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Foreword

The field of machine learning will be significantly impacted by this book. While
there have been several books that address the different classes of machine learning
techniques, this book examines the mathematical foundation for machine learning
algorithms in depth. This is needed because practitioners and academics must have
a way to measure the effectiveness of the large number of algorithms against
applications.

One fundamental contribution the authors discuss is convexly constrained-sparse
subspace clustering (CoCoSSC). Several of the machine learning techniques depend
on convergence of a steepest descent approach. The CoCoSSC method permits
designing of a faster convergence for the gradient descent technique when the
objective function requires some elements of nonconvex objectives (or convexly
constrained objectives).

There are many applications that would benefit from this foundational work.
Machine learning applied to cyber security is one such application. There are several
practical applications where the goal is to reduce the amount of data overwhelming
the cyber analysts. Specifically, there are examples where a logistic regression
classifier, based on steepest gradient descent, helps in the separation of relevant
cyber topics from non-cyber topics in a corpus of data. Another similar application
is in identifying exploited malware that is a subset of a large vulnerability database.

Furthermore, artificial intelligence has the potential to revolutionize many
industries, for example, applications ranging from driverless cars, finance, national
security, medicine, and e-commerce, to name a few. This book applies to these types
of applications by advancing the understanding of the mathematics behind convex
and constrained optimization techniques as it applies to steepest gradient descent
for optimization, which is fundamental to several classes of machine learning
algorithms.

Boston, MA David R. Martinez
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Preface

Machine learning is a core, transformative way by which we’re rethinking everything we’re
doing. We’re thoughtfully applying it across all our products, be it search, ads, YouTube, or
Play. We’re in the early days, but you’ll see us in a systematic way think about how we can
apply machine learning to all these areas.

—Sundar Pichai, CEO, Google

One of the most interesting topics of research with the potential to change
the way the world is headed is machine learning and the associated techniques.
However, in the current state of the art, the machine learning research does not
have a solid theoretical framework that could form the basis for the analysis and
provide guidelines for the experimental runs. This book is an attempt to identify
and address the existing issues in the respective field of great research interest in the
modern outlook on machine learning, artificial intelligence, deep neural networks,
etc. For all the great wonders that these abovementioned techniques can do, it is still
a mystery as to how to use the basic concepts they so highly depend on. Gradient
descent is one of the popular techniques that has been widely deployed in training
any neural network. One of the challenges that erupts while using gradient descent
is the absence of guidelines on when they converge, be it to local or a global minima.
In this book, we have attempted to address this crucial problem. This book offers
to the readers novel theoretical frameworks that could be used in analyzing the
convergence behavior.

This book also represents a major contribution in terms of mathematical aspects
of machine learning by the authors and collaborators. Throughout the book, we
have made sure the reader gets a good understanding and feel of the theoretical
frameworks that are and can be employed in the gradient descent technique and the
ways of deploying them in the training of neural networks. To emphasize this, we
have used results from some of our recent research along with a blend of what is
being explored by other researchers. As the readers read through the chapters of the
book, they would be exposed to the various applications of great importance, like the
subspace clustering and time series analysis. This book thus tries to strike a balance
in the way theory is presented along with some of the applications that come hand
in hand with it. Through this book, we hope to make the reading more exciting and
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also have a huge impact on the readers by providing them with the right tools in the
machine learning domain.

In drawing comparisons to existing books like the one titled “Deep Learning”
by Goodfellow, Bengio, and Courville, this book digs deep into defining and
showcasing the latest research in the fields of gradient descent that makes it a more
comprehensive tool for students and professionals alike. Also, the emphasis given
to relating the concepts to applications like subspace clustering and time series data
makes it a better alternative to most other books in this field.

The intended audience for this book includes anyone who is actively working
in machine learning, be it students, professors, industry professionals, or even
independent researchers. We have tried to compile the book to provide a handy
handbook for day-to-day activities.

The book is organized into many free-flowing parts so that the reader is first
exposed to the basic concepts of machine learning, neural networks, optimization,
gradient descent, etc. In the following parts and sections, the reader can study and
understand the optimality and adaptivity of choosing step sizes of gradient descent
and thus escaping the strict saddle points in the non-convex optimization problems.
We first show for a fixed step size the maximum allowable step size for gradient
descent to find a local minimizer, which is twice the inverse of gradient Lipschitz
constant (1/L) when all the saddle points are strict. However, since the gradient
descent with (fixed) step sizes exceeding 2/L diverges for worst-case functions,
we obtain the optimal step size of gradient descent for strict saddle non-convex
optimization problems. The main observation is that as long as the induced mapping
by gradient descent is a local diffeomorphism, the points that converge to any strict
saddle point have Lebesgue measure “0,” whereas previous works all required this
mapping to be a global diffeomorphism. We also consider adaptive choices of step
sizes and show that if the step size at each iteration is proportional to the inverse
of the local gradient Lipschitz constant, gradient descent will not converge to any
strict saddle point. To our knowledge, this is the first result showing gradient descent
with varying step sizes can also escape saddle points. This is proved by applying a
generalization of Hartman product map Theorem from dynamical systems theory.

The subsequent parts of the book define and elaborate on algorithms used in
finding the local minima in non-convex optimization scenarios and thus aid in
obtaining the global minima that pertains in some degree to Newton’s second
law without friction. With the key observation of the velocity observable and
controllable in the motion, the algorithms simulate Newton’s second law without
friction based on the symplectic Euler scheme. From the intuitive analysis of
analytical solutions, we give a theoretical analysis for the high-speed convergence
in the proposed algorithm. Finally, experiments for strongly convex, non-strongly
convex, and non-convex functions in higher dimensions are proposed. This book
also describes the implementation of the discrete strategies that would be used in
testing the observability and controllability of velocity, or kinetic energy, as well as
in the artificial dissipation of energies.

This part is followed by the study of the problem subspace clustering with noisy
and missing data—a problem well-motivated by practical applications. Applica-
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tions consider data subject to stochastic Gaussian noise and/or incomplete data
with uniformly missing entries. Our main contribution is the development of
CoCoSSC, a novel noisy subspace clustering method inspired by CoCoLasso.
Notably, CoCoSSC uses a semi-definite programming-based preprocessing step
to “de-bias” and “denoise” the input data before passing into the Lasso SSC
algorithm, which makes it significantly more robust and an l1-normalized self-
regression program. We prove theoretical guarantees that CoCoSSC works even
when an overwhelming 1 − �

(
n−2/5

)
fraction of the data is missing and when

the data is contaminated by an additive Gaussian noise with a vanishing signal-
to-noise ratio (SnR) of n−1/4. These rates significantly improve over what is
previously known, which only handle a constant fraction of missing data and an
SnR of n−1/6 for Gaussian noise. Compared to existing methods in the literature,
our approach enjoys improved sample completive inference strategy of particle
learning. Extensive empirical studies on both the synthetic and real application time
series data are conducted to demonstrate the effectiveness and the efficiency of the
introduced methodology, and computationally efficient numerical results confirmed
the effectiveness and efficiency of our proposed method.

Berkeley, USA Bin Shi
Miami, FL, USA S. S. Iyengar
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Chapter 1
Introduction

Learning has various definitions based on the context in which it is used and the
various entities involved in the learning process. The need for machines to learn and
thus adapt to the changes in its surroundings led to the rise of the field aptly called
“machine learning.” A machine is expected to learn and predict the future outcomes
based on the changes that it notices in the external structure, data/inputs fed that
would have to be responded to, and the program/function it was built to perform.
This forms the basis for the various complex computational capabilities that any
modern artificially intelligent based (AI-based) system would require and includes
computations dealing with recognition of patterns, diagnosis of data, controlling the
system or environment, planning activities, etc.

Machine learning (ML) as a field of study has evolved over time owing to the
merging and binding of the concepts and methods defined and specified mainly
in statistics and artificial intelligence (AI) along with other budding and related
areas. One of the important characteristic traits of ML is the ease with which
the algorithms that are designed and defined can handle very complex data sets
and provide accurate predictions and help in deciphering new knowledge. There is
however a very fundamental question as to reason for the need of such predictive
models which requires the machine to learn and become more efficient in tackling
day-to-day situations in which it is exposed. Some of the compelling reasons for
this are as listed below:

• Humans update their knowledge of the surroundings on a constant basis and thus
are able to make appropriate decisions for the various situations to which they
are exposed. Letting the machine understand its surroundings and thus adapt to
the situation in similar lines would aid them in enhancing their decision-making
capabilities.

• The newer technologies have led to the generation and thus the explosion of data.
However, it should be noted that most of these data sets are highly unstructured,
thus making it difficult to design and devise a program that can handle it

© Springer Nature Switzerland AG 2020
B. Shi, S. S. Iyengar, Mathematical Theories of Machine Learning - Theory
and Applications, https://doi.org/10.1007/978-3-030-17076-9_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17076-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-17076-9_1


4 1 Introduction

efficiently. Having a machine that understands and learns from the input and
previous outputs fed as training data prevents the need for redesigns.

• It is difficult to predict the environment in which machines would be working
when it is being manufactured and the cost of having a custom-made machine
for performing specific tasks is very high. This also creates a strong case for the
need for machines that can adapt, modify, and alter the way they work making
the integration into the society and legacy systems seamless.

• Identifying relationships among data of varying kinds also plays a vital role in
the predictions. In some situations, it is difficult for even humans to crunch all
the data in identifying such relationships. Machine learning algorithms provide
the ideal foil in identification of the relationships and thus the abstraction and
prediction of possible outcomes.

Along with the dependence of ML algorithms on statistics and AI, there are
various other theories and models that have seamlessly converged and aided in
making ML more robust and widened the horizons to which ML is applicable. Some
of these fields are as listed below:

• Advances in Control Theoretic Sciences: Working with unknown parameters
would need better estimation something that can be derived from the concepts
in control theory. The system should also be able to adapt and track the changes
that happen during the processing.

• Cognitive and psychological models: The learning rate and the efficiency of
learning vary from one human to another and studying these changes and the
basis for these changes paves the way to design more robust algorithms suitable
for the application. These aspects are used when working with ML and the
derived applications.

• Theory of Evolution: The well-known evolution theory worked towards
defining and identifying the way humans and other species evolved also provided
necessary inputs and directions in the design of ML algorithms for various
applications. Also the development of the brain and the activities help in defining
better neural networks and deep learning algorithms.

1.1 Neural Networks

Works by many researchers in this field have brought to light the various benefits of
interconnecting non-linear elements and networks of such elements with weights
that can be altered to have a major impact on the way ML algorithms work.
Networks designed in this intention form the neural networks. Neural networks by
themselves have found a lot of applications and have been a topic that has interested
researchers for a long time now. The parallels that can be drawn between these
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Fig. 1.1 Deep neural
network

networks and the actual biological nervous systems with its associated neurons and
their network make it easier in designing and identifying solutions to the various
problems.

Neural networks consist of multiple layers of computational units and elements
similar to the neurons in the human nervous system, which perform the necessary
computations. The computation results in the transformation of the raw input into
expected or predictable outputs for further use. Each of these units (also known as
neurons) multiplies the input it receives with a certain predefined alterable weight,
performs the computation, and forwards the results to the next layer. The neurons
aggregate various results from the previous layer neurons, adjust the weight and the
bias, normalize the result using an activation function, and then use it as the input.
This is depicted in Fig. 1.1.

1.1.1 Learning Process That Is Iterative

One of the salient features of using neural networks in the application is the way
in which the learning happens in an iterative manner with the neurons at each layer
performing and adapting based on the inputs it receives from the previous layers. It
also adjusts the weights to be applied along with neutralizing or adjusting the bias
and the normalization of the values. This happens for every iteration and is a part of
the “learning phase.” The network would try some possible values to identify the
best fit, then uses it to train the input samples.

There have been many identified advantages and applications of using neural
networks. Some of the important advantages include the high fault tolerance they
possess towards corrupted data inputs and the ease with which they adapt to newer
data that is different from the training data sets. With all these advantages, there are
many popular neural network algorithms in use in our day-to-day computation. One
of the popular algorithms from that list is the “backpropagation algorithm.”
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The initial phase of using a neural network in an application includes the building
of a training data set and using it in the training process. This is the learning phase
where the network and thus the system learns the various input types and samples
and classifies, then categorizes them into known samples which can be used when
working with actual data sets. There are initial weights that would be applied to the
data while they are being manipulated. Some of these weights are randomly chosen
initially and refined and altered as the learning process goes on. The training set
would pose certain expected outputs that are compared to each level in the hidden
layers and this leads towards getting a more accurate value for the multiplicative
weights.

There are various known applications of neural networks. In this chapter of the
book, we have selected a list of applications with which to introduce the concept
and the plethora of applications. We begin with convolutional neural networks.

A. Convolutional Neural Networks Convolutional neural networks are also called
CNN or ConvNets that are a specialized category of the neural networks which
uses convolution in the computation. The use of convolution helps in the separation
and thus the extraction of certain features and thus the CNN has many applications
in the field of image processing and computer vision. Feature extractions help in
pattern identification in applications that span a very wide range starting from the
face recognition feature in the modern smartphones to even the navigation modules
of the ambitious projects of many companies in building autonomous cars.

Specialized learning and adequate training data sets should help the applications
to identify the region of interest (ROI) and the remaining portions. There are various
means of accelerating the process and thus harnessing better performance. The
hidden layers with their capabilities provide the CNN with more versatile options
that can improve the fault tolerance when using such algorithms.

B. Recurrent Neural Networks An important application of using neural net-
works is in the processing of data sequences and thus predicting the outcomes in
the future. This is supported by the recurrent neural networks, sometimes addressed
as an RNN. RNNs are very popular for applications that deal with natural language
processing. RNNs use sequential data which is an improvised version of the
traditional neural networks that assume the data at each layer to be independent.
The way RNN works is by performing the same set of operations/functions on all the
input elements recursively and thus the output is highly dependent on the previous
inputs. This is one of the neural network variants that has memory with which to
work with and can handle very long sequences.

RNN assumes that the predictions that are expected as an output are probabilistic.
A typical RNN is as shown in Fig. 1.2. Another example apart from the usage in
NLP could be to use it in the prediction of how a stock would fare in the market on
a certain day.
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1.2 Deep Learning

Another subset of machine learning that has found many applications and the
attention of researchers is deep learning. It is a subset of ML and the derived
methods that help in designing and structuring the processing of data based on the
way a human brain would function. It involves many concepts of neural networks
that were defined in the previous subsection (Fig. 1.3).

The input data is processed in ways and means a biological brain would process
and try to modify and transform the input into representations that are highly
abstract and aggregated. Taking an example of the image processing application,
the raw image or video stream sent as an input in the various layers get processed
differently and then gets encoded optimally so that the learning process is complete
and thus the system can be adapted to predicting or performing more complex
operations on newer data sets.
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Certain applications of deep learning include modification of audio in films,
extraction of edges and thus in processing images and video streams, classification
of objects and enhancement of them in older photographs. Some other applications
include handwriting detections and analysis and many other newer applications with
recommendation systems and sentiment analysis modules. Also, the application
horizons have extended dramatically when it is associated with artificial intelli-
gence. Machine learning algorithms can be “supervised” or “unsupervised,” that is
if the output classes are known, then the learning algorithm is supervised, otherwise
it is not. Supervised machine learning is based on the statistical learning theory.

1.3 Gradient Descent

By far one of the major optimization strategies currently used in machine learning
and deep learning by researchers is gradient descent (GD). In this book, we discuss
some novel techniques that would help us better understand and use this concept
in visualizing many more applications. It is a concept that has a major impact
during the training phase of designing the ML algorithm. GD is based on a convex
function whose parameters are altered in an increasing manner that would lead to
the minimization of the provided function till the local minima is achieved. On the
whole, GD is an algorithm that works towards minimizing the given function.

Based on the input they process and the way they work, the gradient descent
algorithms are categorized as follows:

1.3.1 Batch Gradient Descent

It has also been referred to as “vanilla” (pure) gradient descent for its simple, small
steps towards the minima, works by calculating the error for each of the input data
sets during the training period. It incorporates a form of cycle processing which
leads to consistent model updates. Since it happens at the training phase, it is called
a training epoch.

It has its own set of advantages. One of the most important is the way in which it
enhances the efficiency and works towards the stabilization of the errors and leads to
faster convergence. Batch gradient descent however has some disadvantages where
the earlier stabilized error convergence value would sometimes not be the best but
would let an overall convergence occur. Another major disadvantage is the need for
a memory component without which this algorithm would not work.
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1.3.2 Stochastic Gradient Descent

Another category of gradient descent is known as stochastic gradient descent (SGD),
wherein the process is performed for each of the example inputs. The updates
happen one at a time and for each of the inputs. Thus, the SGD is faster than the
BGD and there is a pretty detailed rate of improvement. However, frequent updates
on each of the inputs make it a computationally expensive process. However,
depending on the criticality of the application and the need, the frequency of updates
can be altered.

1.3.3 Mini-Batch Gradient Descent

A preferred hybrid algorithm most often used by researchers is the mini-batch
gradient descent. In this technique the data set is split into smaller batches and
updates happen for each of these batches. It thus taps into the advantages of both
the above categories while addressing some of the disadvantages discussed earlier.
The batch size and the frequency of updates both can be altered making it the most
famous and common type of gradient descent used in many of the applications.

1.4 Summary

On the whole, dealing with solutions utilizing machine learning involves the for-
mulation of the problem by defining the various parameters involved and providing
details. These details play an important role in defining the models and algorithms
that would be trained using the training data sets, thereby leading to the appropriate
classifying, predicting, and clustering of the data.

Once the initial training is complete, more complex data sets closer to the
application of use would be fed in as input for the training process. Creating the
ideal training and test data sets is crucial in determining the model performance
when exposed to real-life situations and scenarios. Another important aspect that
affects the functioning of the model (or algorithm) is the availability of necessary
resources for computation.

It should be noted that training, classification, prediction, and clustering are all
computationally intensive tasks due to the large data sets required. Thus, analysis
of these large volumes consumes appreciable amounts of computational capability.
The presence of all the above would lead to the seamless, effective, and efficient
working of the devised ML algorithm (Fig. 1.4).
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1.5 Organization of the Research Monograph

The machine learning research currently runs as an experimental exercise with no
solid theoretical analysis and guidelines. There is a critical need for a theoretical
framework. In this context, the proposed book will be a welcome tool for students
and professionals alike.

This book is organized into many parts containing chapters that will enthuse
the reader into understanding the optimality and adaptivity of choosing step sizes
of gradient descent and thus escaping the strict saddle points in the non-convex
optimization problems. In Part I, we introduce the basic concepts along with
references and description of the framework and problems that would be discussed
in this book. The observations pertaining to the experiments and derived concepts
are explained in great detail. The variations that occur with adaptive choices of step
sizes are also discussed. One of the important observations is that the step size at
each iteration is proportional to the inverse of the local gradient Lipschitz constant,
gradient descent will not converge to any strict saddle point. This is the first result of
which we are aware demonstrating that a gradient descent with varying step size can
also escape saddle points. This is proved by applying a generalization of Hartman
product map theorem from dynamical systems theory.

Part II of the book defines and elaborates on algorithms used in finding the local
minima in non-convex optimization scenarios and thus aid in obtaining the global
minima. From the intuitive analysis of analytical solution, we give a theoretical
analysis for the high-speed convergence in the algorithm proposed.

Finally, we develop procedures for demonstrating strongly convex, non-strongly
convex, and non-convex functions in these higher-dimensions. This book also
describes the implementation of the discrete strategies that would be used in testing
how one can observe and control velocity, or kinetic energy, as well as the artificial
dissipation of energies.

In the last part, we introduce a novel VAR model with elastic-net regularization
and its equivalent Bayesian model allowing for both a stable sparsity and a group
selection, and a time-varying hidden interaction discovery among multiple time
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series. We develop a solution capable of capturing the time-varying temporal
dependency structure through Bayesian modeling and particle learning’s fully
adaptive inference strategy. We conduct extensive empirical studies on both the
synthetic and real application time-series data as we demonstrate the introduced
method’s effectiveness and the efficiency.



Chapter 2
General Framework of Mathematics

With the explosive growth of data nowadays, a young and interdisciplinary field,
data science, has emerged, which uses scientific methods, processes, algorithms
and systems to extract knowledge and insights from data in various forms, both
structured and unstructured. This data science field is becoming popular and needs
to be developed urgently so that it can serve and guide for the industry of the
society. Rigorously, applied data science is a “concept to unify statistics, data
analysis, machine learning and their related methods” in order to “understand and
analyze actual phenomena” with data. It employs techniques and theories drawn
from many fields within the context of mathematics, statistics, information science,
and computer science.

Within the field of data analytics, machine learning is a method used to devise
complex models and algorithms that lend themselves to prediction; in commercial
use, this is known as predictive analytics. The name machine learning was coined
in 1959 by Arthur Samuel, which evolved from the study of pattern recognition and
computational learning theory in artificial intelligence. Computational statistics,
which also focuses on prediction-making through the use of computers, is a closely
related field and often overlaps with machine learning.

The name, computational statistics, implies that it is composed of two indis-
pensable parts, statistics inference models and the corresponding algorithms imple-
mented in computers. Based on the different kinds of hypotheses, statistics inference
can be divided into two schools, frequentist inference school and Bayesian inference
school. Here, we describe each one briefly. Let P be a premise and O be an
observation which may give evidence for P . The priori P (P) is the probability
that P is true before the observation is considered. Also, the posterior P (P|O) is
the probability that P is true after the observation O is considered. The likelihood
P (O|P) is the chance of observation O when evidence P exists. Finally, P (O) is
the total probability, calculated in the following way:
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P (O) =
∑

P
P (O|P) P (P) .

Connecting the probabilities above is the significant Bayes’ formula in the theory of
probability

P (P|O) = P (O|P) P (P)

P (O)
∼ P (O|P) P (P) , (2.1)

where P (O) can be calculated automatically if we have known the likelihood
P (O|P) and P (P). If we presume that some hypothesis (parameter specifying
the conditional distribution of the data) is true and that the observed data is sampled
from that distribution, that is,

P (P) = 1,

only using conditional distributions of data given the specific hypotheses are the
view of the frequentist school. However, if there is no presumption that some
hypothesis (parameter specifying the conditional distribution of the data) is true,
that is, there is a prior probability for the hypothesis P ,

P ∼ P(P),

summing up the information from the prior and likelihood is the view from the
Bayesian school. Apparently, the view from the frequentist school is a special case
of the view from the Bayesian school, but the view from the Bayesian school is more
comprehensive and requires more information.

Take the Gaussian distribution with known variance for the likelihood as an
example. Without loss of generality, we assume the variance σ 2 = 1. In other words,
the data point is viewed as a random variable X following the rule below:

X ∼ P (x|P) = 1√
2π

e−
(x−μ)2

2 ,

where the hypothesis is P = {μ|μ ∈ (−∞,∞) is some fixed real number}. Let the
data set be O = {xi}ni=1. The frequentist school requires us to compute maximum
likelihood or maximum log-likelihood, that is,
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argmax
μ∈(−∞,∞)

f (μ) = argmax
μ∈(−∞,∞)

log P (O|P)

= argmax
μ∈(−∞,∞)

(

log
n∏

i=1

P (xi ∈ O|P)

)

= argmax
μ∈(−∞,∞)

log

[(
1√
2π

)n

e−
∑n

i=1(xi−μ)2

2

]

= − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + n log
√

2π

]

,

(2.2)

which has been shown in the classical textbooks, such as [RS15], whereas the
Bayesian school requires to compute maximum posterior estimate or maximum log-
posterior estimate, that is, we need to assume reasonable prior distribution.

• If the prior distribution is a Gauss distribution μ ∼ N (0, σ 2
0 ), we have

argmax
μ∈(−∞,∞)

f (μ)

= argmax
μ∈(−∞,∞)

log P (O|P) P (P)

= argmax
μ∈(−∞,∞)

log

(
n∏

i=1

log P (xi ∈ O|P)

)

P (P)

= argmax
μ∈(−∞,∞)

log

{[(
1√
2π

)n

e−
∑n

i=1(xi−μ)2

2

]
·
(

1√
2πσ0

)
e
− μ2

2σ2
0

}

= − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

2σ 2
0

· μ2 + n log
√

2π + log
√

2πσ0

]

.

(2.3)

• If the prior distribution is a Laplace distribution μ ∼ L(0, σ 2
0 ), we have

max
μ∈(−∞,∞)

f (μ)

= argmax
μ∈(−∞,∞)

log P (O|P) P (P)

= argmax
μ∈(−∞,∞)

log

(
n∏

i=1

log P (xi ∈ O|P)

)

P (P)

= argmax
μ∈(−∞,∞)

log

{[(
1√
2π

)n

e−
∑n

i=1(xi−μ)2

2

]
·
(

1

2σ 2
0

)

e
− |μ|

σ2
0

}

= − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

σ 2
0

· |μ| + n log
√

2π + log 2σ 2
0

]

.

(2.4)
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• If the prior distribution is the mixed distribution combined with Laplace distri-
bution and Gaussian distribution μ ∼M(0, σ 2

0,1, σ
2
0,2), we have

argmax
μ∈(−∞,∞)

f (μ)

= argmax
μ∈(−∞,∞)

log P (O|P) P (P)

= argmax
μ∈(−∞,∞)

log

(
n∏

i=1

log P (xi ∈ O|P)

)

P (P)

= argmax
μ∈(−∞,∞)

log

{[(
1√
2π

)n

e−
∑n

i=1(xi−μ)2

2

]

· C(σ0,1, σ0,2)
−1e

− |μ|
σ2

0,1
− μ2

2σ2
0,2

}

= − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

σ 2
0

· |μ| + 1

2σ 2
0,2

· μ2

+ n log
√

2π + log C(σ0,1, σ0,2)

]
,

(2.5)

where C = 2
√

2πσ 2
0,1σ0,2.

2.1 Concluding Remarks

In summary, based on the description in this chapter, a statistical problem can
be solved by transforming it into an optimization problem. The required proof to
validate this statement was outlined and provided in this chapter. In the following
chapter we discuss the problem further by identifying how it is formulated and we
develop an approach to tackle the problem.



Chapter 3
Optimization Formulation

Based on the description on the statistics model in the previous section, we
formulate the problems that we need to solve from two angles. One is from the field
of optimization, the other is from samples of probability distribution. Practically,
from the view of efficient algorithms in computers, the representation of the first one
is the expectation–maximization (EM) algorithm. The EM algorithm is used to find
(local) maximum likelihood parameters of a statistical model in scenarios wherein
the equations cannot be solved directly. These models use latent variables along with
unknown parameters and known data observations, i.e., either there is a possibility
of finding missing values among the data or the model can be formulated in more
simple terms by assuming the existence of unobserved data points. A mixture model
can be described in simplistic terms with an assumption that each of the observed
data points have a corresponding unobserved data point, or latent variable that
specifies the mixture component to which each of the data points belong.

The EM algorithm moves on with the observation that there is a way that these
two sets of equations can be solved numerically. The solution starts by picking an
arbitrary value for either of the two sets of unknowns, and use this in estimating
the other set. The new values are then used in finding better estimates of the first
set. This alternation between the two continues until the resulting values converge
to fixed points. There is no guarantee that this approach would work but has been
proven to be a worthwhile option to try. It is also observed that the derivative of the
likelihood is very close to zero at that point, which indicates that the point is either
a maximum or a saddle point. In most cases, there is a possibility of occurrence of
multiple maximas, with no assurance that the global maximum will be found. Some
likelihoods also have singularities in them, i.e., a nonsensical maxima. A solution
that may be found by EM in a mixture model involves the setting of one of the
components to have zero variance with the mean parameter of the same component
equal to one of the data points.

The second one is the Markov chain Monte Carlo (MCMC) method. MCMC
methods are primarily used for calculation of the numerical approximations of
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multi-dimensional integrals, as used in Bayesian statistics, computational physics,
computational biology, and computational linguistics.

3.1 Optimization Techniques Needed for Machine Learning

Recall the process of finding the maximum probability, which is equivalent to the
maximum log-likelihood or the maximum log-posterior estimate is essential. We
describe them rigorously in statistics language as below.

• Finding the maximum likelihood (2.2) is equivalent to the expression below:

argmax
μ∈(−∞,∞)

f (μ) = − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2

]

, (3.1)

which is named linear regression in statistics.
• Finding the maximum posterior estimate (2.3) is equivalent to the expression

below:

argmax
μ∈(−∞,∞)

f (μ) = − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

2σ 2
0

· μ2

]

, (3.2)

which is named ridge regression in statistics.
• Finding the maximum posterior estimate (2.3) is equivalent to the expression

below:

argmax
μ∈(−∞,∞)

f (μ) = − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

σ 2
0

· |μ|
]

, (3.3)

which is named lasso in statistics.
• Finding the maximum posterior estimate (2.3) is equivalent to the expression

below:

argmax
μ∈(−∞,∞)

f (μ) = − argmin
μ∈(−∞,∞)

[
1

2

n∑

i=1

(xi − μ)2 + 1

σ 2
0,1

· |μ| + 1

2σ 2
0,2

· μ2

]

,

(3.4)
which is named elastic-net in statistics.

Linear regression (3.1) is considered as one of the standard models in statistics,
the variants (3.2)–(3.4) of which are viewed as linear regression with regularizers.
Every regularizer has its own advantage, the advantage of ridge regression (3.2) is
stability, that of lasso (3.3) is sparsity, and that of elastic-net (3.4) owns sparsity and
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group effect. Especially, due to the sparse property, the lasso (3.3) becomes one of
the most significant models in statistics.

The linear regression and its variants above can be reduced to finding a minimizer
of the convex objective function without constraint:

min
x∈R f (x),

of which the corresponding high-dimensional expression highly concerned in
practice is

min
x∈Rn

f (x).

All of the descriptions above are from the simple likelihood. In biology, the
models above are suitable to study for a single species. Take the tigers in China,
for example. There are two kinds of tigers in China, Siberian tiger and South China
tiger (Fig. 3.1). If we only consider one kind of tigers, Siberian tiger or South China
tiger, then we can assume the likelihood is a single Gaussian; but if we consider the
total tigers in China, both Siberian tiger and South China tiger, then the likelihood is
a superposition of two single Gaussian. The simple sketch in R is shown in Fig. 3.2.
Comparing the left two and the right one in Fig. 3.2, there exist three stationary
points, two local maximal points and one local minimal point. In other words, the
objective function is non-convex. The classical convex optimization algorithms,

Fig. 3.1 Left: Siberian tiger; right: South China tiger (courtesy of creative commons)

Fig. 3.2 Left: Gaussian-1; middle: Gaussian-2; right: mixed Gaussian: Gaussian-1+Gaussian-2
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Fig. 3.3 Left: local minimal point; middle: local maximal point; right: saddle

based on the principle that the local minimal point is the global minimal point,
are not suitable for the original convex case. Furthermore, if the dimension of the
objective function is greater than and equal 2, there exists another stationary point:
saddle. We demonstrate the different stationary points in Fig. 3.3.

From the descriptions above, many statistics models are finally transformed to
solve an optimization problem, not only simple convex optimization but also com-
plex non-convex optimization. What’s more, the optimization algorithms are based
on the information from the objective function. The classical oracle assumption for
the smoothness is described in [Nes13] as below:

• Zero-order oracle assumption: returns the value f (x);
• First-order oracle assumption: returns the value f (x) and the gradient ∇f (x);
• Second-order oracle assumption: returns the value f (x), the gradient∇f (x), and

the Hessian ∇2f (x).

To discriminate if an optimization algorithm is highly efficient in practice, based on
the performance, the main characters are from oracle information and iteration com-
plexity. Apparently, zero-order oracle algorithms are firstly considered. Currently,
there are two main kinds of methods involved to implement: kernel-based bandit
algorithms [BLE17] and algorithms of single-point gradient estimation [FKM05,
HL14]. Since the fewer oracle information leads to the higher iteration complex-
ity, the zero-order oracle algorithms are not popular in practice. Furthermore,
developing zero-order oracle algorithms is still in the convex stage. Second-
order oracle algorithms have been studied widespread for the last four decades,
which are essentially based on classical Newton iteration, such as modified New-
ton’s method [MS79], modified Cholesky’s method [GM74], cubic-regularization
method [NP06], and trust region method [CRS14]. Currently, with the success of
deep learning, some algorithms based on Hessian product in non-convex objective
have been proposed in [AAZB+17, CD16, CDHS16, LY17, RZS+17, RW17].
However, the difficulty of computing the Hessian information leads to infeasibility
in current computers.

Now, we come to the first-order algorithms which have been used widespread.
First-order algorithms only need to compute gradient which takes O(d) time
complexity, where the dimension d is large. Recall the statistics model (3.1)–(3.4),
if we compute the full gradient ∇f (μ), it leads to deterministic algorithms; if we
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compute one gradient ∇fi(μ), that is, (xi − μ) for some 1 ≤ i ≤ n, it leads
to stochastic algorithms. In this research monograph, we focus on deterministic
algorithms.

3.1.1 Gradient Descent

Gradient descent (GD) is by far one of the major optimization strategies used in
machine learning and deep learning by the researchers currently. In this book, we
discuss some novel techniques that would help us better understand and use this
concept in visualizing many more applications. It is a concept that has a major
impact during the training phase of designing the ML algorithm. GD is based on
a convex function whose parameters are altered in an increasing manner that would
lead to the minimization of the provided function till the local minima is achieved.
On the whole, GD is an algorithm that works towards minimizing the given function.

Machine learning relies on gradient descent (GD) and its many variations as a
central optimization methodology in machine learning problems. Given a C1 or C2

function f : Rn → R with unconstrained variable x ∈ R
n, GD uses the following

update rule:

xk+1 = xk − hk∇f (xk) , (3.5)

where hk are step size, which may be either fixed or vary across iterations. When f

is convex, hk < 2
L

is a necessary and sufficient condition to guarantee the (worst-
case) convergence of GD, where L is the Lipschitz constant of the gradient of the
function f .

While this works well for these types of problems, GD is not so well understood
in non-convex problems. For general smooth non-convex problems, GD is only
known to converge to a stationary point (i.e., a point with zero gradient) [Nes13].

Machine learning tasks often require finding a local minimizer instead of just
a stationary point, which can also be a saddle point or a maximizer. Recently,
researchers have placed an increasing focus on geometric conditions under which
GD escapes saddle points and converges to a local minimizer. More specifically, if
the objective function satisfies (1) all saddle point are strict and (2) all local minima
are global minima, then GD finds a global optimal solution. These two properties
hold for a wide range of machine learning problems, such as matrix factoriza-
tion [LWL+16], matrix completion [GLM16, GJZ17], matrix sensing [BNS16,
PKCS17], tensor decomposition [GHJY15], dictionary learning [SQW17], and
phase retrieval [SQW16].

Recent results in this area show that when the objective function has the strict
saddle property, then GD converges to a minimizer provided the initialization is
randomized and the step sizes are fixed and smaller than 1/L [LSJR16, PP16].
While this was the first results establishing convergence of GD, there are still gaps
towards fully understanding GD for strict saddle problems.
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3.1.2 Accelerated Gradient Descent

Today, many cutting-edge technologies rely on the non-convex optimization algo-
rithm for machine learning, computer vision, natural language processing, and
reinforcement learning. Local search methods have become increasingly important,
as discovery of a global minimizer in a non-convex optimization problem is NP-
hard. These local search methods are all based on the method applied in the convex
optimization problem. Formally, the problem of unconstrained optimization is stated
in general terms as that of finding the minimum value that a function attains over
Euclidean space, i.e.,

min
x∈Rn

f (x).

Numerous methods and algorithms have been proposed to solve the minimiza-
tion problem, notably gradient methods, Newton’s methods, trust region method,
ellipsoid method, and interior-point method [Pol87, Nes13, WN99, LY+84, BV04,
B+15].

First-order optimization algorithms have become popular in performing opti-
mization, providing one of the most common methods to optimize neural networks,
since the second-order information obtained is supremely expensive. The simplest
and earliest method for minimizing a convex function f is the gradient method, i.e.,

{
xk+1 = xk − h∇f (xk)

Any Initial Point : x0.
(3.6)

There are two significant improvements of the gradient method to increase the
convergence. One of them is the momentum method, which is also known as Polyak
heavy ball method, first proposed in [Pol64], i.e.,

{
xk+1 = xk − h∇f (xk)+ γk(xk − xk−1)

Any Initial Point : x0.
(3.7)

Let κ be the condition number, which is the ratio of the smallest eigenvalue and the
largest eigenvalue of Hessian at local minima. The momentum method increases
the local convergence rate from 1 − 2κ to 1 − 2

√
κ . The other is the notorious

Nesterov’s accelerated gradient method, which was initially proposed in [Nes83]
with an improvisation available in [NN88, Nes13], i.e.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yk+1 = xk − 1

L
∇f (xk)

xk+1 = xk + γk(xk+1 − xk)

Any Initial Point : x0 = y0,

(3.8)
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where the parameter is set as

γk = αk(1− αk)

α2
k + αk+1

and α2
k+1 = (1− αk+1)α

2
k + αk+1κ.

The scheme devised by Nesterov does not only own the property of the local
convergence for strongly convex function, but also is the global convergence

scheme, from 1 − 2κ to 1 − √κ for strongly convex function and from O
(

1
n

)

to O
(

1
n2

)
for non-strongly convex function.

Although there is the complex algebraic trick in Nesterov’s accelerated gradient
method, the three methods above can be considered from continuous-time limits
[Pol64, SBC14, WWJ16, WRJ16] to obtain physical intuition. In other words, the
three methods can be regarded as the discrete scheme for solving the ODE. The
gradient method as shown in Eq. (3.6) is correspondent to

{
ẋ = −∇f (xk)

x(0) = x0,
(3.9)

while the momentum method and Nesterov’s accelerated gradient method are
correspondent to

{
ẍ + γt ẋ + ∇f (x) = 0

x(0) = x0, ẋ(0) = 0,
(3.10)

the difference of which are the setting of the friction parameter γt . There are
two significant intuitive physical meaning in the two ODEs (3.9) and (3.10). The
ODE (3.9) is the governing equation for potential flow, a correspondent phe-
nomenon of waterfall from the height along the gradient direction. The infinitesimal
generalization is correspondent to heat conduction in nature. Hence, the gradient
method (3.6) is viewed as the implement in computer or optimization simulating
the phenomena in the real nature. The ODE (3.10) is the governing equation for the
heavy ball motion with friction. The infinitesimal generalization is correspondent to
chord vibration in nature. Hence, both the momentum method (3.7) and Nesterov’s
accelerated gradient method (3.8) can be viewed as updated versions of the discrete
scheme used to implement and solve by computation or optimization the setting of
the friction force parameter.

Furthermore, we can view the three methods above as the thought for dissipating
energy implemented in the computer. The unknown objective function in black box
model can be viewed as the potential energy. Hence, the initial energy is from
the potential function f (x0) at x0 to the minimization value f (x�) at x�. The
total energy is combined with the kinetic energy and the potential energy. The key
observation in this paper is that we find the kinetic energy, or the velocity, is an
observable and controllable variable in the optimization process. In other words,
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we can compare the velocities in every step to look for local minimum in the
computational process or reset them to zero to arrive to artificially dissipate energy.

The governing motion equation in a conservation force is introduced and would
be used in this book, for comparison as depicted below:

{
ẍ = −∇f (x)

x(0) = x0, ẋ(0) = 0.
(3.11)

The phase space concept usually provides all possible values of position and
momentum variables. The governing motion equation in a conservation force
field (3.11) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = v

v̇ = −∇f (x)

x(0) = x0, v(0) = 0.

(3.12)

3.1.3 Application to Sparse Subspace Clustering

Another key problem in machine learning, signal processing, and computer vision
research is subspace clustering [Vid11]. Subspace clustering aims at grouping
data points into disjoint clusters so that data points within each cluster lie near
a low-dimensional linear subspace. It has found many successful applications in
computer vision and machine learning, as many high-dimensional data can be
approximated by a union of low-dimensional subspaces. Example data include
motion trajectories [CK98], face images [BJ03], network hop counts [EBN12],
movie ratings [ZFIM12], and social graphs [JCSX11].

Mathematically, let X = (x1, · · · , xN) be an n × N data matrix, where n is
the ambient dimension and N is the number of data points. We suppose there are
L clusters S1, · · · ,SL, and each column (data point) of X belongs to exactly one
cluster, and cluster S	 has N	 ≤ N points in X. It is further assumed that data
points within each subspace lie approximately on a low-dimensional linear subspace
U	 ⊆ R

n of dimension d	 
 n. The question is to recover the clustering of all points
in X without additional supervision.

In the case where data are noiseless (i.e., xi ∈ U	 if xi belongs to cluster S	), the
following sparse subspace clustering [EV13] approach can be used:

SSC : ci := arg min
ci∈RN−1

‖ci‖1 s.t. xi = X−ici . (3.13)
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The vectors {ci}Ni=1 are usually referred to as the self-similarity matrix, or simply
similarity matrix, with the property that |cij | being large if xi and xj belong to the
same cluster and vice versa. Afterwards, spectral clustering methods can be applied
on {ci}Ni=1 to produce the clustering [EV13].

While the noiseless subspace clustering model is ideal for simplified theoretical
analysis, in practice data are almost always corrupted by additional noise. A general
formulation for the noisy subspace clustering model is X = Y + Z, where Y =
(y1, · · · , yN) is an unknown noiseless data matrix (i.e., yi ∈ U	 if yi belongs to
S	) and Z = (z1, · · · , zN) is a noise matrix such that z1, · · · , zN are independent
and E[zi |Y] = 0. Only the corrupted data matrix X is observed. Two important
examples can be formulated under this framework:

• Gaussian noise: {zi} are i.i.d. Gaussian random variables N (0, σ 2/n · In×n).
• Missing data: Let Rij ∈ {0, 1} be random variables indicating whether entry

Yij is observed, that is, Xij = Rij Yij /ρ. The noise matrix Z can be taken as
Zij = (1− Rij /ρ)Yij , where ρ > 0 is a parameter governing the probability of
observing an entry, that is, Pr[Rij = 1] = ρ.

Many methods have been proposed to cluster noisy data with subspace clustering
[SEC14, WX16, QX15, Sol14]. Existing work can be categorized primarily into two
formulations: the Lasso SSC formulation

LASSO SSC : ci := arg min
ci∈RN−1

‖ci‖1 + λ

2

∥∥xi − X−ici

∥∥2
2, (3.14)

which was analyzed in [SEC14, WX16, CJW17], and a de-biased Dantzig selector
approach

DE-BIASED DANTZIG SELECTOR : ci := arg min
ci∈RN−1

‖ci‖1

+λ

2

∥∥�̃−ici − γ̃ i

∥∥∞ , (3.15)

which was proposed in [Sol14] and analyzed for an irrelevant feature setting
in [QX15]. Here in Eq. (3.15) the terms �̃−i and γ̃ i are de-biased second-
order statistics, defined as �̃−i = X�−iX−i − D and γ̃ i = x�i X−i , where D =
diag(E[z�1 z1], · · · ,E[z�NzN ]) is a diagonal matrix that approximately de-biases the
inner product and is assumed to be known. In particular, in the Gaussian noise
model we have D = σ 2I and in the missing data model we have D = (1− ρ)2/ρ ·
diag(‖y1‖2

2, · · · , ‖yN‖2
2) which can be approximated by D̂ = (1 − ρ)2diag(X�X)

computable from corrupted data.
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3.2 Online Algorithms: Sequential Updating for Machine
Learning

In the context of computer science, online algorithms are used to define a set of
algorithm that can be used to process the inputs piece-by-piece in a serial fashion.
The order of the input matters so much so that the input gets fed to the algorithm
and the entire input is not available at the beginning.

Based on the sampling methods, we here briefly introduce the principle behind
the online time-varying algorithms. Let t ∈ {0, 1, 2, . . . , N} be a discrete finite time
set. In every t ∈ {0, 1, 2, . . . , N}, there are always new data being observed, noted
as Dt . Recall the Bayesian formula (2.1), at time t = 0, with the prior P(H) and
likelihood P(D0|H), we have

P(H|D0) ∼ P(D0|H)P (H).

At time t = 1, we take the posterior P(H|D0) at time t = 0 as the prior at time
t = 1 and the likelihood P(D1|H,D0), then the new posterior at t = 1 can be
calculated as

P(H|D0,D1) ∼ P(D1|H,D0)P (H|D0).

By analogy, at time t = N , we take the posterior P(H|D0, . . . , DN−1) at time
t = N − 1 as the prior at time t = N and the likelihood P(DN |H,D0, . . . , DN−1),
then the new posterior at t = 1 can be calculated as

P(H|D0, . . . , DN) ∼ P(DN |H,D0, . . . , DN−1)P (H|D0, . . . , DN−1).

With the description above, we actually implement N + 1 times maximum
posterior estimate, that is, maximum posterior estimate sequence as below:

P(H|D0), P (H|D0,D1), . . . , P (H|D0,D1,DN).

In other words, obtaining the distribution P(H|D0, . . . , Dk) (k = 0, . . . , N) is
sequential updating. With the probability distribution P(H|D0, . . . , Dk) at time
t = k, we can implement sampling process to generate data to observe the trend
from time t = 0 to t = N and to compare with the actual trend. Here, without any
difficulty, we can find the core part of sequential updating is how to implement the
likelihood sequence experimentally

P(D0|H), P (D1|H,D0), . . . , P (DN |H,D0, . . . , DN−1).

A popular technique is named as particle learning, which assumes actually the
likelihood sequence following Gaussian random walk.
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3.2.1 Application to Multivariate Time Series (MTS)

MTS analysis has been extensively employed across diverse application domains
[BJRL15, Ham94], such as finance, social network, system management, weather
forecast, etc. For example, it is well-known that there exist spatial and temporal
correlations between air temperatures across certain regions [JHS+11, BBW+90].
Discovering and quantifying the hidden spatial–temporal dependences of the tem-
peratures at different locations and time brings great benefits for weather forecast,
especially in disaster prevention [LZZ+16].

Mining temporal dependency structure from MTS data is extensively studied
across diverse domains. The Granger causality framework is the most popular
method. The intuition behind it is that if the time series A Granger causes the time
series B, the future value prediction of B can be improved by giving the value
of A. Regression models have evolved as being one of the principal approaches
used for Granger causality. Specifically, in the prediction of the future values of
B, one regression model that is built based only on the past values of B should
be statistically and significantly less accurate than the regression model inferred
by giving the past values of both A and B. Regression model with L1 regularizer
[Tib96], named Lasso-Granger, is an advanced and effective approach for Granger
causal relationship analysis. Lasso-Granger can efficiently and effectively help in
identifying the sparse Granger Causality especially in high dimensions [BL13].

However, Lasso-Granger suffers some essential disadvantages. The number of
non-zero coefficients chosen by Lasso is bounded by the number of training
instances and also it tends to randomly select only one variable and ignore the
others within a variable group which leads to instability. Moreover, all the work
described above assumes a constant dependency structure among MTS. However,
this assumption rarely holds in practice, since real-world problems often involve
underlying processes that are dynamically evolving over time. Take a scenario in
temperature forecast as an example. Local temperature is usually impacted by its
neighborhoods, but the dependency relationships dynamically change when mon-
soon comes from different directions. In order to capture the dynamic dependency
typically happening in practice, a hidden Markov regression model [LKJ09]
and a time-varying dynamic Bayesian network algorithm [ZWW+16] have been
proposed. However, both methods infer the underlying dependency structure based
on the offline mode.

3.3 Concluding Remarks

In this chapter, we explicitly model the dynamic changes of the underlying temporal
dependencies and infer the model in an online manner.

All the work described earlier is offline, which capture a static relationship.
Based on the online model [ZWML16] for the context-aware recommendation,
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the online Lasso-Granger model is presented in [ZWW+16] for multivariate time
series. Compared to the offline approaches, the online Lasso-Granger model can
capture the time-varying dependency from multivariate time series. The excellent
effects on simulation and evaluation metrics are shown in [ZWW+16]. However, the
Lasso-Granger model depends significantly on the scale coefficient of regularizer.
When we implement a continuous shrinkage, the Lasso-Granger model is very
unstable and provides no group relationship among variables. In other words, we
cannot classify the variables to simplify the model. Based on the contents before,
we proposed a time-varying elastic-net-Granger inference model.

In this chapter, we investigate the time-varying elastic-net-Granger inference
model, which imposes a mixed L1 and L2 regularization penalty on the linear
regression coefficients. The Elastic_Net regularizer combines advantages of both
lasso and ridge regression. Without loss of capturing sparsity, it can capture group
effects of variables and has strong stability. Our online elastic-net-Granger inference
model is based on particle learning [CJLP10] to capture the dynamical relationship
among the variables. Starting from a Gaussian random walk, the dynamical
behaviors of the temporal dependency can be modeled. The fully adaptive inference
strategy of particle learning effectively obtains the information of the varying
dependency. Different from [ZWW+16], we design our own simulator to generate
the variables that own group relationship. Our algorithm for online time-varying
Bayesian elastic-net Model demonstrates superior performance, far more than that
based on Lasso.



Chapter 4
Development of Novel Techniques of
CoCoSSC Method

This chapter provides an introduction to our main contributions concerning the
development of the novel methods of CoCoSSC is discussed.

4.1 Research Questions

Question 1: Maximum Allowable Fixed Step Size Recall that for convex opti-
mization by gradient decent with fixed step-size rule hk ≡ h, h < 2/L is both a
necessary and a sufficient condition for the convergence of GD. However, for non-
convex optimization existing works all required the (fixed) step size to be smaller
than 1/L. Because larger step sizes lead to faster convergence, a natural question
is to identify the maximum allowable step size such that GD escapes saddle points.
The main technical difficulty to analyze larger step size is that the gradient map

g(x) = x − h∇f (x)

may not be a diffeomorphism when h ≥ 1/L. Thus, techniques used in [LSJR16,
PP16] are no longer sufficient.

Here, we take a finer look at the dynamics of GD. Our main observation is that
the GD procedure escapes strict saddle points under much weaker conditions than
g being a diffeomorphism everywhere. In particular, the probability of GD with
random initialization converging to a strict saddle point is 0 provided that

g(xk) = xk − ht∇f (xk)

is a local diffeomorphism at every xt . We further show that

λ ({h ∈ [1/L, 2/L) : ∃t, g(xk) is not a local diffeomorphism}) = 0,

© Springer Nature Switzerland AG 2020
B. Shi, S. S. Iyengar, Mathematical Theories of Machine Learning - Theory
and Applications, https://doi.org/10.1007/978-3-030-17076-9_4

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17076-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-17076-9_4


30 4 Development of Novel Techniques of CoCoSSC Method

where λ(·) is the standard Lebesgue measure on R, meaning that for almost every
fixed step size choice in [1/L, 2/L), g(xk) is a local diffeomorphism for every t .

Therefore, if a step size h is chosen uniformly at random from
(

2
L
− ε, 2

L

)
for any

ε > 0, GD escapes all strict saddle points and converges to a local minimum. See
Sect. 7.3 for the precise statement and Sect. 7.5 for the proof.

Question 2: Analysis of Adaptive Step Sizes Another open question we consider
in this paper is to analyze the convergence of GD for non-convex objectives when
the step sizes {ht } vary as t evolves. In convex optimization, adaptive step-size
rules such as exact or backtracking line search [Nes13] are commonly used in
practice to improve convergence, and convergence of GD is guaranteed provided
that the adaptively tuned step sizes do not exceed twice the inverse of local gradient
Lipschitz constant. On the other hand, in non-convex optimization, whether gradient
descent with varying step sizes can escape all strict saddle points is unknown.

Existing techniques [LSJR16, PP16, LPP+17, OW17] cannot solve this question
because they relied on the classical stable manifold theorem [Shu13], which
requires a fixed gradient map, whereas when step sizes vary, the gradient maps also
change across iterations. To deal with this issue, we adopt the powerful Hartman
product map theorem [Har71], which gives a finer characterization of local behavior
of GD and allows the gradient map to change at every iteration. Based on Hartman
product map theorem, we show that as long as the step size at each iteration
is proportional to the inverse of the local gradient Lipschitz constant, GD still
escapes all strict saddle points. To the best of our knowledge, this is the first result
establishing convergence to local minima for non-convex gradient descent with
varying step sizes.

4.2 Accelerated Gradient Descent

We implement our discrete strategies into algorithms with the utility of the
observability and controllability of the velocity, or the kinetic energy, as well as
artificially dissipating energy for two directions as below:

• The kinetic energy, or the norm of the velocity, is compared with that in the
previous step while searching for the local minima in non-convex function or
global minima in convex function. It would be reset to zero until it no longer
becomes larger.

• An initial larger velocity v(0) = v0 is implemented at any initial position
x(0) = x0 so as to identify the global minima in non-convex function. A ball is
implemented with (3.12), the local maximum of the kinetic energy is recorded
to discern how many local minima exists along the trajectory. The strategy
described above is then implemented in identifying the minimum of all the local
minima.
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For implementing our thought in practice, we utilize the scheme in the numerical
method for the Hamiltonian system, the symplectic Euler method. We remark that a
more accuracy version is the Störmer–Verlet method for practice.

4.3 The COCOSSC Method

We now consider an alternative formulation COCOSSC to solve the noisy subspace
clustering problem, inspired by the COCOLASSO estimator for high-dimensional
regression with measurement error [DZ17]. First, a pre-processing step is used that
computes �̃ = XT X− D̂ and then finds a matrix belonging to the following set:

S :=
{

A ∈ R
N×N : A � 0

}
∩ {A : ∣∣Ajk − �̃jk

∣∣ ≤ |�jk|,∀j, k ∈ [N ]
}
, (4.1)

where � ∈ R
N×N is an error tolerance matrix to be specified by the data analyst. For

Gaussian random noise, all entries in � can be set to a common parameter, while for
the missing data model we recommend setting two different parameters for diagonal
and off-diagonal elements in �, as estimation errors of these elements of A behave
differently under the missing data model. We give theoretical guidelines on how to
set the parameters in � in our main theorems, while in practice we observe that
setting the elements in � to be sufficiently large would normally yield good results.
Because S in Eq. (4.1) is a convex set, and we will later prove that S �= ∅ with
high probability, a matrix �̃+ ∈ S can be easily found by alternating projection
from �̃.

For any �̃+ ∈ S and let �̃+ = X̃T X̃, where X̃ = (x̃1, · · · , x̃N) ∈ R
N×N . Such

a decomposition exists because �̃+ is positive semidefinite. The self-regression
vector ci is then obtained by solving the following (convex) optimization problem:

COCOSSC : ci := arg min
ci∈RN−1

‖ci‖1 + λ

2

∥∥x̃i − X̃−ici

∥∥2
2 . (4.2)

Equation (4.2) is an 	1-regularized least squares self-regression problem, with
the difference of using x̃i and X̃−i for self-regression instead of directly using
the raw noise-corrupted observations xi and X−i . This leads to improved sample
complexity, as shown in Table 4.1 and our main theorems. On the other hand,
COCOSSC retains the nice structure of LASSO SSC, making it easier to optimize.
We further discuss this aspect and other advantages of COCOSSC in the next
section.
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Table 4.1 Summary of success conditions with normalized signals ‖yi‖2 = 1

Gaussian model Missing data (MD) MD (random subspaces)

LASSO SSC [SEC14] σ = O(1) – –

LASSO SSC [WX16] σ = O(n1/6) ρ = �(n−1/4) ρ = �(n−1/4)

LASSO SSC [CJW17] – ρ = �(1) ρ = �(1)

PZF-SSC [TV18] – ρ = �(1) ρ = �(1)

DE-BIASED DANTZIG

[QX15]
σ = O(n1/4) ρ = �(n−1/3) ρ = �(n−1/3)

COCOSSC (this paper) σ = O(n1/4) ρ = �(χ2/3n−1/3 + n−2/5)a ρ = �(n−2/5)a

Polynomial dependency on d, C, C, and log N are omitted. In the last line χ is a subspace affinity
quantity introduced in Definition 9.3 for the non-uniform semi-random model. χ is always upper
bounded by

√
d

aIf ‖yi‖2 is exactly known, the success condition can be improved to ρ = �(n−1/2). See
Remark 9.3 for details

4.3.1 Advantages of CoCoSSC

The COCOSSC has the following advantages:

1. Equation (4.2) is easier to optimize, especially compared to the de-biased
Dantzig selector approach in Eq. (3.15), because it has a smoothly differentiable
objective with an 	1 regularization term. Many existing methods such as ADMM
[BPC+11] can be used to obtain fast convergence. We refer the readers to
[WX16, Appendix B] for further details on efficient implementation of Eq. (4.2).
The pre-processing step Eq. (4.1) can also be efficiently computed using
alternating projection, as both sets in Eq. (4.1) are convex. On the other hand,
the de-biased Dantzig selector formulation in Eq. (3.15) is usually solved using
linear programming [CT05, CT07] and could be very slow as the number of
variables is large. Indeed, our empirical results show that the de-biased Dantzig
selector is almost 5–10 times slower than both LASSO SSC and COCOSSC.

2. Equation (4.2) has improved or equal sample complexity in both the Gaussian
noise model and the missing data model, compared to LASSO SSC and the de-
biased Dantzig selector. This is because a “de-biasing” pre-processing step in
Eq. (4.1) is used, and an error tolerance matrix � with different diagonal and
off-diagonal elements is considered to reflect the heterogeneous estimation error
in A. Table 4.1 gives an overview of our results comparing them with existing
results.

4.4 Online Time-Varying Elastic-Net Algorithm

To overcome the deficiency of Lasso-Granger and capture the dynamical change of
causal relationships among MTS, we investigate the Granger causality framework
with elastic-net [ZH05], which imposes a mixed L1 and L2 regularization penalty



4.5 Concluding Remarks 33

on the linear regression. The elastic-net cannot only obtain strongly stable coef-
ficients [SHB16], but also capture grouped effects of variables [SHB16, ZH05].
Furthermore, our approach explicitly models the dynamical change behaviors of
the dependency as a set of random walk particles, and utilizes particle learning
[CJLP10, ZWW+16] to provide a fully adaptive inference strategy. This strategy
allows the model to effectively capture varying dependencies while simultaneously
learning latent parameters. Empirical studies on synthetic and real data sets
demonstrate the effectiveness of our proposed approach.

4.5 Concluding Remarks

In this chapter we defined a novel method that could overcome the deficiency of
Lasso-Granger and capture the dynamical change of causal relationships among
MTS. We have also discussed an approach that dynamically changes the behavior
of the dependency as a set of random walk particles. Empirical studies on both
synthetic and real data sets were demonstrated to show the effectiveness of the
proposed approach.



Chapter 5
Necessary Notations of the Proposed
Method

We define necessary notations and review important definitions that will be used
later in our analysis. Let C2(Rn) be the vector space of real-valued twice-
continuously differentiable functions. Let ∇ be the gradient operator and ∇2 be
the Hessian operator. Let ‖ · ‖2 be the Euclidean norm in R

n. Let μ be the Lebesgue
measure in R

n.

Definition 5.1 (Global Gradient Lipschitz Continuity Condition) f ∈ C2(Rn)

satisfies the global gradient Lipschitz continuity condition if there exists a constant
L > 0 such that

‖∇f (x1)−∇f (x2)‖2 ≤ L ‖x1 − x2‖2 ∀x1, x2 ∈ R
n. (5.1)

Definition 5.2 (Global Hessian Lipschitz Continuity Condition) f ∈ C2(Rn)

satisfies the global Hessian Lipschitz continuity condition if there exists a constant
K > 0 such that

∥∥∥∇2f (x1)−∇2f (x2)

∥∥∥
2
≤ K ‖x1 − x2‖2 ∀x1, x2 ∈ R

n. (5.2)

Intuitively, a twice-continuously differentiable function f ∈ C2(Rn) satisfies
the global gradient and Hessian Lipschitz continuity condition if its gradients and
Hessians do not change dramatically for any two points in R

n. However, the global
Lipschitz constant L for many objective functions that arise in machine learning
applications (e.g., f (x) = x4) may be large or even non-existent. To handle
such cases, one can use a finer definition of gradient continuity that characterizes
the local behavior of gradients, especially for non-convex functions. This defini-
tion is adopted in many subjects of mathematics, such as in dynamical systems
research.
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Let δ > 0 be some fixed constant. For every x0 ∈ R
n, its δ-closed neighborhood

is defined as

V (x0, δ) =
{
x ∈ R

n
∣∣ ‖x − x0‖2 < δ

}
. (5.3)

Definition 5.3 (Local Gradient Lipschitz Continuity Condition) f ∈ C2(Rn)

satisfies the local gradient Lipschitz continuity condition at x0 ∈ R
n with radius

δ > 0 if there exists a constant L(x0,δ) > 0 such that

‖∇f (x)− ∇f (y)‖2 ≤ L(x0,δ)‖x − y‖2 ∀x, y ∈ V (x0, δ). (5.4)

We next review the concepts of stationary point, local minimizer, and strict
saddle point, which are important in (non-convex) optimization.

Definition 5.4 (Stationary Point) x∗ ∈ R
n is a stationary point of f ∈ C2(Rn) if

∇f (x∗) = 0.

Definition 5.5 (Local Minimizer) x∗ ∈ R
n is a local minimum of f if there is a

neighborhood U around x∗ such that for all x ∈ U , f (x∗) < f (x).

A stationary point can be a local minimizer, a saddle point, or a maximizer. It
is a standard fact that if a stationary point x� ∈ R

n is a local minimizer of f ∈
C2(Rn), then ∇2f (x�) is positive semidefinite; on the other hand, if x∗ ∈ R

n is a
stationary point of f ∈ C2(Rn) and ∇2f (x�) is positive definite, then x∗ is also
a local minimizer of f . It should also be noted that the stationary point x� in the
second case is isolated.

The following definition concerns “strict” saddle points, which was also analyzed
in [GHJY15].

Definition 5.6 (Strict Saddle Points) x∗ ∈ R
n is a strict saddle1 of f ∈ C2(Rn)

if x∗ is a stationary point of f and furthermore λmin
(∇2f (x∗)

)
< 0.

We denote the set of all strict saddle points by X . By definition, a strict saddle
point must have an escaping direction so that the eigenvalue of the Hessian along
that direction is strictly negative. For many non-convex problems studied in machine
learning, all saddle points are strict.

We next review additional concepts in multivariate analysis and differential
geometry/topology that will be used in our analysis.

Definition 5.7 (Gradient Map and Its Jacobian) For any f ∈ C2(Rn), the
gradient map g : Rn → R

n with step size h is defined as

g(x) = x − h∇f (x). (5.5)

1For the purposes, strict saddle points include local maximizers.
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The Jacobian Dg : Rn → R
n×n of the gradient map g is defined as

Dg(x) =
⎛

⎜
⎝

∂g1
∂x1

(x) · · · ∂g1
∂xn

(x)

· · · · · · · · ·
∂gn

∂x1
(x) · · · ∂gn

∂xn
(x)

⎞

⎟
⎠ , (5.6)

or equivalently, Dg = I − h∇2f .

We write an � bn if there exists an absolute constant C > 0 such that, for
sufficiently large n, |an| ≤ C|bn|. Similarly, an � bn if bn � an and an � bn if both
an � bn and bn � an are true. We write an 
 bn if for a sufficiently small constant
c > 0 and sufficiently large n, |an| ≤ c|bn|. For any integer M , [M] denotes the
finite set {1, 2, · · · ,M}.
Definition 5.8 (Local Diffeomorphism) Let M and N be two differentiable man-
ifolds. A map f : M → N is a local diffeomorphism if for each point x in M , there
exists an open set U containing x such that f (U) is open in N and f |U : U → f (U)

is a diffeomorphism.

Definition 5.9 (Compact Set) S ⊆ R
n is compact if every open cover of S has a

finite sub-cover.

Definition 5.10 (Sublevel Set) The α-sublevel set of f : Rn → R is defined as

Cα =
{
x ∈ R

n | f (x) ≤ α
}
.

5.1 Concluding Remarks

In this chapter, we have defined the necessary notations that would be used in the
remaining part of this book. We have also identified and reviewed the important
definitions that will be used later in our analysis. The following chapter discusses
the related work on the geometry of the non-convex programs.



Chapter 6
Related Work on Geometry of
Non-Convex Programs

Over the past few years, there have been increasing interest in understanding the
geometry of non-convex programs that naturally arise from machine learning prob-
lems. It is particularly interesting to study additional properties of the considered
non-convex objective such that popular optimization methods (such as gradient
descent) escape saddle points and converge to a local minimum. The strict saddle
property (Definition 5.6) is one such property, which was also shown to hold in a
broad range of applications.

Many existing works leveraged Hessian information to circumvent saddle points.
This includes a modified Newton’s method [MS79], the modified Cholesky’s
method [GM74], the cubic-regularization method [NP06], and trust region meth-
ods [CRS14]. The major drawback of such second-order methods is the requirement
of access to the full Hessian, which could be computationally expensive, as the
per-iteration computational complexity scales quadratically or even cubically in
the problem dimension, unsuitable for optimization of high-dimensional functions.
Some recent works [CDHS16, AAB+17, CD16] showed that the requirement of
full Hessian can be relaxed to Hessian-vector products, which can be computed
efficiently in certain machine learning applications. Several works [LY17, RZS+17,
RW17] also presented algorithms that combine first-order methods with faster
eigenvector algorithms to obtain lower per-iteration complexity.

Another line of works focuses on noise-injected gradient methods whose per-
iteration computational complexity scales linearly in the problem dimension. Earlier
work has shown that the first-order method with unbiased noise with sufficiently
large variance can escape strict saddle points [Pem90]. Ge et al. [GHJY15]
gave quantitative rates on the convergence. Recently, more refined algorithms and
analyses [JGN+17, JNJ17] have been proposed to improve the convergence rate of
such algorithms. Nevertheless, gradient methods with deliberately injected noise are
almost never used in practical applications, limiting the applicability of the above-
mentioned analysis.

© Springer Nature Switzerland AG 2020
B. Shi, S. S. Iyengar, Mathematical Theories of Machine Learning - Theory
and Applications, https://doi.org/10.1007/978-3-030-17076-9_6

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17076-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-17076-9_6


40 6 Related Work on Geometry of Non-Convex Programs

Empirically, [SQW16] observed that gradient descent with 100 random initial-
izations for the phase retrieval problem always converges to a local minimizer.
Theoretically, the most important existing result is due to [LSJR16], who showed
that gradient descent with fixed step size and any reasonable random initialization
always escapes isolated strict saddle points. Panageas and Piliouras [PP16] later
relaxed the requirement that strict saddle points are isolated. O’Neill and Wright
[OW17] extended the analysis to accelerated gradient descent and [LPP+17]
generalized the result to a broader range of first-order methods, including proximal
gradient descent and coordinate descent. However these works all require the step
size to be significantly smaller than the inverse of Lipschitz constant of gradients,
which has factor of 2 gap from results in the convex setting and do not allow the
step size to vary across iterations. Our work resolves both problems.

The history of the use of the gradient method for convex optimization dates
back to the time of Euler and Lagrange. However, its relatively cheaper means
of performing the calculations for the first-order information makes it a method
still in active use in machine learning and non-convex optimization, such as the
recent work in [GHJY15, AG16, LSJR16, HMR16]. The natural speedup algorithms
are the momentum method first proposed in [Pol64] and Nesterov’s accelerated
gradient method first proposed in [Nes83] with an improved version [NN88]. An
acceleration algorithm in similar lines to Nesterov’s accelerated gradient method,
called FISTA, is designed to solve composition problems as depicted in [BT09]. A
related comprehensive work is proposed in [B+15].

The original momentum method, named as Polyak heavy ball method, is from
the view of ODE in [Pol64], which contains extremely rich physical intuitive ideas
and mathematical theory. An extremely important work in application on machine
learning is the backpropagation learning with momentum [RHW+88]. Based on the
thought of ODE, a lot of understanding and application on the momentum method
and Nesterov’s accelerated gradient methods have been proposed. In [SMDH13],
a well-designed random initialization with momentum parameter algorithm is
proposed to train both DNNs and RNNs. A breakthrough deep insight from ODE to
understanding the intuition behind the Nesterov scheme is proposed in [SBC14].
The understanding for momentum method based on the variation perspective
is proposed in [WWJ16], and the understanding from Lyapunov analysis is
proposed in [WRJ16]. From the stability theorem of ODE, the gradient method
always converges to local minima in the sense of almost everywhere is proposed
in [LSJR16]. Analyzing and designing iterative optimization algorithms built on
integral quadratic constraints from robust control theory is proposed in [LRP16].

Actually the “high momentum” phenomenon was initially observed in [OC15]
for a restarting adaptive accelerating algorithm. A restarting scheme has been
proposed in the work by [SBC14]. However, both these above-mentioned works
use restarting scheme for an auxiliary tool to accelerate the algorithm based on
friction. Utilizing the concept of phase space in mechanics, we can observe that the
kinetic energy, or velocity, is controllable and can be molded to being an utilizable
parameter that would aid in finding the local minima. Without the use of the term
defining friction, we still would be able to find the local minima by using just the
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velocity parameter. For this advantage, this algorithm is touted to be very simplistic
to practice. We can generalize this to the non-convex optimization in the detection
of the local minima along the trajectory of the particle.

Sparse subspace clustering was proposed by [EV13] as an effective method
for subspace clustering. Soltanolkotabi and Candes [SC12] initiated the study
of theoretical properties of sparse subspace clustering, which was later extended
to noisy data [SEC14, WX16], dimensionality-reduced data [WWS15a, HTB17,
TG17], and data consisting of sensitive private information [WWS15b]. Yang et al.
[YRV15] considered some heuristics for subspace clustering with missing entries,
and [TV18] considered a PZF-SSC approach and proved success conditions with
ρ = �(1). Park et al. [PCS14], Heckel and Bölcskei [HB15], Liu et al. [LLY+13],
Tsakiris and Vidal [TV17] proposed alternative approaches for subspace clustering.
Some earlier references include k-plane [BM00], q-flat [Tse00], ALC [MDHW07],
LSA [YP06], and GPCA [VMS05].

It is an important task to reveal the casual dependencies between historical
and current observations in MTS analysis. Bayesian Network [JYG+03, Mur02]
and Granger causality [ALA07, ZF09] are two main frameworks for inference
of temporal dependency. Comparing with Bayesian Network, Granger causality is
more straightforward, robust, and extendable [ZF09].

The online adaptive linear regression cannot only provide insights about the
concerned time series with time evolution, but also is essential for parameter
estimation, prediction, cross prediction, i.e., predicting how the variables depend
on the other variables, and so on. In this paper, we are interested in uncovering the
dynamical relationship, which characterizes the time-specific dependencies between
variables.

Temporal data sets are a collection of data items associated with time stamps.
It can be divided into two categories, i.e., time-series data and event data. Just as
time-series data, the essential difference between univariate and multivariate is the
dependent relationship among variables. Our work focuses on multivariate time-
series data sets.

6.1 Multivariate Time-Series Data Sets

Originally, Granger causality is designed for a pair of time series. The appearance of
pioneering work of combining the notion of Granger causality with graphical model
[Eic06] leads to the emergence of causal relationship analysis among MTS data.
Two typical techniques, statistical significance test and Lasso-Granger [ALA07],
are developed to inference the Granger causality among MTS. Lasso-Granger gains
more popularity due to its robust performance even in high dimensions [BL12].
However, Lasso-Granger suffers from instability and failure of group variable
selection because of the high sensitivity of L1 norm. To address this challenging, our
method adopts elastic-net regularizer [ZH05] which is stable since it encourages a
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group variable selection (group effect) where strongly correlated predictors tend to
be zero or non-zero simultaneously.

Our proposed method utilizes the advantages of Lasso-Granger, but conducts the
inference from the Bayesian perspective in a sequential online mode, borrowing
the ideas of Bayesian Lasso [TPGC]. However, most of these methods assume a
constant dependency structure among the time series.

Regression model has evolved to be one of the principal approaches for Granger
causality and most of the existing methods assume a constant dependency structure,
i.e., a constant causal relationship between time series. One is the Bayesian network
inference approach [Hec98, Mur12, JYG+03], while the other approach is the
Granger causality [Gra69, Gra80, ALA07]. An extensive comparison study between
these two types of frameworks is presented in [ZF09]. In order to overcome these
difficulties, the time-varying Lasso-Granger model based on an online manner is
proposed [ZWW+16]. However, the Lasso regularizer has its own limit, which
cannot capture the natural group information between variables and extremely
instability. Advances in regularization theory have led to a series of extensions to
the original Lasso algorithm, such as elastic-net [ZH05].

Related to the elastic-net regularizer, the offline algorithms first are proposed for
capturing the relationship in [LLNM+09]. The elastic net encourages a grouping
effect, where strongly correlated predictors tend to be in or out of the model together.
Real-world data and a simulation study show that elastic net often outperforms lasso
while enjoying a similar sparse representation [ZH05].

Based on the online algorithm of particle learning for high-dimensional linear
regression firstly borrowed by [ZWML16], we introduce the elastic-net regularizer
to the online algorithm and investigate the group effects among variables.

Particle learning [CJLP10] is a powerful tool to provide an online inference
strategy for Bayesian models. It belongs to the sequential Monte Carlo (SMC)
methods consisting of a set of Monte Carlo methodologies to solve the filtering
problem [DGA00]. Particle learning provides state filtering, sequential parameter
learning, and smoothing in a general class of state space models [CJLP10]. The
central idea behind particle learning is the creation of a particle algorithm that
directly samples from the particle approximation to the joint posterior distribution
of states and conditional sufficient statistics for fixed parameters in a fully adapted
resample-propagate framework.

We borrow the idea of particle learning for both latent state inference and
parameter learning.

Zeng et al. [ZWW+16] handle and simulate the time-varying multivariate time
series. In a general class of state space models, particle learning provides state
filtering, sequential parameter learning, and smoothing. Particle learning is for
approximating the sequence of filtering and smoothing distributions in light of
parameter uncertainty. The central idea behind particle learning is the creation of
a particle algorithm that directly samples from the particle approximation to the
joint posterior distribution of states and conditional sufficient statistics for fixed
parameters in a fully adapted resample-propagate framework.
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Multivariate time series is a very important tool to try to explain this
phenomenon. The spatial–temporal causal modeling is first proposed in
[LLNM+09]. Based on the graph inference, the relational graph model is proposed
in [LNMLL10] and the varying graph model in [CLLC10]. Also, the sparse-GEV
model of latent state on extreme value is proposed in [LBL12]. However, all of the
models are static, which cannot capture the dynamical information.

6.2 Particle Learning

To capture dynamic information in state space modeling, researchers have incor-
porated additional information through sequential parameter learning. Limitations
in applying these methods must be considered, as many computational challenges
result from these applications. State filtering, sequential parameter learning, and
smoothing in a general class of state space models have recently been applied
[CJLP10]. Of these, particle learning has become one of the most popular sequential
learning methods.

The central idea behind particle learning is the creation of a particle algorithm
that directly samples from the particle approximation to the joint posterior distri-
bution of states and conditional sufficient statistics for fixed parameters in a fully
adapted resample-propagate framework. The idea of particle learning for both latent
state inference and parameter learning is firstly borrowed by [ZWML16]. Here, we
continue to make use of the idea on our elastic-net regularizer.

6.3 Application to Climate Change

Climate change poses many critical social issues in the new century. Uncovering
the dependency relationship between the various climate observations and forcing
factors is an important challenge. Multivariate time series is a very important
tool to try to explain this phenomenon. The spatial–temporal causal modeling is
first proposed in [LLNM+09]. Based on the graph inference, the relational graph
model is proposed in [LNMLL10] and the varying graph model in [CLLC10].
Also, the sparse-GEV model of latent state on extreme value is proposed in
[LBL12]. However, all of the models are static, which cannot capture the dynamical
information. Here we proposed an online time-varying spatial–temporal causal
model to simulate and interpret the phenomena of air temperature in Florida.
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6.4 Concluding Remarks

In this chapter, we have reviewed and discussed the various ideas and concepts
related to the geometry of the non-convex programs. We have also described the
concepts of particle learning and an introduction to one of the applications “climate
change” with a case study of Florida.

In the next part of the book, we discuss the mathematical framework for machine
learning giving emphasis to the theoretical aspects.



Part II
Mathematical Framework for Machine

Learning: Theoretical Part



Chapter 7
Gradient Descent Converges to
Minimizers: Optimal and Adaptive
Step-Size Rules

7.1 Introduction

As mentioned in Chap. 3, gradient descent (GD) and its variants provide the core
optimization methodology in machine learning problems. Given a C1 or C2 function
f : Rn → R with unconstrained variable x ∈ R

n, GD uses the following update
rule:

xt+1 = xt − ht∇f (xt ) (7.1)

where ht are step size, which may be either fixed or vary across iterations. When f

is convex, ht < 2
L

is a necessary and sufficient condition to guarantee the (worst-
case) convergence of GD, where L is the Lipschitz constant of the gradient of the
function f . On the other hand, there is far less understanding of GD for non-convex
problems. For general smooth non-convex problems, GD is only known to converge
to a stationary point (i.e., a point with zero gradient) [Nes13].

Machine learning tasks often require finding a local minimizer instead of just a
stationary point, which can also be a saddle point or a maximizer. In recent years,
there has been an increasing focus on geometric conditions under which GD escapes
saddle points and converges to a local minimizer. More specifically, if the objective
function satisfies (1) all saddle point are strict and (2) all local minima are global
minima, then GD finds a global optimal solution. These two properties hold for a

Part of this chapter is in the paper titled “gradient decent converges to minimizers: optimal
and adaptive step size rules” by Bin Shi et al. (2018) presently under review for publication in
INFORMS, Journal on Optimization.
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wide range of machine learning problems, such as matrix factorization [LWL+16],
matrix completion [GLM16, GJZ17], matrix sensing [BNS16, PKCS17], tensor
decomposition [GHJY15], dictionary learning [SQW17], and phase retrieval
[SQW16].

Recent works showed when the objective function has the strict saddle property,
then GD converges to a minimizer provided the initialization is randomized and
the step sizes are fixed and smaller than 1/L [LSJR16, PP16]. While this was
the first result establishing convergence of GD, there are still gaps towards fully
understanding GD for strict saddle problems. In particular, as mentioned in Chap. 4,
the following two questions are still open regarding the convergence of GD for non-
convex problems:

Question 1: Maximum Allowable Fixed Step Size Recall that for convex opti-
mization by gradient decent with fixed step-size rule ht ≡ h, h < 2/L is both a
necessary and a sufficient condition for the convergence of GD. However, for non-
convex optimization existing works all required the (fixed) step size to be smaller
than 1/L. Because larger step sizes lead to faster convergence, a natural question
is to identify the maximum allowable step size such that GD escapes saddle points.
The main technical difficulty to analyze larger step size is that the gradient map

g(x) = x − h∇f (x)

may not be a diffeomorphism when h ≥ 1/L. Thus, techniques used in [LSJR16,
PP16] are no longer sufficient.

In this paper, we take a finer look at the dynamics of GD. Our main observation
is that the GD procedure escapes strict saddle points under much weaker conditions
than g being a diffeomorphism everywhere. In particular, the probability of GD with
random initialization converging to a strict saddle point is 0 provided that

g(xt ) = xt − ht∇f (xt )

is a local diffeomorphism at every xt . We further show that

λ ({h ∈ [1/L, 2/L) : ∃t, g(xt ) is not a local diffeomorphism}) = 0,

where λ(·) is the standard Lebesgue measure on R, meaning that for almost every
fixed step size choice in [1/L, 2/L), g(xt ) is a local diffeomorphism for every t .

Therefore, if a step size h is chosen uniformly at random from
(

2
L
− ε, 2

L

)
for any

ε > 0, GD escapes all strict saddle points and converges to a local minimum. See
Sect. 7.3 for the precise statement and Sect. 7.5 for the proof.

Question 2: Analysis of Adaptive Step Sizes Another open question we consider
is to analyze the convergence of GD for non-convex objectives when the step sizes
{ht } vary as t evolves. In convex optimization, adaptive step-size rules such as exact
or backtracking line search [Nes13] are commonly used in practice to improve
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convergence, and convergence of GD is guaranteed provided that the adaptively
tuned step sizes do not exceed twice the inverse of local gradient Lipschitz constant.
On the other hand, in non-convex optimization, whether gradient descent with
varying step sizes can escape all strict saddle points is unknown.

Existing techniques [LSJR16, PP16, LPP+17, OW17] cannot solve this question
because they relied on the classical stable manifold theorem [Shu13], which
requires a fixed gradient map, whereas when the step sizes vary, the gradient
maps also change across iterations. To deal with this issue, we adopt the powerful
Hartman product map theorem [Har71], which gives a finer characterization of local
behavior of GD and allows the gradient map to change at every iteration. Based
on Hartman product map theorem, we show that as long as the step size at each
iteration is proportional to the inverse of the local gradient Lipschitz constant, GD
still escapes all strict saddle points. To the best of our knowledge, this is the first
result establishing convergence to local minima for non-convex gradient descent
with varying step sizes.

7.1.1 Related Works

Over the past few years, there have been increasing interest in understanding the
geometry of non-convex programs that naturally arise from machine learning prob-
lems. It is particularly interesting to study additional properties of the considered
non-convex objective such that popular optimization methods (such as gradient
descent) escape saddle points and converge to a local minimum. The strict saddle
property (Definition 7.6) is one such property, which was also shown to hold in a
broad range of applications.

Many existing works leveraged Hessian information in order to circumvent
saddle points. This includes a modified Newton’s method [MS79], the modified
Cholesky’s method [GM74], the cubic-regularization method [NP06], and trust
region methods [CRS14]. The major drawback of such second-order methods is
the requirement of access to the full Hessian, which could be computationally
expensive, as the per-iteration computational complexity scales quadratically or
even cubically in the problem dimension, unsuitable for optimization of high-
dimensional functions. Some recent works [CDHS16, AAB+17, CD16] showed
that the requirement of full Hessian can be relaxed to Hessian-vector products,
which can be computed efficiently in certain machine learning applications. Several
works [LY17, RZS+17, RW17] also presented algorithms that combine first-order
methods with faster eigenvector algorithms to obtain lower per-iteration complexity.

Another line of works focuses on noise-injected gradient methods whose per-
iteration computational complexity scales linearly in the problem dimension. Earlier
work have shown that first-order method with unbiased noise with sufficiently large
variance can escape strict saddle points [Pem90]. [GHJY15] gave quantitative rates
on the convergence. Recently, more refined algorithms and analyses [JGN+17,
JNJ17] have been proposed to improve the convergence rate of such algorithms.
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Nevertheless, gradient methods with deliberately injected noise are almost never
used in practical applications, limiting the applicability of the above-mentioned
analysis.

Empirically, [SQW16] observed that gradient descent with 100 random initial-
izations for the phase retrieval problem always converges to a local minimizer.
Theoretically, the most important existing result is due to [LSJR16], who showed
that gradient descent with fixed step size and any reasonable random initialization
always escapes isolated strict saddle points. [PP16] later relaxed the requirement
that strict saddle points are isolated. Other authors, [OW17] extended the analysis
to accelerated gradient descent and [LPP+17] generalized the result to a broader
range of first-order methods, including proximal gradient descent and coordinate
descent. However these works all require the step size to be significantly smaller
than the inverse of Lipschitz constant of gradients, which has factor of 2 gap from
results in the convex setting and do not allow the step size to vary across iterations.
Our results resolve both the aforementioned problems.

7.2 Notations and Preliminaries

For the sake of completeness, we present necessary notations and review important
definitions some of which defined earlier in Chap. 5 and will be used later in
our analysis. Let C2(Rn) be the vector space of real-valued twice-continuously
differentiable functions. Let ∇ be the gradient operator and ∇2 be the Hessian
operator. Let ‖ · ‖2 be the Euclidean norm in R

n. Let μ be the Lebesgue measure in
R

n.

Definition 7.1 (Global Gradient Lipschitz Continuity Condition) f ∈ C2(Rn)

satisfies the global gradient Lipschitz continuity condition if there exists a constant
L > 0 such that

‖∇f (x1)−∇f (x2)‖2 ≤ L ‖x1 − x2‖2 ∀x1, x2 ∈ R
n. (7.2)

Definition 7.2 (Global Hessian Lipschitz Continuity Condition) f ∈ C2(Rn)

satisfies the global Hessian Lipschitz continuity condition if there exists a constant
K > 0 such that

∥
∥∥∇2f (x1)−∇2f (x2)

∥
∥∥

2
≤ K ‖x1 − x2‖2 ∀x1, x2 ∈ R

n. (7.3)

Intuitively, a twice-continuously differentiable function f ∈ C2(Rn) satisfies
the global gradient and Hessian Lipschitz continuity condition if its gradients and
Hessians do not change dramatically for any two points in R

n. However, the global
Lipschitz constant L for many objective functions that arise in machine learning
applications (e.g., f (x) = x4) may be large or even non-existent. To handle such
cases, one can use a finer definition of gradient continuity that characterizes the



7.2 Notations and Preliminaries 51

local behavior of gradients, especially for non-convex functions. This definition is
adopted in many subjects of mathematics, such as in dynamical systems research.

Let δ > 0 be some fixed constant. For every x0 ∈ R
n, its δ-closed neighborhood

is defined as

V (x0, δ) =
{
x ∈ R

n
∣∣ ‖x − x0‖2 < δ

}
. (7.4)

Definition 7.3 (Local Gradient Lipschitz Continuity Condition) The function
f ∈ C2(Rn) satisfies the local gradient Lipschitz continuity condition at x0 ∈ R

n

with radius δ > 0 if there exists a constant L(x0,δ) > 0 such that

‖∇f (x)− ∇f (y)‖2 ≤ L(x0,δ)‖x − y‖2 ∀x, y ∈ V (x0, δ). (7.5)

We next review the concepts of stationary point, local minimizer, and strict
saddle point, which are important in (non-convex) optimization.

Definition 7.4 (Stationary Point) x∗ ∈ R
n is a stationary point of f ∈ C2(Rn) if

∇f (x∗) = 0.

Definition 7.5 (Local Minimizer) x∗ ∈ R
n is a local minimum of f if there is a

neighborhood U around x∗ such that for all x ∈ U , f (x∗) < f (x).

A stationary point can be a local minimizer, a saddle point, or a maximizer. It
is a standard fact that if a stationary point x� ∈ R

n is a local minimizer of f ∈
C2(Rn), then ∇2f (x�) is positive semidefinite; on the other hand, if x∗ ∈ R

n is a
stationary point of f ∈ C2(Rn) and ∇2f (x�) is positive definite, then x∗ is also
a local minimizer of f . It should also be noted that the stationary point x� in the
second case is isolated.

The following definition concerns “strict” saddle points, which was also analyzed
in [GHJY15].

Definition 7.6 (Strict Saddle Points) x∗ ∈ R
n is a strict saddle1 of f ∈ C2(Rn)

if x∗ is a stationary point of f and furthermore λmin
(∇2f (x∗)

)
< 0.

We denote the set of all strict saddle points by X . By definition, a strict saddle
point must have an escaping direction so that the eigenvalue of the Hessian along
that direction is strictly negative. For many non-convex problems studied in machine
learning, all saddle points are strict.

We next review additional concepts in multivariate analysis and differential
geometry/topology that will be used in our analysis.

Definition 7.7 (Gradient Map and Its Jacobian) For any f ∈ C2(Rn), the
gradient map g : Rn → R

n with step size h is defined as

g(x) = x − h∇f (x). (7.6)

1For the purpose of this paper, strict saddle points include local maximizers.
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The Jacobian Dg : Rn → R
n×n of the gradient map g is defined as

Dg(x) =
⎛

⎜
⎝

∂g1
∂x1

(x) · · · ∂g1
∂xn

(x)

· · · · · · · · ·
∂gn

∂x1
(x) · · · ∂gn

∂xn
(x)

⎞

⎟
⎠ , (7.7)

or equivalently, Dg = I − h∇2f .

Definition 7.8 (Local Diffeomorphism) Let M and N be two differentiable man-
ifolds. A map f : M → N is a local diffeomorphism if for each point x in M , there
exists an open set U containing x such that f (U) is open in N and f |U : U → f (U)

is a diffeomorphism.

Definition 7.9 (Compact Set) S ⊆ R
n is compact if every open cover of S has a

finite sub-cover.

Definition 7.10 (Sublevel Set) The α-sublevel set of f : Rn → R is defined as

Cα =
{
x ∈ R

n | f (x) ≤ α
}
.

7.3 Maximum Allowable Step Size

We first consider gradient descent with a fixed step size. The following theorem
provides a sufficient condition for escaping all strict saddle points.

Theorem 7.1 Suppose f ∈ C2(Rn) satisfies the global gradient Lipschitz condi-
tion (Definition 7.1) with constant L > 0. Then there exists a zero-measure set

U ⊂
[

1
L
, 2

L

)
such that if h ∈

(
0, 2

L

)
\ U and x0 ∈ R

n is randomly initialized with

respect to an absolute continuous measure over Rn, then

Pr
(

lim
k

xk ∈ X
)
= 0,

where X denotes the set of all strict saddle points of f .

The complete proof of Theorem 7.1 is given in Sect. 7.5. Here we give a high-
level sketch of our proof. Similar to [LSJR16], our proof relies on the seminal
stable manifold Theorem [Shu13]. For a fixed saddle point x∗, the stable manifold
theorem asserts that locally, all points that converge to x∗ lie in a manifold Wcs

loc(x
∗).

Further, Wcs
loc(x

∗) has dimension at most n − 1, thus μ
(
Wcs

loc(x
∗)
) = 0. By

Lindelöf’s lemma (Lemma 7.6), we can show that the union of these manifolds,
Wcs

loc =
⋃

x∗∈X Wcs
loc(x

∗), also has Lebesgue measure 0. Next, we analyze what
initialization points converge to Wcs

loc. Using the notion of the inverse gradient map,
we can show that the initialization points that converge Wcs

loc belong to the set
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∞⋃

i=0

g−i (Wcs
loc).

Thus, we only need to upper bound the Lebesgue measure of this set. If g is
a local diffeomorphism, then by Lemma 7.2, we have μ

(⋃∞
i=0 g−i (Wcs

loc)
) ≤∑∞

i=0 μ
(
g−i

(
Wcs

loc

)) = 0. Therefore, we only need to show g is a local diffeo-
morphism. Existing works require η ≤ 1/L to ensure g is a global diffeomorphism,
whereas a local diffeomorphism is already sufficient. Our main observation is that
for h in (1/L, 2/L), there is only a zero-measure set U such that g with respect to
h ∈ U is not a local diffeomorphism at some xt . In other words, for almost every
step size h ∈ (1/L, 2/L), g is a local diffeomorphism at xt for every t .

Theorem 7.1 shows that the step sizes in [1/L, 2/L) that potentially leads to GD
convergence towards a strict saddle point have measure zero. Comparing to recent
results on gradient descent by [LSJR16, LPP+17, PP16], our theorem allows a
maximum (fixed) step size of 2/L instead of 1/L.

7.3.1 Consequences of Theorem 7.1

A direct corollary of Theorem 7.1 is that GD (with fixed step sizes < 2/L) can only
converge to minimizers when the limit limk xk exists.

Corollary 7.1 (GD Converges to Minimizers) Under the conditions in Theo-
rem 7.1 and the additional assumption that all saddle points of f are strict, if limk xk

exists then with probability 1 limk xk is a local minimizer of f .

We now discuss when limk xk exists. The following lemma gives a sufficient
condition on its existence.

Lemma 7.1 Suppose f ∈ C2 (Rn) has global gradient Lipschitz constant L and
owns compact sublevel sets. Further assume f only contains isolated stationary
points. If 0 < h < 2/L, limk xk converges to a stationary point of f for any
initialization x0.

Theorem 7.1 and Lemma 7.1 together imply Corollary 7.1, which asserts that if
the objective function has compact sublevel sets and the fixed step size h is smaller
than 2/L, GD converges to a minimizer. This result generalizes [LSJR16, PP16]
where the fixed step sizes of GD cannot exceed 1/L.

7.3.2 Optimality of Theorem 7.1

A natural question is whether the condition h < 2/L in Theorem 7.1 can be further
improved. The following proposition gives a negative answer, showing that GD
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with fixed step sizes h ≥ 2/L diverges on worst-case objective function f with
probability 1. This shows that h < 2/L is the optimal fixed step-size rule one can
hope for with which GD converges to a local minimum almost surely.

Proposition 7.1 There exists f ∈ C2(Rn) with global gradient Lipschitz constant
L > 0, compact sublevel sets, and only isolated stationary points such that if h ≥
2/L and x0 is randomly initialized with respect to an absolutely continuous density
on R

n, then limk xk does not exist with probability 1.

The proof of the proposition is simple by considering a quadratic function f ∈
C2(Rn) that serves as a counter-example of GD with fixed step sizes larger than or
equal to h/2. A complete proof of Proposition 7.1 is given in the appendix.

7.4 Adaptive Step-Size Rules

In many machine learning applications, the global gradient Lipschitz constant
L of the objective function f may be very large, but at most points the local
gradient Lipschitz constant could be much smaller. It is thus desirable to consider
varying step-size rules that select step sizes ht adaptively corresponding to the local
gradient Lipschitz constant of f at xt . When the objective function f is convex, the
convergence of gradient descent with varying step sizes is well-understood [Nes13].
However, when f is non-convex, whether GD with varying step sizes can escape
strict saddle points is still unknown. Existing works [LSJR16, LPP+17, PP16] all
require the step sizes to be fixed. Our following result closes this gap, showing
that GD escapes strict saddle points if the step sizes chosen at each point xt are
proportional to the local gradient Lipschitz constant Lxt ,δ .

Theorem 7.2 Suppose f ∈ C2 (Rn) satisfies the global Hessian Lipschitz continu-
ity condition (Definition 7.2) with parameter K and for every x∗ ∈ X , ∇2f (x∗) is
non-singular. Fix ε0 ∈ (0, 1) and define r = maxx∗∈X K−1ε0‖∇2f (x∗)‖2. Then
there exists U ⊂ R

+ with μ (U) = 0 such that if the step size at the t th iteration

satisfies ht ∈
[

ε0
Lxt ,r

,
2−ε0
Lxt ,r

]
\ U for all t = 0, 1, . . . and x0 is randomly initialized

with respect to an absolutely continuous density on R
n, then

Pr
(

lim
t

xt ∈ X
)
= 0.

Theorem 7.2 shows that even though the step sizes vary across iterations, GD
still escapes all strict saddle points provided that all step sizes are proportional to
their local smoothness. To the best of our knowledge, this is the first result showing
that GD with varying step size escapes all strict saddle points. Theorem 7.2 requires

ht ∈
[

ε0
Lxt ,δ

,
2−ε0
Lxt ,δ

]
, which are the desired local step size.
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The proof of Theorem 7.2 follows a similar path as that of Theorem 7.1. We
first locally characterize Lebesgue measure of the set of points that converge to
saddle points and then use Lemma 7.2 to relate this set to the initialization. The
main technical difficulty is the inapplicability of the stable manifold theorem in this
setting, as the gradient maps g are no longer fixed and change across iterations.
Instead of using the stable manifold theorem, we adopt the more general Hartman’s
product map theorem [Har82] which gives a finer characterization of the local
behavior of a series of gradient maps around a saddle point.

Different from Theorems 7.1 and 7.2 has two additional assumptions. First,
we require that the Hessian matrices ∇2f (x∗) at each saddle point x∗ are non-
singular (i.e., no zero eigenvalues). This is a technical regularity condition for using
Hartman’s product map theorem. To remove this assumption, we need to generalize
Hartman’s product map theorem which is a challenging problem in dynamical
systems. Second, we require that Hessian matrices∇2f (x) satisfy a global Lipschitz
continuity condition (Definition 7.2). This is because the Hartman’s product map
theorem requires the step size to be proportional to the gradient Lipschitz constant
in a neighborhood of each saddle point and the radius of the neighborhood needs
to be carefully quantified. Under the Hessian Lipschitz continuity assumption, we
can give an upper bound on this radius which is sufficient for applying Hartman’s
product map theorem. It is possible to give finer upper bounds on this radius based
on other quantitative continuity assumptions on the Hessian. The complete proof of
Theorem 7.2 is given in Sect. 7.6.

7.5 Proof of Theorem 7.1

To prove Theorem 7.1, similar to [LSJR16], we rely on the following seminal stable
manifold theorem from dynamical systems research.

Theorem 7.3 (Theorem III. 7, p. 65, [Shu13]) Let 0 be a fixed point for a Cr

local diffeomorphism f : U → R
n, where U is a neighborhood of zero in R

n and
1 ≤ r <∞. Let Es

⊕
Ec
⊕

Eu be the invariant splitting of Rn into the generalized
eigenspaces of Df (0) corresponding to eigenvalues of absolute value less than one,
equal to one, and greater than one. To the Df (0) invariant subspaces Es

⊕
Ec, Ec

there is associated a local f invariant Cr embedded disc Wcs
loc tangent to the linear

subspace at 0 and a ball B around zero in an adapted norm such that

f (Wcs
loc) ∩ B ⊂ Wcs

loc.

In addition, for any x satisfying f n(x) ∈ B for all n ≥ 0,2 then x ∈ Wcs
loc.

2f n(x) means the application of f on x repetitively for n times.
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For each saddle point x∗, Theorem 7.3 implies the existence of a ball Bx∗
centered at x∗ and an invariant manifold Wcs

loc(x
∗) whose dimension is at most n−1.

Let B =⋃x∗∈X Bx∗ . With Lindelöf’s Lemma (Lemma 7.6), there exists a countable
X ′ ⊂ X such that

B =
⋃

x�∈X ′
Bx∗ .

Recall the dimension of Wcs
loc(x

∗) is at most n−1. Therefore μ(Wcs
loc (x∗)) = 0. The

measure of Wcs
loc can be subsequently bounded as

μ(Wcs
loc) = μ

(
⋃

x�∈S′
Wcs

loc(x
�)

)

≤
∑

x∗∈X ′
μ
(
Wcs

loc(x
∗)
) = 0,

where the first inequality is from the semi-countable additivity of Lebesgue
measure.

To relate the stable manifolds of these saddle points to the initialization, we
need to analyze the gradient map. In contrast to previous analyses, we only show
the gradient map is a local diffeomorphism instead of a global one, which is
considerably weaker but sufficient for our purpose. This result is in the following
lemma, which is proved in the appendix.

Lemma 7.2 If a smooth map g : Rn → R
n is a local diffeomorphism, then for

every open set S with μ(S) = 0, the inverse set g−1(S) is also a zero-measure set,
that is, μ

(
g−1(S)

) = 0.

Next, we show that we can choose a step size in (0, 2/L) to make g a local
diffeomorphism except for a zero-measure set.

Lemma 7.3 The gradient map g : Rn → R
n in (7.6) is a local diffeomorphism in

R
n for step sizes h ∈ (0, 2/L)\H , where H ⊆ [1/L, 2/L) has measure zero.

Given Lemma 7.2 and Lemma 7.3, the rest of the proof is fairly straightforward.
With Lemma 7.3, we know that under the step size h ∈ (0, 2/L)\H and μ(H) = 0,
gradient descent is a local diffeomorphism. Furthermore, with Lemma 7.2, we have

μ

( ∞⋃

i=0

g−i (Wcs
loc)

)

≤
∞∑

i=0

μ(g−i (Wcs
loc)) = 0.

Thus, as long as the random initialization scheme is absolutely continuous with
respect to the Lebesgue measure, GD will not converge to a saddle point.
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7.6 Proof of Theorem 7.2

In this section we prove Theorem 7.2. First observe that if we can prove that a local
manifold that converges to the strict saddle point has Lebesgue measure 0, then we
can reuse the arguments for proving Theorem 7.1. To characterize the local behavior
of GD with varying step sizes, we resort to a generalization of the seminal Hartman
product map theorem.

7.6.1 Hartman Product Map Theorem

Before describing the theorem, we need to introduce some conditions and defini-
tions.

Assumption 7.1 (Hypothesis (H1) [Har71]) Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be
Banach spaces and Z = X × Y with norm ‖ · ‖Z = max(‖ · ‖X, ‖ · ‖Y ). Define
Zr(0) = {z ∈ Z : ‖z‖Z < r}. Let Tn(z) = (Anx, Bny)+ (Fn(z),Gn(z)) be a map
from Zr(0) to Z with fixed point 0 and having a continuous Fréchet derivative. Let
An : X → X and Bn : Y → Y be two linear operators and assume Bn is invertible.
Suppose

‖An‖X ≤ a < 1, ‖B−1
n ‖Y ≤ 1/b ≤ 1. 0 < 4δ < b − a, 0 < a + 2δ < 1,

(7.8)
Fn(0) = 0, Gn(0) = 0 and

{ ‖Fn(z1)− Fn(z2)‖X ≤ δ‖z1 − z2‖Z
‖Gn(z1)−Gn(z2)‖Y ≤ δ‖z1 − z2‖Z.

Here An represents local linear operator that acts on the space that corresponds to
positive eigenvalues of the Hessian of a saddle point and Bn is a local linear operator
that acts on the remaining space. Fn and Gn are higher order functions which vanish
at 0.

The main mathematical object we study in this section is the following invariant
set.

Definition 7.11 (Invariant Set) With the same notations in Assumption 7.1, let
T1, . . . , Tn be n maps from Zr(0) to Z and Sn = Tn◦Tn−1◦· · ·◦T1 be the product of
the maps. Let Dn be the invariant set of the product operator Sn and D =⋂∞n=1 Dn.

This set corresponds to the points that will converge to the strict saddle point. To
study its property, we consider a particular subset.

Definition 7.12 ( [Har71])

Daδ = {z0 = (x0, y0) ∈ D : zn ≡ Sn(z0) ≡ (xn, yn) s.t. ∀n, ‖yn‖Y ≤ ‖xn‖X
≤ (a + 2δ)n‖x0‖X

}
.
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Now we are ready to state Hartman product map Theorem.

Theorem 7.4 (Theorem 7.1, [Har71]) Under Assumption 7.1, the set Daδ is a
C1-manifold and satisfies Daδ = {z = (x, y) ∈ D|y = y0(x)} for some function
y0 which is continuous and has continuous Frèchet derivative Dxy0 on Xr(0) and
zn = Sn(x0, y0) ≡ (xn(x0), yn(x0)). Further, we have

‖yn(x
0)− yn(x0)‖Y ≤ ‖xn(x

0)− xn(x0)‖X ≤ (a + 2δ)n‖x0 − x0‖X,

yn(x0) = y0(xn(x0)),

for any |x0|, |x0| < r and n = 0, 1, . . ..

Remark 7.1 The C1-manifold y = y0(x) is equivalent to y−y0(x) = 0. The tangent
manifold of y at the fixed point 0 is the intersection set

⋂dim(y)

i=1 {(x, y)|∇xyi(x0) ·
x− yi = 0}. In the Rn case, {(x, y)|∇xyi(x0) · x− yi = 0} is a subspace of Rn with
dimension at most n− 1. Hence, its Lebesgue measure is 0.

Remark 7.2 Taking x0 = 0 where 0 is a fixed point, we can rewrite the result of
Theorem 7.4 as

‖yn(x0)− yn(0)‖Y ≤ ‖xn(x0)− xn(0)‖X ≤ (a + 2δ)n‖x0 − 0‖X,

yn(0) = y0(xn(0)) = 0, xn(0) = 0.

The following theorem from [Har71] implies that Daδ is actually D.

Theorem 7.5 (Proposition 7.1, [Har71]) Let z0 ∈ D; and zn = Sn(z0) for n =
0, 1, . . . .

1. If the inequality

‖ym‖Y ≥ ‖xm‖X
holds for some m ∈ N, then for n > m, we have

‖ym‖Y ≥ ‖xm‖X ‖yn‖Y ≥ (b − 2δ)n−m‖ym‖Y .

2. Otherwise, for every n ∈ N, we have

‖yn‖Y ≤ ‖xn‖X ≤ (a + 2δ)n‖x0‖X.

Using Theorem 7.5 we have the following useful corollary.

Corollary 7.2 If b − 2δ > 1, we have D = Daδ .
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7.6.2 Complete Proof of Theorem 7.2

We first correspond the parameters of GD to the notations in Assumption 7.1. Let
x∗ be a strict saddle point. Since ∇2f (x∗) is non-singular, it only contains positive
and negative eigenvalues. We let Rn = X × Y , where X corresponds to the space
of positive eigenvalues of ∇2f (x∗) and Y corresponds to the space of negative
eigenvalues of ∇2f (x∗). For any z ∈ R

n, we write z = (x, y), where x represents
the component in X and y represents the component in Y . Mappings T1, T2, . . .

in Assumption 7.1 correspond to the gradient maps. An,Bn,Fn, and Gn are thus
defined accordingly. The next lemma shows under our assumption on the step size,
GD dynamics satisfies Assumption 7.1.

Lemma 7.4 Suppose f ∈ C2 (Rn) with Hessian Lipschitz constant K and x∗ a

strict saddle point with L = ‖∇2f (x∗)‖2 and μ = ‖ (∇2f (x∗)
)−1 ‖−1

2 . For any

fixed ε0 ∈ (0, 1), if the step size satisfies ht ∈
[

ε0
L

,
2−ε0

L

]
, we have

‖At‖2 ≤ 1− ε0 and ‖B−1
t ‖2 ≤ 1

1+ ε0μ
L

and for any z1, z2 ∈ R
n.

max(‖Ft(z1)− Ft(z2)‖2, ‖Gt(z1)−Gt(z2)‖2) ≤ δ‖z1 − z2‖2,

where δ = ε
5 and r = εL

20K
(c.f. Assumption 7.1).

Let D be the invariant set defined in Definition 7.12. From Theorem 7.4,
Remarks 7.1, and 7.2, we know that the induced shrinking C1 manifold Daδ defined
in Definition 7.12 has dimension at most n − 1. Furthermore, by Corollary 7.2 we
know that D = Daδ . Therefore, the set of points converging to the strict saddle point
has zero Lebesgue measure. Similar to the proof of Theorem 7.1, since the gradient
map is a local diffeomorphism, we can see that with random initialization, GD will
not converge to any saddle point. The proof is complete.

7.7 Additional Theorems

Lemma 7.5 (The Inverse Function Theorem) Let f : M → N be a smooth
map, and dim(M) = dim(N). Suppose that the Jacobian Dfp is non-singular at
some p ∈ M . Then f is a local diffeomorphism at p, i.e., there exists an open
neighborhood U of p such that

1. f is one-to-one on U .
2. f (U) is open in N .
3. f−1 : f (U)→ U is smooth.

In particular, D(f−1)f (p) = (Dfp)−1.
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Lemma 7.6 (Lindelöf’s Lemma) For every open cover there is a countable sub-
cover.

7.8 Technical Proofs

Proof Proof of Lemma 7.2 With Theorem 7.5, we know that for every x ∈ S, there
exists an open set Ux ∈ R

n such that g is non-singular. Let Wx = S ∩ Ux , then we
have

S ⊆
⋃

x∈S

Wx.

With Lindelöf’s lemma, there exists a set S′ with countable elements x such that

S ⊆
⋃

x∈S′
Wx.

Since the Dg is non-singular on Wx , we know that g on Wx is one-one-onto. Hence,
we have μ(g−1(Wx)) = 0. Hence, we have

μ

(

g−1

(
⋃

x∈S

Wx

))

= μ

(

g−1

(
⋃

x∈S′
Wx

))

≤ μ

(
⋃

x∈S′
g−1(x)

)

≤
∑

x∈S′
μ(g−1(x)) = 0,

where the second inequality is from the monotony of Lebesgue measure and the
third inequality is from the semi-countable additivity of Lebesgue measure. ��
Proof Proof of Lemma 7.3 If the Jacobian of the gradient map Dg is non-singular
at some point x ∈ R

n, with the continuity of the Jacobian Dg, we know that Dg is
non-singular at some open neighborhood Ux of the point x. Hence, we have

R
n ⊆

⋃

x∈Rn

Ux.

With Lindelöf’s lemma, there exists a set S with countable number of x ∈ R
n such

that

R
n ⊆

⋃

x∈S
Ux
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Let Hx be the step size that Jacobian Dg is singular at the open set Ux . With the
definition of Ux , we know that there are at most n elements in Hx . Hence, we have

μ(Hx) = 0 and H =
⋃

x∈S
Hx,

where H satisfies that the Jacobian of the gradient map is non-singular with step

size h ∈
(

0, 2
L

)
\ H . With the semi-countable additivity of Lebesgue measure, we

have

μ(H) = μ

(
⋃

x∈S
Hx

)

≤
∑

x∈S
μ(Hx) = 0.

��
Proof Proof of Proposition 7.1 Consider the following quadratic function:

f (x) = 1

2
xT Ax,

where A is a diagonal matrix A = diag(λ1, . . . , λn) and satisfies λ1 > λ2 >

. . . , λn > 0. The global gradient Lipschitz constant L of f is λ1. Now consider
the gradient dynamics

xt+1 = xt − hAxt = (I − hA) xt .

Since h ≥ 2
L

, λmax (I − hA) ≥ 1. Therefore, the sequence {x0, x1, . . .} does not
converge. ��
Proof Proof of Lemma 7.4 If xt ∈ Vr(x

�), the step size satisfies

ht ∈
[

ε0

L(xt ,r)

,
2− ε0

L(xt ,r)

]
⊆
[

ε0

L− 2Kr
,

2− ε0

L

]
⊆
[

ε0

L(1− 0.1ε0)
,

2− ε0

L

]
.

Therefore, we know

ht ∈
[
ε′0
L

,
2− ε′0

L

]
,

where ε′0 = ε0
1−0.1ε′0

. Since both At and Bt are diagonal, then the 2-norm is equal to

the maximum eigenvalue, that is,

‖At‖2 = 1−max |λ(∇2|f (x�)) · h ≤ 1− ε0

‖B−1
t ‖2 = 1

1+ μ min |λ(∇2f (x∗))|h ≤
1

1+ ε0μ
L

.
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Furthermore, we have

max(‖F1(z1)− F1(z2)‖2, ‖F2(z1)− F2(z2)‖2)

≤ h‖(∇f (x)−∇f (y))+∇2f (x�)(x − y)‖2

≤ hK (‖z1‖2 + ‖z2‖2) ‖z1 − z2‖2.

Plugging in our assumption on the step size we have the desired result. ��

7.9 Conclusions

In this chapter we considered optimal and adaptive step-size rules for gradient
descent (GD) applied to non-convex optimization problems. We proved that GD
with fixed step sizes not exceeding 2/L will not converge to strict saddle points
almost surely, generalizing previous works of [LSJR16, PP16] that require step
sizes to not exceed 1/L. We also establish escaping strict saddle point properties of
GD under varying/adaptive step sizes under additional conditions.

One important open question is to derive explicit rates of convergence for the
GD algorithm with different step-size rules for non-convex objective functions. It
is particularly interesting to study non-convex problems for which GD converges to
local minima with number of iterations polynomial in problem dimension d. While
the work of [DJL+17] rules out such possibility for general smooth f , polynomial
iteration complexity of GD might still be possible for non-convex objectives under
additional assumptions.



Chapter 8
A Conservation Law Method Based on
Optimization

This chapter is organized as follows: In Sect. 8.1, we warm up with an analytical
solution for simple 1-D quadratic function. In Sect. 8.2, we propose the artificially
dissipating energy algorithm, energy conservation algorithm, and the combined
algorithm based on the symplectic Euler scheme, and remark a second-order
scheme—the Störmer–Verlet scheme. In Sect. 8.3, we propose the locally theoret-
ical analysis for high-speed convergence. Section 8.4 proposes the experimental
demonstration. In Sect. 8.4, we propose the experimental result for the proposed
algorithms on strongly convex, non-strongly convex, and non-convex functions
in high dimension. Finally, we propose some perspective view for the proposed
algorithms and two adventurous ideas based on the evolution of Newton’s second
law—fluid and quantum.

8.1 Warm-up: An Analytical Demonstration for Intuition

For a simple 1-D function with ill-conditioned Hessian, f (x) = 1
200x2 with the

initial position at x0 = 1000. The solution and the function value along the solution
for (3.9) are given by

⎧
⎪⎨

⎪⎩

x(t) = x0e
− 1

100 t

f (x(t)) = 1

200
x2

0e−
1
50 t .

(8.1)

(8.2)

Parts of this chapter is in the paper titled “A Conservation Law Method in Optimization” by Bin
Shi et al. (2017) published by 10th NIPS Workshop on Optimization for Machine Learning.

© Springer Nature Switzerland AG 2020
B. Shi, S. S. Iyengar, Mathematical Theories of Machine Learning - Theory
and Applications, https://doi.org/10.1007/978-3-030-17076-9_8
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https://doi.org/10.1007/978-3-030-17076-9_8
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The solution and the function value along the solution for (3.10) with the optimal
friction parameter γt = 1

5 are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(t) = x0

(
1+ 1

10
t

)
e−

1
10 t

f (x(t)) = 1

200
x2

0

(
1+ 1

10
t

)2

e−
1
5 t .

(8.3)

(8.4)

The solution and the function value along the solution for (3.12) are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t) = x0 cos

(
1

10
t

)
and v(t) = x0 sin

(
1

10
t

)

f (x(t)) = 1

200
x2

0 cos2
(

1

10
t

)
,

(8.5)

(8.6)

stop at the point that |v| arrives maximum. Combined with (8.2), (8.4), and (8.6)
with stop at the point that |v| arrives maximum, the function value approximating
f (x�) is shown as below.

From the analytical solution for local convex quadratic function with maximum
eigenvalue L and minimum eigenvalue μ, in general, the step size by 1√

L
for

momentum method and Nesterov’s accelerated gradient method, hence the simple
estimate for iterative times is approximately

n ∼ π

2

√
L

μ
.

Hence, the iterative times n is proportional to the reciprocal of the square root of
minimal eigenvalue

√
μ, which is essentially different from the convergence rate of

the gradient method and momentum method (Fig. 8.1).
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x*
||

2
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Fig. 8.1 Minimizing f (x) = 1
200 x2 by the analytical solution for (8.2), (8.4), and (8.6) with

stop at the point that |v| arrives maximum, starting from x0 = 1000 and the numerical step size
�t = 0.01
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8.2 Symplectic Scheme and Algorithms

In this chapter, we utilize the first-order symplectic Euler scheme from numerically
solving Hamiltonian system as below to propose the corresponding artificially
dissipating energy algorithm to find the global minima for convex function, or local
minima in non-convex function

{
xk+1 = xk + hvk+1

vk+1 = vk − h∇f (xk).
(8.7)

Then by the observability of the velocity, we propose the energy conservation
algorithm for detecting local minima along the trajectory. Finally, we propose a
combined algorithm to find better local minima between some local minima.

Remark 8.1 In all the algorithms below, the symplectic Euler scheme can be
replaced by the Störmer–Verlet scheme

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vk+1/2 = vk − h

2
∇f (xk)

xk+1 = xk + hvk+1/2

vk+1 = vk+1/2 − h

2
∇f (xk+1).

(8.8)

This works better than the symplectic scheme even if doubling step size and keeping
the left–right symmetry of the Hamiltonian system. The Störmer–Verlet scheme is
the natural discretization for 2nd-order ODE which is named as leap-frog scheme in
PDEs

xk+1 − 2xk + xk−1 = −h2∇f (xk). (8.9)

We remark that the discrete scheme (8.9) is different from the finite difference
approximation by the forward Euler method to analyze the stability of 2nd ODE
in [SBC14], since the momentum term is biased.

8.2.1 Artificially Dissipating Energy Algorithm

Firstly, the artificially dissipating energy algorithm based on (8.7) is proposed as
below.
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Algorithm 1 Artificially dissipating energy algorithm
1: Given a starting point x0 ∈ dom(f )

2: Initialize the step length h, maxiter, and the velocity variable v0 = 0
3: Initialize the iterative variable viter = v0
4: while ‖∇f (x)‖ > ε and k < maxiter do
5: Compute viter from the below equation in (8.7)
6: if ‖viter‖ ≤ ‖v‖ then
7: v = 0
8: else
9: v = viter

10: end if
11: Compute x from the above equation in (8.7)
12: xk = x;
13: f (xk) = f (x);
14: k = k + 1;
15: end while

Remark 8.2 In the actual Algorithm 1, the codes in line 15 and 16 are not needed
in the while loop in order to speed up the computation.

A Simple Example for Illustration

Here, we use a simple convex quadratic function with ill-conditioned eigenvalue for
illustration as below:

f (x1, x2) = 1

2

(
x2

1 + αx2
2

)
, (8.10)

of which the maximum eigenvalue is L = 1 and the minimum eigenvalue is μ = α.
Hence the scale of the step size for (8.10) is

1

L
=
√

1

L
= 1.

In Fig. 8.2, we demonstrate the convergence rate of gradient method, momentum
method, Nesterov’s accelerated gradient method, and artificially dissipating energy
method with the common step size h = 0.1 and h = 0.5, where the optimal friction

parameter for momentum method γ = 1−√α

1+√α
with α = 10−5. A further result for

comparison with the optimal step size in gradient method h = 2
1+α

, the momentum

method h = 4
(1+√α)2 , and Nesterov’s accelerated gradient method with h = 1 and

the artificially dissipating energy method with h = 0.5 is shown in Fig. 8.3.
With the illustrative convergence rate, we need to learn the trajectory. Since the

trajectories of all the four methods are so narrow in ill-condition function in (8.10),
we use a relatively good-conditioned function to show it as α = 1

10 in Fig. 8.4.
The fact highlighted in Fig. 8.4 demonstrates the gradient correction decreases

the oscillation when compared with the momentum method. A clearer observation
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Fig. 8.2 Minimizes the function in (8.10) for artificially dissipating energy algorithm comparing
with gradient method, momentum method, and Nesterov’s accelerated gradient method with stop
criteria ε = 1e − 6. The step size: Left: h = 0.1; Right: h = 0.5
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Fig. 8.4 The trajectory for
gradient method, momentum
method, Nesterov’s
accelerated method, and
artificially dissipating energy
method for the
function (8.10) with α = 0.1
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is the artificially dissipating method shares the same property with the other three
methods by the law of nature, that is, if the trajectory comes into the local minima
in one dimension it will not leave it very far. However, from Figs. 8.2 and 8.3, we
see the more rapid convergence rate from using the artificially dissipating energy
method.
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8.2.2 Detecting Local Minima Using Energy Conservation
Algorithm

Here, the energy conservation algorithm based on (8.7) is proposed as below.

Algorithm 2 Energy conservation algorithm
1: Given a starting point x0 ∈ dom(f )

2: Initialize the step size h and the maxiter
3: Initialize the velocity v0 > 0 and compute f (x0)

4: Compute the velocity x1 and v1 from Eq. (8.7), and compute f (x1)

5: for k = 1 : n do
6: Compute xk+1 and vk+1 from (8.7)
7: Compute f (xk+1)

8: if ‖vk‖ ≥ ‖vk+1‖ and ‖vk‖ ≥ ‖vk−1‖ then
9: Record the position xk

10: end if
11: end for

Remark 8.3 In Algorithm 2, we can set v0 > 0 so that the total energy is large
enough to climb up some high peak. Similar to Algorithm 1 defined earlier,
the function value f (x) is not need in the while loop in order to speed up the
computation.

The Simple Example for Illustration

Here, we use the non-convex function for illustration as below:

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

2 cos(x), x ∈ [0, 2π ]
cos(x)+ 1, x ∈ [2π, 4π ]
3 cos(x)− 1, x ∈ [4π, 6π ],

(8.11)

which is the 2nd-order smooth function but not 3rd-order smooth. The maximum
eigenvalue can be calculated as below:

max
x∈[0,6π ] |f

′′(x)| = 3.

The step length is set h ∼
√

1
L

. We illustrate that Algorithm 2 simulates the
trajectory and find the local minima in Fig. 8.5.

Another 2D potential function is shown as below:

f (x1, x2) = 1

2

[
(x1 − 4)2 + (x2 − 4)2 + 8 sin(x1 + 2x2)

]
, (8.12)
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Fig. 8.5 Left: the step size h = 0.1 with 180 iterative times. Right: the step size h = 0.3 with 61
iterative times
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Fig. 8.6 The common step size is set h = 0.1. Left: the position at (2, 0) with 23 iterative times.
Right: the position at (0, 4) with 62 iterative times

which is the smooth function with domain in (x1, x2) ∈ [0, 8] × [0, 8]. The
maximum eigenvalue can be calculated as below:

max
x∈[0,6π ] |λ(f ′′(x))| ≥ 16.

The step length is set h ∼
√

1
L

. We illustrate that Algorithm 2 simulates the
trajectory and find the local minima as in Fig. 8.6.

Remark 8.4 We point out that the energy conservation algorithm for detecting local
minima along the trajectory cannot detect the saddle point in the sense of almost
every, since the saddle point in the original function f (x) is also a saddle point for
the energy function H(x, v) = 1

2‖v‖2 + f (x). The proof process is fully the same
in [LSJR16].
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8.2.3 Combined Algorithm

Finally, we propose the comprehensive algorithm combining the artificially dissi-
pating energy algorithm (Algorithm 1) and the energy conservation algorithm (2) to
find global minima.

Algorithm 3 Combined algorithm
1: Given some starting points x0,i ∈ dom(f ) with i = 1, . . . , n

2: Implement algorithm 2 detecting the position there exists local minima, noted as xj with j =
1, . . . , m

3: Implement algorithm 1 from the result on line 2 finding the local minima, noted as xk with
k = 1, . . . , l

4: Comparison of f (xk) with k = 1, . . . , l to find global minima.

Remark 8.5 We remark that the combined algorithm (Algorithm 3) cannot guar-
antee to find global minima if the initial position is not ergodic. The tracking
local minima is dependent on the trajectory. However, the time of computation
and precision based on the proposed algorithm is far better than the large sampled
gradient method. Our proposed algorithm first makes the identified global minima
to become possible.

8.3 An Asymptotic Analysis for the Phenomena of Local
High-Speed Convergence

In this section, we analyze the phenomena of high-speed convergence shown in
Figs. 8.1, 8.2, and 8.3. Without loss of generality, we use the translate transformation
yk = xk − x� (x� is the point of local minima) and vk = vk into (8.7), shown as
below:

{
yk+1 = yk + hvk+1

vk+1 = vk − h∇f (x� + yk),
(8.13)

the locally linearized scheme of which is given as below:

{
yk+1 = yk + hvk+1

vk+1 = vk − h∇2f (x�)yk.
(8.14)

Remark 8.6 The local linearized analysis is based on the stability theorem in finite
dimension, the invariant stable manifold theorem, and Hartman–Grobman linearized
map theorem [Har82]. The thought is firstly used in [Pol64] to estimate the local
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convergence of momentum method. And in the paper [LSJR16], the thought is
used to exclude the possibility of convergence to saddle point. However, the two
theorems above belong to the qualitative theorem of ODE. Hence, the linearized
scheme (8.14) is only an approximate estimate for the original scheme (8.13) locally.

8.3.1 Some Lemmas for the Linearized Scheme

Let A be the positive-semidefinite and symmetric matrix to represent ∇2f (x�)

in (8.14).

Lemma 8.1 The numerical scheme shown as below

(
xk+1

vk+1

)
=
(

I − h2A hI

−hA I

)(
xk

vk

)
(8.15)

is equivalent to the linearized symplectic Euler scheme (8.14), where we note that
the linear transformation is

M =
(

I − h2A hI

−hA I

)
. (8.16)

Proof

(
I −hI

0 I

)(
xk+1

vk+1

)
=
(

I 0
−hA I

)(
xk

vk

)
⇔
(

xk+1

vk+1

)
=
(

I − h2A hI

−hA I

)(
xk

vk

)

��
Lemma 8.2 For every 2n × 2n matrix M in (8.16), there exists the orthogonal
transformation U2n×2n such that the matrix M is similar as below:

UT MU =

⎛

⎜
⎜⎜
⎝

T1

T2
. . .

Tn,

⎞

⎟
⎟⎟
⎠

(8.17)

where Ti (i = 1, . . . , n) is a 2× 2 matrix with the form

Ti =
(

1− ω2
i h

2 h

−ω2
i h 1,

)
(8.18)

where ω2
i is the eigenvalue of the matrix A.
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Proof Let � be the diagonal matrix with the eigenvalues of the matrix A as below:

� =

⎛

⎜⎜⎜
⎝

ω2
1

ω2
2

. . .

ω2
n

⎞

⎟⎟⎟
⎠

.

Since A is positive define and symmetric, there exists orthogonal matrix U1 such
that

UT
1 AU1 = �.

Let � be the permutation matrix satisfying

�i,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, j odd, i = j + 1

2

1, j even, i = n+ j

2

0, otherwise,

where i is the row index and j is the column index. Then, let U = diag(U1, U1)�,
we have by conjugation

UT MU = �T

(
UT

1
UT

1

)(
I − h2A hI

−hA I

)(
U1

U1

)
�

= �T

(
I − h2� hI

−h� I

)
�

=

⎛

⎜⎜⎜
⎝

T1

T2
. . .

Tn

⎞

⎟⎟⎟
⎠

.

��
From Lemma 8.2, we know that Eq. (8.15) can be written as the equivalent form

(
(UT

1 x)k+1,i

(UT
1 v)k+1,i

)
= Ti

(
(UT

1 x)k,i

(UT
1 v)k,i

)
=
(

1− ω2
i h

2 h

−ω2
i h 1

)(
(UT

1 x)k,i

(UT
1 v)k,i

)
, (8.19)

where i = 1, . . . , n.
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Lemma 8.3 For any step size h satisfying 0 < hωi < 2, the eigenvalues of the
matrix Ti are complex with absolute value 1.

Proof For i = 1, . . . , n, we have

|λI − Ti | = 0 ⇔ λ1,2 = 1− h2ω2
i

2
± hωi

√

1− h2ω2
i

4
.

��
Let θi and φi for i = 1, . . . , n for the new coordinate variables be as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos θi = 1− h2ω2
i

2

sin θi = hωi

√

1− h2ω2
i

4

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos φi = hωi

2

sin φi =
√

1− h2ω2
i

4
.

(8.20)

In order to make θi and φi located in
(
0, π

2

)
, we need to shrink to 0 < hωi <

√
2.

Lemma 8.4 With the new coordinate in (8.20) for 0 < hωi <
√

2, we have

2φi + θi = π (8.21)

and
⎧
⎨

⎩

sin θi = sin(2φi) = hωi sin φi

sin(3φi) = −
(

1− h2ω2
i

)
sin φi.

(8.22)

Proof With sum–product identities of trigonometric function, we have

sin(θi + φi) = sin θi cos φi + cos θi sin φi

= hωi

√

1− h2ω2
i

4
· hωi

2
+
(

1− h2ω2
i

2

)√

1− h2ω2
i

4

=
√

1− h2ω2
i

4

= sin φi.

Since 0 < hωi < 2, we have θi, φi ∈
(
0, π

2

)
, we can obtain that

θi + φi = π − φi ⇔ θi = π − 2φi
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and with the coordinate transformation in (8.20), we have

sin θi = hωi sin φi ⇔ sin(2φi) = hωi sin φi.

Next, we use sum–product identities of trigonometric function furthermore

sin(θi − φi) = sin θi cos φi − cos θi sin φi

= hωi

√

1− h2ω2
i

4
· hωi

2
−
(

1− h2ω2
i

2

)√

1− h2ω2
i

4

=
(
h2ω2

i − 1
)
√

1− h2ω2
i

4

= −
(

1− h2ω2
i

)
sin φi

and with θi = π − 2φi , we have

sin(3φi) = −
(

1− h2ω2
i

)
sin φi.

��
Lemma 8.5 With the new coordinate in (8.20), the matrix Ti (i = 1, . . . , n)
in (8.18) can expressed as below:

Ti = 1

ωi

(
e−iφi − eiφi

)
(

1 1
ωie

iφi ωie
−iφi

)(
eiθi 0
0 e−iθi

)(
ωie

−iφi −1
−ωie

iφi 1

)
. (8.23)

Proof For the coordinate transformation in (8.20), we have

Ti

(
1

ωie
iφi

)
=
(

1
ωie

iφi

)
eiθi and Ti

(
1

ωie
−iφi

)
=
(

1
ωie

−iφi

)
e−iθi .

Hence, (8.23) is proved. ��

8.3.2 The Asymptotic Analysis

Theorem 8.1 Let the initial value x0 and v0, after the first k steps without resetting
the velocity, the iterative solution (8.14) with the equivalent form (8.19) has the form
as below:
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(
(UT

1 x)k,i

(UT
1 v)k,i

)
= T k

i

(
(UT

1 x)0,i

(UT
1 v)0,i

)
=
(
− sin(kθi−φi)

sin φi

sin(kθi )
ωi sin φi

−ωi sin(kθi )
sin φi

sin(kθi+φi)
sin φi

)(
(UT

1 x)0,i

(UT
1 v)0,i

)
.

(8.24)

Proof With Lemma 8.5 and the coordinate transformation (8.20), we have

T k
i =

1

ωi

(
e−iφi − eiφi

)
(

1 1
ωie

iφi ωie
−iφi

)(
eiθi 0
0 e−iθi

)k (
ωie

−iφi −1
−ωie

iφi 1

)

= 1

ωi

(
e−iφi − eiφi

)
(

1 1
ωie

iφi ωie
−iφi

)(
ωei(kθi−φi) −eikθi

−ωe−i(kθi−φi) e−ikθi

)

=
(
− sin(kθi−φi)

sin φi

sin(kθi )
ωi sin φi

−ωi sin(kθi )
sin φi

sin(kθi+φi)
sin φi

)

.

The proof is complete. ��
Comparing (8.24) and (8.19), we can obtain that

sin(kθi − φi)

sin φi

= 1− h2ω2
i .

With the initial value (x0, 0)T , then the initial value for (8.19) is (UT
1 x0, 0). In order

to make sure the numerical solution or the iterative solution owns the same behavior
as the analytical solution, we need to set 0 < hωi < 1.

Remark 8.7 Here, the behavior is similar as the thought in [LSJR16]. The step size
0 < hL < 2 makes sure the global convergence of gradient method. And the step
size 0 < hL < 1 makes the uniqueness of the trajectory along the gradient method,
the thought of which is equivalent of the existence and uniqueness of the solution
for ODE. Actually, the step size 0 < hL < 1 owns the property with the solution of
ODE, the continuous-limit version. A global existence of the solution for gradient
system is proved in [Per13].

For the good-conditioned eigenvalue of the Hessian ∇2f (x�), every method such as
gradient method, momentum method, Nesterov’s accelerated gradient method, and
artificially dissipating energy method has the good convergence rate shown by the
experiment. However, for our artificially dissipating energy method, since there are
trigonometric functions from (8.24), we cannot propose the rigorous mathematic
proof for the convergence rate. If everybody can propose a theoretical proof, it is
very beautiful. Here, we propose a theoretical approximation for ill-conditioned
case, that is, the direction with small eigenvalue λ(∇2f (x�)) 
 L.

Assumption 8.1 If the step size h = 1√
L

for (8.14), for the ill-conditioned

eigenvalue ωi 

√

L, the coordinate variable can be approximated by the analytical
solution as
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θi = hωi, and φi = π

2
. (8.25)

With Assumption 8.1, the iterative solution (8.24) can be rewritten as

(
(UT

1 x)k,i

(UT
1 v)k,i

)
=
(

cos(khωi)
sin(khωi)

ωi

−ωi sin(khωi) − cos(khωi)

)(
(UT

1 x)0,i

(UT
1 v)0,i

)
. (8.26)

Theorem 8.2 For every ill-conditioned eigen-direction, with every initial condition
(x0, 0)T , if Algorithm 1 is implemented at ‖viter‖ ≤ ‖v‖, then there exists an
eigenvalue ω2

i such that

kωih ≥ π

2
.

Proof When ‖viter‖ ≤ ‖v‖, then
∥∥UT

1 viter

∥∥ ≤ ∥∥UT
1 v
∥∥. While for the

∥∥UT
1 v
∥∥, we

can write in the analytical form

∥∥∥UT
1 v

∥∥∥ =
√√√
√

n∑

i=1

ω2
i (U1x0)

2
i sin2(khωi),

if there is no kωih < π
2 ,
∥∥UT

1 v
∥∥ increases with k increasing. ��

For some i such that kωih approximating π
2 , we have

∣∣(UT
1 x)k+1,i

∣∣
∣∣(UT

1 x)k,i

∣∣ = cos ((k + 1)hωi)

cos (khωi)

= eln cos((k+1)hωi)−ln cos(khωi)

= e− tan(ξ)hωi

(8.27)

where ξ ∈ (khωi, (k + 1)hωi). Hence, with ξ approximating π
2 ,
∣∣(UT

1 x)k,i

∣∣
approximates 0 with the linear convergence, but the coefficient will also decay with
the rate e− tan(ξ)hωi with ξ → π

2 . With the Laurent expansion for tan ξ at π
2 , i.e.,

tan ξ = − 1

ξ − π
2

+ 1

3

(
ξ − π

2

)
+ 1

45

(
ξ − π

2

)3 +O
((

ξ − π

2

)5
)

,

the coefficient has the approximating formula

e− tan(ξ)hωi ≈ e

hωi
ξ− π

2 ≤
(π

2
− ξ
)n

,

where n is an arbitrary large real number in R
+ for ξ → π

2 .
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8.4 Experimental Demonstration

In this section, we implement the artificially dissipating energy algorithm (Algo-
rithm 1), energy conservation algorithm (Algorithm 2), and the combined algorithm
(Algorithm 3) into high-dimensional data for comparison with gradient method,
momentum method, and Nesterov’s accelerated gradient method (Fig. 8.7).

8.4.1 Strongly Convex Function

Here, we investigate the artificially dissipating energy algorithm (Algorithm 1) for
the strongly convex function for comparison with gradient method, momentum
method, and Nesterov’s accelerated gradient method (strongly convex case) by the
quadratic function as below:

f (x) = 1

2
xT Ax + bT x, (8.28)

where A is symmetric and positive-definite matrix. The two cases are shown as
below:

(a) The generate matrix A is 500 × 500 random positive define matrix with
eigenvalue from 1e − 6 to 1 with one defined eigenvalue 1e − 6. The generate
vector b follows i.i.d. Gaussian distribution with mean 0 and variance 1.

(b) The generate matrix A is the notorious example in Nesterov’s book [Nes13],
i.e.,

0 0.5 1 1.5 2
The Iterative Times 10 4

10 -10

10 0

10 10

10 20

f(
x

n
)-

 f(
x*

)

The Convergence Rate
GM
MM
NAGM
ADEM

0 0.5 1 1.5 2
The Iterative Times 10 4

10 -20

10 -10

10 0

10 10

f(
x

n
)-

 f(
x*

)

The Convergence Rate

GM
MM
NAGM
ADEM

a b

Fig. 8.7 Left: the case (a) with the initial point x0 = 0. Right: the case (b) with the initial point
x0 = 1000
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A =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

2 −1
−1 2 −1

−1 2
. . .

. . .
. . .

. . .

. . .
. . . −1
−1 2

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,

the eigenvalues of the matrix are

λk = 2− 2 cos

(
kπ

n+ 1

)
= 4 sin2

(
kπ

2(n+ 1)

)
,

and n is the dimension of the matrix A. The eigenvector can be solved by the
second Chebyshev’s polynomial. We implement dim(A) = 1000 and b is zero
vector. Hence, the smallest eigenvalue is approximating

λ1 = 4 sin2
(

π

2(n+ 1)

)
≈ π2

10012
≈ 10−5.

8.4.2 Non-Strongly Convex Function

Here, we investigate the artificially dissipating energy algorithm (Algorithm 1) for
the non-strongly convex function for comparison with gradient method, Nesterov’s
accelerated gradient method (non-strongly convex case) by the log-sum-exp func-
tion as below:

f (x) = ρ log

[
n∑

i=1

exp

( 〈ai, x〉 − bi

ρ

)]

, (8.29)

where A is the m×n matrix with ai , (i = 1, . . . , m) and the column vector of A and
b is the n×1 vector with component bi . ρ is the parameter. We show the experiment
in (8.29): the matrix A = (aij

)
m×n

and the vector b = (bi)n×1 are set by the entry
following i.i.d Gaussian distribution for the parameter ρ = 5 and ρ = 10 (Fig. 8.8).

8.4.3 Non-Convex Function

For the non-convex function, we exploit classical test function, known as artificial
landscape, to evaluate characteristics of optimization algorithms from general
performance and precision. In this paper, we show our algorithms implementing on
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Fig. 8.8 The convergence rate is shown from the initial point x0 = 0. Left: ρ = 5; Right: ρ = 10
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0

5

x2

RealFunc
BallSimu
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Localmin
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x1
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x2

RealFunc
BallSimu
Record
Localmin

Fig. 8.9 Detecting the number of the local minima of 2-D Styblinski–Tang function by Algo-
rithm 3 with step length h = 0.01. The red points are recorded by Algorithm 2 and the blue points
are the local minima by Algorithm 1. Left: The initial position (5, 5); Right: The initial position
(−5, 5)

the Styblinski–Tang function and Shekel function, which is recorded in the virtual
library of simulation experiments.1 Firstly, we investigate Styblinski–Tang function,
i.e.,

f (x) = 1

2

d∑

i=1

(
x4
i − 16x2

i + 5xi

)
, (8.30)

to demonstrate the general performance of Algorithm 2 to track the number of local
minima and then find the local minima by Algorithm 3 (Fig. 8.9).

To the essential 1-D non-convex Styblinski–Tang function of high dimension, we
implement Algorithm 3 to obtain the precision of the global minima as below.

The global minima calculated at the position (−2.9035,−2.9035, . . .)

is −391.6617 as shown in Table 8.1. And the real global minima at
(−2.903534,−2.903534, . . .) is −39.16599× 10 = −391.6599.

1https://www.sfu.ca/~ssurjano/index.html.

https://www.sfu.ca/~ssurjano/index.html
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Table 8.1 The example for ten-dimensional Styblinski–Tang function from two initial positions

Local_min1 Local_min2 Local_min3 Local_min4

Initial
position

(5, 5, . . .) (5, 5, . . .) (5,−5, . . .) (5,−5, . . .)

Position (2.7486, 2.7486, . . .) (−2.9035,

−2.9035, . . .)

(2.7486,−2.9035, . . .) (−2.9035, 2.7486, . . .)

Function
value

−250.2945 −391.6617 −320.9781 −320.9781

Furthermore, we demonstrate the numerical experiment from Styblinski–Tang
function to more complex Shekel function

f (x) = −
m∑

i=1

⎛

⎝
4∑

j=1

(
xj − Cji

)2 + βi

⎞

⎠

−1

, (8.31)

where

β = 1

10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T

and

C =

⎛

⎜
⎜
⎝

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎞

⎟
⎟
⎠ .

(1) Case m = 5, the global minima at x� = (4, 4, 4, 4) is f (x�) = −10.1532.

(a) From the position (10, 10, 10, 10), the experimental result with the step
length h = 0.01 and the iterative times 3000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜⎜
⎝

7.9879 6.0136 3.8525 6.2914 2.7818
7.9958 5.9553 3.9196 6.2432 6.7434
7.9879 6.0136 3.8525 6.2914 2.7818
7.9958 5.9553 3.9196 6.2432 6.7434

⎞

⎟⎟
⎠

Detect value

(−5.0932 −2.6551 −6.5387 −1.6356 −1.7262
)
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Final position (Algorithm 1)

⎛

⎜⎜
⎝

7.9996 5.9987 4.0000 5.9987 3.0018
7.9996 6.0003 4.0001 6.0003 6.9983
7.9996 5.9987 4.0000 5.9987 3.0018
7.9996 6.0003 4.0001 6.0003 6.9983

⎞

⎟⎟
⎠

Final value

(−5.1008 −2.6829 −10.1532 −2.6829 −2.6305
)

(b) From the position (3, 3, 3, 3), the experimental result with the step length
h = 0.01 and the iterative times 1000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜⎜
⎝

3.9957 6.0140
4.0052 6.0068
3.9957 6.0140
4.0052 6.0068

⎞

⎟⎟
⎠

Detect value
(−10.1443 −2.6794

)

Final position (Algorithm 1)

⎛

⎜⎜
⎝

4.0000 5.9987
4.0001 6.0003
4.0000 5.9987
4.0001 6.0003

⎞

⎟⎟
⎠

Final value

(−10.1532 −2.6829
)

(2) Case m = 7, the global minima at x� = (4, 4, 4, 4) is f (x�) = −10.4029.

(a) From the position (10, 10, 10, 10), the experimental result with the step
length h = 0.01 and the iterative times 3000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜⎜
⎝

7.9879 6.0372 3.1798 5.0430 6.2216 2.6956
8.0041 5.9065 3.8330 2.8743 6.2453 6.6837
7.9879 6.0372 3.1798 5.0430 6.2216 2.6956
8.0041 5.9065 3.8330 2.8743 6.2453 6.6837

⎞

⎟⎟
⎠
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Detect value

(−5.1211 −2.6312 −0.9428 −3.3093 −1.8597 −1.5108
)

Final position (Algorithm 1)

⎛

⎜
⎜
⎝

7.9995 5.9981 4.0006 4.9945 5.9981 3.0006
7.9996 5.9993 3.9996 3.0064 5.9993 7.0008
7.9995 5.9981 4.0006 4.9945 5.9981 3.0006
7.9996 5.9993 3.9996 3.0064 5.9993 7.0008

⎞

⎟
⎟
⎠

Final value

(−5.1288 −2.7519 −10.4029 −3.7031 −2.7519 −2.7496
)

(b) From the position (3, 3, 3, 3), the experimental result with the step length
h = 0.01 and the iterative times 1000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜
⎜
⎝

4.0593 3.0228
3.9976 7.1782
4.0593 3.0228
3.9976 7.1782

⎞

⎟
⎟
⎠

Detect value

(−9.7595 −2.4073
)

Final position (Algorithm 1)

⎛

⎜⎜
⎝

4.0006 3.0006
3.9996 7.0008
4.0006 3.0006
3.9996 7.0008

⎞

⎟⎟
⎠

Final value

(−10.4029 −2.7496
)

(3) Case m = 10, the global minima at x� = (4, 4, 4, 4) is f (x�) = −10.5364.

(a) From the position (10, 10, 10, 10), the experimental result with the step
length h = 0.01 and the iterative times 3000 is shown as below:

Detect Position (Algorithm 2)
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⎛

⎜
⎜
⎝

7.9977 5.9827 4.0225 2.7268 6.1849 6.2831 6.3929
7.9942 6.0007 3.8676 7.3588 6.0601 3.2421 1.9394
7.9977 5.9827 4.0225 2.7268 6.1849 6.2831 6.3929
7.9942 6.0007 3.8676 7.3588 6.0601 3.2421 1.9394

⎞

⎟
⎟
⎠

Detect value

(−5.1741 −2.8676 −7.9230 −1.5442 −2.4650 −1.3703 −1.7895
)

Final position (Algorithm 1)

⎛

⎜⎜
⎝

7.9995 5.9990 4.0007 3.0009 5.9990 6.8999 5.9919
7.9994 5.9965 3.9995 7.0004 5.9965 3.4916 2.0224
7.9995 5.9990 4.0007 3.0009 5.9990 6.8999 5.9919
7.9994 5.9965 3.9995 7.0004 5.9965 3.4916 2.0224

⎞

⎟⎟
⎠

Final value

(−5.1756 −2.8712 −10.5364 −2.7903 −2.8712 −2.3697 −2.6085
)

(b) From the position (3, 3, 3, 3), the experimental result with the step length
h = 0.01 and the iterative times 1000 is shown as below:

Detect Position (Algorithm 2)

⎛

⎜⎜
⎝

4.0812 3.0206
3.9794 7.0173
4.0812 3.0206
3.9794 7.0173

⎞

⎟⎟
⎠

Detect value

(−9.3348 −2.7819
)

Final position (Algorithm 1)

⎛

⎜
⎜
⎝

4.0007 3.0009
3.9995 7.0004
4.0007 3.0009
3.9995 7.0004

⎞

⎟
⎟
⎠

Final value

(−10.5364 −2.7903
)
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8.5 Conclusion and Further Works

Based on the view for understanding arithmetical complexity from analytical
complexity in the seminal book [Nes13] and the idea for viewing optimization from
differential equation in the novel blog,2 we propose some original algorithms based
on Newton’s second law with the kinetic energy observable and controllable in the
computational process firstly. Although our algorithm cannot fully solve the global
optimization problem, or it is dependent on the trajectory path, this work introduces
the Hamilton system essential to optimization such that it is possible that the global
minima can be obtained. Our algorithms are easy to implement and own a more
rapid convergence rate.

For the theoretical view, the Hamilton system is closer to nature and a lot of
fundamental work have appeared in the previous century, such as KAM theory,
Nekhoroshev estimate, operator spectral theory, and so on. Are these beautiful
and essentially original work used to understand and improve the algorithm for
optimization and machine learning? Also, in establishing the convergence rate, the
matrix containing the trigonometric function can be hard to estimate. Researchers
have proposed some methods for estimating the trigonometric matrix based on
spectral theory. For the numerical scheme, we only exploit the simple first-order
symplectic Euler method. Several more efficient schemes, such as Störmer–Verlet
scheme, symplectic Runge–Kutta scheme, order condition method, and so on, are
proposed in [Nes13].

These schemes can make the algorithms in this paper more efficient and accurate.
For the optimization, the method we proposed is only about unconstrained problem.
In the nature, the classical Newton’s second law, or the equivalent expression—
Lagrange mechanics and Hamilton mechanics, is implemented on the manifold in
the almost real physical world. In other words, a natural generalization is from
unconstrained problem to constrained problem for our proposed algorithms. A
more natural implementation is the geodesic descent in [LY+84]. Similar to the
development of the gradient method from smooth condition to nonsmooth condition,
our algorithms can be generalized to nonsmooth condition by the subgradient. For
application, we will implement our algorithms to non-negative matrix factorization,
matrix completion, and deep neural network and speed up the training of the
objective function. Meanwhile, we apply the algorithms proposed in this paper to
the maximum likelihood estimator and maximum a posteriori estimator in statistics.

Starting from Newton’s second law, we implement only a simple particle in
classical mechanics, or macroscopic world. A natural generalization is from the
macroscopic world to the microscopic world. In the field of fluid dynamics, the
Newton’s second law is expressed by Euler equation, or more complex Navier–
Stokes equation. An important topic from fluid dynamics is geophysical fluid
dynamics, containing atmospheric science and oceanography. Especially, a key

2http://www.offconvex.org/2015/12/11/mission-statement/.

http://www.offconvex.org/2015/12/11/mission-statement/
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feature in the oceanography different from atmospheric science is the topography,
which influences mainly vector field of the fluid. So many results have been
demonstrated based on many numerical modeling, such as the classical POM,3

HYCOM,4 ROMS,5 and FVCOM.6 A reverse idea is that if we view the potential
function in black box is the topography, we observe the changing of the fluid vector
field to find the number of local minima in order to obtain the global minima with
a suitable initial vector field. A more adventurous idea is to generalize the classical
particle to the quantum particle. For quantum particle, the Newton’s second law is
expressed by the energy form that is from the view of Hamilton mechanics, which
is the starting point for the proposed algorithm in this paper. The particle appears in
the wave form in a microscopic world. When the wave meets the potential barrier,
the tunneling phenomena will appear. The tunneling phenomena will also appear
in higher dimensions. It is very easy to observe the tunneling phenomena in the
physical world. However, if we attempt to compute this phenomena, the problem
becomes NP-hard. Only if quantum computing is used is the phenomena very easy
to simulate, as we can find the global minima by binary section search. That is,
if there exist tunneling phenomena in the upper level, the algorithm will continue
to detect this in the upper level, otherwise go to the lower level. In the quantum
world, it needs only O(log n) times to find the global minima rather than becoming
NP-hard.

3http://ofs.dmcr.go.th/thailand/model.html.
4https://hycom.org/.
5https://www.myroms.org/.
6http://fvcom.smast.umassd.edu/.
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Chapter 9
Improved Sample Complexity in Sparse
Subspace Clustering with Noisy and
Missing Observations

In this chapter, we show the results of the new CoCoSSC algorithm. The content is
organized as follows: The main results concerning CoCoSSC algorithm are shown
in Sect. 9.1. Following Sect. 9.1, we show the full proofs in Sect. 9.2. In Sect. 9.3,
we show the performance for CoCoSSC algorithm and some related algorithms
numerically. Finally, we conclude this work with some future directions.

9.1 Main Results About CoCoSSC Algorithm

We introduce our main results by analyzing the performance of COCOSSC under
both the Gaussian noise model and the missing data model. Similar to [WX16], the
quality of the computed self-similarity matrix {ci}Ni=1 is assessed using a subspace
detection property (SDP):

Definition 9.1 (Subspace Detection Property (SDP), [WX16]) The self-simila
rity matrix {ci}Ni=1 satisfies the subspace detection property if (1) for every i ∈ [N ],
ci is a non-zero vector; and (2) for every i, j ∈ [N ], cij �= 0 implies that xi and xj

belong to the same cluster.

Intuitively, the subspace detection property asserts that the self-similarity matrix
{ci}Ni=1 has no false positives, where every non-zero entry in {ci}ni=1 links two data
points xi and xj to the same cluster. The first property in Definition 9.1 further rules
out the trivial solution of ci ≡ 0.

Part of this chapter is in the paper titled “Improved Sample Complexity in Sparse Subspace
Clustering with Noisy and Missing Observations” by Yining Wang, Bin Shi et al. (2018) presently
under review for publication in AISTATS.

© Springer Nature Switzerland AG 2020
B. Shi, S. S. Iyengar, Mathematical Theories of Machine Learning - Theory
and Applications, https://doi.org/10.1007/978-3-030-17076-9_9
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The SDP stated in Definition 9.1 is, however, not sufficient for the success
of a follow-up spectral clustering algorithm, or any clustering algorithm, as the
“similarity graph” constructed by connecting every pairs of (i, j) with cij �= 0
might be poorly connected. Such “graph connectivity” is a well-known open
problem in sparse subspace clustering [NH11] and remains largely unsolved except
under strong assumptions [WWS16]. Nevertheless, in practical scenarios the SDP
criterion correlates reasonably well with clustering performance [WX16, WWS15a]
and therefore we choose to focus on the SDP success condition only.

9.1.1 The Non-Uniform Semi-Random Model

We adopt the following non-uniform semi-random model throughout the paper:

Definition 9.2 (Non-Uniform Semi-Random Model) Suppose yi belongs to clus-
ter S	 and let yi = U	αi , where U	 ∈ R

n×d	 is an orthonormal basis of U	

and αi is a d	-dimensional vector with ‖αi‖2 = 1. We assume that αi are
i.i.d. distributed according to an unknown underlying distribution P	, and that the
density p	 associated with P	 satisfies

0 < C · p0 ≤ p	(α) ≤ C · p0 <∞ ∀α ∈ R
d	 , ‖α‖2 = 1

for some constants C,C, where p0 is the density of the uniform measure on {u ∈
R

d	 : ‖u‖2 = 1}.
Remark 9.1 Our non-uniform semi-random model ensures that ‖yi‖2 = 1 for all
i ∈ [N ], a common normalizing assumption made in previous works on sparse
subspace clustering [SC12, SEC14, WX16]. However, such a property is only
used in our theoretical analysis, and in our COCOLASSO algorithm the norms of
{yi}Ni=1 are assumed unknown. Indeed, if the exact norms of ‖yi‖2 are known to the
data analyst the sample complexity in our analysis can be further improved, as we
remarked in Remark 9.3.

The non-uniform semi-random model considers fixed (deterministic) subspaces
{S	}, but assumes that data points within each low-dimensional subspace are inde-
pendently generated from an unknown distribution P	 with densities bounded away
and above from below. This helps simplifying the “inter-subspace incoherence”
(Definition 9.6) in our proof and yields interpretable results.

Compared with existing definitions of semi-random models [SC12, WX16,
HB15, PCS14], the key difference is that in our model data are not uniformly
distributed on each low-dimensional subspace. Instead, it is assumed that the data
points are i.i.d., and that the data density is bounded away from both above and
below. Such non-uniformity rules out algorithms that exploit the E[yi] = 0 property
in traditional semi-random models which is too strong and rarely holds true in
practice.
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Because the underlying subspaces are fixed, quantities that characterize the
“affinity” between these subspace are needed because closer subspaces are harder
to distinguish from each other. We adopt the following affinity measure, which was
commonly used in previous works on sparse subspace clustering [WX16, WWS15a,
CJW17]:

Definition 9.3 (Subspace Affinity) Let Uj and Uk be two linear subspaces of Rn

of dimension dj and dk . The affinity between Uj and Uk is defined as χ2
j,k :=

cos2 θ
(1)
jk + · · · + cos2 θ

(min(dj ,dk))

jk , where θ
(	)
jk is the 	th canonical angle between

Uj and Uk .

Remark 9.2 χjk = ‖U�j Uk‖F , where Uj ∈ R
n×dj , Uk ∈ R

n×dk are orthonormal
basis of Uj ,Uk .

Throughout the paper we also write χ := maxj �=k χj,k .
For the missing data model, we need the following additional “inner-subspace”

incoherence of the subspaces to ensure that the observed data entries contain
sufficient amount of information. Such incoherence assumptions were widely
adopted in the matrix completion community [CR09, KMO10, Rec11].

Definition 9.4 (Inner-Subspace Incoherence) Fix 	 ∈ [L] and let U	 ∈ R
n×d	 be

an orthonormal basis of subspace U	. The subspace incoherence of U	 is the smallest
μ	 such that

max
1≤i≤n

‖e�i U	‖2
2 ≤ μ	d	/n.

With the above definitions, we are now ready to state the following two theorems
which give sufficient success conditions for the self-similarity matrix {ci}ni=1
produced by COCOLASSO.

Theorem 9.1 (The Gaussian Noise Model) Suppose λ � 1/
√

d and �jk �
σ 2
√

log N
n

for all j, k ∈ [N ]. Suppose also that N	 ≥ 2Cd	/C. There exists a
constant K0 > 0 such that, if

σ < K0

(
n/d3 log2(CN/C)

)1/4
,

then the optimal solution {ci}Ni=1 of the COCOSSC estimator satisfies the subspace
detection property (SDP) with probability 1−O(N−10).

Theorem 9.2 (The Missing Data Model) Suppose λ � 1/
√

d , �jk � μd log N

ρ
√

n
for

j �= k and �jk � μd log N

ρ3/2√n
for j = k. Suppose also that N	 ≥ 2Cd	/C. There exists

a constant K1 > 0 such that, if

ρ > K1 max
{
(μχd5/2 log2 N)2/3 · n−1/3, (μ2d7/2 log2 N)2/5 · n−2/5

}
,
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then the optimal solution {ci}Ni=1 of the COCOSSC estimator satisfies the subspace
detection property (SDP) with probability 1−O(N−10).

Remark 9.3 If the norms of the data points ‖yi‖2 are exactly known and can be
explicitly used in algorithm design, the diagonal terms of A in Eq. (4.1) can be
directly set to Aii = ‖yi‖2

2 in order to avoid the ψ2 concentration term in our
proof (Definition 9.5). This would improve the sample complexity in the success
condition to ρ > �(n−1/2), matching the sample complexity in linear regression
problems with missing design entries [WWBS17].

Theorems 9.1 and 9.2 show that when the noise magnitude (σ in the Gaussian
noise model and ρ−1 in the missing data model) is sufficiently small, a careful
choice of tuning parameter λ results in a self-similarity matrix {ci} satisfying
the subspace detection property. Furthermore, the maximum amount of noise our
method can tolerate is σ = O(n1/4) and ρ = �(χ2/3n−1/3 + n−2/5), which
improves over the sample complexity of existing methods (see Table 4.1).

9.1.2 The Fully Random Model

When the underlying subspaces U1, · · · ,UL are independently uniformly sampled,
a model referred to as the fully random model in the literature [SC12, SEC14,
WX16], the success condition in Theorem 9.2 can be further simplified:

Corollary 9.1 Suppose subspaces U1, · · · ,UL have the same intrinsic dimension
d and are uniformly sampled, the condition in Theorem 9.2 can be simplified to

ρ > K̃1(μ
2d7/2 log2 N)2/5 · n−2/5,

where K̃1 > 0 is a new universal constant.

Corollary 9.1 shows that in the fully random model, the χ2/3n−1/3 term in
Theorem 9.2 is negligible and the success condition becomes ρ = �(n−2/5), strictly
improving existing results (see Table 4.1).

9.2 Proofs

In this section we give proofs of our main results. Due to space constraints, we only
give a proof framework and leave the complete proofs of all technical lemmas to the
appendix.
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9.2.1 Noise Characterization and Feasibility of Pre-Processing

Definition 9.5 (Characterization of Noise Variables) {zi} are independent ran-
dom variables and E[zi] = 0. Furthermore, there exist parameters ψ1, ψ2 > 0 such
that with probability 1−O(N−10) the following holds uniformly for all i, j ∈ [N ]:

∣
∣z�i yj

∣
∣ ≤ ψ1

√
log N

n
; ∣

∣z�i zj − E[z�i zj ]
∣
∣ ≤

⎧
⎨

⎩
ψ1

√
log N

n
i �= j ;

ψ2

√
log N

n
i = j.

Proposition 9.1 Suppose � are set as �jk ≥ 3ψ1

√
log N

n
for j �= k and �jk ≥

3ψ2

√
log N

n
for j = k. Then with probability 1 − O(N−10) the set S defined in

Eq. (4.1) is not empty.

The following two lemmas derive explicit bounds on ψ1 and ψ2 for the two noise
models.

Lemma 9.1 The Gaussian noise model satisfies Definition 9.5 with ψ1 � σ 2 and
ψ2 � σ 2.

Lemma 9.2 Suppose ρ = �(n−1/2). The missing data model satisfies Defini-
tion 9.5 with ψ1 � ρ−1μd

√
log N and ψ2 � ρ−3/2μd

√
log N , where d =

max	∈[L] d	 and μ = max	∈[L] μ	.

9.2.2 Optimality Condition and Dual Certificates

We first write down the dual problem of COCOSSC:

Dual COCOSSC : νi = arg max
νi∈RN

x̃�i νi − 1

2λ
‖νi‖2

2 s.t.

∥∥∥X̃�−iνi

∥∥∥∞ ≤ 1.

(9.1)

Lemma 9.3 (Dual Certificate, Lemma 12 of [WX16]) Suppose there exists
triplet (c, e, ν) such that x̃i = X̃−ic + e, c has support S ⊆ T ⊆ [N ], and that
ν satisfies

[X̃−i]�S ν = sgn(cS), ν = λe,

∥∥∥[X̃−i]�T∩Scν

∥∥∥∞ ≤ 1,

∥∥∥[X̃−i]�T cν

∥∥∥∞ < 1,

then any optimal solution ci to Eq. (4.2) satisfies [ci]T c = 0.

To construct such a dual certificate and to de-couple potential statistical depen-
dency, we follow [WX16] to consider a constrained version of the optimization
problem. Let X̃(	)

−i denote the data matrix of all but x̃i in cluster S	. The constrained
problems are defined as follows:
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Constrained Primal : c̃i = arg min
ci∈RN	−1

‖ci‖1 + λ/2 · ‖x̃i − X̃(	)
−i ci‖2

2; (9.2)

Constrained Dual : ν̃i = arg max
νi∈RN	−1

x̃�i νi − 1/(2λ)

· ‖νi‖2
2 s.t. ‖(X̃(	)

−i )
�νi‖∞ ≤ 1. (9.3)

With c = [c̃i , 0S−	
], ν = [ν̃i , 0S−	

], and e = x̃i − X̃(	)
−i c̃i , the certificate satisfies

the first three conditions in Lemma 9.3 with T = S	 and S = supp(c̃i ). Therefore,
we only need to establish that |〈x̃j , ν̃i〉| < 1 for all x̃j /∈ S	 to show no false
discoveries, which we prove in the next section.

9.2.3 Deterministic Success Conditions

Define the following deterministic quantities as inter-subspace incoherence and in-
radius, which are important quantities in deterministic analysis of sparse subspace
clustering methods [SC12, WX16, SEC14].

Definition 9.6 (Inter-Subspace Incoherence) The inter-subspace incoherence μ̃

is defined as μ̃ := max	∈[L] maxyi∈S	
maxyj /∈S	

∣∣〈yi , yj 〉
∣∣.

Definition 9.7 (In-Radius) Define ri as the radius of the largest ball inscribed in
the convex body of {±Y(	)

−j }. Also define that r := min1≤i≤N ri .

The following lemma derives an upper bound on |〈x̃j , ν̃i〉|, which is proved in
the appendix.

Lemma 9.4 For every (i, j) belonging to different clusters, |〈x̃j , ν̃i〉| � λ(1 +
‖c̃i‖1)(μ̃+ ψ1

√
log N/n), where ‖c̃i‖1 � r−1(1+ r−1λ(ψ1 + ψ2)

√
log N/n).

Lemmas 9.3 and 9.4 immediately yield the following theorem:

Theorem 9.3 (No False Discoveries) There exists an absolute constant κ1 > 0
such that if

λ
r

(
1+ λ

r
(ψ1 + ψ2)

√
log N

n

)
·
(

μ̃+ ψ1

√
log N

n

)
< κ1, (9.4)

then the optimal solution ci of the COCOSSC estimator in Eq. (4.2) has no false
discoveries, that is, cij = 0 for all xj that belongs to a different cluster of xi .

The following theorem shows conditions under which ci is not the trivial solution
ci = 0.



9.3 Numerical Results 95

Theorem 9.4 (Avoiding Trivial Solutions) There exists an absolute constant κ2 >

0 such that, if

λ

(
r − ψ1

√
log N

n

)
> κ2, (9.5)

then the optimal solution ci of the COCOSSC estimator in Eq. (4.2) is non-trivial,
that is, ci �= 0.

Finally, we remark that choosing r = c/λ for some small constant c > 0 (depending
only on κ1 and κ2), the choice of λ satisfies both theorems 9.3 and 9.4 provided that

max

{
ψ1
r

√
log N

n
,

μ̃

r2 ,
μ̃(ψ1+ψ2)

r3

√
log N

n
,

ψ1(ψ1+ψ2)

r3
log N

n

}
< κ3 (9.6)

for some sufficiently small absolute constant κ3 > 0 that depends on κ1, κ2, and c.

9.2.4 Bounding μ̃ and r in Randomized Models

Lemma 9.5 Suppose N	 = �(Cd	/C	). Under the non-uniform semi-random

model, with probability 1 − O(N−10) it holds that μ̃ � χ

√
log(CN/C) and

r � 1/
√

d.

Lemma 9.6 Suppose U1, . . . ,UL are independently uniformly sampled linear sub-
spaces of dimension d in R

n. Then with probability 1 − O(N−10) we have that
χ � d

√
log N/n and μ �

√
log N .

9.3 Numerical Results

Experimental Settings and Methods We conduct numerical experiments based
on synthetic generated data, using a computer with Intel Core i7 CPU (4 GHz) and
16 GB memory. Each synthetic data set has ambient dimension n = 100, intrinsic
dimension d = 4, number of underlying subspaces L = 10, and a total number
of N = 1000 unlabeled data points. The observation rate ρ and Gaussian noise
magnitude σ vary in our simulations. Underlying subspaces are generated uniformly
at random, corresponding to our fully random model. Each data point has an equal
probability of being assigned to any cluster and is generated uniformly at random
on its corresponding low-dimensional subspace.

We compare the performance (explained later) of our COCOSSC approach,
and two popular existing methods LASSO SSC and the de-biased Dantzig selector.
The 	1 regularized self-regression steps in both COCOSSC and LASSO SSC are
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implemented using ADMM. The pre-processing step of COCOSSC is implemented
using alternating projections initialized at �̃ = X�X − D. Unlike the theoretical
recommendations, we choose � in Eq. (4.1) to be very large (3 × 103 for diagonal
entries and 103 for off-diagonal entries) for fast convergence. The de-biased Dantzig
selector is implemented using linear programming.

Evaluation Measure We consider two measures to evaluate the performance of
algorithms being compared. The first one evaluates the quality of the similarity
matrix {ci}Ni=1 by measuring how far (relatively) it deviates from having the
subspace detection property. In particular, we consider the RelViolation metric
propositioned in [WX16] defined as

RelViolation(C,M) = (
∑

(i,j)/∈M|C|i,j )/(
∑

(i,j)∈M|C|i,j ), (9.7)

where M is the mask of ground truth with all (i, j) satisfying xi , xj ∈ S(	) for some
	. A high RelViolation indicates frequent deviation from the subspace detection
propositionerty and therefore poorer quality of {ci}Ni=1.

For clustering results, we use the Fowlkes–Mallows index [FM83] to evaluate
their quality. Suppose A ⊆ {(i, j) ∈ [N ] × [N ]} consists of pairs of data points
that are clustered together by a clustering algorithm, and A0 is the ground truth
clustering. Define T P = |A ∩ A0|, FP = |A ∩ Ac

0|, FN = |Ac ∩ A0|, T N =
|Ac ∩Ac

0|. The Fowlkes–Mallows (FM) index is then expressed as

FM =
√

T P 2/(T P + FP)(T P + FN).

The FM index of any two clusterings A and A0 is always between 0 and 1, with an
FM index of one indicating perfectly identical clusterings and an FM index close to
zero otherwise.

Results We first give a qualitative illustration of similarity matrices {ci}Ni=1 pro-
duced by the three algorithms of LASSO SSC, de-biased Dantzig selector, and
COCOSSC in Fig. 9.1. We observe that the similarity matrix of LASSO SSC has
several spurious connections, and both LASSO SSC and the de-biased Dantzig
selector suffer from graph connectivity issues as signals within each block (cluster)
are not very strong. On the other hand, the similarity matrix of COCOSSC produces
convincing signals within each block (cluster). This shows that our propositioned
COCOSSC approach not only has few false discoveries as predicted by our
theoretical results, but also has much better graph connectivity which our theory
did not attempt to cover.

In Fig. 9.2 we report the Fowlkes–Mallows (FM) index for clustering results and
RelViolation scores of similarity matrices {ci}Ni=1 under various noise magnitude (σ )
and observation rates (ρ) settings. A grid of tuning parameter values λ are attempted
and the one leading to the best performance is reported. It is observed that our
propositioned COCOLASSO consistently outperforms its competitors LASSO SSC
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Fig. 9.1 Heatmaps of similarity matrices {ci}Ni=1, with brighter colors indicating larger absolute
values of matrix entries. Left: LassoSSC; Middle: De-biased Dantzig selector; Right: CoCoSSC

Fig. 9.2 The Fowlkes–Mallows (FM) index of clustering results (top row) and RelViolation scores
(bottom row) of the three methods, with noise of magnitude σ varying from 0 to 1. Left column:
missing rate 1− ρ = 0.03, middle column: 1− ρ = 0.25, right column: 1− ρ = 0.9
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and de-biased Dantzig selector. Furthermore, COCOLASSO is very computationally
efficient and converges in 8–15 seconds on each synthetic data set. On the other
hand, de-biased Dantzig selector is computationally very expensive and typically
takes over 100 seconds to converge.

9.4 Technical Details

Proof of Proposition 9.1 By Definition 9.5 we know that |�̃−i − YT−iY−i | ≤ |�|
in an element-wise sense. Also note that Y�Y is positive semidefinite. Thus,
Y�Y ∈ S. ��
Proofs of Lemmas 9.1 and 9.2 Lemma 9.1 is proved in [WX16]. See Lemmas 17
and 18 of [WX16] and note that E[z�i zi] = σ 2.

We next prove Lemma 9.2. We first consider |z�i yj |. Let z = zi , y = yi ,
ỹ = yj , and r = Rj ·. Define Ti := ziyi = (1 − r i/ρ)yi ỹj . Because r is

independent of y and ỹ, we have that E[Ti] = 0, E[T 2
i ] ≤ y2

i ỹi
2/ρ ≤ μ2d2/ρn2,

and |Ti | ≤ μd/ρn =: M almost surely. Using Bernstein’s inequality, we know that
with probability 1−O(N−10)

|z�i yj | =
∣∣∣∣

T∑

i=1

Ti

∣∣∣∣ �

√√√√
n∑

i=1

E[T 2
i ] · log N +M log N � μd

√
log2 N

ρn
.

We next consider |z�i zj | and the i �= j case. Let y = yi , ỹ = yj , r = Ri·, and
r̃ = Rj ·. By definition of μ, we have that ‖y‖2∞ ≤ μdi/n and ‖ỹ‖2∞ ≤ μdj/n.
Define Ti := zi z̃i = (1− r i/ρ)(1− r̃ i/ρ) · yi ỹi . Because r and r̃ are independent,
E[Ti] = 0, E[T 2

i ] ≤ y2
i ỹ

2
i /ρ

2 ≤ μ2d2/ρ2n2, and |Ti | ≤ μd/ρ2n =: M almost
surely. Using Bernstein’s inequality, we know that with probability 1−O(N−10)

∣∣
∣∣

n∑

i=1

Ti

∣∣
∣∣ �

√√√√
n∑

i=1

E[T 2
i ] · log N +M log N � μd

ρ

√
log2 N

n
,

where the last inequality holds because ρ = O(n−1/2).
Finally is the case of |z�i zj | and i = j . Let again z := zi = zj . Define Ti :=

z2
i − E[z2

i ] = (1− r i/ρ)2y2
i − (1− ρ)2/ρ · y2

i . It is easy to verify that E[Ti] = 0,
E[T 2

i ] � y4
i /ρ

3 ≤ μ2d2/ρ3n2, and |Ti | � y2
i /ρ

2 ≤ μd/ρ2n. Subsequently, with
probability 1−O(N−10) we have

∣
∣∣∣

n∑

i=1

Ti

∣
∣∣∣ �

μd

ρ3/2

√
log2 N

n
.
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The estimation error of (1− ρ)(X�X)ii for (1− ρ)/ρ · ‖yi‖2
2 = (1− ρ)/ρ can be

upper bounded similarly. ��
Proof of Lemma 9.4 Take �jk = 3ψ1

√
log N

n
for j �= k and �jk = 3ψ2

√
log N

n
. Fix

arbitrary x̃j /∈ S	 and x̃i ∈ S	. Because ν̃i = λ(x̃i − X̃(	)
−i c̃i ), we have that

∣∣〈x̃j , ν̃i〉
∣∣ = λ

∣∣x̃�j (x̃i + X̃(	)
−i c̃i )

∣∣ ≤ λ(1+ ‖c̃i‖1) · sup
x̃i∈S	

∣∣〈x̃j , x̃i〉
∣∣

≤ λ(1+ ‖c̃i‖1) ·
(

μ̃+ sup
x̃i /∈S	

∣∣〈x̃j , x̃i〉 − 〈yj , yi〉
∣∣
)

� λ(1+ ‖c̃i‖1) ·
(

μ̃+ ψ1

√
log N

n

)

, (9.8)

where the last inequality holds by applying Definition 9.5 and the fact that

∣
∣〈x̃i , x̃j 〉 − 〈ỹi , ỹj 〉

∣
∣ ≤ ∣∣(�̃+)ij − (�̃)ij

∣
∣+ ∣∣(�̃)ij − 〈ỹi , ỹj 〉

∣
∣

≤ ∣∣�ij

∣∣+ ∣∣〈x̃i , x̃j 〉 − 〈ỹi , ỹj 〉
∣∣

≤ ∣∣�ij

∣∣+ ∣∣〈z̃i , ỹj 〉
∣∣+ ∣∣〈ỹj , z̃i〉

∣∣+ ∣∣〈z̃j , z̃i〉
∣∣

� ψ1

√
log N

n
for i �= j.

To bound ‖c̃i‖1, consider an auxiliary noiseless problem:

ĉi := arg min
ci

‖ci‖1 s.t. yi = Y(	)
−i ci . (9.9)

Note that when r > 0 Eq. (9.9) is always feasible. Following standard analysis
(e.g., Lemma 15 and Eq. (5.15) of [WX16]), it can be established that ‖ĉi‖1 ≤
1/ri ≤ 1/r . On the other hand, by optimality we have ‖c̃i‖1 + λ

2‖x̃i − X̃(	)
−i c̃i‖2

2 ≤
‖ĉi‖1 + λ

2‖x̃i − X̃(	)
−i ĉi‖2

2. Therefore,

‖c̃i‖1 ≤ ‖ĉi‖1 + λ

2

∥∥∥x̃i − X̃(	)
−i ĉi

∥∥∥
2

2

� ‖ĉi‖1 + λ

2

∥∥∥yi − Y(	)
−i ĉi

∥∥∥
2

2
+ (1+ ‖ĉi‖1)

2 · λ

2
sup

yi ,yj∈S	

∣∣〈x̃i , x̃j 〉 − 〈yi , yj 〉
∣∣

= ‖ĉi‖1 + (1+ ‖ĉi‖1)
2 · λ

2
sup

yi ,yj∈S	

∣∣〈x̃i , x̃j 〉 − 〈yi , yj 〉
∣∣
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� ‖ĉi‖1 + (1+ ‖ĉi‖1)
2 · (ψ1 + ψ2)

√
log N

n

� 1

r

(

1+ λ

r
(ψ1 + ψ2)

√
log N

n

)

. (9.10)

��
Proof of Theorem 9.4 Following the analysis of Lasso SSC solution path in
[WX16], it suffices to show that λ > 1/‖x̃�i X̃−i‖∞. On the other hand, note that

‖y�i Y−i‖∞ ≥ ‖y�i Y(	)
−i‖∞ ≥ ri ≥ r (see, for example, Eq. (5.19) of [WX16]).

Subsequently,

∥∥∥x̃�i X̃−i

∥∥∥∞ ≥
∥∥∥y�i Y−i

∥∥∥∞ − sup
j �=i

∣∣〈x̃i , x̃j 〉 − 〈yi , yj 〉
∣∣ � r − ψ1

√
log N

n
.

��
Proof of Lemma 9.5 We first prove

max
yi∈Sk

max
yj∈S	

∣
∣〈yi , yj 〉

∣
∣ � χk	 · log(CN/C)√

dkd	

∀j �= k ∈ [L]. (9.11)

Let Nk and N	 be the total number of data points in Sk and S	, and let Pk

and P	 be the corresponding densities which are bounded from both above and
below by Cp0 and Cp0. Consider a rejection sampling procedure: first sample α

randomly from the uniform measure over {α ∈ R
dk : ‖α‖2 = 1}, and then reject

the sample if u > pk(α)/Cp0, where u ∼ U(0, 1). Repeat the procedure until
Nk samples are obtained. This procedure is sound because pk/p0 ≤ C, and the
resulting (accepted) samples are i.i.d. distributed according to Pk . On the other hand,
for any α the probability of acceptance is lower bounded by C/C. Therefore, the
procedure terminates by producing a total of O(CNk/C) samples (both accepted
and rejected). Thus, without loss of generality we can assume both Pk and P	

are uniform measures on the corresponding spheres, by paying the cost of adding
Ñk = O(CNk/C) and Ñ	 = O(CN	/C) points to each subspace.

Now fix yi = Ukαi and yj = U	αj , where αi ∈ R
dk , αj ∈ R

d	 , and ‖αi‖2 =
‖αj‖2 = 1. Then both αi and αj are uniformly distributed on the low-dimensional
spheres, and that |〈yi , yj 〉| = |α�i (U�k U	)αj |. Applying Lemma 7.5 of [SC12] and
note that χk	 = ‖U�k U	‖F we complete the proof of Eq. (9.11).

We next prove

ri �

√
log(CN	/Cd	)

d	

∀i ∈ [N ], 	 ∈ [L], xi ∈ S	. (9.12)
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Let P	 be the underlying measure of subspace S	. Consider the decomposition
P	 = C/C · P0 + (1 − C/C) · P ′	, where P0 is the uniform measure. Such a
decomposition and the corresponding density P ′	 exist because CP0 ≤ P	 ≤ CP0.
This shows that the distribution of points in subspace S	 can be expressed as a
mixture distribution, with a uniform density mixture with weight probability C/C.
Because ri decreases with smaller data set, it suffices to consider only the uniform
mixture. Thus, we can assume P	 is the uniform measure at the cost of considering
only Ñ	 = �(CN	/C) points in subspace S	. Applying Lemma 21 of [WX16] and
replacing N	 with Ñ	 we complete the proof of Eq. (9.12).

Finally Lemma 9.5 is an easy corollary of Eqs. (9.11) and (9.12). ��
Proof of Lemma 9.6 Fix k, 	 ∈ [L] and let Uk = (uk1, · · · ,ukd), U	 =
(u	1, · · · ,u	d) be orthonormal basis of Uk and U	. Then χk	 = ‖U�k U	‖F ≤
d‖U�k U	‖max = d · sup1≤i,j≤d |〈uki ,u	j 〉|. Because Uk and U	 are random
subspaces, uki and u	j are independent vectors distributed uniformly on the d-
dimensional unit sphere. Applying Lemma 17 of [WX16] and a union bound over
all i, j, k, 	 we prove the upper bound on χ . For the upper bound on μ, simply note

that ‖ujk‖∞ �
√

log N
n

with probability 1 − O(N−10) by standard concentration
result for Gaussian suprema. ��

9.5 Concluding Remarks

Our numerical simulations first demonstrated the spectral clustering accuracy with
respect to the effect of Gaussian noise. In this experiment, ambient dimension n =
100, intrinsic dimension d = 4, the number of clusters L = 10, the number of data
points N = 1000, and the Gaussian noise is Zij N(0, σ/

√
n, where σ is changed

from 0.00 to 1.00 with step length 0.01.
The second experiments investigated the RelViolation with respect to Gaussian

noise σ and missing rate ρ. We change σ from 0 to 1 with step length 0.01 and
set ρ as 0.03, 0.05, and 0.10, respectively. In these experiments, ambient dimension
n = 10, intrinsic dimension d = 2, the number of clusters L = 5, and the number
of data points N = 100.

Our last numerical simulations test the effects of Gaussian noise σ , subspace
rand d, and number of clusters L, respectively.

An interesting future direction is to further improve the sample complexity to
ρ = �(n−1/2) without knowing the norms ‖yi‖2. Such sample complexity is likely
to be optimal because it is the smallest observation rate under which off-diagonal
elements of sample covariance X�X can be consistently estimated in max norm,
which is also shown to be optimal for related regression problems [WWBS17].



Chapter 10
Online Discovery for Stable and
Grouping Causalities in Multivariate
Time Series

The content of this chapter is organized as follows: The problem formulation is
presented in Sect. 10.1. Section 10.2 introduces the details about our proposed
approach and its equivalent Bayesian model. A solution capable of online inference
with particle learning is given in Sect. 10.3. Extensive empirical evaluation is
demonstrated in Sect. 10.4. Finally, we conclude our work and discuss the future
work.

10.1 Problem Formulation

In this section, we formally define the Granger causality by the VAR model. Given
a set of time series Y defined on R

n in the time interval [0, T ], that is,

Y = {yt : yt ∈ R
n, t ∈ [0, T ]},

where yt = (yt,1, yt,2, . . . , yt,n)
T . The inference of Granger causality is usually

achieved by fitting the time-series data Y with a VAR model. Given the maximum
time lag L, the VAR model is expressed as follows:

yt =
L∑

l=1

WT
l yt−l + ε, (10.1)

Part of this chapter is in the paper titled “Online Discovery for Stable and Grouping Causalities
in Multivariate Time Series” by Wentao Wang, Bin Shi et al. (2018) presently under review for
publication.
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where ε is the standard Gaussian noise and the vector-value yt (1 ≤ t ≤ T ) only
depends on the past vector-value yt−l (1 ≤ l ≤ L). The Granger causal relationship
between yt and yt−l is formulated as the matrix Wl in the following:

Wl = (wl,j i)n×n,

where the entry wl,ji expresses how large the component yt−l,i influences the
component yt,j , noted as yt−l,i →g yt,j .

To induce sparsity in the matrix Wl (l = 1, 2, . . . , L), the prior work
[ZWW+16] proposed a VAR-Lasso model as follows:

min
Wl

T∑

t=L+1

∥∥∥∥∥
yt−

L∑

l=1

WT
l yt−l

∥∥∥∥∥

2

2

+λ1

L∑

l=1

‖Wl‖1, (10.2)

and an online time-varying method based on Bayesian update. However, it suffers
instability and fails to select a group of variables that are highly correlated. To
address these problems, we propose a method with elastic-net regularization and
an equivalent online inference strategy is given in the following sections.

10.2 Elastic-Net Regularizer

In this section, we describe the VAR-elastic-net model and its equivalent form in the
perspective of Bayesian modeling.

10.2.1 Basic Optimization Model

Elastic-net regularization [ZH05] is a combination of L1 and L2 norm and has the
following objective function for MTS data:

T∑

t=L+1

∥∥
∥∥∥

yt −
L∑

l=1

WT
l yt−l

∥∥
∥∥∥

2

2

+ λ1

L∑

l=1

‖Wl‖1 + λ2

L∑

l=1

‖Wl‖2
2, (10.3)

where ‖ · ‖1 is the entrywise norm and ‖ · ‖2 is the Frobenius norm (or Hilbert–
Schmidt norm).

In order to change Eq. (10.3) into the standard form of the linear regression
model, we define β, a nL× n matrix, as follows:

β = (WT
1 ,WT

2 , . . . ,WT
L )T , (10.4)



10.2 Elastic-Net Regularizer 105

and xt be a nL column vector as

xt = [yT
t−1, yT

t−2, . . . , yT
t−L]T . (10.5)

Then, Eq. (10.3) can be reformulated as

T∑

t=L+1

(
yt − βT xt

)2 + λ1‖β‖1 + λ2‖β‖2
2. (10.6)

The coefficient matrix β can be expressed as

β = (βT
1 ,βT

2 , . . . ,βT
n )T , (10.7)

where β i (i = 1, 2, . . . , n) is a row vector of size nL. Based on Eq. (10.7), the
equivalent form of Eq. (10.6) is

T∑

t=L+1

(
yt,i − βT

i xt

)2 + λ1‖βi‖1 + λ2‖βi‖2
2, (10.8)

where i = 1, 2, . . . , n. Thus, the original optimization problem of Eq. (10.3) can be
addressed as the optimization problem of n independent standard linear regression
problem of Eq. (10.8).

10.2.2 The Corresponding Bayesian Model

From Bayesian perspective, yt,i (i = 1, 2, . . . , n) follows a Gaussian distribution,
given the coefficient vector βi and the variance of random observation noise σ 2

i , as
follows:

yt,i |βi , σ
2
i ∼ N

(
βT

i xt , σ
2
i

)
. (10.9)

The coefficient vector βi is viewed as a random variable which follows the mixed
Gaussian and Laplace distribution, as below [LL+10, Mur12]:

p(βi |σ 2
i ) ∝ exp

⎛

⎝−λ1σ
−1
i

nL∑

j=1

|βij | − λ2σ
−2
i

nL∑

j=1

|β2
ij |
⎞

⎠ . (10.10)

Equation (10.10) represents a scale mixture of normal distributions and exponential
distributions and equals a hierarchical form as below:
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τ 2
j |λ1 ∼

√
exp
(
λ2

1

)
,

βi |σ 2
i , τ 2

1 , . . . , τ 2
nL ∼ N

(
0, σ 2

i Mβi

)
,

Mβi
= diag

((
λ2 + τ−2

1

)−1
, . . . ,

(
λ2 + τ−2

nL

)−1
)

.

(10.11)

The variance σ 2
i is a random variable following inverse gamma distribution

[Mur12] as follows:

σ 2
i ∼ IG(α1, α2), (10.12)

where α1 and α2 are hyperparameters.
Equation (10.10) can be obtained from integrating out the hyperparameters α1

and α2 in Eq. (10.12) and it reduces to the regular Lasso when λ2 = 0.

10.2.3 Time-Varying Causal Relationship Model

The aforementioned model is the traditional static regression model, based on the
assumption that the coefficient βi (i = 1, 2, . . . , n) is unknown but fixed, which
rarely holds in practice. To model dynamic dependencies, it is reasonable to view
the coefficient vector β t,i (i = 1, 2, . . . , n) as a function of time t . Specifically,
we propose a method for modeling the coefficient vector as two parts including
the stationary part and the drift part. The latter is to account for tracking the time-
varying temporal dependency among the time series instantly.

Let the operation ◦ be the Hadamard product (entrywise-product). The form of
the dynamic coefficient vector β t,i (i = 1, 2, . . . , n) is constructed as

β t,i = β t,i,1 + β t,i,2 ◦ ηt,i , (10.13)

where both β t,i,1 and β t,i,2 are stationary part and ηt,i is the drift part. The drift part
at time t is caused by the standard Gaussian random walk from the information at
time t −1, i.e., ηt,i = ηt−1,i +v and v ∼ N (0, InL). Thus ηt,i follows the Gaussian
distribution

ηt,i ∼ N (ηt−1,i , InL). (10.14)

Combined with Eq. (10.13), the equivalent time-varying Bayesian elastic-net model
in Eq. (10.8) becomes
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T∑

t=L+1

(
yt,i − βT

t,ixt

)2 + λ1,1‖β t,i,1‖1

+ λ2,1‖β t,i,1‖2
2 + λ1,2‖β t,i,2‖1 + λ2,2‖β t,i,2‖2

2.

(10.15)

Furthermore, the priors of the equivalent Bayesian model are given as below:

βi,1|σ 2
i , τ 2

1,1, . . . , τ
2
1,nL ∼ N

(
0, σ 2

i Mβi,1

)
,

βi,2|σ 2
i , τ 2

2,1, . . . , τ
2
2,nL ∼ N

(
0, σ 2

i Mβi,2

)
,

τ 2
1,j |λ1,1 ∼

√

exp
(
λ2

1,1

)
,

τ 2
2,j |λ1,2 ∼

√

exp
(
λ2

1,2

)
,

σ 2
i ∼ IG(α1, α2),

Mβi,1
= diag

(
(λ2,1 + τ−2

1,1 )−1, . . . , (λ2,1 + τ−2
1,nL)−1

)
,

Mβi,2
= diag

(
(λ2,2 + τ−2

2,1 )−1, . . . , (λ2,2 + τ−2
2,nL)−1

)
.

(10.16)

It is difficult to solve straightforward the above regression model by traditional
optimization method. We develop our solution to infer VAR-elastic-net model
from a Bayesian perspective utilizing particle learning, which is presented in the
following section.

10.3 Online Inference

Inference in general is the act or process of deriving logical conclusions from known
premises or values that are assumed to be true. Our goal in this section of the book
is to use the technique of online inference to infer both the latent parameters and
the state variables in our Bayesian model. However, since the inference partially
depends on the random walk which generates the latent state variables, we use
particle learning strategy [CJLP10] to learn the distribution of both parameters and
state variables.

Thus, here we describe the online inference process to be used to update the
parameters from time t − 1 to time t based on particle learning. At last, we give the
pseudocode of algorithm to summarize the whole process.

The definition of a particle is as given below.
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Definition 10.1 (Particle) A particle used to predict yt,i (i = 1, 2, . . . , n) is a
container which maintains the current status information for value prediction. The
status information comprises of random variables and their distributions with the
corresponding hyperparameters.

Assume the number of particles is B. Let P(k)
t,i be the kth particle for predicting the

value yi at time t with particle weight ρ
(k)
t,i .

We define a new variable β
′(k)
t,i =

(
β

(k),T
t,i,1 ,β

(k),T
t,i,2

)T

for concisely expressing

the stationary parts given in Eq. (10.13). At time t − 1, the information of particle
P(k)

t−1,i includes the following variables and hyperparameters for the corresponding
distributions:

β
′(k)
t−1,i∼N

(
μ

β
′(k)
t−1,i

, σ 2
i M

1
2

β
′(k)
t−1,i

�
β
′(k)
t−1,i

M
1
2

β
′(k)
t−1,i

)
,

η
(k)
t−1,i ∼ N

(
μ

η
(k)
t−1,i

,�
η

(k)
t−1,i

)
,

σ 2(k)

t−1,i ∼ IG
(
α

(k)
t−1,1, α

(k)
t−1,2

)
.

(10.17)

10.3.1 Particle Learning

Particle learning as described by previous works in this field [CJLP10] is seen
as a very powerful tool that can be used to provide an online inference strategy
when working with Bayesian models. It falls under the broad category of sequential
Monte Carlo (SMC) methods which in turn within it comprises a set of Monte Carlo
methodologies that can be used in solving the filtering problem. It can be noted
that particle learning also provides state filtering, sequential parameter learning, and
smoothing in a general class of state space models.

The core idea behind the use of particle learning is the creation of a particle
algorithm that can be directly applied on samples from the particle approximation
to the joint posterior distribution of states and conditional sufficient statistics for
fixed parameters in a fully adapted resample-propagate framework. This idea for
particle learning is iterated in the following steps:

(1) At time t−1, there are B particles, and each contains information in Eq. (10.17).
The coefficients at t − 1 is given as

β
(k)
t−1,i = β

(k)
t−1,i,1 + β

(k)
t−1,i,2 ◦ η

(k)
t−1,i .
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(2) At time t , sample the drift part η
(k)
t,i from Eq. (10.14), and update parameters

of all priors and sample the new values for β
(k)
t,i,1 ,β

(k)
t,i,2 (details are given in

Sect. 10.3.2) for each particle.
(3) Finally, gain new feedback yt,i and resample B particles based on the recalcu-

lated particle weights (details are given in Sect. 10.3.2). The value of β t,i for
prediction at time t is averaged as below:

β t,i =
1

B

B∑

k=1

(
β

(k)
t,i,1 + β

(k)
t,i,2 ◦ η

(k)
t,i

)
. (10.18)

10.3.2 Update Process

In the process of particle learning, the key step is to update all the parameters from
time t−1 to time t and recalculate particle weights mentioned above. In this section,
we describe the update process of particle weights and all the parameters in detail.

Particle Weights Update
Each particle P(k)

t,i has a weight, denoted as ρ
(k)
t,i , indicating its fitness for the new

observed data at time t . Note that
B∑

k=1
ρ

(k)
t,i = 1. The fitness of each particle P(k)

t,i is

defined as likelihood of the observed data xt and yt,i . Therefore,

ρ
(k)
t,i ∝P(xt , yt,i |P(k)

t−1,i ).

Combined with Eq. (10.14) for η
(k)
t,i and Eq. (10.17) for η

(k)
t−1,i , the particle weights

ρ
(k)
i at time t is proportional to the value as follows:

ρ
(k)
t,i ∝

∫∫
N (yt,i |β(k),T

t,i xt , σ
2(k)
t−1,i )N (η

(k)
t,i |η(k)

t−1,i , InL)

N (η
(k)
t−1,i |μη

(k)
t−1,i

,�
η

(k)
t−1,i

)dη
(k)
t−1,idη

(k)
t,i .

(10.19)

Integrating out the variables of η
(k)
t−1,i and η

(k)
t,i , we can obtain that the particle

weights ρ
(k)
i at time t follow Gaussian distribution as below:

ρ
(k)
t,i ∝ N (yt,i |m(k)

t,i ,Q
(k)
t,i ), (10.20)

where the mean value and the variance are, respectively,
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m
(k)
t,i = (β

(k)
t,i,1 + β

(k)
t,i,2 ◦ μ

η
(k)
t−1,i

)T xt ,

Q
(k)
t,i = σ

2(k)
t−1,i + (xt ◦ β

(k)
t,i,2)

T

(InL + �
η

(k)
t−1,i

)(xt ◦ β
(k)
t,i,2).

(10.21)

Furthermore, the final kth particle weights at time t can be obtained from normal-
ization, as follows:

ρ
(k)
t,i =

N (yt,i |m(k)
t,i ,Q

(k)
t,i )

B∑

k=1
N (yt,i |m(k)

t,i ,Q
(k)
t,i )

. (10.22)

With the particle weights ρ
(k)
t,i (k = 1, 2, . . . , B) at time t obtained, the B particles

are resampled at time t .

Latent State Update
Having the new observation xt and yt,i at time t , both the mean μ

η
(k)
t−1,i

and the

variance �
η

(k)
t−1,i

need to update from time t−1 to time t . Here, we apply the Kalman

filter method [Har90] to recursively update to the mean and the variance at time t

as follows:

μ
η

(k)
t,i

= μ
η

(k)
t−1,i

+G(k)
t−1,i

(

yt,i −
(

β
(k)
t,i,1 + β

(k)
t,i,2 ◦ μ

η
(k)
t−1,i

)T

xt

)

,

�
η

(k)
t,i

= �
η

(k)
t−1,i

+ InL −G(k)
t,i Q

(k)
t,i G(k),T

t,i .

(10.23)

where G(k)
t,i is the Kalman gain defined as [Har90]

G(k)
t,i =

(
InL+�

η
(k)
t−1,i

)(
xt ◦ β

′(k)
t−1,i,2

)
Q

(k)
t,i

−1
. (10.24)

Then, we can sample the drift part at time t from Gaussian distribution as follows:

η
(k)
t,i ∼ N

(
μ

η
(k)
t,i

,�
η

(k)
t,i

)
. (10.25)

Before updating parameters, a resampling process is conducted. We replace the
particle set P(k)

t−1,i with a new set P(k)
t,i , where P(k)

t,i is generated from P(k)
t−1,i using

sampling with replacement based on the new particle weights.
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Parameter Update
Having sampled the drift part η

(k)
t,i , the parameters update for the covariant matrix,

mean value, and the hyperparameters from time t − 1 to time t is as follows:

�
β
′(k)
t,i

=
(

�−1

β
′(k)
t−1,i

+M
1
2

β
′(k)
t−1,i

z(k)
t,i z(k)

t,i

T
M

1
2

β
′(k)
t−1,i

)−1

,

μ
β
′(k)
t,i

= M
1
2

β
′(k)
t−1,i

�
β
′(k)
t,i

M
1
2

β
′(k)
t−1,i

z(k)
t,i yt,i

+M
1
2

β
′(k)
t−1,i

�
β
′(k)
t,i

�
β
′(k)
t−1,i

M
1
2

β
′(k)
t−1,i

β
′(k)
t−1,i ,

α
(k)
t,1 = α

(k)
t−1,1 +

1

2
,

α
(k)
t,2 = α

(k)
t−1,2 +

1

2
y2
t,i

+ 1

2
μT

β
′(k)
t−1,i

M
− 1

2
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where z(k)
t,i = (xT

t , (η
(k)
t,i ◦ xt )

T )T be a 2n column vector. After parameters update

in Eq. (10.26) at time t , we can sample σ 2(k)

t,i and the stationary part of coefficients
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10.3.3 Algorithm

Putting all the aforementioned descriptions together, an algorithm for VAR-elastic-
net by Bayesian update is provided below.

Online inference for time-varying Bayesian VAR-elastic-net model starts with
MAIN procedure, as presented in Algorithm 1. The parameters B, L, α1, α2, λ11,
λ12, λ21, and λ22 are given as the input of MAIN procedure. The initialization
is executed from line 2 to line 7. As new observation yt arrives at time t, xt

is built using the time lag, then β t is inferred by calling UPDATE procedure.
Especially in the UPDATE procedure, we use the resample-propagate strategy
in particle learning [CJLP10] rather than the resample-propagate strategy in
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particle filtering [DKZ+03]. With the resample-propagate strategy, the particles are
resampled by taking ρ

(k)
t,i as the kth particle’s weight, where the ρ

(k)
t,i indicates the

occurring probability of the observation at time t given the particle at time t−1. The
resample-propagate strategy is considered as an optimal and fully adapted strategy,
avoiding an important sampling step.

Algorithm 1 The algorithm for VAR-elastic-net by Bayesian update
1: procedure MAIN(B,L, α1, α2, λ11, λ12, λ21, λ22,β t )
2: for i = 1 : K do
3: Initialize y0,i with B particles;
4: for k = 1 : B do
5: Initialize μ

β
′(k)
0,i

= 0;

6: Initialize �
β
′(k)
0,i

= I;

7: end for
8: end for
9: for t = 1 : T do

10: Obtain xt using time lag L;
11: for i = 1 : K do
12: UPDATE(xt , yt,i ,β

′
t,i , ηt,i );

13: Output β t according to Eq. (10.18);
14: end for
15: end for
16: end procedure

17: procedure UPDATE(xt , yt,i ,β
′
t,i , ηt,i )

18: for k = 1 : B do
19: Compute particle weights ρ

(k)
t,i by Eq. (10.22);

20: end for
21: Resample P(k)

t,i from P(k)
t−1,i according to ρ

(k)
t,i ;

22: for i = 1 : B do
23: Update μ

η
(k)
t,i

and �
η

(k)
t,i

by Eq. (10.23);

24: Sample η
(k)
t,i according to Eq. (10.25);

25: Update the parameters β
′(k)
t,i , β

′(k)
t,i , α

(k)
t,1 and α

(k)
t,2 by Eq. (10.26);

26: Sample σ 2(k)

t,i and β
′(k)
t,i by Eq. (10.27);

27: end for
28: end procedure

10.4 Empirical Study

To demonstrate the efficiency of our proposed algorithm, we conduct experiments
over both synthetic and real-world climate change data set. In this section, we
first outline the baseline algorithms for comparison and the evaluation metrics.
Second, we present our approach to generate the synthetic data and then illustrate
the corresponding experimental results in detail. Finally, a case study on real-world
climate change data set is given.
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10.4.1 Baseline Algorithms

In our experiments, we demonstrate the performance of our method by comparing
with the following baseline algorithms:

• BL(γ ): VAR by Bayesian prior Gaussian distribution N (0, γ−1Id).
• BLasso(λ1): VAR-Lasso by Bayesian prior Laplacian distribution L(0, λ1I).
• T V LR(γ ): VAR by Bayesian prior Gaussian distribution N (0, γ−1Id) and

online update with both stationary and drift components of the coefficient
[ZWW+16].

• T V Lasso(λ1, λ2): VAR-Lasso by Bayesian prior Laplacian distribution
L(0, diag(λ1I, λ2I)) and online update with both stationary and drift
components of the coefficient [ZWW+16].

Our proposed algorithm, VAR-elastic-net, is denoted as T V EN(λ11, λ12, λ21, λ22).
The penalty parameters λij (i = 1, 2; j = 1, 2) are presented in Eq. (10.15),
determining the L1 and L2 norm of both stationary component and drift component,
respectively. During our experiments, we extract small subset of data with early time
stamps and employ grid search to find the optimal parameters for all the algorithms.
The parameter settings are verified by cross validation in terms of the prediction
errors over the extracted data subset.

10.4.2 Evaluation Metrics

• AUC Score: At each time t , the AUC score is obtained by comparing its inferred
temporal dependency structure with the ground truth. Non-zero value of Wl,ji

indicates yt−l,i →g yt,j and the higher absolute value of Wl,ji implies a larger
likelihood of existing a temporal dependency yt−l,i →g yt,j .

• Prediction Error: At each time t , the true coefficient matrix is Wt and the
estimated one is Ŵt . Hence, the prediction error εt defined by the Frobenius
norm [CDG00] is εt = ‖Ŵt − Wt‖F . A smaller prediction error εt indicates a
more accurate inference of the temporal structure.

10.4.3 Synthetic Data and Experiments

In this section, we first present our approach to generate the synthetic data and then
illustrate the corresponding experimental results.

Synthetic Data Generation
By generating synthetic MTS with all types of dependency structures, we are able
to comprehensively and systematically evaluate the performance of our proposed
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Table 10.1 Parameters for
synthetic data generation

Name Description

K The number of MTS

T The total length of MTS with time line

L The maximum time lag for VAR model

n The number of different value in the case
of piecewise constant

S The sparsity of the spatial–temporal
dependency, denoted as the ratio of zero value
coefficients in dependency matrix W

μ The mean of the noise

σ 2 The variance of the noise

method in every scenario. Table 10.1 summarizes the parameters used to generate
the synthetic data.

The dependency structure is shown by the coefficient matrix Wl,ji , which have
been constructed by five ways in [ZWW+16], such as zero value, constant value,
piecewise constant, periodic value, and random walk. To show the efficiency of
our proposed algorithm, we add a new construct by grouped value. The variables
are categorized into several groups. Each group first appoints a representative
variable whose coefficient is sampled at time t . Meanwhile, the coefficients for other
variables at the group are assigned with the same value adding a small Gaussian
noise, that is, ε = 0.1ε∗, ε∗ ∼ N (0, 1).

Overall Evaluation
We first conduct an overall evaluation in terms of AUC and prediction error over
synthetic data generated by setting parameter S = 0.85, T = 5000, n = 10, L = 2,
μ = 0, σ 2 = 1, and K = (30, 40, 50). From the experimental results shown in
Fig. 10.1, we conclude that our proposed method has the best performance in both
evaluation metrics, AUC and prediction error, which indicates the superiority of our
algorithm in dependency discovery for time-series data.

To better show the capability of our algorithm in capturing the dynamic depen-
dencies, we visualize and compare the ground truth coefficients and the estimated
ones by different algorithms over synthetic data with all aforementioned dependency
structures. The experiments start with simulations where S = 0.87, T = 3000,
L = 2, n = 10, μ = 0, and σ 2 = 1. In order to guarantee consistent comparison
with the result in work [ZWW+16], we set parameter K = 20. The result shown
in Fig. 10.2 indicates that our proposed approach is able to better track the dynamic
temporal dependencies in all cases.

Group Effect
To present the ability of our algorithm in better stability and group variable selection,
we highlight our experiments on synthetic data with a group value dependency
structure, where T = 3000, n = 10, L = 1, μ = 0, σ 2 = 1, and K = 20. Among
the dependency matrix sampled in this experiment, only 6 coefficients are non-zero
and we equally categorize them into two groups. When sampling the coefficient
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Fig. 10.1 The temporal dependency identification performance is evaluated in terms of AUC
and prediction error for algorithms BLR(1.0) BLasso(1k), TVLR(1.0), TVLasso(1k, 2k),
TVElastic-Net(1k, 2k, 1m, 2m). The bucket size is 200

values for each group, we first sample a value x and every member in this group is
assigned with x adding a small Gaussian noise, that is, ε = 0.1ε∗, ε∗ ∼ N (0, 1),
such that the synthetic data will have group effect.

We make use of the tuning parameter shrinkage ratio s [ZH05] defined as
follows:

s = ‖β‖1/ max(‖β‖1),

where s is a value in [0, 1]. A smaller value s indicates a stronger penalty on the L1
norm of coefficient β, thus a smaller ratio of non-zero coefficient. We also have the
following definition:

Definition 10.2 (Zero Point) A zero point for a variable α in our model is equal to
the value of shrinkage ratio s, which makes the coefficient of the variable α happen
to change from zero to non-zero or vice versa.
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Fig. 10.2 The temporal dependencies from 20 time series are learned and eight coefficients among
all are selected for demonstration. Coefficients with zero values are displayed in (a), (b), (e),
and (f). The coefficients with periodic change, piecewise constant, constant, and random walk
are shown in (c), (d), (g), and (h), respectively
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Fig. 10.3 The zero point s changes with time between TVLasso and TVEN. The penalty
parameters are λ1 = λ2 = 1000 for TVLasso and λ11 = λ12 = λ21 = λ22 = 1000 for TVEN

From the definition of shrinkage ratio s, (1) a small zero point for variable α

indicates a strong correlation between the variable α and the dependent variable and
(2) group variables have closer zero points. However, it is a static result in [ZH05].
Here, we show the dynamic change of zero point with time.

Figure 10.3 records the zero points for all variables with non-zero coefficients
calculated by algorithm TVLasso and TVEN. From the result, it is safe to claim
that Lasso regularization alone fails to identity group variables; meanwhile, our
proposed method with elastic-net regularization succeeds.
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10.4.4 Climate Data and Experiments

In this section, we conduct experiments on real-world climate data and display the
corresponding experimental results and analysis.

Data Source and Pre-Processing
The MTS data records monthly global surface air temperature from 1948 to 2017
for each grid. The whole global surface is equally segmented into 360 × 720 grids
(0.5 degree latitude × 0.5 degree longitude global grid for each).

In this paper, we only focus on the East Florida area in the USA and are able
to extract totally 46 contiguous land grids with complete monthly air temperature
observations from January 1948 to December 2016. Each grid data is considered as
one time series y, so the number of multivariate time series K is 46 and the total
length of the time series T is 828. Normalization is applied to the data set for all
grids.

Spatial–Temporal Overall Evaluation
To illustrate the efficacy of our algorithm on the real-world climate data, we
conduct experiments to inspect the prediction performance of our algorithm in the
perspective of both space and time.

Figure 10.4 shows the average predicted value of the normalized air temperatures
on the total 46 grids of East Florida, where the basic parameters are set to K =
46, T = 828, L = 1, s = 0.85, μ = 0, and σ 2 = 1 for all the algorithms.
As illustrated in Fig. 10.4, our algorithm outperforms other baseline algorithms in
predicting ability.

Group Effect
In this section, we further conduct experiments on the data of the 11 contiguous
grids, a subset of aforementioned 46 points, to illustrate the ability of our algorithm
in identifying group locations having similar dependencies towards one another
location. Unlike the dependency analysis on the data of the globe or the entire
USA [LLNM+09, Cas16], we ignore the influence of the weather in other far
regions in our experiments since they are considered insignificant to the 11
grids [KKR+13], a relatively small area. We analyze the dependency matrices of the
11 locations towards two locations (81.25◦W, 27.25◦N) and (81.75◦W, 30.25◦N)

to show the group effects of the air temperature among those locations.
Figure 10.5 shows the experimental results for the two target locations (black

points), respectively. 4 groups are identified among the 11 locations by adjusting the
shrinkage ratio s and locations in the same group are displayed with same colors. As
shown in Fig. 10.5, the black location, i.e., itself, has the most significant correlation
for estimating the target air temperatures from time t−1 to time t for both the target
locations. The relatively close locations in color green and blue have larger power

https://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html

https://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html
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Fig. 10.5 Group dependencies of air temperatures over time for two target locations. Subfigures
(a) and (c) show the geographical locations and target locations are in black. Subfigures (b) and
(d) show the zero points graph for the two target locations, respectively
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for predicting the target air temperatures from time t − 1 to time t for the two
locations than the red location.

The spatial–temporal dependency structures learned in our experiments are quite
consistent with domain expertise which indicates our model is able to provide
significant insights in MTS data.

10.5 Conclusion and Future Work

In this chapter, we proposed a novel VAR-elastic-net model with online Bayesian
update allowing for both stable-sparsity and group selection among MTS, which
implements adaptive inference strategy of particle learning. Extensive empirical
studies on both the synthetic and real MTS data demonstrate the effectiveness and
the efficiency of the proposed method.

In the process of time-varying temporal dependency discovery from MTS, the
choice of regularizer is essential. One possible future work is to automate the
identification of the proper regularizer for different MTS in an online setting.
Another possible direction is to apply other dimension deduction tool, such as
principal component analysis, that extracts the characters on the dynamical process.
Finally, the dynamical structure can be also improved, such as particle learning
or Gauss random walk, to propose the dynamical model to simulate the real
phenomenon.



Chapter 11
Conclusion

Now more than ever machine learning and embedded AI will be essential in
maintaining information assurance for all aspects of our nation’s security and
defense, as well as every transaction we make in government and commercial
or private business operations. Information is the lifeblood of every business
transaction and managing risks related to the use, processing, storage, analysis,
and transmission of this information, as well as the enormous “big data” analytics
systems upon which we now rely are the vital parts allowing us to process and
sustain the flow of information for our modern world. As we increase the numbers
of devices and interconnected networks, especially as the Internet of things begins
to blossom, enormous risks will continue to emerge. Any disruption to our systems
and processes could cause economic collapse for a business, as well as our nation.

This book represents a major contribution in terms of mathematical aspects
of machine learning by the authors and collaborators. What we have tried to
portray in this book is the current state of the art for machine learning and associated
artificial intelligence techniques. The algorithms presented here have been designed
to find the local minima in convex optimization schemes and to obtain frictionless
global minima from Newton’s second law. We believe we have provided a solid
theoretical framework upon which further analysis and research can be conducted.
We hope this book has been beneficial to you in helping to identify and address
existing issues in the fields of machine learning, artificial intelligence, deep neural
networks, as well as a plethora of emerging fields. By highlighting a few popular
techniques, and demonstrating our new CoCoSSC methodology, to resolve the
noisy subspace clustering challenge, we have provided what we consider to be
a significant improvement and more robust solution than current methodologies
provide. Our numerical results confirm the effectiveness and efficiency of this new
method, which we hope will provide a springboard to enhanced operations in the
many fields in which it expected to be used. More importantly we hope this new
methodology provides a deeper understanding for researchers, as they take this work
to the next level.
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