
Chapter 8
A Conservation Law Method Based on
Optimization

This chapter is organized as follows: In Sect. 8.1, we warm up with an analytical
solution for simple 1-D quadratic function. In Sect. 8.2, we propose the artificially
dissipating energy algorithm, energy conservation algorithm, and the combined
algorithm based on the symplectic Euler scheme, and remark a second-order
scheme—the Störmer–Verlet scheme. In Sect. 8.3, we propose the locally theoret-
ical analysis for high-speed convergence. Section 8.4 proposes the experimental
demonstration. In Sect. 8.4, we propose the experimental result for the proposed
algorithms on strongly convex, non-strongly convex, and non-convex functions
in high dimension. Finally, we propose some perspective view for the proposed
algorithms and two adventurous ideas based on the evolution of Newton’s second
law—fluid and quantum.

8.1 Warm-up: An Analytical Demonstration for Intuition

For a simple 1-D function with ill-conditioned Hessian, f (x) = 1
200x2 with the

initial position at x0 = 1000. The solution and the function value along the solution
for (3.9) are given by

⎧
⎪⎨

⎪⎩

x(t) = x0e
− 1

100 t

f (x(t)) = 1

200
x2

0e− 1
50 t .

(8.1)

(8.2)

Parts of this chapter is in the paper titled “A Conservation Law Method in Optimization” by Bin
Shi et al. (2017) published by 10th NIPS Workshop on Optimization for Machine Learning.
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The solution and the function value along the solution for (3.10) with the optimal
friction parameter γt = 1

5 are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(t) = x0

(

1 + 1

10
t

)

e− 1
10 t

f (x(t)) = 1

200
x2

0

(

1 + 1

10
t

)2

e− 1
5 t .

(8.3)

(8.4)

The solution and the function value along the solution for (3.12) are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t) = x0 cos

(
1

10
t

)

and v(t) = x0 sin

(
1

10
t

)

f (x(t)) = 1

200
x2

0 cos2
(

1

10
t

)

,

(8.5)

(8.6)

stop at the point that |v| arrives maximum. Combined with (8.2), (8.4), and (8.6)
with stop at the point that |v| arrives maximum, the function value approximating
f (x�) is shown as below.

From the analytical solution for local convex quadratic function with maximum
eigenvalue L and minimum eigenvalue μ, in general, the step size by 1√

L
for

momentum method and Nesterov’s accelerated gradient method, hence the simple
estimate for iterative times is approximately

n ∼ π

2

√
L

μ
.

Hence, the iterative times n is proportional to the reciprocal of the square root of
minimal eigenvalue

√
μ, which is essentially different from the convergence rate of

the gradient method and momentum method (Fig. 8.1).
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Fig. 8.1 Minimizing f (x) = 1
200 x2 by the analytical solution for (8.2), (8.4), and (8.6) with

stop at the point that |v| arrives maximum, starting from x0 = 1000 and the numerical step size
�t = 0.01
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8.2 Symplectic Scheme and Algorithms

In this chapter, we utilize the first-order symplectic Euler scheme from numerically
solving Hamiltonian system as below to propose the corresponding artificially
dissipating energy algorithm to find the global minima for convex function, or local
minima in non-convex function

{
xk+1 = xk + hvk+1

vk+1 = vk − h∇f (xk).
(8.7)

Then by the observability of the velocity, we propose the energy conservation
algorithm for detecting local minima along the trajectory. Finally, we propose a
combined algorithm to find better local minima between some local minima.

Remark 8.1 In all the algorithms below, the symplectic Euler scheme can be
replaced by the Störmer–Verlet scheme

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vk+1/2 = vk − h

2
∇f (xk)

xk+1 = xk + hvk+1/2

vk+1 = vk+1/2 − h

2
∇f (xk+1).

(8.8)

This works better than the symplectic scheme even if doubling step size and keeping
the left–right symmetry of the Hamiltonian system. The Störmer–Verlet scheme is
the natural discretization for 2nd-order ODE which is named as leap-frog scheme in
PDEs

xk+1 − 2xk + xk−1 = −h2∇f (xk). (8.9)

We remark that the discrete scheme (8.9) is different from the finite difference
approximation by the forward Euler method to analyze the stability of 2nd ODE
in [SBC14], since the momentum term is biased.

8.2.1 Artificially Dissipating Energy Algorithm

Firstly, the artificially dissipating energy algorithm based on (8.7) is proposed as
below.
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Algorithm 1 Artificially dissipating energy algorithm
1: Given a starting point x0 ∈ dom(f )

2: Initialize the step length h, maxiter, and the velocity variable v0 = 0
3: Initialize the iterative variable viter = v0
4: while ‖∇f (x)‖ > ε and k < maxiter do
5: Compute viter from the below equation in (8.7)
6: if ‖viter‖ ≤ ‖v‖ then
7: v = 0
8: else
9: v = viter

10: end if
11: Compute x from the above equation in (8.7)
12: xk = x;
13: f (xk) = f (x);
14: k = k + 1;
15: end while

Remark 8.2 In the actual Algorithm 1, the codes in line 15 and 16 are not needed
in the while loop in order to speed up the computation.

A Simple Example for Illustration

Here, we use a simple convex quadratic function with ill-conditioned eigenvalue for
illustration as below:

f (x1, x2) = 1

2

(
x2

1 + αx2
2

)
, (8.10)

of which the maximum eigenvalue is L = 1 and the minimum eigenvalue is μ = α.
Hence the scale of the step size for (8.10) is

1

L
=
√

1

L
= 1.

In Fig. 8.2, we demonstrate the convergence rate of gradient method, momentum
method, Nesterov’s accelerated gradient method, and artificially dissipating energy
method with the common step size h = 0.1 and h = 0.5, where the optimal friction

parameter for momentum method γ = 1−√
α

1+√
α

with α = 10−5. A further result for

comparison with the optimal step size in gradient method h = 2
1+α

, the momentum

method h = 4
(1+√

α)2 , and Nesterov’s accelerated gradient method with h = 1 and

the artificially dissipating energy method with h = 0.5 is shown in Fig. 8.3.
With the illustrative convergence rate, we need to learn the trajectory. Since the

trajectories of all the four methods are so narrow in ill-condition function in (8.10),
we use a relatively good-conditioned function to show it as α = 1

10 in Fig. 8.4.
The fact highlighted in Fig. 8.4 demonstrates the gradient correction decreases

the oscillation when compared with the momentum method. A clearer observation
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Fig. 8.2 Minimizes the function in (8.10) for artificially dissipating energy algorithm comparing
with gradient method, momentum method, and Nesterov’s accelerated gradient method with stop
criteria ε = 1e − 6. The step size: Left: h = 0.1; Right: h = 0.5
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Fig. 8.3 Minimizes the function in (8.10) for artificially dissipating energy algorithm comparing
with gradient method, momentum method, and Nesterov’s accelerated gradient method with stop
criteria ε = 1e − 6. The Coefficient α: Left: α = 10−5; Right: α = 10−6

Fig. 8.4 The trajectory for
gradient method, momentum
method, Nesterov’s
accelerated method, and
artificially dissipating energy
method for the
function (8.10) with α = 0.1
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is the artificially dissipating method shares the same property with the other three
methods by the law of nature, that is, if the trajectory comes into the local minima
in one dimension it will not leave it very far. However, from Figs. 8.2 and 8.3, we
see the more rapid convergence rate from using the artificially dissipating energy
method.
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8.2.2 Detecting Local Minima Using Energy Conservation
Algorithm

Here, the energy conservation algorithm based on (8.7) is proposed as below.

Algorithm 2 Energy conservation algorithm
1: Given a starting point x0 ∈ dom(f )

2: Initialize the step size h and the maxiter
3: Initialize the velocity v0 > 0 and compute f (x0)

4: Compute the velocity x1 and v1 from Eq. (8.7), and compute f (x1)

5: for k = 1 : n do
6: Compute xk+1 and vk+1 from (8.7)
7: Compute f (xk+1)

8: if ‖vk‖ ≥ ‖vk+1‖ and ‖vk‖ ≥ ‖vk−1‖ then
9: Record the position xk

10: end if
11: end for

Remark 8.3 In Algorithm 2, we can set v0 > 0 so that the total energy is large
enough to climb up some high peak. Similar to Algorithm 1 defined earlier,
the function value f (x) is not need in the while loop in order to speed up the
computation.

The Simple Example for Illustration

Here, we use the non-convex function for illustration as below:

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

2 cos(x), x ∈ [0, 2π ]
cos(x) + 1, x ∈ [2π, 4π ]
3 cos(x) − 1, x ∈ [4π, 6π ],

(8.11)

which is the 2nd-order smooth function but not 3rd-order smooth. The maximum
eigenvalue can be calculated as below:

max
x∈[0,6π ] |f

′′(x)| = 3.

The step length is set h ∼
√

1
L

. We illustrate that Algorithm 2 simulates the
trajectory and find the local minima in Fig. 8.5.

Another 2D potential function is shown as below:

f (x1, x2) = 1

2

[
(x1 − 4)2 + (x2 − 4)2 + 8 sin(x1 + 2x2)

]
, (8.12)
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Fig. 8.5 Left: the step size h = 0.1 with 180 iterative times. Right: the step size h = 0.3 with 61
iterative times
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Fig. 8.6 The common step size is set h = 0.1. Left: the position at (2, 0) with 23 iterative times.
Right: the position at (0, 4) with 62 iterative times

which is the smooth function with domain in (x1, x2) ∈ [0, 8] × [0, 8]. The
maximum eigenvalue can be calculated as below:

max
x∈[0,6π ] |λ(f ′′(x))| ≥ 16.

The step length is set h ∼
√

1
L

. We illustrate that Algorithm 2 simulates the
trajectory and find the local minima as in Fig. 8.6.

Remark 8.4 We point out that the energy conservation algorithm for detecting local
minima along the trajectory cannot detect the saddle point in the sense of almost
every, since the saddle point in the original function f (x) is also a saddle point for
the energy function H(x, v) = 1

2‖v‖2 + f (x). The proof process is fully the same
in [LSJR16].
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8.2.3 Combined Algorithm

Finally, we propose the comprehensive algorithm combining the artificially dissi-
pating energy algorithm (Algorithm 1) and the energy conservation algorithm (2) to
find global minima.

Algorithm 3 Combined algorithm
1: Given some starting points x0,i ∈ dom(f ) with i = 1, . . . , n

2: Implement algorithm 2 detecting the position there exists local minima, noted as xj with j =
1, . . . , m

3: Implement algorithm 1 from the result on line 2 finding the local minima, noted as xk with
k = 1, . . . , l

4: Comparison of f (xk) with k = 1, . . . , l to find global minima.

Remark 8.5 We remark that the combined algorithm (Algorithm 3) cannot guar-
antee to find global minima if the initial position is not ergodic. The tracking
local minima is dependent on the trajectory. However, the time of computation
and precision based on the proposed algorithm is far better than the large sampled
gradient method. Our proposed algorithm first makes the identified global minima
to become possible.

8.3 An Asymptotic Analysis for the Phenomena of Local
High-Speed Convergence

In this section, we analyze the phenomena of high-speed convergence shown in
Figs. 8.1, 8.2, and 8.3. Without loss of generality, we use the translate transformation
yk = xk − x� (x� is the point of local minima) and vk = vk into (8.7), shown as
below:

{
yk+1 = yk + hvk+1

vk+1 = vk − h∇f (x� + yk),
(8.13)

the locally linearized scheme of which is given as below:

{
yk+1 = yk + hvk+1

vk+1 = vk − h∇2f (x�)yk.
(8.14)

Remark 8.6 The local linearized analysis is based on the stability theorem in finite
dimension, the invariant stable manifold theorem, and Hartman–Grobman linearized
map theorem [Har82]. The thought is firstly used in [Pol64] to estimate the local
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convergence of momentum method. And in the paper [LSJR16], the thought is
used to exclude the possibility of convergence to saddle point. However, the two
theorems above belong to the qualitative theorem of ODE. Hence, the linearized
scheme (8.14) is only an approximate estimate for the original scheme (8.13) locally.

8.3.1 Some Lemmas for the Linearized Scheme

Let A be the positive-semidefinite and symmetric matrix to represent ∇2f (x�)

in (8.14).

Lemma 8.1 The numerical scheme shown as below

(
xk+1

vk+1

)

=
(

I − h2A hI

−hA I

)(
xk

vk

)

(8.15)

is equivalent to the linearized symplectic Euler scheme (8.14), where we note that
the linear transformation is

M =
(

I − h2A hI

−hA I

)

. (8.16)

Proof

(
I −hI

0 I

)(
xk+1

vk+1

)

=
(

I 0
−hA I

)(
xk

vk

)

⇔
(

xk+1

vk+1

)

=
(

I − h2A hI

−hA I

)(
xk

vk

)

��
Lemma 8.2 For every 2n × 2n matrix M in (8.16), there exists the orthogonal
transformation U2n×2n such that the matrix M is similar as below:

UT MU =

⎛

⎜
⎜
⎜
⎝

T1

T2
. . .

Tn,

⎞

⎟
⎟
⎟
⎠

(8.17)

where Ti (i = 1, . . . , n) is a 2 × 2 matrix with the form

Ti =
(

1 − ω2
i h

2 h

−ω2
i h 1,

)

(8.18)

where ω2
i is the eigenvalue of the matrix A.
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Proof Let 
 be the diagonal matrix with the eigenvalues of the matrix A as below:


 =

⎛

⎜
⎜
⎜
⎝

ω2
1

ω2
2

. . .

ω2
n

⎞

⎟
⎟
⎟
⎠

.

Since A is positive define and symmetric, there exists orthogonal matrix U1 such
that

UT
1 AU1 = 
.

Let � be the permutation matrix satisfying

�i,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, j odd, i = j + 1

2

1, j even, i = n + j

2

0, otherwise,

where i is the row index and j is the column index. Then, let U = diag(U1, U1)�,
we have by conjugation

UT MU = �T

(
UT

1
UT

1

)(
I − h2A hI

−hA I

)(
U1

U1

)

�

= �T

(
I − h2
 hI

−h
 I

)

�

=

⎛

⎜
⎜
⎜
⎝

T1

T2
. . .

Tn

⎞

⎟
⎟
⎟
⎠

.

��
From Lemma 8.2, we know that Eq. (8.15) can be written as the equivalent form

(
(UT

1 x)k+1,i

(UT
1 v)k+1,i

)

= Ti

(
(UT

1 x)k,i

(UT
1 v)k,i

)

=
(

1 − ω2
i h

2 h

−ω2
i h 1

)(
(UT

1 x)k,i

(UT
1 v)k,i

)

, (8.19)

where i = 1, . . . , n.
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Lemma 8.3 For any step size h satisfying 0 < hωi < 2, the eigenvalues of the
matrix Ti are complex with absolute value 1.

Proof For i = 1, . . . , n, we have

|λI − Ti | = 0 ⇔ λ1,2 = 1 − h2ω2
i

2
± hωi

√

1 − h2ω2
i

4
.

��
Let θi and φi for i = 1, . . . , n for the new coordinate variables be as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos θi = 1 − h2ω2
i

2

sin θi = hωi

√

1 − h2ω2
i

4

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos φi = hωi

2

sin φi =
√

1 − h2ω2
i

4
.

(8.20)

In order to make θi and φi located in
(
0, π

2

)
, we need to shrink to 0 < hωi <

√
2.

Lemma 8.4 With the new coordinate in (8.20) for 0 < hωi <
√

2, we have

2φi + θi = π (8.21)

and
⎧
⎨

⎩

sin θi = sin(2φi) = hωi sin φi

sin(3φi) = −
(

1 − h2ω2
i

)
sin φi.

(8.22)

Proof With sum–product identities of trigonometric function, we have

sin(θi + φi) = sin θi cos φi + cos θi sin φi

= hωi

√

1 − h2ω2
i

4
· hωi

2
+
(

1 − h2ω2
i

2

)√

1 − h2ω2
i

4

=
√

1 − h2ω2
i

4

= sin φi.

Since 0 < hωi < 2, we have θi, φi ∈ (
0, π

2

)
, we can obtain that

θi + φi = π − φi ⇔ θi = π − 2φi
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and with the coordinate transformation in (8.20), we have

sin θi = hωi sin φi ⇔ sin(2φi) = hωi sin φi.

Next, we use sum–product identities of trigonometric function furthermore

sin(θi − φi) = sin θi cos φi − cos θi sin φi

= hωi

√

1 − h2ω2
i

4
· hωi

2
−
(

1 − h2ω2
i

2

)√

1 − h2ω2
i

4

=
(
h2ω2

i − 1
)
√

1 − h2ω2
i

4

= −
(

1 − h2ω2
i

)
sin φi

and with θi = π − 2φi , we have

sin(3φi) = −
(

1 − h2ω2
i

)
sin φi.

��
Lemma 8.5 With the new coordinate in (8.20), the matrix Ti (i = 1, . . . , n)
in (8.18) can expressed as below:

Ti = 1

ωi

(
e−iφi − eiφi

)

(
1 1

ωie
iφi ωie

−iφi

)(
eiθi 0
0 e−iθi

)(
ωie

−iφi −1
−ωie

iφi 1

)

. (8.23)

Proof For the coordinate transformation in (8.20), we have

Ti

(
1

ωie
iφi

)

=
(

1
ωie

iφi

)

eiθi and Ti

(
1

ωie
−iφi

)

=
(

1
ωie

−iφi

)

e−iθi .

Hence, (8.23) is proved. ��

8.3.2 The Asymptotic Analysis

Theorem 8.1 Let the initial value x0 and v0, after the first k steps without resetting
the velocity, the iterative solution (8.14) with the equivalent form (8.19) has the form
as below:
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(
(UT

1 x)k,i

(UT
1 v)k,i

)

= T k
i

(
(UT

1 x)0,i

(UT
1 v)0,i

)

=
(

− sin(kθi−φi)
sin φi

sin(kθi )
ωi sin φi

−ωi sin(kθi )
sin φi

sin(kθi+φi)
sin φi

)(
(UT

1 x)0,i

(UT
1 v)0,i

)

.

(8.24)

Proof With Lemma 8.5 and the coordinate transformation (8.20), we have

T k
i = 1

ωi

(
e−iφi − eiφi

)

(
1 1

ωie
iφi ωie

−iφi

)(
eiθi 0
0 e−iθi

)k (
ωie

−iφi −1
−ωie

iφi 1

)

= 1

ωi

(
e−iφi − eiφi

)

(
1 1

ωie
iφi ωie

−iφi

)(
ωei(kθi−φi) −eikθi

−ωe−i(kθi−φi) e−ikθi

)

=
(

− sin(kθi−φi)
sin φi

sin(kθi )
ωi sin φi

−ωi sin(kθi )
sin φi

sin(kθi+φi)
sin φi

)

.

The proof is complete. ��
Comparing (8.24) and (8.19), we can obtain that

sin(kθi − φi)

sin φi

= 1 − h2ω2
i .

With the initial value (x0, 0)T , then the initial value for (8.19) is (UT
1 x0, 0). In order

to make sure the numerical solution or the iterative solution owns the same behavior
as the analytical solution, we need to set 0 < hωi < 1.

Remark 8.7 Here, the behavior is similar as the thought in [LSJR16]. The step size
0 < hL < 2 makes sure the global convergence of gradient method. And the step
size 0 < hL < 1 makes the uniqueness of the trajectory along the gradient method,
the thought of which is equivalent of the existence and uniqueness of the solution
for ODE. Actually, the step size 0 < hL < 1 owns the property with the solution of
ODE, the continuous-limit version. A global existence of the solution for gradient
system is proved in [Per13].

For the good-conditioned eigenvalue of the Hessian ∇2f (x�), every method such as
gradient method, momentum method, Nesterov’s accelerated gradient method, and
artificially dissipating energy method has the good convergence rate shown by the
experiment. However, for our artificially dissipating energy method, since there are
trigonometric functions from (8.24), we cannot propose the rigorous mathematic
proof for the convergence rate. If everybody can propose a theoretical proof, it is
very beautiful. Here, we propose a theoretical approximation for ill-conditioned
case, that is, the direction with small eigenvalue λ(∇2f (x�))  L.

Assumption 8.1 If the step size h = 1√
L

for (8.14), for the ill-conditioned

eigenvalue ωi  √
L, the coordinate variable can be approximated by the analytical

solution as
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θi = hωi, and φi = π

2
. (8.25)

With Assumption 8.1, the iterative solution (8.24) can be rewritten as

(
(UT

1 x)k,i

(UT
1 v)k,i

)

=
(

cos(khωi)
sin(khωi)

ωi

−ωi sin(khωi) − cos(khωi)

)(
(UT

1 x)0,i

(UT
1 v)0,i

)

. (8.26)

Theorem 8.2 For every ill-conditioned eigen-direction, with every initial condition
(x0, 0)T , if Algorithm 1 is implemented at ‖viter‖ ≤ ‖v‖, then there exists an
eigenvalue ω2

i such that

kωih ≥ π

2
.

Proof When ‖viter‖ ≤ ‖v‖, then
∥
∥UT

1 viter

∥
∥ ≤ ∥

∥UT
1 v
∥
∥. While for the

∥
∥UT

1 v
∥
∥, we

can write in the analytical form

∥
∥
∥U

T
1 v

∥
∥
∥ =

√
√
√
√

n∑

i=1

ω2
i (U1x0)

2
i sin2(khωi),

if there is no kωih < π
2 ,
∥
∥UT

1 v
∥
∥ increases with k increasing. ��

For some i such that kωih approximating π
2 , we have

∣
∣(UT

1 x)k+1,i

∣
∣

∣
∣(UT

1 x)k,i

∣
∣

= cos ((k + 1)hωi)

cos (khωi)

= eln cos((k+1)hωi)−ln cos(khωi)

= e− tan(ξ)hωi

(8.27)

where ξ ∈ (khωi, (k + 1)hωi). Hence, with ξ approximating π
2 ,

∣
∣(UT

1 x)k,i

∣
∣

approximates 0 with the linear convergence, but the coefficient will also decay with
the rate e− tan(ξ)hωi with ξ → π

2 . With the Laurent expansion for tan ξ at π
2 , i.e.,

tan ξ = − 1

ξ − π
2

+ 1

3

(
ξ − π

2

)
+ 1

45

(
ξ − π

2

)3 + O
((

ξ − π

2

)5
)

,

the coefficient has the approximating formula

e− tan(ξ)hωi ≈ e

hωi
ξ− π

2 ≤
(π

2
− ξ

)n

,

where n is an arbitrary large real number in R
+ for ξ → π

2 .
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8.4 Experimental Demonstration

In this section, we implement the artificially dissipating energy algorithm (Algo-
rithm 1), energy conservation algorithm (Algorithm 2), and the combined algorithm
(Algorithm 3) into high-dimensional data for comparison with gradient method,
momentum method, and Nesterov’s accelerated gradient method (Fig. 8.7).

8.4.1 Strongly Convex Function

Here, we investigate the artificially dissipating energy algorithm (Algorithm 1) for
the strongly convex function for comparison with gradient method, momentum
method, and Nesterov’s accelerated gradient method (strongly convex case) by the
quadratic function as below:

f (x) = 1

2
xT Ax + bT x, (8.28)

where A is symmetric and positive-definite matrix. The two cases are shown as
below:

(a) The generate matrix A is 500 × 500 random positive define matrix with
eigenvalue from 1e − 6 to 1 with one defined eigenvalue 1e − 6. The generate
vector b follows i.i.d. Gaussian distribution with mean 0 and variance 1.

(b) The generate matrix A is the notorious example in Nesterov’s book [Nes13],
i.e.,
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10 10
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n
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ADEM
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10 -20
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10 10
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n
)-
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)

The Convergence Rate
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ADEM

a b

Fig. 8.7 Left: the case (a) with the initial point x0 = 0. Right: the case (b) with the initial point
x0 = 1000
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A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1
−1 2 −1

−1 2
. . .

. . .
. . .

. . .

. . .
. . . −1
−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

the eigenvalues of the matrix are

λk = 2 − 2 cos

(
kπ

n + 1

)

= 4 sin2
(

kπ

2(n + 1)

)

,

and n is the dimension of the matrix A. The eigenvector can be solved by the
second Chebyshev’s polynomial. We implement dim(A) = 1000 and b is zero
vector. Hence, the smallest eigenvalue is approximating

λ1 = 4 sin2
(

π

2(n + 1)

)

≈ π2

10012
≈ 10−5.

8.4.2 Non-Strongly Convex Function

Here, we investigate the artificially dissipating energy algorithm (Algorithm 1) for
the non-strongly convex function for comparison with gradient method, Nesterov’s
accelerated gradient method (non-strongly convex case) by the log-sum-exp func-
tion as below:

f (x) = ρ log

[
n∑

i=1

exp

( 〈ai, x〉 − bi

ρ

)]

, (8.29)

where A is the m×n matrix with ai , (i = 1, . . . , m) and the column vector of A and
b is the n×1 vector with component bi . ρ is the parameter. We show the experiment
in (8.29): the matrix A = (

aij

)

m×n
and the vector b = (bi)n×1 are set by the entry

following i.i.d Gaussian distribution for the parameter ρ = 5 and ρ = 10 (Fig. 8.8).

8.4.3 Non-Convex Function

For the non-convex function, we exploit classical test function, known as artificial
landscape, to evaluate characteristics of optimization algorithms from general
performance and precision. In this paper, we show our algorithms implementing on
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Fig. 8.8 The convergence rate is shown from the initial point x0 = 0. Left: ρ = 5; Right: ρ = 10
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Fig. 8.9 Detecting the number of the local minima of 2-D Styblinski–Tang function by Algo-
rithm 3 with step length h = 0.01. The red points are recorded by Algorithm 2 and the blue points
are the local minima by Algorithm 1. Left: The initial position (5, 5); Right: The initial position
(−5, 5)

the Styblinski–Tang function and Shekel function, which is recorded in the virtual
library of simulation experiments.1 Firstly, we investigate Styblinski–Tang function,
i.e.,

f (x) = 1

2

d∑

i=1

(
x4
i − 16x2

i + 5xi

)
, (8.30)

to demonstrate the general performance of Algorithm 2 to track the number of local
minima and then find the local minima by Algorithm 3 (Fig. 8.9).

To the essential 1-D non-convex Styblinski–Tang function of high dimension, we
implement Algorithm 3 to obtain the precision of the global minima as below.

The global minima calculated at the position (−2.9035,−2.9035, . . .)

is −391.6617 as shown in Table 8.1. And the real global minima at
(−2.903534,−2.903534, . . .) is −39.16599 × 10 = −391.6599.

1https://www.sfu.ca/~ssurjano/index.html.

https://www.sfu.ca/~ssurjano/index.html
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Table 8.1 The example for ten-dimensional Styblinski–Tang function from two initial positions

Local_min1 Local_min2 Local_min3 Local_min4

Initial
position

(5, 5, . . .) (5, 5, . . .) (5,−5, . . .) (5,−5, . . .)

Position (2.7486, 2.7486, . . .) (−2.9035,

−2.9035, . . .)

(2.7486,−2.9035, . . .) (−2.9035, 2.7486, . . .)

Function
value

−250.2945 −391.6617 −320.9781 −320.9781

Furthermore, we demonstrate the numerical experiment from Styblinski–Tang
function to more complex Shekel function

f (x) = −
m∑

i=1

⎛

⎝
4∑

j=1

(
xj − Cji

)2 + βi

⎞

⎠

−1

, (8.31)

where

β = 1

10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T

and

C =

⎛

⎜
⎜
⎝

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎞

⎟
⎟
⎠ .

(1) Case m = 5, the global minima at x� = (4, 4, 4, 4) is f (x�) = −10.1532.

(a) From the position (10, 10, 10, 10), the experimental result with the step
length h = 0.01 and the iterative times 3000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜
⎜
⎝

7.9879 6.0136 3.8525 6.2914 2.7818
7.9958 5.9553 3.9196 6.2432 6.7434
7.9879 6.0136 3.8525 6.2914 2.7818
7.9958 5.9553 3.9196 6.2432 6.7434

⎞

⎟
⎟
⎠

Detect value

(−5.0932 −2.6551 −6.5387 −1.6356 −1.7262
)
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Final position (Algorithm 1)

⎛

⎜
⎜
⎝

7.9996 5.9987 4.0000 5.9987 3.0018
7.9996 6.0003 4.0001 6.0003 6.9983
7.9996 5.9987 4.0000 5.9987 3.0018
7.9996 6.0003 4.0001 6.0003 6.9983

⎞

⎟
⎟
⎠

Final value

(−5.1008 −2.6829 −10.1532 −2.6829 −2.6305
)

(b) From the position (3, 3, 3, 3), the experimental result with the step length
h = 0.01 and the iterative times 1000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜
⎜
⎝

3.9957 6.0140
4.0052 6.0068
3.9957 6.0140
4.0052 6.0068

⎞

⎟
⎟
⎠

Detect value
(−10.1443 −2.6794

)

Final position (Algorithm 1)

⎛

⎜
⎜
⎝

4.0000 5.9987
4.0001 6.0003
4.0000 5.9987
4.0001 6.0003

⎞

⎟
⎟
⎠

Final value

(−10.1532 −2.6829
)

(2) Case m = 7, the global minima at x� = (4, 4, 4, 4) is f (x�) = −10.4029.

(a) From the position (10, 10, 10, 10), the experimental result with the step
length h = 0.01 and the iterative times 3000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜
⎜
⎝

7.9879 6.0372 3.1798 5.0430 6.2216 2.6956
8.0041 5.9065 3.8330 2.8743 6.2453 6.6837
7.9879 6.0372 3.1798 5.0430 6.2216 2.6956
8.0041 5.9065 3.8330 2.8743 6.2453 6.6837

⎞

⎟
⎟
⎠
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Detect value

(−5.1211 −2.6312 −0.9428 −3.3093 −1.8597 −1.5108
)

Final position (Algorithm 1)

⎛

⎜
⎜
⎝

7.9995 5.9981 4.0006 4.9945 5.9981 3.0006
7.9996 5.9993 3.9996 3.0064 5.9993 7.0008
7.9995 5.9981 4.0006 4.9945 5.9981 3.0006
7.9996 5.9993 3.9996 3.0064 5.9993 7.0008

⎞

⎟
⎟
⎠

Final value

(−5.1288 −2.7519 −10.4029 −3.7031 −2.7519 −2.7496
)

(b) From the position (3, 3, 3, 3), the experimental result with the step length
h = 0.01 and the iterative times 1000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜
⎜
⎝

4.0593 3.0228
3.9976 7.1782
4.0593 3.0228
3.9976 7.1782

⎞

⎟
⎟
⎠

Detect value

(−9.7595 −2.4073
)

Final position (Algorithm 1)

⎛

⎜
⎜
⎝

4.0006 3.0006
3.9996 7.0008
4.0006 3.0006
3.9996 7.0008

⎞

⎟
⎟
⎠

Final value

(−10.4029 −2.7496
)

(3) Case m = 10, the global minima at x� = (4, 4, 4, 4) is f (x�) = −10.5364.

(a) From the position (10, 10, 10, 10), the experimental result with the step
length h = 0.01 and the iterative times 3000 is shown as below:

Detect Position (Algorithm 2)
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⎛

⎜
⎜
⎝

7.9977 5.9827 4.0225 2.7268 6.1849 6.2831 6.3929
7.9942 6.0007 3.8676 7.3588 6.0601 3.2421 1.9394
7.9977 5.9827 4.0225 2.7268 6.1849 6.2831 6.3929
7.9942 6.0007 3.8676 7.3588 6.0601 3.2421 1.9394

⎞

⎟
⎟
⎠

Detect value

(−5.1741 −2.8676 −7.9230 −1.5442 −2.4650 −1.3703 −1.7895
)

Final position (Algorithm 1)

⎛

⎜
⎜
⎝

7.9995 5.9990 4.0007 3.0009 5.9990 6.8999 5.9919
7.9994 5.9965 3.9995 7.0004 5.9965 3.4916 2.0224
7.9995 5.9990 4.0007 3.0009 5.9990 6.8999 5.9919
7.9994 5.9965 3.9995 7.0004 5.9965 3.4916 2.0224

⎞

⎟
⎟
⎠

Final value

(−5.1756 −2.8712 −10.5364 −2.7903 −2.8712 −2.3697 −2.6085
)

(b) From the position (3, 3, 3, 3), the experimental result with the step length
h = 0.01 and the iterative times 1000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜
⎜
⎝

4.0812 3.0206
3.9794 7.0173
4.0812 3.0206
3.9794 7.0173

⎞

⎟
⎟
⎠

Detect value

(−9.3348 −2.7819
)

Final position (Algorithm 1)

⎛

⎜
⎜
⎝

4.0007 3.0009
3.9995 7.0004
4.0007 3.0009
3.9995 7.0004

⎞

⎟
⎟
⎠

Final value

(−10.5364 −2.7903
)
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8.5 Conclusion and Further Works

Based on the view for understanding arithmetical complexity from analytical
complexity in the seminal book [Nes13] and the idea for viewing optimization from
differential equation in the novel blog,2 we propose some original algorithms based
on Newton’s second law with the kinetic energy observable and controllable in the
computational process firstly. Although our algorithm cannot fully solve the global
optimization problem, or it is dependent on the trajectory path, this work introduces
the Hamilton system essential to optimization such that it is possible that the global
minima can be obtained. Our algorithms are easy to implement and own a more
rapid convergence rate.

For the theoretical view, the Hamilton system is closer to nature and a lot of
fundamental work have appeared in the previous century, such as KAM theory,
Nekhoroshev estimate, operator spectral theory, and so on. Are these beautiful
and essentially original work used to understand and improve the algorithm for
optimization and machine learning? Also, in establishing the convergence rate, the
matrix containing the trigonometric function can be hard to estimate. Researchers
have proposed some methods for estimating the trigonometric matrix based on
spectral theory. For the numerical scheme, we only exploit the simple first-order
symplectic Euler method. Several more efficient schemes, such as Störmer–Verlet
scheme, symplectic Runge–Kutta scheme, order condition method, and so on, are
proposed in [Nes13].

These schemes can make the algorithms in this paper more efficient and accurate.
For the optimization, the method we proposed is only about unconstrained problem.
In the nature, the classical Newton’s second law, or the equivalent expression—
Lagrange mechanics and Hamilton mechanics, is implemented on the manifold in
the almost real physical world. In other words, a natural generalization is from
unconstrained problem to constrained problem for our proposed algorithms. A
more natural implementation is the geodesic descent in [LY+84]. Similar to the
development of the gradient method from smooth condition to nonsmooth condition,
our algorithms can be generalized to nonsmooth condition by the subgradient. For
application, we will implement our algorithms to non-negative matrix factorization,
matrix completion, and deep neural network and speed up the training of the
objective function. Meanwhile, we apply the algorithms proposed in this paper to
the maximum likelihood estimator and maximum a posteriori estimator in statistics.

Starting from Newton’s second law, we implement only a simple particle in
classical mechanics, or macroscopic world. A natural generalization is from the
macroscopic world to the microscopic world. In the field of fluid dynamics, the
Newton’s second law is expressed by Euler equation, or more complex Navier–
Stokes equation. An important topic from fluid dynamics is geophysical fluid
dynamics, containing atmospheric science and oceanography. Especially, a key

2http://www.offconvex.org/2015/12/11/mission-statement/.

http://www.offconvex.org/2015/12/11/mission-statement/
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feature in the oceanography different from atmospheric science is the topography,
which influences mainly vector field of the fluid. So many results have been
demonstrated based on many numerical modeling, such as the classical POM,3

HYCOM,4 ROMS,5 and FVCOM.6 A reverse idea is that if we view the potential
function in black box is the topography, we observe the changing of the fluid vector
field to find the number of local minima in order to obtain the global minima with
a suitable initial vector field. A more adventurous idea is to generalize the classical
particle to the quantum particle. For quantum particle, the Newton’s second law is
expressed by the energy form that is from the view of Hamilton mechanics, which
is the starting point for the proposed algorithm in this paper. The particle appears in
the wave form in a microscopic world. When the wave meets the potential barrier,
the tunneling phenomena will appear. The tunneling phenomena will also appear
in higher dimensions. It is very easy to observe the tunneling phenomena in the
physical world. However, if we attempt to compute this phenomena, the problem
becomes NP-hard. Only if quantum computing is used is the phenomena very easy
to simulate, as we can find the global minima by binary section search. That is,
if there exist tunneling phenomena in the upper level, the algorithm will continue
to detect this in the upper level, otherwise go to the lower level. In the quantum
world, it needs only O(log n) times to find the global minima rather than becoming
NP-hard.

3http://ofs.dmcr.go.th/thailand/model.html.
4https://hycom.org/.
5https://www.myroms.org/.
6http://fvcom.smast.umassd.edu/.

http://ofs.dmcr.go.th/thailand/model.html
https://hycom.org/
https://www.myroms.org/
http://fvcom.smast.umassd.edu/
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