
Chapter 6
Gas Flow with Phase Transitions:
Thermodynamics and the Navier–Stokes
Equations

Anton A. Gorinov, Valentin V. Lychagin, Mikhail D. Roop
and Sergey N. Tychkov

6.1 Introduction

One-dimensional flows of gas or liquid are described by the following system of
Navier–Stokes equations (see for example, [1]):

⎧
⎨

⎩

ρ(ut + uux ) = −px + ηuxx ,

ρt + (ρu)x = 0,
Tρ(st + usx ) − kTxx − η(ux )

2 = 0.
(6.1)

Here ρ(t, x) is the density of the gas, u(t, x) is the velocity, p(t, x) is the pressure,
s(t, x) is the specific entropy, T (t, x) is the temperature, k and η are coefficients
of thermal conductivity and viscosity correspondingly, which are assumed to be
constants.

The first equation of system (6.1) corresponds to the momentum conservation
law of the medium, the second one is the continuity equation and the third one
is the equation of heat conduction, which represents the energy conservation law.
System (6.1) is incomplete. It consists of three equations for five unknown functions
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ρ(t, x), u(t, x), p(t, x), s(t, x), T (t, x). To make it complete we need two additional
equations describing thermodynamic properties of the gas—the equations of state.

The paper has the following structure. In Sect. 6.2, we give a geometrical descrip-
tion of the thermodynamic state. We consider the thermodynamic state as two-
dimensional Lagrangian manifold, which can be defined by two equations with
compatibility condition.

In Sect. 6.3, we study state equations and corresponding Lagrangian manifolds
for van der Waals gases and get its applicable domains with a description of phase
transitions.

In Sect. 6.4, we look for solutions as asymptotic expansions and analyse the zeroth
and the first-order approximations.

In Sect. 6.5, we show space-time domains corresponding to different phases of
the medium.

Essential computations in this paper were done in Maple with the Differential
Geometry package created by I. Anderson, the corresponding files could be found
in http://d-omega.org/appendices/.

6.2 Geometric Representation of Thermodynamic States

LetR5 be a5-dimensional contact space equippedwith the coordinates (p, ρ, e, T, s),
where e represents the specific energy and the other coordinates represent thermo-
dynamic quantities mentioned above, and the contact 1-form [2, 3]:

θ = 1

T
de − ds − p

Tρ2
dρ.

In our consideration, the thermodynamic state is a 2-dimensional Legendrian
manifold L ⊂ R

5(p, ρ, e, T, s), such that

θ |L = 0.

The last condition means that the first law of thermodynamics holds on the manifold
L .

If the specific entropy is a given function s = s(e, ρ), the condition θ |L = 0
leads to the following relations, that define 2-dimensional Legendrian manifold L ⊂
R

5(p, ρ, e, T, s):

s = s(e, ρ), p = −ρ2 sρ
se

, T = 1

se
. (6.2)

Since the equations of state usually include the specific energy and do not include
the specific entropy, we shall eliminate the specific entropy s from our considera-
tion. To this end, we consider the projection φ : R5 → R

4, φ : (ρ, p, e, T, s) �→
(ρ, p, e, T ) and symplectic space R4 equipped with structure 2-form

http://d-omega.org/appendices/
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� = dθ = 1

T 2
de ∧ dT − 1

Tρ2
dp ∧ dρ + p

T 2ρ2
dT ∧ dρ.

The restriction of the map φ on the Legendrian surface L is a diffeomorphism on
the image L = φ(L). The surface L ⊂ R

4 is a Lagrangian manifold. Equally, the
thermodynamic state can be considered as a 2-dimensional Lagrangian manifold
L ⊂ R

4(ρ, p, e, T ), i.e. �|L = 0.
Any 2-dimensional Lagrangian manifold L ⊂ R

4(ρ, p, e, T ) is defined by the
two equations {

f (ρ, p, e, T ) = 0,
g(ρ, p, e, T ) = 0,

(6.3)

and the condition that the surface L is Lagrangian can be written as:

[ f, g] = 0 on L, (6.4)

where [ f, g] is the Poisson bracket with respect to the symplectic form �, i.e.

[ f, g] � ∧ � = d f ∧ dg ∧ �.

In coordinates (ρ, p, e, T ) this bracket has the following form:

[ f, g] = Tρ2
(

∂ f

∂p

∂g

∂ρ
− ∂ f

∂ρ

∂g

∂p

)

+ T 2
(

∂ f

∂T

∂g

∂e
− ∂ f

∂e

∂g

∂T

)

+ T p

(
∂ f

∂p

∂g

∂e
− ∂ f

∂e

∂g

∂p

)

.

Condition (6.4) means the integrability of the following system of PDEs:

⎧
⎨

⎩

f
(
ρ,−ρ2 sρ

se
, e, 1

se

)
= 0,

g
(
ρ,−ρ2 sρ

se
, e, 1

se

)
= 0.

Thus, in what follows, by the system of Navier–Stokes equations we shall under-
stand system (6.1) together with two additional equations of state (6.3) satisfying
relation (6.4).

6.3 Van der Waals Gases

6.3.1 The Equations of State

The most important class of real gases is described by the van der Waals equation:

f (ρ, p, e, T ) = (p + aρ2)

(
1

ρ
− b

)

− RT, (6.5)
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herea is a characteristic of the gas responsible for the interaction between the particles
and b is particles’ volume, R is the universal gas constant. To find the second equation
we use the condition of compatibility, which is expressed in (6.4) and gives the
following result:

Proposition 6.1 Assuming that the specific energy is a function of density ρ and
temperature T

g(ρ, p, e, T ) = e − β(ρ, T ),

the second state equation for the van der Waals gas has to be in the form

β(ρ, T ) = −aρ + E(T ),

where E(T ) is a smooth function.

Proposition 6.2 Since the specific energy is the sum of the energy of the particles’
motion and the energy of their interaction, the function E(T ) has to be as follows

E(T ) = f R

2
T,

here f is a degree of freedom.

Thus, the equations of state for the van der Waals gas are

{
(p + aρ2)

(
1
ρ

− b
)

− RT = 0,

e − f RT
2 + aρ = 0.

(6.6)

To get the specific entropy s as function of the specific energy e and density ρ,
we integrate system (6.6) using (6.2). We have

s(e, ρ) = f R

2
ln(e + aρ) + R ln

(
1

ρ
− b

)

+ s0. (6.7)

Thus, formulae (6.6) and (6.7) define the thermodynamic state of van derWaals gases
or Legendrian manifold L .

6.3.2 Applicable Domains for the Van der Waals Gas

In this section we discuss domains where the van der Waals model is valid. We call
them applicable.

Let V = 1/ρ be a specific volume. First of all, we note that due to (6.5) we have
restriction for volumes to consider:
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V > b.

This condition is absolutely clear from the physical point of view: the volume occu-
pied by the gas cannot be less than the particles’ volume.

There is another condition for thermodynamic quantities to be applicable. The
Lagrangian manifold L is equipped with quadratic differential form κ|L , which has
to be negative [6]:

κ|L = d(T−1) · de + d(pT−1) · dV .

This allows to select domains on L where themodel of vanderWaals gas is applicable.
In case of van der Waals gases the form κ|L is following:

κ|L = − f R

2(e + a/V )2
de · de + f Ra

(e + a/V )2V 2 de · dV

+
(

f Ra

V 3(e + a/V )
− f Ra2

2V 4(e + a/V )2
− R

(V − b)2

)

dV · dV .

The form κ|L is negative if and only if its determinant is positive, which leads to the
following inequality:

eV 3 − a( f − 1)V 2 + 2ab f V − ab2 f > 0.

Using e = f RT/2 − a/V we get:

1

2
RT V 3 − aV 2 + 2abV − ab2 > 0. (6.8)

Let us introduce contact transformation

T̃ = T

Tcrit
, Ṽ = V

Vcrit
, p̃ = p

pcrit
, ẽ = e

ecrit
, s̃ = s

scrit
,

where Tcrit , Vcrit , pcrit , ecrit , scrit are critical parameters for van der Waals gases:

Tcrit = 8a

27Rb
, Vcrit = 3b, pcrit = a

27b2
, ecrit = a

9b
, scrit = 3R

8
.

Then inequality (6.8) can be written in dimensionless variables T̃ and Ṽ :

4Ṽ 3T̃ − 9Ṽ 2 + 6Ṽ − 1 > 0,

which defines the applicable domains of specific volume and temperature for the
van der Waals gas. They are shown in Fig. 6.1. The picture shows that the van der
Waals model is correct at any point (V, T ) over the critical one. The forbidden area
corresponds to phase transitions.



214 A. A. Gorinov et al.

Fig. 6.1 Applicable
domains for the van der
Waals gas. White area
corresponds to forbidden
volumes and temperatures

Fig. 6.2 Isotherm for the
van der Waals gas
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6.3.3 Phase Transitions

Phase transitions for the van der Waals gas can be described by means of Fig. 6.2.
Grey domains in this picture correspond to intermediate state. At points 1/ρ2 and
1/ρ1, phase transition starts and finishes correspondingly. To find these points, we
use the following condition of thermodynamic equilibrium, which claims that the
chemical potential of different phases of our system is the same:

μ(T0, p0, ρ1) = μ(T0, p0, ρ2) = μ0,

where T0 and p0 are the temperature and the pressure of phase transition. The expres-
sion for the chemical potential of gases is

μ = e − T s + p

ρ
,

and for van der Waals gases it can be expressed in terms of pressure p, temperature
T and density ρ:

μ = f RT

2
− ρa − T

(
f R

2
ln

(
f R

2
T

)

+ R ln

(
1

ρ
− b

))

+ p

ρ
.

Moreover, the equation of state of the gasmust be satisfied at the points (T0, p0, ρ1)

and (T0, p0, ρ2). As a result we obtain the following system of equations for ρ1 and
ρ2:

μ0 = f RT0
2

− ρ1a − T0

(
f R

2
ln

(
f R

2
T0

)

+ R ln

(
1

ρ1
− b

))

+ p0
ρ1

, (6.9)

μ0 = f RT0
2

− ρ2a − T0

(
f R

2
ln

(
f R

2
T0

)

+ R ln

(
1

ρ2
− b

))

+ p0
ρ2

, (6.10)

p0 − p0ρ1b + aρ2
1 − abρ3

1 − ρ1RT0 = 0, (6.11)

p0 − p0ρ2b + aρ2
2 − abρ3

2 − ρ2RT0 = 0. (6.12)

Eliminating μ0 and p0 from (6.9)–(6.12) we get the following equations:

(ρ1 − ρ2)(RT0 − a(ρ1 + ρ2)(bρ1 − 1)(bρ2 − 1)) = 0,

ρ1RT0(bρ2 − 1) ln

(
ρ1(1 − bρ2)

ρ2(1 − bρ1)

)

+ (ρ1 − ρ2)(aρ1(1 − bρ2) + abρ22 + RT0 − aρ2) = 0.

There is the trivial solution ρ1 = ρ2, which is out of interest, because the temperature
is assumed to be under the critical value. In general case the solution is given by
Fig. 6.3. We can see that the straight line and the points C and D correspond to
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Fig. 6.3 Solution

Fig. 6.4 Dynamics of the solution

trivial solution ρ1 = ρ2. The two other points A and B of intersection of the curves
correspond to solution for ρ1 and ρ2. Since we have not specified which density is
greater, the points A and B define the same solution. If we change the temperature
of phase transition T0, we can see that values ρ1 and ρ2 become closer and there is
only one solution ρ1 = ρ2 when T0 = Tcrit (Fig. 6.4).
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6.4 Asymptotic Expansions for Solution

6.4.1 Zeroth-Order Approximation

Recall that we consider the system of equations:

⎧
⎨

⎩

ρ(ut + uux ) = −px + ηuxx ,

ρt + (ρu)x = 0,
Tρ(st + usx ) − kTxx − η(ux )

2 = 0,
(6.13)

extended by the equations of state (Legendrian manifold L):

⎧
⎪⎪⎨

⎪⎪⎩

s(e, ρ) = f R
2 ln(e + aρ) + R ln

(
1
ρ

− b
)

+ s0,

(p + aρ2)
(

1
ρ

− b
)

− RT = 0,

e − f RT
2 + aρ = 0.

(6.14)

We are looking for asymptotical solution of system (6.13)-(6.14) with respect to van
der Waals parameters a and b:

u(t, x) = u0(t, x) + au1(t, x) + bu2(t, x) + · · · ,

ρ(t, x) = ρ0(t, x) + aρ1(t, x) + bρ2(t, x) + · · · ,

e(t, x) = e0(t, x) + ae1(t, x) + be2(t, x) + · · · .

For simplicity, we shall continue to use u(t, x), ρ(t, x), e(t, x) instead of u0(t, x),
ρ0(t, x), e0(t, x) and get the following equations which describe the zeroth-order
approximation:

ρ(ut + uux ) + 2

f
(ρe)x − ηuxx = 0, (6.15)

ρt + ρxu + ρux = 0, (6.16)

ρ(et + uex ) − 2

f
e(ρt + uρx ) − η(ux )

2 − 2k

R f
exx = 0. (6.17)

This system corresponds to equations (6.1) for the ideal gas. It defines a smooth
submanifold E ⊂ J 2(π), here π is a 3-dimensional bundle [4, 5]:

π : R5 → R
2, π : (t, x, u, ρ, e) �→ (t, x).

Proposition 6.3 The symmetry algebra g of the system E is solvable and generated
by the following vector fields on the space J 0(π):
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Table 6.1 The Lie algebra structure

Field X1 X2 X3 X4 X5

X1 0 0 X2 X1 0

X2 0 0 0 0 X2

X3 −X2 0 0 −X3 X3

X4 −X1 0 X3 0 0

X5 0 −X2 −X3 0 0

X1 = ∂t , X2 = ∂x , X3 = t∂x + ∂u,

X4 = t∂t + ρ∂ρ − u∂u − 2e∂e,

X5 = x∂x − 2ρ∂ρ + u∂u + 2e∂e,

The Lie algebra structure is represented in Table6.1. The table shows that the Lie
algebra g is solvable:

g(1) = [g, g] = 〈X1, X2, X3〉

g(2) = [g(1), g(1)] = 〈X2〉, g(3) = [g(2), g(2)] = 0.

We are going to find solutions of system (6.15)–(6.17) invariant with respect to a
one-dimensional subalgebra of g and alsowewant to get the reduced ordinary system
having as many symmetries as possible. Since the symmetries in the normalizer
of one-dimensional subalgebra h of the Lie algebra g are the symmetries of the
reduced equations, we compute the normalizers of all admissible one-dimensional
subalgebras in g:

NX = { Y ∈ g | [X,Y ] = λX }, where λ is a parameter.

One may show that in our case one-dimensional subalgebra

h = 〈α2X2 + α3X3 + α5X5〉,

where α j are constants, has the biggest normalizer

Nh =
〈
α2

α3
X1 + α3

α5
X3 + X5,−α3

α5
X3 + X4, X1 − α3

α5
X2

〉

.

The h-invariant solution of system (6.15)–(6.17) has the following form:
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e(t, x) = (α3t + α5x + α2)
2F1(t), ρ(t, x) = F2(t)

(α3t + α5x + α2)2
,

u(t, x) = (α3t + α5x + α2)F3(t) − α3

α5
,

and the reduced ordinary equations are

F ′
3 + α5F

2
3 = 0, −F ′

2 + α5F2F3 = 0, (6.18)

F ′
1F2R f − 2RF1F

′
2 − α5

(
F1(4kα5 − 2R( f + 2)F2F3) + R f ηα5F

2
3

) = 0.
(6.19)

After the integration of these equations we get the following:

ρ(t, x) = C2(α5t + C1)

(α3t + α5x + α2)2
, u(t, x) = α3t + α5x + α2

α5t + C1
− α3

α5
, (6.20)

e(t, x) = (α3t + α5x + α2)
2
(

α5R f η

2(RC2 − 2kα5)(α5t + C1)2
+ C3(α5t + C1)

−2− 2
f + 4kα5

C2R f

)

,

(6.21)
where C1, C2 and C3 are constants.

This solution represents the zeroth-order approximation of the solution for the van
der Waals gas. Since the flows of vector fields X2 and X3 are the shift and Galilean
transformation correspondingly, their influence on the solution is not crucial:Galilean
transformation makes the frame of reference move with constant velocity and the
shift along the x-axis just changes the location of the origin. Assuming that our frame
of reference does not move and the point x = 0 corresponds to the origin we shall
take α3 = α2 = 0, α5 = 1 in (6.20)–(6.21).

6.4.2 First-Order Approximation

The equations for the first-order corrections u1(t, x), ρ1(t, x) and e1(t, x) can be
written in the following form:

⎛

⎝
u1
ρ1

e1

⎞

⎠

t

= A(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠

xx

+ B(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠

x

+ C(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠ + D(t, x), (6.22)

here matrixes A, B, C and D depend on the functions u(t, x), ρ(t, x) and e(t, x) of
the zeroth-order approximation found in Sect. 6.4.1:
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A(t, x) = 1

ρ

⎛

⎝
η 0 0
0 0 0
0 0 2k

f R

⎞

⎠ , B(t, x) = −
⎛

⎝

u 2e
fρ

2
f

ρ u 0
2e
f − 2ηux

ρ
0 u

⎞

⎠

C(t, x) = −
⎛

⎜
⎝

ux
2Rex+ f R(ut (t,x)+uux )

ρ f R
ρx
ρ f

ρx ux 0
ex

2Reux+ f R(et+uex )
ρ f R − 2(ρt+uρx )

ρ f

⎞

⎟
⎠ , D(t, x) =

⎛

⎜
⎝

2ρx

(
1 − 2

f

)

0
2kρxx+ρR(ρt+uρx )(2− f )

ρ f R

⎞

⎟
⎠

System (6.22) is linear non-homogeneous system of partial differential equations and
its general solution can be represented as the sum of general solution of the corre-
sponding homogeneous system (D = 0) and particular solution of non-homogeneous
system.

Let us consider homogeneous system:

⎛

⎝
u1
ρ1

e1

⎞

⎠

t

= A(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠

xx

+ B(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠

x

+ C(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠ ,

Since its coefficients depend on the zeroth-order solution, which are invariant with
respect to X5, we are looking for the solution in the form representing the eigenfunc-
tions of differential operator x∂x = π∗(X5):

ρ1(t, x) = R(t)xl , e1(t, x) = E(t)xm, u1(t, x) = U (t)xn.

The numbers l, m and n satisfy the linear non-homogeneous system:

⎧
⎨

⎩

m − l = 4,
n − l = 3,
m − n = 1.

Its general solution is

⎛

⎝
l
m
n

⎞

⎠ =
⎛

⎝
l

4 + l
3 + l

⎞

⎠ =
⎛

⎝
0
4
3

⎞

⎠ + l

⎛

⎝
1
1
1

⎞

⎠ .

Time-dependent part of the first-order corrections U (t), R(t) and E(t) satisfies the
following ODE system: ⎛

⎝
U̇
Ṙ
Ė

⎞

⎠ = (t)

⎛

⎝
U
R
E

⎞

⎠ .

Matrix (t) has the following form:
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Fig. 6.5 Phase picture. The
thick curve at the plane (t, x)
separates domains with
different phases. This allows
to define which phase
corresponds to the medium
at given point x and at given
time moment t

(t) =
⎛

⎜
⎝

η(3+l)(2+l)−Ḟ2(4+l)
F2

−2(2+l)F1
f F2

− 2(2+l)
f

−(l + 1)F2 −(l + 1)F3 0
2(F3η(3+l) f −F1F2(l+3+ f ))

f F2
− f Ḟ1+2F1F3( f +1)

f F2
2k(4+l)(3+l)−RḞ2(2+ f (4+l))

f RF2

⎞

⎟
⎠ ,

where functions F1(t), F2(t) and F3(t) are the solutions of reduced system (6.18)–
(6.19).

If either C3 = 0 or we consider gases with zero viscosity η = 0, this system can
be integrated in the same way as it was done for the spatial part, because in this case
components of the matrix (t) are the homogeneous functions in t .

6.5 Phase Transitions Along the Gas Flow

In this section, we describe space-time domains corresponding to different phases
of the medium. Since we have a solution of system (6.13)–(6.14), we can compute
the corresponding set of points (t, x) of the same temperature T0. In Sect. 6.3 we
have developed a method that allows (for a given value of temperature T0) to define
the densities ρ

(0)
1 and ρ

(0)
2 of liquid and gas phases respectively, between which the

phase transition occurs. The corresponding points can be found on the plane (t, x)
as well. Changing the temperature, we get a set of points (ρ

(i)
1 , ρ

(i)
2 ), which form a

curve on the plane (t, x). This curve separates different phases of the medium. The
result of this procedure for the solution obtained in Sect. 6.4 is shown in Fig. 6.5.
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The curves labelled by T1 and T2 are the isotherms. The red curve corresponds to
the critical isotherm, under which we have no phase transitions. For a given spatial
coordinate x , our medium passes through three states while the time is running: gas,
intermediate state and liquid.

This picture is an approximation for the real one. It can be refined by computation
of further series of asymptotics.
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