 (The Missing Data Model) Suppose λ 
 1/
√

d , �jk 
 μd log N

ρ
√

n
for

j �= k and �jk 
 μd log N

ρ3/2√n
for j = k. Suppose also that N� ≥ 2Cd�/C. There exists

a constant K1 > 0 such that, if

ρ > K1 max
{
(μχd5/2 log2 N)2/3 · n−1/3, (μ2d7/2 log2 N)2/5 · n−2/5

}
,
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then the optimal solution {ci}Ni=1 of the COCOSSC estimator satisfies the subspace
detection property (SDP) with probability 1 − O(N−10).

Remark 9.3 If the norms of the data points ‖yi‖2 are exactly known and can be
explicitly used in algorithm design, the diagonal terms of A in Eq. (4.1) can be
directly set to Aii = ‖yi‖2

2 in order to avoid the ψ2 concentration term in our
proof (Definition 9.5). This would improve the sample complexity in the success
condition to ρ > 	(n−1/2), matching the sample complexity in linear regression
problems with missing design entries [WWBS17].

Theorems 9.1 and 9.2 show that when the noise magnitude (σ in the Gaussian
noise model and ρ−1 in the missing data model) is sufficiently small, a careful
choice of tuning parameter λ results in a self-similarity matrix {ci} satisfying
the subspace detection property. Furthermore, the maximum amount of noise our
method can tolerate is σ = O(n1/4) and ρ = 	(χ2/3n−1/3 + n−2/5), which
improves over the sample complexity of existing methods (see Table 4.1).

9.1.2 The Fully Random Model

When the underlying subspaces U1, · · · ,UL are independently uniformly sampled,
a model referred to as the fully random model in the literature [SC12, SEC14,
WX16], the success condition in Theorem 9.2 can be further simplified:

Corollary 9.1 Suppose subspaces U1, · · · ,UL have the same intrinsic dimension
d and are uniformly sampled, the condition in Theorem 9.2 can be simplified to

ρ > K̃1(μ
2d7/2 log2 N)2/5 · n−2/5,

where K̃1 > 0 is a new universal constant.

Corollary 9.1 shows that in the fully random model, the χ2/3n−1/3 term in
Theorem 9.2 is negligible and the success condition becomes ρ = 	(n−2/5), strictly
improving existing results (see Table 4.1).

9.2 Proofs

In this section we give proofs of our main results. Due to space constraints, we only
give a proof framework and leave the complete proofs of all technical lemmas to the
appendix.
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9.2.1 Noise Characterization and Feasibility of Pre-Processing

Definition 9.5 (Characterization of Noise Variables) {zi} are independent ran-
dom variables and E[zi] = 0. Furthermore, there exist parameters ψ1, ψ2 > 0 such
that with probability 1 − O(N−10) the following holds uniformly for all i, j ∈ [N ]:

∣∣z	
i yj

∣∣ ≤ ψ1

√
log N

n
; ∣∣z	

i zj − E[z	
i zj ]

∣∣ ≤
⎧
⎨
⎩

ψ1

√
log N

n
i �= j ;

ψ2

√
log N

n
i = j.

Proposition 9.1 Suppose � are set as �jk ≥ 3ψ1

√
log N

n
for j �= k and �jk ≥

3ψ2

√
log N

n
for j = k. Then with probability 1 − O(N−10) the set S defined in

Eq. (4.1) is not empty.

The following two lemmas derive explicit bounds on ψ1 and ψ2 for the two noise
models.

Lemma 9.1 The Gaussian noise model satisfies Definition 9.5 with ψ1 � σ 2 and
ψ2 � σ 2.

Lemma 9.2 Suppose ρ = 	(n−1/2). The missing data model satisfies Defini-
tion 9.5 with ψ1 � ρ−1μd

√
log N and ψ2 � ρ−3/2μd

√
log N , where d =

max�∈[L] d� and μ = max�∈[L] μ�.

9.2.2 Optimality Condition and Dual Certificates

We first write down the dual problem of COCOSSC:

Dual COCOSSC : νi = arg max
νi∈RN

x̃	
i νi − 1

2λ
‖νi‖2

2 s.t.

∥∥∥X̃	−iνi

∥∥∥∞ ≤ 1.

(9.1)

Lemma 9.3 (Dual Certificate, Lemma 12 of [WX16]) Suppose there exists
triplet (c, e, ν) such that x̃i = X̃−ic + e, c has support S ⊆ T ⊆ [N ], and that
ν satisfies

[X̃−i]	S ν = sgn(cS), ν = λe,

∥∥∥[X̃−i]	T ∩Scν

∥∥∥∞ ≤ 1,

∥∥∥[X̃−i]	T cν

∥∥∥∞ < 1,

then any optimal solution ci to Eq. (4.2) satisfies [ci]T c = 0.

To construct such a dual certificate and to de-couple potential statistical depen-
dency, we follow [WX16] to consider a constrained version of the optimization
problem. Let X̃(�)

−i denote the data matrix of all but x̃i in cluster S�. The constrained
problems are defined as follows:
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Constrained Primal : c̃i = arg min
ci∈RN�−1

‖ci‖1 + λ/2 · ‖x̃i − X̃(�)
−i ci‖2

2; (9.2)

Constrained Dual : ν̃i = arg max
νi∈RN�−1

x̃	
i νi − 1/(2λ)

· ‖νi‖2
2 s.t. ‖(X̃(�)

−i )
	νi‖∞ ≤ 1. (9.3)

With c = [c̃i , 0S−�
], ν = [ν̃i , 0S−�

], and e = x̃i − X̃(�)
−i c̃i , the certificate satisfies

the first three conditions in Lemma 9.3 with T = S� and S = supp(c̃i ). Therefore,
we only need to establish that |〈x̃j , ν̃i〉| < 1 for all x̃j /∈ S� to show no false
discoveries, which we prove in the next section.

9.2.3 Deterministic Success Conditions

Define the following deterministic quantities as inter-subspace incoherence and in-
radius, which are important quantities in deterministic analysis of sparse subspace
clustering methods [SC12, WX16, SEC14].

Definition 9.6 (Inter-Subspace Incoherence) The inter-subspace incoherence μ̃

is defined as μ̃ := max�∈[L] maxyi∈S�
maxyj /∈S�

∣∣〈yi , yj 〉
∣∣.

Definition 9.7 (In-Radius) Define ri as the radius of the largest ball inscribed in
the convex body of {±Y(�)

−j }. Also define that r := min1≤i≤N ri .

The following lemma derives an upper bound on |〈x̃j , ν̃i〉|, which is proved in
the appendix.

Lemma 9.4 For every (i, j) belonging to different clusters, |〈x̃j , ν̃i〉| � λ(1 +
‖c̃i‖1)(μ̃ + ψ1

√
log N/n), where ‖c̃i‖1 � r−1(1 + r−1λ(ψ1 + ψ2)

√
log N/n).

Lemmas 9.3 and 9.4 immediately yield the following theorem:

Theorem 9.3 (No False Discoveries) There exists an absolute constant κ1 > 0
such that if

λ
r

(
1 + λ

r
(ψ1 + ψ2)

√
log N

n

)
·
(

μ̃ + ψ1

√
log N

n

)
< κ1, (9.4)

then the optimal solution ci of the COCOSSC estimator in Eq. (4.2) has no false
discoveries, that is, cij = 0 for all xj that belongs to a different cluster of xi .

The following theorem shows conditions under which ci is not the trivial solution
ci = 0.
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Theorem 9.4 (Avoiding Trivial Solutions) There exists an absolute constant κ2 >

0 such that, if

λ

(
r − ψ1

√
log N

n

)
> κ2, (9.5)

then the optimal solution ci of the COCOSSC estimator in Eq. (4.2) is non-trivial,
that is, ci �= 0.

Finally, we remark that choosing r = c/λ for some small constant c > 0 (depending
only on κ1 and κ2), the choice of λ satisfies both theorems 9.3 and 9.4 provided that

max

{
ψ1
r

√
log N

n
,

μ̃

r2 ,
μ̃(ψ1+ψ2)

r3

√
log N

n
,

ψ1(ψ1+ψ2)

r3
log N

n

}
< κ3 (9.6)

for some sufficiently small absolute constant κ3 > 0 that depends on κ1, κ2, and c.

9.2.4 Bounding μ̃ and r in Randomized Models

Lemma 9.5 Suppose N� = 	(Cd�/C�). Under the non-uniform semi-random

model, with probability 1 − O(N−10) it holds that μ̃ � χ

√
log(CN/C) and

r � 1/
√

d.

Lemma 9.6 Suppose U1, . . . ,UL are independently uniformly sampled linear sub-
spaces of dimension d in R

n. Then with probability 1 − O(N−10) we have that
χ � d

√
log N/n and μ �

√
log N .

9.3 Numerical Results

Experimental Settings and Methods We conduct numerical experiments based
on synthetic generated data, using a computer with Intel Core i7 CPU (4 GHz) and
16 GB memory. Each synthetic data set has ambient dimension n = 100, intrinsic
dimension d = 4, number of underlying subspaces L = 10, and a total number
of N = 1000 unlabeled data points. The observation rate ρ and Gaussian noise
magnitude σ vary in our simulations. Underlying subspaces are generated uniformly
at random, corresponding to our fully random model. Each data point has an equal
probability of being assigned to any cluster and is generated uniformly at random
on its corresponding low-dimensional subspace.

We compare the performance (explained later) of our COCOSSC approach,
and two popular existing methods LASSO SSC and the de-biased Dantzig selector.
The �1 regularized self-regression steps in both COCOSSC and LASSO SSC are
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implemented using ADMM. The pre-processing step of COCOSSC is implemented
using alternating projections initialized at �̃ = X	X − D. Unlike the theoretical
recommendations, we choose � in Eq. (4.1) to be very large (3 × 103 for diagonal
entries and 103 for off-diagonal entries) for fast convergence. The de-biased Dantzig
selector is implemented using linear programming.

Evaluation Measure We consider two measures to evaluate the performance of
algorithms being compared. The first one evaluates the quality of the similarity
matrix {ci}Ni=1 by measuring how far (relatively) it deviates from having the
subspace detection property. In particular, we consider the RelViolation metric
propositioned in [WX16] defined as

RelViolation(C,M) = (
∑

(i,j)/∈M|C|i,j )/(∑(i,j)∈M|C|i,j ), (9.7)

where M is the mask of ground truth with all (i, j) satisfying xi , xj ∈ S(�) for some
�. A high RelViolation indicates frequent deviation from the subspace detection
propositionerty and therefore poorer quality of {ci}Ni=1.

For clustering results, we use the Fowlkes–Mallows index [FM83] to evaluate
their quality. Suppose A ⊆ {(i, j) ∈ [N ] × [N ]} consists of pairs of data points
that are clustered together by a clustering algorithm, and A0 is the ground truth
clustering. Define T P = |A ∩ A0|, FP = |A ∩ Ac

0|, FN = |Ac ∩ A0|, T N =
|Ac ∩ Ac

0|. The Fowlkes–Mallows (FM) index is then expressed as

FM =
√

T P 2/(T P + FP)(T P + FN).

The FM index of any two clusterings A and A0 is always between 0 and 1, with an
FM index of one indicating perfectly identical clusterings and an FM index close to
zero otherwise.

Results We first give a qualitative illustration of similarity matrices {ci}Ni=1 pro-
duced by the three algorithms of LASSO SSC, de-biased Dantzig selector, and
COCOSSC in Fig. 9.1. We observe that the similarity matrix of LASSO SSC has
several spurious connections, and both LASSO SSC and the de-biased Dantzig
selector suffer from graph connectivity issues as signals within each block (cluster)
are not very strong. On the other hand, the similarity matrix of COCOSSC produces
convincing signals within each block (cluster). This shows that our propositioned
COCOSSC approach not only has few false discoveries as predicted by our
theoretical results, but also has much better graph connectivity which our theory
did not attempt to cover.

In Fig. 9.2 we report the Fowlkes–Mallows (FM) index for clustering results and
RelViolation scores of similarity matrices {ci}Ni=1 under various noise magnitude (σ )
and observation rates (ρ) settings. A grid of tuning parameter values λ are attempted
and the one leading to the best performance is reported. It is observed that our
propositioned COCOLASSO consistently outperforms its competitors LASSO SSC
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Fig. 9.1 Heatmaps of similarity matrices {ci}Ni=1, with brighter colors indicating larger absolute
values of matrix entries. Left: LassoSSC; Middle: De-biased Dantzig selector; Right: CoCoSSC

Fig. 9.2 The Fowlkes–Mallows (FM) index of clustering results (top row) and RelViolation scores
(bottom row) of the three methods, with noise of magnitude σ varying from 0 to 1. Left column:
missing rate 1 − ρ = 0.03, middle column: 1 − ρ = 0.25, right column: 1 − ρ = 0.9
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and de-biased Dantzig selector. Furthermore, COCOLASSO is very computationally
efficient and converges in 8–15 seconds on each synthetic data set. On the other
hand, de-biased Dantzig selector is computationally very expensive and typically
takes over 100 seconds to converge.

9.4 Technical Details

Proof of Proposition 9.1 By Definition 9.5 we know that |�̃−i − YT−iY−i | ≤ |�|
in an element-wise sense. Also note that Y	Y is positive semidefinite. Thus,
Y	Y ∈ S. ��
Proofs of Lemmas 9.1 and 9.2 Lemma 9.1 is proved in [WX16]. See Lemmas 17
and 18 of [WX16] and note that E[z	

i zi] = σ 2.
We next prove Lemma 9.2. We first consider |z	

i yj |. Let z = zi , y = yi ,
ỹ = yj , and r = Rj ·. Define Ti := ziyi = (1 − r i/ρ)yi ỹj . Because r is

independent of y and ỹ, we have that E[Ti] = 0, E[T 2
i ] ≤ y2

i ỹi
2/ρ ≤ μ2d2/ρn2,

and |Ti | ≤ μd/ρn =: M almost surely. Using Bernstein’s inequality, we know that
with probability 1 − O(N−10)

|z	
i yj | =

∣∣∣∣
T∑

i=1

Ti

∣∣∣∣ �
√√√√

n∑
i=1

E[T 2
i ] · log N + M log N � μd

√
log2 N

ρn
.

We next consider |z	
i zj | and the i �= j case. Let y = yi , ỹ = yj , r = Ri·, and

r̃ = Rj ·. By definition of μ, we have that ‖y‖2∞ ≤ μdi/n and ‖ỹ‖2∞ ≤ μdj/n.
Define Ti := zi z̃i = (1 − r i/ρ)(1 − r̃ i/ρ) · yi ỹi . Because r and r̃ are independent,
E[Ti] = 0, E[T 2

i ] ≤ y2
i ỹ

2
i /ρ

2 ≤ μ2d2/ρ2n2, and |Ti | ≤ μd/ρ2n =: M almost
surely. Using Bernstein’s inequality, we know that with probability 1 − O(N−10)

∣∣∣∣
n∑

i=1

Ti

∣∣∣∣ �
√√√√

n∑
i=1

E[T 2
i ] · log N + M log N � μd

ρ

√
log2 N

n
,

where the last inequality holds because ρ = O(n−1/2).
Finally is the case of |z	

i zj | and i = j . Let again z := zi = zj . Define Ti :=
z2
i − E[z2

i ] = (1 − r i/ρ)2y2
i − (1 − ρ)2/ρ · y2

i . It is easy to verify that E[Ti] = 0,
E[T 2

i ] � y4
i /ρ

3 ≤ μ2d2/ρ3n2, and |Ti | � y2
i /ρ

2 ≤ μd/ρ2n. Subsequently, with
probability 1 − O(N−10) we have

∣∣∣∣
n∑

i=1

Ti

∣∣∣∣ �
μd

ρ3/2

√
log2 N

n
.
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The estimation error of (1 − ρ)(X	X)ii for (1 − ρ)/ρ · ‖yi‖2
2 = (1 − ρ)/ρ can be

upper bounded similarly. ��
Proof of Lemma 9.4 Take �jk = 3ψ1

√
log N

n
for j �= k and �jk = 3ψ2

√
log N

n
. Fix

arbitrary x̃j /∈ S� and x̃i ∈ S�. Because ν̃i = λ(x̃i − X̃(�)
−i c̃i ), we have that

∣∣〈x̃j , ν̃i〉
∣∣ = λ

∣∣x̃	
j (x̃i + X̃(�)

−i c̃i )
∣∣ ≤ λ(1 + ‖c̃i‖1) · sup

x̃i∈S�

∣∣〈x̃j , x̃i〉
∣∣

≤ λ(1 + ‖c̃i‖1) ·
(

μ̃ + sup
x̃i /∈S�

∣∣〈x̃j , x̃i〉 − 〈yj , yi〉
∣∣
)

� λ(1 + ‖c̃i‖1) ·
(

μ̃ + ψ1

√
log N

n

)
, (9.8)

where the last inequality holds by applying Definition 9.5 and the fact that

∣∣〈x̃i , x̃j 〉 − 〈ỹi , ỹj 〉
∣∣ ≤ ∣∣(�̃+)ij − (�̃)ij

∣∣ + ∣∣(�̃)ij − 〈ỹi , ỹj 〉
∣∣

≤ ∣∣�ij

∣∣ + ∣∣〈x̃i , x̃j 〉 − 〈ỹi , ỹj 〉
∣∣

≤ ∣∣�ij

∣∣ + ∣∣〈z̃i , ỹj 〉
∣∣ + ∣∣〈ỹj , z̃i〉

∣∣ + ∣∣〈z̃j , z̃i〉
∣∣

� ψ1

√
log N

n
for i �= j.

To bound ‖c̃i‖1, consider an auxiliary noiseless problem:

ĉi := arg min
ci

‖ci‖1 s.t. yi = Y(�)
−i ci . (9.9)

Note that when r > 0 Eq. (9.9) is always feasible. Following standard analysis
(e.g., Lemma 15 and Eq. (5.15) of [WX16]), it can be established that ‖ĉi‖1 ≤
1/ri ≤ 1/r . On the other hand, by optimality we have ‖c̃i‖1 + λ

2 ‖x̃i − X̃(�)
−i c̃i‖2

2 ≤
‖ĉi‖1 + λ

2 ‖x̃i − X̃(�)
−i ĉi‖2

2. Therefore,

‖c̃i‖1 ≤ ‖ĉi‖1 + λ

2

∥∥∥x̃i − X̃(�)
−i ĉi

∥∥∥
2

2

� ‖ĉi‖1 + λ

2

∥∥∥yi − Y(�)
−i ĉi

∥∥∥
2

2
+ (1 + ‖ĉi‖1)

2 · λ

2
sup

yi ,yj ∈S�

∣∣〈x̃i , x̃j 〉 − 〈yi , yj 〉
∣∣

= ‖ĉi‖1 + (1 + ‖ĉi‖1)
2 · λ

2
sup

yi ,yj ∈S�

∣∣〈x̃i , x̃j 〉 − 〈yi , yj 〉
∣∣
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� ‖ĉi‖1 + (1 + ‖ĉi‖1)
2 · (ψ1 + ψ2)

√
log N

n

� 1

r

(
1 + λ

r
(ψ1 + ψ2)

√
log N

n

)
. (9.10)

��
Proof of Theorem 9.4 Following the analysis of Lasso SSC solution path in
[WX16], it suffices to show that λ > 1/‖x̃	

i X̃−i‖∞. On the other hand, note that

‖y	
i Y−i‖∞ ≥ ‖y	

i Y(�)
−i‖∞ ≥ ri ≥ r (see, for example, Eq. (5.19) of [WX16]).

Subsequently,

∥∥∥x̃	
i X̃−i

∥∥∥∞ ≥
∥∥∥y	

i Y−i

∥∥∥∞ − sup
j �=i

∣∣〈x̃i , x̃j 〉 − 〈yi , yj 〉
∣∣ � r − ψ1

√
log N

n
.

��
Proof of Lemma 9.5 We first prove

max
yi∈Sk

max
yj ∈S�

∣∣〈yi , yj 〉
∣∣ � χk� · log(CN/C)√

dkd�

∀j �= k ∈ [L]. (9.11)

Let Nk and N� be the total number of data points in Sk and S�, and let Pk

and P� be the corresponding densities which are bounded from both above and
below by Cp0 and Cp0. Consider a rejection sampling procedure: first sample α

randomly from the uniform measure over {α ∈ R
dk : ‖α‖2 = 1}, and then reject

the sample if u > pk(α)/Cp0, where u ∼ U(0, 1). Repeat the procedure until
Nk samples are obtained. This procedure is sound because pk/p0 ≤ C, and the
resulting (accepted) samples are i.i.d. distributed according to Pk . On the other hand,
for any α the probability of acceptance is lower bounded by C/C. Therefore, the
procedure terminates by producing a total of O(CNk/C) samples (both accepted
and rejected). Thus, without loss of generality we can assume both Pk and P�

are uniform measures on the corresponding spheres, by paying the cost of adding
Ñk = O(CNk/C) and Ñ� = O(CN�/C) points to each subspace.

Now fix yi = Ukαi and yj = U�αj , where αi ∈ R
dk , αj ∈ R

d� , and ‖αi‖2 =
‖αj‖2 = 1. Then both αi and αj are uniformly distributed on the low-dimensional
spheres, and that |〈yi , yj 〉| = |α	

i (U	
k U�)αj |. Applying Lemma 7.5 of [SC12] and

note that χk� = ‖U	
k U�‖F we complete the proof of Eq. (9.11).

We next prove

ri �

√
log(CN�/Cd�)

d�

∀i ∈ [N ], � ∈ [L], xi ∈ S�. (9.12)
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Let P� be the underlying measure of subspace S�. Consider the decomposition
P� = C/C · P0 + (1 − C/C) · P ′

�, where P0 is the uniform measure. Such a
decomposition and the corresponding density P ′

� exist because CP0 ≤ P� ≤ CP0.
This shows that the distribution of points in subspace S� can be expressed as a
mixture distribution, with a uniform density mixture with weight probability C/C.
Because ri decreases with smaller data set, it suffices to consider only the uniform
mixture. Thus, we can assume P� is the uniform measure at the cost of considering
only Ñ� = 	(CN�/C) points in subspace S�. Applying Lemma 21 of [WX16] and
replacing N� with Ñ� we complete the proof of Eq. (9.12).

Finally Lemma 9.5 is an easy corollary of Eqs. (9.11) and (9.12). ��
Proof of Lemma 9.6 Fix k, � ∈ [L] and let Uk = (uk1, · · · ,ukd), U� =
(u�1, · · · ,u�d) be orthonormal basis of Uk and U�. Then χk� = ‖U	

k U�‖F ≤
d‖U	

k U�‖max = d · sup1≤i,j≤d |〈uki ,u�j 〉|. Because Uk and U� are random
subspaces, uki and u�j are independent vectors distributed uniformly on the d-
dimensional unit sphere. Applying Lemma 17 of [WX16] and a union bound over
all i, j, k, � we prove the upper bound on χ . For the upper bound on μ, simply note

that ‖ujk‖∞ �
√

log N
n

with probability 1 − O(N−10) by standard concentration
result for Gaussian suprema. ��

9.5 Concluding Remarks

Our numerical simulations first demonstrated the spectral clustering accuracy with
respect to the effect of Gaussian noise. In this experiment, ambient dimension n =
100, intrinsic dimension d = 4, the number of clusters L = 10, the number of data
points N = 1000, and the Gaussian noise is Zij N(0, σ/

√
n, where σ is changed

from 0.00 to 1.00 with step length 0.01.
The second experiments investigated the RelViolation with respect to Gaussian

noise σ and missing rate ρ. We change σ from 0 to 1 with step length 0.01 and
set ρ as 0.03, 0.05, and 0.10, respectively. In these experiments, ambient dimension
n = 10, intrinsic dimension d = 2, the number of clusters L = 5, and the number
of data points N = 100.

Our last numerical simulations test the effects of Gaussian noise σ , subspace
rand d, and number of clusters L, respectively.

An interesting future direction is to further improve the sample complexity to
ρ = 	(n−1/2) without knowing the norms ‖yi‖2. Such sample complexity is likely
to be optimal because it is the smallest observation rate under which off-diagonal
elements of sample covariance X	X can be consistently estimated in max norm,
which is also shown to be optimal for related regression problems [WWBS17].
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