
Chapter 10
Integrability of Geodesics of Totally
Geodesic Metrics

Radosław A. Kycia and Maria Ułan

10.1 Introduction

In [11], a class of totally geodesic metrics were given. For convenience, we outline
here the main steps referring interested reader to the paper for details.

The startingpoint is to decompose theWeyl tensor in thebaseof 2-forms,which are
eigenvectors of the corresponding Weyl operator. Then it results that the space-time
contains totally geodesic distributions [11] of hyperbolic (H ) and elliptic (E) tangent
planes. This induces the solutions of the Einstein’s equations with the cosmological
constant � in the form

g = gH ⊕ gE ,

gH = eα(x0,x1)(dx20 − dx21 ), gE = −eβ(x2,x3)(dx22 + dx23 ).
(10.1)

The functions α and β are the solutions of the hyperbolic and elliptic Liouville
equations, correspondingly, [4]

{
∂2α(x0,x1)

∂2x0
− ∂2α(x0,x1)

∂2x1
+ 2�eα(x0,x1) = 0,

∂2β(x2,x3)
∂2x2

+ ∂2β(x2,x3)
∂2x3

− 2�eβ(x2,x3) = 0.
(10.2)

The solutions are as follows:
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α(x0, x1) = ln(h1(v)(v2x0 − v2x1)),
β(x2, x3) = ln(h2(u)(u2x2 + u2x3)),

(10.3)

where u and v are the solutions of the two-dimensional hyperbolic and elliptic equa-
tions:

vx0x0 − vx1x1 = 0,
ux2x2 + ux3x3 = 0,

(10.4)

and where h1 and h2 are the solutions of a second-order ODEs. Full list of the
solutions is presented [11].

In this paper, we analyse the geodesic governed by (10.1). Computations of the
geodesic equations were performed using the Mathematica package CCGRG, see
[14, 18, 19], and symmetries were computed using theDifferential GeometryMaple
package.

This paper is organized as follows: In the next section, it is shown that there is
no true singularities of geodesics in the model of [11], i.e. the space-time is totally
geodesic. Then the analysis of Liouville integrability [1] of the geodesics equations
is provided. Finally, the analogous model with additional coupling to the electromag-
netic field described in [12] is considered in the terms of integrability of geodesics.

The presentation starts with the analysis of the singularities of geodesics.

10.2 Singularities

The metric tensors described in [11] have obvious singularities. Generally, the sin-
gularities in the General Relativity have two origins [17]:

• singularities of the coordinates which results from the fact that in the coordinate
patch ill-defined coordinate functions are used over regular points of manifold;

• true singularities which indicate geodesic incompleteness of the manifold;

True singularities are usually visible as the singularities of some invariants of
curvature. The simplest second-order one is the square of the Riemann curvature
(called Kretschmann scalar [3])

K = Rabcd R
abcd . (10.5)

For (10.1) that are solutions of (10.2), this invariant is constant

K = 8�2, (10.6)

which suggests no singularities, i.e. completeness of the pseudo-Riemannian mani-
fold. The answer is affirmative as it is provided by the following Lemma1

1RKwould like to thank Igor Khavkine for discussion on this subject and suggestions of the outline
of the proof.
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Lemma 10.1 The pseudoriemannian manifold (10.1) with (10.2) is complete.

Proof From the metric decomposition (10.1) and the fact that

RH =
1∑

i, j=0

Ri j
..i j = 2�, RE =

3∑
i, j=2

Ri j
..i j = 2�, (10.7)

it results that the space factorizes into two-dimensional subspaces of constant curva-
ture. These subspaces are isometric to spaces with no singularities according to the
well-known Killing–Hopf theorem (see, e.g. Theorem 6.3 in [2]). �

The lemma states that any singularity of (10.1), (10.2) is an artificial singularity only
and can be removed by a suitable change of coordinates.

10.3 Geodesics

In this section, the analysis of the geodesic equationswill be provided. In the first part,
the canonical form of the geodesic equations and their symmetries will be presented.
Then the (Liouville) integrable cases will be singled out.

10.3.1 Geodesic Equations

Since the tangent space decomposes into two-dimensional subspaces, therefore,
the geodesic equations consist of two pairs of two coupled ODEs for γ (s) =
(x0(s), x1(s), x2(s), x3(s)), namely,

{
x ′′
0 + x ′

0x
′
1αx1 + 1

2

(
x ′
0

)2
αx0 + 1

2

(
x ′
1

)2
αx0 = 0

x ′′
1 + 1

2

(
x ′
0

)2
αx1 + 1

2

(
x ′
1

)2
αx1 + x ′

0x
′
1αx0 = 0,

(10.8)

{
x ′′
2 + x ′

2x
′
3βx3 + 1

2

(
x ′
2

)2
βx2 − 1

2

(
x ′
3

)2
βx2 = 0

x ′′
3 − 1

2

(
x ′
2

)2
βx3 + 1

2

(
x ′
3

)2
βx3 + x ′

2x
′
3βx2 = 0,

(10.9)

where ′ = d
ds , αxi = ∂α

∂xi
and βxi = ∂β

∂xi
.

These equations can be significantly simplified. Adding and subtracting Eq. (10.8)
and then introducing the light-cone variables (characteristics of the wave equation):
x0 = z0+z1

2 and x1 = z0−z1
2 one gets

�1(z0, z1) :
{
z′′
0 + ∂α(z0,z1)

∂z0

(
z′
0

)2 = 0

z′′
1 + ∂α(z0,z1)

∂z1

(
z′
1

)2 = 0.
(10.10)
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Symmetries of (10.10) can be found by assuming that the generator of a symmetry
is of the form: X = f (s, z0, z1)∂s + g(s, z0, z1)∂z0 + h(s, z0, z1)∂z1 , and solving the
following system of PDEs:

£X (2)�1(z0, z1)|�1(z0,z1) = 0, (10.11)

where £ is the Lie derivative along X (2)—the second prolongation of X to the jet
space [5, 10, 15, 16]. The result is

X1 = (As + B)∂s, (10.12)

where A and B are constants. This gives a scaling and a translation symmetry of s
variable, and it results from the fact that (10.8) does not depends explicitly on s. The
symmetry reflects the fact that the geodesics should not depend on re-parametrization
in s and is also connected with the fact that the geodesic equations are variational
and should posses such symmetries.

The same procedure can be applied to the second system of (10.9). In this case we
have positively defined (‘elliptic’) metric, which suggests complex characteristics.
It is, therefore, more appropriate to use complex-valued characteristics of an ellip-
tic equation, i.e. the substitution x2 = z2+z3

2i and x3 = z2−z3
2 , where i = √−1. Then

adding and subtracting from the first equation of (10.9) multiplied by the imaginary
unity the second one one gets the system which resembles (10.10), namely,

�1(z2, z3) :
{
z′′
2 + ∂β(z2,z3)

∂z2

(
z′
2

)2 = 0

z′′
3 + ∂β(z2,z3)

∂z3

(
z′
3

)2 = 0.
(10.13)

Since the equations are the same as in the previous case, symmetry analysis
indicates, as above, the following generator:

X2 = (Cs + D)∂s, (10.14)

where C and D are some constants.
In the next section, integrability of geodesics equations will be investigated.

10.3.2 Integrability of Geodesic Equations

First, let us consider the hyperbolic part of the metric, namely define the Hamiltonian

H0,α = eα(x0,x1)(p20 − p21), (10.15)

which surfaces of constant value determine the movement of the particles (positive-
massive particles, zero-massless particles). Since the submanifold dimension is 2,
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therefore in order to find its foliation, according the the Liouville theorem [1], one
additional function that the Poisson brackets with H0,α vanishes, is needed. It is
assumed in the polynomial form in p0 and p1, namely,

H1,α =
n∑

k=0

fi (x0, x1)p
k
0 p

n−k
1 , (10.16)

where n is natural number that is fixed degree. Complete integrability is equivalent
to the existence of a solution of

{H0,α, H1,α}PB = 0, (10.17)

where {., .}PB is the standard Poisson bracket. Equation (10.17) gives the set of
PDEs.2 In order to check closeness of this system the Kruglikov–Lychagin multi-
bracket [6–9, 13] is used. When applied on the system (10.17), it gives compatibility
condition in terms of PDEs for α(x, y), which solutions up to n = 5 are

1. n = 1, 2:

α(x0, x1) = F tanh(B(y − x) + A)3 + E tanh(B(y − x) + A)2

+ D tanh(B(y − x) + A) + C; (10.18)

where A, B,C, D, E, F are the constants of integration and parametrize α.
2. n = 3, 4:

α(x0, x1) = Ax + By + C; (10.19)

where A, B,C are the constants of integration and parametrize α.

Surprisingly, these solutions fulfil the first equation of (10.2) only when the cos-
mological constant � = 0. This is a very prominent example of the role of the
cosmological constant in integrability of geodesic equations.

For the case (10.18), integration can be easily performed using (10.10) and gives

{
z0(s) = As + J,∫ z1(s)

0 exp(F tanh(Ba + A)3 + E tanh(Ba + A)2 + D tanh(Ba + A) + C)da + Gs + H = 0,
(10.20)

where the second solution is expressed in the implicit form, A, B, . . . , F are as in
(10.18) and G, H, J are the constants dependent on initial data.

The second case (10.19) can be explicitly expressed in terms of elementary func-
tions, namely,

z0(s) = −2
ln

(
2

(Ds+E)(A+B)

)
A+B ,

z1(s) = −2
ln

(
2

(Fs+G)(A+B)

)
A+B ,

(10.21)

2All calculations for this section are available as Maple files on: https://github.com/rkycia/
GeodesicsIntegrability.

https://github.com/rkycia/GeodesicsIntegrability
https://github.com/rkycia/GeodesicsIntegrability
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where D, E, F,G are the constants depending on initial data.
Similar analysis performed for the elliptic part of the metric by taking

H0,β = eβ(x2,x3)(p22 + p23), (10.22)

and

H1,β =
n∑

k=0

fi (x2, x3)p
k
2 p

n−k
3 , (10.23)

and checking when
{H0,β , H1,β}PB = 0. (10.24)

The two solutions for β are obtained up to the degree n = 5, namely:

1. n = 1, 2:

β(x0, x1) = F tanh(B(y − xi) + A)3 + E tanh(B(y − xi) + A)2

+ D tanh(B(y − xi) + A) + C; (10.25)

where A, B,C, D, E, F are the constants of integration and parametrize β, and
i is the imaginary unit.

2. n = 3, 4:
β(x0, x1) = Ax + By + C; (10.26)

where A, B,C are the constants of integration and parametrize β.

As in the previous case, these βs solve (10.2) only when the cosmological constant
� = 0.

For (10.25) the solution of (10.13) is

{
z2(s) = As + J,∫ z3(s)

0 exp(F tanh(Ba + A)3 + E tanh(Ba + A)2 + D tanh(Ba + A) + C)da + Gs + H = 0,
(10.27)

where, as before, G, H, J are the integration constants depending on initial data.
For (10.26), the solution of (10.13) is

z2(s) = −2
ln

(
2

(A−i B)(Ds+E)

)
A−i B ,

z3(s) = −2
ln

(
2

(A+i B)(Fs+G)

)
A+i B ,

(10.28)

where D, E, F,G are again the constants depending on initial data. These solutions
are complex-valued, however, since x2 and x3 fulfil real equations for geodesic,
therefore, transforming to the original variables one gets real solutions.

In general, the geodesic solutions can be constructed by selecting the solution
(10.20) or (10.21) for the hyperbolic part of the subspace, and (10.27) or (10.28)
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for the elliptic subspace. Therefore, in total 4 = 2 × 2 integrable solutions were
obtained.

10.4 Einstein–Maxwell Solutions

The results from the previous section can be used for analysis of the geodesics of
the solutions for coupled the Einstein and Maxwell equations described in [12]. In
this model the totally geodesic solutions, the same as the solution of (10.1) for the
metric, were obtained. However, now α and β are solutions of{

∂2α(x0,x1)
∂2x0

− ∂2α(x0,x1)
∂2x1

+ k1eα(x0,x1) = 0,
∂2β(x2,x3)

∂2x2
+ ∂2β(x2,x3)

∂2x3
+ k2eβ(x2,x3) = 0,

(10.29)

where

k1 = 2

(
k J

c4
+ �

)
, k2 =

(
k J

c4
− �

)
, (10.30)

where � is the cosmological constant, k is the gravitational constant, and the new
parameter J is connected with the solution for the Faraday tensor of electromagnetic
field

F = −2leα(x0,x1)dx0 ∧ dx1 + 2meβ(x2,x3)dx2 ∧ dx3, (10.31)

where

l2 = J − I1
2

, m2 = J + I1
2

, (10.32)

and where I1 is the invariant of the characteristic polynomial of the skew symmetric
operator F̂ (associated to F by g(F̂ X,Y ) = F(X,Y )), namely, its determinant. The
parameters ±l and ±im, where l,m ∈ R, are the eigenvalues of the hyperbolic and
the elliptic parts of the operator F̂ .

The straightforward result from (10.32) is that

J = l2 + m2, I1 = m2 − l2. (10.33)

From our previous considerations, the geodesic equations are (Liouville) inte-
grablewhen k1 = 0 = k2, i.e.,when J = 0 and� = 0.And therefore, since l,m ∈ R,
from the first equation of (10.33) it results that l = 0 and m = 0, and therefore, the
Faraday tensor vanishes. This shows that the integrable solutions for geodesics exist
when no electromagnetic field and no cosmological constant is present in this model.
The solutions for geodesics are exactly the same as in the previous section for the
Einstein equations only, since the electromagnetic field vanishes.
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10.5 Discussion

The semi-Riemmanianmetric of [11] describes anisotropic space-time, which distin-
guished the space direction x1, and therefore cannot describe the observed space-time
where assumption on spherical symmetry is imposed. The presence of this distin-
guished space direction resembles the phenomena from the phase transitions in solid
state physics, and therefore it suggests that the model can be applied in some phe-
nomena that occur when the universe undertake some kind of phase transition, e.g.,
in the early state of the universe. A similar description applies also to the coupled
Einstein–Maxwell system.

Intriguing correspondence between vanishing of the cosmological constant and
integrability of the geodesic equations was noted. In the case of electromagnetism
for integrability also electromagnetic field must vanish.

10.6 Conclusions

In this paper, analysis of the geodesic of the solution of the Einstein vacuum equa-
tions resulting from the Weyl tensor bivector structure was provided. In particular,
integrable geodesic equations of special solutions of the Einstein vacuum equation
were found and described. A similar analysis was also performed for the Einstein–
Maxwell system.
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