
Chapter 2
General Framework of Mathematics

With the explosive growth of data nowadays, a young and interdisciplinary field,
data science, has emerged, which uses scientific methods, processes, algorithms
and systems to extract knowledge and insights from data in various forms, both
structured and unstructured. This data science field is becoming popular and needs
to be developed urgently so that it can serve and guide for the industry of the
society. Rigorously, applied data science is a “concept to unify statistics, data
analysis, machine learning and their related methods” in order to “understand and
analyze actual phenomena” with data. It employs techniques and theories drawn
from many fields within the context of mathematics, statistics, information science,
and computer science.

Within the field of data analytics, machine learning is a method used to devise
complex models and algorithms that lend themselves to prediction; in commercial
use, this is known as predictive analytics. The name machine learning was coined
in 1959 by Arthur Samuel, which evolved from the study of pattern recognition and
computational learning theory in artificial intelligence. Computational statistics,
which also focuses on prediction-making through the use of computers, is a closely
related field and often overlaps with machine learning.

The name, computational statistics, implies that it is composed of two indis-
pensable parts, statistics inference models and the corresponding algorithms imple-
mented in computers. Based on the different kinds of hypotheses, statistics inference
can be divided into two schools, frequentist inference school and Bayesian inference
school. Here, we describe each one briefly. Let P be a premise and O be an
observation which may give evidence for P . The priori P (P) is the probability
that P is true before the observation is considered. Also, the posterior P (P|O) is
the probability that P is true after the observation O is considered. The likelihood
P (O|P) is the chance of observation O when evidence P exists. Finally, P (O) is
the total probability, calculated in the following way:
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P (O) =
∑

P
P (O|P) P (P) .

Connecting the probabilities above is the significant Bayes’ formula in the theory of
probability

P (P|O) = P (O|P) P (P)

P (O)
∼ P (O|P) P (P) , (2.1)

where P (O) can be calculated automatically if we have known the likelihood
P (O|P) and P (P). If we presume that some hypothesis (parameter specifying
the conditional distribution of the data) is true and that the observed data is sampled
from that distribution, that is,

P (P) = 1,

only using conditional distributions of data given the specific hypotheses are the
view of the frequentist school. However, if there is no presumption that some
hypothesis (parameter specifying the conditional distribution of the data) is true,
that is, there is a prior probability for the hypothesis P ,

P ∼ P(P),

summing up the information from the prior and likelihood is the view from the
Bayesian school. Apparently, the view from the frequentist school is a special case
of the view from the Bayesian school, but the view from the Bayesian school is more
comprehensive and requires more information.

Take the Gaussian distribution with known variance for the likelihood as an
example. Without loss of generality, we assume the variance σ 2 = 1. In other words,
the data point is viewed as a random variable X following the rule below:

X ∼ P (x|P) = 1√
2π

e− (x−μ)2

2 ,

where the hypothesis is P = {μ|μ ∈ (−∞,∞) is some fixed real number}. Let the
data set be O = {xi}ni=1. The frequentist school requires us to compute maximum
likelihood or maximum log-likelihood, that is,
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argmax
μ∈(−∞,∞)

f (μ) = argmax
μ∈(−∞,∞)

log P (O|P)

= argmax
μ∈(−∞,∞)

(
log

n∏

i=1

P (xi ∈ O|P)

)

= argmax
μ∈(−∞,∞)

log

[(
1√
2π

)n

e−
∑n

i=1(xi−μ)2

2

]

= − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + n log
√

2π

]
,

(2.2)

which has been shown in the classical textbooks, such as [RS15], whereas the
Bayesian school requires to compute maximum posterior estimate or maximum log-
posterior estimate, that is, we need to assume reasonable prior distribution.

• If the prior distribution is a Gauss distribution μ ∼ N (0, σ 2
0 ), we have

argmax
μ∈(−∞,∞)

f (μ)

= argmax
μ∈(−∞,∞)

log P (O|P) P (P)

= argmax
μ∈(−∞,∞)

log

(
n∏

i=1

log P (xi ∈ O|P)

)
P (P)

= argmax
μ∈(−∞,∞)

log

{[(
1√
2π

)n

e−
∑n

i=1(xi−μ)2

2

]
·
(

1√
2πσ0

)
e
− μ2

2σ2
0

}

= − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

2σ 2
0

· μ2 + n log
√

2π + log
√

2πσ0

]
.

(2.3)

• If the prior distribution is a Laplace distribution μ ∼ L(0, σ 2
0 ), we have

max
μ∈(−∞,∞)

f (μ)

= argmax
μ∈(−∞,∞)

log P (O|P) P (P)

= argmax
μ∈(−∞,∞)

log

(
n∏

i=1

log P (xi ∈ O|P)

)
P (P)

= argmax
μ∈(−∞,∞)

log

{[(
1√
2π

)n

e−
∑n

i=1(xi−μ)2

2

]
·
(

1

2σ 2
0

)
e
− |μ|

σ2
0

}

= − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

σ 2
0

· |μ| + n log
√

2π + log 2σ 2
0

]
.

(2.4)
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• If the prior distribution is the mixed distribution combined with Laplace distri-
bution and Gaussian distribution μ ∼ M(0, σ 2

0,1, σ
2
0,2), we have

argmax
μ∈(−∞,∞)

f (μ)

= argmax
μ∈(−∞,∞)

log P (O|P) P (P)

= argmax
μ∈(−∞,∞)

log

(
n∏

i=1

log P (xi ∈ O|P)

)
P (P)

= argmax
μ∈(−∞,∞)

log

{[ (
1√
2π

)n

e−
∑n

i=1(xi−μ)2

2

]

· C(σ0,1, σ0,2)
−1e

− |μ|
σ2

0,1
− μ2

2σ2
0,2

}

= − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

σ 2
0

· |μ| + 1

2σ 2
0,2

· μ2

+ n log
√

2π + log C(σ0,1, σ0,2)

]
,

(2.5)

where C = 2
√

2πσ 2
0,1σ0,2.

2.1 Concluding Remarks

In summary, based on the description in this chapter, a statistical problem can
be solved by transforming it into an optimization problem. The required proof to
validate this statement was outlined and provided in this chapter. In the following
chapter we discuss the problem further by identifying how it is formulated and we
develop an approach to tackle the problem.
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